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Preface

This book concerns weighted correlation and applications involving rankings and
preferences. For instance, recommendation of data analysis tools, stock trading
support, information retrieval, meta-learning, and recommender systems. Instead of
using Spearman’s rank correlation coefficient, which is not suitable in some
applications, some weighted correlation coefficients will be presented and analyzed
in the book and will then be used in a number of applications. The first of these
coefficients, rW , was proposed by us in 2001 [61, 63, 93] and it weighs the distance
between two ranks using a linear function of those ranks, giving more importance to
higher ranks than lower ones. The statistical distribution of rW together with some
motivating applications will be the subject of Chap. 2.

In Chap. 3 another weighted rank correlation coefficient, rW2, introduced in [74]
and applied in a bioinformatics context in [73], will be presented. This coefficient is
the second of its series, following the coefficient rW which was motivated by a
machine learning problem concerning the recommendation of learning algorithms.
Unlike Spearman’s rS, which treats all ranks equally, these coefficients weigh the
distance between two ranks using a linear function of those ranks in the case of rW
and a quadratic function in the case of rW2. The presence of ties, which can happen
naturally in some of the applications, will also be taken into consideration in Chap. 3,
together with a simulation study to compare the three coefficients rW2, rW and rS.

In Chap. 4 we describe in the first part the new developments in weighted
Principal Component Analysis (PCA) [42] and in the second part a new method to
select variables. The focus is on problems where the values taken by each variable
do not all have the same importance and where the data may be contaminated with
noise and contain outliers, as is the case with microarray data. This kind of data,
which contains the expression levels of a large number of genes (variables),
measured simultaneously, for a relatively much smaller number of tissue samples,
presents many statistical challenges. There we propose the use of a weighted cor-
relation coefficient, as an alternative to Pearsons, leading thus to a so-called
weighted PCA (WPCA1). Then, we apply WPCA1 to the problem of analysing
gene expression datasets. In the second part of Chap. 4 we propose a new
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PCA-based algorithm to iteratively select the most important genes in a microarray
dataset. We show that this algorithm produces better results when WPCA1 is used
instead of the usual PCA. We also show that this algorithm used together with
support vector machines can compete with the significance analysis of microarrays
(SAM) supervised algorithm [97, 98].

Another weighted Principal Component Analysis (WPCA2) for time series data,
is presented in Chap. 5. First, in some situations the number of observations in each
series is too large and so it is of paramount importance to be able to compress the
series, thus reducing its dimension. Second, in a time series context, it is frequent
that some observation times are more important than others and the usual PCA
cannot take this into account. Thus, a weighted PCA specific for time series data,
which was introduced in [70], is described in this chapter and then applied to
well-known datasets.

In Chap. 6 we will describe a method for the weighted clustering of time series.
This method does not give the same importance to all the observations; instead, it
lets the most important observations, for instance the most recent, have a larger
weight. A fundamental problem in the clustering of time series is the choice of a
relevant metric, and in this chapter, we will use a metric, based on Pearson cor-
relation coefficient, which uses the notion of weighted mean and weighted
covariance. We present also some motivating applications.

Finally, we thank everyone who has collaborated with us in the subject of
weighted correlation and applications and in particular Pavel Brazdil, Carlos
Soares, and Luís Roque. We thank also the editor Eva Hiripi.

Porto Joaquim Pinto da Costa
January 2015
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Chapter 1
Introduction

Abstract Themain motivation underlying this book consists in applications involv-
ing rankings, like for instance preferences stated by humans, recommendation of data
analysis tools, stock trading support, information retrieval, meta-learning and rec-
ommender systems. For the evaluation of the different methods, the comparisons
of different rankings by means of an appropriate, weighted, correlation coefficient
is used. Some weighted correlation coefficients will be presented and analyzed in
the book. We will also present some interesting applications like for instance in
bioinformatics, principal component analysis, and clustering.

1.1 Some Motivating Applications

The motivation underlying this work applies to a broad range of applications involv-
ing rankings. For instance, rankings of alternatives representing the preferences stated
by humans or recommendations provided by decision support systems. A general
application, which was our first motivation, is the evaluation of methods to predict
rankings. Such methods exist in a variety of situations like the recommendation of
data analysis tools, stock trading support (i.e., ranking of a set of stocks), informa-
tion retrieval, recommender systems, and user preferences. From these, information
retrieval [53] and recommender systems [87] are two areaswhere rankings are already
widely used. Other areas where it may be advantageous to use a ranking approach,
rather than the usual supervised classification, are medicine (e.g., diagnosis of an
illness or choice of an adequate test or treatment) and control systems (e.g., choice
of the correct action to carry out).

One of the first applications that have been considered and that was indeed one
of the motivations to develop weighted correlation coefficients comes from the
field of machine learning; more precisely, meta-learning: given a certain number of
algorithms to perform a given task, one would like to rank those algorithms from
1, the most adequate, to n, the worst. Then, if we have more than one method to
rank the algorithms, we have to evaluate the quality of all of the methods in order
to choose the best ranking method. To do that, we have to concentrate on problems
where the true ranking of all of the algorithms is known, and then we compare that

© The Author(s) 2015
J. Pinto da Costa, Rankings and Preferences,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-48344-2_1
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2 1 Introduction

true ranking with the rankings provided by every ranking method. This comparison
is usually done by means of a correlation coefficient like Spearman’s rS . Neverthe-
less, in Spearman’s coefficient, all ranks are given the same importance. However,
in this application of ranking algorithms, the user starts by using the first algorithms
suggested by the method and if there is enough time and resources, tries all of the
algorithms; otherwise no. It is thus clear that the algorithms in the top positions are
far more important than those in the last positions, but Spearman’s coefficient is
not sensitive to that. In fact, rather surprisingly, rank importance is rarely taken into
account [40]. Similar remarks can also be made concerning the area of recommender
systems [14].

Another example which also involves rankings generated by models and rankings
representing human preferences, is given in [9], where the authors investigate meth-
ods to infer user preferences concerning health profiles and have used Spearman’s
rS to assess performance. However, it is common knowledge that when stating their
preference as rankings, humans rank the most preferred alternatives, i.e., the ones
ranked at the top, more accurately than the others, and so rS is not really appropriate.
Many other examples could be given, like for instance in the area of bioinformatics,
which, as we will see later, is a privileged application in this book.

Given that ranking is a learning task different from existing ones, like classi-
fication, regression, or clustering, it requires different evaluation procedures. This
evaluation was indeed the driving force for the development of weighted correlation
coefficients [61, 63, 67, 93].

1.2 Weighted Correlation and Applications

This book is devoted to correlation,more preciselyweighted correlation, and applica-
tions. A common rank correlation coefficient is Spearman’s, which is not a weighted
measure but was nevertheless our starting point to develop weighted coefficients.
There has been a growing interest about weighted measures of rank correlation [10,
61, 63, 74, 81, 92, 93]; that is, measures that, unlike Spearman’s [94] coefficient
which treat all ranks equally, weigh ranks by choosing a suitable weight function.
For example, by using weights proportionally to how high the ranks are, as will be
seen in the applications, although other types of weight functions could be consid-
ered.Wewill start bymaking a brief introduction to correlation and apply Spearman’s
rank correlation coefficient to a particular problem, motivating thus the need for a
weighted measure.

The objective of correlation coefficients is to assess the degree of monotonicity
between two or more series of paired data. By monotonicity, we mean a tendency
for the values in the series to increase or decrease together (positive correlation) or
for one to increase as the other decreases (negative correlation). They are applicable
to paired data, i.e., data where there is some connection between corresponding
members of the samples.



1.2 Weighted Correlation and Applications 3

Rank correlation coefficients are less restrictive than other methods, e.g., Pear-
son’s correlation coefficient, because they do not try to fit one particular kind of
relationship, linear or other, to the data. They achieve this by using the ranks of
the sample values rather than the values themselves. To use these coefficients, we
must first rank the observations in each sample, X and Y , from 1 (highest rank) to n
(lowest rank), where n is the number of pairs of observations. We thus obtain r(Xi )

and r(Yi ) where Xi and Yi are the pair of values corresponding to observation i in
each sample and r(Xi ) (r(Yi )) returns the rank of value i in the first series (second
series). For sake of simplicity, we will use frequently the ranks directly rather than
the values in the series. That is, Ri = r(Xi ) and Qi = r(Yi ). One interesting fact
about rank correlation is that, contrary to other correlation methods, it can be used
not only on numerical data but on any data that can be ranked. An example of the use
of such methods is the analysis of sales data where the aim is to assess whether there
is correlation between marketing activities (i.e., visits to clients) and the number of
sales [57, Chap. 9].

Weighted correlation is concerned with the use of weights assigned to the subjects
in the calculation of a correlation coefficient between two variablesX andY [74]. The
weights can either be naturally available beforehand or chosen by the user to serve a
specific purpose. For instance, if there is a different number of measurements on each
subject, it is natural to use these numbers as weights and calculate the correlation
between the subject means. On the other hand, if the variables X and Y represent,
for instance, the ranks of preferences of two human beings over a set of n items, one
might want to give larger weights to the first preferences, as these are more accurate.

Suppose in a general context that (Xi , Yi ) is the pair of values corresponding to
observation i in each sample and pi the weight attributed to this observation, such
that

∑n
i=1 pi = 1. Then, a sample weighted correlation coefficient is given by the

formula,

rp =
∑n

i=1 pi (Xi − X p)(Yi − Y p)
√∑n

i=1 pi (Xi − X p)2
√∑n

i=1 pi (Yi − Y p)2

=
∑n

i=1 pi Xi Yi − ∑n
i=1 pi Xi

∑n
i=1 pi Yi

√∑n
i=1 pi X2

i − (
∑n

i=1 pi Xi )2
√∑n

i=1 pi Y 2
i − (

∑n
i=1 pi Yi )2

, (1.1)

where X p = ∑n
i=1 pi Xi and Y p = ∑n

i=1 pi Yi are the weighted means. When
all of the pi are equal they cancel out, giving the usual formula for the Pearson’s
product-moment correlation coefficient.

In this book, we present new correlation coefficients, weighted correlation coef-
ficients, that are applicable to problems where the correlation between two series
of paired data is affected by the importance of each data value. For instance, lower
values or lower ranks (in the case of rank correlation) are more important than larger
ranks and, thus, distance in lower ranks should have larger impact on the correlation
coefficient.



4 1 Introduction

In order to illustrate the need for weighted measures of correlation, let us now
consider the following problem concerning the relevance of a set of n documents to
a particular subject. Suppose that R = (R1, R2, . . . , Rn), represents the ranking of a
set of n documents determined by an expert user in terms of the relevance to a given
query. Suppose further that Qi , i = 1, . . . , n, represents the ranking of the same set
of documents provided by a search engine, given the same query. The quality of the
output of the search engine in this particular situation (i.e., this query) can be assessed
bymeasuring the similarity or concordance between the two rankings. However, top-
ranked documents are more important than those that are ranked lower, because the
probability that the user will analyze the former is higher. Thus, the quality of the
output is more affected by the similarity at the top of the rankings rather than at the
bottom.

Rank correlation coefficients such as Spearman’s [57, 94, Chap. 9] can be used
to quantify the similarity between two rankings. However, Spearman’s coefficient
treats all ranks equally and is, therefore, not entirely suitable for applications such
as the one just described. In order to illustrate this, let us consider the following
situation where we have not one but two search engines. As said, R represents the
ranking of a set of n documents determined by an expert. Similarly, let now Q and
Z represent the ranking of the same set of documents provided by two competing
search engines for the same query (Table1.1). We want now to decide which of the
two search engines gives better results for this query. Now, the quality of the two
rankings Q and Z can be evaluated by calculating their correlation to ranking R,
using Spearman’s coefficient. A priori, the one with higher Spearman’s correlation
is the best.

Table 1.1 Three rankings of ten documents for a given query: R represents the relevance for the
query, and Q and Z represent two rankings obtained from different search engines for the same
query

Doc. (i) Ranks (Ri − Qi )
2 (Ri − Zi )

2

Ri Qi Zi

D1 1 2 3 1 4

D2 2 1 5 1 9

D3 3 4 2 1 1

D4 4 6 1 4 9

D5 5 5 6 0 1

D6 6 3 4 9 4

D7 7 8 7 1 0

D8 8 9 8 1 0

D9 9 10 9 1 0

D10 10 7 10 9 0
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Now, to calculate Spearman’s coefficient, we must first rank the observations in
each sample, as noted above. In this case, the observations are already ranked; thus,
if Ri and Qi represent two vectors of ranks, Spearman’s correlation coefficient, rS ,
is given by the expression:

rS =
∑n

i=1

(
Ri − R

) (
Qi − Q

)

√
∑n

i=1

(
Ri − R

)2 ∑n
i=1

(
Qi − Q

)2

However, for computational purposes, amore convenient expression is the following,
which assumes there are no ties (if the number of ties is not too large, this simpler
expression can still be used [21]):

rS = 1− 6
∑n

i=1 (Ri − Qi )
2

n3 − n

The correlation between the rankings represented as R and Q in Table1.1 above
is rS = 0.8303. Given that it is relatively close to 1, we conclude that the ranking Q
is similar to ranking R, which represents the relevance of the documents to the given
query, and is therefore a good ranking.

Now let us evaluate the alternative ranking Z. Spearman’s correlation between
this new ranking and R is rS = 0.8303, which is exactly the same value that was
obtained withQ. This means that both rankings,Q andZ, are equally good according
to Spearman’s coefficient. However, if we carefully analyze the rankings, we observe
that although they are equally good approximations of ranking R as a whole, Q is
probably more useful because it is more similar to R in the higher ranks than Z and
not so similar in the lower ones. Assuming, as would be expected, that the higher
the rank, the more probable it is that the corresponding document will actually be
analyzed by the user making the query, the first ranking Q is clearly better than Z.
However, as shown above, with rS we obtain a different result because this coefficient
treats all ranks equally. Thus, we need new measures of similarity between rankings
that take rank importance into account.

The search for measures of weighted correlation has already been considered in a
number of works in the previous years; for instance, Blest (2000), which has adapted
Kendall’s concordance coefficient. Blest’s measure, however, is not a symmetric
function of the two vectors of ranks, which makes it of little use.

In 2001 [61, 93], we have introduced the weighted rank correlation coefficient rW

whose expression is:

rW = 1− 6
∑n

i=1(Ri − Qi )
2
(
2n + 2− Ri − Qi

)

n4 + n3 − n2 − n
. (1.2)

In 2003, [28] a symmetrized version of Blest’s coefficient has been presented which
has later been seen to coincide with the coefficient rW just described (see [29, 68]).
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1.3 Organization of the Book

The statistical distribution of the measure of weighted correlation rW , first for the
case of independence between the two vectors of ranks and then for the general case,
has been described in [63, 67], respectively. The study of the weighted measure rW ,
including its asymptotic distribution, will be the subject of Chap.2 where we will
also present a simulation study and a comparison between rW and Spearman’s rS .
We will end the chapter with examples of applications of rW .

The generalization of the coefficient rW , which uses a linear weight function, has
been given in 2007 [68] for other weight functions (see also [74]). In particular, for
a quadratic weight function, we get the coefficient rW2,

rW2 = 1− 90
∑n

i=1 (Ri − Qi )
2 (2n + 2− Ri − Qi )

2

n(n − 1)(n + 1)(2n + 1)(8n + 11)
, (1.3)

which has already been the subject of some important applications, in particular in
bioinformatics [73]. In Chap. 3 a detailed exposition of this weighted correlation
coefficient will be described.

In Chap.4, we will present a new weighted Principal Component Analysis (PCA)
based on this new measure rW2 and consider also its application to microarray data.
First, a new Principal Component Analysis, introduced in [73], is presented and its
robustness to outliers and noise is explained with examples. Then, a new method for
selecting relevant genes in microarray data, based on this new PCA, is introduced
and its comparison to other well-known methods of choosing genes in microarray
data is also described. The chapter ends with the analysis of the chosen genes, for
some microarray datasets, and conclusions.

In the same year of rW2, 2007, a new family of conditional dependence mea-
sures and its corresponding multivariate versions, based on Spearman’s rho, and
related measures of tail dependence, have been introduced in [88]. These conditional
dependence measures based on Spearman’s rho utilize also weighting functions for
specific interesting parts. In Chap.4 of [27], the estimation of associations based
also on Spearman’s rho and on weighted observations is considered, together with
an important area of application in finance where higher weight is given to more
recent observations. This type of application where one gives different weights to
more recent observations, or other regions of a time series, had also been considered
in [70, 71]. There, weighted measures of association specific for time series were
described and used in the context of time-dependent Principal Component Analysis
and clustering of time series data.

In Chap.5, a newweighted Principal Component Analysis, specific for time series
data, will also be presented, as well as its application to a number of time series
datasets. In addition, a weighted clustering specific for time series is also described
in Chap.6.

http://dx.doi.org/10.1007/978-3-662-48344-2_2
http://dx.doi.org/10.1007/978-3-662-48344-2_3
http://dx.doi.org/10.1007/978-3-662-48344-2_4
http://dx.doi.org/10.1007/978-3-662-48344-2_5
http://dx.doi.org/10.1007/978-3-662-48344-2_6
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In the Appendix, some more theoretical results are presented and also tables of
critical values for some of the weighted measures of correlation described in the
book. In particular, the maximum value of the weighted measures of correlation is
explained; the mean and variance of rW under the null hypothesis of independence;
the asymptotic normality of some nonparametric statistics which are used to prove
the convergence of rW to the Gaussian distribution; the computation of the weighted
principal components in the case of having more variables than observations.



Chapter 2
The Weighted Rank Correlation
Coefficient rW

Abstract Spearman’s rank correlation coefficient is not entirely suitable to measure
the correlation between two rankings in some applications because it treats all ranks
equally. In 2001, we have proposed a weighted rank measure of correlation that
weights the distance between two ranks using a linear function of those ranks, giving
more importance to higher ranks than lower ones. In this chapter, we analyze its
distribution and provide a table of critical values to test whether a given value of
the coefficient is significantly different from zero. We also summarize a number of
applications for which the new measure is more suitable than Spearman’s.

2.1 Introduction

In this chapter we analyze the statistical distribution of the weighted rank correlation
coefficient rW [61, 63, 67, 93] and provide a table of critical values to test whether a
given value of the coefficient is significantly different fromzero.We also summarize a
number of applications for which the newmeasure is more suitable than Spearman’s.

Rank correlation coefficients such as Spearman’s [57, Chap.9], [94] can be used
to quantify the similarity between two rankings. However, Spearman’s coefficient
treats all ranks equally and is, therefore, not entirely suitable for applications such as
the one described in the previous chapter, where different weights need to be given
to different ranks.

In this chapter, we describe a measure of correlation—adapted from Spearman’s
rank correlation coefficient—that weighs ranks proportionally to how high they are.1

This problem has already been considered by Blest in 2000 [10]. His measure, how-
ever, is not a symmetric function of the two vectors of ranks. The measure rW that we
have proposed in 2001 does not have this problem. In the next section, we describe
rank correlation and provide an example to illustrate the need for weighted mea-
sures. In Sect. 2.3, we describe previous approaches to this problem, identifying
their drawbacks, which lead us to the measure rW described here. We also give some

1We assume that the higher rank is 1, and corresponds to the “best” element in the ranking.

© The Author(s) 2015
J. Pinto da Costa, Rankings and Preferences,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-48344-2_2
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insight into its interpretation. In Sects. 2.4 and 2.5, we analyze the distribution of
the measure proposed and provide some illustrative examples. In Sect. 2.6, we dis-
cuss the applicability of the rW measure, identify a few of its potential applications
and describe some of its limitations. Conclusions are given in Sect. 2.7. The proofs
of results used and the table of critical values of the rW measure are given in the
Appendix.

2.2 Rank Correlation

One interesting fact about rank correlation is that, contrary to other correlation meth-
ods, it can be used not only on numerical data but on any data that can be ranked.
An example of the use of such methods is the analysis of sales data where the aim
is to assess whether there is correlation between marketing activities (i.e., visits to
clients) and the number of sales [57, Chap.9].

Rank correlation canbe applied, for instance, to the problemof evaluating rankings
of documents generated by search engines, which was introduced in the previous
chapter. As shown there, Spearman’s coefficient rS treats all ranks equally and in
that situation it should not, as the top ranks are clearlymore important. Thus, we need
a measure of similarity between rankings that takes rank importance into account.
An alternative measure to rS is Kendall’s concordance coefficient [57, Chap.9].
This coefficient is equivalent to counting the minimum number of transpositions
required to transformone ranking into the other. Themost striking difference between
Spearman’s andKendall’s coefficients is that the differences are squared in the former
but not in the latter. Therefore, Spearman’s coefficient is more affected by larger
differences while, on the other hand, Kendall’s is more affected by smaller ones.

In 2001 and 2005 [61, 63, 93], we have introduced and analyzed a weighted rank
correlation coefficient, rW , that weighs the distance between two ranks using a linear
function of those ranks, giving more importance to higher ranks than lower ones.
This measure will be described next. We will also analyze the statistical distribution
of rW in the case of independence between the two vectors of ranks and also for
the general case; that is, the case where we make no assumption of independence
between the two vectors of ranks. To do so, we will use the same notation and
analogous arguments of those used by Ruymgaart, Shorack and Van Zwet (1972)
in the proof of their Theorem 2.1 (see [83]). We show that rW has a normal limit
distribution. A table of critical values for rW will be provided in the Appendix in
order to test whether a given value of the coefficient is significantly different from
zero, and a number of applications for this new measure will also be given.
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2.3 Weighted Rank Measure of Correlation

Here, we describe the construction of the weighted rank measure of correlation
rW and then use the example introduced in the previous chapter to illustrate the
advantage of the new measure. As before let us denote by R = (R1, R2, . . . , Rn)

and Q = (Q1, Q2, . . . , Qn) two vectors of ranks obtained on a sample of size n.
The calculation of the distance between two ranks in Spearman’s coefficient,

rS = 1 − 6
∑n

i=1(Ri −Qi )
2

n3−n
, is given by:

D2
i = (Ri − Qi )

2

which does not take rank importance into account. In 2000, an alternative was pro-
posed by Soares et al. [92]:

(
(Ri −Qi )/Ri

)2. This function has several shortcomings.
First, the ranking Q that will obtain the largest distance from R is not the inverted
ranking, i.e., Qi = n − Ri + 1, which is rather unintuitive. Second, the function is
not symmetric, which means that the distance between series R and series Q can be
different from the distance betweenQ andR. Also in 2000, an adaptation ofKendall’s
concordance coefficient has been proposed by Blest [10], which also addresses the
same issue. However, as in the distance function proposed by Soares et al., Blest’s
measure is not a symmetric function of the two vectors of ranks.

Here, we use the following alternative distance measure proposed in [61, 63, 93]:

W 2
i = (Ri − Qi )

2
(
(n − Ri + 1) + (n − Qi + 1)

)

= D2
i (2n + 2 − Ri − Qi )

The first term of this product is D2
i , exactly as in Spearman’s method and represents

the distance between Ri and Qi . The second term represents both the importance of
Ri and also the importance of Qi .

Let us consider now again the example introduced in the previous chapter con-
cerning the ranking of ten documents according to the relevance of each document
to a particular subject. Recall that R represents the “true” ranking of the ten docu-
ments, provided by an expert, and Q and Z represent two rankings of the same ten
documents provided, for instance, by two competing search engines. The sum of
distances between R and Q, using this expression (

∑n
i=1 W 2

i ), is 278 and the sum of
distances between R and Z is 436 (Table2.1). This means that the distance between
R and Z is larger, a conclusion that is consistent with the intuitive analysis of the
usefulness of suggested rankings in the previous section. In fact, given that ranking
R is more similar to ranking Q in the most important ranks, the first ones, we expect
the difference between rankings R and Q to be smaller, which is the case. As for
Spearman’s coefficient both distances, between rankings R and Q and rankings R
and Z are the same, which is rather unintuitive.

Now, in order to construct a correlation coefficient based on this new distance, we
will follow a common strategy, which consists in looking for an affine function of
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Table 2.1 Application of the new distance measure to the example of rankings of documents

Document R Q Z

i Ri Qi D2
i W 2

i Zi D2
i W 2

i

D1 1 2 1 19 3 4 72

D2 2 1 1 19 5 9 135

D3 3 4 1 15 2 1 17

D4 4 6 4 48 1 9 153

D5 5 5 0 0 6 1 11

D6 6 3 9 117 4 4 48

D7 7 8 1 7 7 0 0

D8 8 9 1 5 8 0 0

D9 9 10 1 3 9 0 0

D10 10 7 9 45 10 0 0

Sum 278 436

the distance between the two rankings, an expression of the form A+ B
∑n

1 W 2
i . The

idea is to find which two constants A and B make this expression to take values in
[−1, 1], as is usual with correlation coefficients; 1 when they are the same (Ri = Qi )
and −1 when the rankings are inverted (Ri = n + 1 − Qi ). In the first case, we
have that

∑n
1 W 2

i = 0 and so A must be 1. In the second case, as is shown in
AppendixA.1, the maximum value of the weighted distance

∑n
1 W 2

i between two
rankings is (n4+ n3− n2− n)/3 and is obtained when the rankings are inverted, that
is, Qi = n + 1 − Ri . Using this expression for the maximum value of the weighted
distance, we obtain therefore that A + B · (n4 + n3 − n2 − n)/3 = −1. Using
these two conditions for the two constants A and B, the weighted rank measure of
correlation, rW = A + B

∑n
1 W 2

i , becomes, after some simplifications:

rW = 1 − 6
∑n

i=1(Ri − Qi )
2
(
(n − Ri + 1) + (n − Qi + 1)

)

n4 + n3 − n2 − n
(2.1)

In the example of Table2.1 concerning the ranking of documents, the rW value for
R and Q is 0.8468. As expected, this is higher than the rW value for R and Z, which
is 0.7598.

As stated earlier, rank correlation coefficients measure the monotonicity between
two series of matched values. We have just described the weighted rW measure of
correlation, adapted from Spearman’s rS , that takes rank importance into account,
unlike the latter. That is, correlation will be more affected by points that are ranked
higher in the series than others. Next we analyze the statistical distribution of this
measure, startingwith the case of independence between the two vectors of ranks.We
also analyze the differences between Spearman’s rS and the weighted measure rW .
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2.4 Properties of the Distribution of rW Under the Null
Hypothesis of Independence

In this section, we will study the distribution of rW under the null hypothesis of
independence between the two vectors of rankings. We start by briefly describing
some results from linear rank statistics, which will be used next to determine the
expected value and the variance of rW . We provide evidence to suggest that, under
the null hypothesis, the standardized value of rW follows the Gaussian distribution;
that is,

(rW − E(rW ))/
√
var(rW )

d≈ N (0, 1)

As above, let us denote by R = (R1, . . . , Rn) the first vector of ranks and by
Q = (Q1, . . . , Qn) the second vector of ranks. That is, R and Q assume only values
in the set R of all the n! permutations of the integers (1, . . . , n). Under the null
hypothesis,

H0 : R and Q are independent,

the two rank vectors are both uniformly distributed over R. This implies that the
distribution of

rW = 1 − 6
∑n

i=1(Ri − Qi )
2
(
2(n + 1) − Ri − Qi

)

n(n3 + n2 − n − 1)

is the same as the distribution of

1 − 6
∑n

i=1(i − R∗
i )2

(
2(n + 1) − i − R∗

i

)

n(n3 + n2 − n − 1)

where R∗ = (R∗
1 , . . . , R∗

n) is a random vector taken uniformly from the setR.

2.4.1 Linear Rank Statistics

A statistic of the form

S =
n∑

i=1

c(i)a(R∗
i ) (2.2)

is called a linear rank statistic [78, Chap.8]. The constants a(1), . . . , a(n) are called
the scores and c(1), . . . , c(n) the regression constants. In [78, Chap.8] it is shown
that, under H0,
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(i) Pr(R∗
i = r) = 1

n , r = 1, . . . , n

(ii) if i �= j then Pr(R∗
i = r, R∗

j = s) =
{ 1

n(n−1) r �= s = 1, . . . , n;
0 otherwise

(iii) E(S) = nc a
(iv) var(S) = (n − 1)s2c s2a ,

(2.3)

where a and c represent the average values of the scores and regression constants,
respectively. Similarly, s2a and s2c represent their variances.

We will now find the two first moments of the weighted rank correlation coeffi-
cient rW under the hypothesis of independence between the two vectors of ranks. In
particular, its expected value has the desirable property of being equal to zero under
independence, which is a common result for correlation coefficients.

Theorem 1 Under the hypothesis of independence between two vectors of ranks,

E(rW ) = 0 and var(rW ) = 31n2 + 60n + 26

30(n3 + n2 − n − 1)

The proof is given in AppendixA.3.

2.4.2 Exact and Asymptotic Distribution of rW Under the Null
Hypothesis of Independence

We will now investigate the asymptotic distribution of (rW − E(rW ))/
√
var(rW ),

under the null hypothesis of independence between the two vectors of ranks. Let

S(11)
n =

n∑

i=1

iR∗
i , S(12)

n =
n∑

i=1

iR∗2
i , S(21)

n =
n∑

i=1

i2R∗
i

Then, as shown in the Appendix,

rW = 1

n(n3 + n2 − n − 1)

(
24(n + 1)

(
S(11)

n − E
(

S(11)
n

))

−6
(

S(12)
n − E(S(12)

n )
)

− 6
(

S(21)
n − E(S(21)

n )
))

To standardize rW , we divide by the square root of its variance (E(rW ) = 0 under
the null hypothesis). We start by defining the three constants,

a(11)
n = 2

√
30n(n + 1)2

√
n − 1

n
√
31n2 + 60n + 26

√
n3 + n2 − n − 1

,

a(12)
n = −6

√
30n(n + 1)

√
16n3+14n2−19n−11

2160

n
√
31n2 + 60n + 26

√
n3 + n2 − n − 1
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a(21)
n = −6

√
30n(n + 1)

√
16n3+14n2−19n−11

2160

n
√
31n2 + 60n + 26

√
n3 + n2 − n − 1

Then,

rW√
var(rW )

= a(11)
n

S(11)
n − μ

(11)
n

σ
(11)
n

+ a(12)
n

S(12)
n − μ

(12)
n

σ
(12)
n

+ a(21)
n

S(21)
n − μ

(21)
n

σ
(21)
n

where

μ(k�)
n = E(S(k�)

n ) and σ (k�)
n =

√

var(S(k�)
n )

In [78, Chap.8] it is shown that as n −→ ∞ the following statistic converges in
distribution to the Gaussian:

S(k�)
n − μ

(k�)
n

σ
(k�)
n

d−→ N (0, 1)

On the other hand, as n −→ ∞,

a(11)
n −→ a(11) = 2

√
30

31
, a(12)

n −→ a(12) = − 1

90

√
30

31
and a(21)

n −→ a(21) = a(12)

Therefore [8, p. 288],

a(k�)
n

S(k�)
n − μ

(k�)
n

σ
(k�)
n

d−→ a(k�)Z

where Z stands for the standard normal distribution. So, the standardized rW is the
sum of three statistics that are asymptotically normal. However, these three statistics
are not independent and so we cannot conclude directly that their sum is asymptoti-
cally normal.

In order to verify the asymptotic distribution of rW , we have started by computing
some theoretical and empirical distributions in the next section, and compared it with
the normal curve.

2.4.3 Simulations

We have calculated the exact distribution of rW for n up to 14. Due to computational
limitations, for larger values of n, we estimated the distribution based on a random
sample of one million permutations. For n = 14, we observe that there is a small
difference between the exact and estimated values for the most important quantiles
(Table2.2). Note that we have decided not to interpolate the critical values because it
is a discrete distribution. Instead, we used a common strategy of finding the quantiles
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Table 2.2 Difference between the exact and estimated quantiles for n = 14

Quantile
(%)

0.5 1 2.5 5 95 97.5 99 99.5

Difference 0.0052 0.0042 0.0021 0.0000 0.0010 0.0010 0.0010 0.0010

Fig. 2.1 Exact distribution for n = 14 and estimated distribution for n = 15, 20 and 40, together
with the Standard Normal curve

of a discrete distribution but with a slight change. With a discrete distribution, all
the values in a given interval satisfy the definition of quantile of order p. This might
bring a difficulty in choosing the quantile especially for small n. Therefore, for each
confidence level αi , we have multiplied it by the total number of permutations, n!
If the result is not an integer, we use the next lower/higher integer for small/large
confidence levels, respectively. Finally, we picked the corresponding order statistic.

In Fig. 2.1, we plot the distribution for n = 14 and n = 15, respectively, the last
exact and the first estimated distributions. The graphs indicate that the sample size
is adequate. In the same figure, we also plot the estimated distributions for n = 20
and 40, respectively. In all graphs, the values of rW have been standardized and we
plot the normal curve for comparison.

The empirical distribution of rW does not lie symmetrically about zero. This is
because the distribution of the values of our statistic is not symmetric; it is a little
skewed. This does not strike us as a problem, since we think there is no reason for a
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Fig. 2.2 Difference between
the estimated quantiles of rW
and the quantiles of the
Standard Normal

measure of correlation to be necessarily symmetric. Themeasure rW was constructed
so that the first ranks are more important than the other ranks and this influences its
symmetry. Unlike Blest’s measure, our statistic treats both rankings similarly; that
is, rW (R,Q) = rW (Q,R). However, this does not mean that the distribution of its
values, which lie in the interval (−1, 1), is symmetric. In fact it is not. For instance,
for n = 3, the values of the statistic are –1, –0.5, –0.5, 0.375, 0.625, and 1; these
values have mean zero, but are not symmetric about zero. For the same reason, the
percentiles are also not symmetric about zero (e.g., the 5% and 95% percentiles for
n = 5, which are given in TableA.1 (Appendix), are not the same in absolute value).

We have calculated the difference between the quantiles for the standardized rW

and the standard normal for a few values of n and observed that the differences are
small (Fig. 2.2). For n > 40, we have observed that these differences are always
smaller than 0.1. This means that the differences between the nonstandardized rW

and the approximation given by the normal distribution is smaller than 0.1
√
var(rW ).

For instance, for n = 51, the difference between rW and the approximation given by
the normal curve is smaller than 0.003.

2.4.4 Comparison Between rW and rS

In the last subsections, we have presented an adaptation of Spearman’s rank correla-
tion coefficient, which assigns more importance to higher ranks. Here we start with a
comparison of the weighted measure rW with Spearman’s coefficient rS to point out
the differences and describe the conditions under which the new coefficient should
be used.

Despite the similarities between the two measures rW and rS , they may yield
quite different values when applied to the same pair of series. We illustrate these
differences using a few examples.

We start by measuring the correlation between rankings R and Q. The former
is defined as R = (1, 2, . . . , n − 1, n), where n is the number of elements in the
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ranking. Ranking Q is obtained from R by swapping the elements (1, . . . , p) and
(q − p + 1, . . . , q), after inverting the order in each of them:

R = ( 1, . . . , p , p + 1, . . . , q − p, q − p + 1, . . . , q , q + 1, . . . , n)

Q = ( q, . . . , q − p + 1 , p + 1, . . . , q − p, p, . . . , 1 , q + 1, . . . , n).

We plot in Fig. 2.3 the value of rW (R,Q) − rS(R,Q) for a few values of n, p, and q.
Note that although some of the differences are already quite large, achieving values
close to 0.15, it is possible to obtain even larger differences. Furthermore, if both p
and q are represented as proportions of n, the differences are independent of the size
of the ranking (in the examples the differences decrease with the size of the ranking,
n, because we have used values of p which represent smaller proportions).

Having proved that the two rank correlation coefficients, rW adn rS , can give
quite different results, it is of importance now to decide when to use rW . The new
measure should be used instead of Spearman’s coefficient in applications for which
it is known that the importance of concordance between the series decreases with the
ranks. In other words, assuming that f (i) is a function that represents the importance
of rank i , rW should be used rather than rS if:

i < j ⇒ f (i) > f ( j). (2.4)

Note that we assume that 1 is the highest rank and n is the lowest one, where n
is the number of elements in the series. Again, let us illustrate with some more
examples. We measure the difference between the weighted correlation of a ranking
R and each of two rankings Q and Z, i.e., rW (R, Q) − rW (R, Z). As before, R =
(1, 2, . . . , n −1, n), where n is the number of elements. Ranking Q is obtained from
R by swapping the elements (1, . . . , p) and (q + 1, . . . , q + p):

Fig. 2.3 Difference between Spearman’s coefficient (rS) and the new weighted measure of corre-
lation (rW ) on a few illustrative examples
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Fig. 2.4 Difference between twoweighted rank correlation values, rW (R, Q) and rW (R, Z), where
Q and Z are obtained by applying a symmetric procedure to R, for a few illustrative examples of
different parameters of the procedure

R = ( 1, . . . , p , p + 1, . . . , q, q + 1, . . . , q + p , q + p + 1, . . . , n)

Q = ( q + 1, . . . , q + p , p + 1, . . . , q, 1, . . . , p , q + p + 1, . . . , n).

Ranking Z is obtained from R using a symmetric procedure to the one used to
generateQ. We swap the elements (n− p+1, . . . , n) and (n−q − p+1, . . . , n−q):

R = (1, . . . , n − q − p, n − q − p + 1, . . . , n − q ,

n − q + 1, . . . , n − p, n − p + 1, . . . , n )

Z = (1, . . . , n − q − p, n − p + 1, . . . , n ,

n − q + 1, . . . , n − p, n − q − p + 1, . . . , n − q )

According to the assumption above (2.4), the concordance betweenR andZ is clearly
much higher than between R and Q. However, the value of rS is the same in both
cases. The difference between the values of the weighted measure in the two cases
is illustrated in Fig. 2.4 for a few values of n, p, and q.

Note that we have made a very weak assumption, (2.4), namely that the higher the
rank, the higher its importance. This enables us to consider a wide range of applica-
tions, a few of which are enumerated in Sect. 2.6. However, in some applications it
is possible to make stronger assumptions. For instance, it may be known that only
the top 1, 5, or 10 alternatives in the ranking will be considered. In these cases, it
may be more suitable to use more specific measures that only take those ranks into
consideration and ignore all the others. Other weighted measures of correlation will
be given in later chapters.

Our main claim is that the weighted measure rW is more appropriate than tra-
ditional rank correlation coefficients for a wide range of applications where higher
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ranks are more important than lower ones. Although rW gives more importance to
higher ranks, it still takes the whole ranking into account rather than simply assuming
that some ranks matter and others do not. Therefore, it may be used as a general mea-
sure of similarity between two rankings. By treating rankings as a whole, generality
is gained (i.e., it may be applied to a wide range of ranking problems) at the cost of
the ability to capture specificities of individual problems (e.g., only the top-5 ranks
are considered). Therefore, we do not claim that it should replace problem-specific
measures. We believe that it may be more useful as a complement to those mea-
sures, assessing the general concordance between rankings, while other measures
may provide a more specific assessment.

2.5 The Asymptotic Distribution of rW for the General Case

In the last section we have seen that, in the case of independence between two
rankings, the weighted measure of correlation rW seems to converge to the Gaussian
distribution, according to the simulations realized. Now we make no independence
assumptions; that is, we study the asymptotic distribution of rW for the general case
and we give the formal proof that rW converges to the normal distribution (see also
[67]). This section is rather technical and can be skipped at a first reading. First,

rW = 1 − 6
∑n

i=1(Ri − Qi )
2(2n + 2 − Ri − Qi )

n4 + n3 − n2 − n

= 1 − 6

n

n∑

i=1

(
Ri

n + 1
− Qi

n + 1

)2 (
2n + 2 − Ri − Qi

n − 1

)

Therefore, the asymptotic behavior of rW is the same as the one of 1−6Wn , where

Wn = 1

n

n∑

i=1

(
Ri

n + 1
− Qi

n + 1

)2 (

2 − Ri

n + 1
− Qi

n + 1

)

.

Wn is a statistic of the type 1
n

∑n
i=1 an(Ri , Qi ), where an(i, j) is a real number

for i, j = 1, 2, . . . , n.
If we define J (s, t) = (s − t)2(2 − s − t), 0 ≤ s, t ≤ 1, then J (s, t) is a limit of

the score function,

Jn(s, t) = an(i, j) = J

(
i

n + 1
,

j

n + 1

)

, (2.5)
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for i and j such that i−1
n < s ≤ i

n and j−1
n < t ≤ j

n . Hence, Wn can be written as
(see [7]),

Wn =
∫ ∫

Jn(Fn, Gn)d Hn, (2.6)

where Fn and Gn are the empirical marginal distribution functions of F and G,
respectively; Hn is the bivariate empirical distribution function of H . Now, let us
define the population moment μ = ∫ ∫

J (F, G)d H . By analogy to rW , we define
the population weighted rank correlation coefficient between two variables X and Y
to be,

ρW (X, Y ) = 1 − 6μ

= 1 − 6
∫ ∫

(F(x) − G(y))2(2 − F(x) − G(y))d H(x, y),

or, by using copulas [58]

ρW (X, Y ) = 1 − 6
∫

[0,1]2
(u − v)2(2 − u − v)dc(u, v),

where the copula c(u, v) = P(F(X) ≤ u, G(y) ≤ v), 0 ≤ u, v ≤ 1.
Next, we present the conclusion that rW is asymptotically Gaussian distributed.

Theorem 2.1 rW is an asymptotic normal and consistent (ANC) estimator of ρW

Proof We want to prove that rW is an asymptotic normal and consistent (ANC)
estimator of ρW ; first,

√
n(rW − ρW ) = −6

√
n(Wn − μ) = −6

√
n

[∫ ∫

Jn(Fn, Gn)d Hn − μ

]

.

We start by considering the empirical processesUn(F) = √
n(Fn − F), Vn(G) =√

n(Gn−G),U∗
n (F) = √

n(F∗
n −F),V ∗

n (G) = √
n(G∗

n−G), where F∗
n =

[
n

n+1 Fn

]

and G∗
n =

[
n

n+1Gn

]
. Let now Δ̄n = [X1n, Xnn] × [Y1n, Ynn] where Xin and Yin

denote the i th order statistics and B∗
0n = √

n
∫ ∫ [

Jn(Fn, Gn) − J (F∗
n , G∗

n)
]

d Hn .
We will now prove that Jn(Fn, Gn) = J (F∗

n , G∗
n) and so B∗

0n = 0 for all n.
In fact, the function Fn , for instance, is a step function and so there is always an
i ∈ {0, 1, . . . , n} such that Fn = i

n ; similarly for Gn . This means that by (2.5)

Jn(Fn, Gn) = J
(

i
n+1 ,

j
n+1

)
for some i and j . Now, by the definition above, i

n+1 =
F∗

n and j
n+1 = G∗

n . So, B∗
0n = 0 for all n.

Because B∗
0n = 0 for all n, then an assumption similar to 2.3(b) in [83] (see

Appendix A.5) is satisfied, that is, B∗
0n →p 0. We will now use the same argument

of these authors, adapting it to our situation because our score function an(i, j) is
bivariate and the score functions used in [83], an(i) and bn(i) have just one variable
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(see Appendix A.5). Nevertheless, the adaption follows from the same steps of their
proof. The asymptotic convergence of rW to the normal distribution may be uniform
over a class of distribution functions. However, in this work, we are not interested in
proving uniform convergence, but only convergence for a single distribution.

Now we can write,

√
n(Wn − μ) =

3∑

i=1

Ain + B∗
0n + B∗

1n,

where

A1n = √
n

∫ ∫
J (F, G)d(Hn − H), A2n = ∫ ∫

Un(F) ∂ J
∂s (F, G)d H,

A3n = ∫ ∫
Vn(G) ∂ J

∂t (F, G)d H , B∗
0n is defined above; and

B∗
1n = √

n
∫ ∫ [

J (F∗
n , G∗

n) − J (F, G)
]

d Hn − A2n − A3n .

2.5.1
∑3

i=1 Ain is Asymptotically Normal Distributed

As in [83], we can prove the asymptotic normality of A1n , A2n , and A3n based on
the fact that J is a continuous function and its partial derivatives are continuous and
bounded on (0, 1)2.

Let us start bynoting that A1n = 1√
n

∑n
i=1 A1in where A1in = J (F(Xi ), G(Yi ))−

μ. In fact,

A1n = √
n

∫ ∫

J (F, G)d(Hn − H) = √
n

(∫ ∫

J (F, G)d Hn −
∫ ∫

J (F, G)d H

)

Now, as in Eq.2.6 we get,

A1n =
√

n

n

n∑

i=1

(J (F(Xi ), G(Yi )) − μ)

= 1√
n

n∑

i=1

(J (F(Xi ), G(Yi )) − μ).

The random variables A1in are independent and identically distributed (i.i.d.) with
mean zero. If we choose δ = 1

4 , D = p0 = q0 = 2, r(u) = 1
u(1−u)

then we have
an assumption similar to Assumption 2.1 in the statement of Theorem 2.1 in [83]

(See Appendix A), that is, J (F, G) ≤ D(r(F))a(r(G))b with a = δ− 1
2

po = − 1
8

and b = δ− 1
2

qo = − 1
8 ;

∂ J
∂s (F, G) ≤ D(r(F))a+1(r(G))b with a = δ− 1

2
p1 = − 1

8 and
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b = δ− 1
2

q1 = − 1
8 and ∂ J

∂t (F, G) ≤ D(r(F))b(r(G))a+1 with a = δ− 1
2

p2 = − 1
8 and

b = δ− 1
2

q2 = − 1
8 .

Taking this assumption into account and by application of Hölder’s inequality,

∫ ∫

|φ(F)ψ(G)| d H ≤
[∫

|φ|p0 d I

] 1
p0

[∫

|ψ |q0 d I

] 1
q0

,

∀p0 > 0, qo > 0 : 1

p0
+ 1

q0
= 1;

where φ and ψ are functions on (0, 1), dI denotes Lebesgue measure restricted to
the unit interval, we note that A1in has a finite absolute moment of order 2 + δ0 for
some δ0 > 0 (see Appendix A.6).

Let us consider now A2n . As Un(F) = 1√
n

∑n
i=1(I (Xi ≤ x) − F) we can write

A2n = 1√
n

∑n
i=1 A2in , where A2in = ∫ ∫

(I (Xi ≤ x) − F) ∂ J
∂s (F, G)d H are i.i.d

with mean zero. If we choose δ = 1
4 , D = p1 = q1 = 2, r(u) = 1

u(1−u)
then an

assumption similar to 2.1 in [83] is satisfied. Again, by applying Hölder’s inequality
and similarly to A1in , it follows that A2in has a finite absolute moment of order 2+δ1
for some δ1 > 0.

Let us consider now A3n . As Vn(G) = 1√
n

∑n
i=1(I (Yi ≤ y) − G) we can write

A3n = 1√
n

∑n
i=1 A3in where A3in = ∫ ∫

(I (Yi ≤ y) − G) ∂ J
∂t (F, G)d H are i.i.d

with mean zero. If we choose δ = 1
4 , D = p2 = q2 = 2, r(u) = 1

u(1−u)
then an

assumption similar to assumption 2.1 in [83], is satisfied. By application of Hölder’s
inequality and similarly to A1in , it follows that A3in has a finite absolute moment of
order 2 + δ2 for some δ2 > 0.

From the above conclusions: A1n = 1√
n

∑n
i=1 A1in where A1in are i.i.d. with

mean zero; A2n = 1√
n

∑n
i=1 A2in where A2in are i.i.d with mean zero; A3n =

1√
n

∑n
i=1 A3in where A3in are i.i.d with mean zero and because A1in , A2in , A3in

have a finite absolute moment of order larger than 2, we get
∑3

i=1 Ain →d N (0, σ 2)

as n → ∞. The expression for the variance corresponds to Eq.3.10 in [83] and is
given by

σ 2 = V ar

[

J (F(X), G(Y )) +
∫ ∫

(I (X ≤ x) − F)
∂ J

∂s
(F(x), G(y))d H(x, y)

+
∫ ∫

(I (Y ≤ y) − G)
∂ J

∂t
(F(x), G(y))d H(x, y)

]

.
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2.5.2 B∗
1n is Asymptotically Negligible

We have already seen that an assumption similar to 2.3(b) in [83] is satisfied. If we
consider the mean value theorem (see [84]),

√
n J (F∗

n , G∗
n) = √

n J (F, G) + U∗
n (F)

∂ J

∂s
(φ∗

n , ψ∗
n ) + V ∗

n (G)
∂ J

∂t
(φ∗

n , ψ∗
n )

for all (x, y) in Δ̄n with φ∗
n = F + α3(F∗

n − F) and ψ∗
n = G + α4(G∗

n − G), where
α3 and α4 are numbers between 0 and 1, then B∗

1n can be decomposed as a sum of

seven terms (
∑5

i=1 B∗
γ in + B∗

6n + C∗
n ) which are all asymptotically negligible by the

same arguments used in Sects. 5 and 6 of Ruymgaart et al. [83].

2.5.3 rW is Asymptotically Normal Distributed

We have thus that
√

n(Wn − μ) → N (0, σ 2) in distribution and it is immediate that
rW is an asymptotic normal and consistent (ANC) estimator of ρW :

√
n(rW −ρW ) →

N (0, 36σ 2).

2.6 Examples of Application of rW

The motivation underlying this work applies to a broad range of applications involv-
ing rankings of alternatives representing the preferences stated by humans or recom-
mendations provided by decision support systems.

A general application is the evaluation of methods to predict rankings. The eval-
uation of these methods consists of comparing the ranking R of a set of n objects
generated by a ranking prediction method for a given situation with the target rank-
ing Q of the same set of objects on the same situation. A few examples of ranking
prediction applications are recommendation of data analysis tools, stock trading sup-
port, information retrieval, recommender systems and user preferences, which will
be discussed in more detail next.

The recommendation of data analysis tools is an important problem in knowl-
edge discovery in databases (KDD) or data mining. Due to its interactive and iter-
ative nature, an important part of the KDD process is often spent trying different
preprocessing methods (e.g., discretization of numeric attributes) and learning algo-
rithms (e.g., decision trees or support vector machines), and tuning their parame-
ters [12].
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One of the first applications that have been considered and that was indeed one
of the motivations to develop weighted correlation coefficients comes from the field
of machine learning; more precisely, meta-learning: given a certain number of algo-
rithms to perform a given task, one would like to rank those algorithms from 1,
the most adequate, to n, the worst. Then, given a certain method to recommend the
algorithms, the weighted correlation coefficient rW is used to evaluate the method.
This is not a usual machine learning problem. Traditionally, the supervised learning
approach to problems where each example can be a member of one set of n possible
classes is classification. That is, a set of prelabelled examples is used to induce a
model that selects a single one of those classes as the prediction for a new example.
In this approach, a lot of information that can be useful in some situations is lost,
because none but the “best” class is kept.

In the problem of selecting the best algorithm for a given task [91], for instance,
a classification approach would provide one suggestion of an algorithm. We thus
would know that the suggested algorithm is expected to be the best but no infor-
mation about the other candidates algorithms is given. In this case, a ranking of
the alternative algorithms (i.e., classes) provides complete information about the
expected relative performance of all candidates and enables a more flexible decision
process. The user may simply decide to run the algorithm ranked highest but he or
she may also, if enough time or computational resources are available, decide to try
the first few alternatives. An expert user might even have reasons to ignore the first
recommendation, opting, for instance, to use the recommendation in the second rank.

As our example shows, rankings are particularly important for meta-learning, i.e.,
algorithm selection using past performance information [44, 56, 91]. Other areas
where it may be advantageous to use a ranking approach, rather than the usual
supervised classification, are medicine (e.g., diagnosis of an illness or choice of an
adequate test or treatment) and control systems (e.g., choice of the correct action
to carry out). Two areas where rankings are already widely used are information
retrieval [53] and recommender systems [87].

Given that ranking is a learning task different from existing ones, like classifi-
cation, regression, or clustering, it requires different evaluation procedures. That is
in the evaluation process of ranking that the weighted correlation coefficient will be
used and indeed this application was one of the driving forces for the development
of weighted correlation coefficients. In [61, 93], an evaluation framework has been
developed that consists of comparing the ranking suggested by the ranking method,
called the recommended ranking, with the true ranking, called the ideal ranking [11].
The two rankings can be compared by using, for instance, a rank correlation coef-
ficient. Nevertheless, as is obvious in this application, the top ranks are the most
important; the user will try one, two, or maybe three of the top recommended ranks,
but will probably have no time or resources to try all of the n orderings. Therefore
it is very important that the recommended ranking is similar to the ideal ranking in
the top ranks and it is not so important that the two rankings are similar in the last
positions. The first idea to compare the two rankings was by means of the Spearman
correlation coefficient; nevertheless, as this coefficient gives the same importance
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(weight) to all of the ranks, the results were not good. This motivated thus the devel-
opment of the correlation coefficient rW described above, that appeared for the first
time in [61, 93], and was later developed in [63, 67].

The evaluation of stock trading support systems is also a potential application
of the weighted rank measure of correlation. This problem has traditionally been
tackled as a regression (i.e., predict the value of an individual stock) or as a supervised
classification problem (i.e., predict whether to buy, keep or sell a stock). However,
what investors want is, in fact, to have a grading of the stocks in question, such that
they can make a decision concerning which ones to invest in [35]. Such a grading can
be represented as a ranking. The accuracy of a system that predicts the ranking of a
set of stocks could be evaluated by measuring the correlation between the predicted
ranking to the true ranking of the stocks. Tomaximize profit, the stocks ranked higher
are more important than the ones with lower ranks. Therefore, weighted measures
would be more suitable to evaluate such a system than traditional ones.

Two problems that are usually handled as ranking tasks are information retrieval
[4] and recommender systems [14]. Evaluation strategies in these areas, usually han-
dle the uncertainty concerning how many alternatives will actually be tried out by
the user, by simulating a number of different Top-N scenarios, i.e., by assuming that
the user will select the N higher ranked alternatives for different values of N (e.g., 1,
5, 10, etc.). The corresponding results are either presented to the user (possibly rep-
resented in a chart) or summarized into one value. However, although the problems
that motivated this work are equally relevant in the evaluation of information retrieval
systems [4], correlation-based evaluation is not very common, except in the problem
of database selection, where Spearman’s coefficient has been used [18]. This is true
despite the most commonly used evaluation measures are based on relevance assess-
ment, which is an arguable approach [33]. Surprisingly, rank importance is rarely
taken into account [40]. Similar remarks can also be made concerning recommender
systems [14].

An example which also involves both rankings representing human preferences
and generated by models, is the work of [9]. This work investigates methods to infer
user preferences concerning health profiles. Evaluation is performed by comparing
the predicted rankings to explicitly stated rankings. The authors have used Spear-
man’s rS to assess ranking similarity. However, it is common knowledge that when
stating their preference as rankings, humans rank the most preferred alternatives, i.e.,
the ones ranked at the top, more accurately than the others. Therefore, the weighted
measure rW or other would be more appropriate than the traditional one.

Many other examples could be given where weighted correlation makes sense,
as for instance in bioinformatics. In Chap.4 we describe an application of weighted
correlation in gene expression datawhere it is clear that the higher absolute expression
values in microarray data are more important. Also, weighted correlation is not only
important in the application per se, but also because it allowed the development of a
new method of weighted Principal Component Analysis.

http://dx.doi.org/10.1007/978-3-662-48344-2_4
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2.7 Conclusions About rW

In this chapter, we describe a new rank measure of correlation rW . It is applicable to
problems where the level of correlation between two series of rankings is affected
by the importance of each rank. We compare the new measure with Spearman’s rank
correlation coefficient and show that the weighted measure is clearly more suitable
for such problems.

In rW , we have used a linear rank weighting function to assign more importance
to higher ranks (the first ranks). Although rW is more suitable than Spearman’s rS for
the type of applications we are concerned with, like those just described, the linear
function may not be the best one in all of them. In the next chapter, we will analyze
whether other weighting functions can be more adequate for specific situations. In
information retrieval and recommender systems, for instance, the exponential weight
function has been used in problem-specific measures [14, 40].

We have analyzed the newmeasure’s asymptotic distribution and computationally
show its tendency to the Gaussian curve. Next, the formal proof has been given. We
have first concentrated on the null hypothesis that the two rankings are independent
and then we have developed tests to do inference for other values of rW .

Finally, in the last subsection, we claim that there is a wide range of applications
where theweighted correlation coefficient rW canbeused tomeasure the concordance
between two rankings.



Chapter 3
The Weighted Rank Correlation
Coefficient rW2

Abstract A new weighted rank correlation coefficient, rW2, has been introduced
in Pinto da Costa, Weighted Correlation, 2011, [74] and applied in a bioinformatics
context in Pinto da Costa et al., IEEE/ACMTrans Comput Biol Bioinf 8(1):246–252,
2011, [73]. This coefficient is the second of its series, following the coefficient rW

introduced in Pinto da Costa et al., Nonlinear Estimation and Classification, MSRI,
2001 [61], Pinto da Costa and Soares, Australian New Zealand J Stat 47(4):515–529,
2005, [63], Soares et al., JOCLAD 2001: VII Jornadas de Classificação e Análise
de Dados, Porto, 2001, [93], which was motivated by a machine learning prob-
lem concerning the recommendation of learning algorithms. These coefficients were
inspired by Spearman’s rank correlation coefficient, rS . Nevertheless, unlike Spear-
man’s, which treats all ranks equally, these coefficients weigh the distance between
two ranks using a linear function of those ranks in the case of rW and a quadratic
function in the case of rW2. In both cases, these functions give more importance to
top ranks than lower ones, although rW2 has some advantages over rW as we will
see. In some of the applications of weighted correlation, ties can happen naturally;
nevertheless, the existing coefficients tend to ignore this situation. We give here the
expression of rW2 in the case of ties. We present also some simulations in order to
compare the three coefficients rW2, rW , and rS .

3.1 Introduction

In Chap.2, we described the weighted rank correlation coefficient that we have
introduced in 2001 [61, 93]. This coefficient is,

rW = 1 − 6
∑n

i=1(Ri − Qi)
2
(
2n + 2 − Ri − Qi

)

n4 + n3 − n2 − n
, (3.1)

where Ri is the rank corresponding to the ith observation of the first variable, X,
and Qi is the rank corresponding to the ith observation of the second variable, Y . A
deeper study of this coefficient was presented in [63] and explained in Chap.2, where
the sampling distribution was analyzed; in particular, the sampling distribution of
rW converges to the Gaussian as the sample size increases. In addition, the formal
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proof of this convergence for both dependent and independent data, using a different
strategy from [28], was also presented. Our strategy consists of extending the work
of [83] to the case of bivariate score functions [67].

In 2003, [28] presented a symmetrized version of Blest’s coefficient, ν(X, Y),
whose expression (ν(X, Y) + ν(Y , X))/2 is equal to

2n + 1

n − 1
− 6

n2 − n

(
n∑

i=1

(

1 − Ri

n + 1

)2

Qi +
n∑

i=1

(

1 − Qi

n + 1

)2

Ri

)

. (3.2)

The coefficient rW was constructed as is usual in such cases by finding an affine
function of the distance between the two vectors of ranks that is in the interval [−1, 1].
In our case, wewanted to favor the first ranks and so we choose the weighted distance∑n

i=1(Ri − Qi)
2(2n + 2 − Ri − Qi).

The construction of Blest’s coefficient (and its symmetrized version) is quite
different and is based on a graphical approach. Although these constructions and
expressions (3.1) and (3.2) are quite different, we have realized that if we simplify
them we get the same result; thus, as Genest and Plante pointed out, rW can also be
considered as the symmetrized version of Blest’s coefficient [29].

We think that the construction and expression of rW is not onlymore clear than the
symmetrized version of Blest’s coefficient, but also more suitable for generalization.

In Eq. (3.1) (see also [63]), the calculation of the distance between two ranks Ri

and Qi is given by WD2
i = (Ri − Qi)

2 (2n + 2 − Ri − Qi), where the second term
of the product is a linear weighting function which represents the importance of Ri

and Qi. Now, we propose the dissimilarity measure

W2D2
i = (Ri − Qi)

2 (2n + 2 − Ri − Qi)
2 ,

which reflects more than WD2
i the higher importance of agreement on top ranks.

In fact, in some circumstances a linear weight function, whose weights belong to
{2, 3, . . . , 2n}, might not discriminate sufficiently between the different weights. It
is common to define rank correlation coefficients, such as Spearman’s, as an affine
function of the distance between the two vectors of ranks [60]. In our case, this
corresponds to define a coefficient of the form

a + b
n∑

i=1

(Ri − Qi)
2 (2n + 2 − Ri − Qi)

2 . (3.3)

In order to find the values of a and b, we will force this function to take the maximum
value when the two vectors of ranks are the same (Ri = Qi) and the minimum value
when they are the exact opposite of each other (Qi = n + 1 − Ri). As correlation
coefficients usually take values in [−1, 1], the first condition (Ri = Qi) implies
a = 1. Before imposing the second condition in order to find the value of b, let us
introduce a different strategy (see also [64]).Wewill start by defining the transformed
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(weighted) ranks,

R′
i = Ri (2n + 2 − Ri) and Q′

i = Qi (2n + 2 − Qi) . (3.4)

Theorem 2 Pearson’s correlation coefficient of the transformed rankings R′ and Q′

is equal to 1 − 90
∑n

i=1(Ri−Qi)
2{2(n+1)−(Ri+Qi)}2

n(n−1)(n+1)(2n+1)(8n+11) .

Proof Given that the sample average of the two vectors of transformed ranks is

γ (n) = 1

n

n∑

1

R′
i = 1

n

n∑

1

Q′
i = (n + 1)(4n + 5)

6
, (3.5)

the value of Pearson’s correlation of R′ and Q′ is
∑n

i=1

[
(Ri (2n + 2 − Ri) − γ (n)) · (Qi (2n + 2 − Qi) − γ (n))

]

√∑n
i=1 (Ri (2n + 2 − Ri) − γ (n))2

√∑n
i=1 (Qi (2n + 2 − Qi) − γ (n))2

.

When no ties occur in the marginal ranks, this expression simplifies to that of

rW2 = 1 − 90
∑n

i=1 (Ri − Qi)
2 {2(n + 1) − (Ri + Qi)}2

n(n − 1)(n + 1)(2n + 1)(8n + 11)
. (3.6)

We obtained thus a measure of the form (3.3) that we were looking for, with
a = 1 and b = −90

n(n−1)(n+1)(2n+1)(8n+11) . The weighted correlation coefficient rW2

is then Pearson’s correlation coefficient of the transformed ranks R′ and Q′. This is
an important advantage of rW2, compared to other weighted correlation coefficients,
because by doing a simple transformation to the data, we can use rW2 in any statistical
methodology/software that uses Pearson’s correlation coefficient.

We can observe that rW2 can be written in yet another form, using the expression
for the distance measure W2D2

i above:

rW2 = 1 − DW2n

E(DW2n)
,

where

DW2n = 1

n

n∑

i=1

(Ri − Qi)
2 (2n + 2 − Ri − Qi)

2 (3.7)

and

E(DW2n) = n(n − 1)(n + 1)(2n + 1)(8n + 11)

90n

is the expected value of DW2n under independence.



32 3 The Weighted Rank Correlation Coefficient rW2

As was noted in [64], for the natural order Ri = Qi, DW2n = 0 and so rW2
takes the maximum value, that is 1. It can also be seen in Appendix A.2 that
the minimum value of this coefficient, that is the maximum value of the distance∑n

i=1 (Ri − Qi)
2 (2n + 2 − Ri − Qi)

2, is attained when the two vectors of ranks are
inverted, that is, Qi = n + 1 − Ri, ∀i = 1, 2, . . . , n. The minimum value of rW2
obtained is thus,

1 − 90
∑n

i=1 (Ri − Qi)
2 (2n + 2 − Ri − Qi)

2

n(n − 1)(n + 1)(2n + 1)(8n + 11)
= 1 − 90

∑n
i=1 (2Ri − (n + 1))2 (n + 1)2

n(n − 1)(n + 1)(2n + 1)(8n + 11)
.

This expression simplifies to

a = −14n2 + 30n + 19

16n2 + 30n + 11
> −1

This means that the weighted coefficient rW2 takes values in the interval [a, 1]
(which, as n increases, approaches [− 14

16 , 1]) and not [−1, 1] as is common with
correlation coefficients. This is not an original situation. For instance, multivariate
versions of Spearman’s rho andKendall’s tau coefficients are presented in [55] where
the maximum value is not +1. We can certainly with an affine transformation force
the coefficient rW2 to take values in [−1, 1]. For that purpose, we recommend the
version

r̃W2 = 2rW2

1 − a
− 1 + a

1 − a
. (3.8)

Let us think now about the meaning of rW2 minimum value a > −1. It tells us
that the perfect positive dependence case (Ri = Qi) is a “stronger” situation than
the perfect negative dependence case (Ri = n + 1 − Qi). We think this makes sense
because of the weights; for instance, if we swap the same two positions of ranking
Q in both cases (perfect positive dependence and perfect negative dependence) the
differences in the coefficient will not be the same. Put in another way, we have seen
that rW2 is Pearson’s correlation coefficient of the transformed (weighted) ranks
R′

i = Ri(2n + 2 − Ri) and Q′
i = Qi(2n + 2 − Qi). Now, when Ri = Qi, the pair

(R′
i, Q′

i) is on a straight line with positive slope; however, when Ri = n + 1 − Qi,
the pair (R′

i, Q′
i) is not on a straight line with a negative slope, although it is not far

from it.
As rW , the coefficient rW2 gives more importance to top ranks than lower ones.

The idea of giving more importance to the first ranks came from some motivat-
ing applications, like algorithm recommendation, where the first positions are more
important. We can generalize that application and in order to be able to apply the
coefficients rW and rW2, we rank the data according to our needs. For instance, if we
prefer to give more importance to the largest values, we rank the largest value of all
as 1, the second largest as 2, and so on. On another situation, as in microarray data,
if the largest absolute values are the most important, we give rank 1 to the maximum
of gene expressions (in absolute value), rank 2 to the second largest absolute gene
expression value, and so on.
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In the next sectionwe show that, unlike all other weightedmeasures, rW2 allows to
build an explicit formula corrected for ties in the marginal ranks, which is a frequent
scenario in some applications. This correction for ties introduced in [64] was derived
by using a methodology analogous to the one employed in [45] in order to find the
formula for Spearman’s coefficient corrected for ties.

3.2 The Formula of the Coefficient rW2 in the Case of Ties

We will now show in this section how to compute the value of rW2 in the case of
ties. This can be a common situation in some of the applications described above
and, to the best of our knowledge, no other weighted correlation coefficient works
properly in the case of ties in the ranks. This correction for ties, introduced in [64],
was derived by using a methodology analogous to the one employed by Kendall [45]
in order to find the formula for Spearman’s coefficient corrected for ties.

First of all, let us calculate the variances of the transformed ranks

VR′ = 1

n

n∑

i=1

[
Ri (2n + 2 − Ri) − γ (n)

]2
, (3.9)

VQ′ = 1

n

n∑

i=1

[
Qi (2n + 2 − Qi) − γ (n)

]2
. (3.10)

For a set of untied ranks, we have VR′ = VQ′ = n(n−1)(n+1)(2n+1)(8n+11)
180n . In

Appendix A.7 we prove that it is possible to write rW2 as

rW2 = 1

2

VR′ + VQ′ − DW2n√
VR′

√
VQ′

. (3.11)

We will now use this alternative expression in order to obtain a formula of rW2
corrected for ties in themarginal ranks. First, we shall adopt themidrankmethod; that
is, we replace the ranks where ties exist by the average of these ranks. For instance,
if we observe ties in the second, third, and fourth ranks, we replace those ranks by
2+3+4

3 = 3. We note that when ties occur in the marginal ranks, an application of
formula (3.6) for rW2 presented above is not the best choice to evaluate the agreement
between the two rankings. Suppose, for instance, the following rankings:

A 1.5 1.5 3 4 5 6
B 6 5 4 3 1.5 1.5

In this situation, if we use formula (3.6), we get rW2 = −0.78. In this formula
we use the denominator,

√
VR′ · √

VQ′ = n(n−1)(n+1)(2n+1)(8n+11)
180n , as for the untied
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form of rW2. However, if there are sets of ties in the two rankings, we note that
the quantities VR′ and VQ′ are reduced and, thus, we need to do a correction. As
another, more extreme, example, consider the following rankings: R = (2, 2, 2)
and Q = (1, 2, 3). It is clear in this situation that there is no sense in computing a
correlation value, it is not defined, since one of the ranks is constant. Nevertheless,
if we apply formula (3.6) here, we get rW2 = 0.48. This obviously does not make
sense and so we must correct this formula when ties are present. We will now see
the difference ties make in the calculations of the variances VR′ and VQ′ .

Proposition 1 Suppose, generally, that t ranks Rk + 1, . . . , Rk + t in the first
ranking are tied. Then, the variance of the transformed rankings R′ becomes

V̀R′ = n(n − 1)(n + 1)(2n + 1)(8n + 11)

180n
− 1

n

[
t − t2 − t3 + t4

3
+ 2n(t − t3)

3

]

× Rk − 1

n

[
t3 − t

3

]

R2
k − 1

n

{
t2

6
− nt

3
− 11t

180
− t3

36
− t4

6
+ 4t5

45
+ nt2

3

− n2t

3
+ nt3

3
− nt4

3
+ n2t3

3

}

.

Proof Taking ties into account in the first ranking, the summation part in (3.9) cor-
responding to the t tied ranks for the calculation of VR′ will be composed of t terms
all containing the average transformed rank given by

1

t

t∑

j=1

[
(Rk + j)(2n + 2 − (Rk + j))

]

=
(

Rk + t + 1

2

)

(2n + 2)

−
(

R2
k + (t + 1)Rk + (t + 1)(2t + 1)

6

)

.

If we ignore the ties, we use in this summation the t different terms (Rk + j)(2n +
2 − (Rk + j)), j = 1, 2, . . . , t. Let us now see the difference between the two cases
in summation (3.9):

t∑

j=1

[
(Rk + j)(2n + 2 − (Rk + j))

]2

− t

{(

Rk + t + 1

2

)

(2n + 2) −
(

R2
k + (t + 1)Rk + (t + 1)(2t + 1)

6

)}2

=
[

t − t2 − t3 + t4

3
+ 2n(t − t3)

3

]

Rk
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+
[

t3 − t

3

]

R2
k + t2

6
− nt

3
− 11t

180
− t3

36
− t4

6
+ 4t5

45

+ nt2

3
− n2t

3
+ nt3

3
− nt4

3
+ n2t3

3
.

It is therefore this quantity that we have to subtract in order to correct the variance
of ranking R′.

Suppose now thatwe have various sets of ties in the first ranking (Rk+1, . . . , Rk+t
for various values of k and t) and also in the second ranking (Ql + 1, . . . , Ql + u
for various values of l and u). Then, by applying Proposition 1, the variances of the
transformed rankings R′ and Q′ after correction become

V̀R′ = n(n − 1)(n + 1)(2n + 1)(8n + 11)

180n
− T̀W2

n
,

and

V̀Q′ = n(n − 1)(n + 1)(2n + 1)(8n + 11)

180n
− ÙW2

n
,

where

T̀W2 =
∑

t

[(
t − t2 − t3 + t4

3
+ 2n(t − t3)

3

)

Rk +
(

t3 − t

3

)

R2
k

+
(

t2

6
− tn

3
− 11t

180
− t3

36
− t4

6
+ 4t5

45
+ nt2

3
− n2t

3
+ nt3

3
− nt4

3
+ n2t3

3

)]

,

and

ÙW2 =
∑

u

[(
u − u2 − u3 + u4

3
+ 2n(u − u3)

3

)

Qk +
(

u3 − u

3

)

Q2
k

+
(

u2

6
− un

3
− 11u

180
− u3

36
− u4

6
+ 4u5

45
+ nu2

3
− n2u

3
+ nu3

3
− nu4

3
+ n2u3

3

)]

.

Here,
∑

t and
∑

u stands for summation over various sets of ties in the first and
second rankings, respectively.

Based on this, and similarly to what was done by Kendall [45] to correct the
variance of Spearman’s coefficient in the presence of ties, we will now replace VR′
and VQ′ by V̀R′ and V̀Q′ , respectively, and we obtain the expression of the coefficient
in the presence of ties:

rW2 = 1

2

V̀R′ + V̀Q′ − DW2n
√

V̀R′
√

V̀Q′
. (3.12)
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We note that when there are no ties, ÙW2 = T̀W2 = 0 and this last expression
reduces to (3.11). If we use this corrected expression in the first example above, we
obtain ÙW2 = T̀W2 = 121

2 and rW2 = −0.91. This value is quite different from
the uncorrected one, −0.78, and it expresses higher disagreement between the two
rankings. If we use this corrected expression in the second example above, the value
will be undefined, as it should, since V̀R′ = 0.

As we have seen the modifications that the presence of ties have in Eq. (3.6) are
quite complex. One can always do the easiest, which is to use Pearson’s correlation
coefficient of the weighted ranks R′ andQ′ (see Eq. (3.4)), after adopting the midrank
method. This gives us an approximate value. When there are no ties, we can do the
same or use instead formula (3.6).

Finally, if we prefer to use the version r̃W2 (3.8) that takes values in [−1, 1], we
just have to first correct the value of rW2 and then make the transformation above
(3.8).

We present next a simulation study in order to compare the three coefficients rW2,
rW and rS .

3.3 Comparison Between the Three Coefficients
rW2, rW and rS

In this section, we will compare the new weighted correlation coefficient, rW2, with
the previous coefficient rW and also with Spearman’s coefficient, as in [64]. Despite
the similarities between the three measures rW2, rW and rS , they may yield quite
different valueswhen applied to the samepair of series.We illustrate these differences
using a few examples. We measure the correlation between rankings R and Q. The
former is defined as R = (1, 2, . . . , n − 1, n), where n is the number of elements in
the ranking. Ranking Q is obtained from R by swapping the elements (1, . . . , p) and
(q − p + 1, . . . , q), after inverting the order in each of them:

R = ( 1, . . . , p , p + 1, . . . , q − p, q − p + 1, . . . , q , q + 1, . . . , n)

Q = ( q, . . . , q − p + 1 , p + 1, . . . , q − p, p, . . . , 1 , q + 1, . . . , n).

We plot in Fig. 3.1 the value of rW2(R,Q) − rW (R,Q) for a few values of n, p and q.
The figure shows that the twomeasures yield values that are quite different, especially
taking into account that the values of p used in this experiment are relatively small
when compared to n. This means that, the differences in the weighted correlations
measures, using the two coefficients, obtained for larger values of pwould be greater.

Furthermore, Fig. 3.2 shows that the new coefficient, rW2, provides even more
weight to the top ranks than rW because the differences to the unweighted correlation,
rS , are greater (see also [63] and the last chapter).
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Fig. 3.1 Difference between the previously proposed weighted measure of correlation (rW ) and
the new one (rW2) on a few illustrative examples
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Fig. 3.2 Difference between Spearman’s coefficient (rS) and the new weighted measure of corre-
lation (rW2) on a few illustrative examples

We conclude that the new coefficient, rW2, is even more appropriate than its
predecessor, rW , for applications where top ranks are more important than lower
ones. Like rW , rW2 gives more importance to top ranks. This is done while still
taking the whole ranking into account rather than simply assuming that some ranks
matter and others do not.
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Fig. 3.3 Scatterplot for four different rank transformations

3.4 A New Way of Developing Weighted Correlation
Coefficients

Compared to rW , the weighted correlation coefficient rW2 has the additional advan-
tage that it is equal to the Pearson correlation coefficient of the transformed ranks
R′

i = Ri (2n + 2 − Ri) and Q′
i = Qi (2n + 2 − Qi). This is a very important advan-

tage because any method/software that uses Pearson’s correlation coefficient, can
from now on use rW2 instead, after the appropriate data transformation has been
realized. This means also that we can use it when there are tied values, by con-
trast with rW ; we just have to use average ranks when there are ties and then apply
Pearson’s correlation to the transformed ranks R′

i and Q′
i.

The coefficient rW2 made us look at the problem of weighted correlation from a
different perspective (see also [74]). In fact, by applying a transformation to the ranks
so that the first ones are favored and then computing Pearson’s correlation coefficient
of the transformed ranks, we can define many newmeasures of weighted correlation.
In Fig. 3.3, we can see four different cases. The first, when R′ = R, corresponds to
Spearman’s coefficient and so it does not correspond to a weighted measure; when
R′ = R(2n+2−R)we have rW2. We can now use other functions such as R′ = R1/6

or R′ = −e−R. In order to be able to represent the four cases in the same diagram, we
had to multiply some of the transformations by a constant and in the last case also
add another constant; however, these operations do not change the value of Pearson’s
correlation. Thus, the importance given to the first ranks is larger when R′ = −e−R

and smaller when R′ = R.
By approaching the problem from this perspective, all that is needed is that the

transformation is monotonic and the last ranks are more flattened by the transforma-
tion compared with the first ranks. Naturally, other types of transformations can be
used if we want to favor other ranks.



Chapter 4
A Weighted Principal Component
Analysis, WPCA1; Application to Gene
Expression Data

Abstract In this chapter, we describe in the first part new developments in Principal
Component Analysis (PCA) Jolliffe, Principal Component Analysis, 2002, [42] and
in the second part a new method to select variables. The focus is on problems where
the values taken by each variable do not all have the same importance and where
the data may be contaminated with noise and contain outliers, as is the case with
microarray data. This kind of data, which contains the expression levels of a large
number of genes (variables), measured simultaneously, for a relatively much smaller
number of tissue samples, presents many statistical challenges. The usual PCA is
not appropriate to deal with this kind of problem. In this context, we propose the use
of a weighted correlation coefficient as an alternative to Pearson’s. This leads to a
so-called weighted PCA (WPCA1). In order to illustrate the features of this WPCA1
and compare it with the usual PCA, we consider the problem of analyzing gene
expression datasets. In the second part of this chapter, we propose a new PCA-based
algorithm to iteratively select the most important genes in a microarray dataset. We
show that this algorithm produces better results when WPCA1 is used instead of the
usual PCA. Furthermore, using the well-known supervised classification method of
Support Vector Machines, we show that this algorithm can also compete with the
Significance Analysis of Microarrays (SAM) supervised algorithm, Tibshirani et al.,
Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS,
10, 1999, [97] and Tusher et al., Proc Nat Acad Sci, 98:5116–5121, 2001, [98].

4.1 Introduction

In this chapter, we describe in the first part newdevelopments in Principal Component
Analysis (PCA) [42] and in the second part a new method to select variables. The
focus is on problems where the values taken by each variable do not all have the
same importance and where the data may be contaminated with noise and contain
outliers, as is the case with microarray data. This kind of data, which contains the
expression levels of a large number of genes (variables), measured simultaneously,
for a relatively much smaller number of tissue samples (for instance, tumor tissues),
presents many statistical challenges. The usual PCA is not appropriate to deal with

© The Author(s) 2015
J. Pinto da Costa, Rankings and Preferences,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-48344-2_4

39



40 4 A Weighted Principal Component Analysis, WPCA1 …

this kind of problems. In this context, we propose the use of a weighted correlation
coefficient as an alternative to Pearson’s. This leads to a so-called weighted PCA
(WPCA1). In order to illustrate the features of this WPCA1 and compare it with the
usual PCA, we consider the problem of analyzing gene expression datasets. In the
second part of this chapter, we propose a new PCA-based algorithm to iteratively
select the most important genes in a microarray dataset. We show that this algorithm
produces better results whenWPCA1 is used instead of the usual PCA. Furthermore,
using the well-known supervised classification method of Support Vector Machines,
we show that this algorithm can also compete with the Significance Analysis of
Microarrays (SAM) supervised algorithm [97, 98].

PCA is a dimensionality reduction method which consists of finding a smaller
number of variables, which are a linear combination of the original variables, of
decreasing importance. PCA is thus widely used in the analysis of high-dimensional
data. There are, however, someapplicationswhere the usual PCA is not recommended
because it gives the same importance to all of the observations and is sensitive to the
presence of outliers and noise in the data. For instance, the larger absolute expression
values in microarrays should be given higher importance as they relate to genes
that are more “responsible” for the problem in analysis. Basically, the amount of
expression of a gene indicates the approximate number of copies of mRNA of that
genewhich are produced inside the cell, and so it provides information about the gene
function and contribution to the development of the related problem [13, 34, 90]. In
addition, as pointed out in [85], a gene which has a lower expression level in one
condition will typically be measured with relatively less precision in that condition,
and so these expression values can be very noisy.

In this chapter (see also [72, 73]), we propose,

• First, a new PCA to solve the aforementioned problems affecting the usual PCA.
In order to copewith outliers and noise, wewill use rankings instead of the original
data. For instance, inmicroarray data,wewill start by ranking the expression values
(observations) in each gene (variable). Then, in order to give higher weight to the
larger absolute expression values inside each gene, we will use the new weighted
rank correlation coefficient, introduced in [73], instead of the usual Pearson’s. This
gives rise to a so-called weighted PCA (WPCA1).

• Second, a new PCA-based algorithm to iteratively select the most important genes
for discriminatory purposes in a microarray dataset.

We will illustrate the application of WPCA1 to microarray data because this
kind of data possesses all the characteristics that we need to illustrate the method
presented in this chapter. We have searched for works that give higher importance to
the larger expression values in PCA, but there are only a few. For instance, Jansen
et al. [41] use an established method of weighted PCA introduced in [48] to weigh
the elements of metabolomics data in accordance with a priori information. The
problem of robustness to outliers and noise is also of major importance (see, for
instance, [38, 102]); however, the usual PCA and the weighted PCA of [48] do not
cope with it. Finally, the PCA-based algorithms for selecting the most important
genes in microarrays, like the one in [24], take into account the importance of each
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principal component in an isolated fashion, and highly correlated genes can be chosen
as being important, which can add redundancy to the process of gene selection.

In this chapter, we begin by describing in Sect. 4.2 a novel weighted PCA based
on a new rank correlation coefficient. Moreover, we illustrate its features and apply
it to microarray data. Next, in Sect. 4.5, we describe a PCA-based algorithm for
selecting the most important variables for discriminatory purposes in a dataset. We
compare the classification results using Support Vector Machines [16] in microarray
datasets for four different methods of choosing genes: our algorithm with WPCA1,
our algorithm with the usual PCA, the popular SAM supervised algorithm [97, 98],
and an unsupervised algorithm called Pattern discovery via eigengenes [97, 98].
Furthermore,we explain the biologicalmeaning of the relevant genes chosen. Finally,
we end the chapter in Sect. 4.6 with the main conclusions.

Beforemoving on, we note that although the application focused on here concerns
microarray experiments, a broader range of applications can be considered. As an
example, we can look at problems containing preferences stated by humans or rec-
ommendations provided by decision support systems; naturally, the first preferences
or recommendations are more important and accurate than the last ones. Another
potential application of the WPCA1 methodology is when we have various stock
trading support systems and we want to summarize the information given by them.
In this case what investors want is a grading of the stocks in question, which can
be represented by a ranking. If we have various rankings corresponding to different
support systems, we might want to summarize the information using PCA; however,
the stocks ranked higher can be more important than the last ones. Another problem
that is usually handled as a ranking task is information retrieval [4]. Again, rank
importance should be taken into account, although that rarely happens [40]. Similar
remarks apply to recommender systems [14].

4.2 A New Weighted Version of PCA

Our aim in this section is to develop a new PCA methodology in order to reduce
the dimension of the input space, which is a major problem in many applications
nowadays, as is the case of microarray data just described. We seek thus for a few
linear combinations of the variables that account for most of the variations present in
the data. This is done using PCA, introduced by Karl Pearson in 1901 and Hotelling
in 1933 [34, 42]. Let us denote by X = (X1, X2, . . . , X p)

T the vector contain-
ing all measurements for the p variables (genes in microarray data). Thus, our data
consists of n vectors X1, X2, . . . , Xn in a space of p dimensions, where n is the
number of samples. Mathematically, the PCA problem consists of finding a sub-
space of dimension K of the original space which maximizes the dispersion of the
points projected onto that subspace. The solution to this optimisation problem (see
[34, 51]) is given by the eigenvectors corresponding to the K largest eigenvalues
of the covariance matrix of the sample, Σ̂ = 1

n

∑n
i=1(Xi − μ̂)(Xi − μ̂)T , where

μ̂ is the mean vector of the sample. For various reasons, it is common to start by
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standardizing the data. This consists of subtracting from each observation the aver-
age of the variable in question and divide by the corresponding standard deviation
times

√
n. With this initial standardization, the principal components obtained are

linear combinations of the standardized variables, and the coefficients of these linear
combinations are given by the elements of the eigenvectors of the usual correlation
matrix based on Pearson’s correlation coefficient, r .

In the usual PCA, the eigenvectors of the covariance matrix or the Pearson corre-
lation matrix (standardized data) contain the coefficients of the linear combinations
of the original variables corresponding to the new variables (features, components).
As is well known, the Pearson correlation coefficient is very sensitive to the presence
of outliers and noise. To overcome this, we will use the ranks of the observations.
We must therefore start by ranking the observations in each variable from 1 (high-
est rank) to n (lowest rank). For the sake of simplicity, let us use the ranks directly
rather than the values in the series, that is, Ri and Qi to represent the ranks of two
variables (genes in our application) corresponding to observation (sample) i . Now,
if we calculate Pearson’s correlation coefficient of the ranked data, we obtain the
Spearman’s rank correlation coefficient, rS , which is given by the expression

rS =
∑n

i=1

(
Ri − R

) (
Qi − Q

)

√
∑n

i=1

(
Ri − R

)2 ∑n
i=1

(
Qi − Q

)2
,

where R and Q are the average ranks. However, for computational purposes, a more
convenient expression which assumes there are no ties is

rS = 1 − 6
∑n

i=1 (Ri − Qi )
2

n3 − n
.

Here, we introduce aweighted version of PCA (WPCA1), wheremore importance
is given to observations whose values are more important. We think this makes sense
for instance with microarray data, given that, as explained in Sect. 4.1, the higher
the absolute expression value the more probable that the gene in question is related
to the particular problem. To that end, this weighted PCA uses a new correlation
coefficient that gives higher weights to observations that are considered to be more
important. In addition, this correlation coefficient is not sensitive to the presence of
outliers and noise in the data.

4.3 Preliminary Version of Weighted Principal
Component Analysis Using rW

A preliminary version of weighted PCA has been introduced in [65, 69], where we
used a different weighted rank correlation coefficient introduced in [63] (see also
Chap.2),

http://dx.doi.org/10.1007/978-3-662-48344-2_2
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rW = 1 − 6
∑n

i=1(Ri − Qi )
2 (2n + 2 − Ri − Qi )

n4 + n3 − n2 − n
(4.1)

The application that we consider here concerns the problem of selecting infor-
mative genes from the thousands of genes whose expression is usually measured in
microarray experiments. We approach the problem by finding the Principal Compo-
nents of the most expressed genes. PCA is a well-known technique of data analysis
that is very popular in Bioinformatics. For instance, a quick search for “Principal
Component Analysis” shows thousands of occurrences only in the web page of the
Bioinformatics journal, which attests to the popularity of this technique. Two vari-
ants are used: the usual PCA using the Pearson correlation matrix and a “weighted”
version which was introduced in [65, 66] and later improved [73]. This “weighted”
PCA consists of using an adaptation of a new rank correlation coefficient that gives
more importance to higher ranks and which was introduced by Pinto Costa & Soares
in [61, 63, 93].

Our aim now is to use the two correlations (Pearson’s r and “weighted” rW ) as
inputs for the PCA and compare the results obtained. First of all, because we have
many more variables (genes) than observations (samples) in the considered datasets,
we will start by filtering the genes that we think are most important. This is done
by considering only the most expressed genes. Second, we apply the “weighted”
and unweighted PCA to the chosen genes and find the new variables, corresponding
to the principal components, which are a linear combination of the chosen genes.
These principal components have been called “eigengenes” [95]. Then, as suggested
in [24], suppose that for instance the first principal component is

∑
ai xi , where the

ai are the coefficients in that component and xi is the expression level for gene i .
Restricting attention to those genes for which |ai | > c, for some chosen cutoff
value c, allows us to focus on a small set of genes that might be used in a future
microarray experiment, for instance.

We considered five different datasets containing gene expression from sam-
ples (instances) having or not one of possibly various forms of cancer (classes),
obtained from the url http://www.lsi.us.es/~aguilar/datasets.html and another url
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html. The datasets are iden-
tified as follows: Colon cancer (2 classes: 1—Tumor, 2—Normal); Embryonal
tumors (of the central nervous system) (2 classes: 1—Tumor, 2—Normal); Global
cancer map (14 classes: 1—Breast, 2—Prostate, 3—Lung, 4—Colorectal,
5—Lymphoma, 6—Bladder, 7—Melanoma, 8—Uterus Adeno, 9—Leukemia,
10—Renal, 11—Pancreas, 12—Ovary, 13—Mesothelioma, 14—CNS); Leukemia
(2 classes: 1—ALL, 2—AML); NCI (14 classes: 1—CNS, 2—Renal, 3—Breast,
4—NSCLC, 5—Unknown, 6—Ovarian, 7—Melanoma, 8—Prostate, 9—Leukemia,
10—K562B-repro, 11—K562A-repro, 12—Colon, 13—MCF7A-repro,
14—MCF7D-repro). For each of the datasets, the 15 most expressed genes were
used in the usual (Pearson’s r ) and in the “weighted” (rW ) PCA. Figure4.1 shows
the cumulative explained variance for a number of principal components, i.e., eigen-
genes, ranging from 1 to 15, and two major conclusions are drawn: although the

http://www.lsi.us.es/~{}aguilar/datasets.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
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Fig. 4.1 Cumulative explained variance (C.e.v.) for each of the approaches to PCA—usual (Pear-
son’s r ) and “weighted” (rW )—in the five datasets

eigengenes are different, the cumulative explained variance is almost the same in
both approaches to PCA; apart from the Global cancer map dataset, the minimum
number of eigengenes needed to explain at least 80% of the total variance is about 5.
The usual (Pearson’s r ) and a “weighted” (rW ) PCA were used to select both the so-
called eigengenes, a compressed representation of gene expression through principal
components, and themost important genes in some of themost important eigengenes.
Most of the times, the two forms of PCA selected different genes or the same genes
but in a different order of importance; nevertheless, we observed that the associated
eigengenes explain almost the same total variance of gene expression. Given that the
results obtained with this weighted version of PCA were not very different from the
usual PCA, we explored another weighted version of PCA, which we describe next.

4.4 Weighted Principal Component Analysys, WPCA1,
Using rW2

The coefficient rW used in our preliminary version of PCA has nevertheless some
drawbacks,

• It cannot be used when there are tied values; its expression was based on Spear-
man’s expression for untied values;

• In some applications, a linear weighting function might not be enough;
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• We did not succeed in writing rW as an inner product, which is a useful property
for PCA as we will see.

In this section we will use the weighted correlation coefficient rW2, described in
Chap.3, and whose expression,

rW2 =
∑n

i=1

(
R′

i − R′
) (

Q′
i − Q′

)

√
∑n

i=1

(
R′

i − R′
)2

√
∑n

i=1

(
Q′

i − Q′
)2

,

has been given in [68]. We propose to use it in PCA.
It is clear from Chap.3 that the computation of the correlation coefficient rW2 is

equivalent to doing a data transformation on each variable as

R′
i = Ri (2n + 2 − Ri ), (4.2)

and then compute the Pearson correlation coefficient. Ri represents the rank of each
observation value; usually the smallest value has rank 1, the second smallest rank
2, and so on. However, depending on the problem, we can rank the observations
differently. For instance, in microarray data, because we want to give higher weight
to the larger absolute expression values and rW2 gives higher weights to the first
ranks, we will therefore give rank 1 to the largest absolute value, rank 2 to the second
largest, etc.

We can see therefore that if we start by ranking and then transforming our data
according to (4.2) for each variable in the dataset, then the application of the usual
normed PCA uses the weighted correlation coefficient rW2. We note therefore that
the weighted PCA can be done using any common software for PCA analysis. If in
our dataset the number of variables is smaller than the number of observations that
is all that we have to do. Otherwise, it is common to use Singular Value Decompo-
sition (SVD) or the NIPALS algorithm [100]. However, we describe in Appendix—
Sect.A.8 a simpler yet efficient way for computing the principal components when-
ever there are more variables than observations in the data.

In bioinformatics, a common application of PCA is on the analysis of the high-
dimensional microarray data. As pointed out by Bicciato et al. [6], molecular diag-
nostics based on microarray data present major challenges due to the overwhelming
number of variables and the complex, multiclass nature of tumor samples. Thus,
it is of paramount importance to have the development of both suitable automatic
marker selection methods, like those based on PCA, that allow the identification of
genes that are most likely to confer high classification accuracy of multiple tumor
types, and suitable multiclass classification schemes. The works in [32, 85] are also
examples of the use of PCA for gene expression data analysis. Naturally, other types
of data in bioinformatics can be analyzed by this powerful technique. For instance,
Jansen et al. [41] use PCA to get a simplified view of metabolomics data. Scholz
et al. [89] apply PCA, but also independent component analysis, to detect relevant

http://dx.doi.org/10.1007/978-3-662-48344-2_3
http://dx.doi.org/10.1007/978-3-662-48344-2_3
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Table 4.1 Datasets used in
the practical experiments

Dataset Samples Genes

Embryonal tumors 60 7129

Global cancer map 144 16063

Leukemia 38 7129

NCI60 64 6830

information from spectra of total compositions of metabolites. Many more examples
could be given to show the importance of PCA in these and other applications in
bioinformatics.

In the following, we will apply our method to four microarray datasets, namely
those described in Table4.1.1

Our aim now is to compare results whenwe apply the usual PCA and ourWPCA1.
We recall that in order to apply WPCA1, we only need to consider as input data to a
PCA software the original data transformed according to (4.2).

4.4.1 Robustness to Outliers and Noise

As discussed in the introduction, the presence of noise in microarray data is common
and that motivated us to use ranks instead of the original data to cope with this
problem. We will now design an experiment to show that, first of all, outliers are
very common in this kind of data and then we will use both the usual PCA and our
weighted version to see how much outliers affect them. Let us denote by ξ0.25 and
ξ0.75 the first and third quartiles of the expression values for a given gene. We will
use a common criterion which considers that all observations outside the interval
[ξ0.25 − 1.5(ξ0.75 − ξ0.25), ξ0.75 + 1.5(ξ0.75 − ξ0.25)] are outliers and those outside
[ξ0.25 − 3(ξ0.75 − ξ0.25), ξ0.75 + 3(ξ0.75 − ξ0.25)] severe outliers. In the four datasets
under consideration the number of genes containing outliers of the two types are
described in Table4.2.

We see therefore that in the first two datasets more than 90% of the genes contain
outliers and around 65% in the third and fourth datasets. Also, inside the genes
containing outliers, we found that around 6% of the observations, on average, are
outliers. Thus, as suspected, there are many outliers which we will show that affect
the usual principal component analysis, given that it is based on Pearson’s correlation
coefficient which is very sensitive to outliers. We will now pick a small number of
genes in order to illustrate the effect outliers have in the two correlations (Pearson’s
r and ours rW2) and then compute the two principal component analyses before and
after the removal of outliers to see how robust they are. We will use genes g19, g600,

1http://www.lsi.us.es/~aguilar/datasets.html, http://www-stat.stanford.edu/~tibs/ElemStatLearn/
data.html.

http://www.lsi.us.es/~{}aguilar/datasets.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
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Table 4.2 Number of genes containing outliers and severe outliers in the four datasets

Dataset Number of genes Number of genes with
outliers

Number of genes with
severe outliers

Embryonal tumors 7129 6672 3553

Global cancer map 16063 15893 13073

Leukemia 7129 4713 1504

NCI60 6830 4421 788

Table 4.3 Values of r and rW2 for the genes g19, g600, and g830 in the Embryonal tumors dataset,
before and after the removal of all outliers

Before removal of all outliers

Correlation (g19, g600) (g19, g830) (g600, g830)

r 0.7113 −0.5593 −0.6883

rW2 0.6198 0.5463 0.6563

After removal of all outliers

Correlation (g19, g600) (g19, g830) (g600, g830)

r 0.6597 0.4696 0.4984

rW2 0.5395 0.4458 0.5953

g830 of the first dataset, Embryonal Tumors, in our example which have 3, 5, and 6
outliers, respectively. Table4.3 contain the values of r and rW2 for these three genes
before and after the removal of all outliers.

As is clear from these tables, the effect of outliers in Pearson’s correlation is
dramatic; for instance, for the genes g19 and g830, before the removal of outliers the
correlation was −0.5593 and after the removal of outliers was 0.4696! The values of
rW2 also change, because we have removed some observations; but, as is clear, the
differences before and after the removal are much smaller. To finalize this section,
we will now find the expression of the first two principal components, which account

Table 4.4 Expression of the first two principal components for the genes g19, g600, and g830 in
the Embryonal tumors dataset, before and after the removal of all outliers

r

PC1 Before 0.0053 × g19 + 0.9411 × g600 − 0.3381 × g830

After 0.0042 × g19 + 0.8740 × g600 + 0.4859 × g830

PC2 Before 0.0139 × g19 + 0.1763 × g600 + 0.9842 × g830

After 0.0023 × g19 + 0.6691 × g600 − 0.7432 × g830

rW2

PC1 Before 0.5615 × g19 + 0.5960 × g600 + 0.5740 × g830

After 0.5468 × g19 + 0.5933 × g600 + 0.5908 × g830

PC2 Before −0.7708 × g19 + 0.1247 × g600 + 0.6248 × g830

After −0.8320 × g19 + 0.3661 × g600 + 0.4169 × g830
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for around 90% of the total variation in all four cases. We shall do that first for the
situation before the removal of outliers and then for the situation after the removal
of outliers to analyze the differences (Table4.4).

As we suspected, large differences occur in the expression of the principal compo-
nents when we use the usual PCA (correlation r ); the importance (coefficient) given
to the three genes changes sometimes drastically when we remove the outliers. As
for our weighted WPCA1 (correlation rW2) the changes are comparatively small, as
we expected.

Thus, the inclusion of the outliers, which are very important observations in this
problem, has a dramatic effect as it can change completely the results: if we do not
include the outliers and include only the other observations, the results can be oppo-
site, so to say. This is not a desirable property of the usual correlation or PCA; we
do not want to ignore the outliers because in this application they represent certainly
important information about the problem; nevertheless, we would like that the dif-
ference in the final results was not so large. Our correlation rW2 is thus appropriate to
this problem because it gives higher importance (weight) to the outlier observations
which is very appropriate here; nevertheless, it is much more robust because includ-
ing the outliers does not change dramatically neither the values of the correlation nor
the principal components.

Up to now we described a novel weighted PCA and showed its relevance in
analyzing gene expression data. In the remainder of the chapter, we will focus on
choosing relevant genes for the datasets under analysis here.

4.5 A New Method for Selecting Relevant Genes
in Microarray Data

In the previous sections, we learned how to find the principal components, both for
the usual and the weighted PCAs. Here, we propose a new PCA-based algorithm
for selecting the most important genes for discriminatory purposes in a microarray
dataset, which is an important problem [20, 23, 97]. The idea is to filter the genesmost
associated with the conditions (diseases) in each dataset that we will analyze. We
compare the obtained results, in the four microarray datasets above, using Support
Vector Machines (SVMs) which is a classification algorithm whose aim is to predict
the type of disease using the genes selected. Four differentmethods of choosing genes
will be used: our algorithm with WPCA1, our algorithm with the usual PCA, the
popular SAM supervised algorithm [97, 98], and an unsupervised algorithm called
Pattern discovery via eigengenes (here PDeig for short) [97, 98].

In any PCA, each of the principal components is a linear combination of all of
the variables present in the dataset; usually thousands of them. This makes it very
difficult to interpret each principal component. Suppose that, for instance, the first
principal component was

∑
ai Xi , where ai are the coefficients in that component

and Xi represents the values of variable i . It has been suggested [24] that restricting
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attention to those variables for which |ai | > c, for some chosen cutoff value c,
allowed us to focus on a small set of variables that might contain the most important
information. However, this brings four problems. First, as is usually known, the
principal components have not all the same importance and so, should not be treated
in the sameway. Second, the variableswhich appear in all of the principal components
(PCs) are the same and so we have to analyze all of the PCs at the same time and not
separately. Third, in case of supervised classification problems,wewant our selection
procedure to take into account the discriminant power of each gene. Fourth, many of
the variables in the dataset are highly correlated and in order to choose a good and
small list of genes we should prioritize uncorrelated genes; as Tibshirani et al. [97]
pointed out, after a minimal list is found, one can always search for more genes that
are highly correlated with the genes in that list. In our experiments using SVMs, we
have found better discriminatory results by prioritizing uncorrelated genes. This is
also found by Dudoit et al. [23, p. 85] in some of their experiments.

In order to solve the problems just mentioned, we introduce here a strategy for
choosing the L most important original variables after a PCA (usual or weighted)
has been performed on the dataset. The number L must be chosen by the user. The
first thing we have to do is to decide how many principal components to use. There
are many ways to choose the number of principal components, K , and here we will
choose as many as needed to have at least 90% of the information present in the
dataset. Thus, we can represent each of the K principal components by

PCk =
p∑

i=1

aki Xi , k = 1, . . . , K , (4.3)

where Xi represents variable i and aki the coefficient given by the kth principal
component to that variable. Let us denote by λk the importance of the kth component,
which corresponds to an eigenvalue of a certain matrix, as seen above. We will now
define the global importance of each variable Xi , i = 1, 2, . . . , p, by the expression

GI(Xi ) = DP(Xi ) ×
K∑

k=1

|aki |λk, (4.4)

where DP(Xi ) = s2
X̄i∑

k s2
Xk

i

, which is the ratio between the variance of the class centers

and the sum of the variances within each class, which allows us to take into account
the discriminant power of the variable Xi (see the third problem above). Now, in
order to find the L most important variables, we apply the next algorithm,

1. Choose the variable Xi whichmaximizes the global importance given byEq. (4.4).
This is the most important variable of all.

2. Now, for l = 1, 2, . . . , L − 1 do
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a. For each variable Xi not yet chosen, find the Pearson correlation coef-
ficient between Xi and the l variables which have already been chosen:
r(Xi , X j ), j = 1, . . . , l. Let rmax,i be the maximum in absolute value of
these l correlations.

b. Actualise the global importance of variable Xi by

GI�(Xi ) = GI(Xi ) × (1 − rmax,i ). (4.5)

c. Choose the variable Xi which maximizes the actualised global importance
given by Eq. (4.5).

4.5.1 Support Vector Machines Classification: Results
for Genes Chosen with SAM, PDeig, and with Our
Method for WPCA and PCA

In this section, we will compare the genes selected by the weighted PCA with those
chosenby theusual PCA in termsof discriminatory power. Furthermore,wewill show
that our method of selecting genes is very competitive with the popular supervised
method called SAM and better than an unsupervised method called PDeig. The
data concerning the genes selected by the four methods are used as inputs to the
SVMs software included in R [77], namely in the e1071 library. We used the default
parameters in R for tuning the SVMswith the sigmoid and radial basis kernels, that is,
for the sigmoid kernel K (u, v) = tanh(γ uT v + c) we set γ = 1/(data dimension)
and c = 0, and for the radial basis kernel K (u, v) = exp(−γ ||u − v||2) we took
γ = 1/(data dimension).

Given that all four methods have parameters which influence the number of genes
to choose, for comparison purposes we will use the same number of genes in the four
cases. In the Embryonal tumors dataset, SAM chose 16 genes by default and so we
used the same number of genes in the WPCA1 and PCA methods. In the other three
datasets, SAM chooses hundreds of genes by default; however, in our experiments,
we found that the classification results with such a large number of genes are not
significantly better than considering only 20 genes. This type of behavior was also
observed in [23, p. 85] and pointed out in [2], where the authors conclude that the
number of genes can be reduced greatly without increasing the prediction error.

Table4.5 presents the mean classification error rate obtained with tenfold cross-
validation. It can be seen that in the first, second, and fourth datasetsWCPA1 is better
than PCAand PDeig and very competitivewith SAM.The third dataset is very simple
in what concerns discriminating between the classes and so three methods exhibit
very good results, namely WPCA1, PCA, and SAM, whereas the other method,
PDeig, has a poorer performance.
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Table 4.5 Support vector machines error results

Dataset SVM kernel WPCA PCA SAM PDeig

Embryonal tumors Sigmoid 0.17 0.20 0.18 0.37

Radial basis 0.20 0.22 0.17 0.35

Global cancer map Sigmoid 0.47 0.51 0.62 0.68

Radial basis 0.42 0.45 0.61 0.68

Leukemia Sigmoid 0.00 0.00 0.03 0.20

Radial basis 0.00 0.00 0.03 0.18

NCI60 Sigmoid 0.18 0.23 0.54 0.66

Radial basis 0.27 0.25 0.49 0.56

4.5.2 Analysis of the Chosen Genes

In this section, we will study the biological relevance of some of the most impor-
tant genes used in Sect. 4.5.1. We will restrict our attention to the genes chosen by
WPCA1, PCA, and SAM, given that the results obtained by PDeig are comparatively
poor.

In the Embryonal tumors dataset, the leukotriene C4 synthase LTC4S (gene
U50136rna1) and the neurotrophic tyrosine kinase, receptor, type 3 (TrkC) NTRK3
(gene S76475) are identified both by SAM and our WPCA1-based algorithm. Muta-
tions in NTRK3 have been associated with medulloblastomas, secretory breast car-
cinomas and other cancers (see [75]). Furthermore, our method includes the hi,gh
mobility groupAT-hook 1HMGA1 (geneL17131rna1), the Sodiumchannel 2mRNA
(gene hBNaC2) ,and the alternatively spliced ACCN2 (gene U78180), which were
not identified by SAM as being relevant; these genes are also referred in [75].

In the Global cancer map dataset, the ARHGDIB Rho GDP dissociation inhibitor
(GDI) beta ARHGDIB (gene L20688) is identified by both SAM and our WPCA1-
based algorithm. Moreover, our method includes the KLK3 kallikrein-related pepti-
dase 3 KLK3 (gene X07730) and the vascular endothelial growth factor C VEGF-C
(gene U43142), which were not identified by both SAM and the usual PCA-based
algorithm.Thefirst gene is in theKallikreins subgroupof serine proteases,whichhave
diverse physiological functions. Growing evidence suggests thatmany kallikreins are
implicated in carcinogenesis and some have potential as novel cancer and other dis-
ease biomarkers (see http://www.ncbi.nlm.nih.gov/sites/entrez). In turn, the second
gene is essential in lymph node metastasis, presumably because enhanced metastatic
potential including lymphangiogenesis induced by VEGF-C is vital in lymph node
metastasis of gastric cancer [49].

In the Leukemia dataset, SAM and our WPCA1-based algorithm identified six
genes in common. Some of the remainder genes identified by our method include
the cell division cycle 25 homolog A CDC25A (gene M81933), SMARCA4 (gene
D26156s), the interleukin 18 I L-18 (gene D49950), the myb myeloblastosis viral
oncogene homolog (avian) MYB (gene U22376cds2s), the Non-SMC condensin I

http://www.ncbi.nlm.nih.gov/sites/entrez
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complex, subunit D2 NCAPD2 (gene D63880), and the CUG triplet repeat, RNA
binding protein 1CUGBP1 (gene U63289). CDC25A is overexpressed in a variety
of human malignancies [101]; inactivating mutations of the SMARCA4 gene, on
chromosome arm19p, are present in several human cancer cell lines [54]; interleukin
18 I L-18 establishes a possible functional relationship between IL-18 and MMPs
in myeloid leukemia; myb myeloblastosis viral oncogene homolog (avian) MYB is
overexpressed in most human acute myeloid and lymphoid leukemias, and several
studies using antisense oligonucleotides and dominant negative forms of MYB have
shown that this gene activity is essential for continued proliferation of AML and
CML cells; CUGBP1 is involved in the development of breast cancer and leukemia
(see [59]). The three selection methods found homeobox A9 HOXA9 (gene U82759)
as a relevant gene, which is in fact important for leukemia identification [25].

In the NCI60 dataset, the genes CD53 antigen and DKK3 dickkopf homolog 3
(Xenopus laevis) 2 were identified by all three methods. CD53 antigen interactions
might contribute to cell survival in poorly vascularized regions of the tumor mass
[103]. In turn, DKK3 can play a role in head and neck squamous cell carcinoma
(HNSCC) carcinogenesis with unknown mechanism [43]. The genes laminin, alpha
3 LAMA3, and paxillin PXN were identified by both WPCA and PCA, but not by
SAM. Downregulation of Laminin-5 (LN5)-encoding genes (LAMA3, LAMB3 and
LAMC2) has been reported in various human cancers [86]. Furthermore, the results
in [86] demonstrate epigenetic inactivation of LN5-encoding genes in breast cancers
and association of LAMA3 promoter methylation with increased tumor stage and
tumor size. On the other hand, in lung cancer tissues [39], for paxillin PXN an
important role has been established. Finally, our WPCA1-based algorithm further
identified the gene transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila)
TLE1. This gene was also consistently found by several independent groups to be
an excellent discriminator between synovial sarcoma and other sarcomas, including
histologically similar tumors such as malignant peripheral nerve sheath tumor [96].

4.6 Conclusions

In this chapter, we used a new correlation coefficient that weighs observations
according to their importance to the problem in hand and which is robust to the pres-
ence of outliers and noise in the data. Then, we proposed the use of this weighted
correlation coefficient on principal component analysis, and concluded that its appli-
cation to PCA is equivalent to doing a certain data transformation. This gave rise
to a novel weighted PCA, WPCA1, which is more robust than the usual PCA in
microarray datasets.

We described also a new algorithm to select the most important variables in the
original dataset to which a PCA, usual or weighted, is applied. This PCA-based
algorithm takes into account the global importance of each component, the discrimi-
natory power of each variable and does not add redundancy by disabling the selection
of new variables that are highly correlated with previously chosen ones. We verified
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in some microarray datasets that our PCA-based algorithm produces better results
when our WPCA1 is used instead of the usual PCA. Furthermore, we showed that
it can compete with the popular Significance Analysis of Microarrays (SAM) algo-
rithm. The classifiers using the data corresponding to the genes chosen by these three
methods were built using Support Vector Machines. The classification results were
supported by the biological meaning of the relevant genes chosen.



Chapter 5
A Weighted Principal Component Analysis
(WPCA2) for Time Series Data

Abstract Time series are ubiquitous in all fields of application. In some situations,
the number of observations in each series is too large and so it is of paramount
importance to be able to compress the series reducing thus its dimension. One very
popular method for both dimensionality reduction and feature extraction is Principal
Component Analysis (PCA). The classical PCA gives the same importance to all of
the variables. However, in a time series context, it is frequent that some observation
times are more important than others. In order to take this into account, a weighted
PCA specific for time series data, whichwas introduced in Pinto daCosta, J., Silva, I.,
Silva, M.E., IASC 07 (book of abstracts): Statistics for data mining, learning and
knowledge extraction, page 32 (2007), is described in this chapter. The method is
applied to well-known datasets and the results are compared with those obtained by
classical PCA.

5.1 Introduction

Time series are ubiquitous in all fields of application. In some situations, the number
of observations in each series is too large and so it is of paramount importance to be
able to compress the series reducing thus its dimension. One very popular method
for both dimensionality reduction and feature extraction is Principal Component
Analysis (PCA). The classical PCA gives the same importance to all of the variables.
However, in a time series context, it is frequent that some observation times are more
important than others and should therefore be given larger weight in the analysis.
These weights will be input into the distance between two time series by means of a
weighted correlation. As noted in the introduction, weighted correlation is concerned
with the use of weights assigned to the subjects in the calculation of a correlation
coefficient between two variables X and Y. The weights can either be naturally
available beforehand or chosen by the user to serve a specific purpose.

In order to take into account the weights given to each observation time for time
series PCA, a weighted PCA specific for time series data, which was introduced
in [70], is described in this chapter. The method is applied to well-known datasets
consisting of multidimensional time series and the results are compared with those
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obtained by classical PCA. Multidimensional time series and space-time series are
now common. In many situations, the number of observations in each series is too
large and thus it is very important to extract the most important information and
discarding noise and redundant correlations by means of PCA. This is also useful for
graphical representation and for future statistical analysis of the time series data. PCA
delivers a new set of variables, called principal components, that are uncorrelated and
ordered so that the first few retain most of the variation presented in the dataset [42].
Formal inference procedures on principal components rely on the independence of
the observations as well as on multivariate normality. However, correlated datasets
such as multidimensional time series and space–time series are becoming the norm
rather than the exception. Moreover in some statistical analysis, namely in cluster
analysis, the objective is to look for dependence within the dataset thus obtaining
useful insights of its structure [50]. Therefore, when the purpose of the analysis is
descriptive, not inferential, correlation among the observations is not a hindering
issue for PCA [42].

Usually, PCA gives the same importance to all of the variables. However, in a
time series context, it is obvious that some of the observations should play a leading
role. For instance, consider the values of two stocks in a stock exchange market over
the previous year. An assessment of their similarity may be important, for instance,
in order to decide whether to buy. In this case, the most recent behavior is clearly
more relevant. In other applications, like feature extraction for discriminant analysis,
it may be that in some parts of the series the classes are very well separated and in
other parts not so much. Here, it would be advantageous to give higher weight to the
observation times where the classes are well separated and smaller weight elsewhere.
In other situations, it can be useful to consider that certain parts of the time series
should have no influence at all (zero weight). Thus, depending on the objective of
the analysis, we need to define an appropriate weight function in order to proceed.

The aim of this chapter is to propose a weighted PCA, WPCA2, specific for time
series data that gives more weight to some of the observations. To our knowledge,
there is no other method of weighted PCA for time series data. There has been a very
limited number of works on weighted PCA for other types of data. For instance in
[73], the authors focus on problems where the values taken by each variable do not
all have the same importance and where the data may be contaminated with noise
and contain outliers, as is the case with microarray data. They introduce a weighted
PCA by using the weighted correlation coefficients introduced in [63, 68, 73]. In
[41], the authors use an established method of weighted PCA introduced in [48] to
weight the elements of metabolomics data.

5.2 Motivation and Definition

The principal components were introduced by Karl Pearson in 1901 and Hotelling in
1933 (see [34]). PCA aims at reducing the dimension of the feature space bymeans of
a linear transformation. Mathematically, the problem consists of finding a subspace
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of the original space which maximizes the dispersion of the points projected onto
that subspace. If a small number of principal components explains a large portion of
the variance of the original variables, then PCA can be used as a dimension reduction
technique.

Let {y1, y2, . . . , yn}, yi ∈ IRp, i = 1, . . . , n, be a set of n time series, each one
with p observations, corresponding to n observations on a p-dimensional space, that
can be represented by the following (n × p) matrix:

Y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yn

⎤

⎥
⎥
⎥
⎦

= [
y•1, y•2, . . . , y•p

] =

⎡

⎢
⎢
⎢
⎣

y11 y12 · · · y1p

y21 y22 · · · y2p
...

...
. . .

...

yn1 yn2 · · · ynp

⎤

⎥
⎥
⎥
⎦

. (5.1)

When we consider the space determined by the point values of the time series, we
will have a cloud of n points (time series) in Rp and we aim at reducing the number
of variables, corresponding to the p observations of each of the time series. As is
usually the case, the p variables y• j are highly correlated and so a feature extraction
method appropriate for time series data is most useful. PCA is a powerful and very
popular method of feature extraction which is very useful when the variables are very
correlated, as is the case here. However, the usual PCA treats all of the p variables
y• j in the same way; that is, it gives the same importance (weight) to all of them.
In many applications of time series, it is obvious that the most recent observations
should have a larger influence like for instance data from the stock exchangemarkets.
Given the values of two stocks over the last year and if we want, for instance, to see
how similar they are in order to decide whether to buy, their most recent behavior
can be much more important than the initial values. In order to give higher weight
to the most recent observations in the feature extraction procedure, we will describe
here a novel method ofWeighted PCA that is especially designed for time series data
[70]. However, its application to other types of data is straightforward.

Let now X be the matrix of the centered data, i.e., X = [xi j ], xi j = yi j − y• j ,

i = 1, . . . , n; j = 1, . . . , p where y• j = 1
n

∑n
i=1 yi j is the mean value for time j.

The i th row of matrix X = [
x1 x2 . . . xn

]p = [
X1 X2 . . . X p

]
is the transformed

i th time series.
The principal components are therefore new variables, which are a linear combi-

nation of the initial p variables corresponding to the p values of the time series. The
coefficients of these linear combinations are given by the elements of the eigenvectors
of the usual covariance matrix. Thus, to obtain the usual principal components, the
matrix S = XT X must be diagonalized. S is a multiple of the covariance matrix and
may not have full rank. In this case, it is usual to use singular value decomposition
(SVD) or the NIPALS algorithm [100], which runs faster than SVD. Here a simpler
and well-known strategy is used, which consists in diagonalizing XXT instead, thus
obtaining the eigenvalues of XXT , which are the same as the eigenvalues of XT X.
If x is a unit eigenvector of XXT and λ the corresponding eigenvalue, then 1√

λ
XT x
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is a unit eigenvector of the matrix XT X (with eigenvalue λ). Note that if p > n at
least the last p − n + 1 eigenvalues are zero; here, only the nonzero eigenvalues are
considered.

Let (λ1,υ1), (λ2,υ2), . . . , (λp,υ p) be the (eigenvalue, eigenvector) pairs of S,

where λ1 ≥ λ2 ≥ · · · ≥ λp and ||υi || = 1. Then the j th principal component
is defined by Z j = Xυ j = υ j1X1 + υ j2X2 + · · · + υ j p X p, j = 1, . . . , p,

with Var(Z j ) = λ j , j = 1, . . . , p. The total variance of the data is given by
λ1 + · · · + λp. The proportion of total variance due to the j th principal component
is λ j/

(
λ1 + · · · + λp

)
, j = 1, . . . , p. There are many methods to help choose the

number M of principal components that represent the data with enough accuracy. In
this work, M will be the number of principal components that explain at least 90%
of the variability present in the data.

As is well known, in PCA we have always to start by centering the variables:

xi j ← (xi j − x• j ); (5.2)

then to define the distance between objects (time series) we have to arm R
P with

an Euclidean metric associated with a positively defined matrix. The most com-
mon matrices are the identity and also D 1

s2
, which is a diagonal matrix whose

components are the inverses of the p variances of the columns s2•1, s2•2, . . . , s2•p;

s2• j = 1
n

∑n
i=1(xi j − x• j )

2. This matrix is used especially when the variables are
measured in very different scales, in order to avoid that variables which are not rele-
vant but have larger variance dominate the analysis. The use of this diagonal matrix
is equivalent to doing an initial operation after centering the observations which
consists of reducing them by dividing by the corresponding standard deviation:

xi j ← yi j − y• j

s• j
, (5.3)

and then using the usual Euclidean distance. The final result will be that if we apply
this operation to our data, the PCA will need to find the eigenvectors and eigenval-
ues of the Pearson correlation matrix. This is known as normed PCA. Inspired by
this standardization, which gives higher weight to the variables presenting smaller
variance, we introduced in [70] other data transformations that suit our needs.

In Eq. (5.3) each centered variable is multiplied by a weight, 1
s• j

. The variables
whose influence we want to reduce are multiplied by smaller weights; the others by
a larger weight. This is similar to what we want to do here, that is, to give higher
weight to some variables and smaller to others. However, these weights, 1

s• j
, are

not needed in our case because in our time series data all variables (observation
times) are of the same type. Nevertheless, we were inspired by this transformation
(5.3) to introduce a weighted version of PCA, WPCA2, specific for time series data
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(see [70]). For instance, instead of multiplying by 1/s• j , the centered variables may
be multiplied by other weights

√
w j :

xi j ← √
w j (yi j − y• j ) (5.4)

where w j ≥ 0 and, for comparison purposes,
∑p

j=1 w j = 1. For instance, in the

normed PCA just discussed, w j = 1/s2• j ,where s2• j is the variance of the j th column
of the matrix X.

After transforming the data according to (5.4), the usual PCA is applied, which
means that a weighted matrix of covariances, that is, the usual covariances after
transforming the data according to (5.4), will be diagonalized. Thus, the WPCA2
procedure discussed here requires an adequate selection of weights, depending on
the objective of the analysis. For instance, if we want to give higher importance to the
most recent observations, we will use weights like w j = j , w j = j2 and w j = α j ,
for a suitable choice of α. If we want to favor other observations, we just have to
choose an appropriate weight function.

When we use transformation (5.3), then the covariance matrix that we have to
diagonalize is a multiple of the usual Pearson correlation matrix. By using transfor-
mation (5.4), we will get a weighted matrix of covariances. In fact, we could have
used the Euclidean distance associated with the matrix Dw = diag(w j ), which is a
diagonal matrix whose elements are the weights. As for the previous case, the use of
this Euclidean distance is equivalent to applying transformation (5.4) and then using
the usual Euclidean distance.

After this initial data transformation, any common software for PCA can be used.

5.3 Weight Functions: Examples

The choice of an appropriate weight function to be used in practice depends on the
purpose of the analysis. If the recent observations are considered the most important,
then linear ( f j = a + bj), quadratic ( f j = a + bj2), or exponential ( f j = a j )
weight functions may be entertained. It is important to note that for these functions,
the actual weights, w j , depend not only on the type of weight function, but also on
the length of the time series. For instance, with a linear weight function the weight
given to the first observation is w1 = a+b∑p

j=1 (a+bj)
= a+b

ap+bp(p+1)/2 , which depends

on the length, p. This problem is overcome by introducing another parameter, γ,

which is equal to the relative importance of the last observation (the most important
in this example) to the first observation (the least important):

γ = f p

f1
. (5.5)

Thus, if the last observation is to have an influence in the analysis, say, ten times
larger than the first, then γ = 10. The values used in this chapter are γ = 2, 10, 100.
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From the above, it follows that the actual weights (normalized weights) are given
by

w j = f j
∑p

h=1 fh
, (5.6)

where the values of f j satisfying (5.5) can be:

f j = p − γ 2

p − 1
+ (γ 2 − 1)

p − 1
j, for the linear case (5.7)

f j = p2 − γ 2

p2 − 1
+ (γ 2 − 1)

p2 − 1
j2, for the quadratic case, and (5.8)

f j = a j , where a = exp

(

2
ln(γ )

p − 1

)

, for the exponential case (5.9)

These are the weight functions that we have used when the last observations
of the times series are to be given higher importance than the first observations.
We will now see another situation. Consider, for instance, the problem of feature
extraction for discriminant analysis [26, 36, 37]. Suppose that each of the n time
series {y1, y2, . . . , yn} in Eq. (5.1) belongs to one of K predefined classes. In order
to assess the discriminatory power of y• j , the observational variable at time j, j =
1, 2, . . . , p, the following criterion is defined:

d j =
∑K

c=1 nc(y jc − y• j )
2

∑K
c=1 s2jc

, (5.10)

where nc is the number of time series belonging to the cth class, y• j = 1
n

∑n
i=1 yi j

is the total average of all time series at instant j, y jc = 1
nc

∑nc
i=1 y jci

and s2jc =
1
nc

∑nc
i=1 (y jci

− y jc )
2 are, respectively, the usual sample mean and sample variance

of the values of the time series belonging to the cth class at instant j. The larger the
value of d j the higher the discriminatory power of instant j. Then, the weights to be
used in this situation are as follows:

w j = d j
∑p

h=1 dh
. (5.11)

5.4 Applications

In this section, we will start by applying our WPCA2 in order to analyze some
time series datasets, namely two datasets from the UCR Time Series Data Mining
Archive [46], “reality check” and “18 pairs”, that has been used in [99] and another
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dataset that has been used in [17]; see also [70]. “Reality check” consists of 14 time
series of normalized data, eachwith 1,000 data points taking values in the range [0,1],
from space shuttle telemetry, exchange rates, and artificial sequences. The “18 pairs”
dataset contains 36 time series with 1,000 data points which come in pairs (18 pairs
thus). The third dataset consists of 20 time series indices with 309 data points, from
January 1977 to September 2002, about the Industrial Production (byMarket Group)
indices in the United States (source: http://www.economagic.com). This dataset has
originated two other datasets: the one used in Caiado et al. [17], which contains a
specific transformation (yi j = log(xi j ) − log(xi( j−1))) and another one containing
normalized values in the range [0,1] (yi j = (xi j −min1≤ j≤t {xi j })/(max1≤ j≤t {xi j }−
min1≤ j≤t {xi j })). We have thus five datasets in total.

We will now apply the WPCA2 described above to the five datasets. One of the
typical problems in PCA has to do with the number of components to consider. We
will choose the M most important principal components that explain at least 95%
of the variance present in the data. For each dataset, we will apply the usual PCA
(without weights) and three versions of our weighted PCA, for the linear, quadratic,
and exponential weight functions.

In Table5.1, we present for each dataset the number of components for each case,
M , the weight function, the total variance explained, and the variance explained by
each of the M most important components.

For the “reality check” dataset, the differences are quite clear. Although the num-
ber of components is the same for the three first scenarios, the importance of each
component is not; in fact, the importance of the first PC is always increasing from
the case of no weight to the exponential weight case. As for the second component,
the reverse situation seems to happen, although not so markedly. For the fourth and
fifth components, again the situation of the first PC seems to happen. Finally, for the
exponential weight case a drastic change happenedwhere only one component seems
to be responsible for the variation in the data. This is certainly due to the fact that the
last values of the time series are the ones which play a role in the analysis, since the
weight given to the majority of the data observations is almost zero. The exponential
weight case could be further analyzed in order to find, for each application, the most
appropriate value of α.

For the “18 pairs” and the Ind. Prod. (original) datasets, it was not possible to
see significant differences among the four scenarios (no weight, linear, quadratic,
exponential). This happens because these data are quite simple and so, even for the
no weight case, one PC is enough with around 99% of explained variance. Thus, the
weighted cases could not show their power, because it is not possible to get less than
one component. This suggests that when the data is already in a one-dimensional
space there is not much point in using the weighted PCA.

For the Ind. Prod. (transformed) dataset, a similar situation to the first dataset
seems to happen, although with some differences. First of all, the number of com-
ponents is the same for the no weight and linear weight case, then decreases for the
quadratic weight case and decreases again for the exponential weight case. Also, the
importance of the first PC increases from the no-weight case to the quadratic weight

http://www.economagic.com
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Table 5.1 PCA results for each dataset

Dataset Weight function M Total Var. Expl. (%) Var. Expl. by each
PC (%)

Reality check No weight 5 95.3 33.7; 28.6; 15.6;
9.8; 7.6

Linear 5 96.0 42.4; 23.2; 16.8;
7.1; 6.5

Quadratic 5 97.5 52.9; 21.7; 15.1;
5.7; 2.5

Exponential 1 99.8 99.8

18 Pairs No weight 1 98.7 98.7

Linear 1 98.7 98.7

Quadratic 1 98.7 98.7

Exponential 1 99.8 99.8

Ind. Prod.
(original)

No weight 1 98.2 98.2

Linear 1 99.5 99.5

Quadratic 1 99.7 99.7

Exponential 1 100.0 100.0

Ind. Prod.
(transformed)

No weight 8 95.7 50.0; 21.5; 9.0; 6.1;
3.1; 2.5; 1.9; 1.5

Linear 8 95.8 57.9; 16.4; 8.2; 5.4;
3.1; 1.9; 1.8; 1.2

Quadratic 7 95.2 62.5; 14.8; 7.1; 4.6;
3.0; 1.7; 1.5

Exponential 5 96.3 57.1; 21.4; 8.7; 6.4;
2.7

Ind. Prod.
(normalized)

No weight 4 96.8 58.3; 29.2; 7.2; 2.2

Linear 4 96.4 59.2; 25.6; 8.6; 3.0

Quadratic 4 97.3 47.7; 38.1; 7.0; 4.4

Exponential 1 96.3 96.3

case, but then decreases for the exponential weight case. The other components have
a mixed behavior; sometimes their importance increases, sometimes decreases.

For the Ind. Prod. (normalized) dataset, the situation seems again to differ from
the other situations. As is expected, the number of components is either the same, or
decreases, when we go from the no-weight case to the exponential weight case. As
for the importance of the first PC, a new situation happens. Its importance is similar
for the first two cases, then decreases and then increases again substantially.

As is clear from these few examples, large differences can occurwithWPCA2.We
will now present in Figs. 5.1, 5.2 and 5.3, the scatterplots for the two most important
principal components for the caseswhere itwas possible to see a significant difference
in Table5.1.
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Fig. 5.1 Scatterplots of the two most important PCs of the Reality Check dataset, considering the
following weight functions: a no weight, b linear, c quadratic, and d exponential

Fig. 5.2 Scatterplots of the two most important PCs of the Industrial Production indices dataset
(transformed), considering the following weight functions: a no weight, b linear, c quadratic, and
d exponential
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Fig. 5.3 Scatterplots of the two most important PCs of the Industrial Production indices dataset
(normalized), considering the following weight functions: a no weight, b linear, c quadratic, and d
exponential

From the analysis of these figures, it seems clear that not only the importance
of the principal plane varies from the no-weight situation to the exponential weight
case, but also these planes are different. In fact, the scatterplots change significantly
in the four situations, which means that they are in fact different. A deeper study
of these results shall illustrate the consequences of WPCA2 in the final proximities
observed in the representations: we expect that those time series which are more
similar in the last part and not so similar in the first will be closer in the scatterplots
than two time series presenting an opposite behavior.

In these five datasets, we have applied a novel method ofWeighted PCA,WPCA2,
specific for time series data, although its application to other types of data is straight-
forward. Our aim so far has been to give higher importance to the most recent
observations and we have shown that it was achieved because large differences can
occur.Wewill now deepen this application study, by applying theWPCA2 technique
and the classical PCA to five other time series datasets.

Four out of the next five datasets come from the UCR Time Series Classifi-
cation/Clustering Homepage [47], “Synthetic Control”, “FaceAll”, “Trace,” and
“CBF”. The other dataset, “d19”, belongs to the competition datasets (see site in
http://www.cs.ucr.edu/~eamonn/SIGKDD2007TimeSeries.html) of the Workshop
and Challenge on Time Series of the 13 th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining Classification (2007).

The “Synthetic Control” (SynthControl) dataset contains 600 time series, each
with 60 observations, of six different classes of control charts synthetically generated

http://www.cs.ucr.edu/~eamonn/SIGKDD2007TimeSeries.html
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Table 5.2 Comparison of the results of PCA and WPCA2 with a discriminant weight function

Dataset Weight function M Var. explained
by PC1–PC3
(%)

Total var.
explained by
PC1–PC3 (%)

Discr. power of
PC1

SynthControl Without
discriminant

36
23

44.61; 5.04; 4.32
57.12; 5.93; 3.09

53.97
66.14

6580.1
5220.9

FaceAll Without
discriminant

32
12

20.63; 13.95; 7.4
60.16; 11.64;
5.13

41.98
76.93

78.2
715.1

Trace Without
discriminant

4
1

67.74; 16.76;
4.09
97.1

88.59
97.1 (only PC1)

1829.0
2965.1

by the process described inRef. [1]. The “FaceAll” dataset is froma face classification
problembased on the head profiles (see [79] for details). A number of photos has been
taken on 14 individuals making different expressions on the face. Then, each head
profile is converted, starting from the throat, into a “pseudo time series” bymeasuring
the local angle of a trace of its perimeter. This dataset contains 2250 time series, with
131 observations each. Note that the “d19” dataset corresponds to the “FaceAll”
dataset, but in a reverse time order and so the last observations in “d19” correspond
to the profile relating to themouth and nose, which are considered themost important
in this application. This dataset seems therefore appropriate for the weight functions
which favor the last observations. The “Trace” dataset is a subset of the Transient
Classification Benchmark first introduced in [80]. This is a synthetic dataset designed
to simulate instrumentation failures in a nuclear power plant. Similarly to [79], in
this work the second feature of class 2 and 6, and the third feature of class 3 and 7 are
used. Therefore, there are 200 time series with 275 observations each. The “CBF”
dataset has been used for validation of time series classification systems (see [31]
for details). There are three classes of objects: Cylinder, Bell, and Funnel (each class
is characterized by a specific pattern). This dataset consists of 930 time series with
128 observations. This dataset seems also appropriate for the weight functions which
favor the last observations.

Table5.2 presents, for the “Synthetic Control”, “FaceAll,” and “Trace” datasets,
the results of the classical PCA (without weight function) and WPCA2 with the dis-
criminant weight function. It contains the number of principal components, M, that
explain at least 90% of variability of the data, the variance explained by each of the
three most important components (PC1, PC2, and PC3), the total variance explained
by these three components and the discriminatory power of the first principal com-
ponent, given by (5.10).

The results show that, for the three datasets, the number of principal components
decreases when discriminant weights are used, allowing higher level of compression
of the data. The discriminatory power of PC1 for the “Synthetic Control” dataset
decreases when computed byWPCA2with discriminant weights but presents a huge
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Table 5.3 Comparison of the results of PCA andWPCA2 when higher weight is given to the most
recent observations

Dataset Weight function γ M Var. explained by
PC1–PC3 (%)

Total var. explained
by PC1–PC3 (%)

CBF Without – 68 31.7; 10.56; 7.49 49.75

Linear 2 62 31.24; 12.34; 7.59 51.17

10 54 31.37; 13.75; 7.49 52.61

100 54 31.38; 13.82; 7.48 52.68

Quadratic 2 59 30.68; 12.85; 7.49 51.02

10 44 31.16; 15.59; 7.07 53.82

100 42 31.23; 15.76; 7.06 54.05

Exponential 2 60 30.86; 12.55; 7.56 50.97

10 36 30.73; 16.34; 6.69 53.76

100 22 32.78; 16.54; 6.71 56.03

d19 Without – 32 20.63; 13.95; 7.4 41.98

Linear 2 25 23.42; 15.86; 8.86 48.14

10 21 24.74; 16.8; 9.56 51.10

100 21 24.8; 16.84; 9.59 51.23

Quadratic 2 24 24.17; 16.51; 9.83 50.51

10 16 26.35; 18.25; 11.23 55.83

100 16 26.46; 18.34; 11.3 56.10

Exponential 2 25 23.78; 16.2; 9.53 49.51

10 13 26.85; 21.05; 13.03 60.93

100 8 31.96; 26.02; 13.34 71.32

increase for the other two datasets. For the three datasets, the variance explained by
PC1 increases considerably in the weighted situation.

Table5.3 presents the results for the “CBF” and “d19” datasets applying the clas-
sical PCA (without weight function) and WPCA2 with the weight function which
gives higher weight to the most recent observations. The γ value, the number of
components retained for each case, M, the variance explained by each of the three
most important components (PC1, PC2, and PC3) and the total variance explained by
these three components are presented. Once again, M decreases as the weight of the
most recent observations increases. In addition, for a fixed weight function, the value
of M decreases with the increase of the parameter γ which represents the relative
importance between the last observation and the first observation. Furthermore, it is
evident that using weights makes the three-dimensional space corresponding to the
first three principal components more important, since the total variance explained
by these three components tends to be larger, in some cases much larger.
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5.5 Final Remarks

This chapter describes a method of Weighted PCA, WPCA2, specific for time series
data, although its application to other types of data is straightforward. The purpose is
to give different weights to the observation times, according to a certain goal. Here
the goal is either to favor the observation times which present higher discriminant
power or else to favor the most recent observations. Naturally, other types of weights
can be used in other situations. The results indicate that the number of principal
components needed to explain a fixed proportion of total variance may decrease
for WPCA2. Thus, WPCA2 is capable of higher levels of compression of the data.
Moreover, the results show that the first principal component obtained fromWPCA2
with a discriminant weight function can be more useful to discriminate among the
classes. Finally, WPCA2 has the advantage of not requiring any assumptions on the
time series under study, such as stationarity, as do other procedures proposed in the
literature (see [3]).



Chapter 6
Weighted Clustering of Time Series

Abstract We will describe here a method for the clustering of time series. This
method does not give the same importance to all of the observations; instead, it lets
the most important observations, for instance the most recent, have a larger weight.
A fundamental problem in the clustering of time series is the choice of a relevant
metric, and here, we will use a metric, based on Pearson’s correlation coefficient,
which uses the notion of weighted mean and weighted covariance. We present also
some motivating applications.

6.1 Introduction

In this chapter, we consider the problem of clustering time series introduced in
[71]. Contrary to other works on this topic, our main concern is to let the most
important observations, for instance the most recent, have a larger weight on the
analysis. This is done by defining a similarity measure between two time series,
based on Pearson’s correlation coefficient, which uses the notion of weighted mean
and weighted covariance, where the weights increase monotonically with the time.
In the previous chapter, we have also used a weighted similarity measure, between
two variables (in this case observation times), that is, two columns of the data matrix.
Here, the weighted similarity is between two time series, that is, between two rows
of the data matrix.

As pointed out by Caiado et al. [17], a fundamental problem in the clustering
of time series is the choice of a relevant metric. For us, two time series are similar
to each other, and should therefore fall into the same cluster, if their evolution over
time shows similar characteristics. Consider for instance the example in Beringer and
Hüllermeier [5], where two stocks both of which continuously increase between 9:00
A.M. and 10:30 A.M. but then started to decrease until 11:30 A.M. are considered
similar, no matter what their absolute values are. That is to say that what interests
us is not the usual Euclidenan distance between two time series but the distance
between their “profiles”, which in our case consist in the standardization of the two
time series. We will start thus by deriving an expression for this distance. We will
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change slightly the initial notation from the previous chapter in order to avoid an
unnecessary complicated notation.

Let E = {X1, X2, . . . , Xn} be a set of n time series each one with p observations
and Xi = (xi1, xi2, . . . , xip)

′ and Xl = (xl1, xl2, . . . , xlp)
′ represent the values of

two time series which, without loss of generality, started at time 1 and are currently
at time p. Our dataset is represented by a nxp matrix Xnxp of real numbers whose
lines represent the n time series and the columns the observation times; thus, Xi and
Xl are two rows of this matrix.

Let us start by standardizing the data but this time, contrary to the previous chapter,
standardizing by row instead of by column; that is, taking each time series separately:

xi j ← xi j − xi•
si•

, (6.1)

where xi• = 1
p

∑p
j=1 xi j is the usual average of the values of time series Xi ; that is,

the average of the values inside the row of the data matrix which corresponds to time
series Xi . s2i• = 1

p

∑p
j=1(xi j − xi•)2 is the variance of time series Xi . The usual

squared Euclidean distance between the normalized values of the time series Xi and
Xl is

p∑

j=1

(
xi j − xi•

si•
− xl j − xl•

sl•

)2

=
p∑

j=1

{
(xi j − xi•)2

s2i•
+ (xl j − xl•)2

s2l•
− 2

(xi j − xi•)(xl j − xl•)
si•sl•

}

.

This equation gives 2p(1−r), where r is the Pearson correlation coefficient between
the two series Xi and Xl and so we conclude that the squared Euclidean distance
between two standardized time series is proportional to 1 − r .

As is clear from the above expressions, the sample mean and variance give the
same importance (weight) to all the values of the time series, namely 1

p . However,
there are situations where this should not be the case; particularly with time series
data. It is frequent that with this kind of data the most recent values should be given
higher weight, as they are most important for the analysis. Consider for instance
again, the situation of the two stocks mentioned above. It is common that investors
want to know which stocks are correlated but the recent behavior of the stocks is
certainly more important for them then what happened one year ago, let us say. In
order to take this into account, we will define now a weighted measure of correlation
between two time series. Let us start by defining the weighted moments of mean and
variance of time series Xi by

x Pi• =
p∑

j=1

w j xi j , s2Pi• =
p∑

j=1

w j (xi j − xi•)2, (6.2)
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where the weights w j are such that w j ≥ 0 and
∑p

j=1 w j = 1. If now we use
a weighted Euclidean distance between the weighted standardizations of the time
series Xi and Xl we get

p∑

j=1

w j

(
xi j − xi•

sPi•
− xl j − xl•

sPl•

)2

= 2(1 − rP ), where

rP =
∑p

j=1 w j (xi j − xi•)(xl j − xl•)
√∑p

j=1 w j (xi j − xi•)2
√∑p

j=1 w j (xl j − xl•)2
(6.3)

is a weighted measure of correlation between the two time series Xi and Xl . Now,
instead of using the dissimilarity d = 1 − r we can use d1 = 1 − rP to define the
distance between the time series. On the other hand, if instead of transformation (6.1)
we start by doing the data transformation,

xi j ←
√

w j (xi j − xi•)
sPi•

, (6.4)

(similarly for time series Xl ) and then we use the usual squared Euclidean distance,
the result will be the same.

As in this workwewant to give higher importance to themost recent observations,
we will use weights like w j = j , w j = j2, and w j = α j , for a suitable choice of α

(in our applications we use α = 1.3). In this work we want to give higher importance
to the most recent values but in other situations or for other types of data we might
want to prioritize other observations. All that is needed is to choose an appropriate
weight function.

The aim of cluster analysis is to find a structure, if it exists, in a dataset, which
means to group similar elements in the same cluster and dissimilar elements in
different clusters. In our case we want to cluster the n time series in homogeneous
clusters. One of the fundamental aspects of cluster analysis is the definition of a
proper similarity or dissimilarity index between the elements to be clustered. In our
case we choose the indices just described, which are metrics between time series.
There are essentially two types of clustering methods: hierarchical and partitional.
In order to illustrate the use of weighted clustering in the context of time series,
we will use a very well-known partitional method, namely the K-means, with some
adaptations to make it able to choose the number of clusters (see [52]).
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6.2 Applications

In this section we will apply the weighted clustering in order to analyze a time series
dataset that consists of 20 time series with 309 data points, about the Industrial
Production (by Market Group) indices in the United States, from January 1977 to
September 2002 (source: http://www.economagic.com). This dataset has originated
another dataset, the one used in Caiado et al. [17] which contains a specific trans-
formation (yi j = log(xi j ) − log(xi( j−1))) in order to turn on the time series into
stationary series.

In Table6.1, we present the data transformation (DT), the weight function, the
number of clusters (K), and the number of series per cluster for the two datasets. In
Fig. 6.1, we present the diagram for the partitions obtainedwith the original Industrial
Production indices series, to illustrate our procedure. In (a)we used data transforma-
tions corresponding to equations DT= (6.1) and DT= (6.4) with a linear weight and
in (b) and (c)we used data transformationDT= (6.4) with quadratic and exponential
weights, respectively.

The first observation regarding these results is that the number of clusters has a
tendency to reduce when we go from the non-weighted situation (a) to the linear,
quadratic, and then exponential weighted cases. It seems that the larger the weight
the less clusters we have. However, this conclusion is for this dataset only and we
cannot extrapolate. Other experiments are needed and we believe that it is possible
that an opposite behavior can be observed with other datasets; it all depends on the
structure of the most recent observations of the time series compared to the first.
Second, the homogeneity between the initial values of the time series inside each
cluster seems to decrease as again we go from the non-weighted situation to the
extreme exponential weight case. This behavior was expected as these initial values

Table 6.1 Weighted clustering results for the two datasets

Ind. Prod. DT Weight function K Series by cluster

Original 1 – 3 16; 3; 1

2 Linear 3 16; 3; 1

2 Quadratic 3 17; 2; 1

2 Exponential 2 18; 2

Stationary 1 – 12 5; 1; 1; 3; 1; 1; 1; 1; 2; 1; 1; 2

2 Linear or quadratic 13 4; 1; 1; 3; 1; 1; 1; 1; 2; 1; 1; 1; 2

2 Exponential 8 4; 2; 3; 2; 2; 3; 1; 3

http://www.economagic.com
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Fig. 6.1 Chronograms of
the original industrial
production indices series

have smaller importance in the weighted cases. As for the last values of the time
series in each cluster, it is difficult to form a conclusion, because on the one hand the
time series should be more and more homogeneous in the last values in the weighted
cases compared to the non-weighted; on the other hand, as in the weighted cases we
have fewer and fewer clusters, the homogeneity inside each cluster decreases.
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A.1 Maximum Value of the Weighted Distance Function
Corresponding to rW

In Sect. 2.3, we have stated that the maximum value for the distance function used in
theweighted rankmeasure of correlation is obtainedwhen Qi = n− Ri +1. Here we
prove this claim. As in Sect. 2.4, we assume two vectors of ranks, R = (R1, . . . , Rn)

and Q = (Q1, . . . , Qn).

Proof For the sake of simplicity and without loss of generality we can state this
problemas follows.Wewant to prove that the permutation (R1, . . . , Rn)of (1, . . . , n)

that maximizes the expression

n∑

i=1

(i − Ri )
2((n− i +1)+(n − Ri + 1)

) =
n∑

i=1

(i − Ri )
2(2(n+1)− i − Ri

)
(A.1)

is the permutation (n, . . . , 1); that is, Ri = n − i + 1. In other words, we assume
that Qi = i .

Suppose that this is not the optimal permutation. Let us then assume that the
optimal permutation is (R′

1, . . . , R′
n). Thismeans that there exist at least two integers,

� and m, smaller than or equal to n, such that R′
� �= R� and R′

m �= Rm .
Let us then denote by � = mini=1,...,n

{
i : R′

i �= n − i + 1
}
, that is, � is the first

integer for which R′
� �= n − � + 1. It is clear that R′

� < R� = n − � + 1. Now let us
consider m such that R′

m = R� = n − � + 1. We, thus, have the following situation:

1 2 . . . � − 1 � . . . m . . . n
R n n − 1 . . . n − � + 2 n − � + 1 . . . n − m + 1 . . . 1
R′ n n − 1 . . . n − � + 2 R′

� . . . n − � + 1 . . . R′
n

We will now demonstrate that if we swap R′
� with R′

m in permutation R′ we
obtain a ‘better’ partition, which is absurd, since R′ is the optimum permutation by
hypothesis.
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If we swap R′
� with R′

m then R� will be placed in the position of R′
� and R′

� will
be in the position of R′

m . The value of sum (A.1) after the change will differ by:

(� − R�)
2(n − � + 1 + n − R� + 1) + (m − R′

�)
2(n − m + 1 + n − R

′
� + 1)

− (� − R′
�)
2(n − � + 1 + n − R′

� + 1) + (m − R�)
2(n − m + 1 + n − R� + 1)

= − (m − �)(R′
� − R�)(4n + 4 − � − m − R� − R′

�) > 0

because m − � > 0, R′
� < R� and �, m, R�, R′

� ≤ n.
We thus prove that the value of sum (A.1) enlarges, which is absurd given that

by hypothesis R′ is the optimal partition. Since this hypothesis is false, the best
permutation is R, that is (n, . . . , 1).

The maximum value of the weighted distance between two rankings is therefore∑n
i=1 W 2

i = ∑n
i=1(2Ri − n − 1)2(n + 1) = (n4 + n3 − n2 − n)/3.

A.2 Maximum Value of the Weighted Distance Function
Corresponding to rW2

Here we show that the maximum value for the distance function
∑n

i=1 W2D2
i used

in Sect. 3 is obtained when Qi = n + 1 − Ri .

Theorem 3 The maximum value for
∑n

i=1(Ri − Qi )
2(2n + 2 − Ri − Qi )

2 is
n(n−1)(n+1)3

3 and is obtained when Qi = n + 1 − Ri .

Proof weconsider two vectores of ranks R = (R1, . . . , Rn) and Q = (Q1, . . . , Qn).
Without loss of generality we assume Qi = i and Ri = n+1− i , i = 1, . . . , n. If we
suppose that the permutation R = (n, . . . , 1) is not the permutation that maximizes∑n

i=1(Ri − Qi )
2(2n + 2 − Ri − Qi )

2 when we evaluate with the natural order
Q = (1, . . . , n), then there is another ranking R̀ = (R̀1, . . . , R̀n), different from R,
that is a optimal permutation. Thus, there are at least two positions, say l and m, in
vectores R and R̀, such that Rl �= R̀l and Rm �= R̀m . Let l be the first integer for
which R̀l �= n + 1 − l. We note that R̀l < Rl = n − l + 1. We consider m such
that R̀m = Rl = n − l + 1. Analogously to our proof in A.1 we have the following
situation:

Q 1 2 ... l − 1 l ... m ... n
R n n − 1 ... n + 2 − l n + 1 − l ... n + 1 − m ... 1
R̀ n n − 1 ... n + 2 − l R̀l ... n + 1 − l ... R̀n

If we swap R̀l with R̀m in permutation R̀ we obtain a better permutation, since
the value of

∑n
i=1(Ri − Qi )

2(2n + 2 − Ri − Qi )
2 after the swap will differ by:

http://dx.doi.org/10.1007/978-3-662-48344-2_3
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(l − Rl)
2(2n + 2 − l − Rl)

2 + (m − R̀l)
2(2n + 2 − m − R̀l)

2

− (l − R̀l)
2(2n + 2 − l − R̀l)

2 + (m − Rl)
2(2n + 2 − m − Rl)

2

= (m − l)(Rl − R̀l)
[
m(2R̀l − 4 − 4n) + R̀l(2l − 4 − 4n) + rl(2m − 4 − 4n)

+ l(2rl − 4 − 4n) + 8(n + 1)2
]

> 0.

This is absurd because by hypothesis R̀ is the optimal permutation. Thus, the optimal
permutation can only be R.

We note that the last product above is positive because m − l > 0, Rl − R̀l > 0;
m, l, rl , R̀l ≤ n and

m(2R̀l − 4 − 4n) + R̀l (2l − 4 − 4n) + Rl (2m − 4 − 4n) + l(2Rl − 4 − 4n) + 8(n + 1)2

= 8(n + 1)2 − 4(n + 1)(m + l + R̀l + Rl ) + 2(m + l)(R̀l + Rl ) > 0.

In order to prove the last inequality, suppose that there exists m, l, rl , r̀l ∈ {1, . . . , n}
such that

8(n + 1)2 − 4(n + 1)(m + l + R̀l + Rl) + 2(m + l)(R̀l + Rl) = 0.

Then, we have m + l = 2n + 2 or r̀l + rl = 2n + 2, which is absurd because
m, l, rl , r̀l ≤ n. If we suppose that,

8(n + 1)2 − 4(n + 1)(m + l + R̀l + rl) + 2(m + l)(R̀l + rl) < 0,

then min
{

m+l
2 ,

R̀l+Rl
2

}
< n + 1 < max

{
m+l
2 ,

R̀l+Rl
2

}
, which is absurd because

m, l, Rl , R̀l ≤ n. Therefore, we have

8(n + 1)2 − 4(n + 1)(m + l + R̀l + Rl) + 2(m + l)(R̀l + Rl) > 0.

A.3 Mean and Variance of rW Under the Null Hypothesis

Here we prove the theorem from Sect. 2.4.

Proof We start by rewriting rW as a linear combination of linear rank statistics:

n∑

i=1

(i − R∗
i )2
(
2(n + 1) − i − R∗

i

)

= 4(n + 1)
n∑

i=1

i2 − 2
n∑

i=1

i3 +
n∑

i=1

i2R∗
i +

n∑

i=1

i R∗
i
2 − 4(n + 1)

n∑

i=1

i R∗
i
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The term 4(n + 1)
∑n

i=1 i2 − 2
∑n

i=1 i3 does not depend on R∗ and so is a constant,
that we denote by C . Let,

S(11)
n =

n∑

i=1

i R∗
i , S(12)

n =
n∑

i=1

i R∗
i
2 and S(21)

n =
n∑

i=1

i2R∗
i .

The distribution of rW under H0 is the same as that of

1 − 6C

n(n3 + n2 − n − 1)
+ 24(n + 1)

n(n3 + n2 − n − 1)
S(11)

n

− 6

n(n3 + n2 − n − 1)
S(12)

n − 6

n(n3 + n2 − n − 1)
S(21)

n (A.2)

Using (2.3), we get,

E(S(11)
n ) = n

∑n
i=1 i

n

∑n
i=1 i

n
= n(n + 1)2

4
,

E(S(12)
n ) = n

∑n
i=1 i

n

∑n
i=1 i2

n
= n(n + 1)

2

n(n + 1)(2n + 1)

6n
= n(n + 1)2(2n + 1)

12

E(S(21)
n ) = n

∑n
i=1 i2

n

∑n
i=1 i

n
= n(n + 1)

2

n(n + 1)(2n + 1)

6n
= n(n + 1)2(2n + 1)

12

and so:

E(rW ) = 1 − 6C − 6(n + 1)3n + n(n + 1)2(2n + 1)

n(n3 + n2 − n − 1)
= 0.

We see therefore that if the two vectors of ranks are independent, the expected
value of the weighted rank measure of correlation is 0, which is a desirable property.

Let us now find an expression for the variance of rW under H0:

var(rW ) =
(

6

n(n3 + n2 − n − 1)

)2
var
(
4(n + 1)S(11)

n − S(12)
n − S(21)

n
)

=
(

6

n(n3 + n2 − n − 1)

)2 (
16(n + 1)2var(S(11)

n ) + var(S(12)
n ) + var(S(21)

n )

− 8(n + 1)cov(S(11)
n , S(12)

n ) − 8(n + 1)cov(S(11)
n , S(21)

n ) + 2cov(S(12)
n , S(21)

n )
)

(A.3)

To find the variance of S(11)
n = ∑n

i=1 i R∗
i , note that S(11)

n has the expression in (2.2)
if c(i) = i and a(i) = i . Therefore, by (2.3),

http://dx.doi.org/10.1007/978-3-662-48344-2_2
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var(S(11)
n ) = 1

n − 1

(
n∑

i=1

i2 − n
(n + 1)2

4

)(
n∑

i=1

i2 − n
(n + 1)2

4

)

= n2(n + 1)2(n − 1)

144

For S(12)
n = ∑n

i=1 i R∗
i
2, as c(i) = i and a(i) = i2, the variance becomes

var(S(12)
n ) = 1

n − 1

(
n∑

i=1

i2 − n
(n + 1)2

4

)(
n∑

i=1

i4 − n
(n + 1)2(2n + 1)2

36

)

= n2(n + 1)2

2160
(16n3 + 14n2 − 19n − 11)

On the other hand, as S(21)
n = ∑n

i=1 i2R∗
i , we have var(S(21)

n ) = var(S(12)
n ). We also

need to find the covariance between two linear rank statistics. In [79, Chap.8] if

S′ =
n∑

i=1

c′(i)a′(R∗
i ),

is another linear rank statistic then, under H0,

cov(S, S′) = (n − 1)scc′saa′

and so,

cov(S(11)
n , S(12)

n ) = cov(S(11)
n , S(21)

n ) = 1

144
(n4 + 2n3 − 2n − 1)n2

Similarly,

cov(S(12)
n , S(21)

n ) = 1

144
(n5 + 3n4 + 2n3 − 2n2 − 3n − 1)n2

Finally, substituting all these results in (A.3), we get the variance of rW under the
null hypothesis of independence between the two vectors of ranks:

var(rW ) = 31n2 + 60n + 26

30(n3 + n2 − n − 1)

With this notation, the expression (A.2) for rW can be written in the form:
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rW = 1

n(n3 + n2 − n − 1)

(

n(n3 + n2 − n − 1) − 24
(n + 1)2n(2n + 1)

6

+ 12
n2(n + 1)2

4
+ 24(n + 1)

(
S(11)

n − E(S(11)
n )

)

+ 24
(n + 1)3n

4
− 6

(
S(12)

n − E(S(12)
n )

)

− 6
(
S(21)

n − E(S(21)
n )

)− n(n + 1)2(2n + 1)

)

But

n(n3 + n2 − n − 1) − 4(n + 1)2n(2n + 1) + 3n2(n + 1)2

+ 6(n + 1)3n − n(n + 1)2(2n + 1) = 0,

and so

rW = 1

n(n3 + n2 − n − 1)

(
24(n + 1)

(
S(11)

n − E(S(11)
n )

)

− 6
(
S(12)

n − E(S(12)
n )

)− 6
(
S(21)

n − E(S(21)
n )

))

A.4 Table of Critical Values for rW

In the following table we present the most important quantiles for rW under the null
hypothesis that the two vectors of ranks are independent (TableA.1).

A.5 Asymptotic Normality of Nonparametric Statistics

Wepresent in thisAppendixTheorem2.1 ofRuymgaart, Shorack andVanZwet, 1972
(see [84]) as is the fundamental tool used in the proof of our Theorem 2.1. We start
by introducing some notation. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from
a continuous bivariate distribution function H(x, y) (bivariate empirical distribution
function is denoted by Hn) havingmarginal distribution functions F(x) andG(y) and
empirical distribution functions Fn and Gn , respectively. The rank of Xi is denoted
by Ri and the rank of Yi by Qi . Let Tn = 1

n

∑n
i=1 an(Ri )bn(Qi ), where an(i), bn(i)

are real numbers for i = 1, . . . , n. The standardization of Tn can be written as

√
n(Tn − μ) = √

n

[∫ ∫

Jn(Fn)Kn(Gn)d Hn − μ

]

,
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Table A.1 Critical values for rW

n Confidence level (%)

0.5 1 2.5 5 95 97.5 99 99.5

3 – – – – 1.0000 1.0000 1.0000 1.0000

4 – – – −1.0000 0.8800 1.0000 1.0000 1.0000

5 – −1.0000 −1.0000 −0.9000 0.8000 0.8833 0.9500 1.0000

6 −1.0000 −0.9429 −0.8286 −0.7714 0.7388 0.8122 0.9020 0.9429

7 −0.8973 −0.8571 −0.7768 −0.6875 0.6830 0.7812 0.8571 0.8973

8 −0.8624 −0.8095 −0.7196 −0.6323 0.6402 0.7275 0.8148 0.8624

9 −0.8167 −0.7667 −0.6800 −0.5917 0.5967 0.6883 0.7750 0.8233

10 −0.7807 −0.7311 −0.6441 −0.5559 0.5614 0.6518 0.7399 0.7917

11 −0.7508 −0.6992 −0.6121 −0.5280 0.5326 0.6197 0.7091 0.7614

12 −0.7230 −0.6708 −0.5853 −0.5035 0.5073 0.5922 0.6810 0.7337

13 −0.6978 −0.6460 −0.5616 −0.4819 0.4855 0.5675 0.6550 0.7084

14 −0.6750 −0.6234 −0.5405 −0.4629 0.4664 0.5461 0.6319 0.6850

15 −0.6534 −0.6023 −0.5210 −0.4454 0.4497 0.5279 0.6111 0.6645

16 −0.6353 −0.5850 −0.5056 −0.4314 0.4342 0.5091 0.5911 0.6432

17 −0.6177 −0.5677 −0.4893 −0.4170 0.4193 0.4931 0.5738 0.6252

18 −0.6012 −0.5525 −0.4758 −0.4051 0.4064 0.4784 0.5583 0.6092

19 −0.5854 −0.5374 −0.4621 −0.3935 0.3950 0.4650 0.5433 0.5935

20 −0.5725 −0.5247 −0.4505 −0.3837 0.3850 0.4539 0.5306 0.5797

25 −0.5135 −0.4693 −0.4012 −0.3407 0.3423 0.4045 0.4744 0.5203

30 −0.4720 −0.4296 −0.3660 −0.3103 0.3112 0.3679 0.4316 0.4740

40 −0.4029 −0.3668 −0.3113 −0.2629 0.2650 0.3156 0.3721 0.4095

50 −0.3590 −0.3273 −0.2786 −0.2356 0.2361 0.2807 0.3316 0.3658

For n up to 14 the values were obtained by computing all the permutations. For other values they
are approximated using a random sample of one million rankings. For n > 50, the quantiles for the

standardizedmeasure are approximatedby theStandardNormal:
(
30(n3+n2−n−1)
31n2+60n+26

)1/2
rW

d≈ N (0, 1)

where Jn(s) = an(i), Kn(s) = bn(i), for i = 1, . . . , n such that (i−1)
n < s ≤ i

n ;
μ = ∫ ∫

J (F)K (G)d H . The functions J and K can be thought of as limits of the
score functions Jn and Kn .H denote the class of all continuous bivariate distribution
functions H.

Assumption 2.1 (Ruymgaart, Shorack and Van Zwet 1972) The functions J and K
are continuous on (0, 1); each is differentiable except at most at a finite number of
points, and in the open intervals between these points the derivatives are continuous.
The functions Jn , Kn , J , K satisfy |Jn| ≤ Dra , |Kn| ≤ Dra and

∣
∣J (i)

∣
∣ ≤ Dra+i and

∣
∣K (i)

∣
∣ ≤ Drb+i for i = 0, 1. Here D is a positive constant, a =

(
1
2−δ

)

p , b =
(
1
2−δ

)

q

for some 0 < δ < 1
2 and some p, q > 1 with 1

p + 1
q = 1.
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Assumption 2.3 b (Ruymgaart, Shorack and Van Zwet 1972) B∗
0n = √

n
∫ ∫

[
Jn(Fn)Kn(Gn) − J (F∗

n )K (G∗
n)
]

d Hn →︸︷︷︸
p

0 (converge in probability to zero) as

n → ∞ where F∗
n =

[
n

n+1

]
Fn and G∗

n =
[

n
n+1

]
Gn .

Theorem 2.1 of Ruymgaart, Shorack and Van Zwet 1972 (see [84])
If H is in H and if Assumptions 2.1 and 2.3 b are satisfied, then√

n(Tn − μ) →︸︷︷︸
d

N (0, σ 2) (converge in distribution) as n → ∞, where μ and

σ 2 are finite and are given by μ = ∫ ∫
J (F)K (G)d H (expression 1.3 in [84]) and

σ 2 = V ar

[

J (F(X))K (G(Y )) +
∫ ∫

(φX − F)J ′(F)K (G)d H

+
∫ ∫

(φY − G)J (F)K ′(G)d H

]

(expression 3.10 in [84]) with φXi (x) = 0 if x < Xi and φXi (x) = 1 if x ≥ Xi .

A.6 A1in has a Finite Absolute Moment of Order Greater
than 2

We show here that there exist δ0 > 0 and δ0 < δ = 1
4 such that E |A1in|2+δ0 is

bounded. Using Assumption 2.1 in the Appendix above we can prove that

∫ ∫

|J (F(Xi ), G(Yi ))|2+δ0 d H ≤ D
∫ ∫

|r(F)|a(2+δ0) |r(G)|b(2+δ0) d H.

By using now Hölder’s Inequality this quantity is

≤ D
1

n

n∑

i=1

{

r (2+δ0)(δ− 1
2 )

(
i

n + 1

)} 1
p0

{
1

n

n∑

i=1

r (2+δ0)(δ− 1
2 )

(
i

n + 1

)} 1
q0

= D

n

∑
r (2+δ0)(δ− 1

2 )

(
i

n + 1

)

≤ D
∫ 1

0

1

(u(1 − u))(2+δ0)(
1
2−δ)

du

that is finite for 0 < δ0 < δ = 1
4 .
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A.7 Calculation of the Alternative Expression for rW2

Theorem 4 rW2 = 1
2

VR′+VQ′−DW2n√
VR′

√
VQ′

, where VR′ and VQ′ are the variances of the

transformed rankings R′ and Q′, respectively, and DW2n (3.7) is the weighted dis-
tance between the two rankings.

Proof First, we observe that R′ = 1
n

∑n
i=1 (Ri (2n + 2 − Ri )) = (n+1)(4n+5)

6 =
γ (n) and similarly for Q′. We define VR′, VQ′ and DW2n as before. Recall the
quantities:

VR′ = 1

n

n∑

i=1

[
Ri (2n + 2 − Ri ) − γ (n)

]2
,

VQ′ = 1

n

n∑

i=1

[
Qi (2n + 2 − Qi ) − γ (n)

]2

and

DW2n = 1

n

n∑

i=1

(Ri − Qi )
2 (2n + 2 − Ri − Qi )

2 .

Now, we consider Pearson’s correlation coefficient of the transformed rankings R′
and Q′,

rW2 =
∑n

i=1

[
(Ri (2n + 2 − Ri ) − γ (n)) · (Qi (2n + 2 − Qi ) − γ (n))

]

√∑n
i=1 (Ri (2n + 2 − Ri ) − γ (n))2

√∑n
i=1 (Qi (2n + 2 − Qi ) − γ (n))2

.

It is convenient to note that

2 ·
n∑

i=1

[
(Ri (2n + 2 − Ri ) − γ (n)) · (Qi (2n + 2 − Qi ) − γ (n))

]

=
n∑

i=1

(Ri (2n + 2 − Ri ) − γ (n))2 +
n∑

i=1

(Qi (2n + 2 − Qi ) − γ (n))2

−
n∑

i=1

(Ri (2n + 2 − Ri ) − Qi (2n + 2 − Qi ))
2

http://dx.doi.org/10.1007/978-3-662-48344-2_3
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and

n∑

i=1

(Ri (2n + 2 − Ri ) − Qi (2n + 2 − Qi ))
2

=
n∑

i=1

(Ri − Qi )
2 (2n + 2 − Ri − Qi )

2 = nDW2n .

Therefore, rW2 = 1
2

VR′+VQ′−DW2n√
VR′

√
VQ′

.

For untied ranking the quantities VR′ and VQ′ are

VQ′ = VR′ = g(n)

180n

and it follows that rW2 can be written as

rW2 = 1 − 90nDW2n

g(n)
.

A.8 Appendix—Computation of the Principal Components
in the Case of More Variables than Observations

A.8.1 Computation of the Unweighted Principal Components

Let us start by denoting by X the data matrix with n rows, corresponding to the n
samples, and p columns, corresponding to the p variables. In the usual PCA, we
must find the pxp matrix of Pearson’s correlation coefficients. To do so, we start by
standardising the data as

xi j ← xi j − x j

s j
√

n
, (A.4)

where x j is the mean value of variable j and s2j = 1
n

∑n
l=1(xl j − x j )

2 the corre-

sponding sample variance. The matrix of Pearson’s correlations is then X
T
X. The

analysis that follows consists in finding the eigenvectors and eigenvalues of this
matrix. However, because if we have a relatively large number of variables and much
lesser samples, this matrix will have a huge dimension and will not have full rank.
It is complicated and very time consuming to diagonalise such a matrix and what is
usually done consists in finding the eigenvectors and eigenvalues of the matrix XXT

instead, and from these find the ones we want. If x is an unit eigenvector of XXT

and λ the corresponding eigenvalue, then

XX
T x = λx .
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Pre-multiplying this equation by X
T gives

X
T
XX

T x = λXT x,

which means that XT x is an eigenvector of XT
X with the same eigenvalue λ. To

normalise this eigenvector, let us find its norm as

||XT x ||2 = (XT x)T
X

T x = xT
XX

T x = xT λx = λ,

because the norm of x is 1. Hence, ||XT x || = √
λ. Therefore, we conclude that if

x is an unit eigenvector of XXT and λ the corresponding eigenvalue, then 1√
λ
X

T x

is a unit eigenvector of the matrix X
T
X with the same eigenvalue λ. This is a very

useful result because it allows us to find the eigenvectors of a huge matrix, XT
X, by

diagonalising a much smaller matrix, XXT .

A.8.2 Computation of the Weighted Principal Components

To compute the weighted principal components, that is, using the correlation coef-
ficient rW2, we start by transforming our data according to equation (4.2). Then,
similarly to the previous subsection, we standardise the transformed data as

R′
i j ← R′

i j − R′
j

SR j
√

n
, (A.5)

where R′
j is the mean value of the weighted ranks corresponding to variable j

and S2
R j = 1

n

∑n
l=1(R′

l j − R′
j )
2 the corresponding sample variance. Hence, if X′

represents the data matrix corresponding to these transformations, the matrix of
weighted correlation coefficients (rW2) is X′T

X
′. As before, if this is a huge matrix,

in order to obtain its diagonalisation we proceed exactly as for the unweighted case,
diagonalising first X′

X
′T . Hence, if x is an unit eigenvector of X′

X
′T and λ the

corresponding eigenvalue, then 1√
λ
X

′T x is a unit eigenvector of the matrix X
′T
X

′
with the same eigenvalue λ.

http://dx.doi.org/10.1007/978-3-662-48344-2_4
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