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Preface

The motion of any body depends both on its characteristics and the forces
acting on it. Although taking into account all possible properties makes
the equations too complex to solve, sometimes it is possible to consider
only the properties that have the greatest influence on the motion. Models
of ideals bodies, which contain only the most relevant properties, can be
studied using the tools of mathematical physics. Adding more properties
into a model makes it more realistic, but it also makes the motion problem
harder to solve.

In order to highlight the above statements, let us first suppose that a
system S of N unconstrained bodies Ci, i = 1, ..., N , is sufficiently described
by the model of N material points whenever the bodies have negligible
dimensions with respect to the dimensions of the region containing the
trajectories. This means that all the physical properties of Ci that influence
the motion are expressed by a positive number, the mass mi, whereas the
position of Ci with respect to a frame I is given by the position vector
ri(t) versus time. To determine the functions ri(t), one has to integrate the
following system of Newtonian equations:

mir̈i = Fi ≡ fi(r1, ..., rN , ṙ1, ..., ṙN , t),

i = 1, ..., N , where the forces Fi, due both to the external world and to the
other points of S, are assigned functions fi of the positions and velocities
of all the points of S, as well as of time. Under suitable regularity assump-
tions about the functions fi, the previous (vector) system of second-order
ordinary differential equations in the unknowns ri(t) has one and only
one solution satisfying the given initial conditions

ri(t0) = r0
i , ṙi(t0) = ṙ0

i , i = 1, ..., N.

A second model that more closely matches physical reality is represented
by a system S of constrained rigid bodies Ci, i = 1, ..., N . In this
scheme, the extension of Ci and the presence of constraints are taken
into account. The position of Ci is represented by the three-dimensional

ix



x Preface

region occupied by Ci in the frame I. Owing to the supposed rigidity of
both bodies Ci and constraints, the configurations of S are described by
n ≤ 6N parameters q1, ..., qn, which are called Lagrangian coordinates.
Moreover, the mass mi of Ci is no longer sufficient for describing the phys-
ical properties of Ci since we have to know both its density and geometry.
To determine the motion of S, that is, the functions q1(t), ..., qn(t), the La-
grangian expressions of the kinetic energy T (q, q̇) and active forces Qh(q, q̇)
are necessary. Then a possible motion of S is a solution of the Lagrange
equations

d

dt

∂T

∂q̇h
− ∂T

∂qh
= Qh(q, q̇), h = 1, ..., n,

satisfying the given initial conditions

qh(t0) = q0
h, q̇h(t0) = q̇0

h, h = 1, ..., n,

which once again fix the initial configuration and the velocity field of S.
We face a completely different situation when, to improve the description,

we adopt the model of continuum mechanics. In fact, in this model the
bodies are deformable and, at the same time, the matter is supposed to
be continuously distributed over the volume they occupy, so that their
molecular structure is completely erased. In this book we will show that
the substitution of rigidity with the deformability leads us to determine
three scalar functions of three spatial variables and time, in order to find
the motion of S. Consequently, the fundamental evolution laws become
partial differential equations. This consequence of deformability is the root
of the mathematical difficulties of continuum mechanics.

This model must include other characteristics which allow us to describe
the different macroscopic material behaviors. In fact, bodies undergo dif-
ferent deformations under the influence of the same applied loads. The
mathematical description of different materials is the object of the con-
stitutive equations. These equations, although they have to describe a
wide variety of real bodies, must in any case satisfy some general principles.
These principles are called constitutive axioms and they reflect general
rules of behavior. These rules, although they imply severe restrictions on
the form of the constitutive equations, permit us to describe different mate-
rials. The constitutive equations can be divided into classes describing the
behavior of material categories: elastic bodies, fluids, etc.. The choice of
a particular constitutive relation cannot be done a priori but instead relies
on experiments, due to the fact that the macroscopic behavior of a body
is strictly related to its molecular structure. Since the continuum model
erases this structure, the constitutive equation of a particular material has
to be determined by experimental procedures. However, the introduction
of deformability into the model does not permit us to describe all the phe-
nomena accompanying the motion. In fact, the viscosity of S as well as the
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friction between S and any external bodies produce heating, which in turn
causes heat exchanges among parts of S or between S and its surroundings.
Mechanics is not able to describe these phenomena, and we must resort to
the thermomechanics of continuous systems. This theory combines
the laws of mechanics and thermodynamics, provided that they are suitably
generalized to a deformable continuum at a nonuniform temperature.

The situation is much more complex when the continuum carries charges
and currents. In such a case, we must take into account Maxwell’s equa-
tions, which describe the electromagnetic fields accompanying the motion,
together with the thermomechanic equations. The coexistence of all these
equations gives rise to a compatibility problem: in fact, Maxwell’s equa-
tions are covariant under Lorentz transformations, whereas thermomechan-
ics laws are covariant under Galileian transformations.

This book is devoted to those readers interested in understanding the
basis of continuum mechanics and its fundamental applications: balance
laws, constitutive axioms, linear elasticity, fluid dynamics, waves, etc. It is
self-contained, as it illustrates all the required mathematical tools, starting
from an elementary knowledge of algebra and analysis.

It is divided into 11 chapters. In the first two chapters the elements
of linear algebra are presented (vectors, tensors, eigenvalues, eigenvectors,
etc.), together with the foundations of vector analysis (curvilinear coordi-
nates, covariant derivative, Gauss and Stokes theorems). In the remaining
9 chapters the foundations of continuum mechanics and some fundamental
applications of simple continuous media are introduced. More precisely,
the finite deformation theory is discussed in Chapter 3, and the kinetic
principles, the singular surfaces, and the general differential formulae for
surfaces and volumes are presented in Chapter 4. Chapter 5 contains the
general integral balance laws of mechanics, as well as their local Eulerian or
Lagrangian forms. In Chapters 6 and 7 the constitutive axioms, the thermo-
viscoelastic materials, and their symmetries are discussed. In Chapter 8,
starting from the characteristic surfaces, the classification of a quasi-linear
partial differential system is discussed, together with ordinary waves and
shock waves. The following two chapters cover the application of the gen-
eral principles presented in the previous chapters to perfect or viscous fluids
(Chapter 9) and to linearly elastic systems (Chapter 10). In the last chap-
ter, a comparison of some proposed thermodynamic theories is presented.
Finally, in Appendix A the concept of a weak solution is introduced.

This volume has a companion disc containing many programs written
with Mathematica r©. These programs apply to topics discussed in the
book such as the equivalence of applied vector systems, differential opera-
tors in curvilinear coordinates, kinematic fields, deformation theory, classi-
fication of systems of partial differential equations, motion representation
of perfect fluids by complex functions, waves in solids, and so on. This
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approach has already been adopted by two of the authors in other books
(see [5], [6]).1

Many other important topics of continuum mechanics are not considered
in this volume, which is essentially devoted to the foundations of the theory.
In a second volume, for which editing is in progress, nonlinear elasticity,
mixtures, phase changes, piezoelastic and magnetoelastic bodies will be
discussed. Moreover, as examples of one-dimensional and two-dimensional
continua, the elements of bars and plates will be presented.

1The reader interested in other fundamental books in continuum mechanics can consult,
for example, the references [1], [2], [3], [4].



Chapter 1

Elements of Linear Algebra

1.1 Motivation to Study Linear Algebra

In describing reality mathematically, several tools are used. The most
familiar is certainly the concept of a function, which expresses the depen-
dence of some quantities (y1, . . . , ym) on others (x1, . . . , xn) by m analytical
relations

yi = fi(x1, . . . , xn), i = 1, . . . , m. (1.1)

For instance, the coordinate x of a material point moving on a straight
line with harmonic motion varies with time t according to the law

x = A sin(ωt + ϕ),

where ω = 2πν and A, ν, and ϕ are the amplitude, the frequency, and the
phase of the harmonic motion, respectively. Similarly, an attractive elastic
force F depends on the lengthening s of the spring, according to the rule

Fi = −kxi, i = 1, 2, 3.

In this formula Fi denotes the ith force component, k > 0 is the elastic
constant, and xi is the ith component of s. A final example is a dielectric,
in which the components Di of the electric induction D depend on the
components Ei of the electric field E.

Later, it will be shown that the tension in a neighborhood I of a point P of
an elastic material S depends on the deformation of I; both the deformation
and the tension are described by 9 variables. Therefore to find the relation
between deformation and tension, we need 9 functions like (1.1), depending
on 9 variables.

The previous examples, and many others, tell us how important it is
to study systems of real functions depending on many real variables. In
studying mathematical analysis, we learn how difficult this can be, so it is
quite natural to start with linear relations fi. In doing this we are making

1



2 Chapter 1. Elements of Linear Algebra

the assumption that small causes produce small effects. If we interpret the
independent variables xi as causes and the dependent variables yi as effects,
then the functions (1.1) can be replaced with their Taylor expansions at the
origin (0, . . . , 0). Limiting the Taylor expansions to first order gives linear
relations, which can be explored using the techniques of linear algebra. In
this chapter we present some fundamental aspects of this subject.1

1.2 Vector Spaces and Bases

Let � (C) be the field of real (complex) numbers. A vector space on
� (C) is an arbitrary set E equipped with two algebraic operations, called
addition and multiplication . The elements of this algebraic structure
are called vectors.

The addition operation associates to any pair of vectors u, v of E their
sum u + v ∈ E in a way that satisfies the following formal properties:

u + v = v + u;

only one element 0 ∈ E exists for which u + 0 = u;

for all u ∈ E , only one element − u ∈ E exists such that u + (−u) = 0.
(1.2)

The multiplication operation, which associates the product au ∈ E to
any number a belonging to � (C) and any vector u ∈ E , has to satisfy the
formal properties

1u = u,

(a + b)u = au + bu,

a(u + v) = au + av. (1.3)

Let W = {u1, . . . ,ur} be a set of r distinct vectors belonging to E ; r is
also called the order of W . The vector

a1u1 + · · · + arur,

where a1, . . . , ar are real (complex) numbers, is called a linear combina-
tion of u1, . . . ,ur. Moreover, the set {u1, . . . ,ur} is linearly indepen-
dent or free if any linear combination

a1u1 + · · · + arur = 0 (1.4)

1For a more extensive study of the subjects of the first two chapters, see [9], [10], [11],
[12].



1.2. Vector Spaces and Bases 3

implies that a1 = · · · = ar = 0. In the opposite case, they are linearly
dependent .

If it is possible to find linearly independent vector systems of order n,
where n is a finite integer, but there is no free system of order n + 1, then
we say that n is the dimension of E , which is denoted by En. Any linearly
independent system W of order n is said to be a basis of En. When it is
possible to find linearly independent vector sets of any order, the dimension
of the vector space is said to be infinity.

We state the following theorem without proof.

Theorem 1.1
A set W = {e1, . . . , en} of vectors of En is a basis if and only if any vector
u ∈ En can be expressed as a unique linear combination of the elements
of W :

u = u1e1 + · · · + unen. (1.5)

For brevity, from now on we denote a basis by (ei). The coefficients ui

are called contravariant components of u with respect to the basis (ei).
The relations among the contravariant components of the same vector with
respect two bases will be analyzed in Section 1.4.

Examples

• The set of the oriented segments starting from a point O of ordinary
three-dimensional space constitutes the simplest example of a three-
dimensional vector space on �. Here the addition is defined with
the usual parallelogram rule, and the product au is defined by the
oriented segment having a length |a| times the length of u and a
direction coinciding with the direction of u, if a > 0, or with the
opposite one, if a < 0.

• The set of the matrices ⎛⎜⎜⎝
a11 · · · a1n

· · · · · · · · ·
am1 · · · amn

⎞⎟⎟⎠ ,

where the coefficients are real (complex) numbers, equipped with the
usual operations of summation of two matrices and the product of
a matrix for a real (complex) number, is a vector space. Moreover,
it is easy to verify that one basis for this vector space is the set of
m×n-matrices that have all the elements equal to zero except for one
which is equal to 1. Consequently, its dimension is equal to mn.
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• The set P of all polynomials

P (x) = a0x
n + a1x

n−1 + · · · + an

of the same degree n with real (complex) coefficients is a (n + 1)-
dimensional vector space, since the polynomials

P1(x) = xn, P2 = xn−1, . . . , Pn+1 = 1 (1.6)

form a basis of P.

• The set F of continuous functions on the interval [0, 1] is a vector space
whose dimension is infinity since, for any n, the set of polynomials
(1.6) is linearly independent.

From now on we will use Einstein’s notation, in which the summation
over two repeated indices is understood provided that one is a subscript
and the other a superscript. In this notation, relation (1.5) is written as

u = uiei. (1.7)

Moreover, for the sake of simplicity, all of the following considerations refer
to a three-dimensional vector space E3, although almost all the results are
valid for any vector space.

A subset U ⊂ E is a vector subspace of E if

u,v ∈ E ⇒ u + v ∈ E ,

a ∈ �,u ∈ E ⇒ au ∈ E . (1.8)

Let U and V be two subspaces of E3 having dimensions p and q (p+q ≤ 3),
respectively, and let U ∩V = {0}. The direct sum of U and V , denoted by

W = U ⊕ V,

is the set of all the vectors w = u + v, with u ∈ U and v ∈ V.

Theorem 1.2
The direct sum W of the subspaces U and V is a new subspace whose di-
mension is p + q.

PROOF It is easy to verify that W is a vector space. Moreover, let
(u1, ...,up) and (v1, ...,vq) be two bases of U and V , respectively. The
definition of the direct sum implies that any vector w ∈ W can be written
as w = u+v, where u ∈ U and v ∈ V are uniquely determined. Therefore,

w =
p∑

i=1

uiui +
q∑

i=1

vivi,
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where the coefficients ui and vi are again uniquely determined. It follows
that the vectors (u1, ...,up,v1, ...,vq) represent a basis of W .

Figure 1.1 illustrates the previous theorem for p = q = 1.

E3

U

V

W

u1

v1
w

u

v

Figure 1.1

1.3 Euclidean Vector Space

Besides the usual operations of vector sum and product of a real number
times a vector, the operation of scalar or inner product of two vectors
can be introduced. This operation, which associates a real number u · v to
any pair of vectors (u,v), is defined by the following properties:

1. it is distributive with respect to each argument:

(u + v) · w = u · w + v · w, u · (v + w) = u · v + u · w;

2. it is associative:
au · v = u · (av);

3. it is symmetric:
u · v = v · u;

4. it satisfies the condition
u · u ≥ 0,

the equality holding if and only if u vanishes.
From now on, a space in which a scalar product is defined is referred to

as a Euclidean vector space .
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Property (4) allows us to define the length of the vector u as the number

|u| =
√

u · u;

in particular, a vector is a unit or normal vector if

|u| = 1.

Two vectors u and v are orthogonal if

u · v = 0.

The following two inequalities, due to Minkowski and Schwarz , re-
spectively, can be proved:

|u + v| ≤ |u| + |v| , (1.9)
|u · v| ≤ |u| |v| . (1.10)

The last inequality permits us to define the angle 0 ≤ ϕ ≤ π between
two vectors u and v by the relation

cos ϕ =
u · v
|u| |v| ,

which allows us to give the inner product the following elementary form:

u · v = |u| |v| cos ϕ.

A vector system (u1, ...,un) is called orthonormal if

ui · uj = δij ,

where δij is the Kronecker symbol

δij =
{

1, i = j,
0, i �= j.

It is easy to verify that the vectors belonging to an orthonormal system
{u1, . . . ,um} are linearly independent; in fact, it is sufficient to consider
the scalar product between any of their vanishing linear combinations and
a vector uh to verify that the hth coefficient of the combination vanishes.
This result implies that the number m of the vectors of an orthogonal
system is ≤ 3.

The Gram–Schmidt orthonormalization procedure permits us to
obtain an orthonormal system starting from any set of three independent



1.3. Euclidean Vector Space 7

vectors (u1,u2,u3). In fact, if this set is independent, it is always possible
to determine the constants λ in the expressions

v1 = u1,

v2 = λ1
2v1 + u2,

v3 = λ1
3v1 + λ2

3v2 + u3,

in such a way that v2 is orthogonal to v1 and v3 is orthogonal to both v1
and v2. By a simple calculation, we find that these conditions lead to the
following values of the constants λ:

λ1
2 = −u2 · v1

|v1|2
,

λ2
3 = −u3 · v2

|v2|2
,

λ1
3 = −u3 · v1

|v1|2
.

Then the vectors vh, h = 1, 2, 3, are orthogonal to each other and it is
sufficient to consider the vectors vh/|vh| to obtain the desired orthonormal
system.

Let (ei) be a basis and let u = uiei,v = vjej , be the representations of
two vectors in this basis; then the scalar product becomes

u · v = giju
ivj , (1.11)

where
gij = ei · ej = gji. (1.12)

When u = v, (1.11) gives the square length of a vector in terms of its
components:

|u|2 = giju
iuj . (1.13)

Owing to the property (4) of the scalar product, the quadratic form on the
right-hand side of (1.13) is positive definite, so that

g ≡ det(gij) > 0. (1.14)

If the basis is orthonormal, then (1.11) and (1.13) assume the simpler
form

u · v =
3∑

i=1

uivi, (1.15)
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|u|2 =
3∑

i=1

(ui)2. (1.16)

Due to (1.14), the matrix (gij) has an inverse so that, if gij are the
coefficients of this last matrix, we have

gihghj = δi
j . (1.17)

If a basis (ei) is assigned in the Euclidean space E3, it is possible to define
the dual or reciprocal basis (ei) of (ei) with the relations

ei = gijej . (1.18)

These new vectors constitute a basis since from any linear combination of
them,

λiei = gihλieh = 0,

we derive
gihλi = 0,

when we recall that the vectors (ei) are independent. On the other hand,
this homogeneous system admits only the trivial solution λ1 = λ2 = λ3 = 0,
since det(gij) > 0.

The chain of equalities, see (1.18), (1.12), (1.17),

ei · ej = giheh · ej = gihghj = δi
j (1.19)

proves that ei is orthogonal to all the vectors ej , j �= i (see Figure 1.2 and
Exercise 1.2). It is worthwhile to note that, if the basis (ei) is orthogonal,
then (1.18) implies that

ei = giiei =
ei

gii
,

so that any vector ei of the dual basis is parallel to the vector ei.
From this relation we have

ei · ei = 1,

so that
|ei||ei| cos 0 = 1,

and

|ei| =
1

|ei| . (1.20)

In particular, when the basis (ei) is orthonormal, ei = ei, i = 1, . . . , n.
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u2
2e

u2
2e

u1
1e

e2

e2

e1
e1

u1 1e

u

α 

90−α  

Figure 1.2

With the introduction of the dual basis, any vector u admits two represen-
tations:

u = uiei = ujej . (1.21)

The quantities ui are called covariant components of u. They can be
obtained from the components of u with respect to the reciprocal basis or
from the projections of u onto the axes of the original basis:

u · ei = (ujej) · ei = ujδ
j
i = ui. (1.22)

In particular, if the basis is orthonormal, then the covariant and contravari-
ant components are equal.

The relation (1.22) shows that the covariant and contravariant compo-
nents can be defined respectively as

ui = u · ei = giju
j , uj = u · ej = gjiui. (1.23)

It follows from (1.23) that the scalar product (1.11) can be written in one
of the following equivalent forms:

u · v = giju
ivj = ujv

j = gijuivj . (1.24)

1.4 Base Changes

Covariant or contravariant components of a vector are relative to the
chosen basis. Consequently, it is interesting to determine the corresponding
transformation rules under a change of the basis. Let us consider the base
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change (ei) −→ (e′
i); when we note that any vector e′

i can be represented
as a linear combination of the vectors (ei), we have2

e′
i = Aj

iej , ei = (A−1)j
ie

′
j . (1.25)

In other words, the base change is assigned by giving the nonsingular matrix
(Ai

j) of the vector components (e′
i) with respect to the basis (ei).

On the other hand, any vector u admits the following two representations:

u = u′ie′
i = ujej ,

from which, taking into account (1.25), there follow the transformation
formulae of vector components with respect to base changes:

u′i = (A−1)i
ju

j , ui = Ai
ju

′j . (1.26)

In order to determine the corresponding transformation formulae of co-
variant components, we note that (1.23) and (1.25) imply that

u′
i = u · e′

i = u · Aj
iej ,

and then
u′

i = Aj
iuj (1.27)

or
ui = (A−1)j

iu
′
j . (1.28)

A comparison of (1.25), (1.26), and (1.27) justifies the definition of covari-
ant and contravariant components given to ui and ui: the transformation
of covariant components involves the coefficient of the base transforma-
tion (1.25), whereas the transformation of the contravariant components
involves the coefficients of the inverse base transformation.

It is also interesting to determine the transformation formulae of the
quantities gij and gij associated with the scalar product. To this end, we
note that (1.12) and (1.25) imply that

g′
ij = e′

i · e′
j = Ah

i Ak
j eh · ek;

that is,
g′

ij = Ah
i Ak

j ghk. (1.29)

Similarly, from the invariance of the scalar product with respect to a base
change and from (1.24), we have

g′iju′
iv

′
j = ghkuhvk,

2It is easy to verify, by using considerations similar to those used at the end of the
previous section, that the independence of the vectors (e′

i) is equivalent to requiring
that det(Ai

j) �= 0.
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and taking into account (1.28), we obtain

g′ij = (A−1)i
h(A−1)j

kghk. (1.30)

From (1.18), (1.30), and (1.25), it also follows that

e′i = (A−1)i
he

h. (1.31)

Finally, let (ei) and (e′
i) be two bases of E3 related to each other by the

transformation formulae (1.25). When

det(Ai
j) > 0, (1.32)

we say that the two bases have the same orientation . It is easy to recog-
nize that this connection between the two bases represents an equivalence
relation R in the set B of the bases of E3. Moreover, R divides B in two
equivalence classes; any two bases, each of them belonging to one class,
define the two possible orientations of E3.

1.5 Vector Product

Let (ei) be a basis of E3. The vector product or cross product is an
internal operation which associates, to any pair of vectors u and v of E3, a
new vector u × v whose covariant components are

(u × v)i =
√

g eijhujvh, (1.33)

where ui and vj denote the contravariant components of u and v and eijh

is the Levi–Civita symbol , defined as follows:

eijh =

⎧⎪⎪⎨⎪⎪⎩
0, if two indices are equal;

1, if the permutation ijh is even;

−1, if the permutation ijh is odd.

(1.34)

The attribute even or odd of the index sequence ijh depends on the num-
ber of index exchanges we have to do in order to reproduce the fundamental
sequence 123. For example, 231 is even, since two exchanges are needed:
the first one produces 132 and the second, 123. On the other hand, 213 is
odd, since just one exchange of indices is sufficient to come back to 123.

From the definition (1.34), we see that the exchange of two indices in the
permutation symbol implies a sign change; that is,

eijk = −ekji = ekij = −eikj .
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Moreover, we remark that the product of two permutation symbols can be
expressed by the Kronecker symbol δ using the following identity

emiqejkq = δmjδik − δmkδij =
∣∣∣∣ δmj δmk

δij δik

∣∣∣∣ . (1.35)

This formula can be memorized as follows: the first two indices of the first
e appear in the determinant as row indices, whereas the first two indices of
the second e are column indices.

It is easy to verify that the composition law (1.33) is distributive, associa-
tive, and skew-symmetric. In order to recognize that the present definition
of the cross product u × v coincides with the elementary one, we consider an
orthonormal basis (ei) such that |u|e1 = u and the plane (e1, e2) contains v.
In this basis, u and v have components (|u| , 0, 0) and (|v| cos ϕ, |v| sin ϕ, 0).
Here ϕ is the angle between v and e1; that is, the angle between v and
u. Finally, due to (1.33), we easily derive that u × v is orthogonal to the
plane defined by u,v and its component along e3 is |u| |v| sin ϕ.

It remains to verify that the right-hand side of (1.33) is independent of
the basis or, equivalently, that the quantities on the left-hand side of (1.33)
transform with the law (1.27). First, from (1.29) we derive√

g′ = ± det(Ai
j)

√
g, (1.36)

where the + sign holds if det(Ai
j) > 0 and the − sign holds in the opposite

case. Moreover, the determinant definition implies that

eijh =
1

det(Aq
p)

Al
iA

m
j An

h elmn, (1.37)

so that, taking into account (1.33) and (1.36), we write

(u × v)′
i =

√
g′ eijhu′jv′h = ± Al

i elmn
√

g umvn.

Then it is possible to conclude that the cross product defines a vector only
for base changes which preserve the orientation (Section 1.4). Vectors hav-
ing this characteristic are called axial vectors or pseudovectors, whereas
the vectors transforming with the law (1.27) are called polar vectors.

Examples of axial vectors are given by the moment MO of a force F with
respect to a pole O or by the angular velocity ω, whose direction changes
with the basis orientation. This is not true for the force, velocity, etc., which
are examples of polar vectors (see Exercise 10).

At a less formal but more intuitive level, the nature of the vector under
consideration can be recognized by looking at its behavior under a reflection
(see Figure 1.3): if the reflection preserves the direction, we are in the
presence of an axial vector, while if the reflection induces a change of its
direction, the vector is polar.
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ω F

Figure 1.3

Axial vector ω (angular velocity)
Polar vector F (force)

1.6 Mixed Product

The mixed product of three vectors u,v,w, is the scalar quantity
(u × v) · w. When (1.24) and (1.33) are taken into account, we obtain
the following coordinate form of the mixed product:

(u × v) · w =
√

g eijhwiujvh. (1.38)

The skew-symmetry properties of the Levi–Civita symbol (see Section 1.5)
allow us to verify the following cyclic property of the mixed product:

(u × v) · w = (w × u) · v = (v × w) · u.

It is easy to recognize the geometric meaning of the mixed product. In
fact, it has been already said (Section 1.5) that the vector product is a vec-
tor orthogonal to the plane defined by u and v, having the norm equal to
the area of the parallelogram σ with sides |u| and |v|. The scalar product
(u × v) · w is equal to the component w along (u × v) times the length of
(u × v). Finally, the mixed product represents the volume of the paral-
lelepiped with edges u,v, and w.
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1.7 Elements of Tensor Algebra

Let E3 be a Euclidean vector space. The mapping

T : E3 → E3 (1.39)

is linear if, using the notation T(u) = Tu, we have

T(au + bv) = aTu + bTv, (1.40)

for all a, b ∈ � and for all u,v ∈ E3.
We will let Lin(E3) denote the set of linear mappings of E3 into E3. These

applications are also called endomorphisms, Euclidean double ten-
sors, or 2-tensors of E3.

The product ST of two tensors S and T is the composition of S and T;
that is, for all u ∈ E3 we have

(ST)u = S(Tu). (1.41)

Generally, ST �= TS; if ST = TS, then the two tensors are said to com-
mute . The transpose TT of T is the new tensor defined by the condition

u · TT v = v · (Tu), ∀u,v ∈ E3. (1.42)

The following properties can be easily established:

(T + S)T = TT + ST ,

(TS)T = ST TT ,
(TT )T = T.

A tensor T is symmetric if

T = TT , (1.43)

and skew-symmetric if
T = −TT . (1.44)

The tensor product of vectors u and v is the tensor u ⊗ v such that

(u ⊗ v)w = u v · w, ∀w ∈ E3. (1.45)

The set Lin(E3) of tensors defined on E3 is itself a vector space with
respect to the ordinary operations of addition and the product of a mapping
times a real number. For this space the following theorem holds:
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Theorem 1.3
The vector space Lin(E3) of Euclidean double tensors is 9-dimensional. The
tensor systems (ei ⊗ej), (ei ⊗ej), (ei ⊗ej) are bases of Lin(E3) so that for
all u ∈ E3, the following representations of Euclidean double tensors hold:

T = T ijei ⊗ ej = T i
jei ⊗ ej = Tijei ⊗ ej . (1.46)

The matrices (T ij), (T i
j ), and (Tij) are called the contravariant, mixed, and

covariant components of T, respectively. Finally, the relations among the
different components are given by the equations

Tij = gjhTh
i = gihgjkThk. (1.47)

PROOF To verify that the system (ei ⊗ ej) is a basis of Lin(E3), it is
sufficient to prove that it is a linearly independent system and that any
tensor T can be expressed as a linear combination of the elements of (ei ⊗
ej). First, from

λijei ⊗ ej = 0,

and from (1.45), (1.12), we derive

λijei ⊗ ej(eh) = λijei ej · eh = λijgjhei = 0

for any h = 1, 2, 3. But the vectors (ei) form a basis of E3, so that the
previous relation implies, for any index i, the homogeneous system

λijgjh = 0

of 3 equations in the three unknowns λij , where i is fixed. Since the de-
terminant det(gij) of this system is different from zero, see (1.14), all the
unknowns λij with fixed i vanish. From the arbitrariness of i, the theorem
follows.

Similarly, from the linear combination

λi
jei ⊗ ej = 0,

when (1.19) is taken into account, we have

λi
jei ⊗ ej(eh) = λi

jei ej · eh = λi
jδ

j
hei = λi

hei = 0,

so that λi
h = 0, for any choice of i and h. In the same way, the independence

of tensors (ei ⊗ ej) can be proved.
To show that any tensor T can be written as a linear combination of any

one of these systems, we start by noting that, from (1.21) and the linearity
of T, we have

Tu = ujTej .
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On the other hand, Tej is a vector of E3 and therefore can be represented
in the following form, see (1.21):

Tej = T ijei.

If the definition of covariant components (1.23) is recalled together with
(1.45), we have

Tu = T ijujei = T ijei ⊗ ej(u).

Finally, owing to the arbitrariness of u, we obtain

T = T ijei ⊗ ej .

To show (1.46)2, it is sufficient to remark that

Tu = ujTej ,

so that, introducing the notation Tej = T i
jei, we derive

Tu = T i
ju

jei.

Noting that (1.23) and (1.22) hold, we have uj = gjiui = gjiei · u = ej · u,
and the previous relation gives

Tu = T i
jei ⊗ ej(u).

From this expression, due to the arbitrariness of u, (1.46)2 is derived. In a
similar way, (1.46)3 can be proved.

Relation (1.47) is easily verified using (1.46) and the definition of the
reciprocal basis (1.18), so that the theorem is proved.

Example 1.1
Verify that the matrices of contravariant or covariant components of a sym-
metric (skew-symmetric) tensor are symmetric (skew-symmetric), using the
definition of transpose and symmetry.

The symmetry of T (T = TT ) and (1.42) imply that

v · Tu = u · Tv,

so that
viT

ijuj = uiT
ijvj = ujT

jivi.

The arbitrariness of u and v leads to T ij = T ji. In a similar way, it can be
proved that Tij = −Tji when T is skew-symmetric.
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Example 1.2
Using the different representations (1.46), verify that the contravariant,
mixed and covariant components of the unit or identity tensor I

Iu = u, ∀u ∈ E3,

are given by the following matrices, respectively:

(gij), (δi
j), (gij).

Starting from the condition defining I, written in terms of components,

(Iijei ⊗ ej) · (uheh) = uiei,

we derive the equation
Iihuhei = ghiuhei,

which implies that Iih = gih. In a similar way the others results follow.

The image of T, denoted by Im(T), is the subset of E3 such that

Im(T) = {v ∈ E3 | ∃u ∈ E3 : v = Tu}, (1.48)

whereas the kernel of T, denoted by Ker(T), is the subset of E3 such that

Ker(T) = {u ∈ E3 | Tu = 0}. (1.49)

Theorem 1.4
Im(T) and Ker(T) are vector subspaces of E3. Moreover, T has an inverse
if and only if Ker(T) = {0}.

PROOF In fact, if v1 = Tu1 ∈ Im(T) and v2 = Tu2 ∈ Im(T), we have

av1 + bv2 = aTu1 + bTu2 = T(au1 + bu2),

so that av1 + bv2 ∈ Im(T). Moreover, if u1,u2 ∈ Ker(T), we have Tu1 =
Tu2 = 0 and therefore

0 = aTu1 + bTu2 = T(au1 + bu2),

so that au1 + bu2 ∈ Ker(T). Finally, if T has an inverse, the condition
T(0) = 0 implies that the inverse image of the zero vector of E3 contains
only the zero vector, i.e., Ker(T) = {0}. Conversely, if this condition
implied the existence of two vectors u′,u′′ ∈ E3 such that Tu′ = Tu′′,
we would have T(u′ − u′′) = 0. From this relation it would follow that
u′ − u′′ ∈ Ker(T) and therefore u′ − u′′ = 0.
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As a consequence of the previous results, we can say that T is an iso-
morphism if and only if

Im(T) = E3, Ker(T) = {0}. (1.50)

Theorem 1.5
Let us consider a tensor T ∈ Lin(E3) and a basis (ei) of E3. Then the
following conditions are equivalent:

1. T is an isomorphism;

2. the vectors T(ei) represent a basis E3;

3. the representative matrix (T i
j ) of T with respect to the basis (ei) is

not singular.

PROOF

1. =⇒ 2.

In fact, from the conditions λiTei = T(λiei) = 0 and (1.50)2, it
follows that λiei = 0; consequently, λi = 0, since (ei) is a basis and
the vectors Tei are independent. Moreover, if T is an isomorphism,
then for any v ∈ E3 there exists a unique u ∈ E3 such that v = Tu =
uiTei, so that the vectors Tei represent a basis of E3.

2. =⇒ 3.

In fact, the condition λiTei = 0 can be written λiTh
i eh = 0 so that,

due to (2), the homogeneous system λiTh
i = 0 must admit only the

vanishing solution and therefore the matrix (T i
j ) is not singular.

3. =⇒ 1.

In terms of components, v = Tu is expressed by the system

vi = T i
huh. (1.51)

For any choice of the vector v ∈ E3, this system can be considered
as a linear system of n equations with n unknowns uh, which admits
one and only one solution, when (T i

j ) is not singular. Consequently,
T is an isomorphism.

To conclude this section, the transformation rules under a base change
(ei) −→ (e′

i) of the components of a Euclidean second-order tensor will be
derived. First, from (1.46)1, we have

T = T ijei ⊗ ej = T ′hke′
h ⊗ e′

k,
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so that, recalling (1.25)2, we find

(A−1)h
i (A−1)k

j T ije′
h ⊗ e′

k = T ′hke′
h ⊗ e′

k.

Since the tensors (e′
h ⊗ e′

k) form a basis of Lin(E3), we have

T ′hk = (A−1)h
i (A−1)k

j T ij . (1.52)

Similarly, starting from (1.46)2,3 and taking into account (1.25), we
can derive the following transformation formulae for mixed and covariant
components:

T ′h
k = (A−1)h

i Aj
kT i

j , (1.53)

T ′
hk = Ai

hAj
kTij . (1.54)

Remark In the following sections we will often use the notation u · T.
It denotes the linear mapping E3 → E3 that, in terms of components, is
written

vi = ujT i
j . (1.55)

When the tensor T is symmetric, we have

u · T = Tu.

Remark It is worthwhile noting that the relations (1.51) to (1.54) can
be written adopting matrix notation. For instance, in agreement with the
convention that the product of two matrices is calculated by rows times
columns, the following form can be given to (1.54):

T ′ = AT TA, (1.56)

where T and T ′ are the matrices formed with the components of T and
T′ with respect to the bases (ei) and (e′

i), respectively, and A denotes the
matrix of the base change ei → e′

i, see (1.25). It is also important to note
that in the literature, usually, the same symbol denotes both the tensor
T and its representative matrix T in a fixed basis. Consequently, relation
(1.56) is also written as

T′ = AT TA.
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1.8 Eigenvalues and Eigenvectors of a Euclidean
Second-Order Tensor

A real number λ is an eigenvalue of the tensor T if there exists a
nonvanishing vector u called an eigenvector belonging to the eigenvalue
λ, satisfying the eigenvalue equation

Tu = λu. (1.57)

The equation (1.57) reflects the following problem, which has many ap-
plications: the tensor T associates to any vector u the vector v, generally
different from u, both in norm and direction. The vectors which are not
rotated by the linear application T are just the solutions of (1.57).

We easily recognize that the eigenvectors belonging to the same eigen-
value λ form a vector subspace of E3, called the characteristic space V (λ)
associated with the eigenvalue λ. The geometric multiplicity of λ is the
dimension m of this subspace. The spectrum of T is the list λ1 ≤ λ2 ≤ ...
of its eigenvalues.

Theorem 1.6
The following properties hold:

1. the eigenvalues of a positive definite tensor

v · Tv > 0 ∀v ∈ E3,

are positive;

2. the characteristic spaces of symmetric tensors are orthogonal to each
other.

PROOF If T is a symmetric positive definite tensor, λ its eigenvalue,
and u one of the eigenvectors corresponding to λ, we have

u · Tu = λ |u|2 .

Since |u|2 > 0, the previous equation implies λ > 0. Moreover, if λ1 and
λ2 are distinct eigenvalues of T, and u1, u2 are the two corresponding
eigenvectors, we can write

Tu1 = λ1u1, Tu2 = λ2u2,

so that
u2 · Tu1 = λ1u1 · u2, u1 · Tu2 = λ2u1 · u2.
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From the symmetry (T = TT ) of T, we derive u2 · Tu1 = u1 · Tu2. Con-
sequently, we find

(λ2 − λ1)u1 · u2 = 0,

and the theorem is proved, since λ2 − λ1 �= 0.

Let (ei) be a fixed basis; when the representation of T in (1.46)1 is used,
the eigenvalue equation becomes

T ijei ⊗ ej(u) = T ijei ej · u = λuiei,

or equivalently,
T ijujei = λgijujei.

The unknowns of this homogeneous system are the covariant components
of the eigenvector u:

(T ij − λgij)uj = 0. (1.58)

This system has nonvanishing solutions if and only if the eigenvalue λ is a
solution of the characteristic equation

det(T ij − λgij) = 0, (1.59)

which is a 3rd-degree equation in the unknown λ. The multiplicity of λ, as
a root of (1.59), is called the algebraic multiplicity of the eigenvalue.

If the representation of T in (1.46)2 is used, we have

T i
ju

jei = λuiei = λδi
ju

jei,

so that the eigenvalue equation, written in mixed components, becomes

(T i
j − λδi

j)u
j = 0, (1.60)

and the characteristic equation is

det(T i
j − λδi

j) = 0. (1.61)

Finally, using the representation (1.46)3, we have

(Tij − λgij)uj = 0, (1.62)

det(Tij − λgij) = 0. (1.63)

Remark Developing (1.61), we obtain a 3rd-degree equation having the
following form:

−λ3 + I1λ
2 − I2λ + I3 = 0, (1.64)
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where the coefficients I1, I2, and I3 are called the first, second , and third
invariant , respectively, and are defined as follows:

I1 = T i
i , I2 =

1
2
(T i

i T
j
j − T i

jT
j
i ), I3 = det(T i

j ). (1.65)

It is clear that the roots of equation (1.64) are independent of the basis;
that is, the eigenvalues are characteristic of the tensor T if and only if the
coefficients of the characteristic equation (1.64) are invariant with respect
to base changes. We leave to reader to prove this property (see hint in
Exercise 1). If another kind of components is used, the expressions for the
invariant coefficients change. For example, for covariant components, the
expressions become

I1 = gijTij , I2 =
1
2
(gijTijg

hkThk − gihThjg
jkTik), (1.66)

I3 = det(gihThj) = det(gih) det(Thj). (1.67)

Theorem 1.7
If T is a symmetric tensor, then

1. the geometric and algebraic multiplicities of an eigenvalue λ coincide;

2. it is always possible to determine at least one orthonormal basis (ui)
whose elements are eigenvectors of T;

3. in these bases, one of the following representation of T is possible:

i) if all the eigenvalues are distinct, then

T =
3∑

i=1

λiui ⊗ ui; (1.68)

ii) if λ1 = λ2 �= λ3, then

T = λ1(I − u3 ⊗ u3) + λ3u3 ⊗ u3; (1.69)

iii) if λ1 = λ2 = λ3 ≡ λ, then

T = λI, (1.70)

where I is the identity tensor of E3.

PROOF We start by assuming that the property (1) has already been
proved. Consequently, three cases are possible: the three eigenvalues are
distinct, two are equal but different from the third one, or all of them are
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equal. In the first case, the eigenvector subspace V (λi) belonging to the
eigenvalue λi is one-dimensional and orthogonal to the others (see Theorem
1.5). Therefore, if a unit eigenvector ui is fixed in each of these subspaces,
an orthonormal basis is obtained.

In the second case, the eigenvalue λ1 = λ2 is associated with a two-
dimensional eigenvector subspace V (λ1), so that it is always possible to find
an orthonormal eigenvector pair (u1,u2) in V (λ1). If a third unit vector u3
is chosen in the one-dimensional eigenvector subspace V (λ3), orthogonal to
the previous one, an orthonormal eigenvector basis (ui) is obtained.

Finally, if all the eigenvalues are equal to λ, the subspace V (λ) is three-
dimensional that is, it coincides with the whole space E3 and it is certainly
possible to determine an orthonormal eigenvector basis.

In conclusion, an orthonormal eigenvector basis (u1,u2,u3) can always
be found. Since this basis is orthonormal, the contravariant, mixed, and
covariant components of any tensor T coincide; moreover, the reciprocal
basis is identical to (u1,u2,u3) and the tensor gij has components δij .

Finally, all types of components of the tensor T in the basis (u1,u2,u3)
are given by the diagonal matrix

(T ij) =

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ . (1.71)

In fact, using any one of the representation formulae (1.46), the eigenvalue
equation Tuh = λhuh can be written in the form

T ijδhjui = λhδi
hui,

from which we derive
T ih = λhδi

h,

and (1.68) is proved. In the case (ii) (1.68) becomes

T = λ1(u1 ⊗ u1 + u2 ⊗ u2) + λ3u3 ⊗ u3.

But the unit matrix can be written as

I = u1 ⊗ u1 + u2 ⊗ u2 + u3 ⊗ u3 (1.72)

and (1.69) is also verified. Finally, (1.70) is a trivial consequence of (1.68)
and (1.72).

The relation (1.68) is called a spectral decomposition of T.
The following square-root theorem is important in finite deformation the-

ory (see Chapter 3):
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Theorem 1.8
If T is a positive definite symmetric tensor, then one and only one positive
definite symmetric tensor U exists such that

U2 = T. (1.73)

PROOF Since T is symmetric and positive definite from the previous
theorem it follows that

T =
3∑

i=1

λiui ⊗ ui,

where λi > 0 and (ui) is an orthonormal basis. Consequently, we can define
the symmetric positive definite tensor

U =
3∑

i=1

√
λiui ⊗ ui. (1.74)

In order to verify that U2 = T, it will be sufficient to prove that they
coincide when applied to eigenvectors. In fact,

U2uh =

(
3∑

i=1

√
λiui ⊗ ui

)(
3∑

i=1

√
λiui ⊗ ui

)
uh

=

(
3∑

i=1

√
λiui ⊗ ui

)√
λhuh = λhuh = Tuh.

To verify that U is uniquely defined, suppose that there is another sym-
metric positive definite tensor V such that V2 = T. Then we have

(U2 − V2)(ui) = 0 ⇒ U2 = V2.

Recalling (1.74) and the spectral representation (1.68), we conclude that
the eigenvalues of V are ±√

λi. But V is also supposed to be symmetric
and positive definite so that it coincides with U.

1.9 Orthogonal Tensors

A 2-tensor Q is orthogonal if, for any pair of vectors in E3,

Qu · Qv = u · v. (1.75)
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In other words, a 2-tensor is orthogonal if, for any pair of vectors u, v,

• the length of Qu is equal to the length of u; and

• the angle between Qu and Qv is equal to the angle between u and v.

In particular, an orthogonal tensor transforms an orthonormal basis (ei)
into a system of orthonormal vectors (Qei). In Section 1.3 it was noted
that such a system is linearly independent, so that (Qei) is again a basis.
Moreover, from Theorem 1.4 we can say that an orthogonal tensor is an
isomorphism and its representative matrix Q = (Qj

i ) in a given basis (ei)
is not singular:

det Q �= 0. (1.76)

In terms of this matrix, the condition (1.75) becomes

ghkQh
i Qk

j = gij , (1.77)

which implies the following result: In any orthonormal basis (ei), an or-
thogonal tensor is represented by an orthogonal matrix:

QT Q = I ⇔ QT = Q−1

det Q = ±1.
(1.78)

It is clear that the composition of two orthogonal tensors leads again to
an orthogonal tensor, that the identity is an orthogonal tensor, and that
the inverse of an orthogonal tensor is again orthogonal. Therefore, the set
of all the orthogonal tensors is a group. We note that these tensors are
also called rotations. In particular those rotations for which detQ = 1
are called proper rotations. Usually, the group of rotations is denoted by
O(3), and the subgroup of proper rotations is denoted by SO(3).

The following is very important:

Theorem 1.9
A nonidentical rotation Q always has the eigenvalue λ = 1 with geometric
multiplicity equal to 1; i.e., a one-dimensional subspace A exists which is
invariant with respect to Q. Moreover, if A⊥ is the subspace of all the
vectors which are orthogonal to A and Q⊥ �= I is the restriction of Q to
A⊥, then λ = 1 is the only eigenvalue.

PROOF The eigenvalue equation for Q in an orthonormal basis (ei) is:

(Qi
j − λδi

j)u
j = 0, (1.79)

where (Qi
j) is orthogonal, and the characteristic equation is

P3(λ) = −λ3 + I1λ
2 − I2λ + I3 = 0, (1.80)
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with the invariants given by the following expressions:

I1 = Q1
1 + Q2

2 + Q3
3,

I2 = det

(
Q2

2 Q3
2

Q2
3 Q3

3

)
+ det

(
Q1

1 Q3
1

Q1
3 Q3

3

)
+ det

(
Q1

1 Q2
1

Q1
2 Q2

2

)
,

I3 = det(Qj
i ) = 1. (1.81)

We note that the determinants appearing in (1.81) are the cofactors Ai
j of

Q1
1, Q2

2, and Q3
3, respectively. On the other hand, the condition det(Qj

i ) = 1
implies that

Ai
j = (Q−1)i

j = (QT )i
j

that is,
A1

1 = Q1
1, A2

2 = Q2
2, A3

3 = Q3
3. (1.82)

Therefore, the characteristic equation becomes

P3(λ) = −λ3 + I1λ
2 − I1λ + 1 = 0 (1.83)

and λ = 1 is a root.
Next, we have to verify that the eigenspace A belonging to λ = 1 is one-

dimensional. Since the dimension of A is equal to 3 − p, where p ≤ 2 is the
rank of the matrix (Qi

j − δi
j), we have to prove that p = 2. The value p = 0

is not admissible since in such a case Q would be the unit matrix. If p were
equal to 1, all the 2 × 2−minors of the above matrix should vanish:

det

(
Q1

1 − 1 Q2
1

Q1
2 Q2

2 − 1

)
= A3

3 − Q1
1 − Q2

2 + 1 = 0,

det

(
Q1

1 − 1 Q3
1

Q1
3 Q3

3 − 1

)
= A2

2 − Q1
1 − Q3

3 + 1 = 0,

det

(
Q2

2 − 1 Q3
2

Q2
3 Q3

3 − 1

)
= A1

1 − Q2
2 − Q3

3 + 1 = 0.

These relations and (1.82) would imply Q1
1 = Q2

2 = Q3
3 = 1. From this

result and the orthogonality conditions

(Q1
1)

2 + (Q2
1)

2 + (Q3
1)

2 = 1,

(Q1
2)

2 + (Q2
2)

2 + (Q3
2)

2 = 1,

(Q1
3)

2 + (Q2
3)

2 + (Q3
3)

2 = 1,

it should follow that Qi
j = δi

j , which violates the hypothesis that Q is not
the unit matrix.
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It remains to prove that λ = 1 is the only eigenvalue of Q. First, we
note that A⊥ is a 2-dimensional subspace. If (u1,u2) is an orthonormal
basis of A⊥ and u3 is a unit vector of A, it is clear that (u1,u2,u3) is an
orthonormal basis of the whole vector space E3. Since the rotation Q does
not modify the scalar product of two vectors, we have

Qu1 = Q
1
1 u1 + Q

2
1 u2,

Qu2 = Q
1
2 u1 + Q

2
2 u2,

Qu3 = u3.

Therefore, the representative matrix Q of Q in the basis (u1,u2,u3) is

Q =

⎛⎜⎜⎝
Q

1
1 Q

2
1 0

Q
1
2 Q

2
2 0

0 0 1

⎞⎟⎟⎠ ,

and the orthogonality conditions are

(Q
1
1)

2 + (Q
2
1 )2 = 1,

(Q
1
2 )2 + (Q

2
2 )2 = 1,

Q
1
1 Q

1
2 + Q

2
1 Q

2
2 = 0.

These relations imply the existence of an angle ϕ ∈ (0, 2π) such that

Q =

⎛⎜⎜⎝
cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

⎞⎟⎟⎠ ,

(note that ϕ = 0 and ϕ = 2π correspond to the unit matrix). Therefore, in
the basis (u1,u2,u3) the characteristic equation becomes

P3(λ) = (1 − λ)(λ2 − 2λ cos ϕ + 1) = 0,

so that, if Q⊥ �= I (i.e. ϕ �= π), then the only real eigenvalue is λ = 1.

The one-dimensional eigenspace belonging to the eigenvalue λ = 1 is
called the rotation axis.
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1.10 Cauchy’s Polar Decomposition Theorem

In this section we prove a very important theorem, called Cauchy’s
polar decomposition theorem .

Theorem 1.10
Let F be a 2-tensor for which detF > 0 in a Euclidean vector space E3.
Then there exist positive definite, symmetric tensors U,V and a proper
rotation R such that

F = RU = VR, (1.84)

where U, V, and R are uniquely defined by the relations

U =
√

FT F, V =
√

FFT ,

R = FU−1 = V−1F. (1.85)

PROOF To simplify the notation, an orthonormal basis (e1, e2, e3) is
chosen in E3. Moreover, we denote by T the representative matrix of any
2-tensor T with respect to the basis (e1, e2, e3).

First, we will prove that the decompositions are unique. In fact, using
the matrix notation, if F = R′U ′ = V ′R′ are any other two decompositions,
we obtain

FT F = U ′R′T R′U ′ = U ′2,

so that, from Theorem 1.8, U ′ is uniquely determined and coincides with
(1.85)1. Consequently, R′ = F (U ′)−1 = FU−1 = R and then V ′ =
R′U ′R′T = RURT = V .

To prove the existence, we note that the tensor C = FT F is symmetric
and positive definite. Therefore, Theorem 1.8 implies that U exists and that
it is the only tensor satisfying the equation U2 = C. Choosing R = FU−1,
we obtain F = RU . The following relations prove that R is a proper
rotation:

RT R = U−1FT FU−1 = U−1U2U−1 = I,

det R = detF det U−1 > 0.

Finally, the second decomposition is obtained by taking V = RURT .
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1.11 Higher Order Tensors

The definition of a Euclidean second-order tensor introduced in the pre-
vious section is generalized here to Euclidean higher order tensors. A 3rd-
order Euclidean tensor or, in short, a 3-tensor , is a mapping

T : E3 × E3 −→ E3,

which is linear with respect to each variable. The Levi–Civita symbol in-
troduced by (1.34) is an example of a 3rd-order tensor.

If a basis (ei) is introduced in E3, then for all u,v ∈ E3, we have the
relation

T(u,v) = T(uiei, v
jej) = uivjT(ei, ej),

from which, introducing the notation

T(ei, ej) = T k
ijek,

we also have
T(u,v) = T k

iju
ivjek. (1.86)

The tensor product of the vectors u,v,w is the following 3rd-order tensor:

u ⊗ v ⊗ w(x,y) = u(v · x)(w · y) ∀x,y ∈ E3. (1.87)

From (1.23), equation (1.86) becomes

T(u,v) = T k
ij(e

i · u)(ej · v)ek = T k
ijek ⊗ ei ⊗ ej(u,v),

so that, from the arbitrariness of vectors u,v, we obtain

T = T k
ijek ⊗ ei ⊗ ej . (1.88)

Relation (1.86) can be written using different types of components of the
tensor T. For example, recalling the definition of reciprocal basis, we derive

T = T lk
j el ⊗ ej ⊗ ek = T lmkel ⊗ em ⊗ ek = Tpqrep ⊗ eq ⊗ er,

where

T lk
j = gliT k

ij , T lmk = gligmjT k
ij , Tpqr = gpkT k

qr,

denote the different components of the tensor.
A 3rd-order tensor can be also defined as a linear mapping

T : E3 −→ Lin(E3), (1.89)
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by again introducing the tensor product (1.87) as follows:

u ⊗ v ⊗ w(x) = (w · x)u ⊗ v.

In fact, from the equation
Tu = uiTei

and the representation
Tei = T jk

i ej ⊗ ek,

we derive
T = T jk

i ej ⊗ ek ⊗ ei.

Finally, a 4th-order tensor is a linear mapping T : E3 × E3 × E3 −→ E3
or, equivalently, a linear mapping T : Lin(E3) −→ Lin(E3). Later, we
will prove that, in the presence of small deformations of an elastic system,
the deformation state is described by a symmetric 2-tensor Ehk, while the
corresponding stress state is expressed by another symmetric tensor Thk.
Moreover, the relation between these two tensors is linear:

Thk = C
lm
hkElm,

where the 4th-order tensor C
lm
hk is called the linear elasticity tensor.

1.12 Euclidean Point Space

In this section a mathematical model of the ordinary three-dimensional
Euclidean space will be given. A set En, whose elements will be denoted
by capital letters A, B, . . ., will be called an n-dimensional affine space
if a mapping

f : (A, B) ∈ En × En → f(A, B) ≡ −→
AB ∈ En, (1.90)

exists between the pairs of elements of En and the vectors of a real n-
dimensional vector space En, such that

1.
−−→
AB = −−→

BA,
−→
AB =

−→
AC +

−→
CB; (1.91)

2. for any O ∈ En and any vector u ∈ En, one and only one element
P ∈ En exists such that −→

OP = u. (1.92)
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Then the elements of En will be called points; moreover, the points A, B

of En that correspond to
−→
AB, are called the initial and final point of

−→
AB,

respectively.
A frame of reference (O, ei) in an n-dimensional affine space En is

the set of a point O ∈ En and a basis (ei) of En. The point O is called the
origin of the frame. For a fixed frame, the relation (1.92) can be written as

−→
OP = uiei, (1.93)

where the real numbers ui denote the contravariant components of u in the
basis (ei). These components are also called the rectilinear coordinates
of P in the frame (O, ei). In order to derive the transformation formulae
of the rectilinear coordinates (Section 1.1) of a point P ∈ E3 for the frame
change (O, ei) −→ (O′, e′

i), we note that

−→
OP =

−−→
OO′ +

−−→
O′P . (1.94)

Representing the vectors of (1.94) in both the frames, we have

uiei = ui
O′ei + u′je′

j ,

where ui
O′ denote the coordinates of O′ with respect to (O, ei). Recalling

(1.25), from the previous relation we derive

ui = ui
O′ + Ai

ju
′j . (1.95)

Finally, if En is a Euclidean vector space, then En is called a Euclidean
point space . In this case, the distance between two points A and B
can be defined as the length of the unique vector u corresponding to the
pair (A, B). To determine the expression for the distance in terms of the
rectilinear coordinates of the above points, we note that, in a given frame
of reference (O, ei), we have:

−→
AB =

−→
AO +

−→
OB =

−→
OB − −→

OA = (ui
B − ui

A)ei, (1.96)

where ui
B , ui

A denote the rectilinear coordinates of B and A, respectively.
Therefore, the distance |AB| can be written as

|AB| =
√

gij(ui
B − ui

A)(uj
B − uj

A) , (1.97)

and it assumes the Pitagoric form

|AB| =

√√√√ n∑
i=1

(ui
B − ui

A)2 (1.98)

when the basis (ei) is orthonormal.
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1.13 Exercises

1. Prove the invariance under base changes of the coefficients of the
characteristic equation (1.64). Use the transformation formulae (1.53)
of the mixed components of a tensor.

2. Using the properties of the cross product, determine the reciprocal
basis (ei) of (ei), i = 1, 2, 3.

The vectors of the reciprocal basis (ei) satisfy the condition (1.19)

ei · ej = δi
j ,

which constitutes a linear system of n2 equations in the n2 unknowns
represented by the components of the vectors ei. For n = 3, the
reciprocal vectors are obtained by noting that, since e1 is orthogonal
to both e2 and e3, we can write

e1 = k(e2 × e3).

On the other hand, we also have

e1 · e1 = k(e2 × e3) · e1 = 1,

so that
1
k

= e1 · e2 × e3.

Finally,

e1 = ke2 × e3, e2 = ke3 × e1, e3 = ke1 × e2.

These relations also show that k = 1 and the reciprocal basis coincides
with (ei), when this is orthonormal.

3. Evaluate the eigenvalues and eigenvectors of the tensor T whose com-
ponents in the orthonormal basis (e1, e2, e3) are⎛⎝ 4 2 −1

2 4 1
−1 1 3

⎞⎠ . (1.99)

The eigenvalue equation is

Tu = λu.
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This has nonvanishing solutions if and only if the eigenvalue λ is a
solution of the characteristic equation

det(T − λI) = 0. (1.100)

In our case, the relation (1.100) requires that

det

⎛⎝ 4 − λ 2 −1
2 4 − λ 1

−1 1 3 − λ

⎞⎠ = 0,

corresponding to the following 3rd-degree algebraic equation in the
unknown λ:

−λ3 + 11λ2 − 34λ + 24 = 0,

whose solutions are

λ1 = 1, λ2 = 4, λ3 = 6.

The components of the corresponding eigenvectors can be obtained
by solving the following homogeneous system:

T ijuj = λδijuj . (1.101)

For λ = 1, equations (1.101) become

3u1 + 2u2 − u3 = 0,
2u1 + 3u2 + u3 = 0,
−u1 + u2 + 2u3 = 0.

Imposing the normalization condition

uiui = 1

to these equations gives

u1 =
1√
3
, u2 = − 1√

3
, u3 =

1√
3
.

Proceeding in the same way for λ = 4 and λ = 6, we obtain the
components of the other two eigenvectors:(

− 1√
6
,

1√
6
,

2√
6

)
,

(
1√
2
,

1√
2
, 0
)

.

From the symmetry of T, the three eigenvectors are orthogonal
(verify).
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4. Let u and λ be the eigenvectors and eigenvalues of the tensor T.
Determine the eigenvectors and eigenvalues of T−1.

If u is an eigenvector of T, then

Tu = λu.

Multiplying by T−1, we obtain the condition

T−1u =
1
λ
u,

which shows that T−1 and T have the same eigenvectors, while the
eigenvalues of T−1 are the reciprocal of the eigenvalues of T.

5. Let
g11 = g22 = 1, g12 = 0,

be the coefficients of the scalar product g with respect to the basis
(e1, e2); determine the components of g in the new basis defined by
the transformation matrix (1.99) and check whether or not this new
basis is orthogonal.

6. Given the basis (e1, e2, e3) in which the coefficients of the scalar prod-
uct are

g11 = g22 = g33 = 2, g12 = g13 = g23 = 1,

determine the reciprocal vectors and the scalar product of the two
vectors u = (1, 0, 0) and v = (0, 1, 0).

7. Given the tensor T whose components in the orthogonal basis (e1, e2,
e3) are ⎛⎝ 1 0 0

0 1 1
0 2 3

⎞⎠ ,

determine its eigenvalues and eigenvectors.

8. Evaluate the eigenvalues and eigenvectors of a tensor T whose compo-
nents are expressed by the matrix (1.99), but use the basis (e1, e2, e3)
of the Exercise 6.

9. Evaluate the component matrix of the most general symmetric ten-
sor T in the basis (e1, e2, e3), supposing that its eigenvectors u are
directed along the vector n = (0,−1, 1) or are orthogonal to it; that
is, verify the condition

n · u = −u2 + u3 = 0.

Hint: Take the basis formed by the eigenvectors e′
1 = (1, 0, 0), e′

2 =
(0, 1, 1) and n.
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10. An axial vector u transforms according to the law

ui = ±Aj
iuj .

Verify that the vector product u × v is an axial vector when both u
and v are polar and a polar vector when one of them is axial.
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1.14 The Program VectorSys

Aim of the Program VectorSys

The program VectorSys determines, for any system Σ of applied vectors,
an equivalent vector system Σ′ and, when the scalar invariant vanishes, its
central axis. Moreover, it plots in the space both the system Σ and Σ′, as
well as the central axis.

Description of the Problem and Relative Algorithm

Two systems Σ = {(Ai,vi)}i=1,···,n and Σ′ = {(Bj ,wj)}j=1,···,m of ap-
plied vectors are equivalent if they have the same resultants and moments
with respect to any pole O. It can be proved that Σ and Σ′ are equivalent
if and only if

R = R′,MP = M′
P , (1.102)

where R, R′ denote their respective resultants and MP , M′
P their moments

with respect to a fixed pole P .
The scalar invariant of a system of applied vectors Σ is the scalar

product
I = MP · R, (1.103)

which is independent of the pole P . If R �= 0, then the locus of points Q
satisfying the condition

MQ × R = 0 (1.104)

is a straight line parallel to R, which is called the central axis of Σ. Its
parametric equations are the components of the vector 3

u =
MP × R

R2 + tR, (1.105)

where P is any point of E3 and R is the norm of R.
It is possible to show that any system Σ of applied vectors is equiv-

alent to its resultant R, applied at an arbitrary point P , and a torque
equal to the moment MP of Σ with respect to P . Moreover, there are sys-
tems of applied vectors which are equivalent to either a vector or a torque
(see [8], [9]).

3Equation (1.105) is a direct consequence of (1.104) and the formula

MO = MP + (P − O) × R ∀O, P ∈ �3.
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More precisely, the following results hold:

1. If I = 0

(a) and R �= 0, then the system Σ is equivalent to its resultant R
applied at any point A of the central axis;

(b) and R = 0, then the system Σ is equivalent to any torque having
the moment MP of Σ with respect to P .

2. If I �= 0, then the system Σ is equivalent to its resultant R applied
at any point P and a torque with moment MP .

A system of applied vectors is equivalent to zero if for all P ∈ �3 we
have R = MP = 0.

Command Line of the Program VectorSys

VectorSys[A ,V ,P ]

Parameter List

Input Data

A = list of points of application of the vectors of Σ;

V = list of components of the vectors of Σ;

P = pole with respect to which the moment of Σ is evaluated.

Output Data

equivalent system Σ′;

central axis of Σ;

plot of Σ;

plot of Σ′;

plot of the central axis of Σ.
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Worked Examples

1. Let Σ = {(Ai,vi)}i=1,···,3 be the following applied vectors system:

A1 ≡ (0, 1, 0),v1 ≡ (1, 0, 1),
A2 ≡ (1, 0, 0),v2 ≡ (2, 1, 0),
A3 ≡ (0, 1, 2),v3 ≡ (3, 0, 0).

and let P ≡ (0, 0, 0) be the pole with respect to which the moment of
Σ is evaluated.

To apply the program VectorSys to Σ, we input the following data:

A = {{0, 1, 0}, {1, 0, 0}, {0, 1, 2}};
V = {{1, 0, 1}, {2, 1, 0}, {3, 0, 0}};
P = {0, 0, 0};
VectorSys[A, V, P]

The corresponding output is 4

The vector system is equivalent to the resultant R = {6,
1, 1} applied at P and a torque MP = {1, 6, -3}.

2. Consider the system Σ = {(Ai,vi)}i=1,2, where

A1 ≡ (0, 1, 0), v1 ≡ (1, 0, 0),
A2 ≡ (0,−1, 0),v2 ≡ (−1, 0, 0)

and a pole P ≡ (0, 0, 0).

To apply the program VectorSys, we input

A = {{0, 1, 0}, {0, -1, 0}};
V = {{1, 0, 0}, {-1, 0, 0}};
P = {0, 0, 0};
VectorSys[A, V, P]

The corresponding output is

The vector system is equivalent to the torque MP = {0, 0,
-2}.

3. Let P ≡ (0, 0, 0) be the pole and let Σ = {(Ai,vi)}i=1,2 be a vector
system, where

A1 ≡ (1, 0, 0),v1 ≡ (0, 1, 0),
A2 ≡ (2, 0, 0),v2 ≡ (0,−1/2, 0).

4Due to space limitations, the graphic output is not displayed in the text.
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Input:

A = {{1, 0, 0}, {2, 0, 0}};
V = {{0, 1, 0}, {0, -1/2, 0}};
P = {0, 0, 0};
VectorSys[A, V, P]

Output:

The central axis is identified by

x(t) = 0,

y(t) =
t

2
, ∀t∈ �

x(t) = 0,

and the system is equivalent to the resultant R =
{
0 ,

t

2
, 0

}
applied at any point of the central axis.

4. Let Σ = {(Ai,vi)}i=1,2 be a vector system with

A1 ≡ (1, 0, 0),v1 ≡ (0, 1, 0),
A2 ≡ (2, 0, 0),v2 ≡ (0, 1, 0),

and the pole at the origin.

Input:

A = {{1, 0, 0}, {2, 0, 0}};
V = {{0, 1, 0}, {0, 1, 0}};
P = {0, 0, 0};
VectorSys[A, V, P]

Output:

The central axis is identified by

x(t) = -
3

2
,

y(t) = 2t, ∀t∈ �
x(t) = 0,

and the system is equivalent to the resultant R = {0, 2, 0}
applied at any point of the central axis.
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Exercises

Apply the program VectorSys to the following vector systems:

1. Σ = {(Ai,vi)}i=1,···,3, where

A1 ≡ (0, 1, 0),v1 ≡ (1, 0, 1),
A2 ≡ (1, 0, 0),v2 ≡ (2, 1, 0),
A3 ≡ (2, 0, 3),v3 ≡ (3, 0, 0).

2. Σ = {(Ai,vi)}i=1,···,4, where

A1 ≡ (0, 1, 0),v1 ≡ (1, 0, 1),
A2 ≡ (1, 0, 0),v2 ≡ (−2, 1, 3),
A3 ≡ (2, 1, 0),v3 ≡ (1, 3,−1),
A4 ≡ (1, 3, 1),v4 ≡ (−1,−2, 4).

3. Σ = {(Ai,vi)}i=1,2, where

A1 ≡ (0, 0, 1),v1 ≡ (1, 0, 0),
A2 ≡ (0, 0, 0),v2 ≡ (−1, 0, 0).

4. Σ = {(Ai,vi)}i=1,···,3, where

A1 ≡ (1, 0, 0), v1 ≡ (1, 0, 0),
A2 ≡ (1/2, 0, 1),v2 ≡ (0, 1, 0),
A3 ≡ (0, 1, 0), v3 ≡ (0, 0, 1).

5. Σ = {(Ai,vi)}i=1,2, where

A1 ≡ (0, 0, 0),v1 ≡ (1, 0, 0),
A2 ≡ (1, 0, 0),v2 ≡ (−1, 0, 0).
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1.15 The Program EigenSystemAG

Aim of the Program EigenSystemAG

The program EigenSystemAG, evaluates the eigenvalues of a square ma-
trix and determines the algebraic and geometric multiplicity of each of them
as well as the corresponding eigenspace.

Description of the Algorithm

Given the mixed components T j
i of a 2-tensor T, the program determines

the spectrum and the characteristic space of each eigenvalue.

Command Line of the Program EigenSystemAG

EigenSystemAG[matrix]

Parameter List

Input Data

matrix = mixed components of a 2-tensor.

Output Data

the eigenvalues and their algebraic and geometric multiplicities;

the eigenspaces relative to each eigenvector;

an eigenvector basis when the tensor can be put in a diagonal form.

Worked Examples

1. Consider the square matrix

A =

⎛⎜⎜⎝
1 1 0 1
1 0 1 0
0 0 1 0
0 1 0 1

⎞⎟⎟⎠ .

To apply the program, it is sufficient to input the following data:

matrix = {{1, 1, 0, 1}, {1, 0, 1, 0}, {0, 0, 1, 0}, {0, 1, 0, 1}};
EigenSystemAG[matrix]
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The output is

Algebraic and geometric multiplicity of distinct eigenvalues:

λ1= 0 : AlgMult = 2, GeoMult = 1

Eigenspace relative to λ1: V1= {{0,−1, 0, 1}}.

λ2= 1 : AlgMult = 1, GeoMult = 1

Eigenspace relative to λ2: V2= {{−1, 0, 1, 0}}

λ3= 2 : AlgMult = 1, GeoMult = 1

Eigenspace relative to λ3: V1= {{2, 1, 0, 1}}.

The matrix cannot be reduced to a diagonal form!

2. Consider the symmetric 2-tensor

T =
(

1 1
1 2

)
.

To find an eigenvector basis with respect to which T is diagonal, the
program EigenSystemAg can be used as follows:

matrix = {{1, 1}, {1, 2}};
EigenSystemAG[matrix]

The output is

Algebraic and geometric multiplicity of distinct eigenvalues:

λ1=
1

2
(3 − √

5) : AlgMult = 1, GeoMult = 1

Eigenspace relative to λ1: V1=
{{

1

2
(−1−√

5), 1
}}

.

λ2=
1

2
(3 +

√
5) : AlgMult = 1, GeoMult = 1

Eigenspace relative to λ2: V2=
{{

1

2
(−1+

√
5), 1

}}
The matrix is diagonal in the basis of its eigenvectors:

B1=
{{

1

2
(−1−√

5), 1
}

,

{
1

2
(−1+

√
5), 1

}}
.
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Exercises

Apply the program EigenSystemAG to the following 2-tensors:

1. T =

⎛⎜⎜⎝
0 0 0 0
1 0 1 0
0 0 1 0
0 1 0 1

⎞⎟⎟⎠ ;

2. T =

⎛⎝ 1 1 0
0 1 0
0 1 0

⎞⎠ ;

3. T =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ;

4. T =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ .



Chapter 2

Vector Analysis

2.1 Curvilinear Coordinates

Let (O,ui) be a frame in the Euclidean three-dimensional space E3. At
the beginning of Chapter 1, we stated that any point P ∈ E3 is defined
by its linear coordinates (ui) with respect to the frame (O,ui); moreover,
these coordinates coincide with the contravariant components of the posi-
tion vector u =

−→
OP in the basis (ui).

Let
ui = f i(y1, y2, y3), i = 1, 2, 3, (2.1)

be three functions of class C1(D) in the domain D ⊂ �3, and let D′ ⊂ �3

be the image of D under the functions f i. Suppose that

1. these functions generate a bijective correspondence between D and
D′;

2. the inverse functions

yi = gi(u1, u2, u3), i = 1, 2, 3,

are also of class C1 in D′.

In particular, these conditions imply that the Jacobian determinant of
the functions f i does not vanish at any point of D:

det
(

∂ui

∂yj

)
�= 0. (2.2)

If the functions f i are linear,

ui = ui
O′ + Ai

jy
j ,

and det(Ai
j) > 0, then the relations (2.1) define a linear coordinate change

in E3, see (1.95), relative to the frame change (O,ui) → (O′,u′
i); in this

case, D and D′ coincide with �3.

45



46 Chapter 2. Vector Analysis

More generally, when the functions f i are nonlinear and the variables yi

are used to define the points of E3, we say that curvilinear coordinates
(yi) have been introduced in the region Ω ⊆ E3.

The coordinate curves are those curves of E3 whose parametric equa-
tions are obtained from the functions (2.1) by fixing two of the variables
yi and varying the third one. From our hypotheses, it follows that three
coordinate curves cross at any point P ∈ Ω; moreover, the vectors

ei =
(

∂uj

∂yi

)
P

uj (2.3)

are linearly independent, since from the condition

λiei = 0,

we have

λi

(
∂uj

∂yi

)
P

uj = 0.

The independence of the vectors ui leads to the following homogeneous
system:

λi

(
∂uj

∂yi

)
= 0, j = 1, 2, 3,

which, from (2.2), admits only the trivial solution λ1 = λ2 = λ3 = 0. The
three vectors (ei) that are tangent to the coordinate curves at P form the
natural or holonomic frame (P, ei) at P for the space E3.

We note that in Cartesian coordinates the base vectors are unit vectors,
tangent to coordinate curves. In nonorthogonal coordinates the natural
base vectors are tangent to coordinate curves, but in general are neither
unit vectors nor orthogonal to each other.

In addition to transformations from linear coordinates to curvilinear co-
ordinates, it is useful to consider the transformations from curvilinear co-
ordinates (yi) to other curvilinear coordinates (y′i), which are defined by
regular bijective functions

y′i = y′i(y1, y2, y3), i = 1, 2, 3. (2.4)

Once again, the hypothesis that the functions (2.4) are bijective implies

det
(

∂y′i

∂yj

)
> 0, (2.5)

at any regular point. If ui = f i(yj), ui = f ′i(y′j), and yj = yj(y′h)
denote, respectively, the coordinate changes (yi) −→ (ui), (y′i) −→ (ui),
(y′i) −→ (yi), the chain rule gives

∂ui

∂y′j =
∂ui

∂yh

∂yh

∂y′j .
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When the condition (2.3) is taken into account, this relation becomes

e′
j =

∂yh

∂y′j eh. (2.6)

Then we can conclude that as a consequence of a coordinate transformation
y′j = y′j(yh), the natural basis at P transforms according to the law (2.6);
that is, the matrix of the base change coincides with the Jacobian matrix of
the inverse functions yi = yi(y′j).

From the results of Chapter 1, it follows that the relation between the
components of any vector v at P, with respect to the bases ei and e′

i, is
expressed by the following formulae:

v′i =
∂y′i

∂yh
vh. (2.7)

All the considerations of Chapter 1 can be repeated at any point P of E3,
when curvilinear coordinates are adopted, provided that the natural basis
at P is chosen. For instance, the inner product of the vectors v = viei and
w = wiei applied at P (yi) is written as

v · w = gij(yh)viwj , (2.8)

where the functions

gij(yh) = ei · ej =
3∑

h=1

∂uh

∂yi

∂uh

∂yj
(2.9)

denote the inner products of the vectors of the natural basis at P . It should
be noted that, in curvilinear coordinates, the inner products (2.9) depend
on the point; that is, the quantities gij are functions of the coordinates
(yi). Also in this case, the (local) reciprocal bases can be defined by the
positions

ei = gijej , (2.10)

where (gij) is the inverse matrix of (gij).
The square of the distance between two points with coordinates (ui) and

(ui + dui) in the orthonormal frame (O,ui) is given by

ds2 =
3∑

i=1

(dui)2.

Differentiating (2.1) and taking into account the relations (2.9), we obtain

ds2 = gij(yh)dyidyj . (2.11)
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The functions gij(yh) are called metric coefficients in the curvilinear
coordinates (yi). From (2.6), in the coordinate change y′j = y′j(yh), the
metric coefficients transform according to the rule

g′
ij =

∂yh

∂y′i
∂yk

∂y′j ghk. (2.12)

2.2 Examples of Curvilinear Coordinates

Let {
u1 = r cos ϕ,
u2 = r sin ϕ,

(2.13)

be the transformation from polar coordinates (r, ϕ) to Cartesian coordinates
(u1, u2) in the plane E2. These functions are regular and bijective for all
(r, ϕ) ∈ D = (0,∞)× [0, 2π) and for all (u1, u2) ∈ D′, where D′ denotes E2
without the origin. At any point of D, the Jacobian matrix J is written as

J =
(

cos ϕ −r sin ϕ
sin ϕ r cos ϕ

)
,

and its determinant is given by r > 0. The coordinate curves, obtained by
fixing either ϕ or r in (2.13), are the half-lines going out from the origin,
without the origin itself, as well as the circles with their centers at the origin
and radius r (see Figure 2.1).

u1

u2

u1

u2
r

ϕ 

e1

e2

Figure 2.1

In the frame (O,u1,u2), where u1, and u2 are unit vectors along the axes
Ou1 and Ou2 respectively, the tangent vectors in polar coordinates are{

e1 = cos ϕu1 + sin ϕu2,

e2 = −r sin ϕu1 + r cos ϕu2,
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so that the metric coefficients are

g11 = e1 · e1 = 1, g12 = e1 · e2 = 0, g22 = e2 · e2 = r2,

and the metric becomes

ds2 = dr2 + r2dϕ2.

More generally, let ⎧⎪⎨⎪⎩
u1 = r cos ϕ sin θ,

u2 = r sin ϕ sin θ,

u3 = r cos θ,

(2.14)

be the transformation from spherical coordinates (r, ϕ, θ) to Cartesian co-
ordinates (u1, u2, u3). These functions are regular and bijective for all
(r, ϕ, θ) ∈ D = (0,∞) × [0, 2π) × [0, π) and for all (u1, u2, u3) ∈ D′, where
D′ is E3 without the origin. At any point of D, the Jacobian matrix is
written as

J =

⎛⎜⎝ cos ϕ sin θ −r sin ϕ sin θ r cos ϕ cos θ

sin ϕ sin θ r cos ϕ sin θ r sin ϕ cos θ

cos θ 0 −r sin θ

⎞⎟⎠

r

ϕ 

θ 
e1

e2

e3

u1

u2

u3

u1 u2

u3

Figure 2.2

and its determinant is −r2 sin θ �= 0. The coordinate curves are respectively
the half-lines going out from the origin and different from Ou3, the circles
with center at the origin and radius r lying in the plane ϕ = const. (the
meridians), and finally, the circles with center (0, 0, r cos θ) and radius r
(the parallels). In the frame (O,u1,u2,u3), where u1,u2, and u3 are unit
vectors along the axes Ou1, Ou2, and Ou3, the components of the tangent
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vectors to these coordinate curves are given by the columns of the Jacobian
matrix ⎧⎪⎨⎪⎩

e1 = cos ϕ sin θ u1 + sin ϕ sin θ u2 + cos θ u3,

e2 = −r sin ϕ sin θ u1 + r cos ϕ sin θ u2,

e3 = r cos ϕ cos θ u1 + r sin ϕ cos θ u2 − r sin θ u3,

the metric coefficients are

g11 = e1 · e1 = 1, g12 = e1 · e2 = g13 = e1 · e3 = 0,

g23 = e2 · e3 = 0, g22 = e2 · e2 = r2 sin2 θ,

g33 = e3 · e3 = r2,

(2.15)

and the square of the distance between two points becomes

ds2 = dr2 + r2 sin2 θdϕ2 + r2dθ2.

We leave the reader to verify that in the transformation from cylindrical
coordinates to Cartesian coordinates,⎧⎪⎨⎪⎩

u1 = r cos ϕ,

u2 = r sin ϕ,

u3 = u3,

(2.16)

we have

J =

⎛⎜⎝ cos ϕ −r sin ϕ 0
sin ϕ r cos ϕ 0

0 0 1

⎞⎟⎠ , det J = r,

⎧⎪⎨⎪⎩
e1 = cos ϕu1 + sin ϕu2,

e2 = −r sin ϕu1 + r cos ϕu2,

e3 = u3,

g11 = e1 · e1 = 1, g12 = e1 · e2 = g13 = e1 · e3 = g23 = 0,

g22 = e2 · e2 = r2, g33 = e3 · e3 = 1,

ds2 = dr2 + r2dϕ2 + (du3)2.

2.3 Differentiation of Vector Fields

A vector field is a mapping v : P ∈ U ⊂ E3 −→ v(P ) ∈ E3 which
associates a vector v(P ) to any point P belonging to an open domain U of
E3. If (yi) denotes a curvilinear coordinate system in U and (P, ei) is the
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associated natural frame (see previous section), we have v(P ) = vi(yh)ei

in U . The vector field v is said to be differentiable of class Ck (k ≥ 0)
in U if its components vi(yh) are of class Ck. For the sake of simplicity,
from now on the class of a vector field will not be stated because it will be
plain from the context.

If f : U −→ � is a differentiable function of the coordinates yi, then the
gradient of f is the vector field

∇ f ≡ f,i ei = gijf,j ei, (2.17)

where the short notation ∂f/∂yi = f,i has been used. We can easily verify
that the definition (2.17) is independent of the coordinates, since the quan-
tities appearing as covariant or contravariant components in (2.17) have
the right transformation properties.

It has already been noted at the beginning of this chapter that the natural
frame (P, ei) depends on the point P ∈ U . In view of the next applications,
it is interesting to evaluate the variation of the fields ei along the coordinate
curves; that is, the derivatives ei,j . From (2.3), we have

ei,h = uk,ih uk, (2.18)

so that, if the Christoffel symbols Γk
ih are introduced by the relations

ei,h = Γk
ihek, (2.19)

then the derivatives on the left-hand side will be known with respect to
the basis (ei), provided that the expressions of Christoffel symbols have
been determined. In order to find these expressions, we note that (2.18)
and (2.19) imply the symmetry of these symbols with respect to the lower
indices. Moreover, the relations ei · ej = gij give the equations

gij ,h = ei,h ·ej + ei · ej ,h

which, from (2.19), can be written as

gij ,h = gjkΓk
ih + gikΓk

jh. (2.20)

Cyclically permuting the indices i, j, h the other relations are obtained:

ghi,j = gikΓk
hj + ghkΓk

ij ,

gjh,i = ghkΓk
ji + gjkΓk

hi.
(2.21)

Adding the equation (2.21)1 to (2.20) and subtracting (2.21)2, we derive
the following formula:

Γl
jh =

1
2
gli(gij ,h + ghi,j − gjh,i ). (2.22)
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Finally, the condition ej · ei = δj
i implies that

ej ,h · ei + ej · ei,h = 0

or
ej ,h · ei = −Γj

ih.

This relation shows that the opposites of the Christoffel symbols coincide
with the covariant components of the vector field ej ,h; consequently,

ej ,h = −Γj
ihe

i. (2.23)

Consider any vector field v = vkek expressed in the curvilinear coordi-
nates (yi). Then a simple calculation shows that relation (2.19) implies

v,h = (vk,h +Γk
lhvl)ek. (2.24)

If the field v is written in the form v = vkek and (2.23) is taken into
account, then instead of (2.24) we obtain

v,h = (vk,h −Γl
khvl)ek. (2.25)

To extend (2.24), (2.25) to any Euclidean second-order tensor field T, it
is sufficient to use one of the possible representation formulae

T = T klek ⊗ el = T k
l ek ⊗ el = Tklek ⊗ el

to derive
T,h = (T kl,h + Γk

phT pl + Γl
phT kp)ek ⊗ el,

T,h = (T k
l ,h + Γk

phT p
l − Γp

lhT k
p )ek ⊗ el,

T,h = (Tkl,h − Γp
khTpl − Γp

lhTkp)ek ⊗ el.

(2.26)

All of these derivative formulae reduce to the ordinary ones when Cartesian
coordinates are used, since in these coordinates the Christoffel symbols
vanish.

The covariant derivative of the vector field v is the second-order tensor
field

∇v = v,h ⊗eh = (vk,h + Γk
lhvl)ek ⊗ eh

= (vk,h − Γl
khvl)ek ⊗ eh.

(2.27)

Similarly, the covariant derivative of a second-order tensor field T is
the third-order tensor field defined as follows:

∇T = T,h ⊗ eh. (2.28)

We note that relations (2.22) and (2.26)3 imply that

g,h = 0, ∇g = 0. (2.29)



2.3. Differentiation of Vector Fields 53

To generalize these elementary concepts, we introduce the divergence of
the vector field v in the following way, see (2.24):

∇ · v = v,h · eh = v,hh + Γh
lhvl. (2.30)

More generally, the divergence of a second-order tensor field T is given
by the vector field

∇ · T = T,h · eh = (T,hl
h + Γh

phT pl + Γl
phThp)el. (2.31)

Now, the identity

Γi
ih =

1√
g

(
√

g) ,h , (2.32)

where
g = det(gij),

can be proved starting from (2.20) and the relation

∂g

∂gij
= ggij ,

which, in turn, will be shown in Section 3.7; in fact,

1√
g

(
√

g) ,h =
1√
g

(
1

2
√

g

∂g

∂gij
gij,h

)
=

1
2
gijgij,h

=
1
2
gij

(
gjkΓk

ih + gikΓk
jh

)
=

1
2

(
Γi

ih + Γj
jh

)
= Γi

ih.

By using the relation (2.32), we can write the divergence of a vector or
tensor field in the following equivalent forms:

∇ · v =
1√
g

(√
gvh

)
,h ,

∇ · T =
(

1√
g

(√
gThl

)
,h + Γl

phThp

)
el.

(2.33)

Let us introduce the skew-symmetric tensor field

∇v − (∇v)T = v,h ⊗ eh − (v,h ⊗ eh)T .

Recalling (2.27)3 and the definition of transpose tensor (1.42), we have

∇v − (∇v)T = (vk,h − Γl
khvl)ek ⊗ eh − (vk,h − Γl

khvl)eh ⊗ ek

= (vk,h − vh,k )ek ⊗ eh.
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The axial vector1

∇ × v =
1

2
√

g
εihk(vk,h − vh,k )ei (2.34)

is called the curl of v. A simple mnemonic device for deducing the com-
ponents of ∇ × v is obtained by noting that the components coincide with
the algebraic complements of e1, e2, e3 in the matrix⎛⎜⎜⎝

e1 e2 e3

∂

∂y1

∂

∂y2

∂

∂y3

v1 v2 v3

⎞⎟⎟⎠ .

It is well known that the curves xi(t) that are solutions of the system

dxi

dt
= vi(xj)

are called integral curves of the vector field v. Moreover, in analysis it
is proved that the directional derivative of a function f along the integral
curves of the vector field u is expressed by the formula

df

dt
= u · ∇f = uhf,h . (2.35)

Similarly, the directional derivative of the vector field v along the
integral curves of u is defined as the new vector field

dv
dt

= u · ∇v. (2.36)

Applying (2.27) to v, we find that the previous definition assumes the
following form:

dv
dt

= uh
(
vi,h + Γi

jhvj
)
ei. (2.37)

Finally, the Laplacian of f is the function

∆f = ∇ · ∇f. (2.38)

It is easy to verify from (2.17), (2.30), and (2.32) that the Laplacian of f
can be written as follows:

∆f =
1√
g

(√
gghjf,j

)
,h , (2.39)

where, as usual, g = det(gij).

1It is worth noting that all the previous definitions are independent of the dimension of
the space, whereas the definition (2.34) of curl refers to a three-dimensional space.
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2.4 The Stokes and Gauss Theorems

In this section the following notations are introduced: f : U −→ � is a
function of class C1 in an open region U of �2 or �3, C ⊂ U is any domain
having a regular boundary ∂C, and (ui) are Cartesian coordinates relative
to the frame (O,ui). In analysis the famous Gauss’s theorem is proved:∫

∂C

f cos nuidσ =
∫

C

f,i dc, (2.40)

where cos nui is the cosine of the angle between the external unit vector
n orthogonal to ∂C and the unit vector ui along the axis ui. Applying
the previous formula to any component with respect to (O,ui) of a vector
field v and adding the relations obtained, we derive the vector form of
Gauss’s theorem : ∫

∂C

v · n dσ =
∫

C

∇ · v dc. (2.41)

Similarly, applying the formula (2.40) to the components T i1, T i2, T i3 of a
tensor field and adding the results, we have∫

∂C

n · T dσ =
∫

C

∇ · T dc. (2.42)

Another remarkable result is expressed by Stokes’s theorem :∫
∂σ

v · t ds =
∫

σ

∇ × v · n dσ, (2.43)

where σ is a regular surface having a regular boundary ∂σ, t is the unit
vector tangent to the curve ∂σ, and n is the external unit vector orthogonal
to σ. The orientation on ∂σ (that is of t) is counter-clockwise with respect
to n (see Figure 2.3).

n

t

σ 

Figure 2.3
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2.5 Singular Surfaces

Let C be a compact domain of E3 having a regular boundary ∂C, let σ
be a regular oriented surface, and let n be the unit vector normal to σ. We
suppose that σ divides C into two regions C− and C+, where C+ is the
part of C containing n.

C σ 

C+

C-

n

Figure 2.4

Let ψ(P ) be a function of class C1(C −σ) with the following finite limits:

lim
P−→r, P∈C+

ψ(P ) ≡ ψ+(r), lim
P−→r, P∈C−

ψ(P ) ≡ ψ−(r)

for all r ∈ σ. The functions ψ+(r), ψ−(r) are supposed to be continuous on
σ. If the jump of ψ(P ) in crossing σ,

[[ψ(r)]] = ψ+(r) − ψ−(r),

does not vanish at some points r ∈ σ, then the surface σ is called a 0-order
singular surface for ψ.

Similarly, when [[ψ]] = 0 on σ, and the limits

lim
P−→r, P∈C+

∂ψ

∂xi
(P ) ≡

(
∂ψ

∂xi

)+

(r), lim
P−→r, P∈C−

∂ψ

∂xi
(P ) ≡

(
∂ψ

∂xi

)−
(r),

exist and are continuous functions of the point r ∈ σ, the surface σ is called
a first-order singular surface for ψ if, at some points of σ, the jump
below does not vanish:[[

∂ψ

∂xi
(P )

]]
=

(
∂ψ

∂xi

)+

(r) −
(

∂ψ

∂xi

)−
(r).
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At this point, the meaning of a k-order singular surface for ψ should
be clear. Moreover, in the previous definitions ψ can be regarded as a
component of a vector or tensor field.

Theorem 2.1 (Generalized Gauss’s theorem)
If σ is a 0-order singular surface for the vector field v(P ) of class C1(C−

σ), then the following result holds:∫
∂C

v · N dσ =
∫

C

∇ · v dC +
∫

σ

[[v(P )]] · n dσ, (2.44)

where N and n denote the vectors normal to ∂C and σ, respectively; more-
over, n lies in the region C+.

PROOF In our hypotheses Gauss’s theorem is applicable to both the
domains C− and C+:∫

∂C−−σ

v · N dσ +
∫

σ

v−(r) · n dσ =
∫

C−
∇ · v dC,∫

∂C+−σ

v · N dσ −
∫

σ

v+(r) · n dσ =
∫

C+
∇ · v dC,

where we note that at any point of ∂C− ∩ σ we have N = n, while on
∂C+ ∩ σ we have N = −n. Formula (2.44) is obtained by adding the two
previous relations.

A similar formula can be proved for a tensor, starting from (2.42):∫
∂C

n · T dσ =
∫

C

∇ · T dC +
∫

σ

n · [[T(P )]] dσ. (2.45)

To generalize Stokes’s theorem, we consider a vector field v(P ) for which
σ is a 0-order singular surface, together with a regular surface S contained
in C and intersecting σ along the curve γ.

The following theorem holds (see Figure 2.5):

Theorem 2.2 (Generalized Stokes’s theorem)
If σ ⊂ C is a 0-order singular surface for the vector field v(P ), then for

any surface S ⊂ C, S ∩ σ �= ∅, we have∫
∂S

v · t ds =
∫

S

∇ × v · N dS +
∫

γ

[[v]] · τ ds, (2.46)

where N is the unit vector normal to S and τ is the unit vector tangent to
the curve γ, which is oriented in such a way that its orientation appears
counter-clockwise with respect to N, applied at a point of ∂S ∩ C+.
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PROOF Formula (2.46) is proved by applying Stokes’s theorem (2.43)
to both the surfaces S− = S ∩ C− and S+ = S ∩ C+ and subtracting the
results obtained.

C σ 

C+

C-

N

n

τ 

γ 

S

Figure 2.5

The following theorem is due to Hadamard:

Theorem 2.3 (Hadamard)
If ψ is a function of class C1(C − σ) and σ is a first-order singular surface
for ψ, then on any regular curve γ of σ we have

τ · [[∇ψ]] = 0, (2.47)

where τ is the unit vector tangent to γ.

PROOF Let r(s) be the equation of γ and let f(λ, s) be a one-parameter
family of curves contained in C− such that

lim
λ−→0

f(λ, s) = f(0, s) = r(s).

From the properties of ψ, on any curve f(λ, s), where λ is fixed, we obtain

dψ

ds
(f(λ, s)) =

∂f
∂s

(λ, s) · ∇ψ(f(λ, s)).

The following result follows from the continuity of all the functions involved,
when λ −→ 0:

dψ−

ds
(r(s)) = τ · ∇ψ(r(s))−.
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Similar reasoning, starting from C+, leads to the corresponding relation

dψ+

ds
(r(s)) = τ · ∇ψ(r(s))+,

and the theorem is proved by taking into account the condition ψ+ = ψ−

on σ.

Relation (2.47) is usually referred as the geometric compatibility con-
dition for a weak discontinuity of the field ψ. This condition states that
if [[ψ]] = 0, then only the normal derivative can be discontinuous, and the
term geometric emphasizes the fact that this condition does not depend on
the actual motion of the discontinuity. This is formally expressed by the
following theorem.

Theorem 2.4
In the hypotheses of the previous theorem, we have

[[∇ψ]]r = a(r)n ∀r ∈ σ. (2.48)

PROOF In fact, if γ is any regular curve on σ crossing the point r, from
(2.47) it follows that [[∇ψ]]r is orthogonal to any tangent vector to σ at
the point r. Consequently, either [[∇ψ]]r vanishes or it is orthogonal to σ.

If ψ is a component of any r-tensor field T at r, and σ is a first-order
singular surface of T, then from (2.48) we have

[[∇T]]r = n ⊗ a(r) ∀r ∈ σ, (2.49)

where a(r) is an r-tensor.
In particular, for a vector field v the previous formula gives

[[∇v]]r = n ⊗ a(r),

[[∇ · v]]r = n · a(r),

[[∇ × v]]r = n × a(r),

(2.50)

where a(r) is a vector field on σ.
If σ is a second-order singular surface for the function ψ of class C2(C−σ)

and formula (2.50)1 is applied to ∇ψ, we derive[[
∂2ψ

∂xj∂xi

]]
= njai. (2.51)
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But the derivation order can be inverted, and we also have

ainj = ajni,

so that
ai

ni
=

aj

nj
≡ λ

and ai = λni. Consequently, the relation (2.51) becomes

[[∇∇ψ]]r = n ⊗ n(λ(r)). (2.52)

More generally, for any r-tensor T, we have

[[∇∇T]]r = n ⊗ n ⊗ A(r), (2.53)

where A(r) is an r-tensor field.

2.6 Useful Formulae

It often happens that a practical problem of continuum mechanics ex-
hibits symmetry properties which suggest the use of particular coordinate
systems. For instance, if the problem exhibits cylindrical symmetry, it is
convenient to adopt cylindrical coordinates; on the other hand, if the sym-
metry is spherical, it is convenient to adopt spherical coordinates, and so
on. Therefore, it is useful to determine the expressions for divergence, curl,
and the Laplacian in these coordinate systems.

Here we limit our discussion to orthogonal curvilinear coordinates, so
that the metric is written as

ds2 = g11(dy1)2 + g22(dy2)2 + g33(dy3)2. (2.54)

Noting that the inverse matrix of (gij) has the form

(gij) =

⎛⎜⎜⎜⎜⎜⎝
1

g11
0 0

0
1

g22
0

0 0
1

g33

⎞⎟⎟⎟⎟⎟⎠ ,

from (2.17) we obtain

∇f =
1
gii

∂f

∂yi
ei. (2.55)
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Moreover, if we introduce the notation

h = g11g22g33,

then the relation (2.33)1 becomes

∇ · v =
1√
h

∂

∂yi

(√
h vi

)
, (2.56)

and (2.34) gives

∇ × v =
1√
h

[(
∂v3

∂y2 − ∂v2

∂y3

)
e1 +

(
∂v1

∂y3 − ∂v3

∂y1

)
e2

+
(

∂v2

∂y1 − ∂v1

∂y2

)
e3

]
.

(2.57)

Finally, from (2.39) we derive

∆f =
1√
h

∂

∂yi

(√
h

1
gii

∂f

∂yi

)
. (2.58)

The curvilinear components of a vector or tensor do not in general have
all the same dimensions as they do in rectangular Cartesian coordinates.
For example, the cylindrical contravariant components of a differential vec-
tor are (dr, dθ, dz), which do not have the same dimensions. In physical
applications, it is usually desirable to represent each vector component in
the same terms as the vector itself, and for this reason we refer to physical
components. In a general curvilinear coordinate system, the physical com-
ponents of a vector at a point are defined as the vector components along
the natural base vectors, so that we introduce at any point a local basis ai

formed by unit vectors which are parallel to the vectors ei of the natural
basis, that is,

ai =
1√
gii

ei (no sum over i); (2.59)

similarly, we introduce vectors ai parallel to the vectors ei of the dual basis:

ai =
√

gii ei.

Since these bases are formed by unit vectors, the components of any tensor
field with respect to them have a direct physical meaning. We remark that
generally these new bases are not natural; that is, there exist no curvilinear
coordinates (x′i) of which (ai) are the natural bases. In other words, we
are not searching for the expressions for divergence, curl, and the Laplacian
in new curvilinear coordinates, but rather we wish to write (2.56), (2.57),
and (2.58) in terms of the components with respect to the basis (ai).
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First, since (ai) is an orthonormal basis, it coincides with the recipro-
cal basis and there is no difference between covariant and contravariant
components of any tensor with respect to it:

v = v̄iai = v̄iai.

From the identity
v = v̄iai = viei

and (2.59), we obtain (no sum over i)

v̄i =
√

giiv
i =

√
gii giivi =

vi√
gii

. (2.60)

It is easy to verify, starting from (2.59) and (2.60), that in the new basis
(ai), we can write (2.27), (2.55), (2.56), and (2.57) as

∇f =
1√
gii

∂f

∂yi
ai, (2.61)

∇ · v =
1√
h

[
∂

∂y1

(√
g22g33 v̄1) +

∂

∂y2

(√
g11g33 v̄2)

+
∂

∂y3

(√
g11g22 v̄3)] ,

(2.62)

∇ × v =
1√
h

(
∂(

√
g33 v̄3)
∂y2 − ∂(

√
g22 v̄2)
∂y3

)√
g11a1

+
1√
h

(
∂(

√
g11 v̄1)
∂y3 − ∂(

√
g33 v̄3)
∂y1

)√
g22 a2

+
1√
h

(
∂(

√
g22 v̄2)
∂y1 − ∂(

√
g11 v̄1)
∂y2

)√
g33 a3,

(2.63)

∇v =
1√

ghh
√

gll

(
(
√

gll vl),h − Γk
lh

√
gkk vk

)
ah ⊗ al,

(2.64)
while (2.58) remains the same.

2.7 Some Curvilinear Coordinates

This section is devoted to the description of some curvilinear coordinate
systems, usually used to solve some problems characterized by specific sym-
metry properties. In Section 2.2, we described polar, spherical, and cylin-
drical coordinates; in this section, we evaluate some differential formulae of
functions, vectors, and 2-tensors with respect to the basis (ai).
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For the other curvilinear coordinates described here,2 we will present only
the formulae that transform them to Cartesian coordinates as well as the
plots of coordinate curves.3 However, all the other metric characteristics
and the differential formulae in these coordinates can be easily obtained
by using the program Operator in the package Mechanics, which will be
described in the last section of this chapter.

2.7.1 Generalized Polar Coordinates

The curvilinear coordinates (r, ϕ), related to Cartesian coordinates
(
u1, u2

)
by the functions {

u1 = ra cos ϕ,

u2 = rb sin ϕ,
a, b ∈ �+,

are called generalized polar coordinates (see Section 2.2). The coordi-
nate curves are the half-lines coming out from the origin (see Figure 2.6)

tanϕ =
au2

bu1

as well as the ellipses (
u1
)2

a2 +

(
u2
)2

b2 = r2.

The vectors tangent to the coordinate curves are{
e1 = a cos ϕu1 + b sin ϕu2,

e2 = −ra sin ϕu1 + rb cos ϕu2,

−1.5 −1  −0.5 0.5   1 1.5   x

−3  

−2  

−1

1 

2 

3 
y

Figure 2.6

2Except for the generalized polar coordinates, all the other ones are orthogonal.
3These plots have been obtained by the built-in function ContourPlot of Mathematica r©.
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where (u1,u2) represent the unit vectors along the axes Ou1 and Ou2,
respectively. Consequently, the metric matrix becomes(

a2 cos2 ϕ + b2 sin2 ϕ r sin ϕ cos ϕ
(
b2 − a2

)
r sin ϕ cos ϕ

(
b2 − a2

)
r2

(
b2 cos2 ϕ + a2 sin2 ϕ

)) .

Since g12 = g21 = r sin ϕ cos ϕ
(
b2 − a2

)
, the natural basis and the angle

between e1 and e2 vary with the point; moreover, this angle is generally
not a right angle. Finally, the nonvanishing Christoffel symbols are

Γ1
22 = −r, Γ2

12 =
1
r
.

We note that, when a = b = 1, the transformation above reduces to the
polar transformation (2.13).

Let F be any function, let v be a vector field, and let T be a 2-tensor.
If the components are all evaluated in the unit basis of a polar coordinate
system, then the following formulae hold:

∇F =
∂F

∂r
a1 +

1
r

∂F

∂ϕ
a2,

∆F =
1
r

∂

∂r

(
r
∂F

∂r

)
+

1
r2

∂2F

∂ϕ2 ,

∇ · v =
1
r

∂(rvr)
∂r

+
1
r

∂vϕ

∂ϕ
,

∇ · T =
[
1
r

∂

∂r
(rTrr) +

1
r

∂Trϕ

∂ϕ
− 1

r
Tϕϕ

]
a1

+
[
1
r

∂(rTrϕ)
∂r

+
1
r

∂

∂ϕ
(Tϕϕ) +

1
r
Tϕr

]
a2.

2.7.2 Cylindrical Coordinates

Let P ′ be the orthogonal projection of a point P (u1, u2, u3) onto the
plane u3 = 0, and let (r, θ) be the polar coordinates of P ′ in this plane (see
Figure 2.1). The variables (r, θ, z) are called cylindrical coordinates and
are related to Cartesian coordinates

(
u1, u2, u3

)
by the equations⎧⎨⎩

u1 = r cos θ,
u2 = r sin θ,
u3 = z.

By using the results of the previous sections, it is possible to evaluate
the following expressions for the differential operators in the unit basis
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{ai}i=1,2,3 that is associated to the natural basis {ei}i=1,2,3 (see Section
2.2):

∇F =
∂F

∂r
a1 +

1
r

∂F

∂θ
a2 +

∂F

∂z
a3,

∆F =
1
r

∂

∂r

(
r
∂F

∂r

)
+

1
r2

∂2F

∂θ2 +
∂2F

∂z2 ,

∇ · v =
1
r

∂(rvr)
∂r

+
1
r

∂vθ

∂θ
+

∂vz

∂z
,

∇ × v =
(

1
r

∂vz

∂θ
− ∂vθ

∂z

)
a1 +

(
∂vr

∂z
− ∂vz

∂r

)
a2

+
(

1
r

∂ (rvθ)
∂r

− 1
r

∂vr

∂θ

)
a3.

∇ · T =
[
1
r

∂

∂r
(rTrr) +

1
r

∂Tθr

∂θ
+

∂Tzr

∂z
− 1

r
Tθθ

]
a1

+
[
1
r

∂Tθθ

∂θ
+

∂Tzθ

∂z
+

1
r

∂

∂r
(rTrθ) +

1
r
Tθr

]
a2

+
[
∂Tzz

∂z
+

1
r

∂

∂r
(rTrz) +

1
r

∂Tθz

∂θ

]
a3,

where F,v, and T denote a scalar, vector, and 2-tensor whose components
are evaluated in (ai).

2.7.3 Spherical Coordinates

The spherical coordinates (see Section 2.2) (r, θ, ϕ) are connected to
Cartesian coordinates by the relations⎧⎨⎩

u1 = r sin θ cos ϕ,
u2 = r sin θ sin ϕ,
u3 = r cos θ,

and the differential operators in the unit basis are

∇F =
∂F

∂r
a1 +

1
r

∂F

∂θ
a2 +

1
r sin θ

∂F

∂ϕ
a3,

∆F =
1
r2

∂

∂r

(
r2 ∂F

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1
r2 sin2 θ

∂2F

∂ϕ2 ,

∇ · v =
1
r2

∂(r2vr)
∂r

+
1

r sin θ

∂

∂θ
(sin θvθ) +

1
r sin θ

∂vϕ

∂ϕ
,
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∇ × v =
1

r sin θ

(
∂

∂θ
(vϕ sin θ) − ∂vθ

∂ϕ

)
a1

+
1
r

(
1

sin θ

∂vr

∂ϕ
− ∂ (rvϕ)

∂r

)
a2 +

1
r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
a3.

We omit the very long expression of ∇·T, which can be obtained by the
program Operator.

2.7.4 Elliptic Coordinates

Let P1 and P2 denote two fixed points (−c, 0) and (c, 0) on the u1-axis.
Let r1 and r2 be the distances from P1 and P2 of a variable point P in the
plane Ou1u2. The elliptic coordinates are the variables

(
ξ ≡ r1 + r2

2c
, η ≡ r1 − r2

2c
, z

)
,

where ξ ≤ 1 and −1 ≤ η ≤ 1. These variables are related to Cartesian
coordinates by the following relations (see Figure 2.7):

⎧⎪⎨⎪⎩
u1 = cξη,

u2 = c
√

(ξ2 − 1) (1 − η2),

u3 = z.

c ∈ �

−4  −2  4 x

−4  

−2  

2 

4 

y
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Figure 2.7 Elliptic coordinates
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2.7.5 Parabolic Coordinates

The parabolic coordinates (ξ, η, z) are related to Cartesian coordinates(
u1, u2, u3

)
by the relations (see Figure 2.8)

⎧⎪⎪⎨⎪⎪⎩
u1 =

1
2
(
η2 − ξ2) ,

u2 = ξη,

u3 = −z.
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Figure 2.8 Parabolic coordinates
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Figure 2.9 Bipolar coordinates
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2.7.6 Bipolar Coordinates

The transformations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1 =

a sinh ξ

(cosh ξ − cos η)
,

u2 =
a sin η

(cosh ξ − cos η)
,

u3 = z,

a ∈ �

define the relation between the Cartesian coordinates
(
u1, u2, u3

)
and the

bipolar coordinates (ξ, η, z) (see Figure 2.9).

2.7.7 Prolate and Oblate Spheroidal Coordinates

The transformation equations

⎧⎪⎨⎪⎩
u1 = cξη,

u2 = c
√

(ξ2 − 1) (1 − η2) cos ϕ,

u3 = c
√

(ξ2 − 1) (1 − η2) sinϕ,

c ∈ �

where

ξ ≥ 1, −1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π,

express the relation between prolate spheroidal coordinates (ξ, η, ϕ)
and Cartesian coordinates

(
u1, u2, u3

)
.

Similarly, the oblate spheroidal coordinates (ξ, η, ϕ) are defined by
the following transformation formulae:⎧⎪⎨⎪⎩

u1 = cξη sin ϕ,

u2 = c
√

(ξ2 − 1) (1 − η2),

u3 = cξη cos ϕ,

c ∈ �

with the same conditions on ξ, η, and ϕ.
The spheroidal coordinates in the space are obtained by rotating the

ellipses of Figure 2.7 around one of its symmetry axes. More specifically,
if the rotation is around the major axis x, then the spheroidal prolate
coordinates are generated; if the rotation is around the minor axis y, then
the coordinates are called oblate. To conclude, we note that the spheroidal
coordinates reduce to the spherical ones when the focal distance 2c and the
eccentricity go to zero.
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2.7.8 Paraboloidal Coordinates

The variables (ξ, η, ϕ), defined by the functions⎧⎪⎪⎨⎪⎪⎩
u1 = ξη cos ϕ,

u2 = ξη sin ϕ,

u3 =
1
2
(ξ2 − η2),

are called paraboloidal coordinates. These coordinates are obtained by
rotating the parabolas of Figure 2.8 around their symmetry axis x.

2.8 Exercises

1. Write formulae (2.54)–(2.63) in cylindrical and spherical coordinates
by using the results of Section 2.2.

2. Find the restrictions on the components of a vector field u(r, ϕ) in
order for it to be uniform (∇u = 0) in polar coordinates (r, ϕ).

3. Verify that ∇ × ∇f = 0 for any function f and that ∇ · ∇ × u = 0
for any vector field u.

4. Determine the directional derivative of the function x2−xy+y2 along
the vector n = i+2j, where i and j are unit vectors along the Cartesian
axes Ox and Oy.

5. Using the components, prove that

∇ × (u × v) = v · ∇u − v∇ · u + u∇v − u · ∇v.

6. Verify that the volume V enclosed by the surface σ can be written as

V =
1
6

∫
σ

∇(r2) · n dσ,

where r2 = xixi and n is the external unit vector normal to σ.

7. With the notation of the previous exercise, prove the formula

V I =
∫

σ

r ⊗ n dσ,

where I is the identity matrix.
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2.9 The Program Operator

Aim of the Program

When a transformation from curvilinear to Cartesian coordinates is given,
the program Operator evaluates the Jacobian matrix of this transforma-
tion, the vectors of the natural basis, the metric coefficients, and all the
significant nonvanishing Christoffel symbols. Moreover, if the curvilinear
coordinates are orthogonal , then all the differential operators are evalu-
ated with respect to the unit basis for functions, vector fields, and 2-tensor
fields. In particular, if all these fields are assigned in Cartesian coordinates,
but we wish to find the operators in curvilinear coordinates, then the pro-
gram first supplies the components in these coordinates and then evaluates
the expressions for the operators. Finally, fixing for the input parameter
characteristic the attribute symbolic, the program gives all the differ-
ential operators in symbolic form, without making explicit the functional
dependence of the components on the curvilinear coordinates. In all other
cases, the parameter characteristic has the attribute numeric.

Description of the Algorithm

The program uses the theory presented in the previous sections to de-
termine both the geometric characteristics and the differential operator
expressions of functions, vector fields, and 2-tensor fields.

Command Line of the Program Operator

Operator[tensor, var, transform, characteristic, option,
simplifyoption]

Parameter List

Input Data

tensor = {}, {function}, or components of a vector or 2-tensor field in
the unit basis associated with the curvilinear coordinates var or in
the Cartesian coordinates {x, y, z};

var = curvilinear or Cartesian coordinates;

transform = right-hand side of coordinate transformation from curvi-
linear coordinates var to Cartesian coordinates, or of the identity
transformation;



2.9. The Program Operator 71

characteristic = symbolic or numeric. The first choice is adopted
when the functional dependence of the fields on the variables var is
not given, and in this case the output is symbolic. The second choice
refers to other cases.

option = metric, operator, or all. The program gives outputs relative
to metric characteristics of the curvilinear coordinates, to differential
operators of tensor, or to both of them.

simplifyoption = true or false. In the first case, the program gives
many simplifications of symbolic expressions.

Output Data

Jacobian transformation matrix;

natural basis;

metric matrix;

inverse of the metric matrix;

Christoffel symbols;

unit basis associated with the natural one;

gradient and Laplacian of a scalar field;

gradient, divergence, and curl of a vector field;

gradient and divergence of a 2-tensor field;

Use Instructions

We have already said that the input datum transform represents the
right-hand sides of the transformations from curvilinear coordinates var to
Cartesian coordinates. In the program, the latter are expressed by the let-
ters x, y, z. Consequently, the program fails if the input parameter option
is equal to operator, all, or if the introduced coordinates invert the ori-
entation of one or more Cartesian axes. To overcome this difficulty, we
can choose variables in transform which are different from the correspond-
ing Cartesian ones. For example, if we wish to evaluate the differential
operators of the function F in parabolic coordinates, which have the trans-
formation equations ⎧⎪⎨⎪⎩

x =
1
2
(η2 − ξ2),

y = ξη,
z = −z,
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in the case where the orientation of z-axis is inverted, the previous trans-
formation can be written as⎧⎪⎨⎪⎩

x =
1
2
(η2 − ξ2),

y = ξη,
z = −k.

Moreover, we recall that the program does not evaluate the differential
operators when the curvilinear coordinates are not orthogonal. In this case,
it gives only the geometric characteristic.

Worked Examples

1. In order to determine the metric characteristics of the elliptic coordi-
nates {ξ, η, z} (see Section 2.7), it is sufficient to input the following
data:

tensor = {};
var = {ξ, η, z};
transform = {cξη, c

√
(ξ2 − 1) (1 − η2), z};

characteristic = symbolic;

option = metric;

simplifyoption = true;

Operator[tensor, var, transform, characteristic, option,
simplifyoption]

The program gives the following output:

Jacobian matrix⎛⎜⎜⎜⎝
cη cξ 0

cξ

√
1 − η2

−1 + ξ2 −cη

√
1 − ξ2

−1 + η2 0

0 0 1

⎞⎟⎟⎟⎠
Natural basis

e1 = cηu1 − cξ

√
1 − η2

−1 + ξ2
u2

e2 = cξu1 − cη

√
1 − ξ2

−1 + η2
u2

e3 = u3
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Metric matrix⎛⎜⎜⎜⎜⎝
c2
(−η2 + ξ2

)
−1 + ξ2 0 0

0
c2
(
η2 − ξ2

)
−1 + η2 0

0 0 1

⎞⎟⎟⎟⎟⎠
Inverse metric matrix⎛⎜⎜⎜⎜⎝

−1 + ξ2

c2 (−η2 + ξ2)
0 0

0
−1 + η2

c2 (η2 − ξ2)
0

0 0 1

⎞⎟⎟⎟⎟⎠
Christoffel symbols

Γ111 =
ξ (η2 − 1)

(ξ2 − 1) (ξ2 − η2)

Γ112 =
η

η2 − ξ2

Γ122 =
ξ (ξ2 − 1)

(η2 − 1) (ξ2 − η2)

Γ211 =
η (η2 − 1)

(ξ2 − 1) (η2 − ξ2)

Γ212 =
ξ

(ξ2 − η2)

Γ222 =
η (ξ2 − 1)

(η2 − 1) (η2 − ξ2)

Unit basis

a1 =
ηu1√

−η2 + ξ2

−1 + ξ2

+ ξ

√
−1 + η2

η2 − ξ2
u2

a2 =
ξu1√
η2 − ξ2

−1 + η2

− η

√
−1 + ξ2

−η2 + ξ2
u2

a3 = u3

2. Evaluate the gradient and the Laplacian of the function

F = x2 + xy + y2,
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in the unit basis associated with the polar coordinates. To use the
program Operator we input the following:

tensor = {x2 + xy + y2};
var = {r, ϕ};
transform = {rCos[ϕ], rSin[ϕ]};
characteristic = numeric;

option = operator;

simplifyoption = true;

Operator[tensor, var, transform, characteristic, option,
simplifyoption]

In output we obtain

The function F = x2 + xy + y2 in the coordinates {r, ϕ} is
written as F = r2(1 + Cos[ϕ]Sin[ϕ])

Differential operators

Gradient

∇F =
(
r (2 + Sin[2ϕ])
rCos[2ϕ]

)
Laplacian

�F = 4

3. Let {ξ, η, k} be parabolic coordinates and let F be any function de-
pending on these coordinates. The program Operator allows us to
calculate both the geometric characteristic of the coordinates {ξ, η, k}
and the gradient and Laplacian of F by introducing the following
data:

tensor = {F};
var = {ξ, η, k};
transform = {1

2
(ξ2 − η2), ξη,−k};

characteristic = symbolic;

option = all;

simplifyoption = true;

Operator[tensor, var, transform, characteristic, option,
simplifyoption]

We obtain this output:
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Jacobian matrix⎛⎝ ξ −η 0
η ξ 0
0 0 −1

⎞⎠
Natural basis

e1 = ξu1 + ηu2

e2 = −ηu1 + ξu2

e3 = −u3

Metric matrix⎛⎝ ξ2 + η2 0 0
0 ξ2 + η2 0
0 0 1

⎞⎠
Inverse metric matrix⎛⎜⎜⎜⎝

1
ξ2 + η2

0 0

0
1

ξ2 + η2
0

0 0 1

⎞⎟⎟⎟⎠
Christoffel symbols

Γ111 =
ξ

ξ2 + η2

Γ112 =
η

ξ2 + η2

Γ122 = − ξ

ξ2 + η2

Γ211 = − η

ξ2 + η2

Γ212 =
ξ

ξ2 + η2

Γ222 =
η

ξ2 + η2

Unit basis

a1 =
ξ√

ξ2 + η2
u1 +

η√
ξ2 + η2

u2

a2 = − η√
ξ2 + η2

u1 +
ξ√

ξ2 + η2
u2
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a3 = −u3

Differential operators for the function F [ξ, η, k]

Gradient

∇F =

⎛⎜⎜⎜⎜⎝
1√

ξ2 + η2
∂ξ[F]

1√
ξ2 + η2

∂η[F]

∂k [F ]

⎞⎟⎟⎟⎟⎠
Laplacian

�F =
(ξ2 + η2)∂k2 [F] + ∂η2 [F] + ∂ξ2 [F]

ξ2 + η2

Exercises

1. Apply the program Operator to the coordinates introduced in Section
2.7 to determine their geometric characteristics.

2. Using the program Operator, evaluate the differential operators of
any scalar, vector, or 2-tensor field both in Cartesian coordinates and
those of Exercise 1.

3. Evaluate the gradient and Laplacian of the function F = x2 + xy +
y2 + z in Cartesian and spherical coordinates.

4. Determine the differential operators of the vector field v = rer +
cos ϕ eϕ + sin θ eθ in spherical coordinates.

5. Evaluate the differential operators of the tensor {{x, y}, {x, y}} in
polar coordinates.



Chapter 3

Finite and Infinitesimal
Deformations

3.1 Deformation Gradient

Let S be a three-dimensional continuous body and let R = (O, ei) be a
rectangular coordinate system in the Euclidean space E3 (see Chapter 1).
Moreover, let C∗ and C denote two configurations of S at different times.
Any point of S in the reference configuration C∗, identified from now
on by the label X, is called a material point ; the same point in the
actual or current configuration C is identified by the position x and
is called a spatial point . Furthermore, (xi) and (XL), with i, L = 1, 2, 3,
are respectively the spatial and material coordinates of the particle X in
(O, ei).1

When a rectangular coordinate system is adopted (gij ≡ δij), the position
of indices is immaterial since the covariant and contravariant components
coincide.

A finite deformation from C∗ to C is defined as the vector function

x = x(X) (3.1)

which maps any X ∈ C∗ onto the corresponding x ∈ C.
In order to preserve the basic property of matter that two particles cannot

simultaneously occupy the same place, we require that x(X) �= x(Y) if
X �= Y, for all X,Y ∈ C∗, so that (3.1) is a diffeomorphism preserving the
topological properties of the reference configuration.

In terms of coordinates, (3.1) is equivalent to the three scalar functions

xi = xi(XL), (3.2)

1From now on, capital indices are used to identify quantities defined in C∗, while lower-
case indices identify quantities in C.

77
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which are assumed to be of class C1, together with their inverse functions.
It follows that the Jacobian must be different from zero:

J = det
(

∂xi

∂XL

)
�= 0. (3.3)

More particularly, it is supposed that2

detF > 0. (3.4)

Differentiation of (3.2) gives

dxi =
∂xi

∂XL
dXL, (3.5)

so that, at any X ∈ C∗, a linear mapping is defined, called the deforma-
tion gradient in X. It is identified by the tensor

F = (FiL) =
(

∂xi

∂XL

)
, (3.6)

which maps the infinitesimal material vector dX, emanating from X, onto
the corresponding vector dx, emanating from x(X). In particular, if F does
not depend on X ∈ C∗, then the deformation is called homogeneous. Note
that the linear mapping (3.6) locally describes the body deformation when
passing from C∗ to C. To make this more explicit, we start by noting that,
due to condition (3.3), Cauchy’s polar decomposition theorem 1.10 can be
applied: it is always possible to find a proper orthogonal matrix R (i.e.
RRT = RT R = I) and two symmetric and positive definite matrices U
and V such that

F = RU = VR. (3.7)

In order to explore the meaning of this decomposition, we start with
(3.7)1. The matrix U is a linear mapping in X; i.e., it maps the vector
space at X into itself, whereas R defines an orthogonal mapping of vectors
in X into vectors in x(X). For this reason, the second one is sometimes
referred to as a two-point tensor (see Section 3.6).

Because U is symmetric and positive definite, its eigenvalues λL are real
and positive, with corresponding mutually orthogonal eigenvectors (uL).
In addition, the mapping R transforms orthonormal bases in X into or-
thonormal bases in x(X), so that, if dX = dXLuL and eL = R (uL), then

dx = FdX = RU(dXLuL) = λLdXLRuL

= λ1dX1e1 + λ2dX2e2 + λ3dX3e3.

2This hypothesis will be motivated in the next chapter.
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Therefore, the vector dx has components (λ1dX1, λ2dX2, λ3dX3) relative
to the basis (eL) and the following is proved:

Theorem 3.1
In the deformation C∗ → C, the elementary parallelepiped dC∗ which has
a vertex at X and edges (dX1u1, dX2u2, dX3u3) parallel to the eigenvec-
tors (uL) of U is transformed into the parallelepiped at x(X) in three
steps: stretching any dXL of dC∗ of the entity λL; transporting the element
obtained with a rigid translation in x(X); and finally rotating λLdXLuL

under R, in order to superimpose this edge on the axis (eL).

We observe that in any rigid translation the rectilinear components of a
vector are not affected, whereas they change for a curvilinear coordinate
change, due to the local character of the basis. This topic will be addressed
in more detail in Section 3.9.

The decomposition expressed by (3.7)1 allows the introduction of the
following definitions:

R = rotation tensor ,

U = right stretching tensor ,

V = left stretching tensor ,

λL = principal stretching in the direction of uL,

uL = principal direction of stretching .

We recall how the tensors U and R can be represented in terms of F (see
Theorem 1.8):

U =
√

FT F, R = FU−1. (3.8)

The meaning of (3.8)1 is that the matrix U is represented, in the basis of the
eigenvectors (uL) of FT F, by the diagonal matrix U′, having as diagonal
terms the square roots of the eigenvalues of FT F.

The matrix U relative to any new basis (eL) is given by the transforma-
tion rule

U = AU′AT ,

where A is the matrix representing the transformation (uL) −→ (eL) (i.e.,
ei = Aikuk; Uij = AihAjkU

′
hk).

In any case, the evaluation of the matrix U is not easy, since its compo-
nents are, in general, irrational (see Exercise 1). By inspecting (3.8)1, we
see that it may be more convenient to use the matrix FT F directly, rather
than U. Furthermore, we note that since F includes effects deriving from
both the deformation and the rigid rotation R, its use in constitutive laws
is not appropriate, due to the fact that no changes in the state of stress are
due to a rigid rotation.



80 Chapter 3. Finite and Infinitesimal Deformations

These issues indicate the need to introduce other measures of deforma-
tion.

3.2 Stretch Ratio and Angular Distortion

Let dx be an infinitesimal vector in C corresponding to dX in C∗. The
simplest (and most commonly used) measure of the extensional strain of an
infinitesimal element is the stretch ratio (or simply stretch). This mea-
sure depends on the direction of the unit vector u∗ of dX and is expressed
by the scalar quantity

δu∗ =
|dx|
|dX| , (3.9)

while the quantity

δu∗ − 1 =
|dx| − |dX|

|dX| (3.10)

defines the longitudinal unit extension (always along the direction
of u∗).

Moreover, the change in angle Θ12 between two arbitrary vectors dX1
and dX2, both emanating from X ∈ C∗, is called the shear γ12 and it is
defined as

γ12 = Θ12 − θ12, (3.11)

where θ12 is the angle between dx1 and dx2 in C corresponding to dX1
and dX2.

The right Cauchy–Green tensor (Green, 1841) is defined as the sym-
metric tensor

C = FT F, CLM =
∂xk

∂XL

∂xk

∂XM
. (3.12)

By taking into account (3.8)1, we see that it is also

C = U2, (3.13)

so that C is a positive definite tensor with the following properties:
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Theorem 3.2

1. The stretch ratio in the direction of the unit vector u∗ and the an-
gle that two arbitrary unit vectors u∗1 and u∗2 assume during the
deformation are given by

δu∗ =
√

u∗ · Cu∗, (3.14)

cos θ12 =
u∗1 · Cu∗2√

u∗1 · Cu∗1
√

u∗2 · Cu∗2
; (3.15)

2. The tensors C and U have the same eigenvectors; the eigenvalues of
C are equal to the squares of the eigenvalues of U;

3. The components CLL correspond to the squares of the stretch ratios
in the direction of the unit vectors of the basis (eL), whereas CLM ,
L �= M , are proportional to the sine of the shear strain between eL

and eM .

4. Finally, the eigenvalues of C are equal to the squares of the stretch
ratios in the direction of the eigenvectors.

PROOF Let dX = |dX|u∗; then from (3.9), (3.6), and (3.12), it follows

δ2
u∗ =

dx · dx

|dX|2 =
|dX|2 u∗ · Cu∗

|dX|2 ,

so that (3.14) is proved. In a similar manner, given dX1 = |dX1|u∗1 and
dX2 = |dX2|u∗2, it follows that

cos θ12 =
dx1 · dx2

|dx1| |dx2| =
|dX1| |dX2|u∗1 · Cu∗2

|dX1| |dX2|
√

u∗1 · Cu∗1
√

u∗2 · Cu∗2
,

which proves (3.15).
The property (2) has been proved in Theorem 1.8.
The property (3) can easily be proved as a consequence of (3.14) and

(3.15), if in these relations we assume that u∗1 = eL and u∗2 = eM , and
recall that CLM = eL · CeM .

We will also make use of the left Cauchy–Green tensor (Finger, 1894):

B = FFT = RU2RT = BT = V2, Bij =
∂xi

∂XK

∂xj

∂XK
. (3.16)

It is of interest to prove the following theorem:
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Theorem 3.3
The tensors B and C have the same eigenvalues; the eigenvectors of C are
obtained by applying the rotation RT to the eigenvectors of B.

PROOF If u is an eigenvector of C corresponding to the eigenvalue ΛC ,
then

Cu = U2u = ΛCu,

so that
RU2RT (Ru) = ΛC(Ru)

and finally
B(Ru) = ΛC(Ru).

On the other hand, if v is an eigenvector of B corresponding to the eigen-
value ΛB , then

Bv = RU2RT v = ΛBv,

which proves the theorem.

In order to highlight the physical meaning of the tensors C and B, we ob-
serve that the Cauchy–Green tensor gives the square length of the element
dx in which the original element dX is transformed:

dl2 = dX · CdX. (3.17)

Conversely, the tensor B−1 = (F−1)T F−1, which has Cartesian components

B−1
ij =

∂XK

∂xi

∂XK

∂xj
,

(Cauchy, 1827), gives the initial length of the element dx

dl2∗ = dx · B−1dx. (3.18)

In addition to the formulae (3.14) and (3.15) giving the stretch ratios and
the angle changes, it is of practical interest to derive the following expres-
sions, which relate the change of an infinitesimal oriented area dσ∗, defined
in the initial configuration, to the corresponding infinitesimal oriented dσ
in the deformed configuration, as well as the change in volume from dC∗
into dC:

dσ ≡ Ndσ = J
(
F−1)T

N∗dσ ≡ J
(
F−1)T

dσ∗, (3.19)

dc = Jdc∗, (3.20)

where N∗ and N are the unit vectors normal to dσ∗ and dσ, respectively.
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To prove (3.19), consider two infinitesimal vectors dx and dy both em-
anating from x ∈ C. The area of the parallelogram with edges dx and dy
is given by the length of the vector

dσ ≡ N dσ = dx × dy.

In terms of components, this is

dσi = Nidσ = εijkdxjdyk = εijkFjLFkMdXLdYM

and, multiplying by F, we obtain

FiKNidσ = εijkFiKFjLFkMdXLdYM .

The definition of determinant allows us to write

JεKLM = εijkFiKFjLFkM ,

so that the previous relation becomes

FiKNidσ = JεKLMdXLdYM .

Finally, it follows that

Nidσ = J
(
F−1)

Ki
εKLMdXLdYM = J

(
F−1)

Ki
N∗Kdσ∗,

where εKLM is the permutation symbol.
Relation (3.20) follows directly from the rule of change of variables in

multiple integrals.

3.3 Invariants of C and B

As we showed in Chapter 1, we recall that

1. the eigenvalues of a symmetric tensor are real and they are strictly
positive if the tensor is positive definite;

2. the characteristic spaces of a symmetric tensor are mutually orthog-
onal.

It follows that the eigenvalues of C and B are real and positive. Further-
more, the characteristic equation of C is written as

Λ3 − ICΛ2 + IICΛ − IIIC = 0, (3.21)
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where the coefficient IC , IIC , IIIC , are the first , second , and third prin-
cipal invariant of the tensor C, i.e., they are quantities independent of
the basis in which C is expressed:

IC = trC = C11 + C22 + C33,

IIC = det
(

C11 C12
C21 C22

)
+ det

(
C11 C13
C31 C33

)
+ det

(
C22 C23
C32 C33

)
,

IIIC = detC. (3.22)

In particular, if the eigenvectors of C are selected as basis vectors, then the
matrix representing C is diagonal, and (3.22) can also be written as

IC = Λ1 + Λ2 + Λ3,

IIC = Λ1Λ2 + Λ1Λ3 + Λ2Λ3,

IIIC = Λ1Λ2Λ3. (3.23)

Moreover, C and B have the same eigenvalues so that:

IC = IB ,

IIC = IIB ,

IIIC = IIIB . (3.24)

3.4 Displacement and Displacement Gradient

The deformation process of a continuous body S as it passes from the
initial configuration C∗ to the current configuration C can also be described
by considering the displacement field u(X), defined as

u(X) = x(X) − X. (3.25)

If the displacement gradient tensor

H = ∇u(X) ≡
(

∂ui

∂XL

)
(3.26)

is introduced, then from (3.25) it follows that

F = I + H. (3.27)

A common measure of the deformation is given in this case by the
Green–St.Venant tensor (Green, 1841; St.Venant, 1844)

G =
1
2

(C − I) = GT . (3.28)
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This tensor gives the change in the squared length of the material vector
dX, i.e.,

(dl)2 − (dl∗)2 = 2dXIGIJdXJ .

By taking into account the definition (3.12) of C and the equation (3.27),
we find that the Green–St.Venant tensor also assumes the form

G = E +
1
2
HT H, (3.29)

where
E =

1
2
(
H + HT

)
(3.30)

is the infinitesimal strain tensor .
The main properties of the tensor G are expressed by the following

theorem:

Theorem 3.4

1. Both tensors G and C have the same eigenvectors; if Λ are the eigen-
values of C, then G has eigenvalues equal to (Λ − 1) /2.

2. The squares of the stretch ratios of elements initially parallel to the
coordinate axes are equal to 2GLL +1; the components GLM (L �= M)
are proportional to the angle between the deformed elements that were
initially parallel to the coordinate axes.

PROOF Property (1) follows from the definitions. To prove (2) it is
enough to recall (3.14), (3.15), and (3.28), so that

δ2
u1

= C11 = 1 + 2G11,

cos θ12 =
C12√

C11C22
=

2G12√
(1 + 2G11)(1 + 2G22)

.

Finally, the following relationships hold between the invariants of G
and B:

2IG = IB − 3,

4IIG = IIB − 2IB + 3,

8IIIG = IIIB − IIB + IB − 1,

IB = 2IG + 3,

IIB = 4IIG + 4IG + 3,

IIIB = 8IIIG + 4IIG + 2IG + 1.



86 Chapter 3. Finite and Infinitesimal Deformations

3.5 Infinitesimal Deformation Theory

The deformation C∗ → C is defined to be infinitesimal if both the
components of u and ∇u are first-order quantities, i.e., the squares and
products of these quantities can be neglected.

We observe that F,C, and B → I when u → 0, whereas H,G, and
E → 0 if u → 0.

From (3.29), in the case of infinitesimal deformations we have

G � E, (3.31)

where the sign � indicates that the quantities on the left-hand side differ
from the quantities on the right-hand side by an order greater than |u| and
|∇u|.

As far as the meaning of the linearized deformation tensor E are con-
cerned, the following theorem holds:

Theorem 3.5
The tensors E and U have the same eigenvectors (and the same applies to
C and B)3; these eigenvectors identify the principal axes of deformation.
The longitudinal unit extension in the direction parallel to the unit vector
eL of the axis XL is given by

δuL
− 1 � ELL, (3.32)

and the shear strain relative to the axes XL and XM is twice the off-diagonal
component

γLM � 2ELM . (3.33)

PROOF To prove the first part of the theorem, we consider two unit
vectors u∗1 and u∗2 emanating from X ∈ C∗. By using (3.29), (3.30), and
(3.31), we obtain

u∗1 · Cu∗2 = u∗1 · (2G + I)u∗2 � u∗1 · 2Eu∗2 + u∗1 · u∗2,

so that, if u∗1 = u∗2 = u∗ and we take into account (3.14), we find that

δu∗ =
√

1 + u∗ · 2Eu∗ � 1 + u∗ · Eu∗. (3.34)

Relation (3.32) is then proved if u∗ = eL.

3Here and in the following discussion the equality is intended to be satisfied by neglecting
second-order terms in H.
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Relationship (3.34) replaces (3.14) in the linearized theory, showing that
under such an assumption, the stretch ratios can be evaluated in any direc-
tion from the components of E. For this reason, E is called the infinites-
imal deformation tensor. Furthermore, from (3.15) and (3.34) and with
u∗1 = eL, u∗2 = eM , it follows that

cos θ12 � 2ELM

(1 + ELL)(1 + EMM )
� 2ELM

1 + (ELL + EMM )
.

From (3.15) we have cos θ12 = cos(π
2 − γ12) = sin γ12 � γ12. But γ12 is a

first-order quantity so that, by multiplying the numerator and denominator
by 1−(ELL+EMM ) and neglecting terms of higher order, (3.33) is obtained.

Theorem 3.6
In an infinitesimal deformation4 we have

U � I + E, R � I + W, (3.35)

where W is the skew-symmetric tensor of rotation for infinitesimal defor-
mation

W =
1
2
(H − HT ) = −WT . (3.36)

Furthermore,
F · dX = dX + E · dX + ϕ × dX, (3.37)

where
ϕi = −1

2
εijkWjk (3.38)

is the vector of infinitesimal rotation.

PROOF By using (3.12) and (3.13) we obtain

U2 = FT F ⇒ U =
√

C, R = FU−1. (3.39)

It follows that U � √
2E + I � √

2E + I � I + E; moreover,

R = FU−1 � (I + H) (I + E)−1
.

Since (I + E)−1 � I − E � I− 1
2 (H + H)T , we have R � I + W and (3.35)

is proved. In addition,

F · dX = RU · dX = (I + E) (I + W) · dX � (I + E + W) · dX.

4Note that I + W is orthogonal if we neglect 2nd-order terms in H. In fact,
(I + W)(I + W)T � I + W + WT = I, since W is skew-symmetric.
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In any case, it is always possible to express W · dX in the form ϕ × dX,
where ϕ is the adjoint of W, as defined by (3.38).

To give a physical meaning to (3.37), at X ∈ C∗ we consider a par-
allelepiped with edges that are parallel to the eigenvectors u1,u2,u3 of
E. Any edge dXLuL (no summation on L) is transformed into dXLuL +
λLdXLuL + ϕ × dXLuL, i.e., the vector ϕ × dXLuL is added to the vector
dXLuL, which rotates dXLuL by an angle |ϕ| around the direction of ϕ,
together with the deformed vector λLdXLuL.

We can easily derive a further useful relation:

J � 1 + trH = 1 + trE, (3.40)

so that the (3.20) can be written as

dc = (1 + trE)dc∗. (3.41)

3.6 Transformation Rules for Deformation Tensors

In the previous analysis, the same Cartesian coordinate system has been
used for both the initial configuration C∗ and the current configuration
C. For the sake of clarity, different symbols have been introduced for the
coordinates (XL) of material points X ∈ C∗ and for the coordinates (xi)
of spatial points x ∈ C.

At this stage it is useful to show how the deformation tensors transform
when changing the coordinate system, both in the reference and the current
configuration. The situation arises when dealing with properties related to
the isotropy of the material (which in this case has an inherent reference
system), a problem dealt with in Chapter 7, as well as when dealing with
transformation rules of mechanical quantities for a change of the rigid ref-
erence frame (see Chapters 4 and 6).

As a starting point, first we note that the quantities F i
L cannot be re-

garded as the components of a tensor in the sense specified in Chapter 1,
due to the fact that F is a linear mapping between the space of vectors
emanating from X ∈ C∗ and the vector space defined at the corresponding
point x ∈ C (rather than a linear mapping between vectors emanating from
the same point).

If we consider rotations of the axes in C∗ and C generated by the orthog-
onal matrices Q∗ and Q

X∗ = Q∗X, x′ = Qx, (3.42)
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then from the transformation (3.42)1 we derive

dx = F∗dX∗ = F∗Q∗dX = FdX ⇒ F = F∗Q∗, (3.43)

and (3.42)2 leads to

dx′ = F′dX = QFdX ⇒ F′= QF. (3.44)

These results highlight the fact that the deformation tensor behaves as a
vector for coordinate changes in only one configuration, and in this respect
F is an example of a two-point tensor . This definition is in fact used for
a tensor whose components transform like those of a vector under rotation
of only one of the two reference axes and like a two-point tensor when the
two sets of axes are rotated independently. This aspect can be understood
intuitively if we refer to the figurative picture suggested by Marsden and
Hughes (1983), according to which the tensor F has two “legs”: one in C∗
and one in C.

It is also easy to verify that the tensors H and G satisfy the same trans-
formation rule of F. Moreover,

C∗ = (FT )∗F∗ = Q∗FT F(Q∗)T = Q∗C(Q∗)T , (3.45)

C′ = F′T F′ = FT QT QF = C, (3.46)

so that C behaves as a tensor for changes of coordinates in C∗, while it
exhibits invariance for transformations in C.

Similarly, the following transformation rules can be proven to hold:

G∗ = Q∗G(Q∗)T , G′ = G, (3.47)

B∗ = B, B′ = QBQT . (3.48)

3.7 Some Relevant Formulae

In this section we will present and prove formulae that will be useful for
topics developed later in this book.

Let us start by observing that, if F is the deformation gradient tensor, a
is a nonsingular matrix, and a = deta, then

∂

∂xi

(
1
J

FiL

)
= 0, (3.49)

∂a

∂aij
= a(a−1)ji,

∂(a−1)hk

∂aij
= −(a−1)hi(a−1)jk. (3.50)
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Furthermore, if a(h) = I + h, it follows that

a = 1 + Ih + IIh + O(h2), a−1 = I − h + h2 + O(h2). (3.51)

Finally, for the right Cauchy–Green tensor, the following relations hold:

∂IC

∂C
= I,

∂IIC

∂C
= ICI − CT , (3.52)

∂IIIC

∂C
= IIIC

(
C−1)T

=
[
C2 − ICC + IICI

]T
, (3.53)

where I is the unit matrix. Note that (3.49) and (3.50) apply to any non-
singular tensor C; if C is symmetric, then the sign of transpose can be
omitted.

To prove (3.50)1, it is enough to express the determinant a in terms of
its first row elements, i.e., a = a11A11 + a12A12 + a13A13, where Aij is the
cofactor of aij . Since, ∂a/∂a12 = A12 and recalling that(

a−1)
21 =

A12

a
, (3.54)

we see that the relation (3.50)1 is proved for i = 1, j = 2, and so for any
other choice of indices.

To prove (3.50)2, we differentiate the relation

arl

(
a−1)

lk
= δrk (3.55)

with respect to aij to obtain

∂arl

∂aij

(
a−1)

lk
+ arl

∂
(
a−1

)
lk

∂aij
= 0.

By multiplying by
(
a−1

)
hr

and recalling (3.55), we get

∂
(
a−1

)
hk

∂aij
= − (

a−1)
hr

∂arl

∂aij

(
a−1)

lk
= − (

a−1)
hr

δriδjl

(
a−1)

lk

and (3.50)2 follows.
The relation (3.49) is verified through the sequence of identities

∂

∂xi

(
1
J

FiL

)
=

∂FhM

∂xi

∂

∂FhM

(
1
J

FiL

)
=

∂FhM

∂xi

[
− 1

J2 J
(
F−1)

Mh
FiL +

1
J

δihδML

]
=

1
J

(
F−1)

Ni

∂FhM

∂XN
[δihδML − δMLFiL]

=
1
J

[(
F−1)

Nh

∂2xh

∂XL∂XN
− (

F−1)
Nh

∂2xh

∂XL∂XN

]
= 0.
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Considering now (3.51), we first observe that, for a matrix a(h) = I + h,
we have

a(h) = a(0) +
(

∂a

∂hij

)
h=0

hij +
1
2

(
∂2a

∂hij∂hlm

)
h=0

hijhlm + O(h2),

and since a (0) = 1, from (3.50)1 it follows that(
∂a

∂hij

)
h=0

=
(

∂a

∂aij

)
h=0

= a(0)(a−1)ji(0) = δij .

By using (3.50), we can write

∂2a

∂hij∂hlm
=

∂

∂hij
a(a−1)ml

= a(a−1)ji(a−1)ml − a(a−1)mi(a−1)jl,(
∂2a

∂hij∂hlm

)
h=0

hijhlm = (δjiδml − δmiδjl) hijhlm

= hiihll − hmjhjm = 2IIh,

so that (3.51)1 is proved.
Furthermore,

(a−1)ij = δij +

(
∂ (δij + hij)

−1

∂hlm

)
h=0

hlm

+
1
2

(
∂2 (δij + hij)

−1

∂hlm∂hpq

)
h=0

hlmhpq + · · · ,

and, since (3.50)2 gives(
∂ (δij + hij)

−1

∂hlm

)
h=0

= −
[
(δil + hil)

−1 (δmj + hmj)
−1

]
h=0

= −δilδmj ,(
∂2 (δij + hij)

−1

∂hlm∂hpq

)
h=0

= δilδmpδqj + δipδqlδmj ,

(3.51)2 is obtained.
To prove (3.52) and (3.53), consider the identity

det (ΛI + C) = Λ3 + ICΛ2 + IICΛ + IIIC . (3.56)

Differentiating both sides of (3.56) with respect to C and recalling (3.50)1,
we have

∂

∂C
det (ΛI + C) = det(ΛI + C)

[
(ΛI + C)−1

]T
, (3.57)
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∂

∂C

(
Λ3 + ICΛ2 + IICΛ + IIIC

)
=

∂IC

∂C
Λ2 +

∂IIC

∂C
Λ +

∂IIIC

∂C
. (3.58)

The right-hand sides of (3.57) and (3.58) must be equal so that, multiplying
the expression above by (ΛI + C)T and considering (3.56), we get

(Λ3 + ICΛ2 + IICΛ + IIIC)I

=
∂IC

∂C
Λ3 +

(
∂IIC

∂C
+

∂IC

∂C
CT

)
Λ2

+
(

∂IIIC

∂C
+

∂IIC

∂C
CT

)
Λ +

∂IIIC

∂C
CT .

By comparing the coefficients of Λ, (3.52) and (3.53) are easily derived. As
a further result the Cayley–Hamilton theorem follows:

C3 − ICC2 + IICC − IIICI = 0, (3.59)

which is valid for any 2-tensor C.

3.8 Compatibility Conditions

The tensor field CLM (X) cannot be arbitrarily assigned, since the equa-
tions

3∑
i=1

∂xi

∂XL

∂xi

∂XM
= CLM , (3.60)

due to the symmetry of C, form a system of 6 nonlinear partial differential
equations with the three unknowns xi(X), which describe the deformation
of a continuous body S when passing from C∗ to C.

The mathematical difficulty arises from the fact that equations (3.60)
overdetermine the three unknowns, so that we have to search for necessary
and sufficient conditions ensuring that a proposed set of functions CLM can
be regarded as the tensor components of a deformation field.

In order to find these integrability conditions on (3.60), we first observe
that, since

dx · dx = dX · CdX, (3.61)

the coordinates XL in C∗ can also be regarded as curvilinear coordinates
in C, in which the metric tensor components are CLM . In addition, C is
a subset of the Euclidean space and therefore the components CLM must
be such that they correspond to a Euclidean metric tensor. In this respect,
Riemann’s theorem states that a symmetric tensor is a metric tensor
of a Euclidean space if and only if it is a nonsingular positive definite
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tensor and the corresponding Riemann–Christoffel tensor R formed
from CLM identically vanishes:5

RNMLP =
1
2

(CLM,NP + CPN,LM − CNL,MP − CPM,LN )

+ CRS(ΓPNRΓLMS − ΓPMRΓLNS) = 0, (3.62)

where
2ΓLMP = CLP,M + CMP,L − CLM,P

are Christhoffel symbols of the second kind.
These 34 = 81 equations (3.62) are not independent. In fact, due to the

symmetries of RNMLP that can be deduced by inspection of (3.62),

RLMNP = −RMLNP = −RLMPN ; RLMNP = RNPLM ,

there are only 6 distinct and nonvanishing components RNMLP . To prove
this, let a pair of indices LP be fixed. Since RNMLP is skew-symmetric
with respect to the pair NM , we conclude that indices N and M can only
assume the values 12, 13, and 23. The same argument holds for LP if the
pair NM is given. Finally, the 9 nonvanishing components of RNMLP

R1212, R1213, R1223,
R1312, R1313, R1323,
R2312, R2313, R2323,

merge into the following 6 independent components, due to symmetry with
respect to the first two indices:

R1212, R1213, R1223,

R1313, R1323,

R2323. (3.63)

As a special case, consider the linearized theory of elasticity. Since C �
I + 2E, (3.62) assumes the form

RNMLP � ELM,NP + EPN,LM − ENL,MP − EPM,LN = 0, (3.64)

which is certainly true if E(X) is a linear function. The equations of in-
terest deduced from (3.64) are the following, known as the St.Venant
compatibility conditions (St.Venant, 1864):

R1212 � 2E12,12 − E11,22 − E22,11 = 0,

5The Riemann–Christoffel tensor R is also referred as the curvature tensor and the
condition (3.62) as Riemann’s theorem.
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R1213 � E12,13 + E31,12 − E11,23 − E23,11 = 0,

R1223 � E22,13 + E31,22 − E12,23 − E23,21 = 0,

R1313 � 2E13,13 − E11,33 − E33,11 = 0,

R1323 � E13,23 + E23,13 − E12,33 − E33,21 = 0,

R2323 � 2E23,23 − E22,33 − E33,22 = 0. (3.65)

and (3.65) can be summarized by the following relation:

εQSR εNMLEQN,SM = 0 ⇔ ∇ × ∇ × E = 0. (3.66)

If the divergence operator is applied to (3.66), it follows that

εQSR εNMLEQN,SMR = 0, (3.67)

which is identically satisfied by any second-order symmetric tensor E, since
the permutation symbol εQSR is skew-symmetric with respect to indices R
and S and EQN,SMR is symmetric with respect to the same indices.

When L = 1, 2, 3, (3.67) gives the following three equations:

−R1223,3 + R1323,2 − R2323,1 = 0,

R1213,3 − R1313,2 + R1323,1 = 0,

−R1212,3 + R1213,2 − R1223,1 = 0. (3.68)

It is then possible to conclude that, if

R1213 = R1223 = R1323 = 0, (3.69)

it also holds that

R2323,1 = R1313,2 = R1212,3 = 0, (3.70)

i.e.,
R2323 is independent on X1,
R1313 is independent on X2,
R1212 is independent on X3.

(3.71)

It is convenient to summarize all the above considerations as follows: if
C∗ is linearly simply connected, system (3.60) can be integrated if and only
if the 6 distinct components of the curvature tensor R(C) vanish. In the
linearized theory, the tensor E must satisfy (3.65) or, equivalently, must
satisfy (3.69) in C∗ and (3.71) on the boundary ∂C∗.

We note that, when dealing with infinitesimal deformations, (3.64) can
be obtained by observing that, given a symmetric tensor field E(X), a
displacement field u(X) has to be determined such that

uL,M + uM,L = 2ELM .
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By adding and subtracting uL,M , we can write the above system of 6 equa-
tions with 3 unknowns uL(X) as, see (3.36)

uL,M = ELM + WLM .

The 3 differential forms

duL = uL,MdXM = (ELM + WLM ) dXM

can be integrated if and only if

ELM,N + WLM,N = ELN,M + WLN,M . (3.72)

Cyclic permutation of indices in (3.72) gives two similar equations, and
adding (3.72) to the first of these and subtracting the second one, leads to

ELM,N − EMN,L = WLN,M ,

which is equivalent to the system of differential forms

dWLN = (ELM,N − EMN,L) dXM .

These forms can be integrated if and only if (3.64) holds.

3.9 Curvilinear Coordinates

This section extends the description of the deformation to the case in
which both the initial and current configurations are given in curvilinear
coordinates (yi), which for sake of simplicity are still taken to be orthogonal
(Chapter 2).

In this case, we have to distinguish contravariant components, relative to
the natural basis (ei), from covariant components, relative to the reciprocal
or dual basis (ei), furthermore, for physical reasons it is convenient to
express vectors and tensors with respect to an orthonormal basis (ai) (see
Chapter 2, Section 2.6).

If (yi) are the coordinates of a point in C whose coordinates in C∗ are
(Y L), then the finite deformation from C∗ −→ C is given by

yi = yi(Y L). (3.73)

Differentiation gives

dyiei =
∂yi

∂Y L
(Y)dY Lei, (3.74)
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where (ei) is the natural basis associated with (yi) at the point y(Y) ∈ C.
By recalling (2.59) and (2.60) and referring to the components dyi in the
basis of unit vectors (ai), we find that

dyiai = F
i

LdY
L
ai, (3.75)

where

F
i

L =
√

gii√
g

LL

F i
L. (3.76)

The bar indicates that the quantities are evaluated in the basis ai. It is
useful to observe that the metric coefficient gii is computed at y(Y) ∈ C,
while gLL is evaluated at Y ∈ C∗. We can apply Cauchy’s theorem of polar
decomposition in the form (3.7) to the matrix (F

i

L) and, since (ai) is an
orthonormal basis, all considerations developed for Cartesian coordinates
still apply to (F

i

L).
As an example, the components of tensors C and B relative to (ai) are

given by the elements of the matrices

C = F
T
F, B = FF

T
,

and the eigenvalue equation is written as

CLMuM = λδLMuM .

The displacement gradient ∇u and tensors E and W assume the expres-
sion given by the rules explained in Chapter 2. The program Deformation,
discussed at the end of this chapter, can be used to advantage in this re-
spect.

3.10 Exercises

1. Describe the deformation process corresponding to a one-dimensional
extension or compression.

The required deformation is characterized by two principal stretch
ratios equal to unity, while the third one is different than unity. The
vector function (3.1) is in this case equivalent to the following scalar
functions:

x1 = αX1, x2 = X2, x3 = X3,

where α > 0 if it is an extension and α < 0 if it is a compression.
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The deformation gradient, the right Cauchy–Green tensor, and the
Green–St.Venant tensor are expressed by

F =

⎛⎝α 0 0
0 1 0
0 0 1

⎞⎠ ,

C = FT F =

⎛⎝α2 0 0
0 1 0
0 0 1

⎞⎠ ,

G =
1
2
(FT F − I) =

⎛⎜⎝ α2 − 1
2

0 0

0 0 0
0 0 0

⎞⎟⎠ .

2. Given the plane pure shear deformation

x1 = X1, x2 = X2 + kX3, x3 = X3 + kX2,

determine F,C, and G, the stretch ratios along the diagonal direc-
tions, and the angle θ23 in the current configuration, as shown in
Figure 3.1.

A A'
B

B'

x2

x3

C

C'

O

θ23  

dl*

dl*

Figure 3.1

The required tensors are represented by the matrices

(FiL) =

⎛⎝ 1 0 0
0 1 k
0 k 1

⎞⎠ ,

(CLM ) =

⎛⎝ 1 0 0
0 1 k
0 k 1

⎞⎠⎛⎝ 1 0 0
0 1 k
0 k 1

⎞⎠ =

⎛⎝ 1 0 0
0 1 + k2 2k
0 2k 1 + k2

⎞⎠ ,
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(GLM ) =

⎛⎜⎜⎜⎝
0 0 0

0
k2

2
k

0 k
k2

2

⎞⎟⎟⎟⎠ .

Given a line element parallel to the unit vector N identified in the
reference configuration, the stretch ratio ΛN is computed according
to the relationship

Λ2
N = N · CN.

In the direction parallel to the diagonal OB we obtain

Λ2
OB =

(
0

1√
2

1√
2

)⎛⎝ 1 0 0
0 1 + k2 2k
0 2k 1 + k2

⎞⎠
⎛⎜⎜⎜⎝

0
1√
2

1√
2

⎞⎟⎟⎟⎠ = (1 + k)2,

and in the direction CA we obtain

Λ2
CA =

(
0 − 1√

2
1√
2

)⎛⎝ 1 0 0
0 1 + k2 2k
0 2k 1 + k2

⎞⎠
⎛⎜⎜⎜⎝

0

− 1√
2

1√
2

⎞⎟⎟⎟⎠ = (1 − k)2.

The angle θ23 in the current configuration is given by

cos θ23 =
C23√

C22
√

C33
=

2k

1 + k2 .

3. Referring to the pure shear deformation of Figure 3.1, apply the polar
decomposition to the tensor F.

Principal axes X ′
2 and X ′

3 are rotated 45◦ about X1, so that the
transformation matrix is

(Aij) = (cos(X ′
i, Xj)) =

⎛⎜⎜⎜⎝
1 0 0

0
1√
2

1√
2

0 − 1√
2

1√
2

⎞⎟⎟⎟⎠ .

The Cauchy–Green tensor C in the basis of principal axes is:

C′ = ACAT,
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with components

(C ′
ij) =

⎛⎝ 1 0 0
0 (1 + k)2 0
0 0 (1 − k)2

⎞⎠ .

It is then proved, as stated by Theorem 3.2, that the eigenvalues of the
tensor C are the squares of the stretch ratios along the eigenvectors.
Moreover, the same Theorem 3.2 also states that both U and C have
the same eigenvectors, and the eigenvalues of C are the squares of the
eigenvalues of U, so that

(U ′
ij) =

⎛⎝ 1 0 0
0 1 + k 0
0 0 1 − k

⎞⎠ .

It follows that

((U ′)−1
ij ) =

⎛⎜⎜⎜⎝
1 0 0

0
1

1 + k
0

0 0
1

1 − k

⎞⎟⎟⎟⎠ .

The matrix U−1 in the initial frame is

U−1 = AT(U′)−1A,

so that

(U−1
ij ) =

⎛⎜⎜⎜⎝
1 0 0

0
1

1 − k2 − k

1 − k2

0 − k

1 − k2

1
1 − k2

⎞⎟⎟⎟⎠ .

Finally, since we have proved that

R = FU−1,

we have

(Rij) =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ .

Thus, the required decomposition is⎛⎝ 1 0 0
0 1 k
0 k 1

⎞⎠ =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝ 1 0 0
0 1 k
0 k 1

⎞⎠ .

and we observe that the matrix R rotates the principal axes of C in
X ∈ C∗ in order to superimpose them on the principal axes of B−1

in x ∈ C. As these axes coincide in this case, R = I.
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4. Given the deformation

xi = Xi + AijXj ,

with Aij constant, prove that plane sections and straight lines in the
reference configuration correspond to plane sections and straight lines
in the current configuration.

5. Verify that, if the deformation in Exercise 4 is infinitesimal, i.e., the
quantities Aij are so small that their products are negligible, then the
composition of two subsequent deformations can be regarded as their
sum.

6. Given the deformation⎧⎨⎩
x1 = X1 + AX3,
x2 = X2 − AX3,
x3 = X3 − AX1 + AX2,

find F,U,R,C,B, principal directions, and invariants.

7. Determine under which circumstances the infinitesimal displacement
field

u(X) = u1(X1)i + u2(X2)j

satisfies the compatibility conditions (3.66).
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3.11 The Program Deformation

Aim of the Program

Given a transformation from orthogonal curvilinear coordinates var to
Cartesian coordinates, the program Deformation allows the user to com-
pute the tensors F, C, and B, the eigenvalues and eigenvectors of C and
B, the deformation invariants, and the inverse of B, as well as the tensors
U and R.

Furthermore, given two directions parallel to the unit vectors vers1 and
vers2, the program defines the stretch ratios in these directions and the
shearing angle, if vers1 and vers2 are distinct. We note that all tensor
and vector components are relative to the basis of unit vectors associated
with the holonomic basis of curvilinear coordinates var.

Description of the Algorithm and Instructions for Use

The program is based on the theoretical points presented in Sections
3.1–3.3 and 3.9. Curvilinear coordinates in both the reference and current
configurations can be chosen, with only the restriction that they be or-
thogonal. The program makes vers1 and vers2 unit vectors, if they are
not.

The caption option refers to tensors R and U and allows the follow-
ing possibilities: symbolic, numeric, and null. In particular, if option
is selected as null, the program does not compute U and R; by select-
ing symbolic or numeric the program computes U and R, preserving the
symbolic or numeric structure.

If the input datum simplifyoption is chosen equal to true, then the pro-
gram redefines the Mathematica routines Sqrt, Times, Plus, etc., in such
a way that the quantities in irrational symbolic expressions can be treated
as real. This procedure permits the simplification of all the irrational sym-
bolic calculations inside the program. However, due to the complex form
of the matrices U and R, it is not possible to use this option together with
option=symbolic.6

6If both the choices option=symbolic and simplifyoption=true are input, then the
program cannot give the requested outputs. In this situation, the computation can
be stopped from the pop-up menu of Mathematica. To interrupt the computation rel-
ative to the last input line, choose Kernel→Interrupt Evaluation or Kernel→Abort
Evaluation; to interrupt all the running processes, choose Kernel→Quit→Local→Quit.
In this last case, the package Mechanics.m must be launched again before any other
application.
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Command Line of the Program Deformation

Deformation[func, var, transform, point, vers1, vers2, option,
simplifyoption]

Parameter List

Input Data

func = r.h.s. elements of the vector field describing the deformation;

var = curvilinear or Cartesian coordinates;

transform = r.h.s. elements of the transformation from curvilinear var
to Cartesian coordinates, or r.h.s. elements of the identity transfor-
mation;

point = coordinates at which we want to compute the stretch ratios along
the directions vers1 and vers2 and the shearing angle;

vers1 = first vector;

vers2 = second vector;

option = options related to U and R; the possibilities are symbolic,
numeric, and null;

simplifyoption = true or false. In the first case, the program computes
many simplifications of symbolic expressions.

Output Data

deformation gradient F;

right Cauchy–Green tensor C;

eigenvalues, eigenvectors, and invariants of C;

left Cauchy–Green tensor B;

eigenvectors and inverse of B;

right stretching tensor;

rotation tensor;

stretching ratios in the directions vers1 and vers2, evaluated at point;

shearing angle between vers1 and vers2, evaluated at point.



3.11. The Program Deformation 103

Worked Examples

1. We consider the plane deformation{
x1 = X1 + kX2,
x2 = X2,

∀k ∈ �

which maps any X = (X1, X2) ∈ C∗ onto x ∈ C. Both the initial
and the current configuration are relative to a Cartesian coordinate
system. The input data are the following:

func = {X1 + kX2, X2};
var = {X1, X2};
transform = {X1, X2};
point = {0, 0};
vers1 = {1, 0};
vers2 = {0, 1};
option = null;

simplifyoption = true;

Deformation[func, var, transform, point, vers1, vers2,
option, simplifyoption]

The program Deformation gives the following results:

Deformation gradient

F =
(

1 k
0 1

)
Right Cauchy-Green tensor

C =
(

1 k
k 1 + k2

)
Eigenvalues of C

λ1 =
1

2
(2 + k2 − k

√
4 + k2) : AlgMult = GeoMult = 1

λ2 =
1

2
(2 + k2 + k

√
4 + k2) : AlgMult = GeoMult = 1

An orthonormal basis of eigenvectors of C

u1 =

{
− k +

√
4 + k2√

2
√
4 + k2 + k

√
4 + k2

,

√
2√

4 + k2 + k
√
4 + k2

}
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u2 =

⎧⎪⎪⎨⎪⎪⎩
−k +

√
4 + k2√

2
√
4 + k2 − k

√
4 + k2

,
1√

1 +
1

4
(−k +

√
4 + k2)

2

⎫⎪⎪⎬⎪⎪⎭
Principal invariants of C

IC = 2 + k2

IIC = 1

Left Cauchy–Green tensor

B =
(

1 + k2 k
k 1

)
An orthonormal basis of eigenvectors of B

v1 =

⎧⎪⎪⎨⎪⎪⎩
k − √

4 + k2√
2
√
4 + k2 − k

√
4 + k2

,
1√

1 +
1

4
(k −

√
4 + k2)

2

⎫⎪⎪⎬⎪⎪⎭
v2 =

⎧⎪⎪⎨⎪⎪⎩
k +

√
4 + k2

2

√
1 +

1

4
(k +

√
4 + k2)

2
,

1√
1 +

1

4
(k +

√
4 + k2)

2

⎫⎪⎪⎬⎪⎪⎭
Inverse of the left Cauchy–Green tensor

B−1 =
(

1 −k
−k 1 + k2

)
Stretch ratio in the direction {1, 0}
δ1 = 1

Stretch ratio in the direction {0, 1}
δ2 =

√
1 + k2

Shear angle between the directions {1, 0} and {0, 1}
cosΘ12 =

k√
1 + k2

Initial value of the angle (in degrees)

Θ12i = 90◦

Final value of the angle (in degrees)
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Θ12f =
180ArcCos

[
k√

1 + k2

]
π

◦

2. We consider the set of plane deformations{
r = R + k(R),
φ = Φ,

where k = k(R) is an invertible function of class C1 such that

(1 + k′(R))
(√

(R + k(R))2/R

)
> 0, for all R. Both the reference

and the current configuration are relative to a polar curvilinear coor-
dinate system. The program Deformation provides all the peculiar
aspects of this deformation at a selected point, which we assume in
this example is the point {1, 0}.

Input data:

func = {R + k[R], Φ};
var = {R, Φ};
transform = {RCos[Φ], RSin[Φ]};
point = {1, 0};
vers1 = {1, 0};
vers2 = {0, 1};
option = symbolic;

simplifyoption = true;

Deformation[func, var, transform, point, vers1, vers2,
option, simplifyoption]

Output data:

All tensor and vector components are relative to the ba-
sis of unit vectors associated with the natural basis of
the curvilinear coordinates {R, Φ}.

Deformation gradient

F =

(
1 + k′[R] 0

0
R + k[R]

R

)

Right Cauchy–Green tensor

C =

⎛⎝ (1 + k′[R])2 0

0
(R + k[R])2

R2

⎞⎠
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Eigenvalues of C

λ1 =
(R + k[R])2

R2
: AlgMult = GeoMult = 1

λ2 = (1 + k′[R])2 : AlgMult = GeoMult = 1

An orthonormal basis of eigenvectors of C

u1 = {0, 1}
u2 = {1, 0}

Principal invariants of C

IC =
(R + k[R])2

R2
+ (1 + k′[R])2

IIC =
(R + k[R])2 (1 + k′[R])2

R2

Left Cauchy–Green tensor

B =

⎛⎝ (1 + k′[R])2 0

0
(R + k[R])2

R2

⎞⎠
An orthonormal basis of eigenvectors of B

v1 = {0, 1}
v2 = {1, 0}

Inverse of the left Cauchy–Green tensor

B−1 =

⎛⎜⎜⎝
1

(1 + k′[R])2
0

0
R2

(R + k[R])2

⎞⎟⎟⎠
Right stretching tensor

U =

(
1 + k′[R] 0

0
R + k[R]

R

)

Rotation tensor

R =
(

1 0
0 1

)
Stretch ratio in the direction {1, 0}
δ1 = 1 + k′[1]
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Stretch ratio in the direction {0, 1}
δ2 = 1 + k[1]

Shear angle between the directions {1, 0} and {0, 1}
cosΘ12 = 0

Initial value of the angle (in degrees)

Θ12i = 90◦

Final value of the angle (in degrees)

Θ12f = 90◦

Exercises

Apply the program Deformation to the following deformations:

1.

⎧⎨⎩
x1 = X1 + kX2,
x2 = X2,
x3 = X3.

∀k ∈ �

2.

⎧⎨⎩
x1 = αX1,
x2 = βX2,
x3 = γX3.

∀α, β, γ ∈ �

3.

⎧⎨⎩
x1 = X1,
x2 = X2 − kX3,
x3 = X3 + kX2.

∀k ∈ �

4.

⎧⎨⎩
x1 = X1,

x2 = X2 +
√

2X3,

x3 = X3 +
√

2X2.

5.

⎧⎨⎩
x1 = X1,
x2 = X2,
x3 = X3 + kX2.

∀k ∈ �

6.

⎧⎨⎩
x1 = X1,
x2 = X2 + kX3,
x3 = X3 + kX2.

∀k ∈ �



Chapter 4

Kinematics

4.1 Velocity and Acceleration

The aim of this section is to consider the motion of a continuous system S
with respect to an orthonormal frame of reference R = (O, ei) (see Chapter
1). As stated in Chapter 3, if C denotes the configuration of S in R at
time t, then the coordinates (xi) of the point x ∈ C are defined to be
Eulerian or spatial coordinates of x. In order to describe the motion
of S, its points have to be labeled so that we can follow them during the
motion. This requires the introduction of a reference configuration C∗,
selected among all the configurations the system S can assume (the usual
choice is the initial one), and the coordinates (XL) of X ∈ C∗ are defined
as the Lagrangian or material coordinates.

The motion of S is accordingly defined by

xi = xi(X, t), i = 1, 2, 3. (4.1)

Equations (4.1) are required to satisfy, for any time instant, the assump-
tions introduced for (3.1), i.e., they are supposed to be one-to-one functions
of class C2. In particular, the requirement that one and only one x ∈ C
corresponds to each X ∈ C∗ guarantees that during the motion the system
does not exhibit fractures or material discontinuities; the requirement that
one and only one X corresponds to each x (existence of the inverse function)
preserves the basic property of matter that two particles cannot simulta-
neously occupy the same position; finally, requiring that the functions are
of class C2 guarantees the regular and smooth behavior of the velocity and
acceleration.

From the above properties it follows that at any X ∈ C∗, the Jacobian J
of (4.1) is different from zero.

109
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Moreover, if C∗ has been selected as the initial configuration, so that J
is equal to 1 when t = 0, the continuity of J requires that, for all t,

J = det
(

∂xi

∂Xj

)
> 0. (4.2)

Any quantity ψ of the continuous system S can be represented in
Lagrangian or Eulerian form , depending on whether it is expressed
as a function of (X, t) or (x, t), i.e., if it is a field assigned on the initial
configuration C∗ or on the current configuration C:

ψ = ψ(x, t) = ψ(x(X, t), t) = ψ̃(X, t). (4.3)

When dealing with balance equations (see Chapter 5), it will be shown
how it is important to correctly compute the rate of change of a physical
quantity, occurring at a given material point. This rate of change is called
the material derivative .

As an example, the velocity and the acceleration of the particle X ∈ C∗
at time t are given by the partial derivative of the material representation

v = ṽ(X, t) =
∂x
∂t

=
∂u
∂t

, a = ã(X, t) =
∂2x
∂t2

=
∂2u
∂t2

, (4.4)

where u = x(X, t) − X is the displacement field introduced in Chapter 3.
Because of the invertibility assumption of the motion, the formulation

of the same fields in the spatial representation is allowed by the following
identities:

v(x, t) = v(x(X, t), t) = ṽ(X, t),
a(x, t) = a(x(X, t), t) = ã(X, t), (4.5)

and it follows that the material derivative of the spatial representation is
given by the total derivative

a =
∂v
∂t

+ v · ∇v, (4.6)

where the gradient operator ∇ means differentiation with respect to spatial
coordinates:

v · ∇v = vj
∂v
∂xj

.

The general form for any field ψ(x, t) = ψ̃(X, t) is

ψ̇ =
∂ψ̃

∂t
=

∂ψ

∂t
+ v · ∇ψ, (4.7)

which shows that the material derivative in the spatial representation is
composed of two contributions: the first one is a local change expressed by
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the partial time derivative and the second one is the convective derivative
v · ∇ψ.

Relevant features of the motion are often highlighted by referring to par-
ticle paths and streamlines. For this reason, the following definitions are
introduced.

The vector field v(x, t) at a fixed time t is called the kinetic field .
A particle path is the trajectory of an individual particle of S. In

Lagrangian terms, particle paths can be obtained by integration of (4.4):

x = x0 +
∫ t

0
ṽ(X, t) dt. (4.8)

If the velocity field is expressed in the Eulerian form v = v(x, t), then
the determination of particle paths requires the integration of a nonau-
tonomous system of first-order differential equations:

dx
dt

= v(x, t). (4.9)

We briefly remind the reader that a system of first-order differential equa-
tions (4.9) is called autonomous if the functions on the right-hand side
are real-valued functions that do not depend explicitly on t.

A streamline is defined as the continuous line, at a fixed time t, whose
tangent at any point is in the direction of the velocity at that point.

Based on this definition, streamlines represent the integral curves of the
kinetic field, i.e., the solution of the autonomous system

dx
ds

= v(x, t), t = const., (4.10)

where s is a parameter along the curve. We note that two streamlines
cannot intersect; otherwise we would have the paradoxical situation of a
velocity going in two directions at the intersection point.

The motion is defined to be stationary if

∂

∂t
v(x, t) = 0, (4.11)

which is equivalent to saying that all the particles of S that cross the posi-
tion x ∈ C during the time evolution have the same velocity.

Since in the stationary motion the right-hand side of both (4.9) and (4.10)
are independent of t, the two systems of differential equations are equivalent
to each other, so that particle paths and streamlines are coincident.
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4.2 Velocity Gradient

Two relevant kinematic tensors will be extensively used. The first one
is the symmetric tensor defining the rate of deformation or stretching
(Euler, 1770)

Dij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
= Dji, (4.12)

and the second one is the skew-symmetric tensor defined as the spin or
vorticity tensor

Wij =
1
2

(
∂vi

∂xj
− ∂vj

∂xi

)
= −Wji. (4.13)

By means of these two tensors, the gradient of velocity can be conve-
niently decomposed as

∇v = D + W. (4.14)

By recalling the definition of differential

v(x + dx, t) = v(x, t) + dx · ∇v, (4.15)

and using the decomposition (4.14), we obtain

v(x + dx, t) = v(x, t) + ω × dx + Ddx, (4.16)

where ω is the vector such that ω × dx = Wdx. It can be verified that

ω =
1
2
∇ × v, (4.17)

which shows that, in a neighborhood of x ∈ C, the local kinetic field is
composed of a rigid motion with angular velocity given by (4.17) that is a
function of time and x, and the term Ddx.

Later it will be useful to refer to the following expression for the Eulerian
acceleration, derived from (4.6):

ai =
∂vi

∂t
+ vj

∂vi

∂xj
=

∂vi

∂t
+ vj

∂vi

∂xj
+ vj

∂vj

∂xi
− vj

∂vj

∂xi

=
∂vi

∂t
+ 2Wijvj +

1
2

∂v2

∂xj
.

Since Wijvj = εihjωhvj , we obtain

ai =
∂vi

∂t
+ 2εihjωhvj +

1
2

∂v2

∂xj
,

and, referring to (4.17), we see that in vector terms it holds that

a =
∂v
∂t

+ (∇ × v) × v+
1
2
∇v2. (4.18)
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4.3 Rigid, Irrotational, and Isochoric Motions

For the analysis we are going to present, it is of interest to introduce
Liouville’s formula

J̇ = J∇ · v. (4.19)

To prove (4.19), first observe that by definition

J̇ =
d

dt
det

(
∂xi

∂XL

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v1

∂X1

∂v1

∂X2

∂v1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂v3

∂X1

∂v3

∂X2

∂v3

∂X3

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Moreover,
∂vh

∂XL
=

∂vh

∂xj

∂xj

∂XL
,

and since each determinant can be written as J∂vi/∂xi (no summation on
i), (4.19) is proved.

Theorem 4.1
The motion of S is (globally) rigid if and only if

D = 0. (4.20)

PROOF To prove that (4.20) follows as a necessary condition, we ob-
serve that a rigid motion implies vi(x, t) = vi(x0, t) + εijlωj(t)(xl − x0l).
The velocity gradient

∂vi

∂xk
= εijkωj

is then skew-symmetric, so that

2Dik =
∂vi

∂xk
+

∂vk

∂xi
= (εijk + εkji) ωj = 0.

To prove that D = 0 is a sufficient condition, by (4.15) and (4.16) we obtain

∂vi

∂xj
= Wij , Wij = −Wji. (4.21)

The system (4.21) of 9 differential equations with the three unknown func-
tions vi(x) can be written in the equivalent form

dvi = Wijdxj , (4.22)



114 Chapter 4. Kinematics

so that (4.21) has a solution if and only if the differential forms (4.22) can
be integrated. If the region C of the kinetic field is simply connected, then
a necessary and sufficient condition for the integrability of (4.22) is

∂Wij

∂xh
=

∂Wih

∂xj
.

By cyclic permutation of the indices, two additional conditions follow:

∂Wjh

∂xi
=

∂Wji

∂xh
,

∂Whi

∂xj
=

∂Whj

∂xi
.

Summing up the first two, subtracting the third one and taking into account
(4.21)2, we derive the condition

∂Wij

∂xh
= 0,

which shows that the skew-symmetric tensor Wij does not depend on the
spatial variables and eventually depends on time. Then, integration of
(4.22) gives

vi(x, t) = v0i(t) + Wij(t)(xj − x0j),

and the motion is rigid.

The motion of S is defined to be irrotational if

ω =
1
2
∇ × v = 0. (4.23)

Again suppose that the region C is simply connected; then it follows that
the motion is irrotational if and only if

v = ∇ϕ, (4.24)

where ϕ is a potential for the velocity, also defined as the kinetic
potential .

Let c ⊂ C be a region which is the mapping of c∗ ⊂ C∗ under the
equations of the motion. This region is a material volume because it
is always occupied by the same particles. If during the motion of S the
volume of any arbitrary material region does not change, then the motion
is called isochoric or isovolumic, i.e.,

d

dt

∫
c

dc = 0.

By changing the variables (xi) −→ (XL), the previous requirement can be
written as

d

dt

∫
c∗

Jdc∗ = 0,
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and, since the volume c∗ is fixed, differentiation and integration can be
exchanged, and because of (4.19), we get∫

c∗
J∇ · v dc∗ =

∫
c

∇ · v dc = 0 ∀c ⊂ C.

Next, we conclude that a motion is isochoric if and only if

∇ · v = 0. (4.25)

Finally, an irrotational motion is isochoric if and only if the velocity
potential satisfies Laplace ’s equation

∆ϕ = ∇ · ∇ϕ = 0, (4.26)

whose solutions are known as harmonic functions.

4.4 Transformation Rules for a Change of Frame

As we will discuss in Chapter 7, constitutive equations are required to be
invariant under change of frame of reference. Intuitively, this requirement
means that two observers in relative motion with respect to each other
must observe the same stress in a given continuous body. For this and
other reasons it is of interest to investigate how the tensors Ḟ, ∇v, D, and
W transform under a change of frame of reference.

Let us briefly recall that a frame of reference can be considered as an
observer measuring distances with a ruler and time intervals with a clock.
In general, two observers moving relatively to each other will record differ-
ent values of position and time of the same event. But within the framework
of Newtonian mechanics, it is postulated that: distance and time intervals
between events have the same values in two frames of reference whose rela-
tive motion is rigid.

Suppose that the first observer is characterized by the reference system
Oxi and time t and the second one by O′x′

i and t′. The above requirement
can be expressed in analytical terms as

x′
i = Qij(t)xj + ci(t),
t′ = t + a, (4.27)

where Q = (Qij), c = (ci), and a are a proper orthogonal tensor, an
arbitrary vector, and an arbitrary scalar quantity, respectively.

The change of frame of reference expressed by (4.27) is a time-dependent
rigid transformation known as a Euclidean transformation (see Chapter 1).
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A scalar field g, a vector field q, and a tensor field T are defined to be
objective if, under a change of frame of reference, they transform according
to the rules

g′(x′, t′) = g(x, t),
q′(x′, t′) = Q(t)q(x, t),
T′(x′, t′) = Q(t)T(x, t)QT (t). (4.28)

In this case we say that two observers are considering the same event from
two different points of view.

It was already observed in Section 3.6 that the deformation gradient F
and the left and right Cauchy–Green tensors transform as follows:

F′ = QF, C′ = C, B′ = QBQT . (4.29)

Moreover, the following additional transformation rules hold under a
change of frame (4.27):

Ḟ′ = QḞ + Q̇F,

∇′v′ = Q∇vQT + Q̇Q
T
,

D′ = QDQT ,

W′ = QWQT + Q̇Q
T
. (4.30)

The equation (4.30)1 is obtained by differentiating (4.29)1 with respect
to time.

Furthermore, differentiating the relation x′
i = Qij(t)xj + ci(t) with re-

spect to time and x′
h, we get

∂v′
i

∂x′
h

= Qij
∂vj

∂xk

∂xk

∂x′
h

+ Q̇ij
∂xj

∂x′
h

and (4.30)2 is proved. Moreover, the orthogonality condition QQT = I

allows us to write Q̇Q
T

+ QQ̇
T

= 0, i.e., Q̇Q
T

= −
(
Q̇Q

T
)T

, so that the

skew-symmetry of Q̇Q
T

is derived. By recalling the definitions (4.12) and
(4.13) of D and W, (4.30)3,4 can easily be proved.

It follows that only the rate of deformation tensor D can be considered
to be objective.

4.5 Singular Moving Surfaces

In continuum mechanics it is quite common to deal with a surface that is
singular with respect to some scalar, vector, or tensor field and is moving
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independently of the particles of the system. Typical phenomena include
acceleration waves, shock waves, phase transitions, and many others. Due
to the relevance of these topics, this section and the next one are devoted
to the kinematics of singular surfaces.

Let
f(r, t) = 0 (4.31)

be a moving surface Σ(t). Given a point r ∈ Σ(t), consider the straight
line a of equation r + sn, where n is the unit vector normal to Σ(t) at r.
If f(r, t + τ) = 0 is the equation of Σ(t + τ), let the intersection point of
a with the surface Σ(t + τ) be denoted by y. The distance between Σ(t)
and Σ(t + τ) measured along the normal at r is given by s(τ), and this
parameter allows us to define the normal speed of Σ(t) as the limit

cn = lim
τ−→0

s(τ)
τ

= s′(0). (4.32)

The limit (4.32) can also be expressed in terms of (4.31) if it is observed
that s(τ) is implicitly defined by equation

f(r + sn, t + τ) ≡ ϕ(s, τ) = 0,

so that, from Dini’s theorem on implicit functions, it follows that

s′(0) = −
(

∂ϕ/∂τ

∂ϕ/∂s

)
(0,0)

= − ∂f/∂t

∇ f · n .

Since ∇f is parallel to n and has the same orientation, it can be written as

cn = −∂f/∂t

|∇ f | . (4.33)

The velocity of the surface with respect to the material particles instan-
taneously lying upon it is called the local speed of propagation and is
given by (cn − v · n), if the current configuration is regarded as a reference
configuration.

Note that we obtain (4.33) by using the implicit representation of the
surface Σ(t). If we adopt a parametric form of Σ(t), i.e., r = g(uα, t), where
uα, α = 1, 2, are the parameters on the surface, then f(g(uα, t), t) = 0 and
(4.33) gives

cn =
1

|∇ f |∇f · ∂g
∂t

= n · ∂r
∂t

. (4.34)

It can be proved that the velocity of the surface is independent of the
parametric representation of Σ(t).
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In fact, if Uα with uα = uα(Uβ , t) are new parameters, then the para-
metric equations of the surface will be R(Uα, t) = r(uα(Uβ , t)) and (4.34)
will be expressed in terms of ∂R/∂t instead of ∂r/∂t. Since

∂R
∂t

=
∂r

∂uα

∂uα

∂t
+

∂r
∂t

,

and ∂r/∂uα are tangent to the surface Σ(t), it follows that

n · ∂r
∂t

= n · ∂R
∂t

,

and both parametric representations lead to the same value of cn.
Let r = g(uα, t) be a surface Σ(t) and let Γ(t) be a moving curve on

it, with parametric equations r = G(s, t) = g(uα(s, t), t), where s is the
curvilinear abscissa on Γ(t). The orientation of the tangent unit vector
τ to the curve Γ(t) is fixed according to the usual rule that τ is moving
counterclockwise on Γ(t) for an observer oriented along n. Furthermore,
the unit vector normal to Γ(t) on the plane tangent to Σ(t) is expressed by
νΣ = τ × n.

According to these definitions, the velocity of the curve Γ(t) is given by
the scalar quantity

wν =
∂G
∂t

· νΣ ≡ w · νΣ, (4.35)

and it can be proved that w ·νΣ is independent of the parametric represen-
tation of Σ(t) and Γ(t) (see Exercise 7).

A moving surface Σ(t) is defined to be singular of order k ≥ 0 with
respect to the field ψ(x, t) if the same definition applies to the fixed surface
S of �4 of equation (4.31) (see Section 2.5).

It is convenient to write the relationships found in Section 2.5 in terms
of variables (xi, t). To this end, let �4 be a four-dimensional space in which
the coordinates (xi, t) are introduced, and let the fixed surface S of �4 be
represented by (4.31) (see Figure 4.1).

The unit vector N normal to S has components

N =
gradf

|gradf | =
1

|gradf |
(

∇f,
∂f

∂t

)
, (4.36)

where gradf = (∂f/∂xi, ∂f/∂t). Taking into account (4.33) and observing
that the unit normal n in �3 to the surface f(r, t) = 0, with t fixed, has
components (∂f/∂xi)/ |∇f |, we find that (4.36) can be written as

N =
|∇f |

|gradf | (n,−cn) ≡ β(n,−cn). (4.37)
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Figure 4.1

With this notation, if Σ(t) is a surface of order 1 with respect to the tensor
field T(x, t), then (2.48) and (4.37) give the following jump conditions:

[[∇T]] = n ⊗ A(x, t), (4.38)[[
∂T
∂t

]]
= −cnA(x, t), (4.39)

where A(x, t) = a |∇ f | / |gradf |.
If the surface is of order 2, then (2.50) leads to the following conditions:

[[∇∇T]] = n ⊗ n ⊗ A(x, t), (4.40)[[
∇∂T

∂t

]]
= −cnn ⊗ A(x, t), (4.41)[[

∂2T
∂t2

]]
= c2

nA(x, t). (4.42)

4.6 Time Derivative of a Moving Volume

Let V (t) be a moving volume with a smooth boundary surface ∂V (t)
having equation g(x, t) = 0 and unit outward normal N. Suppose that its
velocity component along the normal is given by

VN = − 1
|∇g|

∂g

∂t
.

When dealing with balance equations, it is useful to express the time deriva-
tive of a given quantity, defined over a volume which is not fixed but is
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changing with time. To do this, we need to use the following relation:

d

dt

∫
V (t)

f(x, t) dc =
∫

V (t)

∂f
∂t

dc +
∫

∂V (t)
fVN dσ. (4.43)

To prove (4.43), we observe that

d

dt

∫
V (t)

f (x, t) dc

= lim
∆t−→0

1
∆t

(∫
V (t+∆t)

f(x, t + ∆t) dc −
∫

V (t)
f(x, t) dc

)
.

The right-hand term can also be written in the form∫
V (t+∆t)f(x, t + ∆t) dc −

∫
V (t)

f(x, t + ∆t) dc

+
∫

V (t)
[f(x, t + ∆t) − f(x, t)] dc,

and we see that the difference of the first two integrals gives the integral
of f(x, t + ∆t) over the change of V (t) due to the moving boundary ∂V (t).
By neglecting terms of higher order, we have

∫
V (t+∆t)

f(x, t + ∆t) dc −
∫

V (t)
f(x, t + ∆t) dc

=
∫

∂V (t)
f(x, t + ∆t)VN ∆t dσ

so that in the limit ∆t −→ 0, (4.43) is proved.
In the same context, let Σ(t) be a singular surface of zero order with

respect to the field f(x, t) and σ(t) = Σ(t) ∩ V (t). If f(x, t) = 0, n, and
cn denote the equation of Σ(t), its unit normal, and its advancing velocity,
respectively, we have

cn = − 1
|∇f |

∂f

∂t

and the following formula can be proved:

d

dt

∫
V (t)

f(x, t) dc =
∫

V (t)

∂f
∂t

dc +
∫

∂V (t)
fVN dσ −

∫
σ(t)

[[f ]]cn dσ. (4.44)

To this end, suppose the surface Σ(t) divides the volume V (t) into two
regions, V − and V +. In order to apply (4.43), we note that ∂V has velocity
VN , while σ(t) is moving with velocity cn if σ(t) is considered to belong
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to V −(t), or with velocity −cn if it is part of V +. Furthermore, the field
f on σ(t) will be f− or f+, depending on whether σ(t) belongs to V − or
V +. We derive (4.44) by applying (4.43) to V + and V − and subtracting
the corresponding results.

As a particular case, if V (t) is a fixed volume (VN = 0), then from (4.44)
it follows that

d

dt

∫
V

f(x, t) dc =
∫

V

∂f
∂t

dc −
∫

σ(t)
[[f ]]cn dσ. (4.45)

As a further application of (4.44), consider a material volume c(t) ⊂ C(t)
that is the mapping of the initial volume c∗ ⊂ C∗ by the equations of motion
x = x(X, t). Since this moving volume is a collection of the same particles
of S(t), its boundary ∂c(t) is moving at normal speed v · N, and (4.44) can
be written as

d

dt

∫
c(t)

f(x, t) dc =
∫

c(t)

∂f
∂t

dc +
∫

∂c(t)
f ⊗ v · N dσ −

∫
σ(t)

[[f ]]cn dσ. (4.46)

By applying the generalized Gauss’s theorem (2.42) to the second integral
of the right-hand side of (4.46), we derive

d

dt

∫
c(t)

f(x, t) dc =
∫

c(t)

[
∂f
∂t

+ ∇ · (v ⊗ f)
]

dc −
∫

σ(t)
[[f(cn − vn)]] dσ.

(4.47)
In applications the need often arises to consider a material open mov-

ing surface , i.e., a surface which is the mapping, by the equations of
motion x = x(X, t), of a surface S∗ represented in the reference configura-
tion by the equation r = r(uα). In this case the following formula holds:

d

dt

∫
S(t)

u(x, t) · N dσ =
∫

S(t)

[
∂u
∂t

+ ∇ × (u × v) + v∇ · u
]

· N dσ, (4.48)

where N is the unit vector normal to S(t).
To prove (4.48), we first observe that due to (3.19) we can write

d

dt

∫
S(t)

u(x, t) · N dσ =
d

dt

∫
S(t)

ui dσi

=
d

dt

∫
S∗

uiJ
∂XL

∂xi
dσ∗L =

∫
S∗

d

dt

(
uiJ

∂XL

∂xi

)
dσ∗L.

(4.49)

In addition, from (4.19) it follows that

d

dt

(
J

∂XL

∂xi

)
= J∇ · v∂XL

∂xi
+ J

d

dt

∂XL

∂xi
; (4.50)
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and to evaluate the derivative on the right-hand side it is convenient to
recall that

∂XL

∂xi

∂xh

∂XL
= δih.

Therefore,
d

dt

∂XL

∂xi
= −∂ẋh

∂xi

∂XL

∂xh
,

and (4.50) becomes

d

dt

(
J

∂XL

∂xi

)
= J∇ · v∂XL

∂xi
− J

∂ẋh

∂xi

∂XL

∂xh
.

By using this expression in (4.50) we find that

d

dt

∫
S(t)

u(x, t) · N dσ =
∫

S(t)
(u̇ + u∇ · v − u · ∇v) · N dσ

and (4.48) is proved by applying known vector identities.
Finally, it is of interest to investigate how (4.48) can be generalized to

the case in which the material surface S(t) intersects the moving surface
Σ(t), which is supposed to be singular with respect to the field u. Let
Γ(t) = S(t) ∩ Σ(t) be the intersection curve between S(t) and Σ(t), and let
S−(t) and S+(t) be the regions into which S(t) is subdivided by Γ(t). If τ
denotes the unit vector tangent to Γ(t) and νs the unit vector tangent to
S(t) such that νs, τ,N define a positive basis (see Figure 4.2), then we can
easily prove the following generalization of (4.48):

Figure 4.2

d

dt

∫
S(t)

u(x, t) · N dσ =
∫

S(t)

[
∂u
∂t

+ ∇ × (u × v) + v∇ · u
]

· N dσ

−
∫

Γ(t)
n × [[u × (w − v)]] · νS ds, (4.51)

where w is the velocity of Γ(t).
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Remark When dealing with continuous systems characterized by inter-
faces (examples include shock waves, Weiss domains in crystals, phase tran-
sitions and many other phenomena), it is useful to evaluate the following
derivative:

d

dt

∫
S(t)

ΦS dσ,

where ΦS(x, t) is a field transported by the nonmaterial surface Σ(t) and
S(t) = c(t) ∩ Σ(t), where c(t) is a material or fixed volume. The formula
(4.51) does not allow us to consider this case, and as a result many authors
have paid attention to this problem (see for example Moeckel [13], Gurtin
[14], Dell’Isola and Romano [15]). Recently, Marasco and Romano [16] have
presented a simple and general formulation that will be further discussed
in Volume II.

4.7 Worked Exercises

1. Given the motion

x1 =
(

1 +
t

T

)2

X1, x2 = X2, x3 = X3,

find the Lagrangian and Eulerian representation of the velocity and
acceleration.

The displacement components in the Lagrangian form are given by

u1 = x1 − X1 =
(

2
t

T
+

t2

T 2

)
X1, u2 = u3 = 0,

and in Eulerian form they are

u1 =
2(t/T ) + (t/T )2(

1 +
t

T

)2 x1, u2 = u3 = 0.

The velocity components in the Lagrangian representation are

v1 =
∂u1(X, t)

∂t
=

2
T

(
1 +

t

T

)
X1, v2 = v3 = 0,

and in Eulerian form they are

v1 =
2
T

1(
1 +

t

T

)x1, v2 = v3 = 0.
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Finally, the acceleration components in Lagrangian form are

a1 =
2

T 2 X1, a2 = a3 = 0,

while the Eulerian representation can be obtained by substituting in
the previous relation the inverse motion

X1 =
x1(

1 +
t

T

)2

or by applying the material derivative operator

d

dt
=

∂

∂t
+ v · ∇,

so that
a1 =

2
T 2

1(
1 +

t

T

)2 x1, a2 = a3 = 0.

2. Prove that the motion is rigid if and only if the equations of motion
have the structure

xi = bi(t) + Qij(t)Xj ,

where Qij is a proper orthogonal tensor, i.e.,

QijQkj = δij , detQ = 1.

Let XA and XB label two particles in the reference configuration. If
the motion is expressed by the previous relations, then

xA
i − xB

i = Qij(t)(XA
i − XB

j );

in addition, the properties of Q give

(xA
i − xB

i )(xA
i − xB

i ) = Qij(t)Qik(XA
j − XB

j )(XA
k − XB

k )

= (XA
j − XB

j )(XA
j − XB

j ),

so that it is proved that the distance between the two points does not
change and the motion is rigid.

On the other hand, as shown in Section 3.2, in a rigid body

CLM = FiLFiM = δLM

and F is an orthogonal tensor. By differentiating with respect to XP

it can be shown that F is independent of X, so that by integrating
the equation

∂xi

∂XL
= FiL(t),

we obtain the equation of a rigid motion.
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3. Prove that the kinetic field⎧⎨⎩
v1 = −5x2 + 2x3,
v2 = 5x1 − 3x3,
v3 = −2x1 + 3x2,

corresponds to a rigid motion.

In fact, the spatial gradient of velocity is given by

(
∂vi

∂xj

)
=

⎛⎝ 0 −5 2
5 0 −3

−2 3 0

⎞⎠ ,

and it is skew-symmetric. Consequently, the rate of deformation

Dij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
vanishes and the motion is rigid, according to (4.20).

4. Prove that a rigid motion is isochoric.

5. Find a class of isochoric but nonrigid motions (Hint: ∇ · v = 0 is
equivalent to v = ∇ × A).

6. Compute the angular velocity in an isochoric motion.

7. Prove that the velocity of propagation (4.35) of a curve on a surface
is independent of their parametric representations.
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4.8 The Program Velocity

Aim of the Program, Input and Output

Given a transformation from orthogonal curvilinear coordinates var to
Cartesian coordinates and given the components of a velocity field in both
the associated unit basis as well as in the holonomic basis of the coordi-
nates var, the program Velocity computes the acceleration, the velocity
gradient, and divergence, as well as the angular velocity.

Theoretical bases are provided in Sections 4.1 and 4.2. Velocity compo-
nents must be given relative to the unit basis associated with the holonomic
one of the curvilinear coordinates var.

The command line of the program Velocity is

Velocity[vel, var, transform, characteristic, simplifyoption] ,

where the input data have the following meaning:

vel = velocity components;

var = orthogonal curvilinear or Cartesian coordinates;

transform = r.h.s. terms of the transformation from curvilinear var to
Cartesian coordinates or r.h.s. terms of the transformation “identity”;

characteristic = option, corresponding to possible choices symbolic or
numeric (as previously defined for the program Operator).

simplifyoption = true or false. In the first case, the program computes
many simplifications of symbolic expressions (as previously defined for
the program Deformation).

From the previous data the corresponding output follows:

spatial gradient of velocity;

acceleration;

velocity divergence;

angular velocity.
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Worked Examples

1. Let v = vrer + vϕeϕ + vzez be a velocity field in cylindrical coordi-
nates. The required input data are the following:

vel = {vr, vϕ, vz};
var = {r, ϕ, z};
transform = {RCos[ϕ], RSin[ϕ], z};
characteristic = symbolic;

simplifyoption = true;

Velocity[vel, var, transform, characteristic, simplify-
option]

The program provides the following output data:1

The components of any vector or tensor quantity are re-
lative to the unit basis associated with the holonomic
basis of the curvilinear coordinates {r, ϕ, z}.

Spatial gradient of velocity

∇v =

⎛⎜⎜⎜⎝
∂r[vr] ∂r[vϕ] ∂r[vz]

−vϕ + ∂ϕ[vr]
r

vr + ∂ϕ[vϕ]
r

∂ϕ[vz]
r

∂z[vr] ∂z[vϕ] ∂z[vz]

⎞⎟⎟⎟⎠
Acceleration

a =

⎛⎜⎜⎝
vr∂r[vr] + vz∂r[vz] + vϕ∂r[vϕ] + ∂t[vr]

∂t[vϕ] +
vr∂ϕ[vr] + vz∂ϕ[vz] + vϕ∂ϕ[vϕ]

r
∂t[vz] + vr∂z[vr] + vz∂z[vz] + vϕ∂z[vϕ]

⎞⎟⎟⎠
Divergence of velocity

∇ · v = ∂r[vr] + ∂z[vz] +
vr + ∂ϕ[vϕ]

r
Angular velocity

ω =

⎛⎜⎜⎜⎜⎜⎜⎝

1

2

(
−∂z[vϕ] +

∂ϕ[vz]
r

)
1

2
(−∂r[vz] + ∂z[vr])

1

2

(
vϕ

r
+ ∂r[vϕ] − ∂ϕ[vr]

r

)

⎞⎟⎟⎟⎟⎟⎟⎠
1It is suggested that the reader to compare these results to those provided by the program
Operator.
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2. Compute the dynamic characteristics of the velocity field

v =
x

1 + t
i +

2y

1 + t
j +

3z

1 + t
k.

Input data:

vel =
{

x

1 + t
,

2y

1 + t
,

3z

1 + t

}
;

var = {x, y, z};
transform = {x, y, z};
characteristic = numeric;

simplifyoption = false;

Velocity[vel, var, transform, characteristic, simplify-
option]

Output:

Spatial gradient of velocity

∇v =

⎛⎜⎜⎜⎜⎝
1

1 + t
0 0

0
2

1 + t
0

0 0
3

1 + t

⎞⎟⎟⎟⎟⎠
Acceleration

a =

⎛⎜⎜⎜⎝
0
2y

(1 + t)2
6z

(1 + t)2

⎞⎟⎟⎟⎠
Divergence of velocity

∇ · v =
6

1 + t
Angular velocity

ω =

⎛⎝0
0
0

⎞⎠
Exercises

Apply the program Velocity to the following fields:

1. v = (−5y + 2z)i + (5x − 3z)j + (−2x + 3y)k
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2. v = x2ti + yt2j + xztk

3. v =
(
x3 − xy2

)
i +

(
x2y + y

)
j

4. v = Bxzti + By2t2j + Bzyk

5. Use the program Operator to obtain the differential operators for the
velocity field in Exercise 3.



Chapter 5

Balance Equations

5.1 General Formulation of a Balance Equation

The fundamental laws of continuum mechanics are integral relations ex-
pressing conservation or balance of physical quantities: mass conservation,
momentum balance, angular momentum balance, energy balance, and so
on. These balance laws can refer to a material volume, intended as a col-
lection of the same particles, or to a fixed volume.

In rather general terms, a balance law has the following structure:

d

dt

∫
c(t)

f(x, t) dc = −
∫

∂c(t)
Φ · N dσ +

∫
c(t)

r dc, (5.1)

where c(t) is an arbitrary material volume of the configuration C(t) of the
system.

The physical meaning of (5.1) is the following: the change that the quan-
tity f exhibits is partially due to the flux Φ across the boundary of c(t) and
partially due to the source term r.

If we refer to a fixed volume V , then in addition to the flux Φ we need
to consider the transport of f throughout V with velocity v, so that (5.1)
assumes the form

d

dt

∫
V

f(x, t) dc = −
∫

∂V

(f ⊗ v + Φ) · N dσ +
∫

V

r dc. (5.2)

When the configuration C(t) is subdivided in two regions by a moving
singular surface Σ(t), then the previous balance law in the integral form
(5.1) or (5.2), the derivation rules (4.45) and (4.46), as well as the general-
ized Gauss theorem (2.46) allow us to derive the following local form of
the balance equation and jump condition

∂f
∂t

+ ∇ · (f ⊗ v + Φ) − r = 0 in C(t) − Σ(t),

[[f(vn − cn) + Φ · n]] = 0 on Σ(t). (5.3)

131
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In many circumstances, on the basis of reasonable physical assumptions,
we are led to the following integral balance equation:

d

dt

∫
c(t)

f(x, t) dc = −
∫

∂c(t)
s dσ +

∫
c(t)

r dc, (5.4)

where there is no reason to conclude that s = Φ · N.
In this case, Gauss’s theorem cannot be applied to the surface integral

on the right-hand side; consequently, (5.3) cannot be derived. Anyway, if s
is supposed to depend on (x, t) as well as on the unit vector N normal to
∂c(t) (Cauchy’s hypothesis), then Cauchy’s theorem can be proved:1

Theorem 5.1
If in the integral momentum balance law the tensor of order r has the struc-
ture s = s(x, t,N), then there is a tensor Φ(x, t) of order (r + 1) such that

s = Φ · N. (5.5)

PROOF For sake of simplicity but without loss of generality, s is sup-
posed to be a vector. If a material volume c(t) ⊂ C(t) is considered such
that c(t) ∩ Σ(t) = ∅, then from (5.3) and (4.46) it follows that∫

c(t)

(
∂f
∂t

+ ∇ · (f ⊗ v) − r
)

dc ≡
∫

c(t)
ϕdc = −

∫
∂c(t)

s dσ. (5.6)

If A is the area of the surface ∂c and the functions under the integral are
regular, then (5.6) gives

1
A

∫
c

ϕi dc =
1
A

∫
∂c

si(N) dσ.

By applying the mean-value theorem to the volume integral,2 we have

1
A

vol(c)ϕi(ξi, t) =
1
A

∫
∂c

si(N) dσ.

where ξi, i = 1, 2, 3, are the coordinates of a suitable point internal to c. In
the limit A → 0 (or, which is the same for c merging into its internal point
x), the following result is obtained:

lim
A→0

1
A

∫
∂c

si(N) dσ = 0. (5.7)

1In [40], W. Noll proves that Cauchy’s hypothesis follows from the balance of linear mo-
mentum under very general assumptions concerning the form of the function describing
the surface source s.
2The mean value theorem applies to each component of the vector function, and not to
the vector function itself.
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Now, if ϕ and s are regular functions, it must hold that

s(N) = −s(−N), (5.8)

as we can prove by applying (5.7) to a small cylinder cε having height ε2,
bases with radius ε and by considering the surface σ through the internal
point x (see Figure 5.1).

N
t

–N

Figure 5.1

Let ξ1, ξ2, and ξ3 be three points located on the surface of the cylinder,
on the base whose normal is N, and on the other base of normal −N,
respectively; moreover, let N1 the unit normal to the lateral surface of cε.

By applying the mean-value theorem, it follows that∫
∂cε

si(x,N) dσ = 2πε3si(ξ1,N1) + πε2si(ξ2,N) + πε2si(ξ3,−N),

where the argument t has been omitted for sake of simplicity.
Since the term 2πε3 + 2πε2 represents the area A of the cylinder cε, the

previous relation gives (5.7) when A → 0.
Now to prove (5.4), we use Cauchy’s tetrahedron argument. At a point

x ∈ C draw a set of rectangular coordinate axes, and for each direction
N choose a tetrahedron such that it is bounded by the three coordinate
planes through x and by a fourth plane, at a distance ε from x, whose unit
outward normal vector is N (see Figure 5.2).

Let σ0 be the area of the surface whose normal is N and let σi (i = 1, 2, 3)
be the area of each of the three right triangles whose inward normal is given
by the basis unit vector ei. Since σi = σ0|Ni| and the volume c of ∆ is
equal to σ0ε/3, if in (5.7) c denotes ∆, it follows that

lim
ε→0

1
σ0(1 +

∑3
i=1 |Ni|)

[
si(ξ1,N)σ0 +

3∑
i=1

si(ηj ,−ej)|Nj |σ0

]
= 0,
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and in addition, if Nj > 0 (j = 1, 2, 3), then from (5.8) it must be that

s(x,N) =
3∑

i=1

s(x, ej)Nj , (5.9)

which is valid even if some Nj = 0, because of the continuity assumption
on s(x,N).

Figure 5.2

Conversely, if N1 is negative, then σ1 = −σ0N1 and in (5.9) the term
−s(x, e1)N1 will replace s(x, e1)N1; assuming the reference (−e1, e2, e3) in
place of (e1, e2,e3) still gives (5.9).

If
Φij = ei · s(x, ej), (5.10)

then (5.9) can be written as

si = s · ei = ΦijNj . (5.11)

Since N and s are vectors and N is arbitrary, (5.11) requires Φij to be the
components of a second-order tensor so that (5.5) is proved.

In the presence of electromagnetic fields additional balance laws are
needed. They have the following structure:

d

dt

∫
S(t)

u · N dσ =
∫

∂S(t)
a · τ ds +

∫
S(t)

g · N dσ +
∫

Γ(t)
k · ν ds, (5.12)
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where u,a,g, and k are vector fields, S(t) is any arbitrary material surface,
and Γ(t) is the intersection curve of S(t) with the singular moving surface
Σ(t).

To obtain the local form in the region C as well as the jump conditions
on Σ(t), the rule (4.48) and the Stokes theorem (2.48) have to be applied
to the first integral on the right-hand side, so that

∂u
∂t

+v∇ · u = ∇ × (a + v × u) + g in C(t),

(n ×[[u × (w − v) + a]] + k) · νΣ = 0 on Σ(t). (5.13)

Moreover, w · N = vN , w · n = cn, since Γ(t) belongs to both the material
surface S(t) and the singular surface Σ(t); therefore, (5.13)2 can be written

([[(cn − vn)u − un(w − v) + n × a]] + k) · νΣ = 0. (5.14)

In the basis (τ,n,N) it holds that

w − v = [wτ − v · τ ] τ +
cn − vn

sin2 α
n − (cn − vn) cos α

sin2 α
N,

where cos α = n · N, so that (5.13)2 assumes the form

([[(cn − vn)u + n × a]] + k) · νΣ + [[n · u(cn − vn)]] cotα = 0. (5.15)

Since the material surface S(t) is arbitrary, the relation (5.15) must hold
for any value of α. If, as an example, we first suppose that α = π/2 and
that it has an arbitrary value, we derive the following:

[[(cn − vn)u + n × a]] + k = 0,

[[un(cn − vn)]] = [[un]]cn − [[unvn]] = 0. (5.16)

In literature, the following relation is usually proposed:

n × [[u×(cn − vn)n + a]] + k = 0 on Σ(t). (5.17)

We note that it is equivalent to (5.16)1 if and only if (5.16)2 is satisfied.
Some consequences of (5.16)2 are the following:

1. if [[un]] = 0, then [[vn]] = 0;

2. if the surface is material, then (5.16)2 is identically satisfied and
(5.16)1 reduces to

[[n × a]] + k = 0. (5.18)
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Remark The balance equations presented here are sufficiently general
to allow the formulation of all the physical principles considered in this
volume. However, they do not work for describing phenomena such as
phase transitions (see [16]) or shock waves, with transport of momentum
and energy on the wavefront. For these phenomena the reader is referred
to Volume II.

5.2 Mass Conservation

In order to derive the mass conservation law for a continuous system S,
we introduce the basic assumption that its mass is continuously distributed
over the region C(t) occupied by S at the instant t. In mathematical terms,
there exists a function ρ (x, t) called the mass density , which is supposed
to be of class C1 on C(t), except for the points of a singular surface Σ(t) of
order 0 (see Section 2) with respect to ρ(x, t) and the other fields associated
with S.

According to this assumption, if c(t) ⊂ C(t) is a material volume, i.e.,
the image under x(X, t) of a given region c∗ ⊂ C∗, then the mass of c(t) at
the instant t is given by

m(c∗) =
∫

c(t)
ρ(x, t) dc. (5.19)

The mass conservation principle postulates that during the motion the
mass of any material region does not change in time:

d

dt

∫
c(t)

ρ(x, t) dc = 0. (5.20)

With reference to the general balance law (5.1), the mass conservation
principle for an arbitrary fixed volume v assumes the form

d

dt

∫
v

ρ(x, t) dc = −
∫

∂v

ρ(x, t)v · N dc. (5.21)

If the material or fixed volume is subdivided in two regions by a singular
surface Σ(t) of 0 order with respect to the fields of interest, then the general
formulas (5.3) allow us to obtain the local formulation of the mass
balance principle and the jump condition

∂ρ

∂t
+ ∇ · (ρv) = ρ̇ + ρ∇ · v = 0 on C(t) − Σ(t),

[[ρ(vn − cn)]] = 0 on Σ(t). (5.22)
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5.3 Momentum Balance Equation

Let S be a continuous system and let ρ(x, t) be its mass density in the
current configuration. In the following discussion any dependence on time
t will be omitted for the sake of simplicity.

A fundamental axiom of continuum mechanics is the momentum bal-
ance principle :

For any arbitrary material volume c of S it holds that

Q̇(c) = F(c, ce), (5.23)

where

Q(c) =
∫

c

ρv dc (5.24)

is the momentum of c and F(c, ce) is the resultant of all the forces acting
on c from its exterior ce.

In a first simplified approach to continuum mechanics, the external ac-
tions on c are divided into mass forces, continuously distributed over c,
and contact forces , acting on the boundary ∂c of c; therefore,

F(c, ce) =
∫

c

ρb dc +
∫

∂c

t dσ, (5.25)

where b is the specific force , defined on c, and t is the traction or the
stress, defined on ∂c.

With such an assumption, the first integral in (5.25) represents all (grav-
itational, electromagnetic, etc.) forces acting on the volume c from the
exterior of S and the vector b is an a priori assigned field depending on x
and t. On the other hand, t is a field of contact forces acting on ∂c which
come from the molecular attraction between particles of ce and c at the
boundary ∂c.

The contact forces, which are strictly influenced by the deformation of S,
are unknown, as are reactions in rigid body mechanics. The main difference
between reactions and contact forces is the fact that for the latter, we can
provide constitutive laws that specify their link with the motion of the
system.

At this stage, some remarks are necessary to show how restrictive the
previous hypotheses are. First, the mass forces acting over c could originate
from other portions of S, external to c. This is just the case for mutual
gravitational or electromagnetic attractions among parts of S. In fact,
mass forces are unknown a priori, and the need arises to add to the motion
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equations the other equations governing the behavior of those fields which
generate such forces.

As an example, if b is the gravitational field produced by the system itself,
it is necessary to introduce Poisson’s equation for this field (see Volume II
for other examples).

Furthermore, the assumption made about contact forces means that
molecular actions can be uniquely represented by the vector t dσ. According
to this assumption the approximation of a simple continuum is usually
introduced. But when the need arises to capture essential features linked
to the microstructure of the body, contact actions are better represented
by a vector t dσ as well as a torque m dσ. In this case, the approximation
of a polar continuum (E. and F. Cosserat, 1907) is used, and the related
model is particularly useful in describing liquid crystals, due to the fact
that molecules or molecule groups behave as points of a polar continuum.

Anyway, in the following discussion and within the scope of this first
volume, the classical assumption of m = 0 will be retained, so that S will
be modeled as a simple continuum. Since molecular actions have a reduced
interaction distance, the force acting on the surface dσ depends on the
particles of S adjacent to dσ and not on particles far away. This remark
justifies the Euler–Cauchy postulate that the vector t, acting on the unit
area at x, depends on the choice of the surface only through its orientation,
i.e.,

t = t(N), (5.26)

where N is the outward unit vector normal to dσ.3

This assumption is equivalent to saying that the traction t depends on
the boundary ∂c only to first order; i.e., t depends on the orientation of
the tangent plane at x ∈ ∂c and not on the curvature of ∂c.

It is customary to introduce the decomposition

t = tnN + tσ,

where the component tn = t · N is called the normal stress and the
component tσ is called the shear stress.

By applying (5.23) to a material volume c and using definitions of mo-
mentum and external forces, we obtain

d

dt

∫
c

ρv dc =
∫

∂c

t(N) dσ +
∫

c

ρb dc. (5.27)

Then, applying Theorem 5.1 to (5.27), we have:

3See the footnote of Section 5.1.
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Theorem 5.2
If t,b and the acceleration a are regular functions, then the action-

reaction principle also holds for stresses, i.e.,

t(N) = −t(−N). (5.28)

There exists a second-order tensor T, called Cauchy’s stress tensor ,
such that t is a linear function of N, so that

t(N) = TN. (5.29)

The tensor T depends on (x, t), but is independent of N.

In the next section, it will proved that T is a symmetric tensor; therefore,
its eigenvalues are real and there is at least one orthonormal basis of eigen-
vectors. Eigenvalues are known as principal stresses and eigenvectors
of T give principal directions of stress characterized by the following
property: the traction t, acting on the area dσ normal to the principal di-
rection u, is normal to dσ, or, equivalently, on this area there are no shear
stress components (see Exercise 2).

When (5.29) is substituted into (5.27), the balance equation with the
general structure (5.1) is recovered, where

f = ρv, Φ = −T, r = ρb.

Taking into account (5.3) as well as the local form of the mass conservation
(5.22), the local expression of the momentum balance and the jump
condition can be easily derived:

ρv̇ = ∇ · T + ρb, (5.30)

[[ρv(cn − vn) + Tn]] = 0. (5.31)

In the case of a material surface, the jump condition (5.31) reduces to
Poisson’s condition

[[T]]n = 0,

on which are based the stress boundary conditions.
We observe, in fact, that one of the most interesting material surfaces

is the boundary of a body, so that the mechanical interaction of two sub-
bodies is uniquely determined by tractions on this surface, of equal magni-
tude and opposite sign.



140 Chapter 5. Balance Equations

5.4 Balance of Angular Momentum

Within the framework of nonpolar continua, in addition to (5.27), the
balance of the angular momentum is supposed to hold:

For any material volume of c we have:

K̇x0 = Mx0(c, c
e), (5.32)

where

Kx0 =
∫

c

ρ(x − x0) × v dc (5.33)

is the angular momentum of c with respect to x0 and Mx0(c, c
e) is the

moment with respect to x0 of all forces acting on c from its exterior ce.

The assumption that S is a simple continuum implies that

Mx0(c, c
e) =

∫
∂c

(x − x0) × TN dσ +
∫

c

ρ(x − x0) × b dc. (5.34)

Here again, by using the expressions (5.33) and (5.34), the relation (5.32)
assumes the general structure (5.1), where

f = ρ(x − x0) × v, Φ = −(x − x0) × T, r = ρ(x − x0) × b.

As a consequence, (5.32) is equivalent to the local conditions (5.3); in
addition, by recalling (5.30) and (5.31) and by considering the continuity
of (x − x0) across Σ, we find the following local condition:

εijhThj = 0, (5.35)

which shows the symmetry of the stress tensor4

T = TT . (5.36)

To summarize, mass conservation, momentum balance, and balance of
angular momentum give the following 4 differential equations

ρ̇ +ρ∇ · v = 0,

ρ v̇ = ∇ · T + ρb, (5.37)

for 10 unknown fields: ρ(x, t), v(x, t), and T(x, t), where T = TT .

4Cauchy’s stress tensor is not symmetric in the case of a polar continuum.
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Thus, we reach the conclusion that (5.37), with jump conditions (5.22)2
and (5.31), do not form a closed set of field equations for the unknown fields;
therefore we need to introduce constitutive laws connecting the tensor T
with the fields ρ(x, t) and v(x, t). This conclusion could also be reached by
observing that relations (5.37) are of general validity, in that they do not
contain any information about the constitution of the continuous body. But
it is also evident that different materials will suffer different stress states if
subjected to the same action.

This aspect will be discussed in Chapter 7 in a rather general framework.

5.5 Energy Balance

Up to now, we have only considered purely mechanical aspects of the
motion of the continuous system S. When dealing with relations between
heat and work, we must introduce an additional field equation: the energy
balance or the first law of thermodynamics :

1. To any arbitrary material volume c of S we can associate a scalar
function E(c), called the internal energy, such that if T (c) is the
kinetic energy of c, then the total energy content of c is given by
E(c) + T (c);

2. The total power exchanged by c with its exterior ce is represented by
the mechanical power P (c, ce), due to external forces acting on c,
and the thermal power Q(c, ce);

3. The time change of energy of c is given by

Ė(c) + Ṫ (c) = P (c, ce) + Q(c, ce). (5.38)

As a matter of definition, we remark that the term kinetic energy in-
dicates the macroscopic kinetic energy associated with the macroscopically
observable velocity of the continuous system. Random thermal motion of
molecules, associated with temperature, is part of the internal energy.

As a particular case, when Ė(c) = Q(c, ce) = 0, (5.38) reduces to the
kinetic energy theorem

Ṫ (c) = P (c, ce), (5.39)

which states that the rate change of the kinetic energy is equal to the power
of the forces acting on c.
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In continuum mechanics, quantities appearing in (5.38) have to be ex-
pressed as integrals of scalar or vector fields defined on c. To this end, for
nonpolar continua we suppose that

E(c) =
∫

c

ρε dc, T (c) =
∫

c

1
2

ρv2dc, (5.40)

where ε is the specific internal energy .
Moreover, making reference to (5.27) and (5.29), the mechanical power

can be written as

P (c, ce) =
∫

c

ρb · v dc +
∫

∂c

v·TN dσ, (5.41)

so that it assumes the meaning of the rate at which the body forces per
unit mass and the traction per unit area are doing work.

Similarly, an additive decomposition is also assumed to hold for the ther-
mal power Q(c, ce):

Q(c, ce) =
∫

c

ρr dc +
∫

∂c

s dσ, (5.42)

where r is a distributed specific heat source (supposed to be a given
function of (x, t)) and s represents the thermal power flux through the
boundary ∂c.

According to the Euler–Cauchy postulate, we also have

s = s(x, t,N), (5.43)

so that, referring to theorem (5.5), we write

s(x, t,n) = −h(x, t) · N, (5.44)

where the vector h is the heat flux vector and the negative sign accounts
for the fact that

∫
∂c

h(x, t) · N dσ represents the outward heat flux.
By virtue of the above considerations, formally expressed by (5.39),

(5.41), and (5.44), (5.38) can be written as

d

dt

∫
c

ρ

(
ε +

1
2
v2
)

dc =
∫

∂c

(v · TN − h · n) dσ +
∫

c

ρ(v · b + r) dc, (5.45)

and usual arguments lead to the following local equation and jump condition:

ρε̇ = T : ∇v − ∇ · h + ρr on C(t),[[
ρ

(
1
2
v2 + ε

)
(cn − vn) + v · Tn − h · n

]]
= 0 on Σ(t), (5.46)

where C(t) is the region occupied by S at the instant t and Σ(t) is a singular
surface.
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Furthermore, it can be proved that

T : ∇v = T : D = TijDij (5.47)

by simply considering the decomposition of the velocity gradient tensor
(4.14) and recalling that T is a symmetric tensor and W is skew-symmetric.

5.6 Entropy Inequality

A relevant concept of continuum mechanics is the temperature . As
distances are measured by means of rulers, so the temperature of a body is
measured by means of cylinders containing substances (mercury, alcohol, or
others) whose expansion laws are well established. Such a device is called a
thermometer and the measuring scale is rather arbitrary, as is the scale
of a ruler. But independent of the device used to measure the temperature,
there exists a lower bound, below which the body cannot be cooled further.

If this lower bound is assumed to be 0, then the corresponding tempera-
ture scale θ is called the absolute temperature , where

0 ≤ θ ≤ ∞.

When Q(c, ce) > 0, the region c is receiving thermal power from ce; the
reverse is true when Q(c, ce) < 0, e.g. the region c is providing thermal
power to ce. It should be noted that the energy balance principle does not
contain any restriction on the value of Q(c, ce). On the contrary, experience
shows that work can be transformed into heat by friction and there is no
negative limit to Q(c, ce). On the other hand, experience also shows that
a body can spontaneously receive heat from its surroundings at constant
ambient temperature θ until it reaches the same ambient temperature.

By using these arguments we conclude that there exists an upper bound
of Q(c, ce), denoting the maximum heat power which can be absorbed by
the region c during an isothermic transformation. This statement is for-
mally expressed by the entropy principle or the second law of ther-
modynamics for isothermal processes: For any material volume c whose
evolution takes place at constant temperature, there exists an upper bound
for the thermal power

Q(c, ce) ≤ B(c). (5.48)

If the entropy S of the material volume c is introduced through the
definition

θṠ(c) = B(c), (5.49)
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then the previous inequality becomes

θṠ(c) ≥ Q(c, ce), (5.50)

which is known as the Clausius–Planck inequality .
The extension of this principle to a continuous system S is not straight-

forward, as the temperature depends not only on time (as in the case for
isothermic processes), but also on the point x ∈ C.

At first glance, we might suppose that we could apply (5.50) to any ele-
ment of the continuum system S. But a deeper insight would indicate that
this assumption has serious shortcomings, as it cannot explain many phe-
nomena occurring inside the system. For this reason, we state the following
more general formulation of the entropy principle or the second law of
thermodynamics:

Let S be a continuum system and let c be any arbitrary material volume of
S. There exist two scalar functions S(c) and M(c, ce), called entropy and
entropy flux, respectively, such that

Ṡ(c) ≥ M(c, ce), (5.51)

where

S(c) =
∫

c

ρη dc, (5.52)

and

M(c, ce) =
∫

∂c

i dσ +
∫

c

ρk dc. (5.53)

In (5.52) and (5.53) η is the specific entropy , i is the density of the
conductive part of the entropy flux , and k is the density of the
entropy flux emanating by radiation .

Assuming i = i(x, t,N), we can write i = j(x, t) · N and the following
local equations hold:

ρ η̇ ≥ ∇ · j + ρk,

[[ρη(cn − vn) + j · n]] ≥ 0, (5.54)

under the usual assumption of regularity of the introduced functions.
It is important to investigate the structure of the fields j and k. The

Clausius–Plank inequality (5.50) applied to a material element dc of S,

θ
d

dt
(ρη dc) ≥ (−∇ · h + ρ) dc, (5.55)
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leads to the inequality

ρη̇ ≥ −∇ · h + ρr

θ
. (5.56)

If, in addition to (5.56), we introduce the Fourier inequality

h · ∇θ ≤ 0, (5.57)

which states that heat flows from regions at higher temperature to regions
at lower temperatures, then (5.56) and (5.57) imply the Clausius–Duhem
inequality

ρη̇ ≥ −∇ · h
θ

+ ρ
r

θ
, (5.58)

which can be regarded as a generalization of the previous relations.
By comparing (5.58) to (5.54), we find that j and k assume the following

expressions:

j = −h
θ

, k =
r

θ
, (5.59)

and (5.54) becomes

ρη̇ ≥ −∇ · h
θ

+ ρ
r

θ
,[[

ρη(cn − vn) − h
θ

· n
]]

≥ 0. (5.60)

But, owing to (5.46)1, we can write −∇ · h + ρr = ρε̇ − T : ∇v and
substituting into (5.60)1, we get the reduced dissipation inequality

−ρ(ψ̇ + ηθ̇) + T : ∇v − h · ∇θ

θ
≥ 0, (5.61)

where the quantity
ψ = ε − θη (5.62)

is the Helmholtz free energy .
Finally, if the temperature θ is supposed to be constant across the surface

Σ(t), by eliminating the term [[h · n]] appearing in (5.46)2 and (5.60)2, we
obtain the additional jump condition[[

ρ(
1
2
v2 + ψ)(cn − vn) + v · Tn

]]
≤ 0. (5.63)

At this stage, the reader should be aware of the introductory nature of the
material discussed here. In the next chapter the essential role played by the
inequality (5.61) in continuum mechanics will be highlighted (in particular
in Sections 6.1 and 6.2). Moreover, a critical review of the present formu-
lation of thermodynamics will be presented in Section 6.5, and alternative
formulations will also be discussed in Chapter 11.
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At the moment, it is worth noting that there are applications where
the energy flux of nonmechanical nature (represented by the term −h · n)
and the entropy flux (−h · n/θ) can require more complex relations. For
instance, in the theory of mixtures I. Mueller (see [41]) showed that this
form of the entropy flux has to be modified. This is not surprising if we
consider continua where electrical charges and currents are present. In this
case, in the energy balance equation there are flux terms of both thermal
and electromagnetic energy, the latter through the Poynting vector, while
in the entropy inequality the ratio between the heat flux vector and the
absolute temperature still appears. Nevertheless, even when we limit our
attention to thermal and mechanical phenomena, the need can arise for
postulating the presence of an extra term of energy flux, which does not
appear in the entropy inequality (see for example the interstitial theory
of J. Serrin & J. Dunn [17], suggested to model capillarity phenomena).
Finally the same need arises when dealing with ferromagnetic and dielectric
continua (see [18], [19]).

5.7 Lagrangian Formulation of Balance Equations

It will be shown in the next chapter that (5.37) and (5.46)1, under certain
circumstances, allow us to compute the fields ρ(x, t), v(x, t), and θ(x, t) in
the current configuration C. But in many cases it is of interest, especially
from a physical point of view, to compute the same fields as a function of
(X, t), e.g., in the reference configuration C∗.

Let Σ∗(t) be the Lagrangian image in C∗ of the singular surface Σ(t) ⊂
C(t), having the equation

F (X, t) = f(x(X, t), t) = 0. (5.64)

If, in particular, Σ(t) is material, then F is independent of t. The func-
tion F (X, t) is continuous, as it is composed of continuous functions; in the
following discussion, it will be supposed that the function F (X, t) is differ-
entiable, so that it is possible to define its normal speed cN by the relation
(see Figure 5.3, where the dotted lines denote the trajectories of the points
of the continuum)

cN = − 1
|∇F |

∂F

∂t
. (5.65)

When Σ(t) is material, c±
N = 0 since vn = cn.

We now devote our attention to the Lagrangian formulation of balance
equations. For the mass balance equation, by considering (3.8) and (5.19)
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we obtain

m(c∗) =
∫

c

ρ(x, t) dc =
∫

c∗
ρ∗(X, t) dc∗,

or ∫
c∗

[ρ(x(X, t)t)J − ρ∗(X, t)] dc∗ = 0.

Since c∗ is an arbitrary volume, taking into account the regularity of the
density field on (C∗ − Σ∗), we derive the local Lagrangian formulation
of mass conservation :

ρJ = ρ∗, (5.66)

which allows us to compute the mass density once the motion is known;
consequently, J is also determined, since ρ∗ is an initially assigned value.
We also observe that (5.66) implies that on Σ(t) we have

(ρJ)± = (ρ∗)±.

T= const

x1

x3

t

C(t)

C t*( )

x X( ),t

F ,( 0) 0X = 

f ,t( ) 0x = 

F ,t( ) 0X =

Figure 5.3

Similar arguments can be applied to the momentum equation

d

dt

∫
c

ρv dc =
∫

∂c

TN dσ +
∫

c

ρb dc,

where N is the unit vector normal to ∂c, which, by using (3.7), (3.8), and
(5.66), we can write as

d

dt

∫
c∗

ρ∗v dc∗ =
∫

∂c∗
JT(F−1)T N∗ dσ∗ +

∫
c∗

ρ∗b dc∗.
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If we introduce the first Piola–Kirchhoff tensor ,

T∗ = JT(F−1)T (T∗Li = JTij(F−1)Lj), (5.67)

then the previous global equation becomes

d

dt

∫
c∗

ρ∗v dc∗ =
∫

∂c∗
T∗N∗ dσ∗ +

∫
c∗

ρ∗b dc∗, (5.68)

which, under the usual assumptions of regularity, allows us to derive the
local conditions

ρ∗a = ∇X · T∗ + ρ∗b on C(t) − Σ(t),
[[ρ∗v cN + T∗n∗]] = 0 on Σ(t), (5.69)

where ∇X· is the divergence operator with respect to variables XL.
It is also relevant to note that the definition (5.67) and the symmetry of

the stress tensor (5.36) give

T∗FT = FTT . (5.70)

If on the boundary ∂C or in some part of it there acts the traction t(x),
x ∈ ∂C, then Cauchy’s stress tensor T satisfies the following boundary
condition:

TN = t. (5.71)

By multiplying this relation for dσ and taking into account (3.7), we
obtain the traction t∗ = T∗N∗ acting on the boundary in the reference
configuration:

t∗ =
dσ

dσ∗
t. (5.72)

Finally, it can be easily verified, starting from (3.7), that

dσ = J
√

N∗ · C−1N∗ dσ∗. (5.73)

We remark that the first Piola–Kirchhoff stress tensor has the short-
coming of being a nonsymmetric tensor, so that it is not so appropriate
in constitutive laws involving symmetric deformations (as for example G,
see Section 3.4). This argument suggests the introduction of the second
Piola–Kirchhoff tensor T̃∗, symmetric in nonpolar continua, defined
in such a way that the force t dσ transforms into t∗ dσ∗ according to the
transformation rule of material vectors (4.28):

T̃∗N∗ dσ∗ = F−1(TN) dσ. (5.74)

By recalling the transformation formula of surfaces (3.7), we see that

T̃∗N∗ dσ∗ = F−1(TJ(F−1)T N∗) dσ∗,



5.7. Lagrangian Formulation of Balance Equations 149

and finally
T̃∗ = JF−1T(F−1)T . (5.75)

By comparing with (5.67), we also find that

T̃∗ = T∗(F−1)T , (5.76)

and the momentum equation (5.69)1 becomes

ρ∗a = ∇X(T̃∗FT ) + ρ∗b. (5.77)

Similar considerations apply to the energy balance equation (5.45), which
assumes the global Lagrangian formulation

d

dt

∫
c∗

ρ∗

(
ε +

1
2
v2
)

dc∗ =
∫

∂c∗
(v · T∗N∗ − h∗ · N∗) dσ∗

+
∫

c∗
ρ∗(v · b + r) dc∗, (5.78)

where
h∗ = Jh(F−1)T . (5.79)

From (5.78), the local equations follow:

ρ∗ε̇ = T : Ḟ
T − ∇X · h∗ + ρr in C(t) − Σ(t),

[[
ρ∗

(
1
2
v2 + ε

)
cN + v · T∗n∗ − h∗ · n∗

]]
= 0 on Σ(t). (5.80)

Finally, the global form of entropy inequality

d

dt

∫
c(t)

ρ∗η dc∗ ≥ −
∫

∂c∗(t)

h∗ · N∗
θ

dσ∗ +
∫

c∗(t)
ρ∗

r

θ
dc∗, (5.81)

locally implies that

ρ∗η̇ ≥ −∇X

(
h∗
θ

)
+ ρ∗

r

θ
in C(t) − Σ(t),[[

ρ∗ηcN − h · n∗
θ

]]
≥ 0 on Σ(t). (5.82)

Similarly, to (5.61)–(5.63) correspond the Lagrangian expressions

−ρ∗(ψ̇ + ηθ̇) + T∗ : ḞT − h∗ · ∇Xθ

θ
≥ 0 in C(t) − Σ(t),[[

ρ∗

(
1
2
v2 + ψ

)
cN + v · T∗n∗

]]
≤ 0 on Σ(t). (5.83)



150 Chapter 5. Balance Equations

5.8 The Principle of Virtual Displacements

All the previously discussed balance laws refer to dynamical processes.
As a particular case in static conditions they merge into the following equi-
librium equations:

∇ · T + ρb = 0,

−∇ · h + ρr = 0. (5.84)

More specifically, if equilibrium is reached at uniform temperature, then
the heat flux vector vanishes (also see next chapter) and from (5.84)2 it
follows that r = 0. In the following discussion we will focus on the case
of constant uniform temperature, with the equilibrium condition expressed
by (5.84)1.

Let S be a system at equilibrium in the configuration C0, subject to
mass forces of specific density b. Moreover, for boundary conditions we
assume that a portion ∂C ′

0 of the boundary ∂C0 is subjected to prescribed
tractions t, while the portion ∂C ′′

0 is fixed. If δu(x) is a virtual infinitesimal
displacement field, with the restriction that it be kinematically admissible,
i.e., it is a vector field of class C1(C0) and vanishing on ∂C ′′

0 , then from
(5.84)1 we have the following global relation:∫

C0

∇T · δu dc +
∫

C0

b · δu dc = 0,

which also can be written as∫
C0

[∇(T · δu) − T : ∇δu] dc +
∫

C0

b · δu dc = 0.

Gauss’s theorem, taking into account that δu = 0 on ∂C ′′
0 , leads to∫

C0

T : ∇δu dc =
∫

C0

b · δu dc +
∫

∂C′
0

t · δu dc. (5.85)

Note that, if (5.85) holds for any kinematically admissible field δu, then
(5.84) is satisfied. This remark proves that (5.85) is an expression totally
equivalent to equilibrium conditions and allows us to state the following:
The continuous system S, whose boundary is partially fixed, is at equilib-
rium in the configuration C0 under the external forces b and t if and only
if the work done by these forces, given a kinematically admissible and in-
finitesimal displacement, is equal to the internal work done by stresses to
produce the deformation field ∇δu associated with the displacement field.
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We remark that the previous global form of the equilibrium condition is
just one of the possible expressions of the principle of virtual displace-
ments (or principle of virtual work , as it is often referred in the liter-
ature) for a continuous system. Early expressions are due to D’Alembert
and Lagrange. In particular, Lagrange, in his Mécanique Analytique (1788)
stated that “any equilibrium law, which will be deduced in the future, will
always be interpreted within the principle of virtual work: equivalently, it
will be nothing else than a particular expression of this principle.”

In Chapter 1 of Volume II it will be shown that the principle of vir-
tual work is a weak or variational formulation of the equilibrium problem.
This different perspective, apparently not investigated after Cauchy intro-
duced the variational formulation of differential equations (5.84) and related
boundary conditions, is now considered to be the most convenient tool for
deriving the equilibrium solutions (see also Chapter 10 and Appendix A).

5.9 Exercises

1. Given the stress tensor at the point P

Tij =

⎛⎝ 300 −50 0
−50 200 0
0 0 100

⎞⎠ ,

derive the stress vector acting on a plane, through P , parallel to the
plane shown in Figure 5.4.

x3

x2

x1

P

A = (2,0,0)

B = (0,2,0)

C = (0,0,3)

Figure 5.4
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Since any vector normal to this plane is also normal to vectors
−→
AB

and
−→
BC, it can be expressed as

n =
−→
AB × −→

BC =

∣∣∣∣∣∣
e1 e2 e3
−2 2 0
−2 0 3

∣∣∣∣∣∣ = 6e1 + 6e2 + 4e3,

and the unit normal vector n̂ has components(
3√
22

,
3√
22

,
2√
22

)
.

Applying (5.29), we find the required stress vector to be

t
(n)
i = Tijnj =

⎛⎝ 300 −50 0
−50 200 0
0 0 100

⎞⎠⎛⎝ 3/
√

22
3/

√
22

2/
√

22

⎞⎠ =

⎛⎝ 750/
√

22
450/

√
22

200/
√

22

⎞⎠ .

2. Given
tn = n · Tn with n · n = 1,

verify that the maximum and minimum values of the normal com-
ponent tn act along the principal directions and coincide with the
principal stresses.

In seeking the above constrained extremal values, we can use the
Lagrangian multiplier method, which requires us to seek the extrema
of the function

F (n) = tn − λ (n · n − 1) = n · Tn − λ (n · n − 1) ,

where λ is a Lagrange multiplier. The method requires the derivative
of F (n) with respect to nk to vanish, i.e.,

∂

∂nk
(Tijnjni − λ (nini − 1)) = 0,

or equivalently,
(Tkj − λδkj) nj = 0,

which shows that the problem is nothing other than the eigenvalue
formulation for principal stresses, as already discussed in Section 5.2.

If the characteristic equation is written in the form (see Section 3.3)

λ3 − IT λ2 + IIT λ − IIIT = 0,

then it is plain that the algebraic nature of eigenvalues of T, which are
real owing to the symmetry of T, depends on the principal invariants.
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If there are three distinct eigenvalues, then there are three distinct
principal stresses and the stress state is called triaxial ; if two eigenval-
ues are coincident, then the stress state is said to be cylindrical and
there are no shear stresses on any plane parallel to the cylinder axis,
which is the only determined direction; finally, if all three eigenvalues
are coincident, then all directions are principal and the stress state is
said to be isotropic or spherical or hydrostatic, because it is the stress
state that exists in a fluid at rest.

3. Prove that, in a rigid body rotation where v = ω×r, equations (5.32)
and (5.40)2 reduce to the balance equation of angular momentum and
to the kinetic energy for a rigid body.

By referring to the expression of double vector product, from (5.32)
we find that

MO = K̇O =
d

dt

∫
V

r × ρv dc =
d

dt

∫
V

r × ρ (ω × r) dc

=
d

dt

∫
V

ρ
(
|r|2 ω − (r · ω)r

)
dc =

d

dt

∫
V

ρ
(
|r|2 1 − r ⊗ r

)
dc (ω) ,

where 1 is the identity mapping and r ⊗ r is a linear mapping such
that r ⊗ r (ω) = (r · ω)r.

If
IO =

∫
V

ρ
(
|r|2 1 − r ⊗ r

)
dc

denotes the inertia tensor with respect to a fixed pole O, then

MO =
d

dt
(IOω) .

Finally, substituting v = ω × r into (5.40)2 , we obtain

T =
1
2

∫
V

ρv2 dc =
1
2

∫
V

ρ (ω × r) · v dc

=
1
2

∫
V

ρr × v · ω dc =
1
2
KO · ω =

1
2
ω · IOω,

where it has been taken into account that ω is independent of r and
KO = IOω.
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Constitutive Equations

6.1 Constitutive Axioms

It has already been stated in Chapters 4 and 5 that balance equations
are general relations whose validity does not depend on body properties.
However, we also know from experience that two bodies with the same
dimensions and shape may react differently when subjected to the same
load and thermal conditions.

Thus we intuitively conclude that, in contrast to rigid body dynamics,
the evolution of a continuous deformable body cannot be completely pre-
dicted by knowing the equations of motion, the massa distribution, and the
external forces acting on the body. We will now use the results of Chapter
5 tho express this statement in a formal way.

In the Eulerian description, {ρ,v,T, ε,h, θ} represent the unknown fields,
and the balance equations for mass conservation, momentum balance, and
energy balance are the equations we use to determine these fields. Similarly,
in the Lagrangian description, the unknowns become {v,T∗, ε∗,h∗, θ} and
the balance equations are the momentum balance and energy balance.

In both cases the balance equations do not form a closed set of field
equations for the above mentioned fields, so that we must add relations
that connect the stress tensor, the internal energy, and the heat flux with
the basic fields.

These relations are called constitutive equations because they describe
the material constitution of the system from a macroscopic view point.

In order to obtain such relationships, we presume that the macroscopic
response of a body, as well as any macroscopic property of it, depends on
its molecular structure, so that response functions could in principle be
obtained from statistical mechanics, in terms of the average of microscopic
quantities.

As a matter of fact, such an approach, although promising from a theoret-
ical point of view, is not straightforward if applied to the complex materials

155
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that interest us in continuum mechanics.
In addition, the basic assumption of continuum mechanics consists of

erasing the discrete structure of the matter, so that constitutive equa-
tions are essentially based on experimental evidence. Again, this is not
an easy task, but continuum mechanics greatly simplifies this task through
the introduction of general rules, called constitutive axioms. In fact,
they represent constraints for the structure of constitutive equations.

In order to discuss these axioms, we introduce some definitions.
The history of a thermokinetic process up to time t is defined by

the two functions

xt
S = x(Y, τ), θt

S = θ(Y, τ) (Y, τ) ∈ C∗ × (−∞, t]. (6.1)

According to this definition, two processes are locally equivalent at X if
there is at least a neighborhood of X in which the two histories coincide.

By dynamic process we mean the set of fields x(Y, t), θ(Y, t), T∗(Y, t),
ε(Y, t), h∗(Y, t), η(Y, t), where T∗FT = FTT

∗ , which are solutions of equa-
tions (5.69)1−(5.80)1, under a given body density b and a source r.

Taking into account all the previous remarks, it turns out that the mate-
rial response is formally expressed by the set of fields A = {T∗, ε, h∗, η},
which depend on the history of the thermokinetic process. Constitutive ax-
ioms, listed below, deal with such functional dependence.

1. Principle of Determinism (Noll, 1958).

At any instant t, the value of A at X ∈ C∗ depends on the whole
history of the thermokinetic process xt

S , θt
S up to the time t.

This is equivalent to stating that the material response at X ∈ C∗
and at time t is influenced by the history of S through a functional

A = Υ(xt
S , θt

S ,X), (6.2)

which depends on X ∈ C∗ (nonhomogeneity) as well as on the refer-
ence configuration.

If the equations (6.2) are substituted into (5.69)1, (5.80)1, with
T∗FT = FTT

∗ , then a system of 4 scalar equations for the 4 unknown
functions x(X, t), θ(X, t) is obtained. If b and the history of the
process are given up to the instant t0 under suitable boundary and
initial conditions, then this system allows us to predict, at least in
principle, the process from t0 on.

Note that (6.2) assumes that the material has a memory of the whole
history of the motion. We make two remarks about this assumption:
first, it is unrealistic to have experience of the whole history of the
thermokinetic process; moreover, the results are quite reliable if we
presume that the response of the system S is mainly influenced by its
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recent history. Depending on the kind of memory selected, there are
different classes of materials (e.g., materials with fading memory,
plastic memory, and so on). Furthermore, if only the recent history
(how recent has to be specified) is supposed to be relevant, then for
suitably regular motions in C∗×(−∞, t], the history of the motion can
be expressed, at least in a neighborhood of (X, t), in terms of a Taylor
expansion at the initial point (X, t) of order n. Such an assumption
allows us to consider a class of materials for which A depends on F
as well as on its spatial and time derivatives evaluated at (X, t):

A = A(F, Ḟ,∇XF, ...,X). (6.3)

The materials described by a constitutive relation (6.3) are said to be
of grade n if n is the maximum order of the derivatives of motion
and temperature.

It is worthwhile to note that this principle includes, as special cases,
both classical elasticity and the history-independent Newtonian fluids
(see Chapter 7).

2. Principle of Local Action (Noll, 1958).

Fields A(X, t) depend on the history of the thermokinetic process
through a local class of equivalence at X.

According to the notion of contact forces, this principle states that
the thermokinetic process of material points at a finite distance from
X can be disregarded in computing the fields A(X, t) at X.

The previous two principles (i.e., determinism and local action), when
combined, imply that the response at a point depends on the history of
the thermokinetic process relative to an arbitrary small neighborhood
of the particle. Materials satisfying these two principles are called
simple materials.

3. Principle of Material Frame-Indifference.

Constitutive equations (6.2) must be invariant under changes of frame
of reference.

We first remark that the principle of material frame-indifference
or material objectivity is not to be confused with the term objectiv-
ity in the sense of transformation behavior as discussed in Chapter 4.

In fact, the term objectivity denotes transformation properties of given
quantities, whereas the principle of material objectivity discussed here
postulates the complete independence of the material response from
the frame of reference.
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In other words, since constitutive equations represent a mathematical
model of material behavior, they are supposed to be independent of
the observer. To make this principle clear, consider a point P with
mass m moving in an inertial frame I under the action of an elastic
force −k(x − xO), where O is the force center. The motion equation
of P in I is written as

mẍ = −k(x − xO).

If a frame I ′ is considered to be in rigid motion with respect to I, so
that the transformation x′ = xΩ(t)+Q(t)x holds, where xΩ(t) is the
position vector fixing the origin of I with respect to I ′ and Q(t) is an
orthogonal matrix, then the motion equation assumes the form

mẍ′ = −k(x′ − x′
O) − maτ − 2mωτ×ẋ′,

where aτ and ωτ are the acceleration and the angular velocity of
I ′ with respect to I. The motion of P in I ′ can be obtained by
integrating this equation or, alternatively, by integrating the previous
one and by applying the rigid transformation rule to the result. In
this example it is relevant to observe that, when writing the motion
equation in I ′, it has been assumed that the elastic force is an invariant
vector and the constitutive elastic law is invariant when passing from
I to I ′.

In summary, the principle of material frame-indifference states that
constitutive quantities transform according to their nature (e.g. ε
is invariant, T∗ is a tensor, and so on), and, in addition, their de-
pendence on the thermokinetic process is invariant under changes of
frame of reference.

4. Principle of Dissipation (Coleman e Noll, 1963).

Constitutive equations satisfy the reduced dissipation inequality (5.83)1
in any thermokinetic process compatible with momentum and energy
balance (5.69)1, (5.80)1.

To investigate the relevance of this principle, we first observe that,
given (6.2) with T∗FT = FTT , the momentum and energy balance
equations can always be satisfied by conveniently selecting b and r.
This remark implies that momentum and energy balance equations
(5.69)1, (5.80)1 do not, as a matter of principle, play any role of con-
straint for the thermokinetic process; in other words, any thermoki-
netic process is a solution of the balance equations provided that b
and r are conveniently selected.

Moreover, we note that the reduced dissipation inequality is equiv-
alent to the entropy principle, presuming that the energy balance is
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satisfied. Historically, the entropy inequality has been considered to
be a constraint for the processes: i.e., only those processes that are
solutions of the balance equations and satisfy the second law of ther-
modynamics for given body forces b, energy sources, and prescribed
boundary conditions are admissible. It is apparent how complex such
a requirement is, since explicit solutions can only be obtained in a
few cases.

A different point of view was introduced by Coleman and Noll. They
entrust the reduced dissipation inequality with the task that it be a
further constraint for the constitutive equations, i.e., these equations
must satisfy the reduced inequality in any process that is compatible
with the momentum and energy balance. In a rather effective way,
one could say that the material itself is required to satisfy the second
law of thermodynamics in responding to any thermokinetic process.

A further remark is concerned with the fact that there is no general
agreement on the possibility of arbitrarily selecting the thermody-
namic process and then finding the functions b(X,t) and r(X, t) from
the momentum and balance equations. In fact, it is argued that such
a choice could be physically very difficult or even impossible. As a
consequence, it should be more appropriate to require (see [39] and
[41]) that the dissipation principle be satisfied for those processes in
which the momentum and energy balance are satisfied with arbitrary
but prescribed forces and energy sources.1

5. Principle of Equipresence (Truesdell and Toupin, 1960).

All constitutive quantities depend a priori on the same variables, i.e.,
on the history of the thermokinetic process.

According to this principle, response functions that depend on only
one of the two components of the thermokinetic process cannot be
postulated, i.e., the stress tensor cannot be supposed to depend only
on the motion and the heat flux on the temperature field. This remark
is especially relevant for composite materials and in the presence of
interaction phenomena, because in such cases it ensures that coupled
phenomena are properly taken into account.

The mathematical theory of the constitutive equations is a rather broad
branch of continuum mechanics, so that it is almost impossible to give a
complete review of this subject in a textbook. For this reason, here only one
class of materials will be considered with the twofold aim: to give the reader
examples of applications of the general principles discussed above and to
introduce the behavior of the most common materials that are considered in

1This problem will analyzed more extensively in Chapter 11.
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this volume. Materials exhibiting a more complex behavior will be analyzed
in Volume II.

6.2 Thermoviscoelastic Behavior

Material behavior described in this section exhibits the following features:

• the stress state depends on temperature and on local deformations,
i.e. on F;

• internal friction or dissipation phenomena are generated when a part
of the system is in relative shearing motion with respect to other
parts, so that the material response depends on temperature and on
the velocity gradient ∇v = ḞF

−1
.

Let S be a continuous system, with C∗ its reference configuration and
C the current configuration, associated with the motion x = x(X, t) at the
time instant t. We consider a material response such that

A = AC∗(F, Ḟ, θ, Θ,X), (6.4)

where Θ = ∇Xθ.
We note that, if A is independent of X, then the system S is homogeneous

in the reference configuration C∗.
Material response, as expressed by (6.4), depends on both the local ther-

mal state, i.e., the temperature and its gradient in a neighborhood of X,
and on the local state of deformation and its time changes. This depen-
dence justifies the definition of thermoviscoelastic behavior, given to
responses exhibiting the structure (6.4).

Particular cases include thermoelastic behavior if (6.4) does not
depend on Ḟ, so that there are no dissipation effects due to internal friction,
and elastic behavior if thermal effects are also disregarded.

Making reference to the constitutive axioms, we first remark that (6.4)
satisfies the determinism and local action principles owing to its dependence
on the thermokinetic process, locally on space and on time.2

2It should be remarked that a material behavior of order 3 is represented by a constitutive
response having the structure

A = AC∗ (v,F, ∇XF, Ḟ, θ,Θ, θ̇, θ̈, d3θ/dt3, ∇XΘ,X),

where all the third-order derivatives are included. In any case, as shown in Exercise 1,
the objectivity principle rules out the dependence on v and the principle of dissipation
does not allow any dependence on ∇XF, d3θ/dt3, ∇XΘ.
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As far as the principle of dissipation is concerned, the following theorem
can be proved:

Theorem 6.1
A constitutive equation (6.4) satisfies the reduced dissipation inequality in
any thermokynetic process if and only if the following relations hold:

ψ = ψ(F, θ),

η = −∂ψ

∂θ
= η(F, θ),

T(e)
∗ = ρ∗

∂ψ

∂F
= T(e)

∗ (F, θ),

T(d)
∗ : ḞT − h∗·Θ

θ
≥ 0, (6.5)

where
T(e)

∗ = T(e)
∗ (F,0, θ,0) (6.6)

is the Piola–Kirchhoff stress tensor at equilibrium and

T(d)
∗ = T(F, Ḟ, θ,Θ) − T(F,0, θ,0) (6.7)

is its dynamic component .

PROOF If the time derivative of ψ(F, Ḟ, θ,Θ) is substituted into (5.83)1,
then we get the relation

− ρ∗
∂ψ

∂ḞiL

F̈T
iL − ρ∗

∂ψ

∂Θi
Θ̇i − ρ∗

(
η +

∂ψ

∂θ

)
θ̇

+
(

T∗Li
− ρ∗

∂ψ

∂FiL

)
ḞT

iL − h∗i
· Θi

θ
≥ 0, (6.8)

which can be written in the compact form

a · u + b ≥ 0, (6.9)

by assuming that

a =
(

−ρ∗
∂ψ

∂Ḟ
,−ρ∗

∂ψ

∂Θ
,−ρ∗

(
η +

∂ψ

∂θ

))
, u =

(
F̈, Θ̇,θ̇

)
,

b = tr
((

T∗ − ρ∗
∂ψ

∂F

)
ḞT

)
− h∗ · Θ

θ
.

(6.10)

Given that a and b are independent of u, the inequality (6.9) is satisfied,
for any arbitrary u, if and only if a = 0 and b ≥ 0. This is certainly true
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because of the choice of the constitutive relations (6.4), so that (6.5)1,2
are proved if it is verified that u can be arbitrary. This is made possible
by virtue of the statement that any thermokinetic process is a solution of
the balance equations, for a convenient choice of source terms b and r.
Because the thermokinetic process is arbitrary, it follows that F̈, Θ̇, θ̇ are
also arbitrary, for a given X ∈ C∗ and time t.

From all the above remarks it follows that (6.8) reduces to(
T(e)

∗ − ρ∗
∂ψ

∂F

)
: ḞT + T(d)

∗ : Ḟ−h∗ · Θ
θ

≥ 0, (6.11)

where (6.5)1 and (6.5)2 have been taken into account. The previous consid-
erations cannot be applied to this inequality since (6.11) does not exhibit
the form (6.9). The factor of ḞT does not depend on Ḟ, whereas the last
two terms do. By substituting αḞ for Ḟ and αΘ for Θ, with α a positive
real number, (6.11) can be written as(

T(e)
∗ − ρ∗

∂ψ

∂F

)
: αḞT + T(d)

∗ : αḞ − h∗ · Θ
θ

≥ 0, (6.12)

and, by observing that

lim
α−→0

T(d)
∗ (F, αḞ,θ, αΘ) = 0,

from (6.12), by dividing by α and considering the limit α �−→ 0, we find
that (

T(e)
∗ − ρ∗

∂ψ

∂F

)
: ḞT − h∗(F,0, θ,0) · Θ

θ
≥ 0.

This inequality implies (6.5)3, so that the theorem is proved.

Thus we conclude that the principle of dissipation implies that the free
energy of a thermoviscoelastic material

• only depends on the deformation gradient and temperature;

• acts as a thermodynamic potential for the entropy and the Piola–Kir-
chhoff stress tensor at equilibrium, and these quantities both depend
on F and θ. In particular, when considering a thermoelastic material,
the free energy acts as a thermodynamic potential for the whole Piola–
Kirchhoff stress tensor.

It follows that, given the free energy, the constitutive equations for T(e)
∗

and η are known. Furthermore, the dynamic component of the stress tensor
and the heat flux vector must be defined in such a way that (6.5)4 is satisfied
in any process.
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In the Eulerian formulation, by taking into account (5.67) and (5.79) and
observing that

T∗ : ḞT = T∗LiḞiL = JTijF
−1
Lj ḞiL = JTij

∂vi

∂xj
= JTijDij ,

h∗ · Θ = h∗LΘL = JhiF
−1
iL ΘL = Jhigi = Jh · g,

where D is the rate of deformation tensor and g = ∇θ, we find that relations
(6.5) reduce to

ψ = ψ(F, θ),

η = −∂ψ

∂θ
= η(F, θ),

T(e) = ρ
∂ψ

∂F
FT = T(e)(F, θ),

T(d) : D − h · g
θ

≥ 0. (6.13)

The constraints derived from the material objectivity principle are ex-
pressed by the following theorem:

Theorem 6.2
Constitutive equations (6.13) satisfy the principle of material frame-indifference
if and only if

ψ = ψ(C, θ),

η = −∂ψ

∂θ
= η(C, θ),

T(e) = 2ρF
∂ψ

∂C
FT ,

T(d) = FT̂(d)(C,FT DF, θ,Θ)FT
,

h = Fĥ(C,FT DF, θ,Θ), (6.14)

where C = FT F is the right Cauchy–Green tensor (see Chapter 3).

PROOF To prove the theorem, we recall that in a rigid change of frame
of reference I −→ I ′, tensors F,C, and Ḟ transform according to rules (see
(3.46) and (4.30)):

F′ = QF, C′ = C, D′ = QDQT ,

W′ = QWQT + Q̇Q
T
, G′ = G, (6.15)

where Q is the orthogonal matrix of the change of frame.
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To prove the necessary condition, we observe that the objectivity of ψ
implies that

ψ(F, θ) = ψ(QF, θ) ∀Q ∈ O(3).

Resorting to the polar decomposition theorem (see Chapter 1) we can write
that F = RU and assuming that Q is equal to RT , we find that

ψ(F, θ) = ψ(U, θ),

and since U2 = C, (6.14)1 and (6.14)2 are proved.
Moreover,

∂ψ

∂FiQ
FjQ =

∂ψ

∂CLM

∂CLM

∂FiQ
FjQ =

∂ψ

∂CLM
(δhiδLQFhM + FhLδhiδMQ)FjQ,

so that (6.14)3 is also proved.
For (6.14)4, since ∇Xv = FT ∇v, it holds that

T(d)(F, Ḟ, θ,Θ) = T̃
(d)

(F,∇v, θ,Θ) = T̄(d)(F,D,W, θ,Θ).

Furthermore, since Θ is invariant, the objectivity of T̄(d)(F,D,W, θ,Θ)
implies that

T̄(d)(F′,D′,W′, θ,Θ) = QT̄(d)(F,D,W, θ,Θ)QT
,

i.e.,

T̄(d)(F,D,W, θ,Θ) = QTT̄(d)(QF,QDQT,QWQT + Q̇Q
T

, θ,Θ)Q.
(6.16)

If Q = I and Q̇Q
T

= Q̇ = −W, then (6.16) gives

T̄(d)(F,D,W, θ,Θ) = T̄(d)(F,D,0, θ,Θ),

which proves that T̄(d) is independent of W. It follows that (6.16) reduces
to

T̄(d)(F,D, θ,Θ) = QT T̄(d)(QF,QDQT , θ,Θ)Q.

If again the relations F = RU and Q = RT are used, we deduce that:

T̄(d)(F,D, θ,Θ) =RT̄(d)(U,QDQT , θ,Θ)RT =FT̂(d)(C,QDQT , θ,Θ)FT

and (6.14)4 is also proved.
Equation (6.14)5 can be verified from similar arguments.
It is easy to check that (6.14)1,2 are also sufficient conditions. As far as

(6.14)3 is concerned, it holds that

T(e)(F′, θ,Θ′) = 2ρF′ ∂ψ

∂C′ F
′T = 2ρQF

∂ψ

∂C
FT QT = QT(e)(F, θ,Θ)QT

.
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The same procedure proves the other relations.

A thermoviscoelastic material is incompressible if

J = 1 ⇐⇒ ∇ · v = 0 ⇐⇒ V (c) = const , (6.17)

where V (c) is the volume of any material region c (see (3.20) and (4.25)).
It is relevant to observe that in this case the inequality of the reduced

dissipation no longer implies (6.13), since (6.8) must be satisfied for any
process for which ∇ · v = 0. To take this constraint into account, the
inequality R + p∇ · v ≥ 0, instead of (6.8), must be considered, where R
represents (6.8) and p is a Lagrangian multiplier. It can be verified that
(6.13)3 reduces to

T(e)(F, θ,Θ) = −pI + ρ
∂ψ

∂F
FT , (6.18)

where p(x) = p̃(X) is an undetermined function.
If a thermoelastic behavior, or a thermoviscoelastic behavior at rest, is

supposed, i.e., D = 0, then from (6.13)4 we derive the condition

h · g ≤ 0, (6.19)

which allows us to say that when the system is at rest or there are no viscous
effects, heat flows from higher temperature regions to lower temperature
regions.

In addition, observing that the function f(F,0, θ,g) = h · g attains its
maximum when g = 0, we find that

∇gf(F,0, θ,g)g=0 = h(F,0, θ,0) = 0 (6.20)

and it can be said that in a thermoviscoelastic system at rest, as well as in
an elastic system, we cannot have heat conduction without a temperature
gradient, i.e., when the temperature is uniform.

6.3 Linear Thermoelasticity

In this section, we consider a thermokinetic process of viscoelastic mate-
rials satisfying the following assumptions:

1. the reference configuration C∗ is a state of equilibrium in which the
stress tensor is T0 and the temperature field θ0 is uniform;
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2. the displacement field u(X, t), its gradient H = ∇Xu(X, t), the tem-
perature difference θ − θ0, and its gradient Θ = ∇Xθ are first-order
quantities.

The linearity assumption is equivalent to requiring that powers and prod-
ucts of these quantities appearing in the constitutive equation of the stress
or powers greater than two in the thermodynamic potentials can be disre-
garded.

In order to illustrate the physical relevance of the above assumptions, we
present the following two examples:

• Let S be a hollow cylinder with inner radius r1, outer radius r2,
and height l, constituted by a thermoelastic homogeneous material in
equilibrium under uniform temperature and in the absence of forces.
Suppose now that a sector (as shown in Figure 6.1) is extracted and
the extremities A and A′ are welded in such a way that a new cylinder,
whose cross section is no longer circular, is obtained. If we assume this
configuration as a reference configuration C∗, then the stress state is
not zero even in absence of applied forces, and the system will reach
a new equilibrium temperature θ0. Any perturbation of the system
not far from C∗ will satisfy only the assumption (2).

A A

A' A'

Figure 6.1

• As a second example, consider a cylinder of height l filled with fluid.
Due to the weight of the fluid, there is a radial pressure acting on the
internal cylinder wall, whose intensity increases linearly with depth
from the surface (Stevino’s law, Chapter 9). This pressure will pro-
duce a deformation of the cylinder, which defines the reference config-
uration C∗. If a piston acting on the surface will produce an additional
small pressure changing in time, then there will be an evolution of the
system satisfying only assumption (2).

By taking advantage of the fact that all the quantities describing the
evolution from the reference configuration C∗ under the assumptions
(1) and (2) are first-order quantities, the stress constitutive relation
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can be replaced with its Taylor expansion, truncated to the first-order
terms, whereas the constitutive equations of the thermodynamic po-
tentials can be approximated with their Taylor expansions, truncated
to the second-order terms.

From (6.14)3,5, since in the reference configuration C = I and Θ= 0, it
follows that

T0 = 2ρ∗

(
∂ψ

∂C

)
∗
, (6.21)

where the notation (A)∗ emphasizes that the quantity A is evaluated for
C = I, θ = θ0, and Θ = 0, i.e., in C∗.

In particular, if the reference configuration is stress free, then

T0 = 0. (6.22)

Under the assumption (2), the constitutive equations can be proved to
have the structure

T ∼= T0 + HT0 + T0HT − trHT0 + CE + A(θ − θ0),
h ∼= −Kg, (6.23)

where E is the tensor of infinitesimal strain (see (3.30)), g = ∇xθ, and

Cijnp = 4ρ∗

(
∂2ψ

∂Cij∂Cnp

)
∗
, Aij = 2ρ∗

(
∂2ψ

∂θ∂Cij

)
∗
,

Kij = − ∂ĥi

∂Θj
(I, θ0,0). (6.24)

Tensors C and K are called the tensor of linear elasticity and the
tensor of thermal conductivity, relative to C∗.

Owing to (6.24), C and A have the following properties of symmetry:

Cijnp = Cjinp = Cijpn = Cnpij , Aij = Aji; (6.25)

furthermore, from (6.19) and (6.23)2, it follows that the tensor K is positive
definite:

g · Kg ≥ 0. (6.26)

Moreover, since

T∗ ∼= T + trHT0 − T0HT,

h∗ ∼= h, (6.27)

if the reference configuration C∗ is stress free, it follows that

T ∼= T∗ ∼= CE + A(θ − θ0),
h ∼= h∗ ∼= −Kg, (6.28)
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so that there is no difference between the Lagrangian and Eulerian descriptions.
Finally, we observe that (6.23)1 and (6.27) give the following approximate

expression of T∗:

T∗ ∼= T0 + HT0 + CE + A(θ − θ0).

To prove previous formulae, we will made use of lowercase Latin indices
for both the Eulerian and Lagrangian formulations. In addition, since the
aim is to find a set of linearized constitutive equations for the stress, the free
energy ψ will be represented by a Taylor expansion truncated to second-
order terms:

ψ ∼= ψ∗ +
(

∂ψ

∂θ

)
∗
(θ − θ0) +

(
∂ψ

∂Clm

)
∗
(Clm − δlm)

+
1
2

(
∂2ψ

∂θ2

)
∗
(θ − θ0)2 +

(
∂2ψ

∂θ∂Clm

)
∗
(θ − θ0)(Clm − δlm)

+
1
2

(
∂2ψ

∂Clm∂Cnp

)
∗
(Clm − δlm)(Cnp − δnp). (6.29)

From (6.29) it also follows that

∂ψ

∂Clm

∼=
(

∂ψ

∂Clm

)
∗

+
(

∂2ψ

∂θ∂Clm

)
∗
(θ − θ0) +

(
∂2ψ

∂Clm∂Cnp

)
∗
(Cnp − δnp),

(6.30)
and since C = FT F = I+2E + HT H, by neglecting second-order terms we
get

∂ψ

∂Clm

∼=
(

∂ψ

∂Clm

)
∗
+
(

∂2ψ

∂θ∂Clm

)
∗
(θ−θ0)+2

(
∂2ψ

∂Clm∂Cnp

)
∗
Enp. (6.31)

In addition, from (5.66), (3.40), and (3.27) it follows that

ρ ∼= ρ∗(1 − trH), F = I + H,

and (6.14)3 becomes

Tij
∼= 2ρ∗(1 − Hhh)(δil + Hil)

∂ψ

∂Clm
(δjm + Hjm). (6.32)

By substituting (6.31) into (6.32), neglecting terms of higher order, and
taking into account (6.21) and (6.24)1,2, (6.23)1 is proved.

In a similar way, first-order terms of the heat flux vector give

hi
∼= ∂hi

∂Θj
(C, θ,0)Θj

∼= ∂hi

∂Θj
(I, θ,0)Θj ,
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so that (6.23)2 and (6.24)3 are also proved, since Θ= FT g = (I + HT )g.
Finally, to prove (6.27) we recall (3.40) as well as the Lagrangian defini-

tions (5.67) and (5.79), which, when expressed as a Taylor series, become

T∗ij
∼= (1 + Hhh)Tih(δjh − Hjh) ∼= Tij + HhhTij − TihHjh,

h∗i = (1 + Hhh)hj(δij − Hij) ∼= hj + Hhhhj − hjHij .

The introduction of equations (6.23) into the latter gives (6.27).

6.4 Exercises

1. Given the constitutive equations of order 3

A = AC∗(v,F,∇XF, Ḟ, θ,G, θ̇, θ̈, d3θ/dt3,∇XG,∇XĠ,X),

prove that the objectivity principle does not allow any dependence
on the velocity v of X.

Consider the change of reference frame from I to I ′, the latter having
a constant velocity u with respect to I. The objectivity principle
requires that

AC∗(v + u, ξ) = AC∗(v, ξ),

where ξ is the set of all other variables. The choice u = −v proves
the independence of v.

Using the principle of dissipation, other constraints for the constitu-
tive quantities are obtained.

2. Let d(X,t) be a vector field and consider the constitutive equation
for the heat flux vector in the form

h = h(F, ḋ, θ,Θ).

Prove that the objectivity principle requires that

h = h̃(C, d̂, θ,Θ),

where
d̂ = ḋ − ω × d

and ω is the angular velocity at x ∈ C.



Chapter 7

Symmetry Groups: Solids and
Fluids

7.1 Symmetry

The experimental determination of the constitutive equation of a mate-
rial is not an easy task. It requires special apparatuses that must satisfy
very restrictive requirements, the most important being the capability of
inducing a uniform state of stress and strain in the material element being
tested. In addition, even in the simplest cases of elastic behavior, the exper-
imental procedure is far from straightforward due to the number of stress
(or strain) states required to determine the material response. For these
reasons, it is relevant to ask if symmetry properties of materials can to
some extent simplify this task, because of the additional restrictions they
introduce into the constitutive equations.

Within this framework, we will first turn our attention to isotropic
solids and to viscous fluids and then we will highlight the general prop-
erties of elastic anisotropic solids in isothermal conditions.

Before we proceed, let us introduce some intuitive considerations that
will help us to understand a more formal definition of symmetry.

Let C∗ be a sphere of radius r exhibiting the same elastic properties in all
directions and subjected to a uniform pressure −pN, where N is the unit
forward vector normal to ∂C∗. We can predict, and it is experimentally
proved, that C∗ deforms into a sphere C of radius r1 < r, whose state
of stress is given by −pI. This final configuration is also obtained if C∗
is rotated around an axis passing through its center, before applying the
uniform pressure −pN on its boundary.

If the material of C∗ does not have the same elastic properties in all
directions, then the deformed state of C will be an ellipsoid whose minor
axis is in the direction of lower stiffness.

Suppose now that the sphere C∗ is first subjected to a rigid rotation
Q about its center, so that its configuration changes from C∗ to C ′

∗, and

171
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it is subsequently deformed through the application of −pIN. Its final
configuration C ′ will be an ellipsoid rotated with respect to C, according
to the matrix Q.

More generally, consider an elastic body S in the reference configuration
C∗ subjected to mass forces ρb and surface tractions t, and suppose it
reaches the deformed configuration C, in which the strain and the stress
state in a neighborhood of x are given by the deformation gradient F and
the stress tensor T. If the material exhibits a symmetry expressed by the
orthogonal matrix Q,1 then we could rotate it by Q, so that C∗ rotates
into C ′

∗, and we could apply a force system, conveniently modified in such
a way that the deformation gradient in Qx is still represented by F. In this
case, the stress state will be the same.

In the following discussion the notations Unim and O(3) identify respec-
tively the group of 3 × 3 matrices whose determinant is ±1 and the group
of orthogonal matrices (see Chapter 1):

Unim = {H : E3 → E3, H ∈ Lin(E3), detH = ±1},

O(3) = {Q : E3 → E3, QT Q = I, detQ = ±1}. (7.1)

Accordingly, O(3) is a subgroup of Unim.
Any matrix H belonging to one of these groups represents a transforma-

tion of the vector space E3 that leaves unchanged the mass density, as can
be proved by noting that ρ = ρ∗ |detH|.

If not otherwise stated, H and Q will denote unimodular and orthogonal
matrices, respectively.

Let C∗ be a reference configuration of a thermoelastic system S and let
X0 be an arbitrary selected point of C∗, and consider the transformation
C∗ −→ C ′

∗
X′ = L(X) = X0 + H(X − X0), H ∈ Unim,

which, due to the properties of H, preserves volume and density and leaves
X0 a fixed point.

Now consider an arbitrary deformation C∗ −→ C, represented by x =
f(X), and a second one C∗ −→ C ′

∗ −→ C, obtained by first applying L(X)
and then f ′(X′), so that f = f ′H. If S is a thermoviscoelastic material
and its response is specified by A(F, Ḟ, θ,Θ) (see (6.4)), then H ∈ Unim
represents a symmetry at X0 and in the configuration C∗ if and only if

AC∗(F, Ḟ, θ,Θ) = AC∗(FH, ḞH,θ,ΘH); (7.2)

i.e., the material response in X0 is the same whether we consider the de-
formation f(X) or f ′(L(X)).

1A linear transformation is represented here by a matrix in a given orthonormal basis,
as discussed in Chapter 1.
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Theorem 7.1
Symmetry transformations at the point X0 of C∗ are a subgroup GC∗ of
Unim.

PROOF To prove that if H1,H2 ∈ GC∗ then also H1H2 ∈ GC∗ , we
first observe that, if F is nonsingular and H1 ∈ GC∗ , it follows that FH1
is nonsingular. If we replace F with FH1 and Θ with ΘH1 in (7.2), then
we obtain

AC∗(FH1, ḞH1,ΘH1) = AC∗(FH1H2,FH1, ḞH1H2,ΘH1H2),

where, for the sake of simplicity, the dependence on θ has been omitted. In
addition, if H1 ∈ GC∗ and therefore AC∗(F, Ḟ,Θ) = AC∗(FH1, ˙FH1,ΘH1),
then it holds that

AC∗(F, Ḟ,Θ) = AC∗(FH1H2,FH1, ˙FH1H2,ΘH1H2), (7.3)

and since H1H2 ∈Unim, we have H1H2 ∈ GC∗ . Furthermore, if H ∈ GC∗ ,
then H−1 exists and by replacing F with FH−1 and Θ with ΘH−1in (7.2),
it is proved that H−1 ∈ GC∗ .

The subgroup GC∗ is called the symmetry group of S at X0 and in the
configuration C∗.

It can also be proved that symmetry groups in two configurations C∗ and
C ′

∗ and at the point X0, where these are related to each other through a
unimodular transformation P, are conjugate; i.e., there exists the relation,

GC′∗ = PGC∗P
−1. (7.4)

At this stage, we can give the following definitions:

• the material is homogeneous in the configuration C∗ if its symmetry
group is independent of X0 ∈ C∗;

• a thermoelastic solid S is called anisotropic in the configuration C∗
and at X0 ∈ C∗ if

GC∗ ⊂ O(3), (7.5)

i.e., if its symmetry group at X0 is a proper subgroup of all possible
rotations about X0;

• a thermoelastic system S represents a thermoelastic isotropic solid
at X0, if there exists a configuration C∗, called the natural or undis-
torted configuration, relative to which the group of isotropy at X0
is the orthogonal group:

GC∗ = O(3). (7.6)
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Finally we leave as an exercise to verify the following formulae

F = F′H, Θ = HT Θ′, C = HT C′H, (7.7)

where quantities without primes refer to the deformation C∗ −→ C and
those with primes to C ′

∗ −→ C.

7.2 Isotropic Solids

We now proceed to explore the restrictions on the constitutive equations
of a thermoelastic material deriving from the assumption of isotropy. To
do this, the following definitions are necessary.

A scalar function f(B) of the second-order tensor B is defined to be
isotropic if

f(B) = f(QBQT ) ∀Q ∈ O(3). (7.8)

Similarly, a vector function f(v,B) and a tensor function T = T(v,B),
whose arguments are the vector v and the tensor B, are defined to be
isotropic if

Qf(v,B) = f(Qv,QBQT ) ∀Q ∈ O(3),
QT(v,B)QT = T(Qv,QBQT ) ∀Q ∈ O(3). (7.9)

We refer the reader to [20], [21], [22] for more insight into the structure
of isotropic functions. For the applications we are going to discuss, it is
relevant to observe that the above theorems for isotropic functions allow us
to write (7.8) and (7.9)1 in the following form:

f(B) = f(IB , IIB , IIIB),
f(v,B) = (K0I + K1B + K2B2)v, (7.10)

where IB , IIB , IIIB are the principal invariants of the second-order tensor
B and K0, K1, K2 depend on IB , IIB , IIIB , g2, g · Bg, and g · B2g.

We can now prove the following fundamental theorem:

Theorem 7.2
A thermoelastic system S with constitutive equations that satisfy the prin-
ciple of material frame-indifference and the principle of dissipation is an
isotropic solid if and only if

ψ = ψ(I, II, III, θ),
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η = −∂ψ

∂θ
= η(I, II, III,θ),

T = f0I + f1B + f2B2,

h = (K0I + K1B + K2B2)g, (7.11)

where I, II, III are the principal invariants of B or C and the functions f
are defined as

f0 = 2ρIII
∂ψ

∂III
, f1 = 2ρ

(
∂ψ

∂I
+ I

∂ψ

∂II

)
, f2 = −2ρ

∂ψ

∂II
, (7.12)

and the functions K depend on θ and on I, II, III, g2, g · Bg, and g · B2g.

PROOF If the constitutive equations of S satisfy both the principles of
material frame-indifference and dissipation and S is thermoelastic (i.e., it
does not exhibit frictional dissipation), then (6.14) becomes

ψ = ψ(C, θ),

η = −∂ψ

∂θ
= η(C, θ),

T(e) = 2ρF
∂ψ

∂C
FT ,

h = Fĥ(C, θ,Θ). (7.13)

Referring to (7.13)1, we find that the isotropy assumption (7.2) applied
to the free energy ψ,

ψ(F, θ) = ψ(FQ, θ) ∀Q ∈ O(3), (7.14)

gives (see (7.7))

ψ(C, θ) = ψ(QT CQ, θ) ∀Q ∈ O(3). (7.15)

This relation, despite the immaterial exchange of QT with Q, is coincident
with (7.8), so that the function ψ(C, θ) is isotropic.

From (7.10)1, (7.11)1,2 follow.
From (6.14)2, (3.52), and (3.53) it follows that

T = 2ρF
(

∂ψ

∂I

∂I

∂C
+

∂ψ

∂II

∂II

∂C
+

∂ψ

∂III

∂III

∂C

)
FT

= 2ρF
(

∂ψ

∂I
I +

∂ψ

∂II
(II − C) +

∂ψ

∂III
III

(
C2 − ICC + IICI

)T
)

FT ,

(7.16)
and since C = FT F, B = FFT , and B2 = FCFT , (7.11)3 is proved, also
taking into account (7.12).
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To prove (7.11)4, we see that the isotropy requirement (7.2) applied to h
gives (7.13)4 the form (see (7.7))

Fĥ(C, θ,Θ) = FQĥ(QT CQ, θ,QT Θ),

from which it follows that

QT ĥ(C, θ,Θ) = ĥ(QT CQ, θ,QT Θ).

This expression, despite the exchange of QT with Q, is coincident with
(7.9)1. From (7.10) we can derive

h = F(h0I + h1C + h2C2)Θ,

and by substituting Θ = FT g and B2 = FCFT , relations (7.11)4 are
obtained.

Finally, we observe that it is an easy exercise to verify that equations
(7.11) satisfy the isotropy requirement (7.2).

If

• the transformation C∗ → C is infinitesimal, and

• in the reference configuration C∗ the system is elastic, homogeneous
at a constant and uniform temperature, and

• C∗ is a stress-free state,

then (7.11)3 allows us to derive the constitutive equation of a linear iso-
tropic solid .

To do this, we first note that the following relations hold: B = FFT =
(I + H)(I + H)T � I + 2E, B2 = I + 4E.

If, in addition, we assume that f0, f1, f2 can be expanded in power series
of principal invariants in the neighborhood of the identity matrix I, then
by neglecting second-order terms of H we get the condition

fi � ai + bi(I − 3) � ai + 2bitrE, (a1 + a2 + a3 = 0), (7.17)

from which it follows that

T = λ(trE)I + 2µE, (7.18)

where the coefficients λ and µ are called the Lamé coefficients .
We also have

trT = (3λ + 2µ)trE,

so that, if (3λ+2µ) �= 0, combining with (7.18) leads to the inverse relation

E =
1
2µ

T − λ

2µ(3λ + 2µ)
(trT)I. (7.19)
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To give these coefficients a physical interpretation, we suppose the system
S to be subjected to a uniform traction of intensity t along the direction
parallel to the base unit vector e1, so that te1 = Te1 = te1. By considering
the stress tensor components relative to the basis (e1, e2, e3), we find that
the only nonvanishing component is T11 = t. From (7.19) we derive the
deformation components

E11 =
λ + µ

µ(3λ + 2µ)
t,

E22 = E33 = − λ

2µ(3λ + 2µ)
t,

E12 = E13 = E23 = 0.

The quantities

EY =
t

E11
=

µ(3λ + 2µ)
λ + µ

,

σ = −E22

E11
= −E33

E11
=

λ

2(λ + µ)
, (7.20)

are called Young’s modulus and Poisson’s ratio, respectively. Their
meaning is as follows:

• Young’s modulus indicates the ratio between the traction per unit
surface area and the linear dilation produced in the same direction;

• Poisson’s ratio is the ratio between the contraction, in the direction
orthogonal to t, and the dilation along t.

More generally, when thermal phenomena are also considered, lineariza-
tion of (7.11) gives

T = λ(θ0)(trE)I + 2µ(θ0)E − β(θ − θ0)I,
h = −K(θ0)g, (7.21)

where the function K(θ0), due to (6.19), is positive:

K(θ0) > 0. (7.22)

7.3 Perfect and Viscous Fluids

A thermoviscoelastic system S whose constitutive equation is given by
A(F, Ḟ, θ,Θ) is a thermoviscous fluid if

GC∗ = Unim ∀C∗. (7.23)
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We note that (7.23) indicates that local changes of shape do not modify
the response of the system, according to experimental evidence. Moreover,
since the reference configuration is arbitrary, fluids do not lose their sym-
metry properties during deformation.

Theorem 7.3
A thermoelastic system S with constitutive equations that satisfy the prin-
ciples of dissipation and material frame-indifference represents a thermo-
viscous fluid if and only if

ψ = ψ(ρ, θ),

η = −∂ψ

∂θ
= η(ρ, θ),

T(e) = −ρ2 ∂ψ

∂ρ
I,

T(d) = f(ρ,D, θ,g),
h = (K0I + K1D + K2D2)g, (7.24)

where ρ is the density, f is a tensor function of D and g, and functions K
depend on ρ, θ, and on invariants g2, g · Dg, and g · D2g.

PROOF Symmetry properties allow us to write

ψ(FH, θ) = ψ(F, θ) ∀H ∈ Unim,

and this equality, taking into account (6.14)1 and (7.7)3, can also be written
in the form

ψ(HT CH, θ) = ψ(C, θ) ∀H ∈ Unim. (7.25)

Since detH = 1, we can put H = JF−1, so that

ψ(J, θ) = ψ(C, θ).

By reminding ourselves of the Lagrangian mass conservation, i.e., ρJ = ρ∗,
as well as of the independence of constitutive equations of the reference
configuration, we obtain

ψ(J, θ) = ψ(ρ∗/ρ, θ) = ψ(ρ, θ),

so that (7.24)1 is proved.
Moreover, if we put I = J2, then from (6.14)3 it follows that

T(e) = 2ρF
∂ψ

∂J

d
√I
dJ

FT =
ρ

J
F

∂ψ

∂J

d
√I
dJ

FT .
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This condition, by recalling (3.53), can be written as

T(e) = ρJ
∂ψ

∂J
I = ρJ

∂ψ

∂ρ

dρ

dJ
I = −ρ2 ∂ψ

∂ρ
I,

and (7.24)3 is also proved. By using similar arguments (7.24)2 follows.
To verify (7.24)4, we first need to observe that the Eulerian rate of defor-

mation tensor D is invariant with respect to a symmetry transformation.
Then, by considering (6.14)4, the symmetry property of a fluid

T(d)(FH, ḞH, θ,HT Θ) = T(d)(F, Ḟ, θ,Θ)

can be put in the form

T(d)(HT CH,HT FT DFH, θ,HT Θ) = T(d)(C,FT DF, θ,Θ).

If H = JF−1, it follows that

T(d)(J, J2D, θ, Jg) = T(d)(C,FT DF, θ,Θ)

and
T(d)(C,FT DF, θ,Θ) = T(d)(ρ,D, θ,g).

Finally, from the expression of material frame-indifference

QT(d)(ρ,D, θ,g)QT = T(d)(ρ,QDQT , θ,Qg), (7.26)

and T(d) is proved to be an isotropic function. Finally, by considering the
representation formula (7.10)2, the relation (7.24)4 is derived. In a similar
way, (7.24)5 can be verified.

The sufficient condition is rather obvious, since in (7.24) the constitutive
variables are defined in the Eulerian representation so that they are invari-
ant with respect to any unimodular transformation that preserves the mass
of the reference configuration.

In the absence of thermal phenomena, the constitutive equation of T(d)

assumes the form

T(d)(ρ,D) = −pI + k1D + k2D2, (7.27)

where p, k1, k2 are scalar functions of ρ and of the principal invariants ID,
IID, IIID of D.

If dissipation effects are also absent, then in (7.27) k1 = k2 = 0; the fluid
is called perfect and the stress tensor has the form

T = −ρ2 ∂ψ

∂ρ
I ≡ −p0(ρ)I. (7.28)
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In particular, if the components of D are first-order quantities and p, k1, k2
are analytical functions of ID, IID, IIID, it follows that

p(ρ) � p0(ρ) + λ(ρ)ID,

k1 � 2µ(ρ) + b(ρ)ID,

k2 � 2µ̂(ρ) + c(ρ)ID.

By substituting into (7.27) and neglecting higher order terms, we obtain
the Navier–Stokes behavior

T = −(p0(ρ) + λ(ρ)ID)I + 2µ(ρ)D. (7.29)

In this case, during the motion the fluid is subjected to shear stresses
and to a pressure represented by a static component p0(ρ) and a dynamic
component λ(ρ)ID. If furthermore the fluid is incompressible , then ∇ ·
v = ID = 0 and (7.29) becomes

T̂(ρ,D) � −pI + 2µD. (7.30)

Due to the incompressibility constraint, the pressure p in (7.30) no longer
depends on ρ, ID, IID,IIID.

By assuming that Q = −I in (7.26) and in the isotropy condition of h,
we find that

T(d)(ρ,D, θ,g) = T(d)(ρ,D, θ, −g),
h(ρ,D, θ,g) = −h(ρ,Dθ, −g),

and in particular
h(ρ,D, θ,0) = 0. (7.31)

The relation (7.31) shows that the heat flux vanishes with temperature
gradient, for any ρ,D, and θ.

We note that this result, derived from symmetry properties of the fluid,
is a more severe restriction than the one expressed by (6.20).

Finally, it can be proved [23] that the linearization in the neighborhood
of an equilibrium state at constant temperature gives

T(d) = −λ(ρ, θ)IDI + 2µD,

h = −K(ρ, θ)g, (7.32)

provided that terms of the order of√
I2
D + g2

are neglected.



7.4. Anisotropic Solids 181

7.4 Anisotropic Solids

Materials such as natural crystals, porous media, fiberglass-reinforced
plastics, and so on, are not isotropic. In general, they are said to be
anisotropic because they possess some symmetry but the symmetry
group does not contain the complete orthogonal group. Among anisotropic
materials, crystals deserve special attention.

Let S be a hyperelastic solid and let GC∗ be its symmetry group, which
is a proper subgroup of O(3) in an undistorted reference configuration C∗.
It can be proved,2 starting from (7.15), that if ψ is an analytic function
of the components of C, then it can be expressed as a polynomial in the
invariants I1, ..., In of C

ψ = ψ(I1, ..., In). (7.33)

In the case of an isotropic material (as already seen in the previous sec-
tion), the invariants I1, . . . , In coincide with IB , IIB , IIIB .

From the definition (6.14) of an elastic material, it follows that

T = 2ρF
∂ψ

∂Iα

∂Iα

∂C
FT ≡ 2ρ

∂ψ

∂Iα
k, (7.34)

where the function k is independent of the form of the elastic energy but is
determined by the material symmetries and the coordinates used to describe
these symmetries.

Consequently, the constitutive equations of different elastic materials,
exhibiting the same symmetry, differ only for the functions ∂ψ/∂Iα.

In the following discussion, the symbolic notation Rϕ
n is used to indicate

a counterclockwise rotation of magnitude ϕ about the unit vector n.
It can be shown that there are 12 groups of symmetries and 11 of them

include 32 crystalline classes. The last group describes the so-called trans-
verse isotropy (see Exercise 3), GC∗ being given by the identity and rota-
tions Rϕ

n, 0 < ϕ < 2π about a convenient unit vector n.
In any crystalline class, in its undistorted state there are three preferred

directions defined by unit vectors ui (i = 1, 2, 3). A system of rectilin-
ear coordinates X can be associated with these directions. The material
symmetry is described by the orthogonal subgroup GC∗ which transforms
these coordinates into new ones X′, the energy form being preserved in the
transformation.

To define the symmetry group GC∗ of a solid it is sufficient to single
out a set of elements of GC∗ , called the generators of GC∗ , such that by
composing and inverting all of them, the whole group GC∗ is obtained.

2The interested reader should refer to [24], [25].
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It can be proved that the following linear transformations are present in
all the generator systems of crystalline classes:

I, Rπ
ui

, Rπ/2
ui

, Rπ/3
ui

, R2π/3
ui

.

Table 7.1 lists the generators of symmetry groups of different crystalline
classes. The last column in this table gives the total number of transfor-
mations contained in the group.

Crystal Class Generators of GC∗ Order of GC∗

Triclinic system
(all classes) I 2
Monoclinic system
(all classes) Rπ

u3
4

Rhombic system
(all classes) Rπ

u1
,Rπ

u2
8

Tetragonal system
(3 classes)
(4 classes)

Rπ/2
u3

Rπ/2
u3 ,Rπ

u1

8
16

Cubic system
(2 classes)
(3 classes)

Rπ
u1

,Rπ
u2

,R2π/3
p

Rπ/2
u1 ,Rπ/2

u2 ,Rπ/2
u3

24
48

Hexagonal system
(2 classes)
(3 classes)
(3 classes)
(4 classes)

R2π/3
p

Rπ
u1

,R2π/3
u3

Rπ/3
u3

Rπ
u1

,Rπ/3
u3

6
12
12
24

Table 7.1

In Table 7.1, p = (u1 + u2 + u3)/
√

3.
The complete set of polynomial bases I1, . . . , In for the crystalline bases

is given in [26] and [25]. In the following we consider only the first three
systems.3

1. Triclinic system: the polynomial basis is given by all components
of C;

3Here we use Voigt’s notations, according to which the indices of the components of the
elasticity tensor are fixed as follows,

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6,

so that, for instance, C1323 = C54.
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2. Monoclinic system: the polynomial basis is given by the following 7
components:

C11, C22, C33, C2
12, C2

13, C23, C13C12.

3. Rhombic system: the polynomial basis is given by the following 7
components:

C11, C22, C33, C2
23, C2

13, C2
12, C12C23C13.

In closing this section, we note the following: given a material of a crystal
class with a deformation process that starts from an undistorted configu-
ration, its free energy can be expressed as a polynomial of a convenient
degree in the variables forming the polynomial basis. Finally, the stress–
strain relationship can be deduced from (7.34).

7.5 Exercises

1. By using the symmetry properties, show that the strain energy func-
tion of an isotropic solid is characterized by only two independent
constants.

Hint: If the solid is isotropic, then any plane is a symmetry plane as
well as any axis is a symmetry axis under any rotation, so that the
following relations must hold for the nonvanishing coefficients:

C11 = C22 = C33
C12 = C23 = C31

C44 = C55 = C66 =
1
2

(C11 − C12) ,

and the strain energy function assumes the form

Ψ =
1
2
C11

(
E2

11 + E2
22 + E2

33
)

+ C12 (E11E22 + E11E33 + E22E33)

+
1
4

(C11 − C12)
(
E2

12 + E2
13 + E2

23
)
.

2. Using the properties of isotropic tensors, prove that only two con-
stants are required to characterize the material response of an isotropic
solid.



184 Chapter 7. Symmetry Groups: Solids and Fluids

Isotropic tensors are such that their rectangular components are in-
dependent of any orthogonal transformation of coordinate axes.
According to this definition, all scalars (i.e., tensors of order zero)
are isotropic, whereas vectors (first-order tensors) are not isotropic.
The unit tensor, whose components are represented in rectangular
coordinates by the Kronecker delta δij , is isotropic. It is obvious that
any scalar multiple of the unit tensor has the same property. These
particular tensors exhaust the class of isotropic second-order tensors.
The most general fourth-order isotropic tensor is represented in the
form

Cijhk = λδijδhk + µ (δihδjk + δikδjh) + κ (δihδjk − δikδjh) .

Suppose that Cijhk are the coefficients of the linear material response

Tij = CijhkEhk,

where one or both the tensors Tij and Ehk is symmetric. In either
case, the requirement for Cijhk to be symmetric with respect to ij or
hk implies that κ = 0. It follows that

Cijhk = λδijδhk + µ (δihδjk + δikδjh)

is the most general expression of the coefficients of a linearized elastic
isotropic solid and only two constants are needed to characterize the
material properties (as found in Exercise 1).

3. Prove that the material response of a transversely isotropic solid is
characterized by 5 independent constants.
Hint: A transversely isotropic solid is symmetric with respect to some
axis. If Ox3 denotes this axis, then the rotation through a small angle
α about Ox3 is written as

X∗
1 = X1 cos α + X2 sin α � X1 + X2α,

X∗
2 = X2 cos α − X1 sin α � X2 − X1α,

X∗
3 = X3.

The strain energy Ψ must be invariant with respect to this transfor-
mation, so that if Ψ is expressed in terms of the strain components
in the new coordinates, then all the coefficients of α must vanish.
The result is that the number of elastic constants reduces to 5.

4. By substituting the first equality (3.53) into (7.11), prove that

T = f0I + f1B + f−1B−1,

h = (K0I + K−1B + K−2B−1)g,

and find formulae corresponding to (7.12).
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7.6 The Program LinElasticityTensor

Aim of the Program

The program LinElasticityTensor applies to isotropic linear materials
or to anisotropic ones belonging to the triclinic, monoclinic, and rombic
crystal classes. It determines the components of the elasticity tensor and
the components of the linear deformation tensor E. Moreover, all these
expressions are given following Voigt’s notation.

Description of the Problem and Relative Algorithm

The program distinguishes between isotropic solids, for which ψ = ψ(IC,
IIC), and anisotropic solids, for which ψ = ψ(I1, · · · , In), where I1, · · · , In

are the invariants of the crystal class under consideration. If the reference
configuration C∗ is unstressed and the state of the solid is isothermic, then
the constitutive equations have the following structure:

T = CE,

where E is the tensor of infinitesimal strain and C is the tensor of linear
elasticity. Moreover, we know that

Cijhk = 4ρ∗

(
∂2ψ

∂Cij∂Chk

)
,

Cijhk = Cjihk = Cijkh,

Cijhk = Chkij .

On the other hand, it is possible to reduce the 81 components of C to 21
independent components.4 If we adopt Voigt’s notation, which uses the
index transformation

ii −→ i, i = 1, 2, 3
12 −→ 6,
13 −→ 5,
23 −→ 4,

then the elasticity tensor can be reduced to the form C = (Cαβ), where
α, β = 1, · · · , 6. If the same notation is used for E, then the elastic potential
and the stress tensor can be written as

ψ =
1

2ρ∗
CαβEαEβ ,

T = C · E.

4More precisely, the first group of the above relations allows us to reduce 81 components
of C to 36 independent components, and the second group reduces these to 21.
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Command Line of the Program LinElasticityTensor

LinElasticityTensor[class]

Parameter List

Input Data

class characterizes the solid and can assume the values isotropic,
triclinic, monoclinic, or rombic.

Output Data

Elastic potential ψ as a function of the principal invariants of E or of the
invariants of the crystal class to which the solid belongs;

the components of C in Voigt’s notation;

the expression of ψ in Voigt’s notation;

the stress tensor T in Voigt’s notation.

Worked Examples

1. Isotropic Solid. To apply the program LinElasticityTensor to
the class of linear and isotropic materials, we have to input the fol-
lowing data:

class = isotropic;

LinElasticityTensor[class]

The corresponding output is

Principal invariants in linear elasticity

B = {IE, IIE}
Elastic potential as a function of the principal
invariants

ψ = a1,0(E1,1 + E2,2 + E3,3) + a2,0(E1,1 + E2,2 + E3,3)2

+a0,1(−E21,2 − E21,3 + E1,1E2,2 − E22,3 + E1,1E3,3 + E2,2E3,3)

Independent components of linear elasticity tensor
C = (Cijhk) in Voigt’s notation

C1,1 = 8ρ∗a2,0
C1,2 = 4ρ∗(a0,1 + 2a2,0)

C1,3 = 4ρ∗(a0,1 + 2a2,0)
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C2,2 = 8ρ∗a2,0
C2,3 = 4ρ∗(a0,1 + 2a2,0)

C3,3 = 8ρ∗a2,0
C4,4 = −8ρ∗a0,1
C5,5 = −8ρ∗a0,1
C6,6 = −8ρ∗a0,1
Elastic potential Ei in Voigt’s notation

ψ = −4E24a0,1 − 4E25a0,1 − 4E26a0,1 + 4E21a2,0 + 4E22a2,0 + 4E23a2,0

+ 4E1E2(a0,1 + 2a2,0) + 4E1E3(a0,1 + 2a2,0) + 4E2E3(a0,1 + 2a2,0)

Stress tensor components

T1 = 8ρ∗E1a2,0 + 4ρ∗E2(a0,1 + 2a2,0) + 4ρ∗E3(a0,1 + 2a2,0)

T1 = 8ρ∗E2a2,0 + 4ρ∗E1(a0,1 + 2a2,0) + 4ρ∗E3(a0,1 + 2a2,0)

T1 = 8ρ∗E3a2,0 + 4ρ∗E1(a0,1 + 2a2,0) + 4ρ∗E2(a0,1 + 2a2,0)

T1 = −8ρ∗E4a0,1
T1 = −8ρ∗E5a2,0
T1 = 8ρ∗E6a2,0

Exercises

Apply the program LinElasticityTensor to anisotropic linear elastic
materials belonging to the following crystal classes:

1. monoclinic;

2. triclinic;

3. rombic.
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Wave Propagation

8.1 Introduction

The evolution of a physical system is said to have wave behavior if a
character of propagation or oscillation or both can be attributed to it. As
an example, points of a string with fixed boundary ends, oscillating in a sta-
tionary way, have an oscillatory character without propagation (see Exercise
1). On the other hand, if we consider an infinite string with a single fixed
end that is subjected to an initial perturbation, then its motion has only
the character of propagation (see Exercise 2), which is eventually damped
if dissipation effects are present (see Exercise 3). Furthermore, when con-
sidering waves produced by a falling stone in a lake, we can distinguish the
damped oscillations of material points of the surface from the propagation
of the surface separating the disturbed region from the undisturbed region.

With such a premise in mind, we consider a physical phenomenon de-
scribed by fields depending on position x and time t. Moreover, we suppose
it to satisfy a system of partial differential equations. It is of interest to in-
vestigate if this system can predict the evolution of wave-type phenomena.
Apparently, the answer would require that we know the solutions of the
system, because their properties could allow us to identify the presence of
propagation or oscillation effects. However, this approach cannot usually be
pursued, owing to the complexity of the equations of mathematical physics.

If the system is linear and dissipation effects are absent, we can look for
sinusoidal solutions. In fact, because of the linearity, any superposition of
such solutions is still a solution of the system so that, taking advantage of
the Fourier method, the most general solution can be determined. Such
a procedure can no longer be applied if the system is nonlinear, so that
we need to introduce a more general approach, due to Hadamard, which
considers wavefronts as singular surfaces of Cauchy’s problem. Such an
approach can be applied to any system, and, for linear systems, it gives the
same results as the Fourier method.

189



190 Chapter 8. Wave Propagation

In the present chapter we first turn our attention to quasi-linear equations
and then to quasi-linear systems of partial differential equations (PDEs) in
order to show under which circumstances there are characteristic sur-
faces for which Cauchy’s problem is ill posed. A classification of the equa-
tions and systems is given, based on the existence and the number of these
surfaces. Then it is proved that such characteristic surfaces are singular
surfaces for the solutions of the system. In particular, when the indepen-
dent variables reduce to the usual ones, i.e., spatial and time variables, we
prove the existence of a moving surface which has a speed of propagation
that can be computed together with its evolution. This surface will be
interpreted as a wavefront.

Finally, the last section of this chapter deals with shock waves and high-
lights the role of the second law of thermodynamics in the description of
the phenomenon.

8.2 Cauchy’s Problem for Second-Order PDEs

In a domain Ω ⊆ �n, the second-order quasi-linear partial differential
equation

aij(x, u, ∇u)
∂2u

∂xi∂xj
= h(x, u, ∇u), i, j = 1, . . . , n, x ∈ Ω, (8.1)

is given. In particular, if the coefficients aij are independent of u and of ∇u,
then the equation is called semilinear; when, in addition to this condition,
the function h depends linearly on u and ∇u, the equation is called linear.

Then, with reference to equation (8.1), the following Cauchy’s problem
is stated: If Σn−1 is a regular and orientable (n−1)-dimensional hypersur-
face contained in Ω and N denotes the unit vector field normal to Σn−1,
find a solution u(x) of (8.1) in Ω which satisfies on Σn−1 the following
Cauchy’s data:

u(x) = u0(x),
du

dn
≡ ∇u · N = d0(x), x ∈ Σn−1, (8.2)

where u0(x) and d0(x) are assigned functions on Σn−1 corresponding to the
values of u(x) and its normal derivative on this hypersurface.

A first step in discussing such a problem consists of introducing a con-
venient coordinate system (ν1, . . . , νn), the Gauss coordinates, in the
neighborhood of Σn−1, in order to simplify its formulation.

Given a Cartesian coordinate system (O,ui) in �n, let

xi = ri(ν1, . . . , νn−1), i = 1, . . . , n,
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be the parametric equations of the surface Σn−1. In a neighborhood of
Σn−1 in �n, the system of functions

xi = ri(ν1, . . . , νn−1) + νnNi (8.3)

is considered, where νn is the distance of an arbitrary point of the normal
from Σn−1 (see Figure 8.1). Accordingly, the condition νn = 0 again gives
the equation of Σn−1.

Σ n–1

N

νn

νn–1 -curves

ν1 -curves

Figure 8.1

The system (8.3) defines a coordinate transformation (ν1, . . . , νn) ←→
(x1, . . . , xn) in a neighborhood of Σn−1, and the Jacobian of (8.3), evaluated
for νn = 0, is

J =

⎛⎜⎜⎜⎝
∂x1

∂ν1
· · · ∂x1

∂νn−1
N1

· · · · · · · · · · · ·
∂xn

∂ν1
· · · ∂xn

∂νn−1
Nn

⎞⎟⎟⎟⎠ .

We also remark that the first n − 1 column vectors of J ,

ei =
∂x1

∂νi
u1 + · · · +

∂xn

∂νi
un, i = 1, . . . , n − 1,

are tangent to the n − 1 coordinate curves on Σn−1 and independent, since
the surface is regular.

By noting that N is normal to Σn−1, so that it is independent of the
vectors (ei), we see that the determinant of J is different from zero, so that
the inverse transformation

νi = νi(x1, . . . , xn) (8.4)

can be obtained from (8.3). Relative to the coordinates νi, the equation of
the hypersurface Σn−1 becomes

νn(x1, . . . , xn) ≡ f(x1, . . . xn) = 0, (8.5)
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and Cauchy’s data (8.2) assume the simplified form

u(ν1, . . . , νn−1) = u0(ν1, . . . , νn−1),
∂u

∂νn
= d0(ν1, . . . , νn−1). (8.6)

Remark It is worth noting that the knowledge of the directional deriva-
tive of the function u(x) along the normal to Σn−1 gives the gradient of
u(x) in any point of Σn−1. In fact, on Σn−1 it holds that

∇u =
n−1∑
i=1

∂u

∂νi
ei +

∂u

∂νn
N,

where (ei) are the vectors reciprocal to the (n−1) tangent vectors to Σn−1.

The Cauchy–Kovalevskaya theorem introduced below is of basic rele-
vance, since it asserts the local existence of solutions of a system of PDEs,
with initial conditions on a noncharacteristic surface. Its proof is not
straightforward and, for this reason, only particular aspects related to the
wave propagation will be addressed.

Theorem 8.1 (Cauchy–Kovalevskaya theorem)
If the coefficients aij, the function u, the Cauchy data (8.2) and the implicit
representation (8.5) of Σn−1 are analytic functions of their arguments and,
in addition, Σn−1 satisfies the condition

aij(x, u, ∇u)
∂f

∂xi

∂f

∂xj
�= 0, x ∈ Σn−1, (8.7)

then there exists a unique analytic solution of the Cauchy problem (8.1)–
(8.2) in a neighborhood of Σn−1.

PROOF Let us assume the coordinates (ν1, . . . , νn) in �n. The following
expansion of u in a neighborhood of Σn−1 can be written:

u(x) = u0 (ν1, . . . , νn−1, 0) +
(

∂u

∂νn

)
x0

νn

+
1
2

(
∂2u

∂ν2
n

)
x0

ν2
n + · · · , (8.8)

where x0 is any point of Σn−1. To prove the theorem, we need to show that

1. all the derivatives of u appearing in the above expansion can be de-
termined by using (8.1) and Cauchy’s data (8.2);
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2. the series (8.8) converges uniformly towards a solution of the Cauchy
problem (8.1), (8.2);

Below we only prove that, under the assumption (8.7), all the derivatives
of the expansion (8.8) can be computed.

Let h and k be indices in the range 1, . . . , n; then

∂u

∂xi
=

∂u

∂νh

∂νh

∂xi
, (8.9)

∂2u

∂xi∂xj
=

∂

∂xi

[
∂u

∂νh

∂νh

∂xj

]
=

∂

∂xi

[
∂u

∂νh

]
∂νh

∂xj
+

∂u

∂νh

∂2νh

∂xi∂xj

=
∂2u

∂νh∂νk

∂νh

∂xj

∂νk

∂xi
+

∂u

∂νh

∂2νh

∂xi∂xj
. (8.10)

By using the above expressions, we see that (8.1) becomes

n∑
h,k=1

(
aij

∂νh

∂xj

∂νk

∂xi

)
∂2u

∂νh∂νk
= g

(
ν, u,

∂u

∂ν

)
, (8.11)

where on the left-hand side we have collected the first derivatives of u
with respect to νh and the second derivatives of νh with respect to xi.
We note that the latter are obtained by differentiating the known inverse
transformation (8.4).

When the Cauchy data on Σn−1

u(ν1, . . . , νn−1) = u0(ν1, . . . , νn−1),
∂u

∂νn
= d0(ν1, . . . , νn−1), (8.12)

are taken into account, we see that all the first derivatives of u at x0 ∈
Σn−1 are obtained by differentiating (8.12)1 or from (8.12)2. The second
derivatives(

∂2u

∂νh∂νk

)
x0

,

(
∂2u

∂νh∂νn

)
x0

=
[

∂

∂νh

(
∂u

∂νn

)]
x0

,

where at least one of the indices h and k changes from 1 to n − 1, are
evaluated from Cauchy’s data (8.12).

Finally, about the second derivative(
∂2u

∂ν2
n

)
x0

,
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we observe that the system (8.11), written at x0 ∈ Σn−1, when (8.5) is
taken into account, allows us to obtain[(

aij
∂f

∂xi

∂f

∂xj

)
∂2u

∂ν2
n

]
x0

= F, (8.13)

where F is a quantity which can be derived from Cauchy’s data.
The relation (8.13) allows us to compute the desired derivative if(

aij
∂f

∂xi

∂f

∂xj

)
x0

�= 0.

In addition, this condition allows us to compute the derivatives of higher
order in x0 ∈ Σn−1 and to prove the remaining point (2).

8.3 Characteristics and Classification of PDEs

An (n − 1)-dimensional hypersurface Σn−1

f(x1, . . . , xn) = 0

is said to be a characteristic surface with respect to the equation (8.1)
and Cauchy’s data (8.2) if z = f(x1, . . . , xn) is a solution of the equation

aij(x, u,∇u)
∂f

∂xi

∂f

∂xj
= 0. (8.14)

In such a case, the Cauchy problem is ill posed, in the sense that there is
no uniqueness since there are several possibilities for computing the partial
derivatives

∂ru/∂νr
n, r ≥ 2

starting from the same Cauchy’s data.
It is relevant to observe that, if the coefficients aij of (8.1) depend only

on the coordinates xi, equation (8.1) is linear or semilinear and the char-
acteristic surfaces depend on the equation but not on Cauchy’s data.

On the other hand, in the quasi-linear case (8.14) allows us to define
the function f(x) provided that the values of u and ∇u are known at
any point. Since these quantities are uniquely defined from the equation
and Cauchy’s data, and are therefore continuous across the characteristic
surface Σn−1, (8.14) can be regarded as an equation in the unknown f(x)
if the solution of (8.1) is known on at least one side of Σn−1. This is not
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a severe requirement, since a solution of (8.1) is often known in the form
u0 = const.

Accordingly, when dealing with a quasi-linear equation, a solution u0
from which we can compute the coefficients aij at any point x is supposed
to be known.

However, equation (8.14) is a first-order nonlinear partial differential
equation in the unknown function f(x1, . . . , xn), so that its solution is not
easy to find. As a consequence, it is not easy to determine the characteristic
surfaces of (8.1).

Suppose that, for a fixed point x ∈ Ω, there are characteristic surfaces
Σn−1 containing x. Since the components of the unit vector N, normal to
a solution Σn−1 of (8.14), are Ni = (∂f/∂xi)/ |∇f |, equation (8.14) can be
written as

aij(x, u0,∇u0)NiNj ≡ a0
ij(x)NiNj = 0, (8.15)

where the vectors N are normal to the characteristic surfaces through the
point x. The collection of the vectors verifying (8.15) give rise to a cone
Ax. In fact, N = 0 is a solution of (8.15). In addition, if N is a solution,
then so is µN provided that µ is real.

These arguments allow us to classify equations (8.1) at any x ∈ �n by
considering the eigenvalues of the symmetric matrix a0

ij(x).

1. The differential equation (8.1) is called elliptic at x (or with respect
to a solution u0 if it is quasi-linear) if all the eigenvalues λ1, . . . , λn

of a0
ij(x) are positive or, equivalently, if the quadratic form

a0
ij(x)NiNj

is positive definite.

In this case, there exists a transformation (xi) −→ (x̄i), dependent
on x, which allows us to write at the point x the quadratic form
a0

ij(x)NiNj in the canonical form

λ1N̄
2
1 + · · · + λnN̄2

n, λ1, . . . , λn > 0.

We can also say that (8.1) is elliptic at x if there are no real vectors
normal to the characteristic surfaces passing through x; i.e., the cone
Ax (8.15) at x is imaginary. So if all the eigenvalues of aij are positive,
then there is no real solution of (8.14).

2. The differential equation (8.1) is called parabolic at x (or with re-
spect to a solution u0 if it is quasi-linear) if the matrix a0

ij(x) has at
least one eigenvalue equal to zero. In this case there is a transfor-
mation (xi) −→ (x̄i), dependent on x, which allows us to transform
a0

ij(x)NiNj into the canonical form

λ1N̄
2
1 + · · · + λmN̄2

m, λ1, . . . , λm �= 0, λm+1 = · · · = λn = 0.
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In this case the hyperplane N̄1 = · · · = N̄m = 0 is contained in the
cone Ax.

3. The differential equation (8.1) is called hyperbolic in x (or with re-
spect to a solution u0 if it is quasi-linear) if all but one of the eigenval-
ues of the matrix a0

ij(x) have the same sign and the remaining one has
the opposite sign. In this case there is a transformation (xi) −→ (x̄i),
dependent on x, which allows us to transform us the quadratic form
a0

ij(x)NiNj into the canonical form

λ1N̄
2
1 + · · · + λn−1N̄

2
n−1 − λnN̄2

n,

where the eigenvalues λ1, . . . , λn−1 have the same sign and λn takes
the opposite sign. In this case Ax is a real cone.

8.4 Examples

1. Consider Laplace’s equation

∆u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

= 0

in the unknown function u(x1, x2). The matrix aij is given by

aij =
(

1 0
0 1

)
with two coincident eigenvalues, equal to λ = 1. The equation is
elliptic and the cone Ax is imaginary, since it is represented by the
equation

N2
1 + N2

2 = 0.

The characteristic curves are given by(
∂f

∂x1

)2

+
(

∂f

∂x2

)2

= 0,

and this equation does not have real f(x1, x2) solutions. Since
Laplace’s equation does not admit characteristic curves, the Cauchy
problem is well posed for any curve of the x1, x2-plane.

2. As a second example, consider D’Alembert’s equation (also called the
wave equation)

∂2u

∂x2
1

− ∂2u

∂x2
2

= 0.



8.4. Examples 197

The matrix aij is

aij =
(

1 0
0 −1

)
,

its eigenvalues are λ1 = 1 and λ2 = −1, and the equation is hyper-
bolic. The cone Ax is written as

N2
1 − N2

2 = 0

and is formed by the two straight lines N1 −N2 = 0 and N1 +N2 = 0.
The characteristic curves are the solutions of the equation(

∂f

∂x1

)2

−
(

∂f

∂x2

)2

= 0,

which is equivalent to the following system:(
∂f

∂x1
− ∂f

∂x2

)
= 0,

(
∂f

∂x1
+

∂f

∂x2

)
= 0.

With the introduction of the vector fields u1 = (1,−1) and u2 =
(1, 1), the previous system can be written as

∇f · u1 = 0, ∇f · u2 = 0.

The above equations show that their solutions f(x1, x2) are constant
along straight lines parallel to the vectors u1 and u2, and, since this
corresponds to the definition of characteristic curves, we conclude
that the characteristic curves are represented in the plane Ox1x2 by
families of straight lines

x1 − x2 = const , x1 + x2 = const .

In this case Cauchy problem is ill posed if Cauchy’s data are assigned
on these lines.

3. The heat equation
∂2u

∂x2
1

− ∂u

∂x2
= 0

is an example of a parabolic equation, since the matrix

aij =
(

1 0
0 0

)
has eigenvalues λ1 = 1 and λ2 = 0. The cone Ax is defined at any
point by

N2
1 = 0
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and coincides with a line parallel to the x2 axis. The equation of the
characteristic curves reduces to

∂f

∂x1
= 0,

with solutions
f = g(x2) = const ,

where g is an arbitrary function. It follows that the characteristic
curves are represented by the lines

x2 = const .

4. Finally we consider Tricomi’s equation

∂2u

∂x2
1

+ x1
∂2u

∂x2
2

= 0.

Since the matrix

aij =
(

1 0
0 x1

)
has eigenvalues λ1 = 1 and λ2 = x1, this equation is hyperbolic in
those points of the plane Ox1x2 where x1 < 0, parabolic if x1 = 0,
and elliptic if x1 > 0. The equation of the cone Ax is given by

N2
1 + x1N

2
2 = 0,

and the characteristic equation(
∂f

∂x1

)2

+ x1

(
∂f

∂x2

)2

= 0

does not admit real solutions if x1 > 0, whereas if x1 < 0 it assumes
the form (

∂f

∂x1
−
√

|x1| ∂f

∂x2

)(
∂f

∂x1
+
√

|x1| ∂f

∂x2

)
= 0.

This equation is equivalent to the following two conditions:

∇f · v1 = 0, ∇f · v2 = 0,

where v1 = (1,−√|x1|) and v2 = (1,
√|x1|), and the characteristic

curves are the integrals of these fields, e.g. x2 = ± 2
3

√
|x1|3 +c, where

c is an arbitrary constant.
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8.5 Cauchy’s Problem for a Quasi-Linear First-Order
System

In the previous section we introduced the concept of the characteristic
surface related to a second-order PDE. Here we consider the more general
case of a first-order quasi-linear system of PDEs. It is clear that this case
includes the previous one, since a second-order PDE can be reduced to a
system of two first-order PDEs.

Let x = (x1, . . . xn) be a point of a domain Ω ⊂ �n, and let u =
(u1(x), . . . , um(x)) be a vector function of m components, each depend-
ing on n variables (x1, . . . , xn). Assume that the vector function satisfies
the m differential equations⎧⎪⎪⎨⎪⎪⎩
(
A1

11
∂u1
∂x1

+ · · · + A1
1m

∂um

∂x1

)
+ · · · +

(
An

11
∂u1
∂xn

+ · · · + An
1m

∂um

∂xn

)
= c1,

· · ·(
A1

m1
∂u1
∂x1

+ · · · + A1
mm

∂um

∂x1

)
+ · · · +

(
An

m1
∂u1
∂xn

+ · · · + An
mm

∂um

∂xn

)
= cm,

(8.16)
where

Ai
jh = Ai

jh(x,u), ci = ci(x,u) (8.17)

are continuous functions of their arguments.
It is necessary to clearly specify the meaning of indices in Ai

jh(x,u):

i = 1, . . . , n refers to the independent variable xi;
j = 1, . . . , m refers to the equation;
h = 1, . . . , m refers to the function uh.

If the matrices

Ai =

⎛⎝ Ai
11 · · · Ai

1m

· · · · · · · · ·
Ai

m1 · · · Ai
mm

⎞⎠ , c =

⎛⎝ c1
· · ·
cm

⎞⎠ , (8.18)

are introduced, system (8.16) can be written in the following concise way:

A1 ∂u
∂x1

+ · · · + An ∂u
∂xn

= c,

or in the still more compact form

Ai ∂u
∂xi

= c. (8.19)
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The Cauchy problem for the system (8.19) consists of finding a solution
of (8.19) which satisfies Cauchy’s data

u(x) = u0(x) ∀x ∈ Σn−1, (8.20)

where Σn−1 is a regular surface of �n.
By proceeding as in the previous section, we introduce the coordinates

(ν1, . . . , νn), so that Σn−1 is represented by the equation νn = f(x) = 0.
When expressed in these coordinates, system (8.19) becomes

Ai ∂u
∂xi

= Ai ∂u
∂νh

∂νh

∂xi
= c

or (
Ai ∂νh

∂xi

)
∂u
∂νh

= c, (8.21)

whereas Cauchy’s data assume the form

u(ν1, . . . , νn−1, 0) = ũ0(ν1, . . . , νn−1). (8.22)

According to the assumption that Ai
jh(x,u) and ci(x,u) are analytic

functions of their arguments, the solution can be expanded in a power
series of νn; i.e.,

u(x) = u0(ν1, . . . , νn−1) +
(

∂u
∂νn

)
x0

νn +
1
2

(
∂2u
∂ν2

n

)
x0

ν2
n + · · · , (8.23)

where x0 ∈ Σn−1. The system (8.21) can be written in the form(
Ai ∂f

∂xi

)
x0

∂u
∂νn

= F,

where F is expressed from Cauchy’s data. This form highlights the fact
that (∂u/∂νn)x0 is determined if and only if

det
(
Ai ∂f

∂xi

)
x0

�= 0. (8.24)

It is easy to verify that this condition allows us to determine all the
derivatives ∂ru/∂νr

n at any x0 ∈ Σn−1. Moreover, it can be proved that
the series (8.23) is uniformly convergent towards a solution of the Cauchy
problem (8.21), (8.22).
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8.6 Classification of First-Order Systems

An (n− 1)-dimensional hypersurface Σn−1 of equation f(x) = 0 is called
a characteristic surface for Cauchy’s problem (8.21), (8.22), if it is a
solution of the equation

det
(
Ai ∂f

∂xi

)
= 0. (8.25)

As we saw for a second-order PDE, if the system (8.19) is quasi-linear, then
the matrices Ai depend on the solution u of the system as well as on the
point x. Therefore (8.25) allows us, at least in principle, to find the function
f(x) if a solution u0 is assigned. As a consequence, the classification of a
quasi-linear system depends on the solution u0, i.e., on Cauchy’s data.

Once again, the determination of characteristic surfaces requires that we
solve a nonlinear first-order PDE. We remark that if a solution f of (8.25)
exists, then the vector N normal to the characteristic surface f = const, has
components Ni proportional to ∂f/∂xi, and the following condition holds:

det(AiNi) = 0. (8.26)

In addition, the vectors N lean against a cone, since if N satisfies (8.26),
then so does µN for any real µ.

If
detA1 �= 0; (8.27)

then from (8.26) it follows that

det(A1)−1 det(AiNi) = det((A1)−1AiNi) = 0

i.e.,

det

(
IN1 +

n∑
α=2

BαNα

)
= 0, Bα = (A1)−1Aα. (8.28)

Given an arbitrary vector (Nα) of �n−1, vectors normal to a characteristic
surface in x exist if the algebraic equation of order m (8.28) admits a real
solution N1. Moreover, (8.28) represents the characteristic equation of the
following eigenvalue problem:(

n∑
α=2

BαNα

)
v = −N1v, (8.29)

so that the roots of (8.28) are the opposite eigenvalues of the matrix

C ≡
n∑

α=2

BαNα, (8.30)
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which, in general, is not symmetric. According to all the previous consid-
erations, system (8.19) can be classified as follows:

1. The system (8.19) is called elliptic at x (or for the solution u0 when it
is quasi-linear), if, for any N, (8.28) does not admit any real solution
N1, i.e., there are no vectors normal to characteristic surfaces passing
through an arbitrary point x ∈ Ω. As a consequence, elliptic systems
do not have real characteristic surfaces.

2. The system (8.19) is hyperbolic at x (or for the solution u0 when it
is quasi-linear), if, for any N, (8.28) has only real roots, some of them
eventually coincident, and the eigenvectors span �m ([45], p. 46).

3. The system (8.19) is totally hyperbolic at x if, for any N, all m
roots of (8.28) are real, distinct, and the corresponding eigenvectors
form a basis of �m ([45], p. 45).

4. The system (8.19) is parabolic at x if, for at least one root of (8.28),
the dimension of the corresponding subset of eigenvectors is less than
the algebraic multiplicity of the root itself.

We remark that in the last three cases, for any vector Ñ = (N2, . . . , Nn) ∈
�n−1, there are several values of N1 (with a maximum of m) which satisfy
(8.28). This means that the cone Ax has several nappes (see Figure 8.2).

N

N1

Figure 8.2

8.7 Examples

1. A second-order PDE is equivalent to a system of first-order differen-
tial equations. In order to prove that the transformation preserves
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the character (elliptic, hyperbolic, or parabolic), we observe that
Laplace’s equation

∂2u

∂x2
1

+
∂2u

∂x2
2

= 0,

with the substitution

∂u

∂x1
= v,

∂u

∂x2
= w,

is equivalent to the system

∂v

∂x1
+

∂w

∂x2
= 0,

∂v

∂x2
− ∂w

∂x1
= 0,

where the second equation expresses that the second mixed derivatives
of the function u are equal.

By comparing to (8.19), the previous system can be written as

(
1 0
0 −1

)⎛⎜⎜⎝
∂v

∂x1

∂w

∂x1

⎞⎟⎟⎠ +
(

0 1
1 0

)⎛⎜⎜⎝
∂v

∂x2

∂w

∂x2

⎞⎟⎟⎠ =
(

0
0

)
,

and the characteristic equation (8.25) is given by

det
((

1 0
0 −1

)
∂f

∂x1
+
(

0 1
1 0

)
∂f

∂x2

)
= 0

or (
∂f

∂x1

)2

+
(

∂f

∂x2

)2

= 0.

Then (8.28) becomes

det
((

1 0
0 1

)
N1 +

(
0 1

−1 0

)
N2

)
= 0;

i.e.,
N2

1 + N2
2 = 0

and this equation admits complex roots for any real value of N2.

By using this procedure, we ask the reader to verify that D’Alembert’s
equation is equivalent to a hyperbolic system.
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2. The diffusion equation

∂u

∂x1
− ∂2u

∂x2
2

= 0

is equivalent to the system

∂w

∂x2
= v,

∂v

∂x2
− ∂w

∂x1
= 0,

where ∂u/∂x1 = v and ∂u/∂x2 = w. In matrix form, this is

(
0 0
0 −1

)⎛⎜⎜⎝
∂v

∂x1

∂w

∂x1

⎞⎟⎟⎠ +
(

0 1
1 0

)⎛⎜⎜⎝
∂v

∂x2

∂w

∂x2

⎞⎟⎟⎠ =
(

v
0

)
,

and multiplying on the left by the inverse of(
0 1
1 0

)
gives (

0 −1
0 0

)⎛⎜⎜⎝
∂v

∂x1

∂w

∂x1

⎞⎟⎟⎠ +
(

1 0
0 1

)⎛⎜⎜⎝
∂v

∂x2

∂w

∂x2

⎞⎟⎟⎠ =
(

0
v

)
.

As a consequence, (8.29) becomes(
0 −N1
0 0

)(
v1
v2

)
+ N2

(
1 0
0 1

)(
v1
v2

)
= 0.

It is now rather easy to verify that N2 = 0 is an eigenvalue of multi-
plicity 2 and the corresponding eigenvector is (v1, 0), so that it spans
a one-dimensional subspace. Therefore, the system is parabolic.

3. Finally, we introduce an example related to fluid mechanics (a topic
addressed in Chapter 9). Let S be a perfect compressible fluid of
density ρ(t, x) and velocity v(t, x) (oriented parallel to the axis Ox).
The balance equations of mass (5.22) and momentum (5.30) of S are

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0,

ρ
∂v

∂t
+ ρv

∂v

∂x
+ p′(ρ)

∂ρ

∂x
= 0,

where p = p(ρ) is the constitutive equation.
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The above system can be reduced to the form (8.19) as follows:

(
1 0
0 ρ

)⎛⎜⎜⎝
∂ρ

∂t

∂v

∂t

⎞⎟⎟⎠ +
(

v ρ
p′ ρv

)⎛⎜⎜⎝
∂ρ

∂x

∂v

∂x

⎞⎟⎟⎠ = 0,

so that the characteristic equation (8.25) is given by

det
((

1 0
0 ρ

)
∂f

∂t
+
(

v ρ
p′ ρv

)
∂f

∂x

)
= 0.

It can also be written in the form

det

⎛⎜⎜⎝
∂f

∂t
+ v

∂f

∂x
ρ
∂f

∂x

p′ ∂f

∂x
ρ

(
∂f

∂t
+ v

∂f

∂x

)
⎞⎟⎟⎠ = 0

and the expansion of the determinant gives

(
∂f

∂t
+ v

∂f

∂x

)2

− p′
(

∂f

∂x

)2

= 0.

Furthermore, (8.28) can be written as

det
((

1 0
0 1

)
N1 +

(
v ρ

p′/ρ v

)
N2

)
= 0,

i.e.,

N2
1 + 2N2vN1 + N2

2 (v2 − p′) = 0.

This equation has two distinct roots

N1 =
(
−v ±

√
p′
)

N2,

which are real if p′(ρ) > 0. The corresponding eigenvectors(
1,−

√
p′

ρ

)
,

(
1,

√
p′

ρ

)
,

are independent, so that the system is totally hyperbolic.
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8.8 Second-Order Systems

In many circumstances, the mathematical model of a physical problem
reduces to a second-order quasi-linear system

Aij
HK

∂2uK

∂xi∂xj
+ fH(x,u,∇u) = 0, H, K = 1, . . . , m, (8.31)

of m equations in the unknown functions u1, . . . , um depending on the vari-
ables x1, . . . , xn.

In this case, the classification of the system can be pursued by two pro-
cedures.

The procedure discussed in the previous section can be still applied by
transforming (8.31) into a first-order system of (m + mn) equations by
adding the mn auxiliary equations

∂uH

∂xj
= vHj , H = 1, . . . , m, j = 1, . . . , n,

with mn auxiliary unknowns and by rewriting (8.31) in the form

Aij
HK

∂vKj

∂xi
+ fH(x,u,v) = 0, H, K = 1, . . . , m.

Such a procedure has the disadvantage that there is a huge increase in the
number of equations: as an example, if m = 3 and n = 4, the transformed
system gives rise to 15 equations.

This shortcoming calls for a different approach, so that the system (8.31)
is written in the matrix form

Aij ∂2u
∂xi∂xj

+ f(x,u,∇u) = 0, (8.32)

where

Aij =

⎛⎜⎝Aij
11 · · · Aij

1m

. . . . . . . . . . . .

Aij
m1 · · · Aij

mm

⎞⎟⎠ , f =

⎛⎝ f1
· · ·
fm

⎞⎠ .

We remark that the matrices Aij are generally not symmetric. By proceed-
ing as in the previous two sections, instead of (8.14), (8.24), we find that
the characteristic surfaces are now given by the equation

det
(
Aij ∂f

∂xi

∂f

∂xj

)
= 0. (8.33)
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As a consequence, the vector N normal to the characteristic surface f =
const, satisfies the condition

det(AijNiNj) = 0, (8.34)

which defines, at any x, a cone with multiple nappes. This result allows us
to extend the classification rule of first-order systems to second-order ones.

8.9 Ordinary Waves

Let C be a region of �n. We denote by Σn−1 a hypersurface dividing this
region into two parts C− and C+, where C+ is that part which contains
the unit vector N normal to Σn−1. If u(x) is a C1 function in C −Σn−1 as
well as a solution of the system (8.21) in each one of the regions C− and
C+, then the following theorem can be proved:

Theorem 8.2
The surface Σn−1 is a first-order singular surface with respect to the func-
tion u(x) if and only if it is a characteristic surface for the Cauchy problem
(8.21)–(8.22).

PROOF Let Σn−1 be a first-order singular surface with respect to u(x).
Then the following jump condition holds across Σn−1 (see (2.49)):[[

∂u
∂xi

]]
x0

= aNi ∀x0 ∈ Σn−1, (8.35)

where a is a vector field with m components. In addition, since u(x) satisfies
the system (8.19) in both C− and C+ regions, for x −→ x0 ∈ Σn−1, we find
that

Ai

(
∂u
∂xi

)±

x0

= c,

so that

Ai

[[
∂u
∂xi

]]
x0

= 0. (8.36)

Owing to (8.35), when we note that Ni = ∂f/∂xi, where f(x) = 0 is the
equation of the surface Σn−1, we conclude that(

Ai ∂f

∂xi

)
x0

a = 0. (8.37)
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If the surface Σn−1 is singular, then the field a is nonvanishing at some
point x0 ∈ Σn−1. Equivalently, the coefficient determinant of the system
(8.37) in the unknown vector a, has to be equal to zero. Therefore, (8.25)
holds and Σn−1 is a characteristic surface.

Conversely, if (8.25) holds, then (8.35) is satisfied for a nonvanishing
vector a and Σn−1 is a first-order singular surface.

In its essence, the previous theorem states that the characteristic surfaces
of the system (8.19) are coincident with the singular first-order surfaces of
the solution u(x) of (8.19). System (8.37) is called the jump system
associated with (8.19).

In order to highlight the role of the previous theorem in wave propaga-
tion, a physical phenomenon is supposed to be represented by the first-order
quasi-linear system (8.21), whose unknowns are functions of the indepen-
dent variables (x1, x2, x3, x4) = (t,x) ∈ �4, where t is the time and x is a
spatial point. A moving surface S(t), of equation f(t,x) = 0, is supposed
to subdivide a region V ⊂ �3 into two parts V −(t) and V +(t), with the
normal unit vector to S(t) pointing towards V +(t).

If the solution u(t,x) of (8.21) exhibits a discontinuity in some of its
first derivatives across S(t), then u(t,x) is said to represent an ordinary
wave. If the function itself exhibits a discontinuity on S(t), then u(t,x)
represents a shock wave. In both cases, S(t) is the wavefront and V +(t)
is the region toward which the surface S(t) is moving with normal speed
cn. Accordingly, regions V −(t) and V +(t) are called the perturbed and
undisturbed region, respectively.

It follows that a wavefront S(t) of an ordinary wave is a first-order sin-
gular surface with respect to the solution u(t,x) of the system (8.19), or,
equivalently, a characteristic surface.

With these concepts in mind, we can determine the wavefront f(t,x) = 0
by means of the theory of singular surfaces as well as by referring to char-
acteristic surfaces. The relevant aspect relies on the fact that the system
(8.19) predicts the propagation of ordinary waves if and only if its charac-
teristics are real, i.e., the system is hyperbolic.

It could be argued that the definition of a wave introduced here does not
correspond to the intuitive idea of this phenomenon. As an example, the
solution of D’Alembert’s equation can be expressed as a Fourier series of
elementary waves. In any case, when dealing with ordinary waves of dis-
continuity, it is relatively easy to determine the propagation speed of the
wavefront S(t) and its evolution as well as the evolution of the discontinu-
ity. Furthermore, in all those cases in which we are able to construct the
solution, it can be verified a posteriori that the propagation characteristics
are coincident with those derived from the theory of ordinary waves.
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If the evolution is represented by a first-order system of PDEs

∂u
∂t

+
3∑

i=1

Bi(x, t,u)
∂u
∂xi

= b, (8.38)

then the associated jump system is

−cna +
3∑

i=1

Bi(x, t,u)rnia = 0, (8.39)

where cn is the propagation speed of the wavefront f(t,x) = 0, n is the
unit vector normal to the surface, and a is the vector of discontinuities of
first derivatives. If we introduce the m × m matrix

Q(x, t,u,n) =
3∑

i=1

Bi(x, t,u)ni, (8.40)

where m is the number of unknowns, i.e., the number of components of
u(t,x), then system (8.39) becomes

Q(x, t,u,n)a =cna. (8.41)

This equation leads to the following results (Hadamard): Given the
undisturbed state u+(x, t) towards which the ordinary wave propagates, the
matrix Q is a known function of r and t, due to the continuity of u(x, t) on
S(t). Furthermore, for a given direction of propagation n, speeds of prop-
agation correspond to the eigenvalues of the matrix Q, and discontinuities
of first derivatives are the eigenvectors of Q.

The existence of waves requires that eigenvalues and eigenvectors be real.
Once the propagation speed cn(x, t,u+,n) has been determined, the evo-

lution of the wavefront can be derived by referring to the speed of propa-
gation of S(t) (see Chapter 4):

∂f

∂t
= −cn(x, t,u+,n) |∇f | . (8.42)

Since S(t) is a moving surface, ∂f/∂t �= 0; furthermore, n = ∇f/ |∇f |
and cn is a homogeneous function of zero order with respect to ∂f/∂xi.
Therefore, (8.42) reduces to the eikonal equation:

∂f

∂t
+ cn

(
x, t,u+,

∂f

∂xi

)
= 0. (8.43)

Finding the solution of this equation is far from being a simple task.
Here again it may happen that the physical problem can be represented

by m second-order PDEs with m unknowns depending on x1, . . . , xn. This
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system could be transformed into a new first-order system of mn equations
with mn unknowns, to which the previous results apply, by introducing the
new unknowns

∂ui

∂xj
= vij ,

and the additional equations

∂vij

∂xh
=

∂vih

∂xj
,

expressing the invertibility of second derivatives of functions ui. Because
such a procedure greatly increases the number of equations, the extension
of the previous procedure to second-order systems appears to be more con-
venient. From this perspective, if the evolution is represented by the system

∂2u
∂t2

+ Bij(t,x,u,∇u)
∂2u

∂xi∂xj
+ f(t,x,u,∇u) = 0, (8.44)

then an ordinary wave is defined as a second-order singular surface S(t) of
the solution u(t,x), i.e., as a surface across which the second-order deriva-
tives (some or all of them) are discontinuous; similarly, S(t) is a shock wave
if the function or its first derivatives are discontinuous across it.

If the system (8.44) is written in the regions V − and V +, then by consid-
ering the limit of x towards a point r ∈ S(t) and by subtracting the results,
we obtain the jump system associated with (8.44):[[

∂2u
∂t2

]]
r
+ Bij(x, t,u,∇u)r

[[
∂2u

∂xi∂xj

]]
r

= 0. (8.45)

By recalling jump expressions derived in Section 4.5, this becomes

Q(x, t,u,∇u,n)a ≡ Bij(x, t,u,∇u)rninja = c2
na, (8.46)

where n = (ni) is the unit vector normal to S(t) and a is the discontinuity
vector.

It has been proved that (Hadamard): Given an undisturbed state u+(x, t)
towards which the ordinary wave S(t) propagates, then due to the continu-
ity of u(x, t) across S(t), the matrix Q is a known function of t and r.
Furthermore, given a propagation direction n, the speeds of propagation are
the roots of eigenvalues of the matrix

Bij(t,x,u,∇u)rninj ,

and the discontinuity vectors are its eigenvectors.
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We give the following examples:

1. When we consider D’Alembert’s equation

∂2u

∂t2
= ∆u,

the jump system is written as

(n ⊗ n)a = c2
na.

In a reference frame Oxyz in which Ox is parallel to n, where n =
(1, 0, 0), the eigenvalues of the tensor n ⊗ n are 0 (with multiplicity 2)
and 1 and the eigenvectors have components (0, a2, a3) and (a1, 0, 0).
It follows that the speeds of propagation along n are ±1.

2. The system of example 3, Section 8.3, can be written in the form (8.38)⎛⎜⎜⎝
∂ρ

∂t

∂v

∂t

⎞⎟⎟⎠ +

⎛⎝ v ρ
p′

ρ
v

⎞⎠
⎛⎜⎜⎝

∂ρ

∂x

∂v

∂x

⎞⎟⎟⎠ = 0

and, since n = (1, 0, 0), it follows that

Q =

⎛⎝ v ρ
p′

ρ
v

⎞⎠ .

The eigenvalues of this matrix are

cn = v ±
√

p′(ρ),

so that the result previously obtained is recovered.

8.10 Linearized Theory and Waves

We have already seen how far from straightforward it is to obtain a
solution of the quasi-linear system (8.38). But it can also be observed that,
under the assumption b = 0, any arbitrary constant vector function u = u0
is a solution of the system. More generally, suppose that a solution u0 of
(8.38) is already known, so that we can ask under which circumstances the
function

u = u0 + v, (8.47)

obtained by adding a small perturbation v to the undisturbed state u0, is
still a solution of the system.
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We say that there is a small perturbation if |v| and |∇v| are first-order
quantities, so that their products and power can be neglected. It will be
shown in the following discussion that such an assumption implies that
v is a solution of the linearized system (8.38), so that we can apply many
techniques in order to find an analytical expression of v. In addition, we also
note that the assumption of small perturbation, to be consistent, requires
that we ascertain the stability of the undisturbed state. This observation is
related to the nonlinear nature of the system (8.38), so that it could happen
that a solution corresponding to initial data u0 + v0, with small v0,

• it does not remain over time of the order of v0; or

• only exists in a finite time interval.

In both cases the solution of the linearized problem does not represent
an approximate solution of the nonlinear problem.

Within this framework, we introduce the following examples to clarify
the previous considerations.

1. Consider the nonlinear equation

∂u

∂t
+ u

∂u

∂x
= 0, (8.48)

which admits the solution u0 = 0. The integral curves of the vector
field V ≡ (1, u) are the solution of the system

dt

ds
= 1,

dx

ds
= u,

which corresponds to the equation

dx

dt
= u(t, x(t)). (8.49)

On these curves, (8.48) gives

du

ds
= 0,

i.e., u(t, x(t)) = const = u(0, x(0)) ≡ u0(ξ), where ξ = x(0). From
(8.49) it follows that along the lines

x − u0(ξ)t = ξ, (8.50)

the solution u(t, x) of (8.48) is constant, so that at (t, x) it assumes
the same values that it has at the point ξ:

u = u0(x − u0(ξ)t),
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showing a character of wave solution. We can conclude that, given
the values u0(ξ) of the function u on the axis Ox, the solution of
(8.48) is determined. If the initial datum u0(ξ) is not constant, then
the straight lines (8.50) are no longer parallel and they intersect at
some point of the plane t, x. This means that the wave is a shock
(Figure 8.3).

x

t

O

x–u0 (ξ)t=ξ

ξ
Figure 8.3

On the other hand, consider the Cauchy problem related to (8.48),
with

u0(ξ) = 1 + v0(ξ),

where v0(ξ) is a first-order quantity. If (8.48) is linearized in the
neighborhood of u = 1, then we obtain for the perturbation v the
equation

∂v

∂t
+

∂v

∂x
= 0,

to be solved with the Cauchy datum v0(ξ). By using the previous
procedure, we conclude that the function v(t, x) is constant along the
parallel lines x − t = ξ and that it assumes the form

v(t, x) = v0(x − t) = v0(ξ).

In this case the linear solution is defined at any time t and represents
a wave moving with constant speed, equal to 1.

2. As a second example we consider the equation

∂u

∂t
+

∂u

∂x
− u2 = 0, (8.51)

which admits the solution u = 0. If we introduce the vector field
V ≡ (1, 1), whose integral curves are the parallel lines

x − t = ξ,
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then the previous equation along these lines gives

du

ds
= u2.

The general solution of (8.51) then is

u =
u0(ξ)

1 − u0(ξ)t
=

u0(x − t)
1 − u0(x − t)t

, (8.52)

where u0(ξ) = u0(0, x). If u0(ξ) > 0, then the solution along the
straight line x−t = ξ is infinity at the time t∗ > 0, such that u0(ξ)t∗ =
1.

By linearizing in the neighborhood of u = 0, we obtain the following
equation for the perturbation v:

∂v

∂t
+

∂v

∂x
= 0,

which has the wave solution

v = v0(ξ) = v0(x − t),

defined at any time t.

When we can apply the linearizing procedure, presuming that the undis-
turbed state is a stable one, then by substituting the solution (8.47) into
(8.38) and by neglecting nonlinear terms of |v| and |∇v|, we obtain that
the perturbation v must be a solution of the linear system

∂v
∂t

+
3∑

i=1

Bi(x, t,u0)
∂v
∂xi

= 0. (8.53)

In this case we can try to obtain the solution as a Fourier series of ele-
mentary waves; i.e., we can try to determine whether a sinusoidal wave of
amplitude A, wavelength λ, and propagating in the direction of the unit
vector n with speed U , written as

v(t,x) = A sin
2π

λ
(n · x − Ut), (8.54)

can be a solution of (8.53). Since

∂v
∂t

= −2π

λ
UA cos

2π

λ
(n · x − Ut),

∂v
∂xi

=
2π

λ
niA cos

2π

λ
(n · x − Ut),
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then by substituting into (8.53) we find that

−UA +
3∑

i=1

Bi(x, t,u0)niA = 0,

which is the same as (8.39) if we assume that u = u0. We reach the conclu-
sion that a plane sinusoidal wave is a solution of the linear system (8.53)
if and only if the speed of propagation is an eigenvalue of

Qi(x, t,u0,n) ≡
3∑

i=1

Bi(x, t,u0)ni

and the amplitude is the corresponding eigenvector.

8.11 Shock Waves

As we mentioned in Section 8.5, a singular surface Σ(t) is a shock wave-
front if the function u exhibits a discontinuity across it. Usually, we meet
with shock waves when we are dealing with systems of PDEs related to
conservation laws

∂gi(u)
∂t

+
∂

∂xj
Ψij(t,x,u) = bi(t,x,u), (8.55)

i = 1, . . . , m and j = 1, . . . , n, i.e. to those systems which are equivalent to
integral balance laws (see (5.2) and (5.3))

d

dt

∫
V

gi(u) dc = −
∫

∂V

ΨijNj dσ +
∫

V

bi dc,

where V is an arbitrary volume of �3 and N is the unit vector normal to
∂V .

As discussed in Chapter 5 (see (5.3)), on the discontinuity surface Σ(t)
the following Rankine–Hugoniot jump conditions hold:

[[gi(u)cn − Ψij(t,x,u)nj ]] = 0, (8.56)

where cn is the normal component of the speed of propagation of Σ(t) and
n is the unit vector normal to Σ(t).

Let us now assume that a given phenomenon is represented by a system
of n PDEs such as (8.55), with the unknowns u = (u1, . . . , um). When the
constitutive law Ψ(t,x,u) has been defined, the system (8.56) gives a finite
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relation between the two limits u− and u+ of the field u on the two sides of
the wavefront, where u+ are the values relative to the undisturbed region.

The aim is now to analyze the system (8.56) with reference to the fol-
lowing three cases:

• linear shock;

• small intensity shock;

• finite shock.

Let us start by assuming that both functions gi and Ψij are linearly
dependent on the unknown functions ui:

gi = Kij(t,x)uj , Ψij = Hijk(t,x)uk,

i.e., the system (8.55) is linear or semi-linear. Accordingly, the Rankine–
Hugoniot conditions are

(Kijcn − Hikjnk)[[uj ]] = 0,

and they constitute an algebraic system for the jumps [[uj ]]. In this case, it
is then apparent that our problem reduces to the usual eigenvalue problem,
as we saw for ordinary waves.

We assume that the jumps are of small intensity, then we can write

gi = Kijuj +
1
2
K

(1)
ijhujuh + · · · ,

Ψij = Hijkuk +
1
2
H

(1)
ijhkuhuk + · · · .

By substituting into the Rankine–Hugoniot conditions (8.56), as well as
by neglecting terms higher than first order and taking into account the
symmetry conditions

K
(1)
ijh = K

(1)
ihj , H

(1)
ijhk = H

(1)
ijkh,

we get

(Kijcn − Hijknk)[[uj ]] +
1
2
(K(1)

ijhcn − H
(1)
ikjhnk)[[ujuh]] = 0.

By also observing that

[[AB]] = A+B+ − A−B− = A+B+ − A−B+ + A−B+ − A−B−

= [[A]]B+ + [[B]]A− = [[A]]B+ + [[B]](A+ − [[A]])
� [[A]]B+ + [[B]]A+,
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we find that the previous relation assumes the form

(Kijcn − Hikjnk)[[uj ]]

+
1
2
(K(1)

ijhcn − H
(1)
ikjhnk)([[uj ]]u+

h + [[uh]]u+
j ) = 0

and it follows that
(Lijcn − Mikjnk)[[uj ]] = 0, (8.57)

where

Lij = Kij + K
(1)
ijhu+

h ,

Mikj = Hikj + H
(1)
ikjhu+

h .

In the case of small intensity shocks, we conclude that the problem of
determining the speed of propagation and the jumps is reduced to a linear
algebraic problem.

In the most general case, the Rankine–Hugoniot conditions correlate the
values of u−, corresponding to the perturbed region, with those of u+, cor-
responding to the undisturbed region, when the speed of propagation cn is
known. In fact, equations (8.56) do not allow us to solve the problem, be-
cause, due to the presence of cn, there are fewer equations than unknowns.
All we can do is express the values of u− as functions of cn, called the
shock intensity.

We remark that even if we know the value of cn, the problem is still
difficult to solve. First, the system (8.56) could have no real solutions
u−

1 , . . . , u−
m in the disturbed region; i.e., the state u+

1 , . . . , u+
m could be in-

compatible with the propagation of shock waves.
It could also happens that the system (8.56), which is nonlinear in the

general case, could admit more than one solution compatible with the choice
u+

1 , . . . , u+
m, which is equivalent to having several modes of propagation of

shock waves. As this doesn’t match physical reality, we need to introduce
a rule for selecting the one meaningful solution.

But before introducing such a rule, we also need to remark that the in-
determinacy arises from the definition of shock waves, according to which
discontinuities of zero order are assumed. In reality, around the wavefront
there exists a boundary layer where the fields u change rapidly but with
continuity from values pertinent to the perturbed state to those of the
undisturbed state. This boundary layer can also be predicted on a the-
oretical basis by introducing more sophisticated constitutive laws. These
laws generate a system of PDEs of higher order, with terms of higher order
being multiplied by a small parameter, which creates the boundary layer
(see Chapter 9).

In order to avoid this difficulty, an alternative approach consists of adding
to (8.56) a scalar condition which reflects the second law of thermodynamics
(see also Chapter 9).
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One choice consists of assuming that the entropy jump across the shock
wavefront is positive. Another possibility is represented by the Lax con-
dition [44]:

vn(u+) < cn < vn(u−), (8.58)

where vn(u+) and vn(u−) denote the advancing speeds of the ordinary
discontinuity waves in the states u+ and u−, respectively. In other words,
the Lax condition states that, before the arrival of the shock wave, the
undisturbed region must be in a supersonic state, while the disturbed region
is in a subsonic state. This also means that an observer who moves with
the velocity of the perturbed region sees the shock waves moving toward
him with a supersonic speed. On the other hand, an observer moving with
the velocity of the undisturbed region sees the shock wave going away with
subsonic speed.

8.12 Exercises

1. Find a stationary solution for a string with fixed ends and length l.
We must find a solution u(x, t) to the problem

∂u

∂t2
= v2 ∂u

∂x2 ,

u(0, t) = u(l, t) = 0,

which exhibits, at any point, a character of oscillation but not of
propagation. To this end, consider the function

u(x, t) = A(t)B(x),

where B(0) = B(l) = 0 and A(t) is periodic. It can be verified that
this function is the required solution if and only if it has the form

u(x, t) = A sin
(

2π

λ
vt + ϕ

)
sin

(
2π

λ
x + ϕ

)
,

where A and ϕ are arbitrary constants and λ = l/k, with k a positive
integer.

2. Find a sinusoidal solution representing a wave propagating on a string
of infinite length.
In this case we need to verify that the function

u = A sin
2π

λ
(x − vt)

is a solution of D’Alembert’s equation.



8.12. Exercises 219

3. Verify that the function

u(x, t) = Ae−ht sin
2π

λ
(x − vt)

is a solution of D’Alembert’s equation in presence of a dissipation
term

∂2u

∂t2
− v2 ∂2u

∂x2 = −h
∂u

∂t
, h > 0.

4. Classify the following PDEs by determining the corresponding char-
acteristic curves:

x2y
∂2u

∂x2 + xy
∂2u

∂x∂y
− y2 ∂2u

∂y2 = 0, (8.59)

(x log y)
∂2u

∂x2 + 4y
∂2u

∂y2 = 0,

∂2u

∂x∂y
− xy

∂2u

∂y2 = 0,

x2y
∂2u

∂x2 − xy2 ∂2u

∂y2 = 0.

Derive values of k for which the equation

∂2u

∂x2 − kx
∂2u

∂x∂y
+ 4x2 ∂2u

∂y2 = 0

is elliptic, parabolic, or hyperbolic.

5. Verify that the quasi-linear equation

u2 ∂2u

∂x2 + 3
∂u

∂x

∂u

∂y

∂2u

∂x∂y
− u2 ∂2u

∂y2 = 0

is hyperbolic for any solution u.

6. Verify that the quasi-linear equation[
1 −

(
∂u

∂x

)2
]

∂2u

∂x2 − 2
∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

[
1 −

(
∂u

∂y

)2
]

∂2u

∂y2 = 0

is hyperbolic for those solutions for which |∇u| > 1 and it is elliptic
for those solutions for which |∇u| < 1.

7. Classify the linear system

∂u

∂x
+ 2

∂u

∂t
+

∂v

∂x
+ 3

∂v

∂t
− u + v = 0,

3
∂u

∂x
+

∂u

∂t
− 2

∂v

∂x
− ∂v

∂t
− 2v = 0.
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8. Classify the quasi-linear system

ρ
∂u

∂x
+ u

∂ρ

∂x
+

∂ρ

∂t
= −2ρ

u

x
,

ρu
∂u

∂x
+ ρ

∂u

∂t
+ c2 ∂ρ

∂x
= 0.
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8.13 The Program PdeEqClass

Aim of the Program PdeEqClass

The program PdeEqClass classifies the quasi-linear second-order PDEs.

Description of the Problem and Relative Algorithm

Given a quasi-linear second-order PDE in a domain Ω ⊆ �n

aij(x, u, ∇u)
∂2u

∂xi∂xj
= h(x, u, ∇u), i, j = 1, · · · , n, x ∈ Ω,

a point x0 and a solution u0(x), the program PdeEqClass determines the
coefficient matrix A = (ai,j) and the matrix A0, which is obtained by
evaluating A at x0 with respect to the known solution u0. Moreover, it
calculates the eigenvalues of A if option=symbolic is chosen or those of
A0 if option= numeric is chosen. In the latter case the PDE is classified.

We recall that, for quasi-linear PDEs, the characteristic surfaces depend
both on the equation and the Cauchy data. Consequently, the classification
is relative to a point x0 for the given solution u0(x).1 On the other hand,
for semi-linear and linear2 PDEs the characteristic surfaces depend only
on the equation and therefore the classification is relative to any point x0.

Command Line of the Program PdeEqClass

PdeEqClass[eq, var, unk, point, unk0, option]

Parameter List

Input Data

eq = second-order quasi-linear PDE, where all the terms containing the
second derivative appear on the left-hand side, while all the other
terms appear on the right-hand side;

1It is clear that this procedure is applicable when a solution is known, for instance when
u0(x) =const.
2The equation is semi-linear if it has the form

aij(x)
∂2u

∂xi∂xj
= h(x, u, ∇u), i, j = 1, · · · , n, x ∈ Ω,

and linear if h(x, u, ∇u) is a linear function of u and ∇u.
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var = list of independent variables;

unk = unknown function;

point = coordinates of the point x0 at which the PDE has to be classified;

unk0 = known solution u0 of PDE when it is quasi-linear;

option = option for the symbolic or numeric calculation of the eigenvalues
of A and A0, respectively.

Output Data

the coefficient matrix A;

the matrix A0 obtained by evaluating A at point and with respect to the
solution unk0;

the eigenvalues of A if option = symbolic;

the eigenvalues of A0 if option = numeric;

the elliptic, hyperbolic, or parabolic character of the PDE if option =
numeric.

Use Instructions

The equation has to be given in such a way that on the left-hand side
the second derivatives appear, while the right-hand side includes all the
terms involving the unknown function and its first derivatives. The PDE
we wish to examine must to be given according with the syntax both of
Mathematica and the program, i.e., in the form

eq = aij(x, u,∇u)uxi,xj == h(x, u,∇u),

where the two sides of the equation are separated by a double equal sign

and the symbol
∂2u

∂xi∂xj
is written as uxi,xj .

If the equation is semi-linear or linear, then only the input datum point
has to be given, not unk0.

Worked Examples

1. Laplace’s Equation: Consider Laplace’s equation

vx,x + vy,y + vz,z = 0.
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To apply the program PdeEqClass, it is sufficient to input the follow-
ing data:

eq = vx,x + vy,y + vz,z == 0;

var = {x, y, z};

unk = v;

point = {x0, y0, z0};

unk0 = v0;

option = numeric;

PdeEqClass[eq, var, unk, point, unk0, option]

In output we obtain

Coefficient matrix

A =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠
Eigenvalues of A

λ1 = 1

The Pde is elliptic.

2. Classify the following equation:

ux,x + 2kut,x + k2ut,t = 0.

To apply the program PdeEqClass, it is sufficient to input the follow-
ing data:

ux,x + 2kut,x + k2ut,t == 0;

var = {t, x};

unk = u;

point = {t0, x0};

unk0 = u0;

option = numeric;

PdeEqClass[eq, var, unk, point, unk0, option]

In output we obtain

Coefficient matrix

A =
(
k2 k
k 1

)
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Eigenvalues of A

λ1 = 0

λ2 = 1 + k2

The Pde is parabolic.

3. To verify that the quasi-linear equation

u2ux,x + 3uxuyux,y − u2uy,y = 0

is hyperbolic for any nonvanishing solution u = u(x, y), we can start
by applying the program PdeEqClass with the following input data:

u2ux,x + 3uxuyux,y − u2uy,y == 0;

var = {x, y};

unk = u;

point = {x0, y0};

unk0 = u0;

option = numeric;

PdeEqClass[eq, var, unk, point, unk0, option]

The output is

Coefficient matrix

A =

⎛⎝ u2
3uxuy
2

3uxuy
2

−u2

⎞⎠
Matrix A0 obtained by evaluating A at point {x0, y0} and
with respect to the solution u0[x, y]

A0 =

⎛⎝ u0[x, y]
2 3

2
u0

(0,1)[x, y]u0(1,0)[x, y]
3

2
u0

(0,1)[x, y]u0(1,0)[x, y] −u0[x, y]
2

⎞⎠
Eigenvalues of A0

λ1 = −
√
u0[x, y]

4 +
9

4
u0

(0,1)[x, y]2u0(1,0)[x, y]2

λ2 =
√
u0[x, y]

4 +
9

4
u0

(0,1)[x, y]2u0(1,0)[x, y]2

The equation cannot be classified since not all the eigen-
values have a definite sign!
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As one can see, the output supplies only some help to the user in
classifying the equation. In fact, the program cannot decide the sign
of the eigenvalues as long as the input data are not given in the
numerical form. That is due to the fact that, when the input data
are assigned in symbolic form, Mathematica is not able to distinguish
between real and complex quantities.

Exercises

Apply the program PdeEqClass to the following differential equations.

1. D’Alembert’s equation

∂2u

∂x2 − 1
v2

∂2u

∂t2
= 0.

2. Heat equation
∂2u

∂x2 − ∂u

∂y
= 0.

3. Tricomi’s equation
∂2u

∂x2 + x2 ∂2u

∂y2 = 0.

4. Classify the PDE

x
∂2u

∂x2 − 4
∂2u

∂xy
= 0

in the region x > 0.

5. Show that the equation

yz
∂2u

∂x2 + zx
∂2u

∂y2 + xy
∂2u

∂z2 = 0

is elliptic in the regions x > 0, y > 0, z > 0 and x < 0, y < 0, z < 0,
and is hyperbolic almost everywhere else.

6.

x log y
∂2u

∂x2 + 4y
∂2u

∂y2 = 0.

7.

x2y
∂2u

∂x2 − xy2 ∂2u

∂y2 = 0.
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8.

y2 ∂2u

∂x2 + x
∂2u

∂y2 = 0.

9.

−(y2 + z2)
∂2u

∂x2 + (z2 + x2)
∂2u

∂y2 + (x2 + y2)
∂2u

∂z2 = 0.

10.

(y2 − z2)
∂2u

∂x2 + (z2 − x2)
∂2u

∂y2 + (x2 − y2)
∂2u

∂z2 = 0.

11.

(y − x)
∂2u

∂x2 + x2 ∂2u

∂y2 = 0.

12. Verify that the quasi-linear equation[
1 −

(
∂u

∂x

)2
]

∂2u

∂x2 − 2
∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

[
1 −

(
∂u

∂y

)2
]

∂2u

∂y2 = 0

is hyperbolic for those solutions for which |∇u| > 1 and it is elliptic
for those solutions for which |∇u| < 1.
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8.14 The Program PdeSysClass

Aim of the Program PdeSysClass

The program PdeSysClass classifies the quasi-linear first-order systems
of PDEs.

Description of the Problem and Relative Algorithm

Consider the quasi-linear first-order systems of PDEs of m equations in
the m unknown functions (u1, · · · , um) depending on n variables (x1 ≡
t, · · · , xn)(

A1
11

∂u1

∂x1
+ · · · + A1

1m

∂um

∂x1

)
+ · · · +

(
An

11
∂u1

∂xn
+ · · · + An

1m

∂um

∂xn

)
= c1,

· · ·(
A1

m1
∂u1

∂x1
+ · · · + A1

mm

∂um

∂x1

)
+ · · · +

(
An

m1
∂u1

∂xn
+ · · · + An

mm

∂um

∂xn

)
= cm,

(8.60)

where Ak
ij(x,u) and ci(x,u) are continuous functions of their arguments.

By introducing the matrices

Ai =

⎛⎝Ai
11 · · · Ai

1m

· · · · · · · · ·
Ai

m1 · · · Ai
mm

⎞⎠ , c =

⎛⎝ c1
· · ·
cm

⎞⎠ ,

the system (8.60) can be put in the form (see Chapter 8)

Ai ∂u
∂xi

= c. (8.61)

The program PdeSysClass determines the characteristic equation associ-
ated with the system (8.61)

det

(
IN1 +

n∑
α=2

BαNα

)
= 0, (8.62)

where Bα = (A1)−1Aα and N ≡ (Nα) represent the components of an
arbitrary vector of �n−1. It is well known that the roots N1 of the charac-
teristic equation (8.62) coincide with the opposite of the eigenvalues of the
matrix

B =
n∑

α=2

BαNα.
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Then, if option = numeric, the program calculates the eigenvalues of B
with their respective algebraic and geometric multiplicities. Finally, it clas-
sifies the system (8.60) at any point x0 (but for the given solution u0 if the
system is quasi-linear).

Command Line of the Program PdeSysClass

PdeSysClass[sys, var, unk, point, unk0, option]

Parameter List

Input Data

sys = quasi-linear first-order system of PDEs, where the terms containing
the first derivatives appear on the left-hand side while the right-hand
side contains the functions and the known terms;

var = list of independent variables;

unk = list of unknown functions;

point = coordinates of the point x0 at which the system of PDEs has to
be classified;

unk0 = known solution u0 of the system of PDEs when it is quasi-linear;

option = option for the symbolic or numeric calculations of the solutions
of the associated characteristic equation.

Output Data

the matrices Ai of the coefficients of the system of PDEs;

the matrices A0
i obtained by evaluating Ai at point and with respect to

the solution unk0;

the solutions of the characteristic equation (8.62);

the eigenvalues of B =
n∑

α=2
BαNα if option = numeric;

the algebraic and geometric multiplicities of the distinct eigenvalues of B
if option = numeric;

the elliptic, hyperbolic, totally hyperbolic, or parabolic character of the
system of PDEs if option = numeric.
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Use Instructions

The system of PDEs has to be given in such a way that on the left-hand
side the first derivatives appear, while the right-hand side includes all the
terms involving the unknown functions and the known terms. The system
of PDEs we wish to examine must to be given according to the syntax both
of Mathematica and the program, i.e., in the form

eq1 = (A111u1x1 + · · · + A11mumx1) + · · · + (An11u1xn + · · · + An1mumxn) == c1,
...
eqm = (A1m1u1x1 + · · · + A1mmumx1) + · · · + (Anm1u1xn + · · · + Anmmumxn) == cm,

where the two sides of the any equation are separated by a double equal

sign and the symbol
∂u

∂xi
is written as uxi .

For a semi-linear or linear system, only the input datum point has to be
given, not unk0.

We remark that to classify the system of PDEs when option = numeric,
the arbitrary unit vector N ≡ (Nα) of �n−1 is chosen.

Worked Examples

1. Laplace’s equation: Consider the system in �2{
vx + wy = 0,
vy − wx = 0,

which is equivalent to Laplace’s equation

ux,x + uy,y = 0.

To apply the program PdeSysClass, it is sufficient to input the fol-
lowing data:

eq1 = vx + wy == 0;

eq2 = vx − wy == 0;

sys = {eq1, eq2};

var = {x, y};

unk = {v, w};

point = {x0, y0};

unk0 = {v0, w0};

option = numeric;

PdeSysClass[sys, var, unk, point, unk0, option]
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In output we obtain

Coefficient matrices

A1 =
(
1 0
0 −1

)
A2 =

(
0 1
1 0

)
Solutions of the characteristic equation

det(IN1 +
n∑

α=2
BαNα) = 0

N1 = −iN2

N1 = iN2

Eigenvalues of B =
n∑

α=2
BαNα =

(
0 1

−1 0

)
λ1 = −i

λ2 = i

Algebraic and geometric multiplicities of the distinct
eigenvalues of B

λ1 = −i : AlgMult = 1 GeoMult = 1

λ2 = i : AlgMult = 1 GeoMult = 1

The system of PDEs is elliptic.

2. Classify the linear system in �2{
ux + 2uy + vx + 3vy = u − v,
3ux + uy − 2vx − vy = 2v.

To apply the program PdeSysClass, it is sufficient to input the fol-
lowing data:

eq1 = ux + 2uy + vx + 3vy == u − v;

eq2 = 3ux + uy − 2vx − vy == 2v;

sys = {eq1, eq2};

var = {x, y};

unk = {u, v};

point = {x0, y0};

unk0 = {u0, v0};

option = numeric;

PdeSysClass[sys, var, unk, point, unk0, option]
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In output we obtain

Coefficient matrices

A1 =
(
1 1
3 −2

)
A2 =

(
2 3
1 −1

)
Solutions of the characteristic equation

det(IN +1

n∑
α=2

BαNα) = 0

N1 = −1

2
(3 +

√
5)N2

N1 =
1

2
(−3 +

√
5)N2

Eigenvalues of B =
n∑

α=2
BαNα =

(
1 1
1 2

)
λ1 =

1

2
(3 − √

5)

λ2 =
1

2
(3 +

√
5)

Algebraic and geometric multiplicities of the distinct
eigenvalues of B

λ1 =
1

2
(3 − √

5) : AlgMult = 1 GeoMult = 1

λ2 =
1

2
(3 +

√
5) : AlgMult = 1 GeoMult = 1

The system of PDEs is totally hyperbolic.

Exercises

Apply the program PdeSysClass to the following systems.

1. D’Alembert’s equation{
vx − wt = 0,

wx − a2vt = 0,
a ∈ �.

2. Heat equation {
wx − vy = 0,

vx = −w.
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3. Equations of 2D fluid dynamics{
ρt + vρx + ρvx = 0,

ρvt + ρvvx + p′(ρ)ρx = 0.

4. Equations of 3D fluid dynamics⎧⎪⎪⎨⎪⎪⎩
ρt + uρx + vρy + ρux + ρvy = 0,

ρut + ρuux + ρvuy + p′(ρ)ρx = 0,

ρvt + ρuvx + ρvvy + p′(ρ)ρy = 0.

5. Classify the system{
ux + xut + vx + 3vt = u − v,

3ux + ut − 2vx − vt = 2v,

along the straight line x0 = 2, i.e. at the arbitrary point (t0, x0 = 2).

6. Classify the system{
ux + 2ut + vx + 3vt = u − v,

3ux + ut − 2vx − vt = 2v.

7. Classify the system ⎧⎨⎩ρux + uρx + ρt = −2ρu

x
,

ρuux + ρut + c2ρx = 0,

at any point with respect to the solution (ρ = ρ0, u = 0).

8. Tricomi’s equation: Classify the system{
vy − wx = 0,

vx + xwy = 0,

at any point (x = x0, y) for any x0 in �.
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8.15 The Program WavesI

Aim of the Program WavesI

The program WavesI determines the characteristic equation of a quasi-
linear first-order system of PDEs as well as the advancing speeds of the
characteristic surfaces.

Description of the Problem and Relative Algorithm

Consider a quasi-linear first-order system of PDEs of m equations in the
m unknown functions (u1, · · · , um) depending on the n variables (x1 ≡
t, · · · , xn) in the form

Ak
ij (x,u)

∂uj

∂xk
= Fi (x,u) , (8.63)

where Ak
ij(x,u) and Fi(x,u) are continuous functions of their arguments.

The hypersurface Σn−1 of equation f(x) = 0 is a characteristic surface
for the Cauchy problem⎧⎨⎩Ai ∂u

∂xi
= F,

u (x) = u0 (x) ∀x ∈ Σn−1,

where

Ai =

⎛⎝Ai
11 · · · Ai

1m

· · · · · · · · ·
Ai

m1 · · · Ai
mm

⎞⎠
if it is a singular first-order surface of the function u (x), i.e., if

det
(
Ai ∂f

∂xi

)
x0

= 0. (8.64)

Moreover, the following jump conditions hold: 3[[
∂u
∂t

]]
x0

= −cna,[[
∂u
∂xi

]]
x0

= ni−1a ∀i = 2, · · · , n, x0 ∈ Σn−1,

3Remember that the time occupies the first place, i.e., x1 ≡ t, in the list of the indepen-
dent variables.
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where n is the unit vector normal to Σn−1 at x0, cn is the normal component
of the advancing speed, and a is the discontinuity field of the same order
as u. These last relations, together with (8.64), allow us to calculate the
normal components of the advancing speeds of Σn−1.

Command Line of the Program WavesI

WavesI[sys, unk, var]

Parameter List

Input Data

sys = quasi-linear first-order system of PDEs, where the terms containing
the first derivatives appear on the left-hand side, and the right-hand
side contains the functions and the known terms;

unk = list of the unknown functions;

var = list of the independent variables; the first one is the time.

Output Data

the canonical form of the system;

the characteristic equation;

the normal speed of Σn−1.

Use Instructions

The system of PDEs has to be given in such a way that on the left-hand
side the first derivatives appear and the right-hand side includes all the
terms involving the unknown functions and the known terms. Moreover,
the time t occupies the first place in the list of the independent variables.

The system of PDEs we wish to examine must to be given according to
the syntax both of Mathematica and the program; i.e., any equation has to
be written in the form

eqi = Akij
(
uj
)
xk

== Fi,

where the two sides are separated by a double equal sign and the symbol
∂uj
∂xk

is written as
(
uj
)
xk

.



8.15. The Program WavesI 235

Worked Examples

1. Hydrodynamic equations: In the absence of body forces, consider the
hydrodynamic equations of a compressible perfect fluid{

ρv̇ + p′(ρ)∇ρ = 0,

ρ̇ + ρ∇ · v = 0,

where the pressure p is a function of the density ρ. To verify the exis-
tence of acoustic waves in the fluid, it is possible to use the program
WavesI with the following data:4

eq1 = ρ(v1)t + ρv1(v1)x1 + ρv2(v1)x2 + p′[ρ](ρ)x1 == 0;

eq2 = ρ(v2)t + ρv1(v2)x1 + ρv2(v2)x2 + p′[ρ](ρ)x2 == 0;

eq3 = (ρ)t + v1(ρ)x1 + v2(ρ)x2+ρ(v1)x1 + ρ(v2)x2 == 0;

sys = {eq1, eq2, eq3};

unk = {v1, v2, ρ};

var = {t, x1, x2};

WavesI[sys, unk, var]

The output is

Canonical form of the system⎛⎝ρ 0 0
0 ρ 0
0 0 1

⎞⎠⎛⎝ (v1)t
(v2)t
ρt

⎞⎠ +

⎛⎝ρv1 0 p′[ρ]
0 ρv1 0
ρ 0 v1

⎞⎠⎛⎝ (v1)x1
(v2)x1
ρx1

⎞⎠
+

⎛⎝ρv2 0 0
0 ρv2 p′[ρ]
0 ρ v2

⎞⎠⎛⎝ (v1)x2
(v2)x2
ρx2

⎞⎠ =

⎛⎝0
0
0

⎞⎠
Characteristic equation in a matrix form

Det

⎡⎣⎛⎝ρ 0 0
0 ρ 0
0 0 1

⎞⎠ ft +

⎛⎝ρv1 0 p′[ρ]
0 ρv1 0
ρ 0 v1

⎞⎠ fx1 +

⎛⎝ρv2 0 0
0 ρv2 p′[ρ]
0 ρ v2

⎞⎠ fx2

⎤⎦ = 0

The explicit characteristic equation

ρ2 (ft + fx1v1 + fx2v2)
× (

f2t + 2fx1fx2v1v2 + 2ft (fx1v1 + fx2v2) +f2x1 (v21 − p′ [ρ])
+fx2

(
v2
2 − p′ [ρ]

))
= 0

4We remark that in Mathematica the functional dependence is expressed by brackets.
Therefore, instead of p = p (ρ) we have to write p = p [ρ].
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Normal speed of Σ(t)

cn,1 = n1v1 + n2v2

cn,2 = n1v1 + n2v2 − √
p′[ρ]

cn,3 = n1v1 + n2v2 +
√
p′[ρ]

Exercises

Verify the existence of characteristic surfaces for the following first-order
quasi-linear systems of PDEs.

1. Laplace’s equation
�u = 0.

In order to check that there is no real characteristic surface for this
equation by the program WavesI, we need to transform the previous
equation into an equivalent first-order system. But it is well known
that this transformation can be done in infinite ways, without mod-
ifying either the mathematical or the physical properties. However,
in this process it is essential to recall that the program WavesI de-
termines the characteristic surfaces as discontinuity surfaces for the
first derivatives of the involved unknown functions. In other words,
only the transformations for which the new unknowns coincide with
the first derivatives of the function u are allowed. In particular, we
can achieve this by introducing the functions

u1 = ux, u2 = uy,

and reducing the Laplace equation to the system{
(u1)y − (u2)x = 0,

(u1)x + (u2)y = 0,

where the first equation expresses Schwarz’s condition for the second
derivative of u.

To make this clearer, we note that the transformation⎧⎪⎪⎨⎪⎪⎩
ux = u1,

uy = u2,

(u1)x + (u2)y = 0,

cannot be used in the program WavesI. In fact, with these new un-
knowns u1, u2, and u, the program attempts to determine the char-
acteristic surfaces as discontinuity surfaces for the first derivatives of
u too.
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2. D’Alembert’s equation

∂2u

∂x2 − 1
v2

∂2u

∂t2
= 0.

Similarly to the previous exercise, by introducing the notations u1 =
ut and u2 = ux, the wave equation becomes equivalent to the following
system: ⎧⎨⎩

(u1)x − (u2)t = 0,

(u2)x − 1
v2 (u1)t = 0.

3. Heat equation

∂u

∂t
− ∂2u

∂x2 = 0 ≡
{

(u1)x − (u2)t = 0,

u1 − (u2)x = 0.

4. Tricomi’s equation

∂2u

∂t2
− t

∂2u

∂x2 = 0 ≡
{

(u1)x − (u2)t = 0,

(u1)t − t(u2)x = 0.

5. Generalized Tricomi’s equation

∂2u

∂t2
− g(t)

∂2u

∂x2 = 0 ≡
{

(u1)x − (u2)t = 0,

(u1)t − g(t)(u2)x = 0.

6. Maxwell’s equations ⎧⎪⎪⎨⎪⎪⎩
∇ × E = −µ

∂H
∂t

,

∇ × H = ε
∂E
∂t

,

where E and H are the electric and magnetic fields, and µ and ε are
the dielectric and magnetic permeability constants, respectively.

Maxwell’s equations are equivalent to the following first-order system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ez)y − (Ey)z + µ(Hx)t = 0,

(Ex)z − (Ez)x + µ(Hy)t = 0,

(Ey)x − (Ex)y + µ(Hz)t = 0,

(Hz)y − (Hy)z − ε (Ex)t = 0,

(Hx)z − (Hz)x − ε(Ey)t = 0,

(Hy)x − (Hx)y − ε(Ez)t = 0,
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where Ex, Ey, Ez, Hx, Hy, and Hz denote the components of E and H
along the axes. The existence of electromagnetic waves can be easily
verified with the program WavesI.

7. 2D-linear elasticity equation

ρ∗ ∂2u
∂t2

= (λ + µ)∇∇ · u + µ�u,

where ρ∗ is the mass density in the reference configuration, u is the
displacement field, and λ and µ are the Lamé coefficients. By intro-
ducing the new unknowns

u1 =
∂u
∂x

, u2 =
∂u
∂t

, u3 =
∂u
∂y

,

the above equation becomes equivalent to the following first-order
system composed by six equations in the unknowns u1,u2 and u3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u1,x)t − (u2,x)x = 0,

(u1,y)t − (u2,y)x = 0,

(u2,x)y − (u3,x)t = 0,

(u2,y)y − (u3,y)t = 0,

ρ (u2,x)t − (λ + µ) [(u1,x)x + (u1,y)x] − µ [(u1,x)x + (u3,x)y] = 0,

ρ (u2,y)t − (λ + µ) [(u3,x)y + (u3,y)x] − µ [(u2,y)x + (u3,y)y] = 0.

The use of the program WavesI shows that the longitudinal waves
travel with a greater velocity than the transverse waves.

8. {
ut − qx = 0,

qt − a(u)qx = 0.

9. ⎧⎪⎪⎨⎪⎪⎩
ut − qx = 0,

qt − a(u)qx − b (u) vx = 0,

qx − v = 0.
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8.16 The Program WavesII

Aim of the Program WavesII

The program WavesII evaluates the characteristic equation of a system
of second-order quasi-linear PDEs as well as the advancing speeds of the
characteristic surfaces and the second derivative jumps. Moreover, in the
2D case, it distinguishes between transverse and longitudinal waves.

Description of the Problem and Relative Algorithm

Consider a second-order quasi-linear system of m equations in m un-
knowns (u1, · · · , um) depending on n variables (x1 ≡ t, · · · , xn):

Ahk
ij (x,u,∇u)

∂2uj

∂xh∂xk
= Fi(x,u,∇u), (8.65)

where Ak
ij(x,u,∇u) and Fi(x,u,∇u) are continuous functions of their ar-

guments.
A hypersurface Σn−1 of equation f(x) = 0 is a characteristic surface

relative to the Cauchy problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Aij ∂2u

∂xi∂xj
= F,

u (x) = u0(x) ∀x ∈ Σn−1,

du
dn

≡ ∇u · n = d0(x) ∀x ∈ Σn−1,

where

Aij =

⎛⎜⎝Aij
11 · · · Aij

1m

· · · · · · · · ·
Aij

m1 · · · Aij
mm

⎞⎟⎠
if it is a second-order singular surface for the function u (x), i.e., if

det
(
Aij ∂f

∂xi

∂f

∂xj

)
x0

= 0. (8.66)

Moreover, the following jump conditions hold:5[[
∂2u
∂t2

]]
x0

= c2
na,

5We recall that the time always occupies the first position in the list of the variables,
i.e., x1 ≡ t.
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[[
∂2u

∂xi∂xj

]]
x0

= ni−1nj−1a ∀i, j = 2, · · · , n,[[
∂2u

∂xi∂t

]]
x0

= −cnni−1a ∀i = 2, · · · , n, x0 ∈ Σn−1,

where n is the unit vector normal to Σn−1 at x0, cn is the advancing velocity
of Σn−1, and a is the discontinuity field of the same order as u. These last
relations, together with (8.66), allow us to evaluate the advancing velocity
of Σn−1 and the jump fields.

In the planar case, the program distinguishes between transverse and
longitudinal waves. In particular, the velocity cn refers to a transverse wave
if the second derivative jumps on the characteristic surface are orthogonal
to n, that is, the following relations hold:{

a · n = 0,

a × n �= 0;

similarly, cn refers to a longitudinal wave when the jumps are parallel to n:{
a · n �= 0,

a × n = 0.

Command Line of the Program WavesII

WavesII[sys, unk, var]

Parameter List

Input Data

sys = second-order quasi-linear system of PDEs, where all the terms con-
taining the second derivative appear on the left-hand side, and all the
other terms appear on the right-hand side;

unk = list of the unknowns;

var = list of the independent variables where the first one is the time.

Output Data

characteristic equation associated with the system;

the normal speed of Σn−1;

jump vectors;

in the 2D case the distinction between transverse and longitudinal waves.
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Use Instuctions

The system has to be given in such a way that on the left-hand sides
the second derivatives appear while the right-hand sides include all the
terms involving the unknown functions and their first derivatives. The
time t occupies the first position of the list of the independent variables.
Each equation of the system must to be written with the syntax both of
Mathematica and the program, i.e., in the form

eqi = Ahkij
(
uj
)
xh,xk

== Fi,

where the two sides of the equation are separated by a double equal sign

and the symbol
∂2uj

∂xh∂xk
is written as

(
uj
)
xh,xk

.

Worked Examples

1. Consider the 2D linear elasticity equation

ρ∗ ∂2u
∂t2

= (λ + µ)∇∇ · u + µ�u,

where ρ∗ is the mass density, u ≡ (ux, uy) is the displacement field,
and λ and µ are the Lamé coefficients.

To verify the existence of longitudinal and transverse waves, we can
use the program WavesII by inputting the following input data:

eq1 = ρ(ux)t,t − (λ + µ)((ux)x,x + (uy)x,y) − µ((ux)x,x + (ux)y,y) == 0;

eq2 = ρ(uy)t,t − (λ + µ)((ux)y,x + (uy)y,y) − µ((uy)x,x + (uy)y,y) == 0;

sys = {eq1, eq2};

unk = {ux, uy};

var = {t, x, y};

WavesII[sys, unk, var]

The corresponding output is

Characteristic equation

(−λ − 2µ + ρc2n) (−µ + ρc2n) = 0

Normal speed of Σ(t)

cn,1 = −
√

µ√
ρ

cn,2 =
√

µ√
ρ
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cn,3 = −
√

λ + 2µ√
ρ

cn,4 =
√

λ + 2µ√
ρ

Jump vectors

a1 =
a2n1
n2

a1 = −a2n2
n1

The velocity cn,1 = −
√

µ√
ρ
refers to a transverse wave.

The velocity cn,2 =
√

µ√
ρ
refers to a transverse wave.

The velocity cn,3 = −
√

λ + 2µ√
ρ

refers to a longitudinal wave.

The velocity cn,4 =
√

λ + 2µ√
ρ

refers to a longitudinal wave.

Exercises

Apply the program WavesII to the following systems.

1. Navier–Stokes equations{
ρv̇ = (λ + µ)∇∇ · v + µ�v − p′(ρ)∇ρ,

ρ̇ + ρ∇ · v = 0.

The program WavesII shows that, due to the viscosity, there is no
propagation in the fluid.

2. Laplace’s equation
�u = 0.

3. D’Alembert’s equation

∂2u

∂x2 − 1
v2

∂2u

∂t2
= 0.

4. Heat equation
∂u

∂t
− ∂2u

∂x2 = 0.
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5. Tricomi’s equation
∂2u

∂t2
− t

∂2u

∂x2 = 0.

6. Generalized Tricomi’s equation

∂2u

∂t2
− g(t)

∂2u

∂x2 = 0.



Chapter 9

Fluid Mechanics

9.1 Perfect Fluid

A perfect fluid or Euler fluid was defined (see (7.28)) to be a fluid S
whose stress tensor is expressed by the constitutive equation

T = −pI, p > 0, (9.1)

where the positive scalar p is called the pressure . If the pressure

p = p(ρ) (9.2)

is a given function of the mass density ρ, then the fluid is called com-
pressible . On the other hand, if the fluid is density preserving, so that the
pressure does not depend on ρ, then the fluid is said to be incompressible .
In this case the pressure p is no longer defined by a constitutive equation; it
is a function of x to be deduced from the momentum balance. By assuming
(9.1), it follows that the stress acting on any unit surface with normal N is
given by

t = TN = −pN, (9.3)

so that t is normal to the surface, is directed towards the interior, and its
intensity does not depend on N (Pascal’s principle). When dealing with
static conditions (v = 0) and conservative body forces, i.e. b = −∇U , the
momentum balance equation (5.30) is

∇p = −ρ ∇U. (9.4)

Experimental evidence leads us to assume that dp/dρ > 0 and the function
p = p(ρ) can be inverted. If we introduce the notation

h(p) =
∫

dp

ρ(p)
, (9.5)

245
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then

∇h(p) =
dh

dp
∇p =

1
ρ
∇p,

and (9.4) becomes

∇(h(p) + U) = 0. (9.6)

The equation (9.6) shows that in the whole volume occupied by the fluid
we have

h(p) + U = const . (9.7)

In particular, if the fluid is incompressible (ρ = const), then instead of
(9.7), we have

p

ρ
+ U(x) = const . (9.8)

Both (9.7) and (9.8) allow us to say that potential surfaces coincide with
the isobars.

9.2 Stevino’s Law and Archimedes’ Principle

It is relevant to observe how many conclusions can be inferred from (9.7)
and (9.8).

1. Let S be an incompressible fluid on the boundary of which acts a
uniform pressure p0 (atmospheric pressure). If the vertical axis z is
oriented downward, then the relation U(x) = −gz + const implies
that the free surface is a horizontal plane.

2. Let S be an incompressible fluid subjected to a uniform pressure p0
on its boundary. If the cylinder which contains the fluid is rotating
around a vertical axis a with uniform angular velocity ω, then its free
surface is a paraboloid of rotation around a. In fact, the force acting
on the arbitrary particle P is given by g + ω2−→

PQ, where Q is the
projection of P on a. It follows that

U = −gz − ω2

2
(x2 + y2),

and then (9.8) proves that the free surface is a paraboloid (see Figure
9.1).
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g

a

ω 2PQ

Figure 9.1

3. Assume that the arbitrary constant in the expression of U is such
that if z = 0, then U(0) = 0. From (9.8) it follows that

p(z)
ρ

− gz =
p0

ρ
,

i.e.,
p(z) = p0 + ρgz, z > 0, (9.9)

and Stevino’s law is obtained: The pressure linearly increases with
depth by an amount equal to the weight of the fluid column acting on
the unit surface.

4. The simplest constitutive equation (9.2) is given by a linear function
relating the pressure to the mass density. By assuming that the pro-
portionality factor is a linear function of the absolute temperature θ,
the corresponding constitutive equation defines a perfect gas

p = Rρθ, (9.10)

where R is the universal gas constant. Let the gas be at equilibrium
at constant and uniform temperature when subjected to its weight
action. Assuming the axis Oz is oriented upward, we get U(z) =
gz + const and, taking into account (9.10), equation (9.7) becomes

Rθ

∫ p

p0

dp

p
= −gz,

so that
p(z) = p0exp

(
− gz

Rθ

)
. (9.11)
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5. Archimedes’ principle is a further consequence of (9.8): The buoy-
ant force on a body submerged in a liquid is equal to the weight of the
liquid displaced by the body.

To prove this statement, consider a body S submerged in a liquid, as
shown in Figure 9.2.

O

  

 

Ce

Ci

Ωσe

σi

Figure 9.2

If p0 is the atmospheric pressure, then the force acting on S is given
by

F = −
∫

σe

p0N dσ −
∫

σi

(p0 + ρgz)N dσ, (9.12)

where N is the outward unit vector normal to the body surface σ,
σi is the submerged portion of σ, and σe is the portion above the
waterline. By adding and subtracting on the right-hand side of (9.12)
the integral of −p0N over Ω (see Figure 9.2), (9.12) becomes

F = −
∫

∂Ce

p0N dσ −
∫

∂Ci

(p0 + ρgz)N dσ, (9.13)

so that the knowledge of F requires the computation of the integrals
in (9.13). To do this, we define a virtual pressure field (continuous on
Ω) in the interior of the body:

p = p0 on Ce,

p = p0 + ρgz on Ci.

Applying Gauss’s theorem to the integrals in (9.13), we obtain∫
∂Ce

p0N dσ =
∫

Ce

∇p0 dV = 0,

∫
∂Ci

p0N dσ =
∫

Ci

∇p0 dV = 0,

∫
∂Ci

ρgzN dσ = ρg

∫
Ci

∇z dV.



9.2. Stevino’s Law and Archimedes’ Principle 249

Finally,
F = −ρgVik, (9.14)

where k the unit vector associated with Oz.

The equation (9.14) gives the resultant force acting on the body S. To
complete the equilibrium analysis, the momentum MO of pressure forces
with respect to an arbitrary pole O has to be explored. If r =

−→
OP , then

MO = −p0

∫
σe

r × N dσ −
∫

σi

r × (p0 + ρgz)N dσ. (9.15)

Again, by adding and subtracting on the right-hand side of (9.15) the in-
tegral of −p0r × N over Ω, (9.15) becomes

MO = −p0

∫
∂Ce

r × N dσ −
∫

∂Ci

r × (p0 + ρgz)N dσ.

By applying Gauss’s theorem, we get

−p0

∫
Ce

εijl
∂xj

∂xl
dV = −p0

∫
Ce

εijlδjl dV = 0,∫
Ci

∂

∂xl
[εijlxj(p0 + ρgz)] dV

= −
∫

Ci

[εijlδjl (p0 + ρgz) + εijlxjρgδ3l] dV

= −ρg

∫
Ci

εij3xj dV.

Finally,
M0 = −ρg [x2C i − x1Cj] Vi, (9.16)

where i and j are orthonormal base vectors on the horizontal plane and

x1CVi =
∫

Ci

x1 dV, x2CVi =
∫

Ci

x2 dV. (9.17)

Expression (9.16) shows that the momentum of the pressure forces van-
ishes if the line of action of the buoyant force passes through the centroid
of the body. The centroid of the displaced liquid volume is called center
of buoyancy .

In summary: A body floating in a liquid is at equilibrium if the buoyant
force is equal to its weight and the line of action of the buoyant force passes
through the centroid of the body. It can be proved that the equilibrium is
stable if the center of buoyancy is above the centroid and it is unstable if
the center of buoyancy is below the centroid.

An extension of Archimedes’ principle to perfect gases is discussed in the
Exercise 3.
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9.3 Fundamental Theorems of Fluid Dynamics

The momentum balance equation (5.30), when applied to a perfect fluid
subjected to conservative body forces, is written as

ρv̇ = −∇p − ρ∇U ; (9.18)

with the additional introduction of (9.5), it holds that

v̇ = −∇(h(p) + U). (9.19)

By recalling the above definitions, the following theorems can be proved.

Theorem 9.1 (W. Thomson, Lord Kelvin)
In a barotropic flow under conservative body forces, the circulation around
any closed material curve γ is preserved; i.e., it is independent of time:

d

dt

∫
γ

v · ds = 0. (9.20)

PROOF If γ is a material closed curve, then there exists a closed curve
γ∗ in C∗ such that γ is the image of γ∗ under the motion equation γ =
x(γ∗, t). It follows that

d

dt

∫
γ

vi dxi =
d

dt

∫
γ∗

vi
∂xi

∂Xj
dXj =

∫
γ∗

d

dt

(
vi

∂xi

∂Xj
dXj

)
=

∫
γ∗

(
v̇i

∂xi

∂Xj
+ vi

∂ẋi

∂Xj

)
dXj =

∫
γ

(
v̇i + vi

∂vi

∂xj

)
dxj ,

and, taking into account (9.19), it is proved that

d

dt

∫
γ

v · ds =
∫

γ

(
v̇+

1
2
∇v2

)
· ds = −

∫
γ

∇
(

h(p) + U − 1
2
v2
)

· ds = 0.

(9.21)

Theorem 9.2 (Lagrange)
If at a given instant t0 the motion is irrotational, then it continues to be
irrotational at any t > t0, or equivalently, vortices cannot form.

PROOF This can be regarded as a special case of Thomson’s theorem.
Suppose that in the region C0 occupied by the fluid at the instant t0 the
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condition ω = 0 holds. Stokes’s theorem requires that

Γ0 =
∫

γ0

v · ds = 0

for any material closed curve γ0. But Thomson’s theorem states that Γ = 0
for all t > t0, so that also ω(t) = 0 holds at any instant.

Theorem 9.3 (Bernoulli)
In a steady flow, along any particle path, i.e., along the trajectory of an
individual element of fluid, the quantity

H =
1
2
v2 + h(p) + U, (9.22)

is constant. In general, the constant H changes from one streamline to
another, but if the motion is irrotational, then H is constant in time and
over the whole space of the flow field.

PROOF By recalling (4.18) and the time independence of the flow,
(9.19) can be written as

v̇ = (∇ × v) × v +
1
2
∇v2 = −∇(h(p) + U). (9.23)

A scalar multiplication by v gives the relation

v̇ · ∇
(

1
2
v2 + h(p) + U

)
= 0,

which proves that (9.22) is constant along any particle path. If the steady
flow is irrotational, then (9.23) implies H = const through the flow field at
any time.

In particular, if the fluid is incompressible, then Bernoulli’s theorem
states that in a steady flow along any particle path (or through the flow
field if the flow is irrotational) the quantity H is preserved; i.e.,

H =
1
2
v2 +

p

ρ
+ U = const. (9.24)

The Bernoulli equation is often used in another form, obtained by dividing
(9.24) by the gravitational acceleration

hz + hp + hv = const,

where hz = U/g is the gravity head or potential head , hp = p/ρg is the
pressure head and hv = v2/2g is the velocity head .
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In a steady flow, a stream tube is a tubular region Σ within the fluid
bounded by streamlines. We note that streamlines cannot intersect each
other. Because ∂ρ/∂t = 0, the balance equation (5.22) gives ∇ · (ρv) = 0,
and by integrating over a volume V defined by the sections σ1 and σ2 of a
stream tube (see Figure 9.3), we obtain

 

 

 

N

v

N

σ2

σ1

γ
Figure 9.3

Q =
∫

σ1

ρv · n dσ =
∫

σ2

ρv · n dσ. (9.25)

This relation proves that the flux is constant across any section of the
stream tube. If the fluid is incompressible, then (9.25) reduces to∫

σ1

v · n dσ =
∫

σ2

v · n dσ. (9.26)

The local angular speed ω is also called the vortex vector and the
related integral curves are vortex lines; furthermore, a vortex tube is
a surface represented by all vortex lines passing through the points of a
(nonvortex) closed curve. By recalling that a vector field w satisfying the
condition ∇ · w = 0 is termed solenoidal , and that 2∇ · ω = ∇ · ∇ × v = 0,
we conclude that the field ω is solenoidal. Therefore vortex lines are closed
if they are limited, and they are open if unconfined. We observe that Figure
9.3 can also be used to represent a vortex tube if the vector v is replaced
by ω.

The following examples illustrate some relevant applications of Bernoulli’s
equation.

1. Consider an open vessel with an orifice at depth h from the free surface
of the fluid. Suppose that fluid is added on the top, in order to keep
constant the height h. Under these circumstances, it can be proved
that the velocity of the fluid leaving the vessel through the orifice is
equal to that of a body falling from the elevation h with initial velocity
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equal to zero (this result is known as Torricelli’s theorem , because
it was found long before Bernoulli’s work). Assuming that at the free
surface we have v = 0 and z = 0, it follows that H = p0/ρ and, by
applying (9.24), we derive the relation

H =
p0

ρ
=

v2

2
− gh +

p0

ρ
,

so that v =
√

2gh.

2. In a horizontal pipe of variable cross section, the pressure of an incom-
pressible fluid in steady motion decreases in the converging section.

First, the mass balance equation (9.26) requires that

v1σ1 = v2σ2, (9.27)

so that the fluid velocity increases in the converging section and de-
creases in the diverging section.

Furthermore, since U = ρz = const along the stream tube, (9.24)
implies that

v2
1

2
+

p1

ρ
=

v2
2

2
+

p2

ρ
,

and this proves that the pressure decreases in a converging section.
This result is applied in Venturi’s tube, where a converging section
acts as a nozzle, by increasing the fluid velocity and decreasing its
pressure.

Theorem 9.4 (First Helmholtz’s theorem)
The flux of the vortex vector across any section of a vortex tube is constant.

PROOF Let σ1 and σ2 be two sections of a vortex tube T and consider
the closed surface Σ defined by σ1, σ2 and the lateral surface of T . By
applying Gauss’s theorem, we have∫

Σ
ω · N dσ =

∫
V

∇ · ω dV =
1
2

∫
V

∇ · (∇ × v) dV = 0,

where N is the unit outward vector normal to Σ. The definition of a vortex
tube implies that ω is tangent to Σ at any point, so that the theorem is
proved since ∫

Σ
ω · N dσ =

∫
σ1

ω · N1 dσ =
∫

σ2

ω · N2 dσ = 0,
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where N1 is the unit vector normal to σ1, pointing towards the interior of
the tube, and N2 is the outward unit vector normal to σ2.

From this theorem it also follows that the particle vorticity increases if
the vortex curves are converging.

Theorem 9.5 (Second Helmholtz’s theorem)
Vortex lines are material lines.

PROOF At the instant t0 = 0, the vector ω is supposed to be tangent to
the surface σ0. Denote by σ(t) the material surface defined by the particles
lying upon σ0 at the instant t0. We have to prove that σ(t) is a vortex
surface at any arbitrary instant. First, we verify that the circulation Γ
along any closed line γ0 on σ0 vanishes. In fact, if A is the portion of σ0
contained in γ0, it holds that

Γ =
∫

γ0

v · ds =
∫

A

∇ × v · N dσ = 2
∫

A

ω · N dσ = 0,

since ω is tangent to A. According to Thomson’s theorem, the circulation
is preserved along any material curve, so that, if γ(t) is the image of γ0, it
follows that∫

γ(t)
v · ds =

∫
A(t)

∇ × v · Ndσ = 2
∫

A(t)
ω · Ndσ = 0.

Since A(t) is arbitrary, ω · N = 0 and the theorem is proved.

The theorem can also be stated by saying that the vortex lines are con-
stituted by the same fluid particles and are transported during the motion.
Examples include the smoke rings, whirlwinds and so on.

9.4 Boundary Value Problems for a Perfect Fluid

The motion of a perfect compressible fluid S subjected to body forces b
is governed by the momentum equation (see (9.18))

v̇ = −1
ρ
∇p(ρ) + b (9.28)

and the mass conservation

ρ̇ + ρ∇ · v = 0. (9.29)
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Equations (9.28) and (9.29) are a first-order system for the unknowns v(x, t)
and ρ(x, t) and, to find a unique solution, both initial and boundary con-
ditions have to be specified.

If we consider the motion in a fixed and compact region C of the space,
(e.g., a liquid in a container with rigid walls), the initial conditions are

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x) ∀x ∈ C, (9.30)

and the boundary condition is

v · N = 0 ∀x ∈ ∂C, t > 0. (9.31)

This boundary condition states that the fluid can perform any tangential
motion on the fixed surface, whose unit normal is N.

The problem is then to find in C × [0, t] the fields v(x, t) and ρ(x, t) that
satisfy the balance equations (9.28), (9.29), the initial conditions (9.30),
and the boundary condition (9.31).

If the fluid is incompressible (ρ = const), then the equation (9.28) be-
comes

v̇ = −1
ρ
∇p + b, (9.32)

while the mass conservation (9.29) leads us to the condition

∇ · v = 0. (9.33)

The unknowns of the system (9.32) and (9.33) are given by the fields v(x, t)
and p(x, t), and the appropriate initial and boundary conditions are

v(x, 0) = v0(x) ∀x ∈ C,

v · N = 0 ∀x ∈ ∂C, t > 0. (9.34)

A more complex problem arises when a part of the boundary is repre-
sented by a moving or free surface f(x, t) = 0. In this case, finding the
function f is a part of the boundary value problem. The moving boundary
∂C ′, represented by f(x, t) = 0, is a material surface, since a material par-
ticle located on it has to remain on this surface during the motion. This
means that its velocity cN along the unit normal N to the free surface is
equal to v · N; that is, f(x, t) has to satisfy the condition (see (4.33))

∂

∂t
f(x, t) + v(x, t) · ∇f(x, t) = 0.

In addition, on the free surface it is possible to prescribe the value of the
pressure, so that the dynamic boundary conditions are

∂

∂t
f(x, t) + v(x, t) · ∇f(x, t) = 0,

p = pe ∀x ∈ ∂C ′, t > 0, (9.35)
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where pe is the prescribed external pressure.
On the fixed boundary part, the previous impenetrability condition (9.32)

applies, and if the boundary C extends to infinity, then conditions related
to the asymptotic behavior of the solution at infinity have to be added.

9.5 2D Steady Flow of a Perfect Fluid

The following two conditions define an irrotational steady motion of an
incompressible fluid S:

∇ × v = 0, ∇ · v = 0, (9.36)

where v = v(x). The first condition allows us to deduce the existence of a
velocity or kinetic potential ϕ(x) such that

v = ∇ϕ, (9.37)

where ϕ is a single- or a multiple-valued function, depending on whether
the motion region C is connected or not.1

In addition, taking into account (9.36)2, it holds that

∆ϕ = ∇ · ∇ϕ = 0. (9.38)

The equation (9.38) is known as Laplace’s equation and its solution is a
harmonic function .

Finally, it is worthwhile to note that, in dealing with a two-dimensional
(2D) flow, the velocity vector v at any point is parallel to a plane π and
it is independent of the coordinate normal to this plane. In this case, if a
system Oxyz is introduced, where the axes x and y are parallel to π and
the z axis is normal to this plane, then we have

v = u(x, y)i + v(x, y)j,

where u, v are the components of v on x and y, and i, j are the unit vectors
of these axes.

If now C is a simply connected region of the plane Oxy, conditions (9.36)
become

−∂u

∂y
+

∂v

∂x
= 0,

∂u

∂x
+

∂v

∂y
= 0. (9.39)

1If C is not a simply connected region, then the condition ∇ × v = 0 does not imply
that

∫
γ
v · ds = 0 on any closed curve γ, since this curve could not be the boundary of

a surface contained in C. In this case, Stokes’s theorem cannot be applied.
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These conditions allow us to state that the two differential forms ω1 =
udx + vdy and ω2 = −vdx + udy are integrable, i.e. there is a function ϕ,
called the velocity potential or the kinetic potential , and a function ψ,
called the stream potential or the Stokes potential , such that

dϕ = udx + vdy, dψ = −vdx + udy. (9.40)

From (9.36)2 it follows that the curves ϕ = const are at any point normal
to the velocity field. Furthermore, since ∇ϕ ·∇ ψ = 0, the curves ψ = const
are flow lines.

It is relevant to observe that (9.40) suggest that the functions ϕ and ψ
satisfy the Cauchy–Riemann conditions

∂ϕ

∂x
=

∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
, (9.41)

so that the complex function

F (z) = ϕ(x, y) + iψ(x, y) (9.42)

is holomorphic and represents a complex potential . Then the com-
plex potential can be defined as the holomorphic function whose real and
imaginary parts are the velocity potential ϕ and the stream potential ψ,
respectively. The two functions ϕ and ψ are harmonic and the derivative
of F (z),

V ≡ F ′(z) =
∂ϕ

∂x
+ i

∂ψ

∂x
= u − iv = |V | e−iθ, (9.43)

represents the complex velocity , with |V | being the modulus of the ve-
locity vector and θ the angle that this vector makes with the x axis.

Within the context of considerations developed in the following discus-
sion, it is relevant to remember that the line integral of a holomorphic
function vanishes around any arbitrary closed path in a simply connected
region, since the Cauchy–Riemann equations are necessary and sufficient
conditions for the integral to be independent of the path (and therefore it
vanishes for a closed path).

The above remarks lead to the conclusion that a 2D irrotational flow of
an incompressible fluid is completely defined if a harmonic function ϕ(x, y)
or a complex potential F (z) is prescribed, as it is shown in the examples
below.

Example 9.1
Uniform motion. Given the complex potential

F (z) = U0(x + iy) = U0z, (9.44)
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it follows that V = U0, and the 2D motion

v = U0i (9.45)

is defined, where i is the unit vector of the axis Ox. The kinetic and Stokes
potentials are ϕ = U0x, ψ = U0y, and the curves ϕ = const and ψ = const
are parallel to Oy and Ox (see Figure 9.4), respectively. This example shows
that the complex potential (9.44) can be introduced in order to describe a
2D uniform flow, parallel to the wall y = 0.

x

y

v

level lines of

level lines of

ϕ
ψ

Figure 9.4: Uniform motion

Example 9.2
Vortex potential. Let a 2D flow be defined by the complex potential

F (z) = −i
Γ
2π

ln z = −i
Γ
2π

ln reiθ =
Γ
2π

θ − i
Γ
2π

ln r, (9.46)

where r, θ are polar coordinates. It follows that

ϕ =
Γ
2π

θ =
Γ
2π

arctan
y

x
,

ψ = −i
Γ
2π

ln r = − Γ
2π

ln(x2 + y2),

and the curves ϕ = const are straight lines through the origin, while the
curves ψ = const are circles whose center is the origin (see Figure 9.5).

Accordingly, the velocity components become

u =
∂ϕ

∂x
= − Γ

2π

y

x2 + y2 = − Γ
2π

sin θ

r
,

v =
∂ϕ

∂y
=

Γ
2π

x

x2 + y2 =
Γ
2π

cos θ

r
.
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x

y

v

level lines of ϕ
level lines of ψ 

Figure 9.5: Vortex potential

It is relevant to observe that the circulation around a path γ bordering the
origin is given by ∫

γ

v · ds = Γ,

so that it does not vanish if Γ �= 0. This is not in contradiction with the
condition ∇×v = 0 since the plane without the origin is no longer a simply
connected region. In Section 9.7, further arguments will be addressed in
order to explain why the circulation around an obstacle does not vanish in
a 2D flow.

The complex potential (9.46) can then be used with advantage to describe
the uniform 2D flow of particles rotating around the axis through the origin
and normal to the plane Oxy.

Example 9.3
Sources and sinks. For pure radial flow in the horizontal plane, the complex
potential is taken:

F (z) =
Q

2π
ln z =

Q

2π
ln reiθ =

Q

2π
(ln r + iθ), Q > 0.

so that

ϕ =
Q

2π
ln r =

Q

2π
log(x2 + y2), ψ =

Q

2π
θ =

Q

2π
arctan

y

x
.

The curves ϕ = const are circles and the curves ψ = const are straight lines
through the origin. The velocity field is given by

v =
Q

2πr
er,
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where er is the unit radial vector (see Figure 9.6). Given an arbitrary closed
path γ around the origin, the radial flow pattern associated with the above
field is said to be either a source , if∫

γ

v · n dσ = Q > 0, (9.47)

or a sink , if Q < 0. The quantity Q/2π is called the strength of the source
or sink.

x

y

v

Q>0

level curves of ϕ
level curves of ψ

Figure 9.6: Sources and
Sinks

Example 9.4
Doublet. A doublet is the singularity obtained by taking to zero the dis-
tance between a source and a sink having the same strength. More precisely,
consider a source and a sink of equal strength, the source placed at the point
A, with z1 = −aeiα, and the sink placed at B, with z2 = aeiα. The complex
potential for the combined flow is then

F (z) =
Q

2π
ln(z + aeiα) − Q

2π
ln(z − aeiα) ≡ f(z, a), (9.48)

The reader is invited to find the kinetic and Stokes potential (see Figure
9.7).

If points A and B are very near to each other, i.e. a � 0, it follows that

F (z) = f(z, 0) + f ′(z, 0)a =
Q

2π

1
z
2aeiα.
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x

y

v

level curves of ϕ
level curves of ψ

Q>0

0Q<

Figure 9.7: Doublet

In particular, if a → 0, so that Qa/π → m, then we obtain the potential of
a doublet (source–sink):

F (z) =
m

z
eiα. (9.49)

Furthermore, if α = 0, e.g., if the source and the sink are on the x axis,
then

F (z) =
m

z
=

my

x2 + y2 − i
mx

x2 + y2 ≡ ϕ + iψ (9.50)

and the flow lines ψ = const are circles through the origin.

Example 9.5
Consider the 2D flow with complex potential

F (z) = U0z +
U0a

2

z
(9.51)

i.e., the flow is obtained as the superposition of a uniform flow parallel to
the x axis (in the positive direction) and the flow due to a dipole (source–
sink) system of strength m = U0a

2. Assuming z = x + iy, then from (9.51)
it follows that

ϕ = U0x

(
1 +

a2

x2 + y2

)
, ψ = U0y

(
1 − a2

x2 + y2

)
.

The flow lines ψ = const are represented in Figure 9.8 (for U0 = a = 1).
Note that the condition x2 + y2 = a2 corresponds to the line ψ = 0.

Furthermore, if the region internal to this circle is substituted with the cross
section of a cylinder, (9.51) can be assumed to be the complex potential of
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the velocity field around a cylinder. The components of the velocity field
are given by

u =
∂ϕ

∂x
= U0

(
1 − a2 x2 − y2

r4

)
= U0

(
1 − a2

r2 cos 2θ

)
,

v =
∂ϕ

∂y
= U0

a2

r2 sin 2θ.

   

  
    

   

y
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Figure 9.8

It should be noted that, although singular points associated with a dou-
blet do not actually occur in real fluids, they are interesting because the
flow pattern associated with a doublet is a useful approximation far from
singular points, and it can be combined to advantage with other nonsingular
complex potentials.

Example 9.6
All the previous examples, with the exception of Example 9.2, refer to
2D irrotational flows whose circulation along an arbitrary closed path is
vanishing. We now consider the complex potential

F (z) = U0z +
U0a

2

z
+ i

Γ
2π

ln
z

a
. (9.52)

This represents a flow around a cylinder of radius a obtained by superposing
a uniform flow, a flow generated by a dipole, and the flow due to a vortex.
The dipole and the vortex are supposed to be located on the center of the
section. In this case, according to (9.47), the vorticity is Γ, and the vortex
can be supposed to be produced by a rotation of the cylinder around its
axis. Flow lines are given by the complex velocity

V =
dF

dz
= U0(1 − a2

z2 ) + i
Γ

2πz
.
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In order to find stagnation points (V = 0), we must solve the equation
dF/dz = 0. Its roots are given by

zv=0 =
1

4U0π

(
−iΓ ±

√
(16U2

0 π2a2 − Γ2)
)

. (9.53)

Three cases can be distinguished: Γ2 < 16π2a2U2, Γ2 = 16π2a2U2, and
Γ2 > 16π2a2U2, whose corresponding patterns are shown in Figures 9.9,
9.10, and 9.11 (assuming U0 = a = 1).
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At this stage the reader should be aware that these examples, although of
practical relevance, are based on equations of steady-state hydrodynamics,
which in some occasions give rise to inaccurate or paradoxical results. As
an example, in the next section we will analyze D’Alembert’s paradox,
according to which the drag of a fluid on an obstacle is zero. In order
to remove this paradox, it will be necessary to introduce a boundary layer
within which viscosity cannot be disregarded.

9.6 D’Alembert’s Paradox and the Kutta–Joukowsky
Theorem

In spite of the attractive results obtained in the previous section, the
assumption of a perfect fluid cannot be used to explain some important
phenomena occurring in fluid dynamics.

In particular, the condition v · n = 0 assumed on the boundary ∂C means
that the fluid is free to move with respect to the wall boundary, while there
is actually no relative movement and the appropriate boundary condition
on ∂C should be v = 0. It has also been shown that, when considering
the irrotational steady flow of a perfect fluid, the motion is described by
a velocity potential ϕ that is the solution of a Neumann’s problem for
Laplace’s equation. It follows that the boundary condition v = ∇ϕ = 0 on
∂C, appropriate for a real fluid, is a redundant condition, not admissible
for Laplace’s equation.

This example is just one of the contradictions arising when dealing with
inviscid fluids. The aim of this section is to discuss the most relevant of
these.

Let V be a fixed (nonmaterial) volume. Then the momentum balance
equation is written as

d

dt

∫
V

ρv dc =
∫

∂V

(T − ρv ⊗ v) · N dσ +
∫

V

ρb dc. (9.54)

If a fixed solid S of volume C is placed in a steady flow of an incompress-
ible fluid, then equation (9.54) allows us to find the drag on S, assuming
that b = 0. Since the flow is steady, the left-hand side of (9.54) vanishes;
furthermore, if ∆ is the region bounded by the surface ∂C of the solid and
an arbitrary surface Σ that contains C (see Figure 9.12), then by recalling
that v · n = 0 on ∂C, we find that∫

∂C

T · N dσ +
∫

Σ
(T − ρv ⊗ v) · N dσ = 0.
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The first integral is just the opposite of the force F acting on S, so that
the previous relation becomes

F =
∫

Σ
(T − ρv ⊗ v) · N dσ. (9.55)

From similar arguments it can be proved that the torque of the force
acting on S with respect to a pole O can be obtained from (5.30), so that

MO =
∫

Σ
r × (T − ρv ⊗ v) · N dσ. (9.56)

At this stage we recall the following theorem of the potential theory, without
a proof.

N

N

C

V

Σ

Figure 9.12

Theorem 9.6
If in the region surrounding a solid C an irrotational flow of an incom-
pressible fluid satisfies the condition

lim
r→∞ v = V,

where V is a constant vector (representing the undisturbed motion at in-
finity) and r is the distance of any point from an arbitrary origin, then the
velocity field assumes the asymptotic behavior

v = V + O(r−3). (9.57)

In a 2D motion, (9.57) can be replaced by the following relation:

v = V i +
Γ

2πr2 (−yi + xj) + O(r−2), (9.58)
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where i and j are the unit vectors of the axes Ox and Oy, i is parallel to
V, and the circulation

Γ =
∮

v · ds (9.59)

refers to any closed path surrounding the solid body.

Note that in two dimensions the condition ∇×v = 0 does not imply that
Γ = 0, since the region surrounding the obstacle is not simply connected.
However, by applying Stokes’s theorem, it can be proved that Γ assumes a
value which is independent of the path.

By taking into account the asymptotic behavior (9.57) and Bernoulli’s
theorem (9.24), where U = 0 in the absence of body forces, we find that

p = p0 +
1
2
ρ(V 2 − v2) = p0 + O(r−3), (9.60)

where p0 is the pressure at infinity. Substituting T · N = [−p0 + 0(r−3)]N
into (9.55) gives

F = −
∫

Σ
(p0I − ρV ⊗ V)N dσ +

∫
Σ

O(r−3) dσ,

so that, assuming that the arbitrary surface Σ is a sphere of radius R, we
have

F = −(p0I − ρV ⊗ V)
∫

Σ
N dσ + O(R−1). (9.61)

Finally, by applying Gauss’s theorem to the right-hand side, we find that

F = 0,

i.e., the irrotational flow of a perfect fluid gives zero drag on any obstacle
placed in a fluid stream (D’Alembert’s paradox ).

In a 2D motion, from (9.58), we have

v2 = V 2 − V
Γ

πr2 y + O(r−2).

Substituting into Bernoulli’s theorem instead of (9.60), we get

p = p0 +
1
2
ρ

Γ
πr2 yV + O(r−2). (9.62)

By combining with (9.55), the force acting on the obstacle assumes the
expression

F = − (
p0 + ρV 2) i

∫
Σ

Nx dl − p0j
∫

Σ
Ny dl

− Γ
2πR2 V j

∫
Σ
(xNx + yNy) dl

− Γ
2πR2 V i

∫
Σ
(yNx − xNy) dl +

∫
Σ

O(r−2) dl,
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where Σ is now a circle of radius R surrounding the body C. Since integrals∫
Σ

Nx dl,

∫
Σ
Ny dl,

vanish, the previous expression becomes

F = − Γ
2πR2 V j

∫
Σ
(xNx + yNy) dl − Γ

2πR2 V i
∫

Σ
(yNx − xNy) dl + O(r−1),

In addition we have (xNx + yNy) = R · N = R and (yNx − xNy) = 0, so
that the Blasius formula

F = −ρΓV j (9.63)

is obtained.
This formula shows that although a steady flow of an inviscid fluid pre-

dicts no drag on an obstacle in the direction of the relative velocity in the
unperturbed region, it can predict a force normal to this direction. This is
a result obtained independently by W.M. Kutta in 1902 and N.E. Joukowski
(sometimes referred as Zoukowskii) in 1906, known as the Kutta–
Joukowski theorem . Such a force is called lift , and it is important for
understanding why an airplane can fly.

Before closing this section, we observe that our inability to predict the
drag for an inviscid fluid in the direction of relative velocity does not means
we should abandon the perfect fluid model. Viscosity plays an important
role around an obstacle, but, far from the obstacle, the motion can still be
conveniently described according to the assumption of an inviscid fluid.

9.7 Lift and Airfoils

A lifting wing having the form of an infinite cylinder of appropriate cross
section normal to rulings, is usually called an airfoil .

Airplane wings are obviously cylinders of finite length, and the effects of
this finite length have an important role in the theory of lift. Nevertheless,
even considering an infinitely long cylinder, essential aspects of lift can be
identified.

First, we must justify a nonvanishing circulation around a wing. To
do this, consider a wing L of section S and the fluid motion around it,
described by the complex potential (9.51) at time t0. Let γ be any material
curve surrounding the wing (see Figure 9.13).
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In the region R2 − S, the motion is assumed to be irrotational with
the exception of a small portion ∆ ∪ d, near the wing, whose presence is
justified by the following arguments: viscosity acts in a boundary layer ∆
just around the wing and it produces a vortex of area d at the point A. This
vortex grows away from the wing and disappears into the fluid mass, but it is
continuously generated. The material curve γ is assumed to be large enough
to contain S at any instant t. Since in the region R2 − S ∪ ∆ ∪ d, which
is not a simply connected region, the motion is irrotational, Thomson’s
theorem implies that the circulation on γ is zero at any time. Furthermore,
by applying Stokes’s theorem to the region bounded by the oriented curves
γ, γ1, and γ2, we see that the circulation on γ1 must be equal and opposite
to the circulation on γ2.

S
A

d

 

 

γ

γ1

γ2

∆

Figure 9.13

At this stage, it becomes useful to transform the flow field we are dealing
with into another flow field which is easier to determine. For this reason,
we recall the definition of conformal mapping together with some other
properties. If a complex variable w is an analytic function of z, i.e. w =
Φ(z), then there is a connection between the shape of a curve in the z
plane and the shape of the curve in the w plane, as a consequence of the
properties of an analytic function. In fact, the value of the derivative is
independent of the path the increments dx and dy follow in going to zero.
Since it can be proved that this transformation preserves angles and their
orientation, it is called conformal mapping.

As already shown in Section 9.5, the flow around a given profile can be
described through a convenient complex potential. The simplest wing pro-
file was suggested by Joukowski. It is obtained from the complex potential
F (ζ) of the motion around a circular cylinder (Example 5) in the plane
ζ = ξ + iη, by means of the conformal mapping z = x + iy = Φ(ζ).

Note that lift can occur if there is an asymmetry due either to the asym-
metry of the body or to a misalignment between the body and the ap-
proaching flow. The angle of misalignment is called the angle of attack .
The angle of attack to the cylinder of the velocity vector is denoted by ϕ,
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as shown in Figure 9.14, and the motion is supposed to be described by the
complex potential

F̂ (ζ) = U0

[(
ζ − beiθ

)
e−iϕ +

a2

(ζ − beiθ) e−iϕ

]
. (9.64)

ϕ 

C

T

θ 

l

b β 

U0

η,  

T '
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C '

ξ , x

y

γ

γ 

Figure 9.14

It is obtained from the potential introduced in Section 9.5, Example 5, i.e.,
F (ζ ′) = U0(ζ ′ +a2/ζ ′), by applying the transformations ζ ′ → ζ ′′ = ζ ′eiϕ →
ζ = ζ ′′ + beiθ, corresponding to a rigid rotation ϕ of the axes and a rigid
translation of the origin into beiθ.

Joukowsky’s transformation is defined as

z = Φ(ζ) = ζ +
l2

ζ
, (9.65)

which is conformal everywhere, with the exception of the origin, which
is mapped to infinity. The inverse transformation cannot be carried out
globally, since from (9.65) it follows that

ζ =
z ± √

z2 − 4l2

2
.

It can also be proved that the region external to the circle γ of radius a is
in one-to-one correspondence with the region external to the curve given
by the image Γ of the circle γ.

As a consequence, Joukowsky’s conformal mapping allows us to define,
in the region external to Γ, a new complex potential

F (z) = F̂ (Φ−1(z))

which describes the motion around the profile Γ. Such a profile, provided
that the parameter l is conveniently selected, is the wing shape in Figure
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9.14. In particular, the point T (l, 0) in the plane (ξ, η), corresponding to
the sharp trailing edge, is mapped into T ′(2l, 0) in the plane (x, y). This
point is singular for the derivative dF̂ /dζ of (9.64), since(

dF

dz

)
z=(2l,0)

=

(
dF̂

dζ

)
ζ=(l,0)

(
dζ

dz

)
z=(2l,0)

=

(
dF̂

dζ

)
ζ=(l,0)

1
(dz/dζ)ζ=(l,0)

=

(
dF̂

dζ

)
ζ=(l,0)

1(
1 − l2

ζ2

)
ζ=(l,0)

.

A nonvanishing circulation around the wing is justified by Joukowsky as-
suming that the velocity has a finite value at any point.

In order to satisfy this condition, Joukowsky introduces the complex
potential due to the circulation (see Example 6 in Section 9.5), so that the
velocity is zero at T ′. The complex potential F (z), due to the superposition
of different contributions, is then given by

F (z) = U0

[(
ζ − beiθ

)
e−iϕ +

a2

(ζ − beiθ) e−iϕ

]
+ i

Γ
2π

ln

(
ζ − beiθ

)
e−iϕ

a
,

(9.66)
where ζ and z correspond to each other through (9.65). Figure 9.15 shows
streamlines around the cylinder obtained by considering the real part of
the right-hand side of (9.66), i.e., the kinetic potential ϕ(ξ, η). Figure 9.16
shows the wing profile and the related streamlines.

The complex velocity at T ′(2l, 0) in the z plane is(
dF

dz

)
z=(2l,0)

=

(
dF̂

dζ

)
ζ=(l,0)

dζ

dz
.

Since
(

dζ
dz

)
(2l,0)

= 1/(1 − l2/ζ2)ζ=(l,0) = ∞, to obtain a finite value of

(dF/dz)(2l,0) the derivative (dF/dζ)(l,0) needs to vanish. This condition is
satisfied by observing that

dF̂

dζ
= U0

[
e−iϕ − a2eiϕ

(ζ − beiθ)2

]
+ i

Γ
2π

1
ζ − beiθ

, (9.67)

and from Figure 9.14 it also follows that ζ−beiθ = ζ−l+aei(π−β); therefore,
when ζ = l, from (9.67) we deduce that

U0

(
1 − e−2i(π−β)+2iϕ

)
+ i

Γ
2πa

e−i(π−β)+iϕ = 0.
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Equating to zero both the real and imaginary parts, we get the value of Γ:

Γ = −4πaU0 sin (π − β − ϕ) = 4πaU0 sin (β + ϕ) , (9.68)

which depends on the velocity of the undisturbed stream, on the apparent
attack angle ϕ, and on β. The last two parameters define the dimension
and curvature of the wing profile, given a and U0.
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Increasing the angle of attack of an airfoil increases the flow asymmetry,
resulting in greater lift. Experimental evidence shows that if the total angle
of attack ϕ + β reaches a critical value, the airfoil stalls, and the lift drops
dramatically.

There are three programs attached to this chapter: Wing, Potential,
and Joukowsky. The program Wing gives the curve Γ in the plane z corre-
sponding to the circle of unit radius through Joukowsky’s map.

The program Potential provides a representation of the streamlines
corresponding to a given complex potential F (z).

Finally, the program Joukowski gives the streamlines around a wing,
allowing changes of the angle of attack as well as the coordinates of the
center of the cylinder.
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9.8 Newtonian Fluids

The simplest assumption, that the difference between the stress in a
moving fluid and the stress at equilibrium is linearly related to the rate of
deformation tensor, is due to Newton (1687). The 3D case was studied by
Navier (1821) for an incompressible fluid, and later by Poisson (1831) for
the general case.

Due to these contributions, we have that the constitutive equations of
a linear compressible or incompressible viscous fluid (see Section 7.3), re-
spectively are

T = [−p(ρ) + λ (ρ) ID] I + 2µ (ρ)D, (9.69)
T = −pI + 2µD. (9.70)

If (9.69) is introduced into (5.30)1, the Navier–Stokes equation

ρv̇ = ρb − ∇p + ∇(λ∇ · v) + ∇ · (2µD) (9.71)

is obtained. Consequently, for a compressible viscous fluid we must find the
fields v(x, t) and ρ(x, t) which satisfy the system

ρv̇ = ρb − ∇p + ∇(λ∇ · v) + ∇ · (2µD),

ρ̇ + ρ∇ · v = 0,
(9.72)

in the domain C occupied by the fluid, as well as the boundary condition
on a fixed wall

v = 0 on ∂C (9.73)

and the initial conditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x) ∀x ∈ C. (9.74)

For the case of an incompressible fluid, for which ρ = const, µ = const,
∇ · v = 0, and

2∇ · D = ∆v + ∇(∇ · v) = ∆v,

equation (9.71) becomes

v̇ = b − 1
ρ
∇p + ν∆v,

where ν = µ/ρ is the coefficient of kinematic viscosity .
Then the problem reduces to finding the fields v(x, t) and ρ(x, t) that

satisfy the system

v̇ = b − 1
ρ
∇p +

µ

ρ
∆v

∇ · v = 0, (9.75)

the boundary condition (9.73), and the initial condition (9.74).
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9.9 Applications of the Navier–Stokes Equation

In this section we consider a steady flow of a linear viscous fluid char-
acterized by a velocity field parallel to the axis Ox in the absence of body
forces.

If Oy and Oz are two other axes, which together with Ox form an or-
thogonal frame of reference, then

v = (x, y, z)i, (9.76)

where i is the unit vector associated with the Ox axis. The introduction of
(9.76) into (9.75) gives

∂v

∂x
v +

1
ρ

∂p

∂x
=

µ

ρ
∆v,

∂p

∂y
=

∂p

∂z
= 0,

∂v

∂x
= 0.

These equations imply that

p = p(x), v = v(y, z),

so that the pressure and the velocity field depend only on x and on y, z,
respectively. It follows that they are both equal to the same constant A:

∂p

∂x
= ρA,

µ

ρ

(
∂2v

∂y2 +
∂2v

∂z2

)
= A. (9.77)

The first equation tells us that p is a linear function of x, so that if p0 and
p1 are the values at x = 0 and x = l, it follows that

p =
p1 − p0

l
x + p0. (9.78)

Therefore, (9.77)2 becomes

∂2v

∂y2 +
∂2v

∂z2 =
p1 − p0

µl
. (9.79)

We integrate (9.79) when v = v(y) and the fluid is confined between
the two plates y = 0 and y = h of infinite dimension, defined by y = 0
and y = h. Moreover, the second plate is supposed to move with uniform
velocity V along Ox and p0, p1 are supposed to be equal. We have

v = ay + b,
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where a and b are constant. If there is no relative slip at y = 0 and y = h,
i.e.,

v(0) = 0, v(h) = V,

we get

v =
V

h
y. (9.80)

Now, a flow in a cylinder with axis Ox is taken into account. In cylindrical
coordinates (r, ϕ, x), defined by

r =
√

y2 + z2, ϕ = arctan
z

y
, x = x,

provided that v(y, z) = v(r), equation (9.79) can be written as

d

dr

(
r
dv

dr

)
=

p1 − p0

µl
r, (9.81)

and the integration gives

v =
p1 − p0

4µl
r2 + A log r + B, (9.82)

where A and B are arbitrary constants. The condition that v has a finite
value at r = 0 requires A = 0. Furthermore, the adhesion condition v(a) =
0, where a is the radius of the cylinder, leads to

B = −p1 − p0

4µl
a2,

so that (9.82) becomes

v =
p1 − p0

4µl
(r2 − a2). (9.83)

The solution (9.83) allows us to compute the flux Q across the tube:

Q = ρ

∫ a

0
v2πr dr = πρa4 p0 − p1

8µl
. (9.84)

Formula (9.84) is used to determine the viscosity µ, by measuring Q, p1−p0,
and the mass density of the fluid.

9.10 Dimensional Analysis and the Navier–Stokes
Equation

It is well known that dimensional analysis is a very useful technique
in modeling a physical phenomenon. By using such a procedure, it can be
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proved that some terms of the Navier–Stokes equation can be neglected with
respect to other terms, so that the complexity of the equation is reduced.

For instance, the term ∇p/ρ in equation (9.75) cannot be compared with
ν�v, since their order of magnitude is not known a-priori. To make this
comparison possible we must introduce suitable reference quantities. If, for
sake of simplicity, our attention is restricted to liquids, i.e. to equations
(9.75), a characteristic length L and a characteristic velocity U are neces-
sary. As an example, for a solid body placed in a moving liquid, L can be
identified with a characteristic dimension of the body2 and U with the uni-
form velocity of the liquid particles that are very far from the body. In any
case, both L and U have to be selected in such a way that the dimensionless
quantities

v∗ =
v
U

, r∗ =
r
L

, τ =
t

L/U
(9.85)

have the order of magnitude of unity. It follows that

v̇ =
∂v
∂t

+ v · ∇v =
U

L/U

∂v∗

∂τ
+

U2

L
v∗ · ∇∗v∗,

1
ρ
∇p =

1
ρL

∇∗p,

ν∆v = ν∆∗v∗,

∇ · v =
U

L
∇∗ · v∗,

where the derivatives appearing in the operators ∇∗, ∇∗·, and ∆∗ are rel-
ative to the variables (x∗, y∗, z∗) = r∗. The substitution of these relations
into (9.75), after dividing by U2/L, leads to

v̇∗ = − 1
ρU2 ∇∗p +

ν

UL
∆∗v∗,

∇∗ · v∗ = 0. (9.86)

If the quantity ρU2 is assumed to be a reference pressure, then the intro-
duction of the dimensionless pressure

p∗ =
p

ρU2 (9.87)

allows us to write the system (9.86) in the form

v̇∗ = −∇∗p∗ +
1
R

∆∗v∗,

∇∗ · v∗ = 0, (9.88)

2In the 2D case, L can be a characteristic dimension of the cross section.



276 Chapter 9. Fluid Mechanics

where the dimensionless quantity

R =
UL

ν
(9.89)

is known as the Reynolds number .
We are now in a position to note that the quantities v̇∗, ∇∗p, and ∆∗v∗

in (9.88) are of the order of unity, whereas the term which multiplies the
Laplacian on the right-hand side can be neglected for large values of R, i.e.,
for low viscosity.

In addition, it can be noted that the solution of (9.88) is the same for
problems involving the same Reynolds number. This conclusion allows us to
build physical models of the real problem in the laboratory by conveniently
choosing parameters U , L, and v in order to preserve the Reynolds number
(scaling).

If R → ∞, then equations (9.88) reduce to dimensionless equations of a
perfect liquid. But care must be used in stating that (9.88) can be applied
at any point of the domain. In fact, when R → ∞, equations (9.88) are
not compatible with the boundary condition v∗ = 0, so that they can be
used in the whole domain, with the exception of a narrow region around
the body. In this region, which is called the boundary layer , (9.88) still
applies, because of the influence of viscosity.

9.11 Boundary Layer

In the previous section, the boundary layer has been defined as the thin
layer in which the effect of viscosity is important, independent of the value
of the Reynolds number. This definition derives from the hypothesis, in-
troduced by Prandtl (1905), that viscosity effects are important (that is,
comparable with convection and inertia terms) in layers attached to solid
boundaries whose thickness approaches zero as the Reynolds number goes
to infinity, while the same effects can be neglected outside these layers.

There are two specific aspects related to Prandtl’s hypothesis to be noted:
first, the fact that the boundary layer is thin compared with other dimen-
sions allows us to introduce some approximations in the motion equations.
Second, in the boundary layer the liquid velocity has a transition from the
zero value at the boundary (according to the no-slip condition) to a finite
value outside the layer.

Accordingly, with these remarks, it is appropriate to search for the solu-
tion of (9.75) in terms of a power series in the small parameter ε = 1/R, i.e.,

v = v0 + v1ε + v2ε
2 + · · · , (9.90)
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where v0 is the solution for perfect liquid. However, by substituting (9.90)
into (9.88), we see how this approach does not allow us to determine terms
such as v1, v2, ... since the parameter ε multiplies the highest derivatives.
Therefore, the need arises for a new perturbation method, called the method
of singular perturbations.

Before going into the details of the problem, we recall the basic ideas of
both regular and singular perturbation methods.

In modeling reality, it often happens that the effect to be described is
produced by a main cause and a secondary one, called a perturbation of the
main cause. For instance, the motion of a planet (effect) is primarily caused
by its gravitational attraction to the sun; however, the action of the heavier
planets cannot be completely neglected. In this case, when writing the
equations mathematically describing the phenomenon in nondimensional
form, the term related to the secondary cause is multiplied by a small
dimensionless parameter ε.

The regular perturbation method assumes that the solution of the per-
turbed problem can be represented by a power series of ε. Referring to
(9.90), the term vo is called the leading-order term, and, if the method
works properly, it is the solution of the unperturbed problem (in our exam-
ple, it is the solution for the perfect liquid).

By substituting the power series expansion into the differential equations
and auxiliary conditions, we obtain a set of equations which allow us to
determine v1,v2, etc.

This procedure does not always give an approximate solution and its
failure can be expected when the small parameter ε multiplies the highest
derivatives appearing in the equations. In fact, in this case, setting ε equal
to zero changes the mathematical character of the problem. Related to this
aspect, failures of the regular perturbation method occur when the physical
problem is characterized by multiple (time or length) scales. It is just in
these cases that the singular perturbation method has to be applied.

According to Prandtl’s hypothesis, the solution of (9.75) changes rapidly
in a narrow interval or inner region, corresponding to the boundary layer,
and more gently in the outer region. It follows that in order to analyze the
flow in the inner region, a proper rescaling is necessary.

The final step will be to match the inner and the outer solution, so that
an approximate solution uniformly applicable over the complete region can
be obtained.

For the sake of simplicity, the procedure will be applied below to a 2D
flow, parallel to Ox. The axis Ox is supposed to be the trace of a boundary
plate, and, due to symmetry arguments, the analysis will be restricted to
the sector x ≥ 0, y ≥ 0.

Accordingly, the velocity field is expressed by

v = U i, (9.91)
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where U is a constant. Then, two reference lengths L and δ are introduced,
together with two reference velocities U and εU , in order to take into ac-
count the different changes of velocity components u and v along the x and
y axes. Furthermore, let

x = x∗L, y = y∗δ, u = u∗U, v = v∗εU. (9.92)

O x

y

boundary layer

δ

Figure 9.17

The complex velocity at T ′(2l, 0) in the z plane is written as(
dF

dz

)
z=(2l,0)

=

(
dF̂

dζ

)
ζ=(l,0)

dζ

dz
.

Equations (9.88) become

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 +
∂2u

∂y2

)
,

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 +
∂2v

∂y2

)
,

∂u

∂x
+

∂v

∂y
= 0, (9.93)

which in dimensionless form are

U2

L
u∗ ∂u∗

∂x∗ +
U2ε

δ
v∗ ∂u∗

∂y∗ = − P

ρL

∂p∗

∂x∗ + ν

(
U

L2

∂2u∗

∂x∗2 +
U

δ2

∂2u∗

∂y∗2

)
,

U2ε

L
u∗ ∂v∗

∂x∗ +
U2ε2

δ
v∗ ∂v∗

∂y∗ = − P

ρδ

∂p∗

∂y∗ + ν

(
Uε

L2

∂2v∗

∂x∗2 +
Uε

δ2

∂2v∗

∂y∗2

)
,

U

L

∂u∗

∂x∗ +
Uε

δ

∂v∗

∂y∗ = 0. (9.94)

By deleting starred symbols since there is no danger of confusion, the pre-
vious system can be written in the form

u
∂u

∂x
+

Lε

δ
v
∂u

∂y
= − P

ρU2

∂p

∂x
+

ν

UL

∂2u

∂x2 +
νL

Uδ2

∂2u

∂y2 ,
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u
∂v

∂x
+

Lε

δ
v
∂v

∂y
= − P

ρU2

L

εδ

∂p

∂y
+

ν

UL

∂2v

∂x2 +
νL

Uδ2

∂2v

∂y2 ,

∂u

∂x
+

Lε

δ

∂v

∂y
= 0. (9.95)

It can be noted that, if the term εL/δ is not on the order of unity, then
either u is independent of x, or v is independent of y. Neither of these
possibilities has any physical meaning, so it emerges that

Lε

δ
� 1. (9.96)

This conclusion allows us to write the system (9.95), assuming that P �
ρU2, in the form

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
R

(
∂2u

∂x2 +
L2

δ2

∂2u

∂y2

)
,

u
∂v

∂x
+ v

∂v

∂y
= −L2

δ2

∂p

∂y
+

1
R

(
∂2v

∂x2 +
L2

δ2

∂2v

∂y2

)
,

∂u

∂x
+

∂v

∂y
= 0. (9.97)

The first two equations show that the condition of preserving the viscosity
effect when R → ∞ requires that

1
R

L2

δ2 � 1 ⇒ δ � L√
R

, (9.98)

and finally equations (9.97) become

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
R

∂2u

∂x2 +
∂2u

∂y2 ,

1
R

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

1
R2

∂2v

∂x2 +
1
R

∂2v

∂y2 ,

∂u

∂x
+

∂v

∂y
= 0. (9.99)

We can now apply the perturbation theory, i.e., we can search for a solution
in terms of power series of the parameter 1/R. In particular, when R → ∞
the first term of this series must satisfy Prandtl’s equations

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

∂2u

∂y2 ,

∂p

∂y
= 0,

∂u

∂x
+

∂v

∂y
= 0. (9.100)
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Equation (9.100)2 implies that p = p(x), so that the pressure assumes the
same value along the normal at (x, 0). In addition, since Bernoulli’s theorem
(9.22) states that in the unperturbed region the pressure is uniform, we
conclude that the pressure is uniform in the entire domain.

Equation (9.100)3 implies (see (9.40)) the existence of the Stokes poten-
tial ψ(x, y), so that

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

and (9.100)1 becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2 =
∂3ψ

∂y3 . (9.101)

This equation must be integrated in the region x ≥ 0, y ≥ 0 with the
following boundary conditions:

u = v = 0, if y = 0;

lim
y→∞ u = 1, lim

y→∞ v = 0,

which, in terms of ψ, are

ψ(x, 0) = 0,
∂ψ

∂y
(x, 0) = 0,

lim
y→∞

∂ψ

∂y
(x, y) = 1. (9.102)

It can be noted by inspection that if ψ(x, y) is a solution of (9.101), then
so is the function

ψ(x, y) = c1−nψ
(x

c
,

y

cn

)
. (9.103)

Moreover, it can be proved that the functions satisfying (9.103) have the
form

ψ(x, y) = x1−nψ
(
1,

y

xn

)
≡ x1−nf(η).

The derivative of this function with respect to y is

∂ψ

∂y
= x1−2nf ′(η),

so that the condition (9.102)3 only holds for n = 1/2 and

ψ(x, y) =
√

xf (η) , (9.104)

where η = y/
√

x. Substituting (9.104) into (9.101), and taking into account
the boundary conditions (9.102), we obtain the Blasius equation :

f ′′′ + ff ′′ = 0 (9.105)
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with the boundary conditions

f(0) = 0, f ′(0) = 0, lim
η→∞ f ′(η) = 1. (9.106)

The problem (9.105), (9.106), for which a theorem of existence and unique-
ness holds, can only be solved numerically. The pattern of the solution is
shown in Figure 9.18 (see Exercise 3).

u

η
0 2 4 6 8

0.2

0.4

0.6

0.8

Figure 9.18

9.12 Motion of a Viscous Liquid around an Obstacle

The aim of this section is to apply the previous results to the irrotational
steady motion of a viscous liquid around an obstacle of arbitrary shape.

According to the dimensional analysis of the Navier–Stokes equations,
when the Reynolds number R attains high values the assumption of a per-
fect incompressible fluid is justified in all the domain except for the bound-
ary layer, in which the viscosity is needed in order to satisfy the no-slip
condition v = 0 at the boundary. When integrating the motion equations
in this layer, a problem of singular perturbations arises, so that a convenient
change of variables is required. In particular, we introduce new variables ξ
and η such that

1. the curve η = 0 describes the profile of the obstacle;

2. curves ξ = const are normal to the obstacle;

3. the boundary layer is described by changing η from 0 to ∞.
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For instance, in the previous example, the old dimensionless coordinates
x and y were replaced with x and y′ = y/(1/R). With this change, the
straight line y = 0 gives the obstacle profile, the straight lines x = const are
orthogonal to the plate and, given the high value of the Reynolds number,
if 0 < y < δ, where δ = L/

√
R is the thickness of the boundary layer, the

variable y′ changes from 0 to
√

R → ∞.
In the general case of a body S of arbitrary cross section, recalling that

outside the obstacle the model of a perfect liquid is applicable, we must find
a complex potential F (z) = ϕ + iψ, where ϕ(x, y) and ψ(x, y) denote the
kinetic and Stokes potential, respectively. Then the curvilinear coordinates
(ϕ, ψ)

ϕ = ϕ(x, y),
ψ = ψ(x, y), (9.107)

are introduced. Consequently, the family ϕ = const contains the profile of
the obstacle, whereas the curves ψ = const are normal to them (see Figure
9.19). In the next step, we need to define new coordinates ψ∗ = ψ/δ, where
δ is an estimate of the boundary layer thickness, and we need to write
the motion equations in this new coordinate system. In the final step, the
perturbation method is applied in order to obtain an approximate solution.

Let F (z) = ϕ + iψ be a complex potential for the field v0 of the inviscid
flow. Then, the square of the infinitesimal distance between two points is
written as3

ds2 = |dz|2 =
|dF |2

|F ′(z)|2 =
dϕ2 + dψ2∣∣∣∂ϕ
∂x + i∂ψ

∂x

∣∣∣2 . (9.108)

By taking into account of (9.43), the previous expression becomes

ds2 =
dϕ2 + dψ2

|u0 − iv0|2
=

1
v2
0
(dϕ2 + dψ2), (9.109)

3We recall that the derivative at z0 of a function F (z) of a complex variable z is defined
by

F ′(z0) = lim
z→z0

F (z) − F (z0)
z − z0

.

This limit must be independent of the path z → z0 and, in particular, if z = z0 + ∆x, it
holds that

F ′(z0) = lim
∆x→0

F (z) − F (z0)
∆x

=
∂ϕ

∂x
+ i

∂ψ

∂x
.
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where u0 and v0 are the components of v0, and v0 = |v0|.

 
v

iψ
iϕ

  Ψ = const.

ϕ1 ϕ2

Figure 9.19

From (9.109), the following expressions can be derived (the reader should
refer to (2.61)–(2.63)):

∇f = v0

(
∂f

∂ϕ
iϕ +

∂f

∂ψ
iψ

)
, (9.110)

ω =
1
2
∇ × v =

1
2
v2
0

[
∂

∂ϕ

(
vψ

v0

)
− ∂

∂ψ

(
vϕ

v0

)]
k ≡ ωk, (9.111)

∇ × ω = v0

(
∂ω

∂ψ
iϕ − ∂ω

∂ϕ
iψ

)
, (9.112)

∇ · v = v2
0

[
∂

∂ϕ

(
vϕ

v0

)
+

∂

∂ψ

(
vψ

v0

)]
, (9.113)

v × ω = ω(vψiϕ − vϕiψ), (9.114)

where vϕ and vψ are the dimensionless velocity components for the viscous
flow, iϕ and iψ are the unit vectors tangent to the curves ϕ and ψ are
variable, while k is the unit vector normal to the plane of the motion.

Assuming that the viscous liquid is incompressible and the motion is
steady, (9.88) becomes

v · ∇v = −∇p + ε∆v,

∇ · v = 0, (9.115)

where, as usual, ε = 1/R. In addition, from (4.18) it follows that

v · ∇v =
1
2
∇v2 − 2v × ω, (9.116)

and, since ∇ · v = 0,

∆v = ∇(∇ · v) − ∇ × ∇ × v = −2∇×ω;
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equations (9.115) become

1
2
∇v2 − 2v × ω = −∇p − 2ε∇×ω,

∇ · v = 0. (9.117)

By taking into account (9.110)–(9.114), it can now be proved that the
previous equations assume the form

v0
∂

∂ϕ

(
v2

ϕ + v2
ψ

2

)
− 2vψω = −v0

∂p

∂ϕ
− 2εv0

∂ω

∂ψ
,

v0
∂

∂ψ

(
v2

ϕ + v2
ψ

2

)
+ 2vϕω = −v0

∂p

∂ψ
+ 2εv0

∂ω

∂ϕ
,

∂

∂ϕ

(
vϕ

v0

)
+

∂

∂ψ

(
vψ

v0

)
= 0. (9.118)

Finally, by introducing the quantities

wϕ =
vϕ

v0
, wψ =

vψ

v0
, (9.119)

we get
∂wϕ

∂ϕ
+

∂wψ

∂ψ
= 0, (9.120)

wϕ
∂wϕ

∂ϕ
+ wψ

∂wϕ

∂ψ
+ (w2

ϕ + w2
ψ)

∂

∂ϕ
log v0 (9.121)

= − 1
v2
0

∂p

∂ϕ
+ ε

[
∂2wϕ

∂ϕ2 +
∂2wϕ

∂ψ2 − 2
∂

∂ψ
log v0

(
∂wψ

∂ϕ
− ∂wϕ

∂ψ

)]
,

wϕ
∂wψ

∂ϕ
+ wψ

∂wψ

∂ψ
+ (w2

ϕ + w2
ψ)

∂

∂ψ
log v0 (9.122)

= − 1
v2
0

∂p

∂ψ
+ ε

[
∂2wψ

∂ϕ2 +
∂2wψ

∂ψ2 + 2
∂

∂ϕ
log v0

(
∂wψ

∂ϕ
− ∂wϕ

∂ψ

)]
.

Equations (9.120), (9.122), and (9.123) form an elliptic system for the un-
knowns wϕ(ϕ, ψ), wψ(ϕ, ψ), and p(ϕ, ψ), since the solution v0, which refers
to the problem of an inviscid liquid, has been supposed to be known.

Boundary conditions related to this system are the no-slip condition on
the boundary of the obstacle and the condition that at infinity the velocity
is given by v0iψ. Noting that the profile of the obstacle is defined by
ϕ1 ≤ ϕ ≤ ϕ2, ψ = 0 (see Figure 9.19), we obtain

wϕ(ϕ, 0) = wψ(ϕ, 0) = 0, ϕ1 ≤ ϕ ≤ ϕ2, (9.123)
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lim
ϕ,ψ−→∞

wϕ = 0, lim
ϕ,ψ−→∞

wψ = 1. (9.124)

The pressure p0 relative to the inviscid motion is given by Bernoulli’s
theorem. In fact, at infinity the velocity value is unity and the pressure is
zero, so that

p0 =
1
2
(1 − v2

0). (9.125)

As seen in the previous section, in the equations (9.120), (9.122), and
(9.123) a small parameter ε appears, where it multiplies the highest deriva-
tives. Consequently, here again we introduce two expansions of ε: the first
one valid far from the obstacle (outer solution), and the second one ap-
plicable near to the obstacle (inner solution). The second expansion must
satisfy the system (9.120), (9.122), and (9.123), provided that it is written
in convenient coordinates, which expand the boundary layer and allow the
velocity to change from zero to the value relative to the inviscid motion.

More specifically, by taking into account (9.123), (9.124), and (9.125) the
outer solution can be given the form

wϕ = εw(1)
ϕ + · · · ,

wψ = 1 + εw
(1)
ψ + · · · ,

p =
1
2
(1 − v2

0) + εp(1) + · · · . (9.126)

Furthermore, the convenient variable for expanding the boundary layer is

ψ∗ =
ψ

∆(ε)
, (9.127)

where ∆(ε) is a function of ε, determined in the following discussion.
In order to write (9.120), (9.122), and (9.123) in terms of the new vari-

ables ϕ and ψ∗, we observe that

∂

∂ψ
=

1
∆(ε)

∂

∂ψ∗
,

∂2

∂ψ2 =
1

∆2(ε)
∂2

∂ψ2∗
.

Consequently, by using the notation

wϕ(ϕ, ψ) = w∗
ϕ(ϕ, ψ∗),

wψ(ϕ, ψ) = w∗
ϕ(ϕ, ψ∗),

p(ϕ, ψ) = p∗(ϕ, ψ∗),

the system (9.120), (9.122), and (9.123) is written as

∂w∗
ϕ

∂ϕ
+

1
∆(ε)

∂w∗
ψ

∂ψ∗
= 0, (9.128)
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w ∗
ϕ

∂w∗
ϕ

∂ϕ
+

w∗
ψ

∆(ε)
∂w∗

ϕ

∂ψ∗
+ (w∗2

ϕ + w∗2
ψ )

∂

∂ϕ
log v0 = − 1

v2
0

∂p∗

∂ϕ
(9.129)

+ ε

[
∂2w∗

ϕ

∂ϕ2 +
1

∆2(ε)
∂2w∗

ϕ

∂ψ2∗
− 2

∆(ε)
∂

∂ϕ
log v0

(
∂w∗

ψ

∂ϕ
− 1

∆(ε)
∂w∗

ϕ

∂ψ∗

)]
,

w ∗
ϕ

∂w∗
ψ

∂ϕ
+

w∗
ψ

∆(ε)
∂w∗

ψ

∂ψ∗
+ (w∗2

ϕ + w∗2
ψ )

1
∆(ε)

∂

∂ψ∗
log v0 = − 1

v2
0

1
∆(ε)

∂p∗

∂ψ∗

+ ε

[
∂2w∗

ψ

∂ϕ2 +
1

∆2(ε)
∂2w∗

ψ

∂ψ2∗
+ 2

∂

∂ϕ
log v0

(
∂w∗

ψ

∂ϕ
− 1

∆(ε)
∂w∗

ϕ

∂ψ∗

)]
. (9.130)

If ∂w∗
ϕ/∂ϕ and ∂w∗

ψ/∂ψ∗ were of the same order, recalling that 1/∆(ε) goes

to infinity when ε −→ 0, we see that the continuity equation would give
∂w∗

ψ/∂ψ∗ = 0, so that w∗
ψ would be independent of ψ∗. Moreover, we have

that w∗
ψ = 0 when ψ∗ = 0 for arbitrary ϕ, so that we would have everywhere

w∗
ψ = 0, despite the requirement that the component w∗

ψ changes from zero
at the boundary to a finite value outside the layer.

Therefore, we need to have

w∗
ϕ = ŵϕ(ϕ, ψ∗) + · · · ,

w∗
ψ = ∆(ε)ŵψ(ϕ, ψ∗) + · · · ,
p = p̂(ϕ, ψ∗) + · · · ,

so that the system (9.128), (9.130) and (9.130) is written as

∂ŵϕ

∂ϕ
+

∂ŵψ

∂ψ∗
= 0, (9.131)

ŵ ϕ
∂ŵϕ

∂ϕ
+ ŵψ

∂ŵϕ

∂ψ∗

+ (ŵ2
ϕ + ∆2(ε)ŵ2

ψ)
∂

∂ϕ
log v0 = − 1

v2
0

∂p̂

∂ϕ
(9.132)

+ ε

[
∂2ŵϕ

∂ϕ2 +
1

∆2(ε)
∂2ŵϕ

∂ψ2∗
− 2

∂

∂ϕ
log v0

(
∂ŵψ

∂ϕ
− 1

∆(ε)
∂ŵϕ

∂ψ∗

)]
,

∆ (ε)ŵϕ
∂ŵψ

∂ϕ
+ ∆(ε)ŵψ

∂ŵψ

∂ψ∗

+ (ŵ2
ϕ + ∆2(ε)ŵ2

ψ)
1

∆(ε)
∂

∂ψ∗
log v0 = − 1

v2
0

1
∆(ε)

∂p̂

∂ψ∗
(9.133)

+ ε

[
∆(ε)

∂2ŵψ

∂ϕ2 +
1

∆(ε)
∂2ŵψ

∂ψ2∗
+ 2

∂

∂ϕ
log v0

(
∆(ε)

∂ŵψ

∂ϕ
− 1

∆(ε)
∂w∗

ϕ

∂ψ∗

)]
.
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On the other hand, it also holds that

v0(ϕ, ψ) = v0(ϕ, 0) +
(

∂v0

∂ψ

)
ψ=0

ψ + · · ·

= v0(ϕ, 0) + ∆(ε)
(

∂v0

∂ψ

)
ψ=0

ψ∗ + · · · , (9.134)

where v0(ϕ, 0) is the velocity on the obstacle boundary for the inviscid flow.
Consequently, for ε −→ 0, the following parabolic system is obtained:

∂ŵϕ

∂ϕ
+

∂ŵψ

∂ψ∗
= 0, (9.135)

ŵϕ
∂ŵϕ

∂ϕ
+ ŵψ

∂ŵϕ

∂ψ∗
+

ŵ2
ϕ

v0

dv0

dϕ
= − 1

v2
0

∂p̂

∂ϕ
+

∂2ŵϕ

∂ψ2∗
, (9.136)

∂p̂

∂ψ∗
= 0. (9.137)

The boundary conditions are

ŵϕ(ϕ, 0) = ŵψ(ϕ, 0) = 0, ϕ1 ≤ ϕ ≤ ϕ2,

ŵϕ(ϕ1, ψ∗) = 1, (9.138)

the velocity attaining the value corresponding to the undisturbed motion
ahead the obstacle.

The inner solution of (9.120), (9.122), and (9.123) must be compatible
with the outer solution, so that the additional requirements are

lim
ψ∗−→∞

ŵϕ = 1, p̂ =
1
2
(1 − v0)2. (9.139)

The boundary value problem (9.135)–(9.139) is very complex, so that it is
not surprising that a general solution is not yet available. When considering
a 2D plate, we find that the problem reduces to the system (9.100), which
is the origin of the Blausius equation. We remark that the compatibility
condition (9.139)2 allows us to eliminate the pressure in (9.136), since

∂p̂

∂ϕ
=

dp̂

dϕ
= −v0

dv0

dϕ
.

9.13 Ordinary Waves in Perfect Fluids

This section is devoted to wave propagation in perfect fluids. Two topics
will be addressed: first, waves are considered to be small perturbations of
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an undisturbed state, corresponding to a homogeneous fluid at rest. This
assumption allows us to linearize the motion equations and to apply ele-
mentary methods (see remarks in Section 8.6). Next, ordinary waves of
discontinuity are analyzed, showing that the propagation velocity has the
same expression obtained by the linearized theory. On the other hand, non-
linearity of the system influences the propagation of waves whose pattern is
different whether we consider a linear case or not. Finally, the last section
deals with shock waves in perfect fluids.

Consider a compressible perfect fluid at rest, with uniform mass density
ρ0, in absence of body forces. Assume that the motion is produced by a
small perturbation, so that it is characterized by a velocity v and a density
ρ that are only lightly different from 0 and ρ0, respectively. More precisely,
such an assumption states that quantities v and σ = ρ − ρ0 are first-order
quantities together with their first-order derivatives.

In this case, the motion equations

ρv̇ = −∇p(ρ) = −p′(ρ)∇ρ,

ρ̇ + ρ∇ · v = 0,
(9.140)

can be linearized. In fact, neglecting first-order terms of |v| and σ, we get

p′(ρ) = p′(ρ0) + p′′(ρ0)σ + · · · ,
ρ̇ = σ̇ =

∂σ

∂t
+ v·∇σ =

∂σ

∂t
+ · · · ,

v̇ =
∂v
∂t

+ v · ∇v =
∂v
∂t

+ · · · ,

so that equations (9.140) become

ρ0
∂v
∂t

= −p′(ρ0)∇σ,

∂σ

∂t
+ ρ0∇ · v = 0. (9.141)

Consider now a sinusoidal 2D wave propagating in the direction of the
vector n with velocity U and wavelength λ:

v = a sin
2π

λ
(n · x − Ut), σ = b sin

2π

λ
(n · x − Ut).

We want a solution of the previous system having this form. To find this
solution, we note that

∂v
∂t

= −2π

λ
Ua cos

2π

λ
(n · x − Ut),

∂σ

∂t
= −2π

λ
Ub cos

2π

λ
(n · x − Ut),

∇ · v =
2π

λ
n · a cos

2π

λ
(n · x − Ut), ∇σ =

2π

λ
nb cos

2π

λ
(n · x − Ut),
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so that the system (9.141) becomes

ρ0Ua = p′(ρ0)bn,

−Ub + ρ0a · n = 0,

i.e.,

(p′(ρ0)n ⊗ n − U2)Ia = 0,

(p′(ρ0) − U2)b = 0.

Assuming a reference frame whose axis Ox is oriented along n, we get

U = 0, a ⊥ n,

U = ±
√

p′(ρ0), a = an, (9.142)

where the eigenvalue 0 has multiplicity 2. Thus we prove the existence of
dilational waves propagating at a speed

U =
√

p′(ρ0).

The velocity U is called the sound velocity , and the ratio m = v/U is
known as the Mach number . In particular, the motion is called subsonic
or supersonic, depending on whether m < 1 or m > 1.

Let S(t) be the wavefront of a singular wave for the nonlinear equations
(9.107). In order to find the propagation speed cn of S(t), the jump system
associated to (9.107) (see (4.38) and Chapter 8) can be written as

ρ(cn − vn)a = p′(ρ)bn,

(cn − vn)b = ρn · a, (9.143)

where a and b refer to the discontinuities of the first derivatives of v and ρ,
respectively. By getting b from the second equation and substituting into
the first one, it follows that

(cn − vn)2a = p′(ρ)n(n · a),

i.e.,
(p′(ρ)n ⊗ n − I(cn − vn)2)a = 0. (9.144)

Equation (9.144) shows that the squares of relative velocity are equal to
the eigenvalues of the acoustic tensor

p′(ρ)n ⊗ n

and the discontinuity vectors a are the related eigenvectors. The relative
advancing velocity is

cn = vn ±
√

p′(ρ), a = an, (9.145)
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so that, if the undisturbed state is at rest, the same result (9.142)2 is
obtained.

Exercise 9.1
Starting from equation (9.72), we leave the reader to prove that in an
incompressible viscous fluid no ordinary discontinuity wave exists.

Hint: Note that the equation we are considering contains second-order
derivatives of velocity and first-order derivatives of density. This implies
that the singular surface is of second-order with respect to v, and of first-
order with respect to ρ. In addition, jumps of second-order derivatives with
respect to time, strictly related to cn, do not appear in (9.72).

9.14 Shock Waves in Fluids

In this section we deal with some fundamental properties of compressible
inviscid fluids, under the assumption that the shock is adiabatic i.e., it
happens without absorbing or losing heat:

[[h]] · n = 0. (9.146)

It is well known that if υ and η are chosen as thermodynamic variables,
then the reduced dissipation inequality leads to the following relations:

υ =
∂h

∂p
(p, η), θ = −∂h

∂η
(p, η),

where the enthalpy h = ε + pυ. Therefore, if

∂2h

∂pη
= −∂θ

∂p
�= 0,

it is possible to find the relation

η = η(p, υ). (9.147)

In the following discussion, all the constitutive equations will be supposed
to depend on υ, η, and the entropy being expressed by (9.147).

Jump conditions (5.22)2, (5.31), and (5.46), written for a perfect fluid,

[[ρ(cn − vn)]] = 0,
[[ρv(cn − vn) − pn]] = 0,[[

ρ

(
1
2
v2 + ε(ρ, p)

)
(cn − vn) − pvn

]]
= 0, (9.148)
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give a system of one vector equation and two scalar equations with the
unknowns v−, ρ−, p−, referring to the perturbed region, and the normal
speed of propagation cn of Σ since the values of v+, ρ+, and p+ are assigned.

If we decompose the velocity v into its normal vn and tangential compo-
nent vτ ,

v = vnn + vτ ,

where
v2 = v2

n + v2
τ ,

then equations (9.148) become

[[ρ(cn − vn)]] = 0,
[[ρvτ (cn − vn)]] = 0,

[[ρvn(cn − vn) − p]] = 0[[
ρ

(
1
2
(v2

n + v2
τ ) + ε(ρ, p)

)
(cn − vn) − pvn

]]
= 0, (9.149)

From (9.149)1,2 it follows that

[[ρvτ (cn − vn)]] = ρ±(cn − v±
n )[[vτ ]] = 0, (9.150)

so that, if the shock wave is material

cn = v±
n ,

then from (9.149)3,4 we get the conditions

[[p]] = 0, [[vn]] = 0.

We conclude that the discontinuities only refer to density, tangential veloc-
ity, and internal energy.

On the other hand, if cn �= v±
n , (9.150) states that the continuity of the

tangential components of velocity on the nonmaterial wavefront

[[vτ ]] = 0, (9.151)

and the system (9.149) reduces to the system

[[ρ(cn − vn)]] = 0,
[[ρvn(cn − vn) − p]] = 0,[[

ρ

(
1
2
v2

n + ε(ρ, p)
)

(cn − vn) − pvn

]]
= 0. (9.152)

of three equations for the four unknowns v−
n , ρ−, p−, and cn. This sys-

tem can be solved provided that the constitutive equation ε(ρ, p) has been
assigned together with the value of one of the above quantities.
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There are some relevant consequences of the system (9.152). First, if
we introduce at x ∈ Σ a reference system attached to the wavefront, the
previous system is written as

ρ−w− = ρ+w+ ≡ j,

ρ−(w−)2 + p− = ρ+(w+)2 + p+,

ρ−
(

1
2
(w−)2 + ε−

)
+ p− = ρ+

(
1
2
(w+)2 + ε+

)
+ p+, (9.153)

where w is the velocity of particles on the wavefront with respect to the
new reference system. Taking into account the first of these equations and
introducing the specific volume υ = 1/ρ, we find that the system (9.153)
can be written as

j2υ− + p− = j2υ+ + p+,
1
2
j2(υ−)2 + ε− =

1
2
j2(υ+)2 + ε+. (9.154)

The first equation allows us to derive the condition

j2 =
p− − p+

υ+ − υ− , (9.155)

corresponding to the two possibilities

p− > p+ and υ− < υ+ or p− < p+ and υ− > υ+.

Finally, after taking into account (9.155), the equation (9.154) becomes

f(υ−, p−) ≡ ε−(υ−, p−) − ε+ +
1
2
(υ− − υ+)(p− + p+) = 0. (9.156)

This equation is called Hugoniot’s equation or the adiabatic shock
equation and, given a pair p+, υ+ for the undisturbed region, it allows us
to find all values p−, υ− which are compatible with jump conditions, but
not necessarily possible. In fact we observe that, assuming that the shock
wave exists, there must be a unique combination of υ+, υ−, p+, p−, once
j or, equivalently, cn has been assigned. This remark highlights that the
jump system does not provide a complete description of shock phenomenon,
since it admits more than one solution. Some of these solutions must be
rejected on a physical basis.

If ε(υ, p) is assumed to be a one-to-one function of each of its variables,
then the equation (9.156) defines a curve γ in the plane (p, υ) having the
following properties:

• the straight line υ = υ+ intersects the curve only at (υ+, p+);
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• the straight line p = p+ intersects the curve only at (υ+, p+);

• it is a convex curve.

This last property can be deduced by resorting to the implicit function
theory and assuming some suitable properties of the constitutive equation.

A geometric interpretation of the curve defined by (9.156) highlights some
aspects governing shock waves. The quantity j2 is the opposite of the slope
of the straight line connecting the point (υ+, p+) with any other point
(υ−, p−) of the curve itself (see Figure 9.20).

p

p – 

p+ 

v+ vv –

Figure 9.20

All the straight lines originating at the point (υ+, p+) and intersecting
the curve represent transitions which are allowed by the jump conditions.
This conclusion indicates that we need to introduce a physical criterion to
select the values (υ−, p−) that are physically acceptable.

In the next section the case of a perfect gas will be considered in great
detail.

9.15 Shock Waves in a Perfect Gas

In this section the shock wave equations (9.153) will be examined in
the case of a perfect gas. For given quantities p+ and υ+, the unknowns
p−, w−, w+ will be expressed in terms of the fourth unknown υ−.

The Clausius–Duhem inequality, suitably written for the case of a shock
wave, will be introduced in order to select the physically acceptable values
of υ+.

The constitutive equation of a perfect gas is

ε(p, υ+) =
1

γ − 1
pυ+, (9.157)
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where γ is expressed in terms of the universal gas constant R and the
specific heat at constant volume cv by the relation

γ = 1 +
R

cv
.

In a monatomic gas γ = 5/3, and for a diatomic gas γ = 7/5.
Substituting (9.157) into (9.156), we obtain the explicit form of Hugo-

niot’s curve:

p−

p+ =
υ+(γ + 1) − υ−(γ − 1)
υ−(γ + 1) − υ+(γ − 1)

. (9.158)

For a monatomic gas whose thermodynamic properties in the undisturbed
region have been assigned, Hugoniot’s curve has the behavior shown in
Figure 9.21.

Substituting (9.158) into (9.155) leads to

j2 =
2γp+

υ−(γ + 1) − υ+(γ + 1)
. (9.159)

Therefore, from (9.153)1, the velocities w− and w+ are derived:

w− = jυ− = υ−
√

2γp+

υ−(γ + 1) − υ+(γ + 1)
,

w+ = jυ+ = υ+

√
2γp+

υ−(γ + 1) − υ+(γ + 1)
.

(9.160)

On the other hand, the Clausius–Duhem inequality leads to the jump
condition [[

ρη(cn − vn) − h
θ

· n
]]

≥ 0, (9.161)

which, as the shock is adiabatic (h = 0), reduces to

[[ρη(cn − vn)]] ≥ 0;

in the proper frame of the wave front, this assumes the form

j [[η]] ≤ 0. (9.162)
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p

v

Figure 9.21

To within an arbitrary constant, the specific entropy of a perfect gas is

η = cv ln pvγ . (9.163)

Using (9.159) and (9.163), it becomes

η =

√
2γp+

υ−(γ + 1) − υ+(γ + 1)
cv ln

p−(v−)γ

p+(v+)γ
≥ 0. (9.164)

The first factor exists if

υ− >
(γ − 1)
(γ + 1)

υ+, (9.165)

and the left-hand side of (9.164) has the same sign as the second factor.
This is positive if

υ− ≤ υ+. (9.166)

Owing to (9.165) and (9.166), it is clear that the Clausius–Duhem in-
equality imposes the following restriction on the values of υ−:

(γ − 1)
(γ + 1)

υ+ < υ− ≤ υ+. (9.167)

Many relevant conclusions can be deduced from (9.167). First of all, the
specific volume υ across a shock wave decreases. Therefore, from (9.166) it
follows that

p− > p+,

which means that only compressive shock waves are physically acceptable
for a perfect gas. It is worthwhile to remark that, under suitable assump-
tions, this result represents a general feature of shock waves.

Furthermore, the specific volume does not decrease indefinitely, but rather
approaches a finite value. This limit volume is υ+/4 in the case of a
monatomic gas and υ+/6 for a diatomic gas.
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Finally, let us compare the gas velocities w− and w+ with the corre-
sponding speeds of sound U . For a perfect gas, we have

U2 =
(

∂p

∂ρ

)
η

= γpυ.

From (9.160) and (9.158) we have(
w−

U−

)2

=
2

υ−
υ+ (γ − 1) − (γ − 1)

,

(
w−

U−

)2

=
2

υ−
υ+ (γ − 1) − (γ − 1)

.

(9.168)

It can be easily proved that when the values of υ− satisfy (9.166), we obtain(
w−

U−

)2

< 1,

(
w+

U+

)2

> 1.

Therefore, it can be concluded that

w− < U−, w+ > U+,

i.e., the shock waves travel with a supersonic velocity with respect to the
gas in the undisturbed gas, and they propagate with a subsonic velocity
with respect to the compressed gas.

9.16 Exercises

1. Find Archimedes’ force on the cylinder of radii R1 < R2, height h
and density ρ, with vertical axis, immersed in water and filled with
water.

2. Find the density of a sphere of radius R in order for it to be floating
with half of it immersed in water.

3. Find the total force acting on a body S immersed in a perfect gas G.
Assuming that the axis Ox3 is oriented upward, the pressure p on S
due to the presence of G is (see (9.11)

p(x3) = p0 exp
(
−gx3

Rθ

)
= ρ0Rθ exp

(
−gx3

Rθ

)
.
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From this we derive the expansion

p(x3) = p0 − ρ0gx3 +
1
2
ρ0

g2

Rθ
x2

3 + O(3), (9.169)

in which the constitutive equation p = ρRθ has been taken into ac-
count. Substituting (9.169) into the expression for the total force
acting on S

F = −p0

∫
σ

exp
(
−gx3

Rθ

)
N dσ, (9.170)

where σ is the surface of S and N is the exterior unit normal to σ,
and repeating the considerations leading to Archimedes’ principle for
liquid, we derive

F = ρ0gkV − 1
2
ρ0

g2

Rθ

∫
C

x2 dc + O(4), (9.171)

where V is the volume of the region occupied by S and k is the unit
upward-oriented vector. Formula (9.171) shows that we have again a
total force which is equivalent to an upward-driven force with a value,
in general, that differs from (9.14).

4. Find a solution of Blausius’s equation (9.105) in terms of power se-
ries in the neighborhood of the origin, with the boundary condi-
tions (9.106)1. Use an analytic expansion (by introducing the variable
ξ = 1/x) in order to satisfy the second condition.
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9.17 The Program Potential

Aim of the Program Potential

The program Potential, evaluates the complex velocity, the kinetic po-
tential, and Stokes potential when the complex potential F = F (z) is given.
Moreover, it plots the level curves of the above potentials.

Description of the Problem and Relative Algorithm

The algorithm calculates the real and imaginary parts of the complex
potential F = F (z), with z = x + iy. We recall that these parts coincide
with the kinetic potential ϕ = ϕ(x, y) and the Stokes potential ψ = ψ(x, y),
respectively. Then the program evaluates the derivatives of ϕ and ψ with
respect to x in order to find the complex velocity V = (∂ϕ/∂x)+ i(∂ψ/∂x).
Finally, the program plots the level curves ϕ = const and ψ = const con-
tained in a given rectangle with vertices A1 ≡ (a, 0), A2 ≡ (b, 0), A3 ≡ (0, c),
and A4 ≡ (0, d).

Command Line of the Program Potential

Potential[F, {a, b}, {c, d}, {val0K, val1K, stepK}, {val0S,
val1S, stepS}, points, option]

Parameter List

Input Data

F = complex potential F = F (z);

{a, b}, {c,d} = determine the vertices A1 ≡ (a, 0), A2 ≡ (b, 0), A3 ≡
(0, c), A4 ≡ (0, d) of the rectangle in which the potential level curves
have to be drawn;

{val0K, val1K, stepK} = lowest and highest values of the kinetic level
curves; stepK is the step to draw them;

{val0S, val1S, stepS} = lowest and highest values of the Stokes level
curves; stepS is the step to draw them;

points = number of plot points;

option = plot option. If option = Kinetic, the program plots only the
kinetic level curves; if option = Stokes, it plots only the Stokes level
curves. When option = All, both the curves are represented.
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Output Data

The complex potential F = ϕ(x, y) + iψ(x, y);

the complex velocity V =
∂ϕ

∂x
+ i

∂ψ

∂x
;

the plot of the level curves ϕ = const and ψ = const.

Worked Examples

1. Uniform motion. Consider the complex potential

F (z) = 2z.

To apply the program Potential it is sufficient to input the data

F = 2z;

{a, b} = {−1, 1};

{c, d} = {−1, 1};

{val0K, val1K, stepK} = {−10, 10, 0.5};

{val0S, val1S, stepS} = {−10, 10, 0.5};

points = 100;

option = All;

Potential[F, {a, b}, {c, d}, {val0K, val1K, stepK},

{val0S, val1S, stepS}, points, option]

The corresponding output is

Complex potential

F = 2x + 2iy

Complex velocity

V = 2
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Figure 9.22

− − − Level line of the Stokes potential ψ
——— Level line of the kinetic potential ϕ

2. Vortex potential. Consider the complex potential

F (z) = −i log z,

describing a planar flow in which the fluid particles uniformly rotate
around an axis containing the origin and orthogonal to the plane Oxy.
Applying the program Potential with the input data4

F = −ILog[z];

{a, b} = {−1, 1};

{c, d} = {−1, 1};

{val0K, val1K, stepK} = {−1, 1, 0.5};

{val0S, val1S, stepS} = {−2, 2, 0.4};

points = 100;

option = All;

Potential[F, {a, b}, {c, d},
{val0K, val1K, stepK}, {val0S, val1S, stepS}, points, option],

4We note that according to the usual syntax of Mathematica, all the mathematical
constants and the elementary functions are written with a capital letter. Consequently,
I denotes the imaginary unity.
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we obtain

Complex potential

F = ArcTan
[y
x

]
− 1

2
iLog[x2 + y2]

Complex velocity

V =
ix

x2 + y2
− y

x2
(
1 +

y2

x2

)

Figure 9.23

− − − Level line of the Stokes potential ψ
——– Level line of the kinetic potential ϕ

3. Sources and Sinks. The flow produced by a source or a sink that
has an intensity Q is described by the complex potential

F (z) =
Q

2π
log z,

where Q is positive for a source and negative for a sink. When Q = 2π,
the program Potential with the input

F = Log[z];

{a, b} = {−2.8, 2.8};

{c, d} = {−2.8, 2.8};

{val0K, val1K, stepK} = {−1, 1, 0.25};

{val0S, val1S, stepS} = {−1, 1, 0.25};
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points = 100;

option = All;

Potential[F, {a, b}, {c, d}, {val0K, val1K, stepK},
{val0S, val1S, stepS}, points, option]

gives the output

Complex potential

F = IArcTan
[y
x

]
+

1

2
Log[x2 + y2]

Complex velocity

V =
x

x2 + y2
− Iy

x2
(
1 +

y2

x2

)

Figure 9.24

− − − Level line of the Stokes potential ψ
——– Level line of the kinetic potential ϕ

4. Doublet. The flow produced by a source–sink dipole with intensity
Q = 2π is described by the complex potential

F (z) =
1
z
.

The program Potential, with the input

F = 1/z;
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{a, b} = {−2, 2};

{c, d} = {−2, 2};

{val0K, val1K, stepK} = {−0.5, 0.5, 0.2};

{val0S, val1S, stepS} = {−0.5, 0.5, 0.2};

points = 100;

option = All;

Potential[F, {a, b}, {c, d}, {val0K, val1K, stepK},
{val0S, val1S, stepS}, points, option],

gives the output

Complex potential

F =
x

x2 + y2
− I

y

x2 + y2

Complex velocity

V = − 2x2

(x2 + y2)2
+

2Ixy

(x2 + y2)2
+

1

x2 + y2

Figure 9.25

− − − Level line of the Stokes potential ψ
——– Level line of the kinetic potential ϕ

5. Consider the complex potential

F (z) = z +
1
z
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describing the planar flow produced by the superposition of a uniform
motion along the x-axis and a flow generated by a source–sink dipole
with intensity 1. In order to represent the level curves of ψ = ψ(x, y),
it is sufficient to input

F = z + 1/z;

{a, b} = {−2, 2};

{c, d} = {−2, 2};

{val0K, val1K, stepK} = {−0.5, 0.5, 0.1};

{val0S, val1S, stepS} = {−0.5, 0.5, 0.1};

points = 100;

option = Stokes;

Potential[F, {a, b}, {c, d}, {val0K, val1K, stepK},
{val0S, val1S, stepS}, points, option].

In output we have

Complex potential

F = x

(
1 +

1

x2 + y2

)
−I

(
y − y

x2 + y2

)
Complex velocity

V = 1 − 2x2

(x2 + y2)2
+

2Ixy

(x2 + y2)2
+

1

x2 + y2

Figure 9.26

Level line of the Stokes potential ψ

Exercises

Apply the program Potential to the following complex potentials.
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1. F (z) = z +
1
z

+ iα log z, with α = 1, 2, 2.2.

2. F (z) =
exp (iπ/4)

z
.

3. F (z) =
√

z.

4. F (z) =
√

1 − z2.

5. F (z) = z +
√

1 − z2.
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9.18 The Program Wing

Aim of the Program Wing

The program Wing draws the curve Γ which represents the image under
the Joukowsky map of the unit circle with a given center as well as the
straight line r containing the point T ′ ≡ (2l, 0) and forming an angle β
with respect to Ox. Moreover, it gives the parametric equations of both Γ
and r and the values of l and β.

Description of the Problem and Relative Algorithm

Given the center C ≡ (xC , yC) of the unit circle, the program applies the
Joukowsky transformation

z = ζ +
l2

ζ
,

where
l = xC +

√
1 − yC .

Then it determines the corresponding curve Γ and draws the straight line
r containing T ′, which coincides with the exit point of the wing, and forms
an angle β = arcsin yC with the Ox-axis. Moreover, it gives the parametric
equations of Γ and r.

Command Line of the Program Wing

Wing[xc ,yc ]

Parameter List

Input Data

xc = abscissa of the center C of the unit circle;

yc = ordinate of the center C of the unit circle.

Output Data

parametric equation of Γ;

parametric equation of the straight line r containing T ′ and forming an
angle β with Ox;

plot of Γ, r, and the circumference C;

values of l and β.
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Worked Examples

1. Apply Joukowsky’s transformation to the unit circle with the center
C ≡ (0.2, 0.1); i.e., enter as input the command

Wing[0.2, 0.1].

The corresponding output is5

Parametric equations of the wing

x(t) = 0.2 + Cos[t] +
1.42799(0.2 + Cos[t])

(0.2 + Cos[t])2 + (0.1 + Sin[t])2

y(t) = 0.1 + Sin[t] − 1.42799(0.1 + Sin[t])
(0.2 + Cos[t])2 + (0.1 + Sin[t])2

Parametric equations of the straight line r containing the
point T′ ≡ (2l, 0) and forming an angle β with Ox-axis

x(t) = 2.38997 − 0.994987t

y(t) = 0.1t

Figure 9.27

——– Wing profile
− − − Straight line r

β = 5.73917◦

l = 1.19499

2. Consider Joukowsky’s transformation relative to the unit circle with
its center at C ≡ (0.1, 0.15) and use the program Wing, entering

5We note that, for typographical reasons, the plots of this section are presented in a
different form with respect to the plots which are obtained by launching the package
Mechanics.m.
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Wing[0.1, 0.15].

In output we obtain

Parametric equations of the wing

x(t) = 0.1 + Cos[t] +
1.18524(0.1 + Cos[t])

(0.1 + Cos[t])2 + (0.15 + Sin[t])2

y(t) = 0.15 + Sin[t] − 1.18524(0.15 + Sin[t])
(0.1 + Cos[t])2 + (0.15 + Sin[t])2

Parametric equations of the straight line r containing the
point T′ ≡ (2l, 0) and forming an angle β with Ox-axis

x(t) = 2.17737 − 0.988686t

y(t) = 0.15t

Figure 9.28

——– Wing profile
− − − Straight line r

β = 8.62693◦

l = 1.08869

Exercises

Apply the program Wing to the unit circle with the center at C ≡ (xC , yC)
for the following values of xC and yC

1. xC = 0.1, yC = 0.2.

2. xC = −0.18, yC = 0.2.

3. xC = 0.19, yC = 0.21.

4. xC = 0.18, yC = 0.18.
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9.19 The Program Joukowsky

Aim of the Program Joukowsky

When the complex potential F = F (z) is given by the conformal Joukowsky
transformation, the program Joukowsky draws the streamlines both around
the unit circle and the wing profile, which is the image of the circle under
the above transformation.

Description of the Problem and Relative Algorithm

Given the center C ≡ (xC , yC) of the unit circle and Joukowsky’s trans-
formation, the program determines the complex potential F = F (z) of the
flow around the cylinder (see Section 9.5). Moreover, it draws the stream-
lines around both the cylinder profile and the wing. The above streamlines
are the integral curves of the field

X =
(

∂Re(F )
∂x

,
∂Im(F )

∂y

)
corresponding to a given set of initial data; that is, they are solutions of
the Cauchy problems ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
∂Re(F )

∂x
,

ẏ =
∂Im(F )

∂y
,

x(t0) = x0i,

y(t0) = y0i,

i = 1, · · · , n. (9.172)

Command Line of the Program Joukowsky

Joukowsky[ϕ, xc, yc, {a, b}, {c, d}, indata, steps, T1, T2]

Parameter List

Input Data

ϕ = angle of attack;

xc = abscissa of the center C of the unit circle;

yc = ordinate of the center C of the unit circle;
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{a, b}, {c, d} = definition of the graphic window in which to represent
the streamlines;

indata = set of initial data for numerically integrating the differential
system (9.172);

steps = steps of the numerical integration;

T1, T2 = lowest and highest extrema of the integration interval.

Output Data

streamlines around the cylinder;

streamlines around the wing profile.

Worked Examples

1. Consider the unit circle with its center at C ≡ (−0.2, 0.1) and let
ϕ = 10◦ be the angle of attack. In order to show the streamlines
around the cylinder and the wing, it is sufficient to enter 6

ϕ = 10Degree;

{xc, yc} = {−0.2, 0.1};

{a, b} = {−3, 3};

{c, d} = {−1.5, 1.6};

indata = Join[Table[{−3,−1.4 + 1.4i/15}, {i, 0, 15}],

Table[{−3 + 2 ∗ i/5,−1.5}, {i, 0, 5}];

steps = 10000;

{T1, T2} = {0, 10};

Joukowsky[ϕ, xc, yc, {a, b}, {c, d}, indata, steps, T1, T2].

6We note that Mathematica uses 10 Degree instead of 10◦. Moreover, the initial data
are given by resorting to the built-in functions Join and Table, which respectively denote
the union operation and the indexed list (see on-line help of Mathematica).
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The corresponding output is

Streamlines around the cylinder

Figure 9.29

Streamlines around the wing profile

Figure 9.30

Exercises

Determine the set of initial conditions indata and the other input param-
eters that allow us to apply the program Joukowsky in the following cases:

1. C ≡ (−0.2, 0.1), ϕ = 29◦.

2. C ≡ (−0.18, 0.2), ϕ = 8◦.

3. C ≡ (−0.22, 0.18), ϕ = 20◦.
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9.20 The Program JoukowskyMap

Aim of the Program JoukowskyMap

When a (closed, open, or piecewise defined) curve or a point set are
assigned, the program JoukowskyMap determines the corresponding image
under Joukowsky’s transformation of a unit circle with a given center.

Description of the Problem and Relative Algorithm

Given the center C ≡ (xC , yC) of the unit circle and a (closed, open, or
piecewise defined) curve or a point set Γ, the program applies Joukowsky’s
transformation and determines the image Γ′ of Γ. In particular, if Γ is
a curve, it determines the parametric equations of Γ′ as well as its plot;
instead, if Γ is a finite set of points, it determines the image of each of
them.

Command Line of the Program JoukowskyMap

JoukowskyMap[xc, yc, curve, data, range, option]

Parameter List

Input Data

{xc, yc} = coordinates of the center C of the unit circle;

curve = option relative to the curve Γ for which the choices closed, open,
piecewise, and points are possible;

data = parametric equations of Γ or point list;

range = variability range of the parameter t in data or null if Γ is a
point set;

option = parametric; for this choice the program gives the parametric
equations or the coordinates of Γ′; for a different choice of option it
shows only the plot.

Output Data

Plots of Γ, Γ′, and the unit circle in the same graphic window;

parametric equations of Γ′;

coordinates of the points of Γ′.
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Use Instructions

For the input datum curve the following choices are possible:

curve = closed if Γ is a closed curve defined by two parametric equations
x = x(t), y = y(t), where the parameter t varies in the interval [τ1, τ2],
which in input is given by range = {τ1, τ2};

curve = open if Γ is an open curve defined by two parametric equations
x = x(t), y = y(t), where the parameter t varies in the interval [τ1, τ2],
which in input is given by range = {τ1, τ2};

curve = piecewise if Γ is a curve defined by more parametric equa-
tions xi = xi(t), yi = yi(t), i = 1, . . . , n, where the parameter t
varies in one or more intervals which are given by range = {τ1, τ2};
or range = {{τ1,1, τ1,2}, · · · , {τn,1, τn,2}};

curve = points if Γ is the finite set of points; in this case range = null.

Moreover, if the input datum option = parametric, the program also gives
the parametric equations of Γ′ or the coordinates of the points of Γ′.

Worked Examples

1. Let Γ be the square internal to the unit circle with its center at
C ≡ (0.1, 0.2) and vertices A ≡ (0.5,−0.5), B ≡ (0.5, 0.5), D ≡
(−0.5, 0.5), E ≡ (−0.5,−0.5). The program JoukowskyMap shows
the image of Γ under Joukowsky’s transformation given the following
data:

{xc, yc} = {0.1, 0.2};

curve = piecewise;

{xa, ya} = {xe1, ye1} = {0.5,−0.5};

{xa1, ya1} = {xb, yb} = {0.5, 0.5};

{xb1, yb1} = {xd, yd} = {−0.5, 0.5};

{xd1, yd1} = {xe, ye} = {−0.5,−0.5};

data = {{xa + t(xa1 − xa), ya + t(ya1 − ya)},

{xb + t(xb1 − xb), yb + t(yb1 − yb)},

{xd + t(xd1 − xd), yd + t(yd1 − yd)},

{xe + t(xe1 − xe), ye + t(ye1 − ye)}};

range = {0, 1};

option = null;
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JoukowskyMap[xc, yc, curve, data, range, option].

The corresponding output is7

Figure 9.31

——— Unit circle
− − − − Input curve or list of points
− · − · − Output curve or list of points

2. Let Γ be an ellipse which is external to the unit circle with the center
at C ≡ (0.1, 0.2) and parametric equations{

x(t) = xC + 2 cos t,
y(t) = yC + sin t,

t ∈ [0, 2π].

To see the image curve Γ′ of Γ under Joukowsky’s transformation, the
program JoukowskyMap can be used by entering

{xc, yc} = {0.1, 0.2};

curve = closed;

data = {xc + 2Cos[t], yc + Sin[t]};

range = {0, 2π};

option = null;

JoukowskyMap[xc, yc, curve, data, range, option].

7The plots of this section, for typographic reasons, differ from the plots obtained by the
program JoukowskyMap of the package Mechanics.m.
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The corresponding output is

Figure 9.32

——— Unit circle
− − − − Input curve or list of points
− · − · − Output curve or list of points

3. Consider the set of points Γ = {P1 ≡ (0, 1.5), P2 ≡ (0.5, 0), P3 ≡
(0.75, 0.75), P4 ≡ (0.75, 0), P5 ≡ (1, 0), P6 ≡ (1, 1)}. To determine
the image of Γ under Joukowsky’s transformation relative to the unit
circle with the center at C ≡ (0.2, 0.1), we have to enter

{xc, yc} = {0.2, 0.1};

curve = points;

data = {{0, 1.5}, {0.5, 0}, {0.75, 0.75}, {0.75, 0}, {1, 0}, {1, 1}};

option = null;

JoukowskyMap[xc, yc, curve, data, range, option],

to obtain the output

Figure 9.33

——— Unit circle
� � � � Input list of points
� � � � Output list of points



316 Chapter 9. Fluid Mechanics

Exercises

Apply the program JoukowskyMap to a unit circle with the center at
C ≡ (0.2, 0.1) relative to the following curves or sets of points Γ.

1. Γ: radius of the unit circle along the Ox-axis.

2. Γ: triangle internal to the circle with vertices A ≡ (0.1, 0), B ≡
(1.1, 0), D ≡ (0.2, 0.1).

3. Γ: segment parallel to the Oy-axis with end points A ≡ (1, 0), B ≡
(1, 1.1).

4. Γ: segment with end points A ≡ (1, 0), C ≡ (0.2, 0.1).

5. Γ: finite set of points on the Ox-axis. Verify that Joukowsky’s trans-
formation leaves the above points on the Ox-axis.

6. Γ: finite set of points on the Oy-axis. Verify that Joukowsky’s trans-
formation leaves the above points on the Oy-axis.

7. Γ: circle with the center at the origin and radius r = 0.6.

8. Γ: circle with the center at the origin and radius r = 2.

9. Γ: circle with the center C and radius r = 2.

10. Γ: circle with the center C and radius r = 0.8.

11. Γ: square with vertices A ≡ (1.5,−1.5), B ≡ (1.5, 1.5), D ≡ (−1.5, 1.5),
E ≡ (−1.5,−1.5).

12. Γ: polygonal with vertices A ≡ (0, 0.5), B ≡ (1, 0.2), D ≡ (0, 1),
E ≡ (0.2, 1).

13. Γ: polygonal with vertices A ≡ (1.1, 1.2), B ≡ (1.2, 1.2), D ≡ (1.2, 0).

14. Γ: semicircle with the center C ≡ (0.2, 0.1), radius r = 0.5, and chord
parallel to the Ox-axis.

15. Γ: semicircle with the center C ≡ (0.2, 0.1), radius r = 2, and chord
parallel to the Ox-axis.



Chapter 10

Linear Elasticity

10.1 Basic Equations of Linear Elasticity

This chapter deals with some fundamental problems of linear elastic-
ity and the material it covers is organized as follows. Since the existence
and uniqueness theorems play a fundamental role, the first sections will be
devoted to these theorems. The existence and the uniqueness of a solution
can be proved in a classical way, by requiring that the solution exists and
is unique within a class of regular functions; but it can also be proved in a
weak sense (see Appendix) if it is the unique solution of a suitable integral
problem.

After discussing some elementary solutions, we present a method for
analyzing beam systems, according to the Saint-Venant assumption, whose
validity is not yet completely proved.

Finally, we will discuss the Fourier method as a tool for analyzing prob-
lems characterized by simple geometry.

More general cases require the use of numerical methods whose reliability
is based on the following requirements:

• for the problem we are going to analyze numerically, a theorem of
existence and uniqueness exists;

• the involved procedures allow us to control the errors.

Additional remarks concern the fact that, when dealing with a linearized
theory obtained by replacing the nonlinear equations with the correspond-
ing linearized ones, the implicit assumption is that small perturbations
produce small effects. This is not always the case, and it is relevant

• to investigate the condition of stability of an equilibrium configuration
of the elastic system, in whose proximity it is of interest to linearize
the equations;

317
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• to express nonlinear equations in a dimensionless form;

• to define the circumstances, related to initial and loading conditions,
under which the linearized equations give an appropriate description
of the motion or the equilibrium.

In this respect, in the following discussion it is assumed, without any
further insight, that the linearization provides correct results if

1. loads, displacement u, displacement gradient H, velocity v, and ve-
locity gradient ∇v are all first-order quantities, so that their products
or powers can be neglected;

2. the configuration C∗ around which the linearization is applied is an
unstressed equilibrium configuration;

3. all the processes take place under constant and uniform temperature.

With the above remarks in mind, we recall that in linear elasticity there
is no further need to distinguish between the Piola–Kirchhoff tensor and the
Cauchy stress tensor (see (6.28)); in addition, if the initial state is unstressed
and the evolution takes place at constant and uniform temperature, then
the stress tensor is written as

Tij = CijhkEhk, (10.1)

where the linear elasticity tensor Cijhk is characterized by the following
properties of symmetry:

Cijhk = Cjihk = Cijkh = Chkij . (10.2)

In particular, for a linear elastic and isotropic medium, by taking into
account (10.1) and (7.18), the elasticity tensor becomes

Cijhk = λδijδhk + µ(δihδjk + δjhδik). (10.3)

Then the equations of linear elasticity are obtained by substituting the
stress tensor (10.1) into the motion equation (5.69) and observing that, if
v = ∂u(X, t)/∂t is the velocity field, then in the linearization we have

a =
∂2u
∂t2

+ u̇ · ∇u̇ ∼= ∂2u
∂t2

. (10.4)

Moreover, the tractions t and t∗ as well as the unit vectors N and N∗ that
are normal to the boundaries ∂C and ∂C∗ only differ from each other by
terms higher than the first-order terms of the displacement and displace-
ment gradients (see (5.72), (5.73)).
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In general, a dynamical problem of linear elasticity can be formulated as
a mixed boundary value problem : find a displacement field u(X,t) such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∗
∂2ui

∂t2
=

∂

∂Xj

(
Cijhk

∂uh

∂Xk

)
+ ρ∗bi on C∗,

Cijhk
∂uh

∂Xk
Nj = ti(X, t) on Σ1,

u(X, t) = 0 on Σ2,

u(X, 0) = u0(X), u̇(X, 0) = u̇0(X) on C∗,

(10.5)

where Σ1 is the portion of the boundary ∂C∗ on which the traction t(X, t)
is prescribed, Σ2 is the fixed portion of ∂C∗, Σ1 ∪ Σ2 = ∂C∗, and N is the
outward unit vector normal to ∂C∗.

In particular, if Σ2 = ∅, then the boundary problem is a stress bound-
ary value problem ; on the other hand, if Σ1 = ∅, then the problem
reduces to a displacement boundary value problem .

A static mixed boundary value problem is formulated in this way:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂Xj

(
Cijhk

∂uh

∂Xk

)
+ ρ∗bi = 0 on C∗,

Cijhk
∂uh

∂Xk
Nj = ti(X) on Σ1,

ui(X) = 0 on Σ2.

(10.6)

If the solid is homogeneous and isotropic, then the elasticity tensor C

assumes the form (10.3), where λ and µ are constant, so that the system
(10.5) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ∗
∂2u
∂t2

= µ∆u + (λ + µ)∇∇ · u + ρ∗bi on C∗,

(2µE + λ(trE)I)N = t(X) on Σ1,

u(X) = 0 on Σ2,

u(X, 0) = u0(X), u̇(X,0) = u̇0(X), on C∗.

(10.7)

When dealing with a stress boundary value problem, the traction t and
the body force b have to satisfy the overall equilibrium equations of the
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system S:1 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

∂C∗
t dσ +

∫
C∗

ρ∗b dc = 0,

∫
∂C∗

r × t dσ +
∫

C∗
ρ∗r × b dc = 0.

(10.8)

The first condition is a restriction on the prescribed values of t and b.
Moreover, introducing the decomposition

r = r∗ + u, (10.9)

where r∗ is the position vector in the reference configuration, and recalling
that t,b, and u are first-order quantities, we find that (10.8)2 can be written
in the form ∫

∂C∗
r∗ × t dσ +

∫
C∗

ρ∗r∗ × b dc = 0. (10.10)

This condition must be satisfied both from data and solution, i.e., it is a
compatibility condition.

Sometimes it is convenient to assume as unknowns the stresses rather
then the displacements. In a traction problem, it holds that

∇X · T + ρ∗b = 0 on C∗,
TN = t on ∂C∗. (10.11)

The solutions T(X) of this system have to satisfy the integrability con-
dition of the deformation tensor E = C

−1T. Such a condition (see Section
3.8) is written as

∇ × ∇ × E = 0

and, due to the constitutive law (10.1), the equilibrium equations become

∇X · T + ρ∗b = 0 on C∗,
∇ × ∇ × (C−1T) = 0 on C∗,

TN = t on ∂C∗. (10.12)

1If the portion Σ2 is nonempty, then conditions (10.8) are replaced by{∫
Σ1

t dσ +
∫

C∗
ρ∗b dc +

∫
Σ2

φ dσ = 0,∫
Σ1

r × t dσ +
∫

C∗
ρ∗r × b dc +

∫
Σ1

r × φ dσ = 0,

where φ is the reaction provided by the constraints fixing the portion Σ2 of the boundary.
These conditions of global equilibrium are certainly satisfied due to the presence of the
above reactions, provided that they are assured by the constraints.
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10.2 Uniqueness Theorems

This section is aimed at proving the uniqueness of a classical solution of
mixed boundary problems; in the next section we will discuss the existence
and uniqueness of weak solutions of mixed or pure traction problems.

In order to reach this goal, it is relevant first to prove that, in any arbi-
trary motion, the following integral relation holds:

d

dt

∫
C∗

ρ∗

(
1
2
u̇2 + Ψ

)
dc∗ =

∫
∂C∗

t · u̇ dσ∗ +
∫

C∗
ρ∗b · u̇ dc∗, (10.13)

where
ρ∗Ψ =

1
2

CijhkEijEhk (10.14)

is the energy density of elastic deformation.
The motion equation (10.5)1, when multiplied by u̇, gives

d

dt

∫
C∗

ρ∗
1
2
u̇2dc∗ =

∫
C∗

(
u̇i

∂

∂Xj
(CijhkEhk) + ρ∗biu̇i

)
dc∗

= −
∫

C∗
CijhkĖijEhkdc∗

+
∫

C∗

(
∂

∂Xj
(CijhkEhku̇i) + ρ∗biu̇i

)
dc∗,

so that, by using (10.14) as well as by applying Gauss’s theorem, we get

d

dt

∫
C∗

ρ∗

(
1
2
u̇2 + Ψ

)
dc∗ =

∫
∂C∗

CijhkEhku̇iNj dσ∗ +
∫

C∗
ρ∗biu̇i dc∗.

This relation, with the boundary conditions (10.5)2,3, allows us to obtain
(10.13).

The following uniqueness theorem can now be proved:

Theorem 10.1
If the elasticity tensor is positive definite, so that

CijhkEijEhk > 0, (10.15)

and a solution u(X, t) of the mixed problem (10.5) exists, then this solution
is unique.

PROOF If u1 and u2 are two solutions of the mixed problem (10.5),
then the difference u = u1 − u2 will be a solution of (10.5) corresponding



322 Chapter 10. Linear Elasticity

to the following homogeneous data:

u = 0 on Σ1 t = 0 on Σ2,

u(X, 0) = u̇(X, 0) = 0 on C∗.

It follows that for the motion u the integral condition (10.13) gives

d

dt

∫
C∗

ρ∗

(
1
2
u̇2 + Ψ

)
dc∗ = 0. (10.16)

Moreover, when the initial conditions for u are taken into account, the inte-
gral appearing in (10.16) must initially vanish so that during the subsequent
evolution we have ∫

C∗
ρ∗

(
1
2
u̇2 + Ψ

)
dc∗ = 0.

Since all the quantities under the integral are nonnegative and the functions
are of class C2, at any instant and at any point it must hold that

u̇(X, t) = 0, Ψ(X, t) = 0;

since initially u(X, 0) = 0, it follows that u vanishes at any instant and at
any point, so that u1 = u2.

We use the same procedure to prove the uniqueness of an equilibrium
problem. In fact, if the equilibrium equation (10.6)1, previously multiplied
by u, is integrated over C∗, then when (10.13) is again taken into account,
we obtain the following relation:∫

C∗
ρ∗Ψ dc∗ =

∫
∂C∗

t · u dσ∗ +
∫

C∗
ρ∗b · u dc∗. (10.17)

Now the following theorem can be proved.

Theorem 10.2
Let the elasticity tensor be positive definite (see (10.15)). Then, if a solution
u(X) of a mixed problem or a displacement problem exists, it is unique. For
a problem of pure traction, the solution is unique, apart from an arbitrary
infinitesimal rigid displacement.

PROOF If u1 and u2 are two solutions, then their difference must also
be a solution satisfying the homogeneous data

u = 0 on Σ1, t = 0 on Σ2.
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It follows from (10.17) that ∫
C∗

ρ∗Ψ dc∗ = 0,

and since C is positive definite, it also follows that Ψ = 0, i.e., E = 0. This
proves that u is a rigid displacement. If Σ1 does not reduce to a point or a
straight line, then the condition u = 0 on Σ1 implies that u = 0 in all the
region C∗.

Remark When considering an isotropic material, the condition (10.15)
is fulfilled if and only if

λ + 2µ > 0, µ > 0. (10.18)

This remark is proved by the following chain of equalities:

2Ψ = CijhkEijEhk = (λδijδhk + µ(δihδjk + δjhδik)) EijEhk

= λ(trE)2 + 2µtr(E2) = (λ + 2µ)(trE)2 + 2µ(E2
12 + E2

13 + E2
23),

so that Ψ is positive definite if and only if the conditions (10.18) are satis-
fied.

10.3 Existence and Uniqueness of Equilibrium
Solutions

In this section, in order to prove an existence and uniqueness theorem
for a mixed boundary problem (see (10.5)), a weak formulation is used (see
Appendix).

Let
U0 = (H(C∗))3 (10.19)

be the vector space of all the vector functions v(X) whose components

• are square integrable functions vanishing on Σ1;

• have weak first derivatives in C∗.

Then U0 is a complete vector space with respect to the Sobolev norm

‖v‖2
U0

=
3∑

i=1

∫
C∗

v2
i dc∗ +

3∑
i,j=1

∫
C∗

v2
i,j dc∗, (10.20)
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and it is a Hilbert space with respect to the scalar product

(v,u)U′ =
3∑

i=1

∫
C∗

viui dc∗ +
3∑

i,j=1

∫
C∗

vi,jui,j dc∗, (10.21)

where ai,j = ∂ai/∂Xj .
Introducing the notations

B(u,v) =
∫

C∗
Cijhkuh,kvi,j dc∗,

F (v) =
∫

C∗
ρ∗bivi dc∗ +

∫
Σ2

tivi dσ∗, (10.22)

the weak formulation of the problem (10.6) gives:

B(u,v) = F (v) ∀v ∈ U0. (10.23)

Now the following theorem can be proved:

Theorem 10.3
Let C∗ be a compact region of �3 bounded by a regular surface and assume
that bi(X) ∈ L2(C∗), ti(X) ∈ L2(Σ2). If the elasticity tensor satisfies the
conditions

1. Cijhk(X) ∈ L1(C∗), |Cijhk| < K, K > 0;

2. it is elliptic; i.e., Cijhkξijξhk > µ
∑

i,j ξ2
ij , µ > 0, for any symmetric

tensor ξij;

then the weak solution u ∈ U0 of the problem (10.6) is unique.

PROOF The definition of U0 and the assumptions about bi, ti, and Cijhk

allow us to state that B is a bilinear continuous form on U0 × U0 and F is
a linear continuous form on U0. In fact, the first condition gives

(∫
C∗

Cijhkui,jvh,k dc∗

)2

≤ K2

⎛⎝∑
i,j

∫
C∗

ui,jvi,j dc∗

⎞⎠2

.

Since v,u ∈ U0, the squared components vi and ui can be summed up as
well as their first derivatives, and Schwarz’s inequality (see (1.10)) can be
applied to the integral on the left-hand side in L2(C∗), so that we obtain
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the relation(∫
C∗

Cijhkui,jvh,k dc∗

)2

≤ K2
∑
i,j

∫
C∗

u2
i,j dc∗

∫
C∗

v2
i,j dc∗

≤ K2

⎛⎝∑
i

∫
C∗

u2
i dc∗ +

∑
i,j

∫
C∗

u2
i,j dc∗

⎞⎠⎛⎝∑
i

∫
C∗

v2
i dc∗ +

∑
i,j

∫
C∗

v2
i,j dc∗

⎞⎠ ,

which in a compact form is written as

|B(u,v)| ≤ K ‖u‖U0
‖v‖U0

.

This proves the continuity of B; in a similar way, the continuity of F can
be verified.

At this point, the theorem is a consequence of the Lax–Milgram theorem
(see Appendix) if it is proved that B is strongly coercive or strongly elliptic.
Then the symmetry properties of C allow us to write

Cijhkui,juh,k = CijhkEijEhk > µ
∑
i,j

E2
ij ,

where E is the tensor of infinitesimal deformations. From the previous
inequality it also follows that∫

C∗
Cijhkui,juh,k dc∗ > µ

∑
i,j

∫
C∗

E2
ij dc∗.

By recalling Korn’s inequality (see Appendix), we see that

∑
i,j

∫
C∗

E2
ij dc∗ ≥ σ ‖u‖2

U0
,

where σ is a positive constant, and the theorem is proved.

If C, ti, and bi are conveniently regular functions, then the weak solution
is also a regular solution for the mixed boundary problem (10.6).

For the problem of pure traction

(Cijhkuh,k),j = −ρ∗bi on C∗,
Cijhkuh,kN∗j = ti on ∂C∗, (10.24)

the following theorem holds:
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Theorem 10.4
Let the hypotheses about C,b, and t of the previous theorem be satisfied,
together with the global equilibrium conditions∫

∂C∗
t dσ +

∫
C∗

ρ∗b dc∗ = 0,∫
∂C∗

r∗ × t dσ +
∫

C∗
ρ∗r∗ × b dc∗ = 0. (10.25)

Then the problem (10.24) has a unique solution, apart from an arbitrary
infinitesimal rigid displacement.

PROOF Only the main steps of the proof are given. Let

U = (H1(C∗))3

be the vector space of the functions v(x) whose components belong to
L2(C∗) together with their derivatives. It is a Banach space with respect
to the Sobolev norm (10.20), and a Hilbert space with respect to the scalar
product (10.21). Once again, (10.23) represents the weak formulation of the
equilibrium problem (10.24) provided that Σ2 in (10.21) is replaced with
∂C∗. Moreover, it is possible to prove, by the same procedure followed in
the previous theorem, that B(u,v) and F (v) are continuous in U × U and
U , respectively. However, B(u,v) is not strongly coercive. In fact, from
condition (2) we derive

B(u,u) =
∫

C∗
CijhkEijEhk dc∗ ≥ µ

∑
i,j

∫
C∗

E2
ij dc∗,

so that

B(u,u) = 0 ⇐⇒
∑
i,j

∫
C∗

E2
ij dc∗ = 0. (10.26)

Consequently, if the subspace R of U given by

R = {û ∈ U , û = a + b × r∗, a,b ∈ �3} (10.27)

of rigid displacements is introduced, it follows that the condition (10.26) is
satisfied for any element of R and therefore it does not imply that u = 0.

It is possible to verify that any Cauchy sequence {ûn} of elements be-
longing to R converges to an element of R, so that this subspace is closed.
Owing to known results of analysis, the quotient space

H = U/R
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is a Banach space with respect to the norm

‖[u]‖H = inf
û∈R

‖u + û‖U , (10.28)

where [u] denotes the equivalence class of U . It is also a Hilbert space with
respect to the scalar product

([u], [v])H = inf
û,v̂∈R

(u + û,v + v̂)U . (10.29)

On the other hand, the positions

Ḃ([u], [v]) ≡ B(u,v) =
∫

C∗
CijhkEij(u)Ehk(v) dc∗,

Ḟ ([v]) = F (v), (10.30)

define a bilinear form on H × H and a linear form on H, respectively. In
fact, Eij(u) = Eij(u′) if and only if u and u′ differ for a rigid displacement,
that is, belong to the same equivalence class. Moreover,

F (v) − F (v′) = a ·
(∫

∂C∗
t dσ +

∫
C∗

ρ∗b dc∗

)
+ b ·

(∫
∂C∗

r∗ × t dσ +
∫

C∗
ρ∗r∗ × b dc∗

)
= 0,

due to the conditions (10.25). It is also easy to verify that Ḃ(u,v) and F (v)
are continuous and that the weak formulation of the equilibrium boundary
problem is written as

Ḃ([u], [v]) = Ḟ ([v]) ∀[v] ∈ H.

Finally, owing to the inequality (see Appendix)∑
i,j

∫
C∗

E2
ij dc∗ ≥ c ‖[u]‖2

H ,

the bilinear form Ḃ([u], [v]) is strongly coercive and the theorem is proved.

10.4 Examples of Deformations

A deformation of the system S is defined to be homogeneous if its
Jacobian matrix is independent of the coordinates. In this case, the
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deformation tensor is constant and, presuming the material is homogeneous,
the stress state is constant and the equilibrium equations are fulfilled.

We now discuss some examples of homogeneous deformations.

1. Uniform expansion

As a consequence of the displacement field

ui = αXi, i = 1, 2, 3,

any point X moves along the straight line passing through the origin
and the point X, independently of the direction. This deformation is
infinitesimal if α is a first-order quantity. If α > 0, the deformation
is an uniform expansion; if α < 0, it is a volume contraction. The
displacement and deformation gradient tensors are

H = E =

⎛⎝α 0 0
0 α 0
0 0 α

⎞⎠ ,

and the stress tensor is given by

T = (3λ + 2µ)αI,

and represents a uniform pressure if α < 0, and a tension if α > 0.

2. Homotetic deformation

Consider the displacement field

u1 = α1X1, u2 = α2X2, u3 = α3X3,

and the corresponding tensors

H = E =

⎛⎝α1 0 0
0 α2 0
0 0 α3

⎞⎠ ,

as well as the stress tensor

T = λ(α1 + α2 + α3)I + 2µE.

In particular, if α2 = α3 = 0 and α1 > 0, then the stress field reduces
to an uniaxial traction.

3. Pure distortion

The displacement field

u1 = kX2, u2 = u3 = 0,
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implies that

E =

⎛⎝ 0 k/2 0
0 0 0
0 0 0

⎞⎠
and

T =

⎛⎝ 0 µk 0
0 0 0
0 0 0

⎞⎠ .

10.5 The Boussinesq–Papkovich–Neuber Solution

When the problem does not suggest any symmetry, the approach usually
followed is the Boussinesq–Papkovich–Neuber method. In the absence of
body forces and at equilibrium, (10.7)1 assumes the form

∇∇ · u + (1 − 2ν)∆u = 0, (10.31)

where
ν =

λ

2(λ + µ)
. (10.32)

Then the following theorem holds:

Theorem 10.5
The displacement fields

u1 = ∇ϕ, with ∆ϕ = 0, (10.33)

and
u2 = 4(1 − ν)Φ − ∇(Φ · X), with ∆Φ = 0,

are two solutions of the equilibrium equation (10.31), for any choice of the
harmonic functions ϕ and Φ. Since (10.31) is linear, any linear combina-
tion of these solutions still represents a solution.

PROOF To prove that u1 is a solution of (10.31), it is sufficient to note
that

∇ · u1 = ∆ϕ = 0, ∆(u1)i =
3∑

j=1

∂2

∂X2
j

(
∂ϕ

∂Xi

)
= 0,

since the differentiation order with respect to the variables Xi and Xj can
be reversed, and ϕ is a harmonic function.



330 Chapter 10. Linear Elasticity

When considering the second displacement field, we get

u2j = 4(1 − ν)Φj − Φj − Xh
∂Φh

∂Xj
= (3 − 4ν)Φj − Xh

∂Φh

∂Xj
,

so that

∇ · u2 = (3 − 4ν)
∂Φj

∂Xj
− ∂Φj

∂Xj
− Xh

∂2Φh

∂X2
j

= 2(1 − 2ν)∇ · Φ,

since Φ is harmonic. Moreover,

∆u2i =
3∑

j=1

∂2u2i

∂X2
j

= (3 − 4ν)
3∑

j=1

∂2Φi

∂X2
j

− ∂

∂Xj

∂

∂Xj

(
Xh

∂Φh

∂Xi

)
and, since

∂

∂Xj

∂

∂Xj

(
Xh

∂Φh

∂Xi

)
=

∂

∂Xj

(
∂Φj

∂Xi
+ Xh

∂2Φh

∂Xj∂Xi

)
,

it holds that
∆u2 = −∇∇ · Φ.

It is now easy to verify that u2 is a solution of (10.31).

By introducing convenient hypotheses concerning the elastic coefficients
as well as the differentiability of the functions, we can prove that any solu-
tion of (10.31) can be expressed as a combination of u1 and u2.

In addition, we can also verify that, if the boundary surface has a sym-
metry axis X3 and the displacement components in cylindrical coordinates
(r, ψ,X3) are

ur = ur(r,X3), uψ = 0, u3 = u3(r,X3),

then there are two scalar functions ϕ and Φ such that the displacement can
be written as u = u1 + u2, with Φ = Φa3, where a3 is the unit vector of
the axis X3.2

10.6 Saint-Venant’s Conjecture

In the previous section we proved two fundamental theorems which as-
sure the existence and uniqueness of the solution of two boundary value

2For further insight into these topics the reader is referred to [27], [28].
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problems of linear elasticity. However, we said nothing about the form of
the solution itself. In the introductory notes, we stressed the need to resort
to numerical methods to find an approximate form of the solution or to
Fourier’s approach, when the region C∗ has a simple form. These consider-
ations show the importance of a method which allows us to find analytical
solutions of equilibrium problems, which we often find in applications (see
[32]).

In the engineering sciences, it is very important to find the equilibrium
configuration of elastic isotropic systems S satisfying the two following con-
ditions:

• the unstressed reference configuration C∗ of S has a dimension which
is much greater than the others; that is, C∗ is a cylinder whose length
L satisfies the condition

L � a, (10.34)

where a is a characteristic dimension of a section orthogonal to the
direction along which the length L is evaluated;

• the body forces are absent and the surface forces act only on the bases
of the above cylinder.

A system satisfying these conditions is called a beam. Let C∗ be the
cylindrical reference configuration of the elastic isotropic system S, σ1 and
σ2 its simply connected bases, σl the lateral surface of C∗, and OX1X2X3
an orthogonal coordinate system having the origin in the center of mass of
σ2 and the OX3-axis along the length L of the cylinder (see Figure 10.1).

σ1

σ 2

σ 

σl

X1

X2

X3

n

Figure 10.1

The method, due to Saint-Venant, which allows us to find explicit solu-
tions of the equilibrium problems relative to a beam can be described in
the following way:

1. First, it is assumed that any longitudinal planar section σ of C∗ con-
taining the axis X3 is subjected to a stress tσ, whose component along
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the X3-axis is the only component different from zero; that is,

tσ = Tn = tσe3 ∀n ⊥ e3, (10.35)

or equivalently

T11 = e1 ·Te1 = 0, T12 = e1 ·Te2 = 0, T22 = e2 ·Te2 = 0. (10.36)

Then the most general solution satisfying these conditions is deter-
mined by the equilibrium equations. This procedure is called a semi-
inverse method .

2. The solutions found in step (1) are used to determine the total force
and torque acting on the bases. By using the Saint-Venant con-
jecture, which is discussed below, they are supposed to represent
a good approximation of the equilibrium solutions corresponding to
force distributions on the bases with the same total force and torque.

Let us now examine these steps in detail. In our hypotheses, the equilib-
rium equations can be written as

µ∆u + (λ + µ)∇∇ · u = 0 on C∗, (10.37)

and it is possible to prove (see [29], [30], and [32]) that the most general
solution of (10.37) satisfying the conditions (10.36) is given by the following
functions:

u1 = c1 + γ3X2 − γ2X3

−k {a0X1 +
1
2
a1(X2

1 − X2
2 ) + a2X1X2

+ X3[b0X1 +
1
2
b1(X2

1 − X2
2 ) + b2X1X2]}

+ α X2X3 − 1
2
a1X

2
3 − 1

6
b1X

3
3 , (10.38)

u2 = c2 + γ1X3 − γ3X1

−k {a0X2 +
1
2
a2(X2

2 − X2
1 ) + a1X1X2

+ X3[b0X2 +
1
2
b2(X2

2 − X2
1 ) + b1X1X2]}

−α X1X3 − 1
2
a2X

2
3 − 1

6
b2X

3
3 , (10.39)

u3 = c3 + γ2X1 − γ1X2 + X3(a0 + a1X1 + a2X2)

+
1
2
X2

3 (b0 + b1X1 + b2X2) − 1
2
b0(X2

1 + X2
2 )

− b1X1X
2
2 − b2X

2
1X2 + αψ(X1, X2)

+ b1η1(X1, X2) + b2η2(X1, X2), (10.40)
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where c1, c2, c3, γ1, γ2, γ3, a0, a1, a2, b0, b1, b2, and α are arbitrary con-
stants and ψ(X1, X2), η1(X1, X2), and η2(X1, X2) are arbitrary harmonic
functions; i.e.,

∆ψ = ∆η1 = ∆η2 = 0.

If the axes OX1 and OX2 are chosen to coincide with the inertial axes
of the bases, we have∫

σ2

X1 dσ =
∫

σ2

X2 dσ =
∫

σ2

X1X2 dσ = 0,

and it is possible to verify that all the solutions (10.38)–(10.40) satisfy the
boundary condition

TN = 0 on σl, (10.41)

for any choice of the constants c1, c2, c3, γ1, γ2, γ3, a0, a1, a2, b0, b1, b2,
and α, if b0 = 0 and the functions ψ(X1, X2), η1(X1, X2), and η2(X1, X2)
satisfy the following Neumann boundary value problems:

∆ψ = 0 on σ2,

dψ

dN
= −X2N1 + X1N2 on ∂σ2,

∆η1 = 0 on σ2,

dη1

dN
=

kX2
1 + (2 − k)X2

2

2
N1 + (2 + k)X1X2N2 on ∂σ2,

∆η2 = 0 on σ2,

dη2

dN
=

kX2
2 + (2 − k)X2

1

2
N2 + (2 + k)X1X2N1 on ∂σ2.

Suppose that the functions ψ(X1, X2), η1(X1, X2), η2(X1, X2) have been
determined (up to a constant) by solving the previous boundary problems.
Then the family of solutions (10.38)–(10.40) satisfies the equilibrium con-
dition (10.37) and the lateral boundary condition (10.41) for any choice of
the constants c1, c2, c3, γ1, γ2, γ3, a0, a1, a2, b1, b2, and α, since b0 = 0, in
order to satisfy (10.41).

It remains to impose the remaining boundary conditions

TN1 = t1 on σ1, TN2 = t2 on σ2,

on the bases of the beam. It is quite evident that it is impossible to satisfy
these functional conditions with the remaining constants c3, γ1, γ2, γ3, a0,
a1, a2, b1, b2, and α. Therefore these constants are determined by requiring
that the total force R and torque M evaluated starting from the solution
(10.38)–(10.40) coincide with the total force G and torque L of the force
distributions t(X) (see (7.20)) on the bases of the beam. In this regard, we



334 Chapter 10. Linear Elasticity

remark that, owing to the conditions (10.8) and (10.10), the forces acting
on the bases are equilibrated so that

R = R1 + R2 = 0, M = M1 + M2 = 0,

where Ri and Mi denote the total force and torque on the basis σi, re-
spectively. Consequently, the total force and torque of the surface forces,
evaluated starting from the solution (10.38)–(10.40), will balance the ap-
plied forces on the bases if and only if

R2 = G2, M2 = L2. (10.42)

If we introduce the notation

ρ2
1 =

1
A

∫
X2

1 dσ, ρ2
2 =

1
A

∫
X2

2 dσ,

where A is the area of σ2, it is possible to verify (see [32]) that conditions
(10.42) lead to the following expressions for the undetermined constants:

b1 =
R1

AEY ρ2
1
, b2 =

R2

AEY ρ2
2
, (10.43)

a0 =
R3

AEY
, a1 = − M2

AEY ρ2
1
, a2 =

M2

AEY ρ2
2
, (10.44)

M3 = − E

4(1 + k)

{
2A(ρ2

1 + ρ2
2)α − b1

∫
σ2

[(2 − k)X3
2 − (4 + k)X2

1X2] dσ

−b2

∫
σ2

[(2 − k)X3
1 − (4 + k)X1X

2
2 ] dσ

−2
∫

σ2

[
X1

(
α

∂ψ

∂X2
+ b1

∂η1

∂X2
+ b2

∂η2

∂X2

)
− X2

(
α

∂ψ

∂X1
+ b1

∂η1

∂X1
+ b2

∂η2

∂X1

)]
dσ

}
,

(10.45)

where, R1, R2, R3, M1, M2, and M3 are the components of R2 and M2,
respectively; moreover, EY is Young’s modulus (see (7.20)) and A is the
area of σ2. The coefficient q of α appearing in (10.45), which has the form

q =
E

2(1 + k)

{
2A(ρ2

1 + ρ2
2) −

∫
σ2

[
X1

∂ψ

∂X2
− X2

∂ψ

∂X1

]
dσ

}
,

is called the torsional stiffness and can be proved to be positive.
Finally, we note that the constants c1, c2, c3, γ1, γ2, and γ3 are not

relevant, since they define an infinitesimal rigid displacement.
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In conclusion, the previous procedure has led us to a set of three functions
satisfying the equilibrium equations, the boundary condition of vanishing
forces on the lateral surface of the beam, and the further condition that the
total forces acting on the bases are globally equilibrated and have the same
resultant and torque of the surface loads, applied on the bases. It is evident
that these functions do not represent a solution of the posed boundary value
problem since they do not satisfy the boundary conditions on the bases at
any point of σ1 and σ2.

The Saint-Venant conjecture consists of supposing that these func-
tions represent a good approximation of the effective solution of the above
boundary value problem. More precisely, Saint-Venant hypothesized that
forces having the same resultant and torque produce the same effect on the
beam regardless of their distribution on the bases, except for a small region
near the bases themselves.

This conjecture allows us to consider the three functions we found as
the solution of our equilibrium problem. The conjecture has not yet been
proved in the above form (see the end of this section); however, because of
its fundamental role in linear elasticity, it is also called the Saint-Venant
principle.

10.7 The Fundamental Saint-Venant Solutions

The solution proposed by Saint-Venant depends on six constants a0, a1,
a2, b1, b2, and α. In other words, by setting all but one of these constants
equal to zero, six families of solutions are determined. Due to the linearity
of the equilibrium boundary value problem, any linear combination of these
six solutions is also a solution.

Let us now discuss the meaning of some deformation patterns.

1. Pure (compression) extension

The constant a0 �= 0 and all the other constants vanish, so that we
have (see (10.38)–(10.40) and (10.43)–(10.45))

u1 = −ka0X1, u2 = −ka0X2, u3 = −ka0X3,

R1 = R2 = 0, R3 = AEY a0, M1 = M2 = M3 = 0.
(10.46)

In other words, the beam is subjected to forces orthogonal to the
bases, stretching or compressing the beam (see Figure 10.2). Each
planar section remains planar and the deformation is independent of
the form of the basis σ2.
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X1

X2

X3
R 3

Figure 10.2

2. Uniform bending

The constant a1 �= 0 (or a2 �= 0) and all the other ones vanish so that
we have (see (10.38)–(10.40))

u1 = −1
2
a1[k(X2

1 − X2
2 ) + X2

3 ], u2 = −a1X1X2, u3 = a1X1X2,

R1 = R2 = 0, R3 = 0, M1 = 0, M2 = −Aρ2
1a1, M3 = 0.

(10.47)

X2

X1

X3 M2

Figure 10.3

The forces acting on each base are equivalent to a couple lying in
the plane OX1X3 (see Figure 10.3). The rulings of the cylinder be-
come parabolas in this plane. The sections of the beam which are
orthogonal to OX3 remain planar and all their planes contain the
point (−a−1

1 , 0, 0) on the X1-axis. Finally, the deformation is again
independent of the form of σ2.
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3. Nonuniform bending

The constant b1 �= 0 (or b2 �= 0) and all other ones vanish so that we
have (see (10.38)–(10.40))

u1 = −1
2
b1

[
kX3(X2

1 − X2
2 ) − 1

3
X3

3

]
, u2 = −kb1X1X2X3,

u3 = b1

[
1
2
X1X

2
3 − X1X

2
2 + η1(X1, X2)

]
,

R1 = AEY ρ2
1b1, R2 = R3 = 0, M1 = M2 = 0,

4(1 + k)
EY

M3 = b1

∫
σ2

[(2 − k)X3
2 − (4 + k)X3

1X2] dσ

+ 2b1

∫
σ2

(
X1

∂η1

∂X2
− X2

∂η1

∂X1

)
dσ. (10.48)

The forces, which are equivalent to a unique force parallel to the OX1-
axis plus a couple contained in σ2 (see Figure 10.4), act on each base.
The sections of the beam undergo a bending depending on η1; that
is, of the form of σ2.

X2

X1

X

R 1

M

Figure 10.4

4. Torsion

The constant α �= 0 and the others vanish so that we have (see
(10.38)–(10.40))

u1 = αX1X3, u2 = −αX1X3, u3 = αψ(X1, X2),
R1 = R2 = R3 = 0, M1 = M2 = 0,

M3 = α
EY

2(1 + k)

{
A(ρ2

1 + ρ2
2) −

∫
σ2

(
X1

∂ψ

∂X2
− X2

∂ψ

∂X1

)
dσ

}
.

(10.49)

On each base acts a force which is equivalent to a couple lying on
the base itself. Every ruling becomes a cylindrical helix and αl is
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a measure of the angle between two sections which are l apart (see
Figure 10.5).

X2

X1

X3

M3

Figure 10.5

As already mentioned, Saint-Venant’s conjecture is so useful when deal-
ing with elastic systems whose geometry is such that one dimension dom-
inates the others that it is often referred as a principle. In this context,
we ask ourselves if Saint-Venant’s solution does represent a sufficient ap-
proximation of the true solution and if a rigorous mathematical proof of
this principle can be given. For instance, for a beam with sharp edges, the
first derivatives of the effective solution are singular at such points; there-
fore, Saint-Venant’s solution, which is supposed to be regular, cannot be a
convenient approximation.

Finally, we close this section with a result due to Toupin (see [31]), which
represents a partial proof of Saint-Venant’s conjecture.

Theorem 10.6
Let S be a cylinder of length 2l and denote as C(Z1, Z2) that part of it
which is obtained by varying the coordinate X3 from Z1 to Z2. If

U(X3) =
∫

C(−l,X3)
(2µEijEij + λEiiEjj) dc

is the elastic energy of the portion from the section σ1 (of coordinate −l)
to the section of coordinate X3 and, moreover, the section σ1 is free, then

U(X3)
U(l)

≤ γ0 exp
(

− l − X3

γ

)
,

where γ0 and γ depend on the geometry and elastic properties of S.

This theorem states that the elastic energy relative to the portion between
the coordinates −l, z, compared to the energy relative to the whole cylinder,
decays exponentially as the section of coordinate X3 moves away from σ2,
towards the free section σ1.
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10.8 Ordinary Waves in Elastic Systems

In order to describe the wave propagation in linear elastic and anisotropic
systems, it is enough to apply the general theory presented in Chapter 8
(10.6)1, which allows us to state the following:

Theorem 10.7
The amplitude of an ordinary wave propagating in the direction n is an
eigenvector of the acoustic tensor Q(n), and the normal velocities cn are
linked to the positive eigenvalues Λ of Q(n) through the formula

cn = ±
√

Λ
ρ∗

. (10.50)

PROOF When (8.44) and (8.45) are referred to the system (10.6)1, we
obtain the jump system

ρ∗

[[
∂2ui

∂t2

]]
= Cijhk

[[
∂2uj

∂xh∂xk

]]
. (10.51)

By applying the kinetic conditions (4.40)–(4.42), we get the following eigen-
value problem:

(Q(n) − ρ∗c2
nI)a ≡ (Q(n) − ΛI)a = 0, (10.52)

where a is the amplitude of the discontinuity, n is the unit vector normal
to the surface σ(t), and Q(n) is the acoustic tensor

Qij(n) = Cijhknhnk. (10.53)

In Section 10.2 we proved some theorems of existence and uniqueness that
are based on the assumption that the elasticity tensor C is positive definite.
For other theorems of existence and uniqueness, relative to the solution of
the equilibrium boundary problems, it was necessary to require that C be
strongly elliptic. The following theorem proves that the assumption that C

is positive definite is also fundamental when dealing with wave propagation.

Theorem 10.8
If the elasticity tensor is positive definite, then the acoustic tensor Q(n) is
symmetric and positive definite.
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PROOF First, we note that the acoustic tensor is symmetric, due to
the symmetry properties (10.2) of the elasticity tensor. Furthermore, these
symmetry properties of C allow us to write, for any v,

Qij(n)vivj = Cijhkvivjnhnk =
1
4

Cijhk(vinh + vhni)(vjnk + vknj).

Since the tensor vinh + vhni is symmetric and C is positive definite, then

Qij(n)vivj > 0.

Given a propagation direction n, a wave is said to be a longitudinal or
dilational wave if

a‖n; (10.54)

it is called a transverse or shear wave if

a · n = 0. (10.55)

With this in mind, we prove the following:

Theorem 10.9
Let C be symmetric and positive definite. Then, given a propagation direc-
tion n, the following cases are possible:

1. There are ordinary waves propagating in the direction n with three
different velocities; moreover, their amplitudes of discontinuity are
mutually orthogonal;

2. There are waves propagating in the direction n, with only two different
velocities; one of these is related to waves whose amplitude has a
fixed direction, whereas the other velocity is related to waves having
amplitudes in any direction, but orthogonal to the first one;

3. There are waves propagating in the direction n with only one velocity
and amplitude vector in any direction;

4. Finally, there is at least one direction n1 characterized by longitudinal
and transverse waves.

PROOF The points (1), (2), and (3) derive from Theorem 10.7 and from
the fact that the acoustic tensor is symmetric and positive definite. To prove
the property (4), note that, given (10.54) and (10.52), the ordinary wave
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propagating along n is longitudinal if n is an eigenvector of the acoustic
tensor

(Q(n) − ρc2
nI)n = 0,

so that we have to prove that the mapping n −→ Q(n)n has at least one
eigenvector.

Since Q(n) is positive definite, it holds that

n · Q(n)n > 0, Q(n)n �= 0. (10.56)

As a consequence, the function

l(n) =
Q(n)n
|Q(n)n| (10.57)

maps unit vectors n into unit vectors. However, it cannot be that

l(n) = −n,

corresponding to
n · Q(n)n
|Q(n)n| = −1,

since this contradicts (10.56). By invoking the so-called theorem of fixed
points, the function (10.57) has at least one fixed point; i.e., there exists a
unit vector n1 such that

l(n1) = n1.

By considering (10.57), we see that

Q(n1)n1 = |Q(n1)n1|n1 ≡ λn1,

and the theorem is proved.

Only if the material exhibits additional symmetries, i.e., only if the ma-
terial has an inherent reference frame are there preferential directions of
polarization.

With this in mind, we now consider the case of transverse anisotropy, also
called orthotropy of revolution. This is of particular relevance for geological
media.

This assumption means that there is a plane (0x1, 0x2) in which all the
directions are equivalent and there is an axis 0x3 of orthotropy. The number
of independent elastic constant reduces to 5, namely:

C1111 = C2222, C2233 = C1133, C1313 = C2323,

C3333 and C1122,

C1212 = 1
2 (C1111 − C1122).

(10.58)
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All the other constants are equal to zero.
If the direction of propagation is oriented along the orthotropic axis, i.e.

n = n3, then we can infer the existence of a longitudinal wave moving with
speed of propagation

cP =
√

C3333/ρ

and two transverse waves moving with speed of propagation

cS =
√

C1313/ρ =
√

C2323/ρ.

If n · n3 = 0 , i.e., the propagation vector belongs to the plane of isotropy,
then there is a longitudinal wave propagating with speed

cP =
√

C1111/ρ =
√

C2222/ρ

and two transverse waves. One of the latter waves is polarized in the
direction of n3, i.e., it has its amplitude in this direction, and propagates
with speed

cS =
√

C1313/ρ =
√

C2323/ρ,

whereas the other is polarized in the isotropic plane and moves with normal
velocity

cS =
√

C1212/ρ.

These aspects are particularly useful when using wave propagation as a
tool for identifying the elastic properties of geological media.

If the elastic system is isotropic and homogeneous, then the elasticity
tensor assumes the form (10.3) and the acoustic tensor is written as

Q(n) = (λ + µ)n ⊗ n + µI. (10.59)

It is important to determine the conditions which the Lame coefficients
λ and µ must satisfy in order that the elasticity tensor be strongly elliptic
and the acoustic tensor be positive definite.

The answer relies on the following theorem:

Theorem 10.10
Given an isotropic, linear elastic material, if

λ + 2µ > 0, µ > 0, (10.60)

then the elasticity tensor is positive definite and the acoustic tensor is sym-
metric and positive definite. Moreover, in any direction n there are longi-
tudinal waves whose velocity is

cP = ±
√

λ + 2µ

ρ∗
(10.61)
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and transverse waves whose velocity is

cS = ±
√

µ

ρ∗
. (10.62)

Moreover, the amplitudes of these last waves lie in a plane normal to n.

PROOF By considering (10.3), we see that the elasticity tensor becomes

Cijhkξijξhk = (λ + 2µ)
3∑

i=1

ξ2
ii + 2µ(ξ2

12 + ξ2
13 + ξ2

13)

so that, if (10.60) holds then C is positive definite. It follows that the acous-
tic tensor is symmetric and positive definite. In addition, the eigenvalues
problem for the acoustic tensor Q(n) is

((λ + µ)n ⊗ n + µI)a = ρ∗c2
na.

Assuming an orthogonal base system with origin at the point x of the
wavefront and the OX1-axis along n, we can write the previous equation
as ⎛⎝λ + 2µ 0 0

0 µ 0
0 0 µ

⎞⎠⎛⎝a1
a2
a3

⎞⎠ = ρ∗c2
n

⎛⎝a1
a2
a3

⎞⎠ .

The characteristic equation becomes

(λ + 2µ − ρ∗c2
n)(µ − ρ∗c2

n)2 = 0

and (10.61), (10.62) are proved. In addition, it can be shown that the
eigenvectors corresponding to the first value of the velocity have the form
(a1, 0, 0), so that the wave is longitudinal; the eigenvectors associated with
the second value of the velocity have the form (0, a1, a2), so that the wave
is transverse and orthogonal to n.

When cn is known, the evolution of the wavefront f = const can be
derived (see Chapter 4) from the equation

cn = − 1
|∇f |

∂f

∂t
.

When dealing with isotropic, linear elastic materials, the results of the
previous theorem can also be obtained by using the decomposition suggested
by Helmholtz’s theorem:
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Theorem 10.11
A vector field u, which is finite, uniform and regular and vanishes at infin-
ity, can be expressed as a sum of a gradient of a scalar potential φ and the
curl of a vector Ψ whose divergence is zero:

u = u1 + u2,

where
u1 = ∇φ, u2 = ∇ × Ψ, ∇ · Ψ = 0. (10.63)

We use this theorem without proving it. Substitute (10.63) into the (10.7)
to obtain

ρ∗ü = (λ + 2µ) ∇ (∇ · u) − µ∇ × (∇ × u) , (10.64)

and rearrange the operators to obtain the equations

∇
[
ρ∗

∂2φ

∂t2
− (λ + 2µ) ∆φ

]
+ ∇ ×

[
ρ∗

∂2Ψ
∂t2

− µ∆Ψ
]

= 0. (10.65)

Equation (10.65) implies that the potentials φ and Ψ satisfy D’Alembert’s
equation, i.e.,

ρ∗
∂2φ

∂t2
= (λ + 2µ) ∆φ, (10.66)

ρ∗
∂2Ψ
∂t2

= µ∆Ψ. (10.67)

The first displacement field u1, obtained from the potential φ as a solution
of (10.66), represents a wave propagating at a normal speed

cP =

√
λ + 2µ

ρ∗
,

and, since
∇ · u1 �= 0, ∇ × u1 = 0,

we conclude that an irrotational displacement produced by the wave gener-
ates volume changes. Furthermore, if we consider a plane wave represented
by the solution

φ = φ(n · X − cP t),

then the displacement u1 = ∇φ = nφ is parallel to the propagation direc-
tion, so that the wave is longitudinal.

The second field u2 = ∇ × Ψ describes waves propagating at a normal
speed

cS =
√

µ

ρ∗
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and satisfying the conditions

∇ · u2 = 0, ∇ × u2 �= 0.

Again, by considering a plane wave Ψ = Ψ(n · X − cSt) and the corre-
sponding displacement

u2 = ∇ × Ψ = n × Ψ,

we have that n · u2 = 0 and the wave is transverse.

10.9 Plane Waves

In this section we consider plane harmonic waves whose displacement
field is represented by

u(X, t) = A cos
(

2π

λ
n · X − ωt + ϕ

)
≡ A cos(k · X − ωt + ϕ). (10.68)

The absolute value of the constant A is called the amplitude, n is the
propagation unit vector, ω is the circular frequency,

|k|
2π

is the wave number, λ is the wavelength, and ϕ is the phase. In the following
discussion,

f =
ω

2π
, T =

1
f

,

denote the frequency and the period, respectively, and

α = fλ =
ω

k
(10.69)

is the phase velocity .
The propagation of these waves will be analyzed in spatial regions with

the following geometries:

1. a homogeneous and isotropic half-space y ≥ 0, whose boundary y = 0
is a free surface, i.e.,

TN = 0, (10.70)

where N is the unit vector normal to the surface y = 0. This case is
relevant when we investigate reflection phenomena and prove the
existence of Rayleigh surface waves;
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2. a domain formed by two homogeneous and isotropic media, whose
interface y = 0 is characterized by the jump conditions

[[u]] = 0, [[TN]] = 0. (10.71)

This case is relevant when we investigate refraction phenomena ;

3. a layer of limited depth. This case is relevant when we investigate the
Rayleigh–Lamb dispersion relation .

In all the above cases, a boundary problem is formulated and we search
for a solution by using the method of separation of variables. Without
loss of generality, the direction of propagation defined by the unit vector
n is supposed to lie on the plane xy. This is a vertical plane, whereas the
xz-plane, which represents the boundary surface of the half-space, is the
horizontal plane. The displacement un produced by longitudinal waves is in
the direction n, so that it lies in the vertical plane, whereas the displacement
produced by transverse waves is normal to n. The components uv and uh

lie on the vertical plane and in the normal plane to n, respectively (see
Figure 10.6).

O

z

x

y

un

uv

uh

h-plane

v-plane

N

wavefront

Figure 10.6

The selected reference system is such that the vector k has only two
components (k, p), so that

k · X = kx + py.

Furthermore, by using Helmholtz’s theorem, the displacement u is ex-
pressed by (10.63). In particular, since the motion is independent
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of z,3 the displacement components are

ux =
∂φ

∂x
+

∂Ψ3

∂y
,

uy =
∂φ

∂y
− ∂Ψ3

∂x
,

uz = −∂Ψ1

∂y
+

∂Ψ2

∂x
,

(10.72)

and the condition ∇ · Ψ = 0 becomes

∂Ψ1

∂x
+

∂Ψ2

∂y
= 0. (10.73)

The mathematical problem of determining solutions in the half-space y ≥ 0
reduces to finding the solution of the equations (10.66) and (10.67):

∂2φ

∂x2 +
∂2φ

∂y2 =
1
c2
p

∂2φ

∂t2
, (10.74)

∂2Ψα

∂x2 +
∂2Ψα

∂y2 =
1
c2
s

∂2Ψα

∂t2
, α = 1, 2, 3, (10.75)

when the initial and boundary conditions are given.
To do this, consider the equation (10.74),4 and search for a solution in

the form
φ(x, y, t) = X(x)Y (y)T (t). (10.76)

By substituting (10.76) into (10.74) we get

X ′′

X
+

Y ′′

Y
=

1
c2
p

T ′′

T
≡ a

c2
p

, (10.77)

where a is a constant. Then from

T ′′

T
= a,

by assuming a = −ω2, we derive the solution

T (t) = At sin ωt + Bt cos ωt, (10.78)

3This is related to the assumption of plane waves, so that all the physical quantities are
independent of z.
4The same argument applies to (10.75).
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which expresses the harmonic character of the wave under consideration.
Furthermore, from (10.77) it follows that

X ′′

X
= −ω2

c2
p

− Y ′′

Y
≡ b,

and, since we are searching for harmonic solutions in at least one of the
directions x and y, by assuming b = −k2, the following system holds:

X ′′

X
= −k2,

Y ′′

Y
= k2 − ω2

c2
p

.

(10.79)

The first equation represents the propagation in the x-axis direction

X(x) = Ax sin kx + Bx cos kx, (10.80)

and the solution (10.76) becomes

φ(x, y, t) = Y (y) (Ax sin kx + Bx cos kx) (At sin ωt + Bt cos ωt) . (10.81)

In order to find the function Y (y), two cases have to be distinguished:

k2 − ω2

c2
p

≥ 0,

k2 − ω2

c2
p

< 0.

(10.82)

Similarly, for the equation (10.75) we get

Ψα(x, y, t) ≡ Yα(y)Xα(x)Tα(t)
= Yα(y) (Axα sin kαx + Bxα cos kαx) (Atα sin ωαt + Btα cos ωαt) ,

(10.83)

where α = 1, 2, 3, and any function Yα(y) depends on the choice of one of
the two cases

k2
α − ω2

α

c2
s

≥ 0,

k2
α − ω2

α

c2
s

< 0.

(10.84)

In particular, by assuming (10.82)2 and (10.84 )2 , we have

Y (y) = Ay sin py + By cos py,

Yα(y) = Ayα sin qαy + Byα cos qαy, α = 1, 2, 3, (10.85)
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where

p =

√
ω2

c2
p

− k2,

pα =

√
ω2

α

c2
s

− k2
α, α = 1, 2, 3. (10.86)

In the following discussion, it is convenient to use Euler’s formulae

cos β + i sin β = eiβ , cos β − i sin β = e−iβ , (10.87)

which allow us to write (10.85) in the exponential form

Y (y) = Aye−ipy + Byeipy,

Yα(y) = Ayαe−ipαy + Byαeipαy, α = 1, 2, 3, (10.88)

where the constants Ay, By, Ayα, and Byα are properly defined.5 By ap-
plying the same exponential form to X(x), T (t), Xα(x), and Tα(t), (10.81)
and (10.83) can be written as

φ = (Aye−ipy + Byeipy)(Axe−ikx + Bxeikx)(Ate
−iωt + Bte

iωt),
Ψα = (Ayαe−ipαy + Byαeipαy)(Axαe−ikαx + Bxαeikαx) (10.89)

× (Atαe−iωαt + Btαeiωαt).

where again all the constants have been defined.
In order to appreciate the mathematical aspects of the problem, we ob-

serve that the uniqueness of the solution in the half-space y ≥ 0 needs to
define the following:

1. the initial conditions, i.e., the values of the functions φ and Ψα and
their time derivatives at the initial instant;

2. the asymptotic conditions, i.e., the behavior of φ and Ψα if x −→ ±∞
and y −→ ∞;

5It can be proved, starting from (10.87), that the expression

C sin β + D cos β

can be written as
C′eiβ + D′e−iβ ,

with
C′ + D′ = C, i(C′ − D′) = D.
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3. the boundary condition (10.70), which is equivalent to three scalar
conditions on the surface y = 0.

In addition, (10.73) must be taken into account.

In this way we obtain 8 + 12 + 3 + 1 = 24 conditions for the 24 constants
in (10.90). However, the periodic dependence on the variables x, y, and t
rules out both the initial and asymptotic conditions. As far as the initial
data are concerned, it is always possible to eliminate the constants Bt and
Btα and to put At and Atα into other constants, in order to reduce their
number to 16. Moreover, in the absence of asymptotic conditions, the
remaining constants are still undetermined. In conclusion, we are faced
with a problem in which 16 constants are limited by 4 conditions so that
it admits ∞12 solutions. We will need to give to some of these constants a
convenient value, depending on the relevant aspects of the problem under
consideration.

In order to evaluate (10.70) and (10.71), it is useful to write down the
components of the stress tensor. From (7.18), (10.72), since

∆φ =
(

∂2φ

∂x2 +
∂2φ

∂y2

)
,

it follows that

T11 = λ∆φ + 2µ

(
∂2φ

∂x2 +
∂2Ψ3

∂x∂y

)
,

T22 = λ∆φ + 2µ

(
∂2φ

∂y2 − ∂2Ψ3

∂x∂y

)
,

T33 = λ∆φ,

T12 = 2µ

[
∂2φ

∂x∂y
+

1
2

(
∂2Ψ3

∂y2 − ∂2Ψ3

∂x2

)]
,

T23 = µ

(
∂2Ψ2

∂y∂x
− ∂2Ψ1

∂y2

)
,

T13 = µ

(
−∂2Ψ1

∂y∂x
+

∂2Ψ2

∂x2

)
.

(10.90)

10.10 Reflection of Plane Waves in a Half-Space

In the discussion below, longitudinal waves will be denoted by P , whereas
transverse waves will be denoted by SH if they are polarized in the hor-
izontal plane (Figure 10.7) or by SV if they are polarized in the vertical
plane (Figure 10.8).
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When the interface between two media is free, then there arises a simple
reflection characterized by the conversion of modes, i.e., an incident lon-
gitudinal or transverse plane wave gives rise to two reflected waves, one
longitudinal and the other transverse.

On the basis of the previous remarks, it is always possible to set Bt = 0.
Then, by developing the products in (10.90)1 and by conveniently denoting
the multiplicative constants, we obtain 4 terms whose wave vectors are

(k,−p), (k, p), (−k, p), (−k,−p).

Apart a symmetry with respect to the Oy-axis, the last two wave numbers
refer to waves propagating in the same manner as the first two. Since the
same arguments apply to Ψα, we lose no generality by writing

φ(x, y, t) = Aei(kx−py−ωt) + Bei(kx+py−ωt),

Ψα(x, y, t) = Aαei(kαx−pαy−ωαt) + Bαei(kαx+pαy−ωαt), (10.91)

where α = 1, 2, 3. These functions must be determined through the condi-
tions

T21 = T22 = T23 = 0 for y = 0, (10.92)

which are deduced from TN = 0 for y = 0, where N has components
(0, 1, 0).
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Figure 10.7

From (10.72) we deduce that ux and uy depend on φ and Ψ3, which are
the potentials describing P and SV waves; similarly, uz only depends on
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Ψ1 and Ψ2, which describe SH waves. Accordingly, it is convenient to split
the problem into two other problems, the first related to the displacement
field represented by (ux, uy, 0) and the second described by (0, 0, uz).

(a) P and SV waves

ux =
∂φ

∂x
+

∂Ψ3

∂y
, uy =

∂φ

∂y
− ∂Ψ3

∂x
, uz = 0,

T21 = 0, T22 = 0 for y = 0.
(10.93)

(b) SH waves

ux = uy = 0, uz = −∂Ψ1

∂y
+

∂Ψ2

∂x
,

∂Ψ1

∂x
+

∂Ψ2

∂y
= 0,

T23 = 0 for y = 0.

(10.94)
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P and SV Waves

From (10.91) and (10.93) it follows that

φ(x, y, t) = A(IP )ei(kx−py−ωt) + A(RP )ei(kx+py−ωt),

Ψ3(x, y, t) = A(ISV )ei(k3x−p3y−ω3t) + A(RSV )ei(k3x+p3y−ω3t), (10.95)
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where the constants A and B have been changed in order to highlight their
physical meaning: the first term in (10.95)1 represents the amplitude of
the P wave incident in the direction kP = (k,−p, 0), whereas A(RP ) is
the amplitude of the P wave reflected in the direction k′

P = (k, p, 0). A
similar meaning is attributed to A(IS), which denotes the amplitude of a
SV wave incident in the direction kSV = (k3,−p3, 0), whereas A(RSV ) is
the amplitude of the SV wave reflected in the direction k′

SV = (k3, p3, 0). In
this way, (10.95 )1 describes two plane waves; the first one is incident with
respect to the surface y = 0 at an angle θp, called the angle of incidence,
and the second one is the reflected wave, with the corresponding angle of
the same amplitude, called the angle of reflection. If θSV denotes the angle
between the SV ray and the normal N to the plane of incidence, then
the same considerations apply to (10.95)2. The above functions represent
a solution of the problem posed if the constants in (10.95) can be found
such that they satisfy the boundary conditions (10.93)2. From the above
remarks, it follows that

k = kP sin θp, p = kP cos θp,

k3 = kSV sin θSV , p3 = kSV cos θSV , (10.96)

where
kP =

√
k2 + p2, kSV =

√
k2
3 + p2

3.

By substituting (10.95) into the first part of (10.93)2 and by also taking
into account (10.90), we can prove that the following equation holds:

k2
P sin(2θP )eiµ(A(IP ) − A(RP ))

−k2
SV cos(2θSV )eiµ3(A(ISV ) + A(RSV )) = 0,

(10.97)

where
µ = kP x sin θP − ωt, µ3 = kSV x sin θSV − ω3t. (10.98)

Since x and t are arbitrary, (10.97) is satisfied only if

kP x sin θP − ωt = kSV x sin θSV − ω3t,

k2
P sin(2θP )(A(IP ) − A(RP ))

−k2
SV cos(2θSV )(A(ISV ) + A(RSV )) = 0.

(10.99)

Similarly, from (10.99)1 it follows that

ω = ω3,

kP sin θP = kSV sin θSV . (10.100)

Substituting (10.95) into the second part of (10.93)2 and considering
(10.90) and (10.100), we see that

cos(2θSV )(A(IP ) + A(RP ))

+ sin(2θSV )(A(ISV ) − A(RSV )) = 0.
(10.101)
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Furthermore, if we introduce the ratio

δ ≡ kSV

kP
=

cP

cS
> 1,

where cP and cS are the normal speed of the longitudinal and transverse
wave, then (10.100)1 allows us to give the boundary conditions the form

ω = ω3,
sin θP

sin θSV
= δ > 1,

sin(2θP )(A(IP ) − A(RP )) − δ2 cos(2θSV )(A(ISV ) + A(RSV )) = 0,

cos(2θSV )(A(IP ) + A(RP )) + sin(2θSV )(A(ISV ) − A(RSV )) = 0.
(10.102)

The conditions (10.102) give rise to the following remarks.
Both waves have the same frequency. The condition (10.102)2 gives the

ratio of the angle of incidence of P and SV waves. The last two conditions
allow us to link two of the four constants A to the other two, arbitrarily
selected. Let us now consider some relevant cases.

• First, assume that A(ISV ) = 0. Then from (10.102)2,3 it follows that

A(RP )
A(IP )

=
sin(2θP ) sin(2θSV ) − δ2 cos2(2θSV )
sin(2θP ) sin(2θSV ) + δ2 cos2(2θSV )

,

A(RSV )
A(IP )

=
2 sin(2θP ) cos(2θSV )

sin(2θP ) sin(2θSV ) + δ2 cos2(2θSV )
, (10.103)

where θSV is expressed in terms of θP and δ throughout (10.102)2.
This result shows that an incident P wave whose angle of incidence
is θP gives rise to two reflected waves; the first is a P wave having
the reflected angle equal to the incident angle, and the second is an
SV wave having a reflected angle θSV < θP , according to (10.102)2
(see Figure (10.9)).
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In other words, the single P wave generates two reflected waves, P
and SV ; this phenomenon is referred to as mode conversion . Fur-
thermore, from (10.103) it also follows that

– if the P wave is normal to the plane of incidence (θP = 0),
A(RSV ) = 0, and there is only one reflected P wave; and

– if the angle of incidence satisfies the condition

sin(2θP ) sin(2θSV ) − δ2 cos2(2θSV ) = 0,

then there is only the reflected SV wave.

• Let us now consider the case of an incident SV wave. Since A(IP ) = 0,
(10.102)3,4 give

A(RSV )
A(ISV )

=
sin(2θP ) sin(2θSV ) − δ2 cos2(2θSV )
sin(2θP ) sin(2θSV ) + δ2 cos2(2θSV )

,

A(RP )
A(ISV )

= − δ2 sin(4θSV )
sin(2θP ) sin(2θSV ) + δ2 cos2(2θ3SV )

. (10.104)

This result shows that an incident SV wave whose angle of incidence
is θSV gives rise to two reflected waves; the first one is an SV wave
whose angle of reflection is equal to the angle of incidence, and the
second is a P wave whose angle of reflection is θP > θSV , according
to (10.102)2.

If θSV = 0, π/4, then the reflected waves are SV waves of amplitude
−A(ISV ), A(ISV ). Furthermore, from (10.102)2 follows the existence
of a limit value for the angle of reflection of an SV wave:

(θSV )lim = arcsin
1
δ
, (10.105)

for which the reflected P wave moves in the x-direction. If

sin(2θP ) sin(2θSV ) − δ2 cos2(2θSV ) = 0,

then the SV wave is reflected as a P wave.

SH Waves
From (10.91)2 it follows that

Ψ1(x, y, t) = A1e
i(k1x−p1y−ω1t) + B1e

i(k1x+p1y−ω1t),

Ψ2(x, y, t) = A2e
i(k2x−p2y−ω2t) + B2e

i(k2x+p2y−ω2t).

(10.106)

Since these functions must satisfy the boundary condition (10.94)3, we get

p2
1(A1 + B1)ei(k1x−ω1t) + k2p2(A2 − B2)ei(k2x−ω2t) = 0,
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and, by noting that x and t can be arbitrarily chosen, when (10.86)2 is
taken into account, it follows that

k1 = k2, ω1 = ω2,

p1(A1 + B1) = k1(A2 − B2).
(10.107)

By introducing Helmholtz’s decomposition (10.94)2, we get

k1A1 = p1A2, k1B1 = −p1B2, (10.108)

so that (10.107)2 becomes

(A1 + B1)(p2
1 − k2

1) = 0,

and finally
A1 = −B2, or p2

1 = k2
1. (10.109)

By paying attention to the first relation of (10.109), the only one of practical
interest, and also taking into account (10.108) and (10.109), we see that
(10.106) can be written as

Ψ1(x, y, t) = A1e
i(k1x−p1y−ω1t) − A1e

i(k1x+p1y−ω1t), (10.110)
Ψ2(x, y, t) = (k1/p1)A1e

i(k1x−p1y−ω1t) + (k1/p1)A1e
i(k1x+p1y−ω1t).

The displacement uz, due to (10.94)1 and (10.111), assumes the form

uz = p2
1 + k2

1p1[A1e
i(k1x−p1y−ω1t) + A1e

i(k1x+p1y−ω1t)],

and the following conclusion is proved: an SH wave incident on the surface
y = 0 is reflected as an SH wave with the same amplitude and with the angle
of reflection equal to the angle of incidence. In this case there is no mode
conversion.

10.11 Rayleigh Waves

In the previous sections we proved that, in an elastic unbounded medium,
there are two waves: a longitudinal, or dilational, wave and a transverse, or
distorsional, wave. When dealing with a half-space, it can be proved that
there exists an additional wave, called a Rayleigh wave , which propagates
confined only in the neighborhood of the surface of the medium, with less
speed than the body waves; its displacement decays exponentially with the
distance from the surface.
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Consider a wave propagating in the x direction, parallel to the surface
y = 0, attenuated in the y direction. Since the displacements occur in the
plane Oxy, only the scalar potential φ and the component Ψ3 of the vector
potential Ψ have to be considered.

According to these requirements, we refer to (10.82)1 and (10.84)1 by
taking the positive sign for the functions Y (y) and Yα(y), α = 3, in the
method of separation of variables (see Section 10.9). Accordingly, it holds
that

Y (y) = Aye−p̄y + Byep̄y,

Y3(y) = A3e
−p̄3y + B3e

p̄3y, (10.111)

where

p̄ = −p =

√
k2 − ω2

c2
P

,

p̄3 = −p3 =

√
k2
3 − ω2

3

c2
P

.

(10.112)

In (10.111), since the wave is supposed to be confined to the surface, it
follows that By = B3 = 0 and the potentials become

φ3 = Ae−p̄yei(kx−ωt),

Ψ = Be−p̄3yei(k3x−ω3t). (10.113)

Constants A and B must satisfy the boundary condition TN = 0; in scalar
terms, they can be written as

T12 = T22 = 0 if y = 0. (10.114)

By introducing the potentials (10.113) into (10.90)2,4, the first part of
(10.114) gives

−2ip̄kAeikx + (p̄2
3 + k2

3)Beik3x = 0,

and, since the x-axis is arbitrary, it follows that

k = k3, −2ip̄kA + (p̄2
3 + k2)B = 0. (10.115)

The second part of (10.114) gives

[(λ + 2µ)p̄2 − λk2]A + 2µip̄3kB = 0. (10.116)

Moreover, taking into account (10.112) with k = k3 and considering the
relation c2

P /c2
s = (λ + 2µ)/µ, we also find that

p̄2
3 + k2 = 2k2 − ω2

c2
S

,

p̄2(λ + 2µ) − λk2 =
(

k2 − ω2

c2
P

)
(λ + 2µ) − λk2 = µ

(
2k2 − ω2

c2
S

)
.
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By introducing these relations into (10.116) and (10.115)2, we obtain the
following system:⎛⎜⎜⎜⎜⎜⎝

2k2 − ω2

c2
S

2ik

√
k2 − ω2

c2
S

−2ik

√
k2 − ω2

c2
P

2k2 − ω2

c2
S

⎞⎟⎟⎟⎟⎟⎠
(

A
B

)
= 0, (10.117)

which admits a nontrivial solution only if the determinant of the coefficients
vanishes. By imposing this condition, we obtain the dispersion relation ,
which relates the circular frequency ω to the wave number k:(

2k2 − ω2

c2
S

)2

− 4k2

√
k2 − ω2

c2
S

√
k2 − ω2

c2
P

= 0. (10.118)

Finally, by using the relation

cR =
ω

k
, (10.119)

we derive the Rayleigh equation (1887):(
2 − c2

R

c2
S

)2

− 4
(

1 − c2
R

c2
S

)1/2 (
1 − c2

S

c2
P

c2
R

c2
S

)1/2

= 0. (10.120)

If the potentials (10.113) are introduced into (10.72) with k = k3, then
the displacement components can be written as

ux = (ikAe−p̄y − p̄Be−p̄3y) ei(kx−ωt),

uy = − (p̄Ae−p̄y + ikBe−p̄3y) ei(kx−ωt).
(10.121)

The previous results allow us to make the following remarks:

1. First, from (10.82)1 and (10.84)1, when considering the positive sign
as well as α = 3, k = k3, and recalling (10.119), we get

cR < cS < cP , (10.122)

i.e., the Rayleigh wave propagates more slowly than the longitudi-
nal and shear waves. Furthermore, from (10.120) it follows that
the ratio cR/cS depends only on the ratio cP /cS or, equivalently, on
Poisson’s ratio; since usually 0.15 ≤ υ ≤ 0.3, it follows that 0.90 ≤
cR/cS ≤ 0.93.
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2. In the relation (10.120) the wave number k does not appear, so that
in an elastic homogeneous medium, surface waves are not dispersive
(also see the next section). To see this, consider a wave which is
obtained by superimposing two waves of different circular frequency
ω. Due to the linear character of the problem we are dealing with,
all the wave components have the same phase velocity and the wave
form does not change in time.

3. Since the determinant of the matrix in (10.117) vanishes, the constant
B can be derived as a function of A:

B =
2iA

2 − c2
R/c2

S

√
1 − c2

R/c2
P , (10.123)

where (10.119) has also been taken into account, so that the dis-
placement components (10.121) depend on the arbitrary constant A.
Because of the imaginary unit, these components exhibit a phase dif-
ference of 90 degrees. For this reason, the motion X = (x, y) of a
particle near to the boundary is composed of two harmonic motions
along the axes Ox and Oy, characterized by the same circular fre-
quency and amplitude A and B. The trajectory of X is an ellipse,
the major semi-axis B is normal to the free surface, and the motion
is counterclockwise with respect to the normal at the surface. At the
boundary, the normal component is about 1.5 times the tangential
component.

4. Because the motion is attenuated with depth, it is confined to a nar-
row zone of about 2 times the wavelength, and this aspect justifies
the definition of a surface wave. This circumstance, as well as the
fact that along the propagation direction the surface waves are less
attenuated than the body waves, renders the analysis of this problem
very attractive when dealing with geological sites.

10.12 Reflection and Refraction of SH Waves

If the boundary surface is an interface y = 0 separating two media in
contact, we need to find the displacement and stress continuity across the
interface.6 It can be shown that an SH wave arriving at the surface y = 0

6If the media are bounded together, the transverse slip can also occur at lubricated
interfaces, a case not considered here but of interest in ultrasonics, when transducers on
lubricated plates are used to generate and receive waves from solids.
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from one medium generates only reflected and refracted SH waves. In the
following discussion, the superscript a characterizes properties of the first
medium (y > 0) and the superscript b characterizes those of the second
medium (y < 0). The boundary conditions at the interface are

ua
z = ub

z, T a
23 = T b

23. (10.124)

Applying Helmholtz’s condition to both media, we can write the governing
potentials in the following way:

Ψτ
1 = Aτ

1ei(kτ
1 x−pτ

1y−ωτ
1 t) + Bτ

1 ei(kτ
1 x+pτ

1y−ωτ
1 t), (10.125)

Ψτ
2 = Aτ

2ei(kτ
1 x−pτ

1y−ωτ
1 t) + Bτ

2 ei(kτ
1 x+pτ

1y−ωτ
1 t), τ = a, b.

By inserting these relations into (10.72)3, we can derive the displacement
component uz in both media:

ua
z = i(ka

1Aa
2 + pa

1Aa
1)ei(ka

1x−pa
1y−ωa

1 t)

+ i(ka
1Ba

2 − pa
1Ba

1 )ei(ka
1x+pa

1y−ωa
1 t),

ub
z = i(kb

1A
b
2 + pb

1A
b
1)e

i(kb
1x−pb

1y−ωb
1t)

+ i(kb
1B

b
2 − pb

1B
b
1)e

i(kb
1x+pb

1y−ωb
1t),

(10.126)

and they describe four waves directed along the vectors (ka
1 , −pa

1), (ka
1 , pa

1),
(kb

1, −pb
1), (kb

1, pb
1). Since the SH wave has been supposed to propagate in

the a-medium, we can write

ua
z = iA(I)ei(ka

1x−pa
1y−ωa

1 t) + iA(Rfl)ei(ka
1x+pa

1y−ωa
1 t),

ub
z = iA(Rfr)i(kb

1x−pb
1y−ωb

1t), (10.127)

where

A(I) = ka
1Aa

2 + pa
1Aa

1 ,

A(Rfl) = ka
1Ba

2 − pa
1Ba

1 ,

A(Rfr) = kb
1A

b
2 + pb

1A
b
1, (10.128)

denote the amplitudes of the incident, reflected, and refracted waves, re-
spectively.

Helmholtz’s condition introduces the following relations between the quan-
tities Aτ

1 , Aτ
2 , Bτ

1 , and Bτ
2 , τ = a, b:

kτ
1 (Aτ

1 + Bτ
1 ) + pτ

1(Bτ
2 − Aτ

2) = 0, (10.129)

so that the six constants Aa
1 , Aa

2 , Ba
1 , Ba

2 , Ab
1, A

b
2, which appear in (10.127),

have to satisfy the four conditions (10.124) and (10.129). Therefore, if the
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characteristics of the incident wave are given, the solution is completely
determined.

If θa and θb denote the angles between N and the propagation vectors of
the incident and refracted waves, respectively, we obtain

ka
1 = ka sin θa, pa

1 = ka cos θa,

kb
1 = kb sin θb, pb

1 = kb cos θb,
(10.130)

where ka and kb are the wave numbers. Inserting the displacements (10.127)
into (7.18), we derive

T a
23 = −µapa

1 [−A(I) + A(Rfl)]ei(ka
1x−ωa

1 t),

T b
23 = µbpb

1A(Rfr)ei(kb
1x−ωb

1t). (10.131)

Taking into account (10.124)1 and (10.130), we derive the equation

[A(I) + A(Rfl)]ei(kax sin θa−ωa
1 t) = A(Rfr)ei(kbx sin θb−ωb

1t). (10.132)

The arbitrariness of x and t leads to

ωa
1 = ωb

1,
sin θa

sin θb
=

kb

ka
=

ca
S

cb
S

,

A(I) + A(Rfl) = A(Rfr).
(10.133)

O
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y

n
N
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refracted SH
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θa θa

a-medium

b-medium

Figure 10.10

In turn, the continuity condition (10.124)2, when (10.133)1,2 are taken into
account, implies that

µaka cos θa[−A(I) + A(Rfl)] = −µbkb cos θbA(Rfr). (10.134)
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This condition, together with (10.133)3, gives the wave amplitude ratios

A(Rfr)
A(I)

=
2µa cos θa

µa cos θa + µb(ca
S/cb

S) cos θb
,

A(Rfl)
A(I)

=
µa cos θa − µb(ca

S/cb
S) cos θb

µa cos θa + µb(ca
S/cb

S) cos θb
.

(10.135)

The previous formulae contain the following results (see Figure 10.10):
Let Σ be an SH wave which propagates in the a-medium and is incident
on the surface y = 0. If θa is the angle which Σ forms with the vector N
normal to this surface, two waves are generated: a reflected one propagating
in the a-medium and forming with N the same angle θa, and a refracted
wave propagating in the b-medium and forming with N an angle θb, which
is related to θa by (10.133)2 Snell’s law. In particular, in the limit case

µa cos θa = µb(ca
S/cb

S) cos θb,

Σ is completely refracted.

10.13 Harmonic Waves in a Layer

This section deals with the propagation of P and SV waves in an elastic
layer ∆ of finite thickness 2h, having free boundary surfaces. We introduce
a coordinate system whose origin O is on the plane of symmetry π of ∆,
parallel to the boundary surfaces, with the axes Ox, Oy on π and Oz
orthogonal to π. The analysis of this problem is relevant as it allows us to
introduce the concepts of dispersion, group velocity, and frequency spectrum.

The displacement field is represented by the following functions:

ux = ux(x, y, t),

uy = ux(x, y, t),

ux = 0.

(10.136)

From (10.93), the scalar potential φ and the component Ψ3 of the vec-
tor potential are relevant, and, by considering the solutions obtained with
the method of separation of variables (see Section 10.9) and in particular
(10.85), we see that they assume the following form:

φ = [A cos(py) + B sin(py)] ei(kx−ωt),

Ψ3 = [A3 cos(p3y) + B3 sin(p3y)] ei(k3x−ω3t), (10.137)
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where

p =

√
ω2

c2
P

− k2,

p3 =

√
ω2

3

c2
S

− k2
3. (10.138)

By substituting (10.137) into (10.72)1,2, we obtain the displacement com-
ponents

ux = ik [A cos (py) + B sin(py)] ei(kx−ωt)

+ p3 [−A3 sin(p3y) + B3 cos(p3y)] ei(k3x−ω3t),

uy = p [−A sin (py) + B cos(py)] ei(kx−ωt)

− ik3 [A3 cos(p3y) + B3 sin(p3y)] ei(k3x−ω3t). (10.139)

By imposing the boundary conditions

Tn = 0 ⇐⇒ T12 = T22 = 0 if y = ±h, (10.140)

since x and t are arbitrary, we get

ω = ω3, k = k3, (10.141)

together with the following relations:

2ikp [−A sin (ph) + B cos(ph)]
− (

p2
3 − k2) [A3 cos (p3h) + B3 sin(p3h)] = 0,

− [
p2 (λ + 2µ) + λk2] [A cos (ph) + B sin(ph)]

−2µikp3 [−A3 sin (p3h) + B3 cos(p3h)] = 0,
2ikp [A sin (ph) + B cos(ph)]

− (
p2
3 − k2) [A3 cos (p3h) − B3 sin(p3h)] = 0,

− [
p2 (λ + 2µ) + λk2] [A cos (ph) − B sin(ph)]

−2µikp3 [A3 sin (p3h) + B3 cos(p3h)] = 0, (10.142)

where (10.141) have been taken into account. Furthermore, recalling (10.138)
and the relation c2

P /c2
S = (λ + 2µ)/µ leads to

p2(λ + 2µ) + λk2 = µ(p2
3 − k2). (10.143)

Now, add and subtract the first and the third and add and subtract the
second and the fourth of (10.142), where (10.143) has been substituted. We



364 Chapter 10. Linear Elasticity

obtain

2ikpB cos(ph) − (
p2
3 − k2)A3 cos(p3h) = 0,

2ikpA sin(ph) +
(
p2
3 − k2)B3 sin(p3h) = 0,(

p2
3 − k2)A cos(ph) + 2ikp3B3 cos(p3h) = 0,

− (
p2
3 − k2)B sin(ph) + 2ikp3A3 sin(p3h) = 0, (10.144)

and rearranging gives(
2ikp sin(ph)

(
p2
3 − k2

)
sin(p3h)(

p2
3 − k2

)
cos(ph) 2ikp3 cos(p3h)

)(
A
B3

)
= 0, (10.145)

(
2ikp cos(ph) − (

p2
3 − k2

)
cos(p3h)

− (
p2
3 − k2

)
sin(ph) 2ikp3 sin(p3h)

)(
B
A3

)
= 0. (10.146)

The reason for rearranging in this way is now clear: A and B3 represent
displacements symmetric with respect to the axis Ox, whereas B and A3
represent skew-symmetric displacements.

If we assume that displacements are symmetric, then B and A3 must
vanish, and by setting to zero the determinant of the matrix in (10.145),
we derive the Rayleigh–Lamb frequency equation

4k2pp3

(p2
3 − k2)2

= − tan(p3h)
tan(ph)

. (10.147)

By similar arguments, from (10.146) we obtain the frequency equation for
antisymmetric waves:

4k2pp3

(p2
3 − k2)2

= − tan(ph)
tan(p3h)

. (10.148)

Recalling (10.138), we see that these equations give the wave number k or
the phase velocity c = ω/k for any selected value of the circular frequency ω,
i.e., (10.147) and (10.148) represent the relation between the wave velocity
and the wave number, called the frequency spectrum .

If the velocity changes with ω, the propagation is said to be dispersive,
because any wave obtained as a superposition of waves of different frequen-
cies will change its shape in time, since single components tend to disperse.
In this case, we introduce the concept of group velocity vG, and it can
be shown, by making reference to two monochromatic waves characterized
by the same amplitude but slightly different frequencies, that the following
relation holds:

vG =
dω

dk
= c + k

dc

dk
= c − λ

dc

dλ
. (10.149)
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The above argument is kinematic in its essence. From a dynamic point
of view, it can be proved that the group velocity is the velocity of the
energy propagation. The proof is in this case rather long, but we can rely
on intuition and observe that energy cannot be transferred through nodes,
which move with group velocity.

A final remark is that usually dc/dk < 0, so that vG < c; this case is called
normal dispersion. When vG > c, the case is called inverse dispersion.

10.14 Exercises

1. Suppose that a uniform layer of isotropic elastic material of thickness
H is subjected at the lower boundary to a planar steady-state motion
represented as

u1 = Ae−iωt. (10.150)

Determine the displacement field of the layer and show that the layer
response depends on the frequency of the boundary motion.
Due to reflection at the upper boundary, there will also be a wave
traveling in the negative x3 direction, so that for the displacement
field we can assume a steady-state solution of the form

u1(x3, t) = Bei(kx3−ωt) + Cei(−kx3−ωt). (10.151)

Since the surface of the layer is stress free, it must hold that

∂u1(H, t)
∂x3

= ikB exp[i(kH − ωt)] − ikC exp[i(kH + ωt)] = 0,

which implies that
BeikH − Ce−ikH = 0. (10.152)

At the lower boundary the motion must be equal to the prescribed
value, so that

B + C = A, (10.153)

and both these conditions allow us to find the two constants

B =
e−ikH

2 cos kH
A,

C =
eikH

2 cos kH
A.

(10.154)

By introducing these constants into (10.151), we obtain the solution
for the displacement field:

u1 =
A cos(kx3 − kH)

cos kH
e−iωt. (10.155)
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This relatively simple example allows us to introduce an aspect of
relevance in earthquake engineering known as soil amplification. Let
us define as an amplification factor the ratio between the motion at the
upper boundary (which is the relevant one for buildings interacting
with the soil) and the one imposed at the lower boundary (which can
be assumed to be the motion of the bedrock). This ratio is

amplification ratio =
u1(H, t)
u1(0, t)

=
1

cos kH
=

1
cos(ωH/vs)

, (10.156)

and it can be observed that a resonance phenomenon occurs (i.e., the
motion tends to infinity) when the ratio has the value

ωH

vS
=

π

2
+ nπ. (10.157)

We note that, even if an infinite amplification cannot occur (because
the present analysis assumes no dissipation of energy), the major as-
pects of this phenomenon are qualitatively accounted for: the amplifi-
cation factor depends on the layer properties as well as the frequency
of the motion at its base.

2. Assuming a Kelvin–Voigt solid

Tij = 2Gεij + 2ηε̇ij ,

where η is a damping coefficient, show, with reference to the layer of
Exercise 1, that the amplification factor is equal to

1√
cos2 kH + sinh2 ξkH

.



Chapter 11

Other Approaches to
Thermodynamics

11.1 Basic Thermodynamics

In Chapter 5 we introduced Truesdell, Coleman, and Noll’s approach (see,
for instance, [23], [24], [25]) to thermodynamics of continua, together with
some of its applications. This approach has the following main advantages:

• It suggests a formulation of thermodynamic principles that we can
use in continuum mechanics.

• It suggests that we use the second principle as a restriction for the
constitutive equations, rather than as a constraint on processes.

Despite these advantages, some authors have noted shortcomings or flaws
about this approach. Starting from these objections, we now present a con-
cise review of various approaches. To do this, we first recall some concepts
of basic thermodynamics.

Essentially, elementary thermodynamics (see [33]) deals with homoge-
neous and steady-state processes; i.e., it considers processes evolving
in such a way that, at any instant, the state of a system S is always very
near equilibrium. It follows that the state of S can be described by a con-
venient and finite number of real parameters x ≡ (xi), i = 1, . . . , n, and its
evolution is given by the functions xi(t) of the time t.

As an example, the equilibrium state of a gas in a container is macroscop-
ically described by its volume V and the pressure p. If we consider a binary
mixture of gas, then in addition to the parameters V and p, the concen-
tration c of one of them must be introduced. Accordingly, the steady-state
evolution is described through the functions p(t), V (t), and c(t).

As a second step, the empirical temperature τ of the system S in a
given state π is defined by the zero postulate of thermodynamics : If

367
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two systems are at equilibrium when they are in contact with a third one,
they will also be at equilibrium when kept in contact with each other.

According to this postulate, it can be proved that the equilibrium of
two systems requires the existence of at least one state function, called the
empirical temperature, which is equal for both of them. The state of a
system can then be regarded as an index of this equilibrium. The reference
system can be assumed to be a thermometer and, if its state is expressed by
its volume, this latter parameter is an index of the empirical temperature.
This is what happens in common thermometers, where the temperature
scales refer to volume changes.

In the following discussion, instead of the pressure, the empirical tem-
perature τ = x1 is taken as one of the state variables.

Moreover, we suppose that the mechanical power w and the thermal
power q can be represented by the following relationships:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w =
n∑

k=1

πk(x)ẋk,

q = c(x)τ̇ +
n∑

k=2

νk(x)ẋk,

(11.1)

where the state functions πk(x) are called partial pressures, the function
c(x) is the specific heat, and νk(x) are the latent heats.

When dealing with fundamentals of elementary thermodynamics, it is
important to recall that the first and second laws have been formulated for
cyclic processes, at the end of which the system returns to its initial state.

Furthermore, these laws only involve the notion of mechanical and ther-
mal power. By using the previous notations, we represent these cycles by
closed curves γc of �n of the equation x = x(t).

First law of thermodynamics: In any cyclic process γc the mechanical
work L(e) done on the system is equal to the absorbed heat Q:

L(e) = Q. (11.2)

Since L(e) and Q are written as

L(e) =
∫

γc

w(t) dt, Q =
∫

γc

q(t) dt,

the differential form

ω = (π1(x) − c(x)) dτ +
n∑

k=2

(πk(x) − νk(x)) dxk
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is integrable, so that we conclude that there exists a state function E(x),
called the internal energy , such that, in any process which is not a cycle,
the change ∆E is given by

∆E = L(e) − Q =
∫

γc

ω. (11.3)

It is well known that the first law states that the transformation of one
form of energy into another is completely symmetric. On the other hand,
since in physical processes such a symmetry does not hold (i.e., the transfor-
mation of nonthermal energy into thermal energy is the preferred process),
the second law imposes severe limitations on the transformation of heat
into work. In fact, its formulation given by Lord Kelvin is as follows:

Second law of thermodynamics (Lord Kelvin, 1851): It is impossible to
perform a cyclic transformation whose only result is to convert into work a
given heat quantity Q, extracted from a source at uniform temperature.

It can be also proved that the above formulation is equivalent to the
following one, due to Clausius (1854):

It is impossible to realize a cyclic transformation whose only result is the
heat transfer from a body, having a given temperature, to another one at a
higher temperature.

Starting from the second law, we can prove the existence of an universal
function θ (the term universal highlights its applicability to any body),
which is positive and depends only on the empirical temperature τ . This
function θ is called the absolute temperature . Furthermore, it can be
proved that, in any cyclic steady process in the interval (t0, t1), if θ(t)
is the uniform temperature at which the heat exchange takes place, the
integral relation ∫ t1

t0

q(t)
θ(t)

dt = 0 (11.4)

holds provided that the cyclic transformation is reversible .
The above result can then be used to prove the existence of a state

function η, called entropy , such that, in any reversible but not necessarily
cyclic process, it holds that

∆η = η(t1) − η(t0) =
∫ t1

t0

q(t)
θ(t)

dt. (11.5)

In elementary thermodynamics the previous concepts are also usually ex-
tended to irreversible processes and, in such cases, (11.4) and (11.5) become∫ t1

t0

q(t)
θ(t)

dt ≤ 0, η(t1) − η(t0) ≥
∫ t1

t0

q(t)
θ(t)

dt. (11.6)



370 Chapter 11. Other Approaches to Thermodynamics

But these extensions are not so straightforward for the following reasons:

• an irreversible transformation of a thermodynamic system is not an-
alytically defined;

• it is far from being clear how to compute q and w, as well as the
integrals in (11.3) and (11.6).

These shortcomings call for a new formulation of elementary thermody-
namics, in order to describe nonhomogeneous and irreversible processes.
However, it is relevant to observe that in this theory the concepts of energy
and entropy are derived from properties of cyclic processes, rather than
being introduced as primitive concepts, as is done in the formulation of
Truesdell and Coleman.

In the remaining sections, we present extended thermodynamics (see
[34]) and the formulation suggested by J. Serrin [35].1

11.2 Extended Thermodynamics

Let S be a rigid body of uniform density ρ. The energy balance equation
in this case is

ρε̇ = −∇ · h,

and, by introducing the constitutive relationships

ε = ε(θ), h = −K∇θ, (11.7)

we obtain
ρcθ̇ = K∆θ,

where the thermal conductivity K is a positive quantity and c = ∂ε/∂θ
is the heat capacity under constant volume. The equation obtained is a
second-order partial differential equation of parabolic type, for the unknown
field of temperature θ(x, t). As it is well recognized, this equation describes
a diffusion phenomenon, and accordingly any perturbation appears instan-
taneously at any spatial point. Therefore, in contrast with the experimental
result, it cannot foresee a finite velocity of the heat propagation at low tem-
perature. The need to predict such an experimental result was the starting
point for extended thermodynamics.

1In the papers of A. Day [36], [37], [38], the notions of internal energy and temperature
are accepted and, by conveniently rewriting the second principle for cyclic processes, the
existence of the entropy for a large class of materials is proved.
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The assumptions of this approach can be summarized as follows. Let S
be a continuous system described by n fields u = (u(1)(xα), . . . ,u(n)(xα)),
where (xα) = (t,x), α = 0, 1, 2, 3, which satisfy n balance equations

∂F(i)α(u)
∂xα

= P(i)(u), i = 1, . . . , n. (11.8)

Quantities like F(i)0 are densities, whereas quantities like F(i)j , j =
1, 2, 3, are fluxes; on the right-hand side, quantities like P(i) represent
production terms. If the constitutive equations F(i)α(u) and P(i)(u) are
specified, then the quasi-linear system (11.8) allows us to determine the
fields u(i)(xα).

In order to reduce the generality of the constitutive equations, they must
satisfy

• the entropy inequality;

• the convexity;

• the principle of relativity; i.e., they must be covariant for a Galileian
transformation.

The entropy inequality is expressed as

∂hα(u)
∂xα

≡ Σ(u) ≥ 0,

where this inequality must be satisfied by all the thermodynamic processes
compatible with the balance equations (11.8).

It is relevant to remark that, even if the entropy principle is accepted as
a constraint for the constitutive equations, this principle must be satisfied
when considering processes compatible with balance equations, which play
the role of constraints for the processes.

As proved in [39], this requirement is equivalent to requiring that the
inequality

∂hα(u)
∂xα

−
n∑

i=1

Λ(i) ·
(

∂F(i)α(u)
∂xα

− P(i)(u)
)

≥ 0

is satisfied for any differentiable process u(i)(xα), where the quantities Λ(i)
are unknown Lagrangian multipliers.

Since the previous inequality can also be written as

n∑
j=1

(
∂hα(u)
∂u(j)

−
n∑

i=1

Λ(i) · ∂F(i)α(u)
∂u(j)

)
∂u(j)

∂xα
+

n∑
i=1

Λ(i)·P(i) ≥ 0,
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and the quantities ∂u(i)/∂xα are arbitrary, we derive

∂hα(u)
∂u(j)

−
n∑

i=1

Λ(i) · ∂F(i)α(u)
∂u(j)

≥ 0,

n∑
i=1

Λ(i) · P(i) ≥ 0. (11.9)

Finally it can be proved that the n × n matrices

∂F(i)α(u)
∂Λ(j)

are symmetric and that this imposes severe constraints on the functions
F(i)α(u).

This approach leads to quasi-linear systems of hyperbolic differential
equations, gives a generalized form for the entropy flux, and proves the
existence of the absolute temperature. The reader interested in applica-
tions of extended thermodynamics to fluids, mixtures, and other fields is
referred to [34].

11.3 Serrin’s Approach

Serrin’s approach is based on the notion of an ideal material and provides
a mathematically correct formulation of all the results of the elementary
thermodynamics of homogeneous processes. In the context of this volume,
we limit ourselves to outlining that this approach allows us

1. to introduce the absolute temperature θ as a positive function of
the empirical temperature, measured by thermometers constituted by
ideal materials;

2. to introduce the accumulation function Q(θ, P ), dependent on the
absolute temperature θ as well as on the thermodynamic process P
of the system S. This function expresses the heat quantity exchanged
by S with the surroundings at a temperature less than or equal to θ,
during the process P ;

3. to formulate the thermodynamic principles for cyclic processes, with-
out assuming the existence of energy and entropy.

The two fundamental laws of thermodynamics are formulated by Serrin
in the following way.

First Law. In any cyclic process P , the balance of energy is given by

L(i)(P ) = Q(P ),
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where L(i) denotes the mechanical work of the system on the exterior world
and Q is the quantity of heat received from it .

Second Law. There is no cyclic process P in which the accumulation
function assumes positive values.

This formulation states that in any cyclic process there are temperatures
at which the system provides heat to the surroundings. It can be further
proved that the above formulation, when applied to homogeneous systems,
leads to Kelvin and Clausius’s postulate.

Moreover, starting from the second law and the existence of ideal ma-
terials, Serrin proves that the second law is equivalent to the following
mathematical condition in any cyclic process:∫ ∞

0

Q(θ, P)
θ2 dθ ≤ 0. (11.10)

It remains now to find the expressions of L(i), Q and Q(θ, P) for a con-
tinuous system S in order to write explicitly the previous thermodynamic
laws. To this end, we introduce the following definitions.

A process of duration J = [0, t1] is defined by a couple of functions

x(X,t), θ(X, t),

conveniently regular on C∗ × J , which give a motion and an absolute tem-
perature field at any instant t ∈ J . The set P(S) of the cyclic processes of
duration J is given by all processes which satisfy the conditions{

x(X, 0) = x(X, t1),

θ(X, 0) = θ(X, t1),
(11.11)

as well as the balance equations of mass, momentum, and angular momen-
tum.

The change of kinetic energy ∆T of c(t), in the time interval J and along
the process P , is written as

∆T =
∫

c(t1)

1
2
ρv2 dc −

∫
c(0)

1
2
ρv2 dc. (11.12)

In addition, the work L(e)(P ) done by the exterior of c(t) during the
same process P is given by

L(e)(P ) =
∫

J

dt

∫
∂c(t)

v · Tn dσ +
∫

J

dt

∫
c(t)

v · ρb dc. (11.13)

But, L(i)(P ) = ∆T − L(e)(P ), so that the previous relation implies that

L(i)(P ) = ∆T −
∫

J

dt

∫
∂c(t)

v · Tn dσ +
∫

J

dt

∫
c(t)

v · ρb dc. (11.14)
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Taking the scalar product of the local balance equation (5.30) with v and
integrating the result over c(t), we obtain

d

dt

∫
c(t)

1
2
ρv2 dc =

∫
∂c(t)

v · Tn dσ +
∫

c(t)
v · ρb dc

−
∫

c(t)
T : ∇v dc. (11.15)

By integrating this over the time interval J and by recalling (11.13), we
have the relation

∆T = L(e)(P ) −
∫

J

dt

∫
c(t)

T : ∇v dc,

which, compared with (11.14), leads to

L(i) = −
∫

J

dt

∫
c(t)

T : ∇v dc. (11.16)

In a similar way, assuming that the heat exchanged by c(t) with the
surroundings is given (see Chapter 5) by a source term r and a flux through
the boundary ∂c(t) of density h · n, we get

Q(P ) =
∫

J

dt

(∫
∂c(t)

h · n dσ +
∫

J

dt

∫
c(t)

ρr dc

)
. (11.17)

Finally, by introducing the notations{
∂c̃t(θ) = {x ∈ ∂c(t)|ϑ(x, t) < θ},
c̃t(θ) = {x ∈ c(t)|ϑ(x, t) < θ},

where ϑ(x, t) is the field of absolute temperature and θ is any arbitrary but
fixed value of temperature, the accumulation function is written as

Q(θ, P ) =
∫

J

dt

(∫
∂c̃t(θ)

h · n dσ +
∫

c̃t(θ)
ρr dc

)
. (11.18)

At this stage we are in a position to prove that the previous relations allow
us to formulate the first and second laws of thermodynamics in a manner
which is completely analogous to that of elementary thermodynamics.

First, by combining (11.16) and (11.17), the first law can be written as∫
J

dt

∫
c(t)

(T : ∇v + ∇ · h + ρr) dc = 0, (11.19)
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whereas (11.18) allows us to put the second law (11.10) in the form∫ ∞

0

1
θ2

(∫
J

dt

(∫
∂c̃t(θ)

h · n dσ +
∫

c̃t(θ)
ρr dc

))
dθ ≤ 0. (11.20)

Equations (11.19) and (11.20) are valid for any cyclic process of duration
J .

To continue, it is more convenient to rewrite the previous formulae in the
Lagrangian formalism (see Section 5.6) as follows:∫

J

dt

∫
c∗(t)

(
T∗ : Ḟ + ∇ · h∗ + ρ∗r

)
dc∗ = 0, (11.21)

∫ ∞

0

1
θ2

(∫
J

dt

(∫
∂c̃∗ t(θ)

h∗ · n∗ dσ∗ +
∫

c̃∗ t(θ)
ρ∗r dc∗

))
dθ ≤ 0, (11.22)

where T∗ is the Piola–Kirchhoff stress tensor, h∗ is the material heat flux
vector, and F is the deformation gradient.

The application of Fubini’s theorem leads to the relation∫ ∞

0

1
θ2 dθ

∫
∂c̃∗ t(θ)

h∗ · n∗ dσ∗ =
∫

∂c∗
h∗ · n∗ dσ∗

∫ ∞

θ

1
θ2 dθ. (11.23)

The second of the previous relations can also be written as∫
J

(∫
∂c∗

h∗ · n∗
θ

dσ∗ +
∫

c∗
ρ∗

r

θ
dc∗

)
dt ≤ 0. (11.24)

Finally, by applying Gauss’s theorem and using the arbitrariness of the
material region c∗, we see that the fundamental laws of thermodynamics
assume the form ∫

J

(
T∗ : Ḟ + q

)
dt = 0, (11.25)

∫
J

1
θ

(
q − h∗ · ∇θ

θ

)
dt ≤ 0, (11.26)

where
q = ∇ · h∗ + ρ∗r. (11.27)

11.4 An Application to Viscous Fluids

In order to exploit the content of the thermodynamic laws (11.25) and
(11.26), they are applied to the viscous fluids (see Section 7.3). The results
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discussed here are contained in ([42]); for an extension to materials with
fading memory see ([43]).

The constitutive equations of the material are supposed to be expressed
by the differentiable functions

T∗ = T∗(F, Ḟ, θ, θ̇, ∇θ),
q = q(F, Ḟ, θ, θ̇, ∇θ),

h∗ = h∗(F, Ḟ, θ, θ̇, ∇θ). (11.28)

In order to make explicit the restrictions on the constitutive equations
(11.28) deriving from the two thermodynamic laws, we start by noting that
in any equilibrium process

x(Y, t) = F · (Y − X), θ(Y, t) = θ(X), (11.29)

the thermodynamic laws lead to the conditions

q(F,0, θ, θ̇,0) = 0,

h∗(F,0, θ, θ̇,0) ≥ 0, (11.30)

so that the function f(G) = h∗(F,0, θ, θ̇,0) ·∇θ has a minimum at ∇θ = 0;
consequently,

(∇∇θf)∇θ=0 = h∗(F,0, θ, θ̇,0) = 0, (11.31)

and there is no heat conduction in the absence of a temperature gradient.
Moreover, by expanding q in power series of Ḟ and θ̇ and recalling

(11.31)1, we get

q = c(F, θ)θ̇ + ν(F, θ) · Ḟ − S(F, Ḟ, θ, θ̇, ∇θ), (11.32)

where S is a second-order function of Ḟ and θ̇. If we introduce the notations

Te
∗(F, θ) = T∗(F,0, θ, 0,0),

TD
∗ = T∗ − Te

∗,
R = TD

∗ : Ḟ, (11.33)

then the fundamental laws (11.25), (11.26) reduce to the form∫
J

((ρ∗ν + Te
∗) · Ḟ + ρ∗cθ̇) dt +

∫
J

(R − ρ∗S) dt = 0,∫
J

ρ∗
1
θ

(
ν · Ḟ + cθ̇

)
dt −

∫
J

ρ∗
1
θ

(
S +

h∗ · ∇θ

θ

)
dt ≤ 0, (11.34)

for any cycle at the point X ∈ C∗.
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Now it is possible to prove that

Theorem 11.1
For materials described by the constitutive equations (11.28), there exists
a function u(F, θ), called the specific internal energy, such that for any
process of duration J , the following relations are satisfied:

u(F, θ)t=J − u(F, θ)t=0 =
∫ J

0
(ρ∗q − T∗ : Ḟ) dt, (11.35)

∂u

∂F
= ρ∗ν + T∗,

∂u

∂θ
= ρ∗c, (11.36)

R = ρ∗S. (11.37)

PROOF Let P be a cyclic process defined by the motion x(X, t) and
the temperature field θ(X, t), where X, t) ∈ C∗ × [0, J ]. Let Pε denote a
new cyclic process characterized by the new fields

xε(X, t) = x(X, εt), θε(X, t) = θ(X0 + ε(X − X0), εt), (11.38)

where X0 is an arbitrary point of C∗. In the process Pε, any particle X of
the system assumes, at the instant t, the same position and temperature
than it assumes at the instant εt during the process P . For ε → 0, the
system tends to equilibrium at uniform and constant temperature.

It is easy to verify the following relations:

Fε(X0, t) = F(X0, εt), Ḟε(X0, t) = εḞ(X0, εt)
θε(X0, t) = θ(X0, εt), θ̇ε(X0, t) = εθ̇(X0, εt)

∇θε = ε∇θ. (11.39)

The first fundamental law (11.34)1, applied to the process Pε, leads to the
equality∫ J/ε

0
((ρ∗νε + Te

∗ε) · εḞ + ρ∗cεθ̇) dt +
∫ J/ε

0
(Rε − ρ∗Sε) dt = 0, (11.40)

which, by the variable change t′ = εt, can be written as∫ J

0
((ρ∗ν + Te

∗) · Ḟ + ρ∗cθ̇) dt′ +
1
ε

∫ J/ε

0
(Rε − ρ∗Sε) dt′ = 0. (11.41)

In the limit ε → 0, we have that∫ J

0
((ρ∗ν + Te

∗) · Ḟ + ρ∗cθ̇) dt′ = 0 (11.42)
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in any cyclic process. Owing to a well-known theorem of differential forms,
from (11.42) the conditions (11.36) are derived.

Let t be any instant in the interval [0, J ] of the cyclic process P and
let P ′ be the process bringing the system to the initial state and having a
duration [t, t + J ′]. Finally, P ′

ε will denote the process defined by (11.38).
Applying (11.34)1 to the cyclic composed process Pc constituted by P in
the time interval [0, t] and by P ′

ε in the time interval [t, t+J ′/ε], and taking
into account (11.42), we derive∫ t

0
(R − S) dt′ +

∫ t+J′/t

t

(R′
ε − S′

ε) dt′ = 0. (11.43)

By the variable change t′′ = ε(t′ − t) in the second integral, the previous
relation becomes∫ t

0
(R − S) dt′ +

1
ε

∫ J′′

0
(R′′

ε − S′′
ε ) dt′′ = 0 (11.44)

so that, for ε → 0, we conclude that∫ t

0
(R − S) dt = 0 ∀t ∈ [0, J ], (11.45)

and the proof is complete.

In a similar way, the following theorem can be proved.

Theorem 11.2
For materials described by the constitutive equations (11.28), there exists
a function η(F, θ), called the specific entropy, such that in any process of
duration J the following relations are satisfied:

η(F, θ)t=J − η(F, θ)t=0 =
∫ J

0

1
θ

(
ρ∗q − h∗ · ∇θ

θ

)
dt, (11.46)

θ
∂η

∂F
= ρ∗ν, θ

∂η

∂θ
= ρ∗c, (11.47)

ρ∗Sθ + h∗ · ∇θ ≥ 0. (11.48)
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Cauchy’s problem, 190, 200
Cauchy’s stress tensor, 139
Cauchy’s theorem, 132
Cauchy–Green tensor, left, 81
Cauchy–Green tensor, right, 80
Cauchy–Kovalevskaya

theorem, 192
Cayley–Hamilton theorem, 92
center of buoyancy, 249
central axis, 36
characteristic equation, 21
characteristic space, 20
characteristic surface, 190, 194,

201
Christoffel symbols, 51
Clausius–Duhem inequality, 145
Clausius–Planck inequality, 144
coefficient of kinematic viscosity,

272
compatibility conditions, 93
complex potential, 257
complex velocity, 257
components, contravariant, 3
components, covariant, 9
compressible, 245
configuration, actual or

current, 77
configuration, reference, 77
conjugate, 173
constitutive axioms, 156
constitutive equations, 155

383
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contact forces, 137
convective derivative, 111
coordinate curves, 46
coordinates, spatial and

material, 77
covariant derivative, 52
curl, 54
curvilinear coordinates, 46
cylindrical coordinates, 64

D’Alembert’s equation, 196
D’Alembert’s paradox, 266
deformation gradient, 78
Deformation program, 101
deformation, homogeneous, 327
derivative, weak or

generalized, 380
dilational wave, 340
dilational waves, 289
dimension, 3
direct sum, 4
directional derivative, 54
Dirichlet boundary value

problem, 383
dispersion relation, 358
displacement boundary value

problem, 319
displacement field, 84
displacement gradient, 84
divergence, 53
doublet, 260
dynamic process, 156

EigenSystemAG program, 41
eigenvalue, 20
eigenvalue equation, 20
eigenvector, 20
eikonal equation, 209
elastic behavior, 160
elliptic coordinates, 66
elliptic equation, 195
elliptic system, 202
empirical temperature, 367
endomorphism, 14

energy balance, 141
energy density, 321
entropy, 143, 369
entropy principle, 143, 144
equivalent to zero, 37
equivalent vector system, 36
Euclidean point space, 31
Euclidean tensor, 14, 29
Euclidean vector space, 5
Euler fluid, 245
Euler–Cauchy postulate, 138
Eulerian coordinates, 109
Eulerian form, 110
extended thermodynamics, 370

finite deformation, 77
first Helmholtz theorem, 253
first law of Thermodynamics, 368
first law of thermodynamics, 141
first Piola–Kirchhof tensor, 148
first-order singular surface, 56
Fourier inequality, 145
frame of reference, 31
frame, natural, or holonomic, 46
free vector set, 2
frequency spectrum, 364

Gauss coordinates, 190
Gauss’s theorem, 55
generalized polar coordinates, 63
geometric compatibility

condition, 59
geometric multiplicity, 20
grade n, 157
gradient, 51
gradient of velocity, 112
Gram–Schmidt procedure, 6
Green–St.Venant tensor, 84
group velocity, 364

Hadamard’s theorem, 58, 209,
210

harmonic function, 115, 256
heat equation, 197
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heat flux vector, 142
heat source, specific, 142
Helmholtz free energy, 145
Helmholtz theorem, 343
homogeneous material, 173
Hugoniot’s equation, 292
hyperbolic equation, 196
hyperbolic system, 202

image, 17
incompressible, 245
incompressible fluid, 180
incompressible material, 165
infinitesimal strain tensor, 85
integral curves, 54
invariant, first, second, and

third, 22
inverse dispersion, 365
irrotational motion, 114
isochoric motion, 114
isotropic function, 174
isovolumic motion, 114

Joukowsky program, 309
Joukowsky’s transformation, 269
JoukowskyMap, 312
jump conditions, 56, 131
jump system, 208

kernel, 17
kinetic energy, 141
kinetic energy theorem, 141
kinetic field, 111
kinetic potential, 114
Kutta–Joukowsky theorem, 267

Lagrange’s theorem, 250
Lagrangian coordinates, 109
Lagrangian form, 110
Lagrangian mass conservation,

147
Lamé coefficients, 176
Laplace’s equation, 115, 196, 256
Laplacian, 54
Lax condition, 218

length, 6
Levi–Civita symbol, 11
lift, 267
linear combination, 2
linear isotropic solid, 176
linear mapping, 14
linear PDE, 190
linearly dependent vector set, 3
linearly independent

vector set , 2
LinElasticityTensor

program, 185
local balance equation, 131
local speed of propagation, 117
locally equivalent processes, 156
longitudinal unit extension, 80
longitudinal wave, 340

Mach number, 289
mass conservation principle, 136
mass density, 136
mass forces, 137
material coordinates, 109
material derivative, 110
material frame-indifference, 157
material objectivity, 157
material response, 156
material volume, 114, 131
metric coefficients, 48
Minkowski’s inequality, 6
mixed boundary value

problem, 319
mixed product, 13
mode conversion, 355
momentum balance

principle, 137

Navier–Stokes behavior, 180
Navier–Stokes equation, 272
Neumann boundary value

problem, 383
normal dispersion, 365
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normal speed, 117
normal stress, 138

objective tensor, 116
objective vector, 116
Operator program, 70
order, 2
ordinary wave, 208
orientation, 11
orthogonal vectors, 6
orthonormal system, 6

P wave, 350
parabolic coordinates, 67
parabolic equation, 195
parabolic system, 202
paraboloidal coordinates, 69
particle path, 111
Pascal’s principle, 245
PdeEqClass program, 221
PdeSysClass program, 227
perfect fluid, 179, 245
perfect gas, 247
perturbed region, 208
phase velocity, 345
Poincaré inequality, 382
Poisson’s condition, 139
Poisson’s ratio, 177
polar continuum, 138
polar vector, 12
Potential program, 298
potential, stream or Stokes, 257
potential,velocity or kinetic, 257
Prandtl’s equations, 279
pressure, 245
principal direction of stress, 139
principal stress, 139
principal stretching, 79
principle of determinism, 156
principle of dissipation, 158
principle of equipresence, 159
principle of local action, 157
principle of virtual work, 151
product, 2, 14

product, inner or scalar, 5
product, vector or cross, 11
prolate spheroidal

coordinates, 68
proper rotation, 25
pseudovector, 12
pure compression, 335
pure extension, 335

quasi-linear PDE, 190

Rankine–Hugoniot jump
conditions, 215

rate of deformation, 112
Rayleigh equation, 358
Rayleigh wave, 356
Rayleigh–Lamb frequency

equation, 364
Rayleigh–Lamb relation, 346
rectilinear coordinates, 31
reduced dissipation

inequality, 145
reflection, 345
refraction, 346
Reynolds number, 276
Riemann–Christoffel tensor, 93
rotation, 25
rotation axis, 27
rotation tensor, 79

Saint-Venant conjecture, 335
Saint-Venant principle, 335
scalar invariant, 36
Schwarz’s inequality, 6
second Helmholtz theorem, 254
second law of thermodynamics,

143, 144
second Piola–Kirchhoff

tensor, 148
second principle of

thermodynamics, 369
semi-inverse method, 332
semilinear PDE, 190
SH wave, 350
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shear, 80
shear stress, 138
shear wave, 340
shock intensity, 217
shock wave, 208
simple continuum, 138
simple material, 157
singular perturbation, 277
singular surface, 56, 118
sink, 260
Sobolev space, 381
solenoidal vector field, 252
sound velocity, 289
source, 260
spatial coordinates, 109
specific entropy, 144
specific force, 137
specific internal energy, 142
spectral decomposition, 23
spectrum, 20
spherical coordinates, 65
spin, 112
stagnation points, 263
stationary motion, 111
Stevino’s law, 247
Stokes’s theorem, 55
stream tube, 252
streamline, 111
strength of a source or sink, 260
stress, 137
stress boundary conditions, 139
stress boundary value

problem, 319
stretch ratio, 80
stretching, 112
stretching tensor, left, 79
stretching tensor, right, 79
subsonic motion, 289
subspace, 4
sum, 2
supersonic motion, 289
SV wave, 350
symmetric tensor, 14
symmetry, 172

symmetry group, 173

temperature, absolute, 143
tensor of linear elasticity, 167
tensor of thermal

conductivity, 167
tensor product, 14, 29
tensor, acoustic, 339
tensor, first Piola–Kirchhof, 148
tensor, Green–St.Venant, 84
tensor, infinitesimal stress, 85
tensor, left Cauchy–Green, 81
tensor, orthogonal, 24
tensor, Riemann–Christoffel, 93
tensor, right Cauchy–Green, 80
tensor, rotation, 79
tensor, second Piola–Kirchhoff,

148
tensor, skew-symmetric, 14
tensor, symmetric, 14
tensor, two-point, 89
thermal power flux, 142
thermoelastic behavior, 160
thermoelastic isotropic solid, 173
thermokinetic process, 156
thermometer, 143
thermoviscoelasticity, 160
thermoviscous fluid, 177
Thomson–Kelvin theorem, 250
Torricelli’s theorem, 253
torsion, 337
torsional stiffness, 334
totally hyperbolic system, 202
trace, 382, 383
traction, 137
transpose, 14
transverse wave, 340
Tricomi’s equation, 198
two-point tensor, 89

undisturbed region, 208

vector, 2
vector field, 50
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vector space, 2
vector, unit or normal, 6
Vectorsys program, 36
velocity, 110
velocity or kinetic potential, 256
Velocity program, 126
vortex line, 252
vortex potential, 258
vortex tube, 252
vortex vector, 252
vorticity tensor, 112

wave, dilational, 340
wave, longitudinal, 340

wave, P, SH, and SV, 350
wave, Rayleigh, 356
wavefront, 208
WavesI program, 233
WavesII program, 239
weak solution, 384
Wing program, 306

Young’s modulus, 177

zero postulate of
thermodynamics, 367
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