

Lecture Notes in Computer Science 4089
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Welf Löwe Mario Südholt (Eds.)

Software
Composition

5th International Symposium, SC 2006
Vienna, Austria, March 25-26, 2006
Revised Papers

13

Volume Editors

Welf Löwe
Växjö University
School of Mathematics and Systems Engineering
Software Technology Group
351-95 Växjö, Sweden
E-mail: welf.lowe@msi.vxu.se

Mario Südholt
École des Mines de Nantes
Département Informatique
4, rue Alfred Kastler, 44307 Nantes Cedex 3, France
E-mail: Mario.Sudholt@emn.fr

Library of Congress Control Number: 2006930915

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-37657-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37657-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11821946 06/3142 5 4 3 2 1 0

Preface

Research in software composition investigates models and techniques to build
systems from predefined, pretested, reusable components instead of building
them from scratch. In recent years, this idea has largely been adopted by in-
dustry. In the shape of service-oriented architecture, software composition has
become an influential design paradigm, especially for the (re-)organization of the
IT infrastructure of organizations. On the technical level, the standardization of
Web services and other composition technologies has further matured.

Current research in software composition aims at (further) developing com-
position models and techniques. The aspect-oriented programming and design
paradigm, for instance, has gained interest in the research community as a com-
position (support) model. Other current research questions concern the spec-
ification of component contracts, in particular making explicit its observable
behavior, and methods of correct components composition. The International
Symposium on Software Composition provides a premier forum for discussing
these kinds of research questions and presenting original research results.

This LNCS volume contains the proceedings of the 5th International Sym-
posium on Software Composition, which was held as a satellite event of the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
Vienna, Austria, March, 25-26 2006. The symposium started with a keynote on
“Semantically Enabled Service-Oriented Architectures” given by Dieter Fensel,
Director of the Digital Research Institute. The main program consisted of presen-
tations of research papers on software compositions. These proceedings contain
the revised versions of the papers presented at SC 2006.

We selected 21 technical papers out of 60 submissions. Each paper went
through a thorough revision processes and was reviewed by three to five review-
ers followed by an electronic Program Committee discussion. We would like to
thank the Program Committee members and the external reviewers for selecting
a set of diverse and excellent papers and making SC 2006 a success.

We would like to express our gratitude to the European Network of Ex-
cellence on Aspect-Oriented Software Development (AOSD-Europe) and to the
International Federation for Information Processing, Technical Committee on
Software: Theory and Practice (IFIP, TC 2) for sponsoring this event. Finally,
we would like to thank the organizers of ETAPS 2006 for hosting and providing
an excellent organizational framework for SC 2006.

June 2006 Welf Löwe, Växjö University, Sweden
Mario Südholt, INRIA - École des Mines de Nantes, France

Program Co-chairs
SC 2006

Organization

Program Committee

Brian Barry (Bedarra Research Labs, Canada)
Alexandre Bergel (Trinity College Dublin, Ireland)
Judith Bishop (University of Pretoria, South Africa)
Pierre Cointe (Ecole des Mines de Nantes, France)
Vittorio Cortellessa (University of L’Aquila, Italy)
Thierry Coupaye (France Telecom, France)
Birgit Demuth (Technische Universität Dresden, Germany)
Flavio De Paoli (University of Milano Bicocca, Italy)
Dieter Fensel (DERI Galway/Innsbruck, Ireland/Austria)
Volker Gruhn (University of Leipzig, Germany)
Thomas Gschwind (IBM Research, Switzerland)
Arno Jacobsen (University of Toronto, Canada)
Mehdi Jazayeri (University of Vienna, Austria)
Tom Henzinger (EPF Lausanne, Switzerland)
Kung-Kiu Lau (The University of Manchester, UK)
Karl Lieberherr (Northeastern University, USA)
Welf Löwe (Co-chair) (Växjö University, Sweden)
Mira Mezini (Darmstadt University of Technology, Germany)
Claus Pahl (Dublin City University, Ireland)
Arnd Poetzsch-Heffter (University of Kaiserslautern, Germany)
Elke Pulvermüller (Karlsruhe University of Technology, Germany)
Lionel Seinturier (INRIA & LIP6, France)
Mario Südholt (Co-chair) (INRIA & EMN, France)
Wim Vanderperren (VU Brussels, Belgium)

Referees

U. Aßmann
O. Barais
D. Beyer
M. Book
F. Cabitza
O. Caron
A. Chakrabarti
P.-C. David
B. De Fraine

E. Della Valle
M. D’Hondt
J. Feng
D. Gao
V. Gasiunas
M. Gawkowski
F. Hartmann
T. Haselwanter
M. Haupt

S. Hu
A. Jackson
E. Kilgarriff
L. Ling
S. Loecher
M. Loregian
A. Maurino
I. Ntalamagkas
J. Oberleitner

VIII Organization

J. Palm
M. Petrovic
N. Rauch
M. Reitz
N. Rivierre
D. Roman
R. Rouvoy
B. Sapkota

I. Savga
J. Schäfer
T. Schaefer
J. Scicluna
D. Suvee
T. Skotiniotis
F. M. Taweel
I. Toma

E. Tu
V. Ukis
Z. Wang
Z. Xu
M. Zaremba
St. Zschaler
C. Zhang
A. V. Zhdanova

Sponsoring Institutions

IFIP, Laxenburg, Austria
AOSD-Europe, European Network of Excellence in AOSD, Lancaster, UK

Table of Contents

Automatic Checking of Component Protocols in Component-Based
Systems . 1

Wolf Zimmermann, Michael Schaarschmidt

Checking Component Composability . 18
Christian Attiogbé, Pascal André, Gilles Ardourel

Static Verification of Indirect Data Sharing in Loosely-coupled
Component Systems . 34

Lieven Desmet, Frank Piessens, Wouter Joosen, Pierre Verbaeten

Enforcing Different Contracts in Hierarchical Component-Based
Systems . 50

Philippe Collet, Alain Ozanne, Nicolas Rivierre

Automated Pattern-Based Pointcut Generation . 66
Mathieu Braem, Kris Gybels, Andy Kellens, Wim Vanderperren

An Aspect-Oriented Approach for Developing Self-Adaptive Fractal
Components . 82

Pierre-Charles David, Thomas Ledoux

Aspects of Composition in the Reflex AOP Kernel . 98
Éric Tanter

A Component-Based Approach to Compose Transaction Standards 114
Romain Rouvoy, Patricia Serrano-Alvarado, Philippe Merle

A Class-Based Object Calculus of Dynamic Binding: Reduction and
Properties . 131

Pawe�l T. Wojciechowski

Tracechecks: Defining Semantic Interfaces with Temporal Logic 147
Eric Bodden, Volker Stolz

Service Composition with Directories . 163
Ion Constantinescu, Walter Binder, Boi Faltings

Modeling Composition in Dynamic Programming Environments with
Model Transformations . 178

Uwe Zdun, Mark Strembeck

General Composition of Software Artifacts . 194
William Harrison, Harold Ossher, Peri Tarr

X Table of Contents

Dimensions of Composition Models for Supporting Software Evolution . . . 211
In-Gyu Kim, Tegegne Marew, Doo-Hwan Bae, Jang-Eui Hong,
Sang-Yoon Min

Context-Aware Aspects . 227
Éric Tanter, Kris Gybels, Marcus Denker, Alexandre Bergel

Understanding Design Patterns Density with Aspects 243
Simon Denier, Pierre Cointe

A Model for Developing Component-Based and Aspect-Oriented
Systems . 259

Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye,
Laurence Duchien

FROGi: Fractal Components Deployment over OSGi 275
Mikael Desertot, Humberto Cervantes, Didier Donsez

Modular Design of Man-Machine Interfaces with Larissa 291
Karine Altisen, Florence Maraninchi, David Stauch

On the Integration of Classboxes into C# . 307
Markus Lumpe, Jean-Guy Schneider

Automatic Control Flow Generation from Software Architectures 323
Kung-Kiu Lau, Vladyslav Ukis

Author Index . 339

Automatic Checking of Component Protocols in
Component-Based Systems

Wolf Zimmermann1 and Michael Schaarschmidt2

1 Martin-Luther Universität Halle-Wittenberg, Institut für Informatik,
06099 Halle/Saale, Germany

zimmer@informatik.uni-halle.de
2 Martin-Luther Universität Halle-Wittenberg, Rechenzentrum,

06099 Halle/Saale, Germany
michael.schaarschmidt@urz.uni-halle.de

Abstract. We statically check whether each component in a component-
based system is used according to its protocol and provide counterexam-
ples if such a check fails. The protocol is given by a finite state machine
specifying legal sequences of procedure calls of the interface of a compo-
nent. The main contribution is that we can deal with call-backs without
any restrictions. We achieved this by using context-free grammars in-
stead of finite state machines to describe the use of components.

1 Introduction

The construction of component-based systems became increasingly important
in software construction. However, software architects have to deal with new
problems stemming from component-based system architectures. An important
issue is whether a component is correctly used. Usually components implement
one or more interfaces specifying the services they offer. For the purpose of this
paper, a service is simply a procedure or function signature. However just the
knowledge of services does not provide sufficient information for the construc-
tion of systems. Often the source code of a component is not available after its
deployment or even not physically available as e.g. Web Services. However, for a
component industry the unavailability of source code is essential – Web Services
may even be offered on a pay-per-use basis.

A major problem for construction of component-based systems is to check
whether the components can be composed and possibly provide own components
to adapt them. A failure to use a component correctly might cause a system
abortion while executing the system – this might happen even after the system
is delivered to the customer. In this context abortion means that a system stops
with an uncaught exception internal to a component (e.g. dereferencing of null
reference, illegal array accesses, division by zero etc.). Since the source code of
components is often unavailable, other approaches are necessary to check whether
components are used in such a way that the system does not abort. Our goal
is to provide a mechanizable approach for checking statically component-based
systems for abortion freeness on an almost black-box basis.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 W. Zimmermann and M. Schaarschmidt

Our approach currently restricts the architecture of component-based sys-
tems to sequential systems and to one client using services of other components.
However any component may use services of other components or even of the
client. In particular we do not exclude call-backs. We assume that each compo-
nent implements one or more interfaces and each interface I specifies services
as a set of procedure signatures ΣI . The services ΣC of a component C is the
union of the interfaces implemented by the component. Informally, a protocol of
a component is a set of sequences LC ⊆ Σ∗

C . The aim of protocols is to guarantee
certain properties, e.g. that the component doesn’t abort if its services are called
according to a sequence in LC . A component C might call other services spec-
ified as interfaces used by a component. The profile of a component C specifies
for each interface I required by C the set of sequences PC(I) ⊆ Σ∗

I of services
possibly being called by C. A component-based system S is a multi-set of com-
ponents (i.e. there might be multiple copies of a component called instances)
where each interface used by a component is instantiated with an instance of
a component. The use of an instance c of a component C in a component-
based system S is the set of possible sequences of services Uc ⊆ Σ∗

C that are
called to c during execution of S. The use of an instance c of a component C
conforms to its protocol iff Uc ⊆ LC , i.e. any sequence of services called to c
agrees with the protocol of C. Therefore, if the conformity check succeeds for
each instance in a component-based system S and each component of S is cor-
rectly implemented then the abortion-freeness of S is guaranteed. We assume
that each component contains in its deployment description its protocol and its
profile.

Many approaches (e.g. [13,17,18,22]) use finite state machines (short: FSM)
AP and AR to specify protocols L(AP) and profiles L(AR) for each interface of a
component where L(AP) and L(AR) are the languages accepted by AP and AR,
respectively. Since connectors connect profiles for an interface of one component
with an interface of another component it is checked whether L(AR) ⊆ L(AP)
and counter-examples are provided in the case such a check fails. The idea be-
hind these local checks is that protocol conformance checks can be executed
incrementally. It implicitly assumes that any checked connection cannot be in-
validated as long as the protocols of the component providing the profile are
satisfied. In this paper, we show that these approaches have several drawbacks:
First, local checks cannot be applied if the interfaces of a component cannot
be used independently. Second, it cannot be applied if the component system
contains recursive call-backs.

Other works use model-checking approaches [8,9,7,11,3,5] to prove that pro-
grams satisfy certain properties. They use context-free model checking because
finite state machine models are not an adequate abstraction if the program may
contain recursive procedures. However, these works assume that the whole pro-
gram is completely available.

Our method combines and generalizes these approaches in order to allow de-
pendencies between different interfaces of a component and arbitrary recursive
call-backs. FSMs are used for describing protocols. In contrast to the above

Automatic Checking of Component Protocols in Component-Based Systems 3

iL(G))L(A
22

⊆i

L(G i

1L(G))1L(A

))L(A⊆

⊆ nn

Deployment

Instances

n

n

n

Combined
Grammar

G

A

C

2

2

2

A

C

Grammar
Instance
Grammar

Gr

Instance

G1
n n

n1
1G

Instance

1r
1G

Grammar
Instance

Grammar Grammar
Instance
Grammar

G

Instance

G1
2 2

r2

C1

A1

1PS PS PS

Fig. 1. An Approach to Conformance Checking

works, a single FSM AC is used for the whole component C. Hence, interaction
of procedure calls to different interfaces of C are taken into account. Instead of
FSMs for describing uses of components our approach uses context-free grammar
(short: CFG) GC for this purpose. Thus, for each instance c of a component C
it is checked whether L(Gc) ⊆ L(AC). It is a well-known result from the theory
of formal languages that this test is algorithmically decidable. We show how
counterexamples can be provided if such a check fails. From the global system
and the profiles of each component the use of components is derived. However,
a profile of a component C cannot be described itself as a context-free grammar
since only the use of interfaces is known but not how these are instantiated.
Therefore, we generalize context-free grammars by parameterizing non-terminal
and terminal symbols with the interfaces. The obtained structure is called a
parameterized context-free scheme (pCFS). These pCFSs can be mechanically
computed from the source code of the components. The pCFSs are used in a
component-based system S to compute a context free grammar specifying all se-
quences of calls to all instances of the components by instantiating the interfaces
of the pCFS analogous to the corresponding instances in S. Context-free gram-
mars for uses of instances of components in a component-based system can now
be derived by projection. Hence, it is now possible to check for each instance c
of component C of S whether L(Gc) ⊆ L(AC), i.e. whether to use of c conforms
to the protocol. Fig. 1 illustrates the summary of our approach. The paper is
organized as follows: Section 2 demonstrates the limitations of local checks and
the use of FSMs for profiles. Section 3 summarizes how to check L(G) ⊆ L(A)
for CFGs G and FSMs A and shows how counterexamples are provided. Sec-
tion 4 introduces parameterized context-free schemes. Section 5 shows their use
in specifying profiles of components and how they can be generated from source
text. Finally, Section 6 shows how CFGs specifying the use of a component are
generated from the profiles. A short appendix introduces some of the notations
from formal languages used in this paper.

4 W. Zimmermann and M. Schaarschmidt

2 Limitations of Local Checks Based on FSMs

Local protocol checking approaches (e.g. [18,20,13]) check independently each
connection in a component-based system. They usually assume a protocol for
each interface and assume that they can be independently used. I.e. instances of
a component C can accept all interleavings of all calling sequences by the proto-
cols of its interfaces. Then they deduce profiles for the interfaces required by C.
Hence, it is possible to check whether a profile U for an interface conforms to its
protocol P , i.e. whether U ⊆ P . For these checks, it is often assumed that the
profile U also is a regular language. Thus, protocol conformance can be decided.
However, in practice it often happens that components cannot accept arbitrary
interleavings of the calling sequences to its protocol. Thus, more sophisticated
approaches introduce coordination components (sometimes also called connec-
tors) that accept arbitrary interleavings and the other components only have
one interface. Therefore a component has a single protocol. In this section, we
show that even if each component has one interface and if each connection is
succesfully checked, the absence of global protocol errors is not guaranteed. The
main reason for these violations are recursive call-backs. Thus, for the same rea-
sons as in the works of software model checking [8,9,7,11,3,5], CFGs are more
adequate than FSMs to describe the use of components.

Our examples are denoted similar to Java. The main difference is that classes
are components and we do not inherit from components. Procedures and func-
tions can only have parameters whose types are interfaces or basic types (for
simplicity, we only use here the type int). Any procedure or function that is not
defined by an interface of a component is internal to that component. There is
exactly one component, the client, containing a parameterless procedure main
which is executed upon on system start. The client has parameters that represent
interfaces to be instantiated with components upon composition time. Thus, all
instances of components in a component based system are known upon compo-
sition time. Note that all instances of a component can be referenced by a name.
Procedures allow to pass by reference instances of components. Values of basic
types are passed by value. This model is similar to commercial component sys-
tems such as COM, EJB, CORBA except that all components are known upon
composition time. Dynamic instances of components are possible. The operation
new(x) computes a new instance of the component refered to by variable x. In
this paper, we assume for simplicity that all services of components are proce-
dures. The parameters of the client can only be used in main . The identifier this
denotes the instance of the component currently being executed.

Example 1. Consider the component system in Fig. 2. c is an instance of C2.
The component system starts its execution by executing main . Suppose we read
2, i.e. i = 2. Then, the body of the loop will be executed and it calls c.a(2, this).
Thus, when executing this call on c it is n = 2 and x refers to the client. Since
the condition becomes true, the call x.b(1, this) is being executed. Since x refers
to the client, this is a call-back and the execution of b on the client starts with
k = 1 and z referring to c. After the first assignment it holds n = 1 which also

Automatic Checking of Component Protocols in Component-Based Systems 5

client C1[J c] implements I {
int n = 0;
void b(int k, J z){

n = (n + 1)%2; n = 1/n;
z.a(k, this);

}
void d(){ n = 1/n − 1; }
void main(){

int i;
read(i);
while(i > 0){ c.a(i, this); i −−; }

}
}
interface I {

void b(int , J);
void d(J);

}

component C2 implements J {
void a(int n, I x){

if(n > 0) { x.b(n − 1, this); x.d(); }
}

}
interface J {

void a(int , I);
}

Composition: C1[C2]

Fig. 2. A Component-Based System

1 2

b

d

q1 q2

Protocol for Client

ar

Protocol for C C

Fig. 3. Protocols for the Client and Component in Fig. 2

holds after the second assignment. Thus, the call z.a(1, this) is executed. Note
that this is a recursive call since z refers to c and the first call of a on c is not
yet completed. In this second call it is n = 1 and x refers to the client. Thus the
condition becomes true and the call x.b(0, this) is being executed. This again is a
recursive call since x refers to the client and the first call of b on the client is not
yet completed. After the execution of the first statement it holds n = 0. Hence,
the second statements performs a division by 0 and therefore the system aborts.

Fig. 3 shows the protocol of the components. Note that a second execution of
b and a second execution of d on the client lead to a division by zero. The client
requires that b and d must be called alternating and b is called first – if at all.
Otherwise divisions by zero are executed. Apparently, this protocol is violated
by the system.

The following example demonstrates that recursive call-backs are the reason for
protocol violations:

Example 2. According to the clients protocol, the profile for c is Lc = {an|n ∈ N}
and the profile for z is also Lz = {an|n ∈ N}. According to component C2’s
protocol, the profile for x is Lx = {(bd)n|n ∈ N}.

After composition, z always refers to c and x always refers to the client. Such
information could e.g. be derived from a points-to analysis. Thus there are two
profiles for calling sequences to c. Even an arbitrary interleaving of Lz and Lc

shows that Uc = {an|n ∈ N} is the set of all calling sequences to instance c of

6 W. Zimmermann and M. Schaarschmidt

component C2. Since these sequences are accepted, the use of c conforms to the
protocol of C. Consider now the client. Since x is the only variable referring to
the client, the use of the client is U = {(bd)n|n ∈ N}. Hence, the local protocol
checking approach also would decide that the use of the client conforms to its
protocol which is wrong according to the scenario in Example 1.

The checking approach in Example 2 considers individually each component.
If there wouldn’t introduced recursive procedure calls due to call-backs the
above arguments would be completely legal. The individual protocol confor-
mance checking doesn’t work because these recursive calls lead to use of com-
ponents that cannot be detected from one component alone. Many works of
protocol checking are aware of this problem and exclude therefore recursive call-
backs. In fact if a is recursively called every call b can be viewed as an open
bracket that is closed by a call d. Therefore the set of sequences describing the
use of the client is the Dyck-Language over the pair of brackets b and d. It is gen-
erated by the CFG G = ({b, d}, {Z}, {Z ::= ZZ|cZd|ε}, Z). It is a well-known
result from the theory of formal languages that Dyck-Languages are not regu-
lar languages and therefore no FSM exists that accepts Dyck-languages. Thus,
the use of components cannot be specified using FSMs. The next section shows
that even in the case that the use of components is described by CFGs, model
checking of protocol conformance is possible.

3 Model Checking with CFGs

We present here the standard algorithm for checking L(G) ⊆ L(A) for a CFG
G = (T, N, P, Z) and a FSM A = (T, Q, R, q0, F). Furthermore, we show how it
can be used to provide counterexamples if L(G) �⊆ L(A). The basic idea is instead
of checking L(G) ⊆ L(A) to check the equivalent condition L(G)∩(T ∗ \L(A)) =
∅. Any word w ∈ L(G) ∩ (T ∗ \ L(A)) is a counterexample of the check. In the
context of the paper, it provides a sequence of procedure calls to a component
that violate its protocol. The FSM A′ = (T, Q, R, q0, Q \ F) accepts T ∗ \ L(A).
Hence, we check whether L(G) ∩ L(A′) = ∅. It is known that the intersection
of a context-free language with a regular language is context-free, and that it is
decidable for context-free grammars G whether L(G) = ∅. Our model checker
therefore has the following steps: First, a CFG G′ such that L(G′) = L(G)∩L(A′)
is constructed. Then, it is checked whether L(G′) = ∅. If it turns out that
L(G′) �= ∅, a counterexample w ∈ L(G′) is produced.

Step 1: First the CFG G = (T, N, P, Z) is transformed into an equivalent gram-
mar in extended Chomsky Normal Form (short: eCNF) G1 = (T, N1, P1, Z1),
i.e., each production has one of the forms1 A ::= BC, A ::= B, or A ::= t
with A, B, C ∈ N and t ∈ T . If ε ∈ L(G) then Z1 ::= ε ∈ P1. Second, a CFG
G′ = (T, N ′, P ′, Z ′) is computed such that L(G′) = L(G1) ∩ L(A′). Define the
size of a CFG G = (T, N, P, Z) as |G| � |P | +

∑
l::=r∈P

|r|.

1 Chomsky Normal form also forbids chain productions A ::= B.

Automatic Checking of Component Protocols in Component-Based Systems 7

Lemma 1. For any CFG G, an equivalent grammar G1 in eCNF can be com-
puted in time O(|G|) and |G1| = O(|G|).
Proof. (Sketch) We use the same proof as [15] except the elimination of chain
productions. The elimination of chain productions would result in execution time
O(|G|2) and |G1| = O(|G|2).
Lemma 2. Let G = (T, N, P, Z) be a CFG in eCNF and A = (T, Q, R, q0, F)
be a FSM. A CFG G′ such that L(G′) = L(G)∩L(A) can be constructed in time
O(|G| · |Q|3). Moreover |G′| = O(|G| · |Q|3).
Proof. (Sketch) This proof slightly extends the algorithm described in [21]. In
addition to their algorithm, we have to consider chain productions. We define
G′ � (N ′, T, P ′, Z ′) as follows:

N ′�{〈X , q , q ′〉|X ∈ N ∧ q, q′ ∈ Q} ∪ Z′

P ′�{Z′ ::= 〈Z , q0 , f 〉|f ∈ F}∪
{〈X , q , q ′〉 ::= 〈B , q , r〉〈C , r , q ′〉|

X ::= BC ∈ P ∧ q, q′, r ∈ Q}∪
{〈X , q , q ′〉 ::= 〈B , q , q ′〉|X ::= B ∈ P ∧ q, q′ ∈ Q}∪
{〈X , q , q ′〉 ::= t|X ::= t ∈ P ∧ t ∈ T ∧ qt → q′ ∈ R}∪
{〈X , q , q〉 ::= ε|X ::= ε ∈ P ∧ q ∈ Q}

It can be shown by induction on the length of the derivation that for any w ∈ T ∗

〈X , q, q ′〉 ∗⇒G′ w iff X
∗⇒G w ∧ qw

∗⇒A q′. The time needed for this construction
is proportional to the size of G′ which is O(|G| · |Q|3).
Using the FSM A′ = (T, Q, R, q0, Q \F), Lemma 1, and Lemma 2, the following
Theorem summarizes Step 1:

Theorem 1. Let G = (T, N, P, Z) be a CFG and A = (T, Q, R, q0, F) be a FSM.
Then, a CFG G′ = (T, N ′, P ′, Z ′) such that L(G′) = L(G) ∩ (T ∗ \ L(A)) can be
computed in time O(|G| · |Q|3) and |G′| = O(|G| · |Q|3).
Step 2: The main idea is to compute all generating non-terminals from a CFG
G = (T, N, P, Z). A non-terminal X is generating if there is a w ∈ T ∗ such
that X

∗⇒ w. Obviously it holds L(G) = ∅ iff Z is not generating. Hence, only
generating non-terminals need to be determined and it needs to be checked
whether Z is generating. This can be done in linear time as e.g. shown in [15].
The algorithm in [15] incrementally builds a set H of generating non-terminals.
Initially, H = {X |∃w ∈ T ∗ • X ::= w ∈ P}. A new non-terminal X is added
to H if there is a production X ::= w for w ∈ (T ∪ H)∗. This is done until H
doesn’t change or Z ∈ H . If we also maintain the productions considered in this
process, counterexamples w ∈ T ∗ can be generated by constructing a derivation
Z

∗⇒ w using these productions.

Theorem 2. It can be checked in time O(|G|) whether L(G) = ∅ for a CFG G

The following Theorem summarizes the results:

Theorem 3. Let G = (T, N, P, Z) be a CFG according to Theorem 1 and A =
(T, Q, R, q0, F) be a FSM. Then, it can be checked in time O(|G| · |Q|3) whether
L(G) ⊆ L(A). In the case of a negative answer counterexamples are provided.

8 W. Zimmermann and M. Schaarschmidt

4 Parameterized Context-Free Schemes

The profile of a component C specifies for each interface I required by C the
set of sequences PC(I) ⊆ Σ∗

I of services possibly being called by C. These
cannot be described by context-free grammars because the isolated consideration
of a component cannot assume anything on the context of its use. The main
idea of parameterized schemes is similar to definite-clause grammars. Each non-
terminal symbol may have typed parameters. The left-hand side of a context-free
production declares them (similar to the declaration of a procedure signature).
The right-hand side of a production uses them. For defining profiles, we use
the parameters of interface types. In contrast to definite-clause grammars we
don’t dynamically evaluate parameterized context-free schemes (short: pCFS).
Instead, we use them as two-level grammars and expand them to CFSs (i.e.
grammars without start symbol) by substituting constants for each parameter.

In our context, we use pCFSs as follows: Their productions are derived from
the procedure definitions of an interface. The head becomes the left-hand side of
the production. The body is generated from the right-hand side of the produc-
tion. The expansion of parameterized CFSs substitutes parameters (according
to their type) by instances of components in a component system.

A type is a pair (I, {c1, . . . , cn}) consisting of a name I and a finite set of
instances c1, . . . , cn. The set of instances of a type is denoted by ι(I). A parameter
is pair x : I consisting of a variable x and a type name I. A parameterized
non-terminal is pair 〈f 〉(y1 : J1, . . . , yk : Jk) consisting of a non-terminal name
〈f 〉 and a sequence of parameters y1 : J1, . . . , yk : Jk. An partial instantiation
of 〈f 〉(y1 : J1, . . . , yk : Jk) with variables z1, . . . , zk is the triple denoted as
〈f 〉(z1, . . . , zk). A parameterized terminal is a pair p(x1 : I1, . . . , xm : Im) and
a terminal name p and parameters x1 : I1, . . . , xm : Im. For the purpose of the
paper we only consider terminals with one parameter.

〈f 〉(x1, . . . , xk) is called an applied occurrence of parameterized non-terminal
〈f 〉(y1 : J1, . . . , ym : Jm) over x1 : I1, . . . , xk : Ik iff k = m and Ii = Ji for i =
1, . . . , k. The notion of an applied occurrence of a terminal is defined analogously.
For a set N of parameterized non-terminals, ΩN (x1 : I1, . . . , xk : Ik) denotes the
set of all applied occurrences of parameterized non-terminals 〈X 〉 ∈ N over a
sequence of parameters x1 : I1, . . . , xk : Ik. The notion ΣT (x1 : I1, . . . , xk : Ik)
is defined analogously for a set T of parameterized terminals.

A parametrized context-free scheme is a 4-tuple pCFS = (TYPES , N, T, P)
where

– TYPES is a finite set of type names,
– N is a set of parameterized non-terminals such that all parameters have a

type in TYPES ,
– T is a set of parameterized terminals such that all parameters have a type

in TYPES and N ∩ T = ∅,
– P ⊆ {〈f 〉(x1 : I1, . . . , xk : Ik) ::= w|〈f 〉(x1 : I1, . . . , xk : Ik) ∈ N ∧ w ∈

(ΩN (x1 : I1, . . . , xk : Ik) ∪ ΣT (x1 : I1, . . . , xk : Ik))∗} is a set of context-free
production schemes.

Automatic Checking of Component Protocols in Component-Based Systems 9

The notion of context-free production scheme means that every variable used in
an applied occurrence of a terminal or non-terminal on a right-hand side of a pro-
duction must be declared on the left-hand side of a production. Furthermore, the
applied occurrences must be correctly typed w.r.t. to N or T . Note that overload-
ing of parameterized non-terminals and parameterized terminals is permitted.
Fig. 4 shows two pCFSs. Section 5 shows how to use pCFSs to specify profiles
of components. For the purpose of the paper, we need the following property:

pCFS1:
TYPES1 = {I, J}
N1 = { 〈main〉(this : I, c : J), 〈b〉(this : I, z : J), 〈d〉(this : I), 〈a〉(this : J, x : I)}
T1 = {a(this : J)}
P1 = { 〈main〉(this : I, c : J) ::= (a(c) 〈a〉(c, this))∗

〈b〉(this : I, z : J) ::= a(z) 〈a〉(z, this)
〈d〉(this : I) ::= ε }

pCFS2:
TYPES2 = {I, J}
N2 = { 〈a〉(this : J, x : I), 〈main〉(this : I, c : J), 〈b〉(this : I, z : J), 〈d〉(this : I)}
T2 = {b(this : I),d(this : J)}
P2 = {〈a〉(this : J, x : I) ::= b(x) 〈b〉(x, this) d(x) 〈d〉(x)|ε}

Fig. 4. Parameterized Context-Free Schemes

Nι = {〈main〉(c1, c2), 〈b〉(c1, c2), 〈d〉(c1), 〈a〉(c2, c1)}
Tι = {a(c2),b(c1),d(c1)}
Pι = 〈main〉(c1, c2) ::= (a(c2) 〈a〉(c2, c1))∗

〈b〉(c1, c2) ::= a(c2) 〈a〉(c2, c1)〈d〉(c1) ::= ε
〈a〉(c2, c1) ::= b(c1) 〈b〉(c1, c2) d(c1) 〈d〉(c1)|ε}

Fig. 5. An Evaluation of pCFS1 ∪ pCFS2 in Fig. 4 for ι(I) = {c1} and ι(J) = {c2}

Property 1. Let pCFS 1 = (TYPES 1, N1, T1, P1) and pCFS 2 = (TYPES 2, N2,
T2, P2) be two parameterized context-free schemes. Then pCFS 1 ∪ pCFS 2 =
(TYPES 1 ∪ TYPES 2, N1 ∪ N2, T1 ∪ T2, P1 ∪ P2) is also a pCFS.

A context-free scheme (short: CFS) is a triple (T, N, P) that can be extended to a
CFG (T, N, P, Z) for a Z ∈ N . In our approach we generate CFSs from pCFS by
substituting instances of types on the left-hand side of context-free production
schemes and evaluate the right-hand sides of productions in the sense that each
variable x is replaced by the corresponding parameter. This is later used to
generate the combined grammar specifying the set of possible sequences of all
procedure calls when executing a component-based system, cf. Fig. 1.

Let pCFS = (TYPES , N, T, P) be a parameterized context-free scheme. An
environment is a list of pairs σ = [c1/x1, . . . , ck/xk] where x1 : I1, . . . , xk : Ik is
a set of parameters and c1 ∈ ι(I1), . . . , ck ∈ ι(Ik) are instances of I1, . . . , Ik ∈
TYPES , respectively. The evaluation of an applied occurrence 〈f 〉(x1, . . . , xk)
of a parameterized non-terminal 〈f 〉(y1 : I1, . . . , yk : Ik) under environment σ
is defined as 〈f 〉(x1, . . . , xk)σ = 〈f 〉(c1, . . . , ck). The evaluation of a word w =
a1 · · · an ∈ (ΩN (x1 : I1, . . . , xk : Ik)∪ΣT (x1 : I1, . . . , xk : Ik))∗ under σ is defined

10 W. Zimmermann and M. Schaarschmidt

as wσ = a1σ · · · anσ. The evaluation of pCFS for the instances ι(I1), . . . , ι(Ik)
of its types TYPES = (I1, . . . , Ik) is the triple CFS ι = (Nι, Tι, Pι) where

– Nι = {〈f 〉(c1, . . . , ck) | 〈f 〉(x1 : I1, . . . , xk : Ik) ∈ N ∧ c1 ∈ ι(I1) ∧ · · · ∧ ck ∈ ι(Ik)}
– Tι = {p(c1, . . . , ck)| p(x1 : I1, . . . , xk : Ik) ∈ T ∧ c1 ∈ ι(I1) ∧ · · · ∧ ck ∈ ι(Ik)}
– Pι = {〈f 〉(c1, . . . , ck) ::= w[c1/x1, . . . , ck/xk] | 〈f 〉(x1 : I1, . . . , xk : Ik) ::= w ∈ P∧

c1 ∈ ι(I1) ∧ · · · ∧ ck ∈ ι(Ik)}

It is not hard to see, that CFS ι is a context-free scheme.
If we specify a start symbol Z ∈ Nι we have here all the notions of derivations,

languages etc. for the grammar G = (Tι, Nι, Pι, Z). Fig. 5 shows the evaluation
of pCFS 1 ∪ pCFS 2 of Fig. 4 for ι(I) = {c1} and ι(J) = {c2}.

This evaluation process is used in Section 6 to determine the uses for each
instance of a component such that we can apply the protocol checking approach
described in Section 3.

5 Generation of Profiles

In this section we show how to derive for each component C a pCFS pCFSC

for its profile. We assume that overloading is resolved, i.e. any name of any
procedure is different. The main ideas for construction of pCFSC are:

– The interfaces used by C define the type names. This information can easily
be extracted from the component’s source code and the interface definitions.

– The procedures of the interfaces define parameterized terminals. They only
have a parameter this : I where I is the interface containing p.

– Procedures of interfaces as well as procedures of the component C define
non-terminals. They always have the first parameter this : I where I is the
interface containing the procedure and it only contains the parameter from
the procedure that pass references to instances of components (component
parameters). If a procedure is only contained within C (i.e. internal to C), it
defines analogously a non-terminal. In this case a parameter this : J is the
first parameter where J is a (fixed) interface implementing C. If C is the
client, the parameters of main are the parameters of C. For simplicity, we
assume that these are not used outside of main .

– Each procedure p of component C defines a production. Its left-hand side is
the parameterized non-terminal corresponding to p. Its right-hand side is an
abstraction of the procedure body w.r.t. calls to other interfaces. The right-
hand sides are specified as EBNF (see Appendix) and follows the following
principles:

• Internal calls are mapped to applied occurrences of non-terminals using
the arguments from the call that pass references to instances of compo-
nents. The implicit first argument this is made explicit.

• External calls are mapped to a word consisting of a terminal (corre-
sponding to the called procedure) followed by non-terminal as above.

• Statement lists are mapped to concatenation words stemming from the
single statements.

Automatic Checking of Component Protocols in Component-Based Systems 11

• Conditionals are mapped to alternatives between words stemming from
the branches.

• Loops are mapped to iterations over words stemming from the words.
• Expressions are mapped according to the evaluation order used by the

compiler generating binary code.

An applied occurrence of a terminal p(x) where p(this : I) ∈ TC models a
call to an instance of a component implementing C since the variable x refers
to such an instance. If 〈p〉(this : I0, x1 : I1, . . . , xk : Ik) ::= w is a production
then w specifies a set containing all sequences of procedure calls to interfaces
when calling p (i.e. it is an abstraction of the procedure body). Furthermore the
other applied of occurrences of non-terminals y.f(y1, . . . , ym) in w specify all
sequences of procedure calls to interfaces from components stemming from the
call of f to the instance of the component referred to by y. Hence any applied
occurrence of a terminal must be followed by the applied occurrences of the
corresponding non-terminal. This is required for taking into account possible call-
backs. Since we allow assignments to variables containing references to instances
to components, it is necessary to know all possibles instances a variable may refer
to. In our earlier work [23] describing the special case that a client can only call
a component, we used points-to analysis (see e.g. [14] for an overview) for this
purpose. However, here we don’t explicitly know the instances (except the new-
operations). On the other hand, we know that upon composition time they stem
from required interfaces, i.e., generic parameters of components or parameters
of procedures. We therefore consider these parameters also as possible instances
when performing points-to analysis. Thus, after a local points-to analysis of a
component C, for each applied occurrence of a variable y of type I, the set PT (y)
contains all new-objects, all generic parameters of C, and all parameters of the
procedures of C that could refered to by y. For a precise analysis, a flow-sensitive
and context-sensitive analysis should be used.

We now define formally the pCFS. For this some notions are required: A com-
ponent C uses an interface I, if it either implements I, has a parameter of type
I (in case of clients), has a procedure with a parameter of type I, or uses an
interface with a procedure having a parameter of type I. A component parameter
is a parameter x : I where I is an interface. πC(pars) denotes the projection of
a parameter list to component parameters. The notion is analogously defined
for a list of arguments. proc(I) denotes the set of procedures defined by inter-
face I, proc(C) for the set of procedure declarations p(pars) Body of C, and
internal(C) denotes the set of procedure heads of C that are internal to C , i.e.
not declared by an interface implemented by C. Note that all these informations
can be derived from the source text of the component and the interfaces used
by the component. Fig. 6 shows the formal definition of profiles. We have chosen
a left-to-right evaluation order according to semantics of Java or C#. If this
evaluation order is implementation-dependent one has to choose here the order
used by a compiler. Note that such a transformation can easily be generalized to
real-life programming languages if variables containing references to components
are distinguished from other variables.

12 W. Zimmermann and M. Schaarschmidt

A profile of a component C is a pCFS pCFSC = (TYPESC , TC , NC , PC)
TYPESC = {I|C uses I}
TC = {p(this : I)|I ∈ TYPESC ∧ p(pars) ∈ proc(I)}
NC = {〈p〉(this : I, πC(pars))|I ∈ TYPESC ∧ p(pars) ∈ proc(I)}∪

{〈p〉(this : J, πC(pars))|p(pars) ∈ internal(C)}
PC = {〈p〉(this : I, πC(pars)) ::= [[Body]]|

p(pars) {Body} ∈ proc(C) ∧ 〈p〉(this : I, πC(pars) ∈ NC}
where J is an interface implemented by C and [[·]] is the following transformation:
[[p(args)]] = 〈p〉(this, πC(args)) internal procedure calls
[[y.p(args)]] = p(y1) 〈p〉(y1, πC(args))| · · · |p(yn) 〈p〉(yn, πC(args))

for external calls with PT (y) = {y1, . . . , yn}
[[S1; S2]] = [[S1]] [[S2]]
[[if(e) S1;]] = [[e]]([[S1]]|ε)
[[if(e) S1 else S2]] = [[e]]([[S1]]|[[S2]])
[[{D; S; }]] = [[S]]
[[while(e) S]] = [[e]]([[S]] [[e]])∗
[[v = e]] = [[e]]
[[e1 + e2]] = [[e1]] [[e2]]
[[e1&&e2) = [[e1]]([[e2]]|ε]]
[[v]] = ε if v is an integer variable or a constant
[[new(v)]] = ε

Fig. 6. Profile of a Component C

N = {〈main〉(c1, c2), 〈b〉(c1, c2), 〈d〉(c1), 〈a〉(c2, c1)}
Tc1 = {b,d}
Pc1 = { 〈main〉(c1, c2) ::= (〈a〉(c2, c1))∗

〈b〉(c1, c2) ::= 〈a〉(c2, c1)〈d〉(c1) ::= ε
〈a〉(c2, c1) ::= b 〈b〉(c1, c2) d 〈d〉(c1)|ε}

Tc2 = {a}
Pc2 = { 〈main〉(c1, c2) ::= (a 〈a〉(c2, c1))∗

〈b〉(c1, c2) ::= a 〈a〉(c2, c1)〈d〉(c1) ::= ε
〈a〉(c2, c1) ::= 〈b〉(c1, c2) 〈d〉(c1)|ε}

Fig. 7. Computed Uses for c1 and c2 in the Component System of Fig. 2

Fig. 4 shows the parameterized context-free schemes pCFS 1 and pCFS 2 de-
scribing the profiles of client C1 and component C2 of Fig. 2, respectively. The
profiles in Fig. 4 are generated from the source code of the components in Fig. 2.

6 Model Checking Component-Based Systems

This section shows how for each instance of a component c in a component-based
system C0[C1, . . . , Ck] a CFG Gc that describes the use of c can be generated
from the profiles of each component. Let c0, . . . , ck be the instances of C0, . . . , Ck,
respectively. The steps for computing Gc for a c = ci are the following:

1. Compute the system profile pCFSS = pCFSC0
∪· · ·∪pCFSCk

where pCFSCi

is the profile of Ci, i = 1, . . . , k. Note that the system profile is a pCFS
according to Property 1.

2. Evaluate the system profile for ι in order to obtain a CFS CFS ι = (T, N, P),
cf. Section 4, where ι(I) = {ci : Ci implements I}.

Automatic Checking of Component Protocols in Component-Based Systems 13

3. Compute the system interaction GS = (T, N, P, 〈main〉(c0, c1, . . . , ck)). Note
that GS is a CFG.

4. Define Gci = (N, Tc, Pc, 〈main〉(c0, c1, . . . , ck)) where Tc = {p|p(c) ∈ T },
Pc = {X ::= φ∗(w)|X ::= w ∈ P}, and φ∗ : T ∗ → T ∗

c is induced by the

mapping φ : T → Tc defined by φ(x) =

{
x if x ∈ Tc

ε otherwise

Figure 5 shows the CFS after Step 2. Thus, the system interaction is obtained
by adding the start symbol 〈main〉(c1, c2). Fig. 7 shows the CFGs describing the
uses of c1 and c2, respectively. It can easily be seen that L(Gc1) is the Dyck-
language with open bracket b and closing bracket d.

The right-hand sides of the productions in the system interaction are an ab-
straction of the corresponding procedure bodies. Therefore, we have the invariant
that L(〈p〉(c1, . . . , cn)) contains at least all sequences of procedure calls to all
components w.r.t. to grammar Gs1 . A formal proof requires formal semantics
of the programming languages used by the components. An induction on the
height of the derivation tree could be used to show the above claim. Hence
L(GS) contains all sequences of all calls made to instances of a component dur-
ing the execution of a component based system. By definition of φ∗, in the fourth
step, all sequences are projected to those calling c. Thus, we can check for each
instance c of C whether L(Gc) ⊆ L(AC) where AC is a FSM specifying the
protocol of C.

7 Related Work

Many works on static protocol-checking of components consider local protocol
checking on FSMs. The same approach can also be applied to check protocols
of object in object-oriented systems. The idea of static type checking by us-
ing FSMs goes back to Nierstrasz [18]. Their approach uses regular languages
to model the dynamic behavior of objects, which is less powerful than CFGs.
Therefore the approach cannot handle recursive call-backs. [17] considers object-
life cycles for dynamic exchange of implementations of classes and methods using
a combination of the bridge/strategy pattern. It also based on FSMs. The ap-
proach comprises dynamic as well as static conformance checking. Tenzer and
Stevens [22] investigate approaches for checking object-life cycles. They assume
that object-life cycles of UML-classes are described using UML state-charts and
that for each method of a client, there is a FSM that describes the calling se-
quence from that method. In order to deal with recursion, Tenzer and Stevens
add a rather complicated recursion mechanism to FSMs. It is not clear whether
this recursion mechanism is as powerful as pushdown automata and therefore
could accept general context-free languages. All these works are for sequential
systems. Schmidt et al. [13] propose an approach for protocol checking of concur-
rent component-based systems. Their approach is also FSM-based and unable
to deal with recursive call-backs. Earlier work of the authors shows that CFGs
are very adequate to handle internal recursion on a client-side [23]. However, the
systems only allow that clients call components.

14 W. Zimmermann and M. Schaarschmidt

Even modeling the use of a component with context-free languages may ab-
stract too much from the real behavior. Other approaches therefore use dynamic
protocol-checking, e.g. Chambers [10] defines Predicate Classes for the language
Cecil. Each object of a given class is attached to a set of predicates. Before a
method call is accepted by an object, a certain set of predicates have to be true.
A class is described by several property classes. These property classes corre-
spond to the states in our finite state machine. Ramalingam et al. [19] derive
dynamic checkers using abstract interpretation techniques. In particular, they
abstract client programs to Boolean programs that perform runtime checking
of client-component conformance. However dynamic protocol checking does not
exclude protocol faults as static protocol checking does. On the other hand, they
identify bugs at the right place. In particular, dynamic adapters might support
avoiding protocol faults whenever possible.

An alternative approach for investigation of protocol conformance is the use of
process algebras such as CSP, cf. e.g. [2,1]. These approaches are more powerful
than FSMs and context-free grammars. However, mechanized checking requires
some restrictions on the specification language. For example, [2] uses a subset
of CSP that allows only the specification of finite processes. At the end the
conformance checking reduces to checking FSMs similar to [13].

FSMs are also used for checking Liskov’s substitution principle for subtyping in
object-oriented systems based on class protocols. Reussner [20] generalizes on the
idea of Nierstrasz and adds counters and conditions over counters to the regular
types to decide, whether Liskov’s substitution principle is satisfied. Freudig et al.
[12] use sub-classes of CFGs for describing protocols and checking Liskov’s sub-
stitution principle. They need subclasses of CFGs because the subset-problem on
general context-free languages is algorithmically undecidable. They do not model
calling sequences stemming from a method which is required for checking whether
the use of an object of a certain class conforms to its protocol.

The work on model checking context-free processes and pushdown systems
started with [8,9]. The model checking of LTL-formulas can be done within the
same complexity as shown here (linear in the size of the system and cubic in
the number of states) [11,3,5]. However, these approaches would require that the
complete system is available as a context-free process or as a pushdown system.
The framework described in [6] contains among others an algorithm for checking
whether L(G) ⊆ L(A) for context-free grammars G and finite state machines
A with the same complexity as our approach in Section 3. In contrast to our
approach, their approach is not able to generate counterexamples.

8 Conclusions

We discussed the problem of statically checking whether instances components
in a component-based system are used according to their protocol. As many
approaches we consider sequential systems and require static knowledge of the
components. Instances of components could be generated dynamically. As other
approaches we used FSMs for describing component protocols. Other approaches
usually check locally the conformance of each connection in a component-based

Automatic Checking of Component Protocols in Component-Based Systems 15

system assuming that the use of interfaces is described by FSMs. We have shown
that in the presence of recursive call-backs this approach fails to achieve its goals
because a global view is required for describing the use of components and regular
languages are not powerful enough to describe adequately recursive call-backs.
The local protocol conformance checking approaches are therefore restricted to
systems without recursive call-backs.

The contribution of our approach is that we are able to deal with recursive
call-backs and determine the use of component instances from a global view.
The reason for being able to deal with recursive call-backs is that we used CFGs
to describe the use of components instead of FSMs. The problem whether a
context-free language is a subset of a regular language is algorithmically decid-
able (even in time linear to the size of the grammar). The reason for being able
to handle a global view is the use of two-level CFSs for specifying how a pro-
cedure of a component uses other interfaces. The parameters of the CFSs are
the same as provided by the component and the interfaces it uses. Upon compo-
nent composition, these parameterized context-free schemes are composed in the
same way as the components are composed in order to obtain for each instance
of a component the CFG specifying its use.

Our approach is a model-checking approach in the sense that if a conformance
check fails, it is able to provide counterexamples. Since the CFGs are an abstrac-
tion of the use of instances of components, a failure might be caused because ab-
stractions may contain words that do not represent a sequence of procedure calls to
that instance, i.e., false negatives may occur. Further work should consider how
certain counterexamples can be avoided. This would require more knowledge of
the code that might be encoded in the parameterized CFSs for the components.

Certainly, for practical reasons, our approach for sequential systems needs
be extended to concurrency as well as to composition with statically unknown
components. If we would be able to deal with concurrency and composition with
statically unknown components it would be possible to deal with most classical
component systems such as Web Services, CORBA, COM, .NET, EJBs. A fur-
ther challenge is certainly to deal with more recent composition principles such
aspect-oriented programming [16] or invasive software composition [4] because
these approaches change at runtime the protocols of components.

Acknowledgement. We thank the anonymous referees for their helpful
comments.

References

1. C. Attiogbé, P. André, G. Ardourel. Checking Component Composability In
Proc. of the 5th International Symposium on Software Composition, this volume
of Lecture Notes in Computer Science. Springer, 2006.

2. R. Allen and S. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, 6(3):213–249, 1997.

3. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In
Proceedings of the 13th Conference on Computer Aided Verification, volume 2102
of Lecture Notes in Computer Science, pages 207–220. Springer, 2001.

16 W. Zimmermann and M. Schaarschmidt

4. U. Assmann. Invasive Software Composition. Springer, 2003.
5. M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted hierar-

chical state machines. In Proceedings of the 28th International Colloquium on Au-
tomata, Languages, and Programming ICALP’2001, volume 2076 of Lecture Notes
in Computer Science, pages 652–666. Springer, 2001.

6. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and
P. Wolper. An efficient automata approach to some problems on context-free
grammars. Information Processing Letters, 74(5-6):221–227, 2000.

7. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model checking. In CONCUR’97: Proceedings of the 8th
International Conference on Concurrency Theory, volume 1243 of Lecture Notes
in Computer Science, pages 135–150. Springer, 1997.

8. O. Burkart and B. Steffen. Model checking for context-free processes. In CON-
CUR’92: Proceedings of the 3rd International Conference on Concurrency Theory,
volume 630 of Lecture Notes in Computer Science, pages 123–137. Springer, 1992.

9. O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model
checking. In CONCUR’94: Proceedings of the 5th International Conference on
Concurrency Theory, volume 836 of Lecture Notes in Computer Science, pages
98–113. Springer, 1994.

10. C. Chambers. Predicate classes. In Proceedings of the 7th European Conference on
Object-Oriented Programming, volume 707 of Lecture Notes in Computer Science,
pages 268–296. Springer, 1993.

11. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th Conference on Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages
232–247. Springer, 2000.

12. J. Freudig, W. Löwe, R. Neumann, and M. Trapp. Subtyping of context-free classes.
In Proceedings 3rd White Object Oriented Nights, 1998.

13. H. W. Schmidt, B. J. Krämer, I. Poernemo, and R. Reussner. Predictable compo-
nent architectures using dependent finite state machines. In Proc. of the NATO
Workshop Radical Innovations of Software and Systems Engineering in the Future,
volume 2941 of Lecture Notes in Computer Science, pages 310–324. Springer, 2002.

14. M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems, 21(4):848–894, 1999.

15. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2nd edition, 2001.

16. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In ECOOP’97 – Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer, 1997.

17. W. Löwe, R. Neumann, M. Trapp, and W. Zimmermann. Robust dynamic ex-
change of implementation aspects. In TOOLS 29 – Technology of Object-Oriented
Languages and Systems, pages 351–360. IEEE, 1999.

18. O. Nierstrasz. Regular types for active objects. In OOPSALA ‘93, volume 28 of
ACM SIGPLAN Notices, 1993.

19. G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving special-
ized program analyses for certifying component-client conformance. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, pages 83–94. ACM, 2002.

Automatic Checking of Component Protocols in Component-Based Systems 17

20. R. H. Reussner. Counter-constraint finite state machines: A new model for
resource-bounded component protocols. In Proceedings of the 29th Annual Con-
ference in Current Trends in Theory and Practice of Informatics, volume 2540 of
Lecture Notes in Computer Science, pages 20–40. Springer, 2002.

21. A. K. Salomaa. Formal Languages. Springer, 1978.
22. J. Tenzer and P. Stevens. Modelling recursive calls with uml state diagrams. In

6th International Conference on Fundamental Approaches to Software Engineering
(FASE’03), volume 2621 of Lecture Notes in Computer Science, pages 135–149.
Springer, 2003.

23. W. Zimmermann and M. Schaarschmidt. Model checking of client-component con-
formance. In 2nd Nordic Conference on Web-Services, number 008 in Mathematical
Modelling in Physics, Engineering and Cognitive Sciences, pages 63–74, 2003.

A Grammars and Automata

An alphabet Σ is a finite set of symbols. A word w over Σ is a concatenation
of n symbols of Σ, i.e. w = a1 · · ·an where a1, . . . , an ∈ Σ. A word w is empty
iff n = 0. The empty word is unique and is denoted by ε. Concatenation can
be easily extended to words, i.e. uv denotes the concatenation of words u and
v. Σ∗ denotes the set of all words over the alphabet Σ. A formal language (or
short language) is a subset L ⊆ Σ∗. A context-free grammar (short: CFG) is a
quadruple G = (T, N, P, Z) where T and N is an alphabet (the terminal symbols
and non-terminal symbols, resp.), T ∩ N = ∅, P ⊆ N × (T ∪ N)∗ (the set of
productions, and Z ∈ N (the start symbol). We denote non-terminals by capital
letters and terminals by lower case letters. A production is denoted by X ::=
w ∈ P . A direct derivation w.r.t. G is a pair of words x, y ∈ (T ∪ N)∗, denoted
by x ⇒G y, such x = uXv y = uwv for some u, v ∈ (T ∪ N)∗, X ::= w ∈ P .
The derivation relation ∗⇒G is the reflexive, transitive closure of ⇒G. We omit
the index G if it is clear from the context. The language generated by CFG G
is defined as L(G) � {w ∈ T ∗|Z ∗⇒G w}. We use often Extended Backus-Naur
Form (short: EBNF) to describe CFGs. For this, we assume that [,], ∗, |�∈ Σ and
use the following abbreviations:

X ::= u|v abbreviates X ::= u X ::= v
X ::= u∗ abbreviates X ::= A. A ::= ε|uA

where A is a new non-terminal.

A finite state machine (FSM) is a quintuple A = (T, Q, R, q0, F) where T is
an alphabet, Q is a finite set of states such that Q ∩ T = ∅, R ⊆ Q × T × T
is a set of rules (rules are denoted as qa → q′, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. A accepts in state q a letter a iff there is a rule
qa → q′ ∈ R. q′ is called the successor state of q on input a. A direct derivation
w.r.t A is relation ⇒A defined by qau ⇒A q′u where qa → q′ ∈ R and u ∈ T ∗.
The derivation relation ∗⇒A is the reflexive, transitive closure of ⇒A. We omit
the index A if it is clear from the context. The FSM A accepts a word w ∈ T ∗

iff there is a final state f ∈ F such that qw
∗⇒A f . The language accepted by

A is defined as L(A) � {w ∈ T ∗|A accepts w}. In this work we visualize finite
automata as labeled directed graphs. The states are the vertices, and there is a
directed edge q

a→ q′ iff qa → q′ ∈ R. Fig. 3 shows an example.

Checking Component Composability

Christian Attiogbé, Pascal André, and Gilles Ardourel

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France

{Christian.Attiogbe, Pascal.Andre, Gilles.Ardourel}@univ-nantes.fr

Abstract. Component-Based Software Engineering (CBSE) is one of
the approaches to master the development of large scale software. In this
setting, the verification concern is still a challenge. The current work
addresses the composability of components and their services. A com-
ponent model (Kmelia) is introduced; an associated formalism, simple
but expressive is introduced; it describes the services as extended LTSs
and their structuring as components. The composability of components
is defined on the basis of the composability of services. To ensure the cor-
rectness of component composition, we check that an assembly is possible
via the checking of the composability of the linked services, and their be-
havioural compatibility. In order to mechanize our approach, the services
and the components are translated into the Lotos formalism. Finally the
Lotos CADP toolbox is used to perform experiments.

Keywords: Components, Services, Behavioural Interface Description,
Composability, Behavioural Verification.

1 Introduction

The rigorous development of large systems with methods that scale up and that
are reusable in various projects is still a challenging research topic. Component-
Based Software Engineering (CBSE) motivates a number of works on this topic
[19,15,6,12]. The component approach promotes the (re)use of components com-
ing from third party developers to build new large systems. The success of the
large scale development of component-based systems depends on the availability
of: reliable components libraries, tools to search for components (in libraries),
expressive languages of composition of the components and especially tools for
checking the correct use of components.

The motivation for this work lies on the need of a sound basis for devel-
oping correct components, for studying composition and for implementing re-
lated tools. While many component approaches focus on the structural aspects
of component composition, we insist on the functional (services) and dynamic
(behaviour) aspects of the components because they are important criteria for
component reuse. In this perspective, related works deal with the behavioural
compatibility for simplified abstract component models [6,8,5]. On the other
hand there are mechanized approaches such as Tracta [10] or SOFA [17] but
their component models are restricted. These works associate behaviour(s) to

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 18–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Checking Component Composability 19

components and not to services. But this is a limitation since the services pro-
vide a finer description of the component usage.

The goal of the work is to provide the designer of component-based systems
with a high level component model and also with the methods to assist his/her
use of the components. We are interested in building an experimental toolbox
for component study and development.

The main contribution of this article is a simple formal model (named Kmelia)
for modelling and composing components; it supports the verification of compos-
ability. We define composability of components by considering the links between
their services and the behavioural compatibility of these services. Therefore, we
get a hierarchical definition of composition and assemblies. In our work, a com-
ponent is viewed and used through the services which constitute its interface.
The use of services is central for the verification of composability when assem-
bling components. It is important to detect the defects which could lead to a
faulty behaviour of the developed system early in the development. A bad inter-
action between a called service and the calling one may lead to a blocking of the
whole system. To ensure a good level of correctness of the components and their
assemblies, the formal verification of the service descriptions with respect to the
desired properties of the component is necessary. Consequently, the specifications
of components and their service behaviours should be abstract and formal. The
use of an abstract formal model makes it possible to hide the implementation
details of the components in order to have general reasoning techniques which
are adaptable to various implementation environments.

The article is structured as follows. Section 2 presents the Kmelia model
through the description of services and components. It is illustrated with an
example of a bank Automatic Teller Machine system. Further details on Kmelia
are given in [3]. The Section 3 introduces the service links and sublinks used
to describe component assemblies and compositions. Section 4 is devoted to the
composability of services and components. Behavioural compatibility between
component services is also treated there. In the Section 5 we present the mech-
anization approach undertaken to support the Kmelia model. Experiments are
done with Lotos. Section 6 concludes with a discussion and the perspectives.

2 A Component Model Based on Services: Kmelia

In the Kmelia model, a component is characterised by: a name (the component
identifier), a state (variables and an invariant predicate on them), an interface
made of services and the description of the services. The interface specifies the
component interactions with its environment [1,15]. A Kmelia component in-
terface is made of provided services and required services. A provided service
offers a functionality, while a required service is the expression of the need of a
functionality. This need is fulfilled when the component is combined with other
components (in an assembly), one of them supplying the corresponding required
service. Therefore, in Kmelia, component services interact with synchronous
communication supported by message exchanges or service calls/responses via

20 C. Attiogbé, P. André, and G. Ardourel

communication channels. Related works [17,18,16] associate dynamic behaviours
(or protocols) to components and services are atomic operations (messages).
Unlike these approaches, we consider services as units of interaction and they
are equipped with dynamic behaviours (service behaviours). This provides finer
component descriptions where services are the main entities [2].

2.1 Service Specification

A service s of a component C is defined with an interface Is and a (dynamic)
behaviour Bs: 〈Is, Bs〉. Usually a required service does not have the same level
of detail as a provided service since a part of these details is already in the
(provided) service that calls it.

The interface Is of a service s is defined by a 5-tuple 〈σ, P, Q, Vs, Ss〉 where
σ is the service signature (name, arguments, result), P is a precondition, Q is
a postcondition, Vs is a set of local declarations and the service dependency Ss

is a 4-tuple Ss = 〈subs, cals, reqs, ints〉 of disjoint sets where subs (resp. cals,
reqs, ints) contains the provided services names (resp. the services required from
the caller, the services required from any component, the internal services) in
the scope of s. Using a required service r in calp of a service p (as opposed to a
component interface) implies r to be provided by the component which calls p.
Using a provided service p in the subr of a service r but not in the component
interface, means that p is accessible only during an interaction with r.

The behaviour Bs of a service s is an extended labelled transition system (eLTS)
defined by a 6-tuple 〈S, L, δ, Φ, S0, SF 〉 with S the set of the states of s, L the
set of transition labels and δ the transition relation (δ ∈ S × L → S). S0 is the
initial state (S0 ∈ S), SF is the finite set of final states (SF ⊆ S), Φ is a state
annotation partial function (Φ ∈ S → subs). An eLTS is obtained when we allow
nested states and transitions. This provides a flexible description with optional
behaviours named branching states and also reduces the LTS size. A branching
state is the one annotated with sub-service names (using the Φ function), which
are (sub-)services of the component C that may be called when the evolution
reaches this state (but the control returns to this state when the launched sub-
service is terminated). Formally, the unfolding of (the branching states of) an
eLTS results in an LTS.

Transitions: The elements ((ss, label), ts) of δ have the concrete Kmelia syn-
tax ss--label-->ts where the labels are (possibly guarded) combinations of
actions: [guard] action*. The actions may be elementary actions or commu-
nication actions. An elementary action (an assignment for example) does not in-
volve other services; it does not use a communication channel. A communication
action is either a service call/response or a message communication. Therefore
communications are matching pairs: send message(!)-receive message(?), call
service(!!)-wait service start(??), emit service result(!!)-wait service result(??).
The Kmelia syntax of a communication action (inspired by the Hoare’s CSP) is:
channel(!|?|!!|??) message(param*).

Channels: A communication channel is established between the interacting ser-
vices when assembling components. A channel defines a context for the

Checking Component Composability 21

communication actions. At the moment one writes a behaviour, one does not
know which components will communicate, but one has to know which chan-
nels will be used. A channel is usually named after the required service that
represents the context. The placeholder keyword CALLER is a specific channel
that stands for the channel open for a service call. From the point of view of a
provided service p, CALLER is the channel that is open when p is called. From
the point of view of the service that calls p, this channel is named after one of
its required service, which is probably named p. The placeholder keyword SELF
is a specific channel that stands for the channel opened for an internal service
call. In this case, the required service is also the provided service.

2.2 Component Specification

A component (C) is a 8-tuple 〈W , Init,A, N , I, DS, ν, CS〉 with:

– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of
variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;

– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoints finite sets: Ip

the set of names of the provided services that are visible in the component
environment and Ir the names of required services.

– DS is the set of service descriptions; it is partitioned into the provided ser-
vices (DSp) and the required services (DSr).

– ν : N → DS is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp ∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The behaviour of the component relies on the behaviours of its services. The
constraint CS describes general conditions on the service usage: it may be an
ordering of services or a predicate (temporal condition, mutual exclusion...). A
specific service offered (like a main) as a single provided service may implement
a Component Behaviour Protocol in the sense of [10,17].

2.3 Component Assembly

Assembling Kmelia components consists in linking their pairwise services: re-
quired services may be linked to provided services. Formal details are given in
the Sect. 3.3. Let consider two main semantics for the link operator: the monadic
and the polyadic semantics. With the monadic semantics, only one provided ser-
vice may be associated to a required service; a component is both a component
type and the unique instance of it; a required service may be linked to at most
one provided service (no overloading); only one instantiation of a service exists
at any time. The service evolutions are concurrent processes with shared compo-
nent state. With the polyadic semantics a provided service may be linked with

22 C. Attiogbé, P. André, and G. Ardourel

various required services (allowing broadcast communications); in the same way
a required service may be linked to various providers. As an example, a chat
application provides services for multiple clients. Only the monadic semantic is
considered in this article.

2.4 Illustration

We illustrate the model with a simplified real-world problem: a bank Automatic
Teller Machine (ATM). Since the case is very common, the details are omitted
here. Fig. 1 shows a simplified component assembly for the ATM, that includes
four components: the central ATM CORE which handles the ATM bank services,
the USER INTERFACE component which controls the user access, the AAC stands
for the bank management and the LOCAL BANK holds the local management ac-
cess. The component usage is quite flexible: an assembly may be correct for
the services whose dependency chains are fulfilled. The USER INTERFACE

AAC

authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

code
ask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display query_account

deposit

transfer

provided service required service
link

service call

Fig. 1. Assembly for an ATM System

component offers the (provided) code service only in the interface of the be-
haviour service; it means that the USER INTERFACE only gives its code
during a withdrawal operation that it has initiated. In such a situation, code is
a sub-service. The component services are detailed in the Fig. 2. Note that the
USER INTERFACE may also call a withdrawal service that does not require
its code. In the following we focus on the withdrawal provided service which is
linked to the required ask for money service, called by the behaviour service.
This triple constitutes a context for a service verification (see Sect. 4.4). The
links associated to withdrawal are:

(p-r ATM_CORE.withdrawal, USER_INTERFACE.ask_for_money
//p-r stands for provided-required
//sublinks
(r-p ATM_CORE.ask_code, USER_INTERFACE.code)
(r-p ATM_CORE.ask_amount, USER_INTERFACE.amount))

Checking Component Composability 23

!result(myCode)

<code, amount>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3

i

; nbt := nbt - 1[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);
eject_card()

!result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result
(m:Integer)

<code>

e10

Fig. 2. LTS of the two main services (with the sub-services)

The withdrawal starts with an identification step: card insertion, password
control, authentication by ACD/ATM controller (AAC). If the AAC accepts
the transaction, the ATM asks for the amount of cash, otherwise the card is
ejected and the withdrawal transaction ends. The user enters an amount which
is compared with the current card policy limit. When the allowed amount is lower
than the requested one or if the current ATM cash is not sufficient, the ATM
asks again for the amount of cash. Otherwise the ATM asks the AAC to process
the transaction, updates the card limit, gives the cash and prints a receipt when
it is possible. In any case the withdrawal transaction ends after a card ejection.
There are four elementary actions (debit, eject card, swallow card, display). The
channels may be omitted and deduced either from the context or from default
rules. This syntactic sugar is not currently implemented in our prototype.

The interaction description is made flexible by enabling the call of sub-services
when the evolution reaches branching states. For example, the notation e1
<code, amount> expresses that the services code and amount may be called
in the e1 (branching) state. Thus the ask for money service may operate with

24 C. Attiogbé, P. André, and G. Ardourel

any withdrawal protocol (whatever the order for amount and code). The angle
brackets are the syntactic counterpart of the Φ function.

3 Component Assembly and Composition

In the Kmelia model, the component assembly and composition are based on
various types of links between services. For instance we have a sublink when a
hidden service (not in the interface of the components) is called in the scope of a
provided service. In an assembly, required services are linked to provided services.
A composition is an assembly where some unlinked services are promoted to the
composite level.

In this section, we provide the formal background for component assembly
and composition. We use a set theory notation close to that of Z or B where
X ↔ Y denotes the relation from X to Y (a set of pairs); dom and ran denote
respectively the domain and the range of a relation; a �→ b denotes the pair
(a, b). In the remainder let C be a set of Ck components with k ∈ 1..n and
Ck = 〈〈Tk, Vk, VT k, Invk〉, Initk, Ak, Nk, Ik, DSk, νk, CSk〉 as defined in Sect. 2.

Let N be the set of service names of C (N = k∈1..nNk).

3.1 Dependencies Between Component Services

Let dependsk be a relation between component services defined as a part of the
service dependency in a component Ck where sm = νk(m):

dependsk : Nk ↔ Nk

∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

3.2 Links and Sublinks Between Component Services

Basically, the links are 4-tuple of component and service names with the following
properties: (1) the service names are those of their owner components, (2) any
component service is not linked to itself (not recursive).

BaseLink : IP (C × N × C × N)
(1) ∀(Ci, n1, Cj , n2) : BaseLink • n1 ∈ Ni ∧ n2 ∈ Nj

(2) ∀Ci : C, n1 : Ni • (Ci, n1, Ci, n1) /∈ BaseLink

A link connects two services of the interfaces of their owner components.

Link ⊆ BaseLink ∧ ∀(Ci, n1, Cj , n2) : Link • n1 ∈ Ii ∧ n2 ∈ Ij

A sublink is a base link between two services such that one of them at least is
hidden. For instance we have a sublink when a hidden service is called in the
scope of a provided service.

SubLink ⊆ BaseLink ∧ ∀(Ci, n1, Cj , n2) : SubLink • n1 /∈ Ii ∨ n2 /∈ Ij

The sublink makes explicit the relation between the service dependencies de-
clared in the interfaces of the services involved in a Link. In the following these
relationships are constrained in order to define component assembly and com-
ponent composition.

Checking Component Composability 25

3.3 Component Assembly

A component assembly is a triple A = (C, links, subs) where C is a set of
components, links is a set of links between the services of C and subs is a
relation from links to sublinks.

links ⊆ Link ∧
(1) (∀(Ci, n1, Cj , n2) : links • Ci ∈ C ∧ Cj ∈ C ∧

((n1 ∈ Ipi ∧ n2 ∈ Irj) ∨ (n1 ∈ Iri ∧ n2 ∈ Ipj)))
subs : Link ↔ SubLink ∧
(2) dom subs = links ∧
(3) (∀((Ci, n1, Cj , n2) �→ (Ck, n3, Cl, n4)) ∈ subs • Ci = Ck ∧ Cj = Cl) ∧
(4) (∀(Ci, n1, Cj , n2) : ran subs • ((νi(n1) ∈ DSpi

) xor (νj(n2) ∈ DSpj
)))

The components of the links are the components of the assembly (1). The sub-
links are related to links (2) that concern the same components (3). Provided
services are linked to required services (1 and 4).

The triple A is a well-formed component assembly if the following property
holds: the services in the sublinks are not in the involved component interfaces,
but they are in the dependencies of the involved services (w.r.t sublinks).

(5) ∀(l, sl) ∈ subs | l = (Ci, n1, Cj , n2) ∧ sl = (Ck, n3, Cl, n4) •
((n3, n1) ∈ dependsi

∗ ∨ (n4, n2) ∈ dependsj
∗)

where dependsi
∗ is the transitive closure of dependsi.

Practically a link establishes an implicit communication channel between the
involved services. This channel is shared with the sub-services.

3.4 Component Composition

A composition is a well-formed component assembly which is encapsulated within
a component. We define an operator named compose that builds a new compo-
nent by combining one or several components.

The parameters of the compose operator are:

– an outer component oC (the composite) together with its interface, new
services and services of its constituents;

– a well-formed assembly A = (C, links, subs) (see section 3.3);
– the desired promotions, that are set of links between the services of oC and

those of Ck ∈ C.

The promotion is a relation between a service of the composite oC and an
unlinked service of the components in A, that preserves existing sublinks; such
promoted service becomes usable at the composite level.

promotions ⊆ BaseLink ∧
(∀(Ci, n1, Cj , n2) : promotions •

(1) (Ci = oC) ∧ (Cj ∈ C) ∧
(2) ((νoC(n1) ∈ DSpoC

∧ n2 ∈ Ipj) ∨ (νoC(n1) ∈ DSroC ∧ n2 ∈ Irj)))

26 C. Attiogbé, P. André, and G. Ardourel

The resulting component is an enhancement of oC: it contains every provided
and required services of oC and provides/requires the promoted services from
other components in C (using promotions). Here the sub-services of the promoted
services are also promoted.

From a methodological point of view, the composition operator may be used
to refine an abstract component with a component assembly; it may also be
used to structure simple components or to provide a more restrictive interface
of existing components.

4 Formal Verification of Components and Assemblies

Formal verification of components is performed according to various aspects. In
the Section 4.1, we overview the main issues of component formal verification
so as to situate the composability of components. Thereafter we focus on one
specific aspect: the verification of the correct interaction between components.
Indeed, a part of the service composability lies on the behavioural compatibility
of the services: a correct service interaction is a guarantee for the composition
of components. In the following, both static aspect and dynamic aspect of the
verification are considered to check composability.

4.1 Formal Analysis of Components

The safety and liveness verifications apply to software components; but they
should be adapted to component features. The behavioural compatibility between
components is related to both safety and liveness. It is a widely studied topic
[21,8,4,7]. Behavioural introspection (discovering the component behaviour) is
one way to deal with behavioural compatibility; but one has to prove compati-
bility. Checking behavioural compatibility often relies on checking the behaviour
of a (component based) system through the construction of a finite state au-
tomaton. However the state explosion is a limitation of this approach [8,4]. More
generally, the following properties should be considered for verification.

– Correctness of functional properties: do the components do what they should
do? These properties may be independently checked on the components
which are used and also on the composition of the components;

– Flexibility of maintenance (modifiability, evolution): that means the compo-
nents should be simply updated when needed, without drastically affecting
the third party components which use them. The update of a component
includes the modification of the implementation of its service(s), the remov-
ing/adding of a service; etc.

– Heterogeneity: within the CBSE approach, the components coming from
various providers may be composable to develop large systems. This is a
challenging concern because the components may have different models;

– Compositionality: the properties of a global system should be deduced from
the properties of the composed components;

Checking Component Composability 27

– (Static) Interoperability properties: the compatibility of signatures and in-
terfaces (naming and typing); does a component give enough information
about its interface(s) in order to be (re)usable by other components?

– Architectural properties: they involve the availability of the required com-
ponents, the availability of the needed services, the correctness of the links
between interfaces of components (providers and callers);

– Behavioural compatibility: it is about the correct interaction between two or
more components which are combined. Several points need to be considered:
various kinds of interaction, synchronous or not, atomic actions or non atomic
ones.

The last three categories of properties are related to composability.

4.2 Composability

We define composability at different related levels: service level and component
level.

Definition 1 (Service Composability)
A provided service spCi = 〈〈σp, Pp, Qp, Vsp, Ssp〉, Bsp〉 of a component Ci and
a required service srCj = 〈〈σr , Pr, Qr, Vsr, Ssr〉, Bsr〉 of a component Cj are s-
composable (noted s-composable(spCi , srCj)) when srCj is required in the behav-
iour Bs of a service s of Cj if:

1. the interfaces of spCi and srCj are compatible; that is,
(a) their signatures are matching (no type conflict: σp and σr are identical),
(b) the assertions (pre/post) are consistent (post(spCi) ∼ post(srCj)) and
(c) their mutually dependent services Ssp, Ssr (see service dependencies in

Sect. 2.1) are not conflicting: the inner required-provided relationship is
preserved: that means they involve a well-formed assembly(see Sect. 3.4).

2. the behaviour Bsp of spCi and Bs of s are compatible: compatible(Bsp, Bs);
that is, their eLTSs are matching; either they evolve independently or they
perform complementary communication actions until a termination without
a deadlock.

The conditions 1.c. and 2. are checked in the context of each service s that
calls srCj . Bsr is nul since the required srCj does not have a behaviour. The
compatibility of behaviours is dealt with in more details in the following.

Definition 2 (Component Composability)
Two components Ci and Cj are c-composable according to a set of service pairs
ss, if all the pairs (si, sj) of ss are composable:
c-composable(Ci, Cj , ss) ⇔ ∀(si, sj) ∈ ss • s-composable(si, sj)

Proposition 1 (Assembly ‘Checkability’). When two components Ci and
Cj are c-composable w.r.t to a list of services ss, then Ci and Cj can be linked
in a well-formed assembly via ss. This generalises to several components.

Accordingly Kmelia component assemblies and compositions may be formally
checked for correctness.

28 C. Attiogbé, P. André, and G. Ardourel

4.3 Checking Composability: Static Analysis

The interface of a component contains the sets of provided and required ser-
vices (with the naming and typing informations); additionally, informations on
required or called sub-services are attached to the interface. In a similar way,
these informations are available for the service descriptions. Accordingly, the
static analysis of the interface of a component is achieved using:

i) simple correspondence checking algorithms and possibly standard typing al-
gorithms;

ii) a deep investigation on the availability of required or called sub-services.

The definitions given above are used to perform this static level analysis. At this
stage, some incompatibilities may be detected. We cover by the way the main
part of (static) interoperability properties and architectural properties.

4.4 Checking Composability: Behavioural Compatibility Analysis

At this stage, we assume that a verification of the static and architectural prop-
erties is already performed for a given assembly. This implies that each service
of the components is completely and correctly described. Now, the main concern
is to check that a given component interacts correctly with others (which may
be provided by a third party developer) over the links. Remind that each ser-
vice is described with an eLTS where the transitions are labelled with guarded
elementary actions and communication actions (see Sect. 2.1).

The component interacts correctly with its environment if its services are
composable with the other services. We consider only one caller service and one
called service at time. We check that Bp a given eLTS matches with Br a second
eLTS: compatible(Bp, Br). A complete interaction between the services of several
components results in a pairwise local analysis between the LTS of a caller and
that of the called service. The eLTSs are unfolded to obtain LTSs. Therefore, two
services interact until a terminal state if the labels of their associated LTSs are in
correspondence according to a set of rules that define compatible. They are based
on the labels of the transitions going from a current state to the following states
(output transitions). The rules indicate the correct evolutions according to the
current states of two involved services: from a current state considered in each
LTS, we explore the labels on the output transitions. In the case of elementary
actions on the labels, each LTS evolves independently, their current states are
updated. In the case of communication actions on the labels, the transitions
match if for the considered services (hence the appropriate channels), we have
the matching pairs: send(!)-receive(?), call service(!!)-wait service start(??), emit
service result(!!)-wait service result(??). In this case each LTS evolves in its next
state. If the labels do not match, an incompatibility or a deadlock is detected.

After a final state of a called service, the caller may continue with independent
transitions or with transitions that imply other (sub-)services. When the final
states are reached without deadlock, the services are compatible.

In the following we focus on a practical verification of the behavioural com-
patibility aspect, that (re)uses an existing verification toolbox.

Checking Component Composability 29

5 Formal Verification with Lotos/CADP

We use Lotos [14] and its associated CADP [9] toolbox to experiment on the
composability checking. We encode the Kmelia components into Lotos processes
which are the input of the CADP tools. In order to exploit the CADP tools, the
behavioural compatibility is based on communication between processes.

5.1 Lotos

Lotos [14] is an ISO standard formal specification language. It is initially de-
signed for the specification of network interconnection (OSI) but is also suitable
for concurrent and distributed systems. Lotos extends the process algebra CCS
and CSP and integrates (algebraic) abstract data types. A Lotos specification
is structured with process behaviours. It has the main behaviour description op-
erators of the basic process algebra CCS and CSP. Lotos uses the ”!” and ”?”
operators of CSP which denote respectively emission and reception. The salient
features of Lotos are: the powerful multi-way synchronisation; the use of com-
munication channels called gates ; the synchronous interaction of processes; the
use of algebraic data types to model data part of systems; the availability of the
CADP toolbox [9].

A process is the description in the time of the observational behaviour of a
given system. The description is given as the non-deterministic combination of
the sequence of events feasible by the system. The set of events of a behaviour
is called the alphabet of the process. In a process specification, a sequence of
events is denoted with ”;”. The choice between alternative behaviours B and
C is described with B [] C. The notation [Bterm] -> B describes a process
behaviour B guarded with a boolean term Bterm. The inaction is denoted with
stop. A successful termination is denoted with exit. The sequential composition
of behaviours B and C is described with B >> C.

Three parallel composition operators are used to compose processes: ||| is
used for the interleaving behaviour of the composed processes; || is used for the
strict (on all the events) synchronisation of the involved processes; |[L]| where
L is a synchronisation list (of events) is used to synchronise the processes on the
events within the list L; when L is empty this results on a interleaving. The use of
L forces the related processes to perform matching communication actions. Both
synchronous and asynchronous communications may be described in Lotos.

The ISO Lotos has an operational semantics in terms of labelled transitions
systems. The semantic rules define the behaviour of the Lotos processes and
their communication. As far as the data part is concerned, algebraic term rewrit-
ing is considered to evaluate data terms and each variable may be instantiated
by the values corresponding to its type.

5.2 Translating the Services into Lotos Processes

Our working hypotheses are the followings. To deal with the communication,
each service has a default channel made by prefixing the service name with

30 C. Attiogbé, P. André, and G. Ardourel

the keyword ”Chan ”. Thus, Chan serv denotes the default channel of a ser-
vice named serv. This channel is used as an alphabet element of the process
corresponding to the service. In the same way, the channels associated to the
services with which a service serv communicates (service calls appearing in the
behaviour) are listed in the alphabet. We treat the activation of a service with
a communication (to enter the initial state of the called service). A process cor-
responding to a service waits for a call. The caller service sends a call. Initially
each service (the associated process) waits for a communication using its default
channel. A caller service calls a service by sending a message (with the called
name as parameter) on the default channel of the called service. The parameters
are also sent using the default channel of the called process.

Translation Principle and Result

Remind that the behaviour of a component service is a transition system where
each label is a combination of actions which may be elementary actions, or
communication actions. From each state of a service there are one or several
(outgoing) transitions going to other states.

Lotos processes are basically state machines. Therefore the transition system
which describes a service is described with one or several Lotos processes; one
main process is associated to the service and one or several subprocesses are
used to describe the former one. Basically, each state is translated into a process.
The behaviour of the latter describes the transitions which are attached to the
corresponding state.

The translation procedure is performed as follows: each service state is ex-
amined; each outgoing transition of the state corresponds to a Lotos action
followed by the translation of the reached state. The used channels, the com-
munication actions and the elementary actions are collected to form the current
process alphabet. According to these working hypotheses, we define a semantic
encoding (namely LotosEncoding) of the service specifications. The encoding
into Lotos of service specifications is inductively performed by considering: ser-
vice interface without formal parameters; service interface with formal parame-
ters; service states (initial, final, intermediary and branching) and the transitions
related to each service state.

During the translation process, the data type spaces are reduced1 to avoid
the state explosion problem: we use enumerated or byte types. For each ser-
vice ServName, we define a Lotos data type. It has a constructor which is
named according to the service; this permits the call of the service. Besides, all
the messages which are sent to the default channel associated to a service are
used as constructors of the data type associated to this service. Enumerated
data are translated with constructors of abstract data types. The expressions
used within actions are not evaluated; they are translated by simple actions in
the Lotos process. The guards are not evaluated; each guard is encoded by an
action.

1 Model checking tools consider all the possible values of a type.

Checking Component Composability 31

5.3 Using CADP to Check the Behavioural Compatibility

The behavioural compatibility checking is based on Lotos processes communica-
tion. We use the |[L]| composition operator. A compatibility checking involves
a pair of services: the caller service and the called one; for example behaviour
and withdrawal in our case (see Fig. 2). The withdrawal service is required
by behaviour via the name ask for money. A renaming of withdrawal with
ask for money is performed. These two services (the caller and the called) are
translated into Lotos processes (say Lbehaviour and Lask for money); each
process has its alphabet (alphabet in the following); the processes are then
composed using the |[L]| operator to get a resulting process called Res in the
following. L is instantiated with the list of channels and actions used for the
communication between both services as illustrated above.

Res = Lbehaviour[alphabet]
|[chan_behaviour, chan_ask_code, chan_ask_amount, ...]|

Lask_for_money [alphabet]

Consequently, the services are compatible if the obtained Res process has no
conflict according to the composition operator.

As far as the running example is concerned, we check that USER INTERFACE and
ATM CORE are composable according to the services (ask for money, withdrawal):
the interface checking is easy. The behaviours of ask for money and withdrawal

are compatible.
To make it easy the experimentation of our component model, we implement

an analyser (using Antlr2 and Java) of component specifications. A prototype
(named kml2lotos) to translate the component services into Lotos is also de-
veloped using Java.

Given an input component specification (in Kmelia), the analyser parses the
specification and generates the corresponding internal structure. The latter is
read by the kml2lotos prototype; it generates communicating Lotos processes
which are used as input to the CADP toolbox. In the ATM case study (see Sec-
tion 2), the experiment deals with an assembly of components. Specific services
(a caller with a called one, branching node with the sub-services) are checked.
The CADP functionalities raise failures when there are lack of channels, wrong
channels, incompatible types, blocking or incompatible behaviours.

The experiment using CADP helps us to discover specification errors; for
example when a wrong communication channel is used. When the errors are
recovered and the communications are fine, the CADP caesar utility generates
the (execution) graph corresponding to the system. The graph is very large in
the case of brute translation; but when we erase independent alphabet actions
and minimise the generated graph, we get a graph with less than hundred states.
Stepwise simulation (using CADP executor utility) is performed to analyse the
evolution of the system.

2 www.antlr.org

32 C. Attiogbé, P. André, and G. Ardourel

6 Discussion and Perspectives

We have presented a model where a component provides several behaviours via
services. This flexibility offered to the user results in a non trivial formalisation
of the model and its composability. A formal model is built to serve reasoning
purpose and the composability is defined. Composable components may be used
to build component assemblies or compositions. Some experiments are performed
with the Lotos CADP toolbox. A prototype toolbox (COSTO: COmponent
Study TOolbox) is under development to support our experiments; it already
integrates some modules: a Kmelia analyser, an architectural correctness checker,
a translator to generate Lotos processes from the component specifications. We
also have a translator to MEC.

Compared to related works [4,13], our approach works at the abstract specifi-
cation level, it offers a more flexible formalism than the ones proposed by [21,4]
for the description of interacting services. We adopt a pairwise verification ap-
proach that avoids state explosion like in [4]. From the practical point of view,
our proposal follows the mechanized approaches like Tracta [10] or SOFA [17].
The latter already provides many analysis tools; but we have a different com-
ponent model that needs deep investigation before tool reuse and development.
However we can build on the experiences gained with these works. Most of the
approaches that integrate behavioural specifications to components [17,16,18]
work at a protocol (or component) level while our approach is mainly based on
the services, the protocol level is handled by a constraint in our model. More-
over, their communication actions refer only to messages and not to services (no
service call or result). The non-regular protocols of [18] may be represented in
Kmelia using guards and nested states, but using algebraic grammar provides a
more efficient solution for the given applications. The work of [16] addresses as-
semblies and implementation issues in Java but does not deal with composition.

Many exciting investigations remain to be done. Whatever the component
model, the compositionality is still a challenge [20]. The perspectives of this
work are: to reinforce the correctness properties of component with supplemen-
tary study of correctness of components and services with regard to their envi-
ronment; to extend the COSTO (COmponent Study TOolbox) prototype under
development so as to cover more mechanized analysis concerns.

References

1. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, July 1997.

2. P. André, G. Ardourel, and C. Attiogbé. Behavioural Verification of Service Com-
position. In ICSOC/Workshop on Engineering Service Compositions, WESC’05.

3. P. André, G. Ardourel, C. Attiogbé, H. Habrias, and C. Stoquer. A Service-Based
Component Model: Formalism, Analysis and Mechanization. Technical Report
RR05.08, LINA, December 2005.

4. P. C. Attie and D. H. Lorenz. Correctness of Model-based Component Composition
without State Explosion. In ECOOP 2003 Workshop on Correctness of Model-based
Software Composition, 2003.

Checking Component Composability 33

5. P. C. Attie and D. H. Lorenz. Establishing Behavioral Compatibility of Software
Components without State Explosion. Technical Report NU-CCIS-03-02, College
of Computer and Information Science, Northeastern University, 2003.

6. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal Model
for Componentware. In G. T. Leavens and M. Sitaraman, editors, Foundations
of Component-Based Systems, pages 189–210. Cambridge University Press, New
York, NY, 2000.

7. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

8. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pages 109–120.
ACM Press, 2001.

9. J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A Protocol Validation and Verification Toolbox. In R. Alur and T. A.
Henzinger, editors, Proc. of the 8th Conference on Computer-Aided Verification
(CAV’96), volume 1102 of LNCS, pages 437–440. Springer Verlag, 1996.

10. D. Giannakopoulou, J. Kramer, and S.C. Cheung. Behaviour Analysis of Distrib-
uted Systems Using the Tracta Approach. ASE, 6(1):7–35, 1999.

11. T. Gschwind, U. Aßmann, and O. Nierstrasz, editors. Software Composition, 4th
Int. Workshop, SC 2005, Edinburgh, UK, volume 3628 of Lecture Notes in Com-
puter Science. Springer, 2005.

12. G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and
K. C. Wallnau, editors. Component-Based Software Engineering, 8th International
Symposium, CBSE 2005, USA, May, 2005, volume 3489 of LNCS. Springer, 2005.

13. P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of System Behaviors
using Derived Component Assumptions. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):239–272, 2000.

14. ISO LOTOS. A Formal Description Technique Based on The Temporal Order-
ing of Observational Behaviour. International Organisation for Standardization -
Information Processing Systems - Open Systems Interconnection, Geneva, 1988.

15. N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1):70–93, january 2000.

16. S. Pavel, J. Noyé, P. Poizat, and J.C. Royer. A Java Implementation of a Com-
ponent Model with Explicit Symbolic Protocols. In Gschwind et al. [11], pages
115–124.

17. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE
Transactions on SW Engineering, 28(9), 2002.

18. M. Südholt. A Model of Components with Non-regular Protocols. In Gschwind
et al. [11], pages 99–113.

19. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addi-
son Wesley Publishing Company, 1997.

20. F. Xie and J. C. Browne. Verified Systems by Composition from Verified Compo-
nents. In ESEC/FSE-11: Proc. of the 9th European software engineering confer-
ence, pages 277–286, New York, NY, USA, 2003. ACM Press.

21. D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

Static Verification of Indirect Data Sharing in
Loosely-coupled Component Systems

Lieven Desmet, Frank Piessens, Wouter Joosen, and Pierre Verbaeten

DistriNet Research Group, Department of Computer Science
Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium

Lieven.Desmet@cs.kuleuven.be
http://www.cs.kuleuven.be/~lieven/research/

Abstract. To maintain loose coupling and facilitate dynamic composi-
tion, components in a pipe-and-filter architecture have a very limited syn-
tactic interface and often communicate indirectly by means of a shared
data repository. This severely limits the possibilities for compile time
compatibility checking. Even static type checking is made largely irrele-
vant due to the very general types given in the interfaces. The combina-
tion of pipe-and-filter and a shared data repository is widely used, and
in this paper we study this problem in the context of the Struts frame-
work. We propose simple, but formally specified, behavioural contracts
for components in such frameworks and show that automated formal
verification of certain semantical compatibility properties is feasible. In
particular, our verification guarantees that indirect data sharing through
the shared data repository is performed consistently.

1 Introduction

Current component systems often promote loosely-coupled components to en-
hance component reuse. The pipe-and-filter style [1] for example is a very popular
architectural style for constructing flow-oriented component frameworks. It is of-
ten combined with the repository style [1] to support anonymous communication
between components. Current state-of-the-art web component frameworks such
as Java Servlets [2] or the popular Struts framework [3] are examples of such
frameworks.

The main advantage of this kind of architecture is that it makes “wiring” of
components at the syntactical level very simple: components are independent
entities and interact with the shared data repository through a generic untyped
interface. The corresponding drawback is that semantical compatibility checks
are absolutely minimal: even compile-time or composition-time type checking
is circumvented. For instance, retrievals from the repository are done under the
Object type, and the retrieved object is then downcasted to the expected type at
run time, potentially leading to exceptions at run time. This in turn significantly
hinders independent extensibility of applications built in such frameworks, and
reuse of components in new compositions. It is for instance up to the composer to
make sure that all data that a given component expects to find on the repository

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 34–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Static Verification of Indirect Data Sharing 35

is guaranteed to be present in the constructed composition. Oversights of the
composer can lead to run-time errors.

To enhance component reuse and third-party composability, a precise docu-
mentation of the semantical behaviour of the components is essential. By making
parts of the component contract formal, automated tool support for verifying
some level of semantical compatibility at composition time becomes feasible.
As a consequence, certain types of bugs can be detected at compile time or at
composition time instead of at run time.

In this paper we propose formal component contracts written in JML, the
Java Modeling Language [4], that specify part of the behaviour of components
in the Struts framework and we show that static verification with state-of-the-
art verifiers for JML is feasible. Our contracts specify for instance what data a
component expects on the repository, and what data the component puts onto
the repository. Verification checks whether (1) implementations of components
honour their contract, and whether (2) compositions always respect the contracts
of their constituents. Our approach has been validated on GatorMail [5], an
open-source, Struts-based webmail application.

While we have worked out our contracts for the case of Struts, the same
idea is applicable to any framework based on the pipe-and-filter and repository
architectural styles.

The rest of this paper is structured as follows. Section 2 provides some back-
ground information on the web technologies used, component contracts and sta-
tic verification. Next, the problem statement is elaborated in Sect. 3 and solutions
for verifying two composition properties are proposed in Sect. 4. Section 5 vali-
dates the proposed solutions in the open-source webmail application GatorMail.
In Sect. 6, the presented work is related to existing research and, finally, Sect. 7
summarises the contributions of this paper.

2 Background

2.1 Java Servlets, JavaServer Pages and the Struts Framework

Java Servlets. The Java Servlet technology is part of the J2EE specification [6].
It is a server-side component model for extending the functionality of a web
server [2]. A J2EE web application is typically a collection of Java Servlets,
deployed in a servlet-based web container such as Tomcat, JBoss or WebSphere.
A container casts incoming HTTP requests into an object-oriented form (i.e. a
HTTPServletRequest object) and checks to see if there is a servlet registered for
processing that request. During request processing, a servlet can decide to either
dispatch the request to another servlet (and by doing so, form a pipe of servlets)
or to return a response to the user.

Within a web application, servlets are loosely-coupled with each other
(through a very generic interface) and support for dispatching between servlets
is provided by the web container. The servlets can communicate anonymously
by means of a shared data repository.

36 L. Desmet et al.

JavaServer Pages. The JavaServer Pages (JSP) technology is also part of the
J2EE specification and is built upon Java Servlets. JSP enables separation of
content from presentation in developing dynamic websites.

JavaServer Pages are used to develop the user interface (or view) of a web
application. They are also loosely-coupled, and can communicate anonymously
with other JavaServer Pages or Servlets by using the same shared data repository.

The Struts Framework. Apache Struts [3] is a widespread, open-source applica-
tion framework on top of Java Servlets and JavaServer Pages. Struts encourages
developers to use the JavaServer Pages Model 2 architecture [7], a variation on
the Model-View-Controller design pattern for web applications.

In a Struts application (illustrated in Fig. 1), incoming HTTP requests are en-
capsulated in HTTPServletRequest objects and dispatched to the ActionServlet.
This ActionServlet is the Controller of the Struts application. According to the
requested URL, an appropriate action is selected and the HTTPServletRequest
(Req in Fig. 1) is processed. An action interacts with the Model and fetches
the necessary data for the View. After processing the request, an ActionForward
object(AF in Fig. 1) is returned to the ActionServlet, indicating which action or
view has to be processed next. This process continues until a JSP view is reached
and output is sent back to the web browser. In this architecture only the imple-
mentations of the different actions and JSP views are application-specific, the
other parts are provided by the Struts framework.

Fig. 1. Request processing in Struts

Actions resemble Java Servlets in that they both process a HTTPServletRe-
quest and that both are able to use the associated shared data repository that
is propagated through the flow together with the request.

In order to achieve reusable actions, an extra forward indirection is used in
Struts. Actions use logical names to identify forwards, and the Struts config-
uration file (which is specific for each configuration) specifies the declarative
mapping between logical forwards and actual forwards. In this way, the logical
names are mapped to actual forwards at run time using the ActionMapping class.
The mapping can either be action-specific (local forward) or composition-wide
(global forward).

What is important in the context of this paper is the fact that the declarative
forwarding and indirect data sharing ensure that actions, servlets and JSP views
are very loosely-coupled from a syntactical point of view.

Static Verification of Indirect Data Sharing 37

2.2 Component Contracts and Static Verification

Component contracts have already often been proposed before for various pur-
poses [8]. For components written in Java, The Java Modeling Language
(JML) [4] is a popular formal contract specification language. In this paper,
JML notation is used to specify pre- and post-conditions as well as frame condi-
tions for methods that process HTTP requests. Frame conditions specify what
part of the state a method is allowed to modify.

One of the main advantages of JML is the large amount of tool support that is
available [9]. Tools are available for run-time contract checking, test generation,
static verification and inference of specifications. Of particular interest to us
are tools for static verification of JML contracts. A variety of verification tools
is available that make different trade-offs in verification power and need for
user interaction. In the experiments reported on in this paper, we used the
ESC/Java2 verifier [10]. The main advantage of this verifier is that it requires
no user interaction. On the downside, the verifier is far from complete, and has
some known sources of unsoundness [11,12]. In Sect. 4.3, we explain how this
impacts verification of our proposed contracts.

3 Problem Statement

Although the declarative forwarding mechanism and indirect data sharing in
Struts highly facilitate the composition of a web application from a syntactical
point of view, they also introduce hidden complexities for the software composer.
In order to achieve correctly functioning compositions, the software composer
needs to bear in mind all the hidden data interactions through the shared data
repository, and anticipate all possible forwards of the actions.

This hidden complexity should not be underestimated. We investigated Gator-
Mail [5], an open-source webmail application of the University of Florida, built
upon the Struts framework. In this web application (consisting of about 20.000
lines of code), we identified 36 Struts actions and 29 JSP views, reused in 52
request processing flows [13]. The FolderAction for instance was reused in more
than 20 processing flows. All the flows contributed to 147 declarative control flow
transitions in the webmail application, and to 1369 data repository interactions.
The control flow transitions were specified in the composition configuration by
means of global and local forwards, but none of the data interactions with the
shared repository were documented.

It should be clear that under these circumstances it is not obvious how to
reuse existing components or to contribute to an open-source project such as
GatorMail, without breaking any of the existing, hidden data dependencies be-
tween actions, or without leaving some dangling control flow transitions1, unless
of course, a full source code study is undertaken to identify the declarative for-
wards and the data repository interactions.
1 With a dangling control flow transition, we mean that at run time the action returns

a logical forward, but that no mapping can be found to an actual forward in the list
of local or global forwards of the running configuration.

38 L. Desmet et al.

To focus on the essence of the problem, we now define a simplified version of
the Struts application model. This simplified version mainly takes the declarative
forwarding mechanism and the indirect data sharing into account. The presented
application model is then used to define some desired composition properties at
the end of the section. The problem we address in this paper is how we can verify
these properties statically.

The simplified application model is sufficiently generic to reflect the common
characteristics of many pipe-and-filter applications with a shared data repository.
Hence, the proposed solution of Sect. 4 is generally applicable to this kind of
applications. In Sect. 5, the simplified model is further specialised towards the
Struts application framework in order to apply our solution to real, existing
Struts applications.

3.1 Simplified Application Model

In the simplified application model (shown in Fig. 2), an application is still a
composition of actions. All actions implement an execute method taking two
parameters: a Request and a Form. A Request is a first class entity represent-
ing the request that is being processed and the request provides access to the
shared data repository (setDataItem, getDataItem and removeDataItem) associ-
ated with the request. The Form encapsulates the request parameters provided
by the client for processing the request.

The execute method of an Action returns a string, logically indicating which
control flow transition should be taken. A Configuration object encapsulates the
local and global forwards of a composition and maps the strings to corresponding
actions. The RequestProcessor then repeatedly executes an action for a given
request and based on the return value it selects an appropriate succeeding action
from the Configuration. JSP views are reduced to normal actions in the simplified
application model, but they do not produce a forward.

Fig. 2. The simplified application model

3.2 Composition Example

To illustrate the simplified application model, a basic composition example is
now introduced. The composition is part of an online calendar system and al-
lows a user to schedule a meeting with several participants at a given time slot

Static Verification of Indirect Data Sharing 39

and location. The composition consists of four actions and is shown in Fig. 3.
The rounded boxes represent actions and the solid arrows indicate control flow
transitions.

Fig. 3. Composition example: scheduling a meeting

The first action to be executed in scheduling a meeting is the AddMeetingAc-
tion. This action tries to schedule the requested meeting. On success, the request
is processed by an EmailNotificationAction which sends a notification to the par-
ticipants of the meeting. Afterwards, the scheduled meeting is shown to the web
user (AddedMeetingView). On failure, the AddMeetingFailedView lists the dif-
ferent conflicts which make the scheduling impossible.

The labels on the control flow transitions represent the return values of the
different actions. The AddMeetingAction can either return “success” or “fail”,
indicating whether or not the scheduling was successful. The EmailNotification-
Action only returns “success”, whereas views do not produce a forward.

The interactions with the shared data repository are indicated by dashed lines.
The AddMeetingAction stores the meeting information (containing the partic-
ipants, time slot and location) on the shared repository. In case the meeting
cannot be scheduled, a list of conflicts is saved as well. All other actions retrieve
the meeting information from the shared repository. In addition, the AddMeet-
ingFailedView also reads the list of conflicts.

3.3 Desired Composition Properties

Based on the simplified application model, a number of desired composition
properties can be defined in loosely-coupled compositions with a declarative
control flow and indirect data sharing. Some examples are:

No dangling forwards: Every logical forward in the composition is mapped
to an actual forward in the configuration.

No broken data dependencies: A shared data item is only read after being
written. For each shared data read interaction, the shared data item that
is already written on the repository is of the type expected by the read
operation.

40 L. Desmet et al.

In the next section, solutions are proposed to statically verify these composi-
tion properties in the simplified application model.

4 Solution

In order to statically verify the composition properties of the previous section,
each action is extended with an appropriate action contract. These contracts are
then verified in two phases. Firstly, the compliance of the action implementation
with the action contract is checked. Secondly, the composition properties are
checked based on the different action contracts.

The action contracts are expressed in a framework-specific contract language.
Listing 1.1 for example, shows such a framework-specific contract of AddMeeting-
Action. These framework-specific contracts are then translated into JML con-
tracts in order to verify them with existing verifiers. For the rest of the paper
we have chosen to show the translated JML contracts since JML is a fairly
well-known contract language.

Listing 1.1. Framework-specific contract of AddMeetingAction

//spec: forwards {”success”,”fail”};
//spec: writes {Meeting meeting};
//spec: on forward == ”fail” also writes {Vector conflicts};

This section only highlights key points of the solution. Some additional speci-
fication decisions and the full action contracts of the composition example (in the
framework-specific contract language and in JML) can be found on the paper’s
accompanying website [14].

4.1 No Dangling Forwards Property

Action Contracts for the No Dangling Forwards Property. In order to
verify the no dangling forwards property, the action contract needs to include
sufficient information about the possible declarative forwards (i.e. the different
return values). This can simply be done in a JML specification by restricting the
return values of an action as part of the action’s post-condition. In Listing 1.2
for example, two possible return values are declared in the action’s contract: the
strings “success” and “fail”.

Listing 1.2. Contract for declarative forwarding (AddMeetingAction.spec)

public class AddMeetingAction extends Action {
//@ also
//@ ensures \result == ”success” || \result == ”fail”;
public String execute(Request request, Form form);

}

Static Verification of Indirect Data Sharing 41

Static Checking of the No Dangling Forwards Property. To check the
compliance of the action’s contract with its implementation, a very pragmatic
approach such as applying a simple search pattern on the Java source could be
used. If however the source code is not that straightforward anymore (e.g. if
programming constants are used, or if the return value is constructed in several
statements), a static checker tool such as ESC/Java2 can be used to verify the
compliance with the ensures clause.

Verifying the no dangling forwards property itself is trivial and can be done
by using a simple algorithm that verifies that for each possible return value
of the action either a corresponding local forward or global forward exists in
the composition-specific configuration. In practice, the declarative forwarding
property is not individually verified, but is verified in combination with the no
broken data dependencies property as will be explained in Sect. 4.2.

4.2 No Broken Data Dependencies Property

Action Contracts for the No Broken Data Dependencies Property.
The action contracts have to specify the interactions between actions and the
shared data repository. These interactions can be expressed in terms of the pre-
and post-state of the repository by using the getDataItem method of the Request.

Because methods used in specifications may not have side-effects, the get-
DataItem method is declared pure, i.e. the method will not modify the program
state. A more precise definition of purity can be found in [15].

For read interactions, the action’s contract indicates that the action requires
that a non-null data item of the specified type can be read from the shared
repository, as is shown in Listing 1.3.

Listing 1.3. Contract for indirect data sharing (EmailNotificationAction.spec)

public class EmailNotificationAction extends Action {
//@ also
//@ requires request != null;
//@ requires request.getDataItem(”meeting”) instanceof Meeting;
//@ ensures \result == ”success”;
public String execute(Request request, Form form);

}

For write interactions, the ensures pragma states which data items on the
shared repository will be non-null and of the specified type after method exe-
cution. In Listing 1.4 for example, the JML contract of the execute method of
AddMeetingAction states that the shared data item meeting will be a non-null
Meeting object. Since write interaction may also depend on certain conditions
(e.g. if a write interaction occurs in an if-then-else structure), this must also be
reflected in the action’s contract. In Listing 1.4 an implication expression (==>)
is used to express that the data item conflicts is only written in case the return
value equals “fail”.

42 L. Desmet et al.

Listing 1.4. JML contract for indirect data sharing (AddMeetingAction.spec)

public class AddMeetingAction extends Action {
//@ also
//@ requires request != null;
//@ ensures request.getDataItem(”meeting”) instanceof Meeting;
//@ ensures \result == ”fail” ==> request.getDataItem(”conflicts”) instanceof Vector;
//@ ensures \result == ”success” || \result == ”fail”;
public String execute(Request request, Form form);

}

Static Checking of the No Broken Data Dependencies Property. To
verify the no broken data dependencies property, ESC/Java2 is used to verify
both the compliance of the implementation of the execute method with the
contract, and the composition property itself.

To check the compliance of the action, a specification of the shared repository
is introduced, as listed in 1.5. Hereby, explicit JML pragmas and a ghost vari-
able are introduced for each shared data item, since the current version of the
ESC/Java2 tool does not support reasoning about hashtable indirections.

Listing 1.5. JML contract of the shared data repository (Request.spec)

public class Request {
//@ public ghost Object meeting;
//@ public ghost Object conflicts;

//@ requires isKey(name);
//@ ensures name == ”meeting” ==> this.meeting == value;
//@ ensures name == ”conflicts” ==> this.conflicts == value;
public void setDataItem(String name, Object value);

//@ requires isKey(name);
//@ ensures name == ”meeting” ==> \result == this.meeting;
//@ ensures name == ”conflicts” ==> \result == this.conflicts;
public /∗@ pure @∗/ Object getDataItem(String name);

//@ ensures \result <==> key == ”meeting” || key == ”conflicts”;
public /∗@ pure @∗/ boolean isKey(String key);

}

To verify the first and second composition property, a composition-specific check
method is automatically generated and then verified by ESC/Java2. The check
method (shown in Listing 1.6) firstly initializes the different actions used in the
composition. Secondly, based on the local and global forwards of the composition
configuration, a complete control flow graph is statically constructed, similar to
what would happen at run time by repeatedly using the RequestProcessor.

The unreachable pragmas are able to detect violations to the no dangling
forwards property, since they are only reachable if an action returns a value that
does not match any of its local or global forwards.

The no broken data dependencies property is implicitly verified. Since, for
every method call in the method body, ESC/Java2 checks that the preconditions
are fulfilled, each data item read must be preceded by a data item write in the
execution path and comply with the type requirements in order to satisfy the
JML contract of the read interaction.

Static Verification of Indirect Data Sharing 43

Listing 1.6. Composition-specific check method to be verified by ESC/Java2

//@ requires request != null;
public void check addMeeting(Request request, Form form){

AddMeetingAction addMeetingAction = new AddMeetingAction();
EmailNotificationAction emailNotificationAction = new EmailNotificationAction();
AddedMeetingView addedMeetingView = new AddedMeetingView();
FailedAddedMeetingView failedAddedMeetingView = new FailedAddedMeetingView();

String forward1 = addMeetingAction.execute(request,form);
if (forward1.equals("success")){

String forward2 = emailNotificationAction.execute(request,form);
if (forward2.equals("success")){

addedMeetingView.execute(request,form);
} else { //@ unreachable; }

} else if (forward1.equals("fail")){
failedAddedMeetingView.execute(request,form);

} else { //@ unreachable; }
}

4.3 Unsoundness with ESC/Java2

ESC/Java2 has a number of known sources of unsoundness [11,12]. One of these
sources also impacts the soundness of our approach, namely ESC/Java2’s default
handling of framing. As defined in JML, ESC/Java2 has a default for missing
modifies clauses (i.e. modifies \everything) to unhide unexpected changes to vari-
ables caused by calling a routine, but logic to reason about routine bodies that
contain these modifies clauses has not yet been implemented in ESC/Java2 [12].
As a result, methods without explicit modifies clauses can be verified since the
default frame condition includes everything. However in calling such methods,
the current implementation of ESC/Java2 does not take this default frame condi-
tion into account resulting in an unsound verification. In our case this means that
an intermediate action can break the dependencies between one action writing
shared data and another action retrieving that data, without ESCJava/2 being
able to detect that violation.

To counter this unsoundness, each action annotation is extended with a frame
condition, explicitly stating which data items on the shared repository are
changed. Also the methods in the Request to store and retrieve data from the
repository need to have explicit frame conditions. By doing so, ESCJava/2 is
able to detect unspecified write interaction with the repository. In addition,
other methods interacting with the repository (such as library methods) also
require an explicit modifies clause and their contracts need to be verified as well.

Since the current JML notations do not support modifies pragmas in terms of
pure methods or hashtable values, the inserted pragmas in the actions are quite
verbose (Listing 1.7). In the examples of this paper the modifies pragmas are
omitted, but the full annotation with frame conditions can be found at [14].

Listing 1.7. Frame condition of EmailNotificationAction

//@ ensures (\forall String s; request.isKey(s) ==>
\old(request.getDataItem(s))== request.getDataItem(s));

44 L. Desmet et al.

5 Validation

In this section, we validate the solutions of Sect. 4 in the open-source web-
mail application GatorMail. Firstly, we introduce some slight refinements to
the presented solution in order to be applicable to real Struts web applica-
tions. Secondly, we investigate the JML annotation overhead of the presented
approach and the performance of the ESC/Java2 verification tool while verifying
the GatorMail web application. Finally, we discuss our validation results.

5.1 Verifying Struts Applications: An Example

To illustrate the verification of Struts applications, a small composition example
extracted from the GatorMail application is used. In GatorMail, the web URL
/createFolder.do is mapped to the composition of Fig. 4 and allows a web user to
create a new IMAP mailfolder. The composition consists of three Struts actions
and two JSP views. Four control flow transitions occur in the composition: all
three action can return a “success” forward, and in addition the CreateFolder-
Action can return a “fail” forward. The interactions of the composition with the
shared data repository are listed in table 1.

Verifying the Declarative Forwarding. In the Struts framework, the exe-
cute method of an action returns an ActionForward object instead of a string.
This ActionForward does not only encapsulate the declarative forward, but also
contains the composition-specific forward path associated with the declarative

Fig. 4. /createFolder.do composition in GatorMail

Table 1. Indirect data dependencies in /createFolder.do

Folder folder: String requestStartTime:
FolderManageAction (write) CreateFolderAction (read/write)
folderManage.jsp (read) FolderManageAction (write)
FolderManageModifyAction (write) folderManage.jsp (read)
folderManageModify.jsp (read) FolderManageModifyAction (write)

FolderManageModifyAction (write)
ResultBean result:
CreateFolderAction (write) String isSubscribed:

FolderManageModifyAction (write)
List quotaList: folderManageModify.jsp (read)
FolderManageAction (write)
folderManage.jsp (read) List folderBeanList:
FolderManageModifyAction (write) FolderManageAction (write)
folderManageModify.jsp (read) folderManage.jsp (read)

Static Verification of Indirect Data Sharing 45

forward. To do so, the Struts application framework loads the local and global
forwards of the composition into the ActionMapping object at run time, and the
returned ActionForward is then constructed by calling the findforward method
on the ActionMapping parameter (Listing 1.8).

Listing 1.8. Declarative forwarding in Struts

public class FolderManageAction extends Action {
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) throws Exception {
// ...
return mapping.findForward("success");

}
}

To be able to express the local forward string in the JML contracts of the
actions, extra specification is introduced for ActionMapping (Listing 1.9). The
specification states that the declarative forward used as parameter of the find-
Forward method is equal to the name property of the returned ActionForward.
By doing so, the declarative forwards can be expressed in term of the name
property of the returned result (Listing 1.10).

Listing 1.9. JML specification of ActionMapping

public class ActionMapping extends ActionConfig {
//@ requires name != null;
//@ ensures \result != null;
//@ ensures \result.getName() == name;
public ActionForward findForward(String name);

}

Listing 1.10. Declarative forward specification of FolderManageAction

//@ ensures \result.getName() == ”success”;

Verifying Indirect Data Sharing. Since indirect data sharing via a shared
repository in Struts is identical to the simplified application model, the solution
of Sect. 4 can be applied to Struts applications without any modification.

5.2 Results of the GatorMail Experiment

To validate the applicability of our approach, we annotated 12 actions and 8
views of the GatorMail webmail application. With these annotations we were
able to verify the declarative forwarding and indirect data sharing properties in
17 composition flows (i.e. one third of all flows in GatorMail). We used this subset
of the application to investigate the annotation overhead and the performance
of the verification. Only the results are reported in this subsection. The full

46 L. Desmet et al.

annotations and a short description of how to verify both the implementation
conformance and the composition properties can be found at [14].

JML Annotation Overhead. As a quantification of the annotation overhead,
a JML line count is performed on the annotated actions. As shown in table 2,
at most 15 lines of JML annotation are used in an action contract to express
the control flow transitions and the shared repository interactions. The JML
contract of FolderAction for example, consists of 9 annotation lines, illustrated
in Listing 1.11. But this quite verbose JML contract is actually generated from
a more concise, Struts-specific contract specified in Listing 1.12.

The Struts-specific contracts are at most 4 lines of annotations, and they are
much easier to write by a Struts developer or to read by a software composer.
The Struts-specific contracts of the GatorMail case and a tool for converting
them into the verifiable JML annotation can be found at [14].

Table 2. JML notation overhead in GatorMail

Action # JML lines Action # JML lines
ChangeSubscribedAction2 14 FolderManageAction 10
CheckSessionAction 7 FolderManageModifyAction 11
CreateFolderAction 10 ModifyFolderAction2 15
DeleteFolderAction 10 MoveCopyAction 11
DeleteMessagesAction 10 PerformDeleteFolderAction2 15
FolderAction 12 RenameFolderAction 9

Listing 1.11. JML contract of FolderAction

//@ also
//@ requires request != null;
//@ requires mapping != null;
//@ ensures \result != null;
//@ ensures \result.getName() == ”success” || \result.getName() == ”inbox”;
//@ ensures request.requestStartTime instanceof Long;
//@ ensures \result.getName() == ”success” ==> request.folderBeanList instanceof List;
//@ ensures \result.getName() == ”success” ==> request.folder instanceof Folder;
//@ ensures \result.getName() == ”success” ==> request.messages instanceof List;
//@ ensures \result.getName() == ”success” ==> request.quotaList instanceof List;
//@ requires form instanceof FolderForm;

Listing 1.12. Struts-specific contract of FolderAction

//struts: forwards {”success”,”inbox”};
//struts: writes {Long requestStartTime};
//struts: on forward == ”success” also writes {List folderBeanList, Folder folder,

List messages, List quotaList};

Verification Performance with ESC/Java2. To evaluate the performance of
the verification process, the verification time and memory usage is measured for
2 These actions extend the LookupDispatchAction, and have alternative substitutes of

the execute method. Thus, it’s obvious that these actions have a higher JML line
count, since several methods are annotated.

Static Verification of Indirect Data Sharing 47

verifying the implementation compliance and the composition properties. The
performance tests were run on a Pentium M 1.4 with 512MB RAM, running
Debian Linux, while using Java 1.4.2 09, ESC/Java2 2.0a9 and Simplify 1.5.4.

Table 3 shows the performance results of verifying a subset of GatorMail.
Both verification steps can be done in a reasonable amount of time (less than 15
seconds per verification) and limited memory resources (not exceeding 25MB).
If also the frame conditions are checked, the verification takes up to 700 seconds,
but since most bugs are already found without checking the frame conditions, this
type of verification has to be run less regularly. In addition, since the verification
is done modularly (i.e. action per action), the verification complexity is linear
and the the verification process is scalable to larger software projects as well.

Table 3. Verification performance

Action Verification time Mem. Composition flow Verif. Mem.
(with frame cond.)usage time usage

ChangeSubscribedAction 1.960 s (13.151 s) 16 MB /folder.do 0.853 s14 MB
CheckSessionAction 0.252 s (2.241 s) 13 MB /folderManage.do 0.506 s15 MB
CreateFolderAction 0.951 s (5.106 s) 15 MB /folderManageModify.do0.555 s15 MB
DeleteFolderAction 0.978 s (61.193 s) 17 MB /createFolder.do 1.639 s17 MB
DeleteMessagesAction 4.607 s (24.542 s) 20 MB /renameFolder.do 1.741 s17 MB
FolderAction 14.18 s (711.654 s) 24 MB /changeSubscribed.do 1.733 s18 MB
FolderManageAction 1.407 s (10.475 s) 16 MB /deleteFolder.do 1.145 s18 MB
FolderManageModifyAction 2.126 s (205.791 s) 16 MB /performDeleteFolder.do2.497 s19 MB
ModifyFolderAction 0.831 s (1.699 s) 14 MB /modifyFolder.do 7.638 s22 MB
MoveCopyAction 4.334 s (20.957 s) 19 MB /deleteMessages.do 1.819 s23 MB
PerformDeleteFolderAction 1.390 s (5.833 s) 16 MB /moveMessage.do 2.468 s24 MB
RenameFolderAction 0.844 s (4.993 s) 15 MB /copyMessage.do 1.960 s25 MB

/moveMessages.do 2.338 s17 MB
/copyMessages.do 1.936 s19 MB
/errorCopy.do 0.435 s20 MB
/errorCopyToSent.do 0.725 s20 MB
/errorCopyTrash.do 0.446 s18 MB

5.3 Discussion

One of the problems that we were confronted with was ESC/Java2’s poor support
to reason about hashtable indirections. Since the dynamics of loosely-coupled
component systems such as Struts strongly rely on hashtable indirections in the
implementation, we were forced to circumvent this lack of support by introduc-
ing very verbose specifications or statically constructing the complete control
flow graph. Additionally, ESC/Java2 is far from complete, for instance reason-
ing about loops is fairly weak. Also, known sources of unsoundness, related to
framing and reentrancy need to be avoided. Again, this made specifications more
verbose than they could be. This is however a temporary problem and future
versions of the tool are expected to improve in the different domains.

Another issue that we encountered in verifying GatorMail was the violation
of the Liskov substitution principle. The DeleteMessagesAction for example
extends the FolderAction, while having a stronger precondition regarding the
expected data items on the shared repository for the execute method. Since
verification tools rely on the Liskov substitution principle, we had to slightly
refactor GatorMail in order to comply with the Design by Contract concept.

48 L. Desmet et al.

While the GatorMail case study shows that annotation overhead and verifi-
cation performance are fine, it can not give us data about the usefulness of our
approach for detecting bugs early. Since GatorMail is a mature application, bugs
due to broken dependencies have been ironed out already. Therefore, it would
be interesting to apply our approach to less mature software systems or to study
a development process that incorporates our approach in future research.

6 Related Work

To the best of our knowledge, this is the first proposal for automatic verification
of indirect data sharing in Java-based component frameworks. However, our
approach is strongly inspired by ongoing research in several research domains.

In software architecture research, several Architecture Description Languages
(such as Wright, Darwin and Rapide) are proposed to support architecture-based
reasoning, ranging from semi-formal diagrams with boxes and lines to formal
notations [16]. Architecture analysis techniques have already been developed to
detect problems such as deadlock and component mismatch [17,18].

Comparable approaches (such as CL [19] and Piccola [20]) are proposed in
the domain of coordination and software composition. CL, for example, is a
composition language for predictable assembly from certifiable components. In
CL, the run-time behaviour of an assembly of components can be predicted from
known properties of components and their patterns of interaction [19].

The use of JML or related languages such as Spec# [21] for verifying compo-
nent properties is a very active research domain. For example, Smans et al. [22]
specify and verify code access security properties, Jacobs et al. [23] verify data-
race-freeness in concurrent programs, and Pavlova et al. [24] focus on security
properties of applets. Other applications of JML are surveyed in [9].

7 Conclusion

This paper has focussed on two desirable composition properties in pipe-and-
filter and repository based component systems. We proposed framework-specific
component contracts to specify a component’s possible forwards and its inter-
actions with the shared repository and translated them into JML annotations.
The contracts are sufficiently simple to have an acceptable annotation overhead
and a very reasonable automatic verification time.

Although, as discussed in Sect. 5.3, there are still some drawbacks with the
current state of the verification tool, the conducted experiments show that using
existing contract annotation languages and verification tools in order to achieve
more robust compositions looks promising.

Acknowledgements

The authors would like to thank Bart Jacobs, Adriaan Moors and Jans Smans
for their useful comments and insights while proofreading this paper.

Static Verification of Indirect Data Sharing 49

References

1. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an emerging disci-
pline. Prentice-Hall (1996)

2. Java Servlet Technology. (http://java.sun.com/products/servlet/)
3. The Struts Framework. (http://jakarta.apache.org/struts/)
4. The Java Modeling Language (JML). (http://www.jmlspecs.org/)
5. GatorMail WebMail. (http://sourceforge.net/projects/gatormail/)
6. J2EE platform specification. (http://java.sun.com/j2ee/)
7. Seshadri, G.: Understanding JavaServer Pages Model 2 architecture. (http://www.

javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html)
8. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)
9. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,

Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3) (2005) 212–232

10. KindSoftware: The Extended Static Checker for Java version 2 (ESC/Java2).
(http://secure.ucd.ie/products/opensource/ESCJava2/)

11. Leino, K.R.M., Nelson, G., Saxe, J.B.: (ESC/Java User’s Manual)
12. Cok, D.R.: (ESC/Java2 Implementation Notes)
13. Desmet, L., Piessens, F., Joosen, W., Verbaeten, P.: Dependency analysis of the

Gatormail webmail application. Report CW 427, Department of Computer Science,
K.U.Leuven, Leuven, Belgium (2005)

14. Desmet, L., Piessens, F., Joosen, W., Verbaeten, P.: Static verification of compo-
sition properties. (http://www.cs.kuleuven.be/~lieven/research/SC2006/)

15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06-rev28, Iowa State
University, Department of Computer Science (2005)

16. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1) (2000)
70–93

17. Inverardi, P., Tivoli, M.: Automatic synthesis of deadlock free connectors for
com/dcom applications. In: Proceedings of the 8th ESEC held jointly with 9th
ACM SIGSOFT FSE, ACM Press (2001) 121–131

18. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997) 213–249

19. Ivers, J., Sinha, N., Wallnau, K.: A Basis for Composition Language CL. Technical
Report CMU/SEI-2002-TN-026, SEI, Carnegie Mellon University (2002)

20. Achermann, F., Nierstrasz, O.: Applications = Components + Scripts — A Tour
of Piccola. In Aksit, M., ed.: Software Architectures and Component Technology.
Kluwer (2001) 261–292

21. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. Lecture Notes in Computer Science 3362 (2004)

22. Smans, J., Jacobs, B., Piessens, F.: Static verification of code access security policy
compliance of .NET applications. Journal of Object Technology 5(3) (2006)

23. Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for ag-
gregate objects with invariants. In: Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, IEEE Computer Society
(2005) 137–146

24. Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.L.: Enforcing high-level
security properties for applets. In: CARDIS. (2004) 1–16

Enforcing Different Contracts in
Hierarchical Component-Based Systems

Philippe Collet1, Alain Ozanne2, and Nicolas Rivierre2

1 University of Nice - Sophia Antipolis, I3S Laboratory, France
philippe.collet@unice.fr

2 France Telecom R&D, MAPS/AMS Laboratory, Issy les Moulineaux, France
{alain.ozanne, nicolas.rivierre}@francetelecom.com

Abstract. Using different specification formalisms together is necessary
to leverage better reliability on component-based systems. The ConFract
system provides a contracting system for hierarchical software compo-
nents, but currently, only executable assertions are supported.

In this paper, we describe how TLA, taken as an instance of behav-
ioral sequence-based formalism, was integrated in ConFract. A domain
specific language is proposed in order to enable designers to describe the
observations needed to appropriately verify their specifications. These
observations are automatically generated for assertions and in the case
of TLA, we show what kind of observations must be provided to link the
specifications to the concrete application.

1 Introduction

Software engineering is now concerned with more complex, dynamic, evolving
and long-living systems. Recently, the concept of component has been revisited
to provide a more adapted framework to master software complexity. The notion
of contract is then part of the definition of software components [26], in order
to organize the guarantee of properties all along the software life cycle. Besides
combining different specification formalisms is desirable to leverage reliability on
component-based systems, but this task is rather complex, given the diversity
of formalisms that express behavior, their numerous common points and differ-
ences, and the separation between static and dynamic approaches. The very term
behavioral is even differently interpreted according to approaches. For example,
works on executable assertions provide behavioral contracts as state-oriented
expressions before and after method calls [19,14]. Other approaches describe
component behaviors as protocols or interaction sequences [1,17,23].

In this context, the ConFract system [7] provides a contracting model for the
Fractal hierarchical components platform [4] and aims at combining different
specification techniques. But currently, ConFract only supports an executable
assertion language, and properties are checked at configuration and run times.
We thus propose to integrate TLA [12] as an instance of sequence-based spec-
ification formalism. In this paper, we describe its integration in ConFract, by
enhancing the underlying metamodel and providing a domain specific language

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 50–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Enforcing Different Contracts in Hierarchical Component-Based Systems 51

(DSL) that acts as a pivot model. This DSL enables designers to describe, on
a Fractal system, the observations that are needed to appropriately verify their
specifications. The definition of observations is based on a scope (where the ob-
servation takes place in the hierarchy of components), moments or times during
the system life cycle (including design, configuration and run times) and the val-
ues observed. Observations are finally linked to appropriate verification methods
that have been integrated in ConFract. In the case of executable assertions, we
show that these observations can be automatically generated. As for TLA, we
describe what kind of observations must be provided to link the specifications
to the concrete application. As our contributions only rely on the very general
assumptions made on components by the Fractal model [4], they are applicable
to other component models.

The rest of the paper is organized as follows. The next section gives an
overview of the ConFract system through a running example. In section 3, a
TLA specification of the example is described. Section 4 presents the integration
of this new formalism in the ConFract system. Relationships to other works are
covered in section 5. Section 6 concludes this paper and gives some indications on
future work. An appendix gives an overview of both TLA and the used checking
technique.

2 The ConFract System

The purpose of the ConFract system [7] is to specify and verify, on Fractal soft-
ware components, properties that go beyond interface signatures. Integrated in
Fractal as a non functional feature, it reifies contracts between components. Con-
Fract aims at taking into account the specificities of the life cycle of component-
based applications (design, (re-)configuration, deployment, runtime) as well as
their hierarchical and dynamic nature in the case of Fractal.

Fractal [4] is a general component model with the following main features:
composite components (to have a uniform view of applications at various levels
of abstraction), shared components (to model resources and resource sharing
while maintaining component encapsulation), reflective capabilities (introspec-
tion capabilities to monitor a running system and re-configuration capabilities
to deploy and dynamically configure a system) and openness (in the model,
almost everything is optional and can be extended). Components can be con-
nected through server (provided) and client (required) interfaces. The content
of a composite component is composed of other components, called subcompo-
nents, which are under the control of the enclosing component. A Java-based
reference implementation is also available1.

2.1 A Running Example

Throughout this paper, we illustrate our approach with a cruise control system
inspired from [16]. This system is controlled by three buttons: resume, on and off.
1 The reader can find more detail in [5] and at http://fractal.objectweb.org.

52 P. Collet, A. Ozanne, and N. Rivierre

Sensor
void engineOn()
void engineOff()
boolean isEngineOn()

void on()
void off()
...
void resume()
void break()
void accelerate()
...

Sensor

<Car>

CarSpeed
csp

Server interface

Client interface

<CruiseCtrl>

<SensorCtrl>
sns

att
Attributes

att
Attributes

ppt
Prompt

csp
CarSpeed

<SpeedCtrl>

CarSpeed
void setThrottle(float val)
float getThrottle()
float getSpeed()

Prompt
void enable()
void disable()
void resume()

Attributes
ctrl {true, false}
err {float}
targetSpeed {float}

Fig. 1. The Cruise Control System in Fractal

When the engine is running and on is pressed, the cruise control system records
the current speed and maintains the car at its speed. When the accelerator,
brake or off is pressed, the cruise control system disengages but retains the
speed setting. If resume is pressed, the cruise control system accelerates or de-
accelerates the car back to the previously-recorded speed (see figure 1 for the
Fractal architecture and the Java interfaces).

From an external point of view, the component <Car> provides the inter-
face csp, of Java type CarSpeed, whose methods permit to set the throttle and
to get the current speed at which the car is travelling. The cruise component
<CruiseCtrl> represents the main control system, providing a Sensor interface,
some attributes representing the cruise operation, its target speed and a possi-
ble error code. This component also requires a CarSpeed interface in order to
interact with the car. Internally, the <CruiseCtrl> is made of two subcompo-
nents. The <SpeedCtrl> is controlled through its provided Prompt interface,
and when it is enabled, it adjusts the throttle to maintain the target speed.
The <SensorCtrl> pilots the <SpeedCtrl> according to the method calls on its
Sensor interface.

2.2 Main Principles of ConFract

The ConFract system dynamically builds contracts from specifications at as-
sembly time and updates them according to the dynamic reconfigurations of
components. A contract is thus a first class entity, always up-to-date regarding
the architecture and which also refers to components needed for its evaluation.
Among them, the ConFract system determines the responsibilities associated to
each specification, distinguishing a guarantor, which must be notified in case of
violation and can react to it, from beneficiaries, that are components which can
rely on the property. It is then possible to use these concepts to negotiate on
contracts at assembly or run times [6].

Currently in ConFract, specifications are written in the CCL-J language
(Component Constraint Language for Java) which is inspired by OCL [20] and
enhanced to be adapted to the Fractal model. CCL-J is an executable assertion

Enforcing Different Contracts in Hierarchical Component-Based Systems 53

language supporting classic constructs such as preconditions, postconditions and
invariants. The scope of specifications can be on a type interface, on a specific
Fractal interface or on a component instance, type or template.

2.3 Types of Contract

The ConFract system distinguishes several types of contracts according to the
specifications given by the designers.

Interface contracts are established on the binding between a client and a
server interface, only retaining specifications on the interface scope. They are
similar to object contracts [19,14]. For example, the following specifications of
the setThrottle and getSpeed methods are used to build the interface contract
between the two interfaces based on the CarSpeed Java type.
c o n t e x t void CarSpeed . s e t T h r o t t l e (f l o a t va l)

pre : 0 . 0 <= va l <= 10 .0
pos t : g e t T h r o t t l e () == va l

c o n t e x t f l o a t CarSpeed . ge t S pe e d ()
pos t : 0 . 0 <= r e s u l t <= speedParam .MAX

External composition contracts are located on the external side of each
component. They consist of specifications which refer only to external interfaces
of the component. They thus express the usage and external behavior rules of the
component. For example, the following specification scope is on the <SpeedCtrl>
component and states the postconditions of the method enable from the interface
prt. The postconditions refer to other interfaces on the component, namely atb
and csp, to define its behavior, that is the ctrl attribute is true and the target
speed is the current speed of the car.
on < Spe e dCt r l >

c o n t e x t void p r t . e n a b l e ()
pos t : a t b . c t r l == t r ue
pos t : a t b . t a r g e t S p e e d == c sp . ge tSpe e d () @pre

Internal composition contracts are located on the internal side of a com-
posite component. In the same way, they consist of specifications which refer
only to internal interfaces of the component and to external interfaces of its
subcomponents. They express the assembly and internal behavior rules of the
implementation of the composite component. The following specification con-
cerns the <CruiseCtrl> component, but also refers the interfaces of one of its
subcomponents <SpeedCtrl>. It asserts that the method on must only be called
to engage the cruise when the engine itself is on, and affects the <SpeedCtrl>
attributes, setting ctrl to true and err to zero.
on < C r u i s e C t r l >
c o n t e x t void sns . on ()

pre : sns . e ng ine I sO n ()
pos t : < S pe e dCt r l > . a t b . c t r l == t r ue
pos t : < S pe e dCt r l > . a t b . e r r == 0

Runtime checking of assertions. When building the contract, the Con-
Fract system includes, in each provision of a contract, the specification predicate

54 P. Collet, A. Ozanne, and N. Rivierre

(currently a CCL-J assertion), an interception context (the times and locations
where the provision is supposed to be satisfied) and the necessary references
to the context (component, interfaces, etc.). The contracts are then evaluated
when the appropriate event occurs : preconditions are checked at method entry,
postconditions at exit, etc.

2.4 Motivations

In order to validate the general nature of the ConFract system, it must integrate
formalisms that allow designers to specify and verify different aspects of com-
ponent assemblies. Formalisms such as temporal logic or process algebra make
possible the specification of the correct behaviors of a system at the desired ab-
straction level. The specifications can be formally verified, using theorem provers
or model checker tools, but can also serve to check the adherence of a component
implementation to its specification - typically by producing oracles from the sys-
tem specifications, in order to (runtime) check execution traces against a verified
model. Integrating such formalisms and verifications is thus very interesting, to
validate and evolve the ConFract metamodel and to show the combination of
different behavioral descriptions under the control of contracts.

3 TLA Specification

In this section we formulate in the Temporal Logic of Action (TLA) some prop-
erties of the cruise system and the associated oracles (see the appendix for a TLA
overview). For the sake of brevity we focus on the component <CruiseCtrl> and
its refinement by the sub-component <SpeedCtrl> of figure 1.

3.1 Specifications

<CruiseCtrl> We first specify in TLA the cruise component, taking into ac-
count a simplified requirement: the distance between the current speed of the
car and the target speed cannot increase when the cruise is engaged.

module CruiseCtrl
extends Integers
constant MAX
variable cruise
TypeInv Δ= cruise ∈ [ctrl : boolean , err : 0 . . MAX]

Init Δ= cruise = [ctrl �→ false, err �→ 0]
Next Δ= ∧ cruise′ ∈ [ctrl : boolean , err : 0 . . MAX]

∧ cruise.ctrl ⇒ cruise.err ′ ≤ cruise.err
∧ ¬cruise.ctrl′ ⇒ cruise.err ′ = 0

Spec Δ= Init ∧ �[Next]〈cruise〉

theorem Spec ⇒ �TypeInv

Fig. 2. The CruiseCtrl module

Enforcing Different Contracts in Hierarchical Component-Based Systems 55

The specification is as follow (cf. figure 2). MAX represents the maximum
speed at which the car can travel. TypeInv defines what values the state variable
cruise can assume in a behavior that satisfies the specification - a record whose
ctrl and err fields2 represent cruise attributes (cf. figure 1). Spec is formula 1
of the annex, ignoring liveness requirements. Init starts any correct behavior in
a state where the cruise is disengaged. Next defines the possible moves (using
the prime notation of TLA to distinguish values in the successor states). The
first conjunct ensures that the next state is conform to TypeInv, the second that
the error cannot increase when the cruise is engaged. The last conjunct sets the
error to 0 when the cruise disengages. The theorem asserts that the specification
implies the invariance properties TypeInv.

<SpeedCtrl> The correct behaviors of the speed controller component are
specified in figure 3. The role of this sub-component of the cruise (cf. figure 1)
is to set the throttle when the car is cruising in order to decrease the error.
Its specification refines the cruise specification of figure 2. The state has an
additional field trg representing the previously-recorded speed (the attribute
targetSpeed of figure 1). The possible moves of the speed controller are defined as
a disjunction of four statements, representing the incoming calls - enable, resume,
disable - on its interface (Prompt) and the outgoing calls - setThrottle - on its
interface (CarSpeed). The speed controller can always record the current speed
with no error when it engages (Enable). It can also engage with the previously-
recorded speed and the current error when it is disengaged (Resume). The error
cannot increase when it is engaged since it accelerates or de-accelerates the car
back to the recorded speed (Throttle). Finally, it can always disengage retaining
the speed setting with no error (Disable).

module SpeedCtrl
extends Integers
constant MAX
variable speed
TypeInv Δ= speed ∈ [ctrl : boolean , trg : 0 . . MAX , err : 0 . . MAX]

Init Δ= speed = [ctrl �→ false, trg �→ 0, err �→ 0]

Enable Δ= ∃ r ∈ 0 . . MAX : speed′ = [ctrl �→ true, trg �→ r , err �→ 0]
Resume Δ= ¬speed.ctrl ∧ ∃ e ∈ 0 . . MAX : speed′ = [speed except !.ctrl = true, !.err = e]
Throttle Δ= speed.ctrl ∧ ∃ e ∈ 0 . . speed.err : speed′ = [speed except !.err = e]
Disable Δ= speed′ = [ctrl �→ false, trg �→ speed.trg, err �→ 0]
Next Δ= Enable ∨ Resume ∨ Throttle ∨ Disable

Spec Δ= Init ∧ �[Next]〈speed〉

theorem Spec ⇒ �TypeInv
Cruise Δ= instance CruiseCtrl with cruise ← [ctrl �→ speed.ctrl, err �→ speed.err]
theorem Spec ⇒ Cruise!Spec

Fig. 3. The SpeedCtrl module

2 ctrl abstracts the activity of the cruise as a boolean, err represents the distance
between the current speed of the car and the target speed when the cruise is
engaged.

56 P. Collet, A. Ozanne, and N. Rivierre

Refinement. The last theorem of figure 3 asserts that the speed controller
implements the cruise (i.e. every behaviors satisfying Spec also satisfies the spec-
ification Cruise!Spec of the cruise), according to the state substitution obtained
by removing the field trg when instantiating the cruise.

Correctness. We applied the TLC model checker [13] to these specifications,
describing finite-state models by giving explicit value to the constant MAX .
These specifications and the refinement being simples no error was reported.

3.2 Oracles

As mentioned above, the intent of an oracle is to check execution traces of a
system under test against a verified model. Oracles address only safety proper-
ties (whose violation can be illustrated on finite behaviors) but are a practical
way to check if the system behaviors are correctly implemented, or to provide
counter-examples when they are not. An approach to produce oracles from TLA
specifications of a system is discussed in the appendix. We apply now this ap-
proach in the context of the speed controller - the principle is similar for the
cruise.

<SpeedCtrlOracle> An oracle for the speed controller component is spec-
ified in figure 4. The specification first extends the modules SpeedCtrl and IO .
The module SpeedCtrl (cf. figure 3) contains the state variable speed and the for-
mula Spec specifying the correct behaviors of the speed controller. The module
IO defines the io-operators representing observations of primitive values (cf. an-
nex). The operator ObsVal represents observations of the speed controller state.
Its definition relies on io-operators (e.g. ioNat to valuate the err integer field)
and is used to set the state in the initial state predicate InitObs and the next-
state relation NextObs of the observer specification Obs . Obs and Oracle are
respectively formula 2 and formula 3 of the annex.

module SpeedCtrlOracle
extends SpeedCtrl, IO

ObsVal Δ= [ctrl �→ ioBool, trg �→ ioNat, err �→ ioNat]

InitObs Δ= speed = ObsVal
NextObs Δ= speed′ = ObsVal
Obs Δ= InitObs ∧ �[NextObs]speed
Oracle Δ= (Init ∧ InitObs) ∧ �[(Next ∧ NextObs)]speed

Fig. 4. The SpeedCtrlOracle module

Discussion. A behavior of an actual speed controller might result in the
following execution trace:

c t r l t r g e r r
−−−−−−−−−−−−−−−
FALSE , 50 , 0 / / t h e c r u i s e i s d i s e n g a g e d
TRUE, 50 , 10 / / t h e b u t t o n resume i s p r e s s e d (e r r = 10)

Enforcing Different Contracts in Hierarchical Component-Based Systems 57

TRUE, 50 , 6 / / t h e c r u i s e s e t s t h e t h r o t t l e (e r r = 6)
TRUE, 45 , 0 / / t h e b u t t o n on i s p r e s s e d
TRUE, 45 , 0 / / t h e c r u i s e m a i n t a i n s t h e c u r r e n t spe e d
FALSE , 45 , 0 / / t h e c r u i s e i s d i s e n g a g e d
. . .

This behavior is valid but verifying manually its correctness would be labor
intensive. As discussed in annex, a runtime checker applied to formula Oracle
automatically computes behaviors from this kind of trace and checks their cor-
rectness against a verified model, reporting faulty behaviors when an error is
detected.

4 Integration

4.1 Requirements

As discussed above, the ConFract system currently makes verification by check-
ing assertions in the context of the execution flow, using directly the computation
data. Formal behavioral languages, on the other hand, make possible the spec-
ification of the correct behaviors of a system, the composition of sub-systems
and refinement reasoning about a system specified at multiple levels of abstrac-
tion. These specifications, as illustrated above with TLA, can be verified on a
model or serve to check execution traces acquired from an implementation of the
system.

As the means of verification may differ from a formalism to another the con-
tract system should embed different kinds of verification. People integrating a
formalism should then be able to define several verifications. In the case of TLA,
runtime checking of a specification requires specific oracle specifications to cap-
ture execution traces. More generally, the integration of a formalism is concerned
by the definition of appropriate observations on a system. Integrating such code
in ConFract is not an easy task. To facilitate it, a domain-specific language3

can enable formalism integrators to focus on the semantics of observations and
verifications rather than on technical particularities.

4.2 A Language for Observations and Verifications

The proposed DSL is dedicated to the definition of observations with associated
verification methods, thus acting as a pivot model in the ConFract system. This
language enables designers to define a set of rules. A rule describes where and
when observations occur, what values they capture, and the verifications to be
made.

Rule definition. A rule is defined according to the following syntax pattern:

3 A domain-specific language (DSL) is a programming language or executable specifi-
cation language that offers, through appropriate notations and abstractions, expres-
sive power focused on, and usually restricted to, a particular problem domain [28].

58 P. Collet, A. Ozanne, and N. Rivierre

On <a component >
Observe {

(va l : <some va lue > at : <some t ime s > ;)+
}
V e r i f y <some p r o p e r t i e s >

Its semantics is rather close to the assertion clauses introduced in section 2,
as executable assertion languages are rather operational in their expression. The
On block defines what spatial domain of the system is visible to the rule, that
is a component scope. The Observe block describes the observations operated in
the scope. The Verify block describes the checking part, which can of course use
the observed values.

The Observe part contains a list of observations that are defined by the state-
ments val:... at:.... The at block gives the times at which the value described in
the val block can be observed. Whereas the On blocks always refer to a com-
ponent, the val part contains a sequence of functional expressions that can be
evaluated in the On scope at defined times. Results may be bound to names if
needed. Finally, the Verify property is a predicate that takes the val values as
parameters.

For example, the third assertion from the internal composition contract of
section 2 can be automatically translated to the following rule:

On < C r u i s e C t r l >
Observe {

va l : e r r o r = < Spe e dCt r l > . a t b . e r r
at : e x i t void sns . on () ;

}
V e r i f y e r r o r == 0

It means that the attribute err of <SpeedCtrl> should be 0 for any of its
observations made on the on() method exit from the sns interface of the <Crui-
seCtrl> component. The val block specifies that <SpeedCtrl>.atb.err should be
observed and bound to name error, when events described in at occurs.

Event definition. In order to define when observations should occur, some
atomic observable events are provided. Inside a rule, events are considered as
sets. For example, in the following definition:

at : e nt r y boolean sns . i sE ng ine O n ()

the considered set of events contains only one event, the entry in the sns.isEngine-
On() method. Basic regular expressions enable designers to denote more easily
sets of events that encompass several method calls or several interfaces:

at : e n t r y ∗ sns . ∗ (∗) , e x i t ∗ sns . ∗ (∗)

This set of events contains all events that are determined by an entry or exit
of any method on the sns interface. This kind of events are common in aspect-
oriented systems [11].

Classic set operations are also provided (union, intersection, etc.) and an in-
terval is defined as the set of all occurring events between two events. Open
intervals can also be defined by referring to all events before or after another

Enforcing Different Contracts in Hierarchical Component-Based Systems 59

one. Moreover, events that are specific to components life cycle are also ma-
nipulable so that design or configuration events can be taken into account. For
example, adding or removing a component to/from a composite one, binding
and unbinding between two interfaces, starting or stopping a component. As the
Fractal platform provides these control features through extensible interfaces [4],
it is quite straightforward to be notified of these events.

It should be noted that a rule can refer to design time verifications that
are done, for example, on an ADL. Indeed, main architectural descriptions of
an ADL (containment, binding) can be translated into successive configuration
events, thus enabling the checking system to do appropriate verifications.

4.3 TLA Application

We now consider the use of the DSL to integrate TLA specifications and the
associated verifications in ConFract. Runtime and design time verifications are
considered.

Implementation adherence. To check at runtime the adherence of a com-
ponent’s implementation to its TLA specification, the context is the set of all
events at which the execution can be observed to complete the trace. We assume
that they may enter the trace in any order and number of times. A trace can
be checked against a verified model using an oracle specification, as proposed in
section 3.2. For example, the rule shown below considers the runtime checking
of an implementation of the component <SpeedCtrl>.
On < Spe e dCt r l >

Observe {
va l : a t t . c t r l , a t t . e r r , a r r . t a r g e t S p e e d
at : e x i t void c sp . s e t T h r o t t l e (f l o a t) ,

e x i t ∗ pp t . ∗ (∗) ;
}
V e r i f y T l a T r a c e (" S p e e d C t r l O r a c l e ")

Taken the component <SpeedCtrl> as the scope reference, observation events
described in the at construct are defined by all exits of the method setThrottle
from the csp interface and of all methods from the ppt interface. The val block
specifies that the attributes atb.ctrl, atb.err and atb.targetSpeed of <SpeedCtrl>
should be observed when events described in at occurs.

The Verify clause finally states that checking is done through the TlaTrace
technique, taking the SpeedCtrlOracle specification (cf. figure 4) as additional
parameter. TlaTrace refers to a TLA runtime checker, which is called by the Con-
Fract system. As mentioned in 3.2, the trace of the specified values from the val
block are used by the runtime checker, when evaluating SpeedCtrlOracle, to com-
pute a behavior and check its correctness against a verified model. Doing so, we
runtime check an external composition contract of the SpeedCtrl, i.e. the correct-
ness of the behaviors observed on its external interfaces against a verified model.

Design time verifications. Given the TLA specifications ofthe components
<SpeedCtrl> and <CruiseCtrl> (cf. section 3.1), one can consider checking
their correctness and the refinement that link them. For example, one can define

60 P. Collet, A. Ozanne, and N. Rivierre

the following rule on the <CruiseCtrl> before its sub-component <SpeedCtrl>
starts. This rule considers the correctness of the SpeedCtrl specification (cf. figure
3). It must be noted that this specification explicitly asserts that the speed con-
troller implements the cruise controller. So verifying the correctness of SpeedCtrl,
using a model checker tool, automatically checks the refinement property.
On < C r u i s e C t r l >

Observe {
va l : at : b e f or e < Spe e dCt r l > . s t a r t ;

}
V e r i f y TlaModel (" S p e e d C t r l ")

The definitions of before and after constructs in the ConFract metamodel enable
developers to implement a more specific observation. In this example, it would
enable developers to check this property on an ADL or just before the application
starts, and not to check it again if dynamic reconfigurations occur. The Verify
clause states that checking is done through the TlaModel technique, taking the
SpeedCtrl specification (cf. figure 3) as additional parameter. TlaModel refers
to a TLA model checker, called by the ConFract system. We thus model check
an internal composition contract of the CruiseCtrl, i.e. if the speed controller
specification implements the cruise controller specification.

4.4 Enhancing the ConFract System

Using the proposed DSL, the observations and associated verifications are now
made explicit. Depending on the formalism, they must be provided by the de-
signer or can be directly generated by the ConFract system (see figure 5). In the
case of assertions, as illustrated in section 2, ConFract now generates the obser-
vation rules from the specifications. Verification is then simply the evaluation of
the assertion.

TLA

input

generates
input

Contract Descriptor

refers to

inputAssertion

spec

<Car>

CarSpeed
csp

<CruiseCtrl>

<SensorCtrl>
sns

att
Attributes

att
Attributes

ppt
Prompt

csp
CarSpeed

<SpeedCtrl>

Sensor

On ...

Verify ...
...

Observe { ... }

spec

DSL

ConFract system

interprets

Rules

Fig. 5. The enhanced ConFract system

As for TLA, designers have to provide the observation rules associated to
the specifications and oracles. This is illustrated in figure 5 by the three input
files on the right. The ConFract system then interprets the rules to operate

Enforcing Different Contracts in Hierarchical Component-Based Systems 61

the observations and their associated verifications. But as the system does not
impose any naming convention on the TLA specifications, one must provide for
each contract a descriptor denoting the specifications and their oracle. In this
contract descriptor, the type of contract and the concerned components are also
described so that responsibilities can be deduced in the ConFract system [7].
On the contrary, the verification methods (TlaTrace and TlaModel in previous
section) are provided once and for all when TLA is integrated into ConFract.

More generally, using our DSL, it is possible to define observations at de-
sign, configuration or run times. Observations can also be about components’
interactions or configuration actions, so that one can capture the behavior of
both components and architectures. Moreover, the DSL allows the specifier to
choose the verification method for each observation rule, so that it is possible to
run the verification at different times of the application life cycle. For example,
the TLA oracle checking can be done at runtime or with post mortem traces
(see appendix), and this can be simply configured in the system. Finally, the
descriptor enables the specifier to explicitly bind its specification to a specific
kind of contract. As contracts contain responsibilities between components, this
makes possible to map specifications in very abstract models (such as TLA) to
a concrete interpretation in the final running application.

5 Related Work

Assertions and DbC. Since the Eiffel language [19], numerous works focused
on executable assertions in object-oriented languages, notably for Java. JML [14]
combines executable assertions with some features of abstract programs. It al-
lows the developer to build executable models which use abstraction functions on
the specified classes. Works on contracting components focus on using adapted
formalisms to specify component interfaces. Contracts on .NET assemblies have
been proposed [2], associating abstract programs that are written in AsmL to
interfaces, and interpreting them in parallel with the code. Several works have
also proposed contracts for UML components. In [21], contracts between service
providers and service users are formulated based on abstractions of action and
operation behavior using the pre and postcondition technique. A refinement rela-
tion is provided among contracts but they only concerns peer to peer composition
in this approach. In the same way, a graphical notation has been defined [29]
to express functional and extra-functional contracts on UML components ports.
All these works focus on interface specifications, whereas ConFract supports in
addition two forms of composition contracts.

ADLs. A number of Architecture Description Languages (ADLs) have been
proposed for capturing software architectures in terms of components and their
overall interconnection structure [18]. Many of these languages support formal
notations to specify components and connectors behaviors. For example, Wright
[1] and Darwin [17,16] use CSP-based notations, Rapide [15] uses partially or-
dered sets of events and supports simulation of reactive architectures. These for-
malisms allow to verify correctness of component assemblies, checking properties

62 P. Collet, A. Ozanne, and N. Rivierre

such as deadlock freedom. Some ADLs support implementation issues, typically
by generating glue code to connect component implementation. However most
of the work on applying formal verifications to component interactions has fo-
cused on design time. A notable exception is the SOFA component model and
its behavior protocol formalism based on regular-like expressions [23,22]. This
formalism (recently adapted to Fractal) is designed to specify communication
among components and permits the designer to verify the adherence of a com-
ponent’s implementation to its specification at runtime, while the correctness of
refining the specification can be verified at design time.

Runtime verifications. The idea of testing a running system to check its
conformity with a behavioral specification is not new, e.g. [8,24]. Recent works
aim at developing practical testing environments for software developers as well
as formal frameworks for defining finite trace monitoring logics. For example, the
objective of the PathExplorer project [10] is to construct a flexible framework for
efficient monitoring of program executions. It provides support to check whether
an execution trace violates some Linear Temporal Logic (LTL) formula. A review
of several other attempts to develop runtime verifications systems is provided
in [3]. In this paper, the authors propose a rule-based framework dedicated to
the definition and implementation of a large class of finite trace monitoring
logics. In [9] they present JSpy, a system for instrumenting Java bytecode which
aims at providing runtime analysis of Java programs. JSpy’s input consists of a
collection of rules, where a rule is a pair of predicate (syntactic constraints on a
Java statement) and action (logging information to be inserted in the bytecode).
Our work is quite similar, but it provides observation means on an architecture
of components rather than on bytecode.

6 Conclusion

The work presented here targets both design and runtime verifications. How-
ever, rather to introduce a new specification language, we focus on a framework
intended to integrate different formalisms for contracting component behaviors.
The integration relies on a DSL dedicated to the association of observations with
verification methods, and specialized to hierarchical component-based systems.
It particularly takes into account the components structure (interfaces, bindings,
nested components...) and life cycle (design, re-configurations, runtime).

The integration of an assertion-based language and a temporal logic have been
described for illustration. These two formalisms clearly show different needs in
the handling of specifications, oracles, observations and verifications. With the
proposed DSL and the appropriate descriptors, the integration of a formalism
is characterized. People involved in formalisms integration can now describe the
formalism in ConFract and determine which part can be generated or must be
provided by final designers. Besides, events are always confined in a component
scope, facilitating monitoring. Moreover, as the contract writer can choose obser-
vation points, it is easy to accommodate the quantity of observations to specific
deployment constraints.

Enforcing Different Contracts in Hierarchical Component-Based Systems 63

This work can be seen as a first step to put together different specification
languages, formal and semi-formal, under the control of a contracting system,
so that they can be used at best all along the life cycle of component-based
systems. For example, assertions are close to the developer. Temporal logics are
more expressive but require a less trivial capture of the state.

Future works include the extension of the proposed DSL to add actions in ob-
servation rules. We also plan to integrate other formalisms well-suited to specify
communication among components, such as behavior protocols [22], as well as
languages dedicated to extra-functional properties.

Acknowledgements. This work was partially supported by France Telecom under
the collaboration contracts number 422721832-I3S and 46132097-I3S.

References

1. Allen, R. J., and Garlan, D. A formal basis for architectural connection.
ACM, Transactions on Software Engineering and Methodology 6 (July 1997).

2. Barnett, M., and Schulte, W. Runtime Verification of .NET Contracts. Jour-
nal of Systems and Software 65, 3 (2003), 199–208.

3. Barringer, H., Goldberg, A., Havelund, K., and Sen, K. Rule-based run-
time verification. In VMCAI (2004), B. Steffen and G. Levi, Eds., vol. 2937 of
Lecture Notes in Computer Science, Springer, pp. 44–57.

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B.
An Open Component Model and Its Support in Java. In ICSE 2004 - CBSE7
(May 2004), vol. 3054 of LNCS, Springer Verlag.

5. Bruneton, E., Coupaye, T., and Stefani, J.-B. The Fractal component model.
Specification, Technical Report v1, v2, The ObjectWeb Consortium, 2002/2003.
http://fractal.objectweb.org.

6. Chang, H., and Collet, P. Fine-grained Contract Negotiation for Hierarchical
Software Components. In 31th EUROMICRO Conference 2005, 30 August - 3
September 2005, Porto, Portugal (2005), IEEE Computer Society.

7. Collet, P., Rousseau, R., Coupaye, T., and Rivierre, N. A Contracting
System for Hierarchical Components. In CBSE’2005, St. Louis, MO, USA, May
14-15, 2005, Proceedings (2005), vol. 3489 of LNCS, Springer Verlag, pp. 187–202.

8. Diaz, M., Juanole, G., and Courtiat, J. P. Observer – a concept for formal
on-line validation of distributed systems. IEEE Trans. on Software Engineering
20, 12 (Dec. 1994), 900–913.

9. Goldberg, A., and Havelund, K. Instrumentation of java bytecode for runtime
analysis. Fifth ECOOP Workshop on Formal Techniques for Java-like Programs
(FTfJP’03)) (July 2004).

10. Havelund, K., and Roşu, G. Efficient monitoring of safety properties. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 6, 2 (Aug.
2004), 158–173.

11. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M., and Irwin, J. Aspect-oriented programming. In Proceedings Euro-
pean Conference on Object-Oriented Programming, M. Akşit and S. Matsuoka, Eds.,
vol. 1241. Springer-Verlag, Berlin, Heidelberg, and New York, 1997, pp. 220–242.

12. Lamport, L. The Temporal Logic of Actions. ACM Trans. on Programming
Languages and Systems 16, 3 (May 1994), 872–923.

64 P. Collet, A. Ozanne, and N. Rivierre

13. Lamport, L. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison Wesley, July 2002.

14. Leavens, G. T., Baker, A. L., and Ruby, C. JML: A notation for detailed
design. In Behavioral Specifications of Businesses and Systems (1999), H. Kilov,
B. Rumpe, and I. Simmonds, Eds., Kluwer, pp. 175–188.

15. Luckham, D. C., and Vera, J. An event-based architecture definition language.
IEEE Trans. Software Eng. 21, 9 (1995), 717–734.

16. Magee, J., and Kramer, J. Concurrency: state models & Java programs. John
Wiley & Sons, Inc., 1999.

17. Magee, J., Kramer, J., and Giannakopoulou, D. Behaviour analysis of
software architectures. In WICSA (1999), pp. 35–50.

18. Medvidovic, N., and Taylor, R. N. A classification and comparison framework
for software architecture description languages. In IEEE Transactions on Software
Engineering (Jan. 2000), vol. 26(1), pp. 70–93.

19. Meyer,B. Applying “design by contract”. IEEEComputer 25, 10 (Oct. 1992), 40–51.
20. Object Management Group. Object Constraint Language Specification. Tech.

Rep. version 1.1, ad/97-08-08, IBM www.software.ibm.com/ad/ocl, Sept. 1997.
21. Pahl, C. Components, contracts, and connectors for the unified modelling lan-

guage UML. In FME 2001 - Formal Methods Europe (2001), vol. 2021 of Lecture
Notes in Computer Science, Springer Verlag, pp. 259–277.

22. Plasil, F. Enhancing component specification by behavior description: the sofa ex-
perience. In WISICT ’05: Proceedings of the 4th international symposium on Infor-
mation and communication technologies (2005), Trinity College Dublin, pp. 185–190.

23. Plasil, F., and Visnovsky, S. Behavior protocols for software components.
IEEE Transactions on Software Engineering 28(11) (Nov. 2002).

24. Richardson, D. J., Aha, S. L., and O’Malley, T. O. Specification-based
test oracles for reactive systems. In 14th International Conference on Software
Engineering (ICSE’92) (1992), pp. 105–118.

25. Rivierre, N., Horn, F., and Tran, F. D. On monitoring concurrent systems
with TLA: an example. Fifth International Conference on Application of Concur-
rency to System Design (ACSD’05), St Malo, FR (June 2005), 36–47.

26. Szyperski, C. Component Software — Beyond Object-Oriented Programming,
2nd ed. Addison-Wesley Publishing Co. (Reading, MA), 2002.

27. TLA. References to the TLA literature can be found at http://lamport.org/.
28. van Deursen, A., Klint, P., and Visser, J. Domain-specific languages: An

annotated bibliography. SIGPLAN Notices 35, 6 (2000), 26–36.
29. Weis, T., Becker, C., Geihs, K., and Plouzeau, N. A UML meta-model for

contract aware components. In UML 2001 - The Unified Modeling Language (Oct.
2001), vol. 2185 of Lecture Notes in Computer Science, Springer Verlag, pp. 442–456.

Appendix: TLA

The Temporal Logic of Actions (TLA) has been proposed by Lamport for the
specification and verification of the correct behaviors of concurrent and reactive
systems4 [12,13]. TLA allows the composition of sub-systems and refinement rea-
soning. A behavior represents an execution of the system as an infinite sequence
of states where a state is an assignment of values to state variables. An action
4 More precisely, the specification language is TLA+.

Enforcing Different Contracts in Hierarchical Component-Based Systems 65

formula expresses the relation between the value of variables in two successive
states. TLA specifications are usually written in the canonical form:

Spec Δ= Init ∧ �[Next]x ∧ L (1)

where the state predicate Init characterizes the system’s initial states, Next is an
action formula typically written as a disjunction of possible moves (� asserts that
Next is always true), x is the tuple of state variables and L describes the liveness
requirements. Spec represents all behaviors satisfying formula 1. Compared to
other temporal logics, TLA differs in that it allows to specify both a system
and its temporal properties within the same formalism. The verification of TLA
specifications has been amply studied [27] and can be automated with the model
checker tool TLC [13].

TLA oracles. The intent of an oracle is to check execution traces of a system
under test against a verified model. An approach to produce oracles from TLA
specifications of a system (applied in figure 4 of section 3.2) has been proposed in
[25] as follow. Let Spec be the specification of the correct behaviors of a system
(Spec is formula 1) and Obs be a specification of an observer of this system:

Obs Δ= InitObs ∧ �[NextObs]x (2)

Obs represents arbitrary valuations of the system state at each step. Its definition
relies on specific TLA operators (referred as io-operators) representing arbitrary
values. For example, an arbitrary boolean value is defined as5:

ioBool Δ= choose val : val ∈ boolean .

An oracle is specified as a simple form of composition of formula Obs and
Spec. It represents the simultaneous advance of any observable behavior against
a correct behavior.

Oracle Δ= (InitObs ∧ Init) ∧ �[NextObs ∧ Next]x (3)

The intent of formula Oracle is to be evaluated by a (runtime) checker acting
as a model-checker except for the io-operators. When evaluating these operators,
the checker captures (online or postmortem) observations of a system under test
through an input stream. That way, any execution trace captured by Obs but
satisfying not Spec will not satisfy Oracle and be reported as a deadlock. The
requirement (an executable form of few io-operators) can be easily achieved by
the TLC model checker since this tool allows a TLA operator to be overridden
by a Java method [13]. For example the operator ioStr , defined as an arbitrary
string value, is overridden as:

p u b l i c s t a t i c B u f f e r e d R e a d e r i n = . . .
p u b l i c s t a t i c Value i o S t r () { r e t u r n new S t r i n g V a l u e (i n . r e a d L i n e ()) ; }

5 The expression choose x : F equals an arbitrarily chosen value x that satisfies
the formula F [13]. Note that io-operators are required only for primitive values
(boolean...), since other values are construction of primitive values.

Automated Pattern-Based Pointcut Generation

Mathieu Braem, Kris Gybels, Andy Kellens�, and Wim Vanderperren

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{mbraem, kgybels, akellens, wvdperre}@vub.ac.be

Abstract. One of the main problems in Aspect-Oriented Software
Development is the so-called fragile pointcut problem. Uncovering and
specifying a good robust pointcut is not an easy task. In this paper
we propose to use Inductive Logic Programming, and more specifically
the FOIL algorithm, to automatically identify intensional (or “pattern-
based”) pointcuts. We present the tool chain we implemented to induce
a pointcut given a set of identified joinpoints. Using several realistic
medium-scale experiments, we show that our approach is able to auto-
matically induce robust pointcuts for a set of joinpoints.

1 Introduction

Separation of concerns [29] is a crucial property for realizing comprehensible
and maintainable software. Current software engineering paradigms do however
not always succeed in cleanly modularizing all concerns. Consequently, these
concerns are spread and repeated over several modules in the system. Due to this
code duplication, it becomes very hard to alter such concerns within the system.
These concerns are called crosscutting because the concern virtually crosscuts
the decomposition of the system. Typical examples of crosscutting concerns are
debugging concerns such as logging [19] and contract verification [33], security
concerns [8] such as confidentiality and access control, and business rules [28,9]
that describe business-specific logic.

Aspect-Oriented Software Development aims to provide a solution for these
crosscutting concerns [19]. To this end, AOSD introduces an additional module
construct, named an aspect. Traditional aspects consist of two main parts: a
pointcut definition and an advice. Points in the program’s execution where an
aspect can be applied are called joinpoints. The declarative pointcut language
allows to concisely describe a set of joinpoints where the aspect should be applied.
The advice is the concrete behavior that is to be executed at certain joinpoints,
typically before, after or around the original behavior of the joinpoints.

Since existing software systems can benefit from the advantages of AOSD
as well, a number of techniques have been proposed to identify crosscutting
concerns in existing source code (aspect mining) and transform these concerns
into aspects (aspect refactoring). When refactoring a concern to an aspect, a
pointcut must be written for this aspect. Pointcut languages like for instance
� Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through

Science and Technology in Flanders” (IWT Vlaanderen).

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 66–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Pattern-Based Pointcut Generation 67

the CARMA pointcut language allow specifying intensional (or “pattern-based”)
pointcuts, so that the pointcut does not easily break when the base code is
changed [11]. While existing aspect refactoring techniques also automatically
generate a pointcut, they typically only provide an enumerative pointcut, which
is fragile with respect to evolution of the base program. Turning this pointcut
into a pattern-based pointcut is left to be done manually by the developer.

In this paper we propose to exploit Inductive Logic Programming techniques
to automatically deduce an intensional pointcut from a given set of joinpoints.
The next section details the problem of uncovering intensional pointcuts and
introduces the running example used throughout this paper. Section 3 introduces
Inductive Logic Programming and the concrete algorithms used and in section 4
we apply ILP for automatically generating intensional pointcuts. Afterwards, we
present the tools created to support our approach, compare with related work
and state our conclusions.

2 Background and Problem Statement

2.1 Pattern-Based Pointcuts

The main problem in maintaining aspect-oriented code is the so-called fragile
pointcut problem [21]. Pointcuts are deemed fragile when seemingly innocent
changes to the base program, such as renaming or relocating a method, break a
pointcut such that it no longer captures the joinpoints it is intended to capture.
When code is added to a program and introduces new joinpoints in the joinpoint
model of the program, pointcuts are similarly considered fragile when some of
these new joinpoints should be captured by the pointcut but it fails to do so.

1 Point {
2

3 x,y;
4

5 setX(a) {
6 .x=a;
7 }
8 setY(a) {
9 .y=a;

10 }
11 getX() {
12 x;
13 }
14 getY() {
15 y;
16 }
17 }

Fig. 1. A simple Point class

As described in our previous work [11] and that of others [20], pointcuts
are particularly fragile when they are written in an enumerative style. As an
example take the Point class of figure 1. When adding an observer aspect, we

68 M. Braem et al.

need a pointcut that captures all executions of methods on the Point class that
are state changing. A purely enumerative pointcut is shown in figure 2.

The pointcut language used in the figure and the remainder of the paper is
based on CARMA but is restricted to a static joinpoint model, we’ll refer to
it as PAGH1 to make the distinction. CARMA [11] uses a fully dynamic join-
point model, which for example allows conditions in pointcuts on the values
associated with joinpoints. PAGH has a purely static joinpoint model, which
effectively equates joinpoints with shadow joinpoints. An extension of the work
presented here that takes a dynamic joinpoint model into account is left for fu-
ture work. The important point however is that PAGH retains other features
of CARMA which allow writing advanced intensional pointcuts: the use of logic
variables, recursion and full access to the static shadow joinpoint model of the
program.

1 stateChanges(Jpvar):
2 execution(Jpvar,setX).
3 stateChanges(Jpvar):
4 execution(Jpvar,setY).

Fig. 2. A pointcut for the Observer aspect, written in a purely enumerative style

The pointcut of figure 2 matches if the joinpoint at hand is either the execu-
tion of method setX or the execution of method setY. Such an enumeratively de-
scribed pointcut obviously breaks easily. For example, when we evolve the point
class to a three-dimensional point and add a setZ method, the stateChanges
pointcut does not match the added method and thus fails to comply with the
intention of capturing all methods that change the state of a Point object.

The problem with enumerative pointcuts is of course the motivation for writ-
ing pointcuts in a more pattern-based style, exploiting a pattern that is exhibited
by the joinpoints that should be captured. The pointcut in figure 3 uses quantifi-
cation over the names of methods that start with set. It remains consistent when
evolving the point to a three-dimensional point. However, consider for example
the addition of a reset method that resets the x and y dimension of the point
to the default values. This method does not have the begins with the keyword set
pattern in common with the other state changing methods. Conversely, consider
the addition of a method setting which simply returns the value of a setting,
rather than doing any assignments. This method also exhibits the begins with
keyword set pattern but should in fact not be captured by the pointcut. We can
capture the reset and setting methods as a deviation from the pattern by in-
cluding an extra condition that the name of the method may also be reset and
should not be setting, but this tends to add an enumerative list of exceptions
to the pointcut.

1 The name refers to a concept from the same realm as does Karma, see http://
memory-alpha.org/en/wiki/Pagh

Automated Pattern-Based Pointcut Generation 69

1 stateChanges(Jpvar):
2 execution(Jpvar,MethodName),
3 startsWith(MethodName,‘set’).

Fig. 3. A pointcut for the Observer aspect, written in a pattern-based style

1 stateChanges(Jpvar):
2 execution(Jpvar,MethodName),
3 inMethod(AssignmentJP,MethodName),
4 isAssignment(AssignmentJP,AssignmentTarget),
5 instanceVariable(AssignmentTarget,ClassName).

Fig. 4. A pointcut for the observer

Using an advanced pointcut language that gives access to the full static join-
point model of methods, it is possible to exploit a more robust pattern [11].
Figure 4 illustrates a pointcut that exploits the pattern that all the state chang-
ing methods contain an assignment to an instance variable of an object. This
pointcut does not break when adding the setting or reset methods.

2.2 Automated Support for Pattern-Based Pointcuts

The area of aspect refactoring and aspect mining is a particularly interesting
research area within AOSD that is currently being explored. In performing as-
pect mining and refactoring, the problem crops up of finding a pointcut for the
newly created aspect. Also, as with object-oriented refactoring, research is being
performed on how to automate these refactorings using tool support. In such
tools, it would be interesting to be able to automate the step of generating a
pattern-based pointcut as well. Currently, most proposals for automating as-
pect refactoring simply generate an enumerative pointcut, which then too easily
breaks when the program is evolved after refactoring.

In this paper we present the results of using a specific machine learning tech-
nique for deriving a pattern exhibited by examples. In particular we use Induc-
tive Logic Programming, which is in fact an algorithm that works similarly to the
process we’ve described in the previous section for coming to an evolution-robust
pattern-based pointcut. We further describe this relation informally in the next
section, and present in detail the ILP algorithm.

3 Inductive Logic Programming

3.1 Logic Induction of Pointcuts

The algorithm of logic induction is similar to the process we followed in section
2.1 for coming to a more evolution-robust pattern-based pointcut. Informally,
the way ILP works and the relationship to this manual process is as follows:

70 M. Braem et al.

positive examples: ILP takes as input a number of positive examples, in our
setting of deriving pattern-based pointcuts these would be joinpoints that
the pointcut should capture.

background information: A second input to ILP is background information
on the examples. In our setting, these would be the result of predicates in
the pointcut language that are true for the joinpoints, or in other words,
the data associated with the joinpoints. Such as the name of the message of
the joinpoint, the type of the joinpoint (message, assignment, ...), in which
method or class the joinpoint occurs.

induction: ILP follows an iterative process of inducing a logic rule for combi-
nations of the positive examples. This is similar to the manual process we
followed in the previous section: we take two examples such as the methods
setX and setY, and find that in the background information the fact that
the names of the methods start with set holds true.

negative examples: ILP also takes as input a number of negative examples,
the rules that are derived during the iterative induction should never cover
negative examples. Negative examples effectively force the algorithm to use
other information of the background in the induced rules. This is similar
to the process followed in the previous section where we added a setting
method which should not be covered by the pointcut.

3.2 FOIL

In this paper we use the FOIL ILP algorithm [30]. FOIL learns hypotheses
which are sets of first-order rules, similar to Horn clauses. However, since no
literals containing function symbols are allowed, the rules are more restricted
than Horn clauses. On the other hand, the rules are more expressive because
literals appearing in the body of the rules may be negated.

Pseudo-code for the algorithm is shown in figure 5. The algorithm takes a top-
down approach to ILP. Starting with the most general rule, FOIL specializes it
until no more negative examples are covered. The algorithm involves a double
loop to find suitable queries. In the outer loop the algorithm generates rules, each
time starting with the most general rule, covering all examples. In the inner loop,
it adds clauses to the rule, until no more negative examples are covered. The
algorithm halts when all positive examples have been covered.

The algorithm generates candidate literals based on the literals and variables
already present in the rule, and on predicates found in the background infor-
mation. Suppose the current rule is Predicate(X1, X2, . . . , Xk) ← Literal1 . . .
Literaln. FOIL now considers the following literals for addition as Literaln+1.

– Q(V1, . . . , Vr), where Q is predicate occurring in the background information
and where Vi(∀i, 0 < i < r) is either a new variable or a variable already
present in the rule. At least one of the variables Vi has to be present in rule.

– Equal(Xj, Xk), where Xj and Xk are variables already present in the rule.
– The negation of the literals formed in the rules above.

Automated Pattern-Based Pointcut Generation 71

FOIL(Target predicate, Positives, Negatives, Background)

1: Learned rules ← {}
2: while Positives is not empty do {learn a new rule}
3: NewRule ← a new rule for Target predicate with no preconditions
4: NewRuleNeg ← Negatives
5: while NewRuleNeg is not empty do {specialize NewRule}
6: Candidate literals ← generate candidate new literals for NewRule, based on

Background
7: calculate Foil Gain for each literal in Candidate literals
8: add literal with highest Foil Gain to preconditions of NewRule
9: NewRuleNeg ← subset of NewRuleNeg satisfying NewRule preconditions

10: end while
11: Learned Rules ← Learned Rules ∪ {NewRule}
12: Positives ← Positives\{ members of Positives covered by NewRule}
13: end while
14: return Learned rules

Fig. 5. Pseudo-code for the FOIL Inductive Logic Programming algorithm

At each step of the inner loop a heuristic function is evaluated for all candidate
literals. The result of this function shows how much the rule gains from adding
this literal. The candidate literal which results in the highest gain is chosen as the
next literal. This gain function, shown in figure 6, is a simple measure, based on
the comparison of the number of covered positive (p) and negative (n) examples
before (p0, n0) and after (p1, n1) the literal is added to the rule. The numbers of
bindings that remain positive (t) after adding the literal to the rule is factored in.

Foil Gain(L, R) = t log2
p1

p1 + n1
− log2

p0

p0 + n0

Fig. 6. Foil Gain function

4 Applying ILP for Pointcut Abstraction

The FOIL algorithm is able to find rules from a set of logic facts. It requires a
number of positive examples and a set of negative examples to avoid oversimpli-
fication. In addition, it expects a sufficiently large set of background information
in order to be able to induce a rule. The positive examples for FOIL are the join-
points where the aspect needs to be applied. They can either be manually selected
or automatically using for example an aspect mining technique. All other join-
points are defined as negative examples for the ILP algorithm. As background
information, we construct a logic database consisting of the information that is
normally available in the pointcut language on these joinpoints. These are the

72 M. Braem et al.

Joinpoint predicates
isRead(Joinpoint, Variable)
isSendOf(Joinpoint, Method)
returnStatement(Joinpoint)
execution(Joinpoint, Method)
inMethod(Joinpoint, Method)
isAssignment(Joinpoint, Variable)

Structural predicates
methodInClass(Method, Class)
classExtends(Class, Class2)
classImplements(Class, Class2)
argumentOf(Variable,Method,Pos)
instanceVariable(Variable, Class)
typeOf(Variable, Class)

Modifier predicates
isFinal(Arg)
isPublic(Arg)
isAbstract(Arg)
isStrict(Arg)
isStatic(Member)

newStatement(Joinpoint, Class)
throwStatement(Joinpoint, Variable)
catchStatement(Joinpoint, Class)
finallyStatement(Joinpoint)
synchronizedBlock(Joinpoint, Variable)
castStatement(Joinpoint, Class, Variable)
instanceofStatement(Joinpoint,Class,Variable)

methodReturns(Method, Class)
classInPackage(Class, Package)
isInterface(Class)
isClass(Class)
isMethod(Method)
isVariable(Variable)
isConstructor(Method)

isProtected(Member)
isPrivate(Member)
isVolatile(Variable)
isTransient(Variable)
isSynchronized(Method)
isNative(Method)
annotationOf(Member, Class)

Fig. 7. Predicates available in the PAGH crosscut language to select joinpoints, the
solutions for these predicates are used as background information for the ILP algorithm

solutions of the predicates shown in figure 7, which also includes predicates about
the relationships between classes etc. Because this pointcut language is based
on a purely static joinpoint model, these solutions can be determined using only
the program’s source or compiled representation, i.e. compiled Java classes.

The algorithm will induce a pointcut that captures exactly the joinpoints
currently in the program that should be captured (the positive examples), and
none of the others (the negative examples). This is guaranteed by the algorithm.
What we furthermore expect is that the induced pointcut also is a non-fragile
or robust pointcut. In general we will not have a specific pointcut in mind that
the algorithm should derive (otherwise the application of ILP would be rather
pointless), though in these experiments we can use the robust pointcut we derived
manually in section 2.1 as a benchmark for comparison.

4.1 Basic Point class

As an example of our approach, take the simple Point class from figure 1. In a first
step we derive the static joinpoints from this code, and derive the information
on all of these that is given by the predicates of the pointcut language (figure 7).

Automated Pattern-Based Pointcut Generation 73

returnStatement(jp1).
returnStatement(jp6).
returnStatement(jp11).
returnStatement(jp14,).
returnStatement(jp17).
inMethod(jp1,‘Point.setX(I)I’).
inMethod(jp2,‘Point.setX(I)I’).
inMethod(jp3,‘Point.setX(I)I’).
inMethod(jp4,‘Point.setX(I)I’).
inMethod(jp6,‘Point.setY(I)I’).
inMethod(jp7,‘Point.setY(I)I’).
inMethod(jp8,‘Point.setY(I)I’).
inMethod(jp9,‘Point.setY(I)I’).
inMethod(jp11,‘Point.getX()I’).
inMethod(jp12,‘Point.getX()I’).
inMethod(jp14,‘Point.getY()I’).
inMethod(jp15,‘Point.getY()I’).
inMethod(jp17,‘Point.Point()V’).
isRead(jp3,‘l0’).
isRead(jp4,‘l1’).
isRead(jp8,‘l2’).
isRead(jp9,‘l3’).

isRead(jp12,‘Point.x’).
isRead(jp15,‘Point.y’).
methodInClass(‘Point.setX(I)I’,‘Point’).
methodInClass(‘Point.setY(I)I’,‘Point’).
methodInClass(‘Point.getX()I’,‘Point’).
methodInClass(‘Point.getY()I’,‘Point’).
methodInClass(‘Point.Point()V’,‘Point’).
classExtends(‘Point’,‘java.lang.Object’).
methodReturns(‘Point.setX(I)I’,‘int’).
methodReturns(‘Point.setY(I)I’,‘int’).
methodReturns(‘Point.getX()I’,‘int’).
methodReturns(‘Point.getY()I’,‘int’).
isAssignment(jp2,‘Point.x’).
isAssignment(jp7,‘Point.y’).
instanceVariable(‘Point.x’,‘Point,int’).
instanceVariable(‘Point.y’,‘Point,int’).
classInPackage(‘java.lang.Object’,‘java.lang’).
execution(jp0,‘Point.setX(I)I’).
execution(jp5,‘Point.setY(I)I’).
execution(jp10,‘Point.getX()I’).
execution(jp13,‘Point.getY()I’).
execution(jp16,‘Point.Point()V’).

Fig. 8. Part of the background information for the Point class of figure 1

This forms the background information for the logic induction algorithm, part
of this generated background information is shown in figure 8.

The methods that are state changing on this simple Point class are the meth-
ods setX and setY only. We identify these two joinpoints as positive examples
of our desired stateChanges pointcut, which are the joinpoints jp0 and jp5 re-
spectively. The pointcut should not cover the other joinpoints: the joinpoints
jp10 and jp13, for instance, denote the execution of the getX and getY method.
Clearly, these methods are not state changing. So these and all other joinpoints
besides jp0 and jp5 are marked as negative examples. We give the FOIL algo-
rithm the positive examples stateChanges(jp0) and stateChanges(jp5). The
resulting rule is shown in figure 9. The pointcut selects all executions of methods
that contain an assignment.

The resulting pointcut is clearly not very robust. An evolution that easily
breaks the pointcut would be to have a getX method that does an assignment
to a local variable which does not mean that that method changes the state of
an object, yet its execution would be captured by the pointcut. This result is
however not very surprising: the Point class is small and does not include non-
state changing methods that do assignments to local variables which would have
served as a negative example for the FOIL algorithm. As the induced pointcut
covers all positive examples and no negative ones, the induction stops and no
further predicates from the background information are used to limit the rule to

74 M. Braem et al.

only the positive examples. The ILP algorithm works better on larger programs,
so that more negative examples are available to avoid oversimplified pattern-
based pointcuts.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D).

Fig. 9. Induced stateChanges pointcut

In order to have a more realistic example, we apply our experiment to the
Point class bundled with Java. We do not include a full listing of the gener-
ated background, but instead we give some statistics about the generated facts.
Table 1 compares the number of facts found in the AWT Point class to the
number of facts from the basic Point example.

Table 1. Generated facts statistics

Classes # Facts # Joinpoints
Toy example 1 71 10
AWT Point class 1 364 70
Complete AWT library 362 276863 65060

We identify four execution joinpoints in the AWT Point class where a state
changing method is invoked and input them as positive examples to the al-
gorithm. The remaining 66 joinpoints are defined as negative examples. The
resulting pointcut is shown in figure 10. In this case, the algorithm generates a
pointcut that is sufficiently robust for evolution: it is in fact the same pointcut
we determined manually in section 2.1.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E).

Fig. 10. Resulting pointcut when applying our approach to the AWT Point class

4.2 Extended Experiments

In order to provide a limited evaluation of our approach, we conduct several
more involved experiments using the state-changes example on the Java AWT
framework.

Automated Pattern-Based Pointcut Generation 75

Large fact database: We apply our approach to the complete Java AWT
library in order to evaluate whether our approach still returns a useful result
when the number of facts is very large. This library contains approximately 362
classes and generates more than 250000 facts. The result is the same as for the
Java AWT Point class alone: the same pointcut as was determined manually in
section 2.1 is induced. For a performance evaluation, we refer to section 5.

Negation: One of the distinguishing features of the FOIL algorithm in compar-
ison to other ILP algorithms is its ability to induce rules containing negations.
As a variation of the state changing methods example, we need a pointcut for
the executions of methods that change the observable representation of an ob-
ject. This means the method does assignments to instance variables that are
not declared transient using the modifier transient in Java: conceptually, these
fields are not part of the object’s persistent state and are not retained in the
object’s serialization. This is used for example when a class defines a cache in
order to optimize some parts of its operations. As such, observers do not need to
be notified when transient fields are altered. When applying this experiment to
the Java AWT library, our algorithm induces the rule shown in figure 11, which
in comparison to the pointcuts induced above adds exactly the properties in the
background to distinguish these joinpoints from the negative examples that we
would expect it to add, i.e. the fact that the instance variables being assigned
to are not declared transient.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E),
6 not(isTransient(D)).

Fig. 11. Resulting pointcut for non-transient field assignments in Java AWT

InEquality: The FOIL algorithm is also able to induce inequality for certain
rule variables. For example, suppose we want to detect all methods that contain
“illegal” assignments, namely assignments to instance variables of other classes.
The rule of figure 12 is induced when we apply this experiment to the AWT
library. This rule declares that a method is illegally state changing when it
contains an assignment to an instance variable that does not belong to the same
class as the method.

Recursion: Another advantage of the FOIL algorithm is its ability to induce
recursive rules. For example, suppose we redefine state changing methods to
also include execution joinpoints of methods that indirectly change the state
of an object by invoking a method that is state changing. This is useful for
implementations of the observer aspect that take into account the jumping aspect
problem [4,11]. In order to capture this pattern robustly, two pointcut rules are

76 M. Braem et al.

1 illegalStateChanges(A):
2 execution(A,B),
3 methodInClass(B,C),
4 inMethod(D,B),
5 isAssignment(D,E),
6 instanceVariable(E,F),
7 C<>F.

Fig. 12. Resulting pointcut for field assignments from a different class than the class
defining the field

required, one of which is recursive. In this experiment our ILP implementation
however did not induce such a recursive pointcut rule although theoretically the
algorithm is able to induce recursive rules. The algorithm induces several rules
that are unnecessarily complicated, depending on information that is irrelevant
to the state changing concern. This pointcut breaks easily when the base program
evolves because it is concerned with too much information. However, when we
use method names as positive examples rather than joinpoints, a recursive rule
is induced which does not exhibit such fragility issues, the resulting rule is shown
in figure 13. All that would be necessary to turn this into a pointcut is an extra
condition which gets the joinpoint associated with the method name. A possible
reason that the algorithm doesn’t try adding this condition may have to do with
the gain function, but this needs to be investigated further in future work.

1 stateChanges(A):
2 inMethod(B,A),
3 isAssignment(B,C),
4 instanceVariable(C,D).
5 stateChanges(A):
6 inMethod(B,A),
7 isSendOf(B,C),
8 stateChanges(C).

Fig. 13. Recursive stateChanges rule

5 Tool Support

Our approach is supported by a fully automatic tool chain, which is illustrated
in figure 14. The tool chain consists of the following tools:

– FactGen:This tool translates a range of Java class files and/or jar files to a set of
facts representing these classes.The tool uses the javassist library [7] to process
the binary class files. The javassist library provides a high-level reflective API
that allows to inspect the full Java byte code, including method bodies. The
output of the FactGen tool is the fact representation in XML format.

– JFacts: This tool allows to translate logic predicates from one syntax into
another. Currently, the tool supports the FactGen’s XML syntax, QFoil’s
syntax, CARMA’s syntax and PAGH and Prolog syntax.

Automated Pattern-Based Pointcut Generation 77

Fact
GenJava Classes

XML
Facts

JFacts QFoil Facts

QFoilInduced
Rule

JFactsPointcut

Fig. 14. The tool chain for inducing pointcuts in a logic pointcut language over static
joinpoints in Java code

– QFoil: This tool is the implementation of the FOIL ILP algorithm by Ross
Quinlan [31]. It takes a set of facts and a set of positive examples as input
(negative examples are implicitly assumed) and tries to induce a logic rule
that covers all of the positive examples and rejects all of the negative exam-
ples. This implementation of FOIL is particularly interesting because of its
performance (see the benchmarks in the next paragraph).

In order to evaluate our approach performance-wise, we conduct several bench-
mark experiments with an increasingly large number of facts. The experiments
were done using the state changing methods example. Table 2 shows the results2.
In all cases, except for the toy Point class of course, the rule from Figure 10 was
induced. The performance results are acceptable as the time required is not much
more than compiling such a large set of classes. Considering the premature stage
of the FactGen and JFacts tools, we believe that a significant improvement is
still possible there.

Table 2. Benchmark results of our prototype tool chain

classes # facts # joinpoints FactGen+JFacts (s) QFOIL (s)
Toy Point class 1 71 10 0.461 0.01
AWT Point class 1 364 70 0.5902 0.0142
25 classes from AWT 25 11622 2855 1.8098 0.8779
50 classes from AWT 50 42870 10982 3.9702 5.4671
75 classes from AWT 75 79403 21367 6.5163 4.4448
100 classes from AWT 100 88236 23409 7.1599 5.4526
AWT (no subpackages) 118 103752 27862 7.9929 7.1708

6 Related Work

To our knowledge, there exist few approaches which try to automatically gener-
ate pattern-based pointcuts. In previous work [12] we already report on a first
2 The timings were performed on an Intel Pentium 4 3Ghz. Each timing represents

the average time of a single experiment, based on 100 experiments.

78 M. Braem et al.

attempt for using Inductive Logic Programming in order to derive pattern-based
pointcuts. In this work we employ Relative Least General Generalisation [27],
an alternative ILP algorithm, instead of the FOIL algorithm. Using RLGG, we
are able to derive correct pointcuts for some specific crosscutting concerns in a
Smalltalk image. However, due to the limitations of both our implementation as
well as the applied ILP algorithm (for instance, the algorithm does not support
negated literals), our RLGG-based technique often results in pointcuts that suf-
fer from some fragility: the resulting pointcuts for example frequently contain
redundant literals referring to the names of specific methods or classes, which of
course easily breaks the pointcut when these names are changed. Furthermore,
our earlier work suffers from serious scalability issues. In the context of Adaptive
Programming [24], an approach has been developed for automatically deducing
traversal strategies, which are AP’s counterpart of pointcuts [25], from a given
class and object graph.

As mentioned earlier, the major area of application of our technique lies in the
automated refactoring of crosscutting concerns in pre-AOP code into aspects.
Quite a number of techniques exist [13,26,22,15] which propose refactorings in
order to turn object-oriented applications into aspect-oriented ones. However,
these techniques do not consider the generation of pattern-based pointcuts. In-
stead they propose to automatically generate an enumeration-based pointcut
which, optionally, can be manually turned into a pattern-based pointcut by the
developer. As is pointed out by Binkley et al. [2], our technique is complementary
with these approaches as it can be used to both improve the level of automation
of the refactoring, as well as the evolvability of the refactored aspects.

In the context of aspect mining, which is closely related to object-to-aspect
refactorings, a wealth of approaches are available that allow for the identification
of crosscutting concerns in an existing code base. The result of such a technique
is typically an enumeration of joinpoints where the concern is located. Ceccato et
al. [6] provide a comparison of three different aspect mining techniques: identifier
analysis, fan-in analysis and analysis of execution traces. Breu and Krinke pro-
pose an approach based on analyzing event traces for concern identification [3].
Bruntink et al. [5] make use of clone detection techniques in order to isolate id-
iomatically implemented crosscutting concerns. Furthermore, several tools exist
that support aspect mining activities by allowing developers to manually ex-
plore crosscutting concerns in source code, such as the aspect mining tool [14],
FEAT [32], JQuery [17] and the Concern Manipulation Environment [16]. These
approaches are complementary with our approach in that the joinpoints they
identify can serve as positive examples for our ILP algorithm.

7 Conclusions and Future Work

In this paper we present our approach using Inductive Logic Programming for
generating a concise and robust pointcut from a given enumeration of joinpoints.
We report on several successful experiments that apply our approach to a realistic
and medium-scale case study. We have applied our approach to a CARMA-based

Automated Pattern-Based Pointcut Generation 79

logic pointcut language restricted to a static joinpoint model, dubbed PAGH.
In future work we will consider tackling full CARMA which requires taking into
account in the background information that joinpoints and joinpoint shadows
are not equated as in PAGH. Our approach can easily be applied to for exam-
ple AspectJ [18] as well by translating PAGH pointcuts to AspectJ pointcuts.
However, the FOIL algorithm must then be restricted to not generate pointcuts
using features of PAGH that can not be translated to AspectJ: variables can only
be used once in a pointcut (except when using the “if” restrictor in AspectJ),
recursive named pointcuts are not possible, and only some uses of the structural
predicates can be translated. Other points left for future work are:

– Multiple Results: Our current tools only generate one pointcut for a given
set of joinpoints. In some cases, most notably when there is few background
information (i.e. a small number of little classes), several alternative point-
cuts are possible. Our current approach has a bias for short, non-negative
and non-recursive rules. As we have described in the paper, this might not
always lead to a (good) result. Therefore, it would be useful to allow present-
ing multiple pointcut results. An interesting research topic in this context
would consist of uncovering poincut patterns and anti-patterns that might
be used to guide the selection and generation process.

– Other Algorithms: There exist several algorithms for Inductive Logic Pro-
gramming. In previous work, we conduct several small-scale experiments
with the Relative Least General Generalization (RLGG) [27] algorithm in
an aspect mining context [12]. Having several algorithms might improve the
quality of the selected results to the end-user. For example, solutions that
are induced by more than one algorithm might be better.

– Run-Time Information: Our current approach only analyzes the static pro-
gram information to induce pointcuts. Pointcuts that require run-time pro-
gram information, such as stateful aspects [10], cannot be induced. For this
end, facts representing the run-time behavior of the program are necessary.
We are currently investigating whether it is possible to induce such dynamic
pointcuts using several program traces as background information.

– Tool Integration: Although our current tool works fully automatically, it is
a stand-alone command-line tool that is not integrated in an IDE. We plan
to develop an Eclipse plugin for our tool. This plugin can then be a basis for
inducing pattern-based pointcuts by other plugins which provide support for
the refactoring process.

References

1. Mehmet Akşit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Develop-
ment (AOSD-2003). ACM Press, March 2003.

2. D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Automated refac-
toring of object oriented code into aspects. In 21st IEEE International Conference
on Software Maintenance (ICSM), 2005.

80 M. Braem et al.

3. Silvia Breu and Jens Krinke. Aspect mining using event traces. In 19th Interna-
tional Conference on Automated Software Engineering, pages 310–315, Los Alami-
tos, California, September 2004. IEEE Computer Society.

4. Johan Brichau, Wolfgang De Meuter, and Kris De Volder. Jumping aspects. In
C. Lopes, L. Bergmans, M. D’Hondt, and P. Tarr, editors, Workshop on Aspects
and Dimensions of Concerns (ECOOP 2000), June 2000.

5. M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An evaluation
of clone detection techniques for identifying crosscutting concerns. In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM). IEEE
Computer Society Press, 2004.

6. M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonello, and T. Tourwé. A qual-
itative comparison of three aspect mining techniques. In Proceedings of the 13th
International Workshop on Program Comprehension (IWPC 2005), pages 13–22.
IEEE Computer Society Press, 2005.

7. Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java byte-
code translators. In GPCE ’03: Proceedings of the second international conference
on Generative programming and component engineering, pages 364–376, New York,
NY, USA, 2003. Springer-Verlag New York, Inc.

8. Bart De Win, Wouter Joosen, and Frank Piessens. Developing secure applications
through aspect-oriented programming. pages 633–650. Addison-Wesley, Boston,
2005.

9. Maja D’Hondt and Viviane Jonckers. Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge. In Lieberherr [23], pages 132–140.

10. Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and inter-
action analysis of stateful aspects. In Lieberherr [23], pages 141–150.

11. Kris Gybels and Johan Brichau. Arranging language features for pattern-based
crosscuts. In Akşit [1], pages 60–69.

12. Kris Gybels and Andy Kellens. An experiment in using inductive logic program-
ming to uncover pointcuts. In First European Interactive Workshop on Aspects in
Software, September 2004.

13. Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. Refactoring of
aspect-oriented software. In 4th Annual International Conference on Object-
Oriented and Internet-based Technologies,Concepts, and Applications for a Net-
worked World, 2003.

14. J. Hannemann. The Aspect Mining Tool web site. http://www.cs.ubc.ca/labs/spl/
projects/amt.html.

15. Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of
crosscutting concerns. In Peri Tarr, editor, Proc. 4rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2005), pages 135–146. ACM Press, March 2005.

16. William Harrison, Harold Ossher, Stanley M. Sutton Jr., and Peri Tarr. Con-
cern modeling in the concern manipulation environment. IBM Research Report
RC23344, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, Sep-
tember 2004.

17. Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In Akşit [1], pages 178–187.

18. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072, pages 327–353, Berlin, June 2001. Springer-Verlag.

Automated Pattern-Based Pointcut Generation 81

19. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

20. Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, anno-
tations, advice and pointcuts. In European Conference on Object-Oriented Pro-
gramming, ECOOP 2005, 2005.

21. Christian Koppen and Maximilian Störzer. PCDiff: Attacking the fragile pointcut
problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan Wloka,
editors, European Interactive Workshop on Aspects in Software (EIWAS), Septem-
ber 2004.

22. Ramnivas Laddad. Aspect-oriented refactoring, dec 2003.
23. Karl Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented Software Devel-

opment (AOSD-2004). ACM Press, March 2004.
24. Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with

Propagation Patterns. PWS Publishing Company, Boston, 1996.
25. Karl J. Lieberherr, Jeffrey Palm, and Ravi Sundaram. Expressiveness and complex-

ity of crosscut languages. In Gary T. Leavens, Curtis Clifton, and Ralf Lämmel,
editors, Foundations of Aspect-Oriented Languages, March 2005.

26. Miguel Pessoa Monteiro. Catalogue of refactorings for aspectj. Technical Report
UM-DI-GECSD-200401, Universidade Do Minho, 2004.

27. S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

28. H. Ossher and P. Tarr. The shape of things to come: Using multi-dimensional
separation of concerns with Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43–50, October 2001.

29. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, December 1972.

30. J. Ross Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239–266, August 1990.

31. Ross Quinlan. Qfoil: the reference foil implementation. Home page at http://
www.rulequest.com/Personal/ , 2005.

32. Martin P. Robillard and Gail C. Murphy. Automatically inferring concern code
from program investigation activities. In Proceedings of Automated Software En-
gineering (ASE) 2003, pages 225–235. IEEE Computer Society, 2003.

33. Wim Vanderperren, Davy Suvée, and Viviane Jonckers. Combining AOSD and
CBSD in PacoSuite through invasive composition adapters and JAsCo. In
Net.ObjectDays 2003, pages 36–50, September 2003.

An Aspect-Oriented Approach for Developing
Self-Adaptive Fractal Components

Pierre-Charles David1 and Thomas Ledoux2

1 France Télécom, Recherche & Développement
28, chemin du vieux chêne

F-38243 Meylan
PierreCharles.David@francetelecom.com
2 OBASCO Group, EMN / INRIA, Lina

École des Mines de Nantes
4 rue Alfred Kastler

F-44307 Nantes CEDEX 3
Thomas.Ledoux@emn.fr

Abstract. Nowadays, application developers have to deal with increas-
ingly variable execution contexts, requiring the creation of applications
able to adapt themselves autonomously to the evolutions of this context.
In this paper, we show how an aspect-oriented approach enables the
development of self-adaptive applications where the adaptation code is
well modularized, both spatially and temporally. Concretely, we propose
SAFRAN, an extension of the Fractal component model for the devel-
opment of the adaptation aspect as reactive adaptation policies. These
policies detect the evolutions of the execution context and adapt the
base program by reconfiguring it. This way, SAFRAN allows the modu-
lar development of adaptation policies and their dynamic weaving into
running applications.

1 Introduction

Nowadays, application developers have to deal with increasingly variable execu-
tion contexts. On the one hand, we find a large diversity of platforms covering a
wide spectrum in terms of available resources (from embedded systems to grids),
these heterogeneous machines being increasingly interconnected, and hence in-
terdependent. On the other hand, even on a particular host the execution context
of an application changes during its execution (hardware and software resources
availability, mobility. . .). This situation makes application development more
and more complex, as it is often difficult to know at development-time the con-
ditions in which applications will be used, especially when these conditions can
change unpredictably during execution. Instead of trying to hide the execution
context under an abstraction layer (middleware), we believe that applications
must become context-aware so that they can adapt to their context [1]. Such
self-adaptive applications are able to adapt themselves autonomously [2] to the
evolutions of their execution context, not only to continue functioning but also
to leverage new possibilities which can appear dynamically.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 82–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Aspect-Oriented Approach for Developing SAFRAN 83

The need to build applications which adapt to their environment is not new.
However, the ad hoc techniques generally used, in which adaptation decisions
are hardwired in applications, are not sufficient: they mix business concerns
with adaptation policies, which makes both initial development and maintenance
more difficult [3]. Furthermore, it is generally impossible to predict during the
development phase the actual circumstances in which applications will be used,
even less the appropriate reaction. Ideally, we would like to be able to develop the
adaptation code separately and then integrate it dynamically inside the business
code so as to decouple these two kinds of code, both spatially and temporally.

In this paper, we use an aspect-oriented approach [4] to modularize the adap-
tation code in self-adaptive applications. Aspect-Oriented Programming (AOP)
gives us an interesting framework to separate the adaptation concern from busi-
ness code and then to dynamically weave and un-weave them. The system we
propose, SAFRAN, allows to develop self-adaptive applications based on the
Fractal component model [5]. SAFRAN is designed around three main princi-
ples: (i) the use of a dynamic component model (Fractal) to build applications
which can be adapted at runtime; (ii) the use of AOP concepts and techniques
to develop the adaptation logic separately from business code and then to dy-
namically weave them to yield self-adaptive applications; (iii) and finally the use
of a Domain (or Aspect) Specific Language [6] to express this adaptation logic.

Section 2 shows how the software adaptation concern can be – conceptually –
considered as an aspect. Section 3 then presents our contribution, SAFRAN,
showing how this approach translates in the concrete design and architecture of
SAFRAN. We finally illustrate the use of SAFRAN on a simple example (Sec-
tion 4), and discuss some related work (Section 5) before concluding (Section 6).

2 Software Adaptation as an Aspect

2.1 Adaptation as a Cross-Cutting Concern

In the most general sense, an adaptation is a modification triggered by changing
circumstances, by which a system becomes better suited to its new environment.
In the case of software, an adaptation will be implemented by a program respon-
sible for (i) observing the environment in which the target software is running
to detect new conditions, (ii) deciding about the appropriate modifications to
apply to the target software, and (iii) applying these modifications, adapting
the target to the new conditions. With the advent of ubiquitous computing, new
applications must be able to adapt themselves autonomously [2] to the various
execution contexts in which they can be running. Such self-adaptive software
applications are both the agent and the target of the adaptation.

The main issue with building such self-adaptive software is that integrating
the code dealing with the adaptation concern into the application increases its
complexity: the business code becomes “polluted” by non-functional concerns like
observing the environment and deciding which reconfiguration is more appropri-
ate. This also impedes the reusability of the system, which can then function

84 P.-C. David and T. Ledoux

properly only in the few, fixed set of situations which have been anticipated dur-
ing its development. To solve these issues, we need a looser and more dynamic
coupling between business code and adaptation logic.

Software adaptation thus appears as a cross-cutting concern relative to busi-
ness code, which we would like to modularize so as to offer more reusability
and maintainability of the business code. Aspect-Oriented Programming (AOP)
[4] gives us adequate abstractions and composition mechanisms to solve these
issues.

2.2 Towards an Adaptation Aspect

In “traditional” AOP systems (e.g. AspectJ [7]), an aspect is a module which
regroups pairs of the form (pointcut, advice) where pointcut denotes a set of join-
points, i.e. points of interest in the execution of a base program (in which the
aspect is to be weaved) and advice is a code fragment to be executed whenever
the pointcut matches, i.e. at each of its join-points. Together, these constructs
can be used to implement in a well-defined module a concern which can modify
the semantics of a base program incrementally and transparently (from the base
program’s point of view) [8]. The base program and the aspects are weaved into
a consistent whole, either statically or dynamically. In the following, we propose
to “aspectize” the adaptation concern.

The event-based nature of the adaptation process (when a significant change
occurs, an adaptation decision is made taken and then applied) relates with the
EAOP approach [9] in which point-cuts are defined in terms of sequences of
runtime events in the execution of the base program (method invocation, object
creation. . .). In EAOP, runtime events are only internal, i.e. related to the base
program execution. This is not sufficient to trigger adaptations in the more
general setting of context-aware applications, which must also react to external
events regarding the evolutions of their execution context, like the appearance
of a new device or the sudden decrease of the available bandwidth. Despite their
different origin (the context instead of the application itself), we believe these
events can also be considered as join points, as they trigger adaptation actions.
Our join point model thus extends the domain of possible join points beyond
internal events (“traditional” join points) to the whole execution context, which
increases the expressive power of our system by allowing us to react to changes
in the execution context.

Concerning the advice model, actions (triggered by events) indicate how to
reconfigure the base program in order to adapt it to the new conditions. The
role of the advice language is thus to adjust the target application (tuning, para-
meterization, architectural configuration. . .) in order to make it more adapted.
Note that contrary to AspectJ [7] which is a general purpose Aspect-Oriented
language, the advice language in SAFRAN is a domain-specific language whose
expressive power is reduced so that it is not possible to reconfigure the applica-
tion in an inconsistent state.

As for the aspect weaving model, our choice of considering adaptation in open
and dynamic systems lead us to choose a dynamic approach, which is much more

An Aspect-Oriented Approach for Developing SAFRAN 85

flexible than static weaving because the separation of concerns remains at run-
time. This means that the adaptation aspect does not have to be anticipated, but
can be loaded, modified and tuned at runtime, without stopping the application.
This dynamic weaving process allows us to fully decouple the base program and
the adaptation aspect (both spatially and temporally).

3 An Adaptation Aspect in SAFRAN

SAFRAN (Self-Adaptive FRActal compoNents) [10] is an extension to the Frac-
tal component model [5] allowing the creation of self-adaptive applications. One
of the key principles in the design of SAFRAN is the treatment of the adap-
tation concern as an aspect. Following the structure of a generic AOP system,
SAFRAN’s main elements are:

– a base program corresponding to a configuration of Fractal components (ar-
chitecture);

– point-cuts corresponding to the notification of internal events (message invo-
cations on Fractal interfaces, changes in the architecture) or external events
(thanks to a framework we designed to create context-aware applications);

– advices voluntarily restricted to architectural reconfigurations;
– and finally the adaptation aspect itself, linking join points to advices, and

represented by modular adaptation policies dynamically weaved and un-
weaved into target components.

The rest of this section will present in more details each of these points.

3.1 Fractal Components: The Base Program

Fractal [5] is a component model developed by France Télécom R&D and INRIA,
and distributed through the ObjectWeb consortium. We chose Fractal over other
component models because it is designed around a minimal but very extensible
core, and is highly dynamic.

A Fractal application (see Fig. 1) is seen as an assembly of components, each
made of two parts: a controller (in grey on the figure) and its content. This con-
tent can be either made of other components (composite) or of a single object of
the underlying programming language (primitive). For example, the figure shows
a single composite containing two primitive sub-components. The controller part
of a component manages all the interactions of its content with the outside. To
do this, it exposes internal and external interfaces (ports), which can represent
services provided or required by a component. Two compatible interfaces can be
connected together to create a one-way binding through which all communica-
tions must pass. On the figure, the rightmost sub-component provides a service
of type “S” through an interface named “s”. The other sub-component uses this
service through a binding from its own required interface of a compatible type,
and exposes another service “m” of a different type. This service is exported to

86 P.-C. David and T. Ledoux

the outside of the composite using a binding from a matching internal interface.
When the composite receives an invocation on its interface “m”, its controller
intercepts the message, executes optional control behavior (depending on the
controller configuration), and then forwards it to the sub-component through
the internal binding.

BC CCC

CBCC

s, S

s, Sm, M m, M

Fig. 1. Example of a simple Fractal architecture

In addition to service interfaces, which depends on each application (“s” and
“m” on the figure), Fractal components can offer a variety of standard control
interfaces. These interfaces, represented on top of the components in the fig-
ure, enable dynamic introspection and modification of various aspects of the
components: discovery of the set of interfaces of a component (component inter-
face, C on the figure), lookup, creation and destruction of bindings (binding-
controller, or BC), addition and removal of sub-components from composites
(content-controller, or CC), etc.

Fractal offers a predefined set of such control interfaces to reflectively manip-
ulate aspects of the components. This support for architectural reflection allows
us to reconfigure the architecture of an application during its execution. Com-
pared to other component models like ArchJava [11], which supports runtime
reconfigurations only if they have been programmed at compile-time, Fractal’s
support for reflection enables the discovery and unanticipated modification of
the structure of components. This feature is essential for the creation of self-
adaptive applications [12] as most of the adaptation we will want to perform are
not known during the initial construction of the software.

Another advantage of Fractal is that the set of control interfaces is not fixed.
Although there is a predefined set of such interfaces, all of them are optional.
More importantly, Fractal and its default implementation are designed so that is
is easy to add new control interfaces, thus extending the component model. We
use this feature in SAFRAN to seamlessly integrate our extension into the stan-
dard model by adding a new control interface named adaptation-controller
to manage the adaptation aspect associated to a component. Beyond the advan-
tages inherent to the component-based approach, the specific features of Fractal
make it an ideal candidate for the construction of adaptable applications, the
first step towards fully autonomous self-adaptive applications.

An Aspect-Oriented Approach for Developing SAFRAN 87

3.2 Reconfiguration with FScript: The Advice Language

FScript is a domain-specific language [6] we designed to program the Fractal com-
ponents reconfigurations. FScript is a simple procedural language with dynamic
typing and lexical scoping, which gives access to all the standard operations
supported by Fractal components: creation of new components, architecture in-
trospection and reconfiguration of this architecture by manipulating composites’
content and bindings between interfaces. The main features of FScript are (i) a
special notation to navigate easily in the Fractal architecture of the base pro-
gram, and (ii) the guarantee that reconfigurations always leave the application
in a consistent state. Although it has been designed to be used in SAFRAN,
FScript can also be used by itself as a scripting language to program consistent
Fractal components reconfigurations.

The FPath Notation. FScript uses a special syntax, FPath (inspired by the
XPath language [13]), to easily navigate in Fractal architectures without modi-
fying it and select elements (components, interfaces or configuration attributes)
matching certain criteria. The language is based on a model of Fractal archi-
tectures as a (virtual) directed graph where nodes represent components, their
interfaces and attributes, and where arcs are annotated by labels to denote the
kind of relation between two nodes (C1 “is a sub-component of ” C2, I1 “is bound
to” I2. . .). In addition to basic expressions (arithmetic, boolean and compari-
son operators. . .), FPath expression can denote relative paths (starting from an
initial node). Such a path is a series of steps, each made of three elements: axis:
:test[predicate]. On each step, an initial set of nodes is converted to a new
set by following all the arcs with a label corresponding to the axis, then filtering
the result using the test (on the node names) and optional predicates (boolean
FPath expressions applied to each candidate). More precisely, the evaluation
algorithm for one step is the following:

P1. [Initialisation] result ← ∅.
P2. [Selection] Select every node connected to any of the current ones through

an arc whose label matches the axis part: result ← ∪{n : c
axis−→ n, c ∈

current}.
P3. [Test] If the test part is an identifier (as opposed to *), remove from result

the nodes whose name do not match: result ← {n ∈ result : name(n) =
test}.

P4. [Filtering] Only keep the elements for which all predicates hold: result ←
{x ∈ result : pred1(x) ∧ · · · ∧ predn(x)}.

P5. [End] The algorithm finishes and returns result.

For a multi-step path, this algorithm is repeated with the result of the previous
step as the current node-set of the next.

FPath offers a set of axes to navigate in Fractal architectures, by selecting a
component’s interfaces (interface axis), configuration attributes (attribute),

88 P.-C. David and T. Ledoux

direct sub-components (child) or parents1 (parent), and following the binding
of an interface (binding). It is also possible to select in one step all the direct and
indirect sub-components (resp. parents) of a component with the descendant
(resp. ancestor) axis, which is the transitive closure of child (resp. parent).

For example, the FPath expression child::server/attribute::cache-
Enabled first selects all the sub-components of the initial node(s) named server
(test on the node name), then selects its configuration attribute named cache-
Enabled. Using the same logic, the expression count(interface::*[required
(.) and not(bound(.))]) > 0 returns true if and only if the initial component
has required interfaces which are not yet connected (the dot “.” in predicates
denote the current node to which it is applied).

FScript Actions. FScript is used to define reconfiguration actions, combining
FPath expressions, primitive actions, simple control structures (sequence, choice,
finite iteration) and variables manipulation. All the dynamic reconfiguration
operations supported by Fractal components are available to FScript program
as predefined, primitive actions, including the attach() and detach() actions
introduced by SAFRAN to control the (runtime) weaving of adaptation policies
to components. The following example shows an FScript action which could be
used to adapt a component.

// Changes a cache’s replacement strategy.
action select-strategy(cache, strat) = {
// Gets the cache’s client interface to the strategy
itf := $cache/interface::strategy;
if (bound($itf)) { // Is it already bound to a server interface?

// Unbind it and stop the now unused component.
previous := $itf/binding::*;
unbind($itf);
stop($previous/component::*);

}
// Binds the cache client interface to the
// appropriate server interface on $strat.
bind($itf, $strat/interface::replacement-strategy);
// Make sure the strategy component is started.
start($strat);

}

This action can be used to change the replacement strategy used by a cache
component by modifying the binding between the cache and the strategy com-
ponent. It uses FPath expressions to navigate in the application’s structure, and
primitive actions corresponding to operations supported by Fractal components
(bind(), stop(). . .). Although this action is relatively specific to a given appli-
cation, FScript can be used to program more generic reconfigurations (replacing
a component by another for example) which can then be reused in multiple
application (architectural patterns).
1 Fractal supports component sharing, so a component can have multiple parents.

An Aspect-Oriented Approach for Developing SAFRAN 89

Guarantees. FScript’s design and implementation guarantee the consistency
of reconfigurations. Because these reconfigurations are meant to adapt running
applications, we must guarantee that reconfiguration will not break the target
application. To this end, we have chosen a set of consistency criterion, in partic-
ular transactional integrity (atomicity, consistency of the final state, isolation)
and termination of the reconfigurations. The validation of these criteria is guar-
anteed in part by the language’s structure itself, whose expressive power has
been limited, and in part by the implementation. More precisely:

– The definition of (directly or indirectly) recursive actions is forbidden, and
the only control structure available for iteration, a for each loop, iterates
on the result of an FPath expression, which always returns a finite set of
nodes. These constraints guarantee actions’ termination, although they do
not provide a time bound.

– During the execution of a reconfiguration, the language interpreter keeps a
complete journal of all the primitive actions performed, together with enough
information to revert them. As soon as an error occurs, the interpreters uses
this journal to roll-back the current reconfiguration and return to the initial
state. Given that all the primitive Fractal reconfigurations are themselves
atomic and reversible, this guarantees the atomicity of FScript reconfigura-
tions.

– At the end of a reconfiguration, the interpreter checks that the current
configuration is consistent, i.e. that all the required client interfaces are cor-
rectly bound to a corresponding server interfaces and that all the components
which have been temporarily stopped during the reconfiguration can safely
be restarted. If this is not the case, the interpreters cancels the reconfigura-
tion and rolls back to the initial state, thus ensuring the consistency of the
application.

– Finally, the isolation of reconfigurations is currently guaranteed by globally
serializing them. This works, but is highly sub-optimal and may be enhanced
in future works.

3.3 Internal and External Events as Join-Points

We now describe the join-points supported by SAFRAN to trigger the adaptation
actions’ execution. Following the EAOP approach [9], we consider these join-
points as event occurrences. Although traditional join-points only account for
the execution of the base program, we extended the domain of events to consider
with external events corresponding to changes in the execution context.

Whether they are internal or external, all event occurrences in SAFRAN are
represented as objects with a set of properties. Some of these properties are
present on every event while some are specific to certain kinds of events. Common
properties are: the type of the event, as a string; the source of the event, which
can be either a component or an element of the execution context (see below);
and a timestamp indicating the time of occurrence of the event.

Event specification and detection is realized by event descriptors, for which
the exact syntax depend on the type of event, but always follow the same

90 P.-C. David and T. Ledoux

general form event-type(parameters). Thus, the descriptor changed(sys://
storage/memory#free) allows to detect the variations in the quantity of mem-
ory available on the system.

Internal Events. Internal events are execution points in the base program,
which in our case is a set of Fractal components. The first three types of inter-
nal events, message-received, message-returned and message-failed, cor-
respond respectively to the reception of a message, the successful return of a
message and the throwing of an exception. The descriptors for these three kinds
of events share the same parameters, expressed using FPath, to indicate which
interfaces and methods should be monitored. For example, message-received(
$c/interface::logger) can be used to detect invocations on any method of the
logger interface of component $c, while message-failed($c/interface::*)
detects errors on any interface of the same component.

The other internal event types correspond to the possible reconfigurations of
Fractal components : component creation, life-cycle changes (component started
or stopped), configuration (changes in configuration parameters), content ma-
nipulation (addition and removal of sub-components) and finally creation and
destruction of bindings. Each of the corresponding descriptor takes arguments to
specify which components, interfaces or attributes to monitor. Thus, the descrip-
tor component-started($c/child::*) detects when any direct sub-component
of $c is started.

The implementation of these events is based on the instrumentation of Frac-
tal controllers, for example the components’ lifecycle-controller is instru-
mented to generate component-{started,stopped} events.

External Events. In order to detect the occurrence of external events we first
need to reify the application’s execution context, which is normally implicit. To
do this, we use WildCAT [14], a system we designed to ease the creation of
context-aware applications [1]. WildCAT is used by SAFRAN to observe the
execution context and to notify the occurrence of the external events which can
trigger the execution of reconfigurations. As was the case for FScript, WildCAT
can actually be used independently.

WildCAT models the execution context as a set of context domains, each rep-
resenting a particular aspect of the context, for example hardware resources,
network, geo-physical information, etc. Each of these context domains is it-
self modeled as a tree of resources described by a set of attributes (simple
(name, value) pairs). The syntax used to denote resources and attributes is in-
spired by that of uris: domain://path/to/resource#attribute (#attribute
being optional). For example, sys://storage/drives/hdc#removable indicates
whether the hdc drive is removable.

The context model provided by WildCAT changes dynamically to reflect
changes in the actual execution context: attributes values can change, attributes
and resources can appear or disappear at any moment. All these modifications
generate external events which can be detected by an adaptation policy. The
different types of external events supported by SAFRAN are:

An Aspect-Oriented Approach for Developing SAFRAN 91

changed(expression) : detects any modification of the value of the expression,
which can reference any attribute or resource in the context2, for exam-
ple changed(geo://location/logical#room). Expressions to monitor are
written in a simple language which, in addition to references to context
locations, supports strings, numbers, arithmetic and boolean operations,
comparisons and function calls.

realized(condition) : detects the occurrence of a boolean condition, for exam-
ple realized(sys://storage/memory#free > 2*sys://storage/swap#
used). This is actually a particular case of changed which only detects
changes from false to true.

appears(path) and disappears(path) : detects the appearance or disappear-
ance of a resource or attribute in the context. The path expression can
be a joker character “*” as its last element. For example appears(sys://
devices/input/*) detects the apparition of any new input device.

3.4 Adaptation Policies: The Adaptation Aspect Language

Adaptation Aspect Syntax. Conforming to the reactive nature of the adap-
tation process, adaptation policies in SAFRAN are structured as sets of reactive
rules of the form

when <event> if <condition> do <action>

where <event> is an (internal or external) event descriptor3 (cf. Sect. 3.3) cor-
responding to a point-cut, <condition> is a boolean FPath expression (without
side-effects), and <action> is an FScript reconfiguration (cf. Sect. 3.2) corre-
sponding to the aspect’s advice.

This type of rules is inspired by what can be found in Active Databases [15]
under the name of ECA (Event, Condition, Action) rules. An adaptation rule in-
dicates that when an event corresponding to the <event> expression occurs, if the
<condition> expression holds, then the <action> reconfiguration is applied, thus
adapting the target application to the new conditions resulting from the event.

In the SAFRAN system, the adaptation policies which are dynamically at-
tached to Fractal components are made of (ordered) sequences of adaptation
rules:

policy example = {
rule { when <event1> if <cond1> do <action1> }
rule { when <event2> if <cond2> do <action2> }
...

}

As an adaptation policy is always executed when attached to a target com-
ponent, a special variable named $target can be used inside rules to access
2 WildCAT automatically re-evaluates expressions when any element it depends on

changes.
3 In the future, we plan to extend this model to support more complex point-cuts,

especially hybrid point-cuts which mix internal and external events and would allow
finer coordination between the execution of adaptation code and the base program.

92 P.-C. David and T. Ledoux

the component to which the policy is attached; it is akin to self of this in
object-oriented languages.

Figure 2 summarizes the event/control flow between the different parts of
SAFRAN. Internal events are generated by instrumentation code inside Fractal
components, and external events are detected by WildCAT. These events are
routed to the appropriate adaptation controllers, which uses its current rules
to decide which adaptations to perform. These decisions are finally applied by
executing FScript reconfigurations.

Fig. 2. Flow of events in SAFRAN

Weaving the Adaptation Aspect. SAFRAN introduces an extension to the
Fractal model which enables the dynamic attachment (weaving) of adaptation
policies (aspects) to components (base program). Like most Fractal extensions, it
takes the form of a new control interface, in this case adaptation-controller.
It is this controller, present on each self-adaptive component, which implements
the weaving of adaptation policies into the target component, thus making it self-
adaptive: whereas a standard Fractal component can be adapted by an external
entity (through its standard control interfaces), a SAFRAN component embeds
the adaptation code itself and becomes autonomous, actor of its own adaptation.

The AdaptationController interface (see below) enables the dynamic at-
tachment (weaving) of one or several adaptation policies to each SAFRAN com-
ponent. This interface can be seen as a special case of an aspect weaving interface,
where attachFcPolicy() and detachFcPolicy() correspond to specialized ver-
sions of more general weave(Aspect) and unweave(Aspect) operations:

public interface AdaptationController {
void attachFcPolicy(AdaptationPolicy policy);
void detachFcPolicy(AdaptationPolicy policy);
AdaptationPolicy[] getFcPolicies();

}

When a policy is attached to a component, the component’s adaptation con-
troller analyzes it, and depending on the join-points mentioned in the rules,
instruments the target component to generate the appropriate internal events
and registers itself with WildCAT to be notified of the external events. After
this initialization, when the adaptation controller receives events, be they inter-
nal or external, it determines the appropriate reaction according to the current

An Aspect-Oriented Approach for Developing SAFRAN 93

set of policies and rules on the target component (see below), and then executes
this reaction in order to adapt the component to the new circumstances. This
execution schema matches the reactive nature of the adaptation process, with
the same three phases: observation, decision, action.

Aspect Composition Model. To handle multiple advices affecting the same
join-point, SAFRAN provides an ad hoc aspect composition model. Indeed, a
policy (aspect) can be made of several rules, a component can have multiple
policies attached at the same time, and of course an application can contain many
self-adaptive components. SAFRAN defines the following composition rules to
manage the interactions between these different elements when several rules are
triggered by the same event:

– Inside a given policy, the rules’ reactions are composed in sequence, in the
textual order of their definition, and executed in a single reconfiguration
transaction. The rationale is that a given policy should implement a consis-
tent, self-contained adaptation, and its (single) author can be expected to
foresee the rules’ interactions.

– On a single component, the competing reactions of multiple policies are
also executed in sequence, but each in its own reconfiguration transaction.
The effects of a single policy’s failure is thus isolated. This is important as
policies developped independently can be attached to the same component.
The order in which the policies’ reactions are executed depend in the order
of their attachment: the oldest policies are executed first. The rationale is
that once a policy P is attached to component C, the resulting component
C′ must be considered as a self-contained black-box by the next policies, and
hence P has a greater priority over the policies attached later.

– Finally, when multiple components must react to a single event, their re-
actions are executed in an order defined by the components’ composition
relations: subcomponents are adapted before their parents. The rationale is
similar to the previous one: in a component-base approach, when a composite
includes a subcomponent, it should treat it as a black-box.

Although these rules are designed to be the most general possible, there are
situations in which they are not appropriate. One of the main future directions
of our work is the extend the execution model of our reactive rules to provide
more flexibility on the semantics of composition. The challenge is to do this while
without making the policies language too complex for the end users.

4 Example

The example application we chose to illustrate the use of SAFRAN is a small web
server named Comanche, implemented by É. Bruneton as a tutorial on the use
of Fractal. Comanche, being extremely simple, does not integrate a file cache
mechanism. In order to improve its performances, we thus add a new cache
component in Comanche. The cache performances depends on the amount of

94 P.-C. David and T. Ledoux

memory it can use. If this amount is too low, the system will not use all the cache
potential. If it is too high, performances can be even lower, as the cache will force
the operating system to use slow virtual memory (swap). The amount of memory
we should allocate to the cache depends on the amount of free memory available
on the host system, which varies dynamically and unpredictably. Our adaptation
policy will thus have to dynamically adapt the maximum amount of memory
allocated to the cache component in order to guarantee good performances in
every circumstances. The introduction of a cache component in Comanche is
very simple, as it only requires to modify the application architecture defined
using Fractal’s ADL (Architecture Description Language), after having coded
the cache component itself, of course.

The cache component exposes two parameters accessible through its
attribute-controller interface, currentSize and maximumSize, indicating
respectively the current and maximum amount of memory the cache uses; only
maximumSize is writable. The policy works by adjusting the value of maximumSize
depending on the amount of free memory on the host system, which WildCAT
makes available as sys://storage/memory#free. We now have all the informa-
tion we need to write the adaptation policy:
policy adaptive-cache = {

rule {
when realized(sys://storage/memory#free < 10*1024)
do { to-free := 10*1024 - sys://storage/memory#free;

size := $target/cache/attribute::currentSize - $to-free;
if ($size < 500) {
set-value($target/cache/attribute::maximumSize, 0);
disable-cache($target);

} else {
set-value($target/cache/attribute::maximumSize, $size);

}
} }

rule {
when mem:changed(sys://storage/memory#free)
if (sys://storage/memory#free >= 10*1024)
do { enable-cache($target);

current := $target/cache/attribute::currentSize;
size := 0.8 * ($mem.new-value + $current);
max := sys://storage/memory#used - $current + $size;
if ($max < sys://storage/memory@total - 10*1024) {
set-value($target/cache/attribute::maximumSize, $size);

}
} } }

This file uses two user-defined FScript actions (code not shown for space
reasons): the first one, disable-cache, disables the cache component by dis-
connecting it while the second action, enable-cache, re-introduces it in the
components’ pipeline. The first rule is triggered when the total amount of avail-
able memory drops below 10Mb. When this happens, the reconfiguration action
tries to free memory by reducing the size of the cache, or even disabling it com-
pletely below a certain size. The second rule is triggered whenever the amount
of memory changes4 but is more than 10 Mb. In this case, the reconfiguration

4 In practice, such an event is not generated each time the amount of free memory
changes, but only when such a change is detected. The sampling rate and hence the
system performance depends on how the corresponding sensor is configured.

An Aspect-Oriented Approach for Developing SAFRAN 95

adjusts the maximum cache size to use 80% of the total amount available, but
only if this leaves enough free memory to the rest of the system.

This example policy illustrates (i) a point-cut based on two types of exter-
nal events (realized and changed); (ii) two kinds of reconfiguration actions:
parameterization and bindings manipulation. Not only the reconfiguration is dy-
namic, but thanks to the dynamic weaving process in SAFRAN, the policy can
be updated during the execution of the base application, which is essential when
developing open systems.

5 Related Work

In the last few years, numerous works have tried to make software more adapt-
able, in particular to take into account the needs of mobile computing and au-
tonomous applications [2]. The most promising approach seems to be the use
of dynamic and extensible component models, which enable the integration of
non-functional services in a way that is adapted to the specific needs of applica-
tions, and most importantly allow dynamic reconfigurations of the application
itself [16]. Some works, like ACEEL [17] or K-Components [3] are based on cus-
tom component model which impose a specific way of structuring applications.
Others use existing component models but restrict themselves to particular ap-
plication domains: for example PLASMA [18] which is based on Fractal like
SAFRAN but limited to multimedia stream processing.

Concerning the adaptation aspect itself, Cilia et al. [19] have shown the links
existing between AOP and reactive rules from active databases, particularly in
the context of autonomous applications. Indeed, applications must be reactive
in order to adapt themselves to their context, and the underlying principles of
AOP allow us to introduce this reactivity in base programs in a non-invasive way.
However, the authors only present abstract concepts where SAFRAN provides
a concrete implementation.

We can also note the existence of FAC [20] and Fractal-AOP [21], two ex-
tensions of the Fractal model for general AOP. Although SAFRAN is heavily
inspired by AOP, SAFRAN’s goal is to enable the creation of self-adaptive ap-
plications, and AOP is simply a convenient framework used to structure and
describe the system. The difference between the FAC/Fractal-AOP approach
and SAFRAN’ approach is essentially the same as between a general-purpose
programming language, powerful but generic, and a DSL, more limited but bet-
ter suited to its particular objective.

6 Conclusion and Future Works

In this paper, we have shown how AOP principles can be used to ease the creation
of self-adaptive applications. On a conceptual level, we have shown that adap-
tation can be considered as a cross-cutting concern and that it is possible to use
AOP’s concepts (base program, point-cuts, advices and weaver) in this particular

96 P.-C. David and T. Ledoux

case to model the adaptation aspect. In order to support self-adaptive applica-
tions, we have extended the traditional notion of join-points beyond internal
events related to the program’s execution to include external events correspond-
ing to changes in the execution context. Regarding the advices, we have on the
contrary chosen to restrict the expressive power of our reconfiguration actions
by designing a Domain-Specific Language (FScript) which can offer guarantees
on the consistence of adaptations.

On a more concrete level, we have then described SAFRAN, an extension
of the Fractal model which implements this approach and enables the modu-
lar development of reactive adaptation policies. The main features of SAFRAN
are (i) the decoupling of adaptation policies from business components, (ii) a
Domain-Specific Language based on reactive rules to express these policies, and
(iii) a completely dynamic approach, where policies and reconfiguration actions
– even ones which where not anticipated at compile-time – can be defined, loaded
and applied during the execution of the target application without stopping it.
Another interesting feature of SAFRAN is its modular design, with subsystems
(WildCAT and FScript) which can be reused independently.

One of our future goals is to extend the principles of SAFRAN to allow the
adaptation of distributed applications. We do not anticipate major structural
changes in the system, but incremental evolutions of its different parts. A first
step would be to extend FScript to support distribution-aware reconfigurations,
like for example component migration and distributed bindings. New WildCAT
context domains will have to be implemented to share information between re-
mote nodes; different strategies are possible with varying degrees of invasiveness
(see [14]). Finally, the execution model of adaptation policies itself will have to
be extended to support coordinated adaptation of remote components.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of CHI 2000, The Hague, The Netherlands (2000)

2. Kephart, J.: A vision of autonomic computing. In Gabriel, R.P., ed.: Onward!
proceedings from an OOPSLA 2002 track, Seattle, WA, USA, ACM (2002) 13–36

3. Dowling, J., Cahill, V.: The K-Component architecture meta-model for self-
adaptive software. In: Proceedings of Reflection 2001, The Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns.
Volume 2192 of LNCS., Springer-Verlag (2001) 81–88

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: European Conference on Object-
Oriented Programming (ECOOP). Volume 1241 of LNCS., Springer-Verlag (1997)

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: An open com-
ponent model and its support in java. In: Proceedings of the 7th International Sym-
posium on Component-Based Software Engineering (CBSE 2004). Volume 3054 of
LNCS., Edinburgh, Scotland, Springer-Verlag (2004) 7–22

6. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices 35(6) (2000) 26–36

An Aspect-Oriented Approach for Developing SAFRAN 97

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In Knudsen, J.L., ed.: ECOOP 2001. Volume 2072 of LNCS.,
Springer-Verlag (2001) 327–353

8. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness. In: Workshop on Advanced Separation of Concerns. (2000) Min-
neapolis.

9. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In: Generative Programming and Component Engineering
GPCE 2002. Volume 2487 of LNCS., Pittsburgh, PA, USA, Springer-Verlag (2002)
173–188

10. David, P.C.: Développement de composants Fractal adaptatifs : un langage dédié
à l’aspect d’adaptation. PhD thesis, Université de Nantes / École des Mines de
Nantes (2005)

11. Aldrich, J., Chambers, C., Notkin, D.: Architectural reasoning in ArchJava. In:
Proceedings of ECOOP’2002, Malaga, Spain, AITO (2002)

12. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of applica-
tion behaviour. In: Proceedings of ECOOP 2002. Volume 2374 of LNCS., Malaga,
Spain, Springer-Verlag (2002) 205–230

13. World Wide Web Consortium: XML path language (XPath) version 1.0. W3C
Recommendation (1999) http://www.w3.org/TR/xpath.

14. David, P.C., Ledoux, T.: WildCAT: a generic framework for context-aware applica-
tions. In: Proceeding of MPAC’05, the 3rd International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, Grenoble, France (2005)

15. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system
manifesto: A rulebase of a ADBMS features. In: International Workshop on Rules
in Database Systems. Volume 985., Springer-Verlag (1995) 3–20

16. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive
software. IEEE Computer 37(7) (2004) 56–64

17. Chefrour, D., André, F.: Développement d’applications en environnements mobiles
à l’aide du modèle de composant adaptatif ACEEL. In: LMO 2003, Vannes, Hermès
(2003)

18. Layaïda, O., Hagimont, D.: Designing self-adaptive multimedia applications
through hierarchical reconfiguration. In: Distributed Applications and Interop-
erable Systems (DAIS). Volume 3543 of LNCS., Athens, Greece, Springer-Verlag
(2005) 95–

19. Cilia, M., Haupt, M., Mezini, M., Buchmann, A.: The convergence of AOP and ac-
tive databases: Towards reactive middleware. In: Proceedings of GPCE’03. Volume
2830 of LNCS., Erfurt, Germany, Springer-Verlag (2003) 169–188

20. Pessemier, N., Seinturier, L.: Components, ADL & AOP: Towards a common
approach. In: Reflection, AOP and Meta-Data for Software Evolution Workshop
at ECOOP 2004 (RAM-SE’04), Oslo, Norway (2004)

21. Fakih, H., Bouraqadi, N.: Les aspects et les composants logiciels : Etude de cas
avec le modèle de composant Fractal. Numéro spécial de la revue L’Objet sur les
aspects 11(3) (2005) 1–17 In French.

Aspects of Composition
in the Reflex AOP Kernel

Éric Tanter�

DCC – University of Chile
Avenida Blanco Encalada 2120 – Santiago, Chile

etanter@dcc.uchile.cl

Abstract. Aspect composition is a challenging and multi-faceted issue,
generally under-supported by current AOP languages and frameworks.
This paper presents the composition support provided in Reflex, a versa-
tile kernel for multi-language AOP in Java. The core of Reflex is based on
a model of partial reflection whose central abstractions are links: bind-
ings between a (point)cut and an action. Reflex supports the definition of
aspect languages through the mapping of aspects to links. We overview
the wide range of features for link composition in Reflex—which includes
extensible operators for ordering and nesting of links, and control over
the visibility of changes made by structural aspects—, illustrating how
they can be used to implement various scenarios of aspect composition.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for proper modularization
of crosscutting concerns [17]. As a matter of fact, in a typical application, many
crosscutting concerns can be identified and modularized as aspects. This raises
the issue of aspect composition, which includes questions such as: how to ensure
that aspects are properly composed? Furthermore, since the points where an
aspect applies (the cut of the aspect) are usually specified intensionally, how can
programmers know that two aspects are affecting the same program point?

The issue of aspect composition was first analyzed in [6], where a classifi-
cation of conflicts between aspects is proposed. Three classes of conflicts are
identified: (a) inherent conflicts, related to the incompatibility of two aspects,
(b) accidental conflicts, when two aspects happen to apply at the same program
point or have semantical conflicts, and (c) spurious conflicts, which are conflicts
that are detected whereas they are not actual conflicts. All in all, a number
of approaches to aspect composition have been proposed, usually focusing on a
particular dimension of aspect composition.

First of all, two aspects that apply to the same program points (text or ex-
ecution) are said to interact; in other words, the intersection of their cut is not
empty. When two aspects interact, there are two possibilities: either they are in-
compatible, and hence a mutual exclusion has to be specified [5, 10, 21], so as to

� É. Tanter is partially financed by the Milenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 98–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Aspects of Composition in the Reflex AOP Kernel 99

retract one of the aspects, or to raise an error. Otherwise, if both aspects should
be applied, their order of application must be specified [5, 10, 31]. If aspects can
act around an execution point of a program, then the notion of nesting appears,
typically associated with a proceed-like mechanism [20, 31].

Furthermore, one may need to define that an aspect should apply whenever
another applies [5, 10] (aka. implicit cut), or that an aspect applies onto another
aspect [10, 5], for instance using a logging aspect to monitor the effectiveness
of a caching aspect (aka. aspects of aspects). Finally, in AOP approaches where
structural modifications can be done to a base program (e.g. adding members to
a class), the visibility of these changes to other aspects should be controllable [8].

Finally, the aspect composition problem can be divided in two parts: that of
the detection of aspect interactions, and that of their resolution. SOUL/Aop [5],
as well as AspectJ, only address means to specify composition, while Klaeren
et al. [21] focus on means to detect interactions. Concrete approaches to detec-
tion all deal with conflicts of aspects over a shared program point; being able
to detect semantic interactions between two aspects that do not interact from
a weaving point of view is to our knowledge not addressed by any proposal, as
in the general case it is undecidable. If aspects are expressed using limited ac-
tion languages, static analysis may be able to detect most semantic interactions
(see [15] for an effort in this direction). Using static analysis in presence of
Turing-complete aspect languages (at least for the part specifying the actions of
aspects) is an open issue. It is also generally admitted that automatic resolution
is not feasible; an exception to this is the approach of [15], where the limited
expressiveness of the aspect language is used to automatically determine and
resolve interactions between aspects. Nevertheless, in a general setting, unless it
can be proven that the aspects commute, the resolution of their interaction has
to be specified explicitly [10].

We are not aware of any proposal addressing all these dimensions. For in-
stance, AspectJ [20] does not provide any support for mutual exclusion and
visibility of aspectual changes, and is limited in terms of aspects of aspects and
ordering/nesting of aspects. Furthermore aspect interactions are not detected.
Other proposals are thoroughly discussed in Section 7. This paper presents the
different mechanisms for aspect composition in Reflex1, a versatile kernel for
multi-language AOP [29]2. Reflex supports:

– automatic detection of aspect interactions limiting spurious conflicts;
– aspect dependencies, such as implicit cut and mutual exclusion;
– extensible composition operators for ordering and nesting of aspects;
– control over the visibility of structural changes made by aspects;
– aspects of aspects.

1 http://reflex.dcc.uchile.cl/
2 In [29], we only discuss the issue of ordering/nesting of aspects, not the other dimen-

sions. Furthermore, the part on ordering/nesting of this paper includes a number of
corrections and improvements over the previously-presented work.

100 É. Tanter

The major contributions of this work are a very flexible solution for ordering
and nesting of aspects, and an initial solution for the under-explored issue of
how structural changes made by aspects affect other aspects.

In Section 2, we briefly explain the idea of multi-language AOP, and its
incarnation in the Reflex AOP kernel for Java. We then discuss the different
aspects of composition in Reflex: aspects of aspects (Sect. 3), aspect dependen-
cies (Sect. 4), ordering/nesting of aspects (Sect. 5), and visibility of structural
changes (Sect. 6). We then review in Section 7 the literature in the area of aspect
composition, highlighting the differences with our work. Section 8 concludes.

2 Multi-language AOP and Reflex

This section briefly introduces the necessary background concepts on multi-
language AOP and the Reflex AOP kernel.

2.1 Multi-language AOP

In previous work [28, 29], we have motivated the interest of being able to define
and use different aspect languages, including domain-specific ones, to modularize
the different concerns of a software system. We have proposed the architecture
of a so-called versatile kernel for multi-language AOP, and our current Java
implementation, Reflex.

An AOP kernel supports the core semantics of various AO languages through
proper structural and behavioral models. Designers of aspect languages can
experiment comfortably and rapidly with an AOP kernel as a back-end, as it
provides a higher abstraction level for transformation than low-level transforma-
tion toolkits. The abstraction level provided by our kernel is a flexible model of
partial behavioral reflection [30], extended with structural abilities. Furthermore,
a crucial role of an AOP kernel is that of a mediator between different coexist-
ing AO approaches: detecting interactions between aspects, possibly written in
different languages, and providing expressive means for their resolution.

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Fig. 1. Architecture of a versatile kernel
for multi-language AOP

activation
condition

hookset

metaobject advice

pointcut

shadow

residue

Fig. 2. The link model and correspon-
dence to AOP concepts

The architecture of an AOP kernel consists of three layers (Fig. 1): a trans-
formation layer in charge of basic weaving, supporting both structural and be-
havioral modifications of the base program; a composition layer, for detection

Aspects of Composition in the Reflex AOP Kernel 101

and resolution of aspect interactions; a language layer, for modular definition of
aspect languages (as plugins). It has to be noted that the transformation layer
is not necessarily implemented by a (byte)code transformation system: it can
very well be integrated directly in the language interpreter (VM). As a matter
of fact, the role of a versatile AOP kernel is to complement traditional proces-
sors of object-oriented languages. Therefore, the fact that our implementation
in Java, Reflex, is based on code transformation should be seen as an implemen-
tation detail, not as a defining characteristic of the kernel approach.

2.2 Reflex in a Nutshell

Reflex is a portable library that extends Java with structural and behavioral
reflective facilities. Behavioral reflection follows a model of partial behavioral
reflection presented in [30]: the central notion is that of explicit links binding a
set of program points (a hookset) to a metaobject. A link is characterized by a
number of attributes, among which the control at which metaobjects act (before,
after, around), and a dynamically-evaluated activation condition. Fig. 2 depicts
two links, one of which is not subject to activation, along with the correspon-
dence to the AOP concepts of the pointcut/advice model. Note that our view of
AOP is inherently related to metaprogramming: an aspect cut is realized by in-
trospection of a program (both structure and execution), and its action consists
of behavioral/structural modifications (intercession). Reflex does not impose a
specific metaobject protocol (MOP), but rather makes it easy to specify tailored
MOPs, which can coexist in a given application. This means that one can spec-
ify, on a per-link basis, the exact communication protocol (which method to call
with which arguments) with the metaobject. A detailed case study of supporting
the dynamic crosscutting of AspectJ in Reflex can be found in [25].

The aforementioned links are called behavioral links to distinguish them from
structural links, which are used to perform structural reflection. A structural link
binds a set of classes to a metaobject, which can both introspect and modify class
definitions via a class-object structural model similar to that of Javassist [7]: an
RPool object gives access to RClass objects, which in turn give access to their
members as RMember objects (either RField, RMethod, or RConstructor), which
in turn give access to their bodies as RExpr objects (with a specific type for each
kind of expression). These objects are causally-connected representations of the
underlying bytecode, offering a source-level abstraction over bytecode.

Reflex is implemented as Java 5 instrumentation agent operating on bytecode,
typically at load time. The transformation process consists, for each class being
loaded, of (1) determining the set of structural links that apply to it, and applying
them, and (2) determining the set of behavioral links and installing them. The
reason of this ordering is discussed in Section 6. During installation of behavioral
links, hooks are inserted in class definitions at the appropriate places in order
to provoke reification at runtime, following the metaobject protocol specified for
each link.

102 É. Tanter

2.3 From Aspects to Links

As said above, Reflex relies on the notion of an explicit link binding a cut to an
action. Links are a mid-level abstraction, in between high-level aspects and low-
level code transformation. How aspect languages are defined and implemented
over the kernel is out of the scope of this paper (preliminary elements can be
found in [29]). Composition of aspects at the kernel level is expressed in terms
of link composition, which is the central matter of this paper.

A simple AspectJ aspect, comprising of a single advice associated to a simple
pointcut (with no higher-order pointcut designator), is straightforwardly im-
plemented in Reflex with a link (as in Fig. 2). However, most practical AOP
languages, like AspectJ, make it possible to define aspects as modular units
comprising more than one cut-action pair. In Reflex this corresponds to differ-
ent links, with one action bound to each cut. Furthermore, AspectJ supports
higher-order pointcut designators, like cflow. In Reflex, the implementation of
such an aspect requires an extra link to expose the control flow information.
There is therefore an abstraction gap between aspects and links: a single aspect
may be implemented by several links. This abstraction gap is the matter of the
language layer, as discussed in [29].

3 Aspects of Aspects

Defining aspects of aspects, i.e. aspects that apply to the execution of other
aspects, is a feature that can be useful to handle crosscutting in aspects them-
selves [5, 13, 10]. For instance, a profiling aspect monitoring the efficiency of
a caching aspect. Another example is an aspect resolving an accidental se-
mantical conflict between two aspects [6]. Unsurprisingly, Reflex supports as-
pects of aspects, a feature supported by almost every AOP proposal (e.g. the
adviceexecution pointcut descriptor of AspectJ). A link A can apply to the
action of another link B by having the cut of A matching operations that oc-
cur in the metaobject associated to B. Since metaobjects are standard objects,
a link can apply not only on the execution of the metaobject methods (simi-
larly to adviceexecution in AspectJ), but also to all other operations occuring
within the metaobject: field accesses, created objects, messages sent, etc. There
is indeed no difference between controlling the execution of a base application
object and that of a metaobject.

A distinguishing feature of aspects of aspects in Reflex comes if we con-
sider aspects acting around an execution point, for instance a caching aspect.
Typically, a caching aspect holds cached values, and when a cache fault occurs,
the aspect invokes the original operation via proceed. Such a proceed is done
in Reflex via calling the proceed method of an execution point closure (EPC)
object, which a metaobject can request. If we want to profile the caching aspect
to determine the ratio of cache hits/faults, we can define a profiling aspect that
matches execution of the caching method, and separately, that of the proceed
method on the EPC object. This definition is not feasible in AspectJ, because
proceed is a special expression that is not visible to other aspects.

Aspects of Composition in the Reflex AOP Kernel 103

4 Aspect Dependencies

Aspect dependencies can be of two kinds: implicit cut (“apply A whenever B
applies”) and mutual exclusion (“never apply A if B applies”). These dependen-
cies between aspects are mentioned in [5, 10, 21]. In addition, we also consider
the case of forbidden interactions, an error mechanism to forbid two aspects to
interact [6].

4.1 Implicit Cut

An implicit cut is obtained by sharing the cut specification between two aspects:
In AspectJ, this is done by sharing pointcuts; in Reflex, by sharing hooksets
(pointcut shadows) and activations (pointcut residues). Consider an e-commerce
application on which we apply a discount aspect that applies to frequent cus-
tomers, implemented by link discount, and a tracing aspect implemented by
the link trace. The following ensures that trace applies whenever discount
does (BLink stands for behavioral link):

BLink trace = Links.get(discount.getHookset(), <mo>);
trace.addActivation(new SharedActivation(discount));

The first line states that trace has the same hookset than discount (<mo>
stands for the metaobject specification, not relevant here). The second line adds
an activation condition, SharedActivation, which ensures that the activation of
trace is that of discount: even if the activation condition of discount evolves
dynamically, the dependency of trace to discount is ensured.

BLink trace = Links.getSameCut(discount, <mo>);

The above getSameCut method is a convenience method equivalent to the pre-
vious version. It just hides to programmers the way the implicit cut is realized.
Finally, note that an implicit cut by definition implies that both aspects apply
at the same points, therefore raising the issue of their ordering/nesting. This is
addressed in Section 5.

4.2 Mutual Exclusion

Mutual exclusion between two aspects is obtained in Reflex by declaring that
a link should not apply if another one does. As an example, consider a bingo
aspect (implemented by a bingo link) that is used in the same application as the
discounting aspect: every 1000 buyings, a big discount is offered. If a frequent
customer happens to be the winner of the bingo, then the standard discount
granted to frequent customers should not apply3. The following statement spec-
ifies that discount should not apply if bingo does:

Rules.declareMutex(discount, bingo);

3 This example is taken from an EAOP illustration [16, 14].

104 É. Tanter

Following this declaration, Reflex acts differently depending on whether the de-
pendent links are subject to dynamic activation or not. If both links are not
activatable (i.e. no pointcut residue), the mutual exclusion dependency can be
resolved at weaving time, when hooks are inserted in the code. If one of them
is indeed subject to dynamic activation, then Reflex postpones the resolution
of the dependency to runtime: when control flow reaches a hook shared be-
tween mutually-exclusive links, the activation condition of the dominant link
(here, bingo) is evaluated, and consequently, only one of the two links is applied
(bingo, or discount if bingo is not active).

In the face of multiple mutual exclusion dependencies, the current algorithm
first sorts out all links which are only dominant and then eliminates dominated
links if their dominant is always active, or adds a dynamic condition to the
dominated links if their dominant is subject to dynamic activation. At each
step, the set of rules that apply is reduced.

For instance, if links A, B and C are interacting and the mutex relations are
mutex(A, B) and mutex(B, C), the algorithm first puts A in the remaining links
set, and removes B from the links to consider (supposing A is always active).
Then, only C and A remain, and since no mutex is declared between both, C
is added to the remaining links. The final solution is therefore A-C. Now, if A
is subject to an activation condition, B is not removed: rather, it is put in the
remaining links, but subject to a dynamic condition on the activation of A. At
the next step, mutex(B, C) applies. Since the application of B depends on that of
A, C would be kept and subject to the activation of B. Consequently, at runtime,
either A-C or B result, depending on whether A is active or not.

Forbidden Interactions. A particular case of mutual exclusion is when in-
teraction between two aspects should be considered an error (aka. an inherent
conflict [6]). In this case, one does not want to specify which link to apply or not,
but rather to raise an exception. This is done in Reflex using declareError:

Rules.declareError(discount, bingo);

Similarly to declareMutex, the effect of declareError can occur at weaving
time if both links are not activatable, or at runtime otherwise. In both cases, a
ForbiddenInteraction exception is thrown.

5 Ordering and Nesting of Aspects

As previously mentioned, the Reflex AOP kernel follows the general approach
advocated by Douence et al., of automatic detection and explicit resolution of
aspect interactions [10]:

– The kernel ensures that interactions are detected, and reported to users upon
under-specification (Sect. 5.1).

– The kernel provides expressive and extensible means to specify the resolution
of aspect interactions (Sect. 5.2).

– From such specifications, it composes links appropriately (Sect. 5.3).

Aspects of Composition in the Reflex AOP Kernel 105

5.1 Interaction Detection

An aspect interaction occurs when several aspects affect the same program point
(execution or structure). Two behavioral links interact statically if the intersec-
tion of their hooksets is not empty. Still, the cut of an aspect may include a
dynamically-evaluated condition (recall Fig. 2): we say that two behavioral links
interact dynamically if they interact statically and they are both active at the
same time. Since link ordering is resolved statically (when introducing hooks)
and activation conditions can be changed dynamically, Reflex adopts a defen-
sive approach: any static interaction is reported, and must be considered by the
developer, so that a dynamic interaction is never under-specified. Our approach
limits the number of spurious conflicts because it is based on the weaving process,
which occurs on a by-need basis. In the presence of open systems with dynamic
class laoding, two aspects that may theoretically interact for a given program (as
in the formal approach of [10]) but do not in a particular run of that program
do not raise detected conflicts.

Two structural links interact if the intersection of their class sets is not
empty. We do not discriminate between static and dynamic interaction, because
structural links are applied directly at load time. At present our approach for
structural link interactions may report spurious conflicts because two links may
affect the same class orthogonally. Finer-grained detection of interactions among
structural links is left as future work.

Upon interactions, Reflex notifies an interaction listener. The default inter-
action listener simply issues warnings upon under-specification (see [29] for an
example), informing the user that specification should be completed. It is possi-
ble to use other listeners, e.g. for on-the-fly resolution.

5.2 Ordering and Nesting

At interaction points, resolution must be specified. If links are mutually exclusive,
specifying their ordering is not necessary4. Otherwise, ordering must be specified;
this section explains how this is done for behavioral links5.

The interaction between two before-after aspects can be resolved in two ways:
either one always applies prior to the other (both before and after), or one
“surrounds” the other [5, 10], although AspectJ only supports wrapping. These
alternatives can be expressed using composition operators dealing with sequenc-
ing and wrapping. Considering aspects that can act around an execution point
(such as a caching aspect), the notion of nesting as in AspectJ appears: a nested

4 We deliberately separate the issue of dependencies from ordering/nesting, although
mutual exclusion and forbidden interactions could be expressed with the operators
explained in this section. The reason is two-fold: first, it is easier and higher-level for
the user to declare dependencies as presented in Sect. 4.2; second, it is more efficient
for the weaver to “sort out” interacting links before trying to order them.

5 The case of structural links is simpler because they are always applied sequentially
at the time a class is about to be loaded; no nesting is involved.

106 É. Tanter

b1
b2

a1
a2

opr1
r2 op

b1
b2

a2
a1

op

b1

a1

r1

b2

a2

opr2

seq(l1,l2) wrap(l1,l2)
no around

wrap(l1,l2)
with around

(a) (b) (c)

proceed

op original
operation

weaving
point

Fig. 3. Ordering and nesting scenarios

advice is only executed if its parent around advice invokes proceed. Around
advices cannot be simply sequenced in AspectJ: they always imply nesting, and
hence their execution always depends on the upper-level around advice [31].

In Reflex, link composition rules are specified using composition operators.
The rule seq(l1, l2) uses the seq operator to state that l1 must be applied be-
fore l2, both before and after the considered operation occurrence. The rule
wrap(l1, l2) means that l2 must be applied within l1, as clarified hereafter.

Kernel operators. User composition operators are defined in terms of lower-
level kernel operators not dealing with links but with link elements. A link ele-
ment is a pair (link, control), where control is one of the control attributes: for
instance, b1 (resp. a1) is the link element of l1 for before (resp. after) control.
There are two kernel operators, ord and nest which express respectively ordering
and nesting of link elements. nest only applies to around link elements: the rule
nest(r, e) means that the application of the around element r nests that of the
link element e. The place of the nesting is defined by the occurrences of proceed
within r. Sequencing and wrapping can hence be defined as follows:

seq(l1, l2) = ord(b1, b2), ord(r1, r2), ord(a1, a2)
wrap(l1, l2) = ord(b1, b2), ord(a2, a1), nest(r1, b1), nest(r1, r2), nest(r1, a2)

Fig. 3 illustrates sequencing and wrapping, showing seq(l1, l2) with all link ele-
ments (a), and the result of wrap(l1, l2) first without around link elements (b),
and then with around link elements (c). Weaving points are explained later on.

Composition operators. Reflex makes it possible to define a handful of user
operators for composition on top of the kernel operators. For instance, Seq and
Wrap are binary operators that implement the seq and wrap operators as defined
above:

class Seq extends CompositionOperator {
void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(r(l1), r(l2)); ord(a(l1), a(l2));
}}

Aspects of Composition in the Reflex AOP Kernel 107

class Wrap extends CompositionOperator {
void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(a(l2), a(l1));
nest(r(l1), b(l2)); nest(r(l1), r(l2)); nest(r(l1), a(l2));

} }

The methods b (before), r (around), a (after), ord, and nest are provided by
CompositionOperator. The expand method, evaluated whenever an interaction
between two links occurs, defines a user operator in terms of kernel operators.

Below is an example of a composition rule declared between two interacting
aspects: a timing aspect measuring method execution time, and a synchroniza-
tion aspect ensuring mutual exclusion of methods. Both aspects act before and
after method executions. The declared composition implies that the timing as-
pect measures execution time of methods, including the synchronization cost:

BLink timer = ...; BLink synchro = ...;
Rules.declare(new Wrap(timer, synchro));

Another example of composition operator is Any: this operator simply states
that the order of composition of two given links does not matter (similarly to
commute in [10]); the kernel is free to compose them arbitrarily. Currently, the
Any operator is implemented as a Seq operator, but this is not something users
should rely upon:

class Any extends Seq {}

Higher-level operators. Users can define higher-level operators based on the
building blocks of Reflex. For instance, we can define a variant of Wrap that, in
addition to the Wrap semantics, specifies that the nested link does not apply if the
wrapping link is not active. We call this operator DWrap (D for “dependency”):

class DWrap extends Wrap {
void expand(Link l1, Link l2){

super.expand(l1, l2); // wrap semantics
l2.addActivation(new SharedActivation(l1)); // active dependency

} }

5.3 Hook Generation

When detecting link interactions, Reflex generates a hook skeleton based on the
specified composition rules, similarly to Fig. 3. The hook skeleton is then used for
driving the hook generation process: taking into account how link elements have
to be inserted, with the appropriate calls to metaobjects. In order to support
nesting of aspects with proceed, Reflex adopts a strategy similar to that of
AspectJ described in [19], based on the generation of closures.

As mentioned earlier, in order to be able to do proceed, a metaobject is
given an execution point closure (EPC) object, which has a proceed method, as
well as methods for changing the actual arguments and receiver of the replaced

108 É. Tanter

operation. Hence, for each interaction scenario with nesting, Reflex generates
closures embedding the composition resolution of the following nesting level, so
that calling proceed on the EPC object results in the execution of the links at
the nesting level below. This is done down to the deepest level where proceed
results in the execution of the replaced operation. The top-level weaving points
on Fig. 3 represent hooks, while nested weaving points represent closures.

Since previous benchmarks [25] highlighted that executing the replaced oper-
ation reflectively implies important performance penalties, we have now adopted
the generated stub solution used in AspectJ [19].

6 Visibility of Structural Changes

In the general case, aspects may change both the structure and behavior of a
program as a consequence of their actions. Although several AOP proposals –
such as EAOP [13, 14, 10, 11], trace-based aspects [12], AOLMP [9, 5, 18], and
several others– do not consider structural aspects, languages like AspectJ do
(via inter-type declarations). Reflex, as a versatile kernel for AOP, also supports
structural changes, as mentioned earlier, via structural links.

As explained previously, aspects rely on introspecting the structure of a pro-
gram to define their cut. Since structural aspects modify this structure, the issue
of whether structural changes made by aspects are visible to others or not ap-
pears. This is a composition issue because if there is only one aspect, there is
no problem: the issue arises when considering the integration of several aspects
over the same application. This issue is still under-explored in the community.

Consider an aspect adding history to fields, and another aspect making fields
persistent: the issue of whether the field added by the first aspect in order to
record history should be made persistent appears. In Reflex, the persistence
aspect is implemented by a behavioral link, monitoring field accesses; the history
aspect, in addition to using a behavioral link for capturing history, makes use
of a structural link to introduce a new field in appropriate classes. Therefore,
the history field will only be made persistent if the cut of the persistence link
actually “sees” that field. For some applications it can make sense to have history
fields being persistent as well, but still, those fields may need to be hidden from
other aspects.

Default visibility. Reflex applies all structural links before behavioral links
are setup. This makes it possible for a behavioral link to affect operations re-
lated to a member added by a structural link, if so desired. But by default, all
structural changes are hidden. This makes it possible to avoid unwanted confla-
tion of extended and non-extended functionalities, as discussed in the meta-helix
architecture [8].

Furthermore, changes done to the program when introducing hooks (for set-
ting up behavioral links) are always hidden. This is motivated by the fact
that behavioral changes are conceptually runtime changes: the fact that Reflex
operates at load time, by introducing hooks, should be transparent; hence hooks

Aspects of Composition in the Reflex AOP Kernel 109

should be hidden. Similarly, infrastructure members introduced by Reflex –such
as metaobject references and initialization methods– cannot be observed. This
is implemented thanks to a mirror-based structural API [3, 27], which exposes
only interface types to users, rather than implementation types as in Javassist:
hence Reflex can coordinate visibility of structural elements “behind the scene”
(ensuring structural correspondence [3, 27]).

Declarative visibility. When introspecting a class for determing matching or
not of its cut, a link only sees what has been declared to be its view of the
program. By default, as we said, a link only sees the original program definition.
But it is possible to declare that a link has an augmented view of the program,
i.e. including changes made by other links:

(1) Rules.augmentViewOf(persistency, history);
(2) Rules.addToDefaultView(history);

Line (1) above declares that persistency sees all changes made by history.
Several links can be given to augmentViewOf. Line (2) adopts a different focus,
by promoting all changes made by history as part of the default view.

To support the subjectivity introduced above, Reflex automatically records
the identity of the link affecting a given structural element as a metadata of
the element. Metadata are stored in a general-purpose key-value property map
attached to each structural element, and can be used for many purposes. In
particular, it is possible for a link to force a new structural element to be always
visible (resp. always hidden) by setting a particular property forceVisible
(resp. forceHidden).

The proposed mechanism for controlling the visibility of structural changes
already goes beyond existing AOP proposals, in particular AspectJ. However,
our approach can still be refined and enhanced, to address more specific and
fine-grained conflicts between structural changes.

7 Related Work

Our work on aspect composition in the Reflex AOP kernel is inspired by the
work of Douence et al. in the EAOP model. It can be seen as an effort to project
over a concrete and efficient implementation their formal approach to aspect
composition [10, 11]. Among the notable differences is the fact that EAOP does
not contemplate structural changes to programs, nor the possibilities of aspects
to act around a given execution point.

Klaeren et al. have focused on the issue of validating combinations of as-
pects [21]. They use assertions to ensure the correctness of the dependencies be-
tween aspects with respect to the specification, focusing on mutually-exclusive
aspects. However they do not address means to resolve interactions between
aspects. Reflex also covers mutual exclusion, as explained in Section 4.2.

JAsCo [26] provides two mechanisms for aspect composition: precedence
strategies and combination strategies. In JAsCo, an aspect is deployed by speci-
fying a connector that determines which hooks should be enabled (the cut of an

110 É. Tanter

aspect) and which advice should be triggered when the cut is matched. Within a
connector that instantiates several hooks, it is possible to specify explicitly the
order in which associated advices are executed, leading to fine-grained control on
precedence strategies. This is similar to what can be expressed declaratively in
Reflex using the composition operators. However, this mechanism works fine only
for interacting aspects that are deployed by one connector. Also, with respect
to around advice however, JAsCo forces the nesting relation, while Reflex lets,
at the kernel level, the possibility of having a sequence of around advices. For
other interaction problems that are not solved by means of precedence strate-
gies, JAsCo provides combination strategies: such a strategy is like a filter on
the list of hooks that are applicable at a certain point in the execution. With
combination strategies, one can programmatically exclude certain hooks from
the current interaction. Again, this is similar to what can be achieved in Reflex;
actually the low-level interface in the Reflex kernel is equivalent, except that it
works on hook trees rather than flat lists, in order to reflect the nesting relation.
However, Reflex provides a declarative layer on top of this low-level, program-
matic interface, which JAsCo does not. Finally, JAsCo does not automatically
report on interactions, and does not address structural aspects.

Nagy et al. present a declarative approach to aspect composition [23], consid-
ering two types of constraints: ordering and control. The approach for ordering
constraints is similar to our kernel-level predicates: the pre constraint ressem-
bles our ord predicate for indicating precedence. But the issue of aspect nesting
(as addressed by nest) is not discussed. Control constraints are used to make an
aspect depend on the “return value” of the action of another aspect. Although
only boolean return values are considered, the approach is interesting. In Reflex,
it is expressable in a more flexible manner through activation conditions. Also,
Nagyet al. introduce two types of constraints, soft ones and hard ones, to be able
to express a strong dependency between two aspects, such that one can apply
only if the other one did. Mutual exclusion is however not considered. Further-
more, in our proposal, dependencies are a separate notion, although they can be
embedded within user-defined composition operators (e.g. the DWrap operator,
Sect. 5.2). Our approach is therefore more flexible in this sense. Finally, they do
not address the issue of structural changes to base code.

Brichau et al. proposed the use of logic metaprogramming [32, 9] to build com-
posable domain-specific aspect languages [5]. A logic language is used to reason
about object-oriented base programs, whose description at the metalevel is done
with logic facts and rules. The logic language also serves as the medium in which
both aspects and aspect languages are implemented and coordinated, through
logic rules in logic modules. Although no aspect-specific syntax is provided, the
use of a common logic medium is extremely expressive and allows for the spec-
ification of advanced composition strategies. The proposal, called SOUL/Aop,
however only considers a static joinpoint model; the more recent AOLMP sys-
tem Carma [18] is based on a dynamic joinpoint model, but has not gotten to
aspect composition issues yet. SOUL/Aop only deals with before/after advices,
hence issues related to acting around an execution point are not considered; nor

Aspects of Composition in the Reflex AOP Kernel 111

are structural aspects addressed. Also, advice weaving in SOUL/Aop is done
by inlining advice code at appropriate places, complexifying the support for as-
pects of aspects. Note that Reflex, as of now, does not offer any real support
for composing languages, but just aspects. Conversely, Brichau et al. do support
composition of languages exactly in the same way as aspects are composed: by
combining parameterized logic modules. We are currently exploring language
composition alternatives for Reflex, in particular with the MetaBorg approach
for unrestricted embedding and assimiation of domain-specific languages [4].

8 Conclusion

We have exposed different dimensions of the multi-faceted issue of aspect com-
position, and explained the support that the Reflex AOP kernel provides for the
same. Reflex supports automatic detection of aspect interactions limiting spu-
rious conflicts; possibilities to express aspect dependencies, such as implicit cut
and mutual exclusion; extensible composition operators for ordering and nesting
of aspects; the definition of aspects of aspects; and the possibility to control the
visibility of structural changes made by aspects. Since Reflex is used as an exper-
imental platform for multi-language AOP, its composition features can be used
to handle composition of aspects defined in different aspect languages. The open-
ness of the platform also makes it possible to experiment with new composition
operators.

Our experience with supporting declarative aspect composition suggests that
an imperative implementation in plain Java may not be the appropriate way to
go, as we are facing difficulties in the implementation of some deductions, which
would be straightforward using a logic engine. This remains to be explored.
Furthermore, our initial solution to composition of structural aspects needs to
be extended further, to deal with finer-grained conflicts and resolution schemes.

Acknowledgements. The author would like to thank Jacques Noyé for his
detailed comments on a draft of this paper, as well as for his contribution on the
body of work on Reflex. Guillaume Pothier, Leonardo Rodŕıguez and Rodolfo
Toledo contributed to the implementation of the features described in this paper.
The anonymous reviewers of SC’06 provided very valuable feedback that allowed
us to enhance both the presentation and the work hereby presented.

References

[1] M. Akşit, editor. Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD 2003), Boston, MA, USA, Mar. 2003.
ACM Press.

[2] D. Batory, C. Consel, and W. Taha, editors. Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering (GPCE 2002), volume 2487 of Lecture Notes in Computer Science, Pitts-
burgh, PA, USA, Oct. 2002. Springer-Verlag.

112 É. Tanter

[3] G. Bracha and D. Ungar. Mirrors: Design principles for meta-level facilities of
object-oriented programming languages. In OOPSLA 2004 [24], pages 331–344.
ACM SIGPLAN Notices, 39(11).

[4] M. Bravenboer and E. Visser. Concrete syntax for objects. In OOPSLA 2004
[24]. ACM SIGPLAN Notices, 39(11).

[5] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages with logic metaprogramming. In Batory et al. [2], pages 110–127.

[6] L. Bussard, L. Carver, E. Ernst, M. Jung, M. Robillard, and A. Speck. Safe
aspect composition. In J. Malenfant, S. Moisan, and A. Moreira, editors, Object-
Oriented Technology: ECOOP 2000 Workshop Reader, volume 1964 of Lecture
Notes in Computer Science, pages 205–210. Springer-Verlag, 2000.

[7] S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor, Proceed-
ings of the 14th European Conference on Object-Oriented Programming (ECOOP
2000), number 1850 in Lecture Notes in Computer Science, pages 313–336, Sophia
Antipolis and Cannes, France, June 2000. Springer-Verlag.

[8] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in metacircularity:
The meta-helix. In Proceedings of the 2nd International Symposium on Object
Technologies for Advanced Software (ISOTAS’96), volume 1049 of Lecture Notes
in Computer Science, pages 157–172. Springer-Verlag, 1996.

[9] K. De Volder and T. D’Hondt. Aspect-oriented logic meta-programming. In
P. Cointe, editor, Proceedings of the 2nd International Conference on Metalevel
Architectures and Reflection (Reflection 99), volume 1616 of Lecture Notes in
Computer Science, pages 250–272, Saint-Malo, France, July 1999. Springer-Verlag.

[10] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and
resolution of aspect interactions. In Batory et al. [2], pages 173–188.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analy-
sis of stateful aspects. In Lieberherr [22], pages 141–150.

[12] R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In R. E. Filman,
T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Development,
pages 201–217. Addison-Wesley, Boston, 2005.

[13] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In
A. Yonezawa and S. Matsuoka, editors, Proceedings of the 3rd International Con-
ference on Metalevel Architectures and Advanced Separation of Concerns (Reflec-
tion 2001), volume 2192 of Lecture Notes in Computer Science, pages 170–186,
Kyoto, Japan, Sept. 2001. Springer-Verlag.

[14] R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented
programming (EAOP). Technical Report 02/11/INFO, École des mines de Nantes,
Dec. 2002. 2nd edition, French version published in the Proceedings of ”Langages
et Modèles à Objets” (LMO’03).

[15] P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic con-
flicts between aspects. In 2nd European Interactive Workshop on Aspects in Soft-
ware (EIWAS 2005), Brussels, Belgium, Sept. 2005.

[16] The EAOP tool homepage, 2001. http://www.emn.fr/x-info/eaop/tool.html.
[17] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Commu-

nications of the ACM, 44(10), Oct. 2001.
[18] K. Gybels and J. Brichau. Arranging language features for more robust pattern-

based crosscuts. In Akşit [1], pages 60–69.
[19] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Lieberherr [22], pages

26–35.

Aspects of Composition in the Reflex AOP Kernel 113

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In J. L. Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), number 2072 in
Lecture Notes in Computer Science, pages 327–353, Budapest, Hungary, June
2001. Springer-Verlag.

[21] H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck. Aspect composition ap-
plying the design by contract principle. In Proceedings of the 2nd International
Symposium on Generative and Component-Based Software Engineering (GCSE
2000), volume 2177 of Lecture Notes in Computer Science, pages 57–69. Springer-
Verlag, 2000.

[22] K. Lieberherr, editor. Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), Lancaster, UK, Mar. 2004. ACM
Press.

[23] I. Nagy, L. Bergmans, and M. Aksit. Declarative aspect composition. In 2nd
Software-Engineering Properties of Languages and Aspect Technologies Workshop,
Mar 2004.

[24] Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 2004), Vancouver, British
Columbia, Canada, Oct. 2004. ACM Press. ACM SIGPLAN Notices, 39(11).

[25] L. Rodŕıguez, É. Tanter, and J. Noyé. Supporting dynamic crosscutting with par-
tial behavioral reflection: a case study. In Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), Arica, Chile,
Nov. 2004. IEEE Computer Society Press.

[26] D. Suvee, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented approach
tailored for component based software development. In Akşit [1], pages 21–29.

[27] É. Tanter. Metalevel facilities for multi-language AOP. In 2nd European Inter-
active Workshop on Aspects in Software (EIWAS 2005), Brussels, Belgium, Sept.
2005.

[28] É. Tanter and J. Noyé. Motivation and requirements for a versatile AOP kernel.
In 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, Sept. 2004.

[29] É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Glück
and M. Lowry, editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE 2005),
volume 3676 of Lecture Notes in Computer Science, pages 173–188, Tallinn, Es-
tonia, Sept./Oct. 2005. Springer-Verlag.

[30] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection:
Spatial and temporal selection of reification. In R. Crocker and G. L. Steele, Jr.,
editors, Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), pages 27–
46, Anaheim, CA, USA, Oct. 2003. ACM Press. ACM SIGPLAN Notices, 38(11).

[31] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic
join points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems, 26(5):890–910, Sept. 2004.

[32] R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA 98, page 112, 1998.

A Component-Based Approach to Compose
Transaction Standards

Romain Rouvoy1, Patricia Serrano-Alvarado2, and Philippe Merle1

1 INRIA Futurs, Jacquard Project,
LIFL - University of Lille 1,

59655 Villeneuve d’Ascq Cedex, France
{romain.rouvoy, philippe.merle}@inria.fr

2 ATLAS-GDD Team,
LINA - University of Nantes,

44322 Nantes Cedex 03, France
patricia.serrano-alvarado@univ-nantes.fr

Abstract. This paper tackles the problem of composition of transaction
services, which are governed by various transaction standards. Among
others, we can cite the Object Transaction Service, Java Transaction Ser-
vice, or Web Services Atomic Transaction. However, the Web Services
Atomic Transaction standard encloses legacy transaction standards to
support the Web Services application platform. This encapsulation in-
troduces an additional complexity to the system and hides the speci-
ficities of legacy transaction standards. When composing heterogeneous
legacy applications, the underlying transaction services are basically not
composed transparently. This paper presents an approach to build an
Adapted Transaction Service, named ATS, which supports several trans-
action standards concurrently. The objective of ATS is to facilitate the
transaction standards composition. To introduce ATS we detail how the
Object Transaction Service, Web Services Atomic Transaction, and Java
Transaction Service standards can be composed. Besides, an ATS imple-
mentation is introduced using the GoTM framework. We show that this
fine-grained component-based approach does not introduce an additional
overhead to legacy applications and supports well scalability. Moreover,
this approach can be extended to other standards.

1 Introduction

For years, the number of transaction standards grows drastically. Among others,
we can cite the Object Transaction Service (OTS) from the Object Manage-
ment Group [1], the Java Transaction Service (JTS) from Sun Microsystems [2],
or the Web Services Atomic Transaction (WS-AT) [3] published by Microsoft,
IBM, IONA, BEA Systems, Hitachi and Arjuna Technologies. Current trends
define new transaction standards by encapsulating existing ones. For example,
the WS-AT standard encloses the JTS standard, which encapsulates the OTS
standard. But this approach introduces an additional complexity for each layer,
while loosing the specificities of each encapsulated transaction standard. When

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 114–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Component-Based Approach to Compose Transaction Standards 115

composing heterogeneous legacy applications, the underlying transaction services
are basically not composed transparently.

This drawback leads us to propose a practical approach to compose trans-
action standards. In this paper, we present an approach to build an Adapted
Transaction Service (ATS) and its implementation based on fine-grained com-
ponents. The ATS composes several transaction standards simultaneously and
ensures the compliancy of the different functions. To design ATS, we analyze the
interfaces of the transaction standards, and we identify the required functions.
Each function is derived into various strategies depending on the specific seman-
tics. Therefore, ATS is built by composition of these strategies and adapters.
Adapters ensure the compliance with transaction standards interfaces. Finally,
we use GoTM to build the resulting ATS. GoTM is a framework that provides
various fine-grained transaction components [4]. These components are imple-
mented with Fractal, a component model that provides good properties in terms
of modularity and performances [5]. To illustrate our approach, we build a trans-
action service that composes the CORBA, Web Services and Java transaction
standards.

This paper is organized as follows. The problem of transaction standard com-
position is presented in Section 2. Section 3 describes our approach to achieve
transaction standard composition. The implementation of our solution with the
GoTM framework is detailed and evaluated in Section 4. Section 5 discusses
related works, and Section 6 concludes.

2 The Problem of Transaction Standard Composition

To illustrate the problem related to transaction standard composition, we use
the example of Flight Booking and Hotel Reservation applications, as depicted
in Figure 1.

Third
Application

Web Services Application
PlatformCORBA Application Platform

Web Services Atomic
Transaction

Object Transaction
Service

Java Transaction
Service

W
S Hotel

Reservation
ApplicationC

O
R

B
A

Flight Booking
Application

Fig. 1. Illustration of the problem of transaction standard composition

These applications are hosted by different distributed application platforms
(CORBA and Web Services), which support their own transaction standard. In
particular, the CORBA application platform provides the Object Transaction
Service (OTS). The Web Services application platform provides the Atomic
Transaction Service (WS-AT). The Third Application uses locally the Java

116 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Transaction Service (JTS). This third application can interact with both ap-
plications remotely using the functionalities provided by each distributed appli-
cation platforms.

Even if this architecture allows heterogeneous application platforms to inter-
act, the transaction context1 is not implicitly propagated from an application to
another. That is, WS-AT, which handles Hotel Reservation transactions, does
not cooperate with OTS, which controls the Flight Booking transactions. And,
the third application, using JTS, can not synchronize its execution with the two
other applications.

Usually, to achieve such a synchronization, the third application should control
all the transaction services, and therefore use three different transaction Appli-
cation Programming Interfaces (APIs). Thus, when it begins a new transaction,
the third application should explicitly begin transactions in the three transaction
services. But, when the transaction commits, the third application should find a
way of coordinating the commit protocol of each transaction service. Existing ap-
proaches use compensation mechanisms to support the coordination of multiple
transactional activities [6]. But applications can not always define compensating
actions (e.g.: compensating the sending of an email). Therefore the compensating
actions may be limited in some coordination situations. Moreover, the definition
of a coordination algorithm at the third application level weaves the code related
to non-functional properties (i.e., transaction services synchronization) with the
business code.

This paper proposes an approach to deal with the heterogeneity of existing
transaction standards. Instead of proposing to use a unified language or a new
transaction standard, we propose to build Adapted Transaction Services (ATS)
that support several transaction standards concurrently. Therefore the third ap-
plication uses only the interfaces provided by JTS and transactions are auto-
matically coordinated in the two other transaction services. With this approach,
legacy systems can be transparently composed together from a transactional
point of view.

3 ATS Design

This section begins with an overview of an ATS built to answer to the problem of
transaction standard heterogeneity depicted in Figure 1. Thus, the approach ap-
plied to build this ATS is detailed. First, the considered transaction services are
analyzed to highlight the functions involved in each transaction standard. Next,
these functions are abstracted and dependencies are identified. Each function
is extended into various strategies according to the semantics imposed by the
considered standards. These strategies are then composed (i.e., linked together)
to build the content of the Common Transaction Service (CTS). Finally, the
ATS is built by adding to the CTS necessary adapters to support JTS, WS-AT,
and OTS standards.

1 Information related to the execution of the current transaction.

A Component-Based Approach to Compose Transaction Standards 117

3.1 Overview of an ATS

Figure 2 introduces an ATS supporting OTS, JTS, and WS-AT standards.

Adapted Transaction Service (ATS)
Common Transaction Service (CTS)

Third
Application

Web Services Application
Platform

CORBA Application
Platform

Web Services
Transaction Adapter

Object Transaction
Service Adapter

Java Transaction
Service Adapter

Hotel
Reservation
Application

Flight Booking
Application

Fig. 2. An example of ATS supporting transaction standard composition

An ATS is composed of a set of adapters and a CTS. The CTS provides an
implementation of a generic transaction engine. The CTS groups the behaviour of
all the functions supported by the ATS. The adapters provide compliance with
the considered transaction standards (OTS, JTS and WS-AT). The adapters
are responsible for mapping the operation performed on a particular transaction
standard to the functions provided by the CTS. The functions, required by the
adapters, are provided by the CTS.

Thus, this modular architecture can be easily modified to support new trans-
action standards. In this case, the content of the CTS is adapted according to
the chosen adapters to provide the minimal set of functions required.

3.2 Function Analysis

A function is a set of operations linked by their semantics. In particular, we
make the hypothesis that transaction services are based on the minimal set of
Status, Coordination, and Participants functions. Then, we identify these func-
tions for each APIs used by the applications to ensure transactional behaviour.
More specifically, we consider the CosTransactions API, Java Transaction API,
and Atomic Transaction Services provided by the OTS, JTS and WS-AT stan-
dards, respectively. This analysis aims at confirming that the three identified
functions are enough to compose transaction services.

JTA Analysis. The Java Transaction API (JTA) defines a set of Java inter-
faces that provide transaction support to any Java application. Figure 3 lists the
interfaces involved in JTA.

Based on an analysis of this API, we establish the interface dependencies. These
dependencies are illustrated with the ”uses” UML stereotype [7] in Figure 3. For
example, the Transaction interface depend on the Status, Synchronization
and XAResource interfaces. The operations described in the Transaction inter-
face require Synchronization and XAResource interfaces, while providing the
Status interface.

118 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Fig. 3. Java Transaction API analysis

Next, we classify JTA interfaces according to the function indicated by their
semantics. The identified functions are indicated with the ”function” UML
stereotype in Figure 3. For example, the semantics of the UserTransaction,
Transaction, and TransactionManager interfaces refer to a Two-Phase Com-
mit protocol [8]. Thus, we define the Coordination function to abstract the iden-
tified semantics. We apply the same approach to each operation making up the
API. As a result, we extract three functions: Coordination, Status and Partici-
pants. The Status function controls the state of the transaction. The Participants
function manages the participants involved in the transaction.

CosTransactions Analysis. The CosTransactions API is defined using the
OMG Interface Description Language and allows CORBA applications written
in different programming languages to use it. Figure 4 identifies the interfaces
involved in the CosTransactions API.

CosTransactions

«function»
Coordination

«function»
Status

«function»
Participants

«interface»
Terminator

«interface»
Coordinator

«interface»
Control

«interface»
Current

«interface»
TransactionFactory

«interface»
RecoveryCoordinator

«interface»
SubtransactionAwareResource

«interface»
Resource

«interface»
Synchronization

«interface»
Status

«uses»
«uses»

«uses»

«uses»

«u
se

s»

«u
se

s»

«u
se

s»

«uses»

«u
se

s»

Functions

Fig. 4. CosTransactions API analysis

We apply the same process as with JTA. Interface dependencies are first inferred
from the transaction API. The functions involved in the CosTransactions API are
identified and we obtain the Coordination, Status and Participants functions.

A Component-Based Approach to Compose Transaction Standards 119

WS Atomic Transaction Analysis. Web Services Atomic Transaction (WS-
AT) is the last transaction standard specified. This standard allows transaction-
aware Web Services distributed across a network to be synchronized with
different policies. The WS-AT standard is structured in several services, each
service providing a specific function. Figure 5 identifies the services involved in
the Web Services Atomic Transaction standard.

Coordination AtomicTransaction

«function»
Coordination

«function»
Status

«function»
Participants

«uses»

«service»
Activation

«service»
Registration

«service»
Completion

«service»
CompletionWithAck

«service»
PhaseZero

«service»
2PC

«service»
OutcomeNotification

«uses»

«uses»

«uses»«uses» «uses»

Functions

Fig. 5. WS Atomic Transactions analysis

The granularity of this standard is not the same than the two previous ones.
Indeed, Web Services are based on message exchanges rather method invocations.
Thus, we analyze the interaction between the services involved in the WS-AT
standard. The Registration service depend on the Activation service. This is
because a Coordination Context should be created before participants can reg-
ister with the transaction. The Completion, CompletionWithAck, PhaseZero,
2PC and OutcomeNotification services encapsulate the WS-Atomic Transac-
tion business logic. These additional services depends on the Registration service
to interact with transaction participants. As a consequence, functions involved
in WS-Atomic Transaction are: Coordination, Status and Participants.

3.3 Strategy Definition

Function Summary. In this step, we associate each identified function with a
set of generic operation signatures. This association depends on the operations
declared in the CosTransactions, WS Atomic Transaction and Java Transac-
tion APIs. Next, the dependencies between the functions are inferred from the
interface dependencies established in the section 3.2.

As shown in Figure 6, the Status and Participants functions are not depen-
dent on any other function. The Status function provides the operations required
to handle the transaction status allowed by a given transaction model. The Par-
ticipants function provides operations to manage the transaction participants.

The Coordination function updates the transaction status using the Status
function. It also ensures the coherence between the transaction status and the
resource states. For example, updating the transaction status to commit implies
that participants validate their modifications using the Participants function.
Thus, the execute() operation changes the transaction status and notifies the
participants involved in the transaction.

120 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

+setStatus()
+getStatus()

«function»
Status

«requires»

«requires»

«strategy»
TwoPhaseCommit

«strategy»
XAResources

«strategy»
Synchronizations

«strategy»
AtomicTransactionState

«strategy»
SubTransactionAwareResources

+execute()

«function»
Coordination

«strategy»
SynchronizationsJTA

«strategy»
Resources

+enlist()
+delist()
+notify()

«function»
Participants

«strategy»
TransactionAwareParticipants

Fig. 6. Illustration of the function abstraction

However, transaction standards define also some semantics that should be re-
spected by the implementations. These semantics are named strategies and are
associated to identified functions. A strategy can be an implementation of an
algorithm, a protocol (e.g., the Two-Phase Commit protocol) or a specialization
of an entity (e.g., XAResource). Figure 6 shows an overview of the possible strat-
egy derivations for JTS, WS-AT and OTS from the identified functions. These
strategies are described in the following sections.

Two-Phase Commit Strategy. The TwoPhaseCommit strategy represents an
implementation of the Two-Phase Commit (2PC) protocol for the Coordination
function. This protocol defines, among other things, a sequence of messages
that ensures atomicity. Figure 7 shows the UML Interaction diagram [7] used to
describe a basic 2PC protocol.

Fig. 7. 2PC Interaction Diagram

As shown in Figure 7, the TwoPhase-
Commit strategy extending the Coordina-
tion function emits a prepare message. The
Participants function answers to this mes-
sage with a vote-commit or vote-abort
message. Depending on the collected votes,
the TwoPhaseCommit strategy sends a
commit or an abort message to Partici-
pants function. Once the participants have
achieved the validation process, the Partic-
ipants function sends an ack message to
acknowledge the coordination process. Ad-
ditional strategies can be defined to imple-
ment optimized versions of 2PC, such as Two-Phase Commit Presumed Commit
(2PCPC) or Two-Phase Commit Presumed Abort (2PCPA) protocols (see [8]
for more details).

Participants Strategies. The Participants function is extended by six strate-
gies, which are adapted to the different types of resources defined in the

A Component-Based Approach to Compose Transaction Standards 121

transaction standards. These strategies are the SubTransactionAwareResources,
Synchronizations and Resources for OTS ; TransactionAwareParticipants for
WS-AT and SynchronizationsJTA and XAResources for JTS. The differences
between these strategies are the list of messages that the resources can handle.
For example, the Synchronization strategy handles commit and abort messages.
The Resource strategy handles these two messages plus the prepare message.
Each strategy is based on a set of specific ECA rules (Event/Condition/Action).
These rules define the behaviour to apply on the participants involved in the
transaction depending on incoming messages.

1 global synchronizations
2
3 on prepare? count(synchronizations)>0:
4 foreach s in synchronizations do:
5 s.beforeCompletion()
6 on commit? count(synchronizations)>0:
7 foreach s in synchronizations do:
8 s.afterCompletion(Status.STATUS_COMMITTED)
9 on abort? count(synchronizations)>0:

10 foreach s in synchronizations do:
11 s.afterCompletion(Status.STATUS_ROLLEDBACK)

Fig. 8. SynchronizationsJTA Strategy ECA Rules

Figure 8 depicts the example of the SynchronizationsJTA strategy. The Event
part corresponds to the messages received by the strategy prefixed by the on key-
word. The Condition part checks that at least one participant is involved in the
transaction. The Action part applies a treatment to all the participants registered
in the transaction. These participants are notified before and after the comple-
tion of the transaction in which they are involved. The afterCompletion()
operation parameter depends on the outcome of the transaction (i.e., commit-
ted or aborted). Additional ECA rules are defined for each strategy extending
the Participants function.

Atomic Transaction State Strategy. The Status function is extended by the
AtomicTransactionState strategy. This strategy can be configured using a state
automaton describing the transaction state transitions.

The state automaton used in our example describes an atomic transaction as
depicted in Figure 9. We use the UML diagram State Machine [7] to describe
the states involved in the lifecycle of an atomic transaction. These states are
common to each transaction standard because all of them are related to atomic
transactions. As shown in Figure 9, an atomic transaction starts in an Inactive
state. When it receives the start message, the atomic transaction moves to the
Active state. Thus, an atomic transaction can be suspended and resumed using
start and stop messages. To move to the validation phase, the atomic transaction
should be in the Active state and receives a prepare, abort or aborted message.

122 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Preparing

Prepared

start

prepare

aborted

prepared

commit
abort

committed
aborted

abort

abort

aborted

stop

Committing Aborting

Committed Aborted

ActiveInactive

Fig. 9. Atomic Transaction State Diagram

The prepare message begins the
Two-Phase Commit protocol,
moving the Transaction to the
Preparing state. The abort mes-
sage causes the transaction to
abort unilaterally. The aborted
message ends the transaction
without applying the Two-Phase
Commit protocol. The abort and
aborted messages result in the
same behaviour independently of
the current state of the transac-
tion. When a transaction in the
Preparing state receives the pre-
pared message, it moves to the
Prepared state to decide the out-
come of the transaction. When this decision is taken by the Coordination Proto-
col, the transaction can commit if it receives the commit message. In this case, the
transaction enters in the Committing state to validate the transaction and then
moves to the Committed final state once the decision is acknowledged. Any abort
message received by a transaction state results in moving the in the Aborting
state to cancel the transaction before moving to the Aborted final state. Addi-
tional State Machine diagrams can be defined to handle new transaction states
such as the Compensating state [9].

3.4 Composition of the ATS

Once the transaction standards have been described in terms of functions and
strategies, the next step builds the Common Transaction Service (CTS) by com-
position of strategies following function dependencies. The CTS is a generic
transaction engine that provides common facilities to the three transaction stan-
dards. This composition is implemented with the paradigm of a software bus [10].
A software bus provides facilities to compose the strategies interacting using
messages. For example, the commit or abort messages are propagated from the
TwoPhaseCommit strategy to the Synchronizations strategy according to the
dependency that links their associated functions (Coordination and Participants
respectively).

Figure 10 gives an overview of the strategy composition used to build the CTS.
This composition meets the requirements of JTS, WS-AT and OTS standards.
The MessageBus bus propagates the messages between the strategies involved
in the CTS. Associations link a strategy to either a dependent strategy or the
MessageBus in order to connect required to provided functions.

Once the CTS is built, it needs to be made compliant with the APIs of each of
the considered transaction services. The result of this adaptation is the Adapted
Transaction Service (ATS). In practice, the adaptation is done by constructing

A Component-Based Approach to Compose Transaction Standards 123

«bus»
MessageBus

«strategy»
TwoPhaseCommit

«strategy»
AtomicTransactionState

«adapter»
JTS

«adapter»
OTS

«strategy»
XAResources

«strategy»
Synchronizations

«strategy»
SubTransactionAwareResources

«strategy»
SynchronizationsJTA

«strategy»
Resources

«adapter»
WS-AT

«strategy»
TransactionAwareParticipants

Fig. 10. CTS: composition of JTS/WS-AT/OTS-compliant strategies

adapters that provide the operations required by the associated standard APIs,
and require the CTS functions identified in Section 3.2.

Figure 10 illustrates the adaptation of CTS to JTS, WS-AT and OTS trans-
action interfaces. In this step, an adapter for each of the transaction services is
defined. Each adapter is bound to the strategies it requires. The JTS adapter
requires the TransactionState, TwoPhaseCommit, XAResources and Synchro-
nizationsJTA strategies. The OTS adapter requires the TransactionState, Two-
PhaseCommit, Synchronizations, Resources and SubTransactionAwareResources
strategies. The WS-AT adapter requires the TransactionState, TwoPhaseCom-
mit, TransactionAwareParticpants strategies.

3.5 ATS Use Case

This section introduces how the ATS is used in practice. This use case describes
a simple scenario applied on the example depicted in Figure 2.

1. The Third Application creates a new transaction in the ATS via the JTS
adapter. An adapted transaction context is automatically initialized by the
ATS. The transaction context associates the method invoked by the Third
Application with the created transaction.

2. The Third Application calls the Flight Booking Application using the CORBA
platform facilities. The transaction context is propagated to the target appli-
cation via the CORBA Portable Interceptors mechanism [11]. In particular,
the Client Portable Interceptor defines the OTS adapter of the ATS as the
current transaction service. The Server Portable Interceptor replaces the ex-
isting transaction service by the OTS adapter during the execution of the ap-
plication. As a consequence, the Flight Booking Application enlists Resource
and Synchronization participants in the OTS adapter of the ATS.

3. The Third Application invokes the Hotel Reservation Application (see Figure 2)
using the Web Services application platform. The transaction context is
propagated as a WS-Coordination Context [12] in the header of the Web
Service request. This means that the Hotel Reservation Application will enlist
its TransactionAwareParticipants in the ATS via the Registration Service
provided by the WS-AT adapter of the ATS.

124 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

4. The Third Application commits the transaction. The ATS synchronizes all the
heterogeneous participants using the commit protocol embedded in the CTS.
This means that the completion of the transaction is done independently of
the transaction standard (i.e. OTS, JTS, WS-AT) used by the applications.
Each participant is notified depending on its associated strategy.

4 Implementation Issues

In this section, we present the ATS implementation, which is based on the Fractal
component model and the GoTM framework.

4.1 The Fractal Component Model

The hierarchical Fractal component model uses the usual component, interface,
and binding concepts [5]. A component is a runtime entity that conforms to
the Fractal model. An interface is an interaction point expressing the provided
or required methods of the component. A binding is a communication chan-
nel established between component interfaces. Furthermore, Fractal supports
recursion with sharing and reflective control [13]. The recursion with sharing
property means that a component can be composed of several sub-components
at any level, and a component can be a sub-component of several components.
The reflective control property means that an architecture built with Fractal
is reified at runtime and can be dynamically introspected and managed. Frac-
tal provides an ADL, named FractalADL, to describe and deploy automatically
component-based configurations [14].

run

composite
component

primitive component

shared
component

server
interface

client
interface

controller

bindingcontent

internal
interface

collection
interface

Fig. 11. The Fractal component model

Figure 11 illustrates the
different entities of a typi-
cal Fractal component archi-
tecture. Thick black boxes
denote the controller part of
a component, while the in-
terior of the boxes corre-
sponds to the content part
of a component. Arrows cor-
respond to bindings, and
tau-like structures protrud-
ing from black boxes are in-
ternal or external interfaces.
Internal interfaces are only accessible from the content part of a component. A
starry interface represents a collection of interfaces of the same type. The two
shaded boxes C represent a shared component.

4.2 The GoTM Transaction Framework

Like Fractal, GoTM [4] is a project developed as part of the ObjectWeb ini-
tiative. It is a software framework that provides a set of Fractal components

A Component-Based Approach to Compose Transaction Standards 125

developed in Java and implementing generic transaction-related strategies. The
static configuration of the transaction service is described using the Fractal ADL,
which allows the transaction service designer to select the default strategies to
use. GoTM implements efficiently various validation protocols (e.g., 2PC, 2PC-
PA, and 2PC-PC) [8] and a variety of resource handlers (e.g., XAResource,
Resource, and Synchronization). This list of components is not exhaustive; the
GoTM framework can be extended to include new components.

The GoTM framework additionally includes different optimizations to provide
good performance to the transaction services built with GoTM. These optimiza-
tions include the use of a pool of components and a caching controller to reduce
the cost of component creation. GoTM uses configurable factories to describe and
configure the created component instances. Finally, threading strategies (e.g., se-
quential, threaded, or pooled) control the propagation of messages between the
components of the ATS. GoTM supports both Julia [5] and AOKell [15] imple-
mentations of the Fractal component model.

4.3 ATS Implementation with GoTM

Implementing ATS with the GoTM framework requires implementing the enti-
ties identified in Section 3 (functions, strategies, bus, etc.) with existing GoTM
components when possible. GoTM provides most of the identified strategies (e.g.,
TwoPhaseCommit, AtomicTransactionState) as Fractal components.

The bus entity is mapped to an existing GoTM component that implements
a message bus. This message bus provides various message propagation poli-
cies (e.g.: synchronous ordered, synchronous unordered or asynchronous). These
policies allow implementing various 2PC protocols [8] and to provide various
optimizations (e.g.: resources synchronization).

The strategy elements are mapped to similar GoTM components depending
on their characteristics. As an example, the 2PC strategy is implemented by the
2PC component provided by GoTM. This composite component contains smaller
components that describe the different steps of the 2PC protocol. Strategy com-
ponents are composed with the message bus to form the Common Transaction
Service (CTS).

The adapter components ensure the compliance with the API of each trans-
action standard. Therefore, the adapter components provide the standard APIs
as server interfaces. The adapter component requires as client interfaces all the
dependencies corresponding to the interfaces expressed in dependencies graph
of Figures 3, 4 or 5. It can be easily automatically generated because all the
transaction-related algorithms are implemented by strategies. To allow this gen-
eration, we use a conversion model describing how to redirect the incoming trans-
action standard invocations to the interfaces provided by the GoTM components
(see [16] for more details).

To obtain the ATS component, the CTS component is shared between the OTS
, the WS-AT and the JTS adapter components. This architecture allows the OTS,
WS-AT and JTS adapters to cooperate transparently via the CTS. Figures 12
and 13 depict the resulting implementation of ATS. This implementation

126 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

is composed of a static and a dynamic part. The static part describes the architec-
ture of the transaction service. The dynamic part describes the behaviour of one
transaction. Nevertheless the pattern of a common component shared between
several adapter components is applied in the two parts.

Common Transaction Service (CTS)

Adapted Transaction Service (ATS)

Transaction
Factory

Transaction
Current

Transactions
Created

Transaction
Model

Transactions
Active

OTS
Adapter

JTS
Adapter

WS-AT
Adapter

JT
A

C
os

-
T

ra
ns

ac
tio

ns
W

S
-A

to
m

ic
T

ra
ns

ac
tio

n

Fig. 12. An Adapted Transaction Service implementation

The static part of the service is depicted in Figure 12. This part corre-
sponds to the entry point of the service. The strategies available in the sta-
tic part of the CTS consist in the management of activated transactions using
the TransactionCurrent component. The active transactions are stored in the
TransactionsActive component. The TransactionFactory component pro-
vides facilities to create new instances of transactions. The transaction architec-
ture is described in the TransactionModel component.

Common Transaction (CT)

2PC
Protocol

Message
Bus

JTS Resource
Manager

Atomic
Transaction
State

OTS Resource
Manager

JT
S

A
da

pt
er

O
T

S
A

da
pt

er

Adapted Transaction (AT)

C
os

T
ra

ns
ac

tio
ns

JT
A

W
S

-A
T

A
da

pt
er

W
S

-A
to

m
ic

T
ra

ns
ac

tio
n

TransactionAwareParticipants
Manager

Fig. 13. An Adapted Transaction implementation

Figure 13 illustrates the model of transactions created by the transaction
service. The behaviour of the transaction is grouped in the Common Transaction
(CT). Similarly to the ATS architecture, the Adapted Transaction is composed

A Component-Based Approach to Compose Transaction Standards 127

of one CT and three Adapter components. The strategies composing the CT are
GoTM components implementing the TwoPhase Commit, Atomic Transaction
State, and a Message Bus. Given that JTS, WS-AT and OTS standards handle
different types of resources, the associated resource managers are not placed in
the CT. Finally, only the standard APIs, which are provided by the adapters,
are exposed by the AT component.

4.4 Performance Analysis

This section presents a performance benchmark, which illustrates the efficiency of
our approach. In particular, it shows that introducing fine-grained components
to build transaction services has not a negative performance impact. ATS is
compared to the JOTM 1.5.10 transaction service depending on the number of
involved participants and threads. ATS uses the AOKell implementation of the
Fractal component model. JOTM, a project developed as part of the ObjectWeb
initiative, is a Java implementation of the JTS specification [17]. It is recognized
for its reliability and efficiency. It is integrated into the JOnAS J2EE Application
Server.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of involved participants (#)

A
v
e
ra

g
e
 C

o
m

p
le

ti
o

n
 T

im
e
 (

m
s
)

ATS JOTM

Fig. 14. Participants scalability

0

10

20

30

40

50

60

70

80

90

100

110

1 6 11 16 21 26 31 36 41 46 51

Number of concurrent transactions (#)

T
ra

n
s
a
c
ti

o
n

 T
h

ro
u

g
h

p
u

t
(t

x
/s

)

ATS JOTM

Fig. 15. Concurrent transactions

Figure 14 illustrates the result of the following scenario. A single client ap-
plication creates transactions involving an increasing number of participants.
The completion time of each transaction is observed depending on the num-
ber of participants. Figure 14 shows that the ATS transactions complete faster
than JOTM ones. Thus, the use of a fine-grained component-based architecture
does not introduce an overhead to the transaction service. This result can be
explained by the optimizations available in AOKell [18].

Figure 15 applies the following scenario. An increasing number of clients create
concurrent transactions involving 40 participants. The number of transactions
completed per second is observed depending on the number of concurrent trans-
actions started. Figure 15 shows that the ATS transactions complete faster than
JOTM ones when the number of concurrent transactions grows. This is mainly
because ATS delegates the coordination process to the transaction rather imple-
menting this protocol at the transaction service level. This choice isolates each

128 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

transaction, which completes independently. Thus, the ATS provides better scal-
ability properties than JOTM. This speedup, estimated to 1.5 when using mock
objects as transaction participants, demonstrates that the use of a fine-grained
component-based transaction service introduces no additional overhead in a real
application context.

5 Related Work

The Java Transaction Service (JTS) specification provides a practical solution to
transaction interoperability and composition problems. Indeed JTS relies on the
Object Transaction Service (OTS) to propagate transaction contexts between
applications. Thus, OTS and JTS could be composed to allow heterogeneous
applications to interoperate from a transactional point of view. The Arjuna
Transaction Service [19] is the only transaction service that supports this archi-
tecture. Nevertheless, such a mapping is not always simple and therefore a stan-
dard may not directly depend on another one. Our approach makes abstraction
of the transaction standards to avoid such dependency. Therefore, the transac-
tion context could be propagated independently of the composed transaction
standards. Moreover, our approach can be applied to consider other transaction
standards (e.g., Activity Service [6,9]).

More recently, Web Services-Atomic Transactions (WS-AT) have provided an
abstraction of transaction services to allow heterogeneous transaction services to
be coordinated [3]. This approach extends the Web Services-Coordination (WS-
Coordination) framework to handle transaction contexts [12]. Heterogeneous
transaction services are reified as Participant of a global transaction service,
which will act as coordinator during the execution of the validation protocol.
Transaction-aware Web Services are responsible for creating a new transaction
context and registering participants to the global transaction service. However,
this approach requires the legacy applications to be modified to support the
API introduced by the global transaction service. Our approach does not mod-
ify legacy applications because we preserve the transaction standards and we
compose them rather introducing an API to support heterogeneity. Neverthe-
less, our approach is not orthogonal with Web Services tendency. Therefore,
WS-AT can be used as an input transaction standard.

Finally, several component-based approaches have been proposed to build
transaction services [20,21]. These approaches focuses on the definition of
transaction services as software components to facilitate their integration in
applicative systems. In this coarse-grained approach, the transaction service is
encapsulated in a single component. Thus, the transaction services are hosted
by a dedicated framework and made available to the application via a trad-
ing mechanism. Nevertheless, none of these works addresses the composition of
the transaction standards related to the services. Our approach promotes fine-
grained components, which can be reused easier than coarse-grained components
to adapt the transaction service to any transaction standard.

A Component-Based Approach to Compose Transaction Standards 129

6 Conclusion

This paper has presented an approach to build an adapted transaction service,
named ATS, which supports transaction standards composition. The design of
ATS has been guided by the analysis of the OTS, WS-AT and JTS transaction
services. The ATS has been implemented with the GoTM framework and the
Fractal component model. Our ATS implementation has been compared to the
JOTM transaction service. This evaluation has shown that our approach intro-
duces no overhead compared to existing products and supports well scalability.
Our approach can be easily extended to support extended transaction standards
such as Activity Services [6,9]. Consequently, the proposed solution facilitates
transaction standard composition because (1) the ATS is used transparently, and
(2) it increases neither complexity of existing platforms nor their performance.

Acknowledgments. This work is funded by the national institute for research
in computer science and control, and the Region Nord - Pas-de-Calais.

Availability. GoTM is freely available under an LGPL licence at the following
URL: http://gotm.objectweb.org.

References

1. OMG: Object Transaction Service (OTS). 1.4 edn. (2003)
2. Cheung, S.: Java Transaction Service (JTS). Sun Microsystems, Inc., San Antonio

Road, Palo Alto, CA. 1.0 edn. (1999)
3. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Atomic Transaction

(WS-AtomicTransaction). 1.0 edn. (2005)
4. Rouvoy, R., Merle, P.: GoTM : Vers un canevas transactionnel à base de com-

posants. In: Langages, Modèles et Objets Conf. (LMO). Volume 10 of L’Objet.
Lille, France, Hermès Sciences (2004) 131–146

5. Bruneton, E., Coupaye, T., Leclercq, M. et al.: An Open Component Model and
Its Support in Java. In: 7th Int. Symp. on Component-Based Software Engineering
(CBSE). Volume 3054 of LNCS. Edinburgh, United Kingdom, Springer (2004) 7–22

6. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Business Activity
Framework (WS-BusinessActivity). 1.0 edn. (2005)

7. OMG: Unified Modeling Language (UML): Superstructure. 2.0 edn. (2005)
8. Serrano-Alvarado, P., Rouvoy, R., Merle, P.: Self-Adaptive Component-Based

Transaction Commit Management. In: 4th Work. on Adaptive and Reflective Mid-
dleware (ARM). Volume 116 of AICPS. Grenoble, France, ACM (2005) 1–6

9. OMG: Additional Structuring Mechanisms for the OTS. 1.1 edn. (2005)
10. Eskelin, P.: Component Interaction Patterns. In: 6th Annual Conf. on the Pattern

Languages of Programs (PLoP). Urbana, IL, USA (1999)
11. Wang, N., Parameswaran, K., Schmidt, D. et al.: The Design and Performance

of Meta-Programming Mechanisms for Object Request Broker Middleware. In:
6th USENIX Conf. on Object-Oriented Technologies and Systems (COOTS). San
Antonio, Texas, USA (2001)

12. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Coordination (WS-
Coordination). 1.0 edn. (2005)

130 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

13. Bruneton, E., Coupaye, T., Stefani, J.B.: Recursive and dynamic software com-
position with sharing. In: 7th Int. Work. on Component-Oriented Programming
(WCOP). Malaga, Spain (2002)

14. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering 26(1) (2000) 70–93

15. Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: An Aspect-Oriented Imple-
mentation of the Fractal Specifications. Objectweb Fractal Workshop (2005)

16. Rouvoy, R., Merle, P.: Towards a Model Driven Approach to build Component-
Based Adaptable Middleware. In: 3rd Work. on Adaptive and Reflective Mid-
dleware (ARM). Volume 80 of AICPS. Toronto, Ontario, Canada, ACM (2004)
195–200

17. Mesnil, J.F.: Overview of JOTM: a Java Open Transaction Manager. In: 10th
Biennal Work. on High Performance Transaction Systems (HPTS). Pacific Grove,
California, USA (2003)

18. Demarey, C., Harbonnier, G., Rouvoy, R. et al.: Benchmarking the Round-Trip La-
tency of Various Java-Based Middleware Platforms. Studia Informatica Universalis
Regular Issue 4(1) (2005) 7–24

19. Little, M.: The Evolution of a Transaction Processing System. In: 11th Biennal
Work. on High Performance Transaction Systems (HPTS). Pacific Grove, Califor-
nia, USA (2005)

20. Hérault, C., Nemchenko, S., Lecomte, S.: A Component-Based Transactional Ser-
vice, Including Advanced Transactional Models. In: 5th Int. Symp. and School
on Advance Distributed Systems (ISSADS). Volume 3563 of LNCS. Guadalajara,
Mexico, Springer (2004) 545–556

21. Arntsen, A.B., Karlsen, R.: ReflecTS: a flexible transaction service framework. In:
4th Work. on Adaptive and Reflective Middleware (ARM). Volume 116 of AICPS.
Grenoble, France, ACM (2005) 1–6

A Class-Based Object Calculus of Dynamic
Binding: Reduction and Properties

Pawe�l T. Wojciechowski

Poznań University of Technology
60-965 Poznań, Poland
ptw@cs.put.poznan.pl

Abstract. To be able to compose and decompose software components
at run time, some form of dynamic rebinding between components
(or objects) is needed. In this paper, we identify basic properties of
dynamic object (re)binding, and propose a class-based object calculus
that gives precise meaning to these properties. We also define two
example semantic properties that are characteristic for many concurrent
programs with low-level bind/unbind operations. Our calculus has a
built-in construct atomic that can be used to implement one of the
semantic properties.

Keywords: lambda and object calculi, dynamic binding, atomicity.

1 Introduction

What do we mean by dynamic object rebinding? Consider a construct bind X a
that binds a name X to an object a. The effect of binding name X to a is that
we can refer to a via name X , e.g. a method m of object a can be invoked either
via a.m or X.m. The crucial point here is that the object a can be later unbound
from X (using a construct unbind X) and another object b can be rebound to
X at runtime. By the alias change, any concurrent object c that knows name X ,
has been therefore unbound from a and bound to b.

We must ensure that types of objects a and b that are dynamically bound to
X , match the corresponding field accesses and method calls via name X . For
this, X is not a pure name but it is a signature that declares types of fields
and methods of objects that are bindable to X . Objects are defined by classes,
which define fields and methods with their types. Checking the match between
signatures and classes is mostly standard; for clarity, we leave therefore our
calculus untyped, focusing on the operational semantics. Note that an object c
invoking a method X.m may not even know the object on which method m is
invoked. This simple mechanism can be used to implement software components
(or objects with a predefined interface) that can be composed dynamically.

In our previous work, we developed SAMOA [RWS06a, WRS04] – a software
framework for implementing network protocols from reusable components, that
provide services (a service corresponds to signatures presented in this paper,
extended with requirement declarations). The programmers can easily encode

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 131–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 P.T. Wojciechowski

dynamic replacement of components, using high-level abstractions that are built
on top of the dynamic binding feature described in this paper. A software frame-
work, such as SAMOA, can be used for implementing dynamically composable
systems. For instance, we have used our framework to design and implement an
Adaptive Group Communication (AGC) middleware [RWS06b], in which net-
work protocols can be replaced on-the-fly. For this, we have designed various
algorithms for Dynamic Protocol Update (DPU), i.e. a synchronous replacement
of protocols in a distributed system [WR05].

In [RWS06a], we described the high-level architecture of a software framework
for building dynamically composable systems, such as ours. In this paper, we
take a more fundamental view, and investigate a small set of low-level language
constructs that can be used to reason formally about dynamic object rebind-
ing. In particular, we have used our language to give precise meaning to basic
properties of dynamic object rebinding. We also define two example semantic
properties that are characteristic for many concurrent programs with low-level
bind/unbind operations. Our calculus has a built-in construct atomic that can
be used to implement one of the semantic properties.

The paper is organized as follows. Section 2 introduces basic notions and
defines the syntax of our calculus. Section 3 presents a set of language properties
of dynamic object rebinding, and example semantic properties of programs that
use the dynamic rebinding feature. To illustrate one property, Section 4 shows an
example erroneous program and its fix-up. Section 5 formalizes the operational
semantics of our language, thus giving precise meaning to the properties defined
earlier. Section 6 presents related work. Finally, we conclude and discuss future
work in Section 7.

2 The Class-Based Object Calculus

We define our language as the call-by-value λ-calculus, extended with signatures,
objects, object binding/unbinding, exceptions, threads and atomic tasks. The
abstract syntax of the language is in Figure 1. The main syntactic categories
are signatures, classes, values and expressions. For convenience, we differenti-
ate names: X , Y range over signature names; A, B range over class names; f
ranges over object field names, and m ranges over method names. We write x
as shorthand for a possibly empty sequence of variables x1, ..., xn (and similarly
for t, v, and e). We abbreviate operations on pairs of sequences in the obvi-
ous way, writing e.g. x : t as shorthand for x1 : t1, ..., xn : tn (and similarly
for f = v). Sequences of parameter names in functions and class methods are
assumed to contain no duplicate names. We write M as shorthand for a (non-
empty) sequence of methods M1, ... , Mn in a class. Methods of the same class
must contain no duplicate names; similarly, field names are unique per class.

Types. Types include the base type Unit of unit expressions, which abstracts
away from concrete ground types for basic constants (integers, Booleans, etc.),
the type Sig of object signatures, the type Obj of objects, and the type t → t′

of functions and class methods.

A Class-Based Object Calculus of Dynamic Binding 133

Variables x, y,a, b ∈ Var

Signature names X, Y ∈ Sig

Class names A,B ∈ Lab

Field names f

Method names m

Interface names n ∈ Sel ::= f | m

Types t ::= Unit | Sig | Obj | t → t′

Signatures s ::= sig X {f1 : t1, ... , fk : tk,

m1 : t1 → t′
1, ... , mn : tn → t′

n}
Fun. abstractions F ::= x : t = {e}
Methods M ::= t m F

Classes C ∈ Class ::= class A {f1 = v1, ... , fk = vk, M1, ... , Mn}
Values v, w ∈ Val ::= () | X | new A | F

Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e | e := e

| bind e e | unbind e | try e catch e | escape
| fork e | atomic e

We work up to alpha-conversion of expressions throughout, with x binding in e in an
expression x : t = {e}, and x in e′ in an expression let x = e in e′. Names do not
bind, and so are not subject to alpha-conversion.

Fig. 1. A concurrent language of dynamic object (re)binding

Signatures. A signature describes an object interface, i.e. a declaration of
object fields and methods that can be accessed or called upon an object via
the signature. Syntactically, a signature is a keyword sig, followed by the name
of the signature, and a sequence of field and method names, accompanied with
their types.

Methods. A method of the form t m F has declarations of a type t of the
values that it returns, its name m, and its body F . Access control is not modelled
(all fields and methods are public). Objects can refer to their own methods with
self.m, where self is a variable. A method’s body is a function abstraction of the
form x : t = {e} (we adopted the C++ or Java notation, instead of the usual
λx : t.e from the λ-calculus).

Classes. A class has declarations of its name (e.g. class A) and the class body
{f = v, M}, where f = v is a sequence of fields (data containers) accessible via
names f and instantiated to values v, and M is a sequence of object methods.
Classes do not explicitly declare their superclass with extends since we do not
model class inheritance. Class inheritance and object constructor methods can
be easily added to the calculus definition, in the style of Featherweight Java (FJ)
[IPW99]. We assume that every class implicitly extends a special class Object,
like in FJ. The class Object does not define any fields nor methods.

134 P.T. Wojciechowski

Values. A value is either an empty value () of type Unit, a signature name, e.g.
X , an object instance, e.g. new A, or function abstraction x : t = {e}. Values
are first-class, they can be passed as arguments to functions and methods, and
returned as results or extruded outside objects. (Typing could be used to forbid
extruding functions that contain object self references).

Basic expressions. Basic expressions e are mostly standard and include vari-
ables, values, field/method selectors, function/method applications, let binders,
and field assignment e := e. The let-binder is a construct of ML-like languages,
that can be used to define functions, and to bind object and immutable data to
variables. For instance, let x = new A in e creates a new object of class A that
is bound to a variable x (where x binds in e). Then, we can write e.g. x.f := v
to overwrite a field f of object x with a value v, or we can write e.g. x.m v to
call a method m of object x. We use syntactic sugar e1; e2 (sequential execution)
for let x = e1 in e2 (for some x, where x is fresh).

Dynamic binders and exceptions. Execution of bind X a binds a signature
X to an object a; any previous binding of signature X disappears. Execution
of unbind X unbinds a signature X from any object bound to X , or raises an
exception if no object is bound to X .

To catch exceptions, we have an expression try e catch e′, which is similar to
the one found in ML-like languages. If there was an exception thrown in e then
the execution of e terminates and e′ commences. Execution of try e catch e′

returns either the result of e, if no exception occurred, or the result of e′, if there
was an exception thrown in e and no exception in e′. Exceptions can be thrown
explicitly using escape, or implicitly (as in unbind). If there is no expression to
catch an exception, the execution of escape blocks its thread of execution.

Threads and atomic tasks. The language allows multithreaded programs by
including an expression fork e, which spawns a new thread for the evaluation
of expression e. This evaluation is performed only for its effect; the result of e is
never used.

Execution of atomic e creates a new concurrent thread to evaluate an expres-
sion e atomically; we call such expressions tasks. Concurrent execution of atomic
tasks can be interleaved but the following property holds.

Property 1 (Isolation Property). Consider all atomic tasks in a program P , and
a set N of all signatures that the tasks may refer to. A non-terminating execution
of P satisfies the isolation property, if given any signature name X in N , the
order of accessing fields or calling methods via X by the atomic tasks is the same
as in an ideal execution of P in which the tasks would be executed sequentially.

An atomic task in our language can itself be multithreaded since its execution
can spawn new threads using fork. The operational semantics of tasks and the
atomic construct ensuring isolation will be given in Section 5.

In our previous work [Woj05], we have presented an example implementation
of tasks, but for a different, more restrictive definition of isolation that considers
modifications of data stores. The implementation is based on static typing and

A Class-Based Object Calculus of Dynamic Binding 135

runtime versioning. In [WRS04], we have proposed several optimizations of the
concurrency control algorithm implementing versioning.

Programs. A program is a pair (ct, e) of a class table ct and a main expression
e, where the class table ct is a mapping from class names to class declarations. To
lighten the notation, we always assume a fixed class table ct. To avoid uncaught
exceptions we syntactically restrict the program’s main expression e to have the
form try e′ catch v, where v is a value. We assume that a class table satisfies
some sanity conditions: (1) ct(A) = class A ... ; (2) Object /∈ ct; and (3)
for every class name A (except Object) appearing anywhere in ct, we have
A ∈ dom(ct). Given these conditions, a class table can be easily identified with
a sequence of class declarations.

3 Properties of Dynamic (Re)binding

Below we present basic properties of language constructs for binding/unbind
objects in our calculus, together with some discussion of higher-level rebinding
constructs that could be built on top of our calculus.

Then, we give two example semantic properties of programs, in which objects
can be rebound dynamically. The untyped calculus presented in this paper does
not have language support to declare and verify if such semantic properties hold.
We leave this for future work.

3.1 Language Properties

Below are runtime properties of the language constructs. After each property,
we provide a short justification of our design choice.

Property 2 (Binding Uniqueness). At run time, a signature X has two possible
states: it either binds to some object or not.

This is due to the fact that we decided to have two language constructs: bind X v
that binds a signature X to an object v, and unbind X that unbinds the sig-
nature. Our intention was to model these two operations. At the higher-level of
abstraction, however, the programmers may want to have a single construct that
e.g. replaces software components in one atomic step.

Property 3 (Binding Restriction). At most one object can be bound to a signa-
ture X at a time.

If more than one object could be bound to a signature X , then a method call
X.m would not know which object to call; similarly, a field access X.f would not
know which object to select. (In our language, the same field or method names
can appear in different classes.) At the higher-level of abstraction, however,
overwriting bindings of X could be encoded; the higher-level unbind construct
could then remove the current binding and deactivate any previous binding if it
exists.

136 P.T. Wojciechowski

Property 4 (Object Aliasing). An object can be bound to many signatures.

We allow this for expressiveness at the operational semantics. Note that X.m and
Y.m mean something different in programs with atomic tasks, event if X and Y
may bind the same object; to understand why, see the definition of the isolation
property. We think that object aliasing could be useful for programmers. If any
restriction is required, then it should be declared by programmers, and enforced
via a type system.

Property 5 (Failures). If no object is bound to X , then unbind X fails, field
access X.f fails for any f , and method call X.m fails for any m.

The above property with an exception mechanism built into the calculus allows
for more expressiveness. We can express alternative actions on failure at the
higher level of abstraction, e.g. “wait till some object is bound”.

Property 6 (Concurrency). The operations of binding/unbinding a signature X ,
and the object field accesses or method calls via X can be concurrent.

Dynamic re-binding of objects in a sequential program seems to be a rarely
needed feature (e.g. dynamic class loading usually occurs only on object construc-
tion). On the other hand, new emerging applications that depend on dynamic
object rebinding, such as dynamic protocol updating and adaptive systems are
often concurrent. Concurrency in these applications stems from various reasons:
the old and updated protocol components may need to coexist for some time
[WR05], the protocol components are themselves concurrent with the protocol
updater [RWS06a] that dynamically rebinds the components, etc.

3.2 Semantic Properties

Below are two example properties that may be required by programs with object
rebinding.

Property 7 (Reference Consistency). A set of object references R = {Xi.nj :
i = 1..k, j = 1..l} is consistent in an expression e, if exists object a such that
any method call or field access Xi.nj in R, as part of evaluation of e, refers to a.

In Section 4, we present an example program that requires this property. In the
program, e.g. if a method call X.put has been executed upon some object, then
another reference to X (a field access X.getn) in the same round of the protocol
should also be executed upon the same object.

Property 8 (Signature Linearity). A signature X is linear in a program, if it is
either unbound, or it binds the same object v during whole program execution;
object v that was bound to X cannot be rebound to other signature.

If a linear signature X has been bound to some object, then it cannot be rebound
to another object, and vice versa. This property could be useful in programs in
which dynamic object rebinding is not a feature to mask implementations of
a given signature, but to authenticate an object via a signature. If objects are
communicated between machines (as part of some protocol), it may be useful to
use for this an abstract signature of an object, rather than its concrete name.

A Class-Based Object Calculus of Dynamic Binding 137

4 Example of the Reference Consistency Requirement

In this section, we give a small example program to explain the need for the
Reference Consistency (Property 7 in Section 3), and the use of the atomic
construct (with the isolation property) to ensure reference consistency. The pro-
gram implements a simple protocol involving the exchange of messages between
a client and an anonymous server, accessible via a signature X.

The protocol uses public key cryptography, which can be explained as fol-
lows. The client encrypts a message m using server’s public key to produce an
encrypted message; only the server can decrypt this message, so this ensures
secrecy. The server can sign a message m by encrypting it with its secret key
(which is the inverse of the public key); any client in possession of server’s public
key can then decrypt this message. Public key cryptography is used, e.g. in an
authentication protocol [Low96]).

A client obtains server’s public key from a trusted key store keyStore, using a
method keyStore.publicKey; the method accepts as its argument the server’s
name X.getn (see in the end of the program). The key store (omitted here)
returns a public key that corresponds to this name. To send a message (a value
100) encrypted using the public key, the client invokes server’s method X.put.
Execution of X.put (see class A or class B) decrypts the message using server’s
secret key, which is stored in the object field secretKey.

sig X
{
getn : Obj
put : Int -> Int

}
class A
{
getn = self (* an object name *)
secretKey = 1 (* a secret key of A *)
Int put (v : Int) = { decrypt (v, self.secretKey) }

}
class B
{
getn = self (* an object name *)
secretKey = 2 (* a secret key of B *)
Int put (v : Int) = { decrypt (v, self.secretKey) }

}

class Updater
{
Unit update (x : Sig, o : Obj) =
{

unbind x; (* unbind signature x from any object *)
bind x o; (* bind signature x to object o *)

}
}

138 P.T. Wojciechowski

let a = new A in (* create object a *)
bind X a; (* and binds sig X to a *)
let b = new B in (* create object b *)
fork (new Updater).update(X, b); (* rebind X to b *)
try
X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)

catch
0

Exchange of an encrypted message between server X and the client occurs
in parallel with dynamic replacement of the actual object implementing X . For
this, we have an updater object Updater, with a single method update that
implements a simple handover protocol: it takes as arguments a signature and
an object, unbinds anything bound to the signature and binds the object. (For
simplicity, we require that X is initially bound.)

In the main expression, a concurrent thread (created with fork) calls a
method update that unbinds a server object a (bound to X) and binds server
object b to X . The client does not know if it calls a or b; it is not aware of
the hot-swapping done by the updater. The program is however problematic in
twofold ways. Firstly, the client may call a server using a signature X that has
been unbound by the update method and not rebound yet, thus leading to an
exception error. Secondly, the following property is not true:

Property 9 (Safety). A message encrypted with a public key of object x is also
received by x (for any x).

We would like this property to hold during program execution. Otherwise, the
client may encrypt and send a message to the server using a public key of another
server, which is like an attack on a protocol using public key cryptography.

To fix up our program, we can use the atomic construct to encode the mes-
sage exchange protocol (initiated by the client) and the update protocol (in the
update method) as two parallel atomic tasks. Below is an example code:

class Updater
{
Unit update (x : Sig, o : Obj) =
{

atomic
(unbind x; (* unbind signature x from any object *)
bind x o;) (* and bind signature x to object o atomically *)

}
}
let a = new A in (* create object a *)
bind X a; (* and binds sig X to a *)
let b = new B in (* create object b *)
fork (new Updater).update(X, b); (* rebind X to b *)
try
atomic X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)

catch
0

A Class-Based Object Calculus of Dynamic Binding 139

The advantage of atomicwith respect to coarse-grain locking is that the client-
server protocol and server updating can be executed concurrently. Moreover
possible deadlocks are avoided, which simplifies programming. However, isolation
ensured by atomic is actually a stronger property than reference consistency –
atomic tasks that do not do object rebinding may also be mutually isolated, even
if they cannot themselves invalidate reference consistency.

The use of atomic in protocols depends on its implementation. Protocols have
various side effects (I/O actions, network communication, etc.); these side-effects
are not always revocable. The implementations of atomic (we give examples in
Section 6) usually restrict I/O actions in atomic blocks, e.g. due to rollback sup-
port. This restriction should not be a problem if atomic is used to protect only
short code fragments, as in our example program. Alternatively, we proposed in
[Woj05] an implementation of atomic that does not depend on rollback-recovery
of tasks. (We do not have an explicit rollback construct in our language.)

5 Operational Semantics

We specify the operational semantics of our language using the abstract machine
defined in Figures 2 and 3. The machine evaluates a program by stepping through
a sequence of states. A state S consists of four components: an object store Δ,
a counter α of fresh atomic blocks, a bind store β, and execution threads T ,
organized as a sequence T0, ..., Tn.

The object store Δ is a finite map from object field selectors to values stored in
the fields, where a field selector, denoted oA.f , is an object location oA indexed
by a field name f .

The bind store β is a set of pairs (X, oA) of a signature name X and an object
location oA bound to the signature. The set difference β\β′ is the set of elements
found in β but not found in β′; the union of sets β ∪ β′ is the set consisting of
the elements of both sets, with no duplicate elements.

The expressions g in a sequence of threads T are written in the calculus
presented in Section 2, extended with a new construct task i N T . The construct
is not part of the language to be used by programmers; its meaning will be
explained below.

We define a small-step evaluation relation Δ, α, β | g −→ Δ′, α′, β′ | g′, read
“expression g reduces to expression g′ in one step, with Δ, α, β being transformed
to Δ′, α′, β′”. We also use −→∗ for a sequence of small-step reductions. By
concurrent execution, we mean a sequence of small-step reductions in which the
reduction steps can be taken by different threads with possible interleaving.

Reductions are defined using evaluation context E for expressions e and g.
The evaluation context ensures that the left-outermost reduction is the only
applicable reduction for each individual thread in the entire program. Context
application is denoted by [], as in E [e]. Structural congruence rules allow us to
simplify reduction rules by removing the context whenever possible.

Evaluation of a program (ct, e), where ct is constant, starts in an initial state
with empty stores ∅, a null counter 0, and with a single thread that evaluates

140 P.T. Wojciechowski

State Space:

S ∈ State = ObjStore × TaskId × BindStore × ThreadSeq

Δ ∈ ObjStore = ObjLoc.Sel → Val

α ∈ TaskId = Nat
β ∈ BindStore = Sig × ObjLoc

oA ∈ ObjLoc ⊂ Var

T ∈ ThreadSeq ::= g | T, T

g ∈ Expext ::= x | v | e.n | e e | let x = e in e | e := e | bind e e | unbind e

| try e catch e | escape | fork e | atomic e | task i N T

Evaluation Contexts:

E = [] | E .n | E e | v E | let x = E in e | E := e | oA.f := E | bind E e | bind X E
| try E catch e | task i N E | E , T | T, E

Structural Congruence
T, T ′ ≡ T ′, T T, () ≡ T

Δ, α, β | g −→ Δ′, α′, β′ | g′

Δ, α, β | E [g] −→ Δ′, α′, β′ | E [g′]
g −→ g′

Δ, α, β | g −→ Δ, α, β | g′

Transition Relation
eval ⊆ ((Lab → Class) × Exp) × Val

eval((ct, e), v0) ⇔ ∅, 0, ∅ | e −→∗ Δ, α, β | v0, (),· · · , ()
Method Body Lookup:

ct(A) = class A {f = v, M}
t m F ∈ M

mbody(m,A) = F

Fig. 2. Reduction semantics - Part I

the expression e. Evaluation then takes place according to the machine’s rules
in Figure 3. The evaluation terminates once all threads have been reduced to
values, in which case the value v0 of the initial, first thread T0 is returned as the
program’s result. Subscripts in values reduced from threads denote the sequence
number of the thread, i.e. vi is reduced from i’s thread, denoted Ti (i = 0, 1, ..).
The execution of threads can be arbitrarily interleaved.

5.1 Reduction Rules

Below we describe reduction rules in Figure 3. The first two evaluation rules
are the standard rules of a call-by-value λ-calculus [Plo75]. We write e{v/x} to
denote the capture-free substitution of vi for xi in the expression e (i = 1, .., n).
Function application x : t = {e} v in (R-App) reduces to the function’s body e in

A Class-Based Object Calculus of Dynamic Binding 141

x : t = {e} v −→ e{v/x} (R-App)

let x = v in e −→ e{v/x} (R-Let)

oA /∈ dom(Δ)
ct(A) = class A {f1 = v1, ..., fk = vk, M}

Δ′ = (Δ, oA.f1 �→ v1, ..., o
A.fk �→ vk)

Δ, α, β | new A −→ Δ′, α, β | oA
(R-New)

Δ, α, β | oA.f := v −→ Δ[oA.f �→ v], α, β | () (R-Assign)

Δ, α, β | oA.f −→ Δ, α, β | v{oA/self} if Δ(oA.f) = v (R-Field)

mbody(m,A) = F

oA.m v −→ F{oA/self} v
(R-Invk)

try v catch e −→ v (R-Try)

try..catch /∈ E ′

try E ′[escape] catch e −→ e
(R-Esc)

Δ, α, β | bind X oA −→ Δ, α, (β \ {(X, ·)}) ∪ {(X, oA)} | () (R-Bind)

Δ, α, β | unbind X −→ Δ, α, β \ {(X, oA)} | () if (X, oA) ∈ β (R-Unbind1)

Δ, α, β | unbind X −→ escape if (X, ·) /∈ β (R-Unbind2)

Δ, α, β | X.n −→ Δ, α, β | oA.n if (X, oA) ∈ β (R-Lookup1)

Δ, α, β | X.n −→ Δ, α, β | escape if (X, ·) /∈ β (R-Lookup2)

N = {X ∈ Sig : X ∈ e}
Δ, α, β | E [atomic e] −→ Δ, α + 1, β | E [()], task α + 1 N e

(R-Atomic)

E [fork e] −→ E [()], e (R-Fork1)

task i N E [fork e] −→ task i N (E [()], e) (R-Fork2)

task i N e ∈ E i < j

X ∈ N ∩ M X /∈ e (X, oA) ∈ β

Δ, α, β | E [task j M E ′[X.n]] −→ Δ, α, β | E [task j M E ′[oA.n]]
(R-Task1)

task i N v −→ () (R-Task2)

vi, v
′
j −→ vi if i < j (R-Thread)

Fig. 3. Reduction semantics - Part II

142 P.T. Wojciechowski

which formal arguments x are replaced with the actual arguments v. Execution
of let x = v in e in (R-Let) reduces the whole expression to the expression e in
which variable x is replaced by value v.

Execution of new A creates a new object of class A. The object is identified
by a fresh object location oA, and represented by a new record of object fields
f1, ..., fk in the object store Δ; see the (R-New) rule. The notation (Δ, oA.f �→ v)
means “the store that maps oA.f to v and maps all other selectors to the same
thing as Δ”. The object fields f1, .., fk are accessible via the object location oA,
e.g. oA.fi (i = 1..k) refers to a field fi of object oA. The object fields in the
object record are initialized with field values v1, .., vk defined by class A.

Rules (R-Assign) and (R-Field) correspondingly, assign a new value v to the
field f of an object oA, and read the current value stored in an object field oA.f .
For instance, let us look at the rule (R-Assign). We use the notation Δ[oA.f �→ v]
to denote update of map Δ at oA.f to v. Note that the term resulting from this
evaluation step is just (); the interesting result is the updated store. The (R-
Assign) rule must be applied first, if not possible then we try (R-Field).

Similarly to FJ, the invocation oA.m v of a method m of an object oA applies
the beta-reduction rule from the call-by-value λ-calculus; see the (R-Invk) rule.
The rule first looks up in the class table ct a method body F of the form
x : t = {e} (using a function mbody(m, A) defined in the bottom of Figure 2);
then, it reduces to the method body in which self is replaced by the receiver
oA. Then, the application rule (R-App) (described earlier) can be used, which
applies the arguments v to the method m.

Exceptions are defined using two rules. The (R-Try) rule defines the case when
no exception was thrown; it simply reduces the whole expression try ... catch
with the body reduced to a value v to the value v; the catch clause is discarded.
To throw an exception, the escape construct is used. If escape is in the redex
position of the expression e′ in the body of the innermost try e′ catch e, the
(R-Esc) rule reduces try e′ catch e to the exception handler e.

Dynamic binder bind X oA in rule (R-Bind) removes from store β any previous
binding (X, ·) of a signature X , and extends β with a new element of X paired
with an object location oA. The whole expression reduces to the empty value ().
Dynamic unbinder unbind X in rules (R-Unbind1) and (R-Unbind2) respectively,
removes the binding (X, ·) from store β and reduces to the empty value (), or
throwns an exception with escape if no binding of X exists.

Dynamic resolver X.n in rules (R-Lookup1) and (R-Lookup2) respectively, re-
turns the field/method selector oA.n, where oA is the object location currently
bound to a signature X , or throwns an exception if no binding of X exists.

5.2 Concurrent and Atomic Evaluations

Execution of an expression atomic e creates a new thread for evaluation of a task
e with the isolation property, defined in Section 2. The task has the syntactic
form task i N e, where i is the sequence number of the task, and N is a set of
all signatures X that may be referred to by expression e. The (R-Atomic) rule

A Class-Based Object Calculus of Dynamic Binding 143

reduces an expression E [atomic e] to the context E with the empty value () in
the redex position, and a new thread evaluating a task task α + 1 N e; the rule
also increments the task counter α.

Execution of an expression fork e in (R-Fork1) creates a new thread which
evaluates e; the result of evaluating expression e will be discarded by rule
(R-Thread); threads may however have side-effects, e.g. modification of object
fields. Tasks can spawn their own threads using fork; see rule (R-Fork2).

The (R-Task1) rule specifies evaluation of concurrent tasks that satisfies the
isolation property. Consider evaluation of some task task j M e′ in the context
E , where the redex position of expression e′ is a field or method access via a
signature X , i.e. e′ = E ′[X.n] for some context E ′ and an interface name n. If
context E is such that there is some older concurrent task task i N e (i.e. i < j)
that evaluates some expression e and may refer to X (since X is declared in set
N), then the rule (R-Task1) applies. It reduces the expression task j M e′ by
replacing X by a concrete object location oA if two conditions hold: (1) e cannot
refer to X anymore (i.e. X /∈ e), and (2) there is actually some binding of X in
bind store β. If X is in e then the rule does not apply, and the other task may
be evaluated. If no binding of X exists, the rule (R-Lookup2) applies.

Once evaluation of an expression e of task task i N e yields a value, the rule
(R-Task2) returns the empty value as the result of the whole thread. The results
of evaluating threads (except of the initial thread) are discarded by (R-Thread).

6 Related Work

Object calculi. There have been many proposals of various object calculi; we
sketch some of the most known examples below.

Abadi and Cardelli [AC95] have developed an imperative calculus of objects,
equipped with an operational semantics and typing (and subtyping); with ad-
dition of polymorphism, the calculus can express classes and inheritance. The
object calculus of Gordon and Hankin [GH98] extends Abadi and Cardelli’s im-
perative object calculus with operators for concurrency from the π-calculus and
operators for synchronization based on mutexes. Our calculus also has a synchro-
nization abstraction built-in (the atomic construct), albeit semantically richer
than mutexes; we discuss the related work on atomicity below.

Igarashi, Pierce and Wadler [IPW99] have proposed a small calculus, Feath-
erweight Java (FJ), that provides classes, methods, fields, inheritance, and dy-
namic typecasts, with semantics closely following Java’s. The design of our cal-
culus has been inspired by FJ, e.g. we have the same rule for method calls, which
uses the call-by-value principle of the λ-calculus. However, their calculus omits
interfaces and even assignment, while we have assignment and also signatures
(which are similar to Java interfaces). On the other hand, we do not model typing
and class inheritance in this paper since our focus is on the reduction semantics.

The above calculi have been developed mainly to reason about the imple-
mentation of objects, object encodings, typing, class inheritance, etc. We are
not aware of concurrent object calculi that would have constructs for dynamic

144 P.T. Wojciechowski

object rebinding similar to ours. We discuss some examples of (non-object) cal-
culi with dynamic binding in the next paragraph.

Dynamic rebinding. A lot of work on dynamic rebinding appeared in the
context of functional languages (see, e.g., work of Moreau [Mor98]), focusing ei-
ther on dynamic scoping, in which variable occurrences are resolved with respect
to their dynamic environment, or static scoping with explicit rebinding, where
variables are resolved with respect to their static environment, but additional
primitives can be used to explicitly modify these environments.

Dynamic scoping exists in most modern dialects of Lisp, e.g. MIT Scheme’s
fluid-let [MIT] construct performs dynamically-scoped rebinding of local and
global variables; once the construct’s expression has been evaluated, the values
of the variables are restored. The quasi-static scoping Scheme extension of Lee
and Friedman [LF93] has a class of variables, which are initially unresolved. The
programmer can use a rebinding primitive to specify new bindings for individual
variables. The above work is different from ours; we bind whole objects to typed
signatures, while the above work is on dynamic binding of variables in functional
languages, with a correspondingly different semantics of rebinding.

Dynamic linking of objects in object languages such as Java, refers to resolving
object components at runtime. However, once bound the code usually cannot be
rebound, which is different from our approach, which aims at studying object
re-binding. Different dynamic linking models have been described in [DLE03].

There are different applications of dynamic rebinding. For instance, Bier-
man et al. [BHS+03] proposed abstraction-safe marshalling and unmarshalling
(or rebinding) values between separate programs in the λ-calculus; see also the
Acute programming language [LPSW03]. An extension of Smalltalk with dy-
namic method redefinition in the scope of classboxes is described in [BDW03];
the dynamic rebinding feature is used here to support software evolution.

We are not aware of much discussion of concurrency issues in the context of
dynamic rebinding. The existing implementations are often not satisfactory, e.g.
the runtime support of type-safe dynamic Java classes in [MPG+00] aborts a
thread if a class update is attempted while the thread is executing a method of
that class. Our solution to this problem is to execute rebindable code fragments
and code fragments that do rebinding, as concurrent (possibly multithreaded)
atomic tasks, using the atomic construct. The semantics of the construct given
in this paper eliminates the need to abort threads while doing an update.

Atomicity. Below we sketch some work on formalizing the isolation property
(also known as atomicity in the programming language research community),
with the semantics as in transactional systems; such semantics is slightly different
than the one presented in this paper. We are not aware of any formal work on
using isolation (or atomicity) in the context of dynamic binding.

Vitek et al. [VJWH04] have recently proposed a calculi-based model of stan-
dard database transactions. They have formalized the optimistic and two-phase
locking concurrency control strategies. Their approach to formalization of the

A Class-Based Object Calculus of Dynamic Binding 145

isolation property is similar to ours, in the sense that both specifications refer
to order (or scheduling) of concurrent actions.

There have recently been a lot of interest in developing language support for
atomicity. For example, Flanagan and Qadeer [FQ03] presented a type system for
specifying and verifying atomicity of (single threaded) methods in multithreaded
Java programs. The type system is a synthesis of Lipton’s theory of left and right
movers (for proving properties of parallel programs) and type systems for race
detection.

Harris and Fraser [HF03] have been investigating an extension of Java with
(again, sequential only) atomic code blocks that implement conditional critical
regions (CCRs). The programmer can guard a conditional region by an arbitrary
boolean condition, with calling threads blocking until the guard is satisfied. It is
also possible to terminate an execution of an atomic block and rollback, if some
condition is not satisfied.

In [Woj05], we have discussed the above implementation work in more detail,
including comparison with our approach to atomicity.

7 Conclusion

In this paper, we proposed a class-based object calculus with constructs for
dynamic rebinding of objects to signatures; signatures describe types of object
fields and methods, and can be used to call the objects. We have also discussed
properties of the bind/unbind constructs.

Dynamic object binding enables developing novel applications, such as dy-
namic service update (as in our example). However, it also makes programming
more difficult, since additional semantic properties may be required by programs.
We have discussed an example semantic property, called reference consistency,
and showed how it can be encoded using the atomic construct of our calculus
that ensures isolation.

In the future work, we would like to develop tools for automatic verification
of certain properties of dynamic binding/unbinding, based on the typed variant
of the calculus presented in this paper.

Acknowledgments. The author would like to thank Olivier Rütti and Sophia
Drossopoulou (and other members of the SLURP group) for discussions and
comments. This work was supported in part by the State Committee for Scientific
Research (KBN), Poland, under KBN grant 3 T11C 073 28.

References

[AC95] Martin Abadi and Luca Cardelli. An imperative object calculus. In Proc.
TAPSOFT ’95: Theory and Practice of Software Development, the 6th
International Joint Conference CAAP/FASE, LNCS 915, May 1995.

[BDW03] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A mini-
mal module model supporting local rebinding. In Proc. JMLC ’03: the Joint
Modular Languages Conference, LNCS 2789. Springer, August 2003.

146 P.T. Wojciechowski

[BHS+03] Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith
Wansbrough. Dynamic rebinding for marshalling and update, with
destruct-time lambda. In Proc. ICFP ’03, August 2003.

[DLE03] Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. Flexible
models for dynamic linking. In Proc. ESOP ’03, April 2003.

[FQ03] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomic-
ity. In Proc. PLDI ’03, June 2003.

[GH98] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus:
Reduction and typing. In Proc. HLCL’98: the 3rd Int’l Workshop on
High-Level Concurrent Languages, Elsevier ENTCS 16(3), 1998.

[HF03] Timothy Harris and Keir Fraser. Language support for lightweight trans-
actions. In Proc. OOPSLA ’03, 2003.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In Proc. OOPSLA ’99,
Nov. 1999.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing
variable bindings across multiple lexical scopes. In Proc. POPL ’93, Jan
1993.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Proc. TACAS ’96: Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1055, March 1996.

[LPSW03] James Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global
abstraction-safe marshalling with hash types. In Proc. ICFP ’03, 2003.

[MIT] MIT. Scheme. http://www.swiss.ai.mit.edu/projects/scheme/ .
[Mor98] Luc Moreau. A syntactic theory of dynamic binding. Higher-Order and

Symbolic Computation, 11(3):233–279, December 1998.
[MPG+00] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz Barnes.

Runtime support for type-safe dynamic Java classes. In Proc. ECOOP
2000, LNCS 1850, June 2000.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. The-
oretical Computer Science, 1:125–159, 1975.

[RWS06a] Olivier Rütti, Pawe�l T. Wojciechowski, and André Schiper. Service In-
terface: A new abstraction for implementing and composing protocols. In
Proc. SAC ’06: the 21st ACM Symposium on Applied Computing, Track
on Dependable and Adaptive Distributed Systems, April 2006.

[RWS06b] Olivier Rütti, Pawe�l T. Wojciechowski, and André Schiper. Structural
and algorithmic issues of dynamic protocol update. In Proc. IPDPS ’06:
the 20th IEEE Int’l Parallel and Distributed Processing Symposium, April
2006.

[VJWH04] Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. A
semantic framework for designer transactions. In Proc. ESOP ’04, LNCS
2986, March/April 2004.

[Woj05] Pawe�l T. Wojciechowski. Isolation-only transactions by typing and ver-
sioning. In Proc. PPDP ’05: the 7th ACM-SIGPLAN Int’l Symposium on
Principles and Practice of Declarative Programming, July 2005.

[WR05] Pawe�l T. Wojciechowski and Olivier Rütti. On correctness of dynamic
protocol update. In Proc. FMOODS ’05, LNCS 3535, June 2005.

[WRS04] Pawe�l T. Wojciechowski, Olivier Rütti, and André Schiper. SAMOA: A
framework for a synchronisation-augmented microprotocol approach. In
Proc. IPDPS ’04: the 18th IEEE Int’l Parallel and Distributed Processing
Symposium, April 2004.

Tracechecks: Defining Semantic Interfaces with
Temporal Logic

Eric Bodden and Volker Stolz

Software Modeling and Verification (MOVES)
RWTH Aachen University, 52056 Aachen, Germany
{bodden, stolz}@i2.informatik.rwth-aachen.de

Abstract. Tracechecks are a formalism based on linear temporal logic
(LTL) with variable bindings and pointcuts of the aspect-oriented lan-
guage AspectJ for the purpose of verification. We demonstrate how trace-
checks can be used to model temporal assertions. These assertions reason
about the dynamic control flow of an application. They can be used to
formally define the semantic interface of classes. We explain in detail how
we make use of AspectJ pointcuts to derive a formal model of an existing
application and use LTL to express temporal assertions over this model.

We developed a reference implementation with the abc compiler show-
ing that the tool can be applied in practice and is memory-efficient.

In addition we show how tracechecks can be deployed as Java5 annota-
tions, yielding a system which is fully compliant with any Java compiler
and hiding any peculiarities of aspect-oriented programming from the
user. Through annotations, the tracecheck specifications become a se-
mantic part of an interface. Consumers of such a component can then
take advantage of the contained annotations by applying our tool and
have their use of this component automatically checked at runtime for
compliance with the intent of the component provider.

1 Introduction

Existing programs, especially large-scale applications, do not only consist of
their code base and documentation. In object-oriented programs, often there
exist implicit constraints e.g. in library APIs on how methods or fields may be
used. Apart from simple constraints like that certain parameters must never
be null, there are more complex limitations that e.g. some methods may only
be invoked in special circumstances, like in a specific order. Sometimes these
constraints are already checked through assertions. But the unwary developer
may be tripped up by many more patterns which are only informally documented
and not enforced. For example in the Java5 libraries, if a collection is added to
a hash set, the set does not notice changes to the elements themselves and may
hence return unsound results.

In this work we present tracechecks, a formalism which we consider well suited
to specify such temporal relations. The proposed semantic framework is based
on linear temporal logic (LTL) [17], which is widely known in the field of formal
verification, and is often used for static Model Checking [7].

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 147–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

148 E. Bodden and V. Stolz

The first step in Model Checking is usually to derive a formal semantic model
from an existing application. This model is then checked for correctness with
respect to some temporal specification (e.g. in LTL). Quite often it happens
that the semantic model is unsound or incomplete with respect to the actual
behaviour of the implementation.

Our approach is novel in the sense that we restrict ourselves to a partial
model (the one induced by a run) and use AspectJ to derive this partial model.
The primitives of our temporal logic are AspectJ pointcuts, picking out join-
points in the dynamic control flow of a Java application. That way the model
is known to match the implementation because they actually coincide at well-
defined points—the joinpoints. Section 2 gives two motivating examples where
tracechecks enforce temporal constraints on Java interfaces. In Section 3 we ex-
plain how we derive a semantic model of an existing application using AspectJ
and how LTL can be used to state temporal assertions over this model. We show
that the model is a system where transitions are triggered by pointcuts. In Sec-
tion 4 we present the syntax of tracechecks and give their semantics by example.
In particular, tracechecks can access and bind objects as the application runs,
hence providing a means of instance-based reasoning. Section 5 discusses details
about our reference implementation as well as performance and deployment is-
sues important to component-based software development. We also comment on
possible usage scenarios and conclude with a discussion of related work.

2 Motivation

Component based software has much evolved during the last years. Where some
decades ago a piece of software often existed of few large chunks of code with
little recognizable structure, today we have programming languages and tool
support for properly maintaining independent components—modules—on their
own. This modular reasoning has lead to safer software which is easier to main-
tain and easier to evolve.

Yet, we find that modules as they are today lack important specification
features to be fully reusable, as they are frequently only syntactically defined
through their programming language interfaces. This induces a purely static
view. A feature f can be accessed through a module m if and only if f is in
the signature of m and if it can be accessed, one can usually do so at any time.
(Sometimes exceptions are used to forbid certain access patterns but we see this
as quite a cumbersome low-level solution to the problem.)

We found that this static view can lead to trouble when software is actually
run. Frequently it can happen that certain functionality is only available at
certain points in time when an application executes, or in other words: at certain
times at runtime, certain features should not be allowed to be accessed for the
sake of a safe and stable application.

For example, nothing should be written to an output stream, if the stream
has been closed before. Such errors may be documented in APIs in the form of
comments, but still the user of the output stream component has to remember

Tracechecks: Defining Semantic Interfaces with Temporal Logic 149

1 tracecheck(Collection c, Iterator i) {
2

3 sym iterator(Collection c, Iterator i) after returning (i):
4 call(Collection+.iterator ()) && target(c)
5 sym modify(Collection c) after returning:
6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym next(Iterator i) before:
8 call(Iterator .next()) && target(i)
9

10 G(iterator(c, i) −> G(modify(c) −> G(!next(i)))) {
11 throw new ConcurrentModificationException (”Collection ”+c+” modified!”);
12 }
13 }

Fig. 1. Safe iterator tracecheck

to obey this rule in order to get a safely working application. With tracechecks,
such temporal assertions can be specified right in place and can automatically
be checked at runtime. To further emphasize this dynamic view we would like to
give a code example.

2.1 Safe Iterators

As a motivation, let us start with the safe iterator -pattern, which states that:

For each Iterator i obtained from a Collection c, there must never be an
invocation of i.next() after the collection has been modified.

This pattern is actually enforced in the Java5 library as follows. The Iterator
implementation contains a mechanism to track modifications of the underlying
collection by means of a modification counter. If the collection c is updated, the
modification-count obtained by the iterator i on instantiation time and the cur-
rent counter of the collection disagree and lead to an exception on the next access
to the iterator. In this case, the specification has crept into the implementation
of both the iterator and the collection.

With this work we introduce tracechecks, a formalism and tool to formulate
such trace conditions and automatically check their violation at runtime. Java
interfaces and classes (as well as AspectJ aspects) can be annotated with trace-
checks to define their behaviour with respect to the execution timeline.

In our formalism the requirement from above can be specified in a modular
way through the tracecheck in Figure 1. Line 1 declares the free variables c and i
that each collection and iterator in question will be bound to. Lines 3–9 declare
three symbols iterator, modify and next, which match the relevant joinpoints
through pointcuts. The actual formula (expressed in LTL, see below) is stated
in line 10, specifying through the outer “Globally” that this assertion should
be checked on the whole execution path (and hence for all created iterators).
For each iterator (left-hand side of the outer implication), we require of the

150 E. Bodden and V. Stolz

1 tracecheck(HashSet s, Collection c) {
2

3 sym add(HashSet s, Collection c) after returning:
4 call(HashSet+.add(..)) && target(s) && args(c))
5 sym modify(Collection c) after returning:
6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym remove(HashSet s, Collection c) after returning:
8 call(HashSet+.remove(..)) && target(s) && args(c))
9 sym contains(HashSet s, Collection c) before:

10 HashSet+.contains(..)) && target(s) && args(c))
11

12 G(add(s,c) −> G(modify(c) −> remove(s,c) R (!contains(s,c)))) {
13 throw new ConcurrentModificationException (c+” modified while in ”+s);
14 }
15 }

Fig. 2. Tracecheck detecting inconsistent use of collections and hash sets

remainder of the execution that after a call to add or remove no call to i.next()
must occur. The body is executed for any instance that violates the formula. We
have successfully validated this formula in practice. All examples are available
on our project web-page http://www-i2.informatik.rwth-aachen.de/JLO/.

2.2 Unsafe Use of HashSets

Another practical application of our framework is based on an actual bug pat-
tern observed by colleagues. When a collection is inserted into a HashSet, mod-
ifications to the contained collections influence the result of HashSet.contains-
queries. This behaviour was not anticipated and led to unexpected results. While
this is only arguably a bug but rather a mistake, the source code had to be
screened for possible uses under the wrong assumptions. In this case, the JDK
does not provide any builtin mechanism to detect such behaviour. We captured
it in the following way:

For each HashSet s that contains a Collection c, there must be no invocation
of s.contains(c) if the collection has been modified, unless the collection has

been removed from the set in between.

With tracechecks, specifying this property is done by a translation into linear
temporal logic (see Figure 2). Again, we define symbols matching the events of
interest and then specify that globally (G) adding a collection to a set implies
that from there on always the modification of this collection implies that the
removal of the collection from the set releases (R) the property “not check if c
is contained in s” from holding. The ϕ R ψ indicates that either ψ should hold
on the whole path or at some point ϕ holds and in this case releases ψ from the
obligation to hold any longer.

Tracechecks: Defining Semantic Interfaces with Temporal Logic 151

Unlike the tracechecks in those two examples, there may be application-
specific tracechecks that require understanding and analysis of the application.
The examples here shall demonstrate that in many cases tracechecks can be seen
as a formalism to extend the interface of an aspect or class (which is currently
mainly structure based) with semantic properties. Moreover those properties can
automatically be checked, leading to higher confidence in the code in question.

In the next section we explain how we use AspectJ pointcuts to obtain a trace
of the running application and present the underlying foundations for checking
LTL formulae on a finite path. In particular we clarify the relation between the
execution trace and the model of the program. We show how the pointcuts used
as propositions in our formula influence the degree of abstraction of the model
and thus the trace.

3 Introducing LTL

Linear temporal logic reasons about an infinite path in a model (usually a Kripke
structure) [7]. It is thus an extension of propositional logic. A path is a sequence
of states π = π[0]π[1] . . . such that each edge (π[i], π[i+1]) is contained in the
transition relation of the model. Each state π[i] is labelled with a set of atomic
predicates (the propositions). Although this section focuses on concrete exam-
ples, we briefly wish to point the reader to Figure 3, which gives the grammars
for tracechecks and LTL formulae.

tracecheck ::= perthread
tracecheck (var decl) {

symbol decl +
ltl formula
method body

}
symbol decl ::=
sym (var decl)

name kind : pointcut ;

kind ::= before
| after
| after returning (variable)
| after throwing (variable)
| type around (variables)

(a) Tracecheck grammar

arg ::= symbol
| ltl formula
| (arg)

ltl formula ::=
! arg ¬ ϕ (not ϕ)

| X arg X ϕ (neXt ϕ)
| F arg F ϕ (Finally ϕ)
| G arg G ϕ (Globally ϕ)
| arg U arg ϕ U ψ (ϕ Until ψ)
| arg R arg ϕ R ψ (ϕ Releases ψ)
| arg && arg ϕ ∧ ψ (ϕ and ψ)
| arg || arg ϕ ∨ ψ (ϕ or ψ)
| arg -> arg ϕ → ψ (ϕ implies ψ)
| arg <-> arg ϕ ↔ ψ (ϕ iff ψ)

(b) Syntax of LTL formula

Fig. 3. Tracecheck and LTL grammar

They consist of the set of Boolean operators as well as the temporal operators
Next, Finally, Globally, Until and Release, which can be used to temporally
combine propositions or sub-formulae.

152 E. Bodden and V. Stolz

x:=1; y:=1;
while (p1) {
f(x,y);
if (p2) then

{ x:=1; y:=1; }
else

{ x:=2; y:=2; }
} /* while */

(a) Pseudo-source

2,11,1 1,1

1,2 2,2 2,2

(b) General model

1,1

2,2

(c) Abstracted model

Fig. 4. Simple while-loop with branching

For the verification of programs, these atomic propositions could be abstracted
from each program state, i.e. the complete program state with heap, program
counter, local variables, and call stack. Usually the program counter and a pro-
jection of parts of the state would be used to limit the model to the relevant
propositions for the task at hand (cf. for example the specification language
Promela [15]). The model of a program is defined by the generally undecidable
set of all computation paths. We limit ourselves to reasoning about an actual
execution trace of the program to overcome the inherent limitation of Model
Checking on obtaining an appropriate model to existing source code.

Throughout the paper, the atomic propositions of our framework are point-
cut expressions that select the matching joinpoints as the states of our abstract
model. Each state is labelled with the set of active propositions, i.e. the propo-
sitions which match the current joinpoint. For example in the case of Figure
1, each state where an iterator i is created for a collection c would be labelled
with a superset of {iterator(c, i)}. Although our examples only use call and
if-pointcuts, any other pointcut, e.g. cflow, may be used.

3.1 Temporal Assertions

Reasoning about one such state is closely related to assertions. An assertion is
the check of a predicate over the current state of a system (identified through the
position in the source code). We can further abstract this to a model where we
retain only those states in which assertions are actually checked by a tracecheck.

As an example, consider the program in Figure 4(a). It contains two predicates
p1, p2 that decide (possibly non-deterministically if for example I/O is involved)
the number of iterations and which branch to take. Figure 4(b) shows the model
we obtain if we are interested in the variables x, y. (We do not show the edges
leading out of the loop.) Note that it contains two states labelled (1, 1) or (2, 2),
but all are distinguishable from each other since they have different predecessors
and successors. Figure 4(c) shows the abstracted model obtained if we are only
interested in the values of the arguments of the method invocation f .

Temporal assertions use LTL path formulae as a means of reasoning about a
sequence of states. They allow us to specify that states have to occur in a special
order, e.g. that a call to a method f must eventually be followed by a method

Tracechecks: Defining Semantic Interfaces with Temporal Logic 153

call to g, expressed by the LTL formula F(f → Fg). The operator F is often
pronounced “Finally” because of its meaning.

Another important LTL operator is called “Globally”. It specifies that a prop-
erty should hold on every state of the model. E.g. it might be desirable to confirm
that in each state the values of the variables x, y are equal: G (x = y).

We observe some differences between the models above (where LTL formulae
have to hold on all paths) and a specific path. For the aforementioned program,
F(x = y) holds on any infinite path in both models. G(x = y) does not hold in
the general model because of the states (2, 1) and (1, 2). If we are evaluating a
formula at runtime, we might observe a path where these states are not visited
and the formula might hold on this run. Consequently we use a finite path
semantics, i.e. over a single finite unwinding of a model.

We conclude that the level of abstraction the model provides is essential to
its validity. By the appropriate use of pointcuts as propositions in our LTL for-
mulae unimportant intermediate states can be filtered away, hence leading to an
abstracted model as in Figure 4(c), where we filtered for method calls. Specif-
ically, the abstract model is defined through the propositions in the formula.
Hence we can now formulate the query “On all invocations of f, do x and y have
the same value?”: G (f → (x = y)). In our implementation, we would use a
call -pointcut to select the method invocation and an if -pointcut to evaluate the
predicate over the variables.

In the following, we discuss the remaining temporal operators which reason
about intervals and need a more thorough discussion.

Until, Release and Next. The binary operators “Until” and “Release” can be
considered the low-level operators of our temporal logic. The aforementioned op-
erators “Finally” and “Globally” can be expressed using “Until” and “Release”:

F ϕ ≡ tt U ϕ G ϕ ≡ ff R ϕ
¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X(ϕ U ψ)) ϕ R ψ ≡ ψ ∧ (ϕ ∨ X(ϕ R ψ))

The “Until”-operator U states that a formula ϕ U ψ holds in a state if the
sub-formula ϕ holds from this state on until a state is reached where ψ holds. ψ
is required to hold eventually, that is before the end of the program.

The dual operator “Release”, ϕ R ψ, specifies that either ψ should hold in-
definitely or that ψ holds up to and including the state where ϕ holds. We
already used this operator in the HashSet -example in the previous section:
G(modify(c) → remove(s , c) R ¬contains(s , c)).

A detailed discussion of the application of these specific operators is out of
the scope of this paper and we point the interested reader to [18].

The last temporal operator is X, the “Next”-operator. A formula X ϕ holds
if ϕ holds in the next state, e.g. we might require that after pushing the start-
button the engine should turn on through start → X running.

154 E. Bodden and V. Stolz

While LTL is only arguably an appropriate specification language, we consider
it appropriate for a prototype. In the static verification community, several other
specification languages like Sugar [4] and ForSpec [3] exist, which also contain
additional syntactic sugar hiding the temporal logics in the semantic layer to
make the input languages more user-friendly.

A comprehensive survey of existing verification patterns and how to express
them in various specification formalism including LTL can be found in [11]. It can
serve as a starting-point into specifying properties. The HashSet -requirement for
example can be identified as a combination of the “Universality After”-pattern
and a variant of the “Absence of P after Q until R”-pattern, where P is the
contains, Q the modify and R the remove-action.

4 Tracechecks

The introductory examples show that tracechecks use an LTL formula with free
variable bindings in order to specify conditions over the dynamic execution trace.
Figure 3(a) gives the formal syntax of tracechecks. A tracecheck consists of a
declaration of free variables which can be bound during evaluation, a nonempty
list of symbol (proposition) declarations, an LTL formula declaration (cf. Figure
3(b)) and a body. The keyword perthread causes a thread-local instantiation of
the formula, if a property should be checked for each thread separately.

A definition of the formal declarative semantics of tracechecks is out of the
scope of this work and can be found in [5] where we also prove them equivalent
to our operational semantics. In the following we want to explore the semantics
by example, recalling the initial specification of the iterator requirement.

4.1 Quantification

The formula (with free variables c, i) can be written as:

G(iterator(c, i) → G(modify(c) → G(¬next(i))))

The informal requirement specification states that the condition G(modify(c) →
G(¬next(i))) should hold for each pair (i, c) of iterator and collection. With
tracechecks, quantification over objects can be expressed by quantifying over
events. Global quantification over a variable x can be modelled by wrapping
a formula ϕ(x) with a “Globally”-formula of the form G(create(x) → ϕ(x)).
Likewise, existential quantification can be modelled by “Finally”-formulae of
the form F(create(x) ∧ ϕ(x)).

Tracechecks always specify a language of valid traces. That means that we are
naturally interested in traces which violate the LTL formula of a tracecheck. A
tracecheck body is executed whenever a formula is falsified. In cases where this
falsification took place under a certain binding, this binding can be referred to
by the variables declared in the tracecheck body (cf. Figure 6, line 9).

It may happen that no such binding is available. For instance the formula
F(create(x)), which states that at some point in time, some object x is created,

Tracechecks: Defining Semantic Interfaces with Temporal Logic 155

can only be falsified at application shutdown time. If it is falsified, this means
that create(x) did not occur. Consequently, x cannot be bound. In such cases, x
will be null in the tracecheck body. Future versions of our implementation will
use static analysis in order to avoid accidental unchecked use of such variables.

4.2 Annotation Style Syntax

In addition to the tracecheck syntax, our implementation offers an inlined “anno-
tation” style that can be used to deploy specifications as annotations in interfaces
of ordinary classes (cf. Section 5). For the iterator example, this allows to di-
rectly attach the formula to the iterator() method of the Collection interface as
shown in Figure 5. Note how the keywords thisMethod and thisType can be used
to refer to the member respectively type the annotation is attached to. That
way, formulae can be directly attached to the components they reason about in
a reusable way. (Like in the AspectJ semantics, pointcuts over interfaces specify
behaviour over all classes implementing that interface.)

1 interface Collection {
2

3 @LTL(”thisType c, Iterator i:
4 G(exit(call(thisMethod) && target(c)) returning(i) −>
5 G(exit((call(thisType+.add(..)) || call(thisType+.remove(..))) && target(c))
6 −> G(! entry(call(Iterator.next()) && target(i)))))
7 ”)
8 Iterator iterator ();
9

10 //remaining interface code
11 }

Fig. 5. Annotation style definitions in our prototype tool J-LO

Since tracechecks in annotation style have no body, if an error is detected,
the implementation issues a message to a set of user definable observers. These
may simply output an error message or apply some more sensible error handling,
depending on the property. Also, such annotations are currently not automat-
ically documented by Sun’s javadoc API documentation tool. Future versions
will likely support such a feature.

Using annotations as a means of deployment, the specification literally forms
a (semantic) part of the public interface of a class. This can be useful for several
purposes, comprising documentation, runtime checking (through our tool) but
also static verification by third party tools. In particular, the designer of an
interface, class or component can attach such semantic annotations to its code
and have them compiled into Java bytecode. People using this class or component
or implementing this interface respectively can then in a second, independent
step simply apply our tool to have their implementation instrumented to be

156 E. Bodden and V. Stolz

checked for compliance with this semantic interface. We believe that this is a
unique feature which has not been provided before in practice and that it is a
major contribition to the modular deployment of components.

4.3 History Access Through if-Pointcuts

This syntax imposes one problem: Since there is no body available, one cannot
perform any further computation on the bound values. In particular, one cannot
filter for unwanted valuations. As a solution, tracechecks implement an extended
semantics for if -pointcuts, giving them access not only to valuations at the
current joinpoint but also to variables which have been bound earlier on the
path. Figure 6 shows a tracecheck enforcing the Singleton design pattern [14].

1 tracecheck(Singleton s1, Singleton s2) {
2

3 sym create(Singleton s) after returning (s):
4 call(static Singleton Singleton+.inst ());
5 sym createAnother(Singleton s, Singleton t) after returning (s):
6 call(static Singleton Singleton+.inst()) && if(s!=t);
7

8 G(create(s1) −> XG !createAnother(s2,s1)) {
9 throw new SpecViolationException (”Two singletons detected:”+s1+”,”+s2);

10 }
11 }

Fig. 6. Tracecheck enforcing Singleton pattern

Note that the symbol createAnother gets a parameter t passed in (lines 5–6),
which is not provided by the symbol itself. This raises the question what happens
when one must decide if a condition such as s �= t actually holds at the current
joinpoint, but one of the variables has not yet been bound. Indeed such formulae
are forbidden. In [5] we explain a static analysis based on abstract interpretation
which assures the validity of given formulae at compile time.

5 Reference Implementation

In this section we discuss some implementation details and how well tracechecks
can be used in practice. We comment on the runtime overhead and explain pos-
sible deployment outside of aspects by using annotations. Our reference imple-
mentation is based on an adaption of alternating automata [13] with free variable
bindings. It allows to implement the LTL semantics quite directly. Details are
given in [5], so we only briefly outline important details.

Generally, for each tracecheck with n symbols we generate n+1 pieces of advice
where the first n construct the set of propositions holding at a joinpoint and the

Tracechecks: Defining Semantic Interfaces with Temporal Logic 157

last advice triggers the automaton transition function. In addition, we generate
a method containing the tracecheck body, which is called by the backend with
the appropriate binding whenever the tracecheck fails. (The interested reader
might want to have a look at the output of our tool during instrumentation as
the prototype prints the generated aspects to the commandline.)

On startup of the instrumented application, the initial automaton configura-
tion is installed in the runtime environment and then updated every time the
aspect triggers a transition.

As mentioned, if -pointcuts in symbol declarations of a tracecheck can refer
to variables which were bound earlier on in the trace. In order to evaluate an
if -pointcut within the execution history, the compiler extracts the Boolean ex-
pression and constructs a closure which is attached to the defining proposition.
The proposition is then passed in the correct variable binding at runtime through
the evaluation of the transition function.

We have successfully tested our implementation with various assertions over
data structures as well as on an instance of the lock order reversal pattern [18],
where threads obtain locks in a way which may lead to a deadlock.

The work of Allan et al. [2] discusses an instance of the safe iterator pattern in
JHotDraw (a Java drawing package, available at http://www.jhotdraw.org/)
as use case. We were able to reproduce their results by executing a sequence
of events violating the pattern in the graphical user interface. The error was
properly picked up. If no instrumentation had been present, the error would
probably have gone unnoticed. Step-by-step instructions along with all related
code are available on our website.

5.1 Memory Overhead

With respect to memory leaks we made sure that our implementation uses strong
references only where necessary, that is when variables are used within a trace-
check body (e.g. Figure 6, line 9). In those cases, strong references need to be
kept in order to make sure that the object is still available when the tracecheck
body is executed. For variables which are not referenced in such a way, each
object bound to this variable can be garbage collected as if no tracechecks were
present. All related propositions (weakly) referencing such objects are then au-
tomatically removed in the next application of the transition function. Their
semantics is equal to those of false, because a proposition referencing an object
that was garbage collected can never hold again.

As a result, when variables are not used within a tracecheck body (i.e. they
are collectable), we observe only a constant memory overhead, since any bound
object can be freed as usual. In particular this is always the case when using the
annotation style syntax, because those specifications consist only of a formula
and have no body which would require strong references to bound objects.

Figure 7 shows the memory consumption for our iterator example in JHot-
Draw. The left graph shows memory consumption for the version without in-
strumentation, when animating an object. Consumption is constantly around
1.3 MB. (Note that this is code compiled with the abc compiler. Code generated

158 E. Bodden and V. Stolz

Fig. 7. Memory usage for the iterator example in JHotDraw; left: uninstrumented pro-
gram (memory consumption in KB over time in minutes), right: instrumented version
of the program; dots indicate garbage collection

by javac takes up about 2 MB.) The instrumented version shown on the right
hand side shows the same constant memory consumption, however, it is trigger-
ing much more garbage collections than the original one. This is due to the fact
that we have not yet optimised our application for speed. As a result, we still
observe a considerable runtime overhead. Future versions will try to mitigate
this problem by standard techniques such as caching. Yet the graph shall give
proof of the fact that there are no memory leaks caused by our implementation.

When variables are used within a tracecheck body, Allan et al. [2] suggested
a static pointer analysis which is able to identify such cases and hence may
warn the user at instrumentation time. That way the user has the possibility
to decide for himself whether he wants to pay for this debug information with
the unavoidable memory overhead. This analysis is implemented in abc and can
thus be reused for tracechecks.

If an application is instrumented with expensive tracechecks, they should only
be active in internal debugging builds of the software, and disabled on deploy-
ment due to their performance-penalty at runtime. Test-case generation and
path-coverage are essential to effectively use tracechecks. Despite the perceived
overhead, with growing computer performance there is a trend to continuously
monitor applications and eventually combine results of different runs to obtain
asymptotic verification of analysed programs [6].

6 Related Work

Specifying aspects based on the execution history of a program has been recog-
nized as a desirable feature for aspect oriented programming under the name of
Event-based AOP (EAOP) [10]. The AOP approach which is closest to the one
of tracechecks are tracematches introduced by Allan et al. [2].

Tracechecks: Defining Semantic Interfaces with Temporal Logic 159

6.1 Tracematches

They propose a matching language based on regular expressions. Those are quite
different compared to LTL formulae in a way that regular expressions are well
suited for existential patterns, i.e. patterns which anticipate certain behaviour
to exist and then match this behaviour. While this is useful for the purpose of
tracematches, which is using them as an implementation language where addi-
tional behaviour is attached to existing paths, the absence of faulty behaviour
can consequently often only be expressed in a cumbersome way—by enumerating
the language of all possible paths leading to an error state.

The use of LTL as a specification formalism allows here to translate safety
conditions (“something bad never happens”) in a more direct way. Such patterns
are essential to checking and verifications as [11] shows.

Table 8 shows a comparison of tracematches and tracechecks: While trace-
checks can be deployed in an AspectJ-like syntax, they can also be deployed as
Java annotations, forming a real part of a Java interface.

Also, while tracechecks (i.e. LTL) allow the user to express negation and
conjunction, this is not possible with tracematches (i.e. regular expressions).
Even if the respective operations “intersection” and “complement” were added,
tracematches would still not be equally expressive: For example, a∗ ∩ b∗ is only
satisfied by the empty trace, while the property G(a) ∧ G(b) = G(a ∧ b) is
also satisfied by the trace [{a, b}{a, b}]. This is due to the fact that regular
expressions always have to be interpreted over strict sequences of events. That
means that the aforementioned trace would be interpreted as a trace [a b a b] or
similar, which is not matched by a∗∩b∗. Since LTL is a propositional logic, it can
distinguish such overlapping events. Pure LTL in turn cannot detect patterns
which require modulo counting (e.g. (aa)∗). We believe that such patterns are
seldom useful in the context of verification.

Table 8. Comparing tracematches and tracechecks

Tracematches Tracechecks
Formalism regular expressions linear temporal logic

Deployment AspectJ language ext. AspectJ language ext. or Java annotations
Input symbol p ∈ Σ {p1, . . . , pn} ∈ 2Σ

Semantics sequential interleaving
Negation implicit, through def. of Σ explicit

Conjunction no yes
Concatenation yes no
Quantification ∃x, implicit ∃x,∀x, through LTL

Shutdown explicit implicit

Also, the “Globally” operator, as we use it here, provides a means to uni-
versally quantify over variables (cf. Section 4). With tracematches this is not
possible, since regular expressions are implicitly existentially quantified.

160 E. Bodden and V. Stolz

Last but not least, the shutdown event of an application needs to be explicitly
modelled in tracematches, while our tool installs a shutdown hook, automatically
notifying the verification runtime, when the application shuts down.

We conclude that tracematches and tracechecks show indeed some similarities,
but in the end are both each better suited for their particular purpose.

6.2 Other Approaches

Temporal logics have already been used together with AOP: In [1], rules based
on temporal logics are used to describe sequences of instructions where events
should be inserted. The instrumentation happens on a static level and does not
consider free variables.

Douence, Fradet and Südholt [8] developed an aspect calculus where advice
can be triggered not only via a single joinpoint but via sequences. Although
their work is targeted towards a formal model of joinpoint matching and ad-
vice execution and less on an actual implementation, there are clear similarities
to our work. Their formalism describes regular sequences of joinpoints, so it
can rather be compared to the sequential model of tracematches than to our’s.
Consequently, they cannot express overlapping events. It is implemented in the
Arachne system [9], a dynamic weaver for C applications.

Other work by Südholt and Farias [12] discusses the use of explicit protocols
in the interfaces of components in order to satisfy a certain notion of correctness.
Hence the goal of their work is certainly similar to ours. Yet, they use another
specification formalism (finite state machines) and do not employ and aspect-
oriented programming. Consequently, they are unable to exploit the crosscutting
nature of pointcuts, an essential stength of the formalism presented hete. Also,
they provide no implementation.

Vanderperren et al. [19] propose the stateful pointcut language JAsCo also
based on the above model. Pointcuts trigger transitions in a deterministic finite
automaton and advice can be attached to each pointcut. JAsCo does not provide
a means of quantification or bindings. These have to be implemented in the
declaring aspect by hand.

In their work [20], Walkers and Viggers proposed the tracecuts formalism. As
tracechecks and tracematches, tracecuts provide an AspectJ and pointcut based
formalism for temporal reasoning. The authors describe an implementation by
an AspectJ compiler extension, which gave of course some insights for our work.
With respect to the formal model, the obvious difference to our approach is that
tracecuts use context-free grammars for the specification of trace languages.

Additionally to context free languages, the set of languages recognisable by
tracecuts is however even larger, since the implementation allows for the attach-
ment of custom action blocks to each matching symbol. Such an action block
has access to the whole execution history observed so far and can based on this
decision reject the current symbol using a fail keyword, resuming as if the sym-
bol had not just been read. A stack based implementation imposes additional
overhead, although this might be optimised for regular traces.

Tracechecks: Defining Semantic Interfaces with Temporal Logic 161

Klose and Ostermann [16] discuss how temporal relations can be expressed in
Gamma, an aspect-oriented language on top of an object-oriented core language.
Pointcuts are specified in a Prolog-like language and include timestamps that can
be compared using the predicates isbefore or isafter. Their prototype requires a
stored trace to analyse and is not applicable to an existing language.

In the field of annotation-based property checking, there are many tools
around, such as Contract4J, JML, etc. but actually all of them support pure
“Design by Contract”, i.e. only pre- and postconditions and invariants. Each
can be expressed through tracechecks, but tracechecks are more powerful as
they allow to reason about the whole execution trace and not just a single point
in the execution flow.

7 Conclusion

We have presented a specification framework for formal reasoning about object-
oriented programs. The implementation is based on the abc compiler. Formulae
in a temporal logic can be used to reason about the dynamic execution trace of
a running application. The application is observed by an automaton where tran-
sitions are triggered by an aspect. Formulae can bind free variables to exposed
objects on the execution path and can refer to those objects through a redefined
scope of if -pointcuts during matching. They can be deployed using a language
extension to AspectJ or by the means of Java5 annotations, yielding a fully Java
compliant solution.

Through such annotations, the tasks of specification and verification is split
into two parts: The designer of a component or interface adds annotations to his
code representing the dynamic semantics of how the component is to be used.
The annotations can then be compiled into bytecode and shipped to the user.

The user can then take advantage of the annotations for the purpose of doc-
umentation or automated runtime checking—by applying our tool. That way
the user can make sure that his access to a component or implementation of an
interface is compliant with the original intent of the component provider.

Our prototype, the Java Logical Observer J-LO, together with all presented
examples is available from http://www-i2.informatik.rwth-aachen.de/JLO/.

Acknowledgements. We thank the whole abc group for their useful comments
on this work and on extending the AspectBench compiler in general.

References

1. R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-F. L. Meur. On the
automatic evolution of an OS kernel using temporal logic and AOP. In Proc. of
Automated Software Engineering (ASE’03). IEEE, 2003.

2. C. Allan, P. Avgustinov, A. Simon, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittamplan, and J. Tibble. Adding Trace Matching with Free Vari-
ables to AspectJ. In OOPSLA ’05, San Diego, California, USA, October 2005.

162 E. Bodden and V. Stolz

3. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
ForSpec Temporal Logic: A new Temporal Property-Specification Language. In
P. S. Joost-Pieter Katoen, editor, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 of LNCS. Springer, 2002.

4. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic sugar. In Computer Aided Verification (CAV’01), volume 2102 of
LNCS. Springer, 2001.

5. E. Bodden. J-LO, a tool for runtime checking temporal assertions. Mas-
ter’s thesis, RWTH Aachen University, Germany, 2005. Available from http://
www-i2.informatik.rwth-aachen.de/JLO/.

6. T. M. Chilimbi. Asymptotic Runtime Verification through Lightweight Conti-
nous Program Analysis (invited talk). In Fifth Workshop on Runtime Verification
(RV’05). To be published in ENTCS, Elsevier, 2005.

7. E. Clarke Jr, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
MA, USA, 1999.

8. R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analysis
of stateful aspects. In G. C. Murphy and K. J. Lieberherr, editors, Proc. of the 3rd
intl. conf. on Aspect-oriented software development (AOSD’04). ACM, 2004.

9. R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-Devillechaise, and
M. Südholt. An expressive aspect language for system applications with arachne.
In Proc. of the 4th intl. conf. on Aspect-oriented software development (AOSD’05).
ACM Press, 2005.

10. R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In Proc.
of the 3rd. intl. conf. on Metalevel Architectures and Separation of Crosscutting
Concerns, volume 2192 of LNCS. Springer, 2001.

11. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE ’99: Proceedings of the 21st intl. conf. on
Software engineering. IEEE Computer Society Press, 1999.

12. A. Faŕıas and M. Südholt. On components with explicit protocols satisfying a no-
tion of correctness by construction. In In International Symposium on Distributed
Objects and Applications (DOA). LNCS, 2002.

13. B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata.
Formal Methods in System Design, 24(2):101–127, 2004.

14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In O. M. Nierstrasz, editor, ECOOP’93—
Object-Oriented Programming, volume 707 of LNCS. Springer, 1993.

15. G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison-
Wesley, Boston, Massachusetts, USA, September 2003.

16. K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over
traces. In Foundations of Aspect-Oriented Languages workshop (FOAL’05), 2005.

17. A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symp. on
the Foundations of Computer Science. IEEE Computer Society Press, 1977.

18. V. Stolz and E. Bodden. Temporal Assertions using AspectJ. In Fifth Workshop
on Runtime Verification (RV’05). To be published in ENTCS, Elsevier, 2005.

19. W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine. Stateful Aspects in
JAsCo. In T. Gschwind and U. Aßmann, editors, Workshop on Software Compo-
sition 2005, volume 3628 of LNCS. Springer, 2005.

20. R. J. Walker and K. Viggers. Implementing protocols via declarative event pat-
terns. In R. Taylor and M. Dwyer, editors, Proc. of the 12th ACM SIGSOFT Intl.
Symp. on Foundations of Software Engineering. ACM Press, 2004.

Service Composition with Directories

Ion Constantinescu, Walter Binder, and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. This paper presents planning-based service composition algorithms
that dynamically interact with a potentially large-scale directory of service
advertisements in order to retrieve matching service advertisements on demand.
We start with a simple algorithm for untyped services, similar to a STRIPS
planner. This algorithm is refined in two steps, first to exploit type information,
and second to support partial type matches. An evaluation confirms that the
algorithms scale well with increasing size of the directory and that the support
for partial type matches is essential to achieve a low failure rate.1

Keywords: Service composition, planning, service discovery, semantic web
services.

1 Introduction

Today the predominant way we interact with the Web is via browsers that manipulate
information by rendering it in a human-readable way. However, there is an evolution
towards the automatisation of many processes on the Web, which may result in
computer-to-computer interactions becoming predominant over current human-to-
computer interactions. For modeling computer-to-computer interactions, currently the
de-facto paradigm is that of “services”. But making services automatically interact with
each other raises a number of difficult problems, currently under hard scrutiny by in-
dustrial and academic research.

The Semantic Web [14] is fundamental for such computer-to-computer interactions
to become reality, since it provides an universally accessible platform and computer-
understandable semantics for data to be shared and processed by automated tools. Ex-
perts have already developed a range of mark-up frameworks and languages, notably
the revised Resource Description Framework (RDF) [29] and the Web Ontology Lan-
guage (OWL) [28], which mark the emergence of the Semantic Web as a broad-based,
commercial-grade platform.

Service discovery is the process of locating providers advertising services that can
satisfy a service request specified by a service consumer. Automated service composi-
tion addresses the problem of assembling services based on their functional specifica-
tions in order to achieve a given task and to provide extra functionality. When discovery

1 The work presented in this paper was partly carried out in the framework of the EPFL Center
for Global Computing and supported by the Swiss National Funding Agency OFES as part of
the European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 163–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 I. Constantinescu, W. Binder, and B. Faltings

fails in locating a single service, service composition can be used instead for satisfying
a service request. Thus, service composition may be regarded as a generalized form
of discovery. So far, most approaches that have been suggested for automated service
composition are based on planning techniques.

Due to the open and changing environment in which it is performed, service discov-
ery needs to operate without any specific prior knowledge of existing services. Services
are therefore indexed in directories, and the main goals for the implementation of these
directories and the matchmaking algorithms are to maximize the success rate as well as
the efficiency of processing queries.

Therefore, planning algorithms used for automated service composition have to be
adapted to a situation where operators are not known a priori, but have to be retrieved
through queries to these directories. Basic planning systems check all operators in the
planning library against the current search state in order to determine which action to
perform next. In contrast, in the case of service composition, the search state is used
to extract the specification of possible operators. This specification together with some
constraints specific to the composition algorithm is used to formulate a query to the
service directory.

The original contribution of this paper is the presentation of service composition
algorithms that dynamically interact with a directory to retrieve relevant service de-
scriptions. Our approach to automated service composition is based on matching input
and output parameters and world states prior and posterior to the invocation of a service
in order to constrain the ways in which services may be composed. In this paper we
show the stepwise refinement of a simple planning algorithm in order to take the types
of input resp. output parameters into account and to support also the composition of ser-
vices with partially matching parameter types, which significantly reduces the failure
rate of the composition algorithm.

The approach presented here builds on our research on service directories [8,3,9]
and refines and extends our previous work on service composition [12] by supporting
a more expressive service description formalism and detailing the interaction of our
service composition algorithms with a directory. Moreover, this paper includes the first
detailed presentation of our composition algorithms, which we derive from a standard
planning approach. New measurements of our approach complete this paper.

The rest of this paper is structured as follows: The next section discusses some re-
lated work in the area of service composition. In Section 3 we explain how we repre-
sent service advertisements and service requests. Section 4 discusses requirements and
gives an overview of our service composition engine. Section 5 introduces a simple
composition algorithm, which does not take type information into account. It is the ba-
sis for the subsequent refinements in Section 6 and Section 7. In Section 8 we evaluate
performance and failure rate of the presented service composition algorithms. Finally,
Section 9 concludes this paper.

2 Related Work

For the last years, service integration has been an active field in both the AI and data-
base research communities, including Infosleuth [1] and work by Doan and Halevy [13].

Service Composition with Directories 165

Another approach is that of Thakkar and Knoblock [26], concretized by the Building
Finder application, where a number of manually defined data-sources, such as the Mi-
crosoft Terraservice, U.S. Census Bureau information files, as well as geocoding in-
formation and different real estate property tax sites, where composed using a forward
chaining technique.

Some approaches to composition require an explicit specification of the control flow
between basic services in order to provide value-added services. For instance, in the
eFlow system [6], a composite service is modeled as a graph that defines the order of
execution of different processes. The Self-Serv framework [2] uses a subset of state-
charts to describe the control flow within a composite service. The Business Process
Execution Language for Web Services (BPEL4WS) [5] addresses compositions where
the control flow of the process and the bindings between services are known in advance.

There is a good body of work which tries to address the service composition problem
by using planning techniques based either on theorem proving (e.g., ConGolog [20,21]
and SWORD [25]) or on hierarchical task planning (e.g., SHOP-2 [32]). Such ap-
proaches do not require a pre-defined process model of the composite service and return
a possible control flow as result. In the scenario used by the ConGolog approach, the
composition engine would have to book flight tickets and arrange ground transporta-
tion and hotel reservations. For SWORD, the example used was of a composite service
giving driving directions to one’s home. The composite service was formed from two
services, one that mapped names to addresses and another that was giving driving di-
rections to a given address. In the motivating example in the SHOP-2 approach, for
handling a medical emergency, several data sources had to be composed and a schedule
had to be computed.

Other approaches based on planning, such as planning as model checking [16], are
being considered for Web service composition and would allow more complex con-
structs such as loops [27].

The main drawback of all previously presented approaches to service composition
based on planning is that they assume that relevant service descriptions are initially
loaded into the reasoning engine and that no service discovery is performed during
composition. I.e., these approaches do not fit an environment where a large number
of dynamically changing service advertisements are published in service directories.
In contrast, the service composition algorithms presented in this paper dynamically
retrieve relevant service advertisements from a potentially large-scale service directory.

3 Service Descriptions

A service description specifies aspects related to the functionality available from a ser-
vice provider (service advertisement) or requested by a service consumer (service re-
quest). We represent service advertisements and service requests through variables and
constraints on these variables. Variables refer to required or provided service parame-
ters or to aspects related to the state of the world before or after the invocation of the
service. Constraints specify the possible combinations of values that different variables
can take.

166 I. Constantinescu, W. Binder, and B. Faltings

In our formalism, each variable is defined by two elements:

– A description specifying the actual semantics of the data the variable is holding,
including information whether the variable represents a parameter or a world state
(e.g., in a travel domain the description of a variable could be DepartureParam or
ArrivalParam and the description of a world state could be V alidCreditState).
Usually, the description is directly associated to the name of the variable itself.

– A type defining the way data of the variable is represented and the set of
values that the variable can take (e.g., possible values for DepartureParam
and ArrivalParam could be represented by the sets {Geneva, Basel} and
{Barcelona, Nice}, where all four city values could be of type Location).

We presume that both variable descriptions and types can be defined using a
class/ontological language like OWL [28]. Primitive data-types used for specifying the
variable type can be defined using a language like XSD [30].2

Constraints on variables can specify either preconditions (set of possible parameter
and world state values required to be true prior to the invocation of the service) or ef-
fects (how parameters and world states are affected by the execution of the service).
Constraints are specified in the form of sets of possible variable assignments. Each as-
signment represents a set of variable/value pairs. Constraints are identified by keywords
(e.g., PRE for preconditions, respectively EFF for effects).

We call parameter or world state variables appearing in PRE constraints prior
variables, and parameter or world state variables appearing in EFF constraints post
variables.

In a service advertisement, variables and constraints describing parameters and world
states have the following semantics:

– In order for the service to be invokable, a value must be known for each of the
prior variables and it has to be consistent with the respective semantic description
and syntactic type of the variable. The value provided as prior parameter or world
state has to be semantically at least as specific as what the service is able to accept.
Regarding the variable type, in the case of primitive data types the invocation value
must be in the range of allowed values, or in the case of classes the invocation value
must be subsumed by the type of the variable.

– Upon successful invocation, the service returns a value for each of the post parame-
ters, and the execution engine assigns a value to each of the variables representing
post world states. Each of these values is consistent with the respective description
and type of the variable.

– Regarding preconditions, in order for the service to be invokable, at least one as-
signment set in the constraint has to be satisfied by the current values of variables
defining parameters and states of the world.

– Effect constraints represent guarantees on the possible combinations of values for
variables describing post parameters and world states as well as how prior world
states are maintained after the invocation of the service (e.g., the effect of an action
modeling a robot picking up a block from a table will not maintain the fact that the
block is on the table, which is part of the action’s preconditions).

2 At the implementation level both primitive data-types and classes are represented as sets of
numeric intervals [8].

Service Composition with Directories 167

Service requests are represented in a similar manner but have different semantics:

– The service request’s prior variables describe available parameters (e.g., provided
by the user or by another service) or aspects of the world specifying an initial state
of facts. Each of these variables has attached a semantic description and either a
type or a concrete value.

– The service request’s post variables represent parameters that a compatible (com-
posite) service must provide and world states that specify aspects of the state of the
world that have to be influenced by the execution of the service. The variable de-
scription defines the actual semantics of the required information and the variable
type defines what ranges of values can be handled by the requester. A compatible
(matching) service must be able to provide a value for each of the post parame-
ters and world states of the service request, semantically at least as specific as the
requested variable description, and having values in the range defined by the re-
quested parameter type.

– Preconditions in a service request represent restrictions on the allowed combina-
tions of values for available parameters or initial world states described by prior
variables.

– Effects represent restrictions on the allowed combinations of values for variables
describing required post parameters or world states that the service request is will-
ing to accept.

We use the following functions to access the variables of service advertisements and
service requests:

– vars(prior | post, S) – Returns the set of prior or post variables for a service
description S. We assume variables to be described as concepts using a language
like OWL [28], conforming with the semantics for the Description Logic operators
≡, �, �, �, ⊥, �. As previously specified, the description of each variable specifies
if it is a parameter or a world state.

– type(V, S) – Returns the type of the variable named V in the frame of a service
description S as the set of possible values that V can take. The ≡, ⊆ and ∩ �= ∅
operators in conjunction with this function can be used to determine if two value
sets are equivalent, subsume each other, or are overlapping.

– constraint(PRE | EFF, S) – Returns the set of possible variable assignments
(variable/value pairs) for the precondition or effect constraints in the service de-
scription S.

4 Requirements and High-Level Architecture

Classic approaches to planning assume domains with a relatively small number of oper-
ators (e.g., domains for the International Planning Competition [17] have some dozens
actions). For solving planning problems in these kinds of domains, the difficulties that
need to be addressed are related to the large space of possible states to be searched and
to the embedded hard resource-allocation problems.

In this paper, we are concerned by the following issues, which are specific and unique
to the composition of services deployed in open environments:

168 I. Constantinescu, W. Binder, and B. Faltings

Directory
Service

Composer

Planner

add
discovered SA

get current
DirQuery +

SR

SR problem DirQuery + SR

new SA

Composition Engine

SA composite

Fig. 1. Interactions of service composition engine using a directory

– Discovery in large-scale directories – We assume that a large number of service
advertisements is stored in (possibly distributed) yellow-page directories. How can
we discover exactly the services that are relevant at each step of the composition
process?

– Runtime non-determinism – When discovered services match only partially but
not completely3, the reasoning engine has to aggregate several services as switches
in order to fulfill the required functionality. The actual flow of messages will be
routed based on runtime values on the appropriate paths. How can we discover
and create those switches and how can we make sure that they correctly handle all
possible combinations of parameter values?

The design choices that we took in our approach to service composition are driven
by the above requirements and based on the following assumptions:

– Large result sets – For each query, the service directory may return a large number
of service advertisements.

– Costly directory accesses – Being a shared resource, accessing the directory (pos-
sibly remotely) is expensive.

The design of our service-composition engine addresses these issues by interleaving
discovery and composition and by computing the “right” query at each step. Hence, the
architecture of our service composition system consists of three separate components
(see Fig. 1):

– Planner – A component that is able to compose one or more known service ad-
vertisements (SAs) in order to satisfy an initial service request SRproblem. The
composition is formulated as a service advertisement SAcomposite, represented as
a workflow. If using the currently known services the planner is unable to generate

3 We consider as partial matches the subsume match type identified by Paolluci [23] and the
intersection or overlap match type identified by Li [19] and Constantinescu [10].

Service Composition with Directories 169

Algorithm 1. Composer algorithm for service composition with directories

procedure F indComposition(PL, DIR,SRproblem) : SAcomposite

PL.init(SRproblem)
SR ← SRproblem

while (SA ← DIR.nextResult(SR,PL.getDirQuery())) �= ∅ do
PL.addService(SA)
if PL.isF easible() ∧ (SAcomposite ← PL.solve()) �= ∅ then

return SAcomposite

SR ← PL.getServiceRequest()

such a composition, the state of the current composition search can be used to ex-
tract a new service request SR. Together with a planner-specific DirQuery, a new
directory query can be formed. See [3,9] for details concerning our directory query
language that is used to specify a DirQuery.

– Service directory – Stores service advertisements and is able to process queries
formulated as a pair of a service request SR and a DirQuery. The query result
consists of one or more service advertisements SA that can be incrementally re-
turned to the composition engine.

– Composer – A component that implements the interleave between planning and
discovery by using the current search state of the planner to generate new service
requests SRs which are used for the discovery of additional service advertisements
SAs. These advertisements are then added to the planner either until the initial
service request SRproblem is satisfied or no more results can be found.

In Algorithm 1 we present our approach to service composition with directories.
As outlined before, the algorithm makes use of a planner PL and directory DIR in
order to solve a composition problem formulated by the service request SRproblem.
If successful, the system returns a composition in the form of a service advertisement
SAcomposite, represented as a workflow.

The algorithm relies on the following functions:

– PL.init(SR) – Initializes the planner according to a given service request
SRproblem.

– DIR.nextResult(SR, DirQuery) : SA – Queries the directory for advertise-
ments consistent with the given SR according to the matching relation defined by
DirQuery. The best ranking SA accordingly to DirQuery is then returned. For
details concerning the ranking of matching service advertisements, see [3,9].

– PL.addService(SA) – Adds a newly discovered service advertisements SA to the
planner, possibly updating search structures internal to the planner.

– PL.getDirQuery() : DirQuery – Returns a planner-specific DirQuery that
together with a service request SR can be used for formulating a query to the
service directory.

– PL.getServiceRequest() : SR – Returns a service request that reflects the cur-
rent state of the search for composition.

170 I. Constantinescu, W. Binder, and B. Faltings

Algorithm 2. Initialization and query generation functions of a planner for untyped deter-
ministic services

procedure PL.init(SR)
PL.states(0) ← constraint(PRE, SR)
lastLevel ← 0
PL.goals ← constraint(EFF, SR)

procedure PL.getServiceRequest() : SR
SR ← newRequest()
constraint(PRE,SR) ← PL.states(PL.lastLevel)
constraint(EFF, SR) ← PL.goals
return SR

– PL.isFeasible() : Boolean – This is a computationally cheap test that represents
a necessary condition for the plan to be solvable using the current service adver-
tisements. If this function returns true, the search for a plan might be successful. If
it returns false, the search for a plan will certainly fail (i.e., further services have to
be discovered from the directory).

– PL.solve() : SA – When the plan is feasible, this function uses the currently
known service advertisements to search for a composition that fulfills SRproblem.

In the next sections we present in detail several planning systems of different com-
plexity. The first one is able to handle untyped deterministic services, the second one
handles compositions of completely matching typed services (deterministic composi-
tions), and finally the last one allows to compose typed services that partially match,
where the non-determinism in the composition is addressed by the creation of switches
in the resulting workflow.

5 Composing Untyped Deterministic Services

By untyped services we understand service descriptions (service advertisements and
requests) for which all possible values in specification assignments are disjoint (e.g.,
for data-types their intervals must not overlap, and any two concepts must satisfy the
∩ = ⊥ relation).

Moreover, we assume that service advertisements are completely deterministic: their
precondition PRE and effect EFF constraints each contain exactly one assignment
set. The same applies to the precondition constraints in the service request SRproblem.
We allow precondition constraints (available states) in non-problem requests (like those
generated by the planner) to contain several assignments. Effect constraints (required
goals) in requests can always contain several assignments.

As assignment sets with disjoint values can be seen as sets of propositions, untyped
deterministic services are equivalent with actions and problems of the STRIPS planning
formalism [15]. As such, the structure of our planner is similar to the structure of well-
known STRIPS planners like Graphplan [4].

Internally, our planner maintains a structure of alternating action and state levels. A
state level n accessible by PL.states(n) represents the set of states reachable from the

Service Composition with Directories 171

initial state by the application of n services. In contrast to Graphplan, we assume that
only one service can be applied at each level. The planner for untyped deterministic
services uses the variable PL.lastLevel for holding the current number of levels and a
special level (set of states) for holding the problem goals PL.goals.

For this planner, PL.init(SR) (see Algorithm 2) uses the preconditions of the
problem request SR to initialize the first level and the problem effects to initial-
ize the goal states. PL.getServiceRequest() returns a new request (created by the
PL.newRequest() function) for which the precondition constraint is taken from the
last level and the effect constraint from the goals.

The DirQuery returned by this planner’s PL.getDirQuery() method ensures that
all inputs required by a matching service advertisement are provided by the service re-
quest SR. As all services are assumed to be untyped, the DirQuery ignores the match-
ing of types. Moreover, the assignment set of the service advertisement’s precondition
constraint has to be included in SR’s assignment set (potentially available states). The
results are sorted so that matching service advertisements providing more of the outputs
or goals required by SR come first. Concrete examples of similar directory queries can
be found in [3,9].

The main complexity of the planner stems in the methods for addition of services
and for solving the composition problem by searching the structure of levels. The
PL.addService(SAnew) procedure has three phases: First, it tries to find the level
at which a newly discovered service SAnew should be added. Next, it propagates new
states generated by the addition of the service or the application of existing services
over the states stored by current levels. Finally, a fixpoint procedure is used to extend
the current levels by new ones (as long as the last levels are not the same).

PL.addService(SA) used two additional functions: PL.canApply(states, SA)
tests whether a service advertisement SA can be added to a given set of states (level),
and PL.apply(states, SA) computes the effect states that result from applying a ser-
vice advertisement SA to the set of states. These two functions operate under the fol-
lowing assumptions, specific to untyped deterministic services:

– Deterministic SAs – Each service advertisement has exactly one set of assignments
in its precondition and effect constraints.

– Explicit maintenance of preconditions – Variable/value tuples present in the pre-
condition constraint of an advertisement that do not appear in the effect constraint
are removed (delete list).

PL.isFeasible() returns true if the last level contains some of the possible sets of
goals.

To search for a planning solution, the PL.solve() function recurses over the levels
of the plan, starting from the initial level. If a sequence of services marking a solution
has been found, a new composite service advertisement is created and returned. The
composite service advertisement is a sequential workflow without any branches.

PL.solve() maintains the state that can be achieved by currently selected services
and at each step performs the following tasks: First, it checks whether a solution has
been reached and if so it returns the solution. Otherwise, if the current state can be
further expanded, it applies all services on the level to the current state and recursively
checks for a solution. Finally, if no solution has been reached, neither by the current

172 I. Constantinescu, W. Binder, and B. Faltings

state nor by the recursive call, PL.solve() fails. A solution is discovered if the goal
states are included in the current search state.

6 Composing Completely Matching Typed Services

Typed services correspond to non-deterministic planning operators, such as e.g. those
supported by the ADL language [24]. Our approach for composing this kind of services
is similar to the approach of Kuter and Nau [18], in which deterministic planning al-
gorithms are enhanced in order to support non-determinism. This relies on the fact that
conceptually, deterministic planning can be seen as search in a state space, whereas non-
deterministic planning can be seen as a very similar search in a belief space, where a be-
lief is represented as a set of states. Still, a major difference between non-deterministic
planning and our approach is that the process of composing typed services does not
support negative effects.

Next, we present the updates that our previous procedures need to undergo in order
to be able to handle sets of states (beliefs) instead of simple states.

Concerning service descriptions, we do not maintain any restriction: values of as-
signments can be overlapping and constraints can have several assignments. Still, we
assume that initial service descriptions (service request and service advertisements re-
trieved from the directory) are discretized, which may result in some constraints pos-
sibly containing extra assignments. For example, the constraint {< A, [10 − 20] >,
< B, [0 − 10] >} might be discretized along the A variable by the value 15 and
along the B variable by the value 5 resulting in four constraints, equivalent with the
initial one: {< A, [10 − 15] >, < B, [0 − 5] >}, {< A, [15 − 20] >, < B, [0 − 5] >},
{< A, [10 − 15] >, < B, [5 − 10] >}, {< A, [15 − 20] >, < B, [5 − 10] >}. As a re-
sult, in the composer all values are disjoint and as for untyped services we can consider
assignments as sets of propositions, where a proposition maps to a variable/value pair.

We call the current planner “complete matching” due to the procedure for selecting
services while searching for a plan. Even though we allow for a service to produce non-
deterministic effects, the current planner will create a solution where the precondition
constraints of services applied at each step (the set of states for which the service can
be invoked) completely match or subsume the set of possible states available until that
planning step, either from the initial conditions or generated by services applied so
far. This implies that applying the service at that step will always work, even in the
presence of non-determinism. These kinds of plans are also described in reference [7]
and are called strong solutions.

In the case of our non-deterministic planner, the initialization and query extraction
procedures PL.init(SR) and PL.getServiceRequest() are the same as for the un-
typed planner.

The DirQuery returned by PL.getDirQuery() is updated such that service adver-
tisements matching any possible state are selected. It takes types into account, which
have to be at least as general in the service advertisement as in the service request
SR. For precondition constraints, we require that an overlap exists between the states
accepted by the service advertisement and the ones provided by SR.

As for the previous planner, the current one maintains a Graphplan-like struc-
ture of levels containing states and services. Consequently, the only difference in

Service Composition with Directories 173

the procedure of adding a newly discovered service to the current structure stems
in the fact that preconditions and effects might include multiple sets of states. This
is reflected only in the procedures for testing the viability of applying a service
PL.canApply(states, SA) and actually computing the states resulting by the appli-
cation PL.apply(states, SA). Since a level contains the union of effects of different
possible plans, the PL.canApply(states, SA) function considers a service to be ap-
plicable only to level states that are supersets of states in the precondition of the service
advertisement.

We use the same PL.isFeasible() function as for the deterministic planner before;
it returns true if some of the goal sets can be satisfied by the currently reachable states.

The main search function PL.solve() is updated to deal with sets of states instead of
a single state. The important difference between the current PL.solve() function and
the one for deterministic domains stems in the PL.canApply(states, SA) function,
which selects only services having the set of preconditions completely subsuming the
current states of the search. In other words, we select services that will always work,
no matter which of the current states will be true at runtime. The condition is similar
to the one for determining the plan solution. Also the PL.apply(states, SA) function
is different from the one for untyped services in that no states are removed in this case
(negative effects are not supported).

For determining when a given set of states represents a solution, we require that any
of the possible states reachable by the current plan contains some goal states. This is
equivalent with the notion of strong solution introduced for non-deterministic plans in
reference [7].

7 Composing Partially Matching Services

Frequently, forward chaining with complete type matches is too restrictive and fails
to find a solution, because the types accepted by the available service advertisements
may partially overlap the type specified in a service request. For example, a service
request for restaurant recommendation services across all Switzerland may specify that
the integer parameter zip code could be in the range [1000,9999], whereas an existing
service providing recommendations for the French speaking part of Switzerland accepts
only integers in the range [1000-2999] for the zip code parameter. Nonetheless, there
may be several recommendation services for different parts of Switzerland that together
could cover the whole range given in the query. Hence, a service composition algorithm
could create a workflow with different execution paths, depending on the concrete value
provided for the zip code parameter at execution time. That is, the workflow would
include a switch in order to select the appropriate execution path.

A novelty of our approach to composition stems in the capability of our planner
to use service advertisements that partially match the current search states while the
generated plans will still remain strong solutions. This kind of partial matching be-
tween service descriptions corresponds to the overlap or intersection match identified
by Li [19] and Constantinescu [10]. In this respect, PL.getDirQuery() returns a less
restrictive DirQuery than before, selecting service advertisements that have overlap-
ping types with the service request [3,9].

174 I. Constantinescu, W. Binder, and B. Faltings

Handling this kind of partial matches transforms our search into an AND/OR
process: all states of the current belief have to lead to a solution (AND) while for each
of them the process of searching for the right service advertisement(s) to be applied
(OR) has to be recursively invoked.

Of course, exhaustively trying to recursively solve all states in a belief would have
a tremendous impact on the performance of the search algorithm. To address this prob-
lem, the main idea of our approach relies on the fact that a belief is to be considered
solved when all its states recursively lead to a solution. But for each of these states, once
the fact that it leads to a solution has been established, it will remain so across different
other searches and even in the case of adding new services.

Therefore, the approach that we take for enhancing our AND/OR search is to use a
dynamic programming technique that globally marks the states of a belief successfully
solved and re-uses this information for pruning OR branches at different invocation
levels in the current search or in other further searches. It has to be noted that due to the
nature of the search, we cannot anymore represent the planner solution as a sequential
workflow, but have to create a tree structure in order to represent the switches.

8 Experimental Evaluation

We evaluated the service composition algorithms explained in Section 6 and Section 7
with our testbed presented in [11]. The testbed covers several application domains and

0

5

10

15

20

25

30

35

40

1500 3000 4500 6000 7500 9000 10500 12000

Number of Services in Directory

N
u

m
b

e
r

o
f

D
ir

e
c

to
ry

 A
c

c
e

s
s

e
s

Complete Type Matches

Partial Type Matches

Fig. 2. Algorithm performance for successful compositions, measured in the number of directory
accesses

Service Composition with Directories 175

allows to generate randomized service advertisements and service requests for these
domains. We populated our directory [3,9] with an increasing number of generated
service advertisements (1500–12000) and executed our service composition algorithms
using the generated service requests as input. Each measurement represents the average
of 50 runs with different service requests.

We used the number of directory accesses as performance metric. As it can be seen
in Fig. 2, service composition with complete type matches scales well, because even
in the presence of large numbers of service advertisements in the directory the num-
ber of required directory accesses does not increase significantly. Service composition
with partial type matches is more costly concerning the number of directory accesses,
in particular when composition problems are very hard (in our experiments when the
directory contains about 4500 services). This is due to the fact that when the directory
contains some services but not enough, failure of the composition cannot be determined
easily since a good number of services are relevant but not enough of them can be com-
posed to fully satisfy the given service request.

0

10

20

30

40

50

60

70

80

90

1500 3000 4500 6000 7500 9000 10500 12000

Number of Services in Directory

A
lg

o
ri

th
m

 F
a

il
u

re
 R

a
te

 (
%

)

Complete Type Matches

Partial Type Matches

Fig. 3. Algorithm failure rate

As shown in Fig. 3, a major drawback of the service composition algorithm with
complete type matches is the high failure rate of the composition, in particular when
the directory does not contain too many services (up to 80% failure rate). Service com-
position with partial type matches significantly reduces the failure rate.

176 I. Constantinescu, W. Binder, and B. Faltings

9 Conclusion

With the move towards Web services, tools for service composition are becoming in-
creasingly important. Prevailing approaches to automated service composition, which
are often straightforward adaptations of standard planning algorithms, require all ser-
vice advertisements to be pre-loaded into the reasoning engine. Such techniques are
not applicable in an open environment populated by a large number of dynamically
changing services.

In this paper we presented planning-based service composition algorithms that dy-
namically access a separate, potentially large-scale directory in order to retrieve relevant
service advertisements. We started with a simple planning algorithm for untyped ser-
vices and refined it to first exploit type information, and second to support partial type
matches. Experiments show that our algorithms scale well with the number of service
advertisements stored in the directory. Moreover, the support for partial type matches
brings significant gains in the number of problems that can be solved by automated
service composition with a given set of service advertisements.

References

1. R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrish-
nan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration of information
in open and dynamic environments. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, volume 26,2, pages 195–206, New York, 13–15 1997.
ACM Press.

2. B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web services
composition. IEEE Internet Computing, 7(1):40–48, 2003.

3. W. Binder, I. Constantinescu, and B. Faltings. Directory support for large-scale, automated
service composition. In Software Composition, volume 3628 of Lecture Notes in Computer
Science, pages 57–66, Edinburgh, Scotland, Apr. 2005. Springer.

4. A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90(1–2):281–300, 1997.

5. BPEL4WS. Business process execution language for web services version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/.

6. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and dynamic ser-
vice composition in eFlow. Technical Report HPL-2000-39, Hewlett Packard Laboratories,
2000.

7. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1-2):35–84, 2003.

8. I. Constantinescu, W. Binder, and B. Faltings. An extensible directory enabling efficient
semantic web service integration. In 3rd International Semantic Web Conference (ISWC
2004), pages 605–619, Hiroshima, Japan, Nov. 2004.

9. I. Constantinescu, W. Binder, and B. Faltings. Flexible and efficient matchmaking and rank-
ing in service directories. In 2005 IEEE International Conference on Web Services (ICWS-
2005), pages 5–12, Florida, July 2005.

10. I. Constantinescu and B. Faltings. Efficient matchmaking and directory services. In The
2003 IEEE/WIC International Conference on Web Intelligence, pages 75–81, 2003.

Service Composition with Directories 177

11. I. Constantinescu, B. Faltings, and W. Binder. Large scale testbed for type compatible service
composition. In ICAPS 04 workshop on planning and scheduling for web and grid services,
2004.

12. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composi-
tion. In IEEE International Conference on Web Services (ICWS-2004), pages 506–513, San
Diego, CA, USA, July 2004.

13. A. Doan and A. Y. Halevy. Efficiently ordering query plans for data integration. In ICDE,
2002.

14. D. Fensel, W. Wahlster, and H. Lieberman, editors. Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential. MIT Press, Cambridge, MA, USA, 2002.

15. R. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. In IJCAI, pages 608–620, 1971.

16. F. Giunchiglia and P. Traverso. Planning as model checking. In European Conference on
Planning, pages 1–20, 1999.

17. International Conference on Planning and Scheduling. International Planning Competition,
http://ipc.icaps-conference.org/.

18. U. Kuter and D. S. Nau. Forward-chaining planning in nondeterministic domains. In AAAI,
pages 513–518, 2004.

19. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide Web,
2003.

20. S. McIlraith, T. Son, and H. Zeng. Mobilizing the semantic web with DAML-enabled web
services. In Proc. Second International Workshop on the Semantic Web (SemWeb-2001),
Hongkong, 2001.

21. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Proceedings of the
8th International Conference on Principles and Knowledge Representation and Reasoning
(KR-02), pages 482–496, San Francisco, CA, Apr. 2002. Morgan Kaufmann Publishers.

22. OWL-S. DAML Services, http://www.daml.org/services/owl-s/.
23. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services

capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC), 2002.
24. E. P. D. Pednault. ADL: Exploring the middle ground between strips and the situation calcu-

lus. In Proceedings of the First International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’89), pages 324–332, Morgan Kaufmann Publishers, 1989.

25. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In
11th World Wide Web Conference (Web Engineering Track), 2002.

26. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing web
services from on-line sources. In Proceeding of the AAAI-2002 Workshop on Intelligent
Service Integration, pages 1–7, Edmonton, Alberta, Canada, July 2002.

27. P. Traverso and M. Pistore. Automated composition of semantic web services into executable
processes. In International Semantic Web Conference, volume 3298 of Lecture Notes in
Computer Science, pages 380–394. Springer, 2004.

28. W3C. OWL Web Ontology Language 1.0 Reference, http://www.w3.org/tr/owl-ref/.
29. W3C. RDF Primer, http://www.w3.org/tr/rdf-primer/.
30. W3C. XML Schema Part 2: Datatypes, http://www.w3.org/tr/xmlschema-2/.
31. WSMO. Web Service Modeling Ontology, http://www.wsmo.org/.
32. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services

composition using SHOP2. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), 2003.

Modeling Composition in Dynamic Programming
Environments with Model Transformations

Uwe Zdun and Mark Strembeck

Institute of Information Systems, New Media Lab
Vienna University of Economics and BA, Austria

{uwe.zdun, mark.strembeck}@wu-wien.ac.at

Abstract. Although dynamic programming environments are in widespread use,
only basic runtime composition mechanisms are covered by today’s modeling
languages. Thus, it is common in real-world development projects that dynamic
compositions are not modeled formally and are consequently hard to use, for
example together with the model-driven paradigm where formal models are es-
sential to generate source code. In this paper, we propose an approach based on
model transformations between the valid structural and behavioral runtime states
that a system can have. We use UML 2.0 class and activity diagrams for specify-
ing the structural and behavioral model states and provide a UML 2.0 meta-model
extension for describing the valid model transformations between corresponding
model states.

1 Introduction

Each software composition mechanism defines the possible binding time(s) for the soft-
ware elements it composes. The binding time is the point in time where the decision
for a composition of particular software elements is made. Examples of binding times
include development time, source instantiation time, source reuse time, build time,
packaging time, installation time, start-up time, and execution time (runtime) [11].

Many different approaches exist to model software compositions that affect binding
times before runtime. Examples for such approaches are UML class or component di-
agrams [21,23] and most architecture description languages (see, e.g., [12,2]). Some
modeling languages also allow to specify runtime reconfigurations of components to
a certain degree (see, e.g., [1,22]), but not beyond the level of changing the relation-
ships of component or class instances. The specification of effects resulting from more
sophisticated runtime composition mechanisms is only sparsely addressed in contem-
porary modeling languages.

At present, static programming languages such as Java, C++, or C# are still more
prevalent than dynamic languages, such as CLOS, Perl, Python, Ruby, Smalltalk, or
Tcl. However, together, the dynamic programming languages1 have a substantial user
base and are applied in a widespread application spectrum. Furthermore, some of the

1 Not all dynamic composition mechanisms are directly realized as language features of pro-
gramming languages – some are based on frameworks and tools. We thus use the more generic
term dynamic programming environments below.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 178–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling Composition in Dynamic Programming Environments 179

more static languages, like Java and C#, increasingly introduce dynamic language fea-
tures such as limited forms of class reloading or reflection. In addition, aspect-oriented
software composition frameworks [10] add language constructs that allow to produce
similar effects to those of dynamic composition mechanisms. Furthermore, recent ap-
proaches also propose dynamic AOP features (see, e.g., [4,20]).

Given the broad use and increasing importance of dynamic composition mecha-
nisms, it is obvious that modeling support for them is essential for the engineering,
understanding, and maintenance of corresponding software systems. In case a software
development project follows the model-driven paradigm [19] or the software factory ap-
proach [7], we even require a formal specification of the respective composition mech-
anisms. Such a formal definition is mandatory since it is impossible to generate source
code from modeling level artifacts without a formal representation of model elements.
Current modeling approaches, however, support dynamic software composition only to
a minor degree. The UML 2.0, for example, does not support the specification of run-
time changes of most UML modeling elements. For instance, in a class diagram it is not
possible to model changing inheritance relations or the introduction of a new method to
a class definition at runtime.

In this paper, we present an approach to model structural and behavioral system
changes that result from the use of dynamic composition mechanisms. In particular, our
approach is based on model transformations [3]. Because UML is the de-facto standard
modeling language for software systems, we exemplify our approach by providing a
UML meta-model extension (see [23]).

The remainder of this paper is structured as follows. In Section 2 we give a high-
level introduction to our approach before we provide a detailed specification of Model
Transformation Diagrams in Section 3. Subsequently, Section 4 presents an example
for the use of Model Transformation Diagrams. In Section 5 we discuss related work
before we conclude the paper and give an outlook on future work in Section 6.

2 Motivation and Approach Synopsis

In essence, this paper aims to provide a well-defined and widely applicable modeling
approach to enable the systematic specification of dynamic changes in the structure of
software systems as well as resulting changes in system behavior. From our experiences,
it is equally important to model structural and behavioral changes, as they most often
appear together and they represent two essential views to specify, comprehend, and
maintain software systems.

Since the UML is by far the most important modeling language in the area of soft-
ware engineering, we chose to define an extension to the UML 2.0 standard to realize
our approach. However, the general approach does not depend on the UML and may
also be realized with any other modeling language.

We especially aim to model a specific subset of the dynamic composition features
that can be found in dynamic object-oriented programming environments: changes to
structural object-oriented features of classes or components, and the behavior changes
that result from them. Here the term “structural feature” relates to:

180 U. Zdun and M. Strembeck

– the methods of a class,
– the fields of a class,
– the relationships of classes, such as superclass (generalization) relationships, de-

pendencies (e.g. to an interface), associations, compositions, and aggregations,
– the relationships (e.g. the instance-of relationship) and slots of an instance, and
– the classes and objects defined in a system.

In addition, there are many other features that may be subject to dynamic compo-
sition, such as non-object-oriented structural features (e.g. procedures in procedural
dynamic languages), data that is evaluated as code in homoiconic languages [9], or
cross-cutting in aspect-oriented environments [10]. Even though these composition fea-
tures might possibly be modeled with our approach, in this article we focus on the
object-oriented features.

To further motivate our approach, let us consider a typical dynamic composition task
that we also use as an example in Section 4. A storage interface abstracts a number of
persistent storages, such as different databases. Objects can be made persistent using
different persistence strategies that, in turn, must be configured with a storage to which
they write the data. Any object can be made persistent or transient at any time. In a static
programming environment we would need to instrument all classes that can potentially
be made persistent. After that, we could turn persistence on and off at runtime. In a
dynamic programming environment, however, we can perform the necessary changes
at runtime. For instance, we can configure the storage dynamically with the persistence
strategy, and then add the persistence class as a type to all objects (or classes) that should
be made persistent. Unfortunately, these dynamic class changes cannot be modeled in
most modeling languages.

Moreover, changing the class of an object usually has consequences for other struc-
tural elements. For example, fields that belong to the “old” class might get removed
from instances, while other fields might be added. The behavior of the methods of the
affected class changes as well. For instance, in the example above two different per-
sistence strategies, e.g. eager persistence and lazy persistence, introduce new activities,
and these activities are different for the two strategies. Again, switching between these
behaviors cannot be modeled in most modeling languages. Furthermore, class changes
might also have constraints. For instance, a persistence strategy must be associated with
a storage (e.g. a flat file storage or a database), otherwise it must not be used for an
object.

Similar concerns appear for all dynamic composition features listed above. Such fea-
tures are, however, not well supported in contemporary modeling languages. Though, a
static “snapshot” of the dynamic programming environment at a particular point in time
can well be modeled using modeling languages like the UML. Our concept is thus to
extend modeling languages so that legal snapshots of a system can be modeled to de-
scribe the valid states of a dynamic software system. To specify snapshot states of static
system structures, we use UML class diagrams and variants of class diagrams, such as
component diagrams2. UML activity diagrams are used to model system behavior and
dynamic system facets.

2 Please note that we allow the structure diagrams to contain instance specifications.

Modeling Composition in Dynamic Programming Environments 181

To describe changes in a system’s structure or behavior we use model transforma-
tions. Our approach introduces a new type of UML diagram called Model Transfor-
mation Diagram (MTD). In essence, an MTD is a special type of state machine. Each
MTD state includes a diagram that defines a valid structure or behavior specification
of the system under consideration. The MTD also defines the possible changes of the
system’s structure or behavior as transformations of the model, and excludes changes
that are not allowed. The details of MTD diagrams are defined in the following section.

3 Model Transformation Diagrams

In this section, we describe our meta-model extension to the UML 2.0 standard. We in-
troduce a new type of model called Model Transformation Diagram (MTD). To define
MTDs formally, we specify the new package ModelTransformations. Figure 1 shows
the meta-model for MTDs that constitutes the base model of the ModelTransforma-
tions package. Names of abstract classes are printed in italic letters, as customary in

Package ModelTransformations

State
(from BehaviorStateMachines)

Vertex
(from BehaviorStateMachines)

ModelTransformationStateMachine

Region
(from BehaviorStateMachines)

+stateMachine 0..1

+region1.. *

0..1

* +subvertex

+container

Transition
(from BehaviorStateMachines)

+source

+outgoing1
*

+target

+incoming1
*

+container

0..1

* +transition

FinalState
(from BehaviorStateMachines)PseudoState

(from BehaviorStateMachines)

kind: PseudoStateKind

«enumeration»
PseudoStateKind

(from BehaviorStateMachines)

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

StateMachine
(from BehaviorStateMachines)

StructuralModelState

ModelState

BehavioralModelState

ModelStateUse

Action
(from BasicActions)

+argument

0..1

*

+refersTo

1*

0..1

* +class

Class
(from Kernel)

0..1

* +activity

Activity
(from FundamentalActivities)

InstanceSpecification
(from Kernel)

0..1

* +instance

Fig. 1. UML Meta-Model Extension for Model Transformation Diagrams

182 U. Zdun and M. Strembeck

UML. Relevant UML2 classes from other packages are included in the figure (the
“from” clause indicates the corresponding source package in the UML2 superstructure
specification [23]).

mtd name

name

NODE TYPE NOTATION Explanation & Reference

Model
Transformation
State Machine
Frame

Each Model Transformation State Machine is
surrounded by a rectangular frame around
the diagram. The compartment in the upper
left corner contains the three letter token "mtd"
and optionally the name of the state machine.
See ModelTransformationStateMachine from
ModelTransformations.

Structural Model
State

Each Structural Model State is surrounded by
a rectangular frame. The compartment in the
upper left corner contains the token "cd"
and optionally the name of the contained
model.
Each Structural Model State includes an UML2
class diagram or a variant of a class diagram,
such as a component diagram.
See StructuralModelState from Model-
Transformations and Class from Kernel.

Behavioral Model
State

cd

ClassName

variable a
variable b

method x
method y

Each Behavioral Model State is surrounded
by a rectangular frame. The compartment in
the upper left corner contains the token "ad"
and optionally the name of the contained
model.
Each Behavioral Model State includes an
UML2 avtivity diagram or a variant of an
activity diagram.
See BehavioralModelState from Model-
Transformations and Activity from
FundamentalActivities.

ad name

ActivityName

Model State Use A Model State Use refers to a Model State.
The compartment in the upper left corner
contains the token "mref". The rectangular
frame contains the name of the model state
it refers to.
See ModelStateUse from ModelTrans-
formations.

mref
name

Fig. 2. Basic notation elements for Model Transformation State Machines

The graphical notation of our model transformation diagrams is similar to UML2
interaction overview diagrams (cf. Figure 2), however, the MTD semantics differ sig-
nificantly. The UML2 interaction overview diagrams are a variant of activity diagrams
and describe the flow of control between different nodes, and each of these nodes is
itself either an Interaction or an InteractionUse. In UML2 an Interaction is defined as a
unit of behavior that focuses on the exchange of information between different model
elements. Interactions are modeled using different types of diagrams, for example se-
quence diagrams or communication diagrams. An InteractionUse, on the other hand,
refers to an Interaction. For details on interaction overview diagrams see [23].

In contrast to that, our Model Transformation Diagrams are a variant of state
machines. Model transformation diagrams describe changes of the structural and be-
havioral specification of a software system. These changes are modeled through tran-
sitions between different diagrams. Therefore, model transformation diagrams may
include two different types of states: each structural model state refers to an UML2

Modeling Composition in Dynamic Programming Environments 183

class diagram, and each MTD behavior model state refers to an UML2 activity diagram
(see Figure 2).

As shown in Figure 1 the corresponding meta-model classes, StructuralModelState
and BehavioralModelState, inherit from an abstract ModelState class, which is itself a
State. A StructuralModelState aggregates elements of the types Class and InstanceSpec-
ification, whereas a BehavioralModelState aggregates elements of the type Activity.
Variants of the respective diagram types, such as component diagrams which specialize
class diagrams, can thus also be contained in ModelStates.

In UML2, all elements of state machines that can have transitions are derived from
the Vertex class. In addition to ordinary states, UML2 defines pseudo states (see the
classes PseudoState and PseudoStateKind), such as initial, fork, join, choice, etc., as a
subtype of Vertex. The UM2 FinalState class is a subtype of the State class. All Vertexes
can be connected via Transitions (for additional details on state machines see [23]).

For the definition of MTDs we derive one more class from Vertex. This additional
class is called ModelStateUse. Instances of ModelStateUse have no state themselves,
so the class is directly derived from Vertex. A ModelStateUse refers to a ModelState,
i.e. a ModelStateUse is purely a reference. It is used as a placeholder for the referred
ModelState, which contains either a structural model state (modeled as a class diagram)
or a behavioral model state (modeled as an activity diagram).

The ModelTransformationStateMachine is a state machine that contains MTDs. Like
any other state machine it contains Vertexes and Transitions, which may be organized
in Regions (see Figure 1). For the purposes of our ModelTransformations package,
we need to constrain the ModelTransformationStateMachine so that it can only have
vertexes of the types ModelState, ModelStateUse, FinalState, or PseudoState. That is,
ordinary states must not be used in MTDs. The corresponding OCL constraint is given
below:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

v.oclIsKindOf(ModelState) or v.oclIsKindOf(ModelStateUse)
or v.oclIsKindOf(FinalState) or v.oclIsKindOf(Pseudostate)))

The main transition type used in MTDs are transform transitions. Transform transi-
tions express that the source model state of the transition is transformed to the target
model state of the transition. Thus, transform transitions typically connect ModelStates
and ModelStateUses. A transition from one model state to another means that the struc-
ture or behavior of a certain system aspect is transformed so that after the transition the
system structure or behavior conforms to the state specified by the transition’s target.
A transform transition from an empty source model state to another target model state
means that the model elements contained in the target are added to the system during
the transformation.

To define transform transitions we extend the Transition class with the stereotype
�transform � (see Figure 3). In principle, all transitions in MTDs are transform transi-
tions. There are, however, some exceptions: most PseudoStates and FinalStates have no
transform semantics, and are thus connected through ordinary transitions. For instance,
the “initial” PseudoState defines the starting point of a certain State Machine. There-
fore, the transition from the “initial” PseudoState to a connected model state involves

184 U. Zdun and M. Strembeck

«metaclass»
Transition

(from BehaviorStateMachines)

«stereotype»
transform

Package ModelTransformations

«metaclass»
Class

(from Kernel)

«stereotype»
isKindOf

«stereotype»
allInstances

«metaclass»
InstanceSpecification

(from Kernel)

Fig. 3. Stereotype Definitions for Model Transformation Diagrams

no transformations between model states. The following OCL constraint thus defines
that all Transitions in a Model Transformation State Machine which are not connected
to PseudoState or FinalState vertexes, must be typed with the �transform � stereotype:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

v.incoming->forAll(t1:Transition|
if (not v.oclIsKindOf(FinalState)) and

(not v.oclIsKindOf(PseudoState)) then
transform.baseTransition->exists(t2:Transition| t2 = t1))

and
v.outgoing->forAll(t1:Transition|
if (not v.oclIsKindOf(PseudoState)) then
transform.baseTransition->exists(t2:Transition| t2 = t1))

))

As mentioned above, PseudoStates cannot have transform transitions. There are,
however, a few exceptions to this generic constraint. All exception cases are shown
in Figure 4. The following OCL constraint defines that PseudoStates cannot be typed
by the �transform � stereotype, except for the outgoing connections of “join”, “fork”,
“junction”, and “choice” PseudoStates:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

if v.oclIsKindOf(PseudoState) then
v.outgoing->forAll(t1:Transition|

if not (v.kind = #join or v.kind = #fork or
v.kind = #junction or v.kind = #choice)

then not transform.baseTransition->exists(t2:Transition|
t2 = t1))

and
v.incoming->forAll(t1:Transition|

not transform.baseTransition->exists(t2:Transition|
t2 = t1)))

Modeling Composition in Dynamic Programming Environments 185

The outgoing transitions of "junction"
PseudoStates can be typed by the «transform»
stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

The outgoing transitions of "fork" PseudoStates
can be typed by the «transform» stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

NODE TYPE NOTATION

Transform Transition

«transform»

The transform transition is typed with the
«transform» stereotype. Transform
transitions connect ModelStates and
ModelStateUses of the same kind. In some
cases they can also be used with
PseudoStates (see cases below).
See Transition from BehaviorStateMachines
and the stereotype «transform» from
ModelTransformations.

Explanation & Reference

«transform»Join Transform
Transition

The outgoing transitions of "join" PseudoStates
can be typed by the «transform» stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

«transform»Fork Transform
Transition «transform»

«transform»Junction Transform
Transition «transform»

«transform»Choice Transform
Transition «transform»

The outgoing transitions of "choice"
PseudoStates can be typed by the «transform»
stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

Fig. 4. Transform Transitions in Model Transformation Diagrams

Furthermore, to ensure that FinalStates never have incoming �transform � transi-
tions we specify the OCL constraint shown below (remember that FinalState is not a
PseudoState and has no outgoing transitions, see [23]):

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

if v.oclIsKindOf(FinalState) then
v.incoming->forAll(t1:Transition|

not transform.baseTransition->exists(t2:Transition|
t2 = t1)))

All model states used within the same Model Transformation State Machine must
be of the same kind because it is not sensible to describe a transformation from an
activity diagram to a class diagram, or vice versa. Thus, each Model Transformation
State Machine contains either structural model states or behavioral model states but not
both. This is expressed by the following OCL constraints:

context ModelTransformationStateMachine
inv: self.region->forAll(r1 | r1.subvertex->forAll(v1 |

v1.oclIsKindOf(StructuralModelState) or
(v1.oclIsKindOf(ModelStateUse) and
v1.refersTo.oclIsKindOf(StructuralModelState))

implies
self.region->forAll(r2 | r2.subvertex->forAll(v2 |

(v2.oclIsKindOf(ModelState) implies
v2.oclIsKindOf(StructuralModelState)) and

186 U. Zdun and M. Strembeck

(v2.oclIsKindOf(ModelStateUse) implies
v2.refersTo.oclIsKindOf(StructuralModelState))))))

inv: self.region->forAll(r1 | r1.subvertex->forAll(v1 |
v1.oclIsKindOf(BehavioralModelState) or
(v1.oclIsKindOf(ModelStateUse) and
v1.refersTo.oclIsKindOf(BehavioralModelState))

implies
self.region->forAll(r2 | r2.subvertex->forAll(v2 |

(v2.oclIsKindOf(ModelState) implies
v2.oclIsKindOf(BehavioralModelState)) and

(v2.oclIsKindOf(ModelStateUse) implies
v2.refersTo.oclIsKindOf(BehavioralModelState))))))

Finally, we define two more stereotypes for Class and InstanceSpecification from the
Kernel package that can be used in structural model states (see also Figure 3):

– If a Class is typed by the �isKindOf � stereotype, it matches all classes that (di-
rectly or transitively) provide the type of the class that is labeled with the
�isKindOf � stereotype.

– If an InstanceSpecification is typed by the �allInstances � stereotype, it matches
all objects which are (direct or indirect) instances of the class that is labeled with
the �allInstances � stereotype.

The �isKindOf � and �allInstances � stereotypes are mainly defined for conve-
nience reasons, to allow for a compact specification of structural transitions (see also
Section 4). These placeholder stereotypes especially ease situations where a Struc-
turalModelState contains a class diagram that includes one or more class hierarchies.
The use of these stereotypes, however, is optional to get smaller MTD models.

4 Example: Dynamic Composition of Persistence Strategies and
Storages

In this section, we illustrate the use of MTDs via a number of dynamic composition
functionalities of the scripting language XOTcl [17]. XOTcl is a dynamic language that
supports dynamics in class relationships, superclass relationships, and mixin classes.
Mixin classes [16] can be dynamically composed with any other class or object. A mixin
class serves as a composition unit for a number of mixin methods. A mixin class is dy-
namically registered for an object or class as a message interceptor, which means that
mixin classes intercept the method calls to the respective target object. Mixin classes
are typically used as small building blocks to extend given classes [15]. These language
functionalities are hard to model using standard UML diagrams because the correspond-
ing dynamic changes in structure and behavior of the system cannot be captured.

As an example to demonstrate the use of MTDs, we consider the dynamic compo-
sition of persistence strategies for objects in XOTcl. The XOTcl library provides the
class Storage as an abstract interface for a number of storage classes, and the class
Persistence provides an abstract interface for two persistence strategies: eager and

Modeling Composition in Dynamic Programming Environments 187

StorageGDBM StorageSDBM StorageMySQL StorageFile StorageMem

PersistenceEager PersistenceLazy

Storage

Persistence

Fig. 5. Classes implementing storages and persistence strategies

lazy persistence. The respective classes are shown in Figure 5. If an XOTcl object has
a type relationship to one of the Persistence classes, the object is persisted to one of
the storages defined by the Storage class. This can happen eagerly, i.e. all changes are
immediately written to the storage, or lazily, i.e. the effect of all changes is written to
the storage when the application closes down.

In our example, we now model the dynamic structural compositions that are valid
for the composition of persistence strategies. First of all, we can make all instances of a
particular class persistent. In XOTcl, two dynamic language elements can be used here:
we can either add a Persistence class as superclass for the class whose instances
should be made persistent, or we can add a Persistence class as a per-class mixin to
the corresponding class. Figure 6 models these two situations in an MTD. The simple
model state in the upper left corner shows a class diagram that matches all instances
(indicated by the �allInstances � stereotype, see Section 3) of the type Class (note that
Class is the type of all classes in the XOTcl object system). That is, the transformations
can potentially be applied for all classes defined in XOTcl.

The other two model states depicted in Figure 6 show state transformations that can
be applied to each XOTcl class. They show the possible combinations vari-
ants of Persistence classes and instances of Class. To include all subclasses of
Persistence we add the stereotype �isKindOf � (see Section 3). This means any
subclass of Persistence can be composed with all instances of Class, and XOTcl
classes may either have a superclass relationship or a per-class mixin relationship to a
respective Persistence class.

Similar to the example described above, individual objects can be dynamically com-
posed with any Persistence subclass. The most general class in the XOTcl object
system is the class Object. Thus, to make an instance of the Object class or an in-
stance of a subclass of Object persistent, a Persistence class is either added as a
class of the respective instance, or a Persistence class is added as a per-object mixin
to the corresponding instance. Both transformations are depicted in Figure 7.

Finally, once a class or an object is made persistent, we must configure a persistent
storage, so that the persistence strategy knows to which storage it can write the data

188 U. Zdun and M. Strembeck

mtd Persistence Class

cd

«perClassMixin»

cd

cd «transform»

«transform»

«transform» «transform»

«allInstances»
:Class

«isKindOf»
Persistence

«isKindOf»
Persistence

«allInstances»
:Class

«allInstances»
:Class

Fig. 6. All possible compositions of the Persistence class and instances of Class

mtd Persistence Object

cd

cd

cd «transform»

«transform»

«transform» «transform»

«allInstances»
:Object

«allInstances»
:Object

«allInstances»
:Object

«instanceOf»

«perObjectMixin»

«isKindOf»
Persistence

«isKindOf»
Persistence

Fig. 7. All possible compositions of the Persistence class and Object instances

Modeling Composition in Dynamic Programming Environments 189

mtd Persistence Object

cd

«transform»

«transform» «perClassMixin»

cd

«perObjectMixin»

«allInstances»
:Persistence

«isKindOf»
Persistence

«isKindOf»
Storage

«isKindOf»
Storage

Fig. 8. Possible compositions of the Persistence and Storage classes

(see also Figure 5). There are two mutual exclusive alternatives, but it is mandatory to
select one of these alternatives. Figure 8 shows the two variants modeled via an MTD:

– The Storage is defined as per-class mixin for the Persistence class, meaning
that all persistence data is written to the same storage.

– The Storage class is defined as per-object mixin for Persistence instances,
meaning that the storage for each persistent instance is configured individually.

After we have defined the different structural transformations, we describe the cor-
responding model transformations of the behavioral model states. Figure 9 shows an
empty activity diagram as an initial state. This initial state can either be transformed
to a behavioral model state that introduces the eager persistence strategy or to a model

[eager persistence]

[lazy persistence]

mtd Introduce Persistence

[shutdown]

[shutdown]

[shutdown]

«transform»

«transform»

«transform» «transform»

[persistence off]

«transform»

Persistence Lazy
Strategy

mref

ad

[persistence off]

«transform»

Persistence Eager
Strategy

mref

Fig. 9. Behavioral model transformations for eager and lazy persistence

190 U. Zdun and M. Strembeck

Get Open
Database Connection

Object Change
Event

«datastore»

Persistence
Storage

PersistentObject

Write Object
to Persistent Storage

Close all
Database Connections

Receive Shutdown
Signal

ad Persistence Lazy Strategy

ad Persistence Eager Strategy

«datastore»

Persistence
Storage

Get Open
Database Connection

Write All Objects
to Persistent Storage

Lazy
Persistence

Table

Close all
Database Connections

Receive Shutdown
Signal

Lazy
Persistence

Table

Remember Persistent
Object IDs

Open Database
Connections

Open Database
Connections

Activate Persistent Object
Change Events

Fig. 10. Detailed behavioral model states for eager and lazy persistence

state that introduces the lazy persistence strategy. The model states in Figure 9 are given
as ModelStateUse references. The detailed behavioral model states for eager and lazy
persistence that these ModelStateUse states refer to are shown in Figure 10.

5 Related Work

The majority of existing architecture description languages (ADL) focus a static view
on configurations [14]. Only a few ADLs, such as Rapide [12], support both static and
dynamic views on the architecture, but do not support (dynamic) structure or behav-
ior modification. The C2 ADL [13] can be seen as an exception because it allows for
arbitrary modifications of the component and connector configuration. Similar to our
approach, it uses a language for architecture modification (called AML). In contrast to
MTDs, AML does not specify transformation paths, but a set of operations for insertion,
removal, and rewiring of elements in an architecture at runtime.

Allen, Douence, and Garlan provide an extension to the architecture description
language Wright [1]. This approach is closely related to our MTDs because it uses
architectural snapshots to model static configurations, and special events triggering re-
configuration between these snapshots. The general idea to model dynamics is thus
similar to the class diagram snapshots that we use in our MTDs.

In addition to the above mentioned approaches, there are a number of other ap-
proaches for modeling dynamics of software architectures. In [5] a recent survey of
techniques for architectural reconfiguration is presented. While ADLs are often based
on process algebras, other techniques used for specifying architectural reconfiguration

Modeling Composition in Dynamic Programming Environments 191

are graph rewriting rules, graph transformation, and logic. None of the surveyed ap-
proaches, however, is based on model transformations like the approach presented in
our paper.

A commonality of the approaches mentioned so far is that they focus on the addition
and removal of components and connectors at runtime only. That means that, in contrast
to our MTDs, those other approaches do not model other dynamic composition mech-
anisms. Moreover, corresponding changes in the behavioral model state which can be
specified in MTDs via activity diagram snapshots, cannot be modeled using the above
mentioned approaches.

Czarnecki and Antkiewicz propose an alternative way to model variants of behav-
ioral models [6] that is comparable to our transformations of behavioral model states.
The work described in [6] does, however, not cover the other elements of MTDs yet.
In particular, Czarnecki and Antkiewicz use feature models to describe the possible
variants of UML activity diagrams. Here a model is described via a model template,
which specifies the possible composition of a system’s features. Furthermore, they use
a special-purpose tool to instantiate the model template from a feature configuration.
Using the MTDs presented in this paper, we can use model transformations to add fea-
tures in a similar fashion. In cases where many features need to be combined, the MTDs
might get more complex than feature models. On the other hand, possible transforma-
tions of the models are not directly visible in feature models.

Our approach is based on the concept of model transformation. Recently, the
research field of model-driven software development [19] has brought up a number
of approaches for model transformations, mainly based on UML models (see, e.g.,
[3,18,24,7]). Our work extends these approaches with a concept for representing dy-
namic software compositions and with an extension of the UML standard for depicting
structural and behavioral transformations suitable for these dynamic software compo-
sitions. As our general approach does not depend on a specific modeling language (as
the UML for example), the transformation syntax and semantics in those other model
transformation approaches could be extended, following our approach, to also support
dynamic software composition. We have chosen the UML to exemplify our approach
because it is the de-facto standard for software systems modeling.

Dynamic aspect-oriented approaches (see, e.g., [4,20,8]) provide an implementation
of dynamic aspect-oriented transformations. However, modeling dynamic aspects is not
yet in focus of the aspect-oriented community. Our approach can potentially be used
to provide models for transformations implemented by dynamic aspect-oriented ap-
proaches. However, in this paper, we have only focused on modeling object-oriented
language features.

6 Conclusion

In this paper, we have presented an approach to model structural and behavioral compo-
sitions in dynamic programming environments – with a special focus on object-oriented
language features. Even though dynamic composition mechanisms are in widespread
use, most contemporary modeling languages provide only little or even no support to
specify dynamic compositions. Our paper describes an intuitive approach to resolve this

192 U. Zdun and M. Strembeck

problem. We use structural and behavioral snapshots of a system that are given as class
and activity diagrams. These snapshots are interconnected using model transformations.

To be able to apply our approach in model-driven development, we introduced a
formal meta-model extension to the UML. We chose the UML since it is a standardized
modeling language that is in widespread use. Our general approach, however, is not
depending on the UML. As a part of our future work, we plan to develop a model-driven
tool-set for dynamic languages. So far our main focus was on structural evolution of
dynamic object-oriented composition mechanisms. We plan to further extend our work
in two directions: first, we want to introduce a pointcut language for model states to
provide modeling support for (dynamic) AOP. Second, we will develop an approach to
specify constraints on system states, e.g. via forbidden model states.

References

1. R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic software archi-
tectures. In Proc. of the Conference on Fundamental Approaches to Software Engineering
(FASE’98), Lisbon, Portugal, March 1998.

2. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans. Softw. Eng.
Methodol., 6(3):213–249, 1997.

3. J. Bezivin. From object composition to model transformation with the mda. In Proceedings
of the Technology of Object-Oriented Languages and Systems (TOOLS USA), Santa Barbara,
CA, USA, 2001. IEEE Press.

4. C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual Machine Support for Dynamic
Join Points. In AOSD 2004 Proceedings. ACM Press, 2004.

5. J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-management
in dynamic software architecture specifications. In WOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, pages 28–33. ACM Press, 2004.

6. K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach based on
superimposed variants. In Proc. of 4th International Conference on Generative Programming
and Component Engineering (GPCE 2005), pages 422–437, Tallinn, Estonia, Sep/Oct 2005.

7. J. Greenfield and K. Short. Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.

8. R. Hirschfeld. AspectS – Aspect-Oriented Programming with Squeak. In Objects, Compo-
nents, Architectures, Services, and Applications for a Networked World, LNCS 2591, pages
216–232. Springer-Verlag.

9. A. Kay. The Reactive Engine. PhD thesis, University of Utah, 1969.
10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier, and J. Irwin.

Aspect-oriented programming. In Proceedings European Conference on Object-Oriented
Programming (ECOOP’97), pages 220–242, Finnland, June 1997. LCNS 1241, Springer-
Verlag.

11. C. Krueger. Software product lines – binding times. http://www.softwareproductlines.com/
introduction/binding.html, 2005.

12. D. C. Luckham and J. Vera. An event-based architecture definition language. IEEE Trans.
Softw. Eng., 21(9):717–734, 1995.

13. N. Medvidovic. Adls and dynamic architecture changes. In Joint proceedings of the sec-
ond international software architecture workshop (ISAW-2) and international workshop on
multiple perspectives in software development (Viewpoints ’96) on SIGSOFT ’96 workshops,
pages 24–27. ACM Press, 1996.

Modeling Composition in Dynamic Programming Environments 193

14. N. Medvidovic and R. N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

15. D. Moon. Object-oriented programming with flavors. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’86),
volume 21 of SIGPLAN Notices, pages 1–8, Portland, November 1986.

16. G. Neumann and U. Zdun. Enhancing object-based system composition through per-object
mixins. In Proceedings of Asia-Pacific Software Engineering Conference (APSEC), Taka-
matsu, Japan, December 1999.

17. G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. In Proceedings of
Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA, February 2000.

18. OMG. MOF 2.0 Query / Views / Transformations RFP. Technical Report ad/2002-04-10,
Object Management Group, April 2002.

19. OMG. MDA Guide Version 1.0.1. Technical report, Object Management Group, 2003.
20. A. Popovici, T. Gross, and G. Alonso. Just In Time Aspects: Efficient Dynamic Weaving for

Java. In Proc. of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD 2003), pages 100–109, Boston, USA, 2003. ACM Press.

21. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1999.

22. G. Succi, R. Wong, E. Liu, and M. Smith. Supporting dynamic composition of components.
In ICSE ’00: Proceedings of the 22nd international conference on Software engineering,
page 787, New York, NY, USA, 2000. ACM Press.

23. The Object Management Group. Unified Modeling Language: Superstructure.
http:// www.omg.org/technology/documents/formal/uml.htm, August 2005. Version 2.0,
formal/05-07-04, Object Management Group.

24. D. Vojtisek and J.-M. Jzquel. MTL and Umlaut NG - Engine and framework for model
transformation. ERCIM News 58, 58, 2004.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 194 – 210, 2006.
© Springer-Verlag Berlin Heidelberg 2006

General Composition of Software Artifacts

William Harrison1, Harold Ossher2, and Peri Tarr2

1 Department of Computer Science
Trinity College

Dublin 2, Ireland
Bill.Harrison@cs.tcd.ie

2 IBM Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
{ossher, tarr}@watson.ibm.com

Abstract. Composition is the process of creating new artifacts from a set of
input artifacts by combining the content of the input artifacts according to some
given specifications. Composition engines are a distinct kind of software com-
ponent. Like compilers, parsers, and UI-generators, they have their own domain
of discourse and base of concepts, their own structure for expressing desired
results, their own internal solution structure, and their own set of research prob-
lems. Composition applies not only to artifacts representing executable code,
but to any sort of artifacts, from build or configuration controls to documenta-
tion or UI. While software composition is of interest to an audience wider than
that of developers applying aspect-oriented software development (AOSD) ap-
proaches, AOSD’s composition of separate concerns or aspects presents more
complex requirements than does object-composition. This paper describes a
base of concepts suitable for expressing composition and shows how a general
composition engine realizing these concepts can be used to effect the composi-
tion needs of several existing AOSD approaches.

1 Introduction

Composition is the process of creating new artifacts from a set of input artifacts by
combining the content of the input artifacts according to some given specifications.
Much work in component software has focused on components that are viewed as
channel-connected components, whether represented as objects accessed through
interfaces or other behavioral packages accessed through ports[16]. The need for bus-
connected component models, in which the components contain many packages,
objects, or interfaces, was also noted [6], and approaches to software development by
composition of separately encapsulated concerns are the general subject of interest of
several approaches to Aspect-Oriented Software Development (AOSD). While much
support for AOSD is focused on executable software material[20], and on the injec-
tion of event-interceptors into executable code [2], [14], [18], composition is useful
not only for programming-language artifacts, but for requirements, use case, UML
design artifacts, test suites, and auxiliary resources like user-interface descriptions,
menus and menu elements, and even for build-time or deployment-time directives,
like Make or Ant scripts and WSDL, directories or jar files.

 General Composition of Software Artifacts 195

In this paper, we use the term AOSD to refer to all bus-connected composition
models, whether or not they employ pattern-based event interception. Implementa-
tions of higher-order composition models generally employ two common building
blocks:

1. Language constructs that create additional artifacts to be woven with the de-
veloper-produced artifacts,

2. A “composition engine” or “weaver” component to actually effect the desired
composition.

Composition is thus only one part of what is needed for many AOSD approaches.
Composition engines are a distinct kind of software component that provide the
second of these building blocks. They do not, for example, include the generation of
code to track control flow as needed by AspectJ’s “cflow” specifications. We are
familiar with compilers, parsers and UI-generators as distinct kinds of software com-
ponents, each having their own domain of discourse and base of concepts, their own
structure for expressing desired results, their own internal solution structure, and their
own set of research problems. A similar suite of interests applies to composition en-
gines. This paper describes a base of concepts suitable for expressing composition and
illustrates how a general composition engine realizing these concepts can be used to
effect the composition needs of several existing AOSD approaches and to extend the
domain of applicability beyond the application to code.

A composition component based on these concepts has been developed and is
available as open source as part of the Concern Manipulation Environment (CME)[8].
It underlies the composition capabilities made available by the Concern Explorer and
other tools. A description of the implementation and the research problems posed by
the composition component is beyond the scope of this paper, but some additional
concepts needed in realizing Java™ composition and extraction (of new artifacts from
existing ones) are discussed here.

The remainder of the paper is organized as follows: Section 2 presents a very small
example, used in following explanations. Section 3 describes a model for material to
be composed, and Section 4 discusses the concepts that are used for describing com-
position. Section 5 describes how CCC could be employed to effect the composition
needs of AspectJ, Hyper/J, Composition Filters, or Adaptive Programming.

2 A Very Small Example

Consider designing a feature for a hypothetical, pre-existing thermostatic control sys-
tem as a separate concern. The existing “basic” system contains Sensor classes that
record temperature, maintain an updated average, and report when asked. They have
methods for “report” and “update.” The system is implemented with many independ-
ent subclasses, most but not necessarily all of which are named “*Sensor,” each with
its own style of implementation.

The “alarm” feature to be added is to produce a fire alert if temperature exceeds
some threshold. The Sensors must now know a “controller”, and alert it when needed.
So they need have an added field: “controller”. This feature is to intercept updates,
and generate an alert when necessary.

196 W. Harrison, H. Ossher, and P. Tarr

Sensors that alert the controller are to be created by composing the basic sensors
and the alarm enhancements. The artifacts to be composed fit a general model that
allows the meaning of the specifications to be given. The model and the specifications
are discussed in Sections 3 and 4.

3 A Model for Material to Be Composed

Our implementation of the composition engine employs plug-in components called
concern assemblers and informants [8] to shield it from the concrete representation of
artifacts. This allows the composition task to be separated into many small artifact-
representation-dependent components that are simple to build, but a single, complex
artifact-independent composition engine to embody the high-level planning activities.
The separation is made in terms of a common abstract representation for the artifacts
themselves. The artifacts can be data objects, such as directories of files, or more
complex objects, such as programs and UML diagrams stored in directories or files.
Figure 1 shows that artifact and element containment are independent. Composition is
similar across both, though complex objects require additional concepts, such as
typing of their elements. We present a single model, based on the more complex con-
text, with the understanding that not all capabilities of the definitions are applicable to
all artifacts. This model treats artifacts as physical containers, made up of identifiable,
structurally-related elements. Each of those elements can have a body of material
whose structure is treated as a “black-box” but whose important characteristic is that
it may contain references to other elements (or itself). Unlike a metan-model like the
OMG’s MOF, the abstract elements form a model of the relevent information in
the artifacts directly; and they are realized as Java interfaces used in building the
composition engine Their implementations are artifact-representation specific, but
implementing them on an artifact represented using MOF is a small task. We use
Java’s terms for programming constructs in the discussion here, but for illustrative
purposes only—the model is applicable to artifacts defined in many languages and
formalisms.

Space

Interpretable

body: reference

Composite

Space

Interpretable

body reference
reference

Composite

Composite

Interpretable

body: reference

Composite

Art
ifa

ct

Arti
fa

ct

Fig. 1. Artifacts and Elements

 General Composition of Software Artifacts 197

Spaces. A space encapsulates a body of material with a well-defined interpretation
of all names used by its elements to reference other elements. These elements must
also be within the space. This makes the space “referentially complete”, and inde-
pendent from other spaces. Spaces only contain named container definitions. They are
artificial elements, not expected to be referenced in any of the material being com-
posed, but to provide ways of dealing with a multiplicity of separately-defined cor-
pora of first-class elements within which the same names might be used for different
purposes. In dealing with Java programs, for example, a space may be defined by a
classpath, consisting of all classes on that path.

Container Definitions. A container definition specifies a collection of named
elements that are its members. Members can be nested containers or interpretable ma-
terial definitions, but not spaces. In dealing with Java programs, for example, classes
and interfaces are treated as containers.

Interpretable Material Definitions. Interpretable material definitions provide the
“meat” of the material subject to composition – the code, text, or image material it-
self. Each interpretable element definition has a body, generally treated as a black-box
except that its correct interpretation may require proper resolution of by-name refer-
ences to other elements. Each interpretable element definition may also refer to a con-
tainer used, for example, to specify the type of result obtained from interpreting the
body or of information retrieved by accessing it. Support for type-matching allows the
model to be used to describe elements for which integrity must be preserved by type-
checking.

Purely-procedural Interpretables. Interpretable definitions are purely-procedural if
they have no execution-time constraint other than their interpretability; for example,
they have no additional state. They can therefore be combined and may be rewritten
differently for different uses when needed. For example, one can rewrite a method to
delegate its call to another method. It is important that references to them be param-
eterized to achieve different effects on different executions, so references to purely-
procedural interpretables may be qualified by a signature, consisting of a sequence of
references to containers. The signature can be used, for example to represent parame-
ter types. This signature is considered to be part of the interpretable’s name. In deal-
ing with Java programs, for example, methods are examples of purely-procedural
interpretables.

Resource-bearing Interpretables. If not purely procedural, interpretable definitions
are resource-bearing. They denote more than just their interpretable material, but also
ownership of some execution-time resource like a processor, a thread, or a place in
storage to which values may be assigned. The association with their resource limits
flexibility of composition even though their body may still contain references that
need to be interpreted, such as an initialization expression. For example, one cannot
rewrite the value of a field to permit copies that share storage when on different proc-
essors. So, in dealing with Java programs, for example, fields are treated as resource-
bearing interpretables, with their bodies interpreted for initialization.

References. Interpretable material may contain references, by name, to itself or
other elements within the same space. In dealing with Java programs, for example,
references can be found to types, fields and methods.

198 W. Harrison, H. Ossher, and P. Tarr

Methoids. It is frequently the case that a developer performing composition needs
to work with constructs that lie within the element bodies that are treated as black-
boxes. The injection of pattern-based event interception into element bodies is some-
times seen as characteristic of AOSD because it was characteristic of Aspect-Oriented
Programming [13]. But while needed to express the required recombinations, the
possible constructs to be matched by the patterns are generally specific to the kind of
artifact involved. For example, if an element body is the text of a paper, there might
be a need to compose each page-footer with a copyright notice. Or in the coding
sphere, it may be that additional behavior is needed whenever the value of some field
is written or read. In this latter example, although the field access could have been
written as a call to a get/set method, directly available for composition, it may not
have been. Such “might-have-been” elements can be treated as explicit elements by
characterizing them with some pattern to be matched in the body and asserting that
occurrences of this pattern should be treated as references to synthesized elements. In
general, the possible patterns that might be specified depend on the type of artifact, so
we do not model each kind explicitly. Although a more explanatory term like “pat-
tern-specified submodular extractions” might be preferable, we found no suitable
short term, so we call these synthesized elements methoids, for historical reasons - in
the context of OO code they are like methods (purely procedural) found by pattern-
matching.

An extended treatment of the handling of open-ended methoid characterization,
query, extraction and injection is beyond the scope of this paper. The key points,
however, are that they are specified by artifact-kind-dependent patterns, and that once
identified by query, extraction and composition mechanisms can manipulate them like
other pure interpretable material. They are defined as an extension of purely interpret-
able material (methods). Even though no general abstract model can be made for them
because they are entirely dependent on the kind of artifact involved, combining them
is described and effected in the same way as for other elements. Their final reassem-
bly is again carried out by artifact-dependent concern assemblers. An example of the
identification of a Java code methoid in this way appears in the next section at 4.1.e3.

Uninterpreted information: Modifiers and Attributes. Elements may have addi-
tional information, not requiring interpretation of references within it. Examples of
this information include modifiers like “public”, “private”, “synchronized” in Java,
and attributes, like “association name” in UML. This information is represented and
available for composition, but its composition follows a rather simple model and
tends to be handled in ways that depend on the particular kind of artifact being
manipulated.

4 Concepts for Describing Composition

To describe composition, it is necessary to identify what elements are to be com-
posed, and to specify how those elements are to be composed. We do this by means of
correspondences and weaving models, respectively. Together, these make up weaving
directives. This section describes these concepts, discusses how multiple weaving
directives interact, and then discusses the nature of implicit assumptions made by de-
velopers using composition, and how those implicit assumptions are made explicit. In

 General Composition of Software Artifacts 199

the implementation of our composition engine, these concepts are expressed as sim-
ple, objects passed through the engine’s interfaces to carry the choices expressed by
whatever tool is using the composition engine to carry out its needs.

4.1 Identifying Correspondences

The first component of a weaving directive establishes elements to be composed. The
elements to be identified with one another for composition purposes may be indicated
explicitly or implicitly, and a name must be given to the composite result.

The n-tuple of input elements that are to be composed, along with the name of the
result element to be produced by the composition, is called a correspondence.

Explicit Identification. Explicit correspondences result from queries using patterns
over items’ names. Each query produces a set of correspondences. This model allows
us to subsume the query capabilities of a variety of existing AOSD languages and
tools. Correspondences supporting AspectJ advice consist, for example, of 3 parts:
the “base” to which the aspect or advice is being attached, the aspect or advice itself,
and the result (which is by default given the name of the “base”). The structure of
AspectJ is such that the set of correspondences is formed by applying a one advice to
a set of many “base” elements that are indicated by a query, called a “pointcut.”
Hyper/J’s “by-name” matching structure, on the other hand, produces a set of
correspondences for elements with matching names.

The query languages employed are not required or described here. However, it is
important to note that the query processor is capable of forming tuples containing
elements matched by a unification-based search. This allows embedding of both
AspectJ’s queries (pointcuts) and queries required to support Hyper/J’s capabilities
into a query structure much more powerful than that provided by either. Examples of
queries that may be useful for the very small Thermostatic Control example described
above are1:

e1: (class basic:*Sensor, alarm:SensorAddition)
which produces a set of correspondences, each having a pair of inputs consisting of a
class in the space “basic” whose name ends with “Sensor” and the class named “Sen-
sorAddition” in the space “alarm”, and defaulting the result class’s name to the one in
“basic.” The nature of the result class is determined by the weaving model used in the
weaving directive of which this query is part.

e2: (method basic:*Sensor.update(<type>),
alarm:SensorAddition.update(<type>))

which produces the set of correspondences, each identifying an “update” method of a
class whose name ends with “Sensor” in the space “basic” and that takes a single
parameter of any type, and the method named “update” in the class “SensorAddition”
in the space “alarm” that has the same type signature as the one in “basic,” also de-
faulting the result method’s name to the one in “basic.” The nature of the result
method is determined by the accompanying weaving model, as before.

1 The syntax used here simply provides a direct reflection of the underlying concepts for ex-

pressing composition, and not meant to be suggested as an actual language in use by any ap-
proach to AOSD.

200 W. Harrison, H. Ossher, and P. Tarr

e3: (method basic:[“set” <type> av<suffix>],
alarm:sensorAddition.update(<type>)) as setAv<suffix>

which produces the set of correspondences, each having two parts. The first part is a
“set” methoid that denotes an assignment to a field whose name starts with “av” in
the space “basic”. The second part identifies the method named “update” in the class
“SensorAddition” in the space “alarm” that has the same type signature as the type of
the field in “basic”. The result method’s name is based on the name of the field in
“basic.” The nature of the result is determined by the accompanying weaving model.
An actual method can be produced, called in place of each assignment to the variable,
or what would be the method body can be in-lined.

Implicit Identification. Implicit correspondences result from implicit elaboration of
container definitions. Unless inhibited, a correspondence established between two
container definitions also establishes implicit correspondences between members of
the containers, so that the resulting containers will contain contents equivalent to the
originals. Depending on the developer’s expectations (see section 4.4), these corre-
spondences can either apply to like-named members or can simply reflect “copying”
of the individual definitions from the inputs in the correspondence. The names
assigned in the output are generally the same as those used in the inputs, except where
name-clashes arise. As described in section 4.2 on “selection”, it is possible to
diagnose such clashes as erroneous, if desired.

4.2 Weaving Models

The weaving model is the part of a weaving directive that provides directions on how
the output named in a correspondence is to be derived from the inputs. There are two
fundamental aspects to a weaving model: selecting from the inputs, and describing
how the selected elements fit into the result’s structure.

Selection. Each selection of inputs is governed by an ordering that applies to the
elements that it selects from. We describe selection modes, then ordering.

Selecting Elements from the Inputs. Not all inputs in a correspondence are
necessarily intended to be part of the result. One obvious case of this is often called
override, where one of the inputs is intended to replace another entirely. Another
obvious case arises from the desire to indicate that name clashes are not allowed. This
selection is called unique. Other kinds of selection occur when one of the inputs is
selected to be wrapped around one or more other members, or when a single
representative member is selected as any of a set of allegedly equivalent inputs.

A single weaving model can contain multiple selections, such as several override
selections applying to different inputs. When no special selection is to apply, the re-
maining inputs are all selected for combination. This default is called merge selection.

When applied to container definitions, an ambiguity can arise – does the selection
apply to the whole container, or are the containers intended to be merged but to have
the selection apply to their like-named members? As a result, many selection modes
are available as pairs, like override and overridemember.

This list is clearly not exhaustive. Our implementation of CME’s composition en-
gine provides for extensibility of the selection modes made available.

 General Composition of Software Artifacts 201

An example of a simple weaving directive that might be used in the Thermostatic
Control example described above is:

merge (class basic:*Sensor, alarm:SensorAddition)

using the query described in section 4.1.e1 and a weaving model with the “merge”
selection. It directs that the material from the SensorAddition class in “alarm” is to be
merged with the material from the selected classes in “basic” to make the result class.

Ordering the Selected Elements. The orderings provided for override or around
govern which input overrides or is wrapped around which others. The ordering
provided for merge is used in the case of interpretable elements, such as methods, and
to the order in which they are combined within the result.

The simplest general model for ordering is that of a partial order. Supposing that
names like “before” can be used to indicate previously-defined orderings, an example
useful for the Thermostatic Control example is:

merge before
 (method basic:*Sensor.update(<type>),
 alarm:SensorAddition.update(<type>))

using the a query described in section 4.1.e1 and a weaving model with the “merge”
selection, to put the method from the alarm feature before the corresponding method
from the basic system.

Since a single weaving model can contain multiple selections, each with its own
ordering, it will often be necessary to harmonize independently-specified orderings
that apply to the same inputs. We address this issue in section 4.5 where we describe a
extension of the concept of partial orderings that suits this need.

Specifying the Result Structure. When a composite is formed from several inputs,
there are many issues that may or must be resolved about its structure – about how
the individual inputs participate in the composite. Though exactly which issues are
important to a particular composition approach vary, the ability to specify and control
structure is necessary. In one analysis [7] we discuss the issues that concern the
identity, the lifetime, and the delegation relationships among participants in a group,
but other issues can apply as well, including specialized linkage conventions or the
use of particular run-time representations. As with the other aspects of the weaving
model, the exact manner in which the structure is established for a correspondence is
a point at which a general composition engine component should try to provide for
extensibility. Using simple names explained below, like aspect, facet, or copy, to
indicate the structure allows us to phrase some of the compositions needed for the
Thermostatic Control example:

e1: merge (class basic:*Sensor as facet, feature:SensorAddition as aspect)

This merges the classes as described in the example in section 4.1e1, but adds to
that the specification that the base classes are to be treated as “facets” – object com-
ponents with the same lifetime and identity as the composite object itself – while the
additions are to be treated as “aspects” having a separate lifetime and identity.

202 W. Harrison, H. Ossher, and P. Tarr

e2: merge before (method basic:*Sensor.update(<t>) as facet, fea-
ture:SensorAddition.update(<t>) as copy)

This merges the methods as described in the example in section 4.1.e1, but adds to
that the specification that the “update” method is to be treated as a “copy” – an equal
partner copied from an original, with the copy having the same lifetime and identity
as the composite (but, being a copy, not as the original).

The Weaving Model as a Point of Extension. The weaving model is a part of the
composition specification likely to have great natural variation. Particular needs of an
approach may require weaving models that bundle choices together in particular
ways. Our composition engine directly and openly provides independent choices for
selections, orderings and structure.

4.3 Resolving Multiple Weaving Directives

A composite element’s characteristics may be specified by multiple directives. The
need to resolve separate directives requires that it be possible to provide information
about how the directives themselves are related. There are two aspects to the relation-
ship among directives for a result element: precedence and exclusivity. In addition, it
can be necessary control characteristics of any output composed of particular inputs if
they are present. Such specifications are called conditional weaving directives.

Precedence. When considering the methods indicated by examples 4.2.e1 and 4.2.e2,
it is clear that the second directive is more specific than the first. In other cases,
however, it is not clear which directive is more specific. Section 4.1’s example e1 is a
directive that adds the capabilities of the SensorAddition class to all classes with
names ending in “Sensor.” But the sensor subclasses provided for use in Alaska may
need a different addition to accommodate the cold weather. This can be indicated with
a second weaving directive:

merge (class basic:*AlaskaSensor as facet,
 alarm:ColdWeatherAddition as aspect)

We cannot simply rely on the circumstance, obvious here, that one specification is
narrower than the other, and build this in as a rule, because instances often arise
where it is unclear which of two rules employing pattern-matching is more general.
For generality’s sake we can fall back once again on the use of partial orderings to
establish precedence among weaving directives. One way to specify them is by means
of “except” clauses. If several directives apply to the same result element, the prece-
dence and exclusivity together determine the outcome.

Exclusivity. Not all the information about a composition product need be provided
by a single directive. In fact, when the queries used to form correspondences are
complex, each directive may direct the formation of a set of composition products,
and the sets produced by different directives may overlap in non-nested ways.
Attaching an indication of exclusivity (exclusively, inclusively or initially) to each
directive allows expression of these relationships.

If there is a unique highest-precedence directive that is marked exclusive, it alone is
used. Otherwise, if the unique highest-precedence non-inclusive directive is

 General Composition of Software Artifacts 203

initially, it is used, along with any inclusive directives with the same or higher prece-
dence. Otherwise, all inclusive directives are used whose precedence is greater than
the unique highest-precedence exclusive directive. If the partial ordering renders any
of the above statements undefined, an error is reported.

Conditional Weaving Directives. It is necessary on occasion to provide directives
that constrain the relationship among the inputs composed to produce a result element
without actually describing the result. These are specified by means of conditional
weaving directives. For example,

whenever (A, B) use before
specifies that whenever inputs “A” and “B” participate in the same result, as dictated
by other directives, they are to be related by the “before” ordering.

4.4 Making Implicit Assumptions Explicit

Prior experience with use of Hyper/J has indicated that, in ways described below, de-
velopers have different expectations of a composition tool, reflecting their own
knowledge of the software they are manipulating. Failure to take these different ex-
pectations into account leads to results which may be expected by some but surprising
to others. “Software surprise” is a situation to be shunned. This section discusses two
of the most common areas of differing expectation, with ways to make the expecta-
tions explicit to avoid surprise.

Encapsulation. The implicit correspondence of like-named elements is a great
convenience for developers creating new software as extensions of other software or
as concurrently-developed features for later, pre-planned integration. On the other
hand, these development scenarios presume some level of familiarity with the internal
details of the material being composed. The use of composition to produce artifacts
for further use by developers (versus for runtime execution only) makes the same
presumption. When developers treat software to be composed as “black boxes,”
however, as they might if it is purchased or subject to change, the presumption that
name correspondence has meaning may be entirely inappropriate.

The simplest way of exposing the “implicit by-name correspondence assumption”
is to remove it and make all correspondences explicit by means of queries; but this is
often too onerous. When the expectation is that the material is co-developed or when
the correspondences involve complex uses of precedence, the implicit correspondence
of like-named members may suit better. So, to control the application of implicit cor-
respondence, each weaving directive has a property that indicates what level of
encapsulation the developer expects – are like-named containers to correspond im-
plicitly but not their members (type encapsulation), or like-named members (member
encapsulation), or nothing at all (space encapsulation)?

Opacity. A more subtle skein of issues is illustrated by a small example. If we pre-
sume a method has implementations “a” and “A” in the classes composed using “+”,
the expected result of the merging the classes shown in Figure 2 is clear. If the classes
are seen as “black boxes”, the same result should be expected for the two classes
composed in Figure 3. But this not the expectation of developers who know to use the

204 W. Harrison, H. Ossher, and P. Tarr

inheritance structure shown in Figure 3 and who think the composition engine should
know that they know. Knowing the structure, they might expect just “a”, since it is
used to override “A” where both are present.

a A aA+

Fig. 2. Clear Composition Expectation

a

A

?+

Fig. 3. Unclear Composition Expectation

We can make these implicit expectations explicit by indicating whether a space is
opaque or exposed. For an opaque space, the developer disavows any claim to know
how its classes were implemented – they are treated as “black-boxes” whether their
members are inherited, implemented, or re-implemented locally. For an exposed
space, the developer expects to know the implementation structure and also expects
that the knowledge will be used by the composition engine.

4.5 Specifying Orderings for a Selection

The conceptual base described in section 4 has been used in designing and imple-
menting the Concern Composition Component of CME, called CCC. Clients of CCC
describe their weaving directives in terms of objects encoding specifications of corre-
spondence, result, structure, selection and ordering. In most cases the encodings are
simple: correspondences and results are specified in a query language, and structure
and selection are specified by making choices from a provided (though extendable)
set of alternatives. Orderings are specified using objects that implement an extension
of the concept of partial ordering, called combination graphs, that provide added
flexibility in their specification and combination. A combination graph has two parts:
an abstract combination graph and a population. An abstract combination graph is a
directed acyclic graph, each node of which 1) can be labeled with a name, called its
role and 2) can be ”pre-filled” with predefined content, such as a fixed library class to
be included or around-like wrapping styles to allow the graph to execute one or more
contained graphs. If there are multiple nodes with the same name (including unla-
belled), they must all have the same in- and out- edges. This ensures that all nodes for
a role are treated uniformly. The population maps graph nodes to selected input ele-
ments. Not all graph nodes need be mapped. Method combination graphs are a spe-
cialized form of combination graph with additional information attached to each edge,
such as conditions for following the edge based on the value returned by (or the ex-
ception thrown by) the method that is mapped to the node from which the edge

 General Composition of Software Artifacts 205

emanates. The method combination graphs in the CME Concern Assembly Toolkit
[9] also realize this concept.

Figure 4 shows an abstract combination graph called PrePost, which represents the
composition of a method with precondition (in the node labeled “pre:”) and post-
condition (labeled “post:) checks.

post:pre:

Fig. 4. PrePost Abstract Combination Graph

One combination graph using it might have the population (pre:A, :B). Another
might have (:B, post:C). As described in the sections of 4.3 on “precedence” and
“exclusivity”, a result can be created according to several weaving directives. It must
be possible to construct from them a merged combination graph that embeds all of
them within it. In the case just mentioned, that would be a PrePost combination graph
with the population: (pre:A, :B, post:C).

The ability to merge combination graphs is one of the driving reasons for adopting
this form of ordering. The constraints governing the result of the merge are:

1) Each node in any input graph is assigned a node in the result graph with the
same population and role (if specified).

2) Nodes of input graphs that are populated with the same input are assigned the
same result node.

3) Pre-filled nodes with the same roles specified for them are expected to have the
same contents, and are assigned the same result node.

4) Other nodes of input graphs are assigned different nodes.
5) If there is an edge between two nodes in an input graph, there is an edge be-

tween the nodes assigned them in the result.
6) If there an edge of a node with a specified role in any input graph to or from an-

other node, there is an edge of each result node with that specified role to or
from the node assigned the other node.

7) The resulting graph must be a valid combination graph – i.e. it must be a di-
rected acyclic graph. Additional constraints may apply to merging spe-
cializations like method combination graphs.

These constraints produce the result described for PrePost, above, or, for example,
the more complex result of combining the two graphs in Figure 5, shown in Figure 6.

post:Zpre:B X

post:Xpre:A Q
21

43

Fig. 5. Two Combination Graphs

206 W. Harrison, H. Ossher, and P. Tarr

In this combination, by rule 2, the nodes filled with X are assigned to the same result
node. The unprimed result edges are directly copied from the inputs. The primed
result edges are required by rule 6 – both “pre:” nodes must have edges to the node
containing Q and the node containing X.

post:Zpre:B

post:Xpre:A Q

4

3'

2

1'
3 2'

1

Fig. 6. Combined Combination Graph

5 Supporting Existing Approaches

Treating the composition engine as a component allows the reuse of what is a com-
plex body of software to facilitate implementation, integration, and comparison of a
wide spectrum of AOSD languages, formalisms, and paradigms. If appropriate, an
approach can be applied to a new artifact representation by implementing plug-in
concern assemblers and informants for the artifact. Or an approach can be supported
on existing kinds of artifacts by expressing its weaving directives as objects imple-
menting of the concepts described in section 4, passing them to guide the operation of
the composition engine. To help demonstrate how this can be done, this section
briefly describes the mapping of constructs contained in some existing aspect-oriented
approaches to the core composition concepts described in this paper. Due to space
constraints, we have not exhaustively elaborated the full mappings here, but rather,
we highlight how to map some of their particularly interesting and key features to
CCC. Hyper/J-like composition using CCC has been implemented or prototyped for
UML class diagrams, for ANT-scripts, and for Java by implementing the appropriate
plug-in concern-assemblers.

5.1 Hyper/J

Hyper/J[20] supports the representation and composition of concerns whose contents
are standard Java classes and interfaces. The concerns may overlap, in the sense that
multiple concerns may contain definitions for corresponding classes, interfaces, or
members. It uses composition relationships to specify correspondences and the man-
ner of composition of the Java material. The composition relationships are specified
separately from the concerns, in a manner analogous to that of module interconnection
formalisms. Composition involves the integration of multiple Java type hierarchies in
a way that satisfies the composition relationships, to produce a set of composed Java
types that contain the woven material.

 General Composition of Software Artifacts 207

Hyper/J’s concerns map to CCC spaces (Section 3), containing Java classes and
interfaces. Hyper/J’s joinpoints are classes, interfaces, and their members (fields,
operations, constructors, and types).

The composition relationships in Hyper/J specify a wide variety of weaving direc-
tives. Some control the establishment of correspondences. NonCorresponding and
ByName specify whether like-named elements of related concerns should correspond.
These map to CCC’s space- and member-encapsulation (Section 4.4) mechanisms,
respectively. Other composition relationships indicate how corresponding elements
should be integrated. Merge and override map directly to CCC’s merge and over-
ridemember selection modes (Section 4.2) and the facet result structure (Section 4.2).
The execution order of merged elements is specified with before and after order con-
straints, expressed using CCC’s combination graphs (Section 4.5). Bracket specifies a
“before” method and an “after” method for the same set of inputs, and would be
defined as a predefined method combination graph) in CCC. Bracket’s before and
after methods are composed using the copy structure, allowing them to bracket many
different methods. Hyper/J also supports summary functions, methods whose parame-
ters are the return values of a set of composed methods, returning a single value com-
puted from them as the result of the composed method. An example summary
function is boolean “and,” which returns true iff all the composed methods return true.
Summary functions are realized in CCC with method combination graphs. Edges exit-
ing from nodes in these graphs can contain “accumulator variables,” and each node
can add a value to the accumulator. At the end is a method node that calls the
summary function on the accumulator.

5.2 AspectJ

AspectJ [14] is a Java extension that adds the aspect construct to represent concerns
that cut across multiple Java classes. Aspects are class-like entities that can define
their own behavior and state (standard Java fields and methods), behavior and state to
be introduced into other classes (intertype declarations), and advice to be attached as
specified by pointcuts (queries that identify the applicable join points). Advice con-
structs can be treated as weaving directives coupled with the code (represented as
methods) to be woven with Java methods. Weaving involves the insertion of code to
attach aspect objects to Java objects and to trigger advice, in a way that satisfies the
advice and other weaving directives, notably, declare specifications.

The types (aspects, classes, and interfaces) that are to be woven are listed in As-
pectJ’s “.lst” files. Each “.lst” file specifies a single CCC input space (Section 3),
containing the set of types that are to be composed.

AspectJ’s pointcuts describe execution-time events, but these events occur at a set
of points in the program’s static structure. As noted in Section 1, the generation of
code to collect runtime information or perform runtime tests on dynamic state is an
activity separate from composition. The composition activity involves composing
that code, which AspectJ compiler produces, together with the applicable aspect code,
at the relevant points in the program’s static structure [14]. These points are specified
in correspondences (Section 4) in CCC, queries.

If an advice is to be woven at some point in a class, the aspect containing the advice
is woven with the class itself, using a specialization of CCC’s aspect attachment [7]

208 W. Harrison, H. Ossher, and P. Tarr

structure. This means the aspect is represented as a separate object with separate iden-
tity from the “base” object(s) to which it is attached. The lifetime of the aspect attach-
ment depends on the aspect’s “per” specification. By default, the lifetime is CCC’s
singleton, meaning that there is one aspect instance for all of the classes with which the
aspect is woven. The other AspectJ “per” specifications—percflow, percflowbelow,
perthis, and pertarget—are specified as having CCC’s dynamic lifetime. All of these
specifications depend on dynamic residue, which is, as noted earlier, treated separately
from composition.

AspectJ supports three types of advice: before, after, and around. The before and
after advice from an aspect must be run as a “bracket” around the advised join point,
so the same method combination graph solution is used as for Hyper/J’s bracket di-
rective (Section 5.1). Two variants, after throwing and after returning, are realized
using edge conditions in these method combination graphs. Around advice is not
simply an ordering constraint, but rather, a different selection mode, called around,
causing the advice to be “wrapped around” another element. Around advice can in-
clude a language construct, proceed(), which executes the wrapped element. A com-
mon implementation of proceed() [11] employs AroundClosure objects, created,
passed, and used in the composed code. The run-time conventions appropriate to the
continuation-related code is specific to the chosen implementation of AspectJ, and
therefore, it is realized in CCC as an AspectJ-specific extension of CCC at an exten-
sion-point, called rectification, generally available for adapting specific language
needs. Rectification is, in fact, the extension used to adapt general composition, for
example, to Java’s requirement for single-inheritance of implementations.

Most of AspectJ’s declare and inter-type specifications are handled as compile-
time checks or by treating them as though they were written as Java classes with the
desired characteristics (parents, fields, etc.) and composed using “merge,” as de-
scribed in Section 5.1. One exception is declare precedence, which specifies that
advice from one aspect is surrounded by the advice from another. A method combi-
nation graph is generated in each case to ensure the required precedence semantics.

5.3 Other Major AOSD Technologies

A number of other major AOSD technologies and languages exist, particularly for
implementing aspect-oriented code. Space constraints preclude additional detailed
mappings of these technologies to CCC, but we believe that the key features of all of
them are covered by the descriptions of AspectJ and Hyper/J. For example, Aspect-
Werkz [1] and JBoss [17] support an AspectJ-like composition model, but they differ
in their specification languages (standard Java, with XML or tags for specifying
composition), and both provide more extensive support for dynamic attachment of
aspects. Support for of dynamic responses to events requires little accommodation by
a composition engine, so these distinctions do not significantly affect the mapping to
CCC. Mixin layers [19] are mapped to CCC like Hyper/J’s concerns, with corre-
sponding classes in different layers combined using around wrapping and support for
super() in extensions that resembles the support for proceed() for AspectJ. Composi-
tion filters [2] are realized in a way similar to AspectJ, but with different attachment
semantics and a variety of method combination graphs to realize different filter

 General Composition of Software Artifacts 209

semantics. Detailed mapping of these and other important AOSD technologies and
paradigms is left for future papers.

6 Summary and Related Work

This paper presented a model for composable artifacts and a base of concepts suitable
for expressing composition of artifacts in a general setting independent from language
or AOSD approach. The model describes artifacts in terms of a containment structure
of interpretable material in which artifacts may embed by-name references to other
artifacts. The conceptual base describes composition in terms of queries to form cor-
respondences among composable elements and weaving directives providing informa-
tion about selection, ordering, structure and conflict-handling. It provides examples of
many useful choices that can be provided or used in particular cases. The paper shows
how an existing open-source implementation based on this concept base can be used
to realize the composition needs of several existing AOSD approaches.

There are existing tools for manipulation of Java classes, usually at load time, such
as Javassist [4], JMangler [15], JOIE [5] and Binary Component Adaptation (BCA)
[12]. These operate at a lower level than the kind of composition engine described
above, generally applying to single types or methods, only combining at the level of
types and not providing direct support for the combination of interpretable elements.

Section 5 also discussed other AOSD technologies that provide a high-level ap-
proach and embed a composition engine to perform their composition needs. But
these existing tools and approaches, while making use of individual particularizations
of the concepts presented here (like selection or ordering), do not provide a concep-
tual abstraction for creating a generalized composition engine. Furthermore, these
systems are all specific to single kinds of artifacts like Java bytecodes or source. This
paper has identified and described key concepts needed to address composition of the
variety of artifacts encountered throughout the development lifecycle.

References

[1] AspectWerkz web site, http:aspectwerkz.codehaus.org
[2] M. Aksit, L. Bergmans and S. Vural. “An Object-Oriented Language-Database Integra-

tion Model: The Composition-Filters Approach.” Proc. European Conference on Object-
Oriented Programming, 1992.

[3] Don S. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci and M. Sirkin. “The GenVoca
Model of Software-System Generators.” IEEE Software, September 1994

[4] S. Chiba, “Load-time Structural Reflection in Java.” Proc. 2000 European Conference on
Object Oriented Programming, LNCS 1850, Springer Verlag, 2000

[5] G. Cohen and J. Chase, “Automatic Program Transformation with JOIE”, USENIX An-
nual Technical Conference, June, 1998

[6] W. Harrison and H. Ossher. “Subject-Oriented Programming: A Critique of Pure Ob-
jects.” Proc. 8th conference on Object-oriented programming systems, languages, and
applications, 411-428 (1993).

210 W. Harrison, H. Ossher, and P. Tarr

[7] W. Harrison and H. Ossher, “Member-Group Relationships Among Objects”, at Work-
shops on Foundations of Aspect Languages, on Aspect-Oriented Design, and on UML in
Aspect-Oriented Software at International Conference on Aspect-Oriented Software De-
velopment, March 2002

[8] W. Harrison, H. Ossher, S. Sutton, P. Tarr, The Concern Manipulation Environment—
Supporting aspect-oriented software development. IBM Systems Journal Special Interest
Issue on Open Source, Vol. 44, No. 2, 2005

[9] W.H. Harrison, H.L. Ossher, P.L. Tarr, V. Kruskal, F. Tip, "CAT: A Toolkit for Assem-
bling Concerns" IBM Research Report RC22686, December, 2002

[10] Richard Helm, Ian Holland, and Dipayan Gangopadhyay, “Contracts: Specifying Behav-
ioral Compositions in Object-Oriented Systems”, Proceedings of the Conference on Ob-
ject-Oriented Programming: Systems, Languages, and Applications, (Vancouver), ACM,
October 1990.

[11] E. Hillsdale and J. Hugunin, “Advice Weaving in AspectJ”, Proc. 3rd International Con-
ference on Aspect-Oriented Software Development, 26-35 (2004)

[12] R. Keller, U. Hölzle, “Binary Component Adaptation,” Proc. 1998 European Conference
on Object Oriented Programming, LNCS 1445, Springer Verlag, 1998.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Lo-ingtier, John Irwin. “Aspect-Oriented Programming.” In proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP), Finland.
Springer-Verlag LNCS 1241. June 1997.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, Jeffrey Palm and William G. Griswold.
“An Overview of AspectJ.” Proc. 15th European Conference on Object-Oriented Pro-
gramming, 327-353 (2001).

[15] G. Kniesel, P. Constanza, M. Austermann, “JMangler – A Framework for Load-Time
Transformation of Java Class Files, November 2001. IEEE Workshop on Source Code
Analysis and Manipulation (SCAM),

[16] Kung-Kiu Lau and Zheng Wang, A Taxonomy of Software Component Models, Proceed-
ings of 31st Euromicro Conference on Software Engineering and Advanced Applications,
IEEE, August 2005

[17] JBOSS web page, http://www.jboss.org
[18] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Components for Evolutionary

Software Development.” Proc. Conference on Object-oriented Programming: Systems,
Languages, and Applications, 1998.

[19] Smaragdakis and Batory, Mixin Layers: An Object-Oriented Implementation Technique
for Refinements and Collaboration-Based Designs, ACM Transactions on Software Engi-
neering and Methodology, April 2002.

[20] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns.” Proc. 21st International Conference on Software
Engineering, 107-119 (1999).

Dimensions of Composition Models for
Supporting Software Evolution�

In-Gyu Kim1, Tegegne Marew2, Doo-Hwan Bae2,
Jang-Eui Hong3, and Sang-Yoon Min4

1 Telecommunication R & D Center, Telecommunication
Network Business, Samsung Electronics, Co. Ltd., Suwon, Korea

igkim.kim@samsung.com
2 Dept. of Electrical Engineering & Computer Science, KAIST,

373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Korea
{tegegnem, bae}@se.kaist.ac.kr

3 School of Electrical & Computer Engineering, CBNU,
12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea

jehong@chungbuk.ac.kr
4 SOLUTIONLINK, KAIST Venture Incubator

373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Korea
sang@sol-link.com

Abstract. Software systems with constrained and dynamic environ-
ments need to adapt to local and diverse computing environments by
providing highly customized services at run-time. In order to address
such dynamic changes effectively, composition models addressing com-
plicated composition issues and supporting advanced composition fea-
tures are required. In order to analyze and identify the required features
of composition models supporting dynamic changes, we propose the di-
mensions of composition models by survey and analysis of existing work.
Based on the dimensions, it is possible to provide a road map to im-
prove capability of a composition model for a specific domain such as a
dynamic mobile agent domain.

1 Introduction

An important emerging requirement for software systems is the ability to address
dynamic requirements changes. As the competitions among enterprises become
fiercer, there is a need for each enterprise to satisfy the time-to-market require-
ment faster. In addition, the spread of the Internet and mobile communications
with constrained devices requires software systems (e.g. mobile agent systems)
to adapt to local and diverse computing environments by providing highly cus-
tomized services at run-time.

Composition based techniques are practical and effective approaches for sup-
porting software evolution because of high flexibility and increased productivity.
� This work was supported by the Ministry of Information & Communication, Korea,

under the Information Technology Research Center (ITRC) Support Program.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 211–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 I.-G. Kim et al.

In this paper, we define compositional aspects of the techniques as composition
models. Composition models enable decisions to be made on how composition
units are composed and which functionality the composed one provides. Accord-
ing to the capabilities of composition models that applications are based on, the
ability of the applications to accommodate changes is decided. Thus, in order
to support software evolution more effectively, composition models addressing
complicated composition issues and supporting advanced composition features
are required. In this paper we propose dimensions of composition models in order
to analyze and identify the required features of composition models for evolv-
able software systems especially with dynamic requirements changes. Through
surveying existing work supporting software evolution and existing criteria for
comparing composition models, the dimensions are identified, collected, classi-
fied, and refined. Based on the dimensions, it is possible to find which areas
are not supported or need to be more supported in existing composition mod-
els and to provide a road map to improve composition model capability. The
dimensions also enable software developers to find out required features of a
composition model for a new application domain where computing conditions or
environments are different from other domains.

The remainder of this paper is organized as follows. Section 2 shows and
analyzes briefly some existing efforts and research projects supporting software
evolution. Section 3 collects and analyzes existing criteria related to comparing
composition models. Based on the analysis of Section 2 and 3, Section 4 proposes
dimensions of composition models and describes each dimension in detail. Section
5 compares some existing research projects by the proposed dimensions. As a case
study applying the proposed dimensions to a new domain to find out the required
features for effectively supporting software evolution in the domain, Section 6
shows how the dimensions can be used for choosing the required features for a
composition model supporting dynamic mobile agent applications. In Section 7
we conclude our research with further work.

2 Work Supporting Software Evolution

There exist techniques or research projects for supporting software evolution.
We have classified these efforts largely into 9 categories.1 The pros and cons
of each category are explained briefly in Table 1.2 Since our paper focuses on
dimensions of composition models, we are more interested in composition based
techniques (row 3 in Table 1). Some of efforts in the category (i.e. composition
based techniques) are explained in detail in the following.

As basic OO composition techniques, there are association, inheritance, and
delegation. Association is one of the simple composition techniques which has
been widely used in OO systems. It enables an object to refer to other objects, for
instance, by using object variables. In association, functionality can be changed
1 The classification is not mutually exclusive. Some efforts belong to more than one

category.
2 For more detailed information, [18] can be referred to.

Dimensions of Composition Models 213

Table 1. Comparison of Efforts Supporting Software Evolution In the Large

Efforts supporting Pros Cons
software evolution

any kind of adaptation, any part can requiring source code, error-prone,
Code Modification can be modified, direct modification, not suitable for large and

efficient for experienced programmers. complex systems.
Parameter controlled modification by parameters. limited modification within

Modification parameter scopes.
Composition producing and adapting software systems requiring various mechanisms to

Based Techniques fast and cost-effectively by (run-time) support composition.
[1,2,5,22,23] composition, high reuse of components.

Design Pattern providing general solutions for addressing hard to find exact patterns for
Based Techniques [12] software evolution problems. addressing given problems.

supporting high level modification by subjective to architectural styles,
Software Architecture changing components, connectors, or requiring further research on
Based Techniques [8] configuration. dynamic architecture supporting

software evolution.
Transformation as powerful as code modification, requiring source code,

Based Techniques supporting controlled modification by hard to modify at run-time.
[3,4] transformation templates.

supporting run-time change by modifying requiring mechanisms to support
Reflection meta data, used as complementing or meta-level architecture,

Based Techniques supporting techniques for many other complex to use.
[11,21] adaptation efforts.

Collaboration large granularity of reuse requiring further research on efficient
Based Techniques (collaboration-level), supporting realization of the concepts and

[16,27] separation of concerns. supporting mechanisms.
Industry providing various practical supporting not sufficiently providing component

Component Models tools for developing systems based on or composition models for adapting
[9,13] their own component models, easy to use. components or systems.

at run-time by changing the references. Class inheritance allows a subclass’s
implementation to be defined in terms of the parent class’s implementation [2,26].
The advantage of class inheritance is that it is done statically at compile-time
and is easy to use. The disadvantage of class inheritance is that the subclass
becomes dependent on the parent class’s implementation and the implementation
inherited from a parent class cannot be changed at run-time. Delegation is similar
to association except message handling mechanisms [2,20]. Using delegation, a
method can always refer to the original recipient of the message, regardless of
the number of indirections. Like association, delegation also supports dynamic
composition by changing parents at run-time.

Ostermann et al. propose compound references, a new abstraction for ob-
ject references, that allows to provide explicit linguistic means for expressing
and combining individual composition properties on-demand [22]. They provide
five composition properties to express a seamless spectrum of composition se-
mantics in the interval between object composition and inheritance: overriding,
transparent redirection, acquisition, subtyping, and polymorphism. A variety
of composition mechanisms can be used by simply decorating object references
with the above composition properties. A seamless transition from one composi-
tion mechanism to the other is also possible by changing composition properties,
which enables applications to be adapted to have the changed functionality.

214 I.-G. Kim et al.

Context relation is a relation between classes which directly models dynamic
evolution [23]. In Context relation, a context class defines a dynamic update for
a base class. Attaching a context object to a base object alters the base object’s
method table based on the class updates defined by the context class. Context
relation supports method-level updating.

HADAS is a decentralized framework for composition of software systems
by connecting components [5]. HADAS supports dynamic adaptation, which al-
lows for the adjustment of structure and behavior of autonomous components.
Each component is split into two sections; Fixed and Extensible. Data items
and methods defined in the Fixed section are not changed during the compo-
nent’s lifetime. In contrast, the Extensible section comprises the mutable por-
tion of the component through which component’s structure and behavior can
be changed, and in which new methods can be added or removed on-the-fly.
HADAS is based on 2-level method invocation mechanism which supports ex-
tensibility of the invocation mechanism itself. The mechanism partially enables
“supporting multi-services” by metainvocation. Added components can access
original components through “selfObject” construct. HADAS supports dynamic
adaptation and a hybrid approach to get benefits both from class-based and
instance-based changes.

DC-AOP is a platform for scalable mobile agents, which supports dynamic
composition of functionality using code mobility [19]. Kim et al. categorize func-
tionalities that mobile agents can use as follows: built-in functionality, resi-
dent functionality, carried functionality. Carried functionality enables mobile
agents to add functionalities in remote nodes into their behaviors by code mo-
bility and use the functionalities at run-time. DC-AOP supports such dynamic
composition of functionality by providing four language constructs for carried
functionality.

Lasagne defines a platform-independent architecture for dynamic customiza-
tion of component-based systems using wrappers [28]. Lasagne introduces the
concept of “Composition Policy”. In Lasagne, composition logic is externalized
from the code of clients, core system, and extensions by encapsulating it in a
composition policy. In Lasagne, an application consists of a minimal functional
core (implemented as a component-based system), and a set of potential ex-
tensions that can be selectively integrated within this core functionality. Each
extension (i.e. collaboration) is implemented as a layer of mixin-like wrappers,
simultaneously tailoring multiple components of the application and their inter-
actions between each other.

GenVoca is one of program transformation approaches. GenVoca generators
synthesize software systems by composing plug-compatible and interchangeable
components [4]. GenVoca components are parameterized program transforma-
tions that are capable of operation refinements. The interfaces and bodies of
GenVoca components are subjective (i.e. changeable). When components are
composed, GenVoca checks additional constraints (e.g. precondition and post-
condition) called design rules as well as type.

Dimensions of Composition Models 215

The CORBA Component Model (CCM) is a specification for creating server-
side scalable, language-neutral, transactional, multi-user, and secure enterprise-
level applications [13]. In CCM, components support a variety of interaction
features, called ports. The ports includes facets, receptacles, and event sources/
sinks. A component can provide multiple object references, called facets, which
are capable of supporting distinct IDL interfaces. Using facets, operations can
be grouped. In addition, introspection facilities associated with facets permit
one to discover the set of roles provided by a component type at run-time.
Other component models such as EJB ([9]) provide similar functionalities for
component customization, composition, evolution, and deployment.

3 Existing Dimensions for Comparing Composition
Models

This section presents and analyzes existing criteria used to compare composition
models. Bosch proposes superimposition, a novel black-box adaptation technique
that allows one to impose predefined, but configurable types of functionality
on a reusable component [6]. He identifies the requirements that component
adaptation techniques should fulfill; “transparent”, “black-box”, “composable”,
“configurable”, and “reusable” requirements. Some of these requirements are
useful to identify dimensions of composition models. For example, “composable”
requirement implies that the adapted component should be as composable as
it was without the adaptation and the adaptation should be composable with
other adaptations. In addition, Bosch focuses on configurable adaptation, which
is realized by a number of component adaptation types that can be configured
for the specific component.

Heineman et al. present a list of requirements necessary for component adap-
tation techniques from surveying and analyzing some existing work and con-
sidering three additional requirements [14]. Although some requirements such
as “identity” and “architectural focus” are useful as dimensions of composition
models, other requirements are not suitable directly for composition models. For
example, “conservative” requirement is based on the assumption that existing
functionalities of components are not cancelled. However, we think that composi-
tion of two components can make a combined component with less functionalities
than the sum of functionalities of two components.

Kniesel classifies component adaptation approaches according to four criteria
[20]. “anticipated or unanticipated changes” and “time” are important aspects
of composition models.

Buchi et al. provide requirements for a wrapping mechanism [7]. “shielding”,
one of the requirements, indicates that a wrapper should be able to control
whether clients can directly access the wrappee or not.

Dominick et al. provide concerns which are important for extensible and con-
figurable components [10]. “extensible and reusable extensions” concern means
that components can be plugged into components recursively. They think that
extensions (to components) also should have component-like properties.

216 I.-G. Kim et al.

Svahnberg et al. provide selection criteria of variability realization techniques
for selecting an appropriate technique for implementing variability [24]. They
realize variability in product line software systems through steps of identifying
variant features, introducing variation points for the features, populating the
variant feature with its variants (software entities), and binding variation points
with specific variants. They organize variability realization techniques into 13
types by using involved software entities and binding times. They compare the 13
types of variability realization techniques in detail by five criteria: introduction
times of variation points, open times for adding variants, ways of populating
collection of variants, binding times, ways of binding. The criteria are focused
to classify variability realization techniques especially for product line software
systems.

4 Dimensions of Composition Models

Based on the analysis of Section 2 and 3, we have identified, collected, classi-
fied, and refined dimensions of composition models. The dimensions and their
elements (features) are explained as follows:

Granularity: Granularity classifies composition units into attribute, method,
object, component, and collaboration. Collaboration is a set of objects, together
which provides a particular functionality to the application.

Composition Time: This dimension addresses when composition is performed.
This dimension has the following elements:

– compile-time: Composition is performed at compile-time or before (e.g. prod-
uct architecture derivation time [24]).

– deploy-time: Composition is performed at deploy-time.
– load-time: Composition is performed at load-time.
– run-time: Composition is performed at run-time.

These elements are cumulative: a later time element implies the previous time
elements. For example, run-time element implies load-time, deploy-time, and
compile-time elements.

Location of Delta: Where can we get “added functionality” (called as delta)
at run-time? This dimension is explained in more detail from [19].

– built-in: Delta is combined into original components at compile-time.
– local: Delta in the local node (computer) is used.
– remote: Delta can be loaded and combined from remote nodes.

Elements in this dimension are cumulative.

Required Composition Information: This dimension addresses what kinds
of information is necessary for composition.

Dimensions of Composition Models 217

– interface: It requires signature information (e.g. return type, name, parame-
ters).

– contract: Pre&post conditions and invariants are necessary [15].
– configuration: For advanced or flexible composition such as expressing vari-

ous composition semantics, more configurable composition information
should be provided explicitly and could be used and manipulated by com-
ponent customers. Explicit configuration information enables developers or
adapters to customize components to provide different behaviors by changing
the information.

Contract and configuration elements imply interface element unless explicit notes
are provided.

Consistency Checking when Composition: What kind of consistency check-
ing is performed when composing?

– signature: Signature checking is performed.
– subtype: Subtype checking is performed.
– rule: Composition rules are used for consistency checking.

Subtype element implies signature element. Usually, signature element is a min-
imal element to check.

Composition Capability: This dimension shows which composition seman-
tics can be provided after composition.

– adding new services (1)
– deleting existing services (2)
– changing services (3)
– supporting multi-services (4): When a message is received, multi-services can

be provided.
– overriding (5)
– wrapping (6)
– combinations (7): Combinations of composition primitives are supported. In

order to provide expressive and changeable composition semantics among
components, it is necessary to combine various composition operators and
provide various composition semantics through the combinations.

As a note, the numbers in parentheses for the above elements are for the refer-
ence in Table 2.

Reference Primitives: When a composition unit (let’s say it as a component)
is composed with other components, the reference scope of the other components
which the component can access is decided by reference primitives. Let’s assume
that two components, original and delta, are composed.

– origin (O): The delta component can access the original component.
– delta (D): The original component can access the delta component.

218 I.-G. Kim et al.

– identity (ID): The original and the delta are aggregated into one identity.
– based on internal structure information (ISI): This category is different from

the above three categories in that the reference scope can be decided by using
internal structure information of a component such as information of fixed
and extensible parts. For example, an internal component of a component can
access all internal components of the fixed part of the component by using
“fixed” reference primitive. Reference primitives belonging to this category
can be used to express more specific and various reference scopes other than
original and delta components.

Identity element (ID) implies both original (O) and delta (O).

Hierarchical Composition Support: This dimension decides whether com-
position can be applied hierarchically or not. It is important to raise the level of
abstraction in such a way that the evolution is expressed, reasoned about, and
implemented. One way of raising the level of abstraction is hierarchical compo-
sition. Hierarchical composition enables component composition to be applied
uniformly to both component adaptation and application assembly. It also en-
ables components to be adapted by other components and the adapted compo-
nents to be used for adapting other components as well. It increases reusability
by enabling components to play both the roles: original and delta.

Composable Parts: This dimension shows which parts of a system are allowed
to be composed.

– Whatever: Any part can be changed or composed.
– Designated parts: Only particular parts are allowed to be changed or com-

posed.

Anticipation: This dimension shows whether or not unexpected functionality
which original developers do not consider at design-time, can be added into
the software later by using the extension mechanism which is provided by the
supporting composition model.

– Expected: By using the supporting composition model, only expected func-
tionalities which are considered at design-time are allowed to be composable.

– Unexpected: By using the supporting composition model, unexpected func-
tionalities which are not considered at design-time can also be composed.

Who Provides Composition Codes?

– Manual (Developer): Composition logic is programmed by developers. In
this manual decision of composition, anticipated composition logic is coded
at compile-time and according to the fixed logic, compositions in software
systems are performed.

– Automatic (AI): Reasoning engine decides what to do at run-time (e.g. which
parts have to be composed and in which ways) by using inference rules
together with inputs from environments. Thus, composition logic can be
decided automatically at run-time by the reasoning engine.

Dimensions of Composition Models 219

5 Comparison of Existing Work by the Proposed
Dimensions

This section compares some of work presented in Section 2 by our proposed
dimensions in Section 4. The comparison results are shown in Table 2 and the
detailed comparison results with respect to each dimension are explained in the
following:

Table 2. Comparison of Software Composition Efforts by the Proposed Dimensions

Software Composition Efforts
Dimensions Context

HADAS DC-AOP Relation Lasagne GenVoca
Granularity of object
Composition (mainly focused object object collaboration collaboration
Units on methods) (extension)
Composition Time run run run run compile
Location of Delta local remote local local local
Required configuration
Composition interface interface interface (composition contract
Information policy)

rule
Consistency signature signature signature subtype (design rule
Checking checking)
Composition 1,2,4 1,2 1,2,3 6,7 1,6
Capability
Reference O,D D O ID O
Primitive
Hierarchical No Yes No No Yes
Composition

Part Part Part
Composable Part (Extensible (carried- (Instance- All All

part) functionality) based method)
Anticipation Expected Expected Expected Expected Unexpected
Who Manual Manual Manual Manual Manual

Granularity of Composition Units: HADAS can add and remove items
(data, methods, or objects). It mainly deals with methods. DC-AOP and Con-
text Relation are based on objects. Lasagne wraps a set of components with
extensions. GenVoca can compose collaborations of “realm”.
Composition Time: In HADAS, DC-AOP, Context Relation, and Lasagne,
composition is performed at run-time. GenVoca performs software composi-
tion at compile-time. Generally, compile-time composition enables better per-
formance because it does not require intermediate invocation layers. Run-time
composition enables flexible functionality change because it can change func-
tionality at run-time.

220 I.-G. Kim et al.

Location of Delta: Only DC-AOP enables remote functionalities to be loaded
and composed with existing functionalities.
Required Composition Information: In HADAS, DC-AOP, and Context
Relation, signature information is used for composition. Lasagne and GenVoca
require more information than signature. Lasagne describes components with
services (interfaces), dependencies, decorators (wrappers), and intercepters. At
run-time, Lasagne uses component descriptions and composition policy to com-
bine extensions into the core system selectively. GenVoca uses contract informa-
tion such as pre and post conditions.
Consistency Checking when Composition: HADAS, DC-AOP, and Con-
text Relation perform consistency checking at the level of signature; composition
is not allowed if signatures are not matched. Lasagne wraps components or uses
role object patterns to compose components and deltas. Thus, it requires sub-
type relation between components and deltas. GenVoca performs design rule
checking to detect illegal combinations of components.
Composition Capability: HADAS, DC-AOP, and GenVoca enable compo-
nents to provide new services. HADAS and DC-AOP can remove existing ser-
vices. Context Relation changes existing services using context objects. It also
adds new services which are only invoked by the attached context objects. Those
new services can be disposed by changing context objects. GenVoca can add
or wraps existing services. HADAS supports multi-services by metainvocation.
Lasagne supports wrapping of services and selective combination of extensions
by composition policy.
Reference Primitives: In HADAS, when two components are composed, one
component can access the other component through “selfObject” construct. Con-
text Relation has this primitive to access original components. It also has context
primitive for delta to access itself. However, it does not provide primitives for
delta to access original components. DC-AOP provides “cafInvoke()” method to
access deltas. However, it does not provide facilities to invoke original objects
which load the deltas. Lasagne provides the notion of component identity by
variation point. It uses inner primitive to access the aggregate of a component
instance and its decorating wrapper instances. Lasagne enables original com-
ponents and deltas to be combined into one identity. Component identity (ID)
implies that deltas can access the original component (O), the original compo-
nent can access deltas (D), and delta can access other deltas. In GenVoca, deltas
(upper layers) can access original components (lower layers).
Hierarchical Composition Support: In HADAS and Lasagne, deltas cannot
be extended by other deltas recursively. For example, in Lasagne, it is very
difficult to reuse deltas because they have subtype relation with original classes.
Context Relation also does not support hierarchical composition because context
classes are specified only for one base class. In DC-AOP and GenVoca, deltas
can be extended by other deltas recursively.
Composable Parts: In HADAS, each component has two parts; Fixed and
Extensible. Functionality in only “Extensible” part can be added or deleted.

Dimensions of Composition Models 221

In DC-AOP, only carried-functionalities of system can be changed through the
proposed language constructs. In Context Relations, instance-based methods
can be updated. In Lasagne, any services of components can be wrapped. In
GenVoca, any components can be composed.
Anticipation: In HADAS, DC-AOP, Context Relation, and Lasagne, develop-
ers of components have to anticipate adaptations which will be performed in
the future and also provide some ways (hooks) within the components to realize
the adaptations. In GenVoca, original developers do not have to anticipate fu-
ture adaptations. Adapters, instead of the original developers, perform necessary
adaptations. However, although GenVoca composes unanticipated functionality,
it is done before run-time. In order to satisfy fast-changing requirements more
fully, unanticipated adaptations should be supported at run-time as well as at
compile-time.
Who Provides Composition Codes?: In all work, the change is encoded
by the developers or adapters at compile-time. Specifically, in HADAS, DC-
AOP, Context Relations, and Lasagne, the change is encoded by developers. In
GenVoca, the change is encoded by adapters as well as developers.

6 Applying the Dimensions for Dynamic Mobile Agent
Applications

As a case study applying the proposed dimensions to a new domain, this section
shows how our proposed dimensions can be used to select the required features
of a composition model supporting dynamic mobile agent applications.

6.1 A Testing Mobile Agent with Dynamic Requirements Changes

As an application with dynamic requirements changes, a mobile agent applica-
tion is described as follows. A mobile agent, called as DTMA, navigates to various
nodes (e.g. insurance company web sites) where there are insurance components
differently implemented by various companies with their own business rules.
At each node, DTMA tests the insurance component provided at the node.
The goal of DTMA is to find the most reliable insurance component among
nodes. At various nodes, DTMA performs some testing activities. At a specific
node, it happens to test the insurance component in the node in more detail
because the insurance component has passed all testing activities of the current
DTMA. DTMA changes the existing testing functionality with a new testing
functionality which has more detailed test cases, and performs new testing ac-
tivities. Similarly, at another nodes, DTMA adds a new display functionality
which displays texts in well formatted forms, and adds a monitoring function-
ality which performs some backup activities. The above scenario is shown in
Figure 1.

222 I.-G. Kim et al.

node A

DTMA

navigate

(simple testing)

(hard testing) (new display forms)

(backup)

IC_A:
Insurance

Component

test

DTMA

DTMA

DTMA

node B

IC_B:
Insurance

Component

node C

IC_C:
Insurance

Component

node D

IC_D:
Insurance

Component

Fig. 1. A Navigating Scenario of DTMA

6.2 Required Features of a Composition Model for Dynamic Mobile
Agent Applications

For the above mobile agent application, DTMA can be programmed as having
all functionalities including testing, display, and monitoring functionalities at
compile-time. However, it requires more memory space and increased network
bandwidth when moving to other nodes. In addition, it cannot accommodate
unanticipated requirements such as a new secure communication functionality. In
order to address dynamic requirements changes in the mobile agent application
more sufficiently, a composition model suitable for the application should be
selected and used. In order to find out the required features of the composition
model, we used the proposed dimensions. As a result, we decided the following
features are required for the composition model:

Granularity of Composition Units: Component Based Software Develop-
ment (CBSD) enables applications to be developed fast and cost-effectively by
composing existing or customized components [25]. Also, CBSD is being con-
sidered as a practical and effective approach for supporting software evolution
because composing components provides high flexibility and productivity. Thus,
applications with dynamic requirements changes could get benefits from CBSD.
As a result, the composition unit for the composition model is decided as “com-
ponent”.
Composition Time: DTMA changes the existing testing functionality to a
newly developed testing functionality at run-time. In addition, DTMA adds a
newly developed other functionality (e.g. display) at run-time. Run-time com-
position is very useful for satisfying dynamic changes.
Location of Delta: It is possible for mobile agents to navigate in unexpected
environments. If mobile agents can add functionalities in remote nodes into their
behaviors by code mobility and use the functionalities at run-time, they can use
various and timely functionalities in the Internet with high robustness [19].
Required Composition Information: Components provide services through
interfaces. However, in order to address dynamic requirements changes in mobile

Dimensions of Composition Models 223

agents through component composition, (re)configurable composition informa-
tion should be explicitly provided. Through changing the information, compo-
nents can provide various behaviors. For example, let’s assume that DTMA
decides to move to an untrustworthy node. In order not to save travel informa-
tion into the node, DTMA can change internal configuration to limit access to
logging services.
Composition Capability: DTMA needs the following composition capabili-
ties:

– add new services (1): DTMA adds display and monitoring functionalities.
– delete existing services (2): DTMA could delete the existing functionality.
– change services (3): DTMA changes the testing functionality.
– change configuration information (7): DTMA can change its architectural

configuration information when it navigate to untrustworthy node. In ad-
dition, mobile agents move around nodes and perform some activities for
each node. Each node may have different environments or requirements such
as security levels and communication protocols. Thus, various composition
semantics should be supported by combinations of composition primitives.

Reference Primitives: In DTMA, existing functionalities need to access new
added functionalities (local or remote) and vice versa. In order to use different
kinds of internal parts of DTMA effectively, DTMA needs to support “based on
internal structural information” in this dimension.
Hierarchical Composition Support: If DTMA supports hierarchical com-
position, it will get the benefits of hierarchical composition such as increasing
reusability of components and managing different composition levels uniformly.
Consistency Checking when Composition: In DTMA, signature checking
is a minimum requirement. Subtyping checking is also necessary for hierarchical
composition. Configuration checking is also required.
Composable Parts: Mobile agents need to manage their parts differently ac-
cording to their goals. For example, one part has functionalities fundamental
and very unlikely to change, and the other part has dynamically changeable
functionalities. DTMA needs some basic functionalities such as a navigation
functionality to be fixed for its proper operation. In the other hand, DTMA
needs to use resources effectively because of limited memory space and network
bandwidth. Thus, DTMA also needs composable or changeable part.
Anticipation: The ability to compose unexpected functionality is required to
handle dynamic and diverse situations in mobile agent environments.
Who provides composition codes?: For the safe, reliable, and predictable
operation of DTMA, the composition logic needs to be specified by developers
explicitly.

The required features of a composition model for the dynamic mobile agent
application are shown in Figure 2. The circles shows the chosen features for the
composition model.

224 I.-G. Kim et al.

Composition
Time

Composition
Granularity

Location
of Delta

Required
Composition
Information

Consistency
CheckingReference

Primitives

Hierarchical
Composition

Composable
Part

attribute

method

object

collaboration

componentbuilt-in

local

remote

compile
deploy

load

run

interface
configuration

signature

subtype

rule

origin

delta

identity

hierarchical

whatever

no

part

internal
structural
information

contracts

Composition
Capability

add
delete

change
multi-services

overriding
wrapping

combination

AI

manual

Who

unexpected
expected

Anticipation

Fig. 2. Required features of a composition model for the dynamic mobile agent
application

7 Conclusion and Further Work

In order to analyze and identify the required features of a composition model for
software systems with dynamic requirements changes, we proposed the dimen-
sions of composition models by survey and analysis of existing efforts support-
ing software evolution, especially composition based techniques, and the existing
comparison criteria. The dimensions could be useful in the following areas:

– Existing work addressing dynamic requirements changes can be analyzed in
various ways as shown in Section 5.

– The dimensions help to identify issues critical to improving composition
capability of existing work.

– Future research directions of a specific dimension can be identified.
– When making a new composition model suitable for a specific domain such

as [17], we can use, as a road map, the dimensions.

As experiments of our dimensions, first, we compared some existing software
composition efforts by using the dimensions. Second, we identified the required
features of a composition model supporting a dynamic mobile agent application
by using our dimensions. Also, we have developed APIs for the composition
model and implemented the application. For more information, please refer to
“http://salmosa.kaist.ac.kr/˜igkim/DCM”.

While our research offers improvement in dimensions of composition models,
there are some issues that are worth talking about in further research. First, it

Dimensions of Composition Models 225

is useful to apply the proposed dimensions to various domains in order to extend
the dimensions with additional features or to further refine the dimensions. We
are now applying the dimensions to a hotel reservation system with continuous
upgrades and changes of business requirements. Second, relations among the di-
mensions need to be analyzed and specified explicitly. Some of the dimensions
could affect each other. They could be refined into more orthogonal dimensions,
or the relations among them should be specified explicitly, for example, in doc-
uments. Finally, it is useful to identify relations between the dimensions and
software quality attributes such as performance, reusability, and modifiability.
For example, for modifiability, “Required Composition Information” has a higher
priority than “Location of Delta”. Such relations are useful to identity impor-
tant dimensions that composition models should have in order to satisfy certain
quality attributes or goals.

References

1. W. Aalst. “Don’t go with the flow: web services composition standards exposed”.
IEEE Intelligent Systems, 18(1):72–76, 2003.

2. M. Abadi and L. Cardelli. A Theory of Object. Springer, 1996.
3. U. Abmann. Invasive Software Composition. Springer, 2003.
4. D. Batory and B. Geraci. “Composition Validation and Subjectivity in GenVoca

Generators”. IEEE Transactions on Software Engineering, 23(2):67–82, 1997.
5. I. Ben-Shaul, O. Holder, and B. Lavva. “Dynamic Adaptation and Deployment of

Distributed Components in Hadas”. IEEE Transactions on Software Engineering,
27(9):769–787, 2001.

6. J. Bosch. “Superimposition: A Component Adaptation Technique”. Information
and Software Technology, 41(5):257–273, 1999.

7. M. Buchi and W. Weck. “Generic Wrappers”. In Proceedings of ECOOP, pages
201–225, June 2000.

8. S. Cheng, D. Garlan, B. Schmerl, J. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu.
“Software Architecture-base Adaptation for Pervasive Systems”. In Proceedings of
the International Conference on Architecture of Computing Systems: Trends in
Network and Pervasive Computing, pages 67–82.

9. L. DeMichiel, L. Yalcinalp, and S. Krishnan. Enterprise JavaBeansTM Specifica-
tion, Version 2.0. Technical report, Sun Microsystems, 2001.

10. L. Dominick and K. Ostermann. “Supporting Extension of Components with new
Paradigms”. In Workshop on Advanced Separation of Concerns at OOPSLA, 2000.

11. J. Dowling and V. Cahill. “The K-Component Architecture Meta-Model for Self-
Adaptive Software”. In Proceedings of the Third International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns, LNCS 2129, pages
81–88.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

13. O. M. Group. CORBA Components, v3.0 full specification. Technical report,
OMG, 2002.

14. G. Heineman and H. Ohlenbusch. An Evaluation of Component Adaptation Tech-
niques. Technical report, Computer Science Department, Worcester Polytechnic
Institute, 1999.

226 I.-G. Kim et al.

15. R. Helm, I. Holland, and D. Gangopadhyay. “Contracts: Specifying Behav-
ioral Compositions in Object-Oriented Systems”. In Proceedings of the OOP-
SLA/ECOOP Conference), pages 169–180, 1990.

16. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. “Aspect-Oriented Programming”. In Proceedings of ECOOP, 1997.

17. I. Kim and D. Bae. “A Dynamic Composition Model for Addressing Constrained
Environments”. In OOPSLA Workshop on Reuse in Constrained Environments,
2003.

18. I. Kim and D. Bae. Dimensions of Composition Model for Supporting Software
System Evolution. Technical report, Department of Computer Science, KAIST,
2005.

19. I. Kim, J. Hong, D. Bae, I. Han, and C. Yoon. “Scalable Mobile Agents Supporting
Dynamic Composition of Functionality”. In Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, T. Wagner and O. Rana, eds., LNAI
1887, pages 199–213, 2001.

20. G. Kniesel. “Type-Safe Delegation for Run-Time Component Adaptation”. In
Proceedings of ECOOP, pages 351–366, 1999.

21. P. Maes. “Concepts and Experiments in Computation Reflection”. In Proceedings
of OOPSLA), pages 147–155, 1987.

22. K. Ostermann and M. Mezini. “Object-Oriented Composition Untangled”. In
Proceedings of OOPSLA, pages 283–299, 2001.

23. L. Seiter, J. Palsberg, and K. Lieberherr. “Evolution of Object Behavior Using
Context Relations”. IEEE Transactions on Software Engineering, 24(1):79–92,
1998.

24. M. Svahnberg, J. Gurp, and J. Bosch. “A taxonomy of variability realization
techniques”. Software Practice and Experience, 35(8):705–754, 2005.

25. C. Szyperski. Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

26. A. Taivalsaari. “On the Notion of Inheritance”. ACM Computing Surveys,
28(3):438–479, 1996.

27. P. Tarr, H. Ossher, W. Harrison, and S. Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”. In Proceedings of ICSE, pages 107–119,
1999.

28. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Jorgensen. “Dynamic
and Selective Combination of Extensions in Component-Based Applications”. In
Proceedings of ICSE, pages 233–242, 2001.

Context-Aware Aspects

Éric Tanter1,�, Kris Gybels2, Marcus Denker3, and Alexandre Bergel4,��

1 Center for Web Research/DCC
University of Chile, Santiago – Chile

2 PROG Lab
Vrije Universiteit Brussel – Belgium

3 Software Composition Group
University of Bern – Switzerland

4Distributed Systems Group
Trinity College – Ireland

Abstract. Context-aware applications behave differently depending on
the context in which they are running. Since context-specific behavior
tends to crosscut base programs, it can advantageously be implemented
as aspects. This leads to the notion of context-aware aspects, i.e., aspects
whose behavior depends on context. This paper analyzes the issue of
appropriate support from the aspect language to both restrict the scope
of aspects according to the context and allow aspect definitions to access
information associated to the context. We propose an open framework for
context-aware aspects that allows for the definition of first-class contexts
and supports the definition of context awareness constructs for aspects,
including the ability to refer to past contexts, and to provide domain-
and application-specific constructs.

1 Introduction

Context awareness [5,10], i.e., the ability of a program to behave differently de-
pending on the context in which it is running, has been the subject of a number
of research proposals, mainly in the field of ubiquitous computing [21], self-
adaptive [17] and autonomic systems [16]. In these areas, a major issue is that
of perceiving the context surrounding an application (e.g., hardware or network
state, user characteristics, location, etc.). Context awareness toolkits have been
proposed to address this issue of context perception (e.g., WildCAT [9]). In the
area of programming languages, it has been recognized that beyond perceiving
context, actually composing context-specific behavior with the application logic
results in context-related conditionals (if statements) being spread out all over
the program [7]. Context awareness is therefore a crosscutting concern, which

� É. Tanter is partially financed by the Milenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile.

�� Author supported by the Science Foundation Ireland and Lero - the Irish Software
Engineering Research Centre, and the Swiss National Science Foundation, Project
No. 200020-105091/1 “A Unified Approach to Composition and Extensibility”.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 227–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 É. Tanter et al.

is a good candidate for being treated as an aspect. Doing so implies that as-
pects should be context aware; a context-aware aspect is an aspect whose behav-
ior depends on the context. The “behavior” of an aspect includes the crosscut
specification of the aspect as well as its associated action (a.k.a., advice). This
paper explores aspect language constructs to scope aspects to certain contexts,
and to allow aspect advices to be parameterized by information associated to
contexts.

Current approaches to AOP support several means to restrict an aspect based
on some kind of context: e.g., based on certain data associated with the join
points it intercepts (e.g., the value of a certain parameter), or based on their
relationship to past join points (e.g., current control flow or past execution his-
tory [14, 12]). However the notion of context used in context-aware applications
is more general and AOP languages lack an explicit notion of context. Interest-
ingly, context can also be related to particular application domains, such as a
promotional context in an online shopping application. Also, current AOP lan-
guages are limited with respect to the kind of context dependencies that can
be expressed: most do not consider past contexts. While there are approaches
that keep track of past events and state of the program, the problem of context-
dependent aspects has not been fully considered in these cases. Expressing con-
text dependencies in aspects would imply relying on design patterns and idioms.
Conversely, we believe context awareness is central enough to many systems to
deserve dedicated language constructs. We therefore aim at studying appropriate
aspect language constructs for context-aware aspects, including general-purpose
and domain-/application-specific constructs. The contributions of this paper are:
(a) a general analysis of the issues associated with context-aware aspects; (b)
the description and implementation of an open framework for context-aware as-
pects that meets all identified requirements. This framework, implemented on
the Reflex AOP kernel [19], includes a context definition framework and a frame-
work for defining context-related aspect language constructs.

Section 2 introduces a running example on which we base our analysis of
context-aware aspects, and distills a number of requirements for defining contexts
and providing aspect language features for context awareness. We describe our
framework for context-aware aspects in Section 3, and discuss related work in
Section 4. Section 5 presents our conclusions.

2 Motivation and Requirements

2.1 Running Example

The running example is an online shop application. When a customer logs in, a
shopping cart is created that can be filled with various items. When the purchase
has to be ordered, the bill is calculated. Within this application, we consider
a simple discounting aspect. The following is a skeleton implementation of a
Discount aspect in AspectJ which is not at all dependent on current promotions
but simply applies a constant discount of 10%:

Context-Aware Aspects 229

aspect Discount {
double rate = 0.10;
pointcut amount() : execution(double ShoppingCart.getAmount());
double around() : amount() { return proceed() * (1 - rate); }

}

There are several ways in which the discounting aspect can be related to a pro-
motion. For instance, the discount can be based on (D1) the current promotion
that is active either when the customer checks out, or (D2) when the customer
logs in and the shopping cart is created, or (D3) when the item is added to the
shopping cart.

The fact that a promotion is active or not can be described as the application
being in a promotional context 1. Whether the application is currently in a pro-
motional context can be defined in several ways, e.g.: (P1) it can be time-based,
based on whether the current time falls in any of the given intervals during
which promotions are given; or (P2) the shop application can automatically
give promotions when the shop’s stock area is getting overloaded and needs to
be cleared; or (P3) the shop’s sales department may want to advertise a new
web-services-based interface to the application, the application would then be in
a promotional context if shopping is done through web-service requests.

Finally, the discount rate may (R1) simply be constant as in the example
above, but (R2) may also vary depending on the actual promotion. In other
words, instead of being in a promotional context or not, the application may
also offer promotions with different discount rates.

2.2 Example Design Analysis

Context Definition. The definition of when to apply the discount and the
definition of the promotional context should be separate. The reason for this
is simply good separation of concerns. As discussed above, there are several
variations possible both for the context definition itself and the discount aspect
that depends on it. In an evolution scenario, the shopping company may either
change when the discounts are applied without changing the definition of the
promotion, or vice-versa. Also, the definition of the promotion may apply to
other aspects besides the discount aspect, such as an advertising aspect which
adds customized banners for each customer to the shop’s web pages. Hence,
separating aspects that are dependent on some contexts from the definition of
contexts themselves serves well-established engineering principles. In addition to
this logical separation between aspects and contexts, contexts should be:

– stateful: a context may have state associated to it. Support should be
provided for both state internal to the context’s implementation (e.g., the
time slots when a promotion is active) and publicly accessible state, such as
for variation R2 in the example when the rate of discount depends on the

1 We also use the interchangeable phrases “the application is in a given context” and
“a given context is active”.

230 É. Tanter et al.

promotion. In that case, the discount aspect would define when to actually
apply a discount, and would get the specific discount rate from the promotion
which defines when this rate is determined. Of course, the state of a context
may change dynamically.

– composable: a context may be defined from more primitive contexts. For
instance, one can define the stock overload context independently of the
promotional context; this way, other contexts can be based on stock overload,
and the promotional context can combine the time-based definition with the
stock overload context.

– parameterized: contexts can be defined generically, and parameterized by
aspects that are restricted to it; for instance, the stock overload context can be
parameterized by the actual threshold that leads to the context being active.

Finally, a context can be related to control flow properties (e.g., the web-services-
based promotional context), in the broad sense of the term (not only as AspectJ’s
cflow, but also as past event sequences [14, 12]).

Contextual Restriction. Restricting an aspect to a particular context re-
quires the possibility to refer to a context definition in a pointcut definition. For
instance:

pointcut amount(): execution(double Item.getPrice()) && inContext(PromotionCtx);

Furthermore, since the discount rate may vary on the actual promotion, the as-
sociated advice may need to access some external state of the considered context:

aspect Discount {
pointcut amount(double rate): execution(double ShoppingCart.getAmount())

&& inContext(PromotionCtx(rate));
double around(double rate): amount(rate) { return proceed() * (1 - rate); }

}

The code above assumes that using rate in PromotionCtx(rate) relies on the fact
that a promotional context exposes a rate property (e.g., via a getRate accessor).
In addition to context state exposure, it has to be possible to parameterize a
context when expressing a dependency on it: e.g., Discount could depend on
both a time-based PromotionCtx, and the StockOverloadCtx, parameterized by a
threshold of, say, 80%2.

pointcut amount(double rate): execution(double ShoppingCart.getAmount())
&& inContext(PromotionCtx(rate)) && inContext(StockOverloadCtx[.80]);

The above inContext pointcut restrictor is semantically equivalent to an if re-
strictor in AspectJ: restricting an aspect based on whether a certain (context)
condition is currently verified. However, it should also be possible to restrict
an aspect based on whether the application was in a certain context previously.
2 We assume the syntax: (..) for exposing context state, and [..] for context parame-

terization.

Context-Aware Aspects 231

There is one generally-useful past context dependency: the context during which
an object is created (a.k.a., its creation context), e.g., the context during which
a shopping cart is created. Using an appropriate language construct createdInCtx,
the following implies that Discount applies for any shopping cart that was created
when PromotionCtx was active, without considering whether the promotion is still
active when the customer checks out:

pointcut amount(): execution(double ShoppingCart.getAmount())
&& createdInCtx(PromotionCtx);

Finally, it should also be possible to define domain- or application-specific context
restrictors; e.g., to refer to the context during which an item was added to
the shopping cart (assuming an appropriate application-specific putInCartInCtx

pointcut restrictor):

pointcut amount(): execution(double Item.getPrice()) && putInCartInCtx(PromotionCtx);

The combination of past context dependencies and stateful contexts implies
the need for keeping track of past contexts and their associated state: on the one
hand, contexts can be stateful and this state can vary over time; on the other
hand, the actual application of the discount can depend on a past promotion
context. We refer to this process of keeping track of past contexts and their
states as context snapshotting, and to the frozen state of a context at a given
point in time as a context snapshot. A global context snapshot is therefore a
snapshot of all defined contexts at a given point in time.

For implementation considerations (basically, memory usage), it is obviously
impossible to keep the global context snapshots at each and every point in time.
It is thus important to be able to snapshot contexts only when really needed. For
instance, snapshotting the creation context of an object is needed only if this object
is affected by an aspect that is subject to a creation-context dependency. It is also
desirable that snapshots be associated to the object they relate to in order to avoid
maintaining huge global hashtables, as these would surely become bottlenecks.

Finally, the possibility of defining domain- and application-specific context
restrictors implies that the corresponding snapshotting (when to snapshot, where
to store the snapshots) be user-definable.

2.3 Summary

The above design analysis of the running example points out a number of require-
ments for appropriately modeling contexts on the one hand, and for providing
aspect language features for context awareness on the other hand, which can be
summarized as follows:

– Contexts and context-aware aspects must be separate entities.
– Contexts should possibly be parameterized, stateful, and composable.
– Context state should possibly be bound to pointcut variables.
– It should be possible to express dependencies on past contexts.
– New context-related constructs (possibly domain-specific) should be

definable.
– Non-naive implementation of context snapshotting must be supported.

232 É. Tanter et al.

3 An Open Framework for Context-Aware Aspects

We now present an open framework for context-aware aspects that meets the
above requirements. The framework is an extension of Reflex3, a versatile kernel
for multi-language AOP in Java [19]. Reflex supports AOP-like dynamic cross-
cutting, and the framework supports plugins that compile languages such as
AspectJ to standard Java programs using Reflex [18]. We do not discuss con-
crete syntax extensions for supporting context-dependent restrictions here; we
focus on the extension of the framework.

3.1 Why a Framework Approach?

A major requirement we have identified is to be able to add new constructs to an
aspect language, along with their corresponding semantics. Such an extensible
aspect language can be achieved using one of the following alternatives:

– modifying the interpreter of the aspect language;
– using a reflective aspect language, i.e., an aspect language that has an ac-

count of itself embedded within it;
– using an extensible compiler for that aspect language.

To the best of our knowledge, there have been no real reflective aspect lan-
guage proposed to date. As regards extensible compilers, we could implement
our proposal using abc, the AspectBench compiler, which is precisely an ex-
tensible AspectJ compiler [3]. Our framework-based approach has an advantage
in terms of simplicity of the implementation and hence rapidity in prototyping
new language features. There is no doubt though that abc would lead to a more
efficient implementation as a number of static optimizations could be done: but
this is not the purpose of this paper; optimized implementations of context-aware
aspects is deliberately left for future research. It has to be noted that working
at the framework level is conceptually equivalent to working at the level of the
interpreter of the aspect language.

The following section gives a brief overview of Reflex, to give the necessary
background for understanding the description of the extended framework that
follows. The presentation of the extension for context-dependence is divided
in four parts, following the organization depicted in Fig. 1: we first present the
context definition framework, followed by the context restriction framework, and
we illustrate the use of both with user-defined extensions.

3.2 Background on Reflex

Reflex is an open reflective extension of Java that supports both structural and
behavioral modifications of programs. The core concept of Reflex is the link; we
hereby only need to explain behavioral links: a behavioral link invokes messages
on a metaobject at occurrences of operations specified by a hookset [19, 20].

3 http://reflex.dcc.uchile.cl

Context-Aware Aspects 233

getState(): ContextState
Context

getContext(): Context
ContextState

*
1

- define(Context)
- get(): List<ContextState>

Contexts
* 1

evaluate(Object): boolean
ContextActive

1

- annotate(ClassSelector)
- snapshot(Hookset, Parameter)

SnapshotCtxActive

CtxAnnotator

getRate(): double
PromotionState

rate: double
PromotionCtx

CurrentlyInCtx

CreatedInCtx

PutInCartInCtx

Context Definition Framework

Context Restriction Framework

O
b
j
e
c
t
-
l
e
v
e
l

A
n
n
o
t
a
t
i
o
n

F
r
a
m
e
w
o
r
k

Fig. 1. The Reflex-based frameworks for context-aware aspects: the Context Defin-
ition Framework for defining when contexts are active and the Context Restriction
Framework for defining context-dependent activation conditions

A hookset, like an AspectJ pointcut, is a composable entity that specifies a
set of operations based on selection conditions. However, it expresses lexical
crosscutting only (pointcut shadows). An example hookset and its equivalent in
AspectJ is the following:

// execution(* WebServiceRequest+.*(..))
Hookset hs = new Hookset(MsgReceive.class,

new NameCS(”WebServiceRequest”, true), new AnyOS()));

The selection conditions of a hookset are split into a selection on the type of
operation, on the classes in which they occur and on the operations themselves. In
the example, the hookset intercepts occurrences of MsgReceive operations, which
corresponds to the execution join point type in AspectJ. The NameCS class selector
specifies that the class should be WebServiceRequest – or one of its subclasses, as
specified by the true parameter, which corresponds to the + in AspectJ. The
operation selector AnyOS simply specifies no further conditions on operation
occurrences (similar to the use of ”*” wildcards).

The exact message sent to the metaobject, as well as how and even if it is really
invoked, can be further controlled by setting attributes of the link. Following is
an example link definition (amountHS is the hookset corresponding to the amount

pointcut):

BLink discount = Links.createBLink(amountHS, new Discount());
discount.setCall(Discount.class, ”amount”);
discount.setControl(Control.BEFORE); // before advice kind
discount.setScope(Scope.GLOBAL); // singleton metaobject
discount.addActivation(new Condition()); // adding a dynamic condition

234 É. Tanter et al.

The discounting aspect’s advice is here modeled as a metaobject, instance of the
plain Java class Discount with an amount method, that simply applies the dis-
count. The setCall invocation specifies that the link should send the amount mes-
sage, with no arguments. The next two invocations illustrate setting the control
and scope attributes, which correspond to advice kind and aspect instantiation,
respectively.

Important for this paper is that the final invocation specifies an activation
condition. The activation condition is implemented as an object implementing
the interface Active which simply specifies a boolean method evaluate which takes
exactly one parameter, the object in which the operation occurred. At runtime,
interception occurs only if the activation condition evaluates to true. Hence, an
activation condition basically plays the role of pointcut residues in AspectJ.

The messages invoked by links on metaobjects can take parameters. One can
specify on a link what arguments to pass by giving a number of Parameter ob-
jects. There are several possible objects one can pass, but a number of pre-
defined parameters are available, such as Parameter.THIS and Parameter.RESULT

which represent the currently-executing object and the result of the intercepted
operation, respectively.

3.3 Context Definition Framework

A simple usage of Reflex for defining context can represent contexts as objects
with a boolean method active. Since Reflex supports first-class pointcuts via
hooksets and activation conditions, AOP features can be used for defining when
a context is active. For instance, consider the definition of the web-service-based
promotion context:

class PromotionCtx {
// cflow(execution(* WebServiceRequest+.*(..)))
CFlow cf = CFlowFactory.get(new Hookset(MsgReceive.class,

new NameCS(”WebServiceRequest”, true), new AnyOS()));
boolean active() { return cf.in(); }

}

The CFlow object exposes the control flow of the hookset given to the CFlowFactory

The active method is defined in terms of the in message of this object, which
returns true when the application is in the control flow of an operation that
matches the hookset.

We also need to define how contexts are snapshot: at any point in time, we
may need to snapshot a context, in order to access its state later. One way
to design this is to make contexts cloneable, and clone all active contexts when
doing a snapshot. But this introduces the issue of managing the depth of context
cloning; also, some state of the context is related to its initial parameterization
and hence does not need to be cloned.

We rather opted for a design that forces context implementors to explicitly
consider the issue of context snapshots. Context definitions should extend the
abstract class Context, which instead of having a boolean active method requires

Context-Aware Aspects 235

overriding a getState method. This method should return null if the context is
not active, otherwise it should return a snapshot of the context as a ContextState

object. ContextState is defined as an inner class of Context to ensure the snapshots
have a relation to the originating context:

abstract class Context {
Context() { Contexts.define(this); } // define context (explained later)
abstract ContextState getState(); // null if inactive
class ContextState {

Context getContext() { return Context.this; }
}}

Suppose that PromotionCtx is characterized by a variable discount rate:

class PromotionCtx extends Context {
CFlow cf = /* as above */
double rate; /* with setter */
ContextState getState() {

if(!cf.in()) return null;
return new PromotionState(rate);

}

class PromotionState
extends ContextState {

double rate; // init in constructor
double getRate() { return rate; }

}}

The above implementation ensures that the promotion context can be snapshot
correctly: a PromotionState object holds the value of the discount rate at the
time the snapshot was requested – although the current discount rate may be
different.

The framework also includes a global context dictionary, Contexts, which keeps
track of all contexts that have been defined (via define(c), as done in the construc-
tor of the abstract Context class) and which can be asked for a global snapshot of
all currently active contexts (via get). A global context snapshot is represented
as a Snapshot object, which is simply a map of Context-to-ContextState objects.
Recall that each context state object contains a reference to the context object
that generated it.

3.4 Context Restriction Framework

The context-dependent pointcut restrictors of Section 2.2 can be defined in the
Reflex framework as activation conditions on links. Two abstract classes im-
plementing the Active interface are defined as a framework for defining context-
dependent activation conditions (Fig. 1). We show here how these are specialized
for defining the currentlyInCtx restrictor. The createdInCtx and putInCartInCtx re-
strictors are presented in the next section. First of all, the CtxActive abstract
class is defined as follows:

abstract class CtxActive implements Active {
Context itsContext;
CtxActive(Context c){ itsContext = c; } // associate context to condition
boolean evaluate(Object o){ return getCtxState(o) != null; }
abstract ContextState getCtxState(Object o);

}

236 É. Tanter et al.

In the constructor, the context on which the activation condition relies is stored
in an instance variable. The activation condition evaluates to true if the associ-
ated context is active, or more precisely, is determined to (having) be(en) active
by getCtxState. This method is abstract because some context-related conditions
rely on a past context state, and should therefore be able to retrieve the ap-
propriate context snapshot associated to the currently-executed object. This is
explained in more details in the rest of this section.

The CurrentlyInCtx condition restricts a link to be active only when the condi-
tion’s context is active. So getCtxState returns the value of the context’s getState

method:

class CurrentlyInCtx extends CtxActive {
ContextState getCtxState(Object o){ return itsContext.getState(); }

}
The following is an example of using this activation condition to restrict a link
to activate only when the promotion context is active:

discount.addActivation(new CurrentlyInCtx(new PromotionCtx()));

Past Dependencies. The abstract class SnapshotCtxActive provides the nec-
essary support for defining activation conditions that depend on past context
snapshots.

abstract class SnapshotCtxActive extends CtxActive {
ContextState getCtxState(Object o){

Snapshot snapshot = getSnapshot(o);
return snapshot.get(itsContext);

} }

When queried, such an activation condition extracts the relevant snapshot from
the currently-executing object passed as parameter (getSnapshot), and queries
the snapshot for the state associated to its context.

There are basically two design options for storing the snapshots of contexts
associated with specific objects. One is to rely on a global map of objects to
contexts, another is to associate snapshots as extra hidden state in the objects
themselves. We opted for the latter option, to avoid a central bottleneck and
also since it ensures that the snapshots are removed from memory when the
objects they are associated with are garbage collected. We rely on a general
object-level annotation framework based on Reflex and its abilities to perform
structural changes to classes (not presented here due to space restrictions). To
control snapshots, SnapshotCtxActive implements a number of utility methods to
interact with this framework, such as:

– void annotate(ClassSelector cs) – enable annotations in classes matched by cs.
– void snapshot(Hookset hs, Parameter p) – upon operation occurrences matched

by hs, store snapshot context in the parameter p of the occurrence.
– Snapshot getSnapshot(Object o) – return snapshot stored in o.

Context-Aware Aspects 237

3.5 User-Defined Extensions

Having presented the whole framework for context-aware aspects, we illustrate
its use by showing how new pointcut restrictors are defined. Two examples are
given, one for restricting based on the creation context of a particular object,
the other is an application-specific one. Since both refer to past contexts, they
are extensions of SnapshotCtxActive.

Creation Context. The creationCtx pointcut restrictor is implemented as the
CreatedInCtx class for activation conditions. It can be added as an activation
condition to the discount link as follows:

CtxActive createdInPromo = new CreatedInCtx(new PromotionCtx(), discount);
discount.addActivation(createdInPromo);

Note that the discount link itself is passed as a parameter to the activation con-
dition. This is done so that the link can be introspected, in order to determine
which instantiations of which classes the discount aspect actually depends on; the
snapshotting of the contexts can thus be limited to instantiations of just those
classes. In the constructor of CreationCtx below, the class selector of the link is
and used to define snapshotting on just the classes described by the selector:

class CreatedInCtx extends SnapshotCtxActive {
CreatedInCtx(Context c, BLink l){

super(c);
ClassSelector cs = l.getClassSelector();
annotate(cs);
snapshot(new Hookset(Creation.class, cs, new AnyOS()), Parameter.THIS);

} }

The class selector cs is retrieved from the link using its getClassSelector method
and is used in a call to snapshot. The hookset passed to snapshot describes all invo-
cations of constructors in classes matching the class selector. Context snapshots
are consequently stored in the newly-created object (Parameter.THIS).

In Cart Context. We now illustrate how an application-specific pointcut re-
strictor is defined, by considering the case of the PutInCartInCtx discussed in
Section 2.2. In Reflex, the corresponding activation condition would be used as
follows:

CtxActive putInCartInPromo = new PutInCartInCtx(new PromotionCtx());
discount.addActivation(putInCartInPromo);

The implementation of PutInCartInCtx states that Item objects should be anno-
tated, and that context snapshot annotation occurs upon execution of addItem

on a shopping cart; The object to be annotated, the item, is the first parameter
(NthParameter(1)) of the call:

238 É. Tanter et al.

class PutInCartInCtx extends SnapshotCtxActive {
PutInCartInCtx(Context c){

annotate(new NameCS(”eshop.Item”));
snapshot(new Hookset(MsgReceive.class, new NameCS(”eshop.ShoppingCart”),

new NameOS(”addItem”)), new NthParameter(1));
}}

3.6 State Exposure and Parameterization

Since contexts are standard objects, their parameterization is naturally done
by passing parameters at instantiation time, or by sending them configuration
messages. For instance, restricting Discount to inContext(StockOverflowCtx[.80]) is
implemented as:

discount.addActivation(new CurrentlyInCtx(new StockOverflowCtx(.80)));

Exposing context state, such as the discount rate in:

aspect Discount {
pointcut amount(double rate): execution(double ShoppingCart.getAmount())

&& createdInCtx(PromotionCtx(rate));
double around(double rate): amount(rate) { return proceed() * (1 - rate); }

}

is based on the mechanism provided by Reflex to customize the invocation of a
metaobject (recall Section 3.2). The above example would be implemented as
follows:

Context promotionCtx = new PromotionCtx();
CtxActive inPromo = new CreatedInCtx(promotionCtx, discount);
discount.addActivation(inPromo);
discount.setCall(Discount.class, ”amount”, inPromo.getCtxParam(”rate”));

The important line is the last one: the specification of the call to amount (the
advice) is changed to include one parameter, bound to the value of the rate

state property of the promotional context. getCtxParam is a method of CtxActive4

that returns a custom Parameter object. To evaluate the value of this parameter
at runtime, the activation condition inPromo is queried for the context state
corresponding to the currently-executing object, retrieves that context state in
the adequate snapshot (in this case, the creation context snapshot), and invokes
the getRate method on it.

3.7 More Extensions

In the current work we have only considered context dependencies related to the
currently-executing object of an operation occurrence. The two constructs we
4 The implementation of getCtxParam is not shown as this would lead us too far into

details. The interested reader is welcome to ask the authors.

Context-Aware Aspects 239

have presented for past context dependencies always look for context snapshots
in the this: if the currently-executing object has been created in a given context,
or put in the shopping cart in a given context, etc. It would be equally interesting
to be able to relate to past contexts associated with other objects, such as the
target or any of the arguments of an operation occurrence, or even any object
that is accessible from the join point. We could define additional activation
conditions that are defined to check for context-dependency related to other
objects than the this. Another option fitting in the Reflex framework would be
to parameterize context-related activation conditions with a Parameter object to
describe on which parameter of the operation occurrence the activation condition
acts. In that case, the constructors of the activation condition will also have to
perform a slightly more complex introspection of the link’s hookset to determine
on which classes snapshotting should be performed. We expect to research such
extensions in future work.

4 Related Work

We now review related work in the area of contexts, and existing proposals to re-
strict the scope of aspects. The term context can be found in different meanings
and definitions in many computer science disciplines, such as human-computer
interaction and ubiquitous computing. We hereby only focus on the use of con-
text as an element of a programming language.

Context-Oriented Programming. ContextL [7] is a recent CLOS-based ap-
proach for Context-Oriented Programming (COP). While we have presented an
extension of an aspect-oriented approach, COP is exploring a paradigmatically
new approach. A major difference between both approaches is in the way time is
dealt with. In the AOP approach an aspect can be made dependent on whether
the application was previously in a certain context, while in COP this is re-
versed: when the application enters a state that qualifies as being in a certain
context, code is redefined so that its future execution takes the “aspect” into
account. As the two approaches are paradigmatically different, it is difficult to
compare them, though one could state that our proposal has a more declarative
nature as the conditions under which the application is in a certain context are
encapsulated in context definitions, while in ContextL context has to be more
explicitly activated.

Context in other AOP Approaches. The term context has also been used
in other AOP approaches: the term is meant to denote information associated
with joinpoints, but is typically also limited to information directly associated
with joinpoints such as arguments of messages, or the control flow “context” of
the joinpoint. We have considered the term context in the more general meaning
of all the information about the state of a program when a joinpoint occurs, and
have also considered the use of context about past joinpoints, while limiting the
amount of information that is kept about past contexts.

240 É. Tanter et al.

Technically, this can be realized in any AOP approach like it is done in the im-
plementation of our framework, i.e., by defining additional pointcuts and advices
to capture contexts when needed. However, in our framework these additional
pointcuts (or hooksets) are automatically installed, they do not have to be writ-
ten by hand (Sect. 3.5). Also, in our approach context dependencies can be
checked in the pointcut, not in the advice, resulting in clearer code.

In AspectJ for example, one can implement a context definition such as the
promotion context as an object and the discounting as an aspect. The discounting
aspect has one advice for applying the discount, and a second one for snapshot-
ting the promotion context when, e.g., a shopping cart is created. But any aspect
depending on the promotion context needs an advice to snapshot the context as
needed. An attempt to define a more general promotion context snapshotting
aspect runs into the problem that it is not possible to analyze the pointcuts of
the aspects that depend on the context. So the reusable definition of the snap-
shotting necessarily has to snapshot the context at all instance creations, leading
to unnecessary overhead. In AspectJ, there is also the problem of defining con-
text activation predicates as reusable named pointcuts because such pointcuts
can neither be made dependent on a context using polymorphism (pointcut in-
vocations are not late bound), nor can named pointcuts be parameterized with a
context object (named pointcuts only have output arguments). In more advanced
aspect languages it may be possible to achieve an implementation of context-
aware aspects that is both more reusable and efficient than an implementation
in AspectJ, for instance with CaesarJ [2]. Although a detailed comparison with
the Reflex-based implementation presented here remains to be done, the interest
of Reflex (apart that it is sufficiently expressive and open to cover our needs)
is that it explicitly addresses the issue of extensible aspect languages on top of
the framework, through the on-going integration of Reflex and MetaBorg [6].
Therefore the context-aware syntactic extensions formulated at the beginning of
the paper can be provided over Reflex.

A number of proposals make it possible for aspects to depend on the past ex-
ecution history, and to refer to state associated to past events [1,8,11,13]. These
approaches make it possible to refer to past context, but only consider context in
the sense of join point-related information, as above. Conversely, in this work we
consider a more general notion of context, whose state can actually be computed
arbitrarily. In other words, we can bind any context state to pointcut variables,
which can then be used to parameterize advices. Although the extensions con-
sidered in this paper are not impossible to realize in, e.g., EAOP, they have not
been explicitly considered. Allowing aspects to refer to the full state of the pro-
gram was also introduced in the user-extensible logic-based language CARMA
using object reifying predicates [15]. This work could also be extended to solve
context-dependency problems.

The recent introduction of a let construct [4] in the AspectBench Compiler [3]
makes it possible to bind any context information to pointcut variables, as in
our approach. This construct therefore solves the issue of being able to expose
(external) context information in pointcuts. However, being an extension of

Context-Aware Aspects 241

AspectJ, an abc solution would not do any better with respect to the other
issues discussed previously with AspectJ: lack of first-class pointcuts, no late-
bound pointcut invocations, no input pointcut arguments, etc.

5 Conclusion

Handling context-related behavior as aspects allows for better modularization.
In this paper, we have analyzed what it means for aspects to be context aware
and explored the associated aspect language features. We have exposed an open
framework for context-aware aspects, i.e., aspects whose behavior is context
dependent. This includes the possibility to restrict aspects to certain contexts,
both currently and in the past, as well as to parameterize aspect advices with
context-related information. Furthermore, our approach makes it possible to
define application- or domain-specific context-related restrictors for aspects.

Future work includes experimenting with context-aware aspects in more elab-
orate scenarios, and implementing a set of contexts in our framework based on
a context-awareness toolkit such as WildCAT [9]. This should provide feedback
on our aspect language feature approach to handling context awareness.

Acknowledgments: Many thanks to thank Johan Brichau, Pascal Costanza,
Maja D’Hondt, Stéphane Ducasse, Johan Fabry, Oscar Nierstrasz and Roel
Wuyts for fruitful discussions on context-oriented programming and context-
aware aspects.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. Adding trace matching with free variables to AspectJ. In
Proceedings of OOPSLA 2005. ACM Press, 2005.

[2] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
CaesarJ. In Transactions on Aspect-Oriented Software Development, volume 3880
of Lecture Notes in Computer Science, pages 135–173. Springer-Verlag, February
2006.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhotak, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: an extensible AspectJ compiler. In Proceedings of AOSD
2005, pages 87–98, New York, NY, USA, 2005. ACM Press.

[4] Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondrej Lhoták, Laurie Hendren,
Oege de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient trace moni-
toring. Technical Report abc-2006-1, abc Group, March 2006.

[5] M. Baldauf and S. Dustdar. A survey on context-aware systems. Technical Report
TUV-1841-2004-24, Technical University of Vienna, 2004.

[6] Martin Bravenboer and Eelco Visser. Concrete syntax for objects. In Proceedings
of OOPSLA 2004, Vancouver, British Columbia, Canada, October 2004. ACM
Press. ACM SIGPLAN Notices, 39(11).

242 É. Tanter et al.

[7] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming. In Proceedings of the ACM Dynamic Languages Symposium, 2005.

[8] Thomas Cottenier and Tzilla Elrad. Contextual pointcut expressions for dynamic
service customization. In Dynamic Aspect Workshop, 2005.

[9] Pierre-Charles David and Thomas Ledoux. WildCAT: a generic framework for
context-aware applications. In Proceeding of MPAC’05, the 3rd International
Workshop on Middleware for Pervasive and Ad-Hoc Computing, Grenoble, France,
November 2005.

[10] A. K. Dey and G. D. Abowd. Towards a better understanding of context and
context-awareness. In Workshop on the What, Who, Where, When, and How of
Context-Awareness, as part of the 2000 Conference on Human Factors in Com-
puting Systems (CHI 2000), The Hague, The Netherlands, April 2000.

[11] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and inter-
action analysis of stateful aspects. In Proceedings of AOSD 2004, pages 141–150.
ACM Press, March 2004.

[12] Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In
Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors,
Aspect-Oriented Software Development, pages 201–217. Addison-Wesley, Boston,
2005.

[13] Remi Douence, Olivier Motelet, and Mario Sudholt. A formal definition of cross-
cuts. In Proceedings of Reflection 2001, volume 2192 of Lecture Notes in Computer
Science, pages 170–186, Kyoto, Japan, September 2001. Springer-Verlag.

[14] Rémi Douence and Luc Teboul. A pointcut language for control-flow. In Gabor
Karsai and Eelco Visser, editors, Proceedings of GPCE 2004, volume 3286 of
Lecture Notes in Computer Science, pages 95–114, Vancouver, Canada, October
2004. Springer-Verlag.

[15] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of AOSD 2003, 2003.

[16] J. Kephart. A vision of autonomic computing. In Onward! Track at OOPSLA
2002, pages 13–36, Seattle, WA, USA, 2002.

[17] P. K. McKinley, S. M. Sadjadi, and B. H Kasten, Cheng. Composing adaptive
software. IEEE Computer, 37(7):56–64, July 2004.

[18] Leonardo Rodŕıguez, Éric Tanter, and Jacques Noyé. Supporting dynamic cross-
cutting with partial behavioral reflection: A case study. In Proceedings of SCCC
2004, pages 48–58, 2004.

[19] Éric Tanter and Jacques Noyé. A versatile kernel for multi-language AOP.
In Robert Glück and Mike Lowry, editors, Proceedings of the 4th ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering (GPCE 2005), volume 3676 of Lecture Notes in Computer Science, pages
173–188, Tallinn, Estonia, September/October 2005. Springer-Verlag.

[20] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proceedings of OOPSLA
2003, pages 27–46, nov 2003. ACM SIGPLAN Notices, 39(11).

[21] Mark Weiser. Some computer science issues in ubiquitous computing. Communi-
cations of the ACM, 36(7):75–84, July 1993.

Understanding Design Patterns Density
with Aspects

A Case Study in JHotDraw Using AspectJ

Simon Denier and Pierre Cointe

OBASCO
École des Mines de Nantes, INRIA, LINA,

4, rue Alfred Kastler, Nantes, France
{sdenier, cointe}@emn.fr

Abstract. Design patterns offer solutions to common engineering prob-
lems in programs [1]. In particular, they shape the evolution of program
elements. However, their implementations tend to vanish in the code:
thus it is hard to spot them and to understand their impact. The prob-
lem becomes even more difficult with a “high density of pattern”: then
the program becomes easy to evolve in the direction allowed by patterns
but hard to change [2]. Aspect languages offer new means to modular-
ize elements. Implementations of object-oriented design patterns with
AspectJ have been proposed [3]. We aim at testing the scalability of
such solutions in the JHotDraw framework. We first explore the impact
of density on pattern implementation. We show how AspectJ helps to
reduce this impact. This unveils the principles of aspects and AspectJ to
control pattern density.

1 Introduction

Design patterns [1] are well-known couples of problem-solution for program engi-
neering. They shape the structure and the interface of their targets, and redefine
some behaviors. Most design patterns aim at decoupling concerns, in particular
to allow separate evolution. However, the shape they impose disallows evolution
in other directions. Also, the programmer must often make a tradeoff between
the impact of the pattern and the properties he wants from it, which results in
distortions from the standard pattern. Then implementations of design patterns
suffer from lack of traceability: some elements tend to be lost and pattern iden-
tity itself is hard to trace back to the model — such that the pattern is said to
“vanish” in the code [4].

The impact of design patterns on implementation, their tendency to shape
evolution, and the difficulty to trace them in the code raise questions when soft-
ware grows in complexity. But the implications of design patterns in complex
software is not well understood. Most prominent work includes the study of rela-
tionships between design patterns, such as [1] (section “Design pattern relation-
ships”) and [5], who proposes a classification of different kind of relationships.
This includes patterns making use of other patterns in their implementation as

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 243–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 S. Denier and P. Cointe

well as interactions between two patterns. [2] shows in the context of JUnit that
mature frameworks tend to have a high density of patterns: then they are “easy
to use, but hard to change”. Implementations become so entangled that it is
nearly impossible to think of a pattern alone and that they can lose some of
their flexibility.

Aspect-oriented languages à la AspectJ [6,7] offer new means to modular-
ize software elements. [3] shows some general aspectizations of the GoF design
patterns [1]. Aspect-oriented languages allow:

– modularization of crosscutting pattern elements;
– better separation between a generic (reusable) part and a specific part;
– language-level detection and visualization tools for interactions;
– pluggability of modules to replace a pattern implementation by another.

Our aim is to test the scalability of such aspectizations of design patterns in
a real application. We experiment with the JHotDraw framework1 as it is a well
documented “design exercise” involving many design patterns.

Our guideline is to look for an incremental and reversible development of
JHotDraw. We start with a basic yet functional framework (called the base there-
after). We then “compose” new modules into the base, incrementally enhancing
the framework, but still with the option to come back to earlier versions. By
doing so we underline design choices which happen through the whole program
when more functions are composed together, but get lost because there is no
mean to trace such choices to the module they support. Such a guideline allows
for a deeper separation of concerns highlighting the development process and
product versions.

Section 2 presents JHotDraw base (internals and design patterns), as well
as the specific example of the “invalidation” concern. Section 3 examines the
invasive impact of two additional concerns on the base, related to the Observer,
Composite and Decorator patterns. Section 4 shows how such impact can
be modularized with AspectJ constructs. We follow with some discussions in
Sect. 5, related work in Sect. 6 and conclude in Sect. 7.

2 An Overview of the JHotDraw Framework

2.1 General Architecture

Figure 1 shows main interfaces and relationships involved in the JHotDraw
framework base. It gives a feeling of how a JHotDraw application works and
what can be extended. We now explain the responsibilities and collaborations of
each interface, in particular with regard to framework extension:

– DrawingEditor is the base interface for the application. It maintains a link
to the active DrawingView and to the current tool. Extensions usually define
the GUI, instantiate tools and drawing views.

1 We use JHotDraw 5.3 – available at http://www.jhotdraw.org/

Understanding Design Patterns Density with Aspects 245

– DrawingView displays one drawing. It holds interactions between the user
and the drawing, as well as graphics with Swing. This is apparent as it is
linked to JPanel, maintains a link to the list of currently selected figures,
and has access to the current tool via the editor. The default implementation
class fulfills all these roles.

– Drawing acts as a container and a uniform layer to manage a set of figures.
– Figure is a central entity to the user. Depending on the application, it can

spawn a large tree of derived figures, such as rectangle, circle, line, or more
structured figures.

– Tool & Handle allow to create or manipulate Figures, either as a whole
(select, move) or focusing on a specific property (size, radius). Tools and
handles are notified of user interactions by the drawing view. They too can
spawn a large tree of derived classes depending on the application.

JFrame

DrawingEditor

JPanel

DrawingView

Tool Drawing

FigureHandle

Link created
’on the fly’

Method call

Specific Legend

JHotDraw

Framework

Interfaces

owner

selection

figures

handles

notification

notificationcurrent tool

Swing

Fig. 1. A synthetic diagram of main interfaces and relationships in JHotDraw.
The inheritance relationship between Swing class JFrame and JHotDraw inter-
face DrawingEditor is a shortcut to the real relationship between JFrame and a
DrawApplication class implementing DrawingEditor. The same is true for JPanel
and DrawingView.

2.2 Design Patterns Involvement

We now quickly sketch how design patterns are involved in this general architec-
ture (Fig. 1) and in the underlying implementation. The design patterns exposed
here are documented in the code. The list below shows the importance of pat-
terns to define relationships (Mediator, Observer) as well as to extend the
framework (State, Prototype, Strategy, Adapter, Factory Method).
These patterns build up the JHotDraw framework base.

246 S. Denier and P. Cointe

– Mediator: DrawingEditor is a mediator between the current tool and the
drawing view.

– Strategy: some DrawingView activities such as painting the drawing or grid
constraining are configured with strategies.

– Observer: there are two occurrences of the Observer pattern. One is lying
between figures and the drawing, the other between a drawing and a drawing
view. They basically serve to update the drawing and the view in response
to figure modifications. One such concern is detailed in Sect. 2.3.

– State & Prototype: by switching between tools for the current tool state,
the user changes the behavior he wants to apply in the drawing view context.
Creation tools create figures by copying a prototype figure.

– Adapter & Factory Method: Handler adapts the Figure interface to re-
spond to mouse events. The strong link between a figure and its specific
handles is enforced by a factory method in Figure.

Finally two other patterns are worth mentioning for the purpose of this article:
an occurrence of the Composite pattern with CompositeFigure, to manipulate
a group of Figures as a single entity; and an occurrence of the Decorator
pattern with DecoratorFigure, which adds singularities on the target figure
(a border for example).

We now focus on the relationship between DrawingView, Drawing and Figure.
We will survey how design patterns are involved in a particular concern.

2.3 Updating a View: The Invalidation Concern

Whenever a figure changes, the display view has to be updated to reflect those
changes. Following a classic optimization, the area to be redrawn is clipped in
order to speed up refreshing and avoid screen flashing. The process of updating a
view takes two steps: first compute the clipping area and announce it to Swing,
then draw on the graphics context when required by Swing. We call the first
step the invalidation concern: its purpose is to collect damaged area from figures
before sending a repaint request to Swing.

The obvious way to do that is to let figures announce their own clipping area
whenever they change. They should notify their Drawing. The clipping area of
a figure can be simply defined by its bounding rectangle. The clipping area for
the drawing can be defined by the union of all clipping areas notified between
two updates.

Obviously, this concern can be implemented with an Observer occurrence
between Figure and Drawing:

– when a figure is added to a drawing (after its creation for example), the
drawing is registered as an observer for the figure;

– when performing some actions (such as move, change color), the figure no-
tifies its drawing with its bounding box;

– when notified, the drawing adds the bounding box to its clipping area;
– when a figure is deleted, it deregisters the drawing as observer.

Understanding Design Patterns Density with Aspects 247

Another occurrence of Observer stands between Drawing and DrawingView:

– a drawing registers its drawing view as observer;
– on request the drawing sends its clipping area to the drawing view (which

forwards to Swing); after this point the clipping area can be reset.

Notice how the invalidation concern is itself decomposed in two steps: collecting
the clipping area in Drawing and notifying Swing in DrawingView. This rela-
tionship is summarized in Fig. 1 by the two arrow lines for notification.

3 Study of Pattern Density in JHotDraw

The functionalities described in Sect. 2 define the JHotDraw framework base.
We examine two additions to this base, both related to design patterns and
the invalidation concern. Our goal is to understand how the current framework
(which already contains these additions) differs from the basic one and to exam-
ine the impact in term of implementation. We do this in the spirit of incremental
evolution exposed in the introduction.

3.1 Impact of Composite and Decorator on Invalidation

In the base framework all figures are direct children of the drawing and re-
fer to it for the invalidation process. When the Composite pattern is used
to manipulate a group of figures as a single entity, figures trees can be con-
structed (GroupFigure, Fig. 2). The same is true for the Decorator pattern
with BorderDecorator. Then, since we can have any number of levels between
the drawing and figures, does it affect the invalidation concern?

We first consider GroupFigure. It just merges clipping areas of figures un-
derneath. There is no difference in merging at the group level or at the drawing
level. So invalidation concern is not affected: figures can directly notify the draw-
ing, and GroupFigure is not involved in this Observer pattern. This solution
is labelled A in Fig. 2.

On the contrary, BorderDecorator has the property to redefine the clipping
area of the figure underneath. It enhances the bounding box by the size of its
border. How do we notify the drawing that the clipping area of a figure should
be enhanced? Obviously, solution A does not work since BorderDecorator does
not have a chance to notify its change. We can think of other solutions:

– B: all Figures notify the Drawing each time a command is transmitted;
– C: base Figures notify their direct parent Figure of the change; parent can

change the notification; recursively, the notification traverses the hierarchy
to the Drawing;

– D: in some cases, a parent Figure can directly notify the Drawing.

248 S. Denier and P. Cointe

Command (dispatched)

B (all figures)

C (path)

D (top most)

A (leaves only)

Notification :

BorderDecoratorGroupFigure

RectangleFigure RectangleFigure RectangleFigure

StandardDrawing

C

B

A

D

Screen

Fig. 2. Figures organized in a tree with Composite and Decorator patterns. In the
upper left corner is a sample of figures display. The object diagram shows different
strategies to deal with notification of invalidation (Sect. 3.1).

Solution B is very easy to implement, since all figures classes can inherit
from an abstract class with the link to drawing. However, GroupFigure and
BorderDecorator will trigger notifications every time: they can trigger false no-
tifications since they do not know when their children really change. Notifications
of children are redundant with those of GroupFigure and BorderDecorator yet
it is impractical to inhibit them for temporary time.

Solution C is much more elegant with respect to false notification:
GroupFigure and BorderDecorator will notify only if they receive notifica-
tions from children. This is the time for BorderDecorator to grow the clipping
area. However, this has a cost in term of implementation: GroupFigure and
BorderDecorator are subjects but also observers. This deeply changes the de-
sign as we now have many observers which are linked together in a chain, up
to the drawing. In fact, the design for the invalidation concern is now that of a
Chain of Responsibility pattern [1].

Solution D aims at reducing redundancy. A command such as “move figures”
will automatically trigger changes in target figures. Then a GroupFigure can
trigger the notification at the top level, computing the clipping area, and avoid
notifications in levels underneath. The difficulty is to temporarily disable such
notifications: however, the benefits seem too low for the cost of implementation
in object-oriented languages.

The current JHotDraw framework chooses solution C. Figure 3 gives some de-
tails on the implementation of this solution. It allows to easily redefine for each
Figure observer how it handles notifications (CompositeFigure, lines 17–18)
and, in particular, if it changes them (BorderDecorator, lines 26–29). However,
code complexity is increased. First, we notice that the change is only needed for
the purpose of invalidation with BorderDecorator; but the change also affects
the composite class, due to the chaining solution. Second, as said above, the

Understanding Design Patterns Density with Aspects 249

impact of the Composite and Decorator patterns is to transform the Ob-
server pattern into a Chain of Responsibility pattern, where each handler
can be seen as an observer of its children.

1 abstract class Abstrac tFigure implements Figure { // Sub jec t ro l e
private FigureChangeListener obse rve r ;

3 (. . .)
public void moveBy(int dx , int dy){ i nv a l i d a t e () ; (. . .) }

5 public void i nv a l i d a t e (){
Rectangle r = displayBox () ; // c l ipp ing area

7 obse rve r . f i g u r e I nv a l i d a t ed (new FigureChangeEvent(this , r)) ;
}

9 public abstract Rectangle displayBox () ;
}

11 interface FigureChangeListener { // Observer ro l e
public void f i g u r e I n v a l i d a t e d (FigureChangeEvent e) ; }

13
class CompositeFigure extends Abstrac tFigure // Composite ro l e

15 implements FigureChangeListener {
(. . .)

17 public void f i g u r e I n v a l i d a t e d (FigureChangeEvent e){
obse rve r . f i g u r e I n v a l i d a t e d (e) ; } // simple forward

19 }
class GroupFigure extends CompositeFigure { . . . } // Composite ex tension

21
class DecoratorFigure extends Abstrac tFigure // Decorator ro l e

23 implements FigureChangeListener { . . . }
class BorderDecorator extends DecoratorFigure {// Decorator ex tension

25 (. . .)
public void f i g u r e I n v a l i d a t e d (FigureChangeEvent e){

27 Rectangle r = e . g e t Inva l i d a t edRec tang le () ;
r . grow (fac torx , f a c to ry) ; // grow by s i z e of border

29 obse rve r . f i g u r e I n v a l i d a t e d (new FigureChangeEvent(this , r)) ; }
}

Fig. 3. Implementation of the Observer pattern impacted by Composite and
Decorator patterns in the current JHotDraw framework. AbstractFigure defines
main parts of the Subject role, including the reference (line 2) to the Observer role,
which is reified by the FigureChangeListener interface. figureInvalidated (line
12) is the notification method for the invalidation concern. Both CompositeFigure
and DecoratorFigure inherit from AbstractFigure to be subjects and imple-
ment FigureChangeListener to be observers. While the default behavior for
figureInvalidated is to forward the event (see CompositeFigure, lines 17–18),
BorderDecorator must redefine this method to take account of its specifity (lines
26–29).

3.2 Evolving to Multiple Drawing Views

The base JHotDraw framework allows to build single-window applications
(Fig. 6, left). There is only one drawing view, which can be managed by a
Singleton pattern. This considerably simplifies the implementation of the Ob-
server pattern between a drawing and its drawing view (Fig. 4).

250 S. Denier and P. Cointe

class StandardDrawing (. . .) implements Drawing {
2 (. . .)

public void f i g u r e I n v a l i d a t e d (FigureChangeEvent e){
4 StandardDrawingView . i n s t anc e () . drawingInva l idated (

new DrawingChangeEvent (this ,
6 e . g e t Inva l i d a t edRec tang l e ())) ; }

}

Fig. 4. Simple implementation of the Subject role for the Drawing–DrawingView Ob-
server pattern, with DrawingView as a Singleton pattern

An extension of JHotDraw allows to build MDI (Multiple Document Interface)
applications, allowing multiple drawing views on the same drawing (Fig. 6, right).
The implementation is primarily supported by Swing and internal frames. The
extension is almost modular since the base framework for single windows is
not modified – except for the Observer pattern in Fig. 4 which does not allow
multiple observers per drawing. We need to change its implementation according
to Fig. 5. This new implementation works in both singleton and multiple cases,
but we have lost the simple choice of the single window framework.

1 class StandardDrawing (. . .) implements Drawing {
(. . .)

3 private Vector<DrawingView> ob se rve r s
= new Vector<DrawingView >() ;

5 // when a view i s l inked to a drawing , i t must c a l l t h i s method
// to r e g i s t e r i t s e l f as an observer

7 public void addObserver (DrawingView view) { . . . }
public void removeObserver (DrawingView view) { . . . }

9 public void f i g u r e I n v a l i d a t e d (FigureChangeEvent e){
for (DrawingView view : ob se rve r s)

11 view . drawingInva l idated (
new DrawingChangeEvent (this ,

13 e . g e t Inva l i da t edRec tang l e ())) ; }
}

Fig. 5. Implementation of the Subject role for the Drawing–DrawingView Observer
pattern, modified to handle multiple DrawingViews. For brevity, the original code has
been rewritten using Java 5 generics and the new for loop.

3.3 Impact of Pattern Density

Pattern density is a sign that the program design becomes complex, but it does
not mean that patterns themselves are complex: the combination of the Com-
posite, Decorator and Observer patterns which form a Chain of Re-
sponsibility pattern is fairly easy to configure. The Observer pattern is even
simpler with a Singleton pattern. However, our short study shows that such a
combination can have deep impact on implementation.

Understanding Design Patterns Density with Aspects 251

Fig. 6. Two JHotDraw applications: on the left, single view per drawing; on the right,
multiple views on the same drawing

4 Pattern Density with Aspects

We now investigate the invalidation concern and the above additions with
AspectJ. We want those additions to be both incremental and reversible. The
process is three-fold and can be summed up as:

1. a “classic” aspectization of Observer patterns for the invalidation concern;
2. configuration of Observer pointcuts to deal with Composite and Deco-

rator patterns;
3. use of modularity and pluggability of aspects to deal with the presence or

absence of the Singleton pattern.

4.1 Aspectization of the Invalidation Concern

We extract the whole invalidation concern from the base classes (resp. inter-
faces): AbstractFigure (resp. Figure), StandardDrawing (resp. Drawing), and
StandardDrawingView (resp. DrawingView). This also includes many call points
to the invalidate method (see AbstractFigure.moveBy in Fig. 3), scattered
through the Figure hierarchy2.

The DrawingDamage aspect (Fig. 7) structurally modifies Drawing classes to
introduce a field called damageArea (line 2) and its control logic. The introduced
addDamage method saves and merges clipping areas in this field (lines 3–5).
The introduced getAndResetDamage method retrieves the clipping area of the
drawing and resets it on purpose of the refresh process (lines 6–8).
2 We count up to forty-one invalidating calls scattered across seventeen classes, with

standard extension such as GroupFigure and BorderDecorator included.

252 S. Denier and P. Cointe

aspec t DrawingDamage {
2 private Rectangle Drawing . damageArea ;

void Drawing . addDamage(Rectangle newDamage){
4 i f (damageArea == null) damageArea = newDamage ;

else damageArea . add (newDamage) ; }
6 Rectangle Drawing . getAndResetDamage (){

Rectangle r = damageArea ; damageArea = null ;
8 return r ; }

}

Fig. 7. The DrawingDamage aspect, which introduces new field and methods in Drawing
subclasses for the invalidation concern

The GetFigureDamage aspect (Fig. 8) supports observation between a figure
and its drawing. Similar to the reference to a FigureChangeListener (see Fig. 3,
line 2), it introduces in each figure a reference to a drawing (myListeningDrawing,
line 3). Registration is directly performed via pointcut and advice (lines 4–8). No-
tification pointcuts extract all previous method calls to invalidatewhich where
scattered in Figures methods (lines 12–20). The description by pointcuts is not
especially shorter but is localized in the aspect. Finally the invalidate action trig-
gered by advice makes use of the damage interface introduced in Drawing by
DrawingDamage (lines 24–27).

The RepairSingleView aspect (Fig. 9) supports the second observer and
the refresh logic (refresh logic was not shown in Sect. 3.2 but follows the same
principle). We consider the singleton case for the drawing view: there is no need
for an observer reference. Pointcuts extract requests for screen update (usually
after an user operation — line 3). The advice notifies the singleton observer
(lines 8–10) which then performs the Swing request (lines 15–16).

The code above shows no more than common benefits we expect from as-
pects: scattered code for notifications, structure and methods relevant to the
invalidation concern are localized in aspects. We should note that the invali-
dation concern and the Observer pattern are typical examples of crosscutting
concerns. We now examine issues from Sects. 3.1 & 3.2 with the help of AspectJ.

4.2 Revisiting Composite and Decorator Interactions

We consider the four strategies envisionned in Sect. 3.1 for invalidation of figures.
Code from Fig. 8 implements solution B by default. Indeed GroupFigure and
BorderDecorator are Figure via their respective superclass. The GetFigure-
Damage aspect is oblivious to the dynamic type of Figure instances.

It follows that solution A requires more effort. We must explicitly exclude
CompositeFigure and DecoratorFigure from invalidate pointcuts. For example
the changed pointcut must be rewritten as:

pointcut changed(Figure f):
this(f) && execution(void Figure+.setAttribute(..))
&& !this(CompositeFigure) && !this(DecoratorFigure);

Understanding Design Patterns Density with Aspects 253

1 aspec t GetFigureDamage {
// Regis trat ion of drawing (observer) in f i gu re

3 private Drawing Figure . myListeningDrawing ;
po intcut r e g i s t e rF i gu r e (Drawing d , Figure f) :

5 execut ion (Figure CompositeFigure . add (Figure))
&& this (d) && args (f) ;

7 a f t e r (Drawing d , Figure f) : r e g i s t e rF i gu r e (d , f) {
f . myListeningDrawing = d ; }

9 (. . .)

11 // Not i f i c a t ion of changes
pointcut wi l lChange (Figure f) :

13 (execut ion (void Figure +. displayBox (Point , Point))
| | execut ion (void Figure +.moveBy (. .))) && this (f) ;

15 be f o r e (Figure f) : wi l lChange (f){ i n v a l i d a t e (f) ; }
a f t e r (Figure f) : wi l lChange (f){ i n v a l i d a t e (f) ; }

17
pointcut changed (Figure f) :

19 this (f) && execut ion (void Figure +. s e tAt t r i bu t e (. .)) ;
a f t e r (Figure f) : changed (f){ i n v a l i d a t e (f) ; }

21 (. . .)

23 // Action on no t i f i c a t i on
void i nv a l i d a t e (Figure f){

25 i f (f . myListeningDrawing!=null){
f . myListeningDrawing . addDamage(f . d isplayBox ()) ;

27 } (. . .) }
}

Fig. 8. Sample from GetFigureDamage aspect, which supports the observer relationship
from figures to their drawing. Pointcuts and advice are used both for registration
and notification of the observer. Pointcut willChange (lines 12–15) stands for actions
which invalidate both the old bounding box (where the figure used to be) and the new
bounding box: such actions (move, resize) are advised before and after their execution
(lines 15–16). Pointcut changed (lines 18–19) is used solely for actions which modify
the inner appearance of the figure but not its bounding box: then notification occurs
only after action (line 20).

aspec t RepairSingleView {
2 // Not i f i c a t ion s (request for update)

a f t e r () : execut ion (void StandardDrawingView . mousePressed (. .)) {
4 repairDamage(StandardDrawingView . i n s tanc e () . drawing ()) ; }

(. . .)
6

// Action on no t i f i c a t i on
8 private void repairDamage(Drawing d){

Rectangle r = d . getAndResetDamage () ;
10 StandardDrawingView . i n s t anc e () . repairDamage(r) ; }

}
12

class StandardDrawingView extends JPanel implements DrawingView {
14 (. . .)

public void repairDamage(Rectangle r) { // Swing request
16 i f (r != null) { r epa in t (r . x , r . y , r . width , r . he ight) ; }}

}

Fig. 9. Sample from RepairSingleView aspect with singleton view configuration

254 S. Denier and P. Cointe

This strategy is initially not interesting and loses even more appeal following
such constraints. The this(Type) predicate can be translated as a dynamic
this instanceof Type test in some cases.

Solution C is interesting: we do not need to transform the Observer pattern
into the Chain of Responsibility pattern to get the same effect. The case
involves solely BorderDecorator: we only target figures which have a Border-
Decorator in the chain of parents. If there is to be a change down in the chain,
necessarily the clipping area will be that of the top most decorator. The process
of detecting the top most decorator and passing it down to the triggering figure
can be managed by pointcuts:

pointcut targetaction():
execution(void BorderDecorator.setAttribute(..));

pointcut topmostdecorator(BorderDecorator bd):
this(bd) && targetaction()
&& !cflowbelow(targetaction());

pointcut changed(Figure f):
execution(void Figure+.setAttribute(..))
&& cflowbelow(topmostdecorator(f));

after(Figure f): changed(f) { invalidate(f); }

The topmostdecorator pointcut captures any execution of method set-
Attribute which are not in the control flow of another BorderDecorator: the
decorator is then the top most. The changed pointcut will capture any ex-
ecution of setAttribute which are under a BorderDecorator. But, instead
of notifying invalidate with the current figure, it will use the parameter of
topmostdecorator. The clipping area retrieved by invalidate (Fig. 8, line 26)
will be that of the decorator.

The changed pointcut captures all executions below the top most decora-
tor, including other decorators. This is not intended: only “leaves” (such as
RectangleFigure) will trigger real modifications. Currently there is no mean in
the AspectJ language to capture leaves in the control flow. An extension to the
language is proposed in [8]. We could also use !this(DecoratorFigure) such
as in solution A.

Solution D is more simple. We do not want all figures to trigger notifications,
when we are sure that they will change. We simply trigger notifications for top
most calls. For example move command can be notified at the top most level, by
a figure, a composite or a decorator. The willChange pointcut can be rewritten:

pointcut action(): execution(void Figure+.moveBy(..));
pointcut willChange(Figure f):

this(f) && action() && !cflowbelow(action());

Preliminary conclusion shows that the AspectJ pointcut language is expressive
enough to implement the four notification strategies. Contrary to the object
solution, there is no need to change Figure subclasses, CompositeFigure and
Decoratorfigure. However, there is the hidden cost of using AspectJ dynamic

Understanding Design Patterns Density with Aspects 255

construct such as cflow. Currently we lack quantitative benchmarks on the
performance of cflow with respect to the Chain of Responsibility solution,
although this is not perceptible in the context of JHotDraw.

4.3 Pluggability of Aspects: Revisiting Multiple Views

Same as the observer in Fig. 4, RepairSingleView does not work with multi-
ple views. Yet, we simply build a new RepairMultipleViews aspect (Fig. 10).
Contrary to Fig. 5, StandardDrawing is not changed. The framework user can
choose at weaving time which configuration (singleton or multiple views) he
needs. A drawback is that there is no reuse between RepairSingleView and
RepairMultipleViews, so that some change in base code could impact both
aspects. However, it is possible to share some definitions (such as pointcuts for
notification) using AspectJ abstract aspect and extension mechanism.

1 aspec t RepairMult ipleViews {
// (De) r e g i s t r a t i on of drawing views in drawing

3 private List<DrawingView> Drawing . l i s t en ingV i ews
= new LinkedList<DrawingView>() ;

5 po intcut linkViewToDrawing (DrawingView view , Drawing drawing) :
execut ion (void DrawingView+. setDrawing (Drawing))

7 && this (view) && args (drawing) ;
b e f o r e (DrawingView v , Drawing d) : linkViewToDrawing (v , d){

9 (. . .)
v . drawing () . l i s t en ingV i ews . remove (v) ;

11 d . l i s t en ingV i ews . add (v) ; }

13 // Not i f i c a t ion s (request for update)
a f t e r (DrawingView v) : this (v)

15 && execut ion (void StandardDrawingView . mousePressed (. .)) {
repairDamage(v . drawing ()) ; }

17 (. . .)

19 // Action on no t i f i c a t i on
private void repairDamage(Drawing d){

21 Rectangle r = d . getAndResetDamage () ;
for (DrawingView view : d . l i s t en ingV i ews) {

23 view . repairDamage(r) ; }}
}

Fig. 10. Sample from RepairMultipleViews aspect for multiple views (MDI) configu-
ration. Drawing manages a list of drawing views which are its observers (lines 3–11).
Since a view displays one drawing at a time, its registration on a new drawing involves
its deregistration from the previous drawing (lines 10–11). Another change from Fig. 9
is the capture of the contextual view during notification (line 14).

5 Discussions

Before concluding, we present two subjects of discussion inspired by this work.
They are complementary to this study but, to this day, rely much on subjective
opinion.

256 S. Denier and P. Cointe

5.1 Specificity of the AspectJ Solution

The specificity of the cflow-based AspectJ solution in Sect. 4.2 can be compared
to a language where inspection of the execution stack is possible. Of course, a
cflow construct can be easily emulated in such a language. However, the cflow
construct combined with aspects allows to easily “compose” modules and pat-
terns without modifying the base code. The fact that such a modification can
be modularized simply with a stack inspector remains to be evaluated.

Intertype declaration (previously introduction) is another feature of AspectJ
which is frequently used in pattern implementation (see Figs. 7, 8 or 10). This
feature can partially emulate mixin or trait-like reuse [9].

5.2 Avoiding Implementation Overhead in a Field of Patterns

Without a reusable pattern library, programmers need to implement design pat-
terns over and over: this leads to “implementation overhead” [10] when it comes
to patterns with heavy, repetitive elements. When pattern density rises and the
same pattern is being used over the same classes, there is a natural tendency
in object-oriented languages to fuse concerns together in order to reuse pattern
implementation and reduce the overhead. Thus reusability is enhanced at the
depends of separation of concerns. We expose two such cases:

– the Observer pattern in Figure is reused in a “figure connection” concern.
Such connections are transversal to the invalidation concern. Typically ob-
servers in connection concern implement void methods for the invalidation
notification and vice-versa;

– StandardDrawing implements the Composite pattern to manipulate
Figure. In fact, it extends the CompositeFigure to reuse its structure and
behavior, redefining some methods to accomodate for its nature of Drawing.
This leads Drawing to copy the interface of CompositeFigure in a brittle
relation. StandardDrawing also inherits from Figure a nonsensical subject
role.

6 Related Work

The Observer pattern serves as an exercise of choice for aspect languages fea-
tures. The instantiation model of Caesar [11] follows more closely the object
model of design patterns. Reflex [12] offers a metaphor of metaobjects as ob-
servers of hooksets. Many works, such as [13] and [14], deal with modularity and
reusability of aspects in the context of design patterns: they contain valuable
ideas on the way to configure generic aspects for use.

Few other patterns have been studied. One interesting case is the Memento
pattern, for which different attempts with AspectJ have been made [15]. To date
the sole extensive study of single design patterns implementation with aspects
is in [3]. It also contains some evaluation on “composition transparency” for
those new implementations, that is the property to define multiple occurrences

Understanding Design Patterns Density with Aspects 257

of the same pattern while keeping them separate. However, it does not explore
the issues of density and composition with other patterns.

[16] revisits the case of pattern density in JUnit [2]. It follows a different
guideline than ours by not aspectizing the pattern but the supported concern.
It remains to be shown whether such solutions can be generalized as design
patterns.

7 Conclusion

Summary of problems we review about pattern implementation includes cross-
cutting of implementation, invasive modification of a pattern by application of
another pattern, and tangling of concerns when reuse occurs to reduce overhead.
One could argue that such problems are not specific to the implementation of de-
sign patterns. However, these are symptoms following the density of design pat-
terns. These problems must be studied at the level of patterns and software design
to promote their reusability. Software designers should be aware of such impacts:

– composition of patterns mean you have to reconsider forces so that you select
another pattern, with the same concern (see Sect. 3.1);

– lack of reusable patterns itself could lead to tangling concerns in order to
reduce implementation overhead.

Overall, there is a feeling that the difficulty in a dense field of patterns does not
lie within pattern themselves (which remain what they are) but between them.

We notice AspectJ provides a sum of technologies, some of which (cflow, in-
troduction) are not specific to aspects and exist in other languages. Nonetheless,
this sum allows to cleanly modularize new concerns and compose them back and
forth. It allows to avoid transformations of patterns described above, so that we
were able to retain the basic JHotDraw framework and configure it by selecting
aspects. We believe such an approach is valuable in software engineering to trace
design choices during the development process.

The case of implementation overhead (Sect. 5.2) links to a reusable pattern
library. We have implemented a composition of Composite, Iterator, and
Visitor patterns which remains to be evaluated in the context of JHotDraw
(StandardDrawing and CompositeFigure). The approach is to build reusable
compositions based on the reusable single patterns.

Aspectization of patterns opens a new perspective: traceability is enhanced
and, in particular, we could benefit from interaction detection [17] and visual-
ization tool3. Detection of interactions can lead to automation:

– presence of the Singleton pattern links to a simple implementation of the
Observer pattern;

– automatic configuration of pointcuts with cflow-like construct whenever
Composite or Decorator patterns are detected;

– automatic registration of the Observer pattern based on registration in the
Composite pattern.

3 See AspectJ plugin for Eclipse – http://www.eclipse.org/ajdt/

258 S. Denier and P. Cointe

Acknowledgements. We would like to thank the anonymous reviewers for their
comments, which help to improve the quality of this article.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts (1994)

2. Gamma, E., Beck, K.: JUnit: A Cook’s Tour (2002) http://junit.sourceforge.net/
doc/cookstour/cookstour.htm.

3. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proc. of OOPSLA 2002, ACM Press (2002) 161–173

4. Soukup, J.: Implementing patterns. In: Pattern languages of program design. ACM
Press/Addison-Wesley Publishing Co., USA (1995) 395–412

5. Zimmer, W.: Relationships between design patterns. In Coplien, J.O., Shmidt,
D.C., eds.: Pattern Languages of Program Design. Addison-Wesley (1994)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In Knudsen, J.L., ed.: Proc. of ECOOP 2001, LNCS 2072,
Springer-Verlag (2001) 327–353

7. Colyer, A., Clement, A., Harley, G., Webster, M.: eclipse AspectJ. the eclipse
series. Addison-Wesley (2005)

8. Douence, R., Teboul, L.: A crosscut language for control-flow. In: Proc. of GPCE
2004, LNCS, Springer-Verlag (2004)

9. Denier, S.: Traits programming with AspectJ. RSTI - L’objet 11(3) (2005) 69–86
10. Bosch, J.: Design patterns as language constructs. Journal of Object-Oriented

Programming 11(2) (1998) 18–32
11. Ostermann, K., Mezini, M.: Conquering aspects with Caesar. In Akşit, M., ed.:

Proc. of AOSD 2003, ACM Press (2003) 90–99
12. Tanter, É., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection: Spatial

and temporal selection of reification. In Crocker, R., Steele, Jr., G.L., eds.: Proc.
of OOPSLA 2003, ACM Press (2003) 27–46

13. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable
aspects. In: Proc. of ICSE 2001. IEEE Computer Society (2001) 5–14

14. Lieberherr, K., Lorenz, D.H., Ovlinger, J.: Aspectual collaborations: Combining
modules and aspects. Computer Journal of the British Computer Society 46(5)
(2003) 542–565

15. Marin, M.: Refactoring JHotDraw’s undo concern to AspectJ. In: Proceedings of
the 1st Workshop on Aspect Reverse Engineering (WARE 2004). (2004)

16. Isberg, W.: Aop pointcut patterns in the JUnit Cook’s Tour (2005) http://junit.
sourceforge.net/doc/cookstour/cookstour.htm.

17. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In Batory, D., Consel, C., Taha, W., eds.: Proc. of GPCE
2002. LNCS 2487, Springer-Verlag (2002) 173–188

A Model for Developing Component-Based and
Aspect-Oriented Systems

Nicolas Pessemier1, Lionel Seinturier1,
Thierry Coupaye2, and Laurence Duchien1

1 INRIA Futurs, LIFL, Jacquard project/GOAL,
Bãtiment M3, 59655 Villeneuve dAscq, France
{pessemie, seinturi, duchien}@lifl.fr

2 France Telecom R&D,
28 chemin du Vieux Chẽne, BP98

38243 Meylan, France
thierry.coupaye@rd.francetelecom.com

Abstract. Aspect-Oriented Programming (AOP) and Component-
Based Software Engineering (CBSE) offer solutions to improve the sepa-
ration of concerns and to enhance a program structure. If the integration
of AOP into CBSE has already been proposed, none of these solutions
focus on the application of CBSE principles to AOP. In this paper we
propose a twofold integration of AOP and CBSE. We introduce a general
model for components and aspects, named Fractal Aspect Component
(FAC). FAC decomposes a software system into regular components and
aspect components (ACs), where an AC is a regular component that
embodies a crosscutting concern. We reify the aspect domain of an AC
and the relationship between an AC and a component, called an aspect
binding, as first-class runtime entities. This clarifies the architecture of
a system where components and aspects coexist. The system can evolve
from the design to the execution by adding or removing components,
aspects or bindings.

1 Introduction

Component-Based Software Engineering (CBSE) proposes to structure a pro-
gram by separating concerns into clearly defined entities, called components.
Reusable components with contractually specified interfaces are defined and
composed together [20]. Subsequently, Architecture Description Languages [12]
can be used to specify the component compositions and interactions.

Aspect-Oriented Programming (AOP) [9] identifies the code tangling and the
code scattering which arise in applications. Some concerns mixed within an entity
(code tangling), and some concerns scattered across several entities, are said to be
crosscutting. These concerns hinders the reusability, the maintainability, and the
evolvability of applications. AOP proposes artifacts (aspect, pointcut, advice) to
modularize crosscutting concerns.

It has been shown that the issues of code tangling and scattering arise at the
level of CBSE as well [8,11]. This is why merging AOP and CBSE makes sense.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 259–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 N. Pessemier et al.

The integration of AOP into CBSE has already been proposed in [10,13,19], by
providing a support for AOP in a component-based system. However, the appli-
cation of CBSE principles to AOP is rarely proposed. In particular the implicit
link between advice code and the base program where the advice applies is fre-
quently hidden behind pointcut declarations (PcDs). Generally defined with a
pattern language, PcDs select a set of joinpoints among those offered by the
system. Unfortunately, once woven to the system, the implicit relationships cre-
ated between a piece of advice code and the advised entities are never explicitly
discernible and can surely not be individually manipulated at runtime.

In this paper, we propose a general and symmetrical model for mixing com-
ponents and aspects. The approach is symmetric by considering aspects as plain
components. The approach improves the component approach by giving a sup-
port for AOP, and improves the aspect approach by applying CBSE concepts
to AOP. Our proposal relies on three main notions: aspect component, aspect
domain, aspect binding. Aspects are contractually specified components called
aspect components (ACs), and the relationships between ACs and regular
components are reified with aspect domains, and aspect bindings. An AC
embodies a crosscutting concern and can be reused in different contexts. An as-
pect domain is the reification of the components picked out by an AC. An aspect
binding is a binding between a regular component and an AC. Thus, the model
supports two levels of composition: regular components are composed together
using regular bindings, and an AC is composed with regular components using
aspect bindings.

We experiment this model by extending a reflective and general component
model, named Fractal [4] and its ADL. In our extension, called Fractal Aspect
Component (FAC for short), we introduce the notions of aspect component,
aspect binding and aspect domain to the component model itself and to the
Fractal ADL.

The rest of this paper is organized as follows. Section 2 introduces our gen-
eral model for component and aspect. Section 3 presents the mapping of our
model to the Fractal component model. Section 4 presents related work around
the merging of components and aspects and some reference component models.
Section 5 concludes and gives some open issues.

2 A General Model for Components and Aspects

This section describes the three main concepts we introduce to support AOP
in a component model: aspect component, aspect binding, and aspect domain.
Section 2.1 gives the motivations of our approach. The concepts are presented
in the remaining three sections.

2.1 Motivations

When merging Aspect-Oriented Programming (AOP) and Component-Based
Software Engineering (CBSE) two dimensions have to be considered: the

A Model for Developing Component-Based and Aspect-Oriented Systems 261

integration of aspect-oriented principles into component-based systems, and the
application of component-based principles to Aspect-Oriented Programming.
The integration of AOP into CBSE is motivated by the code tangling issue
inherent in CBSE [8,11]. On the other hand the application of CBSE concepts
to AOP is less investigated. Some approaches focus on the representation of an
aspect as a component to contractually specify aspects and to increase their
reusability [10,18].

In our proposal we realize a twofold integration of CBSE and AOP. We intro-
duce three main concepts: aspect component, aspect domain, and aspect bind-
ing. These three notions are closely related to the three main concepts of the
component approach: component, composite, and binding.

2.2 Aspect Component

An aspect component (AC for short) embodies a crosscutting concern. It is a
regular component providing as a service a piece of around advice code. This
service represents the behavior which will be woven around a set of regular com-
ponents. This notion is similar to the notion of Aspectual Component proposed
in 1999 by Karl Lieberherr et al [11] to express each aspect separately in a
modular structure.

Our approach is symmetric by making no differences between an aspect and
a component. Thus, an aspect which is represented as a component, becomes
a reusable contractually specified entity. Another consequence of the symmetric
approach is that regular and aspect components are composed the same way
using the same rules. This facilitates the adaptation to new requirements when
the system evolves.

2.3 Aspect Binding

Two kinds of binding exist within our model: regular and aspect binding. A
regular binding expresses that a component is using a service provided by an
other component. An aspect binding expresses that a component is aspectized by
an aspect component. It is the reification of the individual relationship between
an aspect component (AC) and a regular component where the AC applies.

In most existing AOP languages, the relationship between an aspect and
the objects containing joinpoints picked out by the aspects is explicit in the
source code but is implicit at runtime. Indeed, this relationship is structurally
defined by a pointcut in the source code, but is lost when the woven code is ex-
ecuted. By introducing the notion of an aspect binding, we reify at runtime this
relationship.

Because our approach is symmetric, all possible interactions between regular
components and aspect components require full consideration. In a system using
components and aspects, the possible interactions are described below.

– The component to component interaction is the classical client-server inter-
action. The client component uses a service provided by a server component

262 N. Pessemier et al.

crosscutting concern: transaction

regular
binding

regular
binding

transaction
policy 1

C

D

E

aspect
binding

transaction
policy 2

transaction
Aspect

Component

aspect
binding

aspect
binding

aspect domain

base architecture

A

B

Fig. 1. Aspect binding best practice

interface. This kind of interaction exists in every component model using the
notion of binding.

– The component to AC interaction is our notion of an aspect binding. It
expresses the fact that an aspect component is woven on a component. In
Figure 1 we can see this type of interaction between C, D, E and the trans-
action aspect component.

– The AC to component interaction, using a regular binding, is used as an
AOP best practice. In Figure 1 we can see this kind of interaction between
the transaction aspect component and various transaction policy compo-
nents. In this example, changing a transaction policy is performed through a
reconfiguration between the transaction AC and the components providing
transaction policies.

– The AC to AC interaction can express a collaboration between two aspects
using regular bindings, or the fact that the second aspect is woven on the
first one. In asymmetric approaches this type of relationship is frequently
unconsidered. Few techniques are given to make two aspects collaborate
such as the use of context passing. The possibility of weaving aspects on
other aspects is also uncommon.

2.4 Aspect Domain

An aspect domain is the reification of the components picked out by an AC.
The goal of an aspect domain is to keep an overview on all the components
affected by an aspect. It offers an abstraction on each AC woven on a set of
components. A benefit that can be derived from the aspect domain notion is that
the crosscutting interactions of a component-based system are clearly specified
and are easily manipulable as regular interactions.

A Model for Developing Component-Based and Aspect-Oriented Systems 263

A B C

D E F

logging
Aspect

Component
logging

transaction

persistence
Aspect

Component
persistence

aspect domain (logging) aspect domain (persistence)

aspect domain (transaction)

transaction
Aspect

Component

Fig. 2. FAC overview: weaving of three crosscutting concerns

Figure 2 illustrates the notion of aspect domain on a generic component-based
application (components A to F). The aspect domains are represented as dotted
rectangles, aspect bindings have been omitted for clarity sake. This application
contains several crosscutting concerns: a logging, a persistence, and a transaction
concern. These concerns are well known to be scattered and not cleanly modu-
larized into one specific module. Their integration into an application is a hard
task. In a full-fledged component, obtaining the same result requires numerous
and tricky modifications. Moreover, once integrated to a system, it is difficult
to remove one of these concerns in an easy and proper way. Once woven to a
set of components the aspect domains of the ACs appear, offering reification on
crosscutting relationships over the system.

3 Mapping onto the Fractal Component Model

This section presents the mapping of the main notions presented in the previ-
ous section onto the Fractal component model, which is a general and extensible
component model supporting dynamic (regular) bindings. Our extension of Frac-
tal is called FAC for Fractal Aspect Component. Section 3.1 presents the Fractal
component model, and Section 3.2 proposes our extension FAC.

264 N. Pessemier et al.

3.1 Fractal: A General and Reflective Component Model
Supporting Dynamic Bindings

Fractal is an ObjectWeb consortium1 project that proposes an extensible and
modular component model [4]. This Section describes Fractal main features.
Note that Fractal is independent of any programming language. Several imple-
mentations exist in different languages such as Java, SmallTalk, C, C++, and
the languages supported by the .NET platform.

Contrary to component models for application servers such as EJB or .NET,
Fractal is a general and reflective component model for developing complex soft-
ware systems, such as operating systems and middleware. Besides the notion of a
component, Fractal offers the notion of composite-component (allowing different
views and abstractions on a system), shared component (a component nested by
several composite components), dynamic binding (between components). Frac-
tal is a reflective component model and offers introspection (system monitoring),
and reconfiguration capabilities (modification of the system architecture).

A Fractal component has two parts: a content and a membrane. The content
of a composite component is built as a set of sub-components, and the content of
a primitive component (black box component) implements its provided services.

A component membrane offers a level of control and a level of interception.
The control can be accessed through a set of so-called control interfaces which
manage the non-functional properties of a component such as its life cycle, bind-
ings, content, name, or attributes. This set of control interfaces can be extended
with new control interfaces that can be added to a component membrane. The in-
terception mechanism reifies messages sent by and received on component inter-
faces. These messages can be modified, discarded or delivered to the component.

An interface is an access point to a component comparable to the notion
of a port in several component models such as ArchJava [2] or CCM [14]. A
Fractal component offers external and internal interfaces. External interfaces
are accessed from the outside of the component, while internal interfaces are
only accessible from the composite’s sub-components.

A binding is a communication channel between a client interface and a server
interface. A client interface uses operations provided by a server interface. Fractal
architectures can be described with Fractal ADL, which is an XML language to
describe and to instantiate a Fractal component assembly.

Figure 4 presents the Fractal ADL syntax defining the architecture of Figure 3.
Lines 2–3, 4, and 9 show the definition of server interfaces (role="server").
Lines 3–7 define the component A and Lines 8–11 the component B. Lines 12–
13 are binding declarations of the binding between the server interface r of
the composite and the server interface r of component A, and the binding be-
tween the client interface s of the component A and the server interface s of the
component B.

Although component approaches such as Fractal offer several artifacts for the
strong encapsulation of entities, the reification of dependencies, and the building
of architecture from high level point of view, these approaches suffer from code
1 http://objectweb.org

A Model for Developing Component-Based and Aspect-Oriented Systems 265

B

A

HelloWorld

r s

s
r

Fig. 3. Fractal-ADL: helloworld application

01 <definition name="HelloWorld">
02 <interface name="r" role="server" signature="java.lang.Runnable"/>
03 <component name="A">
04 <interface name="r" role="server" signature="java.lang.Runnable"/>
05 <interface name="s" role="client" signature="Service"/>
06 <content class="AImpl"/>
07 </component>
08 <component name="B">
09 <interface name="s" role="server" signature="Service"/>
10 <content class="BImpl"/>
11 </component>
12 <binding client="this.r" server="A.r"/>
13 <binding client="A.s" server="B.s"/>
14 </definition>

Fig. 4. Fractal-ADL: XML description of the helloworld application

tangling and code scattering. These two issues seriously limit the evolution of
a system. Thus, when a crosscutting concern has to be plugged to a Fractal
component assembly, the amount of reconfigurations that must be performed
may become quite heavy. The next section details the mapping of our concepts
of aspect component, binding, and domain onto the Fractal component model.

3.2 Fractal Aspect Component (FAC)

FAC is our mapping of the general model exposed in Section 2 onto the Fractal
component model. It uses existing notions of the Fractal model and introduces
new ones.

Figure 5 presents the FAC metamodel. It is based on the Fractal metamodel.
The mapping of the three main notions (aspect component, aspect domain, and
aspect binding) is straightforward. An aspect component is defined as a regular
component; it provides as a service a piece of advice code (see the AspectCom-
ponent Interface). An aspect domain is a composite component that contains a
set of ACs representing a crosscutting concern, and the components impacted
by the ACs. Within the context of an aspect domain, aspect bindings can be

266 N. Pessemier et al.

Composite

Functional
Binding

Primitive

Client
Interface

Server
Interface

Control
Interface

Operation

InterfaceComponent

Functional
Interface

1..*

1..*

0..*

Aspect
Binding

AspectComponent
Interface

Weaving
Interface

Aspect
Component

Aspectizable
Component

Aspect
Domain

Binding

1..*

1..*

1..*

1..*

0..*

0..*

Intercepting
Interface

0..*

0..*

Fig. 5. FAC metamodel

defined between components and the AC. The following sub-sections describe
the concepts of aspect component interface, and weaving interface. We then de-
tail the FAC pointcut language. Finally, we discuss the two implementations of
FAC.

3.3 FAC Join Point Model

Two different types of join points are supported by FAC: incoming calls on server
interface operations, and outgoing calls on client interface operations. This choice
is motivated by the fact that we consider AOSD in a component world.

As components are black boxes, it is rather natural to consider only join points
on externally visible elements, i.e., exported and imported interfaces. Taking into
account other kinds of join points, such as the ones on implementations, would
break component encapsulation. Yet, for cases where this would be necessary,
we believe that a best practice is to use a combination of component-based and
implementation (e.g. object) based aspect-oriented tools.

A Model for Developing Component-Based and Aspect-Oriented Systems 267

The level of interception defined by FAC is very similar, at the component
level, to the composition filters approach ([1]), which defines IN and OUT filters
on objects to intercept messages.

3.4 FAC Pointcut Language

The FAC pointcut language is used to select join points. A pointcut expression
is divided in two parts:

– A keyword that specifies if the incoming calls (keyword SERVER) or outgoing
calls (keyword CLIENT) or both of them (no keyword) must be selected,

– Three regular expressions separated by semicolons that specify which com-
ponents, interfaces, and operations must be selected.

Figure 6 gives some examples of PcDs. The regular expressions relies on the
java.util.regexp package.

Pointcut Expressions Captured Elements
Every incoming and outgoing

;;deposit*:void method returning void that
start with deposit in any
component and interface
Every outgoing method named

CLIENT B;*;deposit* deposit in any interface
of a component named B
Every incoming method in

SERVER B;ITransfert;* ITransfert interface of
a component B

Fig. 6. FAC pointcut language: Examples

3.5 The Aspect Component Interface (ACI)

The Aspect Component Interface (ACI) follows the AOP Alliance API2, which is
an open source initiative to define a common API for AOP frameworks. Figure 7
presents the AspectComponent Java interface and an example of an AC.

ACs apply on component methods exposed by client and server interfaces. The
parameter of the invoke method is a reification of a Fractal interface invocation.
It provides a set of methods to introspect a join point. The argument of the
invocation can be modified, the intercepted method can be called (proceed), and
the reference of the intercepted component can be retrieved.

Writing an AC requires implementing the AspectComponent interface. The
invoke method describes the behaviour of the aspect. The code written in this
method will be executed around the join point, i.e., a method call or execution
on a component interface.

2 http://aopalliance.sourceforge.net/

268 N. Pessemier et al.

/**
* Interface provided by an Aspect Component
* to define an advice.
*/
public interface AspectComponent extends

org.aopalliance.intercept.Interceptor {
/**
* Define an advice executed around incoming
* and/or outgoing method invocations reified by m
* @param m the reification of the method invocation
* @return the result of the advice
*/
Object invoke(FcMethodInvocation m) throws Throwable;

}

/**
* An example of an AC with before and after code.
*/
public class GenericAC implements AspectComponent {

Object invoke(FcMethodInvocation m) throws Throwable {
System.out.println("before "+m.getMethod());
Object ret = m.proceed();
System.out.println("after "+m.getMethod()+" invoked");
return ret;

}
}

Fig. 7. The AspectComponent interface

The proceed call denotes the original method call. The code written before
and after proceed() represents the before and after advices of AOSD. If more
than one aspect applies on a given join point, the proceed call will trigger the
next aspect, till the original method code is reached. If proceed is omitted the
original method call will not apply. This can be useful to prevent, for example,
the execution of the intercepted method.

3.6 Weaving Interfaces

The Weaving Interface (WI) of a component plays a key role in FAC. It manages
the weaving of ACs around the interfaces of the component it controls. In the
context of Fractal, we chose to represent the WI as a Fractal control interface
in the component membrane. The WI uses the interception mechanism, which
is provided by the membrane of components to intercept incoming and outgoing
calls on its functional interfaces, and then, delegates the calls to the aspect
components bound to (with an aspect binding) these operations. The weaving
interface in FAC has three main objectives:

A Model for Developing Component-Based and Aspect-Oriented Systems 269

– Set/unset aspect bindings to aspect components,

void setAspectBinding(Component comp, ItfPointcutExp regExp,
AspectComponent ac);

void unsetAspectBinding(AspectComponent ac);

– Automatically weave an AC around a set of components following a pointcut
declaration (this weaving task will automatically create an aspect domain,
add the components which match the pointcut declaration into this aspect
domain, and bind with aspect bindings the AC and the impacted compo-
nents),

void weave(Component rootComp, AspectComponent ac,
ItfPointcutExp pExp,
String aspectDomain);

void unweave(Component rootComp, Component ac);

– Provide a set of operations to order/re-orderACs which apply on an interface
operation.

String[] changeACorder(String acName, int newPosition);

In FAC, a component supporting the weaving interface is called an aspectiz-
able component. Otherwise, no aspects can be woven to this component. Since
the weaving of an AC using the weaving interface is recursive and traverse the
component hierarchy, if the component controlled by the WI is a composite
component the weaving is also performed by its sub-components. A weaving op-
eration can be initiated on the system as a whole (top-level composite) or on
any sub system (intermediate composite).

All the operations provided by the interface can be invoked either with the
Fractal ADL (extended with FAC notions) or directly at runtime.

The following piece of XML code presents the architecture of a Fractal as-
sembly where a directive (tag <weave>) weaves a traceAC component (defined
lines 2–4) to each component of the composite C (rootComp="this" line 12),
which has an interface operation starting with ”s” and returning ”void”. The
aspect domain of this weaving will be automatically created and the composite
representing this domain will be named ”D” (adomain="D" line 12).

01 <definition name="C">
02 <component name="traceAC"/>
03 <interface name="ACI" role="server" signature="AspectComponent"/>
04 </component>
05 <component name="A"/>
06 <interface name="itf1" role="client" signature="Itf1"/>
07 </component>
08 <component name="B"/>
09 <interface name="itf1" role="server" signature="Itf1"/>
10 </component>
11 <binding client="A.itf1" server="B.itf1"/>
12 <weaving ac="traceAC" pcd="*;*;s*:void" rootComp="this" adomain="D"/>
13 </definition>

270 N. Pessemier et al.

Every reconfiguration operation including the ones of our extension (set-
ting/unsetting of aspect binding, weaving of an AC are dynamic operations).

3.7 Implementation Issues

The mapping of our general model for component and aspect on the Fractal
component model has been validated with two different implementations in Java.
Our first implementation extends the reference implementation of the Fractal
component model in Java called Julia [4]. Julia uses a mixin [3] mechanism to
program the level of control of components. The second implementation extends
another implementation of the Fractal component model in Java, called AOKell
[17], which uses AspectJ [9] aspects to implement control membranes.

4 Related Work

In this section, we compare FAC with different kinds of approaches. Firstly, we fo-
cus on approaches using the notions of component and aspect at a programming
language level. Secondly, we investigate approaches using a symmetric represen-
tation of components and aspects. Thirdly, we study others component models.

4.1 Component and Aspect at the Programming Language Level

CaesarJ [13] is a Java based programming language, defined as an extension
of the AspectJ language. The components are implemented as collaborations
of classes. A collaboration defines a provided part and an expected part. The
provided part is implemented with reusable CaesarJ components that are a set
of virtual classes. A virtual class in CaesarJ is a kind of inner class, which can
be overridden in the subclasses of the enclosing class. When overriding an inner
class the new functionalities are directly usable by the parent class. With this
mechanism the provided operation of a collaboration interface can be delayed
to virtual sub-classes. On the other hand, the expected part is achieved by Cae-
sarJ bindings, which are aspects woven afterward during a deployment phase.
The main advantage of CaesarJ is its ability to stay close to the programming
language and to be a superset of the AspectJ language.

JAsCo [19] is an AOP language originally designed for component-based sys-
tems. It introduces two main notions: aspect bean and connector. Aspect beans
are reusable Java beans describing the extra behavior to apply to components.
Aspect beans uses hooks that are similar to inner classes describing the advice
code and the pointcut declaration. Connectors are used to deploy hooks (some
kind of access points to join points) within a specific context.

Contrary to FAC, CaesarJ and JAsCo are programmatic approaches. In the
case of CaesarJ, aspects are dedicated to the expression of the relationships be-
tween components. The problem is that these aspects manage the bindings of all
the components of the system. In the case of JAsCo, only crosscutting relation-
ships are expressed thanks to connectors, and the management of dependencies
between base entities is missing.

A Model for Developing Component-Based and Aspect-Oriented Systems 271

4.2 Symmetric and Unified Approaches: Aspects Conceived as
Components

FuseJ [18], which is the follow-up project by the JAsCo team, mainly focuses
on the nature of an aspect that is represented as a regular bean. The approach
is symmetric: all the concerns are implemented as plain components. Compo-
nents in FuseJ are equiped with gates. A gate is a kind of interface to specify
component services: aspect-oriented and regular. The connectors (extension of
JAsCo connectors) specify the types of interaction between gates. FuseJ defines
regular and aspect-oriented connectors. Regular connectors are in charge of func-
tional connections between gates, and aspect-oriented connectors are in charge
of weaving a component behavior to another component. All the connections
defined by a component can be locally consulted. FuseJ does not yet propose a
global description of a component architecture with its connections. The model
does not support the managing of aspect domain and aspect binding as FAC
does.

DyMAC [10] is a component and aspect-based middleware framework. It uses
aspect-oriented composition to connect the application logic to the middleware
services. Similarly to FAC, an aspect component in DyMAC encapsulates an
advice. However around advices are not supported. Special kinds of connectors
are statically described in XML files to write technical services of the middle-
ware layer. Connectors in DyMAC looks like aspect bindings in our approach.
Nevertheless, aspect ordering is static in DyMAC whereas FAC provides an API
for aspect component ordering.

4.3 Other Component Models

OpenCOM [6] is a lightweight reflective component model and as such close to
the Fractal component model. The key concepts of the model are interfaces,
receptacles and connections. A component has a set of receptacles and inter-
faces. Interfaces are used to express provided services and receptacles to express
required services (comparable to Fractal client and server interfaces). Unlike
Fractal, OpenCOM defines a fixed meta-object protocol for components. The
meta objects in OpenCOM can be compared to aspect components (ACs) in
FAC. However, this meta level is fixed and thus does not support the dynamic
adding and removing of meta objects.

K-Component [7] is a component model for building context-adaptive ap-
plications. Instead of using an Architecture Description Language to statically
describe a component architecture, the model reifies the structure of the appli-
cation and describes adaptation contracts written with an Adaptation Contract
Description Language (ACDL) to dynamically reconfigure the application. The
representation of the architecture is defined with a typed graph. Thus, the recon-
figuration of the architecture is performed through a graph transformation. The
K-Components are defined using the OMG-IDL3 language and C++ idioms. The
main drawback of this approach is that adaptation is always realized through
reconfiguration of the component architecture. An interception mechanism is
missing to add an AOP support to the approach.

272 N. Pessemier et al.

JBoss AOP [5] is a Java framework for AOP. It can be used in the context of
the JBoss application server or standalone. As JAC [15], JBoss-AOP offers a set
of pre-programmed aspects that can be used directly. JBoss AOP aspects can
be woven with annotations, classic pointcut declarations or in a dynamic way at
system runtime. When applied to the JBoss application server, aspects are woven
to components. Similarly to FAC, dedicated XML fragments are used to deploy
aspects. However, in FAC, XML files are used to describe a component assem-
bly, with bindings. The notion of binding in EJB component model is missing.
Components are coarse-grained components, encapsulated by containers, which
do not express relationships between each other.

5 Conclusion

In this paper we have presented a general model for components and aspects
called FAC and its mapping onto the Fractal component model. This model
introduces three main notions: aspect component, aspect domain, and aspect
binding. A crosscutting concern is embodied by a regular Fractal component
called an aspect component. We have shown that an aspect component is an
encapsulation of advice code. An aspect domain is the reification of the notion
of a pointcut: the components picked out by an aspect component. The implicit
relationship between a woven aspect component and the component in which
the aspect component applies is a first-class entity called an aspect binding.

The main contribution of our approach is to bring aspect-oriented concepts to
the component world, and conversely, to improve aspect-oriented approach with
component notions. Thus, our three main notions (aspect component, aspect
binding, aspect domain) are mapped onto the Fractal component model using
existing notions of component, binding, and composite component.

We also provide a runtime support for crosscutting relationship reflection,
which is an open issue in the aspect-oriented community. Moreover, we offer
various abstraction views on aspect components woven on components in order
to help the evolution of the modular and crosscutting concerns of a component
and aspect system.

The long term objective of FAC is to work with aspects at three different lev-
els [16]. The first level is the use of AOP at the program level, namely the level
of objects that are encapsulated by components. Current AOP approaches fulfill
this need. The second level is FAC itself with the notions of aspect component,
aspect binding, and aspect domain. Joinpoints at this level are invocations on
component interfaces. And finally, we plan to consider a third level, an architec-
tural level, where joinpoints are architectural operations and transformations.

Acknowledgments

This work was partially funded by France Telecom under the external research
contract number 46 131 097.

A Model for Developing Component-Based and Aspect-Oriented Systems 273

References

1. M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database inte-
gration model: The composition-filters approach. In O. Lehrmann Madsen, editor,
ECOOP’92: Proc. of the European Conference on Object-Oriented Programming,
pages 372–395. Springer, Berlin, Heidelberg, 1992.

2. J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software archi-
tecture to implementation. In ICSE’02: Proc. of the International Conference on
Software Engineering, Orlando, FL, USA, May 2002.

3. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Programming: Systems, Languages,
and Applications / Proceedings of the European Conference on Object-Oriented
Programming, pages 303–311, Ottawa, Canada, 1990. ACM Press.

4. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani. An open
component model and its support in Java. In Proceedings of the International
Symposium on Component-based Software Engineering, Edinburgh, Scotland, May
2004.

5. B. Burke and al. JBoss-AOP. www.jboss.org/developers/projects/jboss/aop.
6. M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An efficient component

model for the construction of adaptive middleware. In Proceedings of Middle-
ware’01, 2001.

7. J. Dowling and V. Cahill. The k-component architecture meta-model for self-
adaptive software. In A. Yonezawa and S. Matsuoka, editors, Metalevel Architec-
tures and Separation of Crosscutting Concerns 3rd Int’l Conf. , LNCS 2192, pages
81–88. Springer-Verlag, Sept. 2001.

8. F. Duclos, J. Estublier, and P. Morat. Describing and using non functional aspects
in component based applications. In AOSD ’02: Proceedings of the 1st international
conference on Aspect-oriented software development, pages 65–75, New York, NY,
USA, 2002. ACM Press.

9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Get-
ting started with AspectJ. Communications of the ACM, 44(10):59–65, 2001.

10. B. Lagaisse and W. Joosen. Component-based open middleware supporting aspect-
oriented software composition. In CBSE, pages 139–154, 2005.

11. K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual Compo-
nents. Technical Report NU-CCS-99-01, College of Computer Science, Northeast-
ern University, Boston, MA, March 1999.

12. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transaction on Software Engi-
neering, 26(1):70–93, January 2000.

13. M. Mezini and K.Ostermann. Conquering Aspects with Caesar. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03), pages 90–100. ACM Press, March 2003.

14. OMG. CORBA Components, v3.0 (full specification), Document formal/02-06-65,
june 2002.

15. R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and L. Martelli.
JAC : An aspect-based distributed dynamic framework. Software Practise and
Experience (SPE), 34(12):1119–1148, Oct. 2004.

16. N. Pessemier, O. Barais, L. Seinturier, T. Coupaye, and L. Duchien. A three level
framework for adapting component-based systems. In Second International Work-
shop on Coordination and Adaptation Techniques for Software Entities (WCAT05),
Glasgow, Scotland, July 2005.

274 N. Pessemier et al.

17. L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A component model engi-
neered with components and aspects. In Proceedings of the 9th International SIG-
SOFT Symposium on Component-Based Software Engineering (CBSE06), Lecture
Notes in Computer Science, Stockholm, Sweden, jun 2006. Springer. To appear.

18. D. Suve. FuseJ web site. http://ssel.vub.ac.be/fusej/.
19. D. Suve, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented approach

tailored for component based software development. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD’03),
pages 21–29. ACM Press, 2003.

20. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., 2002.

FROGi: Fractal Components Deployment
over OSGi

Mikael Desertot1,3, Humberto Cervantes2, and Didier Donsez1

1 Laboratoire LSR-IMAG, 220 rue de la Chimie,
Domaine Universitaire, BP 53, 38041, Grenoble, Cedex 9, France

{mikael.desertot, didier.donsez}@imag.fr
2 Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),

San Rafael Atlixco N 186, Col. Vicentina, C.P. 09340, Iztapalapa. D.F., Mexico
hcm@xanum.uam.mx

3 Bull SAS,
1 Rue de Provence, 38130, Echirolles, France

Abstract. This paper presents FROGi, a proposal to support continu-
ous deployment activities inside Fractal, a hierarchical component model.
FROGi is implemented on top of the OSGi platform. Motivation for this
work is twofold. On one hand FROGi provides an extensible component
model to OSGi developers and eases bundle providing. FROGi-based
bundles are still compatible with legacy OSGi bundles that offer third
party services. On the other hand, FROGi benefits from the deployment
infrastructure provided by OSGi which simplifies conditioning and pack-
aging of Fractal components. With FROGi, it is possible to automate the
assembly of a Fractal component application. Partial or complete deploy-
ment is also supported as well as performing continuous deployment and
update activities.

1 Introduction

Component-based software engineering (CBSE) is a development methodology
that promotes the idea that software can be built through the assembly of
reusable software units called components [14]. Components are characterized
by the fact that they explicitly define a set of provided functionalities along with
dependencies that allow the components to be assembled (i.e. composed). CBSE
assumes that component development and component assembly are clearly dif-
ferentiated activities. Moreover these activities can be performed by different
actors. This differentiation implies that delivery and deployment aspects must
be taken into account early in the development life-cycle. To support these
activities, components are typically packaged in a unit which includes every-
thing that is needed by the component to function, except whatever the com-
ponent declares as an explicit dependency. Dependencies can be fulfilled either
through composition or at deployment time. A component model is also associ-
ated to an execution environment which is responsible for controlling several as-
pects associated to the components at run-time. These aspects include life-cycle

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 275–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

276 M. Desertot, H. Cervantes, and D. Donsez

management and the support of non-functional requirements such as persistence
or security.

Currently, many component models exist; the majority of them are targeted
toward specific application domains such as the construction of user interfaces
or the construction of server-side applications (for example, the Corba Com-
ponent Model (CCM) and Enterprise Java Beans (EJB)). The Fractal com-
ponent model, however, aims to be a general-purpose model and to address
a wide spectrum of domains [3]. The Fractal specification defines the compo-
nent model characteristics, and different implementations for this specification
exist. One of them is Julia, which is the reference Java-based implementation
(http://fractal.objectweb.org). An important particularity of the Fractal
component model is that it supports hierarchical composition, where a composi-
tion itself can be seen as a component that can be used in other compositions. An-
other particularity of this model is that it is extensible; this characteristic allows
this model to be independent from a particular application domain. Although
the Fractal specification defines clearly the characteristics of Fractal components,
it does not cover deployment aspects which, as previously mentioned, need to be
taken into account early in the development lifecycle. This paper presents FROGi
[6] which is an extension of the Fractal component model that supports deploy-
ment features and dynamic service-orientation. FROGi introduces the concept
of a deployment unit which is not covered in the original Fractal specification.
Furthermore, FROGi deployment units address the problem of deployment at
both the component and the composition level, necessary to support Fractal’s
hierarchical model. FROGi also addresses the issue of supporting continuous de-
ployment activities, which represent the fact that deployment activities, which
include installation, activation, update and un-installation of components oc-
cur continually. Supporting continuous deployment is facilitated by introducing
concepts from Service Orientation [2,7] into the component model.

FROGi implements these concepts by combining the Julia reference imple-
mentation of the Fractal component Model and the OSGi services platform
(http://www.osgi.org). FROGi simplifies Fractal-based application deploy-
ment and also allows these applications to support continuous deployment activ-
ities. This paper describes the concepts and the implementation of FROGi and
discusses some issues related to its realization. It is structured in the following
way. Section 2 presents the Fractal component model and its reference imple-
mentation Julia. Section 3 presents FROGi concepts. It describes how a Fractal
application is delivered as a set of deployment units. Section 4 discusses imple-
mentation details, including OSGi. Section 5 presents related work and finally
section 6 provides a conclusion and gives some perspectives to this work.

2 The Fractal Component Model

This section discusses the principles behind the Fractal component model and
its reference implementation Julia.

FROGi: Fractal Components Deployment over OSGi 277

2.1 Fractal

The Fractal component model is intended as a general-purpose component
model. Fractal components are defined as entities that provide and require func-
tional interfaces and that can be composed hierarchically. Fractal components
can also provide or require various named instances of an interface of a same
type (similar to CCM’s facets). To support multiple application domains, Fractal
components allow an undefined number of control interfaces to be implemented
by the components. Control interfaces are used at run-time for various purposes.
The Fractal specification defines several control interfaces which cover aspects
such as life-cycle control (LifeCycleController LC), the management of con-
nections between components (BindingController BC), the configuration of the
component attributes (AttributeController AC) and the management of com-
posite contents (ContentController CC). Furthermore, different instances of a
Fractal component can be created from a factory associated with a particular
component type. Figure 1 illustrates an example of a composite component con-
taining two component instances. These instances, which represent a client and
a server, are bound together and an interface provided by the client instance
is exported outside the composition. Additionally, the two instances and the
composite provide several control interfaces.

The Fractal specification defines a standard API that allows component types
to be defined programmatically. The API also allows component instances to be
created, configured and connected.

Fig. 1. Graphical representation of a Fractal composite

2.2 Julia

Julia (http://fractal.objectweb.org) is the Java-based reference implemen-
tation of the Fractal framework which implements the Fractal API. Julia aims
to simplify the construction of Fractal applications through the generation of
support classes, which allow standard Java classes to adhere to the Fractal com-
ponent model. A developer using Julia who wishes to create a Fractal component
must only provide code associated to application logic (the code that implements
the functional interfaces or component implementation). Julia generates a set of
classes which include implementations of control interfaces as well as intercep-
tors between functional interfaces and the component implementation. Support

278 M. Desertot, H. Cervantes, and D. Donsez

classes are generated either in a static or in a dynamic way through mixin and
byte code injection techniques. It must be noted that Julia is not the only Frac-
tal implementation; other implementations of Fractal are also available for other
languages and frameworks such as C, C#, Smalltalk, JavaScript, etc.

2.3 Construction of Fractal Applications Using Julia

A Fractal application is typically built from a set of classes implementing the
application logic contained in the components, one or more coordination classes,
as well as a primary class (bootstrap) responsible for performing the applica-
tion startup. Coordination classes interact with the Fractal framework to create
the different component types, component instances and instance connections
required by the application. Coordination logic can be written either program-
matically or declaratively using the Fractal Architecture Description Language
(ADL). It must be noted that the ADL only allows static compositions between
component instances to be described; as a consequence, dynamic changes must
be programmed explicitly in the application code.

3 FROGi

As previously described, the Fractal component model intends to be general and
allow many types of applications to be constructed, either distributed or not.
Construction of applications using this model is beneficial for several reasons.
First, Fractal is an extensible model; it allows the developer to extend it by pro-
viding additional control interfaces and by extending its ADL as well. Fractal is
also flexible since it permits to dynamically adapt the binding configuration be-
tween the components (although this has to be done programmatically through
the API). Finally its hierarchical model provides a way to build coarse com-
ponents by composing finer components. Fractal enables also the management
of the non-functional aspects of components. Despite these advantages, Fractal
still has some limitations. The first concerns component deployment since noth-
ing is specified in Fractal regarding this aspect. Although this issue has been
addressed by some recent work, proposed solutions are limited because they do
not support component unloading when components are not used anymore (see
related work section). The second limitation concerns component packaging. As
deployment is not currently addressed, no deployment unit has been specified.
As a result, a Fractal application is delivered a set of classes. Although these
classes can be packaged together in a JAR file (Java ARchive), the components
themselves cannot be delivered independently. The last limitation concerns the
versioning of the components constituting the application. It is not currently
possible to support multiple versions of components running simultaneously as
classes or package versioning is not supported, although this is more a limitation
of standard Java.

FROGi: Fractal Components Deployment over OSGi 279

On the other hand, Service-Oriented Architectures (SOA) [2,7] are built fol-
lowing a different model. Services are similar to components in the sense that
they are composed to build applications. Services, however, are specifically de-
signed to be shared at runtime. Services are usually discovered using a service
registry before being used in a composition. Web services are the most common
incarnation of SOA, however, other frameworks which are based on the SOA
principles also exist. OSGi is one of them and is presented later in this article.
OSGi was initially designed to build applications running inside home gateways;
this kind of environment is typically shared by several providers and must run
continuously.

The construction of a component-based application or a service-based appli-
cation requires different concerns to be addressed. The main difference is that in
component models, bindings are static and explicitly described (naming) whereas
in service architectures bindings are dynamic as services are referenced in a reg-
istry (trading) and can appear or disappear at runtime. Moreover, components
tend to be fine-grained assembly units. It is possible to create a considerable
amount of component instances inside an application. For instance, a large num-
ber of components can be deployed in an application server. On the other side,
services. are usually designed to be coarse-grained entities. A reason for this is
that in service orientation the program must deal with the inherent dynamism.
Therefore the lookup and adaptation required to support dynamic service avail-
ability tend to be resource consuming activities which are too costly for fine
grained components.

FROGi introduces an approach where concepts from component orientation
and service orientation are mixed. FROGi components (either single components
or compositions) are used to provide services. This approach allows applications
to be constructed as hierarchical compositions where bindings are dynamic. Dy-
namic binding is supported through the introduction of service orientation con-
cepts. Furthermore, the introduction of support for dynamic binding also allows
dynamic deployment activities to be performed.

FROGi is built by introducing the OSGi service platform into Fractal. FROGi
intends to illustrate that OSGi can be used to deploy applications build using
different component models and furthermore to be able to make these applica-
tions interact. This interoperability can occur, for example, between a Fractal
component and another like an EJB. The authors have already demonstrated
in [8] the dynamic deployment of J2EE applications and technical services on
Java EE application servers running on the top of OSGi platform. In this case,
FROGi offers a deployment container that takes in charge bindings between
components using inversion of control [9], in a similar way to PicoContainer
[11]. Finally, FROGi also allows Fractal-based applications to benefit from all
the legacy services already offered by the OSGi platform. For instance, Comanche
HTTP, a web server implemented with Fractal, can use the Log service specified
in OSGi.

280 M. Desertot, H. Cervantes, and D. Donsez

4 FROGi Implementation

This section discusses the implementation of FROGi by describing the OSGi
framework upon which FROGi is built. It also discusses how components are
packaged, an ADL that is used for deployment and finally a generation chain.

4.1 The OSGi Framework

The Open Services Gateway Initiative (OSGi) Alliance [16] is an independent,
non-profit corporation working to define and promote open specifications origi-
nally intended for the delivery of managed services to networked environments,
such as homes and automobiles. These specifications include the definition of
the OSGi Services Platform, which consists of two pieces: the OSGi framework
and a set of standard service definitions. The OSGi framework is a Java-based
deployment and execution environment for components. The OSGi framework
was originally conceived to be used inside restricted environments, such as set-
top boxes. The OSGi framework can however be used in other domains, as for
example, an infrastructure to support underlying release 3.0 of the Eclipse IDE
and of the Eclipse RCP.

The OSGi framework supports uninterrupted deployment of components that
are delivered inside of bundles. The framework also provides a service registry
that allows the components to interact following a service-oriented approach. In
OSGi, each bundle is used to deploy a single component that results in a unique
instance at run time (singleton). The continuous deployment activities supported
by the framework include bundle installation, activation, deactivation, update
and de-installation of the bundles. The framework ensures that deployment de-
pendencies at the bundle level are satisfied before allowing the bundle to be
activated. Bundle activation results in the creation of the component instance
deployed inside the bundle.

Physically, a bundle is packaged a jar file that contains binary code as well
as resources needed by the component. The jar file manifest file provides meta-
information that describes the bundle’s dependencies and the name of an acti-
vation class. This class is instantiated by the framework upon bundle activation.
The bundle’s dependencies are divided between deployment-time and run-time
dependencies. Deployment-time dependencies are code dependencies described
as packages that are exported and imported by the bundles. Run-time depen-
dencies describe the services that are provided or required by the component
that is deployed inside the bundle.

Component instances can publish or discover services provided by other com-
ponent instances at run-time. In OSGi, a service is published from a service
interface, a reference toward the component implementing the service and a set
of properties. Those properties, defined as keys and values, allow clients to differ-
entiate two equivalent service offers (i.e. two services with the same interfaces).
Moreover, the registry allows constraint searches to be made using filters based
on the properties following LDAP syntax. Because service publication or depar-
ture can occur at anytime, the service registry supports a notification mechanism

FROGi: Fractal Components Deployment over OSGi 281

that allows service clients to be aware of a particular service arrival or departure
events. In OSGi application assembly occurs at execution time as a result of the
interaction between components and the service registry.

4.2 Component Packaging

In FROGi, a Fractal application is packaged as one or more bundles. It is impor-
tant to notice that inside a single bundle, FROGi components are bound together
following the standard Fractal approach. However, when components are deliv-
ered in separate bundles, components become service providers and binding is
performed using the service-oriented interaction pattern which is facilitated by
the OSGi platform.

Because a Fractal application is built as a hierarchical composition, FROGi
supports independent packaging of primitive components as well as compos-
ites. As a consequence, it is possible to perform independent delivery as well as
independent update of the components. The example of figure 2 presents the
application from figure 1 packaged as a set of bundles. In this example, each
component is delivered in a different bundle: B0 for the composite, B1 for the
client and B2 for server.

Fig. 2. Fractal application packaged as a set of OSGi bundles

It is important to notice that once published, service interfaces become sta-
ble contracts which evolve slowly while their implementations can evolve more
frequently. As a consequence, service interfaces used for the binding between
components should be delivered in separate bundles (for example bundle B3 in
the figure 2 contains the interfaces implemented by the components in the other
bundles). The bundles that implement interfaces have a deployment-time de-
pendency towards the bundle that contains them. The independent delivery of
service interfaces allows implementation bundles to be updated without impact

282 M. Desertot, H. Cervantes, and D. Donsez

on the other bundles. If services interfaces were delivered with their implementa-
tion, a bundle update would lead to stopping and restarting (i.e. refresh) of the
bundles that depend on those services interfaces. This situation can be problem-
atic when applications run in non-stop environments. In FROGi, the Fractal API
as well as the Julia runtime are themselves delivered inside a bundle (fractal.jar);
this bundle exports packages that must be imported by bundles containing Frac-
tal components.

FROGi uses standard OSGi mechanisms for managing deployment activi-
ties of a bundle-based Fractal application. During bundle installation, the OSGi
framework resolves in an automatic way deployment dependencies correspond-
ing to packages containing service interfaces as well as the Fractal API. When
those dependencies are resolved, the bundle can be activated. Activation of a
FROGi bundle results in the instantiation and activation of an object from a
generic class, FrogiBundleActivator, contained in each FROGi bundle. This class
is responsible for configuring Julia execution environment (notably by specifying
that the classloader to use is the bundle one). It then instantiates a primary class
(i.e. BootStrap) that is responsible for creating the component(s) instance(s) de-
livered by the bundle.

4.3 Component Runtime

This section describes the runtime environment associated to FROGi.

Controller Publication. Once a FROGi component instance (i.e., Fractal
components located at the bundle root) is created, its control interfaces are
published in the OSGi service registry. The publication of those interfaces allows
a third party bundle (its encapsulating composite or an administration bundle)
to control the component instance’s lifecycle. Management can, however, also be
performed externally, for example using a JMX Agent [10].

Instance Binding. Trading associated with the service oriented approach is
used in FROGi to support binding of component instances that are delivered in
different bundles. The use of trading allows flexible bindings to be created. A
binding can be performed, for instance, with regard to any instance providing
a particular service (i.e. org.osgi.service.log.LogService). Furthermore, services
are characterized by a set of registration properties (such as ”‘language=en”’ or
”‘cron.pattern=***3***”’ in figure 2). Trading also allows ’static’ bindings to be
created. In that case a service request must contain the unique instance identifier
(i.e. the property service.pid) towards which the binding must be created.

Life-cycle and Binding Management. FROGi proposes two policies to man-
age the life-cycle and binding of the components: a composite-driven policy and
an autonomic policy. The instance life-cycle of a root component can be man-
aged either by its composite (delivered in another bundle), either by itself in an
autonomous way. Life-cycle management by the composite requires the instance
control interfaces to be published as services in OSGi service registry. Each

FROGi: Fractal Components Deployment over OSGi 283

service is identified by the service.pid properties. This properties identifies the
instance that provides the service in a unique and persistent way. The composite
creates bindings between instances through the BindingController services they
expose. Once those binding are created, the composite activates the instances
with the help of their LifeCycleController services.

The alternative to this policy is to consider the bundle as an autonomous life
cycle management unit of the instance with regard to its composite. This policy
is inspired from the Service Binder (see section 6.2). The instance is started as
soon as mandatory services dependencies are available in the registry. This last
policy is used for connecting components to legacy bundles that are devoid of
life cycle and binding controllers.

Dynamic reconfiguration. Whatever policy is used, it is necessary to sup-
port dynamic reconfiguration when the framework notifies that new components
are introduced or removed from the environment. If an arriving component is
required by another one, the binding must be performed. If a component leaves,
the components that depend on it must check in the registry that the mandatory
services they depend on are still available. In the case of the autonomous policy,
provided services are systematically unregistered of OSGi registry at compo-
nent stopping time. They are registered again (still with the same service.pid
attribute) during the component instance restart.

Application Activation. A Fractal application is a component/composite that
can be activated from one of its functional interfaces by Fractal support classes
such as org.objectweb.fractal.adl.Launcher. In OSGi, the application concept
doesn’t really exist: the application is built as a set of bundles that create con-
nections as they are installed or removed from the framework. Bundles can,
however, be classified into two categories: support bundles (i.e., which provide
services), and coordination bundles (which may not provide services but use
services provided by other bundles). Coordination bundles are closer to the con-
cept of an application, however, these bundles may themselves provide services
to other bundles and become part of a bigger application. In FROGi, an appli-
cation manager is responsible for activating the Fractal application deployed on
OSGi. This can be for instance a Cron Service calling the run() method of a
component or an administrator command executed on the terminal console.

4.4 Extensions to the Fractal ADL

Fractal provides an Architecture Description Language (ADL) that allows com-
ponent assemblies to be described. As previously mentioned, this ADL is exten-
sible. FROGi extends this ADL to take into account the deployment aspects of
the components, i.e. Packaging them within bundles.

The extended ADL is specified as shown in figure 3. This example presents the
Fractal ADL description used to obtain the FROGi packaging of figure 2 for the
application depicted in figure 1. The <bundle> sub-element of the <component>
and <definition> elements define how components are packaged inside the

284 M. Desertot, H. Cervantes, and D. Donsez

Fig. 3. The Extended Fractal ADL

bundle identified by the name attribute. The version attribute specifies the
overall implementation version. It corresponds to the bundle’s Bundle-Version
manifest attribute in OSGi. All the elements that are declared after a bundle
element are packaged together in the same bundle and this occurs until another
<bundle> element is encountered.

The bundle attribute under the <interface> element indicates that the in-
terface must be packaged inside another bundle whose name is specified by the
name value. If the bundle attribute value is an empty string, the interface is not
packaged by FROGi: it is already available in another bundle, generally a legacy
bundle. By default, if nothing is specified, service interfaces are packaged in the
same bundle as their component implementation. The version attribute of the
<interface> element declares the package specification version (i.e. contract)
of the interface. The default version value is 0.0.0.

The sub-element <property> of the <interface> element defines some prop-
erties that are associated to the service interface and which are used when the
interface is published in the service registry. Those properties are used for service
trading and and to provide information to application managers.

The sub-element <binding> of the <component> and <description> ele-
ments is used simultaneously to create standard Fractal bindings between in-
stances created in the same bundle, bindings between instances created into
separate bundles and bindings between instances and legacy OSGi services. The
server attribute can be substituted by a filterserver attribute whose value
is a LDAP expression that the requiring service must match to perform the
binding. This attribute is not available for standard Fractal bindings (i.e. intra-
bundle). We can notice that the serverfilter="(service.pid=server.y2)"
attribute is equivalent to server="server.y2".

FROGi: Fractal Components Deployment over OSGi 285

4.5 Generation and Deployment Chain

The extended ADL presented in the previous section allows packaging tasks to be
automated using a generation and deployment chain. Once Fractal components
are packaged inside bundles, the facilities provided by the OSGi platform are
used to perform their deployment.

The first step in the chain is concerned with bundle generation. This activity is
performed by the FROGi packager (left of figure 4). The packager parses the ADL
and packages interfaces and implementations following the ADL descriptor. The
packager tries to separate interfaces from implementations since this is essential
to support dynamic component updates.

The deployment is managed by another tool dedicated to OSGi deployment
(right of figure 4). This tool manages OSGi gateways distributed over several
nodes. It reads deployment files that are produced by the FROGi packager (xml
files). These files contain both the localizations of the generated bundles and
the gateway on which they must be deployed. The description also contains
the dependencies between the bundles. The tool deploys the FROGi bundles
and, if necessary, depending of the state of the targeted OSGi platform, it also
deploys required OSGi legacy bundles. Those bundles, and possibly their depen-
dencies, are made available from bundle repositories (such as the Oscar Bundle
Repository, Oscar (http://oscar.objectweb.org) being the open source OSGi
implementation we are using for demonstration purposes).

Fig. 4. Generation and deployment chain

4.6 Security

Service oriented architectures and service deployment require security aspects to
be taken into account. In the context of FROGi, it is necessary to ensure that an
architecture that is deployed using the ADL functions properly after installation.
The components that interact with legacy OSGi services must be able to trust

286 M. Desertot, H. Cervantes, and D. Donsez

them. This concern is exacerbated by the fact that the OSGi environment is
designed to be operated by different actors, and a FROGi-based application
may coexist with unsafe bundles from a different provider.

FROGi currently relies on the mechanisms provided by the OSGi framework
to handle security. These mechanisms allow bundles to be signed so that other
bundles can verify their origin. This offers an initial level of security. The second
level occurs at the service level. OSGi provides a mechanism that allows services
to be traded according to security policies. Furthermore, those policies can be
updated dynamically. Security mechanisms at the service level are adequate
for FROGi because they bring additional capabilities to the component model.
Finally, It must be noted that Fractal does not support these concepts (which
is understandable as it targets mono-operated applications).

5 Experimentation

This section presents an experimentation which compares the creation of an
HTTP server using a ”‘standard”’ approach versus a FROGi-based approach.
The experimentation is inspired from the comanche HTTP server discussed in
the Fractal tutorial.

5.1 Using Standard Fractal

Figure 5 depicts a minimal HTTP server. This server is assembled as a composite
component that is responsible of receiving, analyzing and dispatching requests
(to simplify, only the external composite is shown, not the contained compo-
nents). This component requires a Log component and one or more handlers
towards which the requests will be directed. Before a call arrives to a handler,
the request may go through different filters that are capable of adapting the
requests or that can be used as probes for example to collect information. To re-
alize this example in standard Fractal, all the needed components are described
in the ADL along with their bindings.

Fig. 5. A minimal HTTP server with Fractal

Once deployed and during execution, it is still possible to adapt the bind-
ings between the components. For example it is possible to disconnect the Log
component if we do not want to trace the requests anymore. It is also possible

FROGi: Fractal Components Deployment over OSGi 287

to adapt the filter chain between the requests manager and the request han-
dler by connecting or disconnecting filters. This adaptation is taken in charge
by the requests analyzer and dispatcher. What is not possible, however, is to
add dynamically a new filter that was not previously described in the ADL.
This is simply because the implementation classes of this filter are not deployed
with the original application. The same problem occurs if a filter needs to be
updated, for example for performance reasons. It is possible to disconnect the
filter properly but no mechanism is available to perform an update of the filter’s
implementation and maintain the coherency.

5.2 Using FROGi

The construction of the same example using FROGi illustrates three key points:
the capability of using legacy OSGi services, of dynamically deploying new com-
ponents and of updating components without restarting the application.

Fig. 6. A minimal HTTP server with FROGi

Figure 6 depicts how the HTTP server application is assembled and deployed
using FROGi components. The capability of using legacy OSGi services is il-
lustrated by replacing the previous Fractal log component with the Log service
defined in the OSGi specification. Deployment concerns are now addressed since
the components are packaged into different bundles which are later managed
by OSGi framework. In this example, the filter components are packaged and
delivered in different bundles. As a result new filters can be deployed easily. Us-
ing the trading mechanisms, the Dispacher is able to select, among the set of
filters, the ones that it requires to create the filter chain. Updating a component
is also possible and is supported by the OSGi update mechanism. First of all,
bindings with the corresponding component are relieved. Then the update mech-
anism manages the download, replacement and reactivation of the component
embedded in the bundle. During this period, Fractal’s interception capabilities
are used to hold the calls towards the components until it they are reactivated.
It is interesting to notice that as soon as a component is not used anymore, it
is possible to uninstall it and completely free the resources it was using. F This
simple example shows that the FROGi’s features introduce important benefits
into the standard Fractal model.

288 M. Desertot, H. Cervantes, and D. Donsez

6 Related Works

This section presents different related works concerning the OSGi use as an in-
frastructure for deploying components as well as Fractal components packaging.

6.1 Beanome

Using OSGi as a component deployment infrastructure is explored in the
Beanome component model [4]. In Beanome, OSGi bundles are used to deploy
COM-like components. Moreover, the OSGi service registry is used to publish
components factories when the bundle is activated. A benefit of registering com-
ponent factories as services is that factories can be located based on the func-
tionalities of the components they create and not only from a unique identifier
as in COM. Beanome, however, does not provide support for dynamic changes.

6.2 Gravity

The Gravity project [5] explores the creation of applications with autonomous
adaptation capabilities towards component availability. Gravity introduces a ser-
vice oriented component model in which trading is used at run time to bind
component instances as well as to maintain compositions despite components
arrival and departure. In Gravity, an execution environment entity, called the
Service Binder, is in charge of adapting component instances and compositions
with respect to dynamic changes. Gravity is built as a layer on top of OSGi, and
the Service Binder is deployed as a bundle inside the service platform. A draw-
back of Gravity is that is uses a particular component model that is nevertheless
not far from Fractal. Many of the ideas introduced in the Service Binder have
been recently added to the OSGi specification’s 4th release under the name of
Service Component Runtime (Declarative Services). This component is also the
subject of the JSR 291 (Dynamic Component Support for Java SE) submitted
to the JCP by several members of the OSGi Alliance.

6.3 Fractal Packages and Deployment Activities

Some discussions on the Fractal mailing list mention the definition of a packaging
mechanism for Fractal components and some work has been realized concerning
this mechanism. The proposals that have been made also rely on OSGi but only
for packaging purposes (packaging units are .FAR)[1]. An XML manifest that
contains the metadata is added to the archive. Deployment is supported but
it is impossible to update components at runtime. This proposal does, however,
not consider the existence of an infrastructure to perform continuous deployment
activities. This issue is addressed in another work [12]. This proposal uses a layer
that supports the creation of Java classloaders to bring additional components
to an application at runtime. This work does, however, not support component
uninstall.

FROGi: Fractal Components Deployment over OSGi 289

6.4 JSR277

Packaging an application is one of the most recurrent problems to facilitate
deployment. JSR277 (Java Module System http://www.jcp.org/en/jsr/
detail?id=277) aims to specify an unified packaging model for all Java software
for J2SE 1.7 (2007). JSR277 intends to overtake JNLP, J2EE EAR, OSGi R4
packaging formats. It will be based on the JAR file format and the Manifest will
be augmented by explicit versioned package dependencies. In fact, the chapter
”Module Layer” of the recent OSGi R4 specifications already covers all of JSR
277 requirements. Moreover, JSR277 does not address the OSGi service layer
which enables to build dynamic service-oriented architectures of Java applica-
tions as SCR, JSR 291 or FROGi. If this JSR is integrated in Java, FROGi
would already be compliant at the packaging level with future Java versions.

7 Conclusions and Perspectives

This paper has presented FROGi, a proposition that is based on the introduction
of some characteristics of the OSGi service platform in the Fractal component
model. With FROGi, a Fractal application is packaged inside one or more OSGi
bundles; this allows the components to be delivered and deployed individually
and continuously. Moreover, binding between components instances can be re-
alized either through the ’standard’ Fractal connexion technique, either by the
publication of functional interfaces in the services registry and the use of OSGi
proper trading technique. In addition, FROGi proposes Fractal ADL extensions
to automate packaging and deployment. It must be pointed out that FROGi,
as well as the different works described in the fifth section, show that OSGi is
an ideal platform to perform component deployment, application update and
code versioning. Nevertheless, some points have not been considered in the work
realized until now:

Multiple instances creation mechanism: Fractal supports the creation of a
variable number of component instances. The work presented here focuses on a
singleton based approach. A way to resolve this, still being compatible with the
OSGi environment, is to publish components factories through services (similar
to the approach followed by Beanome and described in 6.1).
Architecture introspection: as we assume that different kinds of components
can be deployed and bound on OSGi, it is desirable to expose the architecture
of the application independently of the technologies we are using. An example
of such architecture viewer is Fractal Explorer but it only manages pure Fratal
applications.

Finally, as it was mentioned in the second part, there is currently not a clear
vision of the difference between component models and service oriented archi-
tectures. Most of the time, these approaches are considered either as orthogonal
aspects, either as similar approaches. We have already cited some tracks on the
subject and this is the focus of our current research. For instance we are cur-
rently working on the interoperability we can have between Fractal and EJB

290 M. Desertot, H. Cervantes, and D. Donsez

components model inside an application server and on component deployment
on heterogeneous platforms [13].

References

1. Abdellatif, T., Kornas, J. And Stephani, J-B.: J2EE Packaging, Deployment and
Reconfiguration Using a General Component Model. Proceedings of Component
Deployment, CD, Grenoble 2005

2. Bieber, G., Carpenter, J.: Introduction to Service-Oriented Programming.
OpenWings whitepaper, Septembre 2001, http://www.openwings.org/download/
specs/ServiceOrientedIntroduction.pdf

3. Bruneton, E., Coupaye, T. and Stefani, J.B.: The Fractal Composition Framework
Version 2.0-3. Object Web Consortium, July 2004.

4. Cervantes, H. and Hall, R.S.: Beanome, A Component Model for the OSGi Frame-
work. Proceedings of the workshop Software Infrastructures for Component Based
Applications on Consumer Devices, Lausanne, 2002

5. Cervantes, H. and Hall, R.S.: Automating Service Dependency Management in a
Service-Oriented Component Model. Proceedings of CBSE 6, Portland, USA, 2003

6. Cervantes, H., Desertot, M. And Donsez, B.: FROGi: Dploiement de composents
Fractal sur OSGi. Proceedings of Decor’04, CoRR, Grenoble 2004

7. Cervantes, H. and Hall R. S.: Chapter I: Service Oriented Concepts and Tech-
nologies. In the book ”Service-Oriented Software System Engineering: Challenges
and Practices” (ISBN 1-59140-426-6) edited by Zoran Stojanovic and Ajantha Da-
hanayake, Idea Group Publishing, 2005.

8. Desertot, M., Escoffier, C. And Donsez, D.: Autonomic administration of J2EE
Edge Servers. Proceedings of the International Worshop of Middleware for Grid
Computing (MGC), Grenoble, 2005

9. Fowler, M.: Inversion of Control and the Dependency Injection Pattern. Online
Document, 2004. http://martinfowler.com/articles/injection.html

10. Frnot, S. And Stefan D.: Instrumentation de plate formes de services ouvertes
Getion JMX sur OSGi. Ubimob, Nice, 2004

11. Hammant, P., Hellesoy, A., and Tirsen, J.: PicoContainer: a lightweight embed-
dable container. http://www.picocontainer.org

12. Kornas, J., Leclercq, M., Quema, V. And Stephani, J-B.: Support pour la recon-
figuration d’implantation dans les applications a composants Java. Proceedings of
Decor’04, CoRR, Grenoble 2004

13. Marin, C. And Desertot, M.: SensorBean: A Component Platform for Sensor-Based
Services. Proceedings of the International Worshop of Middleware for Pervasive and
Ad-Hoc Compouting (MPAC), Grenoble, 2005

14. Szyperski, C.: Component software: beyond object-oriented programming. ACM
Press/Addison-Wesley Publishing Co., 1998.

Modular Design of Man-Machine
Interfaces with Larissa

Karine Altisen, Florence Maraninchi, and David Stauch

Verimag, Centre équation - 2, avenue de Vignate, 38610 GIÈRES — France

Abstract. The man-machine interface of a small electronic device like
a wristwatch is a crucial component, as more and more functions have to
be controlled using a small set of buttons. We propose to use Argos, an
automaton-based language for reactive systems, and Larissa, its aspect-
oriented extension, to show that several interfaces can be obtained from
the same set of basic components, assembled in various ways. This is
the basis of a quite general component-based development method for
man-machine interfaces.

1 Introduction

Man-Machine Interfaces of small electronic devices. In small devices such as
wristwatches, portable multimedia devices, or GPS devices, more and more func-
tions have to be controlled using a very small set of buttons. The design of such
systems usually follows an approach in which the interface is clearly separated:
this is a component that accepts the button events as inputs, and translates them
into complex functions, depending on its internal state, or mode. For instance,
the same button of a wristwatch means “toggle alarm” or “increment minutes”,
depending on the running mode. We will distinguish the interface from the in-
ternal components of the system, which take a much larger set of inputs (“toggle
alarm”, “increment minutes”, etc.). In this paper, we concentrate on the design
of the interface component of such small electronic devices. We propose to use
aspects in order to help modular design and reuse.

Programming Man-Machine Interfaces. Man-machine interfaces are typical in-
teractive, or reactive systems. Using reactive languages for programming or mod-
eling them is quite natural. Moreover, among the formalisms and languages that
are used to describe reactive systems, those that are based on explicit automata,
like Statecharts [8], are particularly well adapted. The user documentation of a
small electronic device is often given with partial graphical automata, because
it is the more natural way of thinking of it.

The family of synchronous languages [5] has been very successful in offering
semantically founded languages, adapted to the needs of the programmers. It is
comprised of several dataflow languages (Lustre, Signal), a textual imperative
language (Esterel), and several variants of graphical automaton-based languages
(Argos, Safe State Machines, some variants of Statecharts). Their main struc-
ture is the parallel composition; components synchronize and exchange data via

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 291–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 K. Altisen, F. Maraninchi, and D. Stauch

the so-called synchronous broadcast. All these languages may be compiled into
sequential cyclic code for a direct implementation on embedded processors, or
into synchronous circuits, for ASIC or FPGA implementations. Moreover, the
internal structure used in the compilation or synthesis process can be used as in-
put by various formal verification tools (model-checkers, abstract-interpretation
tools, theorem-proving tools).

In this paper, we use a simple version of Argos [14]. Argos was first designed
as a variant of Statecharts having a pure synchronous semantics. The hierarchy
of states inherited from Statecharts is very convenient for the description of a
watch interface that has several running modes.

Aspect Oriented Programming. Programming languages usually have mecha-
nisms to structure the code of programs. For any program P, whatever be its
modular structure, it is always possible to think of some functionality F that P
should provide, in such a way that F cannot be implemented only by some mod-
ular modifications of P by e.g. simply adding some new components to it. This
is the case when F is a crosscutting feature, that indeeds requires modifications
in several components of the original program. Aspect oriented programming
(AOP) has emerged recently as a response to this problem. It provides facilities
to design F as a new kind of component – F is then called an aspect – and to
compile F and P together – this process is called the weaving of the aspect F
into the program P. Some aspect languages like AspectJ [9] are becoming in-
creasingly popular. A number of case studies (see for instance [2,3]) have shown
that they can considerably improve the code structure of large systems.

Aspects may be used to describe functionalities like tracing, debugging, pro-
filing. In this case, they do not aim at modifying the behavior of the original
program; they only add code that observes it. They should be given a complete
view of the entities of the program. On the other hand, aspects may sometimes
be used in order to modify the behavior of the original program. For this kind
of aspects, the way they modify the program has to be clearly defined. Aspect
weaving can also be required to have some good properties, like the preser-
vation of a behavior equivalence (if two programs P and Q behave the same,
then the result of weaving an aspect A into P should behave the same as the
result of weaving the same A into Q). In this paper, we use the formally de-
fined language Argos, and its aspect extension Larissa [1]. The aspects allowed
have a clear semantics and the weaving process preserves the usual behavior
equivalence.

Contributions and structure of the Paper. We show the interest of using aspect
oriented programming in the particular context of developing man-machine in-
terfaces of small electronic devices: we illustrate it by studying several variants
of watches. We propose an approach in which these interface components may
be described by assembling smaller components, thus improving reuse.

We consider aspects as components in this assembling process. This is made
possible by two important points: first, our mechanism for aspect weaving

Modular Design of Man-Machine Interfaces with Larissa 293

behaves exactly as the operators of the base language, and has the same prop-
erties regarding the respect of a behavior equivalence; this allows to combine
pieces of programs and aspects freely, in any order. Second, our specification of
aspects is independent of the internal structure and names of the base program,
and only refers to the elements of its interface; this means that a component on
which an aspect is applied may be safely replaced by another one, provided its
interface is the same and its behavior is equivalent to the old one.

The structure of the paper is as follows: Section 2 describes the base language
Argos; Section 3 describes our aspect extension of Argos, from the user point of
view; Section 4 is the case study; Section 5 comments the case study; Section 6
is a non-exhaustive list of related work and Section 7 concludes and lists the
main perspectives.

2 The Argos Language

An Argos program describes the reactive kernel of a system. A reactive system is
a computer system that communicates with the environment it is embedded in:
it has input signals coming from the environment and output signal it emits to-
wards the environment. In Argos, input and output signals have Boolean values.
Whereas the environment evolves in a continuous manner, the fact that the re-
active system is a program implies that, from the program(mer)’s point of view,
the time is sampled into instant. At each instant, an Argos program reacts to
inputs by sending outputs and updating its internal memory. Such a reaction is
atomic: the system does not read inputs while computing outputs and updating
its memory. This property mainly characterizes synchronous languages of which
Argos is a member.

Argos is an automata based language. Its base components are automata
with transitions labelled by inputs and outputs; more complex components can
be obtained by connecting components with operators, i.e. the parallel product
between automata, the encapsulation (hiding variables), the inhibition (freezing
a program for a while) and the hierarchy (a state of an automaton may contain a
program). The communication between components is achieved by parallel prod-
uct and encapsulation. Two programs communicate by exchanging local signals
which are inputs of one program and outputs of the other. The communication is
the synchronous broadcast: it is non blocking (unlike the rendez-vous mechanism,
for instance).

Argos programs are (as programs should always be) deterministic and com-
plete, i.e. for any given sequence of inputs there exists a unique execution of
the program. The semantics of Argos is formally defined by using traces of the
execution. Those traces are only defined by the values of the inputs and outputs
at each instant (the states reached – value of the memory – are not part of the
information of a trace). A semantic equivalence between programs is also defined
as being the equality of traces.

294 K. Altisen, F. Maraninchi, and D. Stauch

<sc>

sc

sc
sc

sc

(b)end

C1 C0c

c/end

B1 B0
b

b/c

A1 A0
a/b

a

b,c

end

C1,B1,A0

C1,B1,A1 C0,B0,A1

C0,B1,A0

C0,B1,A1C1,B0,A1 a.sc

a.sc

scsc

a.sc

a.sc
a.sc

sc

a.sc/end

C1,B0,A0
sc

C0,B0,A0

Counting

a.sca.sc

Counting

start

end

Not counting

stop.endend

Not counting

stop.end

start

(a)

Fig. 1. Two Argos programs for the modulo-8 a-counter

2.1 Syntax of the Main Constructs

The complete language is described in [14]. In this paper, we partially describe
it using an example. Figure 1(a) is an Argos program using four automata to
describe a modulo-8 a-counter.

Single automata. Rounded-corner boxes are automaton states; arrows are
transitions. A set of states and transitions which are connected together con-
stitutes an automaton. The four basic components of the program have the fol-
lowing sets of states: {Counting, Not counting}, {A0, A1}, {B0, B1}, {C0,
C1}. Transitions are labeled by a Boolean condition on input signals, and a set
of emitted signals. We use the concrete syntax: condition / emitted signals.
In the condition, negation is denoted by overlining and conjunction is denoted
by a dot (examples: c/end, stop.end). When the output set is empty, it can be
omitted. The initial state is designated by an arrow without source. States are
named, but names should be considered as comments: they cannot be referred
to in other components nor are used to define the semantics of the program.
An arrow can have several labels — and stand for several transitions, in which
case the labels are separated by a comma. By convention, every automaton is
complete: if a state has no transition for some input valuations, we suppose that
there is a self-loop transition with these valuations as triggering condition and
no outputs.

State refinement. The automaton whose states are Counting and Not count-
ing is said to be refined. The Counting state contains a sub-program built from
the three other automata.

Parallel product. Three automata whose states are respectively {A0, A1},
{B0, B1}, {C0, C1} are put in parallel: they are drawn separated by dashed
lines.

Modular Design of Man-Machine Interfaces with Larissa 295

C0,B0,A0

C1,B0,A0

stop
sc.a.stop,

C1,B0,A1

C0,B1,A0

C0,B0,A1

C0,B1,A1

C1,B1,A1

C1,B1,A0
a.stop.sc

a.stop.sc

a.stop.sc

a.stop.sc

stop

start

stopstop

a.stop.sc

a.stop.sc

a.stop.sc

Not counting

Fig. 2. The behavior of the modulo-8 a-counter

Encapsulation. Rectangular boxes are used for unary operators. The external
box, whose cartridge contains end, is the graphical syntax for the declaration
of a local signal end. The box defines the scope in which end is known. This
signal is used as input by the refined automaton; it is used as output by one
of the three other ones: a communication will take place between the two. The
same operator is used in order to limit the scope of signals b, c to the program
constituted by the three unrefined automata.

Inhibition. The inhibition is another unary operator: the notation is another
cartridge containing a fresh variable between “<” and ”>”. The parallel product
of the three non refined automata are inhibited by the inhibition variable sc.

Interface of a program. All signals which appear in a left-hand (resp. right-
hand) side of a label plus inhibition variables, and are not declared to be local
to some part of the program are global inputs (resp. global outputs).

2.2 Intuitive Semantics

We give here the intuitive semantics of the operators, by explaining the behavior
of the counter. This behavior is a single automaton, as shown by Figure 2.

First, observe the three automata embedded in a parallel structure, and the
operator which defines the scope of b and c. This constitutes a subprogram
whose only input is a, and whose only output is end. The global behavior of this
subprogram is defined by: the global initial state is C0,B0,A0; when it has reacted
to input a n times, the program is in state Ck,Bj,Ai, where i+2j+4k = n mod 8;
end is emitted every 8 a’s.

This behavior is achieved by connecting three one-bit counters. The first one
(A) reacts to external input a, and triggers the second one (B) with signal b,
every two a’s. The second one, reacting to b, triggers the third one (C) with c,
every two b’s. The third one emits end every two c’s. The communication being
synchronous, a reaction to which the three bits participate, is indeed one tran-
sition in the global behavior (e.g., reaction to a from C0,B1,A1 to C1,B0,A0).
Finally, inhibition by sc (for “stop counting”) is applied: in each state, either

296 K. Altisen, F. Maraninchi, and D. Stauch

sc is true and the automaton stays in its current state, or it is false and the
automaton behaves as before applying inhibition. The result of those operators
is shown in Figure 1(b): the modulo-8 counter subprogram modularly described
in Figure 1(a) has been replaced by an equivalent 8-state automaton.

Refining the Counting state with the modulo-8 counter subprogram provides
a way to describe how the counter can be started and stopped. Provided that
start is true, the transition which enters the Counting state always goes to its
initial state C0,B0,A0. The counter reacts to the occurrences of a and sc; and
the refined automaton reacts to the occurrences of stop and end. The Counting
state is left if end and/or stop occurs. At the instant Counting is left, the
refining subprogram still reacts. Thus, the modulo-8 counter can terminate itself
by emitting end. The program goes to state Not counting when stop occurs at
any time in state Counting, and also when it is in state C1,B1,A1 and a and sc
occur, because end is emitted. end is also emitted when stop, a and sc occur
together in state C1,B1,A1.

As we did for the example, the semantics of each Argos operator is given by
a flattening operation that transforms any complex program (made of automata
composed together) into an equivalent single flat automaton. The semantics of
a flat automaton is then given by defining the set of all its execution traces,
(inputs and outputs at each instant).

3 Larissa: An Aspect Extension to Argos

Argos operators are already powerful. However, there are cases in which they
are not sufficient to modularize all concerns of a program: some small modifica-
tions of the global program’s behavior may require that we modify all parallel
components, in a way that is not expressible with the existing operators.

The goal of aspects being precisely to specify some cross-cutting modifications
of a program, we proposed an aspect-oriented extension for Argos [1], which al-
lows the modularization of a number of recurrent problems in reactive programs,
like the reinitialization. This leads to the definition of a new kind of operators
(corresponding to the weaving of aspects) for which we took care of ensuring
some nice properties: they preserve determinism and completeness of programs
and also the semantic equivalence between programs.

All the aspect extensions of existing languages (like AspectJ [9]) seem to share
two notions: pointcuts and advice. The pointcut describes a general property of
program points where a modification is needed (all the methods of the class X,
all the methods whose name contains visit, etc.); the pointcut, applied to a
particular program, selects a set of concrete join points, where the aspect has to
be applied. The advice specifies what has to be done at each of these join points
(execute some piece of code before the normal code of the method, for instance).
For Larissa, we adopted this approach: an aspect is given by the specification of
its pointcut and its advice.

Modular Design of Man-Machine Interfaces with Larissa 297

0 1
A B b/c

(a) base program

a

b
c/JP

(b) pointcut (c) pointcut

c

c/JP

Fig. 3. Example pointcuts

3.1 Join Point Selection

In Larissa, we decided not to express pointcuts in terms of the internal structure
of the base program. For instance, we do not allow pointcuts to refer explicitly
to some state name (as AspectJ can refer to the name of a private method).
As a consequence, pointcuts may refer to the observable behavior of a program
only, i.e., its inputs and outputs. In the family of synchronous languages, where
the communication between parallel components is the synchronous broadcast,
observers [7] are a powerful and well-understood mechanism which may be used
to describe pointcuts. Indeed, an observer is a program that may observe the
inputs and the outputs of the base program, without modifying its behavior,
and compute some safety property (in the sense of safety/liveness properties as
defined in [10]).

In Larissa, pointcuts are expressed as observers, which select a set of join point
transitions by emitting a single output JP, the join point signal. A transition T
in a program P is selected as a join point transition when in the concurrent
execution of P and the pointcut, JP is emitted when T is taken. Technically,
we perform a parallel product between the program and the pointcut and select
those transitions in the product which emit JP. Figure 3 illustrates the pointcut
mechanism. The pointcut (b) specifies any transition which emits c: in base
program (a), the loop transition in state B of the base program is selected as
a join point transition. The pointcut (c) specifies every second time c is true:
no transition of the base program (a) corresponds directly to this condition.
However, as the join points are selected on the parallel product of the base
program and the pointcut, the pointcut introduces new memory: the automaton
memorizes if c has been emitted an even or an odd number of times.

Pointcuts can be built by composing other pointcuts with Argos operators.
E.g., some pointcuts can be put in parallel with an automaton which takes their
join point signals as inputs and emits the join point signal of the composed
pointcut. Thus, expressions like “pointcut A and not pointcut B” or “pointcut
A until a and then pointcut B” can be written modularly.

3.2 Specifying the Advice

The advice usually expresses the modification applied to the base program. In our
setting, we consider that the base program has been flattened first, as explained
in Section 2.2. In Larissa, we defined two types of advice: in the first type, an
advice replaces the join point transitions with advice transitions pointing to some

298 K. Altisen, F. Maraninchi, and D. Stauch

JPJP

JP

JP
σ1

σn

σn

σ1

target state T
σnσ1 target state T

target state T

(a) toInit aspect (b) toCurrent aspect

1/Oad

2/Oad

1/Oad

2/Oad

Fig. 4. Schematic toInit and toCurrent aspects (Advice transitions are in bold)

existing target states; in the second type, an advice introduces a full program
between the source state of the join point transition and some existing target
state. In both cases, target states have to be specified without referring explicitly
to state names.

We consider three ways of specifying the target state T, among the existing
states of the base program P: 1) T is the state of P that would be reached
by executing some finite input trace from the initial state of P, called a toInit
advice; 2) T is the state of P that would be reached by executing some finite
input trace from the join point itself, called a toCurrent advice; 3) we first
define some recovery states, among the states of P; then T is the recovery state
that was passed last. The third type will not be used in the paper (see [1] for
further details). For the first two types, specifying the advice includes giving
a finite input trace to define the target state. Since the base program is both
deterministic and complete, executing an input trace from any of its states is an
effective way of defining exactly one state.

Advice Transition. The first type of advice consists in replacing each join point
transition with an advice transition. Once the target state is specified by a finite
input trace σ = σ1 . . . σn, the only missing information is the label of these new
transitions. We do not change the input part of the label, so as to keep the woven
automaton deterministic and complete, but we replace the output part by some
advice outputs Oad. These are the same for every advice transition, and are thus
specified in the aspect. Advice transitions are illustrated in Figure 4.

Advice Program. It is sometimes not sufficient to modify single transitions, i.e. to
jump to another location in the automaton in only one step. It may be necessary
to execute arbitrary code when an aspect is activated. In these cases, we can
insert an automaton between the join point and the target state.

Therefore, we use an inserted automaton Ains that terminates. Since Argos has
no built-in notion of termination, the programmer of the aspect has to identify
a final state F (denoted by filled black circles in the figures).

Inserting an automaton is quite similar to inserting a transition. We first
specify a target state T by a finite input trace, starting either from the initial

Modular Design of Man-Machine Interfaces with Larissa 299

I

b

a

... ...

I

b

a

...

(c) the woven program(b) inserted automaton Ains(a) base program

...

join point J

target state T target state T

/JP /Oad

Fig. 5. Inserting an advice automaton

state or from the source state of the join point transition. Then, for every T,
a copy of the automaton Ains is inserted, which means: 1) replace every join
point transition J with target state T by a transition to the initial state I
of this instance of Ains. As for advice transitions, the input part of the label is
unchanged and the output part is replaced by the advice outputs Oad; 2) connect
the transitions that went to the final state F in Ains to T. See Figure 5.

3.3 Fully Specifying an Aspect

As stated above, an aspect is given by the specification of its pointcut and its
advice: Asp = (PC-program,Advice). PC-program is an Argos program with a
single output JP used as the pointcut program. Advice is a tuple which contains
1) the advice outputs Oad; 2) the type of the target state specification (toInit or
toCurrent); 3) the finite trace σ over the inputs of the program; and optionally 4)
when adding an advice program, ADV-program, the advice program itself (when
adding advice transitions, this slot is left empty).

As a summary, when adding an advice transition, Advice = < Oad,type, σ >,
when adding an advice program, Advice = < Oad,type,σ, ADV-program>, with
type ∈ {toCurrent, toInit}.

3.4 Formal Setting and Implementation

In [1], we define the aspect language formally, and prove the main properties:
aspect weaving preserves the usual behavior equivalence, and also preserves the
determinism and completeness of the base program. Let us note P � Asp the
result of weaving an aspect Asp into a program P .

The preservation of the equivalence, noted ∼, means that, if P ∼ Q then,
for any Asp, (P � Asp) ∼ (Q � Asp). With these properties, aspect weaving can
indeed be considered as a new operator. This new operator can be used freely
in expressions of the form: ((P ||(Q � A1))||R) � A2, for instance (|| denotes the
parallel composition). Then, any of the components appearing in this expression
may be replaced by an equivalent one without changing the behavior of the
global program.

A compiler [11] for Larissa was developed, as an extension of an existing Argos
compiler: it performs the weaving of an aspect Asp into an Argos program P

300 K. Altisen, F. Maraninchi, and D. Stauch

Interface
component compoment

Functional
environment

...Buttons

...
Display

... Physical

Fig. 6. Typical structure of a small electronic device

as shown above. This tool is connected to simulation, test, debug and formal
verification tools like the model-checker Lesar [6].

The formal definition of aspects also allows to study interference problems in
a clean setting. This question is treated in [16].

4 Case Study: A Suunto1 Watch

4.1 Global Scheme

In this section, we model the interfaces of small electronic devices with Argos and
Larissa. These devices – e.g. wristwatches, alarm clocks or car radios – usually
have a small number of buttons which control a large number of functionalities.
These buttons have different meanings depending on the state in which the
device is currently.

Therefore, controllers of such devices usually have a structure like the one
shown in Figure 6: it contains an interface component, which interprets the
meaning of the buttons the user presses, and then calls the corresponding func-
tion in the underlying functional component. The functional component obtains
the necessary information of the environment of the device (e.g. a quartz crystal
to measure time), reads and writes persistent memory, and updates the display.

Hierarchic automata languages like Argos are very well suited to model inter-
face components. However, some additional functions are difficult to express in
a modular way.

Our case study shows two of these functions: shortcuts, and additional modes.
A shortcut is the possibility, in some given modes, to use a single button to
activate a function that would otherwise need a long sequence of buttons. Adding
shortcuts modifies the interface, but not the internal components.

Furthermore, interfaces for similar devices often use the same components for
large parts of their functionalities. We show that aspects can be used to compose
and configure components so that the same components can be used for different
devices.

4.2 Suunto1 Watches

As a case study, we implement the interface components of two complex wrist-
watches, the Altimax1 and the Vector1 models by Suunto1. Both share the
1 Suunto, Altimax and Vector are Trademarks of Suunto Oy.

Modular Design of Man-Machine Interfaces with Larissa 301

same casing, display, and a large set of their functionalities: time, altimeter and
barometer functions are nearly equal in both models, but the Vector also has an
integrated compass. Carefully following the documentation, we propose Argos
components and aspects to describe the interfaces of the two watches.

The Base Program. In both watches, each main functionality is represented by
a main mode, which in turn has several submodes, that offer numerous func-
tionalities. The interfaces of both watches contain four buttons, the Mode, the
Select, the Plus, and the Minus button. The Mode button circles between the
main modes, or, in a submode, returns to the main mode. The Select button
selects a submode, and the Plus and Minus buttons modify current values. All
main modes and many submodes have an associated configuration mode, where
settings for the mode can be modified. A configuration mode can be reached by
holding the select button pressed for two seconds in the corresponding mode.

Figure 7 shows the implementation of the interface component for the modes
both wristwatches have in common. The input s2s occurs when the Select
button is pressed for two seconds. This part of the interface is called the base
program. Figure 7 is not complete: most of the states are further refined, and
only some of the outputs (i.e. the commands to the functional component) are
shown, namely Time-Mode, Bari-Mode, Alti-Mode and mainMode. The signal
toMainMode is encapsulated: the submodes can emit it to force a return to their
main mode. To save space, the encapsulation is not included in Figure 7.

The Fast Cumulative Shortcut. The altimeter in the watches can record vertical
movements in so called logbooks, so that the user can evaluate his performance
after a hike. A logbook records the distances the user vertically ascends and
descends from the moment it is started until it is stopped, and the number
of runs accomplished in this period, i.e. the vertical movements of at least 50
meters. However, a logbook can only be read after recording stopped, and it is
quite complicated to display the logbook (one has to go to the third submode of
the altimeter main mode). Therefore, the Altimax model has the fast cumulative
shortcut: in any main mode, when the Minus button is pressed, some information
from the current logbook is displayed. First the total vertical ascend rate is shown
until the Minus button is pressed, then the total vertical descend rate and then
the number of runs, before the watch returns to the main mode in which it was.

The fast cumulative mode is a typical shortcut and is implemented with an
aspect. The pointcut main-modes-PC in Figure 8 (a) chooses transitions which
have a main mode of the base program as source state and minus as input part of
the label. Visiting the current logbook is done in several steps: it first displays the
ascend rate (output showAsc), then the descend rate (showDesc), and then the
number of runs (showNbRuns). Therefore, the aspect outputs first showAsc and
then inserts the automaton visit-logbook, shown in Figure 8(b). As target
state, we choose an empty trace from the current state, so that the program
continues in the main mode in which it was when the aspect was activated. The
aspect for the fast cumulative shortcut is fully specified by Fast-Cumulative =
(main-modes-PC, {showAsc}, toCurrent, ε, visit-logbook).

302 K. Altisen, F. Maraninchi, and D. Stauch

<mode>

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

<mode>

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

Altimeter

config
Alti

select

mode/Bari-Mode

config

Barometer

Baro

s2ss2s

select

Daily
Alarms

Stop
watch

Countdown
Timer

Dual
Time

config
DA

<mode>

select

select

select

config
DM

24 hour
Memory

Logbook

LBH
Logbook
History

s2s

s2s Difference
Measurement

toMainModeselect/

Time

config
Time

select

s2s

Time-Mode
mode/

select

select
s2s

config
DM

4 days
memory

Sea Level
PressureSLP

s2s
Difference
Measurement

toMainModeselect/

mode/Alti-Mode

select

select

s2s

s2s

s2s

toMainModeselect/

CDT

DT
config config

configconfig

select/
DT-Mode

Fig. 7. The base-program component. Its interface is: inputs = {Mode, Select, plus,
minus, s2s}, outputs = {Time-Mode, Bari-Mode, Alti-Mode, mainMode}, toMain-
Mode is encapsulated.

The Altimax Model. The controller of the Altimax watch is the base program
(Figure 7) with the fast cumulative aspect woven to it: Altimax=base-program�
Fast-Cumulative.

The Compass Mode. We program a controller for the Vector wristwatch by apply-
ing three aspects to the base program, which are explained in the sequel. The Vec-
tor has a fourth main mode, the compass mode. We add it to the base program
with an aspect. The transition going from the Barometer main mode to the Time
main mode is the sole join point transition (chosen by the pointcut baro-mode-PC
in Figure 9 (a)). The only advice output is Comp-Mode which displays the com-
pass. The aspect inserts the automaton Compass (see Figure 9 (b)), which con-
tains the interface for the compass. After leaving the compass mode, the interface
goes back to the Time main mode, thus the target state is set to the initial state:
this is a toInit advice with σ being the empty trace ε. The resulting aspect is
thus Compass-Mode = (baro-mode-PC, {Comp-Mode}, toCurrent, ε, Compass).

The Compass Shortcut. When the Minus button is pressed in a main mode, the
Vector does not show information from the current logbook, but goes directly to

Modular Design of Man-Machine Interfaces with Larissa 303

minus/showDesc

minus/showNbRuns

minus/mainMode

(b) visit-logbook(a) main-modes-PC

mainMode

minus/JP select∨s2s

Fig. 8. Pointcut (a) and inserted automaton (b) for the Fast-Cumulative aspect

config
DA

toMainMode
select/

<mode>

toMainMode
mode∨

config
Comass

toMainMode
mode∨

select

Config
CC

s2s

s2s Declination
Adjustment

Compass
Calibration

select
Compass

mode/
Time-mode

s2sBaro-Mode

main-Mode

mode/JP

(b) Compass(a) baro-mode-PC

select∨
s2s

Fig. 9. Pointcut (a) and inserted automaton (b) for the Compass-mode aspect

the compass mode. This is useful when the user is hiking cross-country and wants
to check regularly the bearing of the compass. Thus, the Vector does not con-
tain the fast-cumulative aspect, but an aspect that adds advice transitions from
the main modes to the compass main mode: Fast-Compass = (main-modes-PC,
{Comp-Mode}, toInit, mode.mode.mode.mode). Note that this aspect must be ap-
plied after the Compass-Mode aspect, because it uses the compass mode. Indeed,
after the compass mode has been added, it can be reached by pressing four times
the Mode button from the initial state. The trace mode.mode.mode.mode ends in
state Compass; it is the target state of the advice transitions.

No Dual Time Submode. As a last difference with the Altimax, the Vector lacks
the Dual Time submode (the fourth submode of the Time main mode of the base
program in Figure 7), which allows the user to simultaneously view the time in
two different time zones. We cut it out of the base program with an aspect.
We choose as join points all transitions which emit DT-Mode, the signal that
tells the underlying component to display the information related to the Dual
Time mode. The corresponding pointcut, Countdown-PC, consists of a single
state with a loop transition with label DT-Mode/JP. Instead of going to the Dual
Time mode, the Vector goes to the Time main mode, thus the target state is
defined by the empty trace. The aspect is thus defined by No-Dual-Time =
(Countdown-PC, {Time-Mode}, toInit, ε).

The Vector Model. The controller for the Vector can thus be built by weaving the
three aspects into the base program: Vector = base-program� Compass-Mode�
Fast-Compass � No-Dual-Time.

304 K. Altisen, F. Maraninchi, and D. Stauch

5 Modular Design with Aspects

Advantages of aspect-oriented programming. We use Argos and Larissa to model
the interfaces of two watches. With Larissa, they are modularized in such a way
that the common part of the watches (the base-program) can be reused, and
the behavior that is specific to a single watch can be added with aspects. The
interfaces can also be programmed without aspects, but this solution has three
principal drawbacks:

1) Programming the shortcuts by hand means to copy/paste the transitions or
automata that constitute the shortcut to every main mode.

2) To program the Vector controller based on the Altimax controller, one must,
besides adding the Compass Mode and removing the Dual Time Mode, re-
move the logbook shortcut transitions and states, and add the compass short-
cut transitions. This is easy with Larissa (one must just replace the aspect),
because the shortcuts are modularized.

3) When programming the Vector without aspects, the automata that contain
the main modes and the Time Submode must be copied from the Altimax
and modified, leading to code duplication. Thus, if one wants to correct a
bug or change something in one of these, the same modification must be
applied twice.

Note that the design of aspects itself is modular: the Fast-Cumulative as-
pect has the pointcut program main-modes-PC (see Figure 8(a)) which has been
reused for the pointcut of the Fast-Compass aspect.

Aspects as components. In our setting, we want to consider aspects as normal
components. We claim that to be able to do so, the two following properties
should hold: 1) aspect weaving should behave as an ordinary composition opera-
tor, so as to be freely mixable with ordinary components; 2) the aspect definition
should allow component substitutability. Larissa obeys these properties:

1) The aspect weaving operator � is an ordinary operator of the language.
Indeed, weaving an Argos program and an aspect results in another Argos
program. This allows the construction of arbitrary expressions made of Argos
operators, aspects and programs. For instance, the Vector model is obtained
by weaving several aspects. This means that the Compass-Mode aspect is
woven into the base-program, producing an Argos program into which the
Fast-Compass aspect is woven, etc.

2) The aspect definition only refers to the interface of the program it has to be
woven into. Thus, we can replace a component by another one with the same
interface, and the aspect can still be applied. Moreover, the semantics of the
weaving does not depend on the way the program is implemented (e.g. local
variables or internal names like state names), but only on its semantics.
Thus, when we replace a component with an semantically equal one, we
obtain a semantically equivalent program. For instance, if the base-program
is replaced by a semantically equivalent, but more efficient one, the Altimax

Modular Design of Man-Machine Interfaces with Larissa 305

and the Vector are obtained by replacing the base program by the new one,
with the guarantee that they execute as before.

6 Related Work

Concerning automata-based language, the closest work is an extension of Stat-
echarts [12]. Aspects are modeled as normal Statecharts, and a transition in an
aspect is taken before or after a certain transition in the base program. This
approach does not have the semantical properties we are looking for, but has
the advantage of being closer to AspectJ.

As for the integration of aspects and components, interesting approaches have
been proposed, e.g. in the ACP4IS workshop. Most approaches, e.g. [4,18], use
aspects as a tool in component-based frameworks, for instance for adapting com-
ponents to a given context of use. Others, e.g. [15], consider aspects as compo-
nents which are woven into the components they are assembled with. This is
close to our setting, in which aspects are ordinary pieces of programs.

The third direction to which our work relates is the use of AOP to build man-
machine interfaces, but we found very few papers there. [17] uses aspect-oriented
programming to reduce the constraints imposed by the model-view-controller
paradigm, which is central in many man-machine interfaces.

7 Conclusion

With a case-study on the design of small electronic device interfaces, we illus-
trated the use of the aspect-oriented extension of an automaton-based language
for reactive systems. This case-study mainly serves for exploring the idea that
aspects should be freely mixed with other kinds of components, and that weav-
ing is a particular assembling mechanism. The first step in this direction is to
have a clean and formal semantics of aspects. Aspects that do not refer explicitly
to the internals of programs are more likely to be the basis for the definition of
aspect components.

We think that our automaton-based language can easily be used as the core
of a component-based approach for reactive systems, since its programs have
well-defined interfaces, and it contains clean notions of encapsulation (informa-
tion hiding), composition between programs, and substitutability of component
behaviors. Furthermore, a number of approaches have been proposed to specify
components with contracts. A contract is a kind of assume-guarantee predicate
that characterizes the behavior of a component. The main point we will study
in the near future relates to the specification of contracts, in the idea of [13], for
aspect components. This rises many questions, such as: how do we define the
behavior of an aspect, independently of the program it is woven with? Can we
define a semantic equivalence between aspects, in such a way that aspects are
substitutable, as usual components are? We need to clarify those notions before
being able to introduce contracts for aspects and to fully consider aspects as
components in our framework.

306 K. Altisen, F. Maraninchi, and D. Stauch

References

1. K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reac-
tive systems: Larissa, a proposal in the synchronous framework. Sci. Comput. Pro-
gramming, Special Issue on Foundations of Aspect-Oriented Programming, 2006.
To appear.

2. Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect
evolution in operating system code. In AOSD’03, pages 50–59, 2003.

3. A. Colyer and A. Clement. Large-scale AOSD for middleware. In AOSD’04, pages
56–65, 2004.

4. P.-C. David and T. Ledoux. An approach for developing self-adapting fractal
components. In 5th International Symposium on Software Composition, Vienna,
Austria, Mar. 2006.

5. N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

6. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical sys-
tems by means of the synchronous data-flow programming language lustre. IEEE
Trans. Softw. Eng., Special Issue on the Specification and Analysis of Real-Time
Systems, Sept. 1992.

7. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifi-
cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,
3rd Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93,
June 1993.

8. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Programming, 8(3):231–274, June 1987.

9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. LNCS, 2072:327–353, 2001.

10. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng., SE-3(2):125–143, 1977.

11. Compiler for Larissa. http://www-verimag.imag.fr/∼stauch/ArgosCompiler/.
12. M. Mahoney, A. Bader, T. Elrad, and O. Aldawud. Using aspects to abstract and

modularize statecharts. In 5th Aspect-Oriented Modeling Workshop, 2004.
13. F. Maraninchi and L. Morel. Logical-time contracts for the development of reactive

embedded software. In 30th Euromicro Conference, Component-Based Software
Engineering Track (ECBSE), Rennes, France, Sept. 2004.

14. F. Maraninchi and Y. Rémond. Argos: an automaton-based synchronous language.
Computer Languages, 27(1/3):61–92, 2001.

15. N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien. A model for developing
component-based and aspect-oriented systems. In 5th International Symposium on
Software Composition, Vienna, Austria, Mar. 2006.

16. D. Stauch, K. Altisen, and F. Maraninchi. Interference of Larissa aspects. In
Workshop on the Foundations of Aspect-Oriented Languages (FOAL), 2006.

17. M. Veit and S. Herrmann. Model-view-controller and object teams: A perfect
match of paradigms. In M. Akşit, editor, AOSD’03, pages 140–149, 2003.

18. E. Wohlstadter, S. Tai, and P. Devanbu. Two party aspect agreement using a COTS
solver. In Proceedings of the Fourth AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software, Mar. 2005.

On the Integration of Classboxes into C#

Markus Lumpe1 and Jean-Guy Schneider2

1 Department of Computer Science
Iowa State University

Ames, IA 50011, USA
lumpe@cs.iastate.edu

2 Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218
Hawthorn, VIC 3122, Australia
jschneider@swin.edu.au

Abstract. Classboxes are a new module system for object-oriented languages
defining a packaging and scoping mechanism for controlling the visibility of iso-
lated extensions to portions of class-based systems. Unlike object-oriented spe-
cialization, the class extension mechanisms supported by classboxes preserve the
identity of extended classes and, therefore, all clients of extended classes can ben-
efit from the applied extensions. In this paper, we present a language design and
a corresponding implementation strategy for classboxes in C#. A particular chal-
lenge in incorporating classboxes into C# is to preserve the identity of extended
classes as the .NET framework represents classes as metadata type declarations
and access to classes by static links into metadata of the host assembly. How-
ever, the local refinement of an imported class results in a new metadata type
declaration. In order to guarantee the identity of extended classes, new metadata
type declarations have to be incorporated into the original metadata of imported
classes. But this “re-wiring” has to occur in a manner that is consistent with the
Common Language Infrastructure (CLI).

1 Introduction

Today, many real-world software systems are built using mainstream object-oriented
techniques and languages. However, when using object-oriented technology, one often
faces an extensibility problem that arises from the fact that mainstream object-oriented
languages provide only limited support for modular addition of both horizontal and
vertical extensions to classes. While in general it is always possible to add (vertically)
new classes to a system, existing classes can only be extended with new, orthogonal
behaviour (horizontally) in an often non-object-oriented style, that is, by breaking the
object-oriented encapsulation property (e.g., the Visitor pattern [11]). Such extensions
are awkward at best, and error-prone at worst. Furthermore, the inheritance relation-
ships in mainstream object-oriented languages are not powerful enough to capture many
useful forms of incremental modifications [6, 17, 5, 3].

To address this problem, several approaches have emerged that focus on tangible
techniques for evolving object-oriented software systems that do not rely on standard

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 307–322, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 M. Lumpe and J.-G. Schneider

inheritance mechanisms [7, 12, 17, 5, 15, 1]. Of special interest is the concept of class-
boxes proposed by Bergel et al. [5], a new module system for object-oriented languages
that defines a packaging and scoping mechanism for controlling the visibility of iso-
lated extensions to portions of class-based systems. Classboxes define explicitly named
scopes within which (i) classes, methods, and variables are defined, (ii) classes can
be extended using the “traditional” operation of subclassing, and (iii) classes can be
imported from other classboxes. More importantly, however, classboxes also support
local refinement of imported classes by adding and/or modifying their features, without
affecting the originating classbox. As such, classboxes offer a promising approach, as
they provide support for extending existing classes both vertically and horizontally.

Classboxes have been implemented for both the Smalltalk [5] and the Java envi-
ronments [4]. The Smalltalk implementations of classboxes mainly rely on a modified,
“classbox-aware” virtual machine for dynamic class and method lookup and a reifica-
tion of the method call stack, respectively. Central to the modified virtual machine is a
graph search algorithm that implements the local rebinding of methods at runtime, an
approach that cannot be easily mapped to languages who’s runtime environment does
not offer the same amount of flexibility. Classbox/J [4], on the other hand, is a prototype
classbox implementation for Java that is based on preprocessor directives and reification
of the method call stack. It uses an implementation scheme that may reveal extensions
of classes to clients, which should not be able to see them (i.e., new class members are
inserted into the original class without any additional visibility control [4, §6.1]).

But is it possible, to incorporate classboxes into an industrial-strength programming
language without relying on a “classbox-aware” virtual machine or a preprocessor, re-
spectively? To answer this questions, we present a backward-compatible implemen-
tation strategy for classboxes in C# in this work. Our implementation shows that the
metadata concept of the Common Language Infrastructure (CLI) [14] plays a crucial
role in integrating class extensions seamlessly into the C# language without the need
to modify the underlying runtime infrastructure. Furthermore, to facilitate code reuse
and to assist in building families of classes that are subject to the same change, we in-
troduce the notion of reusable class extensions to the classbox concept. Our results not
only demonstrate the expressive power of classboxes in an industrial-strength program-
ming language such as C#, but also illustrate how reusable class extensions substantially
improve the specification of incremental modifications in classboxes.

The rest of this paper is organized as follows: in Section 2, we present an example
to illustrate the concept of classboxes, followed by our model and implementation of
classboxes in C# in Section 3. We conclude this paper in Section 4 with a summary of
the presented work and outline future work in this area.

2 Applying Classboxes

In order to illustrate the concept of classboxes and the associated expressive power,
consider the example given below that motivates the need to restrict the impact of a
modified class.

A class Point implements the behaviour of two-dimensional points. It contains
two private instance variables x and y, two public properties X and Y to get/set the

On the Integration of Classboxes into C# 309

corresponding point coordinates, a public method MoveBy to move a point by a given
offset (dx,dy), and a public method MoveByXY that doubles the values of the x and y
coordinates by invoking MoveBy (using dynamic method lookup). The class Bound-
edPoint is a direct specialization of Point that ensures that the y coordinate of an in-
stance never exceeds a given upper bound yBound. This bound is a constant in Bound-
edPoint, but this behaviour can be altered by overriding the property Bound, as show
below.

In order to define a non-constant bound, we can specialize the class BoundedPoint
by overriding the property Bound to return X. That is, the resulting class LinearBound-
edPoint implements a behaviour guaranteeing that the value of the y coordinate is al-
ways smaller than the value of the x coordinate. As this specialization does not affect
either the class Point nor the class BoundedPoint, any clients of these two classes will
not be affected.

If we want to add color to our point-class hierarchy (i.e., adding a private instance
variable color and a corresponding property Color to all classes), we can simply add
the corresponding features to the class Point. As the additional behaviour is orthogonal
to the existing behaviour, none of the clients of any of the point classes will be affected
by this modification.

However, if we suddenly need to alter the behaviour of bounded points (i.e., restrict-
ing the x coordinate instead of the y coordinate), we cannot simply modify the class
BoundedPoint, as such a modification would affect all clients of BoundedPoint and
the (implicit) contract between BoundedPoint and LinearBoundedPoint would be
broken. Hence, “traditional” subclassing fails to provide us with the required expres-
sive power. What we need is an approach where we can restrict the modified behaviour
of bounded points to well-encapsulated parts of our application, leaving all existing
clients unaffected by this modification.

Classboxes provide us with a solution to this problem, as they provide a framework
in which we can control both the scope and the impact of change [5,4,13]. In particular,
classboxes exhibit the following main characteristics [5]:

• A classbox is an explicitly named unit of scoping in which classes (and their asso-
ciated members) are defined. A class belongs to the classbox it is first defined, but
it can be made visible to other classboxes by either importing or extending it.

• Any extensions to a class are only visible to the classbox in which they occur first
and any classboxes that either explicitly or implicitly import the extended class.
Hence, overriding a particular method of a class in a given classbox will have no
effect in the originating classbox.

• Although class extensions are only locally visible, their embodied refinements ex-
tend to all collaborating classes within a given classbox, in particular to any sub-
classes that are either explicitly imported, extended, or implicitly imported.

In order to illustrate how classboxes address the problems associated with imple-
menting the point class hierarchy illustrated above, consider the four classboxes de-
picted in Figure 1, namely OriginalCB, LinearCB, ColorCB, and TraceCB, respectively.

The classbox OriginalCB contains the class Point as well as the class Bounded-
Point as a direct specialization of Point. The classbox LinearCB introduces the class

310 M. Lumpe and J.-G. Schneider

BoundedPoint

+ Bound: int

+ MoveBy (dx, dy: int)

+ Bound: int {readOnly}

{readOnly}

− color: Color

+ Color: Color
+ MoveBy (dx, dy: int)

CB

OriginalCB LinearCB ColorCB TraceCB

Point Point Point Point

LinearBoundedPoint

BoundedPoint

LinearBoundedPoint

BoundedPoint

LinearBoundedPoint

BoundedPoint

Classbox definition Explicit import of a class Import of C and extension with method foo

CC

Implicit import of a class

C

foo ()

− x: int
− y: int

+ X: int
+ Y: int

+ MoveBy (dx, dy: int)
+ MoveByXY ()

− yBound: int

Fig. 1. Sample classboxes

LinearBoundedPoint, which, in order to define a non-constant bound, specializes
BoundedPoint by overriding the property Bound to return X. LinearBoundedPoint is
defined as a subclass of BoundedPoint imported into LinearCB from OriginalCB. As
a consequence, the class Point is implicitly imported also, making it visible as the direct
superclass of BoundedPoint, but not accessible to clients of the classbox LinearCB.

The classbox ColorCB extends the class Point from OriginalCB by adding a private
instance variable color and a corresponding property Color. As a consequence, all in-
stances of Point in ColorCB as well as the instances of any of its subclasses posses this
additional behaviour. Therefore, the class LinearBoundedPoint imported from Lin-
earCB also possesses the color feature, but all classes in OriginalCB and LinearCB
remain unaffected by this alteration. The reader should note that the explicit import of
LinearBoundedPoint from LinearCB also triggers the implicit import of Bounded-
Point from LinearCB.

Finally, the classbox TraceCB defines an extended version of the class Point from
ColorCB by overriding the method MoveBy to add a tracing facility (i.e., each invoca-
tion of MoveBy is monitored by a console message).

3 Classboxes in C#

In previous work on formalizing classboxes [13], we have identified four unique class-
box operations, namely (i) import of classes, (ii) introduction of subclasses, (iii) re-
finement of classes, and (iv) inclusion of new behaviour. The latter two operations are
deduced from the original extend operator [5] by revising the notion of extending
classes. That is, the refinement operator should exhibit a behaviour similar to C#’s new
modifier [8, §17.2.2], which can be used to hide any super-class method by declaring

On the Integration of Classboxes into C# 311

a new method with the same signature in a subclass, whereas the inclusion operator
roughly corresponds to mixin application [6] in which the extended class takes the role
of an abstract subclass.

In addition, both refinement and inclusion are modeled in a way that enforces a sepa-
ration of the incremental modification defined by these operations from the underlying
extension mechanism [13]. As a result, incremental modifications become reusable soft-
ware artifacts. Within a classbox, this allows for an approach in which we can compose
these software artifacts with multiple imported classes simultaneously.

In the following, we outline the design and implementation of classboxes in C#. As
a proof-of-concept, we have implemented our classbox model in standard C# by means
of source code transformations, refactoring [16], and locally updating metadata type
declarations. While our ultimate goal is to define an approach in which class extensions
can be compiled into existing classes without source code access, using refactoring has
produced valuable insights into the compilation process.

3.1 Classboxes as C# Namespaces

In our model, classboxes are represented by C# namespaces. A namespace in C# is a
compile-time construct that defines a scope to organize source code and globally-unique
types [8]. All namespaces have implicitly public access. Moreover, namespaces are
open-ended and can be divided into separate compilation units, which then all contribute
to the same declaration space [8, §16.2]. However, once a type has been defined, it can
only be extended by means of “traditional” subclassing, a technique that does not suffice
to express the incremental modifications used, for example, in the classboxes ColorCB
and TraceCB, respectively. Therefore, we refine the notion of namespace to be an open
scoping mechanism that enables the local redefinition of type declarations. However, to
retain complete backward compatibility with the extant C# language, a corresponding
compilation scheme for our extended C# language has to target the standard CLI.

At the technical level, C# is compliant with the Common Language Infrastructure
(CLI), a specification that provides a basis for a virtual execution system insulating
programs from the underlying operating system [14]. In CLI, new types are introduced
via read-only metadata type declarations.1 Moreover, metadata contains information to
locate and load classes, lay out instances in memory, resolve method invocations, and
enforce security constraints. Consider, for example, the classbox OriginalCB: it defines
two types Point and BoundedPoint, respectively, both defined within the namespace
OriginalCB. The two types are represented by TypeDef metadata tokens as shown
in Figure 2. TypeDef tokens encode the name of a type, its declaration namespace, the
super type (index into a TypeDef or TypeRef table), and a list of the type’s members. In
addition, OriginalCB’s metadata contains a TypeRef token that encodes an index into
the TypeDef table of the assembly defining System.Object. This token is required,
since Point’s super type is System.Object, the root of every reference type in C#.

A particularly difficult problem in representing classboxes in the .NET framework is
induced by fully qualified class names, as they are encoded as pointers into metadata

1 The reader should note that without loss of generality, we will only consider TypeDef and
TypeRef tokens in this work. These tokens normally utilize other metadata tokens to correctly
establish references to the defining assemblies.

312 M. Lumpe and J.-G. Schneider

Object, System

TypeDef

Point, OriginalCB

BoundedPoint, OriginalCB

OriginalCB.dll

Metadata

TypeRef

Fig. 2. OriginalCB’s metadata

associated with every assembly and, therefore, hard-wire classes with their correspond-
ing direct parent-classes. However, the key provision for providing support for class-
boxes in C# is that we need to be able to locally update metadata type declarations.
This requirement arises from the fact that the local refinement of an imported class re-
sults in a new metadata type declaration. To restore the identity of extended classes,
this new metadata type declaration needs to be incorporated into the original metadata
of imported classes.

OriginalCB(1).dll

Metadata

TypeDef TypeRef

BoundedPoint, LinearCB(1)

LinearBoundedPoint, LinearCB(1)

LinearCB(1).dll

BoundedPoint, OriginalCB(1)

TypeDef

Point, OriginalCB(1)

BoundedPoint, OriginalCB(1)

TypeRef

Object, System

Point, ColorCB

Metadata

Fig. 3. Updated metadata of OriginalCB(1).dll and LinearCB(1).dll

Consider again the classbox ColorCB that defines an extended version of the class
Point imported from OriginalCB. Compiling this code yields a new assembly, called
ColorCB.dll, that contains the classes Person and LinearBoundedPoint (explic-
itly imported from LinearCB) and their corresponding metadata (c.f., Figure 4). How-
ever, the inheritance chain between both classes and the implicitly imported class
BoundedPoint is not preserved.

In order to link the extended class Point with the implicitly imported class Bound-
edPoint in ColorCB, we need to update BoundedPoint’s metadata type declaration
in the assemblies of both OriginalCB and LinearCB, respectively. More precisely, we
need to create new versions (marked (1)) of their corresponding assemblies, in which
the super-class type declaration of BoundedPoint refers to ColorCB.Point (see Fig-
ure 3). To add ColorCB.Point in OriginalCB we need to extend the TypeRef table
with a new token for ColorCB.Point and rewire BoundedPoint’s super type index
to the newly added token. In LinearCB, we need to “patch” the original Point Type-
Ref token in order to connect it to ColorCB.Point. Adding a new token does not
work, since this would break the link between Point’s TypeRef token and its appli-
cations in the member lists of BoundedPoint. This process results in a physical struc-
ture consisting of three assemblies for the logical structure defined by the classbox
ColorCB.

On the Integration of Classboxes into C# 313

LinearBoundedPoint, ColorCB

TypeRef

Point, OriginalCB(1)

LinearBoundedPoint, LinearCB(1)

ColorCB.dll

Metadata

TypeDef

Point, ColorCB

Fig. 4. Metadata of ColorCB.dll

Classes in .NET assemblies are represented as metadata type tokens and references
to classes are encoded as pointers to these metadata type tokens. To change the link
structure in metadata, we need to create new assemblies, since .NET assemblies do not
allow these links to be changed dynamically. Altering the metadata structure, as shown
in Figure 3, guarantees that the local refinement of the imported class Point in classbox
ColorCB (the resulting metadata is shown in Figure 4) does not impact the originating
classbox OriginalCB and its clients.

This approach works for all managed assemblies [14]. Unfortunately, some
namespaces in the .NET framework are only available in native code (e.g., the Sys-
tem namespace) and classes defined in those namespaces cannot be extended due to
the lack of metadata.

3.2 Import and Subclassing

Both, import and subclassing do no require any language changes. The available lan-
guage abstractions suffice to specify these operations. However, the import operation
may require a local update of the metadata type declaration associated with an imported
class, as outlined in Section 3.1.

Consider the classbox OriginalCB defining the classes Point and BoundedPoint,
which are in an inheritance relationship. The corresponding implementation of Orig-
inalCB is shown in Listing 1. Compiling OriginalCB yields a dynamic link library
(DLL) or assembly called OriginalCB.dll. This library defines two public types Orig-
inalCB.Point and OriginalCB.BoundedPoint, both recorded as type declarations in
OriginalCB’s metadata.

The classbox LinearCB can be defined similarly in standard C#, as shown in List-
ing 2. LinearCB explicitly imports BoundedPoint from OriginalCB. We use the alias
form of the using directive to specify class imports [8, §16.4.1]. An alias for a type
is a user-defined name that is only available within the namespace body introducing
it. However, to enable a local rebinding of features of explicitly imported classes, we
create an “empty” subclass with the same name for each imported class in the import-
ing classbox. This empty subclass does not define any new functionality, but it enables
clients of the importing classbox to use the explicitly imported class as it had been de-
fined in the importing classbox. This technique corresponds to the approach proposed
by Bergel et al. [5], in which importing a class into a classbox is the same as extending
this class with an empty set of methods. The newly created subclass for an imported

314 M. Lumpe and J.-G. Schneider

namespace OriginalCB {
public class Poin t {

pr ivate in t x , y ;

public Poin t (i n t i x , i n t i y) { x = i x ; y = i y ; }

public in t X { get{ return x ; } set{ x = value ; } }
public in t Y { get{ return y ; } set{ y = value ; } }

public v i r t u a l void MoveBy (i n t dx , i n t dy) { X += dx ; Y +=dy ; }
public v i r t u a l void MoveByXY () { th is . MoveBy (X, Y) ; }

}

public class BoundedPoint : Po in t {
pr ivate in t yBound ;

public BoundedPoint (i n t i x , i n t i y , i n t ibound) :
base (i x , i y) { yBound = ibound ; }

public v i r t u a l in t Bound { get{ return yBound ; }}

public overr ide void MoveBy (i n t dx , i n t dy)
{ i f (Y + dy < Bound) base . MoveBy (dx , dy) ; }

}
}

Listing 1. The namespace OriginalCB

class is linked to its original image by a type reference (i.e., a TypeRef metadata token)
in the importing classbox (c.f. Figure 4). Therefore, clients of the classbox LinearCB
can access the imported class BoundedPoint as it had been originally defined in class-
box LinearCB, even though BoundedPoint’s behaviour is actually being defined by
the class OriginalCB.BoundedPoint hosted by OriginalCB.dll.

namespace LinearCB {
using BoundedPoint = OriginalCB . BoundedPoint ;

public class LinearBoundedPoint : BoundedPoint {
public LinearBoundedPoint (i n t i x , i n t i y , i n t ibound) :

base (i x , i y , ibound) { }

public overr ide in t Bound { get{ return X; } }
}

}

Listing 2. The namespace LinearCB

In order to compile LinearCB, we need to add OriginalCB.dll as a reference to look
up the metadata associated with the class OriginalCB.BoundedPoint. The result is the
assembly LinearCB.dll that defines one public type LinearCB.LinearBoundedPoint.
The reader should note, however, that due to the implicit import of OriginalCB.Point
and the explicit import of OriginalCB.BoundedPoint, clients must have access to both
OriginalCB.dll and LinearCB.dll in order to use the classbox LinearCB.

On the Integration of Classboxes into C# 315

3.3 Reusable Class Extensions

The original classbox concept defines the extension of classes as an operation that works
like import, except that the imported class is instantaneously altered in order to add
and/or change its features [5]. More precisely, a particular local refinement is exclu-
sively associated with the imported class. Thus, if we want to apply the same refinement
to another class, then we need to duplicate its corresponding specification. However, it
is more desirable to separate the local refinement from the import of classes to facilitate
code reuse and to assist in structuring the specification of incremental modifications to
classes within a classbox [17, 18].

Therefore, we propose the introduction of a new linguistic facility, called explicit
class extension, that is based on the concept of mixins [6]. However, while mixins are
class-to-class functions [10], we define explicit class extensions as open mixins, which
are parameterized over a “composition” mechanism. The purpose of the composition
mechanism is to determine how a given extension is to be merged in an imported class.
In this work, we shall consider two composition mechanisms: refinement and inclusion
[13]. The syntax for extension-declarations is given below:

extension-declaration:
extension identifier class-body ;opt

An extension-declaration consists of the keyword extension, an identifier that names
the extension, a class-body [8, §17.1.3], followed by an optional semicolon.

At present, extensions are a pure mechanism to create incremental modifications.
Thus, extensions can only be type-checked after they have been applied to a class and
this class is linearized (or “flattened”) [6, 18]. We plan, however, to add required inter-
faces [18,15] to extensions in future work to address this shortcoming. In this work, we
shall assume that extensions are always well-typed.

The linearization process involves two steps: (i) closing the extensions using a cor-
responding extension composition mechanism, and (ii) applying the closed extensions
to the imported class. Assume, for example, the extensions Δ1 and Δ2, the extension
composition mechanisms W1 and W2, and the imported class C. Then the extended
imported class C′ is defined as

C′ = Δ2(W2) ⊕ (Δ1(W1) ⊕ C)

where ⊕ is a non-commutative class-to-class mixin composition operator [6], and both
Δ1(W1) and Δ2(W2) denote extensions closed by their corresponding extension com-
position mechanism W1 and W2, respectively. However, if conflicts arise due to com-
posing an imported class with extensions that provide identical named members, these
conflicts have to be resolved manually.

The classboxes ColorCB and TraceCB each import the class Point and define an
extension to it. ColorCB defines the extension Color, as shown in Listing 3. This exten-
sion defines a Color property and an associated private instance variable color. In order
to define the Color extension, we also need to import the namespace System.Drawing
that provides the definition for the type Color. In addition, the reader should note that
every public member in an extension is virtual by default. However, it is the extension

316 M. Lumpe and J.-G. Schneider

composition mechanism that determines the actual required modifier (e.g., new in case
of refinement, and override in case of inclusion).

using System . Drawing ;

extension Color
{

pr ivate Color co l o r ;

public Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
}

Listing 3. The extension Color

Similarly, TraceCB defines the extension TraceMoveBy, which is shown in List-
ing 4. This extension captures a specialization of the method MoveBy that (i) prints
a message to the console and (ii) transfers the control to the original base method
MoveBy. Hence, the extension TraceMoveBy requires that the class it is eventually
applied to defines at least a public virtual method MoveBy. This property is verified
when TraceMoveBy is composed with a given imported class.

extension TraceMoveBy
{

public void MoveBy (i n t dx , i n t dy)
{ Console . Wr i teL ine (”MoveBy : {0} , {1}” , new object [] { dx , dy }) ;

base . MoveBy (dx , dy) ; }
}

Listing 4. The extension TraceMoveBy

3.4 Refinement and Inclusion

Refinement and inclusion both consist of three elements: (i) an imported class, (ii) a cor-
responding extension composition mechanism, and (iii) some explicit class extensions.
To facilitate the specification of the corresponding classbox operations, we propose a
linguistic facility that combines these elements in a single language construct – the
using-extension-directive. The syntax for the using-extension-directive is given below:

using-extension-directive:
using identifier = type-name extension-application

extension-application:
includesopt refinementsopt

includes:
include type-list ;

refinements:
append type-list ;

On the Integration of Classboxes into C# 317

The using-extension-directive introduces an identifier that serves as an alias for a type
within the immediately enclosing namespace body. The using-extension-directive
works like the using-alias-directive [8, §16.4.1], except that a non-empty extension-
application specification is required. The extension-application may contain includes,
refinements, or both.2 Includes and refinements are processed in the order they are spec-
ified. However, the linearization process requires that all members occurring in the ex-
tensions have pairwise distinct names.

namespace ColorCB {
using System . Drawing ;
using Poin t = O r i g i n a l . Po in t append Color ;
using LinearBoundedPoint = LinearCB . LinearBoundedPoint ;

extension Color
{

pr ivate Color co l o r ;

public Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
}

}

Listing 5. The classbox ColorCB

To illustrate the use of the using-extension-directive, consider the implementation of
the classbox ColorCB, as shown in Listing 5. ColorCB explicitly imports the classes
Point and LinearBoundedPoint. Furthermore, it defines the extension Color, which is
applied to the imported class Point with the specification

using Point = Original.Point append Color;

where append Color defines a refinement of the class Point.
The refinement operation defines an information hiding protocol that, when applied

to a concrete class, renders the features of the extensions invisible to the class’ behav-
iour. Hence, refinement yields a membrane for a class that permits calls originating from
extensions, but prevents the class’ behaviour to see the extensions.

To implement this behaviour, we mark all public members defined by a refinement
extension with the new modifier [8, §17.2.2] to shield them from the imported class.
Secondly, the resulting specifications are then used to construct a subclass of the im-
ported class. When using subclassing to incorporate extensions into a class, former
clients generally have to be modified as well in order to benefit from the refinements [9].
However, by “re-wiring” the metadata type declarations, as illustrated below, this prob-
lem disappears, because the identity of imported classes is restored. To illustrate this
process, consider Listing 6, which shows the corresponding source code of the class
Point in ColorCB.

2 Type-list is like the base class specification [8, §17.1.2], except that the elements are extension
type names. We follow the scheme applied in the Mono compiler in which type-list is used to
denote a list of both class and interface type names.

318 M. Lumpe and J.-G. Schneider

/ / Color (append) ⊕ O r i g i n a l . Po in t
public class Poin t : OriginalCB . Poin t {

pr ivate Color co l o r ;

public new v i r t u a l Color Color { get{ return co lo r ; } set{ co lo r =value ; } }

/ / requ i red cons t ruc to r (s)
public Poin t (i n t i x , i n t i y) : base (i x , i y) { }

}

Listing 6. Transformation of class ColorCB.Point

The class Point in ColorCB behaves like Original.Point, except that all clients of
class ColorCB.Point now have access to the property Color. Moreover, since Color
is declared new in ColorCB, existing clients of Original.Point remain unaffected by
this change. However, to compile ColorCB, we need to rewire the metadata inheritance
chain of all implicitly or explicitly imported classes in ColorCB. In particular, we need
to link LinearCB.BoundedPoint with ColorCB.Point and ColorCB.LinearBounded-
Point with the updated LinearCB.BoundedPoint (see Figure 3). Therefore, we have
to create new versions of OriginalCB.dll and LinearCB.dll, say OriginalCB(1).dll and
LinearCB(1).dll, respectively, in which the metadata type definition for class Point
refers to ColorCB.Point. Using OriginalCB(1).dll and LinearCB(1).dll as references,
we build ColorCB.dll that implements the desired functionality of the classbox Col-
orCB.

namespace ColorCBX {
using System . Drawing ;

public class Poin t : OriginalCB . Poin t {
pr ivate Color co l o r ;

public new v i r t u a l Color Color
{ get { return co lo r ; } set { co lo r = value ; } }

public Poin t (i n t i x , i n t i y) : base (i x , i y) { }
}

public class BoundedPoint : Po in t
{ /∗ Poin t members ∗ / }

public class LinearBoundedPoint : BoundedPoint
{ /∗ BoundedPoint members ∗ / }

}

Listing 7. Implementation of classbox ColorCB by refactoring

The effect of compiling the classbox ColorCB in this way results in an assembly,
whose functionality is equivalent to the code extract illustrated in Listing 7. Here, source
code refactoring [16] is used to construct the namespace ColorCBX, which defines a
functionality that corresponds to the one provided by the classbox ColorCB.

On the Integration of Classboxes into C# 319

The classbox TraceCB (see Listing 8) defines an inclusion extension to the class
Point and an explicit import of the class LinearBoundedPoint from the classbox Lin-
earCB. Inclusion enables down calls to class extensions. Thus, unlike refinement, in-
clusion extensions may be visible throughout the extended class, as they can override
existing members. However, the visibility of this effect is confined to the defining class-
box and its clients; the originating classbox remains unaffected.

namespace TraceCB {
using Poin t = ColorCB . Poin t include TraceMoveBy ;
using LinearBoundedPoint = LinearCB . LinearBoundedPoint ;

extension TraceMoveBy
{

public void MoveBy (i n t dx , i n t dy)
{ Console . Wr i teL ine (”MoveBy : {0} , {1}” , new object [] { dx , dy }) ;

base . MoveBy (dx , dy) ; }
}

}

Listing 8. The classbox TraceCB

We implement inclusion by marking all public members with override (or virtual
if no member with the same signature exists in the imported class). The transformed
extensions are then again used to construct a subclass of the imported class (e.g., class
Point, as shown in Listing 9).

/ / TraceMoveBy (include) ⊕ ColorCB . Poin t
public class Poin t : ColorCB . Poin t {

public overr ide void MoveBy (i n t dx , i n t dy)
{

Console . Wr i teL ine (”MoveBy : {0} , {1}” , new object [] { dx , dy }) ;
base . MoveBy (dx , dy) ;

}

/ / requ i red cons t ruc to r (s)
public Poin t (i n t i x , i n t i y) : base (i x , i y) { }

}

Listing 9. Transformation of class TraceCB.Point

Once more, in order to compile TraceCB, we need to rewire the inheritance chain
originating from TraceCB.Point. Therefore, we need to create new versions (marked
(2)) of the assemblies for the classboxes OriginalCB, LinearCB, and ColorCB, re-
spectively. Please note that the new assemblies OriginalCB(2).dll, LinearCB(2).dll, and
ColorCB(2).dll are all derived from the versions that were created to compile the class-
box ColorCB. Hence, we only need to patch the corresponding metadata type tokens to
link BoundedPoint’s superclass type to TraceCB.Point.

320 M. Lumpe and J.-G. Schneider

4 Conclusions and Future Work

Classboxes provide a feasible solution to the problem of controlling the visibility of
change in object-oriented systems without breaking existing applications, as they
strictly limit both its scope and impact to clients of the extending classbox. Conse-
quently, classboxes can significantly reduce the risk for introducing design and
implementation anomalies due to the need to adapt a software system to changing
requirements [5].

In this paper, we have presented an approach to augment C#, an industrial-strength
programming language, with the classbox concept. In our model, classboxes are repre-
sented by C# namespaces and the corresponding operations are defined using a small
extension to the C# language. The integration of this extension is achieved by means of
source code transformations, refactoring, and locally updating the metadata type dec-
larations in assemblies. This approach allows us to preserve the identity of extended
classes in classboxes, resulting in a seamless integration of classboxes into the .NET
framework.

Although omitted due to the lack of space, our implementation of classboxes guaran-
tees that different versions of a class can co-exist in the same classbox. This is achieved
by representing the different versions of a class by unique metadata type tokens and
appropriately linking the corresponding superclass types. Furthermore, due to the fact
that class extensions are linked into the classes at compile-time, our approach does not
add any runtime overhead in order to perform method calls. This contrasts with the ex-
isting Smalltalk implementations where, compared to “normal” method lookup, a 25%
to 60% runtime overhead is added in the classbox-aware virtual machine [5].

In order to facilitate code reuse and to assist in building families of classes that are
subject to the same change, we have also added the notion of explicit class extensions to
the classbox concept. In contrast to the approach taken by Bergel and Ducasse [3] that
combines classboxes with traits, in our model explicit class extensions are mixin-like
code abstractions that combine both behaviour and state. Furthermore, explicit class
extensions can be composed with imported classes using a refined C# using-alias-
directive, giving us the flexibility to specify how and in which order specific extensions
should be integrated into a given class. Explicit class extensions allow us to explicitly
separate the local refinement from the import of a class and, as a consequence, substan-
tially improve the specification of incremental modifications to classes within a given
classbox.

In our extended classbox model, both refinement and inclusion extension provide a
linguistic means for separation of concerns. However, in contrast to aspects that can
be defined in a separate specification unit [12], these class extensions are explicitly ap-
plied to the imported classes and are confined to the declaration space within which
they occur. The aspect-oriented programming model, on the other hand, employs a
much looser coupling between extensions (i.e., aspects) and the locations of their ap-
plication, denoted by advises. This can result in surprises, since (possibly unseen) code
is executed in response to a method invocation simply because the method’s signature
matches a corresponding advise, usually specified elsewhere [7].

To address this problem, Clifton [7] recently proposed the “MAO discipline” that
encompasses both a design discipline and language features for modular reasoning in

On the Integration of Classboxes into C# 321

aspect-oriented programs. In MAO, we distinguish between two categories of aspects:
assistants and their associated concern maps that can change the behaviour of mod-
ules to which they apply, and spectators that do not affect other modules, as they only
view methods. Both categories, even though not completely, correspond to our model of
explicit class extensions. Inclusion can be characterized as an instance of an assistant,
whereas refinement corresponds to a spectator.

In this work, we have focused on a seamless integration of classboxes into the C#
language and have explored the concept of explicit class extensions to further enhance
separation of concerns. Besides the definition of an extended C# compiler in which
class extensions can be compiled into existing classes without source code access, there
are a number of open questions that need to be addressed in future work.

In our model, both classes and explicit class extensions specify their “own” state
whereas the trait model by Bergel and Ducasse [3] only allows the explicit extension of
behaviour, but not state. Hence, in future work, we plan to investigate how to decouple
behaviour and state by introducing state-only abstractions as first-class entities into the
model. This would allow us to express classes and explicit extensions as compositions
of explicit state, behaviour, and compositions thereof. As a consequence, both traits
and Scala-style class composition [15] could be seamlessly integrated into the classbox
model. A natural extension of such a model would then be to allow classboxes to import
(and possibly extend) any of the abovementioned first-class entities. The implications
of such an extension to the classbox model in the .NET framework is however not yet
fully understood.

Our current model lacks the notion of required interfaces [18, 15] for explicit class
extensions. As a consequence, explicit class extension can solely be type-checked in the
context of an application to a class, but not as standalone entities. Hence, future work
will need to address this issue. Similarly, we plan to investigate the implications and
applicability of having classboxes as first-class values as well as parameterized (i.e.,
generic) classboxes.

Finally, an area where further investigations are needed is method overloading.
Whereas we do not need to worry about this in languages such as Smalltalk, both,
Java and C# allow developers to overload methods. In such a context, a correct imple-
mentation of a classbox model needs to be able to determine which of the overloaded
methods is refined by an (explicit) extension. This will very probably require some form
of additional type annotation to method names. A similar problem arises when instance
variables with restricted visibility are shadowed by extensions, both issues that need to
be addressed in future work.

Acknowledgement. The authors thank Alexandre Bergel and the anonymous reviewers
for their valuable comments and discussions.

References

1. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam – Designing a Java Extension
with Mixins. ACM Transactions on Programming Languages and Systems, 25(5):641–712,
September 2003.

322 M. Lumpe and J.-G. Schneider

2. Alexandre Bergel. Classboxes — Controlling Visibility of Class Extensions. PhD thesis, Uni-
versity of Bern, Institute of Computer Science and Applied Mathematics, November 2005.

3. Alexandre Bergel and Stéphane Ducasse. Supporting Unanticipated Changes with Traits and
Classboxes. In Proceedings of Net.ObjectDays (NODE’05), pages 61–75, Erfurt, Germany,
September 2005.

4. Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Controlling the
Scope of Change in Java. In Proceedings OOPSLA ’05, pages 177–189, San Diego, USA,
October 2005. ACM Press.

5. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Classboxes: Con-
trolling Visibility of Class Extensions. Journal of Computer Languages, Systems & Struc-
tures, 31(3–4):107–126, May 2005.

6. Gilad Bracha and William Cook. Mixin-based Inheritance. In Norman Meyrowitz, editor,
Proceedings OOPSLA/ECOOP ’90, volume 25 of ACM SIGPLAN Notices, pages 303–311,
October 1990.

7. Curtis Clifton. A Design Discipline and Language Features for Modular Reasoning in
Aspect-oriented Programs. PhD thesis, Iowa State University, Department of Computer Sci-
ence, July 2005.

8. European Computer Machinery Association. Standard ECMA-334: C# Language Specifica-
tion, third edition, June 2005.

9. Robert Bruce Findler and Matthew Flatt. Modular Object-Oriented Programming with Units
and Mixins. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), volume 34 of ACM SIGPLAN Notices, pages 94–104. ACM Press,
1998.

10. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and Mixins. In
Proceedings POPL ’98, pages 171–183, San Diego, January 1998. ACM Press.

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, 1995.

12. Grégor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An Overview of AspectJ. In Jørgen Lindskov Knudsen, editor, Proceedings
ECOOP 2001, LNCS 2072, pages 327–355, Budapest, Hungary, June 2001. Springer.

13. Markus Lumpe and Jean-Guy Schneider. Classboxes – An Experiment in Modeling Com-
positional Abstractions using Explicit Contexts. In Mike Barnett, Steve Edwards, Dimitra
Giannakopoulou, Gary T. Leavens, and Natasha Sharygina, editors, Proceedings of ESEC
’05 Workshop on Specification and Verification of Component-Based Systems (SAVCBS ’05),
pages 47–54, Lisbon, Portugal, September 2005.

14. James S. Miller and Susann Ragsdale. The Common Language Infrastructure Annotated
Standard. Microsoft .NET Development Series. Addison-Wesley, 2003.

15. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Scinz, Erik Stenman, and Matthias Zenger. An
Overview of the Scala Programming Language. Technical Report IC/2004/64, École Poly-
technique Fédérale de Lausanne, School of Computer and Communication Sciences, 2004.

16. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, Department of Computer Science, 1992.

17. Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Compos-
able Units of Behavior. In Luca Cardelli, editor, Proceedings ECOOP 2003, LNCS 2743,
pages 248–274, Darmstadt, Germany, July 2003. Springer.

18. Charles Smith and Sophia Sophia Drossopoulou. Chai: Traits for Java-Like Languages. In
Andrew P. Black, editor, Proceedings ECOOP 2005, LNCS 3586, pages 453–478, Glasgow,
Scotland, July 2005. Springer.

Automatic Control Flow Generation from Software
Architectures

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu, vukis}@cs.man.ac.uk

Abstract. In a traditional software architecture, control originates in components
and flows to other components via connectors. The system’s control flow is fixed
at design time, when components and their inter-connections are specified. Code
generated from the design inherits this control flow, and consists of component
code and glue code that tightly couples connected components. This means that
code generated from a given software architecture is system-specific, and is there-
fore neither generic nor reusable. In this paper we describe an approach which
allows separate reuse of component code and connector code, and thus making it
possible to build architectures from pre-existing components and generic connec-
tors. Furthermore, we show we can implement such architectures by generating
control flow at run-time automatically.

1 Introduction

In a traditional software architecture [15], control originates in components (boxes) and
flows to other components via connectors (lines). The system’s control flow is fixed at
design time, when components and their inter-connections are specified, in an Archi-
tecture Description Language (ADL), e.g. Acme [7].

Mostly ADLs do not provide any support for creating code for the system from its
architecture. When they do, as in ArchJava [3,1] (based on Acme), code generated from
the architecture inherits the control flow fixed at design time, and consists of component
code and glue code that tightly couples connected components. This means that code
generated from a given software architecture is system-specific, and is therefore neither
generic nor reusable.

In this paper we describe an approach which allows separate reuse of component
code and connector code, and thus making it possible to build architectures from pre-
existing components and generic connectors. Furthermore, we show that we can imple-
ment such architectures by generating control flow at run-time automatically.

To achieve this we take a different approach to system construction. We take control
out of components and put it into connectors. That is, in our approach, control in the sys-
tem does not originate in components but in their connectors. This makes components
completely encapsulated, and therefore independent and easier to reuse. Furthermore,
our connectors are generic, like the Bus connector in C2 [17], and we can reuse them
among different systems. To construct a system, we choose a set of pre-existing, inde-
pendent components required for the system, connect them with a set of (pre-existing)

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 323–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

324 K.-K. Lau and V. Ukis

generic connectors, and generate control flow of the system automatically at run-time.
Thus our approach obviates the need for generating glue code to put together compo-
nents and connectors, in contrast to ArchJava. In addition, our components as well as
connectors can be used in different systems with different control flows. Our automatic
runtime control flow generation not only instantiates components and connectors, like
the C2 Bootstrapper, but, unlike the C2 Bootstrapper, also generates the whole control
flow of the system automatically at run-time.

In this paper we describe how we can generate control flow at run-time. We begin
by briefly surveying current approaches for code generation from software architec-
tures (Section 2). Next, we introduce our connectors as origins of control flow in a
system (Section 3.1), and explain architectures containing our connectors (Section 3.4).
Subsequently, we explain how to automatically generate control flow at runtime (Sec-
tion 3.5) and provide an example (Section 4). Finally, we briefly evaluate our approach
(Section 5).

2 Code Generation from Traditional Software Architectures

Among existing ADLs, Acme/ArchJava [3,1] and C2 [17] are representative examples
of ADLs that support code generation from architectures.

Acme/ArchJava (Fig. 1 (a) shows an example architecture) allows automatic genera-
tion of code from an architecture. Components and connectors are generated afresh for
each system. That is, neither components nor connectors pre-exist or are reused from
system to system.

B

C

D

E

F

G

A

B

C
A

D

E

F

G

(a) Acme/ArchJava (b) C2

Fig. 1. Software architecture examples

In C2 (Fig. 1 (b) shows an example architecture) components have to be coded first.
Components communicate by sending events to each other. Their code must explic-
itly identify events they can deal with and provide corresponding actions. Events are
transported by buses between components. The bus is a generic connector, and is not
generated afresh for every system but is reused in all systems. To implement an ar-
chitecture, C2 provides a Bootstrapper, which allows instantiation of components and
connectors at run-time. These instances together with event-handling constitute the run-
time system. Thus in C2 the bus is reused but not the components, because the latter are
‘hard-wired’ to events for a specific system.

No ADL inherently intends both component and connector reuse from an architec-
ture description. This is exactly what our approach endeavours to achieve. We want
to have pre-existing components as well as pre-existing connectors, and reuse them to
build many architectures.

Automatic Control Flow Generation from Software Architectures 325

In the ArchJava example in Fig. 1 (a) for instance, component A knows connector
AB. The connector AB in turn knows component B. Thus, A cannot be reused inde-
pendently without AB and AB without B. Furthermore, component B knows connector
BD. The connector BD in turn knows component D. Thus, B cannot be reused without
BD and BD without D. In other words, neither components nor connectors in ArchJava
are independently reusable entities.

In the C2 example in Fig. 1 (b), connectors AB and BD etc. are constructed from
one generic bus connector template and, unlike in ArchJava, are not coded afresh for
each component connection. Thus connectors AB, BD etc. are generic and indepen-
dently reusable. However, component A sends a specific event with a specific format,
say AB Event, to the connector AB. The connector AB dispatches the AB Event to
component B. Component B is waiting for the arrival of this specific event, knows its
format and how to handle it. Moreover, once component B has processed the AB Event,
it originates another event, say BD Event, to the bus connector BD. The bus connector
BD dispatches the BD Event to component D. Component D is waiting for the arrival
of the BD Event, knows its format and how to handle it. In other words, components
in C2 wait for specific incoming events from and send (or originate) specific outgo-
ing events to other components. Therefore, components in C2 are not independently
reusable encapsulated entities.

By contrast, we want to be able to reuse components A, B, D etc. independently as
well as connectors AB, BD etc.

3 Our Approach

In this section we explain our approach. The key characteristics of our approach are that
(i) components pre-exist and are reusable; (ii) connectors (pre-exist and) are generic and
reusable; (iii) run-time systems can be generated from architectures by automatically
generating control flow.

To make our components reusable, we make them encapsulated and thus indepen-
dent, by taking control out of them. Thus in our approach, components are units of
computation (linked by connectors). A component is a unit of software with (i) an inter-
face that specifies the services it provides (i.e. its methods) and the services it requires,
and the dependencies between the two sets of services; and (ii) code that implements
the provided services. In essence it is similar to Szyperski’s definition [16]. However,
our components do not invoke methods or services in other components. Rather, they
only perform their provided services (methods) when they are invoked from outside, by
connectors. Thus our components encapsulate computation.

We put control in connectors. Connectors are composition operators that compose
components into systems. They are exogenous, i.e. they initiate and coordinate method
calls in components, and handle their results. Thus they determine control flow and
data flow, i.e. they encapsulate communication in general, and control in particular.
Exogenous connectors play a fundamental role on our approach.

3.1 Exogenous Connectors

Exogenous connectors were introduced in [12]. Here, we briefly explain them.

326 K.-K. Lau and V. Ukis

The distinguishing characteristic of exogenous connectors is that they encapsulate
control. In traditional ADLs, components are supposed to represent computation, and

C
A

B
D

E

(a) Components and connectors (b) Control flow

Fig. 2. Traditional ADLs

connectors interaction between components [13] (Fig. 2 (a)). Actually, however, com-
ponents represent computation as well as control, since control originates in compo-
nents, and is passed on by connectors to other components. This is illustrated by Fig. 2
(b), where the origin of control is denoted by a dot in a component, and the flow of
control is denoted by arrows emanating from the dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled,
albeit only indirectly via their ports, and the control flow between components is fixed
at their design time.

By contrast, in exogenous connection, control originates in and flows from connec-
tors, leaving components to encapsulate only computation. This is illustrated by Fig. 3.

a();
b();

A
A.a();
B.c();

Con1

c();

B

d();

C
E

g();

component

f();
e();
DCon2

A.b();
C.d(); C.d();

D.e();

Con3

E.g();
D.f();

Con4

connector

(a) Example

a();
b();

A

Con1

c();

B

d();

C
E

g();
f();
e();
DCon2 Con3 Con4

(b) Control flow

Fig. 3. Connection by exogenous connectors

In Fig. 3 (a), components do not call methods in other components. Instead, all method
calls are initiated and coordinated by exogenous connectors. The latter’s distinguishing
feature of control encapsulation is clearly illustrated by Fig. 3 (b), in clear contrast to
Fig. 2 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and co-
ordinate control (and data). With exogenous connection, components are truly indepen-
dent and decoupled.

Automatic Control Flow Generation from Software Architectures 327

Exogenous connection is not provided by any existing ADLs. However, exogenous
connection has been defined as exogenous coordination in coordination languages for
concurrent computation [2]. Also, in object-oriented programming, the courier pattern
[6] uses the idea of exogenous connection whereby a courier object links a producer-
consumer pair of objects by calling the produce method in the producer object and
then calling the consume method in the consumer object with the result of the produce
method.

3.2 Connector Type Hierarchy

The concept of exogenous connection entails a type hierarchy of exogenous connectors.
Because they encapsulate all the control in a system, such connectors have to connect to
one another (as well as components) in order to build up a complete control structure for
the system. For this to be possible, there must be a type hierarchy for these connectors.

In the connector type hierarchy for our approach, components are obviously a basic
type. Because components are not allowed to call methods in other components, we
need an exogenous method invocation connector. This is a unary operator that takes
a component, invokes one of its methods, and receives the result of the invocation.
To structure the control and data flow in a set of components or a system, we need
other connectors for sequencing exogenous method calls to different components. So
we need n-ary connectors for connecting invocation connectors, and n-ary connectors
for connecting these connectors, and so on. In other words, we need a hierarchy of
connectors of different arities and types.

Example 1. (Exogenous Connector Hierarchy). Consider a system whose architecture
can be described in Acme [7] and C2 [17] as in Fig. 1 (a) and (b) respectively. Using
exogenous connectors in our approach, the corresponding architecture is that shown in
Fig. 4.

InvG

S3
P1

InvFInvCInvAInvBInvDInvE

P2

D B A C F GE

S2S1

Fig. 4. Exogenous connection example

At the lowest level, level 1, we use invocation connectors that connect to individual
components and make calls into them. There are no other kinds of connectors at this
level. In Fig. 4, the invocation connectors are InvE, InvD, InvB etc.

At the next level, level 2, we need a selector connector to implement branching in
the system. Such a connector connects connectors and makes a call into a selected one
of the connectors. In Fig. 4, at level 2, selector S1 connects InvE and InvD, and decides
whether to call E or D depending on the selection condition it receives from its parent
connector P1. Similarly, S2 connects and selects from F and G.

At level 3, we need a pipe connector to implement sequential control. Such a con-
nector connects connectors and makes consecutive calls into these connectors in the

328 K.-K. Lau and V. Ukis

order in which they are connected to it. In Fig. 4, P1 is a pipe connector. It connects to
InvB (which calls a method in B) and passes the result to the selector S1. S1 uses the
result as a selection condition to select component E or D. Similarly, the pipe P2 effects
sequential control between C and selector S2.

Finally, at level 4, the top level, there is only one connector. This is a selector S3,
which selects P1 or P2 depending on the top-level (user) input.

In general, connectors at any level other than the first can be of variable arities; connec-
tors at any level higher than 2 can be of variable arities and types; and we can define
any number of levels of connectors. Connectors at level n for any n > 1 can be defined
in terms of connectors at levels 1 to (n − 1). At the top level, there is always just one
connector. A detailed definition of the hierarchy can be found in [12,11].

3.3 Implementing Generic Connectors

Exogenous connectors can be implemented as generic connectors, such that: (i) generic
connector templates can be defined and stored; (ii) these connector templates can be
deployed to a system; and (iii) connector instances can be created and used to build the
control structure of any specified system (with exogenous connectors). In particular, we
want to do so for any connector at any level. In [12] we show an implementation in
Java that is generic only in the sense of (i), and that only defines connectors for specific
levels. Here we describe how we can define connectors at any level that are generic in
the sense of (i), (ii) and (iii). We use C# in .NET for the implementation.

We implement three kinds of connectors (invocation, pipe and selector) as a hierar-
chy of classes, with a base class Connector.

The Connector class has several Execute methods for executing either a single given
method (with its parameters) or a given set of methods (with their parameters). These
are the following public virtual void methods:

... Execute (string method, object[] params);//(1)

... Execute (string[] methods, object[] params);//(2)

... Execute (int cond, string method, object[] params);//(3)

... Execute (int cond, string[] methods, object[] params);//(4)

Using the Connector class, we can define a generic connector at any level of the hierar-
chy. Such a connector inherits from Connector, and implements the appropriate Execute
method(s).

Only the invocation connector makes calls into components from within its Execute
method (1).

The selector connector’s Execute method can be passed a list of methods (4). Con-
sider the case of just one method (3). In this case, the Execute method of a selector
connector is used for calling one method on the connector inside the selector which
gets selected according to the condition cond which is passed into the method. In our
current implementation, the selection condition is an integer but it can easily be ex-
tended to other types in future.

The selector assumes that all the connectors in it can in principle deal with the
method passed into it. Therefore it is also sufficient to provide only one list of

Automatic Control Flow Generation from Software Architectures 329

parameters. Whichever connector gets selected, the method method and parameters
params will be passed to it.

The Execute method of a pipe connector (2) is represented by a loop, which se-
quentially processes all the connectors in it. Basically, the pipe connector takes the first
connector, makes a call into it, obtains the result and makes a call into the second con-
nector passing the result obtained from the first connector as a parameter into the second
one and so on until the end of the loop is reached.

In the loop the first thing is to check whether we are at the beginning of the loop. If
we are, then the parameters passed into the Execute method can be used as they are, to
be passed into the first connector. On the other hand, if we are in the middle of the loop,
the parameters to be passed on to the next connector are the results from the previous
one.

Next if the connector to be called in the current loop iteration of the pipe is a selector
connector, we have to extract the first parameter from the Execute method’s parameter
list if we are at the beginning of the loop, or the first element of the result array from
the previous invocation if we are in the middle of the loop, and pass it to the selector
connector as a condition.

Then if we are at the first loop iteration we can call into the selector straight away,
but otherwise we have to adjust the method array and remove the first element from it
because the first method has already been processed in the previous loop iteration.

If the connector in the current loop iteration is not a selector, we do not have to bother
with the first element in the parameter list to be processed as a selection condition,
and can call the Execute method straight away considering the necessary method array
adjustment for each loop iteration.

Eventually the Result is retrieved from the connector processed in the current itera-
tion, and will be used in the next iteration as parameter list for the next connector in the
pipe. Once the end of the loop is reached, the Result is returned by the pipe.

The connectors we present here are generic because they are independent, self-
contained and can be used by any application. As shown in the above description, no
application-specific logic has been put into the connectors. In fact, in a general sense
they could even be thought of as light-weight components in the system.

Exogenous connectors form a hierarchy and thus can contain one another. Thus, pipe
and selector connector can contain invocation, pipe or selector connectors. It is possible
to add a connector to the “host” connector after the “host” connector has been cre-
ated when building a connector hierarchy. This allows for “late-binding” of connectors,
which is used for system control flow generation.

3.4 Architectures with Exogenous Connectors

Having implemented generic exogenous connectors, in this section we show how archi-
tectures can be defined using them. Just as exogenous connection entails a connector
type hierarchy, so the latter in turn entails a strictly hierarchical way of constructing
systems by composing components. As illustrated by Figure 4, in such a system, com-
ponents form a flat layer, and the entire control structure (of connectors) sits on top of
this. Beyond level 1, the precise choice of connectors, the number of levels of connec-
tors, and the connection structure, depend on the relationship between the behaviour

330 K.-K. Lau and V. Ukis

of the individual components and the behaviour that the whole system is supposed to
achieve. Whatever the control structure, however, it is strictly hierarchical, which means
that there is always only one connector at the top level. This is the connector that initi-
ates control flow in the whole system.

Example 2. (The Bank Example). Consider a bank system, whose architecture is de-
scribed in Acme in Figure 5 (a). The system has just one ATM that serves two bank

BC1

BC2

ATM

B1

B2

B3

B4 BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

(a) Acme (b) Exogenous connection

Fig. 5. Architecture of the bank example

consortia (BC1 and BC2), each with two bank branches (B1 and B2, B3 and B4
respectively). The ATM passes customer requests together with customer details to
the customer’s bank consortium, which in turn passes them on to the customer’s bank
branch. The bank branches provide the usual services of withdrawal, deposit, balance
check, etc.

At level 1, each component has an invocation connector. At level 2, there is a selector
connector S1 that is used to select the customer’s bank branch from banks B1 and B2,
prior to invoking that branch’s methods requested by the customer. Similarly, there is a
level-2 selector connector S2 for choosing between B3 and B4, prior to invoking their
methods requested by the customer. To pass values from one bank consortium to one of
its banks we need a pipe connector; at level 3, we have two pipe connectors P2 and P3,
for BC1 and BC2 respectively. At level 4, S3 is a selector connector that selects the
customer’s bank consortium from consortia BC1 and BC2. Finally, at level 5, the top
level, the pipe connector P1 initiates the bank system’s operational cycle by passing
customer requests and card information to the ATM , invoking the ATM ’s methods,
and then passing the resulting value to connector S3.

3.5 Automatic Control Flow Generation

Separation of control flow and computation using exogenous connectors means that
control flow is not kept inside components like in current ADLs but can be managed
outside. Having implemented generic exogenous connectors, in this section we show
how a system’s control flow can be generated automatically, given its architecture, i.e.
the connection structure for the components.

As depicted in Figure 6 (which should be read from bottom to top, as indicated by
the arrow on the left), to generate a system’s control flow we need 3 kinds of entities:
(a) independent components; (b) generic exogenous connectors; and (c) an XML de-
scription of the system’s architecture, i.e. the connection structure of the system. These

Automatic Control Flow Generation from Software Architectures 331

BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

I1 I2 I3 I4 I5 I6 I7

XML description of

I S Pgeneric connectors

BC1 ATM BC2 B3 B4B1B2independent
components

Interface to the run−time system

Automatic generation of control flow

software architecture

Fig. 6. Automated control flow generation

3 entities are independent from one other, i.e. components can be connected by any
connectors depending on a specific system’s needs, and connectors can take part in any
connection structure.

The output of the control flow generation is a run-time system constructed in accor-
dance with the given connection structure description, along with an interface, which is
the top-level connector in the architecture. The system constructed provides all control
flow paths possible in the system specified by (c). A particular run-time request to the
system may not use every control flow path available. Nevertheless, the system con-
struction ensures that all possible control flow paths are available to serve all requests
placed on the system through the top-level connector in the architecture.

Application-independent templates for connectors can be created as shown in Sec-
tion 3.3 and reused for different applications by creating application-specific instances.
Note that connector template instances are not ordinary class instances in the sense of
object-oriented programming. When a connector template is instantiated it gets adapted
to the current place in the connection structure. The generic exogenous connectors can
be deposited in a repository and retrieved on demand for each application. Further-
more, for any specific application with an exogenous control or connection structure,
the generic connectors can be instantiated, on the fly, into the instances in the latter’s
connection structure. This means that it is possible to generate the control flow of a
system dynamically and automatically from its architecture.

To illustrate this, consider the connection structure of the Bank example in Figure 6.
The system contains three pipe connectors and three selector connectors (as well as
seven invocation connectors). Each of these connectors hosts different connector types
(and in different numbers). For example, the pipe P1 hosts a selector S3 and an invo-
cation connector I4 for the component ATM, whereas the pipe P2 hosts a selector S1
and an invocation connector I3 for the component BC1. Although the two pipes are
doing completely different things, they have been constructed from the same template.
The template is generic enough to embody different instances. So, P1 is an instance of
the pipe template that hosts the selector S3 and the invocation connector I4, and P2 is
an instance that hosts the selector S1 and the invocation connector I3.

332 K.-K. Lau and V. Ukis

The same applies to selector and invocation connectors (and indeed to any connec-
tor). A selector connector template can take any number of any connectors, and an
invocation connector template can call any method on any component.

Thus we can automate the process of control flow construction for any system with
an exogenous connection structure by instantiating connector templates into instances
in the latter.

Note that, by contrast, ADL systems do not have these properties. In such systems,
connectors are not generic but system-specific, and components, rather than connec-
tors, form a hierarchy. Only C2 makes use of a generic (bus) connector. However, in C2
components originate control to other components and therefore cannot be reused inde-
pendently as self-contained units of computation.The chain of dependent components
is laid down at components’ design time. By contrast, we do it at run-time.

3.6 Connection Structure Description

In order to build up a control structure on the fly, it needs to process a system’s connec-
tion description. We choose to write the description in XML because: (a) XML itself is
hierarchical, and so is particularly suited to expressing our connector hierarchies; (b) the
system description can be automatically checked against a pre-defined XML schema,
thus eliminating (some) errors right at the beginning; (c) there is good tool support for
XML, e.g. we use XMLSpy from Altova; (d) the system integrator can be guided by
a tool while developing a system control structure description according to the XML
schema; (e) XML schemas are extensible in a consistent manner [5]; this is important
because when the schema is extended to include new connector types, for instance, old
system descriptions, which have been checked against the old schema, will be able to
pass the schema check using the new schema. Using XML for system description is
also favoured by XML ADLs [14,8,4].

The XML schema we use for system control structure description is depicted in
Figure 7. The top-level XML element is called “ExADL” and has two child elements:
(i) connector types and (ii) system, in that order. (i) contains an extensible specification
of exogenous connector types which are generic and not system-specific; whilst (ii)
contains a (system-specific) specification of the system using these connector types.
Connector types presented here include invocation, pipe and selector connectors.

A system can contain any number of connector types which can contain one another.
The connector type hierarchy defined in the schema is of course the same one that we
used for implementing these connectors.

Note that connector types presented here are not the only ones possible. We show
only these connector types here because they are used in the Bank Example. In general,
any exogenous connector types are conceivable. For example, a repeater connector,
which repeats some invocations into a component, or a sequencer connector, which has
the semantics of the pipe connector but does not pipe values from one component to an-
other one. What is important is that all these connectors can be described using system
control structure description and instantiated at runtime. That is, the infrastructure for
building systems using exogenous connectors is defined by the extensible XML schema
for system control structure description.

Automatic Control Flow Generation from Software Architectures 333

Fig. 7. XML schema for system connection structure description

As an example of system connection structure description, the bank system can be
described by the outline in Figure 8.This can be read as: ‘A pipe P1 contains an invoca-
tion connector and a selector S3. The invocation connector contains a component ATM .
The selector S3 contains a pipe P2, which contains a component BC1, and so on’.

3.7 Implementation of Control Flow Generation

To generate a system’s control flow, its XML description is processed. First of all the
XML description is checked against the schema shown in Figure 7. If the XML sys-
tem description does not pass the schema check, the system will not be created. This
enforces the connector hierarchy to be always well-defined by the schema. During the
processing of the system element, the connector types are retrieved first and stored for
future use. A connector type is instantiated each time a specific connector occurs in
the system connection structure description. For example, each time a pipe element oc-
curs in the XML description of the system, an instance of a pipe is created from the
information stored before.

To describe the implementation, we follow the sequence of operations that are car-
ried out to process a system control structure description. First, the system control flow

334 K.-K. Lau and V. Ukis

<system>
<pipe name="P1">
<invocation>

<component name="ATM" type="Components.ATM, Components"/>
</invocation>
<selector name="S3">

<pipe name="P2">
<invocation>
<component name="BC1" type="Components.BankConsortium ...

</invocation>
<selector name="S1">
<invocation>

<component name="B1" type="Components.Bank ...
</invocation>
<invocation>

<component name="B2" type="Components.Bank ...
</invocation>

</selector>
</pipe>
...

Fig. 8. Connection structure description for the bank example

description gets validated against the XML schema and gets loaded unless the descrip-
tion violates the schema. Second, information about the location of each connector class
is stored for creating connector instances in future. We use XPath expressions to retrieve
the XML nodes (e.g. “//connector types/pipe”). The information stored is a piece of text
containing the class name and a .NET assembly name containing the class. Using this
information .NET runtime (CLR) can load the assembly into a process and create an in-
stance of the class inside. Third, the top-level connector is identified and created, Then
system control flow construction begins. The complete system is created beneath the
top-level connector, using a recursive method:

private void LoadSystem(XmlNode theXmlNode,
Connector theCurrentConnector) {...}

This recursive method has 2 parameters: (i) the current XML node in the system con-
trol structure description to be processed; and (ii) the current connector, which will take
the connectors created from the child nodes of the XML node passed into the method
as child connectors. Thus when entering the method we always have a connector cre-
ated in the previous iteration and its XML representation. The method iterates through
the child nodes of that node, creates connectors out of them and puts each of these
connectors as a child connector into the connector passed into the method.

The recursion itself can only occur when processing either a pipe or a selector con-
nector. An invocation connector cannot cause the recursion since the only XML node
that can be beneath invocation is component, according to the XML schema. On the
other hand, we do not know which XML node will occur after pipe or selector. The
schema only enforces that it will be either pipe, selector or invocation. In order to inves-
tigate what is below a pipe or a selector we engage in a recursion passing the necessary

Automatic Control Flow Generation from Software Architectures 335

parameters, namely the current connector and its XML representation, and in the next
iteration explore the child nodes. The recursion ends when an invocation connector is
found.

During the construction of the system control flow all possible control flow paths in
the system are laid down, while a particular request to the system does not necessarily
makes use of all of them but follows some paths necessary to answer the request.

4 Example

Now we illustrate the use of exogenous connectors for automatic runtime control flow
generation, using the bank example (Example 2), with the architecture described in
Figure 5 (b).

The first step is to implement the components. In our implementation, components
are C# classes with public methods (that can be invoked by the invocation connectors)
for the usual ATM operations like insert card, enter password, withdraw, deposit, check
balance, etc. The objects (of these classes) do not call methods in other components.

The second step is to specify the system in XML following the XML schema. We
have already done this in Figure 8.

The third step is to actually construct the system according to the process outlined
above. The result is the running system with control flow as shown in Figure 6.

Now we briefly explain how the automatically generated bank system works, and
therefore how it can be used to provide services, by means of an example. Consider
the service request of getting the balance of an account. The get balance operation
(illustrated for card 4711) is implemented by using TopLevelConnector of the bank
system, as follows:

TopLevelConnector.Execute(new string[] {"GetBankConsortiumID_",
"GetBranch_", "GetBalance"}, new object[] {4711});

The top-level connector P1 gets a list of methods, namely GetBankConsortiumID ,
GetBranch and GetBalance, and parameters to be propagated through the system. Only
invocation connectors in ATM , BC1 and B1 respectively call these methods. The con-
nectors themselves draw on various Execute methods offered by their base class Con-
nector to propagate the necessary information down towards invocation connectors.
Where the control flow can pass (at which connector and component) was specified
before in the system description. The concrete control flow for a request depends on re-
quest parameters. For example, a particular bank is selected for executing an operation
on an account according to the account number of the customer.

For the get balance operation, the control flow involved is shown in Figure 9.
Note that the control flow for get balance operation does not use all possible control

flow paths laid down on system construction but rather uses a part of them. Figure 6
shows that the system contains all the possible control flow paths. Figure 9 depicts
control flow paths necessary for serving the request to get an account balance. Another
request may need completely different paths than those used when serving account
balance request.

336 K.-K. Lau and V. Ukis

Level 1

B2 B1 BC1 ATM

P1

S3

S1

P2

Get
balance

Level 3

Level 2

Level 4

Level 5

Fig. 9. Control flow for get balance

Other operations to be performed by the Bank System like deposit and withdraw can
be implemented as follows:

Deposit $100 onto account the card 4711 belongs to:

TopLevelConnector.Execute(new string[]
{"GetBankConsortiumID", "GetBranch", "Deposit"},
new object[] {"100", "4711"});

Withdraw $100 from account the card 4711 belongs to:

TopLevelConnector.Execute(new string[]
{"GetBankConsortiumID", "GetBranch", "Withdraw"},
new object[] {"100", "4711"});

Besides the Bank Example we have implemented a complex Automated Train Protec-
tion System (ATP) using exogenous connectors. In that system we implemented some
other connectors in addition to those presented in this paper and we could reuse con-
nectors from this paper in the ATP system. For lack of space we do not discuss the ATP
System here.

5 Discussion and Concluding Remarks

In this paper we have presented an approach to automatic runtime system control flow
generation from software architectures using exogenous connectors. In particular, we
showed our procedure for control flow construction. As far as we know, our approach is
unique because it generates control flow of systems consisting of independent, reusable
components automatically.

Code generators like the one in ArchJava generate code with components originating
control flow to other components. Tools like Bootstrapper in C2 do not create control
flow of the system at runtime but only instantiate components and connectors, with
control flow already implemented in components and via connectors. In other words,
traditional ADLs do not allow automatic runtime control flow generation for a system.

Furthermore, ADLs do not have generic and hierarchical connectors. XML-based
ADLs like xADL 1.1 [8] and xADL 2.0 [4], which have XML descriptions of their
architectures, do not generate control flow automatically at runtime.

Table 1 summarises related approaches and shows the differences to our proposed
approach.

Automatic Control Flow Generation from Software Architectures 337

Table 1. Comparison with related architectures

Automated
Approach Access to Control Component Connector control

component origin reuse reuse flow
generation

ArchJava/ACME by method call component no no no
xADL by method call component no no no

C2 by event component no yes no
Exogenous by method call connector yes yes yes

Our future work is concerned with predictability of system properties resulting from
composing components using connectors into a system. We have shown that automatic
composition is possible by constructing system’s control flow on the fly. However, it is
highly desirable as well to be able to predict the result of this automated control flow
construction before it actually takes place. Therefore we are working on Deployment
Contracts [10] for components, which is metadata [9] attached to the components, with
a view to being able to analyse that metadata before the actual composition takes place.
The analysis should flag incompatible components for composition. By having this, we
will be able to predict conflicts by doing some compositional reasoning.

References

1. J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software architecture to
implimentation. In Proc. ICSE 2002, pages 187–197. IEEE, 2002.

2. F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and
C. Hankin, editors, Lecture Notes in Computer Science 1061, pages 34–56. Springer-Verlag,
1996.

3. ArchJava web page. http://archjava.fluid.cs.cmu.edu/index.html.
4. E.M. Dashofy, A. van der Hoek, and R.N. Taylor. A highly-extensible, XML-based architec-

ture description language. In Proc. Working IEEE/IFIP Conference on Software Architecture,
pages 103–112. IEEE Computer Society, 2001.

5. L. Dykes, E. Tittel, and C. Valentine. XML Schemas. Sybex Inc, 2002.
6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The courier pattern. Dr. Dobb’s Journal,

Feburary 1996.
7. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based

systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47–68. Cambridge University Press, 2000.

8. R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. N. Taylor. xADL: Enabling
architecure-centric tool integration with XML. In Proc. 34th Hawaii Int. Conf. on System
Sciences, 2001.

9. K.-K. Lau and V. Ukis. Component metadata in component-based software development: A
survey. Preprint 34, School of Computer Science, The University of Manchester, Manchester,
M13 9PL, UK, October 2005.

10. K.-K. Lau and V. Ukis. Deployment contracts for software components. Preprint 36, School
of Computer Science, The University of Manchester, Manchester, M13 9PL, UK, February
2006.

338 K.-K. Lau and V. Ukis

11. K.-K. Lau, V. Ukis, P. Velasco, and Z. Wang. A component model for separation of control
flow from computation in component–based systems. In Proceedings of the 1st International
Workshop on Aspect-Based and Model-Based Separation of Concerns in Software Systems,
ENTCS, www.elsevier.nl/locate/entcs, Nuremberg, Germany, November 2005.

12. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS
3489, pages 90–106, 2005.

13. N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In
Proc. 22nd International Conference on Software Engineering, pages 178–187. ACM Press,
2000.

14. S. Pruitt, D. Stuart, W. Sull, and T.W. Cook. The merit of XML as an architecture description
language meta-language. Microelectronics and Computer Technology Corporation, 1998.

15. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

16. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

17. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A. Nies,
P. Oreizy, and D. L. Dubrow. A component- and message-based architectural style for GUI
software. Software Engineering, 22(6):390–406, 1996.

Author Index

Altisen, Karine 291
André, Pascal 18
Ardourel, Gilles 18
Attiogbé, Christian 18

Bae, Doo-Hwan 211
Bergel, Alexandre 227
Binder, Walter 163
Bodden, Eric 147
Braem, Mathieu 66

Cervantes, Humberto 275
Cointe, Pierre 243
Collet, Philippe 50
Constantinescu, Ion 163
Coupaye, Thierry 259

David, Pierre-Charles 82
Denier, Simon 243
Denker, Marcus 227
Desertot, Mikael 275
Desmet, Lieven 34
Donsez, Didier 275
Duchien, Laurence 259

Faltings, Boi 163

Gybels, Kris 66, 227

Harrison, William 194
Hong, Jang-Eui 211

Joosen, Wouter 34

Kellens, Andy 66
Kim, In-Gyu 211

Lau, Kung-Kiu 323
Ledoux, Thomas 82
Lumpe, Markus 307

Maraninchi, Florence 291
Marew, Tegegne 211
Merle, Philippe 114
Min, Sang-Yoon 211

Ossher, Harold 194
Ozanne, Alain 50

Pessemier, Nicolas 259
Piessens, Frank 34

Rivierre, Nicolas 50
Rouvoy, Romain 114

Schaarschmidt, Michael 1
Schneider, Jean-Guy 307
Seinturier, Lionel 259
Serrano-Alvarado, Patricia 114
Stauch, David 291
Stolz, Volker 147
Strembeck, Mark 178

Tanter, Éric 98, 227
Tarr, Peri 194

Ukis, Vladyslav 323

Vanderperren, Wim 66
Verbaeten, Pierre 34

Wojciechowski, Pawe�l T. 131

Zdun, Uwe 178
Zimmermann, Wolf 1

	Frontmatter
	Automatic Checking of Component Protocols in Component-Based Systems
	Checking Component Composability
	Static Verification of Indirect Data Sharing in Loosely-coupled Component Systems
	Enforcing Different Contracts in Hierarchical Component-Based Systems
	Automated Pattern-Based Pointcut Generation
	An Aspect-Oriented Approach for Developing Self-Adaptive Fractal Components
	Aspects of Composition in the Reflex AOP Kernel
	A Component-Based Approach to Compose Transaction Standards
	A Class-Based Object Calculus of Dynamic Binding: Reduction and Properties
	Tracechecks: Defining Semantic Interfaces with Temporal Logic
	Service Composition with Directories
	Modeling Composition in Dynamic Programming Environments with Model Transformations
	General Composition of Software Artifacts
	Dimensions of Composition Models for Supporting Software Evolution
	Context-Aware Aspects
	Understanding Design Patterns Density with Aspects
	A Model for Developing Component-Based and Aspect-Oriented Systems
	FROGi: Fractal Components Deployment over OSGi
	Modular Design of Man-Machine Interfaces with Larissa
	On the Integration of Classboxes into C\#
	Automatic Control Flow Generation from Software Architectures
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

