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Preface

This volume is a collection of presentations given at the 79th annual International
Meeting of the Psychometric Society (IMPS) held at the University of Wisconsin-
Madison, in Madison, Wisconsin during July 21–25, 2014. The meeting attracted
380 participants from 26 countries, with 242 papers being presented, along with 56
poster presentations, 5 pre-conference workshops, 5 keynote presentations, 4 invited
speaker presentations, 4 state-of-the-art lectures, and 8 invited symposia. We thank
the University of Wisconsin-Extension staff, as well as the faculty and students from
the Department of Educational Psychology at the University of Wisconsin, Madison
for hosting this very successful conference.

This volume continues a tradition started after the 77th meeting in Lincoln,
Nebraska, of publishing a proceedings volume from the conference so as to allow
presenters to quickly disseminate their ideas to the broader research community,
while still undergoing a thorough review process. The 78th meeting in Arnhem was
also followed by a proceedings. With the third proceedings, we now have a series
that is expected to be continued next year with submissions from the 80th IMPS
meeting in Beijing, China.

We asked the authors to use their presentations at the meeting as the basis of
their chapters, possibly extended with new ideas or additional information. The
result is a selection of 26 state-of-the-art chapters addressing a diverse set of topics,
including item response theory, factor analysis, structural equation modelling, time
series analysis, mediation analysis, propensity score methods, cognitive diagnostic
models, and multi-level models, among others.

The proceedings of the 77th and 78th meeting were initiated by Roger E. Millsap,
the editor of Psychometrika. Just before finalizing the proceedings of the 78th
meeting, on May 9, 2014, Roger suddenly passed away. This volume is the first
proceedings not initiated by Roger. We dedicate it to him.

Amsterdam, The Netherlands L. Andries van der Ark
Madison, WI, USA Daniel M. Bolt
Hong Kong, Hong Kong SAR Wen-Chung Wang
Urbana-Champaign, IL, USA Jeffrey A. Douglas
University Park, PA, USA Sy-Miin Chow
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Chapter 1
Extending the Use of Multidimensional IRT
Calibration as Projection: Many-to-One Linking
and Linear Computation of Projected Scores

David Thissen, Yang Liu, Brooke Magnus, and Hally Quinn

Abstract Two methods to make inferences about scores that would have been
obtained on one test using responses obtained with a different test are scale aligning
and projection. If both tests measure the same construct, scale aligning may be
accomplished using the results of simultaneous calibration of the items from both
tests with a unidimensional IRT model. If the tests measure distinct but related
constructs, an alternative is the use of regression to predict scores on one test from
scores on the other; when the score distribution is predicted, this is projection.
Calibrated projection combines those two methods, using a multidimensional IRT
(MIRT) model to simultaneously calibrate the items comprising two tests onto
scales representing distinct constructs, and estimating the parameters describing the
relation between the two scales. Then projection is done within the MIRT model.
This presentation describes two extensions of calibrated projection: (1) the use of
linear models to compute the projected scores and their error variances, and (2)
projection from more than one test to a single test. The procedures are illustrated
using data obtained with scales measuring closely related quality of life constructs.

Keywords linking • projection • calibration • scale aligning

1.1 Introduction

It is often desirable to obtain scores that are in some sense comparable from
disparate tests that measure the same or closely related constructs. For example,
the empirical examples in this presentation are motivated by the possibility that
PROMISr pediatric and adult scales may be used in the same cross-sectional or
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longitudinal research, with the (different) pediatric and adult scales each used within
their age-range. Test score linking facilitates data analysis in such situations.

Holland (2007) provided a modern framework for test score linking; he wrote
that “linking refers to the general class of transformations between the scores from
one test and those of another, . . . linking methods can be divided into three basic
categories called predicting, scale aligning, and equating.” For linking scores from
disparate scales, such as the PROMISr pediatric and adult scales, only predicting
scores from one with the other, or aligning the two scales, are viable candidates.

A commonly used method of scale aligning has been calibration, which uses
item response theory (IRT) models and methods to place the items from each of
two scales on the same metric. After that is done, standard computation of IRT scale
scores from any subset of the items (which could include all of the items on only one
scale) yields comparable scores. However, calibration has heretofore been limited to
situations in which a unidimensional IRT model is suitable for all items from both
scales jointly—that is, both scales measure the same construct.

For two scales that measure different constructs, even if the two constructs are
highly related, predicting scores on one scale from those on the other yields more
correct results. Such predictions are based on regression models, but often the
regression model is elaborated to produce a distribution across the score range as
a prediction; that is called projection.

Usually projection has been based on standard regression models, which consider
the values of the predictor variable(s) fixed. Calibrated projection (Thissen et al.
2011) is a relatively new statistical procedure that uses IRT to link two measures,
without considering the scores on the predictor scale to be fixed, and without the
demand of conventional calibration that the two are measures of the same construct.
In calibrated projection, a multidimensional IRT (MIRT) model is fitted to the item
responses from the two measures: �1 represents the underlying construct measured
by the first scale, with estimated slopes a1 for each of the first scale’s items and
fixed values of 0.0 for the items of the second scale. �2 represents the underlying
construct measured by the second scale, with estimated slopes a2 for each of the
second scale’s items and fixed values of 0.0 for the items of the first scale. The
correlation between �1 and �2 is estimated.

After calibration, the MIRT model may be used to provide IRT scale score
estimates on the scale of the second measure, using only the item responses from
the first measure. Figure 1.1 illustrates calibrated projection: The x-axis variable is
�1, the underlying construct measured by the first scale (for Fig. 1.1, that is the
PROMIS pediatric Anxiety scale), and the y-axis variable is �2, the underlying
construct measured by the second scale (in Fig. 1.1, PROMIS adult Anxiety). The
two latent variables are highly correlated, as indicated by the density ellipses around
the regression line. Given the item responses on the pediatric Anxiety scale, IRT
methods may be used to compute the implied distribution on �1; two of those are
shown along the x-axis in Fig. 1.1, for summed scores of 13 and 44. The estimated
relation between �1 and �2 is then used to project those distributions onto the y-axis,
to yield the implied distributions on �2, the adult construct.
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Fig. 1.1 The x-axis variable is �1, the underlying construct measured by the first scale, in this case
the PROMIS pediatric Anxiety scale; the y-axis variable is �2, the underlying construct measured
by the second scale, in this case the PROMIS adult Anxiety scale. Both scales report scores in
T-score units. The correlation between the two latent variables is indicated by the large density
ellipses. The implied distributions on �1 for summed scores of 13 (blue) and 44 (red) on the
pediatric Anxiety scale are shown along the x-axis, along with the corresponding implied bivariate
distributions, and those on �2, the adult Anxiety construct, along the y-axis

The means of the implied distributions on the � dimensions are the IRT-based
scale scores, and the standard deviations of those distributions are reported as the
standard errors of those scores. The projection links the scales in the sense that each
score on the pediatric scale yields a score on the adult metric.

In subsequent sections, we will illustrate calibrated projection from the PROMIS
pediatric Anxiety (Irwin et al. 2010) scale to the corresponding adult scale (Pilkonis
et al. 2011) and vice versa, using new data and pre-existing item parameters for
the two PROMIS scales as the mechanism to link the results back to the original
scales. Then we will describe a linear approximation to the IRT computations, and
illustrate the extension of calibrated projection to use more than one scale as the
basis for projection.

1.2 Calibrated Projection, Illustrated with PROMIS Anxiety

The original development of calibrated projection (Thissen et al. 2011) made use
of the same data that were used to set the scale for the PROMIS Asthma Impact
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Scale (PAIS), so there was no need to link a new set of data back to any existing
scale. In contrast, the illustrations here are drawn from the linkage of the PROMIS
pediatric and adult scales that measure similar constructs; both the pediatric and
adult scales are now based on published item banks with reference metrics derived
from their (separate) original calibrations. New data were collected for this project,
from a sample of 874 persons in the age range 14–20 who responded to short forms
of both the pediatric and adult PROMIS scales.

The item banks of all of the PROMIS scales comprise items with five response
alternatives. The items have been calibrated using the graded IRT model (Samejima
1969, 1997), which describes the probability of each item response as a function of
a set of item parameters (as and cs), and � , the latent variable(s) measured by the
scale, as follows: The conditional probability of response u D 0; 1; : : : ;m � 1 is

Tu.�/ D T�
u .�/ � T�

uC1.�/ (1.1)

in which T�
u .�/ is a curve tracing the probability of a response in category u or

higher: T�
0 .�/ D 1, T�

m.�/ D 0, and for u D 1; 2; : : : ;m � 1

T�
u .�/ D 1

1C exp.�.a0� C cu//
: (1.2)

The original unidimensional parameters for the short-form items for the PROMIS
pediatric and adult Anxiety scales are in Table 1.1, recast in a two-dimensional
format in which �1 is the underlying construct measured by the pediatric Anxiety
scale and �2 is the underlying construct measured by the adult Anxiety scale.

To begin the process of linking the two Anxiety scales with each other, and back
to their original (published) scales, the item parameters in Table 1.1 were used as
fixed values, and the population parameters (mean vector and covariance matrix) for
the latent variables �1 and �2 were estimated by maximum likelihood. Estimation of
the MIRT parameters and subsequent computation of the scale scores was done
using the IRTPRO software (Cai et al. 2011).

For the Anxiety scales, the estimated covariance matrix from the fixed (original
calibration) parameters and the current data C, with �1 � �ped and �2 � �ad, is

Ȯ C D
�
1:650.0:11/

1:174.0:07/ 1:047.0:06/

�
: (1.3)

The estimated correlation of the two latent variables is O�C D 1:174p
1:650�1:047 D

0:893. It is convenient to define the ratio of the variance of the adult latent variable
to that of the pediatric latent variable, Ok2ad D 1:047

1:650
D 0:635.

To compute projected scores on a scale set in a hypothetical calibration popu-
lation that is the same as the reference population for the pediatric scale, we need
an estimate of the covariance matrix of the two latent variables in that population.
That estimate has three components: The variance of the pediatric latent variable,
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O�ref.ped/;ped, is 1.0 (that set the original scale); the variance of the adult latent variable,
O�ref.ped/;ad, is Ok2ad, obtained from the ratio of the two variances in the current data;
and the covariance is O�C Okad, using the correlation from the current data. So the
covariance matrix used to project from the pediatric scale to the adult scale is:

Ȯ ref.ped/ D
�
1:0

O�C Okad Ok2ad

�
D
�
1:000

0:711 0:635

�
: (1.4)

We also need to compute the predicted value of the adult scale mean in that
population. We use linear regression to compute that estimate, based on Ȯ C and the
estimated mean vector for the current data, which in this example is

O�C D
�
0:631.0:05/

0:868.0:04/

�
: (1.5)

The regression estimate of the adult scale value for the pediatric scale mean of 0.0
uses an estimate of the slope

ˇ1 D O�C
O�C;ad

O�C;ped
D 0:893

p
1:047p
1:650

D 0:711 ; (1.6)

and the intercept

Table 1.1 Item parameters for the PROMIS pediatric and adult Anxiety scales,
based on their original calibrations

Item Label a1 a2 c1 c2 c3 c4
1 Pediatric-Anxiety1-8 1.51 0 1.29 �0.27 �2.80 �4.31

2 Pediatric-Anxiety2-2 1.89 0 0.48 �1.12 �3.24 �4.76

3 Pediatric-Anxiety2-9 1.81 0 1.42 �0.45 �2.87 �4.79

4 Pediatric-Anxiety2-1 1.71 0 0.74 �0.88 �3.00 �4.54

5 Pediatric-Anxiety2-6 1.50 0 0.60 �0.76 �2.78 �3.97

6 Pediatric-Anxiety1-7 1.48 0 1.01 �0.43 �2.84 �4.25

7 Pediatric-Anxiety1-3 1.84 0 0.44 �0.89 �2.83 �4.08

8 Pediatric-Anxiety2-4 1.83 0 �0.46 �1.67 �3.34 �4.69

9 Adult-EDANX01 0 3.60 �1.23 �3.92 �7.06 �9.72

10 Adult-EDANX40 0 3.88 �1.89 �4.91 �8.20 �11.26

11 Adult-EDANX41 0 3.66 �1.33 �3.78 �6.52 �9.59

12 Adult-EDANX53 0 3.66 0.85 �2.18 �5.72 �9.14

13 Adult-EDANX46 0 3.40 0.74 �2.15 �5.59 �9.28

14 Adult-EDANX07 0 3.55 �1.92 �3.71 �6.62 �8.47

15 Adult-EDANX05 0 3.36 0.64 �2.01 �5.28 �8.21

16 Adult-EDANX54 0 3.35 1.71 �1.04 �4.19 �7.69
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ˇ0 D O�C;ad � ˇ1 � O�C;ped D 0:868� 0:711 � 0:631 D 0:419: (1.7)

Assuming the same relationships between the pediatric and adult scales observed in
the current data C would have held if the calibration sample for the pediatric scale
had also been the reference sample for the adult scale, the mean for the adult scale
would have been

O�ad D 0:419C 0:711 � 0:0 D 0:419 : (1.8)

Assembling all this, calibrated projection of pediatric item responses onto the
adult scale uses the item parameters for the pediatric items in Table 1.1, the
population mean vector

O�ref.ped/ D
�
0:0

O�ad

�
D
�
0:0

0:419

�
; (1.9)

and covariance matrix Ȯ ref.ped/ from Eq. (1.4).
To project item responses onto the pediatric scale, the computations in this

section are reflected appropriately, reversing the roles of the pediatric and adult
latent variables.

1.3 A Linear Approximation to Calibrated Projection

In calibrated projection, the projected score on the �2 dimension, given the score on
the �1 dimension, is computed using two-dimensional numerical integration of the
conditional posterior distribution, two of which are illustrated in Fig. 1.1. However,
it is numerically the case that the predictions so-computed are, within rounding
error, a linear function of the predictor scores, specifically

bEAPŒ�2� D ˇ0 C ˇ1EAPŒ�1� : (1.10)

in which the values of ˇ0 and ˇ1 are computed as described in the previous section.
So for the Anxiety examples, we can compute

bEAPŒ�2� D ˇ0 C ˇ1EAPŒ�1� (1.11)

D 0:419C 0:711EAPŒ�1�:

This linear relationship is exact, due to the linearity of conditional expectations.
However, no exact relationship has thus far been found for the values of SD[�2]. An
approximation that appears empirically useful combines two sources of variance:
the error variance of the predicting value, SD2[�1], and the residual variance around
the regression line, VRes;2. The residual variance is
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VRes;2 D .1 � O�2C/ O�2C;2 (1.12)

so for the projection from the pediatric scale to the adult scale it is

VRes;2 D .1 � 0:8932/1:047 D 0:212 : (1.13)

Using these values, approximate conditional standard errors of the projected values
can be computed for the projection from the pediatric scale to the adult scale as

cSDŒ�2� D
q
ˇ21SD2Œ�1�C VRes;2 D

q
0:7112SD2Œ�1�C 0:212 : (1.14)

1.3.1 Comparing the Results from the Linear Approximation
with Calibrated Projection for PROMIS Anxiety

It is not convenient to show the results of projection for scores based on response
patterns, because there are so many. However, tabulation of the responses for
summed scores covers the entire range and can be useful to provide illustration
and checks on the results. The first five columns of Table 1.2 illustrate calibrated
projection for the summed scores for the pediatric Anxiety scale, with projection to
the adult Anxiety scale. All results are shown using the T-score scale common to all
PROMIS measures.

The pediatric EAP[�1] and SD[�1] values in Table 1.2 are those published as the
scoring table for the Anxiety measure. The adult EAP[�2] and SD[�2] are those
computed using two-dimensional quadrature, the item parameters in Table 1.1,
and the population mean vector and covariance matrix from Eqs. (1.4) and (1.9).
The rightmost four columns of Table 1.2 show the results obtained with the linear
approximation described in the preceding section. Columns 6 and 7 show the values
of adult bEAPŒ�2� computed using equation 1.11, and the difference between the
calibrated projection EAPs and the linear approximation. Columns 8 and 9 show
the values of adult cSDŒ�2�, and the ratio of the approximation to the calibrated
projection values. In this case the values from the linear approximation are about
1.2 times larger than those from calibrated projection; but most would still round to
the same integral values on the T-score scale.

1.3.2 Summary of Comparisons for Seven PROMIS Scales

In the course of a project to link some of the pediatric PROMIS scales to their adult
counterparts, we have computed the results for calibrated projection and the linear
approximation described in the preceding section for seven scales. Because all were
done twice, once from the pediatric items to the adult scales and a second time from
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Table 1.2 The first five columns show the calibrated projection IRT scores (EAPs) and
standard errors (SDs) for summed scores on the pediatric measure (only even summed scores
are shown to save space)

Calibrated projection Linear approximation
Pediatric Adult EAPŒ�2�� cSDŒ�2�/

Pediatric
summed
score EAP[�1] SD[�1] EAP[�2] SD[�2] bEAPŒ�2� bEAPŒ�2� cSDŒ�2� SD[�2]

0 32:3 5:8 41:7 5:5 41:6 0.0 6:2 1:1

2 39:2 4:7 46:5 4:9 46:5 0.0 5:7 1:2

4 43:3 4:2 49:5 4:7 49:5 0.0 5:5 1:2

6 46:7 3:9 51:8 4:6 51:8 0.0 5:4 1:2

8 49:6 3:8 53:9 4:5 53:9 0.0 5:3 1:2

10 52:3 3:7 55:8 4:5 55:8 0.0 5:3 1:2

12 54:8 3:7 57:6 4:5 57:6 0.0 5:3 1:2

14 57:3 3:7 59:3 4:5 59:4 0.0 5:3 1:2

16 59:7 3:7 61:1 4:5 61:1 0.0 5:3 1:2

18 62:1 3:7 62:8 4:5 62:8 0.0 5:3 1:2

20 64:5 3:7 64:5 4:5 64:5 0.0 5:3 1:2

22 67:0 3:7 66:3 4:5 66:3 0.0 5:3 1:2

24 69:6 3:7 68:1 4:5 68:1 0.0 5:3 1:2

26 72:3 3:7 70:0 4:5 70:0 0.0 5:3 1:2

28 75:2 3:8 72:0 4:5 72:1 �0.1 5:3 1:2

30 78:6 4:1 74:5 4:6 74:5 �0.1 5:4 1:2

32 83:5 4:7 78:0 4:9 78:0 �0.1 5:7 1:2

The last four columns show the results obtained with the linear approximation

the adult item responses to the pediatric scales, there are a total of 14 examples.
The latent variables measured by all of the pairs of scales are highly correlated;
correlations ranged from 0.86 to 0.95. For all 14 linkings, the linearly approximated
EAPs for each summed score were essentially identical to those obtained with
numerical integration in calibrated projection, as was illustrated for the Anxiety
pediatric to adult projection in Table 1.2.

The degree to which cSDŒ�2� approximates SD[�2] as computed by numerical
integration in calibrated projection remains an empirical question. While it is not
feasible to check that for all response pattern scores, it is easy to evaluate the
approximation for the posterior standard deviations associated with each summed
score on the scale that is used for projection. An example is shown in Table 1.2,
in which the ratio of cSDŒ�2� to SD[�2] varies only between 1.1 and 1.2. Table 1.3
shows the minimum and maximum values of that ratio for all 14 of the PROMIS
pediatric–adult projections. Across 13 of the 14 cases, the ratio is between 1.0 and
1.3. For many applications, reported standard errors that are zero to 30 % larger
than the “exact” values would probably present no problems. The exception is the
projection of the Upper Extremity scale from the pediatric to the adult measure, for
which cSDŒ�2� is 1.3–1.6 times larger than SD[�2].
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Table 1.3 The minimum and maximum values of the ratio cSDŒ�2�=SDŒ�2� for all 14 of
the PROMIS pediatric-adult projections

Pediatric to adult Adult to pediatric

Pediatric domain Minimum Maximum Minimum Maximum

Anxiety 1:1 1:2 1:0 1:0

Depressive symptoms 1:1 1:2 1:1 1:1

Anger 1:2 1:3 1:1 1:2

Fatigue 1:3 1:4 1:1 1:1

Pain interference 1:2 1:3 1:0 1:0

Physical functioning—mobility 1:1 1:2 1:0 1:1

Physical functioning—upper extremity 1:3 1:6 1:0 1:3

Table 1.4 Proportions of values of EAP[�2] for each scale combination that are
within ˙1 SD and ˙2 SD of the values obtained using the linear approximation
to calibrated projection

Pediatric to adult Adult to pediatric

Pediatric domain ˙1 SD ˙2 SD ˙1 SD ˙2 SD

Anxiety 0:69 0:93 0:72 0:92

Depressive symptoms 0:70 0:93 0:71 0:93

Anger 0:72 0:95 0:74 0:94

Fatigue 0:71 0:94 0:75 0:94

Pain interference 0:75 0:92 0:77 0:95

Physical functioning—mobility 0:71 0:93 0:69 0:91

Physical functioning—upper extremity 0:54 0:95 0:53 0:95

The point of reporting values of cSDŒ�2� (or SD[�2]) as standard errors for the IRT
scale scores is to provide a confidence interval the covers the true value 100.1�˛/%
of the time. With the data collected for linking the pediatric and adult scales, we have
the values of EAP[�2] for each projection, so we can compute the proportion of those
values that are included in any specified confidence range. Table 1.4 shows those
proportions for confidence intervals computed as bEAPŒ�2�˙ cSDŒ�2� and bEAPŒ�2�˙
2cSDŒ�2�, which should be about 0.68 and 0.95, respectively, if the standard errors are
nearly correct and the errors are approximately normal. Across 13 of the 14 cases,
the ˙1 SD proportions are between 0.69 and 0.77, while the ˙2 SD proportions are
between 0.91 and 0.95. While the ˙1 SD proportions tend to be a little too large,
the ˙2 SD proportions are slightly too small. So no improvement could be made on
one (e.g., making the SD smaller to reduce the ˙1 SD proportions) without making
the other worse (the example would make the ˙2 SD proportions too small).

The exceptional values in Table 1.4 are the ˙1 SD proportions for the Upper
Extremity scales, which are 0.53–0.54 instead of 0.68. This anomaly is due to a
distributional peculiarity for those scales: In these data, 21 % of the respondents
have a perfect (maximum) score on both scales. That produces a single point mass in
the distributions with 21 % of the data. The fact that these large blocks of 21 % have
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residuals between 1 and 2 SDs from zero reduces the observed proportion within
˙1 SD from the nominal 0.68 to 0.53–54. Setting that anomaly aside, the coverage
proportions suggest that the approximation works well across the linkings that have
used it thus far. For future use, it is easy to check its accuracy, by constructing a table
like Table 1.2, and comparing the calibrated projection computations for summed
scores with the approximation.

1.4 Projection from Two Scales to One, Illustrated
with PROMIS Physical Functioning

1.4.1 Calibrated Projection from Two Scales

In this section we extend calibrated projection to use a MIRT model for item
responses to three scales. Two measures form the basis of the projection, with �1
representing the underlying construct measured by the first scale, with estimated
slopes a1 for each of the first scale’s items and fixed values of 0.0 for the other
items, and �2 representing the underlying construct measured by the second scale,
with estimated slopes a2 for each of the second scale’s items and fixed values of
0.0 for the other items. �3 represents the underlying construct measured by the third
scale, the target scale of the projection, with estimated slopes a3 for each of the third
scale’s items and fixed values of 0.0 for the other items. The correlations among all
three �s are estimated.

The context for this extension of calibrated projection, and the linear approxi-
mation, involves the linking between the PROMIS pediatric Physical Function (PF)
scales (Mobility and Upper Extremity/Dexterity; DeWitt et al. 2011) and the adult
PF scale (Fries et al. 2014). The results for the Physical Function scales in Tables 1.3
and 1.4 were produced by linking the two pediatric scales separately to the omnibus
adult scale; in this section, we will link the two pediatric scales jointly with the adult
scale. To do so, we will use the published calibration item parameters for the three
unidimensional scales in Table 1.5, where they are expressed as components of a
three-dimensional MIRT model, in which �1 is pediatric PF-Mobility, �2 is pediatric
PF-Upper Extremity/Dexterity, and �3 is adult PF.

For the PF scales, the estimated covariance matrix from fixed parameters and the
current data C, with �1 � �ped�Mobility, �2 � �ped�UpperExtremity, and �3 � �ad�PF, is

Ȯ C D
" Ȯ

�1;�2
Ȯ
�1�2;�3

Ȯ 0
�1�2;�3

O�2�3

#
D
2
4 1:548.0:02/2:189.0:03/ 3:393.0:08/

1:286.0:07/ 1:841.0:09/ 1:200.0:10/

3
5 :

(1.15)
The estimated correlation matrix among the three latent variables is
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Table 1.5 Item parameters for the PROMIS pediatric and adult Physical Function (PF)
scales, based on their original calibrations

Item Label a1 a2 a3 c1 c2 c3 c4
1 Pediatric-PF-Mobility1-3 3:11 0:00 0:00 5:95 5:42 3.55 1.40

2 Pediatric-PF-Mobility3-9 2:62 0:00 0:00 8:32 6:72 5.29 2.65

3 Pediatric-PF-Mobility4-4 1:96 0:00 0:00 5:69 4:72 3.20 0.97

4 Pediatric-PF-Mobility4-8 3:27 0:00 0:00 10:18 8:67 6.36 4.31

5 Pediatric-PF-Mobility4-3 3:00 0:00 0:00 8:28 7:65 5.78 4.29

6 Pediatric-PF-Mobility2-7 1:82 0:00 0:00 5:78 4:53 3.46 1.73

7 Pediatric-PF-Mobility2-4 1:97 0:00 0:00 5:51 4:73 3.87 2.53

8 Pediatric-PF-Mobility1-1 2:36 0:00 0:00 5:55 4:66 3.15 1.17

9 Pediatric-PF-UpperExtremity2-3 0:00 2:33 0:00 7:63 5:85 3.78 �
10 Pediatric-PF-UpperExtremity4-1 0:00 1:67 0:00 6:45 4:97 3.79 1.26

11 Pediatric-PF-UpperExtremity3-11 0:00 2:53 0:00 7:32 6:97 6.02 3.82

12 Pediatric-PF-UpperExtremity4-10 0:00 1:89 0:00 6:90 5:58 4.54 2.31

13 Pediatric-PF-UpperExtremity3-4 0:00 2:67 0:00 8:99 6:60 4.74 �
14 Pediatric-PF-UpperExtremity3-9 0:00 2:25 0:00 6:59 5:62 4.30 1.56

15 Pediatric-PF-UpperExtremity2-2 0:00 2:54 0:00 10:00 8:20 7.36 4.68

16 Pediatric-PF-UpperExtremity3-7 0:00 2:46 0:00 7:11 6:77 5.37 3.67

17 Adult-PFA1 0:00 0:00 3:31 3:71 1:66 �0.43 �1.99

18 Adult-PFC36 0:00 0:00 4:46 6:38 4:50 2.63 1.03

19 Adult-PFC37 0:00 0:00 4:46 10:30 7:27 4.68 2.54

20 Adult-PFA5 0:00 0:00 4:14 9:81 6:71 4.31 2.19

21 Adult-PFA3 0:00 0:00 2:95 6:64 3:72 1.65 �0.09

22 Adult-PFA11 0:00 0:00 4:83 9:56 7:39 5.36 2.17

23 Adult-PFA16 0:00 0:00 3:37 10:58 8:63 6.44 4.18

24 Adult-PFB26 0:00 0:00 3:32 10:52 9:56 7.77 5.84

25 Adult-PFA55 0:00 0:00 3:58 11:99 9:49 7.41 5.30

26 Adult-PFC45 0:00 0:00 3:11 9:67 8:65 6.87 4.54

Note: For two of the Pediatric Upper Extremity items, two response categories were
collapsed in calibration so there are only three intercepts for those items

ORC D
2
4 1:0000:955 1:000

0:944 0:912 1:000

3
5 ; (1.16)

and the estimated mean vector for the current data is

O�C D
� O��1;�2

O��3

�
D
2
4�0:634.0:06/

�0:269.0:10/
�0:332.0:05/

3
5 : (1.17)

To compute estimates of the mean and covariance matrix among the latent
variables for a hypothetical joint reference distribution for the pediatric and adult
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scales, and for use in the linear approximation to calibrated projection, we need the
regression coefficients for �3 on �1 and �2, which are

Ǒ D
" b̌

1b̌
2

#
D Ȯ �1

�1;�2
Ȯ
�1�2;�3 D

�
0:724

0:076

�
I (1.18)

the intercept is

Ǒ
0 D O��3 � Ǒ 0 O��1;�2

D 0:147 : (1.19)

To obtain the mean vector for the hypothetical joint reference distribution for
the pediatric and adult scales, we proceed as we did in Sect. 1.2, and compute the
predicted value of the adult mean from the regression equation,

O�ad D ˇ0Cˇ1�0:0Cˇ2�0:0 D 0:147C0:724�0:0C0:076�0:0D 0:147 ; (1.20)

so the mean vector used to project from the pediatric scale to the adult scale is:

O�ref.ped/ D
2
4 0:0000:000

0:147

3
5 : (1.21)

Assembly of an estimate of the covariance matrix for the hypothetical pediatric-
adult reference population is more challenging than it was in the two-dimensional
case described in Sect. 1.2. However, we proceed with a similar series of steps: (a)
We set the variances of the two pediatric measures, �1 and �2, to the reference value
of 1.0. (b) We use the estimate of the correlation between �1 and �2 obtained from
the current data. (c) We compute a proportionally adjusted estimate of the variance
for the adult �3. (d) Finally, we combine the estimates of the correlations of �1 and
�2 with �3 from the current data with the estimate of the variance of �3 to obtain the
covariances.

The new challenge appears in step (c): In Sect. 1.2 we used the ratio of the adult
variance to the pediatric variance as the adjustment factor Ok2; however, here there are
two pediatric variances. In principle, it might be possible to use a ratio constructed
from any combination of the two pediatric variances. In this illustration we use the
weighted combination that is the regression prediction of adult �3 from pediatric �1
and �2. We compute the variance of the predictions of adult �3 in the current data as

Ov2C D ˇ21 O�2CI�1 C ˇ22 O�2CI�2 C 2ˇ1ˇ2 O�CI�1;�2 D 1:070 ; (1.22)

in which the variances and covariance are obtained from the upper left-hand block
of the matrix in Eq. (1.15). We compute the (hypothetical) variance of predictions
in the reference pediatric sample as

Ov2Z D ˇ21 C ˇ22 C 2ˇ1ˇ2 O�CI�1;�2 D 0:634 : (1.23)



1 Extensions to Calibrated Projection 13

Then the predicted variance of adult �3 is computed as

Ok22 O�2�3 D Ov2Z
Ov2C

O�2�3 D 0:634

1:070
1:200 D 0:711 : (1.24)

Combining that estimate of the adult variance with the correlations in Eq. (1.16)
completes the covariance matrix used to project from the pediatric scale to the adult
scale:

Ȯ ref.ped/ D
2
4 1

O��1;�2 1

O��1;�3 Ok2; O��3 O��2;�3 Ok2 O��3 Ok22 O�2�3

3
5 D

2
4 1:0000:955 1:000

0:796 0:769 0:711

3
5 : (1.25)

Calibrated projection, using the item parameters in Table 1.5 and the population
mean vector and covariance matrix in Eqs. (1.21) and (1.25) yields the results in the
first seven columns of Table 1.6 for the summed scores of pediatric PF Mobility and
Upper Extremity/Dexterity combined.

1.4.2 Linear Approximation, from Two Scales to One

To compute the linear prediction of the �3 score, we use the regression equation with
coefficients from Eqs. (1.18) and (1.19),

bEAPŒ�3� D ˇ0 C ˇ1EAPŒ�1�C ˇ2EAPŒ�2� (1.26)

D 0:147C 0:724EAPŒ�1�C 0:076EAPŒ�2�

and the EAP estimates for �1 and �2 as the predictor values.
Using reasoning analogous to that expressed in Eqs. (1.12)–(1.14), we compute

the residual variance from the regression equation as

VRes D O�2�3 � Ov2C D 1:200� 1:070 D 0:130 ; (1.27)

and the estimated posterior standard deviations as

cSDŒ�3� D
q
ˇ21SD2Œ�1�Cˇ22SD2Œ�2�C2.ˇ1ˇ2CovŒ�1; �2�/CVRes

D
q
0:7242SD2Œ�1�C0:0762SD2Œ�2�C2.0:724� 0:076CovŒ�1; �2�/C0:130

(1.28)

in which CovŒ�1; �2� is the error covariance associated with EAPŒ�1� and EAPŒ�2�,
with the results shown in the rightmost four columns of Table 1.6.
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Table 1.6 The first seven columns show the calibrated projection IRT scores (EAPs) and
standard errors (SDs) for summed scores on the pediatric measures combined (only even
summed scores are shown to save space)

Calibrated projection Linear approximation

Pediatric Adult

SS EAP[�1] SD[�1] EAP[�2] SD[�2] EAP[�3] SD[�3] bEAPŒ�3� d cSDŒ�3� r

0 8:7 3:8 7:9 3:5 18:3 4:0 18:4 �0.1 4:7 1:2

2 12:1 3:4 11:6 3:1 21:1 3:8 21:1 �0.1 4:5 1:2

4 14:2 3:2 13:8 2:9 22:7 3:7 22:8 �0.1 4:4 1:2

6 15:8 3:0 15:6 2:8 24:1 3:6 24:1 0.0 4:3 1:2

8 17:3 2:9 17:1 2:7 25:2 3:5 25:3 0.0 4:2 1:2

10 18:5 2:8 18:4 2:6 26:3 3:5 26:3 0.0 4:2 1:2

12 19:7 2:7 19:6 2:5 27:2 3:4 27:2 0.0 4:2 1:2

14 20:7 2:7 20:7 2:5 28:0 3:4 28:1 0.0 4:1 1:2

16 21:8 2:6 21:7 2:5 28:9 3:4 28:9 0.0 4:1 1:2

18 22:7 2:6 22:7 2:5 29:6 3:4 29:7 0.0 4:1 1:2

20 23:7 2:6 23:7 2:5 30:4 3:4 30:4 0.0 4:1 1:2

22 24:6 2:5 24:6 2:5 31:1 3:3 31:1 0.0 4:1 1:2

24 25:5 2:5 25:6 2:5 31:8 3:3 31:9 0.0 4:1 1:2

26 26:4 2:5 26:5 2:5 32:6 3:3 32:6 0.0 4:1 1:2

28 27:3 2:5 27:4 2:5 33:3 3:3 33:3 0.0 4:1 1:2

30 28:2 2:4 28:3 2:6 34:0 3:3 34:0 0.0 4:0 1:2

32 29:1 2:4 29:2 2:6 34:7 3:3 34:7 0.0 4:0 1:2

34 30:0 2:4 30:2 2:6 35:5 3:3 35:5 0.0 4:0 1:2

36 30:9 2:4 31:1 2:6 36:2 3:3 36:2 0.0 4:0 1:2

38 31:9 2:4 32:1 2:7 37:0 3:3 37:0 0.0 4:0 1:2

40 32:9 2:4 33:1 2:7 37:8 3:3 37:8 0.0 4:0 1:2

42 33:9 2:4 34:1 2:8 38:6 3:3 38:6 0.0 4:1 1:2

44 35:0 2:5 35:2 2:8 39:5 3:3 39:5 0.0 4:1 1:2

46 36:1 2:5 36:3 2:9 40:4 3:4 40:4 0.0 4:1 1:2

48 37:4 2:6 37:6 3:0 41:4 3:4 41:4 0.0 4:1 1:2

50 38:7 2:6 38:9 3:1 42:5 3:4 42:5 0.0 4:1 1:2

52 40:2 2:8 40:4 3:2 43:7 3:5 43:7 0.0 4:2 1:2

54 42:0 2:9 42:1 3:3 45:1 3:6 45:1 0.0 4:3 1:2

56 44:1 3:2 44:2 3:6 46:8 3:7 46:8 0.0 4:4 1:2

58 46:8 3:7 46:9 4:1 49:0 4:0 49:0 0.0 4:6 1:2

60 50:6 4:2 50:5 4:5 51:9 4:3 51:9 0.0 4:9 1:1

62 59:8 6:5 59:7 6:6 59:3 5:9 59:3 0.0 6:3 1:1

The final four columns show the results obtained with the linear approximation. SS is the
summed score on the pediatric scales, d D EAPŒ�3��bEAPŒ�3�, and r D cSDŒ�3�=SDŒ�3�
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As was the case with the one-to-one calibrated projections and their approxima-
tions, the values of the linear approximation bEAPŒ�3� in Table 1.6 are essentially
within rounding error of the numerically integrated values EAP[�3]. The ratios of
the approximate standard errors cSDŒ�3� to SD[�3] are between 1.1 and 1.2, as they
were in the one-to-one projections. When the linear approximation values bEAPŒ�3�
and cSDŒ�3� are combined to produce confidence-interval estimates for the values of
response-pattern EAP[�3] for each respondent in the current data, the proportions
covered by the ˙1 SD and ˙2 SD intervals are 0.70 and 0.92, respectively, the
former slightly exceeding the target value of 0.68 while the latter is slightly less
than the target 0.95, exactly as observed in the one-to-one projections.

In the case of two-to-one projection, the linear approximation does not yield the
level of computational simplicity that it did for one-to-one projection, because two-
dimensional MIRT scoring is required for �1 and �2, to obtain the error covariance
term in equation 1.28. Given that one is required to compute two-dimensional MIRT
scores for the predictor scores, it is probably more straightforward to simply use
calibrated projection to compute the three-dimensional MIRT scores that include the
estimate for �3 as well. Nevertheless, the linear approximation remains a potentially
useful pedagogical tool.

1.5 Conclusion

While calibrated projection serves effectively to remove the restriction that IRT
calibration could hitherto be used only to link scales that measure the same
construct, it is also admittedly mysterious to compute scores on one scale using
only item responses from another. The linear approximation presented here is easier
to implement, because the projected scores are computed as linear combinations
of scores on the basis scales. This also makes apparent the use of regression or
prediction in the procedure. The standard errors are computed as the square root
of a weighted combination of the error variances of the predicting scores, plus a
component due to the imprecision of the regression, all of which is very easy to
understand.

While the accuracy of the approximation of the standard error estimates
described here remains an empirical question, it is easy to check for summed scores
for any particular projection by comparing them to values obtained by numerical
integration in calibrated projection. Taken as a whole, the combination of calibrated
projection and the linear approximation proposed here extends the scope of linking
procedures based on IRT.
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Chapter 2
The Reliability of Diagnosing Broad and Narrow
Skills in Middle School Mathematics
with the Multicomponent Latent Trait Model

Susan Embretson, Kristin Morrison, and Hea Won Jun

Abstract The multicomponent latent trait model for diagnosis (MLTM-D;
Embretson and Yang, Psychometrika 78:14–36, 2013) is a conjunctive item
response model that is hierarchically organized to include broad and narrow skills.
A two-stage adaptive testing procedure was applied to diagnose skill mastery in
middle school mathematics and then analyzed with MLTM-D. Strong support for
the reliability of diagnosing both broad and narrow skills was obtained from both
stages of testing using decision confidence indices.

Keywords Diagnostic models • Item response theory • Multidimensional
models • Decision confidence reliability

Diagnostic assessment has become increasingly prominent in the last few years
(Leighton and Gierl 2007; Rupp et al. 2010). Several explanatory item response
theory (IRT) models (i.e., Hensen et al. 2009; von Davier 2008) have been developed
using latent classes to assess patterns of skill or attribute possession by examinees.
Since the number of classes increases exponentially with the number of skills that
are assessed, the models are typically applied to tests with less than ten skills.

However, using high-stakes broad achievement or proficiency tests that may
include 20 or 30 skills, to diagnose more specific skills or skill clusters has several
potential advantages. First, the content aspect of validity, as explicated in the
Standards for Educational and Psychological Testing (2014), is supported, since
the tests typically represent skills deemed important by expert panels. Second,
proficiencies in the skills represented on the tests have practical importance.
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Decisions about examinees, as well as their instructional support systems, are
based on the overall test scores. Third, remedial instructional materials may be
coordinated with these tests for examinees who are not deemed to achieve mastery.
For example, the Blending Assessment with Instruction Project (BAIP; 2010)
provides online tutorials that are coordinated with achievement tests administered
for Grade 3 to Grade 8. Fourth, the diagnostic assessment would be efficient if the
broad tests have sufficiently reliable information about skills. However, this last
advantage is questionable because commonly used subscale scores often do not
have sufficient reliability (Sinharay 2010) particularly when the subscales are highly
intercorrelated.

The purpose of this study is to examine the reliability of diagnosis from heteroge-
neous tests for mastery of skill clusters and specific skills (Fig. 2.1). An example of a
two-stage adaptive diagnostic system is presented that was applied to mathematics
achievement in middle school. The methods employed differ from using subscale
scores in several important ways. First, the study employs a diagnostic IRT model. In
the current study, a diagnostic model that is appropriate for a heterogeneous test, the
multicomponent latent trait model for diagnosis (MLTM-D; Embretson and Yang
2013), is applied. Second, the broad achievement test is not necessarily viewed as
sufficient for diagnosis. Instead, the broad test is Stage 1 in a multistage adaptive
testing (MST) design for diagnosis. Stage 2 testing can be adapted to those skill
clusters that are not sufficiently reliable in Stage 1. An interesting issue is the extent
to which diagnosis may be sufficiently reliable from the Stage 1 heterogeneous
test. Third, since the goal is to provide diagnosis, not accurate score locations on
a continuum, different indices for reliability may be appropriate. Since diagnosis
depends on cutlines, decision accuracy and consistency indices may be applied
(Lewis and Sheehan 1990).

Skill
Cluster 1

Skill1

Item1 Item2 Item3 Item4 Item5 Item6

Skill2 Skill3 Skill4

Skill
Cluster 2

Fig. 2.1 Hierarchical blueprint structure
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Prior to presenting results from the two-stage diagnostic testing of mastery of
skills in middle school mathematics, an overview of the diagnostic model and
procedures, as well as a consideration of appropriate reliability indices, is presented.

2.1 Background

2.1.1 Diagnostic Modeling of Heterogeneous Tests

The diagnostic model. The MLTM-D is a confirmatory model that is appropriate
for hierarchically organized test domains with complex items. That is, separately
defined areas of competency are represented on the test and more narrowly defined
skills are clustered into these broader areas (see Fig. 2.1). Some items may involve
skills from only one cluster while other items may involve skills from two or
more clusters. To implement MLTM-D, two sets of scores are required: Cixk is the
involvement of component k in item i (i.e., the skill cluster), and Qixm(k) is the score
for item i on skill/attribute m with component k. The probability that the response
of person j to the total item iT, XijT, is correct depends on the probability of solving
the relevant skill clusters, as follows:

P
�
XijT D 1

� D
Y

k
P
�
Xijk D 1

�cik
(2.1)

and

P.Xijk D 1/ D 1=.1C exp.�1:7.�jk �
X

m

�kmqikm C �0///; (2.2)

where Xijk is the response of examinee j to component k on item i, � jk is the trait
level of examinee j on component k, qikm is the score for stimulus feature m in
component k for item i, �km is the weight of feature m on component k, and cik is the
involvement of component k in item i. The within component model for MLTM-D is
similar to a linear logistic test model (LLTM; Fischer 1973). It should be noted that
Xijk is not directly observable, but that the associated parameters can be estimated
from response patterns in the data.

Setting mastery boundaries in MLTM-D. For skill clusters, mastery levels can be set
by locating skills on the components of MLTM-D. These probabilities are often set
for the test as a whole by expert panels, but they also may be applied to skills and
skill clusters in MLTM-D. Define Pm as the mean predicted probability of solving
items on component k for � k. Then the cutline � k for component k may be found so
that Pm � y, where y is a specified probability for mastery.

For specific skills, as for component mastery, a probability for mastery, y, also
must be specified. Specific attributes or skills are located on the common scales for
component traits and items by their parameter estimates. Assuming that skill m is
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specified by a binary variable qkm for each relevant component, the estimated �km

indicates skill position on the theta scale where Pkm equals .50. However, mastery of
skill m must be located at a specified probability, y, within each relevant component.
That is, the location of skill m in component k, 	mk, is determined by the probability
of solving skill m, Pkm, such that Pkm D y if �k D 	k. Skill mastery for examinee
j on skill m in component k is scored as 1 if �jk � 	m.k/, otherwise skill mastery is
scored as 0. Number of skills mastered for component k is the sum of the mastered
skills. It should be noted that interpretability of skill mastery depends on the strength
of prediction of item difficulty by the skills involved.

2.1.2 Assessing Reliability and Decision Accuracy

Empirical reliability. Reliability of component estimates in MLTM-D may be
obtained by traditional methods, which depend on the how the traits are estimated
(see du Toit 2003). For expected a posteriori estimates (EAP), assuming the
Rasch model specified within components in MLTM-D, empirical reliability for
component k is given as:

�t D �2�k=
�
�2�k C �2"k

�
; (2.3)

where �2
�k and �2"k are the variance of � k and the mean error variance, respectively,

for component k.

Decision accuracy. If MLTM-D component estimates are used for mastery deci-
sions, cutlines are applied as described above, decision accuracy estimates may be
more appropriate for describing score properties. Decision accuracy has often been
defined in terms of IRT estimates (Lewis and Sheehan 1990; Rudner 2005; Wainer
et al. 2005). While these researchers were primarily interested in providing indices
for decision accuracy for the test as a whole (not components or skill clusters),
the underlying basis of the indices is interesting to consider. Rudner (2005), for
example, placed the mastery cutline for the test, �w, on the estimated plausible
distribution of theta, �*

j , for each person, assuming ��
j � N

�
�j; �

2
"

�
. For �j � �w,

the proportion of ��
j � �w would indicate accuracy. Conversely, for �j < �w, the

proportion of ��
j < �w would indicate accuracy. Thus, decision accuracy depends

on both distance from the cutline and the standard error of measurement.
Given this formulation of procedures, decision confidence, 
 j, also can be

expressed for each person as follows:


j D max
�
PM

j ; PNM
j

�
; (2.4)

where PM
j is probability of mastery (theta equal to or above cutline) and PNM

j is the
probability of non-mastery or 1 � PM

j . In turn, PM
j is obtained as follows:
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PM
j D P

�
��

j � �w
� Z 1

�

1p
2�

e�ty2=2dt

and

t D �
��

j � �j
�
=�2b� j

: (2.5)

Equation 2.4 also may be applied to subscales or component estimates.

Skill diagnosis and decision accuracy. The reliability of skill diagnosis depends on
the distribution of plausible trait levels within each component. As explicated above,
the expected number of skills mastered for each component depends on the mastery
location, 	mk, and the estimated trait level, � j. An expectation that is based on the
reliability of � j would base the expectation on the distribution of plausible thetas.
For a decision confidence of .85, for example, a lower boundary for theta, �*

jLB, can
be defined as P(��

j � ��
jLB) D .85 based on the plausible distribution of theta for

examinee j, ��
j � N

�
�j; �

2
"

�
. The number of mastered skills in component k would

be the sum of skills for which ��
jLB � 	mk.

2.2 Two-Stage Assessment of Mathematics Achievement

This study was conducted in cooperation with a state testing program that was
administered at the end of the school year to assess proficiency in mathematics.
Thus, Stage 1 of testing is the year-end test used for state accountability. Stage 2
testing consists of adaptive test forms to diagnose varying patterns of skill clusters.

2.2.1 Method

Examinees. The examinees were middle school students who were administered
both stages of testing. While Stage 1 is required of all students, Stage 2 testing
was conducted on a voluntary basis with participating classrooms. For Grade 6 and
Grade 7, respectively, 713 and 311 students participated.

Tests. The year-end test was hierarchically organized to include both broad and
narrow skills. At the highest level was four areas of mathematics: Number, Algebra,
Geometry, and Data. Within each area were indicators, which specified the more
specific skills. Items were scored by a panel of educators for the involvement
of multiple skills. Approximately 20 % of items involved more than one area of
mathematics. The number of operational items on the year-end tests was 73 and 71,
respectively, for Grade 6 and Grade 7. For Grade 6, the majority of items represented
Number and Geometry, due to the blueprint specifications. Both Algebra and Data
were represented by only a few items. For Grade 7, only Data was represented by a
small number of items.
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The Stage 2 tests consisted of items that were developed to measure the same
areas and indicators as the Stage 1 tests, but to be administered at the beginning
of the school year to students now in Grade 7 and Grade 8. The items had
been previously calibrated within the year-end tests. Sixteen forms of both the
Background Skills Test were constructed. Two levels of difficulty were available
for each area, hence 42 forms were needed. Although the background test for Grade
8 had the same number of items for each area, for a total of 32 items, the background
test for Grade 7 had fewer available items for both Algebra and Data, similar to the
Stage 1 test. Hence the tests included only 24 items.

Procedure. All tests were computer administered. Stage 1 testing was conducted at
the end of the school year while Stage 2 conducted at the beginning of the next
school year.

Estimation of mastery. Marginal maximum likelihood estimated MLTM-D item
parameters were used in both Stage 1 and Stage 2 estimation of trait levels (Embret-
son et al. 2014). Item parameter estimates were based on minimum sample sizes
of 5000 randomly selected examinees from the year-end mathematics achievement
tests. A previous study on this population had found good overall fit of MLTM-D as
compared to other IRT models (Embretson 2015) and good fit of the items.

The Stage 1 item parameters were used to estimate component trait levels (i.e.,
the four areas of mathematics) for all students in each grade level ( 32,000 students)
using EAP with normal priors (0,1). These estimates were then used to select the
most informative test for the participating students in Stage 2. Stage 2 trait estimates
on each component were obtained using EAP, with the Stage 1 estimates as serving
as individual priors for each examinee. Mastery of the skill clusters, the four areas
of mathematics, and the more narrow skills, the indicators within the areas, were
obtained using the procedures described in the Sect. 1. The probability standard,
y, to determine mastery was the probability that had been set by the state board of
education for the whole test. This standard was applied to determine mastery for
both the components and the skills within components.

2.3 Results

Descriptive statistics and empirical reliability. Table 2.1 presents descrip-
tivestatistics (means, standard deviations, mean standard errors, and empirical
reliabilities) for the Stage 1 and Stage 2 MLTM-D estimates for the four areas.
The participating students means and standard deviations may be compared to the
population data, estimated as N(0,1). For Grade 7, the mean trait level estimate for
each area is negative, indicating that the participating students were somewhat lower
than the population. For three components, the standard deviations are somewhat
lower than the population. The standard error of measurement for Algebra and
Data, both of which had fewer items than the other two areas, was relatively large.
Similarly, the empirical reliability for these two tests was smaller than .70, which
is often deemed to the minimal level for research purposes. The highest empirical
reliability was for Number, which was nearly .80. Thus, the reliability results did
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Table 2.1 Descriptive statistics and empirical reliabilities of estimates for two grade levels

Stage 1 Stage 2

Grade Standard Mean SD Mean SE
Empirical
reliability Mean SD Mean SE

Empirical
reliability

7N D 713 Number �.249 .905 .453 .799 �.373 .900 .394 .839
Algebra �.148 .895 .705 .617 �.205 1.01 .608 .735
Geometry �.338 .953 .480 .797 �.643 .892 .421 .818
Data �.318 1.150 .807 .670 �.680 1.168 .731 .719

8N D 311 Number �.051 1.006 .569 .758 .071 1.061 .498 .819
Algebra .274 1.017 .534 .784 .194 1.000 .486 .808
Geometry �.003 .967 .493 .793 �.119 .920 .440 .814
Data .167 .782 .626 .609 .133 .949 .541 .755

Table 2.2 Descriptive statistics for decision confidence by testing stage and grade level

Stage 1 Stage 2
Standard Mean SD Percent 
j � :85 Mean SD Percent 
j � :85

Grade 7 Number .885 .139 .699 .892 .133 .743

Algebra .906 .128 .727 .925 .123 .821
N D 713 Geometry .884 .144 .684 .887 .138 .687

Data .908 .131 .742 .905 .121 .725
Grade 8 Number .882 .142 .716 .902 .136 .742

Algebra .948 .121 .880 .958 .099 .894
N D 311 Geometry .918 .133 .803 .913 .144 .790

Data .878 .131 .671 .891 .144 .739

not strongly support estimates for the four areas from Stage 1 of testing alone. The
Stage 2 results, however, were stronger. Empirical reliabilities are greater than .70
for both Algebra and Data, while Number and Geometry were greater than .80.

For Grade 8, the means for Number and Geometry were close to the population
means, while Algebra and Data were somewhat higher. Similarly, the standard
deviations are close to the population values, except for Data, which was lower. The
standard errors are also higher for Data. The empirical reliabilities are in the high
.70s for Number, Algebra and Geometry, but Data is substantially lower at .609. It
should be noted that in Grade 8, Data is represented by substantially fewer items
than the other areas. As for Grade 7, the reliability results did not strongly support
scale estimates for the four areas. The Stage 2 results, however, yielded reliabilities
greater than .80 for all areas except Data, which had a reliability of .755.

Decision accuracy. Table 2.2 presents descriptive statistics on decision accuracy. It
can be seen that the mean decision confidence for both Grade 7 and Grade 8 for all
areas is quite strong, as it is in the high .80s and low .90s for all areas in Stage 1.
The mean decision confidence, 
 j, was only slightly higher after Stage 2. Table 2.2
also presents the percentages of examinees with 
 j greater than .85. For Grade 7, the
percentage ranged from .684 to .742 in Stage 1, and from .725 to .821 in Stage 2.
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Thus, the percentage with 
 j greater than .85 increased somewhat with the second
stage of testing. Similarly, for Grade 8, the percentage ranged from .671 to .880
in Stage 1, and from .739 to .884 in Stage 2. Again, moderate increases from the
second stage of testing were observed.

Skill mastery. Table 2.3 presents the mean number of skills mastered for each area
by testing stage and grade level. Skill mastery was obtained using both estimated
trait levels, � j, and the boundary trait levels, �*

jLB, as described above. Since the
number of skills specified in the blueprint differs between areas, the means vary.
Most importantly is the root mean square error (RMSE) shown in Table 2.3 which
estimates the difference between the estimated and boundary thetas. This may be
taken as an indicator of reliability. Generally RMSE is somewhat greater when
skill mastery is estimated in Stage 1 of testing versus Stage 2. For Grade 7, the
results reflect the smaller number of skills tested for Algebra and Data, and the
small number of items on both Stage 1 and Stage 2 tests. RMSE is low after Stage 1
for both Algebra and Data, and little change is observed after Stage 2 of testing. For
Number and Geometry, RMSE decreases more substantially from Stage 1 to Stage
2 of testing. For Grade 8, RMSE for number of skills ranges from 1.145 to 1.229 for
Number, Algebra and Geometry, but is 1.646 for Data after Stage 1 testing. RMSE
decreases for all areas after Stage 2 testing.

2.4 Discussion

This study examined the reliability of heterogeneous tests for diagnosing mastery
of skill clusters and specific skills. It was found that the results depended most
strongly on the method used to assess reliability. Use of multistage testing increased
reliability somewhat, but the results depended on the method used to assess
reliability.

The most important finding was that scale score reliability for skill clusters,
even when assessed in a diagnostic model, was not substantial from a single stage
of testing. While the empirical reliabilities were sufficient for research purposes,
with estimates in the .70s, using these score to inform individuals is somewhat
questionable. While the second stage of testing did increase reliabilities, the
reliabilities were in the low .70s or low .80s. Whether or not this level of reliability
is adequate depends on score use.

In contrast, when decision accuracy was used to estimate reliability, the results
were much stronger. The average decision confidence was approximately .90 after
a single stage of testing. The mean decision confidence increased only slightly after
the second stage of testing. An alternative perspective to examine the percentage of
examines for whom a specified level of decision confidence was reached. When this
level was set at .85, the percentage of individuals with sufficient levels of reliability
ranged from 67.1 to 88.0 % across areas and grade levels after the first stage of
testing. These percentages ranged from 72.5 to 89.4 % after the second stage of
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Table 2.3 Descriptive statistics on skill mastery at estimated and boundary trait
levels by testing stage and grade level

Estimated theta Boundary theta
Mean Std. deviation Mean Std. deviation RMSE

Grade 7 Stage 1
Number 4.833 2:812 3.706 2:779 1:513

Algebra 1.688 :466 1.495 :519 :436

Geometry 6.063 2:319 4.918 2:732 1:729

Data 1.701 :537 1.446 :711 :510

Stage 2
Number 4.673 2:699 3.680 2:641 1:360

Algebra 1.757 :432 1.545 :520 :458

Geometry 5.751 2:418 4.754 2:603 1:470

Data 1.645 :572 1.354 :671 :539

Grade 8 Stage 1
Number 5.112 1:497 4.287 1:884 1:229

Algebra 6.251 1:566 5.548 2:016 1:212

Geometry 4.845 1:459 4.083 1:723 1:145

Data 4.841 1:515 3.441 1:824 1:646

Stage 2
Number 5.216 1:401 4.564 1:808 1:030

Algebra 6.193 1:611 5.554 2:005 1:091

Geometry 4.719 1:518 4.003 1:690 1:082

Data 4.512 1:719 3.593 1:974 1:221

testing. Thus, for diagnosing mastery of skill clusters, a single stage of testing
appears to be adequate for the majority of examinees. These results suggest that
the second stage of testing may be needed only for a small percentage of examinees
to adequately assess skill cluster mastery.

The stronger reliability found for decision confidence indices, rather than scale
scores, could be true for many tests if used for diagnosis. Decision confidence
indices depend not only on the reliability of the individual trait level estimates, but
also on the placement of the mastery cutlines relative to the trait level estimates.
Thus, for some tests, with cutlines near the mean of the trait level distribution,
stronger results for reliability from decision confidence indices is unlikely.

The results on the mastery of specific skills were comparable, in that the second
stage of testing made a small improvement. Skills were examined in the context of
decision accuracy, with a specified level of .85. The second stage of testing reduced
the uncertainty about the number of skills above mastery by a small amount. Future
research could examine for which examinees this assessment is important. That is,
if instructional materials are available on the separate skills, greater accuracy for
assessing mastery of each one could optimize instructional efficiency.
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Chapter 3
New IRT Models for Examinee-Selected Items

Wen-Chung Wang and Chen-Wei Liu

Abstract Examinee-selected-item (ESI) design, in which examinees are required
to respond to a fixed number of items in a given set of items (e.g., responding to
two items in five given items; leading to ten selection patterns), has the advantages
of enhancing students’ learning motivation and reducing their testing anxiety. The
ESI design yields incomplete data (i.e., only those selected items are answered and
the others have missing data). It has been argued that missing data in the ESI
design are missing not at random, making standard item response theory (IRT)
models inappropriate. Recently, Wang et al. (Journal of Educational Measurement
49(4):419–445, 2012) propose an IRT model for examinee-selected items by adding
an additional latent trait to standard IRT models to account for the selection effect.
This latent trait could correlate with the intended-to-be-measured latent trait, and
the correlation quantifies how stronger the selection effect and how serious the
violation of the assumption of missing at random are. In this study, we developed
a framework to incorporate this model as a special case and generate several new
models. We conducted an experiment to collect real data, in which 501 fifth graders
took two mandatory items and four pairs of mathematic (dichotomous) items. In
each pair of items, students were first asked to indicate which item they preferred
to answer and then answered both items. This is referred to as the “Choose one,
Answer all” approach. These new IRT models were fit to the real data and the results
were discussed.

Keywords Item response theory • Examinee-selected items • Selection effect
• Missing data

In most achievement testing, examinees are required to complete all items. In some
cases, examinees are allowed to respond to a fixed number of items in a given
set of items. These items referred to as examinee-selected (ES) items and this
design is referred to as the examinee-selected-item (ESI) design. The ESI design
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may reduce test anxiety, raise motivation for learning, and stimulate self-access and
self-adaptive learning (Wainer and Thissen 1994). The 1989 Advanced Placement
Examination in Chemistry is an example of the ESI design, which consists of both
mandatory (all examinees are required to answer) and ES items, in multiple-choice
or constructed-response format. Another example is the 2010 Geography, History,
and Mathematics subjects of the National Matriculation Entrance Tests in China,
consisting of both mandatory and ES items.

The ESI design brings challenges to psychometrics. Allowing choices will
inevitably cause problems in comparing scores obtained from different selection
patterns because different items often (if not always) have different difficulties.
Although IRT enables score comparison when different examinees respond to
different items (e.g., computerized adaptive testing or large-scale assessment such as
the Program for International Student Assessment; PISA), either the item difficulty
has to be known in advance or the assumption of missing at random (MAR; Rubin
1976) has to be valid for those unselected items. Otherwise, scores are no longer
comparable when different examinees respond to different items.

Previous studies have attempted to fit IRT models to ES items. Wainer et al.
(1991) developed equating strategies for ES items and observed the items selected
by different groups of examinees have different parameters. Fitzpatrick and Yen
(1995) observed that the selection behaviors vary across genders and grades and the
use of mandatory items is crucial for equating. Wainer et al. (1994) examined the
score comparability in the ESI design and found the missing data to unselected items
are missing not at random (MNAR) because the missing responses are related to
examinees’ ability levels. Standard IRT models, which assume MAR, are no longer
appropriate for ES items.

Later on, Wang et al. (1995) conducted an experiment with the Choose-One-
Answer-All (COAA) design, in which examinees are required to indicate which item
in a given pair of multiple-choice items do they prefer to respond and then answer
both items. Such a design creates a complete dataset with responses to all items,
so the parameters of all items can be calibrated using conventional IRT models.
They then treated the unselected items as missing data and evaluated the assumption
of MAR in ES items. The results clearly point to MNAR, making standard IRT
models inapplicable when the ESI design is implemented. Bridgeman et al. (1997)
conducted the same experiment on constructed-response items and drew the same
conclusion that the missing data to unselected items are MNAR. Bradlow and
Thomas (1998) conduct simulation studies to demonstrate that the difficulties of
easy items are systematically underestimated, whereas those for difficult items are
systematically overestimated, which is an indication of MNAR. These experimental
or simulation studies lead to a conclusion that the item parameter equating is
problematic and conventional IRT models are inappropriate for ES items.

It is of great interest to understand how examinees make a choice in the
ESI design. Wang (1999) gathered empirical data from Hawaii and found that
examinees’ perception of item difficulty is associated with their selection behavior
in ES items. Examinees tend to select seemingly easy and familiar items. Wainer
and Thissen (1994) showed that examinees do not always select items cleverly and
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less proficient examinees tend to do a worse job in selection than more proficient
examinees. Allen et al. (2005) used logistic regression to assess the relationship
between the target ability and selection behavior and found that the higher the ability
level, the more clever the choice is.

Despite these clear research findings, there are some attempts to fitting conven-
tional IRT models to empirical ES items. Lukhele et al. (1994) fitted the graded
response model (GRM; Samejima 1969) to mandatory items and the nominal
response model (Bock 1972) to ES items in the chemistry subject of the College
Board’s Advanced Placement exams. Nonresponses to unselected items were
assumed to be MAR in their study, without any empirical validation. If such an
assumption was violated (it is very likely according to the above experiments), their
conclusions would be misleading. Thus, their findings were jeopardized. Wang et al.
(1995) fitted latent mixture models to ES items, which actually require knowledge
of the distributions of the latent variable that dominates the missingness. In reality,
such knowledge is applicable only when missing data are observed (e.g., in the
OCAA design). To sum up, it is very likely that nonresponses to unselected items
are MNAR. If so, conventional IRT models are no longer valid.

Recently, Wang et al. (2012) proposed the examinee-selected item model (ESIM)
to account for the selection effect in ES items. In the ESIM, the selection effect
is summarized by a latent variable (can be referred to as test wisdom), which is
added to standard IRT models, such as the rating scale model (Andrich 1978) or
the partial credit model (Masters 1982) when ES items are polytomous. In the
ESIM, it is the target latent trait ™ that the test intends to measure that determines
the response functions of mandatory items, whereas it is ™ and the test-wisdom
latent variable ” jointly determine the response functions of ES items. ™ and ”
are assumed to follow a bivariate normal distribution. Their correlation depicts
the magnitude of the selection effect. A positive correlation indicates that more
capable examinees gain more benefit from making a clever choice than less capable
examinees; a negate correlation indicates that less capable examinees gain more
benefit from making a clever choice than more capable examinees (this is not very
likely to occur in practice); a zero correlation indicates no selection effect and thus
nonresponses to unselected items can be treated as MAR and standard IRT models
become feasible. In their empirical example of the 2009 History test of the National
Matriculation Entrance Examinations in China, which consisted of 28 mandatory
items (25 multiple-choice items and 3 open-ended items) and 6 ES items from
which 2 items were to be answered, a moderate and positive correlation (r D .49)
was found, which is why the ” variable is referred to as test wisdom (Wang et al.
2012).

The ESIM belongs to bi-factor IRT models (Li et al. 2006; Rijmen 2010), in
which mandatory items are assumed to measure a single dimension of ™, whereas
ES items are assumed to measure two dimensions of ™ and ”. While the ESIM
appears promising for ES items, it is of great importance to embed it into a general
framework so that its feasibility can be further increased and customized and general
models can be invented. In this study, we developed such a general framework to
incorporate the ESIM as a special case and conducted a brief simulation study to
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evaluate parameter recovery. We adopted the COAA design to collect real data on
a mathematics test. These new models as well as conventional ones were fit to the
real data and their results were compared.

3.1 The Experiment

We developed an algebra test for fifth graders according to the mathematical subject
guidelines. A math teacher was consulted and ten fifth graders piloted the test for
item revision. The final version of the test consisted of ten constructed-response
dichotomous items. Among the ten items, the first two were mandatory and the
other eight items were formed into four pairs. The COAA design was adopted.
A total of 501 fifth-graders from Shenzhen and Guangzhou, China participated
in this experiment. They were instructed to preview each pair of items, indicate
their preference should they be requested to choose one item to answer, indicate
their reasons for making such a choice, and then answer both items. The testing
time was 40 min, which was long enough to let all students finish the test. Before
formal testing, the students were given a trial to familiarize the COAA design.
No personally identifiable information was collected. Because 17 students did not
indicate their preferences and were thus excluded, the remaining sample had 484
students.

3.2 Conventional Raw-Score Analysis

In the COAA design, the original dataset can be arranged in two ways: a complete
dataset with responses to all the ten items, and an incomplete dataset with responses
to the two mandatory items and four selected items. We calibrated the parameters
of the ten items in a complete dataset with the Rasch model (Rasch 1960). Table 3.1
shows the difficulty estimates and the percentage of preference, for each item.
Among the four pairs of items, there was a “clever” choice (the easier item was
preferred more often) in the second and fourth pairs, and an “unclever” choice (the
more difficult item was preferred more often) in the third pair. Taken as a whole, a
small clever choice was found in the test.

The percentages of preference in Table 3.1 were calculated across all students,
which did not tell whether more capable students tended to make a clever choice
more often than less capable students. We thus computed the number of times a
student selected the easier item in a pair across the four pairs, resulting a score of
“clever choice” from 0 to 4. We then plotted the scores of clever choice against
the raw total scores (from 0 to 10), shown in Fig. 3.1. It seemed that the mean
clever choice score increased slightly as the raw total score increased. The Mann–
Kendall test (Kendall 1975; Mann 1945) was conducted to assess the monotonic
trend of the increment. It was found that there was a significant upward trend
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Table 3.1 Item parameter
estimates obtained from the
complete dataset and
percentage of preference
for each item

Item no. Difficulty Preference

Mandatory 1 0:51

Mandatory 2 0:38

Pair 1 3 2:49 49 %

4 �0:58 51 %
Pair 2 5 0:50 26 %

6 �0:60 74 %
Pair 3 7 �1:18 46 %

8 �0:96 53 %
Pair 4 9 �0:27 36 %

10 �1:69 64 %

Fig. 3.1 Relationship between the score of clever choice and the raw total scores. Note. The
numbers in the figure are the numbers of students in that raw total score

(£D 0.67, ¢2 D 165; p D .005), suggesting more capable students tended to make
clever choices more often than less capable students.

To further examine the selection effect in each pair, we plotted the percentages of
clever choice against the raw total scores for each pair, shown in Fig. 3.2. The Mann–
Kendall test was again conducted to assess the monotonic trend of the increment
for each pair. The results showed there was a significant upward trend for the first
(£D 0.53, ¢2 D 165; p D .029) and second pairs (£D 0.56, ¢2 D 165; p D .020), but
not for the third (£D 0.36, ¢2 D 164; p D .138) and fourth pairs (£D 0.20, ¢2 D 165;
p D .436). The familywise error rate of the four tests was of no concern, so the p-
value was not corrected for multiple tests. Overall, a small clever choice effect was
found.
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Fig. 3.2 Relationship between the percentage of clever choice and the raw total score for the four
pairs of items

Table 3.2 Proportions of correctness in the four pairs of items and the choice
preferences

Preferred item
Item no. Difficulty 3 4 5 6 7 8 9 10

3 2:49 0.10 0.12
4 �0:58 0.58 0.65
5 0:50 0.39 0.41
6 �0:60 0.53 0.65
7 �1:18 0.76 0.69
8 �0:96 0.73 0.65
9 �0:27 0.52 0.57
10 �1:69 0.74 0.83

Note. The difficulty parameters were estimated from the complete dataset

With the COAA design, it was possible to observe responses to both items in a
pair and examine whether students tended to select the easier item in a pair. The
results are shown in Table 3.2. Take pair 1 (including items 3 and 4) as an example.
The IRT difficulties of items 3 and 4 were 1.46 and �0.35, respectively. Item 4
was much easier than item 3. For students preferring item 3, the proportions of
correctness in items 3 and 4 were 0.10 and 0.58, respectively. For students preferring
item 4, the proportions were 0.12 and 0.65, respectively. It appeared that students
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Table 3.3 Reasons of preference in examinee-selected items

Pair
Easy to
solve

Easy to
understand Familiarity Small numbers

Formula
available Short item Others

1 0.51 0.26 0.15 0.06 0.07 0.01 0.02
2 0.53 0.30 0.14 0.14 0.05 0.06 0.04
3 0.45 0.26 0.15 0.09 0.07 0.01 0.03
4 0.58 0.11 0.14 0.09 0.12 0.05 0.03
Mean 0.52 0.23 0.14 0.10 0.08 0.03 0.03

preferring the easier item (item 4) had a higher percentage of correctness on both
items than that for students preferring the more difficult item (item 3). The same
finding was observed for the other three pairs.

From the above analyses, it can be concluded that there was a small selection
effect. If the selection effect is large but ignored by applying standard IRT models
that assume MAR to ES items, the ability levels for students making a clever
choice (preferring the easier item) will be overestimated, whereas those for making
an unclever choice (preferring the more difficult item) will be underestimated. In
addition, item parameter estimates will be biased. Given that the selection effect in
this experiment appeared rather small in this particular dataset, fitting standard IRT
models might do little harm.

With respect to the reasons of preference, seven options were provided for
students to choose: (1) easy to solve, (2) familiar with the item, (3) small numbers
in the item, (4) easy to understand, (5) short item length, (6) formula available to
solve the item, and (7) others (please specify). The results are shown in Table 3.3.
Apparently, easy to solve was the most popular reason, followed by easy to
understand and familiar with the item. It seems that students selected items based
on their perceived easiness and familiarity.

3.3 New IRT Models

The preliminary raw-score analysis was based on the complete data, which was
made possible from the COAA design. In reality, the COAA is not implemented
and only the incomplete data are available. Below, we show how to fit new IRT
models to the incomplete dataset to recover the selection effect and yield parameter
estimates that were close to those obtained from the complete dataset.

Let Prnik be the probability of being in category k of item i for person n and the
item responses follow a multivariate Bernoulli distribution. The target latent trait ™
is linked to Prnik as:

f link .Prnik/ D ’i™n � •ik (3.1)
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where ™n is the latent trait of person n and is often assumed to follow a standard
normal distribution; ’i is the slope (discrimination) parameter of item i; •ik is the
intercept parameter for category k of item i. When the cumulative logit link function
is used, Eq. (3.1) becomes the logistic version of the GRM (Samejima 1969). For
dichotomous items, the logistic version of the GRM becomes the two-parameter
logistic model (Birnbaum 1968). When the slope parameters are further constrained
to be unity, the Rasch model (Rasch 1960) is formed:

f link .Prni/ D ™n � •i (3.2)

where Prni is the probability of success on item i for person n; •i is the difficulty of
item i; the others are defined previously. In this study, we focused on one-parameter
IRT models.

The selection effect in ES items may result from personal preference or intuition,
response habit, or others. Whatever they are, they are irrelevant to the target latent
trait ™ and thus should be partitioned out from ™. Throughout this study, it is assumed
the underlying factors of making a choice in ES items can be summarized by a latent
variable ”. For commutation simplicity, we may call ” “test wisdom,” as done in
Wang et al. (2012). When Eq. (3.1) or (3.2) is fit to ES items (treating the missing
data of unselected items as MAR), the selection effect in ES items is not accounted
for, so the resulting ™ estimates will be contaminated by those irrelevant factors and
thus become unfair.

The following IRT models are proposed to account for the selection effects in
ES items, from simple to complex. First of all, it is assumed that those selecting the
same sets of ES items have the same level of ”. For example, there were four pairs
of ES items in the test, resulting in a total of 16 selection patterns. Let the selection
patterns be indexed as s (s D 1, : : : , S). The corresponding IRT model is as follows:

f .Prni/ D ™n � •i C ”s; (3.3)

where ”s describes the selection effect for those persons with selection pattern s; the
others are defined previously. For model identification, the mean of ”s is set at zero,
together with common constraints in standard IRT models (e.g., the mean of ™n is
constrained at zero). A positive ” increases the probability of success (i.e., a clever
choice); a negative ” decreases the probability of success (an unclever choice); a
zero ” has no impact on the probability of success. If ”s is equal to zero for all s,
then Eq. (3.3) becomes Eq. (3.2).

Second, it is assumed in Eq. (3.3) that all persons come from the same
distribution (often, ™ N(�, ¢2)). It is possible that those having different selection
patterns have different means on the latent trait ™. If so, Eq. (3.3) can be extended as:

f .Prni/ D ™ns � •i C ”s; (3.4)

where ™ns is the latent trait of person n with selection pattern s and is assumed to be
normally distributed with mean �s and common variance ¢2; the others are defined
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previously. For model identification, at least one mandatory item is needed. Besides,
the grand mean of �s should be at zero.

Third, in Eqs. (3.3) and (3.4) the selection effect is a fixed effect, indicating that
those persons having the same selection pattern s share the same selection effect of
”s. This constraint can be released and the selection effect can be a random effect.
There are several ways of formulating random effects. Take Eq. (3.3) as a starting
point. It can be extended as:

f .Prni/ D ™n � •i C ”n; (3.5)

where ™n and ”n are assumed to follow a bivariate normal distribution; the others
are defined previously. Equation (3.5) is a dichotomous version of the ESIM (Wang
et al. 2012). To be more general, Eq. (3.5) can be further extended as:

f .Prni/ D ™ns � •i C ”ns; (3.6)

where ™ns and ”ns are assumed to follow a bivariate normal distribution, for each
selection pattern s (s D 1, : : : , S); the others are defined previously. To identify this
general model, both the grand means of ™ns and 	ns across selection patterns are
constrained at zero. Furthermore, at least one mandatory item is required. Equations
(3.3–3.6) are referred to as the general examinee-selected-item models (GESIMs).

The association between ™ and ” can help explain the selection effect. A positive
association indicates that more capable persons tend to benefit from ES items more
than less capable persons, whereas a negative association indicates that less capable
persons tend to benefit more.

3.4 Parameter Estimation

Traditional parameter estimation procedures such as the marginal maximum like-
lihood with expectation-maximization algorithms (MML-EM) (Bock and Aitkin
1981) and the Bayesian methods via Markov chain Monte Carlo (MCMC) algo-
rithms (Patz and Junker 1999) are feasible for the parameter estimation of the
GESIMs. In general, MML-EM is more efficient than MCMC in low dimensional
models. In the present study, we consider only two latent variables, ™ and ”; so the
MML-EM procedure implemented in Mplus (Muthén and Muthén 1998–2012) was
used to estimate the parameters.

3.5 IRT Results

We fit the Rasch (Eq. 3.2) to the complete dataset (denoted as Rasch-c) to obtain
parameter estimates. These estimates were treated as a gold standard, to which those
obtained from fitting other models to the incomplete data were compared. We then
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fit the Rasch (denoted as Rasch-i), Eqs. (3.3–3.6) (denoted as GESIM3–GESIM6,
respectively) to the incomplete data. The appendix lists the Mplus codes for the
GESIM6.

The Akaike information criterion (AIC) was used to compare models (Akaike
1974). To make the AIC applicable for model comparison between the Rasch-i
and the other GESIMs, the Rasch-i was formulated as a simplified version of the
GESIM5, in which ™n and ”n were constrained independent. The AIC values were
5978 for the Rasch-i, 5979 for the GESIM5, 5986 for the GESIM3, 6000 for the
GESIM4, and 6054 for the GESIM6. It seems that the Rasch-i and GESIM5 were
the two best fitting models, suggesting the selection effect was not evident. In the
GESIM5, the ™ and ” variances were 0.64 and 0.09, respectively, and the correlation
was .24 (p D .03), indicating a small selection effect.

The item parameter estimates of the Rasch-c, Rasch-i, and GESIM5 are listed
in Table 3.4. It appeared that those item parameter estimates obtained from the
three models were very similar. Figure 3.3 shows the relationship in the ™ estimates
(expected a posteriori estimates) obtained from the Rasch-c, Rasch-i, and GESIM5,
respectively. It seemed that the estimates obtained from the Rasch-i and GESIM5
were shrunken toward zero, as compared to those from the Rasch-c. The shrinkage
was mainly because the test length in the Rasch-c was ten items, whereas that in the
Rasch-i and GESIM5 was six items, so the estimates in the Rasch-i and GESIM5
were subject to the shrinkage toward the prior mean (zero) more seriously than
those in the Rasch-c. The ™ estimates from the Rasch-i and GESIM5 were almost
identical. In short, there was little difference in fitting the Rasch-i and the GESIM5
to this particular dataset because the selection effect was rather small. However, it
should be noted that the GESIMs may have a better fit than the Rasch-i in other
datasets. For example, in Wang et al. (2012), the polytomous GESIM5 had a better
fit than the polytomous Rasch-i. Furthermore, the advantage of the GESIMs over the
Rasch-i is that the former can yield an estimate for the selection effect (no matter
how small it is), whereas the latter assumes the selection effect is ignorable.

Table 3.4 Item difficulty
estimates for the ten items in
the Rasch-c, Rasch-i, and
GESIM5

Item no. Rasch-c Rasch-i GESIM5

1 0:51 0:49 0:47

2 0:38 0:37 0:35

3 2:49 2:52 2:53

4 �0:58 �0:68 �0:68
5 0:50 0:48 0:48

6 �0:60 �0:74 �0:74
7 �1:18 �1:36 �1:36
8 �0:96 �0:78 �0:78
9 �0:27 �0:11 �0:11
10 �1:69 �1:96 �1:97
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Fig. 3.3 Relationships in the person parameter estimates between the Rasch-c and the Rasch-i (a),
between the Rasch-c and the GESIM5 (b), and between the Rasch-i and the GESIM5 (c)

3.6 A Simulation Study of the GESIM6

3.6.1 Design and Analysis

We conducted a brief simulation to evaluate the parameter recovery of the GESIM6.
There were ten mandatory dichotomous items and six ES dichotomous items from
which two items were to be selected. There were a total of 15 selection patterns
(groups) and each pattern had a sample size of 500 or 1000. The means of the ™
and ” variables for the 15 groups were both set at �1, �1, �1, �0.5, �0.5, �0.5,
�0.5, 0, 0.5, 0.5, 0.5, 0.5, 1, 1, and 1, respectively. The variances of the ™ and ”
variables for the 15 groups were all set at 1. The correlations between ™ and ” for
the 15 groups were randomly generated from a uniform distribution between 0.3
and 0.9. The difficulty parameters were between �2 and 2 for the ten mandatory
items, and between �1 and 1 for the six ES items, with an equal increment between
two adjacent items. There were 100 replications under each of the two sample-size
conditions. After the data were simulated from the GESIM6, the data-generating
model was fit to the data using Mplus. The bias and root mean square error (RMSE)
in parameter estimates across replications were computed to evaluate the parameter
recovery.

3.6.1.1 Results

The bias and RMSE in the estimates for the means and variances of ™ and ”, and
their correlations under the two sample-size conditions are shown in Fig. 3.4. It
was evident that �2

	 was recovered less satisfactorily than the other parameters. The
relatively poor estimation for �2

	 was mainly there were only two selected ES items,
which were too short to yield a reliable estimate for �2

	 . For the item parameter
estimates, the bias ranged from �0.004 to 0.008 and the RMSE from 0.021 to 0.088
when N D 500; the bias ranged from �0.007 to 0.009 and the RMSE from 0.015 to
0.066 when N D 1000, suggesting a very good recovery. In summary, the parameter
recovery of the GESIM6, although not perfect, was satisfactory.
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Fig. 3.4 Bias and RMSE for the estimates of means, variances, and correlations of ™ and ” in the
GESIM6

3.7 Concluding Remarks

The ESI design has advantages and is still common used in some high-stakes
examinations. It could alleviate testing anxiety and boost motivation for learning.
However, it creates psychometric problems due to selection effect. It has been
demonstrated that missing data in unselected items are often MNAR, which
invalidates standard IRT models that hold the MAR assumption. To tackle this
problem, Wang et al. (2012) proposed the ESIM to account for selection effect in
ES items, in which various sources of selection effect are summarized by a latent
variable (referred to as test wisdom). In this study, we develop a framework that
incorporates the ESIM as a special case. In the new GESIMs, the selection effect
for each selection pattern can be a fixed effect or a random effect. The association
between the target latent trait ™ and the latent variable ” describes the magnitude
of the selection effect. The stronger the association, the larger the selection effect
will be, and thus the less justifiable of fitting standard IRT models. The parameters
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of the GESIMs can be estimated with Mplus, so no efforts are needed to develop
parameter estimation procedures or computer software. The brief simulation study
confirms the feasibility of the most general GESIM6, although it requires a large
sample size and a large number of ES items to yield reliable estimates for person
distributional parameters.

We adopt the COAA design to collect data from fifth graders on two mandatory
items and four pair of items and ask them to indicate the reasons why they chose an
item from a pair. Most students make a choice based on their perceived item easiness
and familiarity. Conventional raw-score analysis indicates a small selection effect,
in which those who scored higher on the test tend to make a clever choice more often
than those who scored lower. To account for the selection effect more accurately, we
fit the new GESIMs together with the Rasch model to the incomplete data. Using
the AIC for model comparison, we found that the Rasch-i and the GESIM5 (where
the selection effect was treated as a random effect as it was in the ESIM) have
similar fit. The correlation between ™ and ” was .24 in the GESIM5, indicating a
small selection effect. The correlation of .24 was smaller than that of .49 found by
Wang et al. (2012), which might be because only four pairs of ES dichotomous
items are adopted in this experiment whereas the six ES items are polytomous in
Wang et al.’s study. Unfortunately, we were not able to increase the test length or to
adopt polytomous items due to limited testing time and scoring resource. Had the
test length been increased and/or polytomous ES items been adopted, the selection
effect would have been more apparent and the GESIMs would have outperformed
conventional IRT models more significantly. Future studies are called for to validate
this inference.

Future studies may also aim at the following issues. It is of great interest to
understand whether different groups of students have different degrees of “test
wisdom.” As documented by Fitzpatrick and Yen (1995) and Wainer and Thissen
(1994), the selection behaviors in ES items are different across genders, grades,
or ethnic groups. To address this issue statistically, we can add these covariates
into the GESIMs to predict the ” variable, which can be easily done with Mplus.
In the experiment, the items were dichotomous. In many practical situations, ES
items are often polytomous (e.g., essay items). It is of great importance to adopt
the OCAA design on polytomous items and evaluate how the GESIMs would
perform. In some large-scale surveys, such as the Program for International Student
Assessment (PISA) and the National Assessment of Educational Progress (NAEP),
two-staged sampling is often adopted, in which a set of schools are first sampled,
and a set of students are then sampled from each selected school. It is likely that
students from the same school are more homogeneous on the variable of interest
(e.g., mathematical proficiency) than those from different schools. In recent years,
multilevel IRT models (Fox 2005; Fox and Glas 2001; Wang and Qiu 2013) have
been developed to account for such a multilevel data structure. It is of great interest
to embed the GESIMs within a multilevel framework.
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Appendix: Mplus Codes for the GESIM6 in the Empirical
Example

TITLE: GESIM! y1-y2: Mandatory items; y3-y10: ES items; group: index

DATA: FILE IS imcomdata.txt;

VARIABLE: NAMES ARE y1-y10 group; CATEGORICAL ARE y1-y10;

USEVARIABLES D y1-y10 group; MISSING ARE ALL (-9);

CLASSES D c(16); KNOWNCLASS D c(group D 11-26);

CLUSTER IS group;

ANALYSIS: TYPE D MIXTURE COMPLEX; ESTIMATOR IS MLR;

LINK D LOGIT; ALGORITHMDINTEGRATION;

COVERAGE D .00;

MODEL: %OVERALL%

f1 BY y1-y10@1; f2 BY y3-y10@1; f1 with f2;

%c#1%

f1 with f2; f1*; f2*; [f1*] (c1f1); [f2*] (c1f2);

%c#2%

f1 with f2; f1*; f2*; [f1*] (c2f1); [f2*] (c2f2);

! Add the rest code in the same manner from group 3 to 15

%c#16%

f1 with f2; f1*; f2*; [f1*] (c16f1); [f2*] (c16f2)

MODEL CONSTRAINT:

c16f1 D -(c1f1 C c2f1 C c3f1 C c4f1 C c5f1 C c6f1 C
c7f1 C c8f1 C c9f1 C c10f1 C c11f1 C c12f1 C c13f1 C c14f1 C c15f1);

c16f2 D -(c1f2 C c2f2 C c3f2 C c4f2 C c5f2 C c6f2 C
c7f2 C c8f2 C c9f2 C c10f2 C c11f2 C c12f2 C c13f2 C c14f2 C c15f2);

OUTPUT: TECH1; SAVEDATA: FILE IS fscore.txt; SAVE D FSCORES;
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Chapter 4
Gauss–Hermite Quadrature in Marginal
Maximum Likelihood Estimation
of Item Parameters

Seock-Ho Kim, Yu Bao, Erin Horan, Meereem Kim, and Allan S. Cohen

Abstract Although many theoretical papers on the estimation method of marginal
maximum likelihood of item parameters for various models under item response
theory mentioned Gauss–Hermite quadrature formulas, almost all computer pro-
grams that implemented marginal maximum likelihood estimation employed other
numerical integration methods (e.g., Newton–Cotes formulas). There are many
tables that contain quadrature points and quadrature weights for the Gauss–
Hermite quadrature formulas; but these tabled values cannot be directly used when
quadrature points and quadrature weights are specified by the user of computer
programs because the standard normal distribution is frequently employed in the
marginalization of the likelihood. The two purposes of this paper are to present
extensive tables of Gauss–Hermite quadrature for the standard normal distribution
and to present examples that demonstrate the effects of using various numbers of
quadrature points and quadrature weights as well as different quadrature formulas
on item parameter estimates. Item parameter estimates obtained from more than 20
quadrature points and quadrature weights with either Gauss–Hermite quadrature or
the Newton–Cote method were virtually identical.

Keywords Gauss–Hermite quadrature • Item response theory • Marginal
maximum likelihood estimation • Parameter estimation

4.1 Introduction

In Bock and Lieberman (1970, pp. 182–183) the use of Gauss–Hermite quadrature
can be found:
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Although the definite integral in (4) cannot be expressed in closed form, it is easy to evaluate
to any practical degree of accuracy by numerical methods. The preferred method for this
purpose is Gauss-Hermite quadrature, which approximates the above integral by the sum

.5/
1p
.�/

mX
lD1

Al

8<
:

nY
jD1

„Œ	j; ˛j; kij;
p
.2/Xl�

9=
; : (4.1)

Stroud and Secrest (1966) have prepared extensive tables of the coefficients Al correspond-
ing to the quadrature points Xl. In the computations for this paper, we have employed 40
points of quadrature corresponding to 20 positive and 20 negative values of Xl taken from
the table for 64 point quadrature in Stroud and Secrest.

It can be noted that Stroud and Secrest (1966) used quadrature points (i.e., nodes)
xi instead of Xl and quadrature coefficients (i.e., weights) Ai instead of Al in their
tables. Note that the exact definitions of the terms in Eq. (4.1) can be found in
Bock and Lieberman (1970, pp. 180–182) and are not repeated here in detail. Bock
and Lieberman (1970) rather cleverly avoided the use of xi or xl because these
frequently designate item responses in many psychometric literature. It is not all
clear why the subset of quadrature points was used in Bock and Lieberman (1970)
in their implementation. Nevertheless, based on the required degree of precision,
the quadrature points jxij and weights Ai for the number of quadrature points
N D 2.1/64.4/96.8/136 (i.e., N � m in Eq. (4.1), and parentheses contain the width
of increments; Stroud and Secrest 1966, pp. 217–252) can be used in estimation.
A less extensive table can be found in the tenth printing of Abramowitz and Stegun
(1972, p. 924). Abramowitz and Stegun (1972) used abscissas ˙xi, weight factors
wi, and n D 2.1/20 (i.e., n � m in Eq. (4.1)) for the number of zeros of Hermite
polynomials that were compiled from Salzer et al. (1952) in which jx.n/i j, ˛.n/i , and
n D 1.1/20 were used for the zeros, weight factors, and the degrees, respectively.
In addition, Shao et al. (1964) contain a table of zeros and Gaussian weights of the
Hermite polynomials for n D 23.1/6 (i.e., n � k in Shao et al. 1964).

Another use of Gauss–Hermite quadrature can be found in the seminal paper by
Bock and Aitkin (1981, p. 445):

This probability can be approximated to any practical degree of accuracy by Gauss-Hermite
quadrature, i.e., by the sum

qX
k

P.x D xijXk/A.Xk/; (4.2)

where Xk is a tabled quadrature point (node) and A.Xk/ is the corresponding weight (see
Stroud and Secrest 1966).

It should be noted that the quadrature points and quadrature weights from Stroud
and Secrest (1966) cannot be directly used in Eq. (4.2) but these ought to be
properly modified as Xk � p

2xi and A.Xk/ � Ai=
p
� , assuming that subscripts

are accordingly adjusted. Note that the exact definitions of the terms in Eq. (4.2) can
be found in Bock and Aitkin (1981, pp. 444–445). Also note that Xl and Al from
Bock and Lieberman (1970) are, respectively, not the same as Xk and A.Xk/ from
Bock and Aitkin (1981) in addition to the trivial difference in subscripts.
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Although many theoretical papers that presented marginal maximum likelihood
estimation mentioned Gauss–Hermite quadrature (e.g., Drasgow 1989, p. 80; Mis-
levy 1984, p. 367; Mislevy 1986, p. 180; Muraki 1984, p. 13; Rigdon and Tsutakawa
1983, p. 570; Tsutakawa 1984, p. 275; Zwinderman and van den Wollenberg 1990;
p. 76), all practical computer programs might not use the method as a default (e.g.,
Cai 2013; Cai et al. 2010; Mislevy and Bock 1984, 1985, 1986, 1990; Muraki and
Bock 1993, 2002; Thissen 1986; Thissen et al. 2002). The paper by Thissen (1982,
pp. 178–179) about marginal maximum likelihood estimation of the Rasch model
didn’t use Gauss–Hermite quadrature, however, and can be seen as an exception.

Note that values from nearly all available tables for Gauss–Hermite quadrature
cannot be directly used as Xk and A.Xk/. Hence, this paper presents tables. There are
two purposes of this paper. One purpose is to present tables of Gauss–Hermite quad-
rature for the standard normal distribution. The other purpose is to present examples
that used various numbers of points of Gauss–Hermite quadrature and Mislevy’s
histogram (i.e., a Newton–Cotes method; see De Ayala 2009, p. 71).

4.2 Gauss–Hermite Quadrature

There are many different notations for Gauss–Hermite quadrature (e.g., Davis
and Rabinowitz 1975, pp. 173–175; Hildebrand 1974, pp. 395–397; Krylov 1962,
pp. 129–130). In this section we will simply use the notation from Stroud and
Secrest (1966) with n in place of their N, because the book was referred in Bock
and Lieberman (1970) and Bock and Aitkin (1981). The formula of Gauss–Hermite
quadrature (Stroud and Secrest 1966, p. 22) is

Z 1

�1
e�x2 f .x/dx �

nX
iD1

Aif .xi/: (4.3)

Eventually, we will report the values of
p
2xi and Ai=

p
� as Xk and A.Xk/ for

the standard normal distribution that is frequently used as the prior distribution of
ability parameters. It will be instructive, nevertheless, to discuss some important
characteristics of Gauss–Hermite quadrature as in Eq. (4.3).

Abramowitz and Stegun (1972, p. 890) contained

Z 1

�1
e�x2 f .x/dx D

nX
iD1

Aif .xi/C Rn; (4.4)

where

Rn D nŠ
p
�

2n.2n/Š
f 2n./ (4.5)

for some �1 <  < 1 (see also Salzer et al. 1952). The order and the theoretical
approximation errors can be obtained using such a formula.
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In order to approximate the integral we need for a given n values of xi and Ai.
The values or abscissas of xi are the ith zero or root of Hermite polynomials Hn.x/.
The corresponding weights are

2n�1nŠ
p
�

n2ŒHn�1.xi/�2
: (4.6)

There are numerous representations or formulae of Hermite polynomials (see,
e.g., Hochstrasser 1972, pp. 771–802). According to Rodrigues’s formula,

Hn.x/ D .�1/nex2 dn

dxn
.e�x2 / (4.7)

and H0.x/ D 1 by definition. Other Hermite polynomials include (see Gradshteyn
and Ryzhik 1994, p. 1057):

H1.x/ D 2x

H2.x/ D 4x2 � 2

H3.x/ D 8x3 � 12x

H4.x/ D 16x4 � 48x2 C 12

H5.x/ D 32x5 � 160x3 C 120x

H6.x/ D 64x6 � 480x4 C 720x2 � 120
H7.x/ D 128x7 � 1344x5 C 3360x3 � 1680x

H8.x/ D 256x8 � 3584x6 C 13440x4 � 13440x2 C 1680

H9.x/ D 512x9 � 9216x7 C 48384x5 � 80640x3 C 30240x

H10.x/ D 1024x10 � 23040x8 C 161280x6 � 403200x4 C 302400x2 � 30240

H11.x/ D 2048x11 � 56320x9 C 506880x7 � 1774080x5 C 2217600x3 � 665280x

H12.x/ D 4096x12 � 135168x10 C 1520640x8 � 7096320x6 C 13305600x4

�7983360x2 C 665280

:::

There will be n real roots of xi for Hn.x/ D 0. The roots are referred to
Gauss–Hermite quadrature nodes. For small n, analytical solutions exist and roots
or abscissas xi are:

H1.x/ W xi D 0

H2.x/ W xi D ˙ 1p
2



4 Gauss–Hermite Quadrature in MMLE of Item Parameters 47

H3.x/ W xi D ˙
p
3p
2
; 0

H4.x/ W xi D ˙
s
3C p

6

2
; ˙

s
3 � p

6

2

H5.x/ W xi D ˙
s
5C p

10

2
; ˙

s
5 � p

10

2
; 0

:::

The abscissas that have the same absolute value but different signs will share the
same weight. The weights are referred to Gauss–Hermite quadrature weights. The
corresponding weights Ai to the above roots are:

H1.x/ W Ai D p
�

H2.x/ W Ai D
p
�

2

H3.x/ W Ai D
p
�

6
;
2
p
�

3

H4.x/ W Ai D
p
�

12C 4
p
6
;

p
�

12 � 4p6

H5.x/ W Ai D 3
p
�

140C 40
p
10
;

3
p
�

140� 40p10;
8
p
�

15

:::

Although it is possible to find analytical roots of cubic, quartic, and quintic functions
(i.e., real roots from H6.x/ to H11.x/), numerical solutions are in general employed
to find xi and Ai. As mentioned earlier, the values are tabulated and reported to
various values of n.

Because the standard normal distribution is used, we need to evaluate

1p
2�

Z 1

�1
e�y2=2g.y/dy �

nX
iD1

A
0

ig.yi/: (4.8)

With x D y=
p
2, dx D dy=

p
2, f .x/ D g.y/=

p
� , and the same interval of

integration .�1;1/, the integral becomes
R

e�x2 f .x/dx. The values of yi D p
2xi

and A
0

i D Ai=
p
� can be obtained based on the Hermite-Gauss formula (see

Kennedy and Gentle 1980, p. 84). Hence, we need n real roots of xi for Hn.x/ D 0,
and multiplying values by

p
2 to yield

p
2xi.
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For small n, analytical solutions exist and roots or abscissas
p
2xi � Xk are:

H1.x/ W Xk D 0

H2.x/ W Xk D ˙1
H3.x/ W Xk D ˙p

3; 0

H4.x/ W Xk D ˙
q
3C p

6; ˙
q
3 � p

6

H5.x/ W Xk D ˙
q
5C p

10; ˙
q
5 � p

10; 0

:::

The abscissas that have the same absolute value but different signs will share the
same weight. The corresponding weights Ai=

p
� � A.Xk/ are:

H1.x/ W A.Xk/ D 1

H2.x/ W A.Xk/ D 1

2

H3.x/ W A.Xk/ D 1

6
;
2

3

H4.x/ W A.Xk/ D 1

12C 4
p
6
;

1

12 � 4
p
6

H5.x/ W A.Xk/ D 3

140C 40
p
10
;

3

140� 40
p
10
;

8

15

:::

Appendix 1 contains zeros xi and Gaussian weights Ai of the Hermite polynomi-
als for n D 10; 20. For the standard normal distribution, Appendix 2 contains zeros
xi

p
2 � Xk and weights Ai=

p
� � A.Xk/ for n D 10; 20. The file, gausshermite2-

20.txt, that contains zeros xi and Gaussian weights Ai of the Hermite polynomials
for n D 2.1/20, and the file, gausshermitenormal2-20.txt, that contains xi

p
2 � Xk

and weights Ai=
p
� � A.Xk/ for n D 2.1/20 for the standard normal distribution

in both the portable document format—pdf and in the text format are available from
the authors. The more extensive files, gausshermite.txt and gausshermitenormal.txt,
in pdf as well as in the text format for n D 2.1/200 are also available from the
authors. Stroud and Secrest (1966, pp. 34–36) contain Fortran subroutines and a
function for the Gauss–Hermite quadrature formula.

Note that there are other ways to obtain the tabled values for Gauss–Hermite
quadrature. Let’s consider some other currently available ways for general Gauss
quadrature formulas. According to Stroud and Secrest (1966, p. 1), Gauss quadra-
ture formulas have the form
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Z b

a
w.x/f .x/dx �

nX
iD1

Aif .xi/; (4.9)

where w.x/ is a weight function which is greater than zero on the interval Œa; b�. The
xi are called the points or nodes of the formula and the Ai are called coefficients
or weights. Such formulas are called Gaussian quadrature formulas. The Gaussian
quadrature formulas are obtained as applications of the theorem on Gaussian nodes
(Cheney and Kincaid 1985, pp. 193–194). Gauss (1876) with his Latinized name of
Carolo Friderico Gauss studied them first (i.e., dated 1814 Sept. 16) for the special
case w.x/ D 1.

Algorithms for six well-known kinds of orthogonal polynomials (i.e., Legendre
polynomials, Chebyshev polynomials of the first kind, Chebyshev polynomials
of the second kind, Jacobi polynomials, Laguerre polynomials, and Hermite
polynomials; see Thisted 1988, pp. 282–288) are presented by Golub and Welsch
(1969) and implemented in a Fortran subroutine called gaussq.f in the Netlib
software repository (Smyth 1998). The same algorithms are implemented in the
package “statmod” (Smyth 2014) in the statistical computing software R (R Core
Team 2010). The statmod package was used in the R implementation of marginal
maximum likelihood estimation (Johnson 2007, p. 10). Note that there are several
R packages, for example, “gaussquad” (Novomestky 2013) and “fastGHQuad”
(Blocker 2014), that can produce Gauss–Hermite quadrature notes and weights.
Press et al. (1996, p. 1062) contain a Fortran 90 subroutine for obtaining the
abscissas and weights of the Gauss–Hermite quadrature formula. Use of the statmod
package in R seems to be the easiest way to obtain Gauss–Hermite quadrature points
and weights. Also using R, these values can be easily transformed to the points and
weights for the standard normal distribution.

4.3 Effect of the Number of Quadrature Points

Using numbers of quadrature points of 10, 20, 30, and 40, Seong (1990) compared
the item and ability parameter estimates obtained by the Stroud and Secrest (1966)
values with those obtained by the composite midpoint rule of open type (Burden and
Faires 1985, pp. 158–169; Jeffrey 2000, pp. 315–318; cf. Hildebrand 1974, p. 96).
The composite midpoint rule is also referred to the Mislevy’s histogram solution
(see Mislevy and Stocking 1989, p. 66). De Ayala et al. (1995, p. 387) referred
to the latter as the Mislevy vertical line graph method. Because a set of uniformly
spaced points are used, the method is of the Newton–Cotes type (De Ayala 2009,
p. 71; Linz and Wang 2003, p. 133). In this paper the quadrature that used uniformly
spaced points is called the Newton–Cote method.

To compare results from employing different numbers of quadrature points and
weights in Gauss–Hermite quadrature, the Law School Admission Test—Section 6
(LSAT6; Bock and Lieberman 1970) with five-items by 1000 examinees were
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Table 4.1 Item parameter estimates from Gauss–Hermite quadrature using different
numbers of quadrature points

Parameter Number of quadrature points

Item 2 4 6 8 10 12Ca

aj

1 0.82719 0.82369 0.82431 0.82456 0.82456 0.82456

2 0.71212 0.73029 0.72395 0.72360 0.72361 0.72361

3 0.78430 0.88188 0.88911 0.88908 0.88900 0.88899

4 0.67176 0.69395 0.69006 0.68977 0.68976 0.68977

5 0.68373 0.66168 0.65728 0.65715 0.65716 0.65716

bj

1 �3.34630 �3.36523 �3.36341 �3.36261 �3.36260 �3.36261

2 �1.39913 �1.35888 �1.36815 �1.36869 �1.36868 �1.36868

3 �0.31188 �0.28252 �0.28016 �0.28012 �0.28014 �0.28014

4 �1.91504 �1.85394 �1.86243 �1.86311 �1.86312 �1.86311

5 �3.02401 �3.10635 �3.12414 �3.12478 �3.12473 �3.12472
a12(2)20(10)80

calibrated using marginal maximum likelihood estimation. The data set was not
grouped in response patterns and consists of a four-column identification code and
the five item responses for each of 1000 examinees. The two-parameter logistic
model was used with the scaling constant D D 1. The numbers of quadrature points
used were 2(2)20(10)80.

The computer program in Fortran used 20 expectation and maximization cycles
and 2 Newton cycles (cf. de Toit 2003, pp. 126–127). The initial values were those
used in the second phase of BILOG-MG (see Lord 1980, pp. 33–34). Item parameter
estimates from employing more than 10 quadrature points (i.e., 12–80) were the
same up to five decimal places. Table 4.1 contains the LSAT6 item parameter
estimates.

The item discrimination parameter estimates are plotted along with the number
of quadrature points in Fig. 4.1. The item difficulty parameter estimates are plotted
along with the number of quadrature points in Fig. 4.2.

4.4 Comparison of Computer Programs

There are many computer programs that can yield item parameter estimates under
marginal maximum likelihood estimation. Two main approaches employed in the
programs to perform marginalization are the Newton–Cote method and Gauss–
Hermite quadrature. It can be noted that in almost all programs the default method is
the Newton–Cotes method. The computer programs compared in conjunction with
the quadrature methods include BILOG-MG, PARSCALE, MULTILOG, IRTPRO,
and flexMIRT.
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Fig. 4.2 LSAT6 item difficulty estimates plot

Note that it is also possible to obtain item parameter estimates for the two-
parameter model under marginal maximum likelihood estimation using Gauss–
Hermite quadrature from the computer program TESTFACT (Wilson et al. 1991;
Wood et al. 2002) when it is used to perform one-dimensional factor analysis
(de Toit 2003, p. 492). TESTFACT is one of the programs that uses Gauss–
Hermite quadrature, but the program is developed for performing factor analysis
of dichotomously scored items. In such an analysis, 50 seems to be the maximum
number of quadrature points. Note that item discrimination in TESTFACT is
expressed on the normal metric. It can also be noted that the computer program
OPLM (Verhelst et al. 1994) can yield item parameter estimates for the Rasch model
via marginal maximum likelihood estimation.
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Table 4.2 LSAT6 item parameter estimates from item response theory computer programs

Parameter BILOG-MG PARSCALE MULTILOG IRTPRO flexMIRT

Item NC GH NC GH NC GH NC GH NC GH

aj

1 0.813 0.784 0.809 0.808 0.82 NA 0.83 0.83 0.83 NA

2 0.714 0.687 0.732 0.732 0.72 NA 0.72 0.72 0.72 NA

3 0.877 0.845 0.901 0.901 0.88 NA 0.89 0.89 0.89 NA

4 0.680 0.655 0.693 0.693 0.69 NA 0.69 0.69 0.69 NA

5 0.648 0.625 0.658 0.657 0.66 NA 0.66 0.66 0.66 NA

bj

1 �3.409 �3.538 �3.397 �3.399 �3.36 NA �3.36 �3.36 �3.36 NA

2 �1.388 �1.441 �1.364 �1.364 �1.37 NA �1.37 �1.37 �1.37 NA

3 �0.284 �0.295 �0.280 �0.280 �0.28 NA �0.28 �0.28 �0.28 NA

4 �1.890 �1.962 �1.864 �1.864 �1.87 NA �1.86 �1.87 �1.87 NA

5 �3.167 �3.288 �3.128 �3.129 �3.12 NA �3.11 �3.13 �3.12 NA

The default setting of BILOG-MG for obtaining item parameter estimates of
the LSAT6 data for the two-parameter logistic model under marginal maximum
likelihood estimation uses 15 equally spaced quadrature points from �4 to 4. Item
parameter estimates from the default Newton–Cotes method (NC) in BILOG-MG
are reported in Table 4.2. In fact, the NC columns contain the results from the default
settings of the respective programs. The item parameter estimates from BILOG-MG
using Gauss–Hermite quadrature (GH) with 10 quadrature points are also reported
in Table 4.2. A user must supply the quadrature points and weights for Gauss–
Hermite quadrature based on the standard normal distribution to obtain the GH
results reported in Table 4.2.

The default setting of PARSCALE (Muraki and Bock 2002) for obtaining item
parameter estimates of the LSAT6 data for the two-parameter logistic model under
marginal maximum likelihood estimation uses 30 equally spaced quadrature points
from �4 to 4. Item parameter estimates from the default NC in PARSCALE are
reported in Table 4.2. The item parameter from PARSCALE using GH with 10
quadrature points are also reported in Table 4.2. The GH results are obtained from
the program generated Gauss–Hermite quadrature points and weights by using the
prior distribution keyword (de Toit 2003, p. 277; Muraki and Bock 1993, p. 64).

The default setting of MULTILOG (Thissen et al. 2002) for obtaining item
parameter estimates of the LSAT6 data for the two-parameter logistic model under
marginal maximum likelihood estimation uses 19 equally spaced quadrature points
from �4:5 to 4.5. Item parameter estimates from the default NC in MULTILOG
are reported in Table 4.2. It may be possible to use Gauss–Hermite quadrature
in MULGILOG by employing the keywords QP and DE (Thissen 1986, p. 28).
Because weights based on the standard normal distribution produced seemingly
inconsistent results and the current version of the program manual didn’t include
such a DE keyword from the earlier versions, the GH results cannot be properly
obtained.
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The default setting of IRTPRO (Cai et al. 2010) for obtaining item parameter
estimates of the LSAT6 data for the two-parameter logistic model under marginal
maximum likelihood estimation uses 49 equally spaced quadrature points from �6
to 6. Item parameter estimates from the default NC in IRTPRO are reported in
Table 4.2. The item parameter from IRTPRO using GH with 10 quadrature points
is also reported in Table 4.2. The GH results are obtained from selection of the
quadrature option GH in IRTPRO.

The default setting of flexMIRT (Cai 2013; Houts and Cai 2013) for obtaining
item parameter estimates of the LSAT6 data for the two-parameter logistic model
under marginal maximum likelihood estimation uses 49 equally spaced quadrature
points from �6 to 6. Item parameter estimates from the default Newton–Cotes type
(NC) in flexMIRT are reported in Table 4.2. The flexMIRT manual (see Houts
and Cai 2013, p. 143) does not provide a way to obtain item parameter estimates
using GH.

Overall, all programs yielded very similar results and some of them produced
seemingly identical results up to the decimal points reported in the main outputs
of the respective programs. Note that nearly the same results of item parameter
estimates can be obtained by changing the settings of each computer program.
Demonstrating how to obtain the same results from these programs, however, was
not the purpose of the current investigation.

In addition the LSAT6 data, in order to evaluate the similarity of results from
various computer programs employing different quadrature methods, a relatively
large data set containing student responses to a college English placement test
was analyzed with the same eight different cases reported in Table 4.2. The data
file actually analyzed for the current study contained dichotomously scored item
responses from 3657 examinees for the 115 item test. There were originally 117
items but two of them were removed due to the near zero value (original item 34)
and the negative value (original item 35) of the biserial correlation. There were
five options for each item and so the data set can be analyzed under the three-
parameter model in general. Because priors may necessarily be imposed on the
guessing parameters (i.e., the lower asymptotes) of the three-parameter model and
the computer programs use different forms of such priors, the two-parameter logistic
model was used to assess the effect of the quadrature methods.

The 115 items from the English test were analyzed with the above five IRT
computer programs, but eight different cases existed because only three could
employ Gauss–Hermite quadrature. Actually the estimation method used (i.e.,
marginal maximum likelihood estimation) may not be the default estimation option
for some programs (e.g., BILOG-MG). The numbers of the default quadrature
points for the respective programs were not changed for this larger English test
data. The number of quadrature points used for Gauss–Hermite quadrature was 20
following a suggestion in BILOG-MG (e.g., 2 � p

test length; see also De Ayala
et al. 1995, p. 388). Due to the fact that a relatively large data set was used, all
programs yielded practically the same item parameter estimates.

The calibration results of the English test data indicated that all computer
programs regardless of using either NC or GH yielded fully comparable item
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parameter estimates under the two-parameter logistic model. Except for three pairs
(BILOG-MG-NC and BILOG-MG-GH; BILOG-MG-NC and PARSCALE-GH;
BILOG-MG-GH and PARCALE-GH) all eight sets of item discrimination estimates
yielded pairwise Pearson correlations of unity. The three exceptional pairs yielded
r D 0:999. All eight sets of item difficulty estimates yielded pairwise Pearson
correlations of unity. All programs yielded almost identical, albeit not exactly the
same, results for the item parameter estimates of the English test.

4.5 Discussion

When the ability distribution to be integrated out in the marginalization is assumed
to be normal, the Gauss–Hermite quadrature points and weights under the standard
normal distribution may be a theoretically correct choice to use. Most of the current
computer programs do not use the Gauss–Hermite quadrature as a default. It can
be noted that in some application settings, the latent distribution of ability is to be
concurrently characterized with item parameters (i.e., estimation of either hyper-
parameters of the ability distribution or discrete histogram-type characterization
of the ability distribution). In such a situation (Bock and Aitkin 1981; Mislevy
1984; Sanathanan and Blumenthal 1978), Gauss–Hermite quadrature may not be
appropriate, and other methods (e.g., adaptive Sympson’s rule; Sanathanan and
Blumenthal 1978, p. 797) should be utilized.

In the estimation of ability parameters, the expected a posteriori (EAP) esti-
mation may not require Gauss–Hermite quadrature (Bock and Mislevy 1982).
For example, the investigation of the EAP estimates by De Ayala et al. (1995) didn’t
use Gauss–Hermite quadrature. Also Bock and Mislevy (1982) indicated that the
prior distribution in some testing situation (e.g., adaptive testing) need not have a
form of the standard normal distribution. Hence, Gauss–Hermite quadrature might
not be used in some situations. Hence, the Newton–Cotes method may provide a
more coherent framework for estimation of all parameters.

The values from the available tables of the nodes and weights for Gauss–Hermite
quadrature cannot be directly used when a user wants to specify them. So we
presented extensive tables of Gauss–Hermite quadrature for the standard normal
distribution. We also presented examples that demonstrate the effects of using
various numbers of quadrature points and quadrature weights as well as different
quadrature formulas on item parameter estimates. In sum, item parameter estimates
obtained from more than 20 quadrature points and quadrature weights with either
Gauss–Hermite quadrature or Newton–Cote method were virtually identical. More
thorough investigations similar to Seong (1990) are needed for other item response
theory models and other estimation procedures.



4 Gauss–Hermite Quadrature in MMLE of Item Parameters 55

Appendix 1

N = 10

XI

-3.436159118837738E+00 -2.532731674232789E+00 -1.756683649299880E+00 -1.036610829789513E+00 -3.429013272237046E-01

3.429013272237046E-01 1.036610829789513E+00 1.756683649299880E+00 2.532731674232789E+00 3.436159118837738E+00

AI

7.640432855232643E-06 1.343645746781229E-03 3.387439445548111E-02 2.401386110823148E-01 6.108626337353258E-01

6.108626337353258E-01 2.401386110823148E-01 3.387439445548111E-02 1.343645746781229E-03 7.640432855232643E-06

N = 20

XI

-5.387480890011237E+00 -4.603682449550741E+00 -3.944764040115622E+00 -3.347854567383215E+00 -2.788806058428129E+00

-2.254974002089274E+00 -1.738537712116586E+00 -1.234076215395323E+00 -7.374737285453945E-01 -2.453407083009013E-01

2.453407083009013E-01 7.374737285453945E-01 1.234076215395323E+00 1.738537712116586E+00 2.254974002089274E+00

2.788806058428129E+00 3.347854567383215E+00 3.944764040115622E+00 4.603682449550741E+00 5.387480890011237E+00

AI

2.229393645534086E-13 4.399340992273155E-10 1.086069370769280E-07 7.802556478532085E-06 2.283386360163550E-04

3.243773342237865E-03 2.481052088746362E-02 1.090172060200233E-01 2.866755053628341E-01 4.622436696006098E-01

4.622436696006098E-01 2.866755053628341E-01 1.090172060200233E-01 2.481052088746362E-02 3.243773342237865E-03

2.283386360163550E-04 7.802556478532085E-06 1.086069370769280E-07 4.399340992273155E-10 2.229393645534086E-13

Appendix 2

N = 10

XK

-4.859462828332313E+00 -3.581823483551926E+00 -2.484325841638953E+00 -1.465989094391158E+00 -4.849357075154976E-01

4.849357075154976E-01 1.465989094391158E+00 2.484325841638953E+00 3.581823483551926E+00 4.859462828332313E+00

A(XK)

4.310652630718300E-06 7.580709343122154E-04 1.911158050077032E-02 1.354837029802678E-01 3.446423349320191E-01

3.446423349320191E-01 1.354837029802678E-01 1.911158050077032E-02 7.580709343122154E-04 4.310652630718300E-06

N = 20

XK

-7.619048541679765E+00 -6.510590157013650E+00 -5.578738805893197E+00 -4.734581334046053E+00 -3.943967350657314E+00

-3.189014816553388E+00 -2.458663611172368E+00 -1.745247320814127E+00 -1.042945348802751E+00 -3.469641570813560E-01

3.469641570813560E-01 1.042945348802751E+00 1.745247320814127E+00 2.458663611172368E+00 3.189014816553388E+00

3.943967350657314E+00 4.734581334046053E+00 5.578738805893197E+00 6.510590157013650E+00 7.619048541679765E+00

A(XK)

1.257800672437891E-13 2.482062362315165E-10 6.127490259982936E-08 4.402121090230865E-06 1.288262799619300E-04

1.830103131080495E-03 1.399783744710101E-02 6.150637206397688E-02 1.617393339840000E-01 2.607930634495547E-01

2.607930634495547E-01 1.617393339840000E-01 6.150637206397688E-02 1.399783744710101E-02 1.830103131080495E-03

1.288262799619300E-04 4.402121090230865E-06 6.127490259982936E-08 2.482062362315165E-10 1.257800672437891E-13
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Chapter 5
GPU-Accelerated Computing with Gibbs
Sampler for the 2PNO IRT Model

Yanyan Sheng, William S. Welling, and Michelle M. Zhu

Abstract Item response theory (IRT) is a popular approach used for addressing
large-scale statistical problems in psychometrics as well as in other fields. The fully
Bayesian approach for estimating IRT models is usually memory and computational
expensive due to the large number of iterations. This limits the use of the procedure
in many applications. In an effort to overcome such restrictions, previous studies
proposed to tackle the problem using massive core-based graphic processing units
(GPU), and demonstrated the advantage of this approach over the message passing
interface (MPI) by showing that a single GPU card could achieve a speedup of up
to 50�. Given that GPU is practical, cost-effective, and convenient, this study aims
to seek further improvements using a single GPU card.

Keywords Item response theory • Bayesian estimation • MCMC •
Two-parameter IRT model • High performance computing • CUDA •
Optimization

5.1 Introduction

Item response theory (IRT) is a popular approach used for describing probabilistic
relationships between correct responses on a set of test items and continuous latent
traits (see Bock and Aitkin 1981; Mislevy 1985; Patz and Junker 1999; Tutakawa
and Lin 1986). In addition to educational and psychological measurement, IRT
models have been used in other areas of applied mathematics and statistical research,
such as US Supreme Court decision-making processes (Bafumi et al. 2005), alcohol
disorder analysis (Beseler et al. 2010; Feske et al. 2007; Gilder et al. 2011; Martin
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et al. 2006), nicotine dependency (Courvoisier and Etter 2008; Panter and Reeve
2002; Rose and Dierker 2010), multiple-recapture population estimation (Fienberg
et al. 1999), and psychiatric epidemiology (Orlando et al. 2000; Reiser 1989;
Tsutsumi et al. 2009), to name a few.

5.1.1 Gibbs Sampling for IRT Models

IRT has the advantage of allowing inferences regarding the effects of items and
persons on the responses through distinct sets of model parameters. As a result, a
primary concern associated with IRT research has been on parameter estimation.
Specifically of concern are the statistical complexities that can often arise when
item and person parameters are simultaneously estimated (see Baker and Kim 2004;
Birnbaum 1969; Bock and Aitkin 1981; Molenaar 1995). Recent attention has
focused on fully Bayesian estimation methods where Markov chain Monte Carlo
(MCMC, Smith and Roberts 1993; Tierney 1994) simulation techniques are used.
Albert (1992) applied Gibbs sampling (Geman and Geman 1984), one of the most
efficient MCMC algorithms, to the two-parameter normal ogive (2PNO; Lord and
Novick 1968) model, which takes the form

P.yij D 1/ D ˆ.˛j�i � ˇj/ D
˛j�i�ˇjZ
�1

1p
2�

e
�t2
2 dt (5.1)

for modeling the probability that person i obtains a correct response on item j, where
i D 1; : : : ; n and j D 1; : : : ; k , ˛j and ˇj denote item parameters and �i denotes the
continuous person trait parameter.

Despite its many advantages, the fully Bayesian approach for estimating IRT
models is both memory and computationally expensive, which further limits its
actual applications. Typically, item response data are based on n subjects’ responses
to k items at one occasion, and a Markov chain requires 5000–10,000 iterations
to reach convergence for such IRT models. Each implementation of the algorithm
could take five or more minutes to complete by a single desktop when n and k
are relatively small (e.g., n D 1000, k D 10) (Sheng and Headrick 2007). This
fact makes it impractical for users to utilize the algorithm for various applications
of IRT, such as item calibration and scoring in large-scale standardized testing
situations, and item analysis in test development and scale construction. Other
examples include using IRT (1) to diagnose patients for certain mental disabilities
in psychiatry where the urgency of starting treatment for a disability is essential,
(2) to calibrate item parameters for a CAT system where a large item pool with
sufficient numbers of good quality items is required, and (3) in the massive open
online courses (MOOCs) where sample sizes and test frequencies are often quite
large.
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In addition to these applications, the computation expense limits researchers in
conducting Monte Carlo studies where a large number of replications is desirable.
In the IRT literature, simulation studies commonly utilize 25 replications only
(Harwell et al. 1996), which makes it difficult to empirically evaluate the property of
the population distribution of the model parameters. Even with such a small number
of replications, the entire execution may take weeks or even months to finish. The
delayed research findings in turn limit the advance of IRT research in developing
more complicated models.

In general, the serial implementation of the Gibbs sampler is limited in both
practical applications and theoretical developments. Consequently, achieving a
considerable speedup with well-designed parallel algorithms on an inexpensive
and convenient execution platform would make it more practical for researchers
or practitioners to implement IRT models using MCMC. In an effort to achieve this,
previous studies investigated high performance computing (HPC) using the message
passing interface (MPI) (Pastias et al. 2012; Sheng and Rahimi 2012) or the massive
core-based graphic processing units (GPU) (Sheng et al. 2014). Given the theoretical
and empirical advantages of the latter over the former, this paper focuses on GPU.

5.1.2 Massive Core GPU Computing

With the current trend of having increasing processor core counts, it is necessary to
investigate software that can concurrently use all of the hardware resources. As a
result, HPC employs supercomputers, computer clusters, and graphics processors to
tackle problems with computing and memory intensive computations. HPC utilizes
the concept of parallel computing to run programs in parallel and achieve a much
smaller execution time with high efficiency and low overhead.

With a great many processing elements, CUDA (Compute unified device archi-
tecture) enabled GPU is of growing research interest for data decomposition-based
parallel applications. As of 2012, the peak floating-point throughput of many-thread
GPU is ten times that of a multicore CPU. Such a gap between CPU and GPU is due
to two factors: First, the design of CPU is optimized for sequential algorithms with
a complicated control logic and a large cache. Latency (time required to complete a
task) can be reduced by such designs but the throughput (number of tasks executed
in a fixed time) will be sacrificed. Second, the memory bandwidth of delivering data
from the memory to the processor is about six times faster for GPU than CPU, for
which the bandwidth usually serves as the bottleneck in many applications (Kirk and
Hwu 2013). Hence, even a single GPU card is capable of delivering much improved
performances.

The data size and the data-parallelism nature of the MCMC procedure with a
high throughput requirement make GPU an ideal platform for fast and efficient
execution. A typical GPU program utilizes thousands of threads simultaneously
and can achieve an extremely high system throughput. On the contrary, a high-end
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multicore microprocessor CPU typically has only four to eight cores and multiple
megabytes of on-chip cache for strong sequential code performance.

Indeed, Sheng et al. (2014) demonstrated the advantage of the CUDA-enabled
GPU over MPI by showing that a single GPU card could achieve a speedup of
up to 50� for implementing MCMC with an IRT model, and that as the data size
increases, the benefit of using GPU would be even higher. However, in their study,
the performance of the GPU program was improved via optimizing global memory
access and enabling massive thread-level parallelism. With the recently released
CUDA 5.0, it is believed that more advanced optimization techniques, such as
dynamic parallelism (DiMarco and Taufer 2013), data streaming, shared memory,
and parallel reduction (Harris 2007), are expected to make the GPU-accelerated
high performance Gibbs sampling algorithm more efficient and practically more
attractive. This study is hence to seek further improvements using a single GPU card.

The remainder of the paper is organized as follows. Section 5.2 illustrates the
approach we adopted in the present study to optimize the CUDA GPU algorithm.
In Sect. 5.3, the effect of two important optimization approaches is investigated
by comparing their performances with those from the parallel algorithm without
implementing them. General guidelines are provided in this section suggesting the
appropriate method under specific test situations. Finally, a few concluding remarks
are made in Sect. 5.4.

5.2 Methodology

This study was performed using a Tesla K20c GPU on an Intel Core 2 Quad CPU
with 8 GB of RAM.

5.2.1 Serial Algorithm

For the 2PNO IRT model defined in Eq. (5.1), the Gibbs sampler involves updating
three sets of parameters in each iteration, namely, an augmented continuous variable
Zij (which is positive if yij D 1 and negative if yij D 0), the person parameter �i, and
the item parameters �j, where �j D .˛j; ˇj/

0 from their respective full conditional
distributions, namely,

Zijj� �
�

N.0;1/.˛j�i � ˇj; 1/; if yij D 1

N.�1;0/.˛j�i � ˇj; 1/; if yij D 0
; (5.2)

�ij� � N

 P
j .Zij C ˇj/˛jP

j ˛
2
j

;
1P
j ˛

2
j

!
; (5.3)
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� jj� � N..x0x/�1x0Zj; .x0x/�1/I.˛j > 0/; (5.4)

where x D Œ� ;�1�, and the prior distributions are assumed to be �i � N.0; 1/,
˛j � U.0;1/, and p.ˇj/ / 1 (see, e.g., Albert 1992; Sheng and Headrick 2007).

Hence, with starting values �.0/ and �.0/, observations (Z.`/;� .`/; �.`/) can be
simulated from the Gibbs sampler by iteratively drawing from their respective full
conditional distributions as specified in Eqs. (5.2)–(5.4). Specifically, to go from
(Z.`�1/;� .`�1/; �.`/�1) to (Z.`/;� .`/; �.`/), there are three transition steps:

1. Draw Z.`/ � p.Zj�.`�1/; �.`�1//;
2. Draw �.`/ � p.� jZ.`/; �.`�1//;
3. Draw �.`/ � p.�jZ.`/;� .`//.
This iterative procedure produces a sequence of (�.`/; �.`/), ` D 0; : : : ;L. To reduce
the effect of the starting values, early iterations in the Markov chain are set as
burn-ins to be discarded. Samples from the remaining iterations are then used to
summarize the posterior density of item parameters � and ability parameters � .

5.2.2 GPU Implementation and Optimization

CUDA is a heterogeneous programming model specially designed for general
purpose GPU computing. It operates in CPU (host) and GPU (device). Code
developed on the host not only manages memory on both the host and device, but
also launches kernels that are functions executed on the device. These kernels are
executed by an array of threads (sequences of executions) in parallel. Specifically,
a kernel launches a grid of thread blocks so that threads of the same block can
communicate. This way, CUDA virtualizes the physical hardware, where a thread is
a virtualized scalar processor and thread blocks are virtualized multiprocessors. A
typical sequence of operations for a CUDA program involves the following steps:
(1) declare and allocate host and device memory; (2) allocate and initialize host data;
(3) transfer data from the host to the device; (4) execute kernels; and (5) transfer
results from the device to the host.

To implement the Gibbs sampler for the 2PNO IRT model, the CUDA-enabled
GPU parallel algorithm begins with copying the data matrix y to the device, which
then assumes the tasks of updating model parameters �i, ˛j, ˇj, and calculating
results. Using the triple chevron notation that contains the kernel launch parameters,
we defined a kernel per update to specify the number of blocks and the number
of threads per block for decompositions of the data matrix and model parameters.
Hence, each kernel has a random state indexed in a grid or a list. Specifically, the
data matrix y, which is of size n�k, was decomposed over a two-dimensional grid of
r�c blocks with a defined number of threads (see Fig. 5.1). This way, each block on
the device receives a sub-matrix yBij of size gr � gc, where gr D n=r and gc D k=c.
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Fig. 5.2 Decomposition of item parameters (left panel) and person parameters (right panel) over
a list of r D 5 or c D 5 blocks

In addition, each item (person) parameter was decomposed over a list of r (c) blocks
as depicted in Fig. 5.2.

The algorithm was implemented in ANSI C with utilization of the cuRAND
library (NVIDIA 2010) for random number generations and normal cumulative
densities. We employed the curand_normal2_double device API method for its
efficiency in generating two pseudorandom numbers at once, and the efficiency of
memory access.

The program adopts statically allocating memory at compile time because of
its simplicity and efficiency in memory for addressing two-dimensional arrays and
optimal memory alignment. For more detailed implementation and optimization,
Figs. 5.3 and 5.4 display a basic control diagram between the CPU host and the
GPU device for updating various variables in the algorithm. Specifically, after the
initial matrices (e.g., dev_Z), vectors (e.g., dev_AVZ, dev_GVZ), and input values
(dev_Y) are stored in the device memory with random states allocated (rngStatesAG),
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Fig. 5.3 Control diagram (part 1) between the device and the host for the optimized CUDA
program

the Gibbs sampler begins. The first update is in the kernel of updating Z (calcZ),
which decomposes the data matrix y on a two-dimensional grid and calculates
the augmented data Z (see Fig. 5.1). This kernel requires the device to generate a
matrix of uniform random numbers (dev_U). Calculating the mean for � (calcMN)
is a separate kernel that is decomposed on a one-dimensional list of r blocks (see
Fig. 5.2). Updates of � (calcTH) are decomposed similarly but require the device
to randomly generate a vector of numbers from a standard normal distribution
(dev_N). Updates of ˛ and ˇ (calcAG) are decomposed on a one-dimensional list
of c blocks (see Fig. 5.2). This update requires passing a pointer to a vector of
random states on the device (rngStatesAG). Calculating the posterior estimates for
item or person parameters, performed at the end of each iteration after the burn-
in stage utilizing running averages (trackStatistics, copyStatistics, sumStatistics), is
also parallelized using a one-dimensional list of c or r blocks. This approach has
considerable improvement in memory efficiency as posterior samples of item and
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Fig. 5.4 Control diagram (part 2) between the device and the host for the optimized CUDA
program

person parameters do not have to be gathered for computing the posterior estimates
and standard errors after the completion of a Markov chain. The program stops when
the device sends all the results back to the host.

It is noted that the update of � has been optimized using a template library, Thrust
(Hoberock and Bell 2010). With the use of two custom defined C structure operators
(one for vector addition and the other for inverse vector multiplication), a transform
reduce method from the Thrust library was successfully implemented to improve the
performance when operating x0x, a 2�n by n �2 matrix multiplication, in Eq. (5.4).

The Thrust library was invoked from the host side, while streams were used
to transfer data between host and device primarily, asynchronously overlapping
the computation of the transform reduce. Specifically, two streams were utilized
so that stream one was used to asynchronously copy x in Eq. (5.4) from device
to host, which was further passed to the transform reduce calculation within a
thrust:device_vector to be invoked in parallel on the device; stream two was used
to asynchronously copy x0x back to the device for the results to be sent back to the
host when the Thrust transform reduce was complete. It is noted that the latter may
not be a significant improvement as x0x is simply a 2 � 2 matrix.

In addition, parallel reduction was implemented using the Kepler architecture
(Luitjens 2014), where massive thread parallelism, dynamic parallelism (DiMarco
and Taufer 2013), and shared memory were utilized for calculating x0Zj in Eq. (5.4)
for each kernel.
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5.2.3 Performance Analyses

The main advanced optimization techniques successfully implemented in the
parallel algorithm are transform reduce via the use of the Thrust library and parallel
reduction. In order to investigate the effect of each technique on the performance
of the GPU computing with the implementation of Gibbs sampling for the 2PNO
IRT model, experiments were carried out in which tests with n persons (n D 500,
1000, 2000, 5000, 10,000, 20,000, 50,000) and k items (k D 20, 50, 100, 200) were
considered. In each experiment, Gibbs sampling was implemented to run a single
Markov chain with a total of 10;000 iterations using CUDA (with a single GPU
card) that has:

1. no parallel reduction or transform reduce (GPU1),
2. parallel reduction (GPU2),
3. transform reduce (GPU3),
4. both parallel reduction and transform reduce (GPU4).

The performances of these GPU programs were evaluated with respect to the
total execution time. The three programs with parallel reduction and/or transform
reduce (namely, GPU2, GPU3, and GPU4) were further compared using the relative
speedup over that without these optimizations (GPU1), which is defined as:

Sr D T1 = Ti; (5.5)

where T1 is the execution time for GPU1 and Ti is that for each of the GPU2, GPU3,
and GPU4 programs.

5.3 Results

For the fully crossed 7� 4� 4 D 112 design, each implementation was replicated 3
times. The execution time was averaged across these replications and the results are
summarized in Figs. 5.5 and 5.6. A close examination of the figures suggests:

• GPU2 performs similarly to GPU1 for k < 100, with a slight advantage to GPU2
when sample sizes go over 5000. However, when k � 100, GPU2 is not as
efficient as GPU1 for n 	 5000.

• GPU3 consistently performs better than GPU1, with a relative speedup ranging
from 1:5� to 3:4�. Its speedup over GPU1 increases up to two times with
increased sample sizes, which is consistent across the four test length conditions
(see Fig. 5.6).

• With a relative speedup over GPU1 ranging from 0:3� to 18�, GPU4 is mostly
desirable for large sample size and small test length conditions (e.g., n > 2000

and k D 20). It requires increasingly lesser amounts of time than GPU1 when
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Fig. 5.5 Execution time for implementing the CUDA parallel program of Gibbs sampling for tests
and samples with different sizes

sample size increases. However, the amount of speedup reduces considerably
with increased test lengths.

In general, transform reduce alone improves the computation efficiency by
having a relative speedup of up to 3:4� over the GPU program without either
transform reduce or parallel reduction. Moreover, parallel reduction works well only
when paired with transform reduce.

It is noted that sample size and test length effects are different with the two
optimization techniques. With increased sample sizes, transform reduce improves
the speed steadily whereas parallel reduction improves it exponentially. On the other
hand, increased test length has little effect on transform reduce, but it substantially
reduces the speedup of parallel reduction. This can be explained by the fact that
parallel reduction was used for calculating x0Zj, which becomes more efficient
when a larger n is used. However, when test length increases, the increased amount
of overhead resulted from performing dynamic parallelism and utilizing shared
memory overweighs the gain in computation when sample size is not sufficiently
large.

For the two GPU programs that performed best, GPU3 and GPU4, a set of
guidelines can be established with respect to the conditions to use them. Specifically,
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for short tests, i.e., k 	 50, transform reduce alone (GPU3) works the best with
n 	 2000, whereas the program with parallel reduction and transform reduce
(GPU4) is most helpful for n > 2000 (see Fig. 5.5a, b). When k > 50, the threshold
increases. For tests with 200 items, transform reduce (GPU3) alone outperforms the
other approaches for sample sizes as large as n D 20;000 (see Fig. 5.5d).

To further evaluate the performance of the four GPU programs, their execution
times were compared with that of the sequential algorithm using the speedup, which
is defined as:

S D TS = TP; (5.6)

where TS is the execution time for the fastest sequential algorithm and TP is that
for the parallel algorithm. For the purpose of comparing the speedup with those
based on the parallel program developed by Sheng et al. (2014), we used the same
data size conditions (i.e., n D 500; 1000; 2000; 5000; 10;000). Figure 5.7 clearly
indicates that the optimized GPU program can reach a speedup of up to 80� over
the sequential implementation. For example, for data with binary responses of 5000
persons to 200 items, the program takes only 25 s to complete a single Markov chain



70 Y. Sheng et al.

0

10

20

30

40

0 2000 4000 6000 8000 10000

Sp
ee

du
p

n

0

10

20

30

40

50

0 2000 4000 6000 8000 10000
n

0

20

40

60

0 2000 4000 6000 8000 10000

Sp
ee

du
p

n

0

30

60

90

0 2000 4000 6000 8000 10000
n

GPU1 GPU2 GPU3 GPU4

k = 20 k = 50

k = 100 k = 200

Fig. 5.7 Speedup of implementing the CUDA parallel program over sequential algorithm for tests
and samples with different sizes

with 10,000 iterations (see Fig. 5.7d). This is a significant improvement over the
original speedup of 50�, making the GPU accelerated computing more attractive.

5.4 Discussion

This study optimized a CUDA GPU-accelerated high performance Gibbs sampling
algorithm for the 2PNO IRT model with the purpose of achieving higher speedup
and efficiency. With the use of additional advanced optimization techniques by
utilizing CUDA 5.0, a more efficient program can be developed with CUDA GPU.
The algorithm was implemented using the ANSI C programming language and
the CUDA interface. Two advanced optimization techniques, transform reduce and
parallel reduction, were evaluated and compared. Results indicated that transform
reduce consistently improves the computation efficiency of the Markov chain,
whereas parallel reduction works exceptionally well with large sample sizes and
short test lengths when paired with transform reduce. In addition, given that the
performance of parallel reduction depends on different sample size and test length
conditions, a set of guidelines are provided for situations in which to use it.
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Although this paper only focuses on a simple IRT model, its methodology and
results shed light on developing a GPU-based Gibbs sampler for more complicated
IRT models. In the IRT literature, the model can be more complex by assuming
multiple latent traits, or assuming priors for hyperparameters. Tests for such models
typically involve more than 20 items and/or a larger sample size, where the GPU
accelerated parallel computing is theoretically appealing.

Finally, this study achieved further speedup and improved efficiency of the
Gibbs sampler for the 2PNO IRT model through a massive-core GPU computing
via the use of advanced optimization techniques. It will also be interesting to
consider a different decomposition scheme with MPI such as the 2D decomposition
suggested by Georganas (2013), or use a hybrid CUDA, MPI and/or OpenMP
parallel programming as recommended by Karunadasa and Ranasinghe (2009),
Oancea and Andrei (2013) and Yang et al. (2011).
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Chapter 6
Collusion Detection Using Joint Response
Time Models

Anne Thissen-Roe and Michael S. Finger

Abstract One method for detecting test collusion, or large-scale answer sharing,
is the divergence framework (Belov, Journal of Educational Measurement 50:
141–163, 2013). It uses Kullback–Leibler divergence and a psychometric model
to identify groups of test-takers with unusual person-fit distributions. A second
phase examines individuals within anomalous groups. Another line of research
considers collusion detection methods that depend on the identification of aberrant
response times. These methods can be integrated for greater power, using joint
statistical models for item response and response time. Here, we explore the value
added when collusion detection is conducted under the divergence framework, using
two joint models of responses and response times: the lognormal model within a
hierarchical framework (van der Linden, Journal of Educational and Behavioral
Statistics 31:181–204, 2006; van der Linden, Psychometrika 72:287–308, 2007),
and a model extended from the diffusion family of models for choice reaction
time (Ratcliff, Psychological Review 85:59–108, 1978; Ratcliff et al., Psychological
Review 106:261–300, 1999).

Keyword Response time

6.1 Introduction

In a large-scale examination program, test security is of great concern. Statistical
methods can be used to monitor applicant data for suspicious individual records or
test centers, or to detect compromised content.

One such method for detecting test collusion, or large-scale answer sharing,
is the divergence framework (Belov 2013). It depends on assessing the fit of a
psychometric model to the answer choices of groups of test-takers, using Kullback–
Leibler divergence to identify those groups with unusual person-fit distributions.
A follow-up investigation is conducted on the person-fit of individuals within
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anomalous groups, compared to the distribution of non-members. Meaningful,
measurable groups whose boundaries can envelop an instance of collusion include
schools, test sites, administration windows, and even social networks. For a
relatively innocuous example, if an item administered in two consecutive years
became a widely used classroom example in the intervening months, that item
might become considerably “easier” for applicants in the second year. Such item
compromise is more problematic, but still potentially detectable, when the item-
specific training is available only to a subpopulation of applicants in the second
year, such as those attending a particular school.

Another, older line of research focuses on the identification of aberrant response
times. Intuitively speaking, a test-taker will answer a question very quickly if
he or she has memorized the response, and very slowly if he or she is looking
it up. A single instance of memorization or reference consultation may not be
distinguishable from the wide normal range of response times, but a pattern
of anomalous short or long response times, or some of each, can be identified
statistically.

Both of these methods, while promising, suffer from limited statistical power to
detect colluding individuals within the number of responses made to a single test.
However, they can be combined formally for greater power. For example, Belov’s
protocol can be followed using person-fit statistics derived from a joint statistical
model for response correctness and response time.

The present simulation study evaluates the value added when collusion detection
is conducted under the divergence framework, using hierarchical joint modeling
of responses and response times, to that achieved by the divergence framework
using the item response model alone. A variety of conditions have been simulated
in order to provide guidance on whether and when joint models of response time are
valuable, as well as limiting conditions for when either model is viable. Simulation
variables included test length, item response and response time hyperparameters,
number of examinees in the target and reference groups, frequency of collusion
within the target group, and aberrant response count per colluding individual.

6.2 Collusion Detection

6.2.1 Divergence Framework

Belov (2013) proposed a two-stage process for large-scale collusion detection, in
order to ameliorate common issues of low statistical power in direct or pairwise
approaches, as well as to encompass computerized adaptive testing (CAT) situa-
tions. His process extended prior detection approaches based on model fit; however,
he recommended first identifying groups that may be involved in collusion, and
then screening individuals within those groups. A highly parallelizable combinatoric
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search algorithm permitted simultaneous, if computationally intensive, identifica-
tion of compromised content as a subset of all banked items.

Stage One: Group Identification. The purpose of Stage One is to identify
meaningful groups of test-takers in which collusion is likely. First, a model fit
statistic is calculated for each individual. Second, for each pair of groups, Kullback–
Leibler divergence is calculated between the distributions of individual fit within
each group. Third, for each group, the divergence values obtained with every other
group are summed. Finally, groups are selected for follow-up investigation if the
sum exceeds a critical value.

Stage Two: Individual Identification. The purpose of Stage Two is to identify
colluding individuals within the suspect groups identified in Stage One. First, the
aggregate distribution of the individual fit statistics is calculated across all groups
not identified in Stage One. Second, a critical value is set based on the non-suspect
distribution. Third, individuals are identified if their model fit statistics are beyond
the critical value.

In theory, any fit statistic for any model can work, but in practice, some work
better than others. A better model, that is, more informative or more explanatory,
yields better collusion detection. Therefore, model comparison studies on represen-
tative datasets are profitable prior to implementing the procedure; general studies of
the performance of different models, and their limits of applicability, may also be
useful beyond a specific testing program.

Fit statistics vary in utility, as well. Belov recommended a second use of
Kullback–Leibler divergence. In this case, divergence is calculated between two
discretized posterior distributions of ability, one obtained from potentially com-
promised items and one obtained from secure items. It is of interest to determine
whether a less tailored model fit statistic can be used, in order to provide for simple
automation and rapid large-scale screening of incoming datasets from complex
testing programs.

6.2.2 Joint Models of Item Responses and Response Times

The divergence method of collusion detection is model-dependent, and therefore
benefits from a more informative model. One method of increasing the information
obtained from each item is to include response time as well as response correctness.
This is conceptually in keeping with prior work on aberrant response detection based
on exceptionally short or long response times.

Item responses and response times may be modeled jointly, as paired observa-
tions reflecting two latent traits. There are several joint model families; the present
work considers two. These are the lognormal model within a hierarchical framework
(van der Linden 2006, 2007), and a model extended from the diffusion family of
models for choice reaction time (Ratcliff 1978; Ratcliff et al. 1999).
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6.2.2.1 The Hierarchical Framework

A hierarchical framework put forth by van der Linden (2006, 2007) permits a
population-level association between latent speed and latent ability, as suggested
by Carroll (1993). Within the framework, response time is modeled as a function of
latent speed, and response correctness as a function of latent ability. The framework
calls for an individual to choose a balance of speed and accuracy before beginning
the test, and to maintain that balance; the choice is reflected in the individual’s latent
speed and latent ability parameters.

Any item response model can be used to relate latent ability to response cor-
rectness; van der Linden (2007) uses the three-parameter logistic model. A parallel
model relates the logarithm of observed response time (ln tj) to latent speed (�):
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where ˛j is a speed discrimination parameter, and ˇj is a time intensity parameter,
for item j. An advantage of the framework is its simplicity; the response time model
can be fit using standard confirmatory factor analysis software (Finger and Chuah
2009).

6.2.2.2 Diffusion Models

Over the last four decades, researchers in sensory perception and elementary
cognition developed a series of choice reaction time models based on underlying
random walk processes (see, e.g., Laming 1968; Link and Heath 1975; Stone 1960).
In these models, information toward one of two decision thresholds accumulates
in many small increments, some of which might fall in opposite directions. The
consistency of increment direction, step size, and the distance of the thresholds
jointly determines the distribution of reaction times pertaining to each possible
decision outcome.

Random walk models are discrete models, with steps in quantized time. Ratcliff
(1978) proposed a continuous model for the limit as the time increment goes to zero.
This model described a diffusion process analogous to the movement of molecules
in a gas, but in a single dimension. A family of diffusion models have been derived in
more recent years (see, e.g., Ratcliff and Rouder 1998; Ratcliff et al. 1999; Ratcliff
and Tuerlinckx 2002; Ratcliff and Smith 2004; Ratcliff and McKoon 2008). They
typically incorporate notions of caution, bias, and information quality. Caution takes
the form of boundary separation; that is, the total distance between the two decision
thresholds. Bias occurs when the starting position is not at the midpoint between
thresholds. Information quality is represented by the drift rate, which is the average
velocity toward one or the other threshold over many steps. Increment direction
consistency becomes a continuous distribution, with specified variance, of the
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drift rate; this is usually termed a scaling constant, as it is semantically meaningful,
but not mathematically necessary to fit data. The response time distribution is right-
shifted by a variously specified element of non-decision time.

The diffusion model is a simple choice reaction time model; it was not developed
for “slow” items, in which typical response times are above 1500 ms, or for
“complex” items in which the information accumulated may be subdivided into
different areas or tasks, or for polytomous items (Ratcliff and McKoon 2008).
However, psychometricians already commonly approximate multiple-choice item
responses as a single comparison between the correct response and an aggregate of
all distractors; for example, the two-parameter and three-parameter logistic models
are often used with items having more than two response options. In the absence
of a clearly better process model, attempts have been made to adapt the diffusion
models to psychometric items.

Tuerlinckx and De Boeck (2005) presented an amalgamation of the diffusion
model with the two-parameter logistic model, although their model allowed for only
a single latent trait, ability (�).

Thissen-Roe and Finger (2014) proposed a closely related joint model, the
diffusion two-parameter logistic model (D2PL), which includes a latent speed
parameter � . In that model, response time distributions are dependent on latent
speed, item demands, and the latent attractiveness (or obviousness) of the response
option to the individual, as given in the two-parameter logistic item response model
(2PL). An example is shown in Fig. 6.1.

The D2PL has five item parameters (item response parameters a and c, and
additional response time parameters w, m and ˇ). The defective probability density
function at time t is the partial derivative with respect to t of the defective cumulative
density function. This is:
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Fig. 6.1 An example of the diffusion two-parameter logistic (D2PL) model. Response time
distributions for the correct response are shown for (� D 1, � D �0.4) and (� D �2, � D �0.4).
The correct response is both less likely and slower when ability is lower, even given the same
latent speed parameter

The summation is infinite; it may be terminated when its envelope function
reaches a threshold for trivial increase of the total. The envelope function is the
non-oscillating component:
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The sum will be slow to terminate in some cases of improbable response times,
requiring some hundreds of terms, even if only the nonzero odd terms are actually
calculated.

The integral of g(t,ı,v) over all t equals the probability of each response given � .
That is to say, for any � , the total probability of a given response at any time is equal
to the probability of that response as predicted by the 2PL. In practice, obtaining a
reasonable numeric approximation requires interpolation of the density functions at
sub-second intervals.
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6.3 Study 1: Hierarchical Model

6.3.1 Method

A simulation study was conducted to explore collusion detection in the following
practical testing situation: An examination is constructed and calibrated on a large
sample of individuals with no prior knowledge of any item. Following calibration,
the test is used operationally. During the course of operational use, some test
preparation centers provide preknowledge of some items to some of the examinees
they serve. The administering group knows which examinees used which test
preparation centers, but not which centers provided information about the items.

For the purpose of this study, it was assumed that an educated guess could
be made about which items were compromised. For example, in an examination
program where half the items are anchor items shared with another form or a
previous testing cycle, suspicion might be largely limited to those anchor items.

The primary purpose of the study was to evaluate the contribution of the
hierarchical response time model over and above its component item model, in
this case the three-parameter logistic model (3PL). It also explored the effect of
several situational factors on the successful identification of colluding individuals
and centers: the number of centers involved in collusion (five levels), the scale
of item compromise (two levels), the incidence of cheating (three levels), and the
population correlation of latent ability and latent speed (two levels).

Item parameters for the hierarchical three-parameter logistic model (H3PL;
van der Linden 2006) were generated at random according to a consistent set of
hyperparameters for ten replicates of each combination of the latter three factors.
In total, 120 sets of parameters were used. For each of 50 items on the test, two
complete sets of item parameters were generated, representing two processes of
item response: one reasoning process occurring under the intended conditions of
general candidate knowledge, and one highly effective rapid recognition process
occurring in the case of item preknowledge. Parameters for the 3PL model were
generated with discrimination a � logN(0,0.5), difficulty b � N(0,1), and lower
asymptote c � Beta(1,5). Parameters for the lognormal response time model were
discrimination ˛� logN(0,0.5) and difficulty ˇ� N(3,1).

“Cheating” was modeled as a fast recognition process with a high lower
asymptote, operationalized by adding a constant 0.8 to 0.2c, where c is the lower
asymptote parameter in the reasoning condition. The a and b parameters are kept
unchanged from their reasoning condition counterparts. Response times had the
same discrimination distribution, but beta � N(2,1). This choice of parameters is
equivalent to an 80 % rate of substitution of the correct answer for that which would
be obtained otherwise, coupled with a distribution of response times e times faster,
consistent with practical observation.

Depending on the condition, 10 or 50 % of items were labeled suspect; of those,
one half, at random, were “exposed” and received some responses from the cheating
process.
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Latent ability (�) and speed (�) parameters for each simulee were generated at
random from a bivariate normal distribution with a population correlation of either
0.0 or 0.4.

For each set of item parameters, a calibration sample of 10,000 simulees was
generated and used to obtain the item parameter estimates then used for analysis.
An additional 2000 simulees, distributed across 20 centers with 100 simulees each,
constituted the reference (non-collusion) sample. A target (collusion) sample of a
further 2000 simulees was subdivided to obtain conditions of 1, 2, 5, and 10 as
well as 20 equally sized centers involved in collusion. Within the target sample, 5,
10, or 20 % of simulees were designated as “cheaters,” uniformly throughout latent
trait space. These simulees used the cheating process for the items on which it was
available.

Item parameters for the full joint model, including the population correlation,
were estimated simultaneously from the calibration sample data, using a modified
EM algorithm in two dimensions. Based on the obtained item parameters, latent
ability and latent speed were estimated for all reference and target sample simulees.
Two fit statistics were calculated for each simulee: the divergence of the joint
posterior of latent ability and speed based on suspect items from the joint posterior
based on non-suspect items, within an individual, and the loglikelihood of the entire
pattern given the model. Latent ability was also estimated, and both fit statistics
calculated, based on the 3PL without reference to response time.

Identification of groups and individuals was carried out independently for each
model (H3PL and 3PL) and fit statistic (divergence and loglikelihood), in order to
compare the efficacy of each configuration. The critical value for identification of
suspect groups was set to one standard deviation above the mean, an intentionally
liberal criterion suitable for a first hurdle. The critical value for identification of
likely colluding individuals was set to 1.96 standard deviations above the mean of
individuals in non-suspect groups, for a casewise Type I error rate of 0.025.

6.3.2 Results

In Stage One, in which suspect centers are labeled, there was a pronounced joint
effect of model type, fit statistic, and number of target centers. As shown in Fig. 6.2,
the H3PL model and divergence fit statistic yielded higher detection of target centers
than any other combination, when there were 1, 2, 5, or 10 target centers. The
remainder of the methods were barely above chance detection, as demonstrated by
the obtained rate of false positives. At 20 target centers (and, as always, 20 reference
centers), the method ceased to be effective for any model and statistic. This is not
surprising; divergence between two centers is calculated bilaterally, and the relative
positions on the fit statistic are not considered. Two equally sized clusters of centers
at different locations on the fit statistic continuum leave the method without a cue to
determine which cluster is “reference” and which is “target;” detection is at chance.
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Fig. 6.2 Target center detection rate as a function of the number of target centers in the sample
(horizontal axis), the model used (black lines for H3PL; light grey for 3PL), and the fit statistic
(thick lines for divergence; thin lines for loglikelihood). The false positive rate is shown as a dark
grey dotted line; only the divergence method combined with H3PL (thick black line) substantially
exceeds it, and only when the number of target centers is smaller than the number of reference
centers

The divergence fit statistic yielded better results when cheating behavior was
more prevalent within target centers. Both fit statistics yielded better results when
50 % of the items were suspected compromised, versus 10 %; it is intuitive that
model misfit occurring on 12 or 13 items out of 50 would be more detectable than
misfit occurring on 2 or 3 items. Unexpectedly, the joint models did not perform
better when � and � were positively correlated than when they were uncorrelated.

In Stage Two, in which individuals are identified, there was a joint effect of
model type, fit statistic, and the scale of item compromise. When the two-pass
methodology was used with H3PL and the divergence fit statistic, where there were
1–10 target centers, and 25 items (50 %) were suspected with half of those actually
compromised, the correct identification rate was 15–22 %. With only five items
(10 %) suspected, the correct identification rate was 6–8 %. (The false positive rate
was 0.7 %.) The effect was only partly induced by the higher success rate of Stage
One in the case of the more severely compromised test. With target centers correctly
identified, individuals were detected 53 % of the time in the 50 % compromise case,
and 27 % of the time in the 10 % compromise case.

The combination of non-response time 3PL with the divergence statistic fared
more poorly: 5–7 % correct in the two-pass, severely compromised case; 1–2 %
in the mildly compromised case. When the correct centers were identified, the rates
rose to 26 and 12 %. The loglikelihood statistic was even worse, regardless of model.
Even with response time in the model, the true centers identified and large-scale
compromise, it only detected 9 % of simulated cheaters.
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There were no meaningful effects of latent trait correlation or cheating prevalence
within colluding samples on individual detection.

6.4 Study 2: Diffusion Model

6.4.1 Method

A second simulation study was conducted under the same practical paradigm,
but using the diffusion two-parameter logistic model (D2PL), with the 2PL for
comparison. An additional variable of interest was included; test length was either
10, 15, or 20 items, to simulate an analysis of a highly homogenous subtest rather
than an entire certification exam.

Item parameters for the D2PL were generated at random according to a parallel
set of hyperparameters. The 2PL response model was generated with discrimination
a � logN(0,0.5) and intercept c � N(0,1). The response time model used parameters
w � logN(3.2,0.7), m � N(�1.7,0.3) and ˇ� N(3.7,0.4). Cheating was modeled as
an entirely distinct rapid recognition process with a generally higher rate of success;
however, reasoning was permitted to be more reliable than recognition for some
items and some examinees. Parameters used were a � logN(�1,0.5), c � N(3,1),
w � logN(2.2,0.7), m � N(�0.57,0.1), and ˇ� N(2.7,0.4).

In the interests of efficiency, and to accommodate the greater computational
demands of the D2PL, the same item parameters and calibration sample were
used for all three levels of cheating incidence, within a condition defined by test
length, scale of compromise, and correlation of ability and speed. However, separate
reference and target samples were simulated for the three levels. A total of 120 sets
of item parameters were used: ten replicates of each condition.

The remainder of the procedures, including calibration, calculation of fit statis-
tics, and identification of suspect groups and individuals, were carried out as in
Study 1.

6.4.2 Results

As in Study 1, in Stage One, the joint model (D2PL) and divergence fit statistic
outperformed all other combinations at correctly identifying centers, so long as
target centers were in the minority (1, 2, 5 or 10 centers). This result is shown in
Fig. 6.3.

Again, the divergence fit statistic yielded better results when cheating behavior
was more prevalent within target centers. There were no meaningful effects of scale
of compromise, latent trait correlation, or test length.
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Fig. 6.3 Target center detection rate as a function of the number of target centers in the sample
(horizontal axis), the model used (black lines for D2PL; light grey for 2PL), and the fit statistic
(thick lines for divergence; thin lines for loglikelihood). Only the divergence method combined
with D2PL (thick black line) substantially exceeds the rate of false positives (dotted line)

In Stage Two, in which individuals are identified, the joint model and divergence
fit statistic again outperformed the other combinations. The two-pass method
resulted in 7–10 % correct detection, versus 3–4 % for runner-up 3PL with the
divergence fit statistic. With centers correctly identified, the D2PL identified indi-
viduals with 22 % accuracy, and the 3PL was 16 % accurate. With the loglikelihood
statistic, even with centers correctly identified, the 2PL’s accuracy was only 8 %,
and the D2PL was actually worse, at 6 %.

There were no meaningful effects of latent trait correlation or test length within
colluding samples on individual detection. The effects of cheating prevalence and
scale of compromise were inconsistently observed, but in the expected direction
where present.

6.5 Discussion

In both studies, there was a clear contribution of joint response time models above
and beyond their item response components. The scale of the improvement is
influenced by the particular sets of item response and response time model hyper-
parameters chosen to represent reasoning and recognition (collusion) behaviors.
The hyperparameters were not based on any particular dataset and should not, for
example, be used to compare the H3PL to the D2PL.
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It is also worth noting that the selected hyperparameters led to moderate effect
sizes and limited detection, with less than 40 % correct identification of centers
and even lower identification rates for individuals. Correct identification could
be increased by choosing more liberal critical values, particularly in Stage One.
However, increases in detection must be balanced with the need to keep false
positive rates low in practical situations, where the consequences of being labeled a
“cheater” may be severe. Under the simulated conditions, the observed false positive
rates were consistently well below 1 % for individuals.

In the case where homogenous subtests are used for detection, as simulated in
Study 2, independent screens based on multiple subtests could generate a longer list
of suspects with an indication of priority; further investigation is needed to fully
determine true and false positive rates in that case.

Caution should be used in applying these methods of collusion detection, due
to the high stakes for test takers and testing programs; independent verification of
findings is advisable.

In conclusion, a pair of simulation studies found the inclusion of response
time as well as response correctness to benefit model-based collusion detection.
Belov’s (2013) divergence method is effective when used with joint response time
models and its own divergence-based fit statistic, and when colluding groups are
the minority; however, the method does not perform as well with a non-tailored
fit statistic. Accuracy is higher when the scale of compromise is greater and when
cheating is more prevalent (20 % versus 5 %) in groups where compromise exists.
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Chapter 7
The Performance of the Modified
Multidimensional Priority Index for Item
Selection in Variable-Length MCAT

Ya-Hui Su

Abstract In addition to statistical optimization, an important issue in computerized
adaptive testing (CAT) is to fulfill a large number of statistical and non-statistical
constraints for the construction of assessments. The priority index (PI) approaches
can be used for item selection to monitor many constraints simultaneously. Many
previous studies on item selection methods were conducted in fixed-length multidi-
mensional CAT (MCAT); however, studies in variable-length MCAT were paid little
attention. To achieve the same level of precision for examinees, the purpose of the
study was to investigate the modified multidimensional priority index (MMPI-v)
and multidimensional priority index (MPI) in variable-length MCAT through
simulations. It was found that the MMPI-v method outperformed the MPI in terms
of constraint management, and the MMPI-v used fewer items than the MPI method
did to meet the required measurement precision.

Keywords Computer adaptive testing • Priority index • Multidimensional • Item
selection • IRT • Variable length

7.1 Background and Purpose

An important issue in computerized adaptive testing (CAT) is to fulfill a large num-
ber of statistical and non-statistical constraints for the construction of assessments,
such as item exposure control, content balancing, key balancing, and so on. The
priority index (PI; Cheng and Chang 2009; Cheng et al. 2009) and multidimensional
priority index (MPI; Yao 2011, 2012, 2013) can be used to handle many constraints
simultaneously for CAT and multidimensional CAT (MCAT), respectively. The
MPI item selection method was developed for the CAT Armed Services Vocational
Aptitude Battery (CAT ASVAB), which is a between-item MCAT test. To extend
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the MPI item selection method to a within-item multidimensional framework,
the modified multidimensional priority index (MMPI; Su and Huang 2014) was
proposed for item selection in fixed-length MCATs.

The stopping rule is used to stop a cyclical item selection process in CATs
(Reckase 2009; Wainer 2000). When a stopping rule of fixed-length is considered
in CATs, measurement precisions are different for different ability levels and it
results in a high misclassification rate, which might be costly. To achieve the same
level of precision for examinees, a stopping rule of fixed-precision can be used in
CATs. Some examinees may need to take more items and some may need to take
fewer items when fixed-precision is considered. The administered tests for certain
examinees may be undesirably lengthy or short because the required precision
cannot be met or few items have improved the precision significantly. Under
the unidimensional framework, some studies have been done on using different
stopping rules in CAT (Dodd et al. 1993), such as the minimum standard error (SE)
stopping rule, the minimum information stopping rule (Dodd et al. 1989), and the
predicted standard error reduction (PSER) stopping rule (Choi et al. 2011). Under
the multidimensional framework, many previous studies on item selection methods
were conducted in fixed-length MCATs (Mulder and van der Linden 2009; Su and
Huang 2014; Wang et al. 2011a, b; Yao 2011, 2012). However, studies on item
selection methods were paid little attention in variable-length MCATs (Yao 2013).

The MPI item selection method can be used in MCAT for item selection under
the fixed-length (Yao 2011, 2012) and variable-length (Yao 2013) conditions. The
MMPI item selection method can be used for item selection in fixed-length MCATs
(Su and Huang 2014), but it hasn’t been investigated under the variable-length
condition. Both the MPI and MMPI item selection methods can be implemented
easily and computed efficiently so they are important and useful for operational
CAT. However, no thorough simulation study has compared the performance of
these two methods in variable-length MCATs. Therefore, the purposes of the study
were to investigate the performance of the MPI and MMPI item selection methods
on monitoring constraints in MCATs when a stopping rule of fixed-precision was
considered.

7.1.1 The Multidimensional Priority Index Method

For each item i, Yao (2011) defined the MPI as

MPIi D
DY

dD1
fid

cid ; (7.1)

where the cid is the loading information for item i on dimension d. The term cid D 1

if item i is from dimension d, and cid D 0 otherwise. For each item selection step,
the item with the largest MPI will be selected for administration. The estimated
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dimension precision, item exposure rate, and content constraints with upper and
lower bounds are included to define fid in variable-length MCATs (Yao 2013) as

fid DŒmaxfŒ1 � .pd
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where pd and bpd are the required standard error of measurement (SEM) and
the SEM estimates based on the administered items for the dimension d ability
estimates, respectively. The first term in Eq. (7.2) is used to achieve the same level of
precision for examinees. The larger the SEM, the smaller the precision. The second
term in Eq. (7.2) is used to ensure that no item is selected more than a pre-specified
item exposure rate ri. N is the total number of examinees. For each item selection
step, ni is the number of examinees who have seen item i. The third term in Eq.
(7.2) is used to handle content specifications. The lower and upper bounds of each
dimension d are ld and ud, respectively. For each item selection step, xd is the number
of selected items from dimension d. When the constraint is met, no further items will
be selected for a specific constraint. The smaller the values of a and b, the larger the
weights given to the precision. "1 is used to ensure that precision is obtained slightly
above the required measurement precision. "2 is used to meet the lower bound for
the dimension d.

The MPI item selection method was developed to handle the constraints for
the CAT ASVAB test (Yao 2011, 2012, 2013), which is the between-item multi-
dimensional test. The items from the same battery are assumed to measure only one
distinct latent trait, and the overall assessment is assumed to measure four different
latent traits. In practice, some other tests might have a within-item multidimensional
structure such that individual items are intended to assess multiple latent traits.

7.1.2 The Modified Multidimensional Priority Index Method

Su and Huang (2014) extended the MPI item selection method to the between-item
multidimensional framework with a stopping rule of fixed-length. For each item i,
the MMPI is defined as

MMPIi D Infi �
jY

kD1
wkfk

cik �
rXK

kDjC1
h
wkcikfk

�i2
; (7.3)

where the cik is the loading information for item i on constraint k. The term cik D 1 if
item i is from constraint k and cik D 0 otherwise. Each constraint k is associated with
a weight wk, which depends on its importance. For each item selection step, the item
with the largest MMPI will be selected for administration. The first term in Eq. (7.3)
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is the item information, which is the determinant of the Fisher information matrix.
The second term in Eq. (7.3) includes the between-dimension constraints, such
as item exposure control and key balancing in a unidimensional or between-item
multidimensional pool. When the item selection is considered in unidimensional
CATs, only the first two terms in Eq. (7.3) are included to calculate the MMPI. The
third term in Eq. (7.3) includes the within-dimension constraints, such as content
balancing in a within-item multidimensional pool.

When considering the flexible content balancing, lk and uk are lower and upper
bounds of content area k, respectively.�k is the number of items to be selected from
content area k. L is test length. Then,

lk 	 �k 	 uk; (7.4)

and

KX
kD1

�k D L: (7.5)

A two-phase item selection is to fulfill the lower bounds in the first phase and the
upper bounds in the second phase. To incorporate both upper bounds and lower
bounds, fk for a one-phase item selection strategy can be replaced with f1kf2k, which
f1k and f2k are defined as

f1k D 1

uk
.uk � xk/ ; (7.6)

and

f2k D .L � lk/� .t � xk/

L � lk
; (7.7)

respectively. f1k measures the closeness to the upper bound whereas f2k measures
the closeness to the lower bound. t is the number of items that have already been

administered and t D
KX

kD1
xk. When f2k is equal to 0, it means that the sum of items

from other contents has reached its maximum; f1kf2k is defined as 1 to ensure that
items from content k can be still included for item selection. When considering item
exposure control, fk can be defined as

fk D 1

rmax

�
rmax � ni

N

�
; (7.8)

where the N is the number of examinees who have taken the CAT, n is the number
of examinees who have seen item i, and rmax is a pre-specified item exposure rate.
ni/N is the provisional exposure rate after N examinees have taken the CATs.
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7.2 Method

7.2.1 Data Generation

In this study, the multidimensional three-parameter logistic (M3PL; Reckase 1985)
model was used for data generation. The probability of getting a correct response
for examinee n with d-dimensional latent traits ™0

n D .™1; ™2; : : : ; ™d/ is defined as

pni1 D ci C .1-ci/
exp

	
a0

i .™n � bi1/



1C exp
	
a0

i .™n � bi1/

 ; (7.9)

where ai is a d �1 vector of the discrimination parameter; bi and ci are the difficulty
and the guessing parameters of item i, respectively; and 1 is a d � 1 vector of 1s.

The item parameters and pool structure in this study were adapted from Su and
Huang’s paper (2014). One thousand M3PL items were generated to form a within-
item two-dimensional pool, in which 40 % items measured the first dimension,
30 % items measured the second dimension, and the rest 30 % items measured both
dimensions. The discrimination parameters were drawn from a uniform distribution
on the interval of real numbers (0.5, 1.5) for each dimension, difficulty parameters
were drawn from a standard normal distribution, and guessing parameters were
drawn from a uniform distribution on (0, 0.4). The numbers of content areas
simulated for two dimensions was 3 and 2. All 5000 simulated examinees are drawn
from a multivariate standard normal distribution with correlation 0.8.

7.2.2 Simulation Design

Eight constraints were considered in the study, including content balancing, required
measurement precision, item exposure control, and item information. The cor-
responding weights, upper bounds, and lower bounds of the constraints list in
Table 7.1. Three levels of the required measurement precision, 0.25, 0.30, and 0.35,
were used as the stopping rules of fixed-precision in MCAT. The maximum item
exposure rates of items were set at 0.20. The determinant of Fisher information
matrix was used as item information in MCAT. The maximum a posteriori (MAP)
estimation with a multivariate standard normal distribution (correlation is set at 0.8)
prior was used to estimateb™.

The MMPI item selection method was developed in fixed-length MCAT
(Su and Huang 2014). In this study, the MMPI was modified in a fixed-precision
condition, which was named as MMPI-v. This study compared the performance of
the MMPI-v and MPI item selection methods in variable-length MCAT. Since the
item information was already included by the MMPI-v item selection method in
Eq. (7.3), the MPI method in Eq. (7.1) was modified by multiplying item
information for item selection. For each item selection step, both methods were
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Table 7.1 Constraints and weights for item selection

Constraints Weight Lower bound Upper bound

Dimension 1—Content 1 1 5 9
Dimension 1—Content 2 1 7 13
Dimension 1—Content 3 1 6 11
Dimension 2—Content 1 1 6 14
Dimension 2—Content 2 1 7 16
Required measurement precision 1 0.25/0.30/0.35
Item exposure rate 1 0.20
Item information 1

multiplied by determinant of Fisher information matrix for item selection. Then, an
item with maximum value for the MPI or MMPI-v was selected for administration.
Each MCAT item selection method was stopped if the required measurement
precision had been achieved.

7.2.3 Evaluation Criteria

The results of the simulations were analyzed and discussed based on the fol-
lowing criteria: constraint management, measurement precision, and test length.
The measurement precision was evaluated by the SEM estimates based on the
administered items for the dimension d ability estimates. The test length was the
averaged test lengths over all examinees while different stopping rules and different
MCAT item selection methods were used. The constraint management was to check
whether the test sequentially assembling for each examinee met all the specified
test-construction constraints. The number of violated constraints for each examinee
was recorded, and the averaged number of violated constraints for examinees was
calculated by

V D
XN

nD1Vn

N
; (7.10)

where Vn represents the number of constraint violations in the nth examinees’ test.

7.3 Results

For each dimension, examinees were classified into six levels: f™ < �2g,
f�25 ™ < �1g, f�15 ™ < 0g, f05 ™ < 1g, f15 ™ < 2g, and f25 ™g. Due to the space
limitations, the measurement precision and test length of the item selection methods
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when the required measurement precision was 0.35 and 0.25 were summarized
in Table 7.2. The MMPI-v and MPI item selection methods performed well in
obtaining the measurement precision to meet the required measurement precision
at both levels. When the required measurement precision was 0.35, the MMPI-v
item selection method needed 16–20 items whereas the MPI item selection method
needed 20–30 items. When the required measurement precision was 0.25, the
MMPI-v item selection method needed 25–35 items whereas the MPI item selection
method needed 37–45 items. Although both item selection methods could achieve
similar measurement precision, the MMPI-v item selection method used fewer
items than the MPI method did, which was about 5 and 11 items when the required
precision was 0.35 and 0.25, respectively. It was found that more items were needed
when the required measurement precision was small. It was also found that more
items were needed for examinees with extreme ability.

Since the violation was considered at each examinee level, only the first seven
constraints in Table 7.1 were included to evaluate the efficiency of the constraint
management. When the required measurement precision was 0.35, the averaged
number of violated constraints for the MMPI-v and MPI item selection methods
were 0.00 and 0.08 items, respectively. When the required measurement precision
was 0.25, the averaged number of violated constraints for the MMPI-v and MPI
item selection methods were 0.00 and 2.01 items, respectively. The MMPI-v item
selection method performed better than the MPI method in terms of constraint
management no matter when the required measurement precision was set high
or low.

Table 7.2 Measurement precision and test length for the item selection
methods

MMPI-v MPI
SEM Test length SEM Test length

Level Dim1 Dim2 Dim1 Dim2 Dim1 Dim2 Dim1 Dim2

Required measurement precision D 0.35
1 0.35 0.35 23 25 0.35 0.35 28 30
2 0.35 0.35 20 22 0.35 0.34 23 27
3 0.35 0.34 17 18 0.35 0.34 20 23
4 0.34 0.34 16 17 0.34 0.35 24 20
5 0.35 0.35 19 20 0.34 0.35 27 25
6 0.35 0.35 24 23 0.35 0.35 30 29
Required measurement precision D 0.25
1 0.25 0.25 35 34 0.25 0.25 43 44
2 0.24 0.25 29 30 0.24 0.25 44 42
3 0.25 0.24 25 26 0.24 0.24 42 38
4 0.25 0.24 28 27 0.25 0.25 39 37
5 0.25 0.25 30 29 0.25 0.25 42 40
6 0.25 0.25 33 32 0.25 0.25 45 42
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7.4 Discussion

The MMPI item selection method can be implemented with various constraints
efficiently under the fixed-length condition (Su and Huang 2014); however, the
measurement precision cannot guarantee be to equal for all examinees. It might
misclassify the examinees with extreme abilities. Many previous studies on MCAT
item selection methods were conducted under the fixed-length condition; however,
studies under the fixed-precision condition were paid little attention. To achieve the
same level of precision for examinees, this study investigated the performance of the
MMPI-v and the MPI in variable-length MCAT through simulations. It was found
that the MMPI-v item selection method used fewer items than the MPI method did
to meet the required measurement precision. It was also found that the MMPI-v item
selection method outperformed the MPI method in terms of constraint management.
The MMPI-v item selection method is recommended for item selection under the
variable-length condition.

The MMPI-v item selection method can be implemented easily and computed
efficiently. The research findings from this study will advance our knowledge for
item selection in variable-length MCAT. However, this study has some limitations
that can be addressed in future work. First, the determinant of Fisher information
matrix was used as the constraint related to item information in the study. There are
different item selection procedures related to item information, such as minimum
angle (Reckase 2009), minimize the error variance of the linear combination
(van der Linden 1999), Kullback–Leibler (KL) information (Veldkamp and van der
Linden 2002), and so on. Yao (2013) found that the KL information used the
least numbers of items among five different item selection procedures under
the variable-length condition. It might be worth to replace the maximum volume of
the information with the KL information for the MMPI-v item selection method and
investigate its efficiency under the variable-length condition. Second, the algorithms
of the MMPI-v item selection method were derived for M3PL model, which is
for multidimensional dichotomous items. It might be useful to be extended for
multidimensional polytomous items because the polytomous items provide more
information than dichotomous items do. Third, to integrate the MMPI-v item
selection method with the other item exposure control or test overlap control
procedures needs to be investigated as well.
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Chapter 8
A Nonparametric Estimator of a Monotone
Item Characteristic Curve

Mario Luzardo and Pilar Rodríguez

Abstract This paper presents a nonparametric approach to estimating item char-
acteristic curves (ICCs) when they should be monotonic. First, it addresses the
uni-dimensional case; before generalizing it to the multidimensional case.

This is a two-stage process. The first stage uses a nonparametric estimator of the
ICC by means of nonparametric kernel regression; the second uses the above result
to estimate the density function of the inverse ICC.

By integrating this density function, we obtain an isotonic estimator of the inverse
ICC: symmetrized with respect to the bisector of the unit square, to obtain the ICC
estimator. We also present the multidimensional case, in which we proceed on a
coordinate-by-coordinate basis.

Keywords Nonparametric • Isotone • Item response theory

8.1 Introduction

The most popular approach to item response theory (IRT) is to use parametric
models: such as one-, two- or three-parameter logistic or normal ogive models;
the Rasch model is currently the most popular. The literature on these models is
extensive: most notably Lord (1980), Hambleton et al. (1991), Fischer and Molenaar
(1995), Van der Linden and Hambleton (1997), Boomsma et al. (2001), and Baker
and Kim (2004). The models determine the shape of the item characteristic curve
(ICC), depending on a fixed, very small number of parameters; but none take non-
monotonic items or systematic departures of shape into consideration, and they are
not flexible (Douglas 1997; Douglas and Cohen 2001; Ramsay 1991).
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In parametric models, methods for estimating ICC include joint maximum
likelihood, marginal maximum likelihood, and conditional maximum likelihood
estimation; but if the assumptions of uni-dimensionality and local independence are
violated, estimations of item parameters and the ability are poor. Departures from
the three-parameter model have been noted while the parameter estimates of these
models have very large sampling co-variations (Lord 1980).

Several alternative methods, based on quasi-parametric or nonparametric
approaches, have been developed to deal with these issues. There has been
considerable research on those models which are not based solely on a parametric
approach: such as the partial spline model, which is partly parametric and partly
nonparametric (Wahba 1990) or models based on a linear combination of basis
functions. One of these methods—nonparametric item response theory (NIRT)—
was shown to be more flexible than that offered by parametric models. The first
nonparametric models were proposed by Mokken (1971), Niemoller and van Schuur
(1983), Mokken and Lewis (1982), Sijtsma (1988), and Giampaglia (1990). More
recently, Mokken (1997), Sijtsma (1998, 2001), Molenaar and Sijtsma (2000),
Junker (2001), and Junker and Sijtsma (2001) presented new results.

Two models stand out: the monotonic homogeneity and double monotonicity
models. The mathematical treatment for the former can be found in Holland and
Rosenbaum (1986), Holland (1990), Stout (1987, 1990), Junker (1993), and Ellis
and Junker (1997). Mokken (1971) showed that if the monotone homogeneity
model is assumed, and the prerequisites of uni-dimensionality, local independence
and monotonicity are fulfilled, covariance between all item pairs is nonnegative.
In addition, Rosenbaum (1984) and Holland and Rosenbaum (1986) proved the
conditional association in monotonic latent trait models. Meijer et al. (1990)
provided a thoughtful comparison between parametric and nonparametric models;
as did De Koning et al. (2002). Readers interested in a basic introduction to NIRT
should refer to Sijtsma and Molenaar (2002).

Douglas et al. (1998) provided methods with which to investigate local indepen-
dence. Methods of studying non-decreasing ICCs from a practical standpoint were
presented in Ramsay (1991), Molenaar and Sijtsma (2000), and Douglas and Cohen
(2001). Mokken (1971) employed the H coefficient developed by Loevinger (1947)
for scale evaluation. He proposed that a scale is weak if 0:3 	 H < 0:4, moderate if
0:4 	 H < 0:5, and strong if H � 0:5. Grayson (1988) showed that the total score
(conditioned to �) has a monotone likelihood: such that P.X

C

Dtj�/
P.X

C

Dsj�/ ; 0 	 s < t 	 n is
non-decreasing as a function of � , then XCj� is an optimal statistic for the binary
classification.

In order to estimate ability, we must use indirect methods. A first alternative is
to utilize the total score, which has monotone likelihood and is positively correlated
with the trait. Schriever (1985) suggested using multiple correspondence analyses;
the first component of the correlations matrix determining ability. Lewis (1983)
favored a Bayesian method, which also makes it possible to obtain confidence
intervals for the trait.

Ramsay (1991) presents an alternative method, which aims to estimate the ICC
through nonparametric kernel regression, and can be considered a functional data
analysis technique. This approach is implemented in TestGraf software (Ramsay
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2000). Douglas (1997) proved the joint consistency for the uni-dimensional case
while Luzardo and Forteza (2014) proved conditions for joint consistency in the
multidimensional one.

As regards monotonic estimates of regression functions, we have found a wide
range of methods, such as those proposed by Cheng and Linn (1981), Wright
(1981), Friedman and Tibshirani (1984), Delecroix and Thomas-Agnan (2000),
or Gijbels (2005) and Mammen (1991). Brunk (1955) proposes a method—later
modified by Mukerjee (1988)—for obtaining estimators with similar properties to
those of nonparametric regression. Ramsay (1988, 1998) and Kelly and Rice (1990)
propose using splines. Ramsay (1988), for example, estimates the functions by
taking linear combinations of monotone regression splines. Later, Ramsay (1998)
uses a semiparametric approach which requires that the ICC satisfies a second-order
differential equation, D2P D wDP where w 2 L2. The solution of this equation is of
the form P.�/ D C0 C C1

R �
0

exp.
R �
0

w.x/dx/dx where C0 and C1 are constants. As
a consequence, the estimator is not consistent in general. Finally, Hall and Huang
(2001) use the kernel-type estimator with modified weights while Dette et al. (2006)
deploy a two-step estimator.

Lee (2007) studies the performance of three nonparametric methods of estimat-
ing ICCs, and compares the Ramsay model with isotonic regression and smoothed
isotonic regression. The isotonic regression and smoothed isotonic regression
methods estimate ICCs under the constraint of monotonicity. This paper will build
on the estimator model proposed by Dette et al. (2006) for our estimation of
monotonic ICCs in the uni-dimensional and multidimensional cases.

8.2 Multidimensional Ramsay Model

Our model is based on nonparametric kernel regression. Ramsay (1991) introduced
this approach in the uni-dimensional case; and Douglas (1997) proved the joint
consistency of traits and ICCs.

Let us begin by examining how the Ramsay model (1991) extends to the mul-
tidimensional case. A detailed discussion of this—together with the demonstration
of joint consistency when the trait is multidimensional—can be read in Luzardo
and Forteza (2014). Unfortunately, Bellman’s curse of dimensionality limits this
development to low dimensions.

Ramsay (1991) considers dichotomous or polytomous items, and estimates
traits and ICC by using nonparametric regression methods. Our focus is on the
dichotomous model with multidimensional traits; but extension to polytomous items
is easy.

Consider n dichotomous items responded to by N examinees. This situation
determines the existence of random variables Xi;k i D 1; : : : ; n, k D 1; : : :N, which
indicate the responses of the kth subject to the ith item Xi;k, whose value is 1 if
examinee i responds to item k correctly, and 0 otherwise.
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Variables Xi;k depend on d latent traits (�l ), y X D .X1; ::;Xn/ represents the
random vector of responses to n items; more specifically, Xk indicates the kth
person’s response vector.

We can notice ability as a random vector in Rd

� D .�1; : : : ; �d/:

Assume that Pi.�k/ D P.Xik D 1j� D �k/ is the probability that an examinee
with trait �k will respond to item i correctly .�;A;P/ is a probability space; and—
with no loss of generality—that trait � has uniform marginal distribution functions
on Œ0; 1�.

This hypothesis is not restrictive. It is clear that any conclusion we may draw in
this context will work for any marginal distribution, as the ICCs remain unchanged
under monotonic transformations. This loss of identifiability is noted by Ramsay
(1991, p. 614): “In the context of item analysis, a test cannot yield anything more
than rank order information about examinees.”

To see this, let us consider a uni-dimensional latent trait � and its population
distribution function H. We know that H.�/ has uniform distribution on [0,1]. We
can therefore estimate � D H.�/ rather than � because

P.�/ D P.H�1.H.�/// D P.H�1.�// D P�.�/ (8.1)

where

P� D P ı H�1 (8.2)

is the ICC related to ability � . If � D .�1; : : : ; �d/ is multidimensional with known
marginal distribution functions Hl l D 1; : : : ; d, the changes are trivial.

As random variables Xi;k are Bernoulli variables, then

Pi.�k/ D P.Xik D 1j� D �k/ D E.Xik D 1j� D �k/: (8.3)

Therefore, the nonparametric regression estimator can be applied; but first it is
necessary to estimate the ability vector.

Consider a sequence of vector functions gn, Borel-measurable on Rn with values
on Œ0; 1�d. These functions must have certain properties for consistent estimators to
be obtained. A detailed demonstration of joint consistency in the multidimensional
case can be followed in Luzardo and Forteza (2014).

We assume gn;l is the lth component of gn, and for x 2 Rn

gn.x/ D .gn;1.x/; : : : :; gn;d.x//:

We further assume that functions gn;l.X/ are independent of �1; : : : ; �l�1;
�lC1; ::; �d for every 1 	 l 	 d, and we define the sequence of functions
fGgng W Rd �! Rd in such a way that for every x D .x1; : : : ; xd/ we have

Ggn.x/ D .P.gn;1.X/ 	 x1/; : : : ;P.gn;d.X/ 	 xd// D .Fn;1.x1/; : : : ;Fn;d.xd//

(8.4)
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where

Fn;l.x/ D P.gn;l.X/ 	 x/ (8.5)

We also have empirical distributions

OFN;l.x/ D #fgn;1.X/ 	 xg
N

D
PN

iD1 �fgn;1.X/�xg
N

(8.6)

with l D 1; ::; d; and let us define the functions:

OGN.x1; : : : ; xd/ D . OFN;1.x1/; : : : ; OFN;d.xd// (8.7)

Based on the above, we are in a position to estimate the lth component of
the ability. We use function gn;l to order the subjects, and then take the empirical
distribution function; the ability estimator being:

O�n D OGN.gn.X// (8.8)

We must be careful when obtaining the estimated ability to be used in the ICC
estimator. As the number of items is less than the number of subjects, many ties will
occur which will have to be broken. For this purpose, a random variable Wn is to
be added to each gn;l to obtain a sequence with no ties. Another factor is that the
estimation of the trait should be independent of the response to the item: so when
the ICC is estimated for item i, this item is removed when calculating the ability
estimate, and we obtain c�n;i

Then, the ICC estimator is

OPi.�/ D
PN

kD1 K.
b�n;i��

h /XikPN
kD1 K.

b�n;k��
h /

(8.9)

where K is a kernel and h is the bandwidth. If we know the marginal distribution
functions of ability Hl, we can convert the empirical estimators to the appropriate
scale using:

O� D .b�1; : : : ; b�d/ D .H�1
1 .

b�1/; : : : ;H�1
d .b�d// (8.10)

Bandwidth h must be chosen carefully to control the relationship between
skewness and variance of the estimator. If h decreases, so does skewness: as only
observations close to � are actually taken into account, but variance increases.
If h increases, variance decreases, as more observations will be included in the
calculation but skewness increases. Härdle (1990) presents several methods for
choosing the optimal value of h.
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8.3 Isotonic Model

In IRT, it is very important to develop models for monotonic items. Ramsay (1998)
proposes a procedure; but his method is semi-parametric, because the ICC requires
that a second-order differential equation be satisfied, which renders the procedure
inconsistent. Recently, Lee et al. (2007) proposed the use of an isotonic regression
method promoted by Barlow et al. (1972) as well as Robertson et al. (1988), a least-
squares method for data fitting under order restrictions. Our approach is based on
the method developed by Dette et al. (2006).

We will now demonstrate an isotonic nonparametric estimator for the ICC.
As stated above, this is a normal assumption in IRT. Dette et al. (2006) propose
estimating monotonic functions from non-monotonic estimators. These authors
consider functions strictly monotonic on Œ0; 1� with positive derivatives.

Suppose that the distribution of ability � is F.�/; and P.�/ is the ICC: which
is increasing, differentiable and monotonic. Denote � D F.�/ and P�.�/ D
P.F�1.�// D P.�/. Clearly, P�.�/ is increasing on Œ0; 1�, so we can assume with no
loss of generality that the trait has uniform distribution in the unit interval.

In this context, we presume that U1; : : : ;UT is a sample of random variables with
uniform distribution on Œ0; 1�, Kd is a kernel, and hd is the bandwidth. Then,

1

THd

TX
iD1

Kd.
P�.Ui/� u

hd
/ (8.11)

is the density estimator for P�.U/.
The density of P�.U/ is .P��1/0.u/�ŒP�.0/;P�.1/�.u/, then upon integration,

1

Thd

Z �

�1

TX
iD1

Kd.
P�.Ui/ � u

hd
/du (8.12)

is a consistent estimator of P��1 en � .
It is only natural to replace P�.Ui/ with an estimator of the ICC valued at a set

of points equally spaced out on Œ0; 1�, which in our case, we will do by means of
the Ramsay model. We will take a grid 0; 1T ; ::;

i
T ; ::; 1 and use the nonparametric

regression estimator at each point

cP�.
i

T
/ D

PN
jD1 Kr.

i
T � O�j

hr
/XjPN

jD1 Kr.
i
T � O�j

hr
/

(8.13)

where Kr and hr are the kernel and window of the regression estimator. Then, the
inverse monotonic ICC on � will be
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bP��1.�/ D 1

Thd

Z �

�1

TX
iD1

Kd.
cP�. i

T / � u

hd
/du (8.14)

Finally, the estimator of cP� is obtained by reflection of bP��1 in relation to y D x.
To illustrate the multidimensional case, we assume an increasing ICC for each trait;
and that the ICC estimator has been obtained via nonparametric regression in two
dimensions.

OPi.�1; �2/ D
PN

kD1 Kr.
b�1i��1

h1
;
b�2i��2

h2
/XikPN

kD1 Kr.
b�1k��

h1
;
b�2k��

h2
/

(8.15)

where Kr is a dimension-two kernel with compact support C 
 Œ0; 1�2. We also
assume that the kernel, bandwidth and functions used to estimate the traits all
fulfill the required hypotheses (Luzardo and Forteza 2014) for this estimator to be
consistent.

We then take a grid 0; 1T ; ::;
i
T ; ::; 1 for �1; and a grid 0; 1T ; ::;

j
T ; ::; 1 for �2. For

each fixed �2 2 .0; 1/ we consider the estimator

bH�1.�1j�2/ D 1

Thd

Z �1

�1

TX
iD1

Kd.
OP. i

T ; �2/ � u

hd
/du (8.16)

Function bH�1.�1j�2/ is strictly increasing on �1 for each fixed �2. We can
calculate the inverse (as a function of �1) to obtain OH.�1j�2/. For each fixed
�1 2 .0; 1/, we calculate

bP��1.�1; �2/ D 1

Thd

TX
jD1

Z �2

�1
Kd.

H.�1j j
T /� u

hd
/du (8.17)

Finally, cP�.�1; �2/ is calculated through the inverse (as a function of �2). The
algorithm would be:

Step 1 Using the standard procedure for each 1 	 i 	 T and 1 	 j 	 T, calculate

OP. i

T
;

j

T
/

Step 2 For each j
T with 1 	 j 	 T, calculate H�1.�1j j

T / through

bH�1.�1j j

T
/ D 1

Thd

Z �1

�1

TX
iD1

Kd.
OP. i

T ;
j
T /� u

hd
/du (8.18)
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Step 3 Through inversion in relation to �1, we obtain OH.�1j j
T / with 1 	 j 	 T

Step 4 Calculate

bP��1.�1; �2/ D 1

Thd

TX
jD1

Z �2

�1
Kd.

H.�1j j
T /� u

hd
/du (8.19)

Step 5 Through inversion in relation to �2, we obtain cP�.�1; �2/.

8.4 Discussion

We believe that the proposed method is an attractive alternative for estimating ICCs
where they are increasing, such as in educational contexts.

The method is very flexible, easy to program, and non-iterative: a major
advantage over parametric methods in the case of both uni-dimensional and
multidimensional models. It is precisely in the multidimensional case where its full
power becomes apparent in comparison to parametric methods, on account of the
large number of iterations in the case of the latter. Moreover, smooth functions are
obtained from the original method, which does not apply with other nonparametric
procedures.

As a constraint, we should mention that when working in the Œ0; 1� interval,
we do not obtain the original distribution of the trait and the estimation of ICCs
in the original ability scale. However, this difficulty is in any case apparent, as
the scales are equivalent in the case of monotonic transformations. If we know
the distribution of the trait in the uni-dimensional case, or the marginals in the
multidimensional one, the original scales will be obtained. A further significant
feature is that the dimension of the latent trait has to be reduced, as the number of
observations required for an accurate estimation grows potentially with the number
of dimensions.
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Chapter 9
Goodness-of-Fit Methods for Nonparametric
IRT Models

Klaas Sijtsma, J. Hendrik Straat, and L. Andries van der Ark

Abstract This chapter has three sections. The first section introduces the
unidimensional monotone latent variable model for data collected by means of
a test or a questionnaire. The second section discusses the use of goodness-of-
fit methods for statistical models, in particular, item response models such as
the unidimensional monotone latent variable model. The third section discusses
the use of the conditional association property for testing the goodness-of-fit of the
unidimensional monotone latent variable model. It is established that conditional
association is well suited for assessing the local independence assumption and
a procedure is proposed for identifying locally independent sets of items. The
procedure is used in a real-data analysis.
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9.1 Introduction to the Unidimensional Monotone
Latent Variable Model

We discuss the unidimensional monotone latent variable model (UMLVM), which
is a nonparametric item response theory (IRT) model also known as the monotone
homogeneity model (Sijtsma and Molenaar 2002). Next, we discuss the issues of
assessing the goodness-of-fit (GoF) of IRT models and the UMLVM in particular to
the data and problems that GoF investigation of IRT models typically encounters.
Finally, we propose a new GoF procedure for the UMLVM that selects one item
set or several item subsets consistent with the UMLVM’s local independence
assumption from an initial item set that may or may not be consistent with local
independence.

Let � denote the latent variable, and let Xj denote the random variable for the
score on item j ( j D 1; : : : ; J; J is the number of items in the test). The three
assumptions on which the UMLVM is based are the following.

• Unidimensionality (UD): latent variable � is unidimensional;
• Local independence (LI): the item scores are independent conditional on
� ; that is,

P.X1 D x1; : : : ; XJ D xj

ˇ̌
ˇ�/ D

JY
jD1

P.Xj D xj

ˇ̌
ˇ�/:

LI implies Weak LI, for covariances between items defined as

�.Xj;Xk

ˇ̌
ˇ�/ D 0;

and which proves to be useful in this chapter. It may be noted that Weak LI is a
weaker property than LI: LI ) Weak LI, but Weak LI ¤> LI;

• Monotonicity (M): The J IRFs are monotone nondecreasing in � ; that is,

expectation E.Xj

ˇ̌
ˇ�/ is nondecreasing in � .

The essential difference with parametric IRT models, such as the 1, 2, and 3-
parameter logistic models, the (generalized) partial credit model and the graded
response model, is that in nonparametric IRT models, such as the UMLVM, the IRFs
are not parametrically defined by means of, for example, logistic functions, but are
only subjected to order restrictions. For example, let us consider the logistic IRF of
the 1-parameter logistic model (Van der Linden and Hambleton 1997a), in which
ıj denotes the item’s location or difficulty parameter and 0/1 scoring for example
denotes incorrect/correct scoring, so that

P.Xj D 1
ˇ̌
ˇ�/ D E.Xj

ˇ̌
ˇ�/ D exp.� � ıj/

1C exp.� � ıj/
:



9 Goodness-of-Fit Methods for Nonparametric IRT Models 111

The latent variable � and the latent item parameter ıj can be estimated by means
of maximum likelihood procedures. However, nonparametric IRT models such as
the UMLVM only impose assumption M on the IRFs but do not parametrically
define the IRFs, and in the absence of parametric IRFs such as the logistic,
nonparametric IRT models do not enable estimating the latent variable � and
the latent item parameter ıj (but see Mokken and Lewis 1982, for an alternative
approach). However, the nonparametric UMLVM is a useful model because it does
imply an ordinal scale for person measurement that is suited in most practical testing
applications. Next, we discuss the properties of the ordinal scale.

For dichotomous items, the UMLVM implies stochastic ordering of latent

variable � by total score XC D
XJ

jD1Xj (SOL; Grayson 1988; Hemker et al. 1997).

Let C and K be values of XC, such that 0 	 C < K 	 J. Then for any t, SOL is
defined as

P.� > t
ˇ̌
ˇXC D C/ 	 P.� > t

ˇ̌
ˇXC D K/:

SOL refers to the ordering of the conditional, cumulative distributions of � . For the
means of these distributions, SOL implies that an increasing total score XC produces
an increasing mean latent variable � . Hence, SOL means that XC orders persons on
� , and this allows making decisions about relative attribute levels.

For polytomous items, mathematically the UMLVM does not imply SOL but
using an extensive simulation study, Van der Ark (2005) demonstrated that SOL
holds by approximation and that person reversals with respect to � due to the use of
XC usually concern adjacent XC values. Thus, rare ordering errors do not seem to
cause serious and far-reaching decision errors. In addition, SOL implies weak SOL,
defined as

P.� > t
ˇ̌̌
XC < xC/ 	 P.� > t

ˇ̌̌
XC � xC/;

and Van der Ark and Bergsma (2010) proved that the UMLVM implies Weak SOL:
SOL ) Weak SOL, but Weak SOL ¤> SOL. The dichotomization XC < xC and
XC � xC, typical of using cut scores, orders persons on � , and allows the use of
total score XC for assignment of individuals to the categories failure and success
in educational testing, rejection and selection in job assessment, and ineligible and
eligible for therapy or treatment in clinical settings.

The conclusion is that the UMLVM implies an ordinal scale on � by means of
total score XC. An interesting note often ignored is that all the parametric models
that are mathematical special cases of the UMLVM imply the use of XC as an
ordinal estimator of � , thus justifying the use of the much more accessible total
score in all applications where this might prove convenient. That is, the 1, 2, and
3-parameter logistic models and their normal-ogive counterparts imply SOL, and the
(generalized) partial credit model and the graded response model imply Weak SOL.
In the 1-parameter logistic model and its polytomous-item generalization, the partial
credit model, total score XC is a sufficient statistic for the maximum likelihood
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estimation of latent variable � . In other parametric IRT models, this relationship is
absent and it is often assumed incorrectly that XC has no place in the application
of such models. However, it has as an ordinal estimator of the � scale, and when
reasons to resort to the � scale are absent one can use the ordinal XC scale instead.

9.2 Goodness-of-Fit Research for the UMLVM

A good fit of an IRT model to the data is essential for establishing the model’s
measurement properties for the particular application envisaged. Without a well-
fitting model, the measurement specialist and the researcher cannot know whether
the measurement properties, in case of the UMLVM an ordinal scale, hold for the
test of interest, and the measurement practitioner cannot know whether conclusions
about people based on the scale are valid. An important question is when to use the
UMLVM as opposed to parametric IRT models. The answer is: When parametric
IRT models fail to fit the data well. This may seem to be a modest position, but
model-fit failure is the rule rather than the exception and is frequently ignored
implicitly assuming that the misfitting parametric IRT model can be used in practice
anyway; thus, the UMLVM may be useful in many applications to obtain an IRT
model that fits better than a parametric IRT model. We first discuss GoF in general
and then address the question of why researchers tend to neglect GoF investigation.

Like any model, IRT models are idealizations of reality and, consequently, they
cannot describe the data structure perfectly well. Thus, a GoF investigation will
always suggest at least some degree of model misfit. We distinguish three possible
outcomes of a GoF investigation. First, one may find that an IRT model provides
a reasonable approximation to the data and accept the model as a description of
the data. Second, one may conclude that the IRT model shows serious misfit and
decide that, for example, the item set should be divided into different subsets each
measuring a different attribute or misfitting items should be removed from the
item set hoping the IRT model to fit to the remaining item subset. The second
outcome may be a reasonable approximation but in principle the result is always
some degree of misfit. The third outcome is that the misfit is hopeless and nothing
can be done to save the test; that is, as long as one sticks to the IRT model selected to
model the data. In each case, in particular when misfit appears hopeless (i.e., option
3) but also when items are rejected because their IRFs are not logistic or have slopes
deviating from the majority of the IRF slopes (i.e., option 2) may one resort to an
alternative IRT model based on weaker assumptions, such as the UMLVM.

In test construction, GoF investigation appears to be somewhat neglected despite
the availability of GoF methods for several IRT models (e.g., Glas and Verhelst
1995; Sijtsma and Molenaar 2002; Van der Linden and Hambleton 1997b). One
can only speculate about the reasons for the more general neglect. One reason
may be that GoF investigation is complex. First, GoF methods never address the
whole model simultaneously but only one model assumption or a pair of model
assumptions. For example, several GoF methods exist that assess the combination
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of UD and LI or only LI, and other methods assess M possibly including a particular
parametric shape, but methods that simultaneously assess all assumptions of a
model, say, the 1-parameter logistic model or the graded response model, to our
knowledge do not exist. Second, GoF methods may be global, assessing the GoF
of all items with respect to one or two assumptions simultaneously, or they may be
local, assessing whether pairs of items are locally independent or whether the IRF of
one particular item is monotone. Third, splitting the item set in subsets or removing
an item from the item set produces a smaller data set and affects the GoF results
in the next analysis round, possibly causing initially fitting items to show misfit.
Combining these different aspects of a GoF investigation is difficult and may easily
discourage researchers; De Koning et al. (2002) and Sijtsma et al. (2011) suggest
how to consistently perform a complex GoF investigation.

Another reason for GoF neglect is that several GoF methods check a particular
observable consequence of a model, following the logic that negative results
imply that the IRT model cannot have generated the data. While the logic is
correct, it remains unknown which assumption or assumptions were violated in
particular. For example, the UMLVM and all its special cases including many
parametric IRT models imply positive inter-item correlations but the presence of
negative correlations among several positive correlations usually does not inform
the researcher which assumption or which assumptions have been violated, only
that the model did not generate the data. Hence, the diagnostic value of negative
inter-item correlations appears limited.

A comprehensive GoF investigation based on the combination of different
methods assessing different assumptions, for all items simultaneously and for
individual items and pairs of items, and possibly also considering GoF methods
providing little diagnostic information, may produce additional problems. First, a
comprehensive GoF procedure typically involves many decisions as the procedure
moves along thus introducing results that increasingly capitalize on chance, calling
for cross validating the end result. Second, a GoF investigation typically produces a
plethora of results that need to be combined so as to enable the researcher to draw
a conclusion about the fit of his IRT model to the data. Little research has been
done with respect to the question of how to combine the detailed results into one
conclusion about GoF.

In the third section of this chapter, we discuss a new GoF method that, when
the data are inconsistent with the UMLVM, has two apparent problems that we
try to solve: The method does not inform the researcher unequivocally which
assumption—UD, LI, or M—is violated and moreover produces an avalanche of
detailed results. We investigate which assumption is violated when the method
indicates model misfit and we suggest a solution to the problem of multiple detailed
results. Many GoF methods assess the UMLVM; for UD assessment see Mokken
(1971) and Straat et al. (2013); for LI assessment see Zhang and Stout (1999) and
Douglas et al. (1998); and for M assessment see Rossi et al. (2002) and Tijmstra
et al. (2013). Sijtsma and Molenaar (2002) and Sijtsma and Meijer (2007) provide
overviews.
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9.3 Conditional Association

We studied conditional association (CA; Holland and Rosenbaum 1986), which is
an observable consequence of the UMLVM, as a potential method for assessing
whether the data are consistent with the model’s assumption of LI. Let the vector
of J item-score variables be denoted by X, and let X be divided into two mutually
exclusive and exhaustive item subsets Y and Z, so that X D .Y;Z/. Also, let f1 and
f2 be nondecreasing functions and let h be any function. Holland and Rosenbaum
proved that the UMLVM implies CA,

�Œf1.Y/; f2.Y/
ˇ̌̌
h.Z/ D z� � 0:

CA implies that in particular subgroups defined by h.Z/ D z, the covari-
ance between nondecreasing functions f1(Y) and f2(Y) is non-negative. Examples
(Sijtsma 2003) of CA are:

• �.Xj;Xk/ � 0; all inter-item covariances/correlations are non-negative;

• �.Xj;Xk

ˇ̌̌
Xl D xl/ � 0; within item-score subgroups, all inter-item covariances

are non-negative; and

• �.Xj;Xk

ˇ̌
ˇR.jk/ D r/ � 0, rest score R.jk/ D

X
i¤j;k

Xi, R has realizations r; within

rest-score subgroups, all inter-item covariances are non-negative.

These covariances are used separately in several GoF methods for the UMLVM, but
here we will investigate whether they can be used for investigating LI.

CA provides the means for testing the GoF of the UMLVM to the data as follows:

• If the covariances are negative, then the UMLVM did not generate the data; and
• If the covariances are positive, then one has found support for the UMLVM (but

not proof, which is impossible in sample data).

A drawback for this sort of GoF research is the many covariances generated, among
them perhaps negative covariances due to serious model violations but others due
to only minor violations and sampling fluctuation, thus rendering it difficult to draw
straightforward conclusions about GoF. For example, assume one has 20 items and
5 ordered item scores per item; then, drawing conclusions about GoF would involve
a complete and possibly confused inspection that assesses and combines the results
from

• 190 covariances �(Xj, Xk);

• 5700 covariances �.Xj;Xk

ˇ̌
ˇXl D xl/; and

• 13,680 covariances �.Xj;Xk

ˇ̌̌
R.jk/ D r/.



9 Goodness-of-Fit Methods for Nonparametric IRT Models 115

9.3.1 How to Use CA Failure to Identify UMLVM Misfit?

How are the three cases of CA related to violations of UD, LI, and M? Suppose,
we need a multidimensional ™ to explain the associations between the items;
then, conditioning on one latent variable � violates LI and also weak LI, and
may also cause non-monotone IRFs reflected by negative (conditional) inter-item
covariances. We distinguish two violations of weak LI: positive local dependence

(PLD), �.Xj;Xk

ˇ̌̌
�/ > 0, and negative local dependence (NLD), �.Xj;Xk

ˇ̌̌
�/ < 0

(Rosenbaum 1988). What one needs to know is whether, for example, �.Xj;Xk

ˇ̌
ˇXl D

xl/ < 0 is due to items j and k being PLD or NLD, or whether the negative
covariance is due to non-monotonicity of the items’ IRFs. We used mathematical
results provided by Holland and Rosenbaum (1986) and Rosenbaum (1988) and a
computational study to find an answer to questions like these when the three cases
of CA provide negative values in sample data (Straat et al. 2014).

The mathematical results showed that even when the UMLVM fails to hold,
particular observable covariances are positive; hence, such covariances are useless
to assess UMLVM fit. For the other observable covariances, a computational study
was used to mimic PLD or NLD for particular item pairs or IRF non-monotonicity
for particular items, and to estimate the proportion by which a particular conditional
covariance for the corresponding items was negative. Reversely, we argued that the
higher the proportion, the higher the power of a particular covariance to identify
item pairs that were PLD or NLD, or items that had non-monotone IRFs.

The results of the computational study were the following. Conditional covari-
ances had insufficient power to detect IRF non-monotonicity; hence, they are not
suitable for this purpose. The next three types of covariances are suitable for
identifying PLD and NLD; that is, they are suited to identify violations of LI. Let a
and b be two items from item subset Y, and let c be an item from Z; j indexes any
item from the union of both subsets, X. PLD(a, b) means that items a and b are PLD,
and NLD(a, b) that both items are NLD. Further, s denotes sample covariance. The
next three results appear consistently across different choices of item parameters:

PLD: 1. If PLD(a, c) is investigated, then s.Xa;Xj

ˇ̌̌
Xc D xc/ < 0 indentifies PLD;

2. If PLD(a, j) is investigated, then s.Xa;Xb

ˇ̌̌
R D r/ < 0 identifies PLD;

Note: item b may replace item a; formally, nothing changes.

NLD: 3. If NLD(a, b) is investigated, then s.Xa;Xb

ˇ̌̌
R D r/ < 0 identifies NLD.

These results show that only a limited number of observable conditional covariances
have enough power to be useful in GoF research. The other covariances often have
positive values if LI is violated, that is, when the UMLVM fails to fit the data.
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9.3.2 Usefulness of CA Failure for Identifying Locally
Dependent Items

Straat et al. (2014) proposed a methodology that uses the three specific conditional
covariances above for identifying locally dependent items from a larger set, and
which therefore are candidates for removal from the test represented by vector X.
For each of the three covariance results discussed in the previous section, the authors
defined unique indices denoted W(1), W(2), and W(3), respectively, that quantify the
degree to which the item is suspected to belong to locally dependent pairs. For a
set of J items, each of the J.J � 1/ indices W(1) is a weighted count of negative

covariances defined in Result 1 in the previous section [i.e., s.Xa;Xb

ˇ̌
ˇXc D xc/ < 0,

j D 1; : : : ; J; j ¤ a; b]; each of the J indices W(2) is a weighted count of negative

covariances defined in Result 2 in the previous section [i.e., s.Xa;Xj

ˇ̌̌
R D r/ < 0,

j D 1; : : : ; J; j ¤ a; r D 1; : : : ; R]; and each of the J.J � 1/ indices W(3) is a
weighed count of negative covariances defined in Result 3 in the previous section

[i.e., s.Xa;Xb

ˇ̌
ˇR D r/ < 0; r D 1; : : : ; R]. Each index is the sum of probabilities

that a sample conditional covariance s is negative under the null hypothesis that the
population covariance � is non-negative. After a Fisher Z-transformation, sample
covariances are assumed to be normally distributed, and the sum of the areas under
the normal curve that correspond to the negative scale region on the abscissa defines
the value of a W index. A larger negative sum, that is, a larger positive W value,
suggests a stronger case for local dependence and thus removing the item from X.

Tukey’s fences were used to determine whether a W index has a negative value
high enough to remove the item from X. The authors adjusted a procedure Ligtvoet
et al. (2010) used in another context for item selection to their purpose, which was to
identify and then remove locally dependent items from X. Straat et al. (2014) called
the adjusted procedure the CA procedure. In a simulation study, the authors found
that CA procedure had a specificity—the proportion of correctly identified LI items
or item pairs that were kept in X—equal to 89.5 %. The CA procedure’s sensitivity
was defined for single items and pairs of items and assessed for different versions
of local dependence, and varied from approximately 42–90 %.

9.3.3 Real-Data Example: The Adjective Checklist

We analyzed data from the Adjective Checklist (Gough and Heilbrun 1980), which
are available in the R package “mokken” (Van der Ark 2007, 2012). The data
consisted of the scores of 433 students on 218 items from a Dutch version of the
Adjective Checklist. Each item is an adjective having five ordered answer categories
(0 D completely disagree, 1 D disagree, 2 D neither agree nor disagree, 3 D agree,
4 D completely agree). The respondents were instructed to consider whether an
adjective described their personality, and mark the answer category that fitted best
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Table 9.1 Item means, item-scalability coefficients, and total-scalability coefficient
(standard errors between parenthesis) for two ACL scales

Achievement Nurturance
Item Mean Hj (s.e.) Item Mean Hj (s.e.)

Active 2.471 0.408 (0.030) Kind 2.771 0.266 (0.036)
Alert 2.395 0.337 (0.036) Aloof* 2.312 0.190 (0.031)
Ambitious 2.448 0.410 (0.030) Helpful 2.624 0.264 (0.034)
Thorough 2.259 0.322 (0.036) Intolerant* 2.998 0.247 (0.034)
Energetic 2.460 0.423 (0.032) Sympathetic 2.778 0.265 (0.036)
Unambitious* 2.734 0.367 (0.033) Snobbish* 3.044 0.196 (0.032)
Quitting* 2.811 0.321 (0.036) Affectionate 2.972 0.207 (0.037)
Determined 2.499 0.384 (0.036) Hostile* 3.307 0.337 (0.027)
Industrious 2.067 0.372 (0.034) Friendly 2.806 0.317 (0.032)
Persevering 2.298 0.433 (0.032) Distrustful* 2.700 0.221 (0.031)
Total scale 0.378 (0.026) Total scale 0.247 (0.024)

Note: An asterisk indicates adjectives that are negative with respect to the attribute.
Tabulated results are based on recoded item scores

to this description. The 218 items constitute 22 scales. For illustration purposes
we selected two 10-item scales: Achievement, having item-scalability Hj-values
(Sijtsma and Molenaar 2002, chap. 4) greater than 0.3 for all items, and Nurturance,
having rather low item-scalability coefficients (Table 9.1). We used the R package
“mokken (Van der Ark 2007, 2012) to compute the scalability coefficients of
the items, and we used the R package “CAprocedure” (available from the
third author upon request) for the CA procedure. The R-code is provided in the
Appendix.

The UMLVM implies that item-pair scalability coefficients (Sijtsma and Mole-
naar 2002, chap. 4) and item-scalability coefficients are non-negative. For both
scales, we found that all item-pair scalability coefficients (not tabulated) and all
item-scalability coefficients indeed were positive, lending support to the fit of the
UMLVM.

For Achievement, the CA procedure flagged only item pair (Ambitious, Unam-
bitious) for possible PLD (Index W(1)). The 10 items produced 90 indices W(1).
Based on these 90 indices, Tukey’s upper fence was equal to 11.433. For item pair
(Ambitious, Unambitious), index W(1) equaled 12.194. For all other item pairs, the
W(1) values did not exceed Tukey’s upper fence. None of 10 indices W(2) and none
of the 45 indices W(3) exceeded the corresponding Tukey’s upper fences. The result
can be explained by noticing that the reversed scores of Unambitious were used to
compute the results, and reversal of the scores renders the items similarly worded,
so that a flag for PLD seems reasonable. Because Unambitious had the lower item-
scalability value, this item is a candidate for removal.

For Nurturance, the CA procedure flagged item-pair (Hostile*, Distrustful*)
for PLD (W(1) D 18.189, Tukey’s upper fence D 15.777), and the items Aloof*
(W(2) D 71.047, Tukey’s upper fence D 70.741) and Snobbish* (W(2) D 74.924,
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Tukey’s upper fence D 70.741) for being in a PLD item pair. Aloof* had the
lowest item-scalability coefficient and was removed first, followed by Distrustful*,
and Snobbish*. After these three items were removed, Intolerant* (W(2) D 33.027,
Tukey’s upper fence D 30.650) was flagged for being in a PLD item pair, and was
also removed, leaving six items in the scale. Except for Hostile*, all negatively
worded items were removed. An explanation for the large number of flagged items
is that the negatively worded items formed a separate dimension.

9.4 Discussion

Conditional association offers possibilities for LI assessment in goodness-of-fit
studies of the UMLVM. Given the variable results for CA procedure’s sensitivity, it
seems worthwhile to study how the procedure can be improved so as to increase
its sensitivity. A comparison with alternative procedures assessing LI is useful
and should be conducted. In a broader context, we noticed that GoF methods for
any statistical model hardly ever address the complete model but target particular
assumptions or sets of intimately related assumptions. For nonparametric IRT
models the picture is no different but fortunately a large array of GoF methods
assessing nonparametric IRT assumptions is available. The assessment of LI
seems to be the least well developed. This chapter discussed a contribution to LI
assessment. From the researcher’s viewpoint a sound methodology that combines
the best GoF methods so as to obtain a comprehensive picture of a model’s fit to the
data with respect to UD, LI and M is another topic we intend to pursue.

A.1 Appendix

R code we used for the real-data example.

R> library(“CAprocedure”)

R> library(“mokken”)

R> data(acl)

R> # Achievement

R> Ach <- acl[, 11 : 20]

R> coefH(Ach)

R> apply(Ach, 2, mean)

R> CAP(Ach, TRUE)

R> # Nurturance

R> Nur <- acl[, 61 : 70] #

R> coefH(Nur)

R> apply(Nur, 2, mean)

R> CAP(Nur, TRUE)
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Chapter 10
A Comparison of Differential Item Functioning
(DIF) Detection for Dichotomously Scored Items
Using IRTPRO, BILOG-MG, and IRTLRDIF

Mei Ling Ong, Seock-Ho Kim, Allan Cohen, and Stephen Cramer

Abstract This study was designed to provide an empirical comparison of three
IRT calibration programs, IRTPRO, BILOG-MG, and IRTLRDIF, all of which can
be used for detecting differential item functioning (DIF). The three programs were
compared for each of three dichotomous IRT models, the one-parameter logistic, the
two-parameter logistic, and the three-parameter logistic models. Results from each
of these programs were examined using data from a test designed to predict high
school graduation test results in a large Southeastern US state. Results suggested
that all three programs detected DIF differently.
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10.1 Introduction

Item response theory (IRT) is a general statistical theory describing the relationship
between examinee ability and item performance. In order to make certain all items
on a test fit to an IRT model are as free as possible from construct irrelevant variance,
a differential item functioning (DIF) analysis is often used. An item is said to
function differentially when examinees from different groups, conditioning on the
latent variable measured by the test, have different probabilities of success (Holland
and Thayer 1988). DIF testing is an important step in reducing the likelihood that
the items on the test measure variability that is irrelevant to the construct being
measured. In this way, DIF can help improve the validity of a test (Thissen et al.
1993).

A number of studies have employed BILOG-MG (Zimowski et al. 2003) for
use in detection of DIF (e.g., Kline 2004). Likewise, the computer program
IRTLRDIF (Thissen 2001) has also been used for DIF detection (Woods 2009).
A new computer program Item Response Theory for Patient-Reported Outcomes
(IRTPRO) developed by Cai et al. (2011) has recently been used for DIF detection
(e.g., Basokcu and Ogretmen 2014; Woods et al. 2013). Relatively little research has
been reported comparing whether DIF detection using IRTPRO is consistent with
results from other IRT calibration programs such as BILOG-MG.

The objectives for this study were (1) comparison of DIF detection of two
commonly used IRT calibration programs, BILOG-MG and IRTLRDIF, with results
from IRTPRO on an empirical data set for the one-parameter logistic (1PL), two-
parameter logistic (2PL), and three-parameter logistic (3PL) models and (2) the
examination of IRTPRO to determine its effectiveness in detecting DIF.

Previous research on DIF methodology has considered all minorities, such
as African Americans, Asians, Hispanics, and Native Americans, to be a single
homogeneous group (McNulty and Bellair 2003). Little research has shown that
African Americans and Hispanics are similar in this regard (Logan et al. 2012).
Therefore, the detection of DIF in this study is performed separately by ethnicity.

A third aspect of this study, therefore, was designed to examine whether DIF
occurred between different minority taking a statewide test of social studies. DIF
is expected to arise between one or more of these three groups and the majority
white sample, however, it is also expected that different patterns of DIF will obtain
between the different majority groups and the majority white sample.

10.2 Three Computer Programs for DIF Detection

10.2.1 IRTPRO

IRTPRO is a recently published computer program for use in calibration and test
scoring (Cai et al. 2011; Paek and Han 2013). IRT models included in IRTPRO
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include unidimensional and multidimensional IRT models scored both dichoto-
mously and polytomously. Confirmatory factor analysis and exploratory factor
analysis is also possible with IRTPRO. IRTPRO is capable of calibrating large-
scale production applications with unrestricted numbers of items or respondents.
The response functions of IRTPRO include 1PL, 2PL, 3PL, graded response,
partial credit, generalized partial credit, and nominal response models. IRTPRO also
applies the Wald test, as proposed by Lord (1980), for DIF detection. It implements
the methods of marginal maximum likelihood (MML) and maximum likelihood
estimation (MLE) for item parameter estimation. It is also possible to use apply
prior distributions for item parameters, in which case IRTPRO calculates Bayesian
estimates (Cai et al. 2011).

10.2.2 BILOG-MG

BILOG-MG is an extension of the BILOG 3 program and is specifically designed
for dichotomously scored items (Zimowski et al. 2003). It is capable of large-
scale production applications with unlimited numbers of items or respondents and
can perform item analysis and the scoring of an unlimited number of subtests or
subscales. In addition, BILOG-MG can be used for DIF detection as well as for
equating of test scores. Item response models analyzed by BILOG-MG include 1PL,
2PL, and 3PL. BILOG-MG applies a likelihood ratio chi-square and implements
MML estimation for the item and ability parameter estimation.

10.2.3 IRTLRDIF

IRTLRDIF was developed to implement a version of the likelihood ratio test for
DIF for large-scale testing applications (Thissen 2001). Several studies have used
IRTLRDIF in previous research (e.g., Steinberg 1994; Wainer et al. 1991; Wang
et al. 1995). Item response models analyzed in IRTLRDIF include 2PL, 3PL,
and Samejima’s polytomous models (Samejima 1997). IRTLRDIF implements the
likelihood ratio test and uses MML for item and ability parameter estimation.

10.3 Method

The Georgia High School Graduation Predictor Test (GPT). Data for this study were
taken from the Fall 2010 administration of the Georgia High School Graduation
Predictor Test (GPT) developed by the Georgia Center for Assessment (GCA)
(2007–2012). The GPT consists of four-choice multiple-choice questions and is
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designed to provide a broad range measure of high school achievement in Social
Studies and Science. The Social Studies data were used for this study.

The GPT Social Studies test originally consisted of 80 dichotomously scored
items. As analysis of the GPT indicated that Item 26 had a biserial correlation
of �0.052, it was dropped from the analysis. The GPT is a standardized test
constructed to follow the blueprint for the Georgia High School Graduation Tests
(HSGT). Because both the GPT and HSGT were constructed to measure the same
content, the GPT is able to predict 11th grade students’ future performance on the
HSGT (Georgia Department of Education 2010).

Data. The data consist of 2654 respondents who answered all the items on
the GPT. Self-reported information indicated that the sample consisted of 872
African Americans, 114 Hispanics, 132 Multi-Racial, and 1536 white examinees.
All examinees were enrolled in the 11th grade and attended 18 different high schools
from 17 different counties in Georgia. Three comparison groups were used in this
study: (1) Whites vs. African Americans; (2) Whites vs. Hispanics; and (3) White vs.
Multi-Racial. Whites were treated as the reference group, and African Americans,
Hispanics, and Multi-Racial students were treated as separate focal groups in the
DIF analysis.

Calibration. Unidimensional IRT models were used for items scored dichoto-
mously, that is, as either correct or incorrect. If an examinee j responds to item i
denoted by a random variable Uij, the two scores are coded as Uij D 1 (correct) and
Uij D 0 (incorrect) (Van der Linden and Hambleton 1997). The three IRT models
implemented in the programs used in this study were the 1PL model,

Pi .�/ D 1

1C e�.��ˇi/
; (10.1)

the two-parameter logistic (2PL) model,

Pi .�/ D 1

1C e�˛i.��ˇi/
; (10.2)

and the three-parameter logistic (3PL) model,

Pi .�/ D ci C .1 � ci/
1

1C e�˛i.��ˇi/
; (10.3)

are employed in this study. In these models, examinee ability is � 2(�1, 1). The
properties of item i that have an effect on the probability of success, Pi(�), are
difficulty, bi 2(�1, 1), discrimination, ai 2(0, 1), and the lower asymptote or
pseudo guessing parameter, ci 2(0, 1) (Baker and Kim 2004).

DIF Detection. Thissen (2001) notes that IRTLRDIF does not include the 1PL
model. Thus, BILOG-MG and IRTPRO were used to detect DIF with the 1PL model
and IRTLRDIF, BILOG-MG, and IRTPRO with the 2PL and 3PL models.
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In order to cross-validate the results from the DIF detection methods, this study
considered items to contain DIF if BILOG-MG and IRTPRO identified them to have
DIF under 1PL. For the 2PL and 3PL models, when the three programs identically
detected DIF, those items were identified as functioning differentially.

To investigate DIF under the 1PL, for example, BILOG-MG employs Lord’s
(1980) technique which tests whether item difficulties differ. The equation is

zi D �b

SE.GF�GR/

; (10.4)

where 4b DbbFi �bbRi :bbFi andbbRi are the item difficulty parameters for the focal
group and the reference group. SE(GF–GR) Dp

var.GF/C var.GR/ is the standard
errors of the differences between the focal group and the reference group, and zi is
the approximated standard normal deviate. If zi is less than �1.96 or greater than
1.96 for a two-tailed test, DIF is assumed to exist.

IRTPRO employs the Wald test (Lord 1977), the equation for which is

�2 D
�bFi

�bRi

�0
†�1

�bFi
�bRi

�
; (10.5)

where df D p, p is the number of parameters in the IRT model. †�1is the inverse
of the sample variance and covariance matrix of the differences between the item
parameter.

For IRTLRDIF, the likelihood ratio test statistic, G2, was used. The equation for
the G2 is (Thissen 2001)

G2.df / D �2 log Lc � .�2 log LA/ ; (10.6)

where df D p, p is the number of parameters. Lc is the compact model, and LA is
the augmented model. G2(df ) is distributed as �2(df ) with degrees of freedom, df,
equal to the difference between the number of parameters in the augmented and
the compact models (Thissen 2001). The critical value of chi-square statistics used
in this study and z are given in the footnotes at the bottom of Tables 10.2, 10.3,
and 10.4.

10.4 Results

Table 10.1 presents the summary statistics for each minority group and the white
comparison group. DIF results are given in Table 10.2. Note that IRTLRDIF was
not included in Table 10.2 as it does not handle the 1PL.

For White vs. African American comparisons, 42 DIF items were detected using
BILOG-MG, and 36 items using IRTPRO. Both programs yielded the same 36
items, so those items were considered DIF items with the 1PL. Sixteen items advan-
taged African American examinees, and 20 items advantaged White examinees. In
addition, BILOG-MG detected an additional six items as functioning differentially,
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Table 10.1 Raw score summary statistics for the GPT

Races
Statistics Whites African Americans Hispanics Multi-racial

Number of items 79 79 79 79
Mean 43.24 36.63 40.46 42.67
Standard deviation 12.59 11.46 10.73 11.752
Coefficient alpha 0.902 0.877 0.859 0.884
Participants (N D 2654) 1536 872 114 132

and BILOG-MG detected more than 50 % DIF items in White vs. African American
comparisons (i.e., 42 items), because this may have a different cultural background
(Hambleton 2006) and community region. For White vs. Hispanic comparisons, six
DIF items were detected using BILOG-MG, and five items using IRTPRO. Five
of the items were detected as functioning differentially by both programs. Three
items favored White examinees, and two favored Hispanic examinees. BILOG-MG
detected 12 DIF items and IRTPRO detected five DIF items for White examinees
and Multi-Racial examinees. The same five DIF items detected by IRTPRO were
also detected by BILOG-MG. Two items favored White examinees, and three items
favored Multi-Racial examinees. BILOG-MG and IRTPRO yielded the different
result in detecting DIF, and BILOG-MG detected more DIF items than IRTPRO.

Table 10.3 shows the DIF outcomes for the 2PL. DIF was identified only when
the three computer programs detected the same items. For White vs. African
American comparisons, 29 items were detected as functioning differentially using
IRTLRDIF, 19 items using BILOG-MG, and 28 items using IRTPRO. The three
programs detected the same 16 items as functioning differentially. Nine items
favored White examinees and seven items favored African American examinees.

For White vs. Hispanics comparisons, ten items were detected as functioning
differentially using IRTLRDIF, four items using BILOG-MG, and eight items
using IRTPRO. Four items were detected as DIF by the three programs. Three
items favored White examinees and one item advantaged Hispanic examinees.
Ten items were detected using IRTLRDIF, eight items using BILOG-MG, and eight
items using IRTPRO. The same five items detected as DIF by all three programs
were found for the White vs. the Multi-Racial comparisons. One item favored White
examinees and four items favored Multi-Racial examinees.

Both IRTLRDIF and IRTPRO presented almost the same results for the 2PL
model. For instance, both yielded the same 26 DIF items for the White vs.
African American comparisons, the same eight items for the White vs. Hispanic
comparisons, and the same seven items for the White vs. Multi-Racial comparisons.
IRTLRDIF and BILOG-MG detected the same 17 DIF items for the White vs.
African American comparisons, the same four items for the White vs. Hispanic
comparisons, and the same five items for the White vs. Multi-Racial comparisons.
BILOG-MG and IRTPRO detected the same 16 items for the White vs. African
American examinees, the same four items for the White vs. Hispanic examinees, and
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Table 10.2 The summary of BILOG-MG and IRTPRO for three comparison groups with 1PL

Whites vs. Blacks Whites vs. Hispanics Whites vs. Multi-Racial

Item
BILOG-MG
(z)

IRTPRO
(�2)

BILOG-MG
(z)

IRTPRO
(�2)

BILOG-MG
(z)

IRTPRO
(�2)

1 �5:216� 24:1� 1:057 0.8 �0:077 0.0
2 2:926� 10:7� 2:919� 8.7* 0:137 0.1
7 �3:008� 8:8� �1:435 2.2 �0:191 0.0
8 �5:442� 27:1� �1:339 1.9 �2:724� 6.4*
11 �7:861� 51:3� �1:931 3.6 �2:266� 4.2*
13 6:350� 45:4� 3:412� 12* 1:093 1.6
14 4:554� 24:4� �0:148 0.1 0:938 1.1
15 4:106� 21:0� 1:723 2.9 0:140 0.1
17 2:820� 10:7� 1:698 3.0 �1:236 1.6
19 1:445 3:9 3:069� 8.9* 0:275 0.2
20 3:445� 15:0� 0:763 0.5 �0:742 0.5
22 �4:257� 16:3� 0:988 0.8 0:000 0.0
23 2:968� 12:1� 0:618 0.3 0:601 0.6
25 2:661� 10:0� 1:010 1.0 �0:385 0.1
26 �4:238� 16:6� �1:556 2.5 �0:221 0.0
27 �3:442� 11:2� 0:556 0.3 0:377 0.3
28 �3:602� 12:4� �0:623 0.5 �0:138 0.0
29 �5:848� 29:5� �1:627 2.7 �1:738 2.5
30 2:256� 7:4� 1:737 2.8 1:241 2.0
31 2:000� 6:2� �0:256 0.1 1:532 3.0
34 �3:518� 11:5� �0:469 0.3 �0:706 0.4
44 �8:263� 62:8� �1:724 3.2 �2:756� 6.6*
49 2:132� 6:8� 0:749 0.5 0:449 0.3
51 �2:314� 5:7� �3:383� 12.2* 1:707 3.1
52 �4:123� 15:3� �0:997 1.1 �0:189 0.0
56 4:770� 26:9� �0:278 0.1 2:510� 6.9*
57 4:016� 19:1� 1:340 1.8 1:377 2.3
59 �2:706� 6:8� 0:107 0.0 1:528 2.5
60 2:179� 7:1� 0:036 0.0 0:532 0.5
61 3:504� 15:7� 1:026 0.1 2:244� 5.9*
62 2:632� 9:2� 0:678 0.5 1:810 3.9
66 2:859� 10:8� 0:234 0.0 0:893 1.1
69 �2:752� 7:4� 1:163 1.1 �0:325 0.1
71 2:886� 10:7� �0:756 0.7 1:244 2.0
72 3:446� 14:7� �0:228 0.1 0:500 0.4
74 �4:706� 19:3� �3:412� 10.5* �0:316 0.1
78 3:746� 17:4� 0:341 0.1 0:374 0.3

*Two computer programs are consistently identified DIF Items with p < 0.05. The critical
values are �2

(1) D 3.84 for IRTPRO and z D ˙1.96 for BILOG-MG
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the same four items for the White vs. Multi-Racial examinees. The three programs
displayed different DIF outcomes. IRTLRDIF and IRTPRO exhibited the highest
consistency for DIF detection for the 2PL model.

Table 10.4 presents the DIF outcomes for the 3PL model. For White vs. African
American comparisons, 20 items were detected using IRTLRDIF, 14 using BILOG-
MG, and 16 using IRTPRO. Nine of these items were the same for the three
programs. Six items advantaged White examinees, and three items favored African
American examinees. For the White vs. Hispanic comparisons, five DIF items
were detected using IRTLRDIF, six items using BILOG-MG, and 14 items using
IRTPRO. Three DIF items were detected by all three programs. Two items favored
White examinees, and one item favored Hispanic examinees. For the White vs.
Multi-Racial comparisons, four items were detected using IRTLRDIF, seven items
using BILOG-MG, and ten items using IRTPRO. The three programs detected only
one DIF in common. This item advantaged the Multi-Racial group.

Both IRTLRDIF and IRTPRO presented the same 13 DIF items for the White
vs. African American comparisons for the 3PL, the same four items for the White
vs. Hispanic comparisons, and the same two items for the White vs. Multi-Racial
comparisons. IRTLRDIF and BILOG-MG detected the same 12 DIF items for the
White vs. African American comparisons, the same three items for the White vs.
Hispanic comparisons, and the same two items for the White vs. Multi-Racial
comparisons. BILOG-MG and IRTPRO detected the same nine items for the White
vs. African American examinees, the same three items for the White vs. Hispanic
examinees, and the same two items for the White vs. Multi-Racial examinees. The
three programs displayed different DIF outcomes, and IRTPRO detected more DIF
items than other computer programs for Whites vs. Hispanics (14) and for Whites
vs. Multi-Racial (10) for the 3PL. Results indicated that IRTLRDIF and IRTPRO
detected the same items for the 2PL. Summary results of DIF items for the three
comparison groups with the three models, 1PL, 2PL, and 3PL, are presented in
Table 10.5.

10.5 Summary and Discussion

Most DIF detection procedures have been developed for two-group comparisons
such as between a reference group and a focal group. Previous research has tended
to consider all minorities as a single homogeneous group (McNulty and Bellair
2003). For instance, several studies mentioned that racial differences in assessment
have primarily been developed in reference to comparisons between Whites and
minority groups, which include African Americans, Asians, Hispanics, and Native
Americans. There is no evidence, for example, that African American and Hispanic
examinees are indeed homogeneous in this regard (Logan et al. 2012). Thus, this
study shows that DIF detection differs by ethnicity. Previous studies (Coffman and
Belue 2009) investigated the scores only for either Whites and African Americans
or Whites and Hispanics. This study extends the line of prior research by using three
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Table 10.5 The summary of DIF items for three comparison groups using
IRTLRDIF, BILOG-MG, and IRTPRO

Whites vs.
African
Americans

Whites vs.
Hispanics

Whites vs.
Multi-Racial

Programs 1PL 2PL 3PL 1PL 2PL 3PL 1PL 2PL 3PL

IRTLRDIF NA 29 20 NA 10 5 NA 10 4
BILOG-MG 42 19 14 6 4 6 12 8 7
IRTPRO 36 28 16 5 8 14 5 8 10
IB NA 17 12 NA 4 3 NA 5 2
IP NA 26 13 NA 8 4 NA 7 2
BP 36 16 9 5 4 3 5 4 2
IBP NA 16 9 NA 4 3 NA 5 1

Note: IB D IRTLRDIF and BILOG-MG; IP D IRTLRDIF and IRTPRO;
BP D BILOG-MG and IRTPRO; IBP D IRTLRDIF, BILOG-MG, and IRT-
PRO; NA D Not Available; IRTLRDIF cannot deal with 1PL

comparison groups (1) Whites vs. African Americans; (2) Whites vs. Hispanics; and
(3) White vs. a Multi-Racial group, to determine which items function differentially
for a specific ethnicity.

In general, DIF results did not differ across the three computer programs. DIF
results did differ across computer programs depending on the IRT model in this
study. For instance, for the 3PL, IRTLRDIF detected five DIF items, BILOG-MG
detected six DIF items, and IRTPRO detected more DIF items, 14, than other
computer programs for Whites vs. Hispanics. Consistency was greater rate between
IRTLRDIF and IRTPRO for the 2PL and 3PL. IRTPRO DIF results differed in this
study. As an example, IRTPRO detected more DIF items for Whites vs. Hispanics
(14) and Whites vs. Multi-Racial (10) groups with 3PL.

Future studies should employ both simulated and empirical data in detecting DIF
in order to obtain an accurate result to determine whether IRTPRO is equally as
effective as BILOG-MG or IRTLRDIF. It is also possible that school-level variables
might cause some items to function differentially. Future studies might consider
a multilevel DIF analysis to better understand school level variables that may
influence the DIF results observed in this study.
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Chapter 11
An Empirical Study of the Impact of the Choice
of Persistence Models in Value Added Modeling
upon Teacher Effect Estimates

Yong Luo, Hong Jiao, and Robert Lissitz

11.1 Introduction

It seems that the application of value added modeling (VAM) in educational settings
has been gaining momentum in the past decade or so due to the interest in using
test scores to evaluate teachers or schools, and currently myriads of VAM models
are available for VAM researchers and practitioners. Despite the large number of
VAM models, McCaffrey et al. (2004) summarized the relations among them and
concluded that many can be viewed as special cases of persistence models. In
persistence models, student scores are calculated based on the sum of teacher effects
across years. Since different students may change teachers every year and have
different membership in multiple group units, such models are also referred to as
“multiple membership” models (Browne et al. 2001; Rasbash and Browne 2001).
Persistence models differ from each other in the value of the persistence parameter,
which, ranging from 0 to 1, denotes how teacher effects at the current year persist
into the subsequent years, may it be vanished, undiminished, or diminished. The
Variable Persistence (VP) model (Lockwood et al. 2007; McCaffrey et al. 2004) had
been considered more flexible due to its free estimation of the persistence parameter,
while other persistence models constrain its value to be either 0 or 1.

Before the development of the Generalized Persistence (GP) model (Mariano
et al. 2010), the issue of construct shift had seldom been investigated in VAM.
Construct shift might be a common phenomenon in K-12 testing due to curriculum
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change across grades (Schmidt et al. 2005). Previous VAMs often assume that the
current year teacher effect correlates perfectly with the persisting effect in the future
years. Such an assumption is overly restrictive and unrealistic since construct shift
occurs in reality and the correlation should not be perfect. The GP model relaxes
this constraint and allows the correlation to be freely estimated.

While conceptually intuitive, the GP model did not produce considerably
different teacher effect estimates than the VP model in an empirical data analysis in
the original paper. Specifically, while the GP model had the best model fit among
all persistence models, estimates of the current year teacher effects between the
GP model and the VP model were extremely highly correlated. Therefore, Mariano
et al. (2010) concluded that for that particular data set they used, choosing the GP
model over the VP model might not make a difference in terms of teacher effect
estimation. Aware of the fact that their conclusions were based on a single data set
that has a development scale, they suggested that other data, especially those that
are not vertically scaled, should be used to investigate the generalizability of their
findings.

To the best of our knowledge, no similar empirical studies that apply the GP
model to other data are found in literature and it remains unclear whether their
findings are generalizable to other data. Using longitudinal data of math testing
scores from an Eastern state from 2008 to 2010 that include four cohorts, the current
study fits four different persistence models to those four data sets and compares the
findings to those found in the study by Mariano et al. (2010). Specifically, it intends
to answer the following research questions:

1. How strong are the correlations between the current year teacher effect and
persisting future year teacher effect estimated from the GP model?

2. How well do different persistence models fit those data sets?
3. How similar are the teacher effect estimates produced by different persistence

models?

11.2 Different Persistence Models

McCaffrey et al. (2004) summarized the relations among different VAMs and the
persistence models. Specifically, they showed that with certain restrictions imposed,
the covariate adjustment models (Diggle et al. 1996; Meyer 1997; Rowan et al.
2002), the gain score models (Rowan et al. 2002; Shkolnik et al. 2002), the cross-
classified models (Raudenbush and Bryk 2002), and the layered model (Sanders
et al. 1997) can all be viewed as special cases of the persistence model.

Assuming a single cohort of students and a single subject, the mathematical
equation of the GP model is expressed as follows:

Yit D �t C†t��tatt� lt� C "it: (11.1)
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In this equation, yit is the test score of student i in year t, �t is the year-specific
mean for year t, and "itis the residual error. lt� is a vector of teacher effects including
the current year effect and its subsequent persisting effects till the year t, which,
together with the summation from the year t* to the year t, makes the middle term
on the right side of the above equation the accumulation of the current year effect
and its persisting effects in the following years till the year t. att� is the persistence
parameter which is equal to 1 when t D t�, and between the range of 0 to 1 when
t� 	 t. Here it is assumed that each student has only one teacher each year for the
sake of simplicity.

The residual error terms "i’ D ."i1; : : : ; "it/ are assumed to be normally
distributed random variables, independent across students. They have a mean of
0 and an unstructured covariance matrix†:

"i � MVN
�
0;
X�

:

For each year t*, the current year and future year effects of a teacher teaching the
current year t* have a Kt*-dimensional (Kt� D t�t�) multivariate normal distribution
with mean vector 0 and unstructured covariance matrix � t*:

lt� � MVN .0;� t�/

It is assumed that the vectors of teachers’ effects are independent across both
teachers at the same grade and teachers at different grades. Moreover, they are
independent of the residual errors.

The primary innovation of the GP model is its relaxation of the assumption that
the current year effects and their persisting effects in future years are perfectly cor-
related. All the previous persistence models, including the “complete persistence”
(CP) model (Harris and Sass 2006; Raudenbush and Bryk, 2002; Sanders et al. 1997)
and the VP model, assume a perfect correlation between the current year effects and
their persisting effects in future years.

The “zero persistence” (ZP) model is a special case of the GP model in the sense
that att� D 0; t� < t. In other words, teacher effects do not persist into future years.
The ZP model, CP model, and VP model have the same mathematical equation
as the GP model. The CP model is another special case of the GP model since it
constrains att� D 1; t� < t, which means teacher effects persist undiminished into
future years. In the VP model,0 < att� < 1; t� < t, which means that the persisting
teacher effects at year t is just the product of att�and the current year effect at year
t*. Therefore, the VP model is also a special case of the GP model.

The fact that the GP model is a generalized case of the ZP model, the CP model,
and the VP model can also be shown through the different assumptions about the
covariance matrix � t *, which can be decomposed as

� t� D S1=2t� Ct�S1=2t� :
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In this equation, S1/2
t * is a nonnegative diagonal matrix of the variances of grade t*

teacher effects in each outcome year t� 	 t and Ct* is the nonnegative definite
correlation matrix of those effects.

The GP model places no constraints on either the St * and Ct *, which means that
the variance of the teacher effects are allowed to vary and the correlation set to be
arbitrary.

For the ZP model, the CP model, and the VP model, Ct * is constrained to be J, a
matrix of all 1s indicating the perfect correlation. These three models are different
from each other in the sense that the ZP model constrains St *to include only one
parameter—the variance of the current year teacher effect due to no teacher effect
persistence—and zeros elsewhere, the CP model constrains the diagonal parameter
of St * to be the same, and in the VP model the diagonal parameters of St * are just
the product of the square of the persistence parameter and the teacher effect in the
preceding year.

Following Lockwood et al. (2007), Mariano et al. (2010) also adopted the
Bayesian framework (Carlin and Louis 2000; Gelman et al. 1995; Gilks et al. 1996)
for the estimation of teacher effects in the GP model and implemented it using
WinBUGS (Spiegelhalter et al. 2002). Karl et al. (2012a, b) tackled the estimation
issue of multiple membership linear mixed models such as the GP model using the
frequentist approach. Specifically, they developed a method to compute maximum
likelihood estimates with an EM algorithm. This method takes advantage of matrix
sparsity and only inverts a matrix with dimensions depending on the number of
random effects rather than on the total number of observations. Compared to the
Bayesian estimation framework, this estimation method produces standard errors
that will not be influenced by the choice of priors.

11.3 Method

11.3.1 Data

The data contain 3 years of math scores (2008, 2009, and 2010) on a state
achievement test from grade 3 to grade 8. The data are not vertically scaled, which
corresponds to Mariano et al.’s suggestion of evaluating the performance of the GP
model with test data that does not have a developmental scale. In the dataset there
are four cohorts: Cohort 1 (grade 3 through grade 5), Cohort 2 (grade 4 through
grade 6), Cohort 3 (grade 5 through grade 7), and Cohort 4 (grade 6 through grade 8).
Table 11.1 summarizes the sample size of each cohort.

Missing data are common in the sample: only 70 % of the students have fully
observed test scores across 3 years. If the missing data issue is ignored, the sample
size becomes 8522 for Cohort 1, 8610 for Cohort 2, 8656 for Cohort 3, and 8617 for
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Table 11.1 Cohort sample
size

Year
Cohort 2008 2009 2010

Cohort 1 7246 7336 7273
Cohort 2 7251 7337 7107
Cohort 3 7321 7095 7052
Cohort 4 7374 7282 7201

Table 11.2 Descriptive
statistics of math scores in
four cohorts

Cohort Year Mean SD Min Max

Cohort 1 2008 421 38 310 585
2009 431 40 297 650
2010 433 36 309 650

Cohort 2 2008 430 41 317 584
2009 432 38 329 650
2010 427 35 335 650

Cohort 3 2008 430 38 327 589
2009 423 36 240 650
2010 422 36 321 568

Cohort 4 2008 428 36 314 566
2009 424 35 309 650
2010 429 35 320 572

Cohort 4. If the observations with missing data are deleted, the sample size becomes
6074 for Cohort 1, 5850 for Cohort 2, 5842 for Cohort 3, and 6089 for Cohort 4.
Fortunately, the GP model is flexible enough to accommodate the missing data issue.
Table 11.2 lists the descriptive statistics of each cohort’s mean score at each of the
3 years.

11.3.2 Software

While both the Bayesian approach and the maximum likelihood (ML) approach can
be used to estimate persistence models, the former one requires the specification of
an informative prior distribution for the covariance parameters, the choice of which
may affect parameter estimates. Therefore, the ML approach is chosen as the esti-
mation algorithm. Specifically, the R package GPvam (Karl et al. 2012a, b), which
employs the maximum likelihood estimation method for the multiple membership
mixed models used in VAM, is used in the current study.
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11.4 Results

11.4.1 Model Fit of Different Persistence Models

The Akaike Information Criterion (AIC) is used to compare model fit in this study.
Table 11.3 lists the AIC values for all the persistence models fit in each of the four
cohorts, and the minimum value within each cohort indicating a best fitting model is
bolded. The pattern is similar to Mariano et al.’s findings that the GP model provides
the best model fit and the ZP model has the worst model fit compared to the other
persistence models.

11.4.2 Correlation Among Teacher Effect of Different Years

Table 11.4 presents the correlation values among the current year teacher effects
estimates and their persisting effects in subsequent years estimated from the GP
model for the four cohorts. The correlations listed in these four tables are all above
0.84, which are much higher than those values found in Mariano et al.’s study
(2010). The correlation values among the persisting effects in the subsequent years
are all above 0.99, which is also slightly higher than those found in Mariano et al.’s
study (2010), which are above 0.9. It was suggested by Mariano et al. that the
correlation between the current year effect and the future year effect can be an
indicator of the magnitude of construct shift, and the higher correlation values found
in the data may indicate that they exhibit a smaller magnitude of construct shift than
those used in the original paper.

11.4.3 Correlation of Teacher Effects Produced by Different
Persistence Models

Table 11.5 presents the correlation among the current year teacher effect estimation
of four different persistence models for the four cohorts. Consistent with Mariano
et al.’s findings, the correlation between the VP and the GP models is extremely

Table 11.3 AIC for different
models in different cohorts

Model
Cohort ZP VP CP GP

Cohort 1 202556.3 199101.6 199649.4 198905.5
Cohort 2 201260.1 197560 198140.3 197275.5
Cohort 3 195955.7 193154.8 193716.1 192795.5
Cohort 4 196928.4 194391.5 194731.8 194292.5
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Table 11.4 Correlation in different cohorts

Year 1 Year 2
Cohort Year Teacher effect Current Year 2 Year 3 Current Year 3

Cohort 1 Year 1 Current 1
Year 2 0.988 1
Year 3 0.990 0.999 1

Year 2 Current 1
Year 3 0.896 1

Cohort 2 Year 1 Current 1
Year 2 0.995 1
Year 3 0.986 0.998 1

Year 2 Current 1
Year 3 0.846 1

Cohort 3 Year 1 Current 1
Year 2 0.984 1
Year 3 0.981 0.999 1

Year 2 Current 1
Year 3 0.977 1

Cohort 4 Year 1 Current 1
Year 2 0.998 1
Year 3 0.996 0.999 1

Year 2 Current 1
Year 3 0.957 1

high regardless of the year, and the correlation between the CP and the VP model
seems to be less in year 2 and year 3. An interesting observation is that in year 1,
the teacher effect estimates of the CP and the VP model seem to be also extremely
highly correlated. When it comes to the choice of persistence models, the choice of
the GP model over the VP does not make a big difference in terms of teacher effect
estimates.

11.5 Discussion

The four data sets used in the current study are not vertically scaled, which aligns
well with Mariano et al.’s recommendation of using data sets without common
development scales to investigate the generalizability of their findings. This rec-
ommendation was driven by their suspicion that the extremely high correlation
of teacher effect estimates produced by the GP model and the VP model might
be due to the small magnitude of construct shift indicated by the vertical scaling
design in their dataset, since one of the assumptions of vertical scaling design is that
no major construct shift occurs across grades. Similarly, datasets without vertical
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Table 11.5 Correlation among current year teacher effects estimates of different models in
different cohorts

Year 1 Year 2 Year 3
Cohort Year Model CP VP ZP GP CP VP ZP GP CP VP ZP GP

Cohort 1 Year 1 CP 1
VP 0.997 1
ZP 0.893 0.902 1
GP 0.996 0.999 0.912 1

Year 2 CP 1
VP 0.945 1
ZP 0.518 0.739 1
GP 0.886 0.976 0.799 1

Year 3 CP 1
VP 0.844 1
ZP 0.322 0.749 1
GP 0.776 0.974 0.812 1

Cohort 2 Year 1 CP 1
VP 0.996 1
ZP 0.801 0.824 1
GP 0.994 0.999 0.834 1

Year 2 CP 1
VP 0.868 1
ZP 0.225 0.645 1
GP 0.749 0.951 0.762 1

Year 3 CP 1
VP 0.888 1
ZP 0.560 0.852 1
GP 0.883 0.986 0.855 1

Cohort 3 Year 1 CP 1
VP 0.991 1
ZP 0.848 0.890 1
GP 0.989 0.999 0.895 1

Year 2 CP 1
VP 0.911 1
ZP 0.650 0.887 1
GP 0.909 0.988 0.880 1

Year 3 CP 1
VP 0.913 1
ZP 0.668 0.889 1
GP 0.917 0.993 0.879 1

(continued)
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Table 11.5 (continued)

Year 1 Year 2 Year 3
Cohort Year Model CP VP ZP GP CP VP ZP GP CP VP ZP GP

Cohort 4 Year 1 CP 1
VP 0.995 1
ZP 0.798 0.824 1
GP 0.994 0.999 0.830 1

Year 2 CP 1
VP 0.937 1
ZP 0.609 0.822 1
GP 0.925 0.992 0.827 1

Year 3 CP 1
VP 0.855 1
ZP 0.443 0.815 1
GP 0.832 0.989 0.831 1

scaling design may exhibit large magnitude of construct shift which causes the
teacher estimates from the GP model and the VP model to be considerably different.

Consistent with Mariano et al.’s finding, the GP model has the best model fit
among the four persistence models, suggesting the existence of variable teacher
effects over time in those data sets. While the issue of construct shift versus variable
teacher effects seems somewhat complicated, it can be stated that, even if construct
shift exists, it does not seem to cause the GP model and the VP model to produce
noticeably different teacher effect estimates, and in the four cohorts the correlations
between the estimates from those two models are all higher than 0.95. As suggested
by Mariano et al., the correlation between the current year effect and the persisting
future year effect may be an indicator of the magnitude of construct shift, and the
high correlation values presented in Table 11.5 seem to indicate a small magnitude
of construct shift in all four data sets.

Another possible explanation for such high correlations is that despite the
existence of construct shift of considerable magnitude, teacher effects may be too
robust to cause teacher effect estimates from those two models to be different
enough. Since all the current data come from standardized tests that have similar
test blueprints across grades, it is more likely that despite the lack of vertical
scaling design, the magnitude of construct shift, assuming that it exists, is relatively
small; therefore, it is more likely that the high correlations found in the current
data example be due to the combination of small magnitude of construct shift
and the robustness of teacher effects across construct change. To disentangle those
two effects, future studies with empirical data sets of considerably different test
blue prints across grades should be used to investigate whether the high similarity
between the estimates from the GP model and the VP model still exists.

It may seem natural to choose the GP model as the analysis model in practice
since it is the most generalized persistence model. However, it produces teacher
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effect estimates highly similar to those of the VP model despite the GP model’s
theoretical advantage as a result of its explicit modeling of the construct shift.
One advantage of the VP model over the GP model is the computing time: it
takes an I7 processor computer about two hours to estimate the GP model and
about fifteen minutes to estimate the VP model, which, as a simpler model, should
estimate teacher effects with greater precision. Such a time difference should be
negligible for empirical data analysis since no replications are required as in large-
scale simulation studies. Moreover, with the advance of modern computing power
and the development of more efficient estimation algorithms, it is anticipated that
the time factor will become less of a concern.
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Chapter 12
The Impact of Model Misspecification
with Multidimensional Test Data

Sakine Gocer Sahin, Cindy M. Walker, and Selahattin Gelbal

Abstract In this study data were simulated for 5000 examinees on a thirty-item
two-dimensional test, using a compensatory MIRT model. Various combinations
of simple and complex structure items were examined. Specifically, the numbers
of simple structure items on the tests were gradually decreased from 24 to
6, in multiples of six, while simultaneously increasing the number of complex
items by the same number of items. In one scenario, the simple structure items
were simulated to measure both dimensions equally; in a second scenario, the
simple structured items were simulated to measure only the first dimension. The
current investigation also varied the correlation between dimensions and the ability
distributions on the first and second dimensions. RMSE was used to determine the
impact of model misspecification and the results of a unidimensional simulated and
scaled test were used for comparison purposes. Results indicated that the underlying
structure of multidimensional tests did have an impact on estimation error. However,
in some instances fitting a unidimensional model to multidimensional data resulted
in estimation error that was not very dissimilar from what was obtained when fitting
a unidimensional model to unidimensional data.

Keywords Multidimensionality • Unidimensionality • Item response theory

In unidimensional item response theory (IRT), it is assumed that only one trait or
ability underlies an individual’s performance on a test. This is the most critical
and basic assumption of measurement theory, the assumption that all of the items
on an assessment instrument measure only one common thing. (Hambleton et al.
1978) stated that this assumption of unidimensionality is the strictest assumptions
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underlying the model of latent traits (Hattie 1985). Therefore, this assumption is
oftentimes not met on many educational and psychological tests. This is because
there are other factors which may affect test performance. For example, other cog-
nitive traits, affective traits such as personality and attitude, and testing conditions
may all affect test performance. In order for the assumption of unidimensionality
to be met there must only be one dominant factor, or component, which affects the
performance of individuals on the test (Hambleton et al. 1991).

Using unidimensional IRT models to scale response data does have some
advantages. It is a simpler model, it is readily available in standard psychometric
software packages, and has been used in a large number of applications. However,
the interaction between an individual and an item is not always as simple as this,
in that it cannot be explained by only one dimension. Traub (1992) described the
unidimensionality assumption of IRT as a “fragile, sensitive” assumption. Although
unidimensional IRT models are frequently used in practice and can be effective
for ability estimation under certain circumstances, more complex IRT models were
developed to model the complex interaction between an individual and an item
(Harrison 1986).

One of the ways to increase the efficiency of IRT models to account for the
complex interaction between individuals and items is to define multiple traits of
individuals (Reckase 2009). According to Ackerman (1992), multidimensional IRT
models were developed because it is technically inappropriate to scale individuals at
a single ability level when the unidimensionality assumption was not met. However,
in practice it is still most common to use a unidimensional model.

A multidimensional structure can be categorized as simple, approximately
simple, or complex (Walker et al. 2006). This can be explained from a factor analytic
perspective in a two-dimensional space with each factor being used to represent a
dimension. If an item loads on only one factor, with a zero factor loading on the
second factor, then it is a simple structured item. If an item loads primarily on one
factor but has a small factor loading on the second factor, then it is an approximately
simple structured item. If an item loads on both factors in at least a moderate way,
then it is a complex item. For example, on a mathematics test designed to assess
algebraic reasoning and geometric reasoning, items that were only measuring either
algebra or geometry skills would be simple structured items, while items measuring
both algebra and geometry would be complex items. When multiple abilities are
needed to assess a psychological behavior it is likely that most items in the measure
are not simple structured. In this case, if there is one dominant dimension and one or
more non-dominant dimensions being measured by test items, the test is said to be
essentially unidimensional (Stout 1987). In the event that both complex and simple
structured items are on a test, the structure of the test is called a mixed structure
(Zhang 2005, 2012).

The criticisms of an item structure or a particular model are generally based on
the strict and unique traits of that item structure or model. For example, the concept
of essential unidimensionality emerged in response to the criticism of the unidi-
mensionality assumption. Likewise, the concept of approximately simple structured
items emerged in response to the criticism of the credibility of having only simple
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structured items on a test. This is also the reason for the conceptualization of tests
of mixed structures because it is unrealistic to think that all test items measure
only one primary dimension. As previously stated, when simple and complex items
exist together, the test is said to be of mixed structure. On the other hand, when
approximately simple and complex items exist together on a test, the test is said to
be of semi-mixed structure (Zhang 2012).

Although it might be theoretically better to scale response data using multi-
dimensional IRT models, these models are not often applied in practice because
they are difficult to interpret and it is often difficult and complex to define the
underlying dimensions (Luecht and Miller 1992). One might also argue that these
models are not used because there is a proliferation of available user-friendly
software that can be used to scale response data using unidimensional IRT models,
such as MULTILOG and BILOG. Although there are also programs available
to fit multidimensional IRT models, such as TESTFACT and NOHARM, ability
estimates cannot be obtained from these programs, even though it is possible to
obtain item parameters from them (Zhang 2008). Due to these reasons, the use of
unidimensional models still dominates the testing industry.

Studies on scaling multidimensional data using unidimensional models are
conducted because it is well known that violating the unidimensionality assumption
can cause many problems. Yet, these models continue to be widely used in practice
because they are easy to apply and interpret. While using a unidimensional model
to scale response data from a test with complex items has been previously studied,
using a unidimensional model to scale response data from a test that has a semi-
mixed structure has not been studied previously. Considering that a semi-mixed test
structure is more likely to be encountered in practice, this study reflects a more
realistic testing situation. Unidimensionality is not only a trait that refers to items,
rather it is the product of an interaction between a measures item structure and
underlying person ability distribution. In previous studies, only item traits or only
ability distributions were manipulated while the underlying ability distribution was
assumed to be multivariate normal. In this study, both item structure and underlying
ability distributions are addressed together. Thus, it is the aim of this study to
evaluate what happens when the unidimensionality assumption is violated in a more
extensive and realistic manner.

12.1 Method

There are some studies in the literature that have considered the impact of
modeling a multidimensional test as unidimensional. Zhang (2005, 2012) focused
on different estimation algorithms, with both mixed- and simple-structure tests that
were modeled using both unidimensional and multidimensional approaches. The
results of these simulation studies indicated that when subtests had fewer items a
multidimensional approach provided more accurate estimates of item parameters.
However, the unidimensional approach worked better as the number of items
on the subtest increased. Zhang (2008) estimated approximately simple items as
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unidimensional. In his study, the number of dimensions, test length, proportions
of items sensitive to the secondary dimensions and levels of correlation were
all considered as independent variables. In his study, the RMSE decreased as
the correlation between dimensions, test length increased and number of items
measuring secondary dimensions, and number of secondary dimensions decreased.
It is well known that when the correlation between dimensions increases a mul-
tidimensional test becomes more unidimensional like (Ansley and Forsyth 1985;
Ackerman 1989). In this study we used semi-mixed tests like one of above studies
because we hypothesized that the location of complex items can impact ability
estimation. The standard error of measurement increases when items are either
too difficult or too easy for an examinee. This is because there are studies in
the literature that have explored the impact of skewed ability distributions when
modeling multidimensional tests as unidimensional (Kirisci et al. 2001). Unlike
previous studies, in this research we examined estimating multidimensional tests
as unidimensional under neither skewed nor standard normal underlying ability
distributions. Rather, normal distributions were considered with different means,
to determine the impact of mismatching item difficulty to examinee ability. We
also considered different combinations of simple or complex items, the location
of simple items on the tests and different correlations because we hypothesized that
these would have an impact on estimation.

Specifically, in this study, parameters of semi-mixed two-dimensional tests
were estimated using a unidimensional IRT model under two conditions. These
conditions include: (1) different underlying ability distributions (either equal or
unequal ability distributions between ™1 and ™2), and (2) different correlations
between dimensions (0.00, 0.45, and 0.90). For all conditions, the number of
items was fixed at 30 and the sample size was fixed at n D 5000. In total, 72
(3 � 4 � 3 � 2) conditions were studied: three different conditions for underlying
ability distributions; four different conditions for the ratio of simple- to complex
items; three different conditions for the correlation between dimensions; and two
different conditions for the primary dimension being measured by simple structure
items (i.e., the first or the second). Data were simulated based on two-parameter
multidimensional item response model (Reckase 1997) as expressed in Eq. (12.1).

P
�

uij D 1
ˇ̌
�j
� D 1

1C exp
	 � 1:7 �ai�j C di

� 
 (12.1)

where P is the conditional probability that examinee j’s response u to item i is
correct, � j is the ability vector, ai is the discrimination parameter vector, and di is
related to the difficulty level. Item parameter and ability estimation were conducted
using BILOG. For each condition, 100 replications were conducted.

Although test length was fixed, the structure of test items varied according to
the location of simple and complex items on the test. Two scenarios were simulated
based on the location and number of mixed items on the test. In the first scenario, all
of the simple structured items were simulated to load on only the first dimension. In
the second scenario, half of the simple structured items were simulated to load on
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Table 12.1 Study pattern concerning the case in which inter-dimensional correlation is 0.00

Correlations First scenario Second scenario

™1 ™2

between
dimensions 1. dimension 2. dimension 1. dimension 2. dimension

N(0,1) N(0,1) 0.00 24S C 6C 6C 12S C 6C 12S C 6C
18S C 12C 12C 9S C 12C 9S C 12C
12S C 18C 18C 6S C 18C 6S C 18C
6S C 24C 24C 3S C 24C 3S C 24C

N(�.5,1) N(0,1) 0.00 24S C 6C 6C 12S C 6C 12S C 6C
18S C 12C 12C 9S C 12C 9S C 12C
12S C 18C 18C 6S C 18C 6S C 18C
6S C 24C 24C 3S C 24C 3S C 24C

N(0,1) N(�1,1) 0.00 24S C 6C 6C 12S C 6C 12S C 6C
18S C 12C 12C 9S C 12C 9S C 12C
12S C 18C 18C 6S C 18C 6S C 18C
6S C 24C 24C 3S C 24C 3S C 24C

S Approximately simple item, C Complex item expected

the first factor and the other half of the simple structure items were simulated to load
on the second factor. The conditions studied are depicted in detail in Table 12.1.

As Table 12.1 illustrates, the current study focused primarily on the pattern
of items that were simulated to measure each of the dimensions. These patterns
of items were simulated according to two different scenarios and three different
underlying ability distributions for the first and second dimension. For example, for
one condition 24 simple structured and six complex structured items were simulated.
In the first scenario, all simple structured items were simulated to only measure the
first dimension. In this scenario, only the six complex items measured the second
dimension. When considering the second scenario for this same condition, 6 items
were simulated with complex structure, while 12 of the 24 simple structured items
were simulated to measure the first dimension and the other 12 were simulated to
measure the second dimension. Therefore, in the second scenario both dimensions
are being measured equally well by the simulated test. This differs from the first
scenario where the test is primarily measuring the first dimension. This condition
was studied under three different ability distributions. In the first case ™1 and ™2

were generated from a standard normal distribution. In the second case, the mean
of the distribution of ™1 � N(�0.5, 1) was 0.5 lower than ™2 which was simulated
from a standard normal distribution. In the third case, ™1 was simulated from a
standard normal distribution, while ™2 � N(�1,0) was generated from a distribution
with a mean 1 unit lower than ™1. Table 12.1 was replicated under the two different
correlation between dimensions considered in this study which were 0.45 and 0.90.

Discrimination parameters for approximately simple structured items were
generated from an N � (1,0.1) distribution for the dominant factor and from a Log-
N � (�3,0.1) distribution(s) for the secondary factors in order to ensure that the
discrimination parameters obtained were positive and realistic for the dominant
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dimension and small and positive for the secondary factor. For similar reasons, the
discrimination parameters for both dimensions were generated from an N � (1,0.1)
for complex items. Difficulty parameters were generated from an N � (0,0.1)
distribution. Approximately simple structured items were simulated to have an
angular distance of less than 20ı from the primary dimension being measured by
the item. Complex structured items were simulated so that their angular distance
from the first dimension was between 20ı and 70ı.

The RMSE (Root Mean Square Error) statistic, shown in Eq. (12.2), was used
to evaluate parameter estimation error, as well as ability estimation error, when
multidimensional response data is scaled using a unidimensional IRT model.

RMSE D
s
†N

nD1
�
�nj � �n

�2
N

(12.2)

In Eq. (12.2), � nj represents the estimated parameter for parameter for examinee n in
the jth item, �nj represents the actual parameter for examinee n in the jth item, and N
represents the number of replications. RMSE values were calculated separately for
item difficulty, item discrimination, and ability parameters. Furthermore, RMSE was
also examined for the average of the two discrimination parameters, for MDISC,
and for the average of the two ability parameters. A test, which was simulated to be
unidimensional, was also estimated using a unidimensional IRT model to provide a
baseline from which the results could be compared. To simulate a unidimensional
test, the parameters from a multidimensional test, MDISC (maximum discrimina-
tion index), and D were utilized. MDISC is the overall discriminating power of an
item which shares the same interpretation as the discrimination parameter in the
unidimensional models (Reckase and McKinley 1968).

MDISC D
q
†k

nD1’ik (12.3)

where K refers to the number of ability dimensions. The difficulty level of an item
is defined as:

D D �di

MDISC
(12.4)

In this equation di is intercept term. The value of D has the same interpretation
as the b parameter for the unidimensional IRT. The ability distribution for the
unidimensional test was generated from the same underlying distribution that was
used to generate the multidimensional tests. The RMSE values obtained from this
unidimensional test were used as the baseline criterion to evaluate the magnitude of
the errors that were obtained from the multidimensional data.

The reliability of the generated data was evaluated using Cronbach’s alpha.
Cronbach alpha coefficient is an unbiased estimate of reliability when tests are at
least essentially tau-equivalent (Lord and Novick 1968). From an operational aspect,
a test that is essentially tau-equivalent has items that are equally discriminating.
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In this case, all of the items would have equal factor loadings under the single
factor model underlying the test (McDonald 1999). This requirement is quite strict.
However, it is well known that Cronbach’s alpha is a lower bound estimate of
reliability when this requirement is not met (Raykov 1997; Zinbarg et al. 2005). For
the simulated data the alpha coefficient ranged between 0.86 and 0.94 for the first
scenario, and between 0.80 and 0.94 for the second scenario. Even though Cronbach
alpha is not typically used in multidimensional IRT it is used for unidimensional
tests. And also more importantly considering the fact that the reliability obtained
is a lower bound, this range of values can be considered satisfactory. Therefore,
estimates of reliability that may be better suited for multidimensional data were not
calculated.

12.2 Findings

The RMSE values obtained from the simulated unidimensional test are presented
in Table 12.2. These values will be used as the criterion by which to evaluate the
RMSE values obtained when simulated multidimensional test data is scaled using a
unidimensional IRT model.

The RMSE values depicted in Table 12.2 correspond to every multidimensional
test that was simulated for the various combinations of simple and complex
items that were studied. As mentioned before, the unidimensional test was formed
from the multidimensional test parameters. Although there were two a parameters
for a two-dimensional test a single a discrimination parameter was generated by
using Eq. (12.3) to obtain the a parameter for the unidimensional test. Once again,
despite the fact that there were two theta parameters for the two-dimensional test,
only one theta was needed for the unidimensional test. Specifically, ability was
generated from the same distribution that was used to obtain the multidimensional
theta distribution, N � (0,1). Since the number of simple and complex items was
different in each condition, the tests for these conditions were also different. As
the table illustrates, the RMSE value for the discrimination parameter increased as

Table 12.2 RMSE values obtained when fitting a unidimensional IRT model to simulated
unidimensional response data

RMSE for a RMSE for b RMSE for Theta

First scenario 24S C 6C D 30 0.038 0.024 0.322
18S C 12C D 30 0.040 0.023 0.322
12S C 18C D 30 0.043 0.023 0.322
6S C 24C D 30 0.045 0.023 0.324

Second scenario 12S C 12SS C 6C D 30 0.038 0.024 0.322
9S C 9S C 12C D 30 0.040 0.023 0.322
6S C 6S C 18C D 30 0.043 0.023 0.322
3S C 3S C 24C D 30 0.045 0.023 0.324
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Fig. 12.1 RMSE values for a1 parameter

the number of complex items increased, when the corresponding MDISC values
from the multidimensional items to simulate the unidimensional data were used.
Little differences were observed in the RMSE values for the difficulty parameters
or ability estimates across all test types.

Figure 12.1 illustrates the RMSE values for a1. It should be noted that all
of the results are presented graphically. However, these results are presented in
tabular form in Appendix, for the interested reader. As illustrated in Fig. 12.1,
for multidimensional semi-mixed tests, a decrease in the RMSE values for the
discrimination parameter on the first dimension (a1) was found as the number of
complex items increased for the first scenario, in which simple items loaded only
on the first dimension. In addition, in the first scenario, the RMSE values for the
a1 parameters decreased as the correlation between dimensions increased. Finally,
Fig. 12.1 illustrates that having different primary and secondary dimension ability
distributions did not have much impact on the RMSE values for the a1 parameter.
Also, the errors obtained from all conditions converged in value as the number of
complex items increased.

In the second scenario, in which half of the simple structured items load on
the first dimension and the other half load on the second dimension, the RMSE
values obtained for the a1 parameters resemble a hyperbolic curve. Specifically, the
RMSE was highest for this parameter when the correlation between dimensions was
0.00, lowest when the correlation was 0.45, and somewhere in between when the
correlation was 0.90. In this scenario, the RMSE values decreased as the number
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Fig. 12.2 RMSE values for a2 parameter

of complex items increased. As the number of complex items increased, having
different ability distributions did not have much impact on the RMSE values for a1.
In general, the pattern of results for a1 looks fairly random and there was not a clear
pattern when comparing the results of the first and second scenarios. However, the
results were very similar when the correlation between dimensions was 0.90.

Figure 12.2 depicts the RMSE values for a2. These results were comparable to the
RMSE values that were obtained for the a1 parameters; however, these results were
slightly less stable. Accordingly, for the first scenario, the lowest RMSE value was
obtained when the correlation between dimensions was 0.45, and the highest RMSE
value was obtained when the correlation between dimensions was 0.90. Once again
the RMSE decreased as the number of complex items increased, and once again
underlying differences in the mean of ability distributions did not seem to impact
the RMSE associated with the a2 parameter.

For the second scenario, once again the lowest error was obtained when the
correlation between dimensions was 0.45, and the highest error was obtained when
the correlation between dimensions was 0.00. For this scenario, a lower mean for the
ability distribution on the second dimension seemed to impact the error associated
with the a2 parameters slightly more when the correlation between dimensions
was 0.00. This impact decreased as the correlation between dimensions increased.
However, having a lower mean ability distribution on the first dimension did not
have an impact on the errors associated with a2. The RMSE values associated with
a2 also decreased as the number of complex items increased. Furthermore, the effect
of having different underlying mean ability distributions decreased as the number of
complex items increased. In general, as the number of complex items decreased, the
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Fig. 12.3 RMSE values for average of a1 and a2 parameters

errors obtained from the second scenario were lower than those obtained from the
first scenario. However, no other discernible patterns were observed for the other
conditions explored in this study.

Figure 12.3 depicts the results that were obtained when considering the average
of a1 and a2. As the figure illustrates, for the first scenario, the lowest error was
generally obtained when the correlation between dimensions was 0.45, and the
highest error was generally obtained when the correlation between dimensions was
0.00. For the first scenario, differing mean ability distributions was not found to
impact the average RMSE obtained for the average of the discrimination parameters.
No apparent pattern was observed as the number of complex items increased.

For the second scenario, in which simple items were simulated to load on
both dimensions, the errors were generally lower than those obtained in the first
scenario. When compared with the criterion RMSE values in Table 12.2, the error
values for the second scenario are close to the criterion, and some are even better,
under certain conditions. Once again, the lowest errors were obtained when the
correlation between dimensions was 0.45, and the highest errors were obtained
when the correlation between dimensions was 0.00. Moreover, when the correlation
between dimensions was 0.45, as the number of complex items increased the errors
decreased. However, when the correlation between dimensions was either 0.00 or
0.90, as the number of complex items increased so did the RMSE. As was the
case with the first scenario, having different underlying ability distributions on
the two dimensions did not seem to impact the error associated with the average
discrimination parameter.
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Fig. 12.4 RMSE values for MDISC parameter

Figure 12.4 depicts the RMSE associated with MDISC. MDISC corresponds to
the discrimination parameter from a unidimensional IRT model and is calculated
based on all of the discrimination parameters in the multidimensional model.
Figure 12.4 illustrates an unsurprising pattern for both scenarios as the correlation
between dimensions increases. Specifically, as the correlation between dimensions
increased, the RMSE values decreased. In addition, when the correlation between
dimensions was zero, the RMSE increased as the number of complex items
increased. However, when the correlation between dimensions was 0.90, the RMSE
values decreased as the number of items increased. When the correlation between
dimensions was 0.45 there was no discernible pattern to the RMSE values as the
number of complex items increased. As was the case with the average discrimination
parameter, having unequal means on the underlying ability distributions did not
seem to impact the error associated with MDISC.

Figure 12.4 also illustrates that, in general, the errors obtained in the second
scenario were higher than those obtained in the first scenario; however, the
errors obtained from both scenarios converged in value as the correlation between
dimensions increased. Also in the second scenario the errors seemed to decrease as
the number of complex items increased, when the correlations between dimensions
were 0.45 and 0.90. As is the case with the first scenario, it can be said that having
a mean difference between the underlying distributions did not impact the error
associated with MDISC.
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Fig. 12.5 RMSE values for b parameter

The RMSE values obtained for the difficulty parameters are illustrated in
Fig. 12.5. As the figure illustrates, this parameter is more unstable and the errors
are more substantial than what was observed for the discrimination parameters. In
the first scenario, the lowest errors were obtained when the correlation between
dimensions is 0.45 and the underlying distributions are both normal; the highest
were obtained when the correlation between dimensions is 0.00 and the underlying
distribution for one of the dimensions is non-standard normal. Unlike what was
observed for the discrimination parameters, having unequal means between ability
distributions had a significant impact on the errors associated with the difficulty
parameter. When the underlying ability distribution of the first dimension had a
lower mean than the second dimension, the errors decreased as the number of
complex items increased. However, when the underlying ability distribution of the
second dimension had a lower mean than first dimension, the errors increased as the
number of complex items increased. When the underlying ability distributions had
equal means, a regular pattern was not observed, relative to increasing the number
of complex items. When the mean of the primary and secondary distributions were
not equal, the error decreased as the correlation between dimensions increased.

For the second scenario, the errors obtained when the underlying ability dis-
tribution of the first dimension had a lower mean than the ability distribution of
the second dimension was lower than those obtained in the analogous case for
the first scenario. For all of the remaining conditions the errors obtained for the
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Fig. 12.6 RMSE values for theta1 parameter

second scenario were higher than those obtained in the analogous cases for the first
scenario. As is the case with the first scenario, the lowest errors were obtained
when the correlation between dimensions was 0.45 and the underlying ability
distributions were equal; the highest errors were obtained when the correlation
between dimensions was 0.00 and the means of the ability distributions were not
equal. For most of the conditions for the second scenario, the errors decreased as
the number of complex items increased.

When the RMSE values for the ™1 ability parameter are examined in Fig. 12.6,
it can be observed that, in the first scenario, the errors decreased as the correlation
between dimensions increased. Thus, the error obtained for the condition in which
the correlation between dimensions was 0.90, and the errors associated with the
simulated unidimensional data, used as a baseline criterion, are very similar.
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In addition, for the first scenario, the errors increased as the number of complex
items increased and having unequal means for the underlying ability distributions
on the first dimension impacted the error associated with ™1.

Figure 12.6 illustrates that the RMSE values obtained from the second scenario
were higher than those obtained from the first scenario. A decrease in RMSE values
was observed, as the correlation between dimensions increased. No discernible
pattern was observed, in terms of the number of complex items. Having a lower
mean for the underlying ability distribution on the first dimension compared to the
second dimension had a greater impact on the RMSE associated with ™1 than having
a lower mean on the underlying ability distribution on the second dimension in
relation to the first. In general, the errors obtained from both scenarios were found
to converge, as the correlation between dimensions increased.

When the RMSE values associated with the ™2 parameter are examined in
Fig. 12.7, it can be observed that the average RMSE values decreased as the
correlation between dimensions increased, for both scenarios. The RMSE values
associated with the condition in which the correlation between dimensions was 0.90
are similar to the criterion RMSE values, obtained from fitting a unidimensional IRT
model to unidimensional response data. In general, the errors associated with the
second scenario were found to be lower than those associated with the first scenario.
While the errors decreased as the number of complex items increased for the first
scenario, no discernible pattern was observed as the number of complex items
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Fig. 12.7 RMSE values for theta2 parameter
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increased for the second scenario. When compared to the results obtained for ™1,
for the first scenario, the errors obtained for ™2 are higher than those obtained for ™1.
In addition, the errors were higher when the mean of the underlying distribution for
the second dimension was lower. However, having a lower mean for the underlying
distribution on the first dimension did not seem to have much impact on the average
RMSE values associated with ™2. These values are very close to the values obtained
when the underlying ability distribution was standard normal.

As illustrated in Fig. 12.8, the average RMSE values obtained for the average of
™1 and ™2 are lower than those obtained for either ™1 or ™2. Moreover, these errors
tended to decrease as the correlation between dimensions increased. In general, the
error values obtained for the second scenario were lower than those obtained for the
first scenario, and the errors for both scenarios converge as the correlation between
dimensions increases. Once again, the errors obtained when the correlation between
dimensions was 0.90 and the underlying ability distributions were equal are almost
the same as the criterion, when a unidimensional IRT model was used to scale
unidimensional response data. For both scenarios, the errors tended to decrease as
the number of complex items increased. While the lowest errors were obtained when
both underlying ability distributions were from a standard normal distribution, the
highest errors were obtained when the mean of the underlying ability distribution of
™2 was lower than ™1.
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12.3 Discussion

In this study, we calculated the errors for the semi-mixed test structured multidi-
mensional tests, which contain both essentially simple and complex items, after
using unidimensional IRT models to estimate the parameters. Two scenarios were
simulated that differed according to the location of simple structured items on the
test and the number of complex items on the test. In addition to these two scenarios,
the impact of having a mean difference between the underlying ability distributions
for the primary and second dimensions, as well as the impact of increasing the
correlation between dimensions was studied. The errors obtained were evaluated
for individual item and ability parameters.

12.3.1 Parameter a

When studies similar to this one, which are currently in the literature, are examined,
it can be said that the findings associated with the item parameters obtained in this
study are interesting. Previous studies have determined that the error associated
with the discrimination parameters decreases as the correlation between dimensions
increases (Ansley and Forsyth 1985; Ackerman 1989; Zhang 2008). However, in
this study this was not the case, likely due to the different test structures that were
simulated. In this study, the test structures in which simple items were simulated to
load on only the first dimension are similar to a test that is approximately simple
structure. In approximately simple structured tests, the RMSE for the a1 parameter
will decrease as the correlation between dimensions increases. However, the second
simulated test structure, in which an equivalent number of simple structured items
were simulated to measure each of the two dimensions, resulted in the least
error when the correlation between dimensions was 0.45, for all discrimination
parameters with the exception of MDISC. MDISC, which corresponds to the
discrimination parameter in unidimensional models, behaved as expected, and
decreased, as the correlation between dimensions increased. Having a correlation
between dimensions of 0.45 also resulted in the least error. Recall that the
discrimination parameters and thus the angular distance of items was manipulated
in order to control the structure of the mixed test. When simple structure items were
simulated to measure only the first dimension, the angle for simple structured items
was forced to fall within a range of 0–20ı and the angle for complex items was
forced to fall within a range of 21–70ı. In fact, the average angular distance across
all 30 items in the first scenario ranged between 12 and 37ı; while the average
angular distance across all 30 items in the second scenario ranged between 45 and
55ı. The fact that the least error was obtained for the discrimination parameters
when the correlation between dimensions was 0.45 is likely due to the fact that
the average angular distance of the items is comparable to the correlation between
dimensions. Furthermore, as reported in a similar study done by Kahraman (2013),
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the error associated with the discrimination parameters increases as the correlation
between dimensions increases, when modeling multidimensional response data
with a unidimensional IRT model and ignoring the second dimension. Kahraman
proposed that the projection IRT model be used to estimate the discrimination
parameter when modeling multidimensional data as unidimensional. She stated
that the discrimination parameter can be estimated with less error by using this
model. In future research, the estimation of the discrimination parameters can also
be examined by using the projection IRT model.

Despite the fact that MDISC corresponds to the discrimination parameter in
unidimensional IRT models, the lowest errors were obtained when considering the
average of a1 and a2, as was observed in the study conducted by Ansley and Forsyth
(1985).

In parallel with studies in the literature that found that the skewness of the
underlying ability distributions does not impact the error associated with the
discrimination parameters (Kirisci et al. 2001), the results of this study also suggest
that having a different underlying ability distributions on the different dimensions
does not seem to impact the error associated with the discrimination parameters. In
a study conducted by Walker et al. (2006), it was found that the power of DIMTEST,
one of the methods of assessing test dimensionality, decreases when the secondary
dimensions are excessively skewed and/or have little to no variability. In their study,
they found that DIMTEST provide the most accurate result when the average of the
secondary dimension is between the range of (�1,C1). In this study, the averages
of the underlying skewed distributions were �0.5 and �1.00. However, this did not
have much of an effect on the estimation of the discrimination parameters.

For the first scenario, simple structured items were simulated to measure only
the first dimension. In this case, when the first dimension is measured better, the
measurement of the second dimension is insufficient. Yet, the fact that simple
structured items are distributed equally on both dimensions, in the second scenario,
implies that the first and second dimensions are measured equally. The fact that the
errors associated with the a2 parameter were lower in the second scenario than the
first scenario, and the errors for a1 and a2 parameters were similar in the second
scenario is likely due to this fact. This also helps to explain why the error decreased
as the number of complex items increased. In general, the discrimination parameter
values for both dimensions are similar for complex items because both dimensions
are measured effectively.

12.3.2 Parameter b

In parallel with previous studies in the literature (Reckase et al. 1988; Ackerman
1989; Zhang 2008), this study also demonstrated that the difficulty parameter is
more prone to estimation error under normal conditions. Item difficulty is a parame-
ter related to the ability of examinees. Items that have difficulty parameters that are
below the ability of examinees are easy items for those examinees, while items that
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have difficulty parameters that are above the ability of examinees are difficult items
for those examinees. Accordingly, the difficulty of an item is related to the person
ability, or theta. Therefore, having different underlying distributions really impacts
the ability to estimate the difficulty parameter when fitting a unidimensional IRT
model to multidimensional data. As was observed for the discrimination parameters,
the lowest error associated with the difficulty parameter was obtained when the
underlying ability distributions were normal and the correlation between dimensions
was 0.45. However, what is interesting is that the error decreases as the correlation
between dimensions increases, and the underlying ability distributions became more
distinct.

12.3.3 Theta Parameter

The results obtained when estimating ability with a unidimensional IRT model to
scale multidimensional data were expected. Errors associated with the unidimen-
sional estimate of ability decreased as the correlation between dimensions increased.
In a study conducted by Ansley and Forsyth (1985), in which multidimensional
data based upon the non-compensatory IRT model was modeled as unidimensional,
the errors associated with ™1 were smaller than those associated with ™2 because
the average of the true a1 parameters was greater than the average of the true a2

parameters, similar to the first scenario in this study. Similarly, in this study, the
errors associated with ™1 were lower than the errors associated with ™2. In a similar
study done by Ackerman (1989), the average of the true a1 and a2 parameters were
similar to each other, which is similar to the second scenario in this study. The
findings obtained in this study corroborate the findings obtained by Ansley and
Forsyth (1985), and Ackerman (1989). In the first scenario, the errors associated
with ™1 were lower than those associated with ™1 in the second scenario. That is
because, in the first scenario, the average of the discrimination parameters for the
first dimension was higher than the average of the discrimination parameters for
the second dimension. However, in the second scenario, since the averages of the
discrimination parameters for both dimensions were close to each other, a lower
error was obtained for ™2 in this scenario. In conclusion, if the discrimination for
an item is high for a particular dimension, the error associated with the ability
parameter for that dimension will be low. Furthermore, in parallel with the finding in
the study of Ansley and Forsyth (1985), the error values associated with the average
of ™1 and ™2 are always lower than the errors associated with only ™1 or ™2.
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Chapter 13
Identifying Feature Sequences from Process
Data in Problem-Solving Items with N-Grams

Qiwei He and Matthias von Davier

Abstract This article draws on process data from a computer-based large-scale
program, the Programme for International Assessment of Adult Competencies
(PIAAC), to address how sequences of actions recorded in problem-solving tasks
are related to task performance and how feature sequences are identified for different
groups. The purpose of this study is twofold: first, to explore and detect action
sequence patterns of features that are associated with success or failure on a
problem-solving item, and second, to mutually validate the results derived from
two feature selection models. Motivated by the methodologies of natural language
processing and text mining, we utilized n-gram model and two feature selection
methods, chi-square statistic (CHI), and weighted log likelihood ratio test (WLLR),
in analyzing the process data at a variety of aggregate levels. It was found that action
sequence patterns significantly differed by performance groups and were consistent
across countries. The two feature selection approaches resulted in a high agreement
of feature identification.

Keywords Process data • Computer-based assessment • N-gram • Chi-square
selection • Weighted log likelihood ratio • Problem-solving item

13.1 Introduction

Complex problem-solving tasks in educational environments are intended to be
more engaging for learners and more reflective of real life challenges than traditional
test items (Goldhammer et al. 2013). In computer-based assessments (CBAs), one
seeks data relating to the process that provide more information than the outcome
of the task alone. Therefore, the analyses of process data are necessarily much more
involved than those typically performed on traditional tests.
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This study draws on process data from log files from a computer-based large-
scale program, the Programme for International Assessment of Adult Competencies
(PIAAC; cf. Schleicher 2008), to address how sequences of actions are associated
with different ways of cognitive processing and how key actions are identified
that lead to success or failure. These results can be useful for test developers,
psychometricians, and instructors to help them better understand what distinguishes
successful from unsuccessful test takers and may eventually contribute to improved
task and assessment design.

13.1.1 Problem-Solving Items in PIAAC

Large-scale survey assessments of skills and knowledge targeting student and
adult populations have often been at the forefront of innovations in test design
and the use of analytic methodologies (Rutkowski et al. 2014; von Davier et al.
2006; von Davier and Sinharay 2014). PIAAC is no exception. It is the first
international household survey of skills predominantly collected using information
and communications technology (ICT). The use of computers as the delivery
platform enables data collection not just on whether respondents are able to solve the
tasks but how they approach the solution and time their efforts. In PIAAC, the items
in the domain of problem solving in technology-rich environments (PSTRE) involve
more interactive item types and are available only on computer. To give a response
in the simulated computer environments that form the PSTRE tasks, participants are
required to click buttons or links, select from dropdown menus, drag and drop, copy
and paste, and so on.

13.1.2 Action Sequences as Process Data

In CBAs, the dynamic records of actions generated during the item-response process
form a distinct sequence that is derived from test-taker input. Following and
analyzing these sequences can facilitate the understanding of how individuals plan,
evaluate, and select operations to achieve the problem-solving goal.

Sequences are an important type of data that occur frequently in many scientific,
medical, security, business, and other applications. They are also often used in
natural language processing (NLP) techniques as a proxy for capturing linguistic
information (e.g., Su et al. 2000; Lin and Wilbur 2009) as well as in bioinformatics
for encoding the genetic makeup of all species and the structure and function of
proteins (Dong and Pei 2007; Sukkarieh et al. 2012). The availability of process-
log data sequences from educational learning systems such as intelligent tutors
and CBAs has stimulated interest in education research (e.g., Graesser et al. 2004;
Sonamthiang et al. 2007; Goldhammer et al. 2014) and appears promising. However,
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research that uses analytic methodologies to explore sequence patterns in the field
of educational assessment, with the goal of evaluating the utility of action sequences
for explaining test takers’ cognitive task performance, is only at a preliminary stage.

13.1.3 Feature Selection for Sequence Patterns

A distinguishing sequence pattern is one that characterizes a family of sequences
and distinguishes the family from other sequences (Dong and Pei 2007). Once
the set of sequences of process data is determined, there need to be some criteria
for selecting the “good” features for potential usage in data mining tasks, for
instance, classifying action sequences into correct or incorrect performance groups.
A discrimination-based feature selection approach generally identifies preferred
features occurring with relatively higher frequency at a desired site or in some
selected classes (Dong and Pei 2007).

As Fink (2008) pointed out, the development and increased use of sequential
models was closely related to the statistical modeling of texts. Considering the
similar structure between action sequences in process data and word sequences in
natural language, we were motivated to adapt NLP and text mining into the analysis
of process data in the current study. In text categorization, feature selection is a
strategy that aims at identifying the key features that contribute more to accurate
and efficient classification (Li et al. 2009). A number of feature selection methods
have been widely used in NLP and text classification such as document frequency,
information gain, mutual information, chi-square test, binormal separation, and
weighted log-likelihood ratio (see more in Yang and Pederson 1997; Nigam et al.
2000; Forman 2003; Li et al. 2009). For our interests in testing the statistical
independence and likelihood of action sequences in different performance groups,
in this study, we chose two feature selection models, chi-square selection algorithm
(CHI; Oakes et al. 2001) and weighted log likelihood ratio test (WLLR; Nigam et al.
2000), to analyze the process data at a variety of aggregate levels. We chose these
two feature selection methods based on their high efficiency and simplicity. There
has been a good amount of literature on the topic (e.g., Forman 2003; Manning and
Schütze 1999). The specific features of these two methods will be discussed in the
section of methods.

13.1.4 Goals of the Present Study

The purpose of this study is twofold: first, to explore and detect action sequence
patterns of features that are associated with success or failure on a PSTRE item, and
second, to mutually validate the results derived from two feature selection models.
We investigated the utility of behavioral process data for predicting differences in
task performance in the PIAAC PSTRE domain. More specifically, we separated
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the database by two performance groups (correct and incorrect) for a sample item,
extracted action sequences, and identified the key sequences that were significantly
associated with task completion.

13.2 Method

13.2.1 Sample

For this study, data from the PSTRE domain collected during the 2012 PIAAC main
study were used. The PIAAC sample was representative of the population of adults
who were age 16–65 and had prior experience with computers.

We chose the United States, the Netherlands, and Japan as exemplary countries
from three continents (North America, Europe, and Asia) among the group of
participating countries. This selection allowed for a broad range of country per-
formances, as Japan and the Netherlands performed at a high level in PIAAC, while
the US was a relatively low-performing country (OECD 2013). This selection also
provided countries with high percentages of individuals using computers among
their subpopulations, a necessary element to get valid results for the technology-
based PSTRE domain. A total of 3926 test takers who completed the PSTRE items
in the PIAAC assessment were included in the present study. Of these, 1340 test
takers were from the US, 1508 from the Netherlands, and 1078 from Japan. There
were 2025 female test takers (51.6 %) and 1901 male test takers (48.4 %). The
average age was 39.6 years (SD D 14.0). A plurality (1812) of this sample had an
educational level above high school (46.2 %), with 1493 reporting a high school
degree (38.0 %), 615 reporting less than high school (15.7 %) and six cases recorded
as missing (0.1 %).

To get more accurate population estimates, we took sampling weights into
account in the calculations. We standardized the weights to a sum of 5000 in each
country1 to ensure that every country contributed equally (for details on PIAAC
sample design and weighting standards, refer to OECD 2010). With this sum
normalization, the range of sampling weight is within [0.15, 3.69], [0.39, 2.54], and
[0.30, 2.53] for the samples from the US, the Netherlands, and Japan, respectively.
In addition, we conducted the same analyses without using sampling weights. Only
marginal differences were found between the two conditions with and without
sampling weights.

1Approximately 5000 people in each country participated in PIAAC, which consists of three
constructs: literacy, numeracy, and PSTRE. Only those who had experience in using computers
and agreed to use the computer-based tests participated in the PSTRE session. Hence, the realized
sample size for PSTRE is, on average, a quarter of the total sample in each country.
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13.2.2 Instrumentation

A total of 14 PSTRE items were administered in the PIAAC main study. We focused
on the sequence data resulting from the task requirements of one item. This item
consists of two environments: a spreadsheet environment that contains a database
with the information required to solve the task (and serves as the stimulus), and an
email environment to provide the response. The task is to identify the ID number
of a specified club member (e.g., “David Smith”)2 and email it to a correspondent.
On the spreadsheet (SS) page, four pieces of information for each club member are
provided by columns: ID number, name, number of activities this year, and years as
a member. There is a checkbox on each line to facilitate flagging the potential correct
answer. On the email (E) page, test takers are required to enter the ID number into
an email to a correspondent.

An interim score was evaluated based on the email responses only. It meant that
an empty or a wrong answer on the email page led to an incorrect result even though
the participant might have correctly identified the specified person on the SS page.

The task for this item is situated in a simulated office environment that included
tools and functionality similar to those found in Microsoft Excel and email
applications, that is, clickable buttons for saving, searching, sorting, sending email,
and help; clickable dropdown menus; clickable buttons for switching between the
SS and E environments; and so on. The opening page presents the task description
on the left side and is always displayed. The working part is on the right side of the
screen, which switches upon change in task environment.

13.2.3 Analytic Strategy

To explore the relationship between action sequences and task completion, we
divided the sample into two groups: correct and incorrect. It resulted in 2754
individuals (70.1 %) in the correct group, including 882 from the US, 1104 from
the Netherlands and 768 from Japan, and a total of 1172 people (29.9 %) in the
incorrect group, consisting of 458 test takers from the US, 404 from the Netherlands,
and 310 from Japan. The rate of correctness in the US, the Netherlands, and Japan
was 65.8 %, 73.2 %, and 71.2 %, respectively.

Motivated by the methodologies and applications in NLP and text mining (e.g.,
He et al. 2012, 2014), we used the n-gram representation model as well as two
feature selection models in analyzing the process data in this study. Given concerns
that different models may show a preference for different feature selections, it would
be wise to double check any features that are selected via different approaches
to ensure only valid ones are used in further analysis. In the current study, the
data analysis was undertaken in two phases. First, we decomposed the complete
sequences into smaller units (n-grams) and identified the best features to distinguish

2The name of the specified club member differs by language versions.
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the correct and incorrect groups. Two feature selection models—CHI and WLLR—
were applied to mutually validate the results. Secondly, based on the common
features selected via two models, we explored the relationship between sequence
patterns and binary classification.

The analysis was conducted across and within countries. The first set of analyses
used the extracted actions and action sequences jointly from all three countries
selected for this study. The goal of this joint analysis was to examine whether
there are features (actions and action sequences) that could distinguish correct
and incorrect groups on an aggregate level. However, in order to examine whether
the same features would be detected as robust ones for each country as well, we
conducted the second set of analyses separately by country.

13.2.4 N-Gram Representation of Sequence Data

N-grams. Analogous to textual data, action sequences collected in computer-based
performance tasks can be decomposed into n-grams. That is, the unigrams are
defined as “bags of actions,” where each single action in a sequence collection
represents a distinct feature; Moving away from unigrams, which are not infor-
mative about transitions between actions, we looked at n-grams. Specifically, we
considered bigrams and trigrams, which are defined as action vectors that contain
either two or three ordered adjacent actions, respectively. For a more efficient
coding system, we subsequently combined the actions that always concurrently
appear in the same order into one code. For instance, the action “END” is always
preceded by “Next_OK”, hence, we recoded “Next_OK, END” into one code
“FINALENDING”. We used the combined code in the subsequent analysis.

Term weight. During the analysis of action sequences we encountered a problem:
The actions such as “START” and “FINALENDING” occurred in all the test takers’
processing sequences and provided little information in distinguishing the correct
and incorrect groups. To solve this problem, a term for a weighting mechanism in
text mining—inverse document frequency (IDF; Spärck Jones 1972)—was applied
for attenuating the effect of actions or action vectors that occurred too often in the
collection to be meaningful.

In this study, we renamed the IDF to speak about inverse sequence frequency
(ISF). To scale the weight to each action, we denoted the total number of sequences
in the collection by N and defined the ISF of an action i as ISFi D log .N=sfi/ � 0,
where N indicates the total number of sequences in the collection, namely, the total
number of test takers (3926 in this study) and sfi is the number of sequences where
the action i appears. Thus, the ISF of a rare action is high, whereas the ISF of a
frequent action is low. The ISF of an action that occurs in all the sequences namely,
used by all the test takers, is zero. Therefore, the low-informative actions such
as START or FINALENDING that were used by all test takers were eliminated
from further analyses. This can be compared to the removal of frequent words
(i.e., stop words) in textual responses such as “an,” “a,” and “the” (Manning and
Schütze 1999).
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Another concern about term frequency is about clustering at the individual level.
The importance of an action that is taken multiple times by one individual should
be different from that when the action is taken once each by multiple individuals.
NLP provides a commonly used solution to the problem by dampening the term
frequency by a function f .tf/ D 1 C log .tf/, tf > 0 because more occurrences
of a word indicate higher importance, but not as much relative importance as
the undampened count would suggest (Manning and Schütze 1999). We applied
rescaling of frequencies in the current study. For example, we used 1 C log 3 to
slightly dampen the importance of an action with three occurrences in a single
respondent sequence than the count of 3 itself. Such a sequence is somewhat more
important than a sequence with one occurrence under the rescaling, but not 3 times
as important.

Analogous to the weighting scheme in NLP, an action’s term frequency tfij

(action i in sequence j) and its ISF was further combined into a single weight as
follows:

weight .i; j/ D
� 	
1C log

�
tfij
�


log .N=sfi/ if tfij � 1

0 if tfij D 0
; (13.1)

where N is the total number of sequences. The first clause applies to actions
occurring in the same sequence, whereas for actions that do not appear (tfij D 0),
we use weight .i; j/ D 0.

To ensure the reliability of calculation, actions (i.e., unigrams) and action vectors
(i.e., bigrams and trigrams) that occurred fewer than five times or had zero ISF
weights (i.e., used by all test takers) were deducted from further analyses. As a
result, 27 unigrams, 144 bigrams, and 257 trigrams were included in the present
study. Table 13.1 presents a total of 27 actions (i.e., unigrams) and their attributes.
The interpretation corresponding to each action is presented in the first column. The
frequency of sequences (SeqFreq) that contain the action by each row is shown in
the third column, following by the raw frequency of actions (ActFreq) in the fourth
column. Note that the SeqFreq and ActFreq are not always equal, because an action
may occur several times in one sequence, which results in an increment for ActFreq
but not SeqFreq. The last four columns of Table 13.1 present the raw and weighted
frequency of actions in correct and incorrect groups, respectively.

13.2.5 Chi-Square Selection Model (CHI)

To answer the question regarding which actions or action vectors are the key factors
that lead to success or failure in the problem-solving process, we first applied the
CHI method to identify robust features. Robust features are generally defined as
the “best” features with high information gain in the NLP (Joachims 1998); thus,
the use of robust feature here is different from the meaning of the term in statistics.
The chi-square feature selection model is recommended for use in textual analysis
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Table 13.1 Raw and weighted frequency of actions (unigrams) defined in a sample PSTRE item

Freq in correct Freq in incorrect
Interpretation Action code SeqFreq ActFreq Raw Wgt Raw Wgt

Switch to email
page

E 3533 7164 5721 434:02 1443 117:93

Send email E_S 1676 1814 1384 1102:00 430 324:69

Cancel to continue
to the next item

Next_C 564 736 354 591:45 382 651:29

Switch to
spreadsheet page

SS 1976 3047 2683 1446:51 364 198:93

Use “Help” on
spreadsheet page

SS_H 120 161 116 336:44 45 125:63

Save results on
spreadsheet page

SS_Save 169 186 119 350:33 67 201:63

Start searching
engine on
spreadsheet page

SS_Se 883 952 808 1135:39 144 199:74

Start sorting engine
on spreadsheet page

SS_So 445 578 486 905:03 92 168:65

Sort by null in the
first choice

SS_So_1_0 11 12 9 58:39 3 11:60

Sort by 1st column
(ID number) in the
first choice

SS_So_1A 41 43 32 149:11 11 48:52

Sort by 2nd column
(Name) in the first
choice

SS_So_1B 573 581 518 910:56 63 107:67

Sort by null in the
second choice

SS_So_2_0 7 7 5 24:76 2 8:29

Sort by 1st column
(ID number) in the
second choice

SS_So_2A 56 57 50 191:09 7 24:81

Sort by 2nd column
(Name) in the
second choice

SS_So_2B 51 52 40 165:67 12 39:25

Sort by 1st column
(ID number) in the
third choice

SS_So_3A 9 9 7 43:12 2 9:96

Sort by 2nd column
(Name) in the third
choice

SS_So_3B 20 20 15 68:60 5 23:79

Sort by 4th column
(Year as a member)
in the third choice

SS_So_3D 6 6 3 15:59 3 14:27

(continued)
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Table 13.1 (continued)

Freq in correct Freq in incorrect
Interpretation Action code SeqFreq ActFreq Raw Wgt Raw Wgt

Cancel sorting SS_So_C 88 95 69 234.10 26 90.59
Click “OK” after
setting sorting
conditions

SS_So_OK 596 735 649 1052.88 86 129.43

Type in full name
for searching

SS_Type_FN 462 686 569 1022.24 117 208.84

Type in given name
for searching

SS_Type_GN 85 154 136 357.31 18 59.76

Type in null for
searching

SS_Type_null 25 28 21 113.90 7 36.02

Type in partial
given name for
searching

SS_Type_PGN 7 12 5 43.38 7 36.39

Type in partial
surname for
searching

SS_Type_PSN 9 16 12 61.66 4 23.65

Typing with
spelling mistakes
in searching

SS_Type_SM 115 283 237 585.57 46 100.38

Type in surname
for searching

SS_Type_SN 433 644 572 1041.88 72 124.06

Typing with
understanding
mistakes in
searching

SS_Type_UM 25 40 30 104.14 10 35.47

Note. SeqFreq indicates the frequency of sequences that contain the action by each row, i.e., the
number of test takers who used the action by each row. ActFreq represents the frequency of actions
that occur in the whole collection. Raw and Wgt indicate the raw and weighted frequency of each
action that occurs in the correct and incorrect groups, respectively. Actions that occur fewer than
five times (ActFreq < 5) or are used by all the test takers (N D 3926) were deducted from the further
analysis

due to its high effectiveness in finding robust keywords and for testing the similarity
between different text corpora (e.g., Manning and Schütze 1999; He et al. 2012;
2014; for more feature selection models, refer to Forman 2003). Because of the
structural similarity between textual and process data, it appears appropriate to apply
this approach to detect those actions or action vectors that are highly informative for
distinguishing the two performance groups.

To apply the CHI method, the joint frequencies of presence versus absence of
each action or action vector crossed by the correctness or incorrectness of the
response were arranged into a 2-by-2 contingency table as shown in Table 13.2.
The (weighted) number of action occurrences in two groups C1 (i.e., correct group)
and C2 (i.e., incorrect group) is indicated by ni and mi, respectively. The sum of the
weighted action occurrences in each group is defined as the group length len(C).
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Table 13.2 2-by-2
contingency table for action i
in chi-square score
calculation

C1 C2

Action i ni mi

: Action i len .C1/� ni len .C2/� mi

Note. C1 and C2 represent the two study
groups (i.e., correct and incorrect). ni and mi

indicate the weighted frequency of the action
i occurs in C1 and C2, respectively. len(C)
indicates the sum of the weighted action
occurrences in each group

The idea behind this method is to test whether occurrence and nonoccurrence of
actions and correctness are independent. Thus, the method compares two groups to
determine how far C1 departs from C2 in terms of action frequencies.

Under the null hypothesis the two collections are randomly equivalent, so their
distribution of actions is proportional to each other. A chi-square value is computed
to evaluate the departure from this null hypothesis. For a 2-by-2 contingency table,
the chi-square value is computed as

�2 D M.O11O22 � O12O21/
2

.O11 C O12/ .O11 C O21/ .O12 C O22/ .O21 C O22/
; (13.2)

where M is the total number of actions in the collection, and Oij represents the
weighted counts in each cell in the matrix (see more in Bishop et al. 1975; Agresti
1990). The weighted counts O11 and O12 are the number of occurrences of an action
(vector) in the correct and incorrect group, respectively, while O21 and O22 are the
number of nonoccurrences of this action in the two performance groups.

In this study, we used the chi-square statistic as a measure of association. That
is, the statistic divided by the weighted number of actions is a standard estimate
of the mean square contingency, which in turn is a squared correlation coefficient.
We selected those attributes for which the chi-square was high (according to the
2-by-2 cross-table with the variable of interest, such as correct/incorrect groups). In
that way, attributes that were strongly associated with the variable of interest were
selected as robust features. Namely, the actions with higher chi-square scores were
more discriminative in classification (Manning and Schütze 1999). Therefore, we
ranked the chi-square statistic of each action in a descending order. The actions
ranked at the top were defined as the robust features. Because we were interested
only in ranking the chi-square score for each action (action vector) to find the “best”
features, assessing statistical significance of the chi-square was not important in
this instance. Further, if the ratio ni/mi was larger than the ratio len(C1)/len(C2), the
action was defined as more typical of group C1 (as a “positive indicator”); otherwise,
it was more typical of group C2 (as a “negative indicator”) (for more details, refer
to Oakes et al. 2001).
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13.2.6 Weighted Log Likelihood Ratio (WLLR)

In order to compare the results obtained using the chi-square selection using another
frequently applied measure, we applied the WLLR in the present study as well.
There are two reasons for our choice of WLLR to validate the results from the
CHI method: First, WLLR has been proven very efficient in feature selection
in text categorization (e.g., Forman 2003; Nigam et al. 2000; Li et al. 2009);
second, CHI and WLLR are considered to belong to the same group of measures,
which take both category information (i.e., ratio between different classes) and
frequency information (i.e., frequency of document and frequency of terms) into
account (Li et al. 2009). The WLLR is defined as the product of the probability
of each action sequence and the logarithm of the ratio between the conditional
probabilities of the sequence in different performance groups. We focused on
applying this commonly used feature selection method in this study for comparison
with the results derived from the chi-square method rather than questioning its
statistical rationale. Analogous to WLLR being applied in feature selection for
text categorization (Nigam et al. 2000), the WLLR of each action sequence for
the purpose of binary classification (i.e., correct group and incorrect group) can
be defined as the following:

WLLR .a;Ci/ D p .ajCi/ log
p .ajCi/

p
�
ajCi

� ; (13.3)

where p .ajCi/ is the conditional probability of action a given in the class Ci and

p
�

a
ˇ̌
ˇCi

�
is the conditional probability of action a not in the class Ci. In the current

analysis, we calculated the WLLR by correct and incorrect groups separately, which
resulted in all positive values of ratio scores. The correct and incorrect groups were
defined exactly the same as with the chi-square selection method.

13.3 Results

13.3.1 Performance Groups on an Aggregate Level

The first analysis of feature extraction was conducted by performance group via
two approaches. Table 13.3 presents the correlation of CHI and WLLR scores for
action sequences in different performance groups by n-grams. It was found that
the CHI and WLLR scores were moderately correlated in the unigrams and highly
correlated in the bigrams and trigrams in both the correct and incorrect groups. The
reason might be interpreted as follows. Unigrams are more flexible than bigrams and
trigrams. The similar frequency of unigrams in correct and incorrect groups results
in a smaller likelihood ratio between the two groups. As shown in formula (13.3), the
WLLR is biased toward the action sequences with both high category ratio and high
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Table 13.3 Correlation
between CHI and WLLR in
different performance groups
by n-grams

Correct Incorrect

Unigrams 0.74 0.60
Bigrams 0.87 0.98
Trigrams 0.88 0.94

frequency, which has been proven in earlier studies by Li et al. (2009) and Nigam
et al. (2000). In the unigrams, the frequency of action sequences appears to play
a more important role than the ratio measurement. Therefore, we can expect that
the unigrams that have low frequencies may have a low WLLR score, although the
CHI score could be high. Because the frequencies of action sequences that occurred
in the correct group are higher on average than the incorrect group, we would
expect the correlation between CHI and WLLR also to be higher in the correct
group than the incorrect group, as shown in Table 13.3. However, the correlation
of CHI and WLLR scores for bigrams and trigrams in the incorrect group was a
bit higher than the correct group, which was a different pattern than seen with the
unigrams. The reason seems to be the greater possibility of errors when looking at
sequential actions (bigram, trigram) instead of just one action (unigram). The results
in Table 13.3 also demonstrate that the mini-sequences of bigrams and trigrams are
more informative than unigrams to be detected as robust classifiers.

Table 13.4 presents the “best” five features (actions and action sequences)
commonly identified by both the CHI and WLLR approaches to distinguish the
correct and incorrect groups based on an aggregated sample. The top five features
of n-grams that typically represent each performance group are listed in descending
order according to their chi-square scores. Note that due to space limitations, we
only present the top five features, using them as examples to illustrate the results
of feature selection. The raw frequency of each action and action sequence in
Table 13.4 was within the range from 7 to 3047. We found the rankings of features
to be consistent between CHI and WLLR.3

Among the unigrams, the actions related to using tools to find clues on the
spreadsheet page, such as searching or sorting approaches (e.g., “SS_Type_SN”,
“SS_So_OK”, “SS_So_1B”, “SS_Se”) were found to be robust features in the
correct group. This matches our expectation, as the use of searching or sorting tools
plays an important role in simplifying the problem-solving process and facilitates
success on this item. Conversely, features that were most salient indicators of the
incorrect group involved breakoff actions such as canceling a started sequence (e.g.,
“Next_C”). These cancel actions suggested that the test takers in the incorrect group
were unsure about decisions during the response process and may have decided to
cancel what they started as a result. Furthermore, the actions that potentially led to
wrong answers (e.g., “SS_So_3D”) were also found to be robust indicators for the
incorrect group. For instance, the action “SS_So_3D”, meaning sorting the fourth

3Note that the values of CHI and WLLR in Table 13.4 are on different scales. Thus, one needs to
focus on the rankings of the features instead of their values.
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Table 13.4 Top five features of action sequences commonly selected via CHI
and WLLR to distinguish correct and incorrect group

Action sequences CHI WLLR

Correct Unigrams SS 70:72 0.37
SS_So_OK 64:58 0.11
SS_Se 22:53 0.11
SS_So_1B 59:66 0.10
SS_Type_SN 68:04 0.09

Bigrams E, SS 229:99 0.43
SS, E 191:18 0.38
SS_So_OK, E 153:90 0.11
SS_So_1B, SS_So_OK 122:49 0.09
START, SS_Se 74:03 0.09

Trigrams E, SS, E 272:49 0.42
START, E, SS 226:42 0.20
SS, E, E_S 211:37 0.17
SS, E, Next 103:52 0.11
SS, E, SS 133:85 0.09

Incorrect Unigrams Next_C 892:80 0.12
SS_Save 98:90 0.01
SS_Type_PGN 33:19 0.00
SS_So_3D 14:56 0.00
SS_Type_PSN 3:27 0.00

Bigrams START, Next 2416:20 0.53
Next, Next_C 521:74 0.12
Next_C, Next 504:22 0.08
SS_Type_FN, Next 196:80 0.05
E_S, E_S 492:26 0.05

Trigrams START, Next, FINALENDING 2420:26 1.71
Next, Next_C, Next 478:16 0.08
START, E, Next 399:01 0.08
Next_C, Next, FINALENDING 392:59 0.07
E_S, Next, Next_C 374:83 0.05

column (year as a member) in the third choice in the spreadsheet page, was not
helpful in identifying the specified person as required. The use of robust features
such as “SS_Save”, that is, actions that did not directly relate to the shortest path to
success, also suggested that test takers in the incorrect group did not fully understand
how to solve the problem. Hence, they frequently aimlessly saved the results on the
server.

The extracted features of bigrams and trigrams further supported the initial
findings based on unigrams. We noticed that the action sequences identified as
typical behaviors in the correct group showed that the test takers had clear subgoals
in different environments and well understood how to achieve these goals. For
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example, the correct group usually chose a tool (searching or sorting) at the very
beginning to solve the item (e.g., “START, SS_Se”). On the contrary, the robust
n-gram-based incorrect indicators suggested that the first actions taken by test
takers in the incorrect groups were more likely to be clicking on “Next” (e.g.,
“START, Next”) or directly switching to the email page (e.g., “START, E, Next”).
Further inspection of the robust indicators of incorrect responses showed that some
action sequences led to wrong answers due to careless mistakes. For instance, some
participants in the incorrect group followed the action sequence “SS_Type_FN,
Next”, meaning they found the unique result from the search engine that was
probably correct in the spreadsheet environment; unfortunately, they then clicked on
“Next” and either forgot—or maybe were unaware of the need—to enter this result
in the email. The robust incorrect indicators such as “Next, Next_C” and “Next_C,
Next” provided additional evidence of the breakoff behavior in the incorrect group,
which is consistent with the results obtained based on unigrams.

In addition, we noticed that the process data of action sequences could also be
used as indicators of missing data. For instance, the most robust trigram in the
incorrect group, “START, Next, FINALENDING”, was found 321 times in the
dataset, which implied that these 321 participants (which correspond to 8.18 % in
the whole sample) simply skipped this item. For better precision, they should be
labeled as missing rather than as incorrect responses.

13.3.2 Performance Groups Within Each Country

To investigate whether the features (actions and action sequences) extracted by
performance groups on an aggregate level were consistent across countries, we
further explored the data by conducting separate analyses within each country.
Specifically, we applied the CHI and WLLR methods on each country layer and
compared the extracted n-gram features among the three countries. Table 13.5

Table 13.5 Consistency rate
of extracted features by
performance groups
compared between country
level and aggregate level

US Netherlands Japan

Correct
Unigrams 0.8 0.8 0.6
Bigrams 0.6 0.6 0.8
Trigrams 0.8 0.8 0.6
Incorrect
Unigrams 0.6 0.6 0.4
Bigrams 0.6 0.8 0.8
Trigrams 0.8 0.6 0.6

Note. The calculation is based on the com-
parison between top five robust features
extracted by performance groups within
each country and those extracted on an
aggregate level as shown in Table 13.4
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presents the consistency rate of each performance group. We define consistency
rate here as the percentage of overlap among the top five features extracted within
each country and on an aggregate level. For instance, the consistency rate is as high
as 80 % in the first cell under the column of US, suggesting that four of the top five
features extracted from the correct group in the US sample matched the features
extracted from the correct group of the aggregate sample. The consistency rate of
features in the correct group was within a range of [60 %, 80 %], with an average of
70 %. These results suggested that the extracted features within each country were
generally consistent with the features detected from a joint sample. Comparatively,
the consistency rate of features in the incorrect group was a bit lower but still
acceptable. The range was [40 %, 80 %], with an average of 60 %. The reason for a
relatively low consistency rate in the incorrect group was probably the diversity of
mistakes that led to wrong actions.

A slightly low consistency rate in the Japanese group, especially in the unigrams
(60 % in correct group and 40 % in the incorrect group), aroused our attention. To
explore the possible reasons for this issue, we took a further look into the Japanese
process data as well as the pilot item in the Japanese version. It was noticed that,
in the spreadsheet for the Japanese version, there was a space between individuals’
given names and surnames. However, such a space is optional and may or may not
appear in daily use in Japanese writings. The optional space caused an increase
in repeated searching actions and typing actions with “spelling mistakes” (e.g.
“SS_Type_SM”) because a number of test takers did not notice the presence of
the space in the table. However, this issue didn’t seem to have a major impact on the
response probabilities or on the overall proficiency level of the Japan group, which
is the highest performing PIAAC country.

13.4 Discussion

CBAs provide new sources of evidence to study cognitive abilities and underlying
processes by measuring not only the outcome of a task but also behavioral process
data that can be interpreted in terms of cognitive processes happening throughout
task completion (Goldhammer et al. 2013). This is of interest especially in action-
driven items, such as PSTRE items in large-scale assessments.

The goal of this study was to explore associations between action sequences and
task completion and to identify the feature action sequences that distinguish between
different performance groups. Motivated by NLP and text-mining methodologies,
we chose the n-gram representation method and the CHI and WLLR feature
selection methods to extract action sequence patterns that facilitate differentiation
between performance groups and mutually validate the results. It was found that
the two feature selection approaches resulted in a high agreement of feature
identification. The actions related to using tools such as sorting and searching
occurred significantly more often in the group of respondents that produced a correct
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response, while actions suggesting hesitative behaviors such as repeatedly clicking
the cancel button were found more often in the incorrect group. Further, among these
robust indicators, we noticed that the correct group had a better understanding of
the subgoals of different environments and were more likely to recover from initial
errors in the problem-solving process. Conversely, respondents in the incorrect
group appeared to have only a relatively vague idea about what was expected in
the item and were more likely to use the help function.

Besides the positive results, some limitations also merit discussion. For instance,
the present study focused on extracting action sequence patterns by different
performance groups without taking background characteristics or timing data into
consideration. Background variables such as gender, educational level, working
status, and familiarity with computer might be important factors in the problem-
solving process and will likely be associated with performance on the PSTRE items
as well, which would be interesting to be included in future studies. Also, evidence
has shown that timing is highly correlated with the problem-solving process and
performance (e.g., Goldhammer et al. 2014). Thus, it might be interesting to develop
a model that can take advantage of both timing and process data in an integrative
analytic approach.

Future studies will provide more information about the predictive power of
feature extraction models. More specifically, action sequences harvested across
multiple tasks should be related to proficiency estimates based on scored task
responses from the same as well as other proficiency scales that were assessed
simultaneously. We would like to recommend selecting features via multiple
approaches rather than a unique one because different methods may pick up slightly
different distinguishing features (action sequences). It seems advisable to double
check the feature selection in order to ensure that robust features are selected and
are valid for further analysis of additional datasets. In addition, future studies will
benefit from the explorations presented here and will be able to scale up analyses to
include more data from a larger variety of countries. For instance, we could compute
the Kullback–Leibler divergence (Kullback and Leibler 1951) by averaging the sum
of WLLR scores for each action sequence to estimate the likelihood of correctness
on an individual level.

In conclusion, with increasing use of CBAs, process data play an increasingly
important role in tracking test takers’ thinking and action sequences. This pilot
study presented what we think is a promising method to analyze process data and
extract robust sequence features that are informative for differentiating between
performance groups. However, the research regarding process data is still nascent in
educational assessments. The benefits that process data can bring and how we can
use it are questions waiting to be fully explored. For future studies, we recommend
including background characteristics and timing data in the analysis of process
data to further explore their interaction effects on performance as well as making
a comparative study among different feature selection methods to better identify the
key sequences in classification.
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Chapter 14
Evaluating the Detection of Aberrant Responses
in Automated Essay Scoring

Mo Zhang, Jing Chen, and Chunyi Ruan

Abstract As automated essay scoring grows in popularity, the measurement issues
associated with it take on greater importance. One such issue is the detection of aber-
rant responses. In this study, we considered aberrant responses as those that were
not suitable for machine scoring because the responses have characteristics that the
scoring system cannot process. Since no such system can yet understand language
in a way that a human rater does, the detection of aberrant responses is important for
all automated essay scoring systems. Successful identification of aberrant responses
can happen before and after machine scoring is attempted (i.e., pre-screening and
post-hoc screening). Such identification is essential if the technology is to be used
as the primary scoring method. In this study, we investigated the functioning of a
set of pre-screening advisory flags that have been used in different automated essay
scoring systems. In addition, we evaluated whether the size of the human–machine
discrepancy could be predicted as a precursor to developing a general post-hoc
screening method. These analyses were conducted using one scoring system as a
case example. Empirical results suggested that some pre-screening advisories were
operating more effectively than others were. With respect to post-hoc screening,
relatively little scoring difficulty was found overall, thereby reducing the ability
to predict human–machine discrepancy for those responses that passed through
pre-screening. Limitations of the study and suggestions for future studies are also
provided.

Keywords Aberrant response • Automated essay scoring • Scoring difficulty

14.1 Introduction

Automated scoring is here defined as the machine grading of constructed
responses that are not amenable to approaches relying on exact matching (such as
correspondence with a list of key words) (Bennett and Zhang 2015). Such responses
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are not amenable to exact matching because the specific form(s) and/or content of
the correct answer(s) are not known in advance. Automated scoring has been used in
various content domains including mathematics, science, and the English language
arts (e.g., for writing and speaking ability). Generally stated, automated scoring
involves the extraction and aggregation of features of the constructed responses
through both qualitative and quantitative means.

In scoring essay responses, which is the subject of this paper, natural language
processing methods are typically used for feature extraction (e.g., grammatical error
detection and word association). Following feature extraction, evidence is aggre-
gated, which essentially amounts to assigning weights to the different linguistic
features and combining the weighted feature values. In these aggregation models,
the weights can be determined by a panel of experts or by regressing the human
ratings on the set of features. The model is then used to produce a score similar to
what a human rater would have assigned to a given response.

14.1.1 Aberrant Responses in Automated Essay Scoring

Even though the use of automated essay scoring continues to grow in a variety
of contexts, including educational assessment, several measurement issues have
not been fully addressed, one of which is the detection of aberrant responses. In
multiple-choice testing, this concept typically refers to a pattern across responses
for an individual that does not meet expectation (e.g., incorrect answers to easy
questions and correct answers to more difficult questions). There is a large body
of research on the detection of such response patterns via person-fit statistics
(e.g., Karabastos 2003; Reise and Due 1991; Rupp 2013). For automated scoring,
however, the focus is on the characteristics of a single (but complex) item response
rather than on a pattern across responses.

In this study, we considered aberrant responses to be those that are not suitable
for machine scoring because the responses have characteristics that the scoring
system cannot accurately process but that well-trained human raters can more often
effectively handle. Characteristics that may produce an aberrant response include
off-topic content, foreign language, unnecessary text repetition, random keystrokes,
extensive copying or paraphrasing from source materials, pre-memorized text,
unusually creative content (e.g., highly metaphorical), or unexpected organization
or format (e.g., a poem).

Several aspects of this definition are worth noting. First, this definition implies
that aberrancy is a function of the interaction between the limitations of the
scoring system and the behavior of examinees with respect to a type of assessment
task. Such limitations may be specific to a scoring system or associated more
generally with the state of the art. Second, the definition implies that one common
manifestation of aberrancy should be a discrepancy between machine and human
scores. Finally, the definition makes no presumptions about the intent underlying
examinee behavior. That is, aberrant responses may or may not be intentional
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attempts to “game” the system. Although it is often difficult to infer the intent, such
an inference is not necessary for identification and handling of aberrant responses.

In contrast to the sizeable literature in multiple-choice testing, there is only
limited research on aberrant-response detection for automated essay scoring. In one
study, Powers et al. (2001) conducted an experiment where the authors attempted to
trick a machine scoring system by repeating the same paragraphs multiple times so
as to increase text length. In another study, Higgins et al. (2005) developed a method
to detect off-topic responses using vocabulary patterns. Finally, several recent papers
discussed game-ability in automated scoring (e.g., Bejar et al. 2013; Higgins and
Heilman 2014). Most of the above studies were experimental ones that compared
scores before and after some manipulation (e.g., by increasing the complexity of
the vocabulary, or by adding shell language that did not necessarily connect to the
content).

14.1.2 Detection of Aberrant Responses

Why do we want to detect aberrant responses? From a measurement perspective,
whether automated scoring is sensitive to, and how it handles, atypical responses
affects how we interpret and use the resulting scores. Our confidence in the
automated scores will be reduced if the scoring system is not robust against aberrant
responses or fails to handle those responses appropriately.

Detection of aberrant responses may happen at two times. The first time is the
pre-screening stage, before scoring is attempted. Intentionally or not, examinees
may produce responses that are nonsensical or otherwise highly atypical. Such
atypical responses may be blank, have random keystrokes, be off-topic, or have
unusual linguistic structure. From a modeling perspective, those responses can be
considered as outliers and should be excluded from the samples used for calibrating
and evaluating automated scoring models. Advisory flags are often used to identify
such responses during the pre-screening stage. In some cases, these responses
can still be scored automatically without human intervention. Examples include
an empty submission, an essay in a language other than the target language, or an
essay consisting of a complete copy of the prompt text. In other cases, the aberrant
response is routed to a human rater for evaluation, bypassing the automated scoring
system.

The second time is the post-hoc screening stage. Because machine scoring may
not have the same level of public acceptance for high-stakes uses as does human
scoring, most testing programs employ both human and machine scoring methods.
Responses that are not suitable for machine scoring (evidenced by, for example,
low human–machine agreement) can be identified and routed to additional human
graders for evaluation. It is often a policy decision to implement a safeguard so that
when the machine score is different from the human rating by more than a pre-
determined threshold, a second human rating is sought.
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Because of the expense and slow turnaround associated with human scoring,
many large-volume testing programs (e.g., Common Core State Assessments; ETS
2014a; Partnership for Assessment of Readiness for College and Careers 2010;
SMARTER Balanced Assessment Consortium 2010) would prefer to use automated
scoring as a primary method. For such use to be viable, the effectiveness of pre-
screening and post-hoc methods will need to be convincingly demonstrated. For
pre-screening, that demonstration would include confirming that the advisory flags
accurately identify atypical responses. For post-hoc screening, it might include
devising a method to predict the likelihood that a response would have generated
a sizeable human–machine discrepancy had it been scored by a human rater.
Specifically, if machine-scoring difficulty can be accurately predicted, then human
raters can be brought in only when the automated scores were considered to be
potentially problematic. The feasibility of this particular approach, however, has not
been widely investigated.

14.1.3 Purpose of This Study

The purpose of this study was to investigate the effectiveness of approaches
to detecting aberrant responses, with the ultimate goal of supporting the use
of automated scoring as a primary method. Even though various pre-screening
advisory flags have been integrated into automated scoring systems (e.g., Intelligent
Essay Assessor™, Pearson Education Inc. 2010; IntelliMetric™, Vantage Learning
2012), there has been little published research on the effectiveness of those advisory
flags. In this study, we evaluated the effectiveness of such pre-screening flags. In
addition, we evaluated whether the size of the human–machine discrepancy could
be predicted as a precursor to developing a general post-hoc screening method.

14.1.4 E-rater

The automated scoring system used in this study as a case example was e-rater®,
which was developed at Educational Testing Service (ETS), and has been incorpo-
rated in a number of testing programs (Attali and Burstein 2006). The automated
scores produced by e-rater are being used for different purposes ranging from class-
room assessment to graduate and professional school admissions (ETS 2014b, c).
In most testing programs, e-rater scores are generated through a multiple linear
regression. The model is calibrated by regressing human ratings onto such text
features as vocabulary complexity, essay organization, accuracy of grammar and
mechanics, and writing style (in terms of sentence variety and word use).

There are several pre-screening advisory flags embedded in e-rater. In this study,
we analyzed eight advisories that were implemented for the particular essay task
we examined. Each of those advisories signals some anomalous aspect in an essay
response (see Table 14.1). These anomalous aspects would be expected to occur
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Table 14.1 Pre-screening advisory flags in e-rater

ID Label Description

#1 Repetition May contain too many repetitions of words, phrases,
sentences, or text sections.

#2 Insufficient development May not show enough development on topic or concept, or
provided insufficient evidence to support the claims.

#3 Off topic May not be relevant to the assigned topic.
#4 Restatement of prompt

text
Appears to be a restatement of the prompt text with few
additional concepts.

#5 Too short May be too short to be reliably automatically scored.
#6 Too long May be too long to be reliably automatically scored.
#7 Unusual organization May contain unusual organizational elements which cannot

be recognized by the automated scoring system.
#8 Excessive number of

problems
May contain unusually large amount of errors in grammar,
mechanics, style, and usage which may result in unreliable
automated scores.

in most writing assessment programs and, as a consequence, similar pre-screening
mechanisms have been included in various other automated scoring systems (Foltz
et al. 1999; Page 2003; Vantage Learning 2012).

Some of the testing programs that incorporate e-rater also employ a type of post-
hoc screening (in addition to pre-screening using advisories like those above). That
post-hoc screening involves evaluating the discrepancy between the automated score
and a human rater’s score for the same response. In cases where human–machine
discrepancy exceeds a tolerable threshold, a second human rating is sought. While
the exact discrepancy thresholds being used operationally have not been reported,
prior research has evaluated thresholds as low as 0.5 to as high as 1.5 on a 5- or
6-point holistic-scoring scale (e.g., Zhang et al. 2013).

14.2 Research Questions

We pursued two research questions, one concerning the pre-screening stage and the
other, post-hoc screening.

Research Question 1. Are the advisory flags at the pre-screening stage effective
in detecting the aberrant responses they were designed to identify?

RQ1.1 Is the mean absolute human–machine discrepancy greater for flagged than
for non-flagged responses?

RQ1.2 Is human–machine agreement lower for flagged than for non-flagged
responses?
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Research Question 2. For responses that pass through pre-screening, can the size
of the human–machine discrepancy be predicted well enough to support an effective
post-screening mechanism?

The motivation for answering these research questions is related to supporting
the use of automated scoring as a primary method. An answer to the first question
will indicate whether aberrant responses can be successfully filtered at the pre-
screening stage so that those responses can be given to human raters for processing.
For responses that pass pre-screening, an answer to the second question will suggest
whether methods could be developed to predict which essays would have been likely
to generate low human–machine discrepancies had they been scored by humans.
Such essays could thus bypass human review completely, facilitating the sole use of
automated scoring.

14.3 Method

14.3.1 Instrument

An expository essay-writing task was used, which was administered in an assess-
ment for graduate school admission in the U.S. In the task, examinees were asked
to share their opinions on a general topic, and provide supporting evidence for their
claims. The score scale ranged from integer 1 to 6. Included in this study were 76
different prompts of this task type.

14.3.2 Data Set

Essay responses were collected between April 2013 and March 2014. For research
question 1, the total number of responses was approximately 520,000, with 499,537
of those responses not flagged by any advisories. The ones that were flagged
accounted for less than 5 % of the total sample. Specifically, there were 2591
responses that were uniquely flagged by advisory #2, 10,243 responses by #4, 52
responses by #5, 360 responses by #6, 7017 responses by #7, and 127 responses
by #8. (Responses that received more than one advisory flag were not included;
N D 681.) No responses were flagged by advisories #1 or #3, even though those
advisories were active. All responses to the essay task were scored by at least one
human rater and the automated scoring system, while a subset was further graded
by a second randomly-assigned human rater (N D 20,153).

For research question 2, a subset of the total sample consisting of 512,439 essay
responses was used to examine the extent to which human–machine discrepancy
could be predicted. This data set excluded those flagged responses considered
aberrant by the testing program (i.e., #5–8).
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14.3.3 Data Analyses

Since advisories are intended to identify responses that the machine would not
be expected to accurately score, responses with advisory flags should produce
lower human–machine agreement than responses receiving no advisory flag. As a
consequence, for research question 1, we compared the means of the absolute differ-
ences in human–machine discrepancy between flagged and non-flagged responses
separately for each of the six advisories (excluding #1 and #3) using a two-sample
independent t-test and Cohen’s d. We used the absolute difference because positive
and negative differences can cancel out, hiding large differences between scoring
methods.

We next compared the machine–human agreements between the flagged and
the non-flagged groups. Agreement was measured using the Pearson correlation
coefficient, quadratically weighted kappa (QWK), and standardized mean score
difference (SMD), with the pooled variance of the machine and human scores
as the denominator. The first two statistics reflect human–machine agreement at
the individual response level, and the last statistic (SMD) concerns distributional
differences.

For research question 2, a two-step approach was taken. In the first step,
we evaluated the extent to which the machine had difficulty scoring responses.
Scoring difficulty was evaluated in several ways, each of which used the results
from cumulative logistic regression of the human ratings on the linguistic features
extracted by the machine (Haberman and Sinharay 2010). First, we examined the
squared correlation between human scores and the machine scores produced by this
regression. A high squared correlation would suggest that the machine had produced
scores that emulated human ratings well. Second, we computed the mean squared
error (MSE) between machine and human scores. A low MSE would imply a close
similarity between machine and human scores. Finally, for each response, we used
the probability assigned by the regression to each of the six human-score categories.
The standard deviation of those probabilities was computed for each response.
A response that was difficult for the machine to score would be expected to have
a very small standard deviation, meaning that the probability of assigning a score
category was approximately equal across the range. On a six-point scale, a response
for which the probabilities were equal for all categories would have a standard
deviation of 0, whereas a response with a score-category probability of 1 would
have a standard deviation of approximately 0.41. This latter response would have
a single score category predicted with certainty, implying no scoring difficulty. To
summarize results across the data set, the mean and range of the standard deviations
were computed, and the distribution was examined.

To investigate whether the machine had difficulty grading responses at different
score levels, we computed both MSE within each score level, and the correlation
of the standard deviation of the probabilities with human scores. For purposes of
computing MSE, ten score levels were created using the machine scores, running
from 1 to 6 in increments of 0.5. The MSE between human and machine scores
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was computed using both the overall sample and the double human-scored sample.
In addition, the MSE between the two human ratings was computed and compared
with the machine–human MSE. This comparison was made to identify the extent to
which scoring difficulty also existed in human ratings, since such scores are known
to have limitations (e.g., scale shrinkage and inconsistency; Zhang 2013a).

In the second step, a linear regression model was calibrated to predict the
size of the absolute discrepancy between human scores and the machine scores
resulting from the cumulative logistic regression. The predictors were the previously
mentioned linguistic features, two advisory flags not used by the testing program
for pre-screening (#2: insufficient development and #4: restatement of prompt
text), and three additional linguistic features. One of the three additional linguistic
features indicated the presence of word repetition (below the level needed to trigger
flag #1) and of inappropriate words or phrases (e.g., expletives), both of which could
conceivably result in higher machine than human scores. The other two features
measured the overlap in vocabulary of the target essay with essays at different
score levels. This predictive model was evaluated using the Pearson correlation
coefficient between the predicted and observed human–machine discrepancies. A
high correlation would suggest that the size of the discrepancy could be predicted
and potentially used as part of a post-screening technique.

For all analyses, the indices described above were computed for the overall
sample, as well as for the top ten countries/territories based on examinee volume.

14.4 Results

14.4.1 Results for Research Question 1

Table 14.2 shows the results for comparing the mean absolute value of the human–
machine discrepancy between flagged and non-flagged response groups. This
comparison reflects the extent to which human and machine scores disagree at the
level of individual responses.

As the table shows, for three of six advisories, the human–machine discrepancy
was noticeably larger for flagged responses than non-flagged responses (i.e., #2:
insufficient development, #6: too long, and #8: excessive number of problems).
These three advisories showed values of Cohen’s d within the range commonly
considered to constitute a small effect (i.e., greater than 0.20 and less than 0.50).
The largest value was for advisory #8 (excessive number of problems) which had a
d equal to 0.44.

Three other advisories showed similar degrees of human–machine discrepancy
between the flagged and non-flagged groups. For two of the advisories, the
differences were not statistically significant (i.e., #5: too short and #7: unusual
organization). Although the remaining advisory #4 (restatement of prompt text)
produced statistically significant results, the practical significance of the difference
was negligible (d D 0.08).
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Table 14.2 Comparing absolute human–machine discrepancy between flagged and non-
flagged responses

Flagged group Non-flagged group
Flag N Mean of j�j (SD) N Mean of j�j (SD) t value Cohen’s d

#2 2591 0.55 (0.39) 499,573 0.45 (0.35) 14:24� 0.28
#4 10,243 0.48 (0.36) 499,573 0.45 (0.35) 8:20� 0.08
#5 52 0.49 (0.21) 499,573 0.45 (0.35) 0:84 0.12
#6 360 0.52 (0.45) 499,573 0.45 (0.35) 3:93� 0.21
#7 7017 0.44 (0.33) 499,573 0.45 (0.35) �1:42 �0.02
#8 127 0.60 (0.41) 499,573 0.45 (0.35) 4:94� 0.44

Note. j�j D absolute value of human score minus machine score. * D statistically significant
at p < 0.001 level. SD D standard deviation. #2 D insufficient development; #4 D restatement
of prompt text; #5 D too short; #6 D too long; #7 D unusual organization; #8 D excessive
number of problems. No responses were observed for advisory flags #1 (repetition) and #3
(off topic)

Table 14.3 Comparing human–machine agreement between non-flagged and flagged
responses

Group N SMD (h minus e) Correlation QWK

Non-flagged 499,573 0.04 0.81 0.77
Flag #2 2591 0.40 0.86 0.77
Flag #4 10,243 0.16 0.80 0.75
Flag #5 52 1.48 0.41 0.29
Flag #6 360 �0.33 0.53 0.36
Flag #7 7017 �0.10 0.76 0.70
Flag #8 127 0.91 0.59 0.45

Note. Correlation D Pearson correlation coefficient; QWK D quadratically weighted
kappa; SMD D standardized mean score difference. #2 D insufficient development;
#4 D restatement of prompt text; #5 D too short; #6 D too long; #7 D unusual organization;
#8 D excessive number of problems. No responses were observed for advisory flags #1
(repetition) and #3 (off topic)

Table 14.3 presents three additional agreement statistics between human and
machine scores for flagged responses and non-flagged responses. Included in the
table are the human–machine SMD, Pearson correlation coefficient, and QWK.

For the SMD, all flagged groups produced values greater than the non-flagged
group. The largest differences were for advisories #2 (insufficient development),
#5 (too short), and #8 (excessive number of problems), each of which identified
responses for which the machine gave a notably lower score on average than did the
human raters.

With respect to the Pearson correlation coefficient, the values for three advi-
sories (#5: too short, #6: too long, and #8: excessive number of problems) were
considerably lower for the flagged groups than for the non-flagged group. That
is, the human–machine correlation coefficient was 0.81 for non-flagged responses,
while the comparable values were 0.41, 0.53, and 0.59 for the three above groups,
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respectively. Among the remaining three advisories, one had a higher machine–
human agreement (i.e., #2: insufficient development), one had a comparable level
of machine–human agreement (i.e., #4: restatement of prompt text), and the last had
a lower level but by only a relatively small amount (i.e., #7: unusual organization).
Generally similar results were found for the QWK statistic.

14.4.2 Results for Research Question 2

The second research question concerned whether the size of the human–machine
discrepancy for a response could be predicted. This question was addressed through
a two-step process, with the first step being an evaluation of the extent to which
the machine had difficulty in scoring. This step was undertaken because if little
difficulty was encountered, human–machine discrepancy would be very rare and
hard to predict.

Several indicators of machine-scoring difficulty were examined. The two middle
columns in Table 14.4 show (1) the squared correlation between human scores and
the machine scores produced by the cumulative logistic regression, and (2) the MSE
between human and machine scores. These indices are given for the overall sample
and for the top 10 countries/territories based on test-taker volume.

Table 14.4 Indicators of machine scoring difficulty

Test country/Territory N R-squared MSE (SD) r

Total sample 512,439 0.67 0.28 (0.43) �0.53
United States 325,125 0.64 0.27 (0.41) �0.55
India 77,870 0.52 0.32 (0.48) �0.30
China 48,089 0.36 0.34 (0.51) �0.22
Korea 6252 0.52 0.29 (0.43) �0.38
Canada 5560 0.62 0.31 (0.46) �0.56
Taiwan 3270 0.46 0.28 (0.45) �0.27
Great Britain 3162 0.67 0.34 (0.49) �0.55
Brazil 2813 0.58 0.22 (0.32) �0.37
Turkey 2149 0.50 0.28 (0.42) �0.34
Bangladesh 2096 0.45 0.30 (0.45) �0.28

Note. R-squared D squared correlation between human scores and
the machine scores produced by the cumulative logistic regression.
MSE D mean squared error between human and machine scores pro-
duced by the cumulative logistic regression. r D Pearson correlation
coefficient between the human scores and the standard deviation of the
probabilities for the score categories yielded by the cumulative logistic
regression
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For the total sample, the R-squared of 0.67 suggests a reasonably strong
relationship between machine and human scores. However, there are clear differ-
ences among countries/territories on this index, suggesting some variation with
respect to scoring difficulty. In particular, English-native speaking countries like
the U.S., Canada, and Great Britain appeared to have noticeably higher levels of
R-squared (0.64, 0.62, and 0.67, respectively) than did such non-English speaking
countries/territories as China, Taiwan, and Bangladesh (0.36, 0.46, and 0.45,
respectively). In contrast to R-squared, relatively little variation was observed for
MSE (which is sensitive to differences in scores for individual responses, as opposed
to differences in response ordering). The range across all countries was from 0.22
to 0.34.

Not shown in Table 14.4 is a third scoring-difficulty indicator, the standard
deviation of the probabilities assigned to each score level by the cumulative logistic
regression. For any given response, this value can range from 0, which reflects the
most difficulty in distinguishing among score categories, to approximately 0.41,
which reflects no difficulty. The mean standard deviation of the probabilities was
0.25 (SD D 0.03) across all examinees in the sample. Shown in Fig. 14.1 is the
distribution of the standard deviations. As the figure indicates, most examinees fall
into the upper half of the range of possible values, suggesting a relative lack of
scoring difficulty.

We also examined scoring difficulty as a function of score level. Two indices
were evaluated. One was the Pearson correlation coefficient between the human

Fig. 14.1 Distribution of the standard deviation of score-level probabilities for the overall sample
(N D 512,439)
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scores and the standard deviation of the probabilities for the score categories
yielded by the cumulative logistic regression. This index is shown in the far-right
column of Table 14.4. For the sample as a whole, r D �0.53, indicating a moderate
relationship between machine-scoring difficulty and score level, such that the higher
the score, the greater the difficulty. This index also has negative values for all top
ten countries/territories, though for some countries the relationship was weaker
than for others. It is worth noting that the strongest relationships occurred for the
English speaking countries/territories, whereas the weaker relationships occurred
for non-English speaking countries/territories. This result suggests that scoring
difficulty is more evenly distributed across the rubric levels for the non-English
speaking countries/territories than for the native English-speaking ones. The former
countries/territories had fewer examinees on the higher-end of the scale, where
machine scoring would be expected to have the most difficulty due to the greater
sophistication of the responses.

The second index used to investigate the association of scoring difficulty with
level was conditional MSE (based on the machine scores). As can be seen in
Table 14.5, the largest MSEs were for the 4.5-to-5.0 and 5.0-to-5.5 ranges. This
result is in line with the negative correlation between the standard deviation of the
probabilities and score level reported above. Note that while the MSE for score
range 5.5-to-6.0 does not appear to be consistent with this trend, this MSE was not
well estimated due to the extremely small sample size.

In Table 14.6 are the MSEs computed by level using the double human-scored
sample. Shown are the human–machine MSE and the human–human MSE. The
latter MSE gives an estimate of the scoring difficulty present in human rating.
Because this MSE can be viewed as a component of the human–machine MSE,
a small difference between the two MSEs would suggest that most of the error in
the human–machine MSE is attributable to human rating. As the table shows, this
difference was always less than half of the human–machine MSE, suggesting that

Table 14.5 Mean squared error by score level for the overall sample

Score level N MSE (SD)

[1.0, 1.5) 5373 0.25 (0.33)
[1.5, 2.0) 12,935 0.25 (0.39)
[2.0, 2.5) 38,820 0.28 (0.36)
[2.5, 3.0) 84,006 0.24 (0.39)
[3.0, 3.5) 135,085 0.25 (0.39)
[3.5, 4.0) 121,669 0.29 (0.42)
[4.0, 4.5) 80,190 0.34 (0.51)
[4.5, 5.0) 28,572 0.42 (0.60)
[5.0, 5.5) 5537 0.43 (0.56)
[5.5, 6.0] 252 0.31 (0.67)

Note. MSE D mean squared error between human and machine scores
produced by the cumulative logistic regression model. Score levels are based
on the machine scores
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Table 14.6 Mean squared error by score level for the double human-scored
sample

Human–machine Human–human
Score level N MSE (SD) MSE (SD) MSE difference

[1.0, 1.5) 147 0.26 (0.28) 0.16 (0.47) 0.10
[1.5, 2.0) 422 0.22 (0.38) 0.15 (0.59) 0.07
[2.0, 2.5) 1510 0.29 (0.37) 0.21 (0.54) 0.08
[2.5, 3.0) 3140 0.23 (0.40) 0.16 (0.55) 0.07
[3.0, 3.5) 5244 0.25 (0.39) 0.17 (0.52) 0.08
[3.5, 4.0) 4921 0.29 (0.41) 0.18 (0.61) 0.11
[4.0, 4.5) 3311 0.35 (0.52) 0.24 (0.73) 0.11
[4.5, 5.0) 1193 0.44 (0.60) 0.32 (0.92) 0.12
[5.0, 5.5) 255 0.44 (0.58) 0.27 (0.79) 0.17
[5.5, 6.0] 10 0.22 (0.09) 0.40 (0.42) –*

Note. MSE D mean squared error between the two human ratings, and
between human and machine scores produced by the cumulative logistic
regression model. Score levels are based on the machine scores. MSE differ-
ence D human–machine MSE minus human–human MSE. * D not estimable
due to sample size

most of the scoring difficulty can be attributed to unreliability in the human ratings.
In addition, the table shows that human raters also encountered greater difficulty at
the higher score levels.

In the second step of addressing research question 2, we investigated whether
the size of the human–machine discrepancy for a response could be predicted.
Table 14.7 provides the correlation coefficient between the predicted and observed
absolute human–machine discrepancy. The predictive model was based on the
machine scoring features, three additional linguistic features, and two advisory
flags. For the overall sample as well as for the individual countries/territories, the
prediction accuracy was very limited.

14.5 Discussion

The current study investigated the effectiveness of approaches to detecting aberrant
responses in the automated essay scoring context. Aberrant responses were consid-
ered to be those that were not suitable for machine scoring because the responses
have characteristics that the scoring system cannot process. Successful identification
of aberrant responses is essential for using automated scoring as the primary grading
method.

Two research questions were posed. One related to the performance of a set of
pre-screening advisory flags similar to the ones used in various automated essay
scoring systems. The other question concerned the extent of machine scoring diffi-
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Table 14.7 Correlation coefficient between the predicted and observed abso-
lute human–machine discrepancy

Test country/Territory N r

Total sample 512,439 0.18
United States 325,125 0.18
India 77,870 0.14
China 48,089 0.19
Korea 6252 0.14
Canada 5560 0.21
Taiwan 3270 0.12
Great Britain 3162 0.24
Brazil 2813 0.06
Turkey 2149 0.15
Bangladesh 2096 0.12

culty and whether the size of the human–machine discrepancy could be predicted as
a precursor to developing a general post-hoc screening method.

For the first research question, analyses were concentrated on the performance
of a subset of the pre-screening advisory flags used in the automated scoring
system, e-rater, as a case example. The results suggested that some advisories
were operating considerably more effectively than others. Two advisories (#6: too
long and #8: excessive number of problems) produced noticeable differences on
all measures evaluated—flagged responses had greater absolute machine–human
discrepancies on the individual level, greater SMDs on the distributional level, and
lower machine–human agreement than the non-flagged group. A third flag (#5: too
short) appeared to be highly sensitive to differences in rank ordering and score
distribution, but not to variation in the individual-response level. For this advisory,
the human–machine correlation coefficient and QWK were much lower, and the
SMD much higher, for the flagged than for the non-flagged groups. In contrast,
the mean of the absolute human–machine discrepancies did not distinguish the two
groups. For a fourth advisory (#2: insufficient development), the machine–human
correlation coefficient and QWK for the flagged group were either slightly higher,
or no different from, the non-flagged group. Although this result was contrary
to expectation, the magnitude of the differences was small, suggesting a similar
rank ordering of machine and human scores in the two groups. But, as expected,
the human–machine SMDs and the absolute discrepancies for this advisory were
considerably larger for flagged responses than for non-flagged responses. Thus, this
flag appeared to be primarily sensitive to level differences.

Two other advisories produced more marginal effects (#4: restatement of prompt
text and #7: unusual organization). These advisories were relatively ineffective in
distinguishing between flagged and non-flagged groups in terms of absolute human–
machine discrepancies. They were also much less effective than other advisories as
measured by Pearson correlation coefficient and QWK. Last, although they showed
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some evidence of distinguishing distributional differences (SMD), the magnitudes
were small.

Finally, two advisories (#1: repetition and #3: off topic) were not triggered by any
responses and hence the effect of these flags could not be evaluated. It is possible
that because the data were collected from a high-stakes testing program, examinees’
motivation to game the system through repetition was very low. Similarly, it is
possible that all test-takers submitted content-relevant essays; however, it is also
possible that this advisory is not sensitive enough towards off-topic responses.

For the second research question, we investigated whether the size of the human–
machine discrepancy could be predicted accurately enough to support a post-hoc
screening mechanism. As a precursor to that prediction, we evaluated the extent
to which the machine had difficulty scoring responses. Results showed relatively
little scoring difficulty overall, with the relationship between machine and human
scores being reasonably strong. At the same time, there were clear differences
among countries/territories with lower difficulty associated with English-native
speaking countries and higher levels of difficulty evident in some non-English
speaking countries/territories. This result is consistent with the findings of other
studies (e.g., Bridgeman et al. 2012; Zhang 2013b), and might be caused by smaller
variation in English-language writing proficiency among examinees from those non-
native English-speaking countries/territories.1 Considerably less variation across
test countries/territories was found for the MSE, which could reflect the fact that it
measures a somewhat different aspect of agreement from R-squared. Additionally,
this index is less affected than R-squared by differences in variability from one
country/territory to another. Finally, the mean standard deviation of the probabilities
also suggested a relative lack of scoring difficulty in the overall sample.

Although scoring difficulty appeared to be relatively small overall, more diffi-
culty was apparent for the upper than for the other levels of the score scale. This
phenomenon was evidenced by a moderate negative correlation of the standard
deviation of the score-level probabilities with human scores, and by larger MSEs
for responses in the upper levels. Interestingly, human raters also showed evidence
of greater scoring difficulty at the upper end of the scale, as indicated by MSE. In
fact, a sizable portion of the machine–human MSE might be caused by unreliability
among human raters, which in turn may reflect ambiguity in the rubric criteria.

Our attempt to predict human–machine discrepancy had limited success. The
low level of prediction was not surprising in the context of the scoring difficulty
results. For one, machine scores appeared to correlate strongly with human scores
overall, leaving relatively little variation in the size of the discrepancies. Second, the
small number of examinees who were in the lowest and highest score levels worked
further to reduce the variation in discrepancy. Finally, discrepancy did not appear to
be constant across score levels making it harder to predict.

1The standard deviations of the human scores were 0.86 for the U.S., 0.90 for Canada, and 1.00
for Great Britain; the comparable values were 0.59 for China, 0.66 for Taiwan, and 0.69 for
Bangladesh.
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Several limitations of this study should be noted. First, for most analyses, only
one human score was used. Because human raters (like machines) are fallible,
having additional human raters might make for a more reliable and valid criterion
against which to evaluate the flags, scoring difficulty, and the discrepancy prediction
model. Second, we evaluated advisory flags that covered only six types of aberrant
response. There are many other kinds of aberrant response (e.g., responses with
many rare or long words) that were not investigated because the system used
in this study did not have flags to detect them. Finally, only one test and its
automated scoring system were investigated. It is possible that differences in
examinee population, test content, test purpose, or automated scoring system would
lead to different results.

This study demonstrated how the performance of pre-screening flags for detect-
ing aberrant responses might be analyzed, and the extent to which machine scoring
difficulty might be predicted. The approaches used here can be employed by other
researchers in evaluating the effectiveness of similar flags, and the extent of scoring
difficulty, likely to be found for other systems. That evaluation might inform policy
decisions about when it is appropriate to use particular advisory flags, the criteria
for determining aberrance, and the subpopulations and scale regions where scoring
difficulty might be present. Researchers building automated scoring systems should
consider including pre-screening advisory flags similar to the ones found to be
effective here.

Future studies should consider the use of qualitative analyses, which might reveal
consistent patterns in responses that have large human–machine discrepancy. For
post-hoc screening purposes, those patterns can then be used to model scoring
difficulty. Inclusion of more linguistic features independent of those used for
automated scoring might also improve the accuracy of predicting discrepancy. For
pre-screening purposes, timing and process information might be useful (Zhang and
Deane in press). As a simple example, if an examinee submits an essay shortly after
the test starts (e.g., 30 s), that response is highly likely to be illegitimate. In any case,
a stronger portfolio of pre-screening and post-screening techniques will be needed
if the sole use of automated scoring is to become viable.
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Chapter 15
On Closeness Between Factor Analysis
and Principal Component Analysis Under
High-Dimensional Conditions

L. Liang, K. Hayashi, and Ke-Hai Yuan

Abstract This article studies the relationship between loadings from factor analysis
(FA) and principal component analysis (PCA) when the number of variables p is
large. Using the average squared canonical correlation between two matrices as a
measure of closeness, results indicate that the average squared canonical correlation
between the sample loading matrix from FA and that from PCA approaches 1
as p increases, while the ratio of p/N does not need to approach zero. Thus, the
two methods still yield similar results with high-dimensional data. The Fisher-z
transformed average canonical correlation between the two loading matrices and
the logarithm of p is almost perfectly linearly related.

Keywords Canonical correlation • Factor indeterminacy • Fisher-z transforma-
tion • Guttman condition • Large p small N • Ridge factor analysis

15.1 Introduction

Factor analysis (FA) and principal component analysis (PCA) are frequently used
multivariate statistical methods for data reduction. In FA (Anderson 2003; Lawley
and Maxwell 1971), the p-dimensional mean-centered vector of the observed
variables y is linearly related to an m-dimensional vector of latent factors f as
y D ƒf C ", where ƒ is the p � m matrix of factor loadings (with p > m), and
" is a p-dimensional vector of errors. Typically for the orthogonal factor model,
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the three assumptions are imposed: (1) f � Nm .0; Im/; (2) " � Np .0;‰/, where ‰

is a diagonal matrix; (3) Cov .f ; "/ D 0. Then, under these three assumptions, the
covariance matrix of y is given by † D ƒƒ0 C ‰ .

Let ƒC be the p � m matrix whose columns are the standardized eigenvectors
corresponding to the first m largest eigenvalues of †; � be the m � m diagonal
matrix whose diagonal elements are the first m largest eigenvalues of †; and �1/2

be the m � m diagonal matrix whose diagonal elements are the square root of those
in �. Then principal components (PCs) (c.f., Anderson 2003) with m elements are
obtained as f � D ƒC0y. Clearly, the PCs are uncorrelated with a covariance matrix
ƒC0†ƒC. When m is properly chosen, there exists † � ƒC�ƒC0 D ƒ�ƒ�0,
where ƒ� D ƒC�1=2 is the p � m matrix of PCA loadings.

It has been well known that FA and PCA often yield approximately the same

results, especially their loading matrices bƒ and bƒ�
, respectively. See, e.g., Velicer

and Jackson (1990) and the literature cited therein. Conditions under which the two
matrices are close to each other are of substantial interest. At the population level,
one such condition identified by Guttman (1956) requires that p ! 1 while m=p !
0. For the one-factor model with ƒ D � and ƒ� D ��, under the conditions that
�0� ! 1 and there exists an upper bound for unique variances as p ! 1, Bentler
and Kano (1990) proved that �� converges to �. Let  max be the largest element of
the diagonal matrix ‰ of unique variances, dmin be the smallest eigenvalue of ƒ

0

ƒ,
and

�2
�
ƒ;ƒ�� D

�
1

m


tr
n�

ƒ0ƒ
��1 �

ƒ0ƒ�� �ƒ�0ƒ���1 �ƒ�0ƒ
�o

be the average squared canonical correlation between ƒ and ƒ*. Schneeweiss and
Mathes (1995) showed that �2

�
ƒ;ƒ�� ! 1 if  max=dmin ! 0. Schneeweiss (1997)

further gave a weaker condition: ı=dmin ! 0 where ı D  max �  min is the
difference between the largest and the smallest diagonal element of ‰ . Here, note
that Guttman’s condition is expressed by only p and m, and the role of FA loadings is
not mentioned. On the other hand, Schneeweiss-Mathes and Schneeweiss conditions
are expressed in terms of the eigenvalue(s) of FA loadings and unique variance(s),
and the roles of p and m are not mentioned. Yet, it is known that both are closely
related (Hayashi and Bentler 2000; Krijnen 2006).

Recently, with the advancement of computing technology, high-dimensional data
with large p arise in many disciplines (see, e.g., Hastie et al. 2009). Consequently,
the needs for improving our statistical methodology for analyzing such data are
increasing. Large p is also common in the traditional research in social sciences.
For example, the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher
et al. 1989) contains 567 items, and the scale has been widely used to assess
individual mental health. (Note that MMPI-2 items are binary and we must apply
FA for ordered categorical data. In our study, we focus on FA for continuous data.)
Also, we often collect data from many questionnaires. As a result, whenever we
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consider item analysis with multiple questionnaires combined, we have to face the
issue of analyzing high-dimensional data. Recently, under high-dimensional setting
and when both p and N approach infinity, Bai and Li (2012) studied FA and PCA,
and showed that their loading estimates converge to the same asymptotic normal
distribution, where an additional assumption of

p
p=N ! 0 is needed.

Although some authors called data with p > N as high-dimensional (see, e.g.,
Hastie et al. 2009, Chapter 18; Pourahmadi 2013), we do not require this assumption
to accommodate typical social science data. Also, we do not consider covariance
matrix that has many zero entries, called sparsity (see, e.g., Buehlmann & van de
Geer 2011).

15.2 Purpose of Study

We examine the closeness of the estimates of the two loading matrices from
FA and PCA under high-dimensional setting. Thus, the main goal of our work
is to investigate whether the closeness measured by the average squared sample

canonical correlation �2
�bƒ;bƒ��

approaches 1 under the conditions analytically

derived by Guttman (1956), Schneeweiss and Mathes (1995), and Schneeweiss
(1997); and also under high-dimensional setting with large p when N is relatively
small.

Notice that Schneeweiss and Mathes (1995) and Schneeweiss (1997) only
considered the population loading matrices without any sampling errors. In contrast,
we considered sampling errors by analyzing the sample correlation matrices with
ridge FA (Yuan and Chan 2008) and PCA in a simulation study. Our emphasis is on
high-dimensional settings where p is relatively close to N. As we describe in the next
section, we consider two scenarios: (1)

p
p=N decreases while p/N stays constant;

(2) p/N increases while
p

p=N stays constant. The reason for us to choose the ratiop
p/N to specify our condition is because

p
p=N ! 0 is needed for the equivalence

of asymptotic distributions of FA and PCA loadings (Bai and Li 2012). To the best
of our knowledge, there have not been any studies on systematically examining
the relationship between the various closeness conditions and the actual levels of

closeness measured by the average squared canonical correlation �2
�bƒ;bƒ��

to

date.
We predicted that (1) �2

�bƒ;bƒ��
would approach 1 faster under the condition

that
p

p=N decreases with p/N being a constant than under the condition when p/N

increases with
p

p=N being a constant; (2) �2
�bƒ;bƒ��

would approach 1 faster

under equal unique variances than under unequal unique variances.
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15.3 Simulation Conditions

The population factor loading matrix in our study is of the following form with three
factors (m D 3):

ƒ0
12 D

0
B@
�11 �21 �31 �41 0 0 0 0 0 0 0 0

0 0 0 0 �52 �62 �72 �82 0 0 0 0

0 0 0 0 0 0 0 0 �93 �10;3 �11;3 �12;3

1
CA ;

where two conditions of population loadings are employed: (1) equal loadings:
�ij D 0:8 for every non-zero factor loading, and (2) unequal loadings: �11 D
�21 D �52 D �62 D �93 D �10;3 D 0:8, �31 D �72 D �11;3 D 0:75,
�41 D �82 D �12;3 D 0:7. The numbers of observed variables are multiples of
12: p D 12q, q D 1, 2, : : : , 7; and, when q is more than 1, we stack the structure of
ƒ12 vertically so that ƒ D 1q ˝ƒ12, where 1q is the column vector of q 1’s and ˝ is
the Kronecker product. The factors are orthogonal so that the population covariance
structures are of the form: † D ƒƒ0 C ‰ , where the diagonal elements of † are
all 1’s. As a result, (1) corresponds to equal unique variances and (2) corresponds
to unequal unique variances in the population.

Let S be the sample covariance matrix, and we perform FA on Sa D S C aIp, and
call them ridge FA, where Ip is a p-dimensional identity matrix and a is a tuning
parameter. In the analysis, we let a D p/N as was recommended in Yuan and Chan
(2008) and Yuan (2013), which led to more accurate estimates of the factor loadings
than performing FA on S. No attempt to identify an optimal tuning parameter is
made. Because sparsity is not our focus, we do not apply different regularization
methods such as the lasso (Tibshirani 1996). We perform PCA on S, not on Sa.

Regarding conditions of N and p, we examine two different scenarios: (1) equal
p/N: N increases at the same rate as p; (2) increased p/N: p increases faster than N.
The increased p/N case corresponds to the scenario in which the ratios

p
p=N are

approximately constant, around .0173. See Table 15.1 and Fig. 15.1 for the two
different scenarios for the (N, p) pairs. Regarding the ratios m/p, because m is fixed
at 3, m/p decreases as p increases. So, our study also includes part of the Guttman
(1956) condition: m/p ! 0.

The combinations of two patterns of population covariance matrices and two
different series of p/N ratios create four different scenarios in the simulation. For
each condition of N, p and †, we performed 100 replications of samples from
the multivariate normal distribution with mean vector 0 and covariance matrix †.
For each replication, we computed the �2

�bƒ;bƒ��
; and, at the end of the 100

replications, the average value of �2
�bƒ;bƒ��

across the replications was obtained.
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Table 15.1 Combination of (p, N) pairs in the simulation study

Condition with p/N being a constant

p 12 24 48 96 192
N 200 400 800 1600 3200
p/N 0.06 0.06 0.06 0.06 0.06p

p=N 0.0173 0.0122 0.00866 0.00612 0.00433
Condition with p/N increasing

p 12 24 48 96 192 384 768
N 200 283 400 566 800 1131 1600
p/N 0.06 0.0848 0.12 0.1696 0.24 0.3395 0.48p

p=N 0.0173 0.0173 0.0173 0.0173 0.0173 0.0173 0.0173
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Fig. 15.1 Combination of (N, p) pairs in the simulation study; Note: The “equal p/N” corresponds
to the scenario in which

p
p=N ! 0, and the “increased p/N” corresponds to the scenario in whichp

p=N is approximately constant

For FA, we employed the “factanal” function in the R language and modified it
to fit our simulation purpose. The “factanal” function employs the “optim” function,
a general purpose optimization function. We used the default convergence criterion
set by the “optim” function. For PCA, we simply used the “eigen” function to find
the eigenvalues and the corresponding standardized eigenvectors.
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15.4 Results

(1) In each of the four different combinations of unique variances and p/N ratios,
both b max=bdmin andbı=bdmin decrease rather fast with p initially, and they tend
to stabilize as p increases (Figs. 15.2 and 15.3). As p increases, both b max=bdmin

andbı=bdmin converge to zero slightly slower under the condition with unequal
unique variances and when p/N increases.

(2) The average squared canonical correlations �2
�bƒ;bƒ��

increase rapidly to

1 as p increases, especially under the conditions of equal unique variances

(Figs. 15.4 and 15.5). The relationship between �2
�bƒ;bƒ��

and p is dis-

played in Fig. 15.5 after the Fisher-z transformation of the average canonical

correlation, wherebz D .1=2/ log
n�
1C �

�bƒ;bƒ���
=
�
1 � �

�bƒ;bƒ���o
still

keeps increasing as p increased from 12 to 768. The differences in the

speeds with which �
�bƒ;bƒ��

approaches 1 among the four different scenarios

become clearer after the Fisher-z transformation (Fig. 15.5). Quite interestingly,
the value of the Fisher-z transformed average canonical correlation and the
logarithm of p are almost perfectly linearly related. For the equal unique
variance case with the constant p/N condition,bz D 1:002 C .1:554/log.p/
with coefficient of determination r2 D .9999; for the equal unique variance case
with the increased p/N condition,bz D 1:699C .1:280/log.p/ with r2 D .9999;
for the unequal unique variance case with the constant p/N condition,bz D
1:546C.1:059/log.p/with r2 D .9997; and for the unequal unique variance case
with the increased p/N condition,bz D 1:585C .1:034/log.p/with r2 D 1.0000.

Fig. 15.2 Schneeweiss and
Mathes (1995) criterion
( O max=Odmin) as a function of
the number of observed
variables (p) for four
simulation conditions

equal psi:     increased p/N

equal psi:     equal p/N

0 200 400

Number of Variables (p)

600 800

0.
00

0.
05

0.
10

S
ch

ne
ew

ei
ss

 &
 M

at
he

s 
(1

99
5)

 C
rit

er
io

n

0.
15

0.
20

0.
25

0.
30

unequal psi: increased p/N

unequal psi: equal p/N



15 On Closeness Between Factor Analysis and Principal Component Analysis. . . 215

equal psi:     increased p/N

equal psi:     equal p/N

unequal psi: increased p/N

0 200 400 600 800

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Variables (p)

S
ch

ne
ew

ei
ss

 (
19

97
) 

C
rit

er
io

n

unequal psi: equal p/N

Fig. 15.3 Schneeweiss (1997) criterion (Oı=Odmin) as a function of the number of observed variables
(p) for four simulation conditions

(3) The average squared canonical correlation �2
�bƒ;bƒ��

increases rapidly to 1 as

the ratio p/N increases, especially faster under the condition with equal unique
variances (Figs. 15.6 and 15.7). Under the increased p/N condition, the value of
the Fisher-z transformed average canonical correlation and the logarithm of p/N
are also almost perfectly linearly related. For the equal unique variance case,
bz D 12:080 C .2:559/log .p=N/ with r2 D .9998, and for the unequal unique
variance case,bz D 9:974C .2:068/log .p=N/ with r2 D .9999.

(4) The average squared canonical correlation �2
�bƒ;bƒ��

approaches 1 as

b max=bdmin approaches 0 (Figs. 15.8 and 15.9), and also asbı=bdmin approaches 0

(Figs. 15.10 and 15.11). The speeds for �2
�bƒ;bƒ��

to approach 1 are slightly

slower for the conditions with unequal unique variances than those with equal
unique variances, as reflected in Figs. 15.8 and 15.10 as well as in Figs. 15.9 and

15.11. However, the speed for �2
�bƒ;bƒ��

to approach 1 under the condition

with increased p/N was slower than under the condition with constant p/N case,
as reflected in Figs. 15.8 and 15.9.
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Fig. 15.4 Average squared canonical correlation as a function of the number of observed variables
(p) for four simulation conditions
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Fig. 15.5 Fisher-z transformed average canonical correlation as a function of the number of
observed variables (p) for four simulation conditions



15 On Closeness Between Factor Analysis and Principal Component Analysis. . . 217

equal psi

0.0 0.1 0.2 0.3 0.4 0.5

0.
99

88
0.

99
90

0.
99

92
0.

99
94

0.
99

96
0.

99
98

1.
00

00

Ratio p/N

S
qu

ar
ed

 C
an

on
ic

al
 C

or
re

la
tio

n

unequal psi

Fig. 15.6 Average squared canonical correlation as a function of the ratio of number of observed
variables to sample size (p/N) for the conditions with equal and unequal unique variances
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Fig. 15.7 Fisher-z transformed average canonical correlation as a function of the ratio of number
of observed variables to sample size (p/N) for the conditions with equal and unequal unique
variances
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Fig. 15.8 Average squared canonical correlation as a function of Schneeweiss and Mathes (1995)
criterion ( O max=Odmin) for the four simulation conditions
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Fig. 15.9 Fisher-z transformed average canonical correlation as a function of Schneeweiss and
Mathes (1995) criterion ( O max=Odmin) for the four simulation conditions
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Fig. 15.10 Average squared canonical correlation as a function of Schneeweiss (1997) criterion
(Oı=Odmin) for the four simulation conditions
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Fig. 15.11 Fisher-z transformed average canonical correlation as a function of Schneeweiss
(1997) criterion (Oı=Odmin) for the four simulation conditions
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15.5 Discussion

Conditions for equivalence between FA and PCA loadings were derived analytically
at the population level (Guttman 1956; Schneeweiss and Mathes 1995; Schneeweiss
1997). In contrast, we considered the effect of sampling errors by analyzing the
sample correlation matrices with ridge FA and PCA using a simulation, with a
focus on high-dimensional situations. More specifically, we investigated whether

and how the average squared canonical correlation �2
�bƒ;bƒ��

approaches 1

with large p by including the conditions obtained by Guttman, Schneeweiss and
Mathes, and Schneeweiss. Results indicate that the estimates of loadings by FA
and PCA are rather close for all the conditions considered. For the condition with
increased p/N, we tried to create a situation where p increases faster than N. In
our simulation, the results under the condition with increased p/N are still similar
to those under the condition with p/N being a constant. Also, the speed for the
average squared canonical correlation converging to 1 under the conditions with
unequal unique variances was slightly slower than that under the condition with
equal unique variances. Our results indicate that the average squared correlation
between the sample loading matrix from FA and that from PCA approaches 1 as p
increases, while the ratio of p/N (let alone

p
p=N) does not need to approach zero.

Apparently, the results seem to contradict the result theoretically derived by Bai and
Li (2012). Further study is needed to explain the discrepancy.

The single most interesting finding by far was that the Fisher-z transformed
average canonical correlation and the logarithm of the p are almost perfectly linearly
related for every condition examined in the simulation. This implies the functional

relationship �
�bƒ;bƒ�� D

n
1C 2=

h
e2b̌0p2b̌1 � 1

io�1
approximately holds, where

b̌
0 and b̌1 are, respectively, the intercept and slope of the simple regression line

of the Fisher-z transformed average canonical correlation on the logarithm of p.
Furthermore, under the increased p/N condition, the Fisher-z transformed average
canonical correlation and the logarithm of ratio p/N are also almost perfectly linear
related. This can be explained from the nature of our simulation design. We chose
the two series of pairs (p, N) in such a way that either p/N are a constant or

p
p=N are

a constant. For the latter case, let
p

p=N D C. Then (1/2)log(p)D log(N) C log(C).
Thus, using log(p) as a predictor is equivalent to using log(N) as a predictor, and
the equation: log(p/N) D (1/2)log(p) C log(

p
p=N) D (1/2)log(p) C log(C) explains

why both log(p) and log(p/N) had a linear relationship with the Fisher-z transformed
average canonical correlation.

Obviously, our simulation design is far from being extensive in a sense that
the ratios p/N do not include values greater than 1. More extensive simulation
studies might also need to include different covariance structures, with different
combinations of p and N, as well as conditions with p/N being greater than 1.
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Chapter 16
The Infinitesimal Jackknife and Analysis
of Higher Order Moments

Robert Jennrich and Albert Satorra

Abstract Mean corrected higher order sample moments are asymptotically nor-
mally distributed. It is shown that both in the literature and popular software the
estimates of their asymptotic covariance matrices are incorrect. An introduction to
the infinitesimal jackknife (IJK) is given and it is shown how to use it to correctly
estimate the asymptotic covariance matrices of higher order sample moments.
Another advantage in using the IJK is the ease with which it may be used when
stacking or subsetting estimators. The estimates given are used to test the goodness
of fit of a nonlinear factor analysis model. A computationally accelerated form for
IJK estimates is given.

16.1 Introduction

Covariance structure analysis is a popular form of analysis in psychometrics and
econometrics. It is a form of second order moment structure analysis. We are inter-
ested here in moment structure analysis for higher order moments. Unfortunately
this is not an immediate generalization of classical covariance structure analysis.

Why higher order moments? Higher order moments permit estimating linear
models that are non-identified with just first- and second-order moments. In 1937
Jerzy Neyman conjectured that for a non-normal regressor consistent estimation
in the classical errors-in-variables model could be achieved by using third-order
moments. Mooijaart (1985) proposes estimation of an exploratory factor analysis
model using moments up to order three; Cragg (1997) uses moments up to order
four in the estimation of a simple regression with errors in variables.

Higher order moments are also used to estimate interaction and nonlinearities
among latent variables. For example, Hausman et al. (1991) estimate a polynomial
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errors-in-variables model. Mooijaart and Bentler (2010) present a general approach
to estimate nonlinear latent variables models based on a moment structure for
moments up to order three. Mooijaart and Bentler’s approach is implemented in
the widely used software EQS (Bentler 2012). More recently, moments involving
higher-order moments have also been applied in genetics (Ozaki et al. 2011). In
these applications, estimation of the covariance matrix of a vector of sample higher
order moments is essential for correct inferences.

We will be primarily interested in the analysis of higher order moments of the
form

�k D E..x � �/˝ � � � ˝ .x � �//

where x is a random vector with mean � and the kronecker product is of order k.
The natural estimate of � is

qk D 1

n

nX
iD1
..xi � Nx/˝ � � � ˝ .xi � Nx//

where x1; � � � ; xn is a sample from the distribution of x.
We will use the infinitesimal jackknife (IJK) to derive an estimate of the

asymptotic covariance matrix for qk and show that in the literature and in popular
software this has been done incorrectly when k > 2. Our aim is to produce a
computationally simple consistent estimator of the asymptotic covariance matrix
of qk or the asymptotic covariance matrix of a stacked or subsetting vector of qk’s.

The IJK estimates for the asymptotic covariance matrices for qk can be used to
obtain standard errors for parameter estimates in moment structure models involving
higher order moments and to test the goodness of fit for these models. We will
illustrate this with the classical errors in variable model.

This is an abbreviated version of Jennrich and Satorra (in press) with the focus
on the use of the IJK to compute standard errors of higher order moment structures
and the element-wise formulae for the IJK estimate of variance, both issues not
attended in the main paper. We also provide a Monte Carlo illustration for the errors
in variable model, an illustration not included in the Psychometrika paper.

16.2 The IJK Estimate of the Variance of Higher Order
Moments

The IJK was introduced by Jaeckel (1972) in a Bell Labs technical note. Efron and
Tibshirani (1993) and Jennrich (2008) discuss the IJK method.

Let T.F/ be a function of an arbitrary distribution F on Rp. The influence function
for T.F/ at x 2 Rp is

T 0.x;F/ D lim
�!0

T..1 � �/F C �ıx/ � T.F/

�
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where ıx is the distribution that has mass one at x. This measures the change in T.F/
resulting from a small change in F at x.

Note the influence function is actually a derivative. More precisely it is the
derivative of the function

f .�/ D T..1 � �/F C �ıx/

at � D 0.
Consider a vector parameter of the form � D T.F/. Let Fn be the sample

distribution function for a sample of size n from the distribution F. Then the plug-in
estimator of � is O� D T.Fn/. The IJK estimator for the asymptotic covariance matrix
of O� is the sample covariance matrix for the pseudo-values

��
i D T 0.xi;Fn/

In symbols

acovIJK. O�/ D scov.��
i / (16.1)

The covariance here is defined dividing by n. This is a very simple way to estimate
parameters of the form � D T.F/ and their asymptotic covariance matrix.

Clearly �k D T.F/,

T.F/ D
Z
.u �

Z
xdF.x//˝ � � � ˝ .u �

Z
xdF.x//dF.u/

where the Kronecker product is of order k. Then qk is the plug-in estimator of �k.
Jennrich and Satorra (in press) obtain that the pseudo-values for qk are

q�
ki D

kX
`D1

T 0̀.xi;Fn/C T 0
kC1.xi;Fn/ (16.2)

where for ` D 1; � � � ; k

T 0̀.xi;Fn/ D 1

n

nX
jD1
.a1 ˝ � � � ˝ ak/

where a` D �.xi � Nx/ and all other am D xj � Nx, and

T 0
kC1.xi;Fn/ D .xi � Nx/˝ � � � ˝ .xi � Nx/� qk

the Kronecker product being of order k. In words, the pseudo-values for qk are minus
the mean on j of the distinct permutations of .xi � Nx/˝ .xj � Nx/˝ � � � ˝ .xj � Nx/ plus
.xi � Nx/˝ � � � ˝ .xi � Nx/ � qk where the products are of order k.
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An important case is that for q3. The pseudo-values for q3 are

q�
3i D �Pn

jD1.xi � Nx/˝ .xj � Nx/˝ .xj � Nx/
�Pn

jD1.xj � Nx/˝ .xi � Nx/˝ .xj � Nx/
�Pn

jD1.xj � Nx/˝ .xj � Nx/˝ .xi � Nx/
C.xi � Nx/˝ .xi � Nx/˝ .xi � Nx/ � q3

(16.3)

16.2.1 The Accelerated IJK

Because there is a summation on j for every value of i these formulas can be
expensive to evaluate. Fortunately there is an accelerated form. The IJK pseudo-
values for qk can be written in the form

q�
ki D �Ck.xi � Nx/˝ qk�1 C .xi � Nx/˝ � � � ˝ .xi � Nx/ � qk

where Ck is a constant matrix whose value does not depend on data values (for
details on Ck, see Jennrich and Satorra Jennrich and Satorra (in press)).

Already for n D 500 the basic algorithm is quite expensive and almost
prohibitively expensive when n D 1000; in contrast, the accelerated algorithm can
handle large values of p and n. For example, to compute the pseudo-values of q3
when p D 5 and n D 1000 the basic algorithm took 1047 s while the accelerated
one needed just 4:91 s.

16.2.2 Functions of Plug-In Estimators

For functions of plug-in estimators, we have the following theorem.

Theorem 1. If O� is a plug-in estimator of the form

O� D f .T.Fn//

then

O��
i D f 0.T.Fn//T

0.xi;Fn/

where f 0 denotes the Jacobian of f .
How might the IJK be used to estimate standard errors for minimum distance

estimator (MDE)? If O� is a MDE based on s, then O� D f .s/. Thus, if s is a plug-in
estimator of the form s D T.Fn/, then

��
i D f 0.s/s�

i
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and

acovIJK. O�/ D scov .f 0.s/s�
i /

There are well-known formulas for f 0.s/ when using least squares and normal
maximum likelihood deviance functions.

16.2.3 Stacking and Sub-setting

Let O�1; � � � ; O�m be plug-in estimators. Then the stack

O� D

0
B@

O�1
:::
O�m

1
CA

is a plug-in estimator and its pseudo-values are simply the stack made up of the
pseudo-values for O�1; � � � ; O�m.

Similarly, let O� be a plug-in estimator and O�s contain a subset of the components
of O� . Then O�s is a plug-in estimator and its pseudo-values are the corresponding
subset of the pseudo-values of O� .

16.2.4 Component-Wise IJK Estimates of Variance

Let p be the length of x. Then q3 has p3 components. Index these by an ˛ˇ	
triplet with ˛, ˇ, and 	 each having values from 1 to p and the triplets ordered
lexicographically. The pseudo-values of the ˛ˇ	 component of q3 are given by
Eq. (16.4), which follows from Eq. (16.3) and some work,

.q�
3i/˛ˇ	 D .xi � Nx/˛.xi � Nx/ˇ.xi � Nx/	 � .q3/˛ˇ	 (16.4)

�.xi � Nx/˛.q2/ˇ	 � .xi � Nx/ˇ.q2/˛	 � .xi � Nx/	 .q2/˛ˇ
The extension to other values of k is obvious.

From the subsection above of Stacking and subsetting, the IJK estimate of
variance of a moment vector formed by stacking a subset of moments .q3/˛ˇ	 is the
sample covariance matrix of the stacked vector of the corresponding pseudo-values
.q�
3i/˛ˇ	 .1

1Note that when computing the sample covariance, the term-.q3/˛ˇ	 of (16.4) can be suppressed
since it does not vary with i.
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16.3 Errors in Variables

The Introduction mentioned a number of applications of higher order moments
to errors in variables problems. We will use a simple example to show how such
problems are related to IJK methods. Let X and Y be two unobserved random
variables with

Y D ˛ C ˇX

Assume X and Y can only be observed with error as

x D X C d and y D Y C e

where d and e have mean zero, are independent among themselves and independent
also of X and Y.

Let .x1; y1/; : : : ; .xn; yn/ be a sample from the joint distribution of .x; y/. It is
shown by Pal (1980, p. 352) that if the third central moment of X is nonzero, then

Ǒ D
1
n

Pn
iD1.xi � Nx/.yi � Ny/2

1
n

Pn
iD1.xi � Nx/2.yi � Ny/

is a consistent estimator of ˇ. We will show how to use IJK methods to show not
only this, but also to show that Ǒ is asymptotically normal and to provide a standard
error for Ǒ.

Let

zi D
�

xi

yi



and

q3 D 1

n

nX
iD1
.zi � Nz/˝ .zi � Nz/˝ .zi � Nz/

The numerator and denominator of the fraction defining Ǒ are the seventh and fourth
components of q3. Note that

Ǒ D f .s/

where s is the two component vector containing the fourth and seventh components
of q3 and f .s/ D s1=s2. Since s is a sub-vector of q3, s D T.Fn/ and

Ǒ D f .T.Fn//
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This is an asymptotically normal plug-in estimator of ˇ D f .T.F//. Thus Ǒ is not
only consistent, it is also asymptotically normal.

By Theorem 1 the pseudo-values of Ǒ are

ˇ�
i D f 0.T.Fn//T

0.xi;Fn/ D f 0.s/s�
i

where s�
i is the sub-vector of q�

3 i containing its fourth and seventh components.
These may be used to consistently estimate the asymptotic variance of Ǒ and provide
a standard error.

16.4 A Simulation Study

One thousand data sets were generated using ˛ D 1; ˇ D 2, X distributed as �23
centered and scaled to have mean zero and variance one, and d and e distributed as
N.0; 1/.

For each data set, we computed Ǒ and the IJK estimate of the asymptotic variance
of Ǒ. Let avarIJK. Ǒ/ be the IJK estimate of the avar. Ǒ/. Then

se. Ǒ/ D
s

avarIJK. Ǒ/
n

This provides a standard error for Ǒ. For large n one expects the statistic

z D
Ǒ � ˇ
se. Ǒ/

to be approximately standard normal.
Figure 16.1 is a QQ plot of the quantiles of z on the quantiles of the standard

normal for samples of size n D 300. The line in the figure is a 45 degree line. For
testing purposes one would like the plot to approximate this line at least on the range
of minus two to plus two. The distribution of Ǒ departs from this line on the left. Its
distribution appears to be long-tailed on the left and will reject on the left too often.
The empirical rejection rate for a two-sided test with nominal rate of 5 % was 8.8 %.

Figure 16.2 is the QQ plot obtained when n D 1000. On the range from minus
two to plus two it lies fairly close to the 45 degree line and will probably have a
rejection rate approximating 5 %. The empirical rejection rate for a two-sided test
with nominal rate of 5 % was 5.7 % which is well within the margin of error of
1.38 % for the simulation. In our experience convergence in distributions is fairly
slow when using higher order moments.
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Chapter 17
A General SEM Framework for Integrating
Moderation and Mediation: The Constrained
Approach

Shu-Ping Chen

Abstract Modeling the combination of latent moderating and mediating effects
is a significant issue in the social and behavioral sciences. Chen and Cheng
(Structural Equation Modeling: A Multidisciplinary Journal 21: 94–101, 2014)
generalized Jöreskog and Yang’s (Advanced structural equation modeling: Issues
and techniques (pp. 57–88). Mahwah, NJ: Lawrence Erlbaum, 1996) constrained
approach to allow for the concurrent modeling of moderation and mediation within
the context of SEM. Unfortunately, due to restrictions related to Chen and Cheng’s
partitioning scheme, their framework cannot completely conceptualize and interpret
moderation of indirect effects in a mediated model. In the current study, the Chen
and Cheng (abbreviated below as C & C) framework is extended to accommodate
situations in which any two pathways that constitute a particular indirect effect in
a mediated model can be differentially or collectively moderated by the moderator
variable(s). By preserving the inherent advantage of the C & C framework, i.e.,
the matrix partitioning technique, while at the same time further generalizing
its applicability, it is expected that the current framework enhances the potential
usefulness of the constrained approach as well as the entire class of the product
indicator approaches.

Keywords Moderation • Mediation • The constrained approach

In recent years, the social and behavioral sciences have witnessed a trend toward
an increasing number of empirical studies related to mediated moderation (a
moderating effect is transmitted through a mediator variable, Baron and Kenny
1986) or moderated mediation (mediation relations are contingent on the level of
a moderator, James and Brett 1984). As one example of a study incorporating
mediated moderation, Pollack et al. (2012) examined the psychological experience
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of entrepreneurs in response to economic stress, finding that the indirect effect of
economic stress on entrepreneurial withdrawal intentions through depressed affect
is moderated by the level of business-related social ties. Exemplifying the use of
moderated mediation, Cole et al. (2008) investigated affective mechanisms linking
dysfunctional behavior to performance in work teams. The researchers specified
negative team affective tone as a mediator between dysfunctional team behavior
and team performance, whereas nonverbal negative expressivity was found to be
contingent on the relation of team affective tone on team performance. In general,
examples of empirical studies integrating mediation and moderation are quite
abundant in the literature of various disciplines, including business and management
(e.g., Cole et al. 2008; Pollack et al. 2012), psychology (e.g., Luszczynska et al.
2010), and marketing communications (e.g., Slater et al. 2007), among others. From
the above-cited empirical examples, one can surmise that the substantive variables
of interest utilized to establish causal connections in the corresponding theoretical
models are generally treated as latent variables, each of which is a theoretical
definition of a concept and measured by observed indicators.

Complementing the above empirical research examples are studies which pro-
pose various analytical procedures aimed at integrating moderation and mediation
in the context of moderated regression or path analysis (e.g., Edwards and Lambert
2007; Fairchild and MacKinnon 2009; Preacher et al. 2007). In particular, Hayes
(2013) systemically introduced the concepts of mediation analysis and moderation
analysis, as well as their combination (i.e., conditional process analysis) and further
demonstrated a computational tool (PROCESS macro) for estimation and inference.
However, under regression or path analytical frameworks, all variables are assumed
to be treated as manifest (non-latent) variables and measured without error. In
the presence of measurement error (i.e., unreliability of measures), the regression
coefficient of an interactive or moderating effect may produce a biased estimate and
reduce the power of statistical tests of significance. One possible reason for this
is that the reliability of the nonlinear term is heavily dependent on the reliability
of its individual measures (Busemeyer and Jones 1983; Jaccard and Wan 1995). If
the problem of measurement error is not corrected, these frameworks may be of
limited use in social and behavioral science research such as psychology. Given that
structural equation modeling (SEM) is equipped to deal with multivariate models
and multiple measures of latent variables while controlling for measurement errors
in observed variables (Bollen and Noble 2011), it should be appropriate to introduce
SEM as a preferred alternative to regression or path analysis.

Out of multiple recent lines of SEM-based research, a variety of approaches
have been developed for the estimation of latent nonlinear effects. Most approaches
can be divided into several major categories: product indicator approaches (e.g.,
Algina and Moulder 2001; Coenders et al. 2008; Jöreskog and Yang 1996; Kelava
and Brandt 2009; Kenny and Judd 1984; Marsh et al. 2004, 2006; Wall and
Amemiya 2001), maximum likelihood (ML) estimation methods (e.g., Klein and
Moosbrugger 2000; Klein and Muthén 2007; Lee and Zhu 2002), and Bayesian
estimation methods (e.g., Arminger and Muthén 1998; Lee et al. 2007), among
others. A cursory inspection seems to indicate that most of these approaches
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have been developed primarily to estimate interaction and/or quadratic effects of
exogenous latent variables, leaving nonlinear effects of endogenous latent variables
unaccounted for. Unfortunately, this means that there is a growing divide between
the capability of available nonlinear SEM approaches, on the one hand, and the
interests of social science empirical researchers on the other. In particular, current
scholars, while continuing to do interaction research involving exogenous latent
variables, have increasingly attempted to model endogenous latent variables as
moderators in their theoretical models.

While each of the previously mentioned nonlinear SEM approaches could
conceivably be developed to incorporate latent nonlinear relations involving endoge-
nous latent variables, the underlying mathematical theories derived by each of
these approaches may become overly complex which could lead to some potential
problems. For example, within the classes of ML and Bayesian estimation methods,
Wall (2009) mentioned that when latent nonlinear models increase in complexity
(e.g., larger number of latent variables), the computational algorithms are likely to
fail to reach convergence, and even if they do, may become less numerically precise.
As another example, within the class of product indicator approaches, the elaborate
and tedious nature of the model specification procedure may limit its potential
usefulness. Even so, considering the ever-increasing number of complicated latent
nonlinear relations (e.g., a combination of mediation and moderation) appearing in
empirical applications, it is still imperative that research efforts be made to develop
and generalize current nonlinear SEM approaches.

Pursuing this research aim, Chen and Cheng (2014) generalized Jöreskog and
Yang’s (1996) constrained approach, one of the product indicator methods, to
process interaction and/or quadratic effects involving endogenous latent variables.
The Chen and Cheng (abbreviated below as C & C) framework thus allows for
the concurrent modeling of moderation and mediation within the context of SEM.
Unfortunately, however, due to restrictions related to their partitioning scheme, the
C & C framework cannot completely conceptualize and interpret moderation of
indirect effects in a mediated model. For example, the two moderated mediation
models (i.e., the first and second stage moderation model and the total effect
moderation model) from Edwards and Lambert (2007) cannot be embedded into
the C & C framework.

In the current study, further progress is made on the C & C framework to
accommodate situations in which any two pathways that constitute a particular
indirect effect in a mediated model (e.g., simple mediator models, parallel multiple
mediator models, serial multiple mediator models) can be differentially or collec-
tively moderated by the moderator variable(s). To simplify the model specification
procedure without sacrificing generality, the latent variable versions of all the
models from Edwards and Lambert (2007) are utilized to demonstrate the proposed
partitioning scheme. The present research leverages key attributes of the two above-
mentioned studies to create a highly general latent nonlinear framework. First of
all, the models considered by Edwards and Lambert are relatively exhaustive and
include many forms that integrate moderation and mediation that may be of interest
to empirical researchers. Secondly, the proposed approach retains one of the major
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advantages of the C & C framework: in contrast to specifying constraints in equation
form as in Jöreskog and Yang’s (1996) constrained approach, we specify constraints
in matrix form to simplify the constraint specification procedure and the process of
model specification on the part of the researcher.

17.1 Model Partitioning Scheme

In this section, the partitioning scheme of the current nonlinear framework is
demonstrated through latent variable versions of the great majority of the models
in Edwards and Lambert (2007), with conceptual and statistical diagrams shown
in Fig. 17.1. The present partitioning scheme allows latent variables that are
themselves nonlinear functions of other latent variables to also influence other
endogenous variables in the model in a nonlinear fashion (e.g., in Models D and
H from Edwards and Lambert, the term M is influenced by the interaction term XZ,
and in turn, interacts with Z to affect Y).

More specifically, with regard to the structural part of the current partitioning
scheme (the conceptual diagram shown in Fig. 17.2), latent variables are partitioned
into three subvectors (denoted as ˜F, ˜S and ˜T, where the subscripts, respectively,
stand for “First layer,” “Second layer,” and “Third layer”) to support the integration
of the two vectors of latent nonlinear variables (denoted as ˜F�

and ˜S�
). Here,

˜F�
and ˜S�

are, respectively, defined as W1vech(˜F˜T
F) and W2vec(˜S˜T

F), where
W1 and W2 serve as filter matrices (Chen and Cheng 2014) to select a set of latent
nonlinear terms that the researcher is interested in. Also note that the vech operator
vectorizes a square matrix by stacking the columns from its lower triangle part
while the vec operator vectorizes a matrix by stacking its columns (Seber 2007).
Examining the interrelations among these partitions, the effects among ˜F, ˜S and
˜T are presumed to be unidirectional in the sense that ˜F can influence ˜S and/or
˜T, but ˜S and ˜T cannot affect ˜F; likewise, ˜S can influence ˜T, but ˜T cannot
affect ˜S. Meanwhile, with regard to the two vectors of latent nonlinear variables, it
is assumed that ˜F�

can influence ˜S and/or ˜T while ˜S�
can only influence ˜T. On

the whole, as revealed in Fig. 17.2, the current partitioning scheme has the capability
to incorporate moderation Models B to H from Edwards and Lambert (2007).

With regard to the measurement part of the present partitioning scheme, observed
indicators are partitioned into three subvectors utilized as observed indicators of
˜F, ˜S and ˜T (denoted as yF, yS and yT, respectively) which in turn support
the integration of product indicators of ˜F�

and ˜S�
(denoted as yF� and yS� ,

respectively). Here, yF� and yS� are, respectively, defined as W3vech(yFyT
F) and

W4vec(ySyT
F), where W3 and W4 serve as filter matrices (Chen and Cheng 2014)

to provide the researcher a convenient way of selecting the product indicators
associated with ˜F�

and ˜S�
. In the current partitioning scheme, the effect relating

yi to ˜j (for i D F; S; T and j D F; S; T; F�; S�) is assumed to be null for i ¤ j.
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Fig. 17.1 Conceptual and statistical diagrams from Edwards and Lambert

Putting it all together, the current nonlinear framework can be established by inte-
grating the partitioned vectors of latent variables ˜ D 	

˜T
F

ˇ̌
˜T

S

ˇ̌
˜T

T

ˇ̌
˜T

F�

ˇ̌
˜T

S�


T

and observed indicators y D 	
yT

F

ˇ̌
yT

S

ˇ̌
yT

T

ˇ̌
yT

F�

ˇ̌
yT

S�


T
. The actual construction of

this framework and the specification of constraints in matrix form will be illustrated
in the next section.
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Fig. 17.2 Conceptual diagram and superimposition of the current framework on Models B and H
from Edwards and Lambert



17 A General SEM Framework for Integrating Moderation: : : 239

17.2 Model Specification

The current partitioned nonlinear framework adopts the notation of Muthén
(1984) Case A. The structural and measurement parts, respectively, composed
of .f C s C t C f � C s�/ � 1 and .p C q C r C p� C q�/ � 1 partitioned vectors
of latent variables ˜ D 	

˜T
F

ˇ̌
˜T

S

ˇ̌
˜T

T

ˇ̌
˜T

F�

ˇ̌
˜T

S�


T
and observed indicators

y D 	
yT

F

ˇ̌
yT

S

ˇ̌
yT

T

ˇ̌
yT

F�

ˇ̌
yT

S�


T
, are shown in Eqs. (17.1) and (17.2).

˜ D ’ C B ˜ C —2
666664

˜F

˜S

˜T

˜F�

˜S�

3
777775

D

2
666664

’F

’S

’T

W1Lf F1vec
�
’F’T

F

�
W2S1vec

�
’S’T

F

�

3
777775

C

2
666664

BFF 0 0 0 0
BSF BSS 0 BSF� 0
BTF BTS BTT BTF� BTS�

0 0 0 0 0
W2S1S2 0 0 W2S1S3 0

3
777775

2
666664

˜F

˜S

˜T

˜F�

˜S�

3
777775

C

2
666664

—F

—S

—T

—F�

—S�

3
777775
:

(17.1)

Here, ’i and —i are vectors of intercepts and disturbance terms associated with
˜i (for i D F; S; T). Bij represents the coefficient matrix relating ˜i to ˜j (for
i D F; S; T and j D F; S; T; F�; S�). More specifically, Bij (for i D j)
is specified as a non-null matrix with all diagonal elements restricted to zero;
Bij (for i ¤ j) is specified as a null or non-null matrix in accordance with
the inter-partition relations established for the current partitioning scheme (see
Fig. 17.2). The expanded forms of the nonlinear vectors ˜F�

and ˜S�
shown in

Eq. (17.1) were obtained by plugging the equations ˜F D ’F C BFF˜F C —F and
˜S D ’S C BSF˜F C BSS˜S C BSF�˜F�

C —S from Eq. (17.1) into the equations
˜F�

D W1vech
�
˜F˜T

F

�
and ˜S�

D W2vec
�
˜S˜T

F

�
established in the previous

section. Note that the details of these expansions can be found in Appendix A.

y D � C ƒ ˜ C ©2
6666664

yF

yS

yT

yF�

yS�

3
7777775

D

2
6666664

�F

�S

�T

W3Lpvec
�
�F�T

F

�
W4vec

�
�S�T

F

�

3
7777775

C

2
6666664

ƒFF 0 0 0 0

0 ƒSS 0 0 0

0 0 ƒTT 0 0

W3LpE1 0 0 W3LpE2Df WT
1 0

W4A1 W4A2 0 0 W4A3WT
2

3
7777775

2
6666664

˜F

˜S

˜T

˜F�

˜S�

3
7777775

C

2
6666664

©F

©S

©T

©F�

©S�

3
7777775
:

(17.2)

Here, �i and ©i are vectors of intercepts and measurement errors associated with yi

(for i D F; S; T). Meanwhile, ƒij, the factor loading matrix relating yi to ˜j (for
i D F; S; T and j D F; S; T; F�; S�), is presumed to be non-null for i D j and
null for i ¤ j. The expanded forms of the nonlinear vectors yF� and yS� shown in
Eq. (17.2) were obtained by plugging the equations yF D �F C ƒFF˜F C ©F and
yS D �SCƒSS˜SC©S from Eq. (17.2) into the equations yF� D W3vech

�
yFyT

F

�
and

yS� D W4vec
�
ySyT

F

�
established in the previous section. Also note that the details

of these expansions can be found in Appendix A.
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In the current partitioning nonlinear framework, the vectors of disturbance
terms and measurement errors from Eqs. (17.1) and (17.2) are assumed to have a
multivariate normal distribution as follows:

2
66666664

—F

—S

—T

©F

©S

©T

3
77777775

� N

0
BBBBBBB@

2
66666664

0
0
0
0
0
0

3
77777775
;

2
66666664

‰FF

‰SF ‰SS

‰TF ‰TS ‰TT

0 0 0 ‚FF

0 0 0 ‚SF ‚SS

0 0 0 ‚TF ‚TS ‚TT

3
77777775

1
CCCCCCCA
: (17.3)

Having developed the generalized nonlinear framework as shown in Eqs. (17.1)
and (17.2), it is now possible to proceed to examining the specification of constraints
in the context of these two equations. The six partitioned matrices (’, B, ‰ , �, ƒ

and ‚) along with their respective constraints are described in Eqs. (17.4) through
(17.7) and Appendix B. Constraints embedded into ’, �, ‰ and ‚ are derived based
on the assumption of Expression (17.3) as well as extensions of several properties
of the multivariate normal distribution (Magnus and Neudecker 1979; Tracy and
Sultan 1993; Ghazal and Neudecker 2000). The details of the derivations of these
partitioned matrices are available from the author upon request.

The partitioned vector ’ is a 5�1 array of the form
	
’T

F

ˇ̌
’T

S

ˇ̌
’T

T

ˇ̌
’T

F�

ˇ̌
’T

S�


T
.

’F� and ’S� , the vectors of intercepts of ˜F�

and ˜S�

, encompass the non-null
expected values of —F�

and —S�

to meet the assumption inherent to SEM that the
expected values of disturbance terms are set to null. The resultant form of ’ is
expressed as

’ D

2
666666664

’F

’S

’T

’F� �D W1Lf F1vec
�
’F’T

F C ‰FF
�

’S� �D W2S1
	
vec

�
’S’T

F

�C S6vec .‰FF/C vec .‰SF/



3
777777775

(17.4)

(here “�D” is the symbol for “defined as”).

The general form of the partitioned vector � is
	
�T

F

ˇ̌
�T

S

ˇ̌
�T

T

ˇ̌
�T

F�

ˇ̌
�T

S�


T
, where

�F� and �S� are the vectors of intercepts of yF� and yS� . �F� and �S� subsume the
non-null expected values of ©F� and ©S� to avoid a violation of the assumption
inherent to SEM that expected values of measurement errors are set to null. The
resultant form of � is expressed as



17 A General SEM Framework for Integrating Moderation: : : 241

� D

2
666666664

�F

�S

�T

�F� �D W3Lpvec
�
�F�T

F C ‚FF
�

�S� �D W4vec
�
�S�T

F C ‚SF
�

3
777777775
: (17.5)

The partitioned coefficient matrices B and ƒ are taken directly from Eqs. (17.1)
and (17.2) to be expressed by Eqs. (17.6) and (17.7), respectively.

B D

2
6666664

BFF 0 0 0 0
BSF BSS 0 BSF� 0
BTF BTS BTT BTF� BTS�

0 0 0 0 0
BS�F �D W2S1S2 0 0 BS�F� �D W2S1S3 0

3
7777775
: (17.6)

ƒ D

2
6666666664

ƒFF 0 0 0 0
0 ƒSS 0 0 0
0 0 ƒTT 0 0

ƒF�F �
D

W3LpE1 0 0 ƒF�F� �
D

W3LpE2Df WT
1 0

ƒS�F �
D

W4A1 ƒS�S �
D

W4A2 0 0 ƒS�S� �
D

W4A3WT
2

3
7777777775
: (17.7)

Due to space considerations, details of the partitioning and constraint specifica-
tion of the disturbance covariance matrix ‰ and the measurement error covariance
matrix ‚ are presented in Appendix B.

On the whole, constraints embedded into the six resultant matrices are repre-
sented as either the null matrix or a constraint matrix which is a function of one
or more of the submatrices associated with ˜F and ˜S (i.e., ’F, ’S, BFF, BSF, BSS,
‰FF, ‰SS, ‰TF and ‰TS) and/or submatrices associated with yF and yS (i.e., �F, �S,
ƒFF, ƒSS, ‚FF, ‚SF, ‚SS, ‚TF and ‚TS).

In light of the above discussion, it can be seen that the process of constraint
specification is neatly incorporated into the nonlinear framework of the present
study. It should be noted that the forms of the derived constraint matrices are kept
the same regardless of the number and type of latent nonlinear effects and product
indicators selected. In the following section, an artificial model is illustrated to
demonstrate the usage and validity of the current approach. This model will be
implemented in OpenMx, taking advantage of the capability of this SEM package
to readily support model construction in matrix form.
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17.3 Artificial Interaction Model

The total effect moderation model (Model H) from Edwards and Lambert (2007)
was used to validate the extended partitioned scheme detailed earlier. It was assumed
that each latent variable was associated with two observed indicators. For a complete
graphical depiction of the illustrated model, refer to the path diagram in Fig. 17.3.

In this model, the disturbance terms (
1, : : : , 
4) and measurement errors ("1,
: : : , "8) were assumed to have a multivariate normal distribution with mean zero
and have a covariance matrix composed of the elements in diag( 11, : : : ,  44,
�11, : : : , �88) and the covariance term  21. Simulated data were generated by
PRELIS 2 with sample size set at 500 observations, while the population parameter
values were shown in Table 17.1. The sample mean and covariance matrix for
each replication were calculated from noncentered observed variables. Estimates
and standard errors of parameters from maximum likelihood (ML) estimation were
taken for the first 500 replications in which the estimation procedure converged.

∗F
y ∗F

η

Fy Sη Tη TyFη

∗S
η

Sy

∗S
y

Fig. 17.3 Artificial interactive model
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Table 17.1 Total effect moderation model

Parameter
(true value) Bias SE SD

Parameter
(true value) Bias SE SD

˛1(0.00) – – – ˇ31(0.40) 0.001 0.048 0.070
˛2(0.00) – – – ˇ32(0.40) �0.002 0.049 0.064
˛3(0.00) – – – ˇ41(0.40) 0.002 0.086 0.098
˛4(0.00) – – – ˇ42(0.40) �0.007 0.084 0.094

ˇ43(0.40) 0.015 0.128 0.143
¤1(1.00) 0.000 0.037 0.064 ˇ35(0.20) �0.004 0.041 0.056
¤2(1.00) 0.000 0.030 0.054 ˇ45(0.20) 0.002 0.096 0.109
¤3(1.00) 0.002 0.031 0.063 ˇ46(0.20) 0.003 0.084 0.093
¤4(1.00) 0.001 0.025 0.053
¤5(1.00) 0.001 0.040 0.062  11(1.00) 0.002 0.097 0.142
¤6(1.00) 0.001 0.032 0.055  21(0.30) 0.000 0.039 0.069
¤7(1.00) 0.004 0.059 0.073  22(1.00) �0.002 0.091 0.132
¤8(1.00) 0.000 0.047 0.056  33(0.36) �0.007 0.060 0.077

 44(0.36) �0.015 0.073 0.076
�11(1.00) – – –
�21(0.70) 0.006 0.053 0.072 �11(0.51) �0.003 0.074 0.093
�32(1.00) – – – �22(0.51) 0.000 0.044 0.059
�42(0.70) 0.003 0.051 0.069 �33(0.51) �0.010 0.076 0.091
�53(1.00) – – – �44(0.51) �0.004 0.043 0.052
�63(0.70) 0.010 0.047 0.070 �55(0.51) �0.001 0.059 0.075
�74(1.00) – – – �66(0.51) �0.006 0.037 0.046
�84(0.70) 0.002 0.040 0.042 �77(0.51) �0.003 0.070 0.071

�88(0.51) 0.001 0.044 0.041

Notes. SD D empirical standard error; SE D average estimated standard error.
Rate of fully proper solutions D 95.8 %. To fix scales, ˛1 to ˛4 are set to zero,
and �11, �32, �53 and �74 are set to one

Due to space considerations, the OpenMx syntax used in implementing the total
effect moderation model example is not provided here, but will be provided by the
author upon request.

In order to confirm the validity of the current approach, the bias (calculated as
the difference between the mean of the 500 parameter estimates and the population
parameter value), the empirical standard deviation (SD), and average estimated
standard error (SE) for each parameter from the simulation study are presented in
Table 17.1.

The simulation results indicated that the mean estimates of all parameters were
close to the population parameter values and the absolute biases were less than 0.02,
confirming the validity of the current approach. The average estimated standard
errors (SE) tended to be smaller than empirical standard deviations (SD), meaning
that the estimated standard errors underestimated empirical standard deviation and
thus wrongly inflated the level of significance of testing parameters (increasing
the Type I error rate). It is important to mention that various simulation studies
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(cf., Yang-Wallentin and Jöreskog 2001; Moosbrugger et al. 2009; Chen and
Cheng 2014) similarly showed that average estimated standard errors of parameters
were underestimated when estimating the interaction and/or quadratic effect(s) of
latent variables under the constrained approach. Thus, more research is needed to
determine whether or not this phenomenon is an inherent feature of the constrained
approach.

17.4 Conclusion

The current study established a more general latent nonlinear framework for
integrating moderation and mediation. The proposed matrix specification scheme
encapsulates many possible forms of moderation models that can accommodate
situations in which any two pathways that constitute a particular indirect effect in a
mediated model can be differentially or collectively moderated by the moderator
variable(s), thereby further broadening the potential usefulness of the class of
product indicator approaches, most notably the constrained approach.

Although the proposed framework provides a major step forward in the develop-
ment of the constrained approach, there are a few caveats to take into consideration.
First and foremost, the constraint specification procedure of the proposed framework
is based on the assumption that —F, —S, —T, ©F, ©S and ©T are multivariate normally
distributed. If this assumption is violated, applying the proposed approach might
result in unknown bias in the parameter estimates. Secondly, the current framework,
focusing on the specification of latent interaction and/or quadratic effects, has no
capability to deal with higher-order latent nonlinear effects. Finally, it is important
to keep in mind that the current framework estimates latent nonlinear effects through
a more generalized version of Jöreskog and Yang’s (1996) constrained approach,
which is but one of a multitude of approaches (e.g., the unconstrained approach,
Marsh et al. 2004, 2006; the latent moderated structural equations approach, Klein
and Moosbrugger 2000) that can potentially be used. Further research should be
conducted with the aim of possibly developing other approaches that can likewise
be used to estimate complex latent nonlinear effects.

Appendix A: Expansions of ˜F� , ˜S� , yF�; and yS�

Before ˜F�

, ˜S�

, yF� ; and yS� are discussed in the subsequent paragraph, it is
necessary to gain familiarity with the notation of four basic types of matrices. The
n � n identity matrix will be denoted as In and the mn � mn commutation matrix will
be indicated as Kmn for m ¤ n and Kn for m D n (see definition 3.1 of Magnus and
Neudecker 1979). The n .n C 1/ =2 � n2 elimination matrix and n2 � n .n C 1/ =2

duplication matrix will be denoted as Ln and Dn, respectively (see definitions 3.1a
and 3.2a of Magnus and Neudecker 1980).
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The expansions of ˜F�
, ˜S�

, yF�; and yS� can be obtained with the aid of several
theorems and properties of the Kronecker product, vech and vec operators shown in
Magnus and Neudecker (1980, 1988). The resulting forms of these expansions are
expressed as below.

˜F�
D W1Lf F1vec

�
’F’T

F

�C —F�
;

˜S�

D W2S1vec
�
’S’T

F

�C W2S1S2˜F C W2S1S3˜�
F C —S�

;

yF� D W3Lpvec
�
�F�T

F

�C W3LpE1˜F C W3LpE2Df WT
1 ˜F�

C ©F� ;

yS� D W4vec
�
�S�T

F

�C W4A1˜F C W4A2˜S C W4A3WT
2 ˜S�

C ©S� ;

where —F�
�D W1Lf F1 .F2—F C —F ˝ —F/,

—S�
�D W2S1 ŒS4—F C S5—S C S6 .—F ˝ —F/C S7 .—F ˝ —F ˝ —F/C —F ˝ —S� ;

©F� �D W3Lp ŒE3©F C E4 .©F ˝ —F/C E5 .—F ˝ ©F/C ©F ˝ ©F� ;

©S� �D W4
	
A4©F C A5©S C A6 .©F ˝ —F/C A7 .—F ˝ ©S/C A8 .©F ˝ —S/

C A9 .©F ˝ —F ˝ —F/C ©F ˝ ©S



(here “�D” is the symbol for “defined as”) in which F1 D Œ.If �BFF/˝ .If �BFF/�
-1,

F2 D If ˝ ’F C ’F ˝ If , S1 D Œ.If � BFF/ ˝ .Is � BSS/�
-1, S2 D ’F ˝ BSF,

S3 D ’F ˝ BSF� , S4 D If ˝ Œ’S C BSF.If � BFF/
-1’F C BSF� W1Lf F1.’F ˝ ’F/�,

S5 D ’F ˝ Is, S6 D If ˝ ŒBSF.If � BFF/
-1 C BSF� W1Lf F1F2�, S7 D If ˝

.BSF� W1Lf F1/, E1 D ƒFF ˝ �F C �F ˝ ƒFF, E2 D ƒFF ˝ ƒFF, E3 D
Ip ˝ Œ�F C ƒFF.If � BFF/

-1’F� C Œ�F C ƒFF.If � BFF/
-1’F� ˝ Ip, E4 D Ip ˝

.ƒFF.If � BFF/
-1/, E5 D .ƒFF.If � BFF/

-1/˝Ip, A1 D ƒFF ˝�S, A2 D �F ˝ƒSS,
A3 D ƒFF ˝ ƒSS, A4 D Ip ˝ Œ�S C ƒSS.Is � BSS/

-1.’S C BSF.If � BFF/
-1’F C

BSF� W1Lf F1.’F ˝ ’F//�, A5 D Œ�F C ƒFF.If � BFF/
-1’F� ˝ Iq, A6 D Ip ˝

ŒƒSS.Is � BSS/
-1.BSF.If � BFF/

-1 C BSF� W1Lf F1F2/�, A7 D .ƒFF
�
If � BFF

�-1
/˝

Iq, A8 D Ip ˝ .ƒSS.Is � BSS/
-1/ and A9 D Ip ˝ .ƒSS.Is � BSS/

-1BSF� W1Lf F1/.
Here, —F�

and —S�

are vectors of disturbance terms of ˜F�

and ˜S�

; while ©F�

and ©S� are vectors of measurement errors of yF� and yS� . Meanwhile, F1, F2, S1 to
S7, E1 to E5, and A1 to A9 are all constant matrices.
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Appendix B: Partitioned Matrices ‰ and ‚

The disturbance covariance matrix ‰ is partitioned into a 5�5 array of submatrices
as expressed below:

‰ D

2
666664

‰FF

‰SF ‰SS

‰TF ‰TS ‰TT

‰F�F ‰F�S ‰F�T ‰F�F�

‰S�F ‰S�S ‰S�T ‰S�F� ‰S�S�

3
777775
;

where ‰F�F �D W1Lf F1F2‰FF, ‰F�S�D W1Lf F1F2.‰SF/
T, ‰F�T �D W1Lf F1F2.‰TF/

T,

‰F�F� �D W1Lf F1
	
F2‰FFFT

2 C �
If 2 C Kff

�
.‰FF ˝ ‰FF/



FT

1 LT
f WT

1 ,

‰S�F �D W2S1
	
S4‰FF C S5‰SF

C S7�f 3�f

	
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�
C vec .‰FF/˝ vec .‰FF//




;

‰S�S �D W2S1
	
S4.‰SF/

T C S5‰SS

C S7�f 3�s

	
Ksf 3

�
vec

�
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/

�
Cvec .‰FF/˝ vec .‰SF//




;

‰S�T �D W2S1
	
S4.‰TF/

T C S5.‰TS/
T

C S7�f 3�t

	
Ktf 3

�
vec

�
.‰FF ˝ ‰TF/C Kft .‰TF ˝ ‰FF/

�
Cvec .‰FF/˝ vec .‰TF//




;

‰S�F� �D W2S1
	
S4‰FFFT

2 C S5‰SFFT
2

C S7�f 3�f

h
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�
C vec .‰FF/˝ vec .‰FF/

�i
FT

2

C S6

�
If 2 C Kff

�
.‰FF ˝ ‰FF/C ‰FF ˝ ‰SF C Kfs .‰SF ˝ ‰FF/



FT

1 LT
f WT

1 ;
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‰S�S� �
D

W2S1
	
S4‰FFST

4 C S5‰SSST
5 C S6

�
If 2 C Kff

�
.‰FF ˝ ‰FF/ST

6

C S7
	 �

If 3 C Kff 2 C Kf 2f C If ˝ Kff C Kff ˝ If C �
If ˝ Kff

�
Kff 2

�

� .‰FF ˝ ‰FF ˝ ‰FF/C �
If 3 C Kff 2 C Kf 2 f

� ��
vec .‰FF/ vec.‰FF/

T
�

˝ ‰FF

�

� �If 3 C Kff 2 C Kf 2 f

� 

ST

7 C .‰FF ˝ ‰SS/C Kfs

�
‰SF ˝ .‰SF/

T
�

C S5‰SFST
4 C S4.‰SF/

TST
5

C S7�f 3�f

	
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�C vec .‰FF/˝ vec .‰FF/
�


ST
4

C S4�f �f 3
	
Kf 3 f

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�C vec .‰FF/˝ vec .‰FF/
�


ST
7

C S7�f 3�s

	
Ksf 3

�
vec

�
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/

�C vec .‰FF/˝ vec .‰SF/
�


ST
5

C S5�s�f 3

h
Kf 3s

�
vec

h�
.‰SF/

T ˝ ‰FF

�
C Kff

�
.‰SF/

T ˝ ‰FF

�i

C vec
�
.‰SF/

T
�

˝ vec .‰FF/
�


ST
7

C 	
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/



ST

6

C S6

h�
‰FF ˝ .‰SF/

T
�

C Kff

�
‰FF ˝ .‰SF/

T
�i 


ST
1 WT

2

(here the symbol “�n�m” is used to transform a nm � 1 vector into an n � m matrix).
The measurement error covariance matrix ‚ is partitioned into a 5 � 5 array of

submatrices as expressed below:

‚ D

2
666664

‚FF

‚SF ‚SS

‚TF ‚TS ‚TT

‚F�F ‚F�S ‚F�T ‚F�F�

‚S�F ‚S�S ‚S�T ‚S�F� ‚S�S�

3
777775
;

where ‚F�F �D W3LpE3‚FF, ‚F�S �D W3LpE3.‚SF/
T, ‚F�T �D W3LpE3.‚TF/

T,

‚F�F� �D W3Lp
	
E3‚FFET

3 C E4 .‚FF ˝ ‰FF/ET
4 C E5 .‰FF ˝ ‚FF/ET

5

C �
Ip2 C Kpp
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.‚FF ˝ ‚FF/C E5Kfp .‚FF ˝ ‰FF/ET

4

C E4Kpf .‰FF ˝ ‚FF/ET
5



LT

p WT
3 ;

‚S�F �D W4

h
A4‚FF C A5‚SF C A9�.pf 2/�p

h
Kp.pf 2/vec

�
Kfp .‚FF ˝ ‰FF/

�ii
;
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‚S�S �D W4

h
A4.‚SF/
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Kq.pf 2/vec

�
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Chapter 18
Mastery Classification of Diagnostic
Classification Models

Yuehmei Chien, Ning Yan, and Chingwei D. Shin

Abstract The purpose of diagnostic classification models (DCMs) is to determine
mastery or non-mastery of a set of attributes or skills. There are two statistics
directly obtained from DCMs that can be used for mastery classification—the
posterior marginal probabilities for attributes and the posterior probability for
attribute profile.

When using the posterior marginal probabilities for mastery classification, a
threshold of a probability is required to determine the mastery or non-mastery
status for each attribute. It is not uncommon that a 0.5 threshold is adopted in real
assessment for binary classification. However, 0.5 might not be the best choice
in some cases. Therefore, a simulation-based threshold approach is proposed to
evaluate several possible thresholds and even determine the optimal threshold.
In addition to non-mastery and mastery, another category called the indifference
region, for those probabilities around 0.5, seems justifiable. However, use of the
indifference region category should be used with caution because there may not be
any response vector falling in the indifference region based on the item parameters
of the test.

Another statistic used for mastery classification is the posterior probability
for attribute profile, which is more straightforward than the posterior marginal
probability. However, it also has an issue—multiple-maximum—when a test is not
well designed. The practitioners and the stakeholders of testing programs should be
aware of the existence of the two potential issues when the DCMs are used for the
mastery classification purpose.
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18.1 Introduction

The diagnostic classification models (DCM) are latent variable models for cognitive
diagnosis, which assumes the latent classes (i.e., mastery or non-mastery of
particular skills/attributes/knowledge components) can be represented by binary
latent variables. Recently, DCM has drawn much attention of the practitioners
because of its promising use in aligning teaching, learning, and assessment. DCMs
aim to determine mastery or non-mastery of a set of attributes or skills, or to provide
timely diagnostic feedback by knowing students’ weaknesses and strengths to guide
teaching and learning. In particular, the use of DCM in formative assessments in
classroom has been increasing quickly.

The use of DCM is twofold regarding what can be obtained from the model
and provided to individual students: the strength and weakness profiles based on
estimated attribute mastery probabilities for each attribute, and the classification
of mastery or non-mastery based on estimated profile probabilities. For example,
a set of estimated attribute mastery probabilities for three skills—0.92, 0.41, and
0.22—indicates the student is strong on Skill 1, but may require some additional
learning or practice on the other two skills, especially for Skill 3.

For the mastery classification, there are two statistics obtained from DCM that
can be used to determine the mastery or non-mastery status for each attribute.
The first statistic is the posterior probability for attribute profile. Using DCM,
the posterior probabilities for all possible attribute profiles are obtainable and the
attribute profile can be the profile with the maximum posterior probability. This
estimation method is the maximum likelihood estimation (MLE) or maximum a
posteriori (MAP) if a prior applied multiplies the likelihood function. For ease of
reference, the method to obtain the mastery classification is referred to as the MLE
profile estimation.

Another way to obtain the mastery classification is based on different statistics
obtained from DCM, that is the posterior marginal probabilities for attributes. To
obtain the classification results, a threshold or a cut-off of a probability must be
predefined and then used to determine the mastery or non-mastery status. It is
not uncommon that a 0.5 threshold is adopted in real assessment. Using 0.5 as
a threshold, the previous example has classification [1, 0, 0], where 1 indicates
mastery and 0 indicates non-mastery. Similarly, for ease of reference, this method
to obtain the mastery classification is referred to as the threshold approach.

In this paper, the focus is on estimation of mastery classification. For classi-
fication using the posterior marginal probabilities for attributes, two issues were
addressed. First, for binary classification, a simulation-based approach is suggested
to evaluate the different thresholds. Second, for the indifference region, in addition
to binary classification, evidence demonstrates that examining the values of poste-
rior marginal probabilities for different response patterns or total scores is rational
and necessary because there may not have any probability falling in the indifference
region. For classification using the posterior probability for attribute profile, the
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issue of the multiple maximums on the likelihood in the MLE profile estimation is
addressed. Prior to mentioning those focused aspects, DCMs are briefly introduced.
Some discussions are also provided at the end of this paper.

18.2 Models

In the literature, there are many cognitive diagnostic models including the rule space
model (Tatsuoka 1983), the Bayesian inference network (Mislevy et al. 1999), and
the fusion model (Hartz 2002; Hartz et al. 2002), the deterministic inputs, noisy
“and” gate (DINA) model (Doignon and Falmagne 1999; Haertel 1989; Junker and
Sijtsma 2001), the Deterministic Input, Noisy “Or” Gate (DINO) model (Templin
and Henson 2006), the generalized deterministic inputs, noisy “and” gate (G-DINA)
model (de la Torre 2011), the log-linear CDM (Henson et al. 2009), and the general
diagnostic model (GDM; von Davier 2005). (See more detailed information for
various DCMs from Rupp et al. 2010.)

Among those models, DINA and DINO are popular models for educational
assessment and for psychological tests, respectively, due to their simplicity. DINA
is a noncompensatory model, which assumes the deficiency on one attribute cannot
be compensated by the mastery of other attributes. DINA models the probability
of a correct response as a function of a slipping parameter for the mastery latent
class and as guessing for the non-mastery latent class. On the contrary, the DINO
model is a compensatory model, which assumes the deficiency in one attribute can
be compensated by the mastery of other attributes.

18.3 The Threshold Approach

To obtain the mastery classification from DCM, the most used approach is the
threshold approach (e.g., Hartz 2002; Jang 2005). In practice, the classification of
mastery or non-mastery of each attribute is determined by applying cut-offs on
the posterior marginal probabilities for attributes. When a binary classification is
desired, a convention/intuitive threshold 0.5 is commonly used as the threshold to
obtain the mastery (> D 0.5) and non-mastery states (<0.5) for each attributes (e.g.,
DeCarlo 2011). A threshold of 0.5 is statistically sound and a possible optimal
threshold in many cases when the classification is binary. However, depending
on the Q-matrix structure and the item quality (i.e., the discrimination power),
0.5 might not be the best choice in some cases. Therefore, using a simulation to
examine the distribution of the posterior marginal probabilities for attributes and
then evaluating several possible thresholds is important for the binary classification.

The simulation-based approach first applies a set of cut-offs, for example, from
0.5 to 0.6 by 0.01. Then the best cut-off for each attribute that results in the largest
attribute classification accuracy for each attribute can be obtained. It is possible that
different attributes have different cut-offs.
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Table 18.1 The classification accuracy using 0.5 vs. the optimal set
of cut-offs

Cut-off D 0.5 for all
attributes

Cut-offs D 0.5, 0.51,
0.56, 0.59, 0.6, 0.6

Profile 41.4 % 43.7 %
Attributes 79.4 %, 81.3 %, 84.8 %,

86.4 %, 83.5 %, 85 %
79.4 %, 81.4 %, 85.5 %,
87.1 %, 84.8 %, 87.6 %

Table 18.1 is an example showing the difference of using the convention
threshold and using the best cut-offs obtained from the simulation, which is 0.5,
0.51, 0.56, 0.59, 0.6, and 0.6, respectively. The overall profile classification accuracy
increased from 41.4 to 43.7 % and the attribute mastery classification accuracy also
slightly increased for the attributes 2 to 6.

Note that the largest classification accuracy obtained in the simulation, given a
specific cut-off for an attribute, is not population invariant, which means the optimal
cut-off obtained might be varied for different populations that are composed of
different proportions of student in each of the profiles. Therefore, it is important
that the population of simulees can be drawn from an empirical population that
represents the real population closely.

A common alternative method to classify students, instead of using binary
classification with large uncertainty around the cut-off, is to allow an indifference
region aside from the mastery and non-mastery. An indifference region found in the
literature is defined between 0.4 and 0.6 (e.g., Hartz 2002; Jang 2005). However,
we suggest that the indifference region is defined carefully. Figure 18.1 shows a
histogram of the posterior marginal probabilities for an attribute for 2700 students
under different test lengths, where n in figure indicates the test length. The original
data set contains 8 items measuring one attribute (as shown as n D 8 in the figure).
The slip parameters are between 0.06 and 0.12 and the guessing parameters are
between 0.20 and 0.25 for those 8 items. Because the test length is 8, the possible
total scores are 0, 1, 2, 3, 4, 5, 6, 7, or 8. Three hundred students’ responses are
generated for each of the nine different total scores. To evaluate with shorter test
lengths, the posterior marginal probabilities are re-estimated with only the first n
items, where n D 3 to 7. In total, six different test lengths were evaluated and the
results were represented in Fig. 18.1.

For test length D 8, only 21 students fall into the indifference region as defined
between 0.4 and 0.6. Note that, in the data set of test length D 8, there are 300
students with a total score 4 and another 300 students with a total score 5, which are
the tests with larger measurement error if classification decisions are made. Also,
note only test lengths 5 or 8 have some students falling in the indifference region,
while other four test lengths have none. Defining an indifference region on the
posterior marginal probabilities of attributes and using it to classify students might
not obtain the desired results. To further examine the posterior marginal probability
for the total scores of 4 and 5, a scatter plot is created, as shown in Fig. 18.2; the
total score D 4 all have very low probability values that are obviously classified
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Fig. 18.1 A histogram of the posterior marginal probabilities for an attribute for 2700 students
under different test lengths

Fig. 18.2 A scatter plot of the posterior marginal probability for the total scores of 4 and 5
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as non-mastery, while the total score D 5 have probability values around 0.57 to
0.73 that may be classified as indifference region. This example shows setting up
an indifference region might not be straightforward and examining the posterior
marginal probability given different responses patterns and different total scores are
critical. Indeed, more research is necessary in this area.

18.4 Multiple Maxima (Ties in Posterior Probability)

18.4.1 The Paradox in the Fraction Subtraction Data

The well-known fraction-subtraction (FS) data set was collected by Dr. Kikumi
Tatsuoka in 1984. Curtis Tatsuoka released the data in 2002 and made it pub-
licly available at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/
homepage/fractionsdata.txt. The FS data set contains responses to twenty fraction
subtraction test items from 536 middle school students. This test measures eight
fine-grained attributes in the domain of fraction subtraction, which includes—(1)
convert a whole number to a fraction; (2) separate a whole number from a fraction;
(3) simplify before subtracting; (4) find a common denominator; (5) borrow from
whole number part; (6) column borrow to subtract the second numerator from
the first; (7) subtract numerators; (8) and reduce answers to simplest form. The
Q-matrix, which specifies which attributes are measured by each item, is listed
in Table 18.2. With eight attributes, the maximum number of latent classes is two
hundreds and fifty six, without considering whether some combinations are unlikely
such as mastery of “borrow from whole number part” without mastery of “subtract
numerators”.

Figure 18.3 shows the likelihood of those 256 latent classes for a student with
a total score of 4. It clearly shows there are four latent classes with exactly the
same posterior probability. Figure 18.4 demonstrates a more extreme example with
a total score of zero, where there are sixty-four latent classes having exactly the
same posterior probability. The first latent class and the last latent class among those
sixty four are “00000000” and “10111101”, respectively. As mentioned previously,
DINA is a conjunctive model that requires all skills measured are mastered to
be able to answer an item correctly besides guessing. Therefore, for an incorrect
response, depending on the number of attributes measured, DINA may not be able
to statistically provide useful information about the state of mastery or non-mastery.
In the FS data, items 6, 8, and 9 are simple items, which only measure one attribute,
Attribute 7, Attribute 7, and Attribute 2, respectively. The rest of items are complex
items measuring more than one attribute. For the all-zero responses in the FS data
set, only items 6, 8, and 9 can provide information about the high chance of being
non-mastery for attributes 2 and 7; therefore, the mastery status is non-mastery for
attributes 2 and 7 while half-half chance for the rest of six attributes.

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/fractionsdata.txt
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/fractionsdata.txt
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Table 18.2 The Q-matrix of
the FS data

Item\ Attribute 1 2 3 4 5 6 7 8

1 0 0 0 1 0 1 1 0
2 0 0 0 1 0 0 1 0
3 0 0 0 1 0 0 1 0
4 0 1 1 0 1 0 1 0
5 0 1 0 1 0 0 1 1
6 0 0 0 0 0 0 1 0
7 1 1 0 0 0 0 1 0
8 0 0 0 0 0 0 1 0
9 0 1 0 0 0 0 0 0
10 0 1 0 0 1 0 1 1
11 0 1 0 0 1 0 1 0
12 0 0 0 0 0 0 1 1
13 0 1 0 1 1 0 1 0
14 0 1 0 0 0 0 1 0
15 1 0 0 0 0 0 1 0
16 0 1 0 0 0 0 1 0
17 0 1 0 0 1 0 1 0
18 0 1 0 0 1 1 1 0
19 1 1 1 0 1 0 1 0
20 0 1 1 0 1 0 1 0

Fig. 18.3 A response vector with a total score of four
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Fig. 18.4 A response vector with a total score of zero

18.4.2 Q-score (The Ideal Response)

In item response theory, the possible local maximum on likelihood of a continuum
latent ability scale is a well-known issue of using the MLE. That means the
estimated parameter is not universally best but only in some cases. In other words,
the solution found on likelihood is not a real solution. Similarly in DCM, there is
a profile estimation issue called multiple-maximum caused by using MLE. That
is, given the observed responses on a test, there may be multiple latent classes
with exactly the same highest probability. This multiple maxima issue has not been
explicitly described in the literature, but is mentioned as a parameter-identification
problem (e.g., Zhang 2014). Because of the existence of multiple maximum, the
profile estimate using DCMs is not always identifiable for some diagnostic tests
when the Q-matrix or the test is not well designed.

Depending on the structure of the Q-matrix, two different mastery profiles over a
set of latent classes could be equivalent; these two mastery profiles generate exactly
the same probability distribution of item response patterns, so that they cannot
be distinguished on the basis of item response data. To identify this equivalence
relationship from the Q-matrix, a simple method is proposed. First, a Q-score is
defined as the most likely observed score on the item for a respondent with the given
latent class; i.e., Q-score, is the true score for the items given the latent classes. Then,
by examining whether there are any two latent classes with the same Q-score, the
possible existence of a multiple-maximum can be known.
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Table 18.3 A Q-matrix of
three attributes for four items

Item\ Attribute 1 2 3

1 1 1 0
2 1 0 1
3 0 1 1
4 1 1 1

Table 18.4 A Q-score using
the condensation rule of the
DINA model

1 2 3 4

000 0 0 0 0
100 0 0 0 0
010 0 0 0 0
001 0 0 0 0
110 1 0 0 0
101 0 1 0 0
011 0 0 1 0
111 1 1 1 1

Table 18.5 A Q-score using
the condensation rule of the
DINO model

1 2 3 4

000 0 0 0 0
100 1 1 0 1
010 1 0 1 1
001 0 1 1 1
110 1 1 1 1
101 1 1 1 1
011 1 1 1 1
111 1 1 1 1

The following is a simple example with four items and three attributes (see
Table 18.3) to demonstrate the use of the Q-score for finding the possible existence
of the multiple-maxima in the mastery profile estimates. Table 18.4 lists the Q-score
under the conjunctive assumption of the DINA model. The first four latent classes,
or the mastery profiles, all generate exactly the same Q-scores. In other words, a
respondent who has an observed total score of zero is equally likely to belong to
any of the first four latent classes.

The Q-score rule can be applied to any DCM that has one Q-matrix with a clearly
defined condensation rule to specify the relationship between the correct response
of each item and the attributes measured by the item. Table 18.5 lists the Q-score of
the same four-item test, but using the condensation rule of the DINO model. The last
four latent classes, or the mastery profiles, all generate exactly the same Q-scores
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under the condensation rule of the DINO model. Therefore, a respondent who has
answered the four items correctly is equally likely to belong to any of the last four
latent classes.

18.5 Discussion and Future Research

It is statistically sound that the attribute is classified into “mastery” if p > 0.5, and
“non-mastery” otherwise, where p is the posterior marginal probability of mastery
for the attribute. However, because of the complexity of the model used and the
structure of Q-matrix, it is suggested that the different threshold values should be
used to examine the possible effect on classification. If a sample of population
can be obtained and represents the population well, a simulation approach can be
used to find a set of optimal thresholds for attributes. To emphasize the importance
of this issue, Fig. 18.5 shows the posterior marginal probabilities for those eight
attributes, where many posterior marginal probabilities are surround 0.5, and the
convention threshold .5 definitely is not a good choice. One might argue that
the FS data is not perfect; and yes, the test design regarding whether a complex
Q-matrix was employed by the FS test is flawed and therefore, it seriously suffered
from uncertainty of the classification and from the multiple-maximum. Therefore,
it is even more important to examine the distribution of the posterior marginal
probability before a cut-off (for non-mastery and mastery) or two cut-offs (for non-
mastery, indifference, and mastery) are applied for classification.

Another importance of this paper is to explicitly call the practitioners’ attention to
the multiple-maximum issue. The multiple latent classes might cause a misleading
mastery classification for either using the posterior probability for attribute profile
or using the posterior marginal probability for attributes. As shown by DeCarlo
(2011), the attribute probability for a zero score could be as high as 0.985 for a
zero score of the FS data using the DINA model. To avoid this multiple-maximum,
simple structure items (solely measuring one attribute) should be added to the test
(as suggested by DeCarlo 2011) to make a complete Q-matrix (Chiu et al. 2009)
during test construction.

However, DCMs might be used to fit existing items by tagging them with
associated attributes (e.g., von Davier 2005). Thus, adding simple structure items
into the existing test become cumbersome. Furthermore, with the emergence of
cognitive diagnostic computerized adaptive testing (CD-CAT; e.g., Cheng 2009),
the interim profile estimates must be calculated based on the items administered so
far, and the effect of the multiple-maximum on the CD-CAT is worthy of further
research.
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Fig. 18.5 The posterior marginal probabilities for those eight attributes of the FS data
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Chapter 19
Exploring Joint Maximum Likelihood
Estimation for Cognitive Diagnosis Models

Chia-Yi Chiu, Hans-Friedrich Köhn, Yi Zheng, and Robert Henson

Abstract Current methods for fitting cognitive diagnosis models (CDMs) to
educational data typically rely on expectation maximization (EM) or Markov
chain Monte Carlo (MCMC) for estimating the item parameters and examinees’
proficiency class memberships. However, for advanced, more complex CDMs like
the reduced reparameterized unified model (Reduced RUM) and the (saturated)
loglinear cognitive diagnosis model (LCDM), EM and Markov chain Monte Carlo
(MCMC) have the reputation of often consuming excessive CPU times. Joint
maximum likelihood estimation (JMLE) is proposed as an alternative to EM and
MCMC. The maximization of the joint likelihood is typically accomplished in a
few iterations, thereby drastically reducing the CPU times usually needed for fitting
advanced CDMs like the Reduced RUM or the (saturated) LCDM. As another
attractive feature, the JMLE algorithm presented here resolves the traditional issue
of JMLE estimators—their lack of statistical consistency—by using an external,
statistically consistent estimator to obtain initial estimates of examinees’ class
memberships as starting values. It can be proven that under this condition the
JMLE item parameter estimators are also statistically consistent. The computational
performance of the proposed JMLE algorithm is evaluated in two comprehensive
simulation studies.
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19.1 Introduction

Cognitive diagnosis in educational assessment (DiBello et al. 2007; Haberman
and von Davier 2007; Leighton and Gierl 2007; Rupp et al. 2010) perceives an
examinee’s ability in a domain as a composite of binary (latent) cognitive skills
called attributes, each of which an examinee may or may not have mastered. Distinct
patterns of attributes define classes of intellectual proficiency. Modeling educational
testing data within a cognitive diagnosis perspective seeks to (a) assign examinees
to proficiency classes (i.e., estimate their individual attribute patterns from the
observed item responses); (b) estimate the item parameters (that allow to assess
the probability of a correct response). Current methods for estimating examinees’
proficiency class memberships and the item parameters either use the expectation
maximization (EM) algorithm or MCMC techniques. However, when attempting
to model educational test performance with more advanced and complex CDMs
like the reduced reparameterized unified model (Reduced RUM; Hartz 2002; Hartz
and Roussos 2008) and the (saturated) loglinear cognitive diagnosis model (LCDM;
Henson et al. 2009; Rupp et al. 2010; Templin and Bradshaw 2014), EM and MCMC
often consume excessive amounts of CPU time, which limits their usefulness in
research and practice.

Hence, in this article, an alternative estimation method for CDMs is proposed
that uses joint maximum likelihood estimation (JMLE) of the item parameters
and examinees’ attribute patterns. The maximization of the joint likelihood is
typically accomplished in a few iterations, thereby drastically reducing the CPU
times needed for fitting advanced CDMs like the Reduced RUM or the (saturated)
LCDM. As another highly attractive feature, the proposed JMLE algorithm resolves
the traditional issue of JMLE parameter estimators: their lack of statistical con-
sistency (Baker and Kim 2004; Neyman and Scott 1948). (For this reason, JMLE
has been mostly avoided in psychometrics despite the mathematical convenience
of simple likelihood functions.) The JMLE algorithm presented here uses an
external, statistically consistent estimator to obtain initial estimates of examinees’
proficiency class memberships as starting values. Chiu et al. (2013) proved that
under this condition the JMLE item parameter estimators are also statistically
consistent.

The subsequent section briefly reviews key features of CDMs and the nonpara-
metric classification (NPC) method that is used to obtain statistically consistent
estimators of examinees’ attribute patterns. The rationale and layout of the JMLE
algorithm are described in the third section. Section four reports the results of several
simulation studies that compare the performance of the JMLE method with that of
the EM algorithm and MCMC under finite data conditions. The paper concludes
with a discussion of the findings and directions for future research.
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19.2 Definitions and Technical Concepts

19.2.1 Cognitive Diagnosis Models

CDMs model the functional relation between attribute mastery and the probability
of a correct item response. CDMs differ in how mastery and nonmastery of the
attributes are believed to affect an examinee’s performance on a test item (e.g.,
compensatory models versus non-compensatory models; conjunctive models versus
disjunctive models; for a detailed discussion, see Henson et al. 2009).

Suppose that K latent binary attributes constitute a certain ability domain; there
are then 2K distinct attribute patterns composed of these K attributes representing
2K D M distinct classes of intellectual proficiency. (Note that an attribute pattern of
a proficiency class can consist of all zeroes, because it is possible for an examinee
not to have mastered any attributes at all.) Let the K-dimensional vector, ˛m D
.˛m1; ˛m2; : : : ; ˛mK/

0, denote the binary attribute pattern of proficiency class Cm,
m D 1; 2; : : : ;M, where the kth entry indicates whether the respective attribute has
been mastered. Yij is the observed response of examinee i, i D 1; 2; : : : ;N, to binary
item j, j D 1; 2; : : : ; J. The attribute pattern of examinee i 2 Cm, ˛i2Cm , is written
as ˛i D .˛i1; ˛i2; : : : ; ˛iK/

0.
Consider a test of J items for assessing ability in the domain. Each individual

item j is associated with a K-dimensional binary vector qj called the item-attribute
pattern, where qjk D 1, k D 1; 2; : : : ;K, if a correct answer requires mastery
of the kth attribute, and 0 otherwise. Note that item-attribute patterns consisting
entirely of zeroes are inadmissible, because they correspond to items that require
no skills at all. Hence, given K attributes, there are at most 2K � 1 distinct item-
attribute patterns. The J item-attribute patterns of a test constitute its Q-matrix,
Q D fqjkg.J�K/, (Tatsuoka 1985) that summarizes the constraints specifying the
associations between items and attributes.

19.2.2 The NPC Method

The NPC method developed by Chiu and Douglas (2013) is used here to obtain
initial estimates of examinees’ attribute patterns ˛ (i.e., their proficiency class
memberships) that are needed as starting input to the JMLE algorithm. The NPC
method assigns examinees to proficiency classes by comparing their observed item
response patterns with each of the ideal response patterns of the M D 2K possible
proficiency classes. The ideal response is a function of the q-vector of item j, qj,
and the attribute pattern ˛m of proficiency class Cm. The ideal response to item j,
mj, is the score that would be realized by the examinees in proficiency class Cm

(having attribute pattern ˛m) if no “slipping” (failing to answer item j correctly
despite having the skills required to do so) or “guessing” occurred (answering item j
correctly despite lacking the skills required to do so). Let �m D �

m1; m2; : : : ; mJ
�0
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denote the J-dimensional vector of ideal item responses of proficiency class Cm.
The NPC estimator Q̨ of an examinee’s attribute pattern is defined as the attribute
pattern associated with that �m minimizing the distance between all 2K D M
ideal item response patterns, �1; �2; : : : ; �M , and an examinee’s observed item
response pattern y: Q̨ D arg min

m

�
d
�
y; �m

��
. (Recall the one-to-one correspondence

between �m and ˛m.) Said differently, the estimator Q̨ identifies the attribute
pattern underlying that ideal item response pattern, which among all possible �m is
closest—or most similar—to the observed item response pattern y. (For brevity, the
examinee index i is dropped if the context permits.) For binary data, a natural and
frequently used distance measure is the Hamming distance, which simply counts
the number of disagreements between two vectors. Here, a weighted version of the
Hamming distance is used to accommodate for differential item variability. Let Npj

be the proportion of examinees responding correctly to item j. Then the weighted
Hamming distance is

dwH.y; �/ D
JX

jD1

1

Npj.1 � Npj/
j yj � j j

Simulation studies by Chiu and Douglas (2013) demonstrated the computational
speed and efficiency of the NPC method; it attained classification-correct rates
almost as high as those obtainable from parametric maximum likelihood estimation
(MLE) methods. But perhaps most important, Wang and Douglas (2015) proved
that the NPC estimator of ˛ is statistically consistent if the data conform to the
Deterministic Input Noisy Output “AND” gate (DINA) model (Junker and Sijtsma
2001; Macready and Dayton 1977), the Deterministic Input Noisy Output “OR” gate
(DINO) model (Templin and Henson 2006), the Reduced RUM, or the Noisy Input
Deterministic Output “And” gate (NIDA) model (Junker and Sijtsma 2001; Maris
1999).

19.3 The JMLE Algorithm

Let Y D .y1; y2; : : : ; yN/
0 denote the N�J matrix of observed item responses, where

yi D .yi1; yi2; : : : ; yiJ/
0 is the observed item response pattern, or vector, for examinee

i. (Note that Y can also be written as a collection of J N-dimensional response
vectors of items 1; 2; : : : ; J, y1; y2; : : : ; yJ.) For the observed item responses,
conditional independence is assumed (given attribute pattern ˛). JMLE seeks to
estimate examinees’ attribute patterns and the item parameters by maximizing the
joint likelihood L.˛;	 I Y/

L.˛;	 I Y/ D
NY

iD1
Li.˛i;	 I yi/ D

NY
iD1

JY
jD1

f .yijj˛i;� j/ (19.1)
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where 	 D .�1;�2; : : : ;�J/ denotes the matrix of item parameters. For the
JLME algorithm proposed here, Birnbaum’s paradigm (Birnbaum 1968), a two-
stage procedure for JMLE (Baker and Kim 2004; Embretson and Reise 2000),
was adopted: examinees’ attribute patterns and the item parameters are treated as
two sets where one is assumed to consist of known parameters whereas those in
the second set are to be estimated. The algorithm is initialized with the estimates
of examinees’ attribute patterns as input, which are obtained by the consistent
estimator of the NPC method. The joint likelihood in Eq. (19.1) then reduces to a
function of only the item parameters. The estimator of � j is derived by maximizing
the logarithm of the item likelihood, Lj.� jI yj;˛/

log Lj.� jI yj;˛/ D
NX

iD1
log

�
f .yijj� j;˛i/

�

(The entire set of item parameters is estimated by maximizing log L.	 I Y;˛/.)
The item parameter estimates obtained from this first stage are then used in the
second stage for (re-)estimating the examinees’ attribute patterns by maximizing
L.˛I Y;	/, and so on. The steps of the JLME algorithm can be summarized as
follows:

(1) Estimate examinees’ attribute patterns Q̨ using the NPC method; the matrix of
estimated attribute patterns is denoted by Q̨ .0/.

(2) Set the initial values of examinees’ attribute patterns to Q̨ .0/ and obtain the item

parameter estimates Q	 .1/
.

(3) Use Q	 .1/
as input and update the examinees’ attribute patterns to Q̨ .1/ by

maximizing the (reduced) log-likelihood log L
�
˛I Y; Q	 .1/�

.

(4) Use Q̨ .1/ as input for the examinees’ attribute patterns and update Q	 .1/
to Q	 .2/

by maximizing the (reduced) log-likelihood log L
�
	 I Y; Q̨ .1/�.

Steps 3 and 4 are iterated until the estimates converge.

19.4 Simulation Studies

Two simulation studies were conducted to evaluate the computational performance
of the JMLE algorithm on artificial data sets under varying experimental conditions.
The item parameter estimates and the classification of examinees obtained from
JMLE were compared to those obtained from EM-based MLE and MCMC. In
addition, all data sets were also fitted by a procedure called conditional maximum
likelihood estimation (CMLE). CMLE uses the examinees’ (known) true attribute
patterns as input when estimating the item parameters, and the (known) true
item parameters as input when estimating examinees’ attribute patterns. Thus,
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CMLE provided a most conservative benchmark for the results obtained from
JMLE, EM, and MCMC.

19.4.1 Study I

The purpose of Study I was to assess the accuracy of the JMLE estimates (i.e., item
parameters and examinees’ attribute patterns) on a large scale with a substantial
number of replicated data sets. However, as mentioned earlier, estimation methods
using the EM algorithm or MCMC techniques typically cause a computational
bottleneck when employed with advanced, complex CDMs so that numerical
experiments with a large number of replicated data sets are computationally
infeasible—unless the test data sets conform to the DINA model or the DINO
model. Because for these two CDMs closed form solutions for the maximum of the
marginal likelihood guarantee fast and computationally efficient implementations of
the EM algorithm (e.g., in the R package CDM; Robitzsch et al. 2014). Thus, it was
decided to use artificial data sets generated from the DINA model so that a large
number of replicated data sets could be used. The item response function (IRF) of
the DINA model is

P.Yij D 1 j ˛i; sj; gj/ D .1 � sj/
�ij g

.1��ij/

j (19.2)

where the conjunction parameter �ij corresponds to the ideal response

�ij D
KY

kD1
˛

qjk

ik

The item parameters sj D P.Yij D 0 j �ij D 1/ and gj D P.Yij D 1 j �ij D 0/

represent the probabilities of “slipping” and “guessing,” respectively.
The JMLE estimators of sj and gj, denoted as Qsj and Qgj, are obtained by applying the
following closed forms:

Qsj D
PN

iD1 Q�ij.1 � Yij/PN
iD1 Q�ij

(19.3)
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and

Qgj D
PN

iD1.1 � Q�ij/YijPN
iD1.1 � Q�ij/

; (19.4)

where Q�ij is the ideal response computed by using Q̨ , the estimator of ˛ obtained by
using the NPC method. It should be noted that the statistical consistency of these
estimators has been proven by Chiu et al. (2013).

19.4.1.1 Design

The experimental design included five variables: (a) the number of examinees,
N D 100; 500; 1000; (b) the number of attributes, K D 3; 5; (c) the number of
items, J D 30; 60; (d) the distribution from which examinees’ attribute patterns
were sampled: discrete uniform or multivariate normal (for details, consult Chiu
et al. 2009, p. 649); and (e) the distribution of the slipping and guessing item
parameters, sj and gj: continuous uniformU .0; 0:1/, continuous uniformU .0; 0:3/,
and continuous uniform U .0; 0:5/.

For K D 3 attributes, 23 � 1 D 7 distinct binary item attribute patterns were
generated (recall that q D .000/ is not admissible as item attribute pattern). The
template Q-matrix for J D 30 items was generated by replicating these 7-item
attribute patterns four times; the last two items used q29 D q30 D .111/. For
K D 5 attributes, 25 � 2 D 30 distinct binary item-attribute patterns were generated
(in omitting the first and the last pattern consisting of all zeroes and all ones,
respectively). For J D 60 items, the 30-item Q-matrices were simply doubled.

Examinees’ manifest item responses were sampled from a Bernoulli distribution,
with P.Yij D 1/ determined by the IRF of the DINA model (see Eq. (19.2)). Study
I in total consisted of 2 � 2 � 3 � 3 D 36 cells; for each cell, 100 replicated data
sets were generated. For each replicated data set, examinees’ attribute patterns and
responses were re-sampled, whereas the Q-matrix and the item parameters were
held constant.

19.4.1.2 Results

The data were analyzed using the NCP, JMLE, and CMLE implementations
available in the (newly released) R package NPCD (Zheng and Chiu 2014) and the
EM algorithm for the DINA model in the R package CDM (Robitzsch et al. 2014).
The JMLE algorithm terminated upon reaching the convergence criteria. For the
estimates of examinee’s attribute patterns, the convergence criterion was defined as

1

N

NX
iD1

I
	 Q̨ .t/i D Q̨ .t�1/i


 � 0:99
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(t�1 and t refer to consecutive iterations; IŒ�� denotes the indicator function). For the
slipping and guessing parameter estimates, the convergence criterion was defined (in
generic �-notation) as

J
max
jD1 .j

Q�.t/j � Q�.t�1/j j/ 	 0:001

For each replicated data set, the accuracy of the classification of examinees was
evaluated by (a) the pattern-wise agreement rate (PAR) defined as the proportion of
correctly estimated attribute patterns

PAR D 1

N

NX
iD1

IŒ Q̨ i D ˛i�

and (b) the attribute-wise agreement rate (AAR), which is the proportion of correctly
estimated attributes defined as

AAR D 1

N � K

NX
iD1

KX
kD1

IŒ Q̨ ik D ˛ik�

The accuracy of the item parameter estimates, Qsj and Qgj, was assessed by their root
mean squared error (RMSE) defined as

RMSE.Qs/ D
vuut1

J

JX
jD1
. Q�j � �j/2

In the subsequent tables, the averages of these indices computed for each cell across
its 100 replications are reported. The results obtained for the two distributions
underlying the examinees’ attribute patterns were very similar; hence, only the
results for the multivariate normal distribution are presented.

Estimation of Examinees Attribute Patterns The number of examinees had a
negligible effect on AAR and PAR of ˛; thus, only the results for N D 500

are reported in Table 19.1, as they were obtained by the JMLE method, the EM
algorithm, and the CMLE method. For completeness, the AAR and the PAR values
realized by the NPC method are also reported. For all four methods, the AAR and
PAR scores were close and indicated excellent recovery of examinees’ attribute
patterns—most of the AAR scores were greater than 0.9. The largest absolute
difference between JMLE and the best-performing method was 6.2 % for PAR in
experimental condition K D 5; J D 30; sj; gj � U .0; 0:5/ Not too surprising, the
PAR scores were generally lower than the AAR scores. In summary, the AAR and
PAR scores increased when the number of items increased, the number of attributes
decreased, or the level of error perturbation decreased.
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Table 19.1 Study I: DINA data—AAR and PAR of ˛, N D 500

J D 30 J D 60

K 0.1 0.3 0.5 0.1 0.3 0.5

AAR 3 JMLE 0.999 0.982 0.897 1.000 0.997 0.975

EM 0.999 0.984 0.907 1.000 0.997 0.977

NPC 0.998 0.971 0.880 1.000 0.994 0.950

CMLE 1.000 0.985 0.908 1.000 0.997 0.977

5 JMLE 0.969 0.904 0.813 0.995 0.967 0.879

EM 0.978 0.922 0.833 0.996 0.972 0.891

NPC 0.973 0.903 0.806 0.993 0.957 0.873

CMLE 0.980 0.931 0.847 0.996 0.971 0.892

PAR 3 JMLE 0.998 0.951 0.751 1.000 0.991 0.930

EM 0.998 0.955 0.771 1.000 0.991 0.935

NPC 0.995 0.921 0.708 1.000 0.982 0.863

CMLE 0.999 0.957 0.775 1.000 0.992 0.936

5 JMLE 0.887 0.706 0.498 0.976 0.866 0.637

EM 0.913 0.742 0.541 0.980 0.883 0.663

NPC 0.891 0.690 0.480 0.967 0.830 0.603

CMLE 0.921 0.758 0.560 0.981 0.880 0.667

Item Parameter Estimation Table 19.2 presents the RMSE of the estimates of the
slipping and guessing parameters obtained by using the JMLE method, the EM
algorithm, and the CMLE method. Overall, the RMSE values of the three estimation
methods were very close and reasonably small (recall that small RMSE values imply
high estimation accuracy). In summary, the RMSE decreased when the number
of examinees increased, the number of attributes decreased, or the level of error
perturbation decreased.

19.4.2 Study II

The purpose of Study II was to demonstrate the applicability of the JMLE method
to an advanced and more complex CDM. The Reduced RUM was chosen because
it has been frequently studied in simulations and applications to real world data sets
(e.g., Feng et al. 2014; Henson and Douglas 2005; Henson et al. 2008, 2007; Henson
and Templin 2007; Kim 2011; Liu et al. 2009; Templin et al. 2008). Researchers
have appreciated the flexibility of the Reduced RUM in modeling the probability
of correct item responses for different attribute profile patterns. The IRF of the
Reduced RUM is

P.Yij D 1 j ˛i/ D ��
j

KY
kD1

r
� qjk.1�˛ik/

jk
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Table 19.2 Study I: DINA data—RMSE of item parameter estimates from
the JMLE, EM, CMLE methods

J D 30 J D 60

K N 0.1 0.3 0.5 0.1 0.3 0.5

s 3 100 JMLE 0.042 0.070 0.088 0.042 0.071 0.079

EM 0.041 0.068 0.085 0.042 0.071 0.079

CMLE 0.041 0.066 0.081 0.042 0.071 0.079

500 JMLE 0.016 0.030 0.044 0.020 0.031 0.035

EM 0.016 0.029 0.035 0.020 0.031 0.035

CMLE 0.016 0.029 0.034 0.020 0.030 0.035

1000 JMLE 0.014 0.022 0.029 0.013 0.020 0.026

EM 0.014 0.021 0.026 0.013 0.020 0.026

CMLE 0.014 0.021 0.025 0.013 0.020 0.026

5 100 JMLE 0.061 0.100 0.122 0.052 0.088 0.112

EM 0.059 0.091 0.107 0.052 0.086 0.107

CMLE 0.058 0.085 0.093 0.052 0.085 0.104

500 JMLE 0.024 0.049 0.065 0.021 0.041 0.052

EM 0.021 0.039 0.046 0.021 0.038 0.047

CMLE 0.021 0.038 0.042 0.021 0.038 0.046

1000 JMLE 0.021 0.025 0.051 0.017 0.030 0.033

EM 0.017 0.022 0.030 0.017 0.027 0.030

CMLE 0.017 0.021 0.026 0.017 0.027 0.029

g 3 100 JMLE 0.030 0.056 0.065 0.031 0.041 0.058

EM 0.029 0.054 0.062 0.031 0.041 0.058

CMLE 0.029 0.051 0.053 0.031 0.041 0.056

500 JMLE 0.013 0.024 0.041 0.012 0.022 0.027

EM 0.013 0.022 0.030 0.012 0.022 0.026

CMLE 0.013 0.021 0.025 0.012 0.022 0.025

1000 JMLE 0.009 0.016 0.032 0.009 0.016 0.018

EM 0.009 0.016 0.021 0.009 0.016 0.018

CMLE 0.009 0.015 0.018 0.009 0.016 0.017

5 100 JMLE 0.036 0.070 0.097 0.027 0.051 0.062

EM 0.036 0.069 0.085 0.026 0.047 0.058

CMLE 0.024 0.042 0.052 0.025 0.043 0.050

500 JMLE 0.030 0.053 0.063 0.014 0.027 0.039

EM 0.016 0.027 0.045 0.012 0.021 0.031

CMLE 0.012 0.017 0.022 0.012 0.019 0.024

1000 JMLE 0.024 0.035 0.078 0.011 0.021 0.022

EM 0.011 0.016 0.023 0.009 0.015 0.017

CMLE 0.009 0.013 0.016 0.009 0.014 0.016
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where ��
j is the probability of answering item j correctly if an examinee masters all

the required attributes for item j; the parameter 0 < r�
jk < 1 denotes a penalty term

for lacking the kth attribute required for item j.
The estimators of ��

j and r�
jk under the proposed JMLE framework are obtained

by solving for ��
j and r�

jk in the following normal equations for all k:

NX
iD1

Yij � ��
j

QK
kD1 r

�.1�Q̨ik/qjk

jk

1 � ��
j

QK
kD1 r

�.1�Q̨ik/qjk

jk

D 0 (19.5)

and

NX
iD1

.1 � Q̨ ik/qjk.Yij � ��
j

QK
kD1 r

�.1�Q̨ik/qjk

jk /

1 � ��
j

QK
kD1 r

�.1�Q̨ik/qjk

jk

D 0: (19.6)

Note that there are no closed forms for Eqs. (19.5) and (19.6). Therefore, like
MMLE with the EM algorithm, some optimization package may be needed to solve
the equations.

As mentioned earlier, extant estimation methods for the Reduced RUM consume
prohibitive amounts of CPU time, which makes the Reduced RUM a prime
candidate for exploring the potential computational benefits of JMLE. The perfor-
mance of JMLE was contrasted with that of the presumably most commonly used
estimation method for the Reduced RUM: MCMC (using the implementation in
OpenBUGS; Lunn et al. 2009). Like in Study I, the results of CMLE served as a
benchmark.

19.4.2.1 Design

The design of Study II had to accommodate the CPU time requirements of MCMC.
So, only the condition with K D 3 attributes and J D 30 items (and the
corresponding Q-matrix from Study I) were used (which might be representative
for many real-world test settings). The item parameters were fixed at �� D 0:90

and r�
1 D r�

2 D r�
3 D 0:60 for all j. In total, 25 data sets were generated, each with

N D 3000 examinees, whose attribute patterns were derived from the multivariate
normal distribution.

19.4.2.2 Results

For all three estimation methods, the accuracy of the estimates of examinees’
attribute patterns (i.e., AAR and PAR), the item parameter estimates and their
RMSE, and the CPU times are reported.
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Table 19.3 shows the average item parameter estimates obtained from JMLE,
MCMC, and CMLE. JMLE and MCMC produced estimates reasonably close to the
true item parameters. (As expected, the CMLE item parameter estimates were even
closer to the true parameters.)

Table 19.4 reports the RMSE of the item parameter estimates, the AAR and
PAR scores for examinees’ estimated attribute patterns (i.e., the accuracy of their
classification), and the CPU times used by the three estimation methods. The RMSE
in Table 19.4 confirm that JMLE and MCMC attained comparable levels of accuracy
in estimating the item parameters. The AAR and PAR scores show that JMLE and
MCMC also performed comparably in classifying examinees. However, on average,
MCMC required roughly 125 times the amount of CPU time that JMLE used.

19.5 Discussion

In this article, JMLE was presented as an alternative MLE method for fitting CDMs
to educational testing data—that is, for estimating the item parameters and exami-
nees’ proficiency class memberships. JMLE has been barely used in Psychometrics
because JMLE-parameter estimates typically lack statistical consistency. The JMLE
method proposed here, however, was proven to provide statistically consistent
estimators if the estimator used to obtain estimates of examinees’ proficiency
class memberships for initializing the JMLE algorithm is itself consistent (Chiu
et al. 2013). (These authors presented a theorem on the consistency of JMLE
item parameter estimators. The proof relied on two lemmas. Consider the slipping
parameters as an example. Lemma 1 claims that the sampling distribution of the
estimator Osj—obtained when using examinees’ true attribute profiles ˛ as input to
JMLE—converges to a normal distribution. When the consistent estimator Q̨ of
examinees’ attribute profiles is used as input to JMLE, then, as Lemma 2 states,
the corresponding item parameter estimator Qsj converges in probability to Osj for
all items j. Building on Lemmas 1 and 2, the claim of the Consistency Theorem
that Qsj converges to sj in probability is proven. A stronger version of consistency,
usually referred to as uniform consistency, is formulated in the second Consistency
Theorem, the proof of which also depends on Lemmas 1 and 2.) Two simulation
studies were conducted to evaluate the computational performance of the proposed
JMLE method. Study I consisted of a large-scale evaluation of JMLE. The results
demonstrated that the estimates of the item parameters and examinees’ attribute
patterns obtained from JMLE were almost as accurate as those obtained from EM-
based MLE. In Study II, the performance of JMLE was compared to that of MCMC,
which is often the method of choice for fitting advanced, more complex CDMs,
for example, the Reduced RUM. The findings of Study II showed that the JMLE
and MCMC estimates of item parameters and examinees’ attribute patterns have
comparable accuracy. However, JMLE is about 125 times faster than MCMC.

These results suggest that JMLE might indeed offer a viable computational
alternative to MCMC for fitting the Reduced RUM. The Reduced RUM can also
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Table 19.3 Study II: Reduced RUM—item parameter estimates obtained from JMLE, MCMC,
and CMLE

JMLE MCMC CMLE
Item O�� Or�

1 Or�

2 Or�

3 O�� Or�

1 Or�

2 Or�

3 O�� Or�

1 Or�

2 Or�

3

1 0.904 0:563 – – 0:886 0:556 – – 0:899 0:601 – –

2 0.902 – 0:560 – 0:852 – 0:604 – 0:899 – 0:600 –

3 0.906 – – 0:559 0:903 – – 0:630 0:902 – – 0:599

4 0.908 0:566 0:560 – 0:890 0:565 0:556 – 0:901 0:597 0:596 –

5 0.907 0:575 – 0:568 0:895 0:621 – 0:587 0:900 0:603 – 0:604

6 0.905 – 0:566 0:569 0:895 – 0:612 0:590 0:900 – 0:604 0:599

7 0.912 0:574 0:557 0:575 0:895 0:586 0:576 0:594 0:900 0:600 0:597 0:603

8 0.906 0:560 – – 0:883 0:582 – – 0:902 0:598 – –

9 0.903 – 0:562 – 0:881 – 0:588 – 0:899 – 0:603 –

10 0.903 – – 0:564 0:903 – – 0:625 0:899 – – 0:604

11 0.908 0:570 0:566 – 0:890 0:573 0:565 – 0:900 0:606 0:599 –

12 0.904 0:573 – 0:558 0:890 0:615 – 0:585 0:896 0:601 – 0:598

13 0.911 – 0:563 0:567 0:898 – 0:615 0:588 0:902 – 0:602 0:603

14 0.909 0:571 0:582 0:566 0:891 0:589 0:599 0:582 0:899 0:601 0:609 0:597

15 0.907 0:561 – – 0:885 0:579 – – 0:902 0:601 – –

16 0.902 – 0:562 – 0:883 – 0:585 – 0:900 – 0:601 –

17 0.898 – – 0:570 0:900 – – 0:628 0:897 – – 0:604

18 0.906 0:572 0:569 – 0:890 0:571 0:565 – 0:899 0:603 0:604 –

19 0.906 0:564 – 0:562 0:892 0:613 – 0:582 0:898 0:593 – 0:600

20 0.911 – 0:570 0:558 0:899 – 0:611 0:585 0:902 – 0:608 0:593

21 0.906 0:574 0:564 0:573 0:887 0:590 0:579 0:592 0:896 0:600 0:592 0:605

22 0.905 0:559 – – 0:882 0:580 – – 0:900 0:598 – –

23 0.902 – 0:562 – 0:882 – 0:585 – 0:899 – 0:602 –

24 0.905 – – 0:563 0:905 – – 0:626 0:902 – – 0:602

25 0.908 0:561 0:567 – 0:891 0:561 0:567 – 0:899 0:597 0:601 –

26 0.908 0:567 – 0:564 0:894 0:616 – 0:584 0:901 0:602 – 0:595

27 0.907 – 0:554 0:574 0:895 – 0:602 0:594 0:900 – 0:596 0:602

28 0.913 0:576 0:562 0:576 0:895 0:594 0:585 0:587 0:903 0:598 0:603 0:599

29 0.912 0:570 0:568 0:580 0:894 0:589 0:584 0:593 0:901 0:600 0:602 0:606

30 0.912 0:584 0:576 0:560 0:893 0:606 0:593 0:579 0:900 0:614 0:605 0:594

Table 19.4 Study II: Reduced RUM—RMSE, AAR and
PAR, and CPU times (in seconds) for JMLE, MCMC, and
CMLE

RMSE
Method O�� Or�

1 AAR PAR CPU time

JMLE 0:013 0:046 0:903 0:753 89:451

MCMC 0:019 0:038 0:904 0:754 11;172:640

CMLE 0:009 0:022 0:911 0:773 52:195
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be fitted with the EM algorithm, but with CPU times similar to those of MCMC.
However, as a presumably even bigger limitation, the EM algorithm can presently
only be used with models that do not involve more than K D 2 attributes.

In conclusion, future research should focus on the extension of JMLE as a
computational device for fitting a larger array of advanced CDMs—and most
important, general CDMs like the GDM (von Davier 2005, 2008), the (saturated)
LCDM or the G-DINA model (de la Torre 2011). However, this would first require
to prove that the NPC method does also provide a consistent estimator of examinees’
attribute pattern ˛ in case of general CDMs.
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Chapter 20
Neural Networks for Propensity Score
Estimation: Simulation Results
and Recommendations

Bryan Keller, Jee-Seon Kim, and Peter M. Steiner

Abstract Neural networks have been noted as promising for propensity score
estimation because they algorithmically handle nonlinear relationships and interac-
tions. We examine the performance neural networks as compared with main-effects
logistic regression for propensity score estimation via simulation study. When
the main-effects logistic propensity score model is correctly specified, the two
approaches yield almost identical mean square error. When the logistic propensity
score model is misspecified due to the addition of quadratic terms and interactions
to the data-generating propensity score model, neural networks perform better in
terms of bias and mean square error. We link the performance results to balance on
observed covariates and demonstrate that our results underscore the importance of
checking balance on higher-order covariate terms.

Keywords Propensity score analysis • Neural networks • Logistic regression •
Data mining • Covariate balance

20.1 Introduction

The goal of propensity score analysis is to correct for bias due to confounding in
a non-randomized experiment. The propensity score is defined as the probability of
assignment to the treatment group—we assume a dichotomous treatment variable—
given the observed covariates (Rosenbaum and Rubin 1983). The application of
propensity score analysis involves (1) estimating the propensity score for each
participant and (2) conditioning on the estimated propensity scores to estimate an
average treatment effect.
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In practice, propensity scores are most often estimated by logistic regression.
However, data-mining techniques that algorithmically handle nonlinear relationships
have been noted as promising for propensity score estimation because they are able
to adapt to complex response surfaces in their naive implementations (Westreich
et al. 2010).

To our best knowledge the performance of neural networks for propensity
score estimation has been examined via simulation in only one study (Setoguchi
et al. 2008). The results of that study suggested that neural networks are a
viable alternative to main-effects logistic regression for propensity score estimation,
though the authors caution that more work is needed over a broader range of
scenarios.

We respond to the need for empirical evaluation by contributing a simulation
study which examines the performance of neural networks as compared with main-
effects logistic regression for propensity score estimation. Although we describe
the simulation study in detail below, two aspects deserve particular attention. First,
we use a weight decay smoothing parameter to inhibit over-fitting with neural
networks. Second, we generate data from a pair of models: the propensity score data-
generation model and the outcome data-generation model. The unique aspect here is
that we consider the effect of nonlinear terms in the outcome data-generation model.
In fact, we hypothesize that it is precisely when there are confounding higher-order
terms in both the propensity score data-generation model and the outcome data-
generation model that neural networks will have the potential to most drastically
outperform main-effects logistic regression in terms of bias and mean square error.

The remainder of the paper is organized as follows: in the remainder of this
section we describe propensity score analysis and assumptions required to estimate
the average treatment effect for a population. In the next section we describe logistic
regression and neural networks for propensity score estimation. We then discuss the
method used to condition on the propensity score: optimal full matching. We then
describe the design and results of the simulation study and conclude with some
recommendations.

20.1.1 The Average Treatment Effect

The potential outcomes notation is based on the Neyman–Rubin framework for
causal inference (Holland 1986). Let Zi D 1 if the ith unit was assigned to
the treatment group and Zi D 0 otherwise. Let Yj

i be a response variable such
that each experimental unit has two potential outcomes, Y1i and Y0i , depending on
assignment Zi.

Two causal quantities which are most commonly of interest are the overall
population average treatment effect � and the population average treatment effect
for the treated �T (Imbens 2004; Schafer and Kang 2008; Steiner and Cook 2013):

� D E.Y1i � Y0i / D E.Y1i / � E.Y0i / (20.1)
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and

�T D E.Y1i � Y0i jZi D 1/ D E.Y1i jZi D 1/� E.Y0i jZi D 1/: (20.2)

We focus on the average treatment effect on the treated, �T , in the simulation
study because it provides an estimate of the effect of treatment on those who
received it, which is often more interesting than the overall treatment effect (Morgan
and Winship 2007).

20.1.2 Assumptions for Identifying and Estimating
the Average Treatment Effect

The propensity score (PS) is defined as the conditional probability of assignment to
the treatment group given the observed covariates X D .X1; : : :;Xp/

0 (Rosenbaum
and Rubin 1983). That is,

PS.X/ D P.Z D 1jX/: (20.3)

Propensity scores may be conditioned upon in an application such as matching,
stratification, or weighting in order to restore covariate balance across groups to
what would have been expected from a randomized experiment. In order for the
propensity score to be effective in eliminating bias some assumptions are necessary.
First, the treatment assignment must be strongly ignorable (Rosenbaum and Rubin
1983; Rubin 1978). Strong ignorability specifies (a) that the potential outcomes are
independent of the treatment assignment given the observed covariates and (b) that
each experimental unit in the population has a true propensity score that lies strictly
between zero and one. That is,

Y1;Y0 ?? ZjX (20.4)

and

0 < P.Z D 1jX/ < 1: (20.5)

In practice, strong ignorability is satisfied when all of the confounding covariates
(i.e., those that are associated with both treatment assignment and the outcome)
are observed, there is overlap between the propensity score distributions of the
treatment and control groups, and the covariates are measured reliably (Steiner et al.
2011). When there is a lack of overlap, �T is only identified for the subpopulation of
overlapping units.

Second, it is assumed that there is only one version of the treatment and that the
value of each potential outcome is independent of the particular assignment pattern
in Z. These two assumptions are referred to collectively as the stable unit treatment
value assumption (SUTVA; Rubin 1978, 1980).
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Finally, since true propensity scores are not known in observational study
settings, they must be estimated. Assuming strong ignorability and SUTVA hold,
an additional analytic assumption required for consistent estimation is that the
propensity score estimates are adequate for bias removal. Although the necessary
and sufficient conditions for estimation of adequate propensity scores depend on
the method used to condition on them (Waernbaum 2010), one way to ensure
adequate propensity score estimates is to correctly specify the relationship between
selection Z and covariates X in a parametric model.

In practice, however, the model is never exactly correct. Thus, the focus of the
propensity score estimation literature is on the proposal and evaluation of methods
that attempt to approximately satisfy this analytic assumption.

20.1.3 Covariate Balance

If strong ignorability and SUTVA are satisfied, the propensity score is a balancing
score for X (Rosenbaum and Rubin 1983); that is,

X ?? ZjPS.X/: (20.6)

As a result, the extent to which covariate distributions are balanced across treatment
groups may be used as a diagnostic tool for checking the adequacy of the propensity
score estimates.

Balance measures based on means are easy to calculate and have been shown
to outperform other methods in simulation studies (Ali et al. 2014; Belitser et al.
2011), thus, we measure covariate balance with standardized mean differences. The
standardized mean difference for covariate X is

d D
NXT � NXC

O�T
(20.7)

where NXT and NXC are the means of treated and control units, respectively, and
O�T is the estimated standard deviation for X for treated units. We divide by the
standard deviation of the treated cases instead of the pooled standard deviation
across groups because the value of O�T is not affected by propensity score weighting
when estimating �T (McCaffrey et al. 2004).

To summarize balance over multiple covariates, both measures can be extended
by taking averages. For covariates X1;X2; : : : ;Xp, the average standardized absolute
mean difference (ASAMD) is

ASAMD D 1

p

pX
iD1

jdij : (20.8)
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20.2 Propensity Score Estimation

Logistic regression is the most frequently used method for estimating propensity
scores. For dichotomous outcome Z and covariates X1;X2; : : : ;Xp, each vectors of
length N, the multiple logistic regression model is

log

�
P.Z D 1jX1;X2; : : : ;Xp/

1 � P.Z D 1jX1;X2; : : : ;Xp/

�
D ˇ0 C ˇ1X1 C ˇ2X2 C � � � C ˇpXp: (20.9)

We refer to the model in Eq. (20.9) as the main-effects logistic regression because
the model contains one first-order term for each covariate.

The single-layer feed-forward neural network consists of an input layer of p
observed covariates and a constant term, an output layer containing a single unit
for dichotomous classification, and one hidden layer of M unobserved variables and
a constant term (see Fig. 20.1).

The hidden units (H D H1; : : : ;HM in Fig. 20.1) are created by forming weighted
linear combinations of the input variables and then applying the logistic function
f .t/ D 1=.1C e�t/.

The dichotomous exposure variable Z is then used as the outcome in a logistic
regression on the hidden units in the final step. The weights of the network are
similar to regression coefficients in a traditional regression analysis in that larger
weights indicate sharper changes in the slope of the response surface predicted by
the model.

Fig. 20.1 Neural network
with p inputs, M hidden
nodes, and 1 classification
output. The 1s represent
intercepts
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The model may be expressed as follows:

P.Z D 1jX/ D f .f .XVT/WT/; (20.10)

where XN�.pC1/ is the matrix of predictors, augmented to include a column of ones,
and VM�.pC1/ and W1�.MC1/ are weight matrices containing the coefficients for the
network. The hidden layer H D f .XVT/ is also augmented to include a column of
1s before being multiplied by WT . These augmentations are analogous to including
the constant term for the intercept in the design matrix of a multiple regression and
are represented by encircled 1s in Fig. 20.1.

The size of the hidden layer (M) determines how many parameters the model
will have and, thus, how flexible the network will be in modeling the relationship
between the predictors and the output. Increased flexibility, however, comes at the
cost of an increased risk of overfitting random noise in the data. Weight decay is
a technique which imposes penalties on large weights in the network, as in ridge
regression for linear models, thereby smoothing boundaries and preventing over-
adaptation to the particularities of the data (Hastie et al. 2009; Ripley 1996).

20.3 Propensity Score Application

The goal of the propensity score application step is to condition the outcome on
the estimated propensity score, thereby restoring balance to the observed covariates
and allowing for unbiased estimation of the average treatment effect. Matching
techniques aim to accomplish this goal by identifying groups of individuals from
the treatment and control groups that are as alike as possible according to the logit
of the estimated propensity score. This may be done in a one-to-one, one-to-many,
or many-to-many fashion; full matching refers to the latter case.

The goal of optimal full matching is to define S mutually exclusive strata each
containing at least one treated and one control unit such that the configuration min-
imizes a global measure of distance (Rosenbaum 2002). Because optimal matching
minimizes an overall measure of distance, it avoids the problem of different results
based on matching order which occurs with other matching algorithms such as
nearest neighbor matching.

After groups have been formed by optimal full matching, �T may be estimated by
taking the difference of weighted averages across treatment and comparison groups.
For �T , weights are calculated as follows:

�i D Zi C .1 � Zi/
NCnT

NTnC
; (20.11)

where N is the overall sample size, NT and NC are the number of treated and
comparison units, respectively, and nT and nC are the number of treated and
comparison units in the subclass to which unit i belongs, respectively.
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Let T be the set of indexes assigned to the treated condition and let C be the set
of indexes assigned to the comparison condition. Then the estimator for �T is

O�T D
P

i2T �iYiP
i2T �i

�
P

i2C �iYiP
i2C �i

: (20.12)

20.4 Simulation Study

The purpose of the simulation is to examine the effect of propensity score estimation
method on bias and mean square error of the treatment effect estimates and on
balance on observed covariates.

20.4.1 Data Generation and Simulation Design

Twelve covariates were independently generated from a standard normal distri-
bution. A correlation structure was induced via Cholesky decomposition so that
�ij D 0:3 for all i ¤ j, where � is the Pearson product-moment correlation
coefficient. The main-effects propensity score model is

PS1 D .1C expf�.ˇ0 C ˇ1X1 C ˇ2X2 C � � � C ˇ12X12g/�1: (20.13)

The complex propensity score model,

PS2 D .1C expf�.ˇ0 C ˇ1X1 C ˇ2X2 C � � � C ˇ12X12C
ˇ13X1X12 C ˇ14X2X11 C ˇ15X2X10 C ˇ16X4X12 C ˇ17X1X8C
ˇ18X

2
2 C ˇ19X

2
5 C ˇ20X

2
8 C ˇ21X

2
11/g/�1; (20.14)

includes five two-way interaction terms and four quadratic terms in addition to the
main-effects in PS1. The regression coefficients for the propensity score models
were specified as follows:

ˇ0; � � � ; ˇ6 D �1.00 �0.49, �0.18, �0.40, �0.26, �0.16, 0.51,
ˇ7; � � � ; ˇ12 D �0.84, 0.08, �0.31, 0.73, �0.04, �0.34,
ˇ13; � � � ; ˇ17 D �0.42, �0.26, 0.16, �0.36, 0.31,
ˇ18; � � � ; ˇ21 D �0.50, 0.46, 0.30, 0.36.

The regression models used to generate the continuous outcome are shown in
Eqs. (20.15) and (20.16). The main-effects outcome model is

Y1 D˛0 C ˛1X1 C ˛2X2 C � � � C ˛12X12 C 	Z: (20.15)
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The complex outcome model is

Y2 D˛0 C ˛1X1 C ˛2X2 C � � � C ˛12X12C
˛13X1X12 C ˛14X1X11 C ˛15X2X11 C ˛16X3X12 C ˛17X4X12C
˛18X

2
2 C ˛19X

2
3 C ˛20X

2
5 C ˛21X

2
11 C ˛22X

2
12 C 	Z: (20.16)

For each case i, the dichotomous selection variable Zi was generated by
comparing the propensity score to a random uniform draw from [0,1]. If the uniform
draw was less than or equal to the propensity score for case i, Zi was assigned to be
1; otherwise, Zi was assigned to be 0. In both models, the selection variable was
multiplied by the constant treatment effect 	 D �0:40. The regression coefficients
for the outcome models were specified as follows.

˛0; � � � ; ˛6 D 1.00, 0.24, 0.38, �0.50, 0.40, �0.60, �0.30,
˛7; � � � ; ˛12 D 0.06, �0.66, 0.58, 0.34, �0.58, �0.40,
˛13; � � � ; ˛17 D �0.21, �0.14, �0.49, 0.11, 0.22,
˛18; � � � ; ˛22 D �0.30, 0.41, 0.31, 0.26, �0.20.

The two PS models were crossed with the two outcome models to create four
data-generation conditions. One thousand data sets were simulated and analyzed for
each of the four conditions based on a sample size of 2000. Table 20.1 displays the
standardized initial biases and the probability of treatment assignment for each of
the four scenarios. The standardized initial bias was calculated as the unadjusted
mean difference (treatment minus control) minus the true treatment effect of
�0.4 divided by the standard deviation of the treatment group. The probability of
assignment to the treatment group is simply the proportion of simulated participants
in the population assigned to the treatment group.

Table 20.1 Population
standardized initial bias and
probability of assignment to
treatment for each of four
data generation scenarios

Scenario Standardized initial bias P(Z D 1)

PS1 � Y1 0:257 0:332

PS1 � Y2 0:214 0:332

PS2 � Y1 0:231 0:418

PS2 � Y2 0:462 0:418

Note: PS1 and PS2 represent the linear and nonlin-
ear PS data-generating models, respectively; Y1 and
Y2 represent the linear and nonlinear outcome data-
generating models, respectively.
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20.4.2 Analysis

Logistic regression was run with main effects only for X1; � � � ;X12, as in Eq. (20.9);
neural networks were fit with eight hidden nodes and the weight decay tuning
parameter set at � D 0:10 for the scenarios with linear propensity score model
and � D 0:13 for the nonlinear propensity score models. For the last two data-
generation scenarios (both with PS2) we also estimated propensity scores with the
correctly specified model, displayed in Eq. (20.14), in order to have a baseline for
comparison with the other methods.

In practice, with a single data set, an analyst would select optimal tuning
parameter values for a data mining method by searching over a grid of many possible
choices and settling on the combination which produced the best cross-validated
prediction or the best balance. In order to avoid the prohibitive computational cost
of running a cross-validated grid search at each iteration, we ran such a grid search
on five data sets generated from the linear PS and five data sets generated from
the nonlinear PS and used the results to select sensible values. Our approach for
selecting the value of weight decay (�) for the neural networks was motivated by the
usual design-based recommendations for propensity score model fitting: we selected
the value of � that was associated with the best covariate balance (though ten-fold
cross validation based on prediction yielded similar results).

To assess covariate balance we used a weighted composite of the ASAMD on
first-order terms and the ASAMD on second-order terms. These were weighted
equally in order to assign the same conceptual importance to the class of first-
order terms as the class of second-order terms in determining the resultant balance.
For each dataset, as the value of � increased, the balance improved for a period
and then began to decrease. For the linear propensity score model optimal balance
was attained at about � D 0:10; for the nonlinear propensity score model, optimal
balance was attained at about � D 0:13. Thus these values were used throughout all
1000 simulation replications.

For each replication and for each propensity score estimation method, cases in
the treatment or control group with no counterpart in the opposite group within
0.1 pooled standard deviations of the propensity score logit were considered non-
overlapping and discarded from the analysis. After discarding cases, propensity
scores were re-estimated on the remaining cases and those values were used going
forward. For PS1, both methods resulted in about 4 % of cases being discarded due
to lack of overlap. For PS2, 1 and 7 % of cases were discarded for main-effects
logistic regression and neural networks, respectively.

20.4.3 Results

For the first and second scenarios, the main-effects logistic regression model (see
Eq. (20.13); abbreviated MELR in Table 20.2) was the correctly specified model.
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Table 20.2 Performance metrics averaged over 1000 replications; optimal full matching was
used to estimate the average treatment effect on the treated

Scenario
Metric Method PS1 � Y1 PS1 � Y2 PS2 � Y1 PS2 � Y2

Bias and MSE

jBias (%)j MELR 0.07 0.03 25.14 173.80
NN 3.58 3.08 12.73 13.90
LR-20.14 NA NA 0.85 1.94

Bias MELR 0.000 0.000 0.101 0.695
NN �0.014 �0.012 �0.051 0.056
LR-20.14 NA NA 0.003 0.008

SE MELR 0.002 0.004 0.002 0.003
NN 0.002 0.004 0.003 0.004
LR-20.14 NA NA 0.003 0.004

MSE MELR 0.006 0.018 0.014 0.495
NN 0.006 0.016 0.012 0.020
LR-20.14 NA NA 0.012 0.018

Covariate balance

ASAMD on 1st-order terms MELR 0.042 0.042 0.047 0.048
NN 0.044 0.044 0.074 0.073
LR-20.14 NA NA 0.053 0.055

ASAMD on 2nd-order terms MELR 0.067 0.067 0.118 0.118
NN 0.059 0.060 0.069 0.069
LR-20.14 NA NA 0.071 0.071

Note: PS1 and PS2 represent the simple and complex propensity score data-generating models,
respectively; Y1 and Y2 represent the simple and complex outcome data-generating models,
respectively; MELR: main-effects logistic regression as in Eq. (20.13); NN: neural networks;
LR-20.14: logistic regression as in Eq. (20.14); ASAMD: average standardized absolute mean
difference across the covariates (see Eq. (20.8)); SE: simulation standard error; and MSE:
simulation mean square error

Note that biases associated with MELR were both within two simulation standard
errors of zero, indicating they are not significantly different from zero. For the
third and fourth scenarios, the data-generating model (see Eq. (20.14); abbreviated
LR-20.14 in Table 20.2) was also used to estimate propensity scores. The estimates
based on LR-20.14 for the last two scenarios were also within two simulation
standard errors from zero. Thus, when the propensity score model was correctly
specified, estimates based on optimal full matching were not significantly biased.

Estimates based on neural networks were associated with lower mean square
error than main-effects logistic regression for all four scenarios, including the first
two scenarios, for which the main-effects logistic model was correctly specified.
This finding is not altogether surprising because the feed-forward neural network
can be thought of as a generalization of logistic regression. In particular, by setting
the coefficients in the matrix V and vector v0 all equal to zero, the feed-forward
neural network described above is identical to main-effects logistic regression.
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When the data-generating propensity score model was complex, estimates
based on neural networks were far less biased than those based on main-effects
logistic regression. In the last scenario, in which the propensity score and outcome
data-generation models both contained second-order terms, estimates based on
main-effects logistic regression were biased by 174 % of the magnitude of the
treatment effect, while neural networks yielded about 14 % residual bias. Across
all four scenarios, propensity scores based on neural networks resulted in less than
14 % bias.

Regarding covariate balance on first-order terms, the balance attained by the
main-effects logistic regression was better than that attained by neural networks
across the board. On second-order terms, however, the opposite held true, with
greater disparities evident when the data-generating propensity score model was
complex.

20.4.4 Discussion

The results of the simulation study suggest that if the relationship between covari-
ates and selection involves only first-order terms, it does not make much difference
in terms of bias or mean square error whether main-effects logistic regression or
neural networks is used to estimate propensity scores. For the first two scenarios,
both methods were less than 4 % biased, with nearly identical mean square error.

If the true selection model involves more than just linear terms, misspecification
of the logistic propensity score estimation model by way of omitting higher-
order terms creates the potential for bias, the magnitude of which depends on the
relationship between the covariates and the outcome. If nonlinear terms omitted
from the propensity score estimation model are also related to the outcome, as was
the case in scenario 4 (note the common terms in Eqs. (20.14) and (20.16)), the bias
may be very large because the omitted terms act as confounding variables that have
not been accounted for.

Importantly, we found that balance checks on first-order terms did not help in
diagnosing this problem. The last column of Table 20.2 reveals that model selection
based exclusively on first-order balance would have favored the main-effects logistic
model over both neural networks and the correctly specified logistic model.

While these results clearly highlight the importance of checking balance on
higher-order terms, they also raise questions. First, in practice, what is the highest-
degree covariate transformation on which balance should be assessed? Second,
how should balance measures on higher-order terms be weighted when comparing
propensity score estimation models or techniques? For example, for an analysis with
10 covariates there are 10, 55, and 220 possible first, second, and third-order terms,
respectively whereas, for an analysis with 20 covariates there are 20, 210, and 1540
possible first, second, and third-order terms, respectively. Further research aimed at
addressing these questions would be useful.
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20.5 Conclusion

Propensity scores are most often estimated by logistic regression in practice
because it is familiar, available in most statistical software packages, and easy to
implement. The most challenging aspect associated with its use is the need for
iterative respecification of the model based on balance checking, which, with many
covariates, is tedious at best and untenable, due either to exhaustion of degrees of
freedom or exhaustion of the analyst, at worst.

Neural networks are promising for propensity score estimation because they
algorithmically deal with nonlinearities in the selection surface, making iterative
respecification unnecessary. We found, through simulation, that propensity scores
estimated by neural networks resulted in better balance on second-order terms than
those estimated by main-effects logistic regression. In practice, the analyst will not
know which higher-order terms (if any) are actually predictive of selection. The
most useful algorithmic approach for propensity score estimation is one which
automatically detects such terms and accounts for them in the propensity score
estimates, which is what neural networks did here.

There are some potential challenges with the implementation of neural networks
as well. First, while the selection of optimal tuning parameter values related to
weight decay and the number of hidden units can be carried out automatically using
packages designed to do cross-validation (we used package caret Kuhn 2014 in
R Core Team 2014), the process is computationally expensive, ranging anywhere
from several seconds to several hours of computational time, depending on the size
of the problem and the speed of the computer. Second, if the neural network results
in poor covariate balance even after selecting optimal tuning parameters, there is
no guidance as to how an analyst should alter the model to improve the balance.
For this second point, however, neural networks are flexible enough such that, if
tuning parameters are carefully selected, this should be a relatively rare occurrence
which might suggest a problem with the suitability of the data for propensity score
analysis, rather than a problem with the neural network specification. Finally, even
with the use of the weight decay smoothing parameter it is possible that with many
noisy covariates neural networks may still overfit the data.

Although neural networks performed favorably relative to main-effects logistic
regression, further research is needed to determine if neural networks continue
to perform well in cases with many weak predictors, when coupled with other
approaches for conditioning on the estimated propensity scores, and compared with
other data-mining methods.

Finally, while we compared neural networks to main-effects logistic regression
because it is the approach most often used in practice, the undiscerning use of the
main-effects logistic model for propensity score estimation is not recommended. In
practice, an analyst using a logistic regression framework for modeling selection
would experiment with various formulations of the model in an iterative process
aimed at maximizing covariate balance. While this approach is difficult to mimic in
a simulation study, the performance of neural networks could be compared with a
custom logistic model created by an experienced analyst in a case study setting.
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Chapter 21
Multilevel Propensity Score Methods
for Estimating Causal Effects: A Latent
Class Modeling Strategy

Jee-Seon Kim and Peter M. Steiner

Abstract Despite their appeal, randomized experiments cannot always be
conducted, for example, due to ethical or practical reasons. In order to remove
selection bias and draw causal inferences from observational data, propensity
score matching techniques have gained increased popularity during the past three
decades. Although propensity score methods have been studied extensively for
single-level data, the additional assumptions and necessary modifications for
applications with multilevel data are understudied. This is troublesome considering
the abundance of nested structures and multilevel data in the social sciences. This
study summarizes issues and challenges for causal inference with observational
multilevel data in comparison with single-level data, and discusses strategies for
multilevel matching methods. We investigate within- and across-cluster matching
strategies and emphasize the importance of examining both overlap within clusters
and potential heterogeneity in the data before pooling cases across clusters.
We introduce a multilevel latent class logit model approach that encompasses
the strengths of within- and across-matching techniques. Simulation results support
the effectiveness of our method in estimating treatment effects with multilevel data
even when selection processes vary across clusters and a lack of overlap exists
within clusters.

Keywords Propensity score matching • Multilevel models • Hierarchical linear
models • Latent class analysis • Finite mixture models • Causal inference

21.1 Introduction

Causal inference has been an important topic in many disciplines, and randomized
experiments (a.k.a. randomized controlled trials) have been used widely for estimat-
ing causal effects of treatments or interventions. However, in social science research
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randomization is not always feasible due to practical or ethical reasons. For example,
the effect of retaining students in a grade level is difficult to evaluate due to selection
bias in natural settings, yet it would be unethical to randomly assign students to
retention and promotion groups for the purpose of estimating the effect of retention.

The multilevel or clustered structure of data adds an additional layer of com-
plexity. Importantly, the selection mechanism (e.g., retention policy) may vary
considerably across schools. The observations within clusters are usually not
independent from each other, and thus the dependency within clusters, variability
across clusters, and potentially different treatment effects for different clusters
should also be accounted for in data analysis.

When randomized experiments are not attainable, quasi-experiments like regres-
sion discontinuity designs, interrupted time series designs, instrumental variables,
or non-equivalent control group designs are frequently used as alternative methods
(Shadish et al. 2002). In particular, the popularity of propensity score (PS) tech-
niques for matching non-equivalent groups (e.g., PS matching, inverse-propensity
weighting, or PS stratification) has increased during the last two decades (see
Thoemmes and Kim 2011). While a large body of literature exists with regard to
standard PS designs and techniques, corresponding strategies for matching non-
equivalent control groups in the context of multilevel data are still underdeveloped.

In comparison with single-level data, the main challenges with multilevel data
are that (1) units within clusters are typically not independent, (2) interventions or
treatments may be implemented at different levels (e.g., student, classroom, school,
or district), and (3) selection processes may simultaneously take place at different
levels, differ from cluster to cluster, and/or introduce biases of different directions
at different levels. For these reasons, standard matching techniques that ignore
the clustering or multisite structure are, in general, not directly applicable. If the
multilevel structure is ignored or not correctly reflected in matching treatment and
comparison units, we will very likely obtain biased impact estimates of the treatment
effect.

Although some methodological publications on PS designs with multilevel data
exist (Arpino and Mealli 2011; Hong and Raudenbush 2006; Kelcey 2009; Kim and
Seltzer 2007; Steiner et al. 2013; Stuart 2007; Thoemmes and West 2011), many
aspects of the methods are not well enough studied in the context of clustered or
nested data structures. While most of these studies focus on different methods for
estimating the PS (e.g., fixed vs. random effects models), there is less research on
different matching strategies within and across clusters, for example the question
whether the clusters are comparable enough to be pooled together for an across-
cluster matching.

This chapter adds to the limited literature and investigates fundamental issues
and challenges in evaluating treatment effects from multilevel observational studies
with treatment selection among level-one units. We propose a matching strategy
that first identifies with respect to the selection process homogeneous classes
of clusters and then matches units across clusters but within the homogeneous
classes. Such a matching strategy has the advantage that the overlap of treated
and untreated units within classes (but across clusters) is better than the overlap
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within each single cluster and that it reduces the risk of a grossly misspecified joint
PS model. Moreover, creating homogeneous classes with respect to the selection
process allows for a direct investigation of heterogeneous treatment effects across
classes. In a simulation study we compare the proposed matching strategy to within-
and across-cluster matching. The simulation indicates that matching across clusters
within homogeneous classes results in better overlap between treatment and control
units and in less biased estimates.

21.2 Matching Strategies for Observational Multilevel Data

21.2.1 Within-Cluster and Across-Cluster Matching

For multilevel observational data with selection at the highest level (e.g., district-
level selection where districts are the highest level in the data), the issue of matching
treated and untreated groups is relatively straightforward compared to selection at
a lower level, because the highest-level units are independent (Stuart 2007). In this
case, well-developed PS techniques for single-level data can be applied with some
modifications. Two common practices are to match highest-level units only (with
aggregated lower-level variables) or to match sequentially from the highest level to
lower levels.

By contrast, multilevel observational data with selection at level-one entails
more complexity as the treated and untreated units are not independent. Two
main strategies for matching level-one units exist (Arpino and Mealli 2011; Kim
and Seltzer 2007; Steiner et al. 2013; Stuart 2007; Thoemmes and West 2011):
(1) within-cluster matching where matches are only formed within clusters and
(2) across-cluster matching where treatment and control units are matched across
clusters. Both strategies have their advantages and disadvantages. Within-cluster
matching does not need any cluster-level covariates and, thus, the identification
and estimation of causal effects relies on weaker ignorability assumptions than
across-cluster matching which also requires the correct modeling of cluster-level
covariates. However, within-cluster matching frequently lacks satisfactory overlap
between treatment and control units. For example, consider retaining (vs. promot-
ing) a student as the treatment of interest. Since retention is a very extreme selection
process, it is rather hard to find a comparable promoted student for each retained
student within each school. However, across schools the overlap between retained
and promoted students is typically better than within clusters (due to larger sample
size and heterogeneity of selection across clusters). Thus, in choosing between
within- and across-cluster matching one faces a bias tradeoff between the lack of
overlap within clusters and the correct specification of the PS model across clusters.
In the next section, we propose an alternative method to within- and across-cluster
matching.
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21.2.2 Across-Cluster Matching Within Homogeneous Groups
of Clusters

We suggest a PS matching strategy that encompasses the advantages of within-
and across-cluster matching and avoids their disadvantages. The idea is to first
identify groups of clusters that are homogeneous with respect to the selection model,
and then to estimate the PS and treatment effect within each of the homogeneous
groups. The clusters’ group memberships might be known or unknown. Group
membership is known if one has a good knowledge about the selection process in
each cluster (e.g., when school administrators assign students according to different
but known rules across schools). We refer to the known groups as “manifest classes.”
If the homogeneous groups are unknown, we refer to them as “latent classes,” and
the method for classifying units into homogeneous groups follows standard practice
using finite mixture models or latent class analysis (Clogg 1995; McLachlan and
Peel 2000).

The strategy of matching units across clusters within homogeneous classes has
three main advantages. First, for homogeneous classes of clusters it is easier to
get the PS model specification approximately right (the need for and the correct
modeling of level-two covariates should be less important). Second, overlap within
classes should be better than within single clusters. Third, because a different
selection process across classes likely results in heterogeneous treatment effects,
one can directly investigate treatment effect heterogeneity.

21.3 Estimation of Propensity Scores and Treatment Effects

21.3.1 Within-Cluster and Across-Cluster Matching

Depending on the matching strategy, the estimation procedures for the unknown PS
and the treatment effect are slightly different. For within-cluster matching, the PS
is estimated for each cluster separately (thus, the cluster-specific PS models only
require the correct modeling of level-one covariates, level-two covariates are not
needed). The cluster-specific PSs are then used to estimate a PS-adjusted treatment
effect for each cluster separately. The PS-adjustment can be implemented as PS
matching, PS stratification, or as inverse-propensity weighting (Rosenbaum and
Rubin 1983; Schafer and Kang 2008; Steiner and Cook 2013). An average treatment
effect for the entire population can be obtained by pooling the cluster-specific
estimates. The cluster-specific and overall treatment effects can be consistently
estimated if the observed level-one covariates are able to remove the selection bias in
each cluster (i.e., the strong ignorability assumption is met; Rosenbaum and Rubin
1983) and if the PS model is correctly specified for each cluster.
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For the across-cluster matching strategy, a joint PS model is estimated for all
clusters together. The PS model typically involves level-one and level-two covariates
and cross-level interactions, but also random or fixed effects for the clusters (Kelcey
2009; Kim and Seltzer 2007; Thoemmes and Kim 2011). In comparison with
the cluster-specific models of the within-cluster matching strategy, the correct
specification of the joint PS model is more challenging because heterogeneities
across clusters need to be considered. Once the PS is estimated, the average
treatment effect is estimated via one of the PS-adjustments mentioned above.
In order to obtain an appropriate standard error for the treatment effect, the clustered
data structure needs to be taken into account (e.g., via random or fixed effects for the
clusters). Selection bias is successfully removed only if the confounding variables at
both levels (one and two) are reliably measured and the joint PS model is correctly
specified.

21.3.2 Across-Cluster Matching Within Homogeneous Groups
of Clusters

If the clusters’ class memberships are unknown, they first need to be estimated from
the observed data. Our proposed strategy can be considered as an application of
multilevel latent class logit modeling to the selection process and can be presented as

logit.�ijs/ D ˛js C ˇjsXijs C 	jsWjs C ıjsXijsWjs; (21.1)

where �ijs is the propensity of receiving a treatment or intervention for a level-one
unit i (i D 1; : : : ; nj) in cluster j (j D 1; : : : ;Ms) in latent class s (s D 1; : : : ;K),
Xijs is a level-one covariate, Wjs is a level-two covariate, and XijsWjs is the cross-
level interaction, respectively. Regression coefficients ˛js, ˇjs, 	js, and ıjs may vary
across clusters and latent classes. For simplicity, the equation only consists of two
levels and one covariate at each level, but it can be generalized to three or more
levels and multiple covariates at each level. The observed treatment status Zijs 2 0; 1
(0 D untreated; 1 D treated) is modeled as a Bernoulli distributed random variable
with probability �ijs : Zijs � Bernoulli (�ijs). Standard latent class models and
finite mixture models have been modified to multilevel models, and these multilevel
latent class models can be estimated by latent class analysis software such as Latent
GOLD, or alternatively various R packages for finite mixture models. We used the
R package FlexMix (Grün and Leisch 2008) in this chapter.

When the selection process and the class membership are determined by multiple
variables .X;W/ as in Eq. (21.1), latent class regression can effectively classify
units into several latent classes, such that the coefficients are similar within latent
classes but different between latent classes. Note that this latent class approach
is different from random coefficient models with random intercepts and random
slopes. In random coefficient models, regression coefficients are assumed to be
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unobserved continuous variables (often assumed to be normally distributed) and
the variance–covariance matrix of these coefficients is estimated. In latent class
regression, coefficients are parameters that are allowed to be different across classes.
Therefore, outcomes of latent class regression include multiple sets of coefficient
estimates without any assumptions about relationships or distributions among the
estimated values.

The procedure to implement multilevel latent class logit modeling in regard to a
selection process is similar to standard latent class analysis when adding a cluster
identification variable and defining the logit link function in the model specification.
One can fit models with varying numbers of classes and compare model fit using
heuristic model comparison criteria such as AIC, BIC, and their variations. If a
one-class model fits better than multiple-class models, it is likely that the selection
process was comparable across the clusters. If a two-class model substantially
improves the model fit, this suggests that at least two distinctive selection processes
were used for the treatment assignment. Three and more classes can be considered
next. It is important to note that formal statistical tests (e.g., likelihood ratio test)
cannot be used to determine the number of classes, as models with different numbers
of latent classes (K � 2) are not nested even though the other model specification is
identical.

Once the latent classes are determined or if the classes are known (manifest
classes), units can be pooled across clusters but within classes. A separate PS
model is then estimated for each manifest or latent class. As with the across-cluster
matching strategy, both level-one and level-two covariates as well as cross-level
interactions should be modeled. Variations across clusters are modeled by random
or fixed effects. However, in contrast to across-cluster matching, the class-specific
PS models should be less sensitive to model misspecification because the classes
represent homogeneous groups with respect to the cluster’s selection models (i.e.,
the strong ignorability assumption is more likely met for homogeneous groups of
clusters than for the entire population of clusters). Matching cases from different
clusters within classes is more justifiable than matching across all clusters of the
entire data set, as selection processes should be similar among clusters and thus the
direction and degree of selection bias would likely be similar within latent classes.
Once the class-specific PSs are estimated, the treatment effect is estimated for each
class as described for the across-cluster matching strategy. An overall treatment
effect can be estimated by pooling the class-specific effects.

In the next section, we conducted a simulation study examining the effectiveness
of our multilevel latent class logit model approach for identifying different selection
processes and removing selection bias. We compare our approach to within-cluster
matching, across-cluster matching, and also across-cluster matching within known
classes where it is possible to know which units used which selection processes.
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21.4 Simulation

21.4.1 Data Generating Models

We use a model with two level-one .X1;X2/ and two level-two .W1;W2/ covariates
in the simulation. In order to create three different groups (“classes”) of clusters
we used different coefficient matrices for the data-generating selection models and
outcome models. While the heterogeneity in the outcome models is moderate (i.e.,
coefficients have the same sign across classes), the classes differ considerably in
their selection processes (i.e., coefficients have opposite signs). For the first class,
selection is positively determined by the two level-one covariates but negatively
determined by the two level-two covariates. In the second class, the two level-one
covariates have a negative effect on selection while the two level-two covariates
have a positive effect on selection. Thus, the two selection processes are of opposite
directions. Finally, the third class is characterized by a selection process that is only
very weakly determined by the level-one covariates (here, treatment assignment
almost resembles a random assignment procedure). For each of the three classes,
Fig. 21.1 shows for a single simulated data set the relation between the first level-one
covariate X1 and the logit of the PS (for each class, the second level-one covariate
X2 has about the same relation to the PS logit as X1).

According to the data-generating selection model, overlap within clusters,
classes, and the entire data differs. Figure 21.2 shows for each of the three classes
the distribution of the level-one covariate X1 by treatment status. The plots clearly
indicate that the selection mechanisms are quite different. Table 21.1 shows the
average percentage of overlapping cases with respect to the logit of the PS. Overall,
the within-cluster overlap between treatment and control cases amounts to 84 %
(i.e., 16 % of the cases lack overlap), but across clusters the overlap is 97 %.

Figure 21.3 shows that the outcome models also vary considerably across
classes (though the slopes of the level-one covariates are all positive). We also
allowed for different treatment effects across classes: 5, 15, and 10 for Classes
1, 2, and 3, respectively. Note that it is realistic for multilevel structures to have
very different selection processes but similar data-generating outcome models.
While the rationales of teachers, parents, students, and peers for selecting into a
treatment might strongly differ from school to school (or district to district), the
data-generating outcome model is usually more robust across schools and districts.

In simulating repeated draws from the population of clusters and units, we
sampled 30, 18, and 12 clusters from each of the three classes, respectively. A cluster
consisted on average of 300 level-one units (sampled from a normal distribution
with mean 300 and SD 50). In each iteration of our simulation, we first estimated
different PS models, then the mixture selection models in order to determine the
latent group membership (assuming it is not known), and, finally, we estimated the
treatment effect using different PS techniques.
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Fig. 21.1 Class-specific selection models with respect to the level-one covariate X1
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Table 21.1 Overlap within clusters and classes (in percent of the
total number of units)

Class 1 Class 2 Class 3 Overall

Overlap within clusters 85.6 72.9 98.6 84.4

Overlap within classes 97.3 91.3 99.9 97.0
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Fig. 21.3 Class-specific outcome models with respect to the level-one covariate X1

21.4.2 PS Estimation and Matching via Inverse-Propensity
Weighting

In estimating the unknown PS we used different models, some of them including
cluster fixed effects. The models are estimated in different ways: (i) within each
cluster separately (for within-cluster matching), (ii) across clusters but within
the three known classes (for across-cluster matching within manifest classes),
(iii) across clusters but within the three estimated latent classes (for across-
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cluster matching within latent classes, where class membership is estimated using
a multilevel latent class logit model), and (iv) across all clusters without using
any grouping information (for a complete across-cluster matching). While the PS
models for (i) only include the two level-one covariates as predictors, the models
for (ii)–(iv) include in addition cluster-fixed effects (thus the inclusion of level-two
covariates was not necessary). Given the heterogeneity of the selection models,
it is clear that the PS model for (iv) does not adequately model the different
selection procedures across the three classes. We used the estimated PS to derive
inverse-propensity weights for the average treatment effect (ATE). We only focus
on inverse-propensity weighting because our simulations, as well as other studies,
revealed that the choice of a specific PS method does not make a significant
difference.

21.4.3 Estimation of Treatment Effects

Since we implemented the “matching” as inverse-propensity weighting, we ran a
weighted multilevel model with the treatment indicator as sole predictor. Depending
on the matching strategy, we either estimated the treatment effect (i) within clusters
(in this case it is a simple regression model), (ii) within the three manifest classes,
(iii) within the three latent classes, or (iv) across all clusters simultaneously.
Thus, analyses (i)–(iii) produced either cluster- or class-specific estimates. In order
to obtain overall ATE estimates we computed the weighted average across clusters
or classes, respectively (with weights based on level-one units).

21.4.4 Simulation Results

The results of our simulation study are shown in Tables 21.2 and 21.3. Table 21.2
shows the estimated class sizes and the percent of misclassified units when we
derived the class membership from the estimated mixture model (with respect to the
selection process). The estimated class sizes were close to the true class sizes; 0.5,
0.3, and 0.2. Despite the quite different selection processes across classes, overall

Table 21.2 Estimated class sizes (in percent) and misclassification
rates

Class 1 Class 2 Class 3 Overall

Estimated class sizea 48.5 29.8 21.7 100.0

Misclassification percentage 8.2 8.1 7.2 8.0
aData were generated by sampling 30, 18, and 12 clusters from the three
classes. True class sizes vary slightly over replications as level-one units
were sampled from a normal distribution with mean 300 and SD 50.x
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Table 21.3 Treatment effect estimates by classes and overall

Class 1 Class 2 Class 3 Overall

True treatment effects 5 15 10 9

Prima facie effect (unadjusted effect) 73:799 �28.893 9.875 30:171

Across-cluster PS 67:363 �32.150 �0.132 22:004

Within-cluster PS 8:333 9.555 10.065 9:051

Within-class PS (manifest classes) 2:578 16.537 10.010 8:263

Within-class PS (latent classes)a 4:160 15.645 10.278 8:997

aFor the estimated classes, the true effects within the latent classes slightly differ
from the ones given above

only 8 % of the units were misclassified. Table 21.3 shows the estimated ATEs we
obtained from the different matching strategies. The prima facie effects; that is, the
unadjusted mean differences between treatment and control units, amount to 74,
�29, and 10 points for Classes 1, 2, and 3, respectively (in effect sizes: 1.1, 0.3,
and 0.1 SD). Given that the corresponding true effects are 5, 15, and 10 points, the
selection biases within the first two groups are rather large. According to the data-
generating selection model, we have a positive selection bias in the first group but
a negative selection bias in the second group. There is essentially no selection bias
in group 3 because selection was extremely weak and close to random assignment.
Overall, across the three classes, selection bias is still considerably large because
the prima facie effect of 30 is much greater than the true effect of 9 points.

If one estimates the ATE based on a PS that has been estimated across all
clusters, selection bias is removed but only a small part of it. The across-cluster
estimate of 22 points is not even close to the true effect of 9 points. Though the
across-cluster PS model includes the level-one covariates and cluster-fixed effects,
it fails to provide a reasonable estimate of ATE because the PS model did not
allow for the varying slopes across classes. Within-cluster matching overcomes this
misspecification issue, but fails to provide accurate estimates for each of the three
classes because of the lack of overlap within clusters. However, the overall estimate
(averaged across all clusters) is 9.05 and thus very close to the true effect. But this
is only a coincidence due to the simulation setup. In general, the overall estimate
obtained from within-cluster matching will be biased as well (given a lack of overlap
within clusters).

A better performance is achieved by across-cluster matching within known or
estimated classes. If the class membership is known, then the class-specific and the
overall estimates are rather close to the true treatment effects. However, with the
estimated class membership, the estimates are even less biased. The overall effect
averaged across the three classes (8.997) is essentially identical to the true effect
of 9 points. Thus, with the implementation of the latent class approach, we achieve
a less biased result than with the known class variable where the overall estimate
amounts to 8.263 points. This is not surprising because, in estimating the class
membership from the observed data, clusters that are outlying with respect to their
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actual class get classified into a class that better represents the outlying clusters’
selection process.

21.5 Conclusions

This chapter considers challenges and strategies for estimating treatment effects
with observational data, particularly focusing on propensity score matching meth-
ods. Although cases can be “borrowed” or “pooled” across clusters in multilevel
data, pooling across all clusters simultaneously may be harmful when the data
are heterogeneous and, thus, difficult to model correctly. This study showed that
imposing common selection and outcome models to heterogeneous data would
result in misspecified models and may yield a severely biased average treatment
effect (ATE). Instead of pooling cases automatically by fitting a multilevel model
to the entire data, we propose to examine first if a common selection process is
reasonable for the data.

For example, schools may provide extra mathematics sessions to their students
for different reasons, such as enhancing the growth of high achieving students or
preventing the failure of low performing students. In this case, the selection process
may be positively related to student performance for some schools, while negatively
related for others. Selection processes may also be related to other characteristics
of students, parents, teachers, and school administrators. If it is possible to know
which units used which selection processes, we argue that one should classify units
into multiple groups (i.e., manifest classes) according to the selection processes,
and conduct PS analysis for each manifest class separately. If the estimated treated
effects are very similar despite distinctive selection processes, the result suggests
that the different selection mechanisms did not influence the direction or degree
of the treatment effects, and ATE appears meaningful. However, it is more likely
that treatment effects are different corresponding to distinctive selection processes,
and in that case one estimate of ATE would be an oversimplification at best and
distortion at worst.

In sum, our matching strategies for estimating treatment effects with obser-
vational multilevel data consist of three main elements: (1) check overlap for
each of the clusters. If overlap is satisfactory and sample size is sufficient for all
clusters, within-cluster matching would be recommended and within-cluster effects
can be pooled for ATE. In most cases, however, not all within-cluster effects can
be estimated reliably even in large-scale data due to a small portion of clusters
without sufficient overlap. In the simulation, 84 % of clusters have overlap but
within-cluster matching was far short of removing selection bias. Therefore, across-
cluster matching is often necessary in multilevel data. Before pooling the entire
data, (2) we suggest to seek if it is possible to know which units used which
selection processes and, if so, form manifest classes according to the selection
processes. If this information cannot be collected, (3) we recommend the proposed
multilevel latent class logit model as the selection model to examine if different
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selection processes were used in the data. Once units are classified into a small
number of either manifest or latent classes, one can estimate propensity scores and
treatment effects by pooling cases across clusters but within classes. This chapter
demonstrated that identifying homogeneous latent classes can help in avoiding
severe model misspecifications and likely reduce selection bias more successfully.

The aim of this chapter is to provide guidelines and suggestions for researchers
in choosing an appropriate and effective matching strategy for their multilevel data.
Particularly if selection models are heterogeneous across clusters, estimating the
treatment effects within homogenous classes allows one to obtain less biased ATE
estimates within classes as well as for the entire data. Such a matching strategy
also has the advantage that it enables the investigation of heterogeneous treatment
effects in the data. In this study we demonstrated how to form homogenous latent
classes according to the selection process. Alternatively one could also construct
homogeneous classes with respect to other sources of heterogeneity such as the
outcome model, or the selection and outcome model together.
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Chapter 22
The Sensitivity Analysis of Two-Level
Hierarchical Linear Models to Outliers

Jue Wang, Zhenqiu Lu, and Allan S. Cohen

Abstract The hierarchical linear model (HLM) has become popular in behavioral
research, and has been widely used in various educational studies in recent
years. Violations of model assumptions can have significant impact on the model
estimates. The purpose of this study is to conduct a sensitivity analysis of two-
level HLM by exploring the influence of outliers on parameter estimates of HLM
under normality assumptions. A simulation study is performed to examine the
bias of parameter estimates with different numbers and magnitudes of outliers
given different sample sizes. Results indicated that the bias of parameter estimates
increased with the magnitudes and number of outliers. The estimates have bias with
a few outliers. A robust method Huber sandwich estimator corrected the standard
errors efficiently when there was a large proportion of outliers.

Keywords Hierarchical linear models • Outliers • Robust method

22.1 Introduction

The hierarchical linear model (HLM) has become popular in behavioral research,
and has been widely used in various educational studies in recent years. Compared
to general linear models (GLM), HLM is favored by a number of researchers
(e.g., Field 2009). Morris (1995) claimed that “hierarchical models are extremely
promising tools for data analysis” (p. 85). For GLM, the distributional assumption
requires independent and identically distributed error terms (Frank 1998). However,
data in educational research studies are usually hierarchical. For example, students
as subjects are actually nested within their classes, and classes are nested within
schools. Data from those students are not independent from each other. With
multilevel models, aggregation bias (Cronbach and Webb 1975; Robinson 1950)
can be attenuated. The problem of misestimated precision can be taken care of
with multilevel models as well (e.g., Aitkin et al. 1981). Besides, the ordinary
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linear “squared (OLS)” estimation fails to include covariance components in the
standard error estimates when applied to the nested data (Bijleveld et al. 1998).
HLM can estimate variance components with unbalanced or nested data and divide
the variability across different levels. Field (2009) summarized three crucial benefits
of HLM that “cast aside the assumption of homogeneity of regression slopes,” “say
‘bye-bye’ to the assumption of independence,” and “laugh in the face of missing
data” (p. 729).

As the increase in popularity of HLM, it is important to investigate whether
model estimation can be easily influenced by extreme observations. For traditional
HLM, residual terms at all levels of HLM are assumed to be normally distributed.
But based on previous studies, statistical models with an assumption of normality
can be highly sensitive to outlying cases (Hogg 1979; Mosteller and Tukey 1977),
so nonnormality is one factor that affects the standard errors for the fixed-effects
estimates and in turn affect the test statistics in HLM. Outliers for two-level HLM
may due to outlying level-1 units given the regression equation for a particular level-
2 unit, or represent an atypical regression coefficient of a level-2 unit. Rachman-
Moore and Wolfe (1984) indicated that even one outlier at level-1 can affect the
estimates of the level-2 unit aggregates and other level-1 unit contributions, impact-
ing the estimation of fixed effects. Studies have been conducted indicating that point
estimates and intervals for fixed effects may be sensitive to outliers at all levels
(Seltzer 1993; Seltzer et al. 2002). Seltzer and Choi (2003) indicated that results
were not excessively influenced by one or two extreme outlying values at level 1
by reanalyzing real data with level-1 outliers. There was little change in the fixed
effects. This finding was distinct from the previous results. The leading sensitivity
analyses for HLM adopted real data analyses and then compared results across
different assumptions or employed robust methods to fit the real data. Actually,
different estimation methods, computational algorithms, assumptions, sample sizes,
and severity of outliers may impact the results of parameter estimation. One purpose
of this study is to conduct a well-performed simulation study, which explores the
bias of parameter estimates in various conditions from the true parameters. Practical
instructions can be provided for educational researchers in using HLM when
outliers exist. Applying a robust method to correct the standard errors is a practical
recommendation. An asymptotically consistent robust method called the “Huber
sandwich estimator” is popular for correcting standard errors. Freedman (2006)
indicated that the “Huber sandwich estimator” can be useful when the model is
misspecified. He also noted that when the model is nearly correct, there is no evident
benefit from the robustification of the Huber sandwich estimator for correcting
the usual standard errors. Additionally, the cost of increasing robustness is more
computational complexity. If the Huber sandwich estimator does not perform better
than the Full maximum likelihood estimation (FMLE) method, the value of the
robust method is compromised in dealing with outliers for HLM. Another purpose
of this study is to compare the performance of the Huber Sandwich estimator with
FMLE.
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In summary, we have two purposes of this study. First, we explore the bias of
the parameter estimates of HLM with different magnitudes of outliers; and second,
we investigate the correction of the standard errors for fixed-effects estimates in the
presence of outliers.

22.2 Theoretical Background

22.2.1 Hierarchical Linear Model

Raudenbush and Bryk (2002) introduced a general HLM model. It is a general-
ization of traditional linear models. HLM not only incorporates the hierarchical
structure of the data, but also partitions the covariance components and tests
the cross-level effects. At each level, HLM shares the linearity, normality, and
homoscedasticity assumptions of OLS regression. Apart from that, HLM can
adjust for the non-independence of error terms. The independence among all the
observations required by OLS is not required for HLM. In turn, HLM assumes
residuals at different levels need to be uncorrelated and the observations at the
highest level should be independent of each other. HLM also can accommodate
the missing data and an unbalanced design.

The general form of two-level HLM with random intercepts and random slopes
is as follows:

Level-1 Yij D ˇ0j C ˇ1jXij C rij

Level-2 ˇ0j D 	00 C u0j

ˇ1j D 	10 C u1j (22.1)

or in a combined form:

Yij D .	00 C 	10Xij/C .u0j C u1jXij C rij/ (22.2)

where i and j represent the level-1 and level-2 units, respectively. The parameters
ˇ0j and ˇ1j are the random intercept and the random slope of the regression equation
at level-2 unit j, correspondingly. rij represents the error term at level-1 	00 and 	10
represent the fixed-effects estimates of the random intercept ˇ0j and the random
slope ˇ1j, correspondingly. The random effects of the regression coefficients are
u0j and u1j. The mean structure part of this HLM model is .	00 C 	10Xij/. And the
residual part is .u0j C u1jXij C rij/. Let u be the vector of random effects u0j and u1j,
and 
 be the vector of residual variances. Based on normality assumption, we have

E

�
u



�
D
�

0
0

�
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22.2.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) produces parameter estimates of a statistical
model that maximize the likelihood function. The MLE produces consistent and
efficient estimates. It is also scale free and scale invariant. Scale free indicates
that the value of the fit function is the same for the correlation matrix, covariance
matrix, or any other changes of the scale. Scale invariant implies that the parameter
estimates are not affected by the transformation of variables. FMLE provides both
regression coefficients, including the fixed-effects estimates (intercepts and slopes),
and the random-effects estimates (variance components) for HLM; the restricted
maximum likelihood estimation (RMLE) is mainly used to estimate the covariance
components. The FMLE method is employed in the estimation procedure of this
study.

For two-level HLM, we assume the data y follow N.Xˇ;V/. The likelihood
function regarding ˇ and V of FMLE is as below (Searle et al. 1992):

L.ˇ;VI y/ D 1

.2�/
N
2 jVj 12

e� 1
2 .y�Xˇ/0V�1.y�Xˇ/ (22.3)

Then the log-likelihood function is as follows:

log L.ˇ;VI y/ D �N

2
.log 2�/� 1

2
log jVj � 1

2
.r0V�1r/ (22.4)

where r D y � Xˇ. SAS Proc Mixed procedure (SAS Institute Inc. 2013) employs
a ridge-stabilized Newton–Raphson algorithm to maximize the log-likelihood
function, or minimize �2 log L.ˇ;VI y/, to look for the linear approximation of the
function roots through an iterative process (Ypma 1995). The estimators for fixed-
effects ˇ and random-effects u (Littell et al. 2006) are

Ǒ D
0
@ mX

jD1
X0

jV
�1
j Xj

1
A

�10
@ mX

jD1
X0

jV
�1
j yj

1
A (22.5)

Ou D
mX

jD1
OGZ0 OV�1

j .yj � Xj Ǒ / (22.6)
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where m represents the number of units at level 2; Xj and Vj are the design matrix
and the covariance matrix for level-2 unit j, respectively; Z denotes as a design
matrix for random-effects estimates. The variance of Ǒ is estimated by

var. Ǒ / D
�

X0 OV�1X
��1

: (22.7)

22.2.3 Outliers and Huber Sandwich Estimator

One concern about FMLE is the assumption of multivariate normality. Grubbs
(1969) stated that an outlier is one that seems to deviate markedly from other data
of the sample. It may be merely an extreme indication of the random variability
inherent in the data or it may also be the result of a gross deviation from the
experimental process or data processing. Barnett and Lewis (1994) defined outliers
to be observations that are inconsistent with the rest of the data. Researchers
would not like to simply delete outliers. However, the presence of outliers has
serious effects on the modeling, monitoring, and diagnosis (Zou et al. 2014). Before
applying the model to fit the data, it is necessary to do a sensitivity analysis of
the model to the outliers. Using robust methods to estimate standard errors is
one way. Huber (1967) and White (1982) introduced a robust covariance matrix
estimator referred to as the Huber sandwich estimator, which is commonly used
in generalized estimating equations (GEE, Diggle et al. 1994; Huber 1967; Liang
and Zeger 1986; White 1980). The Huber sandwich estimator does not change
parameter estimates. It provides robust standard errors of fixed-effects estimates
which in turn corrects the test of significance (King and Roberts 2012). Huber
sandwich estimator is an implemented robust method for correcting standard errors
in the SAS software. Different from the FMLE covariance matrix estimator, the
Huber sandwich estimator is based on the quasi-likelihood GEE and computes the
covariance matrix for the fixed-effects estimates as below (Liang and Zeger 1986):

.X0 OV�1X/�1
0
@ mX

jD1
X0

j
OV�1

j O�j O�0
j Xj OV�1

j

1
A .X0 OV�1X/�1 (22.8)

where j refers to the level-2 unit and m is the number of units at level 2, O�j D
yj � Xj Ǒ , is the estimated residual part of the model, Xj and OVj are the design
matrix and the covariance matrix for unit j, respectively. The generalized inverse
in the equation is appropriate as the matrix is singular. The consistent covariance
estimation is obtained in the presence of heteroskedasticity (White 1980). The left
and right part of the equation are the FMLE covariance matrix estimator. When
data are normally distributed, the middle part will be canceled out and the Huber
sandwich estimator would yield the same result as the FMLE.
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22.3 A Simulation Study

22.3.1 Design

A simulation study was performed to investigate the sensitivity of HLM to outliers.
Data sets with three different sample sizes were simulated based on the random-
coefficients regression model. In order to maintain the same ratio of the number of
level-1 units to the number of level-2 units, the three sample sizes were set as 200
(20 level-1 units by 10 level-2 units), 1250 (50 level-1 units by 25 level-2 units), and
5000 (100 level-1 units by 50 level-2 units).

Step 1, normally distributed data were generated based on the random-
coefficients regression model, Yij D .	00 C 	10Xij/C .u0j C uijXij C rij/. The true
values of parameters were set as follows: 	00 D 5, 	10 D 1, �00 D 1, �11 D 4,
�01 D 1, and �2 D 4. The correlation between �00 and �11 was .50.

Step 2, two types of outliers (3 SD and 5 SD) were defined based on the
sample standard deviations. The mathematical equation for creating outliers was
NYoutlier D NY C n O� where n D 3 or 5. The sample mean NY and the sample standard
deviation O� were estimated by using the simulated datasets without outliers. The
3 SD outliers are three standard deviations from the sample mean. Similarly, the
5 SD outliers are five standard deviations from the sample mean. All the outliers
were created in the positive direction, in order to avoid the trade-off effects of
outliers and better investigate the influence of violating normality assumption.
Several specific numbers of outliers with 3 SD and 5 SD were created for the
dependent variable and substituted for the real data. For the datasets with a
sample size of 200, 1, 2, 5, 8, 10, and 20 outliers were created. The percentage
of the outliers in the datasets of sample size 200 were .50, 1.00, 2.50, 4.00, 5.00,
and 10.00 %. For the data sets with a sample size of 1250, 2, 5, 10, 25, 50, 75,
and 125 outliers have been created. The corresponding percentages were .16,
.40, .80, 2.00, 4.00, 6.00, and 10.00 %. For the data sets with a sample size of
5000, 2, 5, 10, 20, 30, 40, 50, 100, 150, 250, and 500 outliers were created. The
percentages of outliers were then .04, .10, .20, .40, .60, .80, 1.00, 2.00, 3.00, 5.00,
and 10.00 %.

Step 3, the FMLE method with the Newton–Raphson algorithm was adopted to
estimate parameters with the correctly specified model.

Step 4, the fixed-effects and random-effects estimates were compared with the
true values of the parameters. The indices for the comparisons are absolute bias
and relative bias. The bias of a statistic O� is defined as B. O�/ D E. O�/ � O� ,
which is the distance of the expectation of the estimate and the estimate itself.
The absolute bias is the absolute value of the difference between estimates
and the values of true parameters. The relative bias represents the ratio of the
absolute bias to the values of true parameters, which is the percentage of the
relative difference between the mean estimate and the single estimate. Both
the absolute bias and relative bias indicate the sensitivity of the model with a
specific estimation method to the outliers. The Q-Q plots of the scaled residuals
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for the dependent variable were used to display the distribution of residuals.
When data are correlated, the vector of residuals instead of each separate residual
can be scaled, accounting for the covariances among the observations. The
Cholesky residuals were used. As described in the SAS/STAT(R) 9.22 User’s
Guide, if Var.Y/ D C0C, then C0�1Y is a vector of uncorrelated variables with
unit variance which has uniform dispersion. Those residuals are expressed as
O"c D C0�1.Y � X Ǒ/.

Step 5, the robust method Huber sandwich estimator for correcting the standard
errors and test statistics on the fixed-effects estimates was examined. The
estimated covariance matrix of fixed-effects estimates by the Huber sandwich
estimator was compared with those obtained by the FMLE method. For each
condition, 100 replications were conducted to carry out the simulation study.

22.3.2 Results

In order to recover the parameters, the random-coefficients regression model was
employed to fit the simulated data without outliers. The absolute bias and the
relative bias of the estimates were acceptable with all absolute bias less than .20
and relative bias ranging from .01 to 8.06 % (Table 22.1). The Pearson correlation
between true values and the estimates was strongly positive, r D :999, p < :01,
indicating the parameters were successfully recovered. The Q-Q plot and histogram
for the scaled residuals of the dependent variable indicated that the simulated data
were normally distributed (Fig. 22.1a). The Q-Q plots of the scaled residuals for
the dependent variable showed how the outliers affect the normal distribution of the
data (Fig. 22.1b). In the presence of a few outliers, the distributions of the scaled
residuals appeared normal. With larger numbers of outliers, however, the scaled
residuals had more variability around the line. In the presence of extreme outliers,
the scaled residual did not appear to be normally distributed. For the three sample
sizes, the patterns look similar, so we took the sample size of 200 as an illustration
Results are shown in the Table 22.2.

The intercept estimate 	00 appeared to be affected by outliers. The absolute bias
of the estimates increased as the number of outliers increased (Fig. 22.2a). The
relative bias of 	00 ranged from .53 to 35.63 %. The independent sample t-test for
the differences of absolute/relative bias on 	00 between different types of outliers
was not significant, t.46/ D �1:40, p D :17.

The slope estimate of 	10 was much less susceptible to outliers, compared with
the estimate of 	00 (Fig. 22.2a). The range of relative bias of 	10 was 1.53–12.55 %.
The independent sample t-test indicated that there was no significant difference in
the absolute bias of the 	10 estimation between 3 SD and 5 SD outliers, t.77:46/ D
�1:23, p D :22.

The outliers had the most influential effects on the estimation of �2. With an
increase in the numbers of outliers, the absolute bias increased rapidly (Fig. 22.2a).
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Table 22.1 Summary of parameter recovery

Sample
sizes Parameters True values Estimates Standard errors Absolute bias

Relative
bias (%)

200 	00 5:00 5:00 :32 :00 :01

200 	10 1:00 1:01 :61 :01 1:11

200 �2 4:00 3:96 :42 :04 1:06

200 �00 1:00 :93 :51 :07 6:63

200 �01 1:00 :97 :73 :03 3:36

200 �11 4:00 3:80 1:80 :20 4:89

1250 	00 5:00 5:00 :20 :00 :08

1250 	10 1:00 1:00 :40 :00 :28

1250 �2 4:00 4:04 :16 :04 :88

1250 �00 1:00 :98 :30 :02 2:22

1250 �01 1:00 :92 :45 :08 8:06

1250 �11 4:00 3:90 1:13 :10 2:38

5000 	00 5:00 5:00 :14 :00 :04

5000 	10 1:00 :97 :28 :03 3:30

5000 �2 4:00 3:99 :08 :01 :18

5000 �00 1:00 1:00 :21 :00 :08

5000 �01 1:00 :96 :32 :04 3:89

5000 �11 4:00 3:86 :78 :14 3:40

Mean :04 2:33

SD :05 2:40

Note: 	00 and 	10 represent the fixed-effects estimates of the random intercept and the slope. �2 is
the error term at level 1. �00 is the variance of the random intercept and �11 is the variance of the
random slope. �01 represents the covariance of the random intercept and slope

The range of relative bias was 16.97–733.97%, 10–20 times wider than other
estimates. In the presence of 10.00 % outliers in the data, the largest absolute and
relative bias were observed.

The variance component of the intercept, �00, was affected in a similar way to 	00
(Fig. 22.2a). The range of relative bias was 10.47–97.99%. There was a significant
difference in the absolute bias for estimates of �00 across the three sample sizes,
F.2; 45/ D 11:92; p < :001.

The relative bias of variance component of the slope �11 was large with only
.50 % outliers and then increased slightly up to 5.00 %; however, the 10.00 %
outliers completely distort the estimates of �11 (Fig. 22.2a). The absolute bias with 5
SD outliers were not significantly different from those with 3 SD outliers based on
the independent sample t-test, t.10/ D :43, p D :68.

The covariance of the intercept and slope was �01. The distribution of absolute
bias did not display a clear pattern (Fig. 22.2a). The absolute bias appeared to
be similar across numbers and types of outliers. The range of relative bias was
1.92–26.14%. The independent sample t-test for the differences of absolute bias on
the �01 was not significantly different between 3 SD and 5 SD outliers, t.46/ D :57,
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Fig. 22.1 (a) Plots for data without outliers and (b) QQ plots for data with outliers

p D :57. In addition, the one-way ANOVA for testing the differences of absolute
bias across sample sizes was significant, F.2; 45/ D 7:77; p < :001.

Comparing the FMLE and the Huber-sandwich estimator for estimating standard
errors of fixed-effects estimates, there was no significant difference between the
FMLE standard errors and Huber standard errors. The standard errors of FMLE
and of Huber-sandwich estimator were close to each other with less than 4.00 %
outliers (Fig. 22.2b). With more than 4.00 % outliers, the Huber-sandwich estimator
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Table 22.2 Fixed-effects and random-effects estimates with 3 SD outliers and sample size
200

Parameters Percents (%) True values Estimates Standard errors Absolute bias
Relative
bias (%)

	00 :50 5:00 5:03 :32 :03 :53

2:50 5:00 5:24 :32 :24 4:79

10:00 5:00 6:09 :32 1:09 21:87

	10 :50 1:00 :93 :60 :07 7:19

2:50 1:00 :97 :60 :03 3:12

10:00 1:00 :93 :58 :07 7:12

�2 :50 4:00 4:68 :49 :68 16:97

2:50 4:00 6:83 :72 2:83 70:79

10:00 4:00 14:92 1:56 10:92 272:89

�00 :50 1:00 :85 :50 :15 14:95

2:50 1:00 :70 :49 :30 29:61

10:00 1:00 :30 :58 :70 70:05

�11 :50 4:00 3:57 1:72 :43 10:81

2:50 4:00 3:42 1:71 :58 14:41

10:00 4:00 2:80 1:70 1:20 30:07

�01 :50 1:00 :78 :68 :22 21:98

2:50 1:00 :80 :69 :20 20:49

10:00 1:00 :77 :66 :23 22:70

Note: Notations are the same as above. Only part of the results are listed in the table

provided smaller standard errors than the FMLE. With 10.00 % outliers, the
difference between standard errors of 	00 with 5 SD outliers was larger than those
with 3 SD outliers. A similar situation happened for 	10 as well, but the mean
differences between the two estimation methods were not significant given a sample
size of 200, t.46/ D :34, p D :74. The mean difference between the two estimation
methods was not significant as well, t.86/ D �:001, p D :999, which indicated that
the Huber-sandwich estimator tended to provide robust standard errors only when
the outliers were extreme.

22.4 Discussion

Outliers had influences on the estimates of the random-coefficients regression model
under the FMLE. The estimate of �2 was influenced the most. The effects on the
	00 were increased with more outliers. The bias of 	00 with 5 SD outliers was
clearly larger than those with 3 SD outliers. The estimate of �00 was affected in a
similar way to the estimate of 	00. Relatively speaking, the estimate of 	10 was less
influenced by outliers. Moreover, the estimate 	10 had no specific influence pattern
related to outliers. The estimate �11 had more random variations. With 10.00 % 5 SD
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Fig. 22.2 (a) Absolute bias of estimates and (b) comparison between FMLE and Huber estimator
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Fig. 22.2 (continued)

outliers and a sample size of 200, �11 had the lowest absolute and relative bias,
however, the estimation was not convincing. The standard errors were very large,
indicating that the estimate of �11 has been distorted. The estimate of �00 increased
with large proportions of 5 SD outliers. The estimate of �01 with a sample size of
200 was not stable in the presence of outliers. 10.00 % outliers in a sample size of
200 was a large proportion, which can perhaps no longer be viewed as outliers. With
10.00 % 3 SD outliers in a sample size of 200, 1 out of 100 replications of the model
estimation procedures in the SAS software did not converge after 106 iterations.
With 5.00 and 10.00 % 5 SD outliers given a sample size of 200, there were 5
out of 100 replications of the model estimation procedures that did not converge
after 106 iterations. Therefore, the stability of parameter estimation in HLM will be
compromised with a large proportion of outliers.

No standard acceptable criterion can be established for the absolute bias and
relative bias. Based on the tables, the researchers can look up the absolute and
relative bias according to the corresponding types and numbers of outliers given
a specific sample size. A larger sample size is typically better for estimation. Except
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for the bias of the estimates 	00 and �2, the bias of the estimates 	10, �00, �11, and
�01 have been significantly different across sample sizes. However, since the outliers
were created in the positive direction, the bias was exaggerated.

The Huber sandwich estimator corrected the standard errors efficiently only when
there was a large proportion of outliers. The Huber-sandwich estimator was more
efficient in correcting the standard errors with 5 SD outliers than with 3 SD outliers.
Therefore, the Huber-sandwich estimator did not work efficiently across conditions
in this study.

Future research will investigate the correction for standard errors and the
parameter estimates with other robust methods. A t-distribution assumption will
be employed in the parameter estimation, compared with a normal distribution
assumption as well.

22.5 Conclusion

The simulation study investigated the bias of estimates of the parameters to evaluate
the sensitivity of two-level HLM to outliers. The 2 types of outliers (3SD and 5SD)
with various magnitudes of different sample sizes have been examined. By having
different types and magnitudes of outliers, the model assumption of normality has
been violated to various extents. Violations of model assumptions had significant
impact on the model. The bias of parameter estimates for �2, 	00, and �00 increased
with a larger number of outliers. For other estimates, the bias had different extents
of random variation across various conditions. The 5 SD outliers had significantly
more severe influence than 3 SD outliers on the estimate of �2. But for the other
estimates, there was no significant difference of bias between 3 SD outliers and
5 SD outliers. With a limited number of outliers, the estimates had very small
bias. The robust method Huber sandwich estimator corrected the standard errors
efficiently only with a large proportion of outliers. Therefore, the robust methods
are not always correcting the bias resulting from outliers efficiently.

The researchers should be cautious in selecting among various robust methods.
Different from Huber sandwich estimator, applying a t-distribution in model estima-
tion is another robust method. By using a t-distribution, the model is not restricted
with the normality assumption. With different degrees of freedom in t-distributions,
it may be able to deal with various magnitudes of outliers. The outliers do not need
to be restricted into one direction, either. In the future studies, we will explore the
possibilities of applying a t-distribution in correcting bias in HLM.
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Chapter 23
Doubly Robust Estimation of Treatment Effects
from Observational Multilevel Data

Courtney E. Hall, Peter M. Steiner, and Jee-Seon Kim

Abstract When randomized experiments cannot be conducted, propensity score
(PS) matching and regression techniques are frequently used for estimating causal
treatment effects from observational data. These methods remove bias caused
by baseline differences in the treatment and control groups. Instead of using a
PS technique or an outcome regression singly, one might use a doubly robust
estimator that combines a PS technique (matching, stratification, or inverse propen-
sity weighting) with an outcome regression in an attempt to address bias more
effectively. Theoretically, if the PS or outcome model is correctly specified, a doubly
robust estimator will produce an unbiased estimate of the average treatment effect
(ATE). Doubly robust estimators are not yet well studied for multilevel data where
selection into treatment takes place among level-one units within clusters. Using
four simulated multilevel populations, we compare doubly robust estimators to
standard PS and regression estimators and investigate their relative performance
with respect to bias reduction.

Keywords Propensity score • Observational study • Doubly robust estimator •
Multilevel modeling

When educational researchers are unable to conduct randomized controlled trials
(RCTs) because of practical or ethical limitations, they must frequently rely on
observational data to draw causal conclusions. Researchers commonly face two
challenges when working with observational data in education: Selection bias (also
called confounding bias) due to differential selection into the treatment and control
conditions and the hierarchically nested structure of the data. Thus, the identification
and estimation of causal treatment effects requires researchers to remove selection
bias by conditioning on observed covariates and to take the clustered data structure
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into account. In comparison to single level data, causal inference with multilevel
data is typically more complex because selection might occur at different levels
and vary considerably across clusters. In addition, the nested data structure requires
standard errors that account for the dependence of observations within clusters.

If one succeeds in reliably measuring all confounding covariates or at least a set
of covariates that blocks the confounding paths such that the strong ignorability
assumption holds (Rosenbaum and Rubin 1983), the causal treatment effect is
identified and can be consistently or even unbiasedly estimated from observational
data. Two of the most popular classes of estimators for the average treatment effect
(ATE) are propensity score (PS) estimators and outcome regression estimators (i.e.,
an effect estimator implemented as standard regression with a set of observed
covariates as controls). The rationale of the two estimator classes is quite different:
PS analysis attempts to remove baseline differences in observed covariates between
the treatment and control groups by first modeling the selection mechanism and
then by matching, stratifying, or weighting cases on the basis of the estimated
PS. Outcome regression analysis directly models the outcome and, thus, removes
selection bias by partialling out the effects of the baseline covariates included in
the outcome model. Parametric regression estimators typically rely on stronger
functional form assumptions than non- or semi-parametric PS estimators. However,
if one misspecifies the PS model or the outcome regression model misspecification
bias will result even if the strong ignorability assumption holds.

Instead of using either a PS technique or an outcome regression singly, one
might combine them together in the hope to minimize the misspecification bias
left by either of the methods. Such doubly robust estimators that combine a
PS estimator with an outcome regression estimator are appealing to practitioners
because they address the selection bias via modeling the selection process and the
outcome mechanism simultaneously. If one or both of the mechanisms are correctly
specified, then the doubly robust estimator consistently estimates ATE (Bang and
Robins 2005). Since it is rarely possible to have full knowledge of the selection or
outcome mechanism, doubly robust estimators provide researchers a second chance
to remove all the selection bias.

So far, doubly robust estimators have been primarily investigated for single level
data, where selection takes place on a single level only (e.g., Bang and Robins
2005; Kang and Schafer 2007). Identification and estimation of ATEs are more
difficult when selection can take place at multiple levels and differs across sites
or clusters (level-2 units) as it is typical for observational data in education and
psychology. This study investigates a doubly robust estimator for estimating the
ATE from multilevel data and compares its performance to PS estimators and
outcome regression estimators. We use a simulation study to examine how well the
three types of estimators remove bias in samples taken from four different multilevel
populations.
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23.1 Identification of Causal Estimands and Estimators

23.1.1 Potential Outcomes Framework and Identification

In order to motivate the identification of causal treatment effects we use the potential
outcomes framework of the Rubin Causal Model (Rubin 1974). Suppose that there
exists a population of J clusters j D 1, : : : , J, each with Nj units such that the total

number of level-1 units is given by
JX

jD1
Nj D N. Within each cluster, level-1 units

select or get assigned into a treatment condition (Z D 1) or a control condition
(Z D 0). We assume that selection into treatment is driven by level-1 and level-2
covariates X and W, respectively. Each level-1 unit i in cluster j has two potential
outcomes, Y0

ij and Y1
ij, where Y0

ij is the outcome of unit ij if it were assigned to the
control group and Y1

ij is the outcome of unit ij if it were assigned to the treatment
group. Thus, the observed outcomes are given by Yij D Y1ijZij C Y0ij

�
1 � Zij

�
.

Though it is never possible to observe both potential outcomes simultaneously,
we can define the individual and average treatment effect (abbreviated ITE and
ATE, respectively) as ITE D Y1ij � Y0ij and ATE D E[ITE] D E[Y1ij � Y0ij] D E[Y1

ij] –
E[Y0

ij]. When treatment assignment is randomized, as in a perfectly implemented
RCT with no attrition, the ATE is identified as the difference in the treatment and
control group’s expectation, ATE D E[YijjZij D 1] – E[YijjZij D 0], since the potential
outcomes are independent of Z and, thus, E[YijjZij D 1] D E[Y1

ijjZij D 1] D E[Y1
ij] and

E[YijjZij D 0] D E[Y0
ijjZij D 0] D E[Y0

ij].
When treatment assignment is not randomized, as in observational studies, there

are likely variables that confound the relationship between the treatment Z and
the outcome Y. That is, the conditional expectations of the treatment and control
groups can no longer be assumed to be equal to the unconditional expectations of
the potential outcome as in the RCT case (Holland 1986; Rubin 1974). The bias
that results because of differential selection into the treatment and control group is
called selection or confounding bias.

To identify causal effects from observational data, it is necessary to condition on
all confounding variables (or at least a set of covariates that block the confounding
paths), which need to be observed and reliably measured. If one is willing to rely
on linear functional form assumptions, ATE can then be estimated via an outcome
regression analysis—a fixed or random effects model for hierarchically structured
data. Another way to adjust for confounding bias is to construct a composite
score from covariates V D (X, W) and the observed treatment status Z, called
a balancing score, bV,Z(v), such that (Y0,Y1) ZjbV,Z(v) (Hong and Raudenbush
2005; Rosenbaum and Rubin 1983; Steiner et al. 2015). Rosenbaum and Rubin
(1983) showed that the balancing score bV,Z(v) is sufficient for the identification
of the treatment effect, given strong ignorability holds. One such balancing score
is the propensity score, which is defined as the probability of being selected into
treatment conditional on V D (X, W): eV,Z(v) D P(Z D 1jV D v). Since the PS is
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typically not known, it needs to be estimated from observed baseline covariates
using logistic regression or other PS estimation technique such as random forests or
neural networks (Keller et al. 2013). The estimated PS is then used to estimate ATE
via PS matching, PS stratification, or inverse-propensity weighting.

23.1.2 Doubly Robust Estimators

Not only parametric but also nonparametric estimation techniques require
researchers to make some assumptions about the selection and outcome
mechanisms, for instance functional form assumptions when estimating the logit
of the PS or the outcome regression model. If the assumptions are not met,
biased effect estimates due to model misspecification will result. Doubly robust
estimators give researchers at least two chances to remove all the selection bias: by
correctly specifying either the PS model or the outcome regression model. ATE is
consistently estimated only if either the PS balances the baseline covariates between
the treatment and control group or the outcome model is correctly specified (Bang
and Robins 2005). If both the selection and the outcome model are incorrectly
specified, bias very likely remains—bias might even increase as compared to using
a PS or regression adjustment alone (Kang and Schafer 2007).

Previous research has focused mainly on doubly robust methods for single level
data. Research on PS analyses in multilevel contexts is in general limited (Hong
2010; Kelcey 2011; Kim and Seltzer 2007; Li et al. 2012; Steiner et al. 2013) and
the literature on doubly robust estimators for multilevel data is even more sparse.

There are few studies comparing doubly robust estimators with PS-only and
regression-only approaches. Those that do exist are limited to single level data as
well as to relatively simple data generating models (DGMs) (Waernbaum 2012;
Kang and Schafer 2007; Kreif et al. 2011). In this study, we will use more complex
and realistic DGMs to emulate multilevel situations that could be observed in
practice. The research question we investigate in this study is: How well do doubly
robust estimators remove selection bias in multilevel observational data when the PS
or outcome model is incorrectly specified, that is, the multilevel nature of the data is
not taken into account, not all confounding covariates are included, or the functional
form is not correctly specified?

23.2 Simulation Design and Methods

In order to assess the effectiveness of doubly robust estimators in removing selection
bias from multilevel data, we conduct a simulation which compares doubly robust
estimators with standard PS and regression estimators under a variety of conditions.
Specifically, we vary (1) the underlying data structure (i.e., the data generating
selection and outcome models) and (2) the functional form of PS and regression
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Fig. 23.1 Graph of data
generating model (DGM).
Notes: W1 and W2 are the
level-2 covariates, and X1 and
X2 are the level-1 covariates.
L is the logit of the PS, Z is
the treatment assignment, and
Y is the outcome

Z

L

W1 W2

X1 X2

Y

Level-2

Level-1

estimators. The simulation uses four different DGMs in order to cover a range of
plausible scenarios. Since all covariates are assumed to be observed and reliably
measured, strong ignorability is met for all four simulated data sets. Thus, biases in
estimators can only be due to incorrectly specified PS or outcome models. Since the
primary advantage of doubly robust estimators is that they continue to remove bias
even when either the PS or outcome model is misspecified (but the other model is
correctly specified), the simulation varies the degree of model misspecification, that
is, the models vary with respect to the inclusion of level-2 covariates, interaction
terms, random effects, and fixed effects.

23.2.1 Data Generation

All data sets were generated with different multilevel selection and outcome models
(with random intercepts and slopes). The graph of the DGMs is shown in Fig. 23.1.
The selection into treatment Z is determined by the latent PS logit (L) which we
generated as a linear function of level-1 and level-2 covariates X D (X1, X2) and
W D (W1, W2), respectively. Also the outcome Y is obtained as a linear combination
of level-1 and level-2 covariates, plus a treatment effect (Z) and a normally
distributed error term. Thus, the identification of ATE requires conditioning on X
and W since these covariates confound the relation between Z and Y. Note that the
level-2 covariates W affect Y and L (and thus Z) also via cross-level interaction
effect, that is, the effect of the level-1 covariates on L and Y depends on the
values of level-2 covariates. In order to investigate the performance of different ATE
estimators, we generated four different populations each consisting of 5000 clusters
with 250–350 level-1 units.

The four populations were generated by crossing two selection models with
two outcome models. The variations in the models were achieved by varying
the effects of the level-2 covariates on the level-1 coefficients while we tried to
hold the intraclass correlations (ICCs between 0.3 and 0.4) and initial selection
biases constant across populations and clusters. For a sample of clusters, Fig. 23.2
illustrates for each of the two outcome mechanisms the relation between Y and X1
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Fig. 23.2 Data generating outcome model (for level-1 covariate X1)

where the lines represent the cluster-specific regression lines. The points on the
regression lines indicate the cluster averages

�
X1j;Yj

�
. Since the cluster-specific

relations between Y and X2 are the same they are not displayed.
The first data generating outcome model in Fig. 23.2 is called “monotonic”

because all the slopes are positive and monotonically increasing as the cluster means
X1j increase. Also note that the cluster means Yj and the within-cluster ranges of Y
increase as the cluster means X1j increase. The second DGM in Fig. 23.2 represents
a “mixture” model with three classes. Within each of three classes, clusters have
approximately the same slopes (with some random variation) but slopes differ across
classes: they are negative for the first (left) and third (right) class and positive for the
middle class. Clusters were assigned to the first class (negative slopes) if both W1

and W2 fell below the 40th percentile of the distribution of W and assigned to the
third class if both level-2 scores were above the 60th percentile. Otherwise, clusters
were assigned to the middle class with positive slopes.

The corresponding data generating selection models are shown in Fig. 23.3.
They are analogous to the outcome DGMs, except that each cluster has been mean-
centered such that each cluster has a comparable distribution of the propensity score
logit which implies that each cluster will have approximately the same proportion
of treated cases.

23.2.2 PS and ATE Estimation

For each of the four populations, we drew 1000 samples and then estimated the
treatment effects for each of them. The samples were selected via cluster random
sampling by randomly selecting 40 clusters from each population and then selecting
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Fig. 23.3 Data generating selection model (for level-1 covariate X1)

40 % of the units within each cluster, for an average of 120 units per cluster.
We estimated ATE using three estimators: a PS stratification estimator, a linear
regression estimator, and a doubly robust estimator that combines PS stratification
with an additional covariate adjustment. The estimators’ performance was then
assessed in terms of the remaining bias.

For each of the three estimators, we used different model specifications in order
to simulate different degrees of model misspecification. For the PS stratification
estimator, we estimated the PS logit, L, in seven different ways using logistic
regression. The estimated models particularly differ in how the multilevel structure
is taken into account:

S0) Single Level—No Level-2 Covariates:

Lij D �0 C �1X1ij C �2X2ij

S1) Single Level—Main Effects Only:

Lij D �0 C �1X1ij C �2X2ij C �3W1j C �4W2j

S2) Single Level—Cross-Level Interactions:

Lij D �0 C �1X1ij C �2X2ij C �3W1j C �4W2j C �5X1ijW1j

C �6X1ijW2j C �7X2ijW1j C �8X2ijW2j

F1) Fixed Effects (with cluster dummies S1 to S39):

Lij D �0 C �1X1ij C �2X2ij C 1S1 C � � � C 39S39
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F2) Fixed Effects with Interactions between Cluster Dummies and Level-1
Covariates:

Lij D �0 C �1X1ij C �2X2ij C 1S1 C � � � C 39S39C
C X1ij .40S1 C � � � C 78S39/C X2ij .79S1 C � � � C 117S39/

R1) Random Intercepts:

Lij D �0j C �1X1ij C �2X2ij

�0j D ı00 C v0j

R2) Random Intercepts and Slopes with Cross-Level Interactions:

Lij D �0j C �1jX1ij C �2jX2ij

�0j D ı00 C ı01W1j C ı02W2j C v0j

�1j D ı10 C ı11W1j C ı12W2j C v1j

�2j D ı20 C ı21W1j C ı22W2j C v2j

Note that PS model R2 with random intercepts and slopes with cross-level
interactions is the correctly specified model. PS stratification, implemented as
marginal mean weighting, was then used to estimate the treatment effect. We
first divided the treated and control cases into five strata based on the quintiles
of the PS-logit distribution. If a stratum contained only treated or control cases,
the corresponding stratum was deleted from the analysis because we wanted to
avoid bias due to violations of the common support assumption. We then estimated
ATE with a weighted multilevel regression analysis with random intercepts and the
treatment status as sole predictor, Yij D ˛j C �PSZij C "ij. The regression weights
were obtained as marginal mean weights derived from the proportion of treated and
control cases within each stratum (for further details, see Hong 2010). Thus, the
PS estimator for ATE is given by b�PS. This specific form of the PS stratification
estimator implies that the PS adjustment is implemented across clusters rather
than within each cluster separately (Steiner et al. 2013). Since a within-cluster PS
adjustment is frequently not possible due to a lack of overlap or small sample sizes
we decided to only investigate across-cluster PS stratification.

We also used seven model specifications for the outcome regression estimator.
The seven outcome models are equivalent to the PS estimation models S0 to R2,
except for the dependent variable L which is replaced by Y and an additional error
term in all single level and level-1 equations. In order to accurately estimate the
ATE, rather than a variance-of-treatment weighted ATE (Angrist and Pischke 2009),
we used a marginal structural modeling approach (Robins et al. 2000; Schafer
and Kang 2008) and estimated each model separately for the treated cases and
the control cases (thus, there is no treatment indicator Z in the models). From
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the two estimated models we then obtained the predicted treatment and control
outcomes (Ŷ1

ij and Ŷ0
ij) for all cases in the sample and used them to estimate

the ATE as the average difference in predicted treatment and control outcomes,

b�R D 1
N

X
j

X
i

�bY1ij �bY0ij
�

. As an example consider model S0 which is estimated

for both the treatment and control group:

Y0ij D ˇ00 C ˇ01X1ij C ˇ02X2ij C "0ij for fi W Zi D 0g and

Y1ij D ˇ10 C ˇ11X1ij C ˇ12X2ij C "1ij for fi W Zi D 1g :

The predicted outcomes Ŷ1
ij and Ŷ0

ij are then used to obtain the regression
estimateb�R.

For the doubly robust estimation we combine the PS stratification estimator
(i.e., marginal mean weighting) with the outcome regression. That is, the outcome
regression models are run as weighted regressions with the marginal mean weights
discussed above. As before, weighted regression models were estimated separately
for the treatment and control cases. The predicted treatment and control outcomes
from the weighted analyses (Ŷ1

wij, Ŷ0
wij) were then used for the doubly robust ATE

estimator,b�DR D 1
N

X
j

X
i

�bY1wij �bY0wij

�
. In order to limit the number of doubly

robust estimates we combined the seven outcome regression models with the
marginal mean weights from only two different PS models, the single-level PS
model without any level-2 covariates (S0) and the most flexible fixed effects PS
model (F2). Thus, we obtain 14 doubly robust estimates for each population.

23.3 Simulation Results

Across the 1000 replications for each population, we evaluate the performance of
the different estimators with respect to the percent bias remaining. Not surprisingly,
the results from this study demonstrate that doubly robust estimators work similarly
in multilevel contexts as in single level contexts. That is, if either the selection or
the outcome mechanism is correctly specified, the doubly robust ATE estimate will
be approximately unbiased. And if both models are misspecified bias might actually
increase.

23.3.1 PS Stratification and Outcome Regression Estimates

For all four populations, Table 23.1 contains the remaining bias for the PS-only
estimates. They are also displayed in the four subplots of Fig. 23.4. The four
subplots show the bias remaining for the PS stratification estimator for each of the
four populations, which differ by their selection (rows) and outcome mechanisms
(columns). The models used to estimate the PS are labeled along the bottom of
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Fig. 23.4 Percent bias remaining in PS stratification estimators (PS only) for each of the four
populations

the plots (see the model equations above). For example, the top left subplot shows
the results for the population generated with a monotonic selection mechanism
and a monotonic outcome mechanism. For this population, between 7 and 20 %
of the bias remains regardless of which PS specification is used to estimate the
ATE (given that we used only five strata, one can expect that 10 % of the bias
is remaining due to the roughness of the strata; Rosenbaum and Rubin 1983). The
effect of misspecifying of the PS model is small because the selection DGM is rather
simple—all cluster-specific slopes are positive and only depend monotonically on
level-2 covariates. Thus, though the misspecifications result in biased estimates of
the PSs, the misspecifications have almost no effect on the determination of the PS
strata. This is so because the misspecifications of the PS model only resulted in a
monotonic transformation of the true PS which does not affect the creation of PS
strata (Waernbaum 2012). However, this does not hold for PS model S0 which failed
to include the confounding level-2 covariates. Nonetheless, we get almost unbiased
results because the outcome DGM is monotonic and, thus, of low complexity as
well. Turning to the top right subplot where the outcome DGM is a mixture model,
we can see that PS stratification with PSs from model S0 now results in severely
biased estimates (�126.6 %) while all other PS models do very well in removing
selection bias. Again, as long as all confounding covariates are included in the PS
model, the ATE estimates are rather robust to monotonic misspecifications of the
PS model (i.e., the rank order of the PSs estimated from the misspecified model is
the same as the rank order from the correctly specified model).
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The second row of plots in Fig. 23.4 shows the results for the populations with
a mixture DGM for the selection process. If the outcome DGM is of monotonic
type (bottom left subplot), ATE estimates are again rather insensitive to PS model
misspecifications. Though some of the misspecifications result in a non-monotonic
transformation of the correctly estimated PS model we still get approximately
unbiased estimates (expect for S0 and R1 which neither include covariates W
nor random slopes) because the misspecifications are harmless with regard to the
monotonic outcome DGM. Thus, the simplicity of the monotonic outcome DGM
guarantees some robustness with respect to the misspecification of the outcome
model. However, if the DGMs of both the selection and outcome mechanism are
more complex (i.e., mixtures), then the correct specification of the PS model matters.
In the bottom right subplot of Fig. 23.4, only the fixed effects model F2 and
the random slopes model R2 are able to produce nearly unbiased effect estimates
(these are the only two models that correctly reflect the complexity of the selection
process).

Looking at all four subplots together, it is apparent that the amount of remaining
bias depends not only on the specification of the PS model, but also on the
population’s data generating mechanism. In general, there is less remaining bias
when the PS model has a functional form that correctly incorporates the multilevel
structure of the data (i.e., models R2 and F2). The correct specification of the PS
is crucial for obtaining unbiased treatment effect estimates if the population has
selection and outcome DGMs that strongly vary across clusters (Mixture–Mixture
population).

Figure 23.5 and Table 23.2 show the estimated treatment effects for the outcome
regression estimator (i.e., when regression adjustments are used). The model labels
along the bottom of the plots now indicate the regression models used. Since
our selection and outcome DGMs were linear, the regression-based results are
essentially the same as for the PS-stratification estimator and, thus, will not be
discussed in detail here. However, note that the results might significantly differ
for highly nonlinear DGMs.

23.3.2 Doubly Robust Estimates

Figures 23.6 and 23.7 (and the corresponding data in Tables 23.3 and 23.4) show
the results for the doubly robust estimators. The outcome regression models used to
estimate the ATE are labeled along the bottom of the plots. Model E indicates the
empty outcome model that includes no predictors except for the treatment indicator
but uses the marginal mean weights derived from the PS strata—thus, model E
represents the PS stratification estimator. The outcome regression models are the
same for the two figures and tables, but the PS estimator differs (i.e., the marginal
mean weights). Figure 23.6 and Table 23.3 show the remaining bias when the most
complex fixed effects PS specification (F2) is used, while Fig. 23.7 and Table 23.4
show the doubly robust results when the misspecified single level PS model S0 is
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Fig. 23.5 Percent bias remaining in outcome regression estimators (regression only) for each of
the four populations

used. The fixed effects PS model F2 allows each cluster to have its own slope and
intercept, thus, it is flexible enough to correctly specify the selection DGM (we
could have also used the random intercept and slopes PS model R2 which results
in very similar estimates). In Fig. 23.6, all four populations show little remaining
bias for even the grossly misspecified outcome regression model (such as S0 and
S1) because the PS model is correctly specified. This result is in accordance with
the theory on doubly robust estimators: When the PS model is correctly specified,
the outcome mechanism (the covariate adjustment) can be misspecified and we still
get unbiased results.

Figure 23.7 illustrates what happens when the PS model is misspecified. The
PS model in this case is the single level model S0. Now, in all of the populations,
except for the Monotonic–Monotonic one, only the outcome models that allow each
cluster to have a separate slope and intercept (F2 and R2) are essentially unbiased.
However, for the monotonic outcome DGM combined with the mixture selection
DGM (bottom left plot), also the misspecified regression models remove most of the
bias (as it was already the case for the regression only results). However, when both
the PS and the outcome model do not properly take the cluster structure into account,
remaining bias is often greater than when only one misspecified model is used. For
example, in the Monotonic–Mixture population (top right plot), the remaining bias
of �135.7 % when the PS and regression adjustment are both single level models
(S0) is greater than the �114.2 % bias remaining when only the regression model
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Fig. 23.6 Percent bias remaining for doubly robust estimators using PS model F2 (fixed effects)
for each of the four populations

Fig. 23.7 Percent bias remaining for doubly robust estimators using PS model S0 (level-1 main
effects only)
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S0 is used or the �126.6 % bias remaining when the PS model S0 is used alone (the
latter is shown in the plot as Model E). For the Mixture–Mixture population (bottom
right plot of Fig. 23.7), the additional regression adjustments generally result in an
increasing bias in comparison with the PS stratification used singly (model E in
the plot). Only when the regression models correctly capture the variations of the
outcome model across clusters (i.e., R2 and F2) the doubly robust estimator performs
better than the PS stratification estimator.

23.4 Discussion

The populations examined in this study demonstrate how doubly robust estimators
work for two selection and two outcome mechanisms. Despite the fact that
only four populations were examined, the mechanisms highlighted here represent
two contrasting relationships that could occur in practice. The Mixture–Mixture
population in particular represents an extreme cluster structure where some clusters
have positive relationships and some have negative relationships, which cannot
be modeled correctly without including cluster-level characteristics either in the
selection or outcome model—as the results demonstrate. Unless the selection or
outcome models are complex enough to allow each cluster to have its own intercept
and slope, via fixed or random effects, the ATE estimates can be extremely biased
for all three types of estimators discussed here (PS only, regression, and doubly
robust). At the other extreme, for the Monotonic–Monotonic population the within-
cluster relationships between the dependent and independent variables are all of
the same direction, thus, even strongly misspecified PS or outcome models succeed
in removing almost all of the selection bias. The comparison of PS and outcome
regression estimators revealed that, according to theory, doubly robust estimators
succeed in removing all the selection bias as long as one of the models is correctly
specified (or at least sufficiently flexible to capture the variations across clusters).

Although our results are in accordance with theory, the results of our simu-
lations do not necessarily generalize to different settings. First, we only looked
at four populations generated from two selection and outcome DGMs. Though
we attempted to create populations that could match data in practice, one cannot
derive strong conclusion about the performance of doubly robust estimators in
general. However, we tested several other populations with alternate data generating
processes, and the results shown here continue to hold. Second, we only investigated
PS stratification. Results might slightly differ for PS matching or inverse-probability
weighting. Third, the analysis scenarios assumed that strong ignorability is met.
With the exception of model S0, all estimation models included all covariates
that were used to generate the data, which may overstate the effectiveness of the
estimators in practice. Finally, the treatment effects we generated were assumed to
be homogenous and there was strong overlap between treated and control cases
in the populations. With heterogeneous treatment effects and weak overlap the
performance of estimators might change.
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Future research could address some of these limitations. Future studies could
expand upon the populations used for this study by generating data using
different coefficient matrices that create new relationships between the level-1
and level-2 variables. More realistic populations could be generated that introduce
heterogeneous treatment effects, more covariates, and/or additional hierarchies
(such as level-3 covariates). The analysis could be expanded to explore other PS
methods, different doubly robust estimators, and scenarios where strong ignorability
is not met.
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Chapter 24
Mediation Analysis with Missing Data Through
Multiple Imputation and Bootstrap

Zhiyong Zhang, Lijuan Wang, and Xin Tong

Abstract A method using multiple imputation and bootstrap for dealing with
missing data in mediation analysis is introduced and implemented in both SAS and
R. Through simulation studies, it is shown that the method performs well for both
MCAR and MAR data without and with auxiliary variables. It is also shown that the
method can work for MNAR data if auxiliary variables related to missingness are
included. The application of the method is demonstrated through the analysis of a
subset of data from the National Longitudinal Survey of Youth. Mediation analysis
with missing data can be conducted using the provided SAS macros and R package
bmem.

Keywords Mediation analysis • Missing data • Multiple imputation • Bootstrap

24.1 Introduction

Mediation models and mediation analysis are widely used in behavioral and social
sciences as well as in health and medical research. Mediation models are very
useful for theory development and testing as well as for identification of interven-
tion points in applied work. Although mediation models were first developed in
psychology (e.g., MacCorquodale and Meehl 1948; Woodworth 1928), they have
been recognized and used in many disciplines where the mediation effect is also
known as the indirect effect (Sociology, Alwin and Hauser 1975) and the surrogate
or intermediate endpoint effect (Epidemiology, Freedman and Schatzkin 1992).

Figure 24.1 depicts the path diagram of a simple mediation model. In this figure,
X, M, and Y represent the independent or input variable, the mediation variable
(mediator), and the dependent or outcome variable, respectively. The eM and eY are
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Fig. 24.1 Path diagram
demonstration of a mediation
model
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residuals or disturbances with variances �2eM and �2eY . The coefficient c0 is called the
direct effect, and the mediation effect or indirect effect is measured by the product
term ab D a � b as an indirect path from X to Y through M. The other parameters
in this model include the intercepts iM and iY .

Statistical approaches to estimating and testing mediation effects with complete
data have been discussed extensively in the psychological literature (e.g., Baron
and Kenny 1986; Bollen and Stine 1990; MacKinnon et al. 2007, 2002; Shrout
and Bolger 2002). One way to test mediation effects is to test H0 W ab D 0. If
a large sample is available, the normal approximation method can be used, which
constructs the standard error of bab through the delta method so that s:e:.bab/ Dq

Ob2 O�2a C 2OaOb O�ab C Oa2 O�2b with the parameter estimates Oa and Ob, their estimated

variances O�2a and O�2b , and covariance O�ab (e.g., Sobel 1982, 1986). Many researchers
suggested that the distribution of a mediation effect may not be normal especially
when the sample size is small although with large sample sizes the distribution may
still approach normality (Bollen and Stine 1990; MacKinnon et al. 2002). Thus,
bootstrap methods have been recommended to obtain the empirical distribution and
confidence interval of a mediation effect (MacKinnon et al. 2004; Mallinckrodt et al.
2006; Preacher and Hayes 2008; Shrout and Bolger 2002; Zhang and Wang 2008).

Missing data is continuously a challenge even for a well-designed study.
Although there are approaches to dealing with missing data for path analysis in
general (for a recent review, see Graham 2009), there are few studies focusing
on the treatment of missing data in mediation analysis. Mediation analysis is
different from typical path analysis because the focus is on the product of multiple
path coefficients. A common practice is to analyze complete data through listwise
deletion or pairwise deletion (e.g., Chen et al. 2005; Preacher and Hayes 2004).
Recently, Zhang and Wang (2013b) discussed how to deal with missing data in
mediation analysis through multiple imputation and full information maximum
likelihood. However, the number of imputations needed to get reliable results
remains unclear.
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In this study, we discuss how to deal with missing data for mediation analysis
through multiple imputation (MI) and bootstrap. We will first present some technical
aspects of multiple imputation for mediation analysis with missing data. Then,
we will present two simulation studies to evaluate the performance of MI for
mediation analysis with missing data. In particular, we investigate the number of
imputations needed for mediation analysis. Next, an empirical example will be used
to demonstrate the application of the method. Finally, we discuss the limitations of
the study and future directions. Instructions on how to use SAS and R to conduct
mediation analysis through multiple imputation and bootstrap are provided online
as supplemental materials.

24.2 Method

24.2.1 Complete Data Mediation Analysis

We focus our discussion on the simple mediation model to better illustrate the
method although the approach works for the general mediation model. In its
mathematical form, the mediation model displayed in Fig. 24.1 can be expressed
using two equations,

M D iM C aX C eM

Y D iY C bM C c0X C eY ; (24.1)

which can be viewed as a collection of two linear regression models. To obtain
the parameter estimates in the model, the maximum likelihood estimation method
for structural equation modeling (SEM) can be used. Specifically for the simple
mediation model, the mediation effect estimate is bab D OaOb with

Oa D sXM=s2X

Ob D .sMYs2X � sXMsXY/=.s
2
Xs2M � s2XM/ (24.2)

where s2X; s
2
M; s

2
Y ; sXM; sMY ; sXY are sample variances and covariances of X;M;Y,

respectively.

24.2.2 Missingness Mechanisms

Little and Rubin (1987, 2002) have distinguished three types of missing data—
missing completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). Let D D .X;M;Y/ denote all data that can be potentially
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observed in a mediation model. Dobs and Dmiss denote data that are actually observed
and data that are not observed, respectively. Let R denote an indicator matrix of
zeros and ones with the same dimension as D. If a datum in D is missing, the
corresponding element in R is equal to 1. Otherwise, it is equal to 0. Finally, let
A denote the auxiliary variables that are related to the missingness of D but not a
component of the mediation model.

If the missing mechanism is MCAR, then we have

Pr.RjDobs;Dmiss;�/ D Pr.Rj�/;

where the vector � represents all model parameters in the mediation model. This
suggests that missing data Dmiss are a simple random sample of D and not related to
the data observed or auxiliary variables A. If the missing mechanism is MAR, then

Pr.RjDobs;Dmiss;�/ D Pr.RjDobs;�/;

which indicates that the probability that a datum is missing is related to the observed
data Dobs but not to the missing data Dmiss.

Finally, if the probability that a datum is missing is related to the missing data
Dmiss or auxiliary variables A but A are not considered in the data analysis, the
missing mechanism is MNAR. In particular, we want to emphasize the MNAR
mechanism with auxiliary variables where

Pr.RjDobs;Dmiss;�/ D Pr.RjDobs;A;�/:

Note that although the missingness is MNAR if only D is modeled, the overall
missingness becomes to MAR if D and A are jointly modeled. Therefore, one way
to deal with MNAR is to identify and include the auxiliary variables that are related
to missingness.

24.2.3 Multiple Imputation for Mediation Analysis
with Missing Data

Most techniques dealing with missing data, including multiple imputation, in
general require missing data to be either MCAR or MAR (see also, e.g., Little
and Rubin 2002; Schafer 1997). For MNAR, the missing mechanism has to be
known to correctly recover model parameters (e.g., Lu et al. 2011; Zhang and
Wang 2012). Practically, researchers have suggested including auxiliary variables to
facilitate MNAR missing data analysis (Graham 2003; Savalei and Bentler 2009).
After including appropriate auxiliary variables, we may be able to assume that data
from both model variables and auxiliary variables are MAR.

Assume that a set of p.p � 0/ auxiliary variables A1;A2; : : : ;Ap are available.
These auxiliary variables may or may not be related to missingness of the mediation
model variables. By augmenting the auxiliary variables with the mediation model
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variables, we have D D .X;M;Y;A1; : : : ;Ap/, e.g., for the simple mediation model.
To proceed, we assume that the missing mechanism is MAR after including the
auxiliary variables.

Multiple imputation (Little and Rubin 2002; Rubin 1976; Schafer 1997) is a
procedure to fill each missing value with a set of plausible values. The multiple
imputed data sets are then analyzed using standard procedures for complete data and
the results from these analyses are combined for obtaining point estimates of model
parameters and their standard errors. For mediation analysis with missing data,
the following steps can be implemented for obtaining point estimates of mediation
model parameters:

1. Assuming that D D .X;M;Y;A1; : : : ;Ap/ are from a multivariate normal
distribution, generate K sets of values for each missing value. Combine the
generated values with the observed data to produce K sets of complete data
(Schafer 1997).

2. For each of the K sets of complete data, apply the formula in Eq. (24.2) or
use the SEM method to obtain a point mediation effect estimate babk D Oak Obk

.j D 1; : : : ;K/.
3. The point estimate for the mediation effect through multiple imputation is the

average of the K complete data mediation effect estimates:

bab D OaOb D 1

K

KX
kD1

Oak Obk:

Parameter estimates for other model parameters can be obtained in the same way.

24.2.4 Testing Mediation Effects Through the Bootstrap
Method

The procedure described above is implemented to obtain point estimates of medi-
ation effects. The bootstrap method has been used to test the significance of the
mediation effects (e.g., Bollen and Stine 1990). This method has no distribution
assumption on the indirect effect. Instead, it approximates the distribution of the
indirect effect using its bootstrap empirical distribution. The bootstrap method can
be applied along with multiple imputation to obtain standard errors of mediation
effect estimates and confidence intervals for mediation analysis with missing data.
Specifically, the following procedure can be used.

1. Using the original data set (sample size = N) as a population, draw a bootstrap
sample of N persons randomly with replacement from the original data set. This
bootstrap sample generally would contain missing data.
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2. With the bootstrap sample, implement the K multiple imputation procedure
described in the above section to obtain point estimates of model parameters
and a point estimate of the mediation effect.

3. Repeat Steps 1 and 2 for a total of B times. B is called the number of bootstrap
samples.

4. Empirical distributions of model parameters and the mediation effect are then
obtained using the B sets of bootstrap point estimates. Thus, confidence intervals
of model parameters and the mediation effect can be constructed.

The procedure described above can be considered as a procedure of K multiple
imputations nested within B bootstrap samples. Using the B bootstrap sample point
estimates, one can obtain bootstrap standard errors and confidence intervals of
model parameters and mediation effects conveniently. Let � denote a vector of
model parameters and the mediation effects. With data from each bootstrap, we

can obtain O�b
; b D 1; : : : ;B. The standard error estimate of the pth parameter O�p

can be calculated as

2s:e:. O�p/ D
vuut BX

bD1
. O�b

p � NO�b
p /
2=.B � 1/

with NO�b
p D PB

bD1 O�b
p=B.

Many methods for constructing confidence intervals from O�b
have been proposed

such as the percentile interval, the bias-corrected (BC) interval, and the bias-
corrected and accelerated (BCa) interval (Efron 1987; MacKinnon et al. 2004). In
the present study, we focus on the BC interval because MacKinnon et al. (2004)
showed that, in general, the BC confidence intervals have performed better in terms
of Type I error and statistical power among many different confidence intervals. The
1� 2˛ BC interval for the pth element of � can be constructed using the percentiles
O�b
p . Q̨ l/ and O�b

p . Q̨u/ of O�b
p with Q̨ l D ˚.2z0Cz.˛// and Q̨u D ˚.2z0Cz.1�˛// where˚

is the standard cumulative normal distribution function and z.˛/ is the ˛ percentile
of the standard normal distribution and

z0 D ˚�1
"

number of times that O�b
p <

O�p

B

#
:

24.3 Simulation Studies

In this section, we conduct two simulation studies to evaluate the performance of
the proposed method for mediation analysis with missing data. We first evaluate
its performance under different missing data mechanisms including MCAR, MAR,
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and MNAR without and with auxiliary variables. Then, we investigate how many
imputations are needed for different proportions of missing data.

24.3.1 Simulation Study 1: Estimate of Mediation Effects
Under MCAR, MAR, and MNAR Data

24.3.1.1 Simulation Design

For mediation analysis with complete data, simulation studies have been conducted
to investigate a variety of features of mediation models (e.g., MacKinnon et al.
2002, 2004). For the current study, we follow the parameter setup from the previous
literature and set the population parameter values to be a D b D :39, c0 D 0,
iM D iY D 0, and �2eM D �2eY D �2eX D 1. Furthermore, we fix the sample
size at N D 100 and consider three proportions of missingness with missing
data percentages at 10, 20, and 40 %, respectively. To facilitate the comparisons
among different missing mechanisms, missing data are only allowed in M and
Y although our software programs also allow missingness in X. Two auxiliary
variables (A1 and A2) are also generated where the correlation between A1 and M
and the correlation between A2 and Y are both 0:5.

Missing data are generated in the following way. First, 1000 sets of complete
data are generated. Second, for MCAR, each data value has the same probability of
missing for M and Y. Third, for the MAR data, the probability of missingness in Y
and M depends only on X. Specifically, if X is smaller than a given percentile, M is
missing and if X is larger than a given percentile, Y is missing. Finally, to generate
MNAR data, we assume that missingness of M depends on A1 and missingness of
Y depends on A2. If A1 is smaller than a given percentile, M is missing, and if A2
is smaller than a percentile, Y is missing. Clearly, if auxiliary variables A1 and A2
are included in an analysis, the missing mechanism becomes MAR. However, if the
auxiliary are not considered, the missing mechanism is MNAR.

The generated data are analyzed using the R package bmem. To estimate
the mediation effects, the sample covariance matrix of the imputed data is first
estimated. Then, the mediation model is fitted to the estimated covariance matrix
to obtain the model parameters through the SEM maximum likelihood estimation
method (Bollen 1989). Finally, the mediation effects are calculated as the product
of the corresponding direct effects.

24.3.1.2 Results

The parameter estimate bias, coverage probability, and power for MCAR, MAR,
and MNAR data with 10, 20, and 40 % missing data were obtained without and
with auxiliary variables and are summarized in Table 24.1. Based on the results,
we can conclude the following. First, the bias of the parameter estimates under the
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Table 24.1 Bias, coverage probability, and power under MCAR

Without auxiliary variables With auxiliary variables

Bias Coverage Power Bias Coverage Power

MCAR

10 % 0.219 0.967 0.900 0.263 0.967 0.920

20 % �1.222 0.966 0.808 �0.593 0.963 0.845

40 % �0.716 0.946 0.531 0.112 0.950 0.615

MAR

10 % �0.119 0.957 0.870 �0.403 0.961 0.893

20 % �0.546 0.962 0.767 �1.940 0.958 0.791

40 % �2.932 0.960 0.511 �1.747 0.955 0.599

MNAR

10 % �32.633 0.831 0.800 �0.513 0.951 0.925

20 % �49.117 0.673 0.570 �2.583 0.941 0.815

40 % �66.815 0.559 0.305 �2.951 0.951 0.642

Note: We have also investigated other conditions where the sample size,
population parameters, and correlation between auxiliary variables and
model variables are different. We observed the same patterns in the
results.

studied MCAR conditions was small enough to be ignored. Second, the coverage
probability was close to the nominal level 0.95. Third, the inclusion of auxiliary
variables in MCAR did not seem to influence the accuracy of parameter estimates
and coverage probability. The use of auxiliary variables, however, boosted the power
of detecting the mediation effect especially when the missing proportion was large
(e.g., 40 %). The findings from MAR data are similar to those from MCAR data and
thus are not repeated here. However, the power of detecting mediation effects from
MAR data were smaller than that from MCAR data given the same proportion of
missing data.

The results for MNAR data clearly showed that when auxiliary variables were
not included, parameter estimates were highly underestimated especially when the
missing data proportion was large, e.g., about 67 % bias with 40 % missing data for
the mediation effect. Correspondingly, coverage probability was highly underesti-
mated, too. For example, with 40 % of missing data, the coverage probability was
only about 56 %. However, with the inclusion of auxiliary variables, the parameter
estimate bias dramatically decreased to less than 3 % and the coverage probabilities
were close to 95 %. Thus, multiple imputation can be used to analyze MNAR data
and recover true parameter values by including auxiliary variables that can explain
missingness of the variables in the mediation model. This is because the inclusion
of the auxiliary variables converts the missingness mechanism to MAR. However,
this does not mean that the inclusion of auxiliary variables can always address the
non-ignorable problems and more discussion on this can be found in Zhang and
Wang (2013b)
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24.3.2 Simulation Study 2: Impact of the Number
of Imputations

One difficulty in applying multiple imputation is to decide on how many imputations
are sufficient. For example, Rubin (1987) has suggested that five imputations are
sufficient in the case of 50 % missing data for estimating the simple mean. But
Graham et al. (2007) recommend that many more imputations than what Rubin
recommended should be used. Although one may always choose to use a very large
number of imputations for mediation analysis with missing data, this may not be
practically possible because of the amount of computational time involved.

In this simulation study, we investigate the impact of the number of imputations
on point estimates and standard error estimates of mediation effects with different
proportions of missing data. The same model in the first simulation study is used.
The data are generated in the following way. First, two groups of 100 sets of
complete data with two auxiliary variables are generated so that the correlation
between the auxiliary variables and the mediation model variables is � D0.1 for the
first group and � D 0:4 for the second group, respectively. Second, 10 and 40 % of
missing data are generated, respectively, for each group of the 100 sets of complete
data, where the missingness is related to the auxiliary variables as in the first
simulation study. Therefore, in total, we have 4 groups of 100 sets of missing data.

For each data set, we obtain the results from the data analysis including auxiliary
variables with the number of imputations ranging from 10 to 100 at intervals of
10. Note that the overall missingness is MAR. After that, we calculate the average
mediation effect and standard error estimates from the 100 sets of data. For better
comparison, we calculate the relative deviance of mediation effect estimates and
their standard error estimates from those estimates with 100 imputations. The
relative deviance from the simulation is plotted in Fig. 24.2. Since the results were
based on 100 replications of simulation, the absolute difference was small as a result.
Therefore, we rescaled the relative deviance by 1000 times to focus on the relative
change of the deviance corresponding to the number of imputations. We have found
that the analysis of individual data sets showed the similar pattern but with much
larger deviance.

Comparing the results with 10 % missing data in Fig. 24.2a, c and the results
with 40 % missing data in Fig. 24.2b, d, it is clear that there are more fluctuations
in both mediation effect estimates and their standard errors with more missing data
regardless of � D 0:1 or 0.5. Therefore, a greater number of imputations is needed
with more missing data. More specifically, with 10 % missing data, the parameter
estimates, especially the standard estimates, seem to become stable with more than
40 or 50 imputations. With 40 % missing data, however, the relative deviance of
point estimates and standard error estimates does not appear stabilized until with
more than 80 imputations. In our simulation study, the choice of 100 imputations
appears to be adequate based on this simulation. The conclusion on the specific
number of imputations here only applies to the simple mediation model. For more
complex mediation analysis, more imputations might be needed.
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Fig. 24.2 The impact of different numbers of imputations on the accuracy of point estimates and
bootstrap standard error estimates. (a) � D 0:1, 10 % missing data, (b) � D 0:1, 40 % missing
data, (c) � D 0:5, 10 % missing data, (d) � D 0:5, 40 % missing data

24.4 An Empirical Example

In this section, we apply the proposed method to a real study to illustrate its appli-
cation. Research has found that parental education levels can influence adolescent
mathematical achievement directly and indirectly. For example, Davis-Kean (2005)
showed that parental education levels are related to child academic achievement
through parental beliefs and behaviors. To test a similar hypothesis, we investigate
whether home environment is a mediator in the relation between mother’s education
and child mathematical achievement.

Data used in this example are from the National Longitudinal Survey of Youth,
the 1979 cohort (NLSY79, Center for Human Resource Research 2006). Data were
collected in 1986 from N D 475 families on mother’s education level (ME), home
environment (HE), child mathematical achievement (Math), child behavior problem
index (BPI), and child reading recognition and reading comprehension achievement.
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Table 24.2 Missing data
patterns of the empirical
data set

Pattern ME HE Math Sample size

1 O O O 417

2 O X O 36

3 O O X 14

4 O X X 8

Total 475

Note: O observed, X missing, ME mother’s
education level, HE home environments,
Math mathematical achievement

Table 24.3 Mediation effect of home environment on the relationship between
mother’s education and child mathematical achievement

Without auxiliary variable With auxiliary variable

Parameter Estimate S.E. 95 % BC Estimate S.E. 95 % BC

a 0:035 0:049 0:018 0:162 0:036 0:049 0:018 0:163

b 0:475 0:126 0:252 0:754 0:458 0:125 0:221 0:711

c0 0:134 0:191 0:071 0:611 0:134 0:188 0:072 0:609

ab 0:017 0:021 0:005 0:071 0:016 0:021 0:005 0:067

iY 7:953 2:047 3:530 9:825 8:045 2:025 3:778 10:006

iM 5:330 0:556 3:949 5:641 5:327 0:558 3:945 5:646

�2eY 4:532 0:269 4:093 5:211 4:520 0:268 4:075 5:141

�2eM 1:660 0:061 1:545 1:789 1:660 0:061 1:542 1:790

Note: The results are based on 1000 bootstrap samples and 100 imputations
S.E. bootstrap standard error, BC bias-corrected confidence interval

For the mediation analysis, mother’s education is the independent variable, home
environment is the mediator, and child mathematical achievement is the outcome
variable. The missing data patterns and the sample size of each pattern are presented
in Table 24.2. In this data set, 417 families have complete data and 58 families have
missing data on at least one of the two model variables: home environment and
child mathematical achievement. In this study, BPI and child reading recognition
and reading comprehension achievement are used as auxiliary variables because
they have been found to be related to mathematical achievement in the literature
(e.g., Grimm 2008; Wu et al. 2014). In addition, it is reasonable to believe that it
is more difficult to collect data from children with behavior problems and children
with reading problems can have a harder time to complete tests on mathematics,
which, therefore, could lead to more missing data.

In Table 24.3, the results from the empirical data analysis using the proposed
method without and with the auxiliary variables are presented. The results reveal
that the inclusion of the auxiliary variables only slightly changed the parameter
estimates, standard errors, and the BC confidence intervals. This indicates that
the auxiliary variables may not be related to the missingness in the mediation
model variables. The results also show that home environment partially mediates
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the relationship between mother’s education and child mathematical achievement
because both the indirect effect ab and the direct effect c0 are significant.

24.5 Software

We have developed both SAS macros and an R package bmem (Zhang and Wang
2013a) for mediation analysis with missing data through multiple imputation and
bootstrap. Instructions on how to use the SAS macros and the R package can
be found on our website at http://psychstat.org/imps2014. The SAS macros are
designed for the simple mediation model and have computational advantages that
make them run faster than bmem. The R package bmem, however, can handle
more complex mediation analysis with multiple mediators and latent variables. Both
programs can utilize auxiliary variables to potentially handle MNAR data.

24.6 Discussion

In this study, we discussed how to conduct mediation analysis with missing
data through multiple imputation and bootstrap. Through simulation studies, we
demonstrated that the proposed method performed well for both MCAR and MAR
without and with auxiliary variables. It is also shown that multiple imputation
worked equally well for MNAR if auxiliary variables related to missingness
were included, because the overall missingness becomes essentially MAR. The
analysis the NLSY79 data revealed that home environment partially mediated the
relationship between mother’s education and child mathematical achievement.

24.6.1 Strength of the Proposed Method

The multiple imputation and bootstrap method for mediation analysis with missing
data has several advantages. First, the idea of imputation and bootstrap is easy to
understand. Second, multiple imputation has been widely implemented in both free
and commercial software and thus can be extended to mediation analysis relatively
easily. Third, it is natural and easy to include auxiliary variables in multiple impu-
tation. Fourth, unlike the full information maximum likelihood method, multiple
imputation does not assume a specific model when imputing data.

http://psychstat.org/imps2014
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24.6.2 Assumptions and Limitations

There are several assumptions and limitations of the current study. First, the current
SAS program is based on a simple mediation model. In the future, the program
should be expanded to allow more complex mediation analysis. Second, in applying
multiple imputation, we have assumed that all variables are multivariate normally
distributed. However, it is possible that one or more variables are not normally
distributed. Third, the current mediation model only focuses on the cross-sectional
data analysis. Some researchers have suggested that the time variable should be
considered in mediation analysis (e.g., Cole and Maxwell 2003; MacKinnon 2008;
Wang et al. 2009). Fourth, in dealing with MNAR data, we assume that useful
auxiliary variables that can explain missingness in the mediation model variables are
available. Therefore, the true missingness mechanism is actually MAR. However,
sometimes the auxiliary variables may not be available. Other methods for dealing
with MNAR data can be investigated in the future.

In summary, a method using multiple imputation and bootstrap for mediation
analysis with missing data is introduced. Simulation results show that the method
works well in dealing with missing data for mediation analysis under different
missing mechanisms. Both SAS macros and an R package are provided to conduct
mediation analysis with missing data, which is expected to promote the use of
advanced techniques in dealing with missing data for mediation analysis in the
future.
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Chapter 25
Issues in Aggregating Time Series: Illustration
Through an AR(1) Model

Zhenqiu (Laura) Lu and Zhiyong Zhang

Abstract Intra-individual variation is time dependent variation within a single
participant’s time series. When data are collected from more than one subject,
methods developed for single subject intra-individual relationship may not fully
work and laws governing inter-individual relationship may not apply to intra-
individual relationship. There are relative few methods in dealing with the analysis
of pooling multiple time series. This article aims to investigate empirically the
comparability of methods for pooling time series data and to address related
issues through an AR(1) model. In this article, multiple time series are formulated,
pooling estimation methods are derived and compared, simulation studies results
are summarized, and related practical issues are addressed.

Keywords Time series analysis • First-order autoregressive model • Pooling
multiple subjects • Longitudinal analysis • Maximum likelihood estimation

25.1 Introduction

The variation analysis in psychological, social, and behavioral researches has
many ramifications. Among them two main branches are inter-individual variation
and intra-individual variation. Inter-individual variation is the variation between
individuals, and also widely known as the analysis of cross-sectional data in many
researches. Intra-individual variation is the time dependent variation within a single
participant’s time series. It is also known as the analysis of time series data or
P-technique in Cattell (1952) data-box (Cattell 1952). In this type of study,
usually one subject is measured and the variables of interests are collected from
each of a large number of occasions. Data collected in this way do not have
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inter-individual differences since there is only one subject involved, but they can
reflect changes across occasions. Intra-individual analysis has become popular
advanced by Nesselroade, Molenaar, and colleagues. Many methods are available
for single time series analysis (e.g., Cattell et al. 1947; Molenaar 1985; Nesselroade
and Molenaar 2003).

In this article, attention will be drawn to multiple subjects intra-individual
variation analysis. In many researches intra-individual relationship data are col-
lected from more than one subject. When multiple subjects are involved, methods
developed for single subject intra-individual relationship may not fully work.
Also, laws governing inter-individual relationship may not apply to intra-individual
relationship (e.g., Molenaar 2004; Nesselroade and Ram 2004). So far there are
relative few methods in literature dealing with the analysis of pooling multiple
time series (e.g., Cattell and Scheier 1961; Daly et al. 1974; Molenaar et al. 2003;
Nesselroade and Molenaar 1999). This article aims to investigate empirically the
comparability of methods for pooling time series and to address related issues
by illustrating through an AR(1) model. We focus on five estimation methods
for multiple time series: pooling conditional likelihood estimation, pooling exact
likelihood estimation, connecting data conditional likelihood, connecting data exact
likelihood, and multivariate analysis.

This article is organized as follows. In the next section some introductory
remarks about time series are given. First single series and multiple series focusing
on the AR(1) model are described and formulated. And then different estimation
methods for multiple time series are introduced and derived. Then follows a section
of simulation studies in which the performance of four estimating methods is
investigated under various conditions. Simulation results are provided after the
description of simulation design and implementation. The closing part of this
article summarizes the simulation results, compares different estimation methods
of aggregating time series, and provides practical implication.

25.2 Models

In this section, time series models and the corresponding estimation methods will be
introduced. We first focus on single time series analysis, and then extend to multiple
time series analysis.

25.2.1 Single Time Series AR(1) Model and Estimation

The simplest and the most popular single time series model to describe intra-
individual relationship is the first-order autoregressive model, also known as AR(1).
It can be expressed as follows:
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y1 y2

z2

y3

z3

y...

z...

yT

zT

α α α α

φ φ φ φ

Fig. 25.1 The AR(1) model

y1 W the initial value

yt D �C ˛ yt�1 C zt .t > 1/ (25.1)

zt � i:i:d: N.0; �/

where yt is the observed value at time point t, ˛ is the model autoregressive
coefficient at lag 1, � is an unknown parameter related to the mean of y, and z is
a random shock or a white noise, which is assumed to follow a normal distribution
with a mean of 0 and a variance of �. The joint density function of yt .t D 1; : : : ;T/
given the AR(1) model in Eq. (25.2) is

p.y1; y2; : : : ; yT/ D p.y1/
TY

tD2
p.ytjyt�1/:

The path diagram of the AR(1) model is shown in Fig. 25.1.
There are two maximum likelihood estimation (MLE) methods for AR(1), con-

ditional MLE and exact MLE. The former treats the initial value y1 as deterministic
and focuses only on the conditional distribution in Eq. (25.2). By maximizing the
conditional likelihood function without y1, this estimation method makes analysis
relatively easy. Parameters are obtained by maximizing the conditional likelihood
function as follows:

Lc.˛; �; �jy/ D
TY

tD2
p.ytjyt�1; ˛; �; �/ D

TY
tD2

1p
2��

exp

�
� .yt � �� ˛ yt�1/2

2�

�
:

Instead of treating y1 as deterministic, the latter (exact MLE) estimation treats
y1 as random. It maximizes the exact likelihood function which includes the
distribution of y1. When exact MLE is adopted, a stationarity procedure is required.
By assuming j˛j < 1, the covariance of yt in AR(1) is shown stationary, and we
have

y1 � N.
�

1 � ˛
;

�

1 � ˛2 /;
ytjyt�1 � N.�C ˛ yt�1; �/; .t > 1/:
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With this assumption, the exact likelihood function of y is

Le.˛; �; �jy/ D p.y1j˛;�; �/Lc.˛; �; �jy/

D 1q
2�.

�

1�˛2 /
exp

"
� .y1 � �

1�˛ /
2

2 .
�

1�˛2 /

#(
TY

tD2

1p
2��

exp

�
� .yt � �� ˛ yt�1/2

2�

�)
:

25.2.2 Multiple Time Series and Estimation

The AR(1) model introduced above is for single time series analysis. In reality,
however, multiple time series are prevalent. There are many sources of multiple
time series. For example, multiple-subject time series, in which data are collected
from multiple similar subjects; multivariate time series, in which multiple dependent
variables are collected from the same subjects; and multiple session time series, in
which data are collected at different sessions from the same subjects.

Suppose there are N individuals (or sessions or other forms of series). Without
loss of generality, we assume each individual has T observations collected from
different time points, so totally there are NT observations. The model for individual
i at time point t is expressed as follows:

yit D �C ˛ yi.t�1/ C zit; .i D 1; : : : ;NI t D 2; : : : ;T/

where zit � i:i:d: N.0; �/.

25.2.2.1 Pooling Likelihoods

There are various methods to estimate parameters �, ˛, and � in multiple time
series analysis. They can be estimated by pooling likelihood functions across
all individuals. Based on different forms of likelihood function, there are pooled
conditional likelihood MLE and pooled exact likelihood MLE.

In the following analysis, we assume the N individuals are from one population
and have the same parameters �, ˛, and �. But these assumptions can be relax.
Pooled likelihood methods allow �, ˛, and � to vary and estimate.

The pooled conditional likelihood of a stationary AR(1) for N individuals is

Lc.˛; �; �jy/ D
NY

iD1

TY
tD2

p.yitjyi.t�1/; ˛; �; �/

D
NY

iD1

TY
tD2

1p
2��

exp

�
� .yit � � � ˛ yi.t�1//2

2�

�
: (25.2)



25 Aggregating Time Series AR(1) 361

To obtain the MLE of �, ˛, and �, we make the first derivative with respect to each
parameter equal to 0 and make their corresponding second derivatives negative at
O� D . O�; Ǫ ; O�/. We have

O� D .
PN

iD1

PT
tD2 y2i.t�1//.

PN
iD1

PT
tD2 yit/� .

PN
iD1

PT
tD2 yi.t�1//.

PN
iD1

PT
tD2 yi.t�1/yit/

N.T � 1/
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iD1

PT
tD2 y2i.t�1/ � .
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iD1

PT
tD2 yi.t�1//2

;

Ǫ D N.T � 1/.
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iD1

PT
tD2 yi.t�1/yit/� .
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iD1

PT
tD2 yi.t�1//.
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iD1

PT
tD2 y2i.t�1/ � .

PN
iD1

PT
tD2 yi.t�1//2

;

O� D 1

N.T � 1/

NX
iD1

TX
tD2

.yit � O�� Ǫ yi.t�1//
2: (25.3)

Assumptions of the pooling conditional likelihood functions include the same
parameters, �, ˛, and �, across all individuals.

Parameters can also be estimated by maximizing the pooled exact likelihood
function including the distribution of initial values.

Le.˛; �; �jy/ D
NY

iD1

"
p.yi1j˛;�; �/

TY
tD2

p.yitjyi.t�1/; ˛; �; �/
#

Unfortunately, there is no analytic solution for O� D . O�; Ǫ ; O�/ in terms of fyitg; .1 	
i 	 N; 1 	 t 	 T/. Instead, we have to adopt iterative algorithms to obtain numerical
solutions. Assumptions of the pooling exact likelihood functions include the same
parameters, �, ˛, and �, across all individuals, and a stationary time series ˛ < 1.
This method is recommended when participants are almost identical, or multiple
sessions.

25.2.2.2 Connecting Data

In practice, people also analyze data by connecting all series from multiple subjects
as from a single subject. Figure 25.2 shows the series connected by individuals.
This method assumes connecting points do not matter, so that yiT and y.iC1/1 can be

Fig. 25.2 Connecting data from multiple subjects
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connected. Also, it assumes all series share the same �, ˛, and �. The assumption
of equal � can be relax, though. It can be centered through centering means.

Based on different likelihood functions, there are conditional MLE and exact
MLE for connected data. Let j .j D 1; 2; : : : ;NT/ be the new subscript for the
connected series. For conditional MLE, the conditional likelihood function of the
connected data is

L.˛; �; �jy/ D
NTY
jD2

p.yjj˛;�; �/ D
NTY
jD2

1p
2��

exp

�
� .yj � �� ˛ yj�1/2

2�

�
:

By making the first derivatives with respect to all parameters equal to 0, we have
analytical solutions for conditional MLE

O� D .
PNT

jD2 y2j�1/.
PNT

tD2 yj/ � .PNT
jD2 yj�1/.

PNT
jD2 yj�1yj/

.NT � 1/
PNT

jD2 y2j�1 � .
PNT

jD2 yj�1/2
;

Ǫ D .NT � 1/.
PNT

jD2 yj�1yj/ � .PNT
jD2 yj�1/.

PNT
jD2 yj/

.NT � 1/PNT
jD2 y2j�1 � .

PNT
jD2 yj�1/2

;

O� D 1

NT � 1

NTX
jD2
.yj � O�� Ǫ yj�1/2:

For exact MLE, it requires a stationary AR(1) model. The exact likelihood
functions of the connected data is

L.˛; �; �jy/ D p.y1j˛;�; �/
NTY
jD2

p.yjj˛;�; �/

D 1q
2�.

�

1�˛2 /
exp

"
� .y1 � �

1�˛ /
2

2 .
�

1�˛2 /

#8<
:

NTY
jD2

1p
2��

exp

�
� .yj � �� ˛ yj�1/2

2�

�9=
; :

Again, there is no analytical solutions for O� D . O�; Ǫ ; O�/.

25.2.2.3 Multivariate Time Series Analysis

Multivariate analysis is another alternative approach to multiple time series analysis.
It views each time series as an N-dimensional multivariate variable. It also allows
subject dependence. This method is relatively difficult to use comparing the other
two methods. It requires data be measured at the same time points, so all individuals
have the same time series length.
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Let Yt, Yt�1, and zt be three N-dimensional column vectors, Y0
t D

.y1t; y2t; : : : ; yNt/, Y0
t�1 D .y1.t�1/; y2.t�1/; : : : ; yN.t�1//, and z0

t D .z1t; z2t; : : : ; zNt/,
and ˇ be a .2�1/ vector including parameters� and ˛. At time point t, the multiple
time series can be expressed as Yt D .1;Yt�1/ˇ C zt, which is

0
BBB@
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y2t
:::

yNt
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CCCA D
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:::

:::

1 yN.t�1/

1
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�
�

˛


C
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z2t
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If we combine all time points t from 2 to T, then we have the least-squares (LS)
estimate of ˇ,

Ǒ D
� O�

Ǫ
�

D
"

N.T � 1/
PT

tD2
PN

iD1 yi.t�1/PT
tD2
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iD1 yi.t�1/

PT
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iD1 y2i.t�1/

#�1 � PT
tD2
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iD1 yitPT
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PN

iD1 yi.t�1/yit

�
:

Note that with normal distribution, maximizing (25.2) with respect to � and ˛ is
equivalent to minimizing

NX
iD1

TX
tD2
.yit � � � ˛ yi.t�1//2

with respect to � and ˛, so the LS solution for � D .�; ˛; �/ is exactly the same as
the pooled conditional likelihood MLE solution as shown in (25.3).

25.3 Simulation Study

To investigate the performance of different pooling methods on estimating multiple
times series, we conducted a simulation study.

25.3.1 Design and Implementation

First, multiple time series under various conditions were generated. We used the
AR(1) model. The true parameter values were � D 0, ˛ D 0:5, and � D 0:25.
As one main difference among various methods on parameter estimation is the
influence of the initial value y1, we generated data under three conditions: (a) with
a fixed y1 at 0, (b) with a random y1 drew from N.0; �/, and (c) with a random
y1 drew from N. �

1�˛ ;
�

1�˛2 /. Other conditions included the lengths of series or
the number of time points, T D .5; 10; 15; 20; 30/, and the number of subjects,
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N D .10; 20; 30; 40; 50/. Totally, there are 3 � 5 � 5 D 75 different types of data
sets generated. For each data set, 1000 replications were generated.

Second, model parameters (�, ˛, and �) were estimated by using different
multiple time series estimation methods. As the multivariate LS estimation method
yields the same results as the pooled likelihood conditional MLE when data are
normally distributed, we adopted four estimation methods in this study: pooled
likelihood conditional MLE, pooled likelihood exact MLE, pooled data conditional
MLE, and pooled data exact MLE. As there is no analytical solutions for exact MLE,
iterative algorithms were employed to obtain numerical solutions.

Finally, results were summarized across all simulation replications. For each
parameter, Est: is the average estimate across 1000 replications; the absolute bias
(Bias:abs) was calculated as the absolute value of the difference between an
estimated value and its true value; the relative bias (Bias:rel) of an estimate was the
ratio of its absolute bias to its true value; the empirical s.e. (SE:emp) was calculated
based on the estimates across 1000 replications; the average s.e. (SE:avg) was the
average standard error across 1000 replications; the mean square error (MSE) of
each parameter estimate was calculated as MSE D Biasabs2 C SEemp2; and the
Cover is its coverage rate.

In the simulation study, we used R language to generate data, estimate para-
meters, and summarize results. No R package was involved.

25.3.2 Results

Totally, there were 3 � 5 � 5 D 75 simulation result summary tables. Due to the
limited space, we only showed part of the results here. Tables 25.1, 25.2, 25.3, 25.4,
25.5 and 25.6 summarized the estimates from four estimation methods, pooling
likelihood (P.L.) conditional MLE, pooling likelihood (P.L.) exact MLE, connecting
data (C.D.) conditional MLE, and connecting data (C.D.) exact MLE.

The SE:emp and SE:avg in all tables were quite close to each other, which
indicates that those estimates methods work well. Based on the 75 simulation result
tables, we have the following findings:

1. In general, the Bias:abs, Bias:rel, SE:emp, SE:avg, and MSE values for large T or
large N (e.g., see Tables 25.2, 25.4 and 25.6) were smaller than those for small T
or small N (e.g., see Tables 25.1, 25.3 and 25.5). The coverage rates for large T or
large N were more close to 0.95 than those for small T or small N. Both indicated
that for these four estimation methods, although the data sets had different initial
values, (a) the longer the time series, the more accurate the estimate, and (b) the
more individuals participated, the more accurate the estimate.

2. By comparing bias statistics (such as Bias:abs and Bias:rel) and coverage
rates (Cover) across all tables, in most cases the pooled likelihood methods
outperformed the connecting data methods. For the situation of large T and small
N, connecting data methods also estimated well.
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3. The pooled likelihood conditional MLE performed best, especially on the
recovery of the autoregressive coefficient ˛ (see Tables 25.1, 25.2, 25.3, 25.4,
25.5 and 25.6), except when initial value y1 � N. �

1�˛ ;
�

1�˛2 / both the pooled
likelihood conditional MLE and the pooled likelihood exact MLE performed well
(e.g., see Tables 25.5 and 25.6).

4. For large T and small N, conditional MLE performed similarly as the exact MLE;
5. For small T and large N, exact MLE is more efficient but may have large bias

depending on the state of y1 and stationarity of time series.
6. The parameter coverages for data with random initial values were more close to
0:95 than the rates for fixed initial value y1 D 0. Among two types of random
initial values, the one drew from the stationary distribution y1 � N. �

1�˛ ;
�

1�˛2 /
performed better than the other distribution.

7. For the data with fixed initial values y1 D 0, the parameter coverage rates were
low, especially for � (see Table 25.1).

Table 25.1 Parameter estimate summary based on the simulation study of fixed y1 D 0, N D 10

individuals, T D 5 observations, and 1000 replications

Truea Est.b Bias.absc Bias.reld SE.empe SE.avgf MSEg Coverh

P.L.i

Exactj � 0 �0.0027 0.0027 0.0027 0.0640 0.0574 0.0041 0.9440

˛ 0:5 0.3567 0.1433 0.2867 0.1399 0.1318 0.0401 0.8250

� 0:25 0.1942 0.0558 0.2234 0.0466 0.0392 0.0053 0.5990

Cond.k � 0 �0.0039 0.0039 0.0039 0.0884 0.0782 0.0078 0.9200

˛ 0:5 0.4534 0.0466 0.0932 0.1794 0.1693 0.0344 0.9330

� 0:25 0.2372 0.0128 0.0510 0.0572 0.0531 0.0034 0.8750

C.D.l

Exact � 0 �0.0032 0.0032 0.0032 0.0708 0.0641 0.0050 0.9370

˛ 0:5 0.3245 0.1755 0.3509 0.1325 0.1325 0.0484 0.7630

� 0:25 0.2039 0.0461 0.1845 0.0501 0.0408 0.0046 0.6480

Cond. � 0 �0.0033 0.0033 0.0033 0.0729 0.0660 0.0053 0.9350

˛ 0:5 0.3310 0.1690 0.3381 0.1353 0.1355 0.0469 0.7790

� 0:25 0.2078 0.0422 0.1686 0.0511 0.0420 0.0044 0.6830
aThe true value of the corresponding parameter
bThe average of the estimate of the corresponding parameter across 1000 replications
cThe absolute bias of the estimate
dThe relative bias of the estimate
eThe empirical s.e. across 1000 replications
fThe average of the s.e. obtained from the model
gThe mean square error of the estimate, MSE D Bias:abs2 C SE:emp2
hThe coverage probability of the estimate
iThe method of pooling likelihood functions
jParameters are estimated by maximizing the exact likelihood function of the original data
kParameters are estimated by maximizing the conditional likelihood function of the original data
lThe method of connecting data
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Table 25.2 Parameter estimate summary based on the simulation study of fixed y1 D 0,
N D 50 individuals, T D 30 observations, and 1000 replications

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.L.

Exact � 0 0:0002 0:0002 0:0002 0:0126 0:0123 0:0002 0:9450

˛ 0:5 0:4810 0:0190 0:0380 0:0225 0:0223 0:0009 0:8680

� 0:25 0:2413 0:0087 0:0348 0:0087 0:0088 0:0002 0:8280

Cond. � 0 0:0002 0:0002 0:0002 0:0134 0:0131 0:0002 0:9450

˛ 0:5 0:4974 0:0026 0:0052 0:0233 0:0233 0:0005 0:9590

� 0:25 0:2495 0:0005 0:0019 0:0090 0:0093 0:0001 0:9560

C.D.

Exact � 0 0:0002 0:0002 0:0002 0:0131 0:0128 0:0002 0:9410

˛ 0:5 0:4802 0:0198 0:0397 0:0227 0:0226 0:0009 0:8580

� 0:25 0:2438 0:0062 0:0248 0:0088 0:0089 0:0001 0:8720

Cond. � 0 0:0002 0:0002 0:0002 0:0131 0:0128 0:0002 0:9410

˛ 0:5 0:4805 0:0195 0:0391 0:0227 0:0227 0:0009 0:8600

� 0:25 0:2440 0:0060 0:0241 0:0088 0:0089 0:0001 0:8780

Note: With the same notations as in Table 25.1

Table 25.3 Parameter estimate summary based on the simulation study of fixed y1 � N.0; �/,
N D 10 individuals, T D 5 observations, and 1000 replications

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.L.

Exact � 0 �0.0007 0:0007 0:0007 0:0657 0:0604 0:0043 0:9470

˛ 0:5 0.4387 0:0613 0:1225 0:1345 0:1318 0:0218 0:9370

� 0:25 0.2301 0:0199 0:0795 0:0481 0:0466 0:0027 0:8550

Cond. � 0 �0.0008 0:0008 0:0008 0:0874 0:0786 0:0076 0:9230

˛ 0:5 0.4638 0:0362 0:0724 0:1491 0:1443 0:0235 0:9310

� 0:25 0.2382 0:0118 0:0473 0:0550 0:0533 0:0032 0:8890

C.D.

Exact � 0 �0.0009 0:0009 0:0009 0:0753 0:0713 0:0057 0:9450

˛ 0:5 0.3613 0:1387 0:2775 0:1322 0:1312 0:0367 0:8450

� 0:25 0.2512 0:0012 0:0048 0:0535 0:0503 0:0029 0:9140

Cond. � 0 �0.0004 0:0004 0:0004 0:0772 0:0729 0:0060 0:9370

˛ 0:5 0.3621 0:1379 0:2757 0:1331 0:1319 0:0367 0:8470

� 0:25 0.2517 0:0017 0:0069 0:0537 0:0509 0:0029 0:9170

Note: With the same notations as in Table 25.1



25 Aggregating Time Series AR(1) 367

Table 25.4 Parameter estimate summary based on the simulation study of fixed
y1 � N.0; �/, N D 50 individuals, T D 30 observations, and 1000 replications

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.L.

Exact � 0 0:0007 0:0007 0:0007 0:0125 0:0125 0:0002 0:9490

˛ 0:5 0:4949 0:0051 0:0103 0:0236 0:0225 0:0006 0:9320

� 0:25 0:2474 0:0026 0:0103 0:0092 0:0090 0:0001 0:9280

Cond. � 0 0:0009 0:0009 0:0009 0:0132 0:0131 0:0002 0:9480

˛ 0:5 0:4989 0:0011 0:0022 0:0241 0:0229 0:0006 0:9340

� 0:25 0:2494 0:0006 0:0022 0:0094 0:0093 0:0001 0:9390

C.D.

Exact � 0 0:0007 0:0007 0:0007 0:0130 0:0130 0:0002 0:9490

˛ 0:5 0:4822 0:0178 0:0356 0:0238 0:0226 0:0009 0:8650

� 0:25 0:2521 0:0021 0:0084 0:0094 0:0092 0:0001 0:9300

Cond. � 0 0:0007 0:0007 0:0007 0:0131 0:0130 0:0002 0:9480

˛ 0:5 0:4823 0:0177 0:0355 0:0238 0:0226 0:0009 0:8680

� 0:25 0:2521 0:0021 0:0086 0:0094 0:0092 0:0001 0:9280

Note: With the same notations as in Table 25.1

Table 25.5 Parameter estimate summary based on the simulation study of fixed y1 �
N. �

1�˛
;

�

1�˛2
/, N D 10 individuals, T D 5 observations, and 1000 replications

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.L.

Exact � 0 �0.0006 0:0006 0:0006 0:0692 0:0616 0:0048 0:9400

˛ 0:5 0.4561 0:0439 0:0879 0:1384 0:1325 0:0211 0:9380

� 0:25 0.2417 0:0083 0:0333 0:0501 0:0490 0:0026 0:9010

Cond. � 0 �0.0011 0:0011 0:0011 0:0896 0:0789 0:0080 0:9120

˛ 0:5 0.4603 0:0397 0:0794 0:1505 0:1392 0:0242 0:9250

� 0:25 0.2382 0:0118 0:0470 0:0551 0:0533 0:0032 0:8920

C.D.

Exact � 0 �0.0004 0:0004 0:0004 0:0800 0:0736 0:0064 0:9310

˛ 0:5 0.3666 0:1334 0:2669 0:1324 0:1311 0:0353 0:8500

� 0:25 0.2670 0:0170 0:0680 0:0586 0:0534 0:0037 0:9230

Cond. � 0 �0.0011 0:0011 0:0011 0:0820 0:0752 0:0067 0:9290

˛ 0:5 0.3662 0:1338 0:2675 0:1327 0:1315 0:0355 0:8490

� 0:25 0.2668 0:0168 0:0672 0:0593 0:0539 0:0038 0:9190

Note: With the same notations as in Table 25.1
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Table 25.6 Parameter estimate summary based on the simulation study of fixed y1 �
N. �

1�˛
;

�

1�˛2
/, N D 50 individuals, T D 30 observations, and 1000 replications

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.L.

Exact � 0 �0.0002 0:0002 0:0002 0:0127 0:0125 0:0002 0:9540

˛ 0:5 0.4998 0:0002 0:0003 0:0220 0:0225 0:0005 0:9470

� 0:25 0.2495 0:0005 0:0021 0:0091 0:0091 0:0001 0:9570

Cond. � 0 �0.0001 0:0001 0:0001 0:0134 0:0131 0:0002 0:9540

˛ 0:5 0.4997 0:0003 0:0007 0:0222 0:0227 0:0005 0:9440

� 0:25 0.2494 0:0006 0:0024 0:0093 0:0093 0:0001 0:9530

C.D.

Exact � 0 �0.0002 0:0002 0:0002 0:0132 0:0130 0:0002 0:9560

˛ 0:5 0.4833 0:0167 0:0334 0:0222 0:0226 0:0008 0:8900

� 0:25 0.2549 0:0049 0:0195 0:0095 0:0093 0:0001 0:9260

Cond. � 0 �0.0002 0:0002 0:0002 0:0133 0:0131 0:0002 0:9560

˛ 0:5 0.4833 0:0167 0:0334 0:0221 0:0226 0:0008 0:8900

� 0:25 0.2549 0:0049 0:0195 0:0095 0:0093 0:0001 0:9260

Note: With the same notations as in Table 25.1

25.4 Comparisons and Practical Implications

In this section, we compare different estimation methods for pooling multiple time
series. Table 25.7 shows the summary.

Regarding the number of participants and length of time series, we plotted the
information curve as in Fig. 25.3.

Based on the study, practical implications include (1) focusing on process
oriented, intra-individual variability and change analysis, (2) collecting as many
data with controlled quality as possible from each individual, (3) selecting multiple
individuals from a homogeneous group, and (4) testing poolability of parameters�,
˛, and �.
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Table 25.7 A comparison of multiple time series estimation methods

Pooling method Comparison

Connecting data Easy to use

Allow � to vary through centering

Can be used for large T and small N situation

Pooling likelihood Easy to use

Allow �, ˛, � to vary and estimate

For large T and small N, Conditional MLE 	 Exact MLE

For small T and large N, Exact MLE is more efficient but
may have large bias depending on the state of y1 and
stationarity of time series

Multivariate method Relatively difficult to use

The same time series length

Data measured at the same time

Allow subject dependence

Fig. 25.3 The information
curve for multiple time series
analysis
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Chapter 26
Path Diagrams: Layout Algorithms,
Styles, and Views

Yiu-Fai Yung

Abstract Path diagrams are valuable visualization tools in practical structural
equation modeling (SEM). They provide intuitively appealing representations of
modeling ideas and results. As a part of the computational process of modeling, path
diagrams can be viewed as input device or as output results. This paper discusses
the latter role of path diagrams. The modeling scenario of interest is to produce path
diagrams given the syntactic input of structural models. The process-flow, grouped-
flow, and GRIP layout algorithms for producing path diagrams are described and
discussed. Emphases are on building intuitions about these layout algorithms and
hence the appropriate use of these algorithms for producing path diagrams for
different types of models. Steps that automate the selection among these layout
algorithms for a given model are proposed. Finally, adjustments that are needed
for producing path diagrams with different styles and views are discussed. Path
diagram examples are used throughout the paper to illustrate the layout algorithms,
the proposed automatic selection steps, and different styles and views.

Keywords Path diagram • Structural equation model • Layout algorithms •
Statistical graphics

26.1 Introduction

In structural equation modeling (SEM), researchers often use path diagrams to
present their modeling ideas and analysis results. The most appealing feature of
path diagrams is the visualization of the functional or causal relationships among
variables in models. Variables are represented by various shapes and the directed or
correlated relationships are represented by arrows. After model estimation, path or
effect estimates are displayed in path diagrams to aid interpretations. Fit summary
statistics are sometimes included in path diagrams to show how well the model fits
the data.
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Because of the intuitive nature of path diagrams for representing multivariate
relationships, many commercial software implement path diagram interface for
users to specify structural equation models. In such an interface, users specify
models by “drawing” variables and paths in a virtual drawing panel. After model
is estimated, statistical results such as estimates and standard errors are put into the
path diagram. For example, computer packages such as AMOS (Arbuckle 2010),
EQS (Bentler 2006), and SAS-SEM (SAS Institute Inc. 2013) all have this kind of
path diagram interface for inputting models.

Instead of using the path diagram as an input device, this paper considers the
automatic production of path diagrams from syntactic model input (that is, computer
code). There are several important scenarios that warrant the study of the automatic
path diagram output. In the first scenario, an adept structural equation modeler does
not consider drawing path diagrams to be more intuitive than specifying the model
by computer code. To such a user, the path diagram interface is actually not as
efficient as the syntactical input. Nonetheless, he or she might still want to present
the results in the form of a path diagram once the model is estimated. In the second
scenario, a modeler has quite a lot of variables in the model. It would be very tedious
for the modeler to manually draw an aesthetically pleasing path diagram in the input
interface. By automating the production of path diagrams from syntactic input, the
modeler can avoid the tedious drawing. Moreover, the layout algorithms for drawing
path diagrams might be able to create path diagrams that are reasonably good-
looking. In the third scenario, the modeler needs to create several path diagrams
with different views or styles (representation schemes) from a single model input.
For example, he or she might want to create a path diagram that contains only latent
factors for presentation purposes, while producing a full path diagram for his or
her own reference. Automatic path diagram production facilitates such a flexible
rendering of path diagrams with different views and styles.

In the field of SEM, research on creating path diagram output has been scarce
(but see Boker et al. 2002; Epskamp et al. 2012). However, in the field of
computer graphics, graph drawing is a well-established topic (see, e.g., Battista
et al. 1999). The methods that draw graphs by computational steps are called layout
algorithms. This paper introduces some of these layout algorithms, describes their
characteristics, and discusses how they are applied to create path diagrams. Because
different algorithms result in different path diagrams, this paper proposes steps
that select among these algorithms automatically given the model specification by
computer code. This paper also identifies and resolves some issues that are related
to the production of path diagrams with different styles or views.

26.2 Layout Algorithms: Some Intuitions

This section provides some high-level descriptions of the layout algorithms for
producing graphs and shows how these algorithms can be adapted to path diagrams.
We start with a simple description of a graph. There are two main elements in a
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graph: Nodes (or points) and links (or edges). Nodes are connection points or end
points that represent objects or process. They are usually drawn as two-dimensional
shapes such as rectangular, oval, and so on. Links are connections between nodes.
Undirected links are simply lines that connect nodes, while directed links are drawn
as lines with arrow-heads that show the direction of connections.

Depending on the application domain, graphs have different terminologies.
In a social network diagram, the nodes are individuals and the links show the
connections between individuals. In a computer network diagram, the nodes are
device components and the links show the data transmission process. In a process
flow diagram, the nodes are major equipment and the links show the flow of the work
processes. All these diagrams are essentially graphs. To extend the graph-theoretic
concepts to path diagrams for structural equation models, the nodes are variables
and the links show the functional or causal relationships between variables.

A layout algorithm for a graph is a computational procedure that determines the
placement of nodes in a two-dimensional space (or sometimes three-dimensional
space—but this is out of the current scope). There have been many layout algorithms
developed for graphs (Battista et al. 1999). To provide intuitions in a simplified
setting, this section considers only three layout algorithms that have been imple-
mented in the CALIS procedure (SAS Institute Inc. 2014). Other layout algorithms
are discussed in the final section.

The GRIP Layout Algorithm: The GRIP (Graph dRawing with Intelligent Place-
ment) layout algorithm (Gajer et al. 2004; Gajer and Kobourov 2002) starts with a
small set of initial nodes. It places these nodes in the two-dimensional space either
directly or by projecting them from higher dimensional space. Sets of nodes are
then added successively and the placement of nodes are refined with the additions
of new nodes. After all nodes are added, links are added to complete the final graph
(Gajer and Kobourov 2002). To illustrate the GRIP layout algorithm, consider the
well-known data example from Wheaton et al. (1977). The following pseudo code
represents the functional relationships in the model:

Alien67 ! Anomie67 Powerless67
Alien71 ! Anomie71 Powerless71
SES ! Education SEI
SES ! Alien67 Alien71
Alien67 ! Alien71

Variables Anomie67, Powerless67, Anomie71, Powerless71, Education, and SEI
are observed variables in the model, while SES, Alien67, and Alien71 are latent
factors. Notice that error variables are not explicitly defined in the specification. At
this point, there is no need to introduce the role of error variables in the model (but
this will be addressed later in this paper). The GRIP algorithm produces the path
diagram in Fig. 26.1.

Unlike many types of graphs in which nodes are represented by the same shape,
the path diagram convention is to use rectangles for observed variables and ovals
for latent factors. This adaptation is shown in Fig. 26.1. Some other characteristics
of the path diagram produced by the GRIP algorithm are noted:
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Fig. 26.1 Path diagram by using the GRIP layout algorithm

• The GRIP layout algorithm does not take the path directions (links) into
considerations when placing variables (nodes). In the path diagram, variables
are more or less evenly dispersed and a sequential ordering of the variables is not
visually emphasized (for example, by putting the variables of a causal sequence
in a straight line).

• To make the linkage between a factor and its associated observed indicators more
apparent in the path diagram, the original GRIP algorithm has been modified so
that the paths between a latent factor and its associated observed indicators are
shorter than those between factors.

Although the GRIP algorithm works well in general, it does not depict the
“causal” order of the variables vividly. For example, consider the following pseudo
code that represents a confirmatory factor model with one factor:

Factor ! X1 X2 X3 X4 X5 X6

The GRIP algorithm produces the path diagram in Fig. 26.2. Although this is still
a well-balanced and eye-pleasing path diagram, it does not depict explicitly that the
factor and the observed variables are at different levels of ordering.
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Fig. 26.2 A confirmatory
factor model by using the
GRIP layout algorithm

Fig. 26.3 A confirmatory
factor model by using the
process-flow layout algorithm

The Process-Flow Layout Algorithm: In contrast, the process-flow layout algorithm
arranges variables in the path diagram according to their causal or functional order in
the model. Indeed, the basic idea of process-flow idea is very similar to that of Boker
et al. (2002). Figure 26.3 shows the path diagram for the preceding confirmatory
factor model by using the process-flow algorithm.
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Fig. 26.4 A second-order factor model by using the process-flow layout algorithm

Another situation that the process-flow layout algorithm is deemed desirable is
for producing the path diagram for the higher-order factor model, as exemplified by
the following pseudo code:

Factor1 ! X1 X2 X3

Factor2 ! X4 X5 X6

G_Factor ! Factor1 Factor2

Figure 26.4 shows that the process-flow algorithm is able to display the
causal/functional order of variables in a hierarchical manner. However, the
process-flow algorithm might fail to produce a visually pleasing picture when
the higher-order factor model has observed indicators in the higher-order factors.
For example, Fig. 26.5 shows the path diagram that is produced for the following
pseudo code:

Factor1 ! X1 X2

Factor2 ! X3 X4

G_Factor ! X5 X6

G_Factor ! Factor1 Factor2

It is disconcerting to see that observed variables X5 and X6 are at the same level
as the latent factors Factor1 and Factor2. Some characteristics of the process-flow
algorithm are noted:

• To determine the placement of the variables, the process-flow layout algorithm
analyzes the causal or functional ordering of the variables in the model.
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Fig. 26.5 An illustration of the problem of mixed variable types by using the process-flow
algorithm

• The path diagram produced by the process-flow algorithm might not be as
balanced as that produced by the GRIP algorithm.

• The process-flow algorithm might not produce good-looking path diagrams when
there are mixed types of variables at some level of the ordering.

The Grouped-Flow Layout Algorithm: Instead of utilizing the ordering of all
variables in the layout process, one can focus on the ordering of a particular set
of variables in the model. In the preceding example, it might be more desirable to
focus on the ordering of the latent factors alone when laying out the variables. This
amounts to applying the process-flow layout algorithm to the three factor-indicators
clusters in the model; hence, the name grouped-flow layout algorithm. By using
the grouped-flow algorithm, Fig. 26.6 shows the path diagram produced for the
preceding model. Now the path diagram clearly shows the hierarchical-ordering in
the factor clusters.

Some remarks on the grouped-flow layout algorithm are now in order:

• The grouped-flow algorithm is essentially the same as the process-flow algorithm
being applied to the latent factors alone. However, once the ordering of the latent
factors are determined, space must be reserved for displaying the entire factor
clusters rather than for displaying the individual factors.

• The grouped-flow algorithm is unique to the path diagrams in SEM because
visually distinctive shapes are used to represent different types of variables in
models. Otherwise, when all the nodes/variables are of the same type (such
as in other types of graphs), the process-flow algorithm is all one needs to
layout nodes/variables in graphs/path diagrams that emphasize the ordering of
nodes/variables (for example, regression models with observed variables only).
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Fig. 26.6 An illustration of the grouped-flow algorithm

26.3 Automatic Determination of the Layout Algorithm

The intuition built from the preceding section suggests that while the GRIP layout
algorithm is appropriate for producing path diagrams in general situations, models
that exhibit some kind of “strong” causal/functional ordering properties in variables
are better organized using the process-flow or grouped-flow algorithm to show the
ordering properties in path diagrams. Based on this observation, the following steps
are suggested to automatically determine among the three layout algorithms for a
given model:

1. Assign a level value to each variable (observed variable or latent factor, excluding
error variable) in the model, starting from the exogenous variables that do not
receive any effects from any other variables (that is, they do not have paths
pointing to them). Assign 1 as the level value to these exogenous variables.

2. Assign j C 1 as the level value to the variables that are directly pointed to by the
level-j variables. Repeat the assignment process. If the assignment of the j C 1
level value is applied to a variable that has been assigned previously, stop the
assignment and go to Step 4. Otherwise, continue until all variables are assigned.
Go to Step 3.
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3. All variables should now have unique level values. Check the set of variables
at each level. If there is at least one set of variables that contains both observed
variables and latent factors, go to Step 4. Otherwise, quit the steps and use the
process-flow algorithm.

4. Consider only the set of latent factors in the model. Assign each latent factor
a level value by restarting the same process as described in Steps 1 and 2 (but
only with latent factors). If the assignment of the j C 1 level value is applied to a
latent factor that has been assigned previously, quit the steps and use the GRIP
algorithm.

5. All latent factors should now have unique level values. Use the grouped-flow
algorithm.

Some remarks on these steps should be noted:

• The determination of the layout algorithm does not consider the error variables
or the bi-directional links (that is, double-headed paths that represent covariance)
in the model.

• The process-flow algorithm requires a unique ordering of all variables, while the
grouped-flow algorithm requires a unique ordering of the latent factors.

• In order to use the process-flow algorithm, Step 3 checks to ensure that variables
at the same level are of the same type. This avoids the oddity of aligning observed
variables and latent factors vertically (or horizontally) in the path diagram (see
Fig. 26.5).

• These steps do not aim at finding the “best” algorithm for a given model. The
definition of “best” is somewhat subjective and is also dependent on the particular
purpose in the mind of the modeler. For example, a process-flow algorithm might
still be good enough for producing a path diagram even if there is no unique
ordering of variables in the model. Rather, these steps do guarantee that it can
detect models that have the idealized ordering patterns for which the process-
flow and grouped-flow algorithms are specifically designed.

How do these steps work for the mentioned examples? Will they produce “good”
path diagrams that are consistent with the intuition built in the preceding section? To
illustrate the selection of the process-flow algorithm, consider again the one-factor
model that is specified by the following pseudo code:

Factor ! X1 X2 X3 X4 X5 X6
The proposed steps will be able to assign a unique level to each variable in the

model, as illustrated in Fig. 26.7, where the process-flow algorithm is used to draw
the path diagram. The resultant path diagram would be exactly the same as the one
shown in Fig. 26.3.

To illustrate the selection of the grouped-flow algorithm, consider again the path
diagram in Fig. 26.5. The corresponding model is specified by the following pseudo
code:

Factor1 ! X1 X2
Factor2 ! X3 X4
G_Factor ! X5 X6
G_Factor ! Factor1 Factor2
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Fig. 26.7 Level assignments
of a confirmatory factor
model

As discussed previously, the process-flow algorithm that produces the diagram
in Fig. 26.5 is less-than-desirable because there are mixed variable types at the
second level. By using the proposed steps for assigning the level values to variables,
Fig. 26.8 shows that variables at level 2 are not all of the same type. Step 3 detects
such mixed variable types and so the process-flow layout algorithm is not chosen.
However, when the set of variables is limited to the latent factors in Step 4, the latent
factors do have unique level values. Hence, the grouped-flow algorithm is used and
the resultant path diagram would be exactly the same as the one shown in Fig. 26.6.

To illustrate the selection of the GRIP algorithm, consider again the path diagram
in Fig. 26.1 that represents the model with the following pseudo code:

Alien67 ! Anomie67 Powerless67

Alien71 ! Anomie71 Powerless71

SES ! Education SEI

SES ! Alien67 Alien71

Alien67 ! Alien71

Figure 26.9 shows the level values of the variables. Because latent factor
Alien71 can be assigned to either level 2 or 3 (that is, SES!Alien71, or
SES!Alien67!Alien71), neither the process-flow nor the grouped-flow is
selected. Hence, the GRIP algorithm is used and the resultant path diagram is
exactly the same as the one shown in Fig. 26.1.
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Fig. 26.8 Illustration of a model that has mixed variable types at level 2

Fig. 26.9 Illustration of model that does not have unique level assignments
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26.4 Styles and Views of Path Diagrams: Some Proposed
Solutions

So far the discussion of layout algorithms ignores the representation of the error
variables in models and in path diagrams. There are good reasons for that. First,
error variables, as they are defined, are not systematic part of the model. Omitting
the error variables from path diagrams usually would not compromise the main
interpretations of the model. In fact, in the so-called RAM model, which is one of the
major formulations of structural equation models, error variables in path diagrams
are never explicitly represented (McArdle and McDonald 1984). Second, showing
the error variables tends to add to the complexity of the graphics. It might make the
resultant path diagrams more complicated than necessary. Third, even if showing
error variables in path diagrams is desirable in some situations, the proposed steps
that select the layout algorithm would still need to exclude the error variables in
the decision process. Because all error variables are exogenous by definition, they
would all be assigned to level 1 in the level assignment steps. This leads to one
of the following two consequences. First, perfect process-flow or grouped-flow
patterns could not be detected by the aforementioned steps. The otherwise important
casual/functional chain of effects in the non-error variables would not be shown
clearly in the path diagram. Second, even if the process-flow algorithm is selected
for producing the path diagram, the error variables effects (that is, paths from error
variables) might complicate the path diagram quite a bit.

This brings out the issue about the styles (or representation schemes) of path
diagrams. For example, in the EQS program (Bentler 2006), error variables are
explicitly specified in models. Naturally, EQS users would expect to have error
variables shown in path diagrams. Should one still use the proposed steps in the
preceding section? Would it still work fine? The answer is positive. All the proposed
steps described in the preceding section can still be used to determine the layout
algorithm. The only thing needs to be adjusted is to reserve space for all endogenous
variables so that their corresponding error variables could be “tagged” to them
after the layout of the non-error variables. For example, error variables that have
been “hidden” in the path diagram in Fig. 26.1 (or Fig. 26.9) can be shown with
error variables by essentially using the same layout algorithm. Figure 26.10 shows
the resultant EQS-style path diagram that displays error variables explicitly. As an
example of path diagram results, estimates for path effects and variances are also
displayed. As can be seen, the placement of the non-error variables are essentially
the same for the current path diagram and the one in Fig. 26.1.

Similarly, to draw the RAM-style path diagram, the proposed steps for determin-
ing the layout algorithm is applied in the same way. However, unlike the EQS-style,
no space for error variables needs to be reserved for the RAM-style path diagram.
Figure 26.11 shows the RAM-style path diagram that is comparable to the EQS-
style path diagram in Fig. 26.10. Per RAM-style, the error variance estimates are
now attached as double-headed arrows to the endogenous variables in Fig. 26.11,
whereas they are attached to the error variables directly in the EQS-style path
diagram in Fig. 26.10.
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Fig. 26.10 An illustration of an EQS-style path diagram

In addition to styles, SEM modelers often distinguish between the structural
component and the measurement component in the model. In fact, this distinction is
one of the main features in the original formulation of the LISREL model (Jöreskog
and Sörbom 1996). Roughly speaking, the structural component contains only
the latent factors and their functional relationships. The measurement component
contains the relationships between the latent factors and their observed indicators.
Because of the theoretical importance of the structural components, very often
researchers would like to focus on the structural components in their path diagrams.

Two ways for producing path diagrams that focus on the structural component are
proposed here. The first one is pretty straightforward. By considering only the set of
latent variables and their relationships, all the techniques and steps proposed earlier
in this paper are applied. Figure 26.12 shows the path diagram of the structural
component of the model, of which the full path diagram is shown in Fig. 26.11.
The second way is to de-emphasize the observed variables by minimizing their
sizes and by omitting their labels and corresponding estimates. Again, all the layout
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Fig. 26.11 An illustration of a RAM-style path diagram

algorithms and steps discussed previously are applied to draw this path diagram—
only now less drawing space is needed for the observed variables. Figure 26.13
shows the resultant path diagram that is based on de-emphasizing the measurement
component.

26.5 Concluding Comments

This paper describes the GRIP, process-flow, and grouped-flow algorithms for laying
out variables in path diagrams. Steps that determine among these three algorithms
for a given structural equation model are proposed and discussed. This paper also
discusses the adjustments needed to produce path diagrams with different styles
or views from a single model input. The techniques described in this paper has
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Fig. 26.12 An illustration of
showing the structural
component alone

Fig. 26.13 An illustration of emphasizing the structural component

been implemented in a recent edition of the CALIS and FACTOR procedures (SAS
Institute Inc. 2014). For details about the control of layout algorithms, styles, and
views, see the documentations of the procedures (SAS Institute Inc. 2014) or Yung
(2014).
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Due to the simplistic setting for showing the basic graphical ideas, our discussion
of layout algorithms for path diagrams has been limited. Several other software
can also produce path diagrams from syntactic model input. For example, the PD
command of LISREL (Jöreskog and Sörbom 1996) offers such a functionality.
However, the layout algorithm that LISREL uses is unclear to the author. Epskamp
(2014) describes it as a “tree” layout. It appears that some aspects of this “tree”
layout is similar to the grouped-flow algorithm described. That is, the arrangement
of nodes is mostly dependent on the ordering of the latent factors. But the “tree”
layout is unique in its placement of the measurement components. Unlike the
grouped-flow algorithm that always places the measured variables under the latent
factors, the “tree” layout tends to spread out the measured variables. LISREL does
not seem to have additional control on the styles or views of path diagrams.

In contrast, the R package semPlot (Epskamp 2014) considers different layouts
and styles in its semPaths() call. For example, it has three variations of the
“tree” layout (“tree,” “tree2,” and “tree3”) and three variations of “circular” layout
(“circle,” “circle2,” and “circle3”). It considers different styles such as “LISREL”
and “mx.” The many options offered in semPaths() appear to be able to create
different views too. Although semPaths() and the author’s own implement in the
CALIS procedure are totally independent software, it is clear that both consider
various layout algorithms, styles, and views as important elements in path diagram
creation. Hopefully, this paper has covered the basic ideas of these important
elements.

A final comment is that path diagrams created by any layout algorithms will
not be “perfect”—it might never match exactly what is in the mind of the modeler.
For example, labels for estimates might collide or variables are not put at the most
desirable locations. Therefore, post-editing of path diagrams in some graphic editors
might be indispensable. But the promise of the layout algorithms is that they would
make the whole progress more efficient by producing reasonably good-looking path
diagrams automatically.
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