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Preface

We can observe gradual increase in the range of survey sampling methods and their
applications in the fields of economics, geology, and agriculture, among others.
These applications have been followed by new theoretical solutions that provide
better sampling designs or estimators. Recently, several highly important properties
of sampling designs have been discovered, and many new methods have been
published.

This small monograph is the result of the author’s interest in survey designs. In
general, the book represents a synthesis of contributions on sampling designs that
are dependent on sample moments or the order statistics of auxiliary variables.

The book should be useful for students and statisticians whose work involves
survey sampling. The book can offer new inspirations for those looking for new
sampling designs dependent on auxiliary variables.

In some sense, this book has been prepared because of Professor Miodrag
Lovric who invited me to write some brief notes in the International Encyclopedia
of Statistical Science edited by him. This led to the proposal to write this book.

The Author is grateful to Reviewers for valuable comments.
This book is a result of the research supported by the grants: N N111 434137

from the Polish Ministry of Science and Higher Education and DEC-2012/07/
B/H/03073 from National Scientific Center.

Katowice, Poland Janusz L. Wywiał
October 2014
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Chapter 1
Introduction and Basic Sampling Strategies

1.1 Aim and Outline of This Book

An estimation of the population parameters in finite and fixed populations is taken
into account. The estimation is focused on the population average of the variable
under study. The values of the variable under study are observed in random samples
that are selected according to preassigned sampling designs and sampling schemes.
We assume that the values of auxiliary variables are observed in the whole popula-
tion. The population average is estimated by means of a sampling strategy, which
is the pairing of an estimator and a sampling design. Extensive reviews of sam-
pling designs or sampling schemes dependent on an auxiliary variable have been
previously presented by Brewer and Hanif (1983), Chaudhuri and Vos (1988), Singh
(2003), Chaudhuri and Stenger (2005), Tillé (2006) and Lovric (Ed), International
Encyclopedia (2011).

Our considerations are focused on particular sampling strategies that are depen-
dent on sample moments or order statistics of a positively valued auxiliary variable.
The main purpose of this brief monograph is to present the basic properties of such
sampling strategies. Moreover, their accuracy will be analyzed.

We start with basic notations and the presentation of ordinary sampling strate-
gies. In particular, the well-known Horvitz–Thompson statistic, as well as ratio or
regression estimators, are considered. The class of strategies dependent on sample
moments of auxiliary variables are presented in Chap.2. The sampling designs pro-
portional to the sample mean or sample variance are defined. The last design is
generalized into a sampling design proportional to the determinant of the sample
variance–covariance matrix of the auxiliary variables. The new class of sampling
designs that are proportional to functions of order statistics of the auxiliary variable
are introduced in Chap.3. In particular, the sampling design proportional to the value
of the positive order statistic is considered. The inclusion probabilities of the sam-
pling designs dependent on sample moments as well as order statistics are derived.
Several new estimators dependent on sample moments or order statistics are also

© The Author(s) 2015
J.L. Wywiał, Sampling Designs Dependent on Sample Parameters
of Auxiliary Variables, SpringerBriefs in Statistics,
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2 1 Introduction and Basic Sampling Strategies

considered. A computer simulation-based comparison of accuracy of the defined
sampling strategies is presented in Chap.4. In general, the conclusions allow us to
choose the sampling strategy for particular situations, as determined by population
distributions of a variable under study and auxiliary variables.

1.2 Population and Parameters

Afinite population is denoted byU and it is a collection of N units,where N is the size
of the population and fixed. The k label represents the kth unit of a population. The
population is usually denoted as the set of the natural numbers: U = {1, 2, . . . , N }.
A variable under study is denoted by y and its value, attached to a kth population
element, is denoted by yk , k ∈ U. The following parameters will be considered: The
mean value is as follows:

ȳ = 1

N

∑
k∈U

yk

The total value of a variable:

ỹ =
∑

k∈U
yk = N ȳ

If the variable y can take only the values 0 and 1, the number of values of the variable
y equal to 1 is denoted by

M = ỹ

The fraction is as follows:

w = M

N

The variance is:

v(y) = 1

N − 1

∑N

k=1
(yk − ȳ)2

The vector of auxiliary variables will be denoted by x = [x1 . . . xm]. Let xkj be
the kth value of a j th variable, k = 1, . . . , N , j = 1, . . . , m. The matrix of variances
and covariances of auxiliary variables will be denoted by V(x) = [v(xt , x j )], t, j =
1, . . . , m, where:

v(xt , x j ) = 1

N − 1

∑N

k=1
(xkt − x̄t )(xkj − x̄ j ), x̄t = 1

N

∑N

i=1
xit

The variances of a variable x j are defined by the expression v(x j ) = v(x j , x j ).

http://dx.doi.org/10.1007/978-3-662-47383-2_4


1.2 Population and Parameters 3

The covariance between a variable under study and an auxiliary variable is:

v(x j , y) = 1

N − 1

N∑

k=1

(xkj − x̄ j )(yk − ȳ), j = 1, . . . , m.

The correlation matrix of auxiliary variables will be denoted by: R = R(x) =
[r(xt , x j )], t, j = 1, . . . , m, where:

r(xt , x j ) = v(xt , x j )√
v(xt )v(x j )

In several cases, the mixed-central moments will be considered which are defined
as follows:

vu,z(x, y) = 1

N − 1

N∑

k=1

(xk − x̄)u(yk − ȳ)z, u = 0, 1, 2, . . . z = 0, 1, 2, . . .

Particularly,

vu,0(x, y) = vu(x), v2,0(x, y) = v2(x) = v(x), v1,1(x, y) = v(x, y).

LetX = [xkj] be the matrix of the dimensions N ×m where xk j is the kth observation
of a j th auxiliary variable, k = 1, . . . , N , j = 1, . . . , m. Moreover, let xk∗ =
[xk1 . . . xkm] be the row vector of the matrix X. It is the kth observation of the values
of the auxiliary variables (attached to the kth population element, k = 1, . . . , N ).
From the geometrical point of view, the vector xk∗ can be treated as the vector
of coordinates of a point in the m-dimensional Euclidean space. The generalized
variance of an m-dimensional variable is defined byWilks (1932) as the determinant
of the variance–covariance matrix:

g(y) = det(V(x)) (1.1)

Let q(xk1∗, . . . , xkm∗, xkm+1∗) be the measure (volume) of the p-dimensional par-
allelotop spanned by the vectors that are all attached to the point xkm+1∗, and the
ends of these vectors are at the appropriate points xk1∗, . . . , xkm∗. The volume of the
parallelotop is determined by the following equation, see Borsuk (1969):

q(xk1∗, . . . , xkm∗, xkm+1∗) =
∣∣∣∣∣∣
det

⎡

⎣
xk1∗ − xkm+1∗

. . . . . . . . . . . . . . .

xkm∗ − xkm+1∗

⎤

⎦

∣∣∣∣∣∣

Let q(xk1∗, . . . , xkm∗, x̄) be the volume (measure) of the m-dimensional parallelotop
spanned by the vectors that are all attached to the point x̄ and their ends are at the
points: xk1∗, . . . , xkm∗.

A generalized variance g(x) is proportional to the following sum of squared
volumes spanned by the vectors that are all attached to the point x̄ and whose ends



4 1 Introduction and Basic Sampling Strategies

have coordinates that are appropriate m-element combinations of rows of the matrix
x (see, Anderson 1958, pp. 168–170):

g(x) = N−m
∑

{k1,...,km }
q2(xk1∗, . . . , xkm∗, x̄)

The generalized variance g(x) is proportional to the following sum of squared
volumes spanned by the (m + 1) points whose coordinates are (m + 1)—element
combinations of rows of the matrix X, see Hardville (1997):

g(x) = N−m−1
∑

{k1,...,im+1}
q2(xk1∗, . . . , xkm∗, xkm+1∗)

The generalized variance is used as the coefficient measuring the scatter of obser-
vations of a multidimensional variable. When g(x) = 0, all observations of a
m-dimensional variable are on not more than (m − 1)-dimensional hyperplane (see
Anderson 1958 or Hardville 1997).

1.3 Sampling Design and Sampling Scheme

The sample of the fixed size n, drawn from the population U will be denoted by s.
Let S be the space sample. The function P(s) on S, satisfying:

P(s) ≥ 0 for all s ∈ S and
∑

s∈S

P(s) = 1 (1.2)

is called the sampling design.
The probability of selecting the fixed unit k to a sample s is called the inclusion

probability of the first order and denoted by πk . It is determined by the following
expression:

πk =
∑

s:k∈s
P(s), k = 1, . . . , N .

Similarly, the second-order inclusion probability is as follows:

πkl =
∑

k,l∈s
P(s), k �= l, k = 1, . . . , N , l = 1, . . . , N .

The sampling design of the simple random sample drawn without replacement is
as follows:

P0(s) =
(

N

n

)−1

for all s ∈ S (1.3)
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The inclusion probabilities for the sampling design P0 are as follows:

πk = n

N
πkl = n(n − 1)

N (N − 1)
(1.4)

The set of probabilities implementing a sampling design P0 is defined as described
hereafter: The probability of selecting a fixed population element k1 in the sample is
as follows:

p(k1) = N−1 for kl = 1, . . . , N

The conditional probability of selecting the fixed population element ki in a sample,
provided that the elements ki−1, . . . , k1 have just been selected in the sample, is as
follows:

p(ki |ki−1, . . . , k1) = 1

N − i + 1
for i = 2, . . . , n and ki = 1, . . . , N

Let us note that Rao (1962) proved that for any given design P(s) there exists at
least one sampling scheme that implements P(s).

1.4 Estimation

Let ts be an estimator of a population parameter denoted by θ ∈ Θ , where Θ is
the parameter’s space. The estimation of the parameter will be considered under
the various estimators and sampling designs P(s). That is why according to the
definition of Cassel Särndal and Wretman (1977), p. 26, it is convenient to treat the
pair (ts, P(s)) as the sampling (estimation) strategy of θ . The strategy (ts, P(s)) is
unbiased if

E(ts, P(s)) = θ for all θ ∈ Θ

where

E(ts, P(s)) =
∑

s∈S

ts P(s)

The variance of the strategy, per Cassel Särndal and Wretman (1977), is as follows:

V (ts, P(s)) =
∑

s∈S

(ts − E(ts))
2P(s)
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The mean square error of the strategy is denoted by

MSE(ts, P(s)) = E((ts − θ)2, P(s)) = V (ts, P(s)) + b2

where b = E(ts, P(s)) − θ is the bias and

E((ts − θ)2, P(s)) =
∑

s∈S

(ts − θ)2P(s).

Let us underline that we are mainly concerned with estimation of the mean value
of a variable under study.

Simple Random Sample Mean
Thewell-known simple randomsamplemean is the unbiased strategy for a population
mean. So, E(ȳs, P0(s)) = ȳ where

ȳs = 1

N

∑

i∈s

yi (1.5)

The variance of the estimation strategy (ȳs, P0(s)) is:

V (ȳs, P0) = N − n

Nn
v(y) (1.6)

An unbiased estimator of the variance v(y) is:

Vs(ȳs, P0) = N − n

Nn
vs(y) (1.7)

vs(y) = 1

n − 1

∑
k∈s

(yk − ȳs)
2

Let (ts, P(s)) be a sampling strategy for a populationmean. The relative efficiency
coefficient for the estimation of the population mean, per Kish (1965), is defined as
follows:

deff(tS, P(s)) = MSE(tS, P(s))

V (ȳS, P0(s))
(1.8)

Ratio Estimators
Let us consider the following ratio estimator from simple random sample.

ȳrs = ȳs

x̄s
x̄ (1.9)
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Its variance is

V (ȳrs) ≈ N − n

nN (N − 1)

N∑

k=1

(yk − hxk)
2 (1.10)

where h = ȳ
x̄ or

V (ȳrs) ≈ N − n

nN
v(y)

[
1 + γ 2(x)

γ 2(y)
− 2

γ (x)

γ (y)
r(x, y)

]
(1.11)

where γ (x) =
√

v(x)
x̄ , γ (y) =

√
v(y)
ȳ .

The bias of the estimator ȳrs is as follows (see Cochran 1963, p. 161 or Konijn
1973, p. 100):

br = E(ȳrs) − ȳ ≈ N − n

Nn

√
v(y)γ (x)

[
γ (x)

γ (y)
− r(x, y)

]

Thus, the statistic ȳrs is an asymptotically unbiased estimator for ȳ. If the correlation
coefficient r(x, y) > 0, the relative bias of the estimator is (see Cochran 1963,
p. 162 and Konijn 1973, p. 102):

|br |√
V (ȳrs)

≤ γ (x)

Therefore, a nonnegative auxiliary variable should be chosen in such a way that
its variation coefficient has to be as small as possible and the correlation coefficient
r(x, y) should be as high as possible.

The variance of the statistic ȳrs can be estimated by means of the following two
statistics:

Vs(ȳrs) = N − n

nN (n − 1)

∑

k∈s

(yk − hS xk)
2 (1.12)

where

hs = ȳs

x̄s

or

V̄s(ȳrs) = N − n

nN
[vs(y) + h2

s vs(x) − 2hsvs(x, y)]

where

vs(x, y) = 1

n − 1

∑
k∈s

(xk − x̄s)(yk − ȳs), vs(y) = vs(y, y).
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The relative efficiency coefficient is as follows:

ew(ȳrs/ȳs) = V (ȳrs)

V (ȳs)
= 1 + γ (x)

γ (y)

[
γ (x)

γ (y)
− 2r(x, y)

]
(1.13)

Therefore, the estimator ȳrs is more accurate than ȳs , when

r(x, y) >
1

2

γ (x)

γ (y)
and γ (x) < 2γ (y).

Regression Estimator
The well-known ordinary regression estimator from the simple random sample is as
follows:

ȳregs = ȳs + as(x̄s − x̄) (1.14)

where as is the slope coefficient:

as = vs(x, y)

vs(x)
(1.15)

The statistic ȳregs is an almost unbiased estimator of themean ȳ. Its bias is approx-
imately as follows:

breg ≈ 1

n

N − n

N − 2

√
v(x)(β2 − 1)(θ21(x, y) − θ3(x)r(x, y))

and

|breg| ≤ 2

n

√
v(x)(β2(x) − 1)

where:

β2(x) = c4(x)

v2(x)
, θ21(x, y) = v21(x, y)√

v(y)(c4(x) − v2(x))
,

θ3(x) = v3(x)√
v(x)(c4(x) − v2(x))

, |θ3(x)| ≤ 1, |θ21(x, y)| ≤ 1.

The well-known kurtosis coefficient is denoted by β2(x). The parameter θ3(x) has
been derived as the correlation coefficient of the sample mean and the sample vari-
ance, see Kendall and Stuart (1967) for a large sample size. Moreover, let us note
that the parameter θ3(x) can be defined as the correlation coefficient between the
variables x and (x − x̄)2, whereas the parameter θ21(x, y) was defined as the corre-
lation coefficient between the variables y and (x − x̄)2. Hence, θ3(x) is also treated
as the skewness coefficient of a variable x .
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The variance of the estimator is approximately given by the expression

V (ȳregs) ≈ N − n

Nn
v(y)(1 − r2(x, y)). (1.16)

The estimator of the variance is

Vs(ȳregs) = N − n

Nn
vs(y)(1 − r2s (x, y)). (1.17)

where

rs(x, y) = vs(x, y)√
vs(x)vs(y)

.

The relative efficiency coefficient is

ew(ȳregs/ȳs) ≈ V (ȳregs/V ȳs) = 1 − r2(x, y). (1.18)

Hence, the regression estimator is not less precise than the simple random sample
mean.

Moreover, let us note that in the survey sampling literature some modifications
of the ratio, regression, and so-called product estimators are considered (see, eg.
Kadilar and Cingi 2006; Kumar and Kadilar 2013; Murthy 1964; Singh et al. 2011;
Srivenkataramana 1980 and Swain 2013).

In the case when a multivariate auxiliary variable is observed in the simple ran-
dom sample drawn without replacement, the ratio estimator was generalized by
Olkin (1958) and the regression estimator was considered by Hung (1985) and
Wywiał (2003). In the next chapter the multivariate regression estimator is taken
into account under the sampling design proportional to the determinant of the sam-
ple variance-covariance matrix of auxiliary variables.

Horvitz-Thompson Estimator
Let us assume that a sample s of the size n is drawn without replacement from a
finite population. Let Ik = 1 (Ik = 0), if k ∈ s (if k /∈ s) for all k = 1, . . . , N . It is
well known that

πk = E(Ik), πki = E(Ik Ii ),
∑N

k=1
πk = n,

V (Ik) = πk(1 − πk), V (Ik, Ii ) = πki − πkπi for k �= i.

Horvitz and Thompson (1952) proposed the following estimator of the population
average ȳ:

ȳHTs = 1

N

N∑

k=1

Ik yk

πk
= 1

N

∑

k∈s

yk

πk
(1.19)
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The statistic ȳHTs is the unbiased estimator of the population mean ȳ when πk > 0
for all k = 1, . . . , N . Its variance is determined by the expression

V (ȳHTs) = 1

N 2

N∑

k=1

(
yk

πk

)2

πk(1 − πk) + 2

N 2

N∑

i=1

N∑

k>i

yk yi

πkπi
(πki − πiπk) (1.20)

For a fixed sample size:

V (ȳHTs) = 1

N 2

N∑

i=1

N∑

k>i

(πkπi − πki )

(
yk

πk
− yi

πi

)2

(1.21)

The variance V (ȳHTs) is estimated by means of the following statistic:

Vs(ȳHTs) = 1

N 2

N∑

k=1

Ik

(
yk

πk

)2

(1−πk)+ 2

N 2

N∑

i=1

N∑

k>i

Ik Ii
yk yi

πkπi

πki − πkπi

πki
(1.22)

This statistic is the unbiased estimator of the variance V (ȳHTs) but it can take negative
values.

When the sample size is fixed and πkπi −πki > 0 for each k �= i = 1, . . . , N the
nonnegatively valued estimator is as follows (see Sen 1953 and Yates and Grundy
1953):

V̄s(ȳHTs) = 1

N 2

N∑

i=1

N∑

k>i

Ik Ii
πkπi − πki

πki

(
yk

πk
− yi

πi

)2

(1.23)

Moreover, let us note that Horvitz and Thompson proposed the estimator of the
population average in the case when a sample is selected with replacement.

TheHorvitz–Thompsonestimator canbe the component of the ratio and regression
type estimators, (see Särndal et al. 1992). The ratio estimator is as follows:

ȳrHTs = ȳHTs
x̄

x̄HTs
, (1.24)

It is an approximately unbiased estimator of the population mean and its variance is
approximately as follows:

V (ȳrHTs) ≈ V (ȳHTs) + h2V (x̄HTs) − 2hCov(x̄HTs, ȳHTs) (1.25)
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where

h = ȳ

x̄
, V (x̄HTs) = Cov(x̄HTs, x̄HTs),

Cov(x̄HTs, ȳHTs) = 1

N 2

N∑

k=1

xk yk(1 − πk)

πk
+ 2

N 2

N∑

i=1

N∑

k>i

xk yi

πkπi
(πki −πiπk). (1.26)

The variance V (ȳrHTs) is estimated by means of the following statistic:

Vs(ȳrHTs) = Vs(ȳHTs) + h2
s Vs(x̄HTs) − 2hsCovs(x̄HTs, ȳHTs) (1.27)

where hs = ȳHTs
x̄HTs

,

Covs(x̄HTs, ȳHTs) = 1
N2

∑N
k=1

xk yk (1−πk)

π2
k

Ik + 1
N2

∑N
i=1

∑N
k �=i

xk yi
πkπi

πki−πi πk
πki

Ik Ii .

The regression type estimator is as follows:

ȳregHTs = ȳHTs + aHTs(x̄ − x̄HTs) (1.28)

where

aHTs = vHTs(x, y)

vHTs(x)
(1.29)

vHTs(x, y) = 1

N − 1

N∑

k=1

(xk − x̄HTs)(yk − ȳHTs)
Ik

πk
, vHTs(x) = vHTs(x, x).

(1.30)

The statistic ȳregHTs is the approximately unbiased estimator of the population
mean and its variance approximately shows the following expressions:

V (ȳregHTs) ≈ V (ȳHTs) + a2V (x̄HTs) − 2aCov(x̄HTs, ȳHTs) (1.31)

where a = c∗(x,y)
v∗(x)

.
The unbiased estimator of the variance V (ȳregHTs) is as follows:

Vs(ȳregHTs) = Vs(ȳHTs) + a2
HTsVs(x̄HTs) − 2aHTsCovs(x̄HTs, ȳHTs) (1.32)

Let us note that more properties of the Horvitz–Thompson estimator are considered
by Barbiero and Mecatti (2010), Berger (1998), Hulliger (1995), Patel and Patel
(2010) and Rao (2004).
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Chapter 2
Sampling Designs Dependent on Sample
Moments of Auxiliary Variables

2.1 Sampling Design Proportional to Sample Mean

In the case of the simple random sample drawn without replacement, the ratio esti-
mator can be better than the sample mean, as was shown in the previous chapter.
However, the ratio estimator is biased, especially when the sample size is small. To
eliminate the bias, Lahiri (1951), Midzuno (1952), and Sen (1953) proposed1 the
following sampling design proportional to the sample mean.

Let x = [x1, . . . , xN ] be the vector of an auxiliary variable’s observations and
xk > 0 for k = 1, . . . , N . Let us remind you that the sample and population means
of the auxiliary variable are denoted by xs = 1

n

∑
k∈s xk and x = 1

N

∑N
k=1 xk ,

respectively. The size n of a sample is the effective sample size. The sampling design
proportional to the sample mean of the auxiliary variable is as follows:

PLMS(s) = 1
(N

n

)
xs

x
(2.1)

The first- and second-order inclusion probabilities are as follows (see Rao 1977):

πk = N − n

(N − 1)N

xk − x

x
+ n

N
>

n − 1

N − 1
(2.2)

π jk = n(n − 1)

N (N − 1)
+ (n − 1)(N − n)

(N − 2)(N − 1)N

xk + x j − 2x

x
>

n(n − 1)

N (N − 1)

where k �= j = 1, . . . , N .
The well-known enumerate sampling scheme (see Tillé 2006) can be applied

when implementing the sampling design, but it is not useful for a large population

1According to Chaudhuri and Stenger (2005), p. 25.
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or sample size, which is why the following sampling scheme is applied. The first
element is drawn from the population to the sample with the probability pk = xk

x̃ ,
k = 1, . . . , N where x̃ = ∑

i∈U xi . The subsequent elements of the sample are
drawn without replacement from the remaining N − 1 elements of the population as
the simple random sample of size n − 1.

Under the sampling design PLMS(s), the ordinary ratio estimator becomes an
unbiased estimator of the population mean. Thus, E(yrs, PLMS(s)) = y where yrs
is given by the expression (1.9).

Wywiał (2003) derived the following expression:

V (yHTs, PLMS(s)) ≈ V (ys, P0)+ v2(y)

n2 (2κρ−γxη12+γxκη21+κ2−γ 2
x ρ2) (2.3)

where V (ys, P0) is explained by the expressions (1.3) and (1.5), κ = γx
γy
, and

ηrs = ηrs(x, y) = vrs

v
r/2
2 (x)v

s/2
2 (y)

, η11(x, y) = ρ

Hence, when N → ∞, n → ∞, and N − n → ∞,

V (yHTs, PLMS(s)) → V (yS, P0).

Let us assume that (xi , yi ), i = 1, . . . , N are outcomes of a two-dimensional normal
random variable. In this case, the expression (2.3) is reduced to the following:

V (yHTs, PLMS(s)) ≈ N − n

Nn
v(y) + v2(y)

n2 (2κρ + κ2 − γ 2
x ρ2).

Hence, particularly if κ = 1 and ρ > 2
γ 2

x
, the strategy (yHTs, PLMS(s)) is more

accurate than the simple random sample mean. More details about the properties
of the strategies under the sampling design PLMS(s) are considered by Rao (1966),
Chaudhuri and Arnab (1981), and Srivenkataramana (2002).

Walsh (1970) proposed the following modification of the ratio estimator:

ȳws = ȳs x̄

x̄ + A(x̄s − x̄)
.

Bhushan et al. (2009) generalized the sampling scheme of Lahiri-Midzuno-Sen
in the following way: First, the k-the population element is selected according to the
probability:

p(k) = x̄ + A(xk − x̄)

N x̄
, k = 1, .., N .

The subsequent elements of the sample are drawn without replacement from the
remaining N − 1 elements of the population as the simple random sample of size

http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
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n − 1. The estimator ȳws is unbiased under this sampling scheme. The variance of
the estimator ȳws takes the minimal value equal to the variance of the regression
estimator, given by the expression (1.16) under the generalized Lahiri-Midzuno-Sen
sampling scheme when A = ρ

κ
. More properties about this strategy can be found in

the paper by Bhushan (2012).

2.2 Sampford’s Sampling Design

The well-known large class of sampling designs leads to selecting population units
with inclusion probabilities proportional to the positive values of the auxiliary vari-
able, so πk ∝ xk , k = 1, . . . , N . One of them was proposed by Sampford (1967):

PSd(s) = cn(1 − π̄s)
∏

k∈s

πk

1 − πk
(2.4)

where

π̄s = 1

n

∑

k∈s

πk, πk = nxk∑N
i=1 xi

, k = 1, . . . , N ,

The parameter c is determined in such a way that
∑

s∈S PSd(s) = 1.
The rejective sampling scheme is as follows: the first population unit is selected to

the sample with probability πk/n, k = 1, . . . , N , and all the subsequent population
units are drawn with probabilities proportional to πk

1−πk
, i = 1, . . . , N , i �= k.

When any unit is selected multiple times to the sample s, the sample is rejected, and
the sampling procedure is repeated. The exact expression for the parameter c, the
inclusion probabilities of the second rank, and many other properties of the sampling
design can be found in the monograph by Tillé (2006).

Finally, let us note that a review of the considered methods of sampling with
inclusion probabilities proportional to values of the auxiliary variable can be found
in the books by Tillé (2006) or Brewer and Hanif (1983).

2.3 Sampling Design Proportional to Sample Variance

In the case of simple random sample drawn without replacement the regression
estimator is biased. To eliminate the bias, Singh and Srivastava (1980) proposed the
following sampling design proportionate to the sample variance:

PSS(s) = 1(
N
n

) vs(x)

v(x)
(2.5)

http://dx.doi.org/10.1007/978-3-662-47383-2_1
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where vs(x) = 1
n−1

∑
k∈s(xk − x̄s)

2 and v(x) = 1
N−1

∑N
k=1(xk − x̄)2. Let

qk = xk − x√
v#(x)

, v#(x) = N − 1

N
v(x), k = 1, . . . , N

The probabilities of inclusion are as follows:

πk = n

N
+ N − n

N (N − 2)
(q2

k − 1) ≥ (n − 1)(N − 1)

N (N − 2)
(2.6)

πjk = n(n − 1)

N (N − 1)
+ (N − n)

N (N − 2)

(
1 − (N − 1)(N − n − 1)

N (N − 3)

)
(q2

j + q2
k )

− 2(N − n)(N − n − 1)

N 2(N − 2)(N − 3)
q j qk − 2(N − n)(N − n − 1)

N 2(N − 1)(N − 2)(N − 3)

for j = 1, . . . , N , k = 1, . . . , N , j �= k.
Singh and Srivastava (1980) proposed a sampling scheme implementing the sam-

pling design PSS(s). First, the following sequence of squared differences has to be
determined:

αij = (xi − x j )
2, j > i = 1, . . . , N .

The first two population elements are selected to the sample proportionally to the
values αij. The subsequent elements are selected as the simple random sample of
size n − 2 drawn without replacement from the remaining population.

Based on the above sampling scheme, the following can be derived. The first
element is selected for the sample with the probability:

pk = 1

2N

(
1 + (xk − x̄)2

v#(x)

)
, k = 1, . . . , N .

When the kth population element is selected, the second element is drawn with the
following probability:

p j |k = 1

N

(x j − xk)
2

v#(x) + (xk − x̄)2

where j = 1, . . . , N , k = 1, . . . , N , and j �= k. Similarly, such as in the case of
the previous sampling scheme, the next elements are selected as the simple random
sample of size n − 2 drawn without replacement from the remaining population.

Singh and Srivastava (1980) proved that the ordinary regression estimator, as
determined by the expression (1.14), becomes unbiased for the population mean
under the sampling design PSS(s). Its variance is approximately equal to the right
side of the equation (1.16).

http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
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The approximate variance of the strategy (ȳHTS, PSS(s)) is as follows:

V (ȳHTS, PSS(s)) ≈ V (yS, P0(s))+ y2

n2 (−γ 2
y (2ρ2+η22+1)+γy(η41−4η21)+η40−1)

where tHTS is the Horvitz–Thompson defined by the expression (1.19).
Under the assumption that η22 = 1+ 2ρ2, η12 = 0 and η14 = 0 (e.g., in the case

when variables (y, x) have an approximately two-dimensional normal distribution),
the variance takes the following form:

V (ȳHTS, PSS(s)) ≈ V (yS, P0(s)) + 2y2

n2 (1 − γ 2
y (1 + 2ρ2))

For sufficiently large n and N , the strategy (tHTS, PSS(s)) is better than (yS, P0(s))

if |γy | > 1 or if 1 > |γy | > 1√
3
and |ρ| >

√
1
2

(
1
γ 2

y
− 1

)
.

The sampling designs proportional to the total of the non-observed values in the
sample is as follows:

PI (s) ∝ N x − nxs

Moreover, let:
PII(s) ∝ (N − 1)v(x) − (n − 1)vs(x),

PIII(s) ∝
(

N

n
− 1

)
v#(x) − n(xs − x)2,

PIV(s) ∝ (xs − x)2.

Wywiał (2000) derived the inclusion probabilities for the above sampling designs as
well as the sequences of the conditional probabilities for implementing the sampling
designs. The approximate variance of the Horvitz–Thompson’s estimator under the
defined sampling designs is approximately equal to the variance of the simple random
sample mean drawn without replacement.

2.4 Sampling Designs Proportional to the Generalized
Variance

The regression sampling strategy, defined as a pair of the ordinary regression esti-
mator and the Singh–Srivastava’s sampling design in Sect. 2.3, will be generalized
into the case of a multidimensional auxiliary variable. First, let us introduce some
notation. The vector y = [y1 . . . yN ]T consists of all the values of a variable under
study. Let X = [xkj] be the matrix of the dimensions N × m. The matrix X consists

http://dx.doi.org/10.1007/978-3-662-47383-2_1
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of all the values of an m-dimensional auxiliary variable. The element xkj is the kth
value (k = 1, . . . , N ) of the j th auxiliary variable ( j = 1, . . . , m ≥ 1). Let JN be
the column vector of the dimensions N × 1. Each element of the vector JN is equal
to one. Note the following:

x̄ = 1

N
JT

N X, V(x) = [v(xi , x j )] = 1

N
(X − JN x)T X − JN x),

v(x, y) = [v(xi , y)] = 1

N
(X − JN x)T (y − JN y).

The row vector x̄ consists of the population means of the auxiliary variables. The
population variance–covariance matrix of the auxiliary variables has been denoted
by V(x). The vector v(x, y) consists of the population covariances of the auxiliary
variables and the variable under study. Let ys = [yk1 . . . ykn ]T be the vector of values
of the variable under study observed in the sample s of size n. Similarly, the matrix

Xs =

⎡

⎢⎢⎣

xk1 j . . . xk1m

xk2 j . . . xk2m

. . . . . . . . . . . .

xkn j . . . xknm

⎤

⎥⎥⎦

consists of the values of the auxiliary variables observed in the sample s. Hence, the
sample variance–covariance matrix can be written as follows:

xs = JT
n Xs, Vs(x) = [vs(xi , x j )] = 1

n
(Xs − Jnxs)

T (Xs − Jnxs),

vs(x, y) = [vs(xi , y)] = 1

n
(Xs − Jnxs)

T (ys − Jn ys).

Therefore, Vs(x) = [vs(xi , x j )] is the sample variance–covariance matrix between
the auxiliary variables and vs(x, y) is the column vector of the sample covariances
between the auxiliary variables and the variable under study.Thegeneralizedvariance
is the determinant of the variance covariance matrix. On the basis of the results
by Wywiał (1999a, b) the following sampling strategies dependent on generalized
variance are shown.

Sampling Strategy 1
The first sampling design proportional to the sample generalized variance is

PV (s) = c1
det Vs(x)

det V(x)
(2.7)
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where

c1 =
(

N − m − 1
n − m − 1

)−1 ( n

N

)m+1

When m = 1, the sampling design PV (s) is reduced to the sampling design PSS(s)
of Singh and Srivastava (1980), which was considered in Sect. 2.3.

LetX(k1, . . . , kh) be a sub-matrix obtained through dropping the rows of numbers
k1, . . . , kh in the matrix X. Moreover, let

F(k1, . . . , kh) = X(k1, . . . , kh) − x(k1, . . . , kh)JN−h

JN−h be the column vector with all its (N − h) elements equal to one and

x(k1, . . . , kh) = 1

N − h
JN−hX(k1, . . . , kh)

The inclusion probabilities are as follows:

πk = 1 −
(N−m−2

n−m−1

)
(N − 1)

(N−m−1
n−m−1

)
N m+1 det V(X)

|F(k)T F(k)|, k = 1, . . . , N

πhk = 1 − 1
(N−m−1

n−m−1

)
N m+1 det V(X)

·

·
{(

N − m − 2

n − m − 1

)
(N − 1)

[
|F(h)T F(h)| + |F(k)FT (k)|

]

−
(

N − m − 3

n − m − 1

)
(N − 2)|F(h, k)FT (h, k)|

}

h = 1, . . . , N , k = 1, . . . , N , k �= h.
Let sm+1 be the subset of the sample s. The size of the subset sm+1 is equal to

m + 1 < n. Let
q1(sm+1) = det 2[Jm+1 Xsm+1 ]

where: Xsm+1 =

⎡

⎢⎢⎣

xk1 j . . . xk1m

. . . . . .

xkm1 . . . xkm m

xkm+11 . . . xkm+1m

⎤

⎥⎥⎦

or
q1(sm+1) = det 2[Xsm − xm+1∗ Jm]

where xr∗ = ⌊
xkr1 . . . xkr m

⌋
is the m + 1th row of the matrix Xsm+1 . After dropping

the row xm+1∗ in the matrix Xsm+1 we obtain the matrix Xsm .
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Let us note that q1(sm+1) is the m-dimensional measure (volume) of the paral-
lelotop spanned by the vectors with their origins at the same point xm+1∗ and the
endpoints x1∗, . . . , xm∗, (see Borsuk 1969). From another point of view, q1(sm+1)

is proportionate to the m-dimensional volume of the simplex spanned by the points
x1∗, . . . , xm+1∗.

The sampling scheme (implementing the sampling design PV (s)) consists of the
two following steps:

Step 1: Select (m + 1) units sm+1 = {k1, k2, . . . , km+1} with their probability of
joint selection being proportional to q1(sm+1).

Step 2: Select (n − m − 1) units from the remaining units of the population by a
simple random sampling without replacement.

Thewell-knownmultiple regression estimator of the populationmean y is as follows:

yReg,s = ys − (xs − x)Bs (2.8)

where
Bs = V−1

s (x)vs(x, y)

Let

As =
[

ys − y xs − x
vs(x, y) Vs(x)

]

The well-known property of the determinant of a block matrix lets us rewrite the
estimator yReg,s in the following way:

yReg,s = y + det As

det Vs(x)
(2.9)

(yReg,s, PV (s)) is the unbiased strategy of the population mean y. When the
sample size n → ∞, the population size N → ∞ and N − n → ∞, then

V (yReg,s, PV (s)) ≈ 1

n
(v(y) − vT (x, y)V−1(x)v(x, y)) (2.10)

or

V (yReg,s, PV (s)) ≈ 1

n
v(y)(1 − r2w) (2.11)

where
rw =

√
rT R−1(x)r

is themultiple correlation coefficient between the auxiliary variables and the variable
under study. The matrix R(x) is the correlation matrix of auxiliary variables and
rT = [ry1 . . . rym], where ryj is the correlation coefficient between the j th auxiliary
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variable and the variable under study. Hence, in the asymptotic case, the precision
of the strategy (yReg,s, PV (s)) increases when the value of the multiple correlation
coefficient rw also increases.

The unbiased estimator of the variance V (yReg,s, PV (s)) is as follows:

V̂1s = y2Reg,s − N m−1∏m
h=1(n − h) det V(x)

nm+1
∏m

h=1(N − h) det Vs(x)

⎡

⎣
∑

i∈s

y2i + N − 1

n − 1

∑

i /∈ j∈s

yi y j

⎤

⎦

(2.12)

Sampling Strategy 2
The next sampling design is proportional to the determinant det V#s(x), where

V#s(x) = 1

n
(Xs − Jnx)T (Xs − Jnx)

is the sample variance–covariance matrix dependent on the population means of the
auxiliary variables. Let us consider the following sampling design.

PVI(s) = c2
det V#s(x)

det V(x)
(2.13)

where c2 = ( n
N )m

(
N − m
n − m

)−1

When m = 1, the defined sampling design is reduced to the following sampling
design, (see Singh and Srivastava 1980):

PVI(s) = v#s(x)
(N

n

)
v#(x)

, s ∈ S

where v#s(x) = n−1
n vs(x), v# = N−1

N v(x).

LetX#(k1, . . . kr ) be a sub-matrix obtained through dropping the rows of numbers
k1, . . . , kr from the matrix X − JN x. The inclusion probabilities of the first and
second orders are as follows:

πk = 1 − N − n

N − m

|X#(k)XT
# (k)|

N m |V(x)| , k = 1, . . . , N

πhk = 1 − N − n

(N − m)N m |V(x)| ·

·
(

|X#(h)XT
# (h)| + |X#(k)XT

# (k)| − N − n − 1

N − m − 1
|X#(h, k)XT

# (h, k)|
)

h = 1, . . . , N , k = 1, . . . , N , k �= h.
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Let sm be a subset of the sample s and m < n. Let us define the following:

q2(sm) = det2
[

1 x
Jm Xsm

]

From the geometrical point of viewq2(sm) is them-dimensionalmeasure (volume)
of the parallelotop spanned by the vectors with their origins at the same point x and
the endpoints that determine the rows of the matrix Xsm , see Anderson (1958) or
Borsuk (1969). The above expression can be transformed into the following one:

q2(sm) = det2(Xsm − Jmx) (2.14)

The following sampling scheme implements the sampling design PVI(s):

Step 1: Select m-units sm = {k1, . . . , km} with their probability of joint selection
being proportional to q2(sm).

Step 2: Select (n − m) units from the remaining units of the population by simple
random sampling without replacement.

When m = 1, the introduced sampling scheme is reduced to the sampling scheme
proposed by Singh and Srivastava (1980). In this case q2(s1) = q2(k1) = (xk1 − x)2,
k1 = 1, . . . , N .

Let us consider the following estimator:

y#s = n(N − m)

N (n − m)
[ys − (xs − x)B#s] (2.15)

where:

B#s = V#s(x)−1v#s(x, y), v#s(x, y) = 1

n
(Xsm − Jmx)T ys

The statistic y#s can be transformed into the following one:

y#s = n(N − m) det A#s

N (n − m) det V#s(x)
(2.16)

where

A#s =
[

ys xs − x
v#s(x, y) V#s(x)

]

or

A#s = 1

n

[
JT

n
(Xsm − Jmx)T

]
[ys (Xsm − Jmx)]

In the case when m = 1, the statistic y#S is reduced to the estimator proposed by
Singh and Srivastava (1980). (y#S, PVI(s)) is the unbiased strategy of the population
mean y. The approximate variance of the strategy (y#S, PVI(s)) is expressed by
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Eqs. (2.10) or (2.11). The unbiased estimator of the variance of the sampling strategy
(y#S, PVI(s)) is as follows:

V̂2s = y2#s − N m−3 ∏m
h=1(n − h + 1)

nm−1
∏m

h=2(N − h + 1)

det V#

det V#s

⎡

⎣
∑

i∈s

y2i + N − 1

n − 1

∑

i �= j∈s

yi y j

⎤

⎦ .

(2.17)

Sampling Strategy 3
Let us assume that a population U is divided into disjoint and nonempty clusters
Ug , g = 1, . . . , G, and U = ∪G

g=1Ug . The size of the cluster Ug is denoted by

Ng > 1 and N = ∪G
g=1Ng . Let the clusters be the first stage units. The sample

sI = (g1, . . . , gi , . . . , gn) consisting of clusters, is selected at the first stage. The
size of the sample sI is equal to n. At the second stage, the simple random samples
sg1/sI , . . . , sgi /sI , . . . , sgn/sI , where gi ∈ sI are drawn without replacement from the
clusters Ug1 , . . . , Ugi , . . . , Ugn , respectively, selected on the first stage. The size of
the sample sgi is denoted by 1 < ngi ≤ Ngi . The two-stage sample will be denoted
by s = {sI , sg1/sI , . . . , sgi /sI , . . . , sgn/sI }. Let a multivariate auxiliary variable of the
dimension m be observed on the all first stage units. So, it means that a value xgj

of a j th auxiliary variable is attached to the gth first stage unit, g = 1, . . . , G. The
first stage sampling design is proportional to the sample generalized variance of the
auxiliary variables given by the expression (2.7) where the population size N has to
be replaced with the number of the first stage unit G. So, the sampling design of the
two-stage sample is as follows:

PVII(s) = PV (sI )
∏

g∈sI

(
Ng

ng

)−1

(2.18)

where the sampling design PV (sI ) is determined by the equation (2.7) where the
population size N has to be replaced with the number of the first stage unit G. Let
us introduce the following notation:

zg =
∑

i∈Ug
yi , z = 1

G

∑G

g=1
zg, vz = 1

G − 1

∑G

g=1
(zg − z)2,

yUg
= 1

Ng
zg, vUg = 1

Ng − 1

∑
i∈Ug

(yi − yUg
)2, zsg/sI =

∑
i∈sg/sI

yi ,

ysg/sI
= 1

ng
zsg/sI

, z̃sg/sI
= Ng ysg/sI

, vsg/sI
= 1

ng − 1

∑
i∈sg/sI

(yi − ysg/sI
)2.

The statistics z̃sg/sI
and vsg/sI

are unbiased estimators of the cluster total zg and the
cluster variance vUg , respectively.
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Let us consider the following estimator of the population mean y where

yreg2s = G

N
(zs − (xsI − x)Bs) (2.19)

where

zs = 1

n

∑

g∈sI

z̃sg/sI
, (2.20)

xsI = [xsI ,1 . . . xsI , j . . . xsI ,m], xsI , j = 1

n

∑
g∈sI

xgj, j = 1, . . . , m,

Xgj is an observation of j th auxiliary variable attached to gth cluster.

Bs = v−1
sI

ws, vsI = [vsI (xi , x j )],

vsI (xi , x j ) = 1

n − 1

∑
g∈sI

(xgj − xsI i )(xgj − x̄sI , j ),

wT
s = [vs(z, x1), . . . , vs(z, xm)], vs(z, xg) = 1

n − 1

∑
g∈sI

(z̃sg/sI
− zs)(xgj − x̄sI , j ).

The statistic yreg2s is the unbiased estimator for the populationmeanand its variance is

V (yreg2s) ≈ G2

n2N 2 E

( ∑

g∈sI

v(z̃sg/sI
) + xsI V−1

sI
XT

sI
diag(vs/sI (z̃s/sI ))XsI V−1

sI
xT

sI
+

+ 2xsI V−1
sI

XT
sI

Vs/sI (z̃s/sI )(1 + xsI V−1
sI

xT
sI

)+
+ xsI V−1

sI
XT

sI
vs/sI (z̃s/sI )(2 + xsI V−1

sI
xT

sI
)
∑

g∈sI

v(z̃sg/sI
)

)
+ 1

n
vz(1 − r2zx )

(2.21)

where XsI is the n × m matrix of the auxiliary variables observed in the sample sI ,
so, XsI is the appropriate sub-matrix of the matrix X; the column vector z̃s/sI :

z̃s/sI =
⎡

⎣
z̃s1/sI

. . . . . . . . .

z̃sn/sI

⎤

⎦

consists of the statistics z̃sg/sI
, g = 1, . . . , n; the column vector vs/sI (z̃s/sI ):

vs/sI (z̃s/sI ) =
⎡

⎣
v(z̃sg/sI

)

. . . . . . . . .

v(z̃sn/sI
)

⎤

⎦
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consists of the following conditional variance (under the fixed sample sI ) of the
statistics z̃sg/sI

, g = 1, . . . , G:

v(z̃sg/sI
) = Ng(Ng − ng)

ng
vUg ;

rzx is the population multiple correlation coefficient between the auxiliary variables
and the variable z.

The following statistic is the unbiased estimator of the variance V (yreg2s):

V3,s = z2s − N m−1 ∏m
h=1(n − h)

N m+1 ∏m
h=1(N − h)

det V(x)

det VsI (x)

⎡

⎣
∑

g∈sI

z̆sg/sI
+ N − 1

n − 1

∑

g �=t∈sI

z̃sg/sI
z̃st/sI

⎤

⎦

(2.22)

where

z̆sg/sI = ng(Ng − 1)

Ng(ng − 1)

(
z̃2sg/sI

− N 2
g

ng

Ng − ng

Ng − 1
Msg/sI

)
, Msg/sI

= 1

ng

∑

i∈sg/sI

y2i .

Based on the simulation analysis, Gamrot andWywiał (2002) compared the accu-
racy of the estimator yreg2s with the weighted mean of the variable under study
observed in the two-stage sample proposed by Rao et al. (1962) or by Hartley and
Rao (1962). In the first stage, the sample was selected by means of the well-known
sampling designs proportional to the value of an auxiliary variable. In the second
stage, the simple random samples were selected without replacement from the previ-
ously drawn clusters. The computer simulation analysis was based on the empirical
set of data available in the book by Särndal et al. (1992). In general, the analysis leads
to the conclusion that the accuracies of both sampling strategies are comparable.

The sampling designs under consideration can be useful in several types of sci-
entific research supported by statistical analysis. For instance (see Wywiał 2013),
the sampling design proportional to the generalized variance of a two-dimensional
auxiliary variable (values of the auxiliary variables are treated as geographic coordi-
nates) can be useful in the sampling of populations considered in regional economic
research, agriculture, geodesy, ecology, and so on. The sampling design proportional
to the generalized variance of a three-dimensional auxiliary variable can be applied in
geological research or ecology, as well. Moreover, the sampling design proportional
to the trace of the sample variance–covariancematrix leads to samples inwhich popu-
lation objects are distant from each other. Let us note that in this case we can consider
the objects in more than three dimensions. For instance, census data on households
can be treated as observations of a multidimensional auxiliary variable. The sample
may be selected proportionally to the generalized variance of standardized observa-
tions of variables: e.g., the age of head of household, the apartment area, the number
of children, the level of rent, and the household income over the last year. Thus, we
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have a five-dimensional space for observations of the auxiliary variable. In this case,
the sampling design leads to the selection of households for which observations of
auxiliary variables are not linearly dependent in the sense of the determinant of the
matrix XT

s Xs . Hence, this can lead to improving the accuracy of the estimation of the
linear regression model parameters between auxiliary variables and variables under
study on the basis of the well-known Method of Least Squares. Finally, we can note
that it is possible to find several more examples, which let us at least modify the
sampling strategies under consideration.
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Chapter 3
Sampling Designs Based on Order Statistics
of Auxiliary Variable

3.1 Basic Properties of Order Statistics

The sampling strategies based on sampling designs dependent on functions of order
statistics of an auxiliary variable will be considered. The distribution of the order
statistics is evaluated on the basis of the simple random sample of the size n drawn
without replacement. Conditional sampling designs are also defined.Moreover, some
estimation strategies of the population means are also considered.

First, the probability distribution of the single-order statistic from the simple
random sample mean drawn without replacement will be explained. Next, the joint
distributions of two-or three-order statistics will also be considered.

Let xk ≤ xk+1 for k = 1, . . . , N − 1. The sequence of the order statistics of
observations of an auxiliary variable in the sample s will be denoted by (X( j)). Let
G(r, i) = {s : X(r) = xi } be the set of all samples whose r th-order statistic of the
auxiliary variable is equal to xi where r ≤ i ≤ N − n + r . The size of the set G(r, i)
is denoted by g(r, i) = Card(G(r, i)) where

g(r, i) =
(

i − 1

r − 1

)(
N − i

n − r

)
(3.1)

The equality
⋃N−n+r

i=r G(r, i) = S leads to the following

Card

⎛

⎝
N−n+r⋃

i=r

G(r, i)

⎞

⎠ =
N−n+r∑

i=r

Card(G(r, i)) =
N−n+r∑

i=r

g(r, i) = Card(S) =
(

N

n

)
.

Wilks (1962), pp. 243–244, shows that the probability that the r th-order statistic is
equal to xi , is as follows (see Guenther (1975)):

P
(
X(r) = xi

) = P (s ∈ G(r, i)) = g(r, i)
(N

n

) . (3.2)
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E
(
X(r)

) =
N−n+r∑

i=r

xi P
(
X(r) = xi

) = 1
(N

n

)
N−n+r∑

i=r

xi g(r, i). (3.3)

The sample quantile of order α ∈ (0; 1) can be defined by the equation:

Qα = X(r) (3.4)

where r = [nα] + 1 is the integer part of the value nα, r = 1, 2, . . . , n. Hence,
X(r) = Qα for r−1

n ≤ α < r
n .

Let us note that s = {s1, i, s2} where s1 = {i1, . . . , ir−1}, s2 = {ir+1, . . . , in},
i j < i for j = 1, . . . , r − 1, ir = i , and i j > i for j = r + 1, . . . , n.

The properties of the joint probability distribution of two-order statistics are as
follows: Let G(r1, r2, i, j) = {s : X(r1) = xi , X(r2) = x j }, r1 = 1, . . . , n − 1;
r2 = 2, . . . , n, r1 < r2 be the set of all samples whose r1-th and r2-th order statistics
of an auxiliary variable are equal to xi and x j , respectively, where r1 ≤ i < j ≤
N − n + r2. Therefore, we have

N−n+r1⋃

i=r1

N−n+r2⋃

j=i+r2−r1

G(r1, r2, i, j) = S. (3.5)

The size of the set G(r1, r2, i, j) is denoted by g(r1, r2, i, j) = Card(G(r1,
r2, i, j)) and

g(r1, r2, i, j) =
(

i − 1

r1 − 1

)(
j − i − 1

r2 − r1 − 1

)(
N − j

n − r2

)
. (3.6)

Hence, the joint distribution of the statistics (X(r1), X(r2)) is as follows:

P
(
X(r1) = xi , X(r2) = x j

) = P (s ∈ G(r1, r2, i, j)) = g(r1, r2, i, j)
(N

n

) (3.7)

where: i = r1, . . . , N − n + r1, j = r2, . . . , N − n + r2, j > i.
The basic properties of the joint probability distribution of the three-order statistics

denoted by (X(r1), X(r2), X(r3)) where 1 ≤ r1 < r2 < r3 ≤ n, are as follows: Let
G(r1, r2, r3; i1, i2, i3) = {s : X(r1) = xi1 , X(r2) = xi2 , X(r3) = xi3}, be the set of
all samples whose r1-th, r2-th, and r3-th order statistics of the auxiliary variable are
equal to xi1 , xi2 , and xi3 , respectively, where r1 ≤ i1 < i2 < i3 ≤ N − n + r3. So,
we have:

N−n+r1⋃

i1=r1

N−n+r2⋃

i2=i1+r2−r1

N−n+r3⋃

i3=i1+r3−r2

G(r1, r2, r3; i1, i2, i3) = S.

The size of the set G(r1, r2, r3; i1, i2, i3) is denoted by g(r1, r2, r3; i1, i2, i3) =
Card(G(r1, r2, r3; i1, i2, i3)) and



3.1 Basic Properties of Order Statistics 33

g3 = g(r1, r2, r3; i1, i2, i3) =
(

i1 − 1

r1 − 1

)(
i2 − i1 − 1

r2 − r1 − 1

)(
i3 − i2 − 1

r3 − r2 − 1

)(
N − i3
n − r3

)

(3.8)
The joint distribution of the statistics X(r1), X(r2), X(r3) is:

P
(
X(r1) = xi1 , X(r2) = xi2 , X(r3) = xi3

) = P (s ∈ G(r1, r2, r3; i1, i2, i3))

=
∑

s∈G(r1,r2,r3;i1,i2,i3)
P (s) = g(r1, r2, r3; i1, i2, i3)(N

n

)

(3.9)

where: i1 = r1, . . . , N − n + r1, i2 = i1 + r2 − r1, . . . , N − n + r2, i3 = i2 + r3 −
r2, . . . , N − n + r3.

3.2 Sampling Design Proportional to Function of One-Order
Statistic

In the previous chapter was presented the sampling design and scheme proposed by
Sampford, which is of type sampling designs with inclusion probabilities propor-
tional to values of the positive auxiliary variable. There are a lot of such sampling
designs as mentioned above, but still there are not many sampling designs with
derived expression for the inclusion of the first and second degree. It was the mine
inspiration for looking for the new sampling design for which those probabilities are
evaluated. The sampling designs proposed byWywiał (2008) are defined as follows:

Definition 3.1 The sampling design proportional to the values xi , i = r, . . . , N −
n + r, of the order statistic X(r) is as follows:

Pr (s) = xi(N
n

)
E

(
X(r)

) for s ∈ G(r, i) (3.10)

where E
(
X(r)

)
is given by the expression (3.3).

Thus, in this case the probability of selecting a sample s is proportional to the value
xi of the order statistic X(r). Let us note that if xi = 1 for all i = 1, . . . , N , then
Pr (s) become the sampling design of the simple random sample drawn without
replacement denoted Po(s), see the expression (1.3).

Let f (xi ) be a positive function of a value xi of the order statistic X(r) of the
auxiliary variable.The generalization of the above-defined sampling design is as
follows:

Definition 3.2 The conditional sampling design proportional to the values f (xi ),

i = u, . . . , v ≤ N − n + r, u ≥ r, of f (X(r)) is as follows:

http://dx.doi.org/10.1007/978-3-662-47383-2_1
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Pr (s|xu ≤ X(r) ≤ xv) = Pr (s|u, v) = f (xi )

zr (u, v)
(3.11)

where i ∈ s ∈ G(r, i), r ≤ u ≤ i ≤ v ≤ N − n + r

zr (u, v) =
v∑

j=u

f (x j )g(r, j).

The unconditional version of the sampling design Pr (s|u, v) is obtained when u = r
and v = N − n + r.

Definition3.2 let us rewrite the conditional sampling design Pr (s|u, v) in another
way. The condition u ≤ i ≤ v can be replaced by c1 ≤ xi ≤ c2.Thus, the conditional
sampling design Pr (s|u, v) can be defined as follows:

Pr (s|u, v) = Pr (s|c1, c2) = f (xi , c1, c2)∑N−n+r
i=r g(r, i) f (xi , c1, c2)

where

f (xi , c1, c2) =
{

f (xi ) for c1 ≤ xi ≤ c2
0 for xi < c1 or xi > c2

and f (xi ) is positive as it was previously assumed.
The sampling design Pr (s|u, v) does not depend on those values of the auxiliary

variable which are less than xu and greater than xv. This means that the sampling
design is useful in the case of the singly left or singly right censored observations of
the auxiliary variable in the population.

Particularly, when u = r , v = N − n + r , and f (xi ) = xi , the sampling design
Pr (s|u, v) reduces to that given byDefinition3.1.Moreover, let us note that in general
the considered concept of the conditional sampling design agrees with the definition
of the conditional sampling design introduced by Tillé (1998, 2006).

Let us assume that if x ≤ 0, δ(x) = 0. When x > 0, δ(x) = 1. Let us note
that δ(x)δ(x − 1) = δ(x − 1). The following theorems are the straightforward
generalizations of those proven by Wywiał (2008).

Theorem 3.1 The inclusion probabilities of the first order for the conditional sam-
pling design P(s|u, v) are as follows:

πk(r |u, v) = δ(r − 1)δ(k − r)

zr (u, v)

v∑

i=u

(
i − 2

r − 2

)(
N − i

n − r

)
f (xi )

+ δ(r − 1)δ(k − r + 1)δ(N − n + r + 1 − k)

zr (u, v)

v∑

i=max(u,k+1)

(
i − 2

r − 2

)(
N − i

n − r

)
f (xi )
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+ δ(n − r)δ(k − r))δ(N − n + r + 1 − k))

zr (u, v)

min(v,k−1)∑

i=u

(
i − 1

r − 1

)(
N − i − 1

n − r − 1

)
f (xi )

+ δ(k + 1 − r)δ(N − n + r + 1 − k)

zr (u, v)

(
k − 1

r − 1

)(
N − k

n − r

)
f (xk)

+ δ(n − r)δ(k − N − n + r)

zr (u, v)

v∑

i=u

(
i − 1

r − 1

)(
N − i − 1

n − r − 1

)
f (xi ), (3.12)

Theorem 3.2 The inclusion probabilities of the second order for the conditional
sampling design P(s|u, v) are as follows: if k < u, t < u, and t �= k,

πk,t (r |u, v) = δ(r − 2)δ(v − 2)δ(u − 2)

zr (u, v)

v∑

i=u

(
i − 3

r − 3

)(
N − i

n − r

)
f (xi ). (3.13)

If k > v, t > v, and t �= k,

πk,t (r |u, v)

= δ(n − r − 1)δ(N − v − 1)δ(N − u − 1)

zr (u, v)

v∑

i=u

(
i − 1

r − 1

)(
N − i − 2

n − r − 2

)
f (xi ).

(3.14)

If k < u and t > v or t < u and k > v,

πk,t (r |u, v) = δ(r − 1)δ(n − r)δ(u − 1)δ(N − v)

zr (u, v)

v∑

i=u

(
i − 2

r − 2

)(
N − i − 1

n − r − 1

)
f (xi ).

(3.15)
If k < u and u ≤ t ≤ v or t < u and u ≤ k ≤ v,

πk,t (r |u, v)

= δ(r − 1)

zr (u, v)

(
δ(n − r)δ(t − u)δ(t − 2)

t−1∑

i=u

(
i − 2

r − 2

)(
N − i − 1

n − r − 1

)
f (xi )

+ δ(t − 1)

(
t − 2

r − 2

)(
N − t

n − r

)
f (xt )

+ δ(r − 2)δ(v − t)δ(v − 2)δ(t − 1)
v∑

i=t+1

(
i − 3

r − 3

)(
N − i

n − r

)
f (xi )

)
.

(3.16)

If u ≤ k ≤ v and t > v or u ≤ t ≤ v and k > v,

πk,t (r |u, v) = δ(n − r)

zr (u, v)

(
δ(n − r − 1)δ(k − u)δ(N − k)δ(k − 1)δ(N − u − 1)
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·
k−1∑

i=u

(
i − 1

r − 1

)(
N − i − 2

n − r − 2

)
f (xi ) + δ(N − k)

(
k − 1

r − 1

)(
N − k − 1

n − r − 1

)
f (xk)

+ δ(r − 1)δ(v − k)δ(N − v)δ(v − 1)δ(N − k − 1)
v∑

i=k+1

(
i − 2

r − 2

)(
N − i − 1

n − r − 1

)
f (xi )

)
.

(3.17)

If u ≤ k < t ≤ v or u ≤ t < k ≤ v,

πk,t (r |u, v) = δ(v − u)

zr (u, v)

(
δ(n − r − 1)δ(k − u)δ(N − k)δ(k − 1)δ(N − u − 1)

·
k−1∑

i=u

(
i − 1

r − 1

)(
N − i − 2

n − r − 2

)
f (xi ) + δ(n − r)δ(N − k)

(
k − 1

r − 1

)(
N − k − 1

n − r − 1

)
f (xk)

+ δ(r − 1)δ(n − r)δ(t − k − 1)δ(t − 2)δ(N − k − 1)
t−1∑

i=k+1

(
i − 2

r − 2

)(
N − i − 1

n − r − 1

)
f (xi )

+ δ(r − 1)δ(t − 1)

(
t − 2

r − 2

)(
N − t

n − r

)
xt

+ δ(r − 2)δ(v − t)δ(v − 2)δ(t − 1)
v∑

i=t+1

(
i − 3

r − 3

)(
N − i

n − r

)
f (xi )

)
. (3.18)

Both the theorems lead to the following particular result. If r ≤ u = v ≤ N −n+r
then

Pr (s|u, u) = Pr (s)

Pr (s : f (X(r)) = f (xu))
= 1

(u−1
r−1

)(N−u
n−r

) . (3.19)

In this case the population element with label u is purposively selected from the pop-
ulation. Thus this indicates that it is selected with the probability of one. Moreover,
two samples are drawn independently from the two strata. The first simple random
sample of size r − 1 is drawn without replacement from the strata consisting of pop-
ulation elements with the labels from 1, . . . , u − 1 and the second simple random
sample of size n − r is drawn without replacement from the strata consisting of
population elements with the labels from u + 1, . . . , N . The inclusion probabilities
are as follows:

π
(r)
k (u, u) =

⎧
⎪⎨

⎪⎩

r−1
u−1 for k < u,

1 for k = u,
n−r
N−u for k > u.

(3.20)
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π
(r)
k,t (u, u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ(r − 2) (r−1)(r−2)
(u−1)(u−2) for k < u, t < u, k �= t

δ(r − 1) r−1
u−1 for k < u = t,

δ(n − r) n−r
N−u for k = u < t,

δ(n − r − 1) (n−r)(n−r−1)
(N−u)(N−u−1) for k > u, t > u, t �= t,

δ(r − 1)δ(n − r)
(r−1)(n−r)
(u−1)(N−u)

for k < u < t.

(3.21)

The two systems above show the inclusion probabilities of the sample selected from
two strata when they are determined by means of the fixed value xu of the auxiliary
variable.

The sampling scheme implementing the conditional sampling design Pr (s|u, v),
where r ≤ u ≤ v ≤ N −n+r is as follows. First, the population elements are ordered
according to increasing values of the auxiliary variable. Next, the i th element of the
population where i = u, u +1, . . . , v and r = [nα]+1, is drawn with the probability

P∗,r (i |u, v) = f (xi )g(r, i)∑v
j=u f (x j )g(r, j)

(3.22)

Finally, two simple random samples s1 and s2 are drawn without replacement from
the subpopulationsU1 = {1, . . . , i −1} andU2 = {i +1, i +2, . . . , N }, respectively.
The sample s1 is of the size r −1 and the sample s2 is of the size n −r . The sampling
designs of these samples are independent and

P1a(s1) = 1
(i−1

r−1

) , P1b(s2) = 1
(N−i

n−r

) (3.23)

Hence, the selected sample is: s = {s1, i, s2} and its probability is:

P∗,r (i |u, v)P1a(s1)P1b(s2) = Pr (s|u, v)

where r = u, u + 1, . . . , v.
The ratio-quantile-type estimator is defined as follows:

ȳrqs = ȳs
E(X(r))

X(r)

, (3.24)

where E(X(r)) is given by the expression (3.3).

Theorem 3.3 If u = r and v = N − n + r, the strategy
(
ȳrqs, Pr (s)

)
leads to

unbiased estimation of the population mean.
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3.3 Sampling Design Proportional to Function of Two-Order
Statistics

Let xi ≤ x j for i < j and i, j = 1, . . . , N as it was previously assumed. Moreover,
let f (x j , x j ) be a positive function of values xi and x j of the order statistics X(r1)

and X(r2), respectively, where

r1 ≤ i ≤ N − n + r1 and r1 < r2 ≤ j ≤ N − n + r2.

Moreover, let

z(r1, r2) =
N−n+r1∑

i=r1

N−n+r2∑

j=i+r2−r1

f (xi , x j )g(r1, r2, i, j).

Wywiał (2009) analyzed the sampling design proportional to the following dif-
ference of order statistics:

P(−)
r1,r2(s)∞ f (xi , x j ) = x j − xi (3.25)

where xi < x j are values of the order statistics X(r1) and X(r2), respectively. In
particular, when r1 = 1 and r2 = n, the sampling design is proportional to the
sample range of an auxiliary variable. The straightforward generalization of the
sampling design proportional to x j − xi is as follows:

Definition 3.3 The sampling design proportional to a positive function
f (xi , x j ) of the order statistics X(r2), X(r1) is as follows:

Pr1,r2(s) = f (xi , x j )

z(r1, r2)
(i, j) ∈ s ∈ G(r1, r2, i, j). (3.26)

To define the conditional sampling design let us introduce the following:

f (x j , xi , C) =
{

f (xi , x j ) f or (xi , x j ) ∈ C,

0 f or (xi , x j ) /∈ C
(3.27)

where C is a nonempty set of the positive real numbers, so C ⊆ R+. Moreover, let

z(r1, r2, C) =
N−n+r1∑

i=r1

N−n+r2∑

j=i+r2−r1

f (xi , x j , C)g(r1, r2, i, j). (3.28)
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Definition 3.4 The conditional sampling design proportional to the nonnegative
function f (xi , x j , c) of the order statistics X(r2), X(r1) is as follows:

Pr1,r2(s|C) = f (xi , x j , C)

z(r1, r2, C)
(i, j) ∈ s ∈ G(r1, r2, i, j). (3.29)

Both the above definitions lead to the conclusion that for C = R+ the conditional
sampling design Pr1,r2(s|C) reduces to the unconditional one Pr1,r2(s).

Theorem 3.4 Under the sampling design Pr1,r2(s|C) the inclusion probabilities of
the first order are as follows:

πk(r1, r2, C)

= 1

z(r1, r2, C)

(
δ(r1 − 1)

N−n+r1∑

i=r1δ(r1−k)+(k−1)δ(k+1−r1)δ(N−n+r1−k)

N−n+r2∑

j=i+r2−r1

(
i − 2

r1 − 2

)

(
j − i − 1

r2 − r1 − 1

)(
N − j

n − r2

)
f (x j , xi , C) + δ(k − r1)δ(N − n + r2 − k)δ(r2 − r1 − 1)

min(k−1,N−n+r1)∑

i=r1

N−n+r2∑

j=max(i+r2−r1,k+1)

(
i − 1

r1 − 1

)(
j − i − 2

r2 − r1 − 2

)(
N − j

n − r2

)
f (x j , xi , C)+

+ δ(k − r2)δ(n − r2)δ(N − n + r2 − k + 1)

k−r2+r1−1∑

i=r1

k−1∑

j=i+r2−r1

(
i − 1

r1 − 1

)(
j − i − 1

r2 − r1 − 1

)(
N − j − 1

n − r2 − 1

)
f (x j , xi , C) + δ(n − r2)

δ(k − N + n − r2)
N−n+r1∑

i=r1

N−n+r2∑

j=i+r2−r1

(
i − 1

r1 − 1

)(
j − i − 1

r2 − r1 − 1

)(
N − j − 1

n − r2 − 1

)
f (x j , xi , C)

+ δ(k + 1 − r1)δ(N − n + r1 − k + 1)

(
k − 1

r1 − 1

)

N−n+r2∑

j=k+r2−r1

(
j − k − 1

r2 − r1 − 1

)(
N − j

n − r2

)
f (x j , xk , C) + δ(k − r2 + 1)δ(N − n + r2 − k + 1)

(
N − k

n − r2

) k−r2+r1∑

i=r1

(
i − 1

r1 − 1

)(
k − i − 1

r2 − r1 − 1

)
f (xk , xi , C)

)
(3.30)

Corollary 3.1 Under the sampling design P1,n(s|C) the inclusion probabilities of
the first order are as follows:

πk(1, n, C) = 1

z(1, n, C)

(
δ(k − 1)δ(N − k)δ(n − 2)

min(k−1,N−n+1)∑

i=1

N∑

j=max(i+n−1,k+1)
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(
j − i − 2

n − 3

)
f (x j , xi , C) + δ(N − n + 2 − k)

N∑

j=k+n−1

(
j − k − 1

n − 2

)
f (x j , xk , C)

+ δ(k − n + 1)δ(N + 1 − k)

k−n+1∑

i=1

(
k − i − 1

n − 2

)
f (xk , xi , C)

)
(3.31)

Theorem 3.5 The inclusion second-order probabilities of the sampling design
Pr1,r2(s|C) are as follows:

πk,t (r1, r2, C) = P (k, t ∈ s1) + P
(
k ∈ s1, X(r1) = xt

) + P (k ∈ s1, t ∈ s2)

+ P
(
k ∈ s1, X(r2) = xt

) + P (k ∈ s1, t ∈ s3) + P
(
X(r1) = xk , t ∈ s2

)

+ P
(
X(r1) = xk , X(r2) = xt

) + P
(
X(r1) = xk , t ∈ s3

) + P (k, t ∈ s2)

+ P
(
k ∈ s2, X(r2) = xt

) + P (k ∈ s2, t ∈ s3) + P
(
X(r2) = xk , t ∈ s3

) + P (k, t ∈ s3)
(3.32)

where

P (k, t ∈ s1) = δ(r1 − 2)δ(N − n + r1 − t)

z(r1, r2)

·
N−n+r1∑

i=max(r1,t+1)

N−n+r2∑

j=i+r2−r1

(
i − 3

r1 − 3

)(
j − i − 1

r2 − r1 − 1

)(
N − j

n − r2

)
f (x j , xi , C).

(3.33)

P
(
k ∈ s1, X(r1) = xt

)

= δ(r1 − 1)δ(N − n + r1 − k)δ(N − n + r1 + 1 − t)δ(t + 1 − r1)

z(r1, r2)

·
(

t − 2

r1 − 2

) N−n+r2∑

j=t+r2−r1

(
j − t − 1

r2 − r1 − 1

)(
N − j

n − r2

)
f (x j , xt , C),

(3.34)

P (k ∈ s1, t ∈ s2)

= δ(N − n + r1 − k)δ(t − r1)δ(r1 − 1)δ(r2 − r1 − 1)δ(N − n + r2 − t)δ(t − k − 1)

z(r1, r2)

·
min(t−1,N−n+r1)∑

i=max(r1,k+1)

N−n+r2∑

j=max(t+1,i+r2−r1)

(
i − 2

r1 − 2

)(
j − i − 2

r2 − r1 − 2

)(
N − j

n − r2

)
f (x j , xi , C),

(3.35)
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P
(
k ∈ s1, X(r2) = xt

)

= δ(N − n + r1 − k)δ(t + 1 − r2)δ(N − n + r2 + 1 − t)δ(t − k − r2 + r1)δ(r1 − 1)

z(r1, r2)

·
(

N − t

n − r2

) t−r2+r1∑

i=max(r1,k+1)

(
i − 2

r1 − 2

)(
t − i − 1

r2 − r1 − 1

)
f (xt , xi , C), (3.36)

P (k ∈ s1, t ∈ s3)

= δ(N − n + r1 − k)δ(t − r2)δ(r1 − 1)δ(n − r2)δ(t − k − r2 + r1 − 1)

z(r1, r2)

·
min(t−r2+r1−1,N−n+r1)∑

i=max(r1,k+1)

min(t−1,N−n+r2)∑

j=i+r2−r1

(
i − 2

r1 − 2

)(
j − i − 1

r2 − r1 − 1

)(
N − j − 1

n − r2 − 1

)
f (x j , xi , C),

(3.37)

P
(
X(r1) = xk , t ∈ s2

)

= δ(k + 1 − r1)δ(N − n + r1 + 1 − k)δ(t − r1)δ(N − n + r2 − t)δ(r2 − r1 − 1)

z(r1, r2)

·
(

k − 1

r1 − 1

) N−n+r2∑

j=max(t+1,k+r2−r1)

(
j − k − 2

r2 − r1 − 2

)(
N − j

n − r2

)
f (x j , xk , C), (3.38)

P
(
X(r1) = xk , X(r2) = xt

)

= δ(k + 1 − r1)δ(N − n + r1 + 1 − k)δ(t + 1 − r2)δ(N − n + r2 − t + 1)

z(r1, r2)

· δ(t + 1 − k − r2 + r1)

(
k − 1

r1 − 1

)(
t − k − 1

r2 − r1 − 1

)(
N − t

n − r2

)
f (xt , xk , C), (3.39)

P
(
X(r1) = xk , t ∈ s3

)

= δ(k + 1 − n)δ(N − n + r1 + 1 − k)δ(t − r2)δ(n − r2)δ(t − k − r2 + r1)

z(r1, r2)

·
(

k − 1

r1 − 1

) min(t−1,N−n+r2)∑

j=k+r2−r1

(
j − k − 1

r2 − r1 − 1

)(
N − j − 1

n − r2 − 1

)
f (x j , xk , C), (3.40)

P (k, t ∈ s2) = δ(k − r1)δ(N − n + r2 − t)δ(r2 − r1 − 2)

z(r1, r2)

·
min(k−1,N−n+r1)∑

i=r1

N−n+r2∑

j=max(t+1,i+r2−r1)

(
i − 1

r1 − 1

)(
j − i − 3

r2 − r1 − 3

)(
N − j

n − r2

)
f (x j , xi , C),

(3.41)
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P
(
k ∈ s2, X(r2) = xt

)

= δ(k − r1)δ(N − n + r2 − k)δ(t + 1 − r2)δ(N − n + r2 + 1 − t)δ(r2 − r1 − 1)

z(r1, r2)

·
(

N − t

n − r2

) min(k−1,t−r2+r1)∑

i=r1

(
i − 1

r1 − 1

)(
t − i − 2

r2 − r1 − 2

)
f (xt , xi , C), (3.42)

P (k ∈ s2, t ∈ s3)

= δ(k − r1)δ(N − n + r2 − k)δ(t − r2)δ(t − k − 1)δ(r2 − r1 − 1)δ(n − r2)

z(r1, r2)

·
min(k−1,t−r2+r1−1,N−n+r1)∑

i=r1

min(t−1,N−n+r2)∑

j=max(i+r2−r1,k+1)

(
i − 1

r1 − 1

)(
j − i − 2

r2 − r1 − 2

)(
N − j − 1

n − r2 − 1

)

· f (x j , xi , C), (3.43)

P
(
X(r2) = xk, t ∈ s3

) = δ(k + 1 − r2)δ(N − n + r2 + 1 − k)δ(t − r2)δ(n − r2)

z(r1, r2)

·
(

N − k − 1

n − r2 − 1

) k−n+r1∑

i=r1

(
i − 1

r1 − 1

)(
k − i − 1

r2 − r1 − 1

)
f (xk, xi , C),

(3.44)

P (k, t ∈ s3) = δ(k − r2)δ(n − r2 − 1)

z(r1, r2)

·
min(N−n+r1,k−1−r2+r1)∑

i=r1

min(k−1,N−n+r2)∑

j=i+r2−r1

(
i − 1

r1 − 1

)(
j − i − 1

r2 − r1 − 1

)(
N − j − 2

n − r2 − 2

)

· f (x j , xi , C).

(3.45)

The sampling scheme implementing the sampling design Pr1,r2(s|C) is as follows.
First, population elements are ordered according to increasing values of the auxiliary
variable. Let

s = s1 ∪ {i} ∪ s2 ∪ { j} ∪ s3, s1 = {k : k ∈ U, xk < xi },

s2 = {k : k ∈ U, x j > xk > xi } and s3 = {k : k ∈ U, xk > x j }

Moreover, let

U = U (1, i − 1) ∪ {i} ∪ U (i + 1, j − 1) ∪ { j} ∪ U ( j + 1, N )
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where

U (1, i − 1) = (1, . . . , i − 1), U (i + 1, j − 1) = (i + 1, . . . , j − 1),

U ( j + 1, N ) = ( j + 1, . . . , N ).

Let S1 = S (U (1, i − 1); s1) be sample space of the sample s1 of size r1 − 1,
S2 = S (U (i + 1, j − 1); s2) be sample space of the sample s2 of size r2 − r1 − 1,
S3 = S (U ( j + 1, N ); s3) be sample space of the sample s3 of size n − r2. Similarly,
S = S (U, s)).

The sampling scheme is given by the following probabilities:

Pr1,r2(s|C) = P1a(s1)pr1,r2(i |j,C)P1b(s2)p′
r1,r2( j |C)P1c(s3) (3.46)

where

P1a(s1) =
(

i − 1

r1 − 1

)−1

, P1b(s2) =
(

j − i − 1

r2 − r1 − 1

)−1

, P1c(s3) =
(

N − j

n − r2

)−1

,

(3.47)
s1 ∈ S1, s2 ∈ S2, s3 ∈ S3,

pr1,r2(i | j, C) = P
(
X(r1) = xi |X(r2) = x j , C

) = Pr1,r2

(
X(r1) = xi , X(r2) = x j , C

)

Pr1,r2

(
X(r2) = x j , C

) ,

(3.48)

Pr1,r2

(
X(r1) = xi , X(r2) = x j , C

) =
∑

s∈G(r1,r2,i, j)

Pr1,r2 (s|C) = f (x j , xi , C)g(r1, r2, i, j)

z(r1, r2, C)
,

(3.49)

p′
r1,r2 ( j |C) = Pr1,r2

(
X(r2) = x j , C

) = 1

z(r1, r2, C)

N−n+r1∑

i=r1

f (x j , xi , C)g(r1, r2, i, j).

(3.50)

To select the sample s, first, the j th element of the population is selected according to
the probability function p′

r1,r2( j |C). Next, the i th element of the population is drawn
according to the probability function pr1,r2(i | j, C). Finally, the samples s1, s2, and
s3 are selected according to the sampling designs P1a(s1), P1b(s2), and P1c(s3),
respectively.

Let us assume that a variable under study is explained by an auxiliary variable by
means of the following equation yi = a + bxi + ei , for all i ∈ U, and

∑
i∈U ei = 0.

The residuals of that linear regression function are not correlated with the auxiliary
variable. Let

(
X(r1), Y[r1]

)
be a two-dimensional random variable where X(r1) is the

r1-th order statistic of the auxiliary variable and Y[r1] is concomitant of X(r1), see
David and Nagaraja (2003), p. 144. It allows us to consider the following regression-
type estimator:



44 3 Sampling Designs Based on Order Statistics of Auxiliary Variable

ȳregHTqs = ȳHTs + br1,r2,s (x̄ − x̄HTs) (3.51)

where

br1,r2,s = Y[r2] − Y[r1]
X(r2) − X(r1)

. (3.52)

Particularly, in the case of the simple random sample design we have the following:

ȳregqs = ȳs + Y[r2] − Y[r1]
X(r2) − X(r1)

(x̄ − x̄s) .

Let

br1,r2 = Ex (Y[r2]) − Ex (Y[r1])
E(X(r2)) − E(X(r1))

where Ex (Y[r1]) = ∑N
k=1 yk P(X(r1) = xk), Ex (Y[r2]) = ∑N

k=1 yk P(X(r2) = xk),
and E(X(r2)), E(X(r1)) are explained by the expression (3.3).

Theorem 3.6 Under the sampling design stated in the Definition3.4 the parameters

of the strategy
(

ȳregHTqs, P(−)
r2,r1(s)

)
are approximately as follows:

E
(

ȳregHTqs, P(−)
r2,r1(s)

)
≈ ȳ,

V
(

ȳregHTqs, P(−)
r2,r1 (s)

)
≈ V

(
ȳHTs, P(−)

r2,r1 (s)
)

− 2br1,r2Cov
(

ȳHTs, x̄HTs, P(−)
r2,r1 (s)

)

+ b2r1,r2V
(

x̄HTs, P(−)
r2,r1 (s)

)
(3.53)

where

Cov
(

ȳHTs, x̄HTs, P(−)
r2,r1(s)

)
= 1

N 2

(
∑

k∈U

∑

l∈U

�k,l
yk

πk

xl

πl

)
, (3.54)

�k,l = πk,l − πkπl , V
(

x̄HTs, P(−)
r2,r1(s)

)
= Cov

(
x̄HTs, x̄HTs, P(−)

r2,r1(s)
)

,

V
(

ȳHTs, P(−)
r2,r1(s)

)
= Cov

(
ȳHTs, ȳHTs, P(−)

r2,r1(s)
)

.

The estimator of the variance: V
(

ȳregHTqs, P(−)
r2,r1(s)

)
is as follows:

Vs

(
ȳregHTqs, P(−)

r2,r1(s)
)

= Vs

(
ȳHTs, P(−)

r2,r1(s)
)

− 2br1,r2,sCovs

(
ȳHTs, x̄HTs, P(−)

r2,r1(s)
)

+ b2r1,r2,s Vs

(
x̄HTs, P(−)

r2,r1 (s)
)

(3.55)
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where

Covs

(
ȳHTs, x̄HTs, P(−)

r2,r1(s)
)

= 1

N 2

(
∑

k∈s

∑

l∈s

�∗,k,l
yk

πk

xl

πl

)
, (3.56)

�∗k,l = �k,l
πk,l

, Vs

(
x̄HTs, P(−)

r2,r1(s)
)

= Covs

(
x̄HTs, x̄HTs, P(−)

r2,r1(s)
)

,

Vs

(
ȳHTs, P(−)

r2,r1(s)
)

= Covs

(
ȳHTs, ȳHTs, P(−)

r2,r1(s)
)

.

In the case of the ordinary regression strategy defined in the Sect. 1.4 the probabil-
ity that the sample variances of the auxiliary variable is close to zero can be large. In
this situation the slope coefficient of the ordinary regression function can have large
spread, and consequently the regression statistic, defined by the expressions (1.14),
can be an inaccurate estimator of the population mean.

In this situation Wywiał (2003) considered regression estimator of a population
mean under the conditional version of Singh andSrivastava’s (1980) sampling design.
The sampling design is proportional to the sample variance vs under the condition
that vs > c. In this situation of the appropriate simulation analysis, let us infer that
the accuracy of the regression estimator usually increases when the value c increases.
But the sampling strategy is not convenient in practical research because derivations
of the inclusion probabilities are rather complicated. In this situation the following
conditional sampling design can be considered.

P(−)
n,1

(
s|X(n) − X(1) > c

) = x j − xi

z
(
1, n|X(n) − X(1) > c

) , (i, j) ∈ s ∈ G(1, n, i, j)

(3.57)

where z
(
1, n|X(n) − X(1) > c

)
is defined by the expression (3.28), x j and xi are

values of the order statistics X(n) and X(1), respectively, and x j − xi > c, c ≥ 0.
Under this sampling design the denominator of the estimator of the regression slope
coefficient should not be close to zero. Hence, in consequence this can improve the
accuracy of the regression estimator. In Sect. 4.2 the efficiency of the conditional
regression strategy will be considered.

3.4 Sampling Design Proportional to Function
of Three-Order Statistics

First, the properties of the sampling design dependent on the function of the three-
order statistics of an auxiliary variable from the simple random sample drawnwithout
replacement of size n will be considered.

Similar to the previous sections, let f (xi1 , xi2 , xi3) be a positive function of values
xi1 , xi2 , xi3 of the order statistics X(r1), X(r2), X(r3), respectively, and r j ≤ N−n+r j ,

j = 1, 2, 3. Moreover, let

http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_4
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f (xi1 , xi2 , xi3 , C) =
{

f (xi1 , xi2 , xi3) f or (xi1 , xi2 , xi3) ∈ C,

0 f or (xi1 , xi2 , xi3) /∈ C
(3.58)

where C ⊆ R+,

z(r1, r2, r3, C) =
N−n+r1∑

i1=1

N−n+r2∑

i2=i1+r2−r1

. . .

N−n+r3∑

i3=i2+r3−r2

g(r1, r2, r3; i1, i2, i3) f (xi1 , xi2 , xi3 , C).

(3.59)

Definition 3.5 The sampling design proportional to the function f (xi1 , xi2 , xi3 , C)

is as follows:

Pr1,r2,r3(s|C) = f (i1, i2, i3, C)

z(r1, r2, r3, C)
(3.60)

for (i1, i2, i3) ∈ s ∈ G(r1, r2, r3; i1, i2, i3).

The sampling design Pr1,r2,r3(s|C) reduces to the unconditional one, denoted by
Pr1,r2,r3(s), when C = R+.

Theorem 3.7 Under the sampling design Pr1,r2,r3(s|C) the first-order inclusion
probabilities are as follows:

πk(r1, r2, r3, C)

= 1

z(r1, r2, r3, C)

(
δ(r1 − 1)

N−n+r1∑

i1=r1δ(r1−k)+δ(k−r1+1)δ(N−n+r1−k)(k+1)

N−n+r2∑

i2=i1+r2−r1

N−n+r3∑

i3=i2+r3−r2
(i1−2

r1−2

)

(i1−1
r1−1

) g(r1, r2, r3; i1, i2, i3) f (i1, i2, i3, C)

+δ(k − r1)δ(r2 − r1 − 1)δ(N − n + r2 − k)

min(N−n+r1,k−1)∑

i1=r1

N−n+r2∑

i2=max(i1+r2−r1,k+1)

N−n+r3∑

i3=i2+r3−r2

(i2−i1−2
r2−r1−2

)

(i2−i1−1
r2−r1−1

)g(r1, r2, r3; i1, i2, i3) f (i1, i2, i3, C)

+δ(k − r2)δ(N − n + r3 − k)δ(r3 − r2 − 1)
min(N−n+r1,k+r1−r2−1)∑

i1=r1

min(N−n+r2,k−1)∑

i2=i1+r2−r1

N−n+r3∑

i3=max(i2+r3−r2,k+1)

(i3−i2−2
r3−r2−2

)

(i3−i2−1
r3−r2−1

) g(r1, r2, r3; i1, i2, i3) f (i1, i2, i3, C)
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+δ(n − r3)δ(k − r3)δ(N − n + r3 + 1 − k)

k+r1−r3−1∑

i1=r1

k+r2−r3−1∑

i2=i1+r2−r1

k−1∑

i3=i2+r3−r2

(N−i3−1
n−r3−1

)

(N−i3
n−r3

)

g(r1, r2, r3; i1, i2, , i3) f (i1, i2, i3, C)

+δ(n − r3 − 1)δ(k − N + n − r3)
N−n+r1∑

i1=r1

N−n+r2∑

i2=i1+r2−r1

N−n+r3∑

i3=i2+r3−r2

(N−i3−1
n−r3−1

)

(N−i3
n−r3

)

g(r1, r2, r3; i1, i2, i3) f (i1, i2, i3, C)

+δ(N − n + r1 + 1 − k)δ(k − r1 + 1)

(
k − 1

r1 − 1

) N−n+r2∑

i2=k+r2−r1

N−n+r3∑

i3=i2+r3−r2

(
i2 − k − 1

r2 − r1 − 1

)

(
i3 − i2 − 1

r3 − r2 − 1

)(
N − i3
n − r2

)
f (k, i2, i3, C)

+δ(N − n + r2 + 1 − k)δ(k − r2 + 1)
k−r2+r1∑

i1=r1

N−n+r3∑

i3=k+r3−r2

(
i1 − 1

r1 − 1

)(
k − i1 − 1

r2 − r1 − 1

)

(
i3 − k − 1

r3 − r2 − 1

)(
N − i3
n − r3

)
f (i1, k, i3, C)

+ δ(N − n + r3 + 1 − k)δ(k − r3 + 1)
k+r1−r3∑

i1=r1

k+r2−r3∑

i2=i1+r2−r1(
i1 − 1

r1 − 1

)(
i2 − i1 − 1

r2 − r1 − 1

)(
k − i2 − 1

r3 − r2 − 1

)(
N − k

n − r3

)
f (i1, i2, k, C)

)
.

(3.61)

The theorem can be proved similarly to Theorem3.4.
Sampling scheme
The construction of the sampling scheme implementing the sampling design pro-

posed by the Definition3.5 is as follows. First, the sampling design Pr1,r2,r3(s|C) can
be rewritten in the following way.

Pr1,r2,r3(s|C) = p(i1, i2, i3|C)P(s1)P(s2)P(s3)P(s4) (3.62)

where

p(i1, i2, i3|C) = f (i1, i2, i3, C)g(r1, r2, r3; i1, i2, i3)

z(r1, r2, r3|C)
(3.63)
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P(s1) = 1
(i1−1

r1−1

) , , P(s2) = 1
(i2−i1−1

r2−r1−1

) P(s3) = 1
(i3−i2−1

r3−r2−1

) , P(s4) = 1
(N−i3

n−r3

)

(3.64)

where

s1 ∈ S (U (1, . . . , i1 − 1), s1) , s2 ∈ S (U (i1 + 1, . . . , i2 − 1), s2) ,

s3 ∈ S (U (i2 + 1, . . . , i3 − 1), s3) , s4 ∈ S (U (i3 + 1, . . . , N ) , s1),

r j ≤ i j ≤ N − n + r j , and i j < i j+1, j ≤ 3.
Now the set of the values (xi1 , xi2 , xi3) is drawn with the probability p(xi1 , xi2 ,

xi3 |C) where

p(i1, i2, i3|C) = p(i1|i2, i3, C)p(i2|i3, C)p(i3|C) (3.65)

p(i1|i2, i3, C) = p(i1, i2, i3, C)

p(i2, i3|C)
, i2 > i1, p(i2|i3, C) = p(i2, i3|C)

p(i3|C)
, i3 > i2,

(3.66)

p(i2, i3|C) =
N−n+r1∑

i1=r1

p(i1, i2, i3|C), p(i3|C) =
N−n+r1∑

i1=r1

N−n+r2∑

i2=i1+r2−r1

p(i1, i2, i3|C).

(3.67)

Hence, the element i3 is drawn without replacement from the population with the
probability p(i3|C). Next, the element i2 is selected without replacement from the
set U −{i3} with the conditional probability p(i2|i3, C) and finally, the element i1 is
drawn without replacement from the set U −{i2, i3} with the conditional probability
p(i1|i2, i3, C).

In the next step the sequence of the simple random samples (s1, s2, s3, s4) is
drawn in the following manner. The sample s j is the simple random sample of the
size r j − r j−1 drawn without replacement from the subpopulation U (i j−1, . . . , i j )

where j = 1, . . . , 4 and r0 = 0, i0 = 0, r4 = n, i4 = N . The algorithm leads to the
selection of the sample s:

s = s1 ∪ {i1} ∪ s2 ∪ {i2} ∪ s3 ∪ {i3} ∪ s4.

Considered sampling designs proportional to functions of order statistics can be
developed in several directions. The introduced sampling designs should be gener-
alized into the case of function of more than three-order statistics. But in this case
the expressions for the inclusion probabilities become very complicated. In the next
chapter, many applications of the introduced sampling designs are presented.
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Chapter 4
Simulation Analysis of the Efficiency
of the Strategies

4.1 Description of the Simulation Experiments

The comparison of the estimation strategies is based on their mean square errors or
variances. To calculate those parameters we assume that all values of a variable under
study as well as values of an auxiliary population are known in the whole population.
We considered an artificial population where the observed variables are generated
as values of random variables whose probability distribution is defined in advance.
The two-dimensional normal random variable as well as the two-dimensional log-
normal random variable are taken into account. Thus, the former has a symmetrical
probability distribution and the latter has the right-hand asymmetrical (skewed) prob-
ability distribution. Nonhomogeneous data are also considered. In this case the two-
dimensional random variable is defined as the mixture of three normal distributions.

We consider the set of values (xk, yk), k = 1, . . . , N of the two-dimensional
random variable (X, Y ) which has the two-dimensional normal distribution denoted
by N (E(X), E(Y ), V (X), V (Y ), ρ)whereρ is the correlation coefficient.Moreover,
we take into account the random variable (X, Y ) which has such the log-normal
distribution that (ln(X), ln(Y )) ∼ N (0, 0, 1, 1, ρ). Let us underline that we assume,
as in the previous chapters, that observations of the auxiliary variable are ordered
from the smallest to the largest, so xk ≤ xk+1 for k = 1, . . . , N − 1.

Let ts be an estimator of the population mean ȳ where the sample s is drawn
according to a sampling design P(s). The mean square error of the estimator ts is
assessed in the following way. Let sk , k = 1, . . . , K , be the k-th sample of a fixed
size n sample drawn according to the sampling design P(s) from a population of
the size N > n. The samples {sk}, k = 1, . . . , K , are drawn independently from the
population. The mean square error of the statistic ts is estimated by means of the
following expression:

MSE(ts, P(s)) = 1

K

K∑

k=1

(tsk − ȳ)2
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The accuracy of the estimation strategies was compared on the basis of the following
coefficient of the relative efficiency:

deff (ts, P(s)) = MSE(ts, P(s))

V (ȳs, P0(s))
100% (4.1)

where V (ȳs, P0(s)) is the variance of the mean from the simple random sample
drawn without replacement, given by expressions (1.6).

Let us note that in the tables below the values of the efficiency coefficient are
rounded to nearest integer number, so, e.g., deff (ts, P(s)) = 0% actually means
deff (ts, P(s)) < 0.5%.

When deff (ts, P(s)) ≤ 100% (deff (ts, P(s)) < 100%) then we say that the
estimation strategy (ts, P(s)) is not less (is more) efficient than the simple random
sample mean denoted by (ȳs, P0(s)) or (ts, P(s)) is not less (is more) accurate than
(ȳs, P0(s)). When deff (ta,s, Pa(s)) ≤ deff (tb,s, Pc(s)), we say that the estimation
strategy (ta,s, Pa(s)) is not less efficient than (tb,s, Pc(s)) or the estimation strategy
(ta,s, Pa(s)) is not less accurate than (tb,s, Pc(s)) in the sense of themean square error.
If deff (ta,s, Pa(s)) < deff (tb,s, Pc(s)) then the estimation strategy (ta,s, Pa(s)) is
more efficient than (tb,s, Pc(s)) or the estimation strategy (ta,s, Pa(s)) is more accu-
rate than (tb,s, Pc(s)).

The strategies are explained in the Table4.1. Let us note that the conditional
version of a strategy (ts, P(s))will be denoted by (ts , P(s|C))where ts is an estimator
and P(s|C) is the sampling design under the assumption that a function of the order
statistics of an auxiliary variable fulfills some property denoted by C. For instance,
C : X(1) + X(n) ≥ x̄ .

During the simulation analysis the contribution of the squared bias of the strategies
in terms of their mean square error was calculated according to the expression:

rb(ts, P(s)) = (E(ts, P(s)) − ȳ)2

MSE(ts, P(s))
100%

The values of the above coefficient are not presented below in the tables with results
of the simulation analysis when they take values not greater than 1%.

4.2 Efficiency of Estimation Strategies Dependent on Sample
Moments or Order Statistics

A simulation analysis of the accuracy of population mean estimation based on sam-
pling design proportional to the value of the order statistic of the auxiliary variable
is performed by Wywiał (2007). He considered the empirical data from Sweden’s
N = 284 municipalities that can be found in the monograph by Särndal et al. (1992).
The variable under study y, was 1985 municipal taxation revenues, and the auxil-
iary variable x, was 1975 municipal population. The variables were right-skewed.

http://dx.doi.org/10.1007/978-3-662-47383-2_1
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Table 4.1 The considered strategies

Strategy Comments

(ȳs , P0(s)) The ordinary simple random sample mean, see the expressions (1.3) and (1.5)

(ȳHTs , PSd (s)) Horvitz–Thompson strategy under the Sampford’s sampling design, see the
Sect. 2.2

(ȳHTs , Pr (s)) Horvitz–Thompson strategy under a sampling design proportional to the r -th
order statistic, see the expressions (1.19) and (3.11)(

ȳHTs , P(−)
u,r (s)

)
Horvitz–Thompson strategy under the sampling design proportional to the
difference of u-th and r -th order statistics, u > r , see the expressions (1.19),
(3.57) and Definition3.3(

ȳHTs , P(+)
r,u (s)

)
Horvitz–Thompson strategy under the sampling design proportional to the
sum of r -th and u-th order statistics, u > r , see the expression (1.19) and
Definition3.3

(ȳrs , P0(s)) The ordinary ratio estimator under the simple random sample, (1.3) and (1.9)

(ȳrs , PLMS(s)) The ordinary ratio estimator under the Lahiri-Midzuno-Sen’s sampling
design, (1.9) and (2.1)

(ȳrHTs , P(s)) The Horvitz–Thompson ratio estimation strategy, (1.24)(
ȳrqs , Pr (s)

)
The quantile ratio-type estimation strategy, (3.24)(

ȳregs, P0(s)
)

The ordinary regression estimator under the simple random sample, (1.3) and
(1.14)(

ȳregs, PSS(s)
)

The ordinary regression estimator under the Singh-Srivastava’s sampling
design, (2.5) and (1.14)(

ȳregHTs, P(s)
)

The Horvitz–Thompson regression estimation strategy, (1.28)(
ȳregHTqs, P(s)

)
The regression-Horvitz–Thompson-quantile estimation strategy, (3.51)

The correlation coefficient between the variable under study and the auxiliary variable
was equal to ρ = 0.99. In the population, there were three variable outlier obser-
vations. When the outliers are removed from the data, the correlation coefficient
between the variable under study and the auxiliary variable is equal to ρ = 0.97.

The five strategies for estimation of the mean are taken into account: the simple
random sample mean (ȳs, P0(s)), the Horvitz–Thompson strategy

(
yHTs, Pr (s|xu

≤ X(r) ≤ xv)
)
, the ordinary ratio strategy under the simple random sample design

(yrs, P0(s)) or under the Lahiri-Midzuno-Sen’s sampling design (yrs, PLMS(s)), and
the quantile ratio-type strategy

(
ȳrqs, Pr (s)

)
.

The accuracy of the sampling strategies dependent on the sampling design
Pr (s|xu ≤ X(r) ≤ xv) increases when the rank r of the order statistics X(r) increases
and is bestwhen r = n.The quantile ratio strategy

(
ȳrqs, Pr (s)

)
can bemore accurate

than other considered strategies for the small sample size when the outliers are not
removed from the population. When the outliers are removed from the data the ratio
strategies based on moments of the auxiliary variable are better than the quantile-
dependent strategies. Moreover, the quantile strategies dependent on the conditional
sampling design Pr (s|xu ≤ X(r) ≤ xN−n+r ) are better than those dependent only on
the moments provided r = n = 3 and u ≤ 40. Hence, in general, the accuracy of the

http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_2
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_3
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_3
http://dx.doi.org/10.1007/978-3-662-47383-2_3
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_3
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_2
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_3
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_1
http://dx.doi.org/10.1007/978-3-662-47383-2_2
http://dx.doi.org/10.1007/978-3-662-47383-2_1
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quantile-type sampling strategies is comparable with accuracy of the ratio sampling
strategies dependent on the moments of the auxiliary variables, but only in the case
of small sample size.

The above analysis leads to the conclusion that, in a population with specific out-
liers the efficiencyof the considered quantile-dependent ratio or regression estimation
strategies is usually better than the efficiency of the ordinary ratio or regression esti-
mators. Let us note that the variable under study and the auxiliary variable are less
correlated (ρ = 0.97) in the case when the outliers are removed from the data than
in the case when they are not removed from the data (ρ = 0.99). Thus, these values
could indicate that the efficiency of the estimation strategies depends on the corre-
lation coefficient of the variables rather than on the existence of outliers in the data.
Accordingly, a larger analysis of the dependence between the efficiency and the cor-
relation of a variable under study and an auxiliary variable is needed. Moreover, the
efficiency of the estimation strategies should be considered under the symmetrical
distribution of the variable under study and the auxiliary variable.

We continue the analysis of the efficiency of the strategies on the basis of themeth-
ods described in the previous section with an artificial dataset of the size N = 300.
Three sets of data are generated according to the two-dimensional normal distrib-
utions with parameters N (10, 10, 1, 1, ρ) for the correlation coefficients ρ = 0.5,
ρ = 0.8, and ρ = 0.95. Next, three sets of data are generated according to the two-
dimensional log-normal distributions N (0, 0, 1, 1, ρ) for the correlation coefficients
ρ = 0.5, ρ = 0.8, and ρ = 0.95. The accuracy of the strategies was assessed on
the basis of computer simulation analysis. The samples were replicated at least 1000
times. The relative efficiency coefficients are calculated according to the expression
(4.1) and are shown in Tables4.2 and 4.3.

The analysis of the data in the tables leads to the conclusion that the estimation
strategies based on the moment-dependent sampling designs are usually slightly
more efficient in the case of the estimation of the mean in the normal population than
in the case of the estimation of the mean in the log-normal population. When the
correlation coefficient between the variable under study and the auxiliary variable is
equal to 0.5, the efficiency coefficients of all considered strategies are approximately
equal to 100% or greater than 100%.

In the case of the normal distributions of the variable under study and of the
auxiliary variable, the analysis of data in Table4.2 allows us to draw the follow-
ing conclusions. The strategy (ȳHTs, Pn(s)) is the worst among the considered nine
estimation strategies for the data examined. In the case when the correlation coeffi-
cient is equal to ρ = 0.5, the efficiencies of all the estimation strategies are close to
100% or greater than 100%. When ρ = 0.8 (ρ = 0.95) and n ≥ 6, the estimation
strategies are approximately two (ten) times more accurate than the simple random
sample mean. If n ≥ 6 and ρ ≥ 0.8 the accuracies of the estimators (ȳrs, PLMS(s)),
(ȳHTs, PSd(s)), and (ȳrHTs, Pn(s)) are similar each to other and not worse than the
accuracies of the remaining strategies.
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Table 4.2 The efficiency coefficients of the estimation strategies

Strategies ρ\n: 3 6 9 15 30

(ȳrs , PLMS(s)) 0.5 99 99 101 95 99

0.8 40 42 40 43 43

0.95 11 11 11 10 10(
ȳregs, PSS(s)

)
0.5 111 90 88 80 78

0.8 52 48 45 44 44

0.95 15 12 11 11 11

(ȳHTs, PSd (s)) 0.5 113 108 108 109 111

0.8 48 50 49 48 48

0.95 11 10 11 10 11

(ȳrs , P0(s)) 0.5 97 102 96 96 97

0.8 41 43 43 43 40

0.95 13 12 13 12 12(
ȳregs, P0(s)

)
0.5 562 107 91 83 79

0.8 145 52 46 44 39

0.95 47 14 12 11 11(
ȳregH T qs , P(−)

n,1 (s)
)

0.5 682 129 110 93 86

0.8 264 66 53 49 46

0.95 13 13 13 13 13(
ȳregHTs, P(−)

n,1 (s)
)

0.5 560 118 99 85 77

0.8 248 57 46 43 43

0.95 67 16 12 11 10

(ȳHTs, Pn(s)) 0.5 77 81 90 94 95

0.8 64 79 85 92 94

0.95 46 71 82 91 97

(ȳrHTs, Pn(s)) 0.5 97 96 95 98 99

0.8 44 44 43 41 43

0.95 11 11 11 10 11

The normal distribution (X, Y ) ∼ N (10, 10, 1, 1, ρ). The size of the population is N = 300. The
number of the iterations: 2000. Source own calculations

When the log-normal population is considered, the data in Table4.3 lead to the
following conclusions. Provided the sample size is not less than 6, the values of the
relative efficiency coefficients do not differ significantly from each other, except for
the efficiency coefficients of the Horvitz–Thompson strategy (ȳHTs, Pn(s)). When
ρ = 0.8 or ρ = 0.95, the strategy (ȳHTs, PSd(s)) is the most efficient among the
strategies considered. When n ≥ 6 and ρ = 0.5 the efficiency coefficients are not
less than 72%. In the case when n ≥ 6 and ρ = 0.8, the strategies are approximately
two timesmore efficient than the simple random samplemean, except for the strategy
(ȳHTs, Pn(s)), for which the efficiency coefficient is not less than 84%.
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Table 4.3 The efficiency coefficients of the estimation strategies

Strategies ρ\n: 3 6 9 15 30

(ȳrs , PLMS(s)) 0.5 84 89 83 87 84

0.8 44 40 41 46 43

0.95 12 15 16 16 18(
ȳregs, PSS(s)

)
0.5 110 93 85 80 78

0.8 65 46 47 42 39

0.95 17 15 15 18 18

(ȳHTs, PSd (s)) 0.5 94 84 87 95 98

0.8 24 24 23 23 22

0.95 5 5 6 5 5

(ȳrs , P0(s)) 0.5 88 86 88 80 81

0.8 43 44 43 43 43

0.95 12 14 15 19 17(
ȳregs, P0(s)

)
0.5 131 104 89 77 72

0.8 181 59 45 43 41

0.95 35 17 17 20 20(
ȳregH T qs , P(−)

n,1 (s)
)

0.5 671 149 106 87 81

0.8 358 85 58 50 46

0.95 20 12 11 10 10(
ȳregHTs, P(−)

n,1 (s)
)

0.5 628 141 98 85 79

0.8 329 71 50 46 43

0.95 18 12 11 10 10

(ȳHTs, Pn(s)) 0.5 83 89 91 96 94

0.8 70 84 91 92 93

0.95 24 40 49 63 77

(ȳrHTs, Pn(s)) 0.5 87 83 86 81 80

0.8 45 43 45 42 45

0.95 10 13 14 15 17

The log-normal distribution (ln(X), ln(Y )) ∼ N (0, 0, 1, 1, ρ). The size of the population is N =
300. The number of the iterations: 2000. Source own calculations

4.3 Efficiency of Estimation Strategies Dependent
on the Sum of Order Statistics

Based on the results from the previous section, we conclude that in the case of high
correlation between the variable under study and the auxiliary variable, some of the
strategies considered are significantly profitable in the sense of increasing efficiency
estimation. That is why our analysis is limited to the case when the correlation
coefficient between the variable under study and the auxiliary variable has the value
0.95. Moreover, we assume that the sample size is equal to 6.
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The Horvitz–Thompson-type ratio or regression estimators under the conditional
sampling design proportional to the sum of order statistics of the auxiliary variables
are considered in Tables4.4 and 4.5, where, except for the relative efficiency coef-
ficients of the strategies, we can find the correlation coefficients between inclusion
probabilities and the auxiliary variable for the cases when X(r) + X(u) > 2c, where
c = 0, c = x̄ , c = q0.5 or c = q0.7, and qα , 0 < α < 1 is the population quan-
tile of order α of the auxiliary variable. Based on Table4.4, we infer that in the
case of the normally distributed data, the efficiency coefficients have values from
the interval [9%; 27%]. When data have a log-normal distribution, the data, as seen
in Table4.5, let us conclude that the efficiency coefficients have values from the
interval [5%; 10%]. Thus, when the variable under study and the auxiliary variables
have a joint log-normal distribution, the strategies are slightly more efficient than
in the case when those variables are normally distributed. Moreover, the variability
of the efficiency coefficient in the case of the log-normally distributed data is less
than in the case of the normally distributed data. When the data are normally distrib-
uted, the conditional regression and the ratio strategies, under the assumption that
X(3) + X(6) > 2q0.5, are the most accurate because their efficiency coefficients are
equal to 9%. If the data are log-normally distributed, the efficiency coefficients of
the four conditional ratio strategies are lowest and equal to 5% as shown in Table4.5.

One of them is the strategy
(

ȳrHTs, P(+)
2,4 (s|X(r) + X(u) > 2x̄)

)
. Hence, in general,

we can conclude that the conditional estimation strategies can be more efficient than
their unconditional versions.

Moreover, the analysis of the data in Tables4.4 and 4.5 leads to the following con-
clusions. In the case of the normal population, the efficiency of the ratio-type strate-
gies based on sampling designs P(+)

r,u (s) are approximately equal to the efficiency
of the Lahiri-Midzuno-Sen strategy (ȳrs, PLMS(s)). In the case of the log-normal
population, the efficiency coefficients of the ratio-type strategies under the sampling
design P(+)

r,u (s|X(r) + X(u) > 2c) have values from the interval [5%; 10%] whereas
the efficiency coefficients of the moment-dependent strategies have values from the
interval [5%; 17%]. Particularly,

deff (ȳHTs, PSd(s)) = 5% = deff (ȳrHTs, P(+)
2,4 (s|X(2) + X(4) > 2x̄)).

Thus, the conditional ratio-type strategy dependent on the sum of the two-order
statistics and the unconditional Sampford’s sampling strategy is equally efficient.

The values of the correlation coefficient ρ(x, π) depend on the ranks r and u of
the order statistic of the auxiliary variable. For instance, the shapes of the depen-
dence between the values of the auxiliary variable and the inclusion probabilities
are presented by Figs. 4.1–4.3 for the case of the normal population. When r = 2,
u = 5, and n = 6, the relationship between the auxiliary variable and the inclusion
probabilities is close to linear because ρ(x, π) = 0.995 (Fig. 4.2). Hence, in the
case of the sample size n = 6, the inclusion probabilities of the sampling design
P(+)
2,5 (s) are almost proportional to the appropriate values of the auxiliary variable.

Let us note that the sampling designs with such inclusion probabilities are expected



58 4 Simulation Analysis of the Efficiency of the Strategies

Ta
bl

e
4.

4
T
he

re
la
tiv

e
ef
fic
ie
nc
y
co
ef
fic

ie
nt
s
of

th
e
st
ra
te
gi
es

P
(+

)
r,

u
(s

|X
(r

)
+

X
(u

)
>

2c
)
fo
r

n
=

6
an
d
th
e
co
rr
el
at
io
n
co
ef
fic
ie
nt

ρ
(x

,
π

)

c
=

0
c

=
q 0

.5
c

=
x̄

c
=

q 0
.7

r
u
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ȳ r

eg
H

T
s
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ȳ r
eg

H
T

s
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Fig. 4.1 The inclusion probabilities of the sampling design P(+)
1,2 (s), n = 6, ρ(x, π) = 0.787,X ∼

N (10, 1). Source own preparation
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Fig. 4.2 Inclusion probabilities for P(+)
2,5 (s), and n = 6, ρ(x, π) = 0.995, X ∼ N (10, 1). Source

own preparation
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Fig. 4.3 The inclusion probabilities for P(+)
5,6 (s), and n = 6, ρ(x, π) = 0.849, X ∼ N (10, 1).

Source own preparation
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in survey sampling applied, e.g., in accounting. If r = 1 and u = 2 or r = 5 and
u = 6, the relationship between the inclusion probabilities and the auxiliary variable
is not linear, as shown by Figs. 4.1 and 4.3. In these cases, the correlation coefficients
between the auxiliary variable and the inclusion probabilities are not greater than the
value 0.849.

The analysis of the data in Table4.5 indicates that in the case of the log-normal
data, the estimation strategies using the conditional versions of the sampling design
P(+)

r,u (s|X(r) + X(u) > 2c) are usually more efficient than in the case of their uncon-
ditional versions. For instance, in the case of the Horvitz–Thompson regression
strategy, we have:

deff (ȳregHTs, P(+)
1,5 (s)) = 10% > deff (ȳregHTs, P(+)

1,5 (s|X(r)+X(u) > 2q0.7) = 6%.

Based on the analysis of the data in Table4.4, we infer that in the case of the
normal distribution of the variables and all combinations of the ranks r and u of the
order statistic, the efficiencies of the unconditional strategies are similar. However,
the strategies with the conditional versions of the sampling designs are usually more
efficient for large ranks r and u than for small ranks r and u.

The analysis of the data in Table4.4 allows us to say that in the case of the
normal distribution of the data, the efficiency coefficients of the regression (ratio)
strategies have values from the interval [11%; 14%] ([10%; 12%]) for c = 0, and
they are in the interval [12%; 27%] ([11%;19%]) for c = q0.7. In particular, in
this case, the analysis of the data in Fig. 4.4 indicates that the conditional regres-
sion estimation strategy (ȳregHTs, P(+)

2,5 (s|X(2) + X(5) > 2c)) and the ratio strategy

(ȳrHTs, P(+)
2,5 (s|X(2) + X(5) > 2c)) for c > 0 are not more efficient than their uncon-

ditional versions for c = 0. Similarly, the analysis of Table4.5 data allows us to
conclude that in the case of the log-normal distribution of the data the efficiency coef-
ficients of the regression (ratio) strategies have values from the interval [8%; 9%]
([7%; 10%]) for c = q0.5. Moreover, in this case, based on the Fig. 4.5 data we can
say that there is a tendency of decrease in the efficiency coefficients of the conditional
strategies (ȳregHTs, P(+)

2,5 (s|X(2)+X(5) > 2c)) and (ȳrHTs, P(+)
2,5 (s|X(2)+X(5) > 2c))

until c = 2.09, and then, the efficiency coefficients increase. Thus, in the case of the
log-normal distribution of the data, the conditional strategies are more efficient than
their unconditional versions.

From a practical point of view, the inclusion probabilities of the conditional sam-
pling design is calculated by a computer more swiftly than its unconditional version.
For instance, the inclusion probabilities of the sampling design P(+)

2,5 (s) are calculated

to be 2.5-times larger than in the case P(+)
2,5 (s|X(2) + X(5) > 2q0.7). The correlation

coefficients between the inclusion probabilities and the auxiliary variable of both
strategies are approximately the same. Moreover, the efficiencies of the conditional
strategies are slightly better than their unconditional versions (see Table4.5).

Now, let us consider the following conditional strategies (inclusion probabilities
are shown by Figs. 4.6–4.9). The relationship between the auxiliary variable and the
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Fig. 4.4 The efficiency coefficients of the strategies (ȳregHTs, P(+)
2,5 (s|X(r) + X(u) > 2c) and

(ȳrHTs, P(+)
2,5 (s|X(r) + X(u) > 2c),n = 6, (X, Y ) ∼ N (10, 10, 1, 1, 0.95), N = 300. Source

own preparation

inclusion probabilities of the sampling design proportional to the sum of the order
statistics X(2) + X(5), under the condition that X(2) is not less than q0.1 and X(5)
is not greater than q0.9, is shown by Fig. 4.6. In this case, the population elements
indexed by small or large values of the auxiliary variable placed outside the interval
[q0.1, q0.9] are drawn to the sample with lower probabilities than the elements identi-
fied by the auxiliary variable values from this interval. In the case of the conditional
sampling design under consideration, the efficiency coefficients of the regression and
ratio estimators are equal to 13 and 10%, respectively. In the case of the uncondi-
tional version of the sampling design, those coefficients are equal to 13 and 11%,
respectively. Thus, both versions of the strategies have similar efficiencies. From
a practical point of view, that property of the sampling design can be useful, such
as when a survey statistician expects nonresponse errors for small or large values
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Fig. 4.5 The efficiency coefficients of the strategies (ȳregHTs, P(+)
2,5 (s|X(r) + X(u) > 2c) and

(ȳrHTs, P(+)
2,5 (s|X(r) + X(u) > 2c),n = 6, (ln(X), ln(Y )) ∼ N (0, 0, 1, 1, 0.95), N = 300. Source

own preparation

of an auxiliary variable. The sampling design considered prefers not to draw the
population elements indexed by the outliers of an auxiliary variable to the sample.
Moreover, this conditional sampling design can be useful when samples are drawn
from the domains of a population identified by auxiliary variable observations from
a preassigned interval. See the example in the next section.

Figure4.7 shows the relationship between the auxiliary variable and the inclusion
probabilities of the sampling design proportional to the sum of the order statistics
X(2) + X(5) under the assumption that values of these order statistics are separated
by the population median q0.5 of the auxiliary variable. In the case of the normal
population, we have the following:

deff (ȳregHTs, P(+)
2,5 (s|X(2) ≤ q0.5 < X(5))) = 11% < deff (ȳregHTs, P(+)

2,5 (s)) = 13%
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Fig. 4.6 The inclusion probabilities for P(+)
2,5 (s|X(2) ≥ q0.1, X(5) ≤ q0.9), and n = 6. X ∼

N (10, 1). Source own preparation
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Fig. 4.7 The inclusion probabilities for P(+)
2,5 (s|X(2) ≤ q0.5 < X(5)), and n = 6. X ∼ N (10, 1).

Source own preparation

deff (ȳrHTs, P(+)
2,5 (s|X(2) ≤ q0.5 < X(5))) = deff (ȳrHTs, P(+)

2,5 (s)) = 11%

Thus, the conditional version of the regression strategy is more efficient than its
unconditional version.

The observation in the sample s data ((Xr , Yr ), r = 1, . . . , n) ordered by the
values of the auxiliary variable can be denoted by ((X(r), Y[r ]), r = 1, . . . , n)where
X(r) is the r -th order statistic and Y[r ] is concomitant with X(r). The assumption
X(2) ≤ q0.5 < X(5) leads to the reduction of the entire sample space S to the
subspace S∗ including only such samples that x(2) ≤ q0.5 < x(5) where x(2) and
x(5) are values of the auxiliary variable order statistics X(2) and X(5) observed in
the sample. In the case of the symmetrical joint distribution of a variable under
study and the auxiliary variable, we can expect that when X(2) ≤ q0.5 < X(5),
the median of the variable under study is also between concomitant Y[2] and Y[5].
Hence, in this case it is not possible for all observed sample values of the auxiliary
variable to be greater or smaller than the populationmedian. Similarly, we can expect
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Fig. 4.8 The inclusion probabilities for P(+)
2,5 (s|X(2) < q0.4, X(5) ≥ q0.6), and n = 6. X ∼

N (10, 1). Source own preparation

that this property addresses the values of the variable under study observed in the
sample when the correlation coefficient between the variable under study and the
auxiliary variable is close to one. Hence, we can say that the conditional sampling
design P(+)

2,5 (s|X(2) ≤ q0.5 < X(5)) leads to drawing the calibrated samples in the
sense that the median of the auxiliary variable is between the second- and the fifth-
order statistics of the auxiliary variable. Moreover, let us note that in the case being
considered, the efficiency of the estimation of the mean does not decreases, when
the sample space S is reduced to its subspace S∗ in the conditional sampling design.

Figure4.8 shows the relationship between the values of the auxiliary variable
and the inclusion probabilities of the conditional sampling design P(+)

2,5 (s|X(2) <

q0.4, X(5) ≥ q0.6). The design prefers drawing to the sample the population elements
identified by auxiliary variable values less than the quantile of rank 0.4 or greater
than the quantile of rank 0.6. Hence, the conditional sampling design type can be
useful when samples are drawn from domains of a population. For instance, let the
elements of the first domain be identified by the values of the auxiliary variable less
than the quantile q0.4. The elements of the second domain are indexed by the values
of the auxiliary variable that lay between the quantiles q0.4 and q0.6, and the last
domain elements are identified by the values of the auxiliary variable greater than
q0.6. Thus, the just-defined conditional sampling design prefers drawing population
elements from the first and last domains, as seen in the results in Fig. 4.8.

The inclusion probabilities of the naturally constructed sampling design are shown
in Fig. 4.9. In this case, the conditional sampling design prefers to draw the population
elements to the sample in such a way that the mean of the order statistics X(2) and
X(5) differs from the population mean of the auxiliary variable by not more than the
preassigned constant c. In the case of the normal population, we have the following:

deff
(
ȳregHTs, P2,5

(
s| ∣∣X̄(2,5) − x̄

∣∣ ≤ c
)) = 11% < deff

(
ȳregHTs, P2,5 (s)

) = 13%

deff
(
ȳrHTs, P2,5

(
s| ∣∣X̄(2,5) − x̄

∣∣ ≤ c
)) = 10% < deff

(
ȳrHTs, P2,5 (s)

) = 11%
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Fig. 4.9 The inclusion probabilities for P2,5

(
s|

∣∣∣ X(2)+X(5)
2 − x̄

∣∣∣ ≤ 0.844
)
, and n = 6. X ∼

N (10, 1). Source own preparation

where

X̄(2,5) = X(2) + X(5)

2

and c = z0.9 ∗ √
v(x)/2 = 0.884 where z0.9 is the quantile of the rank 0.9 of the

standard normal variable.
Let us note that the statistic X̄(2,5) can be treated as the estimator of the population

mean x̄ .Moreover, when a value of X̄(2,5) is close to x̄ , all the observed sample values
of the auxiliary variable are close to the mean x̄ except the values of the first- and the
last-order statistics denoted by X(1) and X(n), respectively. Thus, we can conclude

that the conditional sampling design P2,5

(
s|

∣∣∣ X(2)+X(5)
2 − x̄

∣∣∣ ≤ 0.844
)
prefers to

draw the population elements indexed by the auxiliary variable observations close
to its mean value. The sample being selected in such a way allows us to expect that
it includes the values of the variable under study close to its mean value because
of the high correlation coefficient between the auxiliary variable and the variable
under study. That is why in the case considered, the conditional sampling strategies
improve the accuracy of the estimation of the population mean.

4.4 Efficiency Estimation of Domain Mean

Let the populationU be divided into three disjoint domains denoted byUh where h =
1, 2, 3 andU = ⋃3

h=1 Uh . In each domain, a two-dimensional variable is defined. Its
values are outcomes generated from the normally distributed random variable with
the preassigned parameters. The purpose is the estimation of the domain’smean of the
variable under study on the basis of the sample selected from the whole population.
The considered below estimators of an h-th domain mean are calculated on the basis
of the subsample sh consisted only of elements of the h-th domain. So, s = s1∪s2∪s3
where s is drawn from the whole population according to a sampling design P(s).
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The size of the subsample sh is denoted by nh . We assume that nh > 1 for h = 1, 2, 3
and n1 + n2 + n3 = n.

We consider the following four direct estimation strategies. The first one is based
on the simple random sample selected without replacement from the whole popula-
tion. It is the following mean of the values of the variable under study observed in
the subsamples:

ȳsh = 1

nh

∑

k∈sh

yk . (4.2)

The second strategy involves the Horvitz–Thompson-type statistics:

ỹHTsh = 1

NHTsh

∑

k∈sh

yk

πk
, where NHTsh =

∑

k∈sh

1

πk
. (4.3)

The third strategy is based on the ordinary regression estimator:

ȳregsh
= ȳsh + ash (x̄h − x̄sh ) (4.4)

where

ash = vsh (x, y)

vsh (x)
,

vsh (x, y) = 1

nh − 1

∑

k∈sh

(xk − x̄sh )(yk − ȳsh ), vsh (x) = vsh (x, x),

The last strategy is based on the Horvitz–Thompson regression estimator:

ỹregHTsh
= ỹHTsh + ãHTsh (x̄h − x̃HTsh ) (4.5)

where

ãHTsh = ṽHTsh (x, y)

ṽHTsh (x)
,

ṽHTsh (x, y) = 1

NHTsh − 1

∑

k∈sh

(xk − x̃HTsh )(yk − ỹHTsh )

πk
, ṽHTsh (x) = ṽHTsh (x, x).

The comparisons of the accuracy of strategies are based on the following relative
efficiency coefficients:

deffh = MSE
(
tsh , P(s)

)

V
(
ȳsh , P0(s)

) 100%.



68 4 Simulation Analysis of the Efficiency of the Strategies

Fig. 4.10 The spread of the data in the population. Source own preparation

We assume that in the population of the size N = 600, there are three domains.
Each of them is of the size N1 = N2 = N3 = 200. The data in the first domain are
the values generated from the two-dimensional probability distribution with para-
meters N (10, 10, 1,−0.95). The data in the second and the third domains are the
values generated from the distributions N (11, 11, 1, 1, 0) and N (13, 13, 1, 1, 0.95),
respectively. Hence, the data are generated according to the mixture of the three two-
dimensional normal distributions. The scatter plot of the data is shown by Fig. 4.10.
The accuracy analysis of the strategies is based on the simulation experiment. The
sample s is generated according to the assumed sampling scheme. Next, the subsam-
ples sh , h = 1, 2, 3 are identified in the sample s. If the size of at least one subsample
is less than 2, then the sample s is rejected and a new one is drawn from the popu-
lation. When the size of the each subsample is greater or equal to 2, then the values
of estimators are calculated on the basis of the data observed in the subsamples.
Next, the new sample is generated according to the same sampling scheme. This
procedure is replicated 2000 times. Finally, the above-defined efficiency coefficients
are calculated.

The efficiency coefficients of the Horvitz–Thompson estimator-type strategy are
not less than 100%. That is why they are not taken into account in Table4.6.
The analysis of the data in Table4.6 leads to the following conclusions. In gen-
eral, the efficiency coefficients of all regression-type estimators increase when the
sample size increases, except in the case of the third domain where efficiency coef-
ficients are close to 1% because there is the highest positive correlation between
the variable under study and the auxiliary variable. The efficiency of the ordi-
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Table 4.6 The relative efficiencies of the regression and the ratio estimators for the domain nos.
h = 1, 2, 3 and the sample sizes: n = 12, . . . , 60

Strategy h/n: 12 18 24 30 60

(ȳregsd
, P0(s)) 1 6 15 29 51 169

2 3 5 10 16 49

3 1 0 0 0 1

(ỹregHTsd
, Pn(s)) 1 6 10 15 21 52

2 3 4 6 9 21

3 0 0 0 0 1

(ỹregHTsd
, P(+)

2,n−1(s)) 1 5 11 16 23 54

2 2 5 7 10 21

3 0 0 0 0 1

(ỹregHTsd
, P(+)

2,n−1(s|X(5) ≤ q0.5)) 1 3 6 11 15 68

2 4 7 14 22 100

3 0 1 2 4 16

(ỹregHTsd
, P(−)

n−1,2(s)) 1 5 10 15 21 53

2 2 5 7 9 20

3 0 0 0 0 1

The normal distribution mixture. The population size is N = 600. Source calculations

nary regression strategy (ȳregsd
, P0(s)) is usually lower than the efficiencies of the

Horvitz–Thompson regression-type strategies under the sampling designs dependent
on order statistics. In general, the analysis allows us to conclude that the Horvitz–
Thompson’s regression strategy based on unconditional sampling designs dependent
on the order statistics is not less efficient than the ordinary ratio and regression strate-
gies.

Let us suppose that we are especially interested in the estimation of the mean in
the first domain with high accuracy.We assume that we know in advance that the first
domain is approximately identified by the auxiliary variable values not greater than
its median q0.5 = 11.105. In this case, we can prefer the conditional sampling design
P(+)
2,n−1(s|X(5) ≤ q0.5) because the design prefers drawing population elements from

a first domain (Figs. 4.10 and 4.11). On the basis of Table4.6 data we can say that the
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Fig. 4.11 The inclusion probabilities for P(+)
2,5 (s|X(5) ≤ q0.5), and n = 18. X ∼ N (10, 1). Source

own preparation
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considered conditional regression strategy improves the accuracy of the estimation
of the mean in the first domain for the considered sample sizes except for the size
of 60.

4.5 Estimation of Quantiles

Quantiles are very important parameters of a population. Let qy,p be the p-th pop-
ulation quantile of a variable. It is well known (see Rao et al. 1990 or Särndal et
al. 1992, pp. 199) that the estimator of p-th quantile of a variable under study is as
follows:

qy,p,s = F−1
yHTs(p) (4.6)

where F−1
yHTs(p) = inf {yk ∈ s : FHTs(yk) ≥ p} and the estimator of the distribution

function is:

FHTs(y) =
⎛

⎝
∑

k∈My,s

1

πk

⎞

⎠
(

∑

k∈s

1

πk

)−1

,

Ms,y = {k : k ∈ s, yk ≤ y} is the set of sample elements with values yk ≤ y.
Particularly, in the case of the simple random sample drawn without replacement we
have: FHTs(y) = my,s

n , where my,s is the size of the set My,s .
Instead of the statistic qp,s , special ratio or regression-type estimators are con-

structed to estimate the quantile. One of them is as follows, see Arcos et al. (2007):

q̂y,p,s = qy,p,s
qx,p

qx,p,s
(4.7)

where qx,p is the p-th population quantile of the auxiliary variable and qx,p,s =
F−1

xHTs(p) is the p-th sample quantile of the auxiliary variable.
Now, we can look for the sampling design that leads to a more accurate estimation

of the quantile. In Sect. 4.6 the following sampling design is considered:

P(+)
2,n−1

(
s|X(2) ≥ c1, X(n−1) ≤ c2

)

Based on Fig. 4.6 we expect that it is reasonable to choose c1 and c2 in such a
way that c1 ≤ qx,p ≤ c2. To simplify the next analysis, let us assume that c1 =
qx,p − dx/2 and c2 = qx,p + dx/2, where dx is the population standard deviation of
the auxiliary variable. Hence, the above sampling design takes the following form:

P(+)
2,5

(
s

∣∣∣∣w1

(
qx,p,

dx
2

))
where

w1

(
qx,p,

dx

2

)
=

(
s : X(2) ≥ qx,p − dx

2
, X(5) ≤ qx,p + dx

2

)
.
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Fig. 4.12 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.1, dx/2)), qx,0.1 = 8.810, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation

Figure4.9 let us construct the sampling design P(+)
2,5

(
s|w2

(
qx,p,

dx
2

))
where

w2

(
qx,p,

dx

2

)
=

(
s :

∣∣∣∣
X(2) + X(5)

2
− qx,p

∣∣∣∣ ≤ dx

2

)
.

The examples of the inclusion probabilities evaluated under the above circumstances
are presented by Figs. 4.12–4.20.

Let us note that in the case of the sampling design P(+)
2,5 (s|w1(qx,0.1, dx/2)), the

maximum value of the inclusion probability is approximately eight times larger than
the minimum value, see Fig. 4.12.
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Fig. 4.13 The inclusion probabilities for P(+)
2,5 (s|w2(qx,0.1, dx/2)), qx,0.1 = 8.810, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation
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Fig. 4.14 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.1, dx/2), w2(qx,0.1, dx/4)), qx,0.1 =

8.810, dx = 0.932, and n = 6. X ∼ N (10, 1). Source own preparation
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Fig. 4.15 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.9, dx/2)), qx,0.9 = 11.242, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation

Under this sampling design and the simple random sample, the simulation analysis
of the accuracy of the estimators qy,p,s and q̂y,p,s has been processed. The results
of the simulation are shown in Table4.7, where the coefficients of the efficiency are
evaluated based on the following ratio:

ep = mse(ty,p,s, P(s|wi (c)))

mse(qy,p,s, P0(s))
100%, i = 1, 2

where mse(qy,p,s, P(s|wi (c))) is the mean square error of the estimation strategy
of the quantile qy,p and mse(qy,p,s, P0(s)) is the estimator of the quantile under the
simple random sample drawn without replacement, shown by the expression (4.6).
The relative bias of the quantile estimation is determined by the equation:
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Fig. 4.16 The inclusion probabilities for P(+)
2,5 (s|w2(qx,0.9, dx/2)), qx,0.9 = 11.242, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation
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Fig. 4.17 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.9, dx/2), w2(qx,0.9, dx/4)), qx,0.9 =

11.242, dx = 0.932, and n = 6. X ∼ N (10, 1). Source own preparation

bp = (E(ty,p,s, P(s|wi (c))) − qy,p)
2

mse(ty,p,s, P0(s))
100%

Table4.7 shows the defined efficiency coefficients and relative bias of the estima-
tion strategies under consideration evaluated on the basis of the computer simulation
analysis through replication of drawing the samples of the size n = 6 from the nor-
mal population of the size N = 300 with correlation coefficient ρ = 0.95 described
in the Sect. 4.1. In Table4.7 the symbol P(+)

2,5 (s|.) is simplified to P(s|.).
The analysis of Table4.7 lets us conclude that under high correlation between the

auxiliary variable and the variable under study we can expect that the ratio-type esti-
mation strategies (q̂y,p,s, P(+)

2,5 (s|w1(qx,p, dx/2), w2(qx,p, dx/4))) and (q̂y,p,s , P(+)
2,5
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Fig. 4.18 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.5, dx/2)), qx,0.5 = 9.964, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation
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Fig. 4.19 The inclusion probabilities for P(+)
2,5 (s|w2(qx,0.5, dx/2)), qx,0.5 = 9.964, dx = 0.932,

and n = 6. X ∼ N (10, 1). Source own preparation

(s|w1(qx,p, dx/2)) are the most accurate among the considered ones. Let us note that
the bias of the estimation may take quite high levels, even greater than 10% in the
cases where p is close to 0 or to 1. Moreover, we can conclude that the estimation of
the quantiles of the variable under study based on the quantile-dependent conditional
sampling designs usually leads to more efficient estimation than the simple random
sampling design or Sampford’s design.

Additionally, let us note that the considered sampling designs dependent on the
sample quantile of the auxiliary variable can be generalized into the case where
the auxiliary variable is multidimensional. Let (x1,k, x2,k), k = 1, . . . , N , be
observations of a two-dimensional auxiliary variable. We permit that values of the
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Fig. 4.20 The inclusion probabilities for P(+)
2,5 (s|w1(qx,0.5, dx/2), w2(qx,0.5, dx/4)), qx,0.5 =

9.964, dx = 0.932, and n = 6. X ∼ N (10, 1). Source own preparation

two-dimensional auxiliary are not necessarily positive, but they are highly correlated
with a variable under study. Let zi = (x1,k − x̄1)2+(x2,k − x̄2)2, k = 1, . . . , N , where
x̄i = 1

N

∑N
k=1 xik is the mean population of the i-th auxiliary variable, i = 1, 2. Let

Table 4.7 The efficiency coefficients of the estimation strategies of the quantile

Strategies p 0.05 0.1 0.2 0.5 0.8 0.9 0.95
(
q̂y,p,s , P0(s)

)
ep 18 33 34 31 22 18 19

bp 1 1 14 0 4 1 5(
qy,p,s , PSd (s)

)
ep 93 88 108 74 73 92 76

bp 39 0 13 7 3 2 18(
q̂y,p,s , PSd (s)

)
ep 15 27 23 20 15 15 13

bp 8 5 1 2 1 9 1(
qy,p,s , P(s|w1)

)
, w1 = w1(qx,p, dx/2) ep 26 36 27 34 39 33 27

bp 18 8 2 8 7 9 12(
qy,p,s , P(s|w2)

)
, w2 = w2(qx,p, dx/2) ep 36 36 37 71 51 53 39

bp 17 1 9 0 2 7 1(
qy,p,s , P(s|w1, w2a)

)
w2a = w2(qx,p, dx/4) ep 20 19 28 36 28 16 14

bp 20 0 1 4 1 3 8(
q̂y,p,s , P(s|w1)

)
ep 13 18 14 17 12 11 13

bp 17 5 13 1 0 1 14(
q̂y,p,s , P(s|w2)

)
ep 16 21 17 20 17 14 15

bp 0 3 7 1 1 9 15(
q̂y,p,s , P(s|w1, w2a)

)
ep 14 15 14 18 11 8 10

bp 15 4 7 0 4 4 6

The normal distribution (X, Y ) ∼ N (10, 10, 1, 1, ρ = 0.95). The size of the populations is N =
300. The size of the sample n = 6. The number of the iterations is 1000. Source own calculations
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Z(r) be an order statistic from the simple random sample of the size n. Hence, the
new sampling design proportional to values of the random variable Z(r) can be
constructed as explained in Chap.3. For instance, let the two-dimensional auxiliary
variable be symmetrical around the point (x̄1, x̄2). Hence, in this case, the sampling
design P(s|Zr ≤ c), 1 ≤ r < n, prefers sampling the population elements which
are assigned to such observations of the auxiliary variables (x1,k, x2,k) that fulfill
the inequality zi = (x1,k − x̄1)2 + (x2,k − x̄2)2 ≤ c. In particular, when we assume
that r = n − 1, only one sample element is assigned to the auxiliary variables which
is outside the circle with the origin in the point (x̄1, x̄2) and the radius equal to

√
c

defined by the equation zi = (x1 − x̄1)2 + (x2 − x̄2)2 ≤ c. Hence, the defined
sampling design prefers the population elements with observations of the auxiliary
variable from the inside of the just-defined circle. Of course, the circle equation can
be replaced with the equation of an ellipse and so on. The evaluated result can be
applied in space sampling.

4.6 Conclusions

The strategies considered are dependent on sample parameters of auxiliary variables.
The strategies dependent on the sample moments (the sample mean and the sample
variance) are more accurate than the simple random sample mean especially when
the correlation coefficient between a variable under study and an auxiliary variable
is high.

The sampling designs dependent on moments of multivariate auxiliary variables
can be useful in the space sampling. Let us assume that coordinates of points identify
the objects of a space population. In this case, the sampling design proportional to
the sample generalized variance of the multidimensional auxiliary variable allows
us to draw samples that are well dispersed in the space population.

The accuracy of the unconditional strategies dependent on the order statistics
(the quantile-type strategies) is usually not as high as the accuracy of the strategies
dependent on the sample moments. In particular cases, the conditional versions of
the quantile-type strategies can be superior to their unconditional versions, as shown
in Fig. 4.5. Therefore, these conclusions suggest that looking for new constructions
for the conditional strategies can improve the estimation accuracy.

In general, in the case of the estimation of the population mean, the relative effi-
ciency of the unconditional strategies dependent on the sample parameters decreases
when the sample size increases. This behavior can be explained by the convergence of
the sample parameters of an auxiliary variable to appropriate population parameters
when the sample size and the population size increase infinitely.

The examples considered allow us to conclude that there is a possibility of mod-
eling the relationship between the auxiliary variable and the inclusion probabilities.
The shape of the relationship depends on the choice of the ranks of order statistics of
the auxiliary variable as well as on the formulation of appropriate conditions that lead
to drawing samples fulfilling assumed properties. In particular, there are application
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possibilities for the conditional version of the quantile-dependent sampling designs
for inferences about domain means. Other formulations of the conditional sampling
design can lead to drawing samples in such a way that the observed data fulfill some
assumed formal properties, as was considered during the explanation of the figures
in the Sects. 4.3 and 4.4.

There is a possibility of generalizing the quantile sampling designs by case when
they depend on at least four-order statistics, but this tends to lead to very compli-
cated expressions with the inclusion probabilities. Moreover, there is significantly
more computation time required to calculate those probabilities. The computer data
processing time can be reduced in the case of appropriately constructed conditional
versions of the sampling design.

The efficiency of the quantile-type estimation strategies considered is notably
good in the case of the log-normal joint distribution of the auxiliary variable and the
variable under study. Accordingly, larger scale simulation analysis of the accuracy of
the considered strategies is necessary on the basis of data generated as values of other
skewed distributions, such as data used tomodel income or expenses.Moreover, such
an analysis should lead to the formulation of rules of optimal choice, e.g., ranks of
the order statistics of auxiliary variables.

Some aspects of the simulation analysis of the accuracy estimation can be gener-
alized. In Chap.3, we replaced the defined conditional sampling design proportional
to the vs under the assumption vs > c with conditional design proportional to the
range X(n) − X(1) under the condition that X(n) − X(1) > c. So, we can expect that
this operation leads to improving accuracy of the regression estimator of the popu-
lation mean. Let us note that the condition X(n) − X(1) > c can be generalized into
the following X(u) − X(r) > c1 where u > r . In particular, we can expect that the
regression estimator under the sampling design proportional to X([n/2]+2) − X([n/2]),
provided that X([n/2]+2) − X([n/2]) > c1, can be more accurate than its unconditional
version or the simple random sample mean, but it should be confirmed by simulation
analysis.

In general, in the case of the estimation of the population mean, the relative
efficiencies of the sampling strategies based on sampling designs dependent on sam-
ple moments of the auxiliary variable are usually not less than the efficiency of
the strategies based on sampling design dependent on sample quantiles. However,
some of the strategies based on conditional versions of quantile-dependent sampling
designs are more efficient than the strategies based on moment-dependent sampling
designs. In the case of the estimation of quantiles of the variable under study, the
considered quantile-dependent conditional sampling designs significantly improve
the accuracy of the estimation. Hence, we can suppose that the quantile-dependent
sampling designs let us improve the accuracy of estimation of some special functions
of quantiles of variables under study, such as Gini index or some poverty coefficients.

Our considerations and, especially, results of this chapter lead us to expect that
there are many possibilities for constructing new sampling designs dependent on
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sample moments or quantiles. They should improve estimation accuracy of some
practically useful population parameters. From the other point of view, the practical
application inspires us to look for new sampling designs.
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