Hee-Kap Ahn

Chan-Su Shin (Eds.)

ARCoSS

Algorithms
and Computation

25th International Symposium, ISAAC 2014
Jeonju, Korea, December 15-17, 2014
Proceedings

LNCS 8889

Lecture Notes in Computer Science 8889

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

John C. Mitchell, USA Friedemann Mattern, Switzerland
Bernhard Steffen, Germany Moni Naor, Israel

Demetri Terzopoulos, USA C. Pandu Rangan, India

Gerhard Weikum, Germany Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Hee-Kap Ahn - Chan-Su Shin (Eds.)

Algorithms
and Computation

25th International Symposium, ISAAC 2014
Jeonju, Korea, December 15-17, 2014
Proceedings

@ Springer

Editors

Hee-Kap Ahn Chan-Su Shin

Pohang University of Science and Technology =~ Hankuk University of Foreign Studies
Pohang Yongin-si

Korea, Republic of (South Korea) Korea, Republic of (South Korea)
ISSN 0302-9743 ISSN 1611-3349 (electronic)

ISBN 978-3-319-13074-3 ISBN 978-3-319-13075-0 (eBook)

DOI 10.1007/978-3-319-13075-0

Library of Congress Control Number: 2014955201
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues
Springer Cham Heidelberg New York Dordrecht London

(© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews
or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its cur-
rent version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were presented at the 25th International Symposium on Al-
gorithms and Computation (ISAAC 2014), held in Jeonju, South Korea, during De-
cember 15-17, 2014. In the past, ISAAC was held in Tokyo (1990), Taipei (1991),
Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Sin-
gapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch (2001),
Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005), Kolkata (2006),
Sendai (2007), Gold Coast (2008), Hawaii (2009), Jeju (2010), Yokohama (2011),
Taipei (2012), and Hong Kong (2013) over 25 years from 1990 to 2014.

ISAAC is an acclaimed annual international symposium that covers a wide range
of topics in algorithms and theory of computation, and that provides a forum for re-
searchers where they can exchange ideas in this active research community. In response
to the call for papers, ISAAC 2014 received 171 submissions from 38 countries. Each
submission was reviewed by at least three Program Committee members with the assis-
tance of 189 external reviewers. Through extensive discussion, the Program Committee
selected 60 papers for presentation in ISAAC 2014. Two special issues, one of Algo-
rithmica and one of International Journal of Computational Geometry and Applications,
are prepared for some selected papers among the presented ones in ISAAC 2014.

The best paper award was given to “Concentrated Hitting Times of Randomized
Search Heuristics with Variable Drift” by Per Kristian Lehre and Carsten Witt. Two
eminent invited speakers, Ulrik Brandes from University of Konstanz, Germany and
Giuseppe F. Italiano from Universita di Roma “Tor Vergata”, Italy, gave interesting
invited talks at the conference.

We would like to thank all Program Committee members and external reviewers
for their excellent work in the difficult review and selection process. We would like to
thank all authors who submitted papers for our consideration; they all contributed to the
high quality of the conference. We would like to thank Conference Chair Kunsoo Park
and Organizing Committee members for their dedicated contribution. Finally, we would
like to thank our conference volunteers, sponsor SRC-GAIA (Center for Geometry and
Its Applications), and supporting organizations KIISE (The Korean Institute of Infor-
mation Scientists and Engineers) and SIGTCS (Special Interest Group on Theoretical
Computer Science) of KIISE for their assistance and support.

December 2014 Hee-Kap Ahn
Chan-Su Shin

Program Committee
Hee-Kap Ahn

Peter Brass

Gerth Stglting Brodal
Xavier Goaoc

Simon Gog
Mordecai Golin

Roberto Grossi
Sungjin Im

Rahul Jain

Akinori Kawachi
Christian Knauer
Pinyan Lu
Kazuhisa Makino
Peter Bro Miltersen
Wolfgang Mulzer
Joong Chae Na
Srinivasa Rao Satti
Saket Saurabh
Tetsuo Shibuya
Chan-Su Shin
Michiel Smid
Hisao Tamaki
Gerhard Woeginger

Alexander Wolff
Bang Ye Wu
Chee Yap
Hsu-Chun Yen
Louxin Zhang
Peng Zhang
Xiao Zhou
Binhai Zhu

Organization

Pohang University of Science and Technology,
South Korea

City College of New York, USA

Aarhus University, Denmark

University Paris-Est Marne-la-Vallé, France

University of Melbourne, Australia

Hong Kong University of Science and Technology,
Hong Kong

University of Pisa, Italy

University of California, Merced, USA

National University of Singapore, Singapore

Tokyo Institute of Technology, Japan

Universitit Bayreuth, Germany

Microsoft Research Asia, China

RIMS, Kyoto University, Japan

Aarhus University, Denmark

Freie Universitit Berlin, Germany

Sejong University, South Korea

Seoul National University, South Korea

Institute of Mathematical Sciences, India

University of Tokyo, Japan

Hankuk University of Foreign Studies, South Korea

Carleton University, Canada

Meiji University, Japan

Eindhoven University of Technology,
The Netherlands

Universitdt Wiirzburg, Germany

National Chung Cheng University, Taiwan

New York University, USA

National Taiwan University, Taiwan

National University of Singapore, Singapore

Shandong University, China

Tohoku University, Japan

Montana State University, USA

VIII Organization

Additional Reviewers

Alt, Helmut
Anagnostopoulos, Aris
Anshu, Anurag
Antoniadis, Antonios
Asinowski, Andrei
Bae, Sang Won
Barba, Luis

Barbay, Jérémy
Bille, Philip
Bonichon, Nicolas
Bonsma, Paul
Brandstadt, Andreas
Braverman, Vladimir
Cabello, Sergio
Cela, Eranda

Chang, Ching-Lueh
Chang, Jou-Ming
Chen, Ho-Lin

Chen, Jiecao

Chen, Xin

Chlamtac, Eden
Colin de Verdiere, Eric
Da Lozzo, Giordano
Devillers, Olivier
Dobbins, Michael Gene
Diirr, Christoph
Elbassioni, Khaled
Elmasry, Amr
Epstein, Leah
Fernau, Henning
Fiorini, Samuel
Fleszar, Krzysztof
Fuchs, Fabian
Fukunaga, Takuro
Giannopoulos, Panos
Giaquinta, Emanuele
Golovach, Petr
Grunert, Romain

Gunawan, Andreas D.M.

Gupta, Ankur
Gupta, Sushmita
Gurski, Frank

Hajiaghayi, Mohammadtaghi

Hatano, Kohei

He, Meng

Henze, Matthias
Higashikawa, Yuya
Hsieh, Sun-Yuan
Huang, Guan-Shieng
Hubard, Alfredo
Imai, Tatsuya

Ishii, Toshimasa

Ito, Takehiro
Ivanyos, Gabor
Jaume, Rafel

Jiang, Minghui

Jo, Seungbum
Johnson, Matthew
Kakoulis, Konstantinos
Kamiyama, Naoyuki
Kavitha, Telikepalli
Kim, Heuna

Kim, Jin Wook
Kim, Sung-Ryul
Kindermann, Philipp
Kiraly, Tamas
Klauck, Hartmut
Kobayashi, Yusuke
Kolay, Sudeshna
Kortsarz, Guy
Kratsch, Dieter
Kriegel, Klaus
Kuang, Jian
Kulkarni, Raghav
Laekhanukit, Bundit
Lampis, Michael
Langetepe, Elmar
Le Gall, Francois
Lee, Inbok

Lee, Mun-Kyu

Lee, Troy

Leike, Jan

Levin, Asaf

Li, Liang

Liao, Chung-Shou
Lin, Chengyu

Lin, Chun-Cheng
Liotta, Giuseppe

Liu, Jingcheng

Liu, Zhengyang
M.S., Ramanujan
Mcauley, Julian
Megow, Nicole
Mestre, Julian
Misra, Neeldhara
Miura, Kazuyuki
Mizuki, Takaaki
Mondal, Debajyoti
Montanaro, Ashley
Montenegro, Ravi
Mori, Ryuhei
Mukherjee, Joydeep
Mustafa, Nabil
Navarro, Gonzalo
Nies, Andre
Nishimura, Harumichi
O Dunlaing, Colm
Ochem, Pascal
Ohlebusch, Enno
Okamoto, Yoshio
Onodera, Taku
Osipov, Vitaly
Otachi, Yota

Oudot, Steve
Panolan, Fahad
Park, Heejin
Paulusma, Daniel
Peleg, David

Peng, Dongliang
Peng, Pan

Petri, Matthias
Pilaud, Vincent
Pilipczuk, Michal
Poon, Sheung-Hung
Praveen, M.

Pruhs, Kirk
Pérez-Lantero, Pablo
Rahman, Md. Saidur
Rai, Ashutosh
Rautenbach, Dieter
Rotbart, Noy

Rote, Giinter
Rutter, Ignaz
Sabharwal, Yogish

Organization

Sadakane, Kunihiko
Sarrabezolles, Pauline
Schneider, Stefan
Schulz, André
Seiferth, Paul

Seto, Kazuhisa
Shah, Rahul

Shao, Mingfu
Shioura, Akiyoshi
Sim, Jeong Seop
Sitters, Rene
Spoerhase, Joachim
Stehn, Fabian

Stein, Yannik
Suzuki, Akira
Sether, Sigve Hortemo
Takazawa, Kenjiro
Tamaki, Suguru
Tani, Seiichiro
Tanigawa, Shin-Ichi
Ting, Chuan-Kang
Tong, Weitian

Tsur, Dekel
Uchizawa, Kei

Uno, Takeaki
Upadhyay, Sarvagya
van lersel, Leo

van Stee, Rob
Vialette, Stephane
Vind, Sgren
Wahlstrom, Magnus
Wakabayashi, Yoshiko
Wang, Bow-Yaw
Wang, Hung-Lung
Wang, Menghui
Wang, Yue-Li

Wu, Chenchen

Wau, Zhilin
Waulff-Nilsen, Christian
Xia, Mingji

Xiao, Mingyu

Xiao, Tao

Xu, Ning
Yamamoto, Masaki
Yang, Chang-Biau
Yang, De-Nian

IX

X Organization

Yang, Kuan
Yasunaga, Kenji
Ye, Deshi
Zaffanella, Enea
Zhang, Chihao

Zhang, Jialin
Zhang, Shengyu
Zhang, Yong
Zielinski, Pawel

Invited Talks

Biconnectivity in Directed Graphs*

Giuseppe F. Italiano

Univ. of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Roma, Italy
giuseppe.italiano@uniroma2.it

Edge and vertex connectivity are fundamental concepts in graph theory with nu-
merous practical applications. Given an undirected graph G = (V, E), an edge
is a bridge if its removal increases the number of connected components of G.
Graph G is 2-edge-connected if it has no bridges. The 2-edge-connected compo-
nents of G are its maximal 2-edge-connected subgraphs. Two vertices v and w
are 2-edge-connected if there are two edge-disjoint paths between v and w: we
denote this relation by v <»9. w. Equivalently, by Menger’s Theorem, v and w
are 2-edge-connected if the removal of any edge leaves them in the same con-
nected component. Analogous definitions can be given for 2-vertex connectivity.
In particular, a vertex is an articulation point if its removal increases the number
of connected components of G. A graph G is 2-vertex-connected if it has at least
three vertices and no articulation points. The 2-vertex-connected components
of G are its maximal 2-vertex-connected subgraphs. Two vertices v and w are
2-vertex-connected if there are two internally vertex-disjoint paths between v
and w: we denote this relation by v <»2, w. If v and w are 2-vertex-connected
then Menger’s Theorem implies that the removal of any vertex different from
v and w leaves them in the same connected component. The converse does not
necessarily hold, since v and w may be adjacent but not 2-vertex-connected.
It is easy to show that v 39, w (resp., v <3, w) if and only if v and w are
in a same 2-edge-connected (resp., 2-vertex-connected) component. All bridges,
articulation points, 2-edge- and 2-vertex-connected components of undirected
graphs can be computed in linear time essentially by the same algorithm based
on depth-first search.

While edge and vertex connectivity have been thoroughly studied in the case
of undirected graphs, surprisingly not much has been investigated for directed
graphs. Given a directed graph G, an edge (resp., a vertex) is a strong bridge
(resp., a strong articulation point) if its removal increases the number of strongly
connected components of G. A directed graph G is 2-edge-connected (resp., 2-
vertex-connected) if it has no strong bridges (resp., strong articulation points
and has at least three vertices). The 2-edge-connected (resp., 2-vertex-connected)
components of G are its maximal 2-edge-connected (resp., 2-vertex-connected)
subgraphs. Similarly to the undirected case, we say that two vertices v and w
are 2-edge-connected (resp., 2-vertex-connected), and we denote this relation by

* Work partially supported by the Italian Ministry of Education, University and Re-
search, under Project AMANDA (Algorithmics for MAssive and Networked DAta).

XIV G.F. Italiano

U 49e W (reSp., v <9y w), if there are two edge-disjoint (resp., internally vertex-
disjoint) directed paths from v to w and two edge-disjoint (resp., internally
vertex-disjoint) directed paths from w to v. (Note that a path from v to w
and a path from w to v need not be edge-disjoint or vertex-disjoint). It is easy
to see that v <9, w if and only if the removal of any edge leaves v and w
in the same strongly connected component. Similarly, v <2, w implies that
the removal of any vertex different from v and w leaves v and w in the same
strongly connected component. We define a 2-edge-connected block (resp., 2-
vertex-connected block) of a directed graph G = (V, E) as a maximal subset
B C V such that u <v9, v (resp., u <>y v) for all u,v € B. It can be seen
that, differently from undirected graphs, in directed graphs 2-edge- and 2-vertex-
connected blocks do not correspond to 2-edge-connected and 2-vertex-connected
components.

Furthermore, these notions seem to have a much richer (and more com-
plicated) structure in directed graphs. Just to give an example, we observe
that while in the case of undirected connected graphs the 2-edge-connected
components (which correspond to the 2-edge-connected blocks) are exactly the
connected components left after the removal of all bridges, for directed strongly
connected graphs the 2-edge-connected components, the 2-edge-connected blocks,
and the strongly connected components left after the removal of all strong bridges
are not necessarily the same.

In this talk, we survey some very recent work on 2-edge and 2-vertex connec-
tivity in directed graphs, both from the theoretical and the practical viewpoint.

Social Network Algorithmics*

Ulrik Brandes

Computer & Information Science, University of Konstanz

Network science is a burgeoning domain of data analysis in which the focus is
on structures and dependencies rather than populations and independence [1].
Social network analysis is network science applied to the empirical study of social
structures, typically utilizing observations on social relationships to analyze the
actors involved in them [2].

Methods for the analysis of social networks abound. They include, for in-
stance, numerous centrality indices, vertex equivalences, and clustering tech-
niques, many of which are applied on networks in other disciplines as well. For
substantively oriented analysts, however, it is often difficult to choose, let alone
justify, a particular variant method. Similarly, it is difficult for researchers inter-
ested in computational aspects to understand which methods are worthwhile to
consider and whether variants and restrictions are meaningful and relevant.

In an attempt to bridge the gap between theory and methods, and drawing
on a substantial record of interdisciplinary cooperation, we have developed a
comprehensive research program, the positional approach to network analysis. It
provides a unifying framework for network analysis in the pursuit of two closely
related goals:

1. to establish a science of networks, and

2. to facilitate mathematical and algorithmic research.

The first caters to methodologists and social scientists: by embracing mea-
surement theory, network-analytic methods are opened up for theoretical justifi-
cation and detailed empirical testing. The second caters to mathematicians and
computer scientists: by structuring the space of methods, gaps and opportunities
are exposed.

After a brief introduction and delineation of network science and social net-
work analysis, the main elements of the positional approach are introduced in
this talk. I will then concentrate on exemplary instantiations for analytic con-
cepts such as centrality, roles, and cohesion. Particular emphasis is placed on
resulting combinatorial and algorithmic challenges involving, for instance, par-
tial orders, graphs, and path algebras.

* I gratefully acknowledge financial support from DFG under grant Br 2158/6-1.

XVI U. Brandes

References

1. Brandes, U., Robins, G., McCranie, A., Wasserman, S.: What is network science?
Network Science 1(1), 1-15 (2013)

2. Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks — A Guide
to Empirical Research. Campus, Frankfurt/New York (2012)

Contents

Computational Geometry I

Line-Constrained k-Median, k-Means, and k-Center Problems in the Plane . . 3
Haitao Wang and Jingru Zhang

Reconstructing Point Set Order Types from Radial Orderings 15
Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman,
and Pavel Valtr

A Randomized Divide and Conquer Algorithm for Higher-Order Abstract

Voronoi Diagrams. 27
Cecilia Bohler, Chih-Hung Liu, Evanthia Papadopoulou,
and Maksym Zavershynskyi

Combinatorial Optimization I

Average-Case Complexity of the Min-Sum Matrix Product Problem. 41
Ken Fong, Minming Li, Hongyu Liang, Linji Yang, and Hao Yuan

Efficiently Correcting Matrix Products 53
Leszek Gasieniec, Christos Levcopoulos, and Andrzej Lingas

3D Rectangulations and Geometric Matrix Multiplication 65
Peter Floderus, Jesper Jansson, Christos Levcopoulos,
Andrzej Lingas, and Dzmitry Sledneu

Graph Algorithms: Enumeration

Enumeration of Maximum Common Subtree Isomorphisms
with Polynomial-Delay 81
Andre Droschinsky, Bernhard Heinemann, Nils Kriege, and Petra Mutzel

Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph 94
Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno

An Efficient Method for Indexing All Topological Orders
of a Directed Graph 103
Yuma Inoue and Shin-ichi Minato

XVIII Contents

Matching and Assignment I

Planar Matchings for Weighted Straight Skeletons 117
Therese Biedl, Stefan Huber, and Peter Palfrader

Orienting Dynamic Graphs, with Applications to Maximal Matchings
and Adjacency QUEriest 128
Meng He, Ganggui Tang, and Norbert Zeh

Dynamic and Multi-Functional Labeling Schemes 141
Soren Dahlgaard, Mathias Beek Tejs Knudsen, and Noy Rotbart

Data Structures and Algorithms I

Hashing and Indexing: Succinct Data Structures and Smoothed Analysis. . .. 157
Alberto Policriti and Nicola Prezza

Top-k Term-Proximity in Succinct Space. 169
J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah,
and Sharma V. Thankachan

The Power and Limitations of Static Binary Search Trees with Lazy Finger. .. 181
Presenjit Bose, Karim Douieb, John lacono, and Stefan Langerman

Fixed-Parameter Tractable Algorithms

Minimum-Cost b-Edge Dominating Sets on Trees 195
Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama,
Yusuke Kobayashi, and Yoshio Okamoto

Fixed-Parameter Tractability of Token Jumping on Planar Graphs 208
Takehiro Ito, Marcin Kaminski, and Hirotaka Ono

Covering Problems for Partial Words and for Indeterminate Strings 220
Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen

Scheduling Algorithms

Dynamic Interval Scheduling for Multiple Machines. 235
Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu

Throughput Maximization in Multiprocessor Speed-Scaling. 247
Eric Angel, Evripidis Bampis, Vincent Chau, and Nguyen Kim Thang

Speed-Scaling with No Preemptions 259
Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli

Contents XIX

Computational Complexity

A Short Implicant of a CNF Formula with Many Satisfying Assignments . .. 273
Daniel M. Kane and Osamu Watanabe

On the Computational Complexity of Vertex Integrity and Component
Order Connectivityottt e e 285
Pal Grgnds Drange, Markus Sortland Dregi, and Pim van’t Hof

Co-Clustering Under the Maximum Norm 298
Laurent Bulteau, Vincent Froese, Sepp Hartung, and Rolf Niedermeier

Computational Geometry II

The Price of Order 313
Prosenjit Bose, Pat Morin, and André van Renssen

Range Queries on Uncertain Data. 326
Jian Li and Haitao Wang

On the Most Likely Voronoi Diagram and Nearest Neighbor Searching 338
Subhash Suri and Kevin Verbeek

Approximation Algorithms

An Improved Approximation Algorithm for the Minimum Common
Integer Partition Problem. 353
Weitian Tong and Guohui Lin

Positive Semidefinite Relaxation and Approximation Algorithm for Triple
Patterning Lithography 365
Tomomi Matsui, Yukihide Kohira, Chikaaki Kodama, and Atsushi Takahashi

An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes Based
on Approximate Convolution Integral 376
Ei Ando and Shuji Kijima

Graph Theory and Algorithms

Polynomial-Time Algorithm for Sliding Tokens on Trees 389
Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang,
Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada

Minimal Obstructions for Partial Representations of Interval Graphs. 401
Pavel Klavik and Maria Saumell

Faster Algorithms for Computing the R* Consensus Tree 414
Jesper Jansson, Wing-Kin Sung, Hoa Vu, and Siu-Ming Yiu

XX Contents

Fixed-Parameter Tractable Algorithms II

Complexity and Kernels for Bipartition into Degree-Bounded Induced

Mingyu Xiao and Hiroshi Nagamochi

Faster Existential FO Model Checking on Posets 441
Jakub Gajarsky, Petr Hlineny, Jan Obdridlek, and Sebastian Ordyniak

Vertex Cover Reconfiguration and Beyond 452
Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman

Graph Algorithms: Approximation I

Approximating the Maximum Internal Spanning Tree Problem via
a Maximum Path-Cycle Cover 467
Xingfu Li and Daming Zhu

Approximation Algorithms Inspired by Kernelization Methods. 479
Faisal N. Abu-Khzam, Cristina Bazgan, Morgan Chopin, and Henning Fernau

An 5/4-Approximation Algorithm for Sorting Permutations by Short
Block MOVESot 491
Haitao Jiang, Haodi Feng, and Daming Zhu

Online and Approximation Algorithms

Lower Bounds for On-line Graph Colorings. 507
Grzegorz Gutowski, Jakub Kozik, Piotr Micek, and Xuding Zhu

An On-line Competitive Algorithm for Coloring Pg-free Bipartite Graphs. .. 516
Piotr Micek and Veit Wiechert

Bounds on Double-Sided Myopic Algorithms for Unconstrained
Non-monotone Submodular Maximization. 528
Norman Huang and Allan Borodin

Data Structures and Algorithms II

Tradeoff Between Label Space and Auxiliary Space for Representation
of Equivalence CIassesttt 543
Hicham El-Zein, J. lan Munro, and Venkatesh Raman

Depth-First Search Using O(n) Bits. 553
Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya,
Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara

Dynamic Path Counting and Reporting in Linear Space 565
Meng He, J. Ian Munro, and Gelin Zhou

Contents XX1

Matching and Assignment II

Linear-Time Algorithms for Proportional Apportionment. 581
Zhanpeng Cheng and David Eppstein

Rank-Maximal Matchings — Structureand Algorithms 593
Pratik Ghosal, Meghana Nasre, and Prajakta Nimbhorkar

The Generalized Popular Condensation Problem. 606
Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao

Graph Algorithms: Approximation II

Dirichlet Eigenvalues, Local Random Walks, and Analyzing Clusters
in Graphs. 621
Pavel Kolev and He Sun

Planar Embeddings with Small and Uniform Faces. 633
Giordano Da Lozzo, Vit Jelinek, Jan Kratochvil, and Ignaz Rutter

Scheduling Unit Jobs with a Common Deadline to Minimize the Sum
of Weighted Completion Times and Rejection Penalties 646
Nevzat Onur Domani¢ and C. Gregory Plaxton

Combinatorial Optimization IT

Solving Multi-choice Secretary Problem in Parallel: An Optimal
Observation-Selection Protocol. 661
Xiaoming Sun, Jia Zhang, and Jialin Zhang

A Geometric Approach to Graph Isomorphism. 674
Pawan Aurora and Shashank K. Mehta

Concentrated Hitting Times of Randomized Search Heuristics with
Variable Drift. 686
Per Kristian Lehre and Carsten Witt

Computational Geometry III

Euclidean TSP with Few Inner Points in Linear Space 701
Pawet Gawrychowski and Damian Rusak

Bottleneck Partial-Matching Voronoi Diagrams and Applications. 714
Matthias Henze and Rafel Jaume

Ham-Sandwich Cuts for Abstract Order Types. 726
Stefan Felsner and Alexander Pilz

XXII Contents

Network and Scheduling Algorithms

Graph Orientation and Flows over Time
Ashwin Arulselvan, Martin Grof3, and Martin Skutella

A Simple Efficient Interior Point Method for Min-Cost Flow.
Ruben Becker and Andreas Karrenbauer

Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality
Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran

Author Index

Computational Geometry I

Line-Constrained k-Median, k-Means,
and k-Center Problems in the Plane

Haitao Wang and Jingru Zhang®™

Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu, jingruzhang@aggiemail.usu.edu

Abstract. The (weighted) k-median, k-means, and k-center problems in
the plane are known to be NP-hard. In this paper, we study these prob-
lems with an additional constraint that requires the sought k facilities to
be on a given line. We present efficient algorithms for various distance
metrics such as L1, Lo, Lo. Assume all n weighted points are given sorted
by their projections on the given line. For k-median, our algorithms for L
and Lo, metrics run in O(min{nk, n\/klogn logn, n2@(Viegkloglogn) |5 1)
time and O(min{nklogn, ny/klogn log? n,n20(Vicgkloglogn) 1552 1) time,
respectively. For k-means, which is defined only on the L2 metric, we
give an O(min{nk, n\/klogn,n2°(Vieskloeloem1y time algorithm. For k-
center, our algorithms run in O(nlogn) time for all three metrics, and
in O(n) time for the unweighted version under L; and Lo metrics.

1 Introduction

It has been known that the (weighted) k-median, k-means, and k-center in the
plane are NP-hard [15,24,27]. In this paper, we study these problems with an
additional constraint that the sought k facilities must be on a given line.

For any point p, denote by z(p) and y(p) its z- and y-coordinates, respec-
tively. For any two points p and ¢, denote by d(p, ¢) the distance between p and
q. Depending on the distance metrics, d(p, q) may refer to the L; distance, i.e.,
lz(p) — (@) +[y(p) —y(q)], or the Ly distance, i.e., /(z(p) —2(0))? + (y(p) — y(2))?,
or the Lo, distance, i.e., max{|z(p) — z(q)|, |y(p) — y(q)|}. For convenience, we
define the L2 distance metric as (x(p) — x(q))? + (y(p) — y(q))>.

Let P be a set of n points in the plane, and each point p € P has a weight
w(p) > 0. The goal of the k-median (resp., k-center) problem is to find a set @
of k points (called facilities) in the plane such that 3 plw(p) - mingeq d(p, q)]
(resp., maxyep(w(p) - mingeg d(p, q)]) is minimized. The k-means problem is
actually the k-median problem under the L3 metric.

If all points of @ are required to be on a given line, denoted by x, then we
refer to the corresponding problems as line-constrained or simply constrained
k-median, k-means, and k-center problems. In the following paper, we assume y
is the z-axis and the points of P have been sorted by their z-coordinates.

This research was supported in part by NSF under Grant CCF-1317143.

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 3-14, 2014.
DOI: 10.1007/978-3-319-13075-0-1

4 H. Wang and J. Zhang

Table 1. Summary of our results, where 7 = min{n/klogn,n20(VIceFloglosn)
Furthermore, the unweighted L constrained k-median is solved in O(7) time. The
unweighted L; and Lo, constrained k-center are solved in O(n) time.

constrained k-median constrained k-center
L; O(min{nk,logn}) O(nlogn)
Los O(min{nklogn,Tlog®n}) O(nlogn)
L3 O(min{nk,7}) (i.e., the constrained k-means) not applicable

Throughout the paper, let 7 = min{n/klog n, n20(Viegkloglogn)1 Gee Table 1
for our results. For the constrained k-median, our algorithms for the L; and Lo,
metrics run in O(min{nk, 7logn}) and O(min{nklogn,7log”>n}) time, respec-
tively. The L, unweighted version where all points of P have the same weight can
be solved in O(7) time. These time bounds almost match those of the best algo-
rithms for the one-dimensional k-median problems. Note that the Lo version of
the constrained k-median has been shown unsolvable due to the computation chal-
lenge even for k = 1 [5]. For the constrained k-means, we give an O(min{nk, 7})
time algorithm. For the constrained k-center, our algorithms run in O(nlogn)
time for all three metrics, and in O(n) time for the unweighted version under L,
and L., metrics. These k-center results are optimal.

Our results show that although these problems in 2D are hard, their “1.5D”
versions are “easy”. A practical example in which the facilities are restricted to
lie along a line is that we want to build some supply centers along a railway
or highway (although a railway or highway may not be a straight line, it may
be considered straight in each local area). Other relevant examples may include
building partial delivery stations along an oil or gas transportation pipeline.

1.1 Previous Work

The Ly and Lo k-median and k-center problems in the plane are NP-hard [27],
and so as the Ly, k-center problem [15]. In the one-dimensional space, however,
both problems are solvable in polynomial time: For k-median, the best-known
algorithms run in O(nk) time [4,18] or in O(7logn) time [11]; for k-center, the
best-known algorithms run in O(nlogn) time [10,12,26].

The k-means problem in the plane is also NP-hard [24]. Heuristic and approx-
imation algorithms have been proposed, e.g., see [13,20,23,29].

The unweighted versions of the constrained k-center were studied before. The
L case was first proposed and solved in O(nlog®n) time by Brass et al. [6] and
later was improved to O(nlogn) time by Karmakar et al. [21]. Algorithms of
O(nlogn) time were also given in [6] for L; and L., metrics; note that unlike
our results, even the points are given sorted, the above algorithms [6] still run
in O(nlogn) time. In addition, Brass et al. [6] also gave interesting and efficient
algorithms for other two variations of the unweighted k-center problems, i.e.,
the line y is not fixed but its slope is fixed, or x is arbitrary. To the best of our
knowledge, we are not aware of any previous work on the weighted versions of
the constrained k-median and k-center problems studied in this paper.

Line-Constrained k-Median, k-Means, and k-Center Problems 5

Efficient algorithms have been given for other special cases. When k = 1,
Megiddo [25] solved the unweighted Lo 1-center problem in O(n) time. Hurtado
[19] gave an O(n + m) time algorithm for the unweighted Ly 1-center problem
with the center restricted in a given convex polygon of m vertices. For k =
2, Chan [7] proposed an O(nlog® nlog®logn) time for the unweighted Ly 2-
center problem and another randomized algorithm; if the points are in convex
positions, the same problem can be solved in O(nlog2 n) time [22]. The Ly 1-
median problem is also known as the Weber problem and no exact algorithm is
known for it (and even for the constrained version) [5].

Alt et al. [3] studied a somewhat similar problem to our unweighted con-
strained problems, where the goal is to find a set of disks whose union covers all
points and whose centers must be on a given line such that the sum of the radii
of all disks is minimized, and they gave an O(n?logn) time algorithm [3]. Note
that this problem is different from our k-median, k-means, or k-center problems.

1.2 Our Approaches

Suppose pi1,p2,-..,py are the points of P ordered by increasing z-coordinate.
We discover an easy but crucial observation: for every problem studied in this
paper, there always exists an optimal solution in which the points of P “served”
by the same facility are consecutive in their index order.

For convenience of discussion, in the following paper we will refer to the
k-means problem as the k-median problem under the L3 metric.

Based on the above observation, for the constrained k-median, we propose
an algorithmic scheme that works for all metrics (i.e., Ly, Lo, L3, and L), by
modeling the problem as finding a minimum weight k-link path in a DAG G.
Furthermore, we prove that the weights of the edges of G satisfy the concave
Monge property and thus efficient techniques [2,28] can be used. One challenging
problem for the scheme is that we need to design a data structure to compute any
graph edge weight (i.e., given any 7 and j with ¢ < j, compute the optimal objec-
tive value for the constrained 1-median problem on the points p;, piy1,...,D;)-

For the L3 metric (i.e., the k-means), we build such a data structure in O(n)
time that can answer each query in O(1) time. For the Lo, metric, we build such
a data structure in O(nlogn) time that can answer each query in O(log® n) time.
Combining this data structure with the above algorithmic scheme, we can solve
the L2 and L., cases. In addition, based on interesting observations, we give
another algorithm for the L., case that is faster than the above scheme for
a certain range of values of k. For the L; metric, instead of using the above
algorithmic scheme, we reduce the problem to the one-dimensional k-median
problem and then the algorithms in [4,11,18] can be applied.

For the constrained k-center, to solve the Lo case, we generalize the O(nlogn)
time algorithm in [21] for the unweighted version. In fact, similar approaches
can also solve the L; and L., cases. However, since the algorithm uses Cole’s
parametric search [12], which is complicated and involves large constants and
thus is only of theoretical interest, we design another O(nlogn) time algorithms
for the L; and L, cases, without using parametric search.

6 H. Wang and J. Zhang

In addition, for the unweighted L, and L., cases, due to the above crucial
observation, our linear time algorithm hinges on the following efficient data struc-
tures. With O(n) time preprocessing, for any query ¢ < j, we can solve in O(1)
time the constrained L; and Lo, 1-median problems on the points p;, pit1,...,p;.

Note that our algorithms for the Ly and L3 metrics work for any arbitrary
line x (but x must be given as input). However, since the distances under L;
and L., metrics are closely related to the orientation of the coordinate system,
our algorithms for them only work for horizontal lines x.

We introduce some notations and observations in Section 2. In Sections 3
and 4, we present our algorithms for the constrained k-median (including the
k-means) and k-center problems, respectively. Due to the space limit, all lemma
and theorem proofs are omitted and can be found in the full paper.

2 Preliminaries

For simplicity of discussion, we assume no two points in P have the same
z-coordinate. Let pi,p2,...,p, be the points of P ordered by increasing z-
coordinate. Define P(3,j) = {pi,pi+1,...,p;} for any ¢ < j. For any 1 < ¢ < n,
we also use z;, y;, and w; to refer to z(p;), y(p;), and w(p;), respectively.

For any facility set @ and any point p, let d(p, Q) = mingeq d(p,q). For
any point p € P, if d(p,Q) = d(p,q) for some facility point ¢ € @, then we
say p is “served” by q. We call Epep[w(p) -d(p, Q)] and max,eplw(p) - d(p, Q)]
the objective value of the k-median and k-center problems, respectively. The
following is an easy but crucial lemma.

Lemma 1. For each of the constrained k-median and k-center problems of any
metric (i.e., L1, Lo, L3, or Ly,), there must exist an optimal solution in which
the points of P served by the same facility are consecutive in their index order.

For any ¢ < j, consider the constrained 1-median problem on P(%, j); denote
by f(i,7) the facility in an optimal solution and define (3,) to be the objective
value of the optimal solution, i.e., a(i, j) = > 1_,[we-d(pt, f(i,7))]. We call f(i, j)
the constrained median of P(i,j). In the case that f(i,7) is not unique, we let
f(i,7) refer to the leftmost such point. By Lemma 1, solving the constrained
k-median problem is equivalent to partitioning the sequence p1, ps, ..., p, into k
subsequences such that the sum of the a values of all these subsequences is mini-
mized. There are also similar observations for the constrained k-center problem.
As will be seen later, these observations are quite useful for our algorithms.

For any point p on the z-axis, for convenience, we also use p to denote its
z-coordinate. For example, if two points p and ¢ are on the z-axis, then p < ¢
means that p is strictly to the left of ¢q. For any value x, we sometime also use x
to refer to the point on the z-axis with z-coordinate x.

3 The Constrained k-Median

This section gives our algorithms for the constrained k-median under L, L3,
and L., metrics. We first propose an algorithmic scheme in Section 3.1 that

Line-Constrained k-Median, k-Means, and k-Center Problems 7

i Ui Li+1 Zj Uj Tjy1 T ‘ I; r

Figure 1. Illustrating an edge of G from v; to Figure 2. Illustrating the function
vj, i.e., the two (red) squared points d(pi, z): the (red) thick segment is I;

works for any metric. To use the scheme, one has to design a data structure for
computing (i, 7) for any query i and j with i < j. We solve the L3 case (i.e., the
k-means) by giving such a data structure in the end of Section 3.1. In Section
3.2, we design such a data structure for L., metric, and thus solves the L.,
case. In addition, we give another algorithm that is faster than the scheme for a
certain range of values of k. Instead of using the scheme, we get a better result
for the L; case in Section 3.3 by reducing it to the one-dimensional problem.

3.1 An Algorithmic Scheme for All Metrics

In this subsection, unless otherwise stated, all notations involving distances, e.g.,
d(p,q), a(i,), can use any distance metric (i.e., L1, Lo, L3, and Ly).

In light of our observations in Section 2, we will reduce the problem to finding
a minimum weight k-link path in a DAG G. Further, we will show that the edge
weights of G satisfy the concave Monge property and then efficient algorithms
[1,2,28] can be used. Below, we first define the graph G.

For each point p; € P, recall that z; = z(p;) and we also use z; to denote
the projection of p; on the z-axis. The vertex set of G consists of n + 1 vertices
V9, V1, - - -, Unp, and one can consider each v; corresponding to a point between x;
and x;41 (vo is to the left of 1 and v, is to the right of z,); e.g., see Fig.1.
For any 4 and j with 0 < i < j < n, we define a directed edge e(i, j) from v; to
vj;, and the weight of the edge, denoted by w(3, j), is defined to be a(i +1, j) (if
we view v; and v; as two points on the z-axis as above, then ;05 contains the
points x;11,%i19,...,2;). Clearly, G is a directly acyclic graph (DAG).

A path in G is a k-link path if it has k edges. The weight of any path is the
sum of the weights of all edges of the path. A minimum weight k-link path from
vp to v, in G is a k-link path that has the minimum weight among all k-link
paths from vy to v,. Note that any k-link path from vy to v, in G corresponds to
a partition of the points in P into k subsequences. According to our observations
in Section 2 and the definition of G, the following lemma is self-evident.

Lemma 2. A minimum weight k-link path w from vy to vy, in G corresponding to
an optimal solution OPT of the constrained k-median problem on P. Specifically,
the objective value of OPT is equal to the weight of m, and for each edge e(v;,v;)
of m, there is a corresponding facility serving all points of P(i + 1,5) in OPT.

Lemma 3. For any metric, the weights of the edges of G satisfy the concave
Monge property, i.e., w(i,j)+w(i+1,7+1) <w(i,j+1)+w(i+1,5) holds for
any 1 <1< j<n.

8 H. Wang and J. Zhang

By Lemma 3, we can apply the algorithm in [1,2,28]. Assuming the weight of
each graph edge w(i, j) can be obtained in O(1) time, the algorithms in [2] and
[28] can compute a minimum weight k-link path from vy to v, in O(nv/klogn)
time and O(HQO(VIOgMOg log ”)) time, respectively. Further, as indicated in [2],
by using dynamic programming and applying the technique in [1], such a path
can also be computed in O(nk) time. In our problem, to compute each w(i, 7) is
essentially to compute a(i + 1, j). Therefore, we can obtain the following result.

Theorem 1. For any metric, if we can build a data structure in O(T) time
that can compute a(i,j) in O(o) time for any query ¢ < j, then we can solve
the constrained k-median problem in O(T + o - min{nk,7}) time, where 7 =
min{\/nklogn,n20(Viegkloglogn)y

The following result is an application of our algorithmic scheme in Theorem 1
to the L3 case (i.e., the k-means).

Theorem 2. For the L% metric, a data structure can be built in O(n) time that
can answer each «(i,j) query in O(1) time. Consequently by Theorem 1 the
constrained k-means problem can be solved in O(min{nk,7}) time.

3.2 The Constrained k-Median under the L,.-Metric

In this section, all notations related to distances use the L, metric. We present
two algorithms. For the first algorithm, our main goal is to prove Lemma 4.
Thus, by Theorem 1, we can solve the Lo, case in O(min{nk,7} - logn) time.

Lemma 4. For the Lo, metric, a data structure can be constructed in O(nlogn)
time that can answer each a(i,j) query in O(log®n) time.

For any point p;, let I; denote the interval on the z-axis centered at x; with
length |y;| (i.e., the absolute value of the y-coordinate of p;). Note that the points
of I; have the same (L) distance to p;. Consider d(p;, z) as a function of a point
2 on the z-axis. As z changes from —oo to +00, d(p;, z) first decreases and then
does not change when x € I; and finally increases (e.g., see Fig. 2). Consider
any two indices i < j. Let FE(i,j) be the set of the endpoints of all intervals I;
for i <t < j. For any point on the z-axis, define ¢(4,j,z) = >_7_, wid(p,).
By the definition of f(i,7), ¢(4,j,«) is minimized at * = f(i,5) and (s, j) =
@(i,7, f(i,7)). Lemma 5 is crucial for computing a(i,).

Lemma 5. The function ¢(i, j, z) is a continuous piecewise linear function whose
slopes change only at the points of E(i, j). Further, there exist two points in E(i, j),
denoted by ' and x'" with ' < 2" (x' = 2" is possible), such that as x increases
from —oo to +o0, ¢(i, 4, x) will strictly decrease when x < ', and will be constant
when x € [z, "], and will strictly increase when x > .

By Lemma 5, to compute «(4, j), which is the minimum value of ¢(z, 1, j), we
can do binary search on the sorted list of E(i,j), provided that we can compute

Line-Constrained k-Median, k-Means, and k-Center Problems 9

@(i,j,x) efficiently for any z. Since E(i,j) C E(1,n), we can also do binary
search on the sorted list of E(1,n) to compute «(i, j). Hence, as preprocessing,
we compute the sorted list of E(1,n) in O(nlogn) time since |E(1,n)| = 2n.

According to the above discussion, for any query (i,j) with i < j, if we
can compute ¢(i, 7, z) in O(c’) time for any x, then we can compute a(i,j) in
O(o’logn) time. The following Lemma 6 gives a data structure for answering
@(i, 7, x) queries, which immediately leads to Lemma 4.

Lemma 6. We can construct a data structure in O(nlogn) time that can com-
pute ¢(i, j,x) in O(logn) time for any i < j and x.

Proof. Let T be a complete binary tree whose leaves correspond to the points
of P from left to right. For each 1 < i < n, the i-th leaf is associated with
the function w;d(p;,x), which is actually ¢(i,,). Consider any internal node
v. Let the leftmost (resp., rightmost) leaf of the subtree rooted at v be the i-th
(resp., j-th) leaf. We associate with v the function ¢(i,j, x), and we also use
oy () to denote the function. By Lemma 5, the combinatorial complexity of the
function ¢, (x) is O(j —i+1). Let u and w be v’s two children. Suppose we have
already computed the two functions ¢, (z) and ¢, (x); since essentially ¢, (z) =
Ou(x) + oy (), we can easily compute ¢, (z) in O(j — i+ 1) time. Therefore, we
can compute the tree T in O(nlogn) time in a bottom-up fashion.

Consider any query i < j and = = 2’ and the goal is to compute ¢(i, j, x').
By standard approaches, we first find O(logn) maximum subtrees such that
the leaves of these subtrees are exactly the leaves from the i-th leaf to the j-th
one. Let V be the set of the roots of these subtrees. Notice that ¢(i,j,2') =
> vey Gu(a’). For each v € V, we can compute the value ¢,(z’) in O(logn)
time by doing binary search on the function ¢, (z) associated with v. In this
way, since |V| = O(logn), we can compute ¢(i,7,2') in overall O(log®n) time.
We can avoid doing binary search on every node of V' by constructing a fractional
cascading structure [8] on the functions ¢, (z) of the nodes of T'. Using fractional
cascading, we only need to do one binary search on the root of T, and then the
values ¢, (z') for all nodes v of V' can be computed in constant time each. The
fractional cascading structure can be built in additional O(nlogn) time [8].

As a summary, we can construct a data structure in O(nlogn) time that can
compute ¢(i,j,x) in O(logn) time for any ¢ < j and z. O

By Theorem 1 and Lemma 4, we can solve the constrained k-median problem
under Lo, metric in O(nklog?n) or O(7log®n) time.

Our second algorithm is based on the following Lemma 7, which can be easily
proved based on Lemma 5.

Lemma 7. For the L., constrained k-median problem on P, there must exist
an optimal solution in which the facility set @Q is a subset of E(1,n).

By Lemma 7, we have a set of “candidate” facilities, and further, by Lemma 1,
we only need to check these candidates from left to right. Based on these obser-
vations, we develop a dynamic programming algorithm and the result is given
in Lemma 8.

10 H. Wang and J. Zhang

Lemma 8. The Ly, constrained k-median is solvable in O(nklogn) time.
Combining the two algorithms, we obtain the following theorem.

Theorem 3. The constrained k-median problem under the L., metric can be
solved in O(min{nklogn,Tlog>n}) time.

3.3 The Constrained k-Median Problem under L.-Metric

To solve the L; case, instead of using Theorem 1, we get a better result by
reducing it to the one-dimensional problem and then applying the algorithms in
[4,11,18]. In this section, all notations related to distances use the L; metric.

Recall that our goal is to minimize Y . [w; - d(p;, Q)]. Consider any point
p; € P. For any point ¢ on the z-axis, since d(p;,q) is the L; distance, we
have d(p;,q) = d(xi,q) + |y;|- Since all points of @ are on the z-axis, it holds
that d(p;, Q) = mingeq d(p;,q) = |yi| + mingeq d(x;, ¢). Therefore, we obtain
Sy - dpn Q) = Sy wilyal + o fwg - (2, Q)]

Note that once P is given, Y ., w;|y;| is constant, and thus, to minimize
Yo [wi-d(pi, Q)] is equivalent to minimizing Y, [w; -d(z;, Q)], which is essen-
tially the following one-dimensional k-median problem: Given a set of n points
P’ ={x1,22,...,z,} on the z-axis with each z; having a weight w(x;) = w; > 0,
find a set @ of k points on the z-axis to minimize >, [w; - d(z;, Q)].

The above 1D k-median problem is a continuous version because each point of
our facility set @) can be any point on the z-axis. There is also a discrete version,
where @ is required to be a subset of P’. The algorithms given in [4,11,18] are
for the discrete version and therefore we cannot apply their algorithms directly.
Fortunately, due to some observations, we prove below that for our continuous
version there always exists an optimal solution in which the set @) is a subset of
P’, and consequently we can apply the discrete version algorithms.

Consider any indices i < j. Let P'(i,5) = {x;, xi41,...,2;}. As in the L
case, for any point z on the z-axis, define ¢(i,j,x) = >.7_. wed(z¢,x). The
following lemma is similar in spirit to Lemma 5.

Lemma 9. The function ¢(i, j,) is a continuous piecewise linear function whose
slopes change only at the points of P' (i, j). Further, there exist two pointsin P’ (i, j),
denoted by ©' and " with o’ < z" (¢’ = x" is possible), such that as x increases
from —oo to +00, ¢(i, j,) will strictly decrease when x < x’, and will be constant
when z € [z, "], and will strictly increase when > x''.

By Lemma 9, we can obtain the following lemma.

Lemma 10. For the 1D k-median problem on P’, there must exist an optimal
solution in which the facility set Q is a subset of P’.

In light of Lemma 10, we can apply the algorithms in [4,11,18] to solve the k-
median problem on P’. The algorithms in [4,18] run in O(nk) time and the algo-
rithm in [11] runs in O(7logn) time and O(7) time for the unweighted case.

Theorem 4. The Ly constrained k-median can be solved in O(min{nk, 7logn})
time and the unweighted case can be solved in O(min{nk,t}) time.

Line-Constrained k-Median, k-Means, and k-Center Problems 11

4 The Constrained k-Center

This section presents our k-center algorithms. We first give a linear time algo-
rithm to solve the decision version of the problem for all metrics. Then, we
present an O(nlogn) time algorithm for the Lo metric. In fact, similar algo-
rithms also work for the other two metrics. However, since the algorithm uses
Cole’s parametric search [12], which is complicated, we give another O(nlogn)
time algorithm for Ly and L., metrics, without using parametric search. Finally,
we give an O(n) time algorithm for the unweighted case under L; and Lo, met-
rics.

In the following, unless otherwise stated, all notations related to distances
are applicable to all three metrics, i.e., L1, Lo, and L.

The decision version of the problem is as follows: given any value €, determine
whether there are a set @ of k facilities such that max,c p[w(p)-d(p, Q)] < €, and
if yes, we call € a feasible value. We let €* denote the optimal objective value,
ie., € = maxyep[w(p) - d(p, Q)] for the facility set @ in any optimal solution.
Hence, for any e, it is a feasible value if and only € > €*.

For any point p; € P, denote by I(p;, €) the set of points g on the z-axis such
that w;d(p;, ¢) < e. Note that I(p;, €) is the intersection of the “disk” centered at
p; with radius ¢/w; (the “disk” is a diamond, a real circular disk, and a square
under Lq, Lo, and Lo, metrics, respectively). Hence, I(p;,¢€) is an interval and
we refer to I(p;, €) as the facility location interval of p;. Note that for any subset
P(i,), if the intersection of all facility location intervals of P(4,j) is not empty,
then any point in the above intersection can be used as a facility to serve all
points of P(i,j) within weighted distance e.

We say a point covers an interval on the z-axis if the interval contains the
point. Let I(P,€) be the set of all facility location intervals of P. According to
the above discussion, to determine whether € is a feasible value, it is sufficient
to compute a minimum number of points that can cover all intervals of I(P,¢),
which can be done in O(n) time after the endpoints of all intervals of I(P, €) are
sorted [17]. The overall time for solving the decision problem is O(nlogn) due
to the sorting. Below, we give an O(n) time algorithm, without sorting.

Similar to Lemma 1, if € is a feasible value, then there exists a feasible solu-
tion in which each facility serves a set of consecutive points of P. Using this
observation, our algorithm works as follows. We consider the intervals of I(P,€)
from I(p1,€) in the index order of p;. We find the largest index j such that

?_1 I(pi, €) is not empty, and then we place a facility at any point in the above
intersection to serve all points in P(1, 7). Next, from I(pj+1,€), we find the next
maximal subset of intervals whose intersection is not empty to place a facility.
We continue this procedure until the last interval I(p,,€) has been considered.
Clearly, the running time of the algorithm is O(n). Let k' be the number of
facilities that are placed in the above procedure. The value € is a feasible value
if and only if k¥’ < k. Hence, we have the following result.

Lemma 11. Given any value €, we can determine whether € is a feasible value
in O(n) time for any metric.

12 H. Wang and J. Zhang

4.1 The L, Metric

For any € and each 1 < ¢ < n, let [;(¢) and r;(e) denote the left and right
endpoints of I(p;,€), respectively. Recall that €* is the optimal objective value.
Let S = {l;(e*),ri(e*) | 1 < i < n}. If we know the sorted lists of the values
of S, then we can use our decision algorithm to compute an optimal facility set
in O(n) time. Although we do not know €*, we can still sort S by parametric
search [12]. In the parametric search, we will need to compare two values of S.
Although we do not know €*, we can resolve the comparison using our decision
algorithm in Lemma 11. We omit the details.

Theorem 5. The constrained k-center problem wunder the Lo metric can be
solved in O(nlogn) time, by using Cole’s parametric search.

4.2 The L, and L., Metrics

We present O(nlogn) time algorithms for the L; and Lo, metrics, without using
parametric search. We consider the L case first.

We define [;(¢) and r;(¢) in the same way as before. We consider [;(¢) and 7;(¢)
as functions of e. It can be verified that r;(¢) = x; + ¢/w; — |y;| and [;(e) =
x; —€/w; +|y;i|, both defined on € > w; - |y;|. Hence, each of [;(¢) and r;(¢) defines
a half-lines. Let A be the set of the half-lines defined by [;(¢) and r;(e) for all
i=1,2,...,n. As analyzed in [6] for the unweighted case, the optimal objective
value €* must be the y-coordinate of an intersection of two half-lines of A. In
fact, €* is the smallest feasible value among the y-coordinates of all intersections
of the half-lines of A. Let A be the arrangement of the lines containing the half-
lines of A. The intersection of two lines of A is called a vertex. Hence, €* is the
smallest feasible value among the y-coordinates of the vertices of A. Therefore,
to solve the constrained k-center problem on P, it is sufficient to find the lowest
vertex (denoted by v*) of A whose y-coordinate is a feasible value (which is €*)
and then apply our decision algorithm in Lemma 11 on €* to find an optimal
facility set in additional O(n) time. Such a vertex v* can be found by using a
line arrangement searching technique given in [9] and our decision algorithm.
The details are omitted.

Lemma 12. Such a vertex v* can be found in O(nlogn) time.

Hence, we can solve the L; constrained k-center problem in O(nlogn) time.

For the L., case, the algorithm is similar. Under L., metric, it can be verified
that r;(€) = z; + ¢/w; and l;(€) = x; — €/w;, both defined on € > w; - |y;|. Hence,
each of 7;(e) and [;(¢) still defines a half-line, as in the L; case. Therefore, we
can use the similar algorithm as in the L; case.

Theorem 6. The L; and L., constrained k-center problems can be solved in
O(nlogn) time, without using parametric search.

Line-Constrained k-Median, k-Means, and k-Center Problems 13

4.3 The Unweighted Case under L; and L., Metrics

We give an O(n) time algorithm for the unweighted case under L; and L, metrics.
For any ¢ < j, consider the constrained 1-center problem on the points in P(i, j);
denote by ¢(i, j) the facility in an optimal solution and define (3(i, j) to be the
objective value of the optimal solution, i.e., 5(4,5) = max;<i<; wed(ps, 9(%,7))-
We call g(i, j) the constrained center of P(i, 7).

By Lemma 1, solving the constrained k-median problem is equivalent to par-
titioning the sequence py, pa, . . ., p, into k subsequences such that the maximum
of the 8 values of all these subsequences is minimized. Formally, we want to find
k — 1 indices ig < i1 < 19 < -+ < igp_1 < i, with ig = 0 and ¢ = n, such that
mabxé?z1 B(ij—1+1,4;) is minimized. This is exactly the MIN-MAX PARTITION
problem proposed in [14]. Based on Frederickson’s algorithm [16], the following
result is a re-statement of Theorem 2 in [14] with respect to our problem.

Lemma 13. [14] If B(i,j) < B(#', ") holds for any 1 < i’ < i < j < j <
n, then we have the following result. For any metric, suppose after O(T) time
preprocessing, we can compute 3(i,j) in O(o) time for any query i < j; then the
constrained k-center problem can be solved in O(T + no) time.

Clearly, the condition on (values in Lemma 13 holds for our problem. In
Lemma 14, we give data structures for (4, j) queries under L; and L., metrics.

Lemma 14. For L; and Lo, metrics, with O(n) time preprocessing, we can
compute ((i,j) in constant time for any query i < j.

Our linear time algorithm follows immediately from Lemmas 13 and 14.

References

1. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilbur, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195-208 (1987)

2. Aggarwal, A., Schieber, B., Tokuyama, T.: Finding a minimum weight k-link path
in graphs with concave monge property and applications. Discrete and Computa-
tional Geometry 12, 263-280 (1994)

3. Alt, H., Arkin, E., Bronnimann, H., Erickson, J., Fekete, S., Knauer, C., Lenchner,
J., Mitchell, J., Whittlesey, K.: Minimum-cost coverage of point sets by disks.
In: Proc. of the 22nd Annual Symposium on Computational Geometry, SoCG,
pp. 449458 (2006)

4. Auletta, V., Parente, D., Persiano, G.: Placing resources on a growing line. Journal
of Algorithms 26(1), 87-100 (1998)

5. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete and
Computational Geometry 3, 177-191 (1988)

6. Brass, P., Knauer, C., Na, H.S., Shin, C.S., Vigneron, A.: The aligned k-center
problem. International Journal of Computational Geometry and Applications 21,
157-178 (2011)

7. Chan, T.: More planar two-center algorithms. Computational Geometry: Theory
and Applications 13(3), 189-198 (1999)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. Wang and J. Zhang

Chagzelle, B., Guibas, L.: Fractional cascading: I. A Data structuring technique.
Algorithmica 1(1), 133-162 (1986)

Chen, D., Wang, H.: A note on searching line arrangements and applications.
Information Processing Letters 113, 518-521 (2013)

Chen, D., Li, J., Wang, H.: Efficient algorithms for one-dimensional k-center prob-
lems (2013), arXiv:1301.7512

Chen, D., Wang, H.: New algorithms for facility location problems on the real line.
Algorithmica 69, 370-383 (2014)

Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM 34(1), 200-208 (1987)

Floyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28, 129-137 (1982)

Fournier, H., Vigneron, A.: Fitting a step function to a point set. Algorithmica
60(1), 95-109 (2011)

Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane
are NP-complete. Information Processing Letters 12, 133-137 (1981)
Frederickson, G.: Optimal algorithms for tree partitioning. In: Proc. of the 2nd
Annual Symposium of Discrete Algorithms, SODA, pp. 168-177 (1991)

Gupta, U., Lee, D., Leung, J.: Efficient algorithms for interval graphs and circular-
arc graphs. Networks 12, 459-467 (1982)

Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Operations Research Letters 10, 395-402 (1991)

Hurtado, F., Sacristn, V., Toussaint, G.: Some constrained minimax and maximin
location problems. Studies in Locational Analysis 5, 17-35 (2000)

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local
search approximation algorithm for k-means clustering. Computational Geometry:
Theory and Applications 28, 89-112 (2004)

Karmakar, A., Das, S., Nandy, S., Bhattacharya, B.: Some variations on con-
strained minimum enclosing circle problem. Journal of Combinatorial Optimization
25(2), 176-190 (2013)

Kim, S.K., Shin, C.-S.: Efficient algorithms for two-center problems for a convex
polygon. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.)
COCOON 2000. LNCS, vol. 1858, pp. 299-309. Springer, Heidelberg (2000)
Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + €)-approximation
algorithm for k-means clustering in any dimensions. In: Proc. of the 45th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 454-462 (2004)
Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theoretical Computer Science 442, 13-21 (2012)

Megiddo, N.: Linear-time algorithms for linear programming in R® and related
problems. STAM Journal on Computing 12(4), 759-776 (1983)

Megiddo, N.: Linear programming in linear time when the dimension is fixed.
Journal of the ACM 31(1), 114-127 (1984)

Megiddo, N., Supowit, K.: On the complexity of some common geometric location
problems. STAM Journal on Comuting 13, 182-196 (1984)

Schieber, B.: Computing a minimum weight k-link path in graphs with the concave
monge property. Journal of Algorithms 29(2), 204222 (1998)

de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: Proc. of the 25th Annual ACM Symposium on Theory
of Computing (STOC), pp. 50-58 (2003)

http://arxiv.org/abs/1301.7512

Reconstructing Point Set Order Types
from Radial Orderings

Oswin Aichholzer?, Jean Cardinal?, Vincent Kusters?®),

Stefan Langerman?, and Pavel Valtr*

! Institute for Software Technology, Graz University of Technology,
Graz, Austria
oaich@ist.tugraz.at
2 Computer Science Department, Université libre de Bruxelles (ULB),
Brussels, Belgium
jcardin@ulb.ac.be,slanger@ulb.ac.be
3 Department of Computer Science, ETH Ziirich, Zurich, Switzerland
vincent.kusters@inf.ethz.ch
4 Department of Applied Mathematics, Charles University,

Prague, Czech Republic
valtr@kam.mff.cuni.cz

Abstract. We consider the problem of reconstructing the combinatorial
structure of a set of n points in the plane given partial information on
the relative position of the points. This partial information consists of
the radial ordering, for each of the n points, of the n — 1 other points
around it. We show that this information is sufficient to reconstruct the
chirotope, or labeled order type, of the point set, provided its convex
hull has size at least four. Otherwise, we show that there can be as
many as n — 1 distinct chirotopes that are compatible with the partial
information, and this bound is tight. Our proofs yield polynomial-time
reconstruction algorithms. These results provide additional theoretical
insights on previously studied problems related to robot navigation and
visibility-based reconstruction.

1 Introduction

Many properties of point sets in the plane do not depend on the exact coordinates
of the points but only on their relative positions. The order type, or chirotope,
of a point set P C R? is the orientation (clockwise or counterclockwise) of
every ordered triple of P [1]. More precisely, a chirotope y associates a sign

O. Aichholer is partially supported by the ESF EUROCORES programme
EuroGIGA, CRP ComPoSe, Austrian Science Fund (FWF): 1648-N18. J. Cardi-
nal is partially supported by the ESF EUROCORES programme EuroGIGA, CRP
ComPoSe, and the Fonds National de la Recherche Scientifique (F.R.S. - FNRS). V.
Kusters is partially supported by the ESF EUROCORES programme EuroGIGA,
CRP GraDR and the Swiss National Science Foundation, SNF Project 20GG21-
134306. Part of the work was done during an ESF EUROCORES-funded visit of V.
Kusters to J. Cardinal. S. Langerman is Directeur de Recherches du F.R.S.-FNRS.
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 15-26, 2014.
DOT: 10.1007/978-3-319-13075-0_2

16 O. Aichholzer et al.

x(a,b,c) € {0,+1,—1} with each ordered triple (a,b,c) of points, indicating
whether the three points a, b, ¢ make a left turn (41), a right turn (—1), or are
collinear (0). When x(a, b, c) # 0 for all triples (a, b, ¢), the order type is said to
be uniform or to be in general position. We consider only uniform order types.

Chirotopes must satisfy a collection of well-studied axioms which define the
abstract order types. For details on the axioms, we refer the reader to a book by
Knuth [2], who refers to chirotopes as CC-systems. These axioms form one of the
several axiom systems that define uniform acyclic rank-8 oriented matroids [3].
An abstract order type Y is realizable if there exists a point set in R? with order
type x. An abstract order type x is typically identified with its opposite —y,
where all signs are reversed, and we follow this convention in this paper. Abstract
order types correspond exactly to arrangements of pseudolines, as a consequence
of the Folkman-Lawrence topological representation theorem [4]. The smallest
non-realizable order type corresponds to the well-known Pappus arrangement of
nine pseudolines; all smaller order types are realizable. The convex hull hq, ..., h;
of x is uniquely defined (also for non-realizable order types) by the property?
that x(h;, hit1,v) =41 forall v € V\ {h;, hit1} and all 1 <4 < ¢

Unlike most other publications on order types, we consider labeled order
types, not order type isomorphism classes. For instance, whereas there is only
one order type isomorphism class for four points in convex position, there are
actually three such labeled order types. More precisely, given two order types x1
and x2 on a set V, we define x3 = x» if and only if either (i) for all u,v,w € V:
X1 (u, v,w) = x2(u,v,w) or (i) for all u,v,w € V: x1(u,v,w) = —x2(u,v,w).
Radial Orderings and Radial Systems. We
next introduce the clockwise radial system R, of
an abstract order type x (in general position) on
a set V. For an element u of V, let R, (u) be
the clockwise radial ordering of u, defined as the
unique cyclic ordering vy, . .., v,_1 of all elements
other than u, sorted clockwise around u. Figure 1 -
shows a point set and the clockwise radial order- h1
ings of one of its points.

When given only the abstract order type ¥,
we can compute R, (u) as follows. Let v be any
vertex other than u. Now sort V'\ {u} radi- pig 1. A point set with
ally around u by using w < w’ iff x(u,v,w) > R (a) = ha, hs,b, ha, 1
X(U,’U,w/), or X(U,’U,w) = X(U,’U,’LU’) and
x(w,u,w’") = +1 (where x(u,v,v) :=0).

We write U ~ R, and say that U and R, are equivalent if U can be obtained
from R, by reversing of some of the clockwise radial orderings of R,. Thus the
relation ~ forgets about the directions of the radial orderings. We call U an
undirected radial system, and each U(v) an undirected radial ordering.

While x uniquely determines the equivalence class of R, , the converse is not
necessarily true. We define T'(U) as the set of labeled order types x for which

! Index additions and substractions are always modulo the length of the sequence.

Reconstructing Point Set Order Types from Radial Orderings 17

U ~ R,. In this paper we investigate the properties of T(U). We show that in
many cases T'(U) = {x} for U ~ R, in other words, that x can be reconstructed
uniquely from one of its undirected radial systems. However, this is not true in
general, as we will discuss below.

Local Sequences. Radial orderings are similar in flavor, but different than local
sequences defined by Goodman and Pollack [5]. The radial ordering around a
point p can be thought of as the order of the intersections of a ray of origin p with
the other points. If instead of a ray, we consider the successive intersections of a
rotating line through p with the other points, we get what Goodman and Pollack
call the local sequences. The order type (up to projective transformations) can
be recovered from the local sequences. Felsner [6] and Felsner and Valtr [7] study
simplified encodings of local sequences to prove upper bounds on the number of
pseudoline arrangements.

Examples. Figure 2 shows three point sets with different (labeled) order types.
Figure 2(a) and 2(b) have equivalent radial systems, but Figure 2(c) has a dif-
ferent radial system. Conversely, Figure 2(a) and 2(c) have equivalent local
sequences (the sequence for point 1 is reversed), but Figure 2(b) has differ-
ent local sequences. It follows that local sequences and radial orderings are
incomparable in the sense that neither can be computed from the other in gen-
eral. Figure 2(b) is obtained from Figure 2(a) by cyclically shifting the labels
2,3,...,n once. Each such cyclic shift in this example preserves the undirected
radial system U, and hence |T'(U)| > n — 1. We show in what follows that this
is the worst case in the sense that |T'(U)| < n — 1 for all radial systems U.
Figure 3(a-b) shows another example of two point sets with different order types
but the same radial system U. In this case, a discussion later in the paper shows
that |T'(U)| = 2.

In the preceeding examples, the labeled ordered types were distinct, but
isomorphic in the sense they differ only by a relabeling of the points. Figure 3(c-
d) shows that this is not always the case: the two point sets have the same radial
system and distinct and non-isomorphic order types (see [8]). This construction
can be generalized to obtain examples with an arbitrary number of points.

Related Work. Concepts similar to radial systems have been studied in a
wide variety of contexts. Tovar, Freda and LaValle [9] considered the problem
of exploring an unknown environment using a robot that is able to sense the

(a) (b)

Fig.2. An example to illustrate the difference between local sequences and radial
systems

18 O. Aichholzer et al.

Fig. 3. (a-b) Two point sets with equivalent radial systems. The points a, 1,...,k,a’
lie on a convex arc in both sets. (c-d) Two point sets with the same radial system but
nonisomorphic order types.

radial orderings of landmarks around it. They use the order type machinery
as well, and consider robots with operations like moving towards a landmark
to accomplish several recognition tasks. Wismath [10] considered related recon-
struction problems involving partial visibility information. He mentions the fact
that radial orderings are not always sufficient to reconstruct order types, and
solves a related reconstruction problem where, additionally, the x-coordinate
of every point is given. Another similarly flavored problem, the polygon recon-
struction problem from angles, has been tackled by Disser et al. [11], and Chen
and Wang [12]. There they reconstruct a polygon given, for each vertex v, the
sequence of angles formed by the vertices visible from v. The results developed
in this paper will hopefully lay the ground for a complete theoretical treatment
of the relation between observed radial orderings and the structure of point sets,
and could be useful in such applications.

Some other problems involving radial orderings have been studied in several
previous publications. For instance, Devillers et al. [13] considered the problem
of maintaining the radial ordering associated with a moving point. Diaz-Bénez,
Fabila, and Pérez-Lantero [14] study the number of distinct radial orderings that
can be obtained from a point set, and introduce a colored version of the problem.
Durocher et al. [15] propose algorithms for realizing radial orderings in point sets.
The notion of radial ordering has been used previously by a subset of the current
authors in the context of graph drawing. More precisely, it is instrumental in an
elementary proof of the IR-completeness of the general simultaneous geometric
graph embedding problem [16]. Pilz and Welzl [8] consider crossing-preserving
mappings between order types. Non-isomorphic order types having the same
radial system form an equivalence class in their hierarchy.

Our Results. In Section 2, we give a preliminary analysis of radial systems on
five points, which will serve as a building block for later sections. In Section 3,
we show that T'(U) can be computed from U in polynomial time. The main pro-
cedure involved in the recognition algorithm consists of repeatedly considering
five-point configurations, and removing the points that are inside the convex
hull of four others. As a byproduct, we can show that if the convex hull has

Reconstructing Point Set Order Types from Radial Orderings 19

at least four vertices, then there is at most one compatible order type, that is,
|T(U)| = 1. In Section 4, we prove that |T(U)| < |V| — 1 for all undirected
rotation systems U on the set V. As a consequence of Section 3, this can happen
only when the convex hull of the reconstructed order type is a triangle. This
bound is tight, as shown by the example of Figure 2(a)-2(b).

For the sake of readability, the proofs involve Euclidean point sets, but we are
careful to use only those properties of point sets that hold also for arbitrary order
types (realizable or not). An easy way to verify this is to use the representation
of abstract order types as generalized configurations, discussed in detail in [5]. A
generalized configuration in general position is a pair (P, L) where P C R? and L
is a pseudoline arrangement such that every pseudoline in L contains exactly two
points of P. Note that for realizable order types, such a generalized configuration
is obtained simply by taking a point set realization of the order type and its set
of supporting lines. Whereas for point sets P, every triple p1, p2, ps € P defines
a cone at po, every triple defines a pseudocone at p2 (an infinite region bounded
by two curves that intersect only at ps) in a generalized configuration, and these
have all the properties required for the proofs. Hence, our results extend to
abstract order types.

2 Bootstrapping

First, we define signature graphs, which will prove to be a useful tool in the
analysis of undirected radial systems. Given a vertex set V" and some U ~ R, on
V for some labeled abstract order type x, we construct a labeling of the complete
digraph Dy on V as follows. For each directed edge (u,v) in Dy, label (u,v) with
the set of vertices that are not equal to v and not directly before or after v in the
undirected radial ordering around u. For example, if U(u) = vy, v9, v3,v4 with
v = vg, then label (u,v) with {v4}. Next, we construct a coloring of the complete
undirected graph Gy on V' by coloring each edge {u, v} green if (u,v) and (v, u)
have the same label in Dy and red otherwise. We call Gy the signature graph
of U. Figure 4 shows several examples.

Lemma 1. Consider an abstract labeled order type x on a set V. with |[V| =5
and let U ~ R,..

(i) The abstract labeled order types in T(U) all have the same convex hull size
and this size can be computed from U in constant time.

(i) If x has convex hull size 4 or 5 then T(U) = {x} and x can be computed
from U in constant time.

Proof. Figure 4(a-c) shows the signature graphs of the undirected radial systems
of each of the three order type isomorphism classes on five elements. Note that
the number of green edges is different for each isomorphism class. This proves
(i). For (ii), recall that we want to recover the labeled order type, not just its
equivalence class. We perform a case distinction on the isomorphism class of x
(which we identify by the number of vertices on the convex hull of x).

20 O. Aichholzer et al.

Fig. 4. Green edges are solid and red edges are dashed. (a-c) The undirected radial
systems of each of the three order type isomorphism classes on five elements. (d-e) The
two labeled order types of size five with four vertices on the convex hull, where vertex
a has no incident green edges and b and ¢ have one incident green edge.

Suppose that there are five vertices on the convex hull of y. An edge {u,v}
is green if and only if {u,v} is on the convex hull. We assume without loss of
generality that {a,b} is green. There are six labeled order types of size five with
five vertices on the convex hull, under the assumption that {a, b} is on the convex
hull. Those order types correspond to sequences starting with a,b and ending
with all six permutations of the three remaining points. The green neighbors of
a and b thus completely identify the labeled order type.

Suppose now that there are four vertices on the convex hull of x. Referring
again to Figure 4(b), we see that there is one vertex with no incident green edges,
two vertices with one incident green edge and two vertices with two incident
green edges. Without loss of generality, we may assume that the vertex with no
incident green edges is vertex a and the vertices with one incident green edge are
b and c. This leaves the two labeled order types shown in Figure 4(d-e), which
are easily distinguished by the green neighbor of vertex b. ad

Figure 2(a)-2(b) show that (ii) does not always hold for triangular convex hulls.

3 Reconstruction Algorithms

In this section we develop an algorithm to compute T'(U) from an undirected
rotation system U ~ R,.. The general approach is the following. We first show,
in two steps, that the convex hull H of x and U together uniquely determine y.
Then we repeatedly apply Lemma 1 to compute |H| from U. We show that U
uniquely determines H if |[H| > 4. In that case, we can compute T(U) = {x}
from U. Otherwise, if |H| = 3, we compute T'(U) by trying each possible convex
hull. Given an order type x on the vertex set V, let x[V’] be the restriction of x
to V' C V. We define U[V'] analogously for an undirected radial system U.

Lemma 2. Consider an abstract labeled order type x on a setV and letU ~ R,,.
Let H C V be the set of vertices on the convex hull of x. The pair (H,U) uniquely
determines the cyclic order hy, ..., hi of the vertices on the convex hull and the
clockwise radial system R, (up to complete reversal of both). Furthermore, there
is a polynomial-time algorithm that takes (H,U) as input and returns hy, ..., hy
and R,.

Reconstructing Point Set Order Types from Radial Orderings 21

Proof. We first give an algorithm to recover the sequence hq, ..., hy. If |H| = 3
then any ordering of H will do. If 4 < |H| < 5 then choose any H C V5 C V
with [Vs5| = 5 and use Lemma 1 with V5 to recover the order type of H in
polynomial time. If |H| > 5, then let hi,...,h; be a cyclic order of H and
consider the signature graph Gyg). Note that we can compute the signature
graph in polynomial time using only U[H]. In the digraph Dyg), the edges
(h,’, hi+1) and (hz‘-i-la hz) will both be labeled H \ {hi—17 hi, hi+1, hi+2} and thus
{hi,hiy1} is green in Gy for all 1 < i < k. On the other hand, the edge
(hi, h;) will be labeled H \ {h;, hj_1,hj, hji1}, whereas (hj, h;) will be labeled
H\{hi—1,hs, hiy1,h;} for |i—j| > 1. Hence, {h;, h;} isred in G,, for all remaining
edges. It follows that the green edges in Gyy) form a hamiltonian cycle which
reveals the order of the vertices of H along the convex hull.

To recover R,, we assume that hi, ..., hy is the counterclockwise order and
recover the corresponding clockwise radial system R, (recall that we defined
X = —x). For |H| > 4, every U(v) contains at least three vertices from the
convex hull, and hence we can recover the clockwise direction by setting R, (v)
to U(v) if hq, ..., hg (without v if v is on the convex hull) appear in this order in
U(v) and setting R, (v) to the reverse of U(v) otherwise. For |H| = 3 the same
procedure works except when v is on the convex hull. If v = h; then the two
possible directions are of the form ho, h3,vy,v2,... and hg,v1,vs,...,hs. The
second one is the correct clockwise order and is easy to recognize (note that if
V = H both orders are identical). The cases v = hy and v = hs are analogous.
This procedure takes polynomial time. O

We omit the proof of the following lemma due to space limitations; it is essentially
an application of Lemma 2, followed by some case analysis to recover Y.

Lemma 3. Consider an abstract labeled order type x on a set V with |V| > 5 and
letU ~ Ry. Let H C 'V be the set of vertices on the convex hull of x. Then the pair
(H,U) uniquely determines x, i.e., {x’ € T(U) | x" has convex hull H} = {x}.
Furthermore, there is a polynomial-time algorithm that takes (H,U) as input and
returns x.

Theorem 1. Consider an abstract labeled order type x on a set V with |V]| > 5
and let U ~ R,.. There is a polynomial-time algorithm that takes U as input and
returns T(U). Furthermore, let H be the vertices of the convex hull of x. Then

(1) all elements of T(U) have convex hull size |H|; and
(i) if |H| > 4, then T(U) = {x}.

Proof. The algorithm begins by computing a set V' C V that contains (at least)
all vertices that appear on the convex hull of an order type in T(U). Initially,
let V' := V. For each subset V5 C V with |V5| = 5, we do the following. By
Lemma 1, the elements of T'(U[Vs]) all have the same convex hull size s, and
we can compute s from U in constant time. If s # 4, we do nothing. If s = 4,
then the algorithm from Lemma 1 in addition returns x[Vs], and there must be
some vertex v € V; that is not on the convex hull of x[V5]. Note that v is not on

22 O. Aichholzer et al.

the convex hull of any order type in T(U) either. Hence, we delete v from V.
After running this procedure for all subsets V5 C V of size 5, we are left with a
V! C V that contains (at least) all vertices of the convex hulls of all order types
in T(U). Every 5-element subset of V' has convex hull size 3 or 5.

We perform a case analysis depending on the size of the set V’. First suppose
that |[V'| < 5. If necessary, add back previously deleted vertices to V' until
|[V'| = 5. Use the algorithm from Lemma 1 to recover |H| from V'. If |H| = 3,
then continue with the procedure described in the paragraph at the end of this
proof. If |H| = 4 or |H| = 5, then Lemma 1 in addition returns x[V'] and thereby
H. Then, by Lemma 3, T(U) = {x} and we can compute T(U) in polynomial
time. This shows that (i) and (ii) hold in that case.

Now suppose that [V’| > 5 and note that this implies |H| # 4. If |H| = 3,
then there is a V5 C V with convex hull size 3. If |H| > 5, then we claim that
H = V'. For the sake of obtaining a contradiction, suppose that there exists a
vertex v € V' that is not in H. Fix any triangulation of x[H]. Let h;hjhi be
the cell of the triangulation that contains v and let hy be any other vertex of
H. Then Vs = {hy, hj, hy, hy,v} is a set of five vertices with convex hull size
four and V5 C V', which is a contradiction. We conclude that if |H| > 5 then
H =V’ and in particular, every V5 C V' is in convex position. Our algorithm
proceeds as follows. If there is a V5 C V'’ with convex hull size 3, then we conclude
|H| = 3 and continue with the procedure described in the last paragraph below.
Otherwise, we conclude that H = V'. Then T(U) = {x} by Lemma 3 and we
can compute 7T'(U) in polynomial time. This finishes the proof of (ii).

It remains to consider the case where the algorithm has established |H| = 3.
If some order type in T'(U) would have convex hull size larger than 3, then the
algorithm would already have terminated by the discussion above. Hence, all
order types in T'(U) have convex hull size 3, which completes the proof of (i).

Finally, we describe what the algorithm does when |H| = 3. Consider all
subsets Hs C V of size 3. For each such Hj, run the algorithm from Lemma 3
with (Hs,U), which returns a function x. If Hs is the convex hull of an order
type in T'(U) then x € T(U) and x is the only order type in T'(U) with convex
hull Hs. If no order type in 7'(U) has convex hull Hs, then the output x is
undefined. Hence, it is sufficient to check for each Hs whether y is an order type
(in polynomial time, using the order type axioms) and if so, whether U ~ R, .
If and only if both conditions hold, then x € T(U) and hence T(U) can be
computed. Since there are O(]V|?) subsets of size 3 in V, the algorithm runs in
polynomial time. a

Given a set V and for each v € V' a permutation of V' \ {v}, we can decide in
polynomial time whether this is a radial system corresponding to an actual order
type. This is done by running the algorithm above until either an inconsistency
is detected or an output is produced. If one of the chirotopes in the output has
radial system U then the answer to the decision problem is yes, and no otherwise.

Corollary 1. Given a set V and for each v € V a permutation of V' \ {v}, we
can decide in polynomial time whether this is the radial system of some order
type.

Reconstructing Point Set Order Types from Radial Orderings 23

4 Triangular Convex Hulls

Theorem 1 only guarantees the trivial bound |T'(U)| < |[V'|? when a radial system
U has a triangular convex hull. As discussed in the introduction, there are radial
systems U with |T'(U)| > |V| — 1. We next prove the matching upper bound.

Recall that U and the convex hull together uniquely determine the labeled
order type (Lemma 3). We also know that if U is the undirected radial system of
a labeled order type with a triangular convex hull, then all order types in T'(U)
have a triangular convex hull (Theorem 1). If a triangle a, b, ¢ € V is the convex
hull for some order type in T(U), we say that abc is important (with respect
to U). Note that if abc is important, then b and ¢ must appear consecutively in
the radial ordering of a (and the analogous statements for b and ¢ also hold).
We capture the relations between important triangles with the following four
propositions. In each proposition, we consider an abstract labeled order type x
on a set V with |V| > 5 and a triangular convex hull and a U ~ R, .

Proposition 1. U has at most two disjoint important triangles. If U has exactly
two disjoint important triangles, then these are the only important triangles and
hence |T(U)| < 2.

Proof. Suppose that U has disjoint important triangles abc and a’b’'c’. We now
argue that without loss of generality, ¢/, a’,b’ appear consecutivly and in this
order in U(a). Figure 5(a) depicts the order type where abc forms the convex
hull. Since &’ and ¢’ must appear consecutively in U(a’) and since a’ is not on
the convex hull, the cone b’'a’c’ must not contain any other vertices. The same
argumentation for & and ¢’ shows that the dark gray region in Figure 5(a) must
be empty. We wish to show that all remaining vertices must be in the light green
regions. So suppose there is a vertex x outside both the dark gray and light
green regions. By symmetry we may assume that it is in the position indicated
by Figure 5(a). In the order type where a’d’c’ forms the convex hull, U(a’) and
U (V') force = to be in region R; in Figure 5(b). But U(¢’) forces = to be in region
Rs, which is disjoint from R; (except vertex b). Hence, a’b'¢’ cannot form the
convex hull, which is a contradiction. We conclude that all remaining vertices
must be in the light green regions in Figure 5(a). We call the complement of the
light green regions the forbidden region of a’b'c’.

Fig.5. Two disjoint important triangles. (a-b) Vertex x cannot be in the indicated
position. (c-d) The supporting line of zy cannot avoid the segment 'c’.

24 O. Aichholzer et al.

We claim that the supporting line 7y of two vertices z and y in a light green
region in Figure 5(a) must separate the other two green regions. Note that this
holds trivially if one of x and y is a or a’. Otherwise, suppose without loss of
generality that and y are in the light green region incident to a, that a clockwise
sweep from c¢ to b around a encounters x before y, that Ty does not intersect
b and that ¢’ is below Zy. See Figure 5(c). Looking at the order type where
a't/d forms the outer face (Figure 5(d)), we see that U(a’) and U(’'b) force y to
be in region R;. But U(¢’) forces y to be in region Ry, which is a contradiction.
Hence, the supporting line of z and y in Figure 5(a) must intersect ¢’ and b" and
thus separate the light green regions incident to b and c.

Finally, we argue that there are no other important triangles. Consider again
the order type depicted in Figure 5(a). Suppose that there is another important
triangle A. Suppose that A is completely inside one light green region, say the
one incident to a. Since all three supporting lines of A separate the other two
light green regions, either b or ¢ must be in the forbidden region of A, which is a
contradiction. Similarly, if A has one vertex in every light green region, then at
least one of @/, b’ and ¢’ is strictly inside A and hence in A’s forbidden region.
Hence, A must have two vertices @’ and b” in one light green region, say the
one incident to a, and one vertex ¢’ in another light green region, say the one
incident to ¢. We must have ¢’ = ¢: otherwise ¢ is in the forbidden region of
A. But then ¢ is in the forbidden region of A, which is a contradiction. Hence,
there are only two important triangles and thus |T'(U)| < 2 by Lemma 3. O

Proposition 2. If there is a vertex v* that is common to all important triangles
in U, then |T(U)| < |V] - 1.

Proof. For every important triangle v*uw we know that w and w must be
consecutive in U(v*). Since there are only |V|—1 consecutive pairs in U(v*), the
proposition follows immediately by Lemma 3. O

We omit the proof of the following proposition due to space limitations; it is
similar to the proof of Proposition 1.

Proposition 3. If every pair of important triangles has exactly one vertex in
common, then all important triangles must all have the same vertex in common.

Proposition 4. If there exists a pair of important triangles with two vertices in
common, then all important triangles must have the same vertex in common.

Proof. Let abc and abd be the important triangles from the statement. Suppose
for the sake of obtaining a contradiction that not all important triangles share
the same vertex, i.e., that there is an important triangle A; that does not contain
a and an important triangle A, that does not contain b, with possibly A; = As.
If A:= A; = Ay, then by Proposition 1 we have A = cde with e # a,b. See
Figure 6(a). The forbidden region of A contains a if e is in the light green region
A and it contains b otherwise. It follows that A; # As.

Reconstructing Point Set Order Types from Radial Orderings 25

Fig. 6. Two important triangles that share two vertices. (a) Triangle cde cannot be
important. (b) Possible locations for the vertex z. (¢) Contradiction to (b) when aef
forms the convex hull.

Since A; is not disjoint from abc and abd by Proposition 1 (since we have
four important triangles), A; must contain b or both ¢ and d. Similarly, Ay must
contain a or both ¢ and d. Suppose that A; contains both ¢ and d and let e be the
third vertex of A;. By the argument in the previous paragraph, we must have
e = b. But then the forbidden regions of abd and A; = bed together cover all of
abe. This is a contradiction since |V| > 5. Symmetrically, Az cannot contain both
c and d. Hence, Ay must contain b and As must contain a. Furthermore, neither
triangle can intersect cd since ¢ or d would be in the forbidden region otherwise.
Let Ay = aef such that a clockwise sweep from ¢ to d around a encounters e and
f in this order (with possibly e = ¢ or f = d but not both). Let x be a vertex
of Ay different from b, ¢ and d. The light green region in Figure 6(b) shows the
allowed locations for xz. The supporting line of ef cannot intersect cd since c
or d would be in the forbidden region of Ay otherwise. Figure 6(c) shows the
resulting order type where aef forms the convex hull. The radial orderings of b,
¢ and d force x to be in the light green region. Referring to Figure 6(b), we see
that d, b and ¢ appear consecutively in U(x). But in Figure 6(c), this certainly
cannot be the case, even if ¢ = e or d = f, which contradicts our assumption. We
conclude that we cannot have such A; and As and therefore that all important
triangles must share a vertex. a

It now follows from Propositions 1,2,3, and 4 that:

Theorem 2. Consider an abstract labeled order type x on a set V with |V| > 5
and let U ~ R,.. Then |T(U)| < |V| — 1.

5 Discussion and Open Problems

Theorem 2 cannot be improved by considering clockwise radial systems instead of
undirected ones. For |H| > 4, the undirected radial system is already sufficient to
reconstruct the order type. For |H| = 3, the worst case example from Figure 2(a)-
2(b) applies even for clockwise radial systems.

In terms of future work, an axiomatic characterization of radial systems
could lead to a simpler recognition algorithm. Our algorithms are obtained as

26 O. Aichholzer et al.

byproducts of the proofs and their running time can undoubtedly be improved.
Finally, one could think of generalizing the problem to higher dimensions. Instead
of a cyclic ordering of points, every point p of a set in R? could be associated
with a rank-3 oriented matroid obtained by projecting all other points on a small
sphere around p. The higher-dimensional counterparts of local sequences were
defined for instance by Bokowski et al. [4] and are called hyperline sequences.

Acknowledgments. This work was initiated at the Joint EuroGIGA ComPoSe-
VORONOI Meeting in Graz (Austria) on July 8-12, 2013. It was pursued at the
ComPoSe Workshop on Algorithms using the Point Set Order Type in Ratsch (Austria)
on March 31-April 1, 2014. We wish to thank the organizers of these two meetings as
well as the other participants. We would like to thank Alexander Pilz in particular for
helpful discussions on this topic.

References

1. Goodman, J.E., Pollack, R.: Multidimensional sorting. STAM Journal on Comput-
ing 12(3), 484-507 (1983)

2. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)

3. Bjorner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented
Matroids, 2nd edn. Cambridge University Press (1999)

4. Bokowski, J., King, S., Mock, S., Streinu, I.: The topological representation of
oriented matroids. Discrete & Computational Geometry 33(4), 645-668 (2005)

5. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of
arrangements. J. Comb. Theory, Series A 37(3), 257293 (1984)

6. Felsner, S.: On the number of arrangements of pseudolines. In: Proceedings of the
Twelfth Annual Symposium on Computational Geometry, pp. 30-37. ACM (1996)

7. Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discr. &
Comp. Geom. 46(3), 405-416 (2011)

8. Pilz, A., Welzl, E.: Order on order-types. In preparation

9. Tovar, B., Freda, L., LaValle, S.M.: Using a robot to learn geometric information
from permutations of landmarks. Contemporary Mathematics 438, 33—45 (2007)

10. Wismath, S.K.: Point and line segment reconstruction from visibility information.
Int. J. Comput. Geometry Appl. 10(2), 189-200 (2000)

11. Disser, Y., Mihaldk, M., Widmayer, P.: Reconstructing a simple polygon from its
angles. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 13-24. Springer,
Heidelberg (2010)

12. Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
from its visibility angles. Comput. Geom. 45(5-6), 254-257 (2012)

13. Devillers, O., Dujmovic, V., Everett, H., Hornus, S., Whitesides, S., Wismath, S.K.:
Maintaining visibility information of planar point sets with a moving viewpoint.
Int. J. Comput. Geometry Appl. 17(4), 297-304 (2007)

14. Diaz-Bainez, J.M., Fabila-Monroy, R., Pérez-Lantero, P.: On the number of radial
orderings of colored planar point sets. In: Marquez, A., Ramos, P., Urrutia, J.
(eds.) EGC 2011. LNCS, vol. 7579, pp. 109-118. Springer, Heidelberg (2012)

15. Durocher, S., Mehrabi, S., Mondal, D., Skala, M.: Realizing site permutations. In:
CCCG. (2011)

16. Cardinal, J., Kusters, V.: The complexity of simultaneous geometric graph embed-
ding. CoRR abs/1302.7127 (2013)

A Randomized Divide and Conquer Algorithm
for Higher-Order Abstract Voronoi Diagrams

Cecilia Bohler', Chih-Hung Liu®,
Evanthia Papadopoulou?®), and Maksym Zavershynskyi?

! Institute of Computer Science I, University of Bonn, 53113 Bonn, Germany
bohler@cs.uni-bonn.de, chliu@uni-bonn.de
2 Faculty of Informatics, Universita della Svizzera italiana (USI),
Lugano, Switzerland
{evanthia.papadopoulou,maksym.zavershynskyi}@usi.ch

Abstract. Given a set of sites in the plane, their order-k£ Voronoi dia-
gram partitions the plane into regions such that all points within one
region have the same k nearest sites. The order-k£ abstract Voronoi
diagram is defined in terms of bisecting curves satisfying some sim-
ple combinatorial properties, rather than the geometric notions of
sites and distance, and it represents a wide class of order-k concrete
Voronoi diagrams. In this paper we develop a randomized divide-and-
conquer algorithm to compute the order-k abstract Voronoi diagram
in expected O(kn'"®) operations. For solving small sub-instances in
the divide-and-conquer process, we also give two sub-algorithms with
expected O(k®nlogn) and O(n?2%™logn) time, respectively. This
directly implies an O(kn'*¢)-time algorithm for several concrete order-k
instances such as points in any convex distance, disjoint line segments
and convex polygons of constant size in the L, norm, and others.

Keywords: Higher-Order Voronoi Diagram - Abstract Voronoi Dia-
gram + Randomized Algorithm - Divide and Conquer

1 Introduction

Given a set S of n geometric sites in the plane, their order-k Voronoi diagram,
Vi(S), is a subdivision of the plane such that every point within an order-k
Voronoi region has the same k nearest sites. The common boundary between
two adjacent Voronoi regions is a Voronot edge, and the common vertex incident
to more than two Voronoi regions is a Voronoi vertez. The ordinary Voronoi
diagram is the order-1 Voronoi diagram, and the farthest-site Voronoi diagram
is the order-(n—1) Voronoi diagram.

This work was supported by the European Science Foundation (ESF) in the EURO-
CORES collaborative research project EuroGIGA/VORONOI, projects DFG Kl
655/17-1 and SNF 20GG21-134355. The work of the last two authors was also sup-
ported by the Swiss National Science Foundation, project 200020-149658.

© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 27-37, 2014.
DOT: 10.1007/978-3-319-13075-0_3

28 C. Bohler et al.

For point sites in the Euclidean metric, the order-k Voronoi diagram has
been well-studied. Lee [14] showed its structural complexity to be O(k(n—k)),
and proposed an O(k?nlogn)-time iterative algorithm. Based on the notions
of arrangements and geometric duality, Chazelle and Edelsbrunner [6] devel-
oped an algorithm with O(n?4k(n—k)log®n) time complexity. Clarkson [7]
developed an O(kn'*¢)-time randomized divide-and-conquer algorithm, and
Agarwal et al. [1], Chan [5], and Ramos [18] proposed randomized incre-
mental algorithms with O(k(n—Fk)logn+nlog®n), O(nlogn+nklogk), and
O(nlog n—+nk20og” "3)) time complexities, respectively. Besides, Boissonnat et
al. [4] and Aurenhammer and Schwarzkopf [2] also studied on-line algorithms.

Surprisingly, order-k£ Voronoi diagrams of sites other than points were only
recently considered [17] illustrating different properties from their counterparts
for points. For simple, even disjoint, line segments, a single order-k Voronoi
region may consist of £2(n) disjoint faces; nevertheless, the overall structural com-
plexity of the diagram for n non-crossing line segments remains O(k(n—k)) [17].
Abstract Voronoi diagrams were introduced by Klein [10] as a unifying concept
to many instances of concrete Voronoi diagrams. They are defined in terms of a
system of bisecting curves J = {J(p,q) | p,q € S,p # ¢} rather than concrete
geometric sites and distance measures. Order-k abstract Voronoi diagrams were
recently considered in [3], providing a unified concept to order-k Voronoi dia-
grams, and showing the number of their faces to be < 2k(n—k). No algorithms
for their construction have been available so far. For non-point sites, such as line
segments, only O(k?nlogn)-time algorithms have been available based on the
iterative construction [17] and plane sweep [19]. Other recent works on order-k
Voronoi diagrams of point-sites in generalized metrics include the L; /Ly, met-
ric [16], the city metric [8], and the geodesic order-k Voronoi diagram [15].

In abstract Voronoi diagrams [10], the system of bisecting curves satisfies
axioms (A1)—(Ab), given below, for any S’ C S. Once a concrete bisector system
is shown to satisfy these axioms, combinatorial properties and algorithms to
construct abstract Voronoi diagrams (see e.g., [10]) are directly applicable. A
bisector J(p, q) partitions the plane into two domains D(p, ¢) and D(q, p), where
D(p, q) are points closer to p than ¢; a first-order Voronoi region VR; ({p}, S) is
defined as ﬂqes,#p D(p,q).

(A1). Each first-order Voronoi region is pathwise connected.

(A2). Each point in the plane belongs to the closure of some first-order Voronoi
region.

(A3). No first-order Voronoi region is empty.

(A4). Each curve J(p,q), where p # ¢, is unbounded. After stereographic pro-
jection to the sphere, it can be completed to be a closed Jordan curve through
the north pole.

(A5). Any two curves J(p,q) and J(s,t) have only finitely many intersection
points, and these intersections are transversal.

A Randomized Divide and Conquer Algorithm 29

In this paper, we develop a randomized divide-and-conquer algorithm to com-
pute the order-k abstract Voronoi diagram in expected O(kn'*) basic opera-
tions, based on Clarkson’s random sampling technique and one additional axiom:

(A6). The number of vertical tangencies of a bisector is O(1).

Our algorithm is applicable to a variety of concrete order-k Voronoi dia-
grams satisfying axioms (A1)-(A6), such as point sites in any convex distance
metric or the Karlsruhe metric, disjoint line segments and disjoint convex poly-
gons of constant size in the L, norms, or under the Hausdorff metric. In these
instances, all basic operations (see Section 2) can be performed in O(1) time,
thus, our algorithm runs in expected O(kn'*¢) time. For non-point sites, this
is the first algorithm that achieves time complexity different from the standard
O(k?nlogn), which is efficient for only small values of k. For point sites in the
Euclidean metric, near-optimal randomized algorithms exist [1],[5],[7],[18]; how-
ever, they are based on powerful geometric transformations, which are non-trivial
to convert to different geometric objects, and/or to the abstract setting, which is
based on topological (non-geometric) properties. Matching the time complexity
of these algorithms in the abstract setting or for concrete non-point instances
remains an open problem.

In order to apply Clarkson’s technique [7], we define a vertical decompo-
sition of the order-k Voronoi diagram. We prove that our vertical trapezoidal
decomposition allows a divide-and-conquer algorithm and an expected time
analysis. When the problem sub-instances are small enough, we propose two
sub-algorithms. The first one combines the standard iterative approach [14]
and the randomized incremental construction for the order-1 abstract Voronoi
diagram [12] and computes the order-k abstract Voronoi diagram in expected
O(k?nlogn) operations. For the second one, we adopt Har-Peled’s method [9]
and obtain an O(n?2%(logn)-operation randomized algorithm, where af(-) is
the inverse of the Ackermann function. Our algorithm follows the essence of
Clarkson’s randomized divide-and-conquer algorithm for the Euclidean order-
k Voronoi diagram [7], however, it bypasses all geometric transformations and
constraints. Instead, our algorithm defines sub-structures and conflict relations

relying on the properties of a bisector system that satisfies the six axioms (Al)-
(A6).

2 Preliminaries

Axioms (A1)-(A5) imply that for a given bisecting system J and a fixed point
x € R? we can define a linear order on the sites in S.

Definition 1. For a point x € R? and two sites p,q € S, p <z ¢, P =z q, O
p>.qifx € D(pq), x € J(pq), orx € D(q,p), respectively.

Since D(p,q) N D(q,r) € D(p,r) [10,11], we can define an ordered sequence on
S, 73 = (s1,...,8n), given z, satisfying s; <, s2 <, ... <, s,. We say that site
s is k-nearest to point z if s occupies the k-th position in the sequence 72

T

30 C. Bohler et al.

Definition 2. [3] The order-k Voronoi region associated with H is

VRy(H,S)= () D(p,a)

pEH,qeS\H

The order-k Voronoi diagram is

Vi(S)= |J 9VRi(H,5),
|H|=k

where O denotes the boundary.

For each point z € VRi(H, S) and 75 = (s1,...,8,), H = {s1,..., 5}, and
Sk <z Sk+1- If VR(Hy,S) and VRi(Hs, S) share an edge e, then for any point
x€e, HHNHy={s1,...,86-1} and sp_1 <g Sk =4 Sg+1, see [3, Lemma 5]. For
simplicity, throughout this paper, we make a general position assumption that
the degree of any Voronoi vertex is exactly three.

Definition 3. Let v be a Voronoi vertex among VRy(H1,S), VRi(H2,S), and
VR (Hs,S), and let H= H1NHyN H3 then v can be categorized into two types:
new when |H| =k — 1 and old when |H| =k — 2.

A new Voronoi vertex of Vi (S) is an old Voronoi vertex of Vi11(S).

Let v be a Voronoi vertex as in Def. 3. Then we can show that H =
{s1,...,5:} and 8¢ <y St11 =v St12 =v St43 <o Stid, Where t = |H| and 73
(81,...,5n). Each Voronoi vertex is defined by the three sites s;y1, St42, St+3-

Definition 4. The k-neighborhood of a site p in S, denoted by VNy(p,S), is
the union of closures of VRy(H,S) for all H C S, such that p € H and |H| =k,
i.e.,
VNi(p, S) = U VRi(H, 5),
pEH,HCS,|H|=k

where X denotes the topological closure of the set X.

Each edge of 9VNg(p, S) belongs to J(p, q) for a site ¢ € S\ {p}, and each edge
of Vi (S) belongs to OVNg(p, S) for a site p € S. The latter condition implies

Vi(S) = [OVNk(p, 9).

peES

Unlike order-k Voronoi regions of point-sites, abstract order-k Voronoi
regions may be disconnected. In fact one region may disconnect into £2(n) disjoint
faces, for k > 1 (see e.g. [17] for line segments). Nevertheless, the k-neighborhood
is connected, and this is the major property used in Section 5.

Lemma 1. VNg(p,S) is simply connected and there is no finite set of points
whose removal would make VNi(p,S) disconnected.

A Randomized Divide and Conquer Algorithm 31

Proof. First we show that VNg(p,S) is path connected. The definiton of
VN (p, S) implies that p is at most k-nearest for every point in VNg(p, S). There-
fore VN (p, S) = UpEH,HCS,\H|=k VRi(p, {p} U (S\ H)). VRi(p,{p} U(S\ H))
is path connected, axiom (A1l). Thus the connectivity of VNg(p, S) follows.
Next we show that there can be no holes in VN (p, S). Suppose there is a
face F entirely surrounded by VNg(p, S). Then all edges on the boundary of F'
are subsets of OVN(p, S). Let the edges correspond to the bisectors J(p, ¢;),
i=1,...,m. If one of the bisectors J(p, ¢;) goes through the interior of F' then
consider a face of FFN.D(g;,p), which is not empty, and so on until we have a face
F’ bounded by edges J(p,q}),-..,J(p,q,,) and F' C D(qy,p) N ---ND(q,,,p)-
This implies that F’ is a bounded face of the farthest Voronoi region of p in
{p,qi,--., 4.}, a contradiction [3, Lemma 7]. O

Our algorithm, to be described in the sequel, assumes the availability of the
following basic operations. (1) For an arbitrary point z, determine if z is in
D(p,q), J(p,q) or D(q,p); (2) Given a point = on J(p,q), determine the next
vertical tangent point or the next intersection with J(s,t) or a straight line
along one direction of J(p,q); (3) For two points z,y on J(p, q), determine the
in-front/behind relation along one direction of J(p, q); (4) For two points z and
y compare them by x-coordinate, where x and y are intersection points or points
of vertical tangency of the bisectors.

3 Randomized Divide and Conquer Algorithm

3.1 Refined Diagram
We first refine V3, (S) and partition it into vertical trapezoids.

Definition 5. The refined order-k Voronoi diagram Vi(S) of S is derived by
superimposing Vi (S) and Vi41(S). It is defined as:

Vi) = ViU | VA(S\ H) N VR(H, 9).
HCS,|H|=k

A region VRy(p, H,S) of Vi(S) is associated with a site p € S, which is called
the dominator, and a k-element subset H C S. For any point x € VR(p, H, S),
H is the set of k nearest sites to x and p is the (k+1)-nearest site to x.

Definition 6. The vertical decomposition of Vi (S), denoted by VkA(S), is the
subdivision of the plane into (pseudo-)trapezoids obtained by shooting vertical
rays up and down from each vertex in Vi (S) and each vertical tangent point of
each edge in Vi(S), until the intersection with an edge or all the way to infinity.

Lemma 2. VkA(S) can be constructed from Vi, (S) in expected O(k(n — k)logn)
operations.

32 C. Bohler et al.

Fig. 1. Trapezoid A of V,QA (S). Vi (S) is depicted in bold.

A trapezoid A of VkA(S) in VRy(p, H, S) is defined by the dominator p and
1-4 other sites. Vertical boundaries of the trapezoid may be defined either by an
intersection point or by a point of vertical tangency. Moreover, one of the vertical
boundaries may be degenerate. Let d(A) be the dominator of the trapezoid and
B(A) be the set of sites that together with the dominator define the boundaries
of the trapezoid A. Then 1 < |B(A)| < 4 and for any point x € A, H \ B(A)
are the k — |H N B(A)| nearest sites to x.

In Fig. 1, the top and bottom edges of A are defined by J(p, q) and J(p, h),
respectively, and the left and right edges are defined by a vertical tangent point
of J(p, h) and an intersection between J(p,q) and J(p, s), respectively. In other
words, B(A) = {q, h,s} and d(A) = p.

Definition 7. For a trapezoid A\ of V;CA(S), a site s ¢ B(A) strongly conflicts
with A, if N C D(s,d(A)). A site s ¢ B(A) weakly conflicts with A, if AN
D(s,d(N)) # 0. The set of sites X C S that strongly, resp. weakly conflict with
A is denoted by X Ns A\, resp. X Ny A.

In general, the set of strong conflicts is different from the set of weak conflicts,
and X Ay A C X Ay A In Figure 2, set S = {p1,...,p7,51,...,84} is the set of
line segments in Euclidean space. R = {p1,...,pr} is the subset of S and A is
the trapezoid of V3A (R) in VR3(p1, {p2,p3,p4}, R). The dominator d(A) of the
trapezoid A is p;. The set of the sites B(A) that define the boundaries of the
trapezoid A is {p2,ps3,ps,Pe}. Since the sites po, ps, ps, pe define the boundary
of the trapezoid they cannot conflict with the trapezoid. However, the site py
strongly conflicts with A, since A C D(p4, p1). Sites that do not belong to R
can also conflict with the trapezoid. Here, site s; strongly conflicts with A,
since A C D(s1,p1). However, site so weakly conflicts with A, because the
dominance region D(s2,p1) does not enclose A, but only intersects A. Thus,
S As N = {pa,s1}, S Aw & = {p4, $1,52}. In Lemmata 3, 4 we use weak and
strong conflicts for the upper and lower bounds, respectively.

Lemma 3. Let R be a subset of S and (B be a positive integer. Then for any
trapezoid /\ ofVBA(R), B —4<|RAs A| and |R Ny A < .

Proof. Let A be in VRg(H, R). We want to prove that H \ B(A) C RA; A and
R A, A C H. Since for each point x € A, H are the 3 nearest sites of x and

A Randomized Divide and Conquer Algorithm 33

Qpl

Fig. 2. Trapezoid A € VR3(p1, {p2,p3,pa}), where p1,...,pr are line segments

d(A) is the (B+1)-nearest site, for each site p € H \ B(A), A C D(p,d(D)),
implying that H \ B(A) C R Ay A. For each site p € R Ay, A, D(p,d(4\)) must
include A; otherwise, d(A) is not the (8+1)-nearest site for all points in A. By
Def. 2, p must belong to H, implying that R A, A C H. O

Lemma 3 and [7, Corollaries 4.3 and 4.4] imply the following.

Lemma 4. Let R be an r-element random sample of S. Then with probability at
least 1/2, as r — oo, for any A\ € VﬁA(R), [S]/(r—5) < |SAsA| and |S Ay A <
alS|, where § = O(logr/loglogr) and o = O(logr /7).

Lemma 5. Let R be a subset of S such that for any trapezoid A\ € VBA(R),
|S As Al > k. Let v be a Voronoi vertex of Vi, (S). Then there exists a trapezoid
AN VI@A(R) such that v is also a Voronoi vertex of Vi(S Ay).

Proof. (Sketch) Let v be a Voronoi vertex incident to Voronoi regions
VRi(Hy,S), VRk(Hs,S) and VR (Hs, S), and let A be a trapezoid of VBA(R)

such that v € A. We want to prove that H; U Hy U H3 C S A, A\, which leads
to this lemma.

Let H be Hy U Hy U Hy and t = |H|. By Definition 1 and Definition 3, ¢ is
k+1 OI‘k’+2, and inﬂ—fa 51 <y v Sy St—3 <o St—2 =p St—1 =v St <v St41--
and H = {s1,...,8:}.

Let &' be |S As A|. By Definition 7, for each site p € S A; A, p <, d(D).
Therefore, there exists k" > k' such that in 75, spr_1 <, sg and either sp» =
d(A) or spr <, d(A), implying that {s1,...,8k7-1} TS Ay A.

Since k” > k and t = k+ 1 or k + 2, we have k¥ > t; otherwise, k" =t or
t — 1, contradicting either sg»_1 <, Sgr OF Sg_o =4 St_1 =y St-

To conclude, H = {s1,...,8:} C {s1,...,8 -1} € S Ay A. Thus v is a
Voronoi vertex of Vi, (S Ay). O

34 C. Bohler et al.

3.2 Computing the Voronoi Vertices of Vi(S)

Lemma 5 indicates that if for any A € VBA(R), |SAsA| > k, then computing the
Voronoi vertices of Vi (S) can be transformed into computing the Voronoi vertices
of V(S Ay A) for each A. Lemma 4 states that on average it takes two trials
to generate a sample R such that |S As A > |S|/(r — 5), where the size r of the
random sample R is any sufficiently large constant. Therefore, if |S|/(r—5) > k,
then we need two trials on average to generate a random sample that satisfies
the conditions of Lemma 5. The condition |S Ay A < «|S] in Lemma 4 bounds
the depth of the recursion. Following Clarkson [7], the algorithm to compute the
Voronoi vertices of Vi (S) is summarized as follows:

— If |S|/(r—5) < k, compute the vertices of Vi (S) by the algorithm in Section 5.
— Otherwise (|S|/(r —5) > k)
1. Choose R C S of size r until R satisfies the conditions of Lemma 4
(a) Construct V3(R) by the algorithm in Section 4 and Compute VﬁA (R)
from V3(R) (Lemma 2).
(b) Check each trapezoid in VBA (R) to satisfy the conditions of Lemma 4.

2. For each trapezoid A € VBA(R)
(a) Recursively compute the Voronoi vertices of Vi, (S Ay A).
(b) Select vertices of Vi (S Ay A) that are vertices of Vi (S).

3.3 Analysis

Lemma 6. Vi (S) can be computed from its Voronoi vertices in O(k(n—k)logn)
operations.

Proof. For points-sites, a vertex is uniquely defined by three sites [14]. Also for
point-sites two vertices are adjacent iff their corresponding triples of sites have
two sites in common. However, in the abstract setting, three sites may define one
or two vertices and the adjacency property does not hold. Therefore, we cannot
solve this problem by just using radix sort as it was done for point-sites [7].

Here, in the abstract setting, we use radix sort to extract for each bisector
all Voronoi vertices that lie on it, in total O(|V]) operations, where V is the set
of vertices in V4 (S). We also assume the existence of a sufficiently large closed
curve I" such that no two bisectors intersect outside I'.

Consider a set of m; > 0 Voronoi vertices that belong to bisector J (including
the artificial Voronoi vertices formed by the intersection between V4 (S) and I').
my must be even; otherwise, at least one Voronoi vertex has no Voronoi edge.
We can sort the m; Voronoi vertices along one direction of J as v1,va,...,Um,
in O(mlogmy) operations, and then link Tg; _103; for 1 < i < m /2 as Voronoi
edges in O(my) operations. Therefore, we can compute all the Voronoi edges
on J in O(mylogmy) operations. Since |V| is O(k(n — k)), the total num-
ber of operations is O (|[V|) + > ;¢ 7,50 O(mylogm,) = O(|V]log|V]) =
O (k(n — k)logn). O

A Randomized Divide and Conquer Algorithm 35

Theorem 1. Vi (S) can be computed in expected O(kn'™) operations, where
€ >0, and the constant factor of the asymptotic bound depends on €.

Proof. Recall that r is a sufficiently large constant, « = O(logr/r) and 8 =
O(logr/loglogr). There are two cases: (1) If |S|/(r — 5) < k, then we use
the algorithm from Section 5 to compute the vertices of the order-k Voronoi
diagram in expected O(n22*(" logn) operations, i.e. O(r2k?log? rlog® k); (2) If
|S|/(r — 5) > k then the algorithm proceeds as follows:

1. Choose a random sample that satisfies the conditions of Lemma 4. Do the
check by constructing V3(R) and computing VﬁA (R) from Vz(R). The con-
struction of V3(R) takes expected O(r3? log r) operations (see Section 4), and
computing VﬁA (R) takes additional expected O(B(r —) log r) operations.

The number of the trapezoids in VBA (R) is O(rf3), and the number of oper-
ations required to check the sample is O(nr3) C O(nrlogr).

2. For each trapezoid in VﬁA (R) compute the order-k vertices using recursion.
The number of recursive calls is O(rf3) C O(rlogr). Each recursive call
inputs O(an) = O(nlogr/r) sites and outputs O(ank) vertices. Therefore,
the expected total number of operations required to validate each vertex of
each recursive call is O(ankrlogr) which is O(nklog®r).

Therefore, the expected number t(n) of operations for computing the Vononoi
vertices of Vi (S) is

t(n) <O (r’k? log? r log? k), n<k(r—5)

t(n) <O (nrlogr)+ O (nk log? 7") + O(rlogr)t (O(nlogr/r)), n > k(r —5),

and the depth of the recursion is O(log(n/k)/log(r/logr)).

Following [7, Lemma 6.4], if n tends to infinity, ¢(n) is O(kn'*¢). Since V4 (9)
can be constructed from the Voronoi vertices of Vi(S) in expected O(k(n —
k)logn) operations (Lemma 2), V(S) can be constructed in expected O(kn'*¢)
operations. a

4 First Sub-Algorithm: Iterative Construction

The order-k abstract Voronoi diagram can be computed iteratively similarly to
point sites in the Euclidean metric [14]. The following lemma proves the main
property used in the iterative construction.

Lemma 7. Let F be a face of VR;j(H,S) and let VR;j(H;,S), 1 <i < £ be the
adjacent regions. Then Vi11(S)NEF =Vi(Q) N F, where Q = U,<;<, Hi \ H.

Proof. We want to show V1 (Q)NF = V,1(S)NF which is equal to Vi (S\H)NF.

Let x € VRy(s,S \ H) N F. For the sake of a contradiction assume s ¢
Q. This means s <, ¢, for any ¢ € @ and thus z € VR;11(H U {s}). Let
F’ be the face of VR;11(H U {s}) that contains z. Since s ¢ @, F’ does not
intersect OF, implying that F' N V;(S) is empty. This leads to a contradiction
since F' NV;(S) = F' NV,—1(H U {s}) and this is nonempty [3, Lemmata 12
and 13]. Hence V1(S\ H) N F = V41(Q) N F which finishes the proof. O

36 C. Bohler et al.

Lemma 7 implies that we can compute V;41(S) by partitioning each face of
V;(S) with the nearest-neighbor Voronoi diagram, which in turn can be com-
puted using the algorithm in [12].

Theorem 2. Vj(S) can be computed in expected O(k*nlogn) operations.

5 Second Sub-Algorithm: Random Walk Method

We construct V;(S) by computing OVNg(p,S) for every p € S, ie., all the
Voronoi edges of V4 (.S) belonging to J(p, ¢). Chazelle and Edelsbrunner [6] com-
puted OVNg(p, S) based on dynamic convex hulls and the fact that VNg(p, S)
is simply connected. However, dynamic convex hulls are not applicable in
the abstract setting. Since VNg(p, S) is simply connected, we can adopt Har-
Peled’s [9] random walk algorithm to compute GVN(S).

OVNg(p, S) is a substructure of the arrangement of n—1 bisectors J(p) =
{J(p,q) | ¢ € S\ {p}}, where the bisectors in J(p) are not x-monotone, but
they have constant number of vertical tangency points. Therefore, the structural
complexities of the arrangement and its vertical decomposition are of the same
asymptotic magnitude. We construct OVNg(p, S) in the following way: (1) For
each connected component of VN (p, S) compute a starting point; (2) For each
starting point, traverse the corresponding part of 9VNg(p, S).

Lemma 8 states that starting points can be computed in O(nlogn) expected
time. As we walk we can determine the next direction in O(1) time.

Lemma 8. The starting points of O VNy(p,S) for each of its connected compo-
nents can be computed in total O(nlogn) expected time.

Following [9], the expected number of operation required to compute the
boundary of the k-neighborhood by the random walk is O(A¢12(n + m)logn),
where ¢t is the maximum number of intersections between two bisectors, and m
is the complexity of OVNg(p, S). In the abstract case, we can show that ¢ = 2,
i.e. each pair of bisectors J(p,q) and J(p,r) in J(p) intersect at most twice.
Consider Vi ({p,q,r}). Axiom (A1) implies that each region in this diagram is
connected, therefore V4 ({p,q,r}) has at most two vertices. Thus, J(p,q) and
J(p,r) intersect at most twice and t = 2.

The main difference between computing the zone in the original version of
the algorithm [9] and computing OVNg(p, S) is that the latter is additionally
augmented by the vertical rays from the points of vertical tangency. However,
since each bisector allows only a constant number of points of vertical tangency,
the expected number of operations increases only by a constant factor.

Theorem 3. Vi(S) can be computed in expected O(n?2%(™ logn) operations.

References

1. Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels
in arrangements and higher order Voronoi diagrams. STAM Journal on Comput-
ing 27(3), 654-667 (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A Randomized Divide and Conquer Algorithm 37

Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algo-
rithm for computing higher order Voronoi diagrams. International Journal of Com-
putational Geometry and Applications 2(4), 363-381 (1992)

Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E., Zavershynskyi,
M.: On the complexity of higher order abstract Voronoi diagrams. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS,
vol. 7965, pp. 208-219. Springer, Heidelberg (2013)

Boissonnat, J.D., Devillers, O., Teillaud, M.: A semidynamic construction of
higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9, 329—
356 (1993)

Chan, T.M.: Random sampling, halfspace range reporting, and construction of
(< k)-levels in three dimensions. STAM Journal on Computing 30(2), 561-572
(1998)

Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order
Voronoi Diagram. IEEE Transactions on Computers 36(11), 1349-1454 (1987)
Clarkson, K.L.: New applications of random sampling in computational geometry.
Discrete and Computational Geometry 2(1), 195-222 (1987)

Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city Voronoi diagrams.
In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 59-70. Springer,
Heidelberg (2012)

Har-Peled, S.: Taking a walk in a planar arrangment. SIAM Journal on Comput-
ing 30(4), 1341-1367 (2000)

Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi Diagrams Revisited.
Computational Geometry: Theory and Applications 42(9), 885-902 (2009)

Klein, R., Mehlhorn, K., Meiser, S.: Randomized Incremental Construction of
Abstract Voronoi Diagrams. Computational Geometry: Theory and Applica-
tions 3(1), 157-184 (1993)

Mehlhorn, K., Meiser, S., O’Dunlaing, C.: On the Construction of Abstract Voronoi
Diagrams. Discrete and Computational Geometry 6(1), 211-224 (1991)

Lee, D.T.: On k Nearest Neighbor Voronoi Diagrams in the Plane. IEEE Trans.
Computers 31(6), 478-487 (1982)

Liu, C.-H., Lee, D.T.: Higher-order geodesic Voronoi diagrams in a polygonal
domain with holes. In: 2013 ACM-SIAM Symposium on Discrete Algorithms, pp.
1633-1645 (2013)

Liu, C.-H., Papadopoulou, E., Lee, D.T.: An output-sensitive approach for the
L,/L k-Nearest-Neighbor Voronoi diagram. In: Demetrescu, C., Halldérsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 70-81. Springer, Heidelberg (2011)
Papadopoulou, E., Zavershynskyi, M.: On Higher Order Voronoi Diagrams of Line
Segments. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 177-186. Springer, Heidelberg (2012)

Ramos, E.: On range reporting, ray shooting, and k-level construction. In: 15th
ACM Symposium on Computational Geometry, pp. 390-399 (1999)
Zavershynskyi, M., Papadopoulou, E.: A sweepline algorithm for higher order
Voronoi diagrams. In: Proc. 10th International Symposium on Voronoi Diagrams
in Science and Engineering (ISVD). IEEE-CS (2013)

Combinatorial Optimization I

Average-Case Complexity of the Min-Sum
Matrix Product Problem

Ken Fong' ™), Minming Li', Hongyu Liang?, Linji Yang®,
and Hao Yuan*

! Department of Computer Science,

City University of Hong Kong, Hong Kong, China
ken.fong@my.cityu.edu.hk, minming.li@cityu.edu.hk
2 Facebook, Inc., Menlo Park, USA
hongyuliang86@gmail.com
3 Georgia Institute of Technology, Atlanta, USA
ljyang@gatech.edu
4 Bopu Technologies, Shenzhen, China
hao@bopufund.com

Abstract. We study the average-case complexity of min-sum product of
matrices, which is a fundamental operation that has many applications
in computer science. We focus on optimizing the number of “algebraic”
operations (i.e., operations involving real numbers) used in the computa-
tion, since such operations are usually expensive in various environments.
We present an algorithm that can compute the min-sum product of two
n X n real matrices using only O(n?) algebraic operations, given that the
matrix elements are drawn independently and identically from some fixed
probability distribution satisfying several constraints. This improves the
previously best known upper-bound of O(n2 logn). The class of probabil-
ity distributions under which our algorithm works include many impor-
tant and commonly used distributions, such as uniform distributions,
exponential distributions, and folded normal distributions.

In order to evaluate the performance of the proposed algorithm, we
performed experiments to compare the running time of the proposed
algorithm with algorithms in [7]. The experimental results demonstrate
that our algorithm achieves significant performance improvement over
the previous algorithms.

1 Introduction

The min-sum product (also known as min-plus product, distance matrix product,
and distance matrix multiplication) of two matrices is defined as follows: Given
two n x n real matrices A and B, the min-sum product of them, denoted by
A ® B, is defined as a matrix C' where

C;; mkm(Ai,k + Byj), foralll<i,j<n. (1)

This work was fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 122512].
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 41-52, 2014.
DOT: 10.1007/978-3-319-13075-0_4

42 K. Fong et al.

The min-sum product is a fundamental operation that has many applications
in computer science. For example, it is well known that the min-sum product
problem is closely related to the problem of computing all-pairs shortest paths
in a graph [1], which is among the most fundamental and well-studied problems
in the algorithm community. Another important application of the min-sum
product is in performing MAP (maximum a posteriori) inference with graphical
models [7,13].

A naive implementation for computing the min-sum product of two n x n
matrices requires O(n?) time, which is too slow for a large n. Because of the
importance of this problem, many algorithms were developed to improve the
cubic time bound (see the work of Chan [4] and the references therein). Currently,
the best-known worst-case algorithm is due to Han and Takaoka [11] with time
complexity O(n?loglogn/log?n), which is only slightly better than cubic time
by a poly-logarithmic factor. Whether there exists a truly worst-case sub-cubic
(i.e., O(n37%) for some positive constant §) algorithm for the min-sum product
problem is a long-standing open problem. The difficulty comes from the fact
that the min-sum product is computed on a semiring structure, where there
is no additive inverse defined over the min operator. Existing truly sub-cubic
fast matrix multiplication algorithms (e.g., the Strassen algorithm [19] and the
Coppersmith-Winograd algorithm [5]) only work on a ring structure. In fact,
it is conjectured by many researchers that an n3~“() time algorithm does not
exist for the min-sum product problem (see e.g. [4,10,11]).

In many practical applications of the min-sum product problem, the average-
case time complexity becomes more interesting than worst-case complexity. As
shown in a recent work of Felzenszwalb and McAuley [7], the min-sum product
problem can be solved significantly faster than cubic time in the average case
for some MAP inference applications in computer vision and natural language
processing. (See also the work of McAuley and Caetano [13] for the related
applications.) The algorithm of Felzenszwalb and McAuley [7] runs in expected
O(n?logn) time when the entries of the input matrices are independently drawn
from a uniform distribution on [0, 1]. A more general algorithm of Takaoka [20]
also runs in expected O(n?logn) time under the endpoint independence model
[2]. Although being almost tight, there is still an O(logn) gap between the upper
bound and the trivial lower bound of £2(n?) (which is the time required to output
the answer).

Since the computations involving real numbers are usually much costlier
than that of integers, in real applications it is useful to consider the following
restricted algebraic model of computation: Computations involving real num-
bers are restricted to adding two real numbers and comparing two real numbers.
When talking about the algebraic complexity, we only count the costs for adding
and comparing two real numbers; all other computations (like adding two integer
variables, comparing two indices, etc.) are assumed to be cost-free.

For the min-sum product problem, this restricted computation model actu-
ally coincides with the decision tree model [8], which also counts only the num-
ber of comparisons and additions of the matrix elements (or edge weights in the

Average-Case Complexity of the Min-Sum Matrix Product Problem 43

graph view) required in the computation. Thus, the result of [9] gives an O(n?)
worst-case bound on the algebraic complexity of min-sum product, which is a
substantial improvement on the n3~°() complexity in the traditional model.
However, this is not the case when considering the average case. The analyses of
previous algorithms [7,20] only give an O(n?logn) bound on the average-case
algebraic complexity, which is of the same order with the traditional average-
case complexity. It is not clear from the previous studies whether this bound can
be further improved.

Our Contributions. In this paper, we study the problem of computing the min-sum
product of two random matrices under the aforementioned algebraic computation
model. We show that the min-sum product of two n X n matrices can be computed
using only O(n?) expected algebraic operations (i.e., adding or comparing two real
numbers), when the elements of the two matrices are independently drawn from
some fixed probability distribution satisfying several constraints (see Theorem 1).
Thus, our result improves the algebraic complexity of computing the min-sum
product of two matrices from O(n? logn) [7,20] to O(n?), which is clearly the best
possible due to the trivial quadratic lower bound. The class of probability distri-
butions under which our algorithm works include many important and commonly
used distributions, e.g., the uniform distribution on [0, J] for any ¥ > 0, exponen-
tial distributions, folded normal distributions. As mentioned before, the algebraic
computation model actually coincides with the decision tree model. Therefore, as a
by-product, the average-case decision tree complexity of min-sum product is shown
to be O(n?), which matches the trivial £2(n?) lower bound.

Besides the theoretical result we achieved, we re-implemented the algorithms
in [7] and our algorithm in C++ to perform the comparison on the running
time. For two matrices multiplication, the experimental results show that our
algorithm achieves significant performance improvements over the previous algo-
rithms, especially when n is large. Moreover, we also conducted the experiments
with multiple matrices multiplication. Figure 2 shows that the improvement over
algorithms in [7] is significant when m is small.

We note that a recent work of Peres et al. [17] solves the all-pairs shortest
paths problem on a complete graph (or the G(n, p) model with moderately large
p) in expected O(n?) time when the edge lengths are from the uniform distribu-
tion on [0,4]. Their work improves several previous results on the average-case
complexity of the problem (e.g., [2,12,14-16,18]). However, neither their algo-
rithm nor the previous ones apply to our case.

2 Min-Sum Product of Two Matrices

Let A and B be two n by n matrices, and C' = A® B be their min-sum product.
Assume that the entries of A and B are independent and identically distributed
(i.i.d.) random variables drawn from some fixed probability distributions. Our
goal is to efficiently compute C.

As introduced earlier, we focus on a restricted algebraic model of compu-
tation as follows: Computations that involve real numbers are restricted to

44 K. Fong et al.

adding two real numbers and comparing two real numbers; no other compu-
tations are allowed for real numbers. The algebraic complexity of an algorithm
is the (expected) number of algebraic operations, which only include the oper-
ation of adding two real numbers and that of comparing two real numbers; all
other computations (like adding two integer variables, comparing two indices,
etc) are cost-free. As noted in the introduction, this measure of complexity coin-
cides with the well-studied decision tree complexity. Under this model, we have
the following main theorem in this section.

Theorem 1. The min-sum product of two n by n real matrices A and B can be
computed using O(n?) expected algebraic computations (more specifically, O(n?)
additions and comparisons of real numbers) if the elements of A and B are
drawn independently from the same probability distribution, whose (cumulative)
distribution function F' satisfies all of the following three conditions:

— F is continuous;

— inf{z|F(z) > 0} =0;

— there exist two positive constants A and 0, such that F(x) < AF(x/2) for
0<z<0.

Notice that the second condition in Theorem 1, inf{z|F(z) > 0} = 0, means
the distribution must be for non-negative random variables, and the left end-
point of the support must be 0. Many popular probability distributions for non-
negative random variables satisfy the conditions in Theorem 1, for example, the
uniform distribution on [0,9] for any ¢ > 0, exponential distributions, folded
normal distributions, etc. Furthermore, we will later discuss how to support an
even more general class of distributions.

We present our algorithm as Algorithm 1, which can be considered as a refined
version of the algorithm of Felzenszwalb and McAuley [7]. The major differences
are the introduction of the matrix D in Algorithm 1 and the selection of the
6n2/logn smallest matrix entries in A and B. Notice that in the algorithm, C
represents the min-sum product computed by the algorithm, and C' (without the
hat) represents the correct min-sum product of A and B.

Here we sketch the basic ideas. The elements of matrices are independently
drawn from commonly used distributions, includes normal distribution, exponen-
tial distribution, etc. The algorithm maintains an extra matrix D to keep track of
whether the elements in €' are minimized. Similar to algorithm of Felzenszwalb
and McAuley [7], all elements in C are initialized to infinity. The algorithm uses
linear-time selection algorithm to select the r smallest matrix entries in A and
B. Each time, it finds the smallest element from r entries and check whether
it is greater than or equal to the source-sink pair in C. If this is the case, the
algorithm will mark this pair in D as TRUE, as it cannot be minimized in the
remaining iterations. Otherwise, the relaxation is performed on the lengths of
source-sink pair. After processing all r elements, if there exists any element not
marked as true in D, it will use the naive algorithm to find out the correct values
for those elements. The algorithm terminates when all elements in matrix D are
marked as TRUE.

Average-Case Complexity of the Min-Sum Matrix Product Problem 45

Algorithm 1. Computing the Min-Sum Product of Two Matrices

[}

© 0w N o

10

11

12
13
14
15
16

17

18

19

20

21

Input: A and B, which are both n by n matrices.
Output: C, which should be equal to C' = A ® B when the algorithm exits.

6n°>

i smallest
ogn

Use a linear-time selection algorithm (e.g. [3]) to select r =
numbers from A and B in O(n?) time. Ties are broken arbitrarily.

Sort these r numbers in O(rlogr) = O(n?) time, breaking ties arbitrarily, to get
a non-decreasing sequence of numbers Si, S, ..., S, where S, denotes the p-th
smallest number in A and B. (Note that we can now access S, for 1 < p <r.)

Initialize C‘H —ooforl<ij<n.

Initialize an n by n Boolean matrix D by setting D; ; «— FALSE for 1 <i,5 < n.
Here D; ; = TRUE means C; ; = C; j, i.e., the value of C; ; is correctly
computed. Note that once D, ; is set to TRUE, it will not change back to FALSE
in the later execution of the algorithm.

Initialize L[k] < 0 and R[k] < 0 for all 1 < k < n.

for p=1 tor do
if Sy, is A;, for some i and k then
‘ L[k] — LIk]U{Sp}.
else if S, is By,; for some k and j then

| R[k] — R[E]U{S,}.

//In the following, we assume Sj is A; ;. The other case where S is By ; is
totally analogous: just replace the next line with “for each A; , € L[k]”.

for each By, ; € R[k] do
if D; ; = FALSE then
if S, > C;; then
D; ; + TRUE;
If all entries of D are TRUE, then exit the algorithm and return

C.

else
L Ci,; «— min{C; ;, Ak + Bk}

if there exists a FALSE in D then
L Use a naive O(n?) algorithm to compute C.

return C

Lemma 1. During the execution of Algorithm 1, when D; ; is TRUE, we have
Cij=Cij.

Proof. 'This is because of the monotonic nondecreasing property of S: once D; ;
is changed from FALSE to TRUE, Sy +Sy > Sy > S, > Gy ; > C;; for any p/ > p
and any ¢'. So CA’l ; will not be relaxed by any S,/ 4 S¢ in the later execution of
the algorithm, which implies that Cz] =C;;. O

46 K. Fong et al.

Because of Lemma 1, if all the entries of D are TRUE at the end of the
algorithm, then Cis computed correctly. Otherwise, lines 19-20 of the algorithm
will guarantee the correctness of the computed C.

Now we analyze the algebraic complexity of Algorithm 1. Clearly lines 1-5
take O(n?) time, and hence require only O(n?) algebraic computations. We need
the following Proposition 1 and Proposition 2. If these two propositions hold, the
expected number of comparisons and additions is O(n?+n3-1/n) = O(n?), which
proves Theorem 1.

Proposition 1. For a fized probability distribution of Theorem 1, lines 6-18 of
Algorithm 1 require O(n?) expected number of additions and comparisons of real
numbers.

The algebraic computations only occur in lines 14 and 18. Let @; denote
the number of algebraic computations in line 14, and @2 denote that in line 18.
When executing line 14, if the condition S, > C; ; holds, then one of the entries
of D will change from FALSE to TRUE; if the condition does not hold, line 18 will
be executed. Since there are only n? entries of D, we have Q; < O(n?) + Q-,
and hence the total algebraic computations is bounded by 2Q2 + O(n?). The
following Lemma 2 characterizes the behavior of the algebraic computations in
line 18.

Lemma 2. Right before executing line 18 of Algorithm 1, we have A;) < Cy
and B}C’j S Ci’j.

Proof. We will prove it by contradiction. Assume that the lemma does not
hold, then we have either A; > C;; or By ; > C; ;, which implies S, > C; ;.
In this case, we must have CA’” = C; j, because the A; s and By ; that achieve
Cij = Ai i + By j must have been tried before the execution of the line due to
the monotonicity of S,. However, C; j = C; ; and S, > C; ; imply that S, > C; ;,
which is impossible, because line 14 will not allow the algorithm to branch into
line 14 under such a condition. This contradiction implies the correctness of the
lemma. O

Based on Lemma 2, the expected number of algebraic computations in line 18
is bounded by the expected size of the set {(i,k,j) | Aix < Cij A By < Cij}.
Let A denote the size of this set. For 1 < i,k,j < n, let X, ; be a random
variable, where Xi,k,j =1if Az’,k < Ci,j A Bk,j < Ci,jy and Xi,k,j = 0 otherwise.
We have A = Zi,k,j Xi k,j, and
E[A] = E[Z Xi,k,j} = Z E[Xi,k,j] = Z PI‘(AZ‘,k <Ci i NBy; < Ci7j).

i,k.j ik, j i3,k

Then, the following Lemma 3 suffices to establish Proposition 1.

Average-Case Complexity of the Min-Sum Matrix Product Problem 47

Lemma 3. For a fized probability distribution with distribution function F as
in Theorem 1, for any 1 < 1i,j,k <n, we have

1 1
2
PI‘(AiJf < Ci,j A Bk,j < Oi,j) <A <1 =+ F‘Q(e)> . ﬁ’

where the two positive constants A and 0 are specified as in Theorem 1 for F.

As X and 0 are both constants independent of n, by

E[/l] = Z PI’(Ai7k < CiJ A Bk,j < Ci)j) < TL3 . O(l/n) = O(’I’LQ)
1,5,k

Thus the total number of algebraic computations in Algorithm 1 is at most
2E[A] + O(n?) = O(n?), which proves Proposition 1. Due to space limit, the
proof of this lemma is omitted.

Proposition 2. For a fized probability distribution of Theorem 1, the probability
to execute line 20 of Algorithm 1 is O(1/n).

Proof. Fix 1 <1i,j < mn. We first observe that D; ; is TRUE if there exists to >
t1 > 0 such that all of the following three conditions hold:

1. Gy <t.

2. There exists 1 < k < n such that t; < A; , <ty ort; < By ; < to.

3. There exists at least 2n% —r = 2n% —6n2/logn edges with length larger than
to.

In fact, conditions 2 and 3 ensure that A;j or By ; is among the r chosen
edges. Consider the iteration in which S, is this edge. Conditions 1 and 2 together
guarantee that ézy is updated to t; before this iteration, and at this iteration
D; ; is set to TRUE by lines 14 and 15.

Next we show that the probability that such ¢; and t2 do not exist is at
most O(1/n3). By a simple union bound over the n? possible pairs of (4, j), this
implies Proposition 2.

2
Because F' is continuous, there exist ro > r; > 0 such that F(r) = logﬁn

and F(rg) = 2107\/%2”. We consider two cases.

Case 1: r1 < 6 (recall that 0 is the positive constant introduced in the
statement of Theorem 1). We let t; = r; and t3 = 9. The length of every edge
falls in the range (t1,t2) with probability F(te) — F(t1) = %. Thus condition
2 fails with probability at most

2n

2

48 K. Fong et al.

If condition 3 fails, then there exists at least r edges with length at most ¢5.
Therefore, the probability that condition 3 fails is at most

(o mer = (i) (255)

. nl/lO 6n?/logn
< 2°m .
=" (")

_ 2277,2 . (27%10gn

)6n2/logn

_ 22n2 5 2—%712
<0(n?),

Now consider condition 1. If condition 1 fails, then for all 1 <k <n, A; , +
By ; > t1. We have

log* n

Pr(Aix+ Brj <) > Pr(Aip < /2A By <0/2) = F(t1/2)° > (F(t1)/)? = =5,

where we use F(x) < AF(z/2) when x < 6, and that ¢; < . Then,

log4 n

PI‘(Ai’k +Bk,j > tl) <1l- n

Hence, we have

log4 n

n
PI'(Ci’j > t1> < (1 —) < 6_9(10g4 n) < O(?’L_B).

A2n
By the union bound, the probability that at least one condition fails is at most
O(1/n?).

Case 2: r; > 6. In this case we let t; = 6 and t3 = ro. Similar to Case
1, condition 3 fails with probability at most O(n=3). Since F(t3) — F(t1) =

F(re) — F(0) > F(rg) — F(r1) = %, we still have that condition 2 fails with

probability at most (1 — %)Q” <O0(n™3).
Now we consider condition 1. Similar as before, we have (V1 < k <mn)A; +
By, j >ty if condition 1 fails. We also have

Pr(Ajx + By <t1) >Pr(Aix <0/2ABy; <0/2) = (F(0/2))
Thus, Pr(A;; + Bg; > t1) <1— (F(6/2))?, and
Pr(Ci; > t1) < Pr(V1 <k <mn,Aig+ Br,; > t) < (1 — (F(6/2))%)" < e~ F@/2)°n,

As 6 is a positive constant, using the second condition of Theorem 1, we have
F(6/2) = 2(1), and thus Pr(C;; > t1) < e 2" < O(n=3). Again, using the
union bound, we know the probability that at least one condition fails is at most
O(n=3). This completes the proof of Proposition 2. O

Average-Case Complexity of the Min-Sum Matrix Product Problem 49

3 Experiments

In this section, we use experiments to validate the effectiveness of our algorithm.
Since the algorithms in [7] is considered as the previous best algorithm to com-
pute MSP, we only compare the running time performance of our algorithm with
the algorithms in [7]. There are two algorithms in [7] which are the algorithm
with integer queue and the algorithm without integer queue. All three algorithms
are implemented in C++ using the visual C++ compiler on an Intel i7 machine
running Windows 7 operating system.

The elements of all the input matrices are taken from four kinds of random
distributions which are uniform distribution of [0,1], exponential distribution of
[0,1], normal distribution of [0,10], and gamma distribution of [0,10]. For each
algorithm, we ran 10 test cases for n = 100, 200, . .. up to n=1000. For each test
case, we tested 100 input instances.

Average Execution Time on Uniform Distribution Average Execution Time on Exponential
2000 Distribution

00000

2500

00000

g = 700000

5 500000

1500

1000

Running Time {ms)

100000

10 200 30 40 S0 60 700 8m0 S 1000

Matrix Size (n}

—— Algerithmwithout Integer Queue [7] ——Algorithm with Integer Queue [7]
Our Algorithm

Matrix Size (n}
—— Algorithm without Integer Queue [7] = Algorithm with Integer Queue [7]
Our Algorithm

Average Execution Time on Gamma Distribution

Average Execution Time on Normal Distribution

700000 00000

600000 so0000

soa000

400000

400000
300000

300000

200000 200000
—
o /

S _— - 100000 —

Running Time {ms)
Running Time {ms)

0

T 0 - « - - -
0 200 30 400 SO0 600 700 00 800 1000 w0 3m a0 S0 s00 70 800 400 1000

Matrix Size {n) Matrix Size {n)
—— Algorithm without Integer Queue [7] == Algarithmwith Integer Queue [7] —— Algorithm without Integer Queue [7] =—=Algorithm with Integer Queue [7]
Ouralgorithm Our Algorithm

Fig. 1. Average Execution Time of Min-Sum Algorithms

Figure 1 shows the average execution time among these 100 instances for
each test case. The result validates that our algorithm has better performance
on random inputs. Specifically, when n is larger, our algorithm achieved better
performance.

We also tested the performance of min-sum product on multiple matrices
using the three algorithms as the basis. Besides matrix size n, a new parameter

50 K. Fong et al.

m, the number of matrices is introduced as one further dimension in the exper-
iments. Hence, for each algorithm, with the same setting above, we added one
further dimension m where m = 3,4, ..., 10.

Without modifying the algorithm, we implemented min-sum product of mul-
tiple matrices in a binary-tree-like association order. For example, assume the
number of matrices m = 5, the matrices are denoted as A, B, C, D, and F
respectively. The product order will be (A® B) ® ((C® D) ® E). This way, more
operations can be done on truly random input matrices.

Running Time comparision of multiple matrices Running Time comparision of multiple matrices
when n =500 when n = 1000
1900000 50807
" 4.00E+07 .
1200000 7
— = 350E407 =
o = ~
1000000
H - -
o o P
£ swmom £ 2siea07 .
= = o
g -~
2 soono E 200807 -
£ . £ -
£ £ 1508007 =
5 o000 2 -
. 1008407
200008, o e 5.00E406 — =
0 i - 0.00E+00 =
3 4 s 5 7 s B 10 3 4 s 6 7 s s 10
Number of Matrices (m) Number of Matrices (m)
—— Algarithmwithout Integer Queue [7] —— Algorithm writh Integer Queue [7] —— Algorithm without Integer Queue [7] —— Algorithm with Integer Queue [7]
e Our Algorithm <11+ Our Algorithm
Running Time parision of multiple matrices Running Time comparision of multiple matrices
whenm =5 when m =10
10000000 45000000
000000 . 0000000]
/ /
__ =ooem - 35000000 7
£ 700000, £ 30000000
o 1
£ e / E 25000000 7
£ sooooo / = /
L 4 2 20000000
£ £
£ amooo 5 7
A 7 £ /
£ / £ 15000000
< 3000000 — E %
&
2001050 5 10000000
1000000 —= — S000000, — .
a - U . J o =
10 w0 0 40 S0 so0 700 s00 S0 1000 W0 200 30 40 S0 600 700 800 00 1000
Matrix Size (n) Matrix Size (n}
—— Algorithm without Integer Queue [7] —— Algerithm with Integer Queue [7] —— Algorithm without Integer Queue [7] —— Algorithm with Integer Queue [7]
Our algorithm Our Algorithm

Fig. 2. Average Running Time of Min-Sum Algorithms with Multiple Matrices

We fix one dimension to see how the performance changes with the other
dimension. The four diagrams in Figure 2 show the performance changes with
m=>5,10, n=500,1000 respectively. The results show that our algorithm also per-
forms better than algorithms in [7]. However, for algorithms in [7], they have
different behaviors. When n = 500, m < 5, the algorithm with integer queue
performs better than the algorithm without integer queue, same as the exper-
iments for two matrices. However, when m > 5, the behavior is reversed. The
algorithm without integer queue achieves better result as m increases.

In order to investigate the main reason of the poor performance of the algo-
rithm with integer queue when m increases, we need to look at how integer
queue is implemented. For the integer queue data structure, in the beginning,

Average-Case Complexity of the Min-Sum Matrix Product Problem 51

the maximum value in matrix A and B will be selected as the parameter k. Then
elements in matrix C are initialized to 2k. For our experiment, all matrix ele-
ments are in the range of [0,1], and hence k will be 1, and 2k will be 2. Suppose
we have a matrix with size n = 10. We need to create the buckets as follows:
bucket 0 stores values in [0, 0.01),

bucket 199 stores values in [1.99, 2),
bucket 200 stores anything > 2.

Totally there will be 2n2 buckets. For min-sum product on two matrices, since
both matrices are truly-random matrices, each bucket will not store many items
on average. However, for multiple matrices case, as the input is not truly random,
the matrix elements will have a low chance to be evenly distributed to the buckets.
Thus, some of the buckets may contain lots of elements. Since the algorithm will
extract the minimum value from the bucket before computation, if there are lots
of items in a single bucket, the performance may degrade. This is the main reason
that the algorithm using integer queue performs worse when m is larger.

4 Conclusion

In this paper, we have investigated the average-case complexity of computing the
min-sum product of matrices, and improve previously known results under the
algebraic complexity setting. It remains an interesting question whether O(n?)
expected algebraic computations suffice also for the more general case, where a
constant number of (larger than two) matrices are given as inputs.

Moreover, the bottleneck of our algorithm is due to the selection and sorting
of the r smallest elements. If r can be further reduced, the running time of the
bottleneck can be improved. But this may cause more elements in D to remain
FALSE due to elements not minimized, and require to use the naive algorithm
to retrieve the correct values. Hence, if we choose the small r, then it may take
longer time to execute the naive algorithm. So it remains the question what is the
best value of r to choose in order to improve the running time of the algorithm.
Therefore we can consider this as our future works.

Besides the theoretical results we achieved, we run experiments to perform
the running time comparison of our algorithm and algorithms in [7]. The exper-
iments show that our algorithm achieves better result on random inputs. In
addition, we also run experiments with multiple matrices multiplication. The
results show that the improvement over algorithms in [7] is significant when m
is small.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Bloniarz, P.A.: A shortest-path algorithm with expected time O(n?lognlog* n).
SIAM Journal on Computing 12(3), 588-600 (1983). http://link.aip.org/link/?
SMJ/12/588/1

http://link.aip.org/link/?SMJ/12/588/1
http://link.aip.org/link/?SMJ/12/588/1

52

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Fong et al.

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7(4), 448-461 (1973). http://
www.sciencedirect.com/science/article/pii/S0022000073800339

Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. STAM
Journal on Computing 39(5), 2075-2089 (2010)

. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation 9(3), 251-280 (1990). http://www.sciencedirect.
com/science/article/pii/S0747717108800132

David, H.A., Nagaraja, H.N.: Order Statistics. Wiley, Hoboken (2003)
Felzenszwalb, P.F., McAuley, J.J.: Fast inference with min-sum matrix product.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33(12), 2549—
2554 (2011)

Fredman, M.L.: On the decision tree complexity of the shortest path problems. In:
Proc. 16th FOCS, pp. 98-99 (1975)

Fredman, M.L.: New bounds on the complexity of the shortest path problems.
SIAM Journal on Computing 5(1), 83-89 (1976)

Han, Y.: An O(n®(loglogn/logn)®/*) time algorithm for all pairs shortest paths.
Algorithmica 51(4), 428-434 (2008)

Han, Y., Takaoka, T.: An O(n> loglogn/log® n) time algorithm for all pairs short-
est paths. In: Proc. 13th SWAT (2012)

Karger, D., Koller, D., Phillips, S.: Finding the hidden path: time bounds for all-
pairs shortest paths. STAM Journal on Computing 22(6), 1199-1217 (1993)
McAuley, J.J., Caetano, T.S.: Exploiting within-clique factorizations in junction-
tree algorithms. Journal of Machine Learning Research - Proceedings Track 9,
525-532 (2010)

McGeoch, C.: All-pairs shortest paths and the essential subgraph. Algorithmica
13(5), 426-441 (1995)

Mehlhorn, K., Priebe, V.: On the all-pairs shortest-path algorithm of Moffat and
Takaoka. Random Structures and Algorithms 10(1-2), 205-220 (1997)

Moffat, A., Takaoka, T.: An all pairs shortest path algorithm with expected time
O(n?logn). STAM Journal on Computing 16(6), 1023-1031 (1987)

Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n?)
time with high probability. In: Proc. 51th FOCS, pp. 663-672 (2010)

Spira, P.M.: A new algorithm for finding all shortest paths in a graph of positive
arcs in average time O(n? log® n). STAM Journal on Computing 2(1), 28-32 (1973).
http://link.aip.org/link/?SMJ/2/28/1

Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),
354-356 (1969). http://dx.doi.org/10.1007/BF02165411

Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electronic Notes in Theoretical Computer Science 61, 191—
200 (2002). http://www.sciencedirect.com/science/article/pii/S1571066104003135

http://www.sciencedirect.com/science/article/pii/S0022000073800339
http://www.sciencedirect.com/science/article/pii/S0022000073800339
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://link.aip.org/link/?SMJ/2/28/1
http://dx.doi.org/10.1007/BF02165411
http://www.sciencedirect.com/science/article/pii/S1571066104003135

Efficiently Correcting Matrix Products

Leszek Gasieniec!, Christos Levcopoulos?®™) | and Andrzej Lingas?®

! Department of Computer Science, University of Liverpool,
Peach Street, Liverpool L69 7ZF, UK
L.A.Gasieniec@liverpool.ac.uk
2 Department of Computer Science, Lund University, 22100 Lund, Sweden
{Christos.Levcopoulos,Andrzej.Lingas}@cs.1lth.se

Abstract. We study the problem of efficiently correcting an erroneous
product of two n x n matrices over a ring. We provide a randomized algo-
rithm for correcting a matrix product with k erroneous entries running in
O(vVkn?) time and a deterministic O(kn?)-time algorithm for this prob-
lem (where the notation 16) suppresses polylogarithmic terms in n and k).

Keywords: Matrix multiplication - Matrix product verification -
Correction algorithms - Randomized algorithms

1 Introduction

Matrix multiplication is a basic operation used in many sciences and engineering.
There are several potential reasons for erroneous computational results, in par-
ticular erroneous matrix products. They include software bugs, computational
errors by logic circuits and bit-flips in memory. If the computation is done by
remote computers or by parallel processors, then some errors in the computed
result might also be introduced due to faulty communication.

In 1977, Freivalds presented a randomized algorithm for verifying if a matrix
C' is the matrix product of two n x n matrices A and B, running in O(n?) time
[7]. His algorithm has been up today one of the most popular examples showing
the power of randomization.

In spite of extensive efforts of the algorithmic community to derandomize it
without substantially increasing its time complexity, one has solely succeeded
partially, either decreasing the number of random bits to a logarithmic one
[2,9,12] or using exponentially large numbers and the unrealistic BSS computa-
tional model [10]. One can argue that the latter solutions in different ways hide
additional O(n) factors. By the way, if one can use quantum devices then even
an O(n°/?)-time verification of n x n matrix product over an integral domain is
possible [1].

Interestingly, the problem of verifying matrix products over the (min,+)
semi-ring seems to be much harder than that over an arbitrary ring. Namely, it

Christos Levcopoulos and Andrzej Lingas: Research supported in part by Swedish
Research Council grant 621-2011-6179.
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 53-64, 2014.
DOT: 10.1007/978-3-319-13075-0_5

54 L. Gasieniec et al.

admits a truly subcubic algorithm if and only if there is a truly subcubic algo-
rithm for the all-pairs shortest path problem on weighted digraphs (APSP) [15].

Freivalds’ algorithm has also pioneered a new subarea of the so called certi-
fying algorithms [11]. Their purpose is to provide besides the output a certificate
or easy to verify proof that the output is correct. The computational cost of the
verification should be substantially lower than that incurred by recomputing the
output (perhaps using a different method) from scratch.

In 1977, when Freivalds published his algorithm, the asymptotically fastest
known algorithm for arithmetic matrix multiplication was that due to Strassen
running in O(n?®!) time [13]. Since then the asymptotic running time of fast
matrix multiplication algorithms has been gradually improved to O(n?-3728639)
at present [3,8,14] which is still substantially super-quadratic.

In this paper, we go one step further and consider a more complex problem
of not only verifying a computational result but also correcting it if necessary.
Similarly as Freivalds, as a subject of our study we choose matrix multiplication.

Our approach is very different from that in fault tolerant setting, where one
enriches input in order to control the correctness of computation (e.g., by check
sums in the so called ABFT method) [5,16,17]. Instead, we use here an approach
resembling methods from Combinatorial Group Testing where one keeps testing
larger groups of items in search for multiple targets, see, e.g. [4,6].

First, we provide a simple deterministic algorithm for correcting an n x n
matrix product C’ over a ring, with at most one erroneous entry, in O(n?) time.
It can be regarded as a deterministic version of Freivalds’ algorithm (Section 3).
Next, we extend the aforementioned algorithm to include the case when C’ con-
tains at most k erroneous entries. The extension relies on distributing erroneous
entries of C’ into distinct submatrices by deterministically moving the columns of
C" and correspondingly the columns of B. The resulting deterministic algorithm
runs in O(k2n?) time, where the notation O suppresses polylogarithmic terms in
n and k (Section 4). Then we show how to reduce the time bound to O(kn?) by
applying this shuffling approach first with respect to the columns and then with
respect to the rows of C’. In the same section, we discuss also a slightly random-
ized version of the aforementioned algorithm running in é(\/EnQ) expected time
using O(log2 k +log kloglog n) random bits. For small &, this is less than the log-
arithmic in n number of random bits used in the best known O(n?)-time verifica-
tion algorithms for matrix multiplication obtained by a partial derandomization of
Freivalds’ algorithm [2,9,12]. Finally, in Section 5, we present a faster randomized
algorithm for correcting C’ in O(v/kn?logn) time almost surely (i.e., with prob-
ability at least 1 — n~* for any constant oz > 1), where k is the non-necessarily
known number of erroneous entries of C’. A slight modification of this algorithm
runs in O(v/kn?) expected time provided that the number of erroneous entries in
known. Features of our algorithms are summarized in Table 1. Note that none of
them subsumes any other one in all aspects. We conclude with Final Remarks,
where we discuss how the O(v/kn?)-expected-time algorithm from Section 5 and
the slightly randomized algorithm from Section 4 can also be adjusted to the sit-
uation when the number of erroneous entries is unknown.

Efficiently Correcting Matrix Products 55

Table 1. The characteristics and time performances of the algorithms for correcting
an n X n matrix product with at most k erroneous entries presented in this paper. The
issue of adapting the algorithms presented in the second and fourth row (not counting
the title row) to unknown k is discussed in Final Remarks.

errors = e < k deterministic/randomized time complexity
k known deterministic O(kn?) time
k=e, known |O(log?k + log kloglogn) random bits| O(vkn?) expected time
k = e, unknown randomized O(VEkn?logn) almost surely
k = e, known randomized O(Vkn?) expected time

2 Preliminaries

Let (U,+, x) be a semi-ring. For two n-dimensional vectors a = (ag, ..., @p—1)
and b = (bg, ..., b,—1) with coordinates in U their dot product Z?z_ol a; X b; over
the semi-ring is denoted by a ® b.

For an p x ¢ matrix A = (a;;) with entries in U, its i-th row (a1, ..., ain) is
denoted by A(%,*). Similarly, the j-th column (a1, ..., an;) of A is denoted by
A(*, 7). Given another ¢ x r matrix B with entries in U, the matrix product Ax B
of A with B over the semi-ring is a matrix C = (¢;;), where ¢;; = A(%, %) © B(x, j)
for 1 <i,j5 <n.

3 Correcting a Matrix Product with a Single Error

Given two matrices A, B of size p X ¢ and ¢ X r, respectively, and their possibly
erroneous p X r matrix product C’ over a ring, Freivalds’ algorithm picks uni-
formly at random a vector in {0, 1}" and checks if A(BxT) = C'zT, where 27
stands for a transpose of z, i.e., the column vector corresponding to x [7]. For
1 =1,...,p, if the i-th row of C’ contains an erroneous entry, the i-th coordinates
of the vectors A(Bz®) and C’zT will differ with probability at least 1/2.

In the special case, when C’ contains a single error, we can simply determin-
istically set x to the vector (1,...,1) € {0, 1}" in the aforementioned Freivalds’
test. The vectors A(Bx™), C'x™ will differ in exactly one coordinate whose num-
ber equals the number of the row of C’ containing the single erroneous entry.
(Note that the assumption that there is only one error is crucial here since oth-
erwise two or more errors in a row of C’ potentially could cancel out their effect
so that the dot product of the row with =, which in this case is just the sum of
entries in the row, would be correct.) Then, we can simply compute the i-th row
of the matrix product of A and B in order to correct C’.

The time complexity is thus linear with respect to the total number of entries
in all three matrices, i.e., O(pg + gr + pr). More precisely, it takes time O(p - 1)
to compute C’'zT, O(q - r) to compute Bz, and finally O(p - ¢) to compute the
product of A with BzT.

56 L. Gasieniec et al.

Lemma 1. Let A, B, C' be three matrices of size p X q, ¢ X v and p X 1,
respectively, over a ring. Suppose that C' is different from the matriz product C
of A and B exactly in a single entry. We can identify this entry and correct it
in time linear with respect to the total number of entries, i.e., in O(pq+ gr + pr)
time.

4 Correcting a Matrix Product with at Most k Errors

In this section, we shall repeatedly use a generalization of the deterministic
version of Freivalds’ test applied to detecting single erroneous entries in the
previous section.

Let A, B be two n X n matrices, and let C’ be their possibly faulty product
matrix with at most k£ erroneous entries, over some ring. Let C* and B* denote
matrices resulting from the same permutation of columns in the matrices C’ and
B.

Similarly as in the previous section, the generalized deterministic version of
Freivalds’ test verifies rows of C*, but only for a selected set of consecutive
columns of the matrix. Such a set of columns will be called a strip.

We shall check each strip of C* independently for erroneous entries that occur
in a single column of the strip. To do this, when we determine the vector v to
be used in the coordinate-wise comparison of A(B*vT) with C*vT, we set the
i-th coordinate of v to 1 if and only if the i-th column of the matrix C* belongs
to the strip we want to test. Otherwise, we set the coordinate to 0. (See Fig. 1.)

In this way, for each row in a strip, we can detect whether or not the strip row
contains a single error. The time complexity for testing a whole strip in this way
is O(n?), independently from the number of columns of the strip. If necessary,
we can also correct a single row of a strip by recomputing all its entries in time
proportional to n times the number of columns in the strip.

Our algorithm in this section relies also on the following number theoretical
lemma.

Lemma 2. Let P = {i,...,4;} be a set of I different indices in {1,...,n}. There
exists a constant ¢ and for each i, € P, a prime p,, among the first cllogn
/loglogn primes such that for iy € P\ {in}, im mod py, # iy mod py,.

Proof. Tt follows from the Chinese remainder theorem, the density of primes and
the fact that each index in P has O(log n) bits that there is a constant b such that
for each pair i,,, i, of distinct indices in P there are at most blogn/loglogn
primes p such that ¢,, mod p = i, mod p. Consequently, for each i,, € P there
are at most b(! — 1) logn/loglogn primes p for which there exists iy € P\ {iy, }
such that i¢q mod p = i, mod p. Thus, it is sufficient to set the constant c to b
in order to obtain the lemma. O

Given the generalized deterministic version of Freivalds’ test and Lemma 2,
the idea of our algorithm for correcting C’ is simple, see Fig. 2.

Efficiently Correcting Matrix Products 57

C*

¢ s s e o 6 e o s s s o

Fig. 1. Tllustration of using the vector vT in order to “extract” the vertical strip V'
from the matrix C*

For each prime p among the first cklogn/loglogn primes, for j = 1,...,n,
the j-th column is moved into a (vertical) strip corresponding to j mod p. Cor-
respondingly, the columns of the matrix B are permuted.

Let B* and C* denote the resulting shuffled matrices.

Next, for each strip V of C*, we set v to the vector in {0, 1}" whose j-
th coordinate is 1 if and only if the j-th column belongs to V. We compute
and compare coordinate-wise the vectors A(B*vT) and C*v’. Note that for
i =1,...,n, if there is a single erroneous entry in the i-th row of V then the vectors
A(B*vT), C*vT are different in this coordinate. Simply, the i-th coordinate of
C*vT is just the sum of the entries in the i-th row of V while that coordinate
of A(B*vT) is the sum of the entries in the i-th row of the vertical strip of the
product of A and B* corresponding to V.

It follows in particular that for each strip which contains only one erroneous
column, we shall find all erroneous rows in the strip. Furthermore, we can correct
all the erroneous entries in a detected erroneous row of the vertical strip V in
O(n?/p) time by computing O(n/p) dot products of rows of A and columns of
B*.

It follows from Lemma 2, that for each erroneous column in C’, there is
such a prime p that the column is a single erroneous column in one of the
aforementioned vertical strips of the shuffled matrix C*. Hence, all the k errors
can be localized and corrected.

58 L. Gasieniec et al.

Algorithm 1

Input: three n x n matrices A, B, C’ such that C’ differs from the matrix product of
A and B in at most k entries.

Output: the matrix product of A and B.

L — the set of the first cklogn/loglogn primes;

C* «— (C'; B* « B;

for each prime p € L do

1. for j=1,...,n do
(a) Move the j-th column of C* into the j mod p + 1 strip of columns in C*;
(b) Correspondingly move the j-th column of B* into the j mod p + 1 strip of
columns in B*;
2. for each strip V of C* do
(a) Set v to the vector in {0, 1}"™ whose j-th coordinate is 1 if and only if the j-th
column of C* belongs to V;
(b) Compute the vectors A(B*vT) and C*v™;
(c) for each coordinate 4 in which A(B*v”) and C*v” are different do
i. Compute the entries in the i-th row of the strip of A x B* corresponding
to V and correct the i-th row of V' in C appropriately.

Output C*.

Fig. 2. A deterministic algorithm for correcting at most k errors

Lemma 3. Let A, B, C' be three n x n matrices over a ring. Suppose that C' is
different from the matriz product C' of A and B in at most k entries. Algorithm
1 identifies these erroneous entries and corrects them in O(k?n?) time.

Proof. The correctness of Algorithm 1 (see Fig. 2) follows from the above dis-
cussion and Lemma 2.

Algorithm 1 iterates over cklogn/loglogn smallest primes. Since an upper
bound on the i-th prime number is O(ilogs) for any ¢ > 1, it follows that the
largest prime considered by the algorithm has size O(cklognlogk), and hence
all these primes can be listed in O(c*k? log® nlog k) time.

For a given prime p, the algorithm tests p vertical strips V for the containment
of rows with single errors by computing the vectors A(B*vT) and C*vT. It takes
O(n?p) time in total, for all these strips.

By the upper bounds on the number of considered primes and their size,
it follows that the total time taken by the tests for all considered primes is
O(c*k*n?log® nlog k/ loglog n).

The correction of an erroneous entry in a detected erroneous row in a vertical
strip V takes O(n?/p) time. Thus, the correction of the at most k erroneous
entries in C*, when the corresponding erroneous rows have been detected, takes
total time O(kn?).

Hence, the upper time bound for the tests dominates the running time of the
algorithm. a

Efficiently Correcting Matrix Products 59

In a practical implementation of the algorithm above, one can of course
implement the shuffling of the columns without actually copying data from one
column to another. For this purpose one could also define the strips in a different
way, i.e., they do not need to consist of consecutive columns.

Reducing the Time Bound to O(kn?). In order to decrease the power of k
in the upper bound of the time complexity from 2 to 1, we make the following
observation. Consider any column 4 of C’. The number of erroneous entries in
column i that are in rows that have at least vk erroneous entries is at most V.

We start by applying Algorithm 1 with the difference that we only use the
smallest cv/klogn/loglogn primes. In this way all rows that have at most vk
erroneous entries will be found in total O((v/k)?n?) time, and will be fixed in
O(n?) time for each detected erroneous row. So the time complexity up to this
stage is dominated by O(kn?).

Now, we let C” be the partially corrected matrix and we apply the same
procedure but reversing the roles of columns and rows, i.e., we work with BT AT
and C”'T'. Since for any row of "', all its erroneous entries that were in columns
of C"T with at most vk errors were already corrected, now by the observation,
the number of erroneous entries in any row of C”’7 is at most v/k. Thus Algorithm
1 will now find all remaining erroneous rows in time O(an) and we can correct
them in additional time O(kn?). Hence we obtain the following theorem:

Theorem 1. Let A, B, C’ be three n X n matrices over a Ting. Suppose that
C' is different from the matriz product C' of A and B in at most k entries. We
can identify these erroneous entries and correct them in O(kn?) time.

Few Random Bits Help. We can decrease the power of k in the upper bound
of Theorem 1 from 1 to 0.5 by using O(log2 k + log kloglogn) random bits as
follows and assuming that the exact number k of erroneous entries in C’ is known.
(The removal of this assumption will be discussed later.) The idea is that instead
of testing systematically a sequence of primes, we start by producing four times
as many primes and then choose randomly among them in order to produce the
strips.

We call a faulty entry in C’ 1-detectable if it lies in a row or column of C’
with at most 2v/k erroneous entries. From this definition it follows that most
faulty entries are 1-detectable. More specifically, we call an entry in C” 1-row-
detectable, respectively 1-column-detectable, if it lies in a row, respectively col-
umn, with at most 2v/k erroneous entries.

We will aim at detecting first a constant fraction of the 1-row-detectable
(false) entries, and then a constant fraction of the 1-column-detectable entries.
For this purpose we start by producing, in a preprocessing phase, the smallest
4cvVk log n/loglogn primes (i.e., four times as many primes as we did in the
deterministic algorithm of Theorem 1).

To detect sufficiently many 1-row-detectable entries we run one iteration of
Algorithm 1, with the difference that we use a prime chosen randomly among

60 L. Gasieniec et al.

the produced 4cvk log n/loglogn smallest primes. In this way, for each 1-row-
detectable entry there is at least a probability 1/2 that it will be detected.

Then we repeat once more this procedure but reversing the role of columns
and rows, i.e., by working with BT AT and C'T. In this way for each 1-column-
detectable entry there is at least a probability 1/2 that it will be detected.

In this way, now each 1-detectable entry has been detected with probability
at least 1/2. By correcting all these detected entries, we thus reduce the total
number of remaining false entries by an expected constant fraction.

Thus we can set k to the remaining number of false entries and start over
again with the resulting, partially corrected matrix C’. We repeat in this way
until all erroneous entries are corrected.

The expected time bound for the tests and corrections incurred by the first
selected primes dominate the overall expected time complexity. Note that the
bound is solely O(cvkn?lognlogk).

The number of random bits needed to select such a random prime is O(log k+
loglogn). The overall number of random bits, if we proceed in this way and use
fresh random bits for every new selection of a prime number, has to be multiplied
by the expected number of the O(logk) iterations of the algorithm. Thus, it
becomes O(log? k + log kloglogn).

Hence, we obtain the following slightly randomized version of Theorem 1.

Theorem 2. Let A, B, C' be three n X n matrices over a ring. Suppose that C’
is different from the matriz product C of A and B in exactly k entries. There is
a randomized algorithm that identifies these erroneous entries and corrects them
in O(\/Erﬂ) expected time using O(log” k + log kloglogn) random bits.

If the number k or erroneous entries is not known, then our slightly ran-
domized method can be adapted in order to estimate the number of erroneous
columns and rows. Since similar issues arise in connection to another random-
ized approach presented in the next chapter, we postpone this discussion to Final
Remarks.

5 A Faster Randomized Approach

In this section, similarly as in the previous one, we shall repeatedly apply a
version of Freivalds’ test to (vertical) strips of the possibly erroneous matrix
product C’ of two m X n matrices A and B. However, in contrast with the
previous section, the test is randomized. It is just a restriction of Freivalds’
original randomized algorithm [7] to a strip that detects each erroneous row of a
strip with probability at least 1/2 even if a row contains more than one erroneous
entry.

More precisely, the vector v used to test a strip of C’ by comparing A(BvT)
with C’v7 is set as follows. For j = 1,...,n, the j-th coordinate of v is set to 1
independently with probability 1/2 if and only if the j-th column of C" belongs
to the strip we want to test, otherwise the coordinate is set to 0. In this way, for
each row in the strip, the test detects whether or not the strip row contains an

Efficiently Correcting Matrix Products 61

erroneous entry with probability at least 1/2, even if the row contains more than
one erroneous entry. The test for a whole strip takes O(n?) time, independently
from the number of columns of the strip.

Using the aforementioned strip test, we shall prove the following theorem.

Theorem 3. Let A, B and C’ be three n X n matrices over a ring. Suppose that
C’ is different from the matriz product C of A and B in k entries. There is a
randomized algorithm that transforms C' into the product A x B in O(\/E -n?-
logn) time almost surely without assuming any prior knowledge of k.

Proof. Let us assume for the moment that k is known in advance (this assump-
tion will be removed later). Our algorithm (see Algorithm 2 in Fig. 2) will suc-
cessively correct the erroneous entries of C’ until C” will become equal to A X B.
For easier description, let us also assume that v/k is an integer, and that n is a
multiple of vk.

We consider a partition of the columns of C” into v/k strips of equal size, i.e.,
consecutive groups of n/ Vk columns of C’. We treat each such strip separately
and independently. For each strip, we apply our version of Freivalds’ test O(logn)
times. In this way, we can identify almost surely which rows of the tested strip
contain at least one error. (Recall that for each iteration and for each strip row,
the chance of detecting an error, if it exists, is at least 1/2.) Finally, for each
erroneous strip row, we compute the correct values for each one of its n/ \/E
entries.

Algorithm 2

Input: three n x n matrices A, B, C’ such that C’ differs from the matrix product of
A and B in at most k entries.

Output: the matrix product of A and B, almost surely.

fori=1,...,[vk] do

1. Run the strip restriction of Freivalds’ algorithm c-logn times on the i-th (vertical)
strip of C’;

2. For each erroneous strip row found in the i-th (vertical) strip of C’, compute each
entry of this strip row and update C’ accordingly;

Output C'.

Fig. 3. A randomized algorithm for correcting at most k errors

In each iteration of the test in Step 1 in the algorithm, each erroneous row in
the strip will be detected with a probability at least 1/2. Hence, for a sufficiently
large constant ¢ (e.g., ¢=3) all erroneous rows will be detected almost surely
within ¢ - logn iterations. If we use the straightforward method in order to
compute the correct values of an erroneous strip row, then it will take O(n) time
per entry. Since each strip row contains n/ Vk entries, the time taken by a strip
row becomes O(n?/v/k). Since there are at most k erroneous strip rows, the total

62 L. Gasieniec et al.

time for correcting all the erroneous strip rows in all strips is O(v/k - n?). Hence,
the total time complexity is dominated by applying the strip tests, O(logn) times
for each one of the strips. This yields an upper time bound of O(\/E -n?.logn).

In Algorithm 2, if we use, instead of the correct number & of erroneous entries,
a guessed number k' which is larger than k, then the time complexity becomes
Ok - n? - logn). This would be asymptotically fine as long as k is within a
constant factor of k. On the other hand, if we guess k&’ which is much smaller than k&,
then the length of each erroneous strip row may become too large. For this reason,
first we have to find an appropriate size for the strips to be used by our algorithm.
For this purpose, we start by setting k' to a small constant, e.g., to 4, and then
we multiply our guess by 4, until we reach a good balance. More precisely, for
each such guessed k', without correcting any errors, we consider a partition of the
matrix C’ into V&' strips, and apply our test to each strip. As soon as we discover
more than k' erroneous strip rows we break the procedure without correcting any
errors, and we start over with a four times larger guess &'

The aforementioned method of guessing &’ may result in at most O(logk)
wrong guesses until we achieve a good guess. Since we multiply our guess every
time with 4, we obtain a geometric progression of the estimated costs of subse-
quent trials. In this way, the upper bound on the asymptotic complexity of the
whole algorithm is dominated by that of the final step. In this step, we test each
strip ¢ - logn times in order to detect almost surely all erroneous strip rows.

Note that when the number of erroneous entries is at most four then our
algorithm will keep its first guess, i.e., ¥/ = 4, and so the number of strips will
be (and remain) 2. Hence, it will correct at most 4 erroneous rows in total time
O(n?). So, we can focus on the case when k > 4. With respect to our current
guess k', the number of detected erroneous rows lies thus almost surely between
k'/4 and k’. Since each such an erroneous row contains n/v/k’ entries, it can
be recomputed in O(n?/vk’) time. Consequently, the total time complexity of
correcting all the at most k" erroneous rows becomes O(k’-n?/VE') = O(VE -n?).
Since &’ < 4k holds, the theorem follows. O

Algorithm 2 in the proof of Theorem 3 can be modified in order to achieve
an expected time bound of O(vk - n?) for correcting all errors, if k is known in
advance. (We discuss the removal of this assumption in Final Remarks.) Instead
of applying the strip restriction of Freivalds’ algorithm c - logn times for each
strip, we apply it only once for each strip and correct all erroneous rows which
we detect. By counting how many errors we have corrected, we compute how
many errors remain. Then we recurse in the same way on the partially corrected
matrix C' using as a parameter this new number of errors which remain to be
corrected.

During each iteration of the algorithm, each remaining error in C” will be
detected and corrected with probability at least 1/2. Thus, the expected number
of remaining errors will be halved after each iteration. Consequently, we obtain
a geometric progression on the expected time complexity of each iteration, and
so the total expected time complexity is dominated by the time taken by the
first iteration, which is O(\/E -n?) . Thus we obtain the following theorem.

Efficiently Correcting Matrix Products 63

Theorem 4. Let A, B, C’ be three n X n matrices over a ring. Suppose that C’
is different from the matriz product C' of A and B in exactly k entries. There is
a randomized algorithm that identifies these erroneous entries and corrects them
in O(Vk -n?) expected time.

6 Final Remarks

The algorithm used for Theorem 4 can be adapted for the case when the number
k of errors is unknown, by making guesses k’ of the form 4!, similarly to the proof
of Theorem 3, starting with k' = 4. For each new guess k', we divide the matrix
C" into VK’ strips and apply the strip-restricted variant of Freivalds’ algorithm
only once for each strip, counting the number of detected erroneous strip rows,
without performing any corrections. If the number of detected erroneous strip
rows is greater than k’, we break the procedure and start over with a four times
larger guess. Otherwise, we correct all errors in the detected erroneous strips,
and start over the algorithm with the partially corrected matrix C’. However,
as a final phase we may have to perform O(logn) additional iterations to be
sufficiently sure that no errors remain.

A similar approach can also be used for refining the slightly randomized
method of Theorem 2 when the number of errors k£ is not known in advance.
However, if there is no knowledge at all concerning the number of errors, it may
be difficult to handle the case when no errors are detected: does this happen
because there are no errors at all, or because there are too many errors and we
chose a random prime from a too small range, thus failing to isolate 1-detectable
false entries? For this reason, if there is no known useful upper bound on the
remaining number of errors, and we do not detect any errors during a series of
iterations, we may have to resort to some of the known algorithms which test
whether there are any errors at all [2,9,12]. All such known algorithms running
in time O(n?) may need a logarithmic number of random bits, so if k is very
small then this may be asymptotically larger than the low number of random
bits stated in Theorem 2.

Finally, observe that any substantial improvement of our O(\/ETLQ) bound
by a combinatorial method seems to be very hard to achieve. Simply, it would
lead to a substantially subcubic combinatorial algorithm for Boolean matrix
multiplication which would be a breakthrough [15].

Acknowledgments. We thank the anonymous referees for helping us to improve a
previous version of this paper.

References

1. Buhrman, H., Spalek, R.: Quantum Verification of Matrix Products. In: Proc.
ACM-STAM SODA, pp. 880-889 (2006)

2. Chen, Z.-Z., Kao, M.-Y.: Reducing Randomness via Irrational Numbers. In: Proc.
ACM STOC, pp. 200209 (1997)

64

10.

11.

12.

13.

14.

15.

16.

17.

L. Gasieniec et al.

Coppersmith, D.; Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
J. of Symbolic Computation 9, 251-280 (1990)

De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group
Testing Problems. SIAM Journal on Computing 34(5), 1253-1270 (2005)

Ding, C., Karlsson, C., Liu, H., Davies, T., Chen, Z.: Matrix Multiplication on
GPUs with On-Line Fault Tolerance. In: Proc. of the 9th IEEE International Sym-
posium on Parallel and Distributed Processing with Applications (ISPA 2011),
Busan, Korea, May 26-28 (2011)

Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications World
Scientific Publishing, NJ (1993)

Freivalds, R.: Probabilistic Machines Can Use Less Running Time. IFIP Congress
pp. 839-842 (1977)

Le Gall, F.: Powers of Tensors and Fast Matrix Multiplication. In: Proc. 39th
International Symposium on Symbolic and Algebraic Computation, (ISSAC 2014),
pp. 296-303 (2014)

Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products
using O(n?) time and log, n + O(1) random bits. Information Processing Letters
45, 107-119 (1993)

Korec, 1., Wiedermann, J.: Deterministic Verification of Integer Matrix Multipli-
cation in Quadratic Time. In: Geffert, V., Preneel, B., Rovan, B., Stuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 375-382. Springer, Heidelberg
(2014)

McConnell, R.M., Mehlhorn, K., Néher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5(2), 119-161 (2011)

Naor, J., Naor, M.: Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM J. Comput. 22(4), 838-856 (1993)

Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13,
354-356 (1969)

Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proc. ACM STOC, pp. 887-898 (2012)

Vassilevska Williams, V., Williams, R.: Subcubic Equivalences between Path,
Matrix and Triangle Problems. In: Proc. IEEE FOCS 2010, pp. 645-654 (2010)
Wu, P., Ding, C., Chen, L., Gao, F., Davies, T., Karlsson, C., Chen, Z.: Fault Tol-
erant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line. In: Proc. of
the 2011 Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA) held in conjunction with the 24th IEEE/ACM International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC 2011) (2011)

Wu, P., Ding, C., Chen, L., Gao, F., Davies, T., Karlsson, C., Chen, Z.: On-Line
Soft Error Correction in Matrix-Matrix Multiplication. Journal of Computational
Science 4(6), 465-472 (2013)

3D Rectangulations and Geometric
Matrix Multiplication

Peter Floderus!, Jesper Jansson?, Christos Levcopoulos?,
Andrzej Lingas®®™, and Dzmitry Sledneu!

! Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
{pflo,Dzmitry}@maths.1lth.se
2 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
jj@kuicr.kyoto-u.ac.jp
3 Department of Computer Science, Lund University, 22100 Lund, Sweden
{Christos.Levcopoulos,Andrzej.Lingas}@cs.1lth.se

Abstract. The problem of partitioning an input rectilinear polyhedron
P into a minimum number of 3D rectangles is known to be NP-hard. We
first develop a 4-approximation algorithm for the special case in which P
is a 3D histogram. It runs in O(m logm) time, where m is the number of
corners in P. We then apply it to compute the arithmetic matrix product
of two n X n matrices A and B with nonnegative integer entries, yielding
a method for computing A x B in O(n? + min{rarg, nmin{ra, r5}})
time, where O suppresses polylogarithmic (in n) factors and where 74
and rp denote the minimum number of 3D rectangles into which the 3D
histograms induced by A and B can be partitioned, respectively.

Keywords: Geometric decompositions - Minimum number rectangula-
tion - Polyhedron - Matrix multiplication - Time complexity

1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geom-
etry. It belongs to the class of polyhedron decomposition problems, whose applica-
tions range from data compression and database systems to pattern recognition,
image processing, and computer graphics [7,13]. The problem is to partition a
given rectilinear polyhedron into a minimum number of 3D rectangles. Dielissen
and Kaldewai have shown this problem to be NP-hard [4]. In contrast, the prob-
lem of partitioning a rectilinear (planar) polygonal region into a minimum num-
ber of 2D rectangles admits a polynomial-time solution [7,10]. Formally, the NP-
hardness proof by [4] is for polyhedra with holes, but the authors remark that
the proof should also work for simple polyhedra. To the best of our knowledge,

Jesper Jansson: Funded by The Hakubi Project at Kyoto University.
Christos Levcopoulos: Research supported in part by Swedish Research Council grant
621-2011-6179.

© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 65-78, 2014.
DOT: 10.1007/978-3-319-13075-0_6

66 P. Floderus et al.

no non-trivial approximation factors for minimum rectangular partition of simple
rectilinear polyhedra are known, even in restricted non-trivial cases such as that
of a 3D histogram (a natural generalization of a planar histogram, see Section 2).

The second problem we consider is that of multiplying two n X n matrices.
There exist fast algorithms that do so in substantially subcubic time, e.g., a
recent one due to Le Gall runs in O(n?3728639) time [8], but they suffer from
very large overheads. On the positive side, input matrices in real world appli-
cations often belong to quite restricted matrix classes, so a natural approach
is to design faster algorithms for such special cases. Indeed, efficient algorithms
for sparse matrix multiplication have been known for long time. In the Boolean
case, despite considerable efforts by the algorithms community, the fastest known
combinatorial algorithms for Boolean n x n matrix multiplication barely run in
subcubic time (in O(n?(loglogn)?/(logn)?/*) time [1], to be precise), but much
faster algorithms for Boolean matrix product for restricted classes of Boolean
matrices have been developed [3,5,9]. For example, when at least one of the
input Boolean matrices admits an exact covering of its ones by a relatively
small number of rectangular submatrices, the Boolean matrix product can be
computed efficiently [9]; similarly, if the rows of the first input Boolean matrix
or the columns of the second input Boolean matrix can be represented by a
relatively cheap minimum cost spanning tree in the Hamming metric (or its gen-
eralization to include blocks of zeros or ones) then the Boolean matrix product
can be computed efficiently by a randomized combinatorial algorithm [3,5].

Our first contribution is an O(m logm)-time, 4-approximation algorithm for
computing a minimum 3D rectangular partition of an input 3D histogram with
m corners. It works by projecting the input histogram onto the base plane, par-
titioning the resulting planar straight-line graph into a number of 2D rectangles
not exceeding its number of vertices, and transforming the resulting 2D rectan-
gles into 3D rectangles of appropriate height. Importantly, the known algorithms
for minimum partition of a rectilinear polygon with holes into 2D rectangles
[7,10] do not yield the aforementioned upper bound on the number of rectangles
in the more general case of planar straight-line graphs.

Our second contribution is a new technique for multiplying two matrices with
nonnegative integer entries. We interpret the matrices as 3D histograms and decom-
pose them into blocks that can be efficiently manipulated in a pairwise manner using
theinterval tree data structure. Let A and B be two n X n matrices with nonnegative
integer entries, and let r 4 and r g denote the minimum number of 3D rectangles into
which the 3D histograms induced by A and B can be partitioned. By applying our
4-approximation algorithm above, we can compute A x B in O(n2 + rarp) time,
where O suppresses polylogarithmic (in n) factors. Furthermore, by using another
idea of slicing the histogram of A (or B) into parts corresponding to rows of A (or
columuns of B) and measuring the cost of transforming a slice into a consecutive
one, we obtain an upper bound of O(n? + nmin{r4, r}). We also give a general-
ization of the latter upper bound in terms of the minimum cost of a spanning tree
of the slices, where the distance between a pair of slices corresponds to the cost of
transforming one slice into the other.

3D Rectangulations and Geometric Matrix Multiplication 67

Organization: Section 2 presents our 4-approximation algorithm for a partition
of a 3D histogram into a minimum number of 3D rectangles. Section 3 presents
our algorithms for the arithmetic matrix product. Section 4 concludes with some
final remarks.

2 3D Histograms and Their Rectangular Partitions

A 2D histogram is a polygon with an edge e, which we call the base of the
histogram, having the following property: for every point p in the interior of
histogram, there is a (unique) line segment perpendicular to e, connecting p to
e and lying totally in the interior of the histogram. In this paper, we consider
orthogonal histograms only. For simplicity, we consider the base of a histogram
as being horizontal, and all other edges of the histogram lying above the base.
In this way, a 2D histogram can also be thought of as the union of rectangles
standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a
3D histogram, we need the concept of the “base plane”, which for simplicity we
define as the horizontal plane containing two of the axes in the Euclidean space.
A 3D histogram can then be thought of as the union of rectilinear 3D rectangles,
standing on the base plane. The base of the histogram is the union of the lower
faces (also called bases) of all these rectangles.

Definition 1. A 3D histogram is a union of a finite set C' of rectilinear 3D
rectangles such that: (i) each element in C has a face on the horizontal base
plane; and (ii) all elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D his-
togramor a 1D histogram when used to summarize 2D or 1D data, respectively [12].)

By a rectangular partition of 3D histogram P, we mean a rectilinear partition
of P into 3D rectangles. In Section 2.2 below, we consider the problem of finding
a rectangular partition of a given 3D histogram P into as few 3D rectangles as
possible. We present a 4-approximation algorithm for this problem with time
complexity O(mlogm), where m denotes the number of vertices in P. The algo-
rithm partitions P into less than m’ 3D rectangles, where m’ is the number of
vertices in the vertical projection of P (i.e., m’ < m), by applying a subroutine
described in Section 2.1 that partitions any rectilinear planar straight-line graph
(PSLG) with m/ vertices into less than m’ 2D rectangles. Finally, the approxi-
mation factor is derived by observing that any rectangular partition of P must
contain at least m’/4 3D rectangles.

2.1 Partitioning a Rectilinear PSLG into 2D Rectangles

The problem of partitioning a rectilinear polygon into rectangles in two dimen-
sions has been well studied in the literature [7,10]. An optimal solution for this
problem can be computed in polynomial time [7,10]. However, to use the result
in 3D, we need a bound on the number of produced rectangles, expressed in

68 P. Floderus et al.

terms of the number of vertices. Therefore, it is not so crucial for our purposes
to compute an optimal solution for the 2-dimensional problem, but instead, we
need to partition planar straight-line graphs (PSLGs) into at most m’ rectangles,
where m’ denotes the number of vertices in the input PSLG. We will show that
a simple algorithm suffices to obtain this bound.

Since this subsection considers 2D only, we use the term “horizontal” for line
segments parallel to the X-axis. By “vertical” lines, we mean lines or line seg-
ments parallel to the Y-axis. Each vertex in the planar graphs in our application
has degree 2, 3, or 4.

Definition 2. A planar straight-line graph (PSLG) PG = (V,E), as used in
this paper, is a planar graph where every vertex has an x- and a y-coordinate.
Each edge is drawn as a straight line segment, all edges meet at right angles, and
each vertex has degree 2, 3, or 4. A rectangular partition of PG is a partition
R = (VUVg,E U ER) that adds edges and vertices to PG so that R is still a
PSLG while every face in R is a rectangle.

Given a PSLG PG, we denote m’ = |V|. We say that a vertex v of PG is
concave if it has degree 2, its two adjacent edges are perpendicular to each other,
and the corner at v which is of 270 degrees does not lie in the outer, infinite face
of PG. Any vertex which is not concave is called convez.

We use a sweep line approach to generate a partition into less than m’ rect-
angles. We perform a horizontal sweep with a vertical sweep line [2], using the
vertices of PG as event points. Whenever the sweep line reaches a concave ver-
tex v, we insert into the graph PG a vertical line segment s connecting v to
the closest edge of PSLG upwards or downwards, thus canceling the concavity
at v and transforming v into a convex vertex of degree 3. Hence, if there was
already an edge of PG below v, then the new segment s is inserted above v, oth-
erwise it is inserted below v. To preserve the property that the resulting graph
is still a PSLG, the other endpoint of s may have to become a new vertex of the
PSLG. This is a standard procedure for trapezoidation; see, e.g., [2] for more
details. After the sweep is complete, all concave vertices have been eliminated.
(Remark: In a special case it may happen that two concave vertices with the
same z-coordinate are connected by a single vertical segment that is disjoint
from the rest of the input PSLG. In this case, the plane sweep algorithm will
produce this segment. Thus, no two segments produced by the algorithm overlap
or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave
corners of PG by adding vertical line segments. Hence, in the resulting PSLG,
each face, except for the outer face, is a rectangle. The running time of this
algorithm is dominated by the cost of the plane sweep, which is O(m'logm/)
according to well-known methods in computational geometry; see, e.g., [2].

We need to relate the number of vertices in the input PSLG to the number
of 2D rectangles. This is done in the following lemma:

Lemma 1. Any PSLG PG = (V, E) with |V| =m’ and minimum vertex degree
2 can be partitioned into b rectangles with b < m’ using O(m’logm’) time.

3D Rectangulations and Geometric Matrix Multiplication 69

Proof. Let R denote the set of rectangles in the rectangular partition produced
by the plane sweep algorithm described above. We use a “charging scheme” to
prove the stated inequality. The charging scheme starts by giving each vertex
v € V four tokens; thus, a total of 4m’ tokens are used. Each vertex v then
distributes its tokens in a certain way to the rectangles in R that are adjacent
to v. We will show that every rectangle in R receives at least four tokens. Since
we started by giving a total of 4m’ tokens to the vertices, this will prove that
there exist at most m’ rectangles, and thus b < m’. Moreover, vertices adjacent
to the outer face do not give away more than three tokens. We will thus obtain
the strict inequality b < m/.

Now, we describe the details of the charging scheme. (More explanations and
illustrating figures are included in the full version.) Let v be any vertex of V. The
vertex v gives one token to each rectangle r in R which in any way is adjacent to
it, with one exception. The exception occurs when v is a concave vertex; then,
v is partitioned by a vertical segment e, added by the algorithm. This segment
partitions the three quadrants at the concave corner around the vertex so that
one rectangle occupies one quadrant and one occupies the two others. Then v
distributes two tokens to the new rectangle occupying only one quadrant, which
therefore has a corner at v, and only one token to each one of the other rectangles
of R adjacent to v.

We now show that each rectangle receives at least four tokens. Let r be any
rectangle in R. First note that each vertical segment added by the algorithm has
at least one endpoint at a vertex in V. Moreover, for any rectangle r in R, each of
the vertical sides of r includes at least one vertex of V. Therefore, each rectangle
is adjacent to at least two vertices of V. We distinguish three cases, depending
on the number of vertices of V' adjacent to r. Observe that the adjacencies are
not necessarily at the corners of 7.

— Case 1: r is adjacent to at least four vertices of V. Since r will receive at
least one token from each of them we are done.

— Case 2: r is adjacent to precisely three vertices of V. Then at one of the
vertical sides of r there is only one vertex of V. Moreover, this vertex v must
be at a corner of r and fulfills the criteria for giving two tokens to r. The
remaining two adjacent vertices of V' give at least one token each, so we are
done.

— Case 3: r is adjacent to precisely two vertices of V. This must mean that
both vertical sides of r are segments added by the algorithm, and that one
of the endpoints of each of these sides is a vertex of V' at a corner of r. This
corresponds to the condition for receiving two tokens mentioned earlier. So
in total, r receives four tokens from the two corners, and we are done. a

2.2 Partitioning a 3D Histogram into 3D Rectangles

We now explain how to obtain the projected PSLG from the 3D histogram P
and how to use the rectangular partition of this PSLG to yield a good partition
into 3D rectangles.

70 P. Floderus et al.

Definition 3. The planar projection PP is an orthogonal projection of the input
3D histogram P along the “down” direction onto the base plane in Definition 1.

We can interpret PP as a PSLG where each corner and each subdividing
point on a line segment corresponds to a vertex. The edges naturally correlate
to the connecting line segments between vertices. Each vertex in PP is the
vertical projection of at least two vertices of P. Two edges of the 3D histogram
may partially overlap in the 2D projection, but the edges in the 2D projection
are considered as non-overlapping. Thus, an edge of the 3D histogram may split
into several edges in the 2D projection, since vertices should only appear as
endpoints of edges.

Remark 1. Every vertex in PP must have at least two neighbors. This follows
from the fact that each vertex of P (and of any orthogonal polyhedron) has at
least two incident horizontal edges. It may happen that some vertex of PP is
the vertical projection of up to four vertices of P, so those four vertices of P
may have a total of eight neighbors in P. But since PP is an orthogonal PSLG,
no vertex of PP has more than four neighbors.

Now we are ready to show the main theorem of this section.

Theorem 1. For any 3D histogram P with m corners, a 4-approzimation R
of a partition of P into as few 3D rectangles as possible can be computed in
O(mlogm) time.

Proof. We use the projection in Definition 3, let PG = PP, and apply Lemma
1 to compute a planar partition R’. The final 3D partition R is obtained from
R’ by reversing the projection so that each 2D rectangle corresponds to the top
of a 3D rectangle in R.

To analyze the approximation factor, denote the number of 3D rectangles in
an optimal solution R* by OPT and the number of 3D rectangles produced by
the algorithm described above by b. We denote by m’ the number of vertices
in PP. By Lemma 1, we have b < m’ since each 2D rectangle corresponds to
one 3D rectangle. Every vertex of P must be adjacent to at least one vertical
edge of a 3D rectangle in R*. Hence, each vertex in PP has to be at a corner of
the vertical projection of at least one 3D rectangle in R* onto the base plane.
Since each 3D rectangle in R* only has 4 vertical edges, its vertical projection
can be adjacent to at most 4 vertices of PP. It follows that m’ < 4OPT and
b<m <40PT.

Since the projection can be obtained by contracting each corner in P and all
of its vertical neighbors into one vertex, the projection can be implemented in
O(m) time. Thus, the O(mlogm)-term from Lemma 1 will dominate the time
complexity. O

3 Geometric Algorithms for Arithmetic Matrix Product

3.1 Geometric Data Structures and Notation

Our algorithms for arithmetic matrix multiplication use some data structures
for interval and rectangle intersection. An interval tree is a leaf-oriented binary

3D Rectangulations and Geometric Matrix Multiplication 71

search tree that supports intersection queries for a set @) of closed intervals on
the real line as follows:

Fact 1 [11]. Suppose that the left endpoints of the intervals in a set Q belong
to a subset U of real numbers of size | and |Q| = q. An interval tree T of depth
O(logl) for @ can be constructed in O(l + qloglq) time using O(l + q) space.
The insertion or deletion of an interval with left endpoint in U into T takes
O(log!l + log q) time. The intersection query is supported by T in O(logl +)
time, where r is the number of reported intervals.

Remark 2. The interval tree of Fact 1 ([11]) can easily be generalized to the
weighted case, where with an interval to insert or delete an integer weight is
associated. It can be done by maintaining in each node of the interval tree
the sum of weights of intervals whose fragments it represents. In effect, the
generalized interval insertions or deletions as well the intersection query have the
same time complexity as those in Fact 1. Moreover, the generalized interval tree
supports a weight intersection query asking for the total weight of the intervals
containing the query point in O(log! + log q) time.

We use the following data structure, easily obtained by computing all prefix
sums:

Fact 2. For a sequence of integers a1, as,. .. ,an, one can construct a data struc-
ture that supports a query asking for reporting the sum > 7 _. ay for1 <i<j<n
in O(1) time. The construction takes O(n) time.

In the rest of the paper, A and B denote two n X n matrices with nonnegative
integer entries, and C stands for their matrix product. We also need the following
concepts:

1. For an n x n matrix D with nonnegative integer entries, consider the [0, n] x
[0, n] integer grid whose unit cells are in one-to-one correspondence with the
entries of D. The grid cell between the horizontal lines ¢ — 1 and ¢ (counting
from the top) and vertical lines j — 1 and j (counting from the left) corre-
sponds to D; ; (see Fig. 1a). Then, his(D) stands for the 3D histogram whose
base consists of all unit cells of the [0,n] x [0,n] integer grid corresponding
to positive entries of D and whose height over the cell corresponding to D; ;
is the value of D; ; (see Fig. 1b).

2. For the n x n matrix D, nonnegative integers 1 < i1 < iy < n, 1 <k <
ko < n, and hq, ho, where hy < hy < Di,j for i1 < i < iy and 71 <7 < o,
recp (i1, i2, k1, k2, h1, ha) is the 3D rectangle with the corners (i1 — 1,k —
1,hy), (i1 — 1, ka,), (i2, k1 — 1, hy), (i2, k2, hy), where [= 1,2, lying within
his(D).

3. For the matrix D, rp is the minimum number of 3D rectangles
recp (i1, i, k1, ko, h1,he) which form a partition of his(D). Note that
rp < n2.

72 P. Floderus et al.

(a) (b)
Fig. 1. (a) A matrix D on a grid, and (b) its corresponding histogram his(D)

3.2 Algorithms

Our first geometric algorithm for nonnegative integer matrix multiplication relies
on the following key lemma.

Lemma 2. Let Py be a partition of the matriz A into 3D rectangles
reca(iy, 2, k1, ke, h1,he) , and let Pg be a partition of the matrix B into 3D
rectangles recg(ky, kb, j1, j2, by, hh). For any 1 < i < n, 1 < j < n, the entry
C;,; of the matriz product C of A and B is equal to the sum of (ha — hy)(h% —
hy) x k1, ka] N [k}, k). over rectangle pairs reca(iy,ia, k1,k2,h1,he) € Pa,
recp(ki, kS, 41, J2, hi, hy) € Pp satisfying i € [i1,42] and j € [j1, j2].

Proof. For 1 <l; <ly <mand 1 <my <mg <mn,let I(l1,la,m1,m2) be the
nxn 0—1 matrix where I(l1,la,m1,m2);, = 1iff [; <i <l and m; <k < ma.

Clearly, we have A = ZTECA(il’iz’khkz’hhhz)epf;(h2 — h1)I(i1,12, k1, ko). Sim-
ilarly, we have B = ZrecB(k;,k’z,jl,p,h;,h;)ePB (hhy — R I(KL ka2, j1, J2)-

Tt follows that C' = Ax B is the sum over pairs reca (i, iz, k1, k2, h1, ha) € Pa,
TecB(kll,k/ijl’j%h/l,h/Q) € PB of (h2 - hl)(h/l - hé)I(ihi%klak?) X I(k/la klza
J1,J2). It remains to observe that (I(i1,i2, k1 +1,k2) x I(k}, k5, j1+1,72))ij =
H#[k1, ko) N [EL KRS if 41 < @ < dg and j1 < j < j2 and it is equal to zero
otherwise. O

Algorithm 1
Input: Two n X n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1. Find a partition P4 of his(A) into 3D rectangles reca (i1, i2, k1, k2, hi, ho)
whose number is within O(1) of the minimum.

2. Find a partition Pp of his(B) into 3D rectangles recp(ki, kb, j1, j2, b}, h%)
whose number is within O(1) of the minimum.

3. Initialize an interval tree S on the k-coordinates of the rectangles in P4 and
Pg. For each 3D rectangle reca (i1, 42, k1, k2, h1, ho) € Py insert [kq, ko], with
a pointer to A(i1, 2, k1, ko, h1, ha), into S.

4. Initialize interval lists Start;, End;, for j = 1,...,n. For each rectangle
recg(ki, Ky, 31, j2, hy, hy) € Pp report all intervals [k, ko] in S that intersect
[k1, kb]. For each such interval [kq, ko], with pointer to rec (i1, 2, k1, k2, h1, ha),
insert the interval [iy,é2] with the weight (ho — hy) x (R — hY) X #[k1, k2] N
[k, k5] into the lists Start;, and End;,.

3D Rectangulations and Geometric Matrix Multiplication 73

5. Initialize a weighted interval tree U on endpoints 1,...,n. For j =1,...,n,
iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on
the list End;_; from U. Insert all weighted intervals [i1, i2] on the list Start;
into U. For ¢ = 1,...,n, set C;; to the value returned by U in response to
the weight query at i.

Lemma 3. Let int(Pa, Pg) stand for the number of pairs reca(ii, iz, ki1, ko,
hi,ha) € Pa, recg(ky, ky, j1,j2, ', hy) € Pp, for which [ky,ka] N [k}, ky] # 0.
Algorithm 1 runs in time O(n? + int(Pa, Pg)) = O(n® + rarg).

Proof. To implement steps 1 and 2 in O~(n2) time, use the algorithm from the pre-
ceding section (Theorem 1). Step 3 can be implemented in O(n+r4+rg) = O(n?)
time by Fact 1. In Step 4, the queries to S take O(int(P4, Pp)) time by Fact 1.
In Step 5, the initialization of the data structure U takes O(n) time by Lemma 2.
Next, the updates of the data structure U take O(int(Py4, Pg)) time by Lemma 2,
while computing all columns of C' takes O(nz) time by Remark 2. O

Theorem 2. The matriz product of two n X n matrices A, B with nonnegative
integer entries can be computed in O(n? +rarg) time.

Proof. Algorithm 1 yields the theorem. Its correctness follows from Lemma 2
that basically says that for each pair of 3D rectangles, reca (i1, i2, k1, ka, h1, ha) €
Py and recp(ky, k5, ji1,j2, b, hy) € Pg, C; ; should be increased by (he — hy) x
(hy—h}) x #[k1, k2]N[kY, k5] for @ € [i1,42] and j§ € [j1, j2]. In Step 4, two identical
intervals [i1, i5] corresponding to the left and right edge of the submatrix of C'
whose entries should be increased by the aforementioned value are inserted in
the lists Start;, and End;,, respectively. In both cases, they are weighted by the
aforementioned value. In Step 5, in iteration j;, the weighted interval [i1, i2] from
Start;, is inserted into the weighted interval tree U, and in iteration (js + 1),
it is removed from U as its copy is in E'ndj,. In the iterations j = ji,...,j2 in
Step 5, when the interval [i, 2] is kept in the weighted interval tree, U and the
entries of the submatrix C; ;, i1 <1 < g, j1 < j < jo, are evaluated, the weight
of the interval contributes to their value. The upper time bound follows from
Lemma 3. O

When only one of the matrices A and B admits a partition of its 3D histogram
into relatively few 3D rectangles and we have to assume the trivial partition of
the other one into n? 3D rectangles, the upper bound of Theorem 2 in terms
of r4, rg and n seems too weak. In this case, an upper bound in terms of
int(Pa, Pg) and n in Lemma 3 may be much better. To derive a better upper
bound in terms of just min{rs,rg} and n, we shall design another algorithm
based on the slicing of the 3D histogram admitting a partition into relatively
few 3D rectangles.

For an n x n matrix D with nonnegative integer entries and ¢ = 1,...,n, let
slice;(D) stand for the part of his(D) between the two planes perpendicular to
the Y axis whose intersection with the XY plane are the horizontal lines ¢ — 1
and 7 on the [0,n] x [0,n] grid. In other words, slice;(D) is a 3D histogram for

74 P. Floderus et al.

(a) (b)

Fig. 2. Let slice1 (D) be the 2D histogram on the left and slices(D) the 2D histogram
on the right. Differentiating strips are shaded. Here, gd(slice; (D), slice2(D)) = 2.

the i-th row. Also note that a slice;(D) can be identified with a rectilinear 2D
histogram; see Fig. 2 for an example. We define a geometric distance between
two rectilinear 2D histograms H; and Hs with a common base as the number of
maximal vertical strips s such that:

1. for ¢ = 1,2, s contains exactly one maximal subsegment e; of an edge of H;
different from and parallel to the base of the histograms, and
2. the subsegments e; and es do not overlap.

See Fig. 2. We shall call such strips differentiating strips. For slice;(D) and
slicer (D), we define the geometric distance gd(slice;(D), slicer(D)) as that for
the corresponding rectilinear 2D histograms.

Lemma 4. For an n X n matrizx D with nonnegative integer entries,
Z?;ll gd(slice;(D), slice;+1(D)) = O(rp) holds.

Proof. Each differentiating strip contributes, possibly jointly with one or two
neighboring differentiating strips, to two vertices in the projected planar graph
considered in the proof of Theorem 1. Thus, it contributes to the parameter
m’ in the aforementioned proof with at least 1. It follows Z?;ll gd(slice;(D),
slice;+1(D)) < m'. Hence, the inequality m’ < 4OPT established in the proof
of Theorem 1 yields the thesis. O

Algorithm 2
Input: Two n x n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1. Fori =1,...,n—1, find the differentiating strips for slice;(A) and slice; 1 (A)
and for each such strip s the indices k1 (s) and ko (s) of the interval of entries

Aj key(s)s -+ > Aika(s) 0 the i-th row of A corresponding to it, as well as the
difference h(s) between the common value of each entry in A; x, (s), - - - s Ai ky(s)
and the common value of each entry in A; {1 5, (s)s -+ Aif1 ko(s)-

2. For j =1,...,n, iterate the following steps:
(a) Initialize a data structure T} for counting partial sums of continuous
fragments of the j-th column of the matrix B.
(b) Compute C1 ;.
(¢c) For i =1,...,n— 1, iterate the following steps:

3D Rectangulations and Geometric Matrix Multiplication 75

i. Set Ci+17j to C@j.
ii. For each differentiating strip s for slice;(A) and slice;+1(A), compute
ZZZ(kz Bk,j using 7} and set Ci+17j to Ci+17j +h() Z£2(Zz(s

Lemma 5. Algorithm 2 runs in O(n(n +14)) time.

Proof. Step 1 can be easily implemented in O(n?) time. Step 2 (a) takes O(n)
time according to Fact 2 while Step 2 (b) can be trivially implemented in
O(n) time. Finally, based on Step 1, Step 2 (c) (ii) takes O(gd(slzcel(),
slice;11(D)) time. Tt follows that Step 2 (c) can be implemented in O(3 7'~ ' gd
(slice;(A), slicei1(A))) time, i.e., in O(ra) time by Lemma 4. Consequently,
Step 2 takes O(n(n +74)) time. O

Theorem 3. The arithmetic matriz product of two n x n matrices A, B with
nonnegative integer entries can be computed in O(n(n + min{ra, rg})) time.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating strip s for slice;(A) and slice;11(A) yields the difference h(s) 222 2

By j between Ciyq ; and C; ; just on the fragment corresponding to A; i, (s), - - -
Aj ko) and A1k (s) -+ > Aig1,ka(s), Tespectively. Lemma 5 yields the upper
bound O(n(n +r4)). The symmetric one O(n(n + rg)) follows from the equali-
ties AB = (BTAT)T | his(B) = his(BT), and consequently rg = rpr. O

In Algorithm 2, the linear order in which the C;; are updated to Cii1j
for + = 1,...,n — 1, along the row order of the matrix A is not necessarily
optimal. Following the Boolean case [3,5], it may be more efficient to update
C; ; while traversing a minimum spanning tree for the slices of his(A) under the
geometric distance. Here, however, we encounter the difficulty of constructing
such an optimal spanning tree or a close approximation in substantially subcubic
time. The next lemma will be useful.

Lemma 6. Consider the family of rectilinear planar histograms with the base
[0,n], n > 2 and integer coordinates of its vertices in [0,2M — 2], M = O(logn).
There is a simple O(n)-time transformation of any histogram H in the fam-
ily into an 0 — 1 string t(H), such that for any H; and Hs in the family
gd(Hy, Hs) < ch(t(Hy),t(H2)) < Mgd(Hy, Hy), where ch(,) stands for the
Hamming distance.

Proof. Any histogram H in the family is uniquely represented by the vector
(H[1],...,H[n]) € {1,...,2M —1}" where H[l],..., H[n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5,1.5,...,n — 0.5 respectively.

For any y € {0,...,2™ —1} denote its binary representation of length exactly
M (padded with leading zeros if necessary) as bin(y).

Let f(H. i) = 4 PR, i=1vi>1AH[]# Hli~1]
e bin(0), otherwise.

76 P. Floderus et al.

The transformation ¢ is then defined as t(H) = f(H,1)... f(H,n). We have
ch(t(Hy),t(Hz)) = 32;_ ch(f(Hy,i), f(H2,i)) and

_)L Hi[l] # Hpl]
gd(H, Hz) = {0, otherwise +
1, #Hl[l—l]\/Hg[]#HQ[Z—l])/\(Hl[’L]#Hg[’t])
+ Z { 0, otherw1se

Consider all possibilities that contribute exactly one to gd(Hi, Hs):

1. H;[1] # Hs[1]. In this case f(Hi,1) = bin(H1[1]), f(H2,1) = bin(Hz[1]) and
0 < ch(bin(H;[1]), bin(Hs[1])) < M.

2. 2<i<nAH[i] # Hi[i — 1) A Ha[i] = Ha[i — 1] A H1[i] # Ho[i]. In this case
f(Hy,4) = bin(H,[i]), f(Ha,i) = bin(0) and 1 < ch(bin(H[i]), bin(0)) < M.

3. 2<i<mnAH[i]=H[i— 1] A Hai] # Ha[i — 1] A Hy[i] # Hsli]. See case 2.

4. 2 <i<nAH[i] # Hi[i — 1) A Ha[i] # Hs[i — 1] A Hy[i] # Hsli]. See case 1.

To complete the proof, observe that in all other cases ch(f(Hi,1%), f(Hz,3)) = 0.
O

Fact 3 [6]. For e > 0, a (1 + €)-approzimation minimum spanning tree for a set
of n points in R? with integer coordinates in O(1) under the Ly or Ly metric
can be computed by a Monte Carlo algorithm in O(dn1+1/(1+6)) time.

By combining the transformation of Lemma 6 with Fact 3 applied to the L,
metric in {0,1}" and selecting e = logn, we obtain a Monte Carlo O(log® n)-
approximation algorithm for the minimum spanning tree of the slices of his(A)
under the geometric distance, which runs in O(nz) time. This yields a gener-
alization of Algorithm 2 to Algorithm 3, described in the full version of our
paper. By an analysis of Algorithm 3 analogous to that of Algorithm 2 and a
proof analogous to that of Theorem 3, we obtain a randomized generalization of
Theorem 3:

Theorem 4. Let A, B be two n x n matrices A, B with nonnegative integer
entries in [0,n°M]. Neat, for D € {A, BT}, let Mp be the minimum cost of a
spanning tree of slice;(D) for i =1,...,n. The arithmetic matriz product of A
and B can be computed by a randomized algorithm in O(n(n+min{Ma, Mgr}))
time with high probability.

4 Final Remarks

A natural question is: Would it help to apply an algorithm that optimally rect-
angulates the 2D projection in Section 2.27 Although it would yield improved
results in certain cases, it would not give a better approximation factor than
4 in general for the minimum rectangular 3D partition. An example of this is
when the optimal 3D partition consists of k cubes lying on top of each other.

3D Rectangulations and Geometric Matrix Multiplication 7

Then the 2D projection is k concentric squares of different sizes and an optimal
rectangulation of the corresponding 2D projection consists of 4k — 3 rectangles.
Hence, for large k, the approximation factor tends to 4.

The 4-approximation algorithm for minimum rectangular partition of a 3D
histogram in case the histogram is his(D) for an input n X n matrix D with
nonnegative integer entries can easily be implemented in O(n?) time. Also note
that the resulting partition of his(D) can be used to form a compressed repre-
sentation of D requiring solely O(TD) bits if the values of the entries in D are
n?M_bounded.

Our geometric algorithms for integer matrix multiplication can also be applied
to derive faster (1+e¢)-approximation algorithms for integer matrix multiplication;
if the range of an input matrix D is [0, n°(1], then round each entry to the smallest
integer power of (1+¢) that is not less than the entry. The resulting matrix D’ has
only a logarithmic number of different entry values and hence rp/ may be much
less than rp.

Our algorithms and upper time bounds for integer n xn matrix multiplication
can easily be extended to include integer rectangular matrix multiplication.

References

1. Bansal, N., Williams, R.: Regularity Lemmas and Combinatorial Algorithms.
Theory of Computing 8(1), 69-94 (2012)

2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational
Geometry: Algorithms and Applications. 3rd edn. Springer, Santa Clara (2008)

3. Bjorklund, A., Lingas, A.: Fast boolean matrix multiplication for highly clustered
data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125,
p. 258. Springer, Heidelberg (2001)

4. Dielissen, V.J., Kaldewai, A.: Rectangular Partition is Polynomial in Two Dimen-
sions but NP-Complete in Three. Information Processing Letters 38(1), 1-6 (1991)

5. Gasieniec, L., Lingas, A.: An Improved Bound on Boolean Matrix Multiplication
for Highly Clustered Data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 329-339. Springer, Heidelberg (2003)

6. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proc. of STOC 1998, pp. 604-613 (1998)

7. Keil, J.M.: Polygon Decomposition. Survey, Dept. Comput. Sc. Univ. Saskatchewan
(1996)

8. Le Gall, F.: Powers of Tensors and Fast Matrix Multiplication. In: Proc. of the
39th ISSAC, pp. 296-303 (2014)

9. Lingas, A.: A Geometric Approach to Boolean Matrix Multiplication. In: Bose, P.,
Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 501-510. Springer, Heidelberg
(2002)

10. Lipski, W.: Finding a Manhattan path and related problems. Networks 13(3),
399-409 (1983)

78

11.

12.

13.

P. Floderus et al.

Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry. EATCS Monographs on Theo. Comput. Sc., Springer
(1984)

Muthukrishnan, S., Poosala, V., Suel, T.: On Rectangular Partitionings in Two
Dimensions: Algorithms, Complexity, and Applications. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236-256. Springer, Heidelberg (1998)
Sack, J.-R., Urrutia, J. (ed).: Handbook of Computational Geometry. Elsevier
(2000)

Graph Algorithms: Enumeration

Enumeration of Maximum Common Subtree
Isomorphisms with Polynomial-Delay

Andre Droschinsky! ™), Bernhard Heinemann', Nils Kriege?,
and Petra Mutzel?

! Faculty of Mathematics and Computer Science,
FernUniversitit in Hagen, Hagen, Germany
{andre.droschinsky,bernhard.heinemann}@fernuni-hagen.de
2 Department of Computer Science, Technische
Universitdt Dortmund, Dortmund, Germany
{nils.kriege,petra.mutzel}@tu-dortmund.de

Abstract. The maximum common subgraph problem asks for the max-
imum size of a common subgraph of two given graphs. The problem is
NP-hard, but can be solved in polynomial time if both, the input graphs
and the common subgraph are restricted to trees. Since the optimal solu-
tion of the maximum common subtree problem is not unique, the problem
of enumerating all solutions, i.e., the isomorphisms between the two sub-
trees, is of interest. We present the first polynomial-delay algorithm for
the problem of enumerating all maximum common subtree isomorphisms
between a given pair of trees. Our approach is based on the algorithm
of Edmonds for solving the maximum common subtree problem using a
dynamic programming approach in combination with bipartite match-
ing problems. As a side result, we obtain a polynomial-delay algorithm
for enumerating all maximum weight matchings in a complete bipartite
graph. We show how to extend the new approach in order to enumerate
all solutions of the maximum weighted common subtree problem and to
the maximal common subtree problem. Our experimental evaluation on
both, randomly generated as well as real-world instances, demonstrates
the practical usefulness of our algorithm.

1 Introduction

In many application areas such as pattern recognition [4], or chem- and bioin-
formatics [10],[16], it is an important task to elucidate similarities between
structured objects like proteins or small molecules. A widely-used and successful
approach regarding this is to model objects as graphs and to identify their max-
imum common subgraphs (MCSs). As a MCS apparently is not unique, it is of
interest to find all solutions. Since the number of solutions may be superexpo-
nential in the input size, the running time cannot be expected to be polynomial
in this case. For this reason, enumeration algorithms are said to have polynomial

This work was supported by the German Research Foundation (DFG), priority pro-
gramme “Algorithms for Big Data” (SPP 1736).
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 81-93, 2014.
DOT: 10.1007/978-3-319-13075-0_7

82 A. Droschinsky et al.

total time if the running time is bounded by a polynomial in the input size and
the number of solutions. They have polynomial-delay if the running time before
the output of the first solution, and after the output of a solution until providing
the next solution or halting, is polynomially bounded in the input size [8].

Unfortunately, MCS is known to be NP-hard and consequently a polynomial-
time algorithm is not even known for finding a single maximum solution. How-
ever, it is straightforward to determine an isomorphism between common sub-
graphs that is maximal with respect to inclusion, but not necessarily maximum
possible. The enumeration of maximal common subgraph isomorphisms has been
considered in several papers, and algorithms are typically based on the one-to-
one-correspondence of isomorphisms between common subgraphs and cliques in
a product graph [13]. As a matter of fact it is possible to enumerate maximal
common subgraph isomorphisms with polynomial-delay, since maximal cliques
can be listed with polynomial-delay [8]. In practice a common approach is to
utilize the Bron-Kerbosch algorithm [2] for listing maximal cliques, which, how-
ever, does not yield a polynomial total time algorithm. Koch [3],[10] modified
this algorithm to enumerate cliques corresponding to maximal isomorphisms
between connected common subgraphs. Although not providing any guarantee
in terms of running time, this approach is considered to be more practical since
the number of solutions is drastically reduced.

Only few tractable variants of MCS are known. Edmonds was reported [14]
to have proposed a polynomial time algorithm for solving the maximum common
subtree problem, where the input graphs and the desired common subgraph are
trees, by means of maximum weight bipartite matching. Related problems like
the mazimum agreement subtree of rooted trees are well-studied and are, for
example, considered in [9] using similar ideas to those of Edmonds [14]. Poly-
nomial time algorithms were presented to find connected MCSs in outerplanar
graphs under the additional requirement that blocks, i.e., maximal biconnected
subgraphs, and bridges of the input graphs are preserved [17]. The unrestricted
problem can be solved in polynomial time in outerplanar graphs of bounded
degree [1]. The problem also is tractable if one of the input graphs is a bounded-
degree partial k-tree and the other is a connected graph with a polynomial
number of spanning trees [19]. Recently, a polynomial-time algorithm to find
a biconnected MCS in series-parallel graphs has been developed [11]. However,
no enumeration algorithms with polynomial total time or polynomial-delay have
been proposed for any of these efficiently solvable variants of MCS by now.
Our Contribution. We address the problem to enumerate all isomorphisms
between maximum common subtrees of two given trees and present a polynomial-
delay algorithm. We utilize the idea of Edmonds’ algorithm to decompose trees
into subtrees and solve subproblems by weighted bipartite matching. In order to
enumerate maximum weight bipartite matchings with polynomial-delay we pro-
pose a new technique that is based on Uno’s algorithm for listing perfect match-
ings [18]. The isomorphisms subject to enumeration correspond to combined
solutions of multiple matching problems. Interrupting the enumeration process
of matchings for one instance in order to proceed with a different matching

Maximum Common Subtree Isomorphisms with Polynomial-Delay 83

problem, allows us to combine partial solutions and to output all maximum
isomorphisms without duplicates with polynomial-delay using only polynomial
space. Going beyond that, we present modifications to enumerate maximum
weight and maximal solutions. In an experimental evaluation we show that our
algorithms are efficient in practice on synthetic and real-world data sets from
cheminformatics. Our method is shown to outperform the algorithm proposed
by Koch [10] for arbitrary graphs on tree instances. The techniques we propose
can be taken as a basis for finding efficient enumeration algorithms for MCS
problems in more complex graph classes.

2 Preliminaries

In this paper, G = (V, E) is a simple undirected graph. We callv € V a vertez and
e =uv =vu € E an edge of G. For a graph G = (V, E) we define V(G) :=V
and E(G) := E. Two graphs G1 = (V1, Ey), Gy = (Va, E») are isomorphic if
there is a bijective function (an isomorphism) ¢ : V4 — V4 such that uv € E; <
o(u)p(v) € Es. The size || of an isomorphism is defined as the number of
vertices in each of the sets Vi, Va, ie., |p| := |Vi| = |Va|. A forest is a graph
without cycles; a tree is a connected forest. A tree T' = (V, E) with an explicit root
vertex r € V' is a rooted tree. Let R and S be trees. If subtrees R’ of R and S’ of
S are isomorphic, we call an isomorphism ¢ : V(R') — V(S’) a common subtree
isomorphism (CSTI) of R and S. If the input trees are clear from the context, we
omit them. A CSTI ¢ is a mazimum common subtree isomorphism (mazimum
CSTI) if there are no other CSTI of R and S with size greater than |p|. A CSTI
v is mazimal if there is no CSTI ¢’ with |¢'| > || and ¢(z) = ¢'(z) for all
z € R’ = dom(yp). For a graph G = (V, E) a matching M C E is a set of edges,
such that no two edges share the same vertex. A matching M of G is mazximal
if there is no other matching M’ 2 M of G. It is perfect, if 2- |M| = |V]. A
weighted graph is a graph together with a function w : E — Q. For a matching
M of a weighted graph we define its weight by W(M) := > _.,, w(e). If the
vertices of a graph G can be separated into exactly two disjoint sets V, X such
that F(G) C V x X, then the graph is called bipartite. In many cases the disjoint
sets are already given as part of the input. In this case we write G = (VUX, E),
where £ C V x X. We call a matching M of a weighted bipartite graph G a
maximum weight bipartite matching (MaxWBM) if there is no other matching
M’ of G with W(M') > W(M). We denote a perfect MaxWBM by MazWBPM.

2.1 Edmonds’ Algorithm

Our approach is related to Edmonds’ algorithm, which solves the maximum
common subtree problem by means of maximum weight bipartite matching.
Consider a tree T and an edge e = wv € E(T) of the tree. By removing e
we obtain two subtrees. We denote by 7.’ the rooted subtree not containing
v with root vertex u and refer to the other rooted subtree by TV := T%, cf.

84 A. Droschinsky et al.

5 6 7

4 6 7 4
8

123 9 O 10 1 2 5

(a) Subtree R (b) Subtree S (c) MaxWBM

Fig. 1. Two rooted subtrees (a) and (b) and the associated weighted bipartite matching
problem (c). Gray vertices and edges are not part of the subtrees, root vertices are
shown in solid black; edges without label in (c) have weight 1.

Fig. 1. For every pair of rooted subtrees of the two input trees R and S, the size
of a maximum CSTT is computed under the restriction that the isomorphism
maps the two roots to each other. The result is stored in a table D by dynamic
programming. Let R! and S} be two rooted subtrees and V = {s1,...,sn}
and X = {t1,...,tn} the children of s in R! and ¢ in S}, respectively. Then
D(R:,S}) = 1+ M, where M is the size of a MaxWBM in the complete bipartite
graph with the vertex set VUX. The edge weights w of this graph are determined
by the entries in D for pairs of smaller rooted subtrees according to w(sg,t;) =
D(R Sk,S), where k € {1,...,n}, I € {1,...,m}. The matching defines the
mapping of the children of the two roots, cf. Fig. 1. The table D is filled by
ordering the subtrees according to increased size of subtrees, thus the required
partial solutions are always available from D. Finally, the maximum size of a
CSTI is determined by combining all pairs of corresponding rooted subtrees.
That is, the result for R: and R combined with S; and St is D(RL, Sy +
D(Rs, Sf) for any edge is € E(R), jt € E(S).

3 Enumeration of Maximum Weight Matchings with
Polynomial-Delay

In this section we develop a polynomial-delay algorithm to enumerate all max-
imum weight matchings in a complete bipartite graph. In Edmonds’ algorithm,
cf. Sect. 2.1, the size of a maximum common subtree isomorphism of two trees R
and S is calculated by determining MaxWBMSs and using their weights for the
calculations. An approach to enumerate all maximum CSTIs of R and S is to
enumerate all the MaxWBMs in these graphs. We do this by reducing the enu-
meration of MaxWBMs in a graph G’ to the enumeration of perfect matchings
in another graph G*, as described below.

The bipartite weighted graphs G’ = (V' U X'/, E’) that occur in Edmonds’
algorithm, cf. Fig. 1, are complete, i.e., E' = V'x X’. All the edge weights in these
graphs are positive. Due to this fact, every maximum weight bipartite matching
is maximal. We use this in our algorithm to achieve a reduction from MaxWBM
to MaxWBPM. The reduction from the weighted problem to an unweighted

Maximum Common Subtree Isomorphisms with Polynomial-Delay 85

¢ o ¢ o

(a) Matching M, (b) Matching M

Fig. 2. Different matchings (thick edges) in the extended graph, which correspond to
the same matching in the initial graph (black vertices and edges only).

problem is achieved with help of the well-known Hungarian method [7], [12].
Finally we use a modification of an enumeration algorithm for perfect matchings
in a bipartite graph [18] to obtain our MaxWBMs. We describe the steps in
detail.

First, we show the reduction from the enumeration of MaxWBMs in G’ to
the enumeration of MaxWBPMs in another graph G. A perfect matching in a
bipartite graph requires the same number of vertices in both vertex sets. There-
fore we extend G’ by additional vertices and edges if |V'| # | X’|. Assume w.l.o.g.
[V'| < |X'|, then we add vertices U and edges with zero weight between U and X’
such that |V/|4+|U| = | X’|. We refer to the resulting graph G := (VUX,VxX) :=
(V'UU)UX',(V'UU) x X') as the extended graph. It is obvious that the weight
of a MaxWBPM of G is identical to the weight of a MaxWBM of G’. The con-
struction of G' implies that for every MaxWBM M’ of G’ there is at least one
MaxWBPM M D M’ of G. The issue that there may be more than one, will be
addressed later.

The problem of finding all minimum weight matchings in G can be reduced
to finding all perfect matchings in the admissible subgraph G* of an optimal
dual solution based on the standard LP formulation for the minimum weighted
matching problem of G. This is implied by the well-known Complementary
Slackness Theorem. The admissible subgraph and its construction is described
in [5], [7]. Note that G* and G share the same vertices, E(G*) C E(G), and G*
is unweighted. The reduction from maximum weight matchings is very similar.
For example the weights of G can be multiplied by —1 before calculating an
optimal dual solution and the admissible subgraph G*.

We obtain all maximum weight bipartite matchings of the extended graph
G by enumerating all the perfect matchings in the admissible subgraph G*.
Removing the additional vertices and edges from G yields all maximum weight
matchings of G’. Unfortunately, two different matchings M;, Ms of G can lead
to the same matching M of G’, as is shown in Fig. 2. We handle this by directly
modifying Uno’s algorithm for the enumeration of all perfect matchings in a
bipartite graph [18].

First, we briefly describe Uno’s algorithm. Given a bipartite graph and a
(first) perfect matching M, one edge e € M is selected. The problem is then
divided into the enumeration of the perfect matchings containing e and those
not containing e. These subproblems lead to a graph G (e) with initial matching
M and another graph G~ (e) with initial matching M’ as described below. Both

86 A. Droschinsky et al.

graphs have less vertices and/or edges than the previous graph. The enumeration
continues recursively until no more edge e can be selected. The selection of e
is key to the algorithm. Uno proves that there is another perfect matching iff
there is an alternating cycle, i.e., a cycle of even length, where exactly every
second edge is part of the matching. If e is part of an alternating cycle, another
perfect matching M’ can be obtained by exchanging the edges along the cycle,
i.e., an edge, that was part of the matching M, will no longer be included in the
matching, and vice versa. Edges that are not part of any cycle are removed in
each recursive step of the algorithm.

On a bipartite graph with n vertices and m edges, a perfect matching can
be calculated in time O(n'/?m) [18]. This is the first step in Uno’s algorithm.
In our case the initial graph is the bipartite admissible subgraph G*; the perfect
matching is the one obtained during the calculation of G*. Uno states O(n+m)
time per additional matching, which basically is the time to find an alternating
cycle, and improves this with amortized cost analysis to O(n).

If the search for an alternating cycle starts from a vertex that is part of
V' (black vertices in top row in Fig. 2), the newly obtained matching M’ will
be different from the previous matching M regarding G’, i.e., M' N E(G') #
M N E(G’). If there is no such vertex, the current recursion has finished, as no
new matchings regarding G’ can be found. In this sense we prune the recursion
tree. Unfortunately, this means that the time per matching, O(n), is not valid
for our modification, since our algorithm stops the recursion as soon as there is
no more vertex v € V'. Le., the higher costs of the first matchings cannot be
divided to the costs of the later matchings. As an example, in a nearly complete
graph with only one matching regarding G’, time O(n?) is needed to prove there
is no alternating cycle containing a vertex of V.

We now take a closer look at the recursion tree. Whenever an alternating
cycle is found, we obtain a new matching and the two subproblems G*(e) and
G~ (e) mentioned above. If we do not find a cycle, the current recursion halts.
Hence, every vertex in the recursion tree has exactly 0 or 2 children. Therefore,
a recursion tree with n nodes yields (n — 1)/2 matchings and we obtain our first
lemma.

Lemma 1. All N mazimum weight matchings of any bipartite graph G' = (V'U
X' V'x X') can be enumerated with polynomial-delay in total time O(n®+ Nn?),
where n = |V'| 4+ | X'|

Proof. The admissible subgraph G* of an optimal dual solution and the first
perfect matching are obtained in time O(n?) according to the Hungarian method.
They are the starting point for the modification of Uno’s algorithm. The total
time to enumerate all other perfect matchings is bounded by O(Nn?), as stated
above. Note that |E(G*)| € O(n?). The recursion in Uno’s algorithm stops as
soon as there is no more alternating cycle containing a vertex of V'. At any
time there can be no more than |E(G*)| recursions on the stack. Therefore our
algorithm to enumerate all MaxWBMs of G’ is a polynomial-delay algorithm
with total time O(n® + Nn?). O

Maximum Common Subtree Isomorphisms with Polynomial-Delay 87

Note that the calculation of the admissible subgraph is needed only once for
every pair of rooted subtrees. If the two disjoint sets of V/(G’) have the same size,
we achieve a total time of O(n® + Nn), because the recursion in our algorithm
is identical to the recursion in Uno’s algorithm.

4 Enumeration of Maximum Common Subtree
Isomorphisms with Polynomial-Delay

In this section we present a polynomial-delay algorithm for the enumeration of
all maximum common subtree isomorphisms of given trees R and S. We assume
that both trees have at least two vertices. Otherwise, the enumeration of the
maximum CSTIs is trivial. Our algorithm is based on Edmonds’ algorithm (Sect.
2.1). First, we describe the idea of acquiring a single maximum CSTI of R and
S. Then we outline our enumeration algorithm, before we go into detail.

To obtain a maximum CSTI ¢ of R and S, we first determine the size m of
a maximum CSTI with Edmonds’ algorithm. Then we consider pairs of rooted
subtrees (r, s) := (RY, S¥) with D(r,s) + D(T,5) = m. As described in Sec. 2.1,
we map ¢(u) = w, p(v) = z. A MaxWBM of the bipartite graph of the children
of v and z determines the mapping of these children (see Sec. 2.1). The same
applies to the children of the vertices u, w.

The idea to find all the maximum CSTIs of R and S is to enumerate all
MaxWBMs (instead of calculating only one) per bipartite graph and to combine
all possible solutions. To do this, we enumerate all pairs (r, s) of rooted subtrees
where D(r, s) + D(7,5) = m. For each of these pairs we enumerate all maximum
CSTIs and combine them with all maximum CSTIs of (7,3).

By enumerating a non-maximum CSTT on (r, s) or (7,3), the total size of the
CSTI of R and S would be less than m, thus no maximum. And by enumerating
and combining all maximum CSTIs of (r,s) and (7,5), we do not miss any
maximum CSTIs of R and S. For every maximum CSTI ¢ of R and S, the edges
of the matchings are directly given by the isomorphism; if ¢(a) = b, then the
edge ab is included in a matching of the corresponding bipartite graph. All the
matchings have to be MaxWBMs, otherwise ¢ would be no maximum CSTL
Thus this approach is correct.

First, we iterate through all rooted subtrees r = R} of R. For each subtree r
we iterate through all rooted subtrees s = S¥ of S with D(r, s) + D(7,3) = m.
For each of these pairs (7, s) we enumerate all MaxWBMs of the bipartite graph
of the children of v,z with our algorithm described in Sec. 3. The matchings
determine the mappings of the children, thus adding vertices to the currently
enumerated CSTIL. Let M = {viz1,...,vx;} be a MaxWBM. Then we recur-
sively enumerate on the pairs (RY ,SZ%) of rooted subtrees, Vk € {1,...,1},

Vg ? x
where D(R},_, S5,) > 1, i.e., both sukbtregs are no single vertices. This means, we
first determine the first maximum CSTT on all of these pairs of rooted subtrees.
All these CSTTIs together with the previous mappings (¢(v) = z, ¢(v1) = 21,...)
give us the first maximum CSTTI of the pair (r, s) of rooted subtrees. We acquire

the second maximum CSTI of (r,s) by enumerating the second CSTI on the

88 A. Droschinsky et al.

pair (R}, S7,) and so on, until there are no more. Then we calculate the second
CSTT on (Ry,_,,S%,_,) and enumerate all maximum CSTIs on (R}, S7,) again.

We repeat this until we enumerated all combinations, i.e., the last CST Is of all
pairs (Ry,, Sy,). For every calculated maximum CSTT of (r,s) we enumerate,
as stated above all maximum CSTIs of (7,5) and combine them to a maximum
CSTT of R and S and output the isomorphisms.

Although we do not miss any maximum CSTI with the presented algo-
rithm, and our algorithm from Sec. 3 enumerates every MaxWBM of the cor-
responding weighted bipartite graph exactly once, the algorithm for maximum
CSTIs outputs every maximum CSTI ¢ twice or more. Consider the trees R =
({a,b,c}, {ab,bc}) and S = ({1,2,3},{12,23}). By selecting r = R¢,s = S we
directly obtain ¢(a) = 1,p(b) = 2. The bipartite graph G’ = ({¢, 3}, {¢3}) with
weight w(c3) =1 yields {3} as a MaxWBM and therefore ¢(c) = 3. If we select
r=Rs=S5% orr=Rls=2S52 orr = ¢,s = S3, we obtain the same
maximum CSTT ¢. In general every maximum CSTI is reported twice for every
edge of the common subtree.

The problem can be solved by adding another step to our algorithm. Assume
r = Ry and the enumeration on this rooted subtree is finished. Before selecting
the next rooted subtree of R, we delete the edge uv from R and recalculate the
table D. Edmonds’ algorithm (the calculation of D) works on forests as well as
on trees, so the missing edge is no problem here. We call the new graph R'. If
the size of a maximum CSTI of (R/, S) is less than the size of a maximum CSTI
of (R, S) our algorithm halts. With the selection of RY we enumerate every and
only maximum CSTI which contain both vertices v and v. After deleting the
edge uw, all subsequently enumerated maximum CSTI will contain at most one
of the two vertices u,v, as they are in different connected components in R’.
This means, all maximum CSTIs which were enumerated before removing uv
differ from all maximum CSTIs after removing uv. With the last modification
we have an algorithm that enumerates every maximum CSTT of trees R and S
exactly once.

We now analyze the time and space complexity of our algorithm. Every
enumerated maximum CSTI ¢ is determined by the rooted subtrees (r,s) and
maximum weight bipartite matchings M; in some bipartite graphs G%,1 <14 < k,
for some k < |¢|. Let r;, s; be the number of vertices of trees R, S in G and
m,; = max{r;,s;}. Because the vertices in all the bipartite weighted graphs
G, are pairwise disjoint, we get > .7, < |[V(R)| and >, s; < |[V(S)|. Given
the initial optimal solutions for the matching problems that are computed by
Edmonds’ algorithm, the amortized time to calculate a matching M; is bounded
by O(m3), see Lemma 1. We have 3=, m? = >3, max{ri, si}> = 3 (1,155, 77 +
Do (ilri<si} 52 < |V(R)|*> + |[V(9)|?. Therefore the amortized time to enumerate
a single maximum CSTI is bounded by O(|V(R)[* + [V (S)]?) excluding the
calculation of the table D. A worst case example is a pair of trees R, S, where
R is a path, i.e., all vertices have degree 1 or 2, and S contains exactly one path
of |V(R)| vertices.

Maximum Common Subtree Isomorphisms with Polynomial-Delay 89

The table D is calculated every time a new rooted subtree 7 is selected. After
[v(R)| + 2 —|¢| calculations |v(R)|+ 1 — |¢| edges have been removed from R, so
there are only |p| — 1 vertices left, which is less than the size || of a maximum
CSTI. This means, there is no other maximum CSTI of (R, S) and our algorithm
has stopped. Each calculation of D requires the calculation of O(|E(R)|-|E(S)|)
optimal dual solutions and admissible subgraphs. The time for each calculation
is bounded by O(max{|E(R)|,|E(S)|}?). This worst case running time occurs
for trees R,S, which are both ”stars”, i.e., all vertices of both trees are connected
to a single center vertex.

The total time for all calculations of D is polynomial, the time for each
maximum CSTI is also bounded by a polynomial, as each MaxWBM is calculated
in polynomial time. This proves that we have a polynomial-delay algorithm. The
total space needed for our algorithm is basically determined by the admissible
subgraphs. Each of them can be stored in space O(|V(R)|+ |V (S)|) [5]. Thus,
we have achieved our goal.

Theorem 1. [t is possible to enumerate all N mazximum CSTI of size m of trees
R, S with polynomial-delay in total time O(|E(R)|-|E(S)|-max{|E(R)|, |E(S)|}3-
(IV(R)|+2—=m)+ (|[V(R)|>+|V(S)|?)- N) and total space O((|[V(R)|+|V(S)|)-
[V(R)]- [V(S)])-

Weighted Isomorphisms. In many application domains graphs are annotated
with additional information, e.g., labels on edges and vertices. In a graph which
is derived from a molecule a vertex label may represent the atom type or charge.
If we want to compare such graphs, not only the structure of the graph, but
also the similarity between labels must be taken into account. This is true, e.g.,
for the so-called feature trees [15] (cf. Sect. 6). In this section we describe the
inclusion of labels into the enumeration of common subtrees.

A labelled graph is a graph G = (V| E) with a label-function | : VUE — X,
where ¥ is a finite alphabet. To enumerate all maximum CSTIs on two labelled
trees R, S with label-functions (g : V(R)UE(R) — X, lg: V(S)UE(S) — X we
apply a symmetric weight-function w : ¥ x ¥ — Q. Instead of finding common
subtree isomorphism with maximum size, we want to enumerate all common
subtree isomorphism with maximum weight. We abbreviate this by mazimum
CWSTI Let R = (V}, ER) and §' := (V§, EY) be subtrees of R and S, and
¢V} — Vi a CSTI of R and S. The weight of ¢ is defined by

Wip) =Y wllr(),ls(e®)) + Y wllrw) ls(p(we(). (1)

veVYL uww€Ey

We describe how to change our enumeration algorithm for maximum CSTIs
to handle the enumeration of maximum CWSTIs. First, we describe the nec-
essary modifications for vertices and then for edges. Both modifications consist
of modifying the calculation of the table D. For vertices, we change the table
entry D(RY,S]) = 1+ M (cf. Sect. 2.1) to w(ls(s),lr(t)) + M, i.e., vertices
s,t do not add 1 to the weight (size), but instead add the weight defined by w.

90 A. Droschinsky et al.

The changes for edges are similar. We add w(lr(is),ls(jt)) to the table entry
D(R:,S!). Therefore D(R:,S7) is the weight of a maximum CWSTI including
the weight for the mapped edges is,jt. When we add D(R:,S]) + D(R;, S%)
we add the weight for the “center” edges, i.e., w(lr(is),ls(jt)), twice. So we
have to subtract it to get the weight of a maximum CWSTTI ¢ of R and S with
p(i) = j,p(s) =t.

We have to be careful with negative weights for a pair of edges and non-
positive weights for a pair of vertices. In this case a maximum CWSTI might
not be maximal. The handling of this issue is more complicated and described
in [6]. It is obvious that the time complexity of the presented approach for
restricted weights remains unchanged compared to the unweighted algorithm.

5 Enumeration of Maximal Common Subtree
Isomorphisms

There are algorithms that calculate all connected maximal common subgraphs
of two input graphs, e.g., by reducing to the enumeration of cliques in a product
graph [3], [10]. If we input trees into these algorithms they output all maximal
CSTT of the input trees. However, these algorithms take no benefit from the
acyclic structure of trees. Also there is yet no other algorithm for enumerating
maximal CSTI of given trees. In this section we briefly show how to change
our algorithm for maximum CSTI from Section 4 to enumerate maximal CSTI
instead. This algorithm is faster than the general algorithm from [3], [10] in
theory and practice (cf. Table 1).

The main difference to the enumeration of maximum CSTIs is to enumer-
ate maximal matchings instead of maximum weight matchings in the bipartite
graphs given by Edmonds’ algorithm, cf. Sect. 4. However, we cannot apply
the edge deletion to enumerate every maximal CSTI only once. Consider the
trees R = ({a,b,c}, {ab,bc}) and S = ({1,2,3},{12,23}). One maximal CSTT is
v(a) =1,0(b) = 2,¢(c) = 3. If we delete ab € E(R), one subsequent CSTT will
be ¢'(b) = 2,¢'(¢) = 3, which is obviously not maximal. We solve this by not
deleting edges, but by assigning each edge e € E(R) a unique natural number
I(e). Assume we selected RY as a rooted subtree of R. We output a maximal
CSTI ¢ iff RY has not yet been selected and I(uwv) is less than I(e) for every
other edge e in the graph determined by dom(p). This means, we select one of
the total 2|¢| — 2 identical isomorphisms, cf. Sect. 4, and output only this one.

We briefly discuss the time and space complexity of the approach, see [6]
for further details. Let m be the size of a mazimum CSTI Then |p| < m for
every maximal CSTI ¢. Maximal matchings in a complete bipartite graph can
be enumerated in amortized time O(1) per matching [6]. Since every matching
yields at least one additional node to the currently enumerated CSTI, we have
time O(m) per enumerated CSTI. With regard to the above paragraph we get
amortized time O(m?) per outputted maximal CSTI. The space complexity is
O(JV(R)|+|V(S)|)- This is determined by the space needed for the enumeration
of maximal matchings in complete bipartite graphs.

Maximum Common Subtree Isomorphisms with Polynomial-Delay 91

Table 1. Maximal CSTI vs. reduction to cliques. Entries are average values (5%
quantile / 95% quantile) over 100 pairs of random trees; table columns are: edges of both
trees, number of maximal CSTIs, enumerated maximal CSTIs per second, total time
to enumerate all maximal CSTIs, maximal CSTIs per second by clique enumeration,
and the ratio between the total running times of the two algorithms; k abbreviates
thousand, M million.

[Edges]] Maximal CSTIs[CSTIs per s in M]Total Time CSTI enum.[Cliques/s[CL/CSTIs]
20 59 (7 / 162) k| 10.3 (5.6 / 15.4) 5(1/13) ms| 822k 125
2 430 (28 / 1942) k| 11.9 (8.7 / 15.8) 35 (3 / 156) ms| 348k 312
30 ||2713 (146 / 10738) k| 12.0 (9.7 / 15.3) 223 (14 / 913) ms 14.5 k 832
35 27 (1 /73) M| 12.2 (9.4 / 15.9) 1955 (74 / 7014) ms| running time > 1d
40 145 (3 / 515) M| 12.2 (9.5 / 15.8)|10785 (284 / 40738) ms| running time > 1d
15 911 (22 / 2858) M| 11.8 (9.4 / 14.9) 75 (2 / 240) s| running time > 1d

Theorem 2. [t is possible to enumerate all N maximal common subtree isomor-
phism of trees R, S in total time O(m2N) and total space O(|[V(R)| + [V (S)]),
where m is the size of a maximum CSTI of R and S.

The technique to avoid duplicates by means of a function I can also be
applied for the enumeration of maximum CSTI. With respect to practical run-
ning times on not too small random tree instances (cf. Sect. 6), this approach
performs similar to the method based on edge deletion. We save the time for the
recalculation of the table D, but we do not output all generated isomorphisms.
Note that when using the function I to select the isomorphisms to output, we
do not obtain a polynomial-delay algorithm any more. However, we still have
polynomial total time obviously.

We can apply the weighted variant from Sect. 4 to the enumeration of max-
imal CSTI. However, this does not change the isomorphisms, but yields the
weights instead of the size.

6 Experimental Evaluation

In this section, we report on our computational results. All experiments were per-
formed on an Intel Core i5 3570K CPU with 8 GB RAM. Both trees R and S have
the same number of edges if not stated otherwise and are pseudo-randomly gen-
erated using the Open Graph Drawing Framework!. First, we compare the time
to enumerate maximal CSTIs with our new algorithm to the time required by the
algorithm in [3,10] based on enumeration of cliques in the corresponding prod-
uct graphs. The results are shown in Table 1. As expected, our algorithm clearly
beats the more general clique based approach on trees, the relative speedup grows
with the size of the input. The second column shows a sublinear running time in
practice for the enumeration of all maximal CSTI on random trees.

! http://www.ogdf.net/

http://www.ogdf.net/

92 A. Droschinsky et al.

Table 2. Maximum CSTI. Notation: cf. Table 1; table columns are: edges of both
trees, number of maximum CSTIs, enumerated maximum CSTIs per second, total time
to enumerate all maximum CSTIs, the fraction of running time spent on (re)calculating
the table D with Edmonds’ algorithm, and the size of the maximum CSTIs.

‘EdgesH Maximum CSTIS‘ CSTIs per s in M‘ Total Time enum.‘Edmonds‘ |M. CSTIH

40 385 (0.2 / 447) k| 1.86 (0.01 / 5.67) 49 (16 / 83) ms 75%]28 (25 / 31)
50 || 8616 (4.6 / 5599) k| 3.72 (0.17 / 9.72)| 764 (27 / 1014) ms 53%]|34 (30 / 38)
60 |[14402 (9.0 / 44126) k| 4.76 (0.22 / 11.40)|1919 (43 / 9346) ms 36%|39 (35 / 44)
70 374 (0.1 / 827) M| 6.17 (1.17 / 12.08) 50 (0.1 / 218) s 18%|45 (40 / 50)

Next, the results for the enumeration of maximum CSTIs are displayed, cf.
Table 2. We can clearly observe that the time to calculate the table D is sig-
nificant through all examined tree sizes. An improvement of our basic imple-
mentation of the Hungarian method may lead to better results. As expected,
the enumeration of maximal CSTI is faster, but for tree instances with many
different maximum CSTI the enumeration is not much slower. In our randomly
generated trees the average size of the maximum CSTIs is about 2/3 the size of
the trees.

Finally, we evaluate our enumeration algorithm for maximum CWSTI on
real-world data from cheminformatics. Feature trees [15] are a simplified repre-
sentation of molecular structures consisting of trees with additional information.
We compare the first 1001 feature trees derived from a molecular data set?
regarding their pairwise similarity. Most trees vary from 3 to 15 vertices. We
define a weight function w with im (w) C]0,1] on the vertex labels as described
n [15]. Then, we calculate the relative weight of a maximum CWSTI ¢ of two
feature trees R and S to the size of the larger input tree, i.e, W(p)/max{|V (R)],
[V(S)]}. It takes 197 seconds to compute all (1190889 in total) maximum
CWSTIs between more than half a million pairs of feature trees. Investigation
of some of the best matches reveals that their structure is nearly identical. The
result shows that our algorithm allows a full analysis considering the ambiguity
of maximum CWSTIs even on large real-world data sets.

7 Conclusions

We have developed the first efficient algorithms for the enumeration of all maxi-
mum, maximal, and maximum weight CSTIs of two given trees. No enumeration
algorithms for MCSs with guarantee in terms of running time have been known
before. Our approach outputs all maximum and, respectively, maximum weight
CSTTs with polynomial-delay and can be modified to list all maximal CSTIs. We
as well proposed an algorithm enumerating MaxWBMs with polynomial-delay,
which is not only an integral part of our main algorithm, but also of interest in
itself. The key ideas of our approach can presumably be taken, too, as a basis

2 Pyruvate Kinase (AID 361), http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?
aid=361

http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=361
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=361

Maximum Common Subtree Isomorphisms with Polynomial-Delay 93

for finding efficient enumeration algorithms for MCSs in more complex graph
classes; this is postponed to future research.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maxi-

mum common connected edge subgraph of outerplanar graphs of bounded degree.

Algorithms 6(1), 119-135 (2013)

Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.

Commun. ACM 16, 575-577 (1973)

Cazals, F., Karande, C.: An algorithm for reporting maximal c-cliques. Theoretical

Computer Science 349(3), 484-490 (2005)

Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in

pattern recognition. Int. J. Pattern. Recognit. Artif. Intell. 18(3), 265-298 (2004)

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial

Optimization. John Wiley & Sons Inc., New York (1998)

Droschinsky, A.: Effiziente Enumerationsalgorithmen fiir Common Subtree Prob-

leme. Master’s thesis, Technische Universitat Dortmund (2014)

Fukuda, K., Matsui, T.: Finding all minimum-cost perfect matchings in bipartite

graphs. Networks 22(5), 461-468 (1992)

Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal

independent sets. Information Processing Letters 27(3), 119-123 (1988)

Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: An even faster and more unifying

algorithm for comparing trees via unbalanced bipartite matchings. J. Algorithms

40(2), 212-233 (2001)

Koch, I.: Enumerating all connected maximal common subgraphs in two graphs.

Theoretical Computer Science 250(12), 1-30 (2001)

Kriege, N., Mutzel, P.: Finding maximum common biconnected subgraphs in series-

parallel graphs. In: Csuhaj-Varji, E., Dietzfelbinger, M., Esik, Z. (eds.) MFCS
2014, Part II. LNCS, vol. 8635, pp. 505-516. Springer, Heidelberg (2014)

Kuhn, H-W.: The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly 2, 83-97 (1955)

Levi, G.: A note on the derivation of maximal common subgraphs of two directed

or undirected graphs. Calcolo 9(4), 341-352 §1973)

Matula, D.W.: Subtree isomorphism in O(n*/?). In: Algorithmic Aspects of Com-

binatorics, Ann. Discrete Math., vol. 2, pp. 91-106. Elsevier (1978)

Rarey, M., Dixon, J.: Feature trees: A new molecular similarity measure based

on tree matching. Journal of Computer-Aided Molecular Design 12(5), 471-490
1998

%aym)ond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms

for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7),
521-533 (2002)

Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerpla-

nar graphs. In: Frasconi, P., Kersting, K., Tsuda, K. (eds.) Mining and Learning

with Graphs (2007)

Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings
in bipartite graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,

vol. 1350, pp. 92-101. Springer, Heidelberg (1997)

Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common sub-

graph of a partial k-tree and a graph with a polynomially bounded number of

spanning trees. Inf. Process. Lett. 92(2), 57-63 (2004)

Efficient Enumeration of Induced Subtrees
in a K-Degenerate Graph

Kunihiro Wasa!®) | Hiroki Arimura', and Takeaki Uno?

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan
{wasa,arim}@ist.hokudai.ac.jp
2 National Institute of Informatics, Tokyo, Japan
uno@nii. jp

Abstract. In this paper, we address the problem of enumerating all
induced subtrees in an input k-degenerate graph, where an induced sub-
tree is an acyclic and connected induced subgraph. A graph G = (V, E) is
a k-degenerate graph if for any its induced subgraph has a vertex whose
degree is less than or equal to k, and many real-world graphs have small
degeneracies, or very close to small degeneracies. Although, the studies
are on subgraphs enumeration, such as trees, paths, and matchings, but
the problem addresses the subgraph enumeration, such as enumeration
of subgraphs that are trees. Their induced subgraph versions have not
been studied well. One of few examples is for chordless paths and cycles.
Our motivation is to reduce the time complexity close to O(1) for each
solution. This type of optimal algorithms is proposed many subgraph
classes such as trees, and spanning trees. Induced subtrees are funda-
mental object thus it should be studied deeply and there possibly exist
some efficient algorithms. Our algorithm utilizes nice properties of k-
degeneracy to state an effective amortized analysis. As a result, the time
complexity is reduced to O(k) time per induced subtree. The problem is
solved in constant time for each in planar graphs, as a corollary.

1 Introduction

Subgraph enumeration problems are enumeration problems that given a graph
G and a graph class S, output all subgraphs S of G satisfying S € S without
duplicates. Subgraph enumeration problems are widely studied [1-3,7-11]. Enu-
meration involves a huge number of solutions, thus enumeration algorithms are
supposed to run in short time, with respect to the number of solutions N. For
example, if an algorithm runs in O(N f) time for small f, other than prepro-
cessing, we can consider the algorithm is efficient. In this case, we say that the
algorithm runs in O(f) time per solution, or O(f) time for each solution. Fur-
ther, the maximum computation time between two consecutive outputs called
delay is also considered as a more efficiency of enumeration algorithms. Note
that delay will not be O(f) even if an algorithm runs in O(f) time per solution.

Enumeration algorithms are widely studied in these days. Especially, the
data mining area has a large amount of studies on pattern mining problem. The

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 94-102, 2014.
DOI: 10.1007/978-3-319-13075-0-8

Efficient Enumeration of Induced Subtrees 95

algorithms have to deal with huge databases and a huge number of solutions,
thus there are great needs of the algorithm theory on efficient enumeration. As we
show below, many recent studies focus on the development of small complexity
algorithms. Compared to other algorithms, enumeration algorithms have some
unique aspects. For example, by operating only on the differences between the
solutions, one can develop algorithms that run in time shorter than the amount
of exact output. Other than this, since the recursion is much more structured
compared to optimization, we can develop a non-trivial amortized analysis. As
a consequent, researches on the numeration algorithms have great interests.

In what follows, we fix the input graph G = (V, E), and let m = |E|, n = |V|.
In the 1970s, Tarjan and Read [9] studied a problem of enumerating spanning
trees in the input graph. Their algorithm runs in O(m+n+mN) time. Shioura,
Tamura, and Uno [7] is improved the complexity to O(n+m+N) time. Tarjan [8]
proposed an algorithm for enumerating all cycle in O((|V| + |E|)(IC(G)| + 1))
time, where C(G) is all cycle in G. Birmelé et al. [2] improved the complexity to
in O(m+3_.cc(q) lcl) total time. They also presented an enumeration algorithm
for all st-paths in the input graph G in O(m+3_ cp (s |7|) total time, where
Ps+(G) is all st-paths in G. Ferreira et al. [3] proposed an enumeration algorithm
that enumerating all subtree having exactly &k edges in G in O(kN) time. Wasa
et al. [11] presented an improved version of Ferreira et al.’s problem in con-
stant time delay when the input is a tree. As we see, speed up of enumeration
algorithms have been intensively studied in long history.

Compared to these studies, induced subgraph enumerations have not been
studied well. Avis and Fukuda [1] considered the connected induced subgraph
enumeration problem. Their algorithm is based on reverse search, and runs in
O(mnN) time. Uno [10] proposed an enumeration algorithm for enumerating all
chordless path connecting the given vertices s and ¢ and all chordless cycle in
O((m + n)N) time. Ferreira et al. [4] also proposed an enumeration algorithm
for this problem. Their algorithm runs in O~(|n\) time per chordless cycle. Their
algorithm also enumerates all st-chordless paths with the same complexity.

In this paper, we address the problem of enumerating all induced subtrees
in the given graph, where an induced subtree is a connected induced subgraph
that has no cycle. Assume that the set of vertices in an induced subtree is S.
Then, V'\ S is a feedback vertex set of G. Feedback vertices are also fundamental
graph objects and their enumeration problem is equivalent to that of induced
subtrees. If the input graph G is a tree, the connected induced subgraph of G
is a subtree. Thus, Wasa et al.’s shows that the induced subtree enumeration
problem can be solved in constant time delay when the input graph is a tree.
Tree is a simple graph class, so we are motivated whether we can do better in
more general graph classes with non-trivial algorithms.

As a main result of this paper, we propose an algorithm for the k-degenerate
graph case. The algorithm runs in O(k) time per solution, after (|V| + |E|)
preprocessing time. The algorithm starts from the empty subgraph, and adds a
vertex recursively to enlarge the induced subtree. The vertex to be added has
to be adjacent to the current induced subtree, and has not to make a cycle.

96 H. Wasa et al.

By using the degeneracy, we efficiently maintain the addible vertices, and the
time complexity is bounded by a sophisticated amortized analysis. Real world
graphs usually have small degeneracies, or only few vertex removals result small
degeneracies, the algorithm is expected to be efficient in practice. Compared to
other graph classes, this is a strong point of k-degenerate graphs. There have been
not so many studies on the use of the degeneracy for enumeration algorithm, and
thus our approach introduces one of new way of developing practically efficient
and theoretically supported algorithms.

The rest of this paper is organized as follows: In Section 2, we gives definitions
in this paper and the definition of our problem. In Section 3, we propose a
basic enumeration algorithm based on a binary partition method. In Section 4,
we improve the algorithm by using a property of the degeneracy, and analyze
its time complexity. Finally, we conclude this paper and give future works in
Section 5.

2 Preliminaries

2.1 Graphs

Let G = (V, E) be an undirected graph, where V is the set of vertices and E C V2
is the set of edges. In this paper, we assume that G is simple and finite. We denote
by (u,v) the edge connecting u and v. For any vertices u,v of V, we say that
uw and v are adjacent to each other if (u,v) € E. We denote by Ng(u) the set
of all vertices adjacent to u in G. We define the degree dg(u) of u in V as the
number of vertices adjacent to u. In what follows, if it is clear from context, we
omit the subscript G.

A path in G is a sequence of distinct vertices m(u,v) = (v1 = u,...,v; =),
such that v; and v; ;1 are adjacent to each other for 1 <4 < j. If there is 7(u, v)
in G, we say that the path connects u and v. The length of path 7(u,v) is the
number of vertices in 7(u,v) minus one. For any path 7(u,v) of length larger
than one, 7(u,v) is called a cycle if u = v. We say that G is connected if there
is a path connecting any pair of vertices in G. G is a tree if G has no cycle and
is connected.

2.2 Induced Subtrees

Let S be a subset of V. We denote by G[S] = (5, E[S]) the graph induced by S,
where E[S] = {(u,v) € E | u,v € S}. We call G[S] an induced subgraph of G.
If no confusion, we regard S as G[S]. |S| is the size of S. We say that S is an
induced subtree (see Fig. 1), if S is a tree. In the following, we state the problem
of this paper.

Problem (Induced subtree enumeration problem). Enumerate all induced sub-
trees in G = (V, E).

Efficient Enumeration of Induced Subtrees 97

Fig. 1. An induced subtree S; in G;. In the figure, bolded vertices and edges represent
vertices and edges in S;. Sy consists of {2,3,5,6,7}. S1 is an induced subtree in G
since S is connected and acyclic.

2.3 K-Degenerate Graphs

A graph G is k-degenerate [5] if any its induced subgraph of G has a vertex
whose degree is less than or equal to k. The degeneracy of G is defined as the
smallest k satisfying the definition of k-degenerate graphs. Examples of graph
classes with constant degeneracy include trees, grid graphs, outerplanar graphs,
and planer graphs, thus degenerate graph is a large class of sparse graphs. These
degeneracy are 1, 2, 2, and 5, respectively.

From the definition of k-degeneracy, we obtain a vertex sequence (ui, ..., ujv|)
satisfying the condition

VI<i<|V], {uj € N(wi) | i <j <[V} < k- (%).

This condition (%) implies that there exists an ordering among vertices of G such
that for any vertex u, the number of vertices adjacent to u larger than it is at
most k. Hereafter we assume that the vertices are indexed in this ordering. We
say u < v (u > v, respectively) if the index of u is smaller than v (u is larger
than v, respectively) with respect to this ordering. In Fig. 2, we show an example
of the ordering satisfying (x). Matula and Beck [6] proposed an algorithm for
obtaining the degeneracy of G and the ordering satisfying (x). By iteratively
choosing the smallest degree vertex and removing it from G, their algorithm
finds such an ordering in O(|V| + | E|) time.

3 Basic Binary Partition Algorithm

3.1 Candidate Sets and Forbidden Sets

Let S be an induced subtree of G. We define the adjacency of a vertex u € V'
to S as adj(S,u) = |S N N(u)l|, that is, adj(S,u) is the number of vertices of S
adjacent to u.

Lemma 1. Let S be any induced subtree in G and u be any vertex V\S. SU{u}
is an induced subtree if and only if adj(S,u) = 1.

98 H. Wasa et al.

Fig.2. An example of an ordering of G1 = (Vi, E1). In the right graph, vertices are
sorted by the ordering that satisfies ().

Proof. Tf adj(S,u) > 1, u is adjacent to two vertices v and w of S. Since S has
a path 7 connecting v and w, the addition of u yields a cycle in S U {u}. If
adj(S,u) = 0, SU {u} is disconnected. If adj(S,u) = 1, S U {u} is connected.
Since the degree of w in G[S U {u}] is one, u is not included in a cycle. Thus,
G[S U {u}] does not contain a cycle. O

In each iteration, we maintain the forbidden set X as the vertex set such that
any vertex u in X satisfies either u belongs to S, SU{u} includes a cycle, or u is
forbidden to include in the solution by some ancestor iterations of the iteration.
We also maintain the candidate set CAND as the set of vertices whose additions
yield induced subtrees and are not included in X. We maintain CAND and X
for efficient computation. From Lemma 1, they are disjoint, and for any vertex
u, if adj(S,u) > 0, u belongs to either CAND or X.

3.2 Basic Binary Partition

Our algorithm starts from the empty induced subtree S = (). In each iteration
given an induced subtree S, we remove a vertex u from CAND, and partition
the problem into two; enumeration of all induced subtrees including S U {u},
and those including S but not including u. We recursively do this partition until
there is no vertex in CAND. The former can be solved by a recursive call with
setting S to S U {u}. The latter is solved by a recursive call with setting X to
X U {u}. In this way, we can enumerate all induced subtrees. We present the
main routine ISE of our algorithm in Algorithm 1. We show how to update
candidate sets and forbidden sets in the next two lemmas.

Lemma 2. For an induced subtree S and a vertex u € CAND, when we add u
to S and remove u from CAND, CAND changes to

(CAND \ N(u)) U (N(u) \ (CAND U X))).

Proof. Any vertex in CAND other than N(u) remains in CAND after the addi-
tion of u to S since the adjacencies of the vertices do not change. If vertices in
N(u)N(CANDUX) are added to SU{u}, then they are in S, they are forbidden

Efficient Enumeration of Induced Subtrees 99

Algorithm 1. Main routine ISE: Enumerating all induced subtrees in G

1: procedure ISE(G = (V, E), S, CAND, X)

2: if CAND = () then output S; return;
choose the smallest vertex u from CAND and remove u from CAND,;
call ISE(G, S, CAND, X U {u});
call ISE(G, SU{u}, (CAND\N (u))U(N (u)\ CAND), X U{u}U(CANDNN (u)));

to be add to S and its decendants, or they make cycles since they are adjacent
to u and other vertices in S. The adjacency of any vertex in N(u)\ (CAND U X)
is zero for S, and one for SU{u}. Any vertex v ¢ S satisfying adj(SU{u},v) =1
is either in N(u) or CAND. Thus, the statement holds. O

Lemma 3. For an induced subtree S and a vertex u € CAND, when we add u
to S and remove u from CAND, X changes to

X U{u} U(CAND N N(u)).

Proof. Any vertex v € X remains in X for S U {u}, since adj(S U {u},v) >
adj(S,v) always holds. From the definition of the forbidden set, u is in X for
S U {u}. Further, any vertex v in CAND N N(u) makes cycles when they are
added to S U {u}, since adj(S U {u},v) > 2 holds. By adding u to S, no other
vertex is forbidden to be added, thus the statement holds. a

Theorem 1. Algorithm ISE enumerates all induced subtrees in the input graph
G = (V, E) without duplicates.

4 Improved Binary Partition Algorithm

From Lemma 2 and Lemma 3, we can easily see that the computation time of
updating the candidate set and the forbidden set is O(dg(u)) by checking all
vertices adjacent to u. However, in this way, we must check some vertices again
and again. Specifically, let us assume u and v are consecutively added to S, and
w ¢ S is adjacent to u, v and another vertex in S. When we add u to S, we
check whether we can add w to the candidate set of S U {u}. After generating
S U{u}, we check w again when we add v to S U {u}. In order to avoid this
redundant checking, we improve the way of updating the candidate set and the
forbidden set by using the following set.

Definition 1. Suppose that u is a vertex of CAND for an induced subtree of G.
We define a set I'(u, X) as follows:

I'u,X)={veN)|v¢X,v<u}.

Lemma 4. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. Then, the following formula
holds:

N(u)\ (CAND U X) = (Ng(u) \ (CANDU X)) U I'(u, X),

where No(u) = {v € N(u) | u < v}.

100 H. Wasa et al.

' U {u}
/ . S
CAND‘@\U@<U---<O@<V@ <g@ ‘

<o <ol

CAND ‘@g@ <”@<n---<”©<g@<”@ ‘

Fig. 3. This figure shows the changes between candidate set CAND by the addition
of u to S. S is an induced subtree and {u,v,...,z,w,z} is the candidate set of S. Let
assume that a < b < u < ¢ and d < u. Since d does not belongs to I'(u, X), d is skipped
checking.

Proof. Let Z be the set of vertices larger than u. Since u is the smallest vertex in
CAND, (N(u)\(CANDUX))NZ = (N¢(u)\ (CAND UX)). From the definition
of I'(u, X) and w is the smallest in CAND, (N(u) \ (CANDUX))N(V\Z) =
Ng(u) \ (CAND U X) = (Ns(u) \ CAND) N (Ng(u) \ X) = I'(u,X), where
Ns(u) = {v € N(u) | v < u}. This concludes the lemma. O

In what follows, we implement CAND, X, and I' by doubly linked lists.
Thanks to the doubly linked list, the cost for a removal and the recover of the
removed element can be done in constant time, and the merge of two sets can be
done in linear time of the sum of their sizes. In each iteration, we keep verticies
of each list sorted in the ordering that satisfies (x).

Lemma 5. When we add a vertex u to X, the update of I'(v, X) for all vertices
v is done in O(k) time.

Proof. To update, it is suffice to remove u from I'(v, X) from all v > w. Thus,
it takes O(k) time. O

Lemma 6. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. When we add u to S and
remove u from CAND, the computation time of updating CAND and X are
Ok + |I'(u, X)|) and O(k) time, respectively.

Proof. Since w is the smallest vertex in CAND, |A| < k, where A = |CAND N
N (u)]. Since vertices in N (u) are sorted by the ordering, the computation time of
A is O(k). Thus, adding vertices in A and v to X and removing A from CAND
are done in O(k) time. From Lemma 4, since |[{v € N(u) | u < v}| < k, the
computation time of adding these vertex to CAND is O(k + |I"(u, X)|). Hence,
the lemma holds. O

In Fig. 3, we show the changes of between the candidate set of S and that of
S U{u} after adding u to S.

Efficient Enumeration of Induced Subtrees 101

Theorem 2. Let G = (V, E) be the input graph and k is the degeneracy of G.
Our algorithm enumerates all induced subtrees in G in O(k) time per solution
after O(|V|+|E|) preprocessing time without duplicates using O(|V|+|E|) space.

Proof. Since the update of CAND and X is correct, the correctness of the algo-
rithm is obvious. (I) We discuss the time complexity of the preprocessing. First,
our algorithm computes an ordering of vertices by Matula and Beck’s algo-
rithm [6] in O(|]V| + |E|) time. Next, our algorithm sorts vertices belonging
to each adjacency list by using a bucket sort. Thus, the preprocessing time is
O(V| + |).

(IT) We consider an iteration inputting S, X, and CAND, and assume that
CAND' is the candidate set for S U {u}. Line 2 and line 3 run in O(1) time.
From Lemma 5, line 4 needs O(k) time. From Lemma 6, since it is clear that
|I"(u, X)| < |CAND'|, our algorithm needs O(k + |CAND'|) time for computing
CAND'. The update of I"’s is done in O(k| CAND NN (u)|) time, from Lemma 5.
We observe that for each vertex w such that v € CAND N N (u) is removed from
I'w,X), wis in CAND of S U {v}, that will be generated by a descendant of
this iteration. We charge the cost of constant time to remove v from I'(w, X) to
the induced subtree S U {v, w}. Then, we can see that SU{v,w} is charged only
from iterations inputting S, that divides the problem by v’ such that (u/,v) € E,
that is, the iteration generates S U {u'}. We consider the average amount of the
charge over all induced subtrees of SU{v,w}, v € CAND, and w is in CAND of
S'U{v}. Since the number of pairs {u,v} C CAND is at most k| CAND|, we can
see the average charge is O(k) for each S U {v,w}. Thus, in summary, we can
see the update time for I" in an iteration is bounded by O(k), on average. Thus,
an iteration takes O(k + |CAND'|) time on average. We observe that the sum
of |CAND'| over all iterations is no greater than the sum of |CAND| over all
induced subtrees, since CAND' is the candidate set of SU{u} and forbidden set
X U{u}, and SU{u} is generated only from S. Further, we can see that SU{u}
is generated only from S this iteration. Hence, thus the sum of | CAND]| over all
induced subtrees is bounded by the number of induced subtrees. Therefore, the
computation time for each iteration is bounded by O(k) on average.

In a binary partition algorithm, each iteration at the leaf of the recursion
outputs a solution, and each non-leaf iteration generates exactly two recursive
calls. Thus, the number of iterations (recursive calls) of a binary partition algo-
rithm is at most 2/V. Hence, the computation time per induced subtree is O(k).
All sets the algorithm maintains are of size O(|V| + |E|) in total.

We need a bit care to perform a recursive call. When a recursive call is made,
we record the operations to prepare the parameters given to the recursive call on
the memory. When the recursive call ends, we apply the inverse operations of the
recorded operations to recover the variables such as CAND and X. In this way,
we can recover the variables from the updated ones without increasing the time
complexity. Since no vertex is added or deleted from the same variable twice,
the accumulated space for the recorded operations is bounded by O(|V| + |E|).
From the above arguments, our algorithm runs in O(k) time per solution after
O(|V| + | E|) preprocessing time using O(|V| + |E|) space. 0

102 H. Wasa et al.

5 Conclusion

In this paper, we have presented an algorithm for enumerating all induced sub-
trees in k-degenerate graph. Our algorithm runs in O(k) time per solution after
linear preprocessing time using linear space. From this result, we obtain the fol-
lowing corollary; if the input graph has a constant degeneracy, our algorithm
is optimal with respect to the computation time per solution. K-degenerate
graphs often appear in real-world data even when with much noise. Thus con-
sidering the applications, it is important to study on efficient computation on
k-degeneracy. This result is one of the first steps for such studies, and researches
on enumeration algorithms on k-degenerate graphs will be an important issue.

Acknowledgments. This work was partially supported by MEXT Grant-in-Aid for
Scientific Research (A) 24240021 and Grant-in-Aid for JSPS Fellows 25 - 1149.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. DAM 65, 21-46 (1996)

2. Birmelé, E., Ferreira, R.A., Grossi, R., Marino, A., Pisanti, N., Rizzi, R., Sacomoto,
G.: Optimal Listing of Cycles and st-Paths in Undirected Graphs. In: Proc. SODA
2013, pp. 1884-1896 (2013)

3. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in
undirected graphs. In: Demetrescu, C., Halld6rsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 275-286. Springer, Heidelberg (2011)

4. Ferreira, R., Grossi, R., Rizzi, R., Sacomoto, G., Sagot, M.-F.: Amortized O(|V|)-
Delay Algorithm for Listing Chordless Cycles in Undirected Graphs. In: Schulz,
A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 418-429. Springer, Hei-
delberg (2014)

5. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. XXII(5), 1082-1096
(1970)

6. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417-427 (1983)

7. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM J. Comput. 26(3), 678-692 (1997)

8. Tarjan, R.E.: Enumeration of the Elementary Circuits of a Directed Graph. STAM
J. Comput. 2(3), 211-216 (1973)

9. Tarjan, R.E., Read, R.C.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5(3), 237-252 (1975)

10. Uno, T.: An output linear time algorithm for enumerating chordless cycles. Tech-
nical Notes, 92nd SIGAL of IPSJ, pp. 47-53 (2003) (in Japanese)

11. Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of
bounded-size subtrees in trees and its application. In: Gudmundsson, J., Mestre,
J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 347-359. Springer, Hei-
delberg (2012)

An Efficient Method for Indexing All
Topological Orders of a Directed Graph

Yuma Inoue! ®) and Shin-ichi Minato!2

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo-shi, Japan
yuma@ist.hokudai.ac. jp
2 JST ERATO MINATO Discrete Structure Manipulation System Project,
Sapporo-shi, Japan

Abstract. Topological orders of a directed graph are an important con-
cept of graph algorithms. The generation of topological orders is useful
for designing graph algorithms and solving scheduling problems. In this
paper, we generate and index all topological orders of a given graph.
Since topological orders are permutations of vertices, we can use the
data structure 7DD, which generates and indexes a set of permutations.
In this paper, we propose Rot-wDDs, which are a variation of 7DDs
based on a different interpretation. Compression ratios of Rot-7#DDs for
representing topological orders are theoretically improved from the orig-
inal 7DDs. We propose an efficient method for constructing a Rot-mDD
based on dynamic programming approach. Computational experiments
show the amazing efficiencies of a Rot-7DD: a Rot-7DD for 3.7 x 10*
topological orders has only 2.2 x 107 nodes and is constructed in 36 sec-
onds. In addition, the indexed structure of a Rot-7DD allows us to fast
post-process operations such as edge addition and random samplings.

Keywords: Topological orders - Linear extensions - Permutations -
Decision diagrams - Enumerating algorithms - Experimental algorithms

1 Introduction

Topological sort is one of the classical and important concepts of graph algo-
rithms. Vertex orders obtained by topological sort are used to analyze charac-
teristics of a directed graph structure and support graph based algorithms [6].
Furthermore, topological orders are equivalent to linear extensions of a poset,
i.e., total orders which are in no contradiction with the partially ordered set
defined by directed edges of a graph. Thus, topological sort plays an important
role in several research areas such as discrete mathematics and computer science,
and has many applications such as graph problems and scheduling problems [14].

Linear time algorithms calculating a topological order are classical and well-
known algorithms, and dealt with by Cormen et al. [6]. In recent researches,
two derived problems are mainly discussed. One of these is an online topological
sort, i.e., calculation of a topological order on a dynamic graph. Bender et al. [2]

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 103-114, 2014.
DOI: 10.1007/978-3-319-13075-0-9

104 Y. Inoue and S. Minato

proposed a topological sort algorithm which allows edge insertions, and Pearce
et al. [13] proposed an algorithm which can also handle edge deletions. Another
one is the enumeration problem of all topological orders. Ono et al. [12] presented
a worst case constant delay time generating algorithm using family trees. The
complexity of the counting problem has been studied from several aspects since
Brightwell et al. [3] proved that it is #P-complete. Bubley et al. [4] proposed
a randomized algorithm to approximate the number of all linear extensions.
Li et al. [10] provided an experimentally fast algorithm counting all topological
orders based on Divide & Conquer method. There are many polynomial time
counting algorithms when we restrict the graph structure or fix some graph
parameters, e.g., trees and bounded poset width [1,5].

In this paper, we deal with both of these problems. That is, our goal is
generation of all topological orders of given graphs and manipulation of these
orders when the graph is dynamically changed, e.g., edge addition. In addition,
we implicitly store all topological orders as a compressed data structure in order
to handle graphs that are as large as possible. Experimental results, which will
be described later, show that our algorithm and data structure work very well:
3.7 x 10! topological orders of a directed graph with 50 vertices are generated in
36 seconds, and the compressed data size is only about 1 gigabyte. Furthermore,
an edge addition query for a directed graph with 25 vertices is done in 1 second.

Our method is based on an indexed data structure compactly represent-
ing a set of permutations, permutation decision diagram, also called mDD or
PiDD [11]. Although a 7DD can be used to achieve our purpose, compression
ratio and query processing are not efficient enough practically or theoretically.
Thus, we developed a new variation of 7DD, named Rot-mDD (Rotation-based
wDD). The key idea of our modification is a direct construction of a decision
diagram based on the dynamic programming approach. This modification real-
izes the practical efficiency of compression and query processing, which are also
bounded theoretically.

Our contributions in this paper are summarized as follows.

— We provide the first algorithm for implicit generation of all topological orders
with dynamic manipulation.

— Time and space for construction and query processing of our algorithm are
efficient experimentally and theoretically, while it is difficult to estimate the
size and computation time of decision diagrams in general.

The rest of this paper is organized as follows. Section 2 introduces a precise
definition of topological sort and algorithms for counting, which will be used
in our algorithm. Section 3 introduces 7#DDs and our modified version (Rot-
7DDs) for generation of all topological orders. Our algorithm for construction of
a Rot-wDD is also presented in Section 3. In Section 4, we prove the theoretical
bound of the time complexity of our algorithm and the size of the new permuta-
tion decision diagram for all topological orders. Section 5 presents experimental
results of generation and query processing, comparing with existing 7DD and
other existing methods. Section 6 gives some consequences of this paper.

An Efficient Method for Indexing All Topological Orders 105

Fig. 1. (a) A DAG and (b) the subgraph induced by the vertex set {2, 5,6}

2 Topological Orders

We define a directed graph G = (V,E), where V is a vertex set and E is a
directed edge, i.e., E C {(u,v) | u,v € V}. Note that (u,v) is an ordered pair
of two vertices. Let n be the number of vertices and m be the number of edges.
Without loss of generality, we can assume V = {1,2,...,n}.

A topological order of a graph G is an ordering vyvs . . . v, of all vertices such
that v; must precede v; if (v;,v;) € E. For example, the graph in Fig. 1(a) has
four topological orders: 526413, 526431, 562413, and 562431.

A directed graph is a DAG (Directed Acyclic Graph) if the graph has no
cycle. In this paper, we assume that given graphs are DAGs because we can
determine whether or not a graph has cycles in linear time, and if so, there is
no topological order.

There are many linear time algorithms for computing a topological order of a
given graph [9,15]. One of the key ideas is deleting vertices whose out-degree is 0.
If there is no edge from v, v can be the rightmost element in a topological order,
because there is no element that must be preceded by v. We delete such v and
its incident edges, i.e., after the deletion of v, we can consider only the subgraph
induced by the vertex subset V' \ {v}. Then, we repeat the same procedure for
the induced subgraph and obtain a topological order of the induced subgraph
recursively. Finally, we concatenate a topological order of the induced subgraph
and v to obtain a topological order of the given graph. The time complexity of
this algorithm is O(n + m).

Similarly, an algorithm counting all topological orders of a given graph can be
designed recursively. Let G(X) denote the subgraph of G induced by the vertex
subset X. For each recursion, we assume that the current vertex subset is V.
Then, for each vertex v whose out-degree is 0 in G(V”), we sum up the numbers
of all topological orders of G(V'\ {v}). The time complexity of this algorithm is
O((n+m)TO(G)), where TO(G) is the number of the topological orders of the
graph G. Since TO(G) = O(n!), the time complexity is O((n + m)n!). We can
improve this complexity by a dynamic programming (DP) approach.

For example, in Fig. 1(a), we can delete vertices {1,3,4} in the order 134
or 314. (Note that a deletion order is the reverse of a topological order.) Then
we obtain the same induced subgraph on {2,5,6}. Although TO(G({2,5,6}))
is not changed, we redundantly count TO(G({2,5,6})) in each recursion of 134
and 314. Thus, by memorizing the calculation result TO(G (V")) for G(V') at
the first calculation, we can avoid duplicated calculations for each G(V'). In

106 Y. Inoue and S. Minato

other words, this is a top-down DP, which recursively calculates TO(G (V")) =
ZvEVO’ TO(G(V'\ {v})), where V{ is the set of vertices whose out-degree is 0 in
G(V'"). We define valid induced subgraphs of G as induced subgraphs G(V’) that
can appear in the above DP recursion. Let I.5(G) denote the number of valid
induced subgraphs of G. Then, this DP algorithm uses O((n + m)IS(G)) time
and O(IS(G)) space. In the worst case, IS(G) = 2", which is the number of all
subsets of V. Therefore, we improve the complexity from factorial O((n +m)n!)
to exponential O((n + m)2™).

The idea of valid induced subgraphs is equivalent to upsets in a poset in
the talk of Cooper [5]. Cooper provided another upper bound O(n™) of I.5(G),
where w is the width of a poset corresponding to G. The proof of this bound
and more precise analyses will be described in Section 4.

Here, we remember our goal in this paper again. Our goal is generating
and indexing all topological orders, which are permutations of vertices. Thus,
it is reasonable to expect that a compressed and indexed data structure for
permutations can be useful for this purpose. And if we can compress permu-
tations in the same way as the above DP, the compression size is bounded by
IS5(G) = O(min{2",n*}), which can be quite smaller than TO(G).

3 Permutation Decision Diagrams

In this section, we introduce a compressed and indexed data structure for per-
mutations, 7DD, and discuss whether or not compression of a 7DD is suitable
for the DP approach.

3.1 Existing Permutation Decision Diagrams: wDDs

First, we define some notations about permutations. A permutation of length n,
or n-permutation, is a numerical sequence m = w7y ..., such that all elements
are distinct and m; € {1,2,...,n} for each 7. The identity permutation of length
n is denoted by e”, which satisfies e} =i foreach 1 < ¢ < n.

We define a swap 75 ; as the exchange of the ith element and the jth element.
Any n-permutation can be uniquely decomposed into a sequence of at most n—1
swaps. This swap sequence is defined as the series of swaps to obtain an objective
n-permutation 7 from the identity permutation €™ by a certain algorithm. The
algorithm repeats swaps to move 7y, to the kth position, where k runs from right
to left. For example, we consider a decomposition of the permutation m = 43152
into a swap sequence. We start with e® = 12345. The 5th element of 7 is 2 and
2 is the 2nd element of €™, hence we swap the 2nd element and the 5th element,
and obtain 15342 = 73 5. Next, since the 4th element of 7 is 5, and 5 is the 2nd
element, we then obtain 14352 = 75 5 - T2 4. Repeating this procedure, we finally
obtain m = 43152 = T2,5 72,4 T1,3 " T1,2-

A 7DD is a data structure representing a set of permutations canonically [11],
and has efficient set operations for permutation sets. 7DDs consist of five com-
ponents: nodes with a swap label, 0-edges, 1-edges, the 0-sink, and the 1-sink.
Fig. 2 shows the 7DD representing topological orders of the graph in Fig. 1(a).

An Efficient Method for Indexing All Topological Orders 107

(1) merging rule (2) deletion rule

Fig.2. The #DD representing
{526413, 526431, 562413, 562431} Fig. 3. Two reduction rules of 7DDs

Each internal node has exactly a 0-edge and a 1-edge. Each path in a 7DD
represents a permutation: if a l-edge originates from a node with label 7, ,,
the decomposition of the permutation contains 7, ,, while a 0-edge from 7, ,
means that the decomposition excludes 7, ,. If a path reaches the 1-sink, the
permutation corresponding to the path is in the set represented by the 7DD. On
the other hand, if a path reaches the 0-sink, the permutation is not in the set.

A 7DD becomes a compact and canonical form by applying the following
two reduction rules (Fig. 3):

(1) Merging rule: share all nodes which have the same labels and child nodes.
(2) Deletion rule: delete all nodes whose 1-edge points to the 0-sink.

Although the size of a 7DD (i.e. the number of nodes in a 7DD) can grow
exponentially (0(2”2)) with respect to the length of permutations, in many
practical cases, TDDs demonstrate high compression ratio. In addition, 7DDs
support efficient set operations such as union, intersection, and set difference.
The computation time of 7DD operations depends on the size of 71DDs, not on
the number of permutations in the sets represented by the 7DDs.

3.2 DP Approach and wDDs

Now, we consider whether or not we can directly construct a 7DD in the same
way as the DP approach described in Section 2.

Here, we note that the swap decomposition algorithm behaves as deletions
of a vertex on an induced subgraph. We can represent the current recursive
state in DP procedure as a permutation, i.e., let k be the number of vertices of
the current induced subgraph, then the k-prefix of an n-permutation represents
the vertex set of the induced subgraph, and the (n — k)-suffix of the permutation
represents the reverse order of deletions. Furthermore, a deletion of a vertex v
can be described as a swap 7; i, where ¢ is the position of v in the permutation.
For example, we can consider a permutation 625431 represents the subgraph in
Fig. 1(b) such that the deletion order is 134. When we delete the vertex 6, we
swap the 1st position, which is 6, and the 3rd position, which is the rightmost

108 Y. Inoue and S. Minato

Fig. 4. The Rot-7DD representing {526413, 526431, 562413, 562431}

of the k-prefix representing the vertex subset. Then, we obtain 526431, which
represents the subgraph induced by {2,5} and the reverse order of deletions.

By compressing swap sequences into a 7DD, we can recursively construct
a wDD for all topological orders. That is, for each recursion represented as a
permutation 7, if we apply 7; ; to delete 7;, we create the new 7DD such that its
root node is 7; ;, its 1-edge child is the 7DD for swap sequences after applying 7; ;,
and its 0-edge child is the 7DD for swap sequences in which we do not apply 7; ;.
The 7DDs for the 1-edge and 0-edge child are recursively constructed.

However, deletions by swaps are not available for DP. In order to use DP app-
roach, swap sequences for the same induced subgraph must be uniquely deter-
mined. Even if different prefixes of permutations represent the same induced
subgraph, their swap sequences can differ. For example, consider the DAG in
Fig. 1. Deletion sequences 314 and 134 generate the same induced subgraph
on {2,5,6}, and these states are represented as 526413 and 625431, respectively.
The induced subgraph on {2, 5,6} has a topological order 526. In order to obtain
this, we apply no swap to 526413, while we apply 713 to 625431. This means
there are multiple 7DDs corresponding to the same induced subgraph.

3.3 New Permutation Decision Diagrams: Rot-w#DDs

As described in the previous subsection, the DP approach cannot be used to
directly construct a 7#DD. To overcome this problem, we use another decom-
position where each vertex subset is uniquely represented as a prefix of per-
mutations. In order to realize this, we use the left-rotation decomposition. A
left-rotation p; ; rearranges ith element into jth position, and kth element into
(k—1)th position for each i+1 < k < j. That is, p; ; rearranges an n-permutation
ML ee Mgl oo oo Ty INEO Ty Lo g1 oo TG L Ty

Left-rotations also can uniquely decompose a permutation. The left-rotation
decomposition is similar to the one for swaps: we start with e and repeatedly
apply p;,; to move 7; to the jth position, from right to left. For example, consider
to decompose 43152 into a sequence of left-rotations. We start with e® = 12345.
Now, we move 2 from the 2nd position to the 5th position. Thus, we obtain
13452 = pa 5. Next, we move 5 from the 4th position to the 4th position, i.e., we
do not rotate. Repeating this procedure, we finally obtain 43152 = p3 5-p1.3-p1,2.

An Efficient Method for Indexing All Topological Orders 109

Algorithm 1. Rot-7DD construction for all topological orders of G = (V, E)

ConstructRotPiDD(G):
if V is empty then
return 1-sink
else if have never memorized the Rot-rDD Rg for G then
Rot-PiDD R «+ 0-sink
for each v whose out-degree is 0 in G do
Integer i < v’s position in the increasing sequence of V, j «— |V]|
R «— the Rot-PiDD with root node p;;, left child R, and right child
ConstructRotPiDD(G(V \ {v}))
end for
memorize R as Rg
end if
return Rg

Left-rotations realize the unique representation of an induced subgraph as a
prefix of a permutation, because a prefix is always in an increasing order. Left-
rotation p; ; only changes the relative order between the ith element and the
elements in [+ 1, j], i.e., relative orders in [1, j — 1] are not changed. This means
the (j — 1)-prefix is always in increasing order when we start with e™ and apply
pi,; in decreasing order of j.

Thus, we can use the DP approach by using left-rotations as node labels of
7DDs. We call this left-rotation based 7DD Rot-w DD, and existing 7DD Swap-
7DD to distinguish. Fig. 4 illustrates the Rot-7#DD for the same set as Fig. 2.
Algorithm 1 describes the DP based construction algorithm of a Rot-7DD.

3.4 Rot-wDD Operations

Since Rot-mDDs are decision diagrams, they can use the same set operations as
Swap-mDD such as union, intersection, and set difference. Some queries such as
random samplings and counting the cardinality of the set represented by a Rot-
7DD are also available without any modification. The runtime of these opera-
tions depends on only the size of the Rot-mDDs by using memo cache techniques.

On the other hand, some queries have to be redesigned. For example, the
precedence query R.Precede(u,v) returns the Rot-m7DD that represents only
permutations 7 extracted from the Rot-#DD R such that u precedes v in 7.
This query is equivalent to addition of the edge (u, v) in a graph. This query can
be designed as a recursive procedure described in Algorithm 2. The idea of the
algorithm is simulation of moves of the two elements v and v. Initially, we start
with the identity permutation, i.e. © and v are at the uth position and the vth
position, respectively. After a rotation, the positions of u and v may be changed.
If u or v are out of the range of later rotations, their relative order is fixed and
we can check whether or not u precedes v. The runtime of a precedence query
also depends on only the size of the Rot-mrDDs thanks to memo cache.

110 Y. Inoue and S. Minato

Algorithm 2. Precedence query for a Rot-nDD R

R.Precede(u,v):
if R is O-sink then
return 0O-sink
else if R is 1-sink then
if u<wv then
return 1-sink
else
return 0-sink
end if
else
Pa,y < the root node of R
if y <wandv <u then
return 0O-sink
else if y < v and v < v then
return R
else
RO «— the left child of R, R1 <+ the right child of R
if z =v then
return the Rot-PiDD with root node pg,y, left child RO.Precede(u,v), and
right child R1
else if x =u then
return RO.Precede(u,v)

else
if x <u then
u<—u—1
end if
if x <v then
ve—v—1
end if

return the Rot-PiDD with root node pq.y, left child RO.Precede(u,v), and
right child R1.Precede(u,v)
end if
end if
end if

4 Theoretical Analysis

In this section, we analyze the time and the space complexity of DP based
counting and Rot-7DD construction. Here, we remember the definition of I.5(G):
IS(@G) is the number of the induced subgraphs of G that can be obtained by
deletions of vertices with out-degree 0. We start by proving the bound O(n®) of
IS(G). According to Dilworth’s theorem [7], the width w of a poset equals the
minimum path cover of the DAG corresponding to the poset, where a path cover
of a graph G is a set of paths in G such that each vertex of G must appear in at
least one of the paths. Therefore, it is sufficient to prove the following theorem.

An Efficient Method for Indexing All Topological Orders 111

Theorem 1. Given a DAG G with n wvertices and minimum path cover w,
IS(G) < (n+1)" holds.

Proof. Let p; be the ith path of the minimum path cover and [; be the length
of p;. Here, all vertices in a valid induced subgraph must be consecutive in prefix
of each p; due to precedence. The number of the possible prefixes of each path
is at most I; + 1, and the number of paths is w. Therefore, I.S(G) is bounded by
[T, (lx + 1). Since I; is also bounded by n, IS(G) < (n+ 1)" holds. O

In this proof, we use the rough estimation /; = n, but in fact Y, Iy = n
holds. We can prove a tighter bound using this restriction.

Lemma 1. If Y I = n holds, [[_,(lx + 1) < (n/w + 1)* holds for all
positive integers n, 1 <w <n, and 1 <1; < n.

Proof. The proof can be done by induction. We omit details. a

Corollary 1. Given a DAG G with n vertices and minimum path cover w,
IS(G) < (n/w+ 1)* holds.

Proof. The proof follows from the proof of Theorem 1 and Lemma 1. a

Corollary 1 gives a new bound of I.5(G). Since (n/w + 1) is monotonically
nondecreasing for all positive integers n and w, the range of (n/w + 1) is
[n 4+ 1,2"] for 1 < w < n. This means the previous bound O(min{2",n"}) can
be directly replaced by O((n/w + 1)*). Hence, we obtain the time complexity
O((n+m)(n/w+ 1)") and the space complexity O((n/w + 1)*) of the DP.

We can also estimate the size of a Rot-mDD representing all topological orders
and the time of the construction. The size of such a Rot-7DD is at most w times
larger than the space of DP because each DP recursion has at most w transitions,
while each node of a Rot-7DD has exactly two edges. Therefore, the size of such
a Rot-7DD is at most O(w(n/w + 1)*). 1 On the other hand, the time of the
construction is as fast as DP, because each node is only created for each vertex
deletion in constant time. Hence, the time complexity of the construction of a
Rot-mDD representing all topological orders is O((n + m)(n/w + 1)™).

5 Computational Experiments

We measured the performance of our Rot-m#DD construction algorithm by com-
putational experiments. Experiment setting is as follows.

— Input: A DAG.

— Output: The number of topological orders of the given DAG.

— Test Cases: For each n = 5,10,15,...,45,50 and k = 1,3,5,7,9, we generate
exactly 30 random DAGs with n vertices and | £ x "(n;l)J edges. (That is,
k provides the edge density of DAGs.)

! Note that this bound is valid only for all topological orders. For any permutation set,
2
the worst size of Rot-mDDs is O(2™), which is same as the size bound of Swap-7DDs.

112 Y. Inoue and S. Minato

O SRR e v SRR e
10 Divide&Conquer é & 106 Divide&Conquer é
g 0.1 % éﬂ 10°
é 0.0 é
R E 101
0.001)N | |
00001 7 T B 10“1 ‘2> % 4 % 6 % S
k k
Fig. 5. Average runtime for construc- Fig. 6. Average memory usage for con-
tion when n = 20 struction when n = 20
Table 1. Experimental results on the cases k =1
n The number of topological orders|Rot-7DD size| Time (sec)
5 60 16 0.00
10 270816 310 0.00
15 3849848730 3990 0.00
20 84248623806362 35551 0.04
25 1729821793136903967 179205 0.18
30 166022551499377802024339 695029 0.90
35 18897260805585874040859189398 2634015 3.78
40 192246224377065271125689349980187 4649639 6.68
45 7506858927008084384591070452622456252 8288752 12.69
50| 375636607794991518114274279559952431497225 22542071 35.51

We also compared with other methods on the same setting. Comparisons are
Swap-7tDD construction, DP counting, and Divide & Conquer counting [10].
Since direct construction of a Swap-mDD is inefficient, we apply precedence
queries for each edge individually. We implemented all algorithms in C++ and
carried out experiments on a 3.20 GHz CPU machine with 64 GB memory.

Fig. 5 and Fig. 6 show the average runtime and memory usage on n = 20
cases. Divide & Conquer method times-out on some cases of k = 1. These results
indicate that the worse cases of all algorithms are sparse graphs. In general,
sparse graphs tend to have a large poset width. In fact, the average w of k =
1 cases is 10.6, while that of & = 5 cases is 3.3. Therefore, the complexity
O((n/w + 1)*) also tends to become large on the sparse graph cases.

We therefore focus on sparse graphs. Table 1 shows the average numbers
of topological orders, the sizes of Rot-mDDs, and runtimes on the case k = 1.
It shows the amazing efficiency of Rot-7DDs: 3.7 x 10%! topological orders are
compressed into a Rot-7DD that has only 2.2 x 107 nodes in 36 seconds on the
case n = 50. Note that each node of Rot-#DDs consumes about 30 bytes.

An Efficient Method for Indexing All Topological Orders 113

100 ——— 107
10 |
g 10&3 L
) 1 =2
g 0 £y
2 2
£ 001 g
" Rot-7DD —— =0 “ Rot-rhD ——
- = -
0.001 ,% Swap—;rDB % X S\vap—%D]g %
0.0001) Divide&Conquer [109l ___Divide&Conquer]
15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
n n
Fig. 7. Average runtime for construc- Fig. 8. Average memory usage for con-
tion when k£ =1 struction when k =1
)8
100 Rot r.Bllg —— 10 Rot-wBIrg ——

10

runtime (sec)
(=1

the size of Rot-PiDD / DP table

0.01
0.001
0.0001 4 L L L L - L L L 10% L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
the number of added edges the number of added edges
Fig. 9. Average runtime for edge addi- Fig. 10. Average space for edge addi-
tion queries tion queries

Fig. 7 and Fig. 8 show the average runtime and memory usage on k = 1 cases.
Swap-7DD and Divide & Conquer time-out on the case n > 25 and n > 20,
respectively. We can obtain a Rot-wDD, which supports many operations for
queries, with only tenfold increase in runtime and memory usage compared to
DP. We guess that the overhead time is used to store new nodes of a Rot-mDD
into the hash table, and the overhead memory is caused by the difference of the
space complexities between DP and Rot-7DD as described in Section 4.

We also carried out experiments to measure the performance of query pro-
cessing. On these experiments, we use 30 random DAGs with 25 vertices and 90
edges. We start with a graph having no edge, and add each edge individually.
The Rot-7DD method uses precedence queries for each edge addition, while DP
recomputes TC(G) for each addition. We measure the runtime and the size of a
Rot-7DD and a DP table. Note that the DP table size equals I5(G).

Fig. 9 and Fig. 10 show the results for query processing. In almost all cases,
Rot-7DDs can generate and index all topological orders faster than or equal to
DP. Especially in sparse cases, query processing of Rot-mDDs is very efficient.
It may be because Rot-7DDs (and Swap-7DDs) can represent the set of all
n-permutations with n(n — 1)/2 4+ 1 nodes (please refer to [8] for more details).

114 Y. Inoue and S. Minato

6 Conclusion

In this paper, we gave an efficient method for generating and indexing all topo-
logical orders of a given DAG. We proposed a new data structure Rot-7DD,
which is suitable for indexing topological orders. Theoretical analysis and exper-
iments showed the efficiency of our construction algorithm, compression ratios
of Rot-mDDs, and query processing.

Future work is to apply Rot-mDDs to solve several scheduling problems. We
would like to develop new operations to process required queries and optimiza-
tions for each problem. Another topic is to apply the Rot-mDD construction
technique to other graph generation problems such as Hamiltonian paths and
perfect elimination orderings. These problems can also be recursively divided
into subproblems based on induced subgraphs.

References

1. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order
7(1), 23-25 (1990)

2. Bender, M.A., Fineman, J.T., Gilbert, S.: A new approach to incremental topo-
logical ordering. In: 20th Annual ACM-STAM Symposium on Discrete Algorithms
(SODA), pp. 1108-1115. Society for Industrial and Applied Mathematics (2009)

3. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225-242 (1991)

4. Bubley, R., Dyer, M.: Faster random generation of linear extensions. Discrete Math-
ematics 201(1), 81-88 (1999)

5. Cooper, J.N.: When is linear extensions counting easy? AMS Southeastern Sec-
tional Meeting (2013)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2001)

7. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51(1), 161-166 (1950)

8. Inoue, Y.: Master’s thesis: Generating PiDDs for indexing permutation classes with
given permutation patterns. Tech. Rep. TCS-TR-B-14-9, Division of Computer
Science, Hokkaido University (2014)

9. Kahn, A.B.: Topological sorting of large networks. Communications of the ACM
5(11), 558-562 (1962)

10. Li, W.N., Xiao, Z., Beavers, G.: On computing the number of topological orderings
of a directed acyclic graph. Congressus Numerantium 174, 143-159 (2005)

11. Minato, S.: 7DD: A new decision diagram for efficient problem solving in per-
mutation space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 90-104. Springer, Heidelberg (2011)

12. Ono, A., Nakano, S.: Constant time generation of linear extensions. In: Ligkiewicz,
M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 445-453. Springer,
Heidelberg (2005)

13. Pearce, D.J., Kelly, P.H.: A dynamic topological sort algorithm for directed acyclic
graphs. ACM Journal of Experimental Algorithmics 11(1.7), 1-24 (2006)

14. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM Journal on Com-
puting 23(2), 373-386 (1994)

15. Tarjan, R.E.: Depth-first search and linear graph algorithms. STAM Journal on
Computing 1(2), 146-160 (1972)

Matching and Assignment I

Planar Matchings for Weighted Straight
Skeletons

Therese Biedl', Stefan Huber?®) | and Peter Palfrader?

! David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 1A2, Canada
biedl@uwaterloo.ca
2 Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
stefan.huber@ist.ac.at
3 FB Computerwissenschaften, Universitit Salzburg, 5020 Salzburg, Austria
palfrader@cosy.sbg.ac.at

Abstract. In this paper, we introduce planar matchings on directed
pseudo-line arrangements, which yield a planar set of pseudo-line seg-
ments such that only matching-partners are adjacent. By translating the
planar matching problem into a corresponding stable roommates prob-
lem we show that such matchings always exist.

Using our new framework, we establish, for the first time, a com-
plete, rigorous definition of weighted straight skeletons, which are based
on a so-called wavefront propagation process. We present a generalized
and unified approach to treat structural changes in the wavefront that
focuses on the restoration of weak planarity by finding planar matchings.

Keywords: Planar matchings + Pseudo-line arrangements - Stable
roommates - Weighted straight skeletons

1 Introduction

The straight skeleton is a skeletal structure of a polygon P, similar to the Voronoi
diagram. It was introduced to computational geometry almost two decades ago
by Aichholzer et al. [1], and its definition is based on a so-called wavefront
propagation process, see Fig. 1: Each edge of P emits a wavefront edge that
moves towards the interior of P at unit speed in a self-parallel manner. The
polygons formed by these wavefront edges at any given time ¢t > 0 are the
wavefront, denoted by Wp(t), and take the form of a mitered offset of P. Over
time, the wavefront undergoes two different kinds of topological changes, so-
called events, due to self-interference: roughly speaking, an edge event happens
when a wavefront edge collapses, and a split event happens when the wavefront
splits into parts. The straight skeleton S(P) of P is then defined as the geometric
graph whose edges are the traces of the vertices of Wp. Similar to Voronoi

T. Biedl was supported by NSERC and the Ross and Muriel Cheriton Fellowship.
P. Palfrader was supported by Austrian Science Fund (FWF): P25816-N15.
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 117-127, 2014.
DOT: 10.1007/978-3-319-13075-0_10

118 T. Biedl et al.

diagrams and the medial axis, straight skeletons became a versatile tool for
applications in various domains of science and industry [8].

The weighted straight skeleton, where wavefront edges do not necessarily move
at unit speed, was first mentioned by Eppstein and Erickson [5] and has since
been used in a variety of different applications [2,7,9,10]. Weighted straight
skeletons, with both positive and negative weights, also constitute a theoretical
tool to generalize straight skeletons to 3D [3]. Even though weighted straight
skeletons have already been applied in both theory and practice, only recently
Biedl et al. [4] showed that basic properties of unweighted straight skeletons
do not carry over to weighted straight skeletons in general. Biedl et al. [4] also
proposed solutions for an ambiguity in the definition of straight skeletons caused
by certain edge events and first mentioned by Kelly and Wonka [9] and Huber [8].

In this paper, we discuss another
open problem in the definition of
weighted straight skeletons caused by
split events. An event happens due to
a topological change in the wavefront
and the event handling was so far guided
by one fundamental principle: Between
events, the wavefront is a planar collec-
tion of wavefront polygons. This is eas-
ily achieved when handling edge events
and “simple” split events. However, is

it always possible to handle multiple traces of wavefront vertices over time.

simultaneous, co-located split events in |y ctances of the wavefront Wa(t) at dif-
a fashion that respects this fundamental ferent times ¢ are shown in gray.

principle?
We will show that it is necessary to

weaken the requirement of strict planarity in the fundamental principle. After
that, we can answer the question to the affirmative and therefore show how to
define weighted straight skeletons safely in the presence of multiple simultaneous,
co-located split events. (Note that due to the discontinuous character of straight
skeletons, it is not possible to tackle this problem by means of simulation of
simplicity.) We first rephrase this problem as a planar matching problem of
directed pseudo-lines and show how to transform the planar matching problem
into a stable roommate problem. For the main result, we prove that our particular
stable roommate problem always possesses a solution and those solutions tell us
how to do the event handling of the wavefront in order to maintain planarity.

Fig. 1. The straight skeleton S(P) (blue)
of a polygon P (bold) is defined as the

2 Weighted Straight Skeletons

2.1 The Wavefront

Let P denote a polygon, possibly with holes. We denote by o(e) € R\ {0} the
weight of the edge e of P and call o the weight function. For every edge e of P,
let n(e) denote the normal vector of e that points to the interior of P. Initially,

Planar Matchings for Weighted Straight Skeletons 119

every edge of P sends out a wavefront edge with fixed speed o(e). That is, the
segments of the wavefront W(t) at time ¢ that originate from edge e are contained
ine+t-o(e)-n(e), where € denotes the supporting line of e. If o(e) is negative,
the wavefront edge that emanated from e moves to the exterior of P.

Intuitively, an event happens when a
wavefront vertex meets another wave-
front edge or, in particular, another
wavefront vertex. The situation becomes
more complicated when two or more such
events are co-located at the same time
t. For unweighted straight skeletons, i.e.,
with all weights set to 1, the wavefront is
planar between events, and we can inter-
pret events as the incidences where pla-
narity is violated. Let us consider the
case where multiple wavefront vertices
meet at a point p. For ordinary straight
skeletons, we restore planarity by con-
sidering the cyclical order of wavefront
edges meeting at p and by re-pairing
each edge with a cyclically neighboring
edge, see Fig. 2. We call this the stan-
dard pairing technique.

In case of weighted straight skele-
tons, the situation becomes signifi-
cantly more difficult. First, (strict)
planarity cannot always be restored.
Second, (weak) planarity may not be
restored by the simple pairing scheme
mentioned above, and it is not even obvi-
ous why some other pairing scheme that
restores planarity must exist.

Consider Fig. 3, where two vertices,
u and v, meet simultaneously at point
p and time t. By construction, the ver-
tex v lies on the supporting line of e for
a positive-length time interval. We show
the supporting lines of the edges at time
t + 9, with § being positive but small.
We have three combinatorial possibili-
ties to pair up the wavefront edges. One
of them leads to a crossing. The other

Fig. 2. A wavefront before (dotted), at
(solid), and after an event (bold), with
blue arrows showing movement direction
of wavefront vertices. The standard pair-
ing technique for handling a split event
pairs each edge with its other neighbor
in the cyclical order.

Fig. 3. Two wavefront vertices meet at p.
There are two possibilities, (b) and (c), in
order to pair up the edges such that the
wavefront remains planar in a weak sense.

two possibilities are illustrated in Fig. 3 (b, ¢). Both remaining possibilities are
not planar in a strict sense. Still, there are no crossings—instead edges only

120 T. Biedl et al.

touch. This shows there is no way to pair up the edges and remain strictly-
planar.

Let us suppose that we initially move v slightly away from p or slightly closer
to p. We obtain v’ and v respectively, see Fig. 3 (a). We adapt their speeds such
that they still reach p at time ¢. Since v' moves slightly faster than v and e, at
time ¢, the vertex v’ overtakes e. Similarly, e overtakes v”. Hence, if we replace
v by v/, the pairing in Fig. 3 (b) becomes invalid, and if we replace v by v, the
pairing in Fig. 3 (c) becomes invalid. In particular, for the latter case the only
valid pairing is the original pairing and the standard pairing technique fails.

For our further discussions it will be necessary to define precisely what we
mean by event or weak planarity. Let @ denote the set of all straight-line embed-
dings p: V — R? of a graph G = (V, E). The pair (&, ||.||oo) constitutes a normed
space, where ||| is defined by [|¢||ooc = maxyecy ||@(v)]|. Note that the set of
planar! straight-line embeddings is an open subset of & w.r.t. the usual topology
induced by .|| co-

Definition 1. The set of weakly-planar embeddings of G is the topological clo-
sure of the set of planar embeddings of G.

This implies that every planar embedding is weakly-planar as well. In addi-
tion, for every weakly-planar embedding ¢ and for every € > 0 there is a planar
e-perturbation ¢’ of ¢, that is, [[¢ — ¢'[|oc < €. This definition allows us now to
rephrase the fundamental principle as follows:

At all times, the wavefront is a weakly-planar collection of polygons.

Events. The wavefront W is initially weakly-planar. Informally, an event
occurs when the wavefront is about to cease being weakly-planar and event
handling needs to restructure the wavefront locally such that it can continue
propagating in a weakly-planar fashion.

Assume that W(t') remains weakly-planar for all ¢ € [t — §,¢] and some
0 > 0. For this time interval, we can consider W to be a kinetic planar straight-
line graph with a fixed set of kinetic vertices and edges. For Definition 2, we
fix the vertex and edge set of W, including the velocities of the vertices and
temporarily ignore event handling. Furthermore, we denote by B(p,r) the closed
disk centered at p with radius r and by W(¢') N B(p,r) the planar straight-line
graph W(t") with all edges truncated to fit into B(p, r) or removed if they entirely
reside outside B(p,).

Definition 2. At location p and time t an event happens if at least two vertices
meet at time t at p or if Ieg > 0 Ve € (0,&0) 30 > 0 such that

(i) W(') N B(p,) is non-empty and weakly-planar for t' € [t — 6,t] and
(i) W(t') N B(p,€) is non-empty and not weakly-planar for t' € (t,t + 4].

We call the edges that meet p at time t the edges which are involved in the event.

1A straight-line embedding ¢ is called planar if its edges do not intersect except at
common endpoints.

Planar Matchings for Weighted Straight Skeletons 121

As this definition defines events localized at some point p, we can also talk
about multiple events occurring at the same time ¢ at different locations. If an
event happens at location p and time t then, typically, weak planarity of W is
violated locally around p after time ¢t. However, weak planarity is not violated
if, for instance, a wavefront polygon collapses to a point. Fig. 3 gives another
example where weak planarity is not violated after the event. The goal of event
handling is to restore weak planarity by locally adapting the wavefront structure.
We also want to remark that in certain cases multiple ways to correctly handle
an event may exist, where one solution yields only a weakly-planar wavefronts
while a different one produces a strictly-planar wavefront after the event.

Definition 3. We call the event at location p and time t elementary if three
edges are involved. We call it an edge event if B(p,e) \W(t —9) consists of two
connected components and a split event otherwise. Non-elementary edge and
split events are called multi-edge and multi-split events respectively.

It is known how to handle edge events and elementary split events [4]. In
the following, we present one unified approach that is able to correctly handle
any type of event, including, in particular, multi-split events. Consequently, one
side effect of our definition of weighted straight skeletons is that the distinction
between edge events and split events becomes unnecessary.

2.2 Pairing Edges

Assume an event happens at time ¢ at location p. Up until time ¢ the wavefront
W is weakly-planar, and it becomes not weakly-planar after ¢. In order to restore
weak planarity, we have to transform the wavefront structure. This involves re-
pairing of wavefront edges.

We reduce the problem of pairing up wavefront edges during event han-
dling to a particular matching problem, discussed in Section 3. This problem,
which we study independently of straight skeletons, takes a pseudo-line arrange-
ment in general position as input and provides us with a means to construct
a weakly-planar wavefront again. In the following, we describe how to trans-
form a weakly-planar wavefront into a suitable pseudo-line arrangement for the
matching problem.

The pseudo-lines stem from the supporting lines of wavefront edges and are
required to be in general position. By general position we mean that any pair
of lines intersect in exactly one unique point. In particular, this implies that no
two lines are parallel, no two lines are identical, and no three lines intersect in a
common point.

At time t, several edges of the wavefront VW are incident at location p. For
each such edge, either zero, one, or both endpoints approach p at time t. We
construct a simplified version of the wavefront, denoted by W, by dropping
edges where both endpoints reach p and joining its two endpoints. Furthermore,
any edge where no endpoint reaches p is split into two edges by a new wavefront
vertex that also reaches p at time t. Thus, in W’ an even number of wavefront
edges have exactly one endpoint at point p at time ¢, see Fig. 4.

122 T. Biedl et al.

Next, we choose € and § sufficiently
small, such that no other event happens
between t and t + ¢ and that exactly
the edges involved in the event intersect
B(p,¢) during the interval [t,t + §]. We
obtain W from W’ by perturbing the B(p,e) p
locations of its vertices. This perturba- n
tion shall satisfy the following proper-
ties: (i) The edges involved in the event
still reach p at time ¢. (ii) The support-
ing lines of involved edges are in general
position at time ¢ 4 §. (iii) The pertur-
bation is such th.at W is strict.ly—planar Fig.4. A multi-split event occurs at
everywhere outside B(p, ¢) at time ¢+4. location p. The involved edges form 4
(iv) The perturbation is such that any chains. The simplified wavefront W' con-
vertex is (at time ¢+ §) on the same side tains exactly 8 edges, shown in bold,
of the supporting line through any edge stemming from those chains.
in both W/ and W"'. The set of support-
ing lines at time ¢ + 0 then shall be the input to the matching problem.

We use the new pairing obtained from the matching algorithm to construct
a new (still perturbed) wavefront W' from W". The new pairing ensures that
W' is strictly-planar around p after time ¢, see Lemma 7 in Section 3.3. If sev-
eral multi-split events happen at the same time, then this procedure is repeated
for every such event independently. Each event will locally restore strict pla-
narity, and, thus, global strict planarity will be restored. Finally, we revert the
perturbation on W’ and obtain the new post-event wavefront.

Wt —6

Lemma 1. The new post-event wavefront W* is weakly-planar.

Proof. Note that the perturbation we apply to obtain W from W’ was suf-
ficiently small such that no vertex could “jump” over the supporting line of
any edge of the wavefront. Therefore, if we assume to the contrary that W* is
not weakly-planar, that would imply that the perturbed wavefront W' was not
(strictly) planar either. Since W' is (strictly) planar outside of B(p,e) per our
requirement for the perturbation and is (strictly) planar within B(p,e) due to
the new pairing, this is a contradiction.

3 Matchings and Roommates

For an even N, let £ = {¢1,...,¢x} be an oriented pseudo-line arrangement
in general position, i.e., a set of directed Jordan-curves that begin and end at
infinity and intersect each other in single, unique points. Let C be a pseudo-circle
that encloses all intersections of pseudo-lines and that intersects each (directed)
pseudo-line £ exactly twice, once in its begin-point b(¢) and once in its end-point.

A matching M in L is a grouping of ¢1,...,¢x into pairs. The matching
tail of £; is the sub-curve of ¢; from b(¢;) to £; x M(¥¢;), i.e., the point where ¢;
intersects its matching-partner M (¢;).

Planar Matchings for Weighted Straight Skeletons 123

Definition 4. A matching in L is called planar if the union of the matching
tails gives a planar drawing.

The planar matching problem is the problem of finding a planar matching M
for a given pseudo-line arrangement £ in general position. In the following we
translate the planar matching problem into a stable roommate problem.

3.1 The Stable Roommate Problem

Assume that we have an even number N of elements A = {a1,...,an}. Each
element has a ranking of elements, which is complete and strict, i.e., all elements
are ranked and no two elements are ranked the same. Let M be a matching of
ai,...,an. A pair {a;,a;} is a blocking pair for M if a; prefers a; over M(a;)
and a; prefers a; over M(a;). A matching is stable if there is no blocking pair.
The stable roommate problem asks for a stable matching in A. The stable room-
mate problem is a well-studied problem in optimization theory (see, for example,
Fleiner et al. [6] and the references therein). In particular, not every instance
of the stable roommate problem has a solution, and testing whether it has a
solution can be done in polynomial time.

Let us again consider the directed pseudo-line arrangement £. As we walk
along a pseudo-line ¢; from its begin-point to its end-point we encounter all other
pseudo-lines in L. This order naturally gives us a complete and strict ranking
for ¢; if we attach ¢; itself at the end of the list. Thus, £ defines an instance of
the stable roommate problem.

Lemma 2. A directed pseudo-line arrangement has a planar matching if and
only if the corresponding stable roommate instance has a stable matching.

Proof. For a matching M, the matching tails of two pseudo-lines ¢;, ¢; cross if
and only if ¢; prefers ¢; over M(¢;) and ¢; prefers ¢; over M(¢;). Hence, the
matching is non-planar if and only if there is a blocking pair.

3.2 Stable Partitions

In order to solve our particular stable roommate problem, we review some results
on so-called stable partitions, mostly based on a paper by Tan and Hsueh [12].

Let A be an instance of a stable roommate problem, and let m be a permu-
tation on A, i.e., a bijective map A — A. This function partitions .4 into one or
more cycles, i.e., sequences a, . .., a}_; in Awithay = a} = ... 5 a,_, = af.
A cycle with k > 3 is called a semi-party cycle if a prefers w(a}) over 7=1(a}).
A semi-party partition of A is a permutation of A where all cycles with & > 3
are semi-party cycles.

Given a semi-party partition 7, a pair {a;,a;} is called a party-blocking pair
if a; prefers a; over 7 1(a;) and a; prefers a; over m~!(a;). A stable partition
is a semi-party partition that has no party-blocking pairs. The cycles of a sta-
ble partition are called parties. An odd (even) party is a party of odd (even)
cardinality. Furthermore, a;,a; are party-partners if a; = w(a;) or a; = m(a;).

124 T. Biedl et al.

Theorem 1 ([11,12]). For any instance A of the stable roommate problem
the following statements hold:

1. A has a stable partition, and it can be found in polynomial time.

2. Any stable partition of A has the same number of odd parties.

3. A has a stable matching if and only if it has a stable partition with no odd
parties.

3.3 Existence of Planar Matchings

Now we consider parties that occur in stable roommate instances defined by a
directed pseudo-line arrangement £. Theorem 1(1) gives us a stable partition 7
for L. Let a singleton-party, a pair-party, and a cycle-party be a party consisting
of one, two, and at least three pseudo-lines, respectively. For all pseudo-lines /¢
that are not a singleton-party, let their party-tail be the part between b(¢) and
¢ x m=1(¢). For any pseudo-line ¢ that is a singleton-party, let its party-tail be
the part of ¢ between begin-point and end-point.

Lemma 3. The party-tails of two pseudo-lines £, do not intersect unless £ and
0" are party-partners.

Proof. Assume that £ x £’ belongs to both party-tails, but £ and ¢’ are not party-
partners. We first show that ¢ prefers ¢ over 7—1(£). This holds automatically
if ¢ is a singleton-party, because then 7=1(¢) = ¢, and any pseudo-line ranks
itself lowest. If ¢ is not a singleton-party, then the party-tail of ¢ consists of
the sub-curve between b(¢) and ¢ x 7~1(¢). Since ¢’ # 7 1(¢) by assumption,
and since no three pseudo-lines intersect in a point, £ X £’ comes strictly earlier
than ¢ x 7—1(¢) when walking along £. By definition of the ranking for directed
pseudo-lines, hence £ prefers ¢/ over = 1(/).

Similarly one shows that ¢ prefers £ over 7=1(¢'). Hence, {¢,¢'} is a party-
blocking pair and 7 is not a stable partition, a contradiction.

Lemma 4. There cannot be two singleton-parties.

Proof. Assume that P and P’ are two singleton-parties, with P = {¢} and
P’ = {{'}. Since they are singleton-parties, their party-tails extend from their
begin-points to their end-points. Since all pseudo-lines intersect within C, so do
¢ and ¢'. But £ and ¢ are not party-partners, in contradiction to Lemma 3.

Lemma 5. There cannot be two cycle-parties.

Proof. Assume we have two cycle-parties P, = {{,01,...,0q—1} and P, =
{66, 04,... 4,1}, with 7(¢;) = £;41, addition modulo a, and 7(¢}) = ¢}, with
addition modulo b.

Let G(Py) be the graph formed by the party tails of P; as follows: The
vertex set comprises b(¢) and ¢ x 7(¢) for every pseudo-line ¢ in P;. We add each
party-tail as two edges (b(£),¢ x w(£)) and (£ x 7(¢),7~1(¢) x £), see Fig. 5.

Planar Matchings for Weighted Straight Skeletons 125

Note that G(P;) has the following
structure: It consists of a cycle C; of
edges of the form (¢ x 7(¢), 7= 1(¢) x £)
together with one edge attached to each
vertex of C; of the form (b(¢), £ x 7(£)).
By Lemma 3, G(P;) is planar. Note
that the vertices b(£y),b(¢1),...,b(la—1)
lie on C and are ordered clockwise or
counterclockwise. Therefore, G(P;) tes-
sellates the area enclosed by C into a+ 1
regions. Note that exactly a of those
regions are partially bounded by C. The
remaining region is the one bounded by)
C1. Similarly, we define G(P;) and Cs. cannot intersect

Again by Lemma 3, G(P;) UG(P2) is
planar, and it follows that G(P,) is entirely contained in one region of G(FPy).
This region is not the region bounded by C;. We denote by R; the union of
all regions of G(P;) that do not contain G(P,). Likewise, we denote by Ro the
union of all regions of G(P.) that do not contain G(P;). We observe that Ry
and R, are disjoint.

Without loss of generality, the boundary of Ry consists of parts of C as well
as the path b(¢1), 01 X €a, €y x £1,b(£y). Likewise, Ro is bounded by parts of C
and edges stemming from ¢} and £.

In the following, we will show that ¢y cannot intersect Ro, and, conversely,
i cannot intersect R;. Consequently, £y does not intersect £ within C, which is
a contraction as we require each pair of pseudo-lines to intersect exactly once in
the area enclosed by C. This concludes the proof.

Note that ¢y starts at b(fy), then makes up parts of the boundary of R; until
it reaches £y x ¢1. Then, ¢y moves into the interior of R, as it makes up an
edge of C1, but not the one that is part of the boundary of R;. Once ¢y enters
R1, it can leave only by intersecting C at its end-point as it is not allowed to
self-intersect or to intersect #; a second time. After £y has left the area enclosed
by C, it cannot enter again, as it intersects C exactly twice. Likewise, £, will exit
the area enclosed by C through its end-point in R and cannot intersect R;.

b(to);

Fig. 5. The two pseudo-lines £y and ¢

Lemma 6. There cannot be a singleton-party and a cycle-party.

Proof. We follow the same idea as in the previous proof, and use P; as the cycle-
party and P» as the singleton-party. Let £y be defined as previously, and use £,
as the single line in P,. Since the tail of £ consists of all points between the
begin-point and the end-point of £, again no intersection between ¢y and £ is
possible.

Theorem 2. No instance of a stable roommate problem defined by a directed
pseudo-line arrangement L can have an odd party.

126 T. Biedl et al.

Fig. 6. A planar matching of pseudo-lines specifies how to construct a weakly-planar
post-event wavefront. One arrangement may have multiple planar matchings.

Proof. Assume to the contrary that some stable partition 7 has an odd party
P. As L comprises an even number of pseudo-lines, there needs to be another
odd party P’. This can only happen if there are two singleton-parties, two (odd)
cycle parties, or a singleton-party and an (odd) cycle-party. These are ruled out
by Lemma 4, Lemma 5, and Lemma 6, respectively.

Theorem 3. FEvery directed pseudo-line arrangement has a planar matching,
and it can be found in polynomial time.

Proof. This is a direct result of Lemma 2, Theorem 1, and Theorem 2.

By Theorem 1 we can find a stable partition in polynomial time. By
Theorem 2 and Lemma 5, it consists of pair-parties, except for at most one cycle-
party P that has even length. If there is no cycle-party, then the stable partition
is in fact a stable matching. Otherwise, if say ¢1,..., ¢y is the even cycle-party,
then we can find stable matching M easily, and there are two choices: Either set
M (ly;) = m(la;) and M(la;41) = 7 (f2;41), or do the same after shifting all
indices by one.

3.4 Application to Straight Skeletons

The matching tails of the pseudo-lines play the role of wavefront edges after the
event. The matching tells us how to pair up the wavefront edges in order to
restore planarity locally at p, see Fig. 6.

Lemma 7. There exists a weakly-planar wavefront after the event if there is a
planar matching for L.

Using Theorem 3, we have found a stable matching and with it a weakly-
planar post-event wavefront, in polynomial time. Notice that if a cycle-party
exists, then there are two possible post-event wavefronts. Consequently, ambigu-
ities in the development of the wavefront may be caused by edge events between
parallel edges [4] and multi-split events alike.

Planar Matchings for Weighted Straight Skeletons 127

4 Conclusion

Although algorithms and even rudimentary implementations to construct the
weighted straight skeleton were previously presented, and even though several
applications are suggested in the literature, this paper is the first to provide a
concrete, constructive proof that a well-defined weighted straight skeleton actu-
ally exists in all cases. This result is based on two main ingredients: First, we
introduced and studied planar matchings on a directed pseudo-line arrangement
as a generic tool independent of straight skeletons. In particular, we showed
that planar matchings always exist. Second, our interpretation of an event as
violation of (weak) planarity unifies the classification of edge and split events
in 2D and promises to simplify the description and study of straight skeletons
in dimensions higher than two, where the number of types and complexity of
events would significantly increase otherwise.

Acknowledgments. We would like to thank David Eppstein for the idea of interpret-
ing the edge-pairing problem as a stable roommate problem.

References

1. Aichholzer, O., Alberts, D., Aurenhammer, F., Gértner, B.: Straight Skeletons of
Simple Polygons. In: Proc. 4th Int’l Symp. of LIESMARS, pp. 114-124 (1995)

2. Aurenhammer, F.: Weighted Skeletons and Fixed-Share Decomposition. Comput.
Geom. Theory and Appl. 40(2), 93-101 (2008)

3. Barequet, G., Eppstein, D., Goodrich, M.T., Vaxman, A.: Straight Skeletons of
Three-Dimensional Polyhedra. In: Proc. 16th Annu. Europ. Symp. Algorithms,
pp. 148-160 (September 2008)

4. Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: Weighted Straight Skele-
tons in the Plane. Comput. Geom. Theory and Appl. 48(2), 120-133 (2015)

5. Eppstein, D., Erickson, J.: Raising Roofs, Crashing Cycles, and Playing Pool:
Applications of a Data Structure for Finding Pairwise Interactions. Discrete Com-
put. Geom. 22(4), 569-592 (1999)

6. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalized stable
marriage and roommates problems. Theoretical Computer Science 381(13), 162—
176 (2007)

7. Haunert, J.-H., Sester, M.: Area Collapse and Road Centerlines Based on Straight
Skeletons. Geolnformatica 12, 169-191 (2008)

8. Huber, S.: Computing Straight Skeletons and Motorcycle Graphs: Theory and
Practice. Shaker Verlag (April 2012). ISBN: 978-3-8440-0938-5

9. Kelly, T., Wonka, P.: Interactive Architectural Modeling with Procedural Extru-
sions. ACM Trans. Graph. 30(2), 14:1-14:15 (2011)

10. Laycock, R., Day, A.: Automatically Generating Large Urban Environments Based
on the Footprint Data of Buildings. In: Proc. 8th Symp. Solid Modeling Applica-
tions, pp. 346-351 (June 2003)

11. Tan, J.J.: A Necessary and Sufficient Condition for the Existence of a Complete
Stable Matching. Journal of Algorithms 12(1), 154-178 (1991)

12. Tan, J.J., Hsueh, Y.-C.: A generalization of the stable matching problem. Discrete
Applied Mathematics 59(1), 87-102 (1995)

Orienting Dynamic Graphs, with Applications
to Maximal Matchings and Adjacency Queries

Meng He®™), Ganggui Tang, and Norbert Zeh

Faculty of Computer Science, Dalhousie University, Halifax, Canada
{mhe,gtang,nzeh}0cs.dal.ca

Abstract. We consider the problem of edge orientation, whose goal is to
orient the edges of an undirected dynamic graph with n vertices such that
vertex out-degrees are bounded, typically by a function of the graph’s
arboricity. Our main result is to show that an O(8«)-orientation can be
maintained in O(W) amortized edge insertion time and O(fa)
worst-case edge deletion time, for any 8 > 1, where « is the maximum
arboricity of the graph during update. This is achieved by performing a
new analysis of the algorithm of Brodal and Fagerberg [2]. Not only can
it be shown that these bounds are comparable to the analysis in Brodal
and Fagerberg [2] and that in Kowalik [7] by setting appropriate values
of 3, it also presents tradeoffs that can not be proved in previous work.
Its main application is an approach that maintains a maximal matching
of a graph in O(a + valgn) amortized update time, which is currently
the best result for graphs with low arboricity regarding this fundamental
problem in graph algorithms. When « is a constant which is the case
with planar graphs, for instance, our work shows that a maximal match-
ing can be maintained in O(y/Ign) amortized time, while previously the
best approach required O(lgn/lglgn) amortized time [13]. We further
design an alternative solution with worst-case time bounds for edge ori-
entation, and applied it to achieve new results on maximal matchings
and adjacency queries.

1 Introduction

The problem of orienting the edges of a dynamic undirected graph to guarantee a
low upper bound on the maximum out-degree of its vertices has attracted much
attention in recent years [2,6,7,13]. In this problem, an orientation of a graph
G = (V,E) is a directed graph G = (V, ﬁ) defined by assigning each edge of
G a direction, and G is further called a A-orientation if the out-degree of each
vertex in E') is upper bounded by A. The goal is to maintain a A-orientation
of G with efficient support of edge insertion and deletion, such that the value
of A is as small as possible. For dense graphs, A has to be large, and thus this
problem is more interesting when the graph is sparse.

As the arboricity of a graph is often used as a measurement of the spar-
sity of the graph, it is typically used as a parameter when bounding A. The

This work is supported by NSERC and the Canada Research Chairs Program.

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 128-140, 2014.
DOI: 10.1007/978-3-319-13075-0-11

Orienting Dynamic Graphs, with Applications to Maximal Matchings 129

arboricity, «, of a graph G can be formally defined by a = mﬁx%, where

J = (V(J),E(J)) is any subgraph of G induced by at least two vertices. Many
classes of graphs in practice have constant arboricity, including planar graphs,
graphs with bounded genus and graphs with bounded tree width. Nash-Williams
[11,12] proved that G has arboricity « if and only if « is the smallest number
of subsets that E can be partitioned into, such that each subset of edges with
their endpoints is a forest. Such a decomposition can be computed in polyno-
mial time [3]. In this partition, if we orient each edge in a forest towards the root
of the tree containing this edge, then each vertex has out-degree at most one in
each forest, which immediately gives an a-orientation of the given static graph.
The most fundamental application of edge orientation is perhaps the repre-
sentation of dynamic graphs supporting adjacency queries. This is based on the
following observation [5]: With a A-orientation of G, if we store the at most A
out-neighbors of each vertex in a list, then an adjacency query can be answered
in O(A) time by scanning the list of each of the two vertices given in the query,
to see if one is an out-neighbour of the other. Thus if we can maintain a A-
orientation of a sparse graph efficiently, then we immediately have a linear-space
dynamic graph representation that answers adjacency queries in O(A) time [2].
Recently, Neiman and Solomon [13] found that edge orientation also has
applications in maintaining a maximal matching of a dynamic graph. A match-
ing, M, of a graph G is a set of non-adjacent edges of G. If a matching M has the
maximum number of edges, then it is called a mazimum cardinality matching.
A mazimal matching is defined to be a matching, M, that satisfies the follow-
ing condition: there does not exist an edge, g, of G, such that M U {g} is still a
matching of G. It is well-known that any maximal matching is a 2-approximation
for maximum cardinality matching. Graph matching is a fundamental problem
in graph theory, and it has many applications in combinatorial optimization [10].
In the dynamic setting, the problem is to maintain a maximal matching or an
approximate maximum cardinality matching under edge insertion and deletion.
Recent progress on this [4,6,13] generated more interests in edge orientation.
Edge orientation has also been applied to other problems such as shortest
path in dynamic planar graphs [6,9] and graph colouring [8]. Motivated by all
these important applications, we study the problem of orienting dynamic graphs.

1.1 Previous Work

Brodal and Fagerberg [2] first studied the problem of maintaining an edge ori-
entation of a dynamic graph with n vertices under an arboricity a preserving
sequence of edge insertions and deletions. Here an update operation is consid-
ered arboricity a preserving if, when applied to an graph of arboricity at most «,
the arboricity of the graph after the update remains to be bounded by «. They
proposed an approach that can maintain an O(«)-orientation using O(m + n)
space, where m is the current number of edges, in O(1) amortized insertion
time and O(a + lgn) amortized deletion time'. In their algorithm for update

! In this paper, lgn denotes log, n.

130 M. He et al.

operations, some edges may change their orientation after each update, i.e., be
reoriented. They proved that in terms of the amortized number of edge reorien-
tations per update, their algorithm is O(1)-competitive compared against any
algorithm. Kowalik [7] further showed that Brodal and Fagerberg’s approach
can maintain an O(«lgn)-orientation with constant amortized insertion time
and constant worst-case deletion time. More recently, Kopelowitz et al. [6] con-
sidered the problem of designing solutions to maintain edge orientation with
worst-case time bounds. They showed how to maintain an O(A)-orientation in
O(m + n) space with O(BaA) worst-case insertion time and O(A) worst-case
deletion time, where A < infgsi{Ba + [logzn]}.

For maintaining matchings in arbitrary graphs, we refer to the recent work
of Neiman and Solomon [13] which can maintain a maximal matching (which is
also a 3/2-approximate maximum cardinality matching) in O(y/m) worst-case
update time, and the work of Gupta and Peng [4] which maintains a (1 + ¢)-
approximation maximum cardinality matching with O(,/me~2) update time for
any € > 0. To support more efficient updates for graphs with low arboric-
ity, Neiman and Solomon [13] showed how to use edge orientation to main-
tain a maximal matching. Their approach can maintain a maximal matching in
O(m + n) space, such that each update can be performed in O(A + log, /o 1)
amortized time for any A > 2. When a = o(lgn), the update time becomes
O(lg((lgg%—i—a). Following the same idea, Kopelowitz et al. [6] made use of their
solution for edge orientation to maintain a maximal matching, and the worst-
case update time is asymptotically the same as their update time for maintaining
edge orientation summarized in the previous paragraph.

As discussed previously, solutions to maintaining edge orientation can be
directly used to represent dynamic graphs to support adjacency queries. Kowa-
lik [7] showed that by maintaining the list of the out-neighbours of each vertex
using the dynamic dictionary of Andersson and Thorup [1], a graph can be rep-
resented in O(m + n) space to support adjacency query and edge deletion in
O(lglglgn) worst-case time, and edge insertion in O(lglglgn) amortized time,
provided that o = O(polylog(n)). Using the same strategy, Kopelowitz et al. [6]
presented a linear-space representation of graphs with a = polylog(n) arboricity
that can support adjacency queries in O(lglg A) worst-case time, edge insertion
in O(faAlglg A) worst-case time, and edge deletion O(Alglg A) worst-case
time, where A < infgs1{Ba + [logzn]}.

1.2 Our Results

We first analyzed the algorithm of Brodal and Fagerberg [2], by constructing a
new offline algorithm for their main reduction (summarized in Lemma 1). Our
new analysis shows that an O(fa)-orientations can be maintained in linear space
with O(M) amortized insertion time and O(fa) worst-case deletion time,
for any 8 > 1. Furthermore, no edge orientation is required when performing
edge deletion. This presents a tradeoff between the maximum out-degree of ver-
tices and insertion time in the analysis of the algorithm by Brodal and Fagerberg,

Orienting Dynamic Graphs, with Applications to Maximal Matchings 131

which was never proved before. If we set 5 = 1, then our analysis shows that this
algorithm maintains an O(«)-orientation while supporting insertion in O(lgn)
amortized time and deletion in O(«a) worst-case time. This is comparable to Bro-
dal and Fagerberg’s own analysis. By setting 8 = lgn, the algorithm maintains
an O(algn)-orientation with a constant number of edge reorientations per edge
insertion in the amortized sense and zero reorientation for each deletion, which
matches Kowalik [7]’s analysis.? When 8 = y/Ign, this algorithm maintains an
O(ay/1gn)-orientation with O(y/Ign) amortized insertion time and O(ay/Ign)
worst-case deletion time. This tradeoff can not be shown using previous analysis.

We then apply our result on edge orientation to improve previous results on
maintaining maximal matchings under arboricity « preserving update sequences.
More specifically, we can maintain a maximal matching using O(m + n) space
in O(a + valgn) amortized update time, which is currently the best result on
maintaining a maximal matching for low arboricity graphs. Our result matches
the result of Neiman and Solomon [13] when o = £2(Ign), while strictly improves
their results when o = o(lgn). To see the improvement when a = o(lgn),
suppose o = flg(—” where f(n) is an arbitrary function in w(1). Then Neiman

n)’
and Solomon’s result supports updates in O(lglft("n)) amortized time, while ours

. Ign
requires O(O]
arboricity such as planar graphs: a maximal matching can be maintained in
O(+/1gn) amortized time with our work, while previously it required O(lgn/1glgn)
amortized time, and this improvement is surprising.

We further design solutions to these problems that guarantee worst-case time
bounds. We show how to maintain a A-orientation in O(A) worst-case insertion
and deletion time, where A < 2alg(n/a) + 2«. This is a new tradeoff when
compared with the result of Kopelowitz et al. [6]: When o = w(lgn), our inser-
tion time is O(algn), which is better than their O(a?) insertion time, though
our maximum out-degree and deletion time are worse. It is noteworthy that our
approach is simpler and does not require edge reorientation during insertion.
The same bounds can be proved when applying our result to maintain a max-
imal matching, which again compares similarly to the result of Kopelowitz et
al. We can also use this to represent a graph with O(polylog(n)) arboricity to
support adjacency queries in O(lglg A) worst-case time, edge insertion in O(A)
worst-case time, and edge deletion in O(Alglg A) worst-case time. For graphs
with constant arboricity such as planar graphs, our representation supports adja-
cency query, insertion and deletion in O(lglglgn), O(lgn) and O(lgnlglglgn)
time, respectively, improving Kopelowitz et al.’s result which provides the same

). The improvement is even obvious for graphs with constant

2 Kowalik [7]’s analysis in deletion time does not include the time required to find the
location of the given edge within the list of out-neighbours of one of its endpoints
and thus his model implicitly requires such a location to be given when performing
deletion. In our work, unless otherwise specified, we follow the original model of Bro-
dal and Fagerberg [2], which maintains out-neighbours in linked lists, and the time
required to search each list for the edge to be deleted is part of deletion time. Thus
when comparing with Kowalik’s analysis, we consider the number of reorientations.

132 M. He et al.

support for query and deletion, but requires O(Ignlglglgn) time for insertion.
The fact that our insertion algorithm for edge orientation does not require reori-
entation makes such an improvement possible. For non-constant «, our result is
a new tradeoff: our insertion is faster than [6] but query and deletion may be
slower. All our solutions use O(n + m) space.

2 Preliminaries

2.1 Reduction from Online Orientations to Offline Orientations

Brodal and Fagerberg [2] analyzed their algorithm by reducing the problem of
maintaining an edge orientation under online updates to the problem of finding
a sequence of orientations for an update sequence given offline. A variant of their
reduction to be used in our solution can be summarized as:

Lemma 1 ([2]). Given an arbitrary arboricity o preserving sequence of edge
insertions and deletions over an initially empty graph, let Go denote the ini-
tial empty graph, G; denote the graph after the ith operation, and k denote the
number of edge insertions.

If there exists a sequence Go, G1,..., Gpiq of 0-orientations that incurs
at most kr edge reorientations in total for a certain r, then starting with the
empty graph on n wvertices under arbitrary arboricity o preserving updates, a
A-orientation can be maintained using O(m +n) space, where m is the current
number of edges, such that each edge insertion can be performed in O(g(ﬁtg&)
amortized time, and an edge deletion in O(A) worst-case time, provided A >
26 > 2«. Furthermore, the amortized number of edge reorientations incurred

during each insertion is O(Z{(ﬁfé{;), and deletion requires no reorientation.

2.2 Data Structures for Dynamic Sets with Center Elements

Kopelowitz et al. [6] defined the following data structure problem to help them
maintain the invariants in their work, and we will also make use of this data
structure in our solution with worst-case time bounds: Let X be a dynamic
set, in which each element z; € X is associated with a nonnegative integer key
k;. The element xg is designated as the center element of X which can not be
inserted or deleted, but the value of its key can be updated. The goal is to
support the following operations:

— ReportMax(X): return a pointer to an element in X with the maximum key;
— Increment(X,x): Given a pointer to z € X \ {z¢}, increment z’s key;

— Decrement (X, z): Given a pointer to x € X \ {z¢}, decrement z’s key;
Insert(X,z, k): Insert a new element x with key k into X, provided k <
ko +1;

Delete(X,z): Given a pointer to z € X \ {z¢}, remove z from X;

— IncrementCenter(X): Increment ko;

DecrementCenter(X): Decrement k.

Orienting Dynamic Graphs, with Applications to Maximal Matchings 133

The following lemma summarizes a solution to this problem:

Lemma 2 ([6]). Let X be a dynamic set in which each element x; is associated
with a key k; and a fived element xq is designated to be X ’s center. Then X can be
maintained in O(|X|+ ko) space to support ReportMax, Increment, Decrement,
Insert and Delete in O(1) time, and IncrementCenter and DecrementCenter
in O(ko) time.

3 Solutions with Amortized Time Bounds

In this section we first present a new offline algorithm to orient fully dynamic
graphs. Then we make use of Lemma 1 to prove our result on maintaining edge
orientation under online update operations.

In our offline strategy, let U be an arbitrary arboricity « preserving update
sequence on an initially empty graph G with n vertices. Denote by G; the graph
after the ith update as in Lemma 1 (G denotes the 1n1t1a1 empty graph) We
now show how to determine a sequence of d-orientations Go, G 1. G u with a
provable upper bound on the total number of edge reorientations, for a parameter
0 to be determined later. Note that it is trivial to orient the empty graph Gy.

We first divide U into phases each containing San consecutive update oper-
ations, except the last phase which may contain fewer operations, where 5 > 1.
For simplicity, we assume that San is an integer. For the graph at the end of
each phase that contains San operations, we compute an a-orientation using the
approach described in the second paragraph of Section 1, which makes use of the
algorithm in [3]. This determines the orientation of the graph at ile end of each

— —
phase with the possible exception of the last phase, i.e., G'gan, G 28an, G'38an;
—

s G'||U1/(Ban) | (Ban)- To further orient G; where i is not divisible by Ban, we
have the following definition:

Definition 1. Consider a phase, P, of Ban consecutive updates on a graph G
with n vertices, in which an update operation that inserts or deletes an edge
between vertices x and y is said to update x and y. A vertex of G is hot in P if
it is updated by at least 4B operations of P, and cold otherwise. The hot region,
H(G), of G in P is the subgraph of G induced by all the hot vertices of G in P,
while the cold region, C(G), of G in P is defined to be G\ H(G).

The J-orientation sequence is determined recursively. We use the following
strategy for each phase, P, of U. Without loss of generality, we assume that |P| =
Ban. Let G4 denote the graph after the jth operation in P. Thus G; denotes the
graph immediately before any operation in P is performed, and by our previous
discussion, 81 is a a-orientation of G. We determine the orientations of some of
the edges in G4 for j € [1..8an —1] in increasing order of j: For an edge that is
present in both G4, and Gji4;—1, if its orientation in G;y;_; has already been
determined, then in G;4;, we maintain the same orientation. There are no new
edges to be oriented in G;; if the jth operation in P deletes an edge. If this

134 M. He et al.

operation inserts an edge instead, then there are three cases. In the first case,
this edge is between a hot vertex and a cold vertex, and we orient it from the
cold vertex to the hot vertex. In the second case, the edge is between two cold
vertices, and we orient it arbitrarily. In the remaining case, the edge is between
two hot vertices, and we do not orient this edge in this level of recursion.

So far we have finished describing our top-level partition, which determines
6¢ for ¢ divisible by Ban, and for all other G;’s, it determines the orientations
of the edges that are not inserted as an edge between two hot vertices during the
phase containing this insertion. Then, for each phase, P, of U, let n’ denote the
number of vertices of G that are hot vertices in this phase. As each hot vertex
is updated by at least 48« operations in P and each operation may update up
to two hot vertices, the number of operations in P that update hot vertices is
at least 2Ban’. As this can not be larger than the total number of operations in
P, we have 28an’ < fan, which implies n’ < n/2. If n’ < 48a, we arbitrarily
orient the edges inserted between these hot vertices by operations in phase P
excluding the last operation (recall that after the last operation, the graph is
oriented by computing an a-orientation, so we exclude the last operation here).
Otherwise, we set n to be n/, set U to be the sequence of operations in P
that update hot vertices only, and apply the same recursive strategy to H(G).
Upon returning from the recursion on H(G), the direction of each edge inserted
between hot vertices have been decided as it is part of the graph H(G). Thus
we have oriented all the G;’s. We now bound vertex out-degrees:

Lemma 3. The offline algorithm in this section computes a sequence of (4B ~+
—" = —
a)-orientations Go, G1,..., Gptq-

Proof. We prove by induction that at each level of recursion, we construct
(48 + «)-orientations throughout each phase. In the base case where we stop
the recursion, we consider a graph with at most 48« vertices. In this case, even
though we orient edges arbitrarily upon insertion, the maximum out-degree of
any vertex is at most 40a — 1 as the total number of vertices is at most 46a.
In the inductive case, for an arbitrary phase P, let G;4; denote the graph
after the jth operation in P. Assume inductively that the out-degree of any
vertex in H(G) is at most 48« + « during the execution of the operations in
P, and we now prove the same claim for G. We first consider an arbitrary cold
vertex z in this phase. Before any operation in P is performed, in G;, the out-
degree of z is at most « as C_?; is computed as an a-orientation. By Definition 1,
less than 40« edges inserted in P have x as an endpoint. Thus the maximum
out-degree of z in phase P is less than a+48«. We then argue about an arbitrary
hot vertex y. As any edge between y and a cold vertex is oriented towards y, the
out-degree of y is always equal to its out-degree in H(G), which is bounded by
4Ba + o by inductive hypothesis. a

To bound the total number of edge reorientations, we have:

Lemma 4. The total number of edge reorientations among 60, 5)1, cee 5)(] 1S
O(IU\lg(fﬂl/(ﬁa)))'

Orienting Dynamic Graphs, with Applications to Maximal Matchings 135

Proof. We number each level of recursion by its recursion depth starting from
0. Thus at level 0, we consider the original graph G with n vertices. At level 1,
each of the subgraphs being considered corresponds to a phase at level 0 and
contains the hot region of G in this phase which has at most n/2 vertices, and so
on. The number of vertices in each subgraph considered at level i is thus at most
n/2¢, and the number of vertices of each graph considered at the last level is at
most 48a. Therefore, the number of levels is O(lg(n/(B«))) and the number of
edges in each subgraph considered at level i is at most a(n/2¢ — 1).

Note that at any given level, reorientation only happens at the end of each
phase defined for a subgraph at that level, when we recompute an a-orientation
and use it to orient the subgraph. We also observe that each operation in U may
be considered at most once at each level of partition. As the number of levels is
O(lg(n/(Ba))), it suffices to prove that, when amortizing the number of reorien-
tations at the end of each phase at any level over the operations in that phase,
the number of reorientations charged to each operation in this phase is at most
1/8. To see this, let ¢ denote the number of vertices in a subgraph considered
at an arbitrary level. By our algorithm, the update sequence considered for this
subgraph is divided into phases each containing Sat operations, except the last
phase which may contain fewer. Edge reorientations take place at the end of
each phase that contains exactly Sat operations. As the total number of edges
in the subgraph is at most «(t — 1), the number of edge reorientations at the
end of each such phase is thus at most a(t — 1). When amortizing these edge
reorientations over the Sat operations in the phase, each update is charged at
most a(t — 1)/(Bat) < 1/ edge reorientations. O

Combining Lemmas 3 and 4, we have:

Lemma 5. Given an arboricity o preserving sequence of edge insertions and
deletions on an initially empty graph and an arbitrary parameter 3 > 1, there
is a sequence of (4Ba + a)-orientations such that the amortized number of edge

reorientation for each edge insertion or deletion is O(W).

We now present our first main result:

Theorem 1. Starting with the empty graph on n wvertices under arboricity «
preserving updates, a A-orientation can be maintained in O(n+m) space, where
A>20,5 =48+ 1), B is an arbitrary parameter greater or equal to 1 and m
1s the current number of edges, such that an edge insertion can be performed in
O(lg(”/ﬂ(ﬁa)) . Afj_l%) amortized time, and an edge deletion in O(A) worst-case
time. Furthermore, edge deletion does not incur edge reorientation.

Proof. As the graph is initially empty, the number, k, of insertions is greater

than or equal to the number, k', of deletions in U. Thus Lemma 5 shows that the
(k+K") lgﬁ(n/(ﬁa))) < O 2k lg(nﬁ/(ﬁa)))

total number of edge reorientations is O(
O(k - (W)) The theorem thus follows from Lemma 1. O

The tradeoff summarized in Section 1.2 is obtained by setting A = 34. By
applying this to maximal matchings, we have the following theorem:

136 M. He et al.

Theorem 2. Starting with the empty graph on n wvertices under arboricity «
preserving updates, a mazimal matching can be maintained in O(a + algn)
amortized time using O(n + m) space, where m is the current number of edges.

Proof. Neiman and Solomon [13] made use of the algorithm of Brodal and Fager-
berg [2] to maintain maximal matchings in dynamic settings. Their reduction
shows that if a A-orientation for a graph G on n vertices under arboricity «
preserving updates can be maintained in O(m +n) space with amortized update
time T, where m denotes the current number of edges, then a maximal matching
can also be maintained in O(m+n) space with O(A+T') amortized update time.

We first observe that, according to Neiman and Solomon’s reduction, a max-
imal matching can be maintained in O(B«a + W) amortized update time
using O(n + m) space, following from Theorem 1 by setting A = 35. When

a > lgn, weset § = 1 and the update time is O(«a). Otherwise, we set 5 = 1’%’,
and the update time becomes O(y/algn). The theorem thus follows. O

4 Solutions with Worst-Case Time Bounds

Let d,(v) denote the out-degree of a vertex v. Our solution with worst-case time
bounds maintains the following invariant over the entire graph G during updates:

Invariant 1. For each vertex u, there exists an ordering of its out-neighbours,
V0, V1,2, -+, Vg, (u)—1, Such that do(vi) > fori=0,1,...,do(u)— 1.

There are connections between this invariant and the invariants considered
by Kopelowitz et al. [6], but they are different. The following two lemmas show
why Invariant 1 can be used to bound the maximum vertex out-degree.

Lemma 6. If the maximum out-degree, A, of a vertex in a directed graph G of
arboricity a satisfying Invariant 1 is greater than 4a, then there are 28 vertices
whose out-degrees are at least A — 2ka > 2a, for k=1,2,...,|A/(2a)] — 1.

Proof. The maximum value of k£ guarantees that A—2ka > 2«. To prove the rest
of the lemma besides this inequality, let u be a vertex with out-degree A in G. We
prove our claim by induction on k. In the base case, k = 1. Let vg, v1,v2, ..., vA_1
be u’s out-neighbours listed in the order specified in Invariant 1. Then d,(vg—1) >
d—1,do(vg—2) >d—2,...,dy,(VA—24) > A — 2a by Invariant 1, which means u
has at least 2a out-neighbours with out-degrees greater than or equal to A —2a.

Assume the claim holds for £ — 1, and we prove it for k. By the inductive
hypothesis, there is a set, Vi, of 28~ 1o vertices with out-degree at least A—2(k—
1)a. By Invariant 1, each vertex in V; has 2« out-neighbours whose out-degrees
are at least A — 2(k — 1)a — 2a = A — 2ka. We add such 2a out-neighbours of
each vertex in Vj into another set V5. Note that some vertices in V; may share
out-neighbors. Any vertex in V3 U V5 has out-degree at least A — 2k, and what
remains is to give a lower bound on |V; UV5|. Consider the subgraph G* induced
by V1 U Vs, For each vertex in Vi, there are 2« distinct edges between it and the

Orienting Dynamic Graphs, with Applications to Maximal Matchings 137

vertices in Va, and thus the number of edges in G* is at least 2a|V;| = 2Fa2.
s .. E(G* k2
By the definition of arboricity, we have o > |‘L(é*)|)ll > ‘V12U‘?2|_1. Therefore,

|V1 U V| > 2Fa. As the out-degree of each vertex in V; U V3 is at least A — 2ka
from our previous discussion, our induction goes through. a

Lemma 7. If a directed graph G satisfies Invariant 1, then the out-degree of
any vertex in G is at most 2alg(n/a) + 2a.

Proof. Let A denote the maximum out-degrees of the nodes in G. If A < 4, the
lemma holds because, in an undirected graph, we always have a < n/2 and thus
2alg(n/a) + 2a > 4a. Otherwise, by Lemma 6, the number of vertices whose
out-degrees are at least 2« is 2l4/(29))=1q, Therefore, the total number of edges
of G is at least 2l4/Ca)] =149 = 214/(20)] 42 Since the arboricity of G is «, we
have (214/(29]a2)/(n —1) < @, and thus (24/2%~1a?)/(n —1) < . Therefore,
A < 2alg "T_l + 2a. This completes the proof. a

To maintain Invariant 1, we borrow ideas from [6] though our algorithms for
edge insertion and deletion turn out to be simpler. As in [6], for each vertex wu,
we construct a data structure B, to maintain information for its in-neighbours,
which is further used to decide which edges should be reoriented. More precisely,
for vertex u, we construct a dynamic set B, whose center element is u itself,
with d,(u) as its key. X \ {u} then contains as elements all the in-neighbours of
u, and the key for each such element is the out-degree of this in-neighbour. We
then represent B, using Lemma 2. Clearly all these auxiliary data structures
use O(m + n) space in total, where m is the current number of edges in G.

We also construct the adjacency lists for G with edge orientations, by main-
taining the out-going edges of each vertex in a doubly linked list. This also
requires O(m + n) space. For each directed edge (u, v) in u’s list, we maintain a
bidirectional pointer between this edge and u’s representation in B,,. With this,
when our algorithm for edge deletion uses ReportMax to find an edge for reori-
entation, we can update adjacency lists in constant time. Such a construction
is also required to make the approach in [6] work, though it was not mentioned
explicitly. As it is trivial to maintain the adjacency lists with these pointers and
the maintenance cost is subsumed by our final time bounds, we do not explicitly
discuss how to update these lists in the rest of this section.

To insert an edge wv, assume without loss of generality that d,(u) < d,(v).
Then we orient the edge from u to v. It can be easily shown that with this
strategy, Invariant 1 is maintained and no reorientation is required. We further
update B, using IncrementCenter and B, for each out-neighbour, v, of u,
using Increment. Algorithm 1 presents the pseudo code for edge insertion.

Algorithm 2 presents the pseudocode for edge deletion. It first removes the
edge to be deleted in lines 2-3. After this, the out-degree of u is decreased by 1,
and the only vertices for which Invariant 1 may not hold have to be in-neighbours
of u. To find out whether the invariant is still maintained for all the in-neighbours
of u, we locate the in-neighbour, v/, with the largest out-degree in line 4. If the
test in the while statement at line 5 is false, then the invariant still holds for

138 M. He et al.

Algorithm 1. Insert(G, u,v)

1: {Assume without loss of generality that d,(u) < do(v)}
2: Orient edge (u,v) from u to v

3: IncrementCenter(B,)

4: Insert(By,u,do(u))
5
6

: for each out-neighbour, v, of u such that v’ # v do
Increment(B,/,u)

Algorithm 2. Deletion: Delete(G, u,v)

: {Assume without loss of generality that the edge uv is oriented towards v}
: Remove edge (u,v)

: Delete(B,,u)

v’ < ReportMax(B,)

: while d,(u) < do(v') — 1 do

Flip the orientation of edge (v',u) so that it is oriented from u to v’
Delete(B,,v')

Insert(B,,u,do(u))

u—v

v’ < ReportMax(B,)

: DecrementCenter(B,)

: for each out-neighbour, v’, of u do

13: Decrement(B,,u)

=
l\')»—\QSQ

any in-neighbour of u. Otherwise, it is possible (though not necessary) that the
invariant is not maintained for v’ and some other in-neighbours of u. To maintain
the invariants for these vertices, we reverse the direction of the edge (v/,u) in
line 6, and update auxiliary data structures accordingly in lines 7-8. After this
the out-degree of u becomes the same as its original out-degree before this edge
deletion is performed, and thus the invariant can not be violated for any of its
in-neighbours whose out-degree did not change. The only in-neighbour whose
out-degree has been changed is v/, and it is easy to see that the invariant is
also maintained for v’ as a result of the above steps: v’ lost one out-neighbour
but its out-degree was also decreased by 1. Now the the only vertices for which
Invariant 1 may not hold have to be in-neighbours of v’. For v/, we then repeat
the same process that we applied to u. This process terminates in at most A+ 1
iterations, because each time we iterate on a node whose out-degree is strictly
greater than the node in the previous iteration and the maximum vertex out-
degree is A. From the description of this process, we can also claim that, after
the while loop in lines 5-10 terminates, the invariant is maintained, and lines
11-13 make sure that all the auxiliary structures are up-to-date.

As our algorithms for edge insertion and deletion maintain Invariant 1, by
Lemma 7, they can maintain a A-orientation of G for A = 2a/lg(n/a) + 2a. To
analyze the running time of these two operations, we first observe that each loop
in the pseudocode of these two algorithms is iterated at most A times. Then,
applying Lemma 2, we claim that both operations require O(A) time. Thus:

Orienting Dynamic Graphs, with Applications to Maximal Matchings 139

Theorem 3. A A-orientation of a graph on n vertices can be maintained in
O(n + m) space, where A < 2alg(n/a) + 2a, a is the current arboricity and
m is the current number of edges, such that an edge insertion or deletion can
be performed in O(A) worst-case time. Furthermore, an edge insertion does not
incur edge reorientation, while a deletion incurs at most A + 1 reorientations.

If we allow one reorientation in edge insertion, then we can bound A by
min(2alg(n/a) 4+ 2a, /m) without affecting update times. We omit the details
due to page limit. These results can then be easily applied to achieve new results
on maximal matchings and adjacency queries in dynamic graphs:

Theorem 4. A mazximal matching of a graph on n vertices can be maintained
in O(min(alg(n/a),/m)) worst-case update time using O(n + m) space, where
« s the current arboricity and m is the current number of edges.

Theorem 5. A graph with n vertices and m edges can be represented in O(m +
n) space to support adjacency queries in O(lglg A) worst-case time, edge inser-
tion in O(A) worst-case time, and edge deletion in O(Alglg A) worst-case time,
where A = O(alg(n/a)) and « is the current arboricity of the graph, provided

a = O(polylog(n)).

Acknowledgments. We are grateful for Tsvi Kopelowitz for helpful discussions.

References

1. Andersson, A., Thorup, M.: Tight(er) worst-case bounds on dynamic searching
and priority queues. In: STOC, pp. 335-342 (2000)

2. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne,
F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
342-351. Springer, Heidelberg (1999)

3. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica 7(5&6), 465-497 (1992)

4. Gupta, M., Peng, R.: Fully dynamic (14 e)-approximate matchings. In: FOCS, pp.
548-557 (2013)

5. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596-603 (1992)

6. Kopelowitz, T., Krauthgamer, R., Porat, E., Solomon, S.: Orienting fully dynamic
graphs with worst-case time bounds. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 532-543.
Springer, Heidelberg (2014)

7. Kowalik, L.: Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.
102(5), 191-195 (2007)

8. Kowalik, L.: Fast 3-coloring triangle-free planar graphs. Algorithmica 58(3),
770-789 (2010)

9. Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar
graphs. ACM Transactions on Algorithms 2(3), 335-363 (2006)

140 M. He et al.

10. Lovdsz, L., Plummer, M.: Matching Theory. AMS Chelsea Publishing (1986)

11. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. Journal of
the London Mathematical Society 36(1), 445-450 (1961)

12. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of
the London Mathematical Society 39(1), 12 (1964)

13. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: STOC, pp. 745-754 (2013)

Dynamic and Multi-Functional Labeling
Schemes

Sgren Dahlgaard, Mathias Back Tejs Knudsen, and Noy Rotbart(®9

Department of Computer Science, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark
{soerend,knudsen,noyro}@di.ku.dk

Abstract. We investigate labeling schemes supporting adjacency, ances-
try, sibling,and connectivity queries in forests. In the course of more than
20 years, the existence of logn + O(loglogn) labeling schemes support-
ing each of these functions was proven, with the most recent being ances-
try [Fraigniaud and Korman, STOC ’10]. Several multi-functional labeling
schemes also enjoy lower or upper bounds of log n + £2(log log n) or logn+
O(log log n) respectively. Notably an upper bound of log n + 2 log log n for
adjacency+siblings and a lower bound of logn + loglogn for each of the
functions siblings, ancestry, and connectivity [Alstrup et al., SODA ’03].
We improve the constants hidden in the O-notation, where our main
technical contribution is a log n+2log log n lower bound for connectivity
+ancestry and connectivity+siblings.

In the context of dynamic labeling schemes it is known that ancestry
requires 2(n) bits [Cohen, et al. PODS ’02]. In contrast, we show upper
and lower bounds on the label size for adjacency, siblings, and connec-
tivity of 2logn bits, and 3logn to support all three functions. We also
show that there exist no efficient dynamic adjacency labeling schemes
for planar, bounded treewidth, bounded arboricity and bounded degree
graphs.

1 Introduction

A labeling scheme is a method of distributing the information about the structure
of a graph among its vertices by assigning short labels, such that a selected
function on pairs of vertices can be computed using only their labels. The concept
was introduced by Kannan, Naor and Rudich [1], and explored by a wealth of
subsequent work [2-7].

Labeling schemes for trees have been studied extensively in the literature
due to their practical applications in improving the performance of XML search
engines. Indeed, XML documents can be viewed as labeled forests, and typical

Research partly supported by Mikkel Thorup’s Advanced Grant from the Dan-
ish Council for Independent Research under the Sapere Aude research carrier
programme.
Research partly supported by the FNU project AlgoDisc - Discrete Mathematics,
Algorithms, and Data Structures.

© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 141-153, 2014.
DOT: 10.1007/978-3-319-13075-0_12

142 S. Dahlgaard et al.

queries over the documents amount to testing classic properties such as adja-
cency, ancestry, siblings and connectivity between such labeled tree nodes [§].
In their seminal paper, Kannan et. al. [1] introduced labeling schemes using
at most 2logn bits! for each of the functions adjacency, siblings and ancestry.
Improving these results have been motivated heavily by the fact that a small
improvement of the label size may contribute significantly to the performance of
XML search engines. Alstrup, Bille and Rauhe [3] established a lower bound of
logn + loglogn for the functions siblings, connectivity and ancestry along with
a matching upper bound for the first two. For adjacency, a logn + O(log™ n)
labeling scheme was presented in [2]. A logn + O(loglogn) labeling scheme for
ancestry was established only recently by Fraigniaud and Korman [4].

In most settings, it is the case that the structure of the graph to be labeled
is not known in advance. In contrast to the static setting described above, a
dynamic labeling scheme receives the tree as an online sequence of topological
events. Cohen, Kaplan and Milo [9] considered dynamic labeling schemes where
the encoder receives n leaf insertions and assigns unique labels that must remain
unchanged throughout the labeling process. In this context, they showed a tight
bound of ©(n) bits for any dynamic ancestry labeling scheme. We stress the
importance of their lower bound by showing that it extends to routing, NCA,
and distance as well. In light of this lower bound, Korman, Peleg and Rodeh [10]
introduced dynamic labeling schemes where node re-label is permitted and per-
formed by message passing. In this model they obtain a compact labeling scheme
for ancestry, while keeping the number of messages small. Additional results in
this setting include conversion methods for static labeling schemes [10,11], as
well as specialized distance [11] and routing [12] labeling schemes. See [13] for
experimental evaluation.

Considering the static setting, a natural question is to determine the label
size required to support some, or all, of the functions. Simply concatenating the
labels mentioned yield a O(logn) label size, which is clearly undesired. Labeling
schemes supporting multiple functions? were previously studied for adjacency
and sibling queries. Alstrup et al. [3] proved a logn + 5loglogn label size which
was improved by Gavoille and Labourel [14] to log n + 2loglogn. See Table 1 for
a summary of labeling schemes for forests including the results of this paper.

1.1 Owur Contribution

We contribute several upper and lower bounds for both dynamic and multi-
functional labeling schemes. First, we observe that the naive 2logn adjacency,
siblings and connectivity labeling schemes are suitable for the dynamic set-
ting without the need of relabeling. We then present simple families of inser-
tion sequences for which labels of size 2logn are required, showing that in the
dynamic setting the naive labeling schemes are in fact optimal. The result is
in contrast to the static case, where adjacency labels requires strictly fewer bits

! Throughout this paper we let logn = [log, n] unless stated otherwise.
2 We refer to such labeling schemes as multi-functional labeling schemes.

Dynamic and Multi-Functional Labeling Schemes 143
Table 1. Upper and lower label sizes for labeling trees with n nodes (excluding additive
constants). Routing is reported in the designer-port model [17] and NCA with no pre-
existing labels [5]. Functions marked with * denote non-unique labeling schemes, and
bounds without a reference are folklore. Dynamic labeling schemes are all tight.

[Function [Static Label Size [Static Lower Bound [Dynamic
Adjacency [logn + O(log™ n) [2] logn +1 2logn (Th. 1)
Connectivity |logn + loglogn [3] logn + loglogn [3] 2logn (Th. 1)
Sibling logn + loglogn [15] logn + loglogn [3 2logn (Th. 1)
Ancestry logn + 2loglogn [4] logn + loglogn [3 n [9]

AD/S logn + 2loglogn [16]) |logn + loglogn [3] 2logn (Th. 1)
C/s logn + 2loglogn (Th. 5)|logn + 2loglogn (Th. 6)|3logn (Th. 4)
C/AN logn + 5loglogn (Th. 5)|{logn + 2loglogn (Th. 7)|n [9]

C/AD/S logn + 3loglogn (Th. 5)|logn + 2loglogn (Th. 6)|3logn (Th. 4)
Routing (14 o(1))logn [6] logn + loglogn [3] n (Sec. 3)
NCA 2.772logn [5] 1.008log n [5] n (Sec. 3)
Distance 1/2log”n [7] 1/81og?n [7] n (Sec. 3)
Sibling* logn logn logn
Connectivity*|log n logn logn

C/s* logn + loglogn (Th. 5) |logn +loglogn (Th. 8) |2logn

than both sibling and connectivity. The labeling schemes also reveal an exponen-
tial gap between ancestry and the functions mentioned for the dynamic setting.
In Sec. 3.3 we show a construction of simple lower bounds of £2(n) for adjacency
labeling schemes on various important graph families.

In the context of multi-functional labeling schemes, we show first that 3logn
bits are necessary and sufficient for any dynamic labeling scheme supporting
adjacency and connectivity. The paper’s main technical contribution lies in Th. 6,
where we use a novel technique and prove a lower bound of log n + 2loglog n for
any unique labeling scheme supporting both connectivity and siblings/ancestry.
This lower bound is preceded by a simple upper bound, proving that any label-
ing scheme of size S(n) growing faster than logn can be altered to support
connectivity as well by adding at most loglogn bits. Note that in the case of
connectivity and siblings the upper and lower bounds match. All omitted proofs
appear in [18].

2 Preliminaries

A binary string z is a member of the set {0,1}*, and we denote its size by |z,
and the concatenation of two binary strings z,y by x o y. A label assignment
for a tree T = (V, E) is a mapping of each v € V to a bit string L(v), called
the label of v. Given a tree T rooted in r with n nodes, and let u,v € V. The
function adjacency(v,u) returns true if and only if v and v are adjacent in T3,

3 A node is adjacent to itself.

144 S. Dahlgaard et al.

ancestry(v, u) returns true if and only if u is on the path r ~ v, siblings(v,u)
returns true if and only if 4 and v have the same parent in 7%, routing(v, u)
returns an identifier of the edge connected to u on the path to v, NCA(v,u)
returns the label of the first node in common on the paths u ~~ r and v ~ r,
and distance(v,u) returns the length of the path from v to w. The functions
mentioned previously are also defined for forests. Given a rooted forest F’ with n
nodes, for any two nodes u, v in F' the function connectivity(v,u) returns true
if v and u are in the same tree in F'.

Given a function f defined on sets of vertices, an f-labeling scheme for
a family of graphs G consists of an encoder and decoder. The encoder is an
algorithm that receives a graph G € G as input and computes a label assignment
eq. If the encoder receives G as a sequence of topological events® the labeling
scheme is dynamic. The decoder is an algorithm that receives any two labels
L(v), L(u) and computes the query d(L(v),L(u)), such that d(L(v),L(u)) =
f(v,u). The size of the labeling scheme is the maximum label size. If for all
graphs G € G, the label assignment e« is an injective mapping, i.e. for all distinct
u,v € V(Q), eg(u) # eg(v), we say that the labeling scheme assigns unique
labels. Unless stated otherwise, the labeling schemes presented are assumed to
assign unique labels. Moreover, we allow the decoder to know the label size.

Let G be a graph in a family of graphs H and suppose that an f-labeling
scheme assigns a node v € G the label £(v). If L(v) does not appear in any of
the label assignments for the other graphs in H, we say that the label is distinct
for the labeling scheme over H. This notion will be useful in proving the lower
bounds. All labeling schemes constructed in this paper require O(n) encoding
time and O(1) decoding time under the assumption of a {2(logn) word size RAM
model. See [6] for additional details.

3 Dynamic Labeling Schemes

We first note that the lower bound for ancestry due to Cohen, et. al. also holds
for NCA, since the labels computed by an NCA labeling scheme can decide
ancestry: Given the labels L£(u), £L(v) of two nodes w,v in the tree T, return
true if L£(u) is equal to the label returned by the original NCA decoder, and
false otherwise. Similarly, suppose a labeling scheme for routing® assigns 0 as
the port number on the path to the root. Given £(u), £(v) as before, return true
if routing(L(u), L(v)) # 0 and routing(L(v), L(u)) = 0. Peleg [19] proved that
any f(n) distance labeling scheme can be converted to f(n) + log(n) labeling
scheme for NCA by attaching the depth of any node. Since the depth of a node
inserted can not change in our dynamic setting, we conclude that the lower
bound applies to distance up to additive O(logn) factor.

4 By this definition, a node is a sibling to itself.

5 Cohen et al. defines such a sequence as a set of insertion of nodes into an initially
empty tree, where the root is inserted first, and all other insertions are of the form
“insert node u as a child of node v”. We extend it to support “remove leaf u”, where
the root may never be deleted.

5 Routing in the designer port model [17], in which this assumption is standard.

Dynamic and Multi-Functional Labeling Schemes 145

3.1 Upper Bounds

The following naive adjacency labeling scheme was introduced by Kannan
et al. [1]. Consider an arbitrary rooted tree 7' with n nodes. Enumerate the
nodes in the tree with the numbers 0 through n — 1, and let, for each node v,
Id(v) be the number associated with v. Let parent(v) be the parent of a node
v in the tree. The label of v is L(v) = (Id(v) o Id(parent(v))), and the root is
labeled (0,0). Given the labels £(v), £L(v") of two nodes v and v’, two nodes are
adjacent if and only if either Id(parent(v)) = Id(v") or Id(parent(v')) = Id(v)
but not both, so that the root is not adjacent to itself.

This is also a dynamic labeling scheme for adjacency with equal label size.
Moreover, it is also both a static and dynamic labeling scheme for sibling, in
which case, the decoder must check if Id(parent(v)) = Id(parent(v’)). A labeling
scheme for connectivity can be constructed by storing the component number
rather than the parent id. After n insertions, each label contains two parts, each
in the range [0,n — 1]. Therefore, the label size required is 2log n.

The labeling schemes suggested extend to larger families of graphs. In par-
ticular, the dynamic connectivity labeling scheme holds for the family of all
graphs. The family of k-bounded degree graphs enjoys a similar dynamic adja-
cency labeling scheme of size (k + 1) logn.

3.2 Lower Bounds

We show that 2logn is a tight bound for any dynamic adjacency labeling scheme
for trees. We denote by F,, (k) an insertion sequence of n nodes, creating an initial
path of length 1 < k < n, followed by n — k adjacent leaves to node k — 1 on the
path. The family of all such insertions sequences is denoted F,,. For illustration
see Fig. 1.

Lemma 1. Fiz some dynamic labeling scheme that supports adjacency. For any
1 < k < n, Fo(k) must contain at least n — k distinct labels for this labeling
scheme over F,.

Proof. The labels of F,,(n) are set to P, ... P, respectively. Since the encoder is
deterministic, and since every insertion sequence JF,, (k) first inserts nodes on the
initial path, these nodes must be labeled P; ... Py. Let the labels of the adjacent
leaves of such an insertion sequence be denoted by L¥...LF .

Clearly, L¥ ... LF | must be different from P; ... P,, as the only other labels
adjacent to Py_1 are P,_s and Py, which have already been used on the initial
path. Consider now any node labeled L! of F,(j) for j # k. Assume w.l.o.g
that j > k. Such a node must be adjacent to P;j_; and not to Py_1, as Py is
contained in the path to Pj_;. Therefore we must have L} ¢ {L¥ ... Lk ,}. O

Identical lower bounds are attained similarly for both sibling and
connectivity.

Theorem 1. Any dynamic labeling scheme supporting either adjacency, con-
nectivity, or sibling requires at least 2logn — 1 bits.

146 S. Dahlgaard et al.

Fig. 1. [llustration of F5

Proof. According to Lem. 1, at least n + Z?;;i =n?/2+ O(n) distinct labels
are required to label F,, if adjacency or sibling requests are supported, and the
same applies for F; if connectivity is supported. O

A natural question is whether a randomized labeling scheme could provide
labels of size less than 2logn — O(1). The next theorem, based on Thm. 3.4 in
[9] answer this question negatively.

Theorem 2. For any randomized dynamic labelling scheme supporting either
adjacency, connectivity, or sibling queries there exists an insertion sequence such
that the expected value of the maximal label size is at least 2logn — O(1) bits.

3.3 Other Graph Families

In this section, we expand our lower bound ideas to adjacency labeling schemes
for the following families with at most n nodes: bounded arboricity-k graphs’
Apg, bounded degree-k graphs Ay, planar graphs P and bounded treewidth-k
graphs 7. In the context of (static) adjacency labeling schemes, these families
are well studied [1,2,20,21]. In particular, 7, P, Ay and Aj; enjoy adjacency
labeling schemes of size log n + O(kloglog(n/k)) [20], 2logn + O(loglogn) [20],
L#J + 1 [21], and klogn [21] respectively.

We consider a sequence of node insertions along with all edges adjacent to
them, such that an edge (u,v) may be introduced along with node v if node u

appeared prior in the sequence, and prove the following.

Theorem 3. Any dynamic adjacency labeling scheme for each Az, P and
T3 requires 2(n) bits. Similarly, any dynamic adjacency labeling scheme for
Ay requires klogmn bits.

Proof. Let S be the collection of all nonempty subsets of the integers 1...n—1.
For every s € S, we denote by F,(s) an insertion sequence of n nodes, creating
a path of length n — 1, followed by a single node v connected to the nodes on the
path whose number is a member of s. Such a graph has arboricity 2 since it can
be decomposed into an initial path and a star rooted in v. For each of the |S|
insertion sequences, v’s label must be distinct. We conclude that the number of

" The arboricity of a graph G is the minimum number of edge-disjoint acyclic sub-
graphs whose union is G.

Dynamic and Multi-Functional Labeling Schemes 147

bits required for any adjacency labeling scheme is at least log(]S|) = n — 1. See
Fig. 2 for illustration.

The construction of F,(s) implies an identical lower bound for the family of
planar graphs, as well as interval graphs. By considering all sets s of at most &
elements instead, we get a bound of klogn label size for any adjacency labeling
scheme for Ay, where k is constant. O

Fig. 2. Illustration of F5(s). The dotted lines may or may not appear in the insertion
sequence depending on the element of S chosen.

4 Multi-Functional Labeling Schemes

In this section we investigate labeling schemes incorporating two or more of the
functions mentioned for both dynamic and static labeling schemes.

4.1 Dynamic Multi-functional Labeling Schemes

A 3logn dynamic labeling scheme for any combination of connectivity, adjacency
and sibling queries can be obtained by setting the label of a node v to be (Id(v)o
Id(parent(v)) o component(v)), as described in Sec. 3.1.

We now show that this upper bound is in fact tight. More precisely, we
show that 3logn bits are required to answer the combination of connectivity
and adjacency. Let I,,(j, k) be an insertion sequence designed as follows: First j
nodes are inserted creating an initial forest of single node trees. Then k nodes
are added as a path with root in the jth tree. At last, n — j — k adjacent path
leaves are added to the second-to-last node on the path. For a given n we define
I, as the family of all such insertion sequences.

Lemma 2. Fiz some dynamic labeling scheme that supports adjacency and con-
nectivity requests. For any 1 < j+k < n, I,(k) must contain at leastn — j — k
distinct labels for this labeling scheme over I,,.

According to this Lemma, at least Z;:ll ol = — k= tn® - O(n?)
distinct labels are required to label the family I,,. We can thus conclude.

Theorem 4. Any dynamic labeling scheme supporting both adjacency and con-
nectivity queries requires at least 3logn — O(1) bits.

The same family of insertion sequences can be used to show a 3logn —
O(1) lower bound for any dynamic labeling scheme supporting both sibling and
connectivity queries. Furthermore, similarly to Thm. 2, the bound holds even
without the assumption that the encoder is deterministic.

148 S. Dahlgaard et al.

4.2 Upper Bounds for Static Multi-functional Labeling Schemes

As seen in Thm. 4, the requirement to support both connectivity and adjacency
forces an increased label size for any dynamic labeling scheme. In the remainder
of the paper we prove lower and upper bounds for static labeling schemes that
support those operations, both for the case where the labels are necessarily
unique, and for the case that they are not. From hereon, all labeling schemes
are on the family of rooted forests with at most n nodes. We show that most
labeling schemes can be altered to support connectivity as well.

Theorem 5. Consider any function f of two nodes in a single tree on n nodes.
If there exists an f-labeling scheme of size S(n), where S(n) is non-decreasing
and S(a) — S(b) > loga —logb — O(1) for any a > b. Then there exists an f-
labeling scheme, which also supports connectivity queries of size at most S(n) +
loglogn + O(1).

Proof. We will consider the label L(v) = (C o L o sep) defined as follows. First,
sort the trees of the forest according to their sizes. For the ith biggest tree we set
C = i using log bits. Since the tree has at most n/i nodes, we can pick the label
L internally in the tree using only S(n/i) bits. Finally, we need a separator, sep,
to separate C' from L. We can represent this using loglogn bits, since ¢ uses at
most log n bits.

The total label size is log i+ S(n /i) + loglogn+ O(1) bits, which is less than
S(n) + loglogn + O(1) if S(n) — S(n/i) > logi — ¢ for some constant ¢. Since
f is a function of two nodes from the same tree, this altered labeling scheme
can answer both queries for f as well as connectivity. It is now required that
any label assigned has size exactly S(n)+loglogn bits, so that the decoder may
correctly identify sep in the bit string. For that purpose we pad labels with less
bits with sufficiently many 0’s. The decoder can identify C' in O(1) time. O

As a corollary, we get labeling schemes of the sizes reported in Table 1.

4.3 Lower Bounds for Static Multi-functional Labeling Schemes

We now show that the upper bounds implied by Thm. 5 for labeling schemes
supporting siblings and connectivity are indeed tight for both the unique and
non-unique cases. To that end we consider the following forests: For any integers
a,b,n such that ab | n denote by F,,(a,b) a forest consisting of a components
(trees), each with b sibling groups, where each sibling group consist of - nodes.
Note that n < |F,(a,b)| < 2n since we add one auxiliary root per component.
Our proofs work as follows: Firstly, for any two forests F,(a,b) and F,(c,d)
as defined above, we establish an upper bound on the number of labels that
can be assigned to both F,(a,b) and F,(c,d). Secondly, for a carefully chosen
family of forests F),(a1,b1), ..., F,(ak, b), we show that when labeling F, (a;, b;)
at least a constant fraction of the labels has to be distinct from the labels of
F.(a1,b1),..., Fu(ai—1,b;—1). Finally, by summing over each F,(a;,b;) we show

Dynamic and Multi-Functional Labeling Schemes 149

that a sufficiently large number of bits are required by any labeling scheme
supporting the desired queries.

Our technique simplifies the boxes and groups argument of Alstrup et al. [3],
and generalizes to the case of two nested equivalence classes®, namely connec-
tivity and siblings.

Lemma 3. Let F,,(a,b) and F,(c,d) be two forests such that ab > cd. Fix some
unique labeling scheme supporting both connectivity and siblings, and denote the
set of labels assigned to F,(a,b) and F,(c,d) as e; and es respectively. Then

n

ler Nez| < min(a, c¢) - min(b, d) - -

Proof. Consider label sets s; and sy of two sibling groups from F,(a,b) and
F,(c,d) respectively for which |s; N s3] > 1. Clearly, we must have |s; N s3] <
min([s1], |s2]) = J%. Furthermore, no other sibling group of F,(a,b) or Fy,(c,d)
can be assigned labels from s; U s, as the sibling relationship must be main-
tained. We can thus create a one-to-one matching between the sibling groups
of F,(a,b) and F,(c,d), that have labels in common (note that not all sibling
groups will necessarily be mapped). Bounding the number of common labels thus
becomes a problem of bounding the size of this matching. In order to maintain
the connectivity relation, sibling groups from one component cannot be matched
to several components. Therefore at most min(b, d) sibling groups can be shared
per component, and at most min(a,c) components can be shared. Combining
this gives the final bound of min(a, ¢) - min(b, d) - . O

Lemma 4. Let F,(a1,b1),..., Fy(a;,b;) be a family of forests with a;-by < ... <
a; - b;. Assume there exists a unique labeling scheme supporting both connectivity
and siblings, and let e; be the set of labels assigned by this scheme to the forest
F.(aj,b;). Assume that the sets e1,...,e;_1 have been assigned. The number of
distinct labels introduced by the encoder when assigning e; is at least

i—1
n— Zmin(a]—, a;) - min(b;, b;) -
j=1

n
ai-bi'

We demonstrate the use of Lem. 4 by showing the following known result [3].

Warm-up. Any static labeling scheme for connectivity queries requires at least
logn + loglogn — O(1) bits.

Proof. Consider the family of logs n forests F, (3%, 1), F,,(3%,1),..., F, (38" 1).
This family is demonstrated in Fig. 3 for n = 9. Two nodes are siblings if and only
if they are connected in this family. Therefore we can use Lem. 4 even though
we want to show a lower bound for only connectivity. Note, that in Fig. 3 the
second forest can at most reuse 3 labels from the first, and the third can at most
reuse 4 from the two previous.

8 See [15] for definitions and further discussion.

150 S. Dahlgaard et al.

Let e; denote the label set assigned by an encoder for F),(37,1). We assume
that the labels are assigned in the order ey, ..., €log, n- By Lem. 4 the number
of distinct labels introduced when assigning e; is at least

j—1
nfnZSi*j >n/2.
i=0

It follows that labeling the logs n forests in the family requires at least £2(nlogn)
distinct labels. O

qe0 Q00000000

Fo(9,1)

1
L

Q
O
O
Q
9)
0)
O

Fig. 3. The family of forests Fy(1,1), Fo(3,1), F5(9,1). Nodes inside the same box are
connected and siblings. Note that component roots have been omitted.

We are now ready to prove the main theorem of this section.

Theorem 6. Any unique static labeling scheme supporting both connectivity and
sibling queries requires labels of size at least logn + 2loglogn — O(1).

Proof. Fix some integer x, and assume that n is a power of . We consider the
family of forests F,(1,1), F,(z,1), F,(1,2), F,(22,1), Fu(x,z), F,(1,2%),...,
F, (1,282 ™),

Let €2 denote the label set assigned to F,(z%, z°) by an encoder. We assign
the labels in the order eJ, e, e}, e9,el,.. ., egog’ ". Thus, when assigning e® we
have already assigned all label sets e? with c+d < a-+bor c+d = a+ b and
d < b. By Lem. 4, the number of distinct labels introduced when assigning €® is

at least

b—1
n— § Z:_b . mmin(a,c)-}—min(b,d) + E Z:-b . 1'a+d
T T

c+d<a-+b d=0
c,d>0
This counting argument is better demonstrated in Fig. 4. In the figure, we are
concerned with assigning the labels in 2. The grey boxes represent the label sets
already assigned, and the right-side figure shows the fractions of n that each set
e? at most has in common with e2. Observe that we can split the above sum
into three cases as demonstrated in the figure: If ¢ < a and d < b the bound
supplied by Lem. 3 is 2¢972~b_ Otherwise, either ¢ > a or d > b, but not both.
If ¢ > a, recall that d < b so the bound is =%, For d > b the bound is z¢~¢

Dynamic and Multi-Functional Labeling Schemes 151

by the same argument. Applying these rules, we see that the number of distinct
labels introduced is at least

a b b—1 a—2

n—n- (ZZI‘CM“Z’ +Z(bfd) b +Z(a7 c) -xca> +n
c=0d=0 d=0 c=0
2 +z+2 3r+1

Spop. (2 T2 _—n—_n. >

=non ((x—l)?)*” T ey

Note that we add n, as we have also subtracted n labels for the case (¢, d) = (a, b).

By setting x = 6 we get that the encoder must introduce 6n/25 distinct
labels for each e%. Since we have @(log® n) forests, a total of £2(nlog?n) labels
are required for labeling the family of forests. Each forest consists of no more

than 2n nodes, which concludes the proof. O
b+1 a-1
1 1
ef|es|ed|ed| et x4x3|x2|x?| -
edlellet|el a+1| |y 3|x2|x?| -
edlelfe3 x2[x|e3
el|e} X st
el x2

Fig. 4. Demonstration of the label counting for e2

The same proof technique is used to prove the following theorems.

Theorem 7. Any unique static labeling scheme supporting both connectivity and
ancestry queries requires labels of size at least logn + 2loglogn — O(1).

Theorem 8. Any static labeling scheme supporting both connectivity and sibling
queries requires at least log n+loglogn—O(1) bits if the labels need not be unique.

Proof. Assume w.l.o.g. that n is a power of 3. Consider the family of logsn
forests F,(1,n), F,(3,1n/3), F,(3%,n/3%),..., F,(3"°83" 1). Since each sibling
group of the forest F},(3%,n/3%) has exactly one node, we note that no two nodes
are siblings. Thus each label of the forest has to be unique, since we have assumed
that a node is sibling to itself. We can thus use Lem. 3 as if we were in the unique
case for this family of forests.

Let e; denote the label set assigned by an encoder for F,(37,n/37). We
assume that the labels are assigned in the order ey, ..., €0, n- By Lem. 4 the
number of distinct labels introduced when assigning e; is at least

j—1
n— nz3i*j >n/2.
i=0

152 S. Dahlgaard et al.

It follows that when labeling each of the logs n forests in the family, any encoder
must introduce at least n/2 distinct labels, i.e. £2(nlogn) distinct labels in total.
The family consist of forests with no more than 2n nodes, which concludes the
proof. O

5 Concluding Remarks

We have considered multi-functional labels for the functions adjacency, siblings
and connectivity. We also provided a lower bound for ancestry and connectivity.
A major open question is whether it is possible to have a label of size logn +
O(loglogn) supporting all of the functions. It seems unlikely that the best known
labeling scheme for ancestry [4] can be combined with the ideas of this paper.
In the context of dynamic labeling schemes, if arbitrary insertion is permitted,
neither adjacency nor sibling labels are possible. All dynamic labeling schemes
also operate when leaf removal is allowed, simply by erasing the removed label.

References

1. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. STAM Journal
On Discrete Mathematics, 334—343 (1992)

2. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: FOCS 2002, pp. 53-62 (2002)

3. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
SIAM J. Discret. Math. 19(2), 448-462 (2005)

4. Fraigniaud, P., Korman, A.: An optimal ancestry scheme and small universal
posets. In: STOC 2010, pp. 611-620 (2010)

5. Alstrup, S., Halvorsen, E.B., Larsen, K.G.: Near-optimal labeling schemes for near-
est common ancestors. In: SODA, pp. 972-982 (2014)

6. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1-10 (2001)

7. Peleg, D.: Proximity-preserving labeling schemes. Journal of Graph Theory 33(3),
167-176 (2000)

8. Wu, X., Lee, M.L., Hsu, W.: A prime number labeling scheme for dynamic ordered
xml trees. In: Proceedings of the 20th International Conference on Data Engineer-
ing, pp. 66-78. IEEE (2004)

9. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic xml trees. SIAM Journal on
Computing 39(5), 2048-2074 (2010)

10. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks.
Theory of Computing Systems 37(1), 49-75 (2004)

11. Korman, A.: General compact labeling schemes for dynamic trees. Distributed
Computing 20(3), 179-193 (2007)

12. Korman, A.: Improved compact routing schemes for dynamic trees. In: PODC
2008, pp. 185-194. ACM (2008)

13. Rotbart, N., Vaz Salles, M., Zotos, I.: An evaluation of dynamic labeling schemes
for tree networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS,
vol. 8504, pp. 199-210. Springer, Heidelberg (2014)

14. Gavoille, C., Labourel, A.: Distributed relationship schemes for trees. In:
Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 728-738. Springer,
Heidelberg (2007)

15.

16.

17.

18.

19.

20.

21.

Dynamic and Multi-Functional Labeling Schemes 153

Lewenstein, M., Munro, J.I., Raman, V.: Succinct data structures for representing
equivalence classes. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and
Computation. LNCS, vol. 8283, pp. 502-512. Springer, Heidelberg (2013)
Dahlgaard, S., Knudsen, M.B.T., Rotbart, N.: Improved ancestry labeling scheme
for trees, arXiv preprint arXiv:1407.5011

Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757-772. Springer, Heidelberg
(2001)

Dahlgaard, S., Knudsen, M.B.T., Rotbart, N.: Dynamic and multi-functional label-
ing schemes, arXiv preprint arXiv:1404.4982

Peleg, D.: Informative labeling schemes for graphs. Theor. Comput. Sci. 340(3),
577-593 (2005)

Gavoille, C., Labourel, A.: Shorter implicit representation for planar graphs and
bounded treewidth graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 582-593. Springer, Heidelberg (2007)

Adjiashvili, D.,; Rotbart, N.: Labeling schemes for bounded degree graphs. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part
II. LNCS, vol. 8573, pp. 375-386. Springer, Heidelberg (2014)

http://arxiv.org/abs/1407.5011
http://arxiv.org/abs/1404.4982

Data Structures and Algorithms I

Hashing and Indexing: Succinct Data
Structures and Smoothed Analysis

Alberto Policriti’'2 and Nicola Prezza!(®)

! Department of Mathematics and Informatics,
University of Udine, Udine, Italy
prezza.nicola@spes.uniud.it

2 Istituto di Genomica Applicata, Udine, Italy

Abstract. We consider the problem of indexing a text 7' (of length n)
with a light data structure that supports efficient search of patterns P
(of length m) allowing errors under the Hamming distance. We propose a
hash-based strategy that employs two classes of hash functions—dubbed
Hamming-aware and de Bruijn—to drastically reduce search space and
memory footprint of the index, respectively.

We use our succinct hash data structure to solve the k-mismatch
search problem in 2nlogo + o(nlogo) bits of space with a random-
ized algorithm having smoothed complexity O((20)* (logn)* (logm+£)+
(occ + 1) - m), where o is the alphabet size, occ is the number of occur-
rences, and ¢ is a term depending on m, n, and on the amplitude € of
the noise perturbing text and pattern. Significantly, we obtain that for
any € > 0, for m large enough, £ € O(logm): our results improve upon
previous linear-space solutions of the k-mismatch problem.

1 Introduction

Indexing is a very efficient choice when one is interested in rapidly searching
and/or retrieving from a text all the occurrences of a large number of patterns. In
particular, indexing large texts for inexact pattern matching is a problem that is
lately receiving much attention, due to the continuously increasing rate at which
data is produced in areas such as bioinformatics and web information retrieval,
where, moreover, is critical to allow (a limited amount of) mismatches while
searching. Techniques based on the Burrows-Wheeler transform are the gold
standard when dealing with large text indexing; however, BWT-based indexes
offer a natural support for exact string matching only. As a consequence, to
deal with inexact search, simple space efficient strategies such as backtracking,
g-grams sampling, and hybrid techniques are usually employed. Letting m, k,
and o be the query length, the maximum number of allowed errors and the
alphabet size, respectively, backtracking techniques have the disadvantage that
query times rapidly blow-up with a factor of o*m* and are thus impractical for
large patterns and number of errors (a backtracking strategy on the FM index
is implemented in the tool Bowtie [1]). q-gram based strategies do not suffer of
this exponential blow-up but their usage is limited to a small number of errors,

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 157-168, 2014.
DOI: 10.1007/978-3-319-13075-0-13

158 A. Policriti and N. Prezza

due to the fact that q-grams are searched without errors (SOAP2 [2] implements
a g-gram strategy on the FM index). Hybrid strategies combine the two
approaches and are often able to obtain better time bounds without restrictions.
An example of this kind (yet requiring ©(n logn) bits of space, where n is the text
length) is the hash-based algorithm rNA presented in [3,4] which employs the
notion of Hamming-aware hash function, to be discussed below. Other solutions
in the literature reach a time complexity often linear in the query length, at the
price of significant space consumption. Letting n be the text length, the index
of Cole et al. in [5] solves the problem in time O((logn)*loglogn + m + occ),
but has the disadvantage of requiring O(n(logn)**!) bits of space, often too
much to be of practical interest. Better space requirements have been obtained
at the price of search slow-down, with the solutions of Chan et al. in [6], where
the authors propose an index requiring O(nlogn) bits of space (O(n) words)
and O(m + occ + (clogn)**+1 loglogn) query time or, alternatively, O(n) bits
of space and O((m + occ + (clogn)**+2) loglogn)log®n) query time (where
¢ is a constant and € > 0). The above bounds concern worst-case analysis.
If average-case analysis is used, several interesting results have been proposed
which improve upon worst-case bounds. The metric index of Chéavez et al. pre-
sented in [7] exploiting the fact that the employed distance defines a metric space,
was the first to remove the exponential dependency on the number of errors. This
solution requires O(m!'+V2+n) bits of space and has expected O(m!+V2+e 4 occ)
query time. Maafl and Nowak in [8] propose an index requiring O(n logk n) bits
of space and O(m + occ) average query time (yet assuming a constant number of
errors). Finally, the index of Navarro and Baeza-Yates proposed in [9] requires
O(nlogn) bits of space and has O(n* logn) average retrieval time, where A < 1
if k < m(1—e/y/o) and e is the natural logarithm base.

When space is a concern in the design of the data structure, the sheer size
of such classic indexes as hash tables [3,10], suffix trees [11] or suffix arrays [12],
soon becomes prohibitive. Succinct, compressed, and self indexes (see [13] for
an accurate survey on the topic) are powerful notions that address and solve
most of these problems in an efficient and elegant way. A text index is called
succincet if it requires nlogo + o(nlogo) bits of space[l4], compressed if the
space is proportional to that of the compressed text, and self indez if the index
is compressed and does not require the original text to be stored in memory [13].

Suffix trees and suffix arrays can be implicitly represented in succinct or
compressed space with such techniques as the FM index. Our first contribution
shows that even hash indexes admit such a succinct representation. To obtain
this result, we introduce a class of hash functions (namely, de Bruijn hash func-
tions, that are homomorphisms on de Bruijn graphs) and use it to reduce space
occupancy of hash-based text indexes from ©(nlogn) to nlogo+o(nlogo) bits,
with only a O(logm) slow-down in the lookup operation.

We conclude illustrating the use of our proposed succinct hash data struc-
ture to describe a randomized algorithm for the k-mismatch problem operating
in linear space and having smoothed complexity [15] O((20)*(logn)*(logm +
€) + (occ + 1) - m) , where £ = (mn)'Tloe2¢ ¢ = (14 (1 — 2¢)™/1og.(mm) /2,

Hashing and Indexing: Succinct Data Structures 159

is a term which depends on m, n, as well as on the amplitude € of the noise
perturbing text and pattern. Smoothed analysis [15,16] is a novel tool which
interpolates continuously—through the parameter e—between worst and aver-
age case analysis, and therefore represents a more powerful tool than standard
average case analysis which is often used to analyse the performances of ran-
domized algorithms. Most importantly, we show that for any € > 0, if m is large
enough, then £ € O(logm) and can, consequently, be ignored in the asymptotic
analysis. Alternatively, to make our bound comparable with average-case results
present in literature, one can set ¢ = 0.5 and obtain the standard average-case
complexity O((20)*(logn)* logm + (occ + 1) - m).

Our solution shows that, introducing randomization, it is possible to improve
upon previous known upper bounds for the k-mismatch problem in linear space.

Our data structure has been implemented (among other tools) in the C++
BWTIL library (https://github.com/nicolaprezza/BWTIL) and has been inte-
grated in the short-string alignment package ERNE, to be used in DNA analysis
and freely downloadable at: http://erne.sourceforge.net

2 Notation

Throughout this paper we will work with the alphabet X' = {0, ...,0—1}, 0 = 27,
r > 0, and with hash functions of the form A : XY™ — X" mapping length-m
X-strings to length-w XY-strings, where m > w and wr is considered the size of
the memory-word (i.e. we assume that ¢ — 1 fits into the computer memory-
word). If necessary, we will use the symbol "} instead of h when we need to
be clear on h’s domain and codomain sizes. Given a string P € Y™, the value
h(P) € X% will be also dubbed the fingerprint of P (in X*). With T € X"
we will denote the texzt that we want to index using our data structure. 77 will
denote TTi,...,i + j — 1], i.e. the j-th prefix of the i-th suffix of 7. A hash data
structure H for the text T" with hash function h, will be a set of ordered pairs
(an index) such that H = {(h(T]"),i) : 0 < i < n—m}, that can be used to store
and retrieve the positions of length-m substrings of T' (m is therefore fixed once
the index is built). A lookup operation on the hash H given the fingerprint h(P),
will consist in the retrieval of all the positions 0 < i < n such that (h(P),i) € H
and cases where (h(P), i) € H but T # P will be referred to as false positives.

@ is the exclusive OR (XOR) bitwise operator. a @ b, where a,b € X, will
indicate the bitwise XOR between (the bit representations of) a and b and,
analogously, « @ y, where z,y € X" will indicate the bitwise XOR between
(the bit representations of) the two words = and y. dp(z,y) is the Hamming
distance between z,y € X™. Pr(E) is the probability of the event E. Be(p) is
the bernoullian distribution with success probability p. If X is a random variable
and f(X) a function of X, following [16], E[f(X)] is the expected value of the

random variable f(X). If f(X) = X we simply write E[X]. Logarithms are base
2 if not differently specified.

https://github.com/nicolaprezza/BWTIL
http://erne.sourceforge.net

160 A. Policriti and N. Prezza

3 de Bruijn Functions and the dB-Hash Data Structure

In this section we present a technique that can be used to represent succinctly
a hash index, using homomorphisms on de Bruijn graphs as hash functions. As
we said in the introduction, even though hash indexes offer fast access times,
their space requirements are usually quite high (©(nlogn) bits). Our proposed
solution consists in “compacting” the fingerprints in a text of size n — m 4+ w
that can then be indexed in succinct space using any of the popular techniques
available in the literature. Central in our proposal is the introduction of a class
of hash functions whose values on the text m-substrings overlap.

Definition 1. Let ¥ = {0,...,0 — 1}. We say that a function h : ™ — X% is
a de Bruijn hash function if and only if, for every pair of strings o1,09 € X™

oi[l,...,m —1] = 02[0,...,m — 2] = h(o1)[1,...,w — 1] = h(02)[0, ..., w — 2].

This property guarantees that if two strings differ only for one character
shift, then this happens also for their hash values. With the following definition
we exhibit a de Bruijn hash function that will play an important role in the rest
of our work:

Definition 2. Let ¥ = {0,...,2" — 1},r > 0, P € X™. With hg : X™ — X",
w < m we denote the hash function defined as

[m/w]—2
he(P)=| @ Pu|oPi .,
=0

Theorem 1. hg is a de-Bruijn hash function.

Proof. The key observation is that a character shift in P produces a shift in each
of the w-blocks XOR-ed by hg.

It is easy to show that de Bruijn hash functions correspond to homomor-
phisms on de Bruijn graphs (with set of nodes X and X*): intuitively, let G,,
and G, be two de Bruijn graphs with set of nodes 3™ and X%, respectively. Two
nodes z,y € X™ share an edge if and only if z[1,...,m—1] = y[0, ..., m — 2] (simi-
larly for G.,). Then, applying a de Bruijn hash function 7/ to « and y, we obtain
h(z), h(y) € X% such that (by Definition 1) h(x)[1,...,w — 1] = h(y)[0, ..., w — 2],
i.e. h(z) and h(y) share an edge in G,,.

Given a de Bruijn hash function 7 h : ™ — X% we can naturally “extend”
it to another de Bruijn hash function ,,_,, +h : X" — X"~ operating on
input strings of length n > m as described in the following definition.
Definition 3. Given ""h : ™ — X% de Bruijn hash function and n > m, the
hash value of ,,_,,.wh on T € X", is the unique string ,_,,, wh(T) € X"—m*w
such that:

s ()i ooy w — 1] = Th(Ti, ...i + m — 1]),

for every 0 <i<n—m.

Hashing and Indexing: Succinct Data Structures 161

Since ',k univocally determines ,, ., +h and the two functions coincide on the
common part X of their domain, in what follows we will simply use the symbol
h to indicate both. Notice that the hash value A(T) can be trivially built in
O(mn/w) time exploiting Definition 3. However, particular hash functions may
permit more efficient algorithms: the hash function hg defined in Definition 2,
in particular, can be shown to have an optimal O(n) time algorithm of this kind.

From Definitions 1 and 3 we can immediately derive the following important
property:

Lemma 1. Ifh is a de Bruijn hash function, n > m, and P € X™ occurs inT €
X™ at position i, then h(P) occurs in h(T) at position i. The opposite implication
does not (always) hold and we will refer to such cases as false positives.

On the ground of Lemma 1 we can propose, differently from other approaches,
to build a succinct index over the hash value of the text, instead of building
it over the text. A crucial aspect is that this can be done while preserving our
ability to locate substrings in the text, by simply turning our task into locating
fingerprints in the hash of the text. We name our data structure a dB-hash.

3.1 Implementing the dB-Hash Data Structure

In order to create our dB-hash data structure, we build a succinct (nlogo +
o(nlog o) bits) index over the hash h(T') of the text, augmenting it with fur-
ther (light) structures described below. The problem of building a succinct—or
compressed—index of a text has been extensively discussed in literature (see
for example [17-19]), so here we omit the unnecessary details. Notice that, for
reasons discussed in detail in section 4.3, h(T) could be very hard to compress.
For this reason, here we present an uncompressed (yet succinct) version of our
index. Briefly, our structure is an uncompressed FM index based on wavelet
trees (similar to the one proposed in [19]). In our structure, suffix array pointers
are sampled every v = log'™n/logo positions of h(T), n > 0 (as described
in [17]) to reach o(nlog o) bits of space and O(vloga) = O(log"™ n) time for
the location of a pattern occurrence. This index supports search of a fingerprint
fe X% in O(wlogo) time (w backward search steps, each of cost log o).

With a lookup on the dB-hash we indicate the operation of retrieving the
interval in h(T)PWT corresponding to occurrences of the searched fingerprint.
Since O(wlog o) cost for the lookup operation is far from the O(1) cost guaran-
teed by a standard hash, we choose to speed-up this operation augmenting the
structure with an auxiliary hash having overall memory occupancy of n/logn
bits. The auxiliary hash is used to record the results of the backward search
algorithm (intervals on the BWT) on all the strings of length wgu, < w. A
lookup operation on the dB-hash is then implemented with an initial lookup—
on the auxiliary hash—of the wg,,-length suffix of the pattern’s fingerprint
(cost O(1)) followed by backward search on the remaining portion of h(P) (cost
O ((w — Waug) log o). The n/log n bits constraint on the auxiliary hash size lim-
its wauz to be wayy = log, n — 2log, logn, so a lookup operation on our index
requires O(w —log, n+2log, logn) backward search steps. In section 4.3 we will

162 A. Policriti and N. Prezza

show that this auxiliary structure asymptotically reduces the cost of a lookup
operation from O(logn) to O(logm).

Summing up, the dB-hash data structure is constituted by a succinct index
over h(T) augmented with an auxiliary hash of size n/logn bits. This amounts
to an overall space occupancy of nlog o + o(nlog o) bits: the index! is succinct.

4 de Bruijn Hash for the k-Mismatch Problem

The k-mismatch problem asks to find all occurrences up to k errors (under the
Hamming distance) of a given pattern P in a given text 7T'. In this section we
use the results of [3,4] and Section 3 to describe an algorithm for this problem
having low smoothed complexity while requiring only linear space for the index.

4.1 Squeezing the Search Space: Hamming-Aware Functions

The core of our searching procedure is based on the algorithm rNA (Vezzi
et al. [3], Policriti et al. [4]), a hash-based randomized numerical aligner based on
the concept of Hamming-aware hash functions. Hamming-aware hash functions
are particular hash functions designed to “squeeze” the k-radius Hamming ball
centered on a pattern P, to a O(k)-radius Hamming ball centered on the hash
value h(P) of P. This feature allows to search much more efficiently, reducing
search space size from O(m*) to O(w*) = O((logn)*). More formally:

Definition 4. A hash function h is Hamming-aware if there exist

— a set Z(k) C X% such that |Z(k)| € O(cFw*), for some constant ¢, and
— a binary operation ¢ : X x X" — X computable in O(w) time,

such that if P € X™ then the following inclusion holds:
{h(P") : PPeX™ dy(P,P)<k}yC{h(P) ¢z : z€ Z(k)} (1)

Given a query P, the algorithm rNA computes its fingerprint and efficiently
retrieves all the fingerprints of strings P’ such that dg (P, P’) < k. This is done
computing h(P) ¢ z, for z € Z(k) and searching the index for each one of them.

Our search algorithm will have an overall structure that remains essentially
the same described in [3] and [4]. In order to couple the rNA technique with the
use of our proposed dB-hash, we only need to prove the existence of de Bruijn
hash functions satisfying the Hamming awareness condition. The following the-
orem shows that our exclusive-or based function is a possible solution:

Theorem 2. The de Bruijn hash function hg defined in Definition 2 is a
Hamming-aware hash function. In particular:

! Notice that this space is required to store the succinct hash index only; checking
for false positives requires also the storage of the text, for nlogo bits of additional
space consumption.

Hashing and Indexing: Succinct Data Structures 163

— The binary operation ¢ for hg is ®.
~ Z(k) = {he(P1) @ hgy(Ps) : dg(Py, Py) < k, P1, Py € X™} has O((20w)¥)
elements.

Proof. First, it can be proved that representing hg by a matrix (notice that hg
is a linear map), it has at most 2w — 1 distinct columns. The claim then follows
from the fact that the elements of Z(k) can be built XOR-ing together at most
k columns of hg.

Z(k) needs not to be explicitly stored in memory. Instead, we can compute
each z € Z(k) in O(1) time on-the-fly during search, exploiting the following
tree representation 7 (k) of Z(k). Let v be a node of 7 (k) with I(v) € X" the
label of v. The root r is such that I(r) = 0“. Each node v in 7 (k) has |Z(1)]
children v(0), ...,v(|Z(1)| — 1), where I(v(i)) = l(v) & Z(1)[i] (Z(j)[i] being the
i-th element in the set Z(j)). The height of 7 (k) is k: as a consequence, its
size (number of nodes) is O((20w)*). It can be shown that, if depth(v) = i
then l(v) € Z(i). Conversely, if z € Z(i) then there is at least one node v of
T (k) such that I(v) = z and depth(v) < i. T(k) can be dfs-visited during the
search memorizing only the set Z(1) (O(cwlogo) bits) and, for each node v in
the current path, its label [(v) (wlogo bits) and a counter on the elements of
Z(1). This representation does not penalize performances and has a total space
consumption of O(kwlogo + owlogo) bits.

4.2 The dB-rNA Algorithm

Let us briefly describe and analyse our algorithm, putting together the results
presented throughout the paper to tackle the k-mismatch problem. We name our
algorithm dB-rNA (de Bruijn randomized numerical aligner).

Given a pattern P, the algorithm computes its fingerprint hg(P) (O(m)
steps) and, for each element z in Z(k), it executes a lookup in position hg,(P) @
z of the dB-hash data structure (O(w — log, n + 2log, logn) steps for each
lookup). Each lookup is followed by some BWT-to-text coordinate conversions
(O(log' ™ n) time for each entry in position he(P)@ 2 of the dB-hash). For each
text coordinate ¢ obtained in the previous step, the algorithm compares then
the pattern with the text substring 77" to detect false positives (O(m) for each
text position). The space required for the execution is that of the dB-hash data
structure (nlogo + o(nlog o) bits) plus that of the plain text (nlogo bits).

4.3 Complexity Analysis of the Algorithm

In order to study the complexity of our algorithm we need to establish an upper
bound on the expected collision lists length in the hash table. To accomplish this
task we chose to use smoothed analysis of D. A. Spielman and S. Teng [15], a tool
that has already been used in previous works for the analysis of string matching
algorithms—see [20]. Smoothed analysis aims at explaining the behavior of algo-
rithms in practice, where often standard worst and average case analysis do not

164 A. Policriti and N. Prezza

provide meaningful bounds (see, for example, [16]). The key observation moti-
vating smoothed analysis is that, in practice, data is firstly generated by a source
and then perturbed by random noise (for example channel noise in communi-
cation theory or random genetic mutations in bioinformatics). While studying
complexity, the former step translates in the choice of a worst-case instance (as in
worst-case analysis) and the latter in the computation of an expected complexity,
with the noise being the source of randomness (as in average-case analysis). As
a by-product, smoothed analysis does not require to make assumptions—often
hard to motivate—on the distribution of input data.

In this section we first use smoothed analysis theory to give a (rather general)
result relating the presence of random noise perturbing text and pattern to the
expected collision lists length in the hash table. Our results are general and
apply to any hash function with the property of being a linear map between
2™ and X" seen as vector spaces. Our bounds are then used to compute the
expected hash load distribution induced by hg and, consequently, the smoothed
complexity of our algorithm.

Smoothed Analysis of Hashing with Linear Maps. Here we focus on hash
functions h that are linear maps between XY™ and X% seen as vector spaces.
We use the same symbol h to indicate also the characteristic matrix h € X**™
associated with the linear map h; the specific interpretation of the symbol h
will be clear from the context. Even though our results could be stated in full
generality with respect to X = Z, and sum modulo o, for simplicity, we will give
them for the case X' = Zs with the corresponding sum operator being &. One of
the advantages of this choice is that, in practice, fingerprints can be manipulated
in time O(1), since most of the modern computer architectures provide bitwise
XOR operator implemented in hardware. Let

On(T,P) = |{i : H(T"™) = h(P), 0 < i < n—m},

be the number of text substrings of length m mapped by h to the value h(P),
i.e. the length of the collision-list in position h(P).

In smoothed analysis, usually, the (whole) problem instance is considered to
be perturbed. In our case an instance is the query pair (T, P) constituted by
the text T € X™ (to be indexed) and the pattern P € X™ (to be searched in
T). Let 7 € X and m € X™ be the random noise vectors perturbing the text
and the pattern, respectively. T=T&®7and P= P& are the perturbed text
and the perturbed pattern, respectively. 7; and 7;, 0 < i <mn, 0 < j < m, are
independent and identically distributed as Be(e), with 0 < e¢ < 0.5. Adopting
a notation similar to the one introduced in [15,16], we define the smoothed
hash-load distribution induced by A : 2™ — X" on texts of length n to be

Smoothedf (n) = reshax TEW[On(T, P) | (2)

Hashing and Indexing: Succinct Data Structures 165

We will first work with linear maps h : XY™ — X" such that Z;”:_Ol hij <

1 for all j = 0,...,m — 1, and define t;, = izorgiriil {Z;nzgl hij} and ¢, =

(1 + (1 —2¢)t) /2. The following theorem holds.

Theorem 3. Smootheds (n) < n(cy)®.

Proof. The proof is based on an analysis of the @ of bernoullian r.v.’s, using the
hypotheses on the number of 1’s on rows and columns.

A weaker bound can be obtained on a a more general linear map h by a
simple transformation.

Corollary 1. Given h: X™ — X% et h' be the linear map defined as

/ hijif Yty hij <1 , ,
g i= < <)
i {0 otherwise » Osi<w, 0<j<m

Then, Smootheds (n) < n(cp)™.

Since ¢y and t;,, are univocally determined from h, when clear from the context
we will denote them simply by ¢ and ¢.

In case of a more general alphabet X' = {0,...,2" — 1}, simply considering a
X -digit as a group of r > 0 consecutive bits and h as a matrix of size wr x mr
with elements in Zo, the previous bound becomes:

Corollary 2. Smoothed; (n) < n2™ logz ¢ — pgwlogs e,

As expected this bound interpolates, through the parameter €, between worst-
case and average-case analysis: if € = 0 (absence of noise) then o*1°82¢ = 1 and
we obtain the worst-case analysis Smoothedf (n) < n. If e = 0.5 (uniform noise)
then 0%1°82¢ = ¢=% and we obtain Smootheds (n) < no~": the expected hash
load induced by a uniform random text (as predicted by average-case analysis).

Analysis of the Algorithm. The smoothed complexity of the dB-rNA algo-
rithm is defined as (see [16]):

Smootheng_rNA (n, m) = TGEI}},aPXGZ'm 7',E7T[%B—TNA(<T? ﬁ>) } (3)

Using Corollary 2 and the definition of hg the following lemma can be proved.
Lemma 2. Smoothedj_(n) € O (nowlos2¢) where ¢ = (14 (1 — 2¢)™/*) /2.

Proof. First prove that each bit of hg(z) is the XOR of O(m/w) bits of z. The
result then follows from Corollary 2.

Letting v = log' ™ n be the cost of a BWT-to-text coordinate conversion
(see section 3.1), we will firstly make our calculations assuming m > v (so
that the coordinate conversion cost is absorbed by the cost of checking for a
false positive). This assumption simplifies the notation and is quite reasonable

166 A. Policriti and N. Prezza

(considering that the main theoretic interest is on large patterns); however, for
completeness at the end of this section we will also give time bounds for patterns
such that m < v.

According to Lemma 2, Theorem 2, and the algorithm description in section
4.2, (3) has the following upper bound:

O (|Z(k)| - ((w —log, n + 2log, logn)log o + mnc" 1082¢) + (occ + 1) - m)
(4)
where [Z(k)| € O((20w)*) and ¢ = (1 + (1 — 2¢)™/%) /2.

At this point we can determine the optimal word size wqp; for which the
above complexity reaches its minimum. To simplify the analysis we assume an
uniform distribution for the hash load, i.e. log, ¢ = —1 (this choice will affect only
the value found for wey). Intuitively, decreasing w the term O(no~") increases
exponentially while increasing it the term |Z(k)| increases polynomially, so it
is reasonable that (4) has a unique minimum wep. Let C(n,m, w, k, o) be the

complexity (4) where log, ¢ = —1. Solving 9C(n, m, Wept, k,0)/Owepe = 0 one
can obtain
1-— k/wo t
opt = 1 1 L 5
v = ogaln) 108 (o) O

We assume that & = 0, so the second term in (5) is small and can be ignored.
Notice that, using wep: = log,, (mn) as word size, a lookup operation in the dB-
hash requires O(wep: — log, n + 2log, logn) = O(logm/ log o) backward search
steps (O(logm) time). Substituting we,: = log, (mn) in (4) we finally obtain:

Theorem 4. The smoothed complexity of the dB-rNA algorithm is
O((20)*(logn)*(logm + &€) + (occ + 1) - m)
where & = (mn)'+1°82¢ and ¢ = (14 (1 — 2¢)™/ 108-(mn)) /2,

Alternatively, to make our bound comparable with average-case results present
in literature, one can set € = 0.5 and obtain:

Theorem 5. The expected complexity (on uniformly distributed inputs) of the
dB-rNA algorithm is

O((20)*(log n)* logm + (occ + 1) - m)

We point out that for any € > 0 and m large enough, the term ¢ in Theorem
4 is small (¢ < logm) and can be ignored 2. This is a strong result since it does
not make restrictive assumptions on the amplitude € of the noise perturbing the
input instance and shows that, asymptotically, the smoothed and the expected
complexities of our algorithm coincide.

As stated above, these time bounds hold only for patterns such that m > v.
For short patterns such that m < v the cost of a coordinate conversion dominates
that of the false-positive check, and our bound becomes O((20)* (log n)* (log m +
€) + (occ + 1) -log' ™ n).

2 Such minimum m satisfies the inequality (mn)'*1°82¢ < logm.

Hashing and Indexing: Succinct Data Structures 167

5 Conclusions and Final Remarks

In this work we tackled one of the main bottlenecks of hashing, that is its space
requirements, introducing a strategy integrating hashing and (succinct) indexing.
We presented a succinct index, called dB-hash, designed on the hash value h(T)
of the text. This is done using homomorphisms on de Bruijn graphs as hash
functions—here dubbed de Bruijn hash functions. We proved that de Bruijn
hash functions with the additional feature of being Hamming aware—a property
granting the ability to significantly reduce search space—exist: our algorithm
improves upon previous linear-space strategies discussed in literature, and is one
of the few results taking into account randomization to solve the k-mismatch
problem. Moreover, we presented a smoothed analysis of hashing, i.e. the use of
smoothed analysis theory in the study of load distribution in a hash table.

As every hash-based index, our index suffers from the limitation that pattern
length m is fixed and need to be known at index construction time. This is a prob-
lem shared with others indexes for approximate pattern matching (see for exam-
ple [7]), and with hash indexes in general. A second drawback is the increased
query time with respect to the standard hash version (O(logm) for lookup and
O(log"™ n) for coordinate conversions). Despite this fact, we point out that in
practical implementations on large texts, only the dB-hash data structure is able
to use the optimal word size wop = log,(mn), and can thus reach the optimal
query time. As an example, consider indexing the Human genome (n = 3.2 x 109,
o = 4) with pattern length m = 30. The optimal word size is w,,; = 19. While
the dB-hash data structure still requires O(n log o) bits of space, a standard hash
would require o"°r* logn bits =~ 1 T'B of space only for the lookup table, which is
clearly unacceptable in practice. As a result, standard hash tables are limited to
sub-optimal word sizes and thus to sub-optimal query times.

We think this paper opens a number of possibilities for future work. First
of all notice that is possible a generalization of our results to the smoothed
analysis of hashing with alphabets of general size o (this can be done consid-
ering linear maps modulo o as hash functions). Then observe that the h(T)
construction technique can be used as a text-transformation preprocessing, ran-
domizing 7', and coupled with existing pattern matching algorithms. Finally,
combining our strategy with metric indexes, such as the one presented in [7],
or through an extension of the notion of Hamming-awareness to a more general
distance-awareness, could lead to a generalization of our results to more complex
distances—such as the edit distance.

References

1. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., et al.: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol.
10(3), R25 (2009)

2. Li, R., Yu, C., Li, Y., Lam, T."W., Yiu, S.M., Kristiansen, K., Wang, J.: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966-1967
(2009)

168

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Policriti and N. Prezza

Vezzi, F., Del Fabbro, C., Tomescu, A.IL., Policriti, A.: rNA: a fast and accurate
short reads numerical aligner. Bioinformatics 28(1), 123-124 (2012)

Policriti, A., Tomescu, A.I., Vezzi, F.: A randomized numerical aligner (rna). J.
Comput. Syst. Sci. 78(6), 1868-1882 (2012)

Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of the Thirty-sixth Annual ACM Sympo-
sium on Theory of Computing, pp. 91-100. ACM (2004)

Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A linear size index
for approximate pattern matching. In: Lewenstein, M., Valiente, G. (eds.) CPM
2006. LNCS, vol. 4009, pp. 49-59. Springer, Heidelberg (2006)

Chavez, E., Navarro, G.: A metric index for approximate string matching. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, p. 181. Springer, Heidelberg
(2002)

Maafl; M.G., Nowak, J.: Text indexing with errors. Journal of Discrete Algorithms
5(4), 662-681 (2007)

Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms 1(1), 205-239 (2000)

Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment
program. Bioinformatics 24(5), 713-714 (2008)

Weiner, P.: Linear pattern matching algorithms. In: IEEE Conference Record of
14th Annual Symposium on Switching and Automata Theory, SWAT 2008, pp.
1-11. IEEE (1973)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5), 935-948 (1993)

Navarro, G., Mékinen, V.: Compressed full-text indexes. ACM Computing Surveys
(CSUR) 39(1), 2 (2007)

Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium
on Foundations of Computer Science, pp. 549-554. IEEE (1989)

Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Communications of the ACM 52(10), 76-84 (2009)
Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time. In: Proceedings of the Thirty-third Annual
ACM Symposium on Theory of Computing, pp. 296-305. ACM (2001)

Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pp. 390-398. IEEE (2000)

Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 841-850. Society for Industrial and Applied Mathematics (2003)
Ferragina, P., Manzini, G., Mékinen, V., Navarro, G.: An alphabet-friendly FM-
index. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp.
150-160. Springer, Heidelberg (2004)

Andoni, A., Krauthgamer, R.: The smoothed complexity of edit distance. In: Aceto,
L., Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ingdlfsdéttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 357-369. Springer, Heidelberg
(2008)

Top-k Term-Proximity in Succinct Space

J. Tan Munro!, Gonzalo Navarro?, Jesper Sindahl Nielsen?, Rahul Shah?,
and Sharma V. Thankachan®®)

1 Cheriton School of CS, University of Waterloo, Waterloo, Canada
imunro@uwaterloo.ca
2 Department of CS, University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl
3 MADALGO, Aarhus University, Aarhus, Denmark
jasn@cs.au.dk
4 School of EECS, Louisiana State University, Louisiana, USA
rahul@csc.lsu.edu
5 School of CSE, Georgia Institute of Technology, Georgia, USA
sharma.thankachan@gmail.com

Abstract. Let D = {T1,Ta2,..., Tp} be a collection of D string doc-
uments of n characters in total, that are drawn from an alphabet set
Y = [o]. The top-k document retrieval problem is to preprocess D into
a data structure that, given a query (P[l..p], k), can return the k docu-
ments of D most relevant to pattern P. The relevance is captured using
a predefined ranking function, which depends on the set of occurrences
of P in Tg4. For example, it can be the term frequency (i.e., the num-
ber of occurrences of P in Ty), or it can be the term proximity (i.e., the
distance between the closest pair of occurrences of P in Ty), or a pattern-
independent importance score of T4 such as PageRank. Linear space and
optimal query time solutions already exist for this problem. Compressed
and compact space solutions are also known, but only for a few rank-
ing functions such as term frequency and importance. However, space
efficient data structures for term proximity based retrieval have been
evasive. In this paper we present the first sub-linear space data structure
for this relevance function, which uses only o(n) bits on top of any com-
pressed suffix array of D and solves queries in time O((p + k) polylogn).

1 Introduction

Ranked document retrieval, that is, returning the documents that are most rel-
evant to a query, is the fundamental task in Information Retrieval (IR) [L,6].
Muthukrishnan [19] initiated the study of this family of problems in the more
general scenario where both the documents and the queries are general strings
over arbitrary alphabets, which has applications in several areas [20]. In this sce-
nario, we have a collection D = {T1, Ta,..., Tp} of D string documents of total
length n, drawn from an alphabet X = [o], and the query is a pattern P[1..p]

Funded in part by NSERC of Canada and the Canada Research Chairs program,
Fondecyt Grant 1-140796, Chile, and NSF Grants CCF-1017623, CCF-1218904.
© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 169-180, 2014.
DOI: 10.1007/978-3-319-13075-0_14

170 J. I. Munro et al.

over Y. Muthukrishnan considered a family of problems called thresholded doc-
ument listing: given an additional parameter K, list only the documents where
some function score(P, d) of the occurrences of P in T, exceeded K. For example,
the document mining problem aims to return the documents where P appears at
least K times, whereas the repeats problem aims to return the documents where
two occurrences of P appear at distance at most K. While document mining has
obvious connections with typical term-frequency measures of relevance [1,6], the
repeats problem is more connected to various problems in bioinformatics [4,12].
Also notice that the repeats problem is closely related to the term proximity
based document retrieval in IR field [5,29,32-34]. Muthukrishnan achieved opti-
mal time for both problems, with O(n) space (in words) if K is specified at
indexing time and O(nlogn) if specified at query time.

A more natural version of the thresholded problems, as used in IR, is top-k
retrieval: Given P and k, return k documents with the best score(P,d) values.
Hon et al. [15,16] gave a general framework to solve top-k problems for a wide
variety of score(P,d) functions, which takes O(n) space, allows k to be specified
at query time, and solves queries in O(p + klogk) time. Navarro and Nekrich
[22] reduced the time to O(p + k), and finally Shah et al. [30] achieved time
O(k) given the locus of P in the generalized suffix tree of D. Recently, Munro
et al. [18] introduced an O(n)-word index, that can find the top-kth document
in O(log k) time, once the locus of P is given.

The problem is far from closed, however. Even the O(n) space (i.e., O(nlogn)
bits) is excessive compared to the size of the text collection itself (nlogo bits),
and in data-intensive scenarios it often renders all these solutions impractical by
a wide margin. Hon et al. [16] also introduced a general framework for succinct
indexes, which use o(n) bits’ on top of a compressed suffix array (CSA) [21],
which represents D in a way that also provides pattern-matching functionalities
on it, all within space (JCSA|) close to that of the compressed collection. A CSA
finds the suffix array interval of P[1..p] in time ts(p) and retrieves any cell of the
suffix array or its inverse in time tsa. Hon et al. achieved O(ts(p)+k tsa log® ™ n)
query time, using O(n/log® n) bits. Subsequent work (see [20,26]) improved the
initial result up to O(ts(p) + k tsa log? klog® n) [24], and also considered compact
indexes, which may use o(nlogn) bits on top of the CSA. For example, these
achieve O(ts(p) + ktsalog klog® n) query time using nlogo + o(n) further bits
[14], or O(ts(p) + klog™ k) query time using nlog D + o(nlogn) further bits [25].

However, all these succinct and compact indexes work ezclusively for the term
frequency (or closely related, e.g., TF-IDF') measure of relevance. For the simpler
case where documents have a fixed relevance independent of P, succinct indexes
achieve O(ts(p) + ktsalog klog®n) query time [3], and compact indexes using
nlog D + o(nlog D) bits achieve O(ts(p) + klog(D/k)) time [10]. On the other
hand, there have been no succinct nor compact indezxes for the term proximity
measure of relevance, tp(P,d) = min{{|i—j| > 0, Tg[i..i+p—1] = T4lj..j+p—1] =
P} U {co}}. In this paper we introduce the first such result as follows.

YIf D = o(n), which we assume for simplicity in this paper. Otherwise it is
Dlog(n/D) + O(D) + o(n) bits.

Top-k Term-Proximity in Succinct Space 171

Theorem 1. Using a CSA plus o(n) bits data structure, one can answer top-k
term prozimity queries in O(ts(p) + (log® n + k(tsa + log klogn))log®te n) time,
for any constant € > 0.

2 Basic Concepts

Let T[l.n] = Ty oTgo0---Tp be the text (from an alphabet X = [o] U {$})
obtained by concatenating all the documents in D. Each document is terminated
with a special symbol $, which does not appear anywhere else. A suffix T[i..n]
of T belongs to Ty iff ¢ is in the region corresponding to T4 in T. Thus, it holds
d =1+ rankg(i — 1), where B[l..n] is a bitmap defined as B[j] =1 iff T[j] = $
and rankp(i — 1) is the number of 1s in B[1..i — 1]. This operation is computed
in O(1) time on a representation of B that uses Dlog(n/D)+ O(D) + o(n) bits
[28]. For simplicity, we assume D = o(n), and thus B uses o(n) bits.

Suffix Tree [31] of T is a compact trie containing all of its suffixes, where the
ith leftmost leaf, ¢;, represents the ith lexicographically smallest suffix. It is also
called the generalized suffix tree of D, GST. Each edge in GST is labeled by a
string, and path(x) is the concatenation of the edge labels along the path from
the GST root to node x. Then path(¢;) is the ith lexicographically smallest suffix
of T. The highest node x with path(z) prefixed by P[l..p] is the locus of P, and
is found in time O(p) from the GST root. The GST uses O(n) words of space.

Suffiz Array [17] of T, SA[l..n], is defined as SA[i] = n + 1 — |path({;)], the
starting position in T of the ith lexicographically smallest suffix of T. The suffiz
range of P is the range SA[sp, ep] pointing to the suffixes that start with P,
T[SA[i]..SAfi] + p — 1] = P for all i € [sp,ep]. Also, s, (resp., ep) are the
leftmost (resp., rightmost) leaf in the subtree of the locus of P.

Compressed Suffiz Array [8,11,21] of T, CSA, is a compressed representation of
SA, and usually also of T. Its size in bits, |[CSA|, is O(nlog o) and usually much
less. The CSA finds the interval [sp, ep] of P in time ts(p). It can output any value
SA[i], and even of its inverse permutation, SAfl[i], in time tsa. For example, a
CSA using nHy,(T) + o(nlog o) bits [2] gives ts(p) = O(p) and tsp = O(log' ™ n)
for any constant € > 0, where Hy, is the hth order empirical entropy.

Compressed Suffix Tree of T, CST, is a compressed representation of GST, where
node identifiers are their corresponding suffix array ranges. The CST can use
o(n) bits on top of a CSA [23] and compute (among others) the lowest common
ancestor (LCA) of two leaves ¢; and ¢;, in time O(tsa log® n), and the Weiner link
WIlink(a, v), which leads to the node with path label a o path(v), in time O(tsp).?

Orthogonal Range Successor/Predecessor. Givenn pointsin [n]x[n],an O(nlogn)-
bit data structure can retrieve the point in a given rectangle with lowest

2 Using O(n/ log® n) bits and no special implementation for operations SA™"[SA[i]+=1].

172 J. I. Munro et al.

y-coordinate value, in time O(log®n) for any constant € > 0 [27]. Combined with
standard range tree partitioning, the following result easily follows.

Lemma 1. Given n' points in [n] x [n] X [n], a structure using O(n’ log? n) bits
can support the following query in O(log1+€ n) time, for any constant € > 0: find
the point in a region [x,z'] X [y, y'] X [z, 2'] with the lowest/highest x-coordinate.

3 An Overview of Our Data Structure

The top-k term proximity is related to a problem called range restricted search-
ing, where one must report all the occurrences of P that are within a text range
T[é..5]. It is known that succinct data structures for that problem are unlikely
to exist in general, whereas indexes of size |CSA| + O(n/log® n) bits do exist
for patterns longer than A = log*™“n (see [13]). Therefore, our basic strategy
will be to have a separate data structure to solve queries of length p = m, for
each m € {1,..., A}. Patterns with length p > A can be handled with a single
succinct data structure. More precisely, we design two different data structures
that operate on top of a CSA:

— An O(nloglogn/(mlog” n))-bits structure for handling queries of fixed length
p =, in time O(ts(p) + k(tsa + loglogn + log k) wlog” n).

— An O(n/log® n+(n/A)log® n)-bits structure for handling queries with p > A
in time O(ts(p) + A(A + tsa) + klog klog n(tsa + Alog € n)).

By building the first structure for every 7 € {1,..., A}, any query can
be handled using the appropriate structure. The A structures for fixed pat-
tern length add up to O(n(loglogn)?/ log” n) = o(n/log?/*n) bits, whereas
that for long patterns uses O(n/log®n) bits. By choosing ¢ = 4e = 2, the
space is O(n/log®/* n) bits. As for the time, the structures for fixed p = 7 are
most costly for 7 = A, where their time is k(tsa + loglogn + logk) Alog” n.
Adding up the time of the second structure, we get O(ts(p) + A(A + k(tsa +
log klog' ™€ n)log® n), which is upper bounded by O(ts(p) + (log® n + k(tsa +
log klog n))log®*® n). This yields Theorem 1.

Now we introduce some formalization to convey the key intuition. The term
proximity tp(P, d) can be determined by just two occurrences of P in T4, which
are the closest up to ties. We call them critical occurrences, and a pair of two
closest occurrences is a critical pair. There can be multiple critical pairs.

Definition 1. An integer i € [1,n] is an occurrence of P in T4 if the suffix
T[i..n] belongs to Ty and T[i..i +p — 1] = P[1..p]. The set of all occurrences of
P in T is called Occ(P).

Definition 2. An occurrence iq of P in Ty is a critical occurrence if there exists
another occurrence il of P in T4 such that |iq — i) = tp(P,d). The pair (iq,1i})
18 called a critical pair of T4 with respect to P.

Top-k Term-Proximity in Succinct Space 173

A key concept in our solution is that of candidate sets of occurrences, which
contain sufficient information to solve the top-k query (note that, due to ties, a
top-k query may have multiple valid answers).

Definition 3. Let Topk(P, k) be a valid answer for the top-k query (P k). A
set Cand(P, k) C Occ(P) is a candidate set of Topk(P, k) if, for each document
identifier d € Topk(P, k), there exists a critical pair (iq,i;) of Tq with respect to
P such that i4,1; € Cand(P, k).

Lemma 2. Given a CSA on D, a valid answer to query (P, k) can be computed
from Cand(P, k) in O(zlog z) time, where z = |Cand(P, k)|.

Proof. Sort the set Cand(P, k) and traverse it sequentially. From the occurrences
within each document T, retain the closest consecutive pair (i4,14);), and finally
report k documents with minimum values |iq — #/;|. This takes O(zlog z) time.
We show that this returns a valid answer set. Since Cand(P, k) is a candidate
set, it contains a critical pair (igq,i);) for d € Topk(P, k), so this critical pair
(or another with the same |iq — ;| value) is chosen for each d € Topk(P, k).
If the algorithm returns an answer other than Topk(P, k), it is because some
document d € Topk(P, k) is replaced by another d’ ¢ Topk(P, k) with the same
score tp(P,d’) = i — il | = |iq —)| = tp(d). O

Our data structures aim to return a small candidate set (as close to size k as
possible), from which a valid answer is efficiently computed using Lemma 2.

4 Data Structure for Queries with Fixed p=7 < A

We build an o(n/m)-bits structure for handling queries with pattern length p = .

Lemma 3. ThereisanO(nloglogn/(mlog™ n))-bits data structure solving queries
(P[1..p], k) withp = m in O(ts(p) + k(tsa + loglogn + log k)mlog™ n) time.

The idea is to build an array F[1,n] such that a candidate set of size O(k),
for any query (P, k) with p = 7, is given by {SA[i], i € [sp, ep] AF[i] < k}, [sp, ep]
being the suffix range of P. The key property to achieve this is that the ranges
[sp, ep] are disjoint for all the patterns of a fixed length 7. We build F as follows.

1. Initialize F[l.n] = n + 1.
2. For each pattern) of length ,
(a) Find the suffix range [o, 8] of Q.
(b) Find the list T,,, T,,, Ty, ... of documents in the ascending order of
tp(Q, -) values (ties broken arbitrarily).
(c) For each document T, containing () at least twice, choose a unique
critical pair with respect to @, that is, choose two elements j, j’ € [«, 3],
such that (i,_,i.) = (SA[j],SA[j']) is a critical pair of T, _ with respect

Tr

to @. Then assign F[j] = F[j'] = &.

174 J. I. Munro et al.

The following observation is immediate.

Lemma 4. For a query (P[1..p], k) with p = 7 and suffiz array range [sp, ep] for
P, the set {SA[j],j € [sp,ep] AF[j] < k} is a candidate set of size at most 2k.

Proof. A valid answer for (P, k) are the document identifiers 1, . . ., 7 considered
at construction time for @ = P. For each such document T,_, 1 < k < k, we
have found a critical pair (i, 4,) = (SA[j], SA[j']), for j,5" € [sp,ep], and set
Flj] = F[j'] = k < k. All the other values of F[sp, ep] are larger than k (or co).
The size of the candidate set is thus at most 2k (or less, if there are less than k

documents where P occurs twice). O

However, we cannot afford to maintain F explicitly within the desired space
bounds. Therefore, we replace F by a sampled array F'. The sampled array is
built by cutting F into blocks of size 7’ = wlog” n and storing the logarithm of
the minimum value for each block. This will increase the size of the candidate
sets by a factor 7’. More precisely, F'[1,n/7’] is defined as

Flj] = [logminF[(j —)7’ + 1..57]].

Since F'[j] € [0..1og n], the array can be represented using nloglogn/log” n
bits. We maintain F’ with a multiary wavelet tree [9], which maintains the space
in O(nloglogn/log” n) bits and, since the alphabet size is logarithmic, supports
in constant time operations rank and select on F’. Operation rank(j, x) counts
the number of occurrences of k in F'[1..5], whereas select(j, k) gives the position
of the jth occurrence of in F'.

Query Algorithm. To answer a query (P[1..p], k) with p = 7 using a CSA and
F’, we compute the suffix range [sp, ep] of P in time t¢5(p), and then do as follows.

1. Among all the blocks of F overlapping the range [sp, ep], identify those con-
taining an element < 2M1°8%1 that is, compute the set

Sviocks = {J, [sp/7"] < j < [ep/7"] ANF'[j] < [logk]}.

2. Generate Cand(P, k) = {SA[j'],7 € Sbiocks N3 € [(F — V)" + 1, 47|}
3. Find the query output from the candidate set Cand(P, k), using Lemma 2.

For step 1, the wavelet tree representation of F’ generates Syjocrs in time O(1+
|Shiocks|): All the 2! positions® j € [sp, ep] with F'[j] = t are j = select(rank(sp—
1,t)+i,t) for i € [1,2']. We notice if there are no sufficient documents if we obtain
a j > ep, in which case we stop.

The set Cand(P, k) is a candidate set of (P, k), since any j € [sp,ep] with
F[j] < k belongs to some block of Spipcks. Also the number of j € [sp, ep] with
F[j] < 2M°8*1 is at most 2 - 2M°8*1 < 4k, therefore |Syipcks| < 4k.

Now, Cand(P, k) is of size | Spiocks|m’ = O(k7n'), and it is generated in step 2 in
time O(ktsa 7). Finally, the time for generating the final output using Lemma 2
is O(kn'log(kn'))) = O(kwlog” n(log k + log log n + log 7)). By considering that
7 < A =log*"“n, we obtain Lemma 3.

3 Except for t = 0, which has 2 positions.

Top-k Term-Proximity in Succinct Space 175

5 Data Structure for Queries with p > A

We prove the following result in this section.

Lemma 5. There is an O(n/log® n+ (n/A)log® n)-bits structure solving queries
(P[1..p], k), withp > A, in O(ts(p)+A(A+tsp)+klog klog> n(tsp+Alog ™ n))
time.

We start with a concept similar to that of a candidate set, but weaker in the
sense that it is required to contain only one element of each critical pair.

Definition 4. Let Topk(P, k) be a valid answer for the top-k query (P, k). A set
Semi(P, k) C [n] is a semi-candidate set of Topk(P, k) if it contains at least one
critical occurrence ig of P in T4 for each document identifier d € Topk(P, k).

Our structure in this section generates a semi-candidate set Semi(P, k). Then,
a candidate set Cand(P, k) is generated as the union of Semi(P, k) and the set
of occurrences of P that are immediately before and immediately after every
position i € Semi(P, k). This is obviously a valid candidate set. Finally, we apply
Lemma 2 on Cand(P, k) to compute the final output.

5.1 Generating a Semi-candidate Set

This section proves the following result.

Lemma 6. A structure of O(n(loglogn)?/log® n) bits plus a CSA can generate
a semi-candidate set of size O(klog klog® n) in time O(tsa klog klog® n).

Let Leaf(x) (resp., Leaf(y)) be the set of leaves in the subtree of node z (resp.,
y) in GST, Leaf(x\y) = Leaf(z) \ Leaf(y). The following lemma holds.

Lemma 7. The set Semi(path(y), k)U{SA[j],¢; € Leaf(z\y)} is a semi-candidate
set of (path(z), k).

Proof. Let d € Topk(path(z), k), then our semi-candidate set should contain iq
or i, for some critical pair (iq,4/). If there is some such critical pair where i4 or
i/, are occurrences of path(x) but not of path(y), then ¢; or ¢;; are in L(z\y),
for SA[j] = iq and SA[j'] = i/, and thus our set contains it. If, on the other
hand, both ¢4 and ¢/, are occurrences of path(y) for all critical pairs (iq, /), then
tp(path(y),d) = tp(path(z),d), and the critical pairs of path(x) are the critical
pairs of path(y). Thus Semi(y, k) contains ¢4 or i/, for some such critical pair. O

Our approach is to precompute and store Semi(path(y), k) for carefully selected
nodes y € GST and k values, so that any arbitrary Semi(path(x), k) set can be
computed efficiently. The succinct framework of Hon et al. [16] is adequate for this.

Node Marking Scheme. The idea [16] is to mark a set Mark, of nodes in GST
based on a grouping factor g: Every gth leaf is marked, and the LCA of any two
consecutive marked leaves is also marked. Then the following properties hold.

176 J. I. Munro et al.

1. |Marky| < 2n/g.

2. If there exists no marked node in the subtree of x, then |Leaf(z)| < 2g.

3. If it exists, then the highest marked descendant node y of any unmarked
node x is unique, and |Leaf(z\y)| < 2g.

We use this idea, and a later refinement [14]. Let us first consider a variant
of Lemma 6 where k = « is fixed at construction time. We use a CSA and an
O(n/ 10g5 n)-bit CST on it, see Section 2. We choose g = filogkalogl""sn and,
for each node y € Mark,, we explicitly store a candidate set Semi(path(y), x) of
size k. The space required is O(|Markgy|xlogn) = O(n/(log s log’ n)) bits.

To solve a query (P,k), we find the suffix range [sp,ep|, then the locus
node of P is # = LCA({sp, Lep). Then we find y = LCA(lyrsp/g15Lglep/g)), the
highest marked node in the subtree of x. Then, by the given properties of
the marking scheme, combined with Lemma 7, a semi-candidate set of size
O(g + k) = O(rlog klog' ™ n) can be generated in O(tsak log s log ™ n) time.

To reduce this time, we employ dual marking scheme [14]. We identify a
larger set Marky of nodes, for ¢’ = nlogmlog‘S n. To avoid confusion, we call
these prime nodes, not marked nodes. For each node y' € Marky, we precom-
pute a candidate set Semi(path(y’), k) of size k. Let y be the (unique) highest
marked node in the subtree of 3'. Then we store x bits in 3’ to indicate which of
the x nodes stored in Semi(path(y), k) also belong to Semi(path(y’), k). By the
same proof of Lemma 7, elements in Semi(path(y’),) \ Semi(path(y), k) must
have a critical occurrence in Leaf(y’\y). Then, instead of explicitly storing the
critical positions iq € Semi(path(y'),) \ Semi(path(y), k), we store their left-
to-right position in Leaf(y’\y). Storing x such positions in leaf order requires
O(rlog(g/k)) = O(kloglogn) bits, using for example gamma codes. The total
space is O(|Mark, |xloglogn) = O(nloglogn/(log xlog”)) bits.

Now we can apply the same technique to obtain a semi-candidate set from
Mark,, yet of smaller size O(g'+k) = O(k log & log® n), in time O(tsax log s log? n).

We are now ready to complete the proof Lemma 6. We maintain structures as
described for all the values of x that are powers of 2, in total O((n log log n/ log’ n)-
Zicle 1/i) = O(n(loglogn)?/log’ n) bits of space. To solve a query (P, k), we
compute k = 2/1°8%1 < 2k and return the semi-candidate set of (P, k) using the
corresponding structure.

5.2 Generating the Candidate Set

The problem boils down to the task of, given P[1..p] and an occurrence g, finding
the occurrence of P closest to ¢. In other words, finding the first and the last
occurrence of P in T[g+ 1..n] and T[1..g+ p — 1], respectively. We employ suffix
sampling to obtain the desired space-efficient structure. The idea is to exploit
the fact that, if p > A, then for every occurrence g of P there must be an integer
j = A[q/A] (a multiple of A) and ¢ < A, such that P[1..t] is a suffix of T[1..j]
and P[t 4+ 1..p] is a prefix of T[j + 1..n]. We call ¢ an offset-t occurrence of P.
Then, Cand(P, k) can be computed as follows:

Top-k Term-Proximity in Succinct Space 177

1. Find Semi(P, k) using Lemma 6.
2. For each g € Semi(P, k) and ¢ € [1, 4], find the offset-t occurrences of P that
are immediately before and immediately after q.

3. The occurrences found in the previous step, along with the elements in
Semi(P, k), constitute Cand(P, k).

In order to perform step 2 efficiently, we maintain the following structures.

— Sparse Suffix Tree (SST): A suffix T[Ai + 1..n] is a sparse suffiz, and
the trie of all sparse suffixes is a sparse suffiz tree. The sparse suffix range
of a pattern @ is the range of the sparse suffixes in SST that are prefixed
by Q. Given the suffix range [sp,ep] of a pattern, its sparse suffix range
[ssp, sep] can be computed in constant time by maintaining a bitmap B[1..n],
where B[j] = 1 iff T[SA[j]..n] is a sparse suffix. Then ssp = 1+ rankg(sp —
1) and sep = rankp(sp). Since B has n/A 1s, it can be represented in
O((n/A)log A) bits while supporting rankp operation in constant time for
any A = O(polylogn) [28].

— Sparse Prefix Tree (SPT): A prefix T[1..A¢] is a sparse prefixz, and the trie
of the reverses of all sparse prefixes is a sparse prefix tree. The sparse prefix
range of a pattern @ is the range of the sparse prefixes in SPT with @ as a
suffix. The SPT can be represented as a blind trie [7] using O((n/A)logn)
bits. Then the search for the sparse prefix range of @) can be done in O(|Q|)
time, by descending using the reverse of Q*. Note that the blind trie may
return a fake node when) does not exist in the SPT.

— Orthogonal Range Successor/Predecessor Search Structure over a
set of [n/A] points of the form (z,y,z), where the yth leaf in SST corre-
sponds to T[z..n] and the zth leaf in SPT corresponds to T[l..(x — 1)]. The
space needed is O((n/A)log® n) bits (recall Lemma 1).

The total space of the structures is O((n/A)log®n) bits. They allow com-
puting first offset-t occurrence of P in T[g+ 1..n] as follows: find [ssp;, sep;] and
[ssp}, sep}], the sparse suffix range of P[t + 1..p] and the sparse prefix range of
P[1..t], respectively. Then, using an orthogonal range successor query, find the
point (e, -, -) with the lowest z-coordinate value in [q + t + 1,n] X [ssp¢, sept] X
[ssp}, sep}]. Then, e—t is the answer. Similarly, the last offset-t occurrence of P in
T[1..q—1] is f—t, where (f, -, -) is the point in [1, g+t—1] X [ssp;, sep;| X [ssp}, sep}]
with the highest x-coordinate value.

First, we compute all the ranges [ssp:, sep;] using the SST. This requires
knowing the interval SA[sp:, eps] of P[t + 1..p] for all 1 < ¢ < A. We compute
these by using the CSA to search for P[A + 1..p] (in time at most ¢5(p)), which
gives [spa,epal, and then computing [spi—1,epi—1] = Wlink(P[t], [sps, eps]) for
t=A-1,...,1. Using an o(n)-bits CST (see Section 2), this takes O(Atsp)
time. Then the SST finds all the [ssp;, sep;] values in time O(A). Thus the time
spent on the SST searches is O(ts(p) + Atsa).

4 Using perfect hashing to move in constant time towards the children.

178 J. I. Munro et al.

Second, we search the SPT for reverse pattern prefixes of lengths 1 to A,
and thus they can all be searched for in time O(A?). Since the SPT is a blind
trie, it might be either that the intervals [ssp}, sep}] it returns are the correct
interval of P[1..t], or that P[1..t] does not terminate any sparse prefix. A simple
way to determine which is the case is to perform the orthogonal range search as
explained, asking for the successor e of position 1, and check whether the result-
ing position, eq—t, is an occurrence of P, that is, whether SA™! [eo — t] € [sp, ep].
This takes O(tsa +log' ™ n) time per verification. Considering the searches plus
verifications, the time spent on the SPT searches is O(A(A + tsa + log' ™ n)).

Finally, after determining all the intervals [ssp:, sep;] and [ssp}, sep)], we
perform O(|Semi(P, k)|A) orthogonal range searches for positions ¢, in time
O(|Semi(P, k)| Alog' T n), and keep the closest one for each q.

Lemma 8. Given a semi-candidate set Semi(P, k), where p > A, a candidate
set Cand(P, k) of size O(|Semi(P, k)|) can be computed in time O(ts(p) + A(A +
tsa + |Semi(P, k)|log' T n)) using a data structure of O((n/A)log®n) bits.

Thus, by combining Lemma 6 using 6 = 2¢ (so its space is o(n/log® n) bits)
and Lemma 8, we obtain Lemma 5.

6 Concluding Remarks

We have obtained the first succinct result for top-k term-proximity queries. The
following additional results will be presented in the full version of this paper.

1. Another trade-off for top-k term-proximity queries with space and query
time 2nlogo + o(nlogo) + O(nloglogn) bits and O(p + klog klog' T n),
respectively. Notice that, when loglogn = o(logo), the trade-off matches
with the best known result for top-k term-frequency queries [15].

2. In a more realistic scenario, score(+,) is a weighted sum of PageRank, term-
frequency and term-proximity with predefined non-negative weights [33].
Top-k queries with such ranking functions can be handled using an index of
space 2nlog o + o(nlog o) bits in time O(p + klog klog* ™ n).

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn.
Addison-Wesley (2011)

2. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldérsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748-759.
Springer, Heidelberg (2011)

3. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discr. Alg. 18, 3-13 (2013)

4. Benson, G., Waterman, M.: A fast method for fast database search for all k-
nucleotide repeats. Nucleic Acids Research 22(22) (1994)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Top-k Term-Proximity in Succinct Space 179

Broschart, A., Schenkel, R.: Index tuning for efficient proximity-enhanced query
processing. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol.
6203, pp. 213-217. Springer, Heidelberg (2010)

Biittcher, S., Clarke, C.L.A., Cormack, G.: Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press (2010)

Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search
in external memory and its applications. J. ACM 46(2), 236-280 (1999)
Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552-581
(2005)

Ferragina, P., Manzini, G., Méakinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), art. 20 (2007)

Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comp. Sci. 426—427, 25-41 (2012)
Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. STAM J. Comput. 35(2), 378—407 (2005)
Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On position restricted sub-
string searching in succinct space. J. Discr. Alg. 17, 109-114 (2012)

Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster compressed top-k
document retrieval. In: Proc. 23rd DCC, pp. 341-350 (2013)

Hon, W.-K., Shah, R., Thankachan, S.V., Scott Vitter, J.: Space-efficient frame-
works for top- k string retrieval. J. ACM 61(2), 9 (2014)

Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string
retrieval problems. In: Proc. 50th FOCS, pp. 713-722 (2009)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935948 (1993)

Munro, J.I., Navarro, G., Shah, R., Thankachan, S.V.: Ranked document selection.
In: Ravi, R., Gertz, LL. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 344-356. Springer,
Heidelberg (2014)

Muthukrishnan, S.; Efficient algorithms for document retrieval problems. In: Proc.
13th SODA, pp. 657666 (2002)

Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comp. Surv. 46(4), art. 52 (2014)

Navarro, G., Mékinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
art. 2 (2007)

Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. 23rd SODA, pp. 1066-1078 (2012)

Navarro, G., Russo, L.: Fast fully-compressed suffix trees. In: Proc. 24th DCC, pp.
283-291 (2014)

Navarro, G., Thankachan, S.V.: Faster top-k document retrieval in optimal space.
In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214,
pp. 255-262. Springer, Heidelberg (2013)

Navarro, G., Thankachan, S.V.: Top-k document retrieval in compact space and
near-optimal time. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and
Computation. LNCS, vol. 8283, pp. 394-404. Springer, Heidelberg (2013)
Navarro, G., Thankachan, S.V.: New space/time tradeoffs for top-k document
retrieval on sequences. Theor. Comput. Sci. 542, 83-97 (2014)

Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271-282. Springer, Heidelberg (2012)

180

28.
29.

30.

31.

32.

33.

34.

J. I. Munro et al.

Patragcu, M.: Succincter. In: Proc. 49th FOCS, pp. 305-313 (2008)

Schenkel, R., Broschart, A., Hwang, S., Theobald, M., Weikum, G.: Efficient text
proximity search. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol.
4726, pp. 287-299. Springer, Heidelberg (2007)

Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: Top-k document retrieval in
external memory. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol.
8125, pp. 803-814. Springer, Heidelberg (2013)

Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1-11 (1973)

Yan, H., Shi, S., Zhang, F., Suel, T., Wen, J.-R.: Efficient term proximity search
with term-pair indexes. In: CIKM, pp. 1229-1238 (2010)

Zhu, M., Shi, S., Li, M., Wen, J.-R.: Effective top-k computation in retrieving
structured documents with term-proximity support. In: CIKM, pp. 771-780 (2007)
Zhu, M., Shi, S., Yu, N., Wen, J.-R.: Can phrase indexing help to process non-
phrase queries? In: CIKM, pp. 679-688 (2008)

The Power and Limitations of Static Binary
Search Trees with Lazy Finger

Presenjit Bose!, Karim Douieb?, John Iacono?®™) | and Stefan Langerman?

! Carleton University, Ottawa, ON, Canada
2 New York University, Shanghai, China
iacono@nyu.edu
3 Université Libre de Bruxelles, Brussels, Belgium

Abstract. A static binary search tree where every search starts from
where the previous one ends (lazy finger) is considered. Such a search
method is more powerful than that of the classic optimal static trees,
where every search starts from the root (root finger), and less powerful
than when rotations are allowed—where finding the best rotation based
tree is the topic of the dynamic optimality conjecture of Sleator and
Tarjan. The runtime of the classic root-finger tree can be expressed in
terms of the entropy of the distribution of the searches, but we show that
this is not the case for the optimal lazy finger tree. A non-entropy based
asymptotically-tight expression for the runtime of the optimal lazy finger
trees is derived, and a dynamic programming-based method is presented
to compute the optimal tree.

1 Introduction

Static Trees. A binary search tree is one of the most fundamental data struc-
tures in computer science. In response to a search operation, some binary trees
perform changes in the data structure, while others do not. For example, the
splay tree [18] data structure performs a sequence of rotations that moves the
searched item to the root. Other binary search tree data structures do not change
at all during a search, for example, red-black trees [13] and AVL trees [1]. We
will call BSTs that do not perform changes in the structure during searches to
be static and call trees that perform changes BSTs with rotations. In this work
we do not consider insertions and deletions, only searches in the comparison
model, and thus can assume without loss of generality that all structures under
consideration are storing the integers from 1 to n and that all searches are to
these items.

Research for P. Bose supported in part by NSERC.

Research partially completed at NYU School of Engineering with support from
NSF grant CCF-1319648. Research partially completed at Université Libre de Brux-
elles with support from FNRS. Research partially completed at and supported by
MADALGO, a center of the Danish National Research Foundation.

S. Langerman is Directeur de Recherches du F.R.S.-FNRS.

© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 181-192, 2014.
DOI: 10.1007/978-3-319-13075-0-15

182 P. Bose et al.

We consider two variants of static BSTs: root finger and lazy finger. In the
classic method, the root finger method, the first search proceeds from the root
to the item being searched. In the second and subsequent searches, a root finger
BST executes the searches in the same manner, always starting each search
from the root. In contrast, here we consider lazy finger BSTs to be those which
start each search at the destination of the previous search and move to the
item being searched. In general, this movement involves going up to the least
common ancestor (LCA) of the previous and current items being searched, and
then moving down from the LCA to the current item being searched. In order
to facilitate such a search, each node of the tree needs to be augmented with the
minimal and maximal elements in its subtree.

Notation and Definitions. A static tree T is a fixed binary search tree con-
taining n elements. No rotations are allowed. The data structure must process
a sequence of searches, by moving a single pointer in the tree. Let (T, 1,j) be
the time to move the pointer in the tree T from node i to j. If dr(4) represents
the depth of node ¢, with the root defined as having depth zero, then

r(T,i,j) = dr(i) — dr(LCA7 (3, j)) + dr(j) — dr(LCAr(i, j))
= dr(i) + dr(j) — 2dr(LCAr(i, j)).

The runtime to execute a sequence X = x1,x2,...T,, of searches on a tree
T using the root finger method is

Rioot(T, X) = ir T, root(T ZdT x;)
=1

and the runtime to execute the same sequence on a tree 1" using the lazy finger
method is

m

Riagy (T, X) =Y r(T, a1, a:) = <22 dr(zi) — dr(LCAT (i, i 1)))> — dr(zm)
i=1

where zq is defined to be the root of T', which is where the first search starts.

History of Optimal Static Trees with Root Finger. For the root finger
method, once the tree T is fixed, the cost of any single search in tree T" depends
only on the search and the tree, not on any of the search history. Thus, the
optimal search tree for the root finger method is a function only of the frequency
of the searches for each item. Let fx(a) denote the number of searches in X to a.
Given fx, computing the optimal static BST with root finger has a long history.
In 1971, Knuth gave a O(n?) dynamic programming solution that finds the
optimum tree [15]. More interestingly is the discovery of a connection between
the runtime of the optimal tree and the entropy of the frequencies:

The Power and Limitations of Static Binary Search Trees with Lazy Finger 183

Melhorn [16] showed that a simple greedy heuristic proposed by Knuth [15]
and shown to have a linear-time implementation by Fredman [11] produced a
static tree where an average search takes time 2+mH (fx). Furthermore,

Melhorn demonstrated a lower bound of ﬁH (fx) for an average search in
an optimal static tree, and showed this bound was tight for infinitely many
distributions. Thus, by 1975, it was established that the runtime for an average
search in an optimal search tree with root finger was ©(H(fx)), and that such
a tree could easily be computed in linear time.

Our Results. We wish to study the natural problem of what we have coined
search with a lazy finger in a static tree, i.e. have each search start where the
last one ended. We seek to characterize the optimal tree for this search strategy,
and describe how to build it.

The lazy finger method is asymptotically clearly no worse then the root
finger method; moving up to the LCA and back down is better than moving
to the root and back down, which is exactly double the cost of the root finger
method. But, in general, is the lazy finger method better? For the lazy finger
method, the cost of a single search in a static tree depends only on the current
search and the previous search—this puts lazy finger’s runtime dependence on
the search sequence between that of root finger and trees with rotations. Thus
the optimal search tree for the lazy finger method only depends on the frequency
of each search transition; let fx (a,b) be the number of searches in X to b where
the previous search was to a. Given these pairwise frequencies (from which the
frequencies fx(a) can easily be computed), is there a nice closed form for the
runtime of the optimal BST with lazy finger? One natural runtime to consider
is the conditional entropy:

B non fx(a,b) [x(a)
Hc(fx)—;; m 8 f(ab)

This is of interest as information theory gives this as an expected lower
bound! if the search sequence is derived from a Markov chain where n states
represents searching each item.

While a runtime related to the conditional entropy is the best achievable by
any algorithm parameterized solely on the pairwise frequencies, however, we will
show in Lemma 5 that the conditional entropy is impossible to be asymptotically
achieved for any BST, static or dynamic, within any o(logn) factor. Thus, for
the root finger, the lower bound given by information theory is achievable, yet

! When multiplied by ﬁ, as the information theory lower bound holds for binary
decisions and as observed in [16] needs to be adjusted to the ternary decisions that
occur at each node when traversing a BST.

184 P. Bose et al.

for lazy finger it is not related to the runtime of the optimal tree. In Section 7
we will present a simple static non-tree structure whose runtime is related to the
conditional entropy.

This still leaves us with the question: is there a simple closed form for the
runtime of the optimal BST with lazy finger? We answer this in the affirma-
tive by showing an equivalence between the runtime of BSTs with lazy finger
and something known as the weighted dynamic finger runtime. In the weighted
dynamic finger runtime, if item 4 is given weight w;, then the time to execute

max(x; .n,L 1)

k=min(z;,2;_1) ©

min(we,; 7wm,)

search x; is lg . Our main theorem is that the runtime of the

best static tree with lazy finger, LF(X), is given by the weighted dynamic finger
runtime bound with the best choice of weights:

max(z;,xi—1)
Zk: mm(a:“:rb 1) Wk

min(wg, ,, Wy,)

LF(X) = min Riayy (T, X) = min Z lg

To prove this, we first state the result of Seidel and Aragon [17] in Section 2
of how to construct a tree with the weighted dynamic finger runtime given a set
of weights. Then, in Section 3, we show how, given any static tree T, there exists
weights such that the runtime of 7" on a sequence using lazy finger can be lower
bounded using the weighted dynamic finger runtime with these weights. These
results are combined in Section 4 to give the main theorem.

While a nice closed-form formula for the runtime of splay trees is not known,
there are several different bounds on their runtime: working set, static finger,
dynamic finger, and static optimality [7,8,18]. One implication of our result is
that the runtime of the optimal lazy finger tree is asymptotically as good as that
of all of the aforementioned bounds with the exception of the working set bound
(see Theorem 3 for why the working set bound does not hold on a lazy finger
static structure).

While these results have served to characterize the best runtime for the opti-
mal BST, a concrete method is needed to compute the best tree given the pair-
wise frequencies. We present a dynamic programming solution in Section 6; this
solution takes time O(n?) to compute the optimal tree for lazy finger, given a
table of size n? with the frequency of each pair of searches occurring adjacently.
This method could be extended using the ideas of Tacono and Mulzer [14] into
one which periodically rebuilds the static structure using the observed frequen-
cies so far; the result would be an online structure that for sufficiently long search
sequences achieves a runtime that is within a constant factor of the optimal tree
without needing to be initialized with the pairwise frequencies.

Relation to Finger Search Structures. The results here have a relation to
the various finger search structures that have been proposed. We note, first of
all, that the trees we are considering are not level linked; the only pointers are
to the parent and children. Secondly, while the basic finger search runtime of
O(X ", log|z; — w;—1|) (recall that we are assuming the x; are integers from

The Power and Limitations of Static Binary Search Trees with Lazy Finger 185

1 to n) is long known to easily achievable in a static tree, it is easily shown
that there are some search sequences X for which the optimal tree performs far
better. For example, the search sequence x; = iy/n mod n where n is a perfect
square can be easily executed in time O(m) on the best static tree with lazy
finger, which is much better than the O(mlogn) of dynamic finger.

But this limitation of the O(} ", log|z; — x;—1|) runtime has been long
known, which is why the weighted version of finger search was proposed. Our
main contribution is to realize that the weighted dynamic finger runtime bound,
which was not proposed in the context of lazy finger, is the asymptotically tight
characterization of BSTs with lazy finger when used with the best choice of
weights.

Why Static Trees? Static trees are less powerful than dynamic ones in terms
of the classes of search sequence distributions that can be executed quickly, so
why are we studying them? One should use the simplest structure with the least
overhead that gets the job done. By completely categorizing the runtime of the
optimal tree with lazy finger, one can know if such a structure is appropriate for
a particular application or whether one should instead use the more powerful
dynamic trees, or simpler root-finger trees.

Rotation-based trees have horrible cache performance. However, there are
methods to map the nodes of a static tree to memory so as to have optimal
performance in the disk-access model and cache-oblivious models of the mem-
ory hierarchy [6,9,12,19]. One leading cache oblivious predecessor query data
structure that supports insertion and deletion works by having a static tree and
moves the data around in the fixed static tree in response to insertions and dele-
tions and only periodically rebuilds the static structure [4]—in such a structure
an efficient static structure is the key to obtaining good performance even with
insertions and deletions.

Also, concurrency becomes a real issue in dynamic trees, which requires
another layer of complexity to resolve (see, for example Bronson et al. [5]),
while static trees trivially support concurrent operations.

2 Weights Give a Tree

Theorem 1 (Seidel and Aragon [3]). Given a set of positive weights W =
w1y, Wa, . .. Wy, there is a randomized method to choose a tree Ty such that the
max(i,5))
expected runtime is r(Tw,i,5) = O (1g W) .
The method to randomly create Ty is a straightforward random tree con-
struction using the weights: recursively pick the root using the normalized weights
of all nodes as probabilities. Thus, by the probabilistic method [2], there is a
deterministic tree, call it Ty whose runtime over the sequence X is at most the
runtime bound of Seidel and Aragon for the sequence X on the best possible
choice of weights.

186 P. Bose et al.

Corollary 1. For any set of positive weights W = w1, wa, . .. w, there is a tree
Tw(X) such that

m Zma‘x(x17a”b 1)

k=min(x;,z; Wk
r(Tw (X), zi-1,7;) = min E Ig in w(= uj))
;-1 xZ;

NE

i=1

Proof. This follows directly from Seidel and Aragon, where Ty, (X) is a tree that
achieves the expected runtime of their randomized method for the best choice
of weights. O

3 Trees Can Be Represented by Weights

T

Lemma 1. For each tree T there is a set of weights W1 = wi wi, .. wl

. Such

o Sk minthg) W
that fOT all 1,7 T(T,Z7]) = @ 1g W .
Proof. These weights are simple: give a node at depth d in T a weight of 4%
Consider a search that starts at node ¢ and goes to node j. Such a path goes

up from ¢ to LCA7 (7, j) and down to j. A lower bound on Zmax) w} is the

k=min(z,5)
weight of LCAr(4,j) which is included in this sum and is m Thus we
max(i,5) T max(i,5) T - 1
min (4, min (i A1 (LCAT (3,5
can bound lg ==l J>T as follows: 1g =k=ming: n >1 1T ECAT (L) _
Inm(w) mm(w W}) min

2max(dT() dT()) — 2dT(LCAT(Z,j)) dT() + dT() - 2dT(LCAT(Z,j)) =
(T, 1, 5)
Similarly, an upper bound on } |

max(i,j)

k—min(i,J) w} is twice the weight of LCA7(4, 7):

m This is because each of the two paths down from the LCA have
weights that when summed telescope to less than half that of the LCA:

i) Yk TICAL T -
g Sl < lg PRl = 2max(dr (i), dr (7)) — 4dr (LCA7 (i,)
2447 (2) 7 4d7 (5)

< 2d7 (i) + 2dr(j) — 4dr(LCAT (3, 5)) = 2r(T\4, j).

4 Proof of Main Theorem

Here we combine the results of the previous two sections to show that the runtime
of the optimal tree with lazy finger is asymptotically the weighted dynamic finger
bound for the best choice of weights.

Theorem 2

max(z;,;_1)

i] Ek min(z;,z;)wk
o o (1w, 2:)} = © (mm%n {Zyil lg Semeteieon

The Power and Limitations of Static Binary Search Trees with Lazy Finger 187

Proof. Start by setting 7™, to be the optimal tree. That is, 7™ = argmin

{Z:il r(T,xi—1,2)}:
H;zn{ZZ” r(Tywimy,)} =Y e r(T™ 2y, x;)

Using Lemma 1 there is a constant ¢ such that:

max (g, ;1) Tmin

Z min(z;,x;
m k=min(i—1)
> Ci:i_‘f]l

mln(mem W,)

The weights wT™" are a lower bound on the sum with the optimal weights

m max(x;,xi—1)
Ek mlIl(1“£1 1)wk

> 1
cmmZg min(wg, ,, Wy,)

Using Theorem 1, there is a constant ¢’ buch that:

> r(Tw, iy, i)
The sum with T, is at most the sum for optimal T":

>min {370, (T, i1, i)}

5 Hierarchy and Limitations of Models

In this section we show there is a strict hierarchy of runtimes from the root finger
static BST model to the lazy finger static BST model to the rotation-based
BST model. Let OPT(X) be the fastest any binary search with rotations can
execute X.

Theorem 3. For any sequence X, miny Ryooi(T, X) = £2 (ming Ry (T, X)) =
2(0OPT(X)). Furthermore there exist classes of search sequences of any length
m, X/, and X], such that minp R0 (T, X,,) = w (ming Ryq. (T, X)) and
miny Riq., (T, X)) = w(OPT(X]),)).

Proof. We address each of the claims of this theorem separately.

Root finger can be simulated with lazy finger: miny Ryoot(T, X)
= 2 (ming Ri4y(T, X)). For lazy finger, moving up to the LCA and back down
is no more work than than moving to the root and back down, which is exactly
the double of the cost of the root finger method.

Lazy finger can be simulated with o rotation-based tree: miny Riq.y (T, X) =
2(OPT(X)). The normal definition of a tree allowing rotations has a finger that
starts at the root at every operation and can move around the tree performing
rotations. The work of Demaine et al. [10] shows how to simulate with constant-
factor overhead any number of lazy fingers in a tree that allows rotations in the
normal tree with rotations and one single pointer that starts at the root. This
transformation can be used on a static tree with lazy finger to get the result.

Some sequences can be executed quickly with lazy finger but not with root
finger: There is a X, such that miny Ryooi(T, X},) = w (ming Ry (T, X,))-

188 P. Bose et al.

One choice of X/ is the sequential search sequence 1,2,...n,1,2,... repeated
until a search sequence of length m is created. So long as m > n, this takes
time O(m) to execute on any tree using lazy finger, but takes 2(mlgn) time to
execute on every tree using root finger.

Some sequences can be executed quickly using a BST with rotations, but not
with lazy finger. Pick some small k, say k = lgn. Create the sequence X/ in
rounds as follows: In each round pick k£ random elements from 1..n, search each of
them once, and then perform n random searches on these k elements. Continue
with more rounds until a total of m searches are performed. A splay tree can
perform this in time O(mlgk). This is because splay trees have the working-set
bound, which states that the amortized time to search an item is at most big-O of
the logarithm of the number of different things searched since the last time that
item was searched. For the sequence X/ the n random searches in each round
have been constructed to have a working set bound of O(lg k) amortized, while
the k other searches in each round have a working set bound of O(lg n) amortized.
Thus the total cost to execute X!/ on a splay tree is O (#_k(n lgk+klg n))
which is O(mlglgn) since k = lgn.

However, for a static tree with lazy finger, X/ is basically indistinguishable
from a random sequence and takes f2(mlgn) expected time. This is because
the majority of the searches are random searches where the previous item was a
random search, and in any static tree the expected distance between two random
items is 2(1gn). O

Lemma 2. The runtime of a BST in any model cannot be related to the condi-
tional entropy of the search sequence.

Proof. Wilber [20] proved that the bit reversal sequence is performed in 2(nlgn)
time in an optimal dynamic BST. This sequence is a precise permutation of all
elements in the tree. However, any single permutation repeated over and over
has a conditional entropy of 0, since every search is completely determined by
the previous one. a

6 Constructing the Optimal Lazy Finger BST

Recall that f,, = fx(a,b) is the number of searches in X where the current
search is to b and the previous search is to a, and fx(a) is the number of
searches to a in X. We will first describe one method to compute the cost to
execute X on some tree T. Suppose the nodes in [a, b] constitute the nodes of
some subtree of T, call it T, ; and denote the root of the subtree as r(T,).
We now present a recursive formula for computing the expected cost of a single
search in T'. Let Ria,, (T, X, a,b) be the number of edges traversed in T ; when
executing X. Thus, Ria,y (T, X, 1,n) equals the runtime Ry, (T, X). There is a
recursive formula for Ry, (T, X, a,b):

The Power and Limitations of Static Binary Search Trees with Lazy Finger 189

Difb<a
(a)
Rlazy(T7 X7 a, T(Ta,b) - 1)
(b)
+R1azy(T X, 7’(a b) +1 b)
(c)

——
= 20 (fig+ fia)
Riaay (T, X, 0,b) = i€la,r(Ta, Z)J o otherwise
GE[(Tap)+1, b]

(d)
+ Zm(fi,r(n,b) + fr(Tap)i)

/_/%
+;Uw+ﬁJ
(T

jg[a,b]

The formula is long but straightforward. First we recursively include the number
of edges traversed in the left (a) and right (b) subtrees of the root r(7, ;). Thus,
all that is left to account for is traversing the edges between the root of the
subtree and its up to two children. Both edges to its children are traversed when
a search moves from the left to right subtree of r,; or vice-versa (c). A single
edge to a child of the r(T, ;) traversed if a search moves from either the left or
right subtrees of (T) to r(T,,) itself or vice-versa (d), or if a search moves
from any node but the root in the current subtree containing the nodes [a, b] out
to the rest of T or vice-versa (e).

This formula can easily be adjusted into one to determine the optimal cost
over all trees—since at each step the only dependence on the tree was is root of
the current subtree, the minimum can be obtained by trying all possible roots.
Here is the resultant recursive formulation for the minimum number of edges
traversed in and among all subtrees containing [a, b]:

Oifb<a
ming Riagy (T, X, a,7 — 1)
+ming Riay (T, X, 7+ 1,b)
. +22(f74‘7+f‘]1)
mjln Rlazy(Ta X, a, b) = . i€la,r—1)
MiNy¢(q,b] Jelr+1, b] otherwise
A2 it (fisr & fri)
+§(fl,] + f] Z)
;é
i¢lab]

This formula can trivially be evaluated using dynamic programming in O(n®)
time as there are O(n?) choices for a, b, and r and evaluating the summations
in the brute-force way takes time O(n?). The dynamic programming gives not

190 P. Bose et al.

only the cost of the best tree, but the minimum roots chosen at each step gives
the tree itself. The runtime can be improved to O(n?) by observing that when f
is viewed as a 2-D array, each of the sums is simply a constant number of partial
sum queries on the array f, each of which can be answered in O(1) time after
O(n?) preprocessing. (The folklore method of doing this is to store all the 2-D
partial sums from the origin; a generic partial sum can be computed from these
with a constant number of additions and subtractions).

We summarize this result in the following theorem:

Theorem 4. Given the pairwise frequencies fx finding the tree that minimizes
the ezecution time of search sequence X using lazy finger takes time O(n?).

This algorithm computes an optimal tree, and takes time linear in the size
of the frequency table f. Computing f from X can be done in O(m) time,
for a total runtime of O(m + n®). It remains open if there is any approach to
speed up the computation of the optimal tree, or an approximation thereof.
Note that although our closed form expression of the asymptotic runtime of
the best tree was stated in terms of an optimal choice of weights, the dynamic
program presented here in no way attempts to compute these weights. It would
be interesting if some weight-based method were to be discovered.

7 Multiple Trees Structure

Here we present a static data structure in the comparison model on a pointer
machine that guarantees an average search time of O(H.(fx)log;n) for any
fixed value 1 < d < n, a runtime which we have shown to be impossible for any
BST algorithm, static or dynamic. This data structure requires O(dn) space. In
particular, setting d = n° gives a search time of O(H.(fx)) with space O(n'*€)
for any € > 0. The purpose of this structure is to demonstrate that while no tree
can have a runtime related to the conditional entropy, pointer based structures
can.

As a first attempt, a structure could be made of n binary search trees
T1,Ts,...T, where each tree T; is an optimal static tree given the previous
search was to ¢. By using tree T, , to execute search T;, the asymptotic con-
ditional entropy can be easily obtained. However the space of this structure is
O(n?). Thus space can be reduced by observing the nodes not near the root of
every tree are being executed slowly and thus need not be stored in every tree.

The multiple trees structure has two main parts. It is composed first by a
complete binary search tree T” containing all of S. Thus the height of 7" is
O(lgn). The second part is n binary search trees {T1,T5,...,T,}. A tree T;
contains the d elements j that have the greatest frequencies fx(i,j); these are
the j elements most frequently searched after that ¢ has been searched. The

depth of an element j in 7; is O(lg f{(X(EZJ))) For each element j in the entire

structure we add a pointer linking j to the root of Tj. The tree T” uses O(n)
space and every tree T; uses O(d) space. Thus the space used by the entire
structure is O(dn).

The Power and Limitations of Static Binary Search Trees with Lazy Finger 191

Suppose we have just searched the element i and our finger search is located
on the root of 7T;. Now we proceed to the next search to the element j in the
following way: Search j in 7;. If j is in 7; then we are done, otherwise search j
in T". After we found j either in T; or 7" we move the finger to the root of 7}
by following the aforementioned pointer.

If j is in T; then it is found in time O(lg fix(y]))) Otherwise if y is found
in 77, then it is found in O(lgn) time. We know that if y is not in 7, this
means that optimally it requires §2(lgd) comparisons to be found since T, con-
tains the d elements that have the greatest probability to be searched after
that = has been accessed. Hence every search is at most O(lgn/lgd) times

the optimal search time of O(lg fi:((gzj))
Ix (xi)

0] (logd nlg m) . Summing this up over all m searches x; in X gives the

). Thus a search for z; in X takes time

runtime to execute X:

O (Zlil log,nlg %) =0 (ZZ=1 >y fx(a,b)loggnlg %)
=O(mH(fx)logyn)
We summarize this result in the following theorem:

Theorem 5. Given the pairwise frequencies fx and a constantd, 1 < d < n, the
multiple trees structure executes X in time O(mH.(fx)logyn) and uses space

O(nd).

We conjecture that no pointer-model structure has space O(n) and search

cost O(H.(fx)).

References

1. Adelson-Velskij, G.M., Landis, E.M.: An Algorithm for the Organization of Infor-
mation. Doklady Akademii Nauk USSR 146(2), 263-266 (1962)

2. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley (1992)

3. Aragon, C.R., Seidel, R.: Randomized search trees. In: FOCS, pp. 540-545. IEEE
Computer Society (1989)

4. Bender, M.A., Duan, Z., Iacono, J., Jing, W.: A locality-preserving cache-oblivious
dynamic dictionary. J. Algorithms 53(2), 115-136 (2004)

5. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: Govindarajan, R., Padua, D.A., Hall, M.\W. (eds.) PPOPP, pp.
257-268. ACM (2010)

6. Clark, D.R., Ian Munro, J.: Efficient suffix trees on secondary storage (extended
abstract). In: Tardos, E. (ed.) SODA, pp. 383-391. ACM/SIAM (1996)

7. Cole, R.: On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM
J. Comput. 30(1), 44-85 (2000)

8. Cole, R., Mishra, B., Schmidt, J.P., Siegel, A.: On the dynamic finger conjecture
for splay trees. part i: Splay sorting log n-block sequences. SIAM J. Comput. 30(1),
1-43 (2000)

9. Demaine, E.D., Tacono, J., Langerman, S.: Worst-case optimal tree layout in a
memory hierarchy. CoRR, ¢s.DS/0410048 (2004)

192

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Bose et al.

Demaine, E.D., Tacono, J., Langerman, S., Ozkan, O.: Combining binary search
trees. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 388-399. Springer, Heidelberg (2013)
Fredman, M.L.: Two applications of a probabilistic search technique: Sorting x +
y and building balanced search trees. In: Rounds, W.C., Martin, N., Carlyle, J.W.,
Harrison, M.A. (eds.) STOC, pp. 240-244. ACM (1975)

Gil, J., Ttai, A.: How to pack trees. J. Algorithms 32(2), 108-132 (1999)

Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In:
FOCS, pp. 8-21. IEEE Computer Society (1978)

Tacono, J., Mulzer, W.: A static optimality transformation with applications to
planar point location. Int. J. Comput. Geometry Appl. 22(4), 327-340 (2012)
Knuth, D.E.: Optimum binary search trees. Acta Inf. 1, 14-25 (1971)

Mehlhorn, K.: Nearly optimal binary search trees. Acta Inf. 5, 287-295 (1975)
Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4/5), 464-497
(1996)

Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652—
686 (1985)

van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80-82 (1977)

Wilber, R.E.: Lower bounds for accessing binary search trees with rotations. STAM
J. Comput. 18(1), 56-67 (1989)

Fixed-Parameter Tractable Algorithms I

Minimum-Cost b-Edge Dominating Sets on Trees

Takehiro Ito!, Naonori Kakimura?, Naoyuki Kamiyama?®,

Yusuke Kobayashi?, and Yoshio Okamoto?

! Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac. jp

2 University of Tokyo, Tokyo, Japan

kakimura@global.c.u-tokyo.ac.jp, kobayashi@mist.i.u-tokyo.ac.jp

3 Kyushu University, Fukuoka, Japan

kamiyama@imi.kyushu-u.ac. jp
4 University of Electro-Communications, Tokyo, Japan
okamotoyQ@uec.ac. jp

Abstract. We consider the minimum-cost b-edge dominating set prob-
lem. This is a generalization of the edge dominating set problem, but
the computational complexity for trees is an astonishing open problem.
We make steps toward the resolution of this open problem in the follow-
ing three directions. (1) We give the first combinatorial polynomial-time
algorithm for paths. Prior to our work, the polynomial-time algorithm
for paths used linear programming, and it was known that the linear-
programming approach could not be extended to trees. Thus, our algo-
rithm would yield an alternative approach to a possible polynomial-time
algorithm for trees. (2) We give a fixed-parameter algorithm for trees
with the number of leaves as a parameter. Thus, a possible NP-hardness
proof for trees should make use of trees with unbounded number of
leaves. (3) We give a fully polynomial-time approximation scheme for
trees. Prior to our work, the best known approximation factor was two.
If the problem is NP-hard, then a possible proof cannot be done via a
gap-preserving reduction from any APX-hard problem unless P = NP.

1 Introduction

Covering problems are very fundamental in the study of graph algorithms. By
objects to cover and objects to be covered, the following terms are assigned.
When vertices cover vertices, we obtain the minimum dominating set problem;

Takehiro Ito: Supported by JSPS KAKENHI Grant Numbers 25106504, 25330003.
Naonori Kakimura: Supported by JST, ERATO, Kawarabayashi Large Graph
Project, and by JSPS KAKENHI Grant Numbers 25730001, 24106002.
Naoyuki Kamiyama: Supported by JSPS KAKENHI Grant Number 24106005.
Yusuke Kobayashi: Supported by JST, ERATO, Kawarabayashi Large Graph
Project, and by JSPS KAKENHI Grant Numbers 24106002, 24700004.
Yoshio Okamoto: Supported by Grant-in-Aid for Scientific Research from Ministry
of Education, Science and Culture, Japan, and Japan Society for the Promotion of
Science (JSPS).

© Springer International Publishing Switzerland 2014

H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 195-207, 2014.
DOT: 10.1007/978-3-319-13075-0_16

196 T. Ito et al.

when vertices cover edges, we obtain the minimum vertex cover problem; when
edges cover vertices, we obtain the minimum edge cover problem; when edges
cover edges, we obtain the minimum edge dominating set problem. While the
minimum edge cover problem can be solved in polynomial time, the other three
problems are NP-hard for general graphs. Nevertheless, they can be solved in
linear time for trees.

In some applications, variations of these problems are considered. One varia-
tion imposes cost on objects to cover, and another variation imposes demand on
objects to be covered. Then, we want to select some objects to cover, possibly
multiple times, so that each object to be covered is covered at least as many
times as its demand. The objective is to minimize the total cost of selected
objects multiplied by the times they are selected. The focus of this paper is the
version for the minimum edge dominating set problem.

Formally, we define the minimum-cost b-edge dominating set problem (b-EDS,
for short) as follows. In b-EDS, we are given a simple graph G. We denote by VG
and EG the sets of vertices and edges of G, respectively. We adopt this notation
for any graphs in this paper. In addition, a demand function b: EG — Z, and
a cost function ¢: EG — R, are given.! For each edge e of G, we denote d(e) by
the set of all edges sharing end vertices with e, including e itself. For each vertex
v of G, we denote by d(v) the set of edges containing v. A vector s in ZEG is
called a b-edge dominating vector of G, if s(6(e)) > b(e) for every edge e of G.>
The value s(e) represents the number of times the edge e is selected. The cost of
a b-edge dominating vector s of G, denoted by cost(s), is defined as {c, s), where
(+,+) represents the inner product of two vectors. The goal of b-EDS is to find a
b-edge dominating vector with the minimum cost. It is known [13] that »-EDS
is NP-hard for general graphs even if b(e) = 1 and ¢(e) = 1 for every edge e of
G. An 8/3-approximation algorithm for general graphs and a 2-approximation
algorithm for bipartite graphs were presented [1]. When b(e) = 1 for every edge
e of G, 2-approximation algorithms were also proposed [6,9].

One astonishing open problem on b-EDS is to determine the computational
complexity of the problem on trees. It is not known if the problem is NP-hard or
polynomial-time solvable. If b(e) = 1 for every edge e of G or ¢(e) = 1 for every
edge e of G, then b-EDS can be solved in polynomial time for trees [2].> Therefore,
the combination of arbitrary b and arbitrary ¢ makes the problem troublesome.
The best known approximation factor is two, which is a consequence from bipar-
titeness of trees [1]. Even for paths, no combinatorial polynomial-time algorithm
was known while a strongly polynomial-time algorithm can be designed via linear
programming [10,11].

! We denote by Z, Z, R, and R, the sets of integers, nonnegative integers, real
numbers, and nonnegative real numbers, respectively.

2 For each set X, each vector & in R¥, and each subset Y of X, we define £(V) :=
> sey &(@). Thus, s(5(e)) = 2. c 500 S(€))-

3 In [2], the authors claimed that b-EDS on trees can be solved in polynomial time via
linear programming. However this claim is not correct (see [3]).

Minimum-Cost b-Edge Dominating Sets on Trees 197

1.1 Contributions and Techniques

We make steps toward the resolution of the complexity status of b-EDS on trees
in the following three directions.

(1) Combinatorial Algorithm for Paths. In Section 2, we give the first
combinatorial algorithm for b-EDS on paths which runs in strongly polynomial
time. This result would yield an alternative approach to a possible polynomial-
time algorithm for trees for the attempt to prove that 5-EDS can be solved in
polynomial time. A polynomial-time algorithm using linear programming could
not be extended to trees because the coefficient matrix of a natural integer-
programming formulation of the problem is totally unimodular for paths, but
not necessarily so for trees.

To give a combinatorial strongly polynomial-time algorithm for paths, we
first give a dynamic-programming algorithm which runs in pseudo-polynomial
time. Then, we construct a “compact” representation of the DP table. To con-
struct such a compact representation of the DP table, we find a partition R of
the domain of the DP table so that in each part in R, values of the DP table can
be represented by a linear function. We will prove that we can construct such a
partition whose size is bounded by a polynomial in the input size, which implies
that we can “simulate” our dynamic-programming algorithm in strongly polyno-
mial time. To the best of the authors’ knowledge, this technique of compressing
the DP table is new, and should be of independent interest.

(2) Fixed-Parameter Algorithm for Trees. In Section 3, we give a fixed-
parameter algorithm for b-EDS on trees with the number of leaves as a parameter.
This result implies that when the number of leaves is constant, then the problem
can be solved in polynomial time. Therefore, if we want to prove that the problem
is NP-hard, then a possible reduction should make use of trees with unbounded
number of leaves.

To give a fixed-parameter algorithm for trees, the following fact plays an
important role. On paths, there exists no gap between a natural integer pro-
gramming formulation of b-EDS and its linear-programming relaxation. By using
this fact, we will prove that b-EDS on trees with constant number of leaves can
be formulated as a mixed integer program with constant number of integer vari-
ables. Thus, a fixed-parameter algorithm follows from the result of Lenstra [8]
on fixed-parameter tractability of mixed integer programming when the number
of integer variables is a parameter.

(3) FPTAS for Trees. In Section 4, we give a fully polynomial-time approx-
imation scheme (FPTAS, for short) for b-EDS on trees. Prior to our work, the
best known approximation factor was two [1]. Thus, our algorithm improves the
approximation factor drastically. This result implies that b-EDS on trees is not
strongly NP-hard unless P = NP. Furthermore, if we want to prove the problem

198 T. Ito et al.

is NP-hard, then a possible proof cannot be done via a gap-preserving reduction
from any APX-hard problem unless P = NP.

To give an FPTAS for trees, we generalize the problem. In this generalization,
(i) there may exist parallel edges, (ii) each edge can be chosen at most once,
and (iii) each edge has an “influence.” If we choose an edge e with influence
p(e), then each edge in d(e) is covered p(e) times by e. We first give a pseudo-
polynomial-time algorithm for this generalized problem on multitrees. Then, we
give a reduction from b-EDS on trees to this generalized problem on multitrees.
Finally, we prove that a pseudo-polynomial-time algorithm for this generalized
problem on multitrees yields an FPTAS for 6-EDS on trees.

1.2 Preliminaries: Polynomial-Time Algorithms and NP-Hardness

For the problem with numerical inputs, several notions of polynomial-time algo-
rithms appear in the literature. Here, we summarize them.

Consider a problem in which we are given a combinatorial object O (in our
case, a tree T') and a set of numbers (in our case b(e) and c(e) for all e € ET)
at most M. Suppose that the object O has size n (in our case T has n vertices).

An algorithm runs in strongly polynomial time if the running time is bounded
by a polynomial in n. It runs in weakly polynomial time if the running time is
bounded by a polynomial in n and log M. It runs in pseudo-polynomial time if
the running time is bounded by a polynomial in n and M. It is easy to see that a
strongly polynomial-time algorithm is a weakly polynomial-time algorithm, and
a weakly polynomial-time algorithm is a pseudo-polynomial-time algorithm. In
this context, a polynomial-time algorithm is a weakly polynomial-time algorithm.

The problem is strongly NP-hard if it is NP-hard even if M is bounded by a
polynomial in n. The usual NP-hardness is referred to as weakly NP -hardness.

2 Combinatorial Algorithm for Paths

In this section, we present a combinatorial strongly polynomial-time algorithm
for b-EDS on a path P. Let VP = {vy,vs,...,v,}, EP = {e1,e9,...,e,-1}, and
e; = (vi,vi41) foreach i € {1,2,...,n—1}. For each i € {1,2,...,n}, we denote
by P; the subpath of P induced by V; = {v1,v2,...,v;}. Let B =max{b(e) | e €
EP).

In the sequel, we first give a pseudo-polynomial-time algorithm for b-EDS on
P (Sect. 2.1), and the time complexity will be improved to polynomial (Sect. 2.2).

2.1 Dynamic Programming

For each i € {2,3,...,n}, each z € {0,1,..., B}, and each y € {0,1,...,2B},
define p;(z,y) as the minimum cost of a vector s in pri satisfying (i) s(0(e;)) >
b(e;) forevery j € {1,2,...,i—2}, (ii) s(e;—1) = =, and (iii) s(e;—2)+y > b(e;i—1),
where s(eg) = 0. If such a vector s does not exist, t