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Preface

Elasticity theory is a classical discipline. The mathematical theory of
elasticity in mechanics, especially the linearized theory, is quite mature,
and is one of the foundations of several engineering sciences. In the last
twenty years, there has been significant progress in several areas closely
related to this classical field, this applies in particular to the following two
areas.

First, progress has been made in numerical methods, especially the
development of the finite element method. The finite element method,
which was independently created and developed in different ways by sci-
entists both in China and in the West, is a kind of systematic and modern
numerical method for solving partial differential equations, especially el-
liptic equations. Experience has shown that the finite element method is
efficient enough to solve problems in an extremely wide range of applica-
tions of elastic mechanics. In particular, the finite element method is very
suitable for highly complicated problems. One of the authors (Feng) of
this book had the good fortune to participate in the work of creating and
establishing the theoretical basis of the finite element method. He thought
in the early sixties that the method could be used to solve computational
problems of solid mechanics by computers. Later practice justified and
still continues to justify this point of view. The authors believe that it
is now time to include the finite element method as an important part of
the content of a textbook of modern elastic mechanics.

The second area is the development of composite elastic structural
mechanics. In modern engineering practice we face not only the geo-
metrically simple, elastic body, but also, more importantly, bodies com-
posed of several elastic members, including those with different dimensions
and with different properties, i.e., composite structures, such as aerospace
structures, reactor structures, tall building structures, off-shore platform
structures, underground structures.

The development of composite elastic mechanics has great significance
in both practice and theory.

The development of composite elastic structural mechanics and the
development of the finite element method, influence each other. To this
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date, however, the mathematical basis of composite structure theory is
still not sufficiently rigorous and complete. At the same time, the theory
of elliptic equations on composite manifolds developed in recent years by
one of the authors (Feng), can be applied to place composite structure
theory in a comparatively strict theoretical framework, aiding the further
development of both theory and application. Thus, it also makes it possi-
ble to include a mathematical theory of composite structures in this book
on modern elastic structural mechanics.

In view of these considerations this book covers the following main
topics: 1. The classical theory of linear elasticity 2. The mathemati-
cal theory of the composite elastic structures. Here the mathematical
method proposed by the authors is presented. 3. The numerical method
for solving elastic structural problems—the finite element method. The
authors try to treat these three topics within the framework f a unified
theory. It seems likely that the material covered in the book has not been
published before. To this end, the whole book carries on a theoretical dis-
cussion on the mathematical basis of the principle of minimum potential
energy, using displacement as the fundamental variable. The emphasis
is on the accuracy and completeness of the mathematical formulation of
elastic structural problems. This is another unique feature of this book.
As is well known, the variational principle is one of the mathematical
formulations of elasticity.

The variational principle can be used to deal with almost any elas-
tic problem, although it is not the only possible method. As is also well
known, although the principle of minimum potential energy based on dis-
placement is not the only form of the variational principle of elasticity, it
is sufficient for our needs and has the greatest generality. It is especially
suitable for the problems with high complexity. We should point out that
the finite element method, based on the mathematical form of the varia-
tional principle, especially the form of the variational principle based on
displacement, has had great success in practice. Proceeding according to
this guiding idea, we hope to achieve our goal rather economically.

The authors express their heartfelt thanks to Lin Qun, Wang Jin—xian,
Yan Chang-zhou, Fu Zi-zhi and others for their enthusiastic support and
help during the process of writing, lecturing on and revising the book.

Feng Kang
Shi Zhong-Ci
April 1, 1994
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Chapter 1

Simple Modes of Elastic Deformation

§1 Simple Stretching and Compression of Springs

1.1 Deformation mode
Consider a spring of length L. One end of the spring, O, is fixed. The
spring is stretched or compressed by an external force which is applied at
the other end of the spring, A.

Suppose the elongation of
the spring, i.e., the dis-

<
ARMRRRNY

placement of point A, is u Ww f

under the action of the ex-
ternal force f (Fig. 1). We | |

define that: v > 0 means 7
o THENIITTTo00 0T es—"r

stretching of the spring, 3 A

AN

and u < 0 compression. It
.has been shonn .by expe.r— | <ﬁ>|
iment that, within certain . f
range, the applied external A
force f is proportional to
the elongation u Fig. 1
of the spring:
f = cu, (1.1)

where ¢ > 0 is the spring constant depending on the material property
and the geometric shape of the spring.

A so-called elastic reaction force is induced in the spring interior when
one of its ends is loaded. According to Newton’s third law, the elastic
reaction force induced by the elongation u of the spring is

R = —cu, (1.2)
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where R is the internal force of the spring and the direction of the internal
force is opposite to that of the external force oppsitely. This is Hooke’s
law.

Hence, when the elongation of the spring is u under the action of the
external force f, the resultant force is

F=R+f=-cu+f.
In particular, when the resultant force F' =0, i.e.,
—cu+ f=0, (1.3)

the spring is in equilibrium. This is the equilibrium equation of the mass
point A. Hence we obtain the displacement in the state of the equilibrium
configuration,

u=f/e,

and then, using Hooke’s law, the elastic reaction force at the point A is
found to be
R=—-cu=-f.

Furthermore, we consider the resultant force F' of the spring. When
a mass point moves a distance du under the action of the external force
F and the directions of the force and the displacement are the same, the
work done is
dw = Fdu.

The potential energy dJ of the mass point, customarily expressed as the
negative of the work, is

dJ = —dw = —Fdu,

or

dJ
— = —F. .
Tu (1.4)
Integrating over du, we obtain
J= —/qu+.10, (1.5)

where Jj is a constant of integration denoting the reference potential en-
ergy, which may as well be taken as zero. Therefore, if the potential energy
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J is known, then the force F' can be obtained by differentiating the po-
tential energy, then changing its sign. Conversely, if the force F' is known,
then the potential energy J can be obtained by integrating the force, then
changing its sign.

Now the resultant force of the spring is

F=F(u)=—-cu+f,

and its direction coincides with that of the stretching and compression, so
the potential energy is

J(u) = - /qu = %cu2 - fu, (1.6)

This is the potential energy possessed by the spring when the elongation
of the spring is u (whether the spring is in the equilibrium configuration
or not) under the action of the external force f.

The resultant force F' of the spring is composed of two parts. One is
the internal force Fi,, the other is the external force Fey, and

Fy =R = —cu, Fex:f‘v
F = Fjp + Fe.

Correspondingly, the potential energy J can also be divided into two parts

J = Jin + Jex,
L 5
Jin = —2—cu , Jex = —fu,
and dJ dJ
Fy = - n_ -Fexzt_t_zz .
du N du f

Jin is the elastic energy in the interior of the spring, which is a quadratic
function of the displacement u and positive definite, i.e.,

Jin =0, if and only if u =0.

It is noted that there is a factor of 1/2 in the expression of Ji,. Jex is
called the potential energy of the external work, which is a linear function
of v and Jex has a negative sign.
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1.2 Variational principles and equilibrium equation

In the section of 1.1, the equilibrium equation is derived from the intu-

itive equilibrium principle of forces. It is important that the equilibrium

equation in elasticity can also be derived from a completely different way,

i.e., from the method based on the principle of minimum potential energy.
In fact, according to (1.4), the relation between the potential energy

and the force is
dJ

dJ .
Hence the equilibrium equation F' = 0 is equivalent to e 0. Since the
u

second derivative of J is:

d*J .

(_iﬁ =c> 0,
the displacement u of the equilibrium configuration makes the potential
energy J a minimum. Conversely, the state that makes the potential
energy a minimum must be the equilibrium configuration. That is the
principle of minimum potential energy.

Thus, the equilibrium problem in mechanics can be reduced to an

extremum problem in mathematics, i.e., a variational problem
1 )
J(u) = 5C — fu = Min. (1.7)

The principle of minimum potential energy may still have an alter-
native equivalent form, the so-called principle of virtual work. Suppose
the displacement u of the equilibrium configuration is incremented by a
virtual displacement v, and becomes u + v. Then the potential energy of
the spring becomes J(u+v) from J(u). Since J(u) is a quadratic function
of u,

1
J(u+v) = J(w)+ J'(u)v + EJ”(U)U2
1
= J(u) + J'(u)v + 501)2.
Obviously, the necessary and sufficient condition for making J a minimum
is
J'(u)v =0,

i.e., for any virtual displacement v we have

cuv — fv =0, (1.8)
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The mechanical meaning is that the displacement of the equilibrium con-
figuration makes the total virtual work vanish. Hence it is also called the
principle of virtual work.

To sum up, the solutions of the following three problems are equivalent:

1. The principle of minimum potential energy:
J(u) = %cu2 —~ fu = Min;
2. The principle of virtual work:
cuv — fv = 0, for any virtual displacement v;
3. The equation of equilibrium:
cu—f=0.

For the simplest equilibrium problem of the stretching and compression of
a spring with one degree of freedom, the equivalence of the three kinds of
mathematical formulations above mentioned is almost tautological, with-
out any actual difference in contents. However, a similar equivalence gen-
erally holds also for all other problems of elastic equilibrium which will
discuss in the book. It will be shown that, different mathematical for-
mulations will lead to different methods of solution, and their practical
effects are very different. In other words, the equivalence in mathematics
does not mean equal effects in practice.

§2  Stretching and Compression of Uniform Rods

2.1 Deformation modes

Suppose a slender rod 2 with length L and cross sectional area A, which is
uniform along the z-axis, is fixed at one end and is stretched by uniformly
distributed longitudinal loads exerted on the other end. Let the resultant
force of the load be f, and the elongation of the rod be éL (Fig. 2).
As in the case of the stretching and compression of springs, a form of
Hooke’s law holds, i.e., the force exerted per unit area of the rod f/A is
proportional to the relative elongation §L/L:
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Z Z
Z — /
Z —= ; Z
=1 N
A e
z z
/-—L——»‘ ;«——L—-—»‘&L‘<—
z
1

(a) (®)

Fig. 2
f 6L
A= E I | (2.1)

where E is a constant called elastic modulus or Young’s modulus, which
depends only on the material but independent of the geometry of the rod.

Since — is dimensionless, the dimension of the elastic modulus FE is i,

A

i.e., force/area.

Under the action of the load, the rod deforms elastically. The interior
of the rod is in strained state, and yields internal forces. Taking an ar-
bitrary cross section .S, orthogonal to the longitudinal z-axis of the rod,
the rod € is cut into two parts Q1 and Q= (Fig. 3a). There will be forces
acting on each other across S. The force per unit area across the cross
section S is called stress. Let the stress exerted on the negative side Q™
by the positive side Q1 across S be . Assuming that the loads on the
end section are uniformly distributed and the rod is slender, the stress o
will also be uniformly distributed over S. Therefore, the resultant force of
the stress exerted on the negative side by the positive side over the whole
cross section, i.e., the internal force, is

Q=0A (2.2)

The internal force exerted on the positive side by the negative side over
the cross section S is —(), therefore @) > 0 means that the force is tensile
and @ < 0 means that the force is compressive.

Arbitrarily take two cross sections S and §’, with coordinates be x and
z', and with corresponding internal forces be Q(z) and Q(z'), respectively.
Now consider the equilibrium of the block between these two cross sections
(Fig. 3c). Since there is no load between S and ',
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— —p —p
— —_— e
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(2) (b) )

Fig. 3

—Q(z) + Q(z') =0,

so that
o(x) = o(z'),

i.e., o(z) is independent of the coordinate x of the cross section:
o(z) = o = const.
Then considering the equilibrium of the segment Q* (Fig. 3b), we obtain

—Q+f=0’

1.e.,

—-Ao+ f =0, (2.3)
this is the equilibrium equation expressed in terms of stresses, from which
the stress can be found immediately as

f

o= .
A

The elastic deformation of the rod is measured in terms of the relative

elongation, called the strain, and denoted by €. Then Hooke’s law can be

expressed in terms of stress and strain as

6L
o = Ee, €= 7 (2.4)
where € > 0 corresponds to the tensile deformation and ¢ < 0 corresponds
to the compressive deformation. Under the condition of the above men-
tioned uniformly loaded slender rod, the strain ¢, like the stress o, is also

uniform.
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If the stress o inside the rod is nonuniform, then the strain ¢ is also
nonuniform. It is the limit of the relative elongation. Suppose the rod
deforms under loading, so that the mass point located at coordinate x is
displaced by u(z), and the displacement of the point 2’ = z + Az near z
is u(z') = u(z + Az), then the limit of the relative elongation is

u(z + Az) — u(z)

lim o = u/(z).

Az—0

Thus, at each point z, the strain is given by the derivative u'(z) of the
displacement u(z), i.e.,
e=u. (2.5)

When the strain is uniform, the displacement u is a linear function of x

Ug — U1
L

u=u(z) =u; + z, (2.6)

where
u; = u(0) = 0, ug = u(L) = 8L.

From (2.5), (2.6) and Hooke’s law (2.4), we can rewrite the equilibrium
equation (2.3), representing stresses as

EA
——us+ f =0, - (2.7)
L
. EA . g e
The coefficient — is called the tensile rigidity of the rod. Hence the

displacement can be found immediately as

_Ls
U = -E—A‘
One can take the displacement u in the equilibrium equation (2.7) as the
unknown, and solve for it first, then solve for the strain and the stress by
(2.5) and Hooke’s law. The method of solving the equilibrium equation by
solving first for the displacement is called the displacement method. Con-
versely, one can take the stress ¢ as unknown in the equilibrium equation
(2.3), and solve for it first, then solve for the strain and the displacement
by Hooke’s law and (2.5). The method of solving the equilibrium equation
in this way is called the force method. These two methods of solving the
equilibrium equation are the ones commonly used in elasticity. The book
will mainly discuss the displacement method.
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Just the elastic modulus F is not enough to describe all elastic proper-
ties of the material. Experiments show that there are transverse cdmpres—
sive (tensile) deformations associated with the longitudinal tensile (com-
pressive) deformation caused by the longitudinal load (Fig. 2b). In fact,
u, €, and o defined above only refer to the longitudinal z-direction. Anal-

0
—v,sz = 3_11), and as well
dy

0z

as the stresses oy and o, can also be defined in the other two transverse

ogous displacements v and w, the strains ¢, =

directions, i.e., in the y — and z — directions. For the above mentioned
longitudinal stretching under longitudinal load, Hooke’s law is written as

oy = Eeg,

while there exist the transverse compressions proportional to the longitu-
dinal stretching

Ey = E; = —VVg.

Here, the dimensionless coefficient v is a constant dependent only on the
material, called Poisson’s ratio. The negative sign in the expression means
that, under the action of the longitudinal load, the longitudinal and the
transverse strains of opposite sign. One can prove that, the elastic prop-
erty of an isotropic (i.e., it is invariant under arbitrary rotation) solid
material can be completely described by the elastic modulus £ and Pois-
son’s ratio v. However, this is not true for the antistrophic materials.
For example, 3 material constants are needed for cubic crystals and 21
material constants for general triclinic crystals. We will prove later that

Poisson’s ratio v satisfies 0 < v < —.

2
Table 1
Material Elastic modulus (Dyne/cm?) Poisson’s ratio
Steel 20.0x 10! 0.28
Copper 11.0x101 0.34
Concrete 2.7x10! 0.10
Rubber 0.50x10"! 0.48

The elastic moduli and Poisson’s ratios of some engineering materials
are listed in Table 1. It can be seen that, E is a very large value. That
means, the elastic deformation is very small under the condition of an
ordinary load. In fact, Hooke’s law (i.e., the so-called elastic law), which
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describes the linear relationship between the stress and strain, holds only
for small deformations. When the stress has increased to a certain ex-
tent, the material starts to yield, great deformation may be caused by
small increase of stress, and the material becomes plastic. Finally, it will
be damaged as the stress successively increases. For some engineering
materials, the capacities for resistance to stretching and compression are
different, e.g., concrete can endure greater compression but less tension.
Furthermore, the stress-strain curve of some engineering material goes
along a path in the € — o plane during loading, and another different path
during unloading. Such materials remain more or less residual deforma-
tion and can only partially return to their original state after the load has
been removed. All of such cases deviate from the ideal linear elastic law
and will not be discussed in the book, though they are often encountered
in practice.

2.2 Variational principles and equilibrium equations
Now, starting with energy, we use the variational principles to further
analyze the tensile and compressive deformations of uniferm rods.

The work is done by the internal force during the deformation of the

rod and the strain energy is stored.
Arbitrarily choose a unit cross

sectional area and of unit length in-

i
u

\

side the rod as a volume element.
Suppose the stress o’ inside the body,

\

-
| , i.e., the force per unit area, changes
| T+ . -
! - from 0 to 0. The corresponding strain
! s ¢', i.e., the elongation per unit length,
_IV,// changes from 0 to € (Fig. 4). Let-
-— l EI ]<_ tlng
Fig. 4 o' = to, e = te,

t changes from 0 to 1. Therefore, the strain energy stored in the unit
volume (called the volume density of strain energy) is

€ 1 1
W= / o'de’ = / toedt = O'E/ tdt = 1a&‘. (2.8)
0 0 0 2

1
Note the factor 2 in the expression. Because no work has been done by
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the longitudinal load in causing the simultaneous transverse deformations,
it contributes nothing to the strain energy.

From (2.8), the strain energy per unit length of the rod (called the line
density of strain energy) is

— 1
W=WA=_Aoe = %EA(;-?,

so the total strain energy of the rod (supposing that the left end is ﬁxed,
ie,u; =0)is

_ 1EA s 1
P=WL= —EAL 2 = =37 —(ug —up)?* = 5cug,
where
EA
C=—"= 2.9
I (2.9)

On the other hand, work fus is done by the right end load f through
the local displacement us, so the potential energy of the external work is
—fus. Then the total potential energy of the rod is

T(us) = 1cu2 fus. (2.10)

This is a problem with are degree of freedom and the variable us is its
unknown . Its form is exactly the same as (1.6) for the potential energy
of springs during stretching and compression in §1, hence there are still
three equivalent mathematical formulations (write us = u and v = v for
brevity):

1. The principle of minimum potential energy:

1
J(u) = Ecu2 — fu = Min,

2. The principle of virtual work:
cuv — fv =0, for any virtual displacement v,

3. The equilibrium equation: cu = f.

In the following, we consider the case of a rod of which both ends are
loaded by loads f, and f,, respectively. Both end displacements u; and
uy are unrestrained, and the strain energy is

L (g — u)? = %(Cu,’u,), 2.1)

P(u) = P(uy,uz) = 5
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c —cC 1 -1 U
=cC , U = .
—c C -1 1 U9

where (u,v) denotes the inner product of the vectors w and v. The matrix

where

C =

C of the quadratic form (2.11) for the strain energy is called the stiffness
matrix. It is symmetric, and is positive semi-definite because the strain
energy P(u) is non negative.

The potential energy of the external work is

f

} ) (2.12)
f2

—F(u) - (flul + f2u2) = _(f,v)7.f = l
and the total potential energy of the rod is
J(u) = J(u1,uz) = %(Cu, u) — F(u). (2.13)

J(u) is a quadratic function of the variable elements u; and uz. J(u) has
two first partial derivatives and four second partial derivatives:

oJ
g Ouy _ cuy — cuz — fi ,
9J —cuy + cug — fo
Oug
8%J 8%J
g Bu% Oug0us _ c —c _c
8J 8% — ¢ ’
OduqOuy 8u§
J(u) has the Taylor expansion
oJ aJ ‘
J(u1 + vy, ug + v2) = J(ug,ug) + (—871111 + a—uzvz)
2 94
+ V5.

ij=1 Ou;0u;

Since the matrix of second derivatives J” = C is positive semi-definite,
it can be seen from the above expansion that a necessary and sufficient
condition for making the total potential energy J a minimum is J' = 0,
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i.e.,
oJ
— =cuy; —cug — f1 =0,
8’(1,1
aJ
—— = —cuy +cus — f3 =0.
8’!1,2

Written in matrix form, this becomes
Cu=f. (2.14)

The vanishing of first derivatives of J is also equivalent to the principle of
virtual work.

oJ oJ )
dJ = 8—1“1)1 + 8—u;v2 = (cuy — cug — f1)v1 + (—cuq
+cug — fo)va =0, for any vy, vs.
Written in inner product form,
[ (A ,
(Cu,v) — (f,v) =0, forany v= . (2.15)
V2

Equation{2.14) is just the equilibrium equation of the rod unrestrained
at both ends. If we arbitrarily take a cross section S cutting the rod into
two parts 2~ and Q (Fig. 3a), we can establish the equilibrium for each
part:

Q" :fi+tcA=0,

QF: —cA+ f, =0,
respectively. By substituting

U2 — U1

=Fe=F
g g I

into the above expressions, we get (2.14).
The coefficient matrix C of (2.14) is the coefficient matrix of the
quadratic form of strain energy.

It is singular because its determinant

detC=c®—c=0.
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Hence, equation (2.14) may have no solutions. The corresponding system
of homogeneous equations

—c(vg—v;) =0

c(vg—v1) =0
has a general solution

v=a =av®, o= ,
1 1

where a is an arbitrary constant.

Obviously, a necessary and sufficient condition for the existence of
solutions of the system of nonhomogeneous equation (2.14) is that the
load vector f and the vector v are orthogonal:

(.fav) = a(f,'u(l)) = a(fl + f2) = Oa
i.e.,
fitf2=0. (2.16)

This is the self-equilibrating condition of the two external end loads, which
is the prerequisite for equilibrium of a unrestrained rod, called the com-
patibility condition. Under this condition, there exists a solution of the
equilibrium equation. A particular solution is

e
- ffe |’

a

a+ fafc

while the general solution is

u=v+u =

Hence the solution is unique only up to a rigid translation by av(l), which
corresponds to a rigid translation. However, the stress solution is unique:

o= fofA=—f1/A.

We see that, the stress o is uniform over the rod, hence we still have a
problem of single degree of freedom, viewed in terms of the stress. How-
ever, the problem is one of two degrees of freedom u; and us, viewed in
terms of the displacement.
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Now let the left end load be changed into an elastic support. Suppose
the elastic reaction force exerted on the end by the support is proportional
to the deviation of the displacements

—ci(wr — 1) = —aur + f1, fi =i,

where ¢; > 0 is the spring constant of the support, @; is a reference
displacement, and f; is known. Hence the supporting force can be consid-
ered as the sum of the elastic reaction force —ciju; and the load f; = 111

which is independent of the displacement u;. So the strain energy Eclu%
of the support should be added to the total strain energy of the system in

1
addition to the strain energy Ec(uz —u1)? of the rod, i.e.,

1 1
P(u) = P(u1,uz) = EC(uz —u1)? + 561“%

1

= E(Cu,u),

where the stiffness matrix
ctec —c
= (2.17)

- ¢

is obviously symmetric and positive definite.
The potential energy of external work is still

_F(u) = _(.fau’)'
The total potential energy of the system is
1
J(u) = J(ug,ug) = E(Cu,u) = (f,u).

As in the two cases discussed above, there are three mathematical formu-

lations: 1. J(u) = %(Cu,u) —(f,u) = Min,
2. (Cu,v)— (f,v) =0, for any v, (2.18)
3.Cu=Ff.

In order to verify that (2.18), derived from the variational principle, is
just the equilibrium equations, one can simply separate the rod into two
parts 0~ and Q%, and write out the equilibrium equations respectively,

Q7 (~cu1 + f1) + cA =0,
Qf:—cA+ f, =0,

and then substitute F(uz — u1)/L for the stress o.
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The coefficient matrix C of the equilibrium equations (2.18) is just
the stiffness matrix (2.17), which is positive definite. Hence there exists a
unique solution

_hit+fe _h+tfa | S
ui = , up=rTI2 02
1 c1 c

(2.19)

The corresponding stress solution is

o= fZ/Aa

so the stress in the rod is still uniform.

Two points can be seen from the above discussion: 1. The stiff-
ness matrix is always symmetric and positive definite or positive semi-
definite, unclear—I think it should be: 2. The stiffness matrix, i.e., the
quadratic form of strain energy, and acts both as the coefficient matrix
of the quadratic form of strain energy, and as the coefficient matrix of
the equilibrium equations is positive definite whenever a geometrical con-
straint or elastic support is imposed on the end point.

The foregoing analysis of the stretching and compression of uniform
rods can be immediately generalized to the piecewise uniform rod and to
the plane system of rods in tension. These two cases will be discussed in
the following two sections, respectively.

2.3 Piecewise uniform rods

Suppose a rod z1 < z < zp is divided into N — 1 segments: [z, 23], [z2,

z3), -+, [tN-1,zn]. Each segment [z;_1,z;] possesses a uniform mate-
rial constant F;, a uniform sectional area A;, and a length F; = z; —
z;—1. There are loads fi,---, fy exerted on the interface sections z =
z1,--+,ZN, respectively, but no further loads are exerted on the interior

of each segment. This guarantees that both the stress and the strain are
uniform:

g = 03, € =&,

while the displacement w is linear within each segment [z;_;, z;]. Hence, as
a whole, both o(z) and (z) are piecewise constant, and u(z) is piecewise
linear, i.e., a broken-line distribution determined by the nodal displace-
ments uy,---,uy (Fig. 5).
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The strain energy of this composite rod equals the sum of the strain
energies of the individual segments. Since the strain energy of the segment
[zi—1,x;], based on the (2.11), is

1 2
Ecz(uz - uz—l) ) ¢ =

the total strain energy is

P(u) = P(uy,---,un) = 1/Z_N ci(u; — ui—1)?

2 =

1

= g(Cu,u). (2.20)

- foi> —> > > = > fn
\
U u9 UN
1 xy TN

Fig. 5

The displacement vector is w = (uj,---,uy)?, where the superscript T

always denotes the transpose of a vector or a matrix, and the matrix

Co —Ca 0

—Cy C2+c3 —cC3
C = [C,'j]i,jzly...,]\] = ) ) ) (2.21)

0 —CN CN |

is tridiagonal symmetric. C is called the stiffness matrix of the composite
rod. Because P(u) > 0 for any u,C is positive semi-definite.
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The potential energy of the external work of the system is —F(u),

N
F(u) = F(uy,---,un) = /21 fiui = (f,u), (2.22)
so the total potential energy is
J(w) = Plu) ~ F(u) = (Cu,u) — f(f,u). (2.23)

By the principle of minimum potential energy, the displacement of the
equilibrium configuration minimizes the total potential energy a minimum:

J(u) = Min.

On the other hand, since the stiffness matrix C is symmetric positive semi-
definite, it follows from the extremum theorem of multivariable functions
in calculus that the following three problems are equivalent, i.e., either
they all have the same solution, or none of them has a solution.

1
1. J(u) = E(C’u,u) —(f,u) = Min, (2.24)
2. (Cv,v) — (f,v) =0, forany v = (vq,---,vn)T, (2.25)
J /N
. = Ci"lL'—-fi=0, i=1,-~-,N. 2.26
8’(1,7: = YRt} ( )
The quadratic form
1 [N 2 .
(Cv,v) = —2-/ c(vi—vi—1)*=0<=v;—v;_1=0, i=2,---,N,
=2
i.e., v = vy = --- = vy = a (italic is an arbitrary constant), so the stiff-

ness matrix C is degenerate and the determinant vanishes. The nontrivial
general solution of the homogeneous equations

N
/ cijvj=0, ’i=1,---,N
j=1

is
V1 =V =:"=VUN=a
which corresponds to the rigid translation.

By the fundamental theorem of linear algebra, a necessary and suffi-
cient condition for the existence of solutions to the degenerate equations
(2.26) is that the right hand vector f and the general solution v =
(a,--+,a)T of the system of homogeneous equations be orthogonal:

(frv)y=a(fi+---+fn)=0,
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ie.,

f1+"'+fN:0- (2.27)

Such a condition means the self-equilibration of the external loads. Be-
cause of the equivalence of the above three problems, it is also the neces-
sary and sufficient condition for the equilibrium of unrestrained, piecewise,
and uniform rods. we have already mentioned this in the discussion of the
uniform rod.

If the condition (2.27) is satisfied, then there exists a solution of the
system of equations (2.26), but the solution is only unique up to a constant
(rigid translation):

N .
u;=u; +a, 1=1,-+-,N,

where u* is an arbitrary particular solution of the system of equations.
Although the displacement solution is not unique, the solutions for the
stress o; or the strain ¢; are still unique because the rigid translation
contributes nothing to the stress or strain. When a constraint condition

N
/ U; = 0
i=1

is imposed on the solution u, the displacement solution becomes unique
as well.

One can easily see that, the system of extremum equations (2.26) in
problem 3 is just the equilibrium equation. For let T be the midpoint of

2
the segment [z;_1,z;]. Writing out the equilibrium equations of forces on
each segment [z, 1,z  1]and [z1,z3],[z, 1,zN], wherei=2,--- N-—1,

=3 i3 2 N-3

we obtain
o242+ f1 =0,

—09A2 + 0343+ f2 =0,
(2.28)

—oNAN + fn =0.

Using the stress-strain relation and the strain-displacement relation, the
system of equations (2.28), where stresses are used as the unknowns, can
be transformed into the system of equations (2.26), where displacements
are used as unknowns.
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Hence, as in the case of uniform rods, the stiffness matrix C is sym-
metric positive semi-definite, and is the coefficient matrix not only of the
quadratic form of the strain energy but also of the equilibrium equations.

If the left end of the rod is fixed, u; = 0, then the strain energy is

1 1 (N
P(’U,) = P(u% T ,UN) = _C2Uf% + —/ Ci(Ui — ui_l)z
2 2 Ji—3
1
= 5(Cu,u),
u= (U’2a"',uN)Ta

the stiffness matrix becomes symmetric positive definite,

i Cco + C3 —C3 0
—C3 C3 +cC4 —c4
C = . (2.29)
0 —CcN CN |

This is because
(CU,U):O{':}’UQZO, v; —v;_1 = 0, 1=3,---,N,

ie.,

’02=’U3=-"=’UN:0.

The potential energy of the external work is

~F(u) = —(fauz + - + fyvun) = —(f, u),
.f = (f27"'afN)T-

The total potential energy is
1
T(u) = P(w) ~ F(w) = 5 (Cu,u) - (£,u)

Since the matrix C is symmetric positive definite, the three equivalent
problems which are analogous to (2.24)—(2.26) have the same unique so-
lution.
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If the left end is changed into an elastic support, and the supporting

1
force is —cju; + f1, then the elastic energy iclu% should be added to the
strain energy of the system. We obtain

1 1Y
P(u) = P(ula' o ;UN) = 501’&% + 52@(% — ui_l)z
=2

1
=5 C ’ )
2 (Cu,u)
u = (’U,l,"‘,’U,N)T,
where i i
c1+ co —C9 0
—c3 c2+c3 —c3

C= . ] (2.30)

0 —CN CN

Since (Cv,v) =0<= v; =0,v; —v;_1 =0,1 =2,---,N, i.e,
vp=vy=---=vNy =0,

the matrix C is symmetric positive definite. The potential energy of the
external work is

—F(u) = —(fiuva + - + fvun) = —(F,u),
f= (fla"'afN)T'

The total potential energy is
1
J(u) = P(w) - F(w) = (Cu,u) ~ f(£,u)

Hence, as in the case where the left end is fixed, there exists unique so-
lutions of all three equivalent problems. The only differences are that
coefficient matrices C are slightly different and the range of subscripts
should be taken ¢,5 =1,---,N.

We see from the above discussion that the stiffness matrix is posi-
tive semi-definite when both ends are unrestrained, and that the stiffness
matrix becomes positive definite if one of the ends is fixed or elastically
supported, i.e., the stiffness matrix can be made positive definite by adding
geometric constraints or elastic support.
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2.4 Systems of rods in plane tension

In the foregoing, we have discussed the tensile and compressive defor-
mations of piecewise uniform rods. A peculiarity of composite rods of this
kind is that the axial directions of the individual rods are coincident. With
modifications, the analysis above can also be used to discuss so-called sys-
tems of rods in plane tension, which are composed of rods in tension lying
in the same plane, but without a common axial direction.

Suppose each rod of the system of rods is uniform, the loads are all
exerted at the ends of the rods (called nodal pbints for brevity), and
all connections among the rods are pin-connected. Axial stretching and
compression, but no flexural deformation normal to the axial direction, is
considered for each rod.

» Y(V)

y(v) P2 ()

PO = X(U)

Fig. 6

Since the axial directions of the rods are not completely coincident, for
convenience of treatment, we introduce a system of coordinates (zy) for
each rod, called the local coordinates, with the convention that the axial
direction of the rod is taken as the x— direction. The displacement vector
in the local coordinates is denoted by (u,v). The y—directional compo-
nent of the displacement vector v = 0 because no transverse bending is
considered. Besides the local coordinates of the rods we also need global
coordinates (X, Y') in the plane as reference coordinates for the whole sys-
tem of rods. The displacement vector in the global coordinates is denoted
by (U, V).

Suppose there is a rod L with two end points denoted by P; and
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P,. The local and the global coordinates are shown in Fig. 6. The
transformation relations between these two sets of coordinates are

=X cosf+Ysind,
y=-—Xsinf+Y cosf.

Correspondingly, the transformation relations among the local and global
components of the displacement vector are

u=Ucosf+ Vsin,
(2.31)

v=—-Usin@ + V cosé.

We first consider this case where the ends are not fixed. Hence suppose
that the stiffness matrix in the local coordinates of the rod, which is
unrestrained or elastically supported at both ends, is C. Its concrete form
can be seen from the relevant expressions in Section 2.2. Then the strain
energy of the rod is

P(w) = Plur,us) = 5 (Cuw),
the potential energy of the external work is
—F(u) = —(fiur + fouz) = = (£, u),
where f; and f2 are the axial loads exerted on the end points P; and P

of the rod, respectively.

Now we discuss the transformation from the local to the global dis-
placement vector. From the transformation relations (2.31),

F Uy
Uy cosf sinf O 0 Vi
u = = = RU, (2.32)
Ug 0 0 cosf sinf Us
L V2
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the transformation matrix is

cos@ sinf O 0
0 0 cosf sind

U
(2.33)
|41
U =
Us
[ V2 |
Hence in the global coordinates the strain energy of the rod is
1 1
PU) = E(C’RU, RU) = E(RTCRU, U)
- %(KU,U). (2.34)
The potential energy of the external work is
—-F({U) = -(f,RU) = —(R"f,U) = —(F,U). (2.35)

The matrix K = RTCR is just the stiffness matrix of the rod in global
coordinates, and is obviously still symmetric positive semi-definite; F =
RTf is the corresponding load column matrix.

Assuming in global coordinates the strain energy of the i-th rod is

PUW) = %( KOu®, ),
the potential energy of the external work is

—F(UY) = —(FO U®),

Summing up the strain energies and the potential energies of external
work of all the rods, respectively, the total strain energy and the total
potential energy of external work of the system of rods can be obtained:

PU)= | PU®) = 1 (KOU® u®) = l(KU,U),
/" 2 / 2 (2.36)
~F(U) = - [FU®) = - [(#9,09) = ~(F,V).

i
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The total potential energy is
1
J(U) = PU) - FU) = 3 (KU,U) - (F,U),  (237)

where the matrix K is the total stiffness matrix of the system of rods and
F is the total load column matrix. Note that K is still symmetric positive
semi-definite.

According to the equivalence mentioned several times above, the fol-
lowing three problems:

1. JU) = %(KU, U) - (F,U) = Min, (2.38)
2. (KU,V)—(F,V)=0, foranyV, (2.39)
3. KU=F. (2.40)

Eigher all have the same solution, or none of them has a solution. Neces-
sary and sufficient conditions for the existence of solutions are

(F, Vi) =0, i=1,2,--,1 (2.41)

where V* i = 1,---,1, constitute the linearly independent solution of the
homogeneous equations KV = 0.
Since
KV =0 <= (KV,V) =0 _ (2.42)

i.e., the strain energy vanishes, so the nontrivial solutions V* of the ho-
mogeneous equations KV = 0 are also called the strainless state.

The coefficient matrix of the equilibrium equations (2.40) is also called
the coefficient matrix of the quadratic form of the total strain energy, i.e.,
the global stiffness matrix. The stiffness matrices of the individual rods

) The proof of the equivalence is as follows: If KV = 0, then obviously (KV,V) =
0. Conversely, if (KV,V) = 0, then the quadratic form for arbitrarily given vector U
and real number ¢,

(K(V +tU),V +tU) = (KV,V) + 2((KV,U) + t*(KU,U) >0,

because the stiffness matrix K is symmetric positive semi-definite. Hence the discrimi-
nate of two quadratic equation in ¢ is nonpositive, so

(KV,U)? < (KV,V)(KU,U) = 0.

Consequently,
(KV,U)=0 foranyU.

Hence KV =0. Q. E. D.
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that are components of the system of the rods are generally called the
element stiffness matrices. The global stiffness matrix is assembled by
superimposing the element stiffness matrices according to the connections
of the end points of the rods. Similarly, the load column matrix F' is also
assembled by superimposing the load column matrices of each rod element
according to the same rule.

In the foregoing, we have not considered the case of displacement con-
straints at the fixed end. Three methods often used to deal with such
geometrical constraints will be introduced in the following. Suppose the
displacement component V(i) at the first nodal point of the i-th rod is
fixed: V() V() (a given value), and let the displacement component
Vl(z) be the k-th component of vector U.

The first method: Delete the k-th row including the right-hand term
in the equilibrium equations KU = F, set the unknown Vl(i) in the k-th
column on the left-hand side equal to Vﬁi) and transpose this column to
the right-hand side. When Vl(i) = 0, this is just a matter of deleting the
k-th column. The rank of the system of equations is thereby reduced by
one. This operation must be repeated several times if there are several
fixed displacement components, and the rank of the coefficient matrix is
reduced by one each time.

This approach has the advantage of saving computer memory. How-
ever, programming it is somewhat complicated because it needs to rear-
range the coefficient matrix of equations.

The second method: Set all the off-diagonal entries in the k-th row and
in the k-th column of the global stiffness matrix K to zero, the correspond-
ing diagonal entry equal to 1, and set the k-th component of the vector
F on the right side equal to V?’. The rank of the system of equations
remains unchanged. The advantage of this method is that, it is compara-
tively simple to program. But on the other hard, some computer memory
as well as computational effort is wasted.

The third method: Set the diagonal entry at the crossing of the k-th
row and column of K equal to a large number L and the k-th component of
the vector F' on the right-hand side equal to LV(li), while all other entries
are kept unchanged. Thus, all other terms except the diagonal term of the
k-th equation are relatively small quantities and play an insignificant role.
Hence LV() ~ LV(z), ie., V(Z) ~ V( ). The advantage of this method
is that the programming becomes even simpler. But memory as well as
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computational effort is wasted as in the second method, and some error
will be induced as well.

In addition, there is a method to deal directly with the displacement
constraint at the fixed end, i.e., to distinguish whether the rod has a fixed
end or not before constructing each element stiffness matrix. If the rod
has a fixed end, the stiffness ma*rix for an element with fixed end should
be used, e.g., if the left end is fixed, then the strain energy of the rod is

1
P(w) = P(uz) = eud,

where c is the tensile rigidity, the element stiffness matrix is C = ¢, the
displacement vector is 4 = ug, and the load vector is f = f. The element
stiffness matrix in global coordinates is

cos? 6 sinf cos 8
K=c ,
sin 6 cos 8 sin? 6

the load vector is
facos@

fosinf

cos @ T
, W= U
sin 6

The advantages of the method are the compactness and the saving of

and the displacement vector is

U,
Vs

U =

computer memory. The shortcoming is that, the kind of stiffness matrix
to be used must be determined for each rod in advance. Consequently the
process is not as uniform as before.

By treating the displacement constraint at the fixed ends may make the
global stiffness matrix positive definite. Then the equilibrium equations
have a unique displacement solution. However, it still may be positive
semi-definite, then the displacement solution is not unique and may differ
by an arbitrary strainless state.

The main steps for analyzing the system of rods in plane tension can
be summarized as follows:

1. Select the global coordinates and the local coordinates for each rod.
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2. Construct the element stiffness matrices and load column matrices of
the individual rods, and transform them into global coordinates.

3. According to the connections of the rods, assemble all the element
stiffness matrices and load column matrices in the global coordinates
to form the global stiffness matrix and load column matrices.

4. Treat the displacement constraints at fixed ends. This step may be
omitted if the displacement constraint has already been considered
during the construction of the element stiffness matrix.

5. Solve the equilibrium equations — the linear system of algebraic equa-
tions-and determine all the nodal displacements in the global coordi-
nates. If one desires to evaluate the displacement components in the
local coordinates, then use transformation (2.32).

We illustrate the details of how to assemble to element stiffness ma-
trices and load column matrices to form the global st‘ffness matrix and
load column matrices with the following examples.

Example 1. An equilaterally triangular system of rods (Fig. 7).

Suppose an equilateral tri-
angle ABC is composed of 4 Y(V)
three uniform rods numbe-
red 1, 2, 3, respectively. The C
local z-directional coordin-
ate of each rod is shown by 60
an arrow. The global coor- 3 9
dinates and the local coor-
dinates of rod 1 are coinci-

Al/ 60° 60°\ B
dent. Let the external force > > X(U)

applied of each nodal point
be decomposed into the ax- Fig. 7
ial forces of the two rods which
are intersecting at this nodal point. Denote the axial forces applied to the
ends of rods 1, 2, 3 by ffll), g); f(2), fg); 83), g)‘); respectively, where
the superscripts denote the rod, while the subscripts denote the number
of the nodal point at which the force is applied. The tensile rigidities are
c1,¢2 and c3, respectively.

At first, we will not consider displacement constraints at fixed ends or
the elastic supports not considered first. According to the steps summa-
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rized above, the analysis is as follows:

Steps 1, 2. Construct the element stiffness matrices and load column
matrices of the individual rods.

Denote the intersection angle between the local z-coordinate and the
global X-coordinate by 6. Then we have

Rod 1: 6; =0,cos60; = 1,sin6; = 0.

The transformation matrix is

cosfy sinb, 0 0 1 000
0 n cosf; sinb; a 0010/

the local element stiffness matrix is

1 -1
Ci=a ;
-1 i

the load column matrix is
(1)
f(l) — fa
f(l)

(1)
u(l) = uA ;
ye

the global element stiffness matrix is

R, =

the displacement vector is

1 0‘—1 0
ol 0 0
KO = RTCyR, = :
1M =)\ T 1 0
0 0] 0 O

the global load column matrix is
FO = RT ¢ — (5§ ) 9, (1), 0)7;
and the displacement vector is

UW = (Ugy, Vy,Ug, V)T, vV = RiUW.
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Rod 2: 6, = 120°,cos6s = —%,sin02 = ?
IR L
2 2 :
R2— 502:02 I
0 0 __1_ @ -1 1
2 2
2) )
2 ! 2 !
i& ug)
1 V3| 1 V3
4 4 4 4
V3 3 | V3 3
(2) = pT — 4 4 4 4
Ko=hGh=al——xFT1 /A
\/4 4 4 4
vi 3| v3 3
L 4 4 4 4
@) _ pT¢(2) _ @) f @ _1,0) V3 2)
P = REFO = (18 DL

U(z) = (UB’ VB’ UC, VC)Ta u(2) = R2U(2)

1 3
Rod 3: 6 = 240°, cos = —, sinfs = _V3,

2
R3“ \/— 3
o o -1 _V3
2 2
(3) (3)
1 —
C3=C3|: 1]’ f(3)=|: © :Ia (3)=|:uc
3 3
-1 1 f,(4) “54)
1 ¥ 1 V3]
4 4
i
(3) = RT - 4 4 4 4
K R3C3R3 C3 _1 __\/_§ 1 é y
4 4 4
I N
L 4 4 4 4
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1 \/§ 1 \/§ T
G _pTe@) _(_ 1.3 V3.3 1.3 V3.3
F —R3f —( 2fC’ 20, 2A’ 2A)’
U® = (Ue, Ve,Ua, Va)T, u® = RU®.

Step 3. Construct the global stiffness matrix and the load column matrices.

We shall explain through diagrams the process of assembling the in-
dividual element stiffness matrices through diagrams. Suppose the global
stiffness matrix is K, the load vector is F', and the displacement vector is
U = (Ua,Va,Ug,Vg,Ug,Vo)T. Arrange the quadratic form of the total
strain energy (KU,U) and the negative potential energy of the external
work (F,U) into a tabular form, and start by setting all the entries to
Z€ero.

Ua | Va|UB | VB |Uc | Ve | F

Us| O 0 0 0 0 010

Ug| O 0 0 0 0 010

Ua | V4| Ug | Vg | FD

UA (53] 0 —C1 0 . 5‘1)

Val| O 0 0 0 0

UB —C1 0 (6] 0 (Bl)

VB 0 0 0 0 0
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Now arrange the quadratic form of the strain energy (K Oy Uy (1))
and the negative potential energy of the external work (F(1), U (1)) of rod
1 into a similar tabular form, in which the part of the square block is
actually the element stiffness matrix K1) and the last column is the load
column matrix F™), Superimpose the individual entries in this table on
the corresponding locations in the large table for (KU,U) and (F,U).
For example, the entry at the crossing of row U4 and column Up is —¢;.
Superimpose this entry on the entry (being zero at present) at the crossing
of row U4 and column Up in the large table, and assemble the result into
the large table. Similarly, the entry at the crossing of row Ug and column
F) is fg) . Superimpose this entry on the entry (being zero at present)
at the crossing of row Up and column F' in the large table, and assemble
the result into the large table, etc.

Continue by applying the same treatment to rods 2 and 3. After
finishing the superimposition of these three rods, we obtain a large table

as follows:
Ua Va Ug Vg Uo Ve F
V3 1 3 1
Ualer + 2o o 0 —=C3 '"\/Trcs ,(41) ) 1(43)
3 V3 3 V3 (3)
1% e 0 0 | —~Z¢ -=c ——
3 1 3 1
E}i a1+ 12 e e ,(31) -3 ](32)
Vi Ec éc —§c ﬁ (2)
_i 1 2 4 2 4 2 9 B
] 1 1 3 3 1 1
Ei symmetric Zcz + ch —\/T_Cz + \/Tics 3 éz) ) ég)
3 3 V3 2) V3 s
Ve 72t g% ‘2—(0 “2_8)

The square block in the left-hand part of the table is just the global
stiffness matrix K which is to be determined. The entries in the lower
triangular part are omitted due to symmetry. The last column is the
global load column matrix F.

Such a mechanical and monotonous operation is well suited for imple-

mentation on computers.
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Step 4. Consider the strainless state.
Because

(KV,V) =0 (KOVvD vD)
= (K@Qv®), V(2)) = (K(S)V(3), ve)
Ua =Us,
1 V3 1 V3

3 3
_ “Up - Vg — -Ug+ ~2Vg =0
=0<¢= ¢ 7B 1 'B 4c+4 c )

i o+§VC—iUA—?VA=O,
this system of equations has six unknowns Ugk, V4,Ug, Vg, Ug, Ve, but
only three independent equations, so there must be three linearly inde-
pendent solutions:

(I) Ups=Up=Uc=1, Vy=Vg =V =0.

In terms of mechanics, this solution represents a translation in the X
direction.

(I Ua=Up=Uc=0,Vy=Vg=Vg=1.

This is solution represents a translation in the Y direction.

V3 1

(IH) Usg=0,Vy4=0;,Ug=0, Vg=1; UC:—7, Vc=§.

The third solution represents an infinitesimal rotation about the point
A in the plane of the system of rods. That point can be verified directly
as follows: suppose a point (X,Y) in the plane coordinate system XOY
makes an infinitesimal rotation about the origin O and the angle of ro-
tation is w. Point (X,Y’) becomes point (X',Y”’) owing to the rotation.
According to the transformation relations of coordinates, we have

X'=Xcosw — Y sinw,
Y' = Xsinw+Y cosw.

Hence, point (X,Y) sufters a displacement
UX,)Y)=X"— X = X(cosw—1) — Ysinw,
V(X,)Y)=Y'-Y = Xsinw+ Y(cosw — 1).

When the angle of rotation w is very small, cosw = 1, and sinw = w.
Hence,
UX,Y)=-Yw, V(X)Y)=Xuw. (2.43)
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YA

(X', Y")

(X,Y)

Fig. 8
Now the coordinates of point A are X4 =Y4 =0,s0 U4 = V4 = 0. The
coordinates of point B are Xp = L (the length of the rod), Yz = 0, so
Up=0, Vg=Lw.
V3

1
The coordinates of point C are X¢ = §L, Yo = 7L, )
3 1
Uo = ng, Vo =5 Lw.

Thus, when the triangle ABC makes an infinitesimal rotation w about
point A, the displacements yielded at the three vertices differ from the
solution (III) only by a constant factor Lw.

The above three linearly independent solutions are just three indepen-
dent strainless states of the triangular system of rods: two translations
and one rotation. Let them be abbreviated by V! V2 V3, respectively.
Then the necessary and sufficient conditions for the existence of solutions
of the equilibrium equations KU = F are

(F,VH=0, i=1,2,3,
written concretely as follows:
(F, Vl) _ f,gl) f(3) + f(l) f(2) f(2) f(3)

This denotes the X-directional equilibrium of the external forces;

_V3 @ +f f@ Y3 B - f © _

F,V?) = X =0.
( b ) 2
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After simplification, this becomes

~+ I+ + 1) =0

which denotes the Y-directional equilibrium of the external forces.
V3 V3
(F, VB) f(2) vy ( f(z) f(3))
1/v3 \/5
( f(2) (3))
=0.

After simplification, this becomes fl(32) + fé? ) = 0, which denotes the mo-
ment equilibrium of the external forces about point A.

These three self-equilibrating conditions of the loads can be written
in another equivalent form. Substituting fg) + fg) = 0 obtained from
(F,V3) = 0 into expression (F,V?%) = 0, we obtain f1(43) + fg) =0
Furthermore substituting the two expressions of fj (2) +fo ) — 0 and f1(43) +
fC = 0 into expression (F, V') = 0, we obtain f(l) f(l) 0. The latter
three conditions mean that, the axial loads applying on each rod are self-
equilibrating. These two sets of self-equilibrating conditions of the loads
are equivalent.

When the self-equilibrating condition on the loads is satisfied, there
exists a solution of the equilibrium equations of the unrestrained system
of rods, but the displacement solution is not unique and may differ by
an arbitrary strainless state, which in the example is just a plane rigid
displacement. We can eliminate such arbitrariness by simply fixing three
of the the six displacement components (or linear combination of them) of
the displacement vector U. In other words, by adding three geometrical
constraint conditions, the global stiffness matrix can be made positive
definite instead of positive semi-definite. In terms of mechanics, to restrain
the plane rigid motion of the triangular system of rods, we have imposed
three displacement constraints.

To treat fixed displacement, any one of the methods introduced above
can be used.

Step 5. The last step is to solve the symmetric positive definite system
of the algebraic equations. We will not discussed this here. Readers are
referred to the relevant literature on computational linear algebraic.
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Example 2. A rectangular system of rods (Fig. 9).

For simplicity, assume that the

Y tensile rigidities of the individual
rods are all the same. In the present

D 3 C example, these four rods are orthog-
l | onal to each other, hence the lo-
4 9 cal coordinates are no longer nec-
essary. The element stiffness ma-

A 1 B - X trices and load vectors can be con-

structed directly in the global co-
Fig. 9 ordinates. In the following, the no-
tation is the same as in Example 1.

[ ] [ (1) T i
1 -1 U
Rod1: KW =c . FO = @ |t
| -1 1 i R
[ ] (2) r
1 -1 \%
Rod2: K® = c , F(2) — f U(2) — B
i _1 1 J f(2) ] VC
I | (3) r
1 -1
Rod3: K® =¢ , FG® = . U® = Up
| -1 1 f(3) i Uc
[ (4) 7
1 -1
Rod4: KW =¢ R O [ fa U@ — Va
i -1 1 f(4) Vo
The global stiffness matrix is
(1 0 -1 00 0 o0 0]
1 000 0 0 -1
1 00 0 0 0
Ko 10 -1 0 o
1 0 -1 0
sym. 1 0 0
1 0
1

= (f§ (1) (4) (1) f(2), 3 f(2), 3) f(4)) ’

U= (UA)VAaUBaVByUC)V07UDaVD) .
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The strainless states are given by:
(KV,V) =0« (KOVD v)) = (KAVE vQ)
= (KOVE) ve)) = (KOv® v4)
=0
<= Uy =Up,Vp =V, Up =Uc,Vp = Va.

Hence there are four linearly independent strainless states:

(1) an X-directional translation,

Ups=Up=Uc=Up=1, Vy=Vg=Vo=Vp=0.

(2) a Y-directional translation,

Up=Up=Uc=Up=0, Vy=Vg=Vo=Vp=1.

(3) an infinitesimal plane rotation about point A,

Us=0,Vy4=0 Ug=0, Vg=1; Ug = -1,

Ve=1;, Up=-1, Vp =0.

() Us=0,Vy=0; Ug=0, Vg=0; Ug =1, Vg = 0;

Up=1, Vp=0.

The points A and B are fixed, while the points C and D make an equidis-
tant horizontal slide to the right.

Denote these four independent strainless states by V1, V2 V3 v+
respectively. Then the necessary and sufficient conditions for making
the equilibrium equations of the unrestrained rectangular system of rods

solvable are

(F, V%) =0, i=1,2,3,4.

or the X-directional equilibrium of the external forces,
F VY =10+ 10+ 10+ 15 =0
the Y-directional equilibrium of the external forces,
(V) =)+ 150+ 1+ 18 =0,
the equilibrium of moments about point A;
F, V=3 - 1D+ 1@ - 1) =0,
and the equilibrium of the axial loads exerted on rod 3,

(F, V) =16+ 15 =o0.
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Substituting féz) +f1()3) =0 into (F,V3) =0 and (F,V!) = 0, respec-
tively, we obtain

5D 4@ g,
Ry

These two expressions denote the equilibrium of the axial loads on rods
1 and 2. Furthermore, substituting f(2) f(2) = 0 into (F,V?) =0, we
obtain fgl) + f,(44,) = 0, which denotes the equilibrium of the axial loads on
the rod 4.

Hence, only if the axial loads on each rod are self-equilibrating does
there exist a solution of the equilibrium equations of the rectangular sys-
tem of rods. This conclusion is exactly the same as that of the triangular
system of rods in Example 1. In Example 1, the displacement solution is
not unique and may differ by an arbitrary strainless state. In Example
2, there are four independent strainless states, i.e., two translationstates,
one rotation state, and one slide state in which one of the edges is fixed,
and the opposite edge makes an equidistant parallel slide.

In order to make the equilibrium equations have a unique displacement
solution, it is necessary to impose four constraint conditions so as to elim-
inate the four strainless states. However, only to fix, e.g., four displace-
ment components of the two points A and B is not enough to eliminate
the strainless states, because points C and D can still slide horizontally.
Therefore, these four constraint conditions are actually not independent:
only three of them are independent. However, if two displacement com-
ponents of point A, the Y-directional displacement component of point B
or C, and the X-directional displacement component of point C or D are
fixed, then the global stiffness matrix becomes positive definite, and there
exists a unique displacement solution of the equilibrium equation.

§3  Stretching and Compression of Nonuniform Rods

3.1 Deformation modes

The elastic deformation problem for uniform or piecewise uniform rods
in tension has been discussed in §2. When the rod is subjected to a
longitudinal body force in addition to the end loads, or the area A = A(z)
of the cross section S, is varying, the stress distribution is longitudinally
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nonuniform and may be a function of the coordinate z:
o=o0(z), e=¢(z)=1(z), (3.1)

although the stress distribution within the rod may be considered as uni-
form over each cross section (or is only concerned with its mean value over
the cross section). The displacement u(z) is no longer linear. Hence the
whole system can no longer be described by a finite number of degrees of
freedom. This is a problem with infinite degrees of freedom.

The internal force on a cross section S, is

Qz) = A@)o(a). (3.2
According to the Hooke’s law ¢ = Ee, we obtain
Q = Ao = EAe = EAY'. (3.3)

This can be thought of as Hooke’s law for the deformation mode of stretch-
ing and compression of rods. The internal force @ is proportional to the
strain &, and the coefficient of ratio E A is called the tensile rigidity of the
cross section, which may vary with x.
From §2 we see that the volume density of the strain energy of the
stretching and compression of rods is
1 1 .,

W = —oe = —Fe”.
2 2

Intergrating W over the cross section s, we obtain the line density of the
strain energy

— e 1
W=W(z)= /f Wds = 5EA€2,
and —
ow  _—_ 1
=— W==Qe. 3.4
Intergrating W over the length of the rod, we obtain the total strain energy
of the rod

P(u) = / "Wz = : / ' Qwe(u)d

1t 1 b
= 5/ EA&?(u)dx = 5/ EAudz.
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3.2 Variatoinal principles
For a given displacement function v = wu(z), no matter whether it is
an equilibrium configuration or not, there always exists a corresponding

strain energy
P(u) = / EAudz. (3.5)

Hence P(u) is “a function of the function u(z)” called a functional.
Introduce the notation

D(u,v) = /b EAu'v'dz. (3.6)
Obviously, D is symmetric
D(u,v) = D{v,u), (3.7)
and is bilinear, i.e., linear to both “variables” u and v, respectively:
D(tu,v) = tD(u,v), for any real number ¢,
{ D(u + w,v) = D(u,v) + D(w,v). (38)

D(u,v) is called the bilinear symmetric functional of u and v. Hence the
corresponding strain energy is

P(u) = 3 D(w,u),

and
D(u,u) > 0, for any displacement function wu.
In the case of piecewise uniform rods in tension, the strain energy

P:P(Ul,"',UN)

is a homogeneous quadratic form of the variables u = (uy, - - -, uy)?, while
in the case of nonuniform rods the strain energy P = P(u) is a homoge-
neous quadratic functional of the variable u = u(z) satisfying

{ D(tu,tu) = t2D(u,u),

(3.9)
D(u +v,u +v) = D(u,u) + 2D(u,v) + D(v,v).

On the other hand, suppose the rod is subjected to body loads, with
force per unit length f = f(z). Then the potential energy of the external
work is

—F(u) = / fudz, (3.10)
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F(u) is also a functional of the variable u = u(z), but it is a first order
homogeneous, i.e., linear functional satisfying

F(tu) = tF(u),

(3.11)
F(u+v) = F(u) + F(v).

Hence the total potential energy

J(u) = %D(u,u) — F(u)

. . . . 1

is a quadratic nonhomogeneous functional of . The strain energy §D(u, u)
is the quadratic homogeneous part and the potential energy of the external
work —F'(u) is the linear homogeneous part.

In §2, we described in matrix form the variational principles for equi-
librium problems with finite degrees of freedom. In order to make this
theory suitable for all kinds of equilibrium problems nomatter what the
concrete form of the strain energy and the potential energy of external
work, we formulate the variational principles in more abstract form. The
general characteristics of the strain energy and the potential energy of the
external work are

1. D(u,u) > 0, and D(u,v) is a bilinear symmetric functional satisfying
the conditions (3.8).
2. F(u) is a linear functional satisfying the conditions (3.11).

In linear elasticity, these two requirements are satisfied generally.

In some equilibrium problems, geometrical constraints are often pre-
scribed for the displacement u, e.g., the value of the displacement at the
boundary point z = a is prescribed to be u(a) = @, (a given value), and
so on. The set of all displacements u satisfying the prescribed constraint
is denoted by K.

If the displacements u,w € K, then the increment v = u — w satisfies
the annihilating constraint corresponding to the prescribed constraint. For
example, if the prescribed constraint is u(a) = @, then the corresponding
annihilating constraint is

v(a) = u(a) — w(a) = 0.

This kind of displacement increment is called the virtual displacement in
elasticity. In fact it is the increment within the admissible domain of the
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prescribed constraint. The set of all virtual displacements v is denoted by
Kp. Hence, if u € K,v € Ko, thenu+v € K.

If no constraint has been imposed on the displacement in the problem,
then K can be understood as the set of all displacements, and then Ky =
K.

For the sake of convenience, we introduce the following definitions are

introduced.

Definitions: .
1. The strain energy (neglecting the factor of 2 similarly below) D(v,v)
is called non-negative under the prescribed constraint if D(v,v) > 0 for
any v € K.
2. The strain energy D(v, v) is called positive definite under the prescribed
constraint if D(v,v) > 0 for any v € Ko,v Z 0.
3. The strain energy D(v,v) is called degenerative under the prescribed
constraint, if there exists v € Ko, v # 0 such that D(v,v) = 0, v is called
the strainless virtual displacement or strainless state.

The principle of minimum potential energy states that, under the pre-
scribed constraint, the displacement making the total potential energy a
minimum is just the equilibrium configuration:

J(w) = %D(u, u) — F(u) = Min.

Here and below we always suppose u € K.

Proposition 1.1 Suppose D(v,v) is non-negative. Then the so-
lutions of the following two variational problems are identical:

1. J(u) = %D(u, u) — F(u) = Min (the principle of minimum potential
energy),
2. D(u,v) — F(v) =0, for any v € Kj (the principle of virtual work).
Proof. Suppose ug is a solution of problem 1, i.e., ug is a minimal point
of J(u). Choose an arbitrary take v € Ky. Then ug + tv € K for any real
number ¢. Let

Lp(t) = J(uo + tv).

Expanding ¢(t), we obtain

@(t) = J(ug) + t[D(ug,v) — F(v)] + gD(v,v), —00 < t < 0.
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Because up is the minimal point of the functional J(u),t = 0 is the mini-
mum of the function ¢(t) of single variable. Hence

¢'(0) = D(ug,v) — F(v) = 0, for any v € K,

i.e., ug is a solution of the problem 2 as well.
Conversely, suppose ug is a solution of the problem 2°. Taking w € K,
let

v=w—ugy € Ko,

then
J(w) = J(ug +v) = J(uo) + [D(uo, v) — F(v)] + %D(v,v)
= J(ug) + %D(v,v).
Since D is non-negative from the assumption, i.e.,
D(v,v) > 0, for any v € K,

S0
J(w) > J(up).

Hence Uj is a solution of the problem 1° as well. Q.E.D.

This is similar to the case of finitely many degrees of freedom, D(u,v)
is just the work done by the internal force of the displacement “applied
over the virtual displacement v, hence it is called the functional of virtual
work. F(v) is the work done by the external force applied over the virtual
displacement v, so that

D(ug,v) — F(v) =0, for any v € K.

This means that the virtual work done by the internal force of the equi-
librium configuration ug is identically equal to the virtual work done by
the external load. This is exactly the principle of virtual work. Hence the
principle of virtual work is an equivalent form of the principle of minimum
potential energy.

Proposition 1.1 proves that, when D(v,v) is nonnegative, the solutions
of these two variational problems are identical. We still have not answered
the question of whether or not exists a solution for a given variational
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problem. The following two propositions will answer this question from
both positive and negative sides.

Proposition 1.2 Suppose D(v,v) is positive definite. Then there
exists a solution of the variational problems in Proposition 1.1, and the
solution is unique.

Proof. The proof of the existence of a solution is rather difficult. It
needs considerable mathematical preliminaries, which are out of the scope
of the book. Hence we omit it here. However, the proof of the uniqueness
of the solution is quite simple. In fact, suppose u; and ug are two solutions
of the variational problem 2°, i.e.,

D(uy,v) — F(v) =0, for any v € K,
D(ug2,v) — F(v) =0, for any v € Kj.
Substracting of one from another of the above two expressions, we obtain
D(u; — ug,v) =0, for any v € Kj.
u; — ug € Ky because uy,us € K. Taking
v =u; — ug,
in the above expression,
D(u; — ug,u; —ug) =0.
Since D is positive definite,
u; —ug =0,
hence the solution is unique. Q.E.D.

Proposition 1.3 Suppose D(v,v) is degenerative and that D has
p linearly independent strainless virtual displacements: v® i =1,---,p.
That is, there exist p linearly independent v() € K such that D(v®, v(®)) =
0,i = 1,---,p. Then the necessary and sufficient condition for the exis-
tence of solutions of the variational problems is

F(v(i)) =0, i1=1,---,p. (3.12)

The displacement solution is not unique and may differ by a strainless
virtual displacement when the solution exists.



§3 Stretching and Compression of Nonuniform Rods 45

Proof. Let us first prove a relation, which we will use below. For an
arbitrary u € K and strainless virtual displacement v, we always have

D(u,v®) =0, (3.13)

By the nonegative definiteness of D and the defintion of the strainless
virtual displacement, for any real number ¢ we have

D(u+ tv®, u + tv®) = D(u,u) + 2tD(u,v™) > 0

Hence
D(u,v®) =0.

Necessity. Suppose ug is a solution of the variational problems, i.e.,
D(ug,v) — F(v) =0, for any v € K.
Taking v = v, from (3.13) D(uo,v)) = 0, we have
Fw®)=o0, i=1,---,p.

Sufficiency. Suppose the condition (3.12) holds. Impose p additional
constraints

(u,vD) =0, i=1,---,p (3.14)
to the variational problem 2 so as to make it a new variational problem:

D(u,v) — F(v) =0, for any v € K),
(v,v®) =0, i=1,---,p, (3.15)
(u,v®) = 0.

Here the notation (u,v) denotes the integral / wvdz, and / -+ dz de-
Q Q

notes the integral over the two or three dimensional domain @ of the two
or three dimensional problem, respectively.

Now we prove that, by imposing p new constraints in addition to the
original ones, D(v,v) becomes positive definite. This is because

P
D(w,v) =0<«<=v = chvj,
i=1



46 Chapter 1 Simple Modes of Elastic Deformation

and the constraints on the virtual displacement v are (v,v®)) = 0,i =
1,---,p, in the new variational problem (3.15). Hence

P P
(v,09) = (chU(J), v(z)) - ch(v(’)’v(J)) =0,
j=1 i=1

t=1,---,p. (3.16)

One can prove (as we will give later on) that the determinant
|(vD, 00| =1, p # 0. (3.17)
Hence the homogeneous equations (3.16) can have only the zero solution

cp=cg=--=¢=0.

Thus v = 0, hence D is positive definite.

From Proposition 2, we see that there exists a unique solution ug of the
variational problem (3.15). It remains to prove that ug is also a solution
of the original variational problem.

An arbitrary displacement u € K can be decomposed into

u=w+v", weE K, v* € Ky,
where w satisfies the constraint conditions
(w, oM =0, i=1,---,p, (3.18)

while v* is a strainless virtual displacement.
In fact, let

p .
w=u-— Zci’u(]),
i=1

where the coefficients c; are to be determined. From conditions (3.18), we
obtain

P
ZC] vy = (u,0®), i=1,---,p.

j=1

Since the coefficient determinant

I(v(i)> U(]))l 7£ 07
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Arbitrarily take a set of real numbers #y,---,%, not all zero. Since
v ... 4 are linearly independent, the linear combination

/4
F=3to® 0.
=1

Consequently,

(5,5 = (Zt oo Zt WD) = 3 (0,0 D)tty > 0

1,7=1
This is a positive definite quadratic form with respect to ¢; and ¢;. The
refore the determinant of the coefficient matrix
](v(i),v(j)), > 0.
Q.E.D..

3.3 Boundary value problems
Now let us apply the above-mentioned variational principles to the con-
crete problem of elastic equilibrium of nonuniform rods in tension. We
will discuss three kinds of problems according to their different respective
boundary conditions.
1. First kind of boundary condition: The prescribed displacement.
Suppose u(a) = @q,u(b) = 4y, where @, and @, are given values.
The strain energy:

Ip( )—l/bEA”d
pPwu) =5 | EAu®de,

the functional of virtual work:
b
D(u,v) = / EAYv'dx,
a
and the potential energy of the external work:

b
—/ fudz,

= (u(z)|u(a) = tq, u(b) = ),
Ky = (v(z)|v(a) = v(b) = 0).
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According to the variational principle, the displacement of the equilibrium
configuration satisfies

D(u,v) — F(v) =0, for any v € K. (3.19)

Integrating by parts and noting the boundary conditions, we have
b b
D(u,v) :/ EAuvdz = [EAuv]} —/ (EAY ) vdz
b
= —/ (EAY) vdz,
consequently,
b
D(u,v) — F(v) = / [-(EAY) — flvdz = 0, for any v € K,.

Since v(z) is arbitrary in the open-interval (a,b), the value included in the
brackets [- - -] under the above integral sign must vanish according to the
foundamental lemma of the variational method. Hence, the displacement
u of the equilibrium configuration satisfies the following equation

a<z<b:—(EAY) =f. (3.20)

This is a second order ordinary differential equation. In order to deter-
mine the solution, in general the boundary conditions at the two ends
are needed. This is a two-point boundary value problem. The geometri-
cal constraints prescribed in the variational problem provide the following
two conditions

r=a: u(a) = G, (3.21)
z=b: u(b) = . (3.22)

Conditions (3.21) and (3.22) are called the geometrical boundary con-
ditions or the essential boundary conditions. By saying “essential,” we
mean that these boundary conditions must be imposed on the variational
problem.

Conversely, suppose u is a solution of the above boundary value prob-
lem. Multiplying both sides of Equation (3.20) by an arbitrary v € Kj
and then integrating over z, we obtain

b b
/(—EAu')'vdac:/ fudz.
0 a
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Using integration by parts and the boundary conditions, we have

b b b
/ —(EAY)'vdz = ‘ — (EAY v +/ EAYv'dx
a a a

b b
= / EAuW'dz = / fudz,
ie.,
D(u,v) — F(v) =0, for any v € Kj.

Hence u is also a solution of the variational problem. This shows that
variational problem (3.19) is equivalent to the boundary value problem
(3.20)—(3.22).

2. The second kind of boundary conditions: The loading support.

Suppose the load applying at the end point £ = a is g4, the load at
the end point £ = b is g5. Their contributions to the potential energy
of external work are —g,u(a) and —g,u(b), respectively. Then the total
potential energy of external work is

—F(u) = —(/ab fudz + ggu(a) + gbu(b)).

Since there are no constraints on the positions of the two ends, K and K
are both equal to the set of all displacement functions. Starting from the
variational principle

D(u,v) — F(v) = 0, for any v, (3.23)
and applying integration by parts,
b b
D(u,v) :/ EAuvWdz = [EAu')? —/ (EAY) vdz,
we obtain
D(u,v) = F(v) = [(EAW)s — gb]v(b) + [~ (EAW) — ga]v(a)

b
+/ [-(EAY') - flvdz = 0, for any v.

Since v(x) within (a,b) and the values v(a) and v(b) at the two end points
are arbitrary, the terms included in the above three brackets [---] must
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vanish for the same reason as in 1. Then the equations satisfied by the dis-
placement u of the equilibrium configuration and the boundary conditions
are,

a<z<b: —(FAY) =f,
rT=a: —(EAY)q = ga, (3.24)
rz=>b: (EAY )y = gp. (3:25)

Conversely, one can prove using a simular method that the solution of the
above boundary value problem is exactly the solution of the variational
problem (3.23). Thus these two problems are equivalent. Note that here
the boundary conditions (3.24) and (3.25) are derived automatically from
the variational principle, so they are also called the natural boundary con-
ditions, so as to be distinguished from the essential boundary conditions
of the first kind. Thus, the variational principle automatically provides
the mechanical boundary conditions at the end points when no constraints
exist.

3. The third kind of boundary conditions: Elastic support.

Suppose the rod is elastically coupled with the external region at its
end points. The rod is subjected to elastic reaction forces which are pro-
portional to the deviations of the displacements. For example, the elastic
reaction force at x = a is

—ca(u(a) - ’I_La) = —cau(a) + 9a;  ga = Cola,

and the elastic reaction force at £ = b is
—cp(u(b) — tp) = —cpu(b) + gb, go = Cols,

where c4,¢, > 0. ¢, and ¢ are constants of the elastic coupling. %, and
up are reference displacements. g, and gp are given values. At that time,
the strain energy will be increased by an amount %cauz(a) + %cbu?(b).
Correspondingly, the functional of virtual work D(u,v) is increased by an
amount of c,u(a) + cpu(b). The potential energy of external work is

—F(u) = ~(/ab fvdz + gou(a) + gbu(b)).

The two end points are still unrestrained: K and K, are equal the set of
all displacement functions. Similarly, the variational principle implies
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D(u,v) — F(v) =0, for any v.

The equivalent boundary value problem can be derived through inte-

grations by parts as
a<z<b: —(EAY) =,
rT=a: —(EAY)4 + cou(a) = gq, (3.26)
z="b: (EAY )b + cpu(d) = gp.
Here, the boundary conditions (3.26) and (3.27) are also automatically
derived from the variational principle and need not be listed explicitly as
prescribed constraints in the variational principle. Hence they too can be
considered to be natural boundary conditions.

Sometimes the rod is coupled elastically with the external region lon-
gitudinally elastically along its length. The elastic reaction force per unit
length of the rod, which is a applied to the whole length or a segment
d<z<Va<d <b <b),is

—c(u—1a)=—cu+f, f=.ca,

where ¢ > 0 is the constant of elastic coupling. f may be merged into
the line load and then the elastic reaction force per unit length may be
regarded as —cu. Then, the strain energy should be increased by adding a

1 rb b
term 2 / cu?dz. This corresponds to adding to D(u,v) a term / cuvdz,
. a a

ie.,
b b
D(u,v) :/ EAu'v'dm+/ cuvdz.

We can set ¢ = 0 in the region without elastic support. The potential
energy of external work is

—F(u) = — ( /ab fudz + gou(a) + gbu(b)),

and both end points are still unrestrained. Then the equivalent boundary
value problem can be derived from the variational principle as

a<z<b: —(EAY) 4 cu=f,
r=a: —(FAY)q = ga, (3.27)
x=5b: (EA'U,,)(, = Gb-
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The above three kinds of boundary conditions can also be mixed to-
gether, i.e., any one of these three kinds of boundary conditions can be
taken at each end point, and different modes can be prescribed at the two
end points as well.

Interface conditions. Suppose that the tensile rigidity E'A is dis-
continuous at some cross section z = p (Fig. 10a), or a concentrated load
gp acts at a cross section « = p (Fig. 10b), or these two cases arise simul-
taneously. Then the form of the strain energy remains unchanged, while
the potential energy of the external work should be modified to

—F(v) = —(/ab fvdz + gav(a) + gyv(b) + gpv(p)).

At the same time, owing to the discontinuity of EA at © = p, the inte-
b
gration of | EAu'v'dz by parts must be performed on the two segments

individually‘.l Hence we have

b

b p—0
D(u,v) =/ FEAuv'dz = EAu'v'dx+/ EAuv'dx

a p+0
p—0 b
=/ —(EAu')'vdx+/ —(FAY ) vdz

0 p+0

—(EAU),v(a) + (BAU)pv(b) — [EAUTEE)(p).

-~ g
a P b a p b
(a) (b)
Fig. 10
Then from the variational principle,
p—0 b
D(u,v) — F(v) = / [—(EAWY — flvdz + / (—(EAW') — flvdz

a p+0

+[=(EAY)q — ga]v(a) + [(EAW)s — gs]v(b)
+[—[EAu’]?_‘8 — gplv(p) =0, for any v.
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we obtain

a<z<p p<z<b: —(EAJ) =f,

r=a: —(EAY)q = ga,

( (3.28)
z=b: (EAY)p = gp,
o=ps AV = g,

Besides this, it is still necessary to impose the constraint condition for the
continuity of displacement u at z = p

T=p: [u]gfg =0. (3.29)

(3.28) and (3.29) are two interface conditions. (3.28) is automatically
derived from the variational principle, so it too is also a kind of nat-
ural boundary condition. However, in the boundary value problems of
the differential equation, (3.28) is constituent part which is the necessary
condition to get a well-defined solution.

The continuity condition (3.29) need not be set out as a essential
condition if the convention has been made such that the displacement is
single-valued at the discontinuity.

The case of serveral discontinuity points is handlied like the case of a

single discontinuity point.

3.4 Equilibrium equations
In the case with finitely many degrees of freedom, the linear equations
derived from the variational principle are just the equilibrium equations
of the system. Similarly, in the case with infinite degree of freedom, the
differential equation and natural boundary conditions (including the in-
terface conditions) derived from the variational principle are just the equi-
librium equations.

Arbitrarily taking a segment (z1,z2) of the rod, we consider the equi-
librium relation of the longitudinal forces (Fig. 11).

0=Qle2) = Qan) + [ fdz= [7(@ + f)da.

The equation holds for any z; and z within the interval (a,b), hence the
equilibrium equation can be obtained

a<z<b: -Q =f.
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From (3.3), Q = EAuv'. In terms of the displacement u, the equilibrium
equation becomes
a<z<b: —(EAY) = f.

This is equation (3.20), satisfied by the displacement u of the equilibrium
configuration derived from the variational principle.

\ T \
—>/)—»—>—>—>f(—>)—>—>—> —/L—>Q(.'L'2)
/

L1

Fig. 11

For uniform cross sections, the equilibrium equation becomes
~EAY = f.
If there is no body load, f = 0 and the displacement
u=ag+ a1

is a linear function of . The strain ¢ = v’ = a; and the stress ¢ =
Ee = Eay The problem is then reduced to a problem with one degree of
freedom, which is just the uniformly deformed rod discussed in §2. When
f = is constant., the displacement

U = aop +a1m+a2m2

is a quadratic function of z, while € and o are linear functions of . This
is a case of two degrees of freedom. For general f or E'A, the system
has infinitely many degree of freedom, which can not described by a finite
number of parameters.

Now we consider the equilibrium relations of the forces acting at the
end points as well as at the interface point. Suppose there exists a point
load g; at £ = b. Take a small interval of length Az in the neighborhood
of z = b, on which the equilibrium relation of the longitudinal forces is

b
—Q(b— Ax) +gb+/ fdz =0.

b—Ax
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Letting Az — 0, we obtain
—Q(b) + g5 =0.
This is the natural boundary condition (3.25):
(EAY )y = g

Similarly, suppose there exists a point load g, at £ = a. Take a small in-
terval Az in the neighborhood of x = a, on which the equilibrium relation

of forces is A
Q(a+Ax)+ga+/ fdz =0.

Letting Ax — 0, we obtain
Q(a) + 9 = 0.

This is also the natural boundary condition (3.24):
—(EAY), = ga.

If there exist elastic supports at the end points, then terms belonging to
elastic reaction forces should be added to the above equilibrium relations
as well. This yields the natural boundary conditions (3.26) and (3.27).

We continue by discussing the equilibrium of forces at an interface
point within the rod. Suppose there exists a concentrated load g, at
z = p. Taking a small interval (p — Az, p+ Axz) including x = p, we then
have the equilibrium relation

p+Azx
Q@+A@—Q@—A@+%+/ fdz =0,

p—Az

Letting Ax — 0, we obtain

Qp+0) - Q(p—0) +g,=0.

This is the interface condition (3.28). Hence we obtain the following two
corollaries:

1. Suppose there exists the concentrated load g, = 0 at the cross
section z = p and the tensile rigidity FA has a jump across the section.
Then

[QIZS = [BAVEEES = o.
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This shows that at x = p the internal force @) is continuous, but the strain
¢ = ' is discontinuous.

2. Suppose that EA is continuous at the cross section and that g, # 0.
Then

+0 +0
“[Q]Z—o = _EA[UI]f;—o = dp-
This shows that a concentrated load g, leads to the discontinuity of the

internal force @) and the strain &.

3.5 Strainless states
According to the variational principle in Section 3.2, whether or not there
exists a solution of the variational problem and its equivalent equilibrium
equations and whether or not the solution is unique depends on whether
the quadratic functional of the strain energy D(v,v) is positive definite
or degenerate, and the latter is closely related to the statement of the
boundary conditions. Now let us discuss this problem according to the
three kinds of boundary conditions described in Section 3.3, respectively.
1. Prescribed displacement.
Prescribed constraints at both ends:

Ko = (v(m)|'v(a):v(b)=0)a
or a prescribed constraint at one end:

Ko = (v()]y(a)=0 or v(b)=0)-

The strainless virtual displacement
b
veEKp: D('v,v):/ EAv?dz =0<= v =0+ v =0.
a

Hence D is always positive definite no matter whether the constraint is
prescribed at both ends or at one end. There exists a unique solution of
the equilibrium problem.

2. Loading support.

The displacement is uncanstrained. The strainless state

b
v: D(v,v) = / EAv?de =0 <= v =0 <= v = k(const.),

hence D is degenerate. The strainless state has one degree of freedom:
v(M) = 1, which corresponds to a rigid translation. Hence the displacement
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solution u of the variational problem is not unique and may differ by a
rigid translation according to the theorm 3 in Section 3.2. However the
rigid translation contributes nothing to the internal force or the strain
€. The stress solution of the equilibrium state is still unique even in the
degenerative case. The necessary and sufficient condition for the existence
of solutions is

F(wM)=F(1) =0,
ie.,

b
/ fdz + ga + g5 = 0. (3.30)

(3.30) indicates that the external loads are self-equilibrating. This is the
prerequisite for achieving equilibrium in the unrestrained case. There are
no solutions if the prerequisite is not satisfied.

3. Elastic support.

The displacement is still unrestrained. The strainless state

b
v: D(v,v) = / EAv?dzx + cav*(a) + cpv?(b) = 0

<=1 =0, v(a) =v()=0

<— v=0.

Hence D is positive definite and there exists a unique solution of the equi-
librium problem. It is the same as the case of the prescribed displacement,
D is actually positive definite so long as one of its ends is elastically sup-
ported.

4. Rods on an elastic foundation.

Since

b b
D(v,v) =/ EA’Ulzd.'L'-i-/ cvidz,
a a

so long as the constant of elastic coupling ¢ > 0 unclear the strainless
state

v:Dw,v) =01 =0 (a<z<b),

v=0 (d<z<V)<=v=0 (a<z<b),

i.e., D is positive definite, and there exists a unique solution of the equi-
librium problem.
Two conclusions follow from the above discussions:
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1. The equilibrium problem in which the boundary is supported by
loads (i.e., the pure mechanical boundary condition) is degenerate. In
that case, the external loads must be self-equilibrating for achieving equi-
librium.

2. Adding geometrical constraints or elastic supports always reduces
the number of degrees of freedom of the strainless states, i.e., brings the
strain energy closer to positive definiteness.

These are two general rules of elasticity.

For rods in tension, since the strainless state of the degenerate problem
has only one degree of freedom, the strain energy is positive definite pro-
vided that one of the ends has been geometrically restrained or elastically
supported.

To sum up, starting from the concept of energy and establishing the
energy equation for a given deformation mode, we can derive all equations
about elastic equilibrium of rods in tension from the variational principle,
including the equilibrium equation over the rod, the mechanical bound-
ary conditions for all types of loading and elastic support, the interface
conditions at discontinuity, and so on. In contrast with the statement of
equilibrium in terms of a differential equation boundary value problem,
the variational problem only needs the geometrical boundary conditions
as constraint conditions. In the variational problem, if we put the all
relevant contributions into the energy functional then all other mechan-
ical boundary conditions, as well as the equilibrium equation, are satis-
fied automatically when the potential energy achieves a minimum. The
mechanical boundary conditions conditions involve the derivatives of u
and and the from are comparatively complex. In particular, the interface
conditions are the natural boundary conditions. Note that the retained
essential boundary conditions in the variational problem only involve the
function u itself. Their form is comparatively simple, while the natural
boundary conditions caused by the discontinuity of coefficients at an in-
ter face point are more tedious. These conditions can not be neglected
in the statement in terms of the boundary value problem of differential
equations, but these complications be simplified or neglected altogether
in the statement in terms of the variational problem. Therefore, the vari-
ational principle leads to great simplification in practice. It puts complete
information about equilibrium into an extremely compact energy expres-
sion. Here we state the variational principle in a quite abstract form,
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which makes it suitable for various kinds of elastic equilibrium problems.
The conclusions derived from the equilibrium problems of rods in tension
are generally valid in elasticity. Though the idea of the variational princi-
ple can clearly be explained through simple cases, its advantages become
clear only when the problem is more complex. The following discussions,
will gradually make these advantages clear.

§4 Stretching and Compression in Various Directions

4.1 Hook’s law and strain energy

We can now proceed to discuss three dimensional stretching and compres-
sion under three dimensional loads in the light of our knowledge of the
simple stretching and compression under one dimensional loads. Consider
a rectangular parallelopiped whose the lengths in the x,y and z directions
are L, Ly, L, respectively. The loads F3, Fy, F, are applied uniformly in
the z,y and z directions. We discuss the stress and strain states within
its body. This problem can be considered as the superimposition of three
independent problems with unidirectional loading.

The stresses and the strains caused by the z-directional load F, alone

are
o) = F, /A, = Fy/L,L,, o =0, oV =0,
el = agl)/E, eg(,l) = —1/65;1), eM = —pell.
Similarly,
o =0, o\ = F,JA, = F,/L,L,, 0¥ =0,
e?) = —1/61(42), e?(f) = al(,z)/E, e?) = —1/5?(,2).
And

0;23) =0, 0753) =0, 023) =F,/A, = Fz/LmLyv
(3) 3 68 _ _

Ex = —VE; , €y

1/523), 623) = 5&3)/E.
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The results of the linear superimposition are

3 3
o= Yool? = ol o, = Y o) = of?
=1

i=1

3
Oz = Z 0.21) = 0-§:3)7
=1

3
, 1
ea = el = Ea&” — %(052) +0),
=1
S o L@ Y, . 6
Eyzzsy = g% _E(Uz +a37),
=1

eo=Yoel) = 2ol - 2ol 4 of2),
=1

Hence we obtain the Hooke’s law in the case of three dimensional stretch-

ing and compression:

1 1
eo = Zlow —vioy +u)] = Fl1+v)ow — (0w + oy +02))],

1 1

= oy~ vow 0] = 201 +V)oy —Mow + oy b, (@)
1 1

€, = -E[az —v(og +0y)] = E[(l +v)op — v(0og + 0y + 03)].

By further superimposing the above three expressions, a relation between
the sum of the three dimensional strains and the sum of the three dimen-
sional stresses can be obtained:

1-2

i (02 + 0y + 02). (4.2)

€z teyte= E

Thus the inverse of (4.1) can be expressed as

E
7T T+ v)(1—2v) (1= v)es ey +e2)]
_ FE Ev
ST aroas 211)(6ac Teytes),
oy = B [(1—v)ey +v(es +e2)]

(1+v)(1-2v)
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_FE Ev
ST A -
E
A )i-2)

_E + Ev
T+ T )1 - )

(ec + ey +€2),

g, =

(1 —v)e, +v(es +&y)]

(ex + ey +€2). (4.3)

Since the direction of o, coincides with that of &, but is orthogonal
to that of ¢y and ¢, the contribution of o, to the strain energy per unit

1 . e
volume is 5%%’ according to (2.8). Similarly, there are contributions
1

1
30vEy and 50z Hence the volume density of the strain energy is

1
W = 5(%% + oyey +0.€,). (4.4)

Substituting (4.3) into (4.4), we obtain

E

2 2 2 v
(ez +e, +e3) + A+ 21 =20)

= %{1+V (sz+sy+sz)2}. (4.5)

W is a quadratic form (quadratic homogeneous expression) in e, &y, €2,
and we have

W oW oW
’”_aew’”y_asy’ £ 0e,
Hence 1,0W oW W
W=- 2. .
2(85x6$+36y8y+8526) (4.6)

4.2 Changes of volume

The relative change of volume can be expressed in terms of the three
components of the strain. The original volume V = LyL,L,. Suppose
the elongations of the three edges after deformation are §L.,6L,,6L,,
respectively. Then the increment of volume is

6V = (6Ls)LyL. + (6Ly)L Ly + (6L.)LoLy,

hence the relative increment of volume is

6V _ 6L, 6L, 6L
vV L, L, I,

=g+ ey + ey, (4.7
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i.e., the sum of the strains in the z,y and z directions.

Consider the special case, of isotropic compression (or stretching). In

1-—
this case 0, = 0y = 0, = 0, hence e, = ¢y = ¢, = ¢, and € = 2Va.
Thus
1% 3(1-2v)
=3 =
v o E 7
or
oV
0'=K-7 :3K€, (48)
where
E
= 4.9
3(1 - 2v) (49)

is the bulk modulus, a constant describing the resistance of the solid mate-
rial to compression of volume.

The volume density of the strain energy is then
3 9Ke? o?

W = 5(0251 + oyey +056;) = 505 =

= —. 4.10
2 2K ( )

The modulus K is always positive for any material. This means
that the volume becomes smaller during compression and becomes larger
during stretching. If K < 0, the elastic strain energy would be negative.
Deformation would occur spontaneously and without limit because the
material always tends towards the state of the minimum potential energy.
But this is impossible.

E 1
So K = m > 0 and equivalently 1 —2v > 0, ie., ¥ < 2" This

is actually an upper bound of Poisson’s ratio. For rubber, v ~ 1, which is
close upon this upper bound. On the other hand, for all known materials,
v > 0. So far no materials with v < 0 have been discovered. (This would
mean that when one direction is stretched, the other two directions also
stretch.) Only for porous solids, such as cork, is Poisson’s ratio close to
the lower bound v ~ 0.

Another important special case of stretching is so-called “single-direc-
tional compression”. A rectangular parallelopiped is compressed and
shortened in the longitudinal direction, but the two transverse direc-
tions are restrained by rigid walls and cannot stretch or compress, i.e.,
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gy = €, = 0. Then (4.3) implies that

_ EQ-v) -
7= = (1+u)(1—2y)€””_E€”"
r__ E(I—V)
B = (1+v)(1 -2v)’ (4.11)
Ev
Oy =0,

Tl -2)™

1 1
W = 300 = §E’ei.

1
E' > E,since 0 <v < 5,(1+V)(1—21/) =1-v—-2v2<1-v. Thus
we can see that the tensile rigidity of the transversely fixed rod, which is
loaded longitudinally, is larger then that of the transversely free rod..

§5  Shear Deformations

5.1 Shearing stresses
In the above case of isotropic compression, the strains in all directions
are identical. Hence the body’s shape does not change—only its volume
varies. The opposite occurs in another special case, i.e. the volume re-
mains unchanged while the shape varieds. This is called a simple shear or
shear deformation. In this case

oV

7=€z+6y+€z=0. (5.1)

By (4.2),
oz +0y+0,=0. (5.2)

In order to discuss the simple shear, it is necessary to discuss com-
pletely the stress defined in §4.1. Taking a cross section s normal to the
+z-direction, denote by 045, 0yz, 0,5 the components of force per unit area
in the z,y, and 2, directions, by which the positive side st acts on the
negative side s~ across s. Similarly, denote the three components of stress,
respectively as o4y, 0yy, 0,y When the normal direction of the cross section
is +y. Similarly when the direction the cross section is +z (Fig. 12).

Hence there are nine components of stress at each point. Among these,
Ozz,0yy and o0,, are the components of normal stress and the other six
Ozy,Oyz, " -+ are the components of shear stress.
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Fig. 12 Fig. 13
In the case of the isotropic stretching and compression in §4.2,
Ogx = Ogy Oyz = Oz = 0,
Oyy = Oy, Ogy = 0y =0, (56.3)

Ozz = 0zy Ogz = Oyz = 0,

i.e., there are only normal stresses but no shearing stress.

Now consider a cube of unit volume. A pair of uniformly distributed
forces, which are tangential to the faces and have no component in the z-
direction, acts on the left-right and front-back pairs of laterals. According
to the equilibrium of forces and moments, the forces of each pair are equal
in magnitude but reverse in direction (Fig. 13). We can assume that the
stress distribution in the body is also uniform. Then we obtain

Oz =0, Oyg =T, Ozz = 0,
Ogy =T, Oyy =0, 0,y =0, (5.4)
Ogz =0, Oyx — 0, 0.2 =0.

Hence the stresses acting on the cross sections with the normal directions
and y, respectively, are all shear stresses and there are no normal stresses.

5.2 Shear strains
If we rotate the coordinates axes in the zy plane through 45°, the trans-
formation relations between the new and the original coordinates are as
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follows: 1 1
g ="=(z+y), y¥y=—(-z+vy), 2 =2
\/5( Y), ¥ ﬁ( y)

Inverting these relations yields

/

1 / / 1 ! /
r=—(x — , = —(x + y 2 =2
A& Vs v= 5@+

(7 \ Consider the equilibrium of
forces acting on the triangle
shown in Fig. 14. The lengths
of the two sides of the trian-
gle are 1, and the length of
the hypotenuse is v/2. Then

Yy -7
from the equilibria of the z-
o directional forces and of the y-
0 ——— ¥ directional forces, we get
_T’ -
\/Ea':c:c’ — Ozy = 0,
Fig. 14 V20,4 — Oy = 0,
ie.,
o T _ T
T ﬁ ﬁ’
Oyz T

Oyz! = E = ﬁ
Here, 04, and oy, respectively, stand for the z-and the y-directional
components of the stress on a cross section normal to the z’-axis. Thus
the z'-, y'-, and z'-directional components of the stress are

1
01:’1:’ = E(o’xxl -|— nyl) = T’

1 5.5
O'y/z/ = —\/__E(—o'zml -|— nyl) = 0, ( )

Opre = 0.

For the same reason, the z’-, ¢'-, and 2’-directional components of the
stress on a cross section normal to the y’-axis are

U:c’y’ = O, O'ylyl = —T, Ua;’y’ =0. (56)
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Moreover, since no forces act on the top and bottom,
Ogry =0, Oy =0, 0, =0. (5.7)

We observed that in the new system of coordinates z',y', 2’ (z',y/
correspond to the diagonal directions of the original square block), (5.5)—
(5.7), which are just like to the stretching and compression in all directions
as described in §4, stand for stretching in the z’-direction and compression
in the y/-direction. Hooke’s law takes the form

Ou 1 1+v

5'1;—’_ = Eplg = 'E(UIIII — Vay'y’) —_ _E—Ta

o' 1 ‘ L+

a—y, = Eylyl = E(Uy,y, —_ l/O'zIz/) = — 5 T, (58)

ow' 1
—(O'ZIZI — VO — I/Uylyl) =0.

_—= EZ’ ;] =
oz * E
There is no change of volume because

1% 1+v 1+v
——:€IIII+EnyI-+—EZIZI: E T — E

% 74+0=0.

Return to the original system of coordinates z,y,z. In order to de-
scribe the shear deformation, in addition to the components of the normal
strain

Ou ov ow
Exz = %7 Eyy = a—y'; €zz = 52_a

we also need to define the components of the shear strain as follows:

: 1,0v Ou
€zy=€yz=§(%+a—y),
Eyr = oy = %(%% + %), (56.9)
1,0u Ow
Ezzzezzzi(a—z'i'a—).

In the case of small strains (See Fig. 15),
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ax— g ~ )
Ou
_:t ~

hence
1
Ezy = Eyz N 5(o[ + ﬁ)

1
= . 5.10
57 (5.10)

Chapter 1 Simple Modes of Elastic Deformation

Ay

0
Fig. 15

After the deformation, the included angle of the local z — y frame

of axes, which is 7/2 originally, is decreased by . Thus, the geometric

meaning of the shear strain e, is y called the half angle of shear. Ezy > 0

indicates that the right angle becomes acute, while ¢,, < 0 indicates that

the right angle becomes obtuse. In Fig. 15, the angle of shear is vy = o+ 3.

5.3 Hooke’s law and the strain energy of shear deformations

Since
u = ﬁ(u+v), v = %(—u+v),
0 1,90 0 0 1 7] 0
00 =it 5y) ay m A m ey
we get
o 1o o0 00 ouy
Oz 2\0zx 9Oy Oz Oy

1
= 5 (Eaa +eyy + 260y) = €0y,

3_1)'_1(9114_8’0 6v_8u>
oy 2\8z Oy Oxr Oy
1
= ~(ezo + Eyy — 265y) = —Egy. (5.11)

2

Hooke’s law for shear deformation can then be obtained from (5.8), as

oy = 5G %

1 E

2(1+v)

This indicates that the shear stress 7 is proportional to the angle of

shear vy

=G, (5.12)
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G is a material constant called the modulus of shear rigidity.

The volume density of strain energy of the pure shear deformation is

1
W = §(Um'z'€z’x’ + oyyeyy) = - (Ony€ay + Oyztya)

2
1 1 1
= Ogyfay = 57")’ = 5G’Y2 = 2—éT2. (513)

§6  Torsion of Circular Rods

6.1 Deformation modes

Take a circular rod with radius @ and length L. Suppose one of its ends
z = 0 is fixed. A moment M is exerted at another end z = L to twist
it. The angle of rotation is 2. For the sake of convenience, cylindrical
coordinates (r, 6, z) are employed and the unit vectors e,, ey, e, constitute
a right-hand system (Fig. 16).

Fig. 16

After the torsional deformation, each cross section normal to the z-
axis of the circular rod is twisted through an angle w = w(z) relativize
to the cross section at the fixed end. The angle of twist depends on the
axial coordinate z of the cross section, and w(0) = 0,w(L) = Q. Since the
cross section of the circular rod is uniform and no load has been applied
at anywhere except at the two ends, the rate of twist will be uniform, i.e.

__dw Q

f=T =1 (6.1)
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Inside the circular rod, the mass point located on every cylindrical surface
with radius r = constant will still be on that cylindrical surface after the
twist. In fact, the mass points on each meridian circle still stay on that
meridian circle and are displaced only in the 6-direction. The fibre parallel
to the z-axis on every cylindrical surface is then deflected by an angle but
still stays on that cylindrical surface. Hence a torsion deformation is a
pure shear deformation without change of volume. The apparence of such
a shear deformation is that the included angle of the local (e, e;) frame of

axes is diminished by an angle 7, i.e., the component of strain is g, = 57.

Consider a cylindrical surface » = constant between z and x + dzx.
After deformation, the direction of the line element on the meridian circle
of that cylindrical surface, i.e. tangential to ey, is unchanged. The angle
of deflection of the line element parallel to e; is . The angle of rotation
of the cross section at x + dx relative to the cross section at x is dw. It
can be seen from Fig. 17 that

l =~dzr = rdw.
Hence the angle of shear is
dw Q
'y—rzi;—ré—r—L—. (6.2)

Fig. 17

Hence this is a nonuniform shear strain depending on the radial coor-
dinate r.
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The corresponding shearing stress oy, = 7 is the #-directional compo-
nent of the force per unit area acting on the negative side from the pos-
itive side of the cross section. Here the normal direction is the +z-axis.
Since no load has been applied in the r-and z-directions, the correspond-
ing components are ¢, = 04, = 0. According to Hooke’s law for shear
deformations,

T =Gy = Gér.

The moment of shearing stress per unit area is
T = Gyr = Gér?.

Hence the total moment of the shearing stress (of the positive side acting
on the negative side) on the cross section S, i.e. the moment of torsion
about the z-axis, is

M, = [/ Trds = / Gér? - 2rrdr = GJE, (6.3)
S 0
where .
J= 271'/ r3dr = Zgt. (6.4)
0 2

The relation (6.3) can be regarded as Hooke’s law for torsion defor-
mation of circular rods, where the “strain” is represented by the rate of

twist & = -({w—, and the “stress” is represented by the moment of torsion
M,,. The coefficient GJ is called the torsional rigidity of the cross section,
and J is called the geometric torsional rigidity. J depends only on the
shape and measure of the geometry of the cross section, but is independent
of the material of the circular rod.

In the present case, where the rate of twist is uniform the moment of
torsion M, = GJ¢ is independent of the coordinate x : M, = M. Hooke’s
law for uniform torsion can then be obtained from (6.2) as

M Q
7=

which is similar in form to Hooke’s law for uniform tension (2.1).

6.2 Variational principles and equilibrium equations
The density of strain energy for torsion of a circular rod is

1 1
W = 577 = §G£2r2.
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Hence the line density of strain energy is

_ aq 1
W= // Wds = / §G§2r2 - 2mrdr = EGJ§2. (6.5)
s 0
Clearly, o
w 1

and the total strain energy of the circular rod is

L__ L1 L1
/ Wdz = / I Meds = / SGIEds
0 0

=/0 GJ(‘;‘;) do

= ED(w,w). (6.7)
The corresponding bilinear functional of virtual work is
dw dcp
GJ— 6.8
Dlw, ¢) / dx d:v (6:8)

Supposing a torsion load per unit length g, = p is exerted along
the longitudinal length of a circular rod. The work done per unit length
L

through the angle of rotation w is pw. Hence the total work is / pwdzx.
0

Furthermore, suppose two concentrated torsion moments mg and my, act
at the two ends x = 0, L and the work done by the two moments is mqwg
and mpwy, respectively. Hence the potential energy of external work is

L
—F(w) = —(/ pwdz + mowo + mpwr). (6.9)
0
The total potential energy of the circular rod in torsion is then

J(w) = D(w,w) — F(w)

2

1/ GJ(d”) p /L P (6.10)
o — x — x — —_— .
= 2 0 dz 0 Hw mowo mrwr,

The mathematical form of (6.10) is identical with that of the rod in ten-
sion, and is only different in the mechanical meaning. Hence, by §3, the
variational problem

J(w) = %D(w,w) ~ F(w) = Min (6.11)
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is equivalent to
D(w,p) — F(p) =0, for all ¢, (6.12)

and is also equivalent to

(d dw
—ZE(GJZZE) =p, 0<z<L, (6.13)
—GJj—: = my, z =0, (6.14)
dw
\GJ% =my, z=0L. (6.15)

(6.13) is just the equation of torsional equilibrium, while (6.14) and (6.15)
are equilibrium conditions of the torsion moments at the two ends and
are just the natural boundary conditions. The strainless state is w =
¢(const.), i.e., the whole circular rod rotates through a constant angle ¢.

The boundary conditions can also be changed into geometrically con-
strained, i.e. essential, conditions. For example, the natural boundary
condition (6.14) can be replaced by the constraint wy = @y and (6.15) can
be replaced by the constraint wy = @r,.

6.3 Torsion of circular tubes
Although the above discussion concerns circular rods, all the arguments
hold for circular tubes as well, so long as the cross sectional integral is

//---dSz/ -« 2mrdr,
S b

where a is the external radius of the circular tube and b is the internal
radius. Then except that the geometrical torsional rigidity (6.4) should
be changed to

modified into

J= / 2nrdr = g(a4 —b%), (6.16)
b

the other arguments and formulas are still valid. Let A = 7(a? — b?) be
the area of the cross section of the circular tube and A; = wb? be the area
of the hole, then

T

Jiube = 5(a4 —b*) = (A% + 24A) /2.

For the circular rod, because b = 0, A; = 0,
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Jrod = ga‘* = A2/2n.

Hence, under the condition that cross sectional area A is the same, the
torsional rigidity

Jrod S Jtube-

It follows that, the circular tube has a greater torsional rigidity than
that of the circular rod under the condition that the same amount of
material has been used for both cases, and consequently, the circular tube
undergoes a smaller deformation under the condition that the external
forces are the same.

§7 Bending of Beams

7.1 Deformation modes

A slender rod (beam) yields by bending, which is a special kind of defor-
mation, under the action of a bending moment or transverse load. Suppose
the longitudinal direction of the beam is the z-axis. Then bending occurs
in the zy-plane, and the coordinate axes z, y, z consist of a right-hand sys-
tem. The longitudinal fibre element of the beam is a straight line segment
before the deformation, and bends into an arc after deformation. Suppose

. . 1 . .
its curvature is K, = :}:E, where R is the radius of curvature. To be defi-

nite, suppose it is downwards convex (Fig. 18). Then K, = % The total
length of the line element is fundamentally unchanged during the bending
deformation. Speaking more exactly, there is a neutral surface within the
body of the beam, and on that surface the length of the longitudinal fibre
is unchanged. The longitudinal fibres elongate below the neutral surface
and shorten above the neutral surface. This leads to a downwards convex
condition.

Choose coordinate axes that make the neutral surface correspond to
y = 0 before deformation, and make the coordinate y indicate the height
of departure from the neutral surface. For an arbitrary fibre element with
length dx departing distance y from the neutral surface, its length becomes
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dx' after deformation. The increment is du, = dz’ — dx, where u, is the
z-directional displacement.

y ~
2L 2 e
a4 o —= T
Z - iy

/ dx

-~ —_— ~
25% o C

Z

Z b

= dx dus

dz’
Fig. 18 Fig. 19

A proportional relationship can be obtained from Fig. 19 as

qo o B _ d=

y R’

hence p
Uy -y
Tz = = — = —-Kz . 71
€ = =R y (7.1)

Since K, > 0,ezr; < 0 means compression, with y > 0, while €, > 0

means stretching, with y < 0. Hence the bending of beams is a kind of
nonuniform pure stretching and compression. The corresponding normal
stress based on Hooke’s law is

O¢z = Eepe = —EK,y, (7.2)

02z stands for the force per unit area acting on the negative side from
the positive side of the cross section S normal to the z-axis, and yields
a moment of rotation about the z-axis, i.e., the z-directional bending

M, =— // yo.edS = EK, // J2dS. (7.3)
S S

Since the beam is not subjected to longitudinal loads, the resultant

moment

force of the longitudinal stresses over every cross section vanishes, i.e.,

// 02edS = —EK, // ydS = 0,
S S
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g://sde///SdS:O,

where 7 is the y-coordinate of the center of mass of each cross section.

Hence g is 0:

It follows that the intersecting line of the cross section and the neutral
surface y = 0, i.e., the z-axis, passes through the center of mass. Hence
the inertial moment of the cross section rotated the z-axis is

L= [[w-0ras = [[ 4as.

Consequently, the bending moment (7.3) can be expressed as

M,=ELK, = DK,, D= EI,. (7.4)

In the bending problem for beams, one may take the point of view
that the “strain” is described by the curvature K, and the “stress” is
described by the bending moment M,. Hence the relation (7.4) indicates
that the stress is proportional to the strain and can be called the Hooke’s
law for the beam bending problem, where the constant D = F1I, is called
the flexural rigidity of the cross section. The larger its magnitude, the
more the bending can be resisted. Obviously, for a given kind of material
and a given expenditure of material, i.e., a given cross sectional area, the
farther the distribution of material in the cross section departs from the
z-axis, the larger the magnitude of I, i.e., the larger the flexuous rigidity.
Examples of this occur in daily life. For the beam of rectangular cross
section shown in Fig. 20, the power of resistance to transverse bending is
very different from the resistance to vertical bending.

Fig. 20

Now let us try to express the curvature K, in (7.4) in terms of the
transverse (y-directional) displacement. Suppose every point on the neu-
tral surface has a transverse displacement u, = u,(z) which is generally
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called the deflection of the beam. Hence the angle of rotation w, = w,(z)
about the z-axis and the curvature K, = K,(z) can be expressed as (Fig.
21)

¢ duy
Wz = —F—,
& dr Y
dw,
K,=——.
dsS
For this small deformation, the arc
length ds = dz,tgw, =~ w,, hence Wy
the curvature is
m 5 | \ » I
dw, d*u U
K="= (9 Fig. 21 °
The bending moment is
d’u
M,=FELLK,=EI,—X. 7.6
d.’I:2 ( )

7.2 Variational principles and equilibrium equations
For brevity, we will neglect the subscript which indicates the spatial di-

rection, and denote the derivative e as u', i.e.,
x

uy=u, w,=w=1u, K; =K =1",
M,=M =EFEI,LK =FEL4".

Since the bending deformation is variety of nonuniform pure stretching
and compression, the strain energy per unit volume of the beam can be
obtained from (7.2) as

1 1
W = iazzeww = 5

Hence the strain energy per unit length is

_ 1 1
W = // WdS = ~EK? // y?dS = ~EI.K*
s 2 S 2
1

= SBL(") (7.7)

1., .
Ee2 = EEK%P.

Clearly,

=

[l

o]

-~

=

||
S

- 1
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Hence the total strain energy of the beam is
b 1 rb
P(u) = / Wdo = - / M(u)K (u)de
I 2 1 v
= / EL(u"Y'dz = - D(u,u), (7.9)
the corresponding functional of virtual work is
b b
D(u,v) = / M(u)K (v)dz = / ELu"v"dz. (7.10)

Suppose the beam is subjected to a transverse load. The force per
b

unit length f, = f does work / fudz in the direction of the transverse

displacement u. Furthermore, sﬁlppose both the ends of the beam z = a, b
are not subjected to geometric constraints but subjected to transverse
point forces gq,gp and z-directional point bending moments mg, m;, re-
spectively. The work done by them in the directions of the transverse
displacement u and in the z-directional angle of rotation w = ' is

Jala = GoUp + Mg, + mpuy.
Hence the total potential energy of external work of the beam is
b
—F(u) = —{ / fudz + gauq + goup + maul, + mbuf,}, (7.11)
a
consequently, the total potential energy is

Jw) = 5 Dlu,w) ~ F(w)
= % / ' EL(u")%dz

b
—/ fudz — gauq — gyup — maul, — myuy,. (7.12)
a

By the variational principle in §3, the displacement u of the equilibrium
configuration satisfies

1
J(u) = §D(u,u) — F(u) = Min (7.13)
which is also equivalent to

D(u,v) — F(v) =0, for any v. (7.14)
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The equilibrium equation and the equilibrium conditions of forces and
moments at the two ends can still be derived from (7.14). To this end, we
must perform integration by parts twice:

b
D(u,v)=/ ELv"v"dz
b
= —/ (ELu")v'de + [ELu"v'}
b
- / (ELu")'vdz — [(ELu")v] + [ELu"v"]E.
Hence

b
D(u,v) — F(v) = /a (ELv")" — flvdz

+H—(ELu"), — gylvp + [(ELu"), — galva
+(ELy} — mp)vp + (—ELu] — mqa)v,,

=0. (7.15)

Because v(z) is arbitrary, v,, vs, v, and vy, the above expression is equiva-
lent to

((ELW")" — f=0, a<z<b, (7.16)

(ELu"), — g, = 0, z =a, (7.17)

{ —(ELu")g —me =0, z=a, (7.18)

—(ELY"),—gp=0, zx=0b, (7.19)

L (ELu")p — mp =0, z=b. (7.20)

Now let us explain the mechanical meaning of (7.16)—(7.20). Take
an arbitrary interval (z1,z2) on the beam. The transverse shearing force
yielded by the shearing stresses o, on each £— cross section of coordinate
x is

Q(z) = //S 0,2dS. (7.21)

Moreover, the bending moment yielded by the normal stresses o5, on the

M(z) = —//S YO z2dS.

cross section s is
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Considering the equilibrium of the y-directional forces on the beam
element between (z1,z2) (See Fig. 22), we obtain

Q) - Q)+ [ gas = [ (52 + 1)ao -

s T er{m

As the above expression holds for arbitrary x, 2, the equilibrium equation
of shearing forces is

—-dQ
—~=F§. (7.22)

Considering the equilibrium of the moment rotated the z-axis on the same

interval, we obtain
(M(22) + 22Q(22)) — (M) + 21Q(e1)) + / " af/ds

- [+ @@ +arlas -

The above expression holds for arbitrary zi, z2, hence

%ﬂé+——(wQ)+xf—O

Noting (7.22), the equilibrium equation of the moment is then obtained

dM

Substituting (7.23) into (7.22), the equilibrium equation of the beam is

M
dx?

= f.

This is exactly the equation (7.16) derived from the variational principle.
In addition, the shearing force at the left end z = a is

Q. = M, = (EL,u"),, (7.24)
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and the shearing force at the right end x = b is
Qp = —My = —(ELu")j. (7.25)

Hence the boundary conditions of the differential equations (7.17) and
(7.19) give the equilibrium of the shearing forces at the two ends. At the
same time, the bending moment at the left end = = a is

M, = (ELu"),, (7.26)
and the bending moment at the right end z = b is
My = (ELu"). (7.27)

Hence the boundary conditions (7.18) and (7.20) denote the equilibrium
of the moments at the two ends.

The equilibrium equation (7.16) is a fourth order differential equation
of the displacement u. In order to determine unique solution, 4 bound-
ary conditions are required. (7.17)—(7.20) give just the needed conditions.
Since these 4 boundary conditions do not appear in equations (7.13) and
(7.14) of the variational problem, they are the natural boundary condi-
tions, giving the equilibrium of the forces and moments at the two ends
and the mechanical boundary conditions as well. To sum up, in regard to
the equilibrium of beams, we have

du
the angle of rotation: w, = d—y,
x
dw, d*u
the curvature: K, = — = —2
£ dx dz?’

2
the bending moment: M, = EILK, = EIZ(Z—::;,

dM, d d?
the shearing force: Qy, = ——— = ( I uy),

dzx Cdz 77 dg?
and the equilibrium equation: —d—y = fy, 1.e.,
z
M, d? d?u,
dz? :@( L dw2> =Jv

7.3 Boundary conditions and interface conditions
Like rods in tension, there are three types of boundary conditions for the
equilibrium problem of flexible beams.
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1. Geometric constraints, dash the first kind of the boundary condi-
tion.

1.1 A fixed displacement

For example, the displacement is fixed at the left end point z = a

T =a:Ug = Ug. (7.28)
At that time, the displacement u of the equilibrium configuration corre-
sponds to a minimum of the potential energy under the prescribed con-
straint, while the corresponding virtual displacement v satisfies the anni-
hilating constraint

z=a:v,=0. (7.29)

By the principle of virtual work (7.14), the displacement u of the equilib-
rium configuration satisfies the following equation,

D(u,v) — F(v) =0, for any virtual displacement v. (7.30)

Using the boundary constraint (7.29), (7.15) becomes

b
D(u,v) - F(v) = / (ELu"Y — flvdz + [~(ELu")s — golos
+[(ELY")y — mplvp + [—(ELu")q — mqlv,
=0.

Hence (7.30) is equivalent to the equilibrium equation (7.16) and the
boundary conditions (7.18)—(7.20). Compared with the free boundary
conditions at the two ends (7.17)—(7.20), it lacks the equilibrium condi-
tion of shearing forces (7.17) at the left end point = a, which is replaced
by the displacement constraint condition (7.28)

1.2 A fixed angle of rotation

If the angle of rotation is fixed at the left end point x = a

T=a:u, = o, (7.31)

then the corresponding virtual displacement v satisfies the annihilating
constraint v;, = 0. Thus, the equilibrium on bending moments at the
end point a (7.18) is replaced by the constraint condition of the angle of
rotation (7.31).
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The case when the geometric constraint conditions (including the dis-
placement and the angle of rotation) are applied at the right end is similar.
2. A prescribed load—dash the second kind of the boundary condition.

2.1 A prescribed point force (concentrated force) and free displace-
ment.

2.2 Prescribed point moment (concentrated moment) and free angle
of rotation.

These two cases have already been discussed above. For example, if a
point force g, is prescribed at the point z = a, then we have (7.17) as the
equilibrium condition for shearing forces. Similarly, if a point moment m,
is prescribed at the point z = a, then we have (7.18) as the equilibrium
condition for moments.

3. Elastic support—dash the third kind of the boundary condition.

3.1 The prescribed elastic reaction force and free displacement.

Suppose there is such an elastic support at the point a. Then we have
an elastic reaction force proportional to the deviation of the displacements
at that point

_ca(ua - 'l_lfa) = —CaUq + Ja, Ga = Calla; Ca > 0.

2

. 1
In this case, a term —~c,u;

1
must be added to the strain energy §D(u, u), a
term —g,u, must be added to the potential energy of external work, and
equation (7.17), giving the equilibrium condition for shearing forces, must

be changed to
(ELu"), = —Qa = —CaUa + ga- (7.32)

3.2 Prescribed moment of elastic reaction and free angle of rotation.

Suppose that at point a there is an elastic support with a prescribed
moment. Then we have an elastic reaction moment proportional to the
deviation of the angles of rotation at that point

% ! — * / X — *
—ci(Uy — @g) = —Colly + Mg, Mg = Chlg, Cp > 0.

2
a

1 1
In this case, a term iczu must be added to the strain energy ED(U’U)’
and a term —mgu;, must be added to the potential energy of the exter-
nal work. Equation (7.18) giving the equilibrium condition for bending

moments must be changed to

—(ELu")y = —M, = —ciul, + m,. (7.33)
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At each end point, any two of the above six boundary conditions deter-
mine the solution of the equilibrium problem:. However, the prescribed dis-
placement and free displacement conditions cannot hold simultaneously;
neither can the prescribed angle of rotation and free angle of rotation hold
simultaneously. In the variational principle, only the first kind, i.e., the
geometric boundary condition must be set out as a condition for determin-
ing the solution, which is the essential boundary condition. The second
and the third kinds, i.e., the mechanical boundary conditions in the vari-
ational problem are the natural boundary conditions and need not be set
out explicitly. This point is just the same as in the case of the variational
principle for rods in tension.

In practice, the following three combinations of boundary condition,
for flexible beams are encountered most often.

1° A fixed end: u = 0 (essential), v’ = 0 (essential), at the end a shown
in Fig. 23(a).

2° A pinned end: u = 0 (essential), v” = 0 (natural), at the ends a
and b shown in Fig. 23(b).

3° A free end: (EILv") = 0 (natural), u” = 0 (natural), at the end b
shown in Fig. 23(a).

(a) (b)

Fig. 23

A further case is that of a beam on an elastic foundation, i.e., a beam
is elastically coupled with a foundation along its longitudinal direction.
Suppose that within a certain interval ¢’ < z < b(a < d < ¥ < b) an
elastic reaction force per unit length of —c(u — @) = —cu + f, f = c@, is
applied, where c is the constant of elastic coupling. f may be absorbed into
the load f and the elastic reaction force per unit length may be regarded
as —cu. In the interval without elastic support, we may let ¢ = 0. Then
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1
a term of 2 / cu’dz must be added to the total strain energy. The

equilibrium eq%ation (7.16) becomes
(BELu")" + cu = f. (7.34)

Now we discuss interface conditions.

If the flexuous rigidity EI, of the beam is discontinuous at z = p, e.g.,
because the cross section or the elastic modulus has a jump (Fig. 24) or
there is a concentrated load 7, acting at « = p, then a term —r,u(p) must
be added to the corresponding potential energy of the external work. In
such a case, integration by parts must be carried out piecewise during the
derivation of the equilibrium equation from the variational principle. The
interface conditions at = p can be derived as follows:

—[QILo = (BLu") iy =, (7.35)
(M5 = [ELu"BLg = o. (7.36)

(7.36) indicates that the bending moment is always continuous whether
there is a concentrated force or not. However, when there is a concen-
trated load at z = p, then (7.35) implies that the shearing force must
have a jump at that point so as to produce an effective transverse point
force to achieve equilibrium with the concentrated load. The interface
conditions (7.35) and (7.36) are the natural boundary conditions, which
can be derived automatically from the variational principle. In addition,
it is still necessary to impose the continuity conditions of the displacement
and of the angle of rotation, ‘

Lhto=0, []=p%=0. (7.37)

'

Fig. 24
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It should be pointed out that, the energy functional contains only
the first derivative of the displacement u’ for the beam in tension, while
the equilibrium equation containing u” is of second order. The essential
boundary condition containing u is of only one choice, while the natural
boundary condition containing u’ is also of only one choice. However, the
energy functional contains the second derivative of the displacement u”
for the flexible beam, while the equilibrium equation containing u"” is of
fourth order. Thus, the essential boundary conditions fall into two classes,
according to whether they contain u or u’. Likewise, the natural boundary
conditions divide into those that contain u” and those that condtain u".
Furthermore, the boundary conditions may be combined in many ways.
Hence, in comparison with the rod in tension, the situation here is quite
complex. In the variational principle form, the complex natural boundary
conditions (including the interface condition) can be omitted and the order
of the derivative of u in the energy functional is lower two ranks than that
in the equilibrium equation. Thus the superiority of the mathematical
formulation in terms of the variational principle becomes much clearer of
the beams bending than in the case of rods in tension during the actual

solution process.

7.4 Strainless states
The strain energy of bending is obviously nonnegative, i.e., satisfies

b
D(v,v) = %/ EI,(v")2dz > 0, for any v.

However it becomes degenerate when the boundary is not subject to any
geometric constraints. This is because

D(v,v) =0 <= v"(z) =0
<= v(z) = a+ fz = avV(z) + Bv?(z),
vW(z) = 1,0 (z) = z. (7.38)
Hence the strainless state has has two degrees of freedom. One of them is
a transverse rigid translation v(z) = av()(z) = o, while another one is an
infinitesimal rigid rotation v(z) = Bv(®(x) = Bz about the z-axis. It has

already been proved in §3 that a necessary and sufficient condition for the
existence of solutions f of the degenerative equilibrium problem (7.13) or
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(7.14) is
F(v®) =0, i=1,2,
ie.,
) b
F(’U(z)) = / fd:L' + Ya + gb = O, (739)
b
F(v(z)):/ zfde+a-go+b-gy+me+my=0. (7.40)

These two expressions denote the equilibrium of the y-directional forces
and the equilibrium of the moments of rotation about the z-axis of the
external loads.

Under the prerequisites (7.39) and (7.40), there exists a solution of
the equilibrium problem of rods in bending but the solution for the dis-
placement is not unique and may differ by a rigid motion a + Bz. Since
the rigid motion contributes nothing to the bending moment and to the
shearing force, the solution for the stress is still unique.

We have already seen in §3 that introducing geometric constraints or
elastic supports in a problem always reduces the number of degrees of
freedom of the strainless state, i.e., to raise the positive definiteness of
the strain energy for rods in tension. This is also true for bending beams.
For example, if the angle of rotation uf is fixed at end point a, then
the virtual displacement v satisfies the annihilating constraint condition
v'(a) = 0. Hence, in the strainless virtual displacement v(z) = a+ 3z, =
v'(a) = 0, and v = @, which means that the strainless state must be a
rigid translation. Thus, one degree of freedom is eliminated. Furthermore,
if the displacement u, at point a is fixed, then the virtual displacement
v should also satisfy v(a) = 0, so that the strainless state is v = 0. The
strain energy D(v,v) becomes positive definite and there exists a unique
solution of the equilibrium problem.

The case of elastic supports is similar to the above. For example, when
an elastic reaction force and a moment act simultaneously at the end point
a, then the strain energy becomes

1 I 2 1 2 1 *, 12
§D(v,v) = 5/ EL(v")*dz + —cqu; + =Cov

2 a”a’?’

e >0, ¢ >0.
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Clearly,
D(v,v) =0<= 1" =0,v,=0,v, =0 <= v =0.

Hence D(v,v) is positive definite.
Furthermore, for the beam on elastic foundations, the strain energy is

1 1 b 1\2 1 2
§D(v,'u)::§/ EIL(v") dw+§/ cvide.

Hence the strainless virtual displacement must be v = 0 provided that
¢ > 0 over an arbitrary small interval.



Chapter 2
Static Elasticity

In Chapter 1, we learned the basic concepts of elastic displacements,
strains, stresses, Hooke’s law, strain energy, and variational principles
of energy by discussing on some simple but typical elastic deformation
modes. Now it is possible and also necessary to further systematize these
fundamental concepts and rules and to organize a set of comparatively
complete theories so as to solve the more complicated and more difficult
problems of elastic structures, that we meet in engineering practice and
in scientific experiments. We give a brief introduction to the fundamental
theory of linear static elasticity will be given in this chapter.

§1 Displacements and Strains

1.1 Strains

Choose a set of rectangular coordinates in the three dimensional space.
For brevity, name the coordinates z = 1, y = z2, and z = x3. Suppose
there is an elastic body € which becomes ' after a deformation. A mass
point, whose position vector is £ = (z1,2,#3)7 in the internal body of
Q, moves to =’ = (x},zh,24)T after the deformation. Consequently, it

undergoes a displacement v =z’ — z, i.e.,
! T
o=z 4y, u=(u,u,uz),  u = ui(z, T2, 23).

The essential point about elastic deformation is that the relative distances
between various points in the body are changed, but any simple displace-
ment of all points is not considered. When a body has made a rigid motion
such as translation or rotation, its position has changed, but the relative
distances between various points remain unchanged, i.e., there is no de-
formation. That is the strainless state mentioned several times before.

Take another point z + dz in an infinitesimal neighbourhood of z,
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which changes to a point ' + dz’ in an infinitesimal neighbourhood of 2’

after deformation, dz’ = dz + du. Because
0
Z "Jda,-,, i=1,2,3,

the square of the distance between the two points z and x + dz

3
ds? = dz3,
j=1

(dac] + Z 2 dm,)

Ou;  Ou;
<8l‘, + )dw,da:]
3 Ouy, auk
Z dx; O deidz;
k=1 """
= ds + 2 Z sijda:,-da:j,
i,j
where
1 Buj Bui 3 Buk Buk ..
Eij - —(8.’E’L 8$] kgl 8%1 5.%;)7 ,] = 1)2’3.

In what follows, we always assume that the deformation is sufficiently

Ou;
small, hence the quadratic terms of the derivatives — on the right hand
Zj
of the above expressions are infinitesimals of higher order relative to the
linear terms. This assumption is a fundamental prerequisite of the linear

Uu;
elasticity. Hence, neglecting the quadratic terms of the derivatives 5.’
-
the strain tensor is defined as '
1 311,]' 8u,-
€ii = — — ,7=1,2,3 1.1
J 2(3$i+3$]‘), J (A ] ( )
and we have
ds? =ds® +2 Z gijdz;de;. (1.2)
i,
The strain tensor is obviously symmetric in ¢ and j,
E,'j = 5ji, i,j = 1,2,3. (1.3)

Hence, among the nine components of ¢;;, there are only six essential
components, which are enough to describe the change of relative distances



§1 Displacements and Strains 91

in the elastic body and consequently can completely describe the elastic
deformation. When ¢ = j,

a~ﬁ%gﬁ+aw)—6w /=1,2,3
Y 2\dz;  Bx;/ T Oz’ i

These are the normal strains which represent the rate of elongation of the
displacements u; in the z;-directions. When i # j, €;j = €j; are shear
strains.

Suppose that the included angle of the local (z;,z;) axes, which is
originally 7/2, is decreased by an angle 4. The shear strains €ij = Eji
reprensente the half of the angle of shear v/2 (see §5, Chapter 1).

1.2 Rotations

The rate of change inspace of a displacement field u;(z;, z2, z3) is given by

nine independent partial derivatives —a——z, 1,7 = 1,2, 3. The components ¢;;
.

i
of the strain tensor field of u are symmetric combinations of the derivatives

8u,~
oz j '

is enough to describe the deformation, it is still not enough to completely

There are only six independent €;;’s. Hence, although the strain field

describe the rate of change of the displacement. To describe completely the
rate of change of the displacement, we must introduce the complementary

antisymmetric combinations of o as follows:
N
J

Ou; <9ui)7 i

1
= - = 1,2,3. 1.4
Wij 2(81;1 ax] y 4y ( )

w;j is called the rotation tensor. Obviously it is antisymmetric:

wij = —wji,wii = 0,4,7 = 1,2,3, (1.5)
and we have
Oou;
sz = €ij + wij. (1.6)

There are only three nonvanishing independent rotational components,

e.g., wig, wo3, and wz;. Generally speaking, we assume
Wy = Wo3, w2 = W31,wW3 = Wi2. (17)

. v T
In the tensor analysis, for an arbitrary vector field u = (ur,u2,u3)’,
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we can define another vector field

(rot u); = Ouz _ Oup
1= Oy Ox3’

OJu; Oug

tu)y = —t — —
(ro u)2 6%3 8$1,
8’lL2 6U1

tu)g = o — —

which is called the curl field rot u.
Hence w = (wq,ws,ws)?, regarded as a vector field, is half the curl of
the displacement field u(z1,z2,z3):

1
w=g rot u. (1.8)

The rotation tensor w;; contributes nothing to the elastic deformation,
i.e., makes no contribution to the change in relative distances. However,
it has its own geometrical meaning. Let oz1zy be the local (z1,z2) coor-

dinate system which becomes o'z z}

after deformation (projected again o (u2)‘ o

on the z1x2-plane). We may trans-
late origins of coordinates o and o'
to make them coincide. Suppose
OM is the bisector before the de-
formation and OM’ is the bisector

after the deformation. The angle

through which the bisector is ro-
tated about the zs-axis (Fig. 25)
is

1

ZMOM’z§(—————)+———

_ 1/0uz Ouy
N 5 (a.’El 8132

Hence, w3 = wy2 can be regarded as the angle of rotation of the bisector
of the local (z1,x2) coordinate axes about the xz3-axis. w3 > 0 denotes a
positive rotation about the xs-axis according to the right hand rule, while
w3 < 0 denotes a negative rotation. The meaning of w; and wy is similar
to that of ws. Hence wj; is called the rotation tensor and w; are generally
called the (infinitesimal) angles of rotation about the x;-axes.
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The strains €;; and the rotations w;; are independent of each other in
themselves, but their derivatives are related. In fact,

ox; Ox;j

Ow;j il(@tﬁ aui) 1< 82uj 0y, )

81‘k N 8l‘k 2 - 5 833]9(9331 B 83%833]

. 1< 82uj 82uk 82uk 82ui )
© 2\0z;0z1,  Ox;0x; Oz;j0r; Ox;0zy/
Hence 5 5 5
w; € ik Eik ..
= — =12,23,31,k=1,2,3. 1.9
8xk axl 8:EJ ) Z] ) ) ) b) ? ( )

1.3 Strainless states and infinitesimal rigid displacements
We say that an elastic body is in a strainless state if the following equality
holds everywhere.

e 1<8u]' + ou;
Y 2\ 9 Ox;

That means that under an infinitesmal deformation there is no elastic

) =0, 4,j7=1,23. (1.10)

deformation, ie., ds? = ds®. The consistency of this definition of the
strainless state with the definition in terms of the vanishing of the strain
energy given in Chapter 1, will be explained in §5 of this Chapter.

There are two kinds of infinitesimal rigid displacements, as they are
called. One is the translation, i.e., ¥ = @ = (a1,az,a3)T is a constant
vector and another is the infinitesimal rotation, namely, w = b A z, where
b = (by,bo,b3)T is a constant vector, where b A z stands for the cross

product. Hence
w; = byxz — b3xa, up = b3x1 — bix3,uz = b1y — by,

The general form of infinitesimal rigid displacements is the superimposi-
tion of the above two forms: w =a + bA z, i.e.,

u1 = a1 + baws — bawa,
u2 = a9 + bsx1 — bixs3, (1.11)

u3 = ag + byxg — byxy.

Since 8 5
31
= — = — b —b =0
€11 2, B2y (a1 + baxs 3T2) )
1/0us Ouy 1
- —= —— ) = —(ba— b =0
12 2 <81L‘1 8.’1,'2) 2( 3 3) ’
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etc., €;; = 0. It shows that any infinitesimal rigid displacement must be
strainless.

Conversely, a strainless displacement field can certainly be expressed

in the form og infinitesimal rigid displacements as (1.11). From (1.9), we

w,-j

can see that
oy

=0, i.e., w;; are constants, if €;; = 0. Denote

b1 = w23, by =w3, b3=wi.

On the other hand, since ¢;; = 0,

8U1 8’!1,2 8U3
€11 ) y €22 925 , €33 923
and
Ou; ou; . , .
it follows that
b = w _1(%,%)_%__%
1= s 2 8:122 8.’1:3 o 8x2 - 8.’1:3’
by — w _1(%_%)_%__?1@
2T T 9\B82s  Oz1/  Oz3 071

1,0u; Ouy Ousg Ou,
b3=w12=—(~———) =—=—-—

2\90x; 0xa or1 O0xa
Thus, we obtain th following three systems of the first order differential
equations related to u;, ue, and us.

( Ouy ( Jug ( Ougs
—_— = —_— = b —_— = —
8x1 0’ 6321 » 8x1 b2,
8u1 8’“2 auB
R — O - =
8(1)2 b3, 6:132 ’ 8x2 bl’
ouq Ous dus
—_— = b —— —b —_— = .

\ 8(1)3 > \ 8-'1:3 b \ 8373 0

From above three systems of the equations, we get
u1 = a1 — b3z + bexs,
ug = ap + b3z — byzs,
uz = az — boxy + byx2.

These are just the rigid displacements (1.11).
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§2 Transformation of Principal Axes
and Principal Strains

2.1 Rotation of coordinate axes

For a special kind of deformation, i.e., the multi-directional stretching
and compression discussed in §4 of Chapter 1, the strain has only normal
components but no shear components and the strain tensor is expressed
in diagonal form as

g1 0 0
[Eij] = 0 €2 0
0 0 g3

The elastic rule is quite simple at that case.
For the case of pure shear in §5 of Chapter 1, the strain tensor has
nondiagonal form
0 71/2G 0

[eijl=17/2G 0 0
0 0 0

However, rotating the coordinate axes x1 and z2 about the z3-axis through
45°, the strain tensor becomes diagonal in the new system of coordinates
z}, x5, and zf:

T/2G 0 0

le%;] = 0 -—-7/2G 0
0 0 0

The pureshear case is transformed into the case of multi-dimensional
stretching and compression. Thus we derive the elastic rule for pure shear.
This is a special example, but it has general meaning. All arbitrary strain
tensors €;; can be transformed into diagonal form, at least locally, by a
suitable rotation of coordinate axes. In order to illustrate ‘this problem,
let us examine first how the components of the displacement vector and
of the strain tensor vary when the coordinate axes are rotated.



96 Chapter 2 Static Elasticity

2.2 Strain tensors in the transformed and original

systems of coordinates
Rotate the coordinate axes 1, z2, and z3 to a new orthogonal system of
coordinates x|, 2%, and z§. The transformation relations between the two
systems of coordinates are

x| = xq cos(xh, z1) + z2 cos(z], x2) + z3 cos(z], z3),
zh = x1 cos(zh, T1) + T2 cos(xh, T2) + x3 cos(xh, x3), (2.1)
zh = 1 cos(zh, z1) + 2 cos(zh, z2) + 3 cos(zh, z3),

where cos(z}, z1), cos(z}, z2), and cos(z}, z3) stand for the three direction
cosines of the new z-axes with respect to the original coordinate axes zi,
T2, and x3, i.e., the three components of the unit vectors €} on the z’-axes,

e} = (cos(xl, 1), cos(xh, z2), cos(xh, z3))7 . (2.2)
The transformation of coordinates (2.1) can be written in matrix form:
' = Az, A =a;j], a;; = cos(z;, z;). (2.3)

Because the new coordinate axes x}, =5, and z% are orthogonal, the three
unit vectors €}(z = 1,2, 3) are also orthogonal. Hence the coefficient matrix
A of (2.3) is an orthogonal matrix, which satisfies AAT = I. So we
have A=! = AT, Then the following reciprocally inverse transformation
relations hold between the new and the original coordinates

3 3
:L'; = Zaijxi, T; = Z ajixg. (2.4)
i=1 =1

As stated in §1, the displacement vector u = x* — z’ is expressed
as the difference of two position vectors before and after deformation of
the elastic body. Hence, the relations between the new and the original
coordinates u; and u} of the displacement vector during the rotation of
coordinate axes are the same as (2.4),

3 3
, P .. . . —_— .. ,
u; = Za”u], u; = Zaﬂu]-. (2.5)
7j=1 7=1

The components of the strain tensors derived from the same displace-
ment field in the new and in the original systems of coordinates are

1,0u; Ou; 1,0u; o
Eijzi(azz alfj)’e%:a(az aZ;)’
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respectively. Since

8“9 _ au; 3$k i 8 3\
DO P D ILT e OLTL)
3
Ouy
= ;104 5
szzl Rl o

exchanging the subscripts ¢ and j and then k and [ in the above expression,
we can obtain

ou! 3
T SRV PO

i k=1 k=1

8ul

Hence the relations between the components of the strain in the new and
in the original systems of coordinates are

3
= Z QikERIO;1- (2.6)

k=1
This can be written in the matrix form. Let

e = e, & =I[el,

Both are symmetric matrices. Then

¢ = AeAT. (2.7)
Because A is an orthogonal matrix, the following inverse relation holds.
e=AdA= AT Ajice ey = Z ki€l Al (2.8)
k,l

2.3 Principal axes and principal strains

For symmetric matrices in linear algebra the following fundamental theo-
rem holds: for an arbitrary real symmetric matrix e, there always exists
an appropriate real orthogonal matrix A such that

er7 0 O
AcAT=| 0 e 0 (2.9)
0 0 e3
is diagonal. The above expression can be written as
e7 0 O

eAT = AT | 0 eg 0 |,
0 0 e3



98 Chapter 2 Static Elasticity

i.e.,
€11 €12 €13 ajlp a1 asi €1411 €2a21 £3a31
€21 €22 €23 ajz a2 as2 = | €1012 £2a22 €3a32
€31 &322 €33 a13 a3 ass €1413 €£2a23 £30433

This means that e; are the eigenvalues of the matrix ¢ and the three
column vectors of AT are just the eigenvectors of the matrix e.

Since the transformation relation between the strain tensors in the new
and in the original systems of coordinates is

e = Ae AT,

if the three eigenvectors of the strain tensor ¢ are taken as the new co-
ordinate axes e}, then according to the fundamental theorem, the strain
tensor €’ is reduced to diagonal form in this new system of coordinates.
Its diagonal entries ¢, €2, and €3 are just the eigenvalues of the matrix e,
which are called the principal strains, while the eigenvectors e}, e}, and
e} are called the principal axes, and the corresponding stresses are called
the principal stresses. In other words, the strain tensor transformed to the
principal axes is diagonal, i.e., it appears as multi-directional stretching
and compression without shear component.

Suppose the characteristic polynomial of matrix ¢ is

E11— A €12 €13
eN) =| en exn—A e |[=-X+LN-DA+L (210)
€31 €32 €33 — A

It is not difficult to show that

L =e€11 + €22 + €33,
€11 €12 €22 €23 €11 €13
IZ = + + )
€21 €22 €32 €33 €31 €33
€11 €12 €13

Is =] ea €22 e23

€31 €32 £33
On the other hand, because ¢;, €2, and €3 are the three eigenvalues of the
matrix e,

QO(A) = (61 - )\)(62 - )\)(63 — )\) (2.11)
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Comparing (2.10) with (2.11), we obtain

I =& +e3+es, (2.12)
Iy = e1e9 + e9e3 + €361, (2.13)
I3 = eqe9e3. (2.14)

Although the components of the strain tensor are changed after an ar-
bitrary rotation of coordinate axes (whether they are principal axes or
not), we know from (2.12)—(2.14) that, the values of I;, I> and I3 are
unchanged, which are the three invariants of the strain tensor. Among
them, an invariant

I} = €11+ €92+ egg=€1+ea+e3 (2.15)

is often used.

§3  Stresses

3.1 Components of stress

When an elastic body is deformed under the action of loads, the body
is in a strained state. All parts of the body are affected by the stresses.
The stress state at each point (21,2, z3) in the body is given by the nine
components of stresses o3, 1,7 = 1,2, 3.

Taking a cross section normal to the +z;-axis at a point (z1,x2,3),
the force per unit area exerted on the “negative side” from the positive
side” is o;. The three components of the force are denoted by o1, 025,
and o3;, respectively. o;; is the positive stress, i.e., the normal stress
oj; > 0 indicates a tensile force, while 0;; < 0 indicates a compressive
force. When ¢ # j, 0;; are the shearing stresses tangential to the cross
section. o = [0y;] is called the stress tensor, and the dimension of which
is [force/area).

The importance of the components of stress o;; lies on the unit cross
section, in which the normal direction at any point (z1,z2,z3) is @ =
(n1,n2,n3)7 and n? + n3 + n3 = 1, the three components oy,, o2, and
o3y, of the stress o, exerted on the “in side” from the “out side” can be
expressed in terms of o;; and n;, i.e.,

3

Oin = Zaijnj, 1=1,2,3. (3.1)
i=1
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In fact, we need only take an infinitesimal tetrahedron V' with height
h (sufficiently small) and base area S (Fig. 26) at that point. The out-
ward normal directions of the four surfaces S, S1, S2, and S3 of V are
(n1,m2,n3)T, (~1,0,0)T, (0,-1,0)T, and (0,0, —1)T, respectively. Note

that the volumne of the tetrahedron V = %hS and S; = n;S. Sup-

pose the density of the load acting on the interior of the elastic body is
f = (f1, f2, f3)T. According to the equilibrium of body force and surface
force in the three directions, we obtain

fiV +0inS — 01151 — 0:252 — X353 =0, i=1,2,3,

i.e.,
3
fi %hS + OinS — (Zai]’n]‘)s =0.
j=1

Because the outward normal direction n; to the base of the tetrahedron
S remains unchanged when the height h varys, (3.1) can be obtained
immediately if we let h — 0 in the above expression.

z3

S

T2
1

Fig. 26

It follows that, the projection o, of the stress on the cross section on
any direction

T 2 2 2
m:(ml,mz,mg) , My +m2+m3:1
is

3 3
Omn = ZO’,’nmi = Z T (3.2)
i1 ij=1

where n is the normal direction of the cross section.
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Especially, the normal component of the cross section stress o, is

3
Omn = Z 05T . (3.3)

,j=1

3.2 Equilibrium equations

Suppose an elastic body 2 is subjected to a volume load with density
f = (f1, fo, f3)T. Consider an arbitrary subvolume V C €, whose outward
normal direction is m = (ny,n2,n3)T. Through the boundary 8V, an
external force acts on the subvolume V. The z;-directional component of
the surface force exerted on the area element dS is

3
O'indS = Z aijnde. (3.4)
J=1
The z;-directional component of the body force acting on a volume element

dV within V is f;dV. Assume that the x;-directional components of force
are in equilibrium. We obtain

3
/f > oin;dS + /// fidV=0, i=1,2,3,
v o v (3.5)

for any V C Q.

This is the equilibrium equation in integral form.
According to Gauss’s formula

// Z%n,ds /// Z%‘;’]’dV
/// Zaa”+fi)dvzo, i=1,2,3,

for any V C Q.

we have

Shrinking V' to a point (z1,z2,z3) € 2, then we obtain an equation of
elastic equilibrium in the differential form

Baz Ooij

Q.- 6

=f, i=1,23. (3.6)

Now let us consider the equlhbrlum of moments. Recall the definition
of the moment: suppose a force f = (fi, f2, f3)T acts at the point z =
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(£E1,£E2,£E3)T, the cross product M = x A f is then the moment. The
components of the three coordinate axes are, respectively,

My =x2f3 —x2fs, Ma==z3f1 —x1f3, M3z =z1fo—x2f1.

Then, the z;-directional component of the stress moment of the area ele-
ment dS € OV is

(3:2 Z 03N — T3 Z agjnj> -dS,
J J

while the zj-directional component of the moment of the body forces on
the volume element dV € V is (z2fs — z3f2) - dV. Hence we obtain the
following equilibrium equation for moments in integral form:

ri1—axial :

//{W 23:(33203]' — z309;)n;dS + ///V(ngg —x3f2)dV =0,
j=1

for any V C .

Similar equations in the x;-and x3-axial directions can be obtained by
cyclic permutation of subscripts 1 — 2 — 3 — 1. Using Gauss’s formula
again and shrinking V to a point, we obtain the equilibrium equation of
moments in differential form as

r1 — axial :

3
15]
Z B, (2035 — x302;) + 2 f3 — T3f2

a0 1) a5 4 ) oo

i=1 Oz;
= 0.
Based on the equilibrium equation of forces (3.6), we have
o33 — 093 =0, 1i.e., 032 = 093.

Similarly,

013 = 031, 021 = 012.

Thus, the symmetry of the stress tensor can be derived from the equilib-
rium of forces and moments

O35 = Oji, i,j == 1,2,3. (37)
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3.3 Principal stresses
We proved the symmetry of the stress tensor above. Let us now examine
the relationship between the new and the original stress tensors under the
rotation of coordinate axes.

Suppose the coordinate axes xj, 2 and x3 are rotated to the new
coordinate axes x, =5, and z%, and the unit vector on the z}-axis is

€; = (i1, a2, aiz)”

(see (2.2) of Chapter 2). In the new system of coordinates, the stress
)
section, the normal direction of which is +z}-axis. Then, in (3.2), let

component o%. is the z'-directional component of the stress on the cross

I T _ T
n=e;= (ajl,ajg,ajg) , M =e;, = (ailp ai2aai3) >
we obtain

3
Uéj = Z ik Okl (3.8)
ki=1

Written inmatrix form

o' = AcAT. (3.9)

This equation gives the relation between stress tensors in the new and in
the original systems of coordinates. The relation is the same as the trans-
formation relation (2.7) between the new and the original strain tensors.
Therefore, by a suitable rotation of coordinate axes, the stress tensor can
be expressed in diagonal form, i.e., there are only direct stresses but no
shearing stresses:

g1 0 0
AcAT =o' =| 0 oy 0 |,AT =471, (3.10)
0 0 ¢

where 01, 02, and o3 are called the principal stresses, which are also the
eigenvalues of the symmetric matrix o, while the vectors of principal axes
€}, e,, and e} are then the eigenvectors of o.

Note that the transformation matrix A = [a;;], which transforms the
stress tensor into the principal axes, is dependent on o = [0;;]. Generally,
it is different from the transformation matrix which transforms the strain
tensor into the principal axes.
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§4 Hooke’s Law and Strain Energy

4.1 Hooke’s law
We saw in §2 that, through a suitable rotation of coordinate axes

z = Az, (4.1)
the strain tensor € = (&;;) can be transformed into diagonal form
eg7 0 O
AcAT == 0 & 0 |, (4.2)
0 0 e3

which becomes a pure three dimensional stretching and compression with-
out shear strain.
Suppose that the medium is isotropic. We saw in §4 of Chapter 1 that,

the corresponding stress tensor o' = [o.] also has no shear components,

so ¢’ is diagonal, too:

op 0 O
o = 0 oo O
0 0 o3
Hooke’s law is
E Ev 3

;= ; ,=1,2,3. 4.3
ag; 1-|—I/€z+ (1-{—1/)(1—-21/);6’“ ? y 49 ( )

Written in matrix form,

/ E Ev 3
710 + (1+1/)(1—21/)(k§::1€k)l' (4.4)

Since the stress tensor becomes diagonal in the new system of coordi-

nates, the new coordinate axes z; determined by (4.1) are the principal
axes of both the strain tensor and the stress tensor, i.e.,

o' = AcAT. (4.5)

This shows that, for isotropic bodies, the stress tensor and the strain
tensor can be simultaneously diagonalized, i.e., into the principal axes
through a suitable rotation of coordinate axes.
Premultiplying both sides of (4.4) by AT and postmultiplying them by
A, since
o=ATd'A, e=AT'A, ATA=1,



84 Hooke’s Law and Strain Energy 105

we obtain
E 3
BT (1+u )1 — 20 (Ef") ‘
Moreover, according to (2.15)
3 3
Y= ew,
k=1 k=1
so that
E Ev 2
= 1. 4.6
1+u€+(1+1/)(1—21/)(k§:1 kk) (4.6)
Written componentwise, this becomes
3
Uij:1+u€ij+(1+u 1—21/)(16216 ) ek (4.7)
17 27 37

where
1, 1=y,
(Sij =
0, i#j.
(4.6) or (4.7) is just a general form of Hooke’s law

Letting ¢« = j in (4.7) and superimposing the three expressions of
1 =1,2,3, we obtain
3 3Ev

E
Zakk——1+uk 1 kk+(1+y)(1_2y kzlskk

E
R T
1—2v =

Moreover, substituting the above expresssion into (4.6), we obtain the

inverse relation

H” (Za T, (4.8)

k=1

or

Ei]'—l-lf;y i7 (Zakk) ,J,Z] 123 (4.9)
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4.2 Strain energy
For an isotropic elastic body, the strain energy per unit volume with the
principal axes is

1 3
= — Z g;&;. (410)
2 “
1=1
Note that
oo 0 0 er7 0 O 01€1 0 0
de'=]10 o9 0 0 e 0 | = 0 o099 O ,
0 0 g3 0 0 £€3 0 0 J3E3
and
o'e' = AcAT Ac AT = AceAT
hence
3 3
Y (d')ii =D (o€)i
=1 =1
consequently,
13 1 3
W:EZUiEi— Z( ! /)m—_z Py Z 0ij€ij,
=1 =1 =1 i,7=1
l.e.,

Z Oij€ij. (4.11)

3,j=1

Substituting the linear stress-strain relation (4.7), obtained from Hooke’s
law, into the expression above, we obtain the volume density of strain
energy

1 E &, 3
WZE{H—VZ.ZE (1+u(1—2 (Z )} (412)

It is easy to verify that

ow
ij = 541 =123,
ij
so that
1 3. oW
w=-S 22, 4.13
9 £ 351-3-63 ( )

i,5=1
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We see from (4.12) that W is quadratic and homogeneous in €;5. Therefore
(4.13) is a special case of an n-th homogeneous expression as in Euler’s
theorem in algebra, with n = 2.

1
SinceE’>0,0<l/<§,

Ev >0 E ( l )2>O
) € y
(1+v)(1—2v) 1+v)(1—2)\ &=
hence
1 E 2 Ev 2
W=-= ——ZEZ--l- Zskk
17 _
2 {1-}-1/1.,].:1 (1+v)(1 2V)(k=1 ) }
1 E &,
> —
> 5710 2

That is to say, W is positive definite as a quadratic form in ¢;;, i.e., we
always have W > 0 for any ¢;;, and

W:0:>5ij=0, 1,7 =1,2,3.

This reflects the facts that the strain energy is positive definite in mechan-
ics, and that solutions of the elastic equilibrium equation for stress exist
and are unique.

In the literature of elasticity theory, two fundamental elastic moduli
of isotropic bodies, called Lame’s moduli,

\ = Ev . E
- b= o0+

4.14
(1+v)(1-2v)’ (4.14)
are often used to replace the two conventional fundamental moduli £ and

v in engineering. E and v can be expressed in terms of A and p by

p(3X + 2p) A
' = 4.15
At TPy (4.15)

Furthermore, the bulk modulus K and the modulus of the shear rigidity
G can also be expressed in terms of A and p as

E
=3 o At gk (4.16)
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Hooke’s law and the strain energy for isotropic bodies can then be ex-

pressed in terms of A and p by

3
Oij = 2pei; + /\( Z kk)5ij, 1,7 =1,2,3, (4.18)
k=1

{2u i e, +)\(Zekk> 3 (4.19)
i,j=1

§5  Variational Principles and

Elastic Equilibrium

5.1 Variational principles
Suppose an elastic body €2 deformed elastically under the action of loads,
including body and surface loads. That is to say, every point within the
body {2 undergoes a displacement u; = u;(x1,z2,z3). This displacement
induces a strain field
1 /0u; au,
=ij () = 5(8331 + Ba:j)

and a stress field

E
Tt (1+u) 1-—21/ (ZE’“’“ )i

A strain energy p(u) is always stored when the elastic body undergoes a

oij(u) =

displacement u; whether it is in equilibrium or not. According to (4.11)

and (4.12),
= //Q Wdv = %///Q ”23::1 oij(u)es;(u)dV

3
- %///9{1;?;/2.;16%("” (1+ui1—2y)

3 2
x (kz exe(u)) pdV = %D(u,u). (5.1)
=1

From (5.1) we get
D(u,u) =0 <= ¢;;(u) =0, 4,57=1,2,3.
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This shows that the two definitions about the strainless states mentioned
in Section 1.3 of the Chapter 2 are equivalent. Let

(u,v) /// Z oij(u)eij(v)dV

i,j=1 )
/// 1+v v, Z w)eij(v
Ev 3 3
+(1+VX1_2V)g;s%@g.ggsmmw}dw (5.2)

Clearly, D(u,w) is a nonnegative quadratic functional of u, while D(u,v)
is a bilinear symmetric functional of w and v, which is just the functional
of virtual work.

Suppose the density of the body load acting on the interior of the
body Q is f = (fi1, fo, f3)T, and the density of the surface load acting
on the boundary 89 is g = (g1, g2,93)7. For the time being, we will not
consider a displacement constraint or elastic support temporarily. Then
the potential energy of external work produced by the body load f and
the surface load g¢ is

_ _{///ngiuidv-l-//aaégiuid,g} (5.3)

and the total potential energy of the system is

ﬂm:%mmm—pwy (5.4)

By the variational principles described in Chapter 1, the following two
problems are equivalent:

problem 1, J(u) = %D(u,u) — F(u) = Min, (5.5)

problem 2, D(u,v) — F(v) =0, for any b. (5.6)
For the strainless state v,
D(w,v) =0 ¢gj(v)=0——v=a+bAz (5.7)

which is also an infinitesimal rigid displacement determined by (1.11) in
§1 of Chapter 2. It has six degrees of freedom, and the corresponding six
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linearly independent rigid displacements are

1 0 0
oW =|0|, v@=]|1], +®=]|0],
|0 | 0 |1
[0 [ x5 [ —5
o= gy, 0®=] 0 |, 0@ =]z |. (8
| 22 L ~T1 | 0

Hence, the necessary and sufficient conditions for the existence of solution
of the variational problems 1 or 2 are

F(v9)=0, i=1,2,-,6.
Substituting (5.8) into (5.3), we get

Jlf 5w + [ ot =0, i=1.23 (5.9)
, ///Q(mzfs —z3f2)dV + //89(51;293 — 13g2)dS =0,
///Q(mfl —z1f3)dV + //éﬂ(:cggl — 11g3)dS = 0, (5.10)

{ ///Q(a:1f2 —z2f1)dV + //aﬂ(xlg2 — £2g1)dS = 0.

These are equilibrium conditions of forces and moments of the external
loads. Under the prerequisites of (5.9)—(5.10), there exists a solution of the

variational problem. However the displacement solution is not unique and
can differ by an infinitesimal rigid displacement, while the stress solution
is unique. Because the rigid displacement has six degrees of freedom, six
integral conditions such as

///Q wdV =0, i=1,2,3, (5.11)
///Q(w2U3 —z3u)dV = ///Q(mwl — zyu3)dV
= Jffjrea = paunav <o 12

have to be added in order to eliminate these six degrees of freedom. Under
these conditions, the displacement solution is unique.
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5.2 Equilibrium equations
From the above variational problem 2, we can derive an equivalent prob-

lem:
Problem 3:
_x~oii(w) _ o
Q'_;ij—fi, i=1,2,3, (5.13)
3
80 :) oy(u)n; =g, i=1,2,3. (5.14)

The proof is as follows. By Gauss’s integral formula and the symmetry of
the stress tensor

D(u,v) /// Z 0'1,] 5” )dvV

i,J=1

= I 3 - (52 + 2 av

t,j=1

/// Z o1 (u Bv,

t,j=1

//BQ Z oij(u nJv,ds—/// Z da”
Hence

D(u,v) — F(v) = —///Qi Z Ba”(u) }vidV

i=1 7=1

//an Z Z oij(w)n; gi] v;dS = 0. (5.15)

=1 j=1
Since v; is arbitrary, the terms included in the brackets of the above two
integrals must vanish:

Oo; ) )
Z 95 | f 0 =123 inQ,
31'3

Zgij(u)"j -¢;:=0, 1=1,2,3, on 90.
=1

These are the two systems of equations of Problem 3. We know from Sec-
tion 3.2 of Chapter 2 that these two systems of equations are the equilib-



112 Chapter 2 Static Elasticity

rium equations inside the elastic body {2 and on its boundary 0f2. Thus,
we have derived the equilibrium equations directly from the variational
problem.

Conversely, if we want to derive Problem 2 from Problem 3, we need
only note that, provided u is a solution of equations (5.13) and (5.14),
(5.15) still holds by the Gauss integral formula. Hence for arbitrary v, we
always have

D(u,v) — F(v) = 0.

Thus, we have proved the equivalence of the three mathematical for-
mulations of the elastic equilibrium problem. Since

E
meij(u) + i (Zekk(u )

oij(u) =

E /8 a,-
Ty V)(aZZJ’aZj)

Ev 3. Ouy
TaE - (k; axk)‘sﬁ’ (5.16)

the equilibrium equations (5.13) are three second order elliptic partial

differential equations for the three unknown functions ui, us, and us. In
order to determine a unique solution, we must prescribe three boundary
conditions on the boundary 02 in addition to the boundary conditions
are given by (5.14).

5.3 Boundary conditions and interface conditions

In §5.2, the equilibrium equations inside the elastic body and the boundary
conditions, which are derived from the variational principle, are obtained
based on the essumption that the whole boundary 0f) is subjected to
surface loads. Now we will discuss the general case, i.e., according to the
different boundary mechanisms, the whole boundary 952 is divided into
several parts,

6(2 :Fl +F2+F3, (517)

with a different boundary condition on each part.

1. The first kind of the boundary condition: fixed supports. Geometric
constraints conditions are prescribed on I'y, e.g., the fixed displacements
are known,
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I'h:ivui=1a;, 1= 1,2,3. (518)

2. The second kind of the boundary condition: loading supports.
Surface loads with density g = (g1, g2,93)7 are exerted on T's.

3. The third kind of the boundary conditon: elastic supports. The
boundary is coupled with an external elastic body on I's. A given unit

area is subjected to an elastic reaction force, “which is proportional” to
3

the local displacement —ZCUU]‘ +9i, 1 = 1,2,3. Here, C = (¢;5) is a
symmetric positive deﬁnitza rilatrix indicating the elastic coefficients of the
support. This is a direct generalization of the ease of a one dimensional
elastic support stated in Chapter 1, where c is a positive coefficient, while
in the present case C is a positive definite coefficient matrix. Obviously,
the boundary condition on I'; can be considered as a special case of that
on I'z, corresponding to ¢;; = 0.

In addition to these three kinds of boundaries, we further assume that
there is an interface I' in the interior of €, that the elastic media on its
two sides consist of different materials, and that the elastic modulus has
the discontinuity or jump on the interface I'. Define a positive normal
v = (11,vs,v3)T. We call the side in the positive direction 2%, and the
side in the negative direction 27 : @ = Q% + 0, and

Et£E", vt#£u, (5.19)
Note that the displacement w on the interface I' is still continuous, i.e.,
ut=u", onT (5.20)
Let us now write down the strain energy and the potential energy of
external work of this system. The strain energy is

1

§D(u,u) = %///QHFQ_ 123::1 oij(u)ey;(u)dV
// Z ciju;u;dS. (5.21)

i,j=1
The potential energy of external work is

///mm Z FrugdV + /F - z; giuidS}.  (5.22)
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The functional of virtual work is

D(u,v) = ///n++w Z oij(u)eij(v)dV

i,7=1
/ Z ¢iju;v;dS. (5.23)
Fsz] =1

Since the displacement w on I'; has geometric constraints (5.18), the
virtual displacement v in the variational problem must satisfy the corre-
sponding annihilating constraints

Tp:v;,=0, i=123. (5.24)

Moreover, since the displacement u is continuous on the interface I, the
virtual displacement v must also be continuous on I", i.e.,

v =v7, i=1,2,3. (5.25)

(] (2
Hence the complete statement of variational problem 2 is
[ D(u,v) — F(v) = 0 for any virtual displacement v
satisfying constraints (5.24)—(5.25),

(5.26)
I'y :u; = a,

IM:uf =u;, i=1,2,3.

\ (2

Due to the discontinuity of the medium, we use Gauss’s integral for-
mula piecewise on 21 and Q™. Noting the continuity of v; on the interface
I and the symmetry of o;; and ¢;;, we obtain

0a;;( u) 3
D(u,v /// B dV+// 0;dS
( ) Q++Q— Z FSi’jzzch’U:]’U

3 3
+ / Z oij u)n]vzdS+/ Z Zai;(u)vj — Zaj;-(u)vj]vidS,
a9 | £ £
i,7=1 7j=1 7j=1
where a;; and o;; denote the stress components in QF and O, respectirely.
The material constants in Q* are Et, v* and the material constants in
)~ are E~, v™. Further, using the constraint conditions on v; (5.24), we
have
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D(u,v) — ///Q++Q_ 808”(] v + fz} v

=1 j=1
3
+// Z[Z%‘( Jn; — g | vidS
Isi=1 " j=1
3 3
+ / Z[Z 2] nJ+ZCz]U] gl]vlds
Is =1 j=1 =
3

+ / Z Z uv]—Zal] v]]uidS:O.
F/

Because the v; are arbitrary, the terms included in the brackets under the
above integral signs must vanish. Hence

do;j(u) . + -
_2 Fr =fi, 1=1,2,3, Q" +Q7; (5.27)
7j=1
u; =14, t=1,2,3 Ty; (5.28)
3
j=1
3
Uz]( ZCUUJ = gi, 1= 1 2 3 FB; (530)
7j=1 j=1
W =ul, =123 T (531)
3
\ Yoog(wyi =Y of(uy; =0, i=1,2,3. (532)
i=1 j=1

Substituting the formula for the stress o;;(u) (5.16), in which o;;(u) is
represented by the first partial derivatives of the displacements u; into the
above expressions, we obtain the following results:

Corresponding to (5.27), within Q7 4+ 27, we get a system of second
order partial differential equation satisfied by the displacement wu; of the
equilibrium configuration;

Corresponding to (5.28), on I'; we get geometric boundary conditions
involving only the displacement;

Corresponding to (5.29) and (5.30), on I'; and I's, we get mechanical
boundary conditions, which involve the first order of partial derivatives of
the displacements;



116 Chapter 2 Static Elasticity

There are also two interface conditions on the interface I within the
medium Q: One is the displacement continuity condition corresponding
to (5.31). The other is the stress equilibrium condition involving the first
order partial derivatives, which corresponds to (5.32). This stress equi-
librium condition is also a kind of complete “geometrical” mathematical
formulation of the elastic equilibrium problem, expressed as a boundary
value problem of the system of second order partial differential equations
in three unknown functions u, ug, and us.

5.4 Strainless states

We mentioned in Chapter 1 that adding geometric constraints or elastic
supports always reduces the number of degrees of freedom of the strainless
state and raises the positive definiteness of the strain energy. This is just
as it was for the equilibrium problem of the three-dimensional elastic body.

As stated in 5.3, if the whole boundary 92 has the second kind of the
boundary condition loading support, then the strain energy is degenerat,
and the strainless state is an infinitesimal rigid displacement, which is six
degrees of freedom. If there is a geometric constraint on a subset I'y of 092,
then the original stress equilibrium condition is replaced by the geometric
constraint condition on I'1, and the strainless virtual displacement v must
satisfy the annihilating constraint condition on I'; in addition to being
an infinitesimal rigid displacement. Hence, we must have v = 0 provided
there are three points in I'y not on the same straight line. Thus, under
such a constraint, the strain energy becomes positive definite, and the
equilibrium problem has a unique displacement solution. If I'; is a straight
line, or only one or two components of the displacement are prescribed.
Accordingly, the strain energy may still not be positive definite, but the
degrees of freedom of the strainless state are decreased.

On the other hand, if there has an elastic support on another part I's
3

of the boundary 9%, then the strainless state v satisfies Z cijv;v; = 0
,5=1

on I's as well, where c;; is a symmetric positive definite matrix. So we

must have v; = 0 on I'3. As in the case of a geometric constraint, if three

points in I's do not lie on the same straight line, then we must have v = 0.

Consequently, the strain energy becomes positive definite as well.

Furthermore, we have seen that, in the equilibrium problem of a three-
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dimensional elastic body, the mechanical boundary conditions (5.29) and
(5.30) and the stress equilibrium conditions on the interface (5.32) are all
natural boundary conditions. Only the geometrical boundary conditions
(5.28) and the displacement continuity conditions (5.31) on the interface
are essential boundary conditions.

5.5 On variational principles and finite element methods

We have shown above in detail that, an elastic equilibrium problem may
have mathematical formulations which are different in form but equiva-
lent in essence. One mathematical formulation is the variational problem
which is the problem of minimizing the energy functional as required by
the variational principle. Another is to state the problem as a boundary
value problem of the system of second order elliptic equations given by
the equilibrium equation.

The different mathematical formulations have inspired different ways
of solving the problem in practice. These different ways have different
effects. If we want to solve the problem analytically, i.e., to find a so-
lution in closed form, the way via equilibrium equations is comparatively
straightforward. However, it is well known that, only a few model prob-
lems, for which both geometrical and physical conditions of the problem
are extremely regular and simple, can be solved in closed form. In prac-
tice both geometrical and physical conditions are complicated. Generally
the difficulty of the analytic method makes it necessary to find solutions
numerically. This makes the method based on the variational principle
becomes more advantageous. The reason is that the variational principle
states the problem in a comparatively simple and compact form: the en-
ergy expression only involves lower derivatives, and only the comparatively
simple essential boundary condition are retained as constraint conditions
while the comparatively complicated natural boundary conditions (includ-
ing the interface condition of the medium) are omitted. This character of
the variational principle becomes more prominent when the geometrical
and the behaviour of the material of the elastic body and the load condi-
tions become complicated. To simplify calculations and its statement, we
have expressed the variational principle in a comparatively abstract form.
A more important reason for doing so is to express all static elasticity
problems encountered henceforth in such a unified form that only the en-
ergy expression and the constraint condition differ in concrete problems.
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Such unity in mathematical form reflects the unity of the fundamental
laws of mechanics, and it can greatly reduce the tediousness inherent in
elasticity problems. '

Recently, on the basis of productive practice both in China and in other
countries, a complete and systematic set of numerical methods, knows as
the difference-variational method or the finite element method, has been
developed for elliptical equation problems, elasticity problems including
the problem in elasticity. It is just based on the variational principle with
the cooperation of the approximation of geometric subdivision that the
potential superiority of the variational principle can be brought into full
play as a result, especially it suitable to both geometrically and physically
complicated problems, This numerical method possesses high currency
and flexibility, which is suitable to computer-calculation, and has the ad-
vantages of strong intuitive properties on both geometry and physics. The
method itself is also easy to be grasped. This set of methods has stood
extensive tests in practice, met with great success, occupied a leading po-
sition in the field of numerical methods of the problem in both elasticity
and structural mechanics, and promoted the widespread application of
computers to engineering technical problems. A brief introduction of the
finite element method will be given in Chapter 5 of the present book use-
ing a number of typical elastic equilibrium problems discussed in Chapters
1 to 4.

§6 Geometrical Compatibility

6.1 Integrability conditions of vector fields
and topological properties of domain
As is well known in calculus that, a differentiable function in a single

d
variable f = f(z) has its derivative d—f Conversely, an integrable function
z

p _
g(z) must have a primitive function f(z) such that d—f = g. The general
T

form of the primitive function is
£(@) = 1@0) + [ g(z)d,
o

where f(z¢) is an arbitrary constant of integration.

A differentiable function f = f(x1,z2) with two variables has two first
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partial derivatives %fl and 55:% Conversely, for two arbitrary double-
variate functions of g; and g2) , the problem whether there exists a primi-
tive function f = f(x1,z2) such that

of of

Bz, =41, 8—1;2 =92
is called the problem of integrability of g; and go. Obviously it is different
from the one dimensional case and a primitive function need not exist. In
fact, if they are integrable, then

0% f _ 0’f
83718.'1:2 N 6:1728.’1:1.

Hence, g1 and g2 must satisfy

dg2 9q1
- L 6.1
6:171 8%2 ’ ( )

this is a necessary condition for integrability.

There is a similar integrability problem as well for the three dimen-
sional case, of three variables. Assume g1, g2, and g3 are three functions
with three variables. The problem of integrability of ¢g;, g2 and g3 is
whether there exists a primitive function f = f(x1,z2,z3) such that

of
6%1' -
Speaking in the language of vector analysis, for an arbitrary vector field

gi, ©1=1,2,3.

9= (91,92,93)7,

the problem of integrability is whether g can be expressed as a gradient
field of one scalar quantity f such that

of of of
grad f = (8:31 8:32 &cg)
It is obvious that a primitive need not exist, since
o f . 0’ f

83},’8(131' N 6:17]'8331'.
Necessary conditions for integrability are

0
%_%:0, %_29_3:0, ﬁ_ﬁzo, (6.2)
Ory Oz3 O3 O Or; Oxg

DHere we assume that f has continuous second partial derivatives and both g; and
g1 have continuous first partial derivatives. We do not want to go into these continuity
conditions deeply but only want to investigate the integrability condition.
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or
Rot g = 0.

Thus g must be an irrotational field.

The conditions (6.1) or (6.2) are necessary conditions of integrability.
Are these also sufficient conditions? If not, what additional conditions
are needed? The answer to these questions depends on the topological
properties of the domain. In what follows, we shall mainly discuss the
three dimensional problem.

Lemma. Suppose a domain (2 is connected, i.e., any two points in
can be connected by an arc in . The g1, g2, and g3 are integrable over
(1 if there a exists a single-valued function f = f(z1,z2,z3) such that

of

— = k=123, Q. 6.3
a(I)k 9k, ) 4y Iy ( )

A necessary and sufficient condition for integrability is:

3
?{ ngdwk =0, for any loop! C Q. (6.4)
Ly=1

When g1, g2 and g3 are integrable, any primitive function f satisfies

5P = 5B+ [ > o, (6.5)

Po =1
TORRORNO)

where Py = x5,z ) is an arbitrary initial point in Q, P = (z1, T2, T3)
is an arbitrary point in €2, and the path of integration Py P can be chosen
arbitrarily in Q.

Proof. Necessity. If there exists a singlevalued function f such that

(6.3) holds, then

]{ngda’k"}{z dmk—fdf—o for any loop L C €2,

i.e., (6.4) holds. But since the domain is connected, any two points Py
and P can be connected by an arc in 2. Consequently,

f(P) = f(Po) + —dﬁck— P0)+/ ngdwk,

Po k 1 Po 1
hence (6.5) also holds.
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Sufficiency. If (6.4) holds, then the integral at the right side of the
expression above is independent of the selection of the path of Py P. Hence
a single-valued function f(z1,z2,z3) = f(P), where f(x(lo),mgo),xgo))
f(Po) is a constant of integration chosen arbitrarily, can be defined in (.
Obviously, such a function f satisfies (6.3). Q.E.D.

Stokes integral formula is well-known in calculus

3
j{ ngdfck:// (%—% dedwg-i—// %—% dzsdz
as = s \O0zry Ozs O3 8:171

392 891

From now on, the curved surface S, the curves 9S and L, etc. will all be
considered as oriented. The orientation of a curved surface S is given by a
direction n normal to it. If a direction ¢ tangential to the curved surface
S is defined on 9s so as to form a right-handed system {v,t,n} where
v is the outward normal direction to the contour 85 (Fig. 27), then the
direction of 9S is defined to be the tangent £.

as
Fig. 27 Fig. 28

By (6.2), irrotationality is the necessary condition of integrability. By
the lemma and Stokes formula, irrotationality is also a sufficient condition
for integrability if an arbitrary loop L in €2 can be expressed as the contour
8S(= L) of some curved surface S in Q. A domain Q with this property
is said to be simply connected. To investigate simple connectivity, we
introduce the concept of homology of loops.

Definition.

1° For an oriented loop L C £, if there exists an oriented curved
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surface S C 2 such that S = L, then we say that L is homologous to 0
in . We write this as L ~ 0.

2° For two oriented loops L; and Lg in §, if Ly — Ly ~ 0, then L; and
L, are called homologous in 2 (Fig. 28).

Roughly speaking, a loop homologous to 0 in Q is just a loop which
can be shrunk to a point via a continuous deformation in 2. Mutually
homologous loops are loops which can be transformed from one loop to the
other loop via a continuous deformation in Q. It is convenient to introduce
the foregoing terminology and notation because we shall mainly discuss the
loop integral, called the circulation, of irrotational fields. Irrotationality
and Stokes formula imply that if L ~ 0 then

3 3
= d
f}‘kglgkdxk fi‘)Sng Tk

(22 R
// 8 2 dda + (52 — B dugdey

Oy Ors z3 Oz
dg2 Og
+ (Bwl B2s )dmld:cg
=0. (6.7)

If Ly ~ Lo, then

?{ Z grdz — §1 Z grdzy,
L1 k2
j{L Z grdxk = j{ Z grdT
1—

L2 k21
393 392 _
/ e~ o )dwadas + - = 0. (6.8)

That is to say, for irrotational fields the circulation of a loop homologous
to 0 equals 0, and the circulations of homologous loops are equal.

Let us now illustrate the concepts of simply connectivity and multiply
connectivity. If every loop in a connected domain € is homologous to 0,
then Q is said to be simply connected, otherwise it is said to be multiply
connected.

In the two dimensional case, any domains without a hole is simply
connected, while any domain with a hole is multiply-connected because a
loop around a hole is not homologous to 0.
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In three dimensional space, any domain without a hole is simply con-
nected, while a domain with holes can be either simply connected or multi-
ply connected. For example, the domain between two concentric spheres
is still simply connected because any loop L in it can be shrunk to a point
via continuous deformation keeping away from the center hole. Conse-
quently, a cap-like curved surface S (Fig. 29) lies in the domain with L as
its contour. Typical multiply connected domain is the torus a sphere with
a hole through it. The center axis of a torus cannot be expressed in the
form 95 for S a surface contained in the torus. There are domains with
higher degrees of multiple connectivity, such as the double torus, multiple
torus, etc. (Fig. 30).

Fig. 29 Fig. 30
S1 S2
s
Fig. 31

Let us now proceed to investigate multiply connected domains. By
cutting an arbitrary multiply connected domain §2 by one or more suitably
chosen crosscuts, we can always make the separated domain Q' simply
connected. Here, the “crosscuts” Sy, So,---,Sp are cross sections in 2,
of which all the boundaries 851053, - - -,0S, lie on the boundary surface
0N of Q. Although the selection of cross sections which make Q' simply

connected is quite arbitrary, the number p of the cross sections is always



124 Chapter 2 Static Elasticity

the same. This number p is a topological invariant called the connectivity
number of Q2. When Q is simply connected, p = 0. The connectivity
number p of the torus is one, and the crosscut S; can be any meridian
cross section perpendicular to the axis of the torus. For the double torus,
p = 2, and the crosscuts S; and Sz can be taken as that shown in Fig. 31.

The situation is much simpler for domains in the plane. The crosscut
is a cross line in © and the connectivity number p just equals the number
of holes in the domain.

Now let © be a multiply connected domain, whose connectivity number
is p. Q becomes a simply connected domain €’ after being cut by cross
sections S1,- -+, Sp.

Each cross section S; divides €2 locally into two parts, one positive
and the other negative which side is positive and which negative may be
difined. Hence, the cross section S; may viewed as having a positive side

S and a negative side S; , which are two parts of the boundary of the

7 )
separated simply connected domain €’ but have a coincident geometrical
location. Arbitrarily choose a point {2; on each S;. We may also to assume
that €2; is divided into one positive point Qj and one negative point (2",
which belong separately to the two sides S{" and S; but are coincident.

Draw an arbitrary oriented curve L; from Q; to QF in Q. In @/, L; is
not a loop (a closed curve), but it seems in €, that L; is an oriented loop

which crosses S; (from the positive to the negative side) at point ;. A
set of such loops Ly, -, Ly, can be

selected in Q2 (Fig. 32).

Although choice of the set of loops
{L1,---, Lp} is quite arbitrary, it al-
ways has the following fundamental
properties!) independent of the se-

lection method:

For each oriented loop L in €, Fig. 32
there exists a uniquely defined
set of integers (positive, negative or 0, depending on L), nq,--,np, such
that
P
L~ nL; (6.9)
i=1

This shows that up to homology equivalence, the set of loops {L1,- -+, Ly}

1 We do not want to prove this conclusion.
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generates all loops in {2. The uniqueness of the coefficients ny, - -, n, in-
dicates that the loops are independent of one another. Hence, {L1,- - Ly}
called a fundamental set of loops, which constitute a basis set for the
multiply connected domain 2.

For plane domains, any set containing an arbitrary simple closed curve
around each hole constitutes a fundamental set of loops.

On the basis of the above discussion on simply and multiply connected
domains, we can answer the question about the sufficient condition for
integrability.

Proposition 2.1 For a simply connected domain €2, a necessary and
sufficient condition for integrability of a vector field g = (g1, g2, gg)T is

rot g = 0.

The primitive f satisfies the equation

f(P) = f(P) +/ ngda:k,

Po k=1
where the path of integration PyP can be chosen arbitrarily.
Proof. Sufficiency. Since any loop L ~ 0 in a simply connected domain,
from (6.7), the circulation of an irrotational field g satisfies

3
f{ Z grdzy = 0.
Lia

By the lemma, g is integrable and the above equation for f holds.
Necessity. The necessary condition for integrability rot g = 0 was
proved in (6.2) and it is omitted here.
Proposition 2.2 On a multiply connected domain 2, necessary and
sufficient conditions for the integrability of a vector field g = (g1, 92, g3)%

are
1. rot g =0,
2. f ngdwk—o i‘—‘l,"-,p,
Ligmy
where {L1,---, Ly} constitute a fundamental set of loops in (2, and the

primitive f satisfies the equation

f(P) = f(R) / Z grdzk,

Po g1
where the path of integration PyP can be chosen arbitrarily.
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Proof. Sufficiency. Because any loop L C Q in a multiply connected
domain satisfies

P
L~ Z niLi,
=1

by (6.8), the circulation of g is

3 P 3
?{ Egkdﬁvk = anf ngdwk-
Lia =1 YL

i k=1
The right hand side of the above expression vanishes by condition 2, hence
the left hand side vanishes,

3
f Z grdzy = 0, for any loop L C €.
L=1

By the lemma. The vector field g is integrable.
Necessity.
1. We proved earlier. that rot g = 0.
2. Because g is integrable, there exists a single valued function f such

7]
that —f = gk, k = 1,2,3. Therefore, for any loop L C (2, we always have

oxy,
/ df = 0.
L

Particularly, taking L = L; (a fundamental loop), we have

3 6f 3
L#=] Y dn=[ Yodn=0 i=1p

i k=1 t k=1
That is the condition 2. Q.E.D.

6.2 Equations of geometric compatibility
and conditions for integrability
Suppose a displacement field

u; = ui(T1, 22, 23), ©=1,2,3

is defined in a space domain 2 and has first partial derivatives 5—7, 1, =
.

1,2,3. Making a symmetric combination of these partial derivatilves, we
obtain the strain field

1 (8u]- Ou;

o= R 6.
€ij 2\ bz, Ba:j)’ €ij = Eji (6.10)
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Making an antisymmetric combination, we obtain the rotation field

" 1 (Buj Bui) w
i = clg— — ) ij = —Wji.
J 2 8.’17]' 8.’Ej J J
Thus, we have
ou;
aa;z = €5 + wij, (6.11)

Bwij 3€jk az’:‘ik
= — =1 . 1
oxy ox; oz;’ k 2,3 (6.12)

We know that the elastic deformation depends only on the strain field;
the following two questions concern the inverse dependence:

(1) Is an arbitrary symmetric tensor field ¢;; always the strain field of
some displacement field, i.e., do there always exist u;, 2 = 1,2,3 on {2 that
make (6.10) true? If not, then under what condition does the displacement
field exist?

(2) How is the displacement field u; expressed in terms of the corre-
sponding strain tensor €;;7

These two problems are similar to the problem of integrability, i.e.,
the problem of relationship between the primitive function and its par-
tial derivatives discussed above. However, the problems here are more
complicated than that of integrability. The reason is that here we re-

quire three primitive functions u;, each required to have three of the nine
8uj

8:1:,-
€5

= €;5 + w;j, expressed in terms of the six symmetric combinations of

The answer to question (1) can be expressed in terms of the following
proposition.

Proposition 2.3 If the domain  is simply connected, a necessary
and sufficient condition for a symmetric tensor field ¢;; to be a strain field
that it satisfy Saint Venant’s six equations of geometric compatibility:

( 82622 82811 62612
-2 =0, 1-2-53-1
ox? ox? 01,01, ’ TEeTeT S (6.13)
32623 + 62612 62813 82622 -0
0x;0zy = Ox9dxs  Ox2  Or10x3 (6.14)
1-2—-53—-1.

If Q is multiply connected, a necessary and sufficient condition is given by
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adding to Saint Venant’s equations the 6p Volterra integral conditions:

6 61
bti)= 3502 - a0

Lm =1

(6.15)
ij=12,23,3;m=1,---,p,

Oej, Oei
f Z €kj — Zl(é%vi ax])xz]dxk—o (6.16)

Lm k=1
\ j=1a273;m=17"'apa
where L, m = 1,---,p constitute a fundamental set of loops of the

multiply connected domain €2, and the connectivity number of  is p.

Proof. The proof divides into three steps. 1. Find first a necessary
and sufficient condition for the existence of w;; satisfying (6.12), given ¢;;.
2. Find then a necessary and sufficient conditon for the existence of u;
satisfying (6.11) given ¢;; and w;;. 3. Prove that u; is a displacement
field iducing the symmetric tensor field ¢;; as its strain field. We carry
out these steps as follows.

1. By propositions 2.1 and 2.2 of Section 6.1, necessary and sufficient
conditions for the existence of single-valued functions w;;, i3 = 12,23,31
satisfying

awij . 3€jk asik

Oz}, dz; Oz’

k=1,23 (6.12)

are that

8 (0ei,  Oe 8 9y Oe;
55}<32f - ai:f) B amk(ai:],-l - az)’

ij =12,23,31; k,1=1,2,3. (6.17)

When the domain € is multiply connected, we require 3p further integral
conditions

f Z (St %) g, — 0,ij = 12,23,3,;, m=1,---,p. (6.18)
Lmjzy 9% 0

Let us investigate the conditions in (6.17). Obviously, only the equations
with subscripts 47, kl = 12,23, 31 need be discussed here. There are nine
equations in all, but it follows easily from the symmetry of ¢;; that, if we
interchange the subscripts 7 and k or 7 and [/, then the equations remain
unaltered. Hence, there are really only six distinct equations among these
nine. Letting 15 = kl = 12,23, 31, we can obtain three different equations.
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(6.13) in Proposition 2.3 is the case of ij = kI = 12, and the other two
equations can be obtained through the cyclic permutation of subscripts
1—2 — 3 — 1. Furthermore, letting

ij = 12,kl = 23;i5 = 23, kl = 31;ij = 31, kl = 12;

we obtain three more distinct equations. (6.14) in Proposition 2.3 is the
case of 1j = 12, kl = 23, and the other two equations follow similarly by
the cyclic permutation of subscripts, too.

Thus, (6.17), the first part of the necessary and sufficient conditions
in 1, is just Saint Venant’s equations of geometric compatibility, and ob-
viously, (6.18), the second part of the necessary and sufficient conditions
is just Volterra’s integral condition (6.15).

2. From the single-valued functions w;j, ij = 12,23, 31 determined in
1, define an antisymmetric tensor

Wji = —Wij, ’L] = 12,23,31, Wi = 0, 1= 1,2,3.

By Propositions 2.1 and 2.2, given for the symmetric tensor field ¢;; and
the antisymmetric tensor field w;; in (2, necessary and sufficient conditions
for the existence of single-valued functions u;, j = 1,2, 3 satisfying

Ou,; .
8:17: =& +wij, 4,j=12,3 (6.19)
are
0 1o,
%(ek]‘ + wij) = 8—:B19(€lj +wyy), k,1=1,2,3. (6.20)
When the domain 2 is multiply connected, we need to add 3p more integral
conditions
3
]{L S (ekj + wig)dak =0, j=1,2,3, m=1,---p. (6.21)
™ k=1

By the definition w;; in 1 and the antisymmetry stipulated here in 2,
(6.12) holds. Hence
Bwkj B 3(-:]'1 8€kl awlj - 6€jk _ 85lk

Oz, Oz  Ox;’ Omp oz,  Ox;

By substituting the two expressions above into (6.20), the two sides are
identical. Hence the necessary and sufficient conditions are in fact auto-
matically satisfied.
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Let us now investigate the second part of the necessary and sufficient
conditions as shown in (6.21). These conditions are equivalent to

3
f Z(skj + wgj)dxr =0, for any loop L C Q.
L.—

Choose an arbitrary point Py = (z1(FP), z2(FPo), z3(Po)) as the initial
point of integration, then for an arbitrary point P in €2, the integral

/ Z €kj + Wi )dz

Po k=1
is independent of the path of integration. Integrating by parts, we get

/ Z skj—i—wkj)dwk—/ Zekjda:k+/ Zwk]dmk
Po k=1 Po = Po =1

/ Z exjdzy + Z ki (P)zn(P) — Z wij(Po)ew(Po)

Po k=1 k=1

R

=" wi;(P)zk(P) - Zwk](PO)mk(PO)

k=1

3

p3 8(4),']'
+/Po kgl [skj - 2 %’:xt] dxp,

3
wii(P)zk(P) = Y wij(Po)zx(Po)
k=1

8E]k 8€ik
Ek ;| dxy. 6.22
/Okzl[f (axz axj>’ * (6:22)
Due to the monodromy of w;;, for any closed curve L in €2, we have

Je O¢;
f Z ekj + wij)dzk —]{ Z [&‘kg (a;k axk)mz] dzy, =0,
i 3
J=123,
which is equivalent to

6Ejk aé‘,k
?{ Z[Ek] Zl(ami 8:1:]) ]d:z;k—O

"‘kl

I
] Mw

j=17273; m=1,---,p.
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These are the Volterra integral conditions (6.16) in Proposition 2.3.
3. By (6.19), we have
Buj Bui

=& twij, [
317,‘ J 7 ij

Adding and subtracting these two equations and using the symmetry of

= €gj; + wj;.

€;; and the antisymmetry of w;;, we obtain

1 (8’11,] + Bul)

fij = 5 aici 817]'
and
_1/8u; Ouy
wl] N ( 8x, a.’L‘ 5 ) '

This shows that u; actually is a displacement field whose strain field is
the given symmetric field €;; and whose rotational field is w;;.

To sum up 1 and 2, the necessary and sufficient conditions to determine
u; from ¢;; are the six Saint Venant’s equations (6.13) and (6.14), plus
the 6p Volterra’s integral conditions (6.15) and (6.16) when € is multiply
connected. Q.E.D.

On the basis of Proposition 2.3, it is very easy to solve the second
problem, i.e., how to express the displacement fields in terms of the strain

fields. Because
Ou;

817,'

= &5 + wij,
it follows that

Bu
(P) = Uj Po) +/ ]dxk = uj Po) +/ Z 6kj + wkj)dxk.

Po j— 1 Po k=1
By (6.22), this expression can be written
3 3
u;(P) = u;(Fo) +sz'j zi(P) = ) wij(Po)zi(Po)
i=1
85]k stk

i | dTk. 6.23
/0 kzl [Ek] (axz ax] )$ L ( )

The right hand side still contains a rotatlonal component w;;(P) indepen-
dent of the strain component ¢;; in the expression. But integrating (6.12),
we get

381]c 8€jk ) d:l:k

wij(P) = wij(Po) + s 83; B
0 k 1 t J
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Substituting this into (6.23), we obtain a final form

3
u;j(P) = u;j(Po) + sz'j(PO)(wi(P) — z;(Fo))

=1
8E]k Bs,k
P)— dz
/Okg EkﬁZ(ax, o) x (lP) — ) da.
This expression contains a total of six constants of integration u;(FPp) and

wij(Po), while the integral on the right side is independent of the path of
integration.

§7 Thermal Effects

7.1 Hooke’s law and strain energy

Suppose the unloaded state of an elastic body at uniform temperature
To is a strainless state. Now this body is heated to a temperature T' =
T(zy,z2,73) and is free to expand. Suppose the body is isotropic and
every element in the body will expand at equal amount in each direction
without shear. Then no stress is produced in the body and the thermal

strains €}; are given by
jz = a(T TO) 1=1,2,3, (71)
Eij =0, 1 7é J- (7'2)
(7.1) is the primary law of thermal expansion indicating that the rel-
ative elongation is proportional to the temperature rise, where a is the
coefficient of linear thermal expansion of the material. For the sake of
convenience, we denote the temperature rise by 7, i.e.,

T—T0:T=7'(£E1,£E2,$3). (73)
Then (7.1) and (7.2) can be combined and written

£;; = arbij. (7.4)

If the surface of the body is restrained so as not to be able to expand
freely, or if the heating is nonuniform or there are external loads, then
stresses o;; and strains ¢;; will be produced in the interior of the body.
In that case, the strains will be the superposition of the free thermal

strains ej; mentioned above and the strains &7 * produced by the stresse
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o;; without increase in temperature. That is,
€ij =€ +€i; - (7.5)

According to the conventional Hooke’s law

E;-";:H—V 07 (Zakk) 175

hence

1+
€ij = —E—Vai' (kz:lakk)&] + aré;;. (7.6)

Letting 7 = j = 1, 2,3 in the above expression and then adding, we obtain

ZEkk =

1—21/

ZO’kk + 3ar,
k=1

3 3Ea

Hence we obtain an inverse relation

E Ev > Ea
Oij = 110 ij T T+ (1—2) (kZ::lEkk)csij ~ {9y 21/7-61.].' (7.7)

SO

This is the Hooke’s law under thermal effects. The difference from the con-
ventional Hooke’s law without thermal effects is that the relation between
the stress and the strain is no longer a linear homogeneous expres