


Design of Embedded
Control Systems



Design of Embedded
Control Systems

Marian Andrzej Adamski
Andrei Karatkevich
and
Marek Wegrzyn
University of Zielona Gora, Poland



Library of Congress Cataloging-in-Publication Data

Design of embedded control systems / Marian Andrzej Adamski, Andrei Karatkevich,
Marek Wegrzyn [editors].

p. cm.
Includes bibliographical references and index.
ISBN 0-387-23630-9
1. Digital control systems—Design and construction. 2. Embedded computer systems—Design

and construction. I. Adamski, M. (Marian) II. Karatkevich, Andrei. III. Wegrzyn, M. (Marek)

TJ223.M53D47 2005
629.8—dc22

2004062635

ISBN-10: 0-387-23630-9 Printed on acid-free paper.
ISBN-13: 978-0387-23630-8

C© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America (TB/IBT)

9 8 7 6 5 4 3 2 1

springeronline.com



About the Editors

Marian Andrzej Adamski received an M.Sc. degree in electrical engi-
neering (specialty of control engineering) from Poznan Technical Univer-
sity, Poland, in 1970; a Ph.D. degree in control and computer engineering
from Silesian Technical University, Gliwice, Poland, in 1976; and a D.Sc.
in computer engineering from Warsaw University of Technology, Poland, in
1991.

After completing his M.Sc. in 1970, he joined the research laboratory in
Nuclear Electronics Company in Poznan. In 1973 he became a senior lecturer
at the Technical University of Zielona Góra, Poland. From 1976 to 1991 he was
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Foreword

A set of original results in the field of high-level design of logical control
devices and systems is presented in this book. These concern different aspects
of such important and long-term design problems, including the following,
which seem to be the main ones.

First, the behavior of a device under design must be described properly, and
some adequate formal language should be chosen for that. Second, effective
algorithms should be used for checking the prepared description for correctness,
for its syntactic and semantic verification at the initial behavior level. Third, the
problem of logic circuit implementation must be solved using some concrete
technological base; efficient methods of logic synthesis, test, and verification
should be developed for that. Fourth, the task of the communication between
the control device and controlled objects (and maybe between different control
devices) waits for its solution. All these problems are hard enough and cannot be
successfully solved without efficient methods and algorithms oriented toward
computer implementation. Some of these are described in this book.

The languages used for behavior description have been descended usually
from two well-known abstract models which became classic: Petri nets and
finite state machines (FSMs). Anyhow, more detailed versions are developed
and described in the book, which enable to give more complete information
concerning specific qualities of the regarded systems. For example, the model of
parallel automaton is presented, which unlike the conventional finite automaton
can be placed simultaneously into several places, called partial. As a base for
circuit implementation of control algorithms, FPGA is accepted in majority of
cases.

Hierarchical Petri nets have been investigated by Andrzejewski and
Miczulski, who prove their applicability to design of control devices in practical
situations. Using Petri nets for design and verification of control paths is sug-
gested by Schober, Reinsch, and Erhard, and also by Wȩgrzyn and Wȩgrzyn.
A new approach to modeling and analyzing embedded hybrid control systems,
based on using hybrid Petri nets and time-interval Petri nets, is proposed by
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Hummel and Fengler. A memory-saving method of checking Petri nets for
deadlocks and other qualities is developed by Karatkevich. A special class of
reactive Petri nets with macronodes is introduced and thoroughly investigated
(Gomes, Barros, and Costa). Using Petri nets for reactive system design was
worked out by Adamski.

The model of sequent automaton was suggested by Zakrevskij for descrip-
tion of systems with many binary variables. It consists of so-called sequents—
expressions defining “cause-effect” relations between events in Boolean space
of input, output, and inner variables. A new method for encoding inner FSM
states, oriented toward FSM decomposition, is described (Kubátová). Several
algorithms were developed for assignment of partial states of parallel automata:
for using in the case of synchronous automata (Pottosin) and for the asyn-
chronous case, when race-free encoding is needed (Cheremisinova). A new
technique of state exploration of statecharts specifying the behavior of con-
trollers is suggested by L� abiak. A wide variety of formal languages is used in
the object-oriented real-time techniques method, the goal of which is the speci-
fication of distributed real-time systems (Lopes, Silva, Tavares, and Monteiro).

The problem of functional decomposition is touched by Bibilo and Kirienko,
who regarded it as the task of decomposing a big PLA into a set of smaller
ones, and by Rawski, L� uba, Jachna, and Tomaszewicz, who applied it to circuit
implementation in CPLD/FPGA architecture.

Some other problems concerning the architecture of control systems are also
discussed. Architectural Description Language for using in design of embed-
ded processors is presented by Tavares, Silva, Lima, Metrolho, and Couto. The
influence of FPGA architectures on implementation of Petri net specifications
is investigated by Soto and Pereira. Communication architectures of multi-
processor systems are regarded by Dvorak, who suggest some tools for their
improving. A two-processor (bit-byte) architecture of a CPU with optimized
interaction is suggested by Chmiel and Hrynkiewicz.

An example of application of formal design methods with estimation of their
effectiveness is described by Caban, who synthesized positional digital image
filters from VHDL descriptions, using field programmable devices. In another
example, a technology of development and productization of virtual electronic
components, both in FPGA and ASIC architectures, is presented (Sakowski,
Bandzerewicz, Pyka, and Wrona).

A. Zakrevskij
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14. Implementing a Petri Net Specification in a FPGA Using VHDL 167
Enrique Soto / Miguel Pereira

15. Finite State Machine Implementation in FPGAs 175
Hana Kubátová
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Chapter 1

USING SEQUENTS FOR DESCRIPTION
OF CONCURRENT DIGITAL SYSTEMS
BEHAVIOR

Arkadij Zakrevskij
United Institute of Informatics Problems of the National Academy of Sciences of Belarus,
Surganov Str. 6, 220012, Minsk, Belarus; e-mail: zakr@newman.bas-net.by

Abstract: A model of sequent automaton is proposed for description of digital systems
behavior. It consists of sequents – expressions defining “cause-effect” relations
between events in the space of Boolean variables: input, output, and inner. The
rules of its equivalence transformations are formulated, leading to several canoni-
cal forms. Simple sequent automaton is introduced using simple events described
by conjunctive terms. It is represented in matrix form, which is intended for
easing programmable logic array (PLA) implementation of the automaton. The
problem of automata correctness is discussed and reduced to checking automata
for consistency, irredundancy, and persistency.

Key words: logical control; behavior level; simple event; sequent automaton; PLA implemen-
tation; concurrency; correctness.

1. INTRODUCTION

Development of modern technology results in the appearance of complex
engineering systems, consisting of many digital units working in parallel and
often in the asynchronous way. In many cases they exchange information by
means of binary signals represented by Boolean variables, and logical control
devices (LCDs) are used to maintain a proper interaction between them. Design
of such a device begins with defining a desirable behavior of the considered
system and formulating a corresponding logical control algorithm (LCA) that
must be implemented by the control device. The well-known Petri net formalism
is rather often used for this purpose.

But it would be worth noting that the main theoretical results of the theory
of Petri nets were obtained for pure Petri nets presenting nothing more than sets
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of several ordered pairs of some finite set, interpreted in a special way. To use a
Petri net for LCA representation, some logical conditions and operations should
be added. That is why various extensions of Petri nets have been proposed.
Their common feature is that some logical variables are assigned to elements
of the Petri net structure: places, transitions, arcs, and even tokens. This makes
possible to represent by extended Petri nets rather complicated LCAs, but at
the cost of losing the vital theoretical maintenance.

These considerations motivated developing a new approach to LCA
representation11, where Petri nets were applied together with cause-effect rela-
tions between simple discrete events (presented by elementary conjunctions).
In that approach only the simplest kind of Petri nets is regarded, where arith-
metic operations (used for counting the current number of tokens in a place)
are changed by set operations, more convenient when solving logical problems
of control algorithms verification and implementation.

According to this approach, the special language PRALU was proposed
for LCA representation and used as the input language in an experimental
system of CAD of LCDs12. A fully automated technology of LCD design was
suggested, beginning with representation of some LCA in PRALU and using
an intermediate formal model called sequent automaton3−8. A brief review of
this model is given below.

2. EVENTS IN BOOLEAN SPACE

Two sets of Boolean variables constitute the interface between an LCD and
some object of control: the set X of condition variables x1, . . . , xn that present
some information obtained from the object (delivered by some sensors, for
example) and the set Y of control variables y1, . . . , ym that present control
signals sent to the object. Note that these two sets may intersect – the same
variable could be presented in both sets when it is used in a feedback. From the
LCDs point of view X may be considered as the set of input variables, and Y
as the set of output variables. In case of an LCD with memory the third set Z is
added interpreted as the set of inner variables. Union of all these sets constitutes
the general set W of Boolean variables.

2|W| different combinations of values of variables from W constitute the
Boolean space over W (|W| denotes the cardinality of set W ). This Boolean
space is designated below as BS(W ). Each of its elements may be regarded
as a global state of the system, or as the corresponding event that occurs
when the system enters that state. Let us call such an event elementary. In
the same way, the elements of Boolean spaces over X , Y , and Z may be re-
garded as input states, output states, and inner states, as well as corresponding
events.
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Besides these, many more events of other types may be taken into consid-
eration. Generally, every subset of BS(W ) may be interpreted as an event that
occurs when some element from BS(W ) is realized; i.e., when the variables from
W possess the corresponding combination of values. In this general case the
event is called complicated and could be presented by the characteristic Boolean
function of the regarded subset. Therefore, the number of complicated events
coincides with the number of arbitrary Boolean functions of |W| variables.

From the practical point of view, the following two types of events deserve
special consideration: basic events and simple events.

Basic events are represented by literals – symbols of variables or their nega-
tions – and occur when these variables take on corresponding values. For ex-
ample, basic event a occurs when variable a equals 1, and event c′ occurs when
c = 0. The number of different basic events is 2|W|.

Simple events are represented by elementary conjunctions and occur when
these conjunctions take value 1. For example, event ab′f occurs when a = 1,

b = 0, and f = 1. The number of different simple events is 3|W|, including the
trivial event, when values of all variables are arbitrary.

Evidently, the class of simple events absorbs elementary events and basic
events. Therefore, elementary conjunction ki is the general form for representa-
tion of events i of all three introduced types; it contains symbols of all variables
in the case of an elementary event and only one symbol when a basic event
is regarded. One event i can realize another event j – it means that the latter
always comes when the former comes. It follows from the definitions that it
occurs when conjunction ki implicates conjunction k j ; in other words, when
k j can be obtained from ki by deleting some of its letters. For example, event
abc′de′ realizes events ac′d and bc′e′, event ac′d realizes basic events a, c′, and
d, and so on. Hence, several different events can occur simultaneously, if only
they are not orthogonal.

3. SEQUENT AUTOMATON

The behavior of a digital system is defined by the rules of changing its state.
A standard form for describing such rules was suggested by the well-developed
classical theory of finite automata considering relations between the sets of
input, inner, and output states. Unfortunately, this model becomes inapplicable
for digital systems with many Boolean variables – hundreds and more. That is
why a new formal model called sequent automaton was proposed3−5. It takes
into account the fact that interaction between variables from W takes place
within comparatively small groups and has functional character, and it suggests
means for describing both the control unit of the system and the object of
control – the body of the system.
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Sequent automaton is a logical dynamic model defined formally as a system
S of sequents si . Each sequent si has the form fi |− ki and defines the cause-
effect relation between a complicated event represented by Boolean function fi

and a simple event ki represented by conjunction term ki ; |− is the symbol of
the considered relation. Suppose that function fi is given in disjunctive normal
form (DNF).

The expression fi |− ki is interpreted as follows: if at some moment function
fi takes value 1, then immediately after that ki must also become equal to 1 –
by this the values of all variables in ki are defined uniquely. In such a way a
separate sequent can present a definite demand to the behavior of the discrete
system; and the set S as a whole, the totality of such demands.

Note that the variables from X may appear only in fi and can carry informa-
tion obtained from some sensors; the variables from Y present control signals
and appear only in ki ; and the variables from Z are feedback variables that can
appear both in fi and ki .

The explication of “immediately after that” depends greatly on the accepted
time model. It is different for two kinds of behavior interpretation, which could
be used for sequent automata, both of practical interest: synchronous and asyn-
chronous.

We shall interpret system S mostly as a synchronous sequent automaton.
In this case the behavior of the automaton is regarded in discrete time t , the
sequence of moments t0, t1, t2, . . . , tl, tl+1, . . . . At a current transition from tl to
tl+1 all such sequents si for which fi = 1 are executed simultaneously, and as a
result all corresponding conjunctions ki turn to 1 (all their factors take value 1).
In that case “immediately after that” means “at the next moment.”

Suppose that if some of the inner and output variables are absent in conjunc-
tions ki of executed sequents, they preserve their previous values. That is why
the regarded sequent automata are called inertial 9. Hence a new state of the
sequent automaton (the set of values of inner variables), as well as new values
of output variables, is defined uniquely.

Sometimes the initial state of the automaton is fixed (for moment t0); then
the automaton is called initial. The initial state uniquely determines the set R of
all reachable states. When computing it, it is supposed that all input variables
are free; i.e., by any moment tl they could take arbitrary combinations of values.
Let us represent set R by characteristic Boolean function ϕ of inner variables,
which takes value 1 on the elements from R. In the case of noninitialized
automata it is reasonable to consider that ϕ = 1.

Under asynchronous interpretation the behavior of sequent automaton is
regarded in continuous time. There appear many more hard problems of
their analysis connected with races between variables presented in terms
ki , especially when providing the automaton with the important quality of
correctness.
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4. EQUIVALENCE TRANSFORMATIONS
AND CANONICAL FORMS

Let us say that sequent si is satisfied in some engineering system if event
fi is always followed by event ki and that sequent si realizes sequent s j if the
latter is satisfied automatically when the former is satisfied.

Affirmation 1. Sequent si realizes sequent s j if and only if f j ⇒ fi and ki ⇒ k j ,
where ⇒ is the symbol of formal implication.

For instance, sequent ab ∨ c|− uv′ realizes sequent abc |− u. Indeed, abc
⇒ ab ∨ c and uv′ ⇒ u.

If two sequents si and s j realize each other, they are equivalent. In that case
fi = f j and ki = k j .

The relations of realization and equivalence can be extended onto sequent
automata S and T . If S includes in some form all demands contained in T , then
S realizes T . If two automata realize each other, they are equivalent.

These relations are easily defined for elementary sequent automata Se and
T e, which consist of elementary sequents. The left part of such a sequent
presents an elementary event in BS(X ∪ Z ), and the right part presents a
basic event (for example, ab′cde′ |− q, where it is supposed that X ∪ Z =
{a, b, c, d, e}). Se realizes T e if it contains all sequents contained in T e. Se and
T e are equivalent if they contain the same sequents. It follows from this that
the elementary sequent automaton is a canonical form.

There exist two basic equivalencies formulated as follows.

Affirmation 2. Sequent fi ∨ f j |− k is equivalent to the pair of sequents fi |− k
and f j |− k.

Affirmation 3. Sequent f |− ki k j is equivalent to the pair of sequents f |− ki

and f |− k j .

According to these affirmations, any sequent can be decomposed into a
series of elementary sequents (which cannot be decomposed further). This
transformation enables to compare any sequent automata, checking them for
binary relations of realization and equivalence. Affirmations 2 and 3 can be used
for equivalence transformations of sequent automata by elementary operations
of two kinds: splitting sequents (replacing one sequent by a pair) and merging
sequents (replacing a pair of sequents by one, if possible).

Elementary sequent automaton is useful for theoretical constructions but
could turn out quite noneconomical when regarding some real control systems.
Therefore two more canonical forms are introduced.

The point sequent automaton Sp consists of sequents in which all left
parts represent elementary events (in BS(X ∪ Z )) and are different. The
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corresponding right parts show the responses. This form can be obtained from
elementary sequent automaton Se by merging sequents with equal left parts.

The functional sequent automaton S f consists of sequents in which all right
parts represent basic events in BS(Z ∪ Y ) and are different. So the sequents have
the form f 1

i |− ui or f 0
i |− u ′

i , where variables ui ∈ Z ∪ Y, and the corresponding
left parts are interpreted as switching functions for them: ON functions f 1

i and
OFF functions f 0

i . S f can be obtained from Se by merging sequents with equal
right parts.

Note that both forms S p and S f can also be obtained from arbitrary sequent
automata by disjunctive decomposition of the left parts of the sequents (for the
point sequent automaton) or conjunctive decomposition of the right parts (for
the functional one).

5. SIMPLE SEQUENT AUTOMATON

Now consider a special important type of sequent automata, a simple sequent
automaton. It is defined formally as a system S of simple sequents, expressions
k ′

i |− k ′′
i where both k ′

i and k ′′
i are elementary conjunctions representing simple

events. This form has a convenient matrix representation, inasmuch as every
elementary conjunction can be presented as a ternary vector.

Let us represent any simple sequent automaton by two ternary matrices:
a cause matrix A and an effect matrix B. They have equal number of rows
indicating simple sequents, and their columns correspond to Boolean variables –
input, output, and inner.

Example. Two ternary matrices

A =

a b c p q r⎛
⎜⎜⎜⎜⎝

1 − − − 0 −
− 0 1 1 − −
0 1 − − 1 1
− − 0 − − 0
− − 0 1 0 −

⎞
⎟⎟⎟⎟⎠ ,

B =

p q r u v w z⎛
⎜⎜⎜⎜⎝

− 1 − − 1 − 1
− − 0 1 − 0 −
1 0 − − 1 − 0
0 − − − − 1 −
− 1 1 0 − 1 −

⎞
⎟⎟⎟⎟⎠

represent the following system of simple sequents regarded as a simple sequent
automaton:

aq′ |− qvz,

b′cp |− r ′uw′,

a′bqr |− pq′vz′,

c′r ′ |− p′w,

c′pq′ |− qru′w .
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Here X = {a, b, c}, Y = {u, v, w, z}, Z = {p, q, r}.

It has been noted1 that, to a certain extent, simple sequents resemble the
sequents of the theory of logical inference introduced by Gentzen2. The latter
are defined as expressions

A1, . . . , An → B1, . . . , Bm,

which connect arbitrary logic formulae A1, . . . , An, B1, . . . , Bm and are inter-
preted as implications

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm .

The main difference is that any simple sequent k ′
i |− k

′′
i presents not a pure

logical but a cause-effect relation: event k
′′
i is generated by event k ′

i and appears
after it, so we cannot mix variables from k ′

i with variables from k
′′
i .

But sometimes we may discard this time aspect and consider terms k ′
i and k

′′
i

on the same level; for instance, when looking for stable states of the regarded
system. In that case, sequent k ′

i |− k
′′
i could be formally changed for implication

k ′
i → k

′′
i and subjected further to Boolean transformations, leading to equivalent

sets of Gentzen sequents and corresponding sets of standard disjuncts usual for
the theory of logical inference.

For example, the system of simple sequents

ab |− cd′
, a′b′ |− cd, a′b |− c

may be transformed into the following system of disjuncts

a′ ∨ b′ ∨ c, a′ ∨ b′ ∨ d ′, a ∨ b ∨ c, a ∨ b ∨ d, a ∨ b′ ∨ c.

6. APPLICATION IN LOGIC DESIGN

The model of simple sequent automaton is rather close to the well-known
technique of disjunctive normal forms (DNFs) used for hardware implemen-
tation of systems of Boolean functions. Indeed, each row of matrix A may be
regarded as a conjunctive term (product), and each column in B defines DNFs
for two switching functions of the corresponding output or inner variable: 1’s
indicate terms entering ON functions, while 0’s indicate terms which enter
OFF functions. Note that these DNFs can be easily obtained by transforming
the regarded automaton into S f -form and then changing expressions f 1

i |− ui

for u1
i = f 1

i and f 0
i |− u ′

i for u0
i = f 0

i . For the same example

p1 = a′bqr, p0 = c′r ′; q1 = aq ′ ∨ c′pq′, q0 = a′bqr; r 1 = c′pq′, r 0 = b′cp;

u1 = b′cp, u0 = c′pq′; v1 = aq′ ∨ a′bqr; w 1 = c′r ′ ∨ c′pq′, w 0 = b′cp;

z1 = aq′, z0 = a′bqr.
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Figure 1-1. PLA implementation of a simple sequent automaton.

It is seen from here that the problem of constructing a simple sequent au-
tomaton with minimum number of rows is similar to that of the minimization
of a system of Boolean functions in the class of DNFs known as a hard combi-
natorial problem. An approach to its solving was suggested in Refs. 7 and 8.

The considered model turned out to be especially convenient for represen-
tation of programmable logic arrays (PLAs) with memory on RS-flip-flops. It
is also used in methods of automaton implementation of parallel algorithms for
logical control described by expressions in PRALU11.

Consider a simple sequent automaton shown in the above example. It is
implemented by a PLA represented in Fig. 1-1. It has three inputs (a, b, c)
supplied with inverters (NOT elements) and four outputs (u, v , w , z) supplied
with RS flip-flops. So its input and output lines are doubled. The six input
lines are intersecting with five inner ones, and at some points of intersection
transistors are placed. Their disposition can be presented by a Boolean matrix
easily obtained from matrix A and determines the AND plane of the PLA. In a
similar way the OR plane of the PLA is found from matrix B and realized on
the intersection of inner lines with 14 output lines.
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7. CHECKING FOR CORRECTNESS

In general, correctness is a quality of objects of some type, defined as the
sum of several properties, which are considered reasonable and necessary10.

Let us enumerate such properties first for synchronous sequent automata.
Evidently, for any sequent si that carries some information, inequalities fi 	= 0
and ki 	= 1 should hold, to avoid trivial sequents.

Sequents si and sj are called parallel if they could be executed simultane-
ously. A necessary and sufficient condition of parallelism for a noninitialized
automaton is relation fi ∧ f j 	= 0 for the initialized relation fi ∧ f j ∧ ϕ 	= 0.

First of all, any sequent automaton should be consistent; that is very impor-
tant. This means that for any parallel sequents si and s j , relation ki ∧ k j 	= 0
must hold. Evidently, this condition is necessary, inasmuch as by its vio-
lation some variable exists that must take two different values, which is
impossible.

The second quality is not so necessary for sequent automata as the first
one, but it is useful. It is irredundancy. A system S is irredundant if it is
impossible to remove from it a sequent or only a literal from a sequent without
violating the functional properties of the system. For example, it should not
have “nonreachable” sequents, such as si for which fi ∧ ϕ = 0.

It is rather easy to check a simple sequent automaton for consistency. An
automaton represented by ternary matrices A and B is obviously consistent if
for any orthogonal rows in matrix B the corresponding rows of matrix A are
also orthogonal. Note that this condition is satisfied in Example.

One more useful quality called persistency is very important for asyn-
chronous sequent automata. To check them for this quality it is convenient
to deal with the functional canonical form.

The point is that several sequents can be executed simultaneously and if
the sequent automaton is asynchronous, these sequents (called parallel) could
compete, and the so-called race could take place. The automaton is persistent
if the execution of one of the parallel sequents does not destroy the conditions
for executing other sequents.

Affirmation 4. In a persistent asynchronous sequent automaton for any pair of
parallel sequents

f 1
i |− ui and f 1

j |− u j ,

f 0
i |− u ′

i and f 1
j |− u j ,

f 1
i |− ui and f 0

j |− u ′
j ,

f 0
i |− u ′

i and f 0
j |− u ′

j ,
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the corresponding relation
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i u
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,
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′
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)(
f 0

j : u ′
i u j

)
,

should hold, where expression f : k means the result of substitution of those
variables of function f that appear in the elementary conjunction k by the values
satisfying equation k = 1.

The proof of this affirmation can be found in Ref. 9.
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FORMAL LOGIC DESIGN OF
REPROGRAMMABLE CONTROLLERS

Marian Adamski
University of Zielona Góra, Institute of Computer Engineering and Electronics,
ul. Podgorna 50, 65-246 Zielona Góra, Poland; e-mail: M.Adamski@iie.uz.zgora.pl

Abstract: The goal of the paper is to present a formal, rigorous approach to the design of
logic controllers, which are implemented as independent control units or as cen-
tral control parts inside modern reconfigurable microsystems. A discrete model of
a dedicated digital system is derived from the control interpreted Petri net behav-
ioral specification and considered as a modular concurrent state machine. After
hierarchical and distributed local state encoding, an equivalent symbolic descrip-
tion of a sequential system is reflected in field programmable logic by means of
commercial CAD tools. The desired behavior of the designed reprogrammable
logic controller can be validated by simulation in a VHDL environment.

Key words: Petri nets; logic controllers; hardware description languages (HDL); field pro-
grammable logic.

1. INTRODUCTION

The paper covers some effective techniques for computer-based synthesis
of reprogrammable logic controllers (RLCs), which start from the given inter-
preted Petri net based behavioral specification. It is shown how to implement
parallel (concurrent) controllers1,4,8,14 in field programmable logic (FPL). The
symbolic specification of the Petri net is considered in terms of its local state
changes, which are represented graphically by means of labeled transitions,
together with their input and output places. Such simple subnets of control in-
terpreted Petri nets are described in the form of decision rules – logic assertions
in propositional logic, written in the Gentzen sequent style1,2,12.

Formal expressions (sequents), which describe both the structure of the net
and the intended behavior of a discrete system, may be verified formally in
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the context of mathematical logic and Petri net theory. For professional valida-
tion by simulation and effective synthesis, they are automatically transformed
into intermediate VHDL programs, which are accepted by industrial CAD
tools.

The main goal of the proposed design style is to continuously preserve
the direct, self-evident correspondence between modular interpreted Petri nets,
symbolic specification, and all considered hierarchically structured implemen-
tations of modeled digital systems, implemented in configurable or reconfig-
urable logic arrays.

The paper presents an extended outline of the proposed design methodology,
which was previously presented in DESDes’01 Conference Proceedings3. The
modular approach to specification and synthesis of concurrent controllers is ap-
plied, and a direct hierarchical mapping of Petri nets into FPL is demonstrated.
The author assumes that the reader has a basic knowledge of Petri nets5,9,10,13,14.
The early basic ideas related with concurrent controller design are reported in
the chapter in Ref. 1. The author’s previous work on reprogrammable logic con-
trollers has been summarized in various papers2,4,6,8. Several important aspects
of Petri net mapping into hardware are covered in books3,13,14. The implementa-
tion of Petri net based controllers from VHDL descriptions can be found in Refs.
2, 6, and 13. Some arguments of using Petri nets instead of linked sequential
state machines are pointed in Ref. 9.

2. CONCURRENT STATE MACHINE

In the traditional sequential finite state machine (SFSM) model, the logic
controller changes its global internal states, which are usually recognized by
their mnemonic names. The set of all the possible internal states is finite and
fixed. Only one current state is able to hold (be active), and only one next
state can be chosen during a particular global state change. The behavioral
specification of the modeled sequential logic controller is frequently given as a
state graph (diagram) and may be easily transformed into state machine–Petri
net (SM-PN), in which only one current marked place, representing the active
state, contains a token. In that case, the state change of controller is always
represented by means of a transfer transition, with only one input and only
one output place. The traditional single SFSM based models are useful only
for the description of simple tasks, which are manually coordinated as linked
state machines with a lot of effort9. The equivalent SFSM model of highly
concurrent system is complicated and difficult to obtain, because of the state
space explosion.

In the modular Petri net approach, a concurrent finite state machine (CFSM)
simultaneously holds several local states, and several local state changes can
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occur independently and concurrently. The global states of the controller, in-
cluded into the equivalent SFSM model, can be eventually deduced as maximal
subsets of the local states, which simultaneously hold (configurations). They
correspond to all different maximal sets of marked places, which are obtained
during the complete execution of the net. They are usually presented in compact
form as vertices in Petri net reachability graph5,10,13. It should be stressed that the
explicitly obtained behaviorally equivalent transition systems are usually com-
plex, both for maintenance and effective synthesis. The methodology proposed
in the paper makes it possible to obtain a correctly encoded and implemented
transition system directly from a Petri net, without knowing its global state
set.

The novel tactic presented in this paper is based on a hierarchical decompo-
sition of Petri nets into self-contained and structurally ordered modular subsets,
which can be easily identified and recognized by their common parts of the inter-
nal state code. The total codes of the related modular Petri net subnets, which
are represented graphically as macroplaces, can be obtained by means of a
simple hierarchical superposition (merging) of appropriate codes of individual
places. On the other hand, the code of a particular place includes specific parts,
which precisely define all hierarchically ordered macroplaces, which contain
the considered place inside. In such a way any separated part of a behavioral
specification can be immediately recognized on the proper level of abstraction
and easily found in the regular cell structure (logic array). It can be efficiently
modified, rejected, or replaced during the validation or redesign of the digital
circuit.

Boolean expressions called predicate labels or guards depict the external
conditions for transitions, so they can be enabled. One of enabled transition
occurs (it fires). Every immediate combinational Moore type output signal y is
linked with some sequentially related places, and it is activated when one of
these places holds a token. Immediate combinational Mealy type output signals
are also related with proper subsets of sequentially related places, but they also
depend on relevant (valid) input signals or internal signals. The Mealy type
output is active if the place holds a token and the correlated logic conditional
expression is true.

The implemented Petri net should be determined (without conflicts), safe, re-
versible, and without deadlocks5,7. For several practical reasons the synchronous
hardware implementations of Petri nets4,6,7 are preferred. They can be realized
as dedicated digital circuits, with an internal state register and eventual output
registers, which are usually synchronized by a common clock. It is considered
here that all enabled concurrent transitions can fire independently in any order,
but nearly immediately.

In the example under consideration (Fig. 2-1), Petri net places P = {p1–
p9} stand for the local states {P1–P9} of the implemented logic controller. The
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Figure 2-1. Modular, hierarchical and colored control interpreted Petri net.

Petri net transitions T = {t1–t8} symbolize all the possible local state changes
{T1–T9}. The Petri net places are hierarchically grouped as nested modular
macroplaces MP0-MP7. The Petri net describes a controller with inputs x0–x6
and outputs y0–y6. The controller contains an internal state register with flip-
flops Q1–Q4. The state variables structurally encode places and macroplaces
to be implemented in hardware.

The direct mapping of a Petri net into field programmable logic (FPL) is
based on a self-evident correspondence between a place and a clearly defined
bit-subset of a state register. The place of the Petri net is assigned only to the
particular part of the register block (only to selected variables from internal
state register Q1–Q4). The beginning of local state changes is influenced by the
edge of the clock signal, giving always, as a superposition of excitations, the
predicted final global state in the state register. The high-active input values are
denoted as xi, and low-active input values as /xi.

The net could be SM-colored during the specification process, demonstrating
the paths of recognized intended sequential processes (state machines subnets).
These colors evidently help the designer to intuitively and formally validate the
consistency of all sequential processes in the developed discrete state model4.
The colored subnets usually replicate Petri net place invariants. The invariants
of the top-level subnets can be hierarchically determined by invariants of its
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subnets. If a given net or subnet has not been previously colored by a designer
during specification, it is possible to perform the coloring procedure by means
of analysis of configurations. Any two concurrent places or macroplaces, which
are marked simultaneously, cannot share the same color. It means that coloring
of the net can be obtained by coloring the concurrency graph, applying the
well-known methods taken from the graph theory1,2. For some classes of Petri
nets, the concurrency relation can be found without the derivation of all the
global state space4,7,13. The colors ([1], [2]), which paint the places in Fig. 2-1,
separate two independent sequences of local state changes. They are easy to
find as closed chains of transitions, in which selected input and output places
are painted by means of identical colors.

The equivalent interpreted SM Petri net model, derived from equivalent
transition system description (interpreted Petri net reachability graph of the
logic controller), is given in Fig. 2-2.

The distribution of Petri net tokens among places, before the firing of any
transition, can be regarded as the identification of the current global state M.
Marking M after the firing of any enabled transition is treated as the next global
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Figure 2-2. Global states of control interpreted Petri net. Transition system modeled as
equivalent state machine Petri net.
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state @M. From the present global internal state M , the modeled controller
goes to the next internal global state @M, generating the desired combinational
immediate output signals y and registered @y output signals.

There are 9 places describing global states M1–M9 and 13 transitions be-
tween 13 pairs of global states. Such an implicit formal structure really exists in
hardware, although its internal structure could be unknown, because eventually
deduced global state codes are immediately read from the state register as a
consistent superposition of local state codes. Since a Moore-type output should
be stable during the entire clock period, it can also be produced as a registered
Moore-type output @y. The registered Moore-type output signals should be
predicted before the local state changes.

3. LOGIC CONTROLLER AS ABSTRACT
REASONING SYSTEM IMPLEMENTED
IN DIGITAL HARDWARE

The well-structured formal specification, which is represented in the human-
readable language, has a direct impact on the validation, formal verification,
and implementation of digital microsystems in FPL. The declarative, logic-
based specification of the Petri net can increase the efficiency of the concurrent
(parallel) controller design. The proposed model of a concurrent state machine
can be considered within a framework of the concept of sequent parallel au-
tomaton, developed by Zakrevskij3,14. Here, a control automaton, with discrete
elementary states and composite super-states, is treated as a dynamic inference
system, based on Gentzen sequent logic1,2,12.

After analysis of some behavioral and structural properties of the Petri
net5,7,10,13,14, a discrete-event model is related with a knowledge-based, textual,
descriptive form of representation. The syntactic and semantic compatibility
between Petri net descriptions and symbolic conditional assertions are kept as
close as possible. The symbolic sequents-axioms may include elements, taken
from temporal logic, especially operator “next” @11. Statements about the dis-
crete behavior of the designed system (behavioral axioms) are represented by
means of sequents-assertions, forming the rule-base of the decision system,
implemented in reconfigurable hardware. Eventual complex sequents are for-
mally, step by step, transformed into the set of the equivalent sequent-clauses,
which are very similar to elementary sequents1,3,14. The simple decision rules,
which are transformed into reprogrammable hardware, can be automatically
mapped into equivalent VHDL statements on RTL level2,6,13. The next steps of
design are performed by means of professional CAD tools.
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The implicit or explicit interpreted reachability graph of the net is considered
here only as a conceptual supplement: compact description of an equivalent
discrete transition system (Fig. 2-2), as well as Kripke interpretation structure11

for symbolic logic conditionals.

4. STRUCTURED LOCAL STATE ENCODING

The simplest technique for Petri net place encoding is to use one-to-one
mapping of places onto flip-flops in the style of one-hot state assignment. In
that case, a name of the place becomes also a name of the related flip-flop.
The flip-flop Qi is set to 1 if and only if the particular place pi holds the
token. In such a case it is a popular mistake to think that other state variables
Qj, . . . ,Qk have simultaneously “don’t care values.” It is evidently seen from the
reachability graph (Fig. 2-2) that the places from the same P-invariant, which
are sequentially related with the considered place pi, do not hold tokens, and
consequently all flip-flops used for their encoding have to be set to logical 0. On
the other hand, the places from the same configuration but with different colors,
which are concurrently related with the selected place pi, have strictly defined,
but not necessarily explicitly known, markings. The only way of avoiding such
misunderstanding of the concurrent one-hot encoding is the assumption that
the considered place, marked by token, can be recognized by its own, private
flip-flop, which is set to logical 1, and that signals from other flip-flops from
the state register are always fixed but usually unknown.

In general encoding, places are recognized by their particular coding
conjunctions1, which are formed from state variables, properly chosen from the
fixed set of flip-flop names {Q1, Q2, . . . , Qk}. The registered output variables
{Y} can be eventually merged with the state variable set {Q} and economically
applied to the Petri net place encoding as local state variables. For simplicity,
the encoded and implemented place pi is treated as a complex signal Pi.

The local states, which are simultaneously active, must have nonorthogonal
codes. It means that the Boolean expression formed as a conjunction of coding
terms for such concurrent places is always satisfied (always different from
logical 0). The configuration of concurrent places gives as superposition of
coding conjunctions a unique code of the considered global state.

The local states, which are not concurrent, consequently belong to at least
one common sequential process (Figs. 2-2, 2-3). Their symbols are not included
in the same vertex of the reachability graph, so they may have orthogonal codes.

The code of a particular place or macroplace is represented by means of a
vector composed of {0, 1, . . . , ∗}, or it is given textually as a related Boolean
term. The symbols of the values for logic signals 0, 1, and “don’t care” have the
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usual meanings. The symbol * in the vector denotes “explicitly don’t know”
value (0 or 1, but no “don’t care”). In expressions, the symbol / denotes the
operator of logic negation, and the symbol * represents the operator of logic
conjunction. An example3 of a heuristic hierarchical local state assignment [Q1,
Q2, Q3, Q4] is as follows:

P1[1,2] = 0 - - - QP1= /Q1
P2[1] = 1 0 0 * QP2= Q1*/Q2*/Q3
P3[1] = 1 0 1 * QP3= Q1*/Q2*Q3
P4[2] = 1 0 * 0 QP4= Q1*/Q2*/Q4
P5[2] = 1 0 * 1 QP5= Q1*/Q2*Q4
P6[1] = 1 1 0 * QP6= Q1*Q2*/Q3
P7[2] = 1 1 * 0 QP7= Q1*Q2*/Q4
P8[1] = 1 1 1 * QP8= Q1*Q2*Q3
P9[2] = 1 1 * 1 QP9= Q1*Q2*Q4

The global state encoding is correct if all vertices of the reachability graph
have different codes. The total code of the global state (a vertex of the reachabil-
ity graph) can be obtained by merging the codes of the simultaneously marked
places. Taking as an example some global states (vertices of the reachability
graph; Fig. 2-2), we obtain

QM3 = QP3 ∗ QP4 = Q1 ∗/Q2 ∗ Q3 ∗/Q4;

QM4 = QP2 ∗ QP5 = Q1 ∗/Q2 ∗/Q3 ∗ Q4.

5. MODULAR PETRI NET

Modular and hierarchical Petri nets can provide a unified style for the de-
sign of logic controllers, from an initial behavioral system description to the
possibly different hierarchical physical realizations. The concurrency relation
between subnets can be partially seen from the distribution of colors. Colors5

are attached explicitly to the places and macroplaces, and implicitly to the
transitions, arcs, and tokens2,3,4. Before the mapping into hardware, the Petri
net is hierarchically encoded. The Petri net from Fig. 2-2 can be successfully
reduced to one compound multiactive macroplace MP0. The colored hierar-
chy tree in Fig. 2-3 graphically represents both the hierarchy and partial con-
currency relations between subnets (modules). It contains a single ordinary
monoactive place P1[1,2], coded as QP1 = /Q1, and a multiactive double-
macroplace MP7[1,2], coded as QMP7 = Q1, which stands for other hierarchi-
cally nested subnets, from lower levels of abstraction containing places p1–p9.
The macroplace MP7[1,2] is built of the sequentially related macroplaces
MP5[1,2] and MP6[1,2], which are coded respectively as Q1*/Q2 and Q1*Q2.
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It should be mentioned that parallel macroplaces may obtain exactly the
same top-level codes. The macroplace MP5[1,2] consists of two parallel
macroplaces MP1[1] and MP2[2], which are not recognized by different con-
junctions inside MP5. The macroplace MP6[1,2] appears as an abstraction of
two other parallel macroplaces MP3[1] and MP4[2]. The macroplaces MP1[1],
MP2[2], MP3[1], and MP4[2] are directly extracted from the initial Petri net
as elementary sequential subnets.

The concurrency relation between subnets, which belong to the same
macroplace, can be expressed graphically by means of additional double or
single lines (Fig. 2-3). The code of the macroplace or place on a lower level of
hierarchy is obtained by means of superposition of codes, previously given to
all macroplaces to which the considered vertex belongs hierarchically. Taken
as an example, the code of place p2 is described as a product term QP2 =
Q1*/Q2*/Q3.

6. PETRI NET MAPPING INTO LOGIC
EXPRESSIONS

The logic controller is considered as an abstract reasoning system (rule-
based system) implemented in reconfigurable hardware. The mapping between
inputs, outputs, and local internal states of the system is described in a formal
manner by means of logic rules (represented as sequents) with some temporal
operators, especially with the operator “next” @1,2. As an example of a basic
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style of the textual controller description, the transition-oriented declarative
specification is presented.

The declarative style of description is close to well-known production rules,
which are principal forms of Petri net specification in LOGICIAN1, CONPAR6,
PARIS4,8, and PeNCAD2,3. It should be noted that here the names of transitions
T1, T2, . . . , T8 serve only as decision rule labels, keeping the easy correspon-
dence between Petri net transitions and their textual logic descriptions. The
symbol |− denotes “yield,” the symbol * stands for the logic conjunction oper-
ator, and / stands for negation.

T1[1,2] : P1[1,2] * X0 | -@P2[1] *@P4[2];
T2[1] : P2[1] * X1 | -@P3[1];
T3[2] : P4[2] * X3 | -@P5[2];
T4[1,2] : P3[1] * P5[1] | -@P6 * @P7;
T5[1] : P6[1] * X5*X6 | -@P8[1];
T6[2] : P7[2] * /X2*/X4| -@P9[2];
T7[1] : P8[1] * /X5 | -@P6[1];
T8[1,2] : P6[1] *P9[2] * /X6| -@P1[1,2].

The immediate combinational Moore-type output signals Y0–Y6, depend
directly only on appropriate place markings:

P1[1,2]| -Y0; P2[1]| -Y1; P4[2]| -Y2; P7[2]| -Y3*Y4;
P8[1]| -Y5;P9[2] | -Y6.

Instead of combinational, intermediate Moore-type outputs Y0–Y6, the val-
ues of next registered outputs @Y0–@Y6 could be predicted in advance and
included directly in the initial rule-based specification. The transition-oriented
specification of the controller, after the substitution of encoding terms and next
values of changing outputs, would look as follows:

T1: /Q1*X0 | - @Q1*@/Q2*@/Q3*@/Q4*/@Y0*@Y1*@Y2;
T2: Q1*/Q2*/Q3*X1 | - @Q1*@/Q2*@Q3*@/Y1;
(...)
T7: Q1*Q2*Q3*/X5 | -@Q1*@Q2*@/Q3*@/Y5;
T8: Q1*Q2*/Q3*Q4*/X6 | -@/Q1*@/Y6* @Y0.

In FPGA realizations of concurrent state machines with D flip-flops, it is
worth introducing and directly implementing the intermediate binary signals
{T1, T2, . . . } for detecting in advance the enabled transitions, which fire together
with the next active edge of the clock. This way of design is especially suitable
when relatively small FPGA macrocells might be easily reconfigured. In such
Martin Bolton’s style, the subset of simultaneously activated transitions keeps
the logic signal 1 on its appropriate transition status lines. Simultaneously, the
complementary subset of blocked transitions is recognized by logic signal 0 on
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its transition status lines. The great advantage of using transition status lines
is the self-evident possibility of reducing the complexity of the next state and
the output combinational logic. The registered output signals together with the
next local state codes may be generated in very simple combinational structures,
sharing together several common AND terms.

The simplified rule-based specification, especially planned for controllers
with JK state and output registers, on the right side of sequents does not contain
state coding signals, which keep their values stable, during the occurrence of
transition1. Taking into account both the concept of transition status lines and
introducing into specification only the changing registered Moore-type outputs
signals, the specification may be rewritten as follows:

/Q1 * X0 | -T1;
T1| -@Q1*@/Q2*@/Q3*@/Q4*/@Y0*@Y1*@Y2;

(...)
Q1*Q2*Q3*/X5 | -T7;

T7 | - @/Q3*@/Y5;
Q1*Q2*/Q3*Q4*/X6 | -T8;

T8| - @/Q1*/@Y6*@Y0.

The translation of decision rules into VHDL is straightforward and can be
performed as described in Refs. 2 and 6.

7. CONCLUSIONS

The paper presents the hierarchical Petri net approach to synthesis, in which
the modular net is structurally mapped into field programmable logic. The hier-
archy levels are preserved and related with some particular local state variable
subsets. The proposed state encoding technique saves a number of macrocells
and secures a direct mapping of Petri net into an FPL array. A concise, under-
standable specification can be easily locally modified.

The experimental Petri net to VHDL translator has been implemented on
the top of standard VHDL design tools, such as ALDEC Active-HDL. VHDL
syntax supports several conditional statements, which can be used to describe
the topology and an interpretation of Petri nets.

ACKNOWLEDGMENT

The research was supported by the Polish State Committee for Scientific
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University of Zielona Góra, Institute of Computer Engineering and Electronics, ul. Podgórna
50, 65-246 Zielona Góra, Poland; e-mail: G.Andrzejewski@iie.uz.zgora.pl

Abstract: This paper presents a model of formal specification of reactive systems. It is a kind
of an interpreted Petri net, extended by important properties: hierarchy, history,
and time dependencies. The syntax definition is introduced and the principles
of graphical representation drawing are characterized. Semantics and dynamic
behavior are shown by means of a little practical example: automatic washer
controller.

Key words: reactive system; Petri net; formal specification.

1. INTRODUCTION

Reactive systems strongly interact with the environment. Their essence con-
sists in appropriate control signals shaping in response to changes in communi-
cation signals. Control signals are usually called output signals, and communi-
cation signals input signals. It happens very frequently that a response depends
not only on actual inputs but on the system’s history too. The system is then
called an automaton and its basic model is known as the finite state machine
(FSM). But in a situation in which the system is more complicated, this model
may be difficult to depict. The problem may be solved by using a hierarchy in
which it is possible to consider the modeled system in a great number of abstrac-
tion layers. Such models as Statecharts or SyncCharts are the FSM expansions
with a hierarchy1,7,8.

Concurrency is a next important problem. Very often a situation occurs in
which some processes must work simultaneously. In practice, it is realized by
a net of related automata synchronized by internal signals. It is not easy to
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formally verify such a net because of necessity of separate analysis of each
automaton4,13.

A Petri net is a model in which concurrency is its natural property. Inter-
preted Petri nets are especially useful for modeling reactive systems. The exist-
ing apparatus of formal verification places this model very high among others
in supporting concurrency. There exist many works in which the methodology
of creating hierarchical nets is proposed6,9,10,11,12,14. But the models support
only selected properties, such as the structure hierarchy or descriptions of time
dependencies. In general they are too complicated for small microsystem real-
izations (object-oriented models).

In this paper, a different model of a hierarchical Petri net (HPN) is pro-
posed, in which it is possible to describe strongly reactive systems at a digital
microsystem realization platform. The model was partially described in Refs. 2
and 3.

2. SYNTAX

The following nomenclature is used: capital letters from the Latin alphabet
represent names of sets, whereas small letters stand for elements of these sets.
Small letters from the Greek alphabet represent functions belonging to the
model. Auxiliary functions are denoted by two characteristic small letters from
the Latin alphabet.

Def. 1 A hierarchical Petri net (HPN) is shown as a tuple:

HPN = (P, T, F, S, -T , χ, ψ, λ, α, ε, τ), (1)

where
1. P is a finite nonempty set of places. In “flat” nets with places the capacity

function κ : P → N ∪ (∞) describes the maximum number of tokens in
place p. For reactive systems the function equals 1; for each place p ∈
P, κ(p) = 1.

2. T is a finite nonempty set of transitions. A sum of sets P ∪ T will be called
a set of nodes and described by N .

3. F is a finite nonempty set of arcs, such that F = Fo ∪ Fe ∪ Fi, where
Fo : Fo ⊂ (P × T ) ∪ (T × P) and is called a set of ordinary arcs, Fe : Fe ⊂
(P × T ) and is called a set of enabling arcs, and Fi : Fi ⊂ (P × T ) and is
called a set of inhibit arcs. In flat nets the weight function 	 : F → N
describes the maximum number of tokens that can be moved at the same
time through arc f . For reactive systems ∀ f ∈ F, 	(p) ≤ 1. According to
this, an extra-specification of arcs is possible: ∀ f ∈ Fo, 	( f ) = 1; ∀ f ∈
Fe ∪ Fi, 	( f ) = 0.
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4. S is a finite nonempty set of signals, such that S = X ∪ Y ∪ L , where X, Y ,
and L mean sets of input, output, and internal signals, respectively.

5. -T is a discrete time scale, which is a set of numbers assigned to discrete
values of time, sorted by an order relation.

6. χ : P → 2N is a hierarchy function, describing a set of immediate subn-
odes of place p. The expression χ∗ denotes a transitive-reflexive clo-
sure of χ function, such that for each p ∈ P the following predicates
hold:

p ∈ χ∗(p),

χ(p) ∈ χ∗(p),

p′ ∈ χ∗(p) ⇒ χ(p′) ⊆ χ∗(p).

7. ψ : P → {true, false} is a Boolean history function, assigning a history
attribute to every place p, such that χ(p) 	= Ø. For basic places the function
is not defined.

8. λ : N → 2S is a labeling function, assigning expressions created from ele-
ments of set S to nodes from N . The following rules are suggested: places
may be labeled only by subsets of Y ∪ L (a label action means an action as-
signed to a place); the label of transition may be composed of the following
elements:
cond – created on set X ∪ L ∪ {false, true}, being a Boolean expression
imposed as a condition to transition t and generated by operators not, or,
and and; the absence of cond label means cond = true;
abort – created as a cond but standing in a different logical relation with
respect to general condition for transition t enabling, represented graphi-
cally by # at the beginning of expression; absence of abort label means
abort = false;
action – created on set Y ∪ L , meaning action assigned to transition t , rep-
resented graphically by / at the beginning of expression.

9. α : P →{true, false} is an initial marking function, assigning the attribute
of an initial place to every place p ∈ P . Initial places are graphically dis-
tinguished by a dot (mark) in circles representing these places.

10.ε: P → {true, false} is a final marking function, assigning the attribute of a
final place to every place p ∈ P . Final places are graphically distinguished
by × inside circles representing these places.

11.τ : N → -T is a time function, assigning numbers from the discrete scale of
time to each element from the set of nodes N .

The operation of a net is determined by movement of tokens. The rules
of their movement are defined by conditions of transition enabling and action
assigned to transition firing.
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Let -t0 be an activation moment of node n ∈ N . The function τ(n) assigns
a number to node n at the moment -t0 : τ(n, -t0) = -t, where -t ∈ -T . In further
instants the number is decremented, and after time -t it accomplishes value 0:
τ(n, -t0 + -t) = 0. The symbol τ(n) = 0 describes the function at the moment,
in which it equals 0.

Def. 2 Pend
p is a set of final places of a subnet assigned to macroplace p,

such that

∀
p′∈χ (p)

ε(p′) = true ⇒ p′ ∈ Pend
p . (2)

Def. 3 ξ : P → P is a function of the set of final places, such that for
macroplace p it returns its set of final places:

ξ(p) = Pend
p . (3)

The expression ξ∗ denotes a transitive-reflexive closure of ξ function, such
that for each p ∈ P and χ(p) 	= Ø the following predicates hold:

p ∈ ξ∗(p),

ξ(p) ∈ ξ∗(p),

p′ ∈ ξ∗(p) ⇒ ξ(p′) ⊆ ξ∗(p).

Def. 4 A final marking of a subnet is a marking that contains all final places
of that subnet.

The conditions of transition t enabling:

∃
p∈P

la(t) = p ⇒ ac(p) = true (4-a)

∀
p∈P in(o)

t ∪pin(e)
t

ac(p) = true (4-b)

∀
p∈P in(i)

t

ac(p) = false (4-c)

cond(t) = true (4-d)

∀
p∈P in(o)

t

χ(p) 	= Ø ⇒ ∀
p′∈ξ∗(p)

(ac(p′) = true oraz τ(p′) = 0) (4-e)

∀
p∈P in(o)

t

τ(p) = 0 (4-f)

abort(t) = true (4-g)

Note: From all conditions the following logical expression can be com-
posed (the general condition): a∗b∗c∗(d∗e∗f + g), which means a possibility of
enabling transition t without the need to satisfy conditions d, e, and f if g is
true. This situation is known as preemption.
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The actions assigned to transition t firing:

∀
p∈P in(o)

t

ac(p) := false (5-a)

∀
p∈P in(o)

t

χ (p) 	= Ø ⇒ ∀
p′∈χ∗(p)

ac(p′) := false (5-b)

∀
p∈P in(o)

t

∀
s∈action(p)

s := false (5-c)

∀
p∈P in(o)

t

χ(p) 	= Ø ⇒ ∀
p′∈χ∗(p)

∀
s∈action(p′)

s := false (5-d)

τ(t) = 0 ⇒ ∀
p∈Pout

t

ac(p) := true (5-e)

∀
p∈Pout

t

χ(p) 	= Ø ⇒
(

∀
p′∈χ∗(p)

ac(la(p′)

)
= true oraz

ψ(la(p′)) = false ⇒ ac(p′) := α(p′)) (5-f)

∀
p∈Pout

t

χ(p) 	= Ø ⇒
(

∀
p′∈χ∗(p)

ac(la(p′)

)
= true ∧ ψ(la(p′)) = true

∧ ∃
p′′∈ξ(la(p′))

ac(p′′) = false ⇒ ac(p′) := ac(p′, -te)) (5-g)

∀
p∈Pout

t

χ (p) 	= Ø ⇒
(

∀
p′∈χ∗(p)

ac(la(p′)

)
= true ∧ ψ(la(p′)) = true

∧ ∀
p′′∈ξ(la(p′))

ac(p′′) = true ⇒ ac(p′) := α(p′)) (5-h)

∀
p∈Pout

t

∀
s∈action(p)

s := true (5-i)

∀
p∈Pout

t

χ(p) 	= Ø ⇒
(

∀
p′∈χ∗(p)

ac(p′) = true ⇒ ∀
s∈action(p′)

s := true

)
(5-j)

τ(t, ι0) = η ⇒ ∀
s∈action(t)

s := true w przedziale < ι0, ι0 + η + 1 > (5-k)

where ac(p, -te) is the state of possession (or not) of a token by place p at an
instant, in which the token left place la(p).

Note: Actions e–j are performed when τ(t) = 0. Action k is performed
during all activity time of transition t .

The most important ideas are defined additionally:
Let be given a hierarchical Petri net and place p from the set of places of

this net.

Def. 5 A place p is called a basic place if χ(p) = Ø.

Def. 6 A place p is called a macroplace if it isn’t a basic place: χ(p) 	= Ø.
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Def. 7 A set of input places of transition t is called P in(o)
t , such that

P in(o)
t = {p∈ P : (p, t) ∈ Fo}.

Def. 8 A set of enabling places of transition t is called P in(e)
t , such that

P in(e)
t = {p∈ P : (p, t) ∈ Fe}.

Def. 9 A set of prohibit places of transition t is called P in(i)
t , such that

P in(i)
t = {p∈ P : (p, t) ∈ Fi}.

Def. 10 A set of output places of transition t is called Pout
t , such that

Pout
t = {p∈ P : (t, p) ∈ Fo}.

Def. 11 The function ac: P → {true, false} is called a place activity function
and it assigns true to each place that has a token, and false otherwise.

Def. 12 The place p is the lowest ancestor of node n′, such that
n′ ∈ χ(p), which is described by la(n′) = p.

Def. 13 Let N i be a set of nodes assigned to a macroplace p by the hierarchy
function N i = χ(p), and let F i be a set of all arcs joining the nodes belonging
to N i. Then Z i is a subnet assigned to macroplace p, such that Z i = N i + F i.
All subnets assigned to macroplaces are required to be disjoint (no common
nodes and arcs).

3. SEMANTICS

3.1 Synchronism

One of the basic assumptions accepted in the HPN model is synchronism.
Changes of internal state of a net follow as a result of inputs changes in strictly
appointed instants given by discrete scale of time. It entails a possibility of a
simultaneous execution of more than one transition (if the net fulfills the per-
sistent property). Additionally, it makes possible to simplify formal verification
methods and practical realization of the model5.

3.2 Hierarchy

The hierarchy property is realized by a net decomposition, in which other
nets are coupled with distinguished places. These places are called macroplaces,
and the assigned nets are called subnets. A subnet is a basic net if no macroplaces
are assigned to it. A subnet is a final net if it contains no macroplaces. Mark-
ing of a macroplace is an activate condition of the corresponding subnet.
Such a concept allows not only much clearer projects with high complication
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structures but also testing of selected behavioral properties for each subnet
separately.

3.3 History

Often a situation occurs in which an internal state on selected hierarchy
levels must be remembered. In an HPN it is realized throughout, ascribing the
history attribute {H} to a selected macroplace. With a token leaving macro,
all token locations in the adequate subnet are remembered. And after renewed
macro activation, tokens are inserted to lately active places.

For the convenience of the user, a possibility of ascribing the history attribute
to all subordinated nets is included. Operator {H ∗} is used.

3.4 System reaction

There exists a possibility of assigning labels to the set of nodes. The system
is able to perform given actions described by the labels; e.g., testing input
conditions on the input signals set and setting (or clearing) output signals in
appropriate time moments.

3.5 Time parameters

Time parameters are associated with nodes (see function τ(n) in Def. 1).
Ascribing time -t from the discrete scale of time to place p determines the mini-
mum activity time of this place. This means that the output transition of place p
will be enabled only after time -t, beginning at the moment of activation of place
p. The time parameter associated with transition determines the activity time
of this transition, and it means that after removing tokens from all input places
of transition t , insertion of tokens to all output places ensues only after time -t.
This solution provides in practice great possibilities in describing strongly time
dependent systems.

3.6 Graphical representation

An important feature of the model is its user-friendly graphical representa-
tion. In general, it is an oriented graph with two kinds of nodes connected by
arcs. On the basic layer, graphical symbols used in an HPN are the same as
in the flat interpreted Petri nets. Places are represented by arcs, transitions by
thick beams, and markers (tokens) by dots inside the places. The macroplace
and its expansion are presented in Fig. 3-1. Macroplace MP has a deep history
attribute. The subnet assigned to MP is a compound of macroplace P1 and basic
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P1

L

name of macro history attribute

MP

MP {H*

P2 P3

#x1

body of macro

local signals

}

Figure 3-1. A macroplace with assigned expansion.

places P2 and P3. P1 is an initial place, and places P2 and P3 are final places.
Macroplace P1 can be deprived of activity by means of abort-condition ×1.

There is a simple example showing a simplified control system of initial
washing in an automatic washer (Fig. 3-2).

After turning on the washing program, valve V1 is opened and water is
infused. The infusing process lasts to the moment of achieving L1 level. At the
same time, after exceeding L2 level (total sinking of heater H) if the temperature
is below the required (TL1), the heater system is turned on. After closing valve
V1 the washing process is started, in which the washing cylinder is turned
alternately left and right for 10 sec. with a 5-sec. break. The process of keeping
the temperature constant is active for the whole washing cycle. The cycle is
turned off after 280 sec. and the cylinder is stopped, the heater is turned off,
and valve V2 is opened for water removal.

There is a possibility of describing such a system by means of hierarchical
Petri nets (Fig. 3-3).

Figure 3-2. An example of an automatic washer control system.
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P9

t6

P10

c1=L2 and (not TL1)

P4

t7

H

c1c2

c2=(not L2) or TL2

P13

t10

P14

P5

t9

<10sec>

<10sec>
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CR

CL

P15

t11

P16
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P11

t8
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V1
L1

P3

P1

t1t2

P2

start#(not start)

P3

t3

P5 P6

P4

P7

t4 #s1

P2 {H}

t5

P8

L3

V2

Figure 3-3. Fragment of the net modeling the washer controller.

4. CONCLUSION

The model offers a convenient means for a formal specification of reactive
systems. An equivalent model of textual notation (HPN format) is worked out
too. The rules of assigning the external function (e.g., ANSI C or VHDL) to
nodes of the net are the subject of research.

Further work and research shall focus on creating tools for automatic anal-
ysis and synthesis of the model on a hardware/software codesign platform in
an ORION software package developed by the author.
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12. C. Johnsson, K.E.Årzen, High-level grafcet and batch control. In: Conference Proceedings
ADPM’94 Automation of Mixed Processes: Dynamical Hybrid Systems, Bryssel (1994).

13. G. de Micheli, Synthesis and optimization of Digital Circuits, McGraw-Hill, Inc., 1994.
14. S. Schof, M. Sonnenschein, R. Wieting, High-level modeling with THORNs. In: Proceed-

ings of 14th International Congress on Cybernetics, Namur, Belgium (1995).



Section II

Analysis and Verification
of Discrete-Event Systems



Chapter 4

WCET PREDICTION FOR EMBEDDED
PROCESSORS USING AN ADL

Adriano Tavares, Carlos Silva, Carlos Lima, José Metrolho,
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Abstract: A method for analyzing and predicting the timing properties of a program frag-
ment will be described. First an architectural description language implemented
to describe a processor’s architecture is presented, followed by the presentation
of a new, static worst-case execution time (WCET) estimation method. The tim-
ing analysis starts by compiling a processor’s architecture program, followed by
the disassembling of the program fragment. After sectioning the assembler pro-
gram into basic blocks, call graphs are generated and these data are later used
to evaluate the pipeline hazards and cache miss that penalize the real-time per-
formance. Some experimental results of using the developed tool to predict the
WCET of code segments using some Intel microcontroller are presented. Finally,
some conclusions and future work are presented.

Key words: architectural description language (ADL); worst-case execution time (WCET);
language paradigm; timing scheme, timing analysis.

1. INTRODUCTION

Real-time systems are characterized by the need to satisfy a huge timing and
logical constraints that regulate their correctness. Therefore, predicting a tight
worst-case execution time (WCET) of a code segment will be a must to guaran-
tee the system correctness and performance. The simplest approach to estimate
the execution time of a program fragment for each arithmetic instruction is to
count the number of times it appears on the code, express the contribution of this
instruction in terms of clock cycles, and update the total clock cycles with this
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contribution. Nevertheless, these approaches are unrealistic since they ignore
the system interferences and the effects of cache and pipeline, two very impor-
tant features of some processors that can be used in our hardware architecture.
Some very elaborated methodologies for WCET estimation, such as Shaw1,
were developed in the past, but none of them takes into account the effects of
cache and pipeline.

Theoretically, the estimation of WCET must skip over all the profits pro-
vided by modern processors, such as caches and pipeline (i.e., each instruction
execution suffers from all kind of pipeline hazards and each memory access
would cause a cache miss), as they are the main source of uncertainty. Ex-
perimentally, a very pessimistic result would be obtained, thus making use-
less these processors’ resources. Some WCET estimation schemes oriented to
modern hardware features were presented in the past few years, and among
them we refer to Nilsen2, Steven Li3, Whalley4, and Sung-Soo Lim5. However,
these WCET estimators do not address some specificity of our target proces-
sors (microcontrollers and Digital Signal Processors (DSPs)), since they are
oriented to general-purpose processors. Therefore, we propose a new machine-
independent predictor, implemented as an ADL for processor description. Such
a machine-independent scheme using an ADL was used before by Tremblay6

to generate machine-independent code, by Proebsting and Fraser7 to describe
pipeline architectures, and by Nilsen5 to implement a compiler, a simulator, and
a WCET estimator for pipeline processors.

2. ADL FOR EMBEDDED PROCESSOR

The purpose of any little language, typically, is to solve a specific problem
and, in so doing, simplify the activities related to the solution of the problem.
Our little language is an ADL, so its statements are created on the basis of the
tasks that must be performed to describe a processor’s architectures in terms
of structure and functional architecture of the interrupt controller, PTS (pe-
ripheral transaction server), PWM (pulse width modulation), WG (waveform
generator), and HIS (high-speed input), instruction set, instruction semantics,
addressing modes, processor’s registers, instruction coding, compiler’s speci-
ficity, scratch-pad memory, pipeline and cache resources, and many others spe-
cific features of an embedded processor. For this ADL, we adopt a procedural
and modular paradigm (language paradigm defines how the language proces-
sor must process the built-in statements), such that modules are independent of
each other. The sequence of modules execution does not matter, but the register
module must always be the first to be executed, and within each module an ex-
act sequence of instructions is specified and the computer executes them in the
specified order. An ADL program describing a processor is written by modules,
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Figure 4-1. Organization of the ADL processor language.

each describing a specific processor’s feature such as instruction set, interrupt
structure and mechanism, registers structure, memory organization, pipeline,
data cache, instruction cache, PTS, and so on. A module can be defined more
than once, and it is a processor language (Fig. 4-1) job to verify the information
consistency among them and concatenate all them into a single module.
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The disassembling process consists of four phases and has as input an ex-
ecutable file containing the code segment that one wants to measure and the
compiled version of an ADL program. The disassembling process starts at the
start-up code address (start-up code is the bootstrap code executed immediately
after the reset or power-on of the processor) and follows the execution flow of
the program:
1. Starting at the start-up code address, it follows all possible execution paths

till reaching the end address of the “main” function. At this stage, all function
calls are examined and their entry code addresses are pushed into an auxiliary
stack.

2. From the entry address of the “main” function, it checks the main function
code for interrupt activation.

3. For each active interrupt, it gets its entry code address and pushes it into the
auxiliary stack.

4. It pops each entry address from the auxiliary stack and disassembles it,
following the function’s execution paths.

The execution of the simulation module is optional and the associated pro-
cess is described by a set of operation introduced using a function named
“SetAction.” For instance, the simulation process including the flag register
affectation, associated to an instruction, is described using SetAction calls to
specify a sequence of operations. Running the simulation process before the
estimation process will produce a more optimistic worst-case timing analysis
since it can
1. rectify the execution time of instructions that depend on data locations, such

as stack, internal, or external memory;
2. solve the indirect address problem by checking if it is a jump or a function

call (function call by address);
3. estimate the iteration number of a loop.

The WCET estimator module requires a direct interaction with the user as
some parameters are not directly measurable through the program code. Note
that the number of an interrupt occurrence and the preview of a possible max-
imum iterations number associated with an infinite loop are quite impossible
to be evaluated using only the program code. The WCET estimation process is
divided into two phases:
1. First, the code segment to be measured is decomposed into basic blocks;
2. For each basic block, the lower and upper execution times are estimated

using the shortest path method and a timing scheme1.

The shortest path algorithm with the basic block graph as input is used
to estimate the lower and the upper bounds on the execution time of the
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code segment. For the estimation of the upper bound, the multiplicative in-
verse of the upper execution time of each basic block is used. A basic block
is a sequence of assembler’s instructions, such as “only the first instruction
can be prefixed by a label” and “only the last one can be a control transfer
instruction.”

The decomposition phase is carried out following the steps given below:
1. rearrangement of code segment to guarantee the visual cohesion of a basic

block (note that the ordering of instructions by address makes the visual-
ization of the inter basic block control flow more difficult, because of long
jump instructions that can occur between basic blocks. To guarantee visual
cohesion, all sequence of instructions are rearranged by memory address,
excluding those located from long jump labels, which are inserted from the
last buffer index);

2. characterization of the conditional structure through the identification of the
instructions sequence that compose the “if” and “else” body;

3. characterization of the loop structure through the identification of the instruc-
tions sequence that composes the loop body, control, and transfer control (it
is essential to discern between “while/for” and “do while” loops since the
timing schemes are different);

4. building a basic block graph showing all the execution paths between basic
blocks;

5. finding the lower and upper execution time for each basic block.

2.1 Pipeline Modeling

The WCET estimator presented so far (Fig. 4-2) considers that an instruc-
tion’s execution is fixed over the program execution; i.e., it ignores the con-
tribution of modern processors. Note that the dependence among instruction
can cause pipeline hazards, introducing a delay in the instruction execution.
This dependence emerges as several instructions are simultaneously executed,
and as a result of this parallel execution among instructions, the execution time
of an instruction fluctuates depending on the set of its neighboring instruc-
tions. Our ADL’s processor language analyzes the pipeline using the pipeline
hazard detection technique (Fig. 4-3) suggested by Proebsting and Fraser7.
The ADL models the pipeline as a set of resources and each instruction as
a process that acquires and consumes a subset of resources for its execution.
Special-purpose functions, such as “setPipeStage(Mn)” and “SetPipeFunction-
alUnit(Mn, num),” are used to define the pipeline stages and functional units, re-
spectively. For each instruction, there is a set of functions to solve the following
points:
1. Instr.SetSourceStage(s Opr, Stg) specifies the pipeline stage, at which each

source operand must be available,
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Figure 4-2. Organization of the WCET predictor.

2. Instr.SetResultStage(d Opr, Stg) specifies the pipeline stage, at which the
output of the destination operand becomes available with the output of the
destination operand,

3. Instr.SetStageWCET(stg, tm) specifies each pipeline stage required to
execute an instruction and the execution time associated with that stage,

4. Instr.SetbranchDelayCost(tm) sets the control hazard cost associated with a
branch instruction.

The pipeline analysis of a given basic block must always take into account
the influences of the predecessor basic blocks (note that the dependence among
instructions can cause pipeline hazards, introducing a delay in the instructions
execution); otherwise, it leads to an underestimation of the execution time.
Therefore, at the hazard detection stage of a given basic block, it will always
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Figure 4-3. Hazard detection and correction algorithm based on Proebsting’s technique.

incorporate the pipeline’s state associated with the predecessor basic blocks
over the execution paths. The resources vector that describes the pipeline’s
state will be iteratively updated by inserting pipeline stalls to correct the data
and/or structural hazards when the next instruction is issued. If these two hazards
happen simultaneously, the correction process starts at the hazard that occurred
first and then it will be checked whether the second still remains. The issuing
of a new instruction will be always preceded by the updating of the previous
pipeline’s state, achieved by shifting the actual pipeline resource vector one
cycle forward (Fig. 4-4).

The pipeline architectures, usually, present special techniques to correct
the execution flow when a control hazard happens. For instance, the delay
transfer control technique offers the hardware an extra machine cycle to de-
cide the branch. Also, special hardware is used to determine the branch label
and value condition at the end of the instruction’s decode. As one can con-
clude, the execution of delay instructions does not depend on the branch de-
cision, and it is always carried out. Therefore, we model the control hazard
as being caused by all kinds of branch instruction and by adding the sum of
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Figure 4-4. Organization of the WCET predictor with pipeline effect.

execution time of all instructions in the slot delay to the basic block execution
time.

2.2 Cache and scratchpad memory modeling

Cache is a high-speed and small-sized memory, typically a SRAM that
contains parts of the most recent accesses to the main memory. Nowadays, the
time required to load an instruction or data to the processor is much longer
than the instruction execution time. The main function of a cache memory is to
reduce the time needed to move the information from and to the processor. An
explanation for this improvement comes from the locality of reference theory –
at any time, the processor will access a very small and localized region of the
main memory, and the cache loads this region, allowing faster memory accesses
to the processor.

In spite of the memory performance enhancement, the cache makes the
execution time estimation harder, as the execution time of any instruction will
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vary and depend on the presence of the instruction and data into the caches.
Furthermore, to exactly know if the execution of a given instruction causes a
cache miss/hit, it will be necessary to carry out a global analysis of the program.
Note that an instruction’s behavior can be affected by memory references that
happened a long time ago. Adversely, the estimation of WCET becomes harder
for the modern processors, as the behaviors of cache and pipeline depend on
each other. Therefore, we propose the following changes to the algorithm that
takes into account the pipeline effects:
1. Classify the cache behavior4 for any data and instruction as cache hit or

cache miss before the analysis of the pipeline behavior.
2. Before the issuing of an instruction, verify if there is any cache miss related to

the instruction; if there is, first apply the miss penalty and then the detection
and correction of pipeline hazards.

In contrast, the scratchpad memory that is a software-controlled on-chip
memory located in a separate address region provides predictable execution
time. In a scratchpad memory system, the mapping of programs elements is
done statically during compile time either by the user or automatically by the
compiler. Therefore, whereas an access to cache SRAM is subject to compul-
sory, capacity and conflict misses, the scratchpad memory guarantees a single-
cycle access time, and it can be modeled like any internal memory access, using
the access time as the only parameter.

3. EXPERIMENTAL RESULTS

For the moment, we will present some results using the 8 × C196 Intel
microcontrollers as they are the only ones present with all the needed execution
time information in the user’s guide. But we hope to present soon the results
of experiments with modern processors such as Texas Instruments DSPs, Intel
8 × C296, PICs, and so on. Figure 4-5 shows the result achieved by a direct
measurement of a program composed by two functions: main() and func().
This program was instrumented to allow a direct measurement with a digital
oscilloscope through pin 6 of port 2 (P2.6).

At a first stage, the WCET estimator builds the call graph given at the lower
right quadrant of Fig. 4-6 and then func(), identified by the label C 2192, is
processed, providing a similar screen (Fig. 4-7). At the upper right quadrant,
information, such as execution time of individual basic blocks, basic block
control flow, and function execution time, is presented. The lower right quad-
rant can present the assembly code translated by the disassembler from the
executable code, the call graph, and the simulator state. The upper left quadrant
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Figure 4-5. Direct measurement of an instrumented program using a digital oscilloscope to
monitor pin 2 of port P2 (P2.6).

Figure 4-6. WCET = 61µs was estimated for the code segment measured in Fig. 4-4.
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Figure 4-7. WCET analysis of the function denominated func().

presents parts of the ADL program describing the microcontroller architec-
ture.

4. CONCLUSIONS

A very friendly tool for WCET estimation was developed, and the results
obtained over some Intel microcontroller were very satisfactory. To complete
the evaluation of our tool, we will realize more tests using other classes of
processors, such as DSPs, PICs, and some Motorola microcontrollers. A plenty
use of this tool requires some processor information, such as the execution
time of each instruction composing the processor instruction set, sometimes
not provided in the processor user’s guide. In such a case, to time an individual
instruction, we recommended the use of the logic analyzer to trigger on the
opcode at the target instruction location and on the opcode and location of the
next instruction.

On the basis of previous studies of some emergent ADLs8,9, we are de-
veloping a framework to generate accurate simulators with different levels of
abstraction by using information embedded in our ADL. With this ADL it
will be possible to generate simulators, and other tools, for microprocessors
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with different features such as superpipelining, superscalar with out-of-order
execution, VLIW, and so on.
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is applied to the verification of digital control paths. The main purpose is to
design control paths that are modeled and verified formally by means of Petri net
techniques.
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1. INTRODUCTION

As the complexity of digital systems grows rapidly, there is a rising interest to
apply modeling and verification techniques for discrete-event systems. Owing
to their universality, Petri nets can be applied for system modeling, simulation,
and functional verification of hardware. Regarding digital system modeling and
verification, the Petri net theory shows significant advantages:
� Inherent ability to model sequential and concurrent events with behaviors

conflict, join, fork, and synchronization
� Ability to model system structure and system functionality as static and

dynamic net behavior
� Ability to model digital systems at different levels of abstraction using

hierarchical net concepts
� Ability to apply Petri nets as a graphical tool for functional and timed system

simulation
� Ability to verify system properties by analysis of static and dynamic net

properties
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Considering the utilization of these advantages, a Petri net based hardware
design methodology is introduced. The approach ends up in a complete and
practicable hardware design flow. In order to achieve practical relevance and
applicability, there are two requirements to accomplish:
1. Use of a common hardware description language for system modeling in

addition to Petri nets, and
2. Use of a common logic synthesis tool to enable a technology mapping to

hardware, where hardware platforms may range from field programmable
gate arrays to custom integrated circuits.

2. PETRI NET BASED HARDWARE
DESIGN METHODOLOGY

At the beginning of the system modeling process, it is essential to make two
basic choices regarding net specification and net interpretation. The choice of a
net specification determines the range of structural elements that can be repre-
sented by the system model. Thus, the chosen net specification has a great influ-
ence on the expressiveness of the system model. By means of place/transition
nets with free-choice structure (FCPN), it is easy to express both sequential and
concurrent events, as well as conflicting, joining, forking, and synchronizing
events. Concerning analysis methods for structural and behavioral net analysis,
FCPNs are particularly suitable too. Because of net interpretation, the compo-
nents of a Petri net are assigned to the components of a digital system. Hence,
every net interpretation of a Petri net creates a Petri net model. There exist
several net interpretations in different technical domains that map either Petri
net components to elementary hardware components or small subnets to hard-
ware modules1,2,3. Control engineering interpreted (CEI) Petri nets4 perform a
direct mapping between a system of communicating finite state machines and
a dedicated hardware realization. A CEI Petri net N is defined as a 10-tuple
N = (P , T , Fpre, Fpost, m0, G, X , Y , Q t, Qp), namely places, transitions, pre-
and post-arcs, an initial marking, transition guards, input signals, output signals,
a transition-enabling function, and a place-marking function. Every transition
ti is assigned to an AND gate and every place pi is assigned to a memory cell.
Consequently, a marked place pi = (ei, ai) symbolizes an active memory cell
in a state memory module. Transition activating and place marking are realized
by two mappings Q t and Qp, where Q t = G i ∗ ai and Qp = ai. Therefore, in
addition to the usual firing rule, transitions are activated by guards G i, where
G i = f (xi). These guards arise from logically conjuncted input signals xi and
express signal processing in a digital system. Output signals ai can be used to
enable state transitions pi → pj and for output signal processing yi. In case
of a state transition, ai = 1 is conjuncted with an arbitrary G j at transition tj.
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Figure 5-1. Petri net based modeling and verification of digital systems.

Then pi is unmarked before pj is marked, and hence a new state is activated.
Concurrent behavior is represented by different state memory modules, each of
sequential behavior, communicating through shared transitions. In that case tj

has several successors and/or predecessors pj. State transitions in a CEI Petri
net show that the token flow of the Petri net equivalently represents the signal
flow of the modeled digital system. Digital system modeling and verification
using interpreted Petri nets can be schematized as in Fig. 5-1.

Using CEI Petri nets and a place/transition net specification with FCPN, it is
possible to model digital systems in a highly transparent way, such that system
behavior is equivalently reproduced by the token flow of a simple structured
Petri net model. The structure and behavior of a Petri net model is extensively
analyzable if the model is retransformed into a FCPN. Therefore, all transition
guards G i are eliminated. To preserve state space equivalence it is required to
apply a firing rule that only fires one transition at a time. For functional verifica-
tion of a modeled digital system, a set of properties is studied by means of Petri
net analysis. This approach is extended to describe a complete hardware design
flow. A design flow shown in Fig. 5-2 is subdivided into five steps: modeling,
verification, technology-independent net model mapping, logic synthesis, and
timing verification.

Because of the high acceptance of conventional EDA synthesis tools and
HDLs, it is not preferable to create a design flow that is solely based on Petri nets.
Therefore, in the design flow two entities enable a transformation between con-
structs of a HDL and Petri net components, and vice versa. To translate VHDL
constructs into Petri net structures, common rules5 are used. On the top in
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Figure 5-2. PN-based hardware design flow.

Fig. 5-2, HDL input as well as graphical or textual Petri net input are proposed.
Regarding recent attempts to develop a general textual interchange format6 for
Petri nets to link Petri net editors, simulation tools, and analysis tools, an entity
for textual Petri net input is very valuable. High-level Petri nets (HLPN), such
as hierarchical Petri nets or colored Petri nets, can be applied if it is possible
to unfold the HLPN to a FCPN. Once a Petri net model is created, simulation
and analysis methods can be applied to verify the Petri net model functionally.
Because of the graphical concepts of Petri nets, design errors can be detected
easily by functional simulation. Also, functional simulation can be used to test
subnets of the Petri net model successively. A simulation run is represented as
a sequence of state transitions, and thus as a Petri net. The created occurrence
sequence is analyzed further to evaluate system behavior. Beyond simulation,
an exhaustive analysis of structural and behavioral properties leads to a formal
design verification. Behavioral properties are studied by invariant analysis and
reachability analysis. In a next step, the Petri net model can be optimized using
advanced state space analysis, Petri net reduction techniques, and net symme-
tries. Therefore, some conditions should be met before a Petri net model can be
optimized. Net model optimization techniques heavily effect an efficient imple-
mentation of the Petri net model7. The Petri net model is then subdivided into
small subnets that can be mapped to dedicated hardware modules. The timing
behavior of the chosen hardware modules determines the timing behavior of
the designed digital system. Therefore, it is possible to verify a modeled digital
system functionally and then implement it as a self-timed design8 or as a syn-
chronous clocked design. This is clearly not the case in a conventional hardware
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design methodology. A functionally verified and optimized Petri net model is
transformed to dedicated VHDL constructs to enable logic synthesis by means
of conventional EDA tools. After logic synthesis and technology-dependent
design steps, simulation and analysis methods can be applied again to simulate
and verify the timing behavior of the implemented design. Therefore, timing
information is assigned to Petri net components of the Petri net model using
a timed Petri net specification. For worst-case timing analysis deterministic
timed Petri nets are suitable, while for performance modeling stochastic timed
Petri nets are applied. It is shown that the complete design flow is based on
Petri nets but, nevertheless, is embedded in a conventional design flow. To put
the new design steps into practice, the tool development environment Petri Net
Kernel (PNK)9 and the Integrated Net Analyzer (INA)10 are used to create the
tool VeriCon11, which performs the first two steps of this integrated hardware
design flow in a prototypic way. The application of the proposed methodology
is focused on microprocessor control paths.

3. VERIFICATION OF PETRI NET MODELS

For functional verification of a modeled digital system, a set of properties
is studied by means of Petri net analysis. The analysis results are interpreted
as properties of the Petri net model. In a more practical way, it is necessary to
propose some requirements and goals that must be obtained for functional veri-
fication. For net models of microprocessor control paths, sets of analysis strate-
gies are derived. These analysis strategies enable detection and localization of
modeling errors. Each set of strategies is arranged to a scheme that enables an
automated verification process. As an outcome of applied analysis strategies,
some modeling guidelines are derived. Adhering to these guidelines enables to
approach a functionally correct design already at early modeling cycles. Re-
quirements for functional verification are expressed as Petri net properties of
the analyzed Petri net and should cover
1. boundedness,
2. liveness,
3. reversibility,
4. state machine structure or free-choice structure,
5. persistence, and
6. pureness or proper self-loop assignment.

Petri net analysis has to ensure boundedness. In the Petri net model, bound-
edness determines that the modeled design has a finite state space. Consequently,
control paths with an infinite number of states are not close to reality. If every
place of the Petri net contains at most one token, logical values “high” and
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“low” are distinguishable for the memory cells that are represented by places.
The digital system is thereby modeled transparently. Other assignment schemes
require decoding. Liveness is the next necessary Petri net property for functional
verification, and it is interpreted as the capability to perform a state transition in
any case. Every transition of the Petri net can be fired at any reachable marking.
Therefore, if liveness is preserved, the Petri net and thus the Petri net model are
not deadlocked. If, in a live Petri net, the initial state is reachable, then the Petri
net is reversible. To reflect the structure of a sequential control path, the Petri net
should have state machine structure (SM structure). In this case no transition of
the Petri net is shared. Every transition has exactly one predecessor place and
one successor place. Therefore, in a state machine, generation and consumption
of tokens is avoided. For modeling concurrent control paths, both marked graph
structures (MG structure) with shared transitions, forking, and synchronizing
events and SM structures are required. Thus the Petri net model of a concur-
rent control path should have free-choice structure. Places with more than one
successor transition generate conflict situations. If several posttransitions of a
marked place are enabled, and one transition fires, then all other transitions are
disabled. Hence the Petri net is not persistent, and also it is not predictable as to
what transition will fire. Transition guards are able to solve conflicts, because
they represent an additional firing condition that is required to perform a state
transition. Therefore, transitions in conflict can become unique using transition
guards and no behavior ambiguity remains. When a pre-place of a transition
also appears as its post-place, then there is a self loop in the Petri net. Self loops
can give a structural expression to model external signal processing distinctly.
It has to be clarified in the modeling process as to which, if any, which self
loops are desired to emphasize external signal processing. Thus, self loops can
be detected and assigned to that situation, and others are marked as modeling
errors and should be removed. As for concurrent control path models, it is not
preferred to start with a state space analysis. Because of the huge amount of
states that a concurrent control path may have, it is more convenient to apply
structural properties analysis first. Tests for marking conservation, coverability
with place invariants, and strong connectedness perform fast. Out of these net
model properties, boundedness is decided.

4. ANALYSIS STRATEGIES

Table 5-1 summarizes all derived analyses strategies12 regarding detected
modeling errors and affected Petri net properties. Strategies S1 . . . S9 are applied
to verify sequential control paths. Primed strategies are derived from nonprimed
ones with only minor changes and can be applied for pipelined control path
verification. If a strategy (S1 . . . S9) exists only as nonprimed version, it can
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Table 5-1. Analysis strategies

Analysis strategy Modeling error Affected property

S1, S1′, S1′′ Transition without a pre-place,
token production, fork

Boundedness

S2 Not strongly connected Liveness
S3 Token consumption Liveness, SM structure
S4, S4′ Not conservative SM structure, conservativeness
S5 Transition without post-place Liveness, SM structure
S6 Place without pretransition Liveness
S7, S7′ Place without posttransition, and

with nonconservative
pretransitions

Liveness, boundedness

S8, S8′ Self loops Pureness
S9, S9′ Conflicts Persistence
S10 Marking sum > 1 Safeness
S11 Nonsynchronized transitions

between pipeline stages
Safeness, liveness

S12 Marking sum < 1 Liveness

be applied for both types of control paths. Strategies S10 . . . S12 are derived to
verify pipelined control paths.

An automated verification of Petri net models using S1 . . . S12 can be per-
formed according to Figures 5-3 and 5-4. In Fig. 5-3, verification of sequen-
tial control paths is shown, whereas Fig. 5-4 illustrates pipelined control path
verification. Using PNK and INA, all analysis strategies are efficiently imple-
mentable. Exemplarily, strategies S1 and S2 are listed.

4.1 Strategy S1

1. If Petri net N is unbounded, then
(a) determine all shared transitions ti, |ti

�| >1 using �pj ∀ pj ∈ P ⇒ gen-
erate list {tiP}.

(b) determine all transition sources Fti0 using �ti ∀ ti ∈ T .
2. Check if [(ti = �pj, ti ∈ {tiP}) ∨ (t = Fti0)] ∀ pj ∈ P . ⇒ pretransition of

place pj produces tokens ti ∈ {tiP} or Fti0, and unboundedness of pj is
caused by ti.

4.2 Strategy S2

1. Check liveness ⇒ generate list of live transitions {tiL}.
2. Compute strongly connected components (SCC) in RN ⇒ generate tuple

{SCCi, pj}.
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Figure 5-3. Application of analysis strategies for sequential control paths.

Figure 5-4. Application of analysis strategies for pipelined control paths.
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3. Determine shared places and sharing transitions for each SCC using pre-
set and postset of pj ∀ pj ∈ P: (| �pj| > 1) ∨ (|pj

�| >1) ⇒ generate tuple
{SCCi, pj, tk}.

4. Compare all tuples {SCCi, pj, tk}. Multiple-occurring tk form transitions
between different SCCs: SCCi → SCCj (SMi → SMj).

5. Compare all tk and {tiL}. If tk ∈ {tiL} ⇒ tk is live. Otherwise tk is a dead
transition between two different SCCs.

6. Detect live SCCs. For each SCC, check whether ( �pj ∈ {tiL} ∀ pj ∈ SCCi) ∨
( �pj ∈ {tiL}∀pj ∈ SCCi) ⇒ SCCi is live. Dead SCCs include at least one
dead transition in the preset or postset of its places.

Strategies S1 . . . S1′′ detect shared transitions with more than one post-place
or transitions without pre-place that cause unbounded places, and hence an
unbounded Petri net. S2 and S3 are applied to detect and localize dead transitions
that are caused by lack of strong connectedness or by shared transitions with
more than one pre-place. It is possible that the analyzed Petri net is 1-bounded
and live, but it shows no state machine structure. In this case, all generated tokens
are consumed within a marked graph that is a Petri net structure in which no place
is shared. Strategy S4 is applied to localize such shared transitions. Similarly
S4′ finds nonconservative transitions by evaluating place invariants. By means
of strategies S5 . . . S7′, dead transitions caused by one-sided nodes are detected,
as mentioned in Table 5-1. In analysis strategies S8 . . . S9′, transition guards
are used to interpret conflicts and self loops within the Petri net model. The last
strategies S10 . . . S12 are applied to localize liveness and safeness problems
in conservative, strongly connected, and place invariant covered net models.
According to the proposed analysis strategies, it is possible to derive modeling
guidelines that affect the modeling process and assist the designer to create a
system model reflecting the desired functionality. In Table 5-2, analysis results
and their interpretation for the Petri net model are summarized.

Table 5-2. Verified properties and their interpretation in the Petri net model

Petri net properties Interpretation in the Petri net model

State machine structure Sequential control path
Free-choice structure Concurrent control path
Boundness Signal to token assignment
Liveness No deadlocks, no restrictions of state transitions
Strong connected Arbitrary state transitions
No source and sink No restrictions of liveness and/or boundedness
Reversibility Resetable control path
Pureness No self loops
Persistence Solved dynamic conflicts
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4.3 Modeling guidelines
� Avoid nonconservative transitions
� Avoid of one-sided nodes
� Ensure strong connectedness
� Remove conflicts using transition guards

1. Provide all posttransitions of a shared place with guards
2. Provide every posttransition of a shared place with a unique guard

5. APPLICATION

In computer architecture, the DLX microprocessor is a well-known
example13. In a case study, the control path of the sequential and the con-
current DLX is designed as a Petri net model, whereas data path and memory
test bench are provided by VHDL models14. In all, 52 instructions covering all
instruction types are modeled. Additionally reset, error, exception, and inter-
rupt handling is considered. The Petri net model corresponding to the sequential
control path contains 243 nodes. To implement the whole instruction set, 64
control states are required. Complex sequential control paths, such as control
path of a sequential microprocessor, consist of a system of strongly connected
state machines. This includes decomposability into partial nets with state ma-
chine structure. When a Petri net is 1-bounded and live and has state machine
structure, then a very transparent Petri net model is created. Every state in the
Petri net model is assigned to a state of the control path. Thus, the reachability
tree is rather small and represents exactly 64 control states. Using the derived
analysis strategies S1 . . . S9, all modeling errors could be detected, localized,
and removed. The analyzed Petri net properties and their interpretation for the
Petri net model enable to decide functional correctness of the Petri net model
formally. The Petri net model that corresponds to the pipelined control path
contains 267 nodes and, compared with the sequential case, a similar propor-
tion of places and transitions. But the state space of this Petri net model is of
O(105). The processor pipeline with five stages is modeled using a free-choice
structure that shows only conservative transitions. Hence the fork degree of a
transition equals its synchronization degree. There are control places to ensure
mutual exclusion between pipeline stages. Under these modeling conditions,
especially, place invariants are convenient to verify the correct pipeline behav-
ior. A Petri net model of 5 pipeline stages leads to 4 place invariants that cover
the whole net model, each a set of places that contains a constant weighted sum
of markings. If there are less than 4 invariants, then there may occur a situation
of an unbounded net model. If the weighted sum of markings is not equal to 1,
then there is a liveness or safeness problem. Because of structural preanalysis, it
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is easy to detect and locate modeling errors. The analysis strategies S1′ . . . S12
detected and localized all occurring modeling errors. Thus the Petri net model
of the pipelined control path was formally verified, too.

6. CONCLUSIONS

This work introduces a Petri net based hardware design methodology for
modeling and verification of digital systems. Modeling digital systems using
free-choice Petri nets (FCPN) and control engineering interpreted Petri nets
(CEI PN) leads to highly transparent and simple structured Petri net models.
Using Petri net analysis techniques, functional verification of Petri net models
is obtained by analysis of Petri net properties and a suitable interpretation
of the Petri net model. For functional verification of control paths, analysis
strategies are provided. Using these analysis strategies, it is possible to detect
and localize modeling errors automatically. As an outcome of applied analysis
strategies, some modeling guidelines are derived. Adhering to these modeling
guidelines enables to approach a functionally correct design already at early
modeling cycles. The methodology is applied to the functional verification of
microprocessor control paths.
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MEMORY-SAVING ANALYSIS OF PETRI NETS
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Abstract: An approach to Petri net analysis by state space construction is presented in the
paper, allowing reducing the necessary memory amount by means of removing
from memory the information on some of intermediate states. Applicability of the
approach to deadlock detection and some other analysis tasks is studied. Besides
this, a method of breaking cycles in oriented graphs is described.
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1. INTRODUCTION

Petri nets1 are a popular formal model of a concurrent discrete system,
widely applied for specifying and verifying control systems, communication
protocols, digital devices, and so on. Analysis of such nets is a time- and
memory-consuming task, because even a simple net may have a huge number
of reachable states caused by its concurrent nature (the so-called state explosion
problem2,3).

However, state space search remains one of the main approaches to Petri
net analysis (deadlock detection, for example). But there are various methods
handling state explosion problem, such as lazy state space constructions, build-
ing reduced state spaces instead of the complete ones2. Among such methods,
Valmari’s stubborn set method4,5 is best known.

Theoretically there is no necessity of huge memory amount to solve Petri net
analysis problems; there is a polynomial-space algorithm of deadlock detection
in a safe Petri net, but it is practically absolutely inapplicable because its time
consumption is woeful3. Generally, the known algorithms solving verification
tasks in a relatively small memory are extremely slow3.
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In this paper we concentrate on a less radical approach, reducing memory
amount and keeping it, however, exponential in worst case. The approach is
based on removing from memory some of the intermediate states. Some results
are recalled from Refs. 6 and 7; also, new results are presented.

2. PRELIMINARIES

A Petri net1 is a triple � = (P, T, F), where P is a set of places, T is a set
of transitions, P ∩ T = Ø and F ⊆ (P × T ) ∪ (T × P). For t ∈ T , •t denotes
{p ∈ P|(p, t) ∈ F}, t• denotes {p ∈ P|(t, p) ∈ F}, and •t and t• are the sets
of input and output places, respectively. ∀t ∈ T : • t 	= Ø, t• 	= Ø. A similar
notation is used for places (• p, p•). A Petri net can also be considered as an
oriented bipartite graph. A state (marking) of a net is defined as a function
M : P → {0, 1, 2, . . .}. It can be considered as a number of tokens situated in
the net places. M(p) denotes the number of tokens in place p at M. M ′ > M
denotes that ∀p ∈ P: M ′(p) ≥ M(p) and ∃p ∈ P: M ′(p) > M(p). Initial state
M0 is usually specified.

A transition t is enabled and can fire if all its input places contain tokens.
Transition firing removes one token from each input place and adds one token
to each output place, thus changing the current state. If t is enabled in M and its
firing transforms M into M ′, then that is denoted as MtM′. This denotation and
the notion of transition firing can be generalized for firing sequencess (sequential
firing of the transitions, such that each transition is enabled in the state created by
firing of the previous transition). If a firing sequence σ leads from state M to M ′,
it is denoted as MσM ′. A state that can be reached from M by a firing sequence
is called reachable from M ; the set of reachable states is denoted as [M〉. A
transition is live if there is a reachable marking in which it is enabled; otherwise
it is dead. A state in which no transitions are enabled is called a deadlock. A net
is live if in all the reachable markings, all the transitions of the net are live. A
net is safe if in any reachable marking no place contains more than one token.
A net is bounded if ∃n: ∀p ∈ P ∀M ∈ [M0〉M(p) ≤ n (there is an upper bound
of number of tokens for all the net places in all reachable markings).

A reachability graph is a graph G = (V, E) representing state space of a
net. V = [M0〉; e = (M, M ′) ∈ E ⇔ Mt M ′ (then t marks e). The reachability
graph is finite if and only if the net is bounded. A strongly connected component
(SCC) of a reachability graph is a maximal strongly connected subgraph. A
terminal component of a graph G is its SCC such that each edge which starts
in the component also ends in it3,5.

A set TS of the transitions of a Petri net at state M is a stubborn set if
(1) every disabled transition in TS has an empty input place p such that all
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transitions in • p are in TS, (2) no enabled transition in TS has a common input
place with any transition (including disabled ones) outside TS, and (3) TS

contains an enabled transition.
A reduced reachability graph (RRG), created with the basic stubborn set

method, is a subgraph of the reachability graph built so that in every considered
state only firing of the enabled transitions belonging to TS is simulated. Such
an RRG contains all deadlocks of the system that are reachable from the initial
states. Furthermore, all deadlock states of the RRG are deadlock states of the
system (the fundamental property of the stubborn set method3,4).

3. ON-THE-FLY REDUCTION OF
REACHABILITY GRAPH

Consider the problem of detecting deadlocks. To solve it there is no neces-
sity to keep in memory the whole (even reduced) reachability graph with all
intermediate (non-deadlock) states. But it is evident that removing all of them
can lead to eternal looping (if the reachability graph has cycles). So, some of
the intermediate states should be kept. Which ones? The following affirmations
allow obtaining the answer.

Affirmation 1. (Lemma 3 from Ref. 7). For every cycle C in a reachability
graph, there is a cycle C� in the net graph such that every transition belonging
to C� marks an arc in C .

Affirmation 2. (Lemma 1 from Ref. 7). Let M σ M ′, where M ′ > M . Then
there is a cycle C� in the net graph such that every transition belonging to C�

appears in σ.
An algorithm is presented, which is a modification of the well-known algo-

rithm of reachability graph building.

Algorithm 1
Input: Petri net � = (P, T, F), initial state M0.
Output: Graph G(V, E).

1 V := {M0}, E := Ø − with − circle, D := {M0}. Tag M0 as “new.”
2 Select Q ⊆ T such that for every cycle in the net graph, at least one

transition belongs to Q.
3 While “new” states exist in V , do the following:
3.1 Select a new state M .
3.2 If no transitions are enabled at M , tag M as “deadlock.”
3.3 While there exist enabled transitions at M , do the following for each

enabled transition t at M∗:
3.3.1 Obtain the state M ′ that results from firing t at M .
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3.3.2 If on the path from M0 to M , there exists a marking M ′′ such that
M > M ′′, then communicate “The net is unbounded” and go to 4.

3.3.3 If M ′ /∈ V , add M to V and tag M ′ as “new.”
3.3.4 Add the arc (M, M ′) to F .
3.3.5 If t ∈ Q, add M ′ to D.
3.4 If M is not a “deadlock” and M /∈ Q, do the following:
3.4.1 For every pair of arcs in (a, M) ∈ F and (M, b) ∈ F , add to F arc (a, b).
3.4.2 Remove M from V and all the incident arcs from F .
4 The end.

Affirmation 3. Algorithms 1 and 1a stop for every Petri net.
Proof. Suppose the net is bounded and the algorithm never stops. This means
that there exists a cycle in the reachability graph such that every state in it
is added to V and then removed from it, and the loop never stops. But from
Affirmation 1 it follows that at least one of those states will be included in set
D and never deleted from V ; hence it cannot be tagged as “new” more than
once, and such eternal looping is impossible. A contradiction.

Suppose the net is unbounded and the algorithm never stops. Then the algo-
rithm considers new states (never considered before) infinitely often (another
possibility of looping is excluded by Affirmation 1). Any “long enough” fir-
ing sequence leading to new states will go through states M and M ′ such that
M ′ > M , which follows from the fact that P is finite. Then, as follows from
Affirmation 2, a state M ′′ between them will be added to D and never removed.
This means that graph G will grow infinitely.

This in turn means that sooner or later in G there will be a “long enough”
path such that there will be states M and M ′ in it such that M ′ > M . Then the
algorithm will detect this situation (item 3.3.2) and stop.

The proof is now completed; note that it is valid for both variants of the
algorithm (proof only for Algorithm 1 would be simpler).

Affirmation 4. Algorithms 1 and 1a detect all the deadlocks of a Petri net or
its unboundedness.

The proof follows from the algorithm description and the fundamental prop-
erty of the stubborn set method.

Note that item 2 of Algorithm 1 is a nontrivial task if we want to make set
Q as small as possible (which would reduce the needed memory amount). It
can be formulated as a task of minimal decyclization of an oriented graph or of
finding minimal feedback arc set9. It has applications in electrical engineering,
computer-aided design of discrete devices, scheduling, and so on. The topic is
discussed in the appendix.

∗As Algorithm 1a the variant of Algorithm 1 will be meant, in which item 3.3 is the following: “While there
exist enabled transitions belonging to TS at M , do the following for each enabled transition t ∈ TS:”
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4. SOLVING ANALYSIS TASKS

The application of the proposed approach to solving some other analysis
tasks will be discussed below.
� Boundedness. It is easy to see that n-boundedness can be checked by

Algorithm 1 if the number of tokens in the places is checked on-the-fly.
Algorithm 1 also detects unboundedness, as follows from Affirmations 2
and 3.

� Liveness. It is easy to see that Algorithm 1—as it is—cannot check liveness.
Consider the next modification (the additions are given in bold).

Algorithm 2
Input: Petri net � = (P, T, F), initial state M0.
Output: Graph G(V, E).

1 V := {M0}, E := Ø, D := {M0}. Tag M0 as “new.”
2 Select Q ⊆ T such that for every cycle in the net graph, at least one

transition belongs to Q.
3 While “new” states exist in V , do the following:
3.1 Select a new state M.

3.2 If no transitions are enabled at M , tag M as “deadlock.”
3.3 While there exist enabled transitions at M , do the following for each

enabled transition t at M :
3.3.1 Obtain the state M ′ that results from firing t at M.

3.3.2 If on the path from M0 to M there exists a marking M ′′ such that
M > M ′′, then communicate “The net is unbounded” and go to 4.

3.3.3 If M ′ /∈ V , add M to V and tag M ′ as “new.”
3.3.4 Add the arc (M, M ′) to F , mark (M, M′) by t.
3.3.5 If t ∈ Q, add M ′ to D.
3.4 If M is not a “deadlock” and M /∈ Q, do the following:
3.4.1 For every pair of arcs in (a, M) ∈ F and (M, b) ∈ F , add to F arc (a, b),

and mark (a, b) by all the transitions marking (a, M) and (M, b).
3.4.2 Remove M from V and all the incident arcs from F.

4 The end.

The graph built by Algorithm 2 contains enough information for liveness
checking—it is enough to check whether every transition marks an arc in every
terminal component.
� Reversibility. The net is reversible if and only if graph G constructed by

Algorithm 1 is strongly connected.
� Reachability. Algorithm 1 by construction considers every reachable state,

and so, of course, reachability of a state can be checked by means of it.
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Figure 6-1. A Petri net (a) and its reachability graph (b).

5. EXAMPLE

Consider a Petri net (Fig. 6-1a). Its reachability graph is shown in Fig. 6-1b.
It has 13 nodes. In Fig. 6-2 graph G is shown; Fig. 6-2a presents it at a stage of
Algorithm 1 execution when its number of nodes is maximal (supposing search
in BFS order); Fig. 6-2b presents its final form. The maximal number of nodes of
G is 6; every marking has been considered only once. The situation is different
if the state space is searched in DFS order; then the maximal number of nodes
is also 13, but some of the states have been considered two or even three times.

It is also interesting to compare an RRG built using the stubborn set method
and graph G ′ built by Algorithm 1a for this example. The RRG contains seven
nodes, and G ′ has maximally three nodes.

6. CONCLUDING REMARKS

6.1 Complexity of the method

How much we gain (and loose) with the proposed method?
An exact analytical evaluation of the space and time complexity of the

method turns to be a complex task even for the nets with a very restricted
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Figure 6-2. Intermediate (a) and final (b) graph G constructed by Algorithm 1 for the net
shown in Fig. 1a.

structure, and we do not have sufficient evidence to decide how good it is
generally. There are a lot of “good” and “bad” examples. Some general notes
on its complexity are presented below.
� Gaining in memory, we lose in time with the method. In most cases the

algorithms described have to recalculate the same states several (sometimes
a number of) times.

� BFS search seems to be preferable here. DFS in many cases allows saving
more space, but it leads to multiple recalculation of the states and increases
time consumption drastically.

� A combination of the method with the stubborn set method is efficient,
because the stubborn set method, avoiding interleaving, reduces radically the
number of paths leading to a node in a reachability graph. So, recalculation
of the states occurs rarely for such a combination.

6.2 Applicability of the method and further work

The approach presented allows saving memory when solving the tasks of
Petri net analysis by methods of state space search. Space complexity is re-
duced at the expense of time complexity, so the practical use of the approach
makes sense (if any) in the cases where the amount of memory is a more critical
parameter than time. The approach seems to be especially efficient for dead-
lock and reachability analysis and, generally, for safety properties (to a wide
extent)4.

The method is compatible with the stubborn set method. It would be inter-
esting to analyze how it will be working with other lazy state space construction
methods; for example, with maximal concurrent simulation9,10. An experimen-
tal analysis of the method using benchmarks could answer the question whether
it is good for practical purposes.
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APPENDIX: BREAKING CYCLES IN
ORIENTED GRAPHS

Some methods of optimal “decyclization” of oriented graphs are described in Refs. 11 and
12. One of them is based on the fact that the adjacency matrix of an acyclic oriented graph can
be transformed (by reordering columns and rows) to a strictly triangular matrix. The method
reorders the matrix in such a way that the number of nonzero elements below the main diagonal
or on it is minimized. Then the arcs corresponding to such nonzero elements are removed. Of
course such reordering is a complex combinatorial task.

Another method described in Ref. 12 is based on Boolean transformations: let a Boolean vari-
able correspond to every arc of the graph, and elementary disjunction of those variables (without
negation) correspond to every cycle in the graph. Transform the obtained formula in conjunctive
normal form (CNF) into disjunctive normal form (DNF) (by multiplying the disjunctions and
deleting products that subsume others) and select the shortest elementary conjunction, which
will correspond to the minimal feedback arc set.

By using some newer methods of Boolean transformations, this approach can be much
refined. In fact the shortest prime implicant has to be calculated here. A very efficient method of
computation of the prime implicants of CNF is proposed by Thelen13, where the prime implicants
are obtained without direct multiplying but by using a search tree and the reducing rules for it.
In Ref. 14, a modification of Thelen’s method intended for computation of the shortest prime
implicant is presented. In Refs. 15 and 16, the heuristics for Thelen’s method are proposed (not
affecting the results but additionally reducing the search tree). On the other hand, the task can
be reduced to the deeply investigated unate covering problem17. Therefore, much can be done to
accelerate the exact solving of the task.

But computing of all the cycles in a graph requires exponential time and space in the worst
case; computation of the shortest prime implicant is NP, the same as that of the covering problem.
For the problem being the topic of our paper, as well as for other practical purposes, a quick
approximate algorithm would be useful. Such an algorithm is proposed in Ref. 8.

In this algorithm the weights are assigned to the arcs of the graph according to the formula:

w(e) = id(init(e)) − od(init(e)) + od(ter(e)) − id(ter(e)),

where e is an arc, w(e) is the weight, id and od are input and output degrees, respectively,
and init(e) and ter(e) are the initial and terminal nodes of the arc e, respectively. Then the arcs
are sorted (in order of nondecreasing weights) and added to the acyclic oriented graph being
constructed, excluding the arcs, adding of which would create a cycle. The algorithm processes
each strongly connected component separately.

This process is similar to the process of building of a minimal spanning tree in Prim’s
algorithm18, but, of course, a greedy algorithm cannot guarantee the optimal solution in this case.
The intuition behind the algorithm is the following: if the initial node of an arc has many incoming
arcs and few outgoing arcs, and its terminal node has many outgoing arcs and few incoming arcs,
then it is likely that it belongs to many cycles and is one (or one of the few) common arc of those
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Figure 6-3. Examples of breaking cycles in oriented graphs by the algorithm described in the
appendix. Dashed arcs are removed.

cycles. Therefore, it is better not to add such an arc to the acyclic graph being built; that is why
a bigger weight is assigned to it.

The time complexity of the algorithm is �((|V | + |E |)2). For many examples it gives exact
or close to exact solutions (see Fig. 6-3).
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SYMBOLIC STATE EXPLORATION
OF UML STATECHARTS FOR
HARDWARE DESCRIPTION

Grzegorz L� abiak
University of Zielona Góra, Institute of Computer Engineering and Electronics,
ul. Podgórna 50, 65-246 Zielona Góra, Poland; e-mail: G.Labiak@iie.uz.zgora.pl

Abstract: The finite state machine (FSM) and Petri net theories have elaborated many
techniques and algorithms that enable the employment of formal methods in the
fields of synthesis, testing, and verification. Many of them are based on symbolic
state exploration. This paper focuses on the algorithm of the symbolic state space
exploration of controllers specified by means of statecharts. Statecharts are a new
technique for specifying the behaviour of controllers, which, in comparison with
FSM and Petri nets, is enriched with notions of hierarchy, history, and exception
transitions. The paper presents the statechart diagrams as a means of digital circuit
specification.

Key words: statechart; UML; logic control; symbolic analysis; BDD.

1. INTRODUCTION

Statecharts are a visual formalism for the specification of reactive systems,
which is based on the idea of enriching state transition diagrams with notions
of hierarchy, concurrency, and broadcast communication1,2,3,4. It was invented
as a visual formalism for complex systems by David Harel1. Today, as a part of
UML technology, it is widely used in many fields of modern engineering5. The
presented approach features such characteristics as Moore and Mealy automata,
history, and terminal states. There are many algorithms based on a state transi-
tion graph traversal for finite state machines (FSMs) which have applications in
the area of synthesis, test, and verification4,6,7,8,9. It seems to be very promising
to use well-developed techniques from the FSM and Petri net theory in the field
of synthesis10, testing, and the verification of controllers specified by means
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of statechart diagrams. These considerations caused the elaboration of the new
algorithms of symbolic state space exploration.

2. SYNTAX AND DEFINITIONS

The big problem with statecharts is syntax and semantics. A variety of
application domains caused many authors to propose their own syntax and
semantics11, sometimes differing significantly. Syntax and semantics presented
in this paper are intended for specifying the behavior of binary digital controllers
that would satisfy as much as possible the UML standard5. Not every element
of UML statechart syntax is supported in the HiCoS approach. The selection
of language characteristic was made on the basis of application domain and
technical constraints of programmable logic devices.

As a result of these considerations it was assumed that system HiCoS is to
be intended for untimed control systems which operate on binary values. More-
over, the research was divided into two stages, delimiting them with a modular
paradigm12. Hence, HiCoS statecharts are characterized by hierarchy and con-
currency, simple states, composite states, end states, discrete events, actions
assigned to state (entry, do, exit), simple transitions, history attribute, and logic
predicates imposed on transitions. Another very essential issue is to allow the
use of feedbacks: this means that events generated in circuits can affect their
behavior. The role of an end state is to prevent removing an activity from a
sequential automaton before the end state becomes active. Such elements as
factored transition paths and time were rejected, whereas others as cross-level
and composite transitions and synch states have been shifted to the second stage
of the research. An example of statechart is depicted in Fig. 7-1, where event
a is an input to the system and event b is an output. Events b and c are of local
scope. Figure 7-2 depicts the hierarchy tree (a.k.a. AND-OR tree).

3. SEMANTICS

A digital controller specified with a statechart and realized as an electronic
circuit is meant to work in an environment that prompts the controller by means
of events. It is assumed that every event (incoming, outgoing, and internal) is
bound with a discrete time domain. The controller reacts to the set of accessible
events in the system through a firing set of enabled transitions called a microstep.
Because of feedback, execution of a microstep entails generating further events
and causes firing subsequent microsteps. Events triggered during a current
microstep do not influence on transitions being realized but are only allowed
to affect the behavior of a controller in the next tick of discrete time: that is, in
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Figure 7-1. Statechart diagram.

the next microstep. A sequence of subsequently generated microsteps is called
a step, and additionally it is assumed that during a step no events can come
from the outside world. A step is said to be finished when there are no enabled
transitions. Figure 7-3 depicts a step which consists of two simple microsteps.
After the step is finished the system is in the STOP state. Summarizing, dynamic
characteristics of hardware implementation are as follows:
� system is synchronous,
� system reacts to the set of available events through transition executions,

and
� generated events are accessible for the system during next tick of the clock.

s1

s11 s12

s2 s3 s4 s5

s6 s7

Figure 7-2. Hierarchy graph.
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Figure 7-3. Simple diagram and its waveform.

In Fig. 7-3 a simple diagram and its waveforms illustrate the assumed dy-
namics features. When transition t1 is fired (T = 350), event t1 is broadcast and
becomes available for the system at the next instant of discrete time (T = 450).
The activity moves from the START to the ACTION state. Now transition t2

becomes enabled. Its source state is active and predicates imposed on it (event
t1) are met. So, at instant of time T = 450 the system shifts its activity to the
STOP state and triggers event t2, which does not affect any other transition. The
step is finished.

4. HARDWARE MAPPING

The main assumption of a hardware implemented behavior described with
statechart diagrams is that the systems specified in this way can directly be
mapped into programmable logic devices. This means that elements from a
diagram (for example, states or events) are to be in direct correspondence with
resources available in a programmable device—mainly flip-flops and the pro-
grammable combinatorial logic. On the basis of this assumption and taking
into account the assumed dynamic characteristics, the following principles of
hardware implementation have been formulated:
� Each state is assigned one flip-flop—activity means that the state associated

with the flip-flop can be active or in the case of a state with a history attribute,
its past activity is remembered; an activity of state is established on the basis
of activity of flip-flops assigned to superordinate states (in the sense of a
hierarchy tree).
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Figure 7-4. Statechart system model.

� Each event is also assigned one flip-flop—activity means the occurrence of
an associated event and is sustained to the next tick of discrete time when
the event becomes available for the system.

� On the basis of the diagram topography and rules of transition executions,
excitation functions are created for each flip-flop in a circuit.

Figure 7-4 presents the main blocks of hardware implementation of state-
charts.

5. GLOBAL STATE, CONFIGURATION, AND
CHARACTERISITIC FUNCTION

To investigate symbolically dynamic characteristics of digital controllers
specified with statechart diagrams, it is necessary to introduce notions of global
state, configuration, and characteristic function.

Definition 1. Global state
Global state G is a set of all flip-flops in the system, bound both with local
states and with distributed events, which can be generated in several parts of
the diagram and separately memorized. �

The diagram from Fig. 7-1 consists of 10 state flip-flops (s1, s11, s12, s2, s3,
s4, s5, s6, s7, se) and three event flip-flops (e1, e2, e3). The flip-flop denoted as
e1 corresponds to exit event e1 assigned to state s2, e2 corresponds to the entry
action (e2) to state s5, and e3 corresponds to the transition action (broadcasting
of e2 event) bound with transition t5 firing (from state s7 to state s6). Global
states comprise all information about the statechart, about both currently active
states and their past activity.

An activity of a state flip-flop does not mean activity of a state bound with
the flip-flop. Logic 1 on flip-flop output means actual or recent state activity.
Hence, state activity is established on the basis of activity of flip-flops assigned
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to the superordinate states. The state is said to be active when every flip-flop
bound with the states belonging to the path (in the sense of a hierarchy tree)
carried from the state to the root state (located on top of a hierarchy) is asserted.
Formally, a state activity condition is calculated according to the following
definition:

Definition 2. State activity condition
State activity condition, denoted as activecond(s), is calculated as follows:

activecond(s) =
∏

si ∈ path(rootz ,s)

si (1)

where si is a signal from the flip-flop output and path(rootz, s) is a set of states
belonging to the path carried between rootz and sin a hierarchy tree. �

For example, activecond(s6)= s1
∗s11

∗s3
∗s6 (cf. Fig. 7-2, where this path is

thickened).

Definition 3. Configuration
Configuration is a set of currently active states obtained in the consequence of
iterative executing of the system, starting from default global state G0. �

A configuration carries only the information about the current state of the
system and is calculated by means of the state activity condition (cf. Defini-
tion 2). For example, configuration s1s11s12s2s̄3s̄4s̄5s̄6s̄7se corresponds to global
state s1s11s12s2s̄3s̄4s̄5s6s̄7see1ē2ē3. In Fig. 7-2 states belonging to the default con-
figuration C0 are grayed.

From the point of view of symbolic analysis techniques it is essential to
express the concept of the set of states. The notion of the characteristic function,
well known in algebra theory, can be applied.

Definition 4. Characteristic function
A characteristic function X A of a set of elements A ⊆ U is a Boolean function
X A : U → {0, 1} defined as follows:

X A(x) =
{

1 ⇔ x ∈ A,

0 otherwise.
(2)

�

The characteristic function is calculated as a disjunction of all elements of
A. Operations on sets are in direct correspondence with operations on their
characteristic functions. Thus,

X (A∪B) = X A + X B ; X (A∩B) = X A
∗ X B ; X ( Ā) = X A; X (Ø) = 0; (3)

The characteristic function allows sets to be represented by binary deci-
sion diagrams13 (BDDs). Figure 7-5 presents the characteristic function of all
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Figure 7-5. Characteristic function of all global states of the diagram from Fig. 7-1.

possible global states, and Fig. 7-6 the characteristic function of all configura-
tions for the statechart from Fig. 7-1.

6. STATECHARTS SYMBOLIC STATE
SPACE TRAVERSAL

Symbolic state space exploration techniques are widely used in the area
of synthesis, testing, and verification of finite state systems (for example,
Biliński6). Coudert et al.8 were the first to realize that BDDs could be used
to represent sets of states. This led to the formulation of an algorithm that tra-
verses the state transition graph in breadth-first manner, moving from a set of
current states to the set of its fan-out states. In this approach, sets of states are
represented by means of characteristic functions. The key operation required
for traversal is the computation of the range of a function, given a subset of its
domain. The computational cost of these symbolic techniques depends on the
cost of the operations performed on the BDDs and depends indirectly on the
number of states and transitions. For example, the BDD characteristic function
for the set of all global states for the diagram from Fig. 7-1 consists of 43 nodes,
and the characteristic function for the set of all configurations has 31 nodes.
The symbolic state exploration of statecharts consists in14

� association of excitation functions to state flip-flops,
� association of excitation functions to event flip-flops,
� association of logic functions to signals,
� representation of the Boolean function as BDDs,
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Figure 7-6. Characteristic function of all configurations of the diagram from Fig. 7-1.
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symbolic_traversal_of_Statechart(Z,initial_marking) { 

[ 0
 = current_marking = initial_marking; 

  while (current_marking != ø) { 
next_marking = image_computation(Z,current_marking);

    current_marking = next_marking * [ 0
;

[ 0
 = current_marking + [ 0

;

  } 
}

Figure 7-7. The symbolic traversal of statecharts.

� representation of sets of states using their characteristic functions, and
� computation of a set of flip-flop states as an image of the state transition

function on the current states set for all input signals.

Starting from the default global state and the set of signals, symbolic state
exploration methods enable the computation of the entire set of next global states
in one formal step. Burch et al. and Coudert et al. were the first to independently
propose the approach to the image computation8,9. Two main methods are the
transition relation and transition function. The latter is the method implemented
by the author. The symbolic state space algorithm of statechart Z is given in
Fig. 7-7.

The variables in italics represent characteristic functions of corresponding
sets of configurations. All logical variables are represented by BDDs. Several
subsequent global states are simultaneously calculated using the characteristic
function of current global states and transition functions. This computation is
realized by the image computation function. The set of subsequent global states
is calculated from the following equations:

next marking
(4)

= ∃s∃x

(
current marking∗ ∏n

i=1

[
s ′

i � current marking∗
δi (s, x))

])

next marking = next marking〈s ′ ← s〉 (5)

where s, s ′, and x denote the present state, next state, and input signal respec-
tively; ∃s and ∃x represent the existential quantification of the present state and
signal variables; symbols � and ∗ represent logic operators XNOR and AND,
respectively; equation (5) means swapping variables in the expression.

Given the characteristic function of all reachable global states of a system
(see, for example, Fig. 7-5), it is possible to calculate the set of all configurations.
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As mentioned earlier in Definition 2, a state is said to be active when every state
belonging to the path, carried from it to the root state, is active. This led to the
formulation of a state activating function. Let activecondi be a Boolean func-
tion activecondi : SZ → {0, 1}, which evaluates to 1 when state si is active.
The generation of a set of all configurations consists in the image computa-
tion of a global states characteristic function in transformation by activating
function:

X [c0〉 = ∃s∃x

(
X [G0〉

∗ ∏n

i=1

[
s ′

i � (
X [G0〉

∗activecond (si )
)])

(6)

X [c0〉 = X [c0〉〈s ′ ← s〉 (7)

In the characteristic function X [c0〉 from Fig. 7-6, si denotes activity of i th
state. The statechart from Fig. 7-1 describes the behavior that comprises 9 global
states and 6 configurations.

7. SYSTEM HICOS

Up till now, there have not been many CAD programs that employ statechart
diagrams in digital circuit design implemented in programmable devices. The
most prominent is STATEMATE Magnum by I-Logix15, where the modeled
behavior is ultimately described in HDL language ( VHDL or Verilog) with the
use of case and sequential instructions like process or always.

System HiCoS16 (Fig. 7-8) automatically converts a statechart description
of behavior into a register transfer level description. The input model described
is in its own textual representation (statecharts specification format), which
is equivalent to a graphical form, and the next is transformed into Boolean
equations. Boolean equations are internally represented by means of BDDs13,17.
Next, a reachability graph can be built or through RTL-VHDL designed model
can be implemented in programmable logic devices.

SYSTEM HiCoS 

Statecharts
SSF

Boolean 
Equations

BDD
VHDL RTL FPGA

Reachability
Graph BDD

Figure 7-8. System HiCos—schematic diagram.
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8. CONCLUSION

A visual formalism proposed by David Harel can be effectively used to
specify the behavior of digital controllers. Controllers specified in this way
can subsequently be synthesized in FPGA circuits. In this paper it has been
shown that state space traversal techniques from the FSM and Petri nets theory
can be efficiently used in the fields of statechart controllers design. Within the
framework of the research, a software system called HiCoS has been developed,
where the algorithms have been successfully implemented.
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CALCULATING STATE SPACES OF
HIERARCHICAL PETRI NETS USING BDD
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Abstract: The state space of a hierarchical Petri net can be presented as a hierarchical
reachability graph. However, the hierarchical reachability graph can be described
with the help of logic functions. On the other hand, binary decision diagrams
(BDD) are efficient data structures for representing logic functions. Because of the
exponential growth of the number of states in Petri nets, it is difficult to process the
whole state space. Therefore the abstraction method of selected macromodules
gives the possibility of analysis and synthesis for more complex systems. The
goal of the paper is to show a method for representing the state space in the
form of a connected system of binary decision diagrams as well as its calculation
algorithm.

Key words: hierarchical Petri nets; state space calculation algorithm; binary decision diagram;
connected system of binary decision diagrams.

1. INTRODUCTION

Hierarchical interpreted Petri nets are a hierarchical method of describing
concurrent processes. They enable the design of a complex system through
abstracting some parts of the net. It is possible when the abstraction part of
the net is formally correct; i.e., it is safe, live, and persistent1. This approach
can also be used for a level of the state space of a digital circuit. One of
the possibilities of state spaces representation is a hierarchical reachability
graph. It describes the state space on various hierarchy levels. The hierarchical
reachability graph can be represented in the form of logic functions2, in which
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the logic variables correspond to places and macroplaces of a Petri net. The
number of them equals the number of places and macroplaces. However, the
efficient methods of representing logic functions are decision diagrams, e.g.,
binary decision diagrams (BDDs), zero-suppressed binary decision diagrams
(ZBDDs), or Kronecker functional decision diagrams (KFDDs). Therefore,
each level of the hierarchy can be represented as a logic function (decision
diagram), and the set of these functions creates the system of the connected
decision diagrams. They describe the hierarchical state space.

In this paper, the calculation method of hierarchical state space with the help
of operations on the logic functions and decision diagrams is presented. The
symbolic traversal method of the state space, for flat Petri nets, was presented
by Biliński3. The application of this method for the hierarchical Petri nets and
the method of describing a hierarchical reachability graph in the form of the
connected system of decision diagrams are a new idea.

2. HIERARCHICAL PETRI NETS

A hierarchical Petri net is a directed graph, which has three types of nodes
called places (represented by circles), transitions (represented by bars or boxes),
and macroplaces (represented by double circles). The macroplaces include other
places, transitions, and also macroplaces and signify lower levels of hierarchy.
When a hierarchical Petri net is used to model a parallel controller, each place
and macroplace represents a local state of the digital circuit. Every marked
place or macroplace represents an active local state. The set of places, which
are marked in the same time, represents the global state of the controller. How-
ever, the transitions describe the events, which occur in the controller. The
controller can also receive input signals coming from a data path, as well as
from another control unit. It generates, using this information, control signals,
which determine the behavior of the system. Input signals can be assigned to
transitions in the form of logic functions. These functions are called transition
predicates. If the predicate is satisfied and all input places of the transition have
markers, the transition will fire.

Figure 8-1 presents an example of a hierarchical Petri net, which consists of
some levels of hierarchy. The top hierarchy level is composed of macroplaces
M1 and M5. The state space of it can be described in the form of the logic function
χ(M1, M5) = M1 M5 + M1 M5. The lower level of the hierarchy is composed of
three parallel macroplaces M2, M3, and M4, which are a part of the macroplace
M5. However, the macroplaces M1, M2, M3, and M4 form the lowest level of
the hierarchy. As in the top hierarchy level, every remaining abstraction level
can be described with the help of a logic function.

The first step, which the designer has to do, is to create a graphical or a
textual description of a Petri net. With this end in view, the designer can use
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Figure 8-1. An example of a hierarchical Petri net.

the textual format PNSF2 for a specification of the flat and hierarchical Petri
nets4. In the next step, the computer program loads this specification to internal
object data structures. During loading the textual or graphical description of a
Petri net (or nets), the basic validation of the Petri net structure is made. The
class diagram of the designed Petri net object library (PNOL) is described in
the UML notation, in Fig. 8-2.

After reading a structure of the Petri net, the space of the states of a digital
controller can be calculated. It can be done on the grounds of an internal data
structure of the Petri net and with the help of BDDs.

3. THE STATE SPACE AND BINARY
DECISION DIAGRAM

A binary decision diagram (BDD) is a rooted, directed, acyclic graph, which
has two sink nodes labeled 0 and 1, representing the Boolean function values
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Figure 8-2. The class diagram of the Petri net object library.

0 and 1, and non-sink nodes, each labeled with a Boolean variable. Each non-
sink node has two output edges labeled 0 and 1 and represents the Boolean
function corresponding to its edge 0 or the Boolean function corresponding to its
edge 1. The construction of a standard BDD is based on the Shannon expansion
of a Boolean function5,6. An ordered binary decision diagram (OBDD) is a
BDD diagram in which all the variables are ordered and every path from the
root node to a sink node visits the variables in the same order. A reduced ordered
binary decision diagram (ROBDD) is an OBDD diagram in which each node
represents a distinct logic function. The size of a ROBDD greatly depends on
the variable ordering. Many heuristics have been developed to optimize the size
of BDDs5,6. In this paper, all binary decision diagrams are reduced and ordered.

The whole state space of the hierarchical Petri net (Fig. 8-1) can be described
as one logic function:

χ(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11) =
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 +
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

This means that the modeling controller may be in one of 29 states. The BBD
diagram, for this function, has 24 non-sink nodes. We can reduce the number
of nodes by creating a connected system of BDDs (see Fig. 8-3). Each decision
diagram describes one characteristic function of the appropriate hierarchy level.
In this case there are six decision diagrams, which have 19 non-sink nodes. This
situation follows from the fact that the size of decision diagram depends, among
other things, on the number of logic variables of the function. Besides, each
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Figure 8-3. The connected system of the binary decision diagrams.
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Figure 8-4. Variable shifters in the connected system of the decision diagrams.

logic function can be represented with the help of another kind of the decision
diagram. The kind of the decision diagram used strictly depends on the kind of
the function. For example, for one logical function the binary decision diagram
is better, but the zero-suppressed binary decision diagram is better for another
function.

In many cases we can find similar parts of the Petri net, for which there is
only one difference: a naming of the places. It means that they are isomorphic.
Therefore, the state spaces of similar parts of the Petri net can be represented
by the same BDD, with the special edge attributes, called variable shifters
(see Fig. 8-4). These edge attributes were described by Minato6. They allow a
composition of some decision diagrams into one graph by storing the difference
of the indices. The variable shifter edges indicate that a number should be added
to the indices of all descendant nodes. The variable index is not stored with each
node, because the variable shifter gives information about the distance between
the pair of nodes. In the case of the edges, which point to a terminal node, a
variable shifter is not used. The variable shifters, which point to the root of a
BDD, indicate the absolute index of the node. The other variable shifters, which
are assigned to the edges of the BDD, indicate the difference between the index
of the start node and the end node. We can use these edges to reduce the number
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of nodes in the connected system of the decision diagrams, and it will allow
designing a more complex system.

4. ALGORITHM OF STATE SPACE
CALCULATION

After parsing of a Petri net description, written in the PNSF2 format, and
loading a Petri net to internal data structures, the algorithm checks the structure
of the Petri net (see Fig. 8-5). Afterward, if it is a flat Petri net, the algorithm

START

Reading hierarchical Petri net (HPN) 
from PNSF2 to internal data structures

STOP

Parsing PNSF2 file, describing structure of
hierarchical Petri net (HPN)

Yes

No

Splitting  Petri net into hierarchical
structure of macroplaces

All levels of
hierarchy have

been processed ? 

Is it hierarchical
Petri net? 

No

Generating characteristic function describing state
space ofthis macroplace with thehelp of BDDs

Getting the next macroplace
in hierarchical Petri net 

Adding the BDD, representing the state space of
current macroplace, to connected system of BDDs

Yes

Figure 8-5. Calculation algorithm of the state space of a hierarchical Petri net.
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START

current marking  != 0

Calculating initial marking (initial marking)
for the current macroplace of analyzing HPN

Putting initial marking to current marking:
current marking := initial marking;

Yes

Generating a new marking
(new marking)

Setting the current marking to the new
marking current marking := new marking;

Adding current marking (current_marking) to
the state space of the macroplace

No

STOP 

Figure 8-6. Symbolic traversal algorithm for a hierarchical Petri net.

splits it into a hierarchical structure of macroplaces. In the next step, for each
macroplace, the algorithm recursively calculates characteristic function. Each
logic function, represented in the form of a decision diagram, describes a state
space of each macroplace. However the calculated decision diagram is joined
to the connected system of decision diagrams, which represents the whole state
space of the hierarchical Petri net. During this process we can also check whether
the Petri net is formally correct.

One of the more important steps of this algorithm is the calculation of
the characteristic function, which describes the state space of a macroplace
(Fig. 8-6). The symbolic traversal algorithm is taken from Biliński3. In this
method, the next marking is calculated using the characteristic function and the
transition function. Transition functions (� : � → �) are the logic functions
associated with places and defined as a functional vector of Boolean functions:
� = [δ1(P, X ), δ2(P, X ), . . . , δn(P, X )], where δi (P, X ) is a transition func-
tion of place pi ; P and X are sets of places and input signals, respectively.
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The function δi has value 1 when place pi has a token in the next iteration;
otherwise it equals 0. Every function δi consists of two parts: a part describing
the situation when the place pi will receive a token and a part describing the
situation when the place will keep a token. For example, place p7 will have a
token in the next iteration if place p6 has a token and input signal S2 is active
(transition t6 will fire) or place p7 has already got a token and input signal K2 is
inactive (transition t7 is disabled); thus the function δ7 can be defined as follows:
δ7 = p6 ∗ S2 + p7 ∗ K 2.

The computation of a set of markings which can be reached from the current
marking (current marking) in one iteration is carried out according to the
following equations:

next marking = ∃
p
∃
x
(current marking ∗

n∏
i=1

[p′
i�(current marking∗δi (p, x))])

where p, p′, and x denote the present state, the next state, and the input signal,
respectively, and symbols � and * represent logic operators XNOR and AND,
respectively.

5. SUBMISSION

The application of a connected system of binary decision diagrams enables
to reduce the number of nodes of decision diagrams. On the other hand, appli-
cation of the hierarchical Petri nets makes designing parallel digital controllers
easier. It means that we can process more complex digital circuits on various
abstraction levels without processing the whole state space. The connected
system of decision diagrams can also be used for a formal verification of the
hierarchical Petri nets.
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A NEW APPROACH TO SIMULATION
OF CONCURRENT CONTROLLERS
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Abstract: In the paper a new approach to simulation of modeled concurrent controllers
is presented. In the case presented, a concurrent controller is modeled using
Petri nets and HDL languages. A very important stage of digital circuits design is
verification, because it saves time and money. Simulation is the simplest method of
verification. In the literature a lot of approaches to circuit simulation are described,
but a new technology gives new possibilities and it gives a new idea to use XML
and Verilog to simulate concurrent controllers.

Key words: Petri net; simulation; XML; HDL; verification.

1. INTRODUCTION

Dynamic expansion of electronics in daily life and constantly developing
digital technology are making life easier, better, and safer. Increasing demands
for digital circuits and controllers create a new working field for engineers. The
designers encounter new problems and have to search new, optimal methods of
design of programmable logic controllers (PLCs).

Nowadays in the world, for design and modeling digital circuits and con-
current controllers, two kinds of the models, HDL languages and Petri nets, are
used most frequently. Testing of concurrent controller model is very important,
because a good system should not contain events that can never occur.

There exist many different methods of systems verification, but one of the
simplest is simulation. This method enables checking of behavior correctness
of the model, and in the same way of a real circuit. Furthermore, the simula-
tion allows to detect and remove many errors at an early stage of design. The
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verification of modeling concurrent controllers using Petri nets can be carried
out in the following three ways:
� animation of Petri nets,
� analysis of Petri nets,
� simulation of HDL model.

In the paper, two methods of simulation will be presented: animation of
Petri net using Scalable Vector Graphics and simulation of Petri nets using the
HDL language.

Verilog has become the standard interface between human and design au-
tomation tools. It can describe both functional and behavioral information about
a digital system, as well as the structure of the interconnected composite blocks
down to the physical implementation level. It can be also used for modeling
and design of industrial logic controllers, especially those that are realized with
modern FPGAs as application specific logic controllers (ASLCs)6.

Verilog is used for Petri net model prototyping of industrial logic controllers.
It is used for operation unit modeling of the system, too.

2. BACKGROUND

In this section basic information about and definitions of Petri nets and HDL
language are presented.

2.1 Petri nets

Petri nets1 are mathematical objects that exist independently on any physi-
cal representation and implementation. This model allows to describe designed
digital circuits, especially concurrent controllers in a graphical and mathemat-
ical way. The graphical form of Petri nets is often used as a tool for analysis
and modeling of digital circuits on high-level abstraction.

In the original version (which was defined in 1961 by C.A. Petri) this model
enabled to specify the rules of digital circuit action, which was meant for asyn-
chronous and nondeterministic nets. Well-known and perfect mathematical for-
malism enables modeling concurrent processes, such as sequential, conflict, and
concurrent. Later, this model was extended to encompass other more useful
functions, such as synchronization, interpretation, hierarchy, and color.

For the modeling of digital systems, selected classes of Petri nets are ap-
plicable. In this paper synchronous, interpreted, hierarchical, and colored Petri
nets are described.

A Petri net model can be presented as an oriented bipartite graph with two
subsets of nodes called places and transitions, where each node is linked with
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another by an arc. A Petri net model can be described as

PN = (P, T, F),

where
� P is a finite set of places;
� T is a finite state of transitions, and
� F is a finite set of arcs.

In a graphical form of Petri nets each place represents a local state of a digital
circuit. A currently active place is marked. Every marked place represents an
active local state. The set of places, which are marked at the same time, defines
the global state of the controller. Each transition describes logical condition of
controller’s state change.

In the flow graph, each place has a unique identifier and an ordered list of
output signals, which are activated in this state (Moore outputs). However, each
transition, besides the unique name’s tag, has an enabling function to change the
currently active state. This function consists of two parts: logical condition of
state change and firing results. The logical condition consists of inputs product,
outputs, predicates, and places, which are connected by inhibitor and enabling
arcs to this transition. When a logical condition is satisfied and all input places
of the transition have markers, then the transition is being fired with the nearest
rising edge of a clock signal. As a result of execution, input places shift active
markers to output places of the transition and appropriate output signals are
activated (Mealy outputs).

In large projects, it is more useful to create models of Petri nets with the
use of hierarchical approach. In this way any part of the net can be replaced by
the symbol of a macronode. Each macroplace or macrotransition includes other
places, transitions, arcs, and other macronodes. They are making subnets and
represent lower levels of the hierarchy. When the macronode becomes active
(gets a marker), the control is passed to the subnet and starting places of the
subnet are marked inside. The marker stays at this macronode until all output
places of the subnet are marked. Then the control is passed back to the main
net.

2.2 HDL language

Even today, the usual validation method to discover design errors is sim-
ulation. The implementation is expressed in terms of a hardware description
language such as Verilog HDL or VHDL, which can be simulated. By simula-
tion it is possible to decide whether the resulting output sequence violates the
specification, i.e., the implementation behaves erroneously2.
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Verilog4 is a hardware description language used to design and document
electronic systems. It allows designers to design at various levels of abstrac-
tion. It was invented as a simulation language. Use of Verilog for synthesis was
a complete afterthought. The IEEE standardization process includes enhance-
ments and refinements; at the end the work on the Verilog 1364-2001 standard
was analyzed. It is a language capable of representing the hardware with the
independence of its final implementation.

Verilog is increasingly used to describe digital hardware designs that are
applicable for both simulation and synthesis. In addition, these HDLs are com-
monly used as an exchange medium, e.g., between the tools of different vendors.
HDL modeling of Petri nets is an actual research topic presented in papers.

3. MODELING OF LOGIC CONTROLLERS

In this section two methods of modeling of logic controllers (especially con-
current controllers), i.e., Petri nets and Verilog-HDL language, are presented.

3.1 An example of a concurrent controller

In this section, an example of a digital controller, which is used to control
in technology process of liquids mixing and transporting them is presented. A
general diagram of this process is presented in Fig. 9-1. The whole process
consists of three main steps.
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Figure 9-1. Schema of a technological process.
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Table 9-1. Input and output signals

Name Description

AU Breakdown appearance notification
REP Initial transaction signal
AUT Enabling signal for starting operation
B1, B2 Notification product A and B proper weight
NLIM Maximal level of foam (hLIM)
Nmax Maximal level of liquid (hmax)
Nmin Minimal level of liquid (hmin)
V1, P Valve-opening and pump-running signals
V2, V4 Signals opening valves of containers with products A, B
V3, V5 Signals opening valves in scales for products A, B
C1, C2 Signals running conveyor belt delivering products A, B
AC1, AC2 Signals running conveyor belts removing redundant products A, B
EV Signal opening main container valve for removing waste
V6 Signal opening main container valve for the final product

Outputs P, V1, V2, V4, AC1, AC2, EV, and M are Mealy outputs; however, outputs C1, C2, V3,
V5, and V6 are Moore outputs.

The schema of the technological process is presented in Fig. 9-1. An example
of the process is taken from Ref. 6.

Table 9-1 gives a description of each input and output signal. Generally, the
working of a system can be divided into three stages:
� stage I – initialization of work;
� stage II – normal cycle of work;
� stage III – emergency stopping of the system.

Figure 9-2 presents Petri nets for the logic circuit that controls the described
technological process. The controller is described by two nets. Each coherent
net is analyzed separately. In literature there are some ways to analyze such
nets, using enabling arcs. But, for the sake of the state local code P14 occurring
in the condition for a lot of transitions (e.g., t2, t3, t4), insert an additional signal
M14, because joining a lot of enabling arcs going out from place P14 decreases
the legibility of the net.

3.2 Petri net specification format 3

New technologies give new possibilities. Since XML7 was developed by
an XML Working Group in 1996, several applications of XML to a specific
domain have been created, e.g., CML for chemistry and GedML for genealogy.
XML markup describes a document’s structure and meaning.

The development of a new XML-based format for Petri nets enables trans-
forming modeled Petri nets between systems that use an XML-based format.



100 Chapter 9

1

t1

t2 M14*Nmin t3 M14*FT1

t4

M14

M14->
2 4

3 5

t7

M14

8

11

AC1*AC2

M14*AUT

t13

AU

t6

7

10

t5 M14*Nmax

M14*NLIM-> 
V1*P6

9

M14*B1 M14*B2

M14->V2 M14->V4

t8

12

13

t9 !AU*FT1

M* 
C1*C2
V3*V5

t10 !AU*FT2*Nmin

!FT2 -> M

M14-> EV 

TM1

TM2

TM1

V6

t12 AU t11 !AU*REP

M14

15

14

(b)

(a)

Figure 9-2. PNSF3 format for Petri nets.

Because of this fact a new XML format, PNSF3 (Petri net specification for-
mat 3), was proposed5. This format is based on PNSF2, which was developed
at the University of Zielona Góra.

PNSF3 is one of such textual descriptions of concurrent controller models.
In this format XML markup notation is used for storing information about the



A New Approach to Simulation of Concurrent Controllers 101

controller. The main goal of PNSF3 is specification of the principle of concur-
rent controller action. By means of PNSF3 format, interpreted, synchronous,
hierarchical, and colored Petri nets can be modeled. As a result, this format is
simple to create and modify.

PNSF3 specifies the structure of a Petri net. It allows describing each place
and transition of the net and connection between them inside a graph. It stores
information about clock, input and output signals, and their kinds. However,
PNSF3 does not keep any information about the way of element presenta-
tion and placement inside the graph, as opposed to the format described in
Ref 3.

Each such XML application should have its own syntax and vocabulary
defined by an outside DTD file. The XML language is a set of rules defin-
ing semantic tags that break a document into parts and identify the logical
parts of the document. XML markups describe only the syntax, meaning, and
connections between data. This format is good for storing large and complex
structures of data textual format. It is easy to read, write, and convert into other
formats.

PNSF3 has its own dictionary of XML markups. The dictionary consists
of a few main markups, which are grouped and provide information about the
model. Each defined markup includes a list of arguments or child markups,
which enable precise description of a given element of the graph. One such
markup, which describes place, is presented in Fig. 9-3.

A general tag of the document, which is validated by the DTD file, is pre-
sented in Fig. 9-4.

The main advantage of XML is that it is very easy to transform into another
format (e.g. SVG). In this paper, a way of transformation from the XML-
based format (PNSF3) to SVG8 is presented. The SVG file holds information
about places, transitions, predicates, markings, and placement of these elements.
Using the option of dynamic SVG animation, it is possible to simulate an
interpreted Petri net.

A PNSF3 format (Fig. 9-5) was prepared for the Petri net (Fig. 9-2).

3.3 HDL modeling and simulation

Several methods were proposed to transfer Petri nets specifications
into VHDL for performance and reliability analysis. But in the literature,

<PLACE ID=”p1” MARKING=”yes”
ID_COLOURS=”c1 c2 c3”  ID_MACROPLACE=””...> 

place_name
</PLACE>

_ _

Figure 9-3. An example of a PNSF3 markup.
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<? xml version="1.0" encoding="ISO-8859-2"
standalone="no" ?>

<!DOCTYPE PNSF3 SYSTEM "pnsf3.dtd">
<PNSF3>
  <GLOBAL> 

declarations of global signal .... 
  </GLOBAL> 

  <MACRO_PLACE> 
description of macroplace used in other  units ....

  </MACRO_PLACE > 
  <MACRO_TRANSITION> 

description of macrotransition used in other units 
  </MACRO_TRANSITION> 

  <PART> 
description of independent unit ...•

  </PART> 
</PNSF3>

_

_
_

_

Figure 9-4. A general template of a PNSF3 document.

Verilogbased modeling of Petri nets is not known. Verilog syntax can sup-
port the intermediate-level models. It makes it possible to describe the highest
level of the system and its interfaces first and then to refer to greater details.

The Verilog language describes a digital system as a set of modules. Each
of these modules has an interface to other modules, as well as a description of
its contents4.

The basic Verilog statement for describing a process is the always statement.
The always continuously repeats its statement, never exiting or stopping. A
behavioral model may contain one or more always statements.

The initial statement is similar to the always statement, except that it is
executed only once. The initial provides a means of initiating input waveforms
and other simulation variables before the actual description begins its simula-
tion. The initial and always statements are the basic constructs for describing
concurrency4.

Because of the fact that Verilog can model concurrency, e.g., using structure
always, Petri nets can be effectively described by the Verilog language.

The conditions of transitions are input signals, or internal signals (for subnets
synchronization). Each place is represented by a flip-flop (i.e., concurrent one-
hot method is used for place encoding), which holds the local state of the
controller. During initialization of the simulation, and after active state of signal
reset, initial marked places are set to logical 1, other places are set to 0.

In Fig. 9-6 a part of a Verilog model is presented. At the beginning, a
file called defines.h is included, and real names of objects (input/output signals,
places, and transitions) are assigned to names used in the model. In the example
presented, the signals Nmin, V1, and TM1 are assigned as follows:
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<?xml version="1.0" encoding="ISO-8859-2" 
standalone="no"?>
<!DOCTYPE pnsf3 SYSTEM "pnsf3.dtd"> 
<PNSF3>
<GLOBAL>
<CLOCK ID="clk1" > clk </CLOCK>
 <DEF_COLOURS>

<COLOUR ID="col1" > red </COLOUR>
<COLOUR ID="col2" > green </COLOUR>

…
</DEF_COLOURS>
<INPUTS>
<INPUT ID="i1" > x0 </INPUT>
<INPUT ID="i2" > x1 </INPUT>
<INPUT ID="i3" > x2 </INPUT>

…
</INPUTS>
<OUTPUTS>
<OUTPUT ID="o1" > y1 </OUTPUT>
<OUTPUT ID="o2" > y2 </OUTPUT>
<OUTPUT ID="o3" > y3 </OUTPUT>

       …
</OUTPUTS>
</GLOBAL>
<PART NAME="sterownik" ID="part1">
<PLACES>
<PLACE ID="p1" MARKING="yes"
ID_COLOURS="col1 col2 col3 col4">  p1
</PLACE>
<PLACE ID="p2" ID_COLOURS="col1 col2"> p2
</PLACE>
<PLACE ID="p3" ID_COLOURS="col3">  p3
</PLACE>

…
</PLACES>
<TRANSITIONS>
   <TRANSITION ID="t1" ID_COLOURS="col1 col2 col3 col4">
    t1

</TRANSITION>
<TRANSITION ID="t2" ID_COLOURS="col1 col2" >

    t2
</TRANSITION>
<TRANSITION ID="t3"  ID_COLOURS="col3" >

    t3
</TRANSITION>

      …
</TRANSITIONS>
<NET>
<ARC ID_TRANSITION="t1" ID_IN_PLACES="p1"

ID_IN_SIGNALS="i1" ID_OUT_PLACES="p2 p3 p6"
ID_OUT_SIGNALS="o1 o2 o9">

   </ARC> 
<ARC ID_TRANSITION="t2" ID_IN_PLACES="p2"

ID_IN_SIGNALS="i2" ID_OUT_PLACES="p4">
   </ARC> 

<ARC ID_TRANSITION="t3" ID_IN_PLACES="p3"
ID_IN_SIGNALS="i4" ID_OUT_PLACES="p5">

   </ARC> 
…

 </NET> 
<MOORE_OUTPUTS>
<MOORE_DESC ID_IN_PLACES="p2" ID_OUT_SIGNALS="o1">

   </MOORE_DESC>
<MOORE_DESC ID_IN_PLACES="p3" ID_OUT_SIGNALS="o2">

   </MOORE_DESC>
   <MOORE_DESC ID_IN_PLACES="p6" ID_OUT_SIGNALS="o9">
   </MOORE_DESC> 

…
</MOORE_OUTPUTS>
</PART>

_

_

_

_

_

_

_

_

_
_

_
__ _

_ _
__

_

_
_ _

__

_
_
_

_
_ _

_
_
_
_ _ _

_ __ _ _

__

_ _____
_

__

_

_
_

Figure 9-5. PNSF3 format for Petri nets.
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`include "defines.h" 
module Petri_Net_example (reset, clk, INs, REGOUTs, OUTs); 
//Declarations
input reset, clk; 
input [9:0] INs; 
output [13:0] OUTs; 
output [1:0] REGOUTs; reg [1:0]  REGOUTs  ; 
reg [14:0] States;
wire [0:12] T; 
// Conditions for transitions 
assign `T1 = `M14; 
assign `T2 = `M14 & `Nmin; 
assign `T3 = `M14 & `FT1; 
...
//Combinatorial outputs ...
assign  `V1 = (`M14 & `NLIM==1)?`P6 :0; 
assign  `V2 =  (`M14==1)?`P7:0; 
assign  `V3 = `P12; 
assign  `P =  ((`M14 & `NLIM)==1)?`P6:0 ; 
...
//... and registered outputs
assign  `M14 =  `P14; 
always @(posedge clk) 
 begin    

if (reset)  `TM1 <= 0; 
else `TM1 <= `T1&`P1 |  `T8&`P9&`P10&`P11 ; 

end
always @(posedge clk) 
 begin    

if (reset)  `TM2 <= 0; 
else `TM2 <= `T9&`P12 ; 

 end 
//Exciting functions for flip-flops (places) 
always @(posedge clk) 
 begin

if (reset)  `P1 <= 1; 
else `P1 <=  (`P1 &~`T1 )|(`T13&`P13); 

 end
always @(posedge clk) 
begin

if (reset)  `P2 <= 0; 
else `P2 <=  (`P2 &  ~`T2 ) | (`P1 & `T1) ; 

end
...

Figure 9-6. A part of the Verilog model.

‘define Nmin INs[0]
‘define V1 OUTs[0]
‘define TM1 REGOUTs[0]

In a module, the designed controller interface is declared, i.e., the number, types,
and size of input/output ports. Then there are two assign blocks. The first block
defines conditions, with respect to input signals, for firing of transitions. The
second one defines logical outputs for each active local state of the controller.
The next blocks are a group of always statements, which calculate the current
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state of the flip-flops. Each always statement controls one place of a net. During
work of the controller, the exciting function of the flip-flop for the given state
(place) can be calculated as follows:

Px = Px set + Px hold

and

Px set =
∑

ti ∈•px

C(ti )

Px hold = px ∗
∏

ti ∈Px •
∼ C(ti )

where
� • Px is the set of the input transitions of a place Px ;
� Px • is the set of the output transitions of a place Px ;
� C(ti ) is the firing condition of the transition ti ; and
�

∑
,
∏

, ∗, and ∼ are logical operations OR, AND, AND, NOT, respectively.

Figure 9-7 shows a window from Aldec Active-HDL simulator with the
waveforms as the simulation result (the vector of the output signals is presented
in detail).

Figure 9-7. Results of the Verilog model simulation.
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4. SIMULATION OF THE PETRI NET MODEL
USING SVG

The next step after modeling is analysis of prepared specification. Scalable
Vector Graphics (SVG) is a format of vector graphics that is based on XML
language. The SVG format is supported by some script languages for animation.
It gives an idea for using such a format for presenting Petri nets in a graphical
form.

SVG was created by World Wide Web Consortium (W3C). SVG is a lan-
guage for describing two-dimensional (2D) vector graphics by means of XML
markup notation. This format has its own vocabulary of restricted and defined
meanings, recognizable by Web browser tools. SVG has many advantages in
comparison with other raster graphic formats commonly used on the Web today,
such as GIF or JPEG, which have to store information for every pixel of the
graphic.

With the aim of Petri nets model simulation, the textual PNSF3 description
must be transformed into another graphic format. In this paper, a conversion
into SVG format is proposed. The automatic process of conversion into SVG
consists of a few of the following steps:
� validation of the PNSF3 document,
� loading information about Petri nets model;
� changing all the identifiers of net elements (such as places, transitions, arcs,

markups) into appropriate SVG graphic elements;
� arranging elements of a Petri graph on the screen;
� assigning colors to appropriate elements;
� generating the script, which is the managing process of animation;
� generating the GUI (graphical user interface), which includes different con-

trol panels;
� storing the SVG into a file.

In the previous section it was mentioned that PNSF3 did not keep any
information about element arrangement. Therefore, it is very difficult to make
an XSL file directly for transformation into SVG graphics. To eliminate these
problems, a special program should be used to automate this process.

The first and the most important step for creating the SVG file is to arrange
all elements on the screen correctly. Next, the Animate Script is generated on the
basis of information about connections, conditions, and results of execution for
all transitions. The script consists of a few functions, which control the processes
of the animation. Then special functions and control panels are generated.
The additional functions enable to communicate with the user. However, the
control panels enable setting input signals and watching the current state of the
circuit.
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The dynamic SVG file consists of three main parts:
� definition block of graphic net elements,
� definition block of control panels, and
� animation script.

5. CONCLUSIONS

In the paper a new XML application for modeling and simulation of digital
circuits, especially concurrent controllers, was presented. The proposed PNSF3
is one such textual form for describing Petri net models.

The most important advantages of the proposed PNSF3 are as follows:
extreme flexibility, platform independence, precise specification, human read-
ing, easiness of preparation, parsability, transformation, and validation. No
special and expensive tools are necessary to prepare documents in PNSF3.
However, the disadvantage is difficulty of conversion into other graphic for-
mats. This problem can be solved by a special application, which generates the
graphical form of Petri nets as a SVG file on the basis of PNSF3 specifica-
tion.

On the other hand, for simulation of logic controllers, which are described
by Petri nets, HDL-based models are very efficient. In the paper, model-
ing in Verilog-HDL was presented. Verilog construction always has been
used for effective description of concurrency. For concurrent place encod-
ing, one-hot method is used; a dedicated flip-flop holds the local state of the
controller.
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OPTIMAL STATE ASSIGNMENT OF
SYNCHRONOUS PARALLEL AUTOMATA

Yury Pottosin
National Academy of Sciences of Belarus, Institute of Engineering Cybernetics, Surganov Str.,
6, 220012, Minsk, Belarus; e-mail: pott@newman.bas-net.by

Abstract: Three algorithms for assignment of partial states of synchronous parallel automata
are considered. Two of them are original; the third one is taken for comparison.
One of them is exact; i.e., the number of coding variables obtained by this algo-
rithm is minimal. It is based on covering a nonparallelism graph of partial states
by complete bipartite subgraphs. Two other algorithms are heuristic. One of the
heuristic algorithms uses the same approach as the exact one. The other is known
as iterative. The results of application of these algorithms on some pseudoran-
dom synchronous parallel automata and the method for generating such objects
are given.

Key words: synchronous parallel automata; state encoding; parallelism.

1. INTRODUCTION

The parallel automaton is a functional model of a discrete device and is rather
convenient to represent the parallelism of interactive branches of controlled
process19. The main distinction between a parallel automaton and a sequential
one (finite state machine) is that the latter can be in only one state at any moment,
while the parallel automaton can be in several partial states simultaneously. A
set of partial states in which a parallel automaton can be simultaneously is called
a total state. Any two partial states in which an automaton can be simultaneously
are called parallel.

A parallel automaton is described by the set of strings of the form µi :
−wi → νi → νi , where wi and νi are elementary conjunctions of Boolean vari-
ables that define the condition of transition and the output signals, respectively,
and µi and νi are labels that represent the sets of partial states of the parallel
automaton19. Every such string should be understood as follows. If the total
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state of the parallel automaton contains all the partial states from µi and the
event wi has been realized in the input variable space, then the automaton is
found to be in the total state that differs from the initial one by containing partial
states from νi instead of those from µi . The values of output variables in this
case are set to be such that νi = 1.

If −wi and → νi are removed from the string, it can be interpreted as a
transition (µi , νi ) in a Petri net. Therefore, the set of such reduced strings can
be considered as a Petri net being a “skeleton”of the given parallel automaton.
Here we consider only those parallel automata whose skeleton is an α-net19 that
is a subclass of live and safe expanded nets of free choice, which are studied in
Ref. 6.

In state assignment of a parallel automaton, partial states are encoded by
ternary vectors in the space of introduced internal variables that can take val-
ues 0, 1, or “−”, orthogonal vectors being assigned to nonparallel states and
nonorthogonal vectors to parallel states2,18,19. The orthogonality of ternary vec-
tors means existence of a component having opposite values (0 and 1) in these
vectors. It is natural to minimize the dimension of the space that results in the
minimum of memory elements (flip-flops) in the circuit implementation of the
automaton.

The methods to solve the state assignment problem for synchronous parallel
automata are surveyed in Ref. 4. Two heuristic algorithms are considered here.
One of them is based on iterative method3; the other reduces the minimization
of the number of memory elements to the problem of covering a nonparallelism
graph of partial states by complete bipartite subgraphs10. To solve the problem
of covering, the algorithm uses a heuristic technique. The third algorithm con-
sidered here is exact; i.e., the number of coding variables (memory elements)
obtained by this algorithm is minimal. It also finds a cover of a nonparallelism
graph of partial states by complete bipartite subgraphs, though using an ex-
act technique12. These three algorithms were used to encode partial states of a
number of synchronous parallel automata obtained as pseudorandom objects.
The pseudorandom parallel automata with given parameters were generated
by a special computer program. The method for generating such objects is de-
scribed. The results of this experiment allow to decide about the quality of the
algorithms. Similar experiments are described in Ref. 21, where another ap-
proach was investigated and the pseudorandom objects were Boolean matrices
interpreted as partial state orthogonality matrices of parallel automata.

2. EXACT ALGORITHM

Below, we refer to this algorithm as Algorithm A. It is based on covering a
nonparallelism graph G of partial states by complete bipartite subgraphs.
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2.1 Reducing the problem to search for a cover of
a graph by complete bipartite subgraphs

A method for partial state assignment that reduces the problem to searching
the shortest cover of a graph by complete bipartite subgraphs is known10,18.
This method considers graph G, whose vertices correspond to partial states of
a given automaton and edges to pairs of nonparallel partial states.

In general, graph G is constructed by obtaining all achievable markings of
the Petri net that is the skeleton of the given automaton. The number of them
grows exponentially with the size of the net. Here the considered automata are
restricted to those whose skeletons are α-nets. The characteristic properties of
an α-net are the initial marking of it, consisting of one element, {1}, and the
sets of input places of two different transitions coinciding or disjoining. The
complexity of the problem of establishing state parallelism relation of such
automata is proved to be polynomial9. By the way, encoding partial states by
ternary vectors is admitted in this case.

According to Ref. 7, a complete bipartite subgraph of a graph G = (V, E)
with vertex set V and edge set E is the graph B = (V ′, E ′), where V ′ ⊆ V ,
E ′ ⊆ E , and the vertex set V ′ is divided into two disjoint subsets X and Y so
that ν1ν2 ∈ E ′ if and only if ν1 ∈ X and ν2 ∈ Y . A cover of graph G by complete
bipartite subgraphs is a family of complete bipartite subgraphs, such that every
edge of G is at least in one of them. Below, we call it B-cover of G. The shortest
B-cover of G is a B-cover with the minimal number of elements (subgraphs).

Let the complete bipartite subgraphs B1, B2, . . . , Bm form the shortest B-
cover of G, and let Bk , k = 1, 2, . . . , m, be associated with a Boolean coding
variable zk so that zk = 1 for the states relative to one partite set of Bk and
zk = 0 for the states relative to the other. Then the values of coding variables
z1, z2, . . . , zm represent the solution sought for.

2.2 Decomposition of the partial state
nonparallelism graph

The first step to the solution is finding all maximum complete bipartite
subgraphs of G. Three ways to do it are given in Refs. 11 and 17. Then one
must obtain the shortest cover of edge set of G by those complete bipartite
subgraphs.

The search for the shortest cover is a classical NP-hard problem5. In our case,
the complexity of this problem can be considerably decreased. Let us consider
one of the ways to decrease the dimension of complete bipartite subgraph cover
problem for the partial state nonparallelism graph G of a parallel automaton. It
can be applied if graph G can be represented as G = G1 + G2, i.e. in the form of
the result of join operation on two graphs7. If G = (V, E), G1 = (V1, E1), and



114 Chapter 10

G2 = (V2, E2), then V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E12, and E12 consists of
edges connecting every vertex from V1 with all vertices from V2. The decrease
is achieved if G1 or G2 is a complete graph. This is typical for an automaton
whose skeleton is α-net.

Let 〈X1, Y1〉 and 〈X2, Y2〉 be maximum complete bipartite subgraphs of
G1 and G2, respectively. Then any maximum complete bipartite subgraph of
G can be represented in one of the forms 〈X1 ∪ X2, Y1 ∪ Y2〉, 〈X1 ∪ Y2, Y1 ∪
X2〉, 〈X1, Y1 ∪ V2〉, 〈X1 ∪ V2, Y1〉, 〈X2 ∪ V1, Y1〉, 〈X2, Y2 ∪ V1〉, or 〈V1, V2〉. So,
having the families of maximum complete bipartite subgraphs of G1 and G2,
one can easily obtain all maximum complete bipartite subgraphs of G. Let r1

and r2 be the numbers of maximum complete bipartite subgraphs of G1 and
G2, respectively. Then enumerating all the above forms we obtain the number
of maximum complete bipartite subgraphs of G as

r = 2(r1r2 + r1 + r2) + 1. (1)

If one of those graphs, namely G2, is complete graph Kn with n vertices, then
any two-block partition of its vertex set defines one of its maximum complete
bipartite subgraphs and their number is r2 = 2n−1 − 1. The number of maximum
complete bipartite subgraphs of G in this case is

r = (r1 + 1)2n − 1. (2)

The class of parallel automata under consideration is featured by exiting at
least one partial state nonparallel to any other state. As the initial marking of
α-net has only one place, the total initial state of the automaton contains only
one partial state that is not parallel to any other partial state.

It can be seen from formula (2) that adding n vertices to a graph, so that
each one of them is connected with all other vertices of the graph, increases the
number of maximum complete bipartite subgraphs more than 2n times. We call
the vertex that is adjacent to all others an all-adjacent vector.

It follows from above that for the search of a shortest B-cover of a partial
state nonparallelism graph G, it is convenient to decompose graph G into graphs
G1 and G2, where G1 is the subgraph of G, no vertex of which is all adjacent
in G, and G2 is the complete subgraph of G induced by all all-adjacent vertices
of G. The idea of using decomposition as the means to reduce the dimension
of the task is rather fruitful. For example, one can see in Ref. 8 another case of
using decomposition to decrease the dimension of the problem of our field.

2.3 Placement of partial states in Boolean space
of coding variables

The classical covering problem is solved now by the traditional way only
for G1. We obtain the B-cover of G1. It may be considered as a set of m
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partial two-block partitions on the vertex set of G. Having introduced Boolean
variables z1, z2, . . . , zm and determined their values for the vertices of G1 and
thus for the corresponding partial states of the given automaton as it is shown
above, we obtain the set of ternary vectors that are the codes of those states.
These codes form a Boolean space Z of coding variables z1, z2, . . . , zm .

Encoding the other vertices of G that are not in G1 may be described as
placement of their codes in the part of Boolean space Z that is not occupied by
the intervals defined by the above ternary vectors. If these intervals occupy the
whole Z or the rest of it is not enough to place the codes of all-adjacent vertices
of G, then Z is widened by adding new variables. The set of the partial state
codes form a ternary coding matrix.

It should be noted that the size of the rest of Z, where the codes of all-
adjacent vertices exist, may be different for different shortest covers. Possibly,
it is not the shortest cover that always suits the solution of our problem. There-
fore, all nonredundant covers should be considered. The algorithm to find all
nonredundant covers can be taken from Ref. 16.

Extracting the part of Z that is not covered by the intervals corresponding
to the codes of the vertices of G is executed as the solving of the complement
problem described in Ref. 17. It is reduced to finding for a given ternary matrix
T the ternary matrix U such that any row of U is orthogonal to any row of T and
these matrices together specify a Boolean function that is identically equal to 1.
As it was said above, the part of Z defined by matrix U may not be enough for
encoding all all-adjacent vertices of G. In this case, the set of coding variables
is extended as much as the space formed by these variables can contain the
codes of all vertices of G. The value of every such new variable zi in the codes
of vertices of G1 is assumed to be 0.

The variant of a nonredundant cover is selected that gives the minimum size
of space Z.

2.4 Example

Let a parallel automaton be given by the following set of strings:

1 : −x1x2 → y1 y2 → 10
10 : −x2 → 2.3.4

2 : → y1 → 5
3.5 : −x2 → 8

4 : −x1 → y1 → 7
4 : −x1 → y2 → 9
7 : −x2 → 9

8.9 : → y2 → 6
6 : −x1 → y1 y2 → 1
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Table 10-1. Obtaining nonredundant covers of graph G1 by maximum complete bipartite
subgraphs

Edges of G1
Maximum complete Nonredundant
bipartite G1 subgraphs v2v8 v3v8 v2v5 v4v7 v4v9 v5v8 v7v9 covers of G1

〈v2,v8; v5〉 1 1 1 1 1
〈v2,v3,v5; v8〉 1 1 1 1 1 1 1 1 1
〈v4; v7,v9〉 1 1 1 1 1 1
〈v4,v9; v7〉 1 1 1 1 1 1
〈v2; v5,v8〉 1 1 1 1 1
〈v4,v7; v9〉 1 1 1 1 1 1

The nonparallelism relation on the set of partial states of this automaton is
defined by the following matrix that is the adjacency matrix of graph G:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 0 1 0 1
1 0 0 0 0 1 0 1 0 1
1 0 0 0 0 1 1 0 1 1
1 1 0 0 0 1 0 1 0 1
1 1 1 1 1 0 1 1 1 1
1 0 0 1 0 1 0 0 1 1
1 1 1 0 1 1 0 0 0 1
1 0 0 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Graph G1 is the subgraph of G induced by the set of vertices {v2, v3, v4, v5,
v7, v8, v9}, and G2 is the subgraph induced by {v1, v6, v10}.

The results of the search process of nonredundant covers of graph G1 by
maximum complete bipartite subgraphs are shown in Table 10-1. The rows of
Table 10-1 correspond to maximum complete bipartite subgraphs of graph G.
The left part of Table 10-1 shows all the maximum complete bipartite subgraphs
of G. The middle part is the covering table, its columns corresponding to the
edges of G. The columns of the right part of Table 10-1 represent all nonre-
dundant covers of G by its maximum complete bipartite subgraphs, where
1 in a row denotes the presence of the corresponding subgraph in the given
cover.

One can construct a ternary matrix for any such cover. All the matrices
give sets of intervals, each of which occupies the whole space of four Boolean
variables but one element. Therefore, all obtained covers are equivalent. For the
cover represented by the fourth column of the right part of Table 10-1, we have
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the following ternary matrix:

z1 z2 z3 z4

2
3
4
5
7
8
9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − − 0
1 − − −
− 0 1 −
1 − − 1
− 1 0 −
0 − − 1
− 1 1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The rows of this matrix are marked by the indices of the partial states of the
given automaton, except those having no parallel states. The intervals defined
by the rows of the matrix occupy almost the whole space Z formed by Boolean
variables z1, z2, z3, and z4. Only one element of it, 0000, is vacant. Therefore,
to place the remaining partial states, 1, 6, and 10, in Z, it must be widened.
Having added variable z5, we obtain the final coding matrix with the minimum
length of codes as follows:

z1 z2 z3 z4 z5

1
2
3
4
5
6
7
8
9
10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 − − 0 0
1 − − − 0
− 0 1 − 0
1 − − 1 0
0 0 0 0 1
− 1 0 − 0
0 − − 1 0
− 1 1 − 0
1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. HEURISTIC ALGORITHMS

The NP-hardness of covering problem5 does not allow it always to be solved
in acceptable time. Therefore the heuristic algorithms that obtain in many cases
the shortest cover are developed.

3.1 Algorithm B

The method realized in Algorithm B reduces the problem to covering the
state nonparallelism graph G of a given automaton by complete bipartite



118 Chapter 10

subgraphs as well as in Algorithm A, but the algorithm for covering is not
exact. It consists of two stages. At the first stage the sequence of graphs
G2, G3, . . . , Gn = G is considered, where G is the nonparallelism graph of
the given automaton with V = {ν1, ν2, . . . , νn} as the set of vertices, and Gi is
the subgraph of G induced by the set of vertices V i = {ν1, ν2, . . . , νi}. Hav-
ing the B-cover of Gi the transition from it to the B-cover of Gi+1 is carried
out. At the second stage the obtained B-cover is improved (if possible). This
improvement consists in removing some complete bipartite subgraph from the
B-cover and in the attempt of reconstruction the B-cover by adding edges to the
remaining subgraphs. This procedure repeats for all elements of the B-cover.
The complete bipartite subgraphs are obtained concurrently with the construct-
ing of the B-cover.

Let Bi = {Bi
1, Bi

2, . . . , Bi
mi

} be the B-cover of graph Gi . When going from
Gi to Gi+1 and adding vertex vi+1 and incident edges, we attempt to place these
edges in subgraphs Bi

1, Bi
2, . . . , Bi

mi
. Evidently, subgraph Bi

j = 〈Xi
j , Y i

j 〉 can
be transformed into some B ′ = 〈Xi

j ∪ {vi+1}, Y i
j 〉 only if Y i

j ⊆ N (vi+1), where
N (v) is the neighborhood of vertex v . Some edges connecting vi+1 with vertices
from N (vi+1) would be in B ′. The edges not covered can be introduced to other
complete bipartite subgraphs in the same way. If we manage to do it for all edges
connecting vi+1 with vertices from V i , then |Bi+1| = mi+1 = |Bi | = mi . If not,
then mi+1 = mi + 1 and 〈Xi+1

mi+1
, Y i+1

mi+1
〉 is taken as Bi+1

mi+1
, where Xi+1

mi+1
= {vi+1}

and Y i+1
mi+1

consists of those vertices from V i+1 that are connected with vi+1 by
the edges that are not in any of Bi+1

1 , Bi+1
2 , . . . , Bi+1

mi
.

The initial B-cover may consist of a single edge (being in G2), or it may be
a star.

The size of a B-cover obtained in such a way depends to a great extent on the
numbering of vertices in a given graph. The results of solving test tasks allow
assuming that the most favorable numbering is that obtained as follows. The
vertex ν with the maximum degree in graph G gets number n. After removing
v with incident edges we take the vertex with the maximum degree in graph
G − v . We associate number n−1 with it and remove it as well. This process of
“plucking” G continues until only two vertices remain in it. We associate with
them arbitrary numbers 1 and 2 and other vertices are numbered in the order
reverse to the course of the process.

After a B-cover of graph G has been obtained in such a way, we attempt
to decrease the number of elements of the B-cover. The possibility of such
decreasing is due to the way of constructing a B-cover.

We improve the obtained B-cover in the following way. Let us have a B-
cover B1, B2, . . . , Bm of a graph G = (V, E). For this B-cover, we call an
edge e ∈ E once-covered if there is only one Bi that has e. For every Bi ,
i = 1, 2, . . . , m, we calculate the number si of once-covered edges belonging
to it. We remove from the B-cover the subgraph Bj whose s j is minimal. Then
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we try to restore the B-cover by adding vertices from V and edges from E to
subgraphs of the rest. If we cannot manage it we introduce a new complete
bipartite subgraph containing all uncovered edges.

This procedure can be repeated many times. The sign to finish it may be
the following condition: the number m of B-cover elements and the number of
once-covered edges do not decrease. When this condition is satisfied the process
of solving the task is over and the B-cover obtained after the last executing the
procedure is the result.

To illustrate Algorithm B, let us take the parallel automaton from section
2.4. The adjacency matrix of the state nonparallelism graph of this automaton
is given above. After renumbering according to the rule above, it is

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 1 1 1
0 0 0 1 0 1 0 1 1 1
0 0 1 0 0 1 0 1 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1 1 1
1 1 0 0 1 0 0 1 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which corresponds to the following order of vertices: v3, v5, v9, v7, v2, v4, v8,
v10, v6, v1.

The sequence of B-covers corresponding to the sequence of subgraphs
G2, G3, . . . , G10 of graph G is

B2 = B3 = ∅;

B4 = 〈v3; v4〉;
B5 = 〈v3; v4〉; 〈v2; v5〉;
B6 = 〈v3, v6; v4〉; 〈v2; v5〉; 〈v3; v6〉;
B7 = 〈v3, v6; v4〉; 〈v2, v7; v5〉; 〈v3; v6〉; 〈v1, v2; v7〉;
B8 = 〈v3, v6; v4, v8〉; 〈v2, v7; v5, v8〉; 〈v3, v8; v6〉; 〈v1, v2; v7, v8〉;

〈v4, v5; v8〉;
B9 = 〈v3, v6, v9; v4, v8〉; 〈v2, v7; v5, v8, v9〉; 〈v3, v8, v9; v6〉;

〈v1, v2; v7, v8, v9〉; 〈v4, v5; v8, v9〉; 〈v3; v9〉;
B10 = 〈v3, v6, v9; v4, v8, v10〉; 〈v2, v7, v10; v5, v8, v9〉; 〈v3, v8, v9; v6〉;
〈v1, v2; v7, v8, v9, v10〉; 〈v4, v5; v8, v9, v10〉; 〈v3; v9〉; 〈v7; v10〉.
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Let us try to decrease the number of elements of the obtained B-
cover. Subgraph B10

6 = 〈v3; ν9〉, as well as B10
7 = 〈ν7; ν10〉, has the mini-

mum number of once-covered edges (s6 = s7 = 1). We remove B10
6 from

B10 and extend 〈v4, v5; v8, v9, v10〉 to 〈v3, v4, v5; v8, v9, v10〉. Then we re-
move B10

7 and extend 〈ν3, ν4, ν5; ν8, ν9, ν10〉. Finally, we obtain the fol-
lowing B-cover: 〈ν3, ν6, ν9; ν4, ν8, ν10〉; 〈ν2, ν7, ν10; ν5, ν8, ν9〉; 〈ν3, ν8, ν9; ν6〉;
〈ν1, ν2; ν7, ν8, ν9, ν10〉; 〈ν3, ν4, ν5, ν7; ν8, ν9, ν10〉.

3.2 Algorithm C

To appreciate the efficiency of the proposed algorithms we consider
Algorithm C based on the heuristic iterative method suggested in Ref. 3. The iter-
ative method assumes the definition of parallelism relation and an initial coding
matrix for partial states (the initial matrix may be empty). The matrix is extended
in the process of coding by introducing additional coding variables, which
makes it possible to separate nonparallel partial states in certain pairs. To sep-
arate two states means to put opposite values (0 and 1) to some coding variable
in the codes of these states. The method consists in iterative executions of two
procedures: introducing a new coding variable and defining its values in codes
of nonseparated yet non-parallel partial states. These procedures are executed
until all nonparallel states have been separated. Minimizing the number of intro-
duced coding variables also minimizes the Hamming distance between codes of
states related by transitions. The aim of this is the minimization of the number
of switchings of RS-type flip-flops in circuit realization of a parallel automaton.

Introducing a new coding variable is accompanied with separating the max-
imal number of nonseparated yet nonparallel partial states by this variable. For
this purpose, at each step of the procedure of defining the values of the due
variable, a state is chosen to encode by this variable. This state should be sep-
arated from the maximal number of states already encoded by this variable.
The number of states that are not separated from the chosen one and have been
encoded by this variable must be maximal. A new coding variable is introduced
if the inner variables already introduced do not separate all nonparallel partial
states from each other.

4. GENERATING PARALLEL AUTOMATA

Any string of the form µi : −wi → vi → vi in automaton specification we
call a transition, and a set of transitions with the same µi is a sentence. The
algorithm for generating parallel automata is described in detail in Ref. 13,
where a parallel automaton is constructed as a system of three pseudorandom
objects. They are the “skeleton”of the automaton that is an α-net specified



Optimal State Assignment of Synchronous Parallel Automata 121

in the form of a sequence of pairs (µi , vi ), the ternary matrix X representing
conjunctions wi , and the ternary matrix Y representing conjunctions vi . In our
task the α-net is enough; therefore, we should not describe the way of generating
X and Y here.

The parameters given beforehand of every pseudorandom α-net generated
by a special computer program are the number of places (partial states of the
automaton) p, the number of transitions t , and the number of sentences s.

Generating pseudorandom parallel automata as systems of three objects
mentioned above with parameters given beforehand would not be difficult if
no correctness demands exist, without which there is no sense in executing
algorithms intended for such automata. Proceeding from the correctness prop-
erties of a parallel control algorithm that are named in Ref. 19, let us consider
the following properties of a parallel automaton that guarantee its correctness
in our case. It must be irredundant (there is no transition that can be never
executed), recoverable (it can return to the initial total state from any other
one), and self-coordinated (any transition cannot be started again before it
ceases).

Irredundancy, recoverability, and self-coordination of a parallel automaton
correspond to liveness and safeness of the related α-net19. In the Petri net theory
the reduction methods for checking liveness and safeness are well known1,
where the initial net is transformed according to certain rules preserving these
properties. The transformations reduce the dimension of a given net and so
facilitate checking the liveness and safeness of the net.

To check liveness and safeness of α-nets the application of two rules is
sufficient19. The first rule consists in deleting loops, i.e., the transitions where
µi = vi . The second is as follows. Let a set of places π not containing place 1 be
such that for every transition (µi , vi ), π ∩ µi 	= ∅ implies π = µi and π ∩ vi =
∅, and π ∩ vi 	= ∅ implies π ⊆ vi . Besides, there exists at least one transition
with π ∩ vi 	= ∅. Then all transitions (µ j , v j ) with π = µi are removed and
every transition (µk , vk) with π ⊆ vk is substituted by the set of transitions that
are obtained from (µk , vk) by replacing π by sets v j from those transitions (µ j ,
v j ) where π = µ j . A live and safe α-net is proved in Ref. 15 to be completely
reducible; i.e., the application of these rules leads to the net that consists of the
only transition (1, 1). This implies the way of generating live and safe α-nets,
which consists in transformations that are inverse to the above.

5. EXPERIMENTAL RESULTS

Algorithms A, B, and C are realized in computer programs and the corre-
sponding modules are included as components into ISAPR, which is a research
CAD system14. The program for generating pseudorandom parallel automata is
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Table 10-2. Experimental results (p, t , and s are parameters of α-nets, b is the number
of maximum complete bipartite subgraphs of G2)

Algorithm A Algorithm B Algorithm C

Code Code Run Code Run
Name p t s B length Run time length time length time

AP2 20 18 18 75 6 13 min. 28 sec. 7 6 sec. 6 3 sec.
APR1 2 2 1 8 5 8 sec. 6 7 sec. 5 3 sec.
APR2 2 2 1 4 5 5 sec. 6 8 sec. 5 3 sec.
APR3 2 2 1 7 4 6 sec. 5 3 sec. 6 3 sec.
APR6 2 2 1 43 5 2 min. 23 sec. 6 8 sec. 6 3 sec.
APR7 2 3 1 55 5 49 sec. 6 8 sec. 6 3 sec.
APR8 2 1 1 49 5 1 min. 28 sec. 5 5 sec. 5 3 sec.
RAZ 2 2 1 1033 9 3 h. 46 min. 22 sec. 9 8 sec. 10 4 sec.

included into ISAPR as well. This program was used to generate several parallel
automata. The results of partial state assignment are shown in Table 10-2. One
of the automata whose partial states were encoded, RAZ, was not generated by
the program mentioned above. It was obtained from a real control algorithm.

As was noted, only the parameters of α-net, i.e., the number of places p,
the number of transitions t , and the number of sentences s, were considered.
Besides this, the number of maximum complete bipartite subgraphs in the graph
G of nonparallelism of partial states of the given automaton may be of interest.
Algorithm A uses the method that decomposes graph G into two subgraphs G1

and G2, G1 being complete. The maximum complete bipartite subgraphs were
found in G2. The calculations were performed on a computer of AT type with
the 386 processor.

6. CONCLUSION

The technique of investigation of algorithms for state assignment of parallel
automata is described in this paper. The experimental data show that Algorithms
B and C are quite competitive to each other, although the speed of Algorithm
C is higher than that of Algorithm B. Algorithm A is intended to be applied for
automata of small dimension. It can be used as a standard algorithm and helps
one to appreciate the quality of solutions obtained by heuristic algorithms.
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Chapter 11

OPTIMAL STATE ASSIGNMENT OF
ASYNCHRONOUS PARALLEL AUTOMATA

Ljudmila Cheremisinova
Institute of Engineering Cybernetics of National Academy of Sciences of Belarus, Surganov
Str., 6, 220012 Minsk, Belarus; e-mail: cld@newman.bas-net.by

Abstract: A problem of race-free state assignment of asynchronous parallel automata is
considered. The goal is to encode partial states of parallel automaton using min-
imal number of coding variables and excluding critical races during automaton
operation. Requirements imposing on the partial states codes to eliminate the in-
fluence of races are formulated. An exact algorithm to find a minimal solution of
the problem of race-free state assignment for parallel automata is suggested. The
algorithm provides reducing the computational efforts when searching for state
encoding.

Key words: asynchronous parallel automata; state assignment; parallelism; critical races.

1. INTRODUCTION

Successive control of a multicomponent system depends greatly on the ef-
ficiency of the synchronization among its processing elements. The functions
of a control of such a system are concentrated in one block –a logic control
device that should provide a proper synchronization of interaction between the
components. In order to represent clearly the interaction involved in concur-
rent engineering system, it is necessary to describe formally its functional and
structural properties.

As a functional model of a discrete control device to be designed, a model
of parallel automaton is proposed1,8,9. This model can be considered as an
extension of a sequential automaton (finite state machine) allowing represent-
ing parallel processes. The parallel automaton is a more complicated and less
studied model in contrast with the classical sequential automaton model. An
essential difference from sequential automaton is that a parallel automaton can
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be in more than one state simultaneously. That is why the states of a parallel
automaton were called partial8. Partial states in which a parallel automaton is
at the same moment are called parallel8. Any transition of automaton defines
parallel partial state changes.

The design of asynchronous automata has been an active area of research
for the last 40 years. There has been a renewed interest in asynchronous design
because of its potential for high performance. However, design of asynchronous
automata remains a cumbersome problem because of difficulties of ensuring
correct dynamic behavior.

The important step of control device hardware implementation is the state
assignment. It is at the heart of the automaton synthesis problem (especially
for its asynchronous mode of realization). Despite great efforts devoted to this
problem, no satisfactory solutions have been proposed. A difference of this
process for parallel automaton in comparison with the sequential one is that
there are parallel states (they are compatible in the sense that the automaton can
find itself in several of them at the same time). That is why it was suggested in
Ref. 8 to encode partial states with ternary vectors that should be nonorthogonal
for parallel partial states but orthogonal for nonparallel ones. In such a way an
initial parallel automaton is transformed from its abstract form into a structural
form –a sequent parallel automaton 9 or a system of Boolean functions that can
be directly implemented in hardware.

The problem of state assignment becomes harder when asynchronous im-
plementation of a parallel automaton is considered. The mentioned condition
imposed on codes is necessary but not enough for that case. The additional
condition to be fulfilled is to avoid the influence of races between memory
elements (flip-flops) during hardware operation. One of the ways to avoid this
is to order switches of memory elements so as to eliminate critical races.

A problem of race–free state assignment of asynchronous parallel automata
is considered. The goal is to encode partial states of parallel automaton us-
ing minimal number of coding variables and to avoid the critical races during
automaton operation. An exact algorithm to find a minimal solution of the prob-
lem is suggested. The algorithm allows reducing computational efforts of state
encoding. The same problem is considered in Ref. 5, where another approach is
suggested. The method is based on covering a family of complete bipartite sub-
graphs defining constraints of absence of critical races by minimal number of
maximal complete bipartite subgraphs of the partial state nonparallelism graph.

2. RACE-FREE IMPLEMENTATION OF
ASYNCHRONOUS AUTOMATON

The asynchronous sequential automaton behaves as follows. Initially, the
automaton is stable in some state. After the input state changes, the output
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signals change their values as specified in automaton description. An internal
state change may be concurrent with the output change. When the automaton
has achieved a new stable state it is ready to receive the next input. Throughout
this cycle, output and inner variables should be free of glitches. In summary,
asynchronous designs differ from those synchronous because state changes may
pass through intermediate states.

The sequence of these intermediate states must be preserved in the case
of multi-output change (when intermediate states involve the output change).
It can be done with the proper state assignment. The one–hot encoding 4 can
ensure such a behavior, but it demands too many coding variables. That is why
the methods of race-free state assignment are of interest.

2.1 Constraints of race-free implementation
of sequential automaton

In Ref. 6 the constraints to ensure hardware implementation of sequential au-
tomaton to be race-free are given. These constraints allow avoiding interference
between automaton transitions that take place for the same input state. Codes
satisfying these constraints ensure race-free implementation of the automaton.
The encoding constraints can be represented in the form of dichotomies.

A dichotomy is a bipartition {S1; S2} of a subset of S : S1 ∪ S2 ⊆ S, S1 ∩
S2 = ∅. In the state encoding considered, a binary variable yi covers dichotomy
{S1; S2} if zi = 0 for every state in S1 and zi = 1 for every state in S2 (or
vice versa). Transitions taking place at the same input are called competing
transitions. In Ref. 6 the following constraints of critical race-free encod-
ing are given that are induced by pairs of competing transitions of different
types:
1. si → s j , sk → sl (i, j, k, l are pairwise different) give rise to {si s j ; sk, sl};
2. si → s j , s j → sl (i, j, l are pairwise different) give rise to {si s j ; sl}; and

{si ; s j , sl};
3. si → s j , sk → sl (i, j, k, are pairwise different) give rise to {si s j ; sl} if the

output on the transition from sk is different from that on the transitions from
si and s j (at the input considered).

2.2 Distinctive features of parallel automaton

All parallel partial states in which a parallel automaton is at some mo-
ment form its global state. Any transition of automaton defines the partial state
changes that cause the global state changes. Most transitions (and all for asyn-
chronous parallel automaton) are forced by changes of external signals.

A parallel automaton is described by a set of generalized transitions
(Xkl, Sk) → (Sl, Ykl) between the subsets of partial states. Such a transition
should be understood as follows: if a global state of the parallel automaton
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contains all the partial states from Sk and the variables in the conjunction term
Xkl assume values at which Xkl = 1, then as the result of the transition the
automaton goes to the next global state that differs from initial one in that it
contains partial states from Sl instead of those from Sk . More than one gener-
alized transition may take place at some moment when a parallel automaton
functions. These transitions define changing different subsets of parallel partial
states. There are no races on such a pair of transitions.

In the case of parallel automaton there are generalized transitions instead
of elementary ones. A generalized transition tkl : Sk → Sl consists of |Sk| · |Sl |
elementary transitions ski → slj, where ski ∈ Sk is nonparallel to slj ∈ Sl . Let
us introduce the set T (tkl, tpq) of pairs of elementary transitions ski → slj and
spi → sqj between pairwise nonparallel partial states taken from Sk , Sl , Sp, and
Sq generated by the pair of competing transitions tkl : Sk → Sl and tpq : Sp → Sq .
For compatible pair tkl , tpq of generalized transitions, we have T (tkl, tpq) = ∅.

2.3 Constraints of race-free implementation
of parallel automaton

In Ref. 2, it has been shown that in order to avoid the influence of races on
competing generalized transitions tkl and tpq , it is sufficient to avoid them on
one pair of elementary transitions from the set T (tkl, tpq). This statement gives
the way of a parallel automaton partial states encoding. Besides, this statement
ensures that any dichotomy constraint consists of pairwise nonparallel partial
states. The last implies the absence of a constraint forcing a coding variable to
have orthogonal values in codes of parallel partial states.

Let us distinguish elementary unij, simple u p
ni , and generalized Un constraints.

The first is a single dichotomy constraint. The second is associated with a pair
of competing elementary transitions and can consist of one (cases 1 and 3 of
constraints) or two (case 2) elementary constraints. To avoid critical races on
a pair of elementary competing transitions, one has to satisfy an appropriate
simple constraint (one or two elementary ones). A generalized constraint Un

induced by a pair Pn of competing generalized transitions consists of the simple
constraints induced by pairs of elementary transitions from its generated set
T (Pn). To avoid critical races on Pn it is sufficient to satisfy one of the simple
constraints from Un.

Example 1. Let us consider the following parallel automaton in the form
Xkl Sk → Sl Ykl :

t1: ′x1 s1 → s2 · s3 y1 y2

t2: ′x2x3 s2 → s9
′y2 y3

t3: ′x3 s9 → s2 y ′
2 y3

t4: x2 s2 → s4 · s5
′y1 y3
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t5: x3 s3 → s6 y4

t6: x1
′x2 s4 → s7 y1

′y2

t7: ′x2x3 s5 → s8
′y3

t8: ′x3 s6 · s7 · s8 → s1
′y1

′y4

The partial states from {s2, s4, s5, s7, s8, s9} and {s3, s6} are pairwise parallel,
so also are the partial states from {s4, s7} and {s5, s8}. One can see, for example,
that the pair t1, t8 of generalized transitions is competing. The generalized
constraint U1,8 induced by that pair consists of three simple constraints: u p

1,8.1 =
({s1, s2; s7} and ({s1, s7; s2}), u p

1,8.2 = ({s1, s2; s8} and ({s1, s8; s2}), and u p
1,8.3 =

({s1, s3; s6} and ({s1; s3, s6}). Thus for this automaton we have the following set
of generalized constraints Uk (in the form of dichotomies) derived from the
pairs of competing generalized transitions:
1. {s1, s2; s9} and {s1; s2, s9};
2. ({s1, s2; s4} and {s1; s2, s4}) or ({s1, s2; s5} and {s1; s2, s5});
3. ({s1, s3; s6} and {s1; s3, s6});
4. {s1, s2; s5, s8};
5. ({s1, s2; s7} and {s1, s7; s2}) or ({s1, s2; s8} and {s1, s8; s2}) or ({s1, s3; s6} and

{s1, s6; s3});
6. {s2, s9; s4, s7};
7. ({s2, s9; s4} and {s4, s2; s9}) or ({s2, s9; s5} and {s2, s5; s9});
8. {s1, s7; s2, s9} or {s1, s8; s2, s9};
9. {s2, s9; s5, s8};
10. {s1, s7; s2, s4} or {s1, s8; s2, s5};
11. ({s1, s7; s4} and {s1; s4, s7}).

Just as in the case of sequential automaton7, when seeking critical race-free
partial state assignment we proceed in three steps:
1. Generating a set of encoding constraints
2. Finding a compressed set of encoding constraints equivalent to the initial one
3. Solving these constraints to produce a partial state assignment.

3. GENERATING AND COMPRESSING A SET
OF ENCODING CONSTRAINTS

Now an encoding problem formulation is presented that is based on a matrix
notation similar to that used in Ref. 7 for sequential automata. A dichotomy
constraint {si , s j ; sk, sl} can be presented as a ternary (3-valued) vector called
a constraint vector. Its length equals the number of partial states, i th and j th
entries are 1, kth and lth entries are 0 (or vice versa), and the other ones are
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“−”(don’t care). For example, the dichotomy {s1, s7; s2, s9} corresponds to the
vector “1 0 −−−−1−0”.

Constraint matrix U is a ternary matrix with as many rows as critical race-
free constraints exist (for a given automaton) and as many columns as partial
states. One can see that the constraint matrix U is an encoding matrix V looked
for, but the number of encoding variables (which is equal to the number of rows
of U ) is too large. The task is to compress the matrix U without violation of
any constraint from U : each row of U should be implicated by some row from
V . For the case of sequent automaton it is enough. But a parallel automaton
constraint matrix U has a complex structure –it consists of submatrices Ui

defining generalized constraints Ui ; the last ones are in turn 1 or 2 line sectioned
(separating simple constraints).

3.1 Relations on the set of constraints

Below, some definitions follow; note that the ternary vectors in every def-
inition are of the same length. A ternary vector a covers a ternary vector b if,
whenever the i th entry of b is σ ∈ {1,0}, the i th entry of a is σ too. b is an
inversion of a(b = ′a) if, whenever the i th entry of a is 1, 0, “–”, the i th entry
of b is 0, 1, “–”, respectively. Any vectors a and b are orthogonal if for at least
an index i the i th entries of a and b are orthogonal (1 and 0, or vice versa).

An elementary constraint u j implicates an elementary constraint ui if u j

as a ternary vector covers ui or its inversion. An elementary constraint u j can
implicate a simple constraint u p

n if it consists of the only elementary constraint
that is implicated by u j .

A simple constraint u p
n implicates

� an elementary constraint u j if u j is implicated by one of the elementary
constraints from u p

n ,
� a simple constraint u p

m if every umj ∈ u p
m is implicated by at least one of

unj ∈ u p
n ,

� a generalized constraint Uk if u p
n implicates at least one of u p

ki ∈ Uk .

A generalized constraint Uk implicates
� a simple constraint u p

j (elementary constraint u j ) if every u p
k j ∈ Uk implicates

it,
� a generalized constraint Un if every u p

k j ∈ Uk implicates at least one of
u p

ni ∈ Un.

A set U ′ of elementary constraints implicates a simple constraint u p
k j and thus

a generalized constraint Uk (such that u p
k j ∈ Uk) if every ukj,i ∈ u p

k j is implicated
by one of the constraints from U ′.
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3.2 Compressing a set of encoding constraints

For computational efficiency of the procedure of searching for an optimal
encoding, it is important to reduce the number of rows of constraint matrix U
to the minimal number that represents an equivalent set of constraints on the
encoding. It is trivial that duplicate generalized constraints can be deleted. Then
the number of rows of U can be decreased further by eliminating generalized,
simple, or elementary constraints that are implicated by any other generalized
constraint.

Example 2. For the automaton under consideration we can see that the gen-
eralized constraint ({s1, s7; s2, s9} or ({s1, s8; s2, s9}) induced by the pair t3, t8

of competing transitions implicates the elementary constraint ({s1; s2, s9} from
the simple constraint ({s1, s2; s9} and ({s1; s2, s9}) induced by the pair t1, t2 of
competing transitions.

The irredundant constraint matrix U for the automaton under consideration
is shown in the second column in Table 11-1. Its first column gives the structure

Table 11-1. Encoding constraints, their boundary vectors, and compatibility relation among
them

Constraint Constraints Boundary vectors Compatibility relation
numeration 12345 6789 12345 6789 12345 67890123456789012

1 –1,1 11−−−−−− 0 11+ −− + −−0 −
2 –2,1.1 11−0−−−−− 11+00+−0− 1−
3 –2,1.2 10−0−−−−− 10+00+−0− 0−−
4 –2,2 10−−0−−−− 10+00+0−− 0−−−
5 –3,1.1 1−1−−0−− − 1+1++0+ + + 0000−
6 –3,1.2 1−0−−0−−− 100000000 0011−−
7 –4,1 11−−0−−0−− 11+00+00− 110000−
8 –5,1.1 11−−−− 0−− 11+−0+00+ 1100001−
9 –5,1.2 10−−−− 1−− 10+−1+11+ 0010000−−
10 –5,2 10−−−−− 1− 10+1−+11− 0001000−−−
11 –5,3 1−0−−1−−− 1+0++1+ + + 0000000−−−−
12 –6,1 −1−0−−0−1 −1+00+001 01000011110−
13 –7,1 −1−1−−−−0 −1+11+−10 101100011000−
14 –7,2 −1−−1−−−0 −1+11+1−0 101100000100−−
15 –8,1 10−−−− 1−0 10+−1+110 00100000110100−
16 –8,2 10−−−−− 10 10+1−+110 00010000110100−−
17 –9,1 −1−−0−−01 −1+00+001 0100001111010011−
18 –10,1 10−0−−1−− 10+0++1+− 00100000100010100−
19 –10,2 10−−0−−1− 10++0++1− 00010000010001010−−
20 –11,1.1 1−−0−−1−− 1−+0++1+− 1110000010001010011−
21 –11,1.2 1−−0−−0−− 1−000000− 1111011100011100100−−
22 –12,1 −−−−1−−0− − − ++1++0− 100100000100010100100−
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of matrix U –what rows belong to what generalized and simple constraints.
The last row of the matrix is introduced since nonparallel partial states should
be encoded with orthogonal codes (but appropriate constraint is implicated by
none other).

The encoding matrix V is grown from an initial seed constraint matrix U by
its compressing at the expense of combining some constraints and substituting
them for one constraint implicating them.

3.3 Basic definitions

Now we give some definitions and derive some useful properties from them.
A constraint u (having no orthogonal entries associated with parallel states) is
called an implicant of a set of rows of constrained matrix U if it implicates
each of them separately. A set of elementary constraints is considered compat-
ible if there exists an implicant for it. For example, u1,1.1 ∈ U1 is compatible
with only u4,1.1 ∈ U4 (their implicants are {s1, s2; s5, s8, s9}, {s1, s2; s4, s5, s8, s9},
{s1, s2; s4, s5, s7, s8, s9}), but not compatible with u10,1.1 ∈ u p

10,1 ∈ U10.
Let us define for a row uk ∈ U (specifying dichotomy {Sk1; Sk2}) a boundary

vector uz
k a 4-valued vector that gives an upper bound of its growth (extension),

i.e., it determines the potential of defining the components of the row uk (con-
sidered to be a vector). Its i th entry is σ if the i th entry of uk is σ ∈ {1, 0};
otherwise its value depends on the partial state si associated with the entry:
1. if it is nonparallel to any of the states from Sk1 ∪ Sk2, then the entry is “–”;
2. if it is parallel only to those states from Sk1 ∪ Sk2 and the appropriate entries

of ui have the same value δ ∈ {1, 0}, then the entry is δ;
3. if it is parallel to at least a pair of states from Sk1 ∪ Sk2 and the appropriate

entries of ui have the orthogonal values, then the entry is “+”.

The i th entry of uz
k defines whether the state si may be encoded with kth

coding variable, and if yes (i th entry is not “+”), it shows what may be the
value of that variable in the code. For example, for the automaton under consid-
eration, boundary vectors for matrix U rows are displayed in the third column
in Table 11-1.

Now we define some operations over 4-valued vectors that extend those over
ternary vectors (keeping in view vectors of the same length). A 4-valued vector
b is an inversion of a vector a if, whenever the i th entry of a is 1, 0, –, +, the
i th entry of b is 0, 1, –, +. The 4-valued vectors a and b (one of them can be
ternary) are orthogonal if for at least an index i one vector has the i th entry
equaled to σ ∈ {1, 0}, and the other to σ or “+”. A weight of a vector is defined
as a sum of the weights of its entries, supposing that the weight of the entry
equaled to 1, 0, –, + is 1, 1, 0, 2, respectively. A 4-valued vector a covers a
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vector b (4-valued or ternary) nonorthogonal to a if, whenever the i th entry of
b is σ ∈ {1, 0−}, the i th entry of a is σ or “–”.

Example 3. The vectors −1+0−+0−1 and 01+00+0+1 are nonorthogonal
and the first covers the second. Their weights are 8 and 12, respectively. The
inversion of the first vector is −0+1−+1−0.

3.4 Compressing a set of encoding constraints toward
the set of codes

When using the notion of a boundary vector we can simply find whether
two rows of νk ∈ V and ul ∈ U (or both from U ) are compatible. That takes
place if ν z

k is nonorthogonal to ul or ′ul .
When concatenating two rows νk and ul (constructing their implicant), we

do minimal extensions of νk to implicate ul and of ν z
k to implicate uz

l (or
inversions of ul and uz

l . In this way any i th entry of the result of concatenation
is equal to that of νk and ul (or ′ul), depending on whose weight is bigger. Any
i th entry of the boundary vector of the result of concatenation is equal to any
entry of ν z

k and uz
l that has bigger weight or “+”if they are orthogonal.

νk ∈ V is an implicant for generalized constraint U l ∈ U if it is an implicant
for one of the elementary constraints uli, j ∈ up

li ∈ U l . An implicant of a subset
U ′ of generalized constraints is maximal if it is incompatible with all those
others (it cannot implicate any more constraints besides those from U ′).

Example 4. The boundary vectors for the vectors u2,2.1 = 10−−0−−−− and
u7,2.1 = −1−−1−−−0 (Example 1) are uz

2,2.1 = 10+00+0−− and uz
7,2.1 =

−1+11+1−0, respectively. u2,2.1 is compatible with the inversion of u7,2.1 and
their implicant is 10−−0−−−1 with boundary vector 10+00+0−1. This im-
plicant is not maximal, but 10−−0−−11 is maximal.

4. SOLUTIONS OF THE PROBLEM OF
RACE-FREE STATE ASSIGNMENT

The encoding matrix V is grown from an initial seed matrix U by con-
catenating its rows. The rows of encoding matrix V may be found among the
maximal implicants of the rows of U . The task is to find the set of maximal
implicants of minimal cardinality that satisfies all generalized constraints from
the matrix U.

An exact algorithm to find a minimum solution of the problem of race-
free state assignment is based on building a set C of all maximal implicants
for constraint matrix U and then looking for a subset of V ⊆ C of minimal
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cardinality, such that for any generalized constraint Ui ∈ U there exists an im-
plicant in V implicating it. The second part of the problem is reduced to a
covering problem of Boolean matrix7, as in the case with Quine table.

4.1 Maximal implicant retrieval

We use branch-and-bound algorithm to build all maximal implicants. Con-
straints are processed one by one in a predefined order choosing (at each step)
one compatible with the current state of the implicant formed. If we exhaust
such constraints we would start backtracking to a previous step to modify the
solution and repeat searching.

The computational efforts can be reduced using a previously generated com-
patibility relation on the rows from U .

Taking into account that any maximal implicant may satisfy only one of the
simple constraints from each generalized constraint, they all can be regarded as
pairwise incompatible. At each step of the algorithm it is enough to consider as
candidates for concatenating only the rows compatible with all concatenated in
the current implicant. Further search reduction can be received by sorting the
constraints according to the degree of their incompatibility: the greater it is, the
less is branching.

Example 5. For the automaton considered, there exist 15 maximal implicants
shown in the second column in Table 11-2. They have been found searching

Table 11-2. Maximal implicants and the Quine table

Implicants Quine table
No 12345 6789 12345 67890 123456

1 1−1−−0−− − −−−1−−−−−−−−−−−
2 1−0−−1−− − −−−−−−11−−−−−−−−
3 1000000−− −11−1−−−−−−−−−−1−
4 1−0−−1−− − −−1−1−−−−−−−−−−1−
5 10−0−−1−1 −−1−−−−1−1−−11−−
6 10−0−−1−0 −−1−−−−1−−1−11−−
7 10−−0−−11 −11−− −11−1−−1−−1
8 10−−0−−10 −11−− −11−−1−1−−1
9 10−00−0−1 −11−−−−−−1−−−−1−
10 11−−1−−00 1−−−−−−−−1−−−− −1
11 11−11−−−0 1−−−−−−−−1−−−−−−
12 10−11−110 −−−−−−111−11−−−−
13 11−00−0−0 11−− −11−−−−−− −1−
14 11−00−001 −1− − −11−1−−1−−1−
15 11−1−−0−0 1− − − − −1−−1− − − − −−
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for maximal compatible sets of constraints using their pairwise compatibility
relation shown in matrix form in the fourth column in Table 11-1 (the relation is
symmetric, so it is enough to define only a part of the matrix below the principal
diagonal, and the relation among constraints from the same generalized con-
straint can be not defined). At first the fifth and eleventh constraint (u3,1.1 and
u5,3.1 are examined to generate maximal implicants since they are compatible
with none of the other constraints.

Then the sixth constraint u3,1.2 is chosen (it is compatible with three con-
straints), and so on.

4.2 Covering problem statement

Once a set C of maximal implicants is found, the task is to extract from
it a subset that satisfies all generalized constraints Uk ⊂ U . Every generalized
constraint Uk = {u p

k1, u p
k2, . . . , u p

kn} is satisfied as OR (quite enough for one of
its simple constraint u p

ki to be satisfied) and u p
ki consist of one or two ui j that

are satisfied as AND (both ui1 and ui2 should be satisfied). These statements
can be expressed logically (as is suggested in Ref. 5) by the formulas: Uk =
u p

k1 ∨ u p
k2 ∨ . . . ∨ u p

kn and u p
ki = ui1 · ui2. Substituting expressions u p

ki into Uk

and using the distributive law one can receive the conjunctive normal form
Uk = U 1

k · U 2
k . . . . U m

k . Any U i
k is a union of separate elementary constraints. For

example, generalized constraint U2 = {U p
2,1, U p

2,2} (Example 2) is represented
as U6 = U 1

6 · U 2
6 = (u2,1.1 ∨ u2,2.1) · (u2,1.2 ∨ u2,2.1) = ({s1, s2; s4} or {s1; s2, s5})·

({s1; s2, s4} or {s1; s2, s5}).
Now the problem is stated in the form of Quine table Q. Its rows corre-

spond to maximal implicants Ci ∈ C , and columns to conjunctive members U i
k

for all Uk . An entry (i j) of Q is 1 (marked) if Ci implicates j th conjunctive
member. The task is to find the minimal number of rows covering all columns
(every column should have 1 at least in one position corresponding to the rows
chosen)7.

Example 6. For the automaton example considered, there exist 16 conjunctive
members. They are as follows:

U1 = u1(u1,1);
U2 = u2 ∨ u4(u2,1.1 ∨ u2,2.1);
U3 = u3 ∨ u4(u2,1.2 ∨ u2,2.1);
U4 = u5(u3,1.1);
U5 = u6(u3,1.2);
U6 = u7(u4,1);
U7 = u8 ∨ u10 ∨ u11(u5,1.1 ∨ u5,2 ∨ u5,3);
U8 = u9 ∨ u10 ∨ u11(u5,1.2 ∨ u5,2 ∨ u5,3);
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U9 = u12(u6,1);
U10 = u13 ∨ u14(u7,1 ∨ u7,2);
U11 = u15 ∨ u16(u8,1 ∨ u8,2);
U12 = u17(u9,1);
U13 = u18 ∨ u19(u10,1 ∨ u10,2);
U14 = u20(u11,1.1);
U15 = u21(u11,1.2);
U16 = u22(u12,1).

These conjunctive members are assigned to the columns of the Quine table
shown in the third column in Table 11-2. Permissible minimum number of rows
that provide the Quine table cover is 5. One of the minimal covers presenting
encoding for automaton considered consists of the rows 3, 6, 10, 13, and 1.
So we find the following 5-component codes of partial states that provide the
absence of critical races when the automaton operates:

V =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 − −
1 0 − 0 − − 1 − 0
1 1 − 0 0 − 0 0 1
1 1 − − 1 − − 0 0
1 − 1 − − 0 − − −

⎤
⎥⎥⎥⎥⎦

It should be noted that some entries of a matrix with values 0 or 1 can be
substituted with value “don’t care”because of usage of maximal implicants. In
our case the irredundant form of the coding matrix is

V =

⎡
⎢⎢⎢⎢⎣

1 − 0 − − 0 − − −
1 0 − 0 − − 1 − 0
1 1 − 0 0 − 0 0 1
1 1 − − 1 − − 0 0
1 − 1 − − 0 − − −

⎤
⎥⎥⎥⎥⎦

5. CONCLUSION

The suggested method solves the encoding problem exactly: it ensures that
the number of variables to encode partial states is minimal. Unfortunately the
problems considered are computationally hard. The growth of the computation
time as the size of the problem is a practical limitation of the method to be used
in computer-aided design systems. It can be used for solving encoding problems
of moderate size obtaining after decomposing the whole big problem. Besides,
the method can be useful for estimation of efficiency of heuristic encoding
techniques3.
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DESIGN OF EMBEDDED CONTROL SYSTEMS
USING HYBRID PETRI NETS

Thorsten Hummel and Wolfgang Fengler
Ilmenau Technical University, Department of Computer Architectures, P.O. Box 100565,
98684 Ilmenau, Germany; e-mail: wolfgang.fengler@tu-ilmenau.de

Abstract: The paper describes the challenges of modeling embedded hybrid control systems
at a higher abstraction level. It discusses the problems of modeling and analyzing
such systems and suggests the use of hybrid Petri nets and time interval Petri nets.
Modeling an exemplary embedded control system with a special hybrid Petri net
class using an object-oriented modeling and simulation tool and the extension of
hybrid Petri nets with the concept of time intervals for analyzing time constraints
shows the potential of this approach.

Key words: embedded control systems; hybrid Petri nets; time interval Petri nets.

1. INTRODUCTION

The design of complex embedded systems makes high demands on the
design process because of the strong combination of hardware and software
components and the observance of strong time constraints. These demands rise
rapidly if the system includes components of different time and signal concepts.
This means that there are systems including both event parts and continuous
parts. Such systems are called heterogeneous or hybrid systems.

The behavior of such hybrid systems cannot be covered homogeneously
by the well-known specification formalisms of the different hardware or soft-
ware parts because of the special adaptation of these methods to their respec-
tive field of application and the different time and signal concepts the several
components are described with. A continuous time model usually describes
continuous components, whereas digital components are described by discrete
events.
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For describing both kinds of behavior in its interaction, there are different
approaches to describe such systems. On the one hand, the different components
can be described by their special formalisms. On the other hand, homogeneous
description formalism can be used to model the complete system with its dif-
ferent time and signal concepts, and that is what we are in favor of.

Therefore, we have investigated modeling methods that can describe the be-
havior of such systems homogeneously at a high abstraction level independently
from their physical or technical details. Apart from considering the heterogene-
ity, the modeling method must cope with the high complexity of the modeled
system. This demand requires support for modularization and partitioning and
hierarchical structuring capabilities. To meet the challenges of strong time con-
straints the tool used should have time analysis capabilities.

In the following sections, a graph-based formal modeling approach is pre-
sented. It is based on a special Petri net class, which has extended capabilities
for the modeling of hybrid systems. To model the hybrid systems, we have used
an object-oriented modeling and simulation tool based on this Petri net class.
This tool can be used for modeling hybrid systems from an object-oriented point
of view. It can be used for modeling and simulating components or subsystems
and offers capabilities for hierarchical structuring.

By extending the used Petri net class with the concept of time intervals, an
analysis method for time constraints could be implemented.

2. HYBRID PETRI NETS

The theory of Petri nets has its origin in C.A. Petri’s dissertation “Commu-
nication with Automata”7, submitted in 1962. Petri nets are used as describing
formalism in a wide range of application fields. They offer formal graphical
description possibilities for modeling systems consisting of concurrent pro-
cesses. Petri nets extend the automata theory by aspects such as concurrency
and synchronization.

A method to describe embedded hybrid systems homogeneously is the use
of hybrid Petri nets1. They originate from continuous Petri nets introduced by
David and Alla2. A basic difference between continuous and ordinary Petri nets
is the interpretation of the token value. A token is not an individual anymore,
but a real quantity of token fragments. The transition moves the token fragments
from the pre-place to the post-place with a certain velocity of flow. The essence
of hybrid Petri nets is the combination of continuous and discrete net elements
in order to model hybrid systems.

In the past, there were applications of hybrid Petri nets described in many
cases, but essentially they were concentrated on the fields of process control and
automation. In the following section we demonstrate the possibilities of using
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hybrid Petri nets to model embedded hybrid systems. The used Petri net class
of hybrid dynamic nets (HDN) and its object-oriented extension is described
in Refs.3 and 4. This class is derived from the above-mentioned approach of
David and Alla and defines the firing speed as function of the marking from the
continuous net places.

Components or subsystems are modeled separately and abstracted into
classes. Classes are templates, which describe the general properties of objects.
They are grouped into class libraries. Classes can be used to create objects,
which are called instances of these classes. If an object is created by a class, it
inherits all attributes and operations defined in this class.

One of the important advantages of this concept is the ability to describe a
larger system by decomposition into interacting objects. Because of the proper-
ties of objects, the modification of the system model could be achieved easily.
The object-oriented concept unites the advantages of the modules and hierar-
chies and adds useful concepts such as reuse and encapsulation.

3. EXTENSION OF THE HYBRID PETRI NET
APPROACH BY TIME INTERVAL CONCEPTS

The used hybrid Petri net approach includes discrete and continuous com-
ponents. For analyzing time aspects the discrete transitions are extended by the
concept of time intervals6,7.

Time-related Petri nets were introduced for the integration of time aspects
to classical Petri nets. There exist two basic types of time-related Petri nets.
One type relates a firing time to the transition. The other type relates a time
interval to the transition during which this transition is allowed to fire.

In our approach we use the latter. In a time interval Petri net, a transition
with firing capability may fire only during the given interval and must have fired
at the latest with the end of the interval, except that it loses its firing capability
in the meantime. If the transition gets back its firing capability in the later time,
the interval time starts again.

3.1 Analysis of a specification model by using time
interval Petri nets

By using the implemented time interval Petri net approach, structural and
behavioral properties of the modeled system can be analyzed. The analysis
delivers information about properties such as reachability, liveness, and bound-
edness. To describe the state of a time interval Petri net, the time component
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has to be considered because of the change of the net behavior with different
time intervals.

The analysis method consists of two steps. At first, for a given transition
sequence the reachability graph has to be calculated without considering any
time restrictions. In the next step a state class for the given transition sequence
with consideration of the time intervals has to be built. Every class includes all
states with the same marking components. The states of one class differ by its
time components. A change in the marking component leads to a class change.

The method of class building is based on the investigation of firing capabili-
ties for all transitions with the progressive time. The resulting inequation system
of every class can be solved with methods of linear optimization considering
additional conditions. Thereby for the given transition sequence, different time
characteristics can be found:
� Worst case: maximum-minimum analysis,
� Observance of time constraints (deadline),
� Livelock.

The analyzing method is implemented with methods of linear optimization,
the simplex algorithm, and the interior-point method. These methods can be
used alternatively.

4. MODELING AN EMBEDDED
CONTROL SYSTEM

The application example we have chosen to discover the possibilities of using
hybrid Petri nets for modeling embedded hybrid control systems and analyzing
time-related aspects of this system is an integrated multi-coordinate drive8.
This is a complex mechatronic system including a so-called multicoordinate
measuring system. Figure 12-1 shows this incremental, incident light measuring
system consisting of three scanning units fixed in the stator and a cross-grid
measure integrated into the stage. The two y-systems allow determining the
angle of rotation ϕ. The current x , y1, and y2 position is determined by the cycle
detection of its corresponding sine and cosine signals. The full cycle counter
keeps track of completed periods of the incremental measuring system. This is
a precondition for the following deep interpolation. The cycle counter of these
signals is a function of the grid constant and the shift between the scanning grids
and the measure. The cycle counter provides a discrete position, and in many
cases this precision is sufficient for the motive control algorithm. To support a
very precise position control with micrometer or nanometer resolution, it must
be decided which possibility of increasing the measure precision is the most
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Figure 12-1. Multicoordinate measuring system.

cost-efficient. There is a limit to improving the optic and mechanical properties
because of the minimum distances in the grid.

Alternatively, an interpolation within a signal period can be used, whereby
the sampling rate of the A/D converter is increased, which would allow a more
detailed evaluation of the continuous signals of the receiver. The problem to be
solved in this application example leads to modeling and simulating the measure
system together with the evaluation algorithm for the position detection.

The measuring system is hierarchically modeled using components
(Fig. 12-2).

Figure 12-2. The principle of hierarchical modeling.
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Figure 12-3. Component “Signal generation.”

Components with the same functionalities are abstracted into classes, put
into a class library, and instantiated while modeling. The modeling of a multi-
hierarchical system is possible as well.

4.1 System environment

The component “Signal generation”(Fig. 12-3) simulates the sensor data
and provides the sine and cosine signals as well as a position value. For clearness
reasons this net is saved as a component into a subnet and gets the input places
“Forward,”“Stop,”and “Backward.”It provides a sine and a cosine signal and
additionally a position signal as a comparative value for a later error control
function.

To simulate a potential misbehavior of the measuring system, external dis-
turbances are modeled in the subnet “Scrambler,”which is included in the
component “Disturbance”of the complete system.

4.2 Measuring system components

The position detection of one axis is modeled with the component “Axis-
measure”(Fig. 12-4).

At first, the input signals “sine”and “cosine”are normalized in the subnets
“minmax s”and “minmax c.”These subnets are identical in their functions and
were instantiated during the modeling process from the same class “minmax”
(Fig. 12-5). To find out the exact position of the carrier, the cycle number has to
be determined in “meas 1.”To determine this correctly, the measuring system
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Figure 12-4. Subnet “Axismeasure.”

has to detect the moving direction of the carrier and with it the increasing or
decreasing of the cycle number. The original measuring system used a look-up
table, but this was very hard to model with Petri nets. Therefore, we changed
this into logic rules and used this to model the subnet “position 1.”

4.3 Model of the entire system

In Fig. 12-6, the model of the entire system is shown. Besides the mea-
suring system, it includes the components for signal generation and external
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Figure 12-6. Model of the entire system.

disturbance simulation. The components for signal generation “x /y1/y2-
direction”are instances of the class “Signal”and model the signals of an ideal
environment.

The component “Disturbance”includes the simulation of various kinds of
signal disturbances (displacement of the zero line, amplitude errors, time delay,
etc.). The signal disturbances can be turned on and off at any time during the
simulation.

The objects “Axismeasure x /y1/y2”are based on the class “Axismeasure”
and include the evaluation algorithm for the three directions. The motion of any
desired direction can be controlled by feeding marks into the places m1 to m8.

The x-position, the average y-position, and the divergence of the y-position
arose as result of the net calculation.

4.4 System simulation

The tool “Visual Object Net++” 5 allows not only the modeling but also the
simulation of systems described with hybrid dynamic nets. During the simula-
tion the firing of the transitions and the transport of the tokens are animated. The
changes of the place values can be visualized by signal diagrams (Fig. 12-7).
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Figure 12-7. System behavior with different disturbances.

For example, the middle top diagram in Fig. 12-7 shows an extreme example
of a simulation with disturbances. It shows a clear exceeding of the zero line of
the cosine signal. Nevertheless, the normal values are correctly calculated and
the position of the machine is correctly displayed.

4.5 System analysis

The modeling and simulation tool “VisualObjectNet++”w as extended by
an analysis component for time constraints. In this application example, a time
interval Petri net for the component “Axismeasure”was made (Fig. 12-8). For a
defined transition sequence and given intervals, a maximum-minimum analysis
was made to determine the worst-case behavior of this system component. The
analysis results in the fulfillment of the given restrictions.

5. CONCLUSION

Our investigation has shown the advantages of using hybrid Petri nets for
homogeneous modeling of an embedded hybrid system. The object-oriented
approach of the hybrid Petri net class used makes possible a clear modeling of
complex hybrid systems.

The analysis of time-related properties of complex embedded systems offers
the chance to check, in early stages of the design flow, if the modeled system
matches to given time constraints.

Things that have to be done in future are the extension and completion of
the system model and the integration of the modeling process in a complete
design flow. Here we focus our future work on connecting our approach to
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other approaches related to hardware/software partitioning and SoC design on
system level.
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STRUCTURING MECHANISMS
IN PETRI NET MODELS
From specification to FPGA-based implementations

Luı́s Gomes1, João Paulo Barros1,2, and Anikó Costa1
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Abstract: This chapter addresses the use of modular model structuring mechanisms for the
design of embedded systems, using reactive Petri nets. Relevant characteristics
of reactive Petri nets are briefly presented. One graphical hierarchical structur-
ing mechanism named horizontal decomposition is presented. This mechanism
relies on the usage of macronodes, which have subnets associated with them
and can be seen as a generalization of widely known mechanisms available in
several Petri nets tools. Three types of macronodes are used: macroplace, macro-
transition, and macroblock. The model execution is accomplished through the
execution of the model’s flat representation. Additional folding mechanisms are
proposed through the introduction of a vector notation associated with nodes
and external signals. A running example of a controller for a 3-cell first-in-first-
out system is used illustrating the several modular construction mechanisms.
High-level and low-level Petri net models are used and compared for this pur-
pose. A modular composition operation is presented and its use in the con-
troller’s design is exemplified. Finally, an overview of distinct field programmable
gate array (FPGA)-based implementation strategies for the referred controller is
discussed.

Key words: Petri nets; structuring mechanisms; modular design; programmable logic devices;
field programmable gate arrays.

1. INTRODUCTION

Petri nets are a well-known formal specification language offering numer-
ous and important advantages for the modeling of concurrent and distributed
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systems10. Among them we emphasize three: locality, concurrency, and
graphical representation. Locality means the model’s evolution is based on
transition firing, and the firing of a specific transition is evaluated exclusively
on the basis of its attributes and its input and output arcs and places. Concur-
rency is implicit as transitions can fire independently (if they have disjointed
associated conditions).

The graphical representation often allows a more readable model provided
some care is taken to decompose large models in smaller parts. In fact, al-
though the importance of a modular system structuring has been recognized
since a long time, Petri nets have no intrinsic support for modular structur-
ing. This has motivated several proposals for the modular structuring of Petri
net models17,4,16,18,8,6,12,13. These proposals allow different levels of abstraction
enabling an incremental model construction.

From our point of view, the concepts proposed in Huber et al.17, namely
substitution transitions and substitution places, are of utmost importance. The
substitution transition concept is probably the most used hierarchical structur-
ing mechanism, as it is also used by the two main coloured Petri nets tools:
CPNTools and Design/CPN. The substitution place mechanism plays a dual
role related with substitution transitions. In both cases, the model execution
is accomplished through the flat model obtained after the fusion of nodes in
one net level with nodes in the other net level. It is important to stress that, in
Huber et al.17, one is not allowed to directly connect a substitution place to a
substitution transition. Moreover this was identified but was considered not to
be a serious restriction. We disagree with that assumption and we will consider
a more flexible hierarchical structuring mechanism, supporting modular speci-
fications. Some other model-structuring mechanisms, important for embedded
systems specification, are not used in this chapter. Among them, one can men-
tion the concept of depth, extensively used in statecharts15, and also integrated
in some Petri net classes.

The chapter extends a previous paper on hierarchical structuring mecha-
nisms for Petri nets, for use in the programmable logic devices (PLD)-based
systems12, with a proposal for modular addition of Petri net models and a dis-
cussion about several strategies for their implementation in PLDs, namely in
field programmable gate arrays (FPGAs). The chapter starts by a brief presenta-
tion of a Petri net class supporting hierarchical structuring of Petri net models.
Then we present a running example, which is used to show several distinct and
alternative ways to compose Petri net models. Next, horizontal decomposition
is presented and the system structure is shown to be specifiable in a precise
way by the use of an operation for the modular addition of Petri net models
named net addition. The chapter ends with a discussion about several possible
strategies to implement net models in FPGAs.
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2. REACTIVE PETRI NET

In the present chapter, we will use as reference a nonautonomous high-level
Petri net class, named reactive petri nets11 (RPN). This class of Petri nets is
briefly and informally presented in this section.

Its characteristics are divided into two groups: the autonomous part, deal-
ing with the intrinsic graph characteristics; and the nonautonomous part,
modeling of: inputs, outputs, time, priorities, conflict resolutions, and other
implementation-specific issues. The name reactive for the Petri net class comes
from the proposed semantics for transition firing.

Because of their intrinsic characteristics, coloured Petri nets18 were chosen
as the reference model for the autonomous part of the model. They have two
main advantages: the capability to create compact models; and the possibility
to specify data processing, in addition to control flow. The former allows a
useful treatment of structural and marking symmetries found in many real-
world applications, while the latter complements the control-dominated nature
of low-level Petri nets. This is very desirable for embedded systems modeling.
The data processing specification is supported by transition bindings, guards,
and arc inscriptions.

Synchronized Petri nets and interpreted Petri nets19,9, as well as statecharts15,
are the reference paradigms for the nonautonomous part in RPNs. However, in
this chapter, only the extensions associated with input/output modeling are
important.

Modeling of input events is accomplished through their usual association
with transitions. In this sense, input is specified by event conditions associ-
ated with transitions. The transition firing rule was changed so as to consider
the new input dependency. As such, for a transition to fire it must fulfill two
conditions: it must be enabled (by the existence of a specific binding of to-
kens presented in the input places), and it must be ready (the external input
evaluation must be true). Every enabled and ready transition will be fired.
This means that the maximal step is always used. This is the approach fol-
lowed by the already referred synchronized Petri net and interpreted Petri net
classes.

Output actions can be associated with either transition firings or place
markings. In the former case, transition firing generates output events (as in
a Mealy automaton). In the latter case, output actions are generated accord-
ing to the place markings (as in a Moore automaton). Outputs can be made
dependent on specific marking or binding attributes, as convenient. As an
example, an output associated with a place can be updated only if a spe-
cific attribute of the coloured token stored in the place satisfies a specific
condition.
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3. AN EXAMPLE

In this section we present a running example that allows us to illustrate the
structuring and composition mechanisms that we will introduce. It is a 3-cell
first-in-first-out (FIFO) system with four associated conveyor belts. This is a
simplified version of an example presented elsewhere14.

Each conveyor (except the last one) has sensors to detect objects on its inputs
and outputs. These sensors have associated variables IN[1..4] and OUT[1..3].
Each conveyor also has movement control, through the variables MOVE[1..3].
Figure 13-1 presents the referred layout.

Depending on the designer preferences, several modeling styles can be used,
e.g., starting with a high-level Petri net model, as in Fig. 13-2, or using low-level
nets, as in Fig. 13-3. In Fig. 13-2, as a simplified notation, the i th element of
the input/output signal vector x , x[i], is referred to as xi . As a matter of fact,
Fig. 13-3 can be seen as a (slightly modified) unfolding of the model in Fig. 13-
2. In Fig. 13-3, we can easily identify three model parts associated with different
token colors in Fig. 13-2. Places and transitions in Fig. 13-3 exhibit the names
used in Fig. 13-2 and additionally receive a vector index. This will be presented
later on.

The colored model in Fig. 13-2 easily accommodates the modeling associ-
ated with the system’s expansion. For example, if one wants to model a 25-cell
FIFO system, the changes are really easy to follow, as far as only initial marking
at pa and p6, and guards at t2 and t3, is changed accordingly.

On the other hand, the equivalent low-level Petri net model will expand
through several pages, although as a result of the duplication of a specific
submodel. Yet, for an implementation based on “elementary platforms” (those
without sophisticated computational resources), it is probably preferable to
start from the low-level model, as it can be used directly as an implementation
specification. This is the case for hardware implementations, namely the ones
supported by FPGAs (or other reconfigurable devices), where each node can be

MOVE[1..N]

IN[1..N+1]

CONTROLLER

Number of cells N = 3

OUT[1..N]

Figure 13-1. N -cell FIFO system model (with N = 3).
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Figure 13-2. High-level Petri net model of the FIFO system.

directly translated to implementation: places as flip-flops or registers, transitions
as combinatorial logic functions.

In this sense, it is important to allow compactness of the model while keep-
ing the low-level modeling attitude. This is one major goal of the propos-
als in this chapter. To this end, let us start by identifying, in Fig. 13-4, the
submodel that has to be replicated for each cell that we want to add to the
FIFO system. This attitude uses the common structuring mechanism usually
referred as macronode, or horizontal decomposition, and widely used within
low-level nets (i.e., in automation applications). It is also used by colored
Petri nets and associated tools as part of the hierarchical colored Petri net
class18.

We name the nodes on the border of this submodel interface nodes. It has to
be noted that the model in Fig. 13-3 can be obtained by a triple replication of
the submodel presented in Fig. 13-4 and the addition of one transition and one
place. The added transition represents the initial feeding of the system with an
object in the first conveyor; the added place represents the objects that exit the
system (as one last conveyor).

It has to be noted that places ppa and ppb of Cell[i] are fused with places
pa and pb of Cell[i + 1], respectively. In this sense, ppa and ppb can be seen
as dummy places used to allow submodels to be glued together and to offer the
support for the addition of an arc from place pa of Cell[i] to transition t3 of
Cell[i − 1]. Therefore, places ppa/ppb are graphical conveniences to represent
the arcs to or from transition t3 or t7, by this sense, we can represent the
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Figure 13-3. Low-level net model for the FIFO system.

submodel, in an encapsulated form, by one node (named macroblock). This
allows the higher-level representation shown in Fig. 13-5.

As a final folding step, we may take advantage of the regularity of the model
and also of the vectorial notation we have been using for the representation of
external signals, places, and transitions. This makes possible the compact model
in Fig. 13-6. As in the colored model, it is easy to accommodate the modeling
of a 25-cell FIFO system: we only need to replace “3” by “25” in three arc
inscriptions and change the vector dimension.

Typically, the design of Petri net models starts with the construction of a
graphical specification for the system model, but afterward we need to rep-
resent it formally (to feed our verification and implementation tools). The
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formalization of the net composition, including the use of macronodes for hi-
erarchical structuring, can be supported by a small set of operations (defined
elsewhere1,13). The basic operation is named net addition.

Net addition is an intuitive operation that works in two steps. In the first step,
two nets are considered as a single net (a disjoint union). In the second step,
several pairs of nodes (either places or transitions) are fused. Figure 13-7 exem-
plifies net addition. The addition of the two upper nets, Start and Cell, results
in net StartCell. Roughly speaking, the addition was accomplished through the
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Figure 13-7. Addition of nets.
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fusion of two pairs of places: pp1 from the Start net with pa from the Cell net
and pp2 from the Start net with pb from the Cell net.

The operation is amenable to be algebraically represented as

StartCell = Cell ⊕ Start (pa/ppl → pa, pb/pp2 → pb) (1)

where the places preceding the arrows are the interface nodes. The nodes after
the arrows are the resulting merged nodes. For example, the notation pa/pp1→
pa means that nodes pa and pp1 are merged (fused) together giving origin to a
new node named pa.

Also, the whole model presented in Fig. 13-3 can be straightforwardly pro-
duced through the following expression, where Place represents a subnet with
no transitions and a single place p1 containing one token*:

System = Place ⊕ Cell[3] ⊕ Cell[2] ⊕ Cell[1] ⊕ Start

(Cell[1].pa/pp → pa[1], Cell[1].pb/pp2 → pb[1],

Cell[1].ppb/Cell[2].pb → pb[2], Cell[1].ppa/Cell[2].pa → pa[2],

Cell[2].ppb/Cell[3].pb → pb[3], Cell[2].ppa/Cell[3].pa → pa[3],

Cell[3].ppb/Cell[3].ppa/p1 → p1)

(2)

First, the expression clearly shows the nets and the net instances that are
added together. Then the expression shows the node fusions used to “glue” the
nets together. We name this list of node fusions expressions a net collapse and
each of the elements in the list a named fusion set. These two concepts, as well
as net addition, are informally defined in section 5.

4. HORIZONTAL DECOMPOSITION

The horizontal decomposition mechanism is defined in the “common” way
used in top-down and bottom-up approaches, supporting refinements and ab-
stractions, and is based on the concept of module. The module is modeled in
a separated net, stored in a page; every page may be used several times in the
same design as a net instance. The pages with references to the modules are
referred to as superpages (upper-level pages), while the pages containing the
module model are referred to as subpages (lower-level pages). The nodes of
the net model related with hierarchical structuring are named by macronodes.
Three types of macronodes are used: macroplace, macrotransition (also used
by hierarchical colored Petri nets18), and macroblock. Every macronode has an

* Note that, for simplification purposes, in Fig. 13-3, the nodes named Cell[i].n appear as
n[i].
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associated subpage that can be referred to as a macronet. Distinctive graphical
notations are used for the representation of macronodes: macroplaces are repre-
sented by a double circle (or ellipse), macrotransitions by a rectangle, and mac-
roblocks are represented in a half-macroplace and half-macrotransition manner.
They correspond to modules in a more general way. In this sense, the mech-
anism can be seen as a generalization of the macrotransition and macroplace
concepts available in several tools. The hybrid nature of the macroblock node
enables the existence of arcs connecting similar types of nodes (as shown in pre-
vious figures), although the bipartite intrinsic characteristic of Petri nets is not
violated, as this representation is not an executable specification (at this level).
In fact, the model’s execution is accomplished through the flat model, which
was the motivation for the name of this decomposition type. Finally, we note
that this type of hierarchical decomposition is based solely in the autonomous
characteristics of the model.

5. NET ADDITION

In this section we informally present net addition and the two main associated
concepts: net collapse and named fusion sets. The respective formal definitions
can be found elsewhere3, together with a more comprehensive presentation. An
implementation of these concepts is also presented elsewhere2. It is proposed in
accordance with the Petri Net Markup Language (PNML)5, which is currently
the major input for a transfer format for the International Standard ISO/IEC
15909 on high-level Petri nets.

For simplification purposes, we base our presentation in terms of a low-
level marked Petri net. This implies that all the nonautonomous extensions as
well as the high-level features are not mentioned. In fact, for net inscriptions,
only the net marking is taken into account: the respective place markings are
added when places are fused. This assumes the existence of a net addition
operation defined for net markings. All other net inscriptions can be handled
in a similar manner as long as the respective addition operation is defined on
them.

We now present informal definitions for a few concepts implicit in a net
addition operation.

Given a net with a set of places P and a set of transitions T , we say that a
fusion set is a subset of P or a subset of T . A fusion set with n nodes x1, x2 . . . , xn

is denoted as x1/x2/ . . . /xn.
As the objective of fusion sets is the specification of a new fused node,

we also define named fusion sets. A named fusion set is simply a fusion set
(x1/x2/ . . . /xn) plus the name for the node resulting (rn) from the fusion of all
the nodes in the fusion set. It is denoted as x1/x2/ . . . /xn → rn. This notation
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was already used in the (1) and (2). We also say that Nodes (x1/x2/ . . . /xn →
rn) = {x1/x2, . . . , xn}, and Result (x1/x2/ . . . /xn → rn) = rn.

Fusion sets and named fusion sets constitute the basis for the net collapse
definition: a net collapse is simply a list of named fusion sets. For example, (1)
uses a net collapse containing two named fusion sets.

The application of a net collapse CO to a net N is named a net collapse
operation. Informally, each named fusion set nfs, in a net collapse CO, fuses
all the nodes in Nodes(nfs) into the respective single node Result(nfs). A net
addition between two or more nets is defined as a net disjoint union of all the
nets, followed by a net collapse operation on the resulting net.

Finally, the interested reader should refer to Refs. 2 and 3, where an addi-
tional reverse operation named net subtraction is also defined. This allows the
undoing of a previous addition operation in a structured way.

6. VECTORS EVERYWHERE

The example presented already illustrated the use of net instances, which
are specified by the net name followed by an index number between square
brackets (e.g. Cell[2]). This is called the net instance name. The rationale for
this notation comes from viewing each net as a template from which any number
of instances can be created. Two instances are made different by the respective
instance numbers. All the node identifiers and all the net inscriptions of a
given net instance become prefixed by the net instance name (e.g. Cell[2].p6).
This guarantees that all the elements in two net instances of a given net are
disjoint.

The use of net instances is made particularly useful if we allow the definition
of net vectors and iterators across the net vector elements. A net vector is simply
a list of net instances: Cell[1..3] = (Cell[1], Cell[2], Cell[3]).

A vector iterator is defined as an integer variable that can be specified
together with a vector declaration. This is used in the specification of net col-
lapses. In this way we can specify collapse vectors, which allow the gluing of
an arbitrary number of net instances. As an example, (3) generalizes (2) to any
number of cells ((2) corresponds to NCells = 2):

System = Place ⊕ Cell[1.. NCells] ⊕ Start

(Cell[1].pa/pp1 → pa[1], Cell[1].pb/pp2 → pb[1],

(Cell[i].ppb/Cell[i + 1].pb → pb[i + 1],

Cell[i].ppa/Cell[i + 1].pa → pa[i + 1])

[i : 1..NCells − 1],

Cell[3].ppb/ Cell[3].ppa/p1 → p1) (3)
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Especially important is the fact that (3) allows the specification of a similar
system with any number of cells. Note the use of an iterator variable i in the
specification of the addition collapse.

Vectors are also extremely useful for the input events. If we define an input
event vector with NIE elements ie[NIE], we can then use a vector element ie[i]
as an event. If the index value i is specified as a (colored) transition variable, it
can then be used to bind i . This is another way for the execution environment to
interfere with the net execution. In this sense, transition firing depends not only
on the marking of the connected places (as common on a Petri net), constrained
by the guard expressions, but also on the occurrence of the associated events12.

7. DISCUSSION ON IMPLEMENTATION ISSUES

Although the complexity of the running example is relatively small, it is
amenable to exercise different possible implementation solutions. Designers
can follow several implementation strategies – from direct implementations
to indirect ones, including some “hybrid implementations” and from colored
models to low-level nets. The appeal of the running example presented is that
it allows simple comparisons between different ways to implement Petri nets
models in hardware. Also, some of the tested solutions can use a microprocessor
IP core to be embedded into FPGA designs. This allows us to exercise hardware-
software codesign techniques within Petri net implementations.

As a common framework we had considered hardware implementations
based on programmable logic devices; for most situations, complex pro-
grammable logic devices (CPLDs) can be adequate (or even simple devices
like PALs for some solutions), but for some implementations, FPGA usage is
mandatory (i.e., when we intend to use IP cores).

As another common characteristic for the tested implementations, VHDL
coding was used for FPGA and CPLD implementations. This choice was due
to the expressiveness capabilities of VHDL and also to its support for porta-
bility among different environments. Having said this, we have to add that all
implementations were tested using Xilinx devices, some of them with CPLDs
XC9536 and XC95108, but most of them with Spartan2 FPGA X2S200.

Several of the strategies referred to are very straightforward to implement.
In the following paragraphs we summarize the main solutions we have tested
or analyzed:
� The most intuitive implementation technique is to face direct implementa-

tion of every node of the low-level model; taking Fig. 13-3 as reference,
each place can be implemented by a flip-flop (because it is a safe model),
and each transition can be implemented as a combinatorial logic function
(also dependent of external input signals).
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� One alternative implementation solution, applicable to small complexity
models, is the behaviorally equivalent state space, normally used for analysis
and propriety verification. This alternative system’s representation can be
generated using a computer tool and can be implemented as an ordinary state
machine. It is to be noted that even for relatively simple examples, such as
the one presented, the associated state space is too large to be managed
without the support of adequate tools (this was the main reason why it
was not viable to exercise this implementation technique for the example).
Note that for hardware direct implementations, any kind of state encoding
technique can be used, from global encoding schemes to one-hot encoding;
yet, the state machine can also be implemented in software, which can, in
turn, be embedded into the FPGA through a microcontroller IP core (e.g.,
the picoblaze core7 was successfully used).

� Alternatively, we may decompose the model into a set of interacting sub-
models that will be executed concurrently; one solution using this attitude
relies on the module concept associated with the macroblock previously
identified in Fig. 13-4 (readily supported by the implementation language,
VHDL); also, the usage of place invariant analysis led us to the conclusion
that the five place invariants cover all the places of the model, and each
invariant can be seen as a state machine (as far as only one place of the
invariant is marked at a time). In this sense, the system’s implementation
could be based on the partitioning of the model into five concurrent state ma-
chines, which were trivially implemented, coded in either hardware (using
VHDL) or software (using an assembler, with the support of the picoblaze
IP).

� Finally, we may also decide for the direct implementation of the colored Petri
net model, taking advantage of the existence of no conflicts in the model;
to that end, places can be implemented using registers, and each transition
can be implemented through a microcontroller IP core, which supports the
data transformation characteristics associated with transitions.

8. CONCLUSIONS

In this paper, Petri net-based digital system design was addressed. Modular
design was supported by the concept of the net addition operation. A hierar-
chical structuring mechanism, named horizontal decomposition, was presented
on the basis of the concept of module, which can be represented by special
kind of nodes, named macronodes, and was complemented by the vectorial
representation of nodes and signals. Their usage was successfully validated
through an example of a controller for a low-to-medium complexity system,
which was implemented on the basis of programmable logic devices (normally
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FPGAs, although CPLD- or even PAL-based implementations were carried
on).

REFERENCES

1. João Paulo Barros, Luı́s Gomes, Modifying Petri net models by means of crosscutting
operations. In: Proceedings of the 3rd International Conference on Application of Con-
currency to System Design (ACSD’2003); Guimarães, Portugal (18–20 June 2003).
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ISBN 84 7288 045 1 (1985).



Chapter 14

IMPLEMENTING A PETRI NET
SPECIFICATION IN A FPGA USING VHDL

Enrique Soto1 and Miguel Pereira2

1Dept. Tecnologı́a Electrónica, Universidad de Vigo, Apdo. Oficial, 36200 Vigo, España,
esoto@uvigo.es
2Intelsis Sistemas Inteligentes S.A.—R&D Digital Systems Department, Vı́a Edison 16 Polı́gono
del Tambre 15890, Santiago de Compostela (La Coruña): e-mail mpereira@intelsis.es

Abstract: This paper discusses how the FPGA architectures affect the implementation of
Petri net specifications. Taking into consideration the observations from that study,
a method is developed for obtaining VHDL descriptions amenable to synthesis,
and tested against other standard methods of implementation. These results have
relevance in the integration of access technologies to high-speed telecommuni-
cation networks, where FPGAs are excellent implementation platforms.
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1. INTRODUCTION

In many applications it is necessary to develop control systems based on
Petri nets1. When a complex system is going to be implemented in a small
space, the best solution may be to use a FPGA.

FPGA architectures2 are divided in many programmable and configurable
modules that can be interconnected with the aim of optimizing the use of the
device surface. It is necessary to remember that the main problem of PLDs,
PALs, and PLAs is the poor use of the device surface, that is, the low percentage
of logic gates used. This occurs because this kind of programmable device has
only one matrix for AND operations and another matrix for OR operations.
FPGAs are different because they are composed of small configurable logic
blocks (CLBs) that work like sequential systems. CLBs are composed of a RAM
memory and one or more macrocells. Each CLB RAM memory is programmed
with the combinational system that defines the behavior of the sequential system.
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On each macrocell a memory element (bistable) and a configuration circuit are
included. The configuration circuit defines the behavior of the macrocell.

VHDL is a standard hardware description language capable of represent-
ing the hardware independent of its final implementation3. It is also widely
supported by a number of simulation and synthesis tools.

2. FPGA AND PETRI NETS

It is necessary to take into account the following points for implementing a
sequential system on a FPGA:
� The system must be divided into low complexity subsystems for integrating

them on each CLB of the FPGA.
� Usually, CLBs have only four or five inputs, and one or two outputs (macro-

cells), and sometimes it is necessary to achieve a strong division of the
global system for integrating the subsystems into the CLBs.

� CLBs are interconnected through buses. These buses are connected to con-
figurable connection matrices that have a limited capacity. It is necessary to
bring near one another subsystems with a strong dependence between them
to optimize the use of these connection matrices.

These points can be followed in many cases when implementing a Petri net.
There are two kinds of elements in a Petri net: places and transitions. The circuit
implementation of these elements is relatively easy, as shown in the schematics
of a place and a transition in Fig. 14-1. Each one of these elements can be
programmed in one or more CLBs following the model shown in Fig. 14-1.
That would not be the most compact and efficient design, but it would be the
simplest.

Each place and transition can be implemented on a CLB. The main problem
is the low number of inputs in a CLB. Sometimes it is necessary to use more

Figure 14-1. Electrical schematics of a place and a transition.
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CLBs for each element. T inputs are the signals generated for the preceding
transitions. R inputs are connected to the output of the next transitions. LS is
the output signal of the place. E inputs are the system inputs involved in the
transition. L inputs are the signals generated for the preceding places. TS is the
output of the transition.

For obtaining the most compact and efficient design, it is necessary to make
the following transformations.

In the models of Fig. 14-1, each place of the Petri net is associated to one
bit-state (one-hot encoding). This is not the most compact solution because
most of the designs do not need every combination of bits for defining all the
states of the system. For instance, in many cases a place being active implies
that a set of places will not be active. Coding the place bits with a reduced
number of bits will be a good solution because the number of CLBs decreases.
For instance, if a Petri net with six places always has only one place active, it
is enough to use only 3 bits for coding the active place number (binary state
encoding).

The other transformation consists of implementing the combinational circuit
of the global system and dividing the final sequential system (combinational
circuit and memory elements).

These transformations are used for making compact and fast designs, but
they have some limitations.

When a compacted system is divided, maybe too many CLBs have to be
used, because of the low number of inputs on each CLB (four or five inputs). This
obstacle supposes sometimes to use more CLBs than dividing a noncompacted
system.

Verifying or updating a concrete signal of the Petri net in a compacted
system may be difficult. It is necessary to take into account the achieved trans-
formations and to supply the inverse transformations for monitoring the signal.
This problem can be exposed in failure-tolerant systems. This kind of systems
need to verify their signals while they are running. This system may be more
complex if it has been compacted previously.

To avoid the mentioned problems, this paper proposes a solution that consists
in implementing the system using special blocks composed of one place and a
transition. With this kind of blocks compact systems can be achieved, preserving
the Petri net structure. Figure 14-2 shows an example of Petri net divided into
five blocks. Each block is implemented in a CLB.

3. IMPLEMENTATION

With this kind of implementation of Petri net-based systems, every CLB
is composed of a place connected to a transition. The place can be activated
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Figure 14-2. Example of Petri net divided into blocks for implementation in FPGA.

through its inputs connected to other transitions. It will be deactivated through
reset inputs, or through the transition that is in the block (Fig. 14-3).

The transition will be active when the preceding place is active and the
transition inputs have the appropriated values. Every block has two outputs,
one state bit corresponding to the place, and a transition bit.

Figure 14-3 presents the description of the new blocks that are developed in
a configurable block in a FPGA. On the left, a simplified digital schematic of
the block is shown, where
� T is the input bits set connected to other transitions for activating the place,
� R is the vector of signals for deactivating the place since other transitions,
� LE are the signals coming from other places and other input signals that let

the activation of the transition,

Figure 14-3. Description of the new blocks.
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� LS is the output place, and
� TS is the output transition,

Figure 14-3 shows logical and electronic schematics of these blocks. The
place and the transition are interconnected through two signals in the block.
These signals are not always connected to the exterior. This detail allows a
reduction of the CLB connections in a FPGA. In many cases a concrete CLB
does not have enough inputs for including a block of this kind. In those cases,
it is necessary to use auxiliary CLBs for implementing the block. However,
it is unusual to find a Petri net on which every place is preceded by a high
number of transitions (or to find a transition preceded by many places). Usually,
most places and transitions in a practical Petri net are connected to one or two
transitions or places, respectively (except common resources or synchronism
points). Figures 14-4 and 14-5 show some examples in which there is an element
preceded by many others.

There are cases in which the number of CLB inputs is not enough to include
a place or a transition in the CLB. Figure 14-6 shows a logical schematic for
expanding the block inputs. The logic gates connected outside the block place-
transition are used for incrementing the number of inputs. In this figure, four
CLBs are necessary for implementing the block. Three of them are auxiliary
blocks and have the function of concentrating a number of inputs in one signal.

Figure 14-4. Examples of different block interconnections for implementing several places
(above) or several transitions (below) with one other element.
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Figure 14-5. Example of interconnection for implementing several places and transitions.

Figure 14-6. Block schematic with a high number of inputs.

4. VHDL HIGH LEVEL DESIGN

The methodology proposed uses the blocks described above as a set
of parametrizable objects available in VHDL libraries. The implementation
is simply the interconnection, according to the Petri net specification, of
those objects whose correctness is guaranteed. The VHDL description rep-
resents correctly the specification as long the Petri net does it. The re-
sulting architecture that is implemented within the FPGA is OHE (one-hot
encoding).

This solution gives best results in the implementation of SRAM-based
FPGA4, at least as long as the number of places and the random logic as-
sociated with the transitions is not too complex relative to the combinational
logic available in the FPGA.
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Figure 14-7. Schematic of the connections for the Petri net of Fig. 14-1 with configurable
blocks.

5. EXAMPLE

Figure 14-7 shows the blocks interconnection of a Petri net-based system
on a FPGA. The given example corresponds to the net of Fig. 14-2.

Each block is a CLB of the FPGA, and it is not necessary to include auxiliary
blocks for incrementing the number of inputs of the elements of the net. There
is only a place with two input signals in the net of Fig. 14-2. Rest of the
places have only one input signal. If some element had more than two inputs,
it would be necessary to use the structures of Fig. 14-4, and then the number of
CLBs would be increased. The results of different design methodologies using
a sample FPGA are summarized in Table 14-1.

Table 14-1. The results of the FPGA design methods

Design method Design process FPGA resources in use Device frequency achieved

Schematic Difficult 17% 27, 62 MHz
VDHL behavioral Simple 21% 16, 75 MHz
This paper Simple 12% 63, 69 MHz

6. CONCLUSIONS

In this paper, the implementation of Petri net-based systems on FPGAs has
been discussed. The main problem consists of using places and transitions with a
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different number of inputs, including the case when there are more inputs than a
configurable block of a FPGA. For that, a method has been developed through
two circuit models, one for places and the other for transitions. With these
models a new block has been presented that contains a place interconnected
with a transition. The purpose of this block is to reduce the interconnections
between CLBs in a FPGA and, therefore, reducing the number of inputs on
each block (especially, feedback signals necessary to reset preceding places).
This method is optimal for Petri nets in which most places and transitions are
preceded by one or two (but no more) transitions or places. Furthermore, some
possibilities have been shown for the interconnection of blocks that increase the
number of inputs in elements of a Petri net. The main purpose of this method
is to integrate the maximum number of elements of a Petri net in a FPGA.
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Abstract: This paper deals with the possibility of the description and decomposition of the
finite state machine (FSM). The aim is to obtain better placement of a designed
FSM to the selected FPGA. It compares several methods of encoding of the FSM
internal states with respect to the space (the number of CLB blocks) and time
characteristics. It evaluates the FSM benchmarks and seeks for such qualitative
properties to choose the best method for encoding before performing all FOUN-
DATION CAD system algorithms, since this process is time consuming. The new
method for encoding the internal FSM states is presented. All results are verified
by experiments.
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1. INTRODUCTION

Most research reports and other materials devoted to searching for the “opti-
mal” encoding of the internal states of a FSM are based on the minimum number
of internal states and sometimes also on the minimum number of flip-flops used
in their hardware implementation. The only method to get really optimal results
is testing of all possibilities1. But sometimes “wasting” the internal states or
flip-flops is a better solution because of the speed of the designed circuit and
mapping to a regular structure. Most encoding methods are not suitable for
these structures, e.g., different types of FPGAs or CPLDs. Therefore it is de-
sirable to compare several types of sequential circuit benchmarks to search for
the relation between the type of this circuit (the number of the internal states,
inputs, outputs, cycles, branching) and the encoding method with respect to
their implementation in a XILINX FPGA.
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Our research group has been working on encoding and decomposition meth-
ods for FSMs. We have worked with the CAD system XILINX FOUNDATION
v2.1i during our first experiments and next with XILINX ISE. We have used
the benchmarks from the Internet in KISS2 format, some encoding algorithms
from JEDI program and system SIS 1.2 10. First of all, we classified the FSM
benchmarks to know their quantitative characteristics: the number of internal
states, inputs, outputs, transitions (i.e., the number of arcs in the state transition
graph (STG)), a maximum number of input arcs, a maximum number of out-
put arcs to and from STG nodes, etc. We compared eight encoding methods:
“one-hot,” “minimum-lengths” (binary), “Johnson,” and “Gray” implemented
in FOUNDATION CAD system. “Fan-in” and “Fan-out” oriented algorithms,
the algorithm “FAN” connecting Fan-in and Fan-out ones,1,5 and the “two-hots”
methods were implemented. The second group of our experiments was focused
on FSM decompositions. Our original method called a “FEL-code” is based
on these experimental results and is presented in this paper. The final results
(the number of CLB blocks and maximum frequency) were obtained for the
concrete FPGA implementation (Spartan XCS05-PC84).

2. METHODS

2.1 Encoding methods

A one-hot method uses the same number of bits as the number of internal
states, where the great number of internal variables is its main disadvantage.
The states that have the same next state for the given input should be given
adjacent assignments (“Fan-out oriented”). The states that are the next states
of the same state should be given adjacent assignments (“Fan-in oriented”).
The states that have the same output for a given input should be given adjacent
assignments, which will help to cover the 1’s in the output Karnaugh maps
(“output oriented” method).

A very popular and frequently used method is the “minimum-length” code
(obviously called “binary”) that uses the minimum number of internal vari-
ables, and the Gray code with the same characteristics and adjacent codes for a
sequence of the states.

The “two-hots” method uses a combination of two 1’s to distinguish between
all states.

First partial results based on several encoding methods (Table 15.1) and
benchmarks characteristics were presented in Refs. 6, 7, 8, and 9. We have
found out that the most successful methods are “minimum-length” and “one-
hot.” Minimum-length encoding is better than one-hot encoding for small FSMs
and for FSMs that fulfill the following condition: a STG describing the FSM
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Table 15-1. Examples of codes for six internal states

Binary Gray Johnson one-hot two -hot

St1 000 000 000 000001 0011
St2 001 001 001 000010 0101
St3 010 011 011 000100 1001
St4 011 010 111 001000 0110
St5 100 110 110 010000 1010
St6 101 111 100 100000 1100

should be complete or nearly complete. If the ratio of the average output degree
of the node to the number of states is greater than 0.7, then it is better to use the
minimum-length code. On the contrary, one-hot encoding is better when this
ratio is low. Let us define this qualitative property of the FSM as a characteristic
AN:

AN = Average output edges

Number of states − 1
(1)

The value AN = 0.7 was experimentally verified on benchmarks and on
our specially generated testing FSMs – Moore-type FSMs with the determined
number of internal states and the determined number of the transitions from
the internal states. Our FSM has the STG with the strictly defined number
of edges from all states. For each internal state this number of output edges
must be the same. The resulting format is the KISS2 format – e.g., 4.kiss
testing FSM has the STG with four edges from each internal state (node).
The next state connections were generated randomly to overcome the XILINX
FOUNDATION optimization for the counter design. The relationship between
one-hot and minimum-length encoding methods is illustrated in Fig. 15-1. The

-

Figure 15-1. The comparison of minimum-length and one-hot encoding with respect to AN.
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Figure 15-2. Partial decomposition.

comparison was made for 30 internal states FSMs with different branching.
The number of transitions from all states is expressed by AN (axis X). The axis
Y expresses the percentage success of the methods with respect to the space
(the minimum number of the CLB from all encoding methods for every testing
FSM is 100%). It can be seen that for less branching (smaller AN) the one-hot
code is always better until the border AN = 0.7.

2.2 Decomposition types

Decomposition1 means splitting of one whole into several (simpler) parts
that implement the function of the former whole. We were interested in the
decomposition of the FSM into several cooperating sub-FSMs. Decomposition
can be partial or full according to division of only the internal states (partial)
or all the sets of input, output, and internal states (full). See Fig. 15-2, where
X is the finite set of input symbols, Y is the finite set of output symbols, Q is
the finite set of internal states, the FSM M = (X, Y, Q, δ, λ) is to be split into
sub-FSMs M ′ = (X ′, Y ′, Q ′, δ′, λ′) and M ′′ = (X ′′, Y ′′, Q ′′, δ′′, λ′′).

The following decomposition types are classified as two-level and several-
level ones according the number of sub-FSMs. There are decompositions which
are distinguished according the way of cooperation: simultaneous decomposi-
tion, where all sub-FSMs work simultaneously; and cascade decomposition,
where sub-FSMs work sequentially and where the next sub-FSM starts to work
when its predecessor finishes its function. All types of decomposition can be
parallel, serial, or general according the type of exchange of information about
internal states. The strict definition can be seen in Refs. 1, 2, 3, and 4.

2.3 “FEL-code” method

Our method combines both the one-hot and minimum-length encoding
methods. It is based on the partial FSM internal state decomposition, such
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Figure 15-3. FEL-code basis.

as several level, cascade, and general, where the number of levels depends on
the FSM properties. The global number of states of the decomposed FSM is
equal to the original number of FSM internal states. The internal states are di-
vided into groups (sets of internal states) with many connections between states
(for such “strongly connected” states the minimum-length encoding is better to
use); see Fig. 15-3. The internal state code is composed of the minimum-length
part (a serial number of the state in its set in binary notation) and the one-hot
part (a serial number of a set in one-hot notation). The number of minimum-
length part bits is equal to b, where 2b is greater than or equal to the maximum
number of the states in sets and the number of one-hot part bits corresponds to
the number of sets.

The global algorithm could be described as follows:
1. Place all FSM internal states Qi into the set S0.
2. Select the state Qi (from S0) with the greatest number of transitions to other

disjoint states from S0. Take away Qi from S0; Qi becomes the first member
of the new set Sgroup.

3. Construct the set Sneighbor of neighboring internal states of all members of
Sgroup. Compute the score expressing the placement suitability for a state Q j

into Sgroup for all states from Sneighbor. Add the state with the highest score to
Sgroup.

4. The score is a sum of
(a) the number of transitions from Q j to all states from Sgroup multiplied by

the constant 10;
(b) the number of such states from Sgroup for which exists the transition from

Q j to them, multiplied by the constant 20;
(c) the number of transitions from Q j to all neighboring internal states from

Sgroup (i.e. to all states from Sneighbor) multiplied by the constant 3;
(d) the number of such states from Sneighbor for which the transition from Q j

to them, multiplied by the constant 6, exists;
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(e) the number of transitions from all internal states from Sgroup to Q j mul-
tiplied by the constant 10;

(f) the number of such states from Sgroup that the transition from them to
Q j , multiplied by the constant 20, exists;

(g) the number of transitions from all neighboring states of Sgroup (placed
in Sneighbor) to Q j , multiplied by the constant 3;

(h) the number of the neighboring states in Sneighbor for which the transition
from them to Q j , multiplied by the constant 6, exists;

5. Compute AN (1) characteristics for Sgroup.
6. When this value is greater than the “border value” (the input parameter of

this algorithm, in our experiments is usually 0.7) the state Q j becomes the
real member of Sgroup. Now continue with step 3. When the ratio is less than
the border value, state Q j is discarded from the Sgroup and this set is closed.
Now continue with step 2.

7. If all internal states are placed into sets Si and at the same time S0 is empty,
construct the internal states code:

8. The code consists of the binary part (a serial number of the state in its set
in binary notation) and the one-hot part (a serial number of a set in one-hot
notation). The number of binary part bits is equal to b, where 2b is greater
than or equal to the maximum number of states in the sets. The number of
one-hot part bits is equal to the number of sets Si .

Example (lion benchmark10, border ratio 0.7, Fig. 15-4)
1. Place all FSM internal states Qi into the set S0

S0 = {st0, st1, st2, st3}
2. For all S0 elements compute the number of transitions to next disjoint states

from S0:
(st0 . . . 1, st1 . . . 2, st2 . . . 2, st3 . . . 1)

-0/0
11/0

01/- 0-/1

10/100/1

11/1

01/1

1-/1
0-/1

11/0

st0 st1

st2st3

Figure 15-4. STG of the lion benchmark.
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Choose the state with the highest value and construct the new set S1:
S0 = {st0, st2, st3}, S1 = {st1}

3. Construct the set Sneighbor of neighboring internal states of all members
of S1:

S0 = {st0, st2, st3}, S1 = {st1}, Sneighbor = {st0, st2}
Compute the score for all states from Sneighbor:

st0score = 1.10 + 1.20 + 2.3 + 1.6 + 1.10 + 1.20 + 2.3 + 1.6 = 84
st2score = 1.10 + 1.20 + 1.3 + 1.6 + 1.10 + 1.20 + 1.3 + 1.6 = 78

Choose the state with the highest score and add it to S1:

S0 = {st2, st3}, S1 = {st0, st1}, Sneighbor = {st2}
4. Compute AN (1) for the elements from S1:

AN = 1.0.

AN is greater then 0.7; therefore, the state Q j becomes a real member of S1.
Now continue with step 3.

5. Try to add the state st2 into S1 and compute AN. Because AN = 0.66, state
st2 is discarded from S1 and this set is closed. Now continue by step 2.

At the end all internal states are placed into two groups:

S1 = {st0, st1}, S2 = {st2, st3}
Now the internal state code is connected from the one-bit binary part and

the two-bit one-hot parts:

st0 . . . 0/01 st1 . . . 1/01 st2 . . . 0/10 st3 . . . 1/10

3. EXPERIMENTS

Because the conversion program between a KISS2 format and VHDL was
necessary, the converter K2V DOS (in C++ by the compiler GCC for DOS OS)
was implemented6. The K2V DOS program allows obtaining information about
FSMs; e.g., the node degree, the number of states, the number of transitions,
etc. The VHDL description of a FSM created by the K2V DOS program can
be described in different ways (with different results):
� One big process sensitive to both the clock signal and the input signals (one

case statement is used in this process; it selects an active state; in each branch
of the case there are if statements defining the next states and outputs). This
is the same method that was used for the conversion between STG and
VHDL by the XILINX FOUNDATION11.

� Three processes (next-state-proc for the implementation of the next-state
function, state-dff-proc for the asynchronous reset and D flip-flops appli-
cation, and output-proc for the FSM output function implementation). To
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frequency

#CLB

Figure 15-5. The final comparison of all encoding methods used.

overcome the XILINX FOUNDATION optimization for the one-hot encod-
ing method, the direct code assignment was used as well.

The K2V DOS program system can generate our special testing FSMs (for
more precise setting of the characteristics AN, see Section 2.1). The K2V DOS
program can generate different FSM internal state encoding by minimum-
lengths, Gray, Johnson, one-hot, two-hots, Fan-in, Fan-out, FAN, and FEL-
code methods. All benchmarks were processed by the DECOMP program to
generate all possible types of decompositions (in KISS2 format due to using
the same batch for the FPGA implementation).

4. RESULTS AND CONCLUSIONS

We have performed about 1000 experiments with different types of encod-
ing and decomposition methods for 50 benchmarks. The comparison of nine
encoding methods is shown in Fig. 15-5. There is condensed information about
the average “success” of all encoding methods. The minimum number of CLB
blocks for a benchmark is divided by the number of CLB blocks for a particular
encoding method. Similarly, the working frequency for a particular encoding
method is divided by the maximum frequency for a benchmark. These val-
ues were computed for all benchmarks for maximum working frequency (dark
columns) and number of CLB blocks (#CLB, white columns) and expressed as
percentage “success” for each encoding method.

We can reach the following conclusions based on our encoding and decom-
position experiments:
� The minimum-length encoding method provides the best results for FSM

with a few internal states (5) and for FSM with AN > 0.7 (the state transition
graph with many cycles).
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Table 15-2. Frequency improvement

Average maximum frequency (MHz)

Encoding method Spartan Spartan-II Frequency increase (%)

Binary 76.6 145.0 47.2
one-hot 80.5 167.1 51.8
FEL-c 0.5 71.3 108.7 34.4
FEL-c 0.7 75.6 128.1 41.0

� One-hot encoding method is better for other cases and mostly generates
faster circuits (but the XILINX FOUNDATION uses optimization methods
for “one-hot” encoding).

� The FEL-code method is universal as it combines the advantages of both one-
hot and minimum-length methods. This method is heuristic; the parameters
(AN and the score evaluations) have been experimentally verified.

� Other tested encoding methods provide worse results in most cases and have
no practical significance.

� For such FSM implementation where majority of CLB blocks are used (e.g.,
90%), the one-hot method gives better results, mainly with respect to the
maximum working frequency due to easier wiring.

� All FSM decomposition types are not advantageous to use in most cases
due to great information exchange – the parallel decomposition is the best
one (if it exists).

� A different strategy for searching for the partitions – the best FSM partition
is not the one with the minimum number of internal states but the one with
the minimum sets of input and output symbols – could be used for FPGA
implementation.

The experimental results performed on the recent XILINX ISE CAD system
have not been sufficiently compared with those presented above, since many
qualitative changes were incorporated into this tool, such as new types of final
platforms and new design algorithms. According to our last results not yet
presented, we can conclude that the one-hot and minimum-length methods still
remain the most successful. The average improvement (for all benchmarks but
only for working frequency) is presented in Table 15-2. It can be stated that
the encoding methods offered by the CAD system are better then the outside
methods and AN = 0.7 is a right value.
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2. L. Józwiak, J.C. Kolsteren, An efficient method for sequential general decomposition of
sequential machines. Microprocessing and Microprogramming, 32 657–664 (1991).

3. A. Chojnaci, L. Jozwiak, An effective and efficient method for functional decomposition
of Boolean functions based on information relationship Measures. In: Proceedings of 3rd
DDECS 2000 Workshop, Smolenice, Slovakia, pp. 242–249 (2000).

4. L. Jozwiak, An efficient heuristic method for state assignment of large sequential machines.
Journal of Circuits, Systems and Computers, 2 (1) 1–26 (1991).

5. K. Feske, S. Mulka, M. Koegst, G. Elst, Technology-driven FSM partitioning for syn-
thesis of large sequential circuits targeting lookup-table based FPGAs. In: Proceedings
7th Workshop Field-Programable Logic and Applications (FPL ’97), Lecture Notes in
Computer Science, 1304, London, UK, pp. 235–244 (1997).
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Abstract: Circuit realization on a single programmable logic array (PLA) may be unac-
ceptable because of the large number of terms in sum-of-products; therefore a
problem of block synthesis is considered in this paper. This problem is to realize a
multilevel form of Boolean function system by some blocks, where each block is
a PLA of smaller size. A problem of block synthesis in gate array library basis is
also discussed in this paper. The results of experimental research of influence of
previous partitioning of Boolean function systems on circuit complexity in PLA
and gate array library basis are presented in this paper.

Key words: synthesis of combinational circuits; partitioning; programmable logic array
(PLA); gate array library; layout.

1. INTRODUCTION

There are different ways of implementation of the control logic of custom
digital VLSI circuits. The most important ways are realization of two-level
AND/OR circuits in programmable logic array (PLA) basis9 and realization of
multilevel circuits in library gates basis7. Each of them has its advantages and
disadvantages. The advantage of PLA circuits is simplicity of layout design,
testing, and modification, because the circuits are regular. There are effective
methods and programs of PLA area minimization9,4. The disadvantage of two-
level PLA circuits is the large chip area in comparison with the area required
for a multilevel library gates circuit. But the synthesis of a multilevel circuit is a
very difficult task5; moreover, such circuits are harder for testing and topological
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design than PLA circuits. The implementation of a circuit in a single PLA may
be unacceptable because of the large size of the PLA. Therefore a problem of
block synthesis is considered in this paper. The results of experimental research
are given.

2. REPRESENTATION OF BOOLEAN FUNCTIONS
AND THE BASIS OF SYNTHESIS

It is well known that the formal (mathematical) model of functioning of a
multioutput combinational circuit is a system of completely defined Boolean
functions9. Let a combinational circuit have n inputs and m outputs. One of
the forms of Boolean function system representation is the sum-of-product
(SOP) system. Let us denote by D f (n, k, m) the system of Boolean functions
f (x) = ( f 1(x), . . . , f m(x)), x = (x1, . . . , xn), specified on k common elemen-
tary products of Boolean variables x1, . . . , xn. Let us represent D f (n, k, m) by
a pair of matrices, the ternary k × n matrix T x and the Boolean k × m matrix
B f . A pair of the appropriate rows of T x and B f represents, respectively, the
product and the subset of the functions that belongs to their SOPs. The repre-
sentation of a system of Boolean functions in the form of a SOP system will
be called a two-level representation. We refer to the specification of a system
of Boolean functions in the form of a system of parenthesized algebraic ex-
pression on the basis of logic AND, OR, and NOT operators as the multilevel
representation.

A programmable logic array is a classical two-level structure for realiza-
tion of a SOP system of Boolean functions. A system of SOP D f (n, k, m) can
be realized on PLA (n, m, k), which has not less than n input pins, m output
pins, and k intermediate lines. Elementary products are realized on interme-
diate lines of matrix AND of PLA, whereas SOPs are realized in matrix OR
of PLA. The PLA structure is adequate for the system of SOPs D f (n, k, m).
The commutation points between input pins and intermediate lines in AND
matrix correspond to fixed (0,1) elements of T x , and the commutation points
between output pins and intermediate lines in OR matrix correspond to elements
1 of B f .

The library gates used as basis elements for synthesis of combinational logic
circuits are the elements from the logic gate library K15743. Each element of
such a library is characterized by the number of basis gates needed for its
location in the chip. There are various elements in the gate library K1574:
inverters, multiplexers, buffer elements, and gates AND, OR, NAND, NOR,
XOR etc.
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3. ALGORITHM FOR PARTITIONING OF
MULTILEVEL REPRESENTATION OF
A SYSTEM OF BOOLEAN FUNCTIONS

Let us consider the multilevel algebraic form of a Boolean function system
in AND/OR/NOT basis. Each intermediate or output function is given by a
separate SOP. Let nonoverlapping SOP subsets R1, . . . , Rh form a partition of
SOP set D = {D1, . . . , Dm}. R1, . . . , Rh are the blocks of the partition with the
following parameters: ni is the number of input variables, mi is the number of
output variables, and ki is the number of products in two-level form of SOP of
functions of the block.

Let the restrictions (n∗, m∗, k∗) imposed on block complexity be given,
where n∗ is the maximal number of input variables, m∗ is the maximal number
of output variables, and k∗ is the maximal number of products in two-level
representation of SOP of functions of the block.

Transformation of multilevel into two-level representation and determina-
tion of the parameter ki is related to solving problems of intermediate variables
elimination6 and joint minimization of a system of Boolean functions in SOP
form4,5,9.

The problem of partitioning of multilevel representation of a system of
Boolean functions is to find a partition R1, . . . , Rh that fulfils the (n∗, m∗, k∗)
restriction and has a minimum number of blocks h.

The main idea of the technique for solving this problem is the following.
The blocks (or SOP subsystems) build up step by step. A SOP with the maximal
number of external variables is chosen out as the starting point for formation
of the next subsystem. Then SOPs that are most closely connected to this sub-
system (having maximal number of common variables) are added to it, and
the elimination of intermediate variables and joint minimization of functions
in SOP subsystem are performed. The resulting subsystem is checked for the
fulfillment of the (n∗, m∗, k∗) restriction. If the (n∗, m∗, k∗) restriction is not vi-
olated, then the next SOP is added to this subsystem; otherwise the constructing
of the next subsystem begins. As a result, each SOP is in one of the subsystems.
This algorithm was described in detail in Ref. 2.

4. BLOCK METHOD FOR SYNTHESIS
IN PLA BASIS

The block method for synthesis in PLA basis has two procedures. The
first procedure is the partitioning of multilevel representation of the system
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of Boolean functions into blocks with (n∗, m∗, k∗)-restricted parameters. The
second procedure is realization of each block by one PLA.

Let the area of a circuit consisting of some (possibly interconnected) PLAs
be equal to the sum of the areas of these PLAs. The conditional area of one PLA
(n, m, k), evaluated in conditional units (bits), is determined by the formula

Slog
PLA = (2n + m)k(bit). (1)

At the level of a particular layout used in silicon compiler SCAS1, the real
PLA area is determined by the formula

Stop
PLA = SAND,OR + SBND, (2)

where SAND,OR is the area of information matrices AND, OR, determined by the
formula

SAND,OR = 2 ∗
]

k

8

[
∗

(
9 ∗

]
n

2

[
∗ +10 ∗

]
m

4

[ )
, (3)

and SBND is the area of the PLA boundary (load transistors, buffers, etc.), deter-
mined by the formula
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The value of Stop
PLA determined by formulas (3) and (4) is the number of real

layout cells that the PLA layout is composed of1.

5. BLOCK METHOD FOR SYNTHESIS IN GATE
ARRAY LIBRARY BASIS

The block method for synthesis in gate array library basis has two proce-
dures. The first procedure is the partitioning of multilevel representation of the
system of Boolean functions into blocks with (n∗, m∗, k∗)-restricted parame-
ters. The second procedure is realization of technology mapping of each block
into the logic gate library. This procedure includes synthesis in the gate array
library using a basic method, “Cover.”

The basic method “Cover” is a process of covering Boolean expressions
in AND/OR/NOT basis by elements from the gate library. Previously, each
multiplace AND or OR operator of the system is replaced by superposition of
two-place AND or OR operators, respectively. Then the Boolean network is
built for each expression, where each node corresponds to two-place operator
AND/OR or one-place operator NOT. The problem of covering of Boolean
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network is to find subnetworks in it, which are functionally equivalent to library
elements. The basic method “Cover” was described in detail in Ref. 3. It is
experimentally confirmed to be better than the method represented in Ref. 7.

6. EXPERIMENTAL INVESTIGATION OF BLOCK
METHODS FOR SYNTHESIS IN PLA AND
GATE ARRAY LIBRARY BASE

The block methods for synthesis were implemented in computer programs
and investigated experimentally. The experiments were done on a series of
combinational circuits from the well-known MCNC benchmark set chosen from
design practice. The programs run on PC Celeron 600, RAM 64 Mb.

Experiment 1. Two realizations of multilevel representation in PLAs were
compared: the first is realization in single PLA; the second is realization in
several PLAs, obtained by the partition algorithm. Table 16-1 shows the results
of Experiment 1.

Experiment 2. Three realizations of multilevel representation in the basis of
logic gate library were compared: the basis method “Cover,” the combining
method, and the block method of synthesis. The combining method is composed
of two steps. The first step is transformation of multilevel representation into
two-level representation. The second step is synthesis by basis method “Cover.”
Table 16-2 shows the results of Experiment 2.

The minimization of two-level representations of Boolean function system
in partition algorithm was performed by the program of joint minimization in
SOP8. The basis method “Cover” uses the computer program from Ref. 3.

The notation in Tables 16-1 and 16-2 is as follows:
n, the number of arguments of the realized Boolean function system (the

number of input pins in the circuit);
m, the number of functions in the system (the number of output pins in the

circuit);
k, the number of products in the SOP system (two-level representation);
Slog

PLA, the conditional area of one PLA (n, m, k), evaluated in conditional
units (bits) by formula (1);∑
Slog

PLA, the sum of conditional areas of PLAs, found by the block synthesis
method;

Stop
PLA, the real area of one PLA (n, m, k), evaluated by formula (2);∑

Stop
PLA, the sum of real areas of PLAs, found by the block synthesis method;

S, the circuit complexity in library gate basis (the total number of gates
required for logical elements, i.e. area of elements);
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Table 16-1. Comparison of two realizations of multilevel representation for PLAs: the first is
realization in one PLA; the second is realization in several PLAs, obtained by partition
algorithm

One PLA PLA net
Circuit
name n m k Slog

PLA Stop
PLA n∗, m∗, k∗ h

∑
Slog

PLA

∑
Stop

PLA

x1 51 35 274 37538 26715,29 40, 20, 500 3 24521 21982, 5
apex6 132 94 432 154656 99092,84 100, 70, 900 3 104864 73608, 43

105, 80, 900 2 113252 79032, 04
70, 40, 900 4 75872 60442, 43

apex7 49 35 213 28329 20680,35 30, 30, 500 3 17104 16603, 77
35, 30, 500 2 18666 16008, 26
25, 20, 500 4 8825 10526, 71

example2 85 63 161 37513 28394,06 40, 30, 900 4 19501 20406, 34
60, 40, 900 2 23450 20429, 21
55, 35, 900 2 21227 19194, 59

x4 94 71 371 95347 63474,61 60, 35, 900 4 40638 35639, 54
66, 50, 900 3 46910 46237, 44

frg2 143 139 3090 1313250 794310,4 50, 30, 500 11 171581 166857, 8
too large 38 3 1021 80659 52539,5 50, 2, 900 4 102170 73014, 45
ttt2 24 21 222 15318 11824,2 24, 10, 900 3 10773 13958, 77

24, 8, 900 5 8092 9907, 832
cm150a 21 1 796 34228 26343,73 16, 2, 500 3 6155 6422, 373

18, 3, 500 2 11623 14899, 51
frg1 28 3 119 7021 5904,407 26, 1, 100 3 5783 6441, 453

28, 2, 100 2 6523 8530, 519
lal 26 19 117 8307 6994,927 30, 16, 100 5 4574 8248, 276
add8 17 9 2519 108317 81949,77 12, 9, 900 2 9324 9184, 462
x3 135 99 915 337635 209646,7 80, 50, 900 5 170755 122437, 9
term1 34 10 818 63804 42979,46 30, 8, 500 2 49896 56050, 37

34, 4, 500 3 36750 27895, 76
20, 8, 500 8 21327 23514, 69

mux 21 1 425 18275 14706,1 16, 10, 100 2 1862 3025, 974
12, 6, 100 3 1519 3270, 493

Count 35 16 89 7654 7091,571 25, 8, 100 4 2769 5072, 029
18, 6, 100 6 4851 5606, 067

L , the number of logical elements in a circuit;
n∗, partition parameter (the number of arguments of a block);
m∗, partition parameter (the number of functions in a block);
k∗, partition parameter (the number of products in a block); and
h, the number of blocks in the partition of multilevel representation of

Boolean functions system.

According to the results of the experiment the following conclusions can be
stated.
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Table 16-2. Comparison of basis method, combining method, and block realization
of multi-level representation

Basis method Combining method Block realization

Circuit name n m L S k L S h L S

cu 14 11 41 204 35 76 397 4 41 219
comp 32 3 110 555 3 12 70 2 23 123
cmb 16 4 27 142 56 116 630 3 38 212
cm162a 14 5 43 198 20 57 290 2 24 117
mux 21 1 61 319 425 1032 6094 5 61 327
count 35 16 111 506 89 188 1024 13 76 356
frg1 28 3 298 1683 119 298 1683 3 298 1683
cm138a 6 8 9 53 6 16 88 3 9 53
cm82a 5 3 20 90 11 14 74 3 13 57
9symml 9 1 154 738 30 70 359 5 141 727
lal 26 19 117 576 117 207 1141 3 180 849
unreg 36 16 96 432 49 80 384 2 80 384
z4ml 7 4 102 554 19 26 140 2 102 554
x3 135 99 933 4475 915 1948 10808 4 966 4679
pcle 19 9 39 181 16 40 214 5 36 173
term1 34 10 495 2407 818 2414 13403 7 465 2360
cm150a 21 1 61 261 796 2136 11886 4 65 309
too larg 38 3 5217 30145 1027 5273 30473 4 4915 28392
ttt2 24 21 299 1609 222 561 2937 5 225 1197
sct 19 15 120 584 64 124 618 6 127 583
c8 28 18 159 798 70 92 464 4 92 452
frg2 143 139 1315 6560 3090 15385 85093 15 1361 6886
cm42a 4 10 13 65 4 20 94 3 14 72

The block method for synthesis of multilevel representation by a PLA net is
preferable to single PLA realization. The gain for area is obtained in 13 circuits
from 16. The parameters of circuits with the smallest area are given in bold (see
Table 16-1). Only macroelement area was taken into account in this experiment,
and the bound area was not. Thus the final conclusion about replacement of one
PLA with PLA net can be made after layout design. Using formula (2) for area
calculation is preferable to using formula, (1). For example, area calculation
for Frg1, Lal with (1), gives advantage, but the real PLA net area is more than
the single PLA area.

The block realization is preferable for synthesis in logic gate library too.
The better (minimum) valuations of circuit complexity are given in bold
(Table 16-2). The transformation of multilevel representation into two-level
representation (combining method) is advisable in only three examples; it is
not competitive with the basis method “Cover” and the block method.
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Abstract: General functional decomposition has been gaining more and more importance
in recent years. Though it is mainly perceived as a method of logic synthesis
for the implementation of Boolean functions into FPGA-based architectures, it
has found applications in many other fields of modern engineering and science.
In this paper, an application of balanced functional decomposition in different
tasks of modern digital designing is presented. The experimental results prove
that functional decomposition as a method of synthesis can help implementing
circuits in CPLD/FPGA architectures. It can also be efficiently used as a method
for implementing FSMs in FPGAs with Embedded ROM Memory Blocks.

Key words: Logic Synthesis; Functional Decomposition; FPGA; FSM; ROM.

1. INTRODUCTION

Decomposition has become an important activity in the analysis and design
of digital systems. It is fundamental for many fields of modern engineering and
science1,2,3,4. The functional decomposition relies on breaking down a complex
system into a network of smaller and relatively independent cooperating sub-
systems, in such a way that the behavior of the original system is preserved,
i.e., function F is decomposed to subfunction G and H in the form described
by formula F = H (A, G(B)).

New methods of logic synthesis based on the functional decomposition were
recently developed5,6,7. One of the promising decomposition-based methods is
the so-called balanced decomposition8.
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Since multilevel functional decomposition yields very good results in the
logic synthesis of combinational circuits, it is viewed mostly as a synthesis
method for the implementation of combinational functions into FPGA-based
architectures9,10. However, a decomposition-based method can be used beyond
this field. In the sequential machine synthesis after the state code assignment
of the process of implementation is reduced to the computation of a flip-flop
excitation function, the decomposition can be efficiently used to assist such an
implementation. An application of a balanced decomposition method allows
the designer to decide what the optimization criterion is—is it circuit area or
circuit speed. Good results produced by the decomposition-based logic syn-
thesis methods in implementation of combinational circuits guarantee that this
method will implement encoded sequential machines efficiently and effectively.
The balanced decomposition gives the designer control over the process of exci-
tation function implementation. Therefore, such undesirable effects as hazards
can be avoided. Elimination of these effects can increase the speed of circuits.

Modern FPGA architectures contain embedded memory blocks. In many
cases, designers do not need to use these resources. However, such memory
blocks allow implementing sequential machines in a way that requires less
logic cells than the traditional, flip-flop implementation. This may be used to
implement “nonvital” sequential parts of the design saving logic cell resources
for more important parts. However such an implementation may require more
memory than is available in a circuit. To reduce memory usage in ROM-based
sequential machine implementations decomposition-based methods can be suc-
cessfully used11.

In this paper some basic information has been introduced and the application
of the balanced decomposition in the implementation of combinational parts
of digital systems has been discussed. The application of the decomposition
in the implementation of sequential machines is also presented. Subsequently,
some experimental results, reached with a prototype tool that implements the
balanced functional decomposition has also been discussed.

The experimental results demonstrate that balanced decomposition is ca-
pable of constructing solutions of comparable or even better quality than the
methods implemented in a university or in commercial systems.

2. BALANCED FUNCTIONAL DECOMPOSITION

Some preliminaries necessary for understanding this paper are presented
here. More detailed information concerning balanced functional decomposition
method can be found in Ref. 8, 12.

Balanced decomposition relies on the partitioning of a switching function
with either parallel decomposition or serial decomposition applied at each phase
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Figure 17-1. Schematic representation of a) the serial and b) the parallel decomposition.

of the synthesis process. In parallel decomposition, the set of output variables
Y of a multioutput function F is partitioned into subsets, Yg and Yh , and the
corresponding functions, G and H , are derived so that, for either of these
two functions, the input support contains less variables than the set of input
variables X of the original function F (Fig. 17-1b). An objective of parallel
decomposition is to minimize the input support of G and H .

In serial decomposition, the set of input variables X is partitioned into
subsets, A and B, and functions G and H are derived so that the set of input
variables of G is B ∪ C, where C is a subset of A, the set of input variables of
H is A ∪ Z , where Z is the set of output variables of G, and H has less input
variables than the original function F , i.e. F = H (A, G(B, C)) (Fig. 17-1a).

The balanced decomposition is an iterative process in which, at each step,
either parallel or serial decomposition of a selected component is performed.
The process is carried out until all resulting subfunctions are small enough to
fit blocks with a given number of input variables.

The idea of intertwining parallel and serial decomposition has been imple-
mented in a program called DEMAIN. This tool is designed to aid implemen-
tation of combinational parts of digital systems and this application has two
modes: automatic and interactive. It can also be used for the reduction of the
number of inputs of a function, when an output depends on only a subset of
the inputs. From this point of view DEMAIN is a tool specially dedicated to
FPGA-oriented technology mapping.

Example: The influence of the balanced decomposition on the final result
of the FPGA-based mapping process will be explained with the function F
(Table 17-1) describing one of benchmark examples with 10 input variables
and 2 output variables, for which cells with 4 inputs and 1 output are assumed
(this is the size of Altera’s FLEX FPGA)13.

As F is a ten-input, two-output function, in the first step of the decomposition
both the parallel and serial decomposition can be applied. Let us apply parallel
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Table 17-1. Truth table of function F in espresso format

.type fr 1100010001 00 0001001011 11

.i 10 0011101110 01 1110001110 10

.o 2 0001001110 01 0011001011 10

.p 25 0110000110 01 0010011010 01
0101000000 00 1110110010 10 1010110010 00
1110100100 00 0111100000 00 0100110101 11
0010110000 10 0100011011 00 0001111010 00
0101001000 10 0010111010 01 1101100100 10
1110101101 01 0110001110 00 1001110111 11
0100010101 01 0110110111 11 .e

decomposition at first. Parallel decomposition generates two components with
6 inputs and one output each. Assuming that the inputs of the primary function
are denoted as 0, 1, . . . ,9 (from the left column to the right column), and the
outputs are y0 and y1, the inputs of the obtained components are 0, 1, 3, 4, 6,
7 and 0, 1, 2, 6, 7, 9, respectively. Each of the above components is subject to
two-stage serial decomposition.

For the first stage the nondisjoint serial decomposition can be applied, as
shown on the left hand side of Figure 17-2. The second component can also
be decomposed serially, however with the number of outputs of the extracted
block G equal to two. Therefore, minimizing the total number of decomposition
components, a disjoint decomposition strategy is applied, resulting in compo-
nents G2 and H2, as shown on the right side of Fig. 17-2. The truth tables of
the components of function F produced by decomposition algorithm DEMAIN
(denoted G1, H1, G2 and H2 in Fig. 17-2) are shown in Tables 17-2a, 17-2b,
17-2c and 17-2d, respectively. Thus it is clear that the function F can be mapped
onto four logic cells of Altera’s FLEX structure.

It is worth noting, that the same function synthesised directly by commercial
tools e.g., MAX+PlusII, Quartus and Leonardo Spectrum is mapped onto 35,
29, and 95 logic cells, respectively.

y0

0 1 3

4

7

6

y1

0 1 2

1

6

7 9G1

H1

G2

H2

Figure 17-2. Decomposition of function F.
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Table 17-2. Truth tables of decomposition blocks

a) G1 b) H1 c) G2 d) H2

0110 1 –01 0 0110 1 10–1 0
1101 1 011 1 0011 1 –101 1
1000 1 111 0 0100 1 –111 1
0010 1 100 1 1000 1 0011 0
0000 0 0–0 0 0101 1 0001 1
0101 0 110 0 1100 0 1–00 0
1100 0 0010 0 0000 0
0100 0 1010 0 1110 1
0011 0 1110 0 1010 0
1011 0 0001 0 0100 1
1111 0 0111 0 0010 1

1111 0

3. FINITE STATE MACHINE IMPLEMENTATION

FSM can be implemented using ROM (Read Only Memory)11. In the general
architecture of such an implementation state and input variables (q1, q2, . . . , qn

and x1, x2, . . . , xm) constitute ROM address variables (a1, a2, . . . , am+n). The
ROM would consist of words, each storing the encoded present state (control
field) and output values (information field). The next state would be determined
by the input values and the present-state information feedback from memory.

This kind of implementation requires much less logic cells than the tradi-
tional flip-flop implementation (or does not require them at all, if memory can
be controlled by clock signal—no address register required); therefore, it can
be used to implement “nonvital” FSMs of the design, saving LC resources for
more important sections of the design. However, a large FSM may require too
many memory resources.

The size of the memory needed for such an implementation depends on the
length of the address and the memory word.

Let m be the number of inputs, n be the number of state encoding bits and
y be the number of output functions of FSM. The size of memory needed for
implementation of such an FSM can be expressed by the following formula:

M = 2(m+n) × (n + y),

where m + n is the size of the address, and n + y is the size of the memory
word.

Since modern programmable devices contain embedded memory blocks,
there exists a possibility of implementing FSM using these blocks. The size of
the memory blocks available in programmable devices is limited. For example,
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Figure 17-3. Implementation of FSM using an address modifier.

Altera’s FLEX family EAB (Embedded Array Block) has 2048 bits of memory
and the device FLEX10K10 consists of 3 such EABs. Functional decomposition
can be used to implement FSMs that exceed that size.

Any FSM defined by a given transition table can be implemented as in
Fig. 17-3, using an address modifier. The process may be considered as a de-
composition of memory block into two blocks: a combinational address modi-
fier and a smaller memory block. Appropriately chosen strategy of the balanced
decomposition may allow reducing required memory size at the cost of addi-
tional logic cells for address modifier implementation. This makes possible the
implemention of FSM that exceeds available memory through using embedded
memory blocks and additional programmable logic.

Example: FSM implementation with the use of the concept of address modifier.

Table 17-3. a) FSM table, b) state and input encoding

a)

v1 v2 v3 v4

s1 s1 s2 s4 –
s2 – – s5 s4
s3 s3 s2 s1 s3
s4 s2 – s4 s1
s5 s3 s1 s4 s2

x1x2

b) 00 01 10 11 Q2 q3 q1

v1 v2 v3 v4

s1 s1 s2 s4 – 00
s2 – – s5 s4 01 0
s4 s2 – s4 s1 10
s3 s3 s2 s1 s3 11

1
s5 s3 s1 s4 s2 01
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Figure 17-4. Implementation of FSM using an address modifier.

Let us consider FSM described in Table 17-3a. Its outputs are omitted, as
they do not have influence on the method. This FSM can be implemented using
ROM memory with 5 addressing bits. This would require memory of the size of
32 words. In order to implement this FSM machine in ROM with 4 addressing
bits, the address modifier is required.

Let us implement the given FSM in a structure shown on Fig. 17-4 with
3 free variables and one output variable from the address modifier. Such an
implementation requires memory of the size of 16 words and additional logic
to implement the address modifier.

To find the appropriate state/input encoding and partitioning, the FSMs state
transition table is divided into 8 subtables (encoded by free variables), each of
them having no more then two different next states, which can be encoded with
one variable—address modifier output variable (to achieve this, rows s3 and s4

changed places with each other). Next the appropriate state and input encoding
is introduced (Table 17-3b).

The truth table of address modifier, as well as content of the ROM memory,
can be computed by the application of the serial functional decomposition
method.

More detailed description of the method can be found in Ref. 11.

4. EXPERIMENTAL RESULTS

The balanced decomposition was applied to implement FPGA in architec-
tures of several “real life” examples: combinational functions and combinational
parts of FSMs. We used the following examples:
� bin2bcd1—binary to BCD converter for binary values from 0 to 99,
� bin2bcd2—binary to BCD converter for binary values from 0 to 355,
� rd88—sbox from Rijndael implementation,
� DESaut—combinational part of the state machine used in DES algorithm

implementation,
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Table 17-4. Implementation of real-life examples

Example DEMAIN MAX+Plus II QuartusII FPGA Express Leonardo Spectrum

bin2bcd1 13 165 38 30 30
bin2bcd2 39 505 393 225 120
rd88 262 326 452 – –
DESaut 28 46 35 25 30
5B6B 41 92 41 100 49
count4 11 74 68 17 11

� 5B6B—the combinational part of the 5B-6B coder,
� count4—4 bit counter with COUNT UP, COUNT DOWN, HOLD, CLEAR

and LOAD.

For the comparison the following synthesis tools were used: MAX+PlusII
v10.2 Baseline, QuartusII WebEdition v3.0 SP1, FPGA Express 3.5, Leonardo
Spectrum v1999.1 and DEMAIN. Logic network produced by all synthesis
tools were implemented in EPF10K10LC84-3, the FPGA device from FLEX
family of Altera.

Table 17-4 shows the comparison of our method based on balanced decom-
position as implemented in tool DEMAIN with other methods of compared
tools. The table presents the comparison of logic cells needed for implemen-
tation of given examples. The results of implementation in FPGA architecture
show that the method based on the balanced decomposition provide better re-
sults than other tools used in the comparison. It is especially noticeable in
synthesis of such parts of digital systems that can be represented by truth
table description, as in the case of BIN2BCD converter. In the implementa-
tion of this example obtained with DEMAIN software the number of logic
cells required are over 10 times less than in the case of the MAX+PlusII and
2 times in case of the Leonardo Spectrum. It is also much better than imple-
mentation based on behavioral description14, which requires 41 logic cells of
device EPF10K10. This is over 3 times worse than the solution obtained with
DEMAIN.

The presented results lead to the conclusion that the influence of the bal-
anced decomposition on efficiency of practical digital systems implementation
would be particularly significant when the designed circuit contains complex
combinational blocks. This is a typical situation when implementing crypto-
graphic algorithms, where so-called substitution boxes are usually implemented
as combinational logic.

DEMAIN has been used in the implementation of such algorithms allowing
significant improvement in logic resources utilization, as well as in performance.
Implementation of data path of the DES (Data Encryption Standard) algorithm
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with MAX+PlusII requires 710 logic cells and allows encrypting data with
throughput of 115 Mb/s. Application of balanced functional decomposition in
optimization of selected parts of the algorithm reduces the number of required
logic cells to 296 without performance degradation and even increasing it to
206 Mbits/s14.

The balanced functional decomposition was also used in the implementa-
tion process of the Rijndael algorithm targeted to low-cost Altera programmable
devices15. Application of DEMAIN software allowed implementing this algo-
rithm in FLEX10K200 circuit very efficiently with throughput of 752 Mbits/s.
For comparison, implementation of Rijndael in the same programmable struc-
ture developed at TSI (France) and Technical University of Kosice (Slovakia)
allowed throughput of 451 Mbits/s, at George Mason University (USA)—316
Mbits/s, and at Military University of Technology (Poland)—248 Mbits/s16.

Since, upon the encoding of the FSM states, the implementation of such
FSM architectures involves the technology mapping of the combinational part
into target architecture, the quality of such an implementation strongly depends
on the combinational function implementation quality.

In Table 17-5 the comparison of different FSM implementations is presented.
Each sequential machine was described by a transition table with encoded states.
We present here the number of logic cells and memory bits required (i.e., area
of the circuit) and the maximal frequency of clock signal (i.e., speed of the
circuit) for each method of FSM implementation.

The columns under the FF MAX+PlusII heading present results obtained
by the Altera MAX+PlusII system in a classical flip-flop implementation of
FSM. The columns under FF DEMAIN heading show results of implemen-
tation of the transition table with the use of balanced decomposition. The
ROM columns provide the results of ROM implementation; the columns under
AM ROM heading present the results of ROM implementation with the use of
an address modifier. It can be easily noticed that the application of balanced

Table 17-5. Implementation of FSM: 1) FSM described with special AHDL construction,
2) decomposition with the minimum number of logic levels, 3) decomposition not possible,
4) not enough memory to implement the project

FF MAX+PlusII FF DEMAIN ROM AM ROM

Example LCs/ Speed LCs/ Speed LCs/ Speed LCs/ Speed
Bits [MHz] Bits [MHz] Bits [MHz] Bits [MHz]

DESaut 46/0 41,1 28/0 61,7 8/1792 47,8 7/896 47,1

5B6B 93/0 48,7 43/0 114,9 6/448 48,0 –3) –3)

Count4 72/0 44,2 11/0 68,5
18/01) 86,21) 13/02) 90,02) 16/16384 –4) 12/1024 39,5
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decomposition can improve the quality of flip-flop as well as ROM imple-
mentation. Especially interesting is the implementation of the 4-bit counter. Its
description with a transition table leads to a strongly nonoptimal implemen-
tation. On the other hand, its description when using a special Altera HDL
(Hardware Description Language) construction produces very good results.
However, utilization of balanced decomposition allows the designer to choose
between whether area or speed is optimized. The ROM implementation of this
example requires too many memory bits (the size of required memory block
exceeds the available memory), thus it cannot be implemented in a given struc-
ture. Application of functional decomposition allows reducing of the necessary
size of memory, which makes implementation possible.

5. CONCLUSIONS

Balanced decomposition produces very good results in combinational func-
tion implementation in FPGA-based architectures. However, results presented
in this paper show that balanced functional decomposition can be efficiently
and effectively applied beyond the implementation of combinational circuits
in FPGAs. Presented results, achieved using different algorithms of multilevel
synthesis, show that the possibilities of decomposition-based multilevel syn-
thesis are not fully explored.

Implementation of sequential machines in FPGA-based architectures
through balanced decomposition produces devices that are not only smaller
(less logic cells utilised) but are also often more important, faster than those
obtained by the commercial MAX+PlusII tool. Balanced decomposition can
also be used to implement large FSM in an alternative way—using ROM.
This kind of implementation requires much less logic cells than the traditional
flip-flop implementation; therefore, it can be used to implement “nonvital”
FSMs of the design, saving logic cell resources for more important parts of
the circuits. However, large FSM may require too much memory resources.
With the concept of address modifier, memory usage can be significantly
reduced.

The experimental results shown in this paper demonstrate that the synthesis
method based on functional decomposition can help in implementing sequential
machines using flip-flops, as well as ROM memory.

Application of this method allows significant improvement in logic re-
sources utilization as well as in performance. Implementation of data path
of the DES (Data Encryption Standard) algorithm with MAX+PlusII requires
710 logic cells and allows encrypting data with throughput of 115 Mbits/s. Ap-
plication of balanced decomposition reduces the number of logic cells to 296
without performance degradation and even increasing it to 206 Mbits/s.
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These features make balanced decomposition the universal method that can
be successfully used in digital circuits design with FPGAs.
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DEVELOPMENT OF EMBEDDED
SYSTEMS USING OORT
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Guimarães, Portugal; e-mail: sergio.lopes@del.uminho.pt, csilva@del.uminho.pt,
atavares@del.uminho.pt, joao.monteiro@del.uminho.pt

Abstract: The development of embedded systems requires both tools and methods which
help the designer to deal with the higher complexity and tougher constraints due
to the different hardware support, often distributed topology and time require-
ments. Proper tools and methods have a major impact on the overall costs and
final product quality. We have applied the Object-Oriented Real-Time Techniques
(OORT) method, which is oriented toward the specification of distributed real-
time systems, to the implementation of the Multiple Lift System (MLS) case
study. The method is based on the UML, SDL and MSC languages and supported
by the ObjectGEODE∗ toolset. This paper summarizes the method and presents
our experience in the MLS system development, namely the difficulties we had
and the success we have achieved.

Key words: Embedded Systems Specification; Software Engineering; Discrete-Event Sys-
tems Control; Simulation; Targeting.

1. INTRODUCTION

Embedded systems are very complex because they are often distributed,
run in different platforms, have temporal constraints, etc. Their development
demands high quality and increasing economic constraints, therefore it is nec-
essary to minimize their errors and maintenance costs, and deliver them within
short deadlines.

To achieve these goals it is necessary to verify a few conditions: decrease
the complexity through hierarchical and graphical modeling for high flexibility

∗ObjectGEODE is a registered trademark by Verilog.
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Figure 18-1. The OORT method.

in the maintenance; protect the investments with the application of international
standards in the development; apply early verification and validation techniques
to reduce the errors; and, reduce the delivery times by automating code gener-
ation and increasing the level of reusability. Finally, it is necessary to have a
tool that provides functionalities to fulfill them.

The present work was developed with the ObjectGEODE toolset, which
supports the OORT method1, described by the diagram of Fig. 18-1. This method
applies the Unified Modeling Language2 (UML), the Message Sequence Chart3

(MSC) and the Specification and Description Language4−6 (SDL). The UML
is an international standard defined by the Object Management Group (OMG),
for which there are plenty of introductory texts7. The MSC and SDL, both
international standards by the International Telecommunication Union (ITU),
were defined for a combined usage8. More information on these languages is
available, namely a tutorial9 for MSC, and for SDL, a handy summary10, and a
more comprehensive reference11.

In this work the OORT method is applied to a development case study—the
Multiple Lift System (MLS). The analysis description uses UML to model the
system’s environment, and MSC to specify the intended behavior of the system.
The system’s architecture is defined in SDL. The detailed design applies SDL
and UML to the specification of concurrent objects and passive components,
respectively. The MSC language supports the test design activity. The simula-
tion of the designed system was carried out with the ObjectGEODE simulator.
Finally, the targeting operation was performed with the help of the tools’ C Code
Generator. The following sections describe each of these steps in the systems
engineering process.
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2. REQUIREMENTS ANALYSIS

In the requirements analysis phase, the system environment is modeled and
the user requirements are specified. The analyst must concentrate on what the
system should do. The environment where the system will operate is described
by means of UML class diagrams—object modeling. The functional behavior
of the system is specified by MSCs, organized in a hierarchy of scenarios—use
case modeling. The system is viewed from the exterior as a black box, with
which external entities (system actors) interact. Both the object model and the
use case model must be independent from the solutions chosen to implement
the system in the next phases.

2.1 Object Modeling

In the description of the system environment, the class diagrams are used to
express the application and service domains. This is accomplished by identify-
ing the relevant entities of the application domain (physical and logical), their
attributes, and the relationships between them. For the sake of clarity, the en-
tities and their relationships should be grouped in modules reflecting different
perspectives, as defended by Yourdon12.

Fig. 18-2 gives an overview of the system environment, where the sys-
tem’s main actors are identified, in this case Passenger, Potential
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Figure 18-2. UML Class Diagram of the Building Module.
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Figure 18-3. MSC Scenario Hierarchy for the Trip Subscenario.

Passenger and Operator. Generally, there is one module for some basic
system composition, one for each of the actors and others to express interesting
relationships. More information about the analysis of the MLS can be found in
Douglass13.

2.2 Use Case Modeling

The use case model is composed of a scenario hierarchical tree with MSC
diagrams as the leaves. The scenario hierarchy should contain all the different
expected scenarios of interaction between the system and its environment. The
goal is to model the functional and dynamic requirements of the system. First,
the main scenarios are identified, and then are individually refined into more
detailed subscenarios, until the terminal scenarios can be easily described by a
chronological sequence of interactions between the system and its environment.

This approach faces the problem of a possible scenario explosion. To deal
with it, the first step is to make use of the composition operators to hierarchically
combine the different scenarios. However, the problem is diminished but not
completely solved. It is necessary to make a good choice of scenarios, namely
to choose those which are the most representative of the system behavior.

The system operation is divided into phases which are organized by the com-
position operators, and each phase is a branch in the scenario hierarchy. Fig. 18-3
shows the Trip phase scenario hierarchy, in which we have a CrossFloor
terminal scenario as illustrated in Fig. 18-4.

A constant concern must be the coherence between the use case and the
object models1.

3. ARCHITECTURAL DESIGN

In this phase, the system designers specify a logical architecture for the
system (as opposed to a physical architecture). The SDL language covers all
aspects of the architecture design.
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Figure 18-4. Abstract MSC for the CrossFloor Scenario.

The system is composed of concurrent objects (those which have an exe-
cution thread) and passive objects (those which implement a set of functions
invoked by concurrent objects). The concurrent objects are identified and or-
ganized in an architecture hierarchy. This is accomplished by a combination of
refinement and composition. The refinement is a top-down process in which
higher level objects are divided into smaller and more detailed lower level
objects, bearing in mind the modularity aspects.

The composition is a bottom-up process in which designers try to group
objects in such a way that it favors reutilization, and pays special atten-
tion to encapsulation. Fig. 18-5 illustrates the SDL object’s hierarchy for the
MLS.

In the architectural design, the real characteristics of the environment where
the system will operate should be considered, as well as the efficiency aspects.
On the other hand, the SDL model should be independent of the real object
distribution on the final platform. At the first level, the system actors are con-
sidered through their interfaces, and modeled as channels between the system’s
top-level objects and the outside world. Fig. 18-6 shows the top level of the
MLS architecture.

Some passive objects are also defined, such as signals with complex argu-
ments, Abstract Data Types (ADTs) associated with internal signal processing,
and operators to implement the I/O communication with the outside world
(instead of signals).

The use of SDL assures the portability of the system architecture. Since the
communication is independent of the real object distribution, the channels are
dynamic, and the objects can be parameterized.
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Figure 18-5. SDL Hierarchy Diagram for the MLS.
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4. DETAILED DESIGN

The description of concurrent and passive objects that constitute the system
architecture is done in the detailed design phase. In other words, it is specified
how the system implements the expected services, which should be independent
of the final platform where the system will run.

4.1 Concurrent Objects Design

The concurrent objects are the terminal objects of the SDL hierarchy. Each
one of them is an SDL process described as a kind of finite state machine called
process diagram. The process diagrams are built by analyzing the input signals
for each process, and how the answer to those signals depends on the previous
states. The SDL has a set of mechanisms to describe the transitions that allow a
complete specification of the process behavior. In Fig. 18-7 the process diagram
of theFloorDoorprocess is depicted. The reuse of external concurrent objects
is supported by the SDL encapsulation and inheritance mechanisms.

4.2 Passive Objects Design

Some passive objects are identified during the analysis phase. Generally
they model data used or produced by the system, and they are included in the
detailed design to provide services for the concurrent objects. There are also
passive objects that result from design options, such as data management, user
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Figure 18-7. SDL Process Diagram of the FloorDoor Process.

interface, equipment interface, and inclusion of other design techniques (e.g.,
VHDL to describe hardware).

Although the SDL Abstract Data Types (ADTs) provide a way to define
passive objects, they are better described by UML classes. Consequently, the
detailed design ADTs are translated to UML classes and their relationships
depicted in UML class diagrams, as exemplified by Fig. 18-8.

The reuse of external passive objects is facilitated by UMLs, and also SDLs,
encapsulation, and inheritance mechanisms.

5. TEST DESIGN

In this phase, the communication between all the elements of the system
architecture is specified by means of detailed MSCs. The detailed MSCs contain
the sequences of messages exchanged between the architectural elements. They
are built by refining the abstract MSC of each terminal scenario from the use
case model, according to the SDL architecture model. Consequently, the test
design activity can be executed parallel to the architecture design and provide
requirements for the detailed design phase.

In the intermediate architecture levels, the detailed MSCs represent integra-
tion tests between the concurrent objects. The last refinement step corresponds
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to unit tests that describe the behavior of processes (the terminal SDL architec-
ture level). Fig. 18-9 illustrates this.

The process level MSCs can be further enriched by including in each process
graphical elements with more detailed behavior, such as states, procedures, and
timers. Fig. 18-10 shows the integration test corresponding to the abstract MSC
of Fig. 18-4, and Fig. 18-11 represents the respective unit test for one of the
internal blocks.
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Figure 18-9. Test Design in OORT.
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While the use case model reflects the user perspective of the system, the
test design should be spread to cover aspects related to the architecture, such
as performance, robustness, security, flexibility, etc.

6. SIMULATION

SDL is a formal language, and therefore permits a trustable simulation14

of the models. The simulation of an SDL model is a sequence of steps, firing
transitions from state to state.

The ObjectGEODE simulator15 executes SDL models, comparing them with
MSCs that state the expected functionalities and anticipated error situations, and
it generates MSCs of the actual system behavior. It provides three operation
modes: interactive, in which the user acts as the system environment (providing
stimuli) and monitors the system’s internal behavior; random, the simulator
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Figure 18-11. Detailed MSC with Unit Test of Block Central for CrossFloor.
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picks randomly one of the transitions possible to fire; exhaustive, the simulator
automatically explores all the possible system states.

The interactive mode can be used to do the first tests, to verify some important
situations in particular. This way, the more generic system behavior can be
corrected and completed. This mode is specially suited for rapid prototyping,
to ensure that the system really works.

The system was very useful to detect flaws in ADTs whose operators were
specified in textual SDL, as, for example, the heavy computational ADTs re-
sponsible the calls dispatching. As the simulator has transition granularity, it
is not possible to go step by step through the operations executed inside one
transition. The errors are detected after each transition, whenever an unexpected
state is reached, or a variable has an unpredicted value. Obviously, this is not
an adequate way to simulate a large number of cases.

After a certain level of confidence in the overall application behavior is
achieved, it can be tested for a larger number of scenarios, in order to detect
dynamical errors such as deadlocks, dead code, unexpected signals, signals
without receiver, overflows, etc. This is done in the random mode, to verify if
the system is being correctly built—system verification.

Although, this could be done with exhaustive simulation, it would not be
efficient. The exhaustive mode requires considerable computer resources during
a lot of time, and it generates a large amount of information. It is not something
to be done everyday. The exhaustive simulation allows the validation of the
system, i.e., to check the system against the requirements. We can verify if it
implements the expected services, by detecting interactions that do not follow
some defined properties, or interaction sequences that are not expected.

7. TARGETING

The ObjectGEODE automatic code generator translates the SDL specifica-
tion to ANSI C code, which is independent of the target platform in which the
system will run.

The SDL semantics (including the communication, process instance
scheduling, time management, and shared variables) is implemented by a dy-
namic library which abstracts the platform from the generated code. It is also
responsible for the integration with the executing environment, namely the
RTOS.

In order to generate the application code, it is necessary to describe the
target platform where the system will be executed. This is done by means of a
mapping between the SDL architecture and the C code implementation.

The SDL architecture consists of a logical architecture of structural ob-
jects (system, blocks, processes, etc.,), in which the lower level objects (the
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Figure 18-12. Simplified strategy for the application generation.

processes) implement the behavior of the described system. The physical imple-
mentation consists of a hierarchy of nodes and tasks. A node corresponds to one
processing unit with multitasking OS, and a task is an unit of parallelism of the
OS. One task can map one of the following SDL objects: system, Task/System
(TS) mapping; block, Task/Block (TB) mapping; process—Task/Process (TP)
mapping; process instance—Task/Instance (TI) mapping.

In the TI mapping, the complete application is managed by the target OS.
In the TP mapping, the OS is in charge of the interaction between processes,
whilst the management of the process instances inside the task is done by the
ObjectGEODE’s SDL virtual machine (VM).

In the TB mapping, the OS manages the communication between blocks,
while the SDL VM executes the SDL objects inside each block. Finally, the TS
mapping is the only possible option for nonmultitasking operating systems, for
which the SDL VM manages all the application. For the MLS, the TP mapping
was chosen.

After the automatic code generation, the code of any parts interacting or
directly depending on the physical platform has to be supplied, preferably in
the most suitable language. The ADT operators that do not interact with external
devices can be coded algorithmically in SDL, and thus the respective C code will
be generated. For each ADT operator one C function interface is automatically
generated.

Fig. 18-12 illustrates the simplified application generation scheme. If some
parts of the SDL model are to be implemented in hardware, Daveau16 provides
a partition and a synthesis methodology.

8. CONCLUSION

The UML, MSC, and SDL, being continuously improved to international
standards, facilitates the protection of development investment. The presented
work shows the validity of these languages and their combined use in the
implemention of embedded systems.

It is feasible to simulate a formal language like SDL, because it is defined by
a clear set of mathematical rules. The ObjectGEODE provides three simulation
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modes suitable for different levels of system correctness. They can be applied
to make early validations and to increase the frequency of an iterative develop-
ment process. This allows cost reduction by decreasing the number of missed
versions, i.e., it helps the designers to get closer to the “right at first time”.

The SDL application is scalable, because its logical architecture is indepen-
dent of the physical architecture. The mapping between objects and hardware
is defined only in the targeting phase. Furthermore, with the ObjectGEODE
toolset the implementation is automatic, thus limiting the manual coding to the
target dependent operations. The generated application is optimized for the tar-
get platform by means of the mapping defined by the developer. Any change in
the physical architecture only requires a change in the mapping, so the system
specification and its logical architecture remain the same.

The adoption of a methodology based on OO graphical languages helps
the designer to organize the development tasks, and build the application as a
consistent combination of parts. Object-oriented visual modeling is more flex-
ible, easier to maintain, and favors reutilization. These advantages are empha-
sized when appropriate tool support exists during all the engineering process
phases. In fact, it is a critical factor for success, namely for simulation and
targeting.
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Hardware/Software Co-design and Co-Verification, Kluwer Academic Publishers (1997)
pp. 59–87.



Chapter 19

OPTIMIZING COMMUNICATION
ARCHITECTURES FOR PARALLEL
EMBEDDED SYSTEMS

Vaclav Dvorak
Dept. of Computer Science and Engineering, University of Technology Brno, Bozetechova 2,
612 66 Brno, Czech Republik; e-mail: dvorak@dcse.fee.vutbr.cz

Abstract: The paper addresses the issue of prototyping group communications in
application-specific multiprocessor systems or SoC. Group communications may
have a dramatic impact on the performance and this is why performance esti-
mation of these systems, either bus-based SMPs or message-passing networks
of DSPs is undertaken using a CSP-based tool Transim. Variations in computa-
tion granularity, communication algorithms, interconnect topology, distribution
of data and code to processors as well as in processor count, clock rate, link speed,
bus bandwidth, cache line size and other parameters can be easily accounted for.
The technique is demonstrated on parallel FFT on 2 to 8 processors.

Key words: parallel embedded systems; multiprocessor simulation; group communication;
performance estimation.

1. INTRODUCTION

The design of mixed hw/sw systems for embedded applications has been an
active research area in recent years. Hw/sw cosynthesis and cosimulation have
been mainly restricted to a single processor and programmable arrays attached to
it, which were placed incidentally on a single chip (SoC). A new kind of system,
application-specific multiprocessor SoC, is emerging with frequent applications
in small-scale parallel systems for high-performance control, data acquisition
and analysis, image processing, wireless, networking processors, and game
computers. Typically several DSPs and/or microcontrollers are interconnected
with an on-chip communication network and may use an operating system.

The performance of most digital systems today is limited by their com-
munication or interconnection, not by their logic or memory. This is why we
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focus ourselves on optimization of interconnection networks and communica-
tion algorithms. Interconnection networks are emerging as a universal solution
to the system-level communication problems for modern digital systems and
have become pervasive in their traditional application as processor-memory and
processor-processor interconnection. Point-to-point interconnection networks
have replaced buses in an ever widening range of applications that include
on-chip interconnect, switches and routers, and I/O systems1.

Provided that processor architecture is given and fixed, the data and code
distributed to processors and the load reasonably balanced, then the only thing
that remains to be optimized is an interconnection network and communication.
Minimizing communication times means minimizing the main source of over-
head in parallel processing. Other process interactions (and sources of overhead)
like synchronization and aggregation (reduction, scan) are strongly related to
communication and can be modeled as such.

In this paper we wish to concentrate on the performance estimation of var-
ious interconnection networks and communication algorithms, since perfor-
mance guarantees must be complied with before anything else can be decided.
We will study only application-specific multiprocessors, and modeling their
performance, other difficult problems such as system validation at the func-
tional level and at the cycle-accurate level, software and RTOS synthesis, task
scheduling and allocation, overall system testing, etc., are not considered. As
a suitable application for performance comparison, we have selected a parallel
FFT (1024) benchmark (1024 points, one dimension), in real-time environment,
with the goal of maximizing the number of such FFTs per second.

2. ARCHITECTURES OF PARALLEL EMBEDDED
SYSTEMS AND CMP

The performance race between a single large processor on a chip and a
single-chip multiprocessor (CMP) is not yet decided. Applications such as
multimedia point to CMP with multithreaded processors2 for the best possible
performance. The choice between application-specific (systolic) architectures
or processors on one hand and CMP on the other is yet more difficult. CMP
architectures may also take several forms such as:
� a bus-based SMP with coherent caches with an atomic bus or a splittrans-

action bus;
� a SMP with a crossbar located between processors and a shared firstlevel

cache which in turn connects to a shared main memory;
� a distributed memory architecture with a direct interconnection network

(e.g., a hypercube) or an indirect one (the multistage interconnection net-
work, MIN).
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As the number of processors on the chip will be, at least in the near future,
typically lower than ten, we do not have to worry about scalability of these ar-
chitectures. Therefore the bus interconnection will not be seen as too restrictive
in this context.

Some more scalable architectures such as SMP with processors and memory
modules interconnected via a multistage interconnection network (the so-called
“dancehall” organization) or a hw-supported distributed shared memory will
not be considered as candidates for small-scale parallel embedded systems or
SoCs.

Let us note that the choice of architecture can often also be dictated by a
particular application to be implemented in parallel, e.g., broadcasting data to
processors, if not hidden by computation, may require a broadcast bus for speed,
but on the contrary, all-to-all scatter communication of intermediate results will
be serialized on the bus and potentially slower than on a direct communication
network. The next generation of internet routers and network processors SoC
may require unconventional approaches to deliver ultrahigh performance over
an optical infrastructure. Octagon topology3 suggested recently to meet these
challenges was supposed to outperform shared bus and crossbar on-chip com-
munication architectures. However, it can be easily shown that this topology
with the given routing algorithm3 is not deadlock-free. Some conclusions like
the previous one or preliminary estimation of performance or its lower bound
can be supported by back-of the-envelope calculations, other evaluations are
more difficult due to varying message lengths or irregular nature of communi-
cations. This is where simulation fits in.

With reference to the presented case study, we will investigate the following
(on-chip) communication networks:
1. fully connected network
2. SF hypercube
3. WH hypercube
4. Multistage interconnection network MIN (Omega)
5. Atomic bus

The number of processors p = 2, 4, and 8. The problem size of a benchmark
(parallel 1D-FFT) will be n = 1024 points.

3. THE SIMULATION TOOL AND
DESCRIPTION LANGUAGE

Performance modeling has to take the characteristics of the machine (includ-
ing operating systems, if any) and applications and predict the execution time.
Generally it is much more difficult to simulate performance of an application
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in shared address space than in message passing, since the events of interest
are not explicit in the shared variable program. In the shared address space,
performance modeling is complicated by the very same properties that make
developing a program easier: naming, replication and coherence are all im-
plicit, i.e., transparent for the programmer, so it is difficult to determine how
much communication occurs and when, e.g., when cache mapping conflicts are
involved 4.

Sound performance evaluation methodology is essential for credible com-
puter architecture research to evaluate hw/sw architectural ideas or trade-offs.
Transaction Level Modeling (TLM)5 has been proposed as a higher modeling
abstraction level for faster simulation performance. At the TLM level, the sys-
tem bus is captured as an abstract ‘channel’, independent of a particular bus
architecture or protocol implementation. A TLM model can be used as a pro-
totype of the system and for early functional system validation and embedded
software development. However, these models do not fully exploit the poten-
tial for speedup when modeling systems for exploring on-chip communication
tradeoffs and performance. On the other hand, commonly used shared-memory
simulators rsim, Proteus, Tango, limes or MulSim6, beside their sophistication,
are not suitable for message passing systems.

This made us reconsider the simulation methodology for sharedmemory
multiprocessors. Here we suggest using a single CSP-based simulator both for
message passing as well as for shared address space. It is based on simple
approximations and leaves the speed vs. accuracy tradeoff for the user, who can
control the level of details and accuracy of simulation.

The CSP-based Transim tool can run simulations written in Transim
language7. It is a subset of Occam 2 with various extensions. Transim is natu-
rally intended for message passing in distributed memory systems. Neverthe-
less, it can be used also for simulation of shared memory bus-based (SMP)
systems – bus transactions in SMP are modeled as communications between
node processes and a central process running on an extra processor. Transim
also supports shared variables used in modeling locks and barriers. Until now,
only an atomic bus model has been tested; the split-transaction bus requires
more housekeeping and its model will be developed in the near future.

The input file for Transim simulator tool contains descriptions of software,
hardware, and mapping to one another. In software description, control state-
ments are used in the usual way, computations (integer only) do not consume
simulated time. This is why all pieces of sequential code are completed or
replaced (floating point) by special timing constructs SERV ( ). Argument of
SERV ( ) specifies the number of CPU cycles taken by the task. Granularity of
simulation is therefore selectable from individual instructions to large pieces
of code. Explicit overhead can be represented directly by WAIT( ) construct.
Data-dependent computations can be simulated by SERV construct with a ran-
dom number of CPU cycles. Some features of an RT distributed operating
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system kernel, originally supported by hw in transputers, are also built into
the simulator, such as process management, process priorities (2 levels only),
context switching, timers, etc.

The NODE construct in hardware description is used to specify the CPU
speed, communication model and other parameters; otherwise the default values
are used. The mapping between software and hardware, between processes and
processors, is made through the MAP construct. Parallel processes on different
processors, one process per processor, are created by PLACED PAR construct
for MPMD or by replicated PLACED PAR for SPMD model of computation.

4. THE PARALLEL FFT BENCHMARK PROGRAM

We will illustrate the technique of optimization of communication architec-
ture on the problem of computing the 1D-, n-point-, discrete Fourier transform
on p processors in O((n log n)/p) time. Let p divide n, n = 2q is a power of
two and n ≥ p2. Let the n-dimensional vector x [n×1] be represented by matrix
X [n/p × p] in row-major order (one column per processor). The DFT of the
vector x is given by

Y = Wn X = WP

[
S∗Wn/p X

]T
, (1)

where S [n/p × p] is the scaling matrix, ∗ is elementwise multiplication and
the resulting vector y [n × 1] = Wnx is represented by matrix Y [n/p × p] in
column major order form (n/p2 rows per processor). Operation denoted by T is
a generalized matrix transpose that corresponds to the usual notion of matrix
transpose in case of square matrices8.

The algorithm can be performed in the following three stages. The first stage
involves a local computation of a DFT of size n/p in each processor, followed by
the twiddle-factor scaling (element-wise multiplication by S). The second stage
is a communication step that involves a matrix transposition. Finally, n/p2 local
FFTs, each of size p, are sufficient to complete the overall FFT computations
on n points. The amount of computation work for the sequential FFT of an
n-element real vector is (n/2)log2n “butterfly” operations, where one butterfly
represents 4 floating point multiplications and 6 additions/subtractions (20 CPU
clocks in simulation). In parallel implementation the computation work done
by p processors is distributed at stages 1 and 3, but the total amount of work in
terms of executed butterfly operations is the same,

p

[
n

2p
log

n

p
+ n

p2

p

2
log p

]
= n

2
log n. (2)

Let us note that the work done in stage 1 proportional to (log n– log p)
is much larger than the work done in stage 3, proportional to log p. The only
overhead in parallel implementation is due to a matrix transposition. The matrix
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Table 19-1. The lower bound on total exchange (AAS) communication times

Time of AAS [µs],
Topology Bisection width b Bisection band-width Gbit/s the lower bound

Full connection p2/2 = 32 3.2 3.2
MIN Omega 4 log p = 12 1.2 8.53
Bus – 1.0 35.8
SF cube p = 8 0.8 12.8
WH cube p = 8 0.8 12.8

transposition problem is equivalent to all-to-all scatter (AAS) group commu-
nication. Clearly, it requires 1 step in a fully connected topology, p/2 steps (a
lower bound) in the SF-hypercube, p-1 steps in the WH-hypercube or a MIN,
and finally p(p-1) bus transactions on a bus. The lower bound on the AAS com-
munication time can be obtained using a network bisection bandwidth and the
required amount of data movement across bisection (under the assumption that
data movement within each part may be overlapped with data movement be-
tween both parts). Bisection partitions a network into two parts, so that in AAS
communication each node in one part has to communicate with all nodes in the
other part using b channels cut by bisection. We therefore have (p/2) × (p/2)
messages of size n/p2 real numbers, i.e., (n/4) × 4 byte or n bytes. A different
number p(p-1) of shared memory communications (read miss bus transactions)
are needed for the SMP. Lower bounds of communication times are summarized
in the Table 19-1 using parameters from the next subsection 5 and assuming 10
bits/byte.

FFT processing will be done continuously in real time. Therefore loading
of the next input vector from outside and writing the previous results from
processors to environment will be carried out in the background, in parallel
with three stages of processing of the current input vector (with the first stage
of processing only in the shared memory case). Since computing nodes are
identical in all architectures, only the duration of “visible” AAS communication
makes a difference to the performance. Communication time overlapped by
useful processing is invisible (does not represent an overhead) and ideally all
communications should be hidden in this way.

5. PARAMETERS OF SIMULATED
ARCHITECTURES AND RESULTS
OF SIMULATION

Six architectures simulated in the case study are listed in Table 19-2 together
with the execution times. The CPU clock rate is 200 MHz in all 6 cases, the
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Table 19-2. Parallel FFT execution times in µs for
six analyzed architectures

Topology p = 2 p = 4 p = 8

Full connection 436.8 180.8 138
MIN—COSP 230.4 173.1
Bus—SMP 363.5 304.7 321.6
SF cube 272 182.8
WH cube 230 174.4

external channel speed of 100 Mbit/s (12 MB/s) is used for serial links in all
message-passing architectures, whereas bus transfer rate for SMP is 100 MB/s.
Downloading and uploading of input data and results were supposed to continue
in the background in all processors simultaneously at a 8-times higher rate than
the link speed, which is almost equivalent to the bus speed in SMP case. In
message-passing architectures the AAS communication was overlapped with
submatrix transposition as much as possible. Optimum routing algorithm for SF
hypercube and AAS communication requires p/2 steps and uses schedule tables
shown in Fig. 19-1. For example two nodes with mutually reversed address bits
(the relative address RA = 7) will exchange messages in step 2, 3, and 4 and the
path will start in dimension 1, then continue in dimension 0 and finally end in
dimension 2. In case of WH hypercube, dimension-ordered routing is used in
every step i, i = 1, 2, . . . , p-1, in which src-node and dst-node with the relative
addresses RA = src ⊕ dst = i exchange messages without any conflict-over
disjoint paths.

The small cluster of (digital signal) processors, referred to as COSP in
Table 19-2, uses a centralized router switch (MIN of Omega type) with sw/hw
overhead of 5 µs, the same as a start-up cost of serial links, and WH routing. The
algorithm for AAS uses a sequence of cyclic permutations, e.g., (01234567),
(0246)(1357), . . . , (07654321) for p = 8. All these permutations are blocking
and require up to log p = 3 passes through the MIN.

Finally a bus-based shared memory system with coherent caches (SMP)
has had 100 MB/s bus bandwidth, 50 MHz bus clock, and the miss penalty of
20 CPU clocks. We will assume an atomic bus for simplicity and a fair bus

relative addr. used in dimension
step 0 1 2

RA  in dimension 1 3 6 4
step 0 1 2 1 7 6

1 3 2 3 7 2 5
2 1 3 4 5 3 7

Figure 19-1. Optimum schedule for AAS in all-port full-duplex 2D- and 3D SF hypercubes.
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Figure 19-2. Comparison of execution times [ms] for six architectures.

arbitration policy. Other types of bus arbitration (priority-based, random, etc.,)
may also be simulated. The cache block size is 16 bytes and the size of the
cache is assumed to be sufficient to hold input data (a real vector), intermediate
data after the first stage of FFT (a complex vector) as well as the results (a
complex vector). In the worst case (p = 2) the size of all these vectors will be
around 10 kB, if we use REAL32 format. We assume I/O connected via a bus
adapter directly to the cache. To avoid arbitration between CPU and I/O, the
next input and previous results are transferred in/out during the first stage of
the FFT algorithm.

The results summarized in Table 19-2 and plotted in Fig. 19-2 deserve some
comments. A fully connected network of processors is the fastest architecture for
8 processors, but the slowest for 2 processors. The reason is that communication
is mostly seen as an overhead, but gets better overlapped with communication
when p increases. The cluster of DSPs (COSP row in Table 19-2) starts with
p = 4 and increasing the number of processors from 4 to 8 does not make much
sense because it has a small influence on speed.

In the SMP with shared bus, processors write the results of the n/p-point FFT
computed in stage 1 into the local caches and do the transposition at the same
time. This means that consecutive values of FFT will be stored with a stride
required by the rule of matrix transposition. The following read requests by
other processors at the beginning of stage 3 will generate read misses: at cache
block size 16 bytes, one miss always after 3 hits in a sequence. Fresh cache
blocks will be loaded into requestor’s cache and simultaneously into the shared
memory. A prefetch of cache blocks has been simulated without an observable
improvement in speed, most probably due to bus saturation. This is even worse
for 8 processors than for 4, see Fig. 19-2.

As for hypercubes, the WF hypercube is superior and gives the same results
as a cluster of DSPs. Slightly worse performance than that of fully connected
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processors is balanced by much simpler interconnection and by a lower number
of communication ports.

6. CONCLUSIONS

The performance study of the parallel FFT benchmark on a number of ar-
chitectures using Transim tool proved to be a useful exercise. Even though the
results of simulations have not been confronted with real computations, they
can certainly serve to indicate serious candidate architectures that satisfy cer-
tain performance requirements. The approximations hidden in the simulation
limit the accuracy of real-time performance prediction, but the level of detail
in simulation is given by the user, by how much time they are willing to spend
on building the model of hw and sw. For example, modeling the split-transaction
bus or the contention in interconnection network for WH routing could be quite
difficult. The latter was not attempted in this case study since the FFT bench-
mark requires only regular contention-free communication. This, of course,
generally will not be the case. Nevertheless, simulation enables fast varying of
sw/hw configuration parameters and studying of the impact of such changes on
performance, free from the second-order effects. In this context, the CSP-based
Transim simulator and language proved to be very flexible, robust, and easy to
use. Future work will continue to include other benchmarks and analyze the
accuracy of performance prediction.
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Abstract: The paper presents some hardware solutions for the bit-byte CPU of a PLC,
which are oriented for maximum optimisation of data exchange between the CPU
processors. The optimization intends maximum utilization of the possibilities
given by the two-processor architecture of the CPUs. The key point is preserving
high speed of instruction processing by the bit-processor, and high functionality
of the byte-processor. The optimal structure should enable the processors to work
in parallel as much as possible, and minimize the situation, when one processor
has to wait for the other.

Key words: PLC; CPU; Bit-Byte structure of CPU; control program; scan time.

1. INTRODUCTION

One of the main parameters (features) of Programmable Logic Controllers
(PLC) is execution time of one thousand control commands (scan time). This
parameter evaluates the quality of PLC. Consequently, designing and construc-
tion are important tasks of the CPU which should have a structure enabling
fast control program execution. The most developed CPUs of PLCs of many
well-known manufacturers are constructed as multiprocessor units. Particular
processors in such units execute the tasks assigned to them. In this way we
obtain a unit, which makes possible parallel operation of several processors.
For such a CPU the main problem to be solved is the method of task-assuming
in particular processors and finding a structure of CPU capable of realisation
of such task-assigning in practice as shown by Michel (1990).
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The bit-byte structure of CPU in which task assignment is predefined is
often met in real solutions. The tasks operating on discrete input/outputs are
executed by the bit-processor. Such processors may be implemented in pro-
grammable structures as PLD or FPGA and has been demonstrated (Chmiel
et al., 1995b; Hrynkiewicz, 1997). It brings the positive effects in user program
execution time (fast operating processor). On the other hand a byte-processor
(word-processor) is built on the base of a standard microprocessor or embed-
ded microcontroller. The byte-processors are used for the control of analogue
objects, for numeric data processing, and for the execution of the operations
indirectly connected to user (control) program but connected to the operating
system of the programmable controller of a CPU. A set of such operations con-
sists of timer servicing, reading-out of the input states, setting of the outputs,
LAN servicing, communication to the personal computer, and so on.

A very interesting problem, though a difficult task, is the realisation of pro-
grammable controller timer module as shown in (Chmiel et al., 1995a). A time
interval is counting, asynchronously, to the program loop execution. It causes
difficulties with testing of an end of a counted interval. At long time of pro-
gram loop execution and short counted time intervals a large error may occur.
The accuracy of time intervals counting may be increased by special program
tricks, but achieving good results is typically connected with the prolongation
of the control program loop. In some programmable controllers the end of time
interval counting interrupts the control program and the service procedure for
this interrupt is invoked. However, the number of interrupts is typically limited
and only a few timers can act in this way. This is why it would be worthwhile to
reflect on a way of improving an accuracy of time counting in the programmable
controllers. The other matter is connected with this problem. As mentioned ear-
lier operation speed is one of the most important parameters of programmable
controllers. Typically, operation speed is closely connected to the scan time.
However, it seems that throughput time more precisely describes the dynamic
features of a programmable controller. Naturally it may be said that throughput
time is closely linked to the scan time unless a programmable controller does
not execute a control program in a serial-cyclic way. Let us imagine that a pro-
grammable controller operates on the rule based on processing of the segments
(tasks) of the control program. These segments are triggered only by the changes
of the input signals (input conditions). In this situation one can tell the through-
put time (response time) but it would be difficult to tell the time of program loop
execution. It would be possible only to define the mean time of program loop
execution for a given application. For the application where the signal changes
sparsely. The mean time of program loop execution will be much less than the
maximum time evaluated for the execution of a whole program. In particular
applications the certain group of signals may change more often than the other
signals. The segments of the control program triggered by these signals will
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be executed more often than the other segments. To avoid a situation where
two or more tasks are triggered at the same moment it would be necessary to
assign the priorities to the control program segments. The described method of
programmable controller operation changes the approach to preparing a control
program but it seems to the authors that in such a programmable controller the
problems with, for example, timers will be easier. It is not necessary to observe
the moment when time interval will be completed. At the end of the time inter-
val, counting the suitable segment may be called and executed. It means that
the currently executed program segment should be interrupted and this depends
on the priorities assigned to the particular program segments.

Such type of programmable controller CPUs will be the subject of future
work, while in this paper the few proposals of programmable controller bit-
byte CPU structures are presented. These are CPUs with serial-cyclic program
execution but they are structurally prepared for event-triggered operation.

2. THE REQUIREMENTS FOR PROGRAMMABLE
CONTROLLER CPUs

The aim of the work results as described in the paper were design and
implementation of programmable controller CPU based on bit-byte structure.
The main design condition was maximum speed of control program execu-
tion. This condition should be met rather by elaborating suitable structure
rather than application of the fastest microprocessors. Additionally, it was as-
sumed that bit-processor will be implemented using catalogue logic devices or
programmable structures whereas the byte-processor will be used by the mi-
crocontroller 80C320 from Dallas Semiconductor. The CPU should be capable
of carrying out the logical and arithmetical operations, conditional and uncon-
ditional jumps, sensing the input states, and setting or resetting outputs, timers,
counters, and so on.

In the simplest case, each programmable control device might be realised
as a microprocessor device. We have to remember about applications in which
we are going to use the constructed logic controller. These applications force
special requirements and constraints. Controlled objects have a large number of
binary inputs and outputs, while standard microprocessor (or microcontroller)
operates mainly on bytes. A instruction list of those devices is optimised for
operation on byte or word variables (some of them can carry out complicated
arithmetical calculation) that are not required in industrial applications. Each
task is connected with reading external data, computation, and writing computed
data to the outputs. Logical instructions like AND or OR on individual bits take
the same amount of time. The number of binary inputs and outputs in greater
units reach number of thousands. In such cases parallel computation of all
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inputs and outputs is impossible. In this situation all inputs and outputs must
be scanned and updated sequentially as fast as possible. If we wish to achieve
good control parameters, the bits operation should be done very quickly.

The creation of a specialised bit-processor, which can carry out bit operation
very quickly, is quite reasonable. If there is a need to process byte data, for
example from AD converters or external timers, the use of additional 8, 16, or
even 32, bits processor or microcontroller is required. The General structure of
the device is presented by Getko (1983).

The solution consists of two processors. Each of them has its own instruction
set. An instruction decoder recognises for which processor an instruction was
fetched and sends activation signals to it.

The basic parameter under consideration was program execution speed. Pro-
gram execution speed is mainly limited by access latency of both processors to
the internal (e.g., counter timers) and external (e.g., inputs and outputs) process
variables. The program memory and the instruction fetch circuitry also influ-
ence system performance. In order to support conflictless cooperation of both
processors and maintain their concurrent operations the following assumption
were made:
� both processors have separate data memory but process image memory is

shared between them. It seems a better solution when each processor has
independent bus to in/out signals that are disjoint sets for both processors. In
order to remove conflicts in access to common resources (process memory)
two independent bus channels are implemented to process memory, one
for each processor. This solution increases cost but simplifies processor
cooperation protocol, especially by the elimination of the arbitration process
during access to common resources;

� presented circuit has only one program memory. In this memory there are
stored instructions for bit and byte processors. Byte processor usually exe-
cutes a subprogram which has a set of input parameters. The byte processor
would highly reduce instruction transfer performance by accessing program
memory in order to fetch an invariant part of subroutine that is currently
executed. Donandt (1989) proposed a solution that implements separated
program memory for byte processors. In the presented case we decided to
implement two program memories for byte processor. In common program
memory, subprogram calls are stored with appropriate parameter sets. In
local program memory of byte processor there are stored bodies of subrou-
tines that can be called from controller program memory. It allows saving
program memory by replacing subprograms of byte processor with subpro-
gram calls. Subprograms implement specific instructions of the PLC, which
are not typical for general purpose byte processors;

� in order to reduce access time to in/out signal, process memory was re-
placed by registers that are located in modules. Content refresh cycle of
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these registers will be executed after the completion of the calculation loop.
In some cases register update can be executed on programmer demand.
Presented solution gives fast access to in/out modules with relatively low
requirements for a hardware part. It is also possible to bypass registers and
directly access module signals.

The bit processor that operates as a master unit in the CPU allows speeding
up operation of the controller. There are also disadvantages connected with this
architecture, which can be easily compensated. Main limitation is micropro-
grammable architecture of bit processor that has limited abilities in comparison
to standard microprocessor or microcontroller. Proper cooperation protocol of
both processors allows eliminating of those limitations. Separated bus channels
as well as separated program and data memories assure concurrent operation
of the bit and byte processors without requirement of arbitration process.

The structure of the designed controller must be as simple and cheap as
possible. There must be minimal influence on the execution speed of byte as
well bit processor (all processors should be able to operate with highest possible
throughput). It is obvious that not all assumptions can be fully satisfied.

Following assumptions were made in order to support two processors in
concurrent operations:
� separate address buses for bit and byte processors;
� two data buses: for bit-processor and for microcontroller;
� two controls bus, separate for microcontroller and bit-processor.

3. SELECTED STRUCTURES OF THE BIT-BYTE
CENTRAL PROCESSING UNIT

In this section the presented concept is of bit and byte processors cooperation
that allows achieving maximal execution speed by logic controller.

Two components were the base for research and design works. These com-
ponents are program memory (memories) and instruction fetch by both types
of processors. A satisfying solution must reduce the number of accesses to
common memory. The access cycle to common memory must also be as fast
as possible. Better-tailored subprograms for byte processors allow reducing of
a number of instructions for it in a whole instruction stream.

Data exchange protocol between processors and access to common re-
sources (timers, counters) are other problems that must be addressed.

The next problem is the method of information exchange between the pro-
cessors and an access to the timers and counters. Timers and counters are related
to both processors because they are implemented in a software way in the byte-
processor, while their state is more often used by the bit-processor.



236 Chapter 20

Bit
Processor

Byte
Processor

Instruction
Buffer

NEXT

GO

Standard
Program
Memory

Main
Program
Memory

Byte
Processor
Program
Memory

Figure 20-1. An illustration of the commands transfer to the CPU processors.

The idea of command fetch and passing it to the appropriate processor of
the PLC central unit is presented in Fig. 20-1. There is one common program
memory called main program memory and two auxiliary memories that are
used by the byte processor. One of the processors fetches instructions. Next
the instruction is decoded. If the currently active processor can execute instruc-
tions it is passed on to the execution stage. In case it cannot be executed the
NEXT signal is asserted. It keeps the processors synchronized to each other. Bit
processor operates faster then byte processor and usually more instructions are
addressed to the bit processor then to the byte processor. In that case the bit pro-
cessor should be a master processor, which fetches instruction and eventually
passes it to the byte processor. Operations executed by the byte processor are
represented by subprogram calls that represent basic tasks for byte operation
like timers/counters updates or communication tasks. The byte-processor is a
kind of coprocessor that processes requests from the bit processor.

The bit processor fetches commands from the main program memory
pointed by the program counter. The program counter is implemented inside the
bit processor. Next instruction is decoded and, when it is dedicated for the bit
processor, signal NEXT is set to 0 and the bit processor can execute instructions.
In case instructions must be passed to the byte processor NEXT signal is set to
1 and the instruction is passed to the buffer register. After passing instructions
to the byte processor the bit processor is waiting for activity of GO signal that
allows it to resume operation.

As assumed, both processors can operate almost independent of each other.
They are able to execute instructions from respective memories and access in/out
modules simultaneously. One problem that must be solved is data exchange
between processors.

There has to be a common memory through which processors are able to
exchange data for the following purposes:
� setting and clearing flags that request execution of specific tasks instead of

exchanging whole instructions.
� data transfers.



Remarks on Parallel Bit-Byte CPU Structures 237

Arbitration
Circuit

Byte
In/Out

Modules

Bit
Processor

Data
Memory

Bit
Procesor

Byte
Processor

Byte
Processor

Data
Memory

Byte
Processor
Program
Memory

Common
Data

Memory

Binary
In/Out

Modules

Bit
Processor
Program
Memory

Figure 20-2. Block diagram of the two processors CPU with common memory.

This conception is presented in Fig. 20-2. This figure concentrates on data
exchange. It is based on a similar idea as presented earlier. This solution as-
sumes common program memory for both processors. Each of them has unique
operation codes. One of the processors fetches operation code and recognises
it. If fetched instruction is assigned to it, it is immediately executed in other
cases and is sent to the second processor for execution.

The unit is equipped with three memory banks for the control program:
� program memory for bit processor;
� program memory for byte-processor includes standard procedure memory;

Such CPU has three states of operation:
� both processors execute control program simultaneously;
� one processor operates;
� bit-processor executes control program while byte-processor e.g., actualises

the timers.

The modification of the above solution, referring to the first conception is the
unit where the bit-processor generates pulses activating the sequential tasks in
the byte-processor. These tasks are stored in suitable areas of the byte-processor
memory.

Finally the CPU structure presented in the Fig. 20-2 was accepted. This
structure was additionally equipped with the system of fast data exchange
keeping PLC programming easy. This system—in simple words—ensures that
the processors do not wait to finish their operations but they execute the
next commands up to the moment when command of waiting for result of
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operation carried-out by the second processor occurs. The important point is
the suitable program compiler and the way the control program is written by
the designer.

The bit-processor delivers commands to the byte-processor through the com-
mand buffer informing it by means of NEXT = 0–signal. On the other hand
the byte-processor, after accepting a command, sends it to the bitprocessor as
confirmation by asserting EMPTYBUF signal.

The processors can exchange the result of recently executed operations
through FbB and FBb flip-flops. Processors must be able to read and write ap-
propriate registers in order to pass on information. This justifies the use of
special instructions that are marked in Fig. 20-3. by Chmiel and Hrynkiewicz
(1999). From the side of bit processors those are two transfer instructions:
TRFbB that allows writing state of condition register to FbB and TFBb that
allows testing state of FBb flip-flop. A similar set of two instructions is im-
plemented for the byte-processor. There are READ FBb that reads contents of
FBb and WRITE FBb that transfers content of internal condition flip-flop to
FBb.

The two following situations can cause one of the processors to wait for
another reducing speed of program execution:
� the first processor has not yet executed operation expected by the sec-

ond processor and this one has to wait for the result (READYFBb = 0 or
READYFbB = 0);

� the second processor has not yet received the previous result and the first
one cannot write the next result (EMPTYFbB = 0 or EMPTYFBb = 0).
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To reduce possibility of occurrence of wait condition programs should be
written and compiled in such a way as to get these two processors working in
parallel as far as possible. However, in the second case one can take into account
the solution based on the increased number of the accessible data exchange flip-
flops or on assignment of common memory area for the data exchange purpose.

At that time it appears that there is the need to assign flags to every task.
One can try to solve the flag problem in the following ways:
� the fixed flag can be assigned to every type of operation (this solution is

not flexible, both processors have to access to the common memory area
frequently, or many condition flip-flops have to be used);

� the successive tasks will use successive flags and this process will repeat
itself periodically after the number of flags runs out. The assignment process
can be led automatically by the compiler. However this solution can be
applied for the instruction sequences not disturbed by program jumps (except
for the jump to the beginning of the program loop);

� the third way is to charge the program designer with the duty of flag assign-
ment. In this case flags are passed instead of markers. Results of program
execution in one of the processors is passed through a special memory area
whose functionality is similar to markers.

As presented earlier 2nd and 3rd solutions can be implemented in hardware.
Number of flip-flops must be large enough to transfer all possible conditions
in the longest program. In general the number of flip-flops used as markers is
proportional to the length of the program, which is determined by the capacity
of its program memory.

Condition flip-flops are grouped into two sets that pass information in both
directions between the two processors. The simplest implementation writes
results of the operation to the queue. The opposite processor reads results from
the queue as needed. The flag system is implemented as a FIFO register that
allows storing of all markers in order of their appearence. Processor writes
condition flag to the flip-flop register pointed by condition counter. Opposite
processor reads condition flags and selects current register by its condition
counter. In this way the circular buffer was designed which allows for reading
and writing from different registers. Size of the circular buffer must be large
enough to store all required information passed among the processors.

Presented solutions offer extremely fast operation requiring only one clock
cycle from the side of each processor. Unfortunately this solution is expensive
in comparison to common memory, which can also be used as memory for
timers, counters, and flags. The memory accessed by two processors requires
a special construction or arbitration system. In order to avoid the arbitration
process in an access cycle, two special gate memory must be used that allow
simultaneous access to memory array by two processes.
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4. SYNCHRONISATION OF THE PROCESSORS

The bit-byte CPU (Fig. 20-2) can work in one of two modes:
� dependent operation mode—the parallel–serial work of processors with ex-

change of the necessary data, coordinated by the bit-processor, which is
faster. It is the basic work-mode of the designed CPU. This mode uses all
the conceptions presented in Fig. 20-1;

� independent operation mode—fully parallel. Both units work fully indepen-
dent, each one has its own program so time is not wasted for transferring
of the commands. There is also no data exchange between the processors.
Unfortunately such a mode is applicable only for some control programs.

Dependent operation mode is basic operation mode. It employs serial-
parallel operation with essential information exchange among two processors.
The faster processing unit coordinates operation. Detailed operation of the PLC
can be described as follows:
� when conditional instruction is encountered, data is passed from the bit

processor to the byte processor. In order to pass condition value the bit
processor must execute TRFbB instruction. Execution of this instruction is
postponed until line EMPTYFbB is asserted. This invalidates the state of the
FbB register and allows writing of new information in it. Writing FbB flipflop
completes data transfer from the bit processor to the byte processor and
allows fetching new instruction by the bit processor. Conditional instruction
executed in the byte processor at the beginning checks the state of the FbB

register. This operation executes the procedure called READ FbB. When
line READYFbB is set, the microprocessor can read data from FbB. After
reading the condition the flip-flop line RESFbB is pulsed and asserts signal
EMPTYFbB and allows transfer of the next condition from the bit processor.
Finally the byte processor can start execution of the requested subprogram
according to the reading of the condition flag;

� there are situations in program flow that require information from the byte
processor. Usually it is a result of subprogram execution that is needed
in further calculations of the bit processor. In order to fetch a condition
result from the byte processor the bit processor executes TFBb instruction.
Before reading FBb flip-flop state of the READYFBb line is checked. When
the register is written a new value line is activated (READYFBb = 1); in
the opposite case the bit processor waits until conditional result is written
to flip-flop and the line is asserted. Now data can be transferred from FBb

register to internal condition register of the bit processor. At the same time
the line RESFBb is activated that set EMPTYFBb signal to 1. This signal
allows the byte processor to write a new condition result to FBb register.
From the side of byte the processor subprogram WRITE FBb checks the
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Figure 20-4. Inter-processors condition passing algorithms.

state of EMPTYFBb line. Until this line is not set new condition result must
not be written to FBb register as it still contain valid data that should be
received by the bit processor.

Such exchange of the conditional flags does not require postponing of the
program execution. Proper data transfer is maintained by handshake registers
that controls data flow among processors and also synchronizes program ex-
ecution. When condition result is passed from one processor to another must
be always executed by a pair of instructions. When data is passed from the
bit processor to the byte processor those are TFbB and READ FbB. Transfer in
opposite direction requires execution of instructions WRITE FBb and TRFBb.
In Fig. 20-4 inter-processors condition passing algorithms are presented.

5. CONCLUSION

Studies on the data exchange optimization between the processors of the
bit-byte CPU of the PLC have shown the great capabilities and the possible
applications of this architecture.

As can be seen from the given considerations, the proposed PLC structure—
or, to be more precise, organization of information exchange between both
processors of a PLC central unit, allows for execution of the control programs
consisting of bit command and/or word commands.
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Two modes of CPU operations were considered. Basic mode—called de-
pendent operation mode—brings worst timings than the independent operation
mode. It is obvious, taking into account that both processors wait for the results
of executed operation by each other. The authors thought that it is possible to
work both CPU processors with exchanging of the condition flags. But this
problem will be the subject of future work.
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Abstract: The paper reports on some experiments with implementing positional digital
image filters using field programmable devices. It demonstrates that a single
field programmable device may be used to build such a filter. By using extensive
pipelining in the design, the filter can achieve performance of 50 million pixels per
second (using Xilinx XC4000E devices) and over 120 MHz (in case of Spartan-
3 devices). These results were obtained using automatic synthesis from VHDL
descriptions, avoiding any direct manipulation in the design.

Key words: Positional filter; median filter; synthesis; FPGA implementation.

1. INTRODUCTION

The paper reports on the implementation of a class of filters used in image
processing. The filtering is realised on a running, fixed size window of pixel
values. Positional filtering is obtained by arranging the values in an ordered
sequence (according to their magnitude) and choosing one that is at a certain
position (first, middle, last, or any other). Thus, the class of filters encompasses
median, max, and min filtering, depending on the choice of this position.

There are various algorithms used in positional filtering1,2. These are
roughly classified into three groups: compare-and-multiplex3, threshold decom-
position4, and bit-wise elimination5,6,7. All these can be used with the currently
available, powerful FPGA devices. However, the bit-wise elimination method
seems most appropriate for the cell array organisation.

Some specific positional filters have commercial VLSI implementations.
There is no device that can be configured to realise any position filtering. Even
if only median, min, or max filtering is required, it may be advantageous to use
FPGA devices, as they offer greater versatility and ease of reengineering. Of
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course, FPGA implementations are particularly well suited for application in
experimental image processing systems.

The first attempts to use FPGAs as reconfigurable image filters were reported
almost as soon as the devices became available8,9,10. The devices proved to be
too inefficient for full-fledged use, forcing the designers to limit the window
size, pixel rates, or the width of their bit representations. This is no longer the
case since the Virtex family of devices became available11.

Filter reconfiguration can be fully utilized only if there is an easy route
to obtain new configuration variants. In case of FPGA implementation, this is
offered by autosynthesis: new algorithms are described in terms of a hardware
description language and the rest is done by the design tools with no human
interaction. The results in the paper were obtained using the Xilinx Foundation
4.1i tools with FPGA Express (XC4000E and Virtex-2 devices) or the Xilinx
ISE 6.2i with built-in XST tool.

2. BIT-WISE ELIMINATION METHOD

Positional filtering is based on reordering of the pixel values according to
their magnitude. Let us denote the kth value in the reordered sequence by Pk

n

(where n is the length of the sequence). After reordering, only a single value
at the specific position is of interest. In bit-wise elimination, values that are
certain not to be in this position are removed from the sequence.

Values are compared bit-wise starting from the highest order bits. Lets as-
sume that the r -1 highest order bits have already been analysed by this method.
Then, all the values that remain for consideration must have the high order r -1
bits equal to each other (and to the result under evaluation). Values that had
these bits different were eliminated leaving only n′ values in the sequence. The
position also has to be adjusted from initial k to k ′ after eliminating values
that were greater. The r th bit of result is determined as Pk ′

n′ (r ) by ordering the
corresponding bits of the reduced sequence and considering k ′-position. All the
values that differ on the r th bit from Pk ′

n′ (r ) are eliminated and n′ is modified
accordingly. If the eliminated values are greater than the quantile bit, then k ′ is
also modified.

The algorithm ends when there is only one value left (or all the values left
are equal to each other).

The approach, with changing k and n is not well suited for circuit imple-
mentations. Instead of eliminating the values, it is more convenient to modify
them in a way that guarantees not to change the result6,7,8. If one knows that a
value is larger than the k-quantile, all its lower bits are set to 1. If one knows that
it is smaller, the lower bits are set to 0. Thus, single bit voting may still be used
and the values of k and n are fixed. This is the method used for the presented
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Figure 21-1. Bit-slice processor.

FPGA implementations. It can be formally described by the following iterative
equations, where iterations start with the highest order bits (r = m − 1) and
end with the lowest (r = 0):

Mi (r − 1) = Mi (r ) ∨ (
Pk

n (r ) ⊕ xi (r )
)
,

Si (r − 1) = (Mi (r ) ∧ Si (r )) ∨ (!Mi (r ) ∧ xi (r )) ,

Mi (n) = Si (n) = 0, i = 0..n − 1, (1)

Pk
n (r ) =

∑
i=0..n−1

{(!Mi (r ) ∧ xi (r )) ∨ (Mi (r ) ∧ Si (r ))} > k

where
xi (r ) is the r -th bit of i-th pixel in the filtering window,
Pk

n (r ) is the r -th bit of the value at k-th position (k-quantile),
Mi (r ) and Si (r ) are the modifying functions.

Using the presented Eqs. (1) a bit-slice processor may be implemented
(Fig. 21-1). This is a combinatorial circuit that processes the single bits of the
input pixels to produce a single bit of the result. The most important part of this
bit-slice is the thresholding function corresponding to the last of Eqs. (1).

3. PIPELINED FILTER IMPLEMENTATIONS

The simplest hardware implementation of the filter can be obtained by using
m bit-slice processors with connected modifying function inputs and outputs.
This would be a fully combinatorial implementation with very long delays, as
the modifying functions have to propagate from the highest to the lowest order
bits.

Inserting pipelining registers between the bit-slice processors shortens the
propagation paths11. The registers may be inserted either between all the proces-
sors, as shown in Fig. 21-2, or only between some of them. Since this introduces
latency between the bit evaluations, additional shift registers are needed on the
inputs and outputs to ensure in-phase results.
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Figure 21-2. Pipeline filter architecture.

This architecture has very short propagation paths between registers and
hence ensures highest pixel processing rates. There is latency between the
input signals and the output equal to the number of bits in the pixel represen-
tations. Normally, in image processing applications this is not a problem. Just
the image synchronisation signals need to be shifted correspondingly. It may
be unacceptable, though, if image filtering is just a stage in a real-time control
application.

4. FPGA IMPLEMENTATION RESULTS

The pipelined filter architecture was implemented for a filtering window
of 3 × 3 pixels. The inputs of the filter were 3 pixel streams: one obtained by
scanning the image and two delayed (by one and two horizontal scan periods).
The consecutive horizontal window values were obtained by registering the
input streams within the filter (to reduce the demand on input/output pads).

All the presented results were obtained by implementing the filter that com-
puted the median. This has no significant effect on the device performance or
complexity, except that the min and max filters have much simpler thresholding
functions.

The filters were implemented using different size of pixel value representa-
tions (binary values of 4, 8, 12, and 16 bits). In each case the smallest and fastest
device that could contain the circuit was chosen for implementation. Table 21-1
shows the results of filter implementations using XC4000E family of devices,
whereas Table 21-2 presents those for the Virtex-2, and Table 21-3 those for
the Spartan-3 packages.
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Table 21-1. Filter implementations using XC4000E devices

Pixel representation Device Used CLBs Pixel rate

4 bits 4003EPC84-1 94 55.9 MHz
8 bits 4008EPC84-1 288 50.1 MHz

12 bits 4020EHQ208-1 645 50.6 MHz
16 bits 4025EPG223-2 993 37.5 MHz

Table 21-2. Filter implementations using Virtex-2 devices

Pixel representation Device Used slices Pixel rate

4 bits 2V40FG256-4 99 88.8 MHz
8 bits 2V40FG256-4 209 91.9 MHz

12 bits 2V80FG256-4 345 88.7 MHz
16 bits 2V80FG256-4 453 83.7 MHz

Table 21-3. Filter implementations using Spartan-3 devices

Pixel representation Device Used slices Pixel rate

4 bits 3S50TQ144-5 93 120.4 MHz
8 bits 3S50TQ144-5 217 118.3 MHz

12 bits 3S50TQ144-5 341 119.6 MHz
16 bits 3S50TQ144-5 465 114.1 MHz

The circuit complexity, expressed in terms of the number of cells used (CLBs
or Virtex slices), results from the number and complexity of bit-slice processors
(complexity of the combinatorial logic) and from the number of registers used
in pipelining. The first increases linearly with the size of pixel representation.
On the other hand the number of registers used in pipelining increases with
the square of this representation. In case of the XC4000 architecture, the pixel
representation of 8 bits is the limit, above which the complexity of circuit is
determined solely by the pipelining registers (all the combinatorial logic fits in
the lookup tables of cells used for pipelining).

The synthesis tools had problems in attaining optimal solutions for the syn-
thesis of thresholding functions in the case of the cells implemented in XC4000
devices (this was not an issue in case of min and max positional filters). Most
noticeably, the design obtained when the threshold function was described as
a set of minterms required 314 CLBs in case of 8-bit pixel representation. By
using a VHDL description that defined the function as a network of intercon-
nected 4-input blocks, the circuit complexity was reduced to the reported 288
cells. The reengineered threshold function had a slight effect on the complexity
of the 12-bit filter and none on the 16-bit one.
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The most noticeable improvement in using the Virtex-2 devices for posi-
tional filter implementations was in the operation speed: approximately 50 MHz
in case of the XC4000E devices and 80–90 MHz in case of Virtex-2. Some
other architectural improvements are also apparent. The increased functional-
ity of Virtex slices led to much more effective implementations of pipelining
registers: the FPGA Express synthesizer implemented them as shift registers
instead of unbundled flip-flops, significantly reducing the slice usage. Improved
lookup table functionality eliminated the problem of efficient decomposition of
threshold function, as well (at least in the case of the 3 × 3 filtering window).

The results obtained for the Spartan-3 family were similar to the corre-
sponding Virtex-2 ones. The improved performance resulted from higher speed
grades of the devices in use. It should be noted that these results were obtained
using the synthesis tools integrated within Xilinx ISE 6.2i package, since the
available version of FPGA Express could not handle the devices. The synthesis
results do not vary significantly, being in some cases better and in others worse
in the resultant slice count.

5. CONCLUSIONS

The presented implementation results show that FPGA devices have attained
the speed grades that are more than adequate for implementing positional image
filters of very high resolution. Furthermore, it is no longer necessary to inter-
connect multiple FPGA devices or limit the circuit complexity by reducing the
pixel representations. In fact, the capabilities of Virtex-2 and Spartan-3 devices
exceed these requirements both in terms of performance and cell count.

The proposed bit-wise elimination algorithm with pipelining is appropriate
for the cell architecture of FPGA devices. The only problem is the latency,
which may be too high in case of long pixel representations. By limiting the
pipelining to groups of 2, 3, or more bit-slice processors it is possible to trade
off latency against performance.

Positional filtering is just a stage in complex image processing. The analysed
filter implementations leave a lot of device resources unused. This is so, even in
the case of XC4000E packages, where the cell utilization for representations of
8 bits or more is between 60 and 97%. The cells are mostly used for registering,
and the lookup tables are free. These may well be used to implement further
stages of image processing.

It is very important that the considered implementations were directly ob-
tained by synthesis from functional descriptions, expressed in VHDL language.
This makes feasible the concept of reconfigurable filters, where the user de-
scribes the required filtering algorithms in a high-level language, and these are
programmed into the filter. However, the design tools have not yet reached
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the desirable degree of sophistication and reliability. This is especially true
of the obscure template matching rules, peculiar to specific synthesis tools.
Also, the correctness by design paradigm is not always met – some errors of
improperly matched templates were detected only by testing the synthesized
device.
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Abstract: This paper presents a proven methodology of the development and productization
of virtual electronic components. The methodology consists of rigorous approach
to the development of component specification, reverse engineering of behavior of
reference circuits by means of hardware simulator, application of industrystandard
rules to coding of RTL model in a hardware description language, and extensive
testing and verification activities leading to high quality synthesizable code and
to working FPGA prototype. In the final stage called productization a series of
deliverables are produced to ensure effective reuse of the component in different
(both FPGA and ASIC) target technologies.
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1. OBJECTIVE AND MOTIVATION

The objective of the effort described in this paper was to define a quality
assurance policy for the development of virtual components based on exist-
ing integrated circuits. At the time this policy was developed, our company
specialized in the development of IP cores compatible to 8-bit and 16-bit mi-
crocontrollers and microprocessors. Some of these cores ensure cycle level
compatibility needed for direct obsolete chip replacement. Other cores are
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merely instruction-set compatible and offer architectural improvements over
original chips1. They are aimed at providing functionality of original parts in
systems-on-chip, where original pin timing behavior is not required.

Our approach is based on the methodology recommended in Ref. 2, but it
reflects to some extent peculiarities of our profile as well as the fact that we have
no access to certain EDA tools recommended in Ref. 2. We found inspiration
in the paper presented by SICAN company (now SCI-WORX) at the FDL’99
in Lyon3.

The main motivation for the definition of a formalized methodology was
to assure a high quality of the cores that we develop. Our first experiences
in the development of a microcontroller core compatible to Intel 8051 chip1

showed that lack of consistent and rigorous methodology results in a buggy
core. Moreover, lack of a clear and complete specification turns the debugging
of our first core into a nightmare.

2. OVERVIEW OF THE METHODOLOGY

2.1 Design flow

Basic development steps in the creation of a virtual component include:
� Development of the macro specification,
� Partitioning the macro into subblocks,
� Development of a testing environment and a test suite,
� Design and verification of subblocks,
� Macro integration and final verification,
� Prototyping the macro in FPGA,
� Productization.

We will discuss these stages one by one in this chapter, focusing on details
related to our experiences. In addition we will present in more detail the use
of hardware modeling in the specification and verification process of virtual
components.

2.2 Project management issues

At the beginning of a new project all the steps enumerated earlier are re-
fined into subtasks and scheduled. Human and material resources are allocated
to the project. Usually, several projects are being realized parallelly. There-
fore people, equipment, and software, have to be shared among these projects.
We use MS Project software to manage scheduling of tasks and allocation of
resources.



A Methodology for Developing IP Cores . . . 253

3. DEVELOPMENT OF THE MACRO
SPECIFICATION

We use the documentation of an original device as a basis for the specifica-
tion of the core modeled after it. However, the documentation provided by the
chip manufacturer is oriented toward chip users and does not usually contain all
details of chip behavior that are necessary to recreate its full functionality. There-
fore analysis of the original documentation results in a list of ambiguities, which
have to be resolved by testing the original chip. The overall testing program
is usually very complex, but the first tests to be written and run on a hardware
modeler (see point 5) are those that resolve ambiguities in the documentation.

At a later stage of specification we use an Excel spreadsheet to document
all operations and data transfers that take place inside the chip. Spreadsheet
columns represent time slots and rows represent communication channels. Such
an approach enables gradual refinement of scheduling of data transfers and
operations up to the moment when clock-cycle-accuracy is reached. It reveals
potential bottlenecks of the circuit architecture and makes it easy to remove
them at an early design stage.

4. PARTITIONING INTO SUBBLOCKS

The dataflow spreadsheet makes it easier to define proper partitioning of
the macro into subblocks. This first level of design hierarchy is needed to
handle the complexity and for easier distribution of design tasks between several
designers. The crucial issue in this process is distribution of functions between
the subblocks, definition of the structural interfaces, and specification of timing
dependencies between them.

5. ROLE OF THE HARDWARE MODELING
IN THE VIRTUAL COMPONENT
DEVELOPMENT PROCESS

5.1 Introduction to hardware modeling

By hardware modeling we understand the use of real chips as reference
models inside a simulated system (which contains them). At the turn of the 1980s
and 1990s, hardware modeling was used in a board-level system simulations
due to the lack of behavioral models of LSI/VLSI devices used in those days
for package construction. Racal-Redac’s CATS modeler dates back to those
days. Together with a CADAT simulator running on a SUN workstation they
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form an environment that allows the user to simulate systems that consist of
integrated circuits for which no behavioral models are available. These circuits
are modeled by real chips and may interact within the mentioned environment
with software-based testbench and other parts for which simulation models
exist.

The hardware modeler proved to be useful in our company during specifi-
cation and verification stages. The greatest role of hardware models is related
to reverse engineering, when the goal is documenting functionality of existing
catalogue parts (usually obsolete). Reverse engineering is essential during de-
velopment of the specification of IP cores meant to be functionally equivalent to
those parts. Hardware modeling resolves many ambiguities, which are present
in the referenced chip documentation.

The hardware modeler is also useful for testing the FPGA prototypes of
virtual components, independent of whether it was used during the specification
stage.

5.2 Testing the reference chip

As a reference for our virtual components we use hardware models that run
on a (second hand) CATS hardware modeler (Fig 1). The hardware modeler is
connected via network to the CADAT simulator. The environment of the chip
is modeled in C. Test vectors supplied from a file may be used for providing
stimuli necessary to model interaction of the modeled chip with external circuits
(e.g., interrupt signals).

An equivalent testing environment is developed in parallel as a VHDL test-
bench to be run on a VHDL simulator. We use Aldec’s Active-HDL simulator,
which proved to be very effective in model development and debugging phase.

Single height hardware model 

cartridge (e.g., DS80530)

Double height hardware model 
cartridge (e.g., 320C50)

FPGA adapter that 
replaces original chip 
during prototype 
testing

Figure 22-1. CATS hardware modeler.
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It enables the import of the testing results obtained with a hardware model into
its waveform viewer in order to compare them with simulated behavior of the
core under development.

5.3 Improvements of the hardware modeling technology

The growth of requirements for hardware models comes as a consequence
of developing of more and more complex virtual components. This situation
brings problems such as too many pins of the reference chip, system overload
due to many simultaneous simulations, long-lasting preparation of a new model,
and lack of ability to model some physical features (e.g., bi-directional asyn-
chronous pins). The fact that definition of simulation environment demands
skill in using an exotic BMD language and unusual simulation environment is
also a severe restriction.

The solution to these problems is the new system developed at Evatronix
in 2003–2004 under the name of Personal Hardware Modeler (PHM)4. This
name reflects the basic feature which is the transformation of a huge centralized
workstation into a light desktop device, which may be connected to any PC
machine. From the user’s point of view the new system is easy enough to allow
the preparation of a new hardware model by any engineer without having any
specialized knowledge of hardware modeling. The biggest effort is now reduced
to the design and manufacturing of an adapter-board connecting the reference
chip to the modeler.

The rule of operation of the modeler is similar to the CATS system mentioned
before. It is based on periodic stimulation of the reference chip followed by its
response detection (called dynamic modeling). The PHM device is built upon
an FPGA circuit containing serial communication interface to the PC and other
logic that performs stimulation and response detection on a reference IC. PHM
stores stimulation vectors in local memory, applies a sequence of them to all
input pins of the device under test in real-time, and sends detected responses
back to the PC, where they are processed by VHDL simulator.

The goal of the whole system is to substantially improve the reference
circuit examination process, test suite development, and also VC prototype
verification.

6. VERIFICATION PROCESS

6.1 Test suite development

Test suite development is based on specification. Specification is analyzed
and all the functional features of the core that should be tested for the original
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device are enumerated. The test development team starts with development of
tests that are needed to resolve ambiguities in the available documentation of
the chip to which a core has to be compliant.

Most of the functional tests are actually the short programs written in the
assembly language of the processor that is modeled. Each test exercises one
or several instructions of the processor. For instructions supporting several
addressing modes, tests are developed to check all of them. After compiling a
test routine the resulting object code is translated to formats that may be used
to initialize models of program memory in the testbenches (both in CADAT
and VHDL environments). We have developed a set of utility procedures that
automate this process.

In order to test processor interaction with its environment (i.e., I/O oper-
ations, handling of interrupts, counting of external events, response to reset
signal) a testbench is equipped with a stimuli generator.

6.2 Code coverage analysis

The completeness of the test suite is checked with code coverage tool (VN-
Cover from TransEDA). The tool introduces monitors into the simulation en-
vironment and gathers data during a simulation run. Then the user can check
how well the RTL code has been exercised during simulation. There are a
number of code coverage metrics that enable analysis of how good the test
suite is, what parts of the code are not properly tested, and why. At Evatronix
we make use of the following metrics: statement coverage, branch coverage,
condition/expression coverage, and path and toggle coverage.

The statement coverage shows whether each of the executable code state-
ments was actually executed and how many times. It seems obvious that state-
ment coverage below 100% indicates that either some functionality was not
covered by the test suite, or untested code is unnecessary and should be re-
moved. Branch coverage may reveal why a given part of the code is untested.
It checks whether each branch in case and if-then-else statements is executed
during simulation. As some branches may contain no executable statements
(as e.g., if-then statement with no else clause), it may happen that branch cov-
erage is below 100% even if statement coverage reaches this level. Analysis
why the given branch is not taken is simplified with availability of condition
coverage metrics. With this metric one may analyze whether all combinations
of subexpressions that form branch conditions are exercised. Path coverage
shows whether all possible execution paths formed by two subsequent branch
constructs are taken. Toggle coverage shows whether all signals toggled from 0
to 1 and from 1 to 0. We target 100% coverage for all these metrics. In addition
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we also use FSM coverage (state, arc, and path) metrics to ensure that control
parts of the circuit are tested exhaustively.

Incompleteness of the test suite may result in leaving bugs in untested parts
of the code. On the other hand code coverage analysis also helps to reveal (and
remove) redundancy of the test suite.

6.3 Automated testbench

Our cores are functionally equivalent to the processors they are compliant
to, but they are not always cycle accurate. Therefore a strategy for automated
comparison of results obtained with hardware modeler to those obtained by
simulating RTL model was developed.

Scripts that control simulators may load the program memory with sub-
sequent tests and save the simulation data into files. These files may serve as
reference for postsynthesis and postlayout simulation. The testbench that is used
for these simulation runs contains a comparator that automatically compares
simulator outputs to the reference values.

7. SUBBLOCK DEVELOPMENT

The main part of the macro development effort is the actual design of sub-
blocks defined during specification phase. At the moment we have no access to
tools that check the compliance of the code to a given set of rules and guide-
lines. We follow the design and coding rules defined in Ref. 1. We check the
code with VN-Check tool from TransEDA to ensure that the rules are followed.
Violations are documented.

For certain subblocks we develop separate testbenches and tests. However,
the degree to which the module is tested separately depends on its interaction
with surrounding subblocks. As we specialize in microprocessor core develop-
ment it is generally easier to interpret the results of simulation of the complete
core than to interpret the behavior of its control unit separated from other parts
of the chip. The important aspect here is that we have access to the results of
the test run on the hardware model that serves as a reference.

On the other hand certain subblocks like arithmetic-logic unit or peripherals
(i.e., Universal Asynchronous Receiver/Transmitters (UARTs) and timers) are
easy to test separately and are tested exhaustively before integration of the
macro starts.

Synthesis is realized with tools for FPGA design. We use Synplify, FPGA
Express, and Leonardo. We realize synthesis with each tool looking for the best
possible results in area-oriented and performance-oriented optimizations.
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8. MACRO INTEGRATION

Once the subblocks are tested and synthesized they may be integrated. Then
all the tests are run on the RTL model and the results are compared with the
hardware model. As soon as the compliance is confirmed (which may require
a few iterations back to subblock coding and running tests on integrated macro
again) a macro is synthesized towards Xilinx and Altera chips and the tests are
run again on the structural model.

9. PROTOTYPING

The next step in the core development process is building of a real prototype
that could be used for testing and evaluation of the core.

At present we target two technologies: Altera and Xilinx. Our cores are avail-
able to users of Altera and Xilinx FPGAs through AMPP and AllianceCORE
programs. Shortly we will implement our cores in Actel technologies, as well.
Placing and routing of a core in a given FPGA technology is realized with
vendor-specific software. The tests are run again on the SDF-annotated struc-
tural model. We developed a series of adapter boards that interface FPGA
prototype to a system in which a core may be tested or evaluated.

The simplest way to test the FPGA prototype is to replace an original ref-
erence chip used in the hardware modeler with it. This makes it possible to
compare the behavior of the prototype with the behavior of the original chip.
However, for some types of tests even a hardware modeler does not provide the
necessary speed. These tests can only be executed in a prototype hardware sys-
tem at full speed. Such an approach is a must when one needs to test a serial link
with a vast amount of data transfers, or to perform floating point computations
for thousands of arguments. Our experience shows that even after an exhaustive
testing program, some minor problems with the core remains undetected until
it runs a real-life application software.

For this reason we have developed a universal development board (Fig. 22-
2). It can be adapted to different processor cores by replacement of onboard
programmable devices and EPROMs. An FPGA adapter board (see Fig. 22-1)
containing the core plugs into this evaluation board. An application program
may be uploaded to the on-board RAM memory over a serial link from PC.
Development of this application program is done by a separate design team.
This team actually plays a role of an internal beta site, which reveals problems
in using the core before it is released to the first customer.

The FPGA adapter board can also be used to test the core in the ap-
plication environment of a prototype system. Such system should contain a
microcontroller or microprocessor that is to be replaced with our core in the
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Serial ports 

boot controller, 
EPROM or RAM 
for firmware and 
application
software

LCD display 

FPGA adapter
(or adapter with 
original processor)
plugs in here 

PLDs that 
configure the 
evaluation board 

LEDs

Figure 22-2. Development boards for testing processor core.

integrated version of the system. The adapter board is designed in such a way
that it may be plugged into the microprocessor socket of the target system. Using
this technique we made prototypes of our cores run into ZX Spectrum micro-
computer (CZ80cpu core) and SEGA Video Game (C68000 core), in which
they replaced original Zilog R© and Motorola R© processors.

10. PRODUCTIZATION

The main goal of the productization phase is to define all deliverables that
are necessary to make the use of the virtual component in the larger design easy.
We develop and run simulation scripts with Modelsim and NC Sim simulators
to make sure that the RTL model simulates correctly with them.

While we develop cores in VHDL we translate them into Verilog, to make
them available to customers who only work with Verilog HDL. The RTL model
is translated automatically while the testbench manually. The equivalence of
Verilog and VHDL versions is exhaustively tested.

Synopsys Design Compiler scripts are generated with the help of the FPGA
Compiler II. Synthesis scenarios for high performance and for minimal cost are
developed.

For FPGA market an important issue is developing all the deliverables re-
quired by Altera and Xilinx from their partners participating in AMPP and
AllianceCore third party IP programs.

User documentation is also completed at productization stage (an exhaustive,
complete, and updated specification is very helpful when integrating the core
into a larger design).
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11. EXPERIENCES

The methodology described in this paper was originally developed in the
years 1999 and 2000 during the design of a few versions of 8051-compatible
microcontroller core1. It was then successfully applied to the development of
IP cores compatible to such popular chips as Microchip PIC R© 1657 microcon-
troller, Motorola 68000 16-bit microprocessor and 56002 digital signal proces-
sor, Zilog R© Z80 8-bit microprocessor and its peripherals, TI R© 32C025 dsp and
Intel R© 80186 16-bit microcontroller.

After accommodating certain improvements of this methodology, we doc-
umented it in our quality management system which passed the ISO 9001
compliance audit in 2003. Presently we are looking at complementing it with
functional coverage and constrained random verification techniques.
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