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Chapter 1
Introduction

Abstract The effects of interventions are multi-dimensional. In clinical trials, use
of more than one primary endpoint offers an attractive design feature to capture a
more complete characterization of the intervention effects and provide more infor-
mative intervention comparisons. For these reasons, use of more than one primary
endpoint has become a common design feature in clinical trials for disease areas
such as oncology, infectious disease, and cardiovascular disease. In medical product
development, multiple endpoints are utilized as “co-primary” or “multiple primary”
to evaluate the effects of the new interventions for the treatment ofAlzheimer disease,
irritable bowel syndrome, acute heart failure, and diabetes mellitus. “Co-primary” in
this setting means that the trial is designed to evaluate if the intervention is superior
to the control on all of the endpoints. In contrast, a trial with “multiple primary”
endpoints is designed to evaluate if the intervention is superior to the control on
at least one of the endpoints. In this chapter, we describe the statistical issues in
clinical trials with multiple co-primary or primary endpoints. We then briefly review
recent methodological developments for power and sample size calculations in these
clinical trials.

Keywords Intersection-union problem ·Multiple co-primary endpoints ·Multiple
primary endpoints · Type I error adjustment · Type II error adjustment · Union-
intersection problem

The determination of sample size and the evaluation of power are fundamental and
critical elements in the design of a clinical trial. If a sample size is too small then
important effects may not be detected, while a sample size that is too large is wasteful
of resources and unethically puts more participants at risk than necessary.

Most commonly, a single endpoint is selected and then used as the basis for the
trial design including sample size determination, interim data monitoring, and final
analyses. However, many recent clinical trials have utilized more than one primary
endpoint. The rationale for this is that use of a single endpoint may not provide a
comprehensive picture of the intervention’s multidimensional effects.

For example, a major ongoing HIV treatment trial within the AIDS Clinical Trials
Group, “A Phase III Comparative Study of Three Non-Nucleoside Reverse Tran-
scriptase Inhibitor (NNRTI) Sparing Antiretroviral Regimens for Treatment-Naïve

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
SpringerBriefs in Statistics, DOI 10.1007/978-3-319-22005-5_1
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2 1 Introduction

HIV-1-Infected Volunteers (The ARDENT Study: Atazanavir, Raltegravir, or
Darunavir with Emtricitabine/Tenofovir for Naïve Treatment)” is designed with
two co-primary endpoints: time to virologic failure (efficacy endpoint) and time to
discontinuation of randomized treatment due to toxicity (safety endpoint).
Coinfection/comorbidity studies may utilize co-primary endpoints to evaluate
multiple comorbities, e.g., a trial evaluating therapies to treat Kaposi’s sarcoma (KS)
in HIV-infected individuals may have the time to KS progression and the time to
HIV virologic failure, as co-primary endpoints. Infectious disease trials may use
time-to-clinical-cure and time-to-microbiological cure as co-primary endpoints.
Trials evaluating strategies to decrease antimicrobial use may use clinical outcome
and antimicrobial use as co-primary endpoints.

Regulators have also issued guidelines recommending co-primary endpoints in
specific disease areas. The Committee for Medicinal Products for Human Use
(CHMP) issued a guideline (2008) recommending the use of cognitive, functional,
and global endpoints to evaluate symptomatic improvement of dementia associated
with in Alzheimer’s disease, indicating that primary endpoints should be stipulated
reflecting the cognitive and functional disease components. In the design of clin-
ical trials evaluating treatments in patients affected by irritable bowel syndrome
(IBS), the U.S. Food and Drug Administration (FDA) recommends the use of two
endpoints for assessing IBS signs and symptoms: (1) pain intensity and stool fre-
quency of IBSwith constipation (IBS-C), and (2) pain intensity and stool consistency
of IBS with diarrhea (IBS-D) (Food and Drug Administration 2012). CHMP (2012)
also discusses the use of two endpoints for assessing IBS signs and symptoms, i.e.,
global assessment of symptoms and assessment of symptoms of abdominal discom-
fort/pain, but they are different from FDA’s recommendation. Offen et al. (2007)
provides other examples.

The resulting need for new approaches to the design and analysis of clinical trials
has been noted (Dmitrienko et al. 2010; Gong et al. 2000; Hung and Wang 2009;
Offen et al. 2007). Utilizing multiple endpoints may provide the opportunity for
characterizing intervention’s multidimensional effects, but also creates challenges.
Specifically controlling type I and type II error rates is non-trivial when the multiple
primary endpoints are potentially correlated.Whenmore than one endpoint is viewed
as important in a clinical trial, then a decision must be made as to whether it is
desirable to evaluate the joint effects on ALL endpoints or AT LEAST ONE of the
endpoints. This decision defines the alternative hypothesis to be tested and provides a
framework for approaching trial design.When designing the trial to evaluate the joint
effects on ALL of the endpoints, no adjustment is needed to control the type I error
rate. The hypothesis associated with each endpoint can be evaluated at the same
significance level that is desired for demonstrating effects on all of the endpoints
(ICH-E9 Guideline 1998). However, the type II error rate increases as the number
of endpoints to be evaluated increases. This is referred to as “multiple co-primary
endpoints” and is related to the intersection-union problem (Hung and Wang 2009;
Offen et al. 2007). In contrast, when designing the trial to evaluate an effect on
AT LEAST ONE of the endpoints, then an adjustment is needed to control the
type I error rate. This is referred to as “multiple primary endpoints” or “alternative
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Table 1.1 Summary of references discussing sample size methods in clinical trials with multiple
endpoints

Endpoint Alternative hypothesis

scale Effect on all endpoints Effect on at least one endpoint

Continuous Chuang-Stein et al. (2007) Dmitrienko et al. (2010)

Dmitrienko et al. (2010) Gong et al. (2000)

Eaton and Muirhead (2007) Hung and Wang (2009)

Hung and Wang (2009) Senn and Bretz (2007)

Julious and McIntyre (2012)

Kordzakhia et al. (2010)

Offen et al. (2007)

Senn and Bretz (2007)

Sozu et al. (2006, 2011)

Sugimoto et al. (2012a)

Xiong et al. (2005)

Binary Hamasaki et al. (2012) Hamasaki et al. (2012)

Song (2009)

Sozu et al. (2010, 2011)

Time-to-event Hamasaki et al. (2013) Sugimoto et al. (2012b)

Sugimoto et al. (2011, 2012b, 2013)

Mixed Sozu et al. (2012) Sugimoto et al. (2012b)

Sugimoto et al. (2012b)

primary endpoints” (Offen et al. 2007) and is related to theunion-intersectionproblem
(Dmitrienko et al. 2010).

In such clinical trials, the correlation among the multiple endpoints should be
considered in order to obtain an appropriate sample size. However the correlation
is usually unknown and thus must be estimated with external data. One potential
alternative to multiple endpoints is to define a single composite endpoint based on
the multiple endpoints. This effectively reduces the problem to a single dimension
and thus simplifies the design to avoid the multiplicity issues regarding multiple
endpoints. However the creation and interpretation of a composite endpoint can be
challenging particularly when treatments effects vary across components with very
different clinical importance (Cordoba et al. 2010). As summarized in Table1.1,
several methods for power and sample size calculations have proposed for clinical
trials with multiple endpoints that consider the correlations among the endpoints into
the calculations.

Continuous endpoints: Xiong et al. (2005) discussed overall power and sample size
for clinical trials with two co-primary continuous endpoints assuming that the two
endpoints are bivariate normally distributed and their variance-covariance matrix is
known. Sozu et al. (2006) extended their method to continuous endpoints assuming
that the variance-covariance matrix is unknown using the Wishart distribution. Sozu
et al. (2011) discussed extensions to more than two continuous endpoints for both
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known and unknown variances. Sugimoto et al. (2012a) discussed a convenient and
practical formula for sample size calculation with multiple continuous endpoints.
Eaton and Muirhead (2007) discussed the properties of the testing procedure includ-
ing testing each endpoint separately at the same significance level using two-sample
t-tests, and rejecting only if each t-statistic is significant. They showed that the test
may be conservative and that it is biased. In addition, they provided a simple expres-
sion for calculating thep-value and computable bounds for the overall power function.
Julious and McIntyre (2012) summarized three methods of sample size calculation
in the framework of clinical trials involving multiple comparisons. Since the testing
procedure for co-primary endpoints may be conservative, the methods can result in
large and impractical sample sizes. To address this problem, Patel (1991), Chuang-
Stein et al. (2007) and Kordzakhia et al. (2010) discussed methods to control the type
I error rate. The methods may lead to relatively smaller sample sizes, but may also
introduce other issues.

Binary endpoints: Sozu et al. (2010, 2011) discussed the overall power and sam-
ple size calculations in superiority clinical trials with co-primary binary endpoints
assuming that the binary endpoints are jointly distributed as a multivariate Bernoulli
distribution. They noted notable practical and technical issues during estimation of
the correlation due to the higher number of endpoints imposing important restric-
tions on the correlation. Hamasaki et al. (2012) provided the sample size calculations
for trials using with multiple risk ratios and odds ratios as primary contrasts. Song
(2009) discussed sample size calculations with co-primary binary endpoints in non-
inferiority clinical trials, but did not discuss such a restriction on the correlation.

During the last several years, our teamhas conducted extensive research on sample
size determination in clinical trials with multiple endpoints. This book summarizes
our results in an integratedmanner to help biostatisticians involved in clinical trials to
understand the appropriate sample sizemethodologies. The focus of the book is aimed
at power and sample size determination for comparing the effect of two interventions
in superiority clinical trials with multiple endpoints. We focus on discussing the
methods for sample size calculation in clinical trials when the alternative hypothesis
is that there are effects on ALL endpoints. We only briefly discuss trials designed
with an alternative hypothesis of an effect on AT LEAST ONE endpoint with a
prespecificed non-ordering of endpoints. The structure of the book is as follows:

Chapter 2 provides an overview of the concepts and technical fundamentals
regarding power and sample size calculation for clinical trials with multiple contin-
uous co-primary endpoints. Numerical examples illustrate the methods. The chapter
also introduces conservative sample sizing strategies.

Chapter 3 provides methods for power and sample size determination for clinical
trials with multiple co-primary binary endpoints. The chapter introduces the three
correlation structures defining the association among the endpoints and discusses
the overall power and sample size calculation for five methods: the one-sided chi-
square test with andwithout the continuity correction, the arcsine root transformation
method with and without the continuity correction, and the Fisher’s exact test.

http://dx.doi.org/10.1007/978-3-319-22005-5_2
http://dx.doi.org/10.1007/978-3-319-22005-5_3
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The methods discussed in Chaps. 2 and 3 require considerable mathematical
sophistication and programming. To improve the practical utility of these methods,
Chap. 4 describes a more efficient and practical algorithm for calculating the sample
sizes and presents a useful sample size formula with numerical tables. An example
demonstrating how to use the sample size formula and numerical tables is provided.
Codes in R and SAS software packages are described and available in the Appendix.

Chapter 5 provides an overview of the concepts and technical fundamentals
regarding power and sample size determination for clinical trials with multiple con-
tinuous primary endpoints, i.e., when the alternative hypothesis is that there are
effects on at least one endpoint.

Our work to date has been restricted to (i) continuous and (ii) binary endpoints
in a superiority clinical trial with two interventions. However, this work provides
a foundation for designing randomized trials with other design features including
non-inferiority clinical trials, clinical trials with more than two interventions, trials
with time-to-event endpoints or mixed-scale endpoints, and group sequential clinical
trials. Chapter 6 briefly mentions how our results may be extended to design such
trials.
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Chapter 2
Continuous Co-primary Endpoints

Abstract In this chapter, we provide an overview of the concepts and the technical
fundamentals regarding power and sample size calculation when comparing two
interventions with multiple co-primary continuous endpoints in a clinical trial. We
provide numerical examples to illustrate the methods and introduce conservative
sample sizing strategies for these clinical trials.

Keywords Conjunctive power ·Conservative sample size · Intersection-union test ·
Multivariate normal

2.1 Introduction

Consider a randomized clinical trial comparing two interventions with nT subjects
in the test group and nC subjects in the control group. There are K (≥ 2) co-primary
continuous endpoints with a K -variate normal distribution. Let the responses for
the nT subjects in the test group be denoted by YT jk , j = 1, . . . , nT, and those
for the nC subjects in the control group, by YC jk , j = 1, . . . , nC. Suppose that
the vectors of responses Y T j = (YT j1, . . . , YT j K )T and Y C j = (YC j1, . . . , YC j K )T

are independently distributed as K -variate normal distributions with mean vectors
E[YT j ] = μT = (μT1, . . . , μTK )T and E[Y C j ] = μC = (μC1, . . . , μCK )T, respec-
tively, and common covariance matrix �, i.e.,

Y T j ∼ NK (μT,�) and Y C j ∼ NK (μC,�),

where

� =
⎛
⎜⎝

σ 2
1 · · · ρ1K σ1σK
...

. . .
...

ρ1K σ1σK · · · σ 2
K

⎞
⎟⎠

with var[YT jk] = var[YC jk] = σ 2
k , corr[YT jk, YT jk′ ] = corr[YC jk, YC jk′ ] = ρkk′

(k �= k′ : 1 ≤ k < k′ ≤ K ). In this setting, ρkk′
is the association measure among

the endpoints.

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
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We are interested in estimating the difference in the means μTk −μCk . A positive
value of μTk −μCk indicates an intervention benefit. We assert the superiority of the
test intervention over the control in terms of all K primary endpoints if and only if
μTk − μCk > 0 for all k = 1, . . . , K . Thus, the hypotheses for testing are

H0 : μTk − μCk ≤ 0 for at least one k,

H1 : μTk − μCk > 0 for all k.

In testing the preceding hypotheses, the null hypothesis H0 is rejected if and only if all
of the null hypotheses associated with each of the K primary endpoints are rejected
at a significance level of α. The corresponding rejection region is the intersection
of K regions associated with the K co-primary endpoints; therefore the test used in
data analysis is an intersection-union test (IUT) (Berger 1982).

2.2 Test Statistics and Power

2.2.1 Known Variance

Assume that σ 2
k is known. The following Z -statistic can be used to test the difference

in the means for each endpoint:

Zk = ȲTk − ȲCk

σk

√
1

nT
+ 1

nC

, k = 1, . . . , K , (2.1)

where ȲTk and ȲCk are the sample means given by

ȲTk = 1

nT

nT∑
j=1

YT jk and ȲCk = 1

nC

nC∑
j=1

YC jk .

The overall power function for the Z -statistics in (2.1) can be written as

1 − β = Pr

[
K⋂

k=1

{Zk > zα}
∣∣∣∣ H1

]
= Pr

[
K⋂

k=1

{Z∗
k > c∗

k }
∣∣∣∣ H1

]
, (2.2)

where Z∗
k = Zk − √

κnδk , c∗
k = zα − √

κnδk , δk = (μTk − μCk)/σk (standardized
effect size), r = nC/nT, n = nT, and κ = r/(1 + r). Further, zα is the (1 − α)

quantile of the standard normal distribution. This overall power (2.2) is referred
to as “complete power” (Westfall et al. 2011) or “conjunctive power” (Bretz et al.
2011; Senn and Bretz 2007). Since E[Z∗

k ] = 0 and var[Z∗
k ] = 1, the vector of

(Z∗
1 , . . . , Z∗

K )T is distributed as a K -variate normal distribution, NK (0, ρZ ), where
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the off-diagonal element of ρZ is given by ρkk′
. The overall power function is calcu-

lated using �K (−c∗
1, . . . ,−c∗

K ), where �K is the cumulative distribution function
of NK (0, ρZ ).

2.2.2 Unknown Variance

We assume that σ 2
k is unknown as is realistic in practice. The following T -statistic

can be used to test the difference in the means for each endpoint:

Tk = ȲTk − ȲCk

sk

√
1

nT
+ 1

nC

, k = 1, . . . , K , (2.3)

where ȲTk and ȲCk are the sample means defined in the previous section, and sk is
the usual pooled standard deviation given by

s2
k =

∑nT
j=1(YT jk − ȲTk)

2 + ∑nC
j=1(YC jk − ȲCk)

2

nT + nC − 2
.

Let D = (D1, . . . , DK )T with Dk = (ȲTk − ȲCk)/σk , then
√

κn D is distributed as
a K -variate normal distribution with mean vector

√
κnδ and covariance matrix ρZ ,

namely, NK (
√

κnδ, ρZ ). In addition, the pooled matrix of the sums of squares and
cross products,

W =
⎛
⎜⎝

w11 · · · w1K
...

. . .
...

w1K · · · wK K

⎞
⎟⎠

is distributed as a Wishart distribution with nT + nC − 2 degree of freedom and
covariance matrix ρZ where

wkk′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σ 2
k

⎛
⎝

nT∑
j=1

(YT jk − ȲTk)
2 +

nC∑
j=1

(YC jk − ȲCk)
2

⎞
⎠ , k = k′,

1

σkσk′

⎛
⎝

nT∑
j=1

(YT jk − ȲTk)(YT jk′ − ȲTk′ ) +
nC∑
j=1

(YC jk − ȲCk)(YC jk′ − ȲCk′ )

⎞
⎠ , k �= k′.

Please see, e.g., Johnson and Kotz (1972) for the definition of the Wishart distribution.
Subsequently statistic (2.3) can be rewritten as

Tk =
√

κnDk√
wkk

nT + nC − 2
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and the overall power function for statistic (2.3) is given by

1 − β = Pr

[
K⋂

k=1

{Tk > tα,nT+nC−2}
∣∣∣∣ H1

]
, (2.4)

where tα,nT+nC−2 is the (1−α) quantile of the t-distribution with nT +nC−2 degrees
of freedom. If K = 1, then the overall power function (2.4) is based on a noncentral
univariate t-distribution (e.g., Julious 2009). If K ≥ 2, then the joint distribution of
Tk is not a multivariate noncentral t-distribution because the joint distribution of wkk′
is a Wishart distribution, which is not included in a multivariate gamma distribution.
Hence, in order to calculate the overall power function of such a distribution, we
consider rewriting (2.4) as

1 − β = Pr

[
K⋂

k=1

{√
κnDk > tα,nT+nC−2

√
wkk

nT + nC − 2

} ∣∣∣∣ H1

]

= E

[
Pr

[
K⋂

k=1

{Z∗
k > c∗

k (wkk)}
∣∣∣ W

]]

= E
[
�K (−c∗

1(w11), . . . ,−c∗
K (wK K ))

]
, (2.5)

where

c∗
k (wkk) = tα,nT+nC−2

√
wkk

nT + nC − 2
− √

κnδk (δk > 0 for all k).

The equation (2.5) is calculated by a simulated average of �K (−c∗
1(w11), . . . ,−c∗

K
(wK K )) obtained by generating random numbers of W . For additional details, please
see Sozu et al. (2006).

2.3 Sample Size Calculation

In the sample size calculation, the means μTk , μCk , the variance σ 2
k , and the cor-

relation coefficient ρkk′
must be specified in advance. The sample size required to

achieve the desired overall power of 1−β at the significance level of α is the smallest
integer not less than n satisfying 1 − β ≤ �K (−c∗

1, . . . ,−c∗
K ) for the known vari-

ance and 1 − β ≤ E
[
�K (−c∗

1(w11), . . . ,−c∗
K (wK K ))

]
for the unknown variance.

An iterative procedure is required to find the required sample size. The easiest way
is a grid search to increase n gradually until the power under n exceeds the desired
overall power of 1−β, where the maximum value of the sample sizes separately cal-
culated for each endpoint can be used as the initial value for sample size calculation.
However, this often takes much computing time. To improve the convenience in the
sample size calculation, Chap. 4 provides a more efficient and practical algorithm for

http://dx.doi.org/10.1007/978-3-319-22005-5_4


2.3 Sample Size Calculation 11

calculating the sample sizes and presents a useful sample size formula with numerical
tables for multiple co-primary endpoints.

When the standardized effect size for one endpoint is relatively smaller than that
for other endpoints, then the sample size is determined by the smallest standardized
effect size and does not greatly depend on the correlation. In this situation, the
sample size equation for co-primary continuous endpoints can be simplified, using
the equation for the singe continuous endpoint, as given by Eq. (2.8) in Sect. 2.5.

2.4 Behavior of the Type I Error Rate, Power
and Sample Size

We focus on the behavior of the type I error rate, overall power and sample size
calculated using the method based on the known variance in Sect. 2.2.1, because
the method based on the unknown variance in Sect. 2.2.2 provides similar results.
Sozu et al. (2011) show that the sample size per group calculated using the method
based on the unknown variance is generally one participant larger than that using the
method based on the known variance.

2.4.1 Type I Error Rate

There are alternative hypotheses in which the corresponding powers are lower than
the nominal significance level in order to keep the maximum type I error rate below
the nominal significance level as described in the ICH (1998). For more details,
please see Chuang-Stein et al. (2007) and Eaton and Muirhead (2007).

Figure 2.1 illustrates the behavior of type I error rate for α = 0.025 as a function of
the correlation, where the off-diagonal elements of the correlation matrix are equal,
i.e., ρ = ρ12 = · · · = ρK−1,K , and all of the standardized effect sizes are zero, i.e.,
δ1 = · · · = δK = 0 (K = 2, 3, 4, 5, and 10).

Fig. 2.1 Behavior of the
type I error rate as a function
of the correlation, where the
off-diagonal elements of the
correlation matrix are equal,
i.e., ρ = ρ12 = · · · =
ρK−1,K, and all of the
standardized effect sizes are
zero, i.e., δ1 = · · · = δK = 0
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Fig. 2.2 Behavior of the
type I error rate as a function
of the correlation when there
are two co-primary
endpoints (K = 2)
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Figure 2.2 illustrates the behavior of type I error rate for α = 0.025 as a function
of the correlation when there are two co-primary endpoints (K = 2), where δ1 = 0
and δ2 = 0.10, 0.12, 0.15, 0.18, and 2.0.

2.4.2 Overall Power

Figure 2.3 illustrates the behavior of overall power 1 − β as a function of the cor-
relation for a given equal sample size per group n = nT = nC (i.e., r = 1.0) so
that the individual power for a single primary endpoint is at least 0.80 and 0.90 by a
one-sided test at the significance level of α = 0.025. Here, the off-diagonal elements
of the correlation matrix are equal, i.e., ρ = ρ12 = · · · = ρK−1,K , and all of the
standardized effect sizes are equal to 0.2, i.e., δ1 = · · · = δK = 0.2 (K = 2, 3, 4, 5,
and 10). The figure illustrates that the overall power increases as the correlation
approaches one and decreases as the number of endpoints to be evaluated increases.
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Fig. 2.3 Behavior of the overall power 1 − β as a function of the correlation for a given sample
size so that the individual power for a single primary endpoint is at least 0.80 (the left panel) and
0.90 (the right panel) by a one-sided test at the significance level of α = 0.025
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Fig. 2.4 Behavior of the ratio (n(ρ)/n(0)) as a function of the correlation, where the off-diagonal
elements of the correlation matrix are equal, i.e., ρ = ρ12 = · · · = ρK−1,K , and all of the
standardized effect sizes are equal to 0.2, i.e., δ1 = · · · = δK = 0.2 (K = 2, 3, 4, 5, and 10). The
sample size was calculated with the overall power of 1 − β = 0.80 when each of the K endpoints
is tested at the significance level of α = 0.025 by a one-sided test

2.4.3 Sample Size

Figure 2.4 illustrates the behavior of the ratio of n(ρ) to n(0) as a function of the
correlation when there are K co-primary endpoints (K = 2, 3, 4, 5, and 10), where
the off-diagonal elements of the correlation matrix are equal ρ = ρ12 = · · · =
ρK−1,K , and all of the standardized effect sizes are equal to 0.2, i.e., δ1 = · · · =
δK = 0.2. The equal sample sizes per group n = nT = nC (i.e., r = 1.0) were
calculated with the overall power of 1 − β = 0.80 when each of the K endpoints is
tested at the significance level of α = 0.025 by a one-sided test. The figure illustrates
that the ratio n(ρ)/n(0) becomes smaller as the correlation approaches one and the
degree of reduction is larger as the number of endpoints to be evaluated increases.
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Fig. 2.5 Behavior of the ratio (n(ρ)/n(0)) as a function of the correlation for two co-primary
endpoints (K = 2). The sample size was calculated with the overall power of 1 − β = 0.80 when
each of the two endpoints is tested at the significance level of α = 0.025 by a one-sided test
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Table 2.1 Sample size per group (n = nT = nC, r = 1.0) for two co-primary endpoints (K = 2)
with the overall power of 1 − β = 0.80 and 0.9 assuming that variance is known

Targeted Standardized effect size Correlation ρ12

power δ1 δ2 0.0 0.3 0.5 0.8 1.0 E1 E2

0.80 0.20 0.20 516 503 490 458 393 393 393

0.20 0.25 432 424 417 401 393 393 252

0.20 0.30 402 399 397 393 393 393 175

0.20 0.35 394 394 393 393 393 393 129

0.20 0.40 393 393 393 393 393 393 99

0.25 0.25 330 322 314 294 252 252 252

0.25 0.30 284 278 272 260 252 252 175

0.25 0.35 263 260 257 253 252 252 129

0.25 0.40 254 253 253 252 252 252 99

0.30 0.30 230 224 218 204 175 175 175

0.30 0.35 201 197 192 183 175 175 129

0.30 0.40 186 183 181 176 175 175 99

0.35 0.35 169 165 160 150 129 129 129

0.35 0.40 150 147 143 136 129 129 99

0.40 0.40 129 126 123 115 99 99 99

0.90 0.20 0.20 646 637 626 597 526 526 526

0.20 0.25 552 547 542 531 526 526 337

0.20 0.30 529 528 527 526 526 526 234

0.20 0.35 526 526 526 526 526 526 172

0.20 0.40 526 526 526 526 526 526 132

0.25 0.25 413 408 401 382 337 337 337

0.25 0.30 360 356 352 343 337 337 234

0.25 0.35 342 340 339 337 337 337 172

0.25 0.40 337 337 337 337 337 337 132

0.30 0.30 287 283 279 265 234 234 234

0.30 0.35 254 251 248 240 234 234 172

0.30 0.40 240 239 237 235 234 234 132

0.35 0.35 211 208 205 195 172 172 172

0.35 0.40 189 187 184 178 172 172 132

0.40 0.40 162 160 157 150 132 132 132

E1, E2: Sample size separately calculated for each endpoint 1 and 2 so that the individual power is
at least 0.8 and 0.9

Figure 2.5 illustrates the behavior of the ratio of n(ρ) to n(0) as a function of
the correlation when there are two co-primary endpoints (K = 2), where δ2/δ1 =
1.0, 1.25, 1.50, 1.75, and 2.0. The equal sample sizes per group n = nT = nC (i.e.,
r = 1.0) were calculated with the overall power of 1 − β = 0.80 when each of two
endpoints is tested at the significance level of α = 0.025 by a one-sided test and the
vertical axis is the ratio of n(ρ12) to n(0). When δ2/δ1 = 1.0, the ratio (n(ρ)/n(0))
decreases as the correlation approaches one. Even when 1.0 < δ2/δ1 < 1.5, the ratio
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Table 2.2 Sample size per group (n = nT = nC, r = 1.0) for three endpoints (K = 3) with the
overall power of 1 − β = 0.80 and 0.9 assuming that variance is known

Targeted Standardized effect size Correlation ρ12

power δ1 δ2 δ3 0.0 0.3 0.5 0.8 1.0 E1 E2 E3

0.80 0.20 0.20 0.20 586 566 545 494 393 393 393 393

0.20 0.20 0.30 517 504 490 458 393 393 393 175

0.20 0.20 0.40 516 503 490 458 393 393 393 099

0.20 0.30 0.30 410 404 400 394 393 393 175 175

0.20 0.30 0.40 402 399 397 393 393 393 175 99

0.20 0.40 0.40 393 393 393 393 393 393 99 99

0.30 0.30 0.30 261 252 242 220 175 175 175 175

0.30 0.30 0.40 233 226 220 204 175 175 175 99

0.30 0.40 0.40 194 190 186 177 175 175 99 99

0.40 0.40 0.40 147 142 137 124 99 99 99 99

0.90 0.20 0.20 0.20 714 700 683 635 526 526 526 526

0.20 0.20 0.30 646 637 626 597 526 526 526 234

0.20 0.20 0.40 646 637 626 597 526 526 526 132

0.20 0.30 0.30 532 530 528 526 526 526 234 234

0.20 0.30 0.40 529 528 527 526 526 526 234 132

0.20 0.40 0.40 526 526 526 526 526 526 132 132

0.30 0.30 0.30 318 311 304 283 234 234 234 234

0.30 0.30 0.40 289 284 279 266 234 234 234 132

0.30 0.40 0.40 245 243 240 235 234 234 132 132

0.40 0.40 0.40 179 175 171 159 132 132 132 132

E1, E2, E3: Sample size separately calculated for each endpoint 1, 2, and 3 so that the individual
power is at least 0.8 and 0.9

(n(ρ)/n(0)) still decreases as the correlation approaches one. However, when the
ratio δ2/δ1 exceeds 1.5, the ratio (n(ρ)/n(0)) does not change considerably as the
correlation varies.

Table 2.1 provides the equal sample sizes per group (n = nT = nC, r = 1.0) for
two co-primary endpoints (K = 2) with correlation ρ12 = 0.0 (no correlation), 0.3
(low correlation), 0.5 (moderate correlation), 0.8 (high correlation), and 1.0 (perfect
correlation). The sample size was calculated to detect standardized effect sizes of
0.2 ≤ δ1, δ2 ≤ 0.4 with the overall power of 1 − β = 0.80, when each of the two
endpoints is tested at the significance level of α = 0.025 by a one-sided test.

In the cases of equal effect sizes between the two endpoints, that is, δ1 = δ2,
the sample size decreases as the correlation approaches one. Comparing the cases
of ρ12 = 0.0 and ρ12 = 0.8, the decrease in the sample size is approximately 11 %.
Even in the cases of unequal effect sizes, that is, δ1 < δ2, the sample sizes decrease as
the correlation approaches one. However, when the ratio δ2/δ1 exceeds roughly 1.5,
the sample size does not change considerably as the correlation varies. Consequently,
the sample size is determined by the smaller effect size and is approximately equal
to that calculated on the basis of the smaller effect size.
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Similar to the case of two endpoints, Table 2.2 provides the equal sample sizes
per group for three endpoints (K = 3) to detect standardized effect sizes 0.2 ≤
δ1, δ2, δ3 ≤ 0.4 with overall power 1 − β = 0.8 when each of the three endpoints
is tested at the significance level of α = 0.025 by a one-sided test, where the off-
diagonal elements of the correlation matrix are equal, i.e., ρ = ρ12 = ρ13 = ρ23 =
0.0, 0.3, 0.5, 0.8, and 1.0. In the cases of equal effect sizes among three endpoints,
that is, δ1 = δ2 = δ3, the sample size decreases as the correlation approaches one.
For example, comparing the cases of ρ = 0.0 and ρ = 0.8, the decrease in the
sample size is approximately 16 %. Even in the cases of unequal effect sizes, that is,
δ1 < δ2 ≤ δ3, the sample size decreases as the correlation approaches one. However,
when the ratios δ2/δ1 and δ3/δ1 exceed 1.5, the sample size does not change as the
correlation varies. Consequently, the sample size is determined by the smallest effect
size and is approximately equal to that calculated on the basis of the smallest effect
size.

2.5 Conservative Sample Size Determination

When clinical trialists face the challenge of sizing clinical trials with multiple end-
points, one major concern is whether the correlations among the endpoints should
be considered in the sample size calculation. The correlations may be estimated
from external or internal pilot data, but they are usually unknown. When there are
more than two endpoints, estimating the correlations is extremely difficult. If the
correlations are over-estimated and are included into the sample size calculation for
evaluating the joint effects on all of the endpoints, then the sample size is too small
and important effects may not be detected. As a conservative approach, one could
assume zero correlations among the endpoints as the overall power for detecting the
joint statistical significance is lowest when the correlation is zero for ρkk′ ≥ 0.

Consider a conservative sample size strategy when evaluating superiority for ALL
continuous endpoints by using a suggestion in Hung and Wang (2009). For illustra-
tion, first consider a situation where there are two continuous co-primary endpoints.
As seen in Fig. 2.5, the overall power is lowest (because the corresponding sample size
is highest) when there are equal standardized effect sizes and zero correlation among
the endpoints. So that, with a common value of c∗ = c∗

1 = c∗
2 (i.e., δ = δ1 = δ2) in

the overall power function, we could set

1 − β = �2(−c∗,−c∗ | ρ12 = 0) = {
�(−c∗)

}2 (2.6)

where c∗ = zα − √
κnδ. Solving (2.6) for n provides the conservative sample size

nCNSV given by

nC N SV ≥ (zα + zγ )2

κδ2

where γ = 1 − (1 − β)1/2.
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Fig. 2.6 Behavior of overall power 1 − β as a function of δ2/δ1 for a given equal sample size
per group n = nT = nC (i.e., r = 1.0) to detect superiority for endpoint 1 with the targeted
individual power 1 − γ of 0.81/3 (the left panel) and 0.91/3 (the right panel) for a one-sided test at
the significance level of α = 0.025

In practice, one challenge is how to select a common value of c∗. The most
conservative way is to choose a smaller value of either c∗

1 or c∗
2. This may provide

a sample size large enough to detect the joint superiority for both endpoints. Now
calculate a sample size n required to detect superiority for endpoint 1, with the
targeted individual power 1−γ at the significance level of α assuming ρ12 = 0, i.e.,
n1 = (zα + zγ )2/(κδ2

1), where δ1 ≤ δ2. The overall power 1−β under n1 is given as

1 − β = �2(−c∗
1,−c∗

2 | ρ12 = 0) = �(−c∗
1)�(−c∗

2)

where c∗
1 = −zγ and c∗

2 = zα − (δ2/δ1)(zα + zγ ). Therefore, the overall power can
be expressed as a function of ratio of the standardized effect sizes.

Figure 2.6 illustrates the behavior of overall power 1−β as a function of δ2/δ1 for
a given equal sample size per group n = nT = nC (i.e., r = 1.0) to detect superiority
for endpoint 1 with the targeted individual power 1 − γ of 0.81/3 and 0.91/3 for a
one-sided test at the significance level of α = 0.025.

For the case of 1 − γ = 0.81/2, the figure illustrates that the overall power
increases toward 0.81/2 as the ratio δ2/δ1 increases. In particular when the ratio
δ2/δ1 is roughly greater than 1.6, the overall power almost reaches 0.81/2. This is
because the individual power for endpoint 2 is very close to one (�(−c∗

2) → 1)
under the given sample size calculated for endpoint 1 and the overall power depends
greatly on the smaller difference. For the case of 1−γ = 0.91/2, when the ratio δ2/δ1
is roughly greater than 1.4, then the overall power reaches 0.91/2. From this result,
if we observe a large difference in the values of δ1 and δ2, roughly δ2/δ1 > 1.5, then
we could calculate the conservative sample size given by
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Fig. 2.7 Behavior of overall power 1−β for three co-primary endpoints as a function of standardized
effect sizes for a given equal sample size per group n = nT = nC (i.e., r = 1.0) to detect superiority
for endpoint 1 with the targeted individual power 1 − γ of 0.81/3 (the left panel) and 0.91/3 (the
right panel) for a one-sided test at the significance level of α = 0.025

n′
C N SV ≥ max

(
(zα + zβ)2

κδ2
1

,
(zα + zβ)2

κδ2
2

)
.

Next we consider a more general situation where there are more than two end-
points. Similarly we calculate a sample size n to detect superiority for endpoint 1,
with the targeted individual power 1 − γ = (1 − β)1/K at the significance level of
α assuming ρkk′ = 0 i.e., n1 = (zα + zγ )2/(κδ2

1), where δ1 ≤ · · · ≤ δK . Then the
overall power 1 − β under n1 is given as

1 − β = �K (−c∗
1, . . . ,−c∗

K | ρ12 = · · · = ρK−1,K = 0) = �(−c∗
1) · · · �(−c∗

K )

(2.7)
where c∗

1 = −zγ and c∗
K = zα −(δK /δ1)(zα +zγ ). Figure 2.7 illustrates the behavior

of overall power for three co-primary endpoints as a function of δ2/δ1 and δ3/δ1 for
a given equal sample size per group n = nT = nC (i.e., r = 1.0) to detect superiority
for endpoint 1 with the individual power 1 − γ of 0.81/3 and 0.91/3 for a one-sided
test at the significance level of α = 0.025.

For the case of 1−γ = 0.81/3, the figure illustrates that the overall power increases
toward 0.81/2 as the ratio δ2/δ1 increases. In particular when both the ratio δ2/δ1 and
δ3/δ1 are roughly greater than 1.5, the overall power almost reaches 0.81/3. For the
case of 1 −γ = 0.91/3, when the both ratios are roughly greater than 1.4, the overall
power almost reaches 0.91/3. From this result, if we observe a large difference in the
values of effect sizes, we could calculate the conservative sample size given by

n′
C N SV ≥ max

(
(zα + zβ)2

κδ2
k

)
. (2.8)
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One question that arises is how large δk/δ1 should be when the conservative sample
size (2.8) is considered. To provide a reference value for δk/δ1, the overall power
(2.7) is set to be at least 1 − β ′, i.e.,

(1 − r)�(−zα + δ2/δ1(zα + zγ )) · · · �(−zα + δK /δ1(zα + zγ )) > 1 − β ′ (2.9)

and then the values of δk/δ1 can be found satisfying the above inequality. For example,
we consider a situation of K = 2. Solving (2.9) for δ2/δ1 gives

δ2

δ1
>

�−1
(

1 − β ′

1 − γ

)
+ zα

zγ + zα

. (2.10)

If the target overall power 1 − β = 0.80 and then the overall power is set to be at
least greater than 1 − β ′ = 0.894 as 1 − γ = √

0.8, by substituting these values
into above inequality, we have δ2/δ1 > 1.639 with α = 0.025. So that, when the
one standardized effect size is large enough (or small enough) compared with the
other, i.e., δ2/δ1 > 1.639, we may use the sample size equation (2.8). However, if
1 − β ′ = 0.8944, δ2/δ1 > 1.859. Note that the ratio of standardized effect size will
depend on a precision of decimal degree of 1 − β ′.

In addition, we discuss a more general situation with K endpoints. For simplicity,
we assume δ2 = · · · = δK . Solving (2.9) for δk/δ1, we have

δk

δ1
>

�−1

((
1 − β ′

1 − γ

) 1
K−1

)
+ zα

zγ + zα

.

Table 2.3 Reference values for ratio of standardized effect sizes for conservative sample sizing
(2.8) with equal effect sizes δ2 = · · · = δK. 1 − β ′ is calculated by truncating the numbers beyond
the fourth decimal point

Number of Targeted overall 1 − β

endpoints 0.80 (1 − β ′) 0.90 (1 − β ′)
2 1.639 (0.894) 1.432 (0.948)

3 1.564 (0.928) 1.388 (0.965)

4 1.436 (0.945) 1.648 (0.974)

5 1.453 (0.956) 1.394 (0.979)

6 1.397 (0.963) 1.276 (0.982)

7 1.355 (0.968) 1.403 (0.985)

8 1.352 (0.972) 1.212 (0.986)

9 1.333 (0.975) 1.262 (0.988)

10 1.274 (0.977) 1.226 (0.989)
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For example, consider a situation of K = 3. If the target overall power 1−β = 0.80
and the overall power is set to be at least greater than 1−β ′ = 0.928 as 1−γ = 0.81/3,
we have δk/δ1 > 1.564 with α = 0.025. So that we may use the sample size equation
(2.8) when both of the ratio of standardized effect sizes are larger than 1.564.

Table 2.3 shows typical reference values for ratio of standardized effect sizes given
by (2.9) with equal effect sizes δ2 = · · · = δK when the conservative sample size
(2.8) is considered.

2.6 Example

We illustrate the sample size calculations based on a clinical trial evaluating inter-
ventions for Alzheimer’s disease. In Alzheimer’s clinical trials, the change from the
baseline in the ADAS-cog (the Alzheimer’s Disease Assessment Scale-cognitive sub-
scale) score and the CIBIC-plus (Clinician’s Interview-Based Impression of Change,
plus caregiver) at the last observed time point are commonly used as co-primary end-
points (e.g., Peskind et al. 2006; Rogers et al. 1998; Rösler et al. 1999; Tariot et al.
2000). In a 24-week, double-blind, placebo controlled trial of donepezil in patients
with Alzheimer’s disease in Rogers et al. (1998), the absolute values of the standard-
ized effect size (with 95 % confidence interval) were estimated as 0.47 (0.24, 0.69)
for ADAS-cog (δ1) and 0.48 (0.25 0.70) for CIBIC-plus (δ2). We use these estimates
to define an alternative hypothesis to size a future trial. The sample sizes were cal-
culated using the method based on the known variance to detect the standardized
effect sizes 0.20 < δ1, δ2 < 0.70 to achieve the overall power of 1 − β = 0.80
at α = 0.025, with ρ12 = 0, 0.3, 0.5, and 0.8 as the correlation between the two
endpoints.

Figure 2.8 displays the contour plots of the sample sizes per group with two
effect sizes δ1 and δ2 and correlation ρ12. The figure displays how the sample size
behaves as the two effect sizes and the correlations vary; when the effect sizes are
approximately equal, the required sample size varies with the correlation. When one
effect size is relativity smaller (or larger) than the other, the sample size is nearly
determined by the smaller effect size, and does not depend greatly on the correlation.
The correlation ρ12 is assumed to range between −1 < ρ12 < 0.35 by Offen et al.
(2007) and ρ12 = 0.5 (as a trial value) by Xiong et al. 2005. As the baseline case of
(δ1, δ2) = (0.47, 0.48), the sample sizes per group for ρ12 = 0, 0.3, 0.5, and 0.8
were 92, 90, 87, and 82, respectively.

2.7 Summary

This chapter provides an overview of the concepts and technical fundamentals regard-
ing power and sample size calculation for clinical trials with co-primary continuous
endpoints when the alternative hypothesis is joint effects on all endpoints. The chapter
also introduces conservative sample sizing strategies. Our major findings are as
follows:
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• There is an advantage of incorporating the correlation among endpoints into the
power and sample size calculations with co-primary continuous endpoints. In
general without design adjustments, the power is lower with additional endpoints,
but can be improved by incorporating the correlation into the calculation (assuming
a positive correlation). Thus incorporating the correlation into the sample size
calculation may lead to a reduction in sample sizes. The reduction in sample size
is greater with a greater number of endpoints, especially when the standardized
effect sizes are approximately equal among the endpoints. For example, when the
endpoints are positively correlated (correlation up to 0.8), with the power of 0.8
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Fig. 2.8 Contour plot of the sample size (per group) for standardized effect sizes of endpoint
1 (SIB-J) and endpoint 2 (CIBIC plus-J) with ρ12 = 0.0, 0.3, 0.5, and 0.8. The sample size was
calculated to detect the superiority for all the endpoints with the overall power of 1 − β = 0.80 for
a one-sided test at the significance level of α = 0.025
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at the significant level of 0.025, there is approximately 11 % reduction in the case
of two co-primary endpoints and 16 % reduction in the case of three co-primary
endpoints, compared to the sample size calculated under the assumption of zero
correlations among the endpoints.

• In most situations, the required sample size per group for co-primary continuous
endpoints calculated using the method based on the assumption that variance is
unknown is one participant larger than the method based on the assumption that
the variance is known. This is very similar to results seen for a single continuous
endpoint.

• When the standardized effect sizes for the endpoints are unequal, then the advan-
tage of incorporating the correlation into sample size is less dramatic as the required
sample size is primarily determined by the smaller standardized effect size and does
not greatly depend on the correlation. In this situation, the sample size equation for
co-primary continuous endpoints can be simplified using the equation for a single
continuous endpoint, as given by Eq. (2.8). When the standardized effect sizes
among endpoints are approximately equal, then the sample size method assuming
zero correlation described in Hung and Wang (2009) may be used as the power is
minimized with the equal standardized effect sizes.
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Chapter 3
Binary Co-primary Endpoints

Abstract In this chapter, we provide methods for power and sample size calculation
for clinical trials with multiple co-primary binary endpoints. On the basis of three
association measures among the multiple binary endpoints, we discuss five methods
for power and sample size calculation: the asymptotic normal method with and
without a continuity correction, the arcsine method with and without a continuity
correction, and the Fisher’s exact method. We evaluate the behavior of the sample
size and empirical power associated with the methods. We also provide numerical
examples to illustrate the methods.

Keywords Arcsine transformation ·Associationmeasures ·Continuity correction ·
Fisher’s exact test · Multivariate Bernoulli

3.1 Introduction

Consider a randomized clinical trial comparing two interventions with nT subjects
in the test group and nC subjects in the control group. There are K (≥ 2) co-primary
binary (or dichotomized) endpoints. Let the responses for nT subjects in the test
group be denoted by YT jk , j = 1, . . . , nT and those for nC subjects in the control
group, by YC jk , j = 1, . . . , nC.

We are interested in estimating the differences in the proportions πTk − πCk . A
positive value ofπTk −πCk indicates an intervention benefit.We assert the superiority
of the test intervention over the control in terms of all K primary endpoints if and
only if μTk − μCk > 0 for all k = 1, . . . , K . Thus, the hypotheses for testing are

H0 : πTk − πCk ≤ 0 for at least one k,

H1 : πTk − πCk > 0 for all k.

In testing the preceding hypotheses, the null hypothesis H0 is rejected if and only if all
of the null hypotheses associated with each of the K primary endpoints are rejected at
a significance level of α. Although, in many clinical trials, the most commonly used
measure is a difference in the proportions between two interventions as described
above, risk ratio and odds ratio are also frequently used in clinical trials to measure a
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risk reduction. The power and sample size calculation for these measures are given
in Appendixs A1 and A2 respectively.

In general, there are three associationmeasures between a pair of binary endpoints:
(i) the correlation of a multivariate Bernoulli distribution, (ii) the odds ratio, and (iii)
the correlation of a latent multivariate normal distribution. Please see, e.g., Johnson
et al. (1997) for the definition of the multivariate Bernoulli distribution. The choice
of an association measure may depend on several factors including the nature and
characteristics of endpoints and the statistical methods used for data analysis.
(i) Correlation of a Multivariate Bernoulli Distribution

Suppose that the vectors of responses YT j = (YT j1, . . . , YT j K )T and YC j =
(YC j1, . . . , YC j K )T are independently distributed as K -variateBernoulli distributions
with E[YT jk] = πTk , E[YC jk] = πCk , var[YT jk] = πTkθTk , and var[YC jk] = πCkθCk ,
where θTk = 1 − πTk and θCk = 1 − πCk . The association measures between the
kth and k′th endpoints for YT jk and YC jk , corr[YT jk, YT jk′ ] and corr[YC jk, YC jk′ ],
are given as a correlation of a multivariate Bernoulli distribution, which are

τ kk′
T = φkk′

T − πTkπTk′√
πTkθTkπTk′θTk′

and τ kk′
C = φkk′

C − πCkπCk′√
πCkθCkπCk′θCk′

for all k �= k′ (1 ≤ k < k′ ≤ K ), respectively, where φkk′
T and φkk′

C are the
joint probabilities of the kth and k′th endpoints for YT jk and YC jk , given by φkk′

T =
Pr[YT jk = 1, YT jk′ = 1] and φkk′

C = Pr[YC jk = 1, YC jk′ = 1] respectively. Note that
since 0 < πTk,πTk′ < 1 and 0 < πCk,πCk′ < 1, τ kk′

T and τ kk′
C are bounded below by

max

(
−

√
πTkπTk′

θTkθTk′
, −

√
θTkθTk′

πTkπTk′

)
and max

(
−

√
πCkπCk′

θCkθCk′
, −

√
θCkθCk′

πCkπCk′

)

and above by

min

(√
πTkθTk′

πTk′θTk
,

√
πTk′θTk

πTkθTk′

)
and min

(√
πCkθCk′

πCk′θCk
,

√
πCk′θCk

πCkθCk′

)

(Emrich and Piedmonte 1991; Prentice 1988).

(ii) Odds Ratio

The association measures between the kth and k′th endpoints for YT jk and YC jk

are given as odds ratios, which are

ψkk′
T = φkk′

T (1 − πTk − πTk′ + φkk′
T )

(πTk − φkk′
T )(πTk′ − φkk′

T )
and ψkk′

C = φkk′
C (1 − πCk − πCk′ + φkk′

C )

(πCk − φkk′
C )(πCk′ − φkk′

C )

respectively.
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(iii) Correlation of a Latent Multivariate Normal Distribution

Suppose that the vectors of responses YT j and YC j are dichotomized random vari-
ables of continuous unobserved latent variables XT j = (XT j1, . . . , XT j K )T and
XC j = (XC j1, . . . , XC j K )T, respectively. XT j and XC j are distributed as K -variate
normal distributions with correlations ρkk′

T and ρkk′
C , respectively. The joint probabil-

ities φkk′
T and φkk′

C are given by

φkk′
T =

∫ ∞

−∞
· · ·

∫ ∞

gTk

· · ·
∫ ∞

gTk′
· · ·

∫ ∞

−∞
f (xT; ρkk′

T )dxT1 . . . dxTK

and

φkk′
C =

∫ ∞

−∞
· · ·

∫ ∞

gCk

· · ·
∫ ∞

gCk′
· · ·

∫ ∞

−∞
f (xC; ρkk′

C )dxC1 . . . dxCK

respectively, where functions f (xT; ρkk′
T ) and f (xC; ρkk′

C ) are the joint density func-
tions of XT j and XC j , respectively, with πTk = Pr[XT jk ≥ gTk] = Pr[YT jk = 1],
πCk = Pr[XC jk ≥ gCk] = Pr[YC jk = 1], and

YT jk =
{
1, XT jk ≥ gTk,

0, XT jk < gTk,
and YC jk =

{
1, XC jk ≥ gCk,

0, XC jk < gCk .

3.2 Test Statistics and Power

3.2.1 Chi-Square Test and Related Test Statistics

We consider four testing methods using an asymptotic normal approximation with
and without a continuity correction (CC). The test statistic for each primary endpoint
is given as follows:
(1) One-sided chi-square test without CC (Pearson 1900)

Zk = pTk − pCk√(
1

nT
+ 1

nC

)
pk(1 − pk)

, (3.1)

where pTk and pCk are the sample proportions given by

pTk = 1

nT

nT∑
j=1

YT jk and pCk = 1

nC

nC∑
j=1

YC jk; pk = nT pTk + nC pCk

nT + nC
.
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(2) One-sided chi-square test with CC (Yates 1934)

Zk =
pTk − pCk − 1

2

(
1

nT
+ 1

nC

)

√(
1

nT
+ 1

nC

)
pk(1 − pk)

. (3.2)

(3) Arcsine root transformation method without CC (Bartlett 1947)

Zk = sin−1 √
pTk − sin−1 √

pCk

1

2

√
1

nT
+ 1

nC

. (3.3)

(4) Arcsine root transformation method with CC (Walters 1979)

Zk =
sin−1

√
pTk − 1

2nT
− sin−1

√
pCk + 1

2nC

1

2

√
1

nT
+ 1

nC

. (3.4)

If pTk − 1/2nT < 0 (i.e., YT jk = 0), this term is replaced by 0. Similarly, if
pCk + 1/2nC > 1 (i.e., YC jk = nC), this term is replaced by 1. These replacements
should be carefully considered when calculating the test statistics (3.4) during data
analysis.

As an illustration, the overall power function for statistic (3.1) can be written as

1 − β = Pr

[
K⋂

k=1

{Zk > zα}
∣∣∣∣ H1

]
= Pr

[
K⋂

k=1

{Z∗
k > c∗

k }
∣∣∣∣ H1

]
(3.5)

where

Z∗
k = pTk − pCk − δk√

κπTkθTk + (1 − κ)πCkθCk

κn

c∗
k = 1√

(κ/(1 − κ))πTkθTk + πCkθCk

(√
((1 − κ)πTk + κπCk )((1 − κ)θTk + κθCk )

1 − κ
zα − √

κnδk

)
,

(3.6)
δk = πTk − πCk , r = nC/nT, n = nT, κ = r/(1 + r), and pk is replaced by
p̄k = (1 − κ)πTk + κπCk .

Since E[Z∗
k ] = 0 and var[Z∗

k ] = 1, the vector of (Z∗
1 , . . . , Z∗

K )T is approximately
distributed as a K -variate normal distribution, NK (0,ρZ∗), where the off-diagonal
element of ρZ∗ is given by

ρkk′
D = κ corr[YT jk , YT jk′ ]√πTkθTkπTk′θTk′ + (1 − κ)corr[YC jk , YC jk′ ]√πCkθCkπCk′θCk′√

κπTkθTk + (1 − κ)πCkθCk
√

κπTk′θTk′ + (1 − κ)πCk′θCk′
.
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The definitions of corr[YT jk, YT jk′ ] and corr[YC jk, YC jk′ ] depend on the assumed
model for the response variables YT j and YC j . For example, when the K -variate
Bernoulli distribution is assumed,

ρkk′
D = κ(φkk′

T − πTkπTk′) + (1 − κ)(φkk′
C − πCkπCk′)√

κπTkθTk + (1 − κ)πCkθCk
√

κπTk′θTk′ + (1 − κ)πCk′θCk′
.

Theoverall power function of (3.5) is calculated using�K (−c∗
1, . . . ,−c∗

K ), where
�K is the cumulative distribution function of NK (0,ρZ∗). The corresponding c∗

k

and ρkk′
D for the overall power functions for other testing methods are summarized

in Table3.1 (Sozu et al. 2010, 2011). We refer to the sample size calculations using
these test statistics as (1) the chi-square method (without CC), (2) the chi-square
method with CC, (3) the arcsine method (without CC), and (4) the arcsine method
with CC, respectively.

The normal approximation discussed here may work well in larger sample sizes,
but not when events are rare or when sample sizes are small. In such situations, one
alternative is to consider more direct ways of calculating the sample size without
using a normal approximation, which will be discussed in Sect. 3.2.2. However, such
direct methods are computationally difficult, particularly for the large sample sizes
and thus can be impractical to utilize. The utility of using the normal approximation
is compared with the direct methods in Appendix B.

3.2.2 Fisher’s Exact Test

Fisher’s exact test is widely used to evaluate the difference in two proportions, par-
ticularly when events are rare or very common resulting in small numbers in cells of
a 2 × 2 table. We outline the overall power calculations for Fisher’s exact test.

Under the null hypothesis, when the sum of the observed number of
∑nT

j=1 YT jk +∑nC
j=1 YC jk = Yk is fixed,

∑nT
j=1 YT jk = YTk is conditionally distributed as a hyper-

geometric distribution. The one-sided p-value corresponding to the kth primary end-
point is given by

Pk =
min(nT,Yk )∑

YTk

(
Yk

YTk

)(
nT + nC − Yk

nT − YTk

)/(
nT + nC

nT

)
.

The conditional power is given by Pr
[⋂K

k=1 {Pk < α} ∣∣ H1

]
. The expected overall

power can be calculated using Monte Carlo integration. The sample size required
to achieve the desired overall power is the smallest integer where the subsequent
sample sizes have more power than 1 − β, considering the discrete nature of the
binomial distribution. Hereinafter, the sample size calculation for Fisher’s exact test
is referred to as the exact method.
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When the exact method is used, extensive computation must be carried out to
calculate the overall power and to determine the sample size required to achieve the
desired overall power. To reduce the computational burden, the arcsine method with
CC may be used, as in the case of a single binary endpoint (Sozu et al. 2010). The
overall power function for the arcsine method with CC is given in Table3.1.

In the sample size calculation, the proportions πTk , πCk , and the associations
among endpoints must be specified in advance. The choice of an association measure
may depend on several factors including the nature and characteristics of endpoints
and the statisticalmethodsused for data analysis.All of the three associationmeasures

Table 3.2 Sample size per group (n = nT = nC, r = 1.0) for two endpoints (K = 2) with the
overall power of 1 − β = 0.80

Proportions Method Correlation τ12

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.55 0.50 Chi-square 2055
(2094)

2003
(2043)

1951
(1991)

1826
(1866)

1565
(1605)

Arcsine 2055
(2095)

2003
(2043)

1951
(1991)

1826
(1866)

1565
(1605)

Exact 2097 2041 1984 1859 1606

0.60 0.50 Chi-square 509 (528) 496 (516) 483 (503) 452 (472) 388 (408)

Arcsine 509 (529) 496 (516) 483 (503) 452 (472) 388 (407)

Exact 526 518 498 467 404

0.65 0.50 Chi-square 222 (236) 217 (230) 211 (224) 198 (211) 170 (184)

Arcsine 223 (236) 217 (230) 211 (224) 198 (211) 170 (183)

Exact 237 228 224 208 183

0.70 0.50 Chi-square 122 (132) 119 (129) 116 (126) 109 (119) 93 (103)

Arcsine 122 (132) 119 (129) 116 (126) 109 (118) 93 (103)

Exact 131 129 127 117 102

0.75 0.50 Chi-square 76 (84) 74 (82) 72 (80) 68 (75) 58 (66)

Arcsine 76 (83) 74 (82) 72 (80) 67 (75) 58 (66)

Exact 84 81 78 75 64

0.80 0.50 Chi-square 51 (57) 49 (56) 48 (55) 45 (52) 39 (46)

Arcsine 50 (57) 49 (55) 48 (54) 45 (51) 38 (45)

Exact 56 55 54 51 44

0.85 0.50 Chi-square 35 (41) 35 (40) 34 (39) 32 (37) 27 (33)

Arcsine 35 (40) 34 (39) 33 (39) 31 (36) 27 (32)

Exact 40 39 38 36 32

0.90 0.50 Chi-square 25 (30) 25 (30) 24 (29) 24 (28) 20 (25)

Arcsine 24 (29) 24 (29) 23 (28) 22 (27) 19 (24)

Exact 29 28 28 27 23

0.95 0.50 Chi-square 19 (23) 18 (23) 18 (22) 17 (21) 15 (20)

Arcsine 17 (21) 17 (21) 16 (20) 15 (19) 13 (17)

Exact 21 20 20 19 17

The values in parentheses are the sample size per group by the corresponding method with CC
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in Sect. 3.1 can be estimated from the proportions and joint probabilities of the end-
points. As in the case of the continuous co-primary endpoints, an iterative procedure
is required to find the required sample size. Chapter 4 provides a more efficient and
practical algorithm for calculating the sample sizes and presents a useful sample size
formula with numerical tables.

3.3 Behavior of the Sample Size

We illustrate the behavior of sample sizes calculated by the five methods discussed
in the previous sections when there are two (K = 2) and three (K = 3) co-primary
endpoints. The equal sample sizes per group n = nT = nC (i.e., r = 1.0) were
calculated with the overall power of 1 − β = 0.80 when each of the K endpoints is

Table 3.3 Sample size per group (n = nT = nC, r = 1.0) for two endpoints (K = 2) with the
overall power of 1 − β = 0.80

Proportions Method Correlation τ12

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.65 0.60 Chi-square 1931
(1971)

1882
(1922)

1834
(1873)

1716
(1756)

1471
(1511)

Arcsine 1931
(1971)

1882
(1922)

1834
(1873)

1716
(1756)

1471
(1510)

Exact 1969 1918 1879 1758 1514

0.70 0.60 Chi-square 467 (487) 456 (476) 444 (464) 416 (435) 356 (376)

Arcsine 467 (487) 455 (475) 444 (463) 415 (435) 356 (376)

Exact 488 474 463 434 375

0.75 0.60 Chi-square 199 (213) 194 (208) 190 (203) 177 (191) 152 (166)

Arcsine 199 (212) 194 (207) 189 (202) 177 (190) 152 (165)

Exact 212 206 202 189 164

0.80 0.60 Chi-square 107 (116) 104 (114) 101 (111) 95 (105) 82 (92)

Arcsine 106 (116) 103 (113) 101 (110) 94 (104) 81 (91)

Exact 116 112 110 103 90

0.85 0.60 Chi-square 64 (72) 63 (70) 61 (69) 57 (65) 49 (57)

Arcsine 63 (71) 61 (69) 60 (68) 56 (64) 48 (56)

Exact 71 69 67 63 56

0.90 0.60 Chi-square 41 (48) 40 (47) 39 (46) 37 (43) 32 (39)

Arcsine 40 (46) 39 (45) 38 (44) 35 (42) 30 (37)

Exact 46 45 44 41 36

0.95 0.60 Chi-square 28 (33) 27 (33) 26 (32) 25 (30) 22 (28)

Arcsine 25 (30) 24 (30) 24 (29) 22 (28) 19 (25)

Exact 31 30 29 28 24

The values in parentheses are the sample size per group by the corresponding method with CC

http://dx.doi.org/10.1007/978-3-319-22005-5_4
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Table 3.4 Sample size per group (n = nT = nC, r = 1.0) for two endpoints (K = 2) with the
overall power of 1 − β = 0.80

Proportions Method Correlation τ12

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.75 0.70 Chi-square 1642
(1682)

1601
(1641)

1560
(1599)

1460
(1499)

1251
(1291)

Arcsine 1641
(1681)

1600
(1640)

1559
(1598)

1458
(1498)

1250
(1290)

Exact 1680 1640 1599 1498 1292

0.80 0.70 Chi-square 385 (405) 375 (395) 366 (385) 342 (362) 294 (314)

Arcsine 384 (403) 374 (394) 364 (384) 341 (361) 292 (312)

Exact 403 393 383 361 311

0.85 0.70 Chi-square 158 (171) 154 (167) 150 (163) 141 (154) 121 (135)

Arcsine 156 (169) 152 (165) 148 (161) 139 (152) 119 (132)

Exact 169 165 161 152 131

0.90 0.70 Chi-square 81 (91) 79 (89) 77 (87) 72 (82) 62 (72)

Arcsine 78 (88) 76 (86) 74 (84) 69 (79) 60 (69)

Exact 88 86 84 79 69

0.95 0.70 Chi-square 46 (54) 45 (53) 44 (52) 41 (49) 36 (44)

Arcsine 42 (49) 41 (48) 40 (47) 37 (45) 32 (40)

Exact 50 49 48 45 39

0.85 0.80 Chi-square 1189
(1229)

1159
(1199)

1129
(1169)

1057
(1096)

906 (946)

Arcsine 1185
(1225)

1156
(1195)

1126
(1165)

1053
(1093)

903 (942)

Exact 1224 1194 1165 1093 942

0.90 0.80 Chi-square 261 (281) 255 (274) 248 (268) 232 (252) 199 (219)

Arcsine 256 (276) 250 (270) 244 (263) 228 (248) 195 (215)

Exact 276 270 264 247 214

0.95 0.80 Chi-square 99 (112) 96 (109) 94 (107) 88 (101) 76 (89)

Arcsine 91 (104) 89 (102) 87 (100) 81 (94) 70 (83)

Exact 104 102 99 94 82

The values in parentheses are the sample size per group by the corresponding method with CC

tested at the significance level ofα = 0.025by a one-sided test.Weuse the correlation
coefficient of the multivariate Bernoulli distribution to define the associations among
endpoints, assuming τ kk′

T = τ kk′
C = τ kk′

, because it is intuitively attractive. In the
exact method, 1,000,000 data sets are generated to evaluate the power.

Tables3.2, 3.3 and 3.4 provide the equal sample sizes per group n = nT = nC (i.e.,
r = 1.0) for two endpoints (K = 2) with correlation τ12 = 0.0 (no correlation), 0.3
(low correlation), 0.5 (moderate correlation), 0.8 (high correlation), and 1.0 (perfect
correlation), when πT1 = πT2 and πC1 = πC2.
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Table 3.5 Sample size per group (n = nT = nC, r = 1.0) for three endpoints (K = 3) with the
overall power of 1 − β = 0.80

Proportions Method Correlations τ12 = τ13 = τ23

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.55 0.50 Chi-square 2336
(2376)

2253
(2293)

2169
(2209)

1968
(2007)

1565
(1605)

Arcsine 2337
(2376)

2254
(2294)

2169
(2209)

1968
(2008)

1565
(1605)

Exact 2378 2299 2220 2018 1606

0.60 0.50 Chi-square 578 (598) 558 (578) 537 (557) 487 (507) 388 (408)

Arcsine 579 (598) 558 (578) 537 (557) 487 (507) 388 (407)

Exact 596 582 556 512 404

0.65 0.50 Chi-square 253 (266) 244 (257) 235 (248) 213 (226) 170 (184)

Arcsine 253 (266) 244 (257) 235 (248) 213 (226) 170 (183)

Exact 267 253 248 225 183

0.70 0.50 Chi-square 139 (148) 134 (144) 129 (139) 117 (127) 93 (103)

Arcsine 139 (149) 134 (144) 129 (139) 117 (127) 93 (103)

Exact 148 144 137 127 102

0.75 0.50 Chi-square 86 (94) 83 (91) 80 (88) 73 (80) 58 (66)

Arcsine 86 (94) 83 (91) 80 (88) 72 (80) 58 (66)

Exact 93 90 87 79 64

0.80 0.50 Chi-square 57 (64) 55 (62) 53 (60) 49 (55) 39 (46)

Arcsine 57 (64) 55 (62) 53 (59) 48 (55) 38 (45)

Exact 63 62 59 54 44

0.85 0.50 Chi-square 40 (45) 39 (44) 37 (43) 34 (39) 27 (33)

Arcsine 39 (45) 38 (44) 37 (42) 33 (39) 27 (32)

Exact 45 43 42 38 32

0.90 0.50 Chi-square 29 (33) 28 (33) 27 (32) 24 (29) 20 (25)

Arcsine 28 (32) 27 (31) 26 (31) 23 (28) 19 (24)

Exact 32 31 30 28 23

0.95 0.50 Chi-square 21 (25) 20 (25) 20 (24) 18 (22) 15 (20)

Arcsine 19 (23) 19 (23) 18 (22) 16 (20) 13 (17)

Exact 23 22 21 20 17

The values in parentheses are the sample size per group by the corresponding method with CC

Similarly as seen in multiple continuous endpoints, when πT1 = πT2 and πC1 =
πC2, i.e., the standardized effect size (πTk − πCk)/

√
πTkθTk + πCkθCk are equal

between two endpoints, the sample size decreases as the correlation approaches one.
Comparing the cases of τ12 = 0.0 and τ12 = 0.8, the decrease in the sample size is
approximately 11%. Therefore, there is an advantage of incorporating the correlation
among endpoints into the power and sample size calculations with co-primary binary
endpoints.
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Table 3.6 Sample size per group (n = nT = nC, r = 1.0) for three endpoints (K = 3) with the
overall power of 1 − β = 0.80

Proportions Method Correlations τ12 = τ13 = τ23

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.65 0.60 Chi-square 2195
(2235)

2118
(2158)

2038
(2078)

1849
(1889)

1471
(1511)

Arcsine 2196
(2235)

2118
(2158)

2039
(2078)

1849
(1889)

1471
(1510)

Exact 2236 2161 2084 1892 1514

0.70 0.60 Chi-square 531 (551) 512 (532) 493 (513) 448 (467) 356 (376)

Arcsine 531 (551) 512 (532) 493 (513) 447 (467) 356 (376)

Exact 551 531 512 466 375

0.75 0.60 Chi-square 227 (240) 219 (232) 210 (224) 191 (204) 152 (166)

Arcsine 226 (239) 218 (231) 210 (223) 191 (204) 152 (165)

Exact 239 230 223 203 164

0.80 0.60 Chi-square 121 (131) 117 (127) 113 (122) 102 (112) 82 (92)

Arcsine 120 (130) 116 (126) 112 (122) 101 (111) 81 (91)

Exact 130 125 121 111 90

0.85 0.60 Chi-square 73 (81) 70 (78) 68 (75) 62 (69) 49 (57)

Arcsine 72 (79) 69 (77) 67 (74) 60 (68) 48 (56)

Exact 78 76 74 68 56

0.90 0.60 Chi-square 47 (53) 45 (52) 44 (50) 40 (46) 32 (39)

Arcsine 45 (51) 43 (50) 42 (48) 38 (44) 30 (37)

Exact 51 49 48 45 36

0.95 0.60 Chi-square 31 (37) 30 (36) 29 (35) 27 (32) 22 (28)

Arcsine 28 (34) 27 (33) 26 (32) 24 (29) 19 (25)

Exact 34 32 32 30 24

The values in parentheses are the sample size per group by the corresponding method with CC

Although the results are not shown here, when the standardized effect size for
one endpoint is relatively smaller than that for other endpoints, the sample size does
not change considerably as the correlation varies. In such cases, the advantage of
incorporating the correlation into sample size is minimal. The power and sample size
are more affected by the smaller standardized effect sizes than the correlation.

Similar to the case of two endpoints, Tables3.5, 3.6 and 3.7 provide the equal
sample sizes per group n = nT = nC (i.e., r = 1.0) for three endpoints (K = 3)
when πT1 = πT2 = πT3 and πC1 = πC2 = πC3, where the off-diagonal elements
of the correlation matrix are equal, i.e., τ = τ12 = τ13 = τ23 = 0.0, 0.3, 0.5, 0.8,
and 1.0. Comparing the cases of τ = 0.0 and τ = 0.8, the decrease in the sample
size is approximately 16%. There is a larger relative efficiency with incorporation
of correlation into trial sizing with more endpoints.
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Table 3.7 Sample size per group (n = nT = nC, r = 1.0) for three endpoints (K = 3) with the
overall power of 1 − β = 0.80

Proportions Method Correlations τ12 = τ13 = τ23

πTk πCk 0.0 0.3 0.5 0.8 1.0

0.75 0.70 Chi-square 1867
(1907)

1801
(1841)

1734
(1774)

1573
(1613)

1251
(1291)

Arcsine 1866
(1906)

1800
(1840)

1733
(1773)

1572
(1612)

1250
(1290)

Exact 1908 1840 1771 1610 1292

0.80 0.70 Chi-square 437 (457) 422 (442) 406 (426) 369 (388) 294 (314)

Arcsine 436 (456) 421 (440) 405 (425) 367 (387) 292 (312)

Exact 456 439 425 387 311

0.85 0.70 Chi-square 180 (193) 173 (186) 167 (180) 152 (165) 121 (135)

Arcsine 178 (191) 171 (184) 165 (178) 150 (163) 119 (132)

Exact 190 184 177 162 131

0.90 0.70 Chi-square 92 (101) 89 (98) 85 (95) 78 (87) 62 (72)

Arcsine 89 (98) 85 (95) 82 (92) 75 (84) 60 (69)

Exact 98 94 91 85 69

0.95 0.70 Chi-square 52 (60) 50 (58) 49 (56) 44 (52) 36 (44)

Arcsine 47 (55) 46 (53) 44 (52) 40 (48) 32 (40)

Exact 55 53 52 48 39

0.85 0.80 Chi-square 1352
(1391)

1304
(1344)

1255
(1295)

1139
(1178)

906 (946)

Arcsine 1348
(1388)

1300
(1340)

1251
(1291)

1135
(1175)

903 (942)

Exact 1387 1340 1291 1174 942

0.90 0.80 Chi-square 297 (317) 286 (306) 276 (295) 250 (270) 199 (219)

Arcsine 292 (311) 281 (301) 271 (290) 246 (265) 195 (215)

Exact 309 301 290 266 214

0.95 0.80 Chi-square 112 (125) 108 (121) 104 (117) 95 (107) 76 (89)

Arcsine 104 (117) 100 (113) 96 (109) 88 (101) 70 (83)

Exact 118 114 109 100 82

The values in parentheses are the sample size per group by the corresponding method with CC

3.4 Example

We illustrate the sample size calculation methods with an application to the clinical
trial (Ho et al. 2008); a randomized, parallel-treatment, placebo-controlled, double-
blind, multicenter trial evaluating interventions for migraine headaches. Although,
the trial has four interventions: (1) oral telcagepant 150 mg (low-dose), (2) oral
telcagepant 300 mg (high-dose), (3), zolmitriptan 5 mg, and (4) placebo, and five
co-primary endpoints: (1) pain freedom, (2) pain relief, (3) photophobia, (4) phono-
phobia, and (5) nausea, we consider a two-group comparison between the high-dose
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Table 3.8 Equal sample size per group required to detect the superiority for all of the endpoints
with the overall power of 1 − β = 0.80 for a one-sided test at the significance level of α = 0.025

Method Correlations (τ12 τ13 τ23)

000 00L 00M 00H LLL LLM LLH

Empirical power Chi-square 120 118 117 113 116 114 111

Chi-square test 0.806 0.808 0.822 0.814 0.818 0.814 0.813

Fisher’s exact test 0.752 0.757 0.771 0.765 0.770 0.767 0.764

Empirical power Chi-square with CC 130 128 127 123 126 124 120

Chi-square test 0.815 0.810 0.811 0.806 0.809 0.807 0.800

Fisher’s exact test 0.815 0.810 0.811 0.806 0.809 0.807 0.801

Empirical power Arcsine 119 117 116 112 115 113 109

Chi-square test 0.808 0.814 0.815 0.807 0.813 0.808 0.805

Fisher’s exact test 0.749 0.761 0.764 0.756 0.764 0.757 0.751

Empirical power Arcsine with CC 129 127 125 122 125 123 119

Chi-square test 0.811 0.803 0.804 0.806 0.803 0.801 0.806

Fisher’s exact test 0.811 0.803 0.804 0.802 0.803 0.800 0.802

Exact 128 127 126 122 125 123 117

Value of correlations: L = 0.3, M = 0.5, H = 0.8

group and the placebo group using three co-primary endpoints of pain freedom
(k = 1), phonophobia (k = 2), and photophobia (k = 3). From the results of the trial
(for details, see Table3.4 in Ho et al. 2008), the response probability for each end-
point is assumed to be (πT1, πT2, πT3) = (0.269, 0.578, 0.510) for the high-dose
group and (πC1, πC2, πC3) = (0.096, 0.368, 0.289) for the placebo group. Under
these values, the ranges for the correlation coefficient τ kk′

T and τ kk′
C are given by

Pain freedom − 0.71 ≤ τ12T ≤ 0.52 − 0.25 ≤ τ12C ≤ 0.43

Phonophobia − 0.62 ≤ τ13T ≤ 0.59 − 0.23 ≤ τ13C ≤ 0.47

Photophobia − 0.84 ≤ τ23T ≤ 0.87 − 0.53 ≤ τ23C ≤ 0.91.

Furthermore, under the situation of τ kk′
T = τ kk′

C = τ kk′
the ranges are given by

max(−0.71,−0.25) = −0.25 ≤ τ12 ≤ min(0.52, 0.43) = 0.43

max(−0.62,−0.23) = −0.23 ≤ τ13 ≤ min(0.59, 0.47) = 0.47

max(−0.84,−0.53) = −0.53 ≤ τ23 ≤ min(0.87, 0.91) = 0.87.

Table3.8 presents the required equal sample sizes per group n = nT = nC
(i.e., r = 1.0) with the overall power of 1 − β = 0.80 for (δ1, δ2, δ3) =
(0.173, 0.210, 0.221) at the significance level of α = 0.025, where τ12 = τ13 ≤
τ23. The empirical (overall) power for the chi-square and Fisher’s exact tests was cal-
culated under the given sample size with 100,000 Monte-Carlo trials. In this setting,
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the sample size decreases by about 8%, when considering the correlations among
the endpoints compared to a naive calculation that assumes zero correlation.

3.5 Summary

This chapter provides methods for power and sample size determination for clinical
trials with an alternative hypothesis of joint differences in proportions when all of
the endpoints are binary variables. We evaluated the behaviors of the sample sizes
and empirical powers presented in Appendix B for the methods using the chi-square
and arcsine methods with and without CC, and the exact method. Our major findings
are as follows:

• Similarly as seen with multiple continuous endpoints, there is an advantage of
incorporating the correlation among endpoints into the power and sample size
calculations with co-primary binary endpoints as the power is improved and the
sample size is decreased relative to naive calculations assuming zero correlation.
Relative efficiency is greater as the number of endpoints increases. When the
endpoints are positively correlated (correlation up to 0.8) and the standardized
effect sizes among endpoints are approximately equal, there is approximately 11%
reduction in the case of two co-primary endpoints and 16% reduction in the case of
three co-primary endpoints. When the standardized effect size for one endpoint is
relatively smaller than that for other endpoints, the advantage of incorporating the
correlation into sample size is minimal as the power and sample size are primarily
affected by the standardized effect size than the correlation.

• The chi-square method (without CC) works well in most situations except for
extremely small sample sizes (i.e., the extremely large difference in two propor-
tions): the empirical power for the method achieves the targeted power when the
difference in proportions is not extremely large. In other situations, the empirical
power tends to be larger than the targeted power. The arcsine method with CC
leads to sample sizes approximately equal to those obtained by the exact method.
Recently, Lydersen et al. (2009) discussed the choice of testing methods for a sigle
primary endpoint in 2 × 2 tables.

• The choice of an association measure may depend on several factors including the
nature and characteristics of endpoints and the statistical methods used for data
analysis. However, as the number of endpoints increases, the added complexity
can affect the sample size determination. This leads to a non-negligible, practical,
challenge regarding the specification of the values of the association measures
because the increased number of endpoints imposes greater range restrictions on
the association measures. It is difficult to precisely determine all of the values
from the data. This implies that researchers should be extremely careful when
considering the selection of numerous primary endpoints. Therefore, we generally
recommend selection of aminimal number of primary endpoints that directly relate
to the primary objective.
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Chapter 4
Convenient Sample Size Formula

Abstract In Chaps. 2 and 3, we discuss the methods for calculating the sample
size required to design a trial with multiple co-primary endpoints. These methods
require considerable mathematical sophistication and knowledge of programming
techniques, effectively limiting their application in practice. To increase the practi-
cality of these methods, in this chapter we provide an efficient algorithm for calcu-
lating the sample size and present a convenient sample size formula with associated
numerical tables for sizing clinical trials with multiple co-primary endpoints. We
provide numerical examples to illustrate use of the formula and associated tables,
and provide the programming codes for the R and SAS software packages.

Keywords Newton-Raphson algorithm · Numerical table · R · SAS

4.1 Introduction

An iterative procedure is required to find the sample size that achieves the desired
overall power using the methods discussed in Chaps. 2 and 3. The easiest method
involves a grid search to increase n gradually until the power exceeds the desired
overall power. However, this method requires mathematical sophistication, special-
ized programming knowledge, and often takes considerable computing time.

In this chapter we provide an efficient and practical algorithm for calculating the
sample size and present a practical sample size formula with associated numeri-
cal tables for sizing clinical trials with multiple co-primary endpoints. The formula
reduces to a very familiar one if the number of primary endpoints is one. The for-
mula and associated tables have the following advantages: (i) they are easy to use,
are convenient, inexpensive, and practical; (ii) they provide intuition regarding the
relationship between factors such as type I and II errors, effect sizes, correlation, and
variance, revealing how these factors affect the required sample size; and (iii) they
allow for an informative graphical display that is helpful in evaluating the sample
size sensitivity.

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
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4.2 Convenient Formula

4.2.1 Continuous Endpoints

Consider a randomized clinical trial comparing two interventions with nT subjects in
the test group and nC subjects in the control group. There are K co-primary continu-
ous endpoints with a K -variate normal distribution, where K ≥ 2. Let the responses
for the nT subjects in the test group be denoted by YT jk , j = 1, . . . , nT, and those
for the nC subjects in the control group, by YC jk , j = 1, . . . , nC. Suppose that
the vectors of responses Y T j = (YT j1, . . . , YT j K )T and Y C j = (YC j1, . . . , YC j K )T

are independently distributed as K -variate normal distributions with mean vectors
E[YT j ] = μT = (μT1, . . . , μTK )T and E[Y C j ] = μC = (μC1, . . . , μCK )T, respec-
tively, and common covariance matrix �, i.e.,

Y T j ∼ NK (μT,�) and Y C j ∼ NK (μC,�),

where

� =
⎛
⎜⎝

σ 2
1 · · · ρ1K σ1σK
...

. . .
...

ρ1K σ1σK · · · σ 2
K

⎞
⎟⎠

with var[YT jk] = var[YC jk] = σ 2
k , corr[YT jk, YT jk′ ] = corr[YC jk, YC jk′ ] = ρkk′

(k �= k′ : 1 ≤ k < k′ ≤ K ).
We can assert the superiority of the test intervention over the control in terms of

all K primary endpoints if and only if μTk − μCk > 0 for all k = 1, . . . , K . Thus,
the hypotheses for testing are

H0 : μTk − μCk ≤ 0 for at least one k,

H1 : μTk − μCk > 0 for all k.
(4.1)

In testing the preceding hypotheses, the null hypothesis H0 is rejected if and only
if all of the null hypotheses associated with each of the K primary endpoints are
rejected at a significance level of α.

Similarly as in Sect. 2.2.1, under the assumption that the variance is known, the
following Z -statistic can be used to test the difference in the means for each endpoint:

Zk = ȲTk − ȲCk

σk

√
1

nT
+ 1

nC

, k = 1, . . . , K , (4.2)

http://dx.doi.org/10.1007/978-3-319-22005-5_2
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where ȲTk and ȲCk are the sample means given by

ȲTk = 1

nT

nT∑
j=1

YT jk and ȲCk = 1

nC

nC∑
j=1

YC jk .

Hence, the sample size required for achieving the desired power of 1−β is obtained
by the minimum n that satisfies

1 − β ≤
∫ ∞

zα

· · ·
∫ ∞

zα

fρZ
(z1, . . . , zK ;√

nκδ)dzK · · · dz1, (4.3)

where r = nC/nT, n = nT, κ = r/(1+r), δ = (δ1, . . . , δK )T, δk = (μTk −μCk)/σk

(standardized effect size), and fρZ
(·; m) is the density function of the multivariate

normal (MVN) with mean vector m and correlation matrix ρZ . The off-diagonal
elements of ρZ is given by ρkk′

. Further, zα is the (1 − α) quantile of the standard
normal distribution. An algorithm that can be used to obtain such an n involves
evaluating (4.3) in which n is replaced with ñ ← ñ + 1 being updated consecutively
from a starting point n0 for ñ. As the starting point, we can use

n0 = (zβ + zα)2

κ · mink δ2
k

, (4.4)

i.e., the sample size per group required in the case of a single endpoint with the mini-
mum effect size, where zβ is the (1−β) quantile of the standard normal distribution.

Example 1 Consider the case of δ1 = 0.55 and δ2 = 0.50 with the equal sample
sizes per group n = nT = nC (i.e., r = 1.0), ρ12 = 0.5 and α = 0.025. Start-
ing points of n0 = 62.8 and 84.1 are computed in advance for 1 − β = 0.8 and
0.9, respectively. Table 4.1 displays the computational processes for (̃n, n) and the
corresponding power updated consecutively until (4.3) is achieved.

Although it may appear computationally simple to evaluate (4.3) when there are
two endpoints, the computation requires an iterative algorithm equipped with the
cumulative distribution function (CDF) of the MVN. Computation is more compli-
cated when there are three or more endpoints. Thus, we provide a simple formula

Table 4.1 Computational processes for (̃n, n) and the corresponding power until (4.3) is satisfied
under the equal sample sizes per group n = nT = nC (i.e., r = 1.0), δ1 = 0.55, δ2 = 0.50,
ρ12 = 0.5 and α = 0.025

ñ [n0] 63 64 65 66 67 68 69 70 71 72 [n]
Power 0.734 0.742 0.750 0.758 0.765 0.773 0.780 0.787 0.794 0.800

ñ [n0] 85 86 87 88 89 90 91 92 93 [n]
Power 0.871 0.875 0.879 0.883 0.888 0.891 0.895 0.899 0.902
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expressed as “n =” for practical use, which researchers can use to calculate the
sample size as easily as if there were a single endpoint.

An alternative formula for (4.3) is

n = (CK + zα)2

κ · δ2
K

(4.5)

using CK which is the solution of the integral equation

1 − β =
∫ γ1CK +zα(γ1−1)

−∞
· · ·

∫ γK−1CK +zα(γK−1−1)

−∞

∫ CK

−∞
fρZ

(z1, . . . , zK ; 0)dzK · · · dz1,

(4.6)
where theγk terms are the effect size ratios given byγk = δk/δK for k = 1, . . . , K−1.
It is appropriate to write CK = CK (β, ρZ , γ , α) in the formal manner because the
solution of (4.6) for CK depends on β, ρZ , γ and α, where γ = (γ1, . . . , γK−1).
The CK term in (4.5) corresponds to zβ in the sample size formula in the case of
the single endpoint. In fact, CK reduces to zβ if K = 1. Because users are familiar
with the univariate sample size formula, (4.5) may be more appealing than (4.3).
Users can calculate the required sample size per group by providing CK from the
tables or from an algorithm as discussed later. In addition, formula (4.5) reveals how
the sample size is influenced by factors such as type I and II errors, effect sizes and
correlation. For example, the ratio of n(ρ) to n(0) is easily derived from (4.5). In
particular, if effect sizes are the same for each endpoint under a common α and β·
then the ratio is determined depending only on CK which varies with the correlation
matrix ρZ , that is,

n(ρ)

n(0)
= (CK (β, ρZ , γ , α) + zα)2

(CK (β, I, γ , α) + zα)2 ,

where n(0) is the sample sizes per group required in the uncorrelated case and I
is the identity matrix. This result could not be determined using (4.3). In Fig. 4.1,
we provide plots of the ratio (n(ρ)/n(0)) against ρ12 for K = 2, α = 0.025 and
β = 0.2 when the effect size ratios are γ1 = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 2.0. For
example, the ratio is about 89 % when ρ12 = 0.8 and γ1 = 1.0, which agrees with
a discussion of Sozu et al. (2011) and Fig. 2.4 in Sect. 2.4.3. Figure 4.1 shows that
the ratio decreases as the correlation approaches one. Even when γ1 > 1.0, the ratio
still decreases as the correlation approaches one. However, when γ1 > 1.5, the ratio
does not change considerably as the correlation varies. In addition, the larger K is,
the more remarkably the ratio changes with the correlation matrix ρZ .

Now we show how (4.5) is derived from (4.3). By shifting the density function
to −√

nκδ and using the symmetry property on the domain of integration, we can
transform the equation version of (4.3) into

1 − β =
∫ √

nκδ1−zα

−∞
· · ·

∫ √
nκδK −zα

−∞
fρZ

(z1, . . . , zK ; 0)dzK · · · dz1,

http://dx.doi.org/10.1007/978-3-319-22005-5_2
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where 0 = (0, . . . , 0)T. This equation is equivalent to the simultaneous equations

1 − β =
∫ C1

−∞
· · ·

∫ CK

−∞
fρZ

(z1, . . . , zK ; 0)dzK · · · dz1, (4.7a)

and Ck = √
nκδk − zα, k = 1, . . . , K . (4.7b)

Note that (4.7b) is equivalent to K linear equations

⎧⎪⎨
⎪⎩

n = κ−1(C1 + zα)2/δ2
1,

...

n = κ−1(CK + zα)2/δ2
K .

(4.7c)

Considering a combination of (4.7a), (4.7b) and (4.7c), we can derive a formulafor n,
such as (4.5). For example, given CK (one of the Ck terms), the remaining Ck terms
are expressed as

Ck = γkCK + zα (γk − 1) , k = 1, . . . , K − 1 (4.8)

using (K − 1) equations of (4.7b) or (4.7c). Then, the integral equation (4.6) is
obtained by substituting (4.8) into (4.7a). Therefore, using the solution of (4.6) for
CK , we have (4.5) represented by the form of “n =”. In summary, (4.5) is a transfor-
mation equivalent to the equation version of (4.3), which is the sample size formula
to achieve the power of 1 − β when there are K co-primary endpoints. We provide
the numerical values of Ck for K = 2 in Tables 4.3 and 4.4, and K = 3 in Tables
C.1 and C.2 in Appendix C.

Fig. 4.1 Behavior of the
ratio (n(ρ)/n(0)) for K = 2,
α = 0.025 and β = 0.2
under γ1 = 1.0, 1.1, 1.2, 1.3,
1.4, 1.5 and 2.0
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4.2.2 Binary Endpoints

For K co-primary binary endpoints, Chap. 3 provided the formulae for power and
sample size calculation in a two-group comparison using five testing methods (the
chi-square and arcsine methods with and without CC, and the exact method). Here,
we show how the formula (4.5) for continuous co-primary endpoints is modified for
binary endpoints, in particular when the testing methods except for the exact method
are used.

In this section, suppose that the vector of responses Y T j , j = 1, . . . , nT and Y C j ,
j = 1, . . . , nC are independently distributed as K -variate Bernoulli distribution with
means μTk = E[YT jk] = πTk and μCk = E[YC jk] = πCk and correlations (of binary
endpoints)

τ kk′
T = φkk′

T − πTkπTk′√
πTkθTkπTk′θTk′

and τ kk′
C = φkk′

C − πCkπCk′√
πCkθCkπCk′θCk′

,

where φkk′
T = Pr[YT jk = YT jk′ = 1], φkk′

C = Pr[YC jk = YC jk′ = 1], θTk = 1 − πTk ,
and θCk = 1 − πCk . We write nT = n and nC = nr using the ratio r = nC/nT, and
denote κ = r/(1 + r). Throughout the paragraph of the chi-square methods below,
denote δk = (πTk − πCk)/σk and

⎧⎪⎪⎨
⎪⎪⎩

σk =
√

κπTkθTk + (1 − κ)πCkθCk

κ

σ ∗
k =

√
((1 − κ)πTk + κπCk)((1 − κ)θTk + κθCk)

κ

, k = 1, . . . , K .

While, in the part of the arcsine methods, we will use δk = (sin−1 √
πTk −

sin−1 √
πCk)/σk and σk = 1/2

√
κ , k = 1, . . . , K . See Table 3.1 for the details

of the covariance matrix ρZ∗ corresponding to these four methods.

(1) One-sided chi-square test without CC (Pearson 1900)

The power formula for the chi-square method (without CC) is provided by

1 − β �
∫ √

nδ1− σ∗
1

σ1
zα

−∞
· · ·

∫ √
nδK − σ∗

K
σK

zα

−∞
fρZ∗ (z1, . . . , zK ; 0)dzK · · · dz1,

where the off-diagonal element of the covariance matrix ρZ∗ is

ρkk′
D = κτ kk′

T

√
πTkθTkπTk′θTk′ + (1 − κ)τ kk′

C

√
πCkθCkπCk′θCk′

κσkσk′
.

Let Ck = √
nδk − σ ∗

k

σk
zα , then, similarly to the manner to derive (4.5), we have

http://dx.doi.org/10.1007/978-3-319-22005-5_3
http://dx.doi.org/10.1007/978-3-319-22005-5_3
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n = δ−2
k

(
Ck + σ ∗

k

σk
zα

)2

, k = 1, . . . , K .

So, given CK , the rest Ck’s are expressed by

Ck = γkCK + zα

(
σ ∗

K

σK
γk − σ ∗

k

σk

)
. (4.9)

where γk = δk/δK , k = 1, . . . , K − 1. Hence, the sample size formula is

n =

(
CK + σ ∗

K

σK
zα

)2

δ2
K

(4.10)

using the solution CK of the integral equation

1 − β =
∫ γ1CK +zα

(
σ∗

K
σK

γ1− σ∗
1

σ1

)

−∞
· · ·

∫ γK−1CK +zα

(
σ∗

K
σK

γK−1−
σ∗

K−1
σK−1

)

−∞

×
∫ CK

−∞
fρZ∗ (z1, . . . , zK ; 0) dzK · · · dz1. (4.11)

(2) One-sided chi-square test with CC (Yates 1934)

Letting

Ck = √
nδk − σ ∗

k

σk
zα − 1

2nκ

√
n

σk
= √

nδk − σ ∗
k

σk
zα − 1

2
√

nκσk
,

the power formula for the chi-square method with CC is provided similarly to the
chi-square method (without CC) by

1 − β �
∫ C1

−∞
· · ·

∫ CK−1

−∞

∫ CK

−∞
fρZ∗ (z1, . . . , zK ; 0) dzK . . . dz1. (4.12)

The definition of ρkk′
D is the same as that of the chi-square method. Hence, the

relationship between Ck and δk is more complicated than the chi-square method,

δkn −
(

σ ∗
k

σk
zα + Ck

) √
n − 1

2κσk
= 0,

so that we have
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√
n = zασ ∗

k /σk + Ck +
√(

zασ ∗
k /σk + Ck

)2 + 2δk/κσk

2δk
, k = 1, . . . , K .

This yields the non-linear equation between Ck and CK as follows:

δK

δk

{
zασ ∗

k /σk + Ck +
√(

zασ ∗
k /σk + Ck

)2 + 2δk/κσk

}

= zασ ∗
K /σK + CK +

√(
zασ ∗

K /σK + CK
)2 + 2δK /κσK . (4.13)

Therefore, the required sample size per group is

n =

(
zασ ∗

K /σK + CK +
√(

zασ ∗
K /σK + CK

)2 + 2δK /κσK

)2

4δK
2

using the solution CK of the integral equation (4.12) satisfying (4.13). To obtain the
solution Ck of (4.13) for given CK , an iteration method such as the Newton-Raphson
(NR) method is required.

(3) Arcsine root transformation method without CC (Bartlett 1947)

Let δk = (sin−1 √
πTk − sin−1 √

πCk)/σk and σk = 1/2
√

κ , k = 1, . . . , K . Then,
because σk is independent of πTk and πCk , the power formula for the arcsine method
(without CC) is the same as that for continuous endpoint in the previous section.
Therefore, the sample size formula is

n = (CK + zα)2

δ2
K

(4.14)

using the solution CK of the integral equation

1 − β =
∫ γ1CK +zα(γ1−1)

−∞
· · ·

∫ γK−1CK +zα(γK−1−1)

−∞

∫ CK

−∞
fρZ∗ (z1, . . . , zK ; 0) dzK · · · dz1,

(4.15)

where the (k, k′)th element of the covariance matrix ρZ∗ is ρkk′
D = κτ kk′

T +(1−κ)τ kk′
C

(see Sozu et al. 2010) and γk = δk/δK , k = 1, . . . , K − 1. Note that (4.15) is the
same as the Eq. (4.6) except the point that the covariance matrix ρZ∗ is used instead
of ρZ , so that the same algorithm to obtain CK can be used in the both cases.

(4) Arcsine root transformation method with CC (Walters 1979)

In the arcsine method with CC, it is difficult to derive the form of “n =” as the sample
size formula. This is because the correction terms of (1−κ)/2nκ as given in Table 3.1
appear not only in the square root of the arcsine function but also in the binomial

http://dx.doi.org/10.1007/978-3-319-22005-5_3
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variance forms. That is, the relationship between Ck and n is too complicated to
express an explicit form of “n =”, although it is linear in the chi-square and arcsine
methods (without CC) and quadratic in the chi-square method with CC. Hence, a
simple formula for the arcsine method with CC is not provided. An iterative procedure
is required to find a required sample size. The sample size obtained from the arcsine
method (without CC) can be used as an initial value in an algorithm for the sample
size calculation.

4.3 Computational Algorithm

We provide an NR algorithm to solve (4.6), (4.11) and (4.15). Although the covariance
matrix ρ is used throughout this section, the ρ is ρZ in the case of continuous
endpoints and ρZ∗ in the case of binary endpoints. For simplicity, we consider the
case of K = 2. Let

G(C2) = (1 − β) −
∫ γ1C2+zα(a2γ1−a1)

−∞

∫ C2

−∞
fρ (z1, z2; 0) dz2dz1,

where a1 = σ ∗
1 /σ1 and a2 = σ ∗

2 /σ2 if the chi-square method (without CC) is used
in the case of binary endpoints and a1 = a2 = 1 otherwise (see (4.9) and (4.8)). For
the NR method, we need the first derivative of G(C2) in order to find G(C2) = 0,
which yields (4.6). The first derivative is

dG(C2)

dC2
= −F (1)

ρ (C1, C2)γ1 − F (2)
ρ (C1, C2),

where C1 = γ1C2 + zα(a2γ1 − a1) following (4.8) and (4.9),

F (1)
ρ (C1, C2) =

∫ C2

−∞
fρ (C1, z2; 0) dz2 and F (2)

ρ (C1, C2) =
∫ C1

−∞
fρ (z1, C2; 0) dz1.

Hence, we obtain the NR algorithm

C (l)
2 = C (l−1)

2 −
{

dG(C2)

dC2

}−1

G(C2)

∣∣∣∣
C2=C(l−1)

2

, l = 1, 2, . . . ,

where C (0)
2 is the starting point of this algorithm. For example, as such a starting

point, we can use zβ or the solution of G(C2) = 0 when γ1 = 1. In addition, F (k)
ρ

can be computed approximately from the numerical derivative using the CDF of the
MVN. Also, by a simple extension from K = 2, we obtain a general NR algorithm
for solving the integral equation (4.6) for an arbitrary K . We describe these details
generally in the following section.
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Table 4.2 Newton-Raphson iterations of C (l)
2 and the corresponding power and equal sample size

per group n(l) (r = 1.0) when δ1 = 0.55, δ2 = 0.50, ρ12 = 0.5 and α = 0.025

β = 0.2 β = 0.1

l 0 1 2 3 l 0 1 2 3

C (l)
2 0.8416 1.0248 1.0396 1.0397 C (l)

2 1.2816 1.4226 1.4373 1.4374

Power 0.7326 0.7954 0.79997 0.8000 Power 0.8665 0.8971 0.89997 0.9000

n(l) 62.79 71.27 71.98 71.98 n(l) 84.06 91.53 92.33 92.34

Example 2 Consider the case in Example 1 (equal sample size per group n = nT =
nC (i.e., r = 1.0), δ1 = 0.55, δ2 = 0.50, ρ12 = 0.5 and α = 0.025).

Because of the continuous endpoints, we use a1 = a2 = 1. In this case, the
starting point, C (0)

2 is zβ , which corresponds to selecting n0. Table 4.2 shows two

examples of a sequence for C (l)
2 , and the corresponding power and n(l) obtained from

the NR iterations under β = 0.2 and β = 0.1, where n(l) is the n obtained from
(4.5) in which CK is replaced by C (l)

K . In many cases, the NR algorithm completes
the calculation using fewer iterations than is implied by the consecutive updating
method for (̃n, n) described in Example 1.

General Cases. Denote the CDF of the MVN with zero means by

Fρ(C1, . . . , CK ) =
∫ C1

−∞
· · ·

∫ CK

−∞
fρ(z1, . . . , zK ; 0)dzK · · · dz1.

In addition, denote the first partial derivative ∂ Fρ(C1, . . . , CK )/∂Ck by F (k)
ρ

(C1, . . . , CK ). Let

G(CK ) = (1−β)− Fρ (γ1CK + zα(aK γ1 − a1), . . . , γK−1CK + zα(aK γK−1 − aK−1), CK ) ,

where ak = σ ∗
k /σk , k = 1, 2, . . . , K if the chi-square method (without CC) is used

in the case of binary endpoints and a1 = a2 = · · · = aK = 1 otherwise (the cases of
continuous endpoints and the arcsine method with CC). Note that (4.6) is the same
as G(CK ) = 0. Then, a simple extension from the case of K = 2 gives the NR
algorithm to solve (4.6) for an arbitrary K :

C (l)
K = C (l−1)

K −
{

dG(CK )

dCK

}−1

G(CK )

∣∣∣∣
CK =C(l−1)

K

, l = 1, 2, . . . ,

where these elements are evaluated by

dG(CK )

dCK
= −

K−1∑
k=1

F (k)
ρ (C1, . . . , CK )γk − F (K )

ρ (C1, . . . , CK )
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and F (k)
ρ (C1, . . . , CK ) =

∫ C1

−∞
· · ·

∫ Ck−1

−∞

∫ Ck+1

−∞
· · ·

∫ CK

−∞
fρ (z1, . . . , zk−1, Ck, zk+1, . . . , zK ) dzK · · · dzk+1dzk−1 · · · dz1,

because Ck = γkCK + zα(aK γk − ak), k = 1, . . . , K − 1 are given by (4.8) and
(4.9). In many statistical software packages, F (k)

ρ is not provided, but the CDF of the

MVN, Fρ , is usually available. Hence, F (k)
ρ can be computed approximately using

the numerical derivative

F(k)
ρ (C1, . . . , CK ) � ε−1 {

Fρ(C1, . . . , Ck + ε, . . . , CK ) − Fρ(C1, . . . , Ck , . . . , CK )
}

for a small ε. As a starting point, C (0)
K , for the NR algorithm, it is convenient to use

either (i) zβ , which has the same meaning as using n0 in (4.4) or (ii) the solution
of G(CK ) = 0 when γ = (1, . . . , 1)T. Many standard statistical software packages
are already equipped with a macro to compute either (i) or (ii). In Appendices D.1
and D.2, respectively, we provide the codes for the R and SAS software packages
needed to obtain CK from this NR algorithm. Also, in order to find the solution CK

of the nonlinear equation (4.6), the R users can utilize the “optimize” function
equipped in the R.

4.4 Numerical Tables for CK

Consider the case of continuous endpoints (i.e., a1 = · · · = aK = 1). In calculating
the required sample size using the formula (4.5), where candidate values of δk’s and
ρ are available from pilot or historical data, the behaviour of CK = CK (β, ρ, γ , α) is
complicated even if a computational algorithm for CK is available. For investigators
intending to use (4.5), it is convenient to have ready access to tables of values of CK ,
which we provide for the frequently used cases of K = 2 and K = 3. The required
sample size using (4.5) and tables of CK can be computed even if a high computation
environment is not available. To simplify these tables, without loss of generality, we
assume that the rule

γ1 ≥ γ2 ≥ · · · ≥ γK−1 ≥ 1 (⇔ δ1 ≥ δ2 ≥ · · · ≥ δK )

is satisfied. Throughout this section, the significance level of α = 0.025 is used.
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4.4.1 Two Co-primary Endpoints

Using numerical tables for CK provided by Tables 4.3 and 4.4 (see Sugimoto et al.
2012), we consider seven non-negative values of the correlation coefficient (ρ12: 0,
0.2, 0.3, 0.5, 0.7, 0.8 and 0.95) and 15 effect size ratios (γ1: 1.0, 1.02, 1.04, 1.07,
1.1, 1.13, 1.16, 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.8 and 2.0) when β = 0.2 and β = 0.1.
The fine division for the effect size ratio is useful to improve the precision of linear
interpolation for approximating the value of C2 corresponding to γ1 which does not
fall under Tables 4.3 and 4.4.

Figure 4.2 shows the curves of C2(0.2, ρ12, γ1, 0.025) on ρ12 under the seven
effect size ratios (γ1: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 2.0). The curves of C2(0.1, ρ12, γ1,

0.025) tend to be similar to those in Fig. 4.2. Unless the correlation coefficient ρ12

is close to 1, using linear interpolation to approximate the missing C2 values in
Tables 4.3 and 4.4 is generally reasonable.

4.4.2 Three Co-primary Endpoints

When β = 0.2 and β = 0.1, using tables for CK provided by Tables C.1 and C.2 in
Appendix C (see Sugimoto et al. 2012), we consider 7 effect size ratios (γ1, γ2: 1.0,
1.1, 1.2, 1.3, 1.4, 1.5 and 2.0) and 4 levels of correlation, H(high, 0.8), M(medium,
0.5), L(low, 0.3) and 0 (none). However, because it would be excessive and not
particularly useful to list all possible combinations of ρ12, ρ13 and ρ23, the table
entries are restricted to the patterns with {ρ12 = ρ13 = ρ23}, {0 < ρ12 = ρ13 �= ρ23}
and {ρ12 �= ρ13 = ρ23 > 0}. The first pattern comprises H-H-H, M-M-M, L-L-L
and 0-0-0 for the above patterns of correlation involving ρ12-ρ13-ρ23. The second
comprises H-H-M, H-H-L, M-M-H, M-M-L, L-L-H, L-L-M, M-M-0, L-L-0, and the
third is in reverse order to the second; H-H-0 is excluded as an unrealized pattern
because the determinant of the correlation matrix ρ with H-H-0 is negative. Tables
C.1 and C.2 list the values of CK calculated under these patterns (represented as H
= 0.8, M = 0.5 and L = 0.3) of the correlation matrix

ρ =
⎛
⎝

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞
⎠

and the two effect size ratios γ1 (= δ1/δ3) and γ2 (= δ2/δ3), when β = 0.2 and
β = 0.1, respectively. In all combinations of ρ and γ = (γ1, γ2) in Tables C.1 and
C.2, the ratio of the required sample size at β = 0.1 to that at β = 0.2,

(C3(0.1, ρ, γ , α) + zα)2

(C3(0.2, ρ, γ , α) + zα)2 |α=0.025,

is between 1.22 and 1.34.
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Table 4.3 CK (β, ρ12, γ1, α) when 1 − β = 0.8, α = 0.025 and K = 2

ρ12

γ1 0.0 0.2 0.3 0.5 0.7 0.8 0.95

1.00 1.250 1.226 1.210 1.168 1.109 1.066 0.961

1.02 1.219 1.195 1.179 1.138 1.079 1.038 0.934

1.04 1.190 1.166 1.151 1.111 1.053 1.012 0.912

1.07 1.150 1.127 1.112 1.073 1.017 0.978 0.887

1.10 1.114 1.091 1.077 1.040 0.986 0.950 0.869

1.13 1.081 1.060 1.046 1.010 0.960 0.927 0.858

1.16 1.051 1.031 1.018 0.984 0.938 0.907 0.850

1.20 1.016 0.998 0.986 0.955 0.914 0.887 0.845

1.25 0.979 0.962 0.952 0.925 0.890 0.870 0.843

1.30 0.948 0.934 0.925 0.902 0.874 0.858 0.842

1.40 0.902 0.892 0.886 0.871 0.854 0.847 0.842

1.50 0.874 0.868 0.864 0.855 0.846 0.843 0.842

1.60 0.857 0.854 0.852 0.847 0.843 0.842 0.842

1.80 0.845 0.844 0.843 0.842 0.842 0.842 0.842

2.00 0.842 0.842 0.842 0.842 0.842 0.842 0.842

Table 4.4 CK (β, ρ12, γ1, α) when 1 − β = 0.9, α = 0.025 and K = 2

ρ12

γ1 0.0 0.2 0.3 0.5 0.7 0.8 0.95

1.00 1.632 1.617 1.607 1.577 1.529 1.493 1.398

1.02 1.598 1.583 1.573 1.543 1.496 1.461 1.367

1.04 1.566 1.552 1.542 1.513 1.467 1.432 1.343

1.07 1.523 1.510 1.500 1.472 1.428 1.396 1.317

1.10 1.486 1.473 1.463 1.437 1.397 1.367 1.301

1.13 1.453 1.441 1.432 1.408 1.371 1.344 1.291

1.16 1.424 1.413 1.405 1.383 1.350 1.327 1.286

1.20 1.392 1.382 1.375 1.356 1.328 1.310 1.283

1.25 1.360 1.352 1.346 1.331 1.309 1.296 1.282

1.30 1.336 1.329 1.325 1.313 1.297 1.289 1.282

1.40 1.305 1.302 1.299 1.293 1.286 1.283 1.282

1.50 1.291 1.289 1.288 1.285 1.283 1.282 1.282

1.60 1.285 1.284 1.284 1.283 1.282 1.282 1.282

1.80 1.282 1.282 1.282 1.282 1.282 1.282 1.282

2.00 1.282 1.282 1.282 1.282 1.282 1.282 1.282
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Fig. 4.2 The curves of
C2(0.2, ρ12, γ1, 0.025) on
ρ12 under γ1 = 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 2.0
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4.4.3 Computational Note

To create the tables for CK in Sugimoto et al. (2012), the CDF of the K -variate MVN
is computed using the method developed by Miwa et al. (2003), where the number
of grid points is set to 512 to better approximate the value of the CDF. Furthermore,
it is confirmed that the CK values are the same as the simulated averages obtained
from using the method by Genz (1992) with ε = 10−6, where ε is an absolute error
tolerance to stop the repetition in his method based on a Monte-Carlo procedure.

4.5 Examples

As discussed in Sect. 2.6 and the related guideline (CHMP 2008), a typical clinical
trial for Alzheimer’s disease (AD) is a randomized, double-blind, placebo-controlled,
parallel group clinical trial with cognitive, functional and global endpoints to evaluate
a symptomatic improvement in the dementia caused by the disease. These endpoints
may be classified as follows:

(i) objective cognitive tests, e.g. ADAS-cog (AD Assessment Scale cognitive sub-
scale) and SIB (Severe Impairment Battery);

(ii) self-care and activities of daily living, e.g. ADCS-ADL (AD Cooperative Study
Activities of Daily Living) and its modified version for severe AD; and

(iii) global assessment of change, such as CIBIC-plus (Clinician’s Interview Based
Impression of Change-plus) and CGI-I (Clinical Global Impression of
Improvement).

For illustration, we first consider the case of two co-primary endpoints and then
consider a case of three co-primary endpoints. The data used for calculation are
taken from Rogers et al. (1998) and Winblad et al. (2006).

http://dx.doi.org/10.1007/978-3-319-22005-5_2
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4.5.1 Two Co-primary Endpoints

For the case of two co-primary endpoints, we refer to the results obtained by Rogers
et al. (1998). Based on the results, the standardized effect sizes of the changes in
ADAS-cog score from the baseline and the CIBIC-plus at the final visit are estimated
to be 0.47 and 0.48, respectively. Thus, in designing a future study to compare two
treatments (Donepezil vs. Placebo), we consider the case of δ1 = 0.48 and δ2 = 0.47
(according the rule of δ1 ≥ δ2) with ρ12 = 0, 0.3, 0.5, 0.8, α = 0.025 and β = 0.2.
Given that γ1 = δ1/δ2 � 1.021, we use C2 = 1.219, 1.179, 1.138, 1.038 from
Table 4.3 for each value of ρ12. Hence, the equal sample sizes per group n = nT = nC
(i.e., r = 1.0) were calculated from (4.5) as follows:

n =

⎧⎪⎪⎨
⎪⎪⎩

2(1.219 + 1.96)2/0.472 = 91.50 → 92 if ρ12 = 0.0
2(1.179 + 1.96)2/0.472 = 89.21 → 90 if ρ12 = 0.3
2(1.138 + 1.96)2/0.472 = 86.90 → 87 if ρ12 = 0.5
2(1.038 + 1.96)2/0.472 = 81.38 → 82 if ρ12 = 0.8

.

As a second example, consider the study of Winblad et al. (2006) to compare two
treatments (Donepezil vs. Placebo). The two co-primary endpoints are the changes
from the baseline to month six in the SIB score and ADCS-ADL-severe (a modified
ADCS-ADL for severe AD). They calculated the required sample size per group as
follows:

... we needed a sample size of 101 patients per treatment group to detect with 90%
power an absolute difference between treatments in ADCS-ADL-severe of 3.5 (SD
= 7.6) with α level of 0.05. With the same power and significance level, we needed
to enroll 86 patients per group to detect a 7 (SD = 14) point absolute treatment
difference in SIB scores ...

This means that, by randomizing 101 patients per group to test (4.1) with α =
0.025, the statistical power of at least 0.9×0.9 = 0.81 (more precisely, 0.9×0.94 =
0.846) is assured even if the SIB score and ADCS-ADL-severe are uncorrelated.
Now, we use Tables 4.3 and 4.4 for the effect sizes of δ1 = 0.5 (SIB) and δ2 = 0.46
(ADCS-ADL-severe). Given that γ1 = δ1/δ2 � 1.087, we use linear interpolation
between the values of C2 at γ1 = 1.07 and 1.10 from Tables 4.3 and 4.4. When
α = 0.025, the equal sample sizes per group n = nT = nC (i.e., r = 1.0) calculated
from (4.5) are

n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
( 0.013

0.030 1.150 + 0.017
0.030 1.114 + 1.96

)2
/0.462 → 91 if ρ12 = 0.0, β = 0.2

2
( 0.013

0.030 1.073 + 0.017
0.030 1.040 + 1.96

)2
/0.462 → 86 if ρ12 = 0.5, β = 0.2

2
( 0.013

0.030 1.523 + 0.017
0.030 1.486 + 1.96

)2
/0.462 → 114 if ρ12 = 0.0, β = 0.1

2
( 0.013

0.030 1.472 + 0.017
0.030 1.437 + 1.96

)2
/0.462 → 111 if ρ12 = 0.5, β = 0.1

,

which are identical to the numbers computed exactly for γ1 = 1.087 using the NR
algorithm described in Sect. 4.3.
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4.5.2 Three Co-primary Endpoints

For illustration, consider a clinical trial for AD with the three co-primary endpoints,
the SIB score (an objective cognitive test), ADCS-ADL-severe (self-care and activ-
ities of daily living) and the CGI-I score for global assessment of change.

From the results of a modified intention-to-treat population, the estimated stan-
dardized effect sizes of the changes from the baseline to month six in SIB score,
ADCS-ADL-severe and CGI-I score are 0.36, 0.30 and 0.26, respectively. Based on
these values, consider the case of δ = (0.36, 0.30, 0.26)T with ρ = ρM, ρL, ρN,
α = 0.025 and β = 0.2, where

ρv =
⎛
⎝

1 v v

v 1 v

v v 1

⎞
⎠ , v : M = 0.5, L = 0.3, N = 0.0.

Given γ1 = 1.385 and γ2 = 1.154, for values of C3 at γ = (1.3, 1.1) and (1.4, 1.2)

in Table C.1, we approximate the values of C (1.385,1.154)
3 using the linear interpolation

0.046

0.100

{
0.015

0.100
C (1.3,1.1)

3 + 0.085

0.100
C (1.4,1.1)

3

}
+ 0.054

0.100

{
0.015

0.100
C (1.3,1.2)

3 + 0.085

0.100
C (1.4,1.2)

3

}
,

where C (γ1,γ2)
3 is an abbreviation of C3(β, ρ, γ , α). For example, if ρ = ρM,

C (1.3,1.1)
3 , C (1.4,1.1)

3 , C (1.3,1.2)
3 and C (1.4,1.2)

3 are, from Table C.1, 1.065, 1.050, 0.990
and 0.970, respectively. Hence, from (4.5), the required sample sizes per group are
approximately

n =
⎧⎨
⎩

2(1.009 + 1.96)2/0.262 = 260.8 → 261 if ρ = ρM
2(1.050 + 1.96)2/0.262 = 268.1 → 269 if ρ = ρL
2(1.091 + 1.96)2/0.262 = 275.4 → 276 if ρ = ρN

,

which exceed the numbers of patients computed exactly for γ = (1.385, 1.154) by
only one. The exact values of C (1.385,1.154)

3 are 1.004, 1.045 and 1.086 at ρ = ρM,
ρL and ρN , respectively. The linear interpolation gives a conservative approximation
for the sample size in general because CK is convex on {γ : γ1, . . . , γK−1 ≥ 1}.

In all cases of K ≥ 4, and in other cases of K = 2 or K = 3 in which ρ and γ

are not compatible with the conditions implied by Tables 4.3 to C.2, investigators
can compute CK , the solution of (4.6), using the codes for the R and SAS software
packages provided in Appendices D.1 and D.2.
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4.6 Summary

This chapter provides convenient formulae and numerical tables for sample size
calculations associated with designing clinical trials with two interventions when all
of the endpoints are either continuous or binary. The formulae and numerical tables
provide a practical tool for implementing the methods discussed in Chaps. 2 and 3.
The major points are as follows:

• The formulae are natural extensions to existing formulae for the univariate case in
both the continuous and binary endpoint cases. The methods are easy to implement
in practice using the numerical tables or an algorithm for CK .

• The formulae provide a clear picture of the relationship between the factors (e.g.,
type I and II errors, effect sizes, correlations and variances) and reveal how the
sample size is influenced by these factors.

• An NR algorithm is provided for obtaining CK for arbitrary values of the type I and
II errors, effect size ratios, and correlations. The NR algorithm usually completes
the calculation with a smaller number of steps than the procedure in which the
tentative sample size is consecutively updated until achieving the target power.
Using the algorithm, in all cases of K ≥ 4, and in other cases of K = 2 or K = 3
in which the correlations and the effect size ratios are not compatible with the
conditions presented in the prepared tables, investigators can compute CK using
the R and SAS codes provided in Appendices D.1 and D.2.
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Chapter 5
Continuous Primary Endpoints

Abstract In this chapter, we provide an overview of the concepts and technical fun-
damentals regarding power and sample size calculation for clinical trials comparing
two interventions with multiple continuous outcomes as multiple primary endpoints.
There are many procedures for controlling the type I error rate. We discuss the
simplest procedure, the unstructured Bonferroni procedure as it is well-known and
widely utilized in practice. We evaluate the behavior of the sample size and power
associated with the methods. We introduce conservative sample sizing strategies in
these clinical trials and provide numerical examples for illustration.

Keywords Bonferroni procedure · Conservative sample size · Disjunctive power ·
Multivariate normal · Union intersection test

5.1 Introduction

In this chapter, we discuss a situation in which the sample size is selected based on
an alternative hypothesis that an effect exists for AT LEAST ONE endpoint. There
are many procedures for controlling type I error rate. We will discuss the simplest
procedure, the unstructured Bonferroni procedure as it is well-known and widely
used in practice.

Consider a randomized clinical trial comparing two interventions with nT subjects
in the test group and nC subjects in the control group. There are K (≥ 2) continuous
endpoints with a K -variate normal distribution. There is interest in evaluating an
alternative hypothesis of superiority for AT LEAST ONE of the endpoints. The type
I error rate needs to be controlled adequately since the type I error rate increases as
the number of endpoints to be evaluated increases. One of the methods for controlling
the type I error rate is the Bonferroni procedure, a well-known and simple procedure
that is frequently used in practice. The Bonferroni procedure equally distributes the
type I error rate α among the endpoints. For example with K continuous endpoints,
each endpoint would be tested at αk = α/K (k = 1, . . . , K ). We are now interested
in testing H0 : δk ≤ 0 for all k versus H1 : δk > 0 for at least one k at the
(overall) significance level of α, based on the test statistics (Z1, . . . , ZK )T, the same

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
SpringerBriefs in Statistics, DOI 10.1007/978-3-319-22005-5_5
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statistics defined in Sect. 2.2.1. However, the rejection regions of H0 are [{Z1 >

zα/K } ∪ · · · ∪ {ZK > zα/K }] if the variances are assumed to be known. However,
the Bonferroni procedure is conservative especially when there are many highly
correlated endpoints to be evaluated (Dmitrienko et al. 2010; Senn and Bretz 2007).

For the standardized effect size δk , the overall power is

1 − β = Pr

[
K⋃

k=1

{Zk > zα/K }
∣∣∣∣ H1

]
= 1 − Pr

[
K⋂

k=1

{Zk ≤ zα/K }
∣∣∣∣ H1

]

= 1 − Pr

[
K⋂

k=1

{Z∗
k ≤ c∗

k }
∣∣∣∣ H1

]
(5.1)

where Z∗
k are the same statistics as defined in Sect. 2.2.1 and c∗

k = zα/K − √
κnδk .

This overall power (5.1) is referred to as “minimal power” (Westfall et al. 2011) or
“disjunctive power” (Bretz et al. 2011; Senn and Bretz 2007). The overall power (5.1)
is calculated by using the cumulative distribution function of the K -variate normal
distribution with zero mean vector and correlation matrix ρZ with off-diagonal ele-
ments given by ρkk′

as in Sect. 2.2.1. The sample size required to achieve the desired
overall power of 1 − β at the significance level of α is the smallest integer not less
than n satisfying (5.1).

5.2 Behavior of the Type I Error Rate, Power
and Sample Size

We focus on the behavior of the type I error rate, overall power and sample size
calculated when designing a trial with an alternative hypothesis of superiority for AT
LEAST ONE endpoint.

5.2.1 Type I Error Rate

It is known that the type I error rate is below the nominal error rate when the endpoints
are positively and highly correlated (Dmitrienko et al. 2010). Figure 5.1 illustrates the
behavior of type I error rate as a function of the correlation, where the off-diagonal
elements of the correlation matrix are equal, i.e., ρ = ρ12 = · · · = ρK−1,K , all of the
standardized effect sizes are zero, i.e., δ1 = · · · = δK = 0 (K = 2, 3, 4, 5, and 10),
and the Bonferroni adjustment is applied at the significance level of α = 0.025. This
behavior is discussed in Dmitrienko et al. (2010). Given this result, an adjustment to
sample size may be considered when a high positive correlation is expected.

http://dx.doi.org/10.1007/978-3-319-22005-5_2
http://dx.doi.org/10.1007/978-3-319-22005-5_2
http://dx.doi.org/10.1007/978-3-319-22005-5_2
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Fig. 5.1 Behavior of the type I error rate as a function of the correlation, where the off-diagonal
elements of the correlation matrix are equal, i.e., ρ = ρ12 = · · · = ρK−1,K and all of the
standardized effect sizes are zero, i.e., δ1 = · · · = δK = 0. The Bonferroni adjustment is applied
at the significance level of α = 0.025

5.2.2 Overall Power

Figure 5.2 illustrates how the overall power behaves as a function of correlation for
a given sample size, where the off-diagonal elements of the correlation matrix are
equal, i.e., ρ = ρ12 = · · · = ρK−1,K , and all of the standardized effect sizes are
equal to 0.2, i.e., δ1 = · · · = δK = 0.2. In addition, the Bonferroni adjustment is
applied and the power for each one-sided adjusted individual test at a significance
level of α = 0.025 is 0.80 and 0.90. The figure illustrates that the power increases
with more endpoints if the correlation is less than ρ = 0.7, while the power is less
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Fig. 5.2 Behavior of the overall power 1−β as a function of the correlation for a given sample size,
where the off-diagonal elements of the correlation matrix are equal, i.e., ρ = ρ12 = · · · = ρK−1,K ,
and all of the standardized effect sizes are equal to 0.2, i.e., δ1 = · · · = δK = 0.2. The Bonferroni
adjustment is applied and the power for each one-sided adjusted individual test at a significance
level of α = 0.025 is 0.80 and 0.90
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than desired power of 1 − β = 0.8 or 0.9 when the correlation is greater than 0.7.
This behavior is discussed in Senn and Bretz (2007).

5.2.3 Sample Size

Figure 5.3 illustrates how the equal sample size per group n(ρ) = nT = nC (i.e.,
r = 1.0) behaves as a function of the correlation when there are K endpoints (K =
2, 3, 4, 5, and 10), where the off-diagonal elements of the correlation matrix are
equal ρ = ρ12 = · · · = ρK−1,K , all of the standardized effect sizes are equal to 0.2,
i.e., δ1 = · · · = δK = 0.2 was calculated with the overall power of 1 − β = 0.80
when each of the K endpoints is tested at the significance level of α = 0.025/K by
a one-sided test with Bonferroni adjustment. The vertical axis is the ratio of n(ρ) to
n(0). The figure illustrates that the ratio becomes lager as the correlation approaches
one and the degree of increase is larger as the number of endpoints to be evaluated
increases.

Figure 5.4 illustrates how the equal sample size per group n = nT = nC (i.e.,
r = 1.0) behaves as a function of the correlation when there are two endpoints
(K = 2), where δ2/δ1 = 1.0, 1.25, 1.50, 1.75, and 2.0; when each of two endpoints
is tested at the significance level of α = 0.025/2 by a one-sided test with Bonferroni
adjustment. The vertical axis is the ratio of n(ρ12) to n(0). When δ2/δ1 = 1.0, the
ratio of the required sample size increases as the correlation approaches one, as seen
in Fig. 5.3. Even when 1.0 < δ2/δ1 < 1.5, the ratio of the required sample size still
increases as the correlation approaches one. However, when the ratio δ2/δ1 exceeds
1.5, the sample size does not change considerably as the correlation varies.
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Fig. 5.3 Behavior of the sample size n(ρ) as a function of the correlation for a given sample size,
where the off-diagonal elements of the correlation matrix are equal ρ = ρ12 = · · · = ρK−1,K ,
and all of the standardized effect sizes are equal to 0.2, i.e., δ1 = · · · = δK = 0.2 (K = 2, 3, 4, 5,
and 10). The sample size was calculated to evaluate an alternative hypothesis of superiority for AT
LEAST ONE endpoint with the overall power of 1−β = 0.80 for a one-sided test at the significance
level of α = 0.025/K , where the Bonferroni adjustment was applied
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Fig. 5.4 Behavior of the required sample size as a function of the correlation n(ρ12) when there
are two endpoints as primary. The vertical axis is the ratio of n(ρ12) to n(0). The equal sample
sizes per group n = nT = nC (i.e., r = 1.0) were calculated to detect superiority for at least one
endpoint, with the overall power of 1 − β = 0.80 at the significance level of α = 0.025/2, where
the Bonferroni adjustment was applied

Table 5.1 provides the required sample sizes for trials with two primary endpoints
with correlation ρ12 = 0.0 (no correlation), 0.3 (low correlation), 0.5 (moderate
correlation), and 0.8 (high correlation), where the equal sample sizes n = nT = nC
(i.e., r = 1.0) were calculated to detect standardized effect sizes of 0.2 ≤ δ1, δ2 ≤ 0.4
with the overall power of 1 − β = 0.80 and 0.90, when each of the two endpoints
is tested at the significance level of α = 0.025/2 by a one-sided test. As seen in
Fig. 5.4, when the effect sizes for the two endpoints are equal, the required sample
size increases as the correlation approaches one. Comparing the cases of ρ12 = 0.0
and ρ12 = 0.8, the increase in the sample size is approximately 40 % in both of
the 1 − β = 0.80 and 0.90 cases. Even in the cases of unequal effect sizes, that
is δ1 < δ2, the sample sizes increases as the correlation approaches one. However,
when the ratio δ2/δ1 exceeds roughly 1.5, the required sample size does not change
considerably as a function of the correlation. When δ2/δ1 = 1.5, the increase in the
sample size is approximately 24 % in both of the 1 − β = 0.80 and 0.90, and 12 %
when δ2/δ1 = 2.0.

Similar to the case of two endpoints, Table 5.2 provides the required sample size
for three primary endpoints (K = 3), where the equal sample sizes per group n =
nT = nC (i.e., r = 1.0) were calculated to detect standardized effect sizes of 0.2 ≤
δ1, δ2, δ3 ≤ 0.4 with the overall power of 1 − β = 0.80 and 0.90, when each of
the three endpoints is tested at the significance level of α = 0.025/3 by a one-
sided test, and the off-diagonal elements of the correlation matrix are equal, i.e.,
ρ = ρ12 = ρ13 = ρ23 = 0.0, 0.3, 0.5, and 0.8. Similarly as seen in Table 5.1, when
the effect sizes of the three endpoints are equal, the required sample size increases
as the correlation approaches one. Comparing the cases of ρ = 0.0 and ρ = 0.8, the
increase in the sample size is approximately 67 % when 1−β = 0.80 and 70 % when
1 − β = 0.90. Even when effect sizes are unequal, that is δ1 < δ2 ≤ δ3, the sample
size still increases as the correlation approaches one. However, when the ratios δ2/δ1
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Table 5.1 The required equal sample sizes per group n = nT = nC (i.e., r = 1.0) for two endpoints
with the overall power of 1 − β = 0.80 and 0.9 at the significance level of α = 0.025/2, where the
Bonferroni adjustment was applied

Targeted Standarized effect size Correlation ρ12

power δ1 δ2 0.0 0.3 0.5 0.8 1.0 E1 E2

0.80 0.20 0.20 282 316 342 394 476 476 476

0.20 0.25 218 243 260 290 305 476 305

0.20 0.30 169 185 195 209 212 476 212

0.20 0.35 133 143 149 155 156 476 156

0.20 0.40 106 112 116 119 119 476 119

0.25 0.25 181 203 219 252 305 305 305

0.25 0.30 147 164 177 199 212 305 212

0.25 0.35 120 132 140 152 156 305 156

0.25 0.40 98 107 112 118 119 305 119

0.30 0.30 126 141 152 175 212 212 212

0.30 0.35 106 118 128 144 156 212 156

0.30 0.40 89 99 105 116 119 212 119

0.35 0.35 93 104 112 129 156 156 156

0.35 0.40 89 99 105 116 119 156 119

0.40 0.40 71 79 86 99 119 119 119

0.90 0.20 0.20 370 419 455 522 621 621 621

0.20 0.25 287 321 345 383 398 621 398

0.20 0.30 222 244 258 274 276 621 276

0.20 0.35 174 188 196 203 203 621 203

0.20 0.40 139 148 152 156 156 621 156

0.25 0.25 237 268 291 334 398 398 398

0.25 0.30 193 217 234 262 276 398 276

0.25 0.35 157 174 185 200 203 398 203

0.25 0.40 129 141 148 155 156 398 156

0.30 0.30 165 186 202 232 276 276 276

0.30 0.35 139 156 169 191 203 276 203

0.30 0.40 117 130 139 152 156 276 156

0.35 0.35 121 137 149 171 203 203 203

0.35 0.40 117 130 139 152 156 203 156

0.40 0.40 93 105 114 131 156 156 156

E1, E2: Sample size separately calculated for each endpoint 1 and 2 so that the individual power is
at least 0.8 and 0.9 at α = 0.025/2

and δ3/δ1 exceed 1.5, the required sample size does not change as the correlation
varies. When δ2/δ1 = δ3/δ1 = 1.5, the increase in the sample size is approximately
53 % when 1 −β = 0.80 and 52 % when 1−β = 0.90. When δ2/δ1 = δ3/δ1 = 2.0,
it is approximately 44 % when 1 − β = 0.80 and 41 % when 1 − β = 0.90.
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Table 5.2 The required sample size per group (n = nT = nC, r = 1.0) for three endpoints with
the overall power of 1 − β = 0.80 and 0.9 at α = 0.025, assuming that the variance is known

Targeted Standarized effect size Correlation ρ12

power δ1 δ2 δ3 0.0 0.3 0.5 0.8 1.0 E1 E2 E3

0.80 0.20 0.20 0.20 238 285 323 398 524 524 524 524

0.20 0.20 0.30 162 188 206 230 233 524 524 233

0.20 0.20 0.40 108 120 126 131 131 524 524 131

0.20 0.30 0.30 127 149 166 194 233 524 233 233

0.20 0.30 0.40 93 107 116 128 131 524 233 131

0.20 0.40 0.40 76 87 95 110 131 524 131 131

0.30 0.30 0.30 106 127 144 177 233 233 233 233

0.30 0.30 0.40 83 98 108 126 131 233 233 131

0.30 0.40 0.40 69 82 91 109 131 233 131 131

0.40 0.40 0.40 60 72 81 100 131 131 131 131

0.90 0.20 0.20 0.20 309 376 427 525 676 676 676 676

0.20 0.20 0.30 211 247 270 298 301 676 676 301

0.20 0.20 0.40 140 156 164 169 169 676 676 169

0.20 0.30 0.30 165 196 218 254 301 676 301 301

0.20 0.30 0.40 121 140 152 166 169 676 301 169

0.20 0.40 0.40 98 114 125 143 169 676 131 169

0.30 0.30 0.30 138 168 190 234 301 301 301 301

0.30 0.30 0.40 107 128 143 164 169 301 301 169

0.30 0.40 0.40 90 108 121 143 169 301 131 169

0.40 0.40 0.40 78 94 107 132 169 131 131 169

E1, E2, E3: Sample size separately calculated for each endpoint 1, 2, and 3 so that the individual
power is at least 0.8 and 0.9 at α = 0.025/3

5.3 Conservative Sample Size Determination

Similarly, as in the previous section, consider a conservative sample size determi-
nation for evaluating an alternative hypothesis of superiority for AT LEAST ONE
endpoint when there are two primary endpoints. As the overall power is lowest when
ρ12 = 1, we may set

1 −β = �2(−c∗
1,∞ | ρ12 = 1)+�2(∞,−c∗

2 | ρ12 = 1)−�2(−c∗
1,−c∗

2 | ρ12 = 1), (5.2)

where �2(·) is cumulative distribution function of a bivariate normal distribution with
zero mean and correlation matrix with off-diagonal element ρ12. Using the result in
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Owen (1962, 1965), we can rewrite the overall power (5.2) using the univariate
standard normal distribution function. It is given by

1 − β =
{

�(−c∗
1), c∗

1 > c∗
2,

�(−c∗
2), c∗

1 ≤ c∗
2 .

If we assume a un-pooled variance under the alternative hypothesis, then this leads
to the conservative value of n given by

nCNSV = min

{
(zα/2 + zβ)2

κδ2
1

,
(zα/2 + zβ)2

κδ2
2

}

The sample size nCNSV may be unnecessarily conservative as the assumption of
ρ12 = 1 is often unrealistic in practice. Alternatively, we may consider the sample
size nCNSV(ρ12) with ρ∗ < ρ12 < 1, where ρ∗ is a boundary value of the correlation
in which a power is less than desired power.

5.4 Example

We illustrate the sample size calculations when the alternative hypothesis is superior-
ity for at least one endpoint. Consider the clinical trial for the treatment of Alzheimer’s
disease from Rogers et al. (1998), discussed in Sect. 2.6. The study is a 24-week,
double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s dis-
ease and the primary efficacy endpoints were the cognitive portion of the Alzheimer’s
Disease Assessment Scale (ADAS-cog) and the Clinician’s Interview Based Assess-
ment of Change-Plus (CIBIC plus). From the result in Rogers et al. (1998), the
absolute values of the standardized effect size with 95 % confidence interval were
estimated as 0.47 (0.24, 0.69) for ADAS-cog (Endpoint 1: δ1) and 0.48 (0.25, 0.70)
for CIBIC-plus (Endpoint 2: δ2). On the basis of these estimates, the sample size was
calculated to detect the standardized effect sizes 0.20 < δ1, δ2 < 0.70 to achieve the
overall power of 1 − β = 0.80 at α = 0.025 with ρ12 = 0.0, 0.3, 0.8 and 1.0 as the
correlation between ADAS-cog and CIBIC-plus. Figure 5.5 displays contour plots
of the required sample sizes per group with two effect sizes δ1 and δ2 and correlation
ρ12. As the baseline case of (δ1, δ2) = (0.47, 0.48), the sample sizes per group for
ρ12 = 0, 0.3, 0.8 and 1.0 were 50, 56, 70, and 83, respectively. In this situation, as a
conservative option, assuming a correlation of 1.0 between the two endpoints, a size
of 83 is recommended and it is 1.66 times larger than that given by assuming zero
correlation.

http://dx.doi.org/10.1007/978-3-319-22005-5_2
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Fig. 5.5 Contour plots of sample size (per group) for standardized effect sizes of endpoint 1 (SIB-J)
and endpoint 2 (CIBIC plus-J) with ρ12 = 0.0, 0.3, 0.8 and 1.0. The sample size was calculated to
evaluate the alternative hypothesis of superiority for at least one endpoint with the overall power
of 1 − β = 0.80 for a one-sided test at the significance level of α = 0.025/2 where the Bonferroni
adjustment was applied

5.5 Summary

This chapter provides an overview of concepts and technical fundamentals regarding
power and sample size determination for clinical trials with multiple continuous
endpoints designed to evaluate superiority for AT LEAST ONE continuous endpoint
with the simplest procedure, i.e., the unstructured Bonferroni procedure.

The behaviors of power and sample size for evaluating superiority for at least one
endpoint with unstructured Bonferroni procedure are very different from those for
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evaluating superiority for all endpoints. As seen in Fig. 5.2, the power is improved as
the number of endpoints to be evaluated is increased as the correlation goes toward
zero from about 0.7. On the other hand, when the endpoints are highly correlated,
the power is worse as the number of endpoints is increased as the correlation goes
toward one from about 0.7. As seen in Fig. 5.3, the required sample size is increased
as the number of endpoints is increased and as the correlation goes toward one.
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Chapter 6
Further Developments

Abstract In this book, we have focused our discussion on methods for sample size
calculation in clinical trials with co-primary endpoints, although we have briefly
discussed methods for clinical trials with multiple endpoints using the Bonferroni
procedure. These discussions have been based on trials with superiority hypotheses,
two intervention groups, no formal interim analyses, and continuous or binary end-
points. In this chapter, we briefly discuss developments for designing randomized
trials with other design characteristics including: (i) other inferential goals, (ii) more
than two intervention groups, (iii) group sequential designs, and (iv) endpoints with
other measurement scales such as time to-event.

Keywords Global procedure ·Group-sequential designs ·Multiple-arm · Time-to-
event · Superiority-noninferiority procedures

This book discussesmethods for power and sample size determination for comparing
the effect of two interventions in superiority clinical trials with multiple endpoints.
The discussion focuses on methods for sample size calculation in clinical trials when
the aim is to evaluate effects on ALL endpoints although we briefly discuss methods
to evaluate effects on AT LEAST ONE endpoint using the Bonferroni procedure.

Clinical trial endpoints can exhibit several scales of measurement including con-
tinuous, binary, ordinal, and event-time. In this book,we discussmethods for address-
ing situations where: (1) all of the endpoints are continuous, and (2) all of the end-
points are binary. However themethods described in this book provide the foundation
for designing randomized trials with other design characteristics, including clinical
trials with (i) other inferential goals, (ii) more than two intervention groups, (iii)
group sequential designs, and (iv) other endpoint measurement scales such as time-
to-event. In addition, there may be instances where the co-primary endpoints are of
mixed scales of measurement. For example, a trial evaluating interventions for pain
may have pain evaluated on a continuous scale (e.g., Gracely pain scale) but have
a binary safety endpoint (occurance of an adverse event). We briefly discuss these
scenarios.

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
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Other Inferential Goals

Dmitrienko et al. (2010) define the four types of inferential goals for analysis of mul-
tiple endpoints in clinical trials, i.e., all-or-none, at-least-one, global, and superiority-
noninferiority procedures. This book discusses methods for the first two goals. The
global procedure evaluates if the test intervention has an overall effect across the
endpoints compared with the control intervention, but does not necessarily evaluate
the effect on any specific endpoint. The procedure is conceptually similar to com-
posite endpoints (Dmitrienko et al. 2010). The sample size may be calculated based
on the T 2-test statistics. The goal of the superiority-noninferiority procedure is to
evaluate if the test intervention is superior to the control intervention on at least one
endpoint, but not inferior on all other endpoints (Bloch et al. 2001; Röhmel et al.
2006). This is an important goal when evaluating interventions for diseases with
existing interventions but the interventions have only modest efficacy, concerning
toxicity, or are very costly. The sample size methods discussed in this book are useful
when considering sample size methods in the superiority-noninferiority procedure.

More Than Two Interventions

Designs with more than two interventions are common in many applications such
as dose response trials. The methods discussed in this book can be conceptually
generalized to such clinical trials, but the situation is complicated by the need for
prespecified incorporation of multiple testing strategies.

Group Sequential Designs

In most conventional clinical trials, the sample size is calculated based on the desired
effect size and power while controlling the type I error rate. In sequential clinical
trials, testing of the primary hypotheses may occur during one or more interim analy-
ses as well as a final analysis. Without proper adjustments, this inflates the trial-wise
type I error rate. Appropriate methods are required to maintain its strong control at
a pre-specified significance level. Many group sequential methods have been pro-
posed (e.g., Lan and DeMets 1983; O’Brien and Fleming 1979; Pocock 1977, 1997)
and are widely used in clinical trials to allow early termination of the trials due to
overwhelming efficacy, futility, or undue harm.

As summarized in Table6.1, several designs and analyses of group sequential
clinical trials with multiple endpoints have been proposed.

Asakura et al. (2014a, b) discuss group sequential design in clinical trials with two
co-primary endpoints and evaluate how the power and sample sizes behavewith vary-
ing correlation, information fraction, effect sizes and the type of design (i.e., Pocock,
O’Brien-Fleming and their mixed designs). Several authors have discussed proce-
dures with other inferential goals for multiple endpoints in group sequential designs.
For the global procedure, Tang et al. (1989) discuss a method based on a generalized
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Table 6.1 Summary of designs and analyses of group sequential clinical trials with multiple
endpoints

Endpoint scale Alternative hypothesis

Effect on all endpoints Effect on at least one endpoint

Continuous Asakura et al. (2014a) Jennison and Turnbull (1993)

Jennison and Turnbull (1993) Kosorok et al. (2004)

Tamhane et al. (2010, 2012a, b)

Tang et al. (1989)

Tang and Geller (1999)

Binary Asakura et al. (2014b)

Time-to-event Kosorok et al. (2004)

least squares procedure by O’Brien (1987). Tang and Geller (1999) discuss a method
based on the closed testing procedures, and Tamhane et al. (2010, 2012a, b) con-
sider methods based on the gatekeeping procedures (Dmitrienko and Tamhabe 2007;
Demitrienko et al. 2010). Kosorok et al. (2004) discuss group sequential designs
with multiple primary endpoints, with use of a global alpha-spending function to
control the overall type I error and a multiple decision rule to control error rates
for concluding wrong alternative hypotheses. Jennison and Turnbull (1993) describe
group sequential tests for a bivariate normal response, where the indifference region
approach is adopted.

As an extension of themethod discussed in Evans et al. (2007) and Li et al. (2009),
by using prediction to convey information regarding potential effect size estimates
and associated precisionwith trial continuation, Evans et al. (2011) discuss “predicted
rings” and conditional power contour plots as a flexible and practical strategy for
monitoring trials with co-primary (e.g., benefit:risk) endpoints.

Time-to-Event Endpoints

As mentioned in Chap.1, the ARDENT Study is designed with two co-primary end-
points: time to virologic failure (efficacy endpoint) and time to discontinuation of
randomized treatment due to toxicity. For such time-to-events endpoints, Sugimoto
et al. (2011, 2012a, 2013) derive a log-rank basedmethod for sample sizing although
their research was limited to two time-to-event endpoints and independent censor-
ing. They use typical copula families to model the endpoints, i.e., Clayton copula
(Clayton 1978), positive stable copula (Hougaard 1984, 1986) and Frank copula
(Frank 1979; Genest 1987). They evaluate how the sample size varies as a function
of the correlation between the endpoints, where the study objective is to evaluate the
simultaneous effect on both endpoints and for evaluating the effect on at least one
endpoint. In addition, Hamasaki et al. (2013) discuss a simpler method for calculat-
ing the sample size for two correlated time-to-event endpoints as co-primary when
the time-to-event outcomes are exponentially distributed.

http://dx.doi.org/10.1007/978-3-319-22005-5_1


72 6 Further Developments

Mixed Endpoints

Other trials with co-primary endpointsmay have endpointswithmixed scales ofmea-
surement. One example of a clinical trial withmixed-scale endpoints as co-primary is
the PREMIER study (Breedveld et al. 2006), a trial enrolling participants with early
aggressive rheumatoid arthritis. The trial has two co-primary endpoints: (1) ACR50
response (a binary endpoint) and (2) the change from baseline in the modified total
Sharp score (mTSS) (a continuous endpoint). Another example is the VALOR trial
(Rudnick et al. 2008) which enrolled participants with chronic kidney disease. The
trial has two mixed co-primary endpoints: (1) the peak percentage change from
baseline serum creatinine over the 72-h period after contrast media administration
(a continuous endpoint) and (2) contrast-induced nephropathy defined as an increase
of 0.5mg/dL ormore from baseline serum creatinine within 72-h (a binary endpoint).
A third example is the ACCENT I trial (Stephen et al. 2002), a trial enrolling partici-
pants with active Crohn’s diseasewho receive a single infusion of infliximab to assess
the benefit of maintenance infliximab therapy. The trial has two mixed co-primary
endpoints: (1) response at week 2 and in remission (Crohn’s disease activity index<
150) at week 30 (a binary endpoint), and (2) the time to loss of response up to week
54 in patients who responded.

For mixed continuous and binary co-primary endpoints, the necessary sample
size methodology can be developed as an extension of the methods discussed in
Chaps. 2 and 3. But there are complexities. Onemajor issue is deciding how to model
the relationship between the two endpoints. Several measures or models have been
proposed to define the relationship between continuous and binary variables (Dale
1986; Lev 1949; Molenberghs et al. 2001; Pearson 1909; Plackett 1965; Tate 1954).
Sozu et al. (2012) discuss sample size methodology assuming that the endpoints are
distributed as a multivariate normal distribution, where binary variables are observed
in a dichotomized normal distribution with a certain point of dichotomy.

For mixed time-to-event and binary endpoints, Sugimoto et al. (2012b) define the
relationship between the endpoints under the limited distributions of copulas. They
evaluate how the correlation is restricted depending on the marginal probabilities
of binary endpoints, and discuss how the sample size varies as a function of the
correlation.
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Appendix A
Sample Size Calculation Using Other
Contrasts for Binary Endpoints

Chapter 3 provided methods for power and sample size determination when the
alternative hypothesis is joint differences in proportions for all binary endpoints. The
two other measures for binary endpoints, the risk ratio ψk = πTk/πCk and the odds
ratio ϕk = (πTkθCk)/(θTkπCk), are also used in clinical trials, where θTk = 1 − πTk

and θCk = 1 − πCk . In this appendix, we outline the sample size methodology for
clinical trials with multiple risk ratios and odds ratios as primary contrasts.

A.1 Risk Ratio

Consider a randomized clinical trial comparing two interventions with K binary
endpoints. By analogy to the sample size method for a single endpoint (e.g., Wood
1992; Sahai and Khurshid 1996) to evaluate simultaneous reduction effects on the
occurrence of events, one straightforward approach is to test the null hypothesis H0 :
πTk −πCk ≥ 0 for at least one k versus the alternative hypothesis H1 : πTk/πCk < 1
for all k, at significance level of α. The well-known test statistics for this situation
are the test statistics in (3.1) in Chap. 3. The same sample size methodology can be
used for the multiple risk ratios.

An alternative method is based on the asymptotic distribution of the log-trans-
formed risk ratios. As a consequence of the delta method, for large sample size, it is
well known that the natural logarithm of an observed proportion, log pTk and log pCk

are approximately normally distributed as

N (log πTk, θTk/(nTπTk)) and N (log πCk, θCk/(nCπCk))

respectively (e.g., Lachin 2011). Therefore, to detect the superiority for ALL K log-
transformed risk ratios, we test the null hypothesis H0 : log ψk ≥ 0 for at least one
k versus the alternative hypothesis H0 : log ψk < 0 for all K at a significance level
of α.
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We have the K log-transformed (observed) risk ratios log Rk = log(pTk/pCk)

(k = 1, . . . , K ). For large sample size, the distribution of the vector of (log R1, . . . ,

log RK )T is approximately K -variate normal with mean vector μ = (log ψ1, . . . ,

log ψK )T and covariance matrix � determined by
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Therefore, the correlation between the risk ratios, ρkk′
R = corr[log Rk, log Rk′ ] is

approximately given by

ρkk′
R = κτ kk′

T

√
θTkθTk′πCkπCk′ + (1 − κ)τ kk′

C

√
πTkπTk′θCkθCk′√

(κθTkπCk + (1 − κ)πTkθCk)(κθTk′πCk′ + (1 − κ)πTk′θCk′)
.

If the correlation between endpoints is assumed to be common between the two
groups, i.e., τ kk′

T = τ kk′
C = τ kk′

, then we have

ρkk′
R = τ kk′

A√
A2 + κ(1 − κ)B2

,

where
A = κ

√
θTkθTk′πCkπCk′ + (1 − κ)

√
πTkπTk′θCkθCk′

and
B = √

θTkπTk′πCkθCk′ − √
πTkθTk′θCkπCk′ .

Clearly |ρkk′
R | ≤ τ kk′

and ρkk′
R = τ kk′

when τ kk′ = 0, or πTk/θTk = πTk′/θTk′ .
Hereafter, we simply assume a common correlation between the two groups.

Let Zk be the test statistics for the log-transformed risk ratio log ψk given by

Zk = log Rk

/√
q̄k

κn p̄k

where p̄k = (1 − κ)pTk + κpCk and q̄k = 1 − p̄k . When H1 is joint effects on
ALL risk ratios, the hypotheses for testing H0 : log ψ ≥ 0 for at least one k versus
H1 : log ψ < 0 for all k are tested using the test statistics (Z1, . . . , ZK ). The rejection
region of H0 is [{Z1 < −zα} ∩ · · · ∩ {ZK < −zα}]. Therefore, for the risk ratios



Appendix A: Sample Size Calculation Using Other Contrasts for Binary Endpoints 77

ψk , for large sample size, straightforward algebra and substitution of population
parameters for estimates provides the approximate overall power of

1 − β = Pr

[
K⋂
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{Zk < −zα}
∣∣∣∣ H1

]
� Pr
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K⋂
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]
, (A.1)
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,

π̄k = (1 − κ)πTk + κπCk and θ̄k = 1 − π̄k . The overall power (1.1) is calculated
by using �K (−c∗

1, . . . ,−c∗
K ), where �K is the cumulative distribution function

of NK (0,ρZ ); the off-diagonal element of the correlation matrix ρZ is given by
ρkk′

Z∗ = ρkk′
R .

The sample size required to detect the superiority for all of the risk ratios with the
overall power 1 −β at a significance level of α is the smallest integer not less than n
satisfying 1 − β ≤ �K (−c∗

1, . . . ,−c∗
K ). The required sample size can be simplified

to improve the approximation to normality as it is known that

qTk

pTk
+ qCk

pCk

(
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κ

)
≥ q̄k

κ p̄k
.

If we assume a un-pooled variance under the alternative hypothesis, we have

ċ∗
k = −zα − log ψk
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.

So that the sample size required to achieve the desired power 1 − β is the smallest
integer not less than n satisfying 1−β ≤ �K (−ċ∗

1, . . . ,−ċ∗
K ). This sample size will

be relatively larger than the sample size satisfying 1−β ≤ �K (−c∗
1, . . . ,−c∗

K ), but
this may lead to the improvement of the approximation, by analogy with sample size
determination for a single risk ratio.

In our experience (Hamasaki et al. 2011, 2012), the asymptotic normal approxima-
tion method may work well in most situations, except for a situation where ψk ≥ 0.5
and πCk is so close to zero (or one). In this situation, use of the method assuming a
un-pooled variance under the alternative hypothesis is recommended.

http://dx.doi.org/10.1007/978-3-319-22005-5_1
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A.2 Odds Ratio

We outline a method for the calculation of the sample size to detect the superiority for
ALL K odds ratios. We now have K log-transformed (observed) odds ratios log Ok

where Ok = (pTkqCk)/(qTk pCk). For large sample size, as a conquence of delta
method, the distribution of the vector of (log O1, . . . , log OK )T is approximately
K -variate normal with mean vector μ = (log ϕ1, . . . , log ϕK )T and covariance
matrix � determined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
k = 1

n

(
1

πTkθTk
+ 1

πCkθCk

(
1 − κ

κ

))
k = k′

σkk′ = 1

n

(
τ kk′

T√
πTkθTkπTk′θTk′

+ τ kk′
C√

πCkθCkπCk′θCk′

(
1 − κ

κ

))
k �= k′.

where ϕk = (πTkθCk)/(θTkπCk). Therefore, the correlation between the log-
transformed odds ratios, ρkk′

O = corr[log Ok, log Ok′ ] is given by

ρkk′
O = κτ kk′

T

√
πCkθCkπCk′θCk′ + (1 − κ)τ kk′

C

√
πTkθTkπTk′θTk′√

(κπCkθCk + (1 − κ)πTkθTk)(κπCk′θCk′ + (1 − κ)πTk′θTk′)
.

Let Zk be the test statistics for the log-transformed odds ratios log ϕk , given by

Zk = log Ok

/√
1

κnπ̄k θ̄k
(k = 1, . . . , K ).

When evaluating joint effects on all of the correlated odds ratios, the hypotheses
for testing H0 : log ϕk ≥ 0 for at least one k versus H1 : log ϕk < 0 for all k,
are tested by the above test statistics (Z1, . . . , ZK ). The rejection region of H0 is
[{Z1 < −zα} ∩ · · · ∩ {ZK < −zα}]. Therefore, for the odds ratios ϕk , the overall
power is given by

1 − β = Pr

[
K⋂

k=1

{Zk < −zα}
∣∣∣∣ H1

]
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where
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+ log ϕk
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(
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πTkθTk
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(
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))
.
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The overall power is calculated by using �K (−c∗
1, . . . ,−c∗

K ).
The sample size required to detect the superiority for all of the odds ratios with

the overall power 1 − β at a significance level of α is the smallest integer not less
than n satisfying 1 − β ≤ �K (−c∗

1, . . . ,−c∗
K ). Similarly, if we assume a un-pooled

variance under the alternative hypothesis, we have a simplified

c′
k = −zα − log ϕk

/√
1

n

(
1

πTkθTk
+ 1

πCkθCk

(
1 − κ

κ

))
.

The sample size required to achieve the desired power 1 −β is given by the smallest
integer not less than n satisfying 1 − β ≤ �(−c′

1, . . . ,−c′
K ).
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Appendix B
Empirical Power for Sample Size
Calculation for Binary Co-primary
Endpoints

As mentioned in Sect. 3.2.2, there are more direct approaches for sample size calcu-
lation without using an asymptotic normal approximation, however, such methods
are computationally difficult and often impractical, particularly for the large sample
sizes. On the other hand, the methodology using the asymptotic normal approxima-
tion discussed in Sect. 3.2.1 may not work well when events are rare or when sample
sizes are small. We performed a Monte-Carlo simulation study and computed the
empirical powers for the corresponding test and the Fisher’s exact test in order to
evaluate the utility of the continuity correction and/or the arcsine root transforma-
tion for the test statistics. By using the method described in Emrich and Piedmonte
(1991), we generated random numbers YT jk and YC jk , which are independently mul-
tivariate Bernoulli distributed with probabilities of πTk and πCk , but the observations
within pairs for the two interventions are correlated with a common correlation, i.e.,
ρkk′ = corr[YT jk, YT jk′ ] = corr[YC jk, YC jk′ ]. We conducted 100,000 replications to
compute the empirical power for the corresponding test and Fisher’s exact test under
the sample size calculated by each method with the equal correlation of the multivari-
ate Bernoulli distribution between the endpoints, i.e., τ = τ12 = · · · = τ K−1,K from
0.0 to 0.95 by 0.05 and 0.99. In addition, equal sample sizes per group n = nT = nC
(i.e., r = 1.0) were calculated to detect the joint differences in the proportions
between the two interventions with the overall power of 1 − β = 0.80 at the sig-
nificance level of α = 0.025. Figures B.1, B.2, B.3 and B.4 illustrate the behavior
of the empirical power for τ = 0.0 and 0.8 as a function of the standardized effect
size in the cases of K = 2 and 3, where πCk + 0.05 ≤ πTk < 0.95 by 0.05 with
πT1 = · · · = πTK = πT and πC1 = · · · = πCK = πC = 0.5, 0.6, 0.7 and 0.8.

The chi-square method (without CC) attains the targeted power of 0.8 when the
standardized effect size is small. The empirical power is larger than 0.8 as the stan-
dardized effect size increases and πC goes from 0.5 to 0.8, i.e. the required sample
size is smaller. The empirical power for the Fisher’s exact test is always smaller than
0.8, and it decreases as the standardized effect size increases.

A similar behavior of the empirical power was observed in the chi-square method
with CC. When the standardized effect size is small, the chi-square method with
CC attains the targeted power of 0.8. The empirical power is larger than 0.8 as the

© The Author(s) 2015
T. Sozu et al., Sample Size Determination in Clinical Trials with Multiple Endpoints,
SpringerBriefs in Statistics, DOI 10.1007/978-3-319-22005-5
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Fig. B.1 Empirical power for the chi-square methods with and without CC for two co-primary
binary endpoints (K = 2) with the desired overall power of 1 − β = 0.80
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Arcsine method (without CC)
Corresponding test Fisher’s exact test
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Fig. B.2 Empirical power for the arcsine methods with and without CC for two co-primary binary
endpoints (K = 2) with the desired overall power of 1 − β = 0.80
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Chi-square method (without CC)
Corresponding test Fisher’s exact test
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τ12 = τ13 = τ23 = 0

E
m

pi
ri

ca
l P

ow
er

0.4

0.5

0.6

0.7

0.8

0.9

Standardized Effect Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5
0.6
0.7
0.8

E
m

pi
ri

ca
l P

ow
er

0.4

0.5

0.6

0.7

0.8

0.9

Standardized Effect Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ12 = τ13 = τ23 = 0.8

E
m

pi
ri

ca
l P

ow
er

0.4

0.5

0.6

0.7

0.8

0.9

Standardized Effect Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
m

pi
ri

ca
l P

ow
er

0.4

0.5

0.6

0.7

0.8

0.9

Standardized Effect Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. B.3 Empirical power for the chi-square methods with and without CC for two co-primary
binary endpoints (K = 2) with the desired overall power of 1 − β = 0.80
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Arcsine method (without CC)
Corresponding test Fisher’s exact test
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Fig. B.4 Empirical power for the arcsine methods with and without CC for two co-primary binary
endpoints (K = 2) with the desired overall power of 1 − β = 0.80
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standardized effect size increases. The empirical power for the Fisher’s exact test is
around 0.8 when the standardized effect size is relatively small. However, it is larger
than 0.8 when the standardized effect size is larger.

A different behavior was observed with the arcsine method (without CC) and
the method with CC. These arcsine methods better attain the targeted power of 0.8
than the chi-square methods, especially when the standardized effect size is small.
Both empirical powers are around 0.8 until the standardized effect size is 0.5. For
the arcsine method (without CC), the empirical power is smaller than 0.8 when the
standardized effect size is larger, but for the arcsine method with CC the empirical
power is slightly larger than 0.8. However, the degree of such an increase or decrease
observed in the arcsine methods is smaller than those observed in the chi-square
methods, even when the standardized effect size is large (i.e., the calculated sample
size is relatively small), especially in the arcsine method with CC. On the other hand,
for the arcsine method (without CC), the empirical power for the Fisher’s exact test
is always less than 0.8 and it decreases as the standardized effect size increases,
similarly as observed in the chi-square method (without CC). For the arcsine method
with CC, the empirical power is around 0.8 until the standardized effect size is 0.5
and it trends slightly larger than 0.8 as the standardized effect size increases. But the
increase is smaller than that observed in the arcsine method (without CC).

As a result, the chi-square method (without CC) may work in most practical
situations except when the standardized effect size is not extremely large (i.e., the
required sample size is relatively small). However, when the standardized effect size
is extremely large, it is better to use any direct method such as the exact method
although it requires extensive computations.

Alternatively, researchers may consider the use of the methods with CC as an
approximation to the exact method without extensive computations. The arcsine
method with CC provides a better approximation than the chi-square method with
CC even when the standardized effect size is large.
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Appendix C
Numerical Tables for Ck in the Convenient
Sample Size Formula for the Three
Co-primary Continuous Endpoints

See Tables C.1, C.2.
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Table C.1 CK (β,ρ,γ,α) when 1 − β = 0.8, α = 0.025 and K = 3, where γ = (γ1, γ2) =
(δ1/δ3, δ2/δ3), H = 0.8, M = 0.5, and L = 0.3

(continued)



Appendix C: Numerical Tables for Ck in the Convenient Sample … 89

Table C.1 (continued)
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Table C.2 CK (β,ρ,γ,α) when 1 − β = 0.9, α = 0.025 and K = 3, where γ = (γ1, γ2) =
(δ1/δ3, δ2/δ3), H = 0.8, M = 0.5, and L = 0.3

(continued)
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Table C.2 (continued)



Appendix D
Software Programs for Sample Size
Calculation for Continuous Co-primary
Endpoints

D.1 The R Macro

We provide the R code (ver 2.11.0) to calculate the solution CK of (4.6), (4.11) and
(4.15). We here apply the CK to the sample size formula (4.5) (R is a free software
package that the user can download from http://www.r-project.org/).
In advance, the user needs to install the package mvtnorm and then submit the
following code on the R console:

CKsolution <- function(alpha,power,rho,gamma,a,K){

if(det(rho) <= 0){print("no positive definite");break}

library(mvtnorm)

z_a = qnorm(1-alpha); ndel = 0.001; rn = round(runif(1)*1000);

# # Initial estimation of CK

CK = qmvnorm(power, corr=rho, tail="lower.tail")$quantile

# # Begin: Newton-Raphson algorithm to find CK

for(j in 1:1000){

set.seed(rn)

C1k = CK*gamma + z_a*(a[K]*gamma - a[1:(K-1)])

pow1 = pmvnorm(lower=rep(-Inf,K), upper=c(C1k,CK), corr=rho)[1]

G = power - pow1

if(abs(G) < 0.00001 & G <= 0){break}

F1k = rep(0,K-1)

for(l in 1:(K-1)){

vndel = rep(0,K-1); vndel[l] = ndel

F1k[l] = pmvnorm(lower=c(rep(-Inf,l-1),C1k[l],rep(-Inf,K-l)),

upper=c(C1k+vndel,CK), corr=rho)[1]/ndel }

FK = pmvnorm(lower=c(rep(-Inf,K-1),CK),upper=c(C1k,CK+ndel),corr=rho)[1]/ndel

dG = -t(F1k)%*%gamma - FK

CK = CK - G/dG }

# # End: Newton-Raphson algorithm to find CK

return(c(CK))}

The function named CKsolution has five arguments, alpha, power, rho, gamma, a and K,
corresponding to α, 1 − β, ρ, γ, (a1, . . . , aK ) and K in this section, respectively. Note a1 = · · · =
aK = 1 is used for continuous endpoints. The part of the NR algorithm written in the above function
code of CKsolution can be replaced by the “optimize” function equipped in the R.

The following example represents an application where K = 2, γ = 8/7, ρ12 = 0.5, α = 0.025
and β = 0.8. The output,CKsolution[1]=0.9988124, is the solution CK (β, ρ, γ,α) of (4.6).
If δ = (0.4, 0.35)T and r = 1, then n computed from (4.5) is

© The Author(s) 2015
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SpringerBriefs in Statistics, DOI 10.1007/978-3-319-22005-5
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n
.= 2(0.9988124 + z0.025)

2/0.352 .= 142.93 → 143.

> K=2 # Specify by user

> a=c(1,1) # Specify by user

> gamma = c(8/7) # Specify by user

> rho<-matrix(c( 1 , 0.5 , # Specify by user

+ 0.5 , 1 ), ncol=K)

> CKsolution(0.025,0.8,rho,gamma,a,K)

[1] 0.9988124

The next example represents an application where K = 3, δ = (0.5, 0.45, 0.4)T, ρ12 = 0.8,
ρ13 = 0.8, ρ23 = 0.5, α = 0.025 and β = 0.8. Then, using the output, CKsolution[1]=
1.018097, and the formula (4.5), the equal sample sizes per group n = nT = nC (i.e., r = 1.0) is

n
.= 2(1.018097 + z0.025)

2/0.42 .= 110.86 → 111.

> K=3 # Specify by user

> delt1 = 0.5; delt2 = 0.45; delt3 = 0.4 # Specify by user

> a=c(1,1,1) # Specify by user

> rho<-matrix(c( 1 , 0.8 , 0.8 , # Specify by user

+ 0.8 , 1 , 0.5 ,

+ 0.8 , 0.5 , 1), ncol=K)

> gamma = c(delt1/delt3, delt2/delt3)

> CKsolution(0.025,0.8,rho,gamma,a,K)

[1] 1.018097

D.2 The SAS Code

We provide the SAS code (ver 9.3) to calculate the solution CK of (4.6). In advance, the user needs to
download the macroMVN_DIST.sas (Genz 1992),http://www.biopharmnet.com/doc/
doc14004d.sas and then submit the following code. This includes an application where K = 3,
γ = (1.25, 1.1), ρ12 = 0.8, ρ13 = 0.5 and ρ23 = 0.3 with α = 0.025 and β = 0.8, where the
inputs provided by the user are alpha, power, rho, gamma and vr corresponding to α, 1 − β,
ρ, γ and (a1, . . . , aK ) in this section, respectively, and a1 = · · · = aK = 1 is used for continuous
endpoints.

proc iml;

%include"C:\MVN_DIST.sas"; * Specify a path where "MVN_DIST.sas" is located by user;

***** Begin Input by user;

alpha = 0.025; power = 0.8;

gamma = {1.25, 1.1};

rho = { 1 0.8 0.5,

0.8 1 0.3,

0.5 0.3 1 };

vr = {1, 1, 1};

***** End Input;

K = nrow(rho);

* calculation of CK;

z_a = Quantile("Normal", 1-alpha); ndel = 0.001;

CK = Quantile("Normal", power); * initial value of CK ;

do until (abs(G) < 0.00001 & G <= 0);

C1k = ck * gamma + z_a * (vr[K]*gamma - vr[1:K-1]);

lower = J(1, K, 0); upper = t(C1k) || CK; infin = J(1, K, 0);

maxpts = 4000*K*K*K; abseps = 0.0001; releps = 0;

run mvn_dist(K,lower,upper,infin,rho,maxpts,abseps,releps,error,pow1,nevals,inform);

G = power - pow1;

F = J(1, K-1, 0);

do l = 1 to K-1;

vndel = J(1, K-1, 0); vndel[1,l] = ndel;

http://dx.doi.org/10.1007/978-3-319-22005-5_4
http://dx.doi.org/10.1007/978-3-319-22005-5_4
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infin = j(1, K ,0); infin[1,l] = 2;

lower = t(C1k) || CK; upper = t(C1k) + vndel || CK;

run mvn_dist(K,lower,upper,infin,rho,maxpts,abseps,releps,error,value,nevals,inform);

F[l] = value / ndel;

end;

lower = t(C1k) || CK; upper = t(C1k) || CK + ndel;

infin = J(1, K ,0);

infin[1,K] = 2;

run mvn_dist(K,lower,upper,infin,rho,maxpts,abseps,releps,error,value,nevals,inform);

FK = value / ndel;

dG = -F*gamma - FK;

CK = CK - G/dG;

end;

print CK;

quit;

Reference

Genz A Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–
150 (1992)
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