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Preface

Groundwater constitutes an important component of many water resource
systems, supplying water for domestic use, for industry, and for agriculture.
Management of a groundwater system, an aquifer, or a system of aquifers, means
making such decisions as to the total quantity of water to be withdrawn annually,
the location of wells for pumping and for artificial recharge and their rates, and
control conditions at aquifer boundaries. Not less important are decisions related
to groundwater quality. In fact, the quantity and quality problems cannot be
separated. In many parts of the world, with the increased withdrawal of ground-
water, often beyond permissible limits, the quality of groundwater has been
continuously deteriorating, causing much concern to both suppliers and users. In
recent years, in addition to general groundwater quality aspects, public attention
has been focused on groundwater contamination by hazardous industrial wastes,
by leachate from landfills, by oil spills, and by agricultural activities such as the use
of fertilizers, pesticides, and herbicides, and by radioactive waste in repositories
located in deep geological formations, to mention some of the most acute
contamination sources.

In all these cases, management means making decisions to achieve goals without
violating specified constraints. In order to enable the planner, or the decision
maker, to compare alternative modes of action and to ensure that the constraints
are not violated, a tool is needed that will provide information about the response
of the system (the aquifer) to various alternatives. Good management requires the
ability to forecast the aquifer's response to planned operations, such as pumping
and recharging. The response may take the form of changes in water levels,
changes in water quality, or land subsidence. Any planning of mitigation, clean-up
operations, or control measures, once contamination has been detected in the
saturated or unsaturated zones, requires the prediction of the path and the fate of
the contaminants in response to the planned activities. Any monitoring or
observation network must be based on the anticipated behavior of the system.

The necessary information about the response of the system is provided by a
model that describes the behavior of the considered system in response to
excitation. The model may take the form of a well posed mathematical problem, or
that of a set of algebraic equations, referred to as a numerical model, solved with
the aid of a computer. For most practical problems, because of the heterogeneity
of the considered domain, the irregular shape of its boundaries, and the
nonanalytic form of the various source functions, only a numerical model can
provide the required forecasts.

However, given a certain problem, one cannot go directly to the computer, pick

xi



xii PREFACE

up a program, push some buttons, and expect a solution to the problem. A most
important part of the modeling procedure is a thorough understanding of the
system, and the processes that take place in it. It is important to identify those
parts of the system’s behavior that are relevant to the considered problem, while
other parts may be neglected. On the basis of this understanding, summarized as a
conceptual model of the given problem,-a numerical model is constructed and a
program is prepared for its solution by means of a computer.

Unfortunately, at many universities much of this material is not taught as part of
the regular curriculum in relevant disciplines, such as civil engineering, agricultural
engineering, and geology. This is so in spite of the growing needs for professional
activities associated with water resources (quantity and quality) management, and
the prevention and control of pollution. To supplement the education of those who
are already active in this area, or who wish to join it, we have developed and
taught many regular and short (usually one-week) courses, in many parts of the
world, on mathematical and numerical modeling of groundwater flow and
pollution. Typically, the objectives of such courses are to enable the student

— to understand the meaning of models, learn the modeling process, and the
role models play in decision-making procedures,

— to understand the mechanisms that govern the movement and accumulation
of water and pollutants in aquifers,

— to construct conceptual and mathematical models for flow and pollution
problems,

— to understand various numerical methods, and to employ the major
methods, of finite differences and finite elements, in order to construct
numerical models for problems of practical interest, and to prepare
programs for their solution by using computers. In recent years, special
attention has been devoted to microcomputers, which are readily available
to most students and practitioners.

— to gain ‘hands on’ computer experience in solving typical problems of
practical interest.

This book is designed to tend to the needs of such courses. Its objectives are
identical to those listed above. In addition, the book is written in a manner that
should enable readers to achieve the same goals by studying the book on their
own, and solving the problems included in it. Finally, the book, with the complete
programs (written in BASIC) included in it, should serve the needs of many
engineers and scientists who require such programs for their professional activities.
To tend to the need of professionals, the programs are what one might call
‘semiprofessional’. They facilitate the presentation of the educational aspects and
emphasize the main issues of the modeling methodology, but at the same time they
are sufficiently advanced and general for professional use. Although the programs
have been tested extensively, and we believe them to be correct, we cannot accept
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any responsibility for eventual errors, and we will not accept any liability for
damages or losses that may be caused by the use of the programs.

The hardware required to run the programs is an IBM Personal Computer, or a
similar computer, operating under MS-DOS, with a graphics monitor. Programs
are given in Microsoft BASIC, and they all admit compilation by Microsoft’s com-
pilers. The programs can be copied by retyping them from the text. Alternatively, a
diskette containing all programs can be obtained from the International Ground
Water Modeling Center (IGWMC), which has branch offices in Indianapolis
(IGWMC, Holcomb Research Institute, Butler University, Indianapolis, Indiana
46208, US.A)) and Delft (IGWMC, TNO-DGV Institute of Applied Geoscience,
P.O. Box 285, 2600 AG Delft, The Netherlands). The IGWMC also distributes a
variety of well tested programs for micro-, mini-, and mainframe computers. It is
the policy of the IGWMC to sell programs at cost price.

With the above objectives in mind, the book is made up of two parts. The first
part, Chapters 1 to 7, presents the conceptual and mathematical models of
groundwater flow and pollution. Special attention is given to the assumptions
underlying each model, to the possible simplifications, to the physical interpreta-
tion of the terms and coefficients that appear in the various equations, and to the
boundary conditions that should reflect the conditions actually encountered, or to
be anticipated, in reality.

Then, following a general introductory chapter on numerical methods, five
chapters (9 to 13) introduce the details of the finite difference method and the
finite element method, together with actual programs aimed at explaining and
exemplifying the methods and, at the same time, training the student in solving
problems of practical interest. Programs are included for the analysis of steady and
unsteady flow in aquifers, flow through a dam, pollution transport, and seawater
intrusion. It is suggested that the reader, when studying the book, runs all the
programs, in order to obtain a complete understanding of their operation and
facilities. In most of the programs, input data must be entered interactively, with
the user responding to questions printed on the screen by the program. The
prompting messages are usually self-explanatory, so that the meaning of the input
variables is immediately clear. In some cases, with large amounts of input data,
input is provided through a dataset. In those cases sample datasets are included. In
general, the reader should be able to produce the same output as given in the
book, either in the form of a listing of output data on the screen, or in the form of
a figure or graph, produced on the screen of the computer. Many of the figures in
the book were actually produced by the programs.

We hope that we have found the right balance between the theoretical back-
ground summarized in the form of mathematical models, and the numerical
programs that are the actual tools for solving flow and pollution problems.

Finally, many thanks are due to many of our students, both at the Delft
University of Technology and at the Technion — Israel Institute of Technology, for
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their contribution in developing, checking and validating the various models and to
the McGraw-Hill Book Company, New York, for permission to adapt and use
many of the figures, presented in Chapters 1 to 7, which originally appeared in
Jacob Bear, Hydraulics of Groundwater (1979).

Haifa JACOB BEAR
Delft ARNOLD VERRUUT

A 5t-inch diskette containing the source code and compiled
version of the programs described and listed in this book is
available from

IGWMC - Colorado:

Institute for Ground-Water Research
and Education

Colorado School of Mines

Golden, Colorado 80401-1887
Phone: 303/273-3103

FAX: 303/273-3278

IGWMC — Delft:

TNO-DGYV Institute of Applied Geoscience
P.O.Box 285

2600 AG Delft

The Netherlands

Phone: 31-15-697214

The programs are written in Microsoft BASIC with Color Graphic
Adapter, and operating systems PC DOS 2.0 or later. Diskette
programs can be copied and modified by user. The cost of the
diskette in USS10 and includes postage and handling.



CHAPTER ONE

Introduction

The objective of this chapter is to set the stage for the modeling procedure and
methodology presented in subsequent chapters: what is it that we wish to model
and why and, especially, how do we model?

We start by presenting some basic definitions related to groundwater and to
aquifers, focusing our attention on the flow of water in the saturated zone, noting
that due to the heterogeneity of porous material at the pore, or grain size scale, it
is practically impossible to predict and observe the flow at that scale. Instead, the
continuum approach is proposed as a device for describing and observing flow in
porous media, in the absence of information on the microscopic configuration of
the solid matrix. As a further simplification, it is proposed to treat the flow in
aquifers as approximately two-dimensional in the horizontal plane.

Planning and management of groundwater resources, and this includes pollution
control and abatement, require a tool for predicting the response of the aquifer
system to the planned activities. We shall discuss the content of this response and
suggest the model as the tool for achieving this goal.

1.1. Groundwater and Aquifers
1.1.1. DEFINITIONS

Subsurface water is a term used to denote all the water found beneath the surface
of the ground. Hydrologists use the term groundwater to denote water in the zone
of saturation (Subsection 1.1.2). In drainage of agricultural lands, or agronomy, the
term groundwater is sometimes used also to denote the water in the partially
saturated layers above the water table. Practically all groundwater constitutes part
of the hydrologic cycle (Figure 1.1; see any textbook on hydrology). Very small
amounts, however, may enter the cycle from other sources (e.g., magmatic water).

An aquifer is a geological formation which (i) contains water and (ii) permits
significant amounts of water to move through it under ordinary field conditions.
Todd (1959) traces the term aquifer to its Latin origin: aqui comes from aqua,
meaning water, and -fer from ferre, to bear.

In contradistinction, an aquiclude is a formation which may contain water
(sometimes in appreciable quantities), but is incapable of transmitting significant
quantities under ordinary field conditions. A clay layer is an example of an

1
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INTRODUCTION 3

aquiclude. For all practical purposes, an aquiclude can be considered as an
impervious formation.

An aquitard is a layer that is much less pervious than the aquifer that underlies
or overlies it, and often also much thinner. It thus behaves as a thin semi-pervious
membrane through which leakage between aquifers separated by it is possible. An
aquitard is often referred to as a semi-pervious, or a leaky formation.

An aquifuge is an impervious formation which neither contains nor transmits
water.

That portion of the rock formation which is occupied by solid matter is called
the solid matrix. The remaining part is called the void space (or pore space). The
void space is occupied by one (water) or two (water and air) fluid phases. Only
connected interstices can act as elementary conduits for fluid flow within the
formation. Figure 1.2 (after Meinzer, 1942) shows several types of rock interstices.
Interstices may range in size from huge limestone caverns to minute subcapillary
openings in which water is held primarily by adhesive forces. The interstices of a
rock formation can be grouped in two classes: original interstices (mainly in
sedimentary and igneous rocks) created by geologic processes at the time the rock
was formed, and secondary interstices, mainly in the form of fissures, joints and
solution passages developed after the rock was formed.

1.1.2. MOISTURE ZONES

Subsurface formations containing water may be divided vertically into several
horizontal zones according to the relative proportion of the pore space which is

Fig. 1.2. Diagram showing several types of rock interstices. A Well-sorted sedimentary deposit
having high porosity; B. Poorly sorted sedimentary deposit having low porosity; C. Well-sorted
sedimentary deposit consisting of pebbles that are themselves porous, so that the deposit as a whole
has a very high porosity; D. Well-sorted sedimentary deposit whose porosity has been diminished by
the deposition of mineral matter in the interstices; E. Rock rendered porous by solution; F. Rock
rendered porous by fracturing (after Meinzer, 1942).
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occupied by water. Essentially, we have a zone of saturation in which the entire
void space is filled with water, and an overlying zone of aeration (or unsaturated
zone) in which the pores contain both gases (mainly air and water vapor) and
water.

Figure 1.3 shows a schematic distribution of subsurface water in a homo-
geneous soil. Water (e.g., from precipitation and/or irrigation) infiltrates through
the ground surface, moves downwards, and accumulates, filling all the interstices
of the rock formation in the zone above the impervious bedrock. The saturated
zone in Figure 1.3 is bounded from above by a phreatic surface. We shall see
below that under different circumstances, the upper boundary may be an imper-
vious one. The term groundwater defined in Subsection 1.1.1 is used by ground-
water hydrologists to denote the water in the zone of saturation. Wells, springs,
and effluent streams act as outlets of water from the zone of saturation. The
phreatic surface is an imaginary surface at all points of which the pressure is
atmospheric (conveniently taken as p = 0). Actually, saturation (or almost so)
extends a certain distance, called the capillary fringe, above the phreatic surface,
depending on the type of soil (Subsection 5.1.4). The surface bounding the
capillary fringe from above is usually called the water table.

The zone of aeration extends from the phreatic surface to the ground surface. It
usually consists of three subzones: the soil water zone (or belt of soil water), the
intermediate zone (or vadose water zone), and the capillary zone (or capillary
fringe).

The capillary fringe extends from the phreatic surface up to the limit of capillary
rise of water. Its thickness depends on the soil properties and on the homogeneity
of the soil, mainly on the pore size distribution. The capillary rise ranges from
practically nothing in coarse material, to as much as 2 to 3 m and more in fine
materials (e.g., clay). Within the capillary fringe, moisture decreases gradually with
height above the phreatic surface. Just above the phreatic surface, the pores are
practically saturated. Moving higher, only the smaller pores contain water. Still

Ground surface Soil water

Soil water zone \

Intermediate

(Vadose water) Pellicular and
zone gravitational water

AT e

= Capillary water

Zonc of
acration

Phreatic

N
Groundwater Capillary fringe Groundwater surface

zone

Y ya

Impervious

Zone of
saturation

7

Fig. 1.3. Subsurface moisture zones.
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higher, only the smallest pores are filled with water. Hence, the upper limit of the
capillary fringe has an irregular shape. For practical purposes, some average
smooth surface — referred to as the water table — is taken as the upper limit of
the capillary fringe, such that below it the soil is assumed practically saturated (say
75%). When the saturated zone below the phreatic surface is much thicker than
the capillary fringe, the flow in the latter is often neglected as far as groundwater
flow is concerned. Under such conditions, we shall use the terms phreatic surface
and water table interchangeably. In drainage problems, the flow in the unsaturated
zone may be of primary importance.

The soil water zone is adjacent to the ground surface and extends downward
through the root zone. Vegetation depends on water in this zone. The moisture
distribution in this zone is affected by conditions at the ground surface (seasonal
and diurnal fluctuations of precipitation, irrigation, air temperature, and humidity),
and by the presence of a shallow water table. A deep water table does not affect
the moisture distribution in this zone. Water in this zone moves downward during
infiltration (e.g., from precipitation, flooding of the ground surface, or irrigation),
and upward by evaporation and plant transpiration. Temporarily, during a short
period of excessive infiltration, the soil in this zone may be almost completely
saturated.

After an extended period of gravity drainage without additional supply of water
at the soil surface, the amount of moisture remaining in the soil is called field
capacity. Below field capacity, the soil contains capillary water in the form of
continuous films around the soil particles and meniscii between them, held by
surface tension. Below the moisture content called the hygroscopic coefficient
(= maximum moisture which an initially dry soil will absorb when brought into
contact with an atmosphere of 50% relative humidity at 20°C), the water in the soil
is called hygroscopic water. It also forms very thin films of moisture on the surface
of soil particles, but the adhesive forces are very strong, so that this water is
unavailable to plants.

1.1.3. CLASSIFICATION OF AQUIFERS

Aquifers may be classed according to their pressure system.

A confined aquifer (Figure' 1.4), also known as a pressure aquifer, is one
bounded from above and below by impervious formations. In a well just pene-
trating such an aquifer, the water level will rise above the base of the upper
confining formation; it may or may not reach the ground surface. This water level
indicates the piezometric head (Subsection 2.1.1) at the center of the well’s screen
(when the latter is short relative to the aquifer’s thickness).

The water levels in a number of observation wells tapping a certain aquifer
define an imaginary surface called the piezometric surface. When the flow in an
aquifer is essentially horizontal, such that equipotential surfaces are practically
vertical, the depth of a piezometer’s opening is immaterial; otherwise, a different
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INTRODUCTION 7

piezometric surface is obtained for piezometers which have openings at different
elevations. Fortunately, cxcept in the neighborhood of outlets such as partially
penetrating wells or springs, the flow in aquifers is essentially horizontal.

An artesian aquifer is a confined aquifer (or a portion of it) where the elevation
of the piezometric surface (say, corresponding to the base of the upper confining
layer) is above the ground surface. A well in such an aquifer will flow freely
without pumping (artesian well, flowing well). The name is derived from the
county Artois (Artesia) in Northern France, where such wells were constructed by
the monks of Lillers in the 12th century.

A phreatic aquifer (also called unconfined aquifer, water table aquifer) is one in
which a water table (= phreatic surface) serves as its upper boundary. A phreatic
aquifer is directly recharged from the ground surface above it, except where
impervious layers, sometimes of limited areal extent, exist between the phreatic
surface and the ground surface. Water enters a confined aquifer in a recharge area
which is a phreatic aquifer formed where the confining strata terminate at, or close
to the ground surface (Figure 1.4).

Aquifers, whether confined or unconfined, that can lose or gain water through
aquitards bounding them from either above and/or below, are called leaky
aquifers. Although these semipervious formations have a relatively high resistance
to the flow of water through them, signifieant quantities of water may leak through
them into or out of an aquifer over the large horizontal areas of contact involved.
The amount and direction of leakage is governed in each case by the difference in
the piezometric head which exists across the semipervious formation.

A phreatic aquifer (or part of it) which rests on a semipervious layer is a leaky
phreatic aquifer. A confined aquifer (or part of it) which has at least one semi-
pervious confining stratum is called a leaky confined aquifer.

Figure 1.4 shows several aquifers and observation wells. The upper phreatic
aquifer (A) is underlain by two confined ones (B and C). In the recharge area,
aquifer B becomes phreatic. Portions of aquifers A, B, and C are leaky, with the
direction and rate of leakage determined by the elevations of the piezometric
surface of each of these aquifers. The boundaries between the various confined
and unconfined portions may vary with time as a result of changes in water table
and piezometric surface elevations. A special case of a phreatic aquifer is the
perched aquifer which is formed on an impervious (or semipervious) layer of
limited areal extent located between the water table of a phreatic aquifer and the
ground surface. Sometimes these aquifers exist only during a relatively short part
of each year, as they drain to the underlying phreatic aquifer.

Sometimes we refer to the groundwater itself as confined, phreatic, or leaky,
rather than to the geological formation.

1.2. Management of Groundwater

An aquifer, and especially when it constitutes an element in a water resource
system, plays a number of roles.
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Source of water. This is the more obvious function. The aquifer is replenished
annually from precipitation over the region overlying it or, in a confined aquifer,
over its intake, or recharge, region. In such cases, groundwater is considered as a
renewable resource. Obviously, depending on the distribution of storms, land
topography, cover, permeability of soil, etc., only a certain part of the precipitation
infiltrates through the ground surface and replenishes the underlying phreatic
aquifer. Aquifers can also be replenished from streamflows (with permeable beds)
and from floods. In many arid regions, aquifers in the low lands are replenished
during a very short period (once in several years) from flash floods originating in
the mountains.

Aquifers usually contain water stored in them from times in the distant past,
sometimes under different climatic conditions. Such groundwater should be
regarded as a nonrenewable resource. The production of groundwater from such
aquifers should be considered with great care.

The yield of an aquifer is a term which requires some attention. Obviously, in
the long run, unless we wish to mine all or part of the volume of water in storage,
the volume of water withdrawn from an aquifer cannot exceed the aquifer’s
replenishment. However, this is only one limiting factor to the annual rate of
withdrawal. To conserve an aquifer (especially from the quality point of view), if
we really wish to do so as part of a stated policy, we mast limit the outflow of
groundwater from it. This means maintaining certain minimal water levels, at least
in the vicinity of outlets. Since inflows and outflows can be controlled by
controlling water levels on which they depend (and artificial recharge is an
example of a controlled input), the rate of annual withdrawal is a decision variable;
it may vary within certain limits, according to our decision as to the rate of
groundwater outflow we allow from the aquifer and to the inflow into the aquifer
from different sources.

Special attention should be given to the quality of water in the aquifer and in
the extracted water. The quality of the water in an aquifer is closely related to the
magnitude of components of the water balance, e.g., natural replenishment and
outflow. For example, increasing withdrawal, which means reduced outflow,
reduces flushing and enhances the accumulation of contaminants. Another example
is the movement of inferior quality water into areas of low water levels produced
by large withdrawals. Thus, the quality and quantity problem are closely inter-
related to each other.

Another important factor is the annual climatic fluctuations of natural replenish-
ment. Because of the storage capacity of an aquifer, annual withdrawal is not
directly related to the natural replenishment in the same year.

In addition to hydrological constraints, such as those imposed by (quality and
quantity) conservation requirements, the rate of withdrawal may be constrained by
economic, legal, and political (e.g.,, priority rights) considerations, directly, or
through its effects on such constrained parameters as water levels, water quality,
land subsidence, base flow, etc.



INTRODUCTION 9

Altogether, the yield is a decision variable to be determined as part of the
aquifer’s management scheme. It is not necessarily a constant figure. It may vary
from year to year, depending on the state of the aquifer (in terms of quantity and
quality of water), on hydrological and nonhydrological constraints imposed on its
operation and on the management objectives. We often use the term optimal yield,
or operational yield.

Storage reservoir. Every water resource system requires storage, especially when
replenishment is intermittent and is subject to random fluctuations. A large volume
of storage is available in the void space of a phreatic aquifer. Just to give a rough
idea, we can store 15 X 10° m? of water in a portion of an aquifer of 10 X 10 km,
with a storativity of 15% (which is a rather low value) by raising the water table by
1 m. Using the technique of artificial recharge, large quantities of water can thus
be stored in a phreatic aquifer. Obviously, the recharge should be accompanied by
an appropriate scheme for withdrawing the stored water. Phreatic aquifers may be
used as seasonal storage reservoirs, and even for shorter periods.

A conduit. Using the technique of artificial recharge, water can be introduced
into an aquifer at one point and be withdrawn by pumping at another point (or
several other points). The injected water will flow through the aquifer from the
high water levels of the region of recharge to the region of pumping, where water
levels are lower.

A filter. Using the technique of artificial recharge, an aquifer may serve as a
filter and purifier for water of inferior quality injected into it. This may take the
form of (i) the removal of fine suspended load from surface water recharged into
aquifers through infiltration ponds, (ii) the removal of chemicals by chemical
reactions, adsorption and ion-exchange phenomena on the surface of the solid
matrix, especially when clay is present in the formation, and (iii) the mixing of
injected water with indigenous water in the aquifer, due to the geometry of the
flow pattern and to the mechanism of hydrodynamic dispersion.

Control of base flow. This can be achieved in springs and streams by controlling
water levels in the aquifer supplying water to them.

A water mine. At any instant, a certain, rather large volume of water is stored in
an aquifer. This volume, or part of it, can be mined as a one-time reserve. In some
cases, this may lead to the establishment of a phreatic surface that is lower than the
initial one. In other cases, withdrawal of this volume, or part of it, may lead to a
complete destruction of the aquifer as a source of water, due to the invasion of
water of inferior quality (e.g., seawater).

In general, the yield of an aquifer is a long term average of part of its
replenishment (renewable resource). The yield is also constrained by requiring that
the water quality be maintained below permissible levels of quality standards.
However, under certain, usually economic conditions, albeit very rarely, we may
plan to mine an aquifer (like any other nonrenewable resource), partly or
completely.

We have thus summarized the roles that groundwater can play in the manage-



10 CHAPTER 1

ment of a regional water resource system. We have also suggested that the aquifer
is a system which can perform different functions and that can be managed in
order to achieve desired goals.

The main task of the groundwater hydrologist, water resources engineer, or
planner who deals with a groundwater system, or with a water resource system of
which groundwater is a component, is the management of the groundwater system.
Simply stated, and using the terminology of systems analysis only loosely, manage-
ment of a system means making various decisions (that is, assigning numerical
values to decision variables) aimed at modifying the state of a considered system.
Our reason for modifying the state of a considered system, that is, to bring it from
its existing state to another one, is to achieve certain goals and objectives.

Typically, the same goal or goals can be achieved by making different sets of
decisions (= policies). Management, therefore, includes the selection of the best
policy which will lead to the achievement of a specified goal, or a number of goals
simultaneously. This requires some measure of the relative effectiveness with
which the different alternative policies meet, or approach, the specified goals. The
scalar function of the decision variables which measures the efficiency of the
different alternative policies is called an objective function. Not all policies are
feasible; some violate specified social, economic, or technical constraints and
should not be considered.

We refer to this decision-making activity as solving the management problem.

More specifically, management of a specified aquifer usually means determining
the numerical values of certain decision variables: in order to maximize or
minimize a certain objective function, or functions, subject to certain specified
constraints.

Examples of state variables:
— Water levels.
— Concentration of specified species.
— Land subsidence.
— Sea water intrusion.

Examples of decision variables:
— Areal and temporal distributions of pumpage.
— Areal and temporal distributions of artificial recharge.
— Water levels in steams and lakes in contact with an aquifer.
— Quality of water to be used for artificial recharge.
— Quality of pumped water.
— Capacity of new installations for pumping and/or artificial recharge, their
location, and time schedule of their construction.
— Location of wells for clean-up operations to remove contaminants.

Examples of objective functions:
— Total net benefits (or present worth of total net benefits, if timing of costs
and benefits is taken into account), from operating the system during a
specified period of time, and we wish to maximize the value of this function.
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— Cost of clean-up operations to remove contaminants from an aquifer, and
we wish to minimize this cost.

— Cost of a unit volume of water supplied to the consumer, and we wish to
minimize the value of this function.

— Total consumption of energy, and we wish to minimize the value of this
function.

— The sum of absolute values of the differences between certain desired water
levels and actual ones (or sum of squares of differences), and we wish to
minimize this sum, etc.

Examples of hydrological constraints:

— Water levels everywhere, or at specified locations, should not rise above
specified maximum elevations.

— Water levels everywhere, or at specified locations, should not drop below
specified minimum elevations.

— The discharge of a spring should not drop below a specified minimum.

— Base flow in a stream fed by groundwater emerging from an aquifer should
not drop below a specified minimum.

— The concentrations of certain species in solution in the water pumped at
specified locations should not exceed specified threshold values.

— Land subsidence shuld not exceed specified values.

— Total pumpage should at least satisfy the demand for water in a given
region.

— Pumping (and/or artificial recharge) rates should not exceed installed
capacity of pumping (and/or artificial recharge).

— The residence time for recharge water in an aquifer, before being pumped,
should exceed a certain minimum period.

— The length of an intruding sea water wedge should not exceed a specified
value.

In view of this statement of a groundwater management problem, it is obvious
that forecasting of the response of an aquifer system is an intrinsic part of the
procedure for determining any optimal management policy. We must know the
future values of relevant state variables that will occur in an aquifer as a result of
the implementation of a proposed set of decisions (i) in order to examine whether
they violate specified constraints and (ii) in order fo examine the value of the
resulting level of achieving the objective function.

This book is dedicated to the tool that enables us to make the required
forecasts.

1.3. Groundwater Modeling

As explained in Section 1.2, in the management of groundwater resources, and this
includes pollution control and abatement, a tool is needed in order to predict the
outcome of implementing management decisions. Depending on the nature of the
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management problem, its decision variables, its objective functions, and its
constraints, the ‘outcome’ may take the form of future spatial distributions of water
levels, water quality, land subsidence, etc. This tool is the model.

A model may be defined as a simplified version of the real (here groundwater)
system that approximately simulates the excitation-response relations of the latter.
The real system is very complicated and there is no need to elaborate on the need
to simplify it for the purpose of planning and making management decisions. The
simplification is introduced in the form of a set of assumptions that express our
understanding of the nature of the system and its behavior. These assumptions will
relate, among other factors, to the geometry of the investigated domain, to the way
the effect of various heterogeneities will be smoothed out, to the nature of the
porous medium (e.g., its homogeneity, isotropy, deformability), to the nature of the
fluid (or fluids) involved and to the kind of flow regime that takes place. Because
the model is a simplified version of the real system, there exists no unique model
for a given groundwater system. Different sets of simplifying assumptions will
result in different models, each approximating the investigated groundwater system
in a different way.

In what follows, we shall limit the discussion to mathematical and numerical
models, excluding physical, or laboratory ones. The latter were in use until the
early 70’s as practical tools for solving groundwater problems. With the introduc-
tion of computers and their application in the solution of numerical models,
physical models and analogs have become redundant as tools for predicting future
groundwater regimes.

The selection of the appropriate model to be used in any particular case
depends on

(a) the objective, or objectives, of the investigations, and
(b) the available resources. These include such items as time, budget, skilled
manpower, computers and codes.

The objectives dictate which features of the investigated problem should be
represented in the model, and to what degree of accuracy. In some cases, we may
be satisfied with averaged water levels taken over large areas, while in others we
need water levels at specified points. In some cases, we may overlook land
subsidence due to pumping, while in others the knowledge of land subsidence is an
essential part of the studied problem. Natural replenishment may be introduced as
monthly, seasonal, or annual averages. Pumping may be assumed to be uniformly
distributed over large areas, or it may be represented as point sinks. Obviously, a
more detailed model is more costly and requires more skilled manpower, more
sophisticated codes and larger computers. It is, therefore, important to select the
appropriate degree of simplification in each case.

Most models express nothing but a balance of a considered extensive quantity,
e.g., mass of water, mass of a solute and heat.

The first step in the procedure of modeling is the construction of a conceptual
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model of the problem and the relevant aquifer domain. The conceptual model
consists of a set of assumptions that reduce the real problem and the real domain
to simplified versions that are acceptable in view of the objectives of the modeling
and of the associated management problem. The assumptions should relate to such
items as:

— the geometry of the boundaries of the investigated aquifer domain,

— the kind of material comprising the aquifer (with reference to its homo-
geneity, isotropy, etc.),

— the mode of flow in the aquifer (three-dimensional, or two-dimensional
horizontal),

— the flow regime (laminar, or nonlaminar),

— the properties of the water (with reference to its homogeneity, compressi-
bility),

— effect of dissolved solids and/or temperature on density and viscosity,

— the presence of assumed sharp fluid-fluid boundaries, such as a phreatic
surface or a freshwater — saltwater interface,

— the relevant state variables and the area, or volume, over which the averages
of such variables are taken,

— sources and sinks, of water and of relevant pollutants, within the domain
and on its boundaries (with reference to their approximation as point sinks
and sources, or distributed ones), and

— the conditions on the boundaries of the considered domain, that express the
way the latter interacts with its surrounding.

Usually, the conceptual model is expressed in words as a set of assumptions.
Actually, this set of assumptions constitutes the ‘label’ of the model being
developed. In principle, we should not use a ready-made model for a given
problem, unless we have examined the former’s ‘label’ and decided that indeed our
problem can be described by the same conceptual model.

In the second step, we express the conceptual model in the form of a
mathematical model. The latter consists of (i) a definition of the geometry of the
considered domain and its boundaries, (ii) an equation (or equations) that express
the balance of the considered extensive quantity (or quantities), (iii) flux equations,
that relate the flux(es) of the considered extensive quantity(ies) to the relevant
state variables of the problem, (iv) constitutive equations that define the behavior
of the particular materials — fluids and solids — involved, (v) initial conditions that
describe the known state of the considered system at some initial time, and (vi)
boundary conditions that describe the interaction of the considered domain with
its environment, across the boundaries of the former.

In the continuum approach (Section 1.4) the balance equation takes the form of
a partial differential equation writen in terms of macroscopic state variables, each
of which is an average taken over the representative elementary volume of the
domain considered. In other cases, balances of extensive quantities are stated for
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various forms and sizes of aquifer cells. In such models, the stated variables are
averages over the considered model cells. Boundary conditions are also expressed
in mathematical forms. The most general boundary condition for any extensive
quantity takes the form of equality of the flux of that quantity, normal to the
boundary, on both sides of the latter. Certain simplified forms of this general
condition are commonly derived and employed. (Sections 3.4, 4.3, 5.4, 6.4 and
Subsection 7.3.2.)

A special case is that of the momentum balance. In the continuum approach,
subject to certain simplifying assumptions (included in the conceptual model) as to
the solid-fluid interaction, negligible internal friction in the fluid, and negligible
inertial effects, the averaged momentum balance equation reduces to the linear
motion equation, known as Darcy’s law, used as a flux equation for fluid flow in
porous media. With certain modification, it is also applicable to multiphase flows
such as air-water flow in the unsaturated zone.

In the passage from the real system to the conceptual model and then to the
mathematical one, various coefficients of transport and storage of the considered
extensive quantities are introduced. The permeability of a porous medium (Section
2.1) aquifer transmissivity (Section 2.2), aquifer storativity (Section 4.1) and
porous medium dispersivity (Section 6.2), may serve as examples of such coeffi-
cients. Permeability and dispersivity are examples of coefficients that express the
macroscopic effects of the microscopic configuration of the solid-fluid interfaces of
a porous medium. They are introduced in the passage from the microscopic level
of description to the macroscopic, continuum, one. All these coefficients are
coefficients of the models, and therefore, in spite of the similarity in their names in
diferent models, their interpretation and actual values may differ from one model
to the next.

Let us illustrate this point by an example. To obtain the drawdown in a
pumping well and in its vicinity, we employ a conceptual model that assumes
radially converging flow to an infinitesimally small well in a homogeneous,
isotropic aquifer of constant thickness and of infinite areal extent. The same model
is used to obtain the aquifer’s storativity and transmissivity by conducting a
pumping test and solving the model’s equation for these coefficients. Note that,
following common practice, we refer to these as aquifer’s coefficients and not as
coefficients of the aquifer’s model. However, it is important to realize that the
coefficients thus derived actually correspond to that particular model. One should
refrain from employing these coefficients in a model that describes the flow in the
same domain as one in a finite heterogeneous aquifer, with variable thickness and
with nonradial flow in the vicinity of the well’s location. Obviously, when we do
use coefficients derived by employing one model in another model for a given
domain, the magnitude of the error will depend on the differences between the two
models. In principle, in order to employ a particular model, the values of the
coefficients appearing in it should be determined, using some parameter identifica-
tion technique for that particular model.
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Obviously, no model can be employed in any particular case of interest in a
specified domain, unless we know the numerical values of all the coefficients
appearing in it. Estimates of natural replenishment and a-priori unknown location
and type of boundaries, may be included in the list of model coefficients and
parameters that have to be identified. We refer to the activity of identifying these
model coefficients as the identification problem.

In principle, the only way to obtain the values of these coefficients for a
considered model is to start by investigating the real aquifer system in order to
find a period in the past for which information is available on (i) initial conditions
of the system, (ii) excitations of the system, say in the form of pumping and
artificial recharge (quality and quantity), natural replenishment, introduction of
pollutants, or changes in boundary conditions, and (iii) observations of the
response of the system, say in the form of temporal and spatial distributions of
state variables, e.g., water levels, solute concentrations and land subsidence. If such
period (or periods) can be found, we (i) impose the known initial conditions on the
model, (ii) excite the model by the known excitations of the real system and (iii)
derive the response of the model to these excitations. Obviously, in order to derive
the model’s response, we have to assume for it some trial values of the sought
coefficients. We then compare the response observed in the real system with that
predicted by the model. The sought values of the coefficients are those that will
make the two sets of values of state variables identical. However, because the
model is only an approximation of the real system, we should never expect these
two sets of values to be identical. Instead, we search for the ‘best fit’ between them,
according to some criterion. Various techniques exist for determining the ‘best’ or
‘optimal’ values of these coefficients, i.e., values that will make the predicted values
and the measured ones sufficiently close to each other. Obviously, the values of the
coefficients eventually accepted as ‘best’ for the model, depend on the criteria
selected for ‘goodness of fit’” between the observed and predicted values of the
relevant state variables. These, in turn, depend on the objective of the modeling.
Some techniques use the basic trial-and-error method described above, while
others employ more sophisticated optimization methods. In some methods, a-
priori estimates of values to be expected for the coefficients as well as information
about lower and upper bounds are introduced. In addition to the question of
selecting the appropriate criteria, there still remains the question of the conditions
under which the identification problem, also called the inverse problem, will result
in a unique solution.

Once a mathematical model has been constructed in terms of relevant state
variables, it has to be solved for cases of practical interest, for example, for
planned pumping, or artificial recharge, or for anticipated spreading of a pollutant
from a potential source of pollution in the considered aquifer domain. The
preferable method of solution is the analytical one, because once such a solution is
derived, it can be employed for a variety of planned, or anticipated situations.
However, in most cases of practical interest, this method is not feasible because of
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the irregular shape of the domain’s boundaries, the heterogeneity of the domain,
expressed in the form of spatial distributions of its transport and storage coeffi-
cients, and the irregular temporal and spatial distributions of the various excita-
tions, or sink-source, functions. Instead, numerical methods are employed for
solving the mathematical model.

The main features of the various numerical methods are:

(a) The solution is sought for the numerical values of state variables only at
specified points in the space and time domains defined for the problem
(rather than their continuous variations in these domains).

(b) The partial differential equations that represent balances of the considered
extensive quantities are replaced by a set of algebraic equations written in
terms of the sought, discrete values of the state variables at the discrete
points in space and time mentioned in (a).

(c) The solution is obtained for a specified set of numerical values of the
various model coefficients (rather than as general relationships in terms of
these coefficients).

(d) Because of the very large number of equations that have to be solved
simultaneously, a computer code has to be prepared in order to obtain a
solution, using a digital computer.

Sometimes, the term numerical model is used, rather than speaking of a
‘numerical method of solution’ (of the mathematical model). This is justified on the
grounds that a number of assumptions are introduced, in addition to those
underlying the mathematical model. This makes the numerical model, a model in
its own right. It represents a different approximate version of the real system. It is
sometimes possible to pass directly from the conceptual model to the numerical
one, without first establishing a mathematical model. The numerical model has its
own set of coefficients that have to be identified before the model can be used for
any particular problem.

It is of interest to note that even those who consider the numerical model as one
in its own right, very often validate it by comparing its predictions with those
obtained analytically from a mathematical one (for relatively simple cases for
which such solutions can be derived). One of the main reasons for such a valida-
tion is the wish to eliminate errors resulting from the numerical approximations
alone.

Another important feature of modeling, closely associated with the problem of
parameter identification is that of uncertainty. We are uncertain about whether the
selected conceptual model (i.e., our set of assumptions) indeed represents what
happens in the real aquifer system, albeit to the accepted degree of approximation.
Furthermore, even when employing some identification technique, we are uncer-
tain about the values of the coefficients to be used in the model. Possible errors in
observed data used for parameter identification also contribute to uncertainty in
model parameters. As a consequence, we should also expect uncertainty in the
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values of the state variables predicted by the model. These considerations pave the
way to the development of stochastic models. In the latter, the information on
coefficients appears in the form of probability distributions of values, rather than
as deterministic ones. These probability distributions are derived by appropriate
methods of solving the inverse problem, where the input data also appears in
probabilistic forms. Probabilistic values of model coefficients, will yield prob-
abilistic predicted values of state variables.

A large number of researchers are currently engaged in developing methods
that incorporate the element of uncertainty in both the forecasting and the inverse
problems. Hopefully, more such methods will be made available to the practising
modeler in the future. In this book, beyond the comments made here, uncertainty
and probabilistic modeling are not considered.

1.4. Continuum Approach to Porous Media

An aquifer is a domain occupied by a porous medium. Soil, sand, fissured
rocks, sandstone and Karstic limestone are examples of porous media. However,
ceramics, foam rubber, bread and animal and human tissue, are also regarded as
porous media. Common to all these examples is the presence of both a persistent
solid matrix and a void space within the porous medium domain. The void space
is occupied by one or more fluid phases (e.g., water and air). Another common
feature is that the solid matrix is distributed throughout the porous medium
domain. This implies that samples of a sufficiently large volume, taken at different
places within the domain, will always contain a solid phase. Let us refer to this
volume as an arbitrary elementary volume (abbreviated to AEV).

In an aquifer, water flows through the complex network of pores and channels
comprising the void space. This flow is bounded by the (microscopic) solid-water
interface. In principle, the flow of a fluid in a porous medium may be treated at the
microscopic level, at which we focus our attention at what happens at a point
within the fluid, regarded as a continuum (i.e., overlooking its molecular structure).
For example, for a single fluid that occupies the entire voids space, we could make
use of the Navier—Stokes equations and solve them within the fluid domain,
subject to boundary conditions on the solid-fluid interface that bounds this
domain. However, this approach is usually impractical due to our inability to
describe the complex configuration of this boundary. Moreover, even if we could
solve for values of state variables, e.g., pressure, at the microscopic level, we could
not verify these solutions by measurements at this level.

To circumvent these difficulties, another level of description is needed. This is
the macroscopic level, at which quantities can be measured and boundary-value
problems can be solved. To obtain the description of the flow at this level, we
adopt the continuum approach. This is the same approach that is also used in
order to pass from the molecular level of description to the microscopic one, at
which each phase is regarded as a continuum. According to this approach, the real
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porous medium, in which each (solid, or fluid) phase occupies only a portion of
the AEV mentioned above, is replaced by a fictitious model (Section 1.3) in which
each phase is regarded as a continuum that fills up the entire AEV. We thus obtain
within every AEV a set of overlapping and, possibly, interacting, continua. For
each of these continua, average values, referred to as macroscopic values, can be
taken over the AEV and assigned to its centroid, regardless of whether the latter
falls within the solid or within one of the fluids that occupy the void space.
By traversing the entire porous medium domain with a moving AEV, we obtain
fields of macroscopic variables, which are differentiable functions of the space
coordinates.

Thus, the macroscopic, continuum model of a porous medium obtained by
employing the procedure described above eliminates the need for specifying the
microscopic configuration of the individual phases and enables the solution of
problems of flow through porous media by available methods of mathematical
analysis. The configuration of the void-solid boundary and of interphase bounda-
ries within the averaging volume, as wel as the effect of conditions that prevail on
them, appear in the macroscopic description of the flow (= macroscopic model) in
the form of coefficients. The numerical values of these coefficients have to be
determined experimentally for any given porous medium.

We have still to select the appropriate size for the averaging volume. In
principle, an AEV of any size may be used for that purpose. Once averaged values
over an AEV, say of fluid density, or pressure, have been introduced in the
macroscopic model, we shall construct instruments that measure these averaged
values, i.e., that take averages of the corresponding microscopic values over the
selected averaging volume. Within the range of error introduced by the conceptual
model of the flow process, the predicted values and the measured ones must be
the same. Obviously, for each selected averaging volume, the averaged values of
the state variables will be different. Nevertheless, the question of which value is
more ‘correct’ is meaningless. All values are correct; the size of the averaging
volume to be employed depends on the purpose for which the macroscopic model
is constructed.

The main drawback of the use of an AEYV is that every averaged value must be
accompanied by a label that specifies (like a yardstick) the volume over which this
average was taken. To circumvent this difficulty, we need a universal procedure
that (i) is applicable to all porous media and (ii) will ensure that the averaged
values will remain, more or less, constant, at least for a certain range of averaging
volumes, that corresponds to the range of variations in instrument sizes. This
universal averaging volume is referred to as the representative elementary volume
(abbreviated REV).

The size of the REV is selected such that the averaged values of all geometrical
characteristics (= coefficients) of the microstructure of the void space, or the
void-solid interface, at any point in a porous medium domain, be a single valued
function (or almost so, within an acceptable error range) of the location of that
point only, independent of the size of the REV.
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Bachmat and Bear (1986), in discussing the selection of the size of the REV
that will satisfy the above requirement, start by discussing the distribution of solid
and void space within an REV as a random phenomenon of the space coordinates.
This distribution is random in the sense that given a point within a REV, it is not
known prior to an observation, whether it falls in the void space, or in the solid.
Furthermore, since it is impractical to observe all points within an REV, prob-
ability distributions are considered instead. Accordingly, the spatial configuration
of the void space in the vicinity of a point in a given porous medium is described
by the expected value, the variance and other moments of the void-solid distribu-
tion function. These moments, which characterize the geometry of the void space,
are now nonrandom functions of the space coordinates. Bachmat and Bear (1986)
show that under certain conditions, a good estimate of these geometrical charac-
teristics can be obtained by spatial averaging over the volume of the REV. They
state that, in fact, the volume of the REV should be selected such that the
volumetric averages can be considered as satisfactory estimates of all the relevant
statistical parameters of the void space configuration, i.e., estimates that are free of
the effect of the size of the sample.

Denoting the characteristic dimension of the REV by / ¢say, the diameter of a
sphere) and the length characterizing the microscopic structure of the void space,
by d (say, the hydraulic radius which is equal to the reciprocal of the specific
surface area of the void space), they show that a necessary condition for obtaining
nonrandom estimates of the geometrical characteristics of the void space at any
point within a porous medium domain is

1> d. (1.4.1)

Another condition that sets an upper limit to the size of the REVis | < [,
where [, is the distance beyond which the spatial distribution of the relevant
macroscopic coefficients that characterize the configuration of the void space (e.g.,
porosity, permeability) deviates from the linear one by more than some acceptable
value.

Finally, the selection of the size of the REV is also constrained by the

requirement that
I <L (1.4.2)

where L is a characteristic length of the porous medium domain, over which
significant changes in averaged (= macroscopic) quantities of interest occur.

To illustrate the determination of the size of an REV for a given porous
medium domain, (D), consider, as an example of a geometrical characteristic of
the void space configuration, the ratio U,(x,)/ U(x,), where U(X,) is a volume of a
sphere centered at an arbitrary point x within (D) and U,(x,) is the volume of void
space within U(x,). Figure 1.5 shows the variations of the ratio U,(x,)/ U (x,) as U
increases. For very small values of U, this ratio is one or zero, depending on
whether x, happens to fall in the void space or in the solid matrix. As U increases,
we note large fluctuations in this ratio due to the random distribution of void and
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Fig. 1.5. Definition of porosity and Representative Elementary Volume.

solid within U. However, as U is further increased, these fluctuations gradually
decay until above some volume U = U, they reduce to some small value. If U is
further increased beyond some U = U,,, we may observe a trend in the
considered ratio, due to a systematic variation in the latter, resulting from
macroscopic heterogeneity of the porous medium. The size, U,, of the REV that
will make the considered ratio independent of the selected volume, albeit possibly
dependent on x, should be in the range U,,, < U, < U,,,. For such volume, the
ratio U,/ U, represents the medium porosity, n, at x,.

Once U, has been determined, it is used to derive the macroscopic (continuum)
description of the flow by averaging the microscopic one over it. Obviously, the
selected size of U, must be uniform over the entire porous medium domain. The
macroscopic model obtained in this way describes the flow in terms of macro-
scopic or averaged quantities defined by

— 1
Go(x, 1) =—— JU G, (x’, t;x) dU,(x") (1.4.3)
(Una(x))

Oa

where G, is the state variable of the a-phase, (such that its volumetric average is
physically meaningful), U,, is the volume of the a-phase within U, and x’ is a
point in the REV centered at x. From the discussion presented above, we are
assured that the macroscopic geometrical characteristics (= coefficients) that
appear in the macroscopic model represent properties of porous medium at x. The
average G, of G, as defined by (1.4.3) is called an intrinsic phase average.

Another type of average, called a phase average, defined by

— 1
Ga(x,t)=—J G (x', t;x) dU,(x") (1.4.4)
(Lua(v)

0
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is also often used. The two types of averages are related to each other by
G,=0,G. (1.4.5)

where 0,(= U,,/U,) is the volumetric fraction of the a-phase.

If a volume U satisfying (1.4.1) and (1.4.2) cannot be found for a given porous
medium domain, the latter cannot be treated as a continuum.

Instruments to measure the averaged, macroscopic, quantities must also be of a
size in the range (Up,, Unax), in order to yield observations compatible with values
calculated by the model.

In an analogous way, a representative elementary area (REA) should also be
selected for a porous medium domain, to be used for averaging quantities for
which only areal averages are meaningful.

Throughout this book, it is assumed that the porous medium can be considered
as a continuum in the sense explained above.

1.5. Horizontal Two-Dimensional Modeling of Aquifers

In general, flow through a porous medium domain is three-dimensional. For
example, the specific discharge vector q has the components g,, g,, and g, which
may be all different from zero. Also, the piezometric head, @, usually varies in
space, i.e., ¢ = @(x, y, z, t). However, since the geometry of most aquifers is such
that they are thin relative to their horizontal dimensions (i.e., tens, or hundreds of
meters, as compared to thousands of meters), a simpler approach can be intro-
duced. According to this approach, we assume that the flow in the aquifer is
everywhere essentially horizontal (aquifer-type flow), or that it may be approxi-
mated as such, neglecting vertical flow components. This is strictly true (not just an
assumption) for flow in a horizontal, homogeneous, isotropic, confined aquifer, of
constant thickness and with fully penetrating wells. Nevertheless, the approxima-
tion is still a good one when the thickness of the aquifer varies, but in such a way
that the variations are much smaller than the average thickness (Figure 1.6a).
Actually, we do not totally neglect vertical flow components; as the balance
equations do take into account the effect of vertical flow, e.g., vertical accretion.
What we do neglect is 0¢/0z.

Whenever justified on the basis of the geometry (i.e., thickness versus horizontal
length) and the flow pattern, the assumption of mainly horizontal flow, which is
introduced by assuming vertical equipotentials, ¢ = @(x, y, t), greatly simplifies
the mathematical analysis of the flow in the aquifer. The error introduced by this
assumption is small in most cases of practical interest (see the discussion in
Section 2.2).

The assumption of essentially horizontal flow fails in regions where the flow has
a large vertical flow component as, for example, in the vicinity of partially
penetrating wells (Figure 1.6b), or outlets in the form of springs, rivers, etc.
However, even in these cases, at some distance from the source or the sink, the
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Vertical flow component
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Fig. 1.6. Examples of the hydraulic approach to flow in aquifers. (a) Flow in a confined aquifer with
variable thickness: B(x) < L. (b) Flow in a confined aquifer with partially penetrating wells. (c)
Flow in a phreatic aquifer with accretion. (d) Flow in a leaky confined aquifer (Bear, 1979).
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assumption of essentially horizontal flow is valid again. As a simple rule, one may
assume aquifer-type flow at distances larger than 1.5 to 2 times the thickness of
the aquifer in that vicinity. At smaller distances, equipotentials are no more
vertical, the flow is three-dimensional and should be treated as such.

The assumption of essentially horizontal flow is applicable also to leaky aquifers
(Figure 1.6d). When the hydraulic conductivity of the aquifer is much larger than
that of the semipermeable layer, and the thickness of the first is much larger than
that of the latter, it follows from the law of refraction of streamlines (e.g., Bear,
1972, p. 26) that the flow in the aquifer is essentially horizontal, while it is
essentially vertical in the semipermeable layer. These assumptions, which in cases
of practical interest introduce very small errors, greatly simplify the analysis of
flow in leaky aquifers.

The approximation that the flow is essentially horizontal in phreatic aquifers is
the basis for the Dupuit assumption presented in Section 2.3 (Figure 1.6c¢).

The procedure of representing the flow (and in, fact, other transport phenomena)
as a model of essentially two-dimensional flow in the horizontal plane, is often
referred to as the hydraulic approach, or the aquifer approach. In hydrology of
groundwater, this approach is widely used in modeling flow in aquifers. In Section
2.2 and in Chapter 4, we shall show how a two-dimensional model can be
obtained from a three-dimensional one, by averaging the latter (ie., all the
equations comprising it) over the aquifer’s thickness, assuming vertical equipoten-
tials and taking into account the conditions (of piezometric head and of flux) that
exist at the upper and lower boundaries of the considered aquifer. As a con-
sequence of this procedure, the state variables .in an essentially horizontal flow
model are a function of the horizontal coordinates (say x, y) and of time only.
They are also obtained by averaging their three-dimensional counterpart over the
aquifer’s thickness. For example, the averaged piezometric head, in an aquifer is
given by (Figures 1.6a and c)

. 1 by(x, . 1)
$=9x 0= $(x, 2, ) dz (1.5.1)

by(x, y, 1)

where b, = by(x, y, t) and b, = b,(x, y, t) denote the elevations of the upper and
lower boundaries of the considered (confined, phreatic, or leaky) aquifer (see
Figure 2.4).

1.6. Objectives and Scope

Two classes of problems have been introduced in Section 1.2: the management
problems and the forecasting problems. In Section 1.3 we have also introduced the
identification problem. We have emphasized that no management problem can be
solved without solving first, or simultaneously, the forecasting problem, where
forecasting refers to both quantity and quality of water. Obviously, we cannot
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forecast the future behavior of a groundwater system, unless we know its structure
and coefficients of transport and storage. This information is obtained by solving
the identification problem.

In Section 1.3 we have introduced models and suggested that they are the tool
for making the required predictions. This book is devoted to mathematical and
numerical modeling of aquifer systems and to the solution of the forecasting
problem, primarily by numerical methods.

Section 1.4 introduced the continuum approach as a tool for circumventing
difficulties inherent in any attempt to model what happens at points within the
pore space of a porous medium. All the models presented and discussed in this
book are continuum ones.

Section 1.5 introduced the approximation of essentially horizontal flow that
greatly simplifies the modeling of flow and pollution transport in.aquifers. In
practice, this approach to modeling is employed in all regional studies, while
three-dimensional modeling, i.e., models where the vertical flow component plays
an important role, are employed in cases of a more localized nature. The
horizontal two-dimensional model is obtained from the three-dimensional one by
integration of the latter over the aquifer’s thickness.

Six basic mathematical models are developed and discussed:

(i) Three-dimensional saturated flow through porous media.
(i) Two-dimensional (in the horizontal plane) saturated flow in confined,
phreatic and leaky aquifers.
(iii) Land subsidence.
(iv) Flow in the unsaturated zone.
(v) Pollution in three-dimensional domains and in aquifers.
(vi) Sea water intrusion in coastal aquifers.

The discussion of each model includes the following elements:

(i) Understanding the phenomena involved.

(i) Flux equations and the coefficients appearing in them.
(iii) Balance equations for the considered extensive quantities.
(iv) Initial and boundary conditions.

(v) Complete model.

Chapters 2 to 7 discuss mathematical models and Chapters 8 to 13 discuss
numerical ones. Accordingly, Chapter 2 presents the basic equations of ground-
water motion, first the motion equation for three-dimensional flow and then the
integrated equation for flow in confined and phreatic aquifers.

Chapter 3 starts with the definitions of effective stress and specific storativity.
The latter is used in developing the three-dimensional flow model based on the
mass balanced equation. By inserting the appropriate flux equation into this
balance, a flow equation is obtained in terms of a single dependant variable-
pressure or piezometric head. The partial differential equation that represents the
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mass balance, together with appropriate initial and boundary conditions consti-
tutes the complete model for flow through porous media.

A mathematical model describing land subsidence is included in this chapter
(Section 3.6) as a modification and extension of the flow model.

Chapter 4 presents models of flow in confined, phreatic and leaky aquifers,
based on the essentially horizontal flow approximation. Boundary and initial
conditions are also based on this approximation.

Upon reaching this point, the reader should be able to construct complete
models of groundwater flow, both in three-dimensional domains and in aquifers.

Chapter 5 considers flow in the unsaturated zone. This zone is important as
replenishment passes through it on its downward movement ‘to the aquifer and
because pollutants also move through it with the water.

Changes in groundwater quality, as affected by the various transport and
accumulation processes are discussed in Chapter 6. The main feature here is the
introduction of hydrodynamic dispersion. The general equation of hydrodynamic
dispersion (for both saturated and unsaturated flow) is developed. Following a
discussion of the appropriate boundary and initial conditions, the complete,
mathematical model of the problem of movement and accumulation of a pollutant
is presented. The integrated equation describing pollutants’ transport in aquifers is
developed and discussed.

Chapter 7 deals with the problem of sea water intrusion into coastal aquifers.
Again, the discussion leads to partial differential equations describing saltwater
and freshwater balances, based on the concept of essentially horizontal flow in an
aquifer. In this case, the horizontal flow is assumed to take place within each of the
two zones — the freshwater zone and the saltwater one — with an assumed sharp
interface separating them. The solution of the model will yield the shape and
position of the interface.

This completes the presentation of the methodology of developing mathematical
models, with application to the six model types listed above.

In view of the irregular shape of the aquifer boundaries and the possible
heterogeneity of the aquifer material, analytical methods solutions of the models
described above, although, in principle, superior to any other method of solution,
can seldom be employed. Numerical techniques are the practical tools for solving
these models in cases of practical interest. These techniques are described in
Chapters 8 to 13. The objectives of these chapters are to present the methodology
of constructing numerical models by employing the finite difference and the finite
element methods, and to demonstrate their solution for many of the model types
mentioned above. The complete computer codes (in BASIC) and examples of their
application are also included in these chapters.

Particular care has been taken to ensure easy operation of the programs. This is
accomplished by a unified presentation of the codes, and by writing all input
procedures as interactive processes, in which the user is prompted by the program
to enter all data in response to selfexplanatory questions.



26 CHAPTER 1

All programs are presented in Microsoft BASIC, which seems to be the most
widely available and portable computer language. Machine-dependent statements
have been avoided, in order to ensure flexibility. All programs should run, with no
or very little adaptation, on almost every computer. When using the BASIC
interpreter, some of the programs may turn out to be rather slow, especially for
large systems. Therefore, it is suggested that they be compiled. This will speed up
performance by a factor 10 or 20. All programs in this book admit compilation by
the Microsoft’s BASCOM and QUICKBASIC compilers.

In Chapter 8 the general principles of numerical techniques are introduced, and
a review is given of the main numerical methods. Although the examples in later
chapters are mainly restricted to the finite difference and finite element methods,
other numerical methods, e.g., the analytical element method and the boundary
element method, are also briefly described.

Chapter 9 is devoted to a presentation of the finite difference method,
applicable to problems of steady and unsteady groundwater flow. Because of the
simplicity of this method, the computer programs are relatively simple. Both
implicit and explicit methods are presented.

Chapter 10 describes the finite element method, which is usually more powerful
and more flexible than the finite difference one. The theoretical foundation of the
method is fully covered, and a variety of particular problems are considered. The
presentation of each case includes the complete computer program. The problems
considered are those of steady and unsteady flow in heterogeneous aquifers with
distributed infiltration and local wells, and the problem of flow through a dam,
with a free surface.

In Chapters 11 and 12, numerical models describing the transport of pollutants
by moving groundwater are presented. In Chapter 11, the transport by advection,
which is usually the main mechanism of transport, is considered. The numerical
models include semi-analytical models, based upon an analytical solution of the
groundwater flow problem, and fully numerical models, based on a finite element
solution of the flow problem.

Chapter 12 is devoted to transport by dispersion. In addition to some simple
solutions for one-dimensional transport, numerical models are given for general
two-dimensional problems. Particular attention is paid to the errors that may be
generated by the solution process itself (numerical dispersion). A random walk
method, in which numerical dispersion is avoided, is also presented.

In Chapter 13, the problem of seawater intrusion is considered. Two models are
presented, one for flow in a vertical plane, and one for regional flow problems.
The model for flow in a vertical plane uses a flexible mesh of finite elements,
which follows the motion of the interface between fresh and salt water. The model
for regional flow applies to extended aquifers, in which the flow is mainly
horizontal. A special feature of this model is that it can easily account for an
interface intersecting the impermeable top or bottom boundaries of the aquifer.
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Groundwater Motion

As part of the hydrologic cycle, groundwater is always in motion from regions of
natural and artificial replenishment to those of natural and artificial discharge.
Bodies of stagnant, usually saline, water trapped in various porous geological
formations do exist, but are of little interest to the groundwater hydrologist. When
the salinity level of such water is acceptable, water can be mined from such
nonreplenishable formations, until the resource is depleted.

Two major types of forecasting problems are encountered in the management of
groundwater resources (Section 1.2). The first problem, often called the ‘quantity,
or the groundwater balance, problem’ is one in which the objective is to predict
changes in water levels in response to changes in groundwater withdrawal and
artificial recharge. In the second problem, often referred to as the ‘quality, or
pollution problem’, the objective is to predict future changes in groundwater
quality. In both cases, the knowledge of groundwater motion is required.

This chapter deals with the basic laws that govern the motion of groundwater in
aquifers, and with the porous matrix and aquifer properties appearing in these
laws. The continuum approach, introduced in Section 1.4 is employed and all
variables and parameters have already their average meaning in a porous medium
regarded as a continuum.

2.1. Darcy’s Law and its Extensions
2.1.1. EMPIRICAL, ONE-DIMENSIONAL FORM

In 1856, Henry Darcy (Darcy, 1856) investigated the flow of water in vertical
homogeneous sand filters in connection with the fountains of the city of Dijon
(France). From his experiments, Darcy concluded that the rate of flow (i.e., volume
of water per unit time), Q, is (i) proportional to the cross-sectional area A, (ii)
proportional to the difference in water level elevations in the inflow and exit
reservoirs of the filter (h, — &), and (iii) inversely proportional to the filter’s length,
L. When combined, these conclusions give the famous Darcy formula (or law)

Q=KA(h, — hy)/L (2.1.1)

where K is a coefficient of proportionality to be discussed in Subsection 2.1.2
below. The lengths A, and A, are measured with respect to some common datum
level.

27
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Figure 2.1 shows how Darcy’s law (2.1.1) is extended to flow through an
inclined homogeneous porous medium column. With the nomenclature of this
figure, Darcy’s law takes the form

Q=KA(4,~ $)/L (212)
In (2.1.2), ¢ is the piezometric head (dimension length) defined by
p=z+p/y (2.1.3)

where z is the elevation of the point, p is the pressure, and y is the volumetric
weight of the water. The piezometric head expresses the sum of the potential
energy and pressure energy, per unit weight of water.

The energy loss Ag = ¢, — @, is due to friction in the flow through the narrow
tortuous paths of the porous medium. In Darcy’s law, the kinetic energy of the
water has been neglected as, in general, changes in the piezometric head along the
flow path are much larger than changes in the kinetic energy. Inertial effects have
also been neglected.

With the above definition of piezometric head, the quotient (¢, — ¢,)/L is the
hydraulic gradient (dimensionless). Denoting this gradient by J and defining the
specific discharge, g, as the volume of water flowing per unit time through a unit
cross-sectional area normal to the direction of flow, we obtain

q=KJ (2.1.4)

where g = /A, as another form of Darcy’s law.
Let us consider a point along the column’$ axis and a segment of the column of

Fig. 2.1. Flow through an inclined sand column.
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length s along the column’s axis on both sides of the point. For this case

=K ¢|:—(As/2)_ Bls + a2 (2.1.5)
As

q

where the subscript in g, indicates that the flow is in the s-direction. In the limit, as
As — 0, converging on the point, we obtain

¢|s —(As/2) — ¢|s +(Aas/2) _ _%

li 2.16
A;To As Os ( )
and (2.1.5) reduces to
¢ ¢
=—K =KJ: J=-— . 2.1.7
qS as s s as ( )

This expression gives the component of the specific discharge in the direction s
at any point in a porous medium domain, given K and the spatial distribution of
the piezometric head, ¢.

It should be emphasized that Darcy’s law (2.1.7), expressed in terms of the
piezometric head, ¢, is valid only for a fluid of constant density, i.e., 0 = const.

It is important to note that (2.1.2) states that the flow takes place from a higher
piezometric head to a lower one and not from a higher to a lower pressure. For
example, in the case shown in Figure 2.1 p,/y < p,/v, that is, the flow is in the
direction of increasing pressure: however, it is in the direction of decreasing head.
It is only in the special case of horizontal flow, where z, = z,, that we may write

Q=KA(p,— p)/7L. (2.1.8)

In (2.1.7), g, is considered positive in the positive direction of the s-axis.

Actually, flow takes place only through part of the cross-sectional area, A, of
the column of porous medium shown in Figure 2.1, the remaining part being
occupied by the solid matrix of the porous medium. Since it can be shown that the
average areal porosity is equal to the volumetric porosity, n, the portion of the area
A available to flow is nA. Accordingly, the average velocity, V, of the flow through
the column is given by

V=0mhA =gqgn. (2.1.9)
In (2.1.9), V is the intrinsic phase average velocity, 170, defined, following (1.4.3),
by

—v 1
7 = J VU (2.1.10)
Uoo J(vn

defined following the definition of an intrinsic phase average by (1.4.3). In (2.1.10),
U,, is the volume of voids within an REV and V is the microscopic velocity at
points inside the void space. Similarly, the specific discharge, g, has the meaning of
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a phase average velocity, V, as defined by (1.4.4). Needless to remind the reader
thatg = ¢ ,p=p", etc.

Sometimes, even in the flow of a single homogeneous fluid, part of the fluid in
the pore space is immobile (or practically so). This may occur when the flow takes
place in a fine textured medium where adhesion (i.e., the attraction to the solid
surface of the porous matrix of the fluid molecules adjacent to it) is important, or
when the solid matrix includes a large portion of dead-end pores. In this case,
one may define an effective porosity with respect to the flow through the medium,
ng (< n), such that

V = ging. (2.1.11)

One should clearly distinguish between the specific discharge, to be used, for
example, for determining the volume of fluid passing through a given cross-
sectional area, and the average velocity, or simply ‘velocity’, to be used, for
example, for front or particle movements. Both concepts should not be confused
with the (actual, or microscopic) local velocity of the fluid at (microscopic) points
inside the void space. Considering dimensions, one should note that g, ¥, and K
have the same dimensions

l[q=LT;  [V]=LT, [K]=LT (2.1.12)

2.1.2. HYDRAULIC CONDUCTIVITY

The coefficient of proportionality, K, appearing in Darcy’s law (2.1.2) is called
hydraulic conductivity of the porous medium. In an isotropic medium, it may be
defined, using (2.1.4), as the specific discharge per unit hydraulic gradient. It is a
scalar (dims. L/T) that expresses the ease with which a fluid is transported through
the tortuous void space. It is therefore a coefficient that depends on both matrix
and fluid properties. The relevant properties are the density, o, and the viscosity,
# (or in the combined form of the kinematic viscosity, v). The relevant solid
matrix properties are mainly grain- (or pore-) size distribution, shape of grains (or
pores), tortuosity, specific surface, and porosity. The hydraulic conductivity K may
be expressed as

K =kog/u=kg/v (2.1.13)
where g is the acceleration of gravity and where k (dims. L?) — called the

permeability of the porous medium — depends solely on the properties of the
solid matrix.

Various formulas relating k to the various properties of the solid matrix are
presented in the literature. Some of these formulas are purely empirical, as, for
example

k= cd? (2.1.14)

where ¢ is a dimensionless coefficient, and d is an effective grain diameter, say,
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dyo. Krumbein and Monk (1943) suggest ¢ = 6.17 X 107, so that for v =
107¢ m*/s (corresponding to water at 20°C), one obtains cg/v =62 m™"'s™'. As an
average, the value of 100 m! s! is often used.

Another example is the Fair and Hatch (1933) formula developed from
dimensional considerations and verified experimentally

_1|a=n'{_a ¢ P |*|"
5[

where B is a packing factor, found experimentally to be about 5, a is a sand shape
factor, varying from 6.0 for spherical grains to 7.7 for angular ones, P, is the
weight percentage of sand held between adjacent sieves, and d,, is the geometric
mean diameter of the adjacent sieves.

Purely theoretical formulas for permeability are obtained from theoretical
derivations of Darcy’s law. Usually, such formulas include numerical coefficients
which have to be determined empirically. An example is the Kozeny—Carman
equation

3
n

k=G, m‘ (2.1.16)
where M, is the specific surface area of the solid matrix (defined per unit volume
of solid) and G, is a coefficient for which Carman (1937) suggested the value of §.

Under certain conditions, the permeability, k, may vary with time. This may be
caused by external loads which change the structure and texture of the solid matrix
by subsidence and consolldatlon by the solution of the solid matrix (which over
prolonged times may produce large channels and cavities), and by the swelling of
clay, if present within the void space. When a soil contains argillaceous material,
drying of the soil may shrink the clay, especially bentonite, causing the permea-
bility to air of the dried soil to be higher than for water. Fresh water in a soil
sample may cause the clay to swell as compared with salt water, thereby reducing
the permeability. Biological activity in the medium may produe a growth which
tends to clog the matrix, thus reducing k with time. Clogging may also be caused
by fines carried by the water (e.g., in artificial recharge).

Various units are used in the practice for the hydraulic conductivity K (dims.
L/T). Hydrologists prefer the unit m/day (meters per day). Soil scientists often use
cm/sec. In the SI system, the unit m/s is used. In the U.S.A., as in many countries
using the English system of units, two other units are commonly employed by
hydrologists. One is a laboratory, or standard, hydraulic conductivity, defined as
the total discharge (Q) of water at 60°F, expressed in gallons per day, through a
porous medium cross-sectional area (A) expressed in ft? under a hydraulic
gradient, (¢, — ¢,)/L, of 1 ft/ft. With this definition, the units of K are gal/day ft2.
In a similar way, a field, or aquifer, hydraulic conductivity is defined as the
discharge of water at field temperature, through a cross-sectional area of an
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aquifer one foot thick and one mile wide under a hydraulic gradient of 1 ft/mile.
The unit is the same as for the laboratory K. Following are some conversions

among these units.

1 US gal/day ft> = 4.72 X 1073 cm/sec = 4.08 X 10~2 m/d.

Permeability, k (dims. L), is measured in the metric system in cm?, or in m? In
the English system, the unit is fit2. For water at 20°C, we have the conversion (with

v =107%m?%s)

1 cm/sec is equivalent to 1.02 X 1075 cm? = 10~ m2.

Reservoir engineers use the unit darcy defined by

1 cm®/sec/cm’ X 1 centipoise

1 darcy =

with

1 atmosphere/cm

1 darcy = 9.8697 X 10~ cm? = 1.062 X 10~'! ft?

equivalent to

9.613 X 10~* cm/sec (for water at 20°C)

or to

1.4156 X 1072 US gal/min ft? (for water at 20°C).

Table 2.1 gives a summary of some values of hydraulic conductivity and

permeability (Irmay, in Bear et al., 1968).

Table 2.1. Typical values of hydraulic conductivity and permeability?

—log,o+ K(cm/sec) —2 —1 0 1 3 4 5 6 7 8 9 10 11
Permeability Pervious Semipervious Impervious
Aquifer Good Poor None
Clean Clean sand or Very fine sand, silt,
Soils gravel sand and gravel | loess, loam, solonetz
Peat Stratified clay Unweathered clay
Good Breccia,
Rocks Oil rocks Sandstone |limestone, L
. granite
dolomite
—log, o k(cm?) 4 5 6 8 9 10 11 12 13 14 15 16
[ [ L e
log, o k(md) 7 6 5 3 2 | 0 -1 -2 -3 -4 -5

2 From Bear et al. (1968).
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2.1.3. RANGE OF VALIDITY

Column experiments indicate that as the specific discharge, ¢, increases, the relation-
ship between g and the hydraulic gradient, J, gradually deviates from the linear
relationship expressed by Darcy’s law. Figure 2.2a shows this deviation. Therefore,
it seems reasonable to define a range of validity for Darcy’s linear law.

In flow through conduits, the Reynolds number, Re, which is a dimensionless
number expressing the ratio of inertial to viscous forces acting on the fluid, is used
as a criterion to distinguish between laminar flow occurring at low velocities and
turbulent flow occurring at higher velocities (see any text of fluid mechanics). The
critical value of Re between laminar and turbulent flow in pipes is around 2000.
By analogy, a Reynolds number is defined also for flow through porous media

Re=gqd/v (2.1.17)

where d is some representative microscopic length characterizing the solid matrix,
and v is the kinematic viscosity of the fluid. Although by analogy to the Reynolds
number for pipes, d should be a length representing the cross-section of an
elementary channel of the porous medium, it is customary (probably because of
the relative ease of determining it) to employ for d some representative length of
the grains (in an unconsolidated porous medium). Often the mean grain diameter
is taken as the length dimension 4 in (2.1.17). Sometimes d,,, that is, the diameter
such that 10% by weight of the grains are smaller than that diameter, is mentioned
in the literature as a representative grain diameter. Collins (1961) suggested d =
(k/n)'’?, where k is the permeability and n is the porosity, as the representative
length, d. On the basis of theoretical analysis (Bachmat and Bear, 1987), this
seems to be a better choice.

In spite of the various definitions for 4 in (2.1.17), practically all evidence
indicates that Darcy’s law is valid as long as the Reynolds number does not exceed
some value between 1 and 10. Most groundwater flows occur in this range, except

J? JA

/

- /

st +
— ] /
1 &' ; //
< | / /
I { /+ / I
| | /
i : '*'///‘\Darcy’s law / I m
Ry W/ ,
I tana’' = 1/K / . /
g L

@ a (b) q

Fig. 2.2. Schematic curves relating J to q.



34 CHAPTER 2

in the very close vicinity of large pumping or recharging wells, or large (point)
springs. Large Reynolds numbers may also be observed in very porous aquifers
such as cavernous limestone, and in the flow through breakwaters constructed of
gravel, or even larger stones.

In fine grained soil, e.g., clay, there are indications that there exists also a lower
limit to the validity of Darcy’s law. Figure 2.2b shows some typical schematic J —q
relationships at very low gradients.

Curve I in Figure 2.2b indicates the existence of some minimum, or threshold
gradient J = J,, below which there is practically no flow. CurvelIll in Figure 2.2b
shows a faster growth of g with J than is indicated by Darcy’s law. In curve II, the
rate of growth of ¢ is smaller. For curve I, we have

q=0, forJ < J,,
q=K({ —J), forJ >, (2.1.18)

Among explanations presented in the literature for the non-Darcy behavior in
fine grained materials, (usually not in aquifers) we may mention (i) pores may be
very small, such that water molecules in them are strongly influenced by the
double layer effects of the clay particles. Because water molecules are polar, water
near the electrically charged clay particles has a more crystalline structure which
causes the viscosity to be higher than ordinary water. Under such conditions, a
minimum hydraulic gradient is required to cause water movement, (ii) the effect of
streaming potential. As water moves near the clay surface, it carries along some
cations in the diffuse layer. The cations are electrically attracted to the clay
particles, a fact that produces resistance to the movement of the cations. This, in
turn, produces a drag on the moving water. The potential difference due to this
migration of cations is called the streaming potential; it acts in the direction
opposite to that of the flow, (iii) non-Newtonian behavior of the fluid in capillary
spaces, and (iv) electroosmotic counterflow.

Some of these phenomena are important in connection with the thin water films
that remain on soil particles in drained pores in unsaturated flow.

2.1.4. THREE-DIMENSIONAL MOTION EQUATION

The experimentally derived equation of motion in the form of Darcy’s law (2.1.4)
or (2.1.7), is limited to one-dimensional flow of a homogeneous incompressible
fluid. When the flow is three-dimensional, the generalization of these equations is

q=KJ=-—K grad ¢; V=gq/n (2.1.19)

where V is the velocity vector with components V,, V), and V, q is the specific
discharge vector, with components q,, g,, ¢, in the directions of the Cartesian,
xyz, coordinates, respectively, and J = —grad ¢ = —V¢ is the hydraulic gradient,
with components J, = —0¢/0x, J, = —3¢/dy, J, = —0¢/0z, in the xyz directions,
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respectively. When the flow takes place through a homogeneous isotropic medium,
the coefficient K is a constant scalar, and (2.1.19) may be written as three
equations

q, =KJ,=—K 0¢/0x =nV,; q, =KJ, =—K 9¢/dy=nV,;

g, =KJ, =—K 0¢/0z =nV,. (2.1.20)
The flow in any direction indicated by the unit vector 1s is given by

q,=q - 1s=—K 0¢/0s =nV,. (2.1.21)

Equations (2.1.19) through (2.1.20) remain valid also for three-dimensional
flow through inhomogeneous media, where K = K (x, y, 2), as long as the medium
is also isotropic. Flow in anisotropic media is discussed in Subsection 2.1.6.

2.1.5. COMPRESSIBLE FLUID*

For a homogeneous compressible fluid (i.e., no dissolved components) under
isothermal conditions, o = p(p), the piezometric head, ¢*, was defined by
Hubbert (1940) as

p dp
* = — . 2.1.22
prect L, go(p) ( )

Often, ¢* is referred to as Hubbert’s potential. For such a fluid, the motion
equation (we may still refer to it as Darcy’s law) is

q=KJ=—K grad ¢* J=-Vg* (2.1.23)

2.1.6. ANISOTROPIC POROUS MEDIA

A porous medium domain is said to be homogeneous with respect to its permea-
bility, if the latter is the same at all its points. Otherwise, the domain is said to be
heterogeneous. 1f, however, the permeability at a considered point is independent
of direction, the porous medium is said to be isotropic at that point. Otherwise, the
porous medium is said to be anisotropic. Similar definitions apply to other
properties of porous media or of aquifers.

In many cases, aquifers are anisotropic. This may happen, for example, when
the sediments comprising the aquifer are such (i.e., flat shaped mica particles) that
when deposited, the resulting porous medium has a higher permeability in one
direction (usually the horizontal, unless later tilting of the formation occurs) than
in other directions. Both sedimentation and the stress produced by the material,
cause flat particles to be oriented with their longest dimension parallel to the plane
on which they settle. Later, the flow itself, in its predominant direction, produces
more developed channels parallel to the bedding plane than in other directions,
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thus making the material anisotropic. In carbonate rocks, the flowing water
dissolves the rock, producing solution channels that develop, often from very small
fissures, in the direction of the predominant flow. In some soils, structural fissures
develop more readily in one direction than in others, and the soil exhibits
anisotropy.

An inhomogeneous material composed of alternating layers of different textures
is equivalent in its overall behavior to an homogeneous anisotropic porous
medium (Bear, 1972, p. 155). However this equivalence is valid only when the
thickness of the individual layers is much smaller than lengths of interest within the
porous medium domain. For example, it is meaningless to determine the equiva-
lent anisotropic permeability of such a domain from a core whose size is smaller
than the thickness of a single layer.

Consider the horizontal flow parallel to the layers in the stratified confined
aquifer shown in Figure 2.3a. Equipotentials, ¢ = const. are vertical. The total
discharge Q is the sum of the discharge rates, Q,, of the individual layers.
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Fig. 2.3. Flow parallel (a) and normal (b) to layers.
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Employing the nomenclature of Figure 2.3a, we obtain

0-20; 8=18; o-kp<t

=1 i=

Ag >’f p o Ag
=—" ) KB=K'B——
Q L -1 o “ L ’

1 N
Ki=— L KB (2.1.24)

1=

where K[ is the equivalent hydraulic conductivity parallel to the layers in the
aquifer.
For flow normal to the layers (Figure 2.3b), the equivalent hydraulic conduc-

tivity, K X, is obtained from

0= g B gy OOy ey B9

Bl BZ N
Q ¢ B OB
A = -Ia ; L == ,
p=¢—¢,= ,_.( $) = 2K T KA
=§ﬁ 2.1.25
Kt]:(,] i=1 Kl (.. )

It is of interest to note that if one of the K/s is zero in (2.1.25), K é!, =0, i.e., the
whole system is rendered impervious whereas in(2.1.24)such a layer simply does
not contribute to the flow. However, it also follows from (2.1.25) that the flow is
governed by the resistance (= B/KA) of the layers, i.e., by the layer of highest
resistance, and not by their K;’s and B;’s separately.

From (2.1.24) and (2.1.25) it follows that K{ > KU, ie, the hydraulic
conductivity is greater in the direction of stratlﬁcatlon

Bear (1972), p. 155, shows that similar results are obtained when the imposed
hydraulic gradient makes any arbitrary angle with the layers. He uses this analysis
to show that when the layers are alternating, ie., (K;, B)), (K, B,), (K,, B)),
(K;, By) ..., with each of them much thinner than the entire porous medium
domain, the latter behaves as an equivalent homogeneous anisotropic porous
medium.

When written for a homogeneous anisotropic porous medium, Darcy’s law,
which in the form of (2.1.20), is written for a homogeneous isotropic medium,
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takes the form

qx = Kxx"x + ny‘ly + sz"z’
a, =K,J, +K,J, +KJ,
g, =K, J, +K,J, +K,J.. (2.1.26)

X

In (2.1.26), q,, q,, and g, are the components in the x, y, and 2 directions,
respectively, of the specific discharge vector q; J,, J,, J, are the components of the
hydraulic gradient vector J; K,,, K,,, . . ., K, are nine constant coefficients. In an
inhomogeneous medium, each of these coefficients may vary in space.

The nine coefficients appearing in (2.1.26) are components of the second rank
tensor of hydraulic conductivity of an anisotropic medium, K. Detailed discussions
on the nature of second rank tensors and on methods for treating them, is beyond
the scope of this book. The reader is referred to texts on tensor analysis (e.g.,
Morse and Feshbach, 1953; Spiegel, 1959; Aris, 1962). Symbolically, we write K

in the matrix form

Kxx ny sz K K
K] = | Ky Kyy Kyz > K] = |:Kxx nyJ (2.1.27)
sz sz Kzz » »

in three-and two-dimensional spaces, respectively.

The hydraulic conductivity tensor is symmetric, that is K,, = K,; K,, = K,
and K, = K,,. This means that actually only six distinct components in three-
dimensional flow, and three such components in two-dimensional flow, are needed
for fully defining the hydraulic conductivity.

Equations (2.1.26) may be writen in several compact forms, for example

q, =K,J

'/I;

q=K . J’

o¢
=—K ; =—K- -V 2.1.28
ql y axl ’ q ¢ ( )

where subscripts i and j stand for x,, x, respectively, with x;, = x, x, = y and
x; = z. In (2.1.28), we have employed Einstein’s summation convention (or the
double index convention) according to which in any product of factors, a suffix
(here subscript) repeated twice and only twice is held to be summed over the
entire range of values (1,2,3 and 1,2 for three- and two-dimensional spaces,
respectively). The component K,’x/ (= K,) may be interpreted as the contribution
to the specific discharge ¢,, in the x, direction, produced by a unit component of
the hydraulic gradient, J,/, in the x, direction. The total specific discharge is the
sum of partial specific discharges caused by J, , J,, and J, .

While the hydraulic conductivity of a porous medium (expressed symbolically
by K) is independent of the coordinate system which we happen to use, the
magnitude of each component, K,, depends on the chosen coordinate system.
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Texts on tensor analysis give the rules of transformation of these components from
one coordinate system to another. It is also shown in these texts that it is always
possible to find three mutually orthogonal directions in space such that when these
directions are chosen as the coordinate system for expressing the components K, ,
we find that K, = 0 for all i # j and K;; # O for i = j. These directions in space
are called the principal directions of the anisotropic porous medium (actually of
the permeability of the medium).

When the principal directions are used as the coordinate system, (2.1.27)
becomes

K, 0 0 X 0
Kl=] 0 K, O |; K] = [ 0"" K } (2.1.29)
0 0 kK, 4
and (2.1.26) reduces to
q, =K.J,; q, =K,J,; q, =K,J, (2.1.30)

where K, =K., K, =K, K, = K,.

It is of interest to note that from (2.1.30) it follows that in an anisotropic porous
medium, the specific discharge, q, and the hydraulic gradient, J, are not colinear
(except when J is along one of the principal directions). The angle, 6, between
them is given by

cos@=q-J/q), q=Iq|,J=|J| (2.1.31)

Since K is a second-rank tensor, the transformation of its components Kx;, in an
x, (i =1, 2, 3) coordinate system, into components K ;.’,) in another, x; (i =
1, 2, 3), coordinate system, obtained from the latter by rotation, is given by

K;',,} = K, cos(1x;, 1x,)cos(1x;, 1x)) (2.1.32)

where 1x, 1x;, 1x , 1x; indicate unit vectors along the respective axes. In fact, to
establish that the nine entities K, are indeed components of a second-rank tensor,
we must show that they transform according to (2.1.32).

2.1.7. THE GENERAL MOTION EQUATION

In Subsection 2.1.1, following the work of Henry Darcy (1856), Darcy’s law was
presented as an empirical law. Over the years, and especially in the past 30 years,
a number of researchers have attempted to derive Darcy’s law or, more generally,
the motion equation for a fluid phase in a porous medium, by theoretical considera-
tion. A review of these works is beyond the scope of this book (see, for example,
Bear (1972), Hassanizadeh and Gray (1979a, b), Bear and Bachmat (1986,
1987), Bachmat and Bear (1986)). Although a number of different approaches
have been employed in these researches, most of them recognize that the motion
equation for a fluid phase inside the void space of a porous medium, must be
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obtained by considering the momentum balance equation (often referred to as the
motion equation) of that phase, regarded as a continuum. Accordingly, they derive
the motion equation for a fluid present in the void space of a porous medium by
taking an average of the motion equation (= momentum balance equation) of that
phase, where the average is performed over the volume of the phase within a
Representative Elementary Volume (Section 1.4) of the porous medium. By intro-
ducing a number of simplifying assumptions, and especially by assuming that (i)
the inertial effects, and (ii) the internal friction inside the fluid, are negligible, in
comparison with the drag produced at the fluid-solid interface, the following
(macroscopic) motion equation has been obtained for the case of a single fluid
(subscript w) that occupies the entire void space (i.e., saturated flow)

k
V,—V,=——(Vp, +0,8V2) (2.1.33)
nu,

where V_ and V; denote the (intrinsic phase) average velocities of the fluid and of
the solid (subscript s), respectively, p,, u,, and p, denote the fluid’s density,
viscosity, and pressure, respectively, z denotes elevation and k denotes the
possibly anisotropic permeability. For an anisotropic porous medium, the permea-
bility is a second rank symmetric tensor which depends only on the porosity and
on the (microscopic) configuration of the solid-fluid interface.

In (2.1.33), —(Vp,, + p,8Vz) represents the driving force, per unit volume of
fluid, due to pressure gradient and to gravity. This force is balanced by the drag or
resistance to the flow, at the solid-fluid interface, expressed by n(V,, — V )uk™.
Written in this form, Darcy’s law states that the drag is proportional to the fluid’s
velocity, relative to the soil skeleton, proportional to the fluid’s viscosity and
inversely proportional to the property k/n of the porous medium.

Thus (2.1.33), and actually any of the various forms of Darcy’s law, or the
motion equation, state that in the absence of the inertial effects, the resistance to
the flow is linearly proportional to the specific discharge relative to the (possibly
moving) solids. In indicial notation and Cartesian coordinates, (2.1.33) takes the
form

Vo =—i(%+pwg 9z ) ij=1,2,3 (2.1.34)

T nu, \ Ox, ax,

where Einstein’s summation convention is employed.

Equation (2.1.33) is the general motion equation (we may still refer to it as
Darcy’s law) for saturated flow of a single fluid in an anisotropic and inhomo-
geneous porous medium, ie., where k = k(x, y, z). In this equation, the fluid’s
density may depend on pressure, concentration of dissolved matter, and tempera-
ture. For p,, = 0,(p,), the right-hand side of (2.1.33) reduces to —(1/n)K - Vg*
where K=kpo,/u, . For p, = const, the right-hand side reduces to —(1/n)K - V4.

An important feature of the theoretically derived motion equation (2.1.33) is
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the presence of the (intrinsic phase average) solid velocity, V. From (2.1.33) it
follows that Darcy’s law gives the velocity of the fluid with respect to the (possibly
moving) solid. In terms of specific discharge, q = nV, relative to a fixed
coordinate system, and q, = q — nV, = specific discharge relative to the solid, we
obtain

K
0 == (VP +0g¥2) (2.1.35)

where we have omitted the superscript w and p, u, and p represent (intrinsic
phase) average values. When V,; = 0, e.g,, in a nondeformable porous medium, q,
= q. It may be noted that this theoretically derived form of Darcy’s law is in
agreement with Hubbert’s (1940) formulation for flow of a compressible fluid (see
Subsection 2.1.5).

In general, when dealing with groundwater flow problems, we may assume V, =
0, although (as we shall see in Section 3.2) we do take into account V; # 0 in the
considerations leading to the concept of specific storativity. When dealing with
land subsidence due to pumping (Section 4.5), the effect of V, # 0 may have to
be taken into account.

In conclusion, we shall use (2.1.33) whenever o # const. Often we shall
approximate q, by q. For x, y, z that are principal directions, we shall often write

—_ ke Op
qX # ax
k k, Op
q=—" (Vp + pgVz - 9P 2.1.36
(VP +pgV) g = == (2.1.36)
k. | 9p
=— = + og |.
4 H (az pg)

2.1.8. FLOW AT LARGE Re

In the range of validity of Darcy’s linear law, ie., Re < 1—10, the viscous forces
that resist the flow are predominant. As the flow velocity increases, a region of
gradual transition is observed, from laminar flow, where viscous forces are
predominant, to still laminar flow, but with inertial forces governing the flow.
Often, the value of Re = 100 is mentioned as the upper limit of this transition
region in which Darcy’s law is not valid. Some authors explain the deviation from
the linear law by the separation of the flow from the solid walls of the solid matrix
caused at large Re by the inertial forces. This occurs at a gradually increasing
number of (microscopic) points at the fluid-solid interface, where the flow
diverges, or is cured. At still higher values of Re (say, Re 150—300), the flow
becomes really turbulent.

Bachmat and Bear (1986, 1987), by averaging the (microscopic) momentum
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balance equation for a Newtonian incompressible fluid (i.e., Navier—Stokes equa-
tion), derive the (approximate) average momentum balance equation (= motion
equation)

v v 9%g d’q
oy S - noy )y
0 ( ot ' 0x, ) ( Ox,0x,  Ox,0x,

op 0z -
T+ nuk, Tr,q,=0 (2.1.37)

+
" ox, ox,

where T7 is a coefficient that expresses the static moment of the oriented S,, areas
with respect to planes passing through a point, per unit volume of the void space;
the point serves as a centroid of an REV and S, is the surface area of intersection
of the void space with the (say, spherical) surface of the REV.

Each term in (2.1.37) represents a force. The first term represents the inertial
force due to acceleration, both local and convective. The second term represents
the viscous resistance due to internal friction inside the fluid phase. The third term
represents the driving force due to pressure gradient and gravity. The last term
represents the drag resistance caused by the fluid-solid interaction. When the first
two terms are neglected (with respect to the remaining ones), we obtain Darcy’s
linear law, say (2.1.33). When only the second term is neglected, we obtain a
motion equation that includes the effect of the inertial forces. This equation should
be used at high Reynolds numbers.

There is no universally accepted simplified nonlinear motion equation (that is,
relationship between J and q) which is valid for Re > 1—10. Many such
relationships appear in the literature. Most of them have the general form
(Forchheimer, 1901)

J=Wq+bg? or J=Wg+bg", 16<m<?2 (2.1.38)

where J = |J| and W and b are constants. For example, Kozeny and Carman (see
Scheidegger, 1960) suggested

1- n)zv 360 —n) ,
J =180 + 2.1.39

¢ gn’d? d agn’d 1 ( )
where a and B are shape factors, v is the fluid’s kinematic viscosity and d is the
grain diameter. Ergun (1952) suggested a similar equation, but with 150 replacing
180 and 1.75 replacing 38/4. Ward (1964) proposed

v 0.55
J=—qg+—— q% k=d?/360. 2.1.40
gk q g Tk q ( )
Most groundwater flows occur at Re well within the laminar flow range, where
the linear Darcy law is applicable. Flow at large Re may sometimes occur in
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Karstic formations or in aquifers in the vicinity of outlets, i.e., very close to wells,
springs, etc.

The effect of medium anisotropy on flow at large Re is more complicated.
Barak and Bear (1981), who investigated this problem, suggested the following
equation of motion

Jo=/8)w,q +Buq,949/89 + Bx9,9/8 (2.1.41)

as a good approximation for a Newtonian fluid. In this equation, w,, 87, and 8;,,
are tensors of the second, third, and fourth orders, respectively, which represent
matrix properties only. At low Re, the last two terms on the right-hand side of
(2.1.41) vanish. The last term describes the effect of matrix nonsymmetry.

2.2. Agquifer Transmissivity

Let a confined aquifer’s thickness, B, vary such that B(x, y) = by(x, y) — b\(x, y),
where b(x, y) and b,(x, y) are the elevations of its fixed bottom and ceiling
(Figure 2.4). Employing (2.1.20), the total discharge per unit width through the
entire thickness of the aquifer, can then be expressed by

ba(x, y) by(x, y)
Q.= q,dz =— K (d¢/0x) dz,

by(x, y) b(x, y)
ba(x, y) by(, y)

Q,= q,dz = — K (0¢/0y) dz. (2.2.1)
bi(x y) by(x, y)

Datum level

\
SIS

Fig. 2.4. Flow through a confined aquifer.
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In the general case, Q" = Q’(x, y), ¢ = ¢(%, y, z) and K = K(x, y, 2).
Whenever we have to integrate a derivative, or to differentiate an integral, we
make use of Leibnitz’ rule (see any text on advanced calculus)

9 [@ ‘) df (x, ) da db
- ,t)de = ————=dt + f(x,a) — — f(x, b)) —.(2.2.2
P Lm f6 1) Lm » @) 5= f(x b) 5 - (222)
Applying this rule to (2.2.1), we obtain for the special case of K = K (x, y)

e kg P _ x| 59B _ 9b, 9b,
Q,=~KB -~ K[¢ax $(x 3 b) S+ B(x 3 b) ]

, 34 . 3B ab, ab,
0,=-KB 3£ - K [¢—a; ~ 6% 3, b) 3+ 653 ) a—y]~ (223)

dy

Or, in the vector form

Q = —KBV'g? - K[&V’B —@(x, 5 b)V'b, + d(x, y, b)V’'b|] (2.2.4)
where
- by(x, y)
p(xy) =5 J #(x, y,2) dz (2:2.5)
bi(xy)

is the average piezometric head along a vertical line at point (x, y). The prime
symbol in Q’ and in V’( ) indicates that the vector and vector operation are in
the xy-plane, only. Thus
a( ) 9 )
\A =—1Ix+—"1 2.2.6
()= B+ (2:26)
where 1x and 1y are unit vectors in the x and y directions, respectively.
_ If we now assume essentially horizontal flow, that is, vertical equipotentials,
¢ = ¢(x, 5, b)) = ¢(x, y, b)), Equation (2.2.4) may be approximated by

Q' =-TxyV'd,  Txy)=Kxy)B(xy) (2.2.7)

because V'.B=V'b,—V'b,.

The product KB, denoted by 7, which appears whenever the flow through the
entire thickness of the aquifer is being considered, is called transmissivity. It is an
aquifer characteristic which is defined by the rate of flow per unit width through
the entire thickness of an aquifer per unit hydraulic gradient. The concept is valid
only in two-dimensional, or aquifer-type flow. In three-dimensional flow through
porous media, the concept of transmissivity is meaningless. It should be noted that
the thickness of the aquifer, B, is not necessarily constant.
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The error resulting from employing (2.2.7), based on the assumption of essen-
tially horizontal flow, is given by the second term on the right-hand side of (2.2.4).

Another case of interest is K = K (x, y, z), but we immediately introduce the
assumption of essentially horizontal flow, that is ¢ = ¢(x, y) in (2.2.1). Then (2.2.4)
leads to

b,

Q' =-T(x,y)V'g, T(x,y)= J K(x,y,z)dz = KB. (2:2.8)

It can easily be shown that the assumption of vertical equipotentials, i.e., #(x, y,
b) = ¢(x, y, b)) = §(x, y) leads to V'@ = V'4, i.e., the gradient of the average
head is equal to the average of the head gradient. Equations (2.2.7) and (2.2.8) are
identical if ¢ is understood to mean @.

For a layered aquifer with horizontal stratification, K = K (z), Equation (2.2.8)
becomes

B

Q' =-TV'g, T= J K(z)dz (22.9)

where we have assumed essentially horizontal flow in the aquifer. When the
aquifer is composed of N distinct homogeneous layers, each with thickness B, and
hydraulic conductivity K|, Equation (2.2.9) reduces to

N
Q' =-TV'¢, T= Y BK, (2:2.10)

Following the discussion above, (2.2.10) is valid as an approximation also when
B, =B,(x,y)and K, =K, (x, y).

We note that by assuming horizontal flow, we also assume a hydrostatic
pressure distribution in the aquifer, i.e., 0p/dz = —pg.

As indicated in Section 1.5, the assumption of essentially horizontal flow may
be extended also to leaky aquifers (Figure 1.6d). Accordingly, the concept of
transmissivity may also be extended to such aquifers, with T defined by (2.2.7).

2.3. Dupuit Assumption

A phreatic aquifer has been defined in Section 1.2 as one in which a water table
(or a phreatic surface) serves as its upper boundary. We have also introduced the
fact that actually, above a phreatic surface, which is an imaginary surface, at all
points of which the pressure is atmospheric, moisture does occupy at least part of
the pore space (Figure 1.3). The capillary fringe was introduced as an approxima-
tion of the actual distribution of moisture in the soil above a phreatic surface.

Figure 2.5 shows how the actual moisture distribution is approximated by a step
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Fig. 2.5. Approximations of phreatic surface and capillary fringe.

distribution, assuming that no moisture is present in the soil above a certain level.
This step defines the height, A, of the capillary fringe. Obviously, this approxima-
tion is justified only when the thickness of the capillary fringe thus defined is much
smaller than the distance from the phreatic surface to the ground surface. In the
capillary fringe (as in the entire aerated zone above the phreatic surface), pressures
are negative; therefore, they cannot be monitored by observation wells which serve
as piezometers. A special device, called tensiometer, is needed in order to measure
the negative pressures in the aerated zone (Figure 5.5b and further details in
Section 5.1). Water levels in observation wells that terminate below the phreatic
surface give elevations of points on the phreatic surface. Using a sufficient number
of such points, we can draw contours of this surface.

Thus, the capillary fringe approximation means that we assume a saturated zone
up to an elevation A, above the phreatic surface, and no moisture at all above it. In
this case, the upper surface of the capillary fringe may be taken as the groundwater
table, as the soil is assumed saturated below it. However, when A, is much smaller
than the thickness of an aquifer below the phreatic surface, and this is indeed the
situation encountered in most aquifers, the hydrologist often neglects the capillary
fringe. He then assumes that the (phreatic) aquifer is bounded from above by a
phreatic surface. This is also the assumption underlying the presentation in this
book.

An estimate of A, can be obtained, for example, from (Mavis and Tsui, 1939)

=22 ( 1=n )m (2.3.1)
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where A, is in inches, and dj; is the mean grain diameter, also in inches and # is
porosity. Another expression is (Polubarinova-Kochina, 1952, 1962)
h = 045 1—n
dy n

(2.32)

where both A, and the effective particle diameter are in centimeters. Silin-
Bekchurin (1958) suggested a capillary rise of 2—5 cm in coarse sand, 12—35 cm
in sand, 35—70 cm in fine sand, 70—150 cm in silt, and 2—4 m and more in clay.
Equations (2.3.1) and (2.3.2) can be compared with the relationship # = 20/r
which expresses the rise of water in a capillary tube of radius r; o is the surface
tension of the water.

Both ¢ and q vary from point to point within a phreatic aquifer. In order to
obtain the specific discharge q = q(x, y, z, t) at every point, we have to know the
piezometric head ¢ = ¢(x, y, z, t) by solving the flow model in a three-
dimensional space. An additional difficulty stems from the fact that the location of
the phreatic surface, which serves as a boundary to the three-dimensional flow
domain in the aquifer, is a-priori unknown. In fact its location is part of the sought
solution. Once we solve for ¢ = @(x, y, z, ¢) within the flow domain, we use the
fact that on the phreatic surface, the pressure is zero to obtain #(x, y,z,t)=zon
the phreatic surface. Hence, the equation that describes the phreatic surface is

F(x,y,z,t)=¢(x,y,2,t)—2=0. (2.3.3)

From the above considerations it follows that this procedure is not a practical
one for solving common problems of flow in phreatic aquifers.

In view of this inherent difficulty, Dupuit (1863) observed that in most
groundwater flows, the slope of the phreatic surface is very small. Slopes of
1/1000 and 10/1000 are commonly encountered. In steady flow without accretion
in the vertical two-dimensional xz-plane (Figure 2.6a), the phreatic surface is a
streamline. At every point, P, along this streamline, the specific discharge is in a

Phreatic surface

z Observation well z

(a) (b)

Fig. 2.6. The Dupuit assumption (Bear, 1979).
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direction tangent to the streamline and is given by Darcy’s law
q,=—K d¢/ds = —K dz/ds = —K sin 6 (2.3.4)

since along the phreatic surface p = 0 and ¢ = z. As 6 is very small, Dupuit
suggested that sin @ be replaced by the slope tan & = dA/dx. The assumption of
small 6 is equivalent to assuming that equipotential surfaces are vertical (that is, ¢
= ¢(x) rather than ¢ = ¢(x, z)), and the flow is essentially horizontal. Thus, the
Dupuit assumption leads to the specific discharge expressed by

q,=—K dh/dx, h = h(x). (2.3.5)
In general, & = h(x, y) and we have
q, = —K 0h/0x, q, = —K 0h/dy; q=—KV’h. (2.3.6)

Since q is thus independent of elevation, the corresponding total discharge
through a vertical surface of width W (normal to the direction of flow; Figure
2.6b)is

Q, = —KWh 0h/0x, O, =—KWh 0h/dy, h=h(xy) (2.3.7)
or, in the compact vector form

Q =—KWhV'h. (2.3.8)
Per unit width, we obtain

Q' =Q/W=—KhV'h. (2.3.9)

In (2.3.7) through (2.3.9), the aquifer’s bottom is horizontal. It should be empha-
sized that the Dupuit assumption may be considered as a good approximation in
regions where @ is indeed small and/or the flow is essentially horizontal. We note
that the assumption of horizontal flow is equivalent to the assumption of hydro-
static pressure distribution 0 p/ 0z = —pg.

The important advantage gained by employing the Dupuit assumption is that
the state variable ¢ = @(x, y, z) has been replaced by k& = h(x, y), that is, z does
no longer appear as an independent variable. Also, since at a point on the free
surface, p = 0 and ¢ = h, we assume that the vertical line through the point is also
an equipotential line on which ¢ = h = const. In general, & varies also with time
so that & = h(x, y, t). In this way, the complexity of the problem has been greatly
reduced. It is two-dimensional, rather than three-dimensional and the unknown
location of the phreatic surface is no longer an extra complication.
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Another way of obtaining (2.3.9) is by integrating the point specific discharge
along the vertical form the bottom of the aquifer, # = #(x, y), which need not be
horizontal, to the phreatic surface at elevation 2 = h(x, y, t). For flow in the +x
direction, assuming K = const or K = K (x, y), we obtain

h(x,y,t) h(x, y, 1)
Q'X=J' q.dz = —K J (0¢/0x) dz
n(x y) n(x,y)
o |" oh a7
_K{axLMZ ¢’,,6x+¢,,ax}
ek i s] 2| 2
K f 5y [(h=m] ¢‘h ox T ax] (2.3.10)

where the average head is defined by

. 1 h
$= h_nL¢dz

and ¢|, = h on the phreatic surface.
Equation (2.3.10) involves no approximation. If we now assume vertical
equipotentials, i.e.,

Plu(=h)=¢l, =4, (2.3.11)
equation (2.3.10) reduces to
Q;=-K(h—n)%il—, or Q' =—Kh—n)V'h (2.3.12)

which is the same as (2.3.9), written for a nonhorizontal bottom.

By comparing (2.3.12) with (2.3.10) for 7 = 0, we see that we have replaced
hé — h?*/2 by h?/2 in the flow equation based on the Dupuit assumption. The
error reduces to zero as § — h. Bear (1972), p..363, gives an estimate of the error
involved in replacing ¢” = hg — h2/2 by h?/2

2 ” .2
h’'/2 — ¢ <

1l
0< ,
h*/2 1+

i =dh/dx (2.3.13)

so that the error is small as long as {2 < 1, where i is the slope of the phreatic
surface. When the medium is anisotropic, with K, # K, (x, z principal directions),
i in (2.3.13) should be replaced by (K, /K, )i>.

The Dupuit assumption presented above is probably the most powerful tool for
treating unconfined flows. In fact, it is the only simple tool available to most
engineers and hydrologists for solving such problems.
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As a simple example of the application of (2.3.12), consider the case of steady
unconfined flow through a homogeneous formation between two reservoirs with
vertical faces (Figure 2.7). Following the Dupuit assumption, the total discharge in
the x direction per unit width, through a vertical cross-section of height A(x) is
given by (2.3.9),i.e.,

Q.= Q"=—Kh(x) dh/dx = const, Q' dx =—Kh(x)dh. (2.3.14)

By integrating this expression between the boundary at x = 0, where h = h,, and
any distance x, where h = h(x), we obtain

x h(x) 2 _ g2
Q'J' dx* = —K J ity iy, Qx= K 0TI o35
x*=0 h*=h, 2
Equation (2.3.15) describes a water table, 7 = h(x), which has the shape of a
parabola passing through x = 0, & = h,. If we know h(x) at some distance x, we
can use (2.3.15) to derive Q’ (obviously, if K is known). The boundary condition
at the other end, x = L, however, is somewhat more complicated.

Whenever a phreatic surface approaches the downstream external boundary of
a flow domain, it always terminates on it at a point that is located above the water
table of the body of open water present outside the flow domain. Points A in
Figures 2.8a, b, and c are such points. The segment AB of the boundary above the
water table and below the phreatic surface is called the seepage face. Along the
seepage face, water emerges from the porous medium into the external space,
trickling down along the seepage face. In Figures 2.8c and b, the phreatic surface
at A is tangent to the external boundary; in Figure 2.8a, it is tangent to the vertical
line at A.

Back to our problem, because of the presence of a seepage face which
terminates at a point that is also a point on the (unknown) phreatic surface, A, in
Figure 2.7 is a-priori unknown. Instead, whenever the Dupuit assumption is
employed, we approximate the situation by overlooking the presence of the
seepage face and assume that the water table at x = L passes through h = h,.

Water table by
Dupuit assumption

J (parabola)
Actual
water table
Seepage
face
1 )
: .
! L 17 *

Fig. 2.7. Steady unconfined flow between two reservoirs (Bear, 1979).
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Vertical

(b) (c)

Fig. 2.8. The seepage face, AB (Bear, 1979).

Using this as the downstream boundary condition, we obtain from (2.3.15)
L g M hi

Q'=K Y3 (2.3.16)
known as the Dupuit—Forchheimer discharge formula.

The parabolic water table is shown in broken line in Figure 2.7. Discrepancies
exist at x = 0, where the water table should be tangent to the horizontal line,
whereas the parabola has a slope of dA/dx|,_, = Q’/Kh, and at x = L, where the
seepage face is neglected. Otherwise, the discrepancy between the curves derived
by the exact theory of the phreatic surface boundary and, by the Dupuit
approximation, is negligible. A simple rule is that at distances from the down-
stream end larger than 1.5—2 times the average height of the flow domain, the
solution based on the Dupuit assumption is sufficiently accurate for all practical
purposes.

Moreover, it can be shown (Bear, 1972; p. 367) that (2.3.16) is accurate as far
as the rate of discharge, Q’, is concerned, although (2.3.15) does not give the
accurate water table elevators & = h(x).

The Dupuit assumption should not be applied in regions where the vertical flow
component is not negligible. Such flow conditions occur as a seepage face is
approached (Figure 2.9¢) or at a crest (water divide) in a phreatic aquifer with
accretion (Figure 2.9b). Another example is the region close to the impervious
vertical boundary of Figure 2.9a. It is obvious that the assumption of vertical
equipotentials fails at, and in the vicinity of such a boundary. Only at a distance x
> ~2h, have we equipotentials that may be approximated as vertical lines, or
surfaces. It is important to note here that in cases with accretion, a horizontal (or
almost so) water table is not sufficient to justify the application of the Dupuit
assumption. One must verify that vertical flow components may indeed be
neglected, before applying the Dupuit assumption. Another case to which the
Dupuit assumption should be applied with care is that of unsteady flow in a
decaying phreatic surface mound. Although no accretion takes place, yet at, and in
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z  Vertical flow; horizontal water table

Not valid

Equipotentials

()

Fig. 2.9. Regions where Dupuit assumption is not valid (Bear, 1979).

the vicinity of, a crest the flow is vertically downward. At a distance of say 1.5—2
times the thickness of the flow, the approximation of vertical equipotentials is
again valid.

In spite of what was said above, in regional studies, the Dupuit assumption,
because of its simplicity and the relatively small error involved, is usually applied
also to those (relatively small) parts of an investigated region where it is not strictly
applicable. One should, however, be careful in making use of results (say, water
levels) derived for these parts of an investigated region.



CHAPTER THREE

Modeling Three-Dimensional Flow

The basic laws governing the flow of water were presented in the previous chapter.
However, one cannot solve flow problems by using only these laws. Equation
(2.1.19) is a single equation in two dependent variables: q(x, y, z, ¢) and
#(x, y, 2, t). It can also be regarded as three equations in four unknowns ¢, gq,, q,,
q,. This means that one additional equation is required in order to obtain a
complete description of the flow within any given domain. Similarly, we have
Q'(x, y, t) and @(x, y, ) in the single equation (2.2.7) and Q’(x, y, t) and
h(x, y, t) in the single equation (2.3.9). The additional basic law that we have to
invoke is that of mass conservation, or mass balance.

Our objective in what follows is to develop the mass conservation equations for
three-dimensional domains and for different types of aquifers. The distribution of
¢ = ¢(x, t) in a specified flow domain is obtained by solving these equations,
subject to appropriate boundary and initial conditions.

We shall first consider the basic mass balance equation and boundary condi-
tions for three-dimensional flows. Then, the equations will be developed for flow
in confined, leaky, and phreatic aquifers. We shall derive these (integrated, or
averaged) aquifer equations by integrating the point mass balance, or continuity
equation over the vertical thickness of the aquifer. In this way, the conditions on
the confined, leaky, or phreatic, upper and lower boundaries of the aquifers will be
incorporated into the resulting integrated equations in a natural and unified way.

With the material presented in this section, one should be able to formulate the
mathematical model of any groundwater flow problem. It is needless to remind the
reader that the mathematical model is based on the conceptual model of the
investigated problem.

Solving the forecasting problem (Chapter 1) means solving a model in order to
obtain the future distribution of water levels, or of piezometric heads, produced in
a specified aquifer (i.e., with known geometry and properties) by any anticipated
natural replenishment and by any planned schedule of future pumping and
artificial recharge, as envisaged in a proposed management scheme.

3.1. Effective Stress in Porous Media

The concept of effective stress, or intergranular stress, was first introduced in soil
mechanics by Terzaghi (1925). Essentially, this concept assumes that in a granular

53
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porous medium, the pressure in the water, that almost completely surrounds each
solid grain, produces in the latter a stress of equal magnitude, without contributing
to the deformation of the skeleton, which is determined mainly by the contact
forces. These are transmitted from grain to grain at the contact points. Thus, the
strain producing stress, or intergranular stress, is obtained by subtracting the pore
water pressure from the stress in the solid material. Here, both the pressure and
the stress are average values.

Basic to the notion of effective stress is the observation that the deformation of
granular materials, as a result of stress changes, is much larger than can be
explained by compression of the material itself. This suggests that deformation is
mainly produced by a rearrangement of the assembly, with localized slipping and
rolling. Laboratory investigations also support the thesis that during soil deforma-
tion, the grains slip and roll. This means that the deformation process is governed
by what happens in the localized contact points, where a concentrated normal and
shear force are transmitted from grain to grain. These contact forces are not
affected by a change in the pore pressure. Therefore, a change in pore pressure,
with an equal change in total stress, produces no deformation and, hence, should
produce no change in the effective stress.

To illustrate the concept of effective stress in a simple way, limiting the
discussion for the moment to vertical forces only, consider the vertical cross-
section through a confined aquifer and the horizontal unit area, AB, shown in
Figure 3.1. At every instant, the overburden load above AB, due to soil, water and

Ground surface

Aquiclude (1impervious)

Fig. 3.1. Nomenclature for the definition of effective stress.
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whatever load is added on the natural ground surface, produces a (macroscopic)
stress, 0 (= total force per unit area of porous medium), acting on the upper side
of AB. This force must be in equilibrium with two forces per unit area acting on
AB from below: a force np”, resulting from the (average) pressure, p ", in the
water acting on the water portion of AB, and a force (1 — n)d, , resulting from the
(average) stress, 0, , in the solid skeleton, acting on the solid portion of AB. Note
that both p” and o, are intrinsic phase averages, while ¢ is a volume average.
(These averages are defined in Section 1.4.) It can be shown (e.g., Bachmat and
Bear, 1983) that these intrinsic phase averages are equal to intrinsic areal
averages, i.e.,, p " and g, also express force per unit area of water and per unit area
of solid, respectively.

With stresses & and 0, taken as positive for compression (as is customary for
the fluid pressure, p”, but not always for the stress in the solid), the above
statement of equilibrium can be expressed in the form

g=1-—n)o; +np”. (3.1.1)

As noted above, G, is not the strain producing intergranular stress, o¥, which,
by Terzaghi’s concept stated above is expressed by (1 — n) (o, +p"). In order to
express (3.1.1) in terms of ¢, we add and substract (1 — n)p" on the right-hand

side of (3.1.1), obtaining

g=(1-n)ag +np”"—(1—np"+(1A—n)p”"=0*+p” (3.1.2)
where
oF=(1-nmo¥ =1-n) (5 —p") (3.1.3)

is the intergranular stress, or effective stress (expressed in terms of force per
unit area of porous medium). This is the stress that produces porous medium
deformation.

Although (3.1.2) and (3.1.3) are based on the simplification of vertical stress
only, they can easily be extended to three-dimensional expressions. For the total
stress at a point within a saturated (three-dimensional) porous medium domain, we
obtain from (1.4.4)

1 1 N
a=—J odU=— L J 0,dU, = 6, +0, (3.1.4)
(Uy) (Ua)

UO 0 a=ws

where 0, 0, and 0, are second rank symmetric tensors.
The (phase average) stress in the water, G, is related to the shear stress, ¥, and
to the pressure in the water, p*, by

G =7 +p"l
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From (3.1.2) written for a three-dimensional stress field, it follows that with 7% = 0
do =do*+dp’ | (3.1.5)

where | is the unit tensor. This relation, between total stress, effective stress and
pore water pressure, substantiates the statement made above that a change in pore
water pressure, combined with an equal change in total stress, produces no change
in the effective stress. We usually assume that the shear stress in the fluid is
negligible, so that (3.1.4) reduces to

0 =0, +pl (3.1.6)
Making use of (1.4.4), we now rewrite (3.1.6) in the form
0=(1-n)(0, —p"+p"1=0%+p"l (3.1.7)

where 0% denotes the effective stress tensor and p" is the pressure in the water.
We note that (3.1.7) has been derived without the assumption that grains are
almost completely surrounded by water. We also note that there is no need to limit
the discussion only to granular materials.

Verruijt (1984) makes a distinction between effective stress and intergranular
stress. He modifies (3.1.7) to the form

g=0*+(1—-y)p"l (3.1.8)

where y’ is a coefficient, such that the deformation of the solid skeleton is fully
determined by the effective stress. He shows that ' = B,/a’ where B, is the
compressibility of solid, related to the intergranular stress, and a is a bulk porous
medium compressibility. Verruijt (1982) shows that y’ is very small in most
natural soils, so that the effective stress is identical to the intergranular stress.

Henceforth, we shall omit the overbar symbols that indicate intrinsic phase and
phase averages,ie., 0 = 0,0%* = 0*and p" = p.

3.2. Mass Storage

In a saturated porous medium domain, the mass of water present in a unit volume
of porous medium, is expressed by the product no. As flow takes place, the
pressure, p, in the water varies with time. Even if the overburden load, producing
the total stress, 0, remains unchanged, by (3.1.5), the effective stress, o%*, also
varies with time. In the general case, the water is assumed to be compressible and
the solid matrix is deformable and, hence, the changes in both p and o* will cause
no to vary with time.

Accordingly, the rate of change of the mass of the fluid per unit volume of
porous medium is given by

hm (np)'1+A/—(np)1l — a(np)
At =0 At ot
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with

onp) _, 9 , On
ot " at+p ot~

The general equation of state for a fluid phase is o = p(p, ¢, T), which states
that the fluid’s density depends on the pressure, p, the concentration of various
components, ¢, say dissolved solids, and absolute temperature, T. Under iso-
thermal conditions, the general relationship is reduced to o = o(p, c). If the fluid
is also homogeneous or single component, the general equation of state is further
reduced to o = p(p).

Thus, under isothermal conditions

(3.2.1)

90 dp
=% *ac dc=p(B, dp + B, dc 322
P ap ¢, T = const P dc p, T = const (ﬂp D ﬂ ) ( )
where
1 dp
ﬂp p ap ¢, T

is the coefficient of compressibility of the fluid, at constant concentration and
temperature, and
1 dp

ﬂc=; %

pT

is a coefficient that introduces the effect of concentration.
In certain ranges of p, ¢ and T, the coefficients 8, and B, are constants, and
(3.2.2) takes the form

0 = py exp{B,(p — po) + B(c — )}
= po{1+ B,(p —P)) + B(c =)+ -} (3.2.3)

where p = o, for p =p, and c = ¢,.
Some fluids obey the empirical relationship

o = po{1+B,(p—py) + B.(c — )} (3.2.4)

which, for all practical purposes is equal to (3.2.3).

For an incompressible fluid 0p/dp = 0, or B, = 0. Henceforth, we shall use the
symbol B to denote B,. For fluids containing small amounts of gas (e.g., air), the
compressibility is significantly increased by the possible compression of the air
bubbles (e.g., Verruijt, 1969).

Making use of (3.2.3), with ¢ = ¢, and under isothermal conditions, the first
term on the right-hand side of (3.2.1) becomes

do _ 0dp Op dp Oc

_ op dc
"o " op ar T M ac ar TP teb, (3:2:5)
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In order to relate the second term on the right-hand side of (3.2.1) to the rate of
change in the pressure, let us follow Jacob (1940) and assume that there are no
horizontal displacements in the soil. All deformations are only in the vertical
direction and all forces and resulting stresses act also only in the vertical direction.

With the above assumption (removed in Section 3.6), and omitting the symbols
for averages, (3.1.6) reduces to

o=o0f+p (3.2.6)

where now ¢ and o¥ are in the vertical direction.
If we assume that the total stress remains unchanged, i.e., do = 0, then

do* = —dp, (32.7)

i.e., any increase in pressure in the water is accompanied by an equal decrease in
effective stress.

Now, let U, denote the bulk volume of a soil sample at some point within a
porous medium domain. Then

U,=U,+U, U=(-nU, U, =nU, (3.2.8)

where U; and U, denote the volumes of solids and of water, respectively, within
U,. We shall assume that as the volume U, deforms as a result of changes in the
effective stress, o¥, the volume U, within it remains unchanged. This is consistent
with the assumption in Section 3.2 that the grains are incompressible.

Hence, in view of (3.2.7) and (3.2.8)

U,
do’ dot
1 a9y, 1 on 1 on

U, aa;"= 1—n aof=_ 1—n a_p

0,

(1—-n)U,=0,

(3.2.9)

At this point we assume that we deal with relatively small volume changes, so
that the soil is assumed to behave as an elastic material with a constant coefficient
of soil compressibility, a, defined by

=—— . 3.2.10
U, do! ( )
By combining (3.2.9) with (3.2.10), we obtain
1 on
= - 3.2.11
R ap ( )
where n = n(o¥) or n = n(p) only. By employing (3.2.11), we now obtain -
on on Op op
——=p - - =p(1- - 32.12
P50 TP 3 o p(I=ma ( )
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By inserting (3.2.5) and (3.2.12) into (3.2.1), we now obtain for a homogeneous
fluid (¢ = const.)

o(np)
ot

=p{nﬁ+(l—n)a}%1:. (3.2.13)
Consider now the vicinity of a point in an aquifer, where water pressure is
reduced by pumping. This results in an increase in the intergranular compressive
stress transmitted by the solid skeleton of the aquifer. This, in turn, causes the
aquifer to be compacted, reducing its porosity. At the same time, as a result of
pressure reduction, the water will expand. Together, the two effects — the slight
expansion of water and the small reduction in porosity — cause a certain amount
of water to be released from storage in the aquifer. Altogether, a reduction in
water pressure is accompanied by a release of water from storage in the aquifer.
Conversely, in response to adding water to a unit volume of the aquifer, the
pressure in it will rise, accompanied by a reduction in the intergranular compres-
sive stress, which, in turn, increases the porosity. If we assume both water and
solid matrix to be perfectly elastic, within the range of the considered changes, the
two processes are reversible. In reality, however, changes in a granular matrix are
irreversible. Such irreversible deformations are outside the scope of this book.

Based on the above considerations, we can now define a coefficient of (fluid)
mass storage S¢,, in an elastic porous medium of an aquifer as the mass of water
released from storage (or added to it) in a unit volume of aquifer per unit decline
(or rise) in pressure

St = Am,/UAp. (3.2.14)

Since the left-hand side of (3.2.13) expresses added mass of water per unit
volume of porous medium per unit time, by combining (3.2.13) with (3.2.14), we
obtain

St, = p{np+(1—n)a} (3.2.15)

as a relationship between n, 8, a and S§,.

Since 0¢*/0t = (1/pg)0p/0t, we could also define a coefficient of mass
storage, S34, as the mass of water released or added to a unit volume of porous
medium per unit change in the piezometric head, ¢* (defined by (2.1.22))

Sty = Am,/UAg* = pgSt,. (3.2.16)

In Section 3.6, we shall return to the question of changes in the quantity of
water stored in a porous medium, this time without the assumption of vertical
stress only and withdo # 0.

It is important to note that in developing (3.2.13), which eventually leads to the
definitions (3.2.15) and (3.2.16), we have considered the change in fluid mass
within a control box, allowing water and solids to move freely through the walls of
this box. We shall return to this question at the end of the next section.
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3.3. Fundamental Mass Balance Equation

The core of the mathematical model that describes the transport of any extensive
quantity, e.g., mass or energy, in a porous medium domain is the balance equation
of that quantity. In the continuum approach, the balance equation takes the form
of a partial differential equation, each term of which describes a change in the
amount of the considered extensive quantity per unit volume of porous medium
per unit time. Here, we shall focus our attention on the mass of water that
completely fills the void space (i.e., saturated flow).

3.3.1. THE BASIC MASS BALANCE EQUATION

Consider a control volume (or control box) having the shape of a rectangular
parallel-piped box of dimensions dx, Jy, 0z centered at some point P(x, y, z)
inside the flow domain in an aquifer (Figures 3.1 and 3.2). A control box may have
any arbitrary shape, but once its shape and position in space have been fixed, they
remain unchanged during the flow, although the amount and identity of the
material in it may change with time. In the present analysis, water and solids enter
and leave the box through its surfaces, and our objective is to write a balance, or a
statement of conservation, for the mass of water entering, leaving, and being stored
in the box. In hydrodynamics, this is called the Eulerian approach.

Let the vector J* = pq denote the mass flux (i.e., mass per unit area per unit
time) of water of density o at point P(x, y, z). Referring to Figure 3.2, the excess
of inflow over outflow of mass during a short time interval d¢, through the surfaces
which are perpendicular to the x direction, may be expressed by the difference

6’{‘,:|x—6x/2.y,z _J:|x+dx/2,y,z} (5_}’ 62‘

A 5z
4 9z
t X, ¥,z 2
] L7 e >
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| e | ® ————————
Jr x_a_x R | J*
5V S i x4+ 8,
i 5z 2
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J* 2 }
)
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I 6x \</ y
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Fig. 3.2. Nomenclature for mass conservation for a control volume.
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Similar expressions may be written for the y and z directions. By adding the three
expressions, for all three directions, we obtain an expression for the total excess of
mass inflow over outflow during ¢

* *
(St Jx|x—6x/2,y,z_Jx1x+6x/2,y.z +

ox

* *
+ Jy|x,y—éy/2.z _Jy|x,y+6y/2.z +

Oy

* *
+ Jz|x.y.z—dz/26_‘]z|x,y,z+éz/2 (5x 6y 62
Z

where dx dy 0z = OU is the volume of the box. By dividing the above expression
by 6U and J¢, we obtain the excess of mass inflow over outflow per unit volume of
porous medium and per unit time. Then, by letting the box converge on the point
P, that is, by lettering dx, dy, 0z — 0, the excess of inflow over outflow per unit
volume of medium (around P) and per unit time becomes

—(9J}/0x+dJ¥/dy+3J¥/9z) or —divJ*(=-V - J¥).

We may draw a general conclusion from the above development, namely, that
the excess of efflux over influx of any extensive quantity, per unit volume and per
unit time, is always expressed by the divergence of the flux vector of that quantity.

Since dnp/dt expresses thie increase in water mass per unit volume of porous
medium per unit time (see Section 3.2), we may now write the complete balance in
the form

dono
ot

where 0np/dt may be expressed by (3.2.1), or by (3.2.13), combined with
(3.2.15), and we recall that q denotes the specific discharge with respect to a fixed
coordinate system, while Darcy’s law, say (2.1.35), expresses the specific discharge
with respect to the (possibly moving) solids.

For a homogeneous, incompressible fluid, and a nondeformable porous medium
(or for steady flow of a homogeneous fluid), Vo = 0, dnp/d¢ = 0, and (3.3.1)
reduces to

V-q=0. (332)

=V - pq= 3.3.1)

In (3.3.1), the total mass flux is made up of the advective flux J* (= pq) only.
Had we developed the mass balance equation by starting from the microscopic
mass balance equation, written for a point within the void space, and then
averaged it to obtain its macroscopic counterpart, we would have obtained a total
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mass flux made up of three parts: an advective part, a dispersive one, and a
diffusive one (see Section 6.2). Thus, (3.3.2) should be regarded as an approximate
mass balance equation, in which the sum of the mass dispersive and diffusive
fluxes is assumed to be much smaller than the advective one, 0q.

If distributed sinks of strength P, = P,(x, y, z, t) (= volume of water
withdrawn per unit volume of porous medium per unit time) are present in the
flow domain, we modify (3.3.1) to the form

3
—V - pq—pP,(% ), 5t =%. (33.3)

When, instead of distributed sinks, we have point sinks of strength P (x;, y,, 2, t)
located at isolated points (x,, y;, 2,), i =1,2. .., we modify (3.3.1) to the form

d
=V . pq— )} OP (X, ¥, 2, ) O(X —X;, Yy =Y, 2—Z) = gf (3.34)
®

where P’,is the discharge of a sink (dims. L3T ") located at point (x,, ;, z,) and &
is the Dirac delta function.

All the balance equations in this section are developed from the ‘Eulerian point
of view’. In an Eulerian Formulation, we observe what happens at a fixed point
(and in its vicinity). The balance over a control box is, typically, the way to derive
a balance equation (for any extensive quantity) from the Eulerian point of view.

3.3.2. ADDITIONAL FORMS OF THE MASS BALANCE EQUATION

For the sake of simplicity, we shall delete the terms expressing sinks or sources
present in the flow domain. They can be added whenever necessary. We shall also
continue to assume that o is unaffected by changes in solute concentration. This
effect can also be added when necessary, making use of (3.2.5).

Let us rewrite (3.3.1) in terms of the relative specific discharge, ¢, and the
solid’s velocity, V, in the form

V- p@q+ nVs)+p{nﬂ+(1—n)a}%1:—=0 (3.3.5)
where we have made use of (3.2.13), or
V- pq4+pnV -V, +nV, - Vo+poV - Vn
+p{n,3+(1—n)a}%’%=0 (3.3.6)

with V + V, defined by (3.6.9) below and a defined by (3.2.11), this equation
becomes

dp _ . dC)_9() )
"% SV V(). (3.3.7)

V : pq, +p(a+np)
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Or, with |Qp/0t| > |V, - Vp|
op
V - p0q,+p(a+ np) o 0. (3.3.8)
For|n dp/dt| > |q, + Vp|, we obtain
9
V- q+(a+np) a—’: =o0. (33.9)

Another form of (3.3.9) is
a¢g*

V - q, + pg(a+np) ar 0. (3.3.10)
At this point, we introduce the definition of specific storativity, S,, defined by
So = og(a + np). (3.3.11)

We recall that this definition is based on the assumption of no change in total
stress, i.e., do = 0, that underlies the development of (3.2.13). In Section 3.6, we
shall return to the definition of specific storativity for the general case of do # 0
and without the constraint of vertical stresses only.

With specific storativity as defined by (3.3.11), we may now rewrite (3.3.8) in
the form

a *
V : pq,+ 0S5, f?t =0 (3.3.12)

and (3.3.10) in the form

o¢*
V-q+S5 =0. (3.3.13)
ot
If a source, I = I(x, t), is present (= added volume per unit volume of porous
medium, per unit time), then (3.3.13) becomes
o¢*
ar
In soil mechanics, an undrained test is an experiment carried out so fast that there
is practically no motion of the water relative to the solids, i.e., q, = 0. Then, it is
obvious from (3.3.14), that the added water goes only into (elastic) storage, raising
the piezometric head. We may, therefore, define the specific storativity, S,, as the
volume of water added to storage, per unit volume of porous medium, per unit rise
in piezometric head under the conditions equivalent to those determined by an
undrained test.

With these assumptions, and the definition (3.3.11) for S, equation (3.3.8)
becomes

-V .q+I1=S5, (3.3.14)

k dap
V-ip 7 *(Vp+ p0gVz) | = SU?. (3.3.15)

1
g
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Or, if, p = p(p) only

d¢*
V - (oK - Vg*) = oS, or (3.3.16)
Note that (3.3.15) is a single equation in terms of o and p. However, together
with information on the equation of state, o = p(p), it can be solved for the single-
state variable p = p(x, t).
Let us further simplify (3.3.16) by assuming

(a) that, the hydraulic conductivity, K, is practically independent of pressure
changes, although o = o(p).

(b) that S, as defined by (3.3.11) and K, are practically unaffected by variations
in the porosity 7, although we have assumed a deformable porous medium.

(c) that |q, - Vo| < |n 0p/dt| so that V - pg, = pV - q, ie, we assume
that the spatial variations in p are much smaller than the local, temporal
ones.

Under these assumptions, (3.3.16) reduces to
og*
ot

which is a single equation in the single variable ¢* = ¢*(x, y, z, t). Often ¢* is
replaced by ¢ in (3.3.17).
For a homogeneous isotropic porous medium, (3.3.17) reduces to

VK=,

(3.3.17)

a *
KV2g* =5, 4 . (3.3.18)
ot
In Cartesian coordinates (3.3.18) takes the form
K o¢" + LN + oy =3 99 3.3.19
ax* 3y’ | 3z © o (3319)

For an isotropic, but inhomogeneous medium, (3.3.17) becomes, in Cartesian
coordinates,

0 [ 09*) 9 [ 08| 0 [, 08 _ 09 s
ox (k ax)+ay(K ay)+az (K az) S5 G320

For a nonhomogeneous, anisotropic medium, where the principal axes are in
the x, y, and z directions, (3.3.17) becomes

0 og* ) og* 9 og* og*
— | K +— — | K =8 —. 3.3.21
ax(‘ax) ay(Kyay)’Laz(‘az %o "o ( )
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Obviously, in (3.3.20) and (3.3.21), K = K (x, y, z) must be continuous and
have a continuous first derivative everywhere in the considered flow domain (see
discussion in Section 3.4).

Finally, if the flow is steady and/or when both water and solid matrix are
assumed to be incompressible, the right-hand side of (3.3.17) through (3.3.21)
vanishes. For example, (3.3.18) reduces to the well-known Laplace equation

o’ g*
ox’

o'g*
ay2

o’¢*

+
97?

+

Vigr = 0. (3.3.22)

For a homogeneous, isotropic porous medium, the Laplace equation (3.3.22)
can be also obtained from (3.3.2), by assuming q = gq,.
Under the same conditions of a = § =0, Equations (3.3.9) reduce to

V-q=0 (33.23)

This, for example is the case where p = o(¢).
If we now introduce Darcy’s law (2.1.35) into (3.3.23), we obtain

V. % (Vp+0gVz)=0. (3.3.24)
or
k o ky
Vel—Vp|=—-—+— 3.3.25
(# p) 9z pu ( )

where the right-hand side plays the role of distributed source (de Josselin de Jong,
1969).

In Subsection 7.2.4, and especially in Subsection 13.1, this equation will be
employed as part of a model describing sea water intrusion in a coastal aquifer.

When using any balance equation, one should always bear in mind the various
assumptions made along their development. For problems of practical interest in
groundwater flow (and this is the point of view of this book), (3.3.17) through
(3.3.22) should be sufficient. However, whenever the situation calls for it, it is
always possible to remove any of the assumptions made here, and arrive at
different, usually more complicated, equations.

3.4. Initial and Boundary Conditions

Each of the basic equations presented in the previous section is a second-order
partial differential equation which describes a class of phenomena; the equations
themselves are merely expressions of mass balance (including the special case of
constant density), and contain no information related to any specific case of flow,
not even the shape of the domain within which this flow occurs. Therefore, each
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equation has an infinite number of possible solutions, each of which corresponds
to a particular case of flow through a porous medium domain.

To obtain from this multitude of possible solutions one particular solution
corresponding to a certain specific problem of interest, it is necessary to provide
supplementary information that is not contained in the equation. The supplemen-
tary information that, together with the partial differential equation, defines the
model of a specific problem, should include a specification of initial conditions
and of boundary conditions. The former describes the distribution of the values of
the considered state variable at some initial time, usually taken as ¢+ = 0, at all
points within the considered domain, D. For example

¢=46¢(xy20)=f(x,yz) inD 34.1)

where f(x, y, z) is aknown function.

Boundary conditions express the way the considered domain interacts with its
environment. In other words, they express the conditions, e.g., known water fluxes,
or known values of state variables, such as piezometric head, that (what happens
in) the external domain imposes on the considered one.

Different boundary conditions result in different solutions. Hence, the impor-
tance of stating the correct boundary conditions. It should be clear that although,
as part of a mathematical model, boundary conditions are expressed in mathe-
matical terms, their content obviously expresses a physical reality, as visualized by
the modeler.

As we shall see below, all boundary conditions take the form of equalities
between either the values of state variables, or of fluxes, on both ‘sides’ of the
points on a considered boundary. In such equalities, the information related to the
external side must be known. It is obtained from actual measurements or by
assuming, on the basis of past experience and subject to a-posteriori verification,
the future situation that will prevail on the external side of the boundary. A lack of
information related to the external side of a considered boundary, requires a
simultaneous solution for the considered domain and for the one that is external to
1t.

3.4.1. THE BOUNDARY

We recall that our entire disucssion is at the macroscopic level, viz., one that is
obtained from the microscopic one by averaging over an REV (Section 1.4).

The boundary may take the form of an arbitrary mathematical surface that
separates an investigated domain from its environment, within a large porous
medium domain. Often, however, it coincides with a surface of discontinuity, i.e., a
surface across which the porosity of the porous medium and/or other coefficients,
such as permeability, undergo an abrupt change. The boundary between a porous
medium domain and the external space devoid of solid matrix and a boundary
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between a porous medium domain and an external domain having no void space
(i.e., an impervious body), may serve as examples of such boundary.

Figure 3.3 shows four regions of different media: a region with no void space,
two regions composed of solid matrices of different porosities and a region with
no solid matrix. When rigorously employing the methodology of averaging over an
REV in order to determine the porosity, we note that the latter varies gradually, as
we move along the x-axis. No abrupt change occurs. In principle, it is possible to
regard the entire domain, composed of the four regions, as a single heterogeneous
medium, with no internal boundaries. Conditions have then to be specified at
infinity. However, this approach requires information on the variation of porosity
across the transition zones. Usually, this information is not available and we do not
wish to introduce it in one approximate form or another. Instead, we replace the
actual variation in porosity by an idealized boundary that takes the form of a
surface across which an abrupt change in porosity takes place. We locate this
boundary somewhere, say in the middle, of the transition zone. The continuum
approach is then applied to the domains on either side of the boundary. The values
of porosity (or other coefficients) on both sides of the boundary are obtained by
extrapolating the spatial trend of the porosity (or the other coefficients) as the
boundary is approached from within each subdomain.

In this way we hypothesize the existence of regular continuum domains up to
the boundary surface on both its sides. However, within the distance correspond-
ing to half a REV from a boundary, a strip exists within which, strictly speaking,
the macroscopic description is not valid. Values of state variables calculated by a

n =1, pr—e—sgmemcm——

& Idealized boundary Idealized boundaries - /:\ Continuous
L / U, / variation
inn
according
to the
continuum
approach

Domains in which macroscopization
conditions are not satisfied

/
\

A _——
Domain with 7 B
no void porosity External
space domain without
n=0 ny>n, a solid matrix

n=1.0

Fig. 3.3. Abrupt boundaries.
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continuum model for points within this strip should not be compared with ones
measured in the real system (by instruments that take an average over a REV).

In Sections 6.4 and 7.1 we shall apply similar considerations to boundaries
between miscible and immiscible fluids, respectively.

The boundary surface itself, whether stationary or moving, can be described by
an equation that has the general form

F(x,y,z,t)=0. (342

With the vector u(x, y, z, t) denoting the velocity of points belonging to this
surface, it follows that its material derivative vanishes, i.e.,

o =3 TuVE-o. (34.3)

This statement stems from the observation that F is a quantity that is conserved as
the surface moves. From (3.4.3) it follows that

oF
*+ VF =—— 344
u or (344)
and that the outward unit vector normal to the surface F = 0 is given by
VF
vV=—", (34.5)
VF|

3.4.2. GENERAL BOUNDARY CONDITION

All boundary conditions are derived from a single general one which states that,
unless sources or sinks exist on the boundary, the component normal to the
boundary of the total flux of any extensive quantity, relative to the possibly moving
boundary, remains unchanged as the boundary is crossed. Examples of extensive
quantities are mass of a phase, mass.of a phase component, and momentum and
energy of a phase. This condition is often referred to as the no-jump condition.
Since the porous medium is a multiphase material body, the total flux of a
considered extensive quantity is not necessarily conserved within a single phase as
it is transported across the boundary. Interactions between phases on the boundary
may exist, recalling that we are considering a hypothetical boundary across which
an abrupt change in volumetric (and, hence, also in areal) porosity is assumed to
take place. The term ‘total flux’ used above indicates the sum of advective,
dispersive, and diffusive fluxes (Section 6.2). The mathematical form of the general
boundary condition is given by (Bear and Bachmat, 1990)

Y [bata(Va —U) +8,3%5]12-v =0
(@)
(3.4.6)
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where @ = a considered phase,
B = all other phases present in the system,
% = density (per unit volume) of an extensive quantity of the a-phase,
6 = volumetric fraction of a phase,
u = velocity of points on the boundary,
¥ = the unit vector normal to the surface pointing away from the phase,
[( Mi2=C )i=( )l ie,jumpin ( ) in crossing from side 1 to side 2 of
the boundary,
J* = sum of diffusive and dispersive fluxes (Section 6.2).

By introducing various simplifying assumptions, the general no-jump condition
is reduced to the boundary conditions that are commonly employed in mathe-
matical models of transport phenomena in porous media.

We have introduced this brief discussion on the general boundary condition as
a background to the development of the boundary condition for the case in hand,
in which (i) we have only two phases — solid and fluid — that occupy the entire
space, and (ii) the extensive quantity is the mass of the fluid, with the special case
of a fluid of constant density. In each case, we shall attempt to indicate the
assumptions that underlie the passage from the general condition to a particular
one. In Chapter 6 we shall apply the general condition to another extensive
quantity — the mass of a component of a phase.

Of special interest is the assumption that the nonequilibrium processes under
consideration (and we mean mass, momentum, solute, and energy transport),
proceed through a series of states of a local thermodynamic equilibrium at all
points of a considered domain, including points on the boundary. We shall refer to
this assumption as the one of thermodynamic equilibrium. A direct consequence
of this assumption is that

@ [pPh2=0, (b) [c];,=0,
© lofi..=0, @) [T],2,=0 onB 34.7)
where B denotes the boundary, p is pressure, ¢ is concentration, p is mass
density, T is temperature, and f is a subscript that denotes the fluid phase.
For the particular case of the saturated flow of a fluid’s mass, (6, = n),
assuming the validity of (3.4.7c), and neglecting the sum of dispersive and diffusive

mass fluxes as much smaller than the advective (= nV,) one, (3.4.6) reduces for
the fluid (a = f) to

[2(V,—u)],, - v=0, (3.4.8)
where nV, = qis the specific discharge, and for a (deformable) solid (a = s) to

[(1—=n)(V,—u)],, - v=0. (3.4.9)
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In order to obtain this condition from (3.4.6), we noted that the solid-fluid
portion of the boundary, ¥, is a material surface for both the solid and the fluid.

When the boundary is a material surface for the solid, i.e., no solid crosses it
from one side to the other (and we shall always make this assumption), we have

V,—uwl, - v=(V,—u), - v=0. (3.4.10)
In such case, by combining (3.4.10) with (3.4.8), we obtain the condition
4], ¥=0. (34.11)

Since nV, < q, we often make the approximationq = q,.

3.4.3. BOUNDARY OF PRESCRIBED PRESSURE

When the fluid pressure is specified as a known function of space and time, say
fi(x, t), at all points of the external side of a boundary segment, independent of
what happens in the domain itself, we employ the first no-jump condition in (3.4.7)
to write the boundary condition

p(x, t)=fi(x,t) onB (3.4.12)

where p(x, ) = p(x, t)|, and fi(x, t) = p(x, t)l,.
When the piezometric head, ¢ = z + p/¥, is used as the dependent variable, the
boundary condition becomes

é(x,t)= f(x,t) onB (3.4.13)

where f,(x, t) is a known function.

In the theory of partial differential equations, the condition which specifies the
values of a dependent variable at all points of a boundary segment is referred to as
a boundary condition of the first kind, or a Dirichlet condition.

A boundary of this kind occurs whenever the porous medium flow domain is in
contact with a body of open water. Segments AB and EF in Figure 3.4a are
examples of boundaries of prescribed piezometric head. On AB, the head is ¢ =
H,(t). On FE, the condition is ¢ = H,(t). Obviously H, and H, may also vary
along the rivers. A special case of this kind of boundary is the equipotential
boundary

¢ =constant on B. (3.4.14)

3.4.4. BOUNDARY OF PRESCRIBED FLUX

Let the known total (volume) flux of the fluid normal to the boundary be denoted
by fi(x, ¢). Making use of (3.4.11), with 1 and 2 denoting the internal and external
sides of the boundary, we obtain the boundary condition

q, - v=fi(x,t) onB (3.4.15)
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where, as we recall, q, is the specific discharge of the fluid relative to the possibly
moving solid. Employing (2.1.35) and (3.4.5), we rewrite (3.4.15) in the form

k
- " (Vp +0,8Vz) ~ VF =|VF|fy(x,t) onB. (3.4.16)

Or, in terms of ¢ (when o, = const)
—K - V¢ - VF=|VF|fy(x,t) onB. (34.17)
For an impervious boundary, (e.g., AG in Figure 3.3a), fi(x, ) = 0, and the
boundary condition (3.4.17) reduces to
K:-Vg: -VF=0 onB. (3.4.18)

If the porous medium is anisotropic, with x, y, z its principal directions, (3.4.18)
becomes

d0¢ OF d¢ OF 0¢ OF
K.——+K ——+K,— —=0 B. 3.4.19
*x x| 3y ay |t az oz on (34.19)
For an isotropic material, (3.4.18) becomes
d¢ OF F
o OF 3¢ OF B _ . (34.20)

Ox Ox Oy Oy 0z Oz

Thus, here we have conditions that specify the pressure gradient, or the
hydraulic gradient, or a linear combination of their components, as a function of
location, and possibly time, on the boundary.
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In the theory of partial differential equations, this type of boundary condition is
referred to as boundary condition of the second kind or a Neumann condition.

3.4.5. SEMIPERVIOUS BOUNDARY

This type of boundary occurs when the porous medium domain is in contact with
a body of water continuum (or another porous medium domain) through a
relatively thin semipervious layer separating the two domains. (FG in Figure 3.4a).
Let ¢ denote the piezometric head in the considered domain and ¢, (= H,(¢) in the
example of Figure 3.4a) denote that in the external one. If we assume no change in
water storage in the semipermeable thin layer, then the flux normal to the boundary
may be expressed by fi(x, t) = (¢ — @,)/c, where ¢ = B’/K’ = the ratio of
thickness to hydraulic conductivity of the semipervious membrane, and (3.4.17),
recalling all the assumptions underlying it, becomes

K- Vg - VF=|VF|($—9)/c onB. (3.4.21)

For x, y, z that are principal directions of an anisotropic porous medium

o9 OF . 3 OF . 3 OF
dx Ox ¥ dy Oy ‘9z 0z

N ¢1ZF\ _ ¢o|jF| B (3422)

This type of condition, which contains information on the relationship between
the state variable and its derivatives, is called a mixed boundary condition,
boundary condition of the third kind, or a Cauchy condition.

3.4.6. PHREATIC SURFACE WITH ACCRETION

The phreatic (or free) surface has already been discussed in Section 1.1, where it
was defined as the surface on which p = 0. Here, we shall neglect the capillary
fringe above this surface.

Again, the condition of no-jump in the total mass flux is employed. For the sake
of simplicity, we shall assume that the accretion (and the same is true for
evaporation which may be considered as negative accretion) has the same density
as the aquifer’s water. We shall also continue to assume that the dispersive and
diffusive fluxes of the fluid’s mass may be neglected in the saturated zone below
the phreatic surface. Under these conditions, the no-jump condition takes the form

nV,—uwll, - =N -v onB 3.4.23
( )
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where { }|,, indicates that { } is evaluated at the phreatic surface, B, as it is
approached from within the saturated domain and N’ denotes the (volume) rate of
water added to the saturated zone from the partially saturated zone above it, per
unit area of the phreatic surface. This flux is independent of the displacement of
the phreatic surface (at a velocity u), and of the quantity of water present in the
void space above it.

Equation (3.4.23) can be used to determine the velocity, u, and the displace-
mentu - ¥ of the phreatic surface in a numerical model.

Assuming that the water moisture is at the irreducible moisture content 6,,, in
the unsaturated zone above the phreatic surface (Section 5.1), the strength of the
water source at the phreatic surface can then be expressed by

N = {6,0(Vsy = )} lunsu = N— 0,0u (3.4.24)

where N = 0,V | nsar- For downward vertical infiltration'at a rate of N, we have N
= —N Vz By inserting (3.4.23) into (3.4.24), we obtain (Figure 3.4b)

(q,—nu) - v=(N—6,u) - v onB
or

(9, —N) - VF+(n—86,) %I: =0 onB (3.4.25)

where q, = nV,|,, and we have employed (3.4.3) and (3.4.4) to expressu * . In
(3.4.25), the difference n, = n — 6, is the effective porosity, or specific yield often
denoted as S,. In order to”express this boundary condition in terms of ¢, we make
use of (2.1.28), assuming nV; < q,,q,, = q,,.

The location and shape of the free surface are a-priori unknown. In fact, their
determination constitutes part of the required solution. Following the usual
procedure, however, we must specify for the boundary being considered (i) its
geometry, and (ii) the condition to be satisfied at all points along it.

Since the pressure at all points of the free surface, B, is taken as p = 0, we have
from ¢(x,y,z, t)=z+p(x,y 2 t)y

é(x,y,z,t)=z or ¢(xyz2t)—z=0 onB. (3.4.26)
Thus, the shape of the interface is described by the equation
F(x,y,2,t)= ¢(x,y,2,t)—z2=0. (3.4.27)

We may now combine (3.4.25), (2.1.28), and (3.4.27) to yield the condition

K- Vg+N) - V(p —z)= ne% on B (34.28)
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or with x, y, z principal directions

9 _ . (98) 9\
e 3¢ K*(ax) +Ky(8y) +

o\ _ (98 \[_ [0 _
+K‘l(a_z) (az)] N(az 1) on B. (3.4.29)

We recall that in this expression, ¢(x, y, z, ¢) is unknown until the problem is
solved. On the other hand, the problem cannot be solved unless the shape of the
phreatic surface and the boundary condition on it are known. This vicious circle,
prohibits an analytical solution of a problem with a phreatic surface boundary,
except for very special cases. The numerical solution of such problem is discussed
in Section 10.4.

It may be noted that we actually have two boundary conditions along the
phreatic surface: (3.4.26) and (3.4.29). The extra condition compensates for the
lack of a-priori information on the location of the boundary.

3.4.7. SEEPAGE SURFACE

The seepage surface (or seepage face) was presented in Section 2.3. Segments BC
and DE in Figure 3.4a are examples of seepage surfaces.

The phreatic surface is tangent to the boundary of the porous medium at points
C and D (Figure 3.4a). Along a seepage surface, water emerges from the flow
domain, trickling downward to the adjacent body of water.

Being exposed to the atmosphere, the pressure along a seepage face is
atmospheric (p = 0) and, hence, the boundary condition along such a surface is

p(x ¥z 1)=z (3.4.30)

The geometry of the seepage face is known (as it coincides with the boundary of
the porous medium), except for its upper limit (points C and D in Figure 3.4a)
which is also lying on the (a priori) unknown phreatic surface. The location of this
point is, therefore, part of the required solution.

3.4.8. BOUNDARY WITH A FINITE VOLUME RESERVOIR

Let the total discharge from an aquifer enter a reservoir, such that as water enters
the reservoir its water level rises (Figure 3.4c). Similarly, as water flows from the
reservoir, its water level drops. The reservoir may also be fed by an external
supply at a rate R. Thus, the reservoir’s water level governs the piezometric head
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on the aquifer’s boundary. Equality of total fluxes dictates the condition

¢ VF
A@z) = = -vdB=—| K-V¢- -——4dB 3.4.31
(@), J'(B) q-v J(B) ¢ VF] ( )

where B denotes the contact area between the aquifer and the reservoir. In this
condition, we see a combination of spatial and temporal derivatives of ¢.

3.4.9. BOUNDARY BETWEEN TWO POROUS MEDIA

Along such a boundary, we have discontinuities in both the porosity and the
permeability.

Equations (3.3.20) and (3.3.21) describe flow in inhomogeneous domains.
However, in order for these equations to have analytical solutions, within the
framework of a mathematical model, the distributions K = K (x, y, z), (or K =
K(x, y, z), in an anisotropic domain) and its first derivatives must be continuous. If
a discontinuity in K or in VK exists along certain surfaces (or lines in a two-
dimensional domain), the only way to solve the problem analytically is to divide
the flow domain by these surfaces (or lines) into subdomains, such that no
discontinuities occur within each subdomain. In order to have a well-posed
problem for each subdomain, conditions must be specified on such boundary
surfaces (obviously, in addition to conditions on all other boundaries).

In this case, each domain is ‘external’ to the other, but we do not have the
a-priori known information required to set up the necessary boundary conditions.
This means that the flow problem, in terms of p or ¢, must be solved simultane-
ously for both domains, as the two boundary conditions — one for each domain —
will contain the two dependent variables. These conditions are

pli=pl, or ¢l,=¢|, onB (34.32)

obtained from the first equation of (3.4.7) and for a stationary boundary
ki k,
M (VP +0gV2)|, - v= " (Vp,+0gV2)l, - v

or, with p, = o, = const., 4, = u, = const.
K - Vg, -v=K,-Vgl, (3.4.33)

ie,ql, - ¥=gq,, *+ vobtained from (3.4.8).

Note that when solving a problem of this kind, it is convenient to subscript each
dependent variable by a symbol (here 1 and 2) that indicates the relevant domain.
We solve the appropriate balance equation within each domain, in terms of the
relevant dependent variable.

The above discussion is valid for analytical solutions of mathematical models.
When a model is solved numerically, there may be no need to build a separate
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model for each subdomain. The equivalent of the boundary conditions at a
boundary of discontinuity are incorporated in the numerical code (see Chapter
10).

3.5. Complete Statement of Mathematical Flow Model

To solve a flow problem in a specified domain, with specified transport and
storage coefficients, means to determine the spatial and temporal distributions of
the values of the relevant state variable that statisfy certain partial differential
equations at all points within the considered domain, as well as specified initial and
boundary conditions.

We now have all the elements needed in order to construct the mathematical
model of any given problem of flow in a porous medium domain. There is no need
to remind the reader that the model is constructed at the (macroscopic) continuum
level (Section 1.4).

Prior to the construction of any mathematical model, we should conduct
investigations in order to identify the conceptual model, i.e., the set of assumptions
that represent our simplified perception of the real system under consideration.
Obviously, only those features that we feel are relevant to the problem at hand are
included in the conceptual model. In this model we should:

(a) Identify the boundaries of the domain that we wish to model.

(b) Assume the type of flow regime (laminar, or nonlaminar) that will take
place.

(c) Identify the materials contained in the flow domain (solid matrix and water
in saturated flow) and those features of their behavior that are relevant to
the problem on hand (e.g., fluid compressibility, solid matrix deformability).
Then introduce constitutive relationships to express this behavior.

(d) Make assumptions concerning the homogeneity and isotropy of the domain
with respect to the various coefficients that express transport and storage
processes within the flow domain.

(¢) Identify sources and sinks of water that are present within the modeled
domain.

(f) Identify the behavior in the environment that is external to the considered
domain and the interaction that takes place between the two domains
across their common boundary.

On the basis of the conceptual model, which, we suggest, should be explicitly
stated, the standard content of a flow model should consist of the following items:

(a) Specification of the geometrical configuration of the surface that bounds the
problem domain. The boundary surface must be a closed one, but it may
include segments at infinity.
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(b) A list of the relevant state variables that describe the state of the system
(usually pressure, p = p(x, y, z, t), or piezometric head ¢ = ¢(x, y, z, t)).

(c) Statement of the partial differential (mass balance, or continuity) equation
in terms of the state variables mentioned in (b).

(d) Statement of the relevant constitutive equations, e.g., flux equation, equa-
tion of state for the water, or stress-strain relationship for the solid matrix.

(e) Specification of the numerical values of all the coefficients that appear in
the constitutive relations and, hence, in the balance equations.

(f) Statement of the initial conditions of the system, i.e., values of the relevant
state variables at all points within the considered domain, at some initial
time, usually taken at ¢ = 0. No initial conditions are required for steady
flow.

(g) Statement of conditions to be satisfied at all points of the domain’s
boundaries specified in (a).

As we have seen in the common cases of groundwater flow, (¢) and (d) are
combined to yield a single partial differential equation in terms of a single state
variable (p or ¢). Then (e) refers to the coefficients appearing in that equation. In
the case of more than one state variable, we should have a sufficient number of
equations to enable a simultaneous solution for all of them.

As emphasized in Section 3.4, the type of boundary condition to be specified in
any particular case is motivated by the physical reality of the considered flow
problem and by the interaction that takes place across the boundary between the
considered domain and its environment. Field investigations will provide the
necessary information about these interactions. These, in turn, will dictate the
boundary conditions to be employed in each case. Sometimes, because of a lack of
information, various assumptions and approximations are introduced as a part of
the conceptual model, before a boundary condition is stated.

In view of the approximations involved, the modeler should be careful, since
not every set of conditions is acceptable. From the mathematical point of view, a
well posed boundary value problem that corresponds to a physical reality, as is the
case considered here, must satisfy the following fundamental requirements.

(a) A solution must exist.

(b) The solution must be unique, i.e., the problem as stated must have only one
solution.

(c) The solution must be stable, i.e., it should depend in a continuous manner
on the data (e.g., initial, or boundary conditions). Sufficiently small
variations in the given data, should lead to arbitrarily small changes in the
solution. Otherwise, we should conclude that the problem is badly
formulated.

In this book we do not investigate whether a model (composed of a partial
differential equation coupled with initial and boundary conditions) indeed consti-
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tutes a well posed problem. We shall implicitly assume that the model is well
posed, since we base it on the physical reality, albeit with certain simplifying
assumptions. This follows from the fact that the model, although stated in
mathematical terms, is an attempt to describe actual physical phenomena.

3.6. Modeling Soil Displacement

Basically, soil deformation, or soil consolidation, is a three-dimensional phenome-
non. De Josselin de Jong (1963) and Verruijt (1956, 1959, 1984), among others,
present theories on three-dimensional soil consolidation. A review on land
subsidence is presented by Corapcioglu (1984).

In general, three main approaches exist to the modeling of consolidation:

(a) The approach proposed by Biot (1941) which regards soil consolidation as
a three-dimensional phenomenon in which the flow of water and the strain
in the solid matrix are continuously interrelated through Terzaghi’s (1925)
concept of effective stress (Section 3.1). Accordingly, a simultaneous
solution is sought for two dependent variables: pressure in the water and
strain in the solid matrix. In this way, both vertical and horizontal displace-
ment can be obtained for every point within a three-dimensional domain.
Total vertical displacement in a pumped aquifer, or land subsidence can be
obtained by integrating the vertical strain over the aquifer’s thickness.

(b) A simplified version of the above approach, based on the assumption that
soil displacements occur only in the vertical direction. Under these assump-
tions, the problems of water pressure distribution and solid matrix strain
distribution are decoupled (Verruijt, 1969). The water pressure distribution
is first determined by solving an appropriate model. Then the result is used
to determine the vertical strain distribution and vertical displacement within
the solid matrix.

(c) In groundwater hydrology, Jacob (1940) also assumed that only vertical
displacements take place and that all stresses act only in the vertical
direction. As a result, porosity becomes a function of water pressure only.
The effect of the solid’s velocity is neglected in determining the distribution
of water pressure. Once the pressure distribution has been determined (and
actually this was the sole objective in hydrology of groundwater) it can be
used, as in (b), to determine vertical settlement.

The last approach was employed in developing the concept of specific storativity
in Section 3.2. This approach also underlies the concept of aquifer storativity, for a
confined aquifer, presented in Section 4.1.

The third approach is usually employed in the practice of soil mechanics, where
it is considered to be a sufficiently good approximation of Biot’s (1941) approach.
Actually, in most consolidation analysis carried out in geomechanics, it is assumed
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that both flow (when it exists) and soil deformation occur only in the vertical
direction.

In this section we shall first present a three-dimensional model which is
essentially based on Biot’s theory. We shall then introduce Verruijt’s (1969)
assumption of vertical displacement only, still taking into account the effect of the
solid’s velocity on the water flow.

In Section 4.5, we derive a model for regional land subsidence and averaged
horizontal displacements, by integrating the models presented in this section over
the aquifer’s thickness.

In Section 3.2, we made the assumption that n = n(o¥), assuming the effective
stress to act only in the vertical direction. This led to the concept of specific
storativity as defined by (3.2.15). Let us now remove these simplifying assumptions.

Our starting point is again the mass balance equation (3.3.1), noting all the
assumptions underlying its development (e.g., neglecting nonadvective mass
fluxes), rewritten here for convenience

anp
ot

+V-pq=0, q=nV,. (3.6.1)

Source and sink terms may be added when necessary.
The mass balance for the solid phase can be expressed in a similar form, viz.

(A —mp, |

Y “{p(1=m)V,}=0 (36.2)

where o, and V, are the solid’s density and velocity, respectively, with q =
q,+nV,.
We now rewrite (3.6.1) in the fotm

d 3
n —a’%+p a—'t’+ nV, - Vo+pV - (q,+nV,)=0, (36.3)
d” d’
oV - q,+n f+pd—7+an-VS=0 (3.6.4)

where d*( )/dt = 9( )/dt + V, + V( ) is the material derivative of ( ) with
respect to the moving a phase (here water, or solid).
Equation (3.6.2) can be rewritten in the form

1 d’(1 — n) 1 d'p,
+— +V -V =0 3.6.5
1—n d: o, dt : ( )

By eliminating V - V, from (3.6.4) and (3.6.5), we obtain

dw 1 dS s
yrdpo dn _n do _, (3.6.6)
p dt 1—n dt p, dt

VvV -

q,

We now assume that the solid phase (not the solid matrix) preserves its volume.
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This means that at the microscopic level d°o,/d¢t = 0 and d*e,/dt = V - V =0,
where &, is the solid’s volumetric strain

_ 1 (9w , ow
& = 5 ( ox, + ax,) (3.6.7)

and w is the microscopic solid’s displacement.

By averaging we obtain that d*o,/d¢ = 0 is valid also for the o, = p;, ie., the
macroscopic value of p,, although the porous medium as a whole may undergo
deformation. The deformation is then manifested by changes in porosity. In a
granular porous medium, the deformation of the solid matrix is attributed to the
rolling and slipping of the grains with respect to each other.

With the above assumption, (3.6.6) is now rewritten in the form

d’o o dn
V- +—+——=0. 3.6.8
PUYT 4 T 1—n & (36.8)
With w, V, and ¢, now denoting the macroscopic or averaged displacement,
velocity, and volumetric strain (or dilatation) of the porous medium as a whole, we
now have the relationships

V-V, =-— " 1 - ds(ld: ") (3.6.9)
which can be obtained by inserting d°o,/d¢ = 0in (3.6.2)
V, =d*w/d¢ (3.6.10)
and
V-V, = d:t" , &=V -w (36.11)
Employing these relationships, we now rewrite (3.6.8) in the form
V- oq+n d(;f +p % =o0. (36.12)
We assume that
|0p/dt| > |V, - Vp|, |0e,/0t| > |V, - Vg,|.

Then, (3.6.12) for a compressible fluid, with a compressibility 8 = (1/p) dp/dp,
reduces to

9

=0. 3.6.13
ot ( )

ap
v pq,+npﬂ§+p
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A further approximation is obtained by assuming |dp/dt| > |V, - Vpo]|.
Then, (3.6.13) reduces to

LY

=0. 6.14
5 =0 (3.6.14)

ap
V:.q,+nB o1 +
Since p = p(p) and n = n(o¥), with the effective stress, o*, related to the
pressure, p, by (3.1.7), Equation (3.6.13) involves two variables: p = p(x, ¢) and
€, = &,(X, t) and we need one more equation. This role is fulfilled by an equation
that expresses equilibrium of the total forces acting on a unit volume of the porous
medium.
In the absence of inertial effects, the equilibrium equation takes the form

-V - 0+f=0 (3.6.15)

where 0 is the total stress (positive for compression) and f represents the total
body force acting on the porous medium, per unit volume of the latter. In the case
of gravity, f={np + (1 — n)p,} g, where g represents gravity acceleration.

The total stress is related to the pressure in the water and to the effective stress
by (3.1.7).

Following Verruijt (1969), we separate 0, 0¥, p and f into initial steady-state
values @°, 03, p° and f°, and nonsteady, deformation producing increments 0°,
o¥¢, p® and f¢, with

0°=0"+p and 0°=o0*+pl, (3.6.16)
=V . o¥+P0—-Vp=0, (3.6.17)
V-o¥+Vp=0 (3.6.18)

where we have assumed that f¢ = 0, although n varies.

We now assume that the solid matrix is isotropic and, for the small excess
stresses, O%¢, considered here, behaves as a perfectly elastic body. We further
assume that the stress-strain relationship for the solid matrix (i.e., at the macro-
scopic level), relating average effective stress o*¢, to the average displacement, w,
has the form of Hooke’s law of linear elasticity

o =—G{Vw+ (Vw)"} =4V - w)l (3.6.19)

where G and 1 are macroscopic constant coefficients called Lame’s coefficients
for a porous medium. They have to be determined experimentally for any given
porous matrix.

In principle, any other stress-strain relationship, corresponding to nonelastic
materials, may also be used. However, here we shall continue to demonstrate the
methodology by referring to an elastic material.

The mass balance equation (3.6.14) is now also rewritten as two equations: one
representing the initial steady state and the other involving the pressure increments
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that produce displacements. Thus, the second equation takes the form

P aeb

V-.q+nf— Y

=0 (3.6.20)
where € = ¢,, since €) = 0. In (3.6.20), we express q¢ for an isotropic porous
medium by

k
q;=— m (Vp* +08Vz) (3.6.21)

where we have made the simplification 0° = p, since p¢* < p° n = n° since
n® < n°and k remains unchanged although deformation takes place.

Thus, the mathematical model involves the mass balance equation (3.6.12) or
(3.6.14), the water flux equation (3.6.21), the equation of equilibrium of excessive
stress, (3.6.18), the stress-strain relationship (3.6.19), the definition of ¢, in
(3.6.11), the equation of state for the fluid, o = o(p), and an equation of state for
the solid matrix’ porosity, n = n(0%¢). Altogether, these represent 16 scalar
equations in the 16 variables: o, n, q¢, ¢,, p¢, 0%¢ and w. In principle, this is the
model introduced by Biot (1941). We note that here we have a model that also
yields the displacement vector, w, which, in turn, can be used to determine soil
compaction and land subsidence.

By inserting (3.6.21) into (3.6.20), we obtain

a(:‘b
ot

k
-V {— (Vp'+ ngz)] =0. (3.6.22)
2
For a homogeneous porous medium, the combination of (3.6.18) and (3.6.19)
can be written in the form of the three scalar equations

e

o
ox,

By differentiating each of these equations with respect to the corresponding x,,
and adding the resulting three equations, we obtain the single equation (Verruijt,
1969)

(A+ G)V2e, —V2pe=0 (3.6.24)

GVow, + (A + G)%ii— =0, i=1,2,3 (3.6.23)

which, together with (3.6.22), -are often simplified for a homogeneous isotropic
porous medium to the form

k 2 a£b
— L vy 4 g - + -

u P’ ﬁ ot ot
constitute a set of two equations is the state variables p® and &,.

Following Verruijt (1969), we integrate (3.6.24) and obtain
(A +2G)e,=pc +T(x, 1) (3.6.26)

0 (3.6.25)
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where I is a function of position and time that for every value of time, ¢, satisfies
VII=0. (3.6.27)
When IT = 0 (see below), Equation (3.6.26) reduces to

e

p
=5 —=. 3.6.28
“T7+26 (36.28)
By inserting this expression into (3.6.22), we obtain
k 1 ap*
V- —(Vp'+0gV2) | = | . 3.6.29
{ﬂ(p rg Z)] (nﬂ /1+ZG) o (3.6.29)

By comparing (3.6.29), with (3.3.9), noting the assumptions that underlie the
latter, we may conclude that the compressibility coefficient of a porous medium, a,
defined by (3.2.10), is related to 4 and G by

1
*TT+25°

By inserting (3.6.21) and (3.6.26), with IT = 0, into (3.6.13) rather than into
(3.6.14), we obtain an equation that is comparable to (3.3.15).

In order to identify the conditions under which IT = 0, we assume, following
Verruijt (1969), that displacements occur only in the vertical direction, i.e., in
Cartesian coordinates, w, # 0, w, = w, = 0 and that the total stress remains

y
unchanged, i.e., 0° = 0, and hence 0% = p°l. Then (3.6.19) reduces to

(3.6.30)

~ Ow,

(O-;ke)n(:(a::e)yy=_l az > (gre)xy=(0t8)yx=0’
~ Ow,

*e — *e =—G 2
(05 )XZ (03 )ZX ax >
(03 =—(A +2G) aat‘ y &= aa':z (3.6.31)
Hence
*e e T ~ awz 0y ~
—(07).=p*=(4+2G) = " (A +2G)g,. (3.6.32)

By comparing (3.6.28) with (3.6.32), Verruijt (1969) concludes that IT vanishes
for the simplifying assumptions leading to the latter. In other words, the balance
equations (3.3.15), (3.3.16) and similar equations that involve the concept of
specific storativity, are valid only when the assumption of vertical displacement
only is valid (or approximately so). In most cases of groundwater flow, this
situation indeed prevails.

We note that while the complete three-dimensional model for determining the



84 CHAPTER 3

soil’s displacements requires a simultaneous solution of the (water) mass balance
equation, say (3.6.22), and the equilibrium equation, (3.6.23), together with
appropriate constitutive equations, the model based on the assumption of vertical
displacement only, enables us to decouple the two equations. Thus, we may first
solve (3.6.29), or any similar equation, for p¢, and then use (3.6.28) to determine
the distribution of ¢, and from it, employing the last expression in (3.6.31), the
distribution of w,. Then, soil compaction, or land subsidence, d(x, y, t) can be
obtained from

0
o(x yt) =J awz dz =J &(x, 5 2 t)dz
®) 92 (8)
P(xyzt)
= — . _~ d 3.6.33
LB) 1+260 ° (3.633)

where B denotes the thickness of the considered layer.

In engineering practice, the two-step approach outlined above is often per-
formed such that in the first step, the solution for the pore pressure, p, averaged
linear compressibilities are used, whereas in the second step, the calculation of the
strains in the soil, a more realistic constitutive equation is used. Thus, one can
incorporate nonlinear effects such as creep.



CHAPTER FOUR
Modeling Two-Dimensional Flow in Aquifers

In this chapter we shall develop models that describe groundwater flow in
confined, phreatic, and leaky aquifers on the basis of the essentially horizontal flow
approximation (= the hydraulic approach) discussed in Section 1.5. Obviously,
such models may be used only when this approximation is indeed justified.

For a confined and a leaky aquifer, the dependent variable is the average
piezometric head, § = §(x, y, ), as defined by (1.5.1). However, for the sake of
simplicity, we shall usually use the symbol ¢(x, y, ¢) to indicate g(x, y, ). For a
phreatic aquifer, we shall employ the symbol & = h(x, y, ) to indicate the
elevations of points on the phreatic surface above some datum level.

For each of the three types of aquifers, the governing (balance) equation (and
also the initial and boundary conditions) can be obtained by the control box
approach (Section 3.3), stipulating the assumption of essentially horizontal flow.
The control box is a column of area ox dy and height equal to the aquifer’s
thickness, B, or h. A more riggrous way to achieve the same goal is to start from
the three-dimensional model and integrate it over the aquifer’s thickness. In doing
so, we shall notice how conditions on the top and bottom surfaces that bound the
aquifer (in the three-dimensional model) become sources (or sinks) of water in the
integrated balance equation. Both approaches will be presented below.

4.1. Aquifer Storativity

We define the storativity of a confined aquifer, S, as the volume of water, AU,,
released from storage (or added to it) per unit horizontal area, A, of an aquifer
and per unit decline (or rise) of piezometric head, ¢ (= ¢), i.e.,

S=AU,/AA¢ (4.1.1)

(Figure 4.1a) where S is dimensionless. From the discussion in Section 3.2 we
know that this storage is due to the elastic behavior of the water and of the solid
matrix. Hence, S is related to the specific storativity S, by

by
S(x,y)= er So(x, ¥, 2) dz 4.1.2)

where b, and b, denote the elevations of the aquifer’s top and bottom. The volume
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Fig.4.1. Definition sketches for storativity: (a) confined aquifer; (b) phreatic aquifer.

of aquifer from which the volume of water, AU,,, is released is A X B where B is
the aquifer’s thickness (Figure 4.1a).

In (4.1.2) we have overlooked the possible change in the aquifer’s thickness,
b, — by, as ¢ varies. This makes (4.2.4) incomplete.

We can also define a storage coefficient for a phreatic aquifer. Consider a
horizontal area, A, of a phreatic aquifer (Figure 4.1b). The volume of water stored
in a phreatic aquifer is indicated by its water table. If, as a result of the pumping
from the aquifer, a volume of water leaves this area in excess of the volume of
water entering it, the water table will drop. We may define the storativity of a
phreatic aquifer in the same way as the storativity of a confined aquifer was
defined above, except that here the drop, A4, is of the water table (Figure 4.1b)

S =AU, /AAh (4.1.3)

In spite of the similarity in the two definitions, the storativity in each of the two
types of aquifer is due to different reasons. In a confined aquifer, it is the outcome
of water and matrix compressibility. In a phreatic aquifer, water is mostly drained
from the pore space between the initial and final positions of the phreatic surface.
The storativity of a phreatic aquifer is, therefore, sometimes referred to as specific
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yield, S,; it gives the yield of an aquifer per unit area and unit drop of the water
table.

Recalling that the water table is actually an approximate concept, we under-
stand that water is actually being drained from the entire column of soil up to the
ground surface. Bear (1972, p. 485) shows that when the soil is homogeneous and
the fluctuating water table is sufficiently deep, the above definition for specific
yield still holds (see Section 5.1).

One should be careful not to identify the specific yield with the porosity of a
phreatic aquifer. As water is being drained from the interstices of the soil, the
drainage is never a complete one. A certain amount of water is retained in the soil
against gravity by capillary forces. After drainage has stopped, the volume of water
retained in an aquifer per unit (horizontal) area and unit drop of the water table is
called specific retention, S,. Thus,

S,+S, =n (4.1.4)

For this reason S, (< n) is sometimes called effective porosity. Here, again, one
should note that we have been referring to the approximate concept of a water
table. However, for a homogeneous soil and a sufficiently deep water table, the
above definition for S, holds.

Figure 4.2 shows typical relationships between S, §,, and particle size.

When drainage occurs, it takes time for the water to flow, partly under
unsaturated conditions, out of the soil volume between the two positions of a
water table, at ¢ and at ¢ + A¢. This is especially true if the lowering of the water
table is rapid. Under such conditions, the specific yield becomes time-dependent,
gradually approaching its ultimate value. We often refer to this phenomenon as
delayed yield (See Subsection 4.2.4). When the water level is rising or falling
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Fig. 4.2. Relationship between specific yield and grain size (from Conkling et al., 1934, as modified
by Davis and De Wiest, 1966).
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slowly, the changes in moisture distribution have time to adjust continuously and
the time lag vanishes.

When the water table is lowered, the pressure drops throughout the aquifer
below it. In principle, this pressure drop causes water to be released from storage
in the aquifer, also due to the elastic properties of the aquifer and the water.
However, when we calculate the total volume of water released from storage in the
aquifer per unit area and unit decline of head: (AU,), = S,k due to the elastic
storage and (AU,), = S, due to the actual drainage of water from the pore space,
we have §,4 < S, so that (AU,,), can be neglected (see also Subsection 4.2.4).

Typical values of S in a confined aquifer are of the order of 10™*—1075,
roughly 40% of which result from the expansion of the water and 60% from the
compression of the medium. In a sandy phreatic aquifer, we may have S, of the
order 1077 cm™, whereas S, may be 20—30%.

We shall return to the definition of aquifer storativity, both for a confined
aquifer and for a phreatic one in Section 4.2, where the aquifer equations will be
derived by averaging the three-dimensional flow equations along the vertical.

4.2. Fundamental Continuity Equations

In this section, the fundamental continuity equations for flow in confined, leaky,
and phreatic aquifers are developed in two ways: first by employing the control
box approach for the particular type of aquifer under consideration, and then by
integrating the three-dimensional continuity equation over the thickness of the
aquifer, taking into account the boundary conditions on its top and bottom
surfaces.

For the sake of brevity, we shall consider first a leaky-confined aquifer and then
derive the equation for a confined one as a special case. Similarly, we shall
consider a leaky-phreatic aquifer, with a phreatic one as a special case.

4.2.1. LEAKY CONFINED AQUIFER

A leaky-confined aquifer (Subsection 1.1.3) is bounded from above and/or below
by a semipervious layer through which water may leak into or out of the aquifer.
We assume that the flow in the aquifer itgelf is essentially horizontal, while it is
vertical in the semipervious, relatively thin bounding layers. This assumption is
valid when the constrast between the permeabilities in the aquifer and in a
semipervious layer (= aquitard) is at least one order of magnitude. We shall first
ignore storage in the semipervious layers and then show how this storage is taken
into account.

Consider the case of the inhomogeneous leaky-confined aquifer shown in
Figure 4.3a. Figure 4.3b shows the control box for which the following (volumetric)
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Fig. 4.3. Flow in a leaky-confined aquifer.

water balance (actually, mass balance at constant density) holds

ot {6y(Q;|x—6):/2,y—_ Q;|x+6x/2,y)+ 6X(Q:v|x,y—dy/2 - Q:le,y+6y/2) +
+ 0x 6y(4,1 — q,2) + 0x Oy(R — P)

=5 0x Oy(Pl,+a.—¢1,) (4.2.1)

where ¢(x, y, t) is the piezometric head in the considered aquifer, g,, and g,, are
vertical leakage rates (dims. L/T) through the top and bottom semipervious layers,
respectively, and R(x, y, t) and P(x, y, t) are distributed rates of artificial
recharge and pumping, respectively (dims. L/T). With @,(x, y, t) and @,(x, y, )
denoting the piezometric heads above the upper semipervious layer (i.e., in aquifer
A) and below the lower one (i.e., in aquifer C), respectively, and assuming that the
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piezometric head distribution is always linear across each aquitard, the leakage
rates are expressed by

K® el AR Ak 4, = K® ¢IB(U¢ - ¢lc(1)¢ (42.2)
where ¢ = BO/K® and ¢® = B®/K® are the resistances (dims. T) of the
semipervious layers. Hantush (1949, 1964) calls K()/B®) = 1/c® the coefficient
of leakage. It is defined as the rate of flow across a unit (horizontal) area of a
semipervious layer into (or out of) an aquifer under one unit of head difference
across this layer. Dividing both sides of (4.2.1) by ox dy in order to obtain a
balance per unit area and per unit time, and letting dx, dy, 6t — 0, in order to
obtain a balance ‘at a point’, i.e., in its close vicinity, we obtain

0
—V"Q’+qv,—q02+R—P=S—af—. (42.3)
WithQ’'=-T - Vg,and q,,, q,, expressed by (4.2.2), Equation (4.2.3) becomes
. , $—¢ _¢—¢ o¢
vV o-@-Vg)+ - +R—P=S§S—. 424
T v+ it -ty - (4.24)
For an inhomogeneous isotropic aquifer, (4.2.3) takes the form
9 o¢ 0 o¢ $—¢
— | T—|+—=—\T— |+~
ox ( ox ) dy ( dy ) c®
$—¢ 0¢
- +R-P=§5—. 4.2.
c® ot (4.25)
For a homogeneous isotropic aquifer, (4.2.5) reduces to
Vg ¢ -6 _ 4—¢ R-P_S 3
Py + 3y’ + FTUCEYCE + T =TE (4.2.6)
where A = (Tc®)2, | = 1, 2, is another leaky aquifer parameter, called the

leakage factor, that determines the areal distribution of the leakage. Equation
(4.2.4) is the basic continuity equation describing groundwater flow in a leaky-
confined aquifer, neglecting storage in the semipervious layers. The effect of
storage in the semipervious layers will be considered in Subsection 4.2.2.

The symbols P(x, y, t) and R(x, y, t) represent either distributed or point
sources or sinks (e.g., recharging and pumping wells, respectively). In the latter
case, we may replace these terms by X, P*(x,, y, )é(x — x;, y — y;) and
E(i)R*(xj,yj,t)ﬁ(:c — xj,y — yj),where P*(x,, y, t) and R*(x;, y, t) denote
pumping rates (dims. L*/T), respectively, at points (x,, y,) and (x,, y,), say, with i =
1,2,...,m,and j =1, 2,..., mg. The symbol (x — x;, y — y,) denotes the
Dirac delta function.
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Let us now develop the same equation by integrating the three-dimensional
continuity equation (3.3.13), over the aquifer’s vertical thickness, with ¢* approxi-
mated by ¢ over the aquifer’s vertical thickness. In the absence of sources and
sinks (to be added later), and recalling all the assumptions underlying its develop-
ment, we obtain

ba(x, y)
J (v q+S a¢)dz—0 4.2.7)

bi(x, y) a

where b(x, y) and b,(x, y) denote the elevations of the stationary bottom and top
bounding surfaces, with B(x, y) = by(x, y) — b,(x, y). For horizontal surfaces,
b,(x, y) and b,(x, y) are constants.

For the sake of simplicity, we assume that the solid’s velocity is very small so
that q, = q. The effect of the solid’s velocity will be taken into account in Section
4.5 below. We shall make use of the Leibnitz rule (2.2.2) written in the forms

(a) for any vector A

by(x, y, 1)
J V-Adz=V' - BA'+Al, - V(z—b)—Al, - V(z—b), (428)
by(x, y, 1)

(b) for any scalar ¢
B30 3 ob ob
J a¢ dz = B¢ Blo =5, #ln = - (4.29)
bx oy 9
where
1 ("
A'—;J A'dz, A'=Alx+A]ly,
A
v’ A’—a =1 +—aé’—1y
ox dy

Applying these rules to (4.2.7), for the case of fixed bounding surfaces, b, =
b\(x, y), b, = by(x, y), we obtain

, 33
V' - Ba'=al, - V@ =b) +aly, - VE—b) =5 (42.10)

where § = §B is the aquifer’s storativity. However, we may remove the constraint
of fixed bounding surfaces and assume instead ¢ = ¢|,,l = ¢|,,z, i.e., vertical
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equipotentials (essentially horizontal flow). Then

ab ob,
—= ¢|1>._l = 0.

- 0B
With this approximation, we also obtain (4.2.10).
The last two terms on the left-hand side of (4.2.10) denote flux components
normal to the boundaries, recalling that the equations of the latter can be
represented, symbolically, by

F=F(xyzt)y=z—b(x,yt)=0,
E=Fxyz,t)y=z2—by(x,y,t)=0.
With these symbols, we may rewrite (4.2.10) in the form

=V’ - Q' —ql, - VE+4q| - VF,=S% (4.2.11)
where Q' = Bq’ and S = §,B.
Let g, = (¢ — ¢,)/ ¢@ denote the rate of leakage out of the aquifer through its
fixed semipervious (not necessarily horizontal) ceiling described by F,(x, y, z, t) = 0.
The condition stating continuity of flux across this boundary is (3.4.15), where
v, = VE,/|VF,| and fi(x, t) = q,(x, t). We recall that (3.4.15) was derived for a
boundary, whether stationary or moving, that is a material surface with respect to
the solids. If, in addition, we assume q > nV, then q, = q the continuity of flux
across the boundary is expressed as

‘1|Fz * VE = ’VFZIQ/Z‘—‘ |VE|(¢ — $,)/c®.

A similar expression can be written for the lower boundary, Fi(x, y, z, t) =
When the two expressions are inserted into (4.2.11), we obtain

-V’ - Q' —|VFE| $ (2)¢2 |VF,| g (,)¢‘ =S %. (4.2.12)
This equation is more general than (4.2.4), as it allows for a nonhorizontal
bounding surface. For horizontal surfaces, with constant b, and b, and |VF,| =
|VF,| =1, Equation (4.2.12) reduces to (4.2.4).

To summarize, in deriving (4.2.12) we have assumed that (i) u = 0, or u # 0,
(ii)u - v=V, + v,and (iii)) V, = 0,q, = q.

It is of interest to note that the terms expressing leakage through both F, = 0
and F, = 0, which appear as boundary conditions in a three-dimensional flow
model become sink/source terms in the integrated, two-dimensional, model that
appear in the balance equation. At the same time, the top and bottom surfaces do
not serve anymore as boundaries of the flow domain. It is always possible to add a
sink term on the left-hand side of (3.3.13) such that an integrated sink term will
appear in (4.2.11) and (4.2.12). As in (4.2.3), this can take the form of a term
R — P added on the left-hand side of (4.2.12) to represent a net source.
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4.2.2. EFFECT OF STORAGE IN THE SEMIPERMEABLE LAYER

In the discussion in Subsection 4.2.1 above, we assumed that the semipervious
layers have zero storativity and, hence, any change in the piezometric head in the
adjacent aquifers propogates instantaneously within these layers. We could, there-
fore, assume that a linear distribution of heads always exists in these layers. In
reality, changes in water storage do take place in the semipervious layers.

In unsteady flow, as the piezometric heads in the aquifers that lie above and
below each semipervious layer vary, continuous changes are also produced in the
distribution of the piezometric head within each semipervious layer. Figure 4.4
shows how an instantaneous stepwise drop in the piezometric head, ¢, from ¢ |, -
to ¢|,-o+ in an aquifer, even when ¢, in the aquifer underlying the semipervious
layer remains unchanged, produces a gradual change in the piezometric head
distribution, ¢()(z’, ¢), within that layer. We note that the gradient d¢(/0z’ varies
with both time and elevation along the aquitard’s thickness, B (). At the same time,
the quantity of water stored (elastically) within each unit volume of porous
medium along B also varies as ¢() = ¢()(z’, t) varies. For horizontal top and
bottom layers, the rates of leakage entering and leaving the aquifer shown in
Figure 4.3a are expressed by

YE) 94?
al=—kO 2| =k ) (42.13)
where ¢@(z", t) denotes the piezometric head in the upper aquitard and the
gradients are taken at the interfaces between the main aquifer and the top and
bottom aquitards.

We note in Figure 4.4 that, whereas initially the flow throughout B( is
everywhere downward after some time, say #, (assuming that ¢[,.,+ does not
vary), the flow in the lower part of the aquitard changes its direction. Eventually it
will be upward throughout the entire aquitard. Employing the definition of specific

Aquifer (@)

sO(x, 5,2, 1)
K, s

Aquitard |(¢™)

¢ (x5 2, ®)
2y

4

Ac;uifer (%)

Fig. 4.4. Changes in piezometric head within an aquitard.
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storativity, S, (Section 3.2), the total volume of water, AU, released from storage
in the aquitard (per unit horizontal area) up to time ¢ is given by

B(")
AU, = J SP{eO(x, y, 27, 1) — O(x, y, 7/, 0)} dz". (4.2.14)

=0

Depending on the aquitard’s permeability, K (actually on the ratio S /K “’),
it will take some time for this volume to be released from storage in the aquitard.
Accordingly, the distribution of the piezometric head within an aquitard cannot
respond instantaneously to head changes in the adjacent aquifers. The entire
picture is more complicated when the piezometric heads in the adjacent aquifers
continuously vary. We refer to this phenomenon as delayed storage.

With (4.2.13), Equation (4.2.11), with ¢ = ¢, becomes

+K(2)_a_.¢ﬁ

3¢
=95 — 4.2.1
. o (42.15)

no ot

M
-V’ - Q —K® %

where Q° = —T - V’g. We note that in (4.2.15) we now have two additional
dependent variables ¢((z’, t) and ¢*(z", 1).To solve for these variables, we have
to construct a model that describes the (vertical) flow within each aquitard.

To demonstrate the construction and solution of such a model and the effect of
delayed storage, let Figure 4.4 represent the lower aquitard of Figure 4.3a. Assume
that KM < K, so that the flow in the semipervious layer is essentially vertical. Let
a steady flow be established through the layer and then assume that a stepwise
reduction of the head is produced in the main aquifer by pumping. After a
sufficiently long time, a new steady state will be established, with a linear
distribution of the head. However, during this period, the reduction of the head in
the semipervious layer will lag behind that corresponding to the new steady state.
The problem of determining ¢()(x, y, z’, t) for K™ = constant, is stated in the
domain 0 < z' < B®, by the following partial differential equation and initial and
boundary conditions

25 (M) O]
KOS s 2, sxy,2,0=0, £ <0
Z
0 <z < BW, s(x,y,0,¢)=0, ¢t >0
0, <0
s(x, y, BO, t) = H, t>0 (4.2.16)

where we have switched to the use of drawdown

sO(x, y,2" + t)=9W(x,5,2',07)— ¢)(x,y,2,t) and
HO = ¢ Il-ﬂ- - ¢ |1-0*"
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The solution of this problem is given by (Carslaw and Jaeger, 1959, p. 310)

sO(x, y, 2, 1)
H,

=7 e GntHBY—2 . @n+1HBV+2
=0 2(K(1)I/S§)1))1/2 Z(K(l)t/sg))l/z

(4.2.17)

Figure 4.5 (Bredehoeft and Pinder, 1970) graphically shows this solution.
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Fig. 4.5. Graphical representation of (a) Equation (4.1.17) and (b) Equation (4.1.18) (Bredehoeft
and Pinder, 1970).
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From s = s()(x, y, z’, t) one can determine the increase in the rate of flow,
4,1, into the pumped aquifer produced by the stepwise reduction in head

as(l)
Ag,=K®
91 az, - B0
K®H, d
= B0k OB TSPy | 2 e (KUBYSY) [ (42.18)

This flow is plotted in Figure 4.5b. From this figure, it follows that a long time may
elapse before steady flow is re-established in the semipervious layer.

Once the distributions ¢()(z’, t) and ¢?(z", ¢) have been determined, the
leakage terms in (4.2.15) can be calculated, leaving ¢ as the single variable in it.

Another approach is to reduce the set of partial differential equations (4.2.15)
and (4.2.16) to a single integro-differential equation. Let us demonstrate this
approach for the leaky-confined aquifer system shown in Figure 4.6.

The model that describes the drawdown, s(x, y, t) = ¢(x, y, 0) — 4(x, y, ) in
this pumped leaky-confined aquifer is given by

9s? os
—P=§5—— 4.2.1
0z" |p ot (4-2.19)

V' -T-Vs)+K®

where s(x, y,0)=0,and V' - T - V'¢(x, y, 0) + K@943(x, y, 0)/0z"| r=0,ie,
initially, without pumping, the aquifer is in a steady state. Equation (4.2.19) has to
be supplemented by the appropriate initial and boundary conditions in terms of

s(x, y, t).

Aquifer (¢,)
Aquitard (¢®) z" B®
Z I pa 1 Z KOsy A

Aquifer (¢)

Fig.4.6. A leaky-confined aquifer.



MODELING TWO-DIMENSIONAL FLOW IN AQUIFERS 97

The model for flow in the (homogeneous) aquitard, in terms of the drawdown
s@(x, y, 2", t)is given by

92s?® 9s® .
K(Z)a—z"2—==sf,2) a7 in0 < z” < B®,
sO(x, 5,0, t)=s(x, y,t); sO(x, y,2",0)=0. (4.2.20)

We shall assume s@(x, y, B®, t)=0.

Herrera and Rodarte (1973), following Neuman and Witherspoon (1969), show
that the system of Equations (4.2.19) and (4.2.20) is equivalent to the single
integrodifferential equation

K® |" 9s(x, y, t —
V.@T-Vs)— L AT fg2/sPBO) dr

B® ot
Os
—P(x,yt)=S B (4.2.21)

where the memory function, f(t’) is expressed by

f¢hr=1+2 i exp(—m’n’t")

m=1

=W[1+2 ) exp(———':l;)] (4.2.22)

m=1

By solving (4.2.21), we obtain s = s(x, y, ¢), without having to solve separately
for the drop in piezometric head, s®(x, y, z", t) along the impervious layer.
We say that (4.2.21) ‘has a memory’ because the integral depends on the history
of the drawdown, s, in the aquifer. This procedure does not introduce any
approximation.

There is no difficulty in applying the same approach to the case of the two
aquitards shown in Figure 4.3. In general, s®(x, y, B®, t) # 0 as it depends on
what happens in the overlying aquifer. This serves to couple the two aquifers; a
simultaneous solution is required.

4.2.3. CONFINED AQUIFER

The flow equation for a confined aquifer can easily be obtained from the one
describing flow in a leaky-confined aquifer. For a confined aquifer, the two
aquitards in Figure 4.3 are replaced by impervious layers. Also g,, = g,, = 0.
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When the control box approach is employed, the balance represented by (4.2.1)
is valid, except that g,, = g,, = 0. Hence, (4.2.4) reduces to

v (T-V'¢)+R—P=s%’:4 (4.2.23)

where ¢ = ¢(x, y, t) = gZ(x, »t).

This is the basic balance equation for a confined aquifer.

For an inhomogeneous anisotropic aquifer, with T (x, y) # T(x, y), x, y
principal directions, (4.2.23) takes the form

3 (. 3 Y £
ax(T‘a )+ay( ay)+R P=5—. (4.2.24)

For a homogeneous isotropic aquifer, (4.2.23) takes the form

$ 09 94
T(a2 ay)+R P=TV$+R—-P=5—". (4.2.25)

For steady flow, or when the elastic storativity may be neglected, the right-hand
side of these balance equations vanishes. We obtain

g 3¢
T(ax2+ %’ )+R -pP=0. (4.2.253)

In the absence of sources and sinks, (4.2.25a) reduces to

g ¥y

T = Vig=0 (4.2.25b)

which is the Laplace equation in the xy plane We recall that in “. 2.23) through
(4.2.25b), the symbol ¢ represents the average é=4(x,y t),0r §=9g(x,y).

When the approach of integrating along the vertical is employed, we may start
from the integrated equation (4.2.11). Along the impervious bounding surfaces, F
=0 and F, = 0, and assuming V, = 0, so that q, = q, by (3.4.15), the boundary
condition of no flux, i.e., fy(x, ¢) = 0, takes the form

qlf, - VF,=0 onF =0,
qlp, * V=0 onk=0. (4.2.26)

Hence (4.2.11), after introducing the source term, R — P, reduces to (4.2.23). We
recall that (4.2.10) and (4.2.11) are also applicable to nonstationary top and
bottom bounding surfaces if we assume that § = ¢ lr, = @1, ie. we assume
vertical equipotentials.
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4.2.4. LEAKY-PHREATIC AQUIFER

We shall first derive the balance equation by considering a control box in a leaky-
phreatic aquifer (Figure 4.7). The bottom elevation, denoted by 7 = 7(x, y), is not
necessarily constant. In addition to groundwater flow into and out of the box and
leakage from an underlying aquifer (piezometric head ¢, measured from the same
datum level as h), we also have natural replenishment (from precipitation), N =
N(x, y, t), artificial recharge, R = R (x, y, t) and pumping, P = P(x, y, t). Return
flow from excess irrigation may also be added as a separate term, or incorporated
in either N or R. All these inputs and outputs may take the form of distributed
sources and sinks, or of point ones (as in the comment following (4.2.6)).

Based on the Dupuit assumption of horizontal flow in the aquifer and leakage
normal to the semipervious layer (Section 2.3), the balance of water volume for
the control box shown in Figure 4.7, takes the form

Ot{Oy(Q:li—oray— Qilitoxn )t
+0x(Q; | o2 — Qo liyvap)
+ (R+N—P) 6x oy + g, 6x dy}
=S, 0x Oy(hl,+a —hl,) (4.2.27)

where we have neglected the elastic storativity, as the storativity due to drainage
from the pore space is much larger than that resulting from the elasticity of the
water and the solid matrix: §, > S,(h — ) (Bear, 1972, p. 376). In (4.2.27), §, is
the specific yield of the phreatic aquifer. Expressing Q' by (2.3.12), and following
the usual procedure of dividing both sides of (4.2.27) by Jx dy 6t and letting

P
1\ N+R t+ ot
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Fig.4.7. Flow in a phreatic leaky-aquifer.
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ox, 0y, 6t — 0, we obtain for an inhomogeneous isotropic aquifer, with K =
K(x )

F) dh ) dh
—{Kth-n—}+— 1 {K(h—9)—+R+N—p+
ax[ (h—m) ox ay[ (h—m) ay} p+gq,

oh
=8 —. 4228
Y (42.28)
The rate of vertical leakage, g,, can be expressed by employing (4.2.2), ie.,
q, = (¢ — h)/ch), where c¢) = is the coefficient of leakage of the semipervious
layer. Accordingly, (4.2.28) can be rewritten in the form

) oh ) oh ¢ —h
— -n)—(+—— -7)—{+R+N—-p+-—F—
ox [K(h n) ax] 3 {K(h n) ay] R+N-—-p+ o
oh
= y ? . (4229)

This is the basic continuity equation for water flow in a leaky-phreatic aquifer. It
is often called the Boussinesq equation.
For a homogeneous aquifer, K = const, we obtain

) oh 9 oh 46— h
Kl{l—(th—-—n)—+ —(h—n)— -
ox (h—mn) ox + 3y (h—n) §y +R+N-—-P + oM
oh
=3, E . (4.2.30)

As in the case of a leaky-confined aquifer, in order to develop the balance
equation for a leaky-phreatic aquifer by integration, we start by integrating the
three-dimensional balance equation (3.3.13) over the vertical

RS 9\ . _
Vq+S =] dz=o. (4.2.31)
n(x. y) Gl

By employing the modified forms of the Leibnitz rule, (4.2.8) and (4.2.9), we
obtain for q = q,

Vi (h=mq +al, - Vz—h)—ql, - V@-m+

+ Sk —1n) % =0 (42.32)
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where we have assumed
$=¢l,=¢li=h (4.2.33)

For the third term on the right-hand side of (4.2.32), that expresses the upward
leakage normal to the semipervious layer, we use an expression similar to the third
termin (4.2.12),i.e.,

ql, V(z—=n)=q|, - VF =|VF|(¢ — h)/cD. (4.2.34)

The second term on the left-hand side of (4.2.32) expresses the rate of accretion
(from all sources) at the phreatic surface F= z — h(x, y, t) = 0. To obtain this
expression, we refer to the phreatic surface boundary condition (3.4.25), from
which, replacing N by R + N — P, we obtain

oOF
ql, 'VF=(R+N—P)-VF—Sya—t (4.2.35)
where R + N — P = —(R + N — P)Vg, ie, vertical accretion. By inserting
(4.2.34) and (4.2.35) into (4.2.32), we obtain

V' (h=m)§ — (R+N—=P)—|VF|(¢ — h)/ch +

oh
+ {So(h —77)+Sy} E =

0. (4.2.36)
Finally, since S, > Sy(h — 7) and introducing (h — 1)’ = Q@ =
—K (h —n) V'’h, we obtain

)
V' {K(h—n)V'h}+R+N—P+|VF|(¢ —h)/c<l>=sy3—’t’ (4.2.37)

which is identical to (4.2.29), except that it allows for a nonhorizontal semi-
pervious bottom. In performing the integration, we note again how conditions
on the top and bottom bounding surfaces, here the semipervious bottom and
the phreatic surface, become sink/source terms in the two-dimensional balance
equation.

In (4.2.29), (4.2.30) and (4.2.37), the product K (h — ) represents the local
instantaneous transmissivity 7= T (x, y, ¢ ) of the aquifer (see Chapter 10).

In the development presented above, we have neglected changes of storage
within the semipervious layer. There is no difficulty in applying the discussion
presented in Subsection 4.2.2 above, also to the development of the balance
equation in this subsection.

When the bottom of the aquifer is impervious, the third term in (4.2.37)
vanishes.

4.2.5. LINEARIZATION

Equations (4.2.29) and (4.2.37) are nonlinear, as they contain the product hV'h,
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in addition to terms that are linear in & (e.g, S, 0h/0t). We may regard the
product K (kA — n) in these equations as the transmissivity of the phreatic aquifer.
However, unlike the transmissivity of a confined aquifer, the product K (k — 7)
may also vary in time because & = h(x, y, t).

There are only minor difficulties in numerically solving the nonlinear balance
equation. Nevertheless, the equations are often first approximated by linearization
and only then solved numerically. In the method of linearization that is commonly
employed, we replace h(x, y, t) in the product K(h — 7) by some mean value,
h(x, y), assuming that | h — A| < h. Equation (4.2.37) then becomes

V' - {K(h=n)V'h}+R+N—P +|VF|($ — h)/c) =5, % (4.2.38)

which is linear in h = h(x, y, t). The introduction of an average thickness
(ﬁ — n) is justified whenever fluctuations in the water table elevations are much
smaller than the thickness (h — #7) of a phreatic aquifer. In a numerical solution
scheme, the average thickness may be updated gradually as time progresses.

4.3. Initial and Boundary Conditions

To describe a specific problem, the partial differential (balance) equation that
describes flow in an aquifer must be supplemented by appropriate initial and
boundary conditions. We recall that the state variable is ¢ = ¢(x, y, t), or h =
h(x, y, t) for a phreatic aquifer, and that the model is based on the assumption of
essentially horizontal flow. For the sake of simplicity, we shall refer here only to ¢.

The (possibly moving) boundary itself is described by F(x, y, ¢) = 0 in the
horizontal xy-plane.

Initial conditions take the form

$=0(x,50)=g(xy) in(D) (43.1)

where g = g(x, y) is a known function.
Several types of boundary conditions may be encountered.

(a) Boundary of prescribed piezometric head. In this case
¢=fi(x,y,t) onB 4.3.2)

where the boundary, B, is a straight line or a curve in the xy-plane, and fi(x, y, ¢) is
a known function.

A special case is the equipotential boundary, i.e., fi(x, y, t) = const or fi(x, y, t)
= f¥(¢), where f¥} is a known function.

A known potential boundary is encountered whenever the aquifer is in direct
hydraulic contact with a river or a lake in which the water level is known.

Another special case of this kind of boundary is a spring through which
groundwater emerges to the ground surface. The outlet threshold is at fixed
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elevation. Water emerges from the aquifer into the atmosphere (p = 0) at that
fixed elevation and, hence, this is a boundary of a fixed piezometric head.
Sometimes a water layer exists above the threshold which may vary with the rate
of flow. However, when the piezometric heads in the aquifer in the vicinity of the
spring are lower than this threshold, the spring dries up and ceases to serve as a
boundary to the flow domain. It is thus a boundary of fixed potential only as long
as the water heads in the vicinity are above the spring’s outlet: they drop toward
the spring (= loss of head in the converging flow in the aquifer).

When a spring drains into a lake, the specified head is given by the water level
in the lake.

(b) Boundary of prescribed flux. Along such a boundary
Q.= f(xy1) (4.33)

where f; is a known function. For an isotropic medium, this condition may be
expressed as

0¢/0v = f(x,y,t) onB 434)

where v is the distance measured as normal to the boundary; f, is a known
function. In an anisotropic aquifer, we modify (2.2.8) to express Q and, hence, the
boundary condition is

0,=Q" - v=—T-V'¢) - v=Ff(x,y,t) onB (4.3.5)
Or, in view of (3.4.5)
T-V'¢):VE=fi(x,y,t) onB (4.3.6)

where f; is a known function, and f; = |VF|f,.
For x, y that are principal directions, (4.3.6) may be rewritten in the form
d¢ OF 0¢ OF
— —+T,— —=f(xnt B. 4.3.7
xx ax ax Yy ay ay fg(x Y ) on ( )
For an impervious boundary, f; = 0 in (4.3.4) and f; = 0 in (4.3.5). We recall
that a streamline and a water-divide behave as an impervious boundary.

(c) Semipervious boundary. This boundary condition is encountered when a partly
clogged river bed (e.g., by a thin layer of silt or clay) serves as a boundary of the
flow domain. Because of the resistance to the flow offered by the semipervious
layer, the water level (or piezometric head) in the river (point A of Figure 4.8)
differs from that at point P in the aquifer, on the other side of the semipervious
boundary. Since the flow is assumed horizontal, continuity of flux through the
entire thickness of an anisotropic aquifer requires that

Hxyt)—¢

b

Q,=—T-V'g): v=KO on B. (4.3.8)
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Fig. 4.8. A partly clogged river bed serving as a semipervious boundary.

where H (x, y, t)is a known function. Or, making use of (3.4.5)

_(T. V'¢) - VF =

H(x,yt)— ¢

0 B|VF| (4.3.9)

where c() = p(/K D),

4.4.

Complete Statement of Aquifer Flow Model

Following the discussion in Section 3.5, and recalling that flow in the aquifer
models considered here takes place only in the horizontal, say xy-plane, the
standard content of such a model should include the following items.

@
®)

©
@
©
®

®

Specification of the geometrical configuration of the closed curve that
bounds the problem area.

Specification of the state variable, usually ¢ (= @) = ¢(x, y, ¢) for a
confined, or leaky confined aquifer and 4 = h(x, y, ¢) for a phreatic, or
leaky-phreatic aquifer, for which a solution is sought.

Statement of the partial differential (balance) equation in terms of the state
variables stated in (b).

Specification of the numerical values of the (transport and storage) coeffi-
cients that appear in (c).

Statement of the numerical values of the various source and sink terms that
appear in (c).

Statement of initial conditions that the state variable of (b) satisfies at # = 0
within the considered domain. No initial conditions are required for steady
flow.

Statement of boundary conditions in terms of the state variables specified in

®).

The regions under investigation need not extend to the natural boundaries of a
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considered aquifer, such as a river or a lake in contact with the aquifer, or an
impervious fault. Many reasons (sometimes merely economical, or political ones)
may dictate boundaries other than natural ones. Since boundary conditions intro-
duce the effect of the environment on the considered groundwater system,
modeling any portion of an aquifer is permitted, provided we specify the appro-
priate conditions along its boundaries.

In the case of a system of leaky aquifers, we have first to completely model each
aquifer separately, in terms of its own state variable, and then to solve all models
simultaneously.

The discussion in Subsection 3.4.9 is applicable also when discontinuities are
encountered in an aquifer, whether in the coefficients, or in the type of aquifer,
e.g, when in the same formation the groundwater changes from confined to
phreatic conditions, or when a horizontal impervious layer splits an aquifer into
two. Accordingly, the aquifer system is split into subdomains along such lines of
discontinuity. A complete model is then constructed for each subdomain, with its
own state variable, recalling the required conditions along a discontinuity (Sub-
section 3.4.9). The entire set of models is then solved simultaneously. The
comment at the end of Subsection 3.4.9 is also valid here.

4.5. Regional Model for Land Subsidence

When water is pumped from an aquifer, the pressure prevailing in the aquifer is
reduced. With the nomenclature of Section 3.6, we have p* # 0. Changes in excess
stress, 0°¢, at points within an aquifer may also be produced by changing the
overburden load, e.g., by excavation or construction at the ground surface. From
(3.6.16) it follows that any reduction in water pressure, whether also accompanied
by a change in the total stress, or not, produces an increase in the effective stress
in the solid matrix. The latter produces solid matrix deformation that manifests
itself as compaction and horizontal displacement. The former leads to observable
land subsidence. Land subsidence may serve as one of the constraints in deter-
mining water withdrawal from an aquifer. Hence, the need for a model that will
provide information on land subsidence in response to planned pumping. The San
Joaquin Valley (California), Mexico City (Mexico), Bangkok (Thailand) and
Venice (Italy), are often mentioned as areas with very large land subsidence
attributed to pumping. In most cases, the actual (irreversible) compaction is of
layers or lenses of soft material (e.g., clay) within the aquifer, whereas the aquifer
material lends itself to very small deformation only.

In this section, following Bear and Corapcioglu (1981a, b), we shall present a
regional, two-dimensional mathematical model of land subsidence and averaged
horizontal displacement due to pumping, ie., assuming 0¢ = 0. There is no
difficulty in extending the discussion to the case where o°¢ # 0.

Although, as mentioned above, the deformation is primarily that of the softer
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portion of an aquifer, we shall assume that the aquifer as a whole behaves as some
average, fictitious elastically deformable material, with averaged elastic coefficients.

In Section 3.6, we constructed a mathematical model of soil deformation in a
three-dimensional space. As in Sections 4.1 through 4.4, in this section we shall
develop a model that averages the three-dimensional behavior over the aquifer’s
thickness. In such a model, the variables for which a solution is sought are the
integrated vertical compaction of the aquifer, that manifests itself as land
subsidence, and the averaged horizontal displacements. All these variables are
functions of the horizontal coordinates and of time only.

For the sake of simplicity, we shall limit the discussion only to a confined
aquifer. Corapcioglu and Bear (1983) also consider a phreatic one.

4.5.1. THE INTEGRATED WATER BALANCE EQUATION

Our starting point is the three-dimensional mass balance equation (3.6.14) for flow
of a compressible fluid in a deformable porous medium, noting all the assumptions
underlying its development. Rewritten in terms of Hubbert’s potential, ¢*, defined
by (2.1.22), and adding a term P’(x, y, z, t) to symbolically represent water
withdrawal, this equation takes the form

68,,
ot

We recall that q, represents the specific discharge of the fluid relative to the solid
matrix.

Following the methodology presented in Section 4.2, we now integrate this
equation over the thickness, B = B (x, y, t), of a confined aquifer, obtaining

V - q +p0gnf—— ¢ + P'(x,y,2,t)=0. (45.1)

by(x, 3, 1) * a
[ (V q, + pognf ¢ 4 p )dz
bi(x,y,t) a
o . a¢‘*
=V BA,+al, - VE=ql, - VE+B J+ pgip

0B a gy, OF
FY; b

)
+ﬁg?iﬂ{ j* } + BP'=0 (452)

where F, = F,(x, y, t) =2z — b(x, y,t) =0 for i = 1 and 2, describe the bottom
and top surfaces bounding the aquifer, and

~ 1
(>=;L)( ) dz.
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In writing (4.5.2), we have already introduced the approximation

* - a *
J ognp ¢ = ﬁgnﬂJ 4 dz.
(8) ®) Of

We recall that the prime symbol over a vector or an operator indicates that the
vector or the operator are in the xy-plane only.

For the impervious bottom and top bounding surfaces considered here, we use
boundary condition (3.4.15), with fy(x, t) = 0, written in the forms

qlr - VE=0,  q,l5 - VF=0. (4.5.3)

By assuming also that equipotentials (i.e., surfaces of ¢* = constant) are essentially
vertical), i.e, ¢*|; = ¢*|, = ¢* Equation (4.5.2) reduces to

—~—

~ *
V- Bq}+B%+ﬁgﬁﬂB LA P(x,y,t)=0 (4.5.4)

where P = BP’ represents the volume of water withdrawn from the aquifer per
unit horizontal area, per unit time, and (Section 2.2) Bq’, = —BK' - V¢*
We note that in (4.5.4)

oF 1w, %

= — 45.5
ot pg Ot Ot ( )
where 7= (b, + b,)/ 2 is the elevation of the midpoint of the aquifer. Also
~ 1 - -
Vigh= —V'p+V'z 4.5.6
o8 ( )

With [3¢,/0t| > |V, - Vg,|, the total derivative, d*c,/dt, can be replaced by
the partial one, d¢,/0¢, leading to

3% _ o o . o
B—r=BV -V,=V' - BV,+V,, - VE=V,, - VF, (4.5.7)

Since the top and bottom surfaces of the aquifer are assumed to be material
surfaces with respect to the solid matrix, following (3.4.10), we have on them

V,=wlg - V=0,  (V,~u)|, : VE=0. (4.5.8)
Or, in view of (3.4.4),

F,
Vg - VE==0F/3t, V| VF=— %. (4.5.9)
Hence, (4.5.7) becomes
g, ~  O(F. ~
% _y. BV, — IEZR) g, BV +09B/ot. (4.5.10)

ot ot
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With the solid’s velocity, V,, related to the displacement, w, by (3.6.10), and
introducing the approximation d*w/d¢ = dw/dt, we obtain

3\7;=f V;dz=J iw—dz——(Bw)+
8) @) Ot
,  OF ,, OF
+w |Fz at |F| at
ow’ ~, OB oF, oF,
=B—+|w —+w —Wlp = 45.
ot (w ar TWln g TR, (4>11)

At this point, we need information on the displacements w’[; and w’|;, which
are the displacement boundary conditions on F, and F,, respectively. This informa-
tion is not available. To circumvent this difficulty we introduce a simplifying
assumption, namely that, practically, horizontal displacements are the same along
the vertical, i.e.,

w’IFl = w"""z'z W (4.5.12)

Then, by combining (4.5.10) through (4.5.12), we obtain

~

g8 _g. .pgo™ OB
at ot ot

Following the discussion in Section 3.6, we separate the specific discharge and
piezometric head distributions into initial steady-state values and ones that express
excess above the latter.

Frxy 1) = ¢*°(x N+ $x1),
@063 1) = Q3 )+ O y, 1), (4.5.13)
P(x,y,t)=P%x, y)+ P(x, y, t).

In terms of these variables, (4.5.4) is separated into two equations: a steady-state
balance equation

v’ Bq'0+P("‘0 (4.5.14)
and an unsteady one

— 3B 3¢
V' - BqF+V’ —+—+~~B
Bq*+V’' - B o1 ot B Y

+ Pe=0. (4.5.15)
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Equation (4.5.15) can be linearized by introducing
B(x) y) t) = bZ(x: )’: t) - bl(xJ y) t) = bg(x: }’)+ WZIFZ-
—(0%(x y) + wlr)=Bo%x y)+ A,

= (wzl,r2 — wzlpl) < BY,

A

Z
Thus, neglecting the effect of consolidation on permeability, we may write

Bq =—BK - V' (4.5.16)

4.5.2. THE INTEGRATED EQUILIBRIUM EQUATION

The total stress tensor, 0, at a point within an aquifer satisfies the equilibrium
equation (3.6.15) rewritten here for convenience in the form

-V - 0+f=0 (4.5.17)

where f = —{p,n + p,(1 — n)}g Vz represents the body force. We recall that the
inertial effects have been neglected in writing (4.5.17). We may now replace
(4.5.17) by (3.6.17) and (3.6.18), assuming, as a good approximation, that the
body force remains unchanged.

For the sake of simplicity in presenting the methodology of constructing a
regional land subsidence model, let us assume that the solid matrix of the aquifer
behaves like an isotropic and (for the relatively small displacements considered
here) perfectly elastic body, for which the stress-strain relationship (3.6.19) is
valid.

By integrating the equation for the x direction in (3.6.18), we obtain

J (V - 0% +Vp) dz
(B)

N
=V’ B(07) — (03 +pD|g, - VE+
+ (0¥ +pD| - VF +V'Bp*=0. (4.5.18)

To derive the stress boundary conditions on F, and F,, to be inserted in
(4.5.18), let us consider the surface F, bounding the aquifer from above. With
subscripts « and / denoting the upper and lower sides of F,, equilibrium requires
that

o|, - VE=o0|, - VE,. (4.5.19)

u

Similar to the flow, we assume here that a certain initial stress distribution
prevails in the aquifer, and that the pumping introduces an excess stress distribu-
tion. Hence, we rewrite (4.5.19) in the form of the two equations

o¢|, - VF,=0°|, - VE, 0|, - VF,=0°, - VF, (4.5.20)

u
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or, in terms of effective stress and pressure.
(ot +ph|, - VE=(0o¥ +p|, - VE=0 (4.5.21)

and a similar equation for the initial steady state.

When the excess stress and pressure in an aquifer are due only to pumping from
the latter and not to changes in the overburden load, the total stress on the upper
side of F, remains unchanged, i.e., 0¢|, - VF, = 0.Hence

(o*+pl|, - VE,=0. (4.5.22)
Similar considerations lead to
(0¥ +peD|, - VF,=0. (4.5.23)

There is no difficulty in also extending the above discussion to the case ¢ # 0.
By inserting (4.5.22) and (4.5.23) into (4.5.18), we obtain

V' - B(0%*)' +V'Bpt=0 (4.5.24)

in which averaged values are functions of x, y and ¢ only.
In indicial notion, (4.5.24) is rewritten as

D B+ B +-2 Bt =0 4525
ax ( s )XX ay ( s )Xy ax p ’ ( s )
9 B(o*). +-2 B(o*Y. 4+ Bpt= s.

3y (05 3y (95 ay 2P 0, (4.5.26)
9 B+ Bl =0 4527
ax ( s )ZX ay ( s )Z)v . ( . )

We now express the averaged excess effective stress tensor in terms of the
averaged displacement, W, making use of the stress-strain relationship (3.6.19).
Obviously, other relationships, describing other types of soils, can be introduced at
this point instead of (3.6.19). We also make use of the assumption introduced by
(4.5.12). We obtain

~ TN— N N—
&y = (eb)xx + (eb)yy + (eb)zz

dw-  Ow.  dw. ow-  ow., A
— LIS Y 4 Z = L+ r 4+ == s 4.5.28
‘9x dy 0z ox dy B ( )
e e O = 3w A
—(* = + —_— 4 = 4.5.29
(as )xx (2' + ZG) ox A ( ay B ’ ( )
~ WS~ ~. 0w A,
=T G +28) 2 410 (4.5.30)

ox dy B’
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—(0%%),, =—(0%%),; = G ( ox L+ —ay ) (4.5.31)
e e Y LY
(U )xz (0 )zx G ax az
(4.5.32)
~ow, G |- 9B oF, oF,
= +— —-—+ ,
G ax B { z ax szF a z|Fl a ]
—(o% e = _(a*e)zy
awy G |._oB dF, dF, (#4533
] 2z + — -~ 22 2 1
G ay B [Wz a +wz{F a wz'F, ay ]9
~( 9wy  ow; ~ A
—(o* = 2|+ A +26 = 4.5.34
By inserting these expressions into (4 S. 25) through (4 5.27), we obtain three
equations in the four averaged variables p , W, and W; all functions of x, y and
¢t only
d ~ ~ 0w~ [ 0w, A,
— 1Bl (A+2G)—=+1 +
dox { [( ) ox ( dy B )
) ~ [ ow; . ow; d
+—BG | ——=+—%|+— Bp*=0 4.5.35
dy [ ( dy dx ) ] ax P ( )
0 ow, , oW
— BG ~+—2 | +
Ox [ ( ox Oy ) ]

0 ow, ow’ A 9 (4.5.36)
~ W, ~ ~ ~ ~

+—1{B|17 & A+ — —= — Bpt =

ay[ [ i +( 2G) 3 + A ”+ Bpt =0,

B dy
F) ow,  ~[_ oB dF, dF,
ax{B ox G[Za twls 57 LS ”
(4.5.37)
o [ ~ ow __ B dF, dF,
+— 1862 L G w2 & -o.
ay[ dy (W 3y * ile oy~ ™n ] 0
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For constant 4 and G, we assume A, < B to linearize (4.5.35) and (4.5.36),
obtaining

GV?w,+(@ + G) —Z? G a(Aai B) +2 ax =0, (4.5.38)
~ ~, ~ O¢ ~ 0(A,/B% | 9p°

Viw+@A+G6)—>— G —= + =0 5.
GV?w,+ (1 +G) ay ay 3y (4.5.39)

where €, is expressed in terms of w;, W, and w, by (4.5.28).
The same linearization, together with |V’ - V'B| < |0B/0t|,leads to

ow 3B _ ., 95

v +—=B —|— 4.5.40
ot ot ot ( )

and the mass balance equation (4.5.15) becomes

o5, 7

v B°q,‘+B° o1 + pgnpB + Pe=0. (4.5.41)
In principle, (4.5.28), (4.5.37), (4.5.38), (4 S. 39) and (4.5.41) constitute four
equations in the five dependent variables: Z;, w,, A and p°. However, in these

equations we have the terms w,|., w, | and (Az = wzl r, — W,|r) that constitute
conditions on the boundaries F; = 0 and F, = 0. No information is available for
these boundary conditions. In fact, the land subsidence, expressed by, or related to
W, |, is the very variable for which a solution is sought in most subsidence
problems.

At this point we may continue by introducing further simplifying assumptions to
replace the missing information. For example, we may assume that the bottom of
the aquifer is fixed, i.e., w, ’r 0 and that w, varies linearly with z, ie., w, =
1 w,|f, = —0/2, where 9 is the extent of land subsidence (positive downward) We
end up with four equations for w;, w;, é and p° D% (or ¢*‘)

Another approach, suggested by Verruijt (1969, p. 347), is to assume that
consolidation occurs under conditions of plannar incremental total stress. This
means

0,=0, o,=0,=0, 0} =0;,=0. (4.5.42)

Verruijt indicates that this assumption is justified when the aquifer is bounded
from above and below by soft confining layers (e.g., clay) which cannot resist shear
stress. Furthermore, this assumption also justifies (4.5.12), since in a relatively thin
aquifer, as implied by the plane stress assumption, lateral deformation is, more or
less, uniform along the relatively small thickness of the aquifer.

From (4.5.42) it follows that (3.6.18) reduces to

*e
8@ L O ey (4543)

V' - (0% +Vpe=0
(@) +V'p T T ax,
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The boundary conditions (4.5.22) and (4.5.23) are also written in the xy
coordinates only. Following the integration procedure which led above to (4.5.25)
through (4.5.27), we now obtain only (4.5.25) and (4.5.26), as (4.5.27) drops out.

Accordingly, (4.5.37) also drops out, leaving only (4.5.35) and (4.5. 36), or
(4 5. 38) and (4.5.39). We now have to solve (4.5.41), (4.5.38) and (4.5.39) for p )
w;, W, Wy and A,. The necessary fourth equation is obtained from the first condition
in (4.5 42), viz.

/_\’ ~~
(0%9),, = —p° (4.5.44)

TN .
From the expression for (o¥¢),, in (4.5.34), we obtain the fourth equation in the
form of

ow, . ow ~ ~ A, ~
e=7 +—2|+@+26) L =1+26
P (ax ay) ( )B c

(4.5.45)

This completes the formulation of the problem in terms of /p?, Wy, 'u\);and A, as
the sought variables. With w, [, = 0, the land subsidence is given by d(x, y, ) =
—w,| = —A,.

Initially, the values of these variables is zero.

As boundary conditions on the external boundaries of an aquifer, or at
sufficiently large distances from a pumping well field, we shall usually assume
vanishing values of all these variables.

4.5.3. COMPARISON BETWEEN BIOT’S AND JACOB’S APPROACHES

In Sections 3.2 and 3.3 we developed the concept of specific storativity and the
mass balance equation, making use of Jacob’s (1940) approach of vertical displace-
ment only. In Subsection 4.5.1 we have developed the fundamental mass balance
equation, making use of Biot’s three-dimensional displacement theory. Let us
compare these two approaches.

By differentiating (4.5.38) with respect to x, and (4.5.39) with respect to y,
hneanzmg them, adding them and integrating the resulting equation with constant
2, G and B®, we obtain (Verruijt, 1969)

0

ow, ~
(}.+2G)( ot ay)+/1

=@ +2G)g—-26 59
=p+1i(xy1) (4.5.46)

where I satisfies the Laplace equation, V'2f1 = 0, in the xy plane for every time .
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By comparing (4.5.45) with (4.5.46), obtained by introducing the plane stress
assumption, we find that

L~ A
n=2c(5—2?‘). (4.547)

If, following Jacob (1940), we assume no horizontal displacements, ie,w =0,
the mass balance equation (4.5.15) for p¢ = 0, reduces to

~ 0B g
V' - Bq,*+—— + poghpB = 0. 4.5.48
q + 5, t PgpE — ( )
Under the same conditions, we obtain from (4.5.45)
~ ~ A,
pt=(A+2G6) B (4.5.49)

With A, < B, Equations (4.5.48) and (4.5.49) can be combined to the single
equation =
1 op*

v . BO’\e",+B() = + 7 = 0. 4.5.50
ar {/I+ZG "ﬂ] ar (%2-30)

By comparing (4.5.46) with W' = 0, with (4.5.45), obtained by the horizontal
plane stress assumption and vertical displacement only, we conclude that

~ ~ A
fi=-2G-¢.
B

By comparing (4.5.50) with (3.6.28) and (3.3.9), we conclude again that, a =
1/(X + 2G), as in (3.6.30).

As pointed out by Verruijt (1969), the function IT defined by (3.6.26) and
(3.6.27), describes the deviation of the simplified Terzaghi—Jacob theory from
Biot’s one, where the former assumes vertical consolidation only, while the latter
takes into account the three-dimensional nature of consolidation. Similarly, here
I1 expresses the deviation when integrated aquifer consolidation equations are
employed. It is of interest to note that here 1 does not vanish, while Verruijt
(1969) shows that IT vanished in the three-dimensional model.

(4.5.51)

4.6. Streamlines and Stream Function

So far, in this chapter, we have described the flow in an aquifer in terms of
piezometric head, with the gradient in the latter serving as a driving force to the
flow. Information on the piezometric head is readily obtainable by using observa-
tion wells, or piezometers. In what follows, we shall introduce the concepts of the
streamline and the stream function which can be used as an alternative description
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of the flow. In Chapter 11 we shall discuss a case in which the description of the
flow in terms of streamlines has a definite advantage.

4.6.1. PATHLINES

In the macroscopic approach to flow in porous media, we can define the average
movement of a fluid particle. For example, we may label the fluid within an REV
(Section 1.4), by some tracer, or we may continuously inject tracer-labeled fluid at
a point in a moving fluid. In laminar flow, in spite of the spreading of the tracer
that will occur (Chapter 6), it is possible to define the average path of the tracer-
labeled fluid. In what follows, we shall use the term fluid particle to indicate an
ensemble of molecules contained in a small volume, e.g., an REV. However, as
shown in Section 1.4, the size of the latter is not a single constant value, as it may
vary within a certain range (Figure 1.5). The lower limit of this range is determined
by the heterogeneity of the configuration of the void space at the microscopic level
(e.g., pore size), while its upper limit is determined by the heterogeneity in
macroscopic coefficients that characterize the same configuration (e.g., porosity
and permeability).

Let us consider a single-species fluid and label the fluid molecules initially
within the REV around a point. As this cloud moves, the labelled molecules
comprising it spread out (by diffusion and dispersion — see Chapter 6) and
occupy a growing volume around the centroid of the cloud. Because of the upper
bound imposed on the REV, after a certain time interval, a ‘new’ particle has to be
defined and labelled around the centroid of the cloud. The motion of the new
particle, i.e., the movement of its centroid, can then be traced for an additional
period. By repeating this procedure, i.e., by labeling the molecules whenever the
volume occupied by them becomes too large, with the end of a ‘former’ particle
serving as the centroid for a new one, a continuous path of a fluid particle is
obtained. We thus speak of tracing the path of a fluid particle, although the
molecules comprising it continuously change.

With the above background, a pathline of a fluid particle is the locus of its
positions in space as time passes. It is thus the trajectory (in the continuum sense)
of a particle of fixed identity. It is a Lagrangian concept (to be compared with the
Eulerian point of view (end of Subsection 3.3.1) of watching different particles
passing through a fixed point). As the particle moves at a velocity V(= q/n) from
location (x, y, z) at time ¢ to location (x + dx, y + dy, z + dz) at time ¢ + d¢, we
have

dx =V, d¢, dy=1V,d, dz=V,d:t

or dx dy dz

= a= = d¢
Vixy,zt)  Vixyzt) Vixyzt)

Equation (4.6.1) contains three equations. Their solution can be written in the

(4.6.1)
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parametric form
l=l(x;)':2;t)’ X=X(x’y’z’t)’ w=(l)(x,y,z,t)

where A = const, y = const and w = const describe three surfaces in space. Each
set of three such surfaces defines (at their point of intersection) the location of a
particle in space at time ¢ Together, they describe the pathlines of different
particles.

In somewhat simpler terms, let us consider a porous medium domain in which
flow takes place, and identify a fluid particle at some location at time ¢. If we know
the velocity at that location, say by solving the flow model for the piezometric
head, ¢, and using Darcy’s law to determine the velocity V (= g/n), we can use
(4.6.1) to determine the location of the considered particle at ¢ + d.

In Section 6.7 we shall return to this subject in order to consider the movement
of polluted fluid particles.

4.6.2. STREAMLINES

At any instant of time, a velocity (or specified discharge) vector can be defined at
every point within a considered flow domain. The instantaneous curves that at
every point are tangent to the velocity vector at that point are called streamlines. In
steady flow, since velocities do not change with time, pathlines (Subsection 4.6.1)
and streamlines are identical.

The mathematical expression for a streamline, as defined above, is V X ds = 0,
where X denotes the vector product and ds is an element of arc along the
streamline, or

dx _ dy _ dz
Vi ¥ 2, &) V(% ¥ 2, &) Vix ¥ 2 &)

(Figure 4.9), where ¢, indicates a certain instant of time. Equation (4.6.2) states

(4.6.2)

y

)

dy

Streamline

- X

Fig.4.9. Streamline in plane flow.
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that the vectors V and ds are parallel. We could also say that it states that the
velocity component normal to a streamline always vanishes, i.e., that no flow
crosses it.

To complete the picture, let us mention two additional definitions that are often
encountered in the literature.

A streakline represents the locus of locations within a flow-domain, occupied,
or to be occupied, by all the fluid particles that at some earlier time have passed
though a certain fixed point within the domain (or on its boundary). A plume of
pollutants originating from a point source may serve as an example.

A front, or interface is a surface that always consists of the same particles. Let
the fluid particles forming a continuous surface within the flow domain at some
initial time, t = 0, be labelled by some tracer. It is then possible to determine
the subsequent positions of this surface by tracing the individual fluid particles
comprising it. The phreatic surface without accretion (Subsection 3.4.5) and the
interface in a coastal aquifer (Chapter 7) may serve as examples.

4.6.3. THE STREAM FUNCTION IN PLANE FLOW

In two-dimensional flow, (4.6.2) rewritten in terms of the specific discharge, q,
becomes

&b, g, dx — g, dy=0. (4.6.3)

4qx qy

The solution of (4.6.3) is
W=W(x,y)=const or W=W(xyt) (4.6.4)

which describes the geometry (or, in unsteady flow, the instantaneous geometry) of
the streamlines. The condition for (4.6.3) to be an exact differential of some
function ¥(x, y) is 9q,/0x + 0dq,/dy = 0, which is nothing but the mass
conservation equation (3.3.2) for two-dimensional steady flow and constant
density fluid (or for nondeformable medium and constant density fluid). Thus the
function W as defined here is valid only for the flow of a constant density fluid in a
nondeformable porous medium for which div q = 0. Such flow is referred to as
macroscopically isochoric flow.

By using (4.6.3), it is possible to define at any point (x, y) in the plane, an angle
a = tan"'(q,/q,) with respect to the +x axis, which is tangent to the integral curve
(4.6.4).

Equation (4.6.4) describes a family of curves, for various values of the constant.
Since W is an exact differential along any streamline, we have

o ow
Y= Pl = —_ .6.5
d¥ = ax dx + v dy q,dx —q, dy (4.6.5)
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from which we obtain the relationships

_ ¥ _ v
4qx 3y’ q, ax

The function ¥ = W(x, y), which is constant along streamlines (i.e., d¥ = 0), is
called the stream function of two-dimensional flow (dims. L%/T).

The physical interpretation of the stream function, ¥, may be obtained as
follows. Figure 4.10 shows some streamlines labeled, ¥ ,, ¥, + A¥Y, ¥, +
2AW, etc. Let dA be an element of area of unit width (in the z direction) and length
ds, where ds is an arbitrary path connecting points A and B on the streamlines ¥ ,
and W, respectively. The direction of the vector dA is perpendicular to ds, with dA
= (dA)ln, ds = (ds)1s and the unit vector1n is obtained from the unit vector 1s
by a counterclockwise rotation. We therefore have dA = 1z X ds. Consider the
integral

(4.6.6)

B B B
QAB=J’ q- dA=J q- (lszs)=—J qde"qydx

A A A

B
=de=wA—wE (4.6.7)
A

Thus, the total discharge between two streamlines (actually two stream surfaces
and the planes z = 0 and z = 1) is given by the difference between the values of
the stream function corresponding to these lines. The dimensions of W are,
therefore, volume per unit time per unit width.

<

Fig. 4.10. The relationship between the stream function and the discharge.
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From (4.6.7) it follows that for ¥ to be constant along a streamline, we should
require that no sources or sinks should be present in the flow field.

Stream functions can also be defined for three-dimensional flow (e.g., Bear,
1972).

It may be of interest to note the relationship between the stream function and
the piezometric head, ¢ in two-dimensional flow.

From (4.6.6) and Darcy’s law for a homogeneous isotropic porous medium, we
obtain

__o¥ __ 0OK¢ or ¥ _ 9¢
& dy ox dy ox ’
_ 0¥ _ 0K¢ o 0P
4%="35 —-——ay or oo 3y (4.6.8)

where @ is often referred to as the specific discharge potential (noting that it is
valid only for a homogeneous, isotropic porous medium).
From (4.6.8) it follows that the curves ® = constant and those of W = const are
orthogonal to each other.
For the more general case of a nonhomogeneous anisotropic porous medium,
we obtain
d¢ ¥ 0¢ _ ¥
K, ox 3y K, ay o (4.6.9)
where x and y were taken along the principal directions of K. The relationships
between ® and W in (4.6.8) and between ¢ and ¥ in (4.6.9), are known as
Cauchy—Riemann conditions.
In a homogenous isotropic porous media, it is also possible to define another
stream function, ¢ defined by yw = W/K. Then the Cauchy—Riemann conditions
(4.6.8) reduce to the form

oy _o oy __ 3
dy ox’ ox ay

In this case, the families of curves ¢ = const and ¥ = const are orthogonal to
each other.

ov

(4.6.10)

4.6.4. PLANE FLOW MODELS IN TERMS OF ¥

Consider the steady two-dimensional flow of a constant density fluid in a homo-

geneous isotropic porous medium. In such flow, div q = 0 and q = —grad ®, ® =
K¢, and hence curl q = 0 (potential flow). From (curl q), = 0, we obtain
Y 'Y
Vg = +——=0 46.11
ox’ 9y’ ( )

which is the partial differential equation that describes the flow in terms of W.



120 CHAPTER 4

For an inhomogeneous, yet isotropic, porous medium, where K = K (x, y), we
obtain from the requirement that (curl J), = {curl(q/K)},=0

0K o¥ 0K 0¥ -0

VY — | — —+ — — 6.
K ox Ox dy Oy (4.6.12)

When the porous medium is homogeneous, but anisotropic, the equation is

o'y o'w

—5+K,——=0. 46.13

ax’ Y 9y’ ( )
For flow in a confined aquifer, we define another stream function, ¥, such that

AW gives the flow through the entire thickness of an aquifer, between adjacent

streamlines. Then, for an isotropic aquifer
ov o¢ ov ¢
= —— =T 1, AL, B <
Q- dy ox 2 ox ay

In the absence of sources and sinks, and for steady flow, or neglecting the
aquifer’s storativity (i.e., S (0¢/9¢) = 0), Equation (4.2.23) reduces to

V' -Q =V - (TV'¢)=0.
Then, with J = —V’¢ and curl J = 0, we obtain
(curl J), = {curl(Q’/T)},=0

K,

(4.6.14)

or

whence we obtain

O (1 0y|, 0 (1 9y)_
o (T ax)+ay(r ay) 0. (4.6.15)

When we wish to express the flow model.in terms of W, we have also to provide
appropriate initial and boundary conditions in terms of this variable. For example,
an impervious boundary is also a streamline along which W = const. Along a
boundary of specified flow, we express the flow in terms of increments in W.

4.6.5. THE FLOWNET

Together, the two families of curves: equipotentials ¢ = const and streamlines ¥ =
const are called a flownet. In an isotropic porous medium, the two families are
orthogonal to each other. In a homogeneous isotropic porous medium, we may
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also draw a @ — W network, or a ¢ — 9 one, with the two families of curves being
orthogonal to each other.

Since for W to be constant along streamlines, we require the absence of sources
or sinks, whenever they are present, we exclude them from the flow domain and
make them part of the latter’s boundary.

Figure 4.11 shows a portion of a ¢ — 3 flownet in a homogeneous isotropic
aquifer. It shows three streamlines and three equipotentials. It is customary to
draw the flownet such that the increment A¢ between any two adjacent equi-
potentials is constant. For each streamtube (i.e., the space between adjacent
streamlines), we have

Ag A¢
AQ'=T Anj——=T An, —— 4.6.1
0 n, As, n, As, (4.6.16)

where Q' denotes the discharge through the entire thickness of the aquifer.
From (4.6.16) we obtain

An,  Anm

4.6.
As, As, (4.6.17)

that is, in a homogeneous medium the ratio An/As must remain constant
throughout the flownet.

Fig.4.11. Portion of a flownet.
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For an inhomogeneous aquifer
Ag As, T As,

A
TAm 2% — 7, (4.6.18)

As, " As,’ "An, P An
that is, the ration As/An varies. When streamlines are approximately parallel (that
is, An, = Am), we have (T,/T,) = (A¢,/As,)/(A@,/As,) that is, the transmissivity
is inversely proportional to the hydraulic gradient; equipotentials will be closely
spaced in regions of low transmissivity.

It is convenient to draw the flownet for a homogeneous isotropic aquifer so that
approximate curvilinear squares are formed (Figure 4.11b). For this case As = An
and Q = T A¢. In certain cases, however, it is more convenient to draw the
flownet for a given domain such that we have m streamtubes, each carrying the
same discharge AQ" = Q,,/m, and n equal drops in piezometric head, Ag

(= @max — $mn/n). Then

/ ’ A max — Pmin
Qlolal=mAQ =mT AnA—f=mT An¢n“Af
m An
T As | Prex ™ foin 46.19
n As (¢m ¢ ) ( )

Note that in Figure 4.11, the stream function is such that AW gives the
discharge through the entire aquifer thickness, between adjacent streamlines.



CHAPTER FIVE

Modeling Flow in the Unsaturated Zone

In order to reach a phreatic aquifer, water from precipitation, from irrigation, or
from an influent river, infiltrates through the ground surface and percolates
downward through the unsaturated zone. The same is true for pollutants carried
with the water. These pollutants may be already present in the water reaching the
ground surface, or they may be added to the water by processes of leaching,
dissolution, and desorption along its path, from the ground surface to an under-
lying aquifer. Solid waste in landfills, septic tanks, fertilizers, pesticides and
herbicides, applied over extended areas and dissolved in the water applied to the
ground surface, may serve as examples of sources of pollutants that travel through
the unsaturated zone.

Hence, the understanding of, and consequently the ability to calculate and
predict the movement of water in the unsaturated zone, is essential when we wish
to determine the (total) replenishment of a phreatic aquifer as part of our
groundwater flow model. Information on the movement of water is also needed in
order to forecast the movement and accumulation of pollutants in the unsaturated
zone and the rate and concentration at which pollutants reach the water table.

In the following subsections, a brief review is presented on the motion and
continuity equations of unsaturated flow. Only these concepts which are directly
related to the modeling of the movement of water are reviewed. The movement of
pollutants is considered in Chapter 6.

5.1. Capillarity and Retention Curves
5.1.1. MOISTURE CONTENT AND SATURATION

In unsaturated flow, the void space is partly filled by air and partly by water. Two
state variables may be used to define the relative quantity of water at a certain time
at a point in a porous medium domain (i.e., in an REV for which this point is a
centroid)

Volume of water in REV

6. = ; 0<6,<n, (5.1.1)
Volume of REV
Volume of water in REV
S g = ; < s . . .
"  Volume of voids in REV ’ 0<3$, <1 (5.1.2)

123
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Here 6, is called the water (or moisture) content; S, is called the water saturation.
Obviously, the two definitions are related to each other by

6, =nS

w w

(5.1.3)

where n is the porosity at the considered point.

5.1.2. CONTACT ANGLE AND WETTABILITY

When a liquid is in contact with another substance (another liquid immiscible with
the first, a gas, or a solid), a free interfacial energy exists between them. The
interfacial energy arises from the difference between the resultant attraction of all
the molecules surrounding a molecule located in the interior of each phase and
that of a molecule located on the surface separating the phases. In the former case,
due to the spherical symmetry in the type and spatial distribution of the molecules,
the resultant force is zero. On the other hand, for a molecule on the surface of
separation, a nonzero resultant force arises. Since a surface possessing free energy
contracts, if it can do so, the free interfacial energy manifests itself as an interfacial
tension. The interface behaves, as if it were a thin membrane under tension that
tends to reduce its surface area, if it can do so. Thus, the interfacial tension, oy,
for a pair of substances i and k is defined as the amount of work that must be
performed in order to increase their common contact area by one unit. For air and
water, g, = 72.5 erg/cm? (or 72.5 dyne/cm) at 20°C. The interfacial tension
between a substance and its own vapor is sometimes called surface tension.
However, the term surface tension is often also used to indicate the interfacial
tension between two phases. The interfacial tension and the surface tension are
temperature dependent.

Figure 5.1a shows two immiscible fluids in contact with a solid plane surface.
The angle 6, called the contact angle, denotes the angle between the solid surface
and the liquid-gas, or liquid-liquid interface, measured through the denser fluid.
Equilibrium of forces requires that

Ogs — Os
0O, cos O+ 0y =0gs or cos § = —S——F (5.1.9)
OLc

Equation(5.1.4), called Young’s equation, states that cos 6 is defined as the ratio of

Liquid (L)

Solid ($)

@)

Fig. 5.1. Interfacial tension.
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the energy released in forming a unit area of an interface between a solid, S, and a
liquid, L, instead of between a solid, S, and a fluid, G, to the energy required to
form a unit area between the liquid L and the fluid G. An attempt to write a
balance of forces along the normal to the plane will show that, in principle, Figure
5.1a is incorrect and that the situation shown in Figure 5.1b is probably closer to
reality, as is the case when three fluids are in contact (Figure 5.1c).

Sometimes, a factor is introduced in (5.1.4) to account for the roughness of the
solid. From (5.1.4) it follows that no equilibrium is possible if (0G5 — 05, )/ 0,6 >
1. In such case, the liquid, L, (Figure 5.1a) will spread indefinitely over the surface.
This leads to the concept of wettability of a solid by a liquid.

The product o, cos 0, called adhesion tension, determines which of the two
fluids (L or G) will preferentially wet the solid, i.e., adhere to it and tend to
spread over it.

When 6 < 90°, the fluid (e.g., L in Figure 5.1a) is said to wet the solid and is
called a wetting fluid. When 6 > 90°, the fluid (G in Figure 5.1a) is called a
nonwetting fluid. In any system similar to that shown in Figure 5.1a, it is possible
to have either a fluid L-wet or a fluid G-wet solid surface, depending on the
chemical composition of the two fluids and the solid. In the unsaturated (air-water)
zone in a soil, water is the wetting phase, while air is the nonwetting one. Additives
(called surface active agents) in a liquid alter surface tension and, hence, also the
contact angle.

Interfacial tension and wettability may be different when a fluid-fluid interface
(e.g., an air-water interface) is advancing or receding on a solid surface. This
phenomena is called hysteresis (see Subsection 5.1.4).

With the concept of wettability as defined above, and for the air-water system
considered here, we may distinguish three ranges of water saturation between the
limits of 0 and 100%. Figure 5.2 shows water in a water wet granular soil (e.g,
sand). At a very low saturation (Figure 5.2a), water forms rings, called pendular
rings, around grain contact points. The air-water interface has the shape of a
‘saddle’.

At this low saturation, the rings are usually isolated and do not form a
continuous water phase. Although a very thin film of water, several molecules
thick (which does not behave as ordinary liquid water, due to the very strong
forces of attraction between the water and solid molecules) does remain on the
solid surface, practically no pressure can be transmitted through it from one ring
to the next. Figure 5.2b shows a pendular ring between two spheres. For this
idealized case, it is possible to relate the volume of the ring to the radius of
curvature of the air-water interface; the latter, in turn is related, as we shall see
below, to the difference in pressures in the air and the water across it.

As water saturation increases, the pendular rings expand until a continuous
water phase is formed. The saturation at which this occurs is called equilibrium
water saturation. Above this critical saturation, the saturation is called funicular
and flow of water is possible (Figure 5.2c). Both the water and the air phases are
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] - ®

air water

Fig. 5.2. Water and air saturation states. (a) Pendular saturation. (b) Pendular ring between two
spheres. (c) Funicular saturation. (d) Insular air saturation.

continuous. As the water saturation increases, a situation develops in which the air
(= nonwetting phase) is no longer a continuous phase; it breaks into individual
bubbles lodged in the larger pores (Figure 5.2d). The air is then said to be in a
state of insular saturation. A bubble of air can moveé only if a pressure difference,
sufficient to squeeze it through a capillary size restriction, is applied across it in the
water. Obviously, if all the air can escape from the void space (or be dissolved in
the water) we have complete water saturation.

Sometimes the term adsorbed stage is used for water present in the pore space
at a very low saturation, such that it forms continuous, or discontinuous, films of
one or more molecular layers on adsorption sites on the solid.

5.1.3. CAPILLARY PRESSURE

When two immiscible fluids (here, air and water) are in contact, a discontinuity in
pressure exists across the interface separating them. This is a consequence of the
interfacial tension which exists between the two phases in contact. The magnitude
of the pressure difference depends on the curvature of the interface at that point
(which, in turn, depends on the saturation). Here ‘point’ is a microscopic point on
the air-water interface inside the void space. The difference in pressure, p. = p,;; —
Puater, 18 called capillary pressure, where the pressures are taken in the two phases
as the interface is approached from their respective sides. In a general two-phase
system, p, is the difference between the pressure on the nonwetting fluid side of
the interface and that on the wetting one.

In order to determine the relationship between the curvature of the interface
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between air and water (or between any two phases), the interfacial tension and
the pressures, in the two fluids separated by the interface, the latter is considered
as a (two-dimensional) material body (actually, surface) which has rheological
properties of its own. Its behavior is similar to that of a stretched membrane under
tension in contact with the adjacent two fluids. In fact, with this assumption, the
consideration of equilibrium surface tension leads to the conclusion that the
normal component of fluid stress, or pressure, must be discontinuous at a curved
interface. Scriven (1960) and Slattery (1967) present detailed analyses of interface
behavior. However, for our purpose, a much simpler approach will suffice.

Figure 5.3 shows an infinitesimal element of a curved air-water interface. By
writing a balance of force components along the normal to the interface, with a
constant interfacial tension, g,,,, we obtain

20,,

1 1

pc pa pw _oaw ( r + r ) - r* (515)
where p,, and p, denote the pressure in the water and in the air, respectively, g,
denotes the air-water interfacial tension, ' and r” denote the principal radii of
curvature, and r* is the mean radius of curvature defined by 2/r* = 1/r + 1/r".
Equation (5.1.5) is known as the Laplace formula for capillary pressure. The
capillary pressure is thus a measure of the tendency of the partially saturated
porous medium to suck in water, or to repel air. In soil science, the negative value
of the capillary pressure is often called suction, or tension.

If we assume the air in the void space to be everywhere at atmospheric

pressure, then the water in the void space is at a pressure, p,, less than

AB

~ Air o

O, ds S=_—= O, ds

Water T

p.dsdn

(@

Fig. 5.3. Forces at a curved air-water interface.
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atmospheric. In the more general case, p, # 0. A simple model that explains what
happens in the void space is the water in a capillary tube (simulating the narrow
opening between grains) shown in Figure 5.4. For p, = 0, the pressure, p,, in the
water just below the meniscus is p,, = —p,.

We recall that once we understand the phenomena that take place at the
microscopic level, i.., at points within each pore, we average the microscopic
values of state variables in order to obtain the corresponding macroscopic ones.
Here, the pressure in the water (= p,) and that in the air (= p,) are the state
variables under consideration. At every instant of time, the water is distributed
within the void space, with meniscii separating it from the air. The pressures in the
water are distributed within the entire void space, such that the water is under
dynamic equilibrium (for a moving water phase, see Subsection 5.1.4 and Figure
5.7). Similarly, there exists a certain air pressure distribution within the air phase.
Hence, for every point within the unsaturated domain, we employ (1.4.3) to define
averaged water and air pressures, p,, and p, . Then the averaged capillary pressure
(denoted here by p,) at a point within a porous medium domain is defined by

P.=P. —Pu- (5.1.6)

Figures 5.5 and 5.6 show how the negative (i.., less than atmospheric) pressure
in the water can be determined. In Figure 5.5a, the unsaturated soil sample is
placed on a porous membrane (or porous plate) which has very small openings,
such that air cannot be sucked through them into the manometer, even through the
largest openings (recall that p. = 20,,/r*) at the range of suctions planned for the
experiment. Suction is applied by draining water through the stopcock. After some
time, equilibrium is reached between the water in the soil and in the manometer.
The manometer reads an average pressure over the area of contact between the
water in the soil and in the manometer (see Bear et al., 1968, p. 46). Porous plates
with smaller openings (e.g., unglazed earthenware or porcelain) are used for higher
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Fig. 5.4. A capillary tube.
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Fig. 5.5. Measurement of capillary pressure in the laboratory (a) and in the field (b).
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Fig. 5.6. Definition diagrams for ¢ and ¢..

suctions. The porous plate, which is thus permeable to water but impermeable to
air, is necessary in order to establish hydraulic contact between the water in the
soil and that in the manometer, without air being sucked into the latter.

The instrument used for measuring the capillary pressure in an unsaturated
soil is called a tensiometer (a name introduced by Richards and Gardner, 1936).
The contact between the water in the tensiometer and that in the soil is established
through a porous cup.

In using a tensiometer, one has to make sure that equilibrium has been reached,
as sometimes this may take a very long time. Also, that suction is such that air is
not drawn through the porous plate at any point. The pressure at which air will
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enter is called bubbling pressure (or air entry pressure, or threshold pressure).
Membrane materials are available with bubbling pressures of 20—50 atmospheres.
We note that all measurements of averaged pressures by tensiometers, or
piezometers, are actually areal averaged ones, rather than volumetric. In using the
former to replace the latter in our (macroscopic) mathematical models, we
implicitly assume that both averages are the same.

By analyzing the forces acting on the water column in the capillary tube of
Figure 5.4, we find

h.nR*p,g=2nRa,, cos 0, h.=20,,cos 6/Rp,8 (5.1.7)

where g, denotes surface tension and o, is the water density. With the average
radius of curvature of the meniscus, 7*, equal to R/cos 6, we obtain from (5.1.5)

h. =p./p.8=—P./Pu& P.=0 (5.1.8)

where h_ is called the capillary pressure head. By analogy, the same definition and
(5.1.8) are employed for a soil, with 4, p_ and p,, representing average values.

As in a saturated flow of water, also in an unsaturated flow, we may define a
piezometric head, ¢ = z + p,/7,, at every point of the flow domain. Often, the
term capillary head (symbol @) is used to denote the piezometric head in
unsaturated flow (Figure 5.6b)

¢.=z2+p,/v.=2—pSv,=2—h.=z—vy, p.=-p,>0,p,=0 (519)

The term suction (symbol ) is used here for the negative of the pressure head
so that p, < 0, but y = —p,/y, > 0. As in saturated flow, the concepts of
head (¢., ¥, and h,) should be used only when p, = const. Some authors use

Y=D./Vu-

5.1.4. MOISTURE RETENTION

Let water be drained by lowering the manometer limb or through the stopcock
from an initially saturated sample placed on the porous plate of the tensiometer
shown in Figure 5.5a. Figure 5.7 (after Childs, 1969) shows the distribution of
water within the pore space at several successive stages of drainage. The initial
stage is denoted by 1. As water is drained, interfaces (meniscii) are formed (2).
The radii of curvature of the interfaces depend on the magnitude of the suction.
As water is drained and the interfaces are drawn further down, the curvature
becomes larger (i.e., small radius of curvature) and the suction increases. At every
stage, the greatest suction that can be maintained by the interface corresponds to
the largest curvature that can be accommodated in the channel through which the
interface is being withdrawn and the largest curvature occurs at the narrowest part
(e.g., interface 3 in Figure 5.7). As drainage progresses, the interface retreats into
channels which support a curvature of a greater radius (e.g., interface 4). However,
since this means reduced suction, this is a nonequilibrium stage and the water will
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Fig. 5.7. Stages of water drainage (1—5) and re-entry (6—7) (after Childs, 1969).

continue to retreat until the interfaces have taken up a position of equilibrium in
channels which are sufficiently narrow to support the interfaces of a larger
curvature. Obviously, if all channels are equal and large, at a certain suction
equilibrium cannot be maintained any more and a sudden, almost complete,
withdrawal of the water from the soil will be observed. We say ‘almost’ because
some water will still remain as isolated pendular rings. Within such rings, which
are completely isolated from each other, the pressure is independent of the
pressure in the remaining, continuous water body in the void space (except for
dependence through the water vapor phase).

In general, the pores have different dimensions and, therefore, will not empty at
the same suction. The large pores (or those with large channels of entry) will
empty at low suctions, while those with narrow channels of entry, supporting
interfaces of a larger curvature, will empty at higher suctions.

Let us now reverse the process, and rather than increase the suction in order to
empty more pores, reduce it in an attempt to refill the pore space. The transition is
now from stage 5 to stages 6 and 7 in Figure 5.7. The interface curvature becomes
progressively smaller.

Figure 5.8 shows typical examples of curves p. = p.(S,,), or h. = h(S,), during
drainage. In soil science, these curves are called retention curves, as they show how
much water is retained in the soil by capillary forces against gravity. Some authors
refer to a drainage retention curve as a desorption curve and to an imbibition
curve as a sorption curve. Point A in Figure 5.8 is the critical capillary head, h, . If
we start from a saturated sample, say, in the apparatus shown in Figure 5.5a, and
produce a small capillary head A , almost no water will leave the sample (i.e., no
air will penetrate the sample) until the critical capillary head is reached. When
expressed in terms of pressure, the critical value (point A of Figure 5.8) is called
the bubbling pressure. As the value of A, is increased, an initial small reduction in
60,,, associated with the retreat of the air-water meniscii into the pores at the
external surface of the sample, is observed. Then, at the critical value A, the
larger pores begin to drain.

The shape of the retention curve and, hence, also the threshold pressure,
depends on the pore-size distribution and pore shapes of the porous medium.

ccr
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Fig. 5.8. Schematic retention curves during drainage.

As drainage progresses, we observe that a certain quantity of water remains (in
the form of isolated pendular rings and immobile thin films) in the sample even at
very high capillary pressures. This value of 8,,, denoted by 6,,, is called irreducible
water content. In terms of saturation, it is denoted by S, (= 6,,/n) and called
irreducible water saturation (Figure 5.8).

Upon rewetting (or imbibition), we observe that the retention curve h. = h.(6,)
differs from that obtained during drainage. We have here the phenomenon of
hysteresis resulting from two phenomena. The first, called the ink-bottle effect
(Figure 5.9a), results from the fact that as water re-enters narrow channels, a local

Drainage Rewetting

(a) (b)

Fig. 5.9. Factors causing hysteresis in retention curve. (a) The ink-bottle effect. (b) The raindrop
effect.



MODELING FLOW IN THE UNSATURATED ZONE 133

increase of suction is required. In the soil (Figure 5.7) at this stage we have
instability and the interface cannot advance until a neighboring pore is filled.
Equilibrium at a given suction may be obtained with somewhat different 6,. The
second effect, sometimes called the raindrop effect (Figure 5.9b), is due to the fact
that the contact angle at an advancing interface differs from that at a receding one.
Entrapped air is another factor causing hysteresis.

Figure 5.10 shows hysteresis in the relationship 4. = h.(6,). The drainage and
imbibition curves form a closed loop. In fine-grained soil, the effect indicated as
caused by entrapped air,may alsobe caused bysubsidence orshrinkage. Entrapped air
may be removed with time, e.g., by flow and dissolution of the air in the water. It is
possible to start the imbibition process from any point on the drainage curve, or to
start the drainage process from any point on the imbibition curve, leading to the
dashed lines, called drying and wetting scanning curves. In this way, the relation-
ship between capillary pressure and saturation (expressed by the retention curve)
also depends on the wetting-drying history of the particular sample under
consideration. For a given capillary pressure, a higher saturation is obtained when
a sample is being drained than during imbibition. As long as the soil remains stable
(ie., no consolidation), the hysteresis loop can be repeatedly traced.

h, ﬁ ﬂ‘ Field capacity

Imbibition (or wetting)
Boundary drying curve

Scanning drying curves

Primary drying curves

Internal
=== branches due to
successive reversals

\
Primary \
wetting
curve

Drainage

Boundar
y (or drying)

wetting curve

Scanning
wetting curve
Irreducible moisture

Starting with a
saturated sample

0 / content
Y 6o /""’l‘ 0w
Entrapped air
; -
S0 1.0 S,
0

Fig. 5.10. Hysteresis in h, = h(6,,) for a coarse material.
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For a given soil, the retention curve p, = p.(S,), or h. = h(S,), can be
obtained in the laboratory using an apparatus similar to that described in Figure
5.5a.

At equilibrium, with no flow taking place, the piezometric head, ¢, is the same
for all points of an unsaturated zone. Consider points 1 and 2 with p,,, ¢,, and p,,,
#,, respectively. We have

$=2z+ Pu: , b=zt _Pw_z, y,, = const. (5.1.10)

w w

From ¢, = ¢,, and since the air phase is taken at p, = 0 (ie, atmospheric
pressure), it follows that

2= = (Pw2 — Pu1)/ Yw=(Per ~Pc2)/Vw- (5.1.11)

If z, = 0 is chosen as a point on the phreatic surface, where p,, = 0, then p., = 0.
Denoting z, = z, p.; = p., We obtain

z2=pA(S,) or z=2z(S,)=nh.. (5.1.12)

From (5.1.12) it follows that the curves z = z(S,,) and the retention curve, k. =
h.(S,,) are identical. This means that for a homogeneous soil, with a sufficiently
deep water table, the retention curve can be used to describe the moisture
distribution between the phreatic surface and the ground surface at equilibrium.

Accordingly, immediately above a water table (p, = 0) we have a zone that is
saturated with water, or nearly so, because a certain suction must be reached
before any substantial reduction in water content can be produced. Then, above
this zone there is a marked drop in the water content with a relatively small rise in
the capillary pressure. This zone contains most of the water present in the zone of
aeration. From Figure 5.8 it is clear that this statement better describes the
situation for poorly graded or coarse-textured soil (sand, gravel, etc.), but is also
valid for fine-textured, or well-graded, soils when the water table is sufficiently
deep below the ground surface. As this phenomenon is analogous to the rise in a
capillary tube, where the water rises to a certain height above the free water
surface, with a fully saturated tube below the meniscus and zero saturation above
it, the nearly saturated zone above the phreatic surface, when it occurs, is called
the capillary fringe, or capillary rise (see Figure 1.3). Thus, A, in Figure 5.8 is the
capillary rise for a poorly graded soil.

The capillary fringe is thus an approximate practical concept that is very useful
and greatly simplifies the treatment of phreatic flows when we wish to take into
account the fact that a certain saturated zone (or nearly so) is present above a
phreatic surface (and up to the water table; see Figure 1.3).

The following formulas may be used to estimate the thickness of the capillary
fringe h .. Mavis and Tsui (1939):

22 [1—n |
h, === ( " ) , d, and h, ininches, (5.1.13)
n
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where d is the mean grain diameter, and Polubarinova-Kochina (1952):

_ 045 1—n

h(_‘C ’
d n

h.. and d,,in cm, (5.1.14)

where d,, is the effective particle diameter. Silin-Bekchurin (1958) suggested a
capillary rise of 2—5 cm in coarse sand, 12—35 cm in sand, 35—70 cm in fine
sand, 70—150 cm in silt, and more than 2m in clay.

5.1.5. FIELD CAPACITY

Field capacity is usually defined as that value of water content remaining in a unit
volume of soil after downward gravity drainage has ceased, or materially done so,
say, after a period of rain, or excess irrigation. A difficulty inherent in this
definition is that no quantitative specification of what is meant by ‘materially
ceased’ is given. Although, according to this definition, field capacity is a property
of a unit volume of soil (depending on the soil structure, grain-size distribution,
etc.), it is obvious from any of the curves describing the moisture distribution
above the water table (e.g., Figure 5.8, with A, replaced by the elevation, z, above
the water table) that the amount of water retained in a unit volume of soil at
equilibrium under field conditions, depends on the elevation of this unit volume
above the water table. In addition, in the soil-water zone adjacent to the ground
surface (Figure 1.3), equilibrium is seldom reached, as water in this zone
constantly moves up or down and the water content is also being reduced by plant
uptake. From these observations, it follows that the above definition of field
capacity should be supplemented by the constraint that the soil sample should be
at a point sufficiently high above the water table. Returning to the relationship A,
= h.(S, ), the notion of field capacity of unsaturated flow is identical to the notion
of the irreducible moisture content in Figures 5.8 and 5.10. The field capacity, 6,,,
is shown in the figures. The complement of the field capacity, i.e., volume of water
drained by gravity from a unit volume of saturated soil, is called effective porosity
and is denoted by n, (= n — 6,,). At any elevation, once gravity drainage has
materially ceased, a certain amount of moisture is retained in the soil. The
moisture distribution is shown by the retention curve, with z instead of A, as
ordinate.

5.1.6. SPECIFIC YIELD

Specific yield is another unsaturated flow concept employed in investigations of
drainage of agricultural lands and in groundwater hydrology. It is defined as the
volume of water drained from a soil column of the unit horizontal area extending
from the water table to the ground surface, per unit lowering of the water table.
The corresponding amount of water retained in the soil against gravity when the
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water table is lowered, is called specific retention. When expressed in terms of
moisture content, we obtain for every instant

6,,+6,,=n (5.1.15)

where 6,, denotes specific yield and 6,, denotes specific retention. By dividing
(5.1.15) by porosity, we obtain the same relationship in terms of saturation

Sy + 8 =1 (5.1.16)

We note that in Figure 4.2, in (4.1.4), and, in general, in the definition of
specific yield as equivalent to the storativity of a phreatic aquifer, the specific yield
(and also the specific retention) are in terms of moisture content. Thus, (5.1.15) is
actually identical to (4.1.4), with S, = 6, (= nS,,,).

Thus, specific retention is a field concept obtained by averaging what actually
happens in the zone of aeration when the water table is lowered. In Section 4.1, §,
is defined as the storativity, or specific yield, of a phreatic aquifer. Figure 5.11
shows the effect of depth on the specific yield. With the nomenclature of this
figure, we have per unit area

_ Volume of water drained between ¢’ and ¢~
" —d)

S(d’, d";t', 1)

d’

1 . o
_—d”—_—d—'{n(d d)+J 6,2, 1) dz

=0

- J’d' 052" t" dz'] (5.1.17)

2"=0

where S, = 6,, = nS,,. The volume of water drained is indicated by the shaded
area in Figure 5.11. For a homogeneous isotropic soil, the two curves 6, =
0,(z’, t") and 6, = 0,(z", t") are identical in shape. If both water table positions
are sufficiently deep below the ground surface, the two curves will merge at 6, =
6,,,- Hence, we have for very large d” and d”

S)’w ESy‘d—'w=n—0w0=(1_Swo)n' (5118)

It is thus apparent that for-a homogeneous isotropic soil and very deep water
table, the specific retention is identical to the field capacity. For such conditions,
Figure 4.2 shows the relationship between specific yield and specific retention for
various soils. However, when the soil is inhomogeneous (e.g., composed of layers),
or when the water table is at a shallow depth, the moisture distribution curves,
corresponding to the two water table positions, are no longer parallel, and (5.1.18)
is no longer valid; we must distinguish between field capacity and specific
retention.
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Fig. 5.11. Effect of depth on specific yields.

Since it takes time for drainage to be completed, we obtain a specific yield that
is time-dependent and that approaches asymptotically the values corresponding to
the depths considered. When the water table is lowered instantaneously (or
relatively fast), say, as a result of drainage, the corresponding changes in the
moisture distribution lag behind and reach a new equilibrium (or practically so)
only after a certain time interval that depends on the type of soil. A time lag will
also take place when infiltration causes the water table to rise. When the water
table is rising or falling slowly, the changes in moisture distribution have sufficient
time to adjust continuously and the time lag practically vanishes.

5.1.6. CONDITIONS BETWEEN TWO POROUS MEDIA

At an interface between two porous media (say, a coarse sand and a fine one), we
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require that the pressure, p,, in the water (actually also that in the air, p,) be the
same as the surface of separation is approached from both sides. Denoting the two
media by subscripts 1 and 2, this means that since we assume p,, = p,, = 0, we
have

Pw1 = Pw2 or Pc1 = Pea- (51'19)

Figure 5.12 shows, schematically, the two retention curves. It is obvious that we
have a jump in the water saturation across the surface separating the two media.

5.2. Motion Equations

In principle, both the water and the air move simultaneously in the void space.
Movement of water vapor affected by variations in temperature and in the
concentration of dissolved solids, may also take place. Nevertheless, in what
follows we shall ignore the movement of water in the vapor phase. We shall also
ignore movement due to pressure differences resulting from variations in salt
concentration (osmotic effect) and movement due to temperature variations
(thermo-osmotic effect). We shall assume that the solid matrix is rigid and stable
(ie, with no consolidation or subsidence). Some of the above phenomena,
however, may be important in certain situations and should not be ignored. Thus,
we shall consider flow resulting only from variations in water pressure; the density,

0,,, may vary.

5.2.1. MOTION EQUATIONS FOR WATER AND AIR

Many investigators conclude from experiments that when two immiscible fluids
flow simultaneously through a porous medium, each fluid establishes its own

P
Layer | (coarse)
Layer 2 (fine)
P2 TP fp—>———
N
| |
|
| |
Y Y .-
Swl Sw2 Sw

Fig. 5.12. Saturation discontinuity across the surface separating two porous media.
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tortuous paths through the void space. They assume that a unique (or nearly so)
set of channels corresponds to every degree of saturation. From the discussion in
Section 5.1, it follows that as the degree of saturation of a nonwetting fluid (here,
the air) is reduced, the channels of that fluid tend to break down until only isolated
regions of it remain at residual nonwetting fluid saturation. Similarly, when the
saturation of the wetting fluid, here the water, is reduced, it becomes discontinuous
at the irreducible wetting fluid saturation. When any of these fluids becomes
discontinuous, no flow of that fluid can take place.

With these ideas in mind, it seems natural to employ the concept of permea-
bility established for the saturated flow of a single fluid, modifying its value due to
the presence of the second phase which occupies part of the void space. In fact, as
in the case of saturated flow, the motion equations for unsaturated flow can be
derived as an averaged momentum balance equation for each phase, taking into
account that the latter occupies only part of the void space. Accordingly, we may
now use (2.1.34), with nS,V,, = q,, for an anisotropic porous medium, to
describe, separately, the flow of each of the two phases — the wetting one (here,
water) and the nonwetting one (here, air). The difference, however, is that in this
case the permeability for each of the phases is a function of the degree of saturation.
In what follows, we shall neglect the solid’s velocity (if such exists), assuming
lq,| > 16,V ,and|q,| > |6,V sothatq, = q,,andgq, = q,,.

Accordingly, the motion equations for the air and water in unsaturated flow in
an anisotropic porous medium are

kw:/ apw aZ kw
=——1—=—+p,8— 1, w=——(Vp,+p0.8V2),
G yw[ax, pgax,} a ,Mw(p AuEY2)
ka,/ apa 0z ka
=——{ Fe gy re—1, . =——(Vp,+ 0,8V 521
Qu #a{axl P8 ax,] q y, VPt P8V (521)

where the subscripts a and w denote air and water, respectively, and the
summation convention is employed.

The unsaturated permeabilities, k,, for the water and k, for the air, are referred
to as effective permeabilities of the respective fluids (see Subsection 5.2.2).

For constant densities, p,, = constant, p, = constant, (5.2.1) can be rewritten in
terms of the piezometric heads ¢,,=z +p,/y, and ¢, = z + p,/¥,, in the form

a, == vy -k (5) - V.,
a, == RO vy =k (5) - V4, (522)

where K, and K, are the effective hydraulic conductivities of the water and of the
air, respectively.
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If we assume that the air is stationary, or ignore its movement, i.e., assuming @,,
= const, (5.2.2) reduces to a single equation — that of the water.

We recall that p, and p, in (5.2.1) are not independent of each other, as their
difference defines the capillary pressure which is a function of the degree of
saturation, say, S,,.

Other forms of the water motion equation for the case p, = 0, are

K.(S.)
Z

w

q,=—K,(S,) - Vg,=— - Vp, —K,(S,) * Vz, (5.2.3)

9. =K,(S) - VY —K,(S,) - Vz (524)

where the negative pressure head ¥ = —p,,/y,, > 0 is called suction. Since in this
case —p, =p., Y = p./y. = h, ie., the capillary head. Because y = ¢(S,), and
P = p(S,), we could replace K, (S,) by K, () in (5.2.4). All equations could also
be written in terms of 6, rather than in terms of S, . However, when the porosity,
n, varies in space, it is advisable to use the saturation, S,,, as a variable, with a
possibility that the retention curve will vary from one point to the next. In a
consolidating porous medium, the porosity may also vary with time. We wish to
emphasize again that motion equations can be written in terms of ¢ or y only
when water and air densities are assumed constant.

It is important to recall that the relationship p. = p.(S,) is not a unique one
because of hysteresis: hence, the history of wetting and drying may play an
important role in the analysis of flow problems.

Nevertheless, assuming that the relationship p. = p.(S,) is a unique one (as
when dealing with a problem of only drainage), (5.2.4) written for an isotropic
medium and y,, = const, becomes

_ dy _
q, Kw(ew) d0w Vow Kw(ow)vz
K.(6.)
120D L gp _k g\ 5.2.
{dew/dzp} 0 = Ku(8,)V2 (5.2.3)

where we have replaced S, by 6, and v = p./y, = y(6,) is also assumed unique.
Klute (1952) calls the group D, (6,) = —K,(6,) dy/d6, = —K,(6,)/(d6,/dy) =
K.(6,)v.(d6,/dp,) coefficient of moisture diffusivity, or capillary diffusivity
(dims. L2T~"). Then, (5.2.5) becomes

q.,=—-D,(,V6,—K(0,)Vz. (5.2.6)
For horizontal, two-dimensional water flow in the xy-plane
9 ) 9 )
w=—D,(6,)vV6, V’ = 1x + 1ly. 527
q. w(6,)V'6, ()=—"% I oy W (53:2.7)
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For vertical water flow
4. =—D,(6,) 96,/3z — K (6,). (5.2.8)

Sometimes the definitions C, = d6,/dp, (= water capacity) and D, =
—K,/(d6,/dp,) are introduced. The similarity between (5.2.7) and Fick’s law of
diffusion explains why the term diffusivity is used here.

The second term on the right-hand side of (5.2.6) gives the effect of gravity. If
the model describes the simultaneous flow of air and water in the unsaturated
zone, equations similar to (5.2.5) through (5.2.8) may also be written for the air.

The dependence of D on 6,, or of K on v, introduces a nonlinearity into the
equations of motion presented above and, hence, also into the continuity equation
(Section 5.3). The gravity term in the motion equation also makes the continuity
equation a rather difficult one for exact solution by analytical methods. Without
the assumptions of uniqueness, X (6,), p.(6,) and D, (0) are subject to hysteresis.

One should note that although the relationship p. = p.(6,) is usually obtained
from a static test (i.e., in the absence of flow), we use it in the motion equation. We
assume that the relationship remains unchanged also under dynamic conditions.
Another interesting observation is that in the motion equations presented above,
say (5.2.1), we have assumed no momentum transfer between the two phases
across their common microscopic interfaces inside the pore space.

Had we taken such transfer into account, there would be coupling between the
flow of the two phases: a pressure gradient in one phase would also produce flow
in the adjacent phase. As is commonly done in water flow in the unsaturated zone
in the soil, in what follows this possibility will be ignored.

In all the motion equations presented above, it was assumed that the solid is
stationary and nondeformable (or practically so). Otherwise, similar to the situa-
tion that occurs in the case of saturated flow, as expressed by (2.1.34), the motion
equations will take the forms

k.,(S.) | Op. 0z
e n 0w,uw ( ax/ pwg ax/ ’ (5 2 9)
k., (S.) [ op 0z
V —V =—_i7a | T4 + = 21
w = Va " ( ax T P8 5y (5.2.10)

5.2.2. PERMEABILITY

In (5.2.2), k,(8,), or k,(S,) is the effective water permeability of the unsaturated
soil, while k,(8,), or k,(S,) is the effective air permeability. Similarly, K,(6,,) and
K.(8,) are the effective water and air hydraulic conductivities, respectively.

In a deformable porous medium, the permeability is also a function of the
porosity which varies as the soil is compacted. Thus, in principle, we have k,, =
k,(S,, n).
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Similar to the case of saturated flow, for an anisotropic porous medium, effec-
tive permeabilities, to water and to air flow, are second-rank symmetric tensors.
Accordingly, assuming that the soil is anisotropic, the effective permeability, as
well as the corresponding effective hydraulic conductivity, appear in the motion
equations as second rank tensors (with components k,;, k,;, K, K,,). For an
isotropic porous medium, the effective permeabilities and the corresponding
effective hydraulic conductivities reduce to scalars.

In principle, since momentum is transferred across the microscopic interfaces
within the void space from one fluid to the other, the effective permeability should
depend not only on the saturation, but, at least to some extent, also on the
interfacial tension between the fluids, the preferential wettability of the solid to the
two fluids, the rate of flow and the fluids’ viscosities. However, most investigations
seem to indicate that momentum transfer between the two fluids may be ignored
and, hence, the effective permeabilities are functions of the saturation only.

For an isotropic porous medium, it is often convenient to employ the concept of
relative permeability, defined as the ratio of effective permeability to the corre-
sponding permeability at saturation, viz.,

k,, = —AS). ky, = —a5a). (5:2.11)

W’ kw’S“-l ’ kals,,-x '

- However, the concept of relative permeability should not be applied to an
anisotropic porous medium. If we do employ the concept for an anisotropic
medium, for each component k,,(S,) we have to define a relative permeability
(kur)y (Sw) = ko, (S,)/k, |, -1, With a different functional relationship (k,,);(S,) for
each jj-component. Moreover, the nine terms (k,,),(S,) thus defined, will not
constitute components of a second-rank tensor (Bear, Braester and Menier, 1987).

Investigations, including visual studies, over the years have led to the conclusion
that when immiscible fluids (here, air and water) flow simultaneously through a
porous medium, each fluid establishes its own tortuous path through a certain
network of channels within the porous medium. These channels are very stable,
with a different set of channels corresponding to every degree of saturation. As the
saturation of the nonwetting fluid is reduced, the channels for that fluid tend to
break down until only isolated bubbles of the nonwetting fluid remain. At this
saturation (called residual nonwetting fluid saturation, S,,,), pressure can no more
be transmitted through the nonwetting fluid and its permeability vanishes. These
bubbles can be forced to mové only by applying very high pressure gradients in
the wetting fluid.

Similarly, as the wetting fluid saturation decreases, its flow channels tend to
break down and become discontinuous. Permeability vanishes at the irreducible
wetting fluid saturation, S,,,.

Figure 5.13 shows the variations of relative permeability to the water, k,,, with
saturation S,,, for an isotropic porous medium, according to experiments by
Wyckoff and Botset (1936). As the saturation decreases, the large pores drain first
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so that the flow takes place through the smaller ones. This causes both a reduction
in the cross-sectional area available for the flow and an increase in tortuosity of
the flow paths. The combined effect causes a rather rapid reduction in the
permeability as the moisture content decreases. Point A in Figure 5.13 indicates
the irreducible water saturation, S,,,. At this point, the discontinuous water phase
exists only in the very small pores, as a very thin film on the solid in the larger
pores and as isolated pendular rings.We note that due to the steepness of the curve
at high saturation, when saturation is reduced, say by entrapped air, even by 10 or
20%, the relative permeability is appreciably reduced.

Several authors suggest relationships between the effective hydraulic conduc-
tivity, K,,, and saturation, S, (or water content, 6,). Childs and Collis-George
(1950) assume

K,(6,)=B63/M? (5.2.12)

where M is the specific surface area of the solid phase and B is a constant.

Irmay (1954) derives a similar relationship, assuming that the resistance to flow
offered by the solid matrix is proportional to the solid-liquid interfacial area. The
effective hydraulic conductivity, K,,, then becomes proportional to the hydraulic
radius (= volume of voids divided by wetted area of solid). This leads to the
relationship

K.(S:)=K,S; (5.2.13)

where S, = (S, — S,0)/(1 — S,,) is called the effective saturation, and K, is the
hydraulic conductivity at saturation. The experimental curve of Figure 5.13 fits
such a cubic parabola. Experiments by several authors with soils of uniform grain
size seem to agree with the relationship (5.2.13).

In general, we have also to consider the permeability to the nonwetting phase

Moisture content (6,,)

6. >
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H
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> 075}
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Saturation (S, %)

Fig. 5.13. Relative permeability of unsaturated sand according to experiments by Wyckoff and
Botset (1936) and theoretical analysis by Irmay (1954).
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(= air). Figure 5.14a shows typical k,,(S,) and k,,,(S,,) curves; the dashed
portions of the curves correspond to the case when we start from complete
saturation of the considered phase. Otherwise, we cannot obtain saturations S, >
(100 —S,,0)and S, > (100 — S,).

We have seen above that, due to hysteresis, we may have different flow
channels at the same saturation during wetting and drying. This leads to a certain
amount of hysteresis also in the relationship k,,(S,) and k,,,(S,,). Figure 5.14b
shows a typical example of this phenomenon.

Effective permeability may also be presented as a function of p, or of
the capillary pressure head, y. However, the relationship k,,(y) shows much
hysteresis, probably because of the large hysteresis in the function y(6,,). When an
initially saturated soil is drained and then rewet, full saturation cannot be reached
due to entrapped air. Under such conditions, although the soil seems to be almost
saturated, its permeability is much smaller, say 50—60% of its permeability at full
saturation.

Corey (1957) finds that for many consolidated rocks, K,, is proportional to § 4
while K,,, is proportional to (1 — §,)?(1 — S2).

Brooks and Corey (1964) have generalized these relationships by proposing

kwr = (pcb/pc)(2+ 31)/}., P > Pcb>
knwr = (1 - pcb/pc)z{ 1 - (prb/Pc)(z +A)M} (52'14)
where p,, is the bubbling pressure and A is a.pore size distribution factor.
Gardner (1958) suggests the empirical relationship
K, (p)=a/(b+y™) (5.2.15)
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Fig. 5.14. Typical relative permeability curves (a) and the effect of hysteresis (b).
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where a, b and m are constants, with m = 2 for heavy soil and m = 4 for sand,
or

K. (¥) = K, exp(—ay) (5.2.16)

which does not fit experimental data too well, but is convenient both for analytical
and numerical models.
Burdine (1953), related the relative permeabilities to the retention curve, p.(S,,)

S, 1.0

< ds, ds,
kwr(se) = Sz 2 2 ’

0 p((Sw) 0 pc(Sw)

1.0 dSw 1.0 dSw
km(Se)=(1—Se)2L P2(5.) /L 75, (5.2.17)

Equations (5.2.17) are known as Burdine’s equations (see Brooks and Corey,
1964).
Mualem (1976) suggested

S 1.0
< dS, ds,

kw,=S},/2J v /J w_ (5.2.18)
0 pc(sw) 0 pr(sw)

Both (5.2.17) and (5.2.18) require information about the retention curve, p, =
Pc(S.)-

5.3. Balance Equations

We start from the mass balance equation (3.3.2) which, since the mass of water per
unit volume of porous medium is expressed by nS, 0,,, takes the form

9(o.nS,)
ot

where P = P(x, t) represents a sink (dims. L3/L3/T), e.g., due to water uptake
by roots. The symbol P may also represent water lost by a phase change
from water to vapor (or vice-versa). However, in this book this possibility is
disregarded.

We recall that in writing the (macroscopic) balance equation (3.3.1), and, hence,
also in (5.3.1), the nonadvective (i.e., dispersive plus diffusive) fluxes of the total
mass have been neglected. For the sake of simplicity, let us henceforth omit the
source term; when necessary, it can always be added at a later stage.

A similar equation can be written for the air.

+V - p,q.,+0,P=0 (5.3.1)
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By inserting the motion equation for gq,,, (5.2.1), assuming |nV,| < |q,| and
therefore q,, = q,,, into (5.3.1), we obtain

9(o,nS,)

YR V- [pw fu”) (Vp, + pwsz)] (5.32)

For p, = const, Equation (5.3.2) is further reduced to one of the following
forms

a(_gfw_)_v ) [ k.(S.) (pr+pwsz)] (5.3.3)
A v (Ky(S.) - VEI=0, (5:3:4)
_Q;Tw_v - (K, (6,) - V4}=0, (5.3.5)
%"t—w— V - {D,(6,) - V6,]—3K(6,)/dz=0, (5.3.6)

where the use of 6, is recommended only for cases of n = const. Another
example, for an isotropic porous medium, is

9y 1

_ 1y, _OKw) | _
Y dew/dw‘v K (v)Vy 5 ] 0. (5.3.7)

Because most of the applications are in connection with one-dimensional
vertical flow, let us give the balance equations for such flows

96, 9 9

yalte ( Ku(8.) =5~ ) 0, (5.3.8)
36, 3 K, (6,) _

yalr ( W(e) ) 2 0. (5.3.9)

Often the gravity term in (5.3.9) is neglected.

We note that because of the dependence of the permeability on saturation, all
mass balance equations for the unsaturated zone are nonlinear and require special
attention in their solution, whether by analytical or numerical methods.
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For the intermediate range of moisture contents for isotropic soils, Gardner and
Mayhugh (1958) suggested the expression

D,(6,)=D,, exp{A(6, — 0,)] (5.3.10)

where D, and A are empirical coefficients.

Let us now take into account the compressibility of the water and of the porous
medium. In the unsaturated zone, (3.1.7) is replaced by o = o¥ — p,,, where p,, is
the average pressure in the fluids filling the void space. For example, p,, = S,.p,, +
S.p,- Bishop et al. (1960) suggested the relationship o = 0¥ — p, + S,.(p, — p.)-
For comparison, Bishop eral. (1960) suggested the relationship 0 = of — p, +
x(S.) (p. — p.), where x (= 1 for saturated soil and 0 for dry soil) is an empirical
coefficient that represents the fraction of the soil’s cross-sectional area occupied by
water. For p, =0 and do = 0, we obtaindo¥ = d{x(S,,)p.}

By developing the first (change of storage) term on the left-hand side of (5.3.1),
we obtain

a w aSw an
TR

9(0,nS,)
ot nS, ot

Oy ap,,
= . ) - + » —_—
p, 1 C.+ nS,B + S.(1 — n)a (x p i )] ;

ap.

= Pu{Cu + S0 (S)) 3 (53.11)

where C, = d6,/dp,, = n dS,/dp, (due to possible variations in n) is the water
capacity, and §,,(S,) is defined by (5.3.11). In (5.3.11), we note the changes of
storage due to solid matrix compressibility, to water compressibility, and to
moisture retention in the void space. Usually, the effect of the first two is negligible
with respect to the third in the unsaturated zone. The last effect vanishes in the
saturated zone. In (5.3.11) we have assumed that p,, = p,.(S,,) is known.

The second term on the left-hand side of (5.3.1) may either be left as it is, or,
similar to what was done in saturated flow (Section 3.3), simplified by assuming
that |q, - Vo, < |ndp,/0t|,sothatV - p.q, = p,V - q,. In the latter case,
(5.3.1) reduces to

ap..
(c, +S(,p(sw)}%+ V-q,+P=0. (5.3.12)
We recall that q,, = q,, — nV,, where q,, is the specific discharge relative to the

(possibly moving) solids, expressible by the motion equation (5.2.9). In order to
take into account the difference between q, and q,,, due to V, # 0 in a
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deformable porous medium, we follow the development of (3.6.14). Then (5.3.1),
without the sink term, becomes

9x | d'pu d’p,
wsw + w — + Wi Cw + Sw — 4+
L a(x papw) dt o nS.B) dt
+p.V * q,*+p.Bq, - Vp,=0 (5:3.13)

By making the following simplifying assumptions
|0(np,,S,)/0t| > |V, - V(np,S,)|
19w - Vo,| < [ndp,/0tl, p;=0,ps=2(Pu)Pu>
Equation (5.3.13) reduces to

foon ) o])

ap.

V- qw,+(Cw+ S,

9p.
ot

= (G +S0,(Sw) =0 (5.3.14)

to be compared with (3.3.17); S, is defined by (5.3.14).

Obviously, we could have followed the discussion in Section 3.6 in order
to obtain a more general model for soil deformation under unsaturated flow
conditions.

When solving for the flow of water only, neglecting any flow of air, we assume
that the entire air phase is stationary at atmospheric pressure, taken as p, = 0.
However, it is possible (e.g., Noblanc and Morel-Seytoux, 1972; Morel-Seytoux,
1973) to consider the simultaneous flow of both the water and the air in the
unsaturated zone. In the latter case, we have to solve the continuity equations for
air and water simultaneously

9(np,S.)
— a, +V * pwqw=0’
at
G(Lg’;siﬁtv - 0.q,=0. (5.3.15)

Altogether, we have here nine variables: n, S,,, S,, Py Pa> Pws Qs> Q. and q,. In
order to determine them, we have: the two mass balance equations, the relation-
ship S, + S, = 1, the equations of state p, = p,(P.), 0. = P.(P.), n = n(p,) or
n = n(p,, p.), the capillary pressure curve p. = p, — p, = p(S,) and the two
motion equations (5.2.1). Altogether — nine equations.

In studies of flow in large unsaturated domains in the field, the effect of air flow
is generally neglected. However, as water infiltrates into a soil, air must escape by
flow towards the boundaries. This air flow may affect the flow of water (Morel-
Seytoux, 1973). The possibility that pressure in the air phase may differ signifi-
cantly from atmospheric pressure should not be overlooked (Vachaud et al.,
1974). This is especially true when air cannot escape freely from the system.
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In regional groundwater problems, we are interested mainly in the flow in the
saturated zone. The unsaturated zone is treated separately, primarily as vertical
downward infiltration, leading to the values of natural replenishment which, in
turn, serve as a source term in the horizontal, two-dimensional model of flow in
the aquifer. The same is true for the movement of pollutants carried with the
infiltrating water.

In some localized, three-dimensional problems, however, e.g., flow through an
earth embankment or contamination problems, we may wish to treat the flow in
both the unsaturated zone and the saturated zone underlying it as flow in a single
domain.

Although such a problem sounds more complicated, in most cases it is easier
for a numerical solution, as we avoid the need to define and follow the phreatic
surface that serves as a common boundary to both zones. A single set of equations
serves to describe the flow in both zones. For example, assuming the flow of water
only, we have:

Saturated zone Unsaturated zone
pw > 0’ Sw=1 pw < O’ Sw =Sw(pw)’ SwO < Sw < 1
l(w = kw(x) kw = kw(sw(x’ t))’ Sw > SwO

k,=0, 0<S,<S,,.

The mass balance equation which is common to both zones is, for example,

ap,,
ot

k.
Vo VPt 02N = (S5, + G (5.3.16)

or, depending on the underlying assumptions, one of the other water mass balance
equations considered in this section. Computer codes are available for solving this
system.

Altogether, usually the state variables for a problem of flow in the unsaturated
zone are p,, S, (and p,, S, if air flow is not neglected) for which we have one
balance equation, say (5.3.16), and the relationship p,, = p,(S,).

We assume that the retention curve y = y(S), or p, = p.(S,), is known and so
is the relationship k,,(S,,). In principle, in a deformable soil, k, = k,,(S,,, n), where
the porosity varies continuously as consolidation, or compaction, takes place.
However, because of hysteresis, in both relationships, we have to specify whether a
drying or a wetting process is taking place.

5.4. Initial and Boundary Conditions

As with the solution of flow problems in the saturated zone, the solution of the
partial-differential equations of unsaturated flow requires the specification of initial
and boundary conditions in terms of the relevant state variable, usually p, (or ),
or S, (or 6,). However, unlike the case of saturated flow, it is also necessary to
state whether a drying or wetting process is taking place along the boundary
because K,,(6,) and (6, are subject to hysteresis.
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Only water flow is being considered in this section. The extension to simul-
taneous air-water flow is obvious and requires no further discussion.

Initial conditions include the specification of the considered state variables (S,
6., p,,, or ¥) at every point inside the considered flow domain.

Boundary conditions may be of several types:

(@) Prescribed water content, 6,,, (or piezometric head ¢,,, pressure p,,, or suction
) at all points of the boundary. The condition of prescribed p,, occurs when we
have ponded water on the soil surface, dictating there a certain water pressure. In
a limit situation, we may have a thin sheet of water over the surface so that
practically p, = 0. Instead, we can always specify the 6, at saturation, corre-
sponding to p,, = 0. We shall do so when the partial differential equation is given
in terms of 6,. We note that except for the example given above, usually in the
practice, we do not know the values of water pressure and moisture content along
a boundary.
This is a boundary condition of the first kind, or Dirichlet boundary condition.

(b) Prescribed flux of water at the boundary. This case occurs, for example, when
water (rainfall or irrigation by sprinklers), at a known rate reaches the ground
surface, which serves as a boundary to the unsaturated flow domain. For a rate of
accretion denoted by the vector N we have

N-:-v=q, "V 541

where ¥ denotes the outward normal to the boundary surface and q,, denotes the
specific discharge on the soil side of the boundary. For vertically downward
accretion at a rate N, we replace N in (5.4.1) by —NVz. For evaporation at a rate
E, we replace N + v by the evaporation rate, EVz. For q,,, we may use any of the
flux equations given in Section 5.2. For example, with (5.2.4), Equation (5.4.1) in
terms of 1, for a horizontal ground surface, ¥ = Vz, and vertically downward
accretion, becomes,

)
N=—1K.(y) —% - K, (%) (- (54.2)

Or, with (5.2.6), in terms of 6,

90,

=+ K, (6,). 4.
5.+ Ku(6.) (5:43)

For an impervious boundary, we set N * ¥ =01in (5.4.1).

The boundary condition of prescribed flux is thus either a third-kind boundary
condition, or, in the absence of a gravity term, a second kind one.

N=D,(6.)

In the case of accretion, there is a limit to the capacity of a soil to take in water.
If the rate of accretion, N, say, on a horizontal surface, exceeds a certain value,
ponding will occur. This happens when N = K, (i.e., K at saturation). At that time,
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6,, reaches saturation at the surface, ¥ = 0, 0y/0z = 0, and the rate (= specific
discharge) of downward flow is equal to K. If N > K, ponding, or surface runoff
removing part of N, will take place and we have to switch to a first-type boundary
condition.

In the case of evaporation, the flux leaving the soil surface is dictated by the
energy supplied to the soil (overlooking the possibility of soil heating, phase
change etc., in the domain). Like in the case of accretion, the actual flux across
the soil surface is constrained by the ability of the soil to transmit water from the
soil’s interior to the ground surface. The actual transmission (which may be only a
fraction of the potential evapotranspiration of the soil) is governed by the soil’s
permeability which, in turn, depends on the moisture content, and by the moisture
gradient, both at the soil’s surface.

Let E denote the actual rate of evaporation at the soil’s surface, with N = EVz
in (5.4.1), or N = —E in (5.4.3). At low values of E, the boundary condition, say
(5.4.3), is of the third kind. As E is increased, a point is reached where the
moisture content is reduced to the irreducible one, 6, = 6,, at which point,
K(6,)=0and V6, - 0.

To some extent, imposing isothermal conditions as we have done here, with no
soil heating, no phase change (except at the soil surface), and no vapor flux, is
unrealistic.

We may summarize that in both cases (time-dependent boundary conditions
cannot be assigned a-priori due to the limiting capacity of the soil to transmit the
water), a limiting situation may develop at some unknown time. This situation is
obtained by maximizing the absolute value of the water flux, maintaining the
correct sign.

Similar to saturated flow, a boundary condition of the third type also occurs
when the soil (e.g., the bottom of an artificial recharge pond) is covered by a very
thin semipervious layer through which flow takes place.

Regarding the semipervious layer (Figure 5.15) as a very thin, saturated,
membrane having a resistance ¢V to the flow, the flux continuity condition
requires that

q, " v= T (544)
where ¢, and ¢ are the piezometric heads on the top and bottom of the
semipervious layer, respectively
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Fig. 5.15. Nomenclature for semipermeable boundary.
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For a horizontal boundary and isotropic soil, the boundary condition (5.4.4)
takes on the form

) Y BV +d
K)o = KW + —iy == (545)

This is a third-kind (= Cauchy) boundary condition.

When the flow domain is made up of regions of different (homogeneous)
porous media (e.g., a layered soil), we require that at points of the boundary
between two media, both the normal flux component and the pressure be equal,
ie,

Pwi = Pw25 Qwin = Qwan

We have seen above (Subsection 5.1.6) that the requirement of pressure continuity
means a discontinuity in water content.

If we wish to consider the flow of both air and water in the unsaturated zone,
we also have to state boundary conditions for the air phase, similar to those
described above for the water phase.

5.5. Complete Statement of Unsaturated Flow Model

The discussion on the statement of mathematical models for unsaturated flow is
similar to that presented in Section 3.5 for saturated flow, and need not be
repeated here. Before constructing any model, we should decide, within the
framework of the conceptual model, whether we wish to model the flow of water
only, neglecting any air movement, or to model the simultaneous flow of both
phases. Once this has been decided, the model should include:

(a) Specification of the flow domain.

(b) Specification of the relevant state variable, or variables.

(c) Statement of the partial differential equations that express mass balances of
the water and air.

(d) Statement of the relevant motion equation, or equations.

(e) Statement of the constitutive equations for the water, air, and solid phases.

(f) Information on the retention curve and effective permeability curves, as
well as on the numerical values of all coefficients that appear in the
constitutive equations.

(g) Statement of initial conditions of the relevant state variable, or variables.

(h) Statement of boundary conditions in terms of the relevant state variables.



CHAPTER SIX

Modeling Groundwater Pollution

So far, we have discussed only the movement and storage of water in various types
of aquifers, overlooking a major problem which is of interest in any development
and management of a water resources system, namely that of water quality. In fact,
with the increased demand for water in most parts of the world, and with the
intensification of water utilization, the quality problem becomes the limiting factor
in the development and use of water resources. Although in some regions, the
quality of both surface and groundwater resources deteriorates, special attention
should be devoted to the pollution of groundwater in aquifers due to the very slow
velocity of the water and to the possibility of an interaction of the pollutants with
the solid matrix. Although it may seem that groundwater is more protected than
surface water, it is still subject to pollution, and when the latter occurs, the
restoration to the original, nonpolluted state, is usually more difficult and lengthy.

The problem of groundwater pollution need not be associated only with water
supply for domestic, industrial, or agricultural purposes. Serious environmental
problems arise when polluted groundwater emerges at ground surface, or dis-
charges into rivers and lakes.

The term ‘quality’ usually refers either to energy — in the form of heat or
nuclear radiation — or to materials contained in the water. Many materials
dissolve in water, whereas others may be carried with the water in suspension.
Given the very large number of polluting constituents — and new materials are
coming onto the market every day — groundwater quality can be defined in terms
of hundreds of parameters. The relevance of any of these materials depends on the
water use that is being considered. For example, salinity may be important if the
water is intended for drinking, for irrigation, or for certain industries, but less
important for recreation. Radioactive substances released into groundwater, in
connection with nuclear power productions, by accidents, or from nuclear waste
repositories, pose a pollution problem that requires special attention. Standards
have been issued by national and international health authorities with respect to
the various constituents, according to the origin of the water and the type of
consumer.

When we speak of ‘water pollution’, rather than of ‘water quality’, we usually
have in mind a situation in which the quality of the water has been deteriorating
towards the point of being hazardous to the consumer. However, even under
undisturbed conditions, and without man’s intervention, groundwater already
contains a certain amount of dissolved maiter, sometimes reaching levels which
render the water unsuitable for certain usages. With this in mind we shall,
henceforth, use the term ‘pollutant’ to denote dissolved matter carried with the
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water and accumulating in the aquifer, without inferring that concentrations have
necessarily reached dangerous levels.
Groundwater pollution may usually be traced back to four sources:

(i) Environmental. This type of pollution is due to the environment through
which the flow of groundwater takes place. For example, in flow through
carbonate rocks, water dissolves small, yet sometimes significant, amounts of the
rock. Sea water intrusion, or pollution of good quality aquifers by invading
brackish groundwater from adjacent aquifers as a result of disturbing an equi-
librium that existed between the two bodies of water, may also serve as examples
of environmental pollution.

(i) Domestic. Domestic pollution may be caused by accidental breaking of
sewers, by percolation from septic tanks, by rain infiltrating through sanitary
landfills, or by artificial recharge of aquifers by sewage water, after being treated to
different levels. Biological contaminants (e.g., bacteria and viruses) are usually
related to this source.

(i) Industrial. In many cases, a single sewage disposal system serves both
industrial and residential areas. In this case, one cannot separate between
industrial and domestic pollution, although their compositions — and, hence, the
type of treatment they require and the pollution they cause — are completely
different. Heavy metals, for example, constitute a major problem in industrial
waste. Industrial waste may also contain radioactive materials and various non-
deteriorating, highly toxic compounds.

(iv) Agricultural. This source is due to irrigation water and rain water dis-
solving and carrying fertilizers, salts, herbicides, pesticides, etc., as they infiltrate
through the ground surface, travel through the unsaturated zone, and replenish the
aquifer. Irrigation with reclaimed sewage water may also serve as a source of
pollution for an underlying phreatic aquifer.

We are dealing with the transport of mass, where the considered ‘mass’ is that of
some substance, e.g., a solute, that moves with the water in the interstices of a
porous medium, both in the saturated and unsaturated zones. The mechanisms
affecting the transport of a pollutant in a porous medium are: advective, dispersive,
and diffusive fluxes, solid-solute interactions and various chemical reactions and
decay phenomena, which may be regarded as source-sink phenomena for the
solute.

Our objective in this chapter is to present and discuss the laws governing the
movement and accumulation of pollutants in groundwater flow, and, as in the case
of groundwater flow discussed in the previous chapters, to construct models that
enable the engineer and planner to predict future pollutants’ distributions in an
aquifer. We shall consider the general case of three-dimensional flow. However,
the procedure of averaging along the vertical, employed in Chapter 4, will also be
used here to derive a model based on the assumption of essentially horizontal flow
and pollution transport in aquifers.
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Obviously, one should be careful to employ the essentially horizontal flow
concept only when justified. Whereas equipotentials in an aquifer are more or less
vertical, even when an aquifer is stratified (i.e., consists of several layers of
different hydraulic conductivities), velocities in the different strata may vary
appreciably, resulting in a marked difference in the rates of advance and spreading
of a pollutant in the different strata. Situations may arise, where the average
concentration along the vertical is meaningless and one should take into account
the stratification in water quality.

Under certain conditions, the transition zone between two bodies of ground-
water of different qualities may be approximated as an abrupt front. Water of one
quality injected into an aquifer containing water of another quality may serve as an
example. This approximate approach is treated in Chapter 11.

6.1. Hydrodynamic Dispersion

Consider saturated flow through a porous medium, and let a portion of the flow
domain contain a certain mass of solute. This solute will be referred to as a tracer.
The tracer, which is a labeled portion of the same liquid, may be identified by its
density, concentration of some pollutant, color, electrical conductivity, etc.

In Section 2.1, e.g., (2.1.9), we defined the water’s velocity. With this definition
in mind, let us conduct two field experiments.

Figure 6.1a shows an (assumed) abrupt front in an aquifer, at ¢+ = 0. Let the
abrupt front separate a porous medium domain occupied by tracer labeled water
(C = 1) from one occupied by unlabeled water (C = 0). If uniform flow (normal
to the initial front) at a velocity V takes place in the aquifer, Darcy’s law enables
us to calculate the new position of the (assumed) abrupt front; its new position is
at x = V& On the basis of Darcy’s law alone, the two types of water should
continue to occupy domains separated by an abrupt front. However, if we measure
concentrations in a number of observation wells scattered in the aquifer, we note
that no such front exists. Instead, we shall observe a gradual transition from a
domain containing water at C = 1, to a domain containing water at C = 0.
Experience shows that as flow continues, the width of the transition zone
increases. This spreading of the tracer-labeled water, beyond the zone it is
supposed to occupy according to the description of water movement by Darcy’s
law, cannot be explained by the averaged movement of the water.

As a second experiment, consider the injection of a certain quantity of tracer-
labeled water at point x = 0 at some initial time ¢ = 0. Making use of the
(averaged) velocity as calculated by Darcy’s law, we should expect the tracer-
labeled water to move as a volume of fixed shape, reaching point x = V¢ at time .
Again, field observations (shown in Figure 6.1b) reveal a completely different
picture. We note the spreading of the tracer-labeled water, not only in the
direction of the uniform (averaged) flow, but also normal to it. The area occupied
by the tracer-labeled water, which has the shape of an ellipse in a horizontal two-
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Fig. 6.1. Longitudinal and transversal spreading of a tracer. (a) Longitudinal spreading of an initially
sharp front. (b) Spreading of a point injection.

dimensional flow field, will continue to grow, both longitudinally, ie., in the
direction of the uniform flow, and transversally, i.e., normal to it. Curves (in two-
dimensional flow) of equal concentration have the shape of confocal ellipses.
Again, this spreading cannot be explained by the averaged flow alone (especially
noting that we have spreading perpendicular to the direction of the uniform flow).

The spreading phenomenon described above in a porous medium is called
hydrodynamic dispersion (or miscible displacement). It is a nonsteady irreversible
process (in the sense that the initial tracer distribution cannot be cbtained by
reversing the direction of the uniform flow) in which the tracer mass mixes with
the nonlabeled portion of the water.

One of the earliest observations of this phenomenon is reported by Slichter
(1905), who used an electrolyte as a tracer in studying the movement of ground-
water. Slichter observed that at an observation well downstream of a (continuous)
injection point, the tracer’s concentration increases gradually, and that even in a
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uniform (average) flow field, the tracer advances in the direction of the flow in a
pear-like shape that becomes longer and wider as it advances.

The dispersion phenomenon may also be demonstrated by a simple laboratory
experiment. Consider steady flow in a cyclindrical column of homogeneous sand,
saturated with water. At a certain instant, ¢ = 0, a tracer-marked water (e.g., water
with NaCl at a low concentration, so that the effect of density variations on the
flow pattern is negligible) starts to displace the original unlabeled water in the
column. Let the tracer concentration, C = C(¢) be measured at the end of the
column and presented in a graphic form, called a breakthrough curve, as a
relationship between the relative tracer concentration and time, or volume of
effluent, U.

In the absence of dispersion, the breakthrough curve should have taken the
form of the broken line shown in Figure 6.2, where U, is the pore volume of the
column, and Q is the constant discharge. Actually, owing to hydrodynamic
dispersion, it will take the form of the S-shaped curve shown in full line in Figure
6.2

We cannot explain all the above observations on the basis of the average water
flow. We must refer to what happens at the microscopic level, viz., inside the pore.
There we have velocity varying in both magnitude and direction across any pore
cross-section. We usually assume zero fluid velocity on the solid surface, with a
maximum velocity at some internal point (compare with the parabolic velocity
distribution in a straight capillary tube). The maximum velocity itself varies
according to the size of the pore. Because of the shape of the interconnected pore
space, the (microscopic) streamlines fluctuate in space with respect to the mean
direction of flow (Figures 6.3a and b). This phenomenon causes the spreading of
any initially close group of tracer particles; as flow continues, they will occupy an
ever increasing volume of the flow domain. The two basic factors that produce this
kind of spreading are, therefore, flow and the presence of a pore system through
which flow takes place.

Although this spreading is in both the longitudinal direction, namely that of the
average flow, and in the direction transversal to the average flow, it is primarily in
the former direction. Very little spreading can be caused in a direction perpen-
dicular to the average flow by velocity variations alone. Also, such velocity
variations alone cannot explain the ever-growing width of the zone occupied by
dispersed tracer particles normal to the direction of flow. In order to explain the

1.0 T
cos actual (with dispersion)
: without dispersion
1
0 2 3 4
Qt/U,

Fig. 6.2. Breakthrough curve in one-dimensional flow in a sand column.
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Fig. 6.3. Spreading due to mechanical dispersion (a, b) and molecular diffusion (c).

latter observed spreading, we have to refer to an additional phenomenon that takes
place in the void space, viz., molecular diffusion.

Molecular diffusion, caused by the random movement of molecules in a fluid,
produces an additional flux of tracer particles (at the microscopic level) from
regions of higher tracer concentrations to those of lower ones. This means, for
example, that as the marked particles spread along each microscopic streamtube,
as a result of velocity variations, a concentration gradient of these particles is
produced, which, in turn, produces a flux of tracer by the mechanism of molecular
diffusion. The latter phenomenon tends to equalize the concentrations along the
steamtube. Relatively, this is a minor effect. However, at the same time, a tracer
concentration gradient will also be produced between adjacent streamlines, causing
lateral molecular diffusion across streamtubes (Figure 6.3c), tending to equalize the
concentration across pores. It is this phenomenon that explains the observed
transversal dispersion.

In addition to the role played at the microscopic level by molecular diffusion in
enhancing the transversal component of mechanical dispersion, it produces a
macroscopic flux of its own. This is easily demonstrated by letting the velocity
vanish. Then the tracer is transported by (macroscopic) molecular diffusion only.

We shall refer to the spreading caused by the velocity variations at the
microscopic level, enhanced by molecular diffusion, especially in the direction
transversal to the average flow, as mechanical dispersion.

We use the term hydrodynamic dispersion to denote the spreading (at the
microscopic level) resulting from both mechanical dispersion and molecular
diffusion. Actually, the separation between the two processes is rather artificial, as
they are inseparable. However, molecular diffusion alone does also take place in
the absence of motion (both in a porous medium and in a fluid continuum).
Because molecular diffusion depends on time, its effect on the overall dispersion
is more significant at low velocities. It is molecular diffusion which makes the
phenomenon of hydrodynamic disperison in purely laminar flow irreversible.
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In addition to inhomogeneity on a microscopic scale (i.e., presence of pores and
grains), we may also have inhomogeneity on a macroscopic scale, due to variations
in permeability from one portion of the flow domain to the next. This inhomo-
geneity also produces dispersion of marked particles, but on a much larger scale
(see Section 6.7).

Dispersion may take place both in a laminar flow regime, where the liquid
moves along definite paths that may be averaged to yield streamlines, and in a
turbulent regime, where the turbulence may cause yet an additional mixing. In
what follows , we shall focus our attention only on flow of the first type.

In addition to advection (at average velocity), mechanical dispersion, and
molecular diffusion, several other phenomena may affect the concentration
distribution of a tracer as it moves through a porous medium. The tracer (say, a
solute) may interact with the solid surface of the porous matrix in the form of
adsorption of tracer particles on the solid surface, deposition, solution of the solid
matrix, ion exchange, etc. All these phenomena cause changes in the concentration
of a tracer in a flowing liquid. Radioactive decay and chemical reactions within the
liquid also cause tracer concentration changes.

In general, variations in tracer concentration cause changes in the liquid’s
density and viscosity. These, in turn, affect the flow regime (i.e., velocity distribu-
tion) that depends on these properties. We use the term ideal tracer when the
concentration of the latter does not affect the liquid’s density and viscosity. At
relatively low concentrations, the ideal tracer approximation is sufficient for most
practical purposes. However, in certain cases, for example in the problem of sea
water intrusion, the density may vary appreciably, and the ideal tracer approxima-
tion should not be used.

6.2. Advective, Dispersive, and Diffusive Fluxes

As explained above, at every (microscopic) point within a porous medium domain,
we have a velocity V and a concentration, ¢, of some considered substance; ¢
expresses the mass of the substance per unit volume of the liquid. Figure 6.4 shows
a point X’ belonging to a Representative Elementary Volume (REV) centered at
point x. The product cV at x’ denotes the local flux (= quantity of the considered
substance per unit area of liquid) vector at that point. However, we already know
that we cannot predict values of V and ¢ at this microscopic level, and that,
instead, we should aim at predicting the average concentration, ¢", and the
average tracer flux cV" atthe macroscopic level.

6.2.1. ADVECTIVE AND DISPERSIVE FLUXES

To achieve this goal, without going into the details of the continuum approach to
transport in porous media, let the liquid’s velocity at an arbitrary point, x’, within
the liquid that completely occupies the pore space, be denoted by V(x’, ¢; x). The
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Fig. 6.4. Nomenclature for the dispersive flux.

symbol x in this parenthesis indicates that point x’ belongs to a Representative
Elementary Volume (REV) centered at x (Figure 6.4). The velocity V, can be
decomposed into two parts: the average velocity V", of the liquid within the REV,
and a deviation, V, from that average. Thus

Vx', £5x) = V' (x, 1)+ V(x', £;x), (6.2.1)
c(x’, 6, x)=C"(x, 1)+ ¢(x’, t; X). (6.2.2)

In both cases, the average has the meaning of an intrinsic phase average as
defined by (1.4.3).
To obtain the average flux, we write

—w"

N =@ AV V) =TV 4TV N +V (6.2.3)
. < e
However, in view of (1.4.3), ¢V =0and ¢"V = 0.Hence

V=TV (6.2.4)

ie., the average flux of the considered substance is equal to the sum of two
macroscopic fluxes:

(@) An advective flux, c: WVW, expressing the flux carried by the water at the
latter’s average velocity, V', as determined by Darcy’s law (or any of the motion
equations presented in Section 2.1).

(b) A flux V" = V" expressing an additional flux resulting from the
fluctuating velocity in the vicinity (i.e., within the REV) of the considered point.
Recalling the discussion in the previous section, this is the flux that produces the
spreading, or dispersion. We refer to it as the dispersive flux. It is a macroscopic
flux that expresses the effect of the microscopic variations of the velocity in the
vicinity of a considered point. We note that this flux is created by the averaging
procedure. It does not exist at the microscopic level. In employing this flux, we are
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losing the information about the behavior at the microscopic level (which we do
not have anyway).

Our next objective is to express the dispersive flux in terms of averaged (and
measurable) quantities, such as averaged velocity and averaged concentration.
Investigations over a period of about two decades, starting from the mid-50s (see
review, for example, in Bear, 1972), have led to the working assumption that the
dispersive flux can be expressed as a Fickian type law, viz. in the form

&N"'=-p-ve, & =-D, %C (6.2.5)
x/

where D is a second rank symmetric tensor called the coefficient of (mechanical)
dispersion. We recall that ¢ denotes the mass of the dispersing substance per unit
volume of water, and ¢V represents a flux per unit area of the water. Equation
(6.2.5) indicates that the dispersive flux is linearly proportional to the gradient of
the average concentration and that this flux takes place from high concentrations
to lower ones.

6.2.2. COEFFICIENT OF DISPERSION

Several authors (e.g., Nikolaevskii, 1959; Bear, 1961; Scheidegger, 1961; Bear and
Bachmat, 1967) derived the following expression for the relationship between the
coefficient D and microscopic porous matrix configuration, flow velocity, and
molecular diffusion

Vv,
D, =a,, ——"‘;/—— f(Pe, 8) (6.2.6)

where V" = |V | is the average velocity, Pe is the Peclet number defined as Pe =
LV"/ D,, L being some characteristic length of the pores, D, is the coefficient of
molecular diffusion of the solute in the liquid phase, 6 = the ratio of the length
characterizing the individual pores of a porous medium to the length charac-
terizing their cross-section, and f(Pe, d) is a function which introduces the effect
of tracer transfer by molecular diffusion between adjacent streamlines at the
microscopic level. In this way, molecular diffusion affects mechanical dispersion.
One should not identify this effect with the macroscopic flux due to molecular
diffusion (see below), but with the transfer between streamtubes at the microscopic
level, as explained in the definition of mechanical dispersion in Section 6.1. Bear
and Bachmat (1967) suggested the relationship f(Pe, 0) = Pe/(Pe + 2 + 46?). In
most cases, we assume that f(Pe, 0) = 1. Henceforth, we shall also make this
assumption.

The coefficient a,,, (dims. L) called the dispersivity of the porous medium, is a
fourth-rank tensor which expresses the microscopic configuration of the solid-
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liquid interface. Bear and Bachmat (1967) and Bear (1972, p. 614) expresses a,,,
by

a,m = (BT} BT},/BT BT}, L, (6.2.7)

where B is the conductance of an elementary medium channel, BTj; is an oriented
conductance of a channel, T_,; is the medium’s tortuosity, nET,;T = k, is the
medium’s permeability and L is a characteristic length of the medium. Thus, the
medium’s dispersivity is related to the variance of BT ;, while its permeability is
related to the average, BT/, of BT ;.

A fourth rank tensor has 81 components in a three-dimensional space (and 16
in a two-dimensional one) Scheidegger (1961) and Bear (1961) showed that a,,,,
has a number of symmetries that reduce the number of nonzero components of the
dispersivity tensor, in a three-dimensional space, to only 36.

For an isotropic porous medium, the number of nonzero components is further
reduced to 21. Furthermore, these 21 components are related to two parameters:
a, (dim. L) called the longitudinal dispersivity of the isotropic porous medium, and
ar (dim. L) called the transversal dispersivity. In the theoretical developments
mentioned above, it is shown that a, expresses the heterogeneity of the porous
medium at the microscopic scale, i.e., due to the presence of pores and solids.
Hence, in laboratory experiments in homogeneous sand columns it was found that
a, is of the order of magnitude of the average sand grain. The transversal
dispersivity is estimated as 10 to 20 times smaller than q, .

With a4, and a;, the components of the dispersivity for an isotropic porous
medium can be expressed in the form

G ym = 70, 84 + iL—zﬁ (040 + 6,0, (6.2.8)
where J, denotes the Kronecker delta (with 6, =0 fori # j and 6, = 1 for
i = j). For an isotropic porous medium, the components 4,,, do not change with
the rotation of the coordinate system.

For an anisotropic porous medium with axial symmetry, e.g., a medium made up
of a large number of thin layers normal to the axis of symmetry, the dispersivity

can be expressed in the form

a =aq 61/ 6km + all(élk 6/m + élm d/k) +
+ alll(éll hk hm + 6km hi h/) +
+ a,v(d,,(h/h,,I + 6,kh,-h,,, +90,,hh, + 6,-mh,hk) +

m'

+ ayh b b, (6.2.9)

ykm

where ay, a,, ay, a;y and ay are five independent parameters and h is a unit vector
directed along the axis of symmetry. Similar expressions can be written for other
types of anisotropy.
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By combining (6.2.8) with (6.2.6) for f(Pe, 6) =1, we obtain
D, =a;Vé,+ (a, —ar)VV,/V (6.2.10)

where here, and henceforth, we have omitted the symbol (_)W that indicates that
the velocity is an average one.

The permeability, k,, of a porous medium is also a second-rank symmetric
tensor. However, there is a basic difference between tensors k, and D,. In an
isotropic porous medium, any three mutually orthogonal directions in space may
serve as principal directions. However, due to the effect of the velocity pattern, the
principal axes of the dispersion coefficient, D, at a point are always in the
direction of the tangent to the streamline passing through that point and in the
directions of the two principal normals to that direction. Figure 6.5 shows these
directions. The unit vectors N, T and B are called the principal normal, the
tangent, and the binormal to the curve (see any text on differential geometry).

Thus, although the porous medium is isotropic, we have a distinct set of
principal directions at every point of a flow domain. As the velocity varies from
point to point, so do the principal axes of the dispersion. Furthermore, at every
point, these directions may vary continuously as the flow pattern varies. This
dependence of the dispersion coefficient on the velocity introduces a major
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Fig. 6.5. Principal axes of the coefficient of dispersion.
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difficulty in the solution of pollution problems, especially under unsteady flow
conditions and when the velocity is density (and hence, concentration) dependent.
In Cartesian coordinates, and velocity components V,, V,, V,, we obtain from

(6.2.10)

D, =arV+(a, —an)Vy/V=[a(Vi+ V) +a, ViV,

D,,=(a, —ar) V, Vy/V= D,,,

D,,=(a, —ap)V,V,/V=D,,

D, =a;V+(a, —ap)Vy/V=|ay(Vi+ V) +a, ViV,

D, =(a, —ap)V,V,/V=D,,

D, =a;V+(a, —a))V¥/V=[ap(Vit V)+a VIV (6.2.11)

If we choose a Cartesian coordinate system at a point, such that one of its axes,
say x;, coincides with the direction of the average uniform velocity V, then at that
point (6.2.10) reduces to

D,=aV, D,,=a;V, Dy3;=a;V, D,=0, fori #j (6.2.12)

which can be written in the matrix form

aV 0 0
[D,J=] 0 aV O (6.2.13)
0 0 aV

We note that lateral dispersion, in the directions of x, and x;, can still take place in
such uniform flow. The axes of the coordinate system in which D, is expressed by
(6.2.13) — namely, in the direction of the flow at a point and perpendicular to it —
are the principal axes of the dispersion. The coefficients D,,, D,,, and D;; are the
principal values of the coefficient of mechanical dispersion. In this case, Dy, is
called the coefficient of longitudinal dispersion, while D,, and D,; are called
coefficients of transversal dispersion.

6.2.3. MOLECULAR DIFFUSION

We shall simplify the presentation by assuming a binary system, i.e., a single solute
and a solvent. The discussion can be extended to multicomponent systems.

At the microscqpic level, the flux vector, J(), due to molecular diffusion is
expressed by Fick’s law

dac
J@ =—D,Ve; J@ ==Dy 7 - (6.2.14)

where D, is the coefficient of molecular diffusion in a fluid continuum (equals
about 10™° cm?/sec in dilute systems). By averaging (6.2.14) over the REV, and
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introducing certain simplifying assumptions, Bear and Bachmat (1984, 1986)
derived an expression for the macroscopic flux in the form

J" = ~D,T* - V&" =—-D* - V&~ (6.2.15)

where D} = T*D, is the coefficient of molecular diffusion in a porous medium and
T* is a second-rank symmetric tensor that expresses the effect of the configuration
of the water occupied portion of the REV. We used the averaging symbol (_)w in
(6.2.15) in order to emphasize the difference between this equation and (6.2.14).

The coefficient T*, often referred to as a tortuosity, is defined by (Bear and
Bachmat, 1984, 1986)

ry= 1 J (% —X,)v, dS (6.2.16)
U (Sww)
where §,,, denotes the water-water portion of the bounding surface of the REV, x,
is the centroid of the REV, ¥ is the outwardly directed normal to the surface S,,,,
and U, denotes the volume occupied by water within the REV.
For an isotropic porous medium T} reduces to

6.
=

where 65, =S,,,/S,, 6, = U,,/U,, and J, is the Kroenecker delta.

5, (6.2.17)

6.2.4. COEFFICIENT OF HYDRODYNAMIC DISPERSION

By adding the dispersive flux, expressed by (6.2.5), and the diffusive flux,
expressed by (6.2.15), we obtain

&N +J@" = —D+D%) - V&" =D, - V" (6.2.18)

where the coefficient D, = D + D¥ is called the coefficient of hydrodynamic
dispersion.

The total flux, q, ., of a pollutant, by advection, dispersion, and diffusion can
now be written in the form

oo = O,V =D, - V") (6.2.19)

This is the amount of the pollutant passing through a unit area of porous medium.

In (6.2.6), deleting the function f(Pe, J), we have a linear relationship between
the coefficient of mechanical dispersion, D, and the average velocity V. However,
f(Pe, d) introduces a nonlinear effect of the velocity (as Pe = LV/D,). Many
experiments and some analytical studies seem to indicate that the coefficient of
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dispersion is not exactly a linear function of the velocity. Often expressions of the
form

D, =a, V(Pe)™, D,, = a;V(Pe)™ (6.2.20)

where m, and m, are constants, are suggested instead of the linear ones given by
(6.2.12).

Figure 6.6 gives a schematic representation of results of a large number of one-
dimensional flow experiments for determining the coefficient of longitudinal
dispersion, D,, . Practically all the experiments were conducted in unconsolidated
porous media.
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Fig. 6.6. Relationship between molecular diffusion and longitudinal hydrodynamic dispersion (after
Pfannkuch, 1963: Saffman, 1960).
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Figures 6.6a and b may be divided into several zones:

Zone I: In this zone, molecular diffusion predominates, as the average flow
velocity is very small (a, V < D, T*).

Zone II': Corresponds approximately to Pe between 0.4 and 5. In this zone, the
effects of mechanical dispersion and molecular diffusion are of the same order of
magnitude.

Zone III: Here spreading is caused mainly by mechanical dispersion. In this
zone

D,./D,=a(Pe)", a =05, 1<m<12. (6.2.21)

Zone 1V: This is the region in which mechanical dispersion predominates (as
long as we stay in the range of validity of Darcy’s law). The effect of molecular
diffusion is negligible except as a factor that governs the transversal disperison. In
the diagram, we obtain a straight line at 45 degrees

D,./D,=pBPe, B =18. (6.2.22)

In practice, in both Zones III and IV, the coefficient D,, is taken as propor-
tional to the velocity.

Zone V: This is another zone of pure mechanical dispersion, but beyond the
range of Darcy’s law, so that the effects of inertia and turbulence can no longer be
neglected.

Much less information is available on transversal dispersion. Ratios of a, /a; of
5:1 to 24:1 and even up to 100:1 have been reported in the literature. A
relationship for D,;/D, similar to that given by (6.2.21) is often used, but with
different values for a and m (e.g., a = 1/40 and m = 1.1 for Zone III).

6.2.5. COMMENT ON UNSATURATED FLOW

The entire discussion presented for saturated flow in Subsections 6.2.1 through
6.2.4 can also be extended to an unsaturated one, where the polluted water
occupies only part of the pore space. The phenomena of velocity variations
and concentration gradients within the water-occupied portion will lead, when
averaged, to mechanical dispersion and molecular diffusion at the macroscopic
level. The entire presentation is therefore valid, except that the dispersivity that
expresses the effect of the configuration of the water within the REV at a point,
will now depend on the saturation at that point. Similarly, the coefficient of
molecular diffusion in the porous medium will also be a function of the saturation.

6.3. Balance Equation for a Pollutant

As in the case of water flow, each of the various flux equations presented in
Section 6.2 involves two variables: the flux and the concentration. Additional
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information is contained in the mass balance of the considered pollutant. This
macroscopic balance takes the form of a second-order partial-differential equation
that expresses the balance at (i.e., in the close vicinity of) a point inside a porous
medium domain.

We shall consider the general case of unsaturated flow, with 6 denoting the
moisture content. For saturated flow, 0 is replaced by the porosity, n. We recall
that in unsaturated flow, the dispersivity is a function of the moisture content, and
so is the coefficient of molecular diffusion in a porous medium.

When there is no danger of ambiguity, ¢ will denote the concentration of a
pollutant at the macroscopic level (= ¢*).

6.3.1. THE FUNDAMENTAL BALANCE EQUATION

Five components should be taken into account in the construction of a balance
equation for a constituent.

(i) The quantity of the pollutant entering and leaving a control volume around
a considered point by advection dispersion and diffusion, or the total flux, q. .
expressed by (6.2.19).

We recall that in Section 3.3, using a parallelpiped control box, we have shown
that minus the divergence of a flux (of any extensive quantity) represents the excess
of inflow (of that quantity) over outflow, per unit volume of porous medium, per
unit time. Hence, here — div q,, ,,, represents the excess of inflow of a considered
pollutant over outflow, per unit volume of porous medium, per unit time.

(i) Pollutant leaving the fluid phase through the water-solid interface as a
result of chemical or electrical interactions between the pollutant and the solid
surface. Phenomena of ion exchange and adsorption may serve as examples. Let f
denote the quantity of pollutant that leaves the water by such mechanisms, per unit
volume of porous medium, per unit time (see Subsection 6.3.2).

(iii) Pollutant added to the water (or leaving it) as a result of chemical
interactions among species inside the water, or by various decay phenomena. Let
I’ denote the rate at which the mass of a pollutant is added to the water per unit
mass of fluid (so that 6o denotes the mass added by such phenomena, per unit
volume of porous medium per unit time).

(iv) Pollutant may be added by injecting polluted water into a porous medium
domain, e.g., as part of artificial recharge or waste disposal operations. Pollutant
may be removed from a porous medium domain by withdrawing (polluted) water,
e.g., by pumping. With P(x, ¢) and R(x, ¢) denoting the rates of water withdrawn
or added, respectively, per unit volume of porous medium per unit time, and
c(x, t) and cg(x, t) denoting the pollutant’s concentration in the water present in
the porous medium and in the water added by injection, respectively, the total
quantity of pollutant added per unit volume of porous medium per unit time is
expressed by Rc, — Pc.
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(v) As a result of the above components, the quantity of the pollutant is
increased within a control box. With Oc denoting the mass of a pollutant per unit
volume of porous medium, 06c/0¢ denotes the rate at which this quantity
increases.

Combining the above components, we obtain

96c
ot

==V * q. o~ f+ 0o = Pc+ Reg (6.3.1)

or, using (6.2.19) to express q,, ;o

06c
ot

Equation (6.3.2) is the (macroscopic) mass balance equation of a pollutant,
expressed in terms of ¢ = ¢(x, t). It is often called the equation of hydrodynamic
dispersion, or the advection — dispersion equation.

As in Subsection 3.3.1, P and R are merely symbols that indicate pumping and
recharge rates. The sinks and sources represented by these symbols may be of the
distributed type, or point sources and sinks. In the latter case we employ the Dirac
delta function, as in (3.3.4).

We note that (6.3.2), as well as all other equations derived from it in this
section, are written from the Eulerian point of view. For @ = n = const, combined
with (5.3.1) for p,, = 1 and P replaced by P — R, (6.3.2) may also be written as

=—V - (cq— 6D - Vc—6D% - Vc)—f+ 60T — Pc+Reg.  (63.2)

d”c nol' —f—R(cg —¢)
=V - D, Vo) +
dt O ) n

where d¥c/dt (= 0c/9t + V,, + Vc) is the material derivative of the concentra-
tion c. We note that in this formulation, the left-hand side is written as a
Lagrangian formulation, following a fixed particle of concentration c. The right-
hand side is written as an Eulerian formulation, observing what happens at a point
in space. Some numerical methods are based on this mixed Eulerian—Lagrangian
formulation. In Section 6.6 we consider the case of d¥c/dt = 0 as a basis for
numerical models presented in Chapter 11.
Another way of deriving (6.3.2) is to start from the microscopic balance
equation
dc
a5 = =V - (V-D, Vc)+pI' (6.3.3)
and average it over the fluid phase contained within the REV. Note that in (6.3.3),
¢ is the concentration of the pollutant at the microscopic level. The resulting
equation, into which we insert the expression (6.2.5) for the dispersive flux and
(6.2.15) for the averaged diffusive flux, is identical to (6.3.2), except that f is
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represent by (1/U) f(sf yJa + v dS, in which S is the surface area of the solid-
fluid interface and J, is the microscopic flux due to molecular diffusion.

In order to obtain an expression for f, we now turn to the equation of balance
of the same polluting component on the solid phase. Let F denote the mass of the
pollutant on the solid per unit mass of solid. With o, denoting the solid’s density
and 6, (= (1 — n)) denoting the solid’s volumetric fraction, it is easy to show that
the pollutant mass balance on the solid surface, reduces to

0(6,0,F)
ot

where I, is the rate of production of the pollutant per unit mass of solid. We note
that in (6.3.4), f has the same meaning as in (6.3.2) and that we have neglected
any advective, dispersive, or diffusive flux of the pollutant present on the solid.

By eliminating f from (6.3.3) and (6.3. 4) and expressing the advective flux, cq,
by 6cV, we obtain

f+ pS s (63'4)

a(—;:c)—=—V * 0(cV—D - Vc—D} - Vo)—
60;75 + 0,0,T, + 0T — Pc + Reg. (6.3.5)

Equation (6.3.5) is a single equation in the two state variables, ¢ and F (as I’
and I'; may also be functions of ¢ and F). We need an additional relationship
between c¢ and F. This relationship is discussed in Subsection 6.3.2.

6.3.2. SOURCES AND SINKS ON THE SOLID SURFACE

Adsorption is the phenomenon of increase in the mass of a substance (e.g., a
pollutant) on the solid at a fluid-solid interface. The component’s affinity to the
solid surface is due to electrical attraction, van der Waals attraction, i.., inter-
molecular forces of attraction between molecules of the solid and adsorbed
components, and chemisorption, i.e., chemical interaction between the solid and
the adsorbed substances. Hence, the main factors affecting the adsorption and
desorption of chemicals to or from the solid are the physical and chemical
characteristics of the considered substance and of the solid’s surface. Additional
factors are temperature and the presence of other components in the fluid phase
(e.g., through the pH that results from their concentrations in the fluid phase).

Ion exchange is a process of exchange between ions in the solution and ions
present at sites on the solid’s surface.

An adsorption isotherm is an expression that relates the quantity of an adsorbed
component to its quantity (expressed as concentration) in the fluid phase, at
constant temperature (i.e., under isothermal conditions, hence the term isotherm).
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Thus, the isotherm relates F to c. Different adsorbate-adsorbent pairs have
different isotherms. However, in general, we may distinguish two classes of
isotherms.

(i) Equilibrium isotherms that are based on the assumption (substantiated, of
course, by experiments) that the quantities of the component on the solid and in
the adjacent solution are continuously at equilibrium. Any change in the concen-
tration of one of them produces an instantaneous change in the other.

(i) Nonequilibrium isotherms, which assume that equilibrium is not achieved
instantaneously, but rather that it is approached at a certain rate which, in general,
depends on both F and c.

Following are a number of examples of the more commonly encountered
isotherms.
(a) Freundlich (1926), suggested the nonlinear equilibrium isotherm

F=bc (6.3.6)

where b and m are constant coefficients.
(b) For m = 1, and replacing the symbol b by the more commonly used
symbol K,, Equation (6.3.6) reduces to

F=K,c (6.3.7)

known as the linear equilibrium isotherm. It assumes that adsorption is instan-
taneous, reversible, and linear. The coefficient K, is called the distribution
coefficient, or partitioning coefficient. From (6.3.7), it follows that K, (= Fr) gives,
at every instant, the mass of the component on the solid, per unit mass of the
latter, per unit concentration of the component in the fluid phase. It describes the
partitioning of the total amount of the component, say in a unit volume of porous
medium, between the part adsorbed on the solid walls and the part remaining in
the fluid phase. Sometimes, K, for the adsorption process differs from that of the
desorption one. This means that the process is not completely reversible. Another
observation is that there is often a limit to the adsorptive capacity of the solid
walls. This requires a modification of the isotherm (6.3.7).

In unsaturated flow, water occupies only part of the void space, at the
volumetric fraction 6,, or saturation S, (= 6,/n), overlooking the presence of a
thin stagnant liquid film that covers the solid in the air occupied zone. Then, only
part of the total area of the solid is exposed to adsorption, or ion-exchange
phenomena. The portion of the total surface of the solid that is in contact with the
liquid phase, depends on 6,. Let us assume (as one of many possibilities to be
verified by experiments for a particular porous medium) that the ratio of the area
of the solid-liquid interface to the total area of the solid is equal to the ratio of
active solid mass (i.e., solid mass participating in the surface phenomena) to the
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total mass of the solid, and that each of these ratios, in turn, is equal to the ratio of
the liquid occupied portion of the void space to the total void space volume, i.e.,
equal to S,,. Then, the linear equilibrium isotherm (6.3.7) reduces to

F=S5,K,c (6.3.8)

where K, has the same definition as in (6.3.7). In other models, S,, in (6.3.8) may
be replaced by some known function of §,,.

Obviously, it is possible to assume that due to the presence of the film and to its
ability to transport a solute through it by molecular diffusion, the entire surface of
the solid is available for adsorption. In this case, the isotherm (6.3.7) remains valid
also for S, < 1.

Considerations similar to those discussed above are also applicable to the
isotherms considered below.

(c) A more general form of the linear equilibrium isotherm is

F=k,c+k, (6.3.9)

where k, and k, are constant coefficients.
(d) Langmuir (1916, 1918) suggested the nonlinear equilibrium isotherm
[ 6.3.10
1+ kyc (6.3.10)
where k; and k, are constant coefficients.
(e) Lindstrom et al. (1971) and Van Genuchten (1974) mention the nonlinear
isotherm

F = ksc exp(—2k4F) (6.3.11)

where k; and k, are constant coefficients.
(f) the simplest nonequilibrium isotherm for an irreversible system (Langmuir,
in Adamson, 1967) is

—a-t— = k,c (6.3.12)
where k, is a constant coefficient.
(g) Lapidus and Amundson (1952) proposed the nonlinear isotherm

oF
o k.(kgc + kg— F) (6.3.13)
where k, and k, are constant coefficients and , is a kinetic rate coefficient.

(h) A nonequilibrium Langmuir isotherm is (e.g., Hendricks, 1972)

F

"\ 1+kc

k
e _f ) (6.3.14)
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(i) Van Genuchten et al. (1974) also mention the nonequilibrium Freundlich
isotherm

oF _ k,(ky,¢*13 = F). (6.3.15)
ot

Only one of the above isotherms would apply for each particular case. The
selection of the appropriate isotherm and the determination of the value of the
various coefficients appearing in it, should be based on the study of the thermo-
dynamics of the interacting components and on experiments with the particular
soil under consideration.

When the species adsorbed on the solid undergoes radioactive, or any other
type of decay, the sink term I'; takes the form

s=—AF or T ,=—kF (6.3.16)

where A = 1/T, T is the half-life, and k, is a degradation rate constant of the
decaying species.

6.3.3. SOURCES AND SINKS WITHIN THE LIQUID PHASE

Sources and sinks of the pollutant, expressed by the term oI, result from various
processes, e.g., chemical reactions among components within the liquid, radio-
active decay and biodegradation, and growth due to bacterial activities.

When the pollutant present in the water is a radioactive species, or any other
decaying species, then

0o = —6Ac or 6pI'=—06kc (6.3.17)

where k; is a degradation rate constant in the water.
When the considered y-component participates in chemical reactions which
cause its quantity to increase, we may express the y-source by

6oL =L R, (6.3.18)
)

where R, is the rate of production of the mass of the y-component by the jth
reaction, per unit volume of porous medium. We could also express the rate of
production per unit volume of water, or per unit mass of it. In general, R, =

R, (¢, €, €43, -..), i€, a function of the concentrations of the various
components that are present in the water. Often
Ry = kn(c))™ (6.3.19)

where c, is the concentration of the y-component in moles per unit volume of
water and m indicates the ‘order’ of the reaction. For a first-order reaction, m = 1,
and k,, has the dimension of reciprocal time.
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The general chemical reaction can be described by the stoichiometric equation
k,
eE +fF = gG + hH. (6.3.20)
T

At equilibrium, with the forward rate of reaction (described by k;) equalling the
reverse one (described by k,), the law of mass action

g h
— lac] lan] ; (6.321)

[ac]” [aF]
has to be satisfied. In (6.3.21), the symbol K represents a (known) thermodynamic
equilibrium constant, that depends on the temperature, and the square brackets
denote thermodynamical concentrations, or activities, dg, B =E, F, G, H These
activities can be related to molar concentrations, c; (i.€., expressed in moles per
liter) by az = yscg, where y; is the activity coefficient of B. For dilute solutions, ¥,
approaches unity and az = ¢;.

It is important to emphasize that (6.3.21) describes the relationship among the
reacting species when the reaction is at equilibrium. In many groundwater
situations, equilibrium may not be reached for a long, sometimes, very long, time.
In order to deal with the rates at which reactions occur, we need information
about the kinetics of the chemical process involved, e.g., in the form of (6.3.19).

6.3.4. MASS BALANCE EQUATION WITH ADSORPTION AND DECAY

Let the considered polluting component be one that is adsorbed to the solid
surfaces and, in addition, undergoes degradation, but at rates that are different for
the component on the solids and within the fluid. In addition, point sources and
sinks of the component exist within the considered domain due to the recharge
and withdrawal of water. Expressing the sink, I';, in (6.3.5), due to the degradation
of the component on the solid, by (6.3.16), the sink, I, in the water, by (6.3.17)
the sources, Rcg, due to artificial recharge at rates R¢™ at points x, by

L R, ) §(x —x(™)cgP(x™, 1)
(m)

and the sink, Pc, due to pumping at rates P ()(x(", t) at points x"), by

L POXO, 1) d(x —xM)c(x?, 1),
(r



MODELING GROUNDWATER POLLUTION 175

we obtain the component’s mass balance in the form

90c 96,0, F
5 =V 6(cV=D Ve—Dj Vo - o —

— 6.0,k F—0kc+ )) RUM(x(™, 1) 6(x — x("’))c(,;"’(x""’, t)y—
(m)

— z POY(XO, 1) (x — xM)e(x, t). (6.3.22)
(r)

For saturated flow, 6 should be replaced by n and 6, by (1 — n). For unsaturated
flow, D =D(6) and D} = D}(0).

Equation (6.3.22) contains the two variables: c(x, ¢) and F(x, ¢). Hence, we
have to supplement this equation by the appropriate isotherm that expresses the
relationship between them. For example, with (6.3.8), in which §,, is replaced by a
more general term f,(6), we obtain from (6.3.22)

G}
<0+ 00 L(O)K, ¢

==V -0(cV—-D:-Vc—D} - Vc)—
_(ek[ + otp&ﬁl(e)kst)C +

+ Z R(m)(x(m)’ t) 6(X _ x(m))c(;')(x(m), f) —
(m)

=¥ POXO, 1) d(x — x)c(x, 1) (6.3.23)
)

which now involves only the single variable c(x, t) expressing the spatial concen-
tration distribution of the considered y-component. We recall the comments that
in unsaturated flow, D and D} depend on the saturation (Subsection 6.2.5).

We note that in order to solve (6.3.23), we need information on the velocity
distribution V(x, ), as well as on 8(x, ¢). In saturated flow, we replace 6 by n, and
we need information on n(x, t).

By combining (6.3.22) with the mass balance equation (5.3.1), to which we add
a term expressing artificial recharge, we obtain, for p,, = const

dc 06,0,F
0 —_— = V . OD . V — 0V - V —_ s —_
or (6DA c)— 6 c o1 6,0,k F
— Okc+ L R, 1) 8(x —x™) (¥ — ¢). (6.3.24)

(m)
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Consider the special case of saturated flow with no external sources and sinks,
ie, R™(x, t) = 0 and PO)(x, t) = 0, and with dp,/0¢ = 0 and dn/dt = 0. We
shall further assume that adsorption takes place, obeying the linear equilibrium
isotherm (6.3.7) with 9K,/d¢ = 0. Under these conditions, (6.3.23) reduces to

nR, % ==V - n(cV—=D - Vc—D} - Vo) (6.3.25)
where
1- K
R, =1+ (____'llpL.i > 1)
n

is called the coefficient of retardation, or the retardation factor. To understand the
significance of R, and the reason for calling it a ‘retardation factor’, let us further
simplify (6.3.25) by assuming k; = k;, and a homogeneous porous medium. Then,
R, = const and (6.3.25) may be rewritten as

*
Jc A% D D, .
n —at— ==V :-n|c —R: - -k: + Ve — -7?: - Ve | — nka. (63&6)

For comparison, let us rewrite (6.3.23) in which @ is replaced by n, K, = 0 and
the external source and sink terms have been deleted, leaving

n g—j =—V - n(cV—=D : Vc—D} + Vc)— nkc. (6.3.27)

We note that (6.3.26) and (6.3.27) are similar, except that in the former the
average water velocity carrying the component seems to be V/R, and the coeffi-
cient of hydrodynamic dispersion is reduced to D,/R,. Thus, since R, > 1, the
effect of adsorption and similar activities is to rerard the advance of the
considered component (as part of it is adsorbed to the solid surface, rather than
advance with the water moving at the average velocity, V). At the same time, the
coefficient of advective dispersion, D, which is shown in (6.2.6) to be proportional
to the average velocity, is also reduced by the factor R,. The coefficient of
molecular diffusion in a porous medium, D%, is also reduced by the factor R,.

Although we have reduced (6.3.23) to the simpler form (6.3.26) in order to
explain the phenomenon of retardation, this phenomenon obviously also exists in
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the more general case of unsaturated flow, expressed by (6.3.23)
d
27 {ORa(O)c}

_gwosﬁz( o)kst c

=—V-0(cV-D, - Vo)— 6k | 1+ o +
+ L ROX™M, 1) §(x —xM) el x(m, 1) —
(m)
— L PO, 1) d(x —xO)c(x, 1) (6.3.28)
()
where
Ry(0) = 1 + 20Ky Sﬁ’ée)K"

now depends on 6(x, t).

The phenomenon of retardation also exists when F in (6.3.23) is expressed by
any other isotherm, not necessarily by the linear equilibrium isotherm (6.3.7). The
structure of R, will then depend on the selected isotherm.

6.3.5. THE EFFECT OF IMMOBILE WATER

Another phenomenon that affects the movement of pollutants is that of immobile
water (or almost so), often encountered in both saturated and unsaturated zones.
In a saturated flow domain, immobile, or stagnant water is the water occupying
dead-end pores. These are pores that, although being part of the general inter-
connected void space, have very narrow connections with the latter, so that the
water in them is almost stagnant. However, stagnant water may also be due to local
zones of very low permeability. In unsaturated flow, immobile water may also
occur in pendular rings of drained pores. Although (almost) immobile, the water in
the immobile zones is part of the continuous water phase.

Due to its very low (or zero) velocity, it is common to assume that no advection
of a pollutant, or hydrodynamic dispersion, can take place in a body of immobile
water. However, these water bodies can exchange a pollutant with the water
surrounding them by molecular diffusion. Thus, the behavior of this portion of the
void space is equivalent to that of sources or sinks for the pollutant. The
considered pollutant will always diffuse from the portion of the water where the
concentration is higher to that where it is lower.

The changes that take place in the concentration of the pollutant in the
immobile water, c,,, can be described by a continuum model, similar to that
expressed by (6.3.4) for the adsorbed pollutant. With 6, (= S,,n) denoting the
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fractional volume of the porous medium occupied by immobile water, and c;,
denoting the concentration of the latter, the pollutant’s mass balance takes the
form

a( 91”' clm) —_
ot

where f,, denotes the net rate at which the pollutant leaves the immobile water
(with c,, and 6,, denoting its concentration and volumetric fraction; 6 = 6,, +
6,,.) per unit volume of porous medium.

For the mobile water, the pollutant’s balance equation is

~fm +06,,T (6.3.29)

ﬂ%t‘l) =—V - 0,(c,V=D, - Vc,)+ f,. + 06,T. (6.3.30)

Often, the net rate of exchange, f,, , is expressed by
fm=03(Cm —Cm) (6.3.31)

where a* is a transfer coefficient that depends on the coefficient of molecular
diffusion, D,, and on the geometry of the immobile water’s contact area with the
mobile water.

When adsorption occurs, it does so both on the solid-mobile water and the
solid-immobile water contact areas. One possible model is to assume that fractions
p and (1 — p) of the total solid-water contact area (which in itself is a function of
0) constitute solid-mobile water and solid-immobile water contact areas, respec-
tively. The corresponding isotherms will be

Fm=pKde; Flm=(1 —p)chzm (63'32)

where F,, and F,, denote the mass of adsorbed pollutant per unit total mass of
solid.

The two balance equations for a radioactively decaying pollutant in the mobile
and in the immobile water, are

(6 CnRim)

at

= —V . Om(cmv_ph(em) . ch) + a:(clm —CM)—
(7]

— 0, R, Ac,, Ry =1+ %”K", (6.3.33)
a R
_(e'mc’m—d"") = a:(cm - Clm) - e,de,mz-Cmn

ot

2] — p)K

R, =1+ 'LOS(IO—p)—d (6.3.34)

We note here the possibility of 96,,/0¢t # 0. It is possible to use some average
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retardation factor R, = 1 + 6,0,K,/0. For saturated flow, 86,,/0¢ = 0 and 6,, =
n—0

m-

6.3.6. RADIONUCLIDE AND OTHER DECAY CHAINS
Consider the case of a decay chain of elements

A~ A~ A~ . A,

such that

A, = A, exp(—At); A;= A, exp(—A,t). ..

Ay =Ay_, exp(—Ay_ 1) (6.3.35)
with ¢, ¢;, ..., ¢y denoting the concentrations of the respective N elements of
the chain.

If the various components can also be adsorbed to the solid matrix, let us
denote the corresponding distribution coefficients by K,,, K5, ..., K,y. Some of

these may be zero.
The source terms are
prl = _llcl +'11— lCl— 1’
rsl == Kdlz'lcl +Kd(l— l)'ll— 16— 1>

i=1,2,...,N, ¢=0.

The balance equation for the ith component becomes

d
6R,, TCI' =—V - (cq—6D, - Vc)—
- O(Alelcl —z'l—]Rd(l—l)cl—l) (6336)
where
l —_
Rdl =1+ 0 ! p.\‘Kdl‘

For saturated flow, we replace € in (6.3.36) by n. Usually, 4y, = 0, ie, a
nondecaying component. Thus, (6.3.36) represents N equations which should be
solved simultaneously for the N concentration, c,.

6.4. Initial and Boundary Conditions

As in the cases of saturated and unsaturated flows considered in Chapters 3
through 5, here also the partial differential equation expressing the balance of a
polluting constituent has to be supplemented by appropriate initial and boundary
conditions, in order to yield a solution for a particular studied case. These
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conditions should, therefore, be obtained from actual observations (and/or future
anticipated values) of these conditions in the particular studied case.

The discussions in Subsections 3.4.2 and 3.4.3 are also applicable here. We
shall continue to use F = F(x, y, z, t) as the equation describing the boundary
surface, with ¥ = VF/|VF|. We shall consider saturated as well as unsaturated
flows. As always, 6 = n for saturated flow.

Initial conditions include information on the concentration distribution at ¢t = 0
at all points within the considered region, R.

c=c(x,0) inR. (64.1)

6.4.1. THE GENERAL BOUNDARY CONDITION

We shall use (3.4.6) as a starting point; it expresses the condition of flux continuity
of the considered polluting species across the boundary, assuming that no sources
or sinks of that species exist on the latter. Since in this case, Saﬂ, which denotes the
combined solid and air portions the boundary, is a material surface with respect to
the considered species, the general condition of no-jump in total flux, takes the
form

[6c(V—u)—6D, - Vc],, - v=0 onS (6.4.2)

where S; denotes the ith segment of ‘the boundary, and we have used (6.2.18) to
express the flux of hydrodynamic dispersion. Note that since (V, —u) + v =0, we
can always replace (V —u) - vbygq, * v.

Let us consider several cases of special interest.

6.4.2. BOUNDARY OF PRESCRIBED CONCENTRATION

When the concentration, ¢ = ¢(x, t), can be specified as a known function, say
&(x, t), at all points of a given boundary (or boundary segment), S,, due to
phenomena occurring in the domain’s environment, independent of what happens
within R, we make use of the assumption leading to (3.4.7b), writing the boundary
condition in the form of

c(x,1)=g(x,t) onsS, (6.4.3)

where ¢ and g refer to the domain’s side and to the external side of ), respec-
tively.
This is a first kind, or Dirichlet boundary condition.

6.4.3. BOUNDARY OF PRESCRIBED FLUX

When phenomena occurring in the environment impose a known flux, say g,(x, t),
at all points of a boundary segment, S,, independent of what happens within the
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considered domain, we use (6.4.2), combined with (3.4.7b), to write the condition
{cq,.—6,D, - Vc} - v=2g(x,t) onS,. (6.4.4)

Since both ¢ and Vc are involved in (6.4.4), this is a Cauchy boundary
condition.

A boundary of special interest is the impervious boundary. Then, since
&(x, ¢)=0,and by (3.4.5),q, * v =0, Equation (6.4.4) reduces to

D, Vc-v=0 on S, (6.4.5)

which is a Neumann boundary condition

6.44. BOUNDARY BETWEEN TWO POROUS MEDIA

In this case, we assume the existence of discontinuities in all porous matrix
properties, such as porosity, permeability, and dispersivity. Neither the concentra-
tion nor the flux are known a-priori on the boundary, S;. However, both (3.4.7b)
and (6.4.4) must be satisfied, i.e.,

cx, t)l,=c(x,t)], onsS;, (6.4.6)
{cq,— 6D, - Vci|, - ¥
={cq,— 6D, - Vc}|, - v onS,. 6.4.7)

We note that in view of (3.4.10), we have used
OV—u) - v=(q—6d) - v=(q—6V,) - v
=q

We note here that since neither c|, nor c|, are known on §,, we need two
conditions to solve, simultaneously, for the concentrations on both sides of S;.

6.4.5. BOUNDARY WITH A ‘WELL MIXED ZONF’

Here we consider the boundary (say, S,) between a porous medium domain and a
body of water (a river, lake, or sea) assumed to be a well-mixed domain, in which
the concentration of the considered species, ¢, is maintained constant in space, but
not necessarily in time, say ¢, This assumption is often introduced to circumvent
the need to solve explicitly for the concentration distribution in the body of water.
It is, obviously, an approximation of reality.

For such boundary, the no-jump condition in the flux of the considered species
takes the form

{o(V—w}|, + v={cq,— 6D, - Vc}|,, + ¥ on§, (6.4.8)

where subscripts wb and pm denote that the boundary is approached from the
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water body or the porous medium sides, respectively. We note that on the water
body side, because V¢, = 0, we have advective flux only, while on the porous
medium side we have advection, dispersion, and diffusion.

As a simplification, let us consider a stationary boundary (u = 0), so that (6.4.8)
reduces to

(V)| * ¥=(cq— 6D, - V¢)|,,, - ¥ onS, (6.4.9)

Consequently, when no advection takes place across the boundary, ie.,
V|, * ¥=4l,, - v="0,Equation (6.4.9) yields

®% - Vo)l,, - v=0 onS, (6.4.10)

This implies that for a stationary boundary without advection, there is no transport
of the considered species to or from the porous medium domain, even when
¢ # Cl,m. This is obviously unacceptable, as under such conditions we would
intuitively expect transport by molecular diffusion between the water body and the
porous medium. Obviously, there is some flaw in the above development.

The error stems from the assumptions that (a) a well-mixed zone exists, and (b)
that such zone, combined with the sharp boundary approximation, yields no flux
of the considered species by molecular diffusion and, perhaps, by dispersion,
across the boundary to the adjacent porous medium domain. In order to ‘reinstate’
this diffusive-dispersive flux, that we know should take place at the boundary, we
introduce the concept of a buffer zone, or transition zone of width A (Figure 6.7),
across which the concentration varies from c|,, = ¢, to c| . We assume that the
abrupt boundary passes through the middle of this zone. By writing a balance of
the advective, dispersive and diffusive fluxes entering and leaving this zone, and
assuming no storage of the considered species within it, we obtain

&Vl * V= a(cl, —c)=(cq— 6D, - Vo) pm o ¥ (6.4.11)

where a is a coefficient that is related to both diffusion and dispersion. In (6.4.11),

S

— Awell Porous -_—
mixed zone medium

Fig. 6.7. A transition zone (A) adjacent to an open water body.



MODELING GROUNDWATER POLLUTION 183

the diffusive-dispersive flux entering (or leaving) the transition zone from the fluid
domain, is approximated by

—(®, - Vc) - v=—(D%+a,V - v)i'-"’"A;c"= aclm =) (6.4.12)
Thus a = (D} + a,V + v)/A. Since V|, - ¥ = q,, * ¥, Equation (6.4.11)
reduces to

(co—c¢lpm)(@ - v+a)+ (6D, - Vc)l,, - v=0 onS,. (6.4.13)

If we now return to a case of no advective flux, (6.4.13) reduces to

a(cy=clm)+ (6D, - Vo), - ¥=0 onS, (6.4.14)

where a = D%/A. This is consistent with our intuition that a diffusive flux should
exist across the boundary, even in the absence of advection. We note that in this
case, due to our conceptual model of a well-mixed zone, we accept the condition

Co # €l pm-
When |,V « v| > |a(c|,, — ), Equation (6.4.14) reduces to
(o—¢lpm)q * ¥+(6D, - V©)|,,, - =0 onS,. (6.4.15)

6.4.6. BOUNDARY OF EXIT TO THE ATMOSPHERE

Here the polluted water is drained into the atmospheric environment under
saturated conditions. The seepage face may serve as an example. We shall assume
that on the external side of the boundary, the concentration of the considered
pollutant remains the same as on the internal side. Hence

{nc(V—u)—nD, - Vci|,, - v={c(V=u)}lpm * . (6.4.16)

Since n(V — u)|,, * ¥ = (V — u)|yn * ¥ and c|,, = ¢|,m Equation (6.4.16)
reduces to

®, * Vo), - =0 onS;, (6.4.17)

i.e., a second kind, or a Neumann boundary condition.

6.4.7. PHREATIC SURFACE

Finally, we consider the boundary condition for the transport of a polluting species

across a phreatic surface (Subsection 3.4.6). Let ¢’ denote the concentration of the

infiltrating water. We shall assume that the mass density of the water is unaffected

by changes in the concentration, ¢, of the polluting species. The boundary

condition is derived from the requirement of flux continuity normal to the phreatic
surface. The resulting boundary condition is
, oF

(cq—c'N) - VF+(nc —0,,c") o nD, - V¢|, - VF=0 (6.4.18)

sat
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where 6, is the irreducible moisture content, assumed to exist everywhere above
the phreatic surface.
If we combine this condition with (3.4.25), we obtain

oF
(c—¢) (N - VF+ 0w03) —nD, - Vc + VF=0. (6.4.19)
We note that in this case ¢ # ¢’ on the phreatic surface. Thus, the zone above the
phreatic surface represents a well-mixed zone in the sense discussed in Subsection
6.4.6.

6.5. Complete Statement of Pollution Model
6.5.1. THE GENERAL STATEMENT

Similar to the models of saturated (Section 3.5) and unsaturated (Section 5.5) flow
problems, the complete model of a pollution problem consists of the following
items:

(i) Specification of the geometrical configuration of the closed surface that
bounds the problem area, with possible segments at infinity.

(ii) Specification of the dependent variable(s) of the pollution problem, i.e., the
concentration, c¢(x, t), of the specific constituent or constituents under
consideration.

In the case of interacting constituents, the concentration of each of them is a
state variable and we need information on how they interact with each other.

Recalling that in all dispersion equations, the velocity, V(x, ¢) appears in both
the advective flux and as a building block of the dispersion coefficient, D, we must
have information on V(x, ¢). This information can either be provided as part of the
input to the pollution problem, or we may construct a model in which the velocity
is another state variable for which a solution is sought. If changes in concentration
affect the water’s density, p(x, ¢), the latter becomes another state variable to be
solved for, and we need information on the relationship o = o(c). In unsaturated
flow, we need information on 6(x, t), or we regard 6(x, t) as another dependent
variable of the problem.

(iii) Statement of a partial differgntial (balance) equation, for every relevant
species. Balance equations, in terms of the various state variables of the
problem, as listed in (ii) above, are also required for every extensive
quantity that is relevant to the problem.

(iv) Specification of the numerical values of the (transport and storage) coeffi-
cients that appear in (iii). Of special interest here is the information on the
dispersivity and on the coefficient of molecular diffusion in the porous
medium under consideration.
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(v) Statement of the numerical values of the various source and sink terms that
appear in (iii).

(vi) Statement of initial and boundary conditions that the state variables
appearing in (ii) have to satisfy within the considered domain at ¢+ = 0, and
on its boundaries at ¢ > 0, respectively.

6.5.2. THE MODEL FOR A CONCENTRATION DEPENDENT DENSITY

When the fluid’s density, o, is unaffected by changes in concentration, the core of
the model includes only the equation of hydrodynamic dispersion, say (6.3.23) or
(6.3.25).

Information on V = V(x, ¢) should be provided. It can be obtained by solving a
flow model separately.

When p = p(c) or p = p(p, c), and 6 = 6(x, t), the flow and the pollution
models have to be solved simultaneously. For saturated flow, the model then
consists of the following set of equations

dc

an E

=-=V - n(cV-D, - Vo),

k
V=——(Vp+pgV2),
nu

%
ot

n +V - nov=0, p=p(pc) (6.5.1)

where, for the purpose of the demonstration, we have assumed no sources, no
sinks, no decay of the considered pollutant, and an isotropic nondeformable
porous medium. The set of four equations in (6.5.1) involves four variables:
c(x, t), V(x, t), p(x, t) and o(x, t). To solve it, we need information on R, (i.., on
K,, o, and n(x, t)), k(x, t), u, a,, a;, and the details of o = po(p, c). Examples of
forms of o = p(p, c) are given in Section 3.2.

Obviously, the above equations have to be supplemented by appropriate initial
and boundary conditions.

In unsaturated flow, the model consists of the equations

nR, __ag;c =-V - nS,(cV—D, + Vo),
V=-— Vp + 0gV2),
S (Vp +8Vz)
aS,.0
—_— = _V . S V’
n o ns, o

o=pP <)  P,=pPu(S)) (6.5.2)



186 CHAPTER 6

where the underlying assumptions should be obvious from the selected equations.
The variables are: ¢, V, 6 (= nS,), p and p.

6.6. Pollution Transport by Advection Only

So far in the present chapter, pollutants in groundwater were shown to be
transported simultaneously by advection, dispersion, and diffusion. The total flux
was given by (6.2.19). However, in many cases, or as a first approximation, the
fluxes due to hydrodynamic dispersion are much smaller than those due to
advection, i.e., for saturated flow

lqc| > |nD, * Vc. (6.6.1)

Under such conditions, polluted groundwater bodies move in the aquifer along the
pathlines of the water itself, at the velocity of the latter. This is the topic
considered in the present section.

6.6.1. ABRUPT FRONT APPROXIMATION

Sometimes the transition zone that develops by hydrodynamic dispersion between
two zones, one occupied by polluted water only and the other occupied by
nonpolluted water, is narrow relative to the dimensions of the individual zones.
Within each zone, the concentration of the pollutant is constant, or approximately
so. Under such conditions, we may replace the real situation by an approximation
in which the transition zone is replaced by an assumed abrupt front, as defined in
Subsection 4.6.2. This front, while moving in the flow domain according to the
velocity distribution in the latter, continuously separates the two zones, each
occupied by water at a different pollutant concentration. For example, when a
large volume of water of one concentration (of some component) is injected into
an aquifer in which the water has a different concentration of the same component,
we sometimes assume, at least as a first approximation, that the effect of
hydrodynamic dispersion may be neglected so that a moving abrupt front
continuously separates the injected water from the aquifer water.

In most pollution cases, unlike the case of the interface in a coastal aquifer
considered in Chapter 7, the density and viscosity of the two kinds of water are
assumed to be identical. This simpler case will be considered throughout this
section.

Figure 6.8 shows an abrupt front that separates two domains, each occupied by
water of a different concentration of some polluting species. Let F(x, y, z, t) =0
define the configuration of the front as it is being displaced (see Subsection
3.4.2). The front divides the flow domain into two subdomains R, and R,. Since
P, = p, and u; = u,, we also have K, = K, = K. In Subsection 7.2.1, we discuss
the case of different densities and viscosities.

From the discussion on boundary conditions in Subsection 3.4.3, it follows that
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Abrupt front
F(x,y,z,t)=0

Fig. 6.8. Nomenclature for an abrupt front between two fluids of different concentrations.

since no fluid crosses the front, we have along the latter
V—u), - v=NV-ul, - v=0
or
V[, - v=V|,-vy=u-v» (6.6.2)

where u is the speed of displacement of the front, ¥ = VF/|VF| is the unit vector
normal to the front and V|, and V|, are the water velocities on sides 1 and 2 of
the front, respectively. Hence, from (3.4.2) it follows that as the front is being
approached from within R, or R,, we have to satisfy the conditions

oF oF

—+V, - VF=0 —+W, - VF = .6.
or ’ o 0 (663)

where V, and V, are obtained from Darcy’s law, e.g.,
K . K .
Vl = - 7 V¢1 n Rl’ V2 == V¢2 n R2 (6.6.4)
n

where ¢, and ¢, are the piezometric head distributions within R, and R,,
respectively.

When the entire domain is homogeneous and isotropic, and because the
changes in storage due to front movement are much larger than those associated
with elastic storativity, the problem of determining the location of the moving
front, F(x, y, z, t) = 0, can, in principle, be stated as follows:

Determine ¢, in R, and ¢, in R,, such that (a)

V2,=0 inR, V24,=0 inR,

or appropriate equations when sources and sinks are present; (b) ¢, = ¢, on
F=0;(c)

Vg, - VF=Vg, - VF onF=0
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obtained from condition (6.6.2) and (6.6.4), and (d) appropriate conditions for ¢,
on S, and for ¢, on S,, where S, and S, are external boundaries of R, and R,,
respectively. As in the case of the phreatic surface (which is also an abrupt front)
in Subsection 3.4.6, we have an inherent difficulty in solving the above-stated
problem, as the (continuously changing) location of the boundary, F = 0, is
a-priori unknown. In fact, the shape of the surface F = 0 is the sought solution.
Once we solve for @,(x, y, z, t) = 0 in R,, and for ¢,(x, y, z, t) = 0 in R,, the
shape of the interface is given by

F(x,y,2,t)=¢,—$,=0 (6.6.5)

Actually, since o and u were assumed to be constant throughout R, + R,, the
problem discussed above can be solved in a much simpler way. We first solve the
usual problem of determining ¢ in the entire flow domain, R, + R,; the presence
of a front, F = 0, has no effect on this solution. Then we use the known ¢-
distribution and Darcy’s law to calculate the velocity and corresponding displace-
ment at points on the front, and move the latter within the domain, making use of
the factthatV - v=u - v.

Muskat (1937) presents a number of analytical solutionsifor the movement of
the front that delineates labeled fluid injected through a well and moving towards
a pumping well in an infinite reservoir. Bear and Jacobs (1965) (see also Bear,
1979) present a soluton for the shape of advancing fronts in the case of an
injection well in two-dimensional uniform flow. Altogether, analytical solutions for
the problem of front movement, as described above, are possible only for a small
number of relatively simple cases. Numerical solutions are discussed in Chapter
11. In Subsection 7.2.1, we return to the problem of a moving front, in connection
with the interface between fresh water and salt water in a coastal aquifer.

6.6.2. ADVECTION OF POLLUTED WATER PARTICLES

When the situation justifies the assumption expressed by (6.6.1), the pollutant
balance equation, say (6.3.2) for saturated flow (6 = n), and in the absence of
adsorption, sources and sinks, reduces to

onc
ot

=-V :c¢q, q=nV. (6.6.6)

For the simple case of a homogeneous nondeformable porous medium (Vz =0
and dn/9t = 0), Equation (6.6.6)'reduces to
% o V.Ve—cV V. (6.6.7)
ot
For steady flow of an incompressible fluid in a homogeneous nondeformable
porous medium, (3.3.2) reduces to V - V = 0. Under such conditions, (6.6.7)
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reduces to

dc

—=-V -V 6.6.8
o1 c (6.6.8)

In two-dimensional flow in the xy-plane, (6.6.8) takes the form

dc dc dc

—=V,——V,—. 6.6.9
ot ox )Y (6:69)

In order to solve (6.6.9) for ¢ = c(x, y, t), we need information on V, =
Vi(x, y, t) and V, = V|(x, y, t). In the case considered here, this information is
obtained by solving the flow model V - V = 0. We note that quite a number of
simplifying assumptions underlie the development of (6.6.9). As mentioned above,
in spite of these simplifications, analytic solutions of (6.6.9) can be obtained only
for a rather small number of elementary cases. A numerical model and computer
program for solving (6.6.9) are presented in Chapter 11.

We note that the solution of (6.6.9), which is a linear hyperbolic partial-
differential equation (while (6.3.2) is a parabolic one) in the three independent
variables x, y, ¢, rewritten in the form

dc _ Odc dc dc
IRy +V o +V, ay 0 (6.6.10)
can be represented, at least in principle, by lines of constant concentration, called
characteristics. Along such a characteristic, the variation of ¢ vanishes, i.e.,
dc )
%dt +$dx+a—;dy=0. (6.6.11)

Equation (6.6.10) describes the variations of ¢ from the Lagrangian point of
view. The statement dc/d¢ = 0 means that the concentration of an observed fixed
particle does not change with time as it travels in the considered domain (see the
comment following (6.3.2)).

By comparing (6.6.10) with (6.6.11), we conclude that the direction of the
characteristic is defined by the relationship

1:V,:V,=d¢:dx:dy.

dc =

Hence,
dx =1V, dy dy=V,de. (6.6.12)

This means that the direction of the characteristic coincides with that of the
flow, namely that of the streamline. Actually, this should have been expected in
view of the definition and discussion on streamlines in Subsection 4.6.2. We may
compare, for example, (4.6.1) with (6.6.12), noting that we consider here the
transport of a polluting component by advection only, which means that the water
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and the component carried by it move together, with no relative motion in respect
to each other.

Thus, the concentration of particles remains constant along streamlines The
problem that remains to be solved is to trace the advance of the particles along the
streamlines in accordance with (6.6.12). Semi-analytical and fully numerical
methods for achieving this goal are presented in Chapter 11.

6.7. Macrodispersion
The equation of (three-dimensional) hydrodynamic dispersion at a point in an

aquifer is discussed in Section 6.3. For example, for the case of saturated flow, we
obtain from (6.3.2)

0
—%’itcl+v - {cq+I%)—1*=0 (6.7.1)
where J¥ = —nD, + Vc is the sum of the dispersive and diffusive fluxes, D, =

D + D%, and t¥ = —f + npoI' — Pc + Rcy denotes to total source function, due to
surface phenomena at the solid-water interface, to chemical reaction and decay
phenomena in the water, to external injection and production of water.

In (6.7.1), we have ¢ = c(x, y, z, t) and q = q(x, y, z, t). However, under
certain conditions, the ‘hydraulic approach’ of treating the dispersion problem as
one of essentially two-dimensional flow in the horizontal xy plane is justified.
Figure 6.9 shows, schematically, several cases of aquifer pollution, In Case 1 we
have a continuous surface source, say leachate from a landfill, contaminating a
phreatic aquifer with accretion. In the absence of dispersion, the pollutant. will
advance within a well-defined streamtube. Dispersion would cause both longi-
tudinal and transversal spreading, the latter beyond the surface bounding the
streamtube. At a sufficiently large distance from the source (say 10—15 times the
thickness of the flow domain), the plume of contaminant will occupy most of .the
thickness of the aquifer. Beyond such distance, the two-dimensional approach
seems justified. In the absence of accretion, the contaminant will remain close to
the surface, with lateral dispersion causing spreading in the downward direction.
The lower layers may remain uncontaminated for a rather large distance.

Case 2 describes a fully (or partially) penetrating well injecting water of a
different quality into a stratified (that is, K = K(z)) confined aquifer. Again,
because of transversal dispersion, beyond some distance from the injection well,
the average quality of the mixed water may be considered as depending on x and y
only. One should remember, that a three-dimensional approach requires also
measurements at points in space. On the other hand, a pumping well, even a
partially penetrating one, performs an averaging, or mixing, of the water quality
along the different elevations (or along different streamlines terminating in the
well).
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Fig. 6.9. Some cases of aquifer pollution. Case Ia: Pollution of a homogeneous water table aquifer
with accretion; local pollution source; short time and travel distance; phenomenon is three-
dimensional; some contamination beyond streamtube by lateral dispersion. Case Ib: Same as Case
la, except that time is long and travel distance is large; may be considered two-dimensional
phenomenon (in horizontal plane). Case 2: Uniform flow in a stratified confined aquifer; fully
penetrating pollution source; longitudinal spreading within layers and lateral dispersion between

layers.
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Thus, under certain conditions, a model based on the assumption of essentially
horizontal flow and pollution transport in an aquifer, may be justified. The
averaged, or integrated equation is then 