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Preface 

Most books on reliability theory are devoted to traditional binary reliability models 
allowing only two possible states for a system and its components: perfect 
functionality and complete failure. Many real-world systems are composed of 
multi-state components, which have different performance levels and several 
failure modes with various effects on the system’s entire performance. Such 
systems are called multi-state systems (MSSs). Examples of MSSs are power 
systems or computer systems where the component performance is respectively 
characterized by the generating capacity or the data processing speed. For MSSs, 
the outage effect will be essentially different for units with different performance 
rates. Therefore, the reliability analysis of MSSs is much more complex when 
compared with binary-state systems. In real-world problems of MSS reliability 
analysis, the great number of system states that need to be evaluated makes it 
difficult to use traditional binary reliability techniques.

The recently emerged universal generating function (UGF) technique allows 
one to find the entire MSS performance distribution based on the performance 
distributions of its elements by using algebraic procedures. This technique (also 
called the method of generalized generating sequences) generalizes the technique 
that is based on using a well-known ordinary generating function. The basic ideas 
of the method were introduced by Professor I. Ushakov in the mid 1980s [1, 2]. 
Since then, the method has been considerably expanded. 

The UGF approach is straightforward. It is based on intuitively simple 
recursive procedures and provides a systematic method for the system states  
enumeration that can replace extremely complicated combinatorial algorithms used 
for enumerating the possible states in some special types of system (such as 
consecutive systems or networks). 

The UGF approach is effective. Combined with simplification techniques, it 
allows the system’s performance distribution to be obtained in a short time. The 
computational burden is the crucial factor when one solves optimization problems 
where the performance measures have to be evaluated for a great number of 
possible solutions along the search process. This makes using the traditional 
methods in reliability optimization problematic. On the contrary, the UGF 
technique is fast enough to be implemented in optimization procedures. 

The UGF approach is universal. An analyst can use the same recursive 
procedures for systems with a different physical nature of performance and 
different types of element interaction. 

’



viii Preface 

The first brief description of the UGF method appeared in our recent book 
(Lisnianski A, Levitin G. Multi-state system reliability. Assessment, optimization 
and applications, World Scientific 2003), where three basic approaches to MSS 
reliability analysis were presented: the extended Boolean technique, the random 
processes methods, and the UGF. Unlike the previous book that contained only a 
chapter devoted to the universal generating function, this book is the first to 
include a comprehensive up-to-date presentation of the universal generating 
function method and its application to analysis and optimization of different types 
of binary and multi-state system. It describes the mathematical foundations of the 
method, provides a generalized view of the performance-based reliability 
measures, and presents a number of new topics not included in the previous book, 
such as: UGF for analysis of binary systems, systems with dependent elements, 
simplified analysis of series-parallel systems, controllable series-parallel systems, 
analysis of continuous-state systems, optimal multistage modernization,  
incorporating common cause failures into MSS analysis, systems with multilevel 
protection, vulnerability importance, importance of multi-state elements in MSSs, 
optimization of MSS topology, asymmetric weighted voting systems, decision time 
of voting systems, multiple sliding window systems, fault-tolerant software 
systems, etc. It provides numerous examples of applications of the UGF method 
for a variety of technical problems. 

In order to illustrate applications of the UGF to numerous optimization 
problems, the book also contains a description of a universal optimization 
technique called the genetic algorithm (GA). The main aim of the book is to show 
how the combination of the two universal tools (UGF and GA) helps in solving 
various practical problems of reliability and performance optimization. 

The book is suitable for different types of reader. It primarily addresses 
practising reliability engineers and researchers who have an interest in reliability 
and performability analysis. It can also be used as a textbook for senior 
undergraduate or graduate courses in several departments: industrial engineering, 
nuclear engineering, electrical engineering, and applied mathematics.

The book is divided into eight chapters. 
Chapter 1 presents two basic universal tools used in the book for MSS 

reliability assessment and optimization. It introduces the UGF as a generalization 
of the moment generating function and the z-transform; it defines the generic 
composition operator and describes its basic properties, and shows how the 
operator can be used for the determination of the probabilistic distribution of 
complex functions of discrete random variables.  The chapter also shows how the 
combination of recursive determination of the functions with simplification 
techniques based on the like terms collection allows one to reduce considerably the 
computational burden associated with evaluating the probabilistic distribution of 
complex functions. This chapter also presents the GAs and discusses the basic 
steps in applying them to a specific optimization problem. 

Chapter 2 describes the application of the UGF approach for the reliability 
evaluation of several binary reliability models.

Chapter 3 introduces the MSSs as an object of study. It defines the generic 
model and describes the basic properties of an MSS. This chapter also introduces 
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some reliability indices used in MSSs and presents examples of different MSS 
models.

Chapter 4 is devoted to the application of the UGF method to reliability 
analysis of the most widely used series-parallel MSSs. It describes the extension of 
the reliability block diagram method to series-parallel MSS, presents methods for 
evaluating the influence of common cause failures on the entire MSS reliability, 
and discusses methods for evaluating element reliability importance in MSSs. 

Chapter 5 describes the application of the UGF in the optimization of series-
parallel MSSs. It contains definitions and solutions related to various application 
problems of structure optimization for different types of series-parallel MSS. It
shows that, by optimizing the MSS maintenance policy, one can achieve the 
desired level of system reliability requiring minimal cost. It also considers the 
problems of survivability maximization for MSSs that are subject to common 
cause failures. The optimal separation and protection problems are discussed. 

Chapter 6 is devoted to the adaptation of the UGF technique to different special 
types of MSS. It presents the UGF-based algorithms for evaluating the reliability 
of MSSs with bridge topology, MSSs with two failure modes, weighted voting 
systems and classifiers, and sliding window systems. For each algorithm it 
describes the methods for computational complexity reduction. The chapter also 
considers the problems of structure optimization subject to the reliability and 
survivability constraints for different types of system. 

Chapter 7 is devoted to the adaptation of the UGF technique to several types of 
network. It presents the UGF-based algorithms for evaluating the reliability of 
linear multi-state consecutively connected systems and multi-state acyclic 
networks. The connectivity model and the transmission delay model are 
considered. The structure optimization problems subject to reliability and 
survivability constraints are presented. 

Chapter 8 is devoted to the application of the UGF technique for software 
reliability. The multi-state nature of fault-tolerant programs is demonstrated in this 
chapter and the methods for obtaining the performance distribution of such 
programs is presented. The reliability of combined software-hardware systems is 
analyzed. Optimal software modules sequencing problem and the software 
structure optimization problem are formulated and solved using the techniques 
presented in the book. 

I would like to express my sincere appreciation to Professor Hoang Pham from 
Rutgers University, Editor-in-Chief of the Springer Series in Reliability, for 
providing me with the chance to include this book in the series. I thank my 
colleagues Professor Igor Ushakov from the Canadian Training Group, San Diego, 
Professor Min Xie and Professor Kim Leng Poh from the National University of 
Singapore, Dr Yuanshun Dai from Purdue University, USA, Professor Enrico Zio 
and Dr Luca Podofillini from the Polytechnic of Milan, Dr Anatoly Lisnianski, Dr 
David Elmakis, and Dr Hanoch Ben Haim from The Israel Electric Corporation for 
collaboration in developing the UGF method. My special thanks to Dr Edward 
Korczak from the Telecommunications Research Institute, Warsaw, for his friendly 
support, correcting my mistakes, and discussions that benefited this book. 
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I am also indebted to the many researchers who have developed the underlying 
concepts of this book. Although far too numerous to mention, I have tried to 
recognize their contributions in the bibliographical references. 

It was a pleasure working with the Springer-Verlag editors Michael Koy, 
Anthony Doyle and Oliver Jackson.

Haifa, Israel             Gregory Levitin 
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General Notation and Acronyms 

Notation

Pr{e} probability of event e

E(X) expected value of random variable X

1(x)  unity function: 
1, is true

1( )
0, is false

x
x

x

 
=  

 
n

mi
ix  sum of values xi with indices running from m to n. If n<m

n

mi
ix = 0 

x  greatest integer not exceeding x

x  least integer not less than x

moda(x) module function: moda(x) = x  a x/a

F(G,W) system acceptability function 

G random system performance rate 

W random system demand 

O system performance measure (expected value of some function of

G and W)

R system reliability (expected acceptability) 

A system availability (expected acceptability) 

 mean system performance 
~  conditional expected system performance 

 expected system performance deviation 

 expected system performance deficiency 

gj vector of possible performance levels for element j

pj vector of probabilities corresponding to possible performance levels for 

element j

w vector of possible system demand levels

q vector of probabilities corresponding to possible demand levels

u(z) u-function: polynomial-like structure representing probabilistic 

distribution of a random  mathematical object 

d(z) d-function (double u-function) set of two related u-functions

uj(z) u-function representing performance distribution of individual element j

Um(z) u-function representing performance distribution of subsystem m

U(z) u-function representing performance distribution of the entire system
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composition operator over u-functions    

ser

composition operator over u-functions of elements connected in series

br
composition operator over u-functions of elements composing a bridge

par

composition operator over u-functions of elements connected in parallel

Acronyms

ATB  acceptance test block 

CCF  common cause failure 

CCG  common cause group 

CMCCS  circular multi-state consecutively connected system 

GA   genetic algorithm  

LMCCS  linear multi-state consecutively connected system  

MAN  multi-state acyclic network 

ME   multi-state element 

MPS  main producing system 

MR   minimal repair 

MSS  multi-state system 

MSWS  multiple sliding window system 

NVP  n-version programming 

PD   performance distribution 

PM   performance measure 

PMA  preventive maintenance action 

p.m.f.  probability mass function for discrete random value 

PR   preventive replacement 

RBS  recovery block scheme 

RGS  resource-generating subsystem 

RGT  reliability growth testing 

SWS  sliding window system 

UGF  universal generating function (u-function)

UOD   unit output distribution  

VWD   voting weight distribution  

WVC  weighted voting classifier 

WVS  weighted voting system 



1. Basic Tools and Techniques  

1.1 Moment-generating Function and z-transform

Consider a discrete random variable X that can take on a finite number of possible 
values. The probabilistic distribution of this variable can be represented by the 
finite vector x = (x0, …, xk) consisting of the possible values of X and the finite 
vector p consisting of the corresponding probabilities pi = Pr{X = xi}.
The mapping xi  pi is usually called the probability mass function (p.m.f.) 

X must take one of the values xi. Therefore 

k

i
ip

0
1   (1.1) 

Example 1.1

Suppose that one performs k independent trials and each trial can result either in a 
success (with probability ) or in a failure (with probability 1 ). Let random 
variable X represent the number of successes that occur in k trials. Such a variable 
is called a binomial random variable. The p.m.f. of X takes the form 

 xi = i, ,)1( iki
i

i

k
p ki0

According to the binomial theorem it can be seen that 
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kiki
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i
i

i

k
p

00
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The expected value of X is defined as a weighted average of the possible values 
that X can take on, where each value is weighted by the probability that X assumes 
that value: 
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Example 1.2 

The expected value of a binomial random variable is 
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The moment-generating function )(tm  of the discrete random variable X with 

p.m.f. x, p is defined for all values of t by 
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i
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The function )(tm  is called the moment-generating function because all of the 

moments of random variable X can be obtained by successively differentiating 
m(t). For example: 
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The nth derivative of )(tm  is equal to E(XP

n
P)at t = 0. 

Example 1.3

The moment-generating function of the binomial distribution takes the form 

ktik
k

i

it

k

i

ikititX

e
i

k
e

i

k
eeEtm

)1()1()(

)1()()(

0

0

Hence

tkt eektm 1)1()('   and   E(X) = m '(0) = k  . 

The moment-generating function of a random variable uniquely determines its 
p.m.f. This means that a one-to-one correspondence exists between the p.m.f. and 
the moment-generating function. 

The following important property of moment-generating function is of special 
interest for us. The moment-generating function of the sum of the independent 
random variables is the product of the individual moment-generating functions of 
these variables. Let mX(t) and mY(t) be the moment-generating functions of random 
variables X and Y respectively. The p.m.f. of the random variables are represented 
by the vectors 

 x = (x0, …, ),
Xkx pX = (pX0, …, )

XXkp

and
y = (y0, …, ),

Yky   pY = (pY0, …, )
YYkp

respectively. Then m X+Y (t), the moment-generating function of X + Y, is obtained as 

Xk
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The resulting moment-generating function )(tm YX  relates the probabilities of 

all the possible combinations of realizations X = xi, Y = yj, for any i and j, with the 
values that the random function X + Y takes on for these combinations. 

In general, for n independent discrete random variables X1, …, Xn

 )()(
1

1

tmtm
n

i
X

X i
n

i
i

 (1.9) 

By replacing the function et by the variable z in Equation (1.3) we obtain 
another function related to random variable X that uniquely determines its p.m.f.: 

(z)=E(z P

X
P)=

k

i
i

ix
pz

0
 (1.10) 

This function is usually called the z-transform of discrete random variable X.
The z-transform preserves some basic properties of the moment-generating 
functions. The first derivative of )(z is equal to E(X) at z = 1. Indeed: 
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Hence
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The z-transform of the sum of independent random variables is the product of 
the individual z-transforms of these variables: 
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 (1.13)    

and in general 
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The reader wishing to learn more about the generating function and z-transform
is referred to the books by Grimmett and Stirzaker [3] and Ross [4]. 

Example 1.4

Suppose that one performs k independent trials and each trial can result either in a 
success (with probability ) or in a failure (with probability 1 ). Let random 
variable Xj represent the number of successes that occur in the jth trial. 

The p.m.f. of any variable Xj ( kj1 ) is 

 Pr{Xj = 1} = ,  Pr{Xj = 0} = 1 .

The corresponding z-transform takes the form 

Xj(z) = z P

1 + (1 )z P

0
P

The random number of successes that occur in k trials is equal to the sum of the 
numbers of successes in each trial 

k

j
jXX

1

Therefore, the corresponding z-transform can be obtained as 
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This z-transform corresponds to the binomial p.m.f: 

 xi = i, ,)1( iki
i

i

k
p ki0



6 The Universal Generating Function in Reliability Analysis and Optimization 

1.2 Mathematical Fundamentals of the Universal 
Generating Function

1.2.1 Definition of the Universal Generating Function 

Consider n independent discrete random variables X1, …, Xn and assume that each 
variable Xi has a p.m.f. represented by the vectors xi, pi. In order to evaluate the 
p.m.f. of an arbitrary function f(X1, …, Xn), one has to evaluate the vector y of all of 
the possible values of this function and the vector q of probabilities that the 
function takes these values. 

Each possible value of function f corresponds to a combination of the values of 
its arguments X1, …, Xn. The total number of possible combinations is

n

i
ikK

1
)1(   (1.15) 

where ki + 1 is the number of different realizations of random variable Xi. Since all 
of the n variables are statistically independent, the probability of each unique 
combination is equal to the product of the probabilities of the realizations of 
arguments composing this combination.

The probability of the jth combination of the realizations of the variables can be 
obtained as 

n

i
ijj i

pq

1
 (1.16) 

and the corresponding value of the function can be obtained as

)...,,(
11 nnjjj xxff   (1.17) 

Some different combinations may produce the same values of the function. All 
of the combinations are mutually exclusive. Therefore, the probability that the 
function takes on some value is equal to the sum of probabilities of the 
combinations producing this value. Let Ah be a set of combinations producing the 
value fh. If the total number of different realizations of the function f(X1, …, Xn) is 
H, then the p.m.f. of the function is 

)1:(),1:(
1),...,(

11

HhpHhf
n

i
ij

Axx
h i

hnnjj

qy   (1.18) 
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Example 1.5 

Consider two random variables X1 and X2 with p.m.f. x1 = (1, 4), p1 = (0.6, 0.4) and  
x2 = (0.5, 1, 2), p2 = (0.1, 0.6, 0.3). In order to obtain the p.m.f. of the function 

2
1

X
XY we have to consider all of the possible combinations of the values taken 

by the variables. These combinations are presented in Table 1.1. 
The values of the function Y corresponding to different combinations of 

realizations of its random arguments and the probabilities of these combinations 
can be presented in the form

 y = (1, 2, 1, 4, 1, 16), q = (0.06, 0.04, 0.36, 0.24, 0.18, 0.12) 

Table 1.1. p.m.f. of the function of two variables

No of 
combination

Combination
probability

Value
of X1

Value
of X2

Value
of Y 

1 0.6 0.1 = 0.06 1 0.5 1 
2 0.4 0.1 = 0.04 4 0.5 2 
3 0.6 0.6 = 0.36 1 1 1 
4 0.4 0.6 = 0.24 4 1 4 
5 0.6 0.3 = 0.18 1 2 1 
6 0.4 0.3 = 0.12 4 2 16 

Note that some different combinations produce the same values of the function 
Y. Since all of the combinations are mutually exclusive, we can obtain the 
probability that the function takes some value as being the sum of the probabilities 
of different combinations of the values of its arguments that produce this value: 

 Pr{Y = 1} = Pr{X1 = 1,  X2 = 0.5} + Pr{X1 = 1,  X2 = 1} 

 + Pr{X1 = 1,  X2 = 2} = 0.06 + 0.36 + 0.18 = 0.6 

The p.m.f. of the function Y is 

 y = (1, 2, 4, 16), q = (0. 6, 0.04, 0.24, 0.12) 

The z-transform of each random variable Xi represents its p.m.f. ),...,,( 0 iiki xx

)...,,( 0 iiki pp in the polynomial form 

i
ij

k

j

x
ij zp

0
 (1.19) 

According to (1.14), the product of the z-transform polynomials corresponding 
to the variables X1, …, Xn determines the p.m.f. of the sum of these variables. 

In a similar way one can obtain the z-transform representing the p.m.f. of the 
arbitrary function f by replacing the product of the polynomials by a more general 
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composition operator f over z-transform representations of p.m.f. of n

independent variables:

1

1

1
2

20 0

),...,(

000
)(...)(
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j

k

j

xxfn

i
ij

k

j

k

j

x
ij

n

n

nnjij

i

i

i

iij

if
zpzp  (1.20) 

The technique based on using z-transform and composition operators f  is 

named the universal z-transform or universal (moment) generating function (UGF) 
technique. In the context of this technique, the z-transform of a random variable for 
which the operator f  is defined is referred to as its u-function. We refer to the u-

function of variable Xi as uj(z), and to the u-function of the function f(X1, …, Xn) as 
U(z).  According to this notation 

))(...,),(),(()( 21 zuzuzuzU n
f

 (1.21) 

where ui(z) takes the form (1.19) and U(z) takes the form (1.20). For functions of 
two arguments, two interchangeable notations can be used: 

 )()())(),(()( 2121 zuzuzuzuzU
ff

 (1.22) 

Despite the fact that the u-function resembles a polynomial, it is not a 
polynomial because: 

 -  Its coefficients and exponents are not necessarily scalar variables, but can be 
other mathematical objects (e.g. vectors); 

 - Operators defined over the u-functions can differ from the operator of the 
polynomial product (unlike the ordinary z-transform, where only the product 
of polynomials is defined). 

When the u-function U(z) represents the p.m.f. of a random function 
f(X1,…, Xn), the expected value of this function can be obtained (as an analogy with 
the regular z-transform) as the first derivative of U(z) at z = 1. 

In general, the u-functions can be used not just for representing the p.m.f. of 
random variables. In the following chapters we also use other interpretations. 
However, in any interpretation the coefficients of the terms in the u-function
represent the probabilistic characteristics of some object or state encoded by the 
exponent in these terms. 

The u-functions inherit the essential property of the regular polynomials: they 
allow for collecting like terms. Indeed, if a u-function representing the p.m.f. of a 

random variable X contains the terms hx
hzp and mx

mzp for which xh = xm, the two 

terms can be replaced by a single term mx
mh zpp )( , since in this case             

Pr{X = xh} = Pr{X = xm} = ph+pm.
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Example 1.6 

Consider the p.m.f. of the function Y from Example 1.5, obtained from Table 1.1. 
The u-function corresponding to this p.m.f. takes the form: 

 U(z) = 0.06z1 + 0.04z2 + 0.36z1 + 0.24z4 + 0.18z1 + 0.12z16

By collecting the like terms in this u-function we obtain: 

 U(z) = 0.6z1 + 0.04z2 + 0.24z4 + 0.12z16

which corresponds to the final p.m.f. obtained in Example 1.5. 
The expected value of Y can be obtained as 

 E(Y) = U '(1) = 0.6 1 + 0.04 2 + 0.24 4 + 0.12 16 = 3.56 

The described technique of determining the p.m.f. of functions is based on an 
enumerative approach. This approach is extremely resource consuming. Indeed, the 
resulting u-function U(z) contains K terms (see Equation (1.15)), which requires 
excessive storage space.  In order to obtain U(z) one has to  perform (n - 1)K
procedures of probabilities multiplication and K procedures of function evaluation. 
Fortunately, many functions used in reliability engineering produce the same 
values for different combinations of the values of their arguments. The 
combination of recursive determination of the functions with simplification 
techniques based on the like terms collection allows one to reduce considerably the 
computational burden associated with evaluating the p.m.f. of complex functions. 

Example 1.7 

Consider the function

 Y = f(X1, …, X5) = (max(X1, X2) + min(X3, X4)) X5

of five independent random variables X1, …, X5. The probability mass functions of 
these variables are determined by pairs of vectors xi, pi ( 50 i ) and are 
presented in Table 1.2. 

These p.m.f. can be represented in the form of u-functions as follows: 

 u1(z)  = 121110
121110

xxx
zpzpzp = 0.6z P

5
P+ 0.3z P

8
P+ 0.1z P

12

 u2(z)  = 2120
2120

xx
zpzp = 0.7z P

8
P+ 0.3z P

10
P

 u3(z)  = 3130
3130

xx
zpzp = 0.6z P

0
P+ 0.4z P

1

 u4(z)  = 424140
424140

xxx
zpzpzp = 0.1z P

0
P+ 0.5z P

8
P + 0.4z P

10
P

 u5(z)  = 5150
5150

xx
zpzp = 0.5z P

1
P + 0.5z P

1.5
P
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Using the straightforward approach one can obtain the p.m.f. of the random 
variable Y applying the operator (1.20) over these u-functions. Since k1 + 1 = 3, 
k2 + 1 = 2, k3 + 1 = 2, k4 + 1 = 3, k5 + 1 = 2, the total number of term multiplication 
procedures that one has to perform using this equation is 3 2 2 3 2 = 72. 

Table 1.2. p.m.f. of random variables

X1 p1 0.6 0.3 0.1

x1 5 8 12

X2 p2 0.7 0.3 -

x2 8 10 -

X3 p3 0.6 0.4 -

x3 0 1 -

X4 p4 0.1 0.5 0.4

x4 0 8 10

X5 p5 0.5 0.5 -

x5 1 1.5 -

Now let us introduce three auxiliary random variables X6, X7 and X8, and define 
the same function recursively: 

 X6 = max{X1, X2}

 X7 = min{X3, X4}

 X8 = X6 + X7

 Y = X8 X5

We can obtain the p.m.f. of variable Y using composition operators over pairs 
of u-functions as follows: 

 u6(z) = u1(z)
max

u1(z) = (0.6z P

5
P+ 0.3z P

8 + 0.1z P

12
P)

max

(0.7z P

8 + 0.3z P

10
P)

 =0.42z P

max{5,8}
P + 0.21z P

max{8,8} + 0.07zmax{12,8} + 0.18zmax{5,10} + 0.09zmax{8,10}

+ 0.03zmax{12,10} = 0.63z8 + 0.27z10 + 0.1z12

 u7(z) = u3(z)
min

u4(z) = (0.6z P

0
P+ 0.4z P

2
P)

min

(0.1z P

0
P + 0.5z P

3 + 0.4z P

5
P)

 = 0.06z P

min{0,0}
P + 0.04z P

min{2,0} + 0.3zmin{0,3} + 0.2zmin{2,3}

 +0.24zmin{0,5} + 0.16zmin{2,5} = 0.64z0 + 0.36z2

 u8(z) = u6(z) u7(z) = (0.63z P

8
P + 0.27z P

10
P + 0.1z P

12
P) (0.64z P

0 + 0.36z P

2
P)
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 = 0.4032z P

8+0
P + 0.1728z P

10+0
P + 0.064z12+0 + 0.2268z8+2 + 0.0972z10+2

 + 0.036z12+2 = 0.4032z8 + 0.3996z10 + 0.1612z12 + 0.036z14

 U(z) = u8(z) u5(z)

 = (0.4032z P

8
P + 0.3996z P

10 + 0.1612z P

12
P + 0.036z P

14
P)(0.5z P

1
P + 0.5z P

1.5
P)

 = 0.2016z P

8×1
P + 0.1998z10×1 + 0.0806z12×1 + 0.018z14×1 + 0.2016z8×1.5

 + 0.1998z10×1.5 + 0.0806z12×1.5 + 0.018z14×1.5 = 0.2016z8 + 0.1998z10

 + 0.2822z12 + 0.018z14 + 0.1998z15 + 0.0806z18 + 0.018z21

The final u-function U(z) represents the p.m.f. of Y, which takes the form 

 y = (8, 10, 12, 14, 15, 18, 21) 

 q = (0.2016, 0.1998, 0.2822, 0.018, 0.1998, 0.0806, 0.018) 

Observe that during the recursive derivation of this p.m.f. we used only 26 term 
multiplication procedures. This considerable computational complexity reduction 
is possible because of the like term collection in intermediate u-functions.

The problem of system reliability analysis usually includes evaluation of the 
p.m.f. of some random values characterizing the system's behaviour. These values 
can be very complex functions of a large number of random variables. The explicit 
derivation of such functions is an extremely complicated task. Fortunately, the 
UGF method for many types of system allows one to obtain the system u-function
recursively. This property of the UGF method is based on the associative property 
of many functions used in reliability engineering. The recursive approach presumes 
obtaining u-functions of subsystems containing several basic elements and then 
treating the subsystem as a single element with the u-function obtained when 
computing the u-function of a higher level subsystem. Combining the recursive 
approach with the simplification technique reduces the number of terms in the 
intermediate u-functions and provides a drastic reduction of the computational 
burden.

1.2.2 Properties of Composition Operators 

The properties of composition operator f strictly depend on the properties of the 

function f(X1, …, Xn). Since the procedure of the multiplication of the probabilities 
in this operator is commutative and associative, the entire operator can also possess 
these properties if the function possesses them. 
 If

f(X1, X2, …, Xn) = f(f(X1, X2, …, Xn-1), Xn), (1.23) 
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then:

)).()),(...,),(),(((

))(...,),(),(()(

121

21

zuzuzuzu

zuzuzuzU

nn
ff

n
f

 (1.24) 

Therefore, one can obtain the u-function U(z) assigning U1(z) = u1(z) and 
applying operator 

f
 consecutively:

 Uj(z) =
f

 (Uj 1(z), uj(z))  for 2  j  n, (1.25) 

such that finally U(z) = Un(z).

If the function f possesses the associative property 

f(X1, …, Xj, Xj+1, …, Xn)=f( f(X1, …, Xj), f(Xj+1, …, Xn)) (1.26) 

for any j, then the 
f

 operator also possesses this property: 

))(...,),(( 1 zuzu n
f

 ))(...,),(()),(...,),((( 11 zuzuzuzu nj
f

j
ff

 (1.27) 

If, in addition to the property (1.24), the function f is also commutative: 

f(X1, …, Xj, Xj+1,…, Xn) = f(X1, …, Xj+1, Xj,…, Xn) (1.28) 

then for any j, which provides the commutative property for the 
f

 operator: 

))(),...,(),(),...,((

))(),...,(),(),...,((

11

11

zuzuzuzu

zuzuzuzu

njj
f

njj
f

 (1.29) 

the order of arguments in the function f(X1, …, Xn) is inessential and the u-function
U(z) can be obtained using recursive procedures (1.23) and (1.25) over any 
permutation of u-functions of random arguments X1, …, Xn.

If a function takes the recursive form 

f(f1(X1, …, Xj), f2(Xj+1, …, Xh), …,  fm(Xl, …, Xn)) (1.30) 

then the corresponding u-function U(z) can also be obtained recursively: 
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21
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mffff

 (1.31) 

Example 1.8 

Consider the variables X1, X2, X3 with p.m.f. presented in Table 1.1. The u-
functions of these variables are: 

 u1(z) = 0.6z5 + 0.3z8 + 0.1z12

 u2(z) = 0.7z8 + 0.3z10

 u3(z) = 0.6z0 + 0.4z1

The function Y = min(X1, X2, X3) possesses both commutative and associative 
properties. Therefore

 min(min(X1, X2), X3) = min(min(X2, X1), X3) = min(min(X1, X3), X2)

 = min(min(X3, X1), X2) = min(min(X2, X3), X1) = min(min(X3, X2), X1).

The u-function of Y can be obtained using the recursive procedure 

 u4(z) = u1(z)
min

u2(z) = (0.6z P

5 + 0.3z P

8 + 0.1z P

12
P)

min

(0.7z8 + 0.3z10)

 = 0.42zmin{5,8} + 0.21zmin{8,8} + 0.07zmin{12,8}

 + 0.18zmin{5,10} + 0.09zmin{8,10} + 0.03zmin{12,10} = 0.6z5 + 0.37z8 + 0.03z10

 U(z) = u4(z)
min

u3(z) = (0.6z P

5 + 0.37z P

8 + 0.03z P

10
P)

min

(0.6z P

0
P + 0.4z P

1
P)

 = 0.36z P

min{5,0}
P + 0.222z P

min{8,0}
P+ 0.018z P

min{12,0}
P

 + 0.24z P

min{5,1}
P + 0.148z P

min{8,1}
P + 0.012z P

min{12,1}
P = 0.6z P

0
P + 0.4z P

1

The same u-function can also be obtained using another recursive procedure 

 u4(z) = u1(z)
min

u3(z) = (0.6z P

5
P + 0.3z P

8 + 0.1z P

12
P)

min

(0.6z P

0
P + 0.4z P

1
P)

 = 0.36z P

min{5,0}
P + 0.18z P

min{8,0}
P+ 0.06z P

min{12,0}
P

 +0.24z P

min{5,1}
P+ 0.12z P

min{8,1}
P + 0.04z P

min{12,1}
P = 0.6z P

0 + 0.4z P

1
P;

 U(z) = u3(z)
min

u2(z) = (0.6z P

0
P+ 0.4z P

1)
min

(0.7z P

8
P + 0.3z P

10
P)

 = 0.42z P

min{0,8}
P+ 0.28z P

min{1,8}
P + 0.18z P

min{0,10}
P + 0.12z P

min{1,10}
P= 0.6z P

0
P + 0.4z P

1

Observe that while both recursive procedures produce the same u-function, their 
computational  complexity  differs . In the first case, 12 term multiplication 
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operations have been performed; in the second case, only 10 operations have been 
performed.

Consider a random variable X with p.m.f. represented by u-function
k
j

jx
jX zpzu 0 .)(  In order to obtain the u-function representing the p.m.f. of 

function f(X, c) of the variable X and a constant c one can apply the following 
simplified operator: 

 U(z) = 
k

j

cjxf
j

k

j f

jx
j

f
X zpczpczu

0

),(

0
)()(  (1.32) 

This can be easily proved if we represent the constant c as the random variable 
C that can take the value of c with a probability of 1. The u-function of such a 
variable takes the form 

 uc(z) = z c (1.33) 

Applying the operator f over the two u-functions uX(z) and uc(z) we obtain 

Equation (1.32). 

1.3 Introduction to Genetic Algorithms 

An abundance of optimization methods have been used to solve various reliability 
optimization problems. The algorithms applied are either heuristics or exact 
procedures based mainly on modifications of dynamic programming and nonlinear 
programming. Most of these methods are strongly problem oriented. This means 
that, since they are designed for solving certain optimization problems, they cannot 
be easily adapted for solving other problems. In recent years, many studies on 
reliability optimization use a universal optimization approach based on 
metaheuristics. These metaheuristics hardly depend on the specific nature of the 
problem that is solved and, therefore, can be easily applied to solve a wide range of 
optimization problems. The metaheuristics are based on artificial reasoning rather 
than on classical mathematical programming. Their important advantage is that 
they do not require any information about the objective function besides its values 
corresponding to the points visited in the solution space. All metaheuristics use the 
idea of randomness when performing a search, but they also use past knowledge in 
order to direct the search. Such search algorithms are known as randomized search 
techniques.

Genetic algorithms (GAs) are one of the most widely used metaheuristics. They 
were inspired by the optimization procedure that exists in nature, the biological 
phenomenon of evolution. A GA maintains a population of different solutions 
allowing them to mate, produce offspring, mutate, and fight for survival. The 
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principle of survival of the fittest ensures the population’s drive towards 
optimization. The GAs have become the popular universal tool for solving various 
optimization problems, as they have the following advantages:

-  they can be easily implemented and adapted;
-  they usually converge rapidly on solutions of good quality; 
-  they can easily handle constrained optimization problems; 
- they produce variety of good quality solutions simultaneously, which is 

important in the decision-making process. 
The GA concept was developed by John Holland at the University of Michigan 

and first described in his book [5]. Holland was impressed by the ease with which 
biological organisms could perform tasks, which eluded even the most powerful 
computers. He also noted that very few artificial systems have the most remarkable 
characteristics of biological systems: robustness and flexibility. Unlike technical 
systems, biological ones have methods for self-guidance, self-repair and 
reproducing these features. Holland’s biologically inspired approach to 
optimization is based on the following analogies: 

- As in nature, where there are many organisms, there are many possible 
solutions to a given problem. 

- As in nature, where an organism contains many genes defining its properties, 
each solution is defined by many interacting variables (parameters). 

- As in nature, where groups of organisms live together in a population and 
some organisms in the population are more fit than others, a group of 
possible solutions can be stored together in computer memory and some of 
them are closer to the optimum than others. 

-  As in nature, where organisms that are fitter have more chances of mating 
and having offspring, solutions that are closer to the optimum can be selected 
more often to combine their parameters to form new solutions. 

-  As in nature, where organisms produced by good parents are more likely to 
be better adapted than the average organism because they received good 
genes, offspring of good solutions are more likely to be better than a random 
guess, since they are composed of better parameters. 

-  As in nature, where survival of the fittest ensures that the successful traits 
continue to get passed along to subsequent generations, and are refined as the 
population evolves, the survival-of-the-fittest rule ensures that the 
composition of the parameters corresponding to the best guesses continually 
get refined. 

GAs maintain a population of individual solutions, each one represented by a 
finite string of symbols, known as the genome, encoding a possible solution within 
a given problem space. This space, referred to as the search space, comprises all of 
the possible solutions to the problem at hand. Generally speaking, a GA is applied 
to spaces, which are too large to be searched exhaustively.

GAs exploit the idea of the survival of the fittest and an interbreeding 
population to create a novel and innovative search strategy. They iteratively create 
new populations from the old ones by ranking the strings and interbreeding the 
fittest to create new strings, which are (hopefully) closer to the optimum solution 
for  the  problem at hand. In each generation, a GA creates a set of strings from 



16 The Universal Generating Function in Reliability Analysis and Optimization 

pieces of the previous strings, occasionally adding random new data to keep the 
population from stagnating. The result is a search strategy that is tailored for vast, 
complex, multimodal search spaces.

The idea of survival of the fittest is of great importance to genetic algorithms. 
GAs use what is termed as the fitness function in order to select the fittest string to 
be used to create new, and conceivably better, populations of strings. The fitness 
function takes a string and assigns it a relative fitness value. The method by which 
it does this and the nature of the fitness value do not matter. The only thing that the 
fitness function must do is rank the strings in some way by producing their fitness 
values. These values are then used to select the fittest strings.

GAs use the idea of randomness when performing a search. However, it must 
be clearly understood that the GAs are not simply random search algorithms. 
Random search algorithms can be inherently inefficient due to the directionless 
nature of their search. GAs are not directionless. They utilize knowledge from 
previous generations of strings in order to construct new strings that will approach 
the optimal solution. GAs are a form of a randomized search, and the way that the 
strings are chosen and combined comprise a stochastic process. 

The essential differences between GAs and other forms of optimization, 
according to Goldberg [6], are as follows. 

GAs usually use a coded form of the solution parameters rather than their actual 
values. Solution encoding in a form of strings of symbols (an analogy to 
chromosomes containing genes) provides the possibility of crossover and mutation. 
The symbolic alphabet that was used was initially binary, due to certain 
computational advantages purported in [5]. This has been extended in recent years 
to include character-based encodings, integer and real-valued encodings, and tree 
representations [7]. 

GAs do not just use a single point on the problem space, rather they use a set, 
or population, of points (solutions) to conduct a search. This gives the GAs the 
power to search noisy spaces littered with local optimum points. Instead of relying 
on a single point to search through the space, GAs look at many different areas of 
the problem space at once, and use all of this information as a guide. 

GAs use only payoff information to guide themselves through the problem 
space. Many search techniques need a range of information to guide themselves. 
For example, gradient methods require derivatives. The only information a GA 
needs to continue searching for the optimum is some measure of fitness about a 
point in the space.

GAs are probabilistic in nature, not deterministic. This is a direct result of the 
randomization techniques used by GAs. 

GAs are inherently parallel. Herein lies one of their most powerful features. 
GAs, by their nature, are very parallel, dealing with a large number of solutions 
simultaneously. Using schemata theory, Holland has estimated that a GA, 
processing n strings at each generation, in reality processes n3 useful substrings [6].

Two of the most common GA implementations are “generational” and “steady 
state”, although recently the steady-state technique has received increased attention 
[8]. This interest is partly attributed to the fact that steady-state techniques can 
offer a substantial reduction in the memory requirements of a system: the technique
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abolishes the need to maintain more than one population during the evolutionary 
process, which is necessary in the generational GA. In this way, genetic systems 
have greater portability for a variety of computer environments because of the 
reduced memory overhead. Another reason for the increased interest in steady-state 
techniques is that, in many cases, a steady-state GA has been shown to be more 
effective than a generational GA [9, 10]. This improved performance can be 
attributed to factors such as the diversity of the population and the immediate 
availability of superior individuals.

A comprehensive description of a generational GA can be found in [6]. Here, 
we present the structure of a steady-state GA. 

1.3.1 Structure of Steady-state Genetic Algorithms

The steady-state GA (see Figure 1.1) proceeds as follows [11]: an initial population 
of solutions is generated randomly or heuristically. Within this population, new 
solutions are obtained during the genetic cycle by using the crossover operator. 
This operator produces an offspring from a randomly selected pair of parent 
solutions (the parent solutions are selected with a probability proportional to their 
relative fitness), facilitating the inheritance of some basic properties from the 
parents to the offspring. The newly obtained offspring undergoes mutation with the 
probability pmut.

Figure 1.1. Structure of a steady-state GA 

Each new solution is decoded and its objective function (fitness) values are 
estimated. These values, which are a measure of quality, are used to compare 
different solutions. The comparison is  accomplished by a selection procedure that 
determines which solution is better: the newly obtained solution or the worst 
solution in  the population. The better solution joins the population, while the other
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is discarded. If the population contains equivalent solutions following selection, 
then redundancies are eliminated and the population size decreases as a result. 

A genetic cycle terminates when Nrep new solutions are produced or when the 
number of solutions in the population reaches a specified level. Then, new 
randomly constructed solutions are generated to replenish the shrunken population, 
and a new genetic cycle begins. The whole GA is terminated when its termination 
condition is satisfied. This condition can be specified in the same way as in a 
generational GA. The following is the steady-state GA in pseudo-code format. 

begin STEADY STATE GA 
 Initialize population 
 Evaluate population   {compute fitness values}
 while GA termination criterion is not satisfied do 

{GENETIC CYCLE}
while genetic cycle termination criterion is not satisfied do

  Select at random Parent Solutions S1, S2 from 
      Crossover: (S1, S2) SO {offspring}
      Mutate offspring SO  S*O with probability pmut

      Evaluate S*O

Replace SW {the worst solution in   with S*O } if S*O is
better than SW

  Eliminate identical solutions in 
  end while 
  Replenish   with new randomly generated solutions
 end while 
end GA 

Example 1.9 

In this example we present several initial stages of a steady-state GA, that 
maximizes the function of six integer variables x1, …, x6 taking the form 

12
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The variables can take values from 1 to 9. The initial population, consisting of 
five solutions ordered according to their fitness (value of function f), is: 

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 1 2 5 297.8 
2 3 7 7 7 2 7 213.8 
3 7 5 3 5 3 9 204.2 
4 2 7 4 2 1 4 142.5 
5 8 2 3 1 1 4 135.2 

Using the random generator that produces the numbers of the solutions, the GA 
chooses the first and third strings, i.e. (4 2 4 1 2 5) and (7 5 3 5 3 9) respectively. 
From these strings, it produces a new one by applying a crossover procedure that 
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takes the three first numbers from the better parent string and the last three 
numbers from the inferior parent string. The resulting string is (4 2 4 5 3 9). The 
fitness of this new solution is f(x1, …, x6) = 562.4. The new solution enters the 
population, replacing the one with the lowest fitness. The new population is now 

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 5 3 9 562.4 
2 4 2 4 1 2 5 297.8 
3 3 7 7 7 2 7 213.8 
4 7 5 3 5 3 9 204.2 
5 2 7 4 2 1 4 142.5 

Choosing at random the third and fourth strings, (3 7 7 7 2 7) and (7 5 3 5 3 9) 
respectively, the GA produces the new string (3 7 7 5 3 9) using the crossover 
operator. This string undergoes a mutation that changes one of its numbers by one 
(here, the fourth element of the string changes from 5 to 4). The resulting string     
(3 7 7 4 3 9) has a fitness of f(x1, …, x6) = 349.9. This solution is better than the 
inferior one in the population; therefore, the new solution replaces the inferior one. 
Now the population takes the form 

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 5 3 9 562.4 
2 3 7 7 4 3 9 349.9 
3 4 2 4 1 2 5 297.8 
4 3 7 7 7 2 7 213.8 
5 7 5 3 5 3 9 204.2 

A new solution (4 2 4 4 3 9) is obtained by the crossover operator over the 
randomly chosen first and second solutions, i.e. (4 2 4 5 3 9) and (3 7 7 4 3 9) 
respectively. After the mutation this solution takes the form (4 2 4 5 3 9) and has 
the fitness f(x1,…, x6) = 1165.5. The population obtained after the new solution 
joins it is 

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 5 4 3 9 1165.5 
2 4 2 4 5 3 9 562.4 
3 3 7 7 4 3 9 349.9 
4 4 2 4 1 2 5 297.8 
5 3 7 7 7 2 7 213.8 

Note that the mutation procedure is not applied to all the solutions obtained by 
the crossover. This procedure is used with some prespecified probability pmut. In
our example, only the second and the third newly obtained solutions underwent the 
mutation.

The actual GAs operate with much larger populations and produce thousands of 
new solutions using the crossover and mutation procedures. The steady-state GA 
with a population size of 100 obtained the optimal solution for the problem 
presented after producing about 3000 new solutions. Note that the total number of 
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possible solutions is 96 = 531441. The GA managed to find the optimal solution by 
exploring less than 0.6% of the entire solution space. 

Both types of GA are based on the crossover and mutation procedures, which 
depend strongly on the solution encoding technique. These procedures should 
preserve the feasibility of the solutions and provide the inheritance of their 
essential properties.

1.3.2 Adaptation of Genetic Algorithms to Specific Optimization 
Problems

There are three basic steps in applying a GA to a specific problem. 
In the first step, one defines the solution representation (encoding in a form of a 

string of symbols) and determines the decoding procedure, which evaluates the 
fitness of the solution represented by the arbitrary string. 

In the second step, one has to adapt the crossover and mutation procedures to 
the given representation in order to provide feasibility for the new solutions 
produced by these procedures as well as inheriting the basic properties of the 
parent solutions by their offspring. 

In the third step, one has to choose the basic GA parameters, such as the 
population size, the mutation probability, the crossover probability (generational 
GA) or the number of crossovers per genetic cycle (in the steady-state GA), and 
formulate the termination condition in order to provide the greatest possible GA 
efficiency (convergence speed). 

The strings representing GA solutions are randomly generated by the 
population generation procedure, modified by the crossover and mutation 
procedures, and decoded by the fitness evaluation procedure. Therefore, the 
solution representation in the GA should meet the following requirements: 

-  It should be easily generated (the sophisticated complex solution generation 
procedures reduce the GA speed). 

-  It should be as compact as possible (using very long strings requires 
excessive  computational resources and slows the GA convergence). 

-  It should be unambiguous (i.e. different solutions should be represented by 
different strings). 

-  It should represent feasible solutions (if not any randomly generated string 
represents a feasible solution, then the feasibility should be provided by 
simple string transformation).

- It should provide feasibility inheritance of new solutions obtained from 
feasible ones by the crossover and mutation operators. 

The field of reliability optimization includes the problems of finding optimal 
parameters, optimal allocation and assignment of different elements into a system, 
and optimal sequencing of the elements. Many of these problems are combinatorial 
by their nature. The most suitable symbol alphabet for this class of problems is 
integer numbers. The finite string of integer numbers can be easily generated and 
stored. The random generator produces integer numbers for each element of the 
string in a specified range. This range should be the same for each element in order 
to make the string generation procedure simple and fast. If for some reason 
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different string elements should belong to different ranges, then the string should 
be transformed to provide solution feasibility. 

In the following sections we show how integer strings can be interpreted for 
solving different kinds of optimization problems. 

1.3.2.1 Parameter Determination Problems 

When the problem lies in determining a vector of H parameters (x1, x2, …, xH) that 
maximizes an objective function f(x1, x2, …, xH) one always has to specify the 
ranges of the parameter variation: 

maxmin
jjj xxx for Hj1  (1.34) 

In order to facilitate the search in the solution space determined by inequalities 
(1.34), integer strings a = (a1 a2 … aH) should be generated with elements ranging 
from 0 to N and the values of parameters should be obtained for each string as 

./)( minmaxmin Nxxaxx jjjjj  (1.35) 

Note that the space of the integer strings just approximately maps the space of 
the real-valued parameters. The number N determines the precision of the search. 

The search resolution for the jth parameter is ./)( minmax Nxx jj  Therefore, the 

increase of N provides a more precise search. On the other hand, the size of the 
search space of integer strings grows drastically with the increase of N, which 
slows the GA convergence. A reasonable compromise can be found by using a 
multistage GA search. In this method, a moderate value of N is chosen and the GA 
is run to obtain a "crude" solution. Then the ranges of all the parameters are 
corrected to accomplish the search in a small vicinity of the vector of parameters 
obtained and the GA is started again. The desired search precision can be obtained 
by a few iterations. 

Example 1.10 

Consider a problem in which one has to minimize a function of seven parameters. 
Assume that following a preliminary decision the ranges of the possible variations 
of the parameters are different.

Let the random generator provide the generation of integer numbers in the 
range of 0 -100 (N = 100). The random integer string and the corresponding values 
of the parameters obtained according to (1.35) are presented in Table 1.3. 

Table 1.3. Example of parameters encoding

No. of variable 1 2 3 4 5 6 7 
xj

min 0.0 0.0 1.0 1.0 1.0 0.0 0.0 
xj

max 3.0 3.0 5.0 5.0 5.0 5.0 5.0 
Random integer string 21 4 0 100 72 98 0 

Decoded variable 0.63 0.12 1.0 5.0 3.88 4.9 0.0 
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1.3.2.2  Partition and Allocation Problems 

The partition problem can be considered as a problem of allocating Y items 
belonging to a set  in K mutually disjoint subsets i, i.e. such that 

K

i
i

1
, ji , i j (1.36) 

Each set can contain from 0 to Y items. The partition of the set  can be 
represented by the Y-length string a = (a1 a2 … aY 1 aY) in which aj is a number of 
the set to which item j belongs. Note that, in the strings representing feasible 
solutions of the partition problem, each element can take a value in the range (1,
K).

Now consider a more complicated allocation problem in which the number of 
items is not specified. Assume that there are H types of different items with an 
unlimited number of items for each type h. The number of items of each type 
allocated in each subset can vary. To represent an allocation of the variable number 
of items in K subsets one can use the following string encoding 
a = (a11 a12 …a1K a21 a22 … a2K… aH1 aH2… aHK), in which aij corresponds to the 
number of items of type i belonging to subset j. Observe that the different subsets 
can contain identical elements. 

Example 1.11 

Consider the problem of allocating items of three different types in two disjoint 
subsets. In this problem, H=3 and K=2. Any possible allocation can be represented 
by an integer string using the encoding described above. For example, the string    
(2 1 0 1 1 1) encodes the solution in which two type 1 items are allocated in the 
first subset and one in the second subset, one item of type 2 is allocated in the 
second subset, one item of type 3 is allocated in each of the two subsets. 

When K = 1, one has an assignment problem in which a number of different 
items should be chosen from a list containing an unlimited number of items of K
different types. Any solution of the assignment problem can be represented by the 
string a = (a1 a2 … aK), in which aj corresponds to the number of chosen items of 
type j.

The range of variance of string elements for both allocation and assignment 
problems can be specified based on the preliminary estimation of the 
characteristics of the optimal solution (maximal possible number of elements of the 
same type included into the single subset). The greater the range, the greater the 
solution space to be explored (note that the minimal possible value of the string 
element is always zero in order to provide the possibility of not choosing any 
element of the given type to the given subset). In many practical applications, the 
total number of items belonging to each subset is also limited. In this case, any 
string representing a solution in which this constraint is not met should be 
transformed in the following way: 
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otherwise,

if,/
11

*

ij

H

h
hjj

H

h
hjjij

ij

a

aNaNa
a for 1 i H,1 j K       (1.37) 

where Nj is the maximal allowed number of items in subset j.

Example 1.12 

Consider the case in which the items of three types should be allocated into two 
subsets. Assume that it is prohibited to allocate more than five items of each type 
to the same subset. The GA should produce strings with elements ranging from 0 
to 5. An example of such a string is (4 2 5 1 0 2). 

 Assume that for some reason the total numbers of items in the first and in the 
second subsets are restricted to seven and six respectively. In order to obtain a 
feasible solution, one has to apply the transform (1.37) in which N1 = 7, N2 = 6: 

3

1
1

h
ha 4+5+0=9,

3

1
2

h
ha 2+1+2=5

The string elements take the values

 a11 = 4 7/9  = 3, a21 = 5 7/9  = 3, a31 = 0 7/9  = 0 

 a12 = 2 6/5  = 2, a22 = 1 6/5  = 1, a32 = 2 6/5  = 2 

After the transformation, one obtains the following string: (3 2 3 1 0 2). 

When the number of item types and subsets is large, the solution representation 
described above results in an enormous growth of the length of the string. Besides, 
to represent a reasonable solution (especially when the number of items belonging 
to each subset is limited), such a string should contain a large fraction of zeros 
because only a few items should be included in each subset. This redundancy 
causes an increase in the need of computational resources and lowers the efficiency 
of the GA. To reduce the redundancy of the solution representation, each inclusion 
of m items of type h into subset k is represented by a triplet (m h k). In order to 
preserve the constant length of the strings, one has to specify in advance a maximal 
reasonable number of such inclusions I. The string representing up to I inclusions 
takes the form (m1 h1 k1 m2 h2 k2 … mI hI kI). The range of string elements should be 
(0, max{M, H, K}), where M is the maximal possible number of elements of the 
same type included into a single subset. An arbitrary string generated in this range 
can still produce infeasible solutions. In order to provide the feasibility, one has to 

apply the transform jxj aa 1
* mod , where x is equal to M, H and K for the string 

elements corresponding to m, h and k respectively. If one of the elements of the 
triplet is equal to zero, then this means that no inclusion is made.
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For example, the string (3 1 2 1 2 3 2 1 1 2 2 2 3 2) represents the same 
allocation as string (3 2 3 1 0 2) in Example 1.12. Note that the permutation of 
triplets, as well as an addition or reduction of triplets containing zeros, does not 
change the solution. For example, the string (4 0 1 2 3 2 2 1 2 3 1 1 1 2 2 3 2 1)
also represents the same allocation as that of the previous string. 

1.3.2.3 Mixed Partition and Parameter Determination Problems 

Consider a problem in which Y items should be allocated in K subsets and a value 
of a certain parameter should be assigned to each item. The first option of 
representing solutions of such a problem in the GA is by using a 2Y-length string 
which takes the form a = (a11 a12 a21 a22 … aY1 aY2). In this string, aj1 and aj2

correspond respectively to the number of the set the item j belongs to and to the 
value of the parameter associated with this item. The elements of the string should 
be generated in the range (0, max{K, N}), where N is chosen as described in 
Section 1.3.2.1. The solution decoding procedure should transform the odd 
elements of the string as follows: 

1
*
1 mod1 jKj aa  (1.38) 

in order to obtain the class number in the range from 1 to K. The even elements of 
the string should be transformed as follows:

21
*

2 mod jNj aa  (1.39) 

in order to obtain the parameter value encoded by the integer number in the range 
from 0 to N. The value of the parameter is then obtained using Equation (1.35).

Example 1.13

Consider a problem in which seven items (N = 7) should be allocated to three 
separated subsets (K = 3) and a value of a parameter associated with each item 
should be chosen. The solution should encode both items’ distribution among the 
subsets and the parameters. Let the range of the string elements be (0, 100)           
(N = 100). The string

(99 21 22 4 75 0 14 100 29 72 60 98 1 0) 

(in which elements corresponding to the numbers of the subsets are marked in 
italics) represents the solution presented in Table 1.4. The values corresponding to 
the numbers of the groups are obtained using Equation (1.38) as 

199mod1mod1 311
*
11 aa K

 222mod1mod1 321
*
21 aa K
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and so on. The numbers that determine the units' weights are obtained using 
Equation (1.39) as

2121modmod 10112101
*
12 aa

 44modmod 10122101
*
22 aa

and so on. Observe that, in this solution, items 1, 3, and 6 belong to the first subset, 
items 2 and 7 belong to the second subset, and items 4 and 5 belong to the third 
subset. The parameters are identical to those in Example 1.10. 

Table 1.4. Example of the solution encoding for the mixed partition and
parameter determination problem 

No. of unit 1 2 3 4 5 6 7 
No. of subset 1 2 1 3 3 1 2 

Integer code parameter value 21 4 0 100 72 98 0 

This encoding scheme has two disadvantages: 
- A large number of different strings can represent an identical solution. Indeed, 

when K is much smaller than N, many different values of aji produce the same 
value of jiK amod1 (actually, this transform maps any value mK+n for n<K and       

m = 1, 2, …, (N n)/K  into the same number n+1). Note for example that the 
string

(3 21 76 4 27 0 29 100 89 72 18 98 70)

represents the same solution as the string presented above. This causes a situation 
where the GA population is overwhelmed with different strings corresponding to 
the same solution, which misleads the search process.

- The string is quite long, which slows the GA process and increases need for 
computational resources. 

In order to avoid these problems, another solution representation can be 
suggested that lies in using a Y-length string in which element aj represents both 
the number of the set and the value of the parameter corresponding to item j. To 
obtain such a compound representation, the string elements should be generated in 
the range (0, K(N+1) 1). The number of the subset that element j belongs to should 
be obtained as

 1+ aj/(N+1)  (1.40) 

and the number corresponding to the value of jth parameter should be obtained as 

jN a1mod  (1.41) 

Consider the example presented above with K = 3 and N = 100. The range of 
the string elements should be (0, 302). The string
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 (21 105 0 302 274 98 101) 

corresponds to the same solution as the strings in the previous example (Table 1.4). 

1.3.2.4  Sequencing Problems 

The sequencing problem lies in ordering a group of unique items. It can be 
considered as a special case of the partition problem in which the number of items 
Y is equal to the number of subsets K and each subset should not be empty. As in 
the partition problem, the sequences of items can be represented by Y-length
strings (a1 a2 … aY 1 aY) in which aj is a number of a set to which item j belongs. 
However, in the case of the sequencing problem, the string representing a feasible 
solution should be a permutation of Y integer numbers, i.e. it should contain all the 
numbers from 1 to Y and each number in the string should be unique. While the 
decoding of such strings is very simple (it just explicitly represents the order of 
item numbers), the generation procedure should be more sophisticated to satisfy 
the above-mentioned constraints. 

The simplest procedure for generating a random string permutation is as 
follows:

1. Fill the entire string with zeros. 
2. For i from 1 to Y in the sequence: 

2.1. Generate a random number j in the range (1, Y).
2.2. If aj = 0 assign aj = i or else find the closest zero element to the right of aj

and assign i to this element (treat the string as a circle, i.e. consider a0 to be the 
closest element to the right of aY).

Like the generation procedures for the partition problem, this one also requires 
the generation of Y random numbers. 

1.3.2.5 Determination of Solution Fitness 

Having a solution represented in the GA by an integer string a one then has to 
estimate the quality of this solution (or, in terms of the evolution process, the 
fitness of the individual). The GA seeks solutions with the greatest possible fitness. 
Therefore, the fitness should be defined in such a way that its greatest values 
correspond to the best solutions. 

For example, when optimizing the system reliability R (which is a function of 
some of the parameters represented by a) one can define the solution fitness equal 
to this index, since one wants to maximize it. On the contrary, when minimizing 
the system cost C, one has to define the solution fitness as M  C, where M is a 
constant number. In this case, the maximal solution fitness corresponds to its 
minimal cost. 

In the majority of optimization problems, the optimal solution should satisfy 
some constraints. There are three different approaches to handling the constraints 
in GA [7]. One of these uses penalty functions as an adjustment to the fitness 
function; two other approaches use "decoder"  or "repair" algorithms to avoid 
building illegal solutions or repair them respectively. The "decoder" and  "repair" 
approaches suffer from the disadvantage of being tailored to the specific problems 
and thus are not sufficiently general to  handle a  variety of  problems. On the other
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hand, the penalty approach based on generating potential solutions without 
considering the constraints and on decreasing the fitness of solutions, violating the 
constraints, is suitable for problems with a relatively small number of constraints. 
For heavily constrained problems, the penalty approach causes the GA to spend 
most of its time evaluating solutions violating the constraints. Fortunately, the 
reliability optimization problems usually deal with few constraints.

Using the penalty approach one transforms a constrained problem into an 
unconstrained one by associating a penalty with all constraint violations. The 
penalty is incorporated into the fitness function. Thus, the original problem of 
maximizing a function f(a) is transformed into the maximization of the function  

f(a)
J

j
jj

1
 (1.42) 

where J is the total number of constraints, j is a penalty coefficient related to the  
jth constraint (j = 1, …, J) and j is a measure of the constraint violation. Note that 
the penalty coefficient should be chosen in such a way as to allow the solution with 
the smallest value of f(a) that  meets all of the constraints to have a fitness greater 
than the solution with the greatest value of f(a) but violating at least one constraint. 

Consider, for example, a typical problem of maximizing the system reliability 
subject to cost constraint: R(a)  max subject to C(a) C*.

The system cost and reliability are functions of parameters encoded by a string 
a: C(a) and R(a) respectively. The system cost should not be greater than C*. The 
fitness of any solution a can be defined as 

 M+R(a) (C*, a)
where   (1.43) 

(C*, a)=(1+C(a) C*)1(C(a)>C*)

The coefficient  should be greater than one. In this case the fitness of any solution 
violating the constraint is smaller than M (the smallest violation of the constraint 
C(a) C* produces a penalty greater than ) while the fitness of any solution 
meeting the constraint is greater than M. In order to keep the fitness of the 
solutions positive, one can choose M> (1+Cmax C*), where Cmax is the maximal 
possible system cost. 

Another typical optimization problem is minimizing the system cost subject to 
the reliability constraint: C(a)  min subject to R(a) R*.

The fitness of any solution a of this problem can be defined as 

 M C(a) (R*,a)
where  (1.44) 

(A*, a)=(1+R* R(a))1(R(a)<R*)

The coefficient  should be greater than Cmax. In this case, the fitness of any 
solution violating the constraint is smaller than M  Cmax whereas the fitness of any 
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solution meeting the constraint is greater than M  Cmax. In order to keep the fitness 
of the solutions positive, one can choose M>Cmax + 2 .

1.3.2.6 Basic Genetic Algorithm Procedures and Parameters 

The crossover procedures create a new solution as the offspring of a pair of 
existing ones (parent solutions). The offspring should inherit some useful 
properties of both parents in order to facilitate their propagation throughout the 
population. The mutation procedure is applied to the offspring solution. It 
introduces slight changes into the solution encoding string by modifying some of 
the string elements. Both of these procedures should be developed in such a way as 
to provide the feasibility of the offspring solutions given that parent solutions are 
feasible.

When applied to parameter determination, partition, and assignment problems, 
the solution feasibility means that the values of all of the string elements belong to 
a specified range. The most commonly used crossover procedures for these 
problems generate offspring in which every position is occupied by a 
corresponding element from one of the parents. This property of the offspring 
solution provides its feasibility. For example, in the uniform crossover each string 
element is copied either from the first or second parent string with equal 
probability.

The commonly used mutation procedure changes the value of a randomly 
selected string element by 1 (increasing or decreasing this value with equal 
probability). If after the mutation the element is out of the specified range, it takes 
the minimal or maximal allowed value.

When applied to the sequencing problems, the crossover and mutation 
operators should produce the offspring that preserve the form of permutations. This 
means that the offspring string should contain all of the elements that appear in the 
initial strings and each element should appear in the offspring only once. Any 
omission or duplication of the element constitutes an error. For example, in the 
fragment crossover operator all of the elements from the first parent string are 
copied to the same positions of the offspring. Then, all of the elements belonging 
to a randomly chosen set of adjacent positions in the offspring are reallocated 
within this set in the order that they appear in the second parent string. It can be 
seen that this operator provides the feasibility of the permutation solutions. 

The widely used mutation procedure that preserves the permutation feasibility 
swaps two string elements initially located in two randomly chosen positions. 

There are no general rules in order to choose the values of basic GA parameters 
for solving specific optimization problems. The best way to determine the proper 
combination of these values is by experimental comparison between GAs with 
different parameters.

A detailed description of a variety of different crossover and mutation operators 
and recommendations concerning the choice of GA parameters can be found in the 
GA literature. 



2. The Universal Generating Function in 
Reliability Analysis of Binary Systems  

While the most effective applications of the UGF method lie in the field of the 

MSS reliability, it can also be used for evaluating the reliability of binary systems. 

The theory of binary systems is well developed. Many algorithms exist for 

evaluating the reliability of different types of binary system. However, no universal 

systematic approach has been suggested for the wide range of system types. This 

chapter demonstrates the ability of the UGF approach to handle the reliability 

assessment problem for different types of binary system.

Since very effective specialized algorithms were developed for each type of 

system, the UGF-based procedures may not appear to be very effective in 

comparison with the best known algorithms (these algorithms can be found in the 

comprehensive book of Kuo and Zuo [12]). The aim of this chapter is to 

demonstrate how the UGF technique can be adapted for solving a variety of 

reliability evaluation problems. 

2.1 Basic Notions of Binary System Reliability 

System reliability analysis considers the relationship between the functioning of 

the system’s elements and the functioning of the system as a whole. An element is 

an entity in a system that is not further subdivided. This does not imply that an 

element cannot be made of parts; rather, it means that, in a given reliability study, 

it is regarded as a self-contained unit and is not analyzed in terms of the 

functioning of its constituents. 

In binary system reliability analysis it is assumed that each system element, as 

well as the entire system, can be in one of two possible states, i.e. working or 

failed. Therefore, the state of each element or the system can be represented by a 

binary random variable such that Xj indicates the state of element j: Xj = 1 if 

element j is in working condition and Xj = 0 if element j is failed; X indicates the 

state of the entire system: X = 1 if the system works, X = 0 if the system is failed. 

The states of all n elements composing the system are represented by the so-

called element state vector (X1, …, Xn). It is assumed that the states of the system 

elements (the realization of the element state vector) unambiguously determine the 
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state of the system. Thus, the relationship between the element state vector and the 

system state variable X can be expressed by the deterministic function 

),...,( 1 nXXX  (2.1) 

This function is called the system structure function. 

Example 2.1 

Consider an air conditioning system that consists of two air conditioners supplied 

from a single power source. The system fails if neither air conditioner works. 

The two air conditioners constitute a subsystem that fails if and only if all of its 

elements are failed. Such subsystems are called parallel.

Assume that the random binary variables X1 and X2 represent the states of the 

air conditioners and the random binary variable Xc represents the state of the 

subsystem. The structure function of the subsystem can be expressed as

)1)(1(1),max(),( 212121parc XXXXXXX

The entire system fails either if the power source fails or if the subsystem of the 

conditioners fails. The system that works if and only if all of its elements work is 

called a series system. Assume that the random binary variable X3 represents the 

state of the power source. The structure function of the entire system takes the 

form

c3c3c3ser ),min(),( XXXXXXX

Combining the two expressions one can obtain the structure function of the 

entire system: 

))1)(1(1()),max(,min(

)),(,(),(

213213

21par3serc3ser

XXXXXX

XXXXXX

 In order to represent the nature of the relationship among the elements in the 

system, reliability block diagrams are usually used. The reliability block diagram 

of the system considered is presented in Figure 2.1. 

Figure 2.1. Reliability block diagram of an air conditioning system 

Power source

Conditioner 1

Conditioner 2

X3

X1

X2
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The reliability is a property of any element or the entire system to be able to 

perform its intended task. Since we represent the system state by random binary 

variable X and 1X  corresponds to the system state in which it performs its task, 

the measures of the system reliability should express its ability to be in the 

state 1X . Different reliability measures can be defined in accordance with the 

conditions of the system’s functioning. 

When the system has a fixed mission time (for example, a satellite that should 

supply telemetric information during the entire preliminarily defined time of its 

mission), the reliability of such a system (and its elements) is defined to be the 

probability that it will perform its task during the mission time under specified 

working conditions. For any system element j its reliability pj is 

}1Pr{ jj Xp  (2.2) 

and for the entire system its reliability R is 

}1Pr{XR  (2.3) 

Observe that the reliability can be expressed as the expected value of the state 

variable:

 )(),( XERXEp jj  (2.4) 

The reliabilities of the elements compose the element reliability vector 

)...,,( 1 nppp . Usually this vector is known and we are interested in obtaining 

the system reliability as a function of p:

 ),...,()( 1 nppRRR p  (2.5) 

In systems with independent elements, such functions exist and depend on the 

system structure functions. 

Example 2.2 

Consider the system from Example 2.1 and assume that the reliabilities of the 

system elements p1, p2 and p3 are known. Since the elements are independent, we 

can obtain the probability of each realization of the element state vector 

),,(),,( 321321 xxxXXX  as 

31
3

3
3

21
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2
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1

1
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332211

)1()1()1(

}Pr{

xxxxxx pppppp

xXxXxX

Having the system structure function 
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)),max(,min( 213 XXXX

and the probability of each realization of the element state vector, we can obtain 

the probabilities of each system state that defines the p.m.f. of the system state 

variable X. This p.m.f. is presented in Table 2.1. 

Table 2.1. p.m.f. of the system structure function

Realization of 

(X1, X2, X3)

Realization

probability

Realization of 

X

0,0,0 (1 p1)(1 p2)(1 p3) 0

0,0,1 (1 p1) (1 p2)p3 0

0,1,0 (1 p1)p2(1 p3) 0

0,1,1 (1 p1)p2p3 1

1,0,0 p1(1 p2)(1 p3) 0

1,0,1 p1(1 p2)p3 1

1,1,0 p1p2(1 p3) 0

1,1,1 p1p2p3 1 

The system reliability can now be defined as the expected value of the random 

variable X (which is equal to the sum of the probabilities of states corresponding to 

X = 1): 

 R = E(X) = (1 p1)p2p3+p1(1 p2)p3+p1p2p3

 = [(1 p1)p2+p1(1 p2)+p1p2] p3 = (p1+p2 p1p2)p3

When the system operates for a long time and no finite mission time is 

specified, we need to know how the system’s ability to perform its task changes 

over time. In this case, a dynamic measure called the reliability function is used. 

The reliability function of element j pj(t) or the entire system R(t) is defined as the 

probability that the element (system) will perform its task beyond time t, while 

assuming that at the beginning of the mission the element (system) is in working 

condition: pj(0) = R(0) = 1. 

Having the reliability functions of independent system elements pj(t) (1 j n)

one can obtain the system reliability function R(t) using the same relationship R(p)

that was defined for the fixed mission time and by substituting pj with pj(t).

Example 2.3 

Consider the system from Example 2.2 and assume that the reliability functions of 

the system elements are 

ttt tptptp 3
3

2
2

1
1 e)(,e)(,e)(
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The system reliability function takes the form 

 R(t)=E(X(t))=(p1(t)+p2(t) p1(t)p2(t))p3(t)

=
tttt 3)21(21 e)eee(

In many practical cases the failed system elements can be repaired. While the 

failures bring the elements to a non-working state, repairs performed on them bring 

them back to a working state. Therefore, the state of each element and the state of 

the entire system can change between 0 and 1 several times during the system’s 

mission. The probability that the element (system) is able to perform its task at a 

given time t is called the element (system) availability function: 

 aj(t) = Pr{Xj = 1} (2.6)  

 A(t) = Pr{X = 1}

For a repairable system, Xj = 1 (X = 1) indicates that the element (system) can 

perform its task at time t regardless of the states experienced before time t.
While the reliability reflects the internal properties of the element (system), the 

availability reflects both the ability of the element (system) to work without 

failures and the ability of the system’s environment to bring the failed element 

(system) to a working condition. The same system working in a different 

maintenance environment has a different availability. 

As a rule, the availability function is difficult to obtain. Instead, the steady-state 

system availability is usually used. It is assumed that enough time has passed since 

the beginning of the system operation so that the system’s initial state has 

practically no influence on its availability and the availabilities of the system 

elements become constant 

 )(lim taa j
t

j  (2.7) 

Having the long-run average (steady-state) availabilities of the system elements 

one can obtain the steady-state availability A of the system by substituting in 

Equation (2.5) R with A and pj with aj.

One can see that since all of the reliability measures presented are probabilities, 

the same procedure of obtaining the system reliability measure from the reliability 

measures of its elements can be used in all cases. This procedure presumes: 

- Obtaining the probabilities of each combination of element states from the 

element reliability vector. 

- Obtaining the system state (the value of the system state variable) for each 

combination of element states (the realization of the element state vector) 

using the system structure function.
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- Calculating the expected value of the system state variable from its p.m.f. 

defined by the element state combination probabilities and the corresponding 

values of the structure function. 

This procedure can be formalized by using the UGF technique. In fact, the 

element reliability vector (p1, …, pn) determines the p.m.f. of each binary element 

that can be represented in the form of u-functions

 uj(z) = (1 pj) z0+ pj z
1 for nj1  (2.8) 

Having the u-functions of system elements that represent the p.m.f. of discrete 

random variables nXX ...,,1  and having the system structure function 

)...,,( 1 nXXX  we can obtain the u-function representing the p.m.f. of the 

system state variable X using the composition operator over u-functions of 

individual system elements: 

))(),...,(()( 1 zuzuzU n  (2.9) 

The system reliability measure can now be obtained as ).1(')( UXE

Note that the same procedure can be applied for any reliability measure 

considered. The system reliability measure (the fixed mission time reliability, the 

value of the reliability function at a specified time or availability) corresponds to 

the reliability measures used to express the state probabilities of elements. 

Therefore, we use the term reliability and presume that any reliability measure can 

be considered in its place (if some specific measure is not explicitly specified). 

Example 2.4 

The u-functions of the system elements from Example 2.2 are 

 u1(z) = (1 p1)z
0 + p1z

1 , u2(z) = (1 p2)z
0 + p2z

1 , u3(z) = (1 p3)z
0 + p3z

1

The system structure function is 

  )),max(,min(),,( 213321 XXXXXXX

Using the composition operator we obtain the system u-function representing the 

p.m.f. of the random variable X:
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The resulting u-function takes the form 
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After collecting the like terms we obtain 

1
321321321

0
321321321

321321

])1()1([

)]1()1)(1()1()1(

)1)(1()1)(1)(1[()(

zppppppppp
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ppppppzU

The system reliability is equal to the expected value of variable X that has the 

p.m.f. represented by the u-function U(z). As we know, this expected value can be 

obtained as the derivative of U(z) at z = 1: 

32121

321321321

)(

)1()1()1(')(

ppppp

pppppppppUXER

It can easily be seen that the total number of combinations of states of the 

elements in the system with n elements is equal to 2n. For systems with a great 

number of elements, the technique presented is associated with an enormous 

number of evaluations of the structure function value (the u-function of the system 

state variable X before the like term collection contains 2n terms). Fortunately, the 
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structure function can usually be defined recursively and the p.m.f. of intermediate 

variables corresponding to some subsystems can be obtained. These p.m.f. always 

consist of two terms. Substituting all the combinations of the elements composing 

the subsystem with its two-term p.m.f. (obtained by collecting the like terms in the 

u-function corresponding to the subsystem) allows one to achieve considerable 

reduction of the computational burden.

Example 2.5 

Consider a series-parallel system consisting of five binary elements (Figure 2.2). 

The structure function of this system is 

),,,,( 54321 XXXXXX = max(max(X1, X2) X3,  X4 X5)

Figure 2.2. Reliability block diagram of series-parallel binary system 

The u-functions of the elements take the form 

 uj(z) = (1 pj) z0+ pj z
1,   for 51 j

Direct application of the operator ))(),(),(),(),(( 54321 zuzuzuzuzu  requires     

25 = 32 evaluations of the system structure function. 

 The system structure function can be defined recursively: 

 X6 = max(X1, X2)

 X7 = X6 X3

 X8 = X4 X5

 X = max(X7, X8)

where X6 is the state variable corresponding to the subsystem consisting of 

elements 1 and 2, X7 is the state variable corresponding to the subsystem consisting 

of elements 1, 2 and 3, X8 is the state variable corresponding to the subsystem 

consisting of elements 4 and 5. 

1

2
3

4 5
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 The u-functions corresponding to variables X6, X7 and X8 consist of two terms 

(after collecting the like terms) as well as u-functions corresponding to variables 

X1, …, X5. The number of evaluations of the structure functions representing the 

p.m.f. of variables X6, X7, X8, and X is four. Therefore, the total number of such 

evaluations is 16. Note that the structure functions evaluated for the intermediate 

variables are much simpler than the structure function of the entire system that 

must be evaluated when applying the direct approach. 

The process of obtaining the system reliability using the recursive approach is 

as follows: 

0
21

1
2121

0
21

1
21

1
21

1
21

)0,0max(
21

)1,0max(
21

)0,1max(
21

)1,1max(
21

0
2

1
2

max

0
1

1
12

max
16

)1)(1()()1)(1(

)1()1()1)(1(

)1()1(

])1([])1([)()()(

zppzppppzpp

zppzppzppzpp

zppzppzpp

zpzpzpzpzuzuzU

0
3212121

1
32121

00
321

01
32121

10
321

11
32121

0
3

1
3

0
21

1
2121367

)]1)(()1)(1[(

)()1)(1)(1(

)1)(()1)(1(

)(])1([])1)(1(

)[()()()(

zppppppp

zpppppzppp

zpppppzppp

zpppppzpzpzpp

zppppzuzUzU

0
54

1
54

00
54

10
54

01
54

11
54

0
5

1
5

0
4

1
4548

)1(

)1)(1()1()1(

])1([])1([)()()(

zppzpp

zppzppzppzpp

zpzpzpzpzuzuzU

])1([})]1)((

)1)(1[(){()()()(

0
54

1
54

max

0
32121

21
1

321218
max

7

zppzppzppppp

ppzpppppzUzUzU



38 The Universal Generating Function in Reliability Analysis and Optimization 
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The system reliability (availability) can now be obtained as 
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In order to reduce the number of arithmetical operations in the term 

multiplication procedures performed when obtaining the u-functions of the system 

variable, the u-function of the binary elements that takes the form

01 )1()( zpzpzu jjj  (2.10) 

can be represented in the form

)()( 01 zqzpzu jjj   (2.11) 

where

 1
1

jj pq   (2.12) 

Factoring out the probability pj from uj(z) results in fewer computations 

associated with performing the operators )()( zuzU j for any U(z) because the 

multiplications by 1 are implicit.

Example 2.6 

In this example we obtain the reliability of the series-parallel system from Example 

2.5 numerically for p1 = 0.8,  p2 = 0.9,  p3 = 0.7,  p4 = 0.9, p5 = 0.7. 

The u-functions of the elements take the form 

 u1(z) = 0.8z1+0.2z0, u2(z) = u4(z) = 0.9z1+0.1z0,  u3(z) = u5(z) = 0.7z1+0.3z0
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Following the procedure presented in Example 2.5 we obtain: 
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And, finally:  

 884.088382.0)1('UR

Representing the u-functions of the elements in the form 

  u1(z) = 0.8(z1+0.25)z0, u2(z) = u4(z) = 0.9(z1+0.111)z0

u3(z) = u5(z) = 0.7(z1+0.429)z0

we can obtain the same result by fewer calculations:
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The simplification method presented is efficient in numerical procedures. In 

future examples we do not use it in order to preserve their clarity.

There are many cases where estimating the structure function of the binary 

system is a very complicated task. In some of these cases the structure function and 

the system reliability can be obtained recursively, as in the case of the complex 

series-parallel systems. The following sections of this chapter are devoted to such 

cases.

2.2 k-out-of-n Systems

Consider a system consisting of n independent binary elements that can perform its 

task (is "good") if and only if at least k of its elements are in working condition. 

This type of system is called a k-out-of-n:G system. The system that fails to 

perform its task if and only if at least k of its elements fail is called a k-out-of-n:F
system. It can be seen that a k-out-of-n:G system is equivalent to an                      

(n k+1)-out-of-n:F system. Therefore, we consider only k-out-of-n:G systems and 

omit G from their denomination.

 The pure series and pure parallel systems can be considered to be special cases 

of k-out-of-n systems. Indeed, the series system works if and only if all of its 

elements work. This corresponds to an n-out-of-n system. The parallel system 

works if and only if at least one of its elements works, which corresponds to a       

1-out-of-n system.

 The k-out-of-n systems are widely used in different technical applications. For 

example, an airplane survives if no more than two of its four engines are destroyed. 

The power generation system can meet its demand when at least three out of five 

of its generators function. 

 Consider the k-out-of-n system consisting of identical elements with reliability 

p. It can be seen that the number of working elements in the system follows the 

binomial distribution: the probability Rj that exactly j out of n elements work 

( nj1 ) takes the following form: 
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jnj
j pp

j

n
R )1(  (2.13) 

Since the system reliability is equal to the probability that the number of 

working elements is not less than k, the overall system reliability can be found as 

jnj
n

kj
j

n

kj
pp

j

n
RR )1(  (2.14) 

Using this equation one can readily obtain the reliability of the k-out-of-n
system with independent identical binary elements. When the elements are not 

identical (have different reliabilities) the evaluation of the system reliability is a 

more complicated problem. The structure function of the system takes the form 

 )(1)...,,(
1

1 kXXX
n

i
in  (2.15) 

In order to obtain the probability Rj that exactly j out of n elements work 

( nj1 ), one has to sum up the probabilities of all of the possible realizations of 

the element state vector )...,,( 1 nXX in which j state variables exactly take on 

the value of 1. Observe that, in such realizations, number i1 of the first variable 

1i
X from the vector that should be equal to 1 can vary from 1 to n j+1. Indeed, if 

0
1i

X  for ,11 1 jni  then the maximal number of variables taking a value 

of 1 is not greater than j 1. Using the same consideration, we can see that if the 

number of the first variable that is equal to 1 is i1, the number of the second 

variable taking this value can vary from i1+1 to n j+2 and so on. Taking into 

account  that ii pX }1Pr{  and ii pX 1}0Pr{  for any i: ni1 , we can 

obtain
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 The reliability of the system is equal to the probability that j is greater than or 

equal to k. Therefore: 
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 The computation of the system reliability based on this equation is very 

complicated. The UGF approach provides for a straightforward method of             

k-out-of-n system reliability computation that considerably reduces the 

computational complexity. The basics of this method were mentioned in the early 

Reliability Handbook by Kozlov and Ushakov [13]; the efficient algorithm was 

suggested by Barlow and Heidtmann [14]. 

 Since the p.m.f. of each element state variable Xj can be represented by the u-

function

01 )1()( zpzpzu jjj  (2.18) 

the operator

))(),...,(()( 1 zuzuzU n  (2.19) 

gives the distribution of the random variable X:

n

i
iXX

1

 (2.20)   

which is equal to the total number of working elements in the system.

 The resulting u-function representing the p.m.f. of the variable X takes the 

form

n

j

j
j zRzU

0

)(  (2.21) 

where Rj = Pr{X = j} is the probability that exactly j elements work. By summing 

the coefficients of the u-function U(z) corresponding to njk , we obtain the 

system reliability. 

Taking into account that the operator  possesses the associative property 

(Equation (1.27)) and using the structure function formalism we can define the 

following procedure that obtains the reliability of a k-out-of-n system:

1. Determine u-functions of each element in the form (2.18). 

2. Assign ).()( 11 zuzU

3. For j = 2, …, n obtain )()()( 1 zuzUzU jjj (the final u-

function )(zUn  represents the p.m.f. of random variable X).

4. Obtain u-function U(z) representing the p.m.f. of structure 

function (2.15) as U(z)  = kzUn )( , where ).(1),( kXkX

5. Obtain the system reliability as ).1(')),(( UkXE
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Example 2.7 

Consider a 2-out-of-4 system consisting of elements with reliabilities p1 = 0.8,

p2 = 0.6, p3 = 0.9, and p4 = 0.7.

First, determine the u-functions of the elements: 

01
4

01
3

01
2

01
1

3.07.0)(

1.09.0)(

4.06.0)(

2.08.0)(

zzzu

zzzu

zzzu

zzzu

Follow step 2 and assign 

)(1 zU 01
1 2.08.0)( zzzu

Using the recursive equation (step 3 of the procedure) obtain 

)84448(10)4.06.0)(2.08.0(

)4.06.0()2.08.0()(

01220101

0101
2

zzzzzzz

zzzzzU

)8116444432(10

)19)(84448(10

)1.09.0()84448(10)(

01233

010123
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zzzz

zzzzz

zzzzzzU

)24404214444043024(10

)37)(8116444432(10

)3.07.0()8116444432(10)(

012344

0101234

0101233
4

zzzzz

zzzzzz

zzzzzzzU

Following step 4 obtain 

01

001114
4

0428.09572.0

)24404214444043024(102)()(

zz

zzzzzzUzU

The system reliability can now be obtained as

 9572.0)1('U
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Note that the UGF method requires less computational effort than simple 

enumeration of possible combinations of states of the elements. In order to obtain 

U2(z) we used four term multiplication operations.  In order to obtain U3(z), six 

operations were used (because U2(z) has only three different terms after collecting 

the like terms). In order to obtain U4(z), eight operations were used (because U3(z)

has only four different terms after collecting the like terms). The total number of 

the term multiplication operations used in the example is 18. 

When the enumerative approach is used, one has to evaluate the probabilities of 

24 = 16 combinations of the states of the elements. For each combination the 

product of four element state probabilities should be obtained. This requires three 

multiplication operations. The total number of the multiplication operations is  

16 3 = 48. The difference in the computational burden increases with the growth 

of n.

The computational complexity of this algorithm can be further reduced in its 

modification that avoids calculating the probabilities Rj. Note that it does not 

matter for the k-out-of-n system how many elements work if the number of the 

working elements is not less than k. Therefore, we can introduce the intermediate 

variable X*:

},min{*
1

n

i
iXkX  (2.22) 

and define the system structure function as 

)*(1)*,(),...,( 1 kXkXXX n  (2.23) 

In order to obtain the u-function of the variable X* we introduce the following 

composition operator: 

))(),...,(()( 1 zuzuzU n
k

 (2.24) 

where

n

i
ink xkxx

1
1 },min{),...,(  (2.25) 

It can be easily seen that this operator possesses the associative and 

commutative properties and, therefore, the u-function of X* can be obtained 

recursively:

 )()( 11 zuzU  (2.26) 

)()()( 1 zuzUzU jjj
k

 for j = 2, …, n (2.27) 
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The u-functions )(zU j  for j<k do not contain terms with exponents equal to k. The 

first u-function that contains such a term is )(zUk . This u-function can be 

represented as 

1

0

)(
k

i

k
k

i
ik zzzU  (2.28) 

Applying the operator 
k

over )(zUk and )(1 zuk we obtain 

1

0
1

1

0
111

1
11

)0,(
1

)1,(
1

1

0

)0,(
1

1

0

)1,(
1

0
1

1
1

1

0
1

)]1([)1(

)1(

)1(

])1([)()(

k

i

k
k

k
k

i
i

k

i

k
kkk

i
ik

k

i

i
ik

kk
kk

kk
kk

k

i

ik
ik

k

i

ik
ik

kk
k

k

i

k
k

i
ik

zzz

zppzpzp

zpzp

zpzp

zpzpzzzU

 (2.29) 

where

111 kkk p  (2.30) 

Here, we used the important property of the function k  that for any 0x

kxkk ),(  (2.31) 

It can be proven by induction that

1

0
11 )...()(

k

i

k
kknn

i
in zzzU  (2.32) 

where i (for nik ) is a product of the coefficient of the term with zk 1 from 

Ui 1(z) and pi. Observe that the coefficient of the term with zk from Ui 1(z) does not 

participate in calculating i , …, .n

The u-function of the system structure function can now be determined as 
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1

0

1
11

0 )...()()()(
k

i
kknnin zzkzUzU  (2.33) 

and the system reliability can be calculated as 

kknnUR 11 ...)1('  (2.34) 

The considerations presented lie at the base of the following simplified 

algorithm of the system reliability determination: 

1. Determine u-functions of each element in the form (2.18). 

2. Assign R = 0, ).()( 11 zuzU

3. For j = 2, …, n:

3.1. Obtain )()()( 1 zuzUzU jjj
k

.

3.2. If the u-function )(zU j contains a term with zk, remove this term 

from )(zU j  and add its coefficient to R.

After termination of the algorithm, R is equal to the system reliability. 

Note that in this algorithm the operator
k

can be replaced by the operator .

Indeed, after removing the term with zk from )(zU j  the operators 

)()( 1 zuzU jj and )()( 1 zuzU jj
k

become equivalent (since the function 

)1,(xk for x<k is equivalent to function x+1).

In the simplified algorithm, obtaining )(zU j  for kj requires 2j term 

multiplication operations and obtaining )(zU j  for njk  requires 2k term 

multiplication operations. The total number of these operations is 

22

)(2]1)1(5.0[2)(22
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knkkkknkj
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kj
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j  (2.35) 

Example 2.8 

Consider a 2-out-of-4 system from Example 2.7 and apply the technique described 

for the recursive derivation of the system reliability: 

Assign R = 0; 

)(1 zU 01
1 2.08.0)( zzzu

)84448(10)4.06.0)(2.08.0(

)4.06.0()2.08.0()(

01220101
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2

zzzzzzz

zzzzzU
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Remove the term with z2 from U2(z) and add its coefficient to R:

48.0R

 )844(10)( 012
2 zzzU

Further:

)8116396(10)19)(844(10

)1.09.0()844(10)(

012301013

01012
3

zzzzzzz

zzzzzU

Remove the term with z2 from U3(z) and add its coefficient to R:

 876.0396.048.0R

 )8116(10)( 013
3 zzzU

In the next step 

)24404812(10)37)(8116(10

)3.07.0()8116(10)(

012401014

01013
4

zzzzzzz

zzzzzU

Finally, after adding the coefficient of the term with z2 from U4(z) to R we obtain:

 9572.00812.0876.0R

Observe that the total number of the term multiplication operations used in this 

example is 12.

2.3 Consecutive k-out-of-n Systems

Consider a system consisting of n independent binary elements that are linearly 

connected in such a way that the system fails if and only if at least k consecutive 

elements fail. Such a model named linear consecutive k-out-of-n:F system is used 

for evaluating system reliability in telecommunications, oil pipeline systems, 

spacecraft relay stations, etc. [15-20]. 

Example 2.9 

Consider a set of n+2 radio relay stations with a transmitter allocated at the first 

station and a receiver allocated at the last station. Each one of n intermediate 

stations has retransmitters generating signals that cover the distance including the 
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next k stations. The aim of the system is to provide propagation of a signal from 

transmitter to receiver. It is evident that the system fails if at least k consecutive 

retransmitters fail. An example of the radio relay system with k = 3 and n = 8 is 

shown in Figure 2.3. Whenever the number of consecutive failures is less than 

three, the signal flow is not interrupted and the signal reaches the receiver. 

Figure 2.3. Linear consecutive 3-out-of-8 system in working state (A) and in failed state (B) 

Example 2.10 

In the pipeline systems transporting oil from a source point to a destination point 

the pressure is provided by n equally spaced pump stations. Each pump station 

provides pressure sufficient to transport oil to a distance that includes the k next 

stations. If m out of k stations following the working one fail (m<k), then the flow 

of oil is not interrupted because the remaining k m stations still carry the load. 

When the k adjacent stations fail, no working pumps remain in the part of the 

pipeline reached by the oil transported by the last working station. The oil flow is 

interrupted and the system fails. 

The system in which n independent binary elements are linearly connected in such 

a way that the system works if and only if at least k consecutive elements are 

working is named the k-out-of-n:G system. The k-out-of-n:F and k-out-of-n:G
systems are duals of each other [19]. This means that if the reliability of any 

element j in a k-out-of-n:F system is equal to the unreliability of element j a in  k-
out-of-n:G system (with the same k and n), then the reliability of the entire k-out-
of-n:F system is equal to the unreliability of the entire k-out-of-n:G system. 

Therefore, the same algorithms for reliability evaluation can be applied to both 

types of system. In this chapter we consider only k-out-of-n:F systems and omit F
from their denomination. 

The linear consecutive k-out-of-n system was formally introduced by Chiang 

and Niu [15] but had been previously mentioned by Kontoleon [21]. The methods 

for evaluating the reliability of a linear consecutive k-out-of-n system with 

identical elements were suggested in [15, 16, 22-26]. The more complex case of 

systems with different elements was studied in [20, 21, 27]. 

The model in which the elements are circularly connected so that the first and 

the nth elements become adjacent to each other is named a circular consecutive k-
out-of-n system. Examples of such a system can be found in monitoring, nuclear 

accelerators, etc. [12]. 

A

B
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Example 2.11 

For taking pictures of high-energy particles in a nuclear accelerator, n high-speed 

cameras are installed around the accelerator. If more then k adjacent cameras fail to 

take pictures, the particle behaviour cannot be analyzed. 

Example 2.12 

The vacuum system of an electronic accelerator consists of a large number of 

vacuum bulbs placed evenly along a ring. The vacuum system fails if at least k
adjacent vacuum bulbs fail. 

The circular consecutive k-out-of-n system was introduced by Derman et al.
[22]. The algorithms for evaluating the system reliability were suggested in [22, 

24, 25, 28 30] for a system with identical elements and in [20, 27, 31, 32] for a 

system with different elements. 

The series and parallel systems can be considered as special cases of the 

consecutive k-out-of-n system. Indeed, when k = 1 the failure of any element 

causes the failure of the entire system, and the system becomes series one. When 

nk  the entire system fails only if all of its elements fail, which corresponds to 

the parallel system.

2.3.1 Consecutive k-out-of-n Systems with Identical Elements 

In this section we consider the consecutive k-out-of-n system in which all of its 

elements are identical, i.e. each individual element has the same reliability p. In the 

algorithms suggested by Lambiris and Papastavridis [24] and Goulden [25] for 

evaluating the reliability of such systems, the generating function approach is used 

in order to determine the number of ways to arrange j failed elements in a line with 

n j working elements such that no k or more failed elements are consecutive.

Having this number N(j, k, n) for any j we can obtain the reliability of linear 

consecutive k-out-of-n system RL(k, n) as 

n

j

jnj nkjNppnkR
0

L ),,()1(),(  (2.36) 

If the system contains exactly j failed elements, then the remaining n j working 

elements divide the system into n j+1 segments (the first segment is to the left of 

the first working element, n j 1 segments are between any two working elements 

that are close to each other, and the last segment is to the right of the last working 

element). Each segment may contain from 0 to j failed elements. The allocations in 

which no one segment contains k or more failed elements correspond to the 

system’s success. 

Let u-function ui(z) represent the distribution of the number of ways the failed 

elements can be allocated in section i such that the system does not fail: 
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110 ...)( k
i zzzzu  (2.37) 

This representation corresponds to the fact that from 0 to k 1 elements can be 

allocated in the section (which is expressed by exponents of the u-function) and 

only one way exists to allocate any number of failed elements in this single section 

(all the coefficients are equal to 1). The distributions of the number of ways the 

failed elements can be allocated in several sections can be obtained using the 

operator.

Indeed, in the u-function
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 (2.38) 

ah is equal to the number of ways h elements can be distributed between sections i
and m. Applying the operator  over n j+1 identical u-functions we obtain the 

resulting u-function

)1)(1(
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121 )...())(),...,(),(()(
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h
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jnk
jn

z

zzzzuzuzuzU

 (2.39) 

that represents the number of ways different numbers of failed elements can be 

allocated in n j+1 sections. The coefficient j of term j
j z represents the number 

of ways exactly j failed elements can be allocated in n j+1 segments. Therefore, 

jnkjN ),,( . 

When j is close to n, the j failed elements cannot be allocated among 1jn

segments in a manner where any segment contains less than k failed elements. 

There exists a maximum number of element failures jmax that the system may 

experience without failing independently on the location of the failed elements:

 0),,( max nkjN

 0),,1( max nkjN  (2.40) 

Indeed, when j failed elements are distributed among n j+1 segments, the 

minimal number of elements in each segment is achieved when the elements are 

distributed as evenly as possible. In this case, some segments contain 
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)1/( jnj   failed elements and some segments contain )1/( jnj   failed 

elements. The system succeeds if 

1)1/( kjnj  (2.41) 

This inequality holds when 

 )1)(1( jnkj  (2.42) 

From this expression we obtain 

k

n
nj

1
1  (2.43) 

which means that the maximum possible value of j is 

k

n
nj

1
1max  (2.44) 

Observe also that 1),,0( nkN  for any k and n. Indeed, only one way exists for 

allocating zero failed elements among n+1 segments. Therefore, expression (2.36) 

can be rewritten as

max

1
L ),,()1(),(

j

j

jnjn nkjNpppnkR  (2.45) 

Example 2.13 

Consider a linear consecutive 2-out-of-5 system with identical elements. This 

system should not contain more than k 1 = 2 1 = 1 failed elements in each 

segment between the working elements. Therefore, the u-function corresponding to 

a single segment is 10)( zzzu . According to (2.44) 

3
2

15
15maxj

For j = 1, according to (2.39), we obtain 

54321051011510 510105)()()( zzzzzzzzzzzU

),,1( nkN is equal to the coefficient of the term with exponent 1: ),,1( nkN = 5. 
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For j = 2: 

4321041012510 464)()()( zzzzzzzzzzU

),,2( nkN is equal to the coefficient of the term with exponent 2: ),,2( nkN = 6. 

For j = 3: 

321031013510 33)()()( zzzzzzzzzU

),,3( nkN is equal to the coefficient of the term with exponent 3: 1),,3( nkN .

According to (2.45) the system reliability is 

322345
L )1()1(6)1(5)5,2( pppppppR

The problem of evaluating the reliability of a circular system with identical 

elements can be reduced to the problem of evaluating the reliability of a linear 

system (Derman et al. [22]). Indeed, consider a point between two arbitrary 

adjacent elements in a circular consecutive k-out-of-n system and find two working 

elements clockwise and counter clockwise to this point (Figure 2.4). These two 

working elements divide the circle into two fragments. The system reliability is 

equal to the probability that the fragment, including the marked point, contains less 

than k elements and the fragment not including the marked point forms a working 

linear consecutive k-out-of-n system. 

Let n1 and n2 indicate the number of failed elements between the marked point 

and the first working elements. It can be easily seen that for any 1ni

ippinin )1(}Pr{}Pr{ 21  (2.46) 

The probability that the fragment, including the marked point, contains exactly 

i failed elements is 
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 (2.47) 
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Figure 2.4. Circular consecutive k-out-of-n system with identical elements

The probability that the fragment contains less than the k failed elements is 
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pipinnknn  (2.48) 

If the fragment, including the marked point, consists of i failed elements, then 

the second fragment consists of n i 2 remaining elements. The reliability of the 

second fragment is )2,(L inkR . Therefore, the reliability of the entire circular 

system is 

1

0
L

2
C )2,()1)(1(),(

k

i

i inkRpipnkR  (2.49) 

Equation (2.49) is obtained on the assumption that n>1 and k<n. When nk

we have a parallel system for which npnnR ),(C ; when 1n  we have a trivial 

case: .)1,1(C pR

2.3.2 Consecutive k-out-of-n Systems with Different Elements 

This section considers consecutive k-out-of-n systems consisting of elements with 

different reliabilities. In order to describe the UGF-based algorithm for evaluating 

the reliability of this type of system, we represent the linear consecutive k-out-of-n
system as a set of n+2 consecutively ordered nodes: 0, 1, 2, …, n+1 (see Figure 

2.5). Each node j )1( nj  has two states. In state Xj = 1 the arcs from the node j

n1

n2

n n1 n2 2

Failed

element

Working

element
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to nodes ),1( j ),2( j …, )( kj exist, where )(x = min{x, n+1}. In 

state   Xj = 0 no arcs from node j exist. The probabilities of states 1 and 0 of the 

node j are respectively pj and 1 pj. Node 0 is fully reliable (X0  1) and provides 

arcs to nodes 1, 2, …, k. Node n+1 is a dummy node and its state does not matter. 

The system reliability is the probability that a path exists between the nodes 0 and 

n+1.

Figure 2.5. Example of state of linear consecutive 3-out-of-7 system

Let random value Lj be the number of the most remote node to which an arc 

from node j exists. It can be seen that, for nj0 , ).( kjXL jj The u-

function uj(z) representing the p.m.f. of Lj takes the form 

kzzu )(0 and 0)( )1()( zpzpzu j
kj

jj for nj1  (2.50) 

Let random value Ym be the number of the most remote node to which the path 

from node 0 provided by nodes 1, 2, …, m exists. It can be seen that if the path to 

the node m+1 provided by the nodes 1, 2, …, m exists ),1( mYm  then the path 

to node max(m+1, Lm+1) also exists and the number of the most remote node 

connected with node 0 is equal to max(Ym, Lm+1). If the path to the node m+1 does 

not exist ( 1mYm ), then this node does not participate in prolonging the path 

and Ym+1 = Ym. This consideration gives the recursive expression 

 Y0 = L0

1if,

if},max{
),(

1

11 mYY

mYLY
LYfY

mm

mmm
mmm for nm0  (2.51) 

The system structure function can be expressed as 

L0=3  L1=0 L2=5 L3=0 L4=0  L5=0 L6=7

Y0=Y1=3

Y2=Y3=Y4=Y5=5
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]1),...,([1),...,( 11 nLLYXX nnn  (2.52) 

The u-function Um(z) representing the p.m.f. of each random variable Ym can 

now be obtained as 

 U0(z)=u0(z)

nmzuzUzU mfmm 0),()()( 11  (2.53) 

The term of the u-function Un(z) that has the exponent n+1 corresponds to the 

system state in which the path from node 0 to node n+1 exists. The system 

reliability ))1(1( nYER n  is equal to the coefficient of this term.

When 1mYm , the path from node 0 to nodes with numbers greater than m

does not exist.  Therefore, the states corresponding to 1mYm do not participate 

in the combinations of the node states that provide the success of the entire system. 

The terms corresponding to these states can be removed from the u-function Um(z).

After removing the terms corresponding to 1mYm , the function 

),( 1mm LYf takes the form ),max( 1mm LY  and the simple operator 
max

can be 

used in Equation (2.53). 

The following recursive procedure determines the reliability of the linear 

consecutive k-out-of-n system with different elements: 

1. Define kzzu )(0 , 0)( )1()( zpzpzu j
kj

jj for .1 nj

2. Assign U0(z) = u0(z).
3. For nj0 : remove terms with zs where js  from Uj(z) and obtain 

).()()( 1
max

1 zuzUzU jjj

4. Obtain the system availability as the coefficient of the term with zn+1 in 

Un(z).

Example 2.14 

Consider a linear consecutive 3-out-of-5 system with different elements. The u-

functions of the individual elements are: 

 ,)( 3
0 zzu ,)( 0

1
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11 zqzpzu 0
2

5
22 )( zqzpzu

 ,)( 0
3

6
33 zqzpzu ,)( 0

4
6

44 zqzpzu 0
5

6
55 )( zqzpzu

where qj = 1 pj. Following the recursive procedure we obtain 

3
00 )()( zzuzU
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After removing the term with z3
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After removing the term with z4
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The system reliability is equal to the coefficient of the term with z6:

])1([ 5432433214 pqqpqpqqqpR

The reduction of the problem of evaluating the reliability of the circular system 

with different independent elements into the problem of evaluating the reliability 

of the linear system was proposed by Hwang [27].

Let ),,(L jikR be the reliability of the linear consecutively connected k-out-

of-(j i+1) subsystem consisting of elements i, i+1, …,  j 1, j.
Consider the circular system presented in Figure 2.6. Let in this system f and l

be the numbers of the first and last working elements respectively in the sequence 
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from 1 to n. The reliability of the circular system is equal to the probability that the 

fragment between elements l and f through element n contains less than k elements 

and the fragment between elements f and l, not including element n, forms a 

working linear consecutive k-out-of-n system. There are n l+f 1 elements in the 

first fragment (including element n). The probability that all of the elements 

belonging to this fragment fail while elements f and l work is 

n

lj
jl

f

i
if pppp

1

1

1

)1()1(  (2.54) 

The reliability of the second fragment (not including element n)

is )1,1,(L lfkR . The reliability of the circular consecutive k-out-of-n

system ),(C nkR is equal to the sum of the probabilities that the system works for 

all possible combinations of f and l meeting the constraint n l+f 1<k:
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 (2.55) 

Figure 2.6. Circular consecutive k-out-of-n system with different elements
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As in the case of a system with identical elements, Equation (2.55) is obtained 

on the assumption that 1n  and .nk  When nk  we have a parallel system, 

for which ;),(
1

C

n

j
jpnnR  when ,1n  we have a trivial case: .)1,1( 1C pR

It should be mentioned that other recursive formulae for evaluating ),(C nkR

were later suggested by Antonopoulou and Papastavridis [33], Korczak [34] and 

Chang et al. [35]. The last reference presents the most effective algorithm of the 

system reliability evaluation. 

2.4 Consecutive k-out-of-r-from-n Systems

The linear consecutive k-out-of-r-from-n:F system has n ordered elements and fails 

if at least k out of any r consecutive elements fail. The system that works if at least 

k out of any r consecutive elements are working is called the consecutive k-out-of-

r-from-n:G system. It can be seen that a k-out-of-r-from-n:F system is equivalent 

to an (r-k+1)-out-of-r-from-n:G system. Therefore, we consider only k-out-of-n:F
systems and omit F from their denomination.

The linear consecutive k-out-of-r-from-n system was formally introduced by 

Griffith [36], but had been previously mentioned by Tong [37], Saperstein [38, 39], 

Naus [40] and Nelson [41] in connection with tests for non-random clustering, 

quality control and inspection procedures, service systems, and radar detection 

problems.

The models presented in the two previous sections can be considered as special 

cases of the linear consecutive k-out-of-r-from-n system. When nr  one has the 

simple k-out-of-n system. When rk  one has the consecutive k-out-of-n system. 

Example 2.15 

Consider a quality control system that randomly selects for a quality check r items 

produced consecutively by a manufacturing process. If within the selected sample 

at least k items are defective, then the system concludes that the process needs to 

be adjusted. If the process produces n items in a certain period of time, then we are 

interested in the probability that such a random quality check is able to detect a 

problem in the process. 

Example 2.16 

An outdoor industrial conveyor transports identical sealed containers (Figure 2.7). 

The containers are loaded onto pallets placed on the conveyor belt. The conveyor 

carries r pallets simultaneously. If the container sealing fails, its weight becomes 

greater due to humidity penetration. The maximum allowable load of the conveyor 

corresponds to k 1 containers with failed sealing. The system fails if more than k
such containers are loaded on r consecutive pallets. Having the probability that  
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each sealing fails, we obtain the system reliability as a probability that the system 

does not fail during the time when n containers are transported.

Figure 2.7. Industrial conveyor as an example of k-out-of-r-from-n system

The algorithms suggested for evaluating the reliability of linear consecutive     

k-out-of-r-from-n systems either consider the case of identical elements (elements 

with equal reliability) and a limited set of parameters [36, 40, 42] or provide 

bounds for system reliability [42-44] that are good enough only for element 

reliabilities very close to 1. Because of the difficulty in estimating the exact value 

of the system reliability, Psillakis [45] proposed a simulation approach and 

provided the error analysis. Malinowski and Preuss [46] suggested an enumerative 

algorithm for the exact evaluation of the system reliability based on recursive 

computation of conditional probabilities. 

Let Xj be the binary state variable of element j.  The u-function uj(z) that takes 

the form (2.8) represents the p.m.f. of Xj. The system succeeds if any group of r
consecutive elements contains at least r k+1 working elements. Therefore, the 

system reliability can be defined as 

 R = Pr{
11

1

(
rh

hj
j

rn

h
X > r-k)} (2.56) 

Let Vh be a group of r consecutive elements numbered from h to h+r 1. The state 

of this group can be represented by a random binary state vector                      

Yh = {Xh, …, Xh+r 1}.

Each realization yh,m of vector Yh constitutes a state m of Vh. Since the elements 

are independent, the probability of any state of the group Vh is equal to the product 

of the probabilities of the corresponding states of the individual elements. The 

p.m.f. of Yh can be represented by the u-function Uh(z). The total number of 

different states of the group of r elements is equal to 2r. Therefore, the u-function 

Uh(z) consists of 2r different terms. 

The u-function corresponding to the hth group of r consecutive elements Vh

takes the form 
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)1,...,(
1

0

1

01

1

01

11
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hj
h zppzU  (2.57) 

Simplifying this representation one obtains 

r

mh

m
mhh zQzU

2

1
,

,)(
y

 (2.58) 

where Qh,m is the probability that the hth group is in state m and r-length binary 

vector yh,m represents the states of the elements when the group is in state m. The u-

function obtained defines all of the possible states of the group Vh.

Let random variable Sh represent the sum of random binary variables Xh,

Xh+1, …, Xh+r-1 (which corresponds to the sum of the state variables of the elements 

belonging to the group Vh). According to definition (2.56) the system structure 

function takes the form 

1

1
1 )(1),...,(

rn

h
hn krSXX  (2.59) 

Having the vectors yh,m representing states of elements belonging to Vh in any 

state m, one can obtain the realization of Sh in this state by summing the vector 

elements. Therefore, the p.m.f. of Sh can be represented by the u-function ),(ˆ zU h

which is obtained from Uh(z) by replacing the vectors yh,m with sums of their 

elements. The u-function ),(
~

zU h  representing p.m.f. of the binary function 

),(1 krSh can be obtained by applying the operator ),()(ˆ)(
~

krzUzU hh

where ).(1),( krYkrY  Calculating the expected value of the function 

)(1 krSh one obtains the probability of failure of the hth group of r

consecutive elements Vh:

 )1('
~

))(1(}Pr{ hhh UkrSEkrS  (2.60) 

Observe that this operation is equivalent to summing the coefficients of terms 

containing in their state vectors k or more zeros in the u-function Uh(z). Therefore, 

the failure probability can also be obtained by applying the following operator 

k directly over the u-function Uh(z):

r

m
mhmhhkh kQzUkrS

2

1
,, ))((1))((}Pr{ y  (2.61) 

where )( y is a sum of zeros in vector y.
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Example 2.17 

Consider a system with k = 2, n = 4 and r = 3. The binary state variables of the 

system elements are X1, X2, X3 and X4. The state of the second group of three 

variables V2 is represented by the vector Y2 = (X2, X3, X4). If the reliability of each 

element is pi = Pr{Xi = 1}, then the probability of each possible realization of the 

vector Y2 is 

41
4

4
4

31
3

3
3

21
2

2
24322 )1()1()1()},,(Pr{

xxxxxx ppppppxxxY

The condition of failure of the group V2 is ,2 krS where S2 = X2+X3+X4 and 

123kr . The u-function that represents the distribution of Y2 takes the 

form
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where qj = 1 pj. The u-functions )(ˆ
2 zU and )(

~
2 zU  that represent the distributions 

of the functions S2 and 1( 12S ) respectively are

0
321

1
321321321

2
321

321321
3

321
0

321
1

321
1

321

2
321

1
321

2
321

2
321

3
3212

)()

(

)(ˆ

zqqqzpqqqpqqqpzppq

pqpqppzpppzqqqzpqqzqpq

zppqzqqpzpqpzqppzpppzU

 and 

1
321

1
321321321

0
321321321

0
3212

)(

)()(
~

zqqqzpqqqpqqqp

zppqpqpqppzpppzU

The failure probability is 

 Pr{ 12S }= E(1( 12S )) = 321321321321
'
2 )1(

~
qqqpqqqpqqqpU

Note that the linear consecutive k-out-of-r-from-n system contains exactly 

n r+1 groups of r consecutive elements and each element can belong to no more 

than r such groups. To obtain the u-functions corresponding to all the groups of r
consecutive elements, the following definitions are introduced: 

1. Define u-function U1 r(z) as follows: 

 U1 r (z) = 0yz  (2.62) 
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  where the vector y0 consists of r zeros. 

2. Define the following shift operator over u-function Uh(z):
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 (2.63) 

where operator y x over arbitrary vector y and value x shifts all the vector 

elements one position left: y(j 1) = y(j) for rj1  and assigns the value x

to the last element of y: y(r) = x (the first element of vector y disappears after 

applying the operator). The operator y x removes the state of the first 

element of the group and adds the state of the next (not yet considered) 

element to the group, preserving the order of the elements belonging to the 

group. Therefore, applying this operator over the u-function Uh(z) that 

represents the state distribution of the group Vh, one obtains the u-function

Uh+1(z) representing the state distribution of the group Vh+1.

Using the operator  in sequence as follows: 

)()()(1 zuzUzU jrjrj  (2.64) 

for j = 1, …, n one obtains u-functions for all of the possible groups Vh: U1(z), …, 

Un r+1(z). Note that the u-function U1 (z) for the first group V1 is obtained after 

applying the operator  r times.

Consider a u-function Uh(z) representing the distribution of the random vector 

Yh = {Xh, …, Xh+r 1}. For each combination of values Xh+1, …, Xh+r 1 it contains 

two terms corresponding to values 0 and 1 of Xh (states 0 and 1 of element h). After 

applying the operator , Xh disappears from the vector Yh, being replaced with 

Xh+1. This produces two terms with the same state vector yh+1,m for each state m of 

the group Vh+1 in the u-function Uh+1(z). The coefficients of the two terms with the 

same state vector yh+1,m are equal to the probabilities that the group Vh+1 is in state 

m while element h is in states 0 and 1 respectively. By summing these two 

coefficients (collecting the like terms in Uh+1(z)), one obtains a single term for each 

vector yh+1,m with a coefficient equal to the overall probability that the group Vh+1 is 

in state m. Therefore, the number of different terms in each u-function Uh(z) is 

always equal to 2r and 

r

m

mh
mhrhh zQzuzU

2

1

,1
,1)()(

y
 (2.65) 
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Applying the operator k  (2.61) over the u-functions U1(z), …, Un r+1(z) one 

can obtain the failure probability for each group of r consecutive elements. 

Example 2.18 

Consider the system from Example 2.17 and obtain the u-functions for all of the 

possible groups of three consecutive elements using the recursive procedure 

described above. There are two such groups in the system: V1 with element state 

vector (X1,  X2,  X3) and V2 with element state vector (X2,  X3,  X4).

First define 
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The u-function U1(z) represents the distribution of the random vector (X1, X2,

X3) and contains 23 = 8 terms. In order to obtain the failure probability of group V1

for k = 2 we apply the operator 2 (U1(z)):

 }1Pr{ 1S = 32132132132112 ))(( qqqqpqqqppqqzU

In order to obtain the u-function U2(z) representing the distribution of the 

random vector (X2,  X3,  X4) we apply the operator once more: 
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This u-function contains pairs of terms with the same state vectors. For 

example, both terms )1,1,1(
4321 zpppp and )1,1,1(

4321 zpppq  correspond to the cases 

when 1432 XXX , but the first term corresponds to probability 

}1,1Pr{ 1432 XXXX  whereas the second term corresponds to 

probability }.0,1Pr{ 1432 XXXX  The overall probability 

}1Pr{ 432 XXX  is equal to the sum of the probabilities. Therefore: 

43243214321432 }1Pr{ ppppppqppppXXX

By summing the coefficients of the terms with the same state vectors 

(collecting the like terms) we obtain the probabilities of the state combinations of 

the group V2:
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This u-function also contains 23 = 8 terms. The failure probability of the group V2

represented by the u-function U2(z) is 

  Pr{ 321321321321222 ))((}1 qqqpqqqpqqqpzUS

The variables Sh are mutually dependent because different groups Vh contain 

the same elements. Therefore, the failure probability of the entire system cannot be 

obtained as a sum of the probabilities }Pr{ krSh for 11 rnh . However, 

excluding the terms corresponding to the failure states from the u-functions we can 

obtain the system failure probability. Indeed, if for some combination of element 

states a certain group fails, then the entire system fails independently of the states 
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of the elements that do not belong to this group. Therefore, the terms 

corresponding to the group failure can be removed from the u-function since they 

should not participate in determining further state combinations that cause system 

failures. This consideration lies at the base of the following algorithm, which 

evaluates the system reliability using the enumerative technique in order to obtain 

all of the possible element state combinations leading to the system’s failure. 

1. Initialization. 

F = 0; 0)(1
yzzU r (y0 consists of r zeros).

2. Main loop. Repeat the following for j = 1, …, n:

Obtain )()()(1 zuzUzU jrjrj and collect like terms in the u-function

obtained.

If j r, then add value ))(( 1 zU rjk to F and remove all of the terms with 

state vectors containing more than k zeros from ).(1 zU rj

Obtain the system reliability as R = 1 F. Alternatively, the system reliability 

can be obtained as the sum of the coefficients of the last u-function )(1 zU rn .

Here, we omit the proof that this algorithm obtains the system reliability. The 

proof can be found in [47]. 

Example 2.19 

Consider the system from Example 2.17 and obtain the system reliability applying 

the algorithm presented above. The u-functions  U 2(z), …, U1(z) are obtained in 

the same way as in Example 2.18. After obtaining U1(z) in the form 
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we add the value of 32132132132112 ))(( qqqqpqqqppqqzU to F and 

remove the terms with two or more zeros from this u-function. The remaining u-

function U1(z) takes the form 
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Now we obtain U2(z) as 
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Having U2(z) we obtain .)())(( 43232122 qqppqpzU This probability is 

added to F. Now F takes the form 

432321321321321321 )( qqppqpqqqqpqqqppqqF

After removing the terms with two or more zeros from U2(z) it takes the form 
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The system reliability is equal to the sum of the coefficients of U2(z):

 R = 432432321432 )( qpppqppqpppp

The same result can be obtained as R = 1 F. This can be verified by summing R
and F:
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3. Introduction to Multi-state Systems  

3.1 Main Definitions and Models 

3.1.1 Basic Concepts of Multi-state Systems 

All technical systems are designed to perform their intended tasks in a given 
environment. Some systems can perform their tasks with various distinguished 
levels of efficiency, usually referred to as performance rates. A system that can 
have a finite number of performance rates is called an MSS. Usually, an MSS is 
composed of elements that in their turn can be multi-state.

Actually, a binary system is the simplest case of an MSS having two 
distinguished states (perfect functioning and complete failure). 

There are many different situations in which a system should be considered to 
be an MSS. Any system consisting of different units that have a cumulative effect 
on the entire system performance has to be considered as an MSS. Indeed, the 
performance rate of such a system depends on the availability of its units, as 
different numbers of the available units can provide different levels of task 
performance.

The simplest example of such a situation is the well-known k-out-of-n system 
(considered in Section 2.2). These systems consist of n identical binary units and 
can have n+1 states depending on the number of available units. The system 
performance rate is assumed to be proportional to the number of available units 
and the performance rates corresponding to more than k 1 available units are 
acceptable. When the contributions of different units to the cumulative system 
performance rate are different, the number of possible MSS states grows 
dramatically, as different combinations of k available units can provide different 
performance rates for the entire system. Such systems cannot be analyzed using the 
technique developed for the binary case. 

The performance rate of elements composing a system can also vary as a result 
of their deterioration (fatigue, partial failures) or because of variable ambient 
conditions. Element failures can lead to the degradation of the entire MSS 
performance.

 The performance rates of the elements can range from perfect functioning up 
to complete failure. Failures that lead to decrease in the element performance are 
called partial failures. After partial failure, elements continue to operate at reduced 
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performance rates, and after complete failure the elements are totally unable to 
perform their tasks.

Example 3.1 

In a power supply system consisting of generating and transmitting facilities, each 
generating unit can function at different levels of capacity. Generating units are 
complex assemblies of many parts. The failures of different parts may lead to 
situations in which the generating unit continues to operate, but at a reduced 
capacity. This can occur during the outages of several auxiliaries, such as 
pulverizers, water pumps, fans, etc. For example, Billinton and Allan [48] describe 
a three-state 50 MW generating unit. The performance rates (generating capacity) 
corresponding to these states and probabilities of the states are presented in Table 
3.1.

Table 3.1. Capacity distribution of 50 MW generator

Number
of state 

Generating
capacity (MW) 

State
probability

1 50 0.960 

2 30 0.033 

3 0 0.007 

Example 3.2 

The state of each retransmission station in the wireless communication system 
considered in Example 2.9 is defined by the number of subsequent stations covered 
in its range. This number depends not only on the availability of station amplifiers, 
but also on the conditions for signal propagation, which depend on weather, solar 
activity, etc. Therefore, each station can have a different and varying range and the 
number of subsequent stations connected to each station is a random discrete 
variable that can take more than two different integer values.

The theory of MSSs was developed since the mid 1970s, when the studies of 
Murchland [49], El-Neveihi et al. [50], Barlow and Wu [51], Ross [52] appeared. 
These studies formulated the basic concepts of MSS reliability. Griffith [53], 
Natvig [54] and Hudson and Kapur [55] subsequently generalized the results 
obtained in the earlier studies. Natvig [56], El-Neveihi and Prochan [57], Reinshke 
and Ushakov [58] summarized the achievements attained until the mid 1980s. The 
review of the modern state of the art in MSS reliability can be found in [59]. 



  3   Introduction to Multi-state Systems 69 

3.1.2 Generic Multi-state System Model 

In order to analyze MSS behaviour one has to know the characteristics of its 
elements. Any system element j can have kj different states corresponding to the 
performance rates, represented by the set gj={gj0, gj1,…, 1jjkg }, where jig is the 

performance rate of element j in the state i, }1...,,1,0{ jki .

The performance rate Gj of element j at any time instant is a random variable 
that takes its values from gj: Gj gj. In some cases the element performance cannot 
be measured by just a single value; more complex mathematical objects are 
required, usually vectors. In these cases, the element performance is defined as a 
random vector Gj. (Some examples of such special cases are considered in Chapter 
7.)

The probabilities associated with the different states (performance rates) of the 
system element j can be represented by the set

},...,,{ 110 jjkjjj pppp  (3.1) 

where

   pji = Pr{Gj = gji} (3.2) 

As in the case of binary systems, the state probabilities of the MSS elements 
can be interpreted as the state probabilities during a fixed mission time, the state 
probabilities at a specified time, or the availabilities (in the case of binary 
elements). The system reliability measure corresponds to the reliability measures 
used to express the state probabilities of elements. 

Note that, since the element states compose the complete group of mutually 
exclusive events (meaning that the element can always be in one and only in one of 

kj states) .11
0
jk

i jip

Expression (3.2) defines the p.m.f. for a discrete random variable Gj. The 
collection of pairs gji, pji, i = 0, 1,…, kj 1, completely determines the probability 
distribution of performance (PD) of the element j.

Observe that the behaviour of binary elements (elements with only total 
failures) can also be represented by performance distribution. Indeed, consider a 
binary element i with a nominal performance (performance rate corresponding to a 
fully operable state) g* and the probability that the element is in the fully operable 
state p. Assuming that the performance rate of the element in a state of complete 
failure is zero, one obtains its PD as follows: gi={0, g*}, pi={1 p, p}.

The PDs can be represented graphically in the form of cumulative curves. In 
this representation, each value of performance x corresponds to the probability that 
the element provides a performance rate that is no less than this level: }Pr{ xG j .

 For comparison, the graphs representing the PD of the binary element i and the 
element j with five different states are presented in Figure 3.1. Observe that the 
cumulative discrete PD is always a decreasing stepwise function. 
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Figure 3.1. Cumulative performance curves of multi-state elements

When the MSS consists of n elements, its performance rates are unambiguously 
determined by the performance rates of these elements. At each moment, the 
system elements have certain performance rates corresponding to their states. The 
state of the entire system is determined by the states of its elements. Assume that 
the entire system has K different states and that gi is the entire system performance 
rate in state i (i {0, …, K 1}). The MSS performance rate is a random variable 
that takes values from the set {g1, …, gK 1}.

Let },...,{...},...,{},...,{ 1012201110 21 nnknkk
n ggggggL  be the space 

of possible combinations of performance rates for all of the system elements and 
M={g0, …, gK 1} be the space of possible values of the performance rate for the 

entire system. The transform ,:)G,,G( n1 MLn  which maps the space of 

the elements' performance rates into the space of system's performance rates, is 
named the system structure function.  Note that the MSS structure function is an 
extension of a binary structure function. The only difference is in the definition of 

the state spaces: the binary structure function is mapped }1,0{}1,0{ n , whereas in 

the MSS one deals with much more complex spaces. 
The set of random element performances {G1, …, Gn} plays the same role in a 

MSS that the element state vector plays in binary systems. 
Now we can define a generic model of the MSS. This model includes the p.m.f. 

of performances for all of the system elements and system structure function: 

gj, pj, 1 j n  (3.3) 

 ),,( 1 nGG  (3.4) 

It should be noted that this simple MSS model, while being satisfactory for 
many applications, fails to describe some important characteristics of MSSs, such 
as mean time to failure, mean number of failures during the operation period, etc.
Analysis of these characteristics requires application of a random process approach 
and is beyond the scope of this book. 

Pr{G x}
Element with total failure

Element with five different 
performance levels

   g* gj4    gj3gj2gj1gj0=0 x

1
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It does not matter how the structure function is defined. It can be represented in 
a table, in analytical form, or be described as an algorithm for unambiguously 
determining the system performance G for any given set {G1, …, Gn}.

Example 3.3 

Consider an oil transmission system (Figure 3.2A) consisting of three pipes 
(elements). The oil flow is transmitted from point C to point E. The pipes' 
performance is measured by their transmission capacity (tons per minute). 
Elements 1 and 2 are binary. A state of total failure for both elements corresponds 
to a transmission capacity of zero and the operational state corresponds to the 
capacities of the elements 1.5 tons min 1 and 2 tons min 1 respectively, so that 
G1 {0, 1.5}, G2 {0, 2}. Element 3 can be in one of three states: a state of total 
failure corresponding to a capacity of zero, a state of partial failure corresponding 
to a capacity of 1.8 tons min 1 and a fully operational state with a capacity of 4 
tons min 1 so that G3 {0, 1.8, 4}. The system output performance rate is defined 
as the maximum flow that can be transmitted from C to E. 

Figure 3.2. Two different MSSs with identical structure functions 

The total flow between points C and D through the parallel pipes 1 and 2 is 
equal to the sum of the flows through each of these pipes. The flow from point D to 
point E is limited by the transmitting capacity of element 3. On the other hand, this 
flow cannot be greater than the flow between points C and D. Therefore, the flow 
between points C and E (the system performance) is

G = (G1, G2, G3) = min{G1+G2, G3}

The values of the system structure function G = (G1, G2, G3) for all the 
possible system states are presented in Table 3.2. 
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Table 3.2. Possible states of an oil transmission system

G1 0 0 0 0 0 0 1.5 1.5 1.5 1.5 1.5 1.5 

G2 0 0 0 2 2 2 0 0 0 2 2 2 

G3 0 1.8 4 0 1.8 4 0 1.8 4 0 1.8 4 

(G1, G2, G3) 0 0 0 1 1.8 2 0 1.5 1.5 0 1.8 3.5 

Example 3.4 

Consider a data transmission system (Figure 3.2B) consisting of three fully reliable 
network servers and three data transmission channels (elements). The data can be 
transmitted from server C to server E through server D or directly. The time of data 
transmission between the servers depends on the state of the corresponding channel 
and is considered to be the channel performance rate. This time is measured in 
seconds.

Elements 1 and 2 are binary. They may be in a state of total failure when data 
transmission is impossible. In this case the data transmission time is formally 
defined as . They may also be in a fully operational state, when they provide data 
transmission during 1.5 s and 2 s respectively: G1 { ,1.5}, G2 { ,2}. Element 3 
can be in one of three states: a state of total failure, a state of partial failure with 
data transmission during 4 s and a fully operational state with data transmission 
during 1.8 s: G3 { ,4,1.8}. The system performance rate is defined as the total 
time the data can be transmitted from server A to server C. 

When the data are transmitted through server D, the total time of transmission 
is equal to the sum of times G1 and G2 it takes to transmit it from server C to server 
D and from server D to server E respectively. If either element 1 or 2 is in a state of 
total failure, then data transmission through server D is impossible. For this case 
we formally state that ( +2) =  and ( +1.5) = . When the data is transmitted 
from server C to server E directly, the transmission time is G3. The minimum time 
needed to transmit the data from C to E directly or through D determines the 
system transmission time. Therefore, the MSS structure function takes the form 

 G = (G1, G2, G3,) = min{G1+G2, G3}

Note that the different technical systems in Examples 3.3 and 3.4, even when 
having different reliability block diagrams (Figure 3.2A and B), correspond to the 
identical MSS structure functions.

3.1.3 Acceptability Function 

The MSS behaviour is characterized by its evolution in the space of states. The 
entire set of possible system states can be divided into two disjoint subsets 
corresponding to acceptable and unacceptable system functioning. The system 
entrance into the subset of unacceptable states constitutes a failure. The MSS 
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reliability can be defined as its ability to remain in the acceptable states during the 
operation period.

Since the system functioning is characterized by its output performance G, the 
state acceptability depends on the value of this index. In some cases this 
dependency can be expressed by the binary acceptability function F(G) that takes a 
value of 1 if and only if the MSS functioning is acceptable. This takes place when 
the efficiency of the system functioning is completely determined by its internal 
state (for example, only the states where a network preserves its connectivity are 
acceptable). In such cases, a particular set of MSS states is of interest to the 
customer. Usually, the unacceptable states (corresponding to F(G) = 0) are 
interpreted as system failure states, which, when reached, imply that the system 
should be repaired or discarded. The set of acceptable states can also be defined 
when the system functionality level is of interest at a particular point in time (such 
as at the end of the warranty period). 

Much more frequently, the system state acceptability depends on the relation 
between the MSS performance and the desired level of this performance (demand) 
that is determined outside of the system. When the demand is variable, the MSS 
operation period T is often partitioned into M intervals Tm (1 m M) and a constant 
demand level wm is assigned to each interval m. In this case the demand W can be 
represented by a random variable that can take discrete values from the set 
w={w1,…,wM}. The p.m.f. of the variable demand can be represented (in analogy 
with the p.m.f. of MSS performance) by two vectors (w, q), where q={q1, …, qM}
is the vector of probabilities of corresponding demand levels qj = Pr{W = wj}. The 
desired relation between the system performance and the demand can also be 
expressed by the acceptability function F(G, W). The acceptable system states 
correspond to F(G, W) = 1 and the unacceptable states correspond to F(G, W) = 0. 
The last equation defines the MSS failure criterion. 

Example 3.5 

An on-load tap changer control system is aimed at maintaining the voltage in the 
electric power distribution system between umin and umax. The exit of the system 
voltage outside this range constitutes the system’s failure. The system’s output 
performance is the controlled voltage G = U that can vary discretely. The 
acceptability function can be expressed as 

 F(G)= )(1)(1 minmax uGuG

or
 F(G)= ))(2(1 minmaxmaxmin uuuuG

Example 3.6 

A power generation system should supply the customers with variable demand W.
If the cumulative power of the available generating units is much greater than the 
demand (usually at night) then some units can be disconnected and transferred to a 
standby state. If the cumulative power of all of the available units is not enough to 
meet thedemand(either because of a sharp increase in demand or due to the outage 
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of some of the units) then the system fails. The system’s performance is the 
cumulative available power G, which should exceed the random demand W. In this 
case the acceptability function takes the form 

F(G,W) = 1(G>W)

This type of acceptability function is used in many practical cases when the MSS 
performance should exceed the demand.

3.2. Types of Multi-state System 

According to the generic model (3.3) and (3.4), one can define different types of 
MSS by determining the performance distribution of its elements and defining the 
system’s structure function. It is possible to invent an infinite number of different 
structure functions in order to obtain different models of MSS. The question is 
whether or not the MSS model can be applied to real technical systems. This 
section presents different application-inspired MSS models that are most 
commonly used in reliability engineering. 

3.2.1 Series Structure 

The series connection of system elements represents a case where a total failure of 
any individual element causes an overall system failure. In the binary system the 
series connection has a purely logical sense. The topology of the physical 
connections among elements represented by a series reliability block diagram can 
differ, as can their allocation along the system’s functioning process. The essential 
property of the binary series system is that it can operate only when all its elements 
are fully available.

When an MSS is considered and the system performance characteristics are of 
interest, the series connection usually has a "more physical" sense. Indeed, 
assuming that MSS elements are connected in a series means that some processes 
proceed stage by stage along a line of elements. The process intensity depends on 
the performance rates of the elements. Observe that the MSS definition of the 
series connection should preserve its main property: the total failure of any element 
(corresponding to its performance rate equal to zero) causes the total failure of the 
entire system (system performance rate equal to zero). 

One can distinguish several types of series MSS, depending on the type of 
performance and the physical nature of the interconnection among the elements. 

 First, consider a system that uses the capacity (productivity or throughput) of 
its elements as the performance measure. The operation of these systems is 
associated with some media flow continuously passing through the elements. 
Examples of these types of system are power systems, energy or materials 
continuous transmission systems, continuous production systems, etc. The element 
with the minimal transmission capacity becomes the bottleneck of the system [51, 
60]. Therefore, the system capacity is equal to the capacity of its "weakest" 
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element. If the capacity of this element is equal to zero (total failure), then the 
entire system capacity is also zero. 

Example 3.7 

An example of the flow transmission (capacity-based) series system is a power 
station coal transportation unit (Figure 3.3) that continuously supplies the system 
of boilers and consists of five basic elements: 

1. Primary feeder, which loads the coal from the bin to the primary conveyor. 
2. Set of primary conveyors, which transport the coal to the stacker-reclaimer. 
3. Stacker-reclaimer, which lifts the coal up to the secondary conveyor level. 
4. Secondary feeder, which loads the set of secondary conveyors. 
5. Set of secondary conveyors, which supplies the burner feeding system of the 

boilers.

Figure 3.3.  Example of flow transmission series system 

The amount of coal supplied to the boilers at each time unit proceeds 
consecutively through each element. The feeders and the stacker-reclaimer can 
have two states: working with nominal throughput and total failure. The 
throughput of the sets of conveyors (primary and secondary) can vary depending 
on the availability of individual two-state conveyors. It can easily be seen that the 
throughput of the entire system is determined as the throughput of its elements 
having minimal transmission capacity. The system reliability is defined as its 
ability to supply a given amount of coal (demand) during a specified operation 
time.

 Another category in the series systems is a task processing system, for which 
the performance measure is characterized by an operation time (processing speed). 
This category may include control systems, informationor data processing systems, 
manufacturing systems with constrained operation time, etc. The operation of these 
systems is associated with consecutive discrete actions performed by the ordered 
line of elements. The total system operation time is equal to the sum of the 
operation times of all of its elements. When one measures the element (system) 
performance in terms of processing speed (reciprocal to the operation time), the 
total failure corresponds to a performance rate of zero. If at least one system 
element is in a state of total failure, then the entire system also fails completely. 
Indeed, the total failure of the element corresponds to its processing speed equal to 

1
2

3
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zero, which is equivalent to an infinite operation time. In this case, the operation 
time of the entire system is also infinite. 

Example 3.8 

An example of the task processing series system is a manipulator control system 
(Figure 3.4) consisting of: 

1. Visual image processor. 
2. Multi-channel data transmission subsystem, which transmits the data from the 

image processor to main processing unit. 
3. Main multi-processor unit, which generates control signals for manipulator 

actuators.
4. Manipulator.  

 The system performance is measured by the speed of its response to the events 
occurring. This speed is determined by the sum of the times needed for each 
element to perform its task (from initial detection of the event to the completion of 
the manipulator actuators performance). The time of data transmission also 
depends on the availability of channels, and the time of data processing depends on 
the availability of the processors as well as on the complexity of the image. The 
system reliability is defined as its ability to react within a specified time during an 
operation period. 

Figure 3.4. Example of task processing series system 

3.2.2 Parallel Structure 

The parallel connection of system elements represents a case where a system fails 
if and only if all of its elements fail. Two basic models of parallel systems are 
distinguished in binary reliability analysis. The first one is based on the assumption 
that all of the elements are active and work sharing. The second one represents a 
situation where only one element is operating at a time (active or standby 
redundancy without work sharing). 

An MSS with a parallel structure inherits the essential property of the binary 
parallel system so that the total failure of the entire system occurs only when all of 
its elements are in total failure states. The assumption that MSS elements are 
connected in parallel means that some tasks can be performed by any one of the 
elements. The intensity of the task accomplishment depends on the performance 
rate of available elements. 

12
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For an MSS with work sharing, the entire system performance rate is usually 
equal to the sum of the performance rates of the parallel elements for both flow 
transmission and task processing systems. Indeed, the total flow through the former 
type of system is equal to the sum of flows through its parallel elements. In the 
latter type of MSS, the system processing speed depends on the rules of the work 
sharing. The most effective rule providing the minimal possible time of work 
completion shares the work among the elements in proportion to their processing 
speed. In this case, the processing speed of the parallel system is equal to the sum 
of the processing speeds of all of the elements. 

Example 3.9 

Consider a system of several parallel coal conveyors supplying the same system of 
boilers (Figure 3.5A) or a multi-processor control unit (Figure 3.5B), assuming that 
the performance rates of the elements in both systems can vary.  In the first case 
the amount of coal supplied is equal to the sum of the amounts supplied by each 
one of the conveyors. In the second case the unit processing speed is equal to the 
sum of the processing speeds of all of its processors. 

Figure 3.5. Examples of parallel systems with work sharing. 
(A: flow transmission system; B: task processing system) 

In an MSS without work sharing the system performance rate depends on the 
discipline of the elements' activation. Unlike binary systems, where all the 
elements have the same performance rate, the choice of an active element from the 
set of different ones affects the MSS performance. The most common policy in 
both flow transmission and task processing MSSs is to use an available element 
with the greatest possible performance rate. In this case, the system performance 
rate is equal to the maximal performance rate of the available parallel elements [51, 
60].

Example 3.10

Consider a system with several generators and commutation equipment allowing 
only one generator to be connected to the electrical network (Figure 3.6A). If the 
system task is to provide the maximal possible power supply, then it keeps the 
most powerful generator from the set of those available in operation. The 
remainder of the generators can be either in an active state (hot redundancy), which 
means that they are rotating but are not connected to the network, or in a passive 
state (cold redundancy), where they do not rotate. 

A   B
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Another example is a multi-channel data transmission system (Figure 3.6B). 
When a message is sent simultaneously through all the channels, it reaches a 
receiver by the fastest channel and the transmission speeds of the rest of the 
channels do not matter.

Figure 3.6. Examples of parallel systems without work sharing 
(A: flow transmission system; B: task processing system) 

A hybrid combination of series and parallel structures results in series-parallel 
systems. The performance rates of these structures can be obtained by the 
consecutive evaluation of the performance rates of pure series or parallel 
subsystems and then considering these subsystems as single equivalent elements.

3.2.3 k-out-of-n Structure 

The parallel MSS is not only a multi-state extension of the binary parallel structure, 
but it is also an extension of the binary k-out-of-n system. Indeed, the k-out-of-n
system reliability is defined as a probability that at least k elements out of n are in 
operable condition (note that nk  corresponds to the binary series system and 

1k  corresponds to the binary parallel one). The reliability of the parallel MSS 
with work sharing is defined as the probability that the sum of the elements' 
performance rates is not less than the demand. Assuming that the parallel MSS 
consists of n identical two-state elements having a capacity of 0 in a failure state 
and a capacity of 1 in an operational state and that the system demand is equal to k,
one obtains the binary k-out-of-n system.

The first generalization k-out-of-n system to the multi-state case was suggested 
by Singh [61]. His model corresponds to the parallel flow transmission MSS with 
work sharing. Rushdi [62] and Wu and Chen in [63] suggested models in which the 
system elements have two states but can have different values of nominal 
performance rate. A review of the multi-state k-out-of-n models can be found in 
[64].

Huang et al. [65] suggested a multi-state generalization of the binary k-out-of-n
model that cannot be considered as a parallel MSS. In this model, the entire system 
is in state j or above if at least kj multi-state elements are in state m(j) or above. 
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Example 3.11

Consider a chemical reactor to which reagents are supplied by n interchangeable 
feeding subsystems consisting of pipes, valves, and pumps (Figure 3.7). Each 
feeding subsystem can provide a supply of the reagents under pressure depending 
on the technical state of the subsystem. Different technological processes require 
different numbers of reagents and different pressures. The system’s state is 
determined by its ability to perform certain technological processes. For example, 
the first process requires a supply of k1 = 3 reagents under pressure level m(1) = 1, 
the second process requires a supply of  k2 = 2 reagents under pressure level 
m(2) = 2, etc.

Figure 3.7. Example of multi-state k-out-of-n system that can be reduced to a parallel one

This multi-state model can be easily reduced to a set of binary k-out-of-n
models. Indeed, for each system state j, every multi-state element i having the 
random performance Gi can be replaced with a binary element characterized by the 
binary state variable ))((1 jmGX ii and the entire system can be considered as 

kj-out-of-n.

3.2.4 Bridge Structure 

Many reliability configurations cannot be reduced to a combination of series and 
parallel structures. The simplest and most commonly used example of such a 
configuration is a bridge structure (Figure 3.8). It is assumed that elements 1, 2 and 
3, 4 of the bridge are elements of the same functionality separated from each other 
by some reason. The bridge structure is spread in spatially dispersed technical 
systems and in systems with vulnerable components separated to increase the 
entire system survivability. When the entire structure performance rate is of 
interest, it should be considered as an MSS. 
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Figure 3.8 Bridge structure

Example 3.12 

A local power supply system, presented in Figure 3.9, is aimed at supplying a 
common load. It consists of two spatially separated components containing 
generators and two spatially separated components containing transformers. 
Generators and transformers of different capacities within each component are 
connected by the common bus bar. To provide interchangeability of the 
components, bus bars of the generators are connected by a group of cables. The 
system output capacity (performance) must be not less than a specified load level 
(demand).

Figure 3.9. Example of MSS with bridge structure 

Example 3.13 

Consider a transportation task defined on a network of roads with different speed 
limitations (Figure 3.10). Each possible route from A to B consists of several 
different sections. The total travel time is determined by the random speed 
limitations at each section (depending on the traffic and the weather conditions) of 
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the network and by the chosen route. This time characterizes the system 
performance and must be no less than some specified value (demand). 

Figure 3.10. Bridge-shaped network of roads with different speed limitations 

Note that the first example belongs to the flow transmission MSS. The overall 
power supplied to the load is equal to the total power flow through the bridge 
structure. The second example belongs to the task processing MSS, where the task 
of a vehicle is to go from point A to point B using one of four possible routes.

Determining the bridge performance rate based on its elements' performance 
rates is a more complicated problem than in the case of series-parallel systems. 
This will be addressed in the coming chapters. 

3.2.5 Systems with Two Failure Modes

Systems with two failure modes consist of devices that can fail in either of two 
different modes. For example, switching systems not only can fail to close when 
commanded to close, but they can also fail to open when commanded to open. 
Typical examples of a switching device with two failure modes are a fluid flow 
valve and an electronic diode.

The binary reliability analysis considers only the reliability characteristics of 
elements composing the system. In many practical cases, measures of element 
(system) performance must be taken into account. For example, fluid-transmitting 
capacity is an important characteristic of a system containing fluid valves (flow 
transmission system), while operating time is crucial when a system of electronic 
switches (task processing system) is considered. The entire system with two failure 
modes can have different levels of output performance in both modes depending on 
the states of its elements at any given moment. Therefore, the system should be 
considered to be multi-state.

When applied to an MSS with two failure modes, reliability is usually 
considered to be a measure of the ability of a system to meet the demand in each 
mode (note that demands for the open and closed modes are different). If the 
probabilities of failures in open and closed modes are respectively oQ  and cQ  and 

the probabilities of both modes are equal to 0.5, then the entire system reliability 
can be defined as ),(5.01 co QQR  since the failures in open and closed 

modes are mutually exclusive events. 

A B
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An important property of systems with two failure modes is that redundancy, 
introduced into a system without any change in the reliability of the individual 
devices, may either increase or decrease the entire system’s reliability. 

Example 3.14 

Consider an elevator that should be gently stopped at the upper end position by two 
end switches connected in a series within a circuit that activates the main engine 
(Figure 3.11). Assume that the operation times of the switches are T1 and T2

respectively in both the open and closed modes. When the switches are 
commanded to open (the elevator arrives at the upper end position), the first one 
that completes the command execution disconnects the engine. When the switches 
are commanded to close (an operator releases the elevator), both of them should 
complete the command execution in order to make the engine connected. 
Therefore, the slowest switch determines the execution time of the system. 

The system performance (execution time) is equal to min{T1, T2} in the open 
mode and is equal to max{T1, T2} in the closed mode. It can be seen that if one of 
the two switches fails to operate ( )jT then the system is unable to connect the 

engine in the closed mode because ,),max(),max( 21 TT whereas it 

remains operable in the open mode. 

Figure 3.11. Series system with two failure modes 

3.2.6 Weighted Voting Systems 

Voting is widely used in human organizational systems, as well as in technical 
decision making systems. The use of voting for obtaining highly reliable data from 
multiple unreliable versions was first suggested in the mid 1950s by von Neumann. 
Since then the concept has been extended in many ways.

A voting system makes a decision about propositions based on the decisions of 
n independent individual voting units. The voting units can differ in the hardware 
or software used and/or by available information. Each proposition is a priori right
or wrong, but this information is available for the units in implicit form. Therefore, 
the units are subject to the following three errors: 

  T1   T2
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-Acceptance of a proposition that should be rejected (fault of being too 
optimistic).

-Rejection of a proposition that should be accepted (fault of being too 
pessimistic).

-Abstaining from voting (fault of being indecisive). 
This can be modelled by considering the system input being either 1 

(proposition to be accepted) or 0 (proposition to be rejected), which is supplied to 
each unit. Each unit j produces its decision (unit output), which can be 1, 0, or x (in 
the case of abstention). The decision made by the unit is wrong if it is not equal to 
the input. The errors listed above occur when:

- the input is 0, the decision is 1; 

- the input is 1, the decision is 0; 

- the decision is x without regard to the input. 
Accordingly, the reliability of each individual voting unit can be characterized 

by the probabilities of its errors. 
To make a decision about proposition acceptance, the system incorporates all 

unit decisions into a unanimous system output which is equal to x if all the voting 
units abstain, equal to 1 if at least k units produce decision 1, and otherwise equal 
to 0 (in the most commonly used majority voting systems k = n/2).

Note that the voting system can be considered as a special case of a k-out-of-n
system with two failure modes. Indeed, if in both modes (corresponding to two 
possible inputs) at least k units out of n produce a correct decision, then the system 
also produces the correct decision. (Unlike the k-out-of-n system, the voting 
system can also abstain from voting, but the probability of this event can easily be 
evaluated as a product of the abstention probabilities of all units.) 

Since the system output (number of 1-opting units) can vary, the voting 
systems can also be considered as the simplest case of an MSS. Such systems were 
intensively studied in [66-72].

A generalization of the voting system is a weighted voting system where each 
unit has its own individual weight expressing its relative importance within the 
system. The system output is x if all the units abstain. It is 1 if the cumulative 
weight of all 1-opting units is at least a prespecified fraction  of the cumulative 
weight of all non-abstaining units. Otherwise the system output is 0. 

Observe that the multi-state parallel system with two failure modes is a special 
case of the weighted voting system in which voting units never abstain. Indeed, in 
both modes (corresponding to two possible inputs) the total weight (performance) 
of units producing a correct decision should exceed some value (demand) 
determined by the system threshold.

The weighted voting systems have been suggested by Gifford [73] for 
maintaining the consistency and the reliability of the data stored with replication in 
distributed computer systems. The applications of these systems can be found in 
imprecise data handling, safety monitoring and self-testing, multi-channel signal 
processing, pattern recognition, and target detection. The reliability of weighted 
voting systems was studied in [73-75]. 
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Example 3.15 

An undersea target detection system consists of n electronic sensors each scanning 
the depths for an enemy target [76]. The sensors may both ignore a target and 
falsely detect a target when nothing is approaching. Each sensor has different 
technical characteristics and, therefore, different failure probabilities. Thus, each 
has a different output weight. It is important to determine a threshold level that 
maximizes the probability of making the correct decision. 

A generalization of a weighted voting system is weighted voting classifiers 
consisting of n units where each one provides individual classification decisions. 
Each unit obtains information about some features of an object to be classified. 
Each object a priori belongs to one of the K classes, but the information about it is 
available to the units in implicit or incomplete form. Therefore, the units are 
subject to errors. The units can also abstain from making a decision (either because 
of unit unavailability or because of the uncertainty of information available to the 
unit). Obviously, some units will be highly reliable in recognizing objects of a 
certain class and much less reliable in recognizing objects of another class. This 
depends on unit specialization, as well as on the distance between objects in a 
space of parameters detected by the unit. The weights are used by the classifier to 
make unit decisions based on the analysis of some object parameters with greater 
influence on the system decision than ones based on other parameters.

The entire system output is based on tallying the weighted votes for each 
decision and choosing the winning one (plurality voting) or the one that has the 
total weight of supporting votes greater than some specified threshold (threshold 
voting). The entire system may abstain from voting if no decision ultimately wins. 

The undersea target detection system from Example 3.15 becomes the weighted 
voting classifier if it has to detect not only a target but also to recognize the type of 
target (submarine, torpedo, surface vessel, etc.).

3.2.7 Multi-state Sliding Window Systems 

The sliding window system model is a multi-state generalization of the binary 
consecutive k-out-of-r-from-n system, which has n ordered elements and fails if at 
least k out of any r consecutive elements fail (see Section 2.4). In this generalized 
model, the system consists of n linearly ordered multi-state elements. Each element 
can have a number of different states: from complete failure to perfect functioning. 
A performance rate is associated with each state. The system fails if an 
acceptability function of performance rates of any r consecutive elements is equal 
to zero. Usually, the acceptability function is formulated in such a manner that the 
system fails if the sum of the performance rates of any r consecutive elements is 
lower than the demand w. The special case of such a sliding window system in 
which all the n elements are identical and have two states with performance rates 0 
and 1 is a k-out-of-r-from-n system where w = r k+1.

As an example of the multi-state sliding window system, consider a conveyor-
type service system that can process incoming tasks simultaneously according to a 
first-in-first-out rule and share a common limited resource. Each incoming task can
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have different states and the amount of the resource needed to process the task is 
different for each state of each task. The total resource needed to process r
consecutive tasks should not exceed the available amount of the resource. The 
system fails if there is no available resource to process r tasks simultaneously. 

Example 3.16 

Consider a column of n vehicles crossing a bridge (Figure 3.12). The vehicles are 
loaded with a random number of concrete blocks (the load varies discretely from 
vehicle to vehicle). The maximum bridge load is w, the number of vehicles 
crossing the bridge simultaneously is r (this number is limited by the length of the 
bridge). The bridge collapses if the total load of any r consecutive vehicles is 
greater than w.

Figure 3.12. An example of a linear sliding window system 

Example 3.17 

In many quality control schemes the criterion for deciding when to initiate the 
search for a cause of a process change is based on the so-called zone tests. The 
process change is suspected whenever some warning limit of a measured process 
parameter is repeatedly or continuously violated by a sequence of points on the 
quality-control chart. If in k out of r consecutive tests the value of the parameter 
falls outside the warning limit, then the alarm search is initiated. A natural 
generalization of the single-zone test scheme is a scheme in which different levels 
of the parameter deviation are distinguished (multi-zone test). In this case, one can 
use the total overall parameter deviation during r consecutive tests as a search 
initiation criterion. For example, suppose that the parameter value can fall into M
zones (the greater the zone number, the greater the parameter deviation). The alarm 
search should be initiated if the total sum of the numbers of zones the parameter 
falls in during r consecutive tests is greater than the specified value w.

3.2.8 Multi-state Consecutively Connected Systems 

A linear consecutively connected system is a multi-state generalization of the 
binary linear consecutive k-out-of-n system that has n ordered elements and fails if 
at least k consecutive elements fail (see Section 2.3). In the multi-state model, the 
elements have different states, and when an element is in state i it is able to provide
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connection with i following elements (i elements following the one are assumed to 
be within its range). The linear multi-state consecutively connected system fails if 
its first and last elements are not connected (no path exists between these 
elements).

The first generalization of the binary consecutive k-out-of-n system was 
suggested by Shanthikumar [77, 78]. In his model, all of the elements can have two 
states, but in the working state different elements provide connection with different 
numbers of following elements. The multi-state generalization of the consecutive 
k-out-of-n system was first suggested by Hwang and Yao [79]. Algorithms for 
linear multi-state consecutive k-out-of-n system reliability evaluation were 
developed by Hwang & Yao [79], Kossow and Preuss [80], Zuo and Liang [81], 
and Levitin [82].

Example 3.18 

Consider a set of radio relay stations with a transmitter allocated at the first station 
and a receiver allocated at the last station (Figure 3.13).  Each station j has 
retransmitters generating signals that reach the next kj stations. A more realistic 
model than the one presented in Example 2.9 should take into account differences 
in the retransmitting equipment for each station, different distances between the 
stations, and the varying weather conditions. Therefore, kj should be considered to 
be a random value dependent on the power and availability of retransmitter 
amplifiers as well as on the signal propagation conditions. The aim of the system is 
to provide propagation of a signal from transmitter to receiver. 

Figure 3.13. Linear consecutively connected MSS in states
of successful functioning (A) and failure (B) 

A circular consecutively connected system is a multi-state generalization of the 
binary circular consecutive k-out-of-n system. As in the linear system, each 
element can provide a connection to a different number of the following elements 
(nth element is followed by the first one). The system functions if at least one path 
exists that connects any pair of its elements; otherwise there is a system failure 
(Figure 3.14). Malinowski and Preuss [83] have shown that the problem of 
reliability evaluation for a circular consecutively connected system can be reduced 
to a set of problems of reliability evaluation for linear systems. 

A

B
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Figure 3.14. Circular consecutively connected MSS in states
of successful functioning (A) and failure (B) 

Example 3.19 

An example of a circular consecutively connected system is a supervision system 
consisting of a set of detectors arranged in a circle. Each detector in state i can 
cover the interval between itself and the following i detectors. The state of each 
detector depends on the visibility conditions in its vicinity. The aim of the system 
is to cover the entire area. 

In the examples discussed, the system reliability depends completely on the 
connectivity properties of the multi-state elements. In some applications, additional 
quantitative characteristics should be considered in order to evaluate system 
performance and its reliability characteristics. For example, consider a digital 
telecommunication system in which the signal retransmission process is associated 
with a certain delay. Since the delay is equal to the time needed for the digital 
retransmitter to processes the signal, it can be exactly evaluated and treated as a 
constant value for any given type of signal.  When this is so, the total time of the 
signal propagation from transmitter to receiver can vary depending only on a 
combination of states of multi-state retransmitters. The entire system is considered 
to be in working condition if the time is not greater than a certain specified level, 
otherwise, the system fails. 

In the more complex model, the retransmission delay of each multi-state 
element can also vary (depending on the load and the availability of processors). In 
this case each state of the multi-state element is characterized by a different delay 
and by a different set of following elements belonging to the range of the element. 

The system’s reliability for the multi-state consecutively connected systems can 
be defined as the probability that the system is connected or as the probability that 
the system’s signal propagation time meets the demand. The expected system delay 
is also an important characteristic of its functioning. 

3.2.9 Multi-state Networks 

Networks are systems consisting of a set of vertices (nodes) and a set of edges that 
connect these vertices. Undirected and directed networks exist. While in the 
undirected network the edges merely connect the vertices without any 
consideration for direction, in the directed network the edges are ordered pairs of 
vertices. That is, each edge can be followed from one vertex to the next.

A B
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An acyclic network is a network in which no path (a list of vertices where each 
vertex has an edge from it to the next one) starts and ends at the same vertex. The 
directed networks considered in reliability engineering are usually acyclic.

The networks often have a single root node (source) and one or several terminal 
nodes (sinks). Examples of directed acyclic networks are presented in Figure 
3.15A and B. The aim of the networks is the transmission of information or 
material flow from the source to the sinks. The transmission is possible only along 
the edges that are associated with the transmission media (lines, pipes, channels, 
etc.). The nodes are associated with communication centres (retransmitters, 
commutation, or processing stations, etc.)

The special case of the acyclic network is a three-structured network in which 
only a single path from the root node to any other node exists (Figure 3.15C). The 
three-structured network with a single terminal node is the linear consecutively 
connected system. 

Figure 3.15. Examples of acyclic networks: A: a network with single terminal node;
B:  a network with several terminal nodes; C: a tree-structured network 

Each network element can have its transmission characteristic, such as 
transmission capacity or transmission speed. The transmission process intensity 
depends on the transmission characteristics of the network elements and on the 
probabilistic properties of these elements. The most commonly used measures of 
the entire network performance are: 

- The maximal flow between its source and sink (this measure characterizes the 
maximal amount of material or information that can be transmitted from the source 
to the sink through all of the network edges simultaneously).

- The flow of the single maximal flow path between the source and the sink 
(this measure characterizes the maximal amount of indivisible material or 
information that can be transmitted through the network by choosing a single path 
from the source to the sink). 

- The time of transmission between the source and the sink (this measure 
characterizes the delivery delay in networks having edges and/or vertices with 
limited transmission speed). 

In binary stochastic network theory, the network elements (usually edges) have 
a fixed level of the transmission characteristic in its working state and limited 
availability. The problem is to evaluate the probability that the sinks are connected 
to the source or the probabilic distribution of the network performance. There are 

A B C
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several possible ways to extend the binary stochastic network model to the multi-
state case. 

In the multi-state edges models, the vertices are assumed fully reliable and edge 
transmission characteristics are random variables with a given distribution. The 
models correspond to: 

- Communication systems with spatially distributed fully reliable stations and 
channels affected by environmental conditions or based on deteriorating 
equipment.

- Transportation systems in which the transmission delays are a function of the 
traffic.

In the multi-state vertices models, the edges are assumed fully reliable and the 
vertices are multi-state elements.  Each vertex state can be associated with a 
certain delay, which corresponds to:

- Discrete production systems in which the vertices correspond to machines 
with variable productivity. 

- Digital communication networks with retransmitters characterized by variable 
processing time. 

These networks can be considered as an extension of task processing series-
parallel reliability models to the case of the network structure. 

The vertex states can also be associated with transmitting capacity, which 
corresponds to:

- Power delivery systems where vertices correspond to transformation 
substations with variable availability of equipment and edges to represent 
transmission lines. 

- Continuous production systems in which vertices correspond to product 
processing units with variable capacity and edges represent the sequence of 
technological operations. 

These networks can be considered as an extension of simple capacity-based 
series-parallel reliability models in the case of network structure (note that 
networks in which the maximal flow between its source and sink and the single 
maximal flow path between the source and the sink are of interest extend the 
series-parallel model with work sharing and without work sharing respectively). 

In some models, each vertex state is determined by a set of vertices connected 
to the given one by edges. Such random connectivity models correspond mainly to 
wireless communication systems with spatially dispersed stations. Each station has 
retransmitters generating signals that can reach a set of the next stations. Note that 
the set composition for each station depends on the power and availability of the 
retransmitter amplifiers as well as on variable signal propagation conditions. The 
aim of the system is to provide propagation of a signal from an initial transmitter to 
receivers allocated at terminal vertices. (Note that it is not necessary for a signal to 
reach all the network vertices in order to provide its propagation to the terminal 
ones). This model can be considered as an extension of the multi-state linear 
consecutively connected systems in the case of the network structure. 

The last model is generalized by assuming that the vertices can provide a 
connection to a random set of neighbouring vertices and can have random 
transmission characteristics (capacity or delay) at the same time. 



90 The Universal Generating Function in Reliability Analysis and Optimization 

In the most general mixed multi-state models, both the edges and the vertices 
are multi-state elements. For example, in computer networks the information 
transmission time depends on the time of signal processing in the node computers 
and the signal transmission time between the computers (depending on 
transmission protocol and channel loading). 

The earliest studies devoted to the multi-state network reliability were by 
Doulliez, and Jamoulle [84], Evans [85] and Somers [86]. These models were 
intensively studied by Alexopoulos and Fishman [87-89], Lin [90-95], Levitin [96, 
97], Yeh [98 - 101]. The three-structured networks were studied by Malinowski 
and Preuss [102, 103].

3.2.10 Fault-tolerant Software Systems 

Software failures are caused by errors made in various phases of program 
development. When the software reliability is of critical importance, special 
programming techniques are used in order to achieve its fault tolerance. Two of the 
best-known fault-tolerant software design methods are n-version programming 
(NVP) and recovery block scheme (RBS) [104]. Both methods are based on the 
redundancy of software modules (functionally equivalent but independently 
developed) and the assumption that coincidental failures of modules are rare. The 
fault tolerance usually requires additional resources and results in performance 
penalties (particularly with regard to computation time), which constitutes a trade-
off between software performance and reliability. 

The NVP approach presumes the execution of n functionally equivalent 
software modules (called versions) that receive the same input and send their 
outputs to a voter, which is aimed at determining the system output. The voter 
produces an output if at least k out of n outputs agree (it is presumed that the 
probability that k wrong outputs agree is negligibly small). Otherwise, the system 
fails. Usually, majority voting is used in which n is odd and k = (n+1)/2.

In some applications, the available computational resources do not allow all of 
the versions to be executed simultaneously. In these cases, the versions are 
executed according to some predefined sequence and the program execution 
terminates either when k versions produce the same output (success) or after the 
execution of all the n versions when the number of equivalent outputs is less than k
(failure). The entire program execution time is a random variable depending on the 
parameters of the versions (execution time and reliability), and on the number of 
versions that can be executed simultaneously.

Example 3.20 

Consider an NVP system consisting of five versions (Figure 3.16). The system fails 
if the versions produce less than k = 3 coinciding (correct) outputs. Each version is 
characterized by its fixed running time and reliability. It can be seen that if the 
versions are executed consecutively (Figure 3.16A) the total system execution time 
can take the values of 28 (when the first three versions succeed), 46 (when any one 
of the first three versions fails and the fourth version succeeds) and 65 (when two 
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 of the first four versions fail and the fifth version succeeds). If two versions can be 
executed simultaneously and the versions start their execution in accordance with 
their numbers (Figure 3.16B) then the total system execution time can take on the 
values of 16 (when the first three versions succeed), 30 (when any one of the first 
three versions fails and the fourth version succeeds) and 35 (when two of the first 
four versions fail and the fifth version succeeds). 

Figure 3.16. Execution of five-version fault-tolerant program with one (A) and two (B) 
versions executed simultaneously 

In the RBS approach, after executing each version, its output is tested by an 
acceptance test block (ATB). If the ATB accepts the version output, then the 
process is terminated and the version output becomes the output of the entire 
system. If all of the n versions do not produce the accepted output, then the system 
fails. If the computational resources allow simultaneous execution of several 
versions, then the versions are executed according to some predefined sequence 
and the entire program terminates either when one of the versions produces the 
output accepted by the ATB (success) or after the execution of all the n versions if 
no output is accepted by the ATB (failure). If the acceptance test time is included 
in the execution time of each version, then the RBS performance model becomes 
identical to the performance model of the NVP with k = 1 (in this case k is the 
number of the correct outputs, but not the number of the outputs that agree). 

The fault-tolerant programs can be considered as MSSs with the system 
performance defined as its total execution time. These systems are extensions of 
the binary k-out-of-n systems. Indeed, the fault-tolerant program in which all of its 
versions are executed simultaneously and have the same termination time is a 
simple k-out-of-n system.

Estimating the effect of the fault-tolerant programming on system performance 
is especially important for safety-critical real-time computer applications. In 
applications where the execution time of each task is of critical importance, the 
system reliability is defined as a probability that the correct output is produced 
within a specified time. 

In applications where the average system productivity (the number of tasks 
executed) over a fixed mission time is of interest, the system reliability is defined 
as the probability that it produces correct outputs regardless of the total execution 
time, while the conditional expected system execution time is considered to be a 
measure of its performance. This index determines the system expected execution 
time given that the system does not fail. 
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Since the performance of fault-tolerant programs depends on the availability of 
computational resources, the impact of hardware availability should also be taken 
into account when the system’s reliability is evaluated.

3.3 Measures of Multi-state System Performance and 
their Evaluation Using the UGF 

To characterize MSS behaviour numerically from a reliability and performance 
point of view, one has to determine the MSS performance measures. Some of the 
measures are based on a consideration of the system’s evolution in the time 
domain. In this case, the relation between the system’s output performance and the 
demand represented by the two corresponding stochastic processes must be 
studied. This study is not within the scope of this book since the UGF technique 
allows one to determine only the measures based on performance distributions. 

When a system is considered in the given time instant or in a steady state (when 
its output performance distribution does not depend on time) its behaviour is 
determined by its performance rate represented as a random variable G. Consider 
several measures of system output performance that can characterize any system 
state.

The first natural measure of a system’s performance is its output performance 
rate G.  This measure can be obtained by applying the system structure function 
over the performance rates of the system’s elements. Each specific system state j is 
characterized by the associated system performance rate G = gj, which determines 
the system’s behaviour in the given state but does not reflect the acceptability of 
the state from the customer's point of view. 

In order to represent the system state acceptability, we can use the acceptability 
function F(G) or F(G,W) defined in Section 3.1.3. The acceptability function 
divides the entire set of possible system states into two disjoint subsets (acceptable 
and unacceptable states). Therefore, if the system’s behaviour is represented by an 
acceptability function, the system as a whole can be considered to be a binary one. 

In many practical cases it is not enough to know whether the state is acceptable 
or not. The damage caused by an unacceptable state can be a function of the 
system’s performance rate deviation from a demand. Usually, the one-sided 
performance deviation (performance deviation from a demand when the demand is 
not met) is of interest. For example, the cumulative generating capacity of 
available electric generators should exceed the demand. In this case the possible 
performance deviation (performance deficiency) takes the form

)0,max(),( GWWGD  (3.5) 

When the system’s performance should not exceed demand (for example, the 
time needed to complete the assembling task in an assembly line should be less 
than a maximum allowable value in order to maintain the desired productivity), the 
performance redundancy is used as a measure of the performance deviation:
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)0,max(),( WGWGD  (3.6) 

Figure 3.17 shows an example of the behaviour of the MSS performance and the 
demand as the realizations of the discrete stochastic processes and the 
corresponding realizations of the measures of the system’s output performance.

0

0 t

G W F=1(G>W) D- D+

Figure 3.17. Example of a realization of the measures of system output performance 

 The expected system acceptability )),(( WGFE determines the system 

reliability or availability (the probability that the MSS is in one of the acceptable 
states: }).1),(Pr{ WGF  Depending on the meaning of the system and element 

state probabilities, it can be interpreted as R(t), the MSS reliability at a specified 
time t, as R(T), the MSS reliability during a fixed mission time T (for unrepairable 
systems), or as instantaneous (point) availability A(t) or steady-state availability A
(for repairable systems).

 The expected system performance deviation E(D (G,W)) or E(D+(G,W))can be 
interpreted as t, the expected instantaneous performance deviation at instant t, or 
as a mean steady-state performance deviation .

In some cases we need to know the conditional expected performance of the 
MSS. This measure represents the mean performance of the MSS given that it is in 
acceptable states. In order to determine the conditional expected performance ~

we define the auxiliary function as ).,(),(
~

WGGFWGG  The measure  ~  can be 

determined as follows: 

 )),((/)),((}1),(Pr{/)
~

(~ WGFEWGGFEWGFGE   (3.7)       

Having the p.m.f. of the random MSS output performance G and the p.m.f. of 
the demand W in the form of u-functions )(MSS zU and ),(zuw  one can obtain the 

u-functions representing the p.m.f. of the random functions F(G,W),
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),,(
~

WGG ),( WGD or ),( WGD using the corresponding composition operators 

over )(MSS zU and :)(zuw

)()()( MSS zuzUzU w
F

F  (3.8) 

)()()( ~MSS~ zuzUzU w
G

G  (3.9) 

 )()()( MSS zuzUzU w
D

D  (3.10) 

Since the expected values of the functions G, F, D and G
~

are equal to the 
derivatives of the corresponding u-functions UMSS(z), UF(z), UD(z) and )(~ zUG   at   

z = 1, the MSS performance measures can now be obtained as 

 )1(')( MSSUGE  (3.11) 

 )1(')),(( FUWGFE  (3.12) 

 )1(')),(( DUWGDE  (3.13)

)1('/)1(')),((/)),(
~

( ~ FG UUWGFEFGGE  (3.14)

Example 3.21 

Consider two power system generators with a nominal capacity of 100 MW as two 
separate MSSs. In the first generator, some types of failure require its capacity G1

to be reduced to 60 MW and other types lead to a complete outage. In the second 
generator, some types of failure require its capacity G2 to be reduced to 80 MW, 
others lead to a capacity reduction to 40 MW, and others lead to a complete outage. 
The generators are repairable and each of their states has a steady-state probability. 

Both generators should meet a variable two-level demand W. The high level 
(day) demand is 50 MW and has the probability 0.6; the low level (night) demand 
is 30 MW and has the probability 0.4.

The capacity and demand can be presented as a fraction of the nominal 
generator capacity. There are three possible relative capacity levels that 
characterize the performance of the first generator: 

 g10 = 0.0, g11 = 60/100 = 0.6,  g12 = 100/100 = 1.0 

and four relative capacity levels that characterize the performance of the second 
generator:

 g20 = 0.0,  g21 = 40/100 = 0.4, g22 = 80/100 = 0.8,  g23 = 100/100 = 1.0 

Assume that the corresponding steady-state probabilities are 

 p10 = 0.1, p11 = 0.6, p12 = 0.3
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for the first generator and

 p20 = 0.05, p21 = 0.35,  p22 = 0.3, p23 = 0.3

for the second generator and that the demand distribution is 

 w1 = 50/100 = 0.5,  w2 = 30/100 = 0.3, q1 = 0.6,  q2 = 0.4 

The u-functions representing the capacity distribution of the generators (the 
p.m.f. of random variables G1 and G2) take the form 

 U1(z) = 0.1z0+0.6z0.6+0.3z1,   U2(z) = 0.05z0+0.35z0.4+0.3z0.8+0.3z1

and the u-function representing the demand distribution takes the form 

 uw(z) = 0.6z0.5+0.4z0.3

The mean steady-state performance (capacity) of the generators can be obtained 
directly from these u-functions:

66.00.13.06.06.001.0)1(')( 111 UGE

which means 66% of the nominal generating capacity for the first generator, and 

 68.00.13.08.03.04.035.0005.0)1(')( 222 UGE

which means 68% of the nominal generating capacity for the second generator. 
The available generation capacity should be no less than the demand. 

Therefore, the system acceptability function takes the form

 )(1),( WGWGF

and the system performance deficiency takes the form

 )0,max(),( GWWGD

The u-functions corresponding to the p.m.f. of the acceptability function are 
obtained using the composition operator 

F
:

0111

0110)3.01(1)3.06.0(1

)3.00(1)5.01(1)5.06.0(1)5.00(1

3.05.016.00
11

1.09.012.024.0

04.018.036.006.012.024.0

04.018.036.006.0

)4.06.0()3.06.01.0()()()(

zzzz

zzzzzz

zzzz

zzzzzzuzUzU
F

w
F

F
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0111

101100

3.05.018.04.00

22

26.074.012.012.0

14.002.018.018.021.003.0

)4.06.0()3.03.035.005.0(

)()()(

zzzz

zzzzzz

zzzzzz

zuzUzU

F

w
F

F

The system availability (expected acceptability) is 

9.0)1(')(1( 111 FUWGEA

 74.0)1(')(1( 222 FUWGEA

The u-functions corresponding to the p.m.f. of the performance deficiency 
function are obtained using the composition operator 

D
:

03.05.0

003.0005.0

)0,13.0max()0,6.03.0max()0,03.0max(

)0,15.0max()0,6.05.0max()0,05.0max(

3.05.016.00

11

9.004.006.0

12.024.004.018.036.006.0

12.024.004.0

18.036.006.0

)4.06.0()3.06.01.0(

)()()(

zzz

zzzzzz

zzz

zzz

zzzzz

zuzUzU

D

w
D

D

03.01.05.000

03.0001.05.0

3.05.018.04.00

22

74.002.021.003.012.012.0

14.002.018.018.021.003.0

)4.06.0()3.03.035.005.0(

)()()(

zzzzzz

zzzzzz

zzzzzz

zuzUzU

D

w
D

D

The expected performance deficiency is 

042.009.03.004.05.006.0

)1('))0,(max( 111 DUGWE

042.0074.03.002.01.021.05.003.0

)1('))0,(max( 222 DUGWE
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In this case,  may be interpreted as expected electrical power unsupplied to 
consumers. The absolute value of this unsupplied demand is 4.2 MW for both 
generators. Multiplying this index by T, the system operating time considered, one 
can obtain the expected unsupplied energy. 

Note that since the performance measures obtained have different natures they 
cannot be used interchangeably. For instance, in the present example the first 
generator performs better than the second one when availability is considered 
(A1>A2), the second generator performs better than the first one when the expected 
capacity is considered ( 1< 2), and both generators have the same expected 
unsupplied demand ( 1 = 2).

Now we determine the conditional expected system performance. The u-

functions corresponding to the p.m.f. of the function G
~

 are obtained using the 
composition operator :~ GFG

06.0116.00

16.00)3.01(11)3.06.0(16.0

)3.00(10)5.01(11)5.06.0(16.0)5.00(10

3.05.016.00
~11

~

1.06.03.012.024.004.0

18.036.006.012.024.0

04.018.036.006.0

)4.01()3.06.01.0()()()(

zzzzzz

zzzzz

zzzz

zzzzzzuzUzU
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w
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G

   

04.08.0118.0

4.0018.000

3.05.018.04.00

~22
~

26.014.03.03.012.012.0

14.002.018.018.021.003.0

)4.06.0()3.03.035.005.0(

)()()(

zzzzzz

zzzzzz

zzzzzz

zuzUzU

FG

w
G
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The system conditional expected performance is 

733.09.0/66.0

9.0/)01.06.06.013.0()1('/)1('~
11

~1 FG UU

805.074.0/596.0

74.0/)026.04.014.08.03.013.0()1('/)('~
22

~2 FG UzU

This means that generators 1 and 2 when they meet the variable demand, have 
average capacities 73.3 MW and 80.5 MW respectively. 

Observe that the acceptability function F(G,W) is a binary one. Therefore, if the 
demand is constant ( ),wW  operator wzUzU FF )()( MSS  produces a u-
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function in which all of the terms corresponding to the acceptable states will have 
the exponent 1 and all of the terms corresponding to the unacceptable states will 
have the exponent 0. It is easily seen that )1('FU is equal to the sum of the 

coefficients of the terms with exponents 1. Therefore, instead of obtaining the u-
function of F(G, w) and calculating its derivative at z = 1 for determining the 
system’s reliability (availability), one can calculate the sum of the terms in UMSS(z)
that correspond to the acceptable states. Introducing an operator w(UMSS(z)) that 
produces the sum of the coefficients of those terms in UMSS(z) that have exponents 
g satisfying the condition F(g,w) = 1 (and correspond to the states acceptable for 
the demand level w) we obtain the following simple expression for the system’s 
expected acceptability: 

 E(F(G,w)) = w(UMSS(z)) (3.15) 

When the demand is variable, the system reliability can also be obtained as

M

i

M

i
iwi

M

i
iiii zUqwGFEqwGFEwW

1 11
))(()),(()),(()Pr( MSS  (3.16) 

Example 3.22 

Consider the two power system generators presented in the previous example and 
obtain the system availability directly from the u-functions UMSS(z) using             
Equation (3.16). Since, in this example, ),(1),( WGWGF  the operator 

))(( zUw  sums the coefficients of the terms having exponents not less than w in 

the u-function U(z):
For the first generator with  U1(z) = 0.1z0+0.6z0.6+0.3z1

 903060)306010()),(( 1600
5.011 ...z.z.z.wGFE .

 903060)306010()),(( 1600
3.021 ...z.z.z.wGFE .

9.09.04.09.06.0)),(()),(( 2121111 wGFEqwGFEqA

For the second generator with U2(z) = 0.05z0 + 0.35z0.4 + 0.3z0.8 + 0.3z1

)3030350050())5.0,(( 180400
5.02 z.z.z.z.GFE .. 0.3+0.3 = 0.6 

9503030350

)3030350050())3.0,(( 180400
3.02

....

z.z.z.z.GFE ..

 74.095.04.06.06.0)),(()),(( 2221211 wGFEqwGFEqA



4. Universal Generating Function in Analysis of 
Series-Parallel Multi-state Systems

4.1 Reliability Block Diagram Method

Having a generic model of an MSS in the form of Equations (3.3) and (3.4) we can 
obtain the measures of MSS reliability by applying the following steps: 

1.  Represent the p.m.f. of the random performance of each system element j,
Equations (3.1) and (3.2), in the form of the u-function

njzpzu
jk

i

jig
jij 1,)(

1

0
  (4.1) 

2. Obtain the u-function of the entire system (representing the p.m.f. of the 
random variable G) applying the composition operator that uses the system 
structure function. 

3. Obtain the u-functions representing the random functions F , G
~

 and D
using operators (3.8)-(3.10). 

4. Obtain the system reliability measures by calculating the values of the 
derivatives of the corresponding u-functions at z = 1 and applying 
Equations (3.11)-(3.14). 

While steps 1, 3 and 4 are rather trivial, step 2 may involve complicated 
computations. Indeed, the derivation of a system structure function for various 
types of system is usually a difficult task.

As shown in Chapter 1, representing the functions in the recursive form is 
beneficial from both the derivation clarity and computation simplicity viewpoints. 
In many cases, the structure function of the entire MSS can be represented as the 
composition of the structure functions corresponding to some subsets of the system 
elements (MSS subsystems). The u-functions of the subsystems can be obtained 
separately and the subsystems can be further treated as single equivalent elements 
with the performance p.m.f. represented by these u-functions.

The method for distinguishing recurrent subsystems and replacing them with 
single equivalent elements is based on a graphical representation of the system 
structure and is referred to as the reliability block diagram method. This approach 
is usually applied to systems with a complex series-parallel configuration. 
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4.1.1 Series Systems 

In the flow transmission MSS, where performance is defined as capacity or 
productivity, the total capacity of a subsystem containing n independent elements 
connected in series is equal to the capacity of a bottleneck element (the element 
with least performance). Therefore, the structure function for such a subsystem 
takes the form

},...,min{),...,( 11ser nn GGGG  (4.2) 

 In the task processing MSS, where the performance is defined as the 
processing speed (or operation time), each system element has its own operation 
time and the system’s total task completion time is restricted. The entire system 
typically has a time resource that is larger than the time needed to perform the 
system’s total task. But unavailability or deteriorated performance of the system 
elements may cause time delays, which in turn would cause the system’s total task 
performance time to be unsatisfactory. The definition of the structure function for 
task processing systems depends on the discipline of the elements' interaction in 
the system.

When the system operation is associated with consecutive discrete actions 
performed by the ordered line of elements, each element starts its operation after 
the previous one has completed its operation. Assume that the random 
performances Gj of each element j is characterized by its processing speed. The 
random processing time Tj of any system element j is defined as ./1 jj GT  The 

total time of task completion for the entire system is

n

j
j

n

j
j GTT

1

1

1
 (4.3) 

The entire system processing speed is therefore 

n

j
jGTG

1

11)(/1  (4.4) 

Note that if for any j  Gj = 0 the equation cannot be used, but it is obvious that in 
this case G = 0. Therefore, one can define the structure function for the series task 
processing system as

While the structure function of a binary series-parallel system is unambiguously 

determined by its configuration (represented by the reliability block diagram), the 

structure function of a series-parallel MSS also depends on the physical meaning of 

the system and of the elements' performance and on the nature of the interaction 

among the elements.
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One can see that the structure functions presented above are associative and 
commutative (i.e. meet conditions (1.26) and (1.28)).  Therefore, the u-functions
for any series system of described types can be obtained recursively by 
consecutively determining the u-functions of arbitrary subsets of the elements. For 
example the u-function of a system consisting of four elements connected in a 
series can be determined in the following ways: 

)()]())()([( 4
ser

3
ser

2
ser

1 zuzuzuzu

 ))()(())()(( 4
ser

3
ser

2
ser

1 zuzuzuzu  (4.6)  

and by any permutation of the elements' u-functions in this expression.

Example 4.1 

Consider a system consisting of n elements with the total failures connected in 
series. Each element j has only two states: operational with a nominal performance 
of gj1 and failure with a performance of zero. The probability of the operational 
state is pj1. The u-function of such an element is presented by the following 
expression:

,)1()( 1
1

0
1

jg
jjj zpzpzu j = 1, …, n

In order to find the u-function for the entire MSS, the corresponding 

ser
operators should be applied. For the MSS with the structure function (4.2) 

the system u-function takes the form 

},...,min{
1

1

0
1

1
1

111
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)1())(),...,(()( ngg
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n

j
j

n

j
n zpzpzuzuzU

For the MSS with the structure function (4.5) the system u-function takes the form 

1

1

1
1 )(

1
1

0
1

1
1 )1()}(),...,({)(
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j
jg

j

n

j
j

n

j
n zpzpzuzuzU

Since the failure of each single element causes the failure of the entire system, 
the MSS can have only two states: one with the performance level of zero (failure 

4
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of at least one element) and one with the performance level },...,min{ˆ 111 nggg

for the flow transmission MSS and n
j jgg 1

1
1/1ˆ  for the task processing MSS. 

The measures of the system performance A(w) = Pr{G w}, (w) = 
E(max(w G,0)) and   = E(G) are presented in the Table 4.1. 

 Table 4.1. Measures of MSS performance 

w A(w) -(w)

gw ˆ 0
n

j
jpgw

n

j
jpgw

n

j
jpw

1
1ˆ

1
1)ˆ()

1
11(

gw ˆ0
n

j
jp

1
1 )

1
11(

n

j
jpw

n

j
jpg

1
1ˆ

The u-function of a subsystem containing n identical elements (pj1=p, gj1=g for 
any j) takes the form 

gnn zpzp 0)1(    (4.7) 

for the system with the structure function (4.2) and takes the form

ngnn zpzp /0)1(   (4.8) 

for the system with the structure function (4.5). 

4.1.2 Parallel Systems 

In the flow transmission MSS, in which the flow can be dispersed and transferred 
by parallel channels simultaneously (which provides the work sharing), the total 
capacity of a subsystem containing n independent elements connected in parallel is 
equal to the sum of the capacities of the individual elements. Therefore, the 
structure function for such a subsystem takes the form

par 1 1
1

( ,..., ) ( ,..., )
n

n n j
j

G G G G G  (4.9) 

In some cases only one channel out of n can be chosen for theflow transmission 
(no flow dispersion is allowed). This happens when the transmission is associated 
with the consumption of certain limited resources that does not allow simultaneous 
use of more than one channel. The most effective way for such a system to function 
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is by choosing the channel with the greatest transmission capacity from the set of 
available channels. In this case, the structure function takes the form 

}.,...,max{),...,( 11par nn GGGG  (4.10) 

In the task processing MSS, the definition of the structure function depends on 
the nature of the elements’ interaction within the system.

First consider a system without work sharing in which the parallel elements act 
in a competitive manner. If the system contains n parallel elements, then all the 
elements begin to execute the same task simultaneously. The task is assumed to be 
completed by the system when it is completed by at least one of its elements. The 
entire system processing time is defined by the minimum element processing time 
and the entire system processing speed is defined by the maximum element 
processing speed. Therefore, the system structure function coincides with (4.10). 

Now consider a system of n parallel elements with work sharing for which the 
following assumptions are made: 

1. The work x to be performed can be divided among the system elements in 
any proportion. 

2. The time required to make a decision about the optimal work sharing is 
negligible, the decision is made before the task execution and is based on 
the information about the elements state during the instant the demand for 
the task executing arrives.

3. The probability of the elements failure during any task execution is 
negligible.

The elements start performing the work simultaneously, sharing its total 
amount x in such a manner that element j has to perform xj portion of the work and 

.1
n
j jxx  The time of the work processing by element j is xj/Gj. The system 

processing time is defined as the time during which the last portion of work is 
completed: }./{max1 jjnj GxT  The minimal time of the entire work 

completion can be achieved if the elements share the work in proportion to their 

processing speed Gj: ./ 1
n
k kjj GxGx  The system processing time T in this 

case is equal to n
k kGx 1/  and its total processing speed G is equal to the sum of 

the processing speeds of its elements. Therefore, the structure function of such a 
system coincides with the structure function (4.9). 

One can see that the structure functions presented also meet the conditions 
(1.26) and (1.28). Therefore, the u-functions for any parallel system of described 
types can be obtained recursively by the consecutive determination of u-functions
of arbitrary subsets of the elements.

Example 4.2 

Consider a system consisting of two elements with total failures connected in 
parallel. The elements have nominal performance g11 and g21 (g11<g21) and the 
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probability of operational state p11 and p21 respectively. The performances in the 
failed states are g10 = g20 =0. The u-function for the entire MSS is 

])1[(])1[(

)()()(

21

par
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par

21
0

2111
0

11

21

gg
zpzpzpzp

zuzuzU

which for structure function (4.9) takes the form 
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and for structure function (4.10) takes the form 

21112111
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The measures of the system output performance for MSSs of both types are 
presented in Tables 4.2 and 4.3. 

   Table 4.2. Measures of MSS performance for system with structure function (4.9) 

 w A(w) (w)
w>g11+g21 0 w-p11g11 p21g21

g21<w g11+g21 p11p21 g11p11(p21 1)+g21p21(p11 1)+w(1 p11p21)

g11<w  g21 p21 (1 p21)(w g11p11) p11g11+p21g21

0<w g11 p11+p21 p11p21 (1 p11)(1 p21)w

     Table 4.3. Measures of MSS performance for system with  structure function (4.10) 

 w A(w)  –(w)
w>g21 0 w p11g11 p21g21+p11p21g11

g11<w  g21 p21 (1 p21)(w g11p11) p11(1 p21)g11+p21g21

0<w g11 p11+p21  p11p21 (1 p11)(1 p21)w

The u-function of a subsystem containing n identical parallel elements (pj1 = p,
gj1 = g for any j) can be obtained by applying the operator ))(),....,((

par
zuzu

over n identical u-functions u(z) of an individual element. The u-function of this 
subsystem takes the form
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n

k

kgknk zpp
knk

n

0
)1(

)!(!

!
 (4.11) 

for the structure function (4.9) and 

gnn zpzp ))1(1()1( 0  (4.12) 

for the structure function (4.10). 

4.1.3 Series-Parallel Systems 

The structure functions of complex series-parallel systems can always be 
represented as compositions of the structure functions of statistically independent 
subsystems containing only elements connected in a series or in parallel. 
Therefore, in order to obtain the u-function of a series-parallel system one has to 
apply the composition operators recursively in order to obtain u-functions of the 
intermediate pure series or pure parallel structures.

The following algorithm realizes this approach: 
1. Find the pure parallel and pure series subsystems in the MSS. 
2. Obtain u-functions of these subsystems using the corresponding 

ser
and

par
operators.

3. Replace the subsystems with single elements having the u-function
obtained for the given subsystem. 

4. If the MSS contains more then one element return to step 1. 
The resulting u-function represents the performance distribution of the entire 

system.
The choice of the structure functions used for series and parallel subsystems 

depends on the type of system. Table 4.4 presents the possible combinations of 
structure functions corresponding to the different types of MSS.

Table 4.4. Structure functions for a purely series and for purely parallel subsystems 

No of MSS 
type

Description
of MSS 

Structure function for 
series elements ( ser)

Structure function for 
parallel elements ( par)

1
Flow transmission MSS 

with flow dispersion (4.2) (4.9)

2
Flow transmission MSS 
without flow dispersion (4.2) (4.10)

3
Task processing MSS 

with work sharing (4.5) (4.9)

4
Task processing MSS 
without work sharing (4.5) (4.10)
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Example 4.3

In order to illustrate the recursive approach (the reliability block diagram method) 
consider the series-parallel system presented in Figure 4.1A.

First, one can find only one pure series subsystem consisting of elements with 
the u-functions u2(z), u3(z) and u4(z). By calculating the u-function
U1(z)= )()()( 432

serser
zuzuzu  and replacing the three elements with a single 

element with the u-function U1(z) one obtains a system with the structure presented 
in Figure 4.1B. This system contains a purely parallel subsystem consisting of 
elements with the u-functions U1(z) and u5(z), which in their turn can be replaced 
by a single element with the u-function )()()( 512

par
zuzUzU (Figure 4.1C). 

The structure obtained has three elements connected in a series that can be replaced 
with a single element having the u-function )()()()( 6213

serser
zuzUzuzU

(Figure 4.1D). The resulting structure contains two elements connected in parallel. 
The u-function of this structure representing the p.m.f. of the entire MSS 
performance is obtained as ).()()( 73

par
zuzUzU

Figure 4.1. Example of recursive determination of the MSS u-function

Assume that in the series-parallel system presented in Figure 4.1A all of the 
system elements can have two states (elements with total failure) and have the 
parameters presented in Table 4.5. Each element j has a nominal performance rate 
gj1 in working state and performance rate of zero when it fails. The system is 
repairable and the steady-state probability that element j is in working state 
(element availability) is pj1.

     Table 4.5. Parameters of elements of series-parallel system 

j 1 2 3 4 5 6 7 
gj1 5 3 5 4 2 6 3 
pj1 0.9 0.8 0.9 0.7 0.6 0.8 0.8 

 u6(z)
 u4(z) u3(z) u2(z)

 u5(z)
 u1(z)

 u7(z)

u6(z)
U1(z)

 u5(z)
 u1(z)

 u7(z)

 u6(z)U2(z) u1(z)

 u7(z)

U3(z)

 u7(z)

A B

C D
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The process of calculating U(z) for the flow transmission system with flow 
dispersion (for which ser and par functions are defined by Equations (4.2) and 
(4.9) respectively) is as follows: 

 u2(z)
min

u3(z) =(0.8z3+0.2z0)
min

(0.9z5+0.1z0)=0.72z3+0.28z0

 U1(z)=(u2(z)
min

u3(z))
min

u4(z)

 = (0.72z3+0.28z0)
min

 (0.7z4+0.3z0)=0.504z3+0.496z0

 U2(z)=U1(z) u5(z)=(0.504z3+0.496z0)  (0.6z3+0.4z0)

 = 0.3024z6+0.4992z3+0.1984z0

 u1(z)
min

U2(z)=(0.9z5+0.1z0)
min

 (0.3024z6+0.4992z3+0.1984z0)

 = 0.27216z5+0.44928z3+0.27856z0;

 U3(z)=(u1(z)
min

U2(z))
min

u6(z)=(0.27216z5+0.44928z3

 +0.27856z0)
min

 (0.8z6+0.2z0)= 0.217728z5+0.359424z3+0.422848z0

 U(z)=U3(z) u7(z)

 = (0.217728z5+0.359424z3+0.422848z0)  (0.8z3+0.2z0)

 = 0.1741824z8+0.2875392z6+0.0435456z5+0.4101632z3+0.0845696z0

Having the system u-function that represents its performance distribution one 
can easily obtain the system mean performance  = U'(1) = 4.567. The system 
availability for different demand levels can be obtained by applying the operator 

w  (3.15) over the u-function U(z):

 A(w) = 0.91543 for 0<w 3

 A(w) = 0.50527 for 3<w 5

 A(w) = 0.461722 for 5<w 6

 A(w) = 0.174182 for 6<w 8

  A(w) = 0 for w>8

Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 4
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The process of calculating U(z) for the task processing system without work 
sharing (for which ser and par functions are defined by Equations (4.5) and (4.10) 
respectively) is as follows: 

 u2(z) u3(z) = (0.8z3+0.2z0)  (0.9z5+0.1z0) = 0.72z1.875+0.28z0;

 U1(z) = (u2(z) u3(z)) u4(z)

 = (0.72z1.875+0.28z0)  (0.7z4+0.3z0) = 0.504z1.277+0.496z0

 U2(z) = U1(z)
max

u5(z)) = (0.504z1.277+0.496z0)
max

 (0.6z2+0.4z0)

 = 0.6z2+0.2016z1.277+0.1984z0

 u1(z) U2(z) = (0.9z5+0.1z0)  (0.6z2+0.2016z1.277+0.1984z0)

 = 0.54z1.429+0.18144z1.017+0.27856z0

 U3(z) = (u1(z) U2(z)) u6(z) = (0.54z1.429+0.18144z1.017

 +0.27856z0)  (0.8z6+0.2z0) = 0.432z1.154+0.145152z0.87+0.422848z0

 U(z) = U3(z)
max

u7(z) = (0.432z1.154+0.145152z0.87+0.422848z0)

max
(0.8z3+0.2z0) = 0.8z3+0.0864z1.154+0.0290304z0.87

+0.08445696z0

The main performance measures of this system are: 

=U'(1)= 2.549 

  A(w) = 0.91543 for 0<w 0.87, A(w) = 0.8864 for 0.87<w 1.429

 A(w) = 0.8 for 1.429<w 3, A(w) = 0 for w>3

The procedure described above obtains recursively the same MSS u-function
that can be obtained directly by operator ))(),(),(),(),(( 54321 zuzuzuzuzu using

the following structure function:

(G1, G2, G3, G4, G5, G6, G7)

 = par( ser(G1, par( ser(G2, G3, G4), G5), G6), G7)
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The recursive procedure for obtaining the MSS u-function is not only more 
convenient than the direct one, but, and much more important, it allows one to 
reduce the computational burden of the algorithm considerably. Indeed, using the 
direct procedure corresponding to Equation (1.20) one has to evaluate the system 
structure function for each combination of values of random variables G1, …, G7

( 7
1j jk times, where kj is the number of states of element j). Using the recursive 

algorithm one can take advantage of the fact that some subsystems have the same 
performance rates in different states, which makes these states indistinguishable 
and reduces the total number of terms in the corresponding u-functions.

In Example 4.3 the number of evaluations of the system structure function 
using the direct Equation (1.20) for the system with two-state elements is 27 = 128. 
Each evaluation requires calculating a function of seven arguments. Using the 
reliability block diagram method one obtains the system u-function just by 30 
procedures of structure function evaluation (each procedure requires calculating 
simple functions of just two arguments). This is possible because of the reduction 
in the lengths of intermediate u-functions by like terms collection. For example, it 
can be easily seen that in the subsystem of elements 2, 3 and 4 all eight possible 
combinations of the elements' states produce just two different values of the 
subsystem performance: 0 and min(g21, g31, g41) in the case of the flow 
transmission system, or 0 and g21g31g41/(g21g31+g21g41+g31g41) in the case of the 
task processing system. After obtaining the u-function U1(z) for this subsystem and 
collecting like terms one gets a two-term equivalent u-function that is used further 
in the recursive algorithm. Such simplification is impossible when the entire 
expression (1.20) is used. 

Example 4.4

Assume that in the series-parallel system presented in Figure 4.1A all of the system 
elements can have two states (elements with total failure). The system is 
unrepairable and the reliability of each element is defined by the Weibull hazard 
function

h(t) = t 1   

The accumulated hazard function takes the form 

H(t) = ( t)

The elements’ nominal performance rates gj1, the hazard function scale 
parameters j and the shape parameters j are presented in Table 4.6. One can see 
that some elements have increasing failure rates ( >1) that correspond to their 
aging and some elements have constant failure rates (  = 1). 

Since the MSS reliability varies with the time, in order to obtain the 
performance measures of the system the reliability of its elements Pr{Gj = gj1} = 
exp( Hj(t)) should be calculated for each time instant. Then the entire system 
characteristics can be evaluated for the given demand w. Figures 4.2, 4.3 and 4.4 
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present , R(w) and -(w) as functions of time for different types of system 
(numbered according to Table 4.4). 

Table 4.6. Parameters of system elements

Hazard function
parameters

No
of

element

Nominal
performance rate 

g

1 5 0.018 1.0 
2 3 0.010 1.2 
3 5 0.015 1.0 
4 4 0.022 1.0 
5 2 0.034 1.0 
6 6 0.012 2.2 
7 3 0.025 1.8 

Figure 4.2. System reliability function for different types of MSS
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Figure 4.4. System performance deficiency for different types of MSS
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4.1.4 Series-Parallel Multi-state Systems Reducible to Binary 
Systems

In some special cases the reliability (availability) of the entire system can be 
obtained without derivation of its u-function. In the final stage of reliability 
evaluation, such systems can be treated as binary systems.

Consider, for example, a flow transmission system consisting of n independent 
multi-state components connected in a series (each component in its turn can be a 
series-parallel subsystem). Let Gj be the random performance of component j. The 
structure function of the series flow transmission system is 

},...,min{),...,( 11 nn GGGGG .

n

j
jn wGwGGwGF

1
1 )(1)},...,(min{1),(  (4.13) 

The system’s reliability is defined as the probability that G is no less than w and 
takes the form 

 }1)(1Pr{}1),(Pr{)(
1

n

j
j wGwGFwR

 }1),(Pr{}1)(1Pr{
11

n

j
j

n

j
j wGFwG   (4.14) 

This means that the system’s reliability is equal to the product of the reliabilities of 
its components.

Each component j can be considered to be a binary element with the state 
variable ),( wGFX jj  and the entire system becomes the binary series system 

with the state variable X and the binary structure function :

n

j
jn XXXXwGF

1
1 ),...,(),(  (4.15) 

The algorithm for evaluating the system reliability can now be simplified. It 
consists of the following steps: 

1. Obtain the u-functions Uj(z) of all of the series components. 
2. Obtain the reliability of each component j as )).(()( zUwR jwj

Assume that the system should meet a constant demand w. Therefore, the 

system acceptability function takes the form ).(1),( wGwGF It can be seen that 

in this special case 
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3. Calculate the entire system reliability as 
n

j
jw

n

j
j zUwRR

11
))(()( .

It can easily be seen that for the discrete random demand with p.m.f.                    
w = {w1, …, wM}, q = {q1,…, qM} the system reliability takes the form 

n

j
jw

M

m
m

n

j
mj

M

m
mm

M

m
m zUqwRqwRqR

m
11111

))(()()(  (4.16) 

Another example is a flow transmission system without flow dispersion 
consisting of n independent multi-state components connected in parallel. The 
structure function of such a system is }.,...,max{),...,( 11 nn GGGGG  If the 

system should meet a constant demand w, its acceptability function also takes the 
form ).(1),( wGwGF  The probability of the system’s failure is 

))}(1Pr{1()}(1Pr{)}(1Pr{

}},...,Pr{max{}Pr{}0),(Pr{

111

1

n

j
j

n

j
j

n

j
j

n

wGwGwG

wGGwGwGF

 )}1),(Pr{1(
1

n

j
j wGF  (4.17) 

The entire system reliability can now be determined as

)}1),(Pr{1(1

}0),(Pr{1}1),(Pr{

1

n

j
j wGF

wGFwGF

 (4.18) 

This means that each component j can be considered to be a binary element 
with the state variable ),( wGFX jj  and the entire system becomes the binary 

parallel system with the state variable X and the binary structure function 

)1(1),...,(),(
1

1

n

j
jn XXXXwGF  (4.19) 

After obtaining the u-functions Uj(z) of all of the parallel components one can 
calculate the system reliability as 

)))((1(1))(1(1)(
11

n

j
jw

n

j
j zUwRwR  (4.20) 
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for the constant demand and as 

]}))((1[1{]})(1[1{
1111

n

j
jw

M

m
m

n

j
mj

M

m
m zUqwRqR

m
 (4.21) 

for the discrete random demand. 

Example 4.5

Consider the flow transmission series-parallel system presented in Figure 4.5. The 
system consists of three components connected in a series. The first component 
consists of two different elements and constitutes a subsystem without flow 
dispersion. The second and third components are subsystems with a flow 
dispersion consisting of two and three identical elements respectively. Each 
element j can have only two states: total failure (corresponding to a performance of 
zero) and operating with the nominal performance gj1. The availability of element j
is pj1.

Figure 4.5. Example of a series-parallel system reducible to a binary system 

The u-functions of the individual elements are: 

060
1 1.09.0)( zzzu , 040

2 2.08.0)( zzzu

020
43 2.08.0)()( zzzuzu

020
765 15.085.0)()()( zzzuzuzu

The u-functions of the components are obtained using the corresponding 

par
operators:

02040020020
2

04060040060
1

04.032.064.0)2.08.0()2.08.0()(

02.008.09.0)2.08.0()1.09.0()(
max

zzzzzzzzU

zzzzzzzzU

02040603020

020020020
3

00340057403251061410)15.085.0(

)15.085.0()15.085.0()15.085.0()(

z.z.z.z.zz

zzzzzzzU

        g11=60, p11=0.9

        g21=40, p21=0.8

        g31=20, p31=0.8

        g41=20, p41=0.8

       g51=20, p51=0.85

        g71=20, p71=0.85

        g61=20, p61=0.85
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For demand w = 20 we obtain 

98.0)02.008.09.0())(( 04060
20120 zzzzU

 96.0)04.032.064.0())(( 02040
20220 zzzzU

9966.0)00340

057403251061410())((
0

204060
20320

z.

z.z.z.zU

The entire system availability is 

9376.09966.096.098.0

))(())(())(()20( 320220120 zUzUzUA

For demand w = 40 we obtain 

 9.0)02.008.09.0())(( 02060
40140 zzzzU

 64.0)04.032.064.0())(( 02040
40240 zzzzU

9392.0)00340

057403251061410())((
0

204060
40340

z.

z.z.z.zU

The entire system availability is 

541.09392.064.09.0

))(())(())(()40( 340240140 zUzUzUA

If the demand is the random variable W with p.m.f. w = {20, 40}, q = {0.7, 
0.3}, the system availability is 

 8186.0541.03.09376.07.0)40(3.0)20(7.0 AAA

It should be noted that only the reliability (availability) of series-parallel 
systems can be evaluated using the MSS reduction to the binary system. The 
evaluation of the mean performance and the performance deviation measures still 
require the derivation of the u-function of the entire system. 

4.2 Controllable Series-Parallel Multi-state Systems

Some series-parallel systems can change their configuration following certain rules 
aimed at achieving maximal system efficiency. Such systems belong to the class of 
controllable systems. If the rules that determine the system configuration depend 
on external factors,then thesystemreliabilitymeasuresshould be determined for each 
possible configuration. If the rules are based on the states of the system elements,

then they can be incorporated into algorithms evaluating the system reliability 
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measures. The application of simple operators 
ser

and
par

over u-functions of 

the system elements is usually not enough in order to obtain the u-function of the 
entire system since its structure function is affected by the configuration control 
rules.

Examples of systems with controllable configuration are systems that contain 
elements with fixed resource consumption [105]. Many technical devices 
(processes) can work only if the available amount of some of the resources that 
they consume is not lower than the specified limits. If this requirement is not met, 
then the device (process) fails to work. An example of such a situation is a control 
system that stops the controlled process if a decrease in its computational resources 
does not allow the necessary information to be processed within the required cycle 
time. Another example is a metalworking machine that cannot perform its task if 
the flow of coolant supplied is less than required.

For a resource-consuming system that consists of several units, the amount of 
resource necessary to provide the normal operation of a given composition of the 
main producing units (controlled processes or machines) is fixed. Any deficit of 
the resource makes it impossible for all of the units from the composition to 
operate together (in parallel), because no unit can reduce the amount of resource it 
consumes. Therefore, any resource deficit leads to turning off some of the 
producing units. 

 Consider a system consisting of H resource-generating subsystems (RGSs) 
that supply different (not interchangeable) resources to the main producing system 
(MPS). RGSs can have an arbitrary series-parallel configuration, while the MPS 
consists of n elements connected in parallel (Figure 4.6). Each element of the MPS 
is an element with total failure and can perform in its working state only by 
consuming a fixed amount of resources. The MPS is the flow transmission system 
with flow dispersion. If, following failures, in any RGS there are not enough 
resources to allow all of the available producing elements to work, some of these 
elements should be turned off. We assume that the choice of the working MPS 
elements is made by a control system in such a way as to maximize the total 
performance rate of the MPS under the given resource constraints. 

Figure 4.6. Structure of controllable system with fixed resource consumption 

          g11, p11,w11,w12,…,w1H

          g21, p21,w21,w22,…,w2H

          gn1, pn1,wn1,wn2,…,wnH

…

MPS

G

RGS 1 
U1(z)

   RGS 2 
    U2(z)

…
  RGS H
   UH(z)

B1

B2

BH
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Assume that the RGS h produces a random amount Bh of the resource. The 

p.m.f. of Bh is represented by the u-function 1
0)( h hik

i hih zqzU , where hi is 

the performance rate of RGS h in state i and qhi = Pr{Bh = hi}. Each element j of 
the MPS has a nominal performance gj1 and availability pj1 and requires the amount 
wjh of each resource h ( Hh1 ) for normal functioning (if different MPS 
elements consume different subsets of the set of H resources, this can be 
represented by assigning zero to wjh for any resource h that is not required by 
element j). The p.m.f. of the random performance Gj of element j is represented by 

the u-function .)1()( 0
11

1 zpzpzu j
g

jj
j  The distribution of the available 

performance of the entire MPS MPSG  can be obtained as 

)).(),...,(()( 1MPS zuzuzU n Observe that the performance MPSG  represents the 

potential performance ability of the MPS. It does not always coincide with the 
output performance of the entire system G. )(MPS zU  represents the conditional 

distribution of G corresponding to a situation when the resources are supplied 
without limitations. In order to take into account the possible deficiency of the 
resources supplied we have to incorporate the MPS control rule (the rule of turning 
the MPS elements off and on) into the derivation of the system u-function )(zU

representing the p.m.f. of G.

4.2.1 Systems with Identical Elements in the Main Producing 
System

If an MPS contains only identical elements with gj1 = g, pj1 = p and wjh = wh>0 for 
any j and h, the number of elements that can work in parallel when the available 
amount of resource h is hi is hi/wh , which corresponds to the total system 
performance hi = g hi/wh  (the remainder of the MPS elements must be turned 
off). It must be noted that hi represents the total theoretical performance, which 
can be achieved by using the available resource h by an unlimited number of 
producing elements. In terms of the entire system output performance, the u-
function of the RGS h can be obtained in the following form: 

hhi
h

hi
h wg

k

i
hi

k

i
hih zqzqzU /

1

0

1

0
)( (4.22)

 The RGS, which can provide the work of a minimal number of producing 
units, becomes the system’s bottleneck. This RGS limits the total system 
performance. Therefore, the u-function for a system containing H different RGS in 
terms of system output performance can be obtained as 

 ))(),...,(()( 1minRGS zUzUzU H  (4.23) 
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Function )(RGS zU represents the entire system performance distribution in the 

case of an unlimited number of available elements in the MPS.
 The entire system performance is equal to the minimum of the total theoretical 

performance, which can be achieved using available resources and the total 
performance of the available MPS elements. To obtain the u-function U(z) of the 
entire system representing the p.m.f. of its performance G, the same operator 

min
should be applied over the u-functions )(RGS zU and )(MPS zU :

 ))(),(),...,(()()()( MPSminMPSminRGS 1 zUzUzUzUzUzU H

 )))(),...,((),(),...,(( 11min
zuzuzUzU nH  (4.24)

4.2.2 System with Different Elements in the Main Producing 
System

If the MPS consists of n different elements, then it can be in one of 2n possible 
states corresponding to the different combinations of the available elements. Let S
be a random set of numbers of available MPS elements and Sk be a realization of S

in state k ).21( nk  The probability of state k can be evaluated as follows: 

)(1
1

1

)(1
1 )1(

~
kk Si

j

n

j

Sj
jk ppP  (4.25) 

The maximal possible performance of the MPS and the corresponding maximal 
resources consumption in state k are

)(1
1

1

max )( kSj
j

n

j
k gg  (4.26) 

and
n

j

Sj
jhhk

kww
1

)(1max )( ( Hh1 ) (4.27)

respectively.
 Let us define a u-function representing the distribution of the random set of 
available elements. For a single element j this u-function takes the form 

zpzpzu j
j

jj )1()( 1
}{

1  (4.28) 
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Using the union procedure  in the composition operator  we can obtain the 

distribution of the random set of available elements in the system consisting of 
several elements. For example, if the MPS consists of two elements 

zpzpzu )1()( 11
}1{

111 , zpzpzu )1()( 21
}2{

212  (4.29) 

and the distribution of the set of available elements takes the form 

}1{
2111

}2,1{
21112111

}2{
2111

}1{
2111

}2{}1{
2111

21
}2{

2111
}1{

11

21

)1()1)(1(

)1()1(

])1([])1([

)()()(MPS

zppzppzpp

zppzppzpp

zpzpzpzp

zuzuzU

zppzpp )1)(1()1( 2111
}2{

2111  (4.30) 

For an MPS consisting of n elements the u-function representing the 
distribution of a random set of available elements takes the form 

k

n
S

k
knMPS zPzuzuzU

2

1
1

~
))(),...,(()(  (4.31) 

 When each RGS h is in state ih the amount 
hhi of the resource generated by 

this RGS can be not enough to provide the maximal performance of the MPS at 
state k. In order to provide the maximum possible performance G of the MPS 
under the resource constraints one has to solve the following linear programming 
problem for any combination of states i1,…,iH of H RDSs and state k of the MPS: 

k
H

Sj
jjkHiii xgS 121 max),,...,,(opt

21

 subject to  

}1,0{

1for,

j

Sj
hijjh

x

Hhxw
k

h

  (4.32) 

where xj = 1 if the available element j is turned on (works providing performance 
rate gj1 and consuming wjh of each resource )1 Hh  and xj = 0 if the element is 

turned off. 
 The performance distribution of the entire system can be obtained by 

considering all of the possible combinations of the available resourcesgenerated by 
the RGS and the states of the MPS. For each combination, a solution of the above 
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formulated optimization problem defines the system’s performance. The u-function
representing the p.m.f. of the entire system performance G can be defined as 
follows:

))(),(),...,(()( MPSopt 1 zUzUzUzU H

1

0

),,...,,(opt2

11

1

0

1

0

2211
2

2

1

1

~
)(...

H

H

kHHiii

n

h

k

i

S

k
k

H

h
hi

k

i

k

i
zPq  (4.33) 

To obtain the system u-function, its optimal performance should be determined 
for each unique combination of available resources and for each unique state of the 
MPS. In general, the total number of linear programs to be solved in order to 

obtain U(z) is .2 1
H
h h

n k  In practice, the number of programs to be solved can be 

reduced drastically using the following rules: 
1. If for the given vector 

HHii ,...,
11  and for each element j from the given 

set of MPS elements Sk there exists h for which jhhi w
h

, then the system 

performance is equal to zero. In this case the system performance is equal to zero 
also for all combinations ),,...,(

11 mHjj S
H

 such 

that
HH HiHjij ,...,

11 11 and .km SS

2. If element j Sk exists for which jhhi w
h

 for some h, this means that in 

the program (4.32) xj must be zeroed. In this case, the integer program dimension 
can be reduced by removing all such elements from Sk.

3. If for the given vector
HHiii ...,,

21 21  and for the given set Sk the solution 

of the integer program (4.32) determines subset kŜ  of turned-on MPS elements 

( kSj ˆ if xj=1), then the same solution must be optimal for the MPS states 

characterized by any set Sm:  .ˆ
kmk SSS  This allows one to avoid solving 

many integer programs by assigning the value of ),...,,(opt
21 21 kHiii S

H
 to all 

the ),...,,(opt
21 21 mHiii S

H
.

Example 4.6

Three different metalworking units (Figure 4.7) have the respective productivities 
and availabilities g11=10, p11=0.8, g21=15, p21=0.9 and g31=20, p31=0.85. The 
system productivity should be no less than a constant demand w. Each unit 
consumes two resources: electrical power and coolant.

The constant power consumption of the units is w11 = 5, w21 = 2, w31 = 3. The 
power is supplied by the system consisting of two transformers that work without 
load sharing (only one of the two transformers can work at any moment). The 
power of the transformers is 10 and 6. The availability of the transformers is 0.9 
and 0.8 respectively. The constant coolant flow consumed by the units is w12 = 4, 
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w22 = 5 w32 = 7. Two identical pumps working in parallel supply the coolant (both 
pumps can work simultaneously). The nominal coolant flow provided by each 
pump is 9. The availability of each pump is 0.8. 

Figure 4.7. Example of controllable series-parallel system

The u-function representing the distribution of available power takes the form 

061006010
1 02.008.09.0)2.08.0()1.09.0()(

max
zzzzzzzzU

and the u-function representing the distribution of the available coolant takes the 
form

09180909
2 04.032.064.0)2.08.0()2.08.0()( zzzzzzzzU

The u-function representing the distribution of the set of available 
metalworking units takes the form 

}3,2,1{}3,2{}3,1{}2,1{

}3{}2{}1{

}3{}2{}1{

6120153006801080

0170027001200030)15.0

85.0()1.09.0()02.08.0()(MPS

z.z.z.z.

z.z.z.z.z

zzzzzzU

The values of the opt function obtained for all of the possible combinations of 
available metalworking units (realizations Sk of the random set S) and available 
resources (realizations of B1 and B2) are presented in Table 4.7.  The table contains 

the maximal possible productivity of the MPS max
kg and the corresponding 

maximal required resources max
hkw  for any set Sk that is not empty. It also contains 

the optimal system productivity G (values of the opt function) and the 

corresponding sets of turned-on elements .ˆ
kS

1

2

3

Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 4
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Table 4.7. Solutions of a linear program for a system with different elements in 
an MPS 

    B1=6, B2=9 B1=6, B2=18 B1=10, B2=9 B1=10, B2=18

Sk
max
kg max

1kw max
2kw kŜ G kŜ G kŜ G kŜ G

{1} 10 5 4 {1} 10 {1} 10 {1} 10 {1} 10 

{2} 15 2 5 {2} 15 {2} 15 {2} 15 {2} 15 

{3} 20 3 7 {3} 20 {3} 20 {3} 20 {3} 20 

{1,2} 25 7 9 {2} 15 {2} 15 {1,2} 25 {1,2} 25 

{1,3} 30 8 11 {3} 20 {3} 20 {3} 20 {1,3} 30 

{2,3} 35 5 12 {3} 20 {2,3} 35 {3} 20 {2,3} 35 

{1,2,3} 45 10 16 {3} 20 {2,3} 35 {1,2} 25 {1,2,3} 45 

It is obvious that if kS  then the entire system performance is equal to 

zero. If      B1 = 0 or B2 = 0 then the entire system performance is also equal to zero 
according to rule 1 (these solutions are not included in the table). Note that the 
solutions marked in bold are obtained without solving the linear program (they 
were obtained using rule 3 from the solutions marked in italic). 

The u-function of the entire system obtained in accordance with Table 4.7 after 
collecting the like terms takes the following form: 

4535302520

15100}3,2,1{}3,2{

}3,1{}2,1{}3{}2{}1{

09180610

35301270039027001040

03370011300620)]61201530

068010800170027001200030(

),04.032.064.0(),02.008.09.0[()(
opt

z.z.z.z.z.

z.z.z.z.z.

z.z.z.z.z.z.

zzzzzzzU

Having the system u-function we can easily obtain its mean performance 

94.30453530351270300390

25270020104015033701001130)1('

...

....U

and availability. For example, for system demand w = 20: 

893.035301270039027001040

)35301270039027001040

03370011300620())(()20(
4535302520

15100
2020

.....

z.z.z.z.z.

z.z.z.zUA

The system availability as a function of demand is presented in Figure 4.8. 
Now consider the same system in which the MPS consists of three identical 

units with parameters gj1 = 20, pj1 = 0.85, wj1 = 3 and wj2 = 7. The reliability 
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measures of such a system can be obtained in an easier manner by using the 
algorithm presented in Section 4.2.1. 

From the u-functions of the RGSs U1(z) and U2(z) by applying Equation (4.22) 
we obtain for the first RGS: 

04060

5/0203/6203/1020
1

02.008.09.0

02.008.09.0)(

zzz

zzzzU

and for the second RGS: 

02040
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2

04.032.064.0

04.032.064.0)(

zzz

zzzzU

The u-function of the MPS is 

0204060

30200200

20020

00340057403251061410
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85.0()15.085.0()(MPS

z.z.z.z.

zzzzz

zzzzU

The u-function of the entire system after collecting the like terms takes the form: 

02040
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21
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From the system u-function we can obtain its mean performance 

532.30203486.040589.0)1('U

and its availability. For example, for w = 20: 

9375.03486.0589.0

)0624.03486.0589.0())(()20( 02040
2020 zzzzUA

The system availability as a function of demand is presented in Figure 4.8. 

4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 
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Figure 4.8. Availability of controllable series-parallel system as a function of demand

Since the system consists of three subsystems connected in a series and can be 

be obtained without derivation of the entire system u-function U(z) using the 

w = 20 is calculated using this simplified technique in Example 4.5. 

 The RGS-MPS model considered can easily be expanded to systems with a 
multilevel hierarchy. When analyzing multilevel systems, the entire RGS-MPS 
system (with its performance distribution represented by its u-function) may be 
considered in its turn as one of the RGSs for a higher level MPS (Figure 4.9). 

Figure 4.9. RGS-MPS system with hierarchical structure
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 RGS   …     RGS 

RGS

   MPS 

 RGS   …     RGS 

RGS

  … 

    MPS 

    G

Different MPS elements

considered as a flow transmission system, its availability for any given demand can 

simplified technique described in Section 4.1.4. The availability of the system for 

Identical MPS elements
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4.3 Multi-state Systems with Dependent Elements 

One of the main assumptions made in the previous sections is statistical 

independency of system elements. This assumption is not true for many technical 

systems. Fortunately, the UGF approach can be extended to cases when the 

performance distributions of some system elements are influenced by the states of 

other elements or subsystems [106].

4.3.1 u-functions of Dependent Elements 

Consider a subsystem consisting of a pair of multi-state elements i and j in which 

the performance distribution of element j (p.m.f. of random performance Gj)

depends on the state of element i. Since the states of the elements are distinguished 

by their corresponding performance rates, we can assume that the performance 

distribution of element j is determined by the performance rate of element i. Let 

gi ={gih: 1 h ki} be the set of possible performance rates of element i. In general, 

this set can be separated into M mutually disjoint subsets gi
m (1 m M):

lml
i

m
ii

M

m

m
i if,,

1

gggg  (4.34) 

such that when element i has the performance rate gih gi
m the PD of element j is 

defined by the ordered sets gj|m = {gjc|m, 1 c Cj|m} and qj|m = {qjc|m, 1 c Cj|m},

where

 qjc|m = Pr{Gj = gjc|m | Gi = gih gi
m} (4.35) 

If each performance rate of element i corresponds to a different PD of element j,

then we have M = ki and gi
m = {gim}.

We can define the set of all of the possible values of the performance rate of 

element j as 
M

m
mjj

1
|gg and redefine the conditional PD of element j when 

element i has the performance rate gih gi
m using two ordered sets gj ={gjc, 1 c Cj}

and pj|m = {pjc|m, 1 c Cj }, where: 

mjjcmjc

mjjc

mjc
gq

g
p

||

|

|
,

,0

g

g
 (4.36) 

According to this definition 
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 pjc|m = Pr{Gj = gjc | Gi = gih gi
m} (4.37) 

for any possible realization of Gj and any possible realization of Gi gi
m.

Since the sets gi
m (1 m M) are mutually disjoint, the unconditional probability 

that Gj=gjc can be obtained as 

}Pr{}|Pr{
1

m
ii

M

m

m
iijcjjc GGgGp gg

)(1
11

|
m
iih

k

h
ih

M

m
mjc ppp

i

g  (4.38) 

In the case when gi
m = {gim}

ik

m
mjcimjc ppp

1
|  (4.39) 

The unconditional probability of the combination Gi = gih, Gj = gjc is equal to 

pihpjc| (h), where (h) is the number of the set to which gih belongs: gih gi
(h).

Example 4.7 

Assume that element 1 has the PD g1 = {0, 1, 2, 3},  p1 = {0.1, 0.2, 0.4, 0.3} and 

the PD of element 2 depends on the performance rate of element 1 such that when 

G1 2 (G1 g1
1 = {0,1,2}) element 2 has the PD g2|1 = {0, 10}, q2|1 = {0.3, 0.7} while 

when G1>2 (G1 g1
2={3}) element 2 has the PD g2|2 = {0, 5}, q2|2 = {0.1, 0.9}. The 

conditional PDs of element 2 can be represented by the sets g2 = {0,5,10} and p2|1

= {0.3, 0, 0.7},  p2|2 = {0.1, 0.9, 0}. 

The unconditional probabilities p2c are: 

 p21 = Pr{G2 = 0} = Pr{G2 = 0 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 0 | G1 g1
2}Pr{G1 g1

2} = p21|1(p11+p12+p13)+ p21|2(p14)

  =  0.3(0.1+0.2+0.4)+0.1(0.3) = 0.24 

 p22 = Pr{G2 = 5} = Pr{G2 = 5 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 5 | G1 g1
2}Pr{G1 g1

2} = p22|1(p11+p12+p13)+ p22|2(p14)

  =  0(0.1+0.2+0.4)+0.9(0.3) = 0.27 

 p23 = Pr{G2 = 10} = Pr{G2 = 10 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 10 | G1 g1
2}Pr{G1 g1

2} = p23|1(p11+p12+p13)+ p23|2(p14)

 = 0.7(0.1+0.2+0.4)+0(0.3)=0.49 

The probability of the combination G1 = 2, G2 = 10 is 
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p13p23| (3) = p13p23|1 = 0.4 0.7 = 0.28. 

The probability of the combination G1 = 3, G2 = 10 is 

 p14p23| (4) = p14p23|2 = 0.3 0 = 0. 

The sets gj and pj|m 1 m M define the conditional PDs of element j. They can 

be represented in the form of the u-function with vector coefficients: 

j
jc
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c

g
jcj zzu

1

)( p  (4.40) 

where

),...,,( |2|1| Mjcjcjcjc pppp  (4.41) 

Since each combination of the performance rates of the two elements Gi = gih,

Gj = gjc corresponds to the subsystem performance rate (gih, gjc) and the 

probability of the combination is pihpjc| (h), we can obtain the u-function of the 

subsystem as follows: 
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The function (gih, gjc) should be substituted by par(gih, gjc) or ser(gih, gjc) in 

accordance with the  type of connection between the elements. If the elements are 

not connected in the reliability block diagram sense (the performance of element i

does not directly affect the performance of the subsystem, but affects the PD of 

element j) the last equation takes the form 

j i j
jcjc

i
ih
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h
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c

g
hjcih

g
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g
ihji zppzzpzuzu
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)()( p  (4.43) 

Example 4.8 

Consider two dependent elements from Example 4.7 and assume that these 

elements are connected in parallel in a flow transmission system (with flow 

dispersion).  Having the sets g1={0, 1, 2, 3},  p1={0.1, 0.2, 0.4, 0.3}  and 

g2={0,5,10}, p2|1={0.3, 0, 0.7},  p2|2={0.1, 0.9, 0} we define the u-functions of the 

elements as 
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The u-function representing the cumulative performance of the two elements is 

obtained according to (4.42): 
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Now assume that the system performance is determined only by the output 

performance of the second element. The PD of the second element depends on the 

state of the first element (as in the previous example). According to (4.43) we 

obtain the u-function representing the performance of the second element: 
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4.3.2 u-functions of a Group of Dependent Elements 

Consider a pair of elements e and j. Assume that both of these elements depend on 

the same element i and are mutually independent given the element i is in a certain 

state h. This means that the elements e and j are conditionally independent given 

the state of element i. For any state h of the element i (gih gi
(h)) the PDs of the 

elements e and j are defined by the pairs of vectors ge, pe| (h) and gj, pj| (h), where 

pe| (h)= }.1|{ )(| ehec Ccp  Having these distributions, one can obtain the u-

function corresponding to the conditional PD of the subsystem consisting of 

elements e and j by applying the operators 
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where the function (gec, gjs) is substituted by par(gec, gjs) or ser(gec, gjs) in 

accordance with the  type of connection between the elements. Applying the 

Equation (4.44) for any subset gi
m (1 m M) we can obtain the u-function

representing all of the subsystem’s conditional PDs consisting of elements e and j

using the following operator over the u-functions )(zue  and :)(zu j
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where

)...,,,( ||2|2|1|1| MjsMecjsecjsecjsec pppppppp  (4.46) 

Example 4.9 

A flow transmission system (with flow dispersion) consists of three elements 

connected in parallel. Assume that element 1 has the PD g1 = {0, 1, 3}, 

p1 = {0.2, 0.5, 0.3}.

The PD of element 2 depends on the performance rate of element 1 such that 

when G1 1 (G1 {0, 1}) element 2 has the PD g2 = {0,3}, q2 = {0.3, 0.7} while 

when G1>1 (G1 {3}) element 2 has the PD g2 = {0, 5}, q2 = {0.1, 0.9}.

The PD of element 3 depends on the performance rate of element 1 such that 

when G1 = 0 (G1 {0}) element 3 has the PD g3 = {0, 2}, q3 = {0.8, 0.2} while 

when G1>0 (G1 {1, 3}) element 3 has the PD g3 = {0, 3}, q3 = {0.2, 0.8}.

The set g1 should be divided into three subsets corresponding to different PDs 

of dependent elements such that 

for G1 g1
1 = {0} g2|1 = {0, 3}, q2|1 = {0.3, 0.7} and g3|1 = {0, 2}, q3|1 = {0.8, 0.2} 

for G1 g1
2 = {1} g2|2 = {0, 3}, q2|2 = {0.3, 0.7} and g3|2 = {0, 3}, q3|2 = {0.2, 0.8} 

for G1 g1
3 = {3} g2|3 = {0, 5}, q2|3 = {0.1, 0.9} and g3|3 = {0, 3}, q3|3 = {0.2, 0.8} 

The conditional PDs of elements 2 and 3 can be represented in the following 

form:

 g2 = {0,3,5}, p2|1 =  p2|2 = {0.3, 0.7, 0},  p2|3 = {0.1, 0, 0.9} 
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 g3 = {0,2,3}, p3|1 = {0.8, 0.2, 0}, p3|2 =  p3|3 = {0.2, 0, 0.8} 

The u-functions )(1 zu  and )(2 zu take the form 
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The u-function of the subsystem consisting of elements 2 and 3 according to 

(4.45) is 
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Now we can replace elements 2 and 3 by a single equivalent element with the 

u-function )(4 zU  and consider the system as consisting of two elements with u-

functions u1(z) and ).(4 zU  The u-function of the entire system according to (4.42) 

is:
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Note that the conditional independence of two elements e and j does not imply 

their unconditional independence.  The two elements are conditionally independent 

if for any states c, s and h

 Pr{Ge = gec, Gj = gjs Gi = gih}

 = Pr{Ge = gec Gi = gih}Pr{Gj = gjs Gi = gih}
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The condition of independence of elements e and j

 Pr{Ge = gec, Gj = gjs} =  Pr{Ge = gec}Pr{Gj = gjs}

does not follow from the previous equation. In our example we have 

 Pr{G2 = 3} = p22|1 p11+ p22|2 p12+ p22|3 p13

 = 0.7 0.2 + 0.7 0.5 + 0 0.3 = 0.49 

 Pr{G3 = 3} = p33|1 p11+ p33|2 p12+ p33|3 p13

 = 0 0.2 + 0.8 0.5 + 0.8 0.3 = 0.64 

Hence

 Pr{G2 = 3}Pr{G3 = 3} = 0.49 0.64 = 0.3136 

while

 Pr{G2 = 3, G3 = 3} = p22|1 p33|1 p11+p22|2 p33|2 p12+p22|3 p33|3 p13

 = 0.7 0 0.2 + 0.7 0.8 0.5 + 0 0.8 0.3 = 0.28 

4.3.3 u-functions of Multi-state Systems with Dependent 
Elements

Consecutively applying the operators ,  and  and replacing pairs of 

elements by auxiliary equivalent elements, one can obtain the u-function

representing the performance distribution of the entire system. The following 

recursive algorithm obtains the system u-function:

1. Define the u-functions for all of the independent elements. 

2. Define the u-functions for all of the dependent elements in the form (4.40) 

and (4.41). 

3. If the system contains a pair of mutually independent elements connected in 

parallel or in a series, replace this pair with an equivalent element with the u-

function obtained by 
par

 or 
ser

operator respectively (if both elements 

depend on the same external element, i.e. they are conditionally independent, 

operators
par

or
ser

 (4.45) should be applied instead of 
par

or

ser
respectively).

4. If the system contains a pair of dependent elements, replace this pair with an 

equivalent element with the u-function obtained by
par

,
ser

or operator.

5. If the system contains more than one element, return to step 3. 
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The performance distribution of the entire system is represented by the u-function

of the remaining single equivalent element. 

Example 4.10 

Consider an information processing system consisting of three independent 

computing blocks (Figure 4.10). Each block consists of a high-priority processing 

unit and a low-priority processing unit that share access to a database. When the 

high-priority unit operates with the database, the low-priority unit waits for access. 

Therefore, the processing speed of the low-priority unit depends on the load 

(processing speed) of the high-priority unit. The processing speed distributions of 

the high-priority units (elements 1, 3 and 5) are presented in Table 4.8.

Table 4.8. Unconditional PDs of system elements 1, 3 and 5

g1 50 40 30 20 10 0 

p1 0.2 0.5 0.1 0.1 0.05 0.05 

g3 60 20 0    

p3 0.2 0.7 0.1    

g5 100 80 0    

p5 0.7 0.2 0.1    

The conditional distributions of the processing speed of the low-priority units 

(elements 2, 4 and 6) are presented in Table 4.9. The high- and low-priority units 

share their work in proportion to their processing speed. 

Figure 4.10. Information processing system

(A: structure of computing block; B: system logic diagram) 

   1

   2

   3

   4

   5

   6

   1

   2

   1  2

    A B



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 133 

Table 4.9. Conditional PDs of system elements 2, 4 and 6

Condition for element 2 g2: 30 15 0 

0 G1<15 0.8 0.15 0.05 

15  G1<35 0.4 0.55 0.05 

35 G1<70

p2|m:

0 0.9 0.1 

Condition for element 4  g4: 30 15 0 

0 G3<15 0.8 0.15 0.05 

15 G3<35 0.6 0.35 0.05 

35 G3<70

p4|m:

0 0.95 0.05 

Condition for element 6 g6: 50 30 0 

0 G5<30 0.8 0.15 0.05 

30 G5<90 0.5 0.4 0.1 

90 G5<150

p6|m:

0.3 0.6 0.1 

The first two computing blocks also share the computational load in proportion 

to their processing speed. The third block obtains the output of the first two blocks 

and starts processing when these blocks complete their work. The system fails if its 

processing speed is lower than the demand w.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

w

A (w )

A B C

Figure 4.11. System availability as a function of demand w

The system belongs to the task processing type. In order to obtain the UGF 

representing the system PD, we first define the u-functions u1(z), u3(z), u5(z) from 

the unconditional PDs of the corresponding elements and the u-functions

)(2 zu , )(4 zu , )(6 zu  in accordance with (4.40) and (4.41): 
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 u1(z) = 0.2z50+0.5z40+0.1z30+0.1z20+0.05z10+0.05z0

u3(z) = 0.2z60+0.7z20+0.1z0, u5(z) = 0.7z100+0.2z80+0.1z0

)(2 zu  = (0.8, 0.4, 0)z30+(0.15, 0.55, 0.9)z15+(0.05, 0.05, 0.1)z0

)(4 zu  = (0.8, 0.6, 0)z30+(0.15, 0.35, 0.95)z15+(0.05, 0.05, 0.05)z0

)(6 zu  = (0.8, 0.5, 0.3)z50+(0.15, 0.4, 0.6)z30+(0.05, 0.1, 0.1)z0

Then we apply the following operators producing the u-functions of the 

auxiliary equivalent elements: 

)()()( 217 zuzuzU , )()()( 438 zuzuzU

)()()( 659 zuzuzU

The obtained u-functions represent the PD of the three computing blocks. The 

PD of the subsystem consisting of two parallel blocks (equivalent element 10) is 

represented by

)()()( 8710 zUzUzU

The entire system can be represented as two elements with u-functions u10(z)

and u9(z) connected in series. Since the system belongs to the task processing type, 

its u-function is obtained by the operator (4.5) 

)()()( 910 zUzUzU

The system availability can now be obtained by applying the operator w over 

U(z): A(w)= w(U(z)). The system availability, as a function of demand w, is 

presented in Figure 4.11 (curve A). 

Example 4.11 

A continuous production system (Figure 4.12) consists of two consecutive 

production blocks. Each block consists of a main production unit and an auxiliary 

production unit that share some preventive maintenance resources (cleaning, 

lubrication, etc.). When the main production unit is intensively loaded, the lack of 

resources prevents the auxiliary unit from being intensively loaded with high 

availability.
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Figure 4.12. Continuous production system

(A: structure of production block; B: system logic diagram) 

The productivity distributions of the main production units (elements 1 and 3) 

are presented in Table 4.8. The conditional distributions of the auxiliary units’ 

productivities (elements 2 and 4) are presented in Table 4.9. The system fails if it 

does not meet the demand w.

The system belongs to the flow transmission type. In order to obtain the UGF 

representing the system PD, first we define the u-functions u1(z) and u3(z) from the 

unconditional PDs of the corresponding elements and the u-functions )(2 zu and

)(4 zu  in accordance with (4.40) and (4.41) (as in the previous example). 

Then we apply the following operators producing the u-functions of auxiliary 

equivalent elements corresponding to the production blocks: 

)()()( 215 zuzuzU , )()()( 436 zuzuzU

The entire system can be represented as two elements with u-functions U5(z)

and U6(z) connected in a series. Since the system belongs to the flow transmission 

type, its u-function takes the form: 

)()()( 65
min

zUzUzU

 The system availability is obtained as A(w) = w(U(z)). The system availability 

as a function of demand w is presented in Figure 4.11 (curve B). 

Example 4.12 

Consider a system with indirect influence of part of the elements on its 

performance.  A chemical reactor  contains six  heating elements and two  identical

1
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3

4

A B

1
    2

1

2
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mixers (Figure 4.13). Two heating elements have nominal heating power 8 and 

availability 0.9, four heating elements have heating power 5 and availability 0.85. 

The heating elements are powered by two independent power sources with nominal 

power 25 and availability 0.95 for each one. The heating power of the elements 

cannot exceed the total power of the available sources. 

Figure 4.13. Chemical reactor (A: structure of reactor; B: system logic diagram)

The productivity distribution of each mixer depends on the cumulative power 

of the heaters. The greater the heating effect, the greater the productivity and 

availability of the mixers. The mixers are conditionally independent given the state 

of the heating subsystem. The conditional distributions of the mixers’ 

productivities (element 4) are presented in Table 4.10. The total productivity of the 

reactor is equal to the cumulated productivity of the two mixers. The system fails if 

it does not meet the demand w.

Table 4.10. Conditional performance distributions of the mixers

Condition g4: 40 30 15 0 

0  Gh<10 0 0 0.2 0.8 

10 Gh<20 0 0 0.8 0.2 

20  Gh<25 0 0.2 0.6 0.2 

25 Gh<30 0.3 0.4 0.2 0.1 

30  Gh<40

p4|m:

0.7 0.1 0.1 0.1 

The heating subsystem is the series-parallel system of flow transmission type. 

In order to obtain the UGF representing the subsystem PD, first we define the u-

functions u1(z), u2(z), u3(z) as 

 u1(z) = 0.95z25+0.05z0, u2(z) = 0.9z8+0.1z0, u3(z)=0.85z5+0.15z0

A

~ ~

B
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and then obtain the u-function representing the PD of the subsystem by 

consecutively applying the composition operators. The u-function of the power 

supply system is 

)()()( 115 zuzuzU

The u-function of the heaters is obtained as follows: 

 )()()( 226 zuzuzU , )()()( 367 zuzUzU , )()()( 378 zuzUzU

 )()()( 389 zuzUzU , )()()( 3910 zuzUzU

Observe that this u-function can be obtained in a simpler manner by defining an 

auxiliary element with the u-function U7(z) equivalent to the u-function of two 

parallel elements 3: 

 )()()( 226 zuzuzU , )()()( 337 zuzuzU

 )()()( 778 zUzUzU , )()()( 8610 zUzUzU

The u-function of the entire heating system (power sources and heaters) is 

 )()()( 105
min

zUzUzUh

The mechanical system consists of two parallel mixers and belongs to the flow 

transmission type. Having the u-function )(4 zu  of a single mixer defined in 

accordance with (4.40) and (4.41) as 

)(4 zu = (0, 0, 0, 0.3, 0.7)z40+(0, 0, 0.2, 0.4, 0.1)z30

 +(0.2, 0.8, 0.6, 0.2, 0.1)z15+(0.8, 0.2, 0.2, 0.1, 0.1)z0

we obtain the u-function representing the conditional PDs of the system: 

)()()( 4411 zuzuzU

Since the heating system affects the reactor’s productivity only by influencing the 

PD of the mixers, we apply the operator:

)()()( 11 zUzUzU h

The system availability can now be obtained as A(w)= w(U(z)). The system 

availability as a function of demand w is presented in Figure 4.11 (curve C). 
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4.4 Common Cause Failures in Multi-state Systems 

Common cause (CC) failures (CCFs) are the failures of multiple elements due to a 

common cause (single occurrence or condition). The origin of CC events can be 

outside the system elements they affect (lightning or seismic events, sudden 

changes in the environment, a wide range of human interventions from 

maintenance errors, to intended enemy attacks), or they can originate from the 

elements themselves, causing other elements to fail (examples of such events are 

voltage surges caused by inappropriate switching in power systems leading to 

failure propagation, and pipe-whip events in high-pressure systems). The condition 

of a CCF occurring exists when some coupling factors affect a group of elements. 

These include the elements being:

- involved in the same process or procedure

- sharing a common resource 

- having similar design or interface 

- having the same manufacturer

- having the same or close location, etc.

CCFs increase joint-failure probabilities, thereby reducing the reliability of the 

technical systems. 

It is assumed that all of the elements that can fail due to a certain CC belong to 

a corresponding CC group (CCG). There can be several CCGs in a system, since 

several factors can affect the functioning of its elements. Within each CCG, several 

failure processes can exist that cause the simultaneous failure of different 

subgroups of this CCG. In order to estimate the system’s reliability, the 

characteristics of these failure processes should be included in the system model. 

The description of the methods for estimating the effect of CCFs on the reliability 

of the binary systems can be found in [107, 108].

4.4.1 Incorporating Common Cause Failures into Multi-state 
Systems Reliability Analysis

An algorithm presented in this section for incorporating the CCFs into the MSS 

reliability analysis is based on an implicit method suggested by Vaurio [109].  This 

implicit method uses formulas (derived by Chae and Clark [110]) for probabilities 

that specific elements subject to the same CCF remain in a working condition 

during a given time. 

Consider an MSS consisting of two-state elements (elements with total 

failures). The elements are mutually independent (except for the elements 

belonging to the same CCG). 

The system contains J CCGs such that each CCG j is defined by the set Cj of 

numbers of MSS elements belonging to this group.

Each element can belong to a single CCG (the CCGs are disjoint): Ci Cj=  if 

i j. Each CCG j consists of Lj elements. 

All of the elements subject to the same CC (belonging to the same CCG) have 

the same statistical characteristics (are statistically identical). 
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All elements belonging to the same CCG are subject to CCF by a number of 

different failure events. Each failure event jk is independent and constitutes the 

simultaneous failures of a specific subset of k elements of CCG j. The probability 

of each failure event depends on the number of elements that fail, but it does not 

depend on the particular elements involved. Each particular element cannot 

individually affect the probability of the failure event it is involved in.

The implicit method for incorporating CCFs into the system reliability analysis 

suggested in [109] consists of the following three steps: 

1. Assign the unique reliability pj to all the basic system elements j.

2. Determine the expression for the system reliability in terms of the reliabilities 

of the basic elements without considering any CCF. This expression is in the 

form of an algebraic sum of the products (terms) of the basic element 

reliabilities.

3. In any term containing a product of k element reliabilities (i.e. p1p2...pk)

belonging to the same CCG j )1( jLk , replace that product with the 

probability
)(

,
k
Lj j

R that these specific k elements (which are subject to failure 

events ),...,1 jjLj  all remain in a working state.

This probability can be obtained recursively as follows [110]: 

n

kni
ij

k
nj RR

1

)1(
,

)(
,  (4.47) 

1
1

1

)1(
, ]

~
[

k
n

n

k
jknj PR (4.48)

where
)(

,
k
njR is the probability that specific k elements belonging to CCG j, which 

contains a total of the n elements, all remain in working condition 1(
)0(

,njR for any 

j and n by definition) and jkP
~

 is the probability of the non-occurrence of the failed 

state caused by the event .jk

The implicit method can be easily applied to an MSS if the final expression for 

its reliability is obtained in an explicit analytical form. Obtaining the analytical 

expressions for complex MSSs using the UGF method is an extremely time-

consuming task. In contrast, the method provides simple numerical algorithms for 

computing the system’s reliability for arbitrary time and demand without obtaining 

analytical expressions. To adapt the implicit method to the numerical algorithms, 

the modified u-function technique has been suggested [111]. 

In the u-function of the MSS subsystem e
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e
ei

k

i

g
eie zzU

1

)(   (4.49) 

the coefficients ei  are products of the reliabilities of the individual elements. In 

order to keep track of the occurrence of different reliability functions in these 

coefficients, the u-function is modified as follows:

e
eiei

k

i

g
eie zzU

1

,*)(
~ s

 (4.50)  

To obtain the system u-function in the form (4.50) from u-function (4.49), one 

has to perform the following steps for each term :eig
ei z

1. Assign 0 to the vector sei that consists of J integer numbers. 

2. Obtain coefficient *
ei  by replacing in the product kei ppp ...21 all of the 

reliabilities of the individual elements belonging to any CCG with 1.

3. When replacing reliability ph of element h belonging to CCG j, increment by 

1 the corresponding element sei(j) of the vector-indicator sei.  Finally each 

element sei(j) of the vector-indicator sei contains a number of replaced 

reliabilities of elements belonging to CCG j.

Based on these steps one can obtain the u-function )(~ zui of a single two-state 

MSS element i not belonging to any CCG as 

00000 ,
1
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11 )1()(~ f
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fg
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f
i

g
ii zpzzpzpzpzu ii  (4.51) 

where gi1 and pi1 are the nominal performance and reliability of the element 

respectively, f is a performance rate in the failed state. 

The u-function )(~ zul of the MSS element belonging to CCG j takes the form 

lll ffg
l zzzzu

s0s ,,,1)(~   (4.52) 

where .1for)(1)( Jkjkksl

The composition operators over u-functions (4.50) are the same as regular 

composition operators  except for the rule that defines the treatment of vector-

indicators:
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The vector-indicators are always summed independently on function  chosen 

for a specific operator.

Consequently, applying the composition operators (4.53) in accordance with 

the reliability block diagram method (described in Section 4.1.3), one can obtain 

the u-function of the entire MSS in the form (4.50). In each term i of this sum, *
ei

is a product of the reliabilities of the basic elements not belonging to any CCG, and 

gei is the total MSS output performance in state i of the system. Each element sei(j)

of vector-indicator sei contains a number of elements belonging to CCG j that 

should also be taken into account when calculating the probability of the 

corresponding MSS state. Multiplying the *
ei  coefficients by the probabilities that 

specific sei(j) elements of each CCG j do not fail, one can obtain the probability of 

state i which should be the coefficient of the ith term of the u-function of the MSS 

calculated with respect to the CCF.

Thus, the u-function of an MSS can be obtained by applying the following 

operator over the u-function of the MSS: 

][))(
~
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  (4.54) 

The numerical algorithm for the evaluation of the entire MSS u-function with 

respect to CCF is as follows: 

1. Determine the reliabilities of the individual system elements pi and 

)0(
)(

, j
k
Lj

LkR
j

 values for each CCG j )1( Jj  using (4.47) and 

(4.48).

2. Determine the u-functions of the individual MSS elements using definitions 

(4.51) and (4.52). 

3. For a given MSS topology, obtain the entire system u-function )(
~

zU by

applying the composition operators (4.53) over the u-functions of the individual 

system elements (the  functions should be chosen in accordance with the 

system type and connection between the elements). 

4. Obtain the u-function of the MSS using the  operator (4.54) over ).(
~

zU

Example 4.13

Consider a series-parallel task processing MSS (with work sharing) containing two 

subsystems (components) connected in a series (Figure 4.14A).
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Figure 4.14. Examples of series-parallel MSS with CCF

The first component has three parallel elements with the same nominal 

performance rate: g11 = g21 = g31 = 5. The reliability of the first element is p1. Two 

other elements of the first component compose a CCG, which is characterized by 

the probabilities 11
~
P and 12

~
P . For this CCG, 

)1(
2,1R = 1211

~~
PP  and 

)2(
2,1R = 12

2
11

~~
PP . The 

second component has a single element with a nominal performance rate of g41=10

and the reliability p4. All of the elements have the performance f=0 when they fail. 

Following (4.51) and (4.52), we obtain the u-function for the first element as 

 u1(z) = p1z
5,(0)+z0,(0)  p1z

0,(0)

for elements belonging to the CCG as 

 u2(z) = u3(z) = z5,(1)+z0,(0) z0,(1)

and for element of the second component as

 u4(z) = p4z
10,(0)+(1 p4)z

0,(0)

The u-function of the first component is obtained using the  operator:

 U1(z) = (u1(z), u2(z), u3(z))

 = (p1z
5,(0)+z0,(0)  p1z

0,(0)) (z5,(1)+z0,(0) z0,(1)) (z5,(1)+z0,(0) z0,(1))

= p1z
15,(2)+(1 3p1)z

10,(2)+2p1z
10,(1)+(3p1 2)z5,(2)

 +2(1 2p1)z
5,(1)+ p1z

5,(0)+(1 p1)z
 0,(2)+2(p1 1)z0,(1)+(1 p1)z

0,(0)

The u-function of the second component is equal to the u-function of its single 

element U2(z)=u4(z).

To obtain the u-function )(
~

zU  corresponding to the entire system we use the 

operator:

 )(
~

zU  =  (U1(z),U2(z))=p1p4z
6,(2)+p4(1 3p1)z

5,(2)+2p1p4z
5,(1)

BA

CCG

g4=10, p4(t)g21=5

g31=5

4

1

2

3

5

7
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6 8

CCG1

CCG2

g11=5, p1(t)
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+p4(3p1 2)z3.3,(2)+2p4(1 2p1)z
3.3,(1)+p1p4z

3.3,(0)+p4(1 p1)z
0,(2)

+p4(p1 1)z0,(1)+(1 p1p4)z
0,(0)

Now, using operator ,  we obtain the u-function for the entire system with respect 

to CCF:

 U(z) = ( )(
~

zU )=q1z
6+q2z

5+q3z
3.3+q4z

0

where    

 q1 =
)2(

2,1R p1p4= 12
2

11
~~
PP p1p4

 q2 =
)2(

2,1R p4(1 3p1)+2
)1(
2,1R p1p4= 12

2
11

~~
PP p4(1 3p1)+2 1211

~~
PP p1p4

 q3 =
)2(

2,1R p4(3p1 2)+2
)1(
2,1R p4(1 2p1)+p1p4

 = 12
2

11
~~
PP p4(3p1 2)+2 1211

~~
PP p4(1 2p1)+p1p4

 q4 =
)2(

2,1R p4(1 p1)+2
)1(
2,1R p4(p1 1)+(1 p1p4)

  = 12
2

11
~~
PP p4(1 p1)+2 1211

~~
PP p4(p1 1)+(1 p1p4)

The system performance distribution is determined by the vectors

 g = {6, 5, 3.3, 0}, q = {q1, q2, q3, q4}

Using the operators w we can obtain the system reliability for any demand w:

R(w) = w(U(z)) =

0,1

3.30,

53.3,

65,

6,0

4321

321

21

1

wqqqq

wqqq

wqq

wq

w
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Example 4.14 

The non-repairable series-parallel MSS (Figure 4.14B) consists of four components 

connected in a series. All of the MSS elements have Weibull cumulative hazard 

functions H(t) = ( t) . Parameters of the elements are presented in Table 4.11. The 

performance of any element in a failed state is f=0.

  Table 4.11. Parameters of MSS elements

Parameters of individual element cumulative 

hazard function H(t)=( t)

No of 

element

 i 

No of 

component

Nominal

performance

gi1

No of 

CCG

1 1 0.20 - - 1 

2 1 0.20 - - 1 

3 1 0.20 0.004 1.0 - 

4 1 0.50 0.001 0.5 - 

5 2 0.60 - - 1 

6 2 0.30 0.008 1.0 - 

7 2 0.20 - - 2 

8 3 1.30 - - 1 

9 4 0.85 0.0012 1.0 - 

10 4 0.25 - - 2 

There are two CCGs in the given MSS: C1={1, 2, 5, 8}, C2={7, 10}. The failure 

processes jk in these CCGs that govern simultaneous failures of a specific set of k

elements are characterized by the cumulative hazard functions ).(tH jk  The 

probability of the non-occurrence of the failure event governed by the process 

jk in time interval [0, t] is ))(exp()(
~

tHtP jkjk .

For CCG 1: 

 H11(t)=(0.001t)0.8, H12(t)=0.08H11(t)

 H13(t)=0.02H11(t),   H14(t)=0.007H11(t)

For CCG 2:

 H21(t)=0.003t,   H22(t)=0.2H21(t)

The structure presented is interpreted as flow transmission MSS with flow 

dispersion and task processing MSS with work sharing. The reliability functions 

R(t,w) for both MSSs obtained using the numerical algorithm described above are 

presented in Figure 4.15. One can see that the task processing MSS has more 

different levels of PD than the flow transmission MSS. This is due to the nature of 
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the operator ,min which, as distinct from the operator , reduces the diversity 

of the possible performance levels.

  A         B

Figure 4.15. Reliability functions R (t, w) for MSSs with CCF 

(A: flow transmission system; B: task processing system) 

To estimate the influence of CCF on MSS reliability we compare two systems 

of each type: an MSS without CCF in which elements belonging to the CCG j have 

their individual reliability functions equal to )(
~

1 tPj , and the same MSS with CCF. 

Since it is difficult visually to distinguish the differences between the three-

dimensional representations of reliability functions for the MSSs with and without 

CCF, we present them for fixed values of t (Figure 4.16) as R(w) and for fixed 

values of w (Figure 4.17) as R(t). One can see the effect of CCF in decreasing MSS 

reliability. In addition, the expected MSS performances )(t are presented for 

MSSs with and without CCF (Figure 4.17). 
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  A         B
Figure 4.16. Reliability functions R (25, w) and R (50, w) for MSSs with and without CCF 

(A: flow transmission system; B: task processing system) 

  A         B
Figure 4.17. Functions R (t, 0.3), R (t, 0.9) and )(t  for MSSs with and without CCF 

(A: flow transmission system; B: task processing system) 
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4.4.2 Multi-state Systems with Total Common Cause Failures

In some cases CCFs lead to the total outage of all of the elements belonging to the 

corresponding CCG. Usually, such total failures occur when a group of elements 

share the same resource (energy source, space, protection, etc.) that has limited 

availability. Examples of such situations include an electrical supply failure that 

causes an outage of all production units supplied from the same source or the 

failure of a waterproof casing that causes water penetration into the hermetic 

compartment and destruction of all the equipment located there. The algorithm for 

incorporating the total CCF in reliability analysis of MSSs is simpler than the 

general algorithm considered in the previous section. This algorithm can be easily 

extended to MSS with multi-state elements [112]. 

Consider a subsystem consisting of several elements that compose a series-

parallel structure. Assume that the elements are subject to a total CCF occurring 

with probability v. The total CCF leads to outage of all of the subsystem elements. 

The entire subsystem can have different performance rates, depending on the 

internal states of its elements. However, when the CCF occurs, the performance 

rate of the subsystem is f, which corresponds to its total failure.

The total or partial failures of subsystem elements and the entire subsystem 

failure due to common cause are independent events. Probabilities of all the states 

of the subsystem itself now should be treated as conditional probabilities, given the 

CCF does not occur. The only possible subsystem state, when the CCF occurs, is 

the state with the performance equal to f. If the u-function of a combination of 

elements composing the subsystem is Uj(z), then the u-function of the subsystem 

which takes into account the CCF can be determined using the following operator 

:

f
j vzzUv )()1())z(U( j  (4.55) 

One can model the subsystem with CCF as a series connection of the subsystem 

itself and an element representing the CCF, which has PD 

 Pr(G = x1) = 1 v,  Pr(G = x2) = v (4.56) 

where x1 corresponds to the state when CCF does not occur and x2 corresponds to 

the state when CCF occurs. Such a model should reflect the fact that the subsystem 

performance rate will be changed to f with probability  and will not be changed 

with probability 1 v. In order to provide this property, one has to define the values 

of x1 and x2 such that for any G

 .),(and),( 2ser1ser fxGGxG  (4.57) 

For any type of series-parallel systems described in Section 4.1, where f

corresponds to the performance rate 0, x1=  and x2=0 meet the requirement (4.57). 
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Using the 
ser

operator over Uj(z) and the u-function representing the PD (4.56) one 

obtains

00
j )()1()z)(1,)z(U())((

ser

vzzUvvzvzU jj  (4.58) 

Replacing any CCG with the u-function Uj(z) by an equivalent element with the 

u-function ))(( zU j  one can use the reliability block diagram method for 

obtaining the reliability of series-parallel systems with total CCF. 

Example 4.15 

Consider the series-parallel flow transmission MSS with flow dispersion presented 

in Figure 4.18.

Figure 4.18. Series-parallel MSS with total CCF

The system consists of two components connected in a series. The first 

component contains three parallel elements. The first and second elements are 

subject to CCF, which has probability v1 = 0.1. The second component contains 

two parallel elements that are subject to CCF with probability v2 = 0.2. Each 

element j can have two states: total failure with performance rate zero and normal 

functioning with nominal performance gj1. The availability pj1 and nominal 

performance of the elements are presented in Table 4.12. The system should meet 

the constant demand w = 2. 

First, we determine the u-functions for the individual elements as follows: 

 u1(z) = 0.9z1+0.1z0, u2(z) = 0.8z2+0.2z0, u3(z) = 0.8z2+0.2z0

 u4(z) = 0.9z2+0.1z0, u5(z) = 0.8z3+0.2z0

Using the operator , we determine the u-functions for the subsystem consisting 

of two parallel elements, 1 and 2: 

 u1(z)  u2(z) = (0.9z1+0.1z0)(0.8z2+0.2z0)=0.72z3+0.08z2+0.18z1+0.02z0

and for the subsystem consisting of two parallel elements 4 and 5: 

  1

  3

  2

  4

  5

CCFCCF

Component 1 Component 2
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u4(z) u5(z) =(0.9z2+0.1z0)(0.8z3+0.2z0)=0.72z5+0.08z3+0.18z2+0.02z0

Table 4.12. Parameters of MSS elements

No of element 

j

Availability

pj1

Nominal performance rate 

gj1

1 0.90 1.0 

2 0.80 2.0 

3 0.72 2.0 

4 0.90 2.0 

5 0.80 3.0 

To incorporate the total CCF into u-functions of the subsystems, we use the 

operator  (4.58): 

(u1(z) u2(z)) = (1 v1)(u1(z) u2(z))+v1z
0 = 0.9(0.72z3+0.08z2

 + 0.18z1+0.02z0)+0.1z0 = 0.648z3+0.072z2+0.162z1+0.118z0

(u4(z) u5(z)) = (1 v2)(u4(z) u5(z))+v2z
0 = 0.8(0.72z5+0.08z3

 + 0.18z2+0.02z0)+0.2z0 = 0.567z5+0.064z3+0.144z2+0.216z0

To obtain u-functions U1(z) for the entire first component, we consider it as a 

parallel connection of subsystem that has u-function (u1(z) u2(z)) and the 

element 3 with u-function u3(z):

 U1(z) = (u1(z) u2(z)) u3(z)

  =  (0.648z3+0.072z2+0.162z1+0.118z0)(0.72z2+0.28z0)

  =  0.4666z5+0.0518z4+0.298z3+0.1051z2+0.0454z1+0.033z0

The u-function of the second component, consisting of elements 4 and 5, is  

U2(z) = (u4(z) u5(z)). In order to obtain the u-function for the entire system 

consisting of two components connected in a series, we use the operator 
min

 over 

u-functions U1(z) and U2(z):

 U(z) = U1(z)
min

U2(z)  = (0.4666z5+0.0518z4+0.298z3+0.1051z2

 +0.0454z1+0.033z0)
min

(0.567z5+0.064z3+0.144z2+0.216z0)
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  =  0.269z5+0.03z4+0.224z3+0.2z2+0.035z1+0.242z0

This u-function represents the performance distribution of the entire MSS. Using 

the 2(U(z)) operator we obtain the system availability as

 A(2) = 0.269+0.03+0.224+0.2 = 0.723 

4.4.3 Multi-state Systems with Nested Common Cause Groups 

In the previous sections we assumed that the CCFs affecting different CCGs are 

independent. In many cases this model is not relevant because statistical 

dependence between the different CCFs exists. The typical examples of such a 

situation are systems with a multilevel protection. Such systems are used in many 

applications (nuclear, military, underwater, airspace systems, etc.) and are designed 

according to the so-called defence-in-depth methodology [113]. 

The multilevel protection means that a subsystem and its inner level protection 

are in turn protected by the protection of the outer level. This double-protected 

subsystem has its outer protection, and so forth. In such systems, the protected 

subsystems can be destroyed only if all of the levels of their protection are 

destroyed. Each level of protection can be destroyed only if all of the outer levels 

of protection are destroyed. This creates statistical dependence among the 

destruction events of  the different protection levels (different CCFs). The systems 

with multilevel protection can be considered as systems with nested CCGs in 

which the CCF in any group can occur only if the CCFs in all CCGs containing 

this group have occurred.

In this section we consider series-parallel MSSs with nested CCGs and total 

CCFs and make the following assumptions: 

 - The elements belonging to any CCG compose a series-parallel structure 

(Figure 4.19A). 

- Any CCG can belong to another CCG. For any pair of CCGs A and B 

A B  means that A B or B A, i.e. part of any CCG cannot belong to another 

CCG (Figure 4.19B). 

- CCF in any group m cannot occur if this group belongs to another group and 

the CCF in the outer group has not occurred. If the CCFs in all of the outer CCGs 

that include the CCG m have occurred, the CCF in CCG m can occur with the 

probability vm.

- Any element fails with probability 1 if CCFs in all of the CCGs that this 

element belongs to have occurred. 

- The performance of any failed element is equal to f.

- The element failure caused by the CCFs and the transitions of this element in 

the space of states caused by its individual failures and repairs are independent 

events.
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Figure 4.19. Impossible CCGs. (A: elements of CCG do not compose a series-parallel 

structure; B: two CCGs have common elements) 

The probability of each state of an element (or subsystem) belonging to some 

CCG depends on the CC event. Therefore, each subsystem belonging to a CCG is 

characterized by two conditional performance distributions: the first corresponds to 

the case when the CCF in this group occurs and the second corresponds to the case 

when the CCF in the group does not occur. In order to represent the performance 

distributions of a subsystem m belonging to some CCG, we introduce the following 

double u-function (d-function) dm(z)=<Um(z), )(
~

zUm >, where Um(z) and )(
~

zUm

represent performance distributions for the first and second cases respectively.

If CCF in a group consisting of a single basic element occurs, then this element 

fails with probability 1 and has the performance rate f. Therefore, for a basic single 

element j that has a performance distribution represented by the u-function uj(z)

dj(z)=<zf, uj(z)> (4.59) 

It can easily be seen that any pair of elements with d-functions dj(z) and di(z)

belonging to the same CCG can be replaced by the equivalent element (Figure 

4.20) with the d-function

)(
~

),()(
~

),()()( zUzUzUzUzdzd iijjij

)(
~

)(
~

),()( zUzUzUzU ijij  (4.60) 

where should be substituted by ser or par in accordance with the type of 

connection between the elements. 

Assume that the d-function of a series-parallel subsystem that constitutes CCG 

m obtained without respect to CCF in this group is dm(z)=<Um(z), )(
~

zUm >. Assume 

also that the group m belongs to an outer CCG h. If the CCF in group h occurs, 

then the CCF in group m can occur with probability vm. If this CCF occurs, then the 

subsystem has its performance distribution represented by the u-function Um(z); if 

the CCF does not occur (with probability 1 vm), then the subsystem has its 

 A  B 
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performance distribution represented by the u-function ).(
~

zU m Therefore, the 

conditional performance distribution of the group m given CCF in group h has 

occurred can be represented by the u-function

 vm )(zUm + (1 vm) )(
~

zUm  (4.61) 

In the case when the CCF in CCG h have not occurred, CCF in the group m

also cannot occur and its conditional performance distribution is represented by the 

u-function ).(
~

zU m

Figure 4.20. Basic equivalent transformations of system elements

These considerations allow one to incorporate the CCF that occurs in the CCG 

m with probability vm into the d-function of this group by replacing the group with 

an equivalent element (Figure 4.20) with the d-function obtained by applying the 

following operator 
mv over dm(z):

)(
~

),(
~

)1()(

)(
~

),())((

zUzUvzUv

zUzUzd

mmmmm

mmvmv mm  (4.62) 

   It can be seen that when vm = 1 the operator 
mv does not change the d-function.

Indeed, the totally vulnerable protection (which is equivalent to absence of any 

protection) cannot affect the performance distribution of the subsystem it protects. 

Consecutively applying the operators (4.60) and (4.62) and replacing the 

subsystems and the CCGs with equivalent elements, one can obtain the d-function

representing the performance distribution of the entire system. The algorithm for 

obtaining the d-function is based on the assumption that any system element 

dj(z) di(z)

dj(z)

di(z)

  dm(z)

 vm

))(( zdmvm

)()( zdzd ij
ser

)()( zdzd ij
par

   CCG m    CCG h 
CCG h
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belongs to at least one CCG. In order to make this algorithm universal we can 

always assume that the entire system belongs to an outer CCG (is protected by an 

outer protection). If such protection does not exist, then the outer protection with 

vulnerability v = 1 can be added without changing the system performance 

distribution. The following recursive algorithm obtains the system d-function:

1. Obtain the d-functions of all of the system elements using Equation 

(4.59).

2. If the system contains a pair of elements connected in parallel or in a 

series and belonging to the same CCG, replace this pair with an equivalent 

element with the d-function obtained by the 
par

 or 
ser

operator.

3. If the system contains a CCG consisting of a single element, replace this 

CCG with a single equivalent element with the d-function obtained using 

the
mv operator.

4. If the system contains more than one element or a CCG not replaced by a 

single element, return to step 2. 

5. Determine the d-function of the entire series-parallel system as the d-

function of the remaining single equivalent element d(z)=<U(z), )(
~

zU >.

According to the definition of the d-function, the u-function )(
~

zU corresponds

to the case when the CCFs in the system do not occur while the u-function U(z)

represents the entire system performance distribution in which all probabilities of 

the CCFs that can occur in the system are incorporated. The system reliability (or 

any other performance measure) can now be obtained by applying the 

corresponding operators over the u-function U(z).

Example 4.16 

Consider the system with multiple protection presented in Figure 4.21A. In this 

system, each CCG corresponds to a subsystem that has its own protection. Each 

CCG can contain other CCGs (protected subsystems). The CCF in any CCG 

corresponds to the destruction of the corresponding protection. If the protection of 

the CCG is destroyed, all unprotected elements in this CCG fail (the performance 

of a failed element is zero). The protection cannot be destroyed if an outer 

protection is not destroyed. 

Assume that the performance distribution of each individual element j is 

represented by the u-function uj(z). The destruction probability vm of each 

protection m is assumed to be known. The d-functions of the individual elements 

are

 d1(z) = <z0, u1(z)>, d2(z) = <z0, u2(z)>, d3(z) = <z0, u3(z)>

 d4(z) = <z0, u4(z)>, d5(z) = <z0, u5(z)>

According to the recursive algorithm, in order to obtain the system’s 

availability one has to perform the following steps: 
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Figure 4.21. Example of recursive algorithm

Replace elements 1 and 2 connected in series by a single equivalent element 7 

with the d-function

 d7(z) = d1(z)
ser

d2(z) = <z0, u1(z)>
ser

<z0, u2(z)> = <z0, u1(z)
ser

 u2(z)>

(see Figure 4.21B). 

Replace element 7 with its protection by an equivalent element 8 with the d-

function

 d8(z) =
1v (d7(z))=

1v <z0, u1(z)
ser

u2(z)>

 = <v1z
0 + (1 v1)u1(z)

ser

u2(z), u1(z)
ser

u2(z)>
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 (see Figure 4.21C). 

Replace elements 8 and 3 connected in parallel by a single equivalent element 9 

with the d-function (taking into account that u(z)
par

z0 =  u(z) for any u(z))

 d9(z) = d8(z)
par

d3(z)

 = <v1z
0 + (1 v1)u1(z)

ser

u2(z), u1(z)
ser

u2(z)>
par

<z0, u3(z)>

  = <v1z
0 + (1 v1)u1(z)

ser

u2(z),   (u1(z)
ser

u2(z))
par

u3(z)>

 (see Figure 4.21D). 

Replace element 4 with its inner protection by an equivalent element 10 with 

the d-function

 d10(z) =
2v (d4(z)) =

2v <z0, u4(z)> = <v2z
0 + (1 v2)u4(z), u4(z)>

see (Figure 4.21E). 

Replace element 10 with its protection by an equivalent element 11 with the d-

function

 d11(z) =
3v (d10(z))=

3v <v2z
0 + (1 v2)u4(z), u4(z)>

 = <v3v2z
0 + v3(1 v2)u4(z)+(1 v3)u4(z),  u4(z)>

 =<v2v3z
0 + (1 v3v2)u4(z), u4(z)>

(see Figure 4.21F). 

Replace elements 9 and 11 connected in parallel by a single equivalent element 

12 with the d-function

 d12(z) = d9(z)
par

d11(z)=<v1z
0 + (1 v1)u1(z)

ser

u2(z), (u1(z)
ser

u2(z))
par

u3(z)>
par

<v2v3z
0 + (1 v2v3)u4(z), u4(z)>

 = <v1v2v3z
0 + (1 v1)v2v3u1(z)

ser

u2(z) + v1(1 v2v3)u4(z)

 +(1 v1)(1 v2v3)(u1(z)
ser

u2(z))
par

u4(z), (u1(z)
ser

u2(z))
par

u3(z)
par

u4(z)>

 (see Figure 4.21G). 

Replace element 5 with its protection by an equivalent element 13 with the d-

function

 d13 (z) =
4v (d5(z)) = 

4v <z0, u5(z)> = <v4z
0 + (1 v4)u5(z), u5(z)>

(see Figure 4.21H). 
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Replace elements 12 and 13 connected in series by a single equivalent element 

14 with the d-function

 d14(z) = d12(z)
ser

d13(z) = <v1v2v3z
0 + (1 v1)v2v3u1(z)

ser

u2(z)

 + v1(1 v2v3)u4(z) + (1 v1)(1 v2v3)(u1(z)
ser

u2(z))
par

u4(z), (u1(z)
ser

u2(z))

par

u3(z)
par

u4(z)>
ser

<v4z
0 + (1 v4)u5(z), u5(z)>

 = <v4z
0+v1v2v3(1 v4)z

0 + (1 v1)v2v3(1 v4)u1(z)
ser

u2(z)
ser

u5(z)

 + v1(1 v2v3)(1 v4)u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)((u1(z)
ser

u2(z))
par

u4(z))

ser

u5(z), ((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z))
ser

u5(z)>

 (see Figure 4.21I).

Finally, replace element 14 with its protection by an equivalent element 15 with 

the d-function

 d15(z) =
5v (d14(z)) =

5v <v4z
0 + v1v2v3(1-v4)z

0

 + (1 v1)v2v3(1 v4)u1(z)
ser

u2(z)
ser

u5(z) + v1(1 v2v3)(1 v4)u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)((u1(z)
ser

u2(z))
par

u4(z))
ser

u5(z), ((u1(z)
ser

u2(z))

par

u3(z)
par

u4(z))
ser

u5(z))>

 = < v4v5z
0 + v1v2v3(1 v4)v5z

0 + (1 v1)v2v3(1 v4)v5u1(z)
ser

u2(z)
ser

u5(z)

+ v1(1 v2v3)(1 v4)v5u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)v5((u1(z)
ser

u2(z))
par

u4(z))
par

u5(z)

 + (1 v5)((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z))
par

u5(z), ((u1(z)
ser

u2(z))

par

u3(z)
par

u4(z))
ser

u5(z) > 

(see Figure 4.21J). 



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 157 

The entire system performance distribution is represented by the first u-

function of d15(z)

 U(z) = v4v5z
0 + v1v2v3(1 v4)v5z

0 + (1 v1)v2v3(1 v4)v5u1(z)
ser

u2(z)
ser

u5(z)

+ v1(1 v2v3)(1 v4)v5u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)v5((u1(z)
ser

u2(z))
par

u4(z))
par

u5(z)

 + (1 v5)((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z)) u5(z)

Example 4.17 

Consider a series-parallel MSS (power substation) that consists of three basic 

subsystems (Figure 4.22A): 

1. blocks of commutation equipment (elements 1-5); 

2. power transformers (elements 6-8); 

3. output medium voltage line sections (elements 9-12). 

All of the elements of this flow transmission system (with flow dispersion) are 

two-state units with nominal performance rates (the power that the elements can 

transform/transmit) gj1 and the availabilities pj1 presented in Table 4.13.  The failed 

elements have performance zero. 

Table 4.13. Parameters of elements of power substation 

j 1 2 3 4 5 6 7 8 9 10 11 12 

gj1
2 6 6 3 5 5 4 5 4 3 4 5 

pj1
0.92 0.90 0.95 0.88 0.95 0.97 0.97 0.97 0.93 0.96 0.90 0.94 

The d-function of two-state element j takes the form 

 dj(z) = <z0, pj1
1j

g
z + (1 pj1)z

0>

In order to increase the system survivability (the probability that the system 

meets demand w) in the case of an external attack, the system can be divided into 

four spatially separated groups represented by the following sets of elements: 

{1,2,3}, {4}, {6,7,9,10,11} and {5,8,12}. The probability of impact in the case of 

attack is v1 = 0.3. Since the groups are separated, no more than one group can be 

affected by a single impact. Four subsystems belonging to the separated groups can 

be protected (located indoors within concrete constructions). These subsystems 

include elements 2 and 3, element 6, elements 9 and 10, elements 5, 8 and 12. The 

probability of protection destruction in the case of impact is v2 = 0.6, while the 

probability of destruction of the unprotected elements in the case of impact is 1 

(unprotected elements do not survive the impact). 
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Figure 4.22. Series-parallel power substation (system with multilevel protection)

In order to evaluate the influence of each type of protection, four different 

configurations are compared: 

A.  Both separation and indoor allocation are applied (Figure 4.22A). 

B. All of the elements are gathered in the same place (no separation). Indoor 

allocation is applied (Figure 4.22B). 

C. The groups of elements are separated, but all of the elements are located 

outdoors (Figure 4.22C). 

D. All of the elements are gathered in the same place and located outdoors 

(Figure 4.22D). 

In Figure 4.23, one can see the system survivability (obtained using the method 

presented in this section) as a function of the demand for cases A, B, C, and D.

Observe that the protection of parts of the system is not effective when the 

system tolerates only a very small decrease of its performance below its maximal 

possible performance. In our case the indoor allocation of some system elements 

can increase the system survivability only when w 9 (compare curves B and D). 
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Indeed, in the case of impact, even if all of the elements located indoors survive, 

they cannot provide the system's performance greater than 9. 

The separation is also effective only when the demand is considerably smaller 

than the maximal possible system performance. Moreover, the separation can 

decrease the system’s survivability when the demand is close to its maximal 

performance. Indeed, by separating the system elements one creates additional 

vulnerable CCGs, which contribute to an additional overall system exposure to the 

impact. When the demand is relatively small, the separation increases the system’s 

survivability because the smaller parts can be destroyed by a single impact. In our 

case, the separation is effective for w 5. When w>5 the separation decreases the 

system’s survivability (compare curves C and D). 

The total survivability improvement achieved by separation and protection of 

its elements for w 5 is greater than 23%. 
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Figure 4.23. Survivability of power substation as a function of demand
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4.5 Importance Analysis in Multi-state Systems 

Information about the importance of the elements that constitute a system with 
respect to its safety, reliability, availability, and performance, is of great practical 
aid to system designers and managers. Indeed, the identification of which elements 
most influence the overall system performance allows one to trace technical 
bottlenecks and provides guidelines for effective actions of system improvement. 
In this sense, importance measures (IMs) are used to quantify the contribution of 
individual elements to the system’s performance measures (e.g. reliability, 
availability, mean performance, expected performance deficiency). 

IMs were first introduced by Birnbaum [114]. The Birnbaum importance 
measure gives the contributions to the system’s reliability due to the reliability of 
the various system elements. Elements for which a variation in reliability results in 
the largest variation of the entire system’s reliability have the highest importance. 
Fussell and Vesely later proposed a measure based on the cut-sets importance 
[115]. According to the Fussell-Vesely measure, the importance of an element 
depends on the number and the order of the cut-sets in which it appears. Other 
concepts of importance measures have been proposed and used based on different 
views of the elements’ influence on the system’s performance. Structural IMs 
account for the topographic importance of the logic position of the element in the 
system [116, 117]. Criticality IMs consider the conditional probability of the 
failure of an element, given that the system has failed [118, 119]. Joint IMs 
account for the introduction of the elements’ interactions in their contribution to 
the system’s reliability [120, 121]. 

IMs are being widely used in risk-informed applications of the nuclear industry 
to characterize the importance of basic events, i.e. element failures, human errors, 
common cause failures, etc., with respect to the risk associated to the system [122-
125]. In this framework, the risk importance measures are based on two other IMs: 
the performance reduction worth and the performance achievement worth [122]. 
The former is a measure of the ‘worth’ of the basic failure event in achieving the 
present level of system performance and, when applied to elements, it highlights 
the importance of maintaining the current level of element reliability (with respect 
to the basic failure event). The latter, the performance achievement worth, is 
associated to the variation of the system’s performance consequent to an 
improvement of the element reliability. 

In a general context, the IMs reflect the changes in distribution of the 
performance of the entire system caused by constraints imposed n the performance 
of one of its elements. Once the system PD is determined, one can focus on 
specific system performance measures, e.g. system availability, for the definition 
of the relevant measures of element importance.
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4.5.1 Reliability Importance of Two-state Elements in Multi-state 
Systems

Consider a system consisting of two-state elements. Each element j has 
performance gj1 in the state of perfect functioning and performance gi0 in the state 

of total failure, which corresponds to its u-function uj(z) = 01 )1( 11
jj g

j
g

j zpzp .

Let O be a system output performance measure ( AO  for availability or 

reliability; O  for mean system performance, O  for expected 
performance deficiency). The system performance measure (PM) O can be 
expressed for the given demand distribution as a function of parameters of system 
elements

O(p11, g11, g10, …,  pj11, gj1, gj0, …, pn1, gn1, gn0)  (4.63) 

In order to obtain this index, one has to determine the u-functions of individual 
elements uj(z) for 1 i n, to obtain the u-function of the PMs of interest (see 
Section 3.3) using the corresponding operators and to calculate the derivatives of 
these u-functions at z = 1.

Let Oj0 and Oj1 be the system PM when element j is fixed in its faulty and 
functioning state respectively, while the remainder of the elements are free to 
randomly change their states. The PMs Oj0 and Oj1 according to their definition are 

Oj0 = O(p11, g11, g10, …,0, gj1, gj0, …, pn1, gn1, gn0)  (4.64) 

Oj1 = O(p11, g11, g10, …, 1, gj1, gj0, …, pn1, gn1, gn0)  (4.65) 

Oj0 corresponds to the system PM when the element j is in the state of total 
failure with probability pj0 = 1 (which can be represented by the u-function

0)( jg
j zzu ). Oj1 corresponds to the system PM when the element j is in the state 

of perfect functioning with probability pj1 = 1 (which can be represented by the u-

function ).)( 1jg
j zzu   Therefore, Oj0 and Oj1 can be obtained by substituting 

uj(z) by )(zu j  and )(zu j  respectively before using the procedure of system PM 

determination.
The system output performance measure O can be expressed as

 O = Oj0pj0 + Oj1pj1 =  Oj0(1 pj1)+Oj1pj (4.66)

Definitions of four of the most frequently used IMs with reference to PM O and 
element j are as follows 

The performance reduction worth is the ratio of the actual system PM to the 
valueofthePMwhenelementjisconsideredas always failed:

IOrj = O/Oj0                                                                                                (4.67) 
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This index measures the potential damage to the system’s performance caused by 
the total unavailability of element j.

The performance achievement worth is the ratio of the system PM obtained 
when element j is always in the operable state to the actual value of the system’s 
PM (when all of the elements including element j are left free to change their states 
randomly in accordance with their PD): 

IOaj = O j1/O  (4.68) 

This index measures the contribution of element j to enhancing the system’s 
performance by considering the maximum improvement on the system’s PM 
achievable by making the element fully available. 

The Fussell-Vesely measure represents the relative PM reduction due to the 
total failure of element j:

IOfj = (O Oj0)/O = 1 1/IOrj  (4.69) 

Similarly, one can define the relative PM achievement when element j is 
always in the operable state: 

 IOvj = (O j1 O)/O = IOaj 1  (4.70) 

The Birnbaum importance measure represents the variation of the system PM 
when element j switches from the condition of perfect functioning to the condition 
of total failure. It is a differential measure of the importance of element j, since it is 
equal to the rate at which the system PM changes with respect to changes in the 
reliability of element j:

/))1((/ 01101111 jjjjjjjjjO OOpOpOppObI  (4.71) 

Note that for the Fussel-Vesely and Birnbaum IMs, depending on the system’s 
PM, an improvement in the system’s performance can correspond either to an 
increase of the considered PM (e.g. the availability or mean performance) or to a 
decrease (e.g. the expected performance deficiency). In the latter case, the absolute 
values of Ivj, Ifj and Ibj are taken as the importance values. 

The IMs for each MSS element depend strongly on that element's place in the 
system, its nominal performance level, and the system’s demand. The notion of 
element relevancy is closely connected to the element’s importance. The element is 
relevant if some changes in its state that take place without changes in the states of 
the reminder of the elements cause changes in the PM of the entire system. 
According to this definition, if the element j is irrelevant then Oj0 = Oj1 = O.
Therefore, for the irrelevant element 

 IOrj = IOaj = 1 (4.72) 
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while

 IOfj = IOvj = IObj = 0  (4.73) 

Example 4.18 

Consider a system consisting of n elements with total failures connected in a series 
described in Example 4.1. For any element j gj0 = 0. The reliability measures of 
this system are presented in Table 4.1. The corresponding analytically obtained 

IMs are presented in Tables 4.14. - 4.18.  In these tables .11
n
i ip

The element with the minimal availability has the greatest impact on MSS 
availability (“a chain fails at its weakest link”). The importance indices associated
with the system’s availability do not depend on the elements' performance rates or 
on demand. IMs associated with the system’s mean performance and performance 
deficiency also do not depend on the performance rate of the individual element j;
however, the performance rate gj1 can influence these indices if it affects the entire 
system performance .ĝ

Table 4.14. Performance reduction worth IMs for series MSS

w jArI jrI jrI

gw ˆ not defined wg /ˆ1

gw ˆ0 not defined 1

not defined 

Table 4.15. Performance achievement worth IMs for series MSS

w jAaI jaI jaI

gw ˆ not defined 
)ˆ(1

ˆ1

gwjp

gjwp

gw ˆ0 1/1 jp
)1(1

1

jp

jp 1/1 jp

Table 4.16. Relative performance reduction IMs for series MSS

w jA fI jfI jfI

gw ˆ not defined 
gw

g

ˆ

ˆ

gw ˆ0 1
1

1
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Table 4.17. Relative performance achievement IMs for series MSS

w jAvI jvI jvI

gw ˆ not defined 
)ˆ(1

ˆ)11(

gwjp

gjp

gw ˆ0 11/1 jp
)1(1

)11(

jp

jp
11/1 jp

Table 4.18. Birnbaum importance IMs for series MSS

w
jAbI jbI jbI

gw ˆ 0
1/ˆ jpg

gw ˆ0 1/ jp 1/ jpw

1/ˆ jpg

Example 4.19 

Consider a task processing system without work sharing presented in Example 4.2. 
The system consists of two elements with total failures (g10 = g20 = 0) connected in 
parallel. The analytically obtained system reliability measures are presented in 
Table 4.3. The importance measures can also be obtained analytically. The 
measures IOrj, IOaj and IObj are presented in Tables 4.19-4.21. 

Table 4.19. Performance reduction worth IMs for parallel MSS

w 1rI A 1rI 1rI

w>g21 not defined 
2121

11211121211111

gpw

gppgpgpw

g11<w g21 1 w

gpw 1111 2121

112111 )1(
1

gp

gpp

0<w g11 1  p11+ p11/ p21 1  p11

2rI A 2rI 2rI

w>g21 not defined 

1111

11211121211111

gpw

gppgpgpw

g11<w g21 not defined 1  p21 1111

1121
211

gp

gp
p

0<w g11 1  p21+ p21/ p11 1  p21
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Table 4.20. Performance achievement worth IMs for parallel MSS

w 1aI A 1aI 1aI

w>g21 not defined 
11211121211111

11212111 )(

gppgpgpw

ggpgw

g11<w g21 1
1111

11

gpw

gw

2121111121

21211121

)1(

)1(

gpgpp

gpgp

0<w g11 1/( p11+ p21  p11p21) 0

2aI A 2aI 2aI

w>g21 not defined 
11211121211111

21

gppgpgpw

gw

g11<w g21 1/ p21 0
2121111121

21

)1( gpgpp

g

0<w g11 1/( p11+ p21  p11p21) 0

Table 4.21. Birnbaum IMs for parallel MSS

w 1bI A 1bI 1bI

w>g21 0 (1 p21)g11

g11<w g21 0 (1 p21)g11 g11(1 p21)
0<w g11 1 p21 (1 p21)w

2bI A 2bI 2bI

w>g21 0 g21 p11g11

g11<w g21 1 w p11g11 g21 p11g11

0<w g11 1 p11 (1 p11)w

Example 4.20 

Consider the series-parallel system from Example 4.3 (Figure 4.1A). The IMs IAbj

of elements 1, 5, and 7 as functions of system demand w are presented in Figure 
4.24A and B for the system interpreted as a flow transmission MSS with flow 
dispersion and task processing MSS without work sharing. Observe that IAbj(w) are 
step nonmonotonic functions. 

One can see that the values of w exist for which the importance of some 
elements is equal to zero. This means that these elements are irrelevant (have no 
influence on the system’s entire availability). For example, in the case of the task 
processing system, the subsystem consisting of elements from 1 to 6 cannot have a 
performance that is greater then 1.154. Therefore, when 1.154<w 3, the system 
satisfies the demand only when element 7 is available. In this case, the entire 
system availability is equal to the availability of element 7, which is reflected by 
the element’s importance index: IAb7(w) = 1. The remainder of the elements are 
irrelevant for demands greater than 1.154: IAbj(w) = 0 for 1 j 6. Note that, 
although for the task processing system element 7 has the greatest importance, the 
importance of this element for the flow transmission system can be lower than the 
importance of some other elements at certain intervals of demand variance. For 
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example, for 3<w<5 the importance of element 1 is greater than the importance of 
element 7. 

A         B 
Figure 4.24. IM IAbj(w) of system elements 

in flow transmission MSS (A) and task processing MSS (B) 

Unlike the IM associated with the system availability IAbj, the IM associated 
with the system mean performance jbI  for element 7 is the greatest for both 

types of system. The values of jbI for j = 1, …, 7 are presented in Table 4.22. 

   Table 4.22. The IMs jbI  for elements of series-parallel system

No of element 1 2 3 4 5 6 7 

Flow transmission MSS 2.170 1.361 1.210 1.555 1.440 2.441 3.000 

Task processing MSS 0.139 0.032 0.028 0.036 0.103 0.156 2.375 

The IMs jbI  as functions of system demand w are presented in Figure 4.25 

for j = 1, 5 and 7. Observe that jbI (w) are piecewise linear functions. The 

demand intervals when the function jbI (w) is constant always correspond to the 

irrelevancy of system element j.
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A         B 
Figure 4.25. IM jbI (w) of system elements 

in flow transmission MSS (A) and task processing MSS (B) 

4.5.2 Importance of Common Cause Group Reliability 

In systems that contain CCGs with total CCF, the reliabilities of the groups (the 
probabilities that the groups do not fail) affect the reliability of the entire system. If 
a system consists of nonidentical elements and has a complex structure with nested 
CCGs, reliabilities of different groups play different roles in providing for the 
system's reliability. The evaluation of the relative influence of the group’s 
reliability on the reliability of the entire system provides useful information about 
the importance of these groups.

For example, in systems with complex multilevel protection, the protection 
survivability (the ability to tolerate destructive external impacts) can depend on the 
type and location of the protection. The importance of each protection depends not 
only on its survivability but also on characteristics of the subsystem it protects. 

 Importance evaluation is an essential point in tracing bottlenecks in protected 
systems and in identifying the most important protections. The protection 
survivability importance analysis can also help the analyst to find the irrelevant 
protections, i.e. protections that have no impact on the entire system’s reliability. 
Elimination of irrelevant protections simplifies the system and reduces its cost. In 
the complex multi-state systems with multilevel protection, finding the irrelevant 
protections is not a trivial task. 

In order to evaluate the CCG reliability importance we use the MSS model with 
nested CCGs. The algorithm presented in Section 4.4.3 allows one to evaluate the 
system’s performance measures O as a function of the probabilities of total CCFs 
in its CCGs.
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Assume that the system has M CCGs. For the given system structure and the 
fixed performance distributions of the system elements, the system PM O is a 
function of the CCF probabilities in these CCGs: O(v1,…,vm,…,vM). Since the 
reliability of CCG m sm is defined as the probability of non-occurrence of CCF in 
this group (sm = 1 vm) we can express the system PM as a function of CCG 
reliabilities O(s1,…,sm,…,sM) and define in accordance with (4.64) and (4.65): 

 Om0 = O(s1, …, 0, …, sM) and Om1 = O(s1, …, 1, …, sM)  (4.74) 

where Om0 corresponds to the system PM when the failure  in CCG m has occurred 
(in accordance with Equation (4.62), this can be represented by the d-function

)(
~

),( zUzU mm  of this CCG) and  Om1 corresponds to the system PM when the 

failure  in CCG m has not occurred (which can be represented by the d-function

).)(
~

),(
~

zUzU mm   Therefore, Om0 and Om1 can be obtained by substituting dm(z)

by )(
~

),( zUzU mm  and )(
~

),(
~

zUzU mm  respectively in the procedure of 

determining the system’s PM. The corresponding IMs can be obtained using 
Equation (4.67)-(4.71). 

Example 4.21 

Consider the simplest binary systems with multiple protections. In order to 
evaluate the protections’ survivability importance we use the Birnbaum IM IAbm.

The system consists of identical binary elements with availability a. The d-

function of each element can be represented as:

 dm(z)=< z0, az1+(1 a)z0 > 

where performance 1 corresponds to its normal state and performance 0 
corresponds to failure. The entire system succeeds (survives) if its performance is 
G = 1. Consider the following cases. 

Case 1: n-level (concentric) protection of a single element (Figure 4.26A). The 
system’s availability and the survivability importance of mth protection are 
respectively:

n

i
isaA

1
)]1(1[ and

m

n

i
i

mA
s

s

abI
1

)1(
1

This means that the protection with the greatest survivability has the greatest 
importance. The increase of protection survivability lowers the importance of the 
rest of the protections. 

Case 2: n identical protected elements connected in a series (Figure 4.26B). 
The system’s availability and the importance of mth protection are respectively 
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n
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abI 1

Case 3: n identical protected elements connected in parallel (Figure 4.26C). 
The system’s availability and the importance of the mth protection are respectively 

n

i
iasA

1
)1(1 and 

m

n

i
i

mA
as

as

abI
1

)1(
1

As in the case of a single element with multiple protections, the protection with 
the greatest survivability has the greatest importance and the increase of protection 
survivability lowers the importance of the remainder of the protections. 

While in complex systems composed of different multi-state elements, the 
relations between the elements' survivability and importance are more complicated, 
the general dependencies are the same as in the cases considered. 

Figure 4.26. Simplest binary systems with multiple protections 

s1
s2

s3
...

sn

s2

s1

sn

s3

    ... 

s1   s2 s3

   ... 
sn

A

B C

This means that the protection with the lowest survivability has the greatest 

importance. The increase of protection survivability increases the importance of the 

remainder of the protections. It can be easily seen that the absence of protection in 

at least one of the elements makes all of the protections irrelevant (if for any i si = 0 

then   A = 0 and IAbj = 0 for all of j i). This means that the protection of the 

elements connected in a series has no sense if at least one element remains 

unprotected (see protection 1 in Figure 4.27). 
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Example 4.22 

Consider the multi-state flow transmission series-parallel system (with flow 
dispersion) presented in Figure 4.27. The system consists of seven elements (with 
performance distributions as presented in Table 4.23) and six protection groups. 
The survivability of any protection is 0.8. The survivability importance of the 
protections as functions of demand w are presented in Figure 4.28. 

Figure 4.27. Structure of series-parallel MSS with multiple protections 

 Table 4.23. Performance distributions of multi-state elements

 No of element (j)

State (h) 1 2 3 4 5 6 7 

pjh gjh pjh gjh pjh gjh gjh gjh pjh gjh pjh gjh pjh gjh

0 0.05 0 0.10 0 0.10 0 0.10 0 0.10 0 0.05 0 0.25 0 

1 0.05 3 0.05 2 0.10 1 0.30 3 0.20 2 0.95 5 0.75 6 

2 0.15 5 0.85 8 0.80 4 0.60 4 0.70 4 - - - - 

3 0.75 7 - - - - - - - - - - - - 

First observe that protection 1 is irrelevant for any w (IAb1(w) = 0). Indeed, 
when protection 2 is not destroyed, protection 1 does not affect the system’s 
survivability. When protection 2 is destroyed then element 2 is always destroyed 
and the subsystem consisting of elements 2, 3 and 4 has a performance rate of 0 
independent of the state of protection 1. 

Some protections can be irrelevant only for certain intervals of w. For example, 
protection 2 affects the system’s survivability only when protection 3 is destroyed. 
In this case, element 1 is always destroyed, which prevents the system from having 
a performance rate greater than 8. Therefore IAb2(w) = 0 for w>8.

Protection 4 affects the system’s survivability only when protection 6 is 
destroyed. In this case, element 5 is always destroyed. If element 7 is in a normal 
state, then the performance rate of the subsystem remaining after the destruction of 
protection 6 (elements 6 and 7) is not less than 6. If element 7 does not perform its  
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task, then the performance of the subsystem is no greater than 5 (maximal 
performance of element 6). This does not depend on the state of protection 4. 
Therefore, IAb4(w) = 0 for 5<w 6.

Figure 4.28. Survivability importance of protections as functions of demand 

For w>11 IAb3(w) = IAb6(w). Indeed, the system can provide a performance 
greater than 11 only if both protections 3 and 6 survive. It is the same for 
protections 4 and 5: when protection 6 is destroyed, the system can provide a 
performance greater than 6 only if both protections 4 and 5 survive. Therefore, for 
w>6  IAb4(w) = IAb5(w).

Note also that the greater the availability of the two-state element, the greater 
the importance of its individual protection. For example, when w 5 both elements 
6 and 7 can meet the demand, but IAb4(w)>IAb5(w).

In general, the outer-level protections are more important than the inner-level 
ones, since they protect more elements. In our case, protections 3 and 6 have the 
greatest importance for any w.

In order to estimate the effect of survivability of protections on their 
importance, consider Figure 4.29 representing the functions IAbj(sm) for different j
and m when the system should meet the demand w = 5. Observe that although the 
relations among the different protections in complex MSSs are much more 
complicated than in the simple binary systems considered above, the general 
tendencies are the same. Observe, for example, that the mutual influence of the 
protections in pairs 2 and 3, 4 and 6, 5 and 7 resembles the mutual influence of 
protections in Case 1 of Example 4.21, since these pairs of protections are partly 
concentric (both protect the same subsystems). The greater the survivability of one 
of the protections in the pair the lower the importance of the other one. When the 
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outer protection becomes invulnerable, the inner protection becomes irrelevant 
(IAb2 = 0 when s3 = 1 and   IAb4 = IAb5 = 0 when s6 = 1).

Figure 4.29. Survivability importance of protections as functions of protection 
survivability

The mutual influence of protections in pairs 2 and 4, 3 and 4, 2 and 6, and 3 and 
6 resembles the mutual influence of the protections in Case 2 of Example 4.21, 
since these pairs of protections protect subsystems connected in the series. In this 
case the greater the survivability of one of the protections in the pair, the greater 
the importance of another one. 

The mutual influence of protections 4 and 5 resembles the mutual influence of 
protections in Case 3 of Example 4.21, since this pair of protections protects 
parallel elements. In this case, the greater the survivability of one of the protection 
in the pair the lower the importance of another one. 

4.5.3 Reliability Importance of Multi-state Elements in Multi-
state Systems 

Early progress towards the extension of IMs to the case of MSSs can be found in 
[126, 127], where the measures related to the occupancy of a given state by an 
element have been proposed. These measures characterize the importance of a 
given element being in a certain state or moving to the neighbouring state with  
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respect to the system’s performance. The IM of a given element is, therefore, 
represented by a vector of values, one for each state of the element. Such 
representation may be difficult for the practical reliability analyst to interpret. In 
the following sections we consider integrated IMs based on element performance 
restriction.

4.5.3.1 Extension of Importance Measures to Multi-state Elements 

Assume that the states of each element j are ordered in such a manner 
that ..... 110 jjkjj ggg  One can introduce a performance threshold and

divide this set into two ordered subsets corresponding respectively to the element 
performance above and below the level . Let element j be constrained to a 
performance rate not greater than , while the remainder of the elements of the 

MSS are not constrained: we denote by M|
jO  the system PM obtained in this 

situation. Similarly, we denote by M|
jO  the system PM resulting from the dual 

situation in which element j is constrained to performances above . The MSS 
performance measures so introduced rely on a restriction of the achievable 
performance of the MSS elements. Different modelling assumptions in the 
enforcement of this restriction will lead to different performance values. The letter 

M in the definitions of M|
jO  and M|

jO  is used to code the modelling approach 

to the restriction of element behaviour. Substituting the measures M|
jO  and 

M|
jO  to the binary equivalents Oj0 and Oj1, we can define importance measures 

for multi-state elements: 
performance reduction worth

M|M| / jjO OOrI  (4.75) 

performance achievement worth 

OOaI jjO /M|M|  (4.76) 

relative performance reduction (Fussell-Vesely) 

OOOfI jjO /)( M|M|   (4.77) 

relative performance achievement 

OOOvI jjO /)( M|M|  (4.78) 

 Birnbaum importance 
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M|M|M|
jjjO OObI  (4.79) 

This latter IM extends the concept of the IM introduced in [126]. Combining the 
different definitions of importance measures with different types of the system PM 
and different model assumptions M relative to the types of element restriction, one 
can obtain many different importance measures for MSS, each one bearing specific 
physical information. The choice of the proper IM to use depends on the system’s 
mission and the type of improvement actions that one is aiming at in the system 
design or operation. 

In the following section we consider two models of element performance 
restriction and discuss their application with respect to the importance measures 

M|
jO fI  and .M|

jObI

4.5.3.2 State-space Reachability Restriction Approach

Let Ojh be the PM of the MSS when element j is in a fixed state h while the rest of 
the elements evolve stochastically among their corresponding states with 
performance distributions {gih, pih}, ni1 , ji , .0 ikh  Using pivotal 

decomposition, we obtain the overall expected system performance 

1

0

jk

h
jhjhOpO  (4.80) 

We denote by hj  the state in the ordered set of states of element j whose 
performance

jjh
g is equal to or immediately below , i.e.

1jj jhjh
gg .

The conditional probability jhp that element j is in a state h characterized by a 

performance gjh not greater than a prespecified level threshold )( jhh can be 

obtained as 

 }Pr{/}|Pr{ jjhjjhjjh GpGgGp

jjh

h

m
jmjh pppp

j

//
0

 (4.81) 

Similarly, the conditional probability jhp̂ of element j being in a state h when it 

is known that jhh  is

 }Pr{/}|Pr{ˆ jjhjjhjjh GpGgGp

jjh

k

hm
jmjh pppp

j

j

//
1

1
 (4.82) 
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In Equation (4.81) and (4.82), jp  and jp are probabilities that element j is in 

states with performance not greater than  and greater than respectively.
The state-space reachability restriction model (coded with the letter s: )M s is

based on the restrictive condition on the states reachable by element j.  In this 

model we define as s
jO

|  the system PM obtained when element j is forced to 

visit only states with performance not greater than :

j

h

m
jmjm

h

m
jmjm

s
j pOpOpO

jj

/
00

|  (4.83) 

Similarly, we define as s
jO

|  the system performance measure obtained under 

the condition that the element j stays in states with performance greater than :

j

k

hm
jmjm

k

hm
jmjm

s
j pOpOpO

j

j

j

j

/ˆ
1

1

1
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|  (4.84)

According to these definitions 

j
s

jj
s

j pOpOO
||  (4.85)

Using the definition of the performance measures O, s
jO

| and s
jO

|  we can 

specify the IMs. For example, the Birnbaum importance takes the form 

    
s

j
s

j
s

jO OObI
|||  (4.86)

From (4.86) and since 1jj pp

j
s

jO
s

jj
s

jO
s

j pbIOpbIOO
||||  (4.87) 

And thus 

j
s

jj
s

j
s

jO pOOpOObI /)(/)( |||  (4.88)

From Equation (4.66) and (4.71) we can see that for two-state elements: 

 O = Oj0 + 1jjO pbI  =  Oj1 0jjO pbI  (4.89) 
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 Comparing (4.87) and (4.89) we see that the s
jObI

|  measure for MSSs is 

really an extension of the definition of the Birnbaum importance for two-state 
elements, for which kj = 2 and  = 0. As such, it measures the rate of improvement 

of the system PM deriving from improvements on the probability jp of element j

occupying states characterized by performance higher than .
The Fussel-Vesely importance measure (relative performance reduction) takes 

the form 

OOfI
s

j
s

jO /1 ||  (4.90) 

It can be easily seen that 

j
s

jO
s

jO pOfIbI /||  (4.91)

The element IMs based on the state-space reachability restriction approach 
quantify the effect on the system performance of element j remaining confined in 
the dual subspaces of states corresponding to performances greater or not greater 
than .

4.5.3.3 Performance Level Limitation Approach 

We consider again a threshold  on the performance of element j. However, we 
assume that the space of reachable states of element j is not restricted, i.e. element j
can visit any of its states independently on whether the associated performance is 
below or above  and it can do so with the original state probability distribution. 
Limitations, however, are imposed on the performance rate of element j: we 
consider a deteriorated version of the element that is not capable of providing a 
performance greater than , in spite of the possibility of reaching any state, and an 
enhanced version of element j that provides performances always not less than ,

even when residing in states below .jh  The limitation on the performance is such 

that, when in states ,jhh  the deteriorated element j is not capable of providing 

the design performance corresponding to its state; in these cases it is assumed that 
it provides the performance .  On the other hand, when the enhanced element is 

working in states ,jhh  it is assumed that it provides the performance . We 

code this modelling approach by the letter w: wM .  

The output performance measures w
jO

|  and w
jO

| in this model take the 

form
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and
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where jO is the system PM when element j remains fixed operating with 

performance  while the remainder of the system elements visit their states in 
accordance with their performance distributions. It can be seen that

j
w

j
w

j OOOO
||  (4.94) 

In this case, the Birnbaum importance takes the form 
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 (4.95) 

 Hence, in the performance level limitation model the Birnbaum IM is equal to 
the expected value of the absolute deviation of the system PM from its value when 
element j has performance .

The Fussel-Vesely IM (relative performance reduction) takes the form

    OOOOOfI j
w

j
w

j
w

jO /)(/1 |||  (4.96)
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Birnbaum and Fussel-Vesely IMs are related as follows: 

)( ||| w
jj

w
jO

w
jO OOOfIbI  (4.97)

The element IMs based on a limitation of the achievable performance level give 
information on which level  of element performance is the most beneficial from 
the point of view of the entire system PM. 

Observe that according to the definitions (4.83), (4.84) and (4.92), (4.93) 

jjj
s

j
w

j pOpOO
||  (4.98)

and

jjj
s

j
w

j pOpOO
||  (4.99)

From these equations one can obtain relations between Birnbaum and Fussel-
Vesely IMs as defined according to the two approaches

)12)(( |||
j

s
jjj

s
jO

w
jO pOOpbIbI  (4.100) 

and

 OpOOfIfI j
s

jj
s

jO
w

jO /)( |||  (4.101) 

4.5.3.4 Evaluating System Performance Measures 

In order to evaluate the system PM O when all of its elements are not restricted, 
one has to apply the reliability block diagram technique over u-functions of the 
individual elements representing their performance distributions in the form: 

jh
j g

jh

k

h
j zpzu

1

0
)(  (4.102) 

In order to obtain the IMs in accordance with the state-space reachability 
restriction approach, one has to modify the u-function of element j as follows: 

jh
j g

jjh

h

h
j zppzu )/()(

0
 (4.103) 

when evaluating s
jO

| and
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when evaluating s
jO

|  and then apply the reliability block diagram technique. 

 In order to obtain the PMs in accordance with the performance level limitation 
approach one has to modify the u-function of element j as follows: 

zpzpzu j
g
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h
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0
)(  (4.105) 

when evaluating w
jO

| and

1

1
)(

j

j

jh

k

hh

g
jhjj zpzpzu  (4.106) 

when evaluating w
jO

|  and then apply the reliability block diagram technique. 

Note that the PM jO can also be easily obtained by using the u-function of 

element j in the form uj(z) = z .

Example 4.23 

Consider the series-parallel flow transmission system (with flow dispersion) 
presented in Figure 4.30 with elements having performance distributions given in 
Table 4.24.

Figure 4.30. Structure of series-parallel MSS with multi-state elements 

Elements 2, 3, 5, and 6 are identical. However, the pairs of elements 2, 3 and 5, 
6 have different influences on the system’s entire performance, since they are 
connected in a series with different elements (1 and 4 respectively). Therefore, 
while we expect elements 2 and 3 have the same importance (as well as elements 5 

75

6
4

2

3
1
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and 6), the importance of element 2 (or 3) differs from the importance of element 5 
(or 6). The demand w is assumed to be constant in time, but different values of the 
constant will be considered. 

 Table 4.24. Performance distributions of multi-state elements

 No of element (j)

State (h) 1 2 3 4 5 6 7 

pjh gjh pjh gjh pjh gjh gjh gjh pjh gjh pjh gjh pjh gjh

0 0.10 0 0.10 0 0.10 0 0.20 0 0.10 0 0.10 0 0.15 0 

1 0.05 1 0.05 2 0.05 2 0.10 2 0.05 2 0.05 2 0.15 6 

2 0.15 3 0.85 4 0.85 4 0.45 6 0.85 4 0.85 4 0.05 10 

3 0.35 5 - - - - 0.25 8 - - - - 0.45 14 

4 0.35 7 - - - - - - - - - - 0.20 18 

In this example we perform the importance analysis based on the Fussel-Vesely 

IM (relative performance reduction). In Figure 4.31 the )(|2
wfI

s
jA  and 

)(|2
wfI

w
jA  measures are presented for elements 1, 2 (identical to 3) and 4 and 5 

(identical to 6) for different time-constant system demands w. The first measure 
shows how critical it is for the MSS availability that the element visits only states 
with performance below or equal to .2  The second measure shows how 
critical for the MSS availability it is to limit the performance of the element below 
the threshold value .2

A          B 

Figure 4.31. Behaviour of the elements' IMs. A: ;)(|2
wfI

s
jA  B: )(|2
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The functions )(|2
wfI

s
jA  and )(|2

wfI
w

jA  differ significantly. While 

)(|2
wfI

w
jA = 0 for w 2, since OO

w
j

|  for these demands, )(|2
wfI

s
jA >0, since 

the reduction of the state-space for obtaining s
jO

|  changes the probabilities of 

being in the states with gjh 2, and, therefore, s
jO

| O.

Recall also that from the definitions, s
jA fI

|2 = 1 or w
jA fI

|2 = 1 means that, 

when the element j has a performance restricted below , the entire system fails. 

The importance measure s
jA fI

|2 for elements j = 1 and j = 4 becomes 1 when w = 

9. Indeed, the greatest performance of the subsystem of unrestricted elements 4, 5, 
and 6 is 8 while the greatest performance of the subsystem of elements 1, 2, and 3 
is 1 when element 1 is allowed to visit only states with a performance not greater 
than  = 2 (i.e. g10 = 0 or g11 = 1). Therefore, the MSS cannot have a performance 
greater than 8+1 = 9. Similarly, the greatest performance of the subsystem of 
unrestricted elements 1, 2, and 3 is 7, while the greatest performance of the 
subsystem of elements 4, 5, and 6 is 2 when element 4 is allowed to visit only 
states with a performance not greater than  = 2 (g40 = 0 or g41 = 2). Therefore, in 
this case the MSS cannot have a performance greater than 7+2 = 9.

On the contrary, the importance w
jA fI

|2  for elements j = 1 and j = 4 becomes 

1 for different values of w. When the performance of element 1 is restricted by =
2, the MSS cannot have a performance greater than 8+2 = 10; when the 
performance of element 4 is restricted by 2 , the MSS cannot have a 

performance greater than 7+2 = 9. Therefore, w
A fI

|2
1 = 1 for w>10 while 

w
A fI

|2
4 = 1 for w>9.

Figure 4.31 also shows that an element which is the most important with 
respect to a value of the demand w can be less important for a different value. This 
is a typical situation in MSSs. For example, when 5<w<6 element 4 is the most 
important one among elements 1-6 when their ability to perform above 2  is 
considered, while for w 5 it becomes less important than element 1. 

The )(|2
wfI

s
j  and )(|2

wfI
w

j  functions are presented in Figure 4.32. 

Analogously to )(|2
wfI

w
jA , the function )(|2

wfI
w

j  is equal to zero when w 2,

since in this case .|2 w
j  For increasing demand values, the difference between 

w
j

|  and  (system performance deficiency when element j is not constrained) 

increases from zero to a constant level. Therefore, the ratio 

)(|2
wfI

w
j = /)( |2 w

j  first increases and then begins to decrease.
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A         B 

Figure 4.32. Behaviour of the elements' IMs. A: ;)(|2
wfI

s
j  B: )(|2

wfI
w

j

A         B 

Figure 4.33. Behaviour of the elements’ IMs. A: ;)(|s
jfI  B: )(|w
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A          B 

Figure 4.34. Behaviour of the elements’ IMs. A: ;)(|
7 wfI

s
A  B: )(|

7 wfI
w

A

A         B 

Figure 4.35. Behaviour of the elements’ IMs. A: ;)(|
7 wfI
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A similar behaviour is shown by )(|2
wfI

s
j . It can be seen that values of 

demand w exist for which the increase of the element performance above the 
threshold  causes the greatest relative reduction of the system performance 

deficiency (maxima of the curves )(|2
wfI

w
j  and )(|2

wfI
s

j  in Figure 4.32). It is 

also confirmed that the relative importance of different elements depends on the 
value of the demand (for example, element 2 is more important than element 5 for 
w<8 and less important for w>8).

The mean system performance  does not depend on the demand. Figure 4.33 

reports the indices s
jfI

| and w
jfI

|  as functions of . Note that while 

)(|w
jfI  are continuous functions, )(|s

jfI  are stepwise functions since 

)()( 2
|

1
| s

j
s

j fIfI  for any 1 and 2 such that .
121

jj jhjh
gg

Both functions are decreasing, which means that the higher levels of performance 
threshold  cause a less relative increase of the system’s performance.

Note that both s
jfI

| and w
jfI

|  take a value of zero (i.e.

OOO
s

j
w

j
|| ) when the  level is above or equal to the maximum 

performance achievable by element j, .
jjkg

Improvement of the performance of a certain element above a given threshold

may be achieved, either by increasing the probability of residing in states with 

performances larger than  (as indicated by the 
s

jO fI
|

 measures) or by increasing 

the performances of some states (as indicated by 
w

jO fI
|

 measures). Consider, for 

example, element 7, whose IMs for different threshold values  as functions of the 

demand w are given in Figures 4.34 and 4.35. Observe that 0)(
|

7 wfI
w

A  when 

w  and 1)(
|

7 wfI
w

A  when w> , since the logic of the system is such that its 

performance is not affected by limitations on the performance of element 7 if its 

threshold  is set to a value greater than the demand w, whereas the system fails 

completely if element 7 has a performance below the system’s demand. Also, the 

)(
|

7 wfI
s

A  function does not depend on , when  varies within the performance 

intervals 1-6, 6-10, 10-14, 14-18. The jumps in the step-functions )(
|

7 wfI
s

A

occur at values hgw 7  and correspond to the restrictions to state h with .7hgw

Functions )(
|

7 wfI
s

 and )(
|

7 wfI
w

 are continuous. When  increases, the 

relative reduction of the system’s performance deficiency becomes smaller 

(because a smaller number of states are subject to restriction). Note that the demand 

w for which the greatest relative reduction of system performance deficiency is 

achieved (maximum of the function ))(
|

7 wfI
w

 increases with the increase of .
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4.6 Universal Generating Function in Analysis of 
Continuum-state Systems 

Some systems and elements exhibit continuous performance variation (for 
example, when their performance degrades due to gradual failures). In these cases, 
one can discern a continuum of different states. The structure functions 

),...,( 1 nGG representing such continuous-state systems are mappings 

],[],[...],[],[ maxminmaxminmax2min2max1min1 gggggggg nn ,

where ],[ maxmin jj gg is the closed interval of performance variation of element j

and ],[ maxmin gg  is the closed interval of performance variation of the entire 

system. Such functions were introduced in [128-130] and are called the continuum 
structure functions. 

 The stochastic behaviour of continuous-state systems and elements may be 
specified through the complemented distribution functions [131]: 

 }),...,(Pr{)(},Pr{)( 1 xGGxCxGxC njj  (4.107) 

An example of such a function (cumulated curve) is presented in Figure 4.36. 

Figure 4.36. Complemented distribution functions for continuous and discrete variables 

The method for estimating the boundary points for performance measures of 
continuum-state systems suggested by Lisnianski [132] uses the approximation of 
continuous performance distributions by discrete performance distributions. This 
method is based on the assumptions that the continuum structure functions are 
monotonic, i.e.

 ),...,(),...,( 11 nn GGGG  if jj GG for nj1  (4.108) 

C(xmin+(i+1)
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or

),...,(),...,( 11 nn GGGG  if jj GG for nj1  (4.109) 

and that the functions )(xC j  for all of the elements are continuous (with possible 

jumps at the end points). These assumptions are relevant for many types of 
practical system. 

In order to obtain the discrete approximation of the continuous performance 
distribution of element j, we divide the interval ],[ maxmin jj gg into h equal 

subintervals. The length of each subinterval is 

h

gg jj
j

minmax  (4.110) 

In order to obtain the lower and upper bound approximations of distribution of 

performance Gj, we introduce discrete random variables jG and jG such that 

}Pr{}Pr{ minmin jjjjjj igGigG

hiigG jjj 0},Pr{ min  (4.111) 

and

 })1(Pr{}Pr{ minmin jjjjjj igGxigG

jjjj xhixigG 0,0},Pr{ min  (4.112) 

 }Pr{}Pr{ minmin jjjjjj igGxigG

jjjj xhixigG 0,0},Pr{ min  (4.113) 

The complemented distribution functions of jG and jG  are presented in Figure 

4.36. Since for any variable X with a complemented distribution function C(x)

,)()(}Pr{ 2121 xCxCxXx  we can obtain that for jG

)())1((

}Pr{}Pr{

1),())1((

}Pr{

0}Pr{

maxmin

maxmin

minmin

min

min

jjjjjj

jjjjj

jjjjjj

jjj

jj

gChgC

gGhgG

hiigCigC

igG

gG

jjjj xhixigG 0,0,0}Pr{ min  (4.114) 

and for jG
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)(}Pr{}Pr{

0),)1(()(

}Pr{

maxmaxmin

minmin

min

jjjjjjj

jjjjjj

jjj

gCgGhgG

hiigCigC

igG

jjjj xhixigG 0,0,0}Pr{ min  (4.115) 

These expressions define the p.m.f. of the discrete variables jG and .jG

Observe that the inequalities (4.112) and (4.113) guarantee that for any j

)()( jj GEGE and )()( jj GEGE . Therefore, for any increasing monotonic 

function f:

)),...,(()),...,(()),...,(( 111 nnn GGfEGGfEGGfE   (4.116) 

and for any decreasing monotonic function v:

 )),...,(()),...,(()),...,(( 111 nnn GGvEGGvEGGvE  (4.117) 

Since the system performance measures are defined as expected values of 
functions of performances of individual elements (see Section 3.3), the upper and 
lower bounds for these measures can be obtained by replacing the continuous-state 
elements with multi-state elements having discrete performances distributed as 
defined by Equations (4.114) and (4.115).

Having the complemented distribution functions Cj(x) of system elements, one 
can determine the u-functions of the corresponding multi-state elements with 
discrete performance as 

jj igh

i
jjjjjjj zigCigCzu min

1

1
minmin )}(])1([{)(

max)( max
jg

jj zgC  (4.118) 

jj igh

i
jjjjjjj zigCigCzu min}])1([)({)(

1

0
minmin

max)( max
jg

jj zgC  (4.119) 

Applying the reliability block diagram technique over u-functions )(zu j one

obtains the u-function )(zU  representing the p.m.f. of the entire system consisting 

of elements with discrete performance distributions with p.m.f. (4.114). Applying  
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this technique over u-functions )(zu j one obtains the u-function )(zU

representing the p.m.f. of the entire system consisting of elements with discrete 

performance distributions with p.m.f. (4.115). Having the u-functions )(zU and

)(zU one can obtain the boundary points for the system performance measures as 

described in Section 3.3. 

Example 4.24 

Consider the series-parallel continuum-state system presented in Figure 4.37. Each 
element of the system can be either available or totally unavailable due to a 
catastrophic failure. If the element is available, then its performance rate varies 
continuously depending on the state of the element's operating environment. The 
performance rate of the unavailable element is zero.

Figure 4.37. Structure of continuum-state system 

Observe that if the element's availability is aj and its complemented distribution 

function given that the element is available is ),(* xC j  then the performance 

distribution of this element is defined by the complemented distribution function 

)(xC j that takes the form 

min
*

2

min2

),(

0,

0,1

)(

gxxCa

gxa

x

xC

j

j

The first element has the availability a1 = 0.8 and exponentially distributed 
performance with mean 401  and g1min = 0 (the probability that                      

G1 > g1max = 1000 is neglected). The second element has availability a2 = 0.7 and 
uniformly distributed performance with g2min = 30 and g2max = 60. The third 
element has availability a3 = 0.95 and normally distributed performance with mean 

703 and standard deviation 103 (the probabilities that G3 < g3min = 0 and

that G3 > g3max = 1000 are neglected). In the state of failure, all the elements have 
performance zero. The system fails if its performance is less that the constant 
demand w = 20. 

       1 

       2 

       3 
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The complemented distribution functions of the element performances taking 
into account the element availabilities are 
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 Considering the complemented distribution functions in the interval [0, 1000] 
and assigning ,1  Lisnianski [132] has obtained for the system interpreted as a 

flow transmission MSS with flow dispersion 21.47)1('U and

07.3 when the element performance distributions are represented by u-

functions ),(zu j and  23.46)1('U and 19.3  when the element 

performance distributions are represented by u-functions ).(zu j  Using these 

boundary points, one can estimate the performance measures with maximal relative 
errors

 100 (47.21 46.23)/46.23=2.1%

for mean performance and

 100 (3.19 3.07)/3.07=3.9%

for expected performance deficiency. 
For the system interpreted as a task processing MSS without work sharing, 

23.24)1('U  and 32.3 when the element performance distributions are 

represented by u-functions ),(zu j  and  83.23)1('U  and 45.3  when the 
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element performance distributions are represented by u-functions ).(zu j  This 

gives the estimations of the performance measures with maximal relative errors

 100 (24.23 23.83)/46.23=1.7%

for mean performance and

 100 (3.45 3.32)/3.32=3.9%

for expected performance deficiency. 
The upper and lower boundary points for mean performance and expected 

unsupplied demand are presented in Figure 4.38 as functions of step  for both 
types of systems. The decrease of step  provides improvement in the accuracy of 
boundary points estimation. However, it considerably increases the computational 
burden, since the number of terms in the u-functions )(zu j and )(zu j is

proportional to ./1

Figure 4.38. Boundary points for expected performance deficiency and mean performance
(A: flow transmission system; B: task processing system) 
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5. Universal Generating Function in 
Optimization of Series-Parallel
Multi-state Systems

Reliability improvement is of critical importance in various kinds of systems; 

however, any effort for this type of improvement usually requires resources that are 

limited by technical and/or economical constraints. Two approaches can be 

distinguished in the reliability optimization problem. The first one is aimed at 

achieving the greatest possible reliability subject to different constraints (according 

to Gnedenko and Ushakov [133], this problem is named the direct reliability 

optimization problem), and the second one focuses on minimizing the resources 

needed for providing a required reliability level (according to [133], this problem is 

named the inverse reliability optimization problem).

There are four general methods to improve system reliability: 

- a provision of redundancy; 

- an optimal adjustment of the system’s parameters, an optimal arrangement of 

the existing elements or the assignment of interchangeable elements; 

- an enhancement of the reliability (availability) and/or performance of the 

system’s elements; 

- a combination of the above-mentioned methods. 

Applied to an MSS, these methods affect two basic system properties: its 

configuration (structure function) and the performance distribution of its elements.

The UGF method that allows for system performance distribution, and thereby 

its performance measures to be evaluated based on a fast procedure, opens new 

possibilities for solving MSS reliability optimization problems. Based on the UGF 

technique, the MSS reliability can be obtained as a function of the system structure 

and the performance distributions of its elements. Therefore, numerous optimization 

problems can be formulated in which the optimal composition of all or part of the 

factors influencing the entire MSS reliability has to be found subject to different 

constraints.
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5.1 Structure Optimization Problems 

In binary systems, providing redundancy means to incorporate several identical 

parallel elements into a certain functional subsystem (component). The redundancy 

optimization problem for an MSS, which may consist of elements with different 

performance distributions, is a problem of system structure optimization. Indeed, 

when solving practical system design problems, the reliability engineer deals with a 

variety of products existing on the market. Each product is characterized by its 

performance distribution, price, etc. To find the optimal system structure, one 

should choose the appropriate versions from a list of available products for each 

type of equipment, as well as the number of parallel elements of these versions. 

In the simplest MSS structure optimization problem, each component can 

contain only identical elements. This optimization problem is relevant in cases 

where contracting or maintenance considerations prevent purchasing or using 

different elements of the same type. In some cases, such a limitation can be 

undesirable or even unacceptable for two reasons: 

- Allowing different versions of the elements to be allocated in the same system 

component, one obtains a solution providing the desired reliability level at a lower 

cost than what appears in the solution containing identical parallel elements. 

- In practice, when a system needs to be modernized according to new demand 

levels or new reliability requirements, the designer often has to include additional 

elements in the existing system. Some system components can contain versions of 

elements that are unavailable. In this case, some elements with the same 

functionality but with different parameters should make up the components. 

Therefore, in the general case, the MSS structure optimization problem should be 

solved without placing a limitation on the diversity of the versions of the elements.

The above-mentioned problem of optimal single-stage MSS expansion to 

enhance its reliability and/or performance is an important extension of the structure 

optimization problem. In this case, one has to decide which elements should be 

added to the existing system and to which component they should be added. There 

is a similar problem with the optimal single-stage replacement of the MSS 

elements. Here, one has to decide which elements should be replaced by new ones 

having better characteristics. 

During the MSS’s operation time, the demand and reliability requirements can 

change. To provide a desired level of MSS performance, management should 

develop a multistage expansion plan. For the problem of optimal multistage MSS 

expansion, it is important to answer not only the question of what must be included 

into the system, but also the question of when it must be included into the system. 

5.1.1 Optimal Structure of Systems with Identical Elements in 
Each Component 

5.1.1.1 Problem Formulation 

An MSS consists of N components. Each component is a subsystem that can consist 

of parallel elements with the same functionality. The interaction between the system 

components is given by a reliability block diagram.  Different versions of elements 
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may be chosen for any given system component, but each component can contain 

only elements of the same version. For each component i there are Bi element

versions available in the market. A PD gi(b), pi(b) and cost ci(b) can be specified for 

each version b of element of type i.

The structure of system component i is defined by the number of the element 

version chosen for this component bi ( ii Bb1 ) and by the number of parallel 

elements ni ( ii nn max1 ), where inmax  is the maximum allowed number of 

parallel elements of type i. The vectors b = (b1, …, bN) and n = (n1, …, nN) define 

the entire system structure. 

 For given b and n the total cost of the system can be calculated as 

N

i
iii bcnC

1

)(  (5.1) 

To take into account price discounting, the element cost can be considered as a 

function of the number of elements purchased. In this case 

N

i
iiii bncnC

1

),(  (5.2) 

The problem of MSS structure optimization is formulated in [134] as finding the 

minimal cost system configuration b, n that provides the required level O* of the 

system performance measure O:

 C(b, n) min  subject to f(O,O*) = 1               (5.3) 

where f(O,O*) is a function representing the desired relation between O and O*. For 

example, if the system should provide a given level of availability, AO  and f(A,

A*)=1 *).( AA

5.1.1.2 Implementing the Genetic Algorithm 

In order to represent the system structure in the GA one has to use 2N-length integer 

strings: a = (a1,…,ai,…,a2N), where for each Ni bi = aj and for i>N        ni N = ai.

An arbitrary integer string cannot represent a feasible solution because each bi

should vary within limits ii Bb1  and each ni within limits .1 max ii nn  To 

provide solution feasibility, a decoding procedure should first transform each string 

a* to a string a in which

1)(mod *
iBi aa

i
for Ni and 1)(mod *

max ini aa
i

for .Ni  (5.4) 

The solution decoding procedure, based on the UGF technique, performs the 

following steps: 

1. Determines ni and bi for each system component from the string a.
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2. Determines u-functions )(zu
iib  of each version of elements according to their 

PD gi(bi), pi(bi).

3. Determines u-functions of each component i (1 i N) by assigning 

)()(
111 zuzU b and applying the recursive equation 

)()()(
par

1 zuzUzU
iibjj  for j = 2,…,ni (5.5) 

4. Determines the u-function of the entire MSS U(z) by applying the 

corresponding composition operators using the reliability block diagram method 

(described in Section 4.1.3). 

5. Having the system u-function, determines its performance measure as 

described in Section 3.3. 

6. Determines the total system cost using Equation (5.2). 

7. Determines the solution’s fitness as a function of the MSS cost and 

performance measure as 

M C(a) (1+| O O*|) (1  f(O,O*))                     (5.6) 

where  is a penalty coefficient and M is a constant value. The fitness function is 

penalized when f(O, O*) = 0. The solution with minimal cost and with f(O,O*) = 1 

provides the maximal possible value of the fitness function.

Example 5.1

Consider a power station coal transportation system consisting of five basic 

components connected in series (Figure 3.3):

1. subsystem of primary feeders; 

2. subsystem of primary conveyors;

3. subsystem of stackers-reclaimers; 

4. subsystem of secondary feeders;

5. subsystem of secondary conveyors. 

The system belongs to the type of flow transmission MSS with flow dispersion, 

since its main characteristic is the transmission capacity and parallel elements can 

transmit the coal simultaneously. The system should meet a variable demand W. Its 

acceptability function is defined as F(G,W) = 1( ).WG The system should have 

availability not less than A* = 0.99 for the given demand distribution w, q presented 

in Table 5.1.

Table 5.1.  Demand distribution

w 1.00 0.80 0.50 0.20 

q 0.48 0.09 0.14 0.29 

Each system element is an element with total failure (which means that it can 

have only two states: functioning with the nominal capacity and total failure, 
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corresponding to a capacity of zero). For each type of equipment, a list of products 

available on the market exists. Each version of equipment is characterized by its 

nominal capacity g, availability p, and cost c. The list of available products is 

presented in Table 5.2. The maximal number of elements in each component should 

not exceed six. 

  Table 5.2. Parameters of available MSS elements

Component 1 Component 2 Component 3 Component 4 Component 5

Primary

feeders

Primary

conveyors

Stackers-

reclaimers

Secondary

feeders

Secondary

conveyors

No. of 

version

of MSS 

element g p c g p c g p c g p c g p c 

1 1.20 0.980 0.590 1.00 0.995 0.205 1.00 0.971 7.525 1.15 0.977 0.180 1.28 0.984 0.986 

2 1.00 0.977 0.535 0.92 0.996 0.189 0.60 0.973 4.720 1.00 0.978 0.160 1.00 0.983 0.825 

3 0.85 0.982 0.470 0.53 0.997 0.091 0.40 0.971 3.590 0.91 0.978 0.150 0.60 0.987 0.490 

4 0.85 0.978 0.420 0.28 0.997 0.056 0.20 0.976 2.420 0.72 0.983 0.121 0.51 0.981 0.475 

5 0.48 0.983 0.400 0.21 0.998 0.042 0.72 0.981 0.102

6 0.31 0.920 0.180 0.72 0.971 0.096

7 0.26 0.984 0.220 0.55 0.983 0.071

8 0.25 0.982 0.049

9 0.25 0.97 0.044

The total number of components in the problem considered is N = 5. Each 

integer string containing 10 integer numbers can represent a possible solution. In 

order to illustrate the string decoding process performed by the GA, consider, for 

example, the string a* = (9, 10, 4, 1, 3, 0, 7, 6, 1, 2). From Table 5.2 we have      B1

= 7, B2 = 5, B3 = 4, B4 = 9, B5 = 4; inmax  = 6  for any component. After 

transforming the string according to Equation (5.4) we obtain a = (3, 1, 1, 2, 4, 1, 2, 

1, 2, 3). This string corresponds to one primary feeder of version 3, two primary 

conveyors of version 1, one stacker of version 1, two secondary feeders of version 

2, and three secondary conveyors of version 4.

According to step 2 of the decoding procedure, the u-functions of the chosen 

elements are determined as u13(z) = 0.018z0+0.982z0.85 (for the primary feeder), 

u21(z) = 0.005z0+0.995z1.00 (for the primary conveyors), u31(z) = 0.029z0+0.971z1.00

(for the stacker), u42(z) = 0.022z0+0.978z1.00 (for the secondary feeders) and 

u54(z) = 0.019z0+0.981z0.51 (for the secondary conveyor). 

According to step 3, we determine the u-functions of the five system 

components using the composition operator :

 U1(z) = u13(z) = 0.018z0+0.982z0.85

 U2(z) = u21(z) u21(z) = (0.005z0+0.995z1)2

 U3(z) = u31(z) = 0.029z0+0.971z1.00

 U4(z) = u42(z) u42(z) = (0.022z0+0.978z1.00)2

 U5(z)= u54(z)  u54(z)  u54(z) = (0.019z0+0.981z0.51)3
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The flow transmission system consisting of five components connected in series 

can be reduced to a binary system (see Section 4.1.4) and its availability can be 

obtained according to Equation (4.16) as 

))](())(())(())(())(([ 54321

4

1

zUzUzUzUzUqA
mmmmm wwwww

m
m

The values ))(( zU jwm
for each system component and each demand level 

are presented in Table 5.3. 

Table 5.3. Availability of system components for different demand levels

w ))(( 1 zUw ))(( 2 zUw ))(( 3 zUw ))(( 4 zUw ))(( 5 zUw

1.0 0.000000 0.999975 0.971000 0.999516 0.998931 

0.8 0.982000 0.999975 0.971000 0.999516 0.998931 

0.5 0.982000 0.999975 0.971000 0.999516 0.999993 

0.2 0.982000 0.999975 0.971000 0.999516 0.999993 

The overall system availability for the given demand distribution is A = 0.495. 

The total system cost is 

 C = 0.47+2 0.205+7.525+2 0.16+3 0.475=10.15

Since the given system configuration provides an availability that is less than 

the desired level A*, the solution fitness function is penalized. The value of the 

fitness function obtained in accordance with Equation (5.6) for M = 50 and  = 25 

is

 50 10.15 25 (1+0.99 0.495) = 2.475 

The best solution obtained by the GA provides the system’s availability               

as A = 0.992.  According to this solution, the system should consist of two primary 

feeders of version 2, two primary conveyors of version 3, three stackers of version 

2, three secondary feeders of version 7, and three secondary conveyors of version 4. 

The total system cost is C = 17.05.  Since in this solution f(A, A*) = 1, its fitness is 

50 17.05 = 32.95. 

5.1.2 Optimal Structure of Systems with Different Elements in 
Each Component 

5.1.2.1 Problem Formulation 

The problem definition is similar to the one presented in Section 5.1.1.1. However, 

in this case different versions and the number of elements may be chosen for any 

given system component [135].

The structure of the system component i is defined by the numbers of the 

parallel elements of each version b chosen for this component: ibn  ( iBb1 ).  
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The vectors   ni = (ni1, …, 
iiBn : Ni1 ) define the entire system structure. For a 

given set of vectors {n1, n2, …, nN} the total cost of the system can be calculated as 

N

i=
iib

B

b=
N bcn=, n,nC

i

1 1
1 )()(  (5.7) 

Having the system structure defined by its components’ reliability block 

diagram and by the set {n1, n2,…, nN}, one can determine the entire MSS 

performance measure O(w, q, n1, n2, …, nN) for any given demand distribution w, q.

The problem of MSS structure optimization is formulated as finding the minimal 

cost system configuration {n1, n2, …,  nN} that provides the required level O* of the 

system performance measure O:

 C(n1, n2, …, nN)  min  subject to f(O,O*) = 1,               (5.8) 

5.1.2.2 Implementing the Genetic Algorithm 

The natural way of encoding the solutions of the problem (5.8) in the GA is by 

defining a B-length integer string, where B is the total number of versions available: 

   
N

i
iBB

1

 (5.9) 

Each solution is represented by string a = (a1, …, aj, …, aB), where for each 

bBj
i

m
m

1

1

 (5.10) 

aj denotes the number of parallel elements of type i and version b: ibn = aj. One can 

see that a is a concatenation of substrings representing the vectors n1, n2,…, nN.

The solution decoding procedure, based on the UGF technique, performs the 

following steps: 

1. Determines ibn for each system component and each element version from the 

string a.

2. Determines u-functions )(zuib  of each version of elements according to their 

PD gi(b), pi(b).

3. Determines u-functions of subcomponents containing the identical elements by 

applying the composition operators 
par

 over ibn identical u-functions ).(zuib

4. Determines u-functions of each component i (1 i N) by applying the 

composition operators 
par

 over the u-functions of all nonempty subcomponents 

belonging to this component. 

5. Determines the u-function of the entire MSS U(z) by applying the reliability 

block diagram method. 

6. Determines the MSS performance measure as described in Section 3.3. 
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7. Determines the total system cost using Equation (5.7). 

8. Determines the solution fitness as a function of the MSS cost and performance 

measure according to Equation (5.6). 

Example 5.2

Consider the coal transportation system described in Example 5.1 and allow each 

system component to consist of different versions of the elements. 

 (0, 0, 0, 2, 0, 0, 1,  0, 0, 2, 0, 0,  1, 0, 0, 0,  0, 0, 0, 0, 0, 0, 3, 0, 0,  0, 1, 0, 0)

This string corresponds to two primary feeders of version 4, one primary feeder of 

version 7, two primary conveyors of version 3, one stacker of version 1, three 

secondary feeders of version 7, and one secondary conveyor of version 2.

According to step 2 of the decoding procedure, the u-functions of the chosen 

elements are determined as u14(z) = 0.022z0+0.978z0.85, u17(z) = 0.016z0+0.984z0.26

(for the primary feeders), u23(z) = 0.003z0+0.997z0.53 (for the primary conveyors), 

u31(z) = 0.029z0+0.971z1.00 (for the stacker), u47(z) = 0.017z0+0.983z0.55 (for the 

secondary feeders) and u52(z) = 0.016z0+0.984z1.28 (for the secondary conveyor). 

According to steps 3 and 4, we determine the u-functions of the five system 

components using the composition operator :

 U1(z) = u14(z) u14(z) u17(z)

 = (0.022z0+0.978z0.85)2(0.016z0+0.984z0.26)

 U2(z) = u23(z) u23(z) = (0.003z0+0.997z0.53)2

 U3(z) = u31(z) = 0.029z0+0.971z1.00

 U4(z) = u47(z) u47(z) u47(z) = (0.017z0+0.983z0.55)3

 U5(z) = u52(z) = 0.016z0+0.984z1.28

As in the previous example, the entire system availability can be obtained using 

Equation (4.16). We obtain A = 0.95 for the given system structure and demand 

distribution.

The total system cost, according to Equation (5.7), is 

 C = 2 0.42+0.22+2 0.091+7.525+3 0.071+0.825 = 9.805 

The fitness of the solution is estimated using Equation (5.6), where M = 50 and 

 = 25. For the desired value of system availability A* = 0.99 the fitness takes the 

value

 50 9.805 25(1+0.99 0.95) = 14.195 

For the desired value of system availability A* = 0.95, the fitness takes the value 

The total number of available versions in the problem considered is 

B = 7+5+4+9+4 = 29. Each string containing 29 integer numbers can represent a 

possible solution. In order to illustrate the string decoding process performed by the 

GA, consider the string 
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  50 9.805 = 40.195 

The minimal cost solutions obtained by the GA for different desired availability 

levels A* are presented in Table 5.4. This table presents the cost, calculated 

availability, and structure of the minimal cost solutions obtained by the GA. The 

structure of each system component i is represented by a string of the form ni1*bi1,

..., nim*bim, where nim is the number of identical elements of version bim belonging to 

this  component.

Table 5.4. Optimal solution for MSS structure optimization problem

A* = 0.95 A* = 0.97 A* = 0.99

System availability A 0.950 0.970 0.992 

System cost C 9.805 10.581 15.870 

System structure 

Primary feeders 1*7, 2*4 2*2 2*4, 1*6 

Primary conveyors 2*3 6*5 2*3 

Stackers-reclaimers 1*1 1*1 2*2, 1*3 

Secondary feeders 3*7 6*9 3*7 

Secondary conveyors 1*2 3*3 3*4 

Consider, for example, the best solution obtained for A* = 0.99. The minimal 

cost system configuration that provides the system availability A = 0.992 consists of 

two primary feeders of version 4, one primary feeder of version 6, two primary 

conveyors of version 3, two stackers of version 2, one stacker of version 3, three 

secondary feeders of version 7, and three secondary conveyors of version 4. The 

cost of this configuration is 15.870, which is 7% less than the cost of the optimal 

configuration with identical parallel elements obtained in Example 5.1. 

5.1.3 Optimal Single-stage System Expansion 

In practice, the designer often has to include additional elements in the existing 

system. It may be necessary, for example, to modernize a system according to new 

demand levels or new reliability requirements. The problem of minimal cost MSS 

expansion is very similar to the problem of system structure optimization [135]. 

The only difference is that each MSS component already contains some working 

elements. The initial structure of the MSS is defined as follows: each component of 

type i contains B'i different subcomponents connected in parallel. Each 

subcomponent j in its turn contains n'ij identical elements, which are also connected 

in parallel. Each element is characterized by its PD g'i(j), p'i(j). The entire initial 

system structure can, therefore, be defined by a set {g'i(j), p'i(j), n'ij: 1 i N, 1 j B'i}

and by a reliability block diagram representing the interconnection among the 

components.

The optimal MSS expansion problem formulation is the same as in Section

5.1.2 and the GA implementation is the same as in Section 5.1.2.2. The only 

difference is that for the availability evaluation one should take into account u-

functions of both the existing elements and the new elements chosen from the list, 
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while the cost of the existing elements should not be taken into account when the 

MSS expansion cost is calculated. 

Example 5.3

Consider the same coal transportation system that was presented in Example 5.1. 

The initial structure of this MSS is given in Table 5.5. Each component contains a 

single subcomponent consisting of identical elements: B'i = 1 for 1 i 5. The 

existing structure can satisfy the demand presented in Table 5.1 with the availability 

A(w,q) = 0.506. In order to increase the system’s availability to the level of A*, the 

additional elements should be included. These elements should be chosen from the 

list of available products (Table 5.2).

Table 5.5. Parameters of initial system structure

Component

no.

Capacity Availability Number of parallel 

elements

1 0.75 0.988 2 

2 0.28 0.997 3 

3 0.66 0.972 2 

4 0.54 0.983 2 

5 0.66 0.981 2 

The minimal cost MSS expansion solutions for different desired values of 

system availability A* are presented in Table 5.6. 

Table 5.6. Optimal solutions for MSS expansion problem

A* = 0.95 A* = 0.97 A* = 0.99 

System availability 0.950 0.971 0.990 

Expansion cost 0.630 3.244 4.358 

Added elements 

Primary feeders 1*6 1*6 

Primary conveyors 2*5 1*5, 1*4 1*5 

Stackers-reclaimers 1*4 1*3 

Secondary feeders 1*7 1*7 1*7 

Secondary conveyors 1*4 1*4 1*4 

Consider, for example, the best solution obtained for A* = 0.99, encoded by the 

string (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1). The 

corresponding minimal cost system expansion plan that provides the system 

availability A = 0.990 presumes the addition of the primary feeder of version 6, the 

primary conveyor of version 5, the stacker of version 3, the secondary feeder of 

version 7 and the secondary conveyor of version 4. The cost of this expansion plan 

is 4.358. 

5.1.4 Optimal Multistage System Expansion 

In many cases, when the demand and/or reliability requirements increase with time, 

the design problem concerns multiple expansions (reinforcements) rather than the 

construction of complete new systems or their single-stage expansions. While in the 
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problems of system structure optimization or single-stage expansion it is sufficient 

to ask what should be done and where, in designing the expansion plan an answer is 

also needed to the question of when. 

Using the single-stage system expansion algorithm suggested in Section 5.1.3, 

one can consider the reinforcement planning problem as a sequence of expansions 

so that each expansion is a separate problem. However, this may not lead to the 

optimization of the whole plan, because, in general, partial optimal solutions cannot 

guarantee an overall optimal solution. Therefore, a more complex method should be 

developed to solve the system-expansion planning problem in several stages, rather 

than in a single stage [136]. 

This section addresses the multistage expansion problem for MSSs. The study 

period is divided into several stages. At each stage, the demand distribution is 

predicted. The additional elements chosen from the list of available products may 

be included into any system component at any stage to increase the total system 

availability. The objective is to minimize the sum of costs of investments over the 

study period while satisfying availability constraints at each stage.

5.1.4.1 Problem Formulation 

As in the single-stage expansion problem, the initial system structure is defined by a 

reliability block diagram representing the interconnection among MSS components 

and by a set {g'i(j), p'i(j), n'ij : 1 i N, 1 j B'i}.

In order to provide the desired level of availability, the system should be 

expanded at different stages of the study period. Each stage y (1 y Y) begins (y)

years after the base stage (stage 0) and is characterized by its demand distribution 

w(y), q(y). The timing of stages can be chosen for practical reasons so that (y) must 

not be evenly spaced. Increasing the number of stages Y during the planning 

horizon increases the solution flexibility.  Indeed, the addition of intermediate 

stages may allow investments to be postponed without violating the system 

availability constraints. On the other hand, the increase of number of stages expands 

drastically the search space and, therefore, slows the algorithm convergence. The 

recommended strategy is to obtain a number of solutions for different Y in a 

reasonable time and to choose the best one. 

Different versions and numbers of elements may be chosen for expansion of any 

given system component. The versions can be chosen from the list of elements 

available in the market. The expansion of system component i at stage y is defined 

by the numbers )(ynib  of parallel elements of each version b (1 b Bi) included 

into the component at this stage The set ny={ )(ynib : 1 i N, 1 b Bi} defines the 

entire system expansion at stage y.

For a given set ny the total cost of the system expansion at stage y can be 

calculated in present values as 
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where IR is the interest rate. The total system expansion cost for the given 

expansion plan {n1,…,nY} is 

N
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The system structure at stage y (after expansion) is defined by a set of elements 

composing the initial structure n' = {n'ij : 1 i N, 1 j B'i} and by a set of included 

elements my = )({ ymib : 1 i N, 1  b Bi}, where 

y

k
ibib knym

1

)()(  (5.13) 

Having the system structure and demand distribution for each stage y, one can 

evaluate the MSS performance measures. The problem of system expansion 

optimization can be formulated as follows 

Find the minimal cost system expansion plan that provides the required level O*

of the performance measure Oy at each stage y:

   C (n1,…,nY)  min

 subject to f(Oy(n1,…,nY, w(y), q(y)), O*) =1 for 1  y Y     (5.14)

where f(Oy,O*) is a function representing the desired relation between Oy and O*.

The problem of system structure optimization can be considered as a special 

case of this formulation. Indeed, if the set n' of the elements composing the system 

at stage 0 is empty and Y = 1, then the problem is reduced to system structure 

optimization subject to reliability constraints. If n' is empty but Y  1, then the 

problem is that of multistage system structure optimization, which includes both 

determination of the initial system structure and its expansion plan.

5.1.4.2 Implementing the Genetic Algorithm 

The natural way to represent the expansion plan n1,…,nY is to use a string 

containing  integer numbers corresponding to )(ynib  for each type i, version bi and

stage y. Such a string contains N
i iBY 1 elements, which can result in an enormous 

growth of the length of the string even for problems with a moderate number of 

available versions of elements and number of stages. Besides, to represent a 

reasonable solution, such a string should contain a large percentage of zeros, 

because only small number of elements should be included into the system at each 

stage. This redundancy causes an increase in the need for computational resources 

and lowers efficiency of the GA. 

In order to reduce the redundancy of expansion plan representation, each 

inclusion of n elements of version b into the system at stage y is represented by the 
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triplet {n, b, y}. The maximum number of possible inclusions into each component 

(diversity factor) K and the maximum number of identical elements in each 

inclusion nmax are defined as parameters which can be preliminarily specified for 

each problem. Thus, the first K triplets represent the total expansion plan for the 

first component, the second K triplets for the second component, and so on. The 

length of string representing a solution is in this case 3KN, which can be much 

smaller than that in the first case. 

Consider a string a = (a1,...,a3KN) where each element aj is generated in the range 

}max,,{max0
1

max ij BYna
Ni

  (5.15) 

For each system component i, each of K triplets (ax,ax+1,ax+2), where

 x = 3K(i 1)+3(j 1) for 1 j K  (5.16) 

determines the addition of )(mod 1+max xn a  elements of version 1)(mod 1+xB a
i

 at 

stage .1)(mod 2+xaY  This transform provides solution feasibility by mapping 

each of the variables into a range of its possible values, since )(ynib varies from 0 

to nmax, b varies from 1 to Bi and y varies from 1 to Y.

For example, consider a problem with K = 3, Y = 5, nmax = 4, where 

.9}{max
1

iB
Ni

 Substring (7, 3, 2, 0, 2, 6, 1, 7, 0) corresponding to a component for 

which eight different versions are available, represents addition of mod4+17 = 2 

elements of version mod83+1 = 4 at stage mod52+1 = 3 and mod4+11 = 1 element of 

version mod87+1 = 8 at stage mod50+1 = 1. The second triplet (0, 2, 6) represents 

addition of zero elements and, therefore, should be discarded. The existence of such 

“dummy” triplets allows the number of additions to each component to vary from 0 

to K, providing flexibility of solution representation.

Having the vector a, one can determine the MSS structure in each stage y using 

(5.13) and obtain the system PD using the UGF technique. For this PD and for the 

given demand distribution w(y), q(y) one obtains the MSS availability Ay. The 

solution fitness for the estimated values of Ay and C calculated using (5.12) should 

be determined as 

  )],)((|)(1)(|[(1)(
1=

O*OfOO*CM yy

Y

y

aaa   (5.17) 

Example 5.4

In this example, we consider the same coal transportation system from Example 5.1. 

The initial system structure is presented in Table 5.5. Table 5.7 contains the boiler 

system demand distributions at five different stages and times from the present to 

the beginning of these future stages. 
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Because of demand increase, the availability index of the system becomes 

A1(w(1), q(1)) = 0.506 at the first stage. To provide a desired availability level at all 

the stages, the system should be expanded. The characteristics of products available 

in the market for each type of equipment are presented in Table 5.2.

Table 5.7. Demand distributions

Stage no.  (y) Demand distribution 

w 1.00 0.80 0.50 0.20 
1 0

q 0.48 0.09 0.14 0.29 

w 1.20 0.80 0.50 - 
2 3

q 0.43 0.32 0.25 - 

w 1.40 1.20 0.80 0.50 
3 6

q 0.10 0.39 0.31 0.20 

w 1.40 1.20 0.80 - 
4 9

q 0.41 0.24 0.35 - 

w 1.60 1.40 1.00 - 
5 12

q 0.30 0.45 0.25 - 

The best expansion plans obtained by the GA for different values of A* are 

presented in Table 5.8. The interest rate for the problems considered is IR = 0.1. 

Expansion of each system component i at stage y is presented in the form n*b,

where n is a number of identical elements of version b to be included into the 

component at a given stage. The table also contains system availability Ay obtained 

at each stage, total expansion costs in present values C, and costs of the system 

expansions at the first stage C(1).

   Table 5.8. Optimal MSS multistage expansion plans

A* = 0.95 A* = 0.97 A* = 0.99

Expansion cost C = 4.127, C(1) = 0.645 C = 6.519, C(1) = 5.598 C = 7.859, C(1) = 5.552 

Stage 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

System availability 0.951 0.951 0.963 0.952 0.960 0.972 0.970 0.987 0.975 0.970 0.995 0.991 0.990 0.996 0.994 

Added elements 

Primary feeders  1*4    1*4    1*7 1*6 1*6 2*6  

Primary conveyors 2*5  1*5 1*5  3*5   2*5  1*3  2*4  

Stacker-reclaimers   1*4  1*2 1*4  1*2   1*2   1*3 

Secondary feeders 1*7 1*7    2*7     1*7 2*7   

Secondary conveyors 1*3   1*4  1*3    1*4 1*3  1*3  

One can compare expansion at the first stage of multistage plans with the single-

stage expansion plans presented in Table 5.6. The demand distribution for the 

single-stage problem is the same as that in the first stage of the multistage problem. 

The solutions for the first stage of the multistage plan differ from ones that are 

obtained for single-stage expansion. The comparison shows that a single-stage 

expansion plan is less expensive than the first stage of a multistage plan, which 

should consider the effect of the first stage expansion on the further stages. 

To demonstrate the advantages offered by incremental expansion, the solutions 

that satisfy reliability constraints for the final stage demand distribution but require 

all expansion investments at time zero were obtained (Table 5.9). One can see that 

incremental expansion provides considerably less expensive solutions. 
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Table 5.9. Optimal MSS single-stage expansion plans

A* = 0.95 A* = 0.97 A* = 0.99 

System availability 0.951 0.970 0.990 

Expansion cost 8.660 8.895 10.192 

Added elements 

Primary feeders 1*7 1*4 2*6, 1*7 

Primary conveyors 4*5 1*3, 2*4 5*5 

Stacker-reclaimers 2*3 2*3 1*2, 1*3 

Secondary feeders 2*7 2*7 2*7 

Secondary conveyors 2*4 2*4 2*4 

5.1.5 Optimal Structure of Controllable Systems  

The problem of structure optimization of controllable systems is similar to the 

problem considered in Section 5.1.2 [105]. Consider a system with fixed resource 

consumption that consists of an MPS and H RGSs. Each system component (RGS 

and MPS) can consist of parallel elements with the same functionality. The 

interaction between the system components is determined by the control rule that 

provides the maximal possible system performance by choosing the optimal set of 

working MPS units for any combination of available MPS and RGS units.

Different versions of the elements may be chosen for any given system 

component from the list of element versions available in the market.

The structure of any one out of H+1 system components is defined by the 

numbers of the parallel elements of each version chosen for this component. For a 

given set of chosen elements, the total cost of the system can be calculated using 

Equation (5.7) and the entire MSS performance measure for any given demand 

distribution w, q can be obtained using the algorithms presented in Section 4.2. The 

problem of controllable MSS structure optimization is formulated as finding the 

minimal cost system configuration that provides the required level O* of the system 

performance measure O (5.8). 

Example 5.5

The MPS may have up to six parallel producing elements (chemical reactors) 

working in parallel. To perform their task, producing elements require three 

different resources: 

- Power, generated by energy supply subsystem (group of converters). 

- Computational resource, provided by control subsystem (group of controllers). 

- Cooling water, provided by water supply subsystem (group of pumps). 

Each of these RGSs can have up to five parallel elements. Both producing units 

and resource-generating units may be chosen from the list of products available in 

the market. Each producing unit is characterized by its availability, productivity, 

cost and amount of resources required for its work. The characteristics of available 

producing units are presented in Table 5.10. The resource-generating units are 

characterized by their availability, generating capacity (productivity) and cost. The 

characteristics of available resource-generating units are presented in Table 5.11. 

Each element of the system is considered to be a unit with total failures. 
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Table 5.10. Parameters of the available MPS units 

Version Cost Nominal  Availability Resources required w

performance Resource 1 Resource 2 Resource 3 

1 9.9 30.0 0.970 2.8 2.0 1.8 

2 8.1 25.0 0.954 0.2 0.5 1.2 

3 7.9 25.0 0.960 1.3 2.0 0.1 

4 4.2 13.0 0.988 2.0 1.5 0.1 

5 4.0 13.0 0.974 0.8 1.0 2.0 

6 3.0 10.0 0.991 1.0 0.6 0.7 

Table 5.11. Parameters of the available RGS units

Type of 

resource

Version Cost Nominal

performance

Availability

 1 0.590 1.8 0.980 

1 2 0.535 1.0 0.977 

 3 0.370 0.75 0.982 

 4 0.320 0.75 0.978 

 1 0.205 2.00 0.995 

2 2 0.189 1.70 0.996 

 3 0.091 0.70 0.997 

 1 2.125 3.00 0.971 

3 2 2.720 2.60 0.973 

 3 1.590 2.40 0.971 

 4 1.420 2.20 0.976 

The demand for final product varies with time. The demand distribution is 

presented in Table 5.12. 

Table 5.12. Demand distribution

w 65 48 25 8 

q 0.6 0.1 0.1 0.2 

Table 5.13 contains minimal cost solutions for different required levels of 

system availability. The structure of each subsystem is presented by the list of 

numbers of versions of the elements included in the subsystem. The estimated 

availability of the system and its total cost are also presented in the table for each 

solution.

Table 5.13. Parameters of the optimal solutions for system with different MPS 

elements

A* A C System structure 

   MPS RGS 1 RGS 2 RGS 3 

0.950 0.951 27.790 3,6,6,6,6 1,1,1,1,1 1,1,2,3 1,1 

0.970 0.973 30.200 3,6,6,6,6,6 1,1,1,1 1,1,2,3 1,1 

0.990 0.992 33.690 3,3,6,6,6,6 1,1,1,1 1,1,2,3 4,4 

0.999 0.999 44.613 2,2,3,3,6,6 1,1,1 1,2,2 4,4,4 

The solutions of the system structure optimization problem when the main 

producing subsystem can contain only identical elements are presented in Table 
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5.14 for comparison. Note that when the MPS is composed from elements of 

different types the same system availability can be achieved by much lower cost.  

Indeed, using elements with different availability and productivity provides much 

greater flexibility for optimizing the entire system performance in different states.  

Therefore, the algorithm for solving the problem for different MPS elements 

(Section 4.2.2), which requires much greater computational effort, usually yields 

better solutions than one for identical elements (Section 4.2.1). 

Table 5.14. Parameters of the optimal solutions for system with identical MPS 

elements

A* A C System Structure 

   MPS RGS 1 RGS 2 RGS 3 

0.950 0.951 34.752 4,4,4,4,4,4 1,4,4,4,4 2,2,2 1,3,3,3,4 

0.970 0.972 35.161 4,4,4,4,4,4 1,1,1,4 2,2,2,2 1,3,3,3,4 

0.990 0.991 37.664 2,2,2,2 4,4 3,3,3,3 4,4,4 

0.999 0.999 47.248 2,2,2,2,2 3,4 2,2 4,4,4,4 

5.2 Structure Optimization in the Presence of Common 
Cause Failures

The reliability enhancement of systems that are the subject of CCFs presumes such 

an arrangement of system elements that can reduce or limit the influence of 

coupling factors affecting the system. In many cases, the CCFs occur due to 

intentional attacks, accidental failures, or errors. The ability of a system to tolerate 

such impacts is called survivability. This ability is becoming especially important 

when a system operates in battle conditions, or is affected by a corrosive medium or 

another hostile environment. The measure of the system’s survivability is the 

probability that the system’s acceptability function is equal to one in the presence of 

the CCFs mentioned.

A survivable system is one that is able to "complete its mission in a timely 

manner, even if significant portions are incapacitated by attack or accident" [137]. 

This definition presumes two important things: 

- First, the impacts of both external factors (attacks) and internal causes 

(failures) affect system survivability. Therefore, it is important to take into account 

the influence of reliability (availability) of system elements on the entire system 

survivability.

- Second, a system can have different states corresponding to different 

combinations of failed or damaged elements composing the system. Each state can 

be characterized by a system performance rate, which is the quantitative measure of 

a system’s ability to perform its task. Therefore, a system should be considered a 

multi-state one when its survivability is analyzed.

Common destructive factors usually cause total failures of all of the elements 

belonging to the same CCG. Therefore, adding more redundant parallel elements 

into the same group, while improving the system’s reliability, is not effective from a 

vulnerability standpoint.  The effective way of reducing the influence of coupling 
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factors on the system’s survivability is separating elements and protecting them 

against impacts.

5.2.1 Optimal Separation of System Elements 

One of the ways to enhance system survivability is to separate elements with the 

same functionality (parallel elements). The separation can be performed by spatial 

dispersion, by encapsulating different elements into different protective casings, etc.

Parallel elements not separated from one another are considered to belong to the 

same CCG. All elements belonging to the same CCG are destroyed in the case of 

group destruction. The destructions of different CCGs are independent events. 

Obviously, separation has its price. Allocating all the parallel elements together 

(within a single CCG) is usually cheaper than separating them. The separation 

usually requires additional areas, constructions, communications etc.

Since system elements of the same functionality can have a different PD, the 

way in which elements are partitioned into CCGs strongly affects system 

survivability. In this section, we consider the problem of how to separate the 

elements of series-parallel MSSs in order to achieve a maximal possible level of 

system survivability by the limited cost. 

5.2.1.1 Problem formulation 

An MSS consists of N components connected according to a reliability block 

diagram. Each component contains different elements connected in parallel. The 

total number of mutually independent elements in each component i is Ei. Each 

element j is characterized by its PD gj, pj. In order to survive, the MSS should meet 

demand w. The probability that the demand is met is the system’s survivability S.

The elements belonging to component i can be separated into Bi independent 

groups, where Bi can vary from 1 (all the elements are gathered together) to Ei (all 

the elements are separated one from another). It is assumed that all of the elements 

of the ith component belonging to the same CCG can be destroyed by a total CCF 

with the probability vi, which characterizes the group’s vulnerability. The failures of 

individual MSS elements and CCFs are considered independent events.

In the general case, the vulnerability of each CCG can be a function of the 

number of elements belonging to this group. It can also depend on the total number 

of groups within a component. These dependencies can be easily included into the 

model. For the sake of simplicity, we consider the case in which all CCGs within 

the component have the same vulnerability. In this case, the separation increases the 

composite probability of damage caused by the external impact, but it makes the 

implications of the impact much less severe. This assumption is relevant, for 

example, when the separated groups of elements encapsulated into identical 

protective casings can be destroyed by a corrosive medium. The increase of number 

of separated groups increases the overall system exposure to the medium (the 

overall area of contact surface of the casings).

The cost of each CCG ci(h) depends on both the types of element protected 

(number of component i) and the number of elements in the group h.
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The elements' separation problem for each component i can be considered as a 

problem of partitioning a set of Ei items into a collection of Ei mutually disjoint 

subsets. This partition can be represented by the vector xi = (xij: 1 j Ei), 1 xij Ei,

where xij is the number of the subset to which element j belongs. One can obtain the 

number of elements in each subset m of component i as 

him=
iE

j
ij mx

1

)(1  (5.18) 

If the number of CCGs in component i is less than Ei, then for some subset m him

must be equal to zero. 

The cost of element separation for the component i can be determined as 

iE

m
imii hcC

1

)(  (5.19) 

where ci(0) = 0 by definition. (Note that we include in the sum the maximal possible 

number of separated groups Ei. If Bi<Ei, the empty groups do not contribute to the 

cost Ci  since ci(0) = 0.) 

Concatenation of vectors xi for 1 i N determines the separation of elements in 

the entire system. The total MSS separation cost can be determined as 

iE

m
imi

N

i

hcC
11

tot )()(x  (5.20) 

where x={x1, …, xN}.

The optimal separation problem is formulated in [112] as finding the vectors   

x1, …, xN that maximize MSS survivability S subject to cost limitation: 

max)(xS subject to Ctot(x) C*  (5.21) 

In general, the problem (5.21) can be formulated for any other system performance 

measure O(x) obtained in presence of CCFs. 

5.2.1.2 Implementing the Genetic Algorithm 

In the problem considered, element separation is determined by vector x that 

contains N
i iEE 1 values. The solutions are represented by integer strings              

a = (a1, …, aE). For each f= 1
1

i
k kEj  item af of the string corresponds to item 

xij of the vector x and determines the number of group, the jth element of ith

component belongs to. Therefore, all the items af of the string a, corresponding to 

component i ),1( 1
1
1

i
k k

i
k k EfE  should vary in the range (1, Ei). Since 
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the random solution generation procedure can produce strings with elements 

randomized within the same range, to provide solution feasibility one must use a 

transformation procedure that makes each string element belonging to the proper 

interval. This procedure determines the value of xij as ).(mod1 fE a
i

 The range of 

values produced by the random generation procedure should be (1, ).max 1 i
N
i E

Consider, for example, an MSS with N = 2, E1 = 3, E2 = 4. The string of integers 

(4, 1, 2, 4, 3, 4, 2), generated in the range (1, 4), after applying the transformation 

procedure takes the form (2, 2, 3, 1, 4, 1, 3), which corresponds to the separation 

solution presented in Table 5.15. 

Table 5.15. Example of element separation solution

Component 1 Component 2 

CCG Elements CCG Elements 

1 - 1 1,3 

2 1,2 2 - 

3 3 3 4 

  4 2 

The following procedure determines the fitness value for an arbitrary solution 

defined by integer string a

1. Assign zero to the total cost Ctot.

2. For Ni1 : 

2.1. Determine the number of the group for each element of component i:

 )(mod1
0 jjEij ax

i
, 1 j Ei, where 

1

1
0

i

k
kEj  (5.22) 

2.2. For each group m, 1 m Ei : 

2.2.1. Create a list of MSS elements belonging to the group. (Their 

numbers are j0+j for all j such that xij = m.)

2.2.2. If the list is not empty (him>0), determine the u-function of the 

parallel elements belonging to the group using individual u-functions of 

the elements and the composition operators .
par

 In order to incorporate 

the group vulnerability into its u-function, apply the  operator (4.58) with 

 = i over the u-function of the group. 

   2.2.3. Add cost ci(him) to the total cost Ctot.

2.3. Determine the u-function of the entire component i using the composition 

operator
par

 over the u-functions of groups. 

3. Determine the u-function of the entire MSS using the composition operators 

par
and

ser
 over the u-functions of system components. 

4. Determine the system survivability index S for the given demand distribution. 

5. In order to let the GA look for the solution with maximal survivability S and 

with total cost Ctot not greater than the required value C*, evaluate the solution 

fitness as follows: 
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MS(a)  (Ctot(a) C*)1(Ctot(a)>C*)       (5.23) 

Example 5.6 

Consider the series-parallel oil transportation subsystem presented in Figure 5.1. 

The system belongs to the type of flow transmission MSS with flow dispersion and 

consists of four components with a total of 16 two-state elements. The nominal 

performance rates g (oil transmission capacity) and availability indices p of the 

elements are presented in Table 5.16. 

Figure 5.1. Structure of oil transportation subsystem 

The system should meet constant demand w = 5 (tons per minute). One can see 

that, in order to enhance the system reliability, redundant elements are included in 

each of its components. 

For each system component, the cost of gathering elements within a group is 

defined as a function of the number of elements in that group. This function is 

presented in Table 5.17. Since for each system component i ci(n+k)<ci(n)+ci(k) for 

arbitrary n and k, by minimizing the number of different groups in which MSS 

elements are distributed one can minimize the system cost. 

    Table 5.16. Parameters of the MSS elements 

Element no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

g 1.2 1.4 1.6 1.8 2 5 5 2 2.5 3.5 1.1 1.1 1.3 1.3 1.4 1.4 

p 0.97 0.95 0.94 0.93 0.98 0.98 0.98 0.99 0.97 0.98 0.98 0.98 0.99 0.99 0.98 0.98 

Table 5.17. Elements grouping cost 

No. of elements per group No. of 

component 1 2 3 4 5 6 

1 5.0 6.0 7.0 8.0 9.0 - 

2 9.0 11.0 - - - - 

3 2.0 3.0 4.0 - - - 

4 4.0 4.4 4.7 5.0 5.2 5.5 

The optimal separation problem was solved for two different values of group 

vulnerability vi = 0.05 and vi = 0.01. (The same vulnerability was considered for 
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groups of elements belonging to different MSS components 1 i N.) The solutions 

obtained by the GA are presented in Tables 5.18 and 5.19. These tables contain the 

distribution of MSS elements between groups within each component (the elements 

belonging to the same group are put in square brackets) and corresponding MSS 

survivability and total separation cost.

Table 5.18. System separation solutions for v = 0.05

Condition Separation S Ctot

Total separation {[1][2][3][4][5]} {[6][7]} {[8][9][10]} 

{[11][12][13][14][15][16]}

0.8618 73.0 

maxS {[1,4] [2,3] [5]}{[6] [7]}{[8,9,10]} 

{[11,15] [12,16] [13,14]} 

0.8771 52.2 

S  max, Ctot<50 {[1,2,3,4,5]} {[6] [7]} {[8,9,10]}

{[11,15] [12,16] [13,14]} 

0.8552 44.2 

S  max, Ctot<40 {[1,2,3,4,5]} {[6] [7]} {[8,9,10]}

{[11,12,13,14,15,16]}

0.8255 36.5 

Ctot min {[1,2,3,4,5]} {[6,7]} {[8,9,10]} 

{[11,12,13,14,15,16]}

0.7877 29.5 

Table 5.19. System separation solutions for v = 0.01

Condition Separation S Ctot

Total separation {[1][4][2][3][5]} {[6] [7]} {[8][9][10]}

{[11][12][13][14][15][16]}

0.9495 73.0 

maxS {[1,4] [2,3] [5]} {[6] [7]}{[8,9,10]}

{[11] [12] [13,14] [15] [16]} 

0.9509 59.4 

S  max, Ctot<50 {[1,2,3,4,5]} {[6] [7]}{[8,9,10]} 

{[11,15] [12,16] [13,14]} 

0.9453 44.2 

S  max, Ctot<40 {[1,2,3,4,5]} {[6] [7]} {[8,9,10]}

{[11,12,13,14,15,16]}

0.9379 36.5 

Ctot min {[1,2,3,4,5]} {[6,7]}{[8,9,10]}

{[11,12,13,14,15,16]}

0.9290 29.5 

Figure 5.2. MSS survivability functions for different separation solutions
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First, the maximal survivability solutions were obtained (no cost limitations). 

The maximal MSS survivability is achieved when not all the elements are separated 

from one another.  One can see that total separation provides poorer solutions. It is 

natural that, with an increase in vulnerability, the optimal number of different CCGs 

decreases, since additional groups contribute to additional overall exposure of the 

MSS to the impact (despite the fact that the smaller parts can be destroyed by an 

impact).

The same separation was obtained for both vulnerability values when MSS cost 

was limited. The less the separation cost allowed, the less the number of separated 

groups in the optimal solution. If all the elements within each component are 

gathered in the same group (no separation), then MSS survivability is at its lowest. 

In Figure 5.2 one can see the system survivability as a function of demand. For 

solutions which provide the greatest survivability S for w = 5, this index for w>5 is 

less than for the rest of the solutions. Indeed, the optimal separation provides the 

greatest probability of survival for combinations of elements that correspond to 

states in which the system performance is equal to five, while combinations 

corresponding to greater output performance rates are of lower importance. 

5.2.2 Optimal System Structure in the Presence of 
Common Cause Failures 

The generalization of the separation problem considered in the previous section is 

the problem of finding the structure of series-parallel MSSs (including the choice of 

system elements, their separation, and protection) in order to achieve a desired level 

of system survivability at a minimal cost [138]. This problem can be considered as a 

combination of the structure optimization (Section 5.1.2) and optimal separation 

(Section 5.2.1) problems. 

5.2.2.1 Problem Formulation 

An MSS consists of N components connected according to a reliability block 

diagram. Each component can contain a number of different but functionally 

equivalent mutually independent elements connected in parallel. Each element of 

type i and version b is characterized by its performance distribution gi(b), pi(b) and

cost ci(b). The elements for each component can be chosen from the list of available 

elements that contains Bi versions of elements for each component i.

The structure of system component i is defined by the numbers of the parallel 

elements of each version ibn  ( iBb1 ) chosen for this component. The vectors 

ni = (ni1, …, )
iiBn  )1( Ni  define the entire system structure. The total cost of 

the elements chosen for each component i can be calculated as 

iB

b=
iibi bcnC

1

el )(=  (5.24) 

The total number of chosen elements in each component i is 
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iB

=b
ibi n=E

1

 (5.25) 

The elements belonging to component i can be separated into e independent 

groups, where e can vary from 1 to Ei. For each group m within component i,

different levels of protection can be chosen im {1,…, i}. It is assumed that all the 

elements of component i belonging to the same protection group m can be destroyed 

by a total CCF with probability vi( im), which depends on the chosen protection 

level im and characterizes the group vulnerability. The failures of individual 

elements and CCFs are considered independent events.

The cost m of each CCG m depends on the types of element protected (number 

of components i), on the number of elements belonging to the group and on the 

chosen protection level im.

The elements' separation for each component i can be represented by the vector 

xi = (xij: 1 j Ei), 1 xij Ei, where xij is the number of the group to which element j

belongs. The number of elements him in each separated group m of component i can 

be obtained using Equation (5.18). Vectors i = ( im: 1 m Ei) determine the 

protection levels of each group within component i.

The cost of element separation and protection for component i can be 

determined as 

iE

m
imimii hC

1

sep
),(  (5.26) 

where i(0, im) = 0 by definition.

Concatenation of vectors ni, xi and i for 1 i N determines the structure of the 

entire system, including element separation and protection. The total MSS cost can 

be determined as 

])(),([][),,(
1 111

elsep
tot

i iE

m
i

B

b
ibimimi

N

i

N

i
ii bcnhCCC xn  (5.27) 

where n = {n1, …, nN}, x = { x1, …, xN } and ={ 1,…, N}.

The optimization problem is formulated as follows. Find vectors ni, xi and i for 

1 i N that provide the desired MSS survivability S* with the minimal cost: 

min),,(tot xnC subject to *),,( SS xn  (5.28) 

5.2.2.2 Implementing the Genetic Algorithm 

Consider substring am = (am1, …, amF), corresponding to ith system component. Let 

all the elements of the substring belong to the range (0, Bi+ i). We use the 

following rules to encode the structure of the ith MSS component using the 

substring.
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1. If aij Bi, aij determines the version of element included in the component:      

b = aij (aij = 0 means that no element is included). 

2. If aij > Bi, aij constitutes a separator and determines the protection level of the 

group of elements:   = aij Bi.

3. The adjacent string elements located between the beginning of the string and 

separator or between two separators are considered to belong to the same 

group with the protection level determined by the right separator. 

4. The last element of each substring aiF is always considered to be a separator. 

The corresponding protection level is determined as )(mod iFa
i

+1.

In order to determine an arbitrary structure of component i that contains up to Ei

elements, one has to use substring ai of length F = 2Ei (for the case when all the 

elements are separated).  The string of this length, corresponding to exactly Ei

elements gathered within a single protection group, contains one separator (aiF) and 

Ei 1 zeros. 

Concatenating substrings ai for i = 1, …, N, one obtains the string a which 

determines the structure of the entire MSS. In order to allow all the string elements 

distributed within the same range to represent feasible solutions, we determine this 

range as (0, i
Ni

i
Ni

B
11
maxmax ). When the string is decoded, we transform each 

string element a*ij, corresponding to ith component in the following way: 

 )*(mod 1 ijBij aa
ii

  (5.29) 

and apply rules 1-4 to the obtained value of aij. The transform (5.29) ensures that 

each aij belongs to the range (0, Bi+ i).

Example 5.7 

Consider, an MSS with N = 2, B1 = 3, 1 = 2, B2 = 4, 2 = 4. Let E1 = E2 = 5           

(F = 10). The string of integers generated in the range (0, 8)

 (4, 8, 1, 0, 5, 6, 3, 0, 1, 0, 3, 0, 8, 7, 1, 5, 4, 2, 1, 6) 

after transformation takes the form 

 (4, 2, 1, 0, 5, 0, 3, 0, 1, 0, 3, 0, 8, 7, 1, 5, 4, 2, 1, 6) 

After decoding the string using rules 1-4, we obtain 

 (1, 2, 1, 0, 2, 0, 3, 0, 1, 1, 3, 0, 4, 3, 1, 1, 4, 2, 1, 3)

(separators are underlined and their values are replaced with corresponding values 

of protection levels), which corresponds to the structure presented in Table 5.20. 

One can see that the string determines two empty groups for which protection level 

values have no meaning and should not be considered. 
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Table 5.20. Example of MSS structure encoded by integer string

No. of 

component

No. of 

group

Versions of elements 

belonging to the group 

Protection

level

 1 - 1 

1 2 2, 1 2 

 3 3, 1 1 

 1 3 4 

2 2 - 3 

 3 1 1 

 4 4, 2, 1 3 

The following procedure determines the fitness value for an arbitrary solution 

defined by integer string a:

1. Assign 0 to the total cost Ctot.

2. For 1 i N:

2.1. Decode substring ai, containing elements a(i 1)F+1 to aiF, of string a to 

obtain versions of elements belonging to different groups and corresponding 

protection levels. 

2.2. For each nonempty group m:

2.2.1. Determine cost of elements it contains in accordance with their 

versions and define the u-functions of these elements in accordance with 

their performance distributions.

2.2.2. Determine the u-function for the entire group using composition 

operator .
par

2.2.3. Determine group vulnerability vi( im) as a function of chosen 

protection level and apply the operator  (4.58) in order to obtain the u-

function for the protected group. 

2.3. Obtain the u-function of the component using 
par

operator over the u-

functions of the protected groups. 

2.4. Determine the cost of component in accordance with (5.24) and (5.26) 

and add this value to Ctot.

3. Determine the u-function of the entire MSS U(z) by applying the reliability 

block diagram method. 

4. Determine the MSS survivability for the system u-function and given demand 

distribution.

5. Determine the solution fitness as a function of the MSS cost and survivability 

as

M  Ctot(a) (1+S*  S) 1(S < S*)                     (5.30) 

Example 5.8 

A series-parallel MSS (power substation) consists of four components: power 

transformers; capacitor banks; output medium voltage line sections; blocks of 

commutation equipment. 
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 Each component should be built from elements of certain functionality (all the 

elements are elements with total failure). The cost, capacity and availability of 

elements that can be included in each component are presented in Table 5.21. 

Table 5.21. Parameters of available elements

No. of component No. of  version Capacity Availability Cost 

 1 1.2 0.97 3.1 

 2 1.6 0.92 4.2 

1 3 1.8 0.94 4.7 

 4 2.0 0.93 5.0 

 5 5.0 0.86 11.0 

 6 5.0 0.91 14.5 

 1 1.8 0.98 3.1 

2 2 3.6 0.98 6.0 

 3 5.4 0.96 8.8 

 1 1.4 0.9 6.6 

3 2 1.6 0.93 7.0 

 3 1.8 0.91 7.9 

 4 2.0 0.95 9.4 

 1 1.4 0.86 2.6 

4 2 2.6 0.91 6.0 

 3 3.8 0.93 7.9 

 4 5.0 0.85 9.4 

Within each component, the elements can be separated in an arbitrary way, but 

each new protection group requires additional investment. For the sake of simplicity 

in this example, the cost of separation and/or protection for each protection group 

does not depend on the number of elements it contains, but does depend strictly on 

the level of protection provided for this group. The descriptions and costs of 

different protection levels available for each component and the vulnerabilities 

corresponding to these protection levels are presented in Table 5.22. The system 

should meet constant demand w = 5.

Table 5.22. Characteristics of available protection levels

No. of 

component

Type of 

component

Protection

level

Protection

description

Vulnerability Cost

  1 Outdoor location 0.35 0.1 

1 Transformers 2 Indoor location 0.15 4.1 

  3 Underground 0.05 15.7 

2 Capacitors 1 Outdoor location 0.01 1.0 

  1 Overhead 0.60 1.0 

3 Lines 2 Overhead insulated 0.35 5.5 

  3 Underground 0.15 17.0 

Commutation 1 Outdoor location 0.10 1.1 

4 blocks 2 Indoor location 0.03 4.2 

The solutions of the optimization problem for four different values of desired 

system survivability S* {0.85, 0.90, 0.95, 0.99} are presented in Figure 5.3. In this 

figure each system element is marked with its version number and each protection 
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group is encased into a rectangle (dashed for protection level 1, regular for 

protection level 2 and double lined for protection level 3). In Figure 5.4 the system 

survivability functions S(w) for the four structures obtained are presented. 

Figure 5.3. Lowest cost MSS structures obtained by the GA 
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Figure 5.4. MSS survivability functions S(w) for four obtained structures 

5.2.3 Optimal Multilevel Protection 

In systems consisting of nonidentical elements and having complex multilevel 

protection, different protections play different roles in providing for the system's 

survivability. Subject to investment cost limitations, one usually has to find a 

minimal cost configuration of protections that provides desired system survivability 

[139].

5.2.3.1 Problem Formulation 

Assume that H different protections can be installed in a given series-parallel 

system and for each protection h its cost ch and vulnerability vh are known. Define a 

binary vector a in which a(h) = 1 (1 h H) means that protection h is installed and 

a(h) = 0 means that the protection is not installed. Note that in the model considered 

the protection decisions are binary (either protect or not) and the parameters of each 

protection are fixed. 

For the given system structure and the given parameters of system elements and 

protections the system's survivability depends only on the vector a. The total 

protection cost is 

H

h
h hacC

1
tot )()(a   (5.31) 

The optimal protection problem is formulated as finding the minimal cost set of 

protections that provides the required level of the system survivability: 

min)(tot aC  subject to S(a) S* (5.32) 
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where S* is a desired level of system survivability. 

5.2.3.2 Implementing the Genetic Algorithm 

In the problem considered, the protections chosen are determined by binary vectors 

a  that contain H elements. Any binary vector a can represent a solution in the GA. 

For each given vector a the GA solution decoding procedure determines system 

protection cost using Equation (5.31) and evaluates the system survivability S(a)

using the algorithm described in Section 4.4.3. In order to let the GA look for the 

solution with minimal total cost and with S(a) not less than the required value S*,

the solution quality (fitness) is evaluated as follows: 

*))((1))(*1()( SaSaSSCM a  (5.33) 

Example 5.9 

Consider a series-parallel system consisting of 12 multi-state elements (Figure 5.5). 

The performance distributions of the elements are presented in Table 5.23. Each 

element can have individual protection. In addition, different groups of elements 

can be protected. The list of possible protections is presented in Table 5.24. This list 

includes the set of protected elements, the expected survivability and the cost of 

each protection. 

Figure 5.5. Structure of series-parallel system

All of the protections can be chosen independently except protections 20, 21, 22 

and 27, 28. Only one out of three protections 21, 22 and 23 can be chosen in order 

to protect two out of three elements from the set {7, 8, 9}. Similarly, only one out 

of two protections 27 and 28 can be chosen in order to protect the first or last pair of 

subsystems out of three subsystems connected in series. This constraint can be 

easily taken into account in the GA solution decoding procedure by using the 

following rules: 

if a(20) = 1 assign a(21) = a(22) = 0

then if a(21) = 1 assign a(22) = 0 

and if a(27) = 1 assign a(28) = 0. 
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Table 5.23. Performance distributions of available elements

No. of element (j) 1 2 3 4 5 6 

State (k) pjk gjk pjk gjk pjk gjk pjk gjk pjk gjk pjk gjk

1 0.75 7 0.75 7 0.75 4 0.75 4 0.75 4 0.75 4 

2 0.15 5 0.15 5 0.15 2 0.15 2 0.15 2 0.15 2 

3 0.05 3 0.05 3 0.1 0 0.1 0 0.1 0 0.1 0 

4 0.05 0 0.05 0 - - - - - - - - 

No. of element (j) 7 8 9 10 11 12 

State (k) pjk gjk pjk gjk pjk gjk pjk gjk pjk gjk pjk gjk

1 0.85 5 0.85 5 0.10 6 0.80 8 0.95 8 0.85 10 

2 0.05 3 0.05 3 0.70 4 0.15 5 0.05 0 0.10 7 

3 0.10 0 0.10 0 0.15 2 0.05 0 - - 0.05 0 

4 - - - - 0.05 0 - - - - - - 

Table 5.24. Characteristics of possible protections

No. of 

protection

Set of protected 

elements

Protection

vulnerability

Protection

cost

No. of 

protection

Set of protected

elements

Protection

vulnerability

Protection

cost

1 1 0.05 1.5 16 5, 6 0.15 2.2 

2 2 0.05 1.5 17 1, 3, 4 0.20 3.8 

3 3 0.10 1.0 18 2, 5, 6 0.20 3.8 

4 4 0.10 1.0 19 1-6 0.40 7.2 

5 5 0.10 1.0 20 7, 8 0.30 3.0 

6 6 0.10 1.0 21 8, 9 0.30 3.0 

7 7 0.15 0.8 22 7, 9 0.30 3.0 

8 8 0.15 0.8 23 7-9 0.15 4.2 

9 9 0.15 0.8 24 11, 12 0.35 3.0 

10 10 0.05 2.2 25 11, 12 0.10 5.0 

11 11 0.15 1.3 26 10-12 0.25 4.3 

12 12 0.15 1.5 27 1-9 0.35 5.2 

13 3, 4 0.40 1.5 28 7-12 0.35 5.2 

14 3, 4 0.15 2.2 29 1-12 0.30 7.0 

Table 5.25. Solutions obtained for w = 5

S* S Ctot Chosen protections 

0.85 0.862 16.8 1, 2, 4, 5, 6, 7, 8, 10, 29 

0.90 0.901 20.1 1-10, 15, 29 

0.95 0.950 42.7 1-12, 17, 18, 23, 26, 27, 29 

Max possible 0.953 79.7 All except 21, 22, 28 

Table 5.26. Solutions obtained for w = 6

S* S Ctot Chosen protections 

0.80 0.807 17.2 10, 11, 12, 27, 29 

0.85 0.851 22.6 1-5, 7-12, 16, 29 

0.90 0.901 35.1 1-12, 23, 26, 27, 29 

Max possible 0.913 79.7 All except 21, 22, 28 
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Table 5.27. Solutions obtained for w = 7

S* S Ctot Chosen protections 

0.75 0.752 14.4 10, 27, 29 

0.80 0.813 21.4 1-12, 29 

0.85 0.857 28.8 1-10, 25, 27, 29 

Max possible 0.882 79.7 All except 21, 22, 28 

The solutions obtained for different w and S* are presented in Tables 5.25, 5.26, 

and 5.27, and include the system survivability obtained, the total protection cost and 

the list of chosen protections. The maximal possible system survivability (achieved 

when all the protections except 21, 22 and 28 are chosen) is given for each demand 

level for comparison. The system performance distributions for the solutions 

obtained are given in Figure 5.6. The optimal protection configurations for S* = 

0.85 are presented in Figure 5.7. 

Figure 5.6. System performance distributions for solutions obtained for w = 5 (A), w = 6 (B) 

and w = 7 (C) 
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Figure 5.7. Configurations of protections obtained for S* = 0.85. 

Observe that the greater the survivability level achieved, the greater is the cost 

of further survivability improvement. The cost-survivability curves are presented in 

Figure 5.8. Each point of these curves corresponds to an optimal or near-optimal 

solution obtained by the GA. 
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Figure 5.8. Survivability-cost curves for the optimal solutions 

5.2.4 Optimal Structure of System with Multilevel Protection 

When systems aimed at performing their task in a hostile environment are 

developed, the designer has to make a decision concerning the system’s structure. 

The proper combination of system structure and system protection allows for its 

greatest survivability. 

In the generalized structure optimization problem one has to: 
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- find the optimal system structure by choosing the appropriate product (version 

of a system element) from the list of available products for each type of 

equipment;

- allocate the chosen elements among the different protection groups and define 

the hierarchy of the multilevel protection in the system; 

- choose the method of protection for each protection group. 

5.2.4.1 Problem Formulation 

Consider a series-parallel system consisting of N components connected in series. 

Each component contains elements connected in parallel. Different versions and 

numbers of elements may be chosen for any given system component. Elements are 

characterized by performance distributions and costs, according to their versions. 

The states of MSS elements are mutually statistically independent.

For each component i, there exists a list of Bi different versions of available 

elements. A performance distribution gi(b), pi(b) (1 b Bi) and cost ci(b) can be 

specified for each version b of element of type i. Let Ei be the maximal possible 

number of elements in component i. The structure of this component can be defined 

by a vector containing numbers of versions of elements chosen for the component bi

= (bij: iEj1 ), where .0 iij Bb  Including a dummy version zero 

corresponding to the absence of elements allows one to represent a different number 

of elements chosen for component i by vectors bi of the same length Ei. The total 

cost of elements chosen for the component i is 

iE

j
ijii bcC

1

el )(  (5.34) 

The chosen Ei elements can be separated into Ei independent protection groups 

(some of these groups can be empty and some can contain several elements). The 

partitioning among the groups can be represented by vector r1
i = ( r1

i j: iEj1 ), 

where r1
ij is the number of the first-level group to which element j belongs. The 

groups are protected by first-level protection. For each group m within component i

different methods of protection  1
im can be chosen  1

im {0,…,  1
i}, where  1

im = 0 

corresponds to absence of protection. The vector ),...,( 11
1

iiEi   defines the choice of 

the first-level protection methods in component i.

The Ei protected first-level groups can be further separated into Ei second-level 

groups and protected using methods 2
im {0,…, 2

i}. These second-level protection 

groups can be further separated and protected by the third-level protection and so 

forth up to the Li protection level.

The vectors r
e
i = (re

ij: iEj1 ) and  e
i = (  e

im: iEj1 ) determine the 

separation and protection of each level e. Having the vector re
i one can obtain the 

number of nonempty inner level groups belonging to each group m of level e: xe
im.

Each e-level protection in component i that uses protection method  can be 

destroyed with probability ve
i( ). Therefore, the vulnerability of protection of 
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e-level protection group m is ve
i(

 e
im). Any unprotected group has vulnerability 

ve
i(0) = 1. 

The cost of protection of the e-level group m depends on the types of element 

protected (number of component i), on the number of nonempty inner groups 

belonging to the given group xe
im and on the chosen protection method  e

im. This 

cost can be expressed as ce
i(x

e
im,  e

im), where ce
i(0,  e

im) = 0 by definition. 

Assume that component i has Li protection levels. Each level has Ei protection 

groups (some of these groups can be empty). The total cost of protections in the 

component i is 

ii E

m

im
e

im
e

i
e

L

e
i xcC

11

prot
),(  (5.35) 

In a similar way one can define the cost protection of components connected in 

series .prot
compC  Considering each component as equivalent element that can belong 

to any protection group one can define the partition of components among e-level

groups using vector r
e
comp and the methods of protection for these groups using 

vector  e
comp (the number of protection groups on this level can not be greater than 

N). The vectors re
comp determine number of components in each group m: xe

comp,m.

Having the vectors re
i and  e

i for 1 e Li and 1 i N, the vectors re
comp and  e

comp

for 1 e Lcomp and the vectors bi for 1 i N one can determine the structure of the 

entire system. The total MSS cost can be determined as 
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 (5.36) 

where

},...,,...,,...,,...,{
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1
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NN

N

N rr,rrrr

bb

},...,,,...,,...,,...,{ comp1
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1
comp

1L
1

1
1

LL
NN

N   (5.37)

The problem of structure optimization is formulated in [140] as finding the sets 

,,  that provide the desired level of MSS survivability S* with the minimal 

cost:

 min),,(totC subject to *),,( SS   (5.38) 
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5.2.4.2 Implementing the Genetic Algorithm 

As described in the previous section, three things determine the structure of an 

MSS:

- the list of version numbers of elements chosen for each component (determined 

by the set ),

- partition of elements and lower level protection groups between protection 

groups of each level within each component and partition of components and 

lower level groups between protection groups consisting of serially connected 

components (determined by the set ),

- methods of protection for each protection group  (determined by the set ).

These three sets can be combined within an integer string a = (a1, …, aN, acomp),

where ai (1 i N) is a concatenation of the vectors bi, r
e
i and  e

i (for 1 i Li) and 

acomp is a concatenation of the vectors re
comp and  e

comp (for 1 e Lcomp). Each one of 

the vectors bi, r
e
i and e

i has Ei elements, while each one of vectors re
comp and  e

comp

has N elements. The total length of the string representing the solution is 

N

i
iii NLELE

1
comp2)2(  (5.39) 

Note that all of the string values make sense only in the case when each 

component has the maximal possible number of elements and all of these elements 

are separated from one another (all of the protection groups are not empty).  

Otherwise, some of values of the string should be ignored by the decoding 

procedure.

In the feasible solution the values of substring bi should be distributed in the 

range (0, Bi), the values of substrings re
i and r

e
comp should be distributed in the range 

(1, Ei) and (1, N) respectively, and the values of substrings  e
m and  e

comp should be 

distributed in the range (0, e
i) and (0, e

comp) respectively. 

In order to allow all the string elements distributed within the same range to 

represent feasible solutions, we determine this range as 

 (0, })max

comp1

},max
1

,,{max
1

,max{ comp
ee

iii
LeiLe

EB
Ni

N  (5.40) 

When the string is decoded, we transform each string element a corresponding 

to each substring bi, r
e
i , r

e
comp,

 e
m and  e

comp in the following way: 

),(mod 1 ab
iBij 1)(mod ar

iEij
e ,  1)(mod,comp ar Nj

e

 ),(mod
1

a
i

eim
e )(mod

1comp,
comp

aem
e   (5.41) 

The unification of the distribution range of all the string elements simplifies the 

string generation procedure, as well as mutation and crossover operators. 
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Example 5.10 

Consider a series-parallel MSS with N = 2, B1 = B2 = 3, E1 = E2 = 3, L1 = 2, L2 = 1,

Lcomp = 2, 1
1 = 3, 2

1 = 2, 1
2 = 3, 21

comp comp = 2. In this example we will use 

the notation e
imPG  to designate protection group m of level e within component i.

According to (5.40) the solution encoding string should consist of integer 

numbers distributed in the range (0, 3). Consider, for example, the following string 

a obtained after transformation (5.41): 

(1,3,1, 3,3,2, 2,3,2, 1,2,2, 1,1,2, 2,0,2, 1,1,1, 1,2,3, 1,2, 0,2, 1,1, 2,2). 

In the first part of this string (a1) the substrings (1,3,1), (3,3,2), (2,3,2), (1,2,2) 

and (1,1,2) represent  b1, r
1

1,
 1

1, r
 2

1 and  2
1 respectively. The versions of elements 

chosen to fill positions 1, 2 and 3 of the first component are, according to b1, 1, 3 

and 1 respectively. According to r1
1, elements located at positions 1 and 2 belong to 

PG31
1, and element located in position 3 belongs to PG21

1 (PG11
1 is empty). 

According to  1
1, the PG21

1 has protection method 3 and the PG31
1 has protection 

method 2 (the first number of  1
1 is ignored because PG11

1 is empty). Substring r 2
1

defines the distribution of first-level protection groups among the groups of the 

second level. According to r 2
1, PG21

1 and PG31
1 belong to PG22

1 (first element of 

r
2

1 is ignored because PG11
1 is empty). PG12

1 and PG32
1 remain empty. The 

protection method for PG22
1 according to second element of  2

1 is 1 (the first and 

third elements of  2
1 are ignored). 

In the second part of the string (a2) substrings (2,0,2), (1,1,1) and (1,2,3) 

represent  b2, r
1

2 and  1
2 respectively. Two elements of version 2 are chosen to fill 

positions 1 and 3 of the second component according to b2 (0 corresponds to 

absence of any element).  According to r1
2, elements located at positions 1 and 3 

belong to PG11
2 (PG21

2 and PG31
2 remain empty). According to  1

2, the PG11
2 has 

protection method 1 (the second and third numbers of  1
2 are ignored because 

PG21
2 and PG31

2 are empty).

In the last part of string (acomp), substrings (1, 2), (0, 2), (1, 1) and (2, 2) represent

r
1

comp,
1

comp, r
2

comp and 2
comp respectively. According to r

1
comp, component 1 

belongs to PG11
comp and component 2 belongs to PG21

comp. According to 1
comp, the

PG11
comp has no protection (protection method 0) and the PG21

comp has protection 

method 2. According to r
 2

comp, both PG11
comp and PG21

comp belong to PG12
comp.

According to  2
comp, this protection group has protection method 2 (the second 

number of  2
comp is ignored because PG22

comp is empty). 

One can see the structure of the system encoded by the given string in Figure 

5.9. In this figure, each protection denoted by an ellipse is numbered according to 

the protection method chosen. 
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Figure 5.9. MSS structure encoded by the integer string 

The following procedure determines the fitness value for an arbitrary solution 

defined by integer string a:

1.  Assign 1 to the number of component i. Assign 0 to the total cost Ctot.

2. Decode substring ai and obtain versions of elements belonging to the 

component i, structure of protection groups and corresponding protection methods 

at each protection level. Determine cost and performance distributions of elements 

in accordance with their versions and define d-functions of these elements. 

3. Calculate the cost of elements and protections in the component i using

Equation (5.34) and (5.35) and add this cost to Ctot.

4. For each protection level e (from e = 1 to e = Li), obtain d-functions of 

protected groups and replace them by equivalent elements using operators (4.60) 

and (4.62) over the corresponding d-functions.

5. Obtain the d-function of the component i using operator 
par

 over the d-

functions of nonempty protection groups of Li level. 

6.  Increment i and if i N return to step 2. 

7. Decode substring acomp and obtain structure of protection groups and 

corresponding protection methods at each protection level.

8.  Calculate the cost of protections of serially connected components and add 

this cost to Ctot.

9.  For each protection level e (from e = 1 to e = Lcomp), obtain the d-functions of 

the protection groups and replace them by equivalent elements using operators 

(4.60) and (4.62). 

10. Obtain the d-function of the entire MSS using operator 
ser

over the d-

functions of the nonempty protection groups of the Lcomp level. 

11. Evaluate the system survivability S for the given demand distribution using 

the d-function corresponding to the entire MSS. 

12. So that the GA will search for the solution with minimal total cost and with 

survivability not less than the required value S*, evaluate the solution fitness using 

Equation (5.30).

1

1

3

3

12

2

2

2

1
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Example 5.11 

Consider the same series-parallel multi-state power substation system that was 

presented in Example 5.8. The parameters of this system are N = 4, B1 = 6, B2 = 3,

B3 = B4 = 4; Ei = 10 for e = 1, …, 4;  L1 = L2 = L3 = L4 =  Lcomp = 2; e
1 = 3, e

2 = 1, 
 e

3 = 3, e
4 = 2 for e = 1,2;  1

comp = 3,  2
comp = 2. 

The elements within each component can have two level protections (different 

types of protection shield and casing). The entire components can be allocated 

within protecting constructions and distributed among different protected sites. 

While the cost and vulnerability of the shields and the casings do not depend on the 

number of protected elements, the number of protected components strictly affects 

the protection cost and vulnerability. The parameters of the available protections 

within the components are presented in Table 5.28. The parameters of protections 

of the groups of the entire components are presented in Table 5.29.

The structure optimization problem was solved for four different values of 

desired system survivability *S {0.85, 0.90, 0.95, 0.99}. One can see the solutions 

obtained in Figures 5.10-5.13, where the system elements are marked with their 

version numbers and each protection group is encased in an ellipse numbered in 

accordance with the level and the chosen method of protection (the marks have the 

form level/method). Ellipses corresponding to the different protection levels have 

different types of line (solid lines represent the protections for elements within the 

components and dashed lines represent the protections of the entire components). 

Observe that in the optimal solutions some protections do not appear (for example, 

the protection of level 1 in components 2 and 3 in Figure 5.10). This corresponds to 

protection method 0 chosen by the GA for the given protection level. 

Table 5.28. Characteristics of protections available within components

No. of 

component

Protection

level e

Protection

method

Protection

vulnerability v

Protection

cost c

  1 0.4 0.2 

 1 2 0.3 2.1 

1  3 0.1 10.7 

  1 0.35 0.1 

 2 2 0.15 4.1 

  3 0.05 15.7 

2 1 1 0.1 1.2 

 2 1 0.01 1.0 

  1 0.5 2.0 

 1 2 0.37 4.5 

3  3 0.13 12.0 

  1 0.60 1.0 

 2 2 0.35 5.5 

  3 0.15 17.0 

 1 1 0.2 1.5 

4  2 0.05 4.7 

 2 1 0.10 1.1 

  2 0.03 4.2 
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Table 5.29. Characteristics of protections available for entire components

Protection

level e

Protection

method

No. of protected 

components

Protection

vulnerability v

Protection cost 

c

  1 0.42 2.0 

 1 2 0.44 2.2 

  3 0.50 2.9 

  4 0.55 3.5 

  1 0.23 4.1 

1 2 2 0.25 4.6 

  3 0.30 6.4 

  4 0.35 7.3 

  1 0.17 5.4 

 3 2 0.19 6.0 

  3 0.25 7.7 

  4 0.30 8.5 

  1 0.38 4.0 

 1 2 0.39 4.2 

  3 0.40 4.3 

2  4 0.41 4.4 

  1 0.33 8.1 

 2 2 0.35 8.6 

  3 0.38 9.4 

  4 0.39 10.3 

Figure 5.10. Lowest cost MSS with multilevel protection for S* = 0.85 
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Figure 5.11. Lowest cost MSS with multilevel protection for S* = 0.90

Figure 5.12. Lowest cost MSS with multilevel protection for S* = 0.95 
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Figure 5.13. Lowest cost MSS with multilevel protection for S* = 0.99

5.3 Optimal Reliability Enhancement of Multi-state 
System Elements 

The optimal element reliability enhancement problems belong to the class of 

reliability allocation problems [141]. Enhancing the reliability of the system’s 

elements by performing special actions leads to the improvement of the system’s 

overall performance; however, it increases the system’s cost. In MSSs, where the 

roles of different elements for improving the system’s performance depend on both 

their performance distribution and their place in the system, the optimal distribution 

of the limited maintenance resources is a complicated combinatorial problem. 

The optimal element reliability enhancement presumes knowledge of 

dependencies between the amount of resources applied to improve the reliability of 

the system’s elements and the extent of the increase of their reliability indices.  The 

optimization problem lies in the optimal distribution of the limited resources among 

the MSS elements in order to achieve the greatest possible system performance (or 

in order to provide the desired level of performance by the minimal amount of 

resources).

An example of such a problem is a reliability growth test allocation problem. In 

this problem, models are used that predict the reliability of the system elements as a 

function of testing time. The testing time for each system element should be 

determined in order to maximize the entire system’s reliability when total testing 

resources are limited.
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Another example is optimizing the maintenance policy. Having estimations as to 

the influence of different maintenance actions on the elements’ reliability, one can 

evaluate their influence on the entire complex MSS containing elements with 

different performance rates and reliabilities. An optimal maintenance policy can be 

developed that would answer the following questions: "Which elements should be 

the focus of the maintenance activity?" and "What should be the intensity of this 

activity?".

Since both the maintenance activity and the incorporation of redundancy 

improve MSS reliability, the question arises as to what is more effective. In other 

words, should the designer prefer a structure with more redundant elements and 

invest less in maintenance or vice versa? The optimal compromise should minimize 

the MSS cost while providing its desired reliability. The joint maintenance and 

redundancy optimization problem is to find this optimal compromise while taking 

into account the differences in the reliability and the performance rates of the 

elements that compose the MSS. 

Finally, the most general optimization problem is optimal multistage 

modernization of MSSs subject to the reliability and the performance requirements. 

In order to solve this problem, one should develop a minimal-cost modernization 

plan that includes maintenance, modernization of the elements, and system 

expansion actions. The objective is to provide the desired reliability level while 

meeting the increasing demand during the entire operation time of the MSS. 

5.3.1 Optimization of Multi-state System Reliability Growth 
Testing

Reliability growth testing (RGT) is an important part of "chamber-type" reliability 

testing programmes that are aimed at developing corrective actions. Analysis of 

hardware-experienced RGT and field usage shows that RGT combined with 

environmental stress screening and reliability qualification testing is the most 

effective method of improving system reliability when system design is new and 

unproven. RGT begins in the early stages of the design and development process.  It 

involves conducting tests in which actual usage stresses are simulated. All failures 

observed are analyzed to identify their causes and to make corresponding changes 

in the design aimed at preventing or minimizing future occurrences of failures of 

the observed type. 

RGT is widely adopted as a systematic method of planning developmental 

testing and measuring the effectiveness of reliability growth actions. It is effectively 

implemented in numerous fields from complex electronic systems [142], nuclear 

technology [143] and computer hardware design [144] to automotive and cellular 

telephone industries [145], defence [146] and software development [147]. 

Different models of reliability growth during RGT were developed for tracking the 

progress of reliability improvement, measuring the effectiveness of RGT, and 

anticipating the rate of further improvements [147-149]. 

For complex and large systems, it is usually impossible or prohibitively 

expensive to conduct RGT for an entire system. In these cases, RGT is conducted 



234 The Universal Generating Function in Reliability Analysis and Optimization 

at the level of system elements or subsystems. As demonstrated by Rajgopal and 

Mazumdar [150], conducting reliability qualification testing at the subsystem level 

is, in many cases, less expensive (for example, when the system assembly cost is 

very high). The benefit from RGT of different elements can be different depending 

on the maturity of their design and on their importance in the system. In conditions 

of limited development times and budgets it is important to allocate testing 

resources in a manner that maximizes resultant benefits. The problem of optimal 

allocation of testing resources for subsystem-level RGT was formulated by Coit 

[151]. He developed a method for optimally allocating testing resources between 

different elements arranged in a series configuration in a binary system. In this 

section, we consider an extension of Coit's method to MSSs. 

5.3.1.1 Problem Formulation 

Following [151], we adopt the Crow/AMSAA reliability model in which failure 

intensity h( ) for each system element is expressed as a function of development 

test time  as follows: 

 h( )= 1 (5.42) 

where  and  are model parameters ( >0, 0< <1). This model is based on the 

assumption that the failures during time  occur as a non-homogeneous Poisson 

process with decreasing failure intensity. After the completion of RGT at time ,

subsequent failures occur in accordance with a homogeneous Poisson process at a 

constant rate of h( ). It is also assumed that failure inter-arrival times are 

exponentially distributed after the completion of RGT. Therefore, the mean inter-

arrival time (MTTF) can be expressed as

h
1

1 )(MTTF  (5.43) 

For non-repairable elements, their reliability r after performing RGT during 

time  can be expressed by the following function of time t:

)exp())(exp()( 1tthtr  (5.44) 

while for repairable elements their steady-state availability A is estimated as

A=MTTF/(MTTF+MTTR) (5.45) 

If some initial testing has already been performed during time 0 before the 

testing resource allocation, the function h( ) should be replaced by h( + 0).

Consider a series-parallel system consisting of N two-state elements. Each 

element j is characterized by its nominal performance rate gj1, parameters of 
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reliability growth model j and j and mean time to repair MTTR (for repairable 

systems). The MSS is supposed to meet a variable demand with distribution w, q.

For a given RGT time j one can evaluate the expected reliability (or 

availability) of element j after completion of development testing. Therefore, vector                   

 = ( j: 1 j N) defines the entire MSS reliability R( , w, q, t) (or availability A( ,

w, q)) achieved due to RGT. If for each system element j a resource cj needed for its 

testing per unit time is given, then the total resource for the RGT C is determined as 

N

j
jjcC

1

)(  (5.46) 

  For the total resource C* available for RGT, the following two optimization 

problems can be formulated [152]: 

1. Find testing time distribution which provides maximal MSS reliability 

during specified operation time T subject to the resource constraint (for non-

repairable MSS): 

R( , w, q, T)  max subject to C( ) C* (5.47) 

2. Find testing time distribution which provides maximal MSS availability 

A( , w, q) subject to the resource constraint (for repairable MSS): 

A( , w, q)  max subject to C( ) C* (5.48) 

5.3.1.2 Implementing the Genetic Algorithm 

The natural representation of testing times distribution is by an N-length integer 

string in which the value in the jth position corresponds to the testing time (in 

hours) of the jth element of the MSS. One can see that arbitrary integer strings 

cannot guarantee feasibility of solution because of constraint violation. To provide 

solution feasibility, the string a* = (a*1,…,a*N) should be normalized in the 

following way: 

N

k
kkjj acaCa

1

** /*  (5.49) 

for each 1 j N. The values of j for each MSS element can be obtained now from 

an arbitrary integer string: j = aj . Note that the range of initial distribution of 

integer numbers a*j  does not affect solution feasibility; rather it defines the 

measure of "recognition" provided by optimization. Indeed, the greater the range, 

the smaller the variation of time distribution that can be encoded by string a*.

The following procedure determines the fitness value for an arbitrary solution 

defined by integer string a*:
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1. Normalize string a* using (5.49) and assign values of testing time  to each 

MSS element. 

2. Determine reliability rj(T) of each element 1 j N at time T using (5.44) or 

availability Aj using (5.43) or (5.45).

3. Define for each element j its u-function in the form

uj(z)=rj(T) 1jg
z +(1 rj(T))z0 (for non-repairable systems) or

uj(z)=Aj
1jg

z +(1 Aj)z
0 (for repairable systems). 

4. Determine the entire system u-function using the reliability block diagram 

method.

5. Obtain the MSS reliability at time T, R( , w, q, T), (for non-repairable 

systems) or steady-state availability A( , w, q) (for repairable systems) for the given 

demand distribution w, q using the system u-function obtained.

6. Evaluate the solution fitness as R( , w, q, T) or A( , w, q).

Example 5.12 

Consider the series-parallel MSS consisting of four components connected in series 

in Figure 5.14. The system contains 11 elements with different performance rates 

and reliability-related parameters. 

First, assume that all the system elements are repairable. The element’s nominal 

performance rate, RGT model parameters  and , initial testing times 0, and 

MTTR (in hours) are presented in Table 5.30. The allowable cumulative test time is 

ttest =30,000 h. (Since the test time is the only limited resource, cj is set to 1 for each 

element and C* = ttest.) The demand distribution is presented in Table 5.31. 

Figure 5.14. Reliability block diagram of series-parallel MSS

Table 5.30. Parameters of repairable MSS elements

No. of element g  0 c MTTR

1 0.8 0.02 0.57 125 1 2 

2 1.0 0.04 0.51 125 1 2 

3 0.2 0.05 0.58 1 1 8 

4 0.2 0.05 0.58 1 1 8 

5 0.2 0.10 0.40 250 1 8 

6 0.2 0.10 0.40 250 1 8 

7 0.3 0.06 0.65 100 1 12 

8 1.2 0.01 0.52 1 1 24 

9 0.4 0.02 0.60 150 1 15 

10 0.4 0.02 0.60 150 1 15 

11 0.4 0.02 0.60 150 1 15 

1
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3
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    7 
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    9 
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   11 
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Table 5.31. Demand distribution

w 1.0 0.8 0.6 0.4 0.2 

q 0.10 0.55 0.20 0.05 0.10 

Table 5.32. RGT time distribution for repairable MSS

MTTF ANo. of 

element No RGT RGT No RGT RGT 

1 0 699 699 0.9971 0.9971 

2 522 522 1169 0.9962 0.9983 

3 2984 34 993 0.8117 0.9920 

4 2984 34 993 0.8117 0.9920 

5 1634 687 2307 0.9885 0.9965 

6 1634 687 2307 0.9885 0.9965 

7 6183 129 547 0.9146 0.9785 

8 6786 192 13279 0.8890 0.9982 

9 2424 618 1928 0.9763 0.9923 

10 2424 618 1928 0.9763 0.9923 

11 2425 618 1928 0.9763 0.9923 

The system availability before conducting RGT for the given demand 

distribution was A(w, q) = 0.813. The best solution obtained by the GA yields A(w,

q) = 0.991. The RGT time distribution for this solution is presented in Table 5.32.

This table also contains the MTTF and availability estimates obtained for each 

element of the MSS before and after conducting RGT. One can also compare the 

system availability functions A(w) obtained from system PD before and after 

conducting RGT that are presented in Figure 5.15. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2
w

A

RGT No RGT

Figure 5.15. Availability function for repairable MSS 

Now, assume that a system with the same structure consists of non-repairable 

elements. The nominal performance and reliability parameters of these elements are 

presented in Table 5.33, as well as the testing cost per time unit. The maximal 

allowable total cost of RGT is C* = 10,000. The system operation time during 

which its reliability index R(T) should be maximized is T = 8760 h (1 year). 
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Table 5.33. Parameters of non-repairable MSS elements

No. of element g 0 c

1 1.0 0.003 0.44 25 0.20 

2 1.0 0.005 0.41 25 0.28 

3 0.4 0.008 0.38 0 0.28 

4 0.4 0.008 0.38 0 0.28 

5 0.4 0.007 0.40 10 0.26 

6 0.4 0.007 0.40 10 0.26 

7 0.6 0.009 0.35 20 0.40 

8 1.3 0.001 0.32 0 0.19 

9 0.6 0.005 0.40 20 0.30 

10 0.5 0.008 0.28 10 0.30 

11 0.4 0.010 0.24 10 0.36 

The best solution obtained for demand distribution presented in Table 5.31 

yields R(w, q, T) = 0.9548. One can see the variation of reliability index R(w, q, t)

of the entire MSS for 0 t T in Figure 5.16. The best RGT time distribution 

obtained is presented in Table 5.34, along with testing cost, MTTF, and reliability at 

time T of each element. 

0.95

0.96

0.97

0.98

0.99

1

0 1752 3504 5256 7008 8760
t

R

Figure 5.16. Reliability function for non-repairable MSS 

Table 5.34. RGT time distribution for non-repairable MSS

No. of element Testing cost c MTTF r(T)

1 5667 1133.40 96023 0.9128 

2 4143 1160.04 66681 0.8769 

3 2081 582.68 37537 0.7919 

4 2081 582.68 37537 0.7919 

5 2191 569.66 36175 0.7849 

6 2192 569.92 36185 0.7850 

7 2080 832.00 45828 0.8260 

8 5558 1056.02 1100005 0.9921 

9 6139 1841.70 93902 0.9109 

10 2813 843.90 136227 0.9377 

11 2300 828.00 150015 0.9433 
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5.3.2 Optimization of Cyclic Replacement of Multi-state System 
Elements

When a system consists of elements having hazard rates that increase with time, a 

perfect preventive maintenance is aimed at reducing the hazard rates by making the 

elements "as good as new", or by replacing the elements with new ones. Further on, 

we will refer to such perfect preventive maintenance as preventive replacement 

(PR). An alternative type of maintenance activity, corrective maintenance, is aimed 

at making the system operable by the minimal cost when a failure occurs. Such an 

activity, named minimal repair (MR), that enables the system element to continue 

its work but does not affect the hazard rate of the element may be much less 

expensive. PR of elements with high risk of failure reduces the chance of failure, 

but can cause significant expenses, especially in systems with a high replacement 

rate. Maintenance policies of compromising between PRs and MRs aim at 

achieving an optimal solution for problems with different criteria. 

It is recognized that obtaining the element lifetime distributions is the bottleneck 

in the implementation of existing maintenance optimization approaches. The 

expected number of element failures in any time interval can be obtained either 

from mathematical models and experimental data or from expert opinion. The 

analytical expressions for this function have been covered extensively in [153] and 

used in many problems of maintenance optimization based on increasing failure rate 

models [154-156]. The failure rate function obtained from experts can be 

represented in a tabular form [157]. For MR, the duration of which is relatively 

small compared with the time between failures, the expected number of failures is 

equal to the expected number of repairs for any time interval. Thus, it is possible to 

obtain the renewal function of each element (expected number of its repairs in time 

interval (0, t)). This expected number of element failures/repairs f(tj) can be 

estimated for different time intervals (0, tj) between consecutive PRs.

In this section, we consider the determination of the optimal schedule of cyclic 

PRs for an MSS with a given series-parallel configuration and two-state elements. 

Each element of this system is characterized by its nominal performance and 

renewal function, obtained from mathematical models or elicited from expert 

opinion. The times and costs of two types of maintenance activity (PR and MR) are 

also available for each system element. The objective is to provide the desired 

system availability by the minimal sum of maintenance cost and penalty costs 

caused by system mission losses (performance deficiency). 

The method presented presumes independence between replacement and repair 

activities for different system elements. Such an assumption is justified, for 

example, in complex distributed systems (power systems, computer networks, etc.)

where the information about system element repairs and replacements may be 

inaccessible for the maintenance staff serving the given element. In the general 

case, the method, which assumes independence of maintenance actions in the 

system, gives the worst estimation of system availability. 

Another important assumption is that repair and replacement times are much 

smaller than time between failures. In this case, the probability of replacement and 

repair events coincidences may be neglected. 
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In systems with cyclic variable demand (double-shift job shop production, 

power or water supply, etc.), the PR can be performed in periods of low demand 

even if repairs of some of the elements of the system are not finished. For example, 

in power generation systems some important elements may be replaced at night 

when the power demand is much lower than the nominal demand. In these cases, 

the replacement time may be neglected and all the maintenance actions may be 

considered as independent.  

5.3.2.1 Problem Formulation

A system consists of N two-state elements connected according to a reliability block 

diagram. For each element j (1 j N) its nominal performance rate gj1, expected 

preventive, and corrective maintenance times and costs are given, as well as a 

renewal function representing the expected number of elements failures/repairs in 

the time interval (0, t).

For any replacement interval tj for each element j, one can obtain the expected 

number of failures and repairs during the period between preventive replacement 

actions fj(tj). The replacement interval may be alternatively defined by the number 

of preventive replacement actions xj during the system operation time T:                 tj

= (T  xj jˆ )/(xj+1) where jˆ  is PR time. Usually, jˆ <<T and the replacement 

interval can be estimated as tj = T/(xj+1). The expected number of failures of 

element j during the system operation time is (xj+1)fj(T/(xj+1)).

Under the assumptions formulated, the expected time that the jth system element 

is unavailable can be estimated by the following expression:

 (xj+1)fj(T/(xj+1)) j
~ + xj jˆ  (5.50) 

where j
~  is MR time. 

Now one can define the availability of each element as 

T

xxT/f+xT
p

jjjjjj
j

ˆ~))1(()1(
1    (5.51) 

the total expected maintenance time tot during the system operation time as 

N

j
jjjjjj xxT/f+x

1
tot ]ˆ~))1(()1[(    (5.52) 

and the expected maintenance cost Cm during the system operation time as 

N

j
jjjjjj cxcxT/f+xC

1
m ]ˆ~))1(()1[(  (5.53) 
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where jc~  and jĉ  are the corrective and preventive maintenance costs respectively. 

Having the PD of each system element j (gj = {0, gj1}, pj = {(1 pj1), pj1}), one 

can obtain the entire system PD using the reliability block diagram method, and for 

the given demand distribution w, q one can obtain the system performance 

measures: the availability A(w, q) and the expected performance deficiency      

(w, q).

The total unsupplied demand cost during the system operation time T can be 

estimated as 

),(uud qwTcC   (5.54) 

where cu is a cost of unsupplied demand per time unit. 

Defining the system replacement policy by the vector x = (xj: 1 j N) one can 

give two formulations of the problem of system maintenance optimization [158]: 

1. Find the minimal maintenance cost system replacement policy x that provides 

the required MSS availability level A* while the total maintenance time does not 

exceed preliminarily specified limitation *:

min)(m xC subject to *)(*,),,( tot xqwx AA  (5.55) 

2. Find the system replacement policy x that minimizes the total maintenance 

and unsupplied demand cost while the total maintenance time does not exceed the 

preliminary specified limitation *:

Ctot = min),,(+)( udm qwxx CC subject to *)(tot x  (5.56) 

In the general case, one can use the following formulation: 

Ctot = min),,(+)( udm qwxx CC

 subject to *)(*,),,( tot xqwx AA  (5.57) 

which can be reduced to (5.55) by defining cu = 0 and to (5.56) by defining A* = 0.

5.3.2.2 Implementing the Genetic Algorithm 

Different elements can have different possible numbers of PR actions during the 

system operation time. The possible maintenance alternatives (number of PR 

actions) for each system element j can be ordered in vector Yj = (yj1,...,yjK), where yji

is the number of preventive maintenance actions corresponding to alternative i for 

the system element j. The same number K of possible alternatives (length of vectors 

Yj) can be defined to each element. If, in practical problems, the number of 

alternatives differs for different elements, then some elements of shorter vectors Yj

can be duplicated to provide equality of the vector’s length. 
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Each solution is represented by the integer string a = (aj: 1 aj K) that represents 

the number of maintenance alternative applied to element j. Hence, the vector x for

the given solution, represented by the string a is x = ).,...,(
11 nnaa yy  For example, 

for a problem with N = 5, K = 4, Y1 = Y2 = Y3 = (2, 3, 4, 5) and Y4 = Y5 = (20, 45, 

100, 100) string a = (1, 4, 4, 3, 2) represents a solution with x = (2, 5, 5, 100, 45). 

Any arbitrary integer string with elements belonging to the interval (1, K) represents 

a feasible solution. 

For each given string a the decoding procedure first obtains the vector x and 

estimates fj(tj) = fj(T/(xj+1)) for all the system elements 1 j N, then calculates 

availability indices of each two-state system element using expression (5.51) and 

determines the entire system PD using the reliability block diagram method. It also 

determines tot and Cm using expressions (5.52) and (5.53). After obtaining the 

entire system PD, the procedure evaluates A(w, q) and -(w, q) and computes Cud(w,

q) using expression (5.54). 

In order to let the GA look for the solution with minimal total cost, and with A

that is not less than the required value A*, and tot not exceeding *, the solution 

fitness is evaluated as follows: 

)*)(1())(*(1-)( 1tot AAAACM aaa

 ))(*1()*)((1 tottot2 aa  (5.58) 

where 1 and 2 are penalty coefficients and M is a constant value. 

Example 5.13 

A series-parallel water desalination system consists of four components containing 

14 elements of eight different types. The structure of the system (which belongs to 

the type of flow transmission MSS with flow dispersion) is presented in Figure 

5.17. Each element is marked with its type number j. Table 5.35 contains 

parameters of each element, including its renewal function fj(t) (replacement period 

t in months is given for each x), estimated using expert judgments. Times are 

measured in months. The element nominal performance is measured as a percentage 

of a maximal system demand. 

All the replacement times in the system are equal to 0.5 h (0.0007 month). The 

corrective maintenance includes a fault location search and tuning of the elements, 

so it takes much more time than preventive replacement, but repairs are much 

cheaper than replacements.

The demand distribution is presented in Table 5.36. The total operation time T is 

120 months, and the cost of 1% of unsupplied demand during one month is        cu = 

10.

For the sake of simplicity, we use in this example the same vector of 

replacement frequency alternatives for all the elements. The possible number of 

replacements during the system operation time varies from 5 to 30 with step 5.

The first solutions obtained are for the first formulation of the problem in which 

unsupplied demand cost was not considered and the total maintenance time was not 
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constrained: * = . (Three different solutions are presented in Table 5.37.) One 

can see the total maintenance time and cost as functions of system availability index 

A in Figure 5.18 (each point of the graph corresponds to an optimal solution). 

Figure 5.17. Series-parallel water desalination system 

Table 5.35. Characteristics of the system elements

     Renewal function  fj(t)

Element gj1 jĉ jc~ j
~

t: 24 12 8 6 4.8 4 

j x: 5 10 15 20 25 30 

1 0.40 3.01 0.019 0.002 25.00 10.00 5.00 2.0 1.00 0.50 

2 0.30 2.21 0.049 0.004 26.00 9.00 2.00 0.6 0.20 0.05 

3 0.60 2.85 0.023 0.008 20.00 4.00 1.00 0.3 0.08 0.01 

4 0.15 2.08 0.017 0.005 36.00 14.00 9.00 6.0 4.00 3.00 

5 0.15 1.91 0.029 0.003 55.00 15.00 7.00 4.0 0.32 0.30 

6 0.25 0.95 0.031 0.009 31.00 9.50 5.60 4.0 2.70 2.00 

7 1.00 5.27 0.050 0.002 13.00 3.20 1.40 0.8 0.50 0.10 

8 0.70 4.41 0.072 0.005 5.00 2.00 1.00 0.4 0.10 0.01 

Table 5.36. Demand distribution

w 1.00 0.80 0.50 0.20 

q 0.60 0.25 0.05 0.10 

Then the unsupplied demand cost was introduced and the problem was solved in 

its second formulation. The solutions corresponding to the minimal and maximal 

possible system availability (minimal and maximal maintenance cost) are presented 

in Table 5.37, as well as the optimal solution, which minimizes the total cost. One 

can see that the optimal maintenance solution allows about 50% total cost reduction 

to be achieved in comparison with minimal Cm and minimal Cud solutions. 
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 Table 5.37. Optimal maintenance solutions obtained

Cud Cm Ctot tot A x

Formulation 1 

A* = 0.96 0.0 263.1 263.1 9.2 0.9606 (5,5,5,5,5,5,5,5, 

10,10,10,10,5,5)

A* = 0.97 0.0 296.6 296.6 7.7 0.9700 (5,5,5,5,10,10,5,5, 

10,10,25,25,5,5)

A* = 0.98 0.0 384.4 384.4 5.85 0.9800 (5,5,5,5,15,15,10, 

10,10,25,25,25,5,5)

Formulation 2 

Minimal Cm

* =

1029.5 249.1 1278.6 11.61 0.9490 (5,5,5,5,5,5,5, 

5,5,5,5,5,5,5)

Minimal Cud

* =

156.4 1060.3 1216.7 2.47 0.9880 (30,30,30,30,30,30,30, 

30,25,25,30,30,30,30)

Minimal Ctot

* =

256.2 397.4 653.5 6.02 0.9800 (5,5,5,5,20,20,10, 

10,10,10,30,30,5,5)

Minimal Ctot

* = 3 

181.7 674.7 856.4 2.99 0.9877 (10,20,20,20,25,20,30, 

30,25,25,30,30,10,5)

General formulation 

Minimal Ctot

* =5.5, A*=0.985

192.8 498.1 690.9 4.96 0.9850 (5,5,5,5,25,25,10, 

10,25,25,30,30,10,5)

Figure 5.18. Total maintenance time and cost as functions of system availability 

The influence of the total maintenance time constraints is illustrated in Figure 

5.19, where the costs and the system availability index are presented as functions of 

tot. Observe that reduction of allowable maintenance time causes the system 

availability and total cost to increase. The interesting exception is when 

maintenance time decreases from 5 to 4.5 months. In this case, the variations in 

maintenance policy cause additional expenses without system availability 

enhancement. The solution of the general formulation of the problem where * =

5.5 and A* = 0.985 is also presented in Table 5.37. 
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Figure 5.19. System cost and availability under maintenance time constraints 

5.3.3 Joint Redundancy and Cyclic Replacement Optimization

Both introducing the performance redundancy (considered in Sections 5.1.1 and 

5.1.2) and providing for preventive replacement of the elements (considered in 

Section 5.3.2) are aimed at improving the system’s availability and are associated 

with certain expenses. Therefore, a trade-off exists between the investments into the 

system’s redundancy and its preventive maintenance cost. The optimal availability 

design should consider both of these factors in order to reach a solution that 

provides for the system’s desired reliability at minimal cost. Since these factors 

influence each other, the problem cannot be solved in two separate stages, i.e. by 

finding the minimal cost PR policy for the preliminarily determined optimal 

structure. In this section, we consider the problem of determining both the optimal 

structure for a series-parallel MSS and the optimal PR of the system’s elements.

It is assumed that the PD, the time and cost of repair, and its replacement are 

available for each system element. The cost of the element’s inclusion within the 

system is also given. In general, this cost is not equal to the cost of the element’s 

replacement because the inclusion of the element can incur additional expenses, 

such as investments into the corresponding infrastructure (communication, 

foundation, etc.). The objective is to provide the desired system availability with a 

minimal sum of the costs of the system’s structure, maintenance, and penalties 

caused by the unsupplied demand. 

5.3.3.1 Problem Formulation

An MSS consists of N components. Each component is a subsystem that can consist 

of parallel two-state elements with the same functionality. Different versions and 

numbers of elements may be chosen for any given system component.

For each component i there are Bi element versions available in the market. Each 

element of version b and type i is characterized by the following parameters: 

nominal performance rate gi1(b), cost of including the element in the system ci(b),
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PR and MR costs )(ˆ bci  and ),(~ bci  mean PR and MR times )(ˆ bi and ),(~ bi

renewal function fib(t).

The structure of system component i is defined by the numbers of parallel 

elements of each version nib (1 b Bi) chosen for this component. The vectors ni

= (nib: 1 b Bi) for 1 i N define the entire system structure. For a given set of

vectors {n1, …, nN} the total cost of the system C can be calculated using Equation 

(5.7).

The PR policy is defined by assigning to each element of type i and version b a 

number of preventive replacement actions xib during the system operation time T.

Having the set of vectors xi = (xib: 1 b Bi) for 1 i N, one can determine the 

availability of each MSS element in analogy with Equation (5.51) as 

T

bxbxT/f+xT
bp iibiibibib

i
)(ˆ)(~1))((1)(

)(1  (5.59) 

the total expected MSS maintenance time tot during the system operation time as 

  ),...,,,...,( 11tot NN xxnn

iB

b
iibibibibib

N

i=

bxbxTfxn
1

i
1

)](ˆ)(~1))/((1)+[(  (5.60) 

and the expected maintenance cost Cm during the system operation time as 

 ),...,,,...,( 11m NNC xxnn

iB

b
iibiibibibib

N

i=

bcxbcxTfxn
11

)](ˆ)(~1))/((1)+[(  (5.61)  

Having the PD of each system element of type i and version b                     (gi(b)

= {0, gi1b)}, pi(b) = {(1 pi1(b)), pi1(b)}), one can obtain the entire system PD using 

the reliability block diagram method and for the given demand distribution w, q one

can obtain the system availability A(w, q) and the expected performance deficiency 

(w, q). The total unsupplied demand cost during the system operation time T can 

be estimated using (5.54). 

The general formulation of the system redundancy and maintenance

optimization problem is as follows [159]: find the system configuration {n1, …, nN}

and PR policy {x1, …, xN} that minimize the sum of costs of the system equipment, 

maintenance and unsupplied demand. The required MSS availability level should be 

provided while the total maintenance time should not exceed the preliminarily 

specified limitation: 

min),,,...,,,...,(+

),...,,,...,(+),...,,,...,(

11ud

11m11tot

qwxxnn

xxnnxxnn

NN

NNNN

C

CCC
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subject to  (5.62) 

*),...,,,...,(*,),,,...,,,...,( 11tot11 NNNN AA xxnnqwxxnn

5.3.3.2 Implementing the Genetic Algorithm

In analogy with Section 5.3.2.2, the possible PR alternatives for each MSS element 

of type i and version b are ordered in vectors Yi(b)={yi1(b),..., yiK(b)}, where yij(b) is

thenumber of PR actions corresponding to alternative j; K is the total number of 

possible PR alternatives.

To represent the vectors n1, …, nN and x1, …, xN we use integer strings           a

= (a1,...,aB), where B is the total number of versions available (determined 

according to Equation (5.9)) and aj corresponds to the element of type i and version 

b (where j is determined according to (5.10)). 

Each vector element aj determines both the number of parallel elements nib and 

the number of replacement frequency alternative mj corresponding to all of the 

elements of this type and version. To provide this property, all the numbers aj

(0 j B) are generated in the range 0 aj<(nmax+1)K (where  nmax is the maximal 

allowable number of identical parallel elements) and are decoded in the following 

manner:

Kan jib /

jKj am mod1  (5.63) 

For any given nib and mj the corresponding aj is composed as

aj= nibK+mj 1  (5.64) 

Note that all aj<K correspond to solutions where elements of type i and version b

are not included in the system because nib = 0. 

Having mj for the given element one can define the number of its replacements 

as xib = ).(by
jim

Example 5.14 

Consider a problem in which N = 3, B1 = 3, B2 = 2, and B3 = 3, K = 3, nmax = 5 and Y

= {3, 10, 15} for all the elements. Table 5.38 contains the parameters of solution  

(n1, n2, n3, x1, x2, x3) encoded by the string (11, 0, 6, 5, 14, 4, 9, 2). 

For each given string a the decoding procedure first obtains the vectors n1, …,

nN and x1, …, xN and estimates fib(xib) for all the system elements 1 i N, 1 b Bi,

then calculates the availability of each system element using expression (5.59), 

determines the u-functions of the elements and obtains the entire system PD using 

the reliability block diagram method in accordance with the specified system 

structure. It also determines C, tot and Cm using expressions (5.7), (5.60) and (6.61) 

respectively. After obtaining the entire system PD, the procedure evaluates A(w,q),

and -(w,q) and computes Cud(w,q) using expression (5.54). The total system cost 
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Ctot is determined as the sum of C, Cm and Cud. In order to let the GA look for the 

solution with minimal total cost and with A which is not less than the required value 

A* and tot not exceeding *, the solution fitness is evaluated using Equation (5.58). 

    Table 5.38. Example of solution string decoding

String

element

aj

Type of 

element

i

Version of 

element

b

No. of parallel 

elements

nib

No. of PR 

alternative

mj

No. of PR 

actions

xib

11

0

6

1

1

1

1

2

3

3

0

2

3

0

1

15

-

3

5

14

2

2

1

2

1

4

3

3

15

15

4

9

2

3

3

3

1

2

3

1

3

0

2

1

3

10

3

-

Example 5.15

Consider the water desalination system described in Example 5.13. Each of four 

basic system components can consist of no more than seven parallel elements. The 

elements may be chosen from the list of available products. This list contains 

parameters of each element version (Table 5.39) and the corresponding f(t)

functions (Table 5.40), estimated using expert judgments.

Table 5.39. Parameters of the MSS elements

Type i Description Version b gi1(b) ci(b) )(ˆ bci )(~ bci c

  1 0.60 29.0 8.11 0.650 0.010 

  2 0.40 20.0 8.01 0.810 0.016 

  3 0.30 17.1 4.61 0.810 0.016 

1 Filter 4 0.30 15.9 3.23 0.490 0.004 

  5 0.25 14.0 3.01 0.400 0.012 

  6 0.20 12.3 2.91 0.400 0.012 

  7 0.15 10.1 2.24 0.400 0.012 

  8 0.10 9.40 1.90 0.450 0.022 

  1 0.65 8.8 6.85 0.430 0.024 

2 Pump 2 0.25 5.1 3.08 0.390 0.020 

  3 0.15 3.7 1.71 0.490 0.012 

  1 1.00 9.0 5.27 0.190 0.018 

3 Membrane 2 0.70 7.1 3.41 0.190 0.018 

  3 0.25 4.6 0.95 0.190 0.018 

 Power 1 0.50 4.5 4.01 0.109 0.008 

4 supply 2 0.35 2.9 2.21 0.121 0.012 

 equipment 3 0.22 1.95 1.36 0.138 0.009 

The demand distribution, the total operation time, the replacement times, the 

cost of unsupplied demand, and the possible number of replacements are the same 

as in Example 5.13. 



  5   Universal Generating Function in Optimization of Series-Parallel MSS 249 

Table 5.40. Renewal functions of MSS elements

Element fib(t)

Type Version t: 24 12 8 6 4.8 4 

i b x: 5 10 15 20 25 30 

 1  33.0 8.0 4.1 2.0 1.0 0.7 

 2  45.0 10.0 5.0 2.0 1.0 0.75 

 3  36.0 8.0 2.0 0.6 0.2 0.15 

1 4  56.0 9.0 1.8 0.9 0.2 0.15 

 5  43.0 6.0 3.0 0.9 0.2 0.16 

 6  42.0 7.0 3.0 1.0 0.3 0.22 

 7  16.0 4.0 0.6 0.1 0.03 0.02 

 8  6.0 2.3 0.4 0.05 0.03 0.02 

 1  120.0 14.0 1.0 0.3 0.08 0.06 

2 2  36.0 4.0 0.9 0.2 0.06 0.04 

 3  155.0 35.0 7.0 4.0 0.32 0.23 

 1  23.0 3.2 1.4 0.8 0.5 0.4 

3 2  15.0 4.0 1.0 0.4 0.1 0.01 

 3  31.0 9.5 5.6 4.0 2.7 2.0 

 1  64.0 21.0 3.0 1.1 0.4 0.28 

4 2  58.0 19.0 2.2 0.8 0.3 0.24 

 3  47.0 11.0 2.0 0.8 0.6 0.5 

The problem is to find a minimal cost system structure and PR policy subject to 

the constraints of availability and total maintenance time. 

Table 5.41 contains optimal solutions obtained for different A* and *.

Table 5.41. Examples of the obtained solutions

Component

Constraints C Cud Cm Ctot tot A 1 2 3 4 

95.25 107.26 591.90 794.41 4.34 0.9706 3*4(15)

1*8(5)

4*2(15) 1*1(10) 1*2(15) 

3*3(15)

A*=0.980 108.55 40.00 652.86 801.41 8.09 0.9804 3*4(15)

1*8(15)

4*2(15) 3*2(5) 5*3(15) 

A*=0.990 109.10 28.44 683.67 821.21 8.18 0.9903 3*4(15)

1*8(15)

1*1(15)

2*2(15)

3*2(5) 6*3(15) 

A*=0.999 131.50 2.53 767.09 901.13 12.39 0.9990 4*4(15)

1*8(5)

5*2(10) 3*2(5) 6*3(15) 

A*=0.980

*=3

95.20 75.93 648.33 819.47 2.78 0.9803 3*4(15)

1*8(15)

4*2(15) 1*1(15) 3*2(20) 

A*=0.990

*=3

98.10 49.41 712.08 859.56 2.95 0.9909 3*4(15)

1*8(20)

4*2(20) 1*1(15) 4*2(15) 

A*=0.999

*=3

124.30 2.86 918.94 1050.41 3.00 0.9990 4*4(15)

1*8(15)

5*2(20) 2*2(25) 4*2(15) 

A*=0.980

*=2

101.70 57.49 725.20 884.40 1.96 0.9868 4*4(15) 4*2(20) 1*1(15) 3*2(20) 

A*=0.990

*=2

98.10 41.05 772.63 911.79 1.98 0.9917 3*4(15)

1*8(20)

4*2(20) 1*1(20) 4*2(20) 

A*=0.999

*=2

124.30 2.69 970.25 1097.79 1.99 0.9991 4*4(15)

1*8(15)

5*2(20) 2*2(25) 2*2(25) 

3*3(20)

The solutions are presented in the form n*b(x). The b corresponds to the 

version chosen for the given element from the list (Tables 5.39 and 5.40), n

corresponds to the number of such elements, and x corresponds to the number of 

replacements of each element during the system operation time. For example, the 
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solution obtained for A* = 0.98 and * = 2 corresponds to the system consisting of 

four filters of version 4, four pumps of version 2, one membrane block of version 1, 

and three blocks of power commutation units of version 2. The number of 

replacements during T = 120 months for the filters, the pumps, the membrane block 

and for the power commutation equipment are 15, 20, 15, and 20 respectively. The 

estimated availability of such system is 0.9868; the estimated repair time is 1.96 

months. The total cost is 884.40. 

Reducing the allowable total maintenance time causes a reduction in the 

number of units installed. This lowers system redundancy and increases unsupplied 

demand. Alternatively, the total maintenance time can be reduced by increasing the 

replacement frequencies. (Compare, for example, solutions for A* = 0.990 and     

A* = 0.999 that have equal C for * = 2 and * = 3.) 

5.3.4 Optimal Multistage System Modernization 

When the system demand and/or reliability requirements increase over time, 

multiple system modernization actions are usually performed. Besides the system’s 

multistage expansion (considered in Section 5.1.4) the system modernization plan 

can include modification of the existing equipment and changes in the maintenance 

policy. Both types of action lead to changes in the performance distribution of the 

elements already presented in the system. The multistage modernization plan 

should consider all these possible alternatives.

5.3.4.1 Problem Formulation 

The initial system structure is defined by a reliability block diagram representing 

the interconnection among N MSS components and by a set (0) = {g'i(j), p'i(j), n'ij:

1 i N, 1 j B'i} (see Section 5.1.3). Each component i can contain up to Ei different

elements connected in parallel. In order to allow number of elements in each 

component to vary we introduce “dummy” elements of version 0.

In order to provide the desired levels of the system performance O*y at different 

stages y of the study period, the system should be modernized. Each stage y

(1 y Y) begins (y) years after the base stage (stage 0) and is characterized by its 

demand distribution w(y), q(y). At each stage, three different types of action may be 

undertaken: modification of some of the system’s elements, addition of new 

elements, and removal of some of the system’s elements. In order to manipulate the 

system structure in a uniform way, we will formulate all of these actions in terms of 

element replacements: 

 The modification of element j of component i or changing the procedure of the 

element maintenance leads to changes in its performance distribution. We can 

consider this action as replacement of the element of version bij with the element of 

version b*ij. Parameters of new versions of the element should be specified for each 

element modification action. 

 The addition of a new element into the system can be considered as the 

replacement of the element of the corresponding type i and version 0 with a new 
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element with version b*ij.  For each component i there are Bi element versions 

available in the market. 

The removal of the element of version bij from the system can be formulated as 

its replacement with the element of version 0. 

 Now one can define each system modernization action x by vector

 {ix, ,xix
b ,*

xxi
b  cx}  (5.65) 

where ix is the number of the component in which the element of version xix
b

should be replaced with the element of version *
xxi

b  and cx is the cost of the action. 

Modernization action is feasible if the system component ix already contains 

elements of version .xix
b  Unfeasible actions should be replaced with “dummy” 

ones which correspond to x = 0. Action x = 0 is associated with cost c0 = 0 and 

implies that no replacements are performed. 

 The system modernization plan at stage y can be defined by the vector            xy

= (xys:  1 h H) where H is the maximal number of possible actions at a single stage. 

The cost of plan xy can be calculated in present values as 

H

h=
xyy yh

c=C
1

)(IR)+(1

1
  (5.66) 

where IR is the interest rate. 

 Each modernization plan xy transforms the set of versions of elements presented 

in the system at stage y 1 into the set of versions of elements presented in the 

system at stage y: ( (y 1), xy) (y) for 1 y Y, where (0) is the initial structure 

of the system considered. 

 The total system modernization cost for the given modernization plan            x1,

…, xY is 

H

h=
x

Y

y=
y

Y

y=
y yh

cCC
11

)(
1 IR)+(1

1
  (5.67)

Having the system structure (y) and demand distribution w(y), q(y) for each 

stage y, one can evaluate the MSS performance measures. The problem of optimal 

system expansion can be formulated as follows [160]: 

Find the minimal cost system modernization plan that provides the required 

level O* of the performance measure Oy at each stage y:

   C (x1,…,xY)  min

 subject to f(Oy(x1,…, xy, w(y), q(y)), O*) =1 for 1  y Y.     (5.68)

where f(Oy,O*) is a function representing the desired relation between Oy and O*.
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5.3.4.2 Implementing the Genetic Algorithm 

The natural way to represent the multistage modernization plan x1, …, xY is to use a 

string a containing  HY integer numbers corresponding to the numbers of the 

actions to be undertaken during the study period. In the string a, each number am for

H(y 1)+1 m yH corresponds to the action number m  H(y 1) undertaken at 

stage y. All of the numbers should be generated in the range 0 am L, where L is the 

total number of available actions. Action with number 0 means “do nothing”; it has 

no cost and is used in order to allow the total number of actions to vary. One can 

see that the solution representation string a contains sequentially allocated vectors 

xy of the modernization plan at each stage y = 1,…, Y.

By having the vector a, one can determine the MSS structure in each stage y by 

replacing the elements of version xix
b  with elements of version *

xxi
b in accordance 

with the modernization plan xy. Using the u-functions of the elements composing 

the system at each stage y after the corresponding replacements, one obtains the 

entire system PD by applying the UGF technique. For this PD and for the given 

demand distribution w(y), q(y) one obtains the MSS performance measure Oy. The 

solution fitness for the estimated values of Oy and the total cost C calculated using 

(5.76) is determined according to Equation (5.17). 

Example 5.16 

Consider two different optimization problems applied to the coal transportation 

system from Example 5.1. In the first problem we have to determine the initial 

system structure as well as its modernization plan. In this case, the initial structure 

set is empty: (0) = . In the second problem we have to find the optimal 

modernization plan for the system with the initial structure presented in Table 5.42. 

Table 5.43 contains the demand distributions at five different stages and times from 

the present to the beginning of these future stages.

Table 5.42. Initial coal transportation system structure

No. of system component 1 2 3 4 5 

Versions of elements, present in the component 1, 1 2, 2, 2 3, 3 4, 4 5, 5

Table 5.43. Demand distributions

Stage no.  (y) Demand distribution 

1 0 w 1.0 0.8 0.5 0.2

q 0.48 0.09 0.14 0.29 

2 3 w 1.0 0.8 0.5 -

q 0.63 0.12 0.25 - 

3 6 w 1.0 0.9 0.8 -

q 0.65 0.19 0.16 - 

4 9 w 2.0 1.6 0.8 -

q 0.41 0.24 0.35 - 

5 12 w 2.0 1.7 1.2 0.9

q 0.52 0.15 0.13 0.20 
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 The demand distributions have the same maximal load at stages 1-3 and 4-5. 

Within these periods, variations of the load demand are caused by intensification of 

boiler use. At stage 4, the installation of a new boiler is planned, which should be 

supplied by the same coal supply system. 

Because of increased demand, the availability index of the system becomes 

A1(w(1), q(1)) = 0.506 at the first stage. To provide a desired availability level     A* 

= 0.95 at all of the stages, the system should be modernized. The characteristics of 

the available modernization actions are presented in Table 5.44 in the form (5.74). 

The action costs cx comprise both the investment and operational costs. 

Table 5.44. List of available actions

x ix xix
b *

xxi
b cx Description

1 1 0 6 18.0 Addition of new feeder of version 6 

2 1 0 7 42.0 Addition of new feeder of version 7 

3 1 1 8 5.0 Electric drive system modification aimed 

at providing feeder speed increase 

4 1 1 9 2.0 Installation of engines monitoring system 

in feeder of version 1 

5 1 6 10 1.6 Installation of engines monitoring system 

in feeder of version 6 

6 2 0 11 9.1 Addition of new conveyor of version 11 

7 2 0 12 5.6 Addition of new conveyor of version 12 

8 2 0 13 4.2 Addition of new conveyor of version 13 

9 2 2 14 0.8 Changes in mechanical equipment to provide load increase 

10 2 14 15 0.3 Installation of engines monitoring system in conveyor of 

version 14 

11 2 14 16 0.5 Reduction of flat-belt condition inspection (replacement) 

period in conveyor of version 14 

12 2 13 17 0.4 Installation of engines monitoring system in conveyor of 

version 13 

13 3 0 3 567.0 Addition of new stacker of version 3 

14 3 0 18 359.0 Addition of new stacker of version 18 

15 3 3 19 6.0 Installation of hydraulics monitoring system in stacker of 

version 3 

16 4 0 20 7.1 Addition of new feeder of version 20 

17 4 4 21 2.0 Reduction of engines inspection period 

in feeder of version 4 

18 4 20 22 1.8 Reduction of engines inspection period 

in feeder of version 20 

19 5 0 23 47.5 Addition of new conveyor, version 23 

20 5 5 24 1.1 Installation of engines monitoring system in conveyor of 

version 5 

21 5 5 25 1.4 Reduction of flat-belt inspection (replacement) period 

22 5 25 26 1.1 Action 20 performed after action 21 

23 5 24 26 1.4 Action 21 performed after action 20 
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 Each action leads to the appearance of an element of a certain version either 

purchased in the market or obtained by modification of some existing element or its 

maintenance procedure (equipment removal actions are not considered in this 

example). The list of parameters of different versions of elements is presented in 

Table 5.45. The table also contains the origins of the versions (P corresponds to 

versions already present in the system, N corresponds to new elements available on 

the market, and M corresponds to versions obtained by the modification of existing 

versions or their maintenance procedures). 

Table 5.45. Parameters of available MSS elements

No. of version g p Component Origin 

1 0.75 0.998 1 P 

2 0.28 0.997 2 P 

3 0.66 0.972 3 P 

4 0.54 0.983 4 P 

5 0.66 0.981 5 P 

6 0.31 0.920 1 N 

7 0.85 0.978 1 N 

8 0.93 0.970 1 M 

9 0.75 0.995 1 M 

10 0.31 0.985 1 M 

11 0.53 0.997 2 N 

12 0.28 0.997 2 N 

13 0.21 0.988 2 N 

14 0.33 0.980 2 M 

15 0.33 0.991 2 M 

16 0.33 0.992 3 M 

17 0.21 0.999 3 M 

18 0.40 0.971 3 N 

19 0.66 0.980 3 M 

20 0.55 0.983 4 N 

21 0.54 0.998 4 M 

22 0.55 0.995 4 M 

23 0.51 0.981 5 N 

24 0.66 0.990 5 M 

25 0.66 0.988 5 M 

26 0.66 0.997 5 M 

The best modernization plans obtained by the suggested algorithm for the first 

and the second problems are presented in Tables 5.46 and 5.47 respectively. The 

tables contain the list of actions to be undertaken for each stage, the structure of 

each of the system’s components, and the system’s availability index (if there are a 

few identical actions or elements, they are presented in the form n*x, where n

corresponds to the number of identical actions of type x). For the interest rate 
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R = 0.1, the total modernization costs for problems 1 and 2 are in the present values    

C = 1783.23 and C = 542.55 respectively. 

Table 5.46. Optimal modernization plan for problem the with (0) = 

Structure of system components Stage

No.

List of 

actions A
1 2 3 4 5 

1 1, 2*2, 2*6, 13, 

14, 3*16, 3*19 

0.958 6, 2*7 2*11 3,  18 3*20 3*23 

2 15 0.951 6, 2*7 2*11 18, 19 3*20 3*23 

3 2, 6, 18 0.950 6, 3*7 3*11 18, 19 2*20, 

22

3*23

4 2*6, 2*13, 

2*16, 2*19 

0.952 6, 3*7 5*11 2*3, 

18, 19 

4*20,

22

5*23

5 5, 2*15, 18 0.950 10, 3*7 5*11 18, 

3*19

3*20,

2*22

5*23

Table 5.47. Optimal modernization plan for problem the with (0)

Structure of system components Stage

No

List of 

actions A
1 2 3 4 5 

1 6, 16, 

2*21, 2*22 

0.950 2*1 3*2, 11 2*3 2*4, 20 2*26 

2 4, 2*15 0.951 1, 9 3*2, 11 2*19 2*4, 20 2*26 

3 2 0.951 1, 7, 9 3*2, 11 2*19 2*4, 20 2*26 

4 2, 2*6, 13, 14, 

2*16, 3*19 

0.955 1, 2*7, 9 3*2, 

3*11

3, 18, 

2*19

2*4,

3*20

2*26,

3*23

5 2*9, 15 0.951 1, 2*7, 9 2, 3*11, 

2*14

18, 3*19 2*4, 

3*20

2*26,

3*23

5.3.5 Optimal Imperfect Maintenance 

In Sections 5.3.2 and 5.3.3 we considered the preventive maintenance actions 

(PMAs) that return the element to its initial condition by replacing it by a new one 

or making it “as good as new”. However, some actions (such as cleaning, 

adjustment, etc.), while improving the condition of system elements, cannot return 

them to the initial condition. Such actions are named imperfect preventive 

maintenance and are modelled using the age reduction concept [161]. 

The evolution of the reliability of system elements is a function of element age 

on a system’s operating life. Element aging is strongly affected by maintenance 

activities performed on the system. Surveillance and maintenance reduce this age. 

In the case when the element becomes “as good as new”, its age is reduced to zero. 

In the cases when the preventive maintenance (surveillance) does not affect the 
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state of the element but ensures that the element is in an operating condition, the 

element remains “as bad as old” and its age does not change. All actions that do not 

zero element age can be considered to be imperfect PMAs. When an element of the 

system fails, corrective maintenance in the form of MR is performed. The MR 

returns the element to the operating condition without affecting its failure rate.

In this section, we consider the problem of determining a minimal cost plan of 

PMAs during MSS operation time T, which provides the required level of system 

reliability. The algorithm answers the questions of in what sequence, where (to 

which element), and what kind of available PMA should be applied to keep the 

system reliability R on the required level during a specified time.

5.3.5.1 Element Age Reduction Model

According to the age reduction concept the PMA reduces the effective age of the 

two-state element that it has immediately before it enters maintenance. The 

proportional age setback model used [156] assumes that the effective age j of 

element j which undergoes PMAs at chronological times (tj1,…,tjYj) is 

j(t) = j
+(tjy) + (t tjy)  for tjy< t < tjy+1   (0 y Yj)

j
+(tjy) = jy j(tjy) = jy [ j

 +(tjy 1) + (tjy tjy 1)]    (5.69) 

where j
+(tjy) is the age of the element immediately after the yth PMA, jy is the age 

reduction coefficient associated with this PMA, which ranges in the interval [0, 1], 

and j(0) = tj0 = 0 by definition.

The two extreme effects of PMA on the state of the element correspond to the 

cases when jy = 1, or jy = 0. In the first case, the model simply reduces to “as bad 

as old”, which assumes that PMA does not affect the age of the element. In the 

second case the model reduces to “as good as new”, which means that the element’s 

age is restored to zero (replacement). All the PMAs with 0< jy<1 lead to a partial 

improvement in the state of the element. 

The induced hazard function of the MSS element j can be expressed as 

h*
j(t) = hj( j(t))+hj0    (5.70) 

where hj(t) is the hazard function of the element defined for the case when it does 

not undergo PMAs and hj0 is the term corresponding to the initial age of the 

element, which can differ from zero at the beginning of MSS operation time. 

The reliability of element j in the interval between PMAs y and y+1 is 
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)(

)(

* d)(expd)(exp)(

t

t

j

t

t
jj

j

jyjjy

xxhxxhtr

1))],(())((exp[ jyjyjjjyjj ttttHtH  (5.71) 



  5   Universal Generating Function in Optimization of Series-Parallel MSS 257 

where Hj( ) is the accumulated hazard function for element j. One can see that 

immediately after PMA y, when t = tjy, the reliability of element rj(tjy) = 1. 

MRs are performed if MSS elements fail between PMAs. The cost associated 

with MRs depends on the failure rates of the elements. According to [162], the 

expected minimal repair cost of element j in interval [0, t] is      

t

jjj xxhctc

0

d)(~)(MR  (5.72) 

where jc~  is the cost of a single MR of this element. When the element undergoes 

PMAs at times tj1,…,
jjYt , the total MR cost is 

j jyj
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   (5.73) 

where tj0 = 0 and 1jjYt = T  by definition, j(tjy+1) = j
+(tjy) + (tjy+1 tjy).

5.3.5.2 Problem Formulation

Consider a system consisting of N two-state elements. Each element j is 

characterized by its nominal performance rate gj1, hazard function hj(t) and 

associated MR cost .~
jc  The MSS is supposed to meet a demand w.

PMAs and MRs can be realized on each MSS element. PMAs modify element 

reliability, whereas minimal repairs do not affect it. The effectiveness of each PMA 

is defined by the age reduction coefficient  ranging from 0 (“as good as new”) to 1 

(“as bad as old”). The time in which the element is not available due to a PMAs or 

MR activity is negligible if compared with the time elapsed between the 

consecutive activities. A list of possible PMAs is available for a given MSS. In this 

list, each PMA x is associated with the cost of its implementation c(x), the number 

of affected element e(x) and the age reduction coefficient (x).

System operation time T is divided into M intervals, each with duration dm

(1 m M). PMAs can be performed at the end of each interval. They are performed 

if the MSS reliability R(t,w) becomes lower than the desired level R*. It should be 

mentioned that dm of different intervals must not necessarily be equal to each other 

and can be chosen for practical reasons.

The sequence of PMAs performed to maintain MSS reliability can be defined by 

a vector x of numbers of these actions as they appear on the PMA list. Each time 

PMA is necessary to improve system reliability, the action to be performed is 

defined by the next number from this vector. Note that the chosen PMA xi may be 

insufficient to increase MSS reliability to the desired level. In this case, the next 
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action xi+1 should be performed at the same time, and so on. One can see that the 

total number Y of PMAs cannot be predefined and depends on the composition of 

vector x.

For a given vector x the total number Yj and chronological times of PMAs are 

determined for each system element j (1 j n).  If Yj = 0, which corresponds to the 

case in which e(xi)  j for all xi x, the minimal repair cost CMRj given by Equation 

(5.82) is defined by tj0 = 0 and 1jjYt = tj1 = T.

The vector x defines both the total cost of PMAs as 

N

i
ixcC

1

)()(PM x   (5.74) 

and the total cost of MRs as 
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x  (5.75) 

The optimal imperfect maintenance problem is formulated as follows [163]: 

find the optimal sequence x of PMAs chosen from the list of available actions 

which minimizes the total maintenance cost while providing the desired MSS 

reliability

 Ctot(x) = CPM(x)+CMR(x)  min

 subject to R(x, t, w) R*, 0 t T (5.76) 

5.3.5.3 Implementing the Genetic Algorithm 

The natural representation of a vector of PMA numbers x corresponding to problem 

formulation (5.85) is by an integer string a containing numbers generated in the 

range (1, L), where L is the total number of possible types of PMA (the length of the 

PMA list). Since the number of PMAs performed can vary from solution to 

solution, a redundant number of positions Y* should be provided in each string. In 

this case, after decoding the solution represented by a string                     a = 

(a1,…,aY*), only the first Y numbers will define the PMA plan. The elements of the 

string from aY+1 to aY* do not affect the solution but can affect its offspring by 

participating in crossover and mutation procedures.

The following procedure determines the fitness value for an arbitrary solution 

defined by integer string a:

1. Define for all the MSS elements (1 j N) effective ages j = d1. Define 

Hj( j
+) = 0. Assign 0 to chronological time t, the interval number m, the number of 

PMAs performed y, and total maintenance cost Ctot.

2. Increment the interval number m by 1. Increment chronological time t and 

ages j of all the system elements (1 j N) by dm.
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3. Calculate Hj( j) and reliability rj( j) = exp[Hj( j
+) Hj( j)] for all MSS 

elements (1 j N).

4. Using the reliability block diagram method, define the MSS PD and calculate 

system reliability R(t,w) for the given demand w.

5. If R(t,w)<R* increment y by 1 and define the PMA to be performed at time t

as x = ay.  Add the PMA cost c(x) to Ctot.

Determine the cost of MRs for element e(x) in the interval between the previous 

and current PMAs as )(
~

xec [He(x)( )(xe
) He(x)( )(xe )] and add this value to Ctot.

Modify the age e(x) of element e(x) by multiplying it by the age reduction 

coefficient (x). Calculate the new value of He(x) )( )(xe  for the modified age e(x)

and assign  He(x)( )(xe
) = He(x) ).( )(xe

Assign the value of 1 to the reliability of element e(x) and return to step 4. 

6.   If R(t, w) R* and t < T, return to step 2.

7.  If R(t, w)  R* and t T, evaluate the costs of MRs during the last interval for 

all the elements (1 j N) as jc~ [Hj( j) Hj( j )] and add these costs to Ctot.

Determine the solution fitness as M Ctot(a).

Example 5.17 

Consider the series-parallel oil refinery subsystem consisting of four components 

connected in series  in Figure 5.20. The system belongs to the type of flow 

transmission MSS with flow dispersion and contains 11 two-state elements with 

different performance rates and reliability functions. The reliability of each element 

is defined by a Weibull hazard function 

hj(t)=  [ (t)] 1+h0

which is widely adopted to fit repairable equipment. The accumulated hazard 

function takes the form 

H(t)=[ (t)] +h0 (t)

The nominal performance rate gj1, intensity function scale parameter j, shape 

parameter j and hazard constant hj0 are presented in Table 5.48 for each element j.

This table also contains the cost of MR for each element. 

A set of possible PMAs is defined for the given MSS in Table 5.49. Each action 

is characterized by its cost, the number of the element affected and the age 

reduction coefficient . PMA can be replacement (  = 0), surveillance (  = 1) and 

imperfect PMA with a partial improvement effect (0< <1).

MSS operation time is 25 years. The times for possible PMAs are evenly 

spaced intervals of dm = 1.5 months (0.125 years). The problem is to generate a 
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PMA sequence which provides the system work during its operation time with a 

performance rate not less than w and reliability not less than R*.

Figure 5.20. Oil refinery subsystem 

The length of the integer string representing solutions was chosen to be Y* = 25. 

To see the influence of parameters w and R* on the optimal solution, four optimal 

PMA sequences were obtained for different compositions of these parameters: 

w = 0.8, w = 1.0 and R* = 0.90, R* = 0.95. The sequences obtained are presented in 

Tables 5.50-5.53. The tables contain the total cost of the maintenance plan, the list 

of the PMAs performed and includes the time from the beginning of the MSS life in 

which the action should be performed, the number of the action (as appears in Table 

5.49), the number of the element affected by the action, and the entire MSS 

reliability immediately after performing the action. 

Table 5.48. Parameters of MSS elements

No. of element gj1 j j hj0
jc~

1 0.4 0.050 1.8 0.0001 0.9 

2 0.4 0.050 1.8 0.0001 0.9 

3 0.4 0.050 1.8 0.0 0.9 

4 0.4 0.070 1.2 0.0003 0.8 

5 0.6 0.010 1.5 0.0 0.5 

6 1.3 0.010 1.8 0.00007 2.4 

7 0.6 0.020 1.8 0.0 1.3 

8 0.5 0.008 2.0 0.0001 0.4 

9 0.4 0.020 2.1 0.0 0.7 

10 1.0 0.034 1.6 0.0 1.2 

11 1.0 0.008 1.9 0.0004 1.9 

  1
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     Table 5.49. Parameters of PMAs

No. of 

PMA

No. of 

element

Age

reduction

PMA cost

c

No. of

PMA

No. of 

element

Age

reduction

PMA cost 

c

1 1 1.00 2.2 16 6 0.00 19.0 

2 1 0.56 2.9 17 7 0.75 4.3 

3 1 0.00 4.1 18 7 0.00 6.5 

4 2 1.00 2.2 19 8 0.80 5.0 

5 2 0.56 2.9 20 8 0.00 6.2 

6 2 0.00 4.1 21 9 1.00 3.0 

7 3 1.00 2.2 22 9 0.65 3.8 

8 3 0.56 2.9 23 9 0.00 5.4 

9 3 0.00 4.1 24 10 1.00 8.5 

10 4 0.76 3.7 25 10 0.70 10.5 

11 4 0.00 5.5 26 10 0.00 14.0 

12 5 1.00 7.3 27 11 1.00 8.5 

13 5 0.60 9.0 28 11 0.56 12.0 

14 5 0.00 14.2 29 11 0.00 14.0 

15 6 0.56 15.3     

Table 5.50. The best PMA sequence obtained for w = 0.8, R* = 0.9

Ctot t (years) No. of PMA  Element affected R(t, w)

14.250 6 2 0.949 

17.875 8 3 0.923 

34.824 19.500 15 6 0.948 

21.750 21 9 0.932 

23.000 2 1 0.947 

Table 5.51. The best PMA sequence obtained for w = 1.0, R* = 0.9

Ctot t (years) No. of PMA  Element affected R(t, w)

10.625 18 7 0.956 

13.625 3 1 0.939 

 16.000 15 6 0.934 

51.301 17.625 6 2 0.925 

19.000 8 3 0.930 

20.500 10 4 0.913 

21.250 18 7 0.956 

24.375 7 3 0.915 

Table 5.52. The best PMA sequence obtained for w = 0.8, R* = 0.95

Ctot t (years) No. of PMA  Element affected R(t, w)

11.750 8 3 0.969 

13.500 18 7 0.955 

 14.000 6 2 0.963 

63.669 15.875 3 1 0.953 

16.500 16 6 0.988 

21.625 9 3 0.962 

23.125 21 9 0.963 

24.500 1 1 0.955 
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Table 5.53. The best PMA sequence obtained for w = 1.0, R* = 0.95

Ctot t (years) No. of PMA  Element affected R(t, w)

7.750 18 7 0.982 

10.750 3 1 0.963 

 11.875 10 4 0.959 

 12.625 18 7 0.964 

14.000 16 6 0.978 

82.625 16.125 6 2 0.969 

17.625 9 3 0.965 

18.875 3 1 0.955 

19.375 27 11 0.963 

20.375 18 7 0.983 

23.125 10 4 0.965 

24.250 17 7 0.958 

24.750 4 2 0.956 

The functions R(t, 1.0) and R(t, 0.8) for the optimal PMA sequences obtained 

are presented in Figure 5.21. One can see that the timing of PMAs is defined by the 

behaviour of the entire MSS reliability function. Indeed, the PMA are accomplished 

when the reliability curve approaches the level R*.

0.9

0.925

0.95

0.975

1

0 3.125 6.25 9.375 12.5 15.625 18.75 21.875 25t

R

R(t,1.0)>0.95   R(t,0.8)>0.95  R(t,1.0)>0.90  R(t,0.8)>0.90  

Figure 5.21. MSS reliability function R(t, w) corresponding to PMA plans obtained 



6. Universal Generating Function in Analysis 
and Optimization of Special Types of Multi-state 
System

6.1 Multi-state Systems with Bridge Structure 

The bridge structure (Figure 6.1) is an example of a complex system for which the 
u-function cannot be evaluated by decomposing it into series and parallel 
subsystems. Each of the five bridge components can in turn be a complex 
composition of the elements. After obtaining the equivalent u-functions of these 
components one should apply the general composition operator in the form (1.20) 
over all five u-functions of the components in order to obtain the u-function of the 
entire bridge. The choice of the structure function in this composition operator 
depends on the type of system. 

By having the u-function of the entire bridge system, one can use it either 
directly for evaluating the system performance measures (as shown in Section 3.3) 
or use it as a u-function of an equivalent element that replaces the bridge structure 
for evaluating the u-function of a higher level system when applying the block 
diagram method. 

Figure 6.1. Bridge structure 
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6.1.1 u-function of Bridge Systems 

6.1.1.1 Flow Transmission Multi-state Systems 
In order to evaluate the performance of the flow transmission MSS with the flow 
dispersion, consider the flows through the bridge structure presented in Figure 6.1. 
First, there are two parallel flows through components 1, 3 and 2, 4. To determine 
the capacities of each of the parallel substructures composed from components 
connected in series, the function ser (4.2) should be used. The function par (4.9) 
should be used afterwards to obtain the total capacity of the two parallel 
substructures. Therefore, the structure function of the bridge, which does not 
contain diagonal component, is 

(G1, G2, G3, G4) = par( ser(G1, G3), ser(G2, G4)) (6.1) 

and its total capacity for the flow transmission MSS with the flow dispersion is 
equal to min{G1, G3}+min{G2, G4}.

The surplus of the transferred product on one of end nodes of component 5 can 
be expressed as 

 s = max{(G1  G3),(G2  G4), 0}  (6.2) 

and the deficit of the transferred product on one of the end nodes of component 5 
can be expressed as

 d = max{(G3  G1), (G4  G2), 0}  (6.3) 

The necessary condition for the existence of the flow through component 5 is 
the simultaneous existence of a surplus on one end node and a deficit on the other 
end: s  0, d  0. This condition can be expressed as (G1  G3)(G2  G4)<0.

If the condition is met, the flow through the component 5 will transfer the 
amount of the product which cannot exceed the capacity of the component G5 and 
the amount of the surplus product s. The deficit d on the second end of component 
5 is the amount of the product that can be transferred by the component that 
follows the diagonal (component 3 or 4). Therefore, the flow through the diagonal 
component is also limited by d. Thus, the maximal flow through the diagonal 
component is min{s, d, G5}.

Now we can determine the total capacity of the bridge structure when the 
capacities of its five components are given: 

br(G1, G2, G3, G4, G5) = min{G1, G3}+min{G2, G4}
        + min{|G1  G3|, |G2  G4|, G5} 1((G1  G3)(G2  G4)<0)  (6.4) 

Now consider the performance of the flow transmission MSS without flow 
dispersion. In such a system a single path between points A and B providing the 
greatest flow should be chosen. There exist four possible pathsconsisting of groups
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of components (1, 3), (2, 4), (1, 5, 4) and (2, 5, 3) connected in a series. The 
transmission capacity of each path is equal to the minimum transmission capacity 
of the elements belonging to this path. Therefore, the structure function of the 
entire bridge takes the form 

br(G1, G2, G3, G4, G5) = max{min{G1,G3}
 min{G2,G4}, min{G1,G5,G4}, min{G2,G5,G3}}  (6.5) 

Note that the four parallel subsystems (paths) are not statistically independent, 
since some of them contain the same elements. Therefore, the bridge u-function
cannot be obtained by system decomposition as for the series-parallel systems. 
Instead, one has to evaluate the structure function (6.5) for each combination of 
states of the five independent components. 

6.1.1.2 Task Processing Multi-state Systems 
In these types of system a task is executed consecutively by components connected 
in series. No stage of work execution can start until the previous stage is entirely 
completed. Therefore, the total processing time of the group of elements connected 
in series is equal to the sum of the processing times of the individual elements. 

First, consider a system without work sharing in which the parallel components 
act in a competitive manner. There are four alternative sequences of task execution 
(paths) in a bridge structure. These paths consist of groups of components (1, 3), 
(2, 4), (1, 5, 4) and (2, 5, 3). The total task can be completed by the path with a 
minimal total processing time 

T = min{t1+t3, t2+t4, t1+t5+t4, t2+t5+t3} (6.6) 

where tj and Gj = 1/tj are respectively the processing time and the processing speed 
of element j.

The entire bridge performance defined in terms of its processing speed can be 
determined as

 G = 1/T = br(G1, G2, G3, G4, G5)
 = max{ ser(G1,G3), ser(G2,G4), ser(G1,G4,G5), ser(G2,G3,G5))} (6.7) 

where ser is defined in Equation (4.5). 
Now consider a system with work sharing for which the same three 

assumptions that were made for the parallel system with work sharing (Section 
4.1.2) are made. There are two stages of work performing in the bridge structure. 
The first stage is performed by components 1 and 2 and the second stage is 
performed by components 3 and 4. The fifth component is necessary to transfer 
work between nodes C and D. Following these assumptions, the decision about 
work sharing can be made in the nodes of bridge A, C or D only when the entire 
amount of work is available in this node. This means that components 3 or 4 
cannot start task processing before both the components 1 and 2 have completed 
their tasks and all of the work has been gathered at node C or D.
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There are two ways to complete the first stage of processing in the bridge 
structure, depending on the node in which the completed work is gathered. To 
complete it in node C, the amount of work (1 )x should be performed by 
component 1 with processing speed G1 and the amount of work x should be 
performed by component 2 with processing speed G2 and then transferred from 
node D to node C with speed G5 (  is the work sharing coefficient). The time the 
work performed by component 1 appears at node C is t1 = (1 )x/G1. The time the 
work performed by component 2 and transferred by component 5 appears at node 
C is t2+t5, where t2 = x/G2 and t5 = x/G5. The total time of the first stage of 
processing is T1C = max{t1, t2+t5}. It can be easily seen that TC is minimized when 
the  is chosen that provides equality t1 = t2+t5. The work sharing coefficient 
obtained from this equality is  = G2G5/(G1G2+G1G5+G2G5) and the minimal 
processing time is 

 T1C = x(G2+G5)/(G1G2+G1G5+G2G5) (6.8) 

To complete the first stage of processing in node D, the amount of work (1 )x
should be performed by component 2 with processing speed G2 and the amount of 
work x should be performed by component 1 with processing speed G1 and then 
transferred from node C to node D with speed G5. The minimal possible processing 
time can be obtained in the same manner as T1C. This time is 

T1D = x(G1+G5)/(G1G2+G1G5+G2G5)  (6.9) 

If the first stage of processing is completed in the node C, then the amount of 
work (1 )x should be performed by component 3 in the second stage of 
processing, which takes time t3 = (1 )x/G3. The rest of the work x should be first 
transferred to node D by component 5 and then performed by component 4. This 
will take time t5+t4 = x/G5+ x/G4. Using the optimal work sharing (when              
t3 = t4+t5) with  = G4G5/(G3G4+G3G5+G4G5) we obtain the minimal time of the 
second stage of processing: 

T2C = x(G4+G5)/(G3G4+G3G5+G4G5)  (6.10) 

Using the same technique we can obtain the minimal processing time when the 
second stage of processing starts from node D: 

T2D = x(G3+G5)/(G3G4+G3G5+G4G5)  (6.11) 

Assuming that the optimal way of work performing can be chosen in node A, 
we obtain the total bridge processing time T as

 T = min{T1C+T2C, T1D+T2D}  (6.12)  

where
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 T1C+T2C = x[(G2+G5)/ +(G4+G5)/ ]

 T1D+T2D = x[(G1+G5)/ +(G3+G5)/ ]

  = G1G2+G1G5+G2G5

 = G3G4+G3G5+G4G5

The condition T1C+T2C  T1D+T2D is satisfied when (G2 G1)  (G3 G4) .
The expressions obtained can be used to estimate the processing speed of the 

entire bridge: 

 G = 1/T = br(G1, G2, G3, G4, G5)= /[(f+G5) +(e+G5) ] (6.13) 

where      

 f = G4, e = G2  if  (G2 G1)  (G3 G4)

f = G3, e = G1  if  (G2 G1)  > (G3 G4)

6.1.1.3 Simplification Technique 
Note that in the special case when one of the bridge elements is in a state of total 
failure, the bridge structure degrades to a series-parallel one. All five possible 
configurations of this degraded bridge are presented in Figure 6.2.

Figure 6.2. Degraded bridge structures in the case of single-element total failure 

There is no need to use Equations (6.4), (6.5), (6.7) or (6.13) in order to 
evaluate the structure function of the bridge when one of the random values 
G1,…,G5 is equal to zero. A simpler way to evaluate it is by using the reliability 
block diagram technique. 

The following simplification rules can be used when more than one element is 
in a state of total failure: 

1. If G1 = G2 = 0 or G3 = G4 = 0 the total bridge performance is equal to zero. 
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2. If G1 = G4 = G5 = 0 or G2 = G3 = G5 = 0 the total bridge performance is equal 
to zero. 

3. If any two out of three random values composing groups {G1, G3, G5} or  
{G2, G4, G5} are equal to zero, the third value can also be zeroed. In this 
case, the bridge is reduced to two components connected in a series (2, 4 and 
1, 3 respectively). 

Example 6.1

Consider a bridge consisting of five elements with performance distributions 
presented in Table 6.1. The elements can have up to three states. 

Table 6.1. Performance distributions for bridge elements

Component performance distribution 
State 0 State 1 State 2 

No.
of

element g p g p g p 
1 0 0.10 6 0.60 8 0.30 
2 0 0.05 7 0.95 - - 
3 0 0.10 4 0.10 6 0.80 
4 0 0.05 6 0.20 9 0.75 
5 0 0.15 2 0.85 - - 

The reliability and the performance deficiency for this bridge structure as 
functions of system demand are presented in Figure 6.3 for the structure interpreted 
as a system of four different types (numbered according to Table 4.4). The values 
of the expected performances obtained for these four different systems are =
8.23,  = 6.33,  = 3.87 and  = 3.55. 

Figure 6.3. Reliability and performance deficiency for different types of bridge MSS 
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6.1.2 Structure Optimization of Bridge Systems 

By having the technique for determining the u-function of bridge subsystems, one 
can apply it for solving structure optimization problems for systems with complex 
topology consisting of series-parallel and bridge subsystems. The formulation of 
the generalized structure optimization problem is similar to that presented in 
Section 5.1.2.1:

An MSS consists of N components connected in series, in parallel, or 
composing a bridge (according to a given reliability block diagram). Each 
component is a subsystem that can consist of parallel elements with the same 
functionality. For each component i, different versions of elements may be chosen 
from the list of element versions available in the market. The optimal solution 
corresponds to the minimal cost system configuration that provides the desired 
level of the given system performance measure. 

When the system reliability is optimized and no constraints are imposed on the 
system configuration, the solutions for the structure optimization problem for the 
bridge system always produce a degraded series-parallel system. This happens 
because, from the reliability point of view, building a system with bridge topology 
is not justified. Indeed, when no allocation constraints are imposed on the system, 
the series-parallel solution is more reliable and less expensive than one based on 
the bridge architecture. One can see that for an arbitrary bridge structure (Figure 
6.1) the less expensive and more reliable solution can be obtained by uniting 
elements of components 1 and 2 in component 1 and elements of components 3 
and 4 in component 3 and by removing diagonal component 5. The existence of the 
bridge systems is justified only when some constraints are imposed on the 
allocation of the system elements or when the elements belonging to the same 
component are subject to CCFs. 

6.1.2.1 Constrained Structure Optimization Problems 
Connecting the system components in a bridge topology is widely used in design 
practice. There can be many different reasons for a system to take the bridge form. 
For example:

- the bridge configuration of the system is determined by factors not related to 
its reliability; 

- in order to provide the redundancy on the component level the system should 
have parallel functionally equivalent components; 

- the system contains parallel functionally equivalent but incompatible 
components;

- the number of elements that can be allocated within each component is 
limited.

In order to take into account such constraints, when the optimal system 
configuration is determined one has to modify the objective function in a way that 
penalizes the constraint violation. The methodology of solving the structure 
optimization problem for the systems containing series-parallel and bridge 
structures presumes using the optimization problem definition and GA 
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 implementation technique presented in Sections 5.1.2.1 and 5.1.2.2 and including 
the corresponding penalties to the solution fitness.

The solution decoding procedure, based on the UGF technique, performs the 
following steps: 

1. Determines number of chosen elements ibn for each system component and 

each element version from the string a.
2. Determines u-functions )(zuib  of each version of elements according to their 

PD gi(b), pi(b).
3. Determines u-functions of each component i (1 i N) by applying the 

composition operator
par

over u-functions of the elements belonging to this 

component.
4. Determines the u-function of the entire MSS U(z) by applying the 

corresponding composition operators using the reliability block diagram method 
and composition operators ,

par ser
and .

br

5. Having the u-function of the entire system and its components, determines 
their performance measures as described in Section 3.3. 

6. Determines the total system cost using Equation (5.2). 
7. Determines the solution’s fitness as a function of the MSS cost and 

performance measure as 

M C(a) 1(1+|O O*|)(1  f(O,O*)) 2                      (6.14) 

where 1 and 2 are penalty coefficients, M is a constant value and  is a measure 
of constraint violation. For example, if it is important to provide the expected 
performance j of each bridge component j (1 j 5) at a level not less than j*, then

 takes the form 

)0,max(
5

1

*
j

j
j                      (6.15) 

If no more than Ij elements can be allocated in each bridge component j, then 
takes the form 

)0,max(
5

1 1
j

j

B

b
jb In

j

                     (6.16) 

If a pair of parallel components j and i should provide an identical nominal 
performance (the components consist of two state elements with nominal 
performances gj1(b) and gi1(b), then  takes the form 

ij B

b
iib

B

b
jjb bgnbgn

1
1

1
1 )()(                      (6.17) 
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Example 6.2 

Consider a power station coal transportation system that receives the coal carried 
by sea [164]. There may be up to two separate piers where a ship with coal can be 
berthed. Each pier should be provided with a separate coal transportation line. The 
lines can be connected by an intermediate conveyor in order to balance their load.

 This flow transmission system (with flow dispersion) contains six basic 
components:

1, 2. Coal unloading terminals, including a number of travelling rail cranes for 
the ship discharge with adjoining primary conveyors. 

3, 4. Secondary conveyors that transport the coal to the stacker-reclaimer. 
5. An intermediate conveyor that can be used for load balancing between the 

lines.
6. The stacker-reclaimer that transfers the coal to the boiler feeders. 

Each element of the system is considered to be a two-state unit. Table 6.2 shows 
availability, nominal capacity, and unit cost for equipment available in the market. 
The system demand is w = 1. 

First consider an optimization problem in which the number of cranes at any 
pier cannot exceed three because of allocation constraints. The penalty (6.16) with 
I1 = I2 = 3 and I3 = I4 = I5 =  is incorporated into the solution fitness function. 

Table 6.2. Characteristics of available system elements 

Component  Description No. of version g p c 
1 0.80 0.930 0.750 
2 0.60 0.920 0.590 
3 0.60 0.917 0.535 
4 0.40 0.923 0.400 
5 0.40 0.860 0.330 

1,2
Crane with 

primary
conveyor

6 0.25 0.920 0.230 
1 0.70 0.991 0.325 
2 0.70 0.983 0.240 
3 0.30 0.995 0.190 

3,4 Secondary
conveyor

4 0.25 0.936 0.150 
1 0.70 0.971 0.1885 
2 0.60 0.993 0.1520 
3 0.40 0.981 0.1085 
4 0.20 0.993 0.1020 

5
Intermediate

conveyor

5 0.10 0.990 0.0653 
1 1.30 0.981 1.115 
2 0.60 0.970 0.540 6

Stacker-
reclaimer

3 0.30 0.990 0.320 

The results obtained for different values of required availability A* are 
presented in Figure 6.4 (each element is marked by its version number). One can 
see the modifications of the optimal structure of the system corresponding to 
different levels of the availability provided. The simple series-parallel system 
appears to be optimal when providing relatively little availability. In this case, the 
single-pier system satisfies the availability requirement (note that in this case there 
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 are no constraints on the interchangeability of the piers, on the number of piers, or 
on the number of ships to be discharged simultaneously). 

Figure 6.4. Optimal structures for a problem with allocation constraints 

The bridge system becomes the best solution as A* grows and, finally, for 
A* = 0.99 the system returns to the series-parallel configuration. In this case the 
necessary redundancy of the ship discharge facilities is provided by the second pier 
connected with the single coal transportation line by the intermediate conveyor. 

Now consider the problem in which the equality of the total installed capacities 
of components 1 and 2 is required to make the piers interchangeable (symmetry 
constraint). To meet this requirement, the additional penalty (6.17) with j = 1 and     
i = 2 is added to the solution fitness function. 

The results obtained for different desired values of the system availability A*
are presented in Figure 6.5. One can see that the load-balancing diagonal element 
(intermediate conveyor) appears only in the solutions with relatively high 
availability.

Figure 6.5. Optimal structures for a problem with symmetry constraints
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For the next example consider the existing obsolete coal transportation system 
consisting of elements with low availability. This system can supply the boiler with 
availability A = 0.532. The parameters of the components of the existing system 
are presented in Table 6.3. The problem is to achieve a desired availability level A*
by including additional elements from Table 6.2 into the system.

Table 6.3. Structure of the obsolete system

Component No. of parallel Parameters of 
elements

 elements g p 
1 2 0.30 0.918 
2 2 0.30 0.918 
3 1 0.60 0.907 
4 1 0.60 0.903 
5 0 - - 
6 1 1.00 0.911 

Figure 6.6. Optimal structures for the system extension problem 

The minimal cost solutions of the system extension problem in which the cost 
of additional elements alone is considered obtained for this type of problem are 
presented in Figure 6.6 (the elements belonging to the initial system are depicted 
by grey rectangles).

Example 6.3 

An alarm data-processing system has processing units of different types and data 
transmission/conversion facilities (see Figure 6.7). The system is composed of the 
following subsystems: 

- primary data-processing subsystem containing components 1 and 2; 
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- decision-support subsystem containing components 9 and 10. 

Figure 6.7. Structure of the alarm data-processing system 

Table 6.4. Characteristics of available system elements

Component Description No. of version g p c

1,2

 1 
2
3
4
5
6

8.0
6.0
6.0
4.0
4.0
2.5

0.830
0.820
0.807
0.860
0.825
0.820

0.750
0.590
0.535
0.400
0.330
0.230

3,4
 1 

2
3
4

7.0
7.0
3.0
2.5

0.821
0.803
0.915
0.806

0.325
0.240
0.190
0.150

5
Data transmission

(conversion)
units

1
2
3
4
5

20.0
18.0
14.0
12.0
11.0

0.871
0.893
0.881
0.893
0.890

0.1885
0.1520
0.1085
0.1020
0.0653

6
Data

transmission
line

1
2
3

11.3
6.6
4.3

0.881
0.870
0.890

1.115
0.540
0.320

7,8
Output data 
processing

unit

1
2
3

3.2
2.8
2.8

0.801
0.827
0.801

0.750
0.590
0.535

9,10 Decision-support
unit

1
2
3
4

5.7
5.7
5.3

4.25

0.891
0.813
0.925
0.836

0.325
0.240
0.220
0.150

11
Data transmission 

(conversion)
units

1
2
3

70.0
60.0
40.0

0.971
0.993
0.981

0.031
0.025
0.020

Pairs of components {1, 3}, {2, 4}, {7, 9} and {8, 10} have compatible data 
exchange protocols, whereas data transmission between pairs of components {1, 
4}, {2, 3} and {7, 10}, {8, 9} requires its conversion, which can be performed by 
components 5 and 11 respectively. The set of available versions of two-state 
elements for each system component is presented in Table 6.4. The system 
performance (processing speed) should be no less than w = 1. The structure 
optimization problems were solved for two types of this task processing system: 
with and without work sharing [165]. 

First, the solutions of the unconstrained optimization problem were obtained 
for values of desired system reliability R* = 0.95 and R* = 0.99. The parameters of 
solutions obtained are presented in Table 6.5 and the optimal system structures are 
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 presented in Figures 6.8 and 6.9 (structures A and C). One can see that the simple 
series-parallel system appears to be optimal in all of the cases. 

Figure 6.8. Optimal structures of system without work sharing. 
A: R* = 0.95, no constraints; B: R* = 0.95, constraints;
C: R* = 0.99, no constraints; D: R* = 0.99, constraints

 To force the GA to obtain the solution based on bridge structures, allocation 
constraints were imposed that forbid allocation of more than two parallel elements 
in all of the components except 5, 6 and 11. The parameters of the solutions 
obtained are also presented in Table 6.5 and the optimal system structures are 
presented in Figures 6.8 and 6.9 (structures B and D). The modification of the 
structure of the system without work sharing for different levels of required 
reliability is apparent. The transmission/conversion units appear unnecessary when 
providing R>0.95, but one such unit is included in the system providing R>0.99.
For the system with work sharing, the use of a bridge diagonal element is more 
justified because its contribution to the total performance increases. 
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Figure 6.9. Optimal structures of system with work sharing. 
A: R* = 0.95, no constraints; B: R* = 0.95, constraints;
C: R* = 0.99, no constraints; D: R* = 0.99, constraints

 The work sharing allows the system to perform faster. Therefore, less 
expensive solutions were obtained for this type of system than for the system 
without work sharing. 

Table 6.5. Parameters of the obtained solutions

R* 0.99 0.95 
Constraints No Yes No Yes 

 System without work sharing 
C 7.750 8.195 5.715 6.140 
R 0.9911 0.9901 0.9505 0.9503 

0.997 1.032 0.960 0.960 
 System with work sharing 

C 4.960 5.1856 4.02500 4.2756 
R 0.9901 0.9901 0.9511 0.9518 

1.801 1.744 1.425 1.445 

The systems without work sharing have few different possible levels of 
performance because the operator max used in this case provides the same 

performance level for many different system states. In the solutions presented, only 
the system obtained for R* = 0.99 with allocation constraints (Figure 6.8D) has 
different performance levels. The remainder have the single possible nonzero 
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performance level because their components contain elements with the same 
nominal performance rates. The system performance distributions for systems 
without work sharing are presented in Figure 6.10A.

In contrast, the systems with work sharing have many possible performance 
values depending on their states, because the failure of each element affects the 
ability of the corresponding component to participate in the work sharing. The 
performance distributions for systems with work sharing are presented in Figure 
6.10B.

A         B 
Figure 6.10. System reliability as a function of demand.

A: system without work sharing; B: system with work sharing

6.1.2.2 Structure Optimization in the Presence of Common Cause Failures
When the system components are subject to CCFs, the separation of elements 
among different parallel components can improve the overall system survivability 
(see Section 5.2.1). Such separation can justify the appearance of a bridge 
structure.

Consider, for example, an MSS containing two components A and B connected 
in series (Figure 6.11A). The components consist of M and L different elements 
respectively. All elements belonging to the same component are of the same 
functionality and are connected in parallel. The components A and B are subject to 
total CCF (they can be destroyed by hostile environments with the probabilities vA

and vB respectively). The component destruction means that all of its elements are 
damaged and cannot perform their task. The system survivability is defined as the 
probability that a given demand w is met. This probability is affected by both the 
failures of the elements and the vulnerability of the components.

To enhance the system’s survivability its components can be separated into two 
independent subcomponents. Let {1, …, M} and {1, …, L} be sets of numbers of 
elements belonging to components A and B respectively[ Theelements’ separation 
problem can be considered as a problem of partitioning these sets inttwo mutually 
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disjoint subsets. The partition can be represented by the binary vectors xA = {xAj:
1 j M} and xB = {xBj: 1 j L}, where xAj, xBj {0,1} and two elements i and j
belong to the same subset if and only if xAi = xAj or xBi = xBj for components A and 
B respectively. 

Actually, the separation leads to the appearance of two independent parallel 
subsystems containing components connected in series: 1, 3 and 2, 4 (see Figure 
6.11C). In these systems, components 1 and 2 have the same vulnerability as the 
basic component A, and components 3 and 4 have the same vulnerability as the 
basic component B. Usually, the separation disconnects component 1 from 
component 4 and component 2 from component 3 (for example, when components 
1 and 3 are spatially separated from components 2 and 4). To provide a connection 
between these components, a diagonal component 5 can be included that delivers 
an output of component 1 to the input of component 4 or an output of component 2 
to the input of component 3. The diagonal component can also consist of different 
multi-state elements. This component can also be characterized by its vulnerability 
v5.

The problem of bridge structure optimization is to find the optimal separation
xA, xB of elements from components A and B which provides the maximal system 
survivability for the given demand w when the structure of the diagonal component 
is given: 

S(xA, xB,vA,vB,v5,w)  max (6.18) 

The separation solution can be represented in the GA by the binary string a,
which is a concatenation of the binary vectors xA and xB. The following procedure 
determines the fitness value for an arbitrary solution defined by the string a.

1. According to a, determine lists of elements belonging to components 1, 2, 3 
and 4. 
2. For 1 i 5, determine the u-function of the entire component i using the 
composition operator 

par
over the u-functions of elements belonging to this 

component (the list of elements belonging to the diagonal component is given). 
3. In order to incorporate the component vulnerability into its u-function, apply 
the  operator (4.58) with v = vi over the u-function of the component. 
4. Determine the u-function of the entire bridge system using the composition 
operator

br
 over the u-functions of its components. 

5. Determine the system survivability index S for the given demand w and 
evaluate the solution fitness as S(a).

Example 6.4 

Consider a system initially consisting of two components connected in series (see 
Figure 6.11A). The first component consists of 12 two-state elements and the 
second consists of eight two-state elements. All of the elements within each 
component are connected in parallel. The sets of elements belonging to the 
components consist of pairs of identical elements (six pairs for the first component 
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and four pairs for the second one). This provides the possibility of symmetric 
separation. Parameters of elements of each pair are presented in Table 6.6.

Figure 6.11. Special cases of bridge structure 

It is assumed that the elements belonging to each component are subject to total 
CCFs (external impact) and the probability of the CCF (component vulnerability) 
is the same for each component. 

Table 6.6. Parameters of MSS elements

No. of 
component

No. of 
element

G p 

1 8.0 0.830 
2 6.0 0.820 
3 6.0 0.807 
4 4.0 0.860 
5 4.0 0.825 

1, 2 

6 2.0 0.820 
1 15.0 0.821 
2 10.0 0.803 
3 10.0 0.815 3, 4 

4 5.0 0.806 
1 6.0 0.871 

5 2 4.0 0.893 

To enhance the system’s survivability, each component can be divided into two 
subcomponents and a diagonal component consisting of two parallel elements can 
be included (Figure 6.11B). The parameters of the element belonging to diagonal 
component 5 are also presented in Table 6.6.

The system is interpreted first as a flow transmission one with flow dispersion 
and then as a task processing one without work sharing. The optimal solutions were 
obtained for both types of system for the same parameters of elements [166]. The 
system demands are w = 25 and w = 4 for the flow transmission system and the task 
processing system respectively. Solutions were obtained for three different values 
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of component vulnerability: v = 0 (pure reliability optimization problem), v = 0.05 
and v = 0.5.

The bridge structures providing the maximal survivability for the flow 
transmission system are presented in Table 6.7 and for the task processing system 
in Table 6.8. These solutions are compared with solutions having no component 
separation (Figure 6.11A) and with solutions having symmetric separation. The 
lists of elements belonging to each component, as well as the corresponding system 
survivability index S(w) and mean performance ,  are presented for each solution.

    Table 6.7. Solutions for flow transmission system (vulnerability variation)

System structure v = 0 v = 0.05 v = 0.5 Solution
description No. of 

component
Elements
included

S S S

1 114466 
2 223355 
3 112 

Optimal
for v = 0.05 

4 23344 

0.9968 48.268 0.9333 43.957 0.2837 12.713

1 123456 
2 123456 
3 1234 Symmetric

4 1234 

0.9968 48.266 0.9244 43.969 0.2565 12.722

1 112233445566
2 - 
3 11223344 

Optimal
for v = 0 

(no
separation)

4 - 

0.9974 48.518 0.9001 43.787 0.2493 12.129

1 23345566 
2 1124 
3 113 

Optimal
for v = 0.5 

4 22344 

0.9960 48.185 0.9319 43.870 0.2866 12.652

    Table 6.8. Solutions for task processing system (vulnerability variation)

System structure v = 0 v = 0.05 v = 0.5 Solution
description No. of 

component
Elements
included

S S S

1 223346 
2 114556 
3 1144 

Optimal
for v = 0.05 

and for 
v = 0.5 

4 2233 

0.9990 4.434 0.9841 4.381 0.4255 2.047

1 123456 
2 123456 
3 1234 Symmetric

4 1234 

0.9983 5.135 0.9820 5.058 0.4221 2.325

1 112233445566
2 - 
3 11223344 

Optimal
for v = 0 

(no
separation)

4 - 

0.9990 5.168 0.9016 4.664 0.2497 1.292
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One can see that, when the probability of CCFs in the components is neglected 
(v = 0), the best solution is one without elements separation. The optimal solutions 
for different values of component vulnerability can differ (as in case of the flow 
transmission system, where the optimal solution for v = 0.05 is not optimal for v = 
0.5 and vice versa). For both types of system the optimal solutions are not 
symmetric.

The solution that provides the maximal system survivability for a given 
demand w does not necessarily provide the greatest system mean performance. 
Indeed, the system resources are distributed in such a way that maximizes only the 
probability of demand w satisfaction, while the rest of the performance levels can 
be provided with probabilities lower than those obtained by an alternative solution. 
In Figure 6.12 one can see S(w) functions for three different solutions for both 
types of system when v = 0.05. While the probability Pr{G w} for the optimal 
solutions is maximal, the probabilities Pr{G w'} for w'>w is often greater for the 
symmetric solution and the solution without separation. Note that the greatest 
mean performance  is achieved for the symmetric solutions for both types of 
system.

It is interesting that the optimal solution for the task processing system when     
v = 0.05 cannot even provide a processing speed G>4.44, while the rest of the 
solutions provide a processing speed G = 5.22 with a probability close to 0.85. 
Indeed, the fastest elements in the optimal solution are located in components 1 
and 3. Therefore, the path including only these two elements with nominal 
processing speeds g11 = 8 and g31 = 15 does not exist in this solution, since the two 
elements are not directly connected, though they are through the diagonal element. 
In the remainder of the solutions such a path exists. Creating the fastest path by 
exchanging elements between components 3 and 4 in the optimal solution 
improves the system’s average processing speed (it grows from  = 4.381 to  = 
4.968); however, this drastically decreases the system’s survivability for the given 
demand w = 4 (from S(4) = 0.984 to  S(4) = 0.848). 

In order to estimate the effect of diagonal element parameters on the optimal 
separation, compare the optimal solution obtained above (Figure 6.11B) with two 
extreme cases. In the first case (Figure 6.11C) no diagonal component is available: 
Pr{G5 = 0} = 1. In the second case (Figure 6.11D), no capacity limitations are 
imposed on the fully reliable diagonal component: Pr{G5 = } = 1. The solutions 
obtained for both types of system are presented in Tables 6.9 and 6.10.

    Table 6.9. Solutions for flow transmission system (different diagonal elements) 

System structure Case B Case C Case D Solution
description No. of 

component
Elements
included

S S S

1 114466 
2 223355 
3 112 

Optimal
 for case B 

4 23344 

0.9333 43.957 0.9038 42.306 0.9432 44.505

1 1124 
2 23345566 
3 112 

Optimal
 for cases C 

and D 
4 23344 

0.9328 43.911 0.9053 42.202 0.9445 44.500
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One can see that the optimal separation solutions coincide in cases B and C for 
the flow transmission system and in cases C and D for the task processing system. 
Obviously, the highest system survivability is achieved for case D and the lowest 
for case C.

    Table 6.10. Solutions for task processing system (different diagonal elements)

System structure Case B Case C Case D Solution
description No. of 

component
Elements
included

S S S

1 223346 
2 114556 
3 1144 

Optimal
for cases B 

and C 
4 2233 

0.9841 4.381 0.9841 4.370 0.9862 5.026

1 1234455 
2 12366 
3 123 

Optimal
 for case D 

4 12344 

0.9820 5.057 0.9820 5.045 0.9914 5.113

     A         B 
Figure 6.12. System survivability as function of demand for different element 

separation solutions in flow transmission system (A) and in task processing system (B) 

6.2 Multi-state Systems with Two Failure Modes 

Systems with two failure modes consist of statistically independent devices 
(elements) that are all to operate in the same two modes (the operation commands 
in each mode arrive at all the elements simultaneously). Each element can fail in 
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either of two modes. A typical example of systems with two failure modes are 
switching systems that not only can fail to close when commanded to close but can 
also fail to open when commanded to open. Two different types of switching 
system can be distinguished:

- flow transmission systems, in which the main characteristic of each switching 
device is the flow controlled by this device (for example, fluid flow valve); 

- task processing systems, in which the main characteristic of each switching 
device is  the switching time of this device (for example, electronic diode).

The study of the systems with two failure modes started as early as in the 
1950th [167-169] and still attracts interest of researchers [170-173]. In 1984, 
Barlow and Heidtman [14] suggested using a generating function method for 
computing k-out-of-n reliability of systems with two failure modes. 

The aforementioned studies consider only reliability characteristics of elements 
composing the system. In many practical cases, some measures of element 
(system) performance must be taken into account. For example, fluid-transmitting 
capacity is the performance of fluid valves and of switching systems that consist of 
such valves, while operating time is the performance of electronic switches and of 
switching systems that consist of such switches. Each system element can be 
characterized in each mode by its nominal performance and the element fails if it is 
unable to provide its nominal performance. A system can have different levels of 
output performance depending on its structure and on the combination of elements 
available at any given moment. Therefore, the system is multi-state.

The system is considered to be in an operational state if its performance rate in 
open mode oG  satisfies condition 1),( ooo wGF  and its performance rate in 

closed mode cG  satisfies condition 1),( ccc wGF , where ow  and cw  are the 

required levels of system performance in the open and closed modes respectively 
and oF  and cF  are the acceptability functions in open and closed modes 

respectively.
 Since the failures in open and closed modes, which have probabilities    

}0),(Pr{ oooo wGFQ  and }0),(Pr{ cccc wGFQ respectively, are mutually 

exclusive events and the probabilities of both modes are equal to 0.5 (each 
command to close is followed by a command to open and vice versa), the entire 
system availability can be defined as 

 A = 1 0.5 )( o cQQ  (6.19) 

In order to characterize the expected performance of MSSs with two failure 
modes, one has to evaluate this index for both its modes: o and c.

Having u-functions Uo(z) and Uc(z) representing the system performance 
distributions in open and closed modes, one can obtain the probabilities Qo and Qc

and the expected performance rates o and c using the technique presented in 
Section 3.3 over Uo(z) and Uc(z) respectively. 

Usually, the switching systems consist of elements with total failures. Each 
element j has nominal performance rates ojg and ,cjg  performance rates in fault 
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 state o
~

jg and ,~
cjg  and probabilities of normal functioning pjo and pjc in open and 

closed modes respectively. The individual u-functions of the system element can 
be defined as 

cc

oo
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ccc
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ooo

)1()(
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jj
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j
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jj

g
j

g
jj

zpzpzu
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  (6.20) 

In order to obtain the system u-functions Uo(z) and Uc(z), one has to determine 
the parameters of the u-functions of individual system elements (6.20) and define 
the structure functions used in the composition operators for both modes. Having 
these u-functions one can easily evaluate the system availability using Equation 
(6.19) and operators (3.8) and (3.12):

A(wo, wc)=1 0.5[1 ))(( o

o
o

wzzUE
F

+1 ))(( c

c
c

wzzUE
F

]

         = 0.5[ ))(( o

o
o

wzzUE
F

+ ))(( c

c
c

wzzUE
F

] (6.21) 

In the following sections we consider two typical switching systems. 

6.2.1 Flow Transmission Multi-state System

In this model the performance of the switching element (flow valve) is defined as 
its transmitting capacity. To determine the u-function of an individual element j in
the closed mode, note that in the operational state, which has the probability pjc, the 
element should transmit a nominal flow fj (gjc = fj) and in the failure state it fails to 
transmit any flow ( c

~
jg = 0). Therefore, according to (6.20), the u-function of the 

element takes the form 

0
ccc )1()( zpzpzu j

f
jj

j  (6.22) 

In the open mode the element has to prevent the flow transmission through the 
system. If it succeeds in doing this (with probability pjo), then the flow is zero (gjo

= 0), and if it fails to do so the flow is equal to its nominal value in the closed 
mode      ( o

~
jg = fj ). The u-function of the element in the open mode takes the form 

jf
jjj zpzpzu )1()( o

0
oo  (6.23) 

The structure functions for subsystems of elements connected in a series, in 
parallel or composing a bridge structure for the flow transmission MSS with flow 
dispersion are defined by Equations (4.2), (4.9) and (6.4) respectively. Using the 
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reliability block diagram method one can obtain the u-function of the arbitrary 
system by consecutively applying the corresponding composition operators.

Note that the u-function of a subsystem containing n identical parallel elements 
(pjc = pc, pjo = po, fj = f for any j) can be obtained by applying the operator 

))(),...,(( zuzu  over n functions u(z) of an individual element represented by 

(6.22) or (6.23). The u-function of this subsystem takes the form

Uc(z) =
n

k

kfknk zpp
knk

n

0
cc )1(

)!(!

!
  (6.24) 

for the closed mode and 

Uo(z) =
n

k

kfkkn zpp
knk

n

0
oo )1(

)!(!

!
 (6.25) 

for the open mode. The u-function of a subsystem containing n identical elements 
connected in a series can be obtained by applying operator min  over n functions 

u(z) of an individual element. The u-function of this subsystem takes the form

Uc(z) = 0
cc )1( zpzp nfn  (6.26) 

for the closed mode and

Uo(z) = fnn zpzp )1(])1(1[ o
0

o   (6.27) 

for the open mode. 
To determine the system’s reliability one has to define its acceptability 

function. For the flow transmission system, it is natural to require that in its closed 
mode the amount of flow should not be lower than the demand wc, while in the 
open mode it should not exceed a value of wo. Therefore, the conditions of the 
system’s success are 

Fc(Gc,wc) = 1(Gc wc) and Fo(Go,wo) = 1(Go wo) (6.28) 

6.2.2 Task Processing Multi-state Systems 

In this type of switching system the task of each element is to connect (or 
disconnect) a circuit. Since the task processing in each mode is associated with a 
single switching action, the performance of element j is defined not as its 
processing speed but as its operation time. 
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To determine the u-function of an individual element with total failures (for 
example, an electronic diode) in closed and open modes, note that the element j
operates in times gjc = tjc and gjo = tjo with the probabilities pjc and pjo respectively. 
If the element fails to operate, then its operation time is equal to infinity 

).~~( co jj gg  Therefore, according to (6.20), the u-functions of the element for 

the two modes take the form 

zpzpzu
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ccc
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 (6.29) 

If several elements are connected in parallel within a subsystem, then the 
subsystem disconnection is completed only when all the elements including the 
slowest one are opened. Therefore, the operation time of n elements in the open 
mode is equal to the greatest of the operation times of the elements. The structure 
function for the open mode takes the form 

 },...,max{),...,( 11par nn GGGG  (6.30) 

 For n elements connected in series, the first disconnected element disconnects 
the subsystem in the open mode. Therefore, the structure function takes the form 

},...,min{),...,( 11ser nn GGGG  (6.31) 

If n elements are connected in parallel within a subsystem, then the first 
connected element makes the subsystem connected. Therefore, the operation time 
of the group of elements in closed mode is equal to the least of the operation times 
of the elements. The structure function for the closed mode takes the form 

   },...,min{),...,( 11par nn GGGG  (6.32) 

 For n elements connected in series, all of the elements, including the slowest 
one, should be connected to make the subsystem connected in the closed mode. 
Therefore, the structure function takes the form: 

 },...,max{),...,( 11ser nn GGGG  (6.33)  

Combining the two operators one can obtain a u-function representing the 
performance distribution of an arbitrary series-parallel system in both modes. Note 
that the u-function of a subsystem containing n identical parallel elements is 

zpzpzU ntn )1(])1(1[)( ccc
c  (6.34) 
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for the closed mode and 

zpzpzU ntn )1()( ooo
o  (6.35) 

for the open mode. The u-function of a subsystem containing n identical elements 
connected in series takes the form

zpzpzU ntn )1()( ccc
c  (6.36) 

for the closed mode and

zpzpzU ntn )1(])1(1[)( ooo
o  (6.37) 

for the open mode.
In order to evaluate the operation time of a bridge structure, notice that there 

are four possible parallel ways to connect input and output of the bridge (see 
Figure 6.1): through groups of elements {1, 3} or {2, 4} or {1, 5, 4} or {2, 5, 3} 
connected in series.  Therefore, the entire bridge operation time can be obtained as 

br(G1, G2, G3, G4, G5)    

 = par( ser(G1, G3), ser(G2, G4), ser(G1, G5, G4), ser(G2, G5, G3)) (6.38) 

For the open mode this expression takes the form 

br(G1, G2, G3, G4, G5)

 = max(min(G1, G3),min(G2, G4),min(G1, G5, G4),min(G2, G5, G3))    (6.39) 

and for the closed mode it takes the form 

br (G1, G2, G3, G4, G5)

 =min(max(G1, G3),max(G2, G4),max(G1, G5, G4),max(G2, G5, G3)) (6.40) 

For a system in which operation time is the crucial factor, it is natural to require 
that in its closed and open modes the operation times should not exceed the values 
wc and wo respectively. The system’s acceptability functions are 

Fc(Gc,wc) = 1(Gc wc) and Fo(Go,wo) = (Go wo)    (6.41) 

Having these acceptability functions one can easily evaluate the system’s 
availability using Equation (6.21).
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Since, in the worst case, the operation time of the entire system is equal to 
infinity, determining the expected operation time makes no sense. A more natural 
way of evaluating expected performance is by using the conditional expected 
operation time (expected operation time given the system manages to operate). In 
this case, Equation (3.7) with the acceptability functions Fo(Go) = 1(Go< ) and 
Fc(Gc) = 1(Gc< )  should be used. 

Example 6.5 

Consider a switching series-parallel subsystem consisting of three elements 1-3 
connected as depicted in Figure 6.13. The elements are characterized by their 
availability and performance level (transmitting capacity f) in open and closed 
modes. The parameters of the system elements are presented in Table 6.11 (first 
three rows). The u-functions of the individual elements according to (6.22) and 
(6.23) are 

 u1o(z) = 0.87z0+0.13z1.5; u1c(z) = 0.89z1.5+0.11z0

 u2o(z) = 0.78z0+0.22z3.5; u2c(z) = 0.82z3.5+0.18z0

 u3o(z) = 0.82z0+0.18z2.5; u3c(z) = 0.91z2.5+0.09z0

Figure 6.13. Reliability block diagram of MSS with two failure modes 

In order to determine the system performance distribution in the open and 
closed modes we have to obtain the u-function of the entire system using 
composition operators over the u-functions of individual elements.

)()]()([)( o3o2o1o min
zuzuzuzU

 = [(0.87z0+0.13z1.5)
min

(0.78z0+0.22z3.5)] (0.82z0+0.18z2.5)

 =  (0.9714z0+0.0286z1.5) (0.82z0+0.18z2.5)

 = 0.7965z0+0.0234z1.5+0.1749z2.5+0.0051z4
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)()]()([)( c3c2c1c min
zuzuzuzU Uo(z)

 = [(0.89z1.5+0.11z0)
min

( 0.82z3.5+0.18z0)] ( 0.91z2.5+0.09z0)

 =  (0.7298z1.5+0.2702z0) ( 0.91z2.5+0.09z0)

 = 0.6641z4+0.0657z1.5+0.2459z2.5+0.0243z0

Having the system u-functions for the open and closed modes one can 
determine the expected flows through the system in these modes by applying the 
operator (3.11): 

o = 0.7965 0+0.0234 1.5+0.1749 2.5+0.0051 4 = 0.4927 

c = 0.6641 4+0.0657 1.5+0.2459 2.5+0.0243 0 = 3.3697 

Assume that in the closed mode the amount of flow should exceed wc = 2, 
while in the open mode it should not exceed wo = 0.5. Applying Equation (6.21) 
with acceptability functions (6.28) we obtain 

 )2)((
c

c F
zUE = 0.6641 1(4 2)+0.0657 1(1.5 2)+0.2459 1(2.5 2)

 +0.0243 1(0 2) = 0.6641+0.2459 = 0.91 

 )0.5)((
o

o F
zUE = 0.7965 1(0 0.5)+0.0234 1(1.5 0.5)

 +0.1749 1(2.5 0.5)+0.0051 1(4 0.5) = 0.7965 

 A(2, 0.5) = 0.5( )2)((
c

c F
zUE + )0.5)((

o
o F

zUE )

 = 0.5(0.91+0.7965) = 0.85325 

Example 6.6 

Consider a switching system with the configuration presented in Figure 6.13. Each 
one of the ten system elements is characterized by its availability and nominal 
performance rate in open and closed modes. In the case of a flow transmission 
system, the performance of an element is its transmitting capacity f. In the case of a 
system of electronic switches, the performance of an element is determined by its 
operation times in open mode to and in closed mode tc. The parameters of the 
system elements are presented in Table 6.11. 

In order to determine the system PD in the open and closed modes one has to 
obtain the u-function of the entire system using the composition operators over u-
functions of the individual elements uo1(z)-uo10(z) and uc1(z)-uc10(z) respectively.
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Table 6.11. Parameters of MSS elements 

Flow transmission model 
f pc po

Task processing model 
No. of

element
tc to pc po

1 3.0 1.5 0.89 0.87 
2 5.0 3.5 0.82 0.78 
3 3.5 2.5 0.91 0.82 
4 2.5 3.0 0.85 0.82 
5 3.0 2.5 0.80 0.76 
6 3.0 3.0 0.80 0.78 
7 4.0 3.0 0.91 0.85 
8 4.0 4.5 0.84 0.79 
9 5.3 2.5 0.93 0.91 

10 5.0 2.7 0.92 0.90 

First, consider the system to be a combination of flow valves (flow 
transmission system with flow dispersion). The flow through the system can vary 
in the range of   0.0-7.0. In the closed mode the expected flow is c = 5.306. The 
probability that the system provides the maximal flow in the closed mode is Pr{Gc

= 7} = 0.30. In the open mode the expected flow is o = 0.303 and the probability 
that the system totally prevents the flow is Pr{Gc = 0} = 0.892. The system failure 
is defined as its inability to provide at least the required constant level of flow wc in 
its closed mode and to prevent the flow exceeding wo in its open mode. The failure 
probabilities in both modes as functions of demand w are presented in Figure 
6.14A. Note that Qc(wc) is an increasing function (the greater the demand, the 
tougher the condition Gc wc), while Qo(wo) is a decreasing function (the greater the 
demand, the easier the condition Go wo). The entire system availability A(wo,wc) as 
a function of maximal allowable flow in the open mode wo and minimal required 
flow in the closed mode wc is presented in Figure 6.15A. 

Now consider the system to be a combination of electronic switches (task 
processing system). The probabilities that the system is able to operate in the open 
and closed modes (operation time is less than infinity) are Pr{Go< } = 0.892 and 
Pr{Gc< } = 0.990. When Go< , the time needed by the system to disconnect its 
input from output in the open mode cannot be less than 3 and greater than 4.5. The 
conditional expected operation time is o

~  = 3.02. When Gc< , the time needed by 

the system to connect its input with output in the closed mode cannot be less than 3 
and greater than 5.3. The conditional expected operation time is c

~ = 3.23. When 

the system failure is defined as its inability to switch within the required time (wo

and wc in open and closed modes respectively), the failure probabilities in both 
modes are functions of this time. The functions Qo(wo) and Qc(wc) are presented in 
Figure 6.14B. The entire system availability as a function of required switching 
times in the open and closed modes A(wo,wc) is presented in Figure 6.15B.
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A         B 

Figure 6.14. Failure probabilities as functions of demand. 
A: flow transmission system; B: task processing system 

A         B 

Figure 6.15. System availability as function of demands in open and closed modes. 
A: flow transmission system; B: task processing system 

The duality of roles of parallel and series connection of units in the two 
operation modes creates a situation in which any change in system configuration 
that increases system availability in an open mode can decrease it in a closed mode 
and vice versa [170, 171]. Therefore, the optimal system configuration should be 
found that provides the maximal overall system availability (6.21). 
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There exist two types of structure optimization problem when the systems with 
two failure modes are considered. The first one is an extension of the well-known 
redundancy optimization problem. In this problem, one has to determine the 
number of parallel elements (with identical functionality) for each system 
component when the system structure (topology of the reliability block diagram 
representing interaction of the components) is given. The algorithms for solving 
this problem were studied in [174, 175] for the binary-state systems without 
respect to the element performances. The second problem is to find the 
configuration (topology of the reliability block diagram) for a given set of elements 
that provides the greatest possible system availability. This problem was 
formulated and solved in [173] for the binary-state systems (also without respect to 
the element performances). In the following sections, algorithms for solving the 
two system optimization problems for MSSs with two failure nodes are presented. 

6.2.3 Structure Optimization of Systems with Two Failure Modes 

6.2.3.1 Problem Formulation 
A system consists of N components connected according to a block diagram. Each 
component of type i contains a number of different switching elements connected 
in parallel. Different versions and numbers of elements may be chosen for any 
given system component. Element operation in open and closed modes is 
characterized by its availability and nominal performance rate. 

For each component i there are Bi element versions available. A vector of 
parameters gio(b), gic(b), pio(b) and pic(b) can be specified for each version b of
element of type i. The structure of system component i is defined by the numbers 
of parallel elements of each version nib for 1 b Bi. The vectors ni={n(i,b)} (1 i N,
1 b Bi) define the entire system structure.

For a given set of vectors {n1, …, nN}, the entire system fault probabilities 
Qo(wo, n1, …, nN) and Qc(wc, n1, …, nN) can be obtained for both modes. The 
requirement of providing the desired system availability in open and closed modes 
can be formulated as follows:

Qo(wo, n1, …, nN) Q*o, Qc(wc, n1, …, nN) Q*c, (6.42) 

where Q*o and Q*c are maximal allowable levels of system unavailability in open 
and closed modes respectively. 

Having the given system structure, one can also determine the expected system 
performance in the both modes o(n1, …, nN) and c(n1, …, nN). While satisfying 
the availability requirements (6.42), one can desire to obtain expected system 
performance values as close to some specified values *o and *c as possible. The 
proximity between expected system performance and the desired level can be of 
different importance in open and closed modes. 

Now consider two possible formulations of the problem of system structure 
optimization.
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Formulation 1. Find system configuration {n1,…, nN} that provides maximal 
system availability: 

A(wo,wc, n1, …, nN)

 = max)),,,(Q),,,(Q(5.01 1cc1oo NN ww nnnn      (6.43) 

Formulation 2: find system configuration {n1, …, nN} that provides the 
maximal proximity of expected system performance to the desired levels for both 
modes, while satisfying the availability requirements:

*
c1cc

*
oN1oo

*
c1c

*
o1o

),,,(Q,),,,(Qsubject to

min|),,(|)1(|),,(|

QwQw N

NN

nnnn

nnnn
 (6.44) 

where constant  reflects the relative importance of the open mode over the closed 
mode (0 1). Note that for the task processing systems the measures o and c

should be substituted by the corresponding conditional measures o
~ and .~

c

6.2.3.2 Implementing the Genetic Algorithm 
The solution encoding is the same as described in Section 5.1.2.2, where the 
element aj of the integer string a defines the number of parallel elements for each 
component i and version b (the relation between i, b and j is determined by 
Equation (5.10)). 

In order to let the GA look for the solution meeting requirements (6.43) or 
(6.44), the following universal expression of solution quality (fitness) is used: 

})*)(Qmax{0,}*)(Q,0(max{

|*-)(|)1(|*-)(|

ccoo

ccoo

QQ

M

aa

aa
     (6.45) 

where  and M are constants much greater than the maximal possible value of 
system output performance. 

The case when 0** co QQ corresponds to formulation (6.43). Indeed, 

since  is sufficiently large, the value to be minimized in order to maximize the 
fitness is (Qo+Qc). On the other hand, when 1** co QQ  all availability 

limitations are removed and expected performance becomes the only factor in 
determining the system structure. 

The solution decoding procedure determines nib for each system component i
and each element version b from the string a and determines the performance 
measures of the system separately for open and closed modes according to the 
algorithm described in Section 5.1.2.2. Then it determines the solution fitness 
using expression (6.45). 
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Example 6.7

Consider a system of electronic switches consisting of four components connected 
in series [176]. Each component can contain a number of switches connected in 
parallel. The elements in each component should belong to a certain type. (For 
example, each component can operate in a different medium, which causes specific 
requirements on the switches.) Each element version is characterized by element 
parameters: availability and performance rates (operation times in open mode to

and in closed mode tc). The problem is to find the optimal system configuration by 
choosing elements for each component from the lists of versions presented in Table 
6.12.

Table 6.12. Parameters of electronic switches 

No. of component Version of element to tc po pc

1 5.80 3.00 0.81 0.76 
2 4.60 3.30 0.85 0.79 
3 4.50 3.50 0.86 0.75 1

4 4.00 3.10 0.84 0.76 
1 1.80 1.20 0.84 0.78 
2 1.81 1.30 0.86 0.72 2
3 1.85 1.10 0.89 0.70 
1 2.00 1.90 0.82 0.80 
2 2.10 1.92 0.87 0.81 3
3 2.10 1.89 0.89 0.73 
1 3.60 3.30 0.85 0.78 

4 2 4.00 2.80 0.87 0.77 

Table 6.13 contains the results obtained for a system that is considered to be in 
normal condition if the switching time in both modes is not greater than wo = wc = 
5; the desired operation time is *o = *c = 0. The conditional expected value ~  is 
estimated for switching time distributed in the range of allowable values (0, 5). It is 
assumed that the operation speed is equally important in both modes:  = 0.5. 
Three solutions were obtained for different levels of desired availability in both 
modes 0,** co QQ  0.035** co QQ  and 0.05.** co QQ

Table 6.13. Solutions obtained for the system of electronic switches

Component Q*
o=Q*

c=0 Q*
o=Q*

c=0.035 Q*
o=Q*

c=0.05

1 3*2,1*3 4*1,1*3,1*4 7*1,6*3,1*4 

2 5*3 3*3 3*3 

3 3*2 3*2 3*3 

4 4*2 5*2 7*2 

Qo 0.030 0.035 0.050 

Qc 0.014 0.034 0.046 

A 0.978 0.965 0.952 

o
~ 2.213 2.076 1.997 

c
~ 3.301 3.001 3.000 
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Observe that the solution maximizing the system availability (first formulation 
corresponding to 0** co QQ ) has a relatively small number of elements. 

Further growth of the number of elements decreases the system availability. One 
can see that, with the growth of availability requirements, the system availability 
increases by the price of the increase of expected switching time. The failure 
probability distributions in closed and open modes for the solutions obtained are 
presented in Figure 6.16. Note that the requirement to improve the conditional 
expected values of system performance contradicts the requirement to maximize 
the system availability defined as its ability to reach a threshold level of the 
performance.

Figure 6.16. Failure probability distributions for the system of electronic switches 

6.2.4 Optimal Topology of Systems with Two Failure Modes 

6.2.4.1 Problem Formulation 
The problem of optimizing a series-parallel MSS configuration is the following: 
find the series-parallel configuration of a given number of statistically independent 
units that provides maximal system availability when the units can experience two 
failure modes and are characterized by different performance rates and availability 
indices.

6.2.4.2 Implementing the Genetic Algorithm 
According to its definition, any series-parallel system is either a single unit or it is 
two series-parallel subsystems connected in series or in parallel. Therefore, any 
such system can be represented by a binary tree. One of the possible representations 
was suggested in [173], where tree leaf nodes correspond to the primary units from 
which the configuration is built and the rest of the nodes are distinguished by the 
way the two children of the node are joined.  As was shown in [173], such a binary 
tree can be easily represented by a symbolic string (post-order traversal) in which 
symbols from the set {1,…,N} correspond to unit numbers and symbols from the 
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set {S, P} correspond to types of connection (S for series one and P for parallel 
one).

For example, the binary tree corresponding to the system presented in 
Figure6.17A can be represented by the following string: 12P3S45PP. The main 
disadvantage of this representation is that different strings can represent the same 
configuration, since the order of substrings representing the two child subtrees of 
any junction does not matter (observe that the system from Figure 6.17A can also 
be represented by the string 45P12P3SP). This causes situations in which the GA 
population is overwhelmed with different strings representing identical solutions. 
Such situations slow the algorithm convergence. 

Figure 6.17. Binary tree representation of series-parallel system 

In order to simplify the representation and to reduce the number of cases in 
which the same configuration is represented by different trees (strings), the 
following rule was introduced in [177] to determine the types of connection: for 
each node joining two child subtrees, determine the minimal number among the 
numbers of units belonging to the left child subtree xL and right child subtree xR. If 
xL<xR, then the subtrees are joined in parallel; if xL>xR, then they are joined in 
series.

Using this simplified representation one obtains a new configuration by 
swapping child subtrees of a given node (see Figure 6.17B) and does not need to 
distinguish nonleaf tree nodes (P or S), since they no longer determine the type of 
connection.

We use the following rule to represent the binary tree corresponding to a series-
parallel configuration by a string: all numbers corresponding to units should appear 
in the string in the order that they appear in the tree from left to right. Each time 
that all of the numbers corresponding to subtrees connected by some node appear 
on the left-hand side of the given position in the string, the sign * representing the 
node should be inserted in this position.
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Example 6.8 

Consider the tree presented in Figure 6.17A. The corresponding string 
representation is 312**45**, where the underlined substring represents subsystem 
I and the double underlined substring represents subsystem II. Since for the root 
node xL = 1 and    xR = 4, the subsystems I and II are connected in parallel. To 
make them connected in series, one just has to swap corresponding substrings and 
obtain string 45*312***, corresponding to the configuration presented in Figure 
6.17B.

Note that, in the representation given, the last position of the string is always 
occupied by *, representing the root node of the tree. Therefore, this string element 
provides no information and can be removed. Since the total number of nonleaf 
nodes in the binary tree with N leafs is N 1, the string representing series-parallel 
configuration of N units should contain 2(N 1) elements. 

Not every arbitrary string can represent a feasible solution. Indeed, consider 
string 3**1245*. Since each node sign * corresponds to two subtrees that the node 
connects, it should follow at least two unit numbers. In order to make an arbitrary 
solution feasible, in all cases where there are not enough numbers from the left-
hand side of the node sign *, one has to find the closest number following the node 
sign * on the right-hand side and insert it immediately before the sign. (For the 
string given, such a procedure first produces string 31**245* and, when repeated, 
produces a feasible string 31*2*45*). 

The simplest way to represent solution strings in the GA is by using 
permutations of integer numbers {1,…,2(N 1)} and by treating all the numbers 
greater than N as node signs * (for example, string  31827456 can be treated as 
31*2*45*).

The following is a procedure for system availability evaluation based on 
decoding the system configuration from an arbitrary permutation a of integer 
numbers ranging from 1 to 2(N 1). The procedure enables the obtaining of u-
functions Uo(z) and Uc(z) for the entire system, by applying composition operators 
over the corresponding u-functions of individual units in sequence determined by 
the system configuration encoded by a string a = (ai,…, a2N 2). To store the 
intermediate u-functions, a stack memory is used that allows binary subtrees (and 
corresponding u-functions) to be treated in order that is encoded by the string. 

With each u-function u(z) representing a subtree, we associate a number x(u(z))
equal to the smallest one from among the numbers of units belonging to the 
subtree.

The procedure performs the following steps: 
1. Assigns number of string element i = 1. 
2. If ai N (ai corresponds to the number of the unit), assign x( )(zu

ia ) = ai,

place unit u-function )(zu
ia  to the stack and go to step 5. 

If ai >N (ai corresponds to nonleaf node sign *) go to step 3. 
3. If there are no fewer than two u-functions in the stack, go to step 4, else find 

string element aj closest to ai (j>i), which corresponds to the number of the unit    
(aj N). Remove the element aj from the string, shift all the elements ai, …, aj 1 one 
position right and place element aj into position i. Return to step 2. 
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4. Remove the upper u-function )(zu  and second one from the top )(zu  from 

the stack. Obtain the new u-function )(zu either as )(zu = )()(
ser

zuzu

(series connection) if ))(())(( zuxzux or as )(zu = )()(
par

zuzu  (parallel 

connection) if )).(())(( zuxzux

Obtain index x( )(zu ) = ))}.(()),((min{ zuxzux  Place the new u-function

)(zu  and the index ))(( zux  into the stack. 

5. Increment i by one. If i 2(N 1), return to step 2, else obtain the entire system 
u-function U(z) as described in step 4. 

Repeating steps 1-5 with the unit u-functions and composition operators 
corresponding to open and closed modes, one finally obtains the system u-
functions Uo(z) and Uc(z) and determines the system’s availability using Equation 
(6.21). The solution fitness is equal to the system’s availability. 
 Since the solution of the optimization problem considered is represented by 
permutations of integer numbers (which corresponds to the sequencing problem), 
the corresponding fragment crossover operator and the mutation procedure that 
swaps two string elements (discussed in Section 1.3.2.6) are to be used. The 
following example illustrates the use of the fragment crossover operator, mutation 
procedure, and solution correction algorithm (used within the solution decoding 
procedure) for obtaining new feasible solutions from two parents. 

Example 6.9 

Consider two parent strings P1 and P2, representing configurations presented in 
Figure 6.18:

 P1: 1 2 3 4 5 6 7 8

 P2: 4 2 6 5 7 1 8 3 

The fragment crossover operator is applied twice with the roles of the parents 
reversed. After applying the crossover with a randomly determined fragment, we 
obtain two offspring solutions O1 and O2 (the elements belonging to the fragment 
are underlined): 

  O1:  4 2 1 5 6 7 8 3 
  O2: 1 2 4 6 5 3 7 8

After applying the mutation procedure to O1 and O2, we obtain strings S1 and S2: 

 S1: 4 2 3 5 6 7 8 1
 S2: 1 7 4 6 5 3 2 8

(the two randomly chosen positions are underlined). 
Note that string S2 is infeasible (according to the feasibility rule presented in 

Section 3.2, the node sign 7 should follow at least two unit numbers representing 
two subtrees connected by the node). During the solution decoding procedure it is 
transformed into the string 
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 S2: 1 4 7 5 6 3 2 8

The final solutions, as well as the intermediate ones, are also presented in Figure 
6.18.

Figure 6.18. Examples of series-parallel configurations obtained by GA procedures 

Example 6.10 

Consider a set of 10 fluid flow valves. Each valve is characterized by its 
availability in open and closed modes (po, pc), and by the nominal flow 
transmitting capacity f. These parameters are presented in Table 6.14. We want the 
flow to be not less than wc in the closed mode and not greater than wo in the open 
(disconnected) mode. 

Three different system configurations were found by the GA for the different 
desired system transmitting capacities in open and closed modes: configuration A 
for wc = 5, wo = 0.1, configuration B for wc = 7, wo = 0.1, and configuration C for 
wc = 10, wo = 3. These configurations are presented in Figure 6.19. The 
probabilistic distributions of flows through the system in closed and open modes 
for the configurations obtained are presented in Figure 6.20 in the form of 
cumulative probabilities Pr{Gc>wc} and Pr{Go<wo}. Table 6.15 contains system 
fault probabilities Qo and Qc and availability index A obtained for each 
configuration for all the three demand combinations (wc, wo).  Note that each 
configuration, though being the best for a certain combination (wc, wo), does not 
provide the greatest system availability for the two other combinations. 
Configuration A can not provide flow f = wc = 10 in the closed mode even when all 
the units are available

Note that while the configurations obtained seem to be not realistic for pure 
switching systems they are relevant when one considers the configuration of 
different types of flow transmission equipment (pumps, filters, etc.) having alarm 
valves aimed at preventing the flow in the case of contingency. 
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Table 6.14. Parameters of fluid flow valves

No. of unit f pc po

1 2.0 0.86 0.82 
2 2.0 0.92 0.88 
3 2.5 0.95 0.89 
4 2.5 0.95 0.89 
5 3.0 0.90 0.86 
6 3.0 0.90 0.86 
7 4.0 0.87 0.83 
8 4.0 0.84 0.80 
9 5.0 0.87 0.81 

10 5.0 0.82 0.80 

Table 6.15. Reliability characteristics of the obtained solutions

Solution  wc=5.0, wo=0.1 wc=7.0, wo=0.1 wc=10.0, wo=3.0
Qc 0.059 0.489 1.000 
Qo 0.032 0.032 0.008 A

A 0.955 0.739 0.000 
Qc 0.017 0.045 0.208 
Qo 0.119 0.119 0.089 B

A 0.932 0.918 0.852
Qc 0.002 0.004 0.042 
Qo 0.323 0.323 0.110 C

A 0.837 0.836 0.924

Figure 6.19. Optimal configurations obtained for the system of fluid flow valves 

A

B C

1 2

1 3
2 4

5 6
7 8
9 10

5 7
6 8

3

4

9
10

1
9

2
10

3
47

8

5 6



  6   UGF in Analysis and Optimization of Special Types of Multi-state Systems 301 

Figure 6.20. Cumulative probabilities Pr{Gc>wc} and Pr{Go<wo}for the fluid flow 
valves configurations obtained 

6.3 Weighted Voting Systems   

The weighted voting system (WVS) consists of n independent voting units that 
provide a binary decision or abstain from voting. Each unit has its own individual 
weight. The system accepts the proposition I if the cumulative weight of the units 
supporting this proposition is at least the prespecified fraction  of the cumulative 
weight of all non-abstaining units. The system abstains if all n units abstain. In all 
other cases, the system rejects proposition I. The system fails if it does not accept 
the proposition that should be accepted, does not reject the proposition that should 
be rejected, or abstains from voting.

This can be modelled by considering the system input I being either 1 
(proposition to be accepted) or 0 (proposition to be rejected) which is supplied to 
each unit. Each unit j produces its decision (unit output) dj(I) which can be 1, 0, or 
x (in the case of abstention). Inequality dj(I)  I means that the decision made by 
the unit is wrong. The above listed errors can be expressed as

1. dj(0) = 1 (unit fails stuck-at-1) 
2. dj(1) = 0 (unit fails stuck-at-0) 
3. dj(I) = x (unit fails stuck-at-x)

Accordingly, the reliability of each unit j can be characterized by the 
probabilities of these errors: q01

(j) for the first one, q10
(j) for the second one, q1x

(j)

and q0x
(j) for the third one, where qim

(j) is Pr{dj(I) = m | I = i} (note that stuck-at-x
probabilities can be different for inputs i = 0 and i = 1).

To make a decision about the proposition acceptance, the system incorporates 
all of the unit decisions into a unanimous system output D in the following manner: 
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where j is the nonnegative weight of an individual unit j which expresses its 

relative importance in the WVS and  is a threshold factor which determines what 

fraction of the overall weight of voted units should correspond to those that 

approve the proposition to make it accepted by the entire system. 

The entire system output distribution is characterized by WVS output 

probabilities Qim = Pr{D(I) = m | I = i}, where m {0, 1, x}. The system fails if  

D(I) I. The entire WVS reliability can be defined as R = Pr{D(I) = I}. One can 

see that the system reliability is a function of the reliabilities of its units. The 

reliability characteristics of the WVS units, as well as the probability distribution 

of the propositions, P0 = Pr{I = 0} and P1 = Pr{I = 1}, can be elicited from 

historical statistics. In technical systems, probabilities of different kinds of error 

can be obtained for each unit with a high precision by intensive testing. The entire 

WVS reliability also depends on the unit weights and the threshold. The proper 

choice of these parameters can improve the WVS reliability without improving the 

reliability of the voting units. 

6.3.1 Evaluating the Weighted Voting System Reliability 

Let us define the total weight of WVS units supporting proposition I as I
1:

    
xId

jjI
j

Id
)(

1 )(  (6.47) 

 and the total weight of units voting for the proposition rejection as I
0:
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The decision rule (6.46) can now be rewritten as follows: 
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Following this expression, the condition  D(I) = 0 can be rewritten as 

I
1 <  ( I

1+ I
0) (6.50) 

or

   (1 ) I
1

I
0 < 0 (6.51) 

This gives one a simple way of tallying the units' votes: each unit j adds a value 

of (1 ) j to the total WVS score if it votes for the proposition’s acceptance, a 

value of j if it votes for proposition’s rejection, and nothing if it abstains. The 

proposition is rejected if the total score is negative. 

6.3.1.1 Universal Generating Function Technique for Weighted Voting System 

Reliability Evaluation 

Using the UGF approach one can describe the distributions of the random output 

Gij of an individual three-state voting unit j for input i as 

2

0

)(
k

g
jkij

jkzpzu  (6.52) 

where for i = 1 
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and for i = 0 
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In each voting unit, state 0 corresponds to an incorrect decision, state 1 

corresponds to a correct decision, and state 2 corresponds to an abstention.

The total random WVS score Gi for input I = i is equal to the sum of the 

random outputs of n individual voting units:

ij

n

j
i GG

1

 (6.55) 
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Therefore, the u-function of the system score Ui(z) can be obtained using the 

following composition operator: 

Ui(z) = (ui1(z), …, uin(z)) (6.56) 

Since the function (6.55) possesses commutative and associative properties, the 

u-function of the entire WVS can be obtained recursively by the consecutive 

determination of u-functions of the arbitrary subsets of the elements. For example 

it can be obtained by the recursive procedure 

),()(
~

11 zuzU ii )()(
~

)(
~

1 zuzUzU im-imim for 1<m n

 )(
~

)( zUzU ini  (6.57) 

In this procedure, )(
~

zUim represents the score distribution of the WVS subsystem 

consisting of the first m voting units. 

Note that, while the total number of different possible WVS states is 3n, many 

of these states can result in the same values of score Gi. Therefore, the total number 

of terms Ui(z) can be less than 3n because of the like terms collection. 

Using the criterion of proposition rejection as an acceptability function

F(Gi) = 1(Gi <0) we obtain the proposition rejection probability Qi0:

 Qi0 = Pr{D(I) = 0 | I = i} = E(F(Gi)) (6.58) 

which is equal to the sum of the coefficients of the terms with the negative 

exponents in Ui(z).

Having Q10 one can easily obtain Q11 as

Q11=1 Q10 Q1x,    where 
n

j

j
xx qQ

1

)(
11  (6.59) 

Events I = 0 and I = 1 are mutually exclusive. Therefore, the entire WVS 

reliability Pr{D(I) = I} can be defined as

 Pr{D(I) = 0 | I = 0} Pr{I = 0}+Pr{D(I) = 1 | I = 1} Pr{I = 1} (6.60) 

and calculated as follows: 

R = P0Q00+P1Q11 = P0Q00+P1(1 Q10 Q1x) (6.61) 

Example 6.11 

Consider a WVS with

 n = 2, P0 = P1 = 0.5,  = 0.6 
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 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01, 1 = 5 

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(1) = q1x

(2) = 0.02, 2 = 3 

Then

 (1 ) 1 = 2, (1 ) 2 = 1.2, 1 = 3, 2 = 1.8

u01(z) = 10 2(2z2 +97z 3+z0), u11(z) = 10 2(2z 3+97z2+z0)    

 u02(z) = 10 2(2z1.2+96z 1.8+2z0), u12(z) =  10 2(5z 1.8+93z1.2+2z0)

u-functions for the entire WVS are 

),()(
~

0101 zuzU )(
~

02 zU  =  u01(z)  u02(z)

 = 10 4(4z2.2+4z2+192z0.2+2z1.2+2z0+96z 1.8+194z 0.2+194z 1.8+9312z 4.8)

),()(
~

1111 zuzU )(
~

12 zU  =  u11(z)  u12(z)

 =10 4(10z 4.8+4z 3+186z 1.8+5z 1.8+2z0+93z1.2+485z0.2+194z2+9021z3.2)

The terms with negative exponents are marked in bold. To obtain Q10 and Q00

one should calculate the sums of the coefficients of the marked terms: 

 Q00 = 10 4(96+194+194+9312) = 0.9796 

 Q10 = 10 4(10+4+186+5) = 0.0205 

In accordance with (6.59) Q1x = q1x
(1)q1x

(2) = 0.01 0.02 = 0.0002. In accordance 

with (6.61) the WVS reliability is 

 R=P0Q00+P1(1 Q10 Q1x)=0.5 0.9796+0.5 (1 0.0205 0.0002)=0.97945

It should be noted that, owing to the additive property of the structure function, 

when adding a unit to an already evaluated system the new system does not need to 

be evaluated from scratch. Instead, the operator + should be applied to the u-

functions of the evaluated system and to the new unit. Moreover, the associative 

property of the structure function allows the reliability of the WVS to be easily 

evaluated when it is combined from a number of subsystems for which 

corresponding u-functions are already obtained.
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6.3.1.2 Simplification Technique 

Consider the u-function )(
~

zUim  that represents the distribution of the score imG
~

of

the WVS subsystem m consisting of first m voting units. 

Let Vi be the sum of the weights of the units from i to n:

n

ij
jiV   (6.62) 

One can see that Vm+1 represents the sum of the weights of WVS units not 

belonging to m.

The maximal possible value of the WVS score after the remainder of the units 

add their votes is imG
~

+ (1 )Vm+1 (if all of the units from m+1 to n vote for the 

proposition acceptance) and the minimal possible value of the WVS score is 

imG
~

Vm+1 (if all of the units from m+1 to n vote for the proposition rejection). 

Therefore, if

imG
~

+(1 )Vm+1 < 0 (6.63) 

the proposition will be rejected independently of the states of the units m+1, …, n.

(We will refer to the u-function terms corresponding to the realizations of the score 

imG
~

 meeting condition (6.63) as 0-terms). Indeed, in each 0-term the realization of 

the score imG
~

 is low enough to prevent the total system score from being positive. 

Therefore, there is no need to continue the calculations by combining the states of 

the remainder of the units with the states corresponding to 0-terms. The sum of the 

probabilities of all of the possible combinations of the units m+1, …, n is equal to 

unity. Therefore, the total overall probability of the unit state combinations in 

which the score imG
~

guarantees the proposition rejection is equal to the sum of the 

coefficients of the 0-terms in the u-function ).(
~

zUim

If

imG
~

Vm+1  0 (6.64) 

then there is no chance that WVS will reject the proposition even if the units m+1,

…, n vote for its rejection. (We will refer to the u-function terms corresponding to 

the realizations of the score imG
~

 meeting condition (6.64) as 1-terms.) Combining 

any 1-term of )(
~

zUim  with any terms corresponding to the not-yet-considered 

units cannot produce a term with a negative score. Therefore, this term cannot 

participate in determining the Qi0. This means that all of the 1-terms can be 

removed from the u-function without affecting the resulting value of Qi0.

The technique described allows one to evaluate the entire WVS reliability using 

the following algorithm. 
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1. For each voting element j, define the two u-functions u0j(z) and u1j(z) in the 

form (6.52) using Equations (6.53) and (6.54). 

2. Assign Q10 = Q00 = 0, )()(
~

0101 zuzU , ).()(
~

1111 zuzU

3. For i = 0, 1 and m = 2, …,n (voting units can be ordered arbitrarily): 

- remove 1-terms and 0-terms from );(
~

1im zU -

- add the coefficients of the removed 0-terms to Qi0;

- obtain ).()(
~

)(
~

im1imim zuzUzU -

3. Add the coefficients of the negative terms in )(
~

)( zUzU ini to Qi0.

4. Calculate the fault probability of Q11 using Equation (6.59). 

5. Calculate the WVS reliability R using Equation (6.61). 

Example 6.12 

Consider the WVS from Example 6.11 and apply to it the suggested simplification 

technique. For the given WVS: 

 V2 = 2 =  3, V2 = 1.8,  (1 )V2 =  1.2 

First, assign 

 Q10 = Q00 = 0

 )()(
~

0101 zuzU =10 2(2z2 +97z 3+z0)

 )()(
~

1111 zuzU =10 2(2z 3+97z2+z0)

The 1-terms in the u-functions are underlined; the 0-terms are marked in bold. 

The coefficients of the 0-terms are added to Q00 and Q10:

 Q00 = 0.97, Q10 = 0.02 

After removal of the 0-terms and the 1-terms one obtains

)(
~

01 zU = 0.01z0

 )(
~

11 zU = 0.01z0

The u-functions for two voting units are 

 )(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4z0(2z1.2+96z 1.8+2z0)

 = 10 4(2z1.2+96z 1.8+2z0)
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)(
~

12 zU = )(
~

11 zU )(12 zu  = 10 4z0(5z 1.8+93z1.2+2z0)

 = 10 4(5z 1.8+93z1.2+2z0)

After adding the coefficients of the negative terms (marked in bold) from 

)(
~

2 zUI to QI0 one obtains the same values of Q00 and Q10 as in Example 6.11: 

Q00 = 0.97+0.0096 = 0.9796, Q10 = 0.02+0.0005 = 0.0205 

6.3.2 Optimization of Weighted Voting System Reliability

While the reliabilities of the voting units usually cannot be changed when the WVS 

is built, the weights and the threshold can be chosen in such a way that maximizes 

the entire system reliability. The WVS optimization problem is, therefore, 

formulated as follows. 

Find the units' weights and the threshold value that maximize the reliability of 

the WVS consisting of units with the given fault probabilities: 

R( 1,…, n, ) max (6.65) 

For an existing WVS with given weights the "tuning" problem can arise in 

which just the threshold value maximizing the system reliability should be found 

subject to changing conditions. For example, having information about the 

probability distribution between propositions that should be accepted or rejected 

(P1 and P0), one can modify the threshold value to achieve the greatest reliability. 

Note that the reliability characteristics of WVS units, as well as the 

propositions’ probability distributions, can be elicited from the historical statistics 

without respect to changes in WVS weights and threshold variation. 

6.3.2.1 Implementing the Genetic Algorithm 

The natural representation of a WVS weight distribution is by an n-length integer 

string in which the value in the jth position corresponds to the weight of the jth unit 

of the WVS. One can see that multiplying all the unit weights by the same value 

does not affect the WVS output defined by rule (6.46). Therefore, the unit weights 

can be normalized in such a way that the total weight V1 is always equal to some 

constant c. The normalized weights from arbitrary integer string a = (a1,…,an) are 

obtained as follows: 

n

m
mjj aca

1

/  (6.66) 

The range in which the integer numbers are generated affects the precision of 

weights determination. 
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For each given weight distribution (determined by the string a), the solution 

decoding procedure obtains the optimal value of the WVS threshold (a, P0, P1) by 

solving the single-variable optimization problem

R(a, P0, P1, )  max (6.67) 

and uses the optimal value of the system reliability obtained as the solution fitness. 

Example 6.13 

Consider a target identification WVS consisting of five voting units making their 

decisions based on different properties of the target [75]. The voting unit weights 

for the system can be represented in the GA by an arbitrary integer vector of length 

5. In this example we used c = 10 and generated the elements of vector a in the 

range (0, 100). For such parameters, the vector (25 10 55 62 38) produces, 

according to (6.66), weights 1 = 1.316, 2 = 0.526, 3 = 2.895, 4 = 3.263, and 

5 = 2.0. 

The reliability indices of the voting units qi0
(j) qi1

(j) and qix
(j) are presented in 

Table 6.16.

Table 6.16. Parameters of WVS units

No. of unit 1 2 3 4 5

q01
(j) 0.02 0.06 0.07 0.08 0.18

q0x
(j) 0.08 0.00 0.05 0.16 0.12 

q10
(j) 0.15 0.18 0.07 0.12 0.16 

q1x
(j) 0.20 0.00 0.05 0.16 0.12 

j 2.4862 1.8784 2.4033 1.6851 1.5470

The optimal weights of units obtained by the GA-based optimization procedure for  

P0 = P1 = 0.5 are also presented in this table. 

The optimal value of threshold is  = 0.412, for which the system reliability is

R = 0.982.

To estimate the effect of the input probability distribution on WVS reliability, 

the optimal threshold values and corresponding system reliabilities were obtained 

for the WVS with the obtained weights, and for WVS with equal weights as a 

functions of P1 (P0 = 1 P1). These functions are presented in Figure 6.21, where 

(P1) and R(P1) correspond to a WVS with optimal weights obtained for P1 = 0.5, 

and *(P1) and R*(P1) correspond to a WVS with equal weights. Note that optimal 

weights obtained for P1 = 0.5 are not optimal for P1  0.5, but they provide greater 

WVS reliability than equal weights on the whole range 0 P1 1.
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Figure 6.21. Optimal threshold value and WVS reliability as functions of P1

6.3.3 Weighted Voting System Consisting of Voting Units with 
Limited Availability 

In the WVS model considered in Section 6.3.1, all the voting units were assumed 

to be fully available (unit unavailability and stuck-at-x failure were not 

distinguished). In practice, one can deal with separate data concerning unit 

availability and probabilities of unit failure (wrong decision or abstention) when 

the unit is in its operating condition.

Two types of WVS can be defined with respect to their treatment of unavailable 

voting units. In the system of type 1, the unit stuck-at-x failure state and unit 

inoperable state cannot be distinguished by the system or the system cannot react 

to information about unit unavailability by changing its weights and threshold. The 

absence of a unit's output is interpreted by the WVS of this type as abstention from 

voting. In the system of type 2, the unavailable state of a unit and its abstention 

from voting can be distinguished and the WVS parameters can be adjusted to 

optimize its performance for each combination of available voting units. 

In the system of type 1, the parameters (weights and threshold) can be chosen 

only once. The optimal WVS parameters obtained for the system with fully 

available units can be far away from optimality when the voting units have limited 

availability. In this section we demonstrate the incorporation of data about units 

availability into the procedure of parameters optimization for WVS of type 1. For 

the WVS of type 2 the parameter optimization procedure for fully available units 

presented in Section 6.3.2 should be applied each time the change of set of 

available units is detected. 

Consider the voting unit j that can be in one of two states: sj = 1 if the unit is 

available and sj = 0 if it is unavailable. Let the operational availability of unit j be 

Pr{sj = 1} = j. The unit can produce output dj(I) x only if it is available 

.
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Therefore, for the given I = i andfor each decision m {0, 1}of the individualunit 

j

 Pr{dj(I) = m | I = i} = Pr{ dj(I) = m | I = i, sj = 1} Pr{sj = 1} 

 = q
j

imj
)(

 (6.68) 

When the unit is not available (sj = 0), its output is interpreted by the WVS of 

type 1 as dj(I) = x. The same output can also be produced by the unit when it is 

available but indecisive. Therefore:

 Pr{dj(I) = x | I = i }= Pr{ sj = 0} 

 +Pr{dj(I) = x | I = i, sj = 1} Pr{sj = 1}=
)(

1
j

ixjj q  (6.69) 

Since the output distribution of the available unit is represented by the             

u-function (6.52)-(6.54), and since each unit j adds the value of zero to the total 

WVS score when dj(I) = x, one can obtain the u-function )(ˆ zuij representing the 

output distribution of the unit, which has the availability j, using the following 

operator :

0
j )1()())(()(ˆ zzuzuzu jijijij  (6.70) 

The u-function )(ˆ zuij  has the same form as the u-function uij(z) (6.52)-(6.54), 

except that its coefficients are

11

0j0

ˆ

ˆ

jjj

jj

pp

pp

jjjj pp 1ˆ 22  (6.71) 

Using the algorithm presented in Section 6.3.1.2 over u-functions ),(ˆ zuij one can 

obtain the reliability of WVS consisting of units with limited availability. 

Example 6.14 

Consider the WVS of type 1 consisting of four voting units with reliability indices 

presented in Table 6.17. The optimal weights of units j obtained for the WVS 

with fully available units for P0 = P1 = 0.5 are also presented in this table. The 

optimal value of the threshold is  = 0.58, for which the system reliability is R = 

0.891. Taking into account the limited availability of voting units (availability 

indices j for the units are also presented in Table 6.17), one obtains much lower 

reliability R  = 0.815 for a WVS with the same weights and threshold. The 
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reliability of a WVS consisting of units with limited availability can be improved if 

the unit availability values are included in the reliability estimation procedure 

while the optimization problem is solved. The optimal weights *j obtained for the 

system are presented in Table 6.17. The optimal value of the threshold is * = 0.4, 

for which the system reliability is R*  = 0.846. Including information about voting 

unit availability into the WVS parameters optimization problem enables the system 

reliability to be improved. 

Table 6.17. Parameters of WVS units with limited availability

Unit no. j q01
(j) q0x

(j) q10
(j) q1x

(j)
j *j IRbj

1 0.76 0.00 0.35 0.35 0.00 2.759 3.459 0.071 

2 0.80 0.34 0.10 0.23 0.10 0.172 1.541 0.044 

3 0.82 0.11 0.07 0.36 0.06 3.060 2.444 0.065 

4 0.78 0.30 0.12 0.07 0.00 4.009 2.556 0.056 

In order to find weaknesses in the WVS design and to suggest modifications for 

system upgrade or to determine the optimal voting unit maintenance policy one has 

to perform the unit availability importance analysis. According to the definition 

(4.71), the Birnbaum importance index for the WVS element j can be obtained as 

IRbj = Rj1 Rj0  (6.72) 

where Rj1 is theWVS reliability when the voting unit j is fully available and the 

remainder of the units have their availability j; Rj0 is the WVS reliability when the 

voting unit j is unavailable.

An improvement in availability of the unit with the highest importance IRbj

causes the greatest increase in WVS reliability.

To determine the voting unit importance in the WVS of type 1, one has to apply 

the algorithm presented in Section 6.3.1.2 twice: the first time substituting j = 1 in 

(6.71) to obtain Rj1, and the second time substituting j = 0 in (6.71) to obtain Rj0

and then to use Equation (6.72). 

Example 6.15 

The availability importance indices IRbj of voting units of the WVS from Example 

6.14 were obtained for optimal weights *j and threshold * [178]. These indices 

are presented in Table 6.17. The unit availability importance does not depend on 

the availability of this unit, but it depends strongly on the availability of the rest of 

units. This dependence is linear. Figure 6.22 presents dependencies of unit 

importance indices on the availability of voting unit 1. It should be noted that the 

relative importance of units can vary with variation of unit availability. For 

example, unit 4 is the most important one in the WVS for 1<0.6, but it becomes 

the least important one when 1>0.92.
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Figure 6.22. Voting unit availability importance as a function of availability 1

In an adjustable WVS (WVS of type 2), the optimal weights and threshold are 

found for each combination of voting units available at the moment. Each hth

combination is represented as the subset h of the set  of all of the WVS units. 

The total number of possible combinations (subsets of ) in the WVS consisting of 

n units is 2n. Let j( h) and  ( h) be the optimal parameters of the WVS consisting 

of fully available voting units belonging to h, and R ( h) is the reliability of this 

WVS with the optimal parameters. The entire reliability of the WVS of type 2 can 

be obtained as follows:    

])1()([
2

1

n

h he
e

he
ehRR   (6.73) 

In order to distinguish the availability of voting unit j, this expression can be 

rewritten as follows:

 ])1(}){([

12

1

n

h he
e

he
ehj jRR

 ])1()([)1(

12
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n
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e

he
ehj R  (6.74) 

where }.{\ jhh  Using (6.74), one can determine the availability importance 

of the voting unit j as 
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which is the same as 

 ])1()([
2

1

n

h he
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he
ehhjR RbI  (6.76) 

where

hj

hj

h
j

j

,/1

),1/(1

 (6.77) 

For a WVS in which voting units have high availability, the terms multiplied 

by )1( e can be neglected and, therefore, Equation (6.76) can be approximated as 

follows:

n

e
e

j
jR

jRR
bI

1

}){\()(~
 (6.78) 

In some WVSs of type 2, only the threshold value can be adjusted according to 

different combinations of available units, whereas unit weights remain the same. 

Let 1, …, n be the constant unit weights and ( h) be the optimal threshold 

obtained for the given weights for the WVS consisting of fully available voting 

units belonging to h. For the fixed weights and the optimal threshold ( h) one can 

obtain the reliability R ( h) of subsystem h. Substituting in Equations (6.76) and 

(6.78) R ( h) with R ( h), one obtains the availability importance index IRBj  for 

unit j . 

Example 6.16 

Consider the WVS from Example 6.14. The maximal reliability values obtained by 

the optimization procedure for each possible combination of WVS units are 

presented in Table 6.18. Note that R ( h) (obtained for fixed weights j from 

Table 6.17) is always not greater than R ( h). Indeed, optimizing both weights and 

threshold results in better reliability than that obtained by optimizing just the 

threshold.
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Table 6.18. WVS reliabilities for possible combinations of

available voting units 

h R ( h) R ( h) h R ( h) R ( h)

0 0 {2,3} 0.740 0.740 

{1} 0.650 0.650 {2,4} 0.795 0.789 

{2} 0.615 0.615 {3,4} 0.808 0.804 

{3} 0.700 0.700 {1,2,3} 0.867 0.866 

{4} 0.755 0.755 {1,2,4} 0.868 0.829 

{1,2} 0.772 0.755 {1,3,4} 0.889 0.889 

{1,3} 0.872 0.859 {2,3,4} 0.843 0.837 

{1,4} 0.838 0.817 {1,2,3,4} 0.891 0.891 

The voting unit availability importance indices IRbj and IRbj  are presented in 

Table 6.19. Observe that the relative importance of units differ for different types 

of WVS adjustment. For example, availability of unit 1 is most important for a 

WVS with adjustable weights and threshold, whereas in a WVS with adjustable 

threshold the most important is availability of unit 3. 

Table 6.19. Unit availability importance indices

for WVS with adjustable parameters 

Unit no. IRbj IRbj

1 0.080 0.078 

2 0.022 0.020 

3 0.059 0.082 

4 0.063 0.061 

One can use Equation (6.78) to estimate the unit’s availability importance only 

when the unit’s availability is very high. For example, consider the availability 

importance indices obtained for the given WVS when the availability of all of its 

units is 0.99. Table 6.20 contains unit availability importance indices obtained 

using the exact expression (6.76) and the approximate expression (6.78). The 

indices take similar values. Table 6.21 contains the same indices obtained for a 

WVS with the availability of all of its units equal to 0.95. In this case, the 

difference between the values obtained by the exact and approximate expressions 

is much greater. Observe that, in both cases, substituting the exact availability 

importance values with their approximations does not violate the order of units 

when they are arranged according to their relative importance. Therefore, Equation 

(6.78) can be used to identify the most important element in the WVS. 

Table 6.20. Exact and approximate values of unit

availability importance indices ( j = 0.99) 

Unit

no. jRbI jRbI
~

jRbI jRbI
~

1 0.0492 0.0464 0.0552 0.0527 

2 0.0029 0.0023 0.0028 0.0023 

3 0.0249 0.0230 0.0632 0.0609 

4 0.0253 0.0232 0.0264 0.0244 
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Table 6.21. Exact and approximate values of unit

availability importance indices ( j = 0.95) 

Unit

no. jRbI jRbI
~

jRbI jRbI
~

1 0.0547 0.0410 0.0588 0.0466 

2 0.0053 0.0021 0.0049 0.0021 

3 0.0301 0.0203 0.0652 0.0538 

4 0.0314 0.0205 0.0317 0.0215 

6.3.4 Optimization of Weighted Voting Systems in the Presence 
of Common Cause Failures

When the voting units of a WVS are subject to CCFs caused by external impacts, 

the system’s survivability can be enhanced by the proper separation of the units. In 

this section we consider the optimal unit separation problem that is analogous to 

the one considered in Section 5.2.1 for series-parallel systems. We assume that the 

units not separated from one another belong to the same CCG and can be destroyed 

by the same impact (total CCF).

Since the voting units have different decision probability distributions, the way 

in which they are partitioned into CCGs strongly affects the system’s survivability 

(defined as the probability of making correct decisions). The way the units are 

separated and the values of the adjustable parameters of the WVS (weights and 

threshold) are interdependent factors affecting WVS survivability. Therefore, the 

WVS survivability maximization problem is to find the optimal separation of units, 

their weights, and the system threshold value. 

6.3.4.1 Problem formulation 

A WVS consists of n voting units with the given decision probability distributions 

qi0
(j), qi1

(j) qix
(j). The units can be separated into B independent groups (see, for 

example, Figure 6.23), where B can vary from 1 (all of the units are gathered 

within a single group) to n (all of the units are separated from one another). It is 

assumed that all of the units belonging to the same group can be destroyed by the 

total CCF with probability v, which characterizes the WVS vulnerability. The 

destroyed units cannot produce positive or negative decisions and, therefore, are 

considered as abstaining ones.
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Figure 6.23. Example of WVS with separated voting units 

The units' separation problem can be considered as a problem of partitioning a 

set  of n items into a collection of B mutually disjoint subsets b (1 b B). Each 

set can contain from 0 to n elements. The partition of set  can be represented by 

the vector x = {xj: 1 j n}, where xj is the number of the subset to which element j

belongs. The weights of voting units in the WVS can be represented by the vector 

 ={ j: 1 j n}.

The WVS survivability optimization problem is formulated as follows. Find the 

vectors x (when no more than B different CCGs are allowed) and  and the 

threshold value  that maximizes the system’s survivability S = Pr{D(I) = I}.

6.3.4.2 Evaluating Survivability of Weighted Voting Systems with Separated 

Common Cause Groups

Consider a separated group of voting units b. Let the score distribution for this 

group be represented by the u-function ).(zU b
i  Note that, since all of the units 

belonging to b can be destroyed with the probability v, the probability of each 

state of the group (corresponding to a realization of its random score) should be 

multiplied by the probability of the group survival: 1 v. If the group is destroyed, 

then the entire WVS considers all of the units belonging to b as abstaining. This 

corresponds to the total score of group b = 0.

The score of zero can be obtained when all of the units of group b are 

indecisive or unavailable (because of internal causes) or when they are destroyed 

by the total CCF. Therefore, the overall probability that the score of separated 

group b = 0 for input I = i is 

bj

j
ixj

bj
qvviIxId

)(
)1(}|)(Pr{   (6.79) 

To incorporate the group vulnerability into its score distribution one has to 

apply the operator  (4.58) over the u-function )(zU b
i

1 2 3 4 5 6

I

D(I)

CCG1                   CCG2                                CCG 3

1               2              3              4               5               6

d1(I) d2(I)  d3(I) d4(I) d5(I) d6(I)
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0)()1())(( vzzUvzU b
i

b
i   (6.80) 

For the given distribution of voting units among CCGs one has to obtain the u-

functions )(zU b
i for each group b:

))(),...,(()( 1 zuzuzU ini
b

i  (6.81) 

where

ix

ixzu

zu

j

jij

ij
if,1

if),(

)(  (6.82) 

The u-functions Ui(z) for the entire WVS can then be obtained as 

)))(()),...,(()),((()( 21 zUzUzUzU B
iiii  (6.83)

After obtaining U0(z) and U1(z) one has to determine the system’s survivability 

following steps 3-5 of the algorithm presented in Section 6.3.1.2. 

6.3.4.3 Implementing the Genetic Algorithm 

Let the WVS have n units that can be distributed among B groups. The system 

parameters are represented by the n-length integer string a = (a1, …, an) with 

values of elements ranging in the interval (0,100B). In order to allow the value of aj

to represent both the weight of the jth unit and the number of the group to which it 

belongs, the following decoding procedure is used: 

xj = aj/100 +1, j' = mod100(aj) (6.84) 

The unit weights are further normalized in such a way that their total weight is 

always equal to some constant c:

N

k
kjj c

1

/  (6.85) 

In our GA we used c =10. 

Consider the example in which the parameters of a WVS consisting of n = 6 

units and up to B = 5 groups are determined by the following string: 

 a = (264, 57, 74, 408, 221, 23) 



  6   UGF in Analysis and Optimization of Special Types of Multi-state Systems 319 

Using (6.84) we obtain: x1 = x5 = 3, x2 = x3 = x6 = 1, x4 = 5, vector of the unit 

weights before normalization ' = (64, 57, 74, 8, 21, 23) and .247'6
1j j

Now, using (6.85) with constant c = 10 we obtain the vector of the normalized 

unit weights: 

  = (2.59, 2.31, 3.00, 0.32, 0.85, 0.93) 

The WVS threshold is not determined by the string of system parameters. For 

each set of parameters determined by a solution string a, WVS survivability S

remains a function of the single argument . When WVS survivability is evaluated 

for a given set of parameters by the solution decoding procedure, this procedure 

determines the value of  maximizing S. The maximal S obtained is considered to 

be a solution fitness, which is used to compare different solutions.

Example 6.17 

Consider a WVS from [179] consisting of five voting units with the failure 

probabilities presented in Table 6.22. The solutions obtained for P0 = P1= 0.5 and 

for vulnerability v = 0.2 are presented in Table 6.23. The solutions were obtained 

for each possible number of separated groups 1 B 5. Table 6.23 contains voting 

unit weights and the WVS threshold for each solution obtained. It also contains for 

each unit the number of the group the unit belongs to.  The values of the system’s 

survivability are presented for each solution. 

Table 6.22. Parameters of voting units 

No. of unit q01
(j) q0x

(j) q10
(j) q1x

(j)

1 0.25 0.27 0.06 0.21 

2 0.06 0.40 0.15 0.23 

3 0.24 0.08 0.19 0.30 

4 0.26 0.31 0.24 0.20 

5 0.35 0.13 0.04 0.22 

Table 6.23. Parameters of obtained solutions 

B = 1 B = 2 B = 3 B = 4 B = 5 No. of 

voting

unit
No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

1 1 2.381 1 1.969 1 2.263 1 2.413 1 2.302 

2 1 2.275 2 2.563 2 2.514 2 2.297 2 2.474 

3 1 1.905 2 1.875 2 1.844 3 1.919 3 1.856 

4 1 1.085 2 1.531 1 1.034 3 1.047 4 0.997 

5 1 2.354 1 2.063 3 2.346 4 2.326 5 2.371 

0.560 0.553 0.564 0.563 0.563 

S 0.710 0.824 0.843 0.850 0.852 

The WVS survivability as a function of group vulnerability v is presented in 

Figure 6.24 for each of the solutions obtained. It can be seen that, for B = 1, S is a 

linear function of v. For B>1 the dependencies are polynomial. It can also be seen 
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from Figure 6.24 that the separation into two groups has the greatest effect on the 

system’s survivability, whereas further separation leads to a smaller improvement 

of S. The growth of the group’s vulnerability makes the separation more beneficial 

from the survivability improvement standpoint.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3v

S

B=5 B=3 B=4

B=2 B=1

Figure 6.24. WVS survivability as a function of group vulnerability 

6.3.5 Asymmetric Weighted Voting Systems 

 The reliability of a WVS consisting of a given set of voting units can be further 

improved by taking advantage of the knowledge about the statistical asymmetry of 

the units (asymmetric probabilities of making correct decisions with respect to the 

input I). In such a WVS, each voting unit j has two weights: 0
j, which is assigned 

to the unit when it votes for the proposition rejection, and 1
j, which is assigned to 

the unit when it votes for the proposition acceptance. As in the case of the regular 

(symmetric) voting systems, the proposition is rejected by the WVS if the total 

weight of the units voting for its acceptance is less than a prespecified fraction  of 

the total weight of the non-abstaining units. 

6.3.5.1 Evaluating the Reliability of Asymmetric Weighted Voting Systems 

The decision rule in the asymmetric WVS takes the form 

xIjd
jjxID

)(

10 0)(if,)(  (6.86) 

otherwise:
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From this rule we can obtain the condition that D(I) = 0: 

xIjd
jj

xIjd
jj IdId

)(

0

)(

1 0))(1()()1(  (6.88) 

This provides a way for tallying the units' votes: each unit j adds the value of 

(1 )  1
j to the total WVS score if it votes for proposition acceptance, a value of  

 0
j if it votes for proposition rejection, and nothing if it abstains. The 

proposition is rejected if the total score is negative. 

One can define the terms of the u-functions (6.52) of the individual voting units 

as follows: 

g,qp

g,qqqp
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for i = 1 and 
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g,qqqp
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j
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1001001
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 (6.90) 

for i = 0 and obtain the system reliability applying steps 2-5 of the algorithm 

presented in Section 6.3.1.2. 

It can be easily seen that the conditions (6.63) and (6.64) in the simplification 

technique should be replaced in the case of the asymmetric WVS by the conditions 

imG
~

+(1 )V1
m+1 < 0 (6.91) 

and

imG
~

V0
m+1  0 (6.92) 

respectively, where 
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n

mj

i
mm

iV , for i = 0, 1  (6.93) 

Example 6.18 

Given

n  =  2, P0 = P1 = 0.5,  = 0.6 

and that the parameters of the first voting unit are 

 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01, 0
1 = 2,  1

1 = 4 

and the parameters of the second voting unit are 

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(2) = q1x

(2) = 0.02,  0
2 = 3,  1

2 = 1 

then:

 (1 )  1
1 = 1.6,  0

1 = 1.2, (1 )  1
2 = 0.4,  0

2 = 1.8

For the given weights of the second unit: 

V 0
2 =  0

2 = 3, V 1
2 =  1

2 = 1 

V 0
2 = 1.8, (1 )V 1

2 = 0.4 

The u-functions of the units are 

u01(z) = 10 2(2z1.6 +97z 1.2+z0),   u11(z) = 10 2(2z 1.2 +97z1.6+z0)

 u02(z) = 10 2(2z0.4+96z 1.8+2z0), u12(z) =  10 2(5z 1.8+93z0.4+2z0)

There are no 1-terms in u01(z) and u11(z). The 0-terms are marked in bold.

First, assign 

 Q00 = Q10 = 0 

)()(
~

0101 zuzU , )()(
~

1111 zuzU

After the 0-terms removal we obtain

 Q00 = 0.97, Q10 = 0.02 

 )(
~

01 zU = 0.02z1.6+0.01z0, )(
~

11 zU = 0.97z1.6+0.01z0
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The u-functions for two voting units are 

)(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4(2z1.6+z0)(2z0.4+96z 1.8+2z0)

 = 10 4(4z2+192z 0.2+4z1.6+2z0.4+96z 1.8+2z0),

)(
~

12 zU = )(
~

11 zU )(12 zu  = 10 4(97z1.6+1z0)(5z 1.8+93z0.4+2z0)

 = 10-4(485z 0.2+9021z2+194z1.6+5z 1.8+93z0.4+2z0)

The terms with the negative exponents are marked in bold. Finally we obtain: 

 Q00 =  0.97+0.0192+0.0096 = 0.9988

 Q10 = 0.02+0.0485+0.0005 = 0.0690 

Q1x = q1x
(1)q1x

(2) = 0.01 0.02 = 0.0002

R = P0Q00+P1(1 Q10 Q1x)

 = 0.5 0.9988+0.5 (1 0.069 0.0002) = 0.9648 

6.3.5.2 Optimization of Asymmetric Weighted Voting Systems 

The parameter optimization problem for asymmetric WVSs can be formulated as 

follows:

 R(  0
1,

 1
1, …,  0

n,
 1

n, )  max (6.94) 

The natural representation of a WVS weight distribution is by a 2n-length

integer string a in which the values in a2j 1 and a2j correspond to the weights  0
j

and  1
j respectively. The unit weights can be normalized in such a way that the 

total weight is always equal to some constant c. The normalized weights from 

arbitrary integer string a = (a1, …, a2n) are obtained as follows: 

n

i
ijj

n

i
ijj acaaca

2

1
2

1
2

1
12

0 /,/  (6.95)

where c is a constant.

The solution decoding procedure determines the value of  maximizing R for 

given unit weights. The obtained maximal R(a) is considered as a solution fitness, 

which is used to compare different solutions.
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Example 6.19 

Consider a WVS consisting of five voting units with reliability indices presented in 

Table 6.24 [180]. The optimal weights of units obtained for a symmetric WVS                 

( j =  0
j =  1

j) and for an asymmetric WVS when P0 = P1 = 0.5 are also presented 

in this table. The optimal values of the threshold, the decision probabilities, and the 

reliability of symmetric and asymmetric WVS obtained are presented in Table 

6.25.

Table 6.24. Parameters of voting units

No. of unit 1 2 3 4 5 

q01 0.224 0.243 0.208 0.000 0.204 

q0x 0.209 0.077 0.073 0.249 0.168 

q10 0.287 0.219 0.103 0.197 0.133 

q1x 0.025 0.106 0.197 0.014 0.067 

(symmetric WVS) 

1.155 1.763 1.915 3.040 2.128

 1 0.402 1.796 2.848 0.526 0.557 
 0 0.372 0.124 0.031 2.693 0.650 

Table 6.25. Parameters of optimal WVSs

 Symmetric WVS Asymmetric WVS 

0.48 0.30 

Q00 0.927 0.958 

Q01 0.073 0.042 

Q0x 4.9E-05 4.9E-05 

Q10 0.054 0.051 

Q11 0.946 0.949 

Q1x 4.9E-07 4.9E-07 

R 0.936 0.954 

Observe that the asymmetric WVS is more reliable than the symmetric one. 

The system reliability as a function of the threshold value is presented in Figure 

6.25A for the both WVSs with weights from Table 6.24 (note that for  = 0 

)1(
1

)(
11

n

j

j
xqPR  and for  = 1, ))1(

1

)(
111

1

)(
0

1

)(
010

n

j

j
n

j

j
x

n

j

j
qPqqPR

For an existing WVS with given weights, the "turning" problem can arise in 

which just the threshold value maximizing the system reliability should be found 

subject to changing conditions. For example, based on information about the 

probability distribution Pi between propositions that should be accepted or rejected, 

one can modify the threshold value to achieve the greatest reliability. To estimate 

the effect of the input probability distribution on WVS reliability, the optimal 

threshold values, and the corresponding system reliabilities were obtained for the 

two WVSs as functions of P1. These functions are presented in Figure 6.25B, 

where (P1) and R(P1) correspond to the asymmetric WVS and *(P1) and R*(P1)

correspond to the symmetric WVS (weights of the both WVSs are optimal for P1 = 

0.5).
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   A                B 

Figure 6.25. WVS reliability as a function of threshold and input reliability 

distribution

6.3.6 Weighted Voting System Decision-making Time

This section addresses the aspect of the WVS decision-making time. In many 

technical systems the time when the output (decision) of each voting unit is 

available is predetermined. For example, the decision time of a chemical analyzer 

is determined by the time of a chemical reaction. The decision time of a target 

detection radar system is determined by the time of the radio signal return and by 

the time of the signal processing by the electronic subsystem. In both these cases 

the variation of the decision times for a single voting unit is usually negligibly 

small.

On the contrary, the decision time of the entire WVS composed of voting units 

with different constant decision times can vary because in some cases the decisions 

of the slow voting units do not affect the decision of the entire system since this 

decision becomes evident after the faster units have voted. This happens when the 

total weight of the units voting for the proposition acceptance or rejection is 

enough to guarantee the system’s decision independently of the decisions of the 

units that have not yet voted. In such situations, the voting process can be 

terminated without waiting for the slow units' decisions and the WVS decision can 

be made in a shorter time. 

6.3.6.1 Determination of Weighted Voting System Decision Time Distribution 

Assume that each voting unit j needs a fixed time tj to produce its decision and all 

the WVS units are arranged in order of the decision time increase: tj<tj+1. In this 

case, u-functions )(
~

zUim represent the distribution of score imG
~

obtained by the 

voting of m fastest units. As was shown in Section 6.3.1.2, the 1-terms and 0-terms 

in the u-function )(
~

zUim correspond to combinations of decisions of the first m
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units that guarantee the entire WVS decision (proposition acceptance and rejection 

respectively) independent of the decisions of the rest of the units. The sum of the 

coefficients of these terms in )(
~

zUim is equal to im, the conditional probability that 

the WVS decision can be made at time tm given the system input is i.  By 

determining im as the sum of the coefficients of the removed 0-terms and 1-terms 

for each u-function )(
~

zUim in step 3 of the algorithm presented in Section 6.3.1.2, 

we obtain the probabilities that the WVS decision time is equal to tm.

Having the WVS decision time distribution represented by values of im and tm

for m = 1, …, n we obtain the expected WVS decision-making time as 

m

n

m
mm

n

m
m tPtP

1
11

1
00   (6.96) 

Example 6.20 

Consider a WVS with parameters 

 n = 3, P0 = P1 = 0.5,  = 0.6 

The parameters of the three voting units are: 

 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01,  0
1 = 3,  1

1 = 5, t1=1

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(2) = q1x

(2) = 0.02,  0
2 = 4,  1

2 = 3, t2=2

 q01
(3) = 0.01, q10

(3) = 0.03, q0x
(3) = q1x

(3) = 0.0,  0
3 = 3,  1

3 = 2, t3=4

For the given parameters we have 

 (1 )  1
1 = 2, (1 )  1

2 = 1.2, (1 )  1
3  = 0.8 

 0
1 = 1.8,  0

2 = 2.4,  0
3  = 1.8

and

V0
2 =  (  0

2+
 0

3) = 0.6 7 = 4.2, V0
3 =  0

3 = 0.6 3=1.8, V0
4 = 0

  ( 1)V1
2 = ( 1)(  1

2+
 1

3) = 0.4 8 = 3.2

 ( 1)V1
3  = ( 1)  1

3 = 0.4 2 = 0.8, ( 1)V1
3  = 0 

The u-functions for the individual voting units are 

 u01(z) = 10 2(2z2+z0+97z 1.8),  u11(z) = 10 2(2z 1.8+z0+97z2)   
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 u02(z) = 10 2(2z1.2+2z0+96z 2.4),  u12(z) = 10 2(5z 2.4+2z0+93z1.2)

 u03(z) = 10 2(1z0.8+99z 1.8),  u13(z) = 10 2(3z 1.8+97z0.8)

First, we assign 

 Q00 = Q11= 0 

)()(
~

0101 zuzU , )()(
~

1111 zuzU

The u-functions u01(z) and u11(z) contain neither 1-terms nor 0-terms. This means 

that the WVS cannot make any decision based on voting of the first unit and

01 = 11 = 0 

We also can add nothing to Q00 and Q11. The u-functions for the subsystem 

consisting of two units are 

 )(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4(2z2+z0+97z 1.8)(2z1.2+2z0+96z 2.4)

 = 10 4(4z3.2+4z2+192z 0.4+2z1.2+2z0+96z 2.4+194z 0.6+194z 1.8+9312z 4.2)

 )(
~

12 zU = )(
~

11 zU )(12 zu  = 10-4(2z 1.8+z0+97z2)(5z 2.4+2z0+93z1.2)

 =10-4(10z 4.2+4z 1.8+186z 0.6+5z 2.4+2z0+93z1.2+485z 0.4+194z2+9021z3.2)

In these u-functions, the 1-terms are underlined and the 0-terms are marked in 

bold.

The sums of the coefficients of all of the marked terms are 

02 = 10 4(4+4+96+194+9312) = 0. 961 

12 = 10 4(10+4+5+194+9021) = 0.9234

The sums of coefficients of 0-terms are 

 Q00 =10 4(96+194+9312) = 0.9602 

 Q10=10 4(10+4+5) = 0.0019 

After removing the marked terms, the u-functions take the form 

 )(
~

02 zU = 10 4(192z 0.4+2z1.2+2z0+194z 0.6)
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)(
~

12 zU  = 10 4(186z 0.6+2z0+93z1.2+485z 0.4)

The UGF for a subsystem consisting of three units is 

 )(
~

03 zU = )(
~

02 zU u03(z)

 = 10 6(192z 0.4+2z1.2+2z0+194z 0.6)(1z0.8+99z 1.8) = 10 6(192z0.4

 +2z2.0+2z0.8+194z0.2+19008z 2.2+198z 0.6+198z 1.8+19206z 2.4)

 )(
~

13 zU  = )(
~

12 zU u13(z)

 = 10 6(186z 0.6+2z0+93z1.2+485z 0.4)(3z 1.8+97z0.8) = 10 6(558z 2.4

 +6z 1.8+279z 0.6+1455z 2.2+18042z0.2+194z0.8+9021z3.0+47045z0.4)

In the final u-function, all of the terms are either 1-terms or 0-terms. Summing the 

coefficients of the terms we obtain 

03 = 10 6(192+2+2+194+19008+198+198+19206) = 0.039 

13 = 10 6(558+6+279+1455+18042+194+9021+47045) = 0.0766 

and adding the coefficients of 0-terms to QI0 we obtain 

 Q00 = 0.9602+10 6(19008+198+198+19206) = 0.99881 

 Q10 =  0.0019+10 6(558+6+279+1455) = 0.004198 

Since Q1x = q1x
(1) q1x

(2) q1x
(3) = 0

Q11 = 1  Q10 = 0.995802

The WVS reliability is 

 R = P0Q00 + P1Q11 = 0.5 0.99881+0.5 0.995802 = 0.997306 

The expected decision time is 

 = 0.5(0. 961 2 + 0.039 4) + 0.5(0.9234 2 + 0.0766 4) = 2.1156 
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6.3.6.2 Weighted Voting System Reliability Optimization Subject to Decision-time 

Constraint

The number of combinations of unit decisions that allow the entire system’s 

decision to be obtained before the outputs of all of the units become available 

depends on the unit weights distribution and on the threshold value. By increasing 

the weights of the fastest units one makes the WVS more decisive in the initial 

stage of voting and, therefore, reduces the mean system decision time by the price 

of making it less reliable.

In applications where the WVS should make many decisions in a limited time, 

the expected system decision time is considered to be a measure of its 

performance. Since the units' weights and threshold affect both the WVS's 

reliability and its expected decision time, the problem of the optimal system 

turning can be formulated as follows: find the voting units' weights and the 

threshold that maximize the system reliability R while providing the expected 

decision time  not greater than a prespecified value *:

R(  0
1,

 1
1, …,  0

n,
 1

n, )  max

 subject to (  0
1,

 1
1, …,  0

n,
 1

n, ) * (6.97) 

The solution encoding for solving this problem by the GA is the same as in 

Section 6.3.5.2. The only difference is in the solution fitness formulation. In the 

constrained problem, the fitness of a solution defined by the integer string a is 

determined as R(a)  max( *,0), where is a penalty coefficient.

Example 6.21 

A WVS consists of six voting units with the voting times and fault probabilities 

presented in Table 6.26. The optimal voting unit weights and thresholds and the 

parameters of the optimal WVS obtained for * = 35 (when P0=0.7, P0=0.5,

P0=0.3) are presented in Tables 6.27 and 6.28. 

Table 6.26. Parameters of voting units 

No. of unit j tj q01
(j) q0x

(j) q10
(j) q1x

(j)

1 10 0.22 0.31 0.29 0.12 

2 12 0.35 0.07 0.103 0.30 

3 38 0.24 0.08 0.22 0.15 

4 48 0.10 0.05 0.2 0.01 

5 55 0.08 0.10 0.15 0.07 

6 70 0.08 0.01 0.10 0.05 

The system abstention probabilities do not depend on its weights and threshold. 

For any solution, Q0x = 0.868 10 7 and  Q1x = 1.89 10 7.

It can be seen that for P0  0.5 the WVS takes advantage of the knowledge 

about statistical asymmetry of the input and provides greater reliability than in the 

case where P0 = 0.5. Observe that when P0>0.5 the WVS provides Q00 greater than 

Q11, and vice versa when P0<0.5 Q00<Q11.
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The R vs.  trade-off curves for the WVS are presented in Figure 6.26. These 

curves are obtained by solving the optimization problem (6.97) for different values 

of time constraint *.

Table 6.27. Optimal unit weights for * = 35 

 No. of unit 

j 1 2 3 4 

5

6
 1

j 0.018 0.240 0.564 0.300 0.388 0.476 
p0=0.7  0

j 1.958 0.018 0.370 2.487 1.005 0.176 
 1

j 0.017 2.367 0.497 0.017 0.635 1.475 
p0=0.5  0

j 2.281 0.360 0.189 1.561 0.566 0.034 
 1

j 0.019 2.597 1.243 0.019 0.019 0.742 
p0=0.3  0

j 1.688 0.334 0.204 1.967 0.909 0.260 

Table 6.28. Parameters of WVS optimal for * = 35

P0 = 0.7 P0 = 0.5 P0 = 0.3

0.76 0.50 0.45 

Q00 0.9798 0.9005 0.8477

Q01 0.0202 0.0995 0.1523

Q10 0.1611 0.0719 0.0283 

Q11 0.8389 0.9281 0.97166 

R 0.9375 0.9143 0.9345 

34.994 34.987 34.994 

0.77

0.82

0.87

0.92

0.97

15 20 25 30 35 40 45 50 55 60

R

Po=0.7 Po=0.5 Po=0.3

Figure 6.26. Reliability vs. expected decision time for P0 = 0.7, P0 = 0.5, P0 = 0.3 

6.3.7 Weighted Voting Classifiers

The weighted voting classifier (WVC) should classify objects belonging to a set of 

H classes. When an object belonging to some class I (1 I H) is presented to the 

system, its classification decision D(I) is based on the classification decisions made 

by a set of n independent voting units. Each unit j while identifying objects from 
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class I generates its individual classification decision dj(I) {1, …, H}. This 

decision can be correct dj(I) = I or incorrect dj(I)  I. The unit can also abstain from 

voting dj(I) = 0 (note that the abstention is always considered to be the wrong 

decision because I  0). Each unit j has its individual weight j depending on the 

importance of its decision to the entire system. 

Given the outputs of the individual units, the WVC can calculate for each 

classification decision h (0 h H) the sum of the weights of the units supporting 

this decision: 

hId
j

h
I

j )(

 (6.98) 

The decision h' that obtained the greatest sum of the weights is determined as

Hhh
I

h
I 1for'  (6.99) 

(if there are several such decisions any of them can be chosen at random). The 

second best decision h'' can be determined as 

''' anyfor hhh
I

h
I  (6.100) 

There exist two different ways of making the entire WVC decision. The first one is 

based on a plurality voting rule. Using this rule, the entire WVC output is 

calculated as follows: 

'''

''''

,0

,
)(

h
I

h
I

h
I

h
Ih

ID  (6.101) 

which means that the WVC is able to classify the input if there exists an ultimate 

majority of weighted votes corresponding to some output h'. One can see that the 

system abstains from making a decision in two cases: 

- all the units abstain from making a decision;

- more than one decision has the same support while the remaining  decisions 

are supported less. 

The second manner of decision making is based on a threshold voting rule. 

Using this rule, the WVC output is calculated as follows: 

otherwise,0

,
)(

1
'' Vh

ID

h
I

 (6.102) 
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where, according to (6.62), V1 is the sum of the weights of all of the voting units. If  

 0.5, then no more than one decision can satisfy the condition i
h > V1. The 

greater , the less decisive the WVC. Indeed, the system is inclined to abstain when 

 grows, since a lower number of combinations of voters outputs produces the 

winning decisions. 

The entire WVC reliability can be defined as the probability that it makes the 

correct decisions: R = Pr{D(I) = I}.

Each system unit has the probabilities of incorrect classification and abstention. 

It is natural that the probability of  incorrect output depends on the class of the 

input object for each unit (for example, in target detecting systems some targets 

can be unrecognizable by speed detectors while highly recognizable by heat 

radiation detectors and vice versa). The same is true for the unit abstention 

probability Pr{dj(I) = 0}. Therefore, to define the probabilistic behavior of units 

one has to determine their fault probabilities qih
(j) for 1 i H, 0 h H (h  i), 1 j n,

where }.|)(Pr{
)(

iIhIdq j
j

ih

Conditional unit success (correct classification) probability, given the system 

input is I = i, can be determined, therefore, as 

ihHh

j
ihj

j
ii qiIiIdq

,0

)()(
1}|)(Pr{  (6.103) 

The probability of correct classification of an object belonging to class i by the 

entire WVC ri = Pr{D(I) = I | I = i} depends on the probabilities qih
(j). Since the 

correct identifications of the objects belonging to different classes are mutually 

exclusive events, one can obtain the entire system reliability as 

H

i
iirPR

1

 (6.104) 

where the probabilities Pi = Pr{I = i} for 1 i H define the input probability 

distribution. (In the most common special case of evenly distributed input 
H

i
ir

H
R

1

1
).

The different states of WVC can be distinguished by the unit output distribution 

(UOD). WVC consisting of n voting units can have (H+1)n different states 

corresponding to different combinations of unit outputs (each unit can produce 

H+1 different outputs). Each WVC state can be characterized by a distribution of 

the weights of the units supporting different classification decisions named voting 

weight distribution (VWD).

Note that some different UODs can result in the same VWD. (For example, in a 

WVC with n = 3, 1 = 2 = 1 and 3 = 2, UOD d1(I) = 1, d2(I) = 1 and d3(I) = 0 

results in the same VWD I
0 = I

1 = 2 as that of UOD d1(I) = 0, d2(I) = 0, 

d3(I) = 1). From the entire WVC output point of view, these different UODs are 

indistinguishable and, therefore, can be treated as the same state.
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To define the VWD of a classifier in state k one can use vector 

kg = )},({ hgk 1 h H, in which )(hgk is equal to h
I in state k. Using the UGF 

approach one can describe distributions of random VWD Gj of an individual unit j

as

H

k

j
ikij

jkzqzu
0

)(
)(

g
 (6.105) 

In this u-function each state k has the probability 
)( j

ik
q and corresponds to the 

unit output dj(I) = k (when I = i) and, therefore, to VWD jkg in which

ki

ki
ig

j
jk

,0

,
)(  (6.106) 

(for k = 0, corresponding to element abstention, the vector contains only zeros). 

Since the total weight of votes supporting any classification decision in the 

WVC is equal to the sum of weights of individual units supporting this decision, 

the resulting system VWD G can be obtained by summing the random VWDs Gj

(1 j n) of individual voters. Therefore, the distribution G can be represented by 

the u-function

Ui(z) = (ui1(z), …, uin(z)) = 
k

ik
kzp

g
 (6.107) 

(note that in this operator the exponents are obtained as sums of vectors, not scalar 

variables). Since the procedure of vector summation possesses commutative and 

associative properties, the u-function of the entire WVC can be obtained 

recursively by the consecutive determination of u-functions of arbitrary subsets of 

elements. For example, it can be obtained by the recursive procedure (6.57).

By following the decision rule (6.101) one can obtain the entire WVC output in 

each state k (for each term of )(zUi ) as 

otherwise,0

)(max)(,

)( ,1
hgxgx

ID
k

xhHh
k

k  (6.108) 

By following the decision rule (6.102) one can obtain the entire WVC output in 

each state k (for each term of )(zUi ) as 
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otherwise,0

)(,
)(

1Vxgx
ID

k

k  (6.109) 

The correct classification corresponds to states in which iIDk )( when I = i

and, therefore, to those u-function terms (further referred to as cc-terms) for which 

)(max)(
,1

hgig k
ihHh

k for plurality voting or 1)( Vigk for threshold voting. 

 Using the acceptability function 

iID

iID
Fi

)(,0

)(,1
)(G  (6.110) 

over )(zUi representing all the possible WVC classification results, one can obtain 

the probability of successfully identifying the object of class i for plurality voting 

as follows: 

 ))(max)((1))((
,1

hgigpFEr k
ihHh

k
k

ikii G   (6.111) 

and for threshold voting as follows: 

 ))((1))(( 1VigpFEr k
k

ikii G                                  (6.112) 

Example 6.22 

Consider a WVC consisting of two units (n = 2) that classifies objects belonging to 

three different classes (H = 3). The probabilities of wrong classification for each 

type of input object are presented in Table 2.29, as well as the probabilities of 

correct classification calculated in accordance with (6.103).

Table 6.29. Parameters of WVC units

 Unit 1 Unit 2 

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 

h=1 0.94 0.01 0.06 0.68 0.3 0.01 

h=2 0.02 0.95 0.05 0.3 0.63 0.01 

h=3 0.04 0.02 0.85 0.01 0.05 0.97 

qih

h=0 0.0 0.02 0.04 0.01 0.02 0.01 

Note that unit 2 can scarcely distinguish objects of class 1 and 2 whereas 

specializing in the identification of objects of class 3. On the contrary, unit 1 

specializes in recognizing objects of classes 1 and 2. Weights of units are 1 = 2 

and 2 = 1. Input probability distribution is P1 = P2 = P3 = 1/3. The threshold value 

is   = 0.5 ( V1 = 1.5). 
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The u-functions of individual units are as follows: 

 u11 (z) = 10 2(94z(200)+2z(020)+4z(002))

 u12 (z) = 10 2(68z(100)+30z(010)+z(001)+z(000))

for objects of class 1; 

 u21(z) = 10 2(z(200)+95z(020)+2z(002)+2z(000))

 u22(z) = 10 2(30z(100)+63z(010)+5z(001)+2z(000))

for objects of class 2; 

 u31(z) = 10 2(6z(200)+5z(020)+85z(002)+4z(000))

 u32(z) = 10 2(z(100)+z(010)+97z(001)+z(000))

for objects of class 3. 

The u-functions for the entire WVC are as follows: 

 U1(z)= u11(z)  u12(z) = 10 4(6392z(300)+136z(120)+272z(102)+2820z(210)

 +60z(030)+120z(012)+94z(201)+2z(021)+4z(003)+94z(200)+2z(020)+4z(002))

for objects of class 1; 

 U2(z) = u21(z)  u22(z) = 10 4(30z(300)+2850z(120)+60z(102)+60z(100)

 +63z(210)+5985z(030)+126z(012)+126z(010)+5z(201)+475z(021)+10z(003)

 +10z(001)+2z(200)+190z(020)+4z(002)+4z(000))

for objects of class 2; 

 U3(z) = u31(z)  u32(z) = 10 4(6z(300)+ 5z(120)+85z(102)+4z(100) +6z(210)

 +5z(030)+85z(012)+4z(010)+582z(201)+485z(021)+8245z(003)+388z(001)

 +6z(200)+5z(020)+85z(002)+4z(000))

for objects of class 3. 

The cc-terms in these u-functions are marked in bold for the plurality voting 

rule and are underlined for the threshold voting rule. The terms corresponding to 
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WVC abstention are marked in italics for the plurality voting and are double 

underlined for the threshold voting. The probability of correct classification for 

each class can now be obtained as the sum of the coefficients of cc-terms for the 

corresponding u-function:

 r1 = 10 4(6392+2820+94+94) = 0.94 

 r2 = 10 4(2850+5985+126+475+190) = 0.9626 

 r3 = 10 4(85+85+8245+388+85) = 0.8888 

for plurality voting and 

 r1 = 10 4(6392+2820+94+94) = 0.94

 r2 = 10 4(2850+5985+475+190) = 0.95

 r3 = 10 4(85+85+8245+85) = 0.85 

for threshold voting. 

The entire WVC reliability is 

 R = (0.94+0.9626+0.8888)/3 = 0.9305 

for plurality voting and 

 R = (0.94+0.95+0.85)/3 = 0.9133 

for threshold voting. Note that the probability of recognizing objects of class 3 is 

much lower than the same for classes 1 and 2. 

The probabilities of WVS abstaining are

 Pr{D(I) = 0 | I = 1} = 0.0

 Pr{D(I) = 0 | I = 2} = Pr{D(I) = 0 | I = 3} = 0.0004 

for plurality voting and

 Pr{D(I) = 0 | I = 2} = 10 4(60+126+10+4) = 0.02

 Pr{D(I) = 0 | I = 3} = 10 4(4+4+388+4) = 0.04 

for threshold voting. One can obtain the probability of wrong classifications for 

both types of system as 
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 Pr{D(I)  I} = })|0)(Pr{1(
3

1

iIIDrP i
i

i

For the plurality voting WVC this index is equal to 0.069 and for the threshold 

voting it is equal to 0.067. One can see that the plurality voting WVC is more 

"decisive". It provides both correct and incorrect decisions with greater probability 

than the threshold voting classifier (even with the minimal possible threshold 

factor) and has a smaller abstention probability.

The description of the simplification technique used in the WVC reliability 

evaluation algorithm, as well as algorithms for solving the WVC optimization 

problem, can be found in [59, 181, 182].

6.4 Sliding Window Systems

The linear multi-state sliding window system (SWS) consists of n linearly ordered, 

statistically independent, multi-state elements (MEs). Each ME j has the random 

performance Gj and can be in one of kj different states. Each state i {0, 1, …, 

kj 1} of ME j is characterized by its fixed performance rate gji and probability 

pjk = Pr{Gj =  gji } (where 1
1

0

jk

i
jip ). The SWS fails if the performance rates of 

any r consecutive MEs do not satisfy some condition. In terms of acceptability 

function, the failure criteria can be expressed as 

0),...,(),...,(
1

1
11

rn

h
rhhn GGfGGF  (6.113) 

where F is the acceptability function for the entire SWS and f is the acceptability 

function for any group of r consecutive MEs. For example, if the sum of the 

performance rates of any r consecutive MEs should be not lower than the demand 

w, then Equation (6.113) takes the form 

 0)(1),...,(
1

1

1

1

rn

h

rh

hm
mn wGGGF  (6.114) 

The special case of SWS where all of the n MEs are identical and have two states 

with performance rates of 0 and 1, w = r k+1 and the acceptability function takes 

the form (6.114) is a k-out-of-r-from-n:F system.
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6.4.1. Evaluating the Reliability of the Sliding Window Systems 

The algorithm for evaluating the reliability of the sliding window system is very 
similar to that described in Section 2.4 for a k-out-of-r-from-n:F system. 

6.4.1.1 Implementing the Universal Generating Function 
The u-function representing p.m.f. of the random performance rate of ME j Gj

takes the form: 

1

0

,)(
j

ij
k

i

g
jij zpzu  (6.115) 

The performance of a group consisting of r MEs numbered from h to h+r 1 is 
represented by the random vector ),...,( 1rhhh GGG consisting of random 

performance values corresponding to all of the MEs belonging to the group.
Having the p.m.f. of independent random variables Gh, …, Gh+r 1 one can 

obtain the p.m.f. of the random vector Gh by evaluating the probabilities of each 
combination of realizations of these values.  Doing so by a recursive procedure, 
one can first obtain the p.m.f. of the r-length vector (0, …, 0, Gh) (corresponding to 
a single ME), then obtain the p.m.f. of r-length vector (0, …, 0, Gh, Gh+1)
(corresponding to a pair of MEs), and so on until obtaining the p.m.f. of the vector  
(Gh, …, Gh+r 1).

Let the u-function U r+h(z) represent the p.m.f. of a vector consisting of r h +1  
zeros and random values from G1 to Gh 1. This u-function represents the PDs of 
MEs from 1 to h  1. In order to obtain the PD of a group of MEs from 1 to h, one 
has to evaluate all possible combinations of the realizations of a random vector 
(0,…,0, G1, …, Gh 1) and a random variable Gh. Therefore, the u-function U1(z),
representing the p.m.f. of the random vector ),...,( 11 rGGG , can be obtained by 

assigning

 U1 r(z) = 0gz  (6.116) 

where the vector g0 consists of r zeros and the consecutive application of the shift 
operator (2.63):

U r+h+1 (z) = U r+h(z) uh(z) for h = 1, …, r (6.117) 

where the procedure x y over arbitrary r-length vector x and value y shifts all of 
the vector elements one position to the left, x(s 1) = x(s) for s = 2, …, r in 
sequence, and adds the value y to the right position, x(r) = y. (The first element of 
vector x disappears after applying the operator). 
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Having the PD of the first r MEs, one can obtain the PD of the next group of 
MEs (from 2 to r+1) by estimating all of the possible combinations of random 
vector values represented by U1(z), and random variable Gr+1 represented by 
ur+1(z). Note that the performance G1 does not influence the PD of this group. 
Therefore, in order to obtain the vector G2 one has to remove G1 from vector G1

and replace it with Gr+1. By replacing the first element of the random vector with 
the new element corresponding to the following ME, one obtains vectors 
corresponding to the next groups of MEs. 

By applying the shift operator  further for h = r+1, …, n one obtains the u-

functions for all of the possible groups of r consecutive MEs: U2(z), …, Un r+1(z).
The SWS contains exactly n r+1 groups of r consecutive MEs, with each ME 
belonging to no more than r groups.

Let u-function Uh(z)
1

0

h
hi

E

i
hi zq g  for 1 h n r+1 represent the p.m.f. of vector

Gh. By summing the probabilities of all of the realizations ghi of vector Gh

producing zero values of the acceptability function f(Gh) = ),,...,( 1rhh GGf  one 

can obtain the probability of failure Qh of the hth group of r consecutive MEs: 

))(1( hh GfEQ
1

0
))(1())((

hE

i
hihihf fqzU g  (6.118) 

Consider the u-function Uh(z). For each combination of values of 

11,..., rhh GG , it contains exactly kh different terms corresponding to different 

values of Gh, which takes all of the possible values of the performance rate of ME 
h. After applying the operator , Gh disappears from the vector Gh+1 and is 

replaced with Gh+1. This produces kh terms in Uh+1(z), corresponding to the same 
value of vector Gh+1. Collecting these like terms, one obtains a single term for each 
vector Gh+1. Therefore, the number of different terms in each u-function Uh(z) is 

equal to .
1rh

hi
ih kE

By applying the operator f  (6.118) over Uh(z) one can obtain the probability 
Qh that the group consisting of MEs h, …, h+r 1 fails. If for some combination of 
MEs' states the group fails, the entire SWS fails independently of the states of the 
MEs that do not belong to this group. Therefore, the terms corresponding to the 
group failure can be removed from Uh(z), since they should not participate in 
determining further state combinations that cause system failures. This 
consideration lies at the base of the following algorithm for SWS availability 
evaluation:

1. Assign: x = 0; U r+1 (z)= .0g
z  Determine the u-functions of the individual 

MEs using (6.115). 
2. Main loop. Repeat the following for h = 1, …, n:
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2.1. Obtain U r+h+1 (z) = U r+h (z) uh(z).

2.2. If h r add value ))(( 1 zU rhf to x and remove all of the terms with 

the exponents producing the zero acceptability function from Uh+1 r(z).
3. Obtain the SWS availability as R = 1 x.

Example 6.23 

Consider an SWS with five MEs (n = 5) in which the sum of the performance rates 
of any three (r = 3) adjacent MEs should not be less than four. Each ME has two 
states: total failure (corresponding to a performance rate of zero) and functioning 
with a nominal performance rate. The nominal performance rates of the MEs from 
1 to 5 are 1, 2, 3, 1 and 1 respectively. 

The u-functions of the individual MEs are: 

u1(z) = p10z
0+p11z

1, u2(z) = p20z
0+p21z

2, u3(z)=p30z
0+p31z

3

u4(z) = p40z
0+p41z

1, u5(z) = p50z
0+p51z

1

First, we assign 

x = 0, U 2(z) = z(0,0,0)

Following step 2 of the algorithm, we obtain

U 1(z) = U 2(z) u1(z))= z(0,0,0) (p10z
0+p11z

1) = p10z
(0,0,0)+p11z

(0,0,1)

U0(z) = U 1(z) u2(z) = (p10z
(0,0,0)+p11z

(0,0,1)) (p20z
0+p21z

2)

 = p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)

U1(z) = U0(z) u3(z)

 = (p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)) (p30z
0+p31z

3)

 = p10p20p30z
(0,0,0)+p11p20p30z

(1,0,0)+p10p21p30z
(0,2,0)+p11p21p30z

(1,2,0)

 +p10p20p31z
(0,0,3)+p11p20p31z

(1,0,3)+p10p21p31z
(0,2,3)+p11p21p31z

(1,2,3)

The terms of U1(z) with exponents in which sums of elements are less than 4 
are marked in bold. Following step 2.2 of the algorithm, we obtain 

 x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31
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After removing the marked terms, U1(z) takes the form 

U1(z) = p11p20p31z
(1,0,3)+p10p21p31z

(0,2,3)+p11p21p31z
(1,2,3)

Applying further the operator, we obtain 

 U2(z)= U1(z) u4(z)

 = (p11 p20 p31 z(1,0,3)+p10 p21 p31 z(0,2,3)+p11 p21 p31 z(1,2,3)) (p40z
0+p41z

1)

 = p11 p20 p31 p40z
(0,3,0)+p10p21p31p40z

(2,3,0)+p11p21p31p40 z(2,3,0)

 +p11 p20 p31 p41 z(0,3,1)+p10p21 p31 p41 z(2,3,1)+p11 p21 p31 p41z
(2,3,1)

Following step 2.2 of the algorithm, we modify x as follows: 

x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31+p11 p20p31 p40

After removing the marked term and collecting like terms, U2(z) takes the form:

U2(z) = p21p31p40z
(2,3,0)+p11p20p31p41z

(0,3,1)+p21p31p41z
(2,3,1)

Following steps 2.1 and 2.2 of the algorithm we obtain 

U3(z) = U2(z) u5(z)

= (p21p31p40z
(2,3,0)+p11p20p31p41z

(0,3,1)+p21p31p41z
(2,3,1)) (p50z

0+p51z
1)

= p21p31p40p50z
(3,0,0)+p11p20p31p41p50z

(3,1,0)+p21p31p41p50z
(3,1,0)

+p21p31p40p51z
(3,0,1)+p11p20p31p41p51z

(3,1,1)+p21p31p41p51z
(3,1,1)

After adding the coefficient of the marked term to x we have

 x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31+p11 p20p31 p40

 +p21p31 p40 p50

Finally:

R=1 x=1 p30 p31[p10p20+(p11p20+p21p50)p40]
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6.4.1.2 Simplification Technique
Note that the first elements of vectors ghi in the u-function Uh(z) do not participate 
in determining Uh+1(z) (according to the definition of the procedure x y), which 
leads to producing kh like terms in Uh+1(z). In order to avoid excessive term 
multiplication procedures in operator ,  one can perform a like term collection 

in Uh(z). To do this, one can, after step 2.2 of the algorithm, replace the first 
elements in all vectors of Uh(z) with zeros and collect like terms. 

The algorithm can be further simplified if the SWS acceptability function takes 

the form (6.114). Consider the sth term shzqhs
g of a u-function Uh(z) after 

replacing the first element ghs(1) of vector hsg  with zero. If rhg~  is the greatest 

possible value of the performance rate of the (h+r)th ME and

    rh

r

i
hs gwig ~)(

2
 (6.119) 

any combination of the term shzqhs
g with terms of uh+r(z) produces terms 

corresponding to SWS failure. This means that, in the u-function Uh+1(z), all of the 
terms with coefficients qhsph+r,i should be removed and the sum of the 

corresponding coefficients should be added to x. Since ,11
0 ,

rhk
i irhp  the sum 

of these coefficients is equal to qhs. In order to avoid kh+r redundant term 

multiplication procedures, one can remove the term shzqhs
g meeting condition 

(6.119) from Uh(z) and add its coefficient to x.
In order to reduce the algorithm computation complexity considerably using 

the considerations described above, one has to apply to any newly obtained u-
function Um(z) (in step 2 of the algorithm) for m = 0, …, n r  the following 
operator , which: 

- replaces all of the first elements of vectors hsg with zeros; 

- collects like terms in the u-function;
- removes the terms meeting (6.119) and adds the coefficients of the replaced 

terms to x.

Example 6.24 

Consider the Example 6.23 and apply to it the simplification technique. First, we 
obtain

 w 3
~g  = 4 3 = 1, w 4

~g = w 5
~g  = 4 1 = 3

The operator  applied to

U0(z) = p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)

removes the term p10p20z
(0,0,0), since 0+0+0<w 3

~g  = 1, and adds p10p20 to x. After 

applying the operator, U0(z) takes the form 
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(U0(z)) = p11p20z
(0,1,0)+p10p21z

(0,0,2)+p11p21z
(0,1,2)

Following steps 2.1 and 2.2 of the algorithm, we obtain 

U1(z) = ( (U0(z)) u3(z))

 = (p11p20z
(0,1,0)+p10p21z

(0,0,2)+p11p21z
(0,1,2) (p30z

0+p31z
3)

  = p11p20p30z
(1,0,0)+p10p21p30z

(0,2,0) +p11p21 p30z
(1,2,0)+p11p20p31z

(1,0,3)

+p10p21p31z
(0,2,3)+p11p21p31z

(1,2,3)

Applying the operator  that removes the terms meeting condition (6.119) 
(marked in bold) one obtains 

x = p10p20+p11p20p30+p10p21p30+p11p21 p30,

(U1(z)) = p11p20p31z
(0,0,3)+p21p31z

(0,2,3)

Further:

U2(z) = ( (U1(z)) u4(z)) = p11p20p31z
(0,0,3)+p21p31z

(0,2,3)) (p40z
0+p41z

1)

 = p11p20p31p40z
(0,3,0)+p21p31p40z

(2,3,0)+p11p20p31p41z
(0,3,1)+p21p31p41z

(2,3,1)

Applying the operator  over U2(z) one obtains 

x = p10p20+p11p20p30+p10p21p30+p11p21 p30+p11p20p31p40

(U2(z)) = p21p31p40z
(0,3,0)+(p11p20+p21)p31p41z

(0,3,1)

For the last group of MEs: 

U3(z) = ( (U2(z)) u5(z))

= (p21p31p40z
(0,3,0)+(p11p20+p21)p31p41z

(0,3,1)) (p50z
0+p51z

1)

= p21p31p40p50z
(3,0,0)+(p11p20+p21)p31p41p50z

(3,1,0)

 +p21p31p40p50z
(3,0,1)+(p11p20+p21)p31p41p50z

(3,1,1)

x = p10p20+p11p20p30+p10p21p30+p11p21p30+p11p20p31p40+p21p31p40p50

Finally:
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R = 1 x

 = 1 p10p20 p11p20p30 p10p21p30 p11p21p30 p11p20p31p40 p21p31p40p50

Taking into account that p10p20 = p10p20p30+p10p20p31, one obtains the same 
result:

R = 1 p30 p31[p10p20+(p11 p20+p21 p50)p40]

Using the SWS reliability evaluation procedure described, one can analyze the 
effect of demand variation on the overall system reliability. 

Example 6.25 

Consider the two following SWSs [183]. The first one consists of 10 identical 
three-state MEs. The probabilities of the MEs' states are pj0 = 0.1, pj1 = 0.3, pj2 = 
0.6. The corresponding performance rates are gj0 = 0, gj1 = 1, gj2 = 3.

The SWS reliability, as a function of constant demand w, is presented in Figure 
6.27A for different r (2 r 10). Note that, because the cumulative performance of 
groups of MEs takes a finite number of discrete values, the R(w) is a step function. 
One can see that the greater the r, the greater the SWS reliability for the same w.
This is natural, because the growth of r provides growing redundancy in each 
group.

A          B 

Figure 6.27. Reliability of SWS as a function of w and r
(A: SWS with 10 identical MEs. B: SWS with eight different MEs)

The second SWS consists of eight different MEs. The number of states of these 
MEs varies from two to five.  The performance distributions of the MEs are 
presented in Table 6.30. The SWS reliability as a function of constant demand w is 
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presented in Figure 6.27B for different r (2 r 8). Observe that the functions R(w)
for the second SWS have more steps than the functions R(w) for the first one. 
Indeed, different MEs produce a greater variety of levels of cumulative group 
performance rates than the identical ones. 

     Table 6.30. Parameters of SWS elements

No. of ME 1 2 3 4 5 6 7 8 
No. of 
state

p G p g p g p g p g p g p g p g 

0 0.03 0 0.10 0 0.17 0 0.05 0 0.08 0 0.01 0 0.20 0 0.05 0 
1 0.22 2 0.10 1 0.83 6 0.25 3 0.20 1 0.22 4 0.10 3 0.25 4 
2 0.75 5 0.40 2 - - 0.40 5 0.15 2 0.77 5 0.10 4 0.70 6 
3 - - 0.40 4 - - 0.30 6 0.45 4 - - 0.60 5 - - 
4 - - - - - - - - 0.12 5 - - - - - - 

6.4.2 Multiple Sliding Window Systems 

The existence of multiple failure criteria is a common situation for complex 
systems, especially for consecutive-type systems. In this section we consider an 
extension of the linear SWS model to a multi-criteria case. In this multiple sliding 
window system (MSWS) a vector r = (ri: 1 i Y) is defined such that ri<ri+1, and
1  ri n for any i. The system fails if for any i (1 i Y) at least one of the functions fi

over the performance rates of any ri consecutive MEs is equal to zero. The entire 
MSWS acceptability function takes the form 

0),...,(),...,(
1

1
1

1
1

i

i

rn

h
rhhi

Y

i
n GGfGGF  (6.120) 

The introduction of the linear MSWS model is motivated by the following 
examples.

Example 6.26 

Consider a sequence of service stations in which each station should process the 
same sequence of n different tasks. Each station i can process ri incoming tasks 
simultaneously according to the first-in-first-out rule using a limited resource wi.
Each incoming task can have different states and the amount of the resource 
needed to process the task is different for each state of each task. The total resource 
needed to process ri consecutive tasks should not exceed the available amount of 
the resource wi. The system fails if in at least one of the stations there is no 
available resource to process ri tasks simultaneously. 

The simplest example of such a model is a transportation system in which n
randomly ordered containers are carried by consecutive conveyors characterized by 
a different length and allowable load. The number of containers ri that are loaded 
onto each conveyor i is defined by its length. The transportation system fails if the 
total load of any one of the conveyors is greater than its maximal allowed load wi.
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An example of the transportation system is presented in Figure 6.28. The 
system consists of Y = 3 conveyors and transports n = 14 randomly ordered 
containers of four types (each type m is characterized by its weight gm). The first 
conveyor can simultaneously carry r1 = 2 containers, the second and third 
conveyors can  carry    r2 = 6 and r3 = 3  containers respectively. The maximal 
allowable loads of conveyors 1, 2 and 3 are w1, w2 and w3 respectively. The system 
fails if the total weight of any two adjacent containers is greater than w1, or if the 
total weight of any six adjacent containers is greater than w2, or if the total weight 
of any three adjacent containers is greater than w3. The weight of the jth container 
in the line can be represented by a random value Gj: }.,,,{ 4321 ggggG j  The 

acceptability function for each conveyor i can be determined as 

31),(1),...,(
1

1 iwGGGf i

rh

hj
jrhhi

i

i

for any group of ri adjacent containers starting with hth one (r1 = 2, r2 = 6, r3 = 3).
The system reliability (defined as its expected acceptability) takes the form 

 R = E(
3

1

15

1

1
)(1

i

r

h
i

rh

hj
j

i i
wG ), where r1=2, r2=6, r3=3

Figure 6.28. Example of transportation MSWS

Example 6.27 

Consider a heating system that should provide a certain temperature along several 
lines with moving parts placed at different distances from the heaters. The 
temperature at each point of the line i is determined by a cumulative effect of ri

closest heaters. Each heater consists of several electrical heating elements. The
heating effect of each heater depends on the availabilityof its heating elements and, 

r1=2,
w1

r2=6,
w2

r3=3,
w3

        g1 g2 g3 g4
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therefore, can vary discretely (if the heaters are different, then the number of 
different levels of heat radiation and the intensity of the radiation at each level are 
specific to each heater). In order to provide the temperature, which is not less than 
some specified value at each point of line i, any ri adjacent heaters should be in 
states where the sum of their radiation intensity is greater than the minimum 
allowed level wi. The system fails if any group of ri adjacent heaters provides the 
cumulative radiation intensity lower than wi.

Figure 6.29. Example of manufacturing MSWS

In the example presented in Figure 6.29 there are 12 heaters providing random 
radiation intensity Gj (1 j 12). The parts located at any point of the close conveyor 
are heated by three adjacent heaters. The cumulative heating intensity along this 
conveyor should not be lower than w1. The parts located at any point of the remote 
conveyor are heated by five adjacent heaters. The cumulative heating intensity 
along this conveyor should not be lower than w2. The system fails if any three 
adjacent heaters fail to provide the desired heating intensity w1 or if any five 
adjacent heaters fail to provide the desired heating intensity w2. The acceptability 
function for each conveyor i can be defined as 

21),(1),...,(
1

1 iwGGGf i

rh

hj
jrhhi

i

i

which corresponds to any group of ri adjacent heaters starting with the hth one  (r1

= 3, r2 = 5). 
The system reliability takes the form 

 R = ))(1(
12

1

13

1
i

rh

hj
j

i

r

h
wGE

ii
, where r1 = 3, r2 = 5 

A variety of other systems also fit the model: quality control systems that detect 
deviations from given values of parameters in product samples, combat systems 
that should provide certain fire density along a defence line, etc.

r1=3
r2=5

  w1

  w2

G1 … …Gn
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6.4.2.1 Evaluating the Multiple Sliding Window System Reliability 
Let the u-function )(1 zU

Yr
 take the form (6.116) where the vector g0 consists of 

rY zeros. According to the algorithm presented in Section 6.4.1.1, by applying the 
operator (6.117) for h = 1, …, n one obtains distributions for all of the possible 
random vectors of performance rates of rY consecutive MEs.

Note that the vectors of length rY considered also contain all of the possible 
vectors of the smaller length. For any ri<rY the last ri elements of vectors in the 
exponents of u-functions ),(1 zU

irYr
 )(2 zU

iY rr …, )(1 zU nrY
 represent 

all of the possible vectors of performance rates of ri consecutive MEs. Therefore, 
in each u-function )(1 zU hrY

 obtained by the recursive operator (6.117) for 

r1 h n, one can obtain the failure probability of groups of ri consecutive MEs for 
any r1 h rY satisfying the condition ri h by applying operators ))(( 1 zU hrf Yi

in which acceptability functions fi take as arguments ri the last elements of vectors 
from the exponents of the u-function. These considerations lead to the following 
algorithm for MSWS reliability evaluation: 

1. Assign: x = 0; )(1 zU
Yr

= .0g
z  Determine the u-functions of the individual 

MEs using (6.115). 
2. Main loop. Repeat the following for h = 1, …, n:

2.1. Obtain )(1 zU hrY
= )(zU hrY

uh(z).

2.2. For i = 1, …, Y: if h ri add value ))(( 1 zU hrf Yi
to x and remove 

from )(1 zU hrY
 terms with the exponents in which the last ri elements 

produce zero acceptability function fi.
3. Obtain the SWS availability as R = 1 x.

Alternatively, the system reliability can be obtained as the sum of the coefficients 
of the last u-function  ).(1 zU nYr

Example 6.28 

Consider an MSWS with n = 5, Y = 2, r1 = 3, r2 = 4,  f1(x1, x2, x3) = 1( 5
3

1j
jx ),

f2(x1, x2, x3, x4) = 1( 6
4

1j
jx ). Each ME has two states: total failure 

(corresponding to a performance rate of zero) and functioning with a nominal 
performance rate. The nominal performance rates of the MEs are 2, 2, 3, 1, and 2.

In the initial step of the algorithm, a value of zero is assigned to x. The u-
functions of the individual MEs are 

u1(z) = p10z
0+p11z

2, u2(z) = p20z
0+p21z

2, u3(z) = p30z
0+p31z

3

u4(z) = p40z
0+p41z

1, u5(z) = p50z
0+p51z

2
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Since, in the MSWS considered, rY = r2 = 4, the initial u-function takes the form 

 U 3(z) = z(0,0,0,0)

Following step 2 of the algorithm we obtain:
for h = 1 

 U 2(z) = U 3(z) u1(z) = z(0,0,0,0) (p10z
0+p11z

2) = p10z
(0,0,0,0)+p11z

(0,0,0,2)

for h = 2 

 U 1(z) = U 2(z) u2(z)) = (p10z
(0,0,0,0)+p11z

(0,0,0,2)) (p20z
0+p21z

2)

 = p10p20z
(0,0,0,0)+p11p20z

(0,0,2,0)+p10p21z
(0,0,0,2)+p11p21z

(0,0,2,2)

for h = 3 

 U0(z) = U 1(z) u3(z)

  = (p10p20z
(0,0,0,0)+p11p20z

(0,0,2,0)+p10p21z
(0,0,0,2)+p11p21z

(0,0,2,2)) (p30z
0+p31z

3)

 = p10p20p30z
(0,0,0,0)+p11p20p30z

(0,2,0,0)+p10p21p30z
(0,0,2,0)+p11p21p30z

(0,2,2,0)

 +p10p20p31z
(0,0,0,3)+p11p20p31z

(0,2,0,3)+p10p21p31z
0,0,2,3)+p11p21p31z

(0,2,2,3)

In this step, operator 
1f

should be applied to U0(z). The terms of U0(z) with    

f1 = 0 are marked in bold. The value of 
1f

(U0 (z)) is added to x:

x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31

After removing the marked terms, U0(z) takes the form 

 U0(z) = p11p20p31z
(0,2,0,3)+p10p21p31z

0,0,2,3)+p11p21p31z
(0,2,2,3)

Proceeding for h = 4 we obtain 

 U1(z) = U1 (z) u4(z) = (p11p20p31z
(0,2,0,3)+p10p21p31z

(0,0,2,3)

 +p11p21p31z
(0,2,2,3))  (p40z

0+p41z
1) = p11p20p31p40z

(2,0,3,0)

 +p10p21p31p40z
(0,2,3,0)+p11p21p31p40z

(2,2,3,0)+p11p20p31p41z
(2,0,3,1)
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 +p10p21p31p41z
(0,2,3,1)+p11p21p31p41z

(2,2,3,1)

Both operators 
1f

 and 
2f  should be applied to U1(z). The terms of U1(z)

with f1 = 0 are marked in bold; the terms with f2 = 0 are underlined. One can see 
that in the first term both f1 = 0 and f2 = 0, in the second term only f2 = 0, and in the 
fourth term only f1 = 0.  First, the value of

1f
(U1(z)) = p11p20p31p40+p11p20p31p41

is added to x and the terms with  f1 = 0 are removed. Then, in the remaining u-
function U1(z), the value of 

2f (U1(z)) = p10p21p31p40

is added to x and the terms with f2 = 0 are removed.
After removing all of the marked terms, U1(z) takes the form

 U1(z) = p11p21p31p40z
(2,2,3,0)+p10p21p31p41z

(0,2,3,1)+p11p21p31p41z
(2,2,3,1)

Finally, for h = 5

 U2(z) = U1(z) u5(z)) = (p11p21p31p40z
(2,2,3,0)+p10p21p31p41z

(0,2,3,1)

 +p11p21p31p41z
(2,2,3,1)) ( p50z

0+p51z
2) = p11p21p31p40p50z

(2,3,0,0)

 +(p10+p11)p21p31p41p50z
(2,3,1,0)+p11p21p31p40p51z

(2,3,0,2)

 +(p10+p11)p21p31p41p51z
(2,3,1,2)

The terms of U2(z) with f1 = 0 are marked in bold and the terms with f2 = 0 are 
underlined. After adding the value of

1f
(U2(z)) = p11p21p31p40p50+(p10+p11)p21p31p41p50

to x and removing the corresponding terms from U2(z), this u-function does not 
contain terms with f2 = 0. Now x is equal to the system unreliability and R = 1 x.

The final u-function U2(z) takes the form 

 U2(z) = p11p21p31p40p51z
(2,3,0,2)+(p10+p11)p21p31p41p51z

(2,3,1,2)

 = p11p21p31p40p51z
(2,3,0,2)+p21p31p41p51z

(2,3,1,2)
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The system reliability can also be obtained as the sum of the coefficients of the 
resulting u-function:

 R = p11p21p31p40p51+p21p31p41p51 = p21p31p51(1 p10p40)

Example 6.29 

An MSWS with n = 10, Y = 3, r1 = 3, r2 = 5, r3 = 7 consists of identical two-state 
elements. Total failure of the elements corresponds to a performance rate of 0, and 
a normal state corresponds to performance rate of 1. The reliability of each element 
j is pj1 = 0.8. The system fails if the total performance of any ri adjacent elements is 
less then wi. The graphs of the MSWS reliability as a function of the demands w1,
w2 and w3 are presented in Figure 6.30. 

 When wi = ri the system becomes a series one and its reliability is equal to   
0.810 = 0.1074. Observe that the variation of demands wi do not necessarily 
influence the system’s reliability because of failure criteria superposition. For 
example, satisfying one of the system success conditions 

1)(1
11

1

1r

h
i

rh

hm
m wG

i

for r1 = 3, w1 = 2 guarantees satisfying this condition for r2 = 5, w2 = 3. Therefore, 
the reliability of the MSWS with w1 = 2 does not depend on w2 if w2 3.

Figure 6.30. Reliability of MSWS as a function of demands 

Satisfying the system success condition for r2 = 5, w2 = 4 guarantees satisfying 
this condition for r1 = 3, w1 = 2. Therefore, the reliability of the MSWS with w2 = 4 
does not depend on w1 if w1 2.

Satisfying the system success condition for r3 = 7, w3 = 6 guarantees satisfying 
this condition for both r1 = 3, w1 = 2 and r2 = 5, w2 = 4. Therefore, the reliability of 
the MSWS with w3 = 6 does not depend on w1 if w1 2 and does not depend on w2 if 
w2 4 .

0123
4

5

0
1

2
3

0

0.25

0.5

0.75

1
R

w2w1

w3=0

01
2

3
4

5

0
1

2
3

0

0.25

0.5

0.75

1
R

w2w1

w3=5

01
2

3
4

5

0
1

2
3

0

0.25

0.5

0.75

1
R

w2w1

w3=6



352 The Universal Generating Function in Reliability Analysis and Optimization 

6.4.3 Element Reliability Importance in Sliding Window System 

The elements' importance measures and the methods of their evaluation for SWSs 
are the same as for the series-parallel systems. In order to evaluate the importance 
measures one has to apply the technique described Section 4.5 using the algorithm 
for SWS reliability evaluation instead of the series-parallel block diagram method. 

For SWSs consisting of identical elements it may be important to know how the 
improvement of all of the elements’ reliability influences the entire system’s 
reliability. In order to obtain this importance measure one has to calculate the 
values of the system reliability for the different values of element reliability, 
simultaneously changing parameters of the u-functions of all of the elements. 

Example 6.30 

Consider an MSWS with n = 10, Y = 2, r1 = 3, r2 = 5.  The MSWS consists of 
identical two-state elements. Total failure of the elements corresponds to a 
performance rate of 0, and anormal state corresponds to a performance rate of 1. 
The system fails if the total performance of any ri adjacent elements is less than wi.

A          B 

Figure 6.31. SWS reliability (A) and elements' reliability importance (B)
as functions of the elements' reliability 

In Figure 6.31A one can see the reliability of the MSWS considered as a 
function of p for different combinations of w1 and w2. For the same p, the system 
reliability decreases with the growth of w1 and w2. The elements' Birnbaum 
reliability importance indices IAb = dR/dp as functions of p are presented in Figure 
6.31B. One can see that, until a certain level of p corresponding to a maximal IAb,
the more reliable the elements the greater the entire system benefits from further 
improvement of the elements’ reliability. After achieving the maximal value of IAb,
the influence of the element’s reliability improvement on the system’s reliability is 
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drastically reduced (this means that further improvement of the elements’ 
reliability is less justified). 

With the growth of w1 and w2, the element’s reliability corresponding to the 
maximal reliability importance moves toward the greater values.

In SWSs consisting of nonidentical elements, different elements play different 
roles in providing for the system’s reliability. Evaluating the relative influence of 
the element’s reliability on the reliability of the entire system provides useful 
information for tracing system bottlenecks.

Example 6.31 

Consider an SWS with n = 10 and r = 3 [184]. The parameters of the two-state 
system elements are presented in Table 6.31. Total failure of any element j
corresponds to a performance rate of 0, and a normal state corresponds to a 
performance rate of gj1. The element’s reliability is pj1. The system fails if the 
cumulative performance of any three adjacent elements is less than the demand w.
The system’s reliability as a function of demand w is presented in Figure 6.32A.

Table 6.31. Parameters of SWS elements

No. of element j 1 2 3 4 5 6 7 8 9 10 

pj1 0.87 0.90 0.83 0.95 0.92 0.89 0.80 0.85 0.82 0.95 

gj1 200 200 400 300 100 400 100 200 300 200 

A          B 

Figure 6.32. SWS reliability (A) and the elements' reliability importance (B)
as functions of demand 

The reliability importance indices for several elements as functions of the 
system’s demand are presented in Figure 6.32B. Observe that the relative 
importance of the elements changes with the demand variation. For example, when 
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100<w<200, element 8 is the most important one, whereas when 200<w<300 this 
element becomes less important than element 9. This means that in making a 
decision about the system’s reliability enhancement one has to take into account 
the range of the possible demand levels. 

One can see that for some w the importance of the elements can be equal to 
zero. This means that these elements have no influence on the entire SWS 
availability and can be removed. Indeed, consider element 5 when 200<w<300.
This element belongs to three triplets with the following nominal performance 
rates {g31 = 400, g41 = 300, g51 = 100}, {g41 = 300, g51 = 100, g61 = 400}, {g51 = 
100, g61 = 400,     g71 = 100}. The cumulative performance rate of the first triplet is 
greater than w if at least one of elements 3 and 4 works and is less than w if both of 
these elements fail. The cumulative performance rate of the second triplet is greater 
than w if at least one of elements 4 and 6 works and is less than w if both of these 
elements fail. The cumulative performance rate of the third triplet is greater than w
if element 6 works and is less than w if this element fails. The state of element 5 
does not affect the value of the acceptability function for any one of the three 
triplets.

6.4.4 Optimal Element Sequencing in Sliding Window Systems 

Having a given set of MEs, one can achieve considerable reliability improvement 
of the linear SWS by choosing the elements' proper arrangement along a line. 
Indeed, it can be easily seen that the order of the tasks’ arrivals to the service 
system (Example 6.26) or allocation of heaters along a line (Example 6.27) can 
strongly affect the system’s entire reliability. For the set of MEs with a given 
performance rate distribution, the only factor affecting the entire SWS reliability 
(for fixed r and w) is the sequence of MEs. Papastavridis and Sfakianakis [185] 
first considered the optimal element arrangement problem for SWSs with binary 
elements having a different reliability. In this section, the optimal element 
arrangement problem is considered for the general SWS model. This problem is 
formulated as follows: find the sequence of MEs in the SWS that maximizes the 
system reliability. 

6.4.4.1 Implementing the Genetic Algorithm 
In order to represent the sequence of n MEs in the SWS in the GA one can 
consider a line with n consequent positions and use a string a = (a1, …, an) in 
which aj is equal to the number of the position occupied by ME j (see Section 
1.3.2.4). One can see that the total number of different arrangement solutions 
(number of different possible vectors a) is equal to n! (number of possible 
permutations in a string of n different numbers). 

The solution decoding procedure should apply the algorithm for SWS 
reliability determination for the given sequence of MEs represented by string a.
The solution’s fitness is equal to the value of system reliability R(a, r, w) obtained. 
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Example 6.32 

Consider an SWS with n = 10 [186]. The parameters of the system MEs are 
presented in Table 6.32.  Three element sequencing solutions were obtained by the 
GA for the SWS with r = 3 (for w = 6, w = 8 and w = 10) and three solutions were 
obtained for the same SWS with r = 5 (for w = 10, w = 15, w = 20). These solutions 
are presented in Table 6.33. The system’s reliability as a function of demand w is 
presented in Figure 6.33 for the ME sequences obtained. One can see that the 
greater r, the greater the SWS reliability for the same w. This is natural, because 
the growth of r provides a growing redundancy in each group. 

  Table 6.32. Performance distributions of SWS elements 

No. of ME 1 2 3 4 5 6 7 8 9 10 
State p g p g p g p g p g p g p g p g p g p g 

0 0.03 0 0.10 0 0.17 0 0.05 0 0.08 0 0.01 0 0.20 0 0.05 0 0.20 0 0.05 0 
1 0.22 2 0.10 1 0.83 6 0.25 3 0.20 1 0.22 4 0.10 3 0.25 4 0.10 3 0.25 2 
2 0.75 5 0.40 2 - - 0.40 5 0.15 2 0.77 5 0.10 4 0.70 6 0.15 4 0.70 6 
3 - - 0.40 4 - - 0.30 6 0.45 4 - - 0.60 5 - - 0.55 5 - - 
4 - - - - - - - - 0.12 5 - - - - - - - - - - 

A          B 

Figure 6.33. Reliability of SWS with the optimal element arrangements
as function of demand. A: for r = 3; B: for r = 5 

Table 6.33. Parameters of the solutions obtained

r w R Sequence of SWS elements

6 0.931 2 1 6 5 4 8 7 10 3 9 

8 0.788 5 1 8 9 6 4 7 3 10 2 3

10 0.536 5 9 3 1 4 7 10 8 6 2 

10 0.990 2 5 1 4 6 8 10 3 7 9 

15 0.866 9 7 3 10 1 6 8 4 5 2 5

20 0.420 2 5 4 8 3 6 10 7 1 9 
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Note that, for solutions which provide the greatest SWS reliability for a certain 
w, the reliability for the rest of the values of w is less than for the solutions optimal 
for those values of w. Indeed, the optimal allocation provides the greatest system 
probability of meeting just the specified demand by the price of reducing the 
probability of meeting greater demands. 

6.4.5 Optimal Uneven Element Allocation in Sliding Window 
Systems

While the problem of the optimal ordering of tasks’ arrivals to the service system 
(Example 6.26) presumes the arrival of one task at a time (only one task can be in 
each position in the service line), in the problem of the optimal arrangement of 
heaters (Example 6.27) we can assume that n positions are distributed along a line 
and the heaters may be allocated unevenly at these positions (several heaters can be 
gathered at the same position while some positions remain empty).

In many cases such uneven allocation of the MEs in an SWS results in greater 
system reliability than the even allocation. 

Example 6.33 

Consider a simple case in which four MEs should be allocated within an SWS 
with four positions. Each ME j has two states: a failure state with a performance of 
0 and a normal state with a performance of 1. The probability of a normal state is 
pj, the probability of a failure is qj = 1 pj. For r = 3 and w = 2, the system succeeds 
if each three consecutive positions contain at least two elements in a normal state. 
Consider two possible allocations of the MEs within the SWS (Figure 6.34):

A. MEs are evenly distributed among the positions.
B. Two MEs are allocated at second position and two MEs are allocated at third 

position.

Figure 6.34. Two possible allocations of MEs in an SWS

In case A, the SWS succeeds either if no more than one ME fails or if MEs in 
the first and fourth positions fail and MEs in the second and third positions are in a 
normal state. Therefore, the system reliability is 

A

B
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RA = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4+q1p2p3q4

For identical MEs with pj = p

RA = p4+4qp3+q2p2

In case B, the SWS succeeds if at least two MEs are in a normal state. The 
system reliability in this case is 

RB = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4

 +q1q2p3p4+q1p2q3p4+q1p2p3q4+p1q2q3p4+p1q2p3q4+p1p2q3q4

For identical MEs

RB = p4+4qp3+6q2p2

One can see that the uneven allocation B is more reliable: 

RB  RA=5q2p2=5(1 p)2p2

Consider now the same system when w=3. In case A the system succeeds only 
if it does not contain any failed ME:

RA = p1p2p3p4

In case B it succeeds if it contains no more than one failed element: 

RB = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4

For identical MEs: 

RA = p4, RB = p4+4qp3 and RB RA = p4+4qp3 p4 = 4(1 p)p3

Observe that, even for w = 4, when in case A the system is unable to meet the 
demand (RA = 0) because w>r, in case B it still succeeds with probability              
RB = p1p2p3p4.

In this section we consider a general optimal allocation problem in which the 
number of MEs m is not necessarily equal to the number of positions n (m n) and 
an arbitrary number of elements can be allocated at each position (some positions 
may be empty):

The SWS consists of n consecutively ordered positions. At each position any 
group of MEs can be allocated. The allocation problem can be considered as a 
problem of partitioning a set of m items into a collection of n mutually disjoint 
subsets. This partition can be represented by the integer string a = (aj: 1 j m),
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1 aj n, where aj is the number of the position at which ME j locates. It is assumed 
that the SWS has the acceptability function (6.114). The total performance of the 
group of the MEs located at the same position is equal to the sum of the 
performances of these MEs. The empty position can be represented by an element 
with the constant performance of zero.

For any given integer string a, the GA determines the solution fitness (equal to 
the SWS reliability) using the following procedure: 

1. Assign iu~ (z) = z0 for each i = 1, …, n, corresponding to SWS positions. 

Determine u-functions uj(z) for each individual ME j (1 j m) in the form 
(6.115) in accordance with their performance distributions. 

2. According to the given string a for each j = 1, …, m modify )(~ zu
ja as

follows:
)(~ zu

ja )()(~ zuzu ja j
(6.121)

3. Apply the algorithm for SWS reliability evaluation described in Section 6.4.1 
over n u-functions iu~ (z).

Example 6.34 

Consider an SWS with n = 10 positions in which m = 10 identical binary MEs are 
to be allocated [187]. The performance distribution of each ME j is pj1 = Pr{Gj = 1} 
= 0.9, pj0 = Pr{Gj = 0} = 0.1. 

Table 6.34 presents allocation solutions obtained for different r and w (number 
of identical elements in each position). The reliability of the SWS corresponding to 
the allocations obtained is compared with its reliability corresponding to the case 
when the MEs are evenly distributed among the positions. One can see that the 
reliability improvement achieved by the free allocation increases with the increase 
of r and w. On the contrary, the number of occupied positions in the best solutions 
obtained decreases when r and w grow. Figure 6.35 presents the SWS reliability as 
a function of demand w for r = 2, r = 3 and r = 4 for even ME allocation and for 
unconstrained allocation obtained by the GA. 

Table 6.34. Solutions of ME allocation problem (SWS with identical MEs)

Position r =2, w=1 r=3, w=2 r=4, w=3
1    
2 2 1  
3  3  
4 2  5 
5  3  
6 2   
7   5 
8 2 3  
9    

10 2   
Reliability

Free allocation 0.951 0.941 0.983  
Even allocation 0.920 0.866 0.828 
Improvement 3.4% 8.7% 18.7% 
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Figure 6.35. Reliability of SWS with identical MEs for different r and ME allocations 

Example 6.35 

Consider the SWS allocation problem from Example 6.32, in which n = m = 10,     
r = 3 and w = 10. The best ME allocation solutions obtained by the GA are 
presented in Table 6.35 (list of elements located at each position). 

Table 6.35. Solutions of ME allocation problem (SWS with different MEs)

m = 10 m = 9 m = 8 m = 7 
Position Even allocation Uneven allocation    

1 5     
2 9    1 
3 3 6, 7, 10 2, 5, 8, 9 3, 6 7 
4 1     
5 4 2, 5 7  3 
6 7 1, 4 1, 4 5, 7, 8 6 
7 10     
8 8 3, 8, 9 3 4 4, 5 
9 6  6 1, 2 2 

10 2     
Reliability 0.536 0.765 0.653 0.509 0.213 

The best even allocation solution obtained in Example 6.32 improves 
considerably when the even allocation constraint is removed. One can see that the 
best unconstrained allocation solution obtained by the GA in which only 4 out of 
10 positions are occupied by the MEs provides a 42% reliability increase over even 
allocation. The system reliability as a function of demand for the even and 
unconstrained allocations obtained is presented in Figure 6.36. 

Table 6.35 also presents the best allocations of the first m MEs from Table 6.32 
(for m = 9, m = 8 and m = 7). Observe that uneven allocation of nine MEs in the 
SWS still provides greater reliability than does even allocation of 10 MEs.
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Figure 6.36. Reliability of SWS with different MEs

6.4.6 Sliding Window System Reliability Optimization in the 
Presence of Common Cause Failures 

In many cases, when SWS elements are subject to CCFs, the system can be 
considered as consisting of mutually disjoint CCGs with total CCFs. The origin of 
CCFs can be outside the system’s elements they affect (external impact), or they 
can originate from the elements themselves, causing other elements to fail. 
Usually, the CCFs occur when a group of elements share the same resource 
(energy source, space, etc.)

Example 6.36 

Consider the manufacturing heating system from Example 6.27 and assume that 
the power to the heaters is supplied by B independent power sources (Figure 6.37). 
Each heater is connected to one of these sources. The heaters supplied from the 
same source compose the CCG. Each source has a certain failure probability. 
When the source fails, all of the heaters connected to this source (belonging to the 
corresponding CCG) are in a state of total failure. Therefore, the failure of any 
power source causes the CCF in the heating system. 

Figure 6.37. Example of SWS with several CCGs
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6.4.6.1 Evaluating Sliding Window System Reliability in the Presence of Common 
Cause Failures 
The u-function uj(z) representing the p.m.f. of the random performance rate of ME 
j Gj takes the form (6.115) only when the element is not the subject of CCF. 

We assume that the performance rate of element j when it is a subject of CCF is 

equal to zero. The u-function corresponding to this case takes the form .)( 00 zzu j

The u-functions uj(z) and u0
j(z) represent, therefore, conditional performance 

distributions of the performance rate of element j.
Let the entire SWS consists of a set  of n ordered MEs and has B independent 

CCGs. Each CCG can be in two states (normal state and failure). The failure 
probability of CCG i is fi. It can be seen that the total number of the combinations 
of CCG states is 2B. Each CCG i can be defined by a subset i  such that 

B

i
i

1
, ei for i  e  (6.122) 

Let binary variable si define the state of CCG i such that si = 1 corresponds to 
the normal state of the group and si = 0 corresponds to failure of the group. When       
si = 1 the performance of each ME j belonging to i is a random value having the 
distribution determined by its u-function uj(z). When si = 0 the performance of each 
ME belonging to i is equal to zero, which corresponds to the u-function u0

j(z).
One can connect the state si of each individual CCG with a number of state 
combination h in the following way: 

 si(h)=mod2
12/ ih  (6.123) 

When h varies from 0 to 2B 1 one obtains all the possible combinations of 
states of CCGs using Equation (6.123) for 1 i B.

The probability of each CCG state combination h is

B

i

hs
i

hs
ih

ii ffq
1

)()(1 )1()(   (6.124)

If one defines the u-function of each ME 1 j n as 

otherwise),(

0,if),(
)(~

0

zu

sjzu
zu

j

iij
j   (6.125)

and applies the algorithm for SWS reliability evaluation (described in Section 
6.4.1) over u-functions )(~ zu j , then one obtains the conditional probability of the 

SWS success rh when the CCG state combination is h. Since all of the 2B
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combinations of CCG states are mutually exclusive, in order to calculate the 
unconditional probability of the SWS success (SWS reliability) one can apply the 
following equation: 

12

0

B

h
hhrqR  (6.126) 

Now we can evaluate the SWS reliability using the following algorithm: 
1. Assign R = 0. For each j (1 j n) determine two u-functions uj(z) (in 

accordance with Equation (6.115) and  u0
j(z) = z0.

2.   Repeat the following for h = 0, …, 2B 1:
2.1. For i = 1, …, B determine si(h) using Equation (6.123). 
2.2. Determine qh (the probability of CCG state combination h) using 

Equation (6.124). 
2.3. For each i = 1, …, B determine the numbers of elements belonging to the 

CCG i and define the u-functions of these elements )(~ zu j  in accordance with 

Equation (6.125). 
2.4. Determine rk (the conditional SWS reliability for CCG state combination 

h) applying the procedure described in Section 6.4.1 over u-functions )(~ zu j

(1 j n) for a given demand w.
2.5. Add the product qhrh to R.

6.4.6.2 Optimal Distribution of Multi-state Elements among Common Cause 
Groups
The way the MEs are distributed among CCGs strongly affects the SWS reliability. 
Consider a simple example in which SWS with r = 2 consists of four MEs 
composing two CCGs. Each ME has two states with performance rates of 0 and 1. 
The system demand is 1. When 1 = {1, 2} and 2 = {3, 4} each CCF causes the 
system's failure. When 1 = {1, 3} and 2 = {2, 4} the SWS can succeed in the case 
of a single CCF if both MEs not belonging to the failed CCG are in the operational 
state.

The elements' distribution problem can be considered as a problem of 
partitioning a set  of n MEs into a collection of B mutually disjoint subsets i

(1 i B). Each set can contain from 0 to n elements. The partition of set  can be 
represented in the GA by the integer string a = {aj: 1 j n}, 0 aj B, where aj is the 
number of the subset to which ME j belongs: .

jaj

Example 6.36 

Consider the SWS with n = 10 from Example 6.32 [188]. The parameters of the 
system’s MEs are presented in Table 6.32. It is assumed that the failure probability
fi of each CCG i is equal to 0.2. 

First, distribution solutions were obtained by the GA for a SWS with fixed B.
The solutions that provide the greatest SWS reliability for a certain demand w
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reliability of the optimal solutions for those values of w. Indeed, the optimal 
allocation provides the greatest system probability of meeting just the specified 
demand by the price of reducing the probability of meeting other demands. 
Therefore, the optimal distribution solution depends on system demand. The 
solutions obtained for different demands for SWS with r = 3 and r = 5 when B = 2 
are presented in Table 6.36.

When r = 3, solution A is optimal for demand 0<w<3 and solution B is optimal 
for demand 3 w 5. When r = 5, solution D is optimal for demand 7 w 11 and 
solution E is optimal for demand 12 w 16. The system reliabilities, as functions of 
demand for the solutions obtained, are presented in Figure 6.38. The solutions C 
(for r = 3) and F (for r = 5), in which adjacent elements belong to different CCGs, 
are presented for comparison. These solutions provide lower SWS reliability than 
the optimal ones. 

Table 6.36. Solutions of ME grouping problem obtained for B = 2 

r            Distribution of MEs 
A {1, 4, 6, 7, 9, 10} {2, 3, 5, 8} 
B {1, 2, 4, 5, 7, 8, 10} {3, 6, 9} 3

C {1, 3, 5, 7, 9} {2, 4, 6, 8, 10} 
D {1, 2, 5, 6, 7, 10} {3, 4, 8, 9} 
E {1, 2, 3, 6, 7, 8} {4, 5, 9, 10} 5

F {1, 3, 5, 7, 9} {2, 4, 6, 8, 10} 

Figure 6.38. SWS reliability for the best ME distribution solutions obtained for B = 2

Observe that with the growth of w the difference of system reliability provided 
by the different distribution solutions becomes negligible.  This is because, when w
is great, the system becomes intolerant to any common supply failure without 
regard to the structure of the failed CCG.
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The problem of choosing the optimal number of CCGs is also of interest. The 
increase in the number of CCGs reduces the damage caused by a single CCG to the 
system, but, on the other hand, it increases the probability that at least one CCG has 
failed. Therefore, when the system does not tolerate the loss of even a small portion 
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 of  its elements (which happens when w is great), the increase of B decreases the 
system's overall reliability. The smaller the system demand w, the greater the 
benefit from the elements’ distribution among different CCGs. Table 6.37 presents 
the solutions obtained for the given SWS for different B. For each B>1 the solution 
that provides the system's reliability greater than the reliability of a system with a 
single CCG for the greatest w is chosen (this means that for the given B, the 
solution presented is better than the solution with B = 1 for a given demand w*,
but, when the demand is greater than w*, no distribution solution with B CCGs 
exists that outperforms the single CCG solution). 

Table 6.37. Solutions of ME grouping problem obtained for different B

r B Distribution of MEs 
1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  
2 {1, 2, 3, 6, 7, 8} {4, 5, 9, 10} 3

3 {1, 4, 7, 10} {2, 5, 8} {3, 6, 9} 
1 {1, 4, 6, 7, 9, 10} {2, 3, 5, 8} 
2 {1, 4, 5, 6, 9, 10} {3, 4, 7, 8} 
3 {1, 5, 6, 10} {2, 4, 7, 9} {3, 8}  
4 {1, 5, 6, 10}  {2, 7} {3, 8} {4, 9} 

5

5 {1, 6} {2, 7} {3, 8} {4, 9} {5, 10} 

The SWS reliabilities as functions of demand for the solutions obtained are 
presented in Figure 6.39. The single CCG solution is the worst for the small 
demands and the best for the great demands. On the contrary, the solutions with B
= r, in which any r adjacent elements belong to different CCGs, provide the 
greatest system reliability for small demands and provide the lowest system 
reliability for great demands. The solutions with 1<B<r provide intermediate 
values of system reliability. Therefore, when the number of CCGs is not fixed, the 
greatest reliability solution is either with B = r for low demands or with B = 1 for 
great demands. 

Figure 6.39. SWS reliability for the best ME distribution solutions obtained for 
different B
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7. Universal Generating Function in Analysis 
and Optimization of Consecutively Connected 
Systems and Networks 

7.1 Multi-state Consecutively Connected Systems

7.1.1 Connectivity Model 

The linear multi-state consecutively connected system (LMCCS) consists of n+1
consecutively ordered positions (nodes) Cj, j [1, n+1]. The first node C1 is the 
source and the last one Cn+1 is the sink. At some nodes Cj (1 j n) MEs are 
allocated (some nodes remain empty). These elements provide connections (arcs) 
between the node in which they are allocated and further nodes.

Each ME ei has kj states, where state Si of ei is a discrete random variable with 
p.m.f.

1

0
1,}Pr{

jk

h
ihihi pphS  (7.1) 

Si = h (1 h kj 1) for element ei allocated at node Cj implies that arcs exist from Cj

to each of Cj+1, Cj+2, …, C (j+h), where (x)=min{x, n+1}. Si = 0 implies the total 
failure state of ei (no arcs created by ei exist from Cj). Note that, although different 
MEs can have a different number of states, one can define the same number of 
states for all of the MEs without a loss of generality. Indeed, if ME ei has ki states 
and ME em has km states (ki km), one can consider both MEs as having                     
k = max{ki, km} states while assigning pih = 0 for ki h<k.

The system fails if and only if there is no path from C1 to Cn+1. Therefore, the 
system reliability can be defined as the probability that it can provide the 
connection between C1 to Cn+1.

Let the random value Gi
(j) be the number of the most remote node to which 

exists an arc that ME ei located at Cj provides. The u-function uij(z) representing 
the p.m.f. of Gi

(j) takes the form
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1

0

)()(
k

h

hj
ihij zpzu  (7.2) 

The absence of any ME at node Cj implies that no paths exist from Cj to any 
further node. This means that any arc reaching Cj has no continuation with 
probability 1. In this case, the corresponding u-function takes the form 

 u0j(z) = z j (7.3) 

If node Cj contains several MEs, then the number of the most remote node to 
which an arc from Cj exists is determined by the ME, which is in the maximal 
state. Therefore, the random value G(j) (the number of the most remote node 
connected to Cj)  can be obtained using the structure function

},...,max{ )()()(
1

j
i

j
i

j
m

GGG  (7.4) 

where i1,…,im are numbers of MEs located at Cj. The u-function Uj(z) that 
represents the p.m.f. of G(j) can, therefore, be obtained as 

)(zU j ))(),...,((
1max

zuzu jiji m
 =

)1( kj

jh

h
jh zq            (7.5)

For any uij(z)

 )()()(
max0 zuzuzu ijijj  (7.6) 

After collecting like terms, the resulting u-function Uj(z) (as well as u-functions
uij(z) for individual MEs) can have no more than min{k, n j+2} terms 
(corresponding to possible values of G(j) {j,  j+1, …, min{j+k 1, n+1}).

Consider now the paths starting from C1 that are provided by elements 

allocated in subsequent nodes. Let the random value )(~ jG  be the number of the 
farthest node of a path from C1 provided by the MEs located at nodes from C1 to 

Cj. Let )(
~

zU j  represents the p.m.f. of .
~ )( jG  All the paths provided by the MEs 

located at C1 are single arc paths and, therefore, )1(~
G = G(1). The p.m.f. of )1(~

G  can 

be represented by the u-function ),(
~

1 zU  which is equal to U1(z).

The paths provided by the MEs located at C1, …, Cj can be continued by arcs 

provided by MEs located at Cj+1 only if )(~ jG >j (the path reaches Cj+1). If this 
condition is satisfied, then the most remote node of a path from C1 provided by the 

MEs located at C1,…,Cj+1 can be determined as }.,
~

max{
~ )1()()1( jjj GGG

This can be expressed by the following function: 
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jGj

jGGG
G j
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~
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~
max{~

 (7.7) 

When )(~ jG j, the path from C1 to nodes with numbers greater than j does not 
exist. Therefore, the corresponding state does not participate in the ME state 
combinations providing the system’s success. In order to consider only the 
combinations of states of elements located at C1, …, Cj corresponding to cases in 

which paths from C1 to Cj+1 exist ( )(~ jG >j), we introduce the following  operator 

which eliminates the term with )(~ jG = j from the u-function :)(
~

zU j

)1(

1

)1(
)())(

~
(

kj

jh

h
jh

kj

jh

h
jhj zqzqzU  (7.8) 

Note that 0))(
~

( zU j if )(
~

zU j does not contain terms with )(~ jG > j.

Now, having the p.m.f. of random variables )(~ jG  and G(j+1), represented by 

)(
~

zU j  and Uj+1(z) respectively, one can determine the u-function

)(
~

1 zU j representing the p.m.f. of )1(~ jG  using the operator 

0)(
~

if

0)(
~

if)())(
~

(
)(

~ 1

1
max

zUz

zUzUzU
zU

j
j

jjj

j  (7.9) 

Applying Equation (7.9) recursively, one obtains )(
~

zUn  that contains two 

terms corresponding to )(~ nG = n and )(~ nG = n+1. ( )(
~

zUn ) has only one term 

corresponding to the probability that the path from C1 to Cn+1 exists. The 
coefficient of this term is equal to the reliability of the LMCCS. 

The following procedure determines the system reliability:
1. Assign Uj(z) = u0j(z) = z j for each j = 1, …, n.
2. For each ME ei located at Cj determine uij(z) using Equation (7.2) and

modify Uj (z): Uj(z)= Uj(z)
max

uij(z).

3. Assign )(
~

1 zU  = U1(z) and apply in sequence Equation (7.9) for 

j = 1, …, n 1.

4. Obtain the coefficient of the resulting single term u-function ( )(
~

zUn ) as 

the system reliability. 
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Example 7.1 

Consider a system with four nodes and three MEs. Each ME has three states: state 
0 (total failure), state 1 in which the ME is able to connect the node at which it is 
located with the next node, and state 2 in which the ME is able to connect the node 
it is located at with the next two nodes. The first and second MEs are located at C1

and the third one is located at C3. No MEs are located at C2.
The u-functions of the individual MEs located at C1 are 

u11(z) = p10z
1+p11z

2+p12z
3, u21(z) = p20z

1+p21z
2+p22z

3

The second node is empty, which corresponds to the u-function u02(z) = z2.
The u-function of the ME located at C3 is 

 u33(z) = p30z
3+(p31+p32)z

4

The u-functions representing the p.m.f. of random values G(1), G(2) and G(3) for 
the groups of MEs allocated at the same nodes are, after simplification:

 U1(z) = u11(z)
max

u21(z) = p10p20z
1+[p10p21+p11(1 p22)]z

2

 +(p12+p22 p12p22)z
3, U2(z) = u02(z), U3(z) = u33(z)

The u-function representing the p.m.f. of )1(~
G  is 

)(
~

1 zU = U1(z), ))(
~

( 1 zU = [p10 p21+p11(1 p22)]z
2+(p12+p22 p12 p22)z

3

The u-function representing the p.m.f. of )2(~
G  is 

 )(
~

2 zU = ))(
~

( 1 zU
max

U2(z) = [p10p21+p11(1 p22)]z
2+(p12+p22 p12 p22)z

3

 ))(
~

( 2 zU = (p12+p22 p12 p22)z
3

The u-function representing the p.m.f. of )3(~
G  is 

 )(
~

3 zU = ))(
~

( 2 zU
max

U3(z) = (p12+p22 p12 p22)p30z
3

 +(p12+p22 p12 p22)(p31+p32)z
4

 ))(
~

( 3 zU  = (p12+p22 p12 p22)(p31+p32)z
4

Finally, the system availability obtained from ))(
~

( 3 zU  is 
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 RL = (p12+p22 p12 p22)(p31+p32)

In order to reduce the problem of evaluating the reliability of the circular multi-
state consecutively connected system (CMCCS) into the problem of evaluating the 
reliability of the LMCCS, we use the following definition of a system’s failure 
(Malinowski and Preuss [83]): a CMCCS fails if there exists at least one node Cj,

,1 nj  such that no arcs (signals) originated from any other node can reach Cj

directly.
Assume that each node Cj contains a single ME ej that has kj states (any set of 

MEs located at the same node can be replaced by an equivalent ME with the         
u-function obtained using Equation (7.5)). Consider a set i of consecutive MEs ei,
ei+1, …, en (Figure 7.1). Let the random variable Yi represent the number of MEs 
located beyond i and reached directly by any arc originated from i. It can be seen 
that ,0 max,ii hY  where 

}1)({max

}1)(,...,2,1max{ 1max,

jnk

inkkkh

j
nji

inni
 (7.10) 

Figure 7.1. Circular multi-state consecutively connected system

In order to obtain the p.m.f. of the variable Yi one has to determine the 

probabilities )(i
hp = Pr{Yi = h} for .0 max,ihh  Let qi,j be the probability that 

the arcs originated from ei can reach no more than j next MEs: 

j

m
mijiiiji ppppq

0
,,1,0,, ...  (7.11) 

The probability }Pr{)( hYQ i
i

j that any arc originated from the set i can 

reach no more than h MEs beyond this set takes the form 

Wi

i

n

i

i-1 Hi

Signal gap
i+1…
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 The probabilities )(i
hp  can be obtained using the following recursive 

procedure:
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Consider, now, an equivalent CMCCS in which the set of MEs i is replaced by 
a single equivalent element with the random state represented by the variable Yi.
According to the definition of system failure, it can be represented as a sum of n
disjoint events Ei corresponding to the signal gap between MEs ei 1 and ei (Figure 
7.1). Let Wi for ni1  be an event when the signal from i reaches (directly or 
indirectly)  MEs e1,…, ei and Hi ni2  be an event when the signal from i

reaches (directly or indirectly)  MEs e1,…, ei 1. It can be seen that 

niEWEWH

WE

iiiii 2for,
11  (7.14) 

Therefore:
n

i
i

n

i
i EWER

2
1

1
C }Pr{}Pr{1}Pr{1

 })Pr{}(Pr{}Pr{1
2

1 i

n

i
i WHW  (7.15) 

Note that, according to the definitions of the events Wi and Hi, Pr{Wi} is equal 

to the reliability )(L
W
iLR  of LMCCS W

iL with source ME i, MEs e1,…, ei 1 as 

intermediate elements, and sink right after element i 1, Pr{Hi} is equal to the 

reliability )(L
H
iLR of LMCCS H

iL with source ME i, MEs e1,…, ei 2 as 

intermediate elements, and sink right after element i 2. Therefore: 
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7.1.2 Retransmission Delay Model 

In the previous section, the only condition for the system’s success was its ability 
to keep its source and sink connected. For communication systems, this means that 
any signal leaving the source can reach the receiver without respect to the signal 
transmission time. However, in digital telecommunication systems the 
retransmission process is usually associated with a certain delay. When this is so, 
the total time T of the signal propagation from the source to the receiver can vary 
depending on the combination of states of MEs (retransmitters). Even when the 
retransmission delays of the individual MEs are constant values, the retransmission 
delay of the entire system is a random variable because of the random connectivity 
provided by the MEs. The entire system is considered to be in working condition if 
T is not greater than a certain specified level w. Otherwise, the network fails. In 
this section we present an algorithm for the evaluation of the reliability of 
LMCCSs consisting of MEs with fixed retransmission delays.

7.1.2.1 Evaluating System Reliability and Conditional Expected Delay 
Consider a system with a given allocation of MEs. Each ME ei receiving the signal 
can retransmit it to further nodes after a fixed delay i. The signal generated by ei

located at some node reaches all of the Si next nodes immediately, where Si is a 
state of ei. Since the states of each ME are random values, the total time T of the 
signal propagation from C1 to Cn+1 is also a random value with the distribution 

K

k
kkk QQtT

1
1,}Pr{  (7.17) 

where K is the total number of system states characterized by different values of T
(different combinations of the individual MEs' states can result in the same T).
Some combinations of MEs' states lead to the absence of the connection between 
C1 and Cn+1 (tk =  relates to this specific state). 

The system reliability R(w) is defined as a probability that the signal generated 
at C1 can be delivered to Cn+1 at a time not greater than w. Having the distribution 
(7.17) one can obtain this reliability as

wt
k

k

QwTEwR ))(1()(  (7.18) 

The conditional expected time of signal delivery ~ , can be obtained as 

kt
k

kt
kk QQt /~  (7.19) 
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Consider an ME ei allocated at node Cj. In order to represent the delay 
distribution of the signal generated by this ME we use the random vector 
Gi

(j) = {Gi
(j)(1),…,Gi

(j)(n+1)} so that Gi
(j)(h) represents the random time of the 

signal arrival to node Ch since it has arrived at Cj. When the ME ei is in state Si

(0 Si<ki), it provides a signal retransmission from Cj to a set of nodes 
{Cj+1,…,C (j+Si)} with delay i. In order to represent the times taken to retransmit 
the signal entering the node Cj to the rest of nodes when ME ei is state Si, we 

determine vector )( j
iSi

g (realization of Gi
(j) corresponding to state Si of ei) as follows: 

)(,

)(,

1,

)()(

i

ii
j

iiS

Sjh

Sjhj

jh

hg  (7.20) 

(  can be represented by any number greater than w).
The u-function

1

0

)(

)(
j j

ik
k

k
ikij zpzu g  (7.21) 

represents all of the possible states of the ME ei located at Cj by relating the 
probability of each state Si to the value of a random vector Gi

(j) in this state.
The absence of any ME at node Cj implies that no connections exist between Cj

and any other node. This means that any signal reaching Cj cannot be retransmitted 
in this node. In this case, the corresponding u-function takes the form 

 u j(z)= ,Gz   where G  (h)=  for 1 h n+1.  (7.22) 

Consider two MEs ei and ef allocated at the same node Cj. The signal reaching 
Cj can be retransmitted by ei to each node h by the time Gi

(j)(h). The same signal 
can be retransmitted by ef to each node h by the time Gf

(j)(h).  The time of arrival of 
the signal retransmitted at node j to any node h can be obtained as min{Gi

(j)(h),
Gf

(j)(h)}. Therefore, the delay distribution for the signal generated by the MEs ei

and ef can be represented by the random vector min{Gi
(j), Gf

(j)}.
The structure function for a set of m MEs { }...,,

1 mii ee located at the same 

node Cj takes the form 

),...,min{ )()()(
1

j
i

j
i

j
m

GGG  (7.23) 

The u-function corresponding to the p.m.f. of a random vector G(j) that 
represents the delays of the signal generated by a subsystem of MEs located at Cj
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can be obtained by the composition operator 
min

 over the u-functions )(zu jil

(1 l m).
For any uij(z):

u j(z)
min

uij(z) = uij(z)  (7.24) 

The operator 
min

 can be applied recursively to obtain the u-function for an 

arbitrary group of MEs allocated at Cj.
Assume that a signal generated at Cm reaches Cj with delay G(m)(j). The signal 

generated (retransmitted) at Cj reaches any node h when the time G(m)(j)+G(j)(h)
has passed since the signal has arrived at Cm.

Consider two adjacent nodes Cm and Cm+1. After the signal arrives at Cm it can 
be retransmitted to the rest of the nodes directly with delays determined by the 
vector G(m) or through Cm+1 with delays determined by the vector G(m)+G(m+1). If 
there are different ways of signal propagation to a certain node, which are 
characterized by different times, then the minimal time determines the signal delay. 
Therefore, in order to determine the random delay for a signal retransmitted by the 
two groups of MEs allocated at two adjacent nodes Cm and Cm+1, one can use the 
function f(G(m),G(m+1)) over vectors G(m) and G(m+1), where for each individual term 
1 h n

 f(G(m),G(m+1))(h) =min{G(m)(h),G(m)(m+1) + G(m+1)(h)} (7.25) 

Let )(
~

zUm  be the u-function that determines the p.m.f. of a random vector 

)(~ mG  representing delays of a signal retransmitted by all of the MEs located at C1,
…, Cm (since the signal has arrived at C1) and Um+1(z) be the u-function
representing the p.m.f. of delays for signal retransmitted by all the MEs located at 
Cm+1 (since the signal has arrived at Cm+1). Using the composition operator f

with function (7.25) one can obtain )(
~

1 zUm as

      )()(
~

)(
~

11 zUzUzU mmm f
 (7.26) 

Recursively applying this expression for m = 1, …, m = n 1 one obtains the 
resulting u-function taking the form

K

k
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n
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~ g

 (7.27) 
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This u-function relates the probabilities of all of the possible system states Qk with 

the times of signal propagation from source to receiver tk=
)(~ n

kg (n+1) (the last 

elements of the vectors )(~ n
kg ) corresponding to these states.

Defining the acceptability function as F( ),1(
~ )( nG n w)=1( ))1(

~ )( wnG n

one can determine the system reliability as

wng
k

n

k

QwR
)1(~ )(

)(  (7.28) 

and the conditional expected delay as      
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7.1.2.2  Simplification Technique 

When the u-function )(
~

zUm  is obtained, the values )1(
~ )(mG ,…, )(

~ )( mG m  of the 

random vector )(~ mG are no longer used for determining )(
~

1 zUm  (and all of the 

)(
~

zUs for s>m) according to (7.25). Indeed, when determining )(
~

1 zUm one needs 

to know only the probabilities that the signal reaches nodes Cm+1,…,Cn and the 
corresponding delays. It does not matter through which paths the signal reaches 
these nodes. For example, if in different system states the signal reaches Cm+1

through a number of different combinations of paths (represented by different 

terms in ))(
~

zUm  resulting in the same delay, then one does not have to distinguish 

among these combinations. The only thing one has to know is the sum of the 
probabilities of the states in which combinations of paths with the given minimal 

delay exist.  This means that one can reduce the number of terms in )(
~

zUm by

replacing all of the values )1(~ )(m
k

g ,…, )(~ )( mg m
k

 in vectors )(~ m
k

g  of the u-function

with  symbols and collecting the like terms. 

If, in some term of the u-function )(
~

zUm  )1(
~ )( mG m = … = )1(

~ )( nG m = ,

the signal cannot reach any node from Cm+1 to Cn+1 independently of the states of 
MEs located in these nodes, then this state does not contribute to the signal 
propagation to Cn+1 and the corresponding term can be removed from the u-

function )(
~

zUm .

Taking into account the above-mentioned considerations, one can drastically 

simplify the u-functions )(
~

zUm  for 1 m n using the following operator 

))(
~

( zUm  which 

- assigns  to )1(~ )(m
kg ,…, )(~ )( mg m

k   in each term of );(
~

zUm
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- removes all of the terms in which vectors )(~ m
kg  contain only  symbols; 

- collects the like terms in the resulting u-function.
In order to determine the system reliability and the conditional expected delay, 

one can apply the same four-step procedure described in Section 7.1.1 by assigning 
in the first step Uj(z) = u j(z) and substituting the composition and simplification 
operators with those defined for systems with delays. 

Example 7.2 

Consider an LMCCS with four nodes and three MEs. The delays of the MEs are 1,
2 and 3 respectively. The maximal allowable system delay is w. The first ME is 

allocated at C1 (C1 receives a signal from a fully reliable source), the second and 
third MEs are allocated at C3. Each ME can provide a connection with the further 
allocated nodes with the following given probabilities: Pr{S1 = k} = p1k for 0 k 4,
Pr{S2 = k} = p2k and Pr{S3 = k} = p3k for 0 k 1, Pr{S2>1} = Pr{S3>1} = 0. 

According to (7.20) and (7.21), the u-functions of individual MEs are 

u11(z) = p10z
(*,*,*,*)+p11z

(*, 1,* ,*)+p12z
(*, 1, 1,*)+p13z

(*, 1, 1, 1),

u23(z) = p20z
(*,*,*,*)+p21z

(*,*,*, 2), u33(z) = p30z
(*,*,*,*)+p31z

(*,*,*, 3).

For 1 j 3, u j(z) = z(*,*,*,*). (In this example, symbol * stands for .)
Using the operator min  we obtain u-functions for groups of MEs located in 

each node: 

U1(z) = u 1(z)
min

u11(z) = u11(z); U2(z) = u 2(z)=z(*,*,*,*)

U3(z) = u 3(z)
min

u23(z)
min

u33(z) = p20p30z
(*,*,*,*)+p21p30z

(*,*,*, 2)

 +p20p31z
(*,*,*, 3)+p21p31z

(*,*,*, min{ 2, 3})

Following the consecutive procedure (7.26), we obtain 

)(
~

1 zU  = U1(z), ))(
~

( 1 zU = p11z
(*, 1,*,*)+p12z

(*, 1, 1,*)+p13z
(*, 1, 1, 1)

 )(
~

2 zU = ))(
~

( 1 zU
f

U2(z) = p11z
(*, 1,*,*)+p12z

(*, 1, 1,*)+p13z
(*, 1, 1, 1)

 ))(
~

( 2 zU  = p12z
(*,*, 1,*)+p13z

(*,*, 1, 1)

 )(
~

3 zU = ))(
~

( 2 zU
f

U3(z) = p12(p20p30z
(*,*, 1,*)+p21p30z

(*,*, 1, 1+ 2)

 +p20p31z
(*,*, 1, 1+ 3)+p21p31z

(*,*, 1, 1+min{ 2, 3}))+p13(p20p30z
(*,*, 1, 1)
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 +p21p30z
(*,*, 1, 1)+p20p31z

(*,*, 1, 1)+p21p31z
(*,*, 1, 1))

The operator  applied to )(
~

3 zU  first replaces the third element of each vector 

with *, then removes the term p12p20p30z
(*,*,*,*) and collects the like terms as 

follows:

 ))(
~

( 3 zU = p13(p20p30+p21p30+p20p31+p21p31)z
(*,*,*, 1)

+ p12p21p30z
(*,*,*, 1+ 2)+p12p20p31z

(*,*,*, 1+ 3)

+ p12p21p31z
(*,*,*, 1+min{ 2, 3}) = p13z

(*,*,*, 1) + xz(*,*,*, 1+ 2) + yz(*,*,*, 1+ 3)

where                      

x = p12 p21, y = p12 p20 p31 if 3> 2

 x = p12 p21 p30, y = p12 p31 if 2> 3

Now using (7.28) we obtain 

 R(w) = 0 if w< 1

 R(w) = p13  if 1 w< 1+min{ 2, 3}

 R(w) = p13+p12 p31 if 1+ 3 w< 1+ 2, ( 2> 3)

 R(w) = p13+p12 p21 if 1+ 2 w< 1+ 3, ( 3> 2)

 R(w) = p13+p12(p21+p20 p31) if 1+max{ 2, 3}  w 

and using (7.29) we obtain 

~  = 1+(p12 p21 2+p12 p20 p31 3)/[p13+p12(p21+p20 p31)] if 3> 2

~  = 1+(p12 p31 3+p12 p21 p30 2)/[p13+p12(p21+p20 p31)] if 2> 3

Note that the operator  reduces the number of terms in )(
~

1 zU from four to 

three, in )(
~

2 zU  from three to two, and in )(
~

3 zU  from eight to three.
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7.1.3 Optimal Element Allocation in a Linear Multi-state 
Consecutively Connected System 

The problem of optimal ME allocation in an LMCCS was first formulated by 
Malinowski and Preuss in [189]. In this problem, m MEs should be allocated in 
nodes C1, …, Cn in such a way that maximizes the LMCCS reliability. In [189] 
only the systems with m = n were considered in which only one ME is located in 
each node.

In many cases, even for m = n, greater reliability can be achieved if some of the 
MEs are gathered in the same node, thus providing redundancy, rather than if all 
the MEs are evenly distributed between all the nodes. 

Example 7.3 

Consider the simplest case in which two identical MEs should be allocated within 
an LMCCS with n = m = 2. Each ME has three states: state 0 (total failure), state 1 
in which the ME is able to connect the node in which it is located with the next 
node, and state 2 in which the ME is able to connect node it is located in with the 
next two nodes. The probabilities of being in each state do not depend on the ME's 
allocation and are p0, p1 and p2 respectively. The LMCCS succeeds if C1 is 
connected with C3 (connectivity model). There are two possible allocations of the 
MEs within the LMCCS (Figure 7.2A):

I. Both MEs are located in the first node.
II. The MEs are located in the first and second nodes. 

A         B 

Figure 7.2. Two possible allocations of MEs in LMCCS with n = m = 2
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In case I, the LMCCS succeeds if at least one of the MEs is in state 2 and the 
system reliability is 

RI = 2p2 p2
2 (7.30) 

In case II, the LMCCS succeeds either when the ME located in the first node is in 
state 2 or if it is in state 1 and the second element is not in state 0. The system 
reliability in this case is 

RII = p2+p1(p1+p2) (7.31) 

By comparing (7.30) and (7.31), one can decide which allocation of the 
elements is preferable for any given p1 and p2. Figure 7.2B presents the decision 
curve RI = RII on the plane (p1, p2). Solution I is preferable for combinations of p1

and p2 located below the curve, whereas solution I provides lower system 
reliability than solution II for combinations of p1 and p2 located above the curve. 

In a general optimal allocation problem the LMCCS consists of n+1
consecutively ordered nodes. At each one of the first n nodes any group of MEs 
from a given set of m different MEs can be allocated. The allocation problem can 
be considered as a problem of partitioning a set of m items into a collection of n
mutually disjoint subsets. This partition can be represented by the integer string a
= (aj: 1 j m), 1 aj n, where aj is the number of the node at which ME j is located.

7.1.3.1 Connectivity Model 

The LMCCS connectivity model defines the system’s reliability as the probability 
that the path from C1 to Cn+1 exists.This probability should be maximized. For any 
given integer string a, the GA determines the solution fitness (equal to the 
LMCCS’s reliability) using the following procedure: 

1. Define the u-functions uj(z) of individual MEs ej (1 j m) in accordance with 
their state distribution. 

2. Assign Ui(z) = u0i(z) = z i for each  1 i n corresponding to LMCCS nodes. 
3. According to the given string a, for each j = 1, …, m  modify )(zU

ja as

follows: ).()()(
max

zuzUzU jjaja

4. Assign )(
~

1 zU  = U1(z) and apply in sequence Equation (7.9) for

j = 1, …, n 1.

5. Obtain the coefficient of the resulting single term u-function ))(
~

( zUn  as 

 the system reliability. 

Example 7.4 

Consider the ME allocation problem presented in [189], in which n = m = 13 and 
reliability characteristics of MEs do not depend on their allocation. All the MEs 
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have two states with nonzero probabilities. The state probability distributions of 
the MEs are presented in Table 7.1. 

First, we solve the allocation problem when allocation of no more than one ME 
is allowed at each node. This is done by imposing a penalty on the solutions in 
which more than one ME is allocated in the same node. The best solution that 
provides the system reliability R = 0.592 is presented in Table 7.2. The LMCCS 
reliability considerably improves when all of the limitations on the ME allocation 
are removed. The best solution obtained by the GA in which only 5 out of 13 nodes 
are occupied by the MEs provides the system reliability R = 0.723 [190] (see Table 
7.2).

Table 7.1. State distributions of MEs

No. of state ME
0 1 2 3 4 

e1 0.70 0.00 0.00 0.30 0.00 
e2 0.65 0.00 0.00 0.00 0.35 
e3 0.60 0.00 0.00 0.40 0.00 
e4 0.55 0.00 0.45 0.00 0.00 
e5 0.50 0.50 0.00 0.00 0.00 
e6 0.45 0.55 0.00 0.00 0.00 
e7 0.40 0.00 0.00 0.00 0.60 
e8 0.35 0.00 0.00 0.65 0.00 
e9 0.30 0.00 0.70 0.00 0.00 
e10 0.25 0.75 0.00 0.00 0.00 
e11 0.20 0.00 0.00 0.80 0.00 
e12 0.15 0.00 0.85 0.00 0.00 
e13 0.10 0.00 0.00 0.00 0.90 

Table 7.2. Solutions of the ME allocation problem

MEs
Node Even allocation Uneven allocation 

C1 13 4,9,12 
C2 6 - 
C3 5 13 
C4 1 - 
C5 12 - 
C6 3 - 
C7 11 1,3,11 
C8 2 - 
C9 8 - 
C10 7 2,7,8 
C11 4 - 
C12 9 - 
C13 10 5,6,10 
R 0.59201 0.72319 

7.1.3.2 Retransmission Delay Model

For the LMCCS retransmission delay model one can consider two possible 
formulations of the optimal ME allocation problem.

1. Find allocation a maximizing the LMCCS reliability for the given w:
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R(w, a)  max  (7.32) 

2. Find allocation a minimizing the conditional expected delay while providing 
desired LMCCS reliability R* for the given w:

~ (a)  min subject to R(w, a) R* (7.33)

The same solution representation that was used for the connectivity model can 
be used for the retransmission delay model in the GA. The reliability and 
conditional expected delay can be evaluated for any ME allocation solution using 
the procedure described in Section 7.1.2. The solution fitness can be defined as

*)),((1)),(*1()(~
21 RwRwRRM aaa  (7.34) 

where 1 and 2 are the penalty coefficients and M is a constant value. Note that 
1 = 0 and R* = 1 correspond to formulation (7.32), while 1 = 1 and 0<R*<1

correspond to formulation (7.33). 

Example 7.5 

Consider an LMCCS in which n = m = 8 and reliability characteristics of MEs do 
not depend on their allocation [191].  The state probability distributions of the MEs 
are presented in Table 7.3, as well as delay times for each ME. This example 
corresponds to the problem of optimal allocation of eight retransmitters with 
different technical characteristics among eight potential nodes with identical signal 
propagation conditions. 

The best ME allocation obtained for the first formulation of the problem for  
w = 3 (solution A) is presented in Figure 7.3A (in each figure, MEs are presented 
in their maximal possible state corresponding to the maximal signal span). The 
probability that the system delay is not greater than 3 for solution A is R(3) = 0.808 
and conditional expected delay is ~  = 2.755. Note that in this solution some nodes 
remain empty while others contain more then one ME. To compare this solution 
with the best possible even ME allocation, the solution was obtained for the 
constrained allocation problem in which allocation of no more than one ME in 
each node is allowed (solution B). This solution is presented in Figure 7.3B. One 
can see that the reliability of the even allocation solution R(3) = 0.753 is smaller 
than the free allocation solution. Observe that while solution A has greater 
reliability than solution B, the latter has a lower conditional expected delay of ~ =
 2.657. 

w = 3 is presented in Figure 7.3C (solution C). In this solution, ~  = 2.368 and 
R(3) = 0.751>R*. The even ME allocation solution obtained for formulation 2 
coincides with solution B. 

The LMCCS reliability as a function of the maximal allowable delay is 
presented in Figure 7.4 for all of the solutions obtained. One can see that not only 
the reliability of LMCCS for a given w depends on ME allocation, but also the 

The solution of formulation 2 of the allocation problem for R* = 0.75 and 
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minimal possible delay (minimal w for which R(w)>0) and the maximal finite 
delay (maximal w for which R(w)<R( )).

The example presented shows that the proper allocation of retransmitters can 
improve the reliability of the radio relay system without any additional investment 
in retransmitter reliability improvement.

Figure 7.3. ME allocation solutions
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Figure 7.4. LMCCS reliability as function of maximal allowable delay

7.1.3.3 Optimal Element Allocation in the Presence of Common Cause Failures 
In many cases, when LMCCS elements are subject to CCFs, the system can be 
considered as consisting of mutually disjoint common cause groups with total 
CCFs. Usually, the CCFs occur when a group of elements are allocated at the same 
node. The vulnerability of each node strongly affects the optimal allocation of 
MEs.
Example 7.6 

Consider the simplest LMCCS model from Example 7.3 and assume that each 
node of this system (with all the MEs it contains) can be destroyed with probability 
v.

In case I, the LMCCS survives if node C1 is not destroyed and at least one of 
the MEs is in state 2. The system survivability is 

SI = s(2p2 p2
2)  (7.35) 

where s = 1 v is the node survivability. 
In case II, the LMCCS survives either when the node C1 is not destroyed and 

the ME located in C1 is in state 2, or, if both nodes C1 and C2 are not destroyed, the 
ME located in C1 is in state 1 and the ME located in C2 is not in state 0. The system 
survivability in this case is 

SII = sp2+s2p1(p1+p2)  (7.36) 

     By comparing (7.35) and (7.36), one can decide which allocation of the 
elements is preferable for any given v, p1 and p2.Condition SI SII can be rewritten as 
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s(2p2 p2
2) sp2+s2p1(p1+p2)  (7.37) 

and finally as 

s p2(1 p2)/(p1(p1+p2))  (7.38) 

Figure 7.5 presents the maximal values of s for which SI SII as a function of 
variables p1 and p2. For given combinations of p1 and p2, the values of s located 
below the curve correspond to cases when the solution I is preferable; the values of 
s located above the curve correspond to cases when solution I provides lower 
system survivability than solution II. 

The end point of each curve s(p2) belongs to line s = p2. Indeed, since    
p0+p1+p2 = 1, the maximal possible value of p1 for each given p2 is 1 p2.
Substituting p1 with 1 p2 in Equation (7.38) one obtains s p2.

When several MEs are gathered within a single node Cj that has vulnerability v,
this means that all of these elements can be destroyed with probability v. Let the 
p.m.f. of the number of the most remote node to which an arc from Cj exists be 
represented by the u-function Uj(z) obtained by Equation (7.5). In order to 
incorporate the node vulnerability into the model, the probabilities qjh in Equation 
(7.5) should be considered as conditional probabilities that the node Cj is connected 
with the set of nodes Cj+1,…, Cj+h under the assumption that the node Cj is not 
destroyed. The unconditional probability that node Cj is connected with nodes 
Cj+1,…, Cj+h is, therefore, equal to (1 v)qjh = sqjh. If the node Cj is destroyed, then 
its MEs cannot provide connection with any other node (this state corresponds to 
term zj in Equation (7.5)). 
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Figure 7.5. Comparison of possible ME allocations in an LMCCS with vulnerable nodes 

Therefore, the u-function of MEs located at vulnerable node Cj can be obtained 
using the following operator over the u-function Uj(z):
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j
jj vzzsUzU )())(( = j

jj

kj

jh

h
jh zsqvzqs )(

)1(

1
       (7.39)

The survivability of an LMCCS with vulnerable nodes can be obtained using 
the algorithm presented in Section 7.1.1, in which after step 2 the operator (7.39) is 
applied over u-functions U1(z), …, Un(z).

Example 7.7 

In order to illustrate the procedure, consider the LMCCS from Example 7.3 (case
I). The u-functions of the individual MEs e1 and e2 located at C1 are respectively 

u11(z) = p10z
1 + p11z

2 + p12z
3  and u21(z) = p20z

1 + p21z
2 + p22z

3

The second node is empty, which corresponds to the u-function u02(z) = z2.
The u-functions for groups of MEs located at nodes 1 and 2 are

 U1(z) = u11(z)
max

u21(z) = p10p20z
1+[p10p21+p11(1 p22)]z

2

 +(p12+p22 p12p22)z
3

))(( 1 zU = (v+sp10p20)z
1+s[p10p21+p11(1 p22)]z

2+s(p12+p22 p12p22)z
3

 U2(z) = u02(z), ))(( 2 zU = )( 2z = (v+s)z2 = z2

The u-function representing the p.m.f. of )1(~
G  is 

)(
~

1 zU = ))(( 1 zU

 ))(
~

( 1 zU =s[p10p21+p11(1 p22)]z
2+s(p12+p22 p12 p22)z

3

The u-function representing the p.m.f. of )2(~
G  is: 

 )(
~

2 zU = ))(
~

( 1 zU
max

))(( 2 zU = s[p10p21+p11(1 p22)]z
2

 +s[p12+p22 p12p22]z
3, ))(

~
( 2 zU = s[p12+p22 p12p22]z

3

Finally, the LMCCS survivability obtained from ))(
~

( 2 zU  is 

SI = s[p12+p22 p12p22]

If p12 = p22 = p2, then SI = s(2p2 p2
2).
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The definition of the optimal ME allocation problem for an LMCCS with 
vulnerable nodes and the optimization technique do not differ from those suggested 
for an LMCCS without CCF (see Section 7.1.3.1).

Example 7.8 

Consider the LMCCS with n = m = 13 from Example 7.4 and assume that each 
node has the same vulnerability v. The ME allocation solutions obtained in [192] 
for v = 0, v = 0.06, and v = 0.3 are presented in Table 7.3.

Each solution provides the greatest possible system survivability only for the 
given value of v. The optimal ME allocation changes when v varies. One can see 
the survivability of the system with ME allocations obtained for v = 0, v = 0.06, 
and v = 0.3 as a function of the variable node vulnerability in Figure 7.6.

The greater the node vulnerability, the greater the number of occupied nodes in 
the optimal solution. Indeed, by increasing the ME separation, the system tries to 
compensate its increasing vulnerability. 

Table 7.3. ME allocation solutions for an LMCCS with vulnerable nodes

 MEs  
Node v = 0 v = 0.06 v = 0.3 

C1 4,9,12 13 13 
C2 - - - 
C3 13 - - 
C4 - - 2 
C5 - 1,2,11 11 
C6 - - - 
C7 1,3,11 - 3,4 
C8 - 5,6,12 1,6,12 
C9 - 4,9 5,9 
C10 2,7,8 7,10 7,10 
C11 - 3,8 8 
C12 - - - 
C13 5,6,10 - - 

S when v = 0 0.723 0.708 0.648 
S when v = 0.06 0.559 0.572 0.541 
S when v = 0.3 0.164 0.193 0.207 
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Figure 7.6. LMCCS survivability as a function of node vulnerability v
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7.2 Multi-state Networks

In LMCCSs, when a connection between Ci and Cj is available, all connections 
between Ci and Cm for i<m<j are also available. By removing this constraint, one 
obtains a single-source-single-sink multi-state acyclic network (MAN), which is a 
generalization of an LMCCS.  In the MAN, all the nodes are ordered and each 
node Ci (if it is not a sink) is connected by links with a set of nodes i, which have 
numbers greater than i. It can be seen that the MANs have no cycles. By allowing 
the network to have several sinks (terminal nodes), one obtains the most general 
definition of the MAN. 

7.2.1 Connectivity Model 

A MAN can be represented by an acyclic directed graph with n nodes Ci (1 i n),
n* of which compose a set  of sinks (leaf nodes). The nodes are numbered in such 
a way that for any arc (Cj, Ce) e>j and last n* numbers are assigned to the leaf 
nodes:  = {Cn n*+1,…, Cn} (such numbering is always possible in anacyclic 
directed graph). The existence of arc (Cj, Ce) means that a signal or flow can pass 
directly from node Cj to node Ce.  One can define for each nonleaf node Cj a set of 
nodes j directly following Cj: Ch j if (Cj, Ch) exists (see Figure 7.7). 

Figure 7.7. Fragment of a MAN 

The ME located in each nonleaf node Cj (1 j n n*) provides a connection 
between Cj and the nodes belonging to the set j. In each state k, this ME provides 
a connection to some subset jk of j.  (In the case of total failure, the MEs cannot 
provide connection with any node: jk = ; in the case of a fully operational state: 

jk = j). Each ME ei located at Cj can have ki different states and each state k has 

probability ,
jkip  such that .11

ik
k jkip  The states of all MEs are 

independent.
A signal or flow can be retransmitted by the ME located at Ci only if it reaches 

this node. The MAN reliability R  is defined as a probability that a signal 
generated at the root node C1 reaches all the n* leaf nodes Cn n*+1,…,Cn. (In some 
cases the MAN reliability R  is defined as the probability that a signal reaches a 
subset  of the set of leaf nodes ).
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Consider an ME ei located at node Cj. In each state k (0 k<ki), the ME provides 
a signal transmission from Cj to a set of nodes jk. In order to represent the random 
set of MAN nodes that receive a signal from ei, we determine random vector Gi

(j) =
{Gi

(j)(1), …, Gi
(j)(n)}, so that Gi

(j)(h) = 1 if the signal from ei can reach Ch and 
Gi

(j)(h) = 0 otherwise. The value of the vector Gi
(j) in each state k of ei takes the 

form [96]: 

jkh

jkhj
ik C

C
hg

,0

,1
)()(  (7.40) 

The u-function

1

0

)(

)(
i

j

ik
jk

k

k
iij zpzu

g
 (7.41) 

represents the p.m.f. of random vector Gi
(j). When Cj is empty, the signal cannot be 

retransmitted from Cj to any other node. This situation is represented by the           

u-function u0j(z)= ,0Gz  where G0 is the zero vector. 

Consider a set of m MEs },...,{
1 mii ee located at the same node Cj. The signal 

that reached Cj can be retransmitted to node Ch if at least one of the MEs provides 

a connection with Ch. This corresponds to the existence of )()( hG j
ih

 =1 for at least 

one ME 
bi

e  (1 b m). Therefore, the structure function for a set of m MEs 

},...,{
1 mii ee located at the same node Cj takes the form 

  )max( )()()( j
mi

j
1i

j ,...,GGG  (7.42) 

The u-function, representing the p.m.f. of random vector G(j) (corresponding to 
nodes connected to Cj by all the MEs located at Cj), can be obtained by the 
composition operator 

max
 over u-functions )(zu jib

 (1 b m). For any uij(z):

 u0j(z)
max

uij(z) = uij(z)  (7.43) 

Let )(~ hG represent the set of nodes connected to C1 by MEs located at C1, C2,
…, Ch. Assume that MEs located at the first h nodes provide connection with Ch+1

(which corresponds to )1(
~ )( hG h = 1). If MEs located at Ch+1 provide connection 

between Ch+1 and arbitrary node Cs (which corresponds to )(
~ )1( sG h = 1), the 

signal generated at C1 reaches Cs. Therefore, in this case, the set of nodes 
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connected to C1 by MEs located at the first h+1 nodes is the union of sets 

represented by )(~ hG and G(h+1). This can be expressed as follows: 

)1(~ hG = max{ ,
~ )(hG G(h+1)}  (7.44) 

If a signal generated at C1 does not reach Ch+1 through the first h nodes (which 

corresponds to )1(
~ )( hG h = 0), the MEs located at Ch+1 cannot transmit the signal 

in any of its states.  Therefore, these MEs do not affect the state of the MAN. The 
set of nodes receiving the signal remains one that is represented by the 

vector .
~ )(hG  In the general case, the following function  can be used in order to 

determine the random vector :
~ )1(hG

1)1(
~

},,
~

max{

0)1(
~

,
~

),
~

(
~

)()1()(

)()(
)1()()1(

hG

hG
hhh

hh
hhh

GG

G
GGG  (7.45) 

Recursively applying the operator  over u-functions )(
~

zUh representing the 

p.m.f. of random vectors :
~ )(hG

 )(
~

1 zUh = )(
~

zUh )(1 zUh  for h = 1,…,n n* 1 (7.46)

where )(
~

1 zU = )(1 zU  one finally obtains the u-function representing the 

distribution of the MAN states when all the MEs are considered (as the p.m.f. of 

random vector ).
~ *)( nnG

One can obtain the MAN reliability (the probability that the signal reaches any 
subset  of leaf nodes) by defining the acceptability function 

 F ( *)(~ nnG )=
otherwise,0

:anyfor1)(
~

if,1 *)(
j

nn CjjG
(7.47)

and evaluating 

 R  = E(F ( *)(~ nnG )) = ))(
~

( * zU nn (7.48)

where operator  produces the sum of the coefficients of those terms in 

)(
~

* zU nn that have exponents satisfying the condition F( *)(~ nnG ) = 1. 

Using the same considerations as in Section 7.1.2.2, one can define a u-function
simplification operator  that 
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- zeros )(~ h
kg (1), …, )(~ h

kg (h) in each term k of );(
~

zUh

- removes all the terms of )(
~

zUh in which )(~ h
kg contain only zeros; 

- collects like terms in the resulting u-function.

Example 7.9 

Consider the MAN with n = 5 and n* = 2 presented in Figure 7.8A. Assume that 
ME e1 is located at C1 and provides a connection between C1 and any subset of 
{C2, C3}. ME e2 is located at C2 and provides a connection between C2 and any 
subset of         {C3, C5}. ME e3 is also located at C2 and provides a connection 
between C2 and C3. ME e4 is located at C3 and provides a connection between C3

and C4.

A         B 

Figure 7.8. Two simple MANs 

According to (7.40) and (7.41), the u-functions of individual MEs located at 
nodes C1, C2 and C3 are 

u11(z) = p1 z(0,0,0,0,0)+p1{2}z
(0,1,0,0,0)+p1{3}z

(0,0,1,0,0)+p1{2,3}z
(0,1,1,0,0)

u22(z) = p2 z(0,0,0,0,0)+p2{3}z
(0,0,1,0,0)+p2{5}z

(0,0,0,0,1)+p2{3,5}z
(0,0,1,0,1)

u32(z) = p3 z(0,0,0,0,0)+p3{3}z
(0,0,1,0,0), u43(z) = p4 z(0,0,0,0,0)+p4{4}z

(0,0,0,1,0)

The u-functions of groups of MEs located at the same nodes are 

U1(z) = u11(z), U3(z) = u43(z)

U2(z)=u22(z)
max

u32(z)=p2 p3 z(0,0,0,0,0)+p2{3}p3 z(0,0,1,0,0)+p2{5}p3 z(0,0,0,0,1)

 +p2{3,5}p3 z(0,0,1,0,1)+p2 p3{3}z
(0,0,1,0,0)+p2{3}p3{3}z

(0,0,1,0,0)+p2{5}p3{3}z
(0,0,1,0,1)

 +p2{3,5}p3{3}z
(0,0,1,0,1)=q2 z(0,0,0,0,0)+q2{3}z

(0,0,1,0,0)+q2{5}z
(0,0,0,0,1)+q2{3,5}z

(0,0,1,0,1)

where

q2  = p2 p3 , q2{3} = p2{3}p3 +p2 p3{3}+p2{3}p3{3}, q2{5} = p2{5}p3

C3 C2

C1

C2

C4

C3

C4

C1

C5
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q2{3,5} = p2{3,5}p3 +p2{5}p3{3}+p2{3,5}p3{3}

Since p3 +p3{3} = 1, the equations for q2{3} and q2{3,5} can be simplified: 

q2{3} = p2{3}+p2 p3{3}, q2{3,5} = p2{3,5}+p2{5}p3{3}.

Following the consecutive procedure (7.46), we obtain 

)(
~

1 zU = U1(z), ))(
~

( 1 zU  = p1{2}z
(0,1,0,0,0)+p1{3}z

(0,0,1,0,0)+p1{2,3}z
(0,1,1,0,0)

 )(
~

2 zU = ))(
~

( 1 zU U2(z) = p1{2}q2 z(0,1,0,0,0)+p1{2}q2{3}z
(0,1,1,0,0)

 +p1{2}q2{5}z
(0,1,0,0,1)+p1{2}q2{3,5}z

(0,1,1,0,1)+p1{3}z
(0,0,1,0,0)+p1{2,3}q2 z(0,1,1,0,0)

 +p1{2,3}q2{3}z
(0,1,1,0,0)+p1{2,3}q2{5}z

(0,1,1,0,1)+p1{2,3}q2{3,5}z
(0,1,1,0,1)

and, after simplification: 

 ))(
~

( 2 zU  = (p1{2}q2{3}+p1{3}+p1{2,3}q2 +p1{2,3}q2{3})z
(0,0,1,0,0)

 +p1{2}q2{5}z
(0,0,0,0,1)+(p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})z

(0,0,1,0,1)

(Operator reduces the number of different terms in this u-function from nine to 
three.).

 )(
~

3 zU = ))(
~

( 2 zU U3(z)  = (p1{2}q2{3}+p1{3}+p1{2,3}q2

 +p1{2,3}q2{3})p4 z(0,0,1,0,0)+p1{2}q2{5}p4 z(0,0,0,0,1)+(p1{2}q2{3,5}+p1{2,3}q2{5}

 +p1{2,3}q2{3,5})p4 z(0,0,1,0,1)+(p1{2}q2{3}+p1{3}+p1{2,3}q2

 +p1{2,3}q2{3})p4{4}z
(0,0,1,1,0)+p1{2}q2{5}p4{4}z

(0,0,0,0,1)+(p1{2}q2{3,5}+p1{2,3}q2{5}

 +p1{2,3}q2{3,5})p4{4} z
(0,0,1,1,1)

and, after simplification: 

 ))(
~

( 3 zU  = [p1{2}q2{5}+(p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})p4 ]z(0,0,0,0,1)

 +(p1{2}q2{3}+p1{3}+p1{2,3}q2 +p1{2,3}q2{3})p4{4}z
(0,0,0,1,0)

 +(p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})p4{4}z
(0,0,0,1,1)
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The coefficient in the term with the vector )3(~
G = (0, 0, 0, 1, 1) in ))(

~
( 3 zU  is 

the probability that the signal reaches both C4 and C5, which is equal to the MAN 
availability

R{4,5} = (p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})p4{4}

One can also obtain the probabilities that the signal reaches nodes C4 and C5 by 

summing the coefficients of the terms with )4(
~ )3(G  = 1 and )5(

~ )3(G  = 1 

respectively:

R{4} = (p1{2}q2{3}+p1{3}+p1{2,3}q2 +p1{2,3}q2{3})p4{4}+(p1{2}q2{3,5}

 +p1{2,3}q2{5}+p1{2,3}q2{3,5})p4{4}

R{5} = p1{2}q2{5}+(p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})p4 +

 +(p1{2}q2{3,5}+p1{2,3}q2{5}+p1{2,3}q2{3,5})p4{4}

7.2.2 Model with Constant Transmission Characteristics of Arcs 

The aim of the networks considered is a transmission of information or material 
flow from the source to the sinks. The internode links (arcs) are associated with 
flow transmission media (lines, pipes, channels, etc.) and the nodes are associated 
with communication centres. The transmission process efficiency depends on the 
performance of the network elements. The most common performance 
characteristics are transmission speed and transmission capacity of the network 
arcs.

In this section, we consider two different types of MAN: minimal transmission 
time networks (task processing networks without work sharing) and maximal flow 
path networks (flow transmission networks without flow dispersion). 

Examples of the minimal transmission time MAN are computer networks or 
networks of cellular telephones. The time of the signal transmission between each 
pair of nodes in a MAN depends on the type of equipment and exchange protocols. 
However, for each given retransmitter and line, it can be exactly estimated and 
considered as a constant. The total time of the signal propagation from transmitter 
to receiver can vary depending on line availability. The whole network is 
considered to be in working condition if the signal propagation time is not greater 
than a certain specified level w. Otherwise, the network fails.

Examples of the maximal flow path MAN are transportation networks or 
continuous production networks dealing with indivisible flows. The aim of the 
network is to provide the transmission of the maximal amount of an indivisible 
product from source to sink through a single path chosen from available network 
links. Each link has limited transmission capacity. The transmission capacity of a 
path is determined by the capacity of its bottleneck (the minimal transmission 
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capacity among links belonging to the path). The transmission capacity and 
availability of each link can be exactly estimated. The capacity of the maximal 
flow path from source to sink can vary, depending on link availability. The whole 
network is considered to be in working condition if it contains an available path 
through which it can transmit the flow that is not less than the certain specified 
level w. Otherwise, the network fails. 

In order to represent the multi-state nature of a MAN with fully reliable nodes 
and unreliable capacitated links, we assume that each node is an ME that provides 
connections to other nodes depending on network link availability. The model of 
the MAN with constant transmission characteristics of arcs differs from the MAN 
connectivity model by defining for each arc (Ci, Cj) its nominal performance vij and 
availability aij.

Consider an ME located at Ci. In each state k (0 k<ki), Ci is connected with a 
set of nodes ik. In order to represent the random performance of connections 
between the node Ci and the rest of MAN nodes, we determine vector G(i), which in 
each state k of the ME takes the value gik determined as follows [193]: 

ikj

ikjij
ik

Cif

Cifv
jg

*,

,
)(  (7.49) 

where * stands for absence of connection. The u-function

1

0
)(

i
ik

ik

k

k
ii zpzu g  (7.50) 

represents the p.m.f. of random vector G(i).
Consider the most complex (from the combinatorial standpoint) case of a multi-

state node in which there exist Mi statistically independent arcs originated from Ci.
Each arc (Ci, Cj) has availability aij. In this case, the total number of different ME 

states is .2 iM
ik  The probability of a state k in which only the arcs between Ci

and nodes belonging to set ik are available can be obtained as 

ikiik
ik

h
ih

m
imi aap

\
)1(  (7.51) 

Therefore, the u-function for the ME Ci takes the form 

12

0
)(

iM

ik
ik

k
ii zpzu g  (7.52) 

where
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,)1(
1

1i
jkjk

ik

M

j
ijiji aap

otherwise*,

,1if,
)(

ijjkij
ik

Cv
jg  (7.53) 

and jk = mod2 k/2j-1 .

In many cases, the total number of different ME states is less than iM2  because 
of the presence of mutual dependence among arcs' states. (For example, if signal 
propagation conditions allow a signal generated at Ci to reach Cj, they always 
allow the signal to reach a closer node Cm.)

Consider an ME located at Ci. The random performance of connection between 
Ci and Ci+1 is equal to G(i)(i+1) and the random performance of connection 
between Ci and arbitrary Ce (e>i+1) is equal to G(i)(e). The random performance of 
connection between Ci+1 and Ce is G(i+1)(e). Therefore, two paths from Ci to Ce can 
exist: (Ci, Ce) and (Ci, Ci+1), (Ci+1, Ce). In order to replace the two MEs located at
Ci and Ci+1 with a single equivalent ME, one has to replace all of the connections 
among the two MEs and the rest of the network nodes with new connections 
having the same transmission performances (see Figure 7.9).

Figure 7.9. Transformation of two MEs into an equivalent one 

The performance of the path (Ci, Ci+1), (Ci+1, Ce) is determined by the 
performances of consecutively connected arcs (Ci, Ci+1) and (Ci+1, Ce) (i.e. G(i)(i+1)
and G(i+1)(e) respectively) and can be determined by a function

ser(G
(i)(i+1),G(i+1)(e)) (7.54) 

G(i)(e)G(i)(d)

G(i)(i+1)

G(i+1)(e)

G(i)(f)
Cf

Ce

Cd

Ci+1

Ci

Ci

par(G
(i)(f), ser G(i)(i+1),G(i+1)(f)))= ser G(i)(i+1),G(i+1)(f))

Cf

Ce

Cd

Ci+1

par(G
(i)(d), ser G(i)(i+1),G(i+1)(d)))=G(i)(d)

par(G
(i)(e), ser G(i)(i+1),G(i+1)(e)))
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corresponding to series connection of arcs. Note that, if at least one of the arcs is 
not available, the entire path does not exist. This should be expressed by the 
following property of the function:

ser(X, *) = ser(*, X) = * for any X (7.55) 

If there are two parallel (alternative) paths from Ci to Ce (path (Ci, Ce) with 
performance G(i)(e) and path (Ci, Ci+1), (Ci+1, Ce) with performance         

ser(G
(i)(i+1), G(i+1)(e)), then the performance of connection between Ci and Ce can 

be determined by the function 

(G(i), G(i+1)) = par(G
(i)(e), ser(G

(i)(i+1),G(i+1)(e)) (7.56) 

corresponding to parallel connection of paths. If one of the paths is not available, 
then the performance of the entire two-path connection is equal to the performance 
of the second path:

par(X, *) = X, par(*, X) = X  for any X (7.57) 

If arc (Ci, Ci+1) is not available (which corresponds to G(i)(i+1) = *), then, 
according to (7.55) and (7.57), for any e

par(G
(i)(e), ser(G

(i)(i+1),G(i+1)(e)) = G(i)(e)  (7.58) 

Different functions ser and par which meet conditions (7.55) and (7.57) can be 
defined according to the physical nature of the network. To obtain the performance 
of all of the connections, one has to apply the function (7.56) to the entire vectors 

G(i) and G(i+1). The resulting vector )1(~ iG = (G(i), G(i+1)), in which each element 

)(
~ )1( eG i  is determined using (7.56), represents the performance of arcs between 

the equivalent ME (two-ME subsystem) and any other ME in the MAN.
By applying a composition operator  with the function (7.56) over                

u-functions of individual MEs ui(z) and ui+1(z), one obtains the u-function

)(
~

1 zUi representing the p.m.f. of random vector .
~ )1(iG  The two MEs with            

u-functions ui(z) and ui+1(z) can now be replaced in the MAN by the equivalent ME 

with u-function ).(
~

1 zUi

One can obtain the u-function for the entire MAN containing all of the MEs by 

defining )(
~

1 zU = u1(z) and consecutively applying the equation 

 )()(
~

)(
~

11 zuzUzU iii  (7.59) 
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for i = 1, …, n n* 1. Each u-function )(
~

zUi represents the distribution of 

performance of connections between C1 (direct or through C2, …, Ci) and the rest 
of the nodes.

Using the same considerations as in Section 7.1.2.2, one can define the u-
function simplification operator   that: 

- assigns * symbols to )(~ i
kg (1),…, )(~ i

kg (i) in each term k of );(
~

zUi

- removes all the terms of )(
~

zUi in which )(~ i
kg contain only * symbols;

- collects like terms in the resulting u-function.
This operator should be applied to each u-function obtained such that

)())(
~

()(
~

11 zuzUzU iii  (7.60) 

Finally, we obtain the u-function

 )(
~

* zU nn =
K

k

n*-n
k

k zQ
1

)(~g
  (7.61) 

that represents the performance distribution of connections between an equivalent 
node (that replaced nodes C1, …, Cn n*) and the sink nodes Cn n*+1,…, Cn of the 
MAN.

7.2.2.1 Minimal Transmission Time Multi-state Acyclic Network 
When the arc performance is associated with the transmission time (vij = tij), the 
absence of an arc or its unavailability corresponds to infinite transmission time. 
Therefore, the sign * should be replaced with  (* can also be represented by any 
number greater than the allowable network delay w).

The time of a signal transmission from Ci to Ce through any Cj (i<j<e) is equal 
to the sum of times of signal transmission between Ci and Cj and between Cj and 
Ce. Therefore, the ser function takes the form 

ser(G
(i)(i+1), G(i+1)(e)) = G(i)(i+1)+G(i+1)(e) (7.62) 

When alternative ways of signal propagation from node Ci to node Ce exist, the 
least one of the transmission times determines the moment when the signal reaches 
node Ce. Therefore, the par function takes the form

par(G
(i)(e), ser(G

(i)(i+1),G(i+1)(e))) =min{G(i)(e),G(i)(i+1)+G(i+1)(e)} (7.63) 

Since the condition of normal MAN functioning is that the signal generated at 
C1 reaches all the nodes from   with the delay not exceeding w, one can 
define the acceptability function as 
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 F ( *)(~ nnG ,w) = 
otherwise,0

:anyfor)(
~

if,1 *)(
j

nn CjwjG
 (7.64) 

and apply the operator w (3.15) over the u-function )(
~

* zU nn in order to obtain 

the network reliability: 

R (w)= E(F  ( *)(~ nnG ,w)) = w( )(
~

* zU nn ) (7.65) 

The conditional expected transmission time for any node Cj  is determined from 

)(
~

* zU nn as

)(*)(~)(*)(~

*)( /)(~~

jnn
kg

k
jnn

k
g

k
nn

kj QQjg  (7.66) 

7.2.2.2 Maximal Flow Path Multi-state Acyclic Network 
When the arc performance is associated with transmission capacity, which 
determines the maximal flow that the arc can transmit (vij = fij), the absence of an 
arc or its unavailability corresponds to zero transmission capacity. Therefore, the 
sign * should be replaced with zero.

The amount of flow that can be transmitted through a path consisting of two 
consecutive links is determined by the link having the minimal capacity, which 
becomes the bottleneck of the path. Therefore, the ser function takes the form 

ser(G
(i)(i+1), G(i+1)(e)) = min{G(i)(i+1), G(i+1)(e)} (7.67) 

When alternative ways of the flow transmission from the node Ci to the node Ce

exist, the path with the greatest capacity should be chosen to maximize the flow. 
Therefore, the par function takes the form

par(G
(i)(e), ser(G

(i)(i+1), G(i+1)(e))

 = max{G(i)(e), min{G(i)(i+1), G(i+1)(e)}}   (7.68) 

Since the condition of normal MAN functioning is that the capacities of flow 
paths from C1 to nodes from  are not less then w, one can define the 
acceptability function as 

F  ( *)(~ nnG ,w)=
otherwise,0

:anyfor)(
~

if,1 *)(
j

nn CjwjG
 (7.69) 
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and obtain the MAN availability using Equation (7.65). 
The expected capacity of the flow path from C1 to Cj  is determined from 

)(
~

* zU nn as

K

k
k

nn
kj Qjg

1

*)( )(~  (7.70) 

Example 7.10 

Consider the simple four-node MAN presented in Figure 7.8B. The ME located at 
C1 has four states: total failure (no arcs available), connection with C2, connection 
with C3, and connection with C2 and C3. The probabilities of the states are p1 ,
p1{2}, p1{3} and p1{2,3} respectively. The ME located at C2 also has four states: total 
failure, connection with C3, connection with C4, and connection with C3 and C4.
The probabilities of the states are p2 , p2{3}, p2{4} and p2{3,4} respectively. The ME 
located at C3 has only two states: total failure and connection with C4. The 
probabilities of the states are p3  and p3{4} respectively. Assume that the MAN is of 
minimal transmission time type. In this case, the performance of arc (Ci, Cj) is 
transmission time tij. The u-functions corresponding to the network nodes are 

u1(z) = p1 z(*,*,*,*)+p1{2}z
(*, t12,*,*) +p1{3}z

(*,*, t13,*) +p1{2,3} z
(*, t12, t13,*)

u2(z) = p2 z(*,*,*,*)+p2{3}z
(*,*, t23,*)+p2{4}z

(*,*,*, t24)+p2{3,4}z
(*,*, t23, t24)

u3(z) = p3 z(*,*,*,*)+p3{4}z
(*,*,*, t34)

where * stands for .
Using (7.60) recursively we obtain 

 )(
~

1 zU  = u1(z), ))(
~

( 1 zU = p1{2}z
(*, t12,*,*)+p1{3}z

(*,*, t13,*) +p1{2,3}z
(*, t12, t13,*)

 )(
~

2 zU = ))(
~

( 1 zU u2(z) = p1{2}p2  z(*, t12,*,*) +p1{2}p2{3}z
(*, t12, t12+t23,*)

 +p1{2}p2{4}z
(*, t12,*, t12+t24)+p1{2}p2{3,4}z

(*, t12,t12+t23, t12+t24)+p1{3}z
(*,*, t13,*)

 +p1{2,3}p2 z(*, t12,t13,*)+p1{2,3}p2{3}z
(*, t12, min{t13,t12+t23},*)

 +p1{2,3}p2{4}z
(*, t12,t13, t12+t24) +p1{2,3}p2{3,4}z

(*, t12, min{t13,t12+t23},t12+t24)

 ))(
~

( 2 zU  = p1{2}p2{3}z
(*,*, t12+t23,*)+p1{2}p2{4}z

(*,*,*, t12+t24)

 +p1{2}p2{3,4}z
(*,*, t12+t23, t12+t24) +(p1{3}+p1{2,3}p2 )z(*,*, t13,*)
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 +p1{2,3}p2{3} z
(*,*, min{t13, t12+t23},*)+p1{2,3}p2{4}z

(*,*, t13, t12+t24)

 +p1{2,3}p2{3,4}z
(*,*, min{t13,t12+t23}, t12+t24)

)(
~

3 zU = ))(
~

( 2 zU u3(z) = p1{2}p2{3}p3 z(*,*,t12+t23,*)

+p1{2}p2{4}p3 z(*,*,*, t12+t24)+p1{2}p2{3,4}p3 z(*,*, t12+t23, t12+t24)

 +(p1{3}+p1{2,3}p2 )p3 z(*,*, t13,*)+p1{2,3}p2{3}p3 z(*,*, min{t13,t12+t23},*)

 +p1{2,3}p2{4}p3 z(*,*, t13, t12+t24)+p1{2,3}p2{3,4}p3 z(*,*, min{t13,t12+t23}, t12+t24)

 +p1{2}p2{3}p3{4}z
(*,*, t12+t23, t12+t23+t34)+p1{2}p2{4}p3{4}z

(*,*,*, t12+t24)

 +p1{2}p2{3,4}p3{4}z
(*,*, t12+t23, min{t12+t24,t12+t23+t34})

 +(p1{3}+p1{2,3}p2 )p3{4}z
(*,*,t13,t13+t34)+p1{2,3}p2{4}p3{4}z

(*,*,t13,min{t12+t24,t13+t34})

 +p1{2,3}p2{3}p3{4}z
(*,*, min{t13,t12+t23}, min{t13,t12+t23}+t34)

 +p1{2,3}p2{3,4}p3{4}z
(*,*, min{t13,t12+t23}, min{t12+t24, min{t13,t12+t23}+t34})

 ))(
~

( 3 zU =[p1{2}(p2{4}+p2{3,4}p3 )+p1{2,3}(p2{4}+p2{3,4})p3 ]z(*,*,*,t12+t24)

 +p1{2}p2{3}p3{4}z
(*,*,*, t12+t23+t34)+p1{2}p2{3,4}p3{4}z

(*,*,*, min{t12+t24,t12+t23+t34})

 +(p1{3}+p1{2,3}p2 )p3{4}z
(*,*,*,t13+t34)+p1{2,3}p2{3}p3{4}z

(*,*,*, min{t13,t12+t23}+t34)

 +p1{2,3}p2{4}p3{4}z
(*,*,*, min{t12+t24,t13+t34})

 +p1{2,3}p2{3,4}p3{4}z
(*,*,*, min{t12+t24, min{t13,t12+t23}+t34})

Note that operator  reduces the number of different terms in the u-function

)(
~

3 zU  from 14 to 7. Being used with numerical data, the operator reduces this 

number to three by resolving the min function. Indeed, three possible finite 
network transmission times exist: t12+t24, t13+t34 and t12+t23+t34.

Assume that t12 = 1, t13 = 4, t23 = t24 = t34 = 2. The final u-function takes the 
form

 ))(
~

( 3 zU = [p1{2}(p2{4}+p2{3,4}p3 )+p1{2,3}(p2{4}+p2{3,4})p3 ]z(*,*,*,3)

 +p1{2}p2{3}p3{4}z
(*,*,*,5)+p1{2}p2{3,4}p3{4}z

(*,*,*,3)

 +(p1{3}+p1{2,3}p2 )p3{4}z
(*,*,*,6)+p1{2,3}p2{3}p3{4}z

(*,*,*,5)



7  Analysis and Optimization of Consecutively Connected Systems and Networks 399 

 +p1{2,3}p2{4}p3{4}z
(*,*,*,3)+p1{2,3}p2{3,4}p3{4}z

(*,*,*,3)

= (p1{2}+p1{2,3})(p2{4}+p2{3,4})z
(*,*,*,3)+(p1{2}+p1{2,3})p2{3}p3{4}z

(*,*,*,5)

 +(p1{3}+p1{2,3}p2 )p3{4}z
(*,*,*,6)

The network availability for different values of desired delay w can be obtained 
from this u-function using the operator w:

 A(w)=0 for w<3

 A(3)=(p1{2}+p1{2,3})(p2{4}+p2{3,4})

 A(5)=(p1{2}+p1{2,3})(p2{4}+p2{3,4}+p2{3}p3{4})

 A(6)=(p1{2}+p1{2,3})(p2{4}+p2{3,4}+p2{3}p3{4})+(p1{3}+p1{2,3}p2 )p3{4}

The conditional expected delay can be obtained using Equation (7.66): 

j
~  [3(p1{2}+p1{2,3})(p2{4}+p2{3,4})+5(p1{2}+p1{2,3})p2{3}p3{4}

 +6(p1{3}+p1{2,3}p2 )p3{4}]/A(6)

Now, assume that the MAN is of maximal flow path type. In this case, the 
performance of arc (Ci, Cj) is transmission capacity fij. The u-functions
corresponding to the network nodes are 

u1(z) = p1 z(0,0,0,0)+p1{2}z
(0,f12,0,0)+p1{3}z

(0,0,f13,0)+p1{2,3}z
(0,f12,f13,0)

u2(z) = p2  z(0,0,0,0)+p2{3}z
(0,0,f23,0) +p2{4}z

(0,0,0,f24)+p2{3,4}z
(0,0,f23,f24)

u3(z) = p3 z(0,0,0,0)+p3{4} z
(0,0,0,f34)

The same operators as in the previous example should be applied to the           
u-functions. The only difference is that the summation function and min function 
should be replaced with a min function and max function respectively. Finally, one 
obtains

 ))(
~

( 3 zU  = [p1{2}(p2{4}+p2{3,4}p3 )+p1{2,3}(p2{4}+p2{3,4})p3 ]z(0,0,0, min{f12,f24})

 +p1{2}p2{3}p3{4}z
(0,0,0, min{f12,f23,f34})+(p1{3}+p1{2,3}p2 )p3{4}z

(0,0,0, min{f13,f34})

 +p1{2}p2{3,4}p3{4}z
(0,0,0, max{min{f12,f24}, min{f12,f23,f34}})

 +p1{2,3}p2{3}p3{4}z
(0,0,0, min{max{f13, min{f12,f23}},f34})
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 +p1{2,3}p2{4}p3{4}z
(0,0,0, max{min{f12,f24}, min{f13,f34}})

 +p1{2,3}p2{3,4}p3{4}z
(0,0,0, max{min{f12,f24}, min{max{f13, min{f12,f23}},f34}})

For f12 = 1, f13 = 4, f23 = f24 = f34 = 2: 

))(
~

( 3 zU  = [p1{2}(p2{4}+p2{3,4}p3 )+p1{2,3}(p2{4}+p2{3,4})p3 ]z(0,0,0,1)

 +p1{2}p2{3}p3{4}z
(0,0,0,1)+p1{2}p2{3,4}p3{4}z

(0,0,0,1)+(p1{3}+p1{2,3}p2 )p3{4}z
(0,0,0,2)

 +p1{2,3}p2{3}p3{4}z
(0,0,0,2)+p1{2,3}p2{4}p3{4}z

(0,0,0,2)+p1{2,3}p2{3,4}p3{4}z
(0,0,0,2)

 = [p1{2}(p2{4}+p2{3,4}+p2{3}p3{4})+p1{2,3}p3 (p2{4}+p2{3,4})]z
(0,0,0,1)

 +(p1{3}+p1{2,3})p3{4}z
(0,0,0,2)

The availability of the network for different values of desired flow capacity w
can be obtained from this u-function using the operator w:

A(1) = p1{2}(p2{4}+p2{3,4}+p2{3}p3{4})+p1{2,3}p3 (p2{4}+p2{3,4})

 +(p1{3}+p1{2,3})p3{4}

A(2) = (p1{3}+p1{2,3})p3{4}

A(w) = 0 for w>2

Finally, the expected network transmission capacity is obtained using Equation 
(7.70):

4 = p1{2}(p2{4}+p2{3,4}+p2{3}p3{4})

 +p1{2,3}p3 (p2{4}+p2{3,4})+2(p1{3}+p1{2,3})p3{4}

7.2.3 Optimal Element Allocation in a Multi-state Acyclic 
Network

The formulation of the ME allocation problem for a MAN is similar to the problem 
formulation for an LMCCS. An example of this problem is the allocation of a set 
of radio relay stations with different characteristics among different positions when 
the positions are not allocated along a line, but form a network. The optimal 
allocation should provide the greatest possible probability of the successful signal 
propagation from the root node (the position where a transmitter is located) to all 
of the terminal nodes (positions where the receivers are located). The connectivity 
model of a MAN (Section 7.2.1) is suited to this optimization problem. 
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7.2.3.1 Allocation Problem for a Multi-state Acyclic Network without Common 
Cause Failures 
The MAN consists of n nodes from which n* are terminal nodes. At each one of 
the first n n* nodes, any group of MEs from a given set of m different elements 
should be allocated in a way that provides the greatest possible MAN reliability 
R . The state distribution of each ME can depend on the node where it is allocated. 
For any ME allocated at any node this state distribution is given.

Like in the ME allocation problem for an LMCCS, any allocation of m MEs in 
n n* nodes of a MAN can be represented by the integer string a = (aj: 1 j m),
1 aj n n*, where aj is the number of the node at which ME j locates. The fitness 
of any solution a generated by the GA is equal to the MAN reliability R (a)
obtained using the algorithm described in Section 7.2.1. 

Example 7.11 

Consider the MAN with n = 10 and n* = 3 presented in Figure 7.10. The list of 
possible states of identical MEs (represented by sets ik) and corresponding 
probabilities

ikip is presented in Table 7.4, where ik and 
ikip correspond to the 

ME located at node Ci. The system fails if a signal generated at position C1 does
not reach at least one of the positions from the set {C8, C9, C10}.

   Table 7.4. State distribution of the network multi-state nodes

1k P1 1k 2k p2 2k 3k p3 3k 4k p4 4k 5k p5 5k 6k p6 6k 7k p7 7k

{2,3,4} 0.75 {4,6,8} 0.65 {4,5} 0.85 {6,7,10} 0.62 {6,7} 0.83 {8,9} 0.8 {9,10} 0.60 
{2,3} 0.10 {4,6} 0.08 {4} 0.06 {6,7} 0.08 {6} 0.04 {8} 0.06 {9} 0.35 
{3,4} 0.08 {4,8} 0.05 {5} 0.04 {6,10} 0.06 {7} 0.07 {9} 0.10 {10} 0.02 
{2} 0.02 {6,8} 0.08 0.05 {7,10} 0.02 0.06 0.04 0.03
{3} 0.01 {4} 0.05   {6} 0.05       

0.04 {6} 0.02   {7} 0.05       
  {8} 0.05   {10} 0.07       

0.02   0.05       

Table 7.5 presents ME allocation solutions obtained by the GA for different m.
This table contains numbers of identical MEs located at each node and the 
resulting MAN reliability.

In order to solve the allocation problem for nonidentical MEs, we modify the 
ME state probabilities in the following way: 

iki
jp (j)

ikip  for ik  and pj
i  = 1 (j) + (j) pi

where
ikip are presented in Table 7.4, iki

jp  are state probabilities of ME ej

located at node Ci and (j) = 1.02 0.02j for 1 j m=7. Such a modification 
provides a unique state distribution for each element being allocated in each node. 

The ME allocation solution for this problem (solution A) is presented in Table 
7.6, which contains lists of MEs located in each node. The best solution obtained is 
compared with the solution of the constrained allocation problem in which 
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allocation of no more than one ME in each node is allowed (solution B) and with 
the solution in which each ME j is located at Cj (solution C). The free ME 
allocation, when MEs occupy just three nodes out of seven, provides greater 
reliability than does the allocation in which the number of occupied nodes is equal 
to the number of MEs. 

Figure 7.10. Example of a MAN 

Table 7.5. Allocation solutions obtained for a MAN with identical MEs

Nodesm
1 2 3 4 5 6 7 

R{8,9,10}

3 1 - - 1 - 1 - 0.4515
4 1 - - 2 - 1 - 0.6115
5 1 1 - 2 - 1 - 0.7665
6 2 - - 2 - 2 - 0.8693
7 2 1 - 2 - 1 1 0.9309
8 2 1 - 3 - 2 - 0.9669
9 2 1 - 3 - 2 1 0.9830

10 2 2 - 3 - 2 1 0.9899
11 3 1 - 4 - 3 - 0.9946
12 3 2 - 4 - 2 1 0.9975
13 3 2 - 4 - 2 2 0.9986
14 3 2 - 5 - 3 1 0.9993
15 4 2 - 5 - 3 1 0.9996

Table 7.6. Allocation solutions obtained for MAN with different MEs 

NodesSolution
1 2 3 4 5 6 7 

R{8,9,10}

A 2,4 - - 5,6,7 - 1,3 - 0.8868 
B 1 5 6 2 7 3 4 0.7611 
C 1 2 3 4 5 6 7 0.7328 

1 2 

3
4 7 8

1210

13

14 15 

11

16
17

c1

c3c2

c4 c5

c6 c7

6 9
5

c9c8 c10
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7.2.3.2 Allocation Problem for a Multi-state Acyclic Network in the Presence of 
Common Cause Failures 
As in an LMCCS, the CCFs in a MAN usually occur when a group of elements are 
allocated at the same node. Each group of MEs can be considered to be a group 
with total CCF, since the destruction of any node by an external impact causes 
destruction of all of the MEs located at this node. The vulnerability of each node 
(CCF probability) v strongly affects the optimal allocation of MEs. 

Example 7.12 

Consider the simplest case in which two identical MEs should be allocated within a 
MAN with n = 3, n* = 1. When allocated at node C1, each ME can have four states: 

- total failure, i.e. ME does not connect node C1 with any other node 
(probability of this state is p1 );

- ME connects C1 with C2 (probability of this state is p1{2});
- ME connects C1 with C3 (probability of this state is p1{3});
- ME connects C1 with both C2 and C3 (probability of this state is p1{2,3}).

When allocated at node C2 each ME can have two states: 
- total failure, i.e. ME does not connect node C2 with any other node 

(probability of this state is p2 );
- ME connects C2 with C3 (probability of this state is p2{3}).

The probability that each node survives during the system operation time is s = 
1 v.

Let p1  = p2 . There are two possible allocations of the MEs within the MAN 
(Figure 7.11):

I. Both MEs are located in the first position.
II. The MEs are located in the first and second positions. 

Figure 7.11. Two possible allocations of MEs in the simplest MAN

In case I, the MAN survives if node C1 is not destroyed and at least one of the 
MEs is in state {3} or {2,3} and the system survivability is 

SI = s{2(p1{3}+p1{2,3}) (p1{3}+p1{2,3})
2}

In case II, the MAN survives either when the node C1 is not destroyed and the 
ME located in C1 is in state {3} or {2,3}, or if both nodes C1 and C2 are not 
destroyed, the ME located in C1 is in state {2} and the ME located in C2 is in state 
{3}. The system survivability in this case is 

I

C1

C3C2
p1{2} p1{3}

p1{2,3}

C1

C3C2
p1{2} p1{3}

p1{2,3}

II

p2{3}
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SII = s{p1{3}+p1{2,3}}+s2p1{2}p2{3}

Since p1  = p2 , one can rewrite the last expression as 

SII = s{p1{3}+p1{2,3}}+s2(1 p1{3} p1{2,3} p1 )(1 p1 )

By comparing the expressions for SI and SII, one can decide which allocation of 
the elements is preferable for any given s, p1  and p1{3}+p1{2,3}. Condition SI SII

can be rewritten as 

 (p1{3}+p1{2,3})(1 p1{3} p1{2,3}) s(1 p1{3} p1{2,3} p1 )(1 p1 )

and finally as 

s  (p1{3}+p1{2,3})(1 p1{3} p1{2,3})/(1 p1{3} p1{2,3} p1 )(1 p1 )

Figure 7.12 presents the maximal values of s for which SI SII as a function of 
variables p1  and p1{3}+p1{2,3}. For given combinations of p1  and p1{3}+p1{2,3} the 
values of s located below the curve correspond to cases when the solution I is 
preferable, whereas the values of s located above the curve correspond to cases 
when solution I provides lower system survivability than solution II. 

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1
p1{3}+p1{2,3}

s

0 0.1 0.2 0.3
0.4 0.5 0.6 0.7

p1  :

S I>S II

S I<S II

Figure 7.12. Comparison of two possible allocations of MEs in the simplest MAN

The same solution encoding scheme that was used in the previous section can 
be applied when implementing the GA for solving the ME's allocation problem in 
the presence of CCFs. For any ME allocation, the same algorithm for MAN 
reliability evaluation should be applied. The only difference lies in implementing 
the operator



7  Analysis and Optimization of Consecutively Connected Systems and Networks 405 

0)()1())(( GvzzUvzU jj        (7.71)

over each u-function Uj(z) corresponding to the group of MEs located at node Cj

(in analogy with Equation (7.39)). Here, G0 is the zero vector.

Example 7.13 

Consider the MAN with identical MEs from Example 7.11 and assume that the 
vulnerability of each node is v = 0.1.

Table 7.7 presents the ME allocation solutions obtained by the GA in [194] for      
m = 6 and m = 14. This table contains the numbers of the identical MEs located at 
each position and the resulting MAN survivability. When v = 0 (no CCF), the 
solutions which are optimal for v = 0.1 provide network survivability very close to 
the survivability of a MAN with ME allocation optimal for v = 0. When v = 0.1, the 
solutions which are optimal for v = 0.1 provide greater MAN survivability than 
solutions which are optimal for v = 0 (survivability increase is 2.4% for m = 6 and 
5.7% for m = 14). Figure 7.13 presents the survivability of MANs with the ME 
allocations obtained as a function of single node vulnerability v. One can see that 
the greater the node vulnerability, the greater the difference between MAN 
survivability provided by ME allocations optimal for v = 0 and v = 0.1. 

Table 7.7. Allocation solutions obtained for a MAN with identical MEs 

Nodes R{8,9,10} R{8,9,10}m Solution
for 1 2 3 4 5 6 7 when v = 0 when v = 0.1 

v = 0 2 - - 2 - 2 - 0.8693 0.6337 6
v = 0.1 1 1 - 2 - 1 1 0.8628 0.6491 
v = 0 3 2 - 5 - 3 1 0.9993 0.7882 14

v = 0.1 2 2 1 3 1 2 3 0.9965 0.8333 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2v

S

Optimal for v=1.0 Optimal for v=0.9

m = 6

m = 14

Figure 7.13. MAN survivability as a function of node vulnerability
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7.2.4 Optimal Reliability Enhancement of a Multi-state Acyclic 
Network

Rapid changes in digital network technology provide increases of transmission 
capacity and transmission speed of communication lines. Replacement of old lines 
with new, high-performance ones can considerably reduce the signal delivery time 
in digital communication networks. Subject to budget limitations, a question arises 
regarding which lines should be replaced to obtain the desired reliability 
improvement effect.

Usually, line modernization does not affect its availability but improves its 
performance. The performance (transmission time) of an available line is a 
constant value that depends on data exchange protocols and properties of the 
communication media. Such networks can be represented by the model of a 
minimal transmission time network with constant transmission characteristics of 
arcs, as described in Section 7.2.2.1. This model uses multi-state nodes in order to 
represent the multi-state nature of the network with unreliable lines. 

Reduction of the signal transmission time tij for a line connecting nodes Ci and
Cj can affect the overall network availability A(w), defined as a probability that the 
signal delivery delays in the network are not greater than w. If for each line 
connecting nodes Ci and Cj the values of transmission times before and after the 
line replacement are given (tij and t'ij respectively), as well as the replacement cost 
cij, one can find a subset of lines for which replacement of times tij with times t'ij
produces the value of index A(w) not less than the specified value A*, while the 
total cost associated with this replacement is minimal. 

In order to formulate the optimization problem, let us introduce an integer 
function b(i, j) that produces a unique integer number 1 b(i, j) B for each pair of 
nodes connected by line (Ci, Cj) (where B is the total number of lines in the MAN).

Let us also define a binary vector a in which a(b(i, j)) = 1  means that line     
(Ci, Cj) is replaced and a(b(i, j)) = 0 means that the line is not replaced.

For any given line replacement solution a, the total replacement cost is 

B

j
ij jibacC

1
tot )),(()(a  (7.72) 

and the transmission time of each line (Ci, Cj) is 

ij = a(b(i, j))t'ij+[1  a(b(i, j))]t'ij.  (7.73) 

Having the availabilities and the transmission times of each line, one can 
determine the entire MAN availability A(a, w) for any given allowable delay w.
The optimization problem takes the form 

min)(tot aC  subject to A(a, w) A* (7.74) 
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Any binary vector a can represent a MAN modernization solution in the GA. 
For each given vector a, the GA solution decoding procedure determines the 
system protection cost using Equation (7.72) and evaluates the system survivability 
A(a, w) using the algorithm described in Section 7.2.2.1. In order to let the GA 
look for the solution with minimal total cost and with A(a, w) not less than the 
required value A*, the solution fitness is evaluated as follows: 

*)),((1)),(*1()( AwAwAACM aaa  (7.75) 

Example 7.14 

Consider the data transmission network presented in Figure 7.10. The list of 
possible states of MEs located at nodes C1, …, C7 represented by sets of nodes ik

and corresponding state probabilities 
ikip is presented in Table 7.8. 

The signal transmission times for each line before and after the line 
replacement are presented in Table 7.9, as well as the replacement costs. 

   Table 7.8. State distribution of the network multi-state nodes

1k p1 1k 2k p2 2k 3k p3 3k 4k p4 4k 5k p5 5k 6k p6 6k 7k p7 7k

{2,3,4} 0.85 {4,6,8} 0.65 {4,5} 0.85 {6,7,10} 0.75 {6,7} 0.85 {8,9} 0.84 {9,10} 0.70 
{2,3} 0.05 {4,6} 0.16 {4} 0.06 {6,7} 0.03 {6} 0.04 {8} 0.06 {9} 0.25 
{3,4} 0.03 {4,8} 0.05 {5} 0.04 {6,10} 0.06 {7} 0.07 {9} 0.06 {10} 0.02 
{2,4} 0.00 {6,8} 0.01 0.05 {7,10} 0.02 0.04 0.04 0.03
{2} 0.02 {4} 0.05   {6} 0.01       
{3} 0.01 {6} 0.02   {7} 0.01       
{4} 0.00 {8} 0.04   {10} 0.07       

0.04 0.02   0.05       

     Table 7.9. Line transmission times and enhancement costs 

No. of
line

b(i, j)

Nodes
connected

i, j 

tij

(s)
t'ij
(s)

cij

(106 $)
No. of 

line
b(i, j)

Nodes
connected

i, j 

tij

(s)
t'ij
(s)

cij

(106 $)

1 1, 2 0.20 0.10 1.2 10 4, 7 0.12 0.06 0.6 
2 1, 3 0.34 0.15 1.4 11 4, 10 0.70 0.45 2.0 
3 1, 4 0.52 0.30 1.0 12 5, 6 0.37 0.18 1.1 
4 2, 4 0.45 0.18 1.8 13 5, 7 0.18 0.10 0.8 
5 2, 6 0.55 0.25 1.9 14 6, 8 0.39 0.12 2.2 
6 2, 8 0.84 0.40 0.5 15 6, 9 0.34 0.13 1.8 
7 3, 4 0.29 0.20 0.7 16 7, 9 0.73 0.53 1.3 
8 3, 5 0.12 0.06 0.8 17 7, 10 0.60 0.23 2.3 
9 4, 6 0.33 0.13 2.1      

Before line replacement, the network cannot provide the signal delivery to all 
its terminal nodes in a time less than 1.22 (A(1.22) = 0.684, A(w) = 0 for w<1.22).
The conditional expected signal delivery times (given the signal arrives at finite 
time) for the individual terminal nodes are 8

~  = 1.074, 9
~ =1.132 and 10

~ = 1.227. 

The solutions obtained in [195] by the GA for w {0.8, 1.0, 1.2} and A* {0.7,
0.75, 0.8, 0.85} are presented in Table 7.10. For each solution, the list of lines to be 
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replaced, the total replacement cost, and the resulting system availability are 
presented.

One can see that the solution obtained for w = 1.0 and A* = 0.75 coincides with 
one for w = 1.0 and A* = 0.80, and the solution obtained for w = 1.2 and A* = 0.70 
coincides with one for w = 1.2 and A* = 0.75. 

   Table 7.10. Parameters of the solutions obtained

w A* = 0.7 A* = 0.75 A* = 0.8 A* = 0.85 Amax(w)

0.8
A(w)=0.721

Ctot = 9.6 
{2,3,6,7,11,14,15}

A(w)=0.762
Ctot = 11.2 

{2,3,6,11,14,15,17}

A(w)=0.807
Ctot = 14.2 

{1,2,3,4,6,11,14,15,17}
- 0.811

1.0
A(w)=0.723

Ctot = 3.7 
{2,3,6,8}

A(w)=0.801
Ctot = 5.0 

{2,3,6,8,16}

A(w)=0.801
Ctot = 5.0 

{2,3,6,8,16}

A(w)=0.869
Ctot = 7.5 

{1,2,3,4,8,16}
0.888

1.2
A(w)=0.773

Ctot = 1.0 
{3}

A(w)=0.773
Ctot = 1.0 

{3}

A(w)=0.812
Ctot = 1.4 

{2}

A(w)=0.868
Ctot = 2.4 

{2,3}
0.888

The greatest possible network availability Amax(w) obtained by replacing all the 
lines (the total cost of such replacement is 23.5) is presented in Table 7.10 for each 
value of w. Since Amax(0.8) = 0.811, the algorithm cannot find a solution for w = 
0.8 and A* = 0.85. 

The A{j} and j
~  indices for individual terminal nodes C8, C9, and C10,

corresponding to the solutions obtained, are presented in Tables 7.11 and 7.12 
respectively. Solutions providing greater system availability do not necessarily 
provide lower conditional expected signal delivery times. For example, for w = 1.2, 
A* = 0.7 and A* = 0.8 the conditional expected signal delivery times j

~  are 

greater for more reliable solutions ( j
~  for A* = 0.8 are greater than j

~  for 

A* = 0.7 for j = 8, 9, 10).  This illustrates the fact that the availability and the 
conditional expected performance indices have different natures and cannot be 
used interchangeably.

Table 7.11. Availability of signal delivery to individual terminal nodes

A* = 0.7 A* = 0.75 A* = 0.8 A* = 0.85 Amax(w)
w A{8} A{9} A{10} A{8} A{9} A{10} A{8} A{9} A{10} A{8} A{9} A{10} A{8} A{9} A{10}

0.8 0.917 0.810 0.841 0.917 0.810 0.888 0.928 0.855 0.919 - - - 0.929 0.857 0.922 

1.0 0.879 0.810 0.879 0.879 0.909 0.879 0.879 0.909 0.879 0.912 0.946 0.917 0.929 0.947 0.922 

1.2 0.908 0.922 0.817 0.908 0.922 0.817 0.925 0.930 0.851 0.928 0.943 0.903 0.929 0.947 0.922 

Table 7.12. Expected signal delivery time for individual terminal nodes

A* = 0.7 A* = 0.75 A* = 0.8 A* = 0.85 Amax(w)
w 8

~
9

~
10

~
8

~
9

~
10

~
8

~
9

~
10

~
8

~
9

~
10

~
8

~
9

~
10

~

0.8 0.641 0.806 0.780 0.641 0.806 0.693 0.561 0.785 0.667 - - - 

1.0 0.700 0.956 1.004 0.700 0.932 1.004 0.700 0.932 1.004 0.950 0.923 0.983

1.2 1.034 1.019 1.032 1.034 1.019 1.032 1.040 1.025 1.095 1.026 0.996 1.014

0.479 0.523 0.598



8. Universal Generating Function in Analysis 
and Optimization of Fault-tolerant Software  

8.1 Reliability and Performance of Fault-tolerant 
Software

The NVP approach presumes the execution of n functionally equivalent software 

versions that receive the same input and send their outputs to a voter, which is 

aimed at determining the system’s output. The voter produces an output if at least k

out of n outputs agree. Otherwise, the system fails. As shown in Section 3.2.10, the 

RBS approach can also be considered as NVP with k = 1 when the system 

performance (task execution time) is considered. 

In many cases, the information about the version’s reliability and the execution 

time are available from separate testing and/or reliability prediction models [196]. 

This information can be incorporated into a fault-tolerant program model in order 

to obtain an evaluation of its reliability and performance.

8.1.1 Fault-tolerant Software Performance Model 

According to the generally accepted model [197], the software system consists of 

C components. Each component performs a subtask and the sequential execution of 

the components performs a major task. 

It is assumed that nc functionally equivalent versions are available for each 

component c. Each version i has an estimated reliability rci and constant execution 

time ci. Failures of versions for each component are statistically independent, as 

well as the total failures of the different components. 

The software versions in each component c run on parallel hardware units. The 

total number of units is hc. The units are independent and identical. The availability 

of each unit is ac. The number Hc of units available at the moment determines the 

amount of available computational resources and, therefore, the number of versions 

that can be executed simultaneously Lc(Hc). No hardware unit can change its state 

during the software execution. 

The versions of each component c start their execution in accordance with a 

predetermined ordered list. Lc first versions from the list start their execution 

simultaneously (at time zero). If the number of terminated versions is less than kc,
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after termination of each version a new version from the list starts its execution 

immediately. If the number of terminated versions is not less than kc, after 

termination of each version the voter compares the outputs. If kc outputs are 

identical, the component terminates its execution (terminating all the versions that 

are still executed), otherwise a new version from the list is executed immediately. 

If after termination of nc versions the number of identical outputs is less than kc

the component and the entire system fail. 

In the case of component success, the time of the entire component execution 

Tc is equal to the termination time of the version that has produced the kcth correct 

output (in most cases, the time needed by the voter to make the decision can be 

neglected). It can be seen that the component execution time is a random variable 

depending on the reliability and the execution time of the component versions and 

on the availability of the hardware units. We assume that if the component fails, 

then its execution time is equal to infinity. 

The examples of time diagrams (corresponding to component 1 with n1 = 5, 

k1 = 3 and component 2 with n2 = 3, k2 = 2) for a given sequence of versions 

execution (the versions are numbered according to this sequence) and different 

values of Lc are presented in Figure 8.1. 

Figure 8.1. Time diagrams for software components with different numbers of versions 

executed simultaneously 

The sum of the random execution times of each component gives the random 

task execution time for the entire system T. In order to estimate both the system's 

reliability and its performance, different measures can be used, depending on the 

application.

In applications where the execution time of each task is of critical importance, 

the system’s acceptability function is defined (according to the performability 

concept [198, 199]) as F(T, w) = 1(T<w), where w is a maximal allowed system 

execution time. The system’s reliability R(w) = E(F(T, w)) in this case is the  

probability that the correct output is produced in time less than w. The conditional 

expected system execution time )(/))(1()(~ wRwTTEw  is considered to be 

a measure of the system's performance. This index, defined according to Equation 

6     12       10         18           14
L1=1 L1=2

28             46         60 16        30 

1      3         5 

2             4 
1       2         3            4            5 

10         16         12
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1         3 

2
 1          2            3 
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12 16 

1

2
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Component 1 
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(3.7), determines the system’s expected execution time given that the system does 

not fail. 

In applications where the system’s average productivity (the number of 

executed tasks) over a fixed mission time is of interest [200], the system’s 

acceptability function is defined as F(T) = 1(T< ), the system’s reliability is 

defined as the probability that it produces correct outputs regardless of the total 

execution time (this index can be referred to as R( )), and the conditional expected 

system execution time )(~  is considered to be a measure of the system's 

performance.

8.1.1.1 Number of Versions that Can Be Simultaneously Executed 

The number of available hardware units in component c can vary from 0 to hc.

Given that all of the units are identical and have availability ac, one can easily 

obtain probabilities Qc(x) = Pr{Hc = x} for 0 x hc:

 Qc(x) = Pr{Hc = x}=
xh

c
x

c
c caa
x

h
)1(  (8.1) 

The number of available hardware units x determines the number of versions 

that can be executed simultaneously: lc(x). Therefore:

 Pr{Lc = lc(x)} = Qc(x) (8.2) 

The pairs Qc(x), lc(x) for 1 x hc determine the p.m.f. of the discrete random value 

Lc.

8.1.1.2 Version Termination Times 

In each component c, a sequence where each version starts its execution is defined 

by the numbers of versions. This means that each version i starts its execution not 

earlier than versions 1, …, i 1 and not later than versions i+1, …, nc. If the number 

of versions that can run simultaneously is lc, then we can assume that the software 

versions run on lc independent processors. Let m be the time when processor m

terminates the execution of a version and is ready to run the next version from the 

list of not executed versions. Having the execution time of each version ci

(1 i nc), one can obtain the termination time tci(lc) for each version i using the 

following simple algorithm: 

1.   Assign 1 = … =
cl

 = 0 (all of the processors are ready to run the software 

versions at time 0). 

2.   For i = 1, …, nc repeat: 

      2.1. Find any m (1 m lc): m = min{ 1,…, }
cl

 (m is the number of the 

earliest processor that is ready to run a new version from the list). 

      2.2. Obtain tci(lc) = m+ ci and assign m = tci(lc).
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Times tci(lc), 1 i nc, correspond to intervals between the beginning of 

component execution and the moment when the versions produce their outputs. 

Observe that the versions that start execution earlier can terminate later: j<y does 

not guarantee that tcj(lc) tcy(lc). In order to obtain the sequence, in which the 

versions produce their outputs, the termination times should be sorted in increasing 

order )(
1 ccm lt )(

2 ccm lt … ),( c
cncm lt  which gives the order of versions 

m1, m2, …, ,
cnm  corresponding to times of their termination. 

The ordered list m1, m2, …,
cnm  determines the sequence of version outputs in 

which they arrive at the voter. Now one can consider the component c as a system 

in which the nc versions are executed consecutively according to the order m1,

m2, …,
cnm and produce their outputs at times ),(

1 ccm lt  ),(
2 ccm lt  …, ).( c

cncm lt

8.1.1.3 The Reliability and Performance of Components and the Entire System

Let
icmr  be the reliability of the version that produces ith output in component c

(
icmr is equal to the probability that this output is correct). Consider the 

probability that k out of n first versions of component c succeed. This probability 

can be obtained as

]
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(according to Equation (2.16) for k-out-of-n systems). The component c produces 

the correct output directly after the end of the execution of j versions (j kc) if the 

mjth version succeeds and exactly kc 1 out of the first executed j 1 versions 

succeed.

The probability of such event pcj(lc) is 

]
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 (8.4) 

Observe that pcj(lc) is the conditional probability that the component execution 

time is )( ccm lt
j

 given lc versions can be executed simultaneously: 

 pcj(lc) = Pr{Tc = )( ccm lt
j

| Lc = lc} (8.5) 

Having the p.m.f. of Lc we can now obtain for 1 x hc
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 Pr{Tc = ))}(( xlt cjcm  = Pr{Tc= ))(( xlt cck j
| Lc = lc(x)}Pr{Lc = lc(x)}

 = pcj(lc(x))Qc(x) (8.6) 

The pairs )),(( xlt cjcm pcj(lc(x))Qc(x), obtained for 1 x hc and kc j nc,

determine the p.m.f. of version execution time Tc.

Since the events of successful component execution termination for different j

and x are mutually exclusive, we can express the probability of component c

success as 

 Rc( )=Pr{Tc< }=
c

c

c n

kj
ccj

h

x
c xlpxQ ))](()([

1

 (8.7) 

Since failure of any component constitutes the failure of the entire system, the 

system’s reliability can be expressed as 

C

c
cRR

1

)()(  (8.8) 

From the p.m.f. of execution times Tc for each component c one can obtain the 

p.m.f. of the execution time of the entire system, which is equal to the sum of the 

execution times of components: 

 T = 
C

c
cT

1

 (8.9) 

8.1.1.4 Using Universal Generating Function for Evaluating the Execution Time 

Distribution of Components 

In order to obtain the execution time distribution for a component c for a given lc in 

the form pcj(lc), )( ccm lt
j

 (kc j nc) one can determine the realizations )( ccm lt
j

of

the execution time Tc(lc) using the algorithm presented in Section 8.1.1.2 and the 

corresponding probabilities pcj(lc) using Equation (8.4). However, the probabilities 

pcj(lc) can be obtained in a much simpler way using a procedure based on the UGF 

technique [201]. 

Let the random binary variable 
icms be an indicator of the success of version mi

in component c such that 
icms = 1 if the version produces the correct output and 

icms = 0 if it produces the wrong output. The p.m.f. of 
icms  can be represented by 

the u-function

01 )1()( zrzrzu
iii cmcmcm  (8.10) 
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It can be easily seen that using the operator  we can obtain the u-function

))(),...,((),(
1

zuzulzU
jcmcmccj  (8.11) 

that represents the p.m.f. of the number of correct outputs in component c after the 

execution of a group of first j versions (the order of elements m1, m2, …,
cnm and,

therefore, Ucj(z, lc) depend on lc). Indeed, the resulting polynomial relates the 

probabilities of combinations of correct and wrong outputs (the product of 

corresponding probabilities) with the number of correct outputs in these 

combinations (the sum of success indicators). Observe that after collecting the like 

terms (corresponding to obtaining the overall probability of a different 

combination with the same number of correct outputs) Ucj(z, lc) takes the form 

j

k

k
jkccj zlzU

0

),(  (8.12) 

where jk is the probability that the group of first j versions produces k correct 

outputs.

Note that Ucj(z, lc)  can be obtained by using the recurrent expression 

])1([),(),( 01
1 zrzrlzUlzU

jcmjcmccjccj  (8.13) 

According to its definition, pcj(lc) is the probability that the group of first j

versions produces kc correct outputs and the group of first j 1 versions produces    

kc  1 correct outputs given that lc versions can be executed simultaneously. The 

coefficient
cjk in polynomial Ucj(z, lc) is equal to the conditional probability that 

the group of first j versions produces kc correct outputs given that lc versions can be 

executed simultaneously. 

In order to let the coefficient 
cjk in polynomial Ucj(z, lc)  be equal to pcj(lc),

the term with the exponent equal to kc should be removed from Uc j-1(z, lc)  before 

applying Equation (8.13) (excluding the combination in which j 1 first versions 

produce kc correct outputs while the mjth version fails). 

If after the execution of j first versions the number of correct outputs produced 

is k and k+nc j<kc, then the required number of correct outputs kc cannot be 

obtained even if all the nc j subsequent versions produce correct outputs. 

Therefore, the terms k
jk z  with k<kc nc+j can be removed from Ucj(z, lc).

The above considerations lie at the base of the following algorithm for 

determining all of the probabilities pcj(lc) (kc j nc):

1. For the given lc, determine the order of version termination m1, m2, …,
cnm

using the algorithm from Section 8.1.1.2. 
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2. Determine the u-function of each version of component c according to 

Equation (8.10). 

3. Define Uc0(z, lc) = 1. For j = 1, 2, …, nc:

   3.1 Obtain Ucj(z, lc) using Equation (8.13) and, after collecting like terms, 

represent it in the form (8.12). 

   3.2. Remove from Ucj(z, lc) all the terms k
jk z  for which k < kc nc + j.

   3.3. If j kc, assign: pcj(lc) =
cjk  and remove term c

c

k
jk z  from Ucj(z, lc).

8.1.1.5 Execution Time Distribution for the Entire System 

Having the pairs pcj(lc(x)), ))(( xlt ccm j
 for each possible realization lc(x) of Lc

(1 x hc) and probabilities Pr{Lc = lc(x)} = Qc(x), one can obtain the p.m.f. of 

random execution times Tc for each component by applying Equation (8.6). If the 

conditional p.m.f. pcj(lc(x)), ))(( xlt ccm j
 are represented by the u-function

))((
))(())(,(~ xltn

kj
ccjcc

cjcmc

c

zxlpxlzu  (8.14) 

then the u-function representing the p.m.f. of the random value Tc takes the form: 

ch

x
cccc xlzuxQzU

1

))(,(~)()(
~

 (8.15) 

Since the random system execution time T is equal to the sum of the execution 

times of all of the C components, one can obtain the u-function )(
~

zU representing

the p.m.f. of T as 

C

c

h

x
cccC

c

xlzuxQzUzUzU
1 1

1 ))(,(~)(())(
~

),...,(
~

()(
~

 (8.16) 

8.1.1.6 Different Components Executed on the Same Hardware 
Now consider the case where all of the software components are consecutively 
executed on the same hardware consisting of h parallel identical modules with the 
availability a. The number of available parallel hardware modules H is random 
with p.m.f. Q(x) = Pr{H = x}, 1 x h, defined in the same way as in  Equation 
(8.1).

When H = x, the number of versions that can be executed simultaneously in 

each component c is lc(x). The u-functions representing the p.m.f. of the 

corresponding component execution times Tc are ))(,(~ xlzu cc defined by Equation 

(8.14). The u-function ),(ˆ xzU representing the conditional p.m.f. of the system 

execution time T (given the number of available hardware modules is x) can be 

obtained for any x (1 x h) as 
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))(,(~)))(,(~)),...,(,(~(),(ˆ

1
11

C

c
ccCC xlzuxlzuxlzuxzU  (8.17)  

Having the p.m.f. of the random value H we obtain the u-function

)(
~

zU representing the p.m.f. of T as: 

 ),(ˆ)()(
~

1

xzUxQzU
H

x

  (8.18) 

Example 8.1 

Consider a system consisting of two components. The first component consists of 

h1 = 2 hardware units with availability a1 = 0.9 on which n1 = 5 software versions 

with k1 = 3 are executed. The second component consists of h2 = 3 hardware units 

with availability a2 = 0.8 on which and n2 = 3 software versions with k2 = 2 are 

executed. The parameters of versions rci and ci are presented in Table 8.1.

Table 8.1. Parameters of software versions

Componen c = 1 c = 2

Version 1 2 3 4 5 1 2 3 

rci 0.7 0.6 0.8 0.6 0.9 0.8 0.8 0.7 

ci 6 12 10 18 14 10 16 12 

tci(1) 6 18 28 46 60 10 26 38 

tci(2) 6 12 16 30 30 10 16 22 

tci(3) - - - - - 10 16 12 

One software version can be executed on each hardware unit: lc(hc) = hc.

The terminations times tci(lc) obtained for the different possible values of L1 and

L2 using the algorithm described in Section 8.1.1.2 are also presented in this table. 

The version execution diagrams for different values of L1 and L2 are presented in 

Figure 8.1.

For the given parameters, the u-functions of the software versions are 

 u11(z) = 0.3z0+0.7z1; u12(z) = 0.4z0+0.6z1; u13(z) = 0.2z0+0.8z1

 u14(z) = 0.4z0+0.6z1; u15(z) = 0.1z0+0.9z1

for component 1 and 

 u21(z) = 0.2z0+0.8z1; u22(z) = 0.2z0+0.8z1; u23(z) = 0.3z0+0.7z1

for component 2. 

The order of version termination in the first component is 1, 2, 3, 4, 5 for both 

L1 = 1 and L1 = 2 (see Table 8.1). 
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According to the algorithm presented in Section 8.1.1.4, determine the             

u-functions for the groups of versions and corresponding probabilities p1j(1) and 

p1j(2).

 U10(z, 1) = U10(z, 2) = 1; U11(z, 1) = U11(z, 2) = u11(z) = 0.3z0+0.7z1

 U12(z, 1) = U12(z, 2) = u11(z) u12(z) = (0.3z0+0.7z1)(0.4z0+0.6z1)

 = 0.12z0+0.46z1+0.42z2

 U13(z, 1) = U13(z, 2) = U12(z, 1) u13(z) = (0.12z0+0.46z1+0.42z2)

(0.2z0+0.8z1) = 0.024z0+0.188z1+0.452z2+0.336z3

Remove the term 0.024z0 from U13(z, 1) according to step 3.2 of the algorithm. 

Remove the term 0.336z3 from U13(z, 1) and U13(z, 2) and obtain p13(1) = p13(2)

= 0.336 according to step 3.3 of the algorithm:

 U14(z, 1) = U14(z, 2) = U13(z, 1) u14(z) = (0.188z1+0.452z2)

(0.4z0+0.6z1) = 0.0752z1+0.2936 z2+0.2712z3

Remove the term 0.0752z1 from U14(z, 1) according to step 3.2 of the algorithm. 

Remove the term 0.2712z3 from U14(z, 1) and U14(z, 2) and obtain p14(1) = p14(2)

= 0.2712 according to step 3.3 of the algorithm:

 U15(z, 1) = U15(z, 2) = U14(z, 1) u15(z)

 = 0.2936z2 (0.1z0+0.9z1) = 0.02936z2+0.11z2+0.26424z3

Finally, obtain p15(1) = p15(2) = 0.26424. 

Having the probabilities p1j(1), p1j(2) and the corresponding termination times 

t1j(1), t1j(2), define the u-functions representing the component execution time 

distributions

1
~u (z, 1) = 0.336z28+0.271z46+0.264z60

1
~u (z, 2) = 0.336z16+0.271z30+0.264z30 = 0.336z16+0.535z30

The p.m.f. of L1 is 

 Q1(1) = Pr{L1 = 1} = Pr{h1 = 1} = 2a1(1 a1) = 0.18 

 Q1(2) = Pr{L1 = 2} = Pr{h1 = 2} = a1
2 = 0.81 
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According to Equation (8.15), obtain

1
~

U (z) = 0.18 1
~u (z, 1)+0.81 1

~u (z, 2) 

 = 0.06z28+0.049z46+0.048z60+0.272z16+0.434z30

The order of version termination in the second component is 1, 2, 3 for both 

L2 = 1 and L2 = 2 and 1, 3, 2 for L2 = 3 (see Table 8.1). 

According to the algorithm presented in Section 8.1.1.4, determine the u-

functions for the groups of versions and corresponding probabilities p2j(1), p2j(2)

and p2j(3). For L2 = 1 and L2 = 2: 

 U20(z, 1)  = U20(z, 2) = 1; U21(z, 1) = U21(z, 2) = u21(z) = 0.2z0+0.8z1

 U22(z, 1) = U22(z, 2) = u21(z) u22(z)

 = (0.2z0+0.8z1)2 = 0.04z0+0.32z1+0.64z2

Remove the term 0.04z0 from U22(z, 1) according to step 3.2 of the algorithm. 

Remove the term 0.64z2 from U22(z, 1) and U22(z, 2) and obtain p22(1) = p22(2)

= 0.64 according to step 3.3 of the algorithm: 

 U23(z, 1) = U23(z, 2) = U22(z, 1) u23(z) = 0.32z1 (0.3z0+0.7z1)

 = 0.096z1+0.224z2

Obtain p23(1) = p23(2) = 0.224. 

Having the probabilities p2j(1), p2j(2) and the corresponding termination times 

t2j(1), t2j(2), define the u-functions representing the component execution time 

distributions

2
~u (z, 1) = 0.64z26+0.224z38, 2

~u (z, 2) = 0.64z16+0.224z22

For L2 = 3: 

 U20(z, 3) = 1; U21(z, 3) = u21(z) = 0.2z0+0.8z1; U22(z, 3) = u21(z) u23(z)

 = (0.2z0+0.8z1)(0.3z0+0.7z1) = 0.06z0+0.38z1+0.56z2

Remove the term 0.06z0 from U22(z, 1) according to step 3.2 of the algorithm. 

Remove the term 0.56z2 from U22(z) and obtain p22(3) = 0.56 according to step 3.3 

of the algorithm: 

 U23(z, 3) = U22(z, 3) u22(z) = 0.38z1(0.2z0+0.8z1)

 = 0.076z1+0.304z2
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From U23(z, 3) obtain p23(3) = 0.304. 

The u-function representing the corresponding component execution time 

distribution takes the form 

2
~u (z, 3)=0.56z12+0.304z16

The p.m.f. of L2 is

 Q2(1) = Pr{L2 = 1} = Pr{h2 = 1} = 3a2(1 a2)
2 = 0.096

 Q2(2) = Pr{L2=2} = Pr{h2 = 2} = 3a2
2(1 a2) = 0.384 

 Q2(3) = Pr{L2 = 3} = Pr{h2 = 3} = a2
3 = 0.512 

According to Equation (8.15), obtain

2
~

U (z) = 0.096 2
~u (z, 1)+0.384 2

~u (z, 2)+0.512 2
~u (z, 3)

 = 0.287z12+0.401z16+0.086z22+0.0614z26+0.0215z38

The u-function representing the execution time distribution for the entire 

system takes the form 

U
~

(z) = 1
~

U (z) 2
~

U  (z) = (0.272z16+0.434z30+0.06z28+0.049z46

 +0.048z60)(0.287z12+0.401z16+0.086z22+0.0614z26+0.0215z38)

 = 0.078z28+0.109z32+0.023z38+0.017z40+0.141z42+0.024z44+0.174z46

 +0.005z50+0.037z52+0.007z54+0.027z56+0.014z58+0.020z62+0.001z66

 +0.012z68+0.020z72+0.019z76+0.004z82+0.001z84+0.003z86+0.001z98

Having this u-function, one can obtain the system reliability and conditional 

expected execution time for different time constraints w:

 R( ) = 0.739; ~ ( ) = 
7390

1

.
(32.94)=44.559

For w = 50: 

 R(50) = 0.078+0.109+0.023+0.017+0.141+0.024+0.174 = 0.567 
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~ (50) = 
567.0

1
(0.078 28+0.109 32+0.023 38+0.017 40

 + 0.141 42+0.024 44+0.174 46) = 22.24/0.567 = 39.24 

Example 8.2 

Consider a system consisting of five components. The number of parallel 

hardware units, the availability of these units, and the parameters nc and kc of the 

fault-tolerant programs for each component are presented in Table 8.2. 

Components 1, 3 and 5 are of the NVP type and components 2 and 4 are of the 

RBS type (k2 = k4 = 1). The reliability and execution times of the software versions 

are presented in Table 8.3. 

Table 8.2. Parameters of system components

Component  1 2 3 4 5

hc 3 4 2 3 2

ac 0.80 0.95 0.90 0.85 0.95 

nc 5 2 3 3 5 

kc 3 1 2 1 3 

lc(1) 2 0 1 1 3 

lc(2) 4 1 3 2 5 

lc(3) 5 1 - 3 - 

lc(4) - 2 - - - 

Table 8.3. Parameters of software versions

 Version 1 2 3 4 5

r1i 0.86 0.77 0.98 0.93 0.91c = 1

1i 10 12 25 22 15

r2i 0.85 0.92 - - -c = 2

2i 30 45 - - -

r3i 0.87 0.94 0.98 - -c = 3

3i 6 6 10 - -

r4i 0.95 0.85 0.85 - -c = 4

4i 25 15 20 - -

r5i 0.68 0.79 0.90 0.90 0.94c = 5

5i 10 10 15 20 25

The entire system’s execution time varies in the range of 81 T 241. The 

system’s reliability and conditional expected execution time obtained by the 

algorithm described in Sections 8.1.1.1-8.1.1.5 are R( ) = 0.77 and ~ ( ) = 96.64 

respectively. The functions R(w) and ~ (w)  are presented in Figure 8.2A. 

Now consider the same fault-tolerant software system running on a single 

hardware block consisting of three parallel units with availability a = 0.9. The 

functions lc(x) for each software component are presented in Table 8.4. Note that 

the system can operate only when H 2, since a single hardware unit has not 

enough resources for execution of the second software component. 
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Table 8.4. Number of versions executed simultaneously

Component 1 2 3 4 5

lc(1) 2 0 3 1 1

lc(2) 4 1 3 2 2 

lc(3) 5 1 3 3 3 

The entire system execution time varies in the range 81 T 195. The system 

reliability and expected execution time (without respect to execution time 

constraints) are respectively R( ) = 0.917 and ~ ( ) = 103.18. The functions R(w)

and ~ (w)  are presented in Figure 8.2B. 

A         B 
Figure 8.2. R(w) and ~ (w) functions for a fault-tolerant system running on different 

hardware components (A) and on a single hardware component (B) 

8.2 Optimal Version Sequencing in Fault-tolerant 
Programs

In programs consisting of versions with different parameters, the sequence of the 

version execution affects the distribution of the system’s task execution time. The 

influence of the sequence of the version’s execution on this distribution is 

demonstrated in Figure 8.3. 

80

85

90

95

100

80 100 120 140 160 180 200 220 240

w

0

0.2

0.4

0.6

0.8

R

(w )

R (w )

80

85

90

95

100

105

80 100 120 140 160 180 200

w

0

0.2

0.4

0.6

0.8

1

R

(w )

R (w )



422 The Universal Generating Function in Reliability Analysis and Optimization 

Figure 8.3. Execution of the different sequences of versions in a component with

nc = 5, kc = 4,  Lc = 2 

While the sequence in which the versions in each component start their 

execution does not affect the R( ) index, it can have a considerable influence on 

both R(w) and ~ (w) when the task execution time is constrained. Therefore, two 

different optimization problems can be formulated in which the sequences 

maximizing the system’s reliability R(w) or minimizing its conditional expected 

execution time ~ (w) are to be determined. 

To apply the GA, one has to represent the sequences of versions in each 

component in the form of strings. These sequences can be represented by C

substrings corresponding to different components. Each substring c should be of 

length nc and contain a permutation of integer numbers ranging from 1 to nc.

The solution encoding scheme with different substrings is complicated and 

requires the development of sophisticated procedures for string generation, 

crossover, and mutation that preserve the feasibility of solutions. In order to 

simplify the GA procedures, an encoding method was developed in which the 

single permutation defines the sequences of the versions in each one of the C

components.

The solution encoding string consists of n = C
c cn1 different integer numbers 

ranging from 1 to n. Each number j belonging to the interval 

m

c
c

m

c
c njn

1

1

1

1  (8.19) 

corresponds to version j
1

1

m

c
cn of component m. The relative order in which the 

numbers corresponding to the versions of the same component appear in the string 

determines the sequence of their execution. 

1+ 3

1 3

2 4 51
2

3

4

5

3

21 5

43

1
2

5

4

3+ 4

2+ 4+ 5

1+ 2+ 5



  8   UGF in Analysis and Optimization of Fault-Tolerant Software 423 

Example 8.3 

Consider a system consisting of three components with n1 = 3, n2 = 5 and n3 = 4. 

The solution encoding strings should consist of 3+5+4 = 12 integers. Numbers 1, 2, 

3 correspond to component 1, numbers 4, 5, 6, 7, 8 correspond to component 2 

(they are marked in bold), numbers 9, 10, 11, 12 correspond to component 3 (they 

are marked in italic). In the solution string a = (4, 9, 7, 1, 12, 2, 3, 10, 6, 8, 5, 11)

the numbers corresponding to different components appear in the following 

relative order: 

 for component 1: 1, 2, 3 

 for component 2: 4, 7, 6, 8, 5
 for component 3: 9, 12, 10, 11

This corresponds to the following sequences of versions execution: 

 in component 1: 1, 2, 3 

 in component 2: 1, 4, 3, 5, 2  

 in component 3: 1, 4, 2, 3 

The solution decoding procedure determines the sequence of versions in each 

component according to string a. Then it calculates the version termination times 

using the procedure presented in Section 8.1.1.2 and the probabilities pcj using the 

algorithm presented in Section 8.1.1.3. After obtaining the components' execution 

time distribution, the time distribution of the entire system is calculated as 

described in Sections 8.1.1.5 and 8.1.1.6. Finally, the indices R(w) and ~ (w) are 

obtained from the system’s execution time distribution. The solution fitness can be 

defined as R(a,w) or M ~ (a,w), depending on the optimization problem 

formulation.

Example 8.4 

Consider a fault-tolerant software system consisting of five components and 

running on a single reliable unit [202]. The parameters of the components are 

presented in Table 8.5. This table contains the values of nc and kc for each 

component c and the reliability and execution time for each version. 

First consider the system in which L1 = 1, L2 = 2, L3 = 4, L4 = 1, L5 = 3. The 

overall system reliability that does not depend on version sequencing is 

R( ) = 0.92. The solutions with minimal conditional expected execution time 
~ ( ) and with maximal system reliability R(w) for w = 300 are presented in    

Table 8.6. The table contains minimal and maximal possible system execution 

times for each solution, values of indices ~ ( ) and R(w), and the corresponding 

version sequences. 

It can be seen that the minimal possible system execution time Tmin (achieved 

when in each component the first kc versions succeed) can be obtained when the 

versions in each component are ordered according to the increased execution time. 

Such a solution is also presented in Table 8.6. Observe that the solution that
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provides the smallest minimal execution time is not optimal, neither in terms of 
~ ( ) nor in terms of R(w).

Table 8.5. Parameters of system components for the numerical example

VersionsNo. of 

component

nc kc

1 2 3 4 5 

1 4 1 17 20 32 75  

   r 0.71 0.85 0.89 0.98 - 

2 3 2 28 55 58 - - 

   r 0.85 0.85 0.93 - - 

3 5 3 17 20 38 41 63 

   r 0.80 0.80 0.86 0.98 0.98 

4 3 2 17 20 32 - - 

   r 0.75 0.93 0.97 - - 

5 3 1 30 54 70 - - 

   r 0.70 0.80 0.89 - - 

The poor solution corresponding to the greatest possible ~ ( ) is presented in 

Table 8.6 for comparison. The system’s reliabilities R(w) as functions of the 

maximal allowable execution time w are presented in Figure 8.4A for all of the 

solutions obtained (numbered according to Table 8.6). 

Table 8.6. Parameters of solutions obtained for the fault-tolerant system with L1

= 1, L2 = 2, L3  = 4, L4 = 1, L5 = 3

No. Problem formulation Sequence of versions Tmin Tmax
~ ( ) R(300)

1 ~ ( ) min 2134|132|54321|213|132 183 429 211.91 0.914 

2 R(300) max 2314|312|43521|321|123 198 429 220.22 0.915 

3 Increasing 1234|123|12345|123|123 177 449 213.84 0.909 

4 ~ ( ) max 4312|213|52134|132|231 247 432 277.67 0.776 

Now consider the same system with L1 = L2 = L3 = L4 = L5 = 1, which 

corresponds to consecutive execution of versions one at a time. The maximal 

possible time of system execution in this case does not depend on the versions 

sequence and is equal to the sum of execution times of all of the versions. The 

overall system reliability that does not depend on either version sequencing or on 

Lc is still R( ) = 0.92. The same four types of solution that were obtained in the 

previous example are presented in Table 8.7 (the maximal allowable execution 

time in this case is w = 430).

Table 8.7. Parameters of solutions obtained for the fault-tolerant system with 

L1 = L2 = L3 = L4 = L5 =1

No. Problem formulation Sequence of versions Tmin Tmax
~ ( ) R(430)

1 ~ ( ) min 2134|3122|12435|213|123 251 687 313.02 0.886 

2 R(430) max 2314|132|41235|231|123 266 687 321.33 0.892 

3 increasing 1234|123|12345|123|123 242 687 316.19 0.886 

4 ~ ( ) max 4312|321|53421|312|321 449 687 469.62 0 
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Observe that the minimal possible system execution time for the solution with 

the greatest possible ~ ( ) is greater than w. Therefore, the corresponding 

R(w) = 0. The system reliabilities R(w) as functions of maximal allowable 

execution time w are presented in Figure 8.4B for all of the solutions obtained. 

A         B 
Figure 8.4. R(w) functions for solutions obtained for the system with L1 = 1, L2 = 2, L3 =

4,      L4 = 1, L5 = 3 (A) and for the system with L1 = L2 = L3 = L4 = L5 = 1 (B) 

8.3 Optimal Structure of Fault-tolerant Software 
Systems

When a fault-tolerant software system is designed, one has to choose software 

versions for each component and find the sequence of their execution in order to 

achieve the system’s greatest reliability subject to cost constraints. The versions 

are chosen from a list of the available products. Each version is characterized by its 

reliability, execution time, and cost. The total cost of the system’s software is 

defined according to the cost of its versions. The cost for each version can be the 

purchase cost if the versions are commercial and the off-the-shelf cost, or it can be 

an estimate based upon the version’s size, complexity, and performance. 

Assume that Bc functionally equivalent versions are available for each 

component c and that the number kc of the versions that should agree in each 

component is predetermined. The choice of the versions and the sequence of their 

execution in each component determine the system’s entire reliability and 

performance.

The permutation x*c of Bc different integer numbers ranging from 1 to Bc

determines the order of the version that can be used in component c. Let ycb = 1 if 

the version b is chosen to be included in component c and ycb = 0 otherwise. The 

binary vector },...,{ 1 ccBcc yyy determines the subset of versions chosen for 
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component c. Having the vectors x*c and yc one can determine the execution order 

xc of the versions chosen by removing from x*c any number b for which ycb = 0. 

The total number of versions in component c (equal to the length of vector yc after 

removing the unchosen versions) is determined as 

cB

b
cbc yn

1

 (8.20) 

The system structure optimization problem can now be formulated as find 

vectors xc for 1 c C that maximize R(w) subject to cost constraint 

*
1

C

c b
cb

cx
 (8.21) 

where cb is the cost of version b used in component c,  is the entire system cost 

and * is the maximal allowable system cost. Note that the length of vectors xc can 

vary depending on the number of versions chosen. 

In order to encode the variable-length vectors xc in the GA using the constant-

length integer strings one can use (Bc+1)-length strings containing permutations of 

numbers 1,…, Bc, Bc+1. The numbers that appear before Bc+1 determine the vector 

xc. For example, for Bc = 5 the permutations (2, 3, 6, 5, 1, 4) and (3, 1, 5, 4, 2, 6) 

correspond to xc = (2, 3) and xc = (3, 1, 5, 4, 2) respectively. Any possible vector xc

can be represented by the corresponding integer substring containing the 

permutation of Bc+1 numbers. By combining C substrings corresponding to 

different components one obtains the integer string a, that encodes the entire 

system structure. 

As in the version sequencing problem (Section 8.2), the encoding method is 

used in which the single permutation defines the sequences of the versions chosen 

in each of the C components. The solution encoding string is a permutation of n

=
C

c
cB

1

)1(  integer numbers ranging from 1 to n. Each number j belonging to the 

interval )1(1)1(
1

1

1

m

c
c

m

c
c BjB  corresponds to version j

1

1

)1(
m

c
cB of

component m. The relative order in which the numbers corresponding to the 

versions of the same component appear in the string determines the structure of 

this component. 

Example 8.5 

Consider, for example, a system consisting of three components with B1 = 3, B2 = 5 

and B3 = 4. The solution encoding strings consist of (3+1)+(5+1)+(4+1) = 15 

integers. Numbers from 1 to 4 correspond to component 1, numbers from 5 to 10 

correspond to component 2, and numbers from 11 to 15 correspond to component
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3. In the solution string a = (5, 9, 7, 1, 12, 2, 15, 3, 10, 6, 14, 8, 4, 13, 5, 11), the 

numbers corresponding to different components appear in the following relative 

order:

 for component 1: 1, 2, 3, 4
for component 2: 5, 9, 7, 10, 8

 for component 3: 12, 15, 14, 13, 11 

Only the numbers located before the largest number in each substring (marked 

in bold) represent the component’s structure. This gives the following substrings:

 for component 1: 1, 2, 3; for component 2: 5, 9, 7; for component 3: 12 

These substrings correspond to the following sequences of versions execution: 

 in component 1: 1, 2, 3; in component 2: 1, 5, 3; in component 3: 2 

The solution decoding procedure determines the sequence of versions in each 

component. Then it determines the system reliability R(w) as described in Section 

8.1 and calculates the system cost using Equation (8.21). The solution fitness is 

evaluated as R(w)  max( *, 0), where  is a penalty coefficient.

Example 8.6 

Consider a fault-tolerant software system consisting of four components running 

on fully available hardware [203]. The parameters of the versions that can be used 

in these components are presented in Table 8.8. This table contains the values of kc

and Lc for each component and the cost, reliability, and execution time for each 

version.

       Table 8.8. Parameters of fault-tolerant system components and versions

No. of     Versions 

component kc Lc  1 2 3 4 5 6 7 8 

17 10 20 32 30 75 - - 

1 1 r 0.71 0.85 0.85 0.89 0.95 0.98 - - 1

c 5 15 7 8 12 6 - - 

28 55 35 55 58 - - - 

2 2 2 r 0.82 0.82 0.88 0.90 0.93 - - - 

   c 11 8 18 10 16 - - - 

17 20 38 38 48 50 41 63 

3 3 4 r 0.80 0.80 0.86 0.90 0.90 0.94 0.98 0.98 

   c 4 3 4 6 5 4 9 6 

17 10 20 32 - - - - 

4 2 1 r 0.75 0.85 0.93 0.97 - - - - 

   c 12 16 17 17 - - - - 

30 54 40 65 70 - - - 

5 1 3 r 0.70 0.80 0.80 0.80 0.89 - - - 

   c 5 9 11 7 12 - - - 

Twosets of solutions were obtained for the maximal allowable system operation 

times w = 250 and w = 300. For each value of w, four different solutions were
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obtained for different cost constraints. These solutions are presented in Tables 8.9 

and 8.10. The tables contain the system cost and reliability for each solution, the 

expected conditional execution time, minimal and maximal possible system 

execution times, and the corresponding sequences of the versions chosen. 

The functions R(w) for the solutions obtained are presented in Figure 8.5. 

Table 8.9. Parameters of solutions obtained for w = 250

* Sequence of versions Tmin Tmax
~ ( ) R(250)

160 231|541|37162|324|214 159 166 307 188.34 0.913 

140 34|241|64231|234|123 140 173 301 194.43 0.868 

120 5|431|31562|43|21 119 205 249 217.07 0.752 

100 3|241|4562|43|41 100 205 270 220.52 0.598 

Table 8.10. Parameters of solutions obtained for w = 300

* Sequence of versions Tmin Tmax
~ ( ) R(300)

160 341|4521|85632|324|41 160 188 369 210.82 0.951 

140 53|541|28361|431|51 140 208 335 231.02 0.889 

120 6|241|61372|241|31 120 240 307 252.87 0.813 

100 4|142|2386|43|41 100 219 295 238.05 0.672 

w = 250         w = 300 

Figure 8.5. R(w) functions for the solutions obtained 

Observe that the greater the reliability level achieved, the greater the cost of 

further reliability improvement. The cost-reliability curves are presented in Figure 

8.6. Each point on these curves corresponds to the best solution obtained by the 

GA.
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