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Preface

The papers in this volume were presented at the 25th International Symposium on Al-
gorithms and Computation (ISAAC 2014), held in Jeonju, South Korea, during De-
cember 15–17, 2014. In the past, ISAAC was held in Tokyo (1990), Taipei (1991),
Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Sin-
gapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch (2001),
Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005), Kolkata (2006),
Sendai (2007), Gold Coast (2008), Hawaii (2009), Jeju (2010), Yokohama (2011),
Taipei (2012), and Hong Kong (2013) over 25 years from 1990 to 2014.

ISAAC is an acclaimed annual international symposium that covers a wide range
of topics in algorithms and theory of computation, and that provides a forum for re-
searchers where they can exchange ideas in this active research community. In response
to the call for papers, ISAAC 2014 received 171 submissions from 38 countries. Each
submission was reviewed by at least three Program Committee members with the assis-
tance of 189 external reviewers. Through extensive discussion, the Program Committee
selected 60 papers for presentation in ISAAC 2014. Two special issues, one of Algo-
rithmica and one of International Journal of Computational Geometry and Applications,
are prepared for some selected papers among the presented ones in ISAAC 2014.

The best paper award was given to “Concentrated Hitting Times of Randomized
Search Heuristics with Variable Drift” by Per Kristian Lehre and Carsten Witt. Two
eminent invited speakers, Ulrik Brandes from University of Konstanz, Germany and
Giuseppe F. Italiano from Università di Roma “Tor Vergata”, Italy, gave interesting
invited talks at the conference.

We would like to thank all Program Committee members and external reviewers
for their excellent work in the difficult review and selection process. We would like to
thank all authors who submitted papers for our consideration; they all contributed to the
high quality of the conference. We would like to thank Conference Chair Kunsoo Park
and Organizing Committee members for their dedicated contribution. Finally, we would
like to thank our conference volunteers, sponsor SRC-GAIA (Center for Geometry and
Its Applications), and supporting organizations KIISE (The Korean Institute of Infor-
mation Scientists and Engineers) and SIGTCS (Special Interest Group on Theoretical
Computer Science) of KIISE for their assistance and support.

December 2014 Hee-Kap Ahn
Chan-Su Shin
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Biconnectivity in Directed Graphs�

Giuseppe F. Italiano

Univ. of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Roma, Italy

giuseppe.italiano@uniroma2.it

Edge and vertex connectivity are fundamental concepts in graph theory with nu-
merous practical applications. Given an undirected graph G = (V,E), an edge
is a bridge if its removal increases the number of connected components of G.
Graph G is 2-edge-connected if it has no bridges. The 2-edge-connected compo-
nents of G are its maximal 2-edge-connected subgraphs. Two vertices v and w
are 2-edge-connected if there are two edge-disjoint paths between v and w: we
denote this relation by v ↔2e w. Equivalently, by Menger’s Theorem, v and w
are 2-edge-connected if the removal of any edge leaves them in the same con-
nected component. Analogous definitions can be given for 2-vertex connectivity.
In particular, a vertex is an articulation point if its removal increases the number
of connected components of G. A graph G is 2-vertex-connected if it has at least
three vertices and no articulation points. The 2-vertex-connected components
of G are its maximal 2-vertex-connected subgraphs. Two vertices v and w are
2-vertex-connected if there are two internally vertex-disjoint paths between v
and w: we denote this relation by v ↔2v w. If v and w are 2-vertex-connected
then Menger’s Theorem implies that the removal of any vertex different from
v and w leaves them in the same connected component. The converse does not
necessarily hold, since v and w may be adjacent but not 2-vertex-connected.
It is easy to show that v ↔2e w (resp., v ↔2v w) if and only if v and w are
in a same 2-edge-connected (resp., 2-vertex-connected) component. All bridges,
articulation points, 2-edge- and 2-vertex-connected components of undirected
graphs can be computed in linear time essentially by the same algorithm based
on depth-first search.

While edge and vertex connectivity have been thoroughly studied in the case
of undirected graphs, surprisingly not much has been investigated for directed
graphs. Given a directed graph G, an edge (resp., a vertex) is a strong bridge
(resp., a strong articulation point) if its removal increases the number of strongly
connected components of G. A directed graph G is 2-edge-connected (resp., 2-
vertex-connected) if it has no strong bridges (resp., strong articulation points
and has at least three vertices). The 2-edge-connected (resp., 2-vertex-connected)
components of G are its maximal 2-edge-connected (resp., 2-vertex-connected)
subgraphs. Similarly to the undirected case, we say that two vertices v and w
are 2-edge-connected (resp., 2-vertex-connected), and we denote this relation by

* Work partially supported by the Italian Ministry of Education, University and Re-
search, under Project AMANDA (Algorithmics for MAssive and Networked DAta).
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v ↔2e w (resp., v ↔2v w), if there are two edge-disjoint (resp., internally vertex-
disjoint) directed paths from v to w and two edge-disjoint (resp., internally
vertex-disjoint) directed paths from w to v. (Note that a path from v to w
and a path from w to v need not be edge-disjoint or vertex-disjoint). It is easy
to see that v ↔2e w if and only if the removal of any edge leaves v and w
in the same strongly connected component. Similarly, v ↔2v w implies that
the removal of any vertex different from v and w leaves v and w in the same
strongly connected component. We define a 2-edge-connected block (resp., 2-
vertex-connected block) of a directed graph G = (V,E) as a maximal subset
B ⊆ V such that u ↔2e v (resp., u ↔2v v) for all u, v ∈ B. It can be seen
that, differently from undirected graphs, in directed graphs 2-edge- and 2-vertex-
connected blocks do not correspond to 2-edge-connected and 2-vertex-connected
components.

Furthermore, these notions seem to have a much richer (and more com-
plicated) structure in directed graphs. Just to give an example, we observe
that while in the case of undirected connected graphs the 2-edge-connected
components (which correspond to the 2-edge-connected blocks) are exactly the
connected components left after the removal of all bridges, for directed strongly
connected graphs the 2-edge-connected components, the 2-edge-connected blocks,
and the strongly connected components left after the removal of all strong bridges
are not necessarily the same.

In this talk, we survey some very recent work on 2-edge and 2-vertex connec-
tivity in directed graphs, both from the theoretical and the practical viewpoint.



Social Network Algorithmics�

Ulrik Brandes

Computer & Information Science, University of Konstanz

Network science is a burgeoning domain of data analysis in which the focus is
on structures and dependencies rather than populations and independence [1].
Social network analysis is network science applied to the empirical study of social
structures, typically utilizing observations on social relationships to analyze the
actors involved in them [2].

Methods for the analysis of social networks abound. They include, for in-
stance, numerous centrality indices, vertex equivalences, and clustering tech-
niques, many of which are applied on networks in other disciplines as well. For
substantively oriented analysts, however, it is often difficult to choose, let alone
justify, a particular variant method. Similarly, it is difficult for researchers inter-
ested in computational aspects to understand which methods are worthwhile to
consider and whether variants and restrictions are meaningful and relevant.

In an attempt to bridge the gap between theory and methods, and drawing
on a substantial record of interdisciplinary cooperation, we have developed a
comprehensive research program, the positional approach to network analysis. It
provides a unifying framework for network analysis in the pursuit of two closely
related goals:

1. to establish a science of networks, and

2. to facilitate mathematical and algorithmic research.

The first caters to methodologists and social scientists: by embracing mea-
surement theory, network-analytic methods are opened up for theoretical justifi-
cation and detailed empirical testing. The second caters to mathematicians and
computer scientists: by structuring the space of methods, gaps and opportunities
are exposed.

After a brief introduction and delineation of network science and social net-
work analysis, the main elements of the positional approach are introduced in
this talk. I will then concentrate on exemplary instantiations for analytic con-
cepts such as centrality, roles, and cohesion. Particular emphasis is placed on
resulting combinatorial and algorithmic challenges involving, for instance, par-
tial orders, graphs, and path algebras.

* I gratefully acknowledge financial support from DFG under grant Br 2158/6-1.
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Line-Constrained k-Median, k-Means,
and k-Center Problems in the Plane

Haitao Wang and Jingru Zhang(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu, jingruzhang@aggiemail.usu.edu

Abstract. The (weighted) k-median, k-means, and k-center problems in
the plane are known to be NP-hard. In this paper, we study these prob-
lems with an additional constraint that requires the sought k facilities to
be on a given line. We present efficient algorithms for various distance
metrics such as L1, L2, L∞. Assume all n weighted points are given sorted
by their projections on the given line. For k-median, our algorithms for L1

and L∞ metrics run in O(min{nk, n√
k logn logn, n2O(

√
log k log logn) logn})

time and O(min{nk logn, n
√
k logn log2 n, n2O(

√
log k log logn) log2 n}) time,

respectively. For k-means, which is defined only on the L2 metric, we
give an O(min{nk, n

√
k log n, n2O(

√
log k log logn)}) time algorithm. For k-

center, our algorithms run in O(n log n) time for all three metrics, and
in O(n) time for the unweighted version under L1 and L∞ metrics.

1 Introduction

It has been known that the (weighted) k-median, k-means, and k-center in the
plane are NP-hard [15,24,27]. In this paper, we study these problems with an
additional constraint that the sought k facilities must be on a given line.

For any point p, denote by x(p) and y(p) its x- and y-coordinates, respec-
tively. For any two points p and q, denote by d(p, q) the distance between p and
q. Depending on the distance metrics, d(p, q) may refer to the L1 distance, i.e.,
|x(p)−x(q)|+ |y(p)−y(q)|, or the L2 distance, i.e.,

√
(x(p) − x(q))2 + (y(p) − y(q))2,

or the L∞ distance, i.e., max{|x(p) − x(q)|, |y(p) − y(q)|}. For convenience, we
define the L2

2 distance metric as (x(p) − x(q))2 + (y(p) − y(q))2.
Let P be a set of n points in the plane, and each point p ∈ P has a weight

w(p) > 0. The goal of the k-median (resp., k-center) problem is to find a set Q
of k points (called facilities) in the plane such that

∑
p∈P [w(p) · minq∈Q d(p, q)]

(resp., maxp∈P [w(p) · minq∈Q d(p, q)]) is minimized. The k-means problem is
actually the k-median problem under the L2

2 metric.
If all points of Q are required to be on a given line, denoted by χ, then we

refer to the corresponding problems as line-constrained or simply constrained
k-median, k-means, and k-center problems. In the following paper, we assume χ
is the x-axis and the points of P have been sorted by their x-coordinates.

This research was supported in part by NSF under Grant CCF-1317143.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 3–14, 2014.
DOI: 10.1007/978-3-319-13075-0 1
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Table 1. Summary of our results, where τ = min{n
√

k log n, n2O(
√
log k log logn)}.

Furthermore, the unweighted L1 constrained k-median is solved in O(τ) time. The
unweighted L1 and L∞ constrained k-center are solved in O(n) time.

constrained k-median constrained k-center

L1 O(min{nk, τ log n}) O(n log n)
L∞ O(min{nk log n, τ log2 n}) O(n log n)
L2

2 O(min{nk, τ}) (i.e., the constrained k-means) not applicable

Throughout the paper, let τ = min{n
√

k log n, n2O(
√
log k log log n)}. See Table 1

for our results. For the constrained k-median, our algorithms for the L1 and L∞
metrics run in O(min{nk, τ log n}) and O(min{nk log n, τ log2 n}) time, respec-
tively. The L1 unweighted version where all points of P have the same weight can
be solved in O(τ) time. These time bounds almost match those of the best algo-
rithms for the one-dimensional k-median problems. Note that the L2 version of
the constrained k-median has been shown unsolvable due to the computation chal-
lenge even for k = 1 [5]. For the constrained k-means, we give an O(min{nk, τ})
time algorithm. For the constrained k-center, our algorithms run in O(n log n)
time for all three metrics, and in O(n) time for the unweighted version under L1

and L∞ metrics. These k-center results are optimal.
Our results show that although these problems in 2D are hard, their “1.5D”

versions are “easy”. A practical example in which the facilities are restricted to
lie along a line is that we want to build some supply centers along a railway
or highway (although a railway or highway may not be a straight line, it may
be considered straight in each local area). Other relevant examples may include
building partial delivery stations along an oil or gas transportation pipeline.

1.1 Previous Work

The L1 and L2 k-median and k-center problems in the plane are NP-hard [27],
and so as the L∞ k-center problem [15]. In the one-dimensional space, however,
both problems are solvable in polynomial time: For k-median, the best-known
algorithms run in O(nk) time [4,18] or in O(τ log n) time [11]; for k-center, the
best-known algorithms run in O(n log n) time [10,12,26].

The k-means problem in the plane is also NP-hard [24]. Heuristic and approx-
imation algorithms have been proposed, e.g., see [13,20,23,29].

The unweighted versions of the constrained k-center were studied before. The
L2 case was first proposed and solved in O(n log2 n) time by Brass et al. [6] and
later was improved to O(n log n) time by Karmakar et al. [21]. Algorithms of
O(n log n) time were also given in [6] for L1 and L∞ metrics; note that unlike
our results, even the points are given sorted, the above algorithms [6] still run
in O(n log n) time. In addition, Brass et al. [6] also gave interesting and efficient
algorithms for other two variations of the unweighted k-center problems, i.e.,
the line χ is not fixed but its slope is fixed, or χ is arbitrary. To the best of our
knowledge, we are not aware of any previous work on the weighted versions of
the constrained k-median and k-center problems studied in this paper.
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Efficient algorithms have been given for other special cases. When k = 1,
Megiddo [25] solved the unweighted L2 1-center problem in O(n) time. Hurtado
[19] gave an O(n + m) time algorithm for the unweighted L2 1-center problem
with the center restricted in a given convex polygon of m vertices. For k =
2, Chan [7] proposed an O(n log2 n log2 log n) time for the unweighted L2 2-
center problem and another randomized algorithm; if the points are in convex
positions, the same problem can be solved in O(n log2 n) time [22]. The L2 1-
median problem is also known as the Weber problem and no exact algorithm is
known for it (and even for the constrained version) [5].

Alt et al. [3] studied a somewhat similar problem to our unweighted con-
strained problems, where the goal is to find a set of disks whose union covers all
points and whose centers must be on a given line such that the sum of the radii
of all disks is minimized, and they gave an O(n2 log n) time algorithm [3]. Note
that this problem is different from our k-median, k-means, or k-center problems.

1.2 Our Approaches

Suppose p1, p2, . . . , pn are the points of P ordered by increasing x-coordinate.
We discover an easy but crucial observation: for every problem studied in this
paper, there always exists an optimal solution in which the points of P “served”
by the same facility are consecutive in their index order.

For convenience of discussion, in the following paper we will refer to the
k-means problem as the k-median problem under the L2

2 metric.
Based on the above observation, for the constrained k-median, we propose

an algorithmic scheme that works for all metrics (i.e., L1, L2, L2
2, and L∞), by

modeling the problem as finding a minimum weight k-link path in a DAG G.
Furthermore, we prove that the weights of the edges of G satisfy the concave
Monge property and thus efficient techniques [2,28] can be used. One challenging
problem for the scheme is that we need to design a data structure to compute any
graph edge weight (i.e., given any i and j with i ≤ j, compute the optimal objec-
tive value for the constrained 1-median problem on the points pi, pi+1, . . . , pj).

For the L2
2 metric (i.e., the k-means), we build such a data structure in O(n)

time that can answer each query in O(1) time. For the L∞ metric, we build such
a data structure in O(n log n) time that can answer each query in O(log2 n) time.
Combining this data structure with the above algorithmic scheme, we can solve
the L2

2 and L∞ cases. In addition, based on interesting observations, we give
another algorithm for the L∞ case that is faster than the above scheme for
a certain range of values of k. For the L1 metric, instead of using the above
algorithmic scheme, we reduce the problem to the one-dimensional k-median
problem and then the algorithms in [4,11,18] can be applied.

For the constrained k-center, to solve the L2 case, we generalize the O(n log n)
time algorithm in [21] for the unweighted version. In fact, similar approaches
can also solve the L1 and L∞ cases. However, since the algorithm uses Cole’s
parametric search [12], which is complicated and involves large constants and
thus is only of theoretical interest, we design another O(n log n) time algorithms
for the L1 and L∞ cases, without using parametric search.
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In addition, for the unweighted L1 and L∞ cases, due to the above crucial
observation, our linear time algorithm hinges on the following efficient data struc-
tures. With O(n) time preprocessing, for any query i ≤ j, we can solve in O(1)
time the constrained L1 and L∞ 1-median problems on the points pi, pi+1, . . . , pj .

Note that our algorithms for the L2 and L2
2 metrics work for any arbitrary

line χ (but χ must be given as input). However, since the distances under L1

and L∞ metrics are closely related to the orientation of the coordinate system,
our algorithms for them only work for horizontal lines χ.

We introduce some notations and observations in Section 2. In Sections 3
and 4, we present our algorithms for the constrained k-median (including the
k-means) and k-center problems, respectively. Due to the space limit, all lemma
and theorem proofs are omitted and can be found in the full paper.

2 Preliminaries

For simplicity of discussion, we assume no two points in P have the same
x-coordinate. Let p1, p2, . . . , pn be the points of P ordered by increasing x-
coordinate. Define P (i, j) = {pi, pi+1, . . . , pj} for any i ≤ j. For any 1 ≤ i ≤ n,
we also use xi, yi, and wi to refer to x(pi), y(pi), and w(pi), respectively.

For any facility set Q and any point p, let d(p,Q) = minq∈Q d(p, q). For
any point p ∈ P , if d(p,Q) = d(p, q) for some facility point q ∈ Q, then we
say p is “served” by q. We call

∑
p∈P [w(p) · d(p,Q)] and maxp∈P [w(p) · d(p,Q)]

the objective value of the k-median and k-center problems, respectively. The
following is an easy but crucial lemma.

Lemma 1. For each of the constrained k-median and k-center problems of any
metric (i.e., L1, L2, L2

2, or L∞), there must exist an optimal solution in which
the points of P served by the same facility are consecutive in their index order.

For any i ≤ j, consider the constrained 1-median problem on P (i, j); denote
by f(i, j) the facility in an optimal solution and define α(i, j) to be the objective
value of the optimal solution, i.e., α(i, j) =

∑j
t=i[wt ·d(pt, f(i, j))]. We call f(i, j)

the constrained median of P (i, j). In the case that f(i, j) is not unique, we let
f(i, j) refer to the leftmost such point. By Lemma 1, solving the constrained
k-median problem is equivalent to partitioning the sequence p1, p2, . . . , pn into k
subsequences such that the sum of the α values of all these subsequences is mini-
mized. There are also similar observations for the constrained k-center problem.
As will be seen later, these observations are quite useful for our algorithms.

For any point p on the x-axis, for convenience, we also use p to denote its
x-coordinate. For example, if two points p and q are on the x-axis, then p < q
means that p is strictly to the left of q. For any value x, we sometime also use x
to refer to the point on the x-axis with x-coordinate x.

3 The Constrained k-Median

This section gives our algorithms for the constrained k-median under L1, L2
2,

and L∞ metrics. We first propose an algorithmic scheme in Section 3.1 that
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xxi xi+1 xj xj+1
vi vj

Figure 1. Illustrating an edge of G from vi to
vj , i.e., the two (red) squared points

x

d(pi, x)

pi

Ii

Figure 2. Illustrating the function
d(pi, x): the (red) thick segment is Ii

works for any metric. To use the scheme, one has to design a data structure for
computing α(i, j) for any query i and j with i ≤ j. We solve the L2

2 case (i.e., the
k-means) by giving such a data structure in the end of Section 3.1. In Section
3.2, we design such a data structure for L∞ metric, and thus solves the L∞
case. In addition, we give another algorithm that is faster than the scheme for a
certain range of values of k. Instead of using the scheme, we get a better result
for the L1 case in Section 3.3 by reducing it to the one-dimensional problem.

3.1 An Algorithmic Scheme for All Metrics

In this subsection, unless otherwise stated, all notations involving distances, e.g.,
d(p, q), α(i, j), can use any distance metric (i.e., L1, L2, L2

2, and L∞).
In light of our observations in Section 2, we will reduce the problem to finding

a minimum weight k-link path in a DAG G. Further, we will show that the edge
weights of G satisfy the concave Monge property and then efficient algorithms
[1,2,28] can be used. Below, we first define the graph G.

For each point pi ∈ P , recall that xi = x(pi) and we also use xi to denote
the projection of pi on the x-axis. The vertex set of G consists of n + 1 vertices
v0, v1, . . . , vn and one can consider each vi corresponding to a point between xi

and xi+1 (v0 is to the left of x1 and vn is to the right of xn); e.g., see Fig.1.
For any i and j with 0 ≤ i ≤ j ≤ n, we define a directed edge e(i, j) from vi to
vj , and the weight of the edge, denoted by w(i, j), is defined to be α(i + 1, j) (if
we view vi and vj as two points on the x-axis as above, then vivj contains the
points xi+1, xi+2, . . . , xj). Clearly, G is a directly acyclic graph (DAG).

A path in G is a k-link path if it has k edges. The weight of any path is the
sum of the weights of all edges of the path. A minimum weight k-link path from
v0 to vn in G is a k-link path that has the minimum weight among all k-link
paths from v0 to vn. Note that any k-link path from v0 to vn in G corresponds to
a partition of the points in P into k subsequences. According to our observations
in Section 2 and the definition of G, the following lemma is self-evident.

Lemma 2. A minimum weight k-link path π from v0 to vn in G corresponding to
an optimal solution OPT of the constrained k-median problem on P . Specifically,
the objective value of OPT is equal to the weight of π, and for each edge e(vi, vj)
of π, there is a corresponding facility serving all points of P (i + 1, j) in OPT .

Lemma 3. For any metric, the weights of the edges of G satisfy the concave
Monge property, i.e., w(i, j) + w(i + 1, j + 1) ≤ w(i, j + 1) + w(i + 1, j) holds for
any 1 ≤ i < j ≤ n.
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By Lemma 3, we can apply the algorithm in [1,2,28]. Assuming the weight of
each graph edge w(i, j) can be obtained in O(1) time, the algorithms in [2] and
[28] can compute a minimum weight k-link path from v0 to vn in O(n

√
k log n)

time and O(n2O(
√
log k log log n)) time, respectively. Further, as indicated in [2],

by using dynamic programming and applying the technique in [1], such a path
can also be computed in O(nk) time. In our problem, to compute each w(i, j) is
essentially to compute α(i + 1, j). Therefore, we can obtain the following result.

Theorem 1. For any metric, if we can build a data structure in O(T ) time
that can compute α(i, j) in O(σ) time for any query i ≤ j, then we can solve
the constrained k-median problem in O(T + σ · min{nk, τ}) time, where τ =
min{√

nk log n, n2O(
√
log k log log n)}.

The following result is an application of our algorithmic scheme in Theorem 1
to the L2

2 case (i.e., the k-means).

Theorem 2. For the L2
2 metric, a data structure can be built in O(n) time that

can answer each α(i, j) query in O(1) time. Consequently by Theorem 1 the
constrained k-means problem can be solved in O(min{nk, τ}) time.

3.2 The Constrained k-Median under the L∞-Metric

In this section, all notations related to distances use the L∞ metric. We present
two algorithms. For the first algorithm, our main goal is to prove Lemma 4.
Thus, by Theorem 1, we can solve the L∞ case in O(min{nk, τ} · log2 n) time.

Lemma 4. For the L∞ metric, a data structure can be constructed in O(n log n)
time that can answer each α(i, j) query in O(log2 n) time.

For any point pi, let Ii denote the interval on the x-axis centered at xi with
length |yi| (i.e., the absolute value of the y-coordinate of pi). Note that the points
of Ii have the same (L∞) distance to pi. Consider d(pi, x) as a function of a point
x on the x-axis. As x changes from −∞ to +∞, d(pi, x) first decreases and then
does not change when x ∈ Ii and finally increases (e.g., see Fig. 2). Consider
any two indices i ≤ j. Let E(i, j) be the set of the endpoints of all intervals It
for i ≤ t ≤ j. For any point x on the x-axis, define φ(i, j, x) =

∑j
t=i wtd(pt, x).

By the definition of f(i, j), φ(i, j, x) is minimized at x = f(i, j) and α(i, j) =
φ(i, j, f(i, j)). Lemma 5 is crucial for computing α(i, j).

Lemma 5. The function φ(i, j, x) is a continuous piecewise linear function whose
slopes change only at the points of E(i, j). Further, there exist two points in E(i, j),
denoted by x′ and x′′ with x′ ≤ x′′ (x′ = x′′ is possible), such that as x increases
from −∞ to +∞, φ(i, j, x) will strictly decrease when x ≤ x′, and will be constant
when x ∈ [x′, x′′], and will strictly increase when x ≥ x′′.

By Lemma 5, to compute α(i, j), which is the minimum value of φ(x, i, j), we
can do binary search on the sorted list of E(i, j), provided that we can compute
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φ(i, j, x) efficiently for any x. Since E(i, j) ⊆ E(1, n), we can also do binary
search on the sorted list of E(1, n) to compute α(i, j). Hence, as preprocessing,
we compute the sorted list of E(1, n) in O(n log n) time since |E(1, n)| = 2n.

According to the above discussion, for any query (i, j) with i ≤ j, if we
can compute φ(i, j, x) in O(σ′) time for any x, then we can compute α(i, j) in
O(σ′ log n) time. The following Lemma 6 gives a data structure for answering
φ(i, j, x) queries, which immediately leads to Lemma 4.

Lemma 6. We can construct a data structure in O(n log n) time that can com-
pute φ(i, j, x) in O(log n) time for any i ≤ j and x.

Proof. Let T be a complete binary tree whose leaves correspond to the points
of P from left to right. For each 1 ≤ i ≤ n, the i-th leaf is associated with
the function wid(pi, x), which is actually φ(i, i, x). Consider any internal node
v. Let the leftmost (resp., rightmost) leaf of the subtree rooted at v be the i-th
(resp., j-th) leaf. We associate with v the function φ(i, j, x), and we also use
φv(x) to denote the function. By Lemma 5, the combinatorial complexity of the
function φv(x) is O(j − i+1). Let u and w be v’s two children. Suppose we have
already computed the two functions φu(x) and φw(x); since essentially φv(x) =
φu(x) + φw(x), we can easily compute φv(x) in O(j − i + 1) time. Therefore, we
can compute the tree T in O(n log n) time in a bottom-up fashion.

Consider any query i ≤ j and x = x′ and the goal is to compute φ(i, j, x′).
By standard approaches, we first find O(log n) maximum subtrees such that
the leaves of these subtrees are exactly the leaves from the i-th leaf to the j-th
one. Let V be the set of the roots of these subtrees. Notice that φ(i, j, x′) =∑

v∈V φv(x′). For each v ∈ V , we can compute the value φv(x′) in O(log n)
time by doing binary search on the function φv(x) associated with v. In this
way, since |V | = O(log n), we can compute φ(i, j, x′) in overall O(log2 n) time.
We can avoid doing binary search on every node of V by constructing a fractional
cascading structure [8] on the functions φv(x) of the nodes of T . Using fractional
cascading, we only need to do one binary search on the root of T , and then the
values φv(x′) for all nodes v of V can be computed in constant time each. The
fractional cascading structure can be built in additional O(n log n) time [8].

As a summary, we can construct a data structure in O(n log n) time that can
compute φ(i, j, x) in O(log n) time for any i ≤ j and x. �	

By Theorem 1 and Lemma 4, we can solve the constrained k-median problem
under L∞ metric in O(nk log2 n) or O(τ log2 n) time.

Our second algorithm is based on the following Lemma 7, which can be easily
proved based on Lemma 5.

Lemma 7. For the L∞ constrained k-median problem on P , there must exist
an optimal solution in which the facility set Q is a subset of E(1, n).

By Lemma 7, we have a set of “candidate” facilities, and further, by Lemma 1,
we only need to check these candidates from left to right. Based on these obser-
vations, we develop a dynamic programming algorithm and the result is given
in Lemma 8.
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Lemma 8. The L∞ constrained k-median is solvable in O(nk log n) time.

Combining the two algorithms, we obtain the following theorem.

Theorem 3. The constrained k-median problem under the L∞ metric can be
solved in O(min{nk log n, τ log2 n}) time.

3.3 The Constrained k-Median Problem under L1-Metric

To solve the L1 case, instead of using Theorem 1, we get a better result by
reducing it to the one-dimensional problem and then applying the algorithms in
[4,11,18]. In this section, all notations related to distances use the L1 metric.

Recall that our goal is to minimize
∑n

i=1[wi · d(pi, Q)]. Consider any point
pi ∈ P . For any point q on the x-axis, since d(pi, q) is the L1 distance, we
have d(pi, q) = d(xi, q) + |yi|. Since all points of Q are on the x-axis, it holds
that d(pi, Q) = minq∈Q d(pi, q) = |yi| + minq∈Q d(xi, q). Therefore, we obtain∑n

i=1[wi · d(pi, Q)] =
∑n

i=1 wi|yi| +
∑n

i=1[wi · d(xi, Q)].
Note that once P is given,

∑n
i=1 wi|yi| is constant, and thus, to minimize∑n

i=1[wi ·d(pi, Q)] is equivalent to minimizing
∑n

i=1[wi ·d(xi, Q)], which is essen-
tially the following one-dimensional k-median problem: Given a set of n points
P ′ = {x1, x2, . . . , xn} on the x-axis with each xi having a weight w(xi) = wi ≥ 0,
find a set Q of k points on the x-axis to minimize

∑n
i=1[wi · d(xi, Q)].

The above 1D k-median problem is a continuous version because each point of
our facility set Q can be any point on the x-axis. There is also a discrete version,
where Q is required to be a subset of P ′. The algorithms given in [4,11,18] are
for the discrete version and therefore we cannot apply their algorithms directly.
Fortunately, due to some observations, we prove below that for our continuous
version there always exists an optimal solution in which the set Q is a subset of
P ′, and consequently we can apply the discrete version algorithms.

Consider any indices i ≤ j. Let P ′(i, j) = {xi, xi+1, . . . , xj}. As in the L∞
case, for any point x on the x-axis, define φ(i, j, x) =

∑j
t=i wtd(xt, x). The

following lemma is similar in spirit to Lemma 5.

Lemma 9. The function φ(i, j, x) is a continuous piecewise linear function whose
slopes change only at the points ofP ′(i, j). Further, there exist two points inP ′(i, j),
denoted by x′ and x′′ with x′ ≤ x′′ (x′ = x′′ is possible), such that as x increases
from −∞ to +∞, φ(i, j, x) will strictly decrease when x ≤ x′, and will be constant
when x ∈ [x′, x′′], and will strictly increase when x ≥ x′′.

By Lemma 9, we can obtain the following lemma.

Lemma 10. For the 1D k-median problem on P ′, there must exist an optimal
solution in which the facility set Q is a subset of P ′.

In light of Lemma 10, we can apply the algorithms in [4,11,18] to solve the k-
median problem on P ′. The algorithms in [4,18] run in O(nk) time and the algo-
rithm in [11] runs in O(τ log n) time and O(τ) time for the unweighted case.

Theorem 4. The L1 constrained k-median can be solved in O(min{nk, τ log n})
time and the unweighted case can be solved in O(min{nk, τ}) time.
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4 The Constrained k-Center

This section presents our k-center algorithms. We first give a linear time algo-
rithm to solve the decision version of the problem for all metrics. Then, we
present an O(n log n) time algorithm for the L2 metric. In fact, similar algo-
rithms also work for the other two metrics. However, since the algorithm uses
Cole’s parametric search [12], which is complicated, we give another O(n log n)
time algorithm for L1 and L∞ metrics, without using parametric search. Finally,
we give an O(n) time algorithm for the unweighted case under L1 and L∞ met-
rics.

In the following, unless otherwise stated, all notations related to distances
are applicable to all three metrics, i.e., L1, L2, and L∞.

The decision version of the problem is as follows: given any value ε, determine
whether there are a set Q of k facilities such that maxp∈P [w(p) ·d(p,Q)] ≤ ε, and
if yes, we call ε a feasible value. We let ε∗ denote the optimal objective value,
i.e., ε∗ = maxp∈P [w(p) · d(p,Q)] for the facility set Q in any optimal solution.
Hence, for any ε, it is a feasible value if and only ε ≥ ε∗.

For any point pi ∈ P , denote by I(pi, ε) the set of points q on the x-axis such
that wid(pi, q) ≤ ε. Note that I(pi, ε) is the intersection of the “disk” centered at
pi with radius ε/wi (the “disk” is a diamond, a real circular disk, and a square
under L1, L2, and L∞ metrics, respectively). Hence, I(pi, ε) is an interval and
we refer to I(pi, ε) as the facility location interval of pi. Note that for any subset
P (i, j), if the intersection of all facility location intervals of P (i, j) is not empty,
then any point in the above intersection can be used as a facility to serve all
points of P (i, j) within weighted distance ε.

We say a point covers an interval on the x-axis if the interval contains the
point. Let I(P, ε) be the set of all facility location intervals of P . According to
the above discussion, to determine whether ε is a feasible value, it is sufficient
to compute a minimum number of points that can cover all intervals of I(P, ε),
which can be done in O(n) time after the endpoints of all intervals of I(P, ε) are
sorted [17]. The overall time for solving the decision problem is O(n log n) due
to the sorting. Below, we give an O(n) time algorithm, without sorting.

Similar to Lemma 1, if ε is a feasible value, then there exists a feasible solu-
tion in which each facility serves a set of consecutive points of P . Using this
observation, our algorithm works as follows. We consider the intervals of I(P, ε)
from I(p1, ε) in the index order of pi. We find the largest index j such that
⋂j

i=1 I(pi, ε) is not empty, and then we place a facility at any point in the above
intersection to serve all points in P (1, j). Next, from I(pj+1, ε), we find the next
maximal subset of intervals whose intersection is not empty to place a facility.
We continue this procedure until the last interval I(pn, ε) has been considered.
Clearly, the running time of the algorithm is O(n). Let k′ be the number of
facilities that are placed in the above procedure. The value ε is a feasible value
if and only if k′ ≤ k. Hence, we have the following result.

Lemma 11. Given any value ε, we can determine whether ε is a feasible value
in O(n) time for any metric.
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4.1 The L2 Metric

For any ε and each 1 ≤ i ≤ n, let li(ε) and ri(ε) denote the left and right
endpoints of I(pi, ε), respectively. Recall that ε∗ is the optimal objective value.
Let S = {li(ε∗), ri(ε∗) | 1 ≤ i ≤ n}. If we know the sorted lists of the values
of S, then we can use our decision algorithm to compute an optimal facility set
in O(n) time. Although we do not know ε∗, we can still sort S by parametric
search [12]. In the parametric search, we will need to compare two values of S.
Although we do not know ε∗, we can resolve the comparison using our decision
algorithm in Lemma 11. We omit the details.

Theorem 5. The constrained k-center problem under the L2 metric can be
solved in O(n log n) time, by using Cole’s parametric search.

4.2 The L1 and L∞ Metrics

We present O(n log n) time algorithms for the L1 and L∞ metrics, without using
parametric search. We consider the L1 case first.

We define li(ε) and ri(ε) in the same way as before. We consider li(ε) and ri(ε)
as functions of ε. It can be verified that ri(ε) = xi + ε/wi − |yi| and li(ε) =
xi−ε/wi+ |yi|, both defined on ε ≥ wi · |yi|. Hence, each of li(ε) and ri(ε) defines
a half-lines. Let A be the set of the half-lines defined by li(ε) and ri(ε) for all
i = 1, 2, . . . , n. As analyzed in [6] for the unweighted case, the optimal objective
value ε∗ must be the y-coordinate of an intersection of two half-lines of A. In
fact, ε∗ is the smallest feasible value among the y-coordinates of all intersections
of the half-lines of A. Let A be the arrangement of the lines containing the half-
lines of A. The intersection of two lines of A is called a vertex. Hence, ε∗ is the
smallest feasible value among the y-coordinates of the vertices of A. Therefore,
to solve the constrained k-center problem on P , it is sufficient to find the lowest
vertex (denoted by v∗) of A whose y-coordinate is a feasible value (which is ε∗)
and then apply our decision algorithm in Lemma 11 on ε∗ to find an optimal
facility set in additional O(n) time. Such a vertex v∗ can be found by using a
line arrangement searching technique given in [9] and our decision algorithm.
The details are omitted.

Lemma 12. Such a vertex v∗ can be found in O(n log n) time.

Hence, we can solve the L1 constrained k-center problem in O(n log n) time.
For the L∞ case, the algorithm is similar. Under L∞ metric, it can be verified

that ri(ε) = xi + ε/wi and li(ε) = xi − ε/wi, both defined on ε ≥ wi · |yi|. Hence,
each of ri(ε) and li(ε) still defines a half-line, as in the L1 case. Therefore, we
can use the similar algorithm as in the L1 case.

Theorem 6. The L1 and L∞ constrained k-center problems can be solved in
O(n log n) time, without using parametric search.
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4.3 The Unweighted Case under L1 and L∞ Metrics

We give an O(n) time algorithm for the unweighted case under L1 and L∞ metrics.
For any i ≤ j, consider the constrained 1-center problem on the points in P (i, j);
denote by g(i, j) the facility in an optimal solution and define β(i, j) to be the
objective value of the optimal solution, i.e., β(i, j) = maxi≤t≤j wtd(pt, g(i, j)).
We call g(i, j) the constrained center of P (i, j).

By Lemma 1, solving the constrained k-median problem is equivalent to par-
titioning the sequence p1, p2, . . . , pn into k subsequences such that the maximum
of the β values of all these subsequences is minimized. Formally, we want to find
k − 1 indices i0 < i1 < i2 < · · · < ik−1 < ik, with i0 = 0 and ik = n, such that
maxk

j=1 β(ij−1 +1, ij) is minimized. This is exactly the MIN-MAX PARTITION
problem proposed in [14]. Based on Frederickson’s algorithm [16], the following
result is a re-statement of Theorem 2 in [14] with respect to our problem.

Lemma 13. [14] If β(i, j) ≤ β(i′, j′) holds for any 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤
n, then we have the following result. For any metric, suppose after O(T ) time
preprocessing, we can compute β(i, j) in O(σ) time for any query i ≤ j; then the
constrained k-center problem can be solved in O(T + nσ) time.

Clearly, the condition on β values in Lemma 13 holds for our problem. In
Lemma 14, we give data structures for β(i, j) queries under L1 and L∞ metrics.

Lemma 14. For L1 and L∞ metrics, with O(n) time preprocessing, we can
compute β(i, j) in constant time for any query i ≤ j.

Our linear time algorithm follows immediately from Lemmas 13 and 14.

References

1. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilbur, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

2. Aggarwal, A., Schieber, B., Tokuyama, T.: Finding a minimum weight k-link path
in graphs with concave monge property and applications. Discrete and Computa-
tional Geometry 12, 263–280 (1994)
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Abstract. We consider the problem of reconstructing the combinatorial
structure of a set of n points in the plane given partial information on
the relative position of the points. This partial information consists of
the radial ordering, for each of the n points, of the n − 1 other points
around it. We show that this information is sufficient to reconstruct the
chirotope, or labeled order type, of the point set, provided its convex
hull has size at least four. Otherwise, we show that there can be as
many as n − 1 distinct chirotopes that are compatible with the partial
information, and this bound is tight. Our proofs yield polynomial-time
reconstruction algorithms. These results provide additional theoretical
insights on previously studied problems related to robot navigation and
visibility-based reconstruction.

1 Introduction

Many properties of point sets in the plane do not depend on the exact coordinates
of the points but only on their relative positions. The order type, or chirotope,
of a point set P ⊂ R2 is the orientation (clockwise or counterclockwise) of
every ordered triple of P [1]. More precisely, a chirotope χ associates a sign
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χ(a, b, c) ∈ {0,+1,−1} with each ordered triple (a, b, c) of points, indicating
whether the three points a, b, c make a left turn (+1), a right turn (−1), or are
collinear (0). When χ(a, b, c) �= 0 for all triples (a, b, c), the order type is said to
be uniform or to be in general position. We consider only uniform order types.

Chirotopes must satisfy a collection of well-studied axioms which define the
abstract order types. For details on the axioms, we refer the reader to a book by
Knuth [2], who refers to chirotopes as CC-systems. These axioms form one of the
several axiom systems that define uniform acyclic rank-3 oriented matroids [3].
An abstract order type χ is realizable if there exists a point set in R2 with order
type χ. An abstract order type χ is typically identified with its opposite −χ,
where all signs are reversed, and we follow this convention in this paper. Abstract
order types correspond exactly to arrangements of pseudolines, as a consequence
of the Folkman-Lawrence topological representation theorem [4]. The smallest
non-realizable order type corresponds to the well-known Pappus arrangement of
nine pseudolines; all smaller order types are realizable. The convex hull h1, . . . , ht

of χ is uniquely defined (also for non-realizable order types) by the property1

that χ(hi, hi+1, v) = +1 for all v ∈ V \ {hi, hi+1} and all 1 ≤ i ≤ t.
Unlike most other publications on order types, we consider labeled order

types, not order type isomorphism classes. For instance, whereas there is only
one order type isomorphism class for four points in convex position, there are
actually three such labeled order types. More precisely, given two order types χ1

and χ2 on a set V , we define χ1 = χ2 if and only if either (i) for all u, v, w ∈ V :
χ1(u, v, w) = χ2(u, v, w) or (ii) for all u, v, w ∈ V : χ1(u, v, w) = −χ2(u, v, w).

h1

h2

h3

a

b

h4

Fig. 1. A point set with
Rχ(a) = h4, h3, b, h2, h1

Radial Orderings and Radial Systems. We
next introduce the clockwise radial system Rχ of
an abstract order type χ (in general position) on
a set V . For an element u of V , let Rχ(u) be
the clockwise radial ordering of u, defined as the
unique cyclic ordering v1, . . . , vn−1 of all elements
other than u, sorted clockwise around u. Figure 1
shows a point set and the clockwise radial order-
ings of one of its points.

When given only the abstract order type χ,
we can compute Rχ(u) as follows. Let v be any
vertex other than u. Now sort V \ {u} radi-
ally around u by using w < w′ iff χ(u, v, w) >
χ(u, v, w′), or χ(u, v, w) = χ(u, v, w′) and
χ(w, u,w′) = +1 (where χ(u, v, v) := 0).

We write U ∼ Rχ and say that U and Rχ are equivalent if U can be obtained
from Rχ by reversing of some of the clockwise radial orderings of Rχ. Thus the
relation ∼ forgets about the directions of the radial orderings. We call U an
undirected radial system, and each U(v) an undirected radial ordering.

While χ uniquely determines the equivalence class of Rχ, the converse is not
necessarily true. We define T (U) as the set of labeled order types χ for which

1 Index additions and substractions are always modulo the length of the sequence.
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U ∼ Rχ. In this paper we investigate the properties of T (U). We show that in
many cases T (U) = {χ} for U ∼ Rχ: in other words, that χ can be reconstructed
uniquely from one of its undirected radial systems. However, this is not true in
general, as we will discuss below.
Local Sequences. Radial orderings are similar in flavor, but different than local
sequences defined by Goodman and Pollack [5]. The radial ordering around a
point p can be thought of as the order of the intersections of a ray of origin p with
the other points. If instead of a ray, we consider the successive intersections of a
rotating line through p with the other points, we get what Goodman and Pollack
call the local sequences. The order type (up to projective transformations) can
be recovered from the local sequences. Felsner [6] and Felsner and Valtr [7] study
simplified encodings of local sequences to prove upper bounds on the number of
pseudoline arrangements.
Examples. Figure 2 shows three point sets with different (labeled) order types.
Figure 2(a) and 2(b) have equivalent radial systems, but Figure 2(c) has a dif-
ferent radial system. Conversely, Figure 2(a) and 2(c) have equivalent local
sequences (the sequence for point 1 is reversed), but Figure 2(b) has differ-
ent local sequences. It follows that local sequences and radial orderings are
incomparable in the sense that neither can be computed from the other in gen-
eral. Figure 2(b) is obtained from Figure 2(a) by cyclically shifting the labels
2, 3, . . . , n once. Each such cyclic shift in this example preserves the undirected
radial system U , and hence |T (U)| ≥ n − 1. We show in what follows that this
is the worst case in the sense that |T (U)| ≤ n − 1 for all radial systems U .
Figure 3(a-b) shows another example of two point sets with different order types
but the same radial system U . In this case, a discussion later in the paper shows
that |T (U)| = 2.

In the preceeding examples, the labeled ordered types were distinct, but
isomorphic in the sense they differ only by a relabeling of the points. Figure 3(c-
d) shows that this is not always the case: the two point sets have the same radial
system and distinct and non-isomorphic order types (see [8]). This construction
can be generalized to obtain examples with an arbitrary number of points.
Related Work. Concepts similar to radial systems have been studied in a
wide variety of contexts. Tovar, Freda and LaValle [9] considered the problem
of exploring an unknown environment using a robot that is able to sense the

2
3

1

4
n− 1

n− 2

n

(a)

3
4

1

5
n

n− 1

2

(b)

2
3

1

4
n− 1

n− 2

n

(c)

Fig. 2. An example to illustrate the difference between local sequences and radial
systems
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Fig. 3. (a-b) Two point sets with equivalent radial systems. The points a, 1, . . . , k, a′

lie on a convex arc in both sets. (c-d) Two point sets with the same radial system but
nonisomorphic order types.

radial orderings of landmarks around it. They use the order type machinery
as well, and consider robots with operations like moving towards a landmark
to accomplish several recognition tasks. Wismath [10] considered related recon-
struction problems involving partial visibility information. He mentions the fact
that radial orderings are not always sufficient to reconstruct order types, and
solves a related reconstruction problem where, additionally, the x-coordinate
of every point is given. Another similarly flavored problem, the polygon recon-
struction problem from angles, has been tackled by Disser et al. [11], and Chen
and Wang [12]. There they reconstruct a polygon given, for each vertex v, the
sequence of angles formed by the vertices visible from v. The results developed
in this paper will hopefully lay the ground for a complete theoretical treatment
of the relation between observed radial orderings and the structure of point sets,
and could be useful in such applications.

Some other problems involving radial orderings have been studied in several
previous publications. For instance, Devillers et al. [13] considered the problem
of maintaining the radial ordering associated with a moving point. Dı́az-Báñez,
Fabila, and Pérez-Lantero [14] study the number of distinct radial orderings that
can be obtained from a point set, and introduce a colored version of the problem.
Durocher et al. [15] propose algorithms for realizing radial orderings in point sets.
The notion of radial ordering has been used previously by a subset of the current
authors in the context of graph drawing. More precisely, it is instrumental in an
elementary proof of the ∃R-completeness of the general simultaneous geometric
graph embedding problem [16]. Pilz and Welzl [8] consider crossing-preserving
mappings between order types. Non-isomorphic order types having the same
radial system form an equivalence class in their hierarchy.
Our Results. In Section 2, we give a preliminary analysis of radial systems on
five points, which will serve as a building block for later sections. In Section 3,
we show that T (U) can be computed from U in polynomial time. The main pro-
cedure involved in the recognition algorithm consists of repeatedly considering
five-point configurations, and removing the points that are inside the convex
hull of four others. As a byproduct, we can show that if the convex hull has
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at least four vertices, then there is at most one compatible order type, that is,
|T (U)| = 1. In Section 4, we prove that |T (U)| ≤ |V | − 1 for all undirected
rotation systems U on the set V . As a consequence of Section 3, this can happen
only when the convex hull of the reconstructed order type is a triangle. This
bound is tight, as shown by the example of Figure 2(a)-2(b).

For the sake of readability, the proofs involve Euclidean point sets, but we are
careful to use only those properties of point sets that hold also for arbitrary order
types (realizable or not). An easy way to verify this is to use the representation
of abstract order types as generalized configurations, discussed in detail in [5]. A
generalized configuration in general position is a pair (P,L) where P ⊂ R2 and L
is a pseudoline arrangement such that every pseudoline in L contains exactly two
points of P . Note that for realizable order types, such a generalized configuration
is obtained simply by taking a point set realization of the order type and its set
of supporting lines. Whereas for point sets P , every triple p1, p2, p3 ∈ P defines
a cone at p2, every triple defines a pseudocone at p2 (an infinite region bounded
by two curves that intersect only at p2) in a generalized configuration, and these
have all the properties required for the proofs. Hence, our results extend to
abstract order types.

2 Bootstrapping

First, we define signature graphs, which will prove to be a useful tool in the
analysis of undirected radial systems. Given a vertex set V and some U ∼ Rχ on
V for some labeled abstract order type χ, we construct a labeling of the complete
digraph DU on V as follows. For each directed edge (u, v) in DU , label (u, v) with
the set of vertices that are not equal to v and not directly before or after v in the
undirected radial ordering around u. For example, if U(u) = v1, v2, v3, v4 with
v = v2, then label (u, v) with {v4}. Next, we construct a coloring of the complete
undirected graph GU on V by coloring each edge {u, v} green if (u, v) and (v, u)
have the same label in DU and red otherwise. We call GU the signature graph
of U . Figure 4 shows several examples.

Lemma 1. Consider an abstract labeled order type χ on a set V with |V | = 5
and let U ∼ Rχ.

(i) The abstract labeled order types in T (U) all have the same convex hull size
and this size can be computed from U in constant time.

(ii) If χ has convex hull size 4 or 5 then T (U) = {χ} and χ can be computed
from U in constant time.

Proof. Figure 4(a-c) shows the signature graphs of the undirected radial systems
of each of the three order type isomorphism classes on five elements. Note that
the number of green edges is different for each isomorphism class. This proves
(i). For (ii), recall that we want to recover the labeled order type, not just its
equivalence class. We perform a case distinction on the isomorphism class of χ
(which we identify by the number of vertices on the convex hull of χ).
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Fig. 4. Green edges are solid and red edges are dashed. (a-c) The undirected radial
systems of each of the three order type isomorphism classes on five elements. (d-e) The
two labeled order types of size five with four vertices on the convex hull, where vertex
a has no incident green edges and b and c have one incident green edge.

Suppose that there are five vertices on the convex hull of χ. An edge {u, v}
is green if and only if {u, v} is on the convex hull. We assume without loss of
generality that {a, b} is green. There are six labeled order types of size five with
five vertices on the convex hull, under the assumption that {a, b} is on the convex
hull. Those order types correspond to sequences starting with a, b and ending
with all six permutations of the three remaining points. The green neighbors of
a and b thus completely identify the labeled order type.

Suppose now that there are four vertices on the convex hull of χ. Referring
again to Figure 4(b), we see that there is one vertex with no incident green edges,
two vertices with one incident green edge and two vertices with two incident
green edges. Without loss of generality, we may assume that the vertex with no
incident green edges is vertex a and the vertices with one incident green edge are
b and c. This leaves the two labeled order types shown in Figure 4(d-e), which
are easily distinguished by the green neighbor of vertex b. 	

Figure 2(a)-2(b) show that (ii) does not always hold for triangular convex hulls.

3 Reconstruction Algorithms

In this section we develop an algorithm to compute T (U) from an undirected
rotation system U ∼ Rχ. The general approach is the following. We first show,
in two steps, that the convex hull H of χ and U together uniquely determine χ.
Then we repeatedly apply Lemma 1 to compute |H| from U . We show that U
uniquely determines H if |H| ≥ 4. In that case, we can compute T (U) = {χ}
from U . Otherwise, if |H| = 3, we compute T (U) by trying each possible convex
hull. Given an order type χ on the vertex set V , let χ[V ′] be the restriction of χ
to V ′ ⊆ V . We define U [V ′] analogously for an undirected radial system U .

Lemma 2. Consider an abstract labeled order type χ on a set V and let U ∼ Rχ.
Let H ⊆ V be the set of vertices on the convex hull of χ. The pair (H,U) uniquely
determines the cyclic order h1, . . . , hk of the vertices on the convex hull and the
clockwise radial system Rχ (up to complete reversal of both). Furthermore, there
is a polynomial-time algorithm that takes (H,U) as input and returns h1, . . . , hk

and Rχ.
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Proof. We first give an algorithm to recover the sequence h1, . . . , hk. If |H| = 3
then any ordering of H will do. If 4 ≤ |H| ≤ 5 then choose any H ⊆ V5 ⊂ V
with |V5| = 5 and use Lemma 1 with V5 to recover the order type of H in
polynomial time. If |H| > 5, then let h1, . . . , hk be a cyclic order of H and
consider the signature graph GU [H]. Note that we can compute the signature
graph in polynomial time using only U [H]. In the digraph DU [H], the edges
(hi, hi+1) and (hi+1, hi) will both be labeled H \ {hi−1, hi, hi+1, hi+2} and thus
{hi, hi+1} is green in GU [H] for all 1 ≤ i ≤ k. On the other hand, the edge
(hi, hj) will be labeled H \ {hi, hj−1, hj , hj+1}, whereas (hj , hi) will be labeled
H\{hi−1, hi, hi+1, hj} for |i−j| > 1. Hence, {hi, hj} is red in Gu for all remaining
edges. It follows that the green edges in GU [H] form a hamiltonian cycle which
reveals the order of the vertices of H along the convex hull.

To recover Rχ, we assume that h1, . . . , hk is the counterclockwise order and
recover the corresponding clockwise radial system Rχ (recall that we defined
χ = −χ). For |H| ≥ 4, every U(v) contains at least three vertices from the
convex hull, and hence we can recover the clockwise direction by setting Rχ(v)
to U(v) if h1, . . . , hk (without v if v is on the convex hull) appear in this order in
U(v) and setting Rχ(v) to the reverse of U(v) otherwise. For |H| = 3 the same
procedure works except when v is on the convex hull. If v = h1 then the two
possible directions are of the form h2, h3, v1, v2, . . . and h2, v1, v2, . . . , h3. The
second one is the correct clockwise order and is easy to recognize (note that if
V = H both orders are identical). The cases v = h2 and v = h3 are analogous.
This procedure takes polynomial time. 	

We omit the proof of the following lemma due to space limitations; it is essentially
an application of Lemma 2, followed by some case analysis to recover χ.

Lemma 3. Consider an abstract labeled order type χ on a set V with |V | ≥ 5 and
let U ∼ Rχ. Let H ⊆ V be the set of vertices on the convex hull of χ. Then the pair
(H,U) uniquely determines χ, i.e., {χ′ ∈ T (U) | χ′ has convex hull H} = {χ}.
Furthermore, there is a polynomial-time algorithm that takes (H,U) as input and
returns χ.

Theorem 1. Consider an abstract labeled order type χ on a set V with |V | ≥ 5
and let U ∼ Rχ. There is a polynomial-time algorithm that takes U as input and
returns T (U). Furthermore, let H be the vertices of the convex hull of χ. Then

(i) all elements of T (U) have convex hull size |H|; and
(ii) if |H| ≥ 4, then T (U) = {χ}.

Proof. The algorithm begins by computing a set V ′ ⊆ V that contains (at least)
all vertices that appear on the convex hull of an order type in T (U). Initially,
let V ′ := V . For each subset V5 ⊆ V with |V5| = 5, we do the following. By
Lemma 1, the elements of T (U [V5]) all have the same convex hull size s, and
we can compute s from U in constant time. If s �= 4, we do nothing. If s = 4,
then the algorithm from Lemma 1 in addition returns χ[V5], and there must be
some vertex v ∈ V5 that is not on the convex hull of χ[V5]. Note that v is not on
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the convex hull of any order type in T (U) either. Hence, we delete v from V ′.
After running this procedure for all subsets V5 ⊆ V of size 5, we are left with a
V ′ ⊆ V that contains (at least) all vertices of the convex hulls of all order types
in T (U). Every 5-element subset of V ′ has convex hull size 3 or 5.

We perform a case analysis depending on the size of the set V ′. First suppose
that |V ′| ≤ 5. If necessary, add back previously deleted vertices to V ′ until
|V ′| = 5. Use the algorithm from Lemma 1 to recover |H| from V ′. If |H| = 3,
then continue with the procedure described in the paragraph at the end of this
proof. If |H| = 4 or |H| = 5, then Lemma 1 in addition returns χ[V ′] and thereby
H. Then, by Lemma 3, T (U) = {χ} and we can compute T (U) in polynomial
time. This shows that (i) and (ii) hold in that case.

Now suppose that |V ′| > 5 and note that this implies |H| �= 4. If |H| = 3,
then there is a V5 ⊂ V with convex hull size 3. If |H| ≥ 5, then we claim that
H = V ′. For the sake of obtaining a contradiction, suppose that there exists a
vertex v ∈ V ′ that is not in H. Fix any triangulation of χ[H]. Let hihjhk be
the cell of the triangulation that contains v and let h� be any other vertex of
H. Then V5 = {hi, hj , hk, h�, v} is a set of five vertices with convex hull size
four and V5 ⊆ V ′, which is a contradiction. We conclude that if |H| ≥ 5 then
H = V ′ and in particular, every V5 ⊂ V ′ is in convex position. Our algorithm
proceeds as follows. If there is a V5 ⊂ V ′ with convex hull size 3, then we conclude
|H| = 3 and continue with the procedure described in the last paragraph below.
Otherwise, we conclude that H = V ′. Then T (U) = {χ} by Lemma 3 and we
can compute T (U) in polynomial time. This finishes the proof of (ii).

It remains to consider the case where the algorithm has established |H| = 3.
If some order type in T (U) would have convex hull size larger than 3, then the
algorithm would already have terminated by the discussion above. Hence, all
order types in T (U) have convex hull size 3, which completes the proof of (i).

Finally, we describe what the algorithm does when |H| = 3. Consider all
subsets H3 ⊆ V of size 3. For each such H3, run the algorithm from Lemma 3
with (H3, U), which returns a function χ. If H3 is the convex hull of an order
type in T (U) then χ ∈ T (U) and χ is the only order type in T (U) with convex
hull H3. If no order type in T (U) has convex hull H3, then the output χ is
undefined. Hence, it is sufficient to check for each H3 whether χ is an order type
(in polynomial time, using the order type axioms) and if so, whether U ∼ Rχ.
If and only if both conditions hold, then χ ∈ T (U) and hence T (U) can be
computed. Since there are O(|V |3) subsets of size 3 in V , the algorithm runs in
polynomial time. 	

Given a set V and for each v ∈ V a permutation of V \ {v}, we can decide in
polynomial time whether this is a radial system corresponding to an actual order
type. This is done by running the algorithm above until either an inconsistency
is detected or an output is produced. If one of the chirotopes in the output has
radial system U then the answer to the decision problem is yes, and no otherwise.

Corollary 1. Given a set V and for each v ∈ V a permutation of V \ {v}, we
can decide in polynomial time whether this is the radial system of some order
type.
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4 Triangular Convex Hulls

Theorem 1 only guarantees the trivial bound |T (U)| ≤ |V |3 when a radial system
U has a triangular convex hull. As discussed in the introduction, there are radial
systems U with |T (U)| ≥ |V | − 1. We next prove the matching upper bound.

Recall that U and the convex hull together uniquely determine the labeled
order type (Lemma 3). We also know that if U is the undirected radial system of
a labeled order type with a triangular convex hull, then all order types in T (U)
have a triangular convex hull (Theorem 1). If a triangle a, b, c ∈ V is the convex
hull for some order type in T (U), we say that abc is important (with respect
to U). Note that if abc is important, then b and c must appear consecutively in
the radial ordering of a (and the analogous statements for b and c also hold).
We capture the relations between important triangles with the following four
propositions. In each proposition, we consider an abstract labeled order type χ
on a set V with |V | ≥ 5 and a triangular convex hull and a U ∼ Rχ.
Proposition 1. U has at most two disjoint important triangles. If U has exactly
two disjoint important triangles, then these are the only important triangles and
hence |T (U)| ≤ 2.

Proof. Suppose that U has disjoint important triangles abc and a′b′c′. We now
argue that without loss of generality, c′, a′, b′ appear consecutivly and in this
order in U(a). Figure 5(a) depicts the order type where abc forms the convex
hull. Since b′ and c′ must appear consecutively in U(a′) and since a′ is not on
the convex hull, the cone b′a′c′ must not contain any other vertices. The same
argumentation for b′ and c′ shows that the dark gray region in Figure 5(a) must
be empty. We wish to show that all remaining vertices must be in the light green
regions. So suppose there is a vertex x outside both the dark gray and light
green regions. By symmetry we may assume that it is in the position indicated
by Figure 5(a). In the order type where a′b′c′ forms the convex hull, U(a′) and
U(b′) force x to be in region R1 in Figure 5(b). But U(c′) forces x to be in region
R2, which is disjoint from R1 (except vertex b). Hence, a′b′c′ cannot form the
convex hull, which is a contradiction. We conclude that all remaining vertices
must be in the light green regions in Figure 5(a). We call the complement of the
light green regions the forbidden region of a′b′c′.
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Fig. 5. Two disjoint important triangles. (a-b) Vertex x cannot be in the indicated
position. (c-d) The supporting line of xy cannot avoid the segment b′c′.
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We claim that the supporting line xy of two vertices x and y in a light green
region in Figure 5(a) must separate the other two green regions. Note that this
holds trivially if one of x and y is a or a′. Otherwise, suppose without loss of
generality that x and y are in the light green region incident to a, that a clockwise
sweep from c to b around a encounters x before y, that xy does not intersect
c′b′ and that c′ is below xy. See Figure 5(c). Looking at the order type where
a′b′c′ forms the outer face (Figure 5(d)), we see that U(a′) and U(′b) force y to
be in region R1. But U(c′) forces y to be in region R2, which is a contradiction.
Hence, the supporting line of x and y in Figure 5(a) must intersect c′ and b′ and
thus separate the light green regions incident to b and c.

Finally, we argue that there are no other important triangles. Consider again
the order type depicted in Figure 5(a). Suppose that there is another important
triangle Δ. Suppose that Δ is completely inside one light green region, say the
one incident to a. Since all three supporting lines of Δ separate the other two
light green regions, either b or c must be in the forbidden region of Δ, which is a
contradiction. Similarly, if Δ has one vertex in every light green region, then at
least one of a′, b′ and c′ is strictly inside Δ and hence in Δ’s forbidden region.
Hence, Δ must have two vertices a′′ and b′′ in one light green region, say the
one incident to a, and one vertex c′′ in another light green region, say the one
incident to c. We must have c′′ = c: otherwise c is in the forbidden region of
Δ. But then c′ is in the forbidden region of Δ, which is a contradiction. Hence,
there are only two important triangles and thus |T (U)| ≤ 2 by Lemma 3. 	


Proposition 2. If there is a vertex v∗ that is common to all important triangles
in U , then |T (U)| ≤ |V | − 1.

Proof. For every important triangle v∗uw we know that u and w must be
consecutive in U(v∗). Since there are only |V |−1 consecutive pairs in U(v∗), the
proposition follows immediately by Lemma 3. 	

We omit the proof of the following proposition due to space limitations; it is
similar to the proof of Proposition 1.

Proposition 3. If every pair of important triangles has exactly one vertex in
common, then all important triangles must all have the same vertex in common.

Proposition 4. If there exists a pair of important triangles with two vertices in
common, then all important triangles must have the same vertex in common.

Proof. Let abc and abd be the important triangles from the statement. Suppose
for the sake of obtaining a contradiction that not all important triangles share
the same vertex, i.e., that there is an important triangle Δ1 that does not contain
a and an important triangle Δ2 that does not contain b, with possibly Δ1 = Δ2.
If Δ := Δ1 = Δ2, then by Proposition 1 we have Δ = cde with e �= a, b. See
Figure 6(a). The forbidden region of Δ contains a if e is in the light green region
A and it contains b otherwise. It follows that Δ1 �= Δ2.
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Fig. 6. Two important triangles that share two vertices. (a) Triangle cde cannot be
important. (b) Possible locations for the vertex x. (c) Contradiction to (b) when aef
forms the convex hull.

Since Δ1 is not disjoint from abc and abd by Proposition 1 (since we have
four important triangles), Δ1 must contain b or both c and d. Similarly, Δ2 must
contain a or both c and d. Suppose that Δ1 contains both c and d and let e be the
third vertex of Δ1. By the argument in the previous paragraph, we must have
e = b. But then the forbidden regions of abd and Δ1 = bcd together cover all of
abc. This is a contradiction since |V | ≥ 5. Symmetrically, Δ2 cannot contain both
c and d. Hence, Δ1 must contain b and Δ2 must contain a. Furthermore, neither
triangle can intersect cd since c or d would be in the forbidden region otherwise.
Let Δ2 = aef such that a clockwise sweep from c to d around a encounters e and
f in this order (with possibly e = c or f = d but not both). Let x be a vertex
of Δ1 different from b, c and d. The light green region in Figure 6(b) shows the
allowed locations for x. The supporting line of ef cannot intersect cd since c
or d would be in the forbidden region of Δ2 otherwise. Figure 6(c) shows the
resulting order type where aef forms the convex hull. The radial orderings of b,
c and d force x to be in the light green region. Referring to Figure 6(b), we see
that d, b and c appear consecutively in U(x). But in Figure 6(c), this certainly
cannot be the case, even if c = e or d = f , which contradicts our assumption. We
conclude that we cannot have such Δ1 and Δ2 and therefore that all important
triangles must share a vertex. 	

It now follows from Propositions 1,2,3, and 4 that:

Theorem 2. Consider an abstract labeled order type χ on a set V with |V | ≥ 5
and let U ∼ Rχ. Then |T (U)| ≤ |V | − 1.

5 Discussion and Open Problems

Theorem 2 cannot be improved by considering clockwise radial systems instead of
undirected ones. For |H| ≥ 4, the undirected radial system is already sufficient to
reconstruct the order type. For |H| = 3, the worst case example from Figure 2(a)-
2(b) applies even for clockwise radial systems.

In terms of future work, an axiomatic characterization of radial systems
could lead to a simpler recognition algorithm. Our algorithms are obtained as
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byproducts of the proofs and their running time can undoubtedly be improved.
Finally, one could think of generalizing the problem to higher dimensions. Instead
of a cyclic ordering of points, every point p of a set in R3 could be associated
with a rank-3 oriented matroid obtained by projecting all other points on a small
sphere around p. The higher-dimensional counterparts of local sequences were
defined for instance by Bokowski et al. [4] and are called hyperline sequences.
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Abstract. Given a set of sites in the plane, their order-k Voronoi dia-
gram partitions the plane into regions such that all points within one
region have the same k nearest sites. The order-k abstract Voronoi
diagram is defined in terms of bisecting curves satisfying some sim-
ple combinatorial properties, rather than the geometric notions of
sites and distance, and it represents a wide class of order-k concrete
Voronoi diagrams. In this paper we develop a randomized divide-and-
conquer algorithm to compute the order-k abstract Voronoi diagram
in expected O(kn1+ε) operations. For solving small sub-instances in
the divide-and-conquer process, we also give two sub-algorithms with
expected O(k2n log n) and O(n22α(n) logn) time, respectively. This
directly implies an O(kn1+ε)-time algorithm for several concrete order-k
instances such as points in any convex distance, disjoint line segments
and convex polygons of constant size in the Lp norm, and others.

Keywords: Higher-Order Voronoi Diagram · Abstract Voronoi Dia-
gram · Randomized Algorithm · Divide and Conquer

1 Introduction

Given a set S of n geometric sites in the plane, their order-k Voronoi diagram,
Vk(S), is a subdivision of the plane such that every point within an order-k
Voronoi region has the same k nearest sites. The common boundary between
two adjacent Voronoi regions is a Voronoi edge, and the common vertex incident
to more than two Voronoi regions is a Voronoi vertex. The ordinary Voronoi
diagram is the order-1 Voronoi diagram, and the farthest-site Voronoi diagram
is the order-(n−1) Voronoi diagram.
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For point sites in the Euclidean metric, the order-k Voronoi diagram has
been well-studied. Lee [14] showed its structural complexity to be O(k(n−k)),
and proposed an O(k2n log n)-time iterative algorithm. Based on the notions
of arrangements and geometric duality, Chazelle and Edelsbrunner [6] devel-
oped an algorithm with O(n2+k(n−k) log2 n) time complexity. Clarkson [7]
developed an O(kn1+ε)-time randomized divide-and-conquer algorithm, and
Agarwal et al. [1], Chan [5], and Ramos [18] proposed randomized incre-
mental algorithms with O(k(n−k) log n+n log3 n), O(n log n+nk log k), and
O(n log n+nk2O(log∗ k)) time complexities, respectively. Besides, Boissonnat et
al. [4] and Aurenhammer and Schwarzkopf [2] also studied on-line algorithms.

Surprisingly, order-k Voronoi diagrams of sites other than points were only
recently considered [17] illustrating different properties from their counterparts
for points. For simple, even disjoint, line segments, a single order-k Voronoi
region may consist of Ω(n) disjoint faces; nevertheless, the overall structural com-
plexity of the diagram for n non-crossing line segments remains O(k(n−k)) [17].
Abstract Voronoi diagrams were introduced by Klein [10] as a unifying concept
to many instances of concrete Voronoi diagrams. They are defined in terms of a
system of bisecting curves J = {J(p, q) | p, q ∈ S, p �= q} rather than concrete
geometric sites and distance measures. Order-k abstract Voronoi diagrams were
recently considered in [3], providing a unified concept to order-k Voronoi dia-
grams, and showing the number of their faces to be ≤ 2k(n−k). No algorithms
for their construction have been available so far. For non-point sites, such as line
segments, only O(k2n log n)-time algorithms have been available based on the
iterative construction [17] and plane sweep [19]. Other recent works on order-k
Voronoi diagrams of point-sites in generalized metrics include the L1/L∞ met-
ric [16], the city metric [8], and the geodesic order-k Voronoi diagram [15].

In abstract Voronoi diagrams [10], the system of bisecting curves satisfies
axioms (A1)–(A5), given below, for any S′ ⊆ S. Once a concrete bisector system
is shown to satisfy these axioms, combinatorial properties and algorithms to
construct abstract Voronoi diagrams (see e.g., [10]) are directly applicable. A
bisector J(p, q) partitions the plane into two domains D(p, q) and D(q, p), where
D(p, q) are points closer to p than q; a first-order Voronoi region VR1({p}, S) is
defined as

⋂
q∈S,q �=p D(p, q).

(A1). Each first-order Voronoi region is pathwise connected.
(A2). Each point in the plane belongs to the closure of some first-order Voronoi

region.
(A3). No first-order Voronoi region is empty.
(A4). Each curve J(p, q), where p �= q, is unbounded. After stereographic pro-

jection to the sphere, it can be completed to be a closed Jordan curve through
the north pole.

(A5). Any two curves J(p, q) and J(s, t) have only finitely many intersection
points, and these intersections are transversal.
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In this paper, we develop a randomized divide-and-conquer algorithm to com-
pute the order-k abstract Voronoi diagram in expected O(kn1+ε) basic opera-
tions, based on Clarkson’s random sampling technique and one additional axiom:

(A6). The number of vertical tangencies of a bisector is O(1).

Our algorithm is applicable to a variety of concrete order-k Voronoi dia-
grams satisfying axioms (A1)-(A6), such as point sites in any convex distance
metric or the Karlsruhe metric, disjoint line segments and disjoint convex poly-
gons of constant size in the Lp norms, or under the Hausdorff metric. In these
instances, all basic operations (see Section 2) can be performed in O(1) time,
thus, our algorithm runs in expected O(kn1+ε) time. For non-point sites, this
is the first algorithm that achieves time complexity different from the standard
O(k2n log n), which is efficient for only small values of k. For point sites in the
Euclidean metric, near-optimal randomized algorithms exist [1],[5],[7],[18]; how-
ever, they are based on powerful geometric transformations, which are non-trivial
to convert to different geometric objects, and/or to the abstract setting, which is
based on topological (non-geometric) properties. Matching the time complexity
of these algorithms in the abstract setting or for concrete non-point instances
remains an open problem.

In order to apply Clarkson’s technique [7], we define a vertical decompo-
sition of the order-k Voronoi diagram. We prove that our vertical trapezoidal
decomposition allows a divide-and-conquer algorithm and an expected time
analysis. When the problem sub-instances are small enough, we propose two
sub-algorithms. The first one combines the standard iterative approach [14]
and the randomized incremental construction for the order-1 abstract Voronoi
diagram [12] and computes the order-k abstract Voronoi diagram in expected
O(k2n log n) operations. For the second one, we adopt Har-Peled’s method [9]
and obtain an O(n22α(n) log n)-operation randomized algorithm, where α(·) is
the inverse of the Ackermann function. Our algorithm follows the essence of
Clarkson’s randomized divide-and-conquer algorithm for the Euclidean order-
k Voronoi diagram [7], however, it bypasses all geometric transformations and
constraints. Instead, our algorithm defines sub-structures and conflict relations
relying on the properties of a bisector system that satisfies the six axioms (A1)–
(A6).

2 Preliminaries

Axioms (A1)-(A5) imply that for a given bisecting system J and a fixed point
x ∈ R2 we can define a linear order on the sites in S.

Definition 1. For a point x ∈ R
2 and two sites p, q ∈ S, p <x q, p =x q, or

p >x q if x ∈ D(p, q), x ∈ J(p, q), or x ∈ D(q, p), respectively.

Since D(p, q) ∩ D(q, r) ⊆ D(p, r) [10,11], we can define an ordered sequence on
S, πS

x = (s1, . . . , sn), given x, satisfying s1 ≤x s2 ≤x . . . ≤x sn. We say that site
s is k-nearest to point x if s occupies the k-th position in the sequence πS

x .
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Definition 2. [3] The order-k Voronoi region associated with H is

VRk(H,S) =
⋂

p∈H,q∈S\H

D(p, q).

The order-k Voronoi diagram is

Vk(S) =
⋃

|H|=k

∂VRk(H,S),

where ∂ denotes the boundary.

For each point x ∈ VRk(H,S) and πS
x = (s1, . . . , sn), H = {s1, . . . , sk}, and

sk <x sk+1. If VRk(H1, S) and VRk(H2, S) share an edge e, then for any point
x ∈ e,H1 ∩ H2 = {s1, . . . , sk−1} and sk−1 <x sk =x sk+1, see [3, Lemma 5]. For
simplicity, throughout this paper, we make a general position assumption that
the degree of any Voronoi vertex is exactly three.

Definition 3. Let v be a Voronoi vertex among VRk(H1, S), VRk(H2, S), and
VRk(H3, S), and let H = H1 ∩H2 ∩H3 then v can be categorized into two types:
new when |H| = k − 1 and old when |H| = k − 2.

A new Voronoi vertex of Vk(S) is an old Voronoi vertex of Vk+1(S).
Let v be a Voronoi vertex as in Def. 3. Then we can show that H =

{s1, . . . , st} and st <v st+1 =v st+2 =v st+3 <v st+4, where t = |H| and πS
v =

(s1, . . . , sn). Each Voronoi vertex is defined by the three sites st+1, st+2, st+3.

Definition 4. The k-neighborhood of a site p in S, denoted by VNk(p, S), is
the union of closures of VRk(H,S) for all H ⊂ S, such that p ∈ H and |H| = k,
i.e.,

VNk(p, S) =
⋃

p∈H,H⊂S,|H|=k

VRk(H,S),

where X denotes the topological closure of the set X.

Each edge of ∂VNk(p, S) belongs to J(p, q) for a site q ∈ S \ {p}, and each edge
of Vk(S) belongs to ∂VNk(p, S) for a site p ∈ S. The latter condition implies

Vk(S) =
⋃

p∈S

∂VNk(p, S).

Unlike order-k Voronoi regions of point-sites, abstract order-k Voronoi
regions may be disconnected. In fact one region may disconnect into Ω(n) disjoint
faces, for k > 1 (see e.g. [17] for line segments). Nevertheless, the k-neighborhood
is connected, and this is the major property used in Section 5.

Lemma 1. VNk(p, S) is simply connected and there is no finite set of points
whose removal would make VNk(p, S) disconnected.



A Randomized Divide and Conquer Algorithm 31

Proof. First we show that VNk(p, S) is path connected. The definiton of
VNk(p, S) implies that p is at most k-nearest for every point in VNk(p, S). There-
fore VNk(p, S) =

⋃
p∈H,H⊂S,|H|=k VR1(p, {p} ∪ (S \ H)). VR1(p, {p} ∪ (S \ H))

is path connected, axiom (A1). Thus the connectivity of VNk(p, S) follows.
Next we show that there can be no holes in VNk(p, S). Suppose there is a

face F entirely surrounded by VNk(p, S). Then all edges on the boundary of F
are subsets of ∂VNk(p, S). Let the edges correspond to the bisectors J(p, qi),
i = 1, . . . , m. If one of the bisectors J(p, qi) goes through the interior of F then
consider a face of F ∩D(qi, p), which is not empty, and so on until we have a face
F ′ bounded by edges J(p, q′

1), . . . , J(p, q′
m′) and F ′ ⊂ D(q′

1, p) ∩ · · · ∩ D(q′
m′ , p).

This implies that F ′ is a bounded face of the farthest Voronoi region of p in
{p, q′

1, . . . , q
′
m′}, a contradiction [3, Lemma 7]. 	


Our algorithm, to be described in the sequel, assumes the availability of the
following basic operations. (1) For an arbitrary point x, determine if x is in
D(p, q), J(p, q) or D(q, p); (2) Given a point x on J(p, q), determine the next
vertical tangent point or the next intersection with J(s, t) or a straight line
along one direction of J(p, q); (3) For two points x, y on J(p, q), determine the
in-front/behind relation along one direction of J(p, q); (4) For two points x and
y compare them by x-coordinate, where x and y are intersection points or points
of vertical tangency of the bisectors.

3 Randomized Divide and Conquer Algorithm

3.1 Refined Diagram

We first refine Vk(S) and partition it into vertical trapezoids.

Definition 5. The refined order-k Voronoi diagram Vk(S) of S is derived by
superimposing Vk(S) and Vk+1(S). It is defined as:

Vk(S) = Vk(S) ∪
⋃

H⊂S,|H|=k

V1(S \ H) ∩ VRk(H,S).

A region VRk(p,H, S) of Vk(S) is associated with a site p ∈ S, which is called
the dominator, and a k-element subset H ⊂ S. For any point x ∈ VRk(p,H, S),
H is the set of k nearest sites to x and p is the (k+1)-nearest site to x.

Definition 6. The vertical decomposition of Vk(S), denoted by V�
k (S), is the

subdivision of the plane into (pseudo-)trapezoids obtained by shooting vertical
rays up and down from each vertex in Vk(S) and each vertical tangent point of
each edge in Vk(S), until the intersection with an edge or all the way to infinity.

Lemma 2. V�
k (S) can be constructed from Vk(S) in expected O(k(n − k) log n)

operations.
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V�
k (S)

Fig. 1. Trapezoid � of V�
k (S). Vk(S) is depicted in bold.

A trapezoid � of V�
k (S) in VRk(p,H, S) is defined by the dominator p and

1-4 other sites. Vertical boundaries of the trapezoid may be defined either by an
intersection point or by a point of vertical tangency. Moreover, one of the vertical
boundaries may be degenerate. Let d(�) be the dominator of the trapezoid and
B(�) be the set of sites that together with the dominator define the boundaries
of the trapezoid �. Then 1 ≤ |B(�)| ≤ 4 and for any point x ∈ �, H \ B(�)
are the k − |H ∩ B(�)| nearest sites to x.

In Fig. 1, the top and bottom edges of � are defined by J(p, q) and J(p, h),
respectively, and the left and right edges are defined by a vertical tangent point
of J(p, h) and an intersection between J(p, q) and J(p, s), respectively. In other
words, B(�) = {q, h, s} and d(�) = p.

Definition 7. For a trapezoid � of V�
k (S), a site s �∈ B(�) strongly conflicts

with �, if � ⊂ D(s, d(�)). A site s �∈ B(�) weakly conflicts with �, if � ∩
D(s, d(�)) �= ∅. The set of sites X ⊆ S that strongly, resp. weakly conflict with
� is denoted by X ∧s �, resp. X ∧w �.

In general, the set of strong conflicts is different from the set of weak conflicts,
and X ∧s � ⊆ X ∧w �. In Figure 2, set S = {p1, . . . , p7, s1, . . . , s4} is the set of
line segments in Euclidean space. R = {p1, . . . , p7} is the subset of S and � is
the trapezoid of V�

3 (R) in VR3(p1, {p2, p3, p4}, R). The dominator d(�) of the
trapezoid � is p1. The set of the sites B(�) that define the boundaries of the
trapezoid � is {p2, p3, p5, p6}. Since the sites p2, p3, p5, p6 define the boundary
of the trapezoid they cannot conflict with the trapezoid. However, the site p4
strongly conflicts with �, since � ⊂ D(p4, p1). Sites that do not belong to R
can also conflict with the trapezoid. Here, site s1 strongly conflicts with �,
since � ⊂ D(s1, p1). However, site s2 weakly conflicts with �, because the
dominance region D(s2, p1) does not enclose �, but only intersects �. Thus,
S ∧s � = {p4, s1}, S ∧w � = {p4, s1, s2}. In Lemmata 3, 4 we use weak and
strong conflicts for the upper and lower bounds, respectively.

Lemma 3. Let R be a subset of S and β be a positive integer. Then for any
trapezoid � of V�

β (R), β − 4 ≤ |R ∧s �| and |R ∧w �| ≤ β.

Proof. Let � be in VRβ(H,R). We want to prove that H \ B(�) ⊆ R ∧s � and
R ∧w � ⊆ H. Since for each point x ∈ �, H are the β nearest sites of x and
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Fig. 2. Trapezoid � ∈ VR3(p1, {p2, p3, p4}), where p1, . . . , p7 are line segments

d(�) is the (β+1)-nearest site, for each site p ∈ H \ B(�), � ⊂ D(p, d(�)),
implying that H \ B(�) ⊆ R ∧s �. For each site p ∈ R ∧w �, D(p, d(�)) must
include �; otherwise, d(�) is not the (β+1)-nearest site for all points in �. By
Def. 2, p must belong to H, implying that R ∧w � ⊆ H. 	


Lemma 3 and [7, Corollaries 4.3 and 4.4] imply the following.

Lemma 4. Let R be an r-element random sample of S. Then with probability at
least 1/2, as r → ∞, for any � ∈ V�

β (R), |S|/(r−5) ≤ |S ∧s �| and |S ∧w �| ≤
α|S|, where β = O(log r/ log log r) and α = O(log r/r).

Lemma 5. Let R be a subset of S such that for any trapezoid � ∈ V�
β (R),

|S ∧s �| > k. Let v be a Voronoi vertex of Vk(S). Then there exists a trapezoid
� ∈ V�

β (R) such that v is also a Voronoi vertex of Vk(S ∧w �).

Proof. (Sketch) Let v be a Voronoi vertex incident to Voronoi regions
VRk(H1, S), VRk(H2, S) and VRk(H3, S), and let � be a trapezoid of V�

β (R)
such that v ∈ �. We want to prove that H1 ∪ H2 ∪ H3 ⊆ S ∧w �, which leads
to this lemma.

Let H be H1 ∪ H2 ∪ H3 and t = |H|. By Definition 1 and Definition 3, t is
k + 1 or k + 2, and in πS

v , s1 ≤v . . . ≤v st−3 <v st−2 =v st−1 =v st <v st+1 . . .,
and H = {s1, . . . , st}.

Let k′ be |S ∧s �|. By Definition 7, for each site p ∈ S ∧s �, p <v d(�).
Therefore, there exists k′′ ≥ k′ such that in πS

v , sk′′−1 <v sk′′ and either sk′′ =
d(�) or sk′′ ≤v d(�), implying that {s1, . . . , sk′′−1} ⊆ S ∧w �.

Since k′′ > k and t = k + 1 or k + 2, we have k′′ > t; otherwise, k′′ = t or
t − 1, contradicting either sk′′−1 <v sk′′ or st−2 =v st−1 =v st.

To conclude, H = {s1, . . . , st} ⊆ {s1, . . . , sk′′−1} ⊆ S ∧w �. Thus v is a
Voronoi vertex of Vk(S ∧w �). 	
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3.2 Computing the Voronoi Vertices of Vk(S)

Lemma 5 indicates that if for any � ∈ V�
β (R), |S ∧s �| > k, then computing the

Voronoi vertices of Vk(S) can be transformed into computing the Voronoi vertices
of Vk(S ∧w �) for each �. Lemma 4 states that on average it takes two trials
to generate a sample R such that |S ∧s �| ≥ |S|/(r − 5), where the size r of the
random sample R is any sufficiently large constant. Therefore, if |S|/(r−5) > k,
then we need two trials on average to generate a random sample that satisfies
the conditions of Lemma 5. The condition |S ∧w �| ≤ α|S| in Lemma 4 bounds
the depth of the recursion. Following Clarkson [7], the algorithm to compute the
Voronoi vertices of Vk(S) is summarized as follows:

– If |S|/(r−5) ≤ k, compute the vertices of Vk(S) by the algorithm in Section 5.
– Otherwise (|S|/(r − 5) > k)

1. Choose R ⊂ S of size r until R satisfies the conditions of Lemma 4
(a) Construct Vβ(R) by the algorithm in Section 4 and Compute V�

β (R)
from Vβ(R) (Lemma 2).

(b) Check each trapezoid in V�
β (R) to satisfy the conditions of Lemma 4.

2. For each trapezoid � ∈ V�
β (R)

(a) Recursively compute the Voronoi vertices of Vk(S ∧w �).
(b) Select vertices of Vk(S ∧w �) that are vertices of Vk(S).

3.3 Analysis

Lemma 6. Vk(S) can be computed from its Voronoi vertices in O(k(n−k) log n)
operations.

Proof. For points-sites, a vertex is uniquely defined by three sites [14]. Also for
point-sites two vertices are adjacent iff their corresponding triples of sites have
two sites in common. However, in the abstract setting, three sites may define one
or two vertices and the adjacency property does not hold. Therefore, we cannot
solve this problem by just using radix sort as it was done for point-sites [7].

Here, in the abstract setting, we use radix sort to extract for each bisector
all Voronoi vertices that lie on it, in total O(|V |) operations, where V is the set
of vertices in Vk(S). We also assume the existence of a sufficiently large closed
curve Γ such that no two bisectors intersect outside Γ .

Consider a set of mJ > 0 Voronoi vertices that belong to bisector J (including
the artificial Voronoi vertices formed by the intersection between Vk(S) and Γ ).
mJ must be even; otherwise, at least one Voronoi vertex has no Voronoi edge.
We can sort the mJ Voronoi vertices along one direction of J as v1, v2, . . . , vmJ

in O(mJ log mJ) operations, and then link v2i−1v2i for 1 ≤ i ≤ mJ/2 as Voronoi
edges in O(mJ ) operations. Therefore, we can compute all the Voronoi edges
on J in O(mJ log mJ) operations. Since |V | is O(k(n − k)), the total num-
ber of operations is O (|V |) +

∑
J∈J ,mJ>0 O(mJ log mJ) = O (|V | log |V |) =

O (k(n − k) log n). 	
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Theorem 1. Vk(S) can be computed in expected O(kn1+ε) operations, where
ε > 0, and the constant factor of the asymptotic bound depends on ε.

Proof. Recall that r is a sufficiently large constant, α = O(log r/r) and β =
O(log r/ log log r). There are two cases: (1) If |S|/(r − 5) ≤ k, then we use
the algorithm from Section 5 to compute the vertices of the order-k Voronoi
diagram in expected O(n22α(n) log n) operations, i.e. O(r2k2 log2 r log2 k); (2) If
|S|/(r − 5) > k then the algorithm proceeds as follows:

1. Choose a random sample that satisfies the conditions of Lemma 4. Do the
check by constructing Vβ(R) and computing V�

β (R) from Vβ(R). The con-
struction of Vβ(R) takes expected O(rβ2 log r) operations (see Section 4), and
computing V�

β (R) takes additional expected O(β(r − β) log r) operations.
The number of the trapezoids in V�

β (R) is O(rβ), and the number of oper-
ations required to check the sample is O(nrβ) ⊂ O(nr log r).

2. For each trapezoid in V�
β (R) compute the order-k vertices using recursion.

The number of recursive calls is O(rβ) ⊂ O(r log r). Each recursive call
inputs O(αn) = O(n log r/r) sites and outputs O(αnk) vertices. Therefore,
the expected total number of operations required to validate each vertex of
each recursive call is O(αnkr log r) which is O(nk log2 r).

Therefore, the expected number t(n) of operations for computing the Vononoi
vertices of Vk(S) is

t(n) ≤ O
(
r2k2 log2 r log2 k

)
, n ≤ k(r − 5)

t(n) ≤ O (nr log r) + O
(
nk log2 r

)
+ O(r log r)t (O(n log r/r)) , n > k(r − 5),

and the depth of the recursion is O(log(n/k)/ log(r/ log r)).
Following [7, Lemma 6.4], if n tends to infinity, t(n) is O(kn1+ε). Since Vk(S)

can be constructed from the Voronoi vertices of Vk(S) in expected O(k(n −
k) log n) operations (Lemma 2), Vk(S) can be constructed in expected O(kn1+ε)
operations. 	


4 First Sub-Algorithm: Iterative Construction

The order-k abstract Voronoi diagram can be computed iteratively similarly to
point sites in the Euclidean metric [14]. The following lemma proves the main
property used in the iterative construction.

Lemma 7. Let F be a face of VRj(H,S) and let VRj(Hi, S), 1 ≤ i ≤ 	 be the
adjacent regions. Then Vj+1(S) ∩ F = V1(Q) ∩ F , where Q =

⋃
1≤i≤� Hi \ H.

Proof. We want to show V1(Q)∩F = Vj+1(S)∩F which is equal to V1(S\H)∩F .
Let x ∈ VR1(s, S \ H) ∩ F . For the sake of a contradiction assume s /∈

Q. This means s <x q, for any q ∈ Q and thus x ∈ VRj+1(H ∪ {s}). Let
F ′ be the face of VRj+1(H ∪ {s}) that contains x. Since s /∈ Q, F ′ does not
intersect ∂F , implying that F ′ ∩ Vj(S) is empty. This leads to a contradiction
since F ′ ∩ Vj(S) = F ′ ∩ Vn−1(H ∪ {s}) and this is nonempty [3, Lemmata 12
and 13]. Hence V1(S \ H) ∩ F = V1(Q) ∩ F which finishes the proof. 	
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Lemma 7 implies that we can compute Vj+1(S) by partitioning each face of
Vj(S) with the nearest-neighbor Voronoi diagram, which in turn can be com-
puted using the algorithm in [12].

Theorem 2. Vk(S) can be computed in expected O(k2n log n) operations.

5 Second Sub-Algorithm: Random Walk Method

We construct Vk(S) by computing ∂VNk(p, S) for every p ∈ S, i.e., all the
Voronoi edges of Vk(S) belonging to J(p, q). Chazelle and Edelsbrunner [6] com-
puted ∂VNk(p, S) based on dynamic convex hulls and the fact that VNk(p, S)
is simply connected. However, dynamic convex hulls are not applicable in
the abstract setting. Since VNk(p, S) is simply connected, we can adopt Har-
Peled’s [9] random walk algorithm to compute ∂VNk(S).

∂VNk(p, S) is a substructure of the arrangement of n−1 bisectors J (p) =
{J(p, q) | q ∈ S \ {p}}, where the bisectors in J (p) are not x-monotone, but
they have constant number of vertical tangency points. Therefore, the structural
complexities of the arrangement and its vertical decomposition are of the same
asymptotic magnitude. We construct ∂VNk(p, S) in the following way: (1) For
each connected component of ∂VNk(p, S) compute a starting point; (2) For each
starting point, traverse the corresponding part of ∂VNk(p, S).

Lemma 8 states that starting points can be computed in O(n log n) expected
time. As we walk we can determine the next direction in O(1) time.

Lemma 8. The starting points of ∂VNk(p, S) for each of its connected compo-
nents can be computed in total O(n log n) expected time.

Following [9], the expected number of operation required to compute the
boundary of the k-neighborhood by the random walk is O(λt+2(n + m) log n),
where t is the maximum number of intersections between two bisectors, and m
is the complexity of ∂VNk(p, S). In the abstract case, we can show that t = 2,
i.e. each pair of bisectors J(p, q) and J(p, r) in J (p) intersect at most twice.
Consider V1({p, q, r}). Axiom (A1) implies that each region in this diagram is
connected, therefore V1({p, q, r}) has at most two vertices. Thus, J(p, q) and
J(p, r) intersect at most twice and t = 2.

The main difference between computing the zone in the original version of
the algorithm [9] and computing ∂VNk(p, S) is that the latter is additionally
augmented by the vertical rays from the points of vertical tangency. However,
since each bisector allows only a constant number of points of vertical tangency,
the expected number of operations increases only by a constant factor.

Theorem 3. Vk(S) can be computed in expected O(n22α(n) log n) operations.
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Abstract. We study the average-case complexity of min-sum product of
matrices, which is a fundamental operation that has many applications
in computer science. We focus on optimizing the number of “algebraic”
operations (i.e., operations involving real numbers) used in the computa-
tion, since such operations are usually expensive in various environments.
We present an algorithm that can compute the min-sum product of two
n×n real matrices using only O(n2) algebraic operations, given that the
matrix elements are drawn independently and identically from some fixed
probability distribution satisfying several constraints. This improves the
previously best known upper-bound of O(n2 log n). The class of probabil-
ity distributions under which our algorithm works include many impor-
tant and commonly used distributions, such as uniform distributions,
exponential distributions, and folded normal distributions.

In order to evaluate the performance of the proposed algorithm, we
performed experiments to compare the running time of the proposed
algorithm with algorithms in [7]. The experimental results demonstrate
that our algorithm achieves significant performance improvement over
the previous algorithms.

1 Introduction

The min-sum product (also known as min-plus product, distance matrix product,
and distance matrix multiplication) of two matrices is defined as follows: Given
two n × n real matrices A and B, the min-sum product of them, denoted by
A ⊗ B, is defined as a matrix C where

Ci,j
def= min

k
(Ai,k + Bk,j), for all 1 ≤ i, j ≤ n. (1)
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The min-sum product is a fundamental operation that has many applications
in computer science. For example, it is well known that the min-sum product
problem is closely related to the problem of computing all-pairs shortest paths
in a graph [1], which is among the most fundamental and well-studied problems
in the algorithm community. Another important application of the min-sum
product is in performing MAP (maximum a posteriori) inference with graphical
models [7,13].

A näıve implementation for computing the min-sum product of two n × n
matrices requires O(n3) time, which is too slow for a large n. Because of the
importance of this problem, many algorithms were developed to improve the
cubic time bound (see the work of Chan [4] and the references therein). Currently,
the best-known worst-case algorithm is due to Han and Takaoka [11] with time
complexity O(n3 log log n/ log2 n), which is only slightly better than cubic time
by a poly-logarithmic factor. Whether there exists a truly worst-case sub-cubic
(i.e., O(n3−δ) for some positive constant δ) algorithm for the min-sum product
problem is a long-standing open problem. The difficulty comes from the fact
that the min-sum product is computed on a semiring structure, where there
is no additive inverse defined over the min operator. Existing truly sub-cubic
fast matrix multiplication algorithms (e.g., the Strassen algorithm [19] and the
Coppersmith-Winograd algorithm [5]) only work on a ring structure. In fact,
it is conjectured by many researchers that an n3−Ω(1) time algorithm does not
exist for the min-sum product problem (see e.g. [4,10,11]).

In many practical applications of the min-sum product problem, the average-
case time complexity becomes more interesting than worst-case complexity. As
shown in a recent work of Felzenszwalb and McAuley [7], the min-sum product
problem can be solved significantly faster than cubic time in the average case
for some MAP inference applications in computer vision and natural language
processing. (See also the work of McAuley and Caetano [13] for the related
applications.) The algorithm of Felzenszwalb and McAuley [7] runs in expected
O(n2 log n) time when the entries of the input matrices are independently drawn
from a uniform distribution on [0, 1]. A more general algorithm of Takaoka [20]
also runs in expected O(n2 log n) time under the endpoint independence model
[2]. Although being almost tight, there is still an O(log n) gap between the upper
bound and the trivial lower bound of Ω(n2) (which is the time required to output
the answer).

Since the computations involving real numbers are usually much costlier
than that of integers, in real applications it is useful to consider the following
restricted algebraic model of computation: Computations involving real num-
bers are restricted to adding two real numbers and comparing two real numbers.
When talking about the algebraic complexity, we only count the costs for adding
and comparing two real numbers; all other computations (like adding two integer
variables, comparing two indices, etc.) are assumed to be cost-free.

For the min-sum product problem, this restricted computation model actu-
ally coincides with the decision tree model [8], which also counts only the num-
ber of comparisons and additions of the matrix elements (or edge weights in the
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graph view) required in the computation. Thus, the result of [9] gives an O(n2.5)
worst-case bound on the algebraic complexity of min-sum product, which is a
substantial improvement on the n3−o(1) complexity in the traditional model.
However, this is not the case when considering the average case. The analyses of
previous algorithms [7,20] only give an O(n2 log n) bound on the average-case
algebraic complexity, which is of the same order with the traditional average-
case complexity. It is not clear from the previous studies whether this bound can
be further improved.

OurContributions. In this paper, we study the problem of computing the min-sum
product of two random matrices under the aforementioned algebraic computation
model. We show that the min-sum product of two n×n matrices can be computed
using only O(n2) expected algebraic operations (i.e., adding or comparing two real
numbers), when the elements of the two matrices are independently drawn from
some fixed probability distribution satisfying several constraints (see Theorem 1).
Thus, our result improves the algebraic complexity of computing the min-sum
product of two matrices from O(n2 log n) [7,20] to O(n2), which is clearly the best
possible due to the trivial quadratic lower bound. The class of probability distri-
butions under which our algorithm works include many important and commonly
used distributions, e.g., the uniform distribution on [0, ϑ] for any ϑ > 0, exponen-
tial distributions, folded normal distributions. As mentioned before, the algebraic
computation model actually coincides with the decision tree model. Therefore, as a
by-product, the average-case decision tree complexity ofmin-sumproduct is shown
to be O(n2), which matches the trivial Ω(n2) lower bound.

Besides the theoretical result we achieved, we re-implemented the algorithms
in [7] and our algorithm in C++ to perform the comparison on the running
time. For two matrices multiplication, the experimental results show that our
algorithm achieves significant performance improvements over the previous algo-
rithms, especially when n is large. Moreover, we also conducted the experiments
with multiple matrices multiplication. Figure 2 shows that the improvement over
algorithms in [7] is significant when m is small.

We note that a recent work of Peres et al. [17] solves the all-pairs shortest
paths problem on a complete graph (or the G(n, p) model with moderately large
p) in expected O(n2) time when the edge lengths are from the uniform distribu-
tion on [0, ϑ]. Their work improves several previous results on the average-case
complexity of the problem (e.g., [2,12,14–16,18]). However, neither their algo-
rithm nor the previous ones apply to our case.

2 Min-Sum Product of Two Matrices

Let A and B be two n by n matrices, and C = A⊗B be their min-sum product.
Assume that the entries of A and B are independent and identically distributed
(i.i.d.) random variables drawn from some fixed probability distributions. Our
goal is to efficiently compute C.

As introduced earlier, we focus on a restricted algebraic model of compu-
tation as follows: Computations that involve real numbers are restricted to
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adding two real numbers and comparing two real numbers; no other compu-
tations are allowed for real numbers. The algebraic complexity of an algorithm
is the (expected) number of algebraic operations, which only include the oper-
ation of adding two real numbers and that of comparing two real numbers; all
other computations (like adding two integer variables, comparing two indices,
etc) are cost-free. As noted in the introduction, this measure of complexity coin-
cides with the well-studied decision tree complexity. Under this model, we have
the following main theorem in this section.

Theorem 1. The min-sum product of two n by n real matrices A and B can be
computed using O(n2) expected algebraic computations (more specifically, O(n2)
additions and comparisons of real numbers) if the elements of A and B are
drawn independently from the same probability distribution, whose (cumulative)
distribution function F satisfies all of the following three conditions:

– F is continuous;
– inf{x|F (x) > 0} = 0;
– there exist two positive constants λ and θ, such that F (x) ≤ λF (x/2) for

0 ≤ x ≤ θ.

Notice that the second condition in Theorem 1, inf{x|F (x) > 0} = 0, means
the distribution must be for non-negative random variables, and the left end-
point of the support must be 0. Many popular probability distributions for non-
negative random variables satisfy the conditions in Theorem 1, for example, the
uniform distribution on [0, ϑ] for any ϑ > 0, exponential distributions, folded
normal distributions, etc. Furthermore, we will later discuss how to support an
even more general class of distributions.

We present our algorithm as Algorithm 1, which can be considered as a refined
version of the algorithm of Felzenszwalb and McAuley [7]. The major differences
are the introduction of the matrix D in Algorithm 1 and the selection of the
6n2/ log n smallest matrix entries in A and B. Notice that in the algorithm, Ĉ
represents the min-sum product computed by the algorithm, and C (without the
hat) represents the correct min-sum product of A and B.

Here we sketch the basic ideas. The elements of matrices are independently
drawn from commonly used distributions, includes normal distribution, exponen-
tial distribution, etc. The algorithm maintains an extra matrix D to keep track of
whether the elements in Ĉ are minimized. Similar to algorithm of Felzenszwalb
and McAuley [7], all elements in Ĉ are initialized to infinity. The algorithm uses
linear-time selection algorithm to select the r smallest matrix entries in A and
B. Each time, it finds the smallest element from r entries and check whether
it is greater than or equal to the source-sink pair in Ĉ. If this is the case, the
algorithm will mark this pair in D as TRUE, as it cannot be minimized in the
remaining iterations. Otherwise, the relaxation is performed on the lengths of
source-sink pair. After processing all r elements, if there exists any element not
marked as true in D, it will use the näıve algorithm to find out the correct values
for those elements. The algorithm terminates when all elements in matrix D are
marked as TRUE.
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Algorithm 1. Computing the Min-Sum Product of Two Matrices
Input: A and B, which are both n by n matrices.
Output: Ĉ, which should be equal to C = A ⊗ B when the algorithm exits.

1 Use a linear-time selection algorithm (e.g. [3]) to select r = 6n2

log n
smallest

numbers from A and B in O(n2) time. Ties are broken arbitrarily.

2 Sort these r numbers in O(r log r) = O(n2) time, breaking ties arbitrarily, to get
a non-decreasing sequence of numbers S1, S2, . . . , Sr, where Sp denotes the p-th
smallest number in A and B. (Note that we can now access Sp for 1 ≤ p ≤ r.)

3 Initialize Ĉi,j ← ∞ for 1 ≤ i, j ≤ n.

4 Initialize an n by n Boolean matrix D by setting Di,j ← false for 1 ≤ i, j ≤ n.

Here Di,j = true means Ĉi,j = Ci,j , i.e., the value of Ci,j is correctly
computed. Note that once Di,j is set to true, it will not change back to false
in the later execution of the algorithm.

5 Initialize L[k] ← ∅ and R[k] ← ∅ for all 1 ≤ k ≤ n.

6 for p = 1 to r do
7 if Sp is Ai,k for some i and k then
8 L[k] ← L[k] ∪ {Sp}.
9 else if Sp is Bk,j for some k and j then

10 R[k] ← R[k] ∪ {Sp}.

11 //In the following, we assume Sp is Ai,k. The other case where Sp is Bk,j is
totally analogous: just replace the next line with “for each Ai,k ∈ L[k]”.

12 for each Bk,j ∈ R[k] do
13 if Di,j = false then

14 if Sp ≥ Ĉi,j then
15 Di,j ← true;
16 If all entries of D are true, then exit the algorithm and return

Ĉ.
17 else

18 Ĉi,j ← min{Ĉi,j , Ai,k + Bk,j}

19 if there exists a false in D then

20 Use a näıve O(n3) algorithm to compute Ĉ.

21 return Ĉ

Lemma 1. During the execution of Algorithm 1, when Di,j is true, we have
Ĉi,j = Ci,j.

Proof. This is because of the monotonic nondecreasing property of S: once Di,j

is changed from false to true, Sp′ +Sq′ ≥ Sp′ ≥ Sp ≥ Ĉi,j ≥ Ci,j for any p′ ≥ p

and any q′. So Ĉi,j will not be relaxed by any Sp′ + Sq′ in the later execution of
the algorithm, which implies that Ĉi,j = Ci,j .
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Because of Lemma 1, if all the entries of D are true at the end of the
algorithm, then Ĉ is computed correctly. Otherwise, lines 19–20 of the algorithm
will guarantee the correctness of the computed Ĉ.

Now we analyze the algebraic complexity of Algorithm 1. Clearly lines 1–5
take O(n2) time, and hence require only O(n2) algebraic computations. We need
the following Proposition 1 and Proposition 2. If these two propositions hold, the
expected number of comparisons and additions is O(n2+n3 ·1/n) = O(n2), which
proves Theorem 1.

Proposition 1. For a fixed probability distribution of Theorem 1, lines 6–18 of
Algorithm 1 require O(n2) expected number of additions and comparisons of real
numbers.

The algebraic computations only occur in lines 14 and 18. Let Q1 denote
the number of algebraic computations in line 14, and Q2 denote that in line 18.
When executing line 14, if the condition Sp ≥ Ĉi,j holds, then one of the entries
of D will change from false to true; if the condition does not hold, line 18 will
be executed. Since there are only n2 entries of D, we have Q1 ≤ O(n2) + Q2,
and hence the total algebraic computations is bounded by 2Q2 + O(n2). The
following Lemma 2 characterizes the behavior of the algebraic computations in
line 18.

Lemma 2. Right before executing line 18 of Algorithm 1, we have Ai,k ≤ Ci,j

and Bk,j ≤ Ci,j.

Proof. We will prove it by contradiction. Assume that the lemma does not
hold, then we have either Ai,k > Ci,j or Bk,j > Ci,j , which implies Sp > Ci,j .
In this case, we must have Ĉi,j = Ci,j , because the Ai,k′ and Bk′,j that achieve
Ci,j = Ai,k′ + Bk′,j must have been tried before the execution of the line due to
the monotonicity of Sp. However, Ĉi,j = Ci,j and Sp > Ci,j imply that Sp > Ĉi,j ,
which is impossible, because line 14 will not allow the algorithm to branch into
line 14 under such a condition. This contradiction implies the correctness of the
lemma.

Based on Lemma 2, the expected number of algebraic computations in line 18
is bounded by the expected size of the set

{
(i, k, j)

∣
∣ Ai,k ≤ Ci,j ∧ Bk,j ≤ Ci,j

}
.

Let Λ denote the size of this set. For 1 ≤ i, k, j ≤ n, let Xi,k,j be a random
variable, where Xi,k,j = 1 if Ai,k ≤ Ci,j ∧ Bk,j ≤ Ci,j , and Xi,k,j = 0 otherwise.
We have Λ =

∑
i,k,j Xi,k,j , and

E[Λ] = E[
∑

i,k,j

Xi,k,j ] =
∑

i,k,j

E[Xi,k,j ] =
∑

i,j,k

Pr(Ai,k ≤ Ci,j ∧ Bk,j ≤ Ci,j).

Then, the following Lemma 3 suffices to establish Proposition 1.
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Lemma 3. For a fixed probability distribution with distribution function F as
in Theorem 1, for any 1 ≤ i, j, k ≤ n, we have

Pr(Ai,k ≤ Ci,j ∧ Bk,j ≤ Ci,j) ≤ λ2

(

1 +
1

F 2(θ)

)

· 1
n

,

where the two positive constants λ and θ are specified as in Theorem 1 for F .

As λ and θ are both constants independent of n, by

E[Λ] =
∑

i,j,k

Pr(Ai,k ≤ Ci,j ∧ Bk,j ≤ Ci,j) ≤ n3 · O(1/n) = O(n2).

Thus the total number of algebraic computations in Algorithm 1 is at most
2E[Λ] + O(n2) = O(n2), which proves Proposition 1. Due to space limit, the
proof of this lemma is omitted.

Proposition 2. For a fixed probability distribution of Theorem 1, the probability
to execute line 20 of Algorithm 1 is O(1/n).

Proof. Fix 1 ≤ i, j ≤ n. We first observe that Di,j is true if there exists t2 >
t1 ≥ 0 such that all of the following three conditions hold:

1. Ci,j ≤ t1.
2. There exists 1 ≤ k ≤ n such that t1 < Ai,k ≤ t2 or t1 < Bk,j ≤ t2.
3. There exists at least 2n2−r = 2n2−6n2/ log n edges with length larger than

t2.

In fact, conditions 2 and 3 ensure that Ai,k or Bk,j is among the r chosen
edges. Consider the iteration in which Sp is this edge. Conditions 1 and 2 together
guarantee that Ĉi,j is updated to t1 before this iteration, and at this iteration
Di,j is set to true by lines 14 and 15.

Next we show that the probability that such t1 and t2 do not exist is at
most O(1/n3). By a simple union bound over the n2 possible pairs of (i, j), this
implies Proposition 2.

Because F is continuous, there exist r2 > r1 ≥ 0 such that F (r1) = log2 n√
n

and F (r2) = 2 log2 n√
n

. We consider two cases.
Case 1: r1 ≤ θ (recall that θ is the positive constant introduced in the

statement of Theorem 1). We let t1 = r1 and t2 = r2. The length of every edge
falls in the range (t1, t2) with probability F (t2) − F (t1) = log2 n√

n
. Thus condition

2 fails with probability at most

(

1 − log2 n√
n

)2n

≤ e−2
√

n log2 n ≤ O(n−3).
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If condition 3 fails, then there exists at least r edges with length at most t2.
Therefore, the probability that condition 3 fails is at most

(
2n2

r

)

(F (t2))r =
(

2n2

6n2/ log n

)(
2 log2 n√

n

)6n2/ log n

≤ 22n2 ·
(

n1/10

√
n

)6n2/ log n

= 22n2 ·
(
2− 2

5 log n
)6n2/ log n

= 22n2 · 2− 12
5 n2

≤ O(n−3),

Now consider condition 1. If condition 1 fails, then for all 1 ≤ k ≤ n, Ai,k +
Bk,j > t1. We have

Pr(Ai,k + Bk,j ≤ t1) ≥ Pr(Ai,k ≤ t1/2 ∧ Bk,j ≤ t1/2) = F (t1/2)2 ≥ (F (t1)/λ)2 =
log4 n

λ2n
,

where we use F (x) ≤ λF (x/2) when x ≤ θ, and that t1 ≤ θ. Then,

Pr(Ai,k + Bk,j > t1) ≤ 1 − log4 n

λ2n
.

Hence, we have

Pr(Ci,j > t1) ≤
(

1 − log4 n

λ2n

)n

≤ e−Ω(log4 n) ≤ O(n−3).

By the union bound, the probability that at least one condition fails is at most
O(1/n3).

Case 2: r1 > θ. In this case we let t1 = θ and t2 = r2. Similar to Case
1, condition 3 fails with probability at most O(n−3). Since F (t2) − F (t1) =
F (r2) − F (θ) ≥ F (r2) − F (r1) = log2 n√

n
, we still have that condition 2 fails with

probability at most (1 − log2 n√
n

)2n ≤ O(n−3).
Now we consider condition 1. Similar as before, we have (∀1 ≤ k ≤ n)Ai,k +

Bk,j > t1 if condition 1 fails. We also have

Pr(Ai,k + Bk,j ≤ t1) ≥ Pr(Ai,k ≤ θ/2 ∧ Bk,j ≤ θ/2) = (F (θ/2))2.

Thus, Pr(Ai,k + Bk,j > t1) ≤ 1 − (F (θ/2))2, and

Pr(Ci,j > t1) ≤ Pr(∀1 ≤ k ≤ n, Ai,k + Bk,j > t1) ≤ (1 − (F (θ/2))2)n ≤ e−(F (θ/2))2n.

As θ is a positive constant, using the second condition of Theorem 1, we have
F (θ/2) = Ω(1), and thus Pr(Ci,j > t1) ≤ e−Ω(n) ≤ O(n−3). Again, using the
union bound, we know the probability that at least one condition fails is at most
O(n−3). This completes the proof of Proposition 2.



Average-Case Complexity of the Min-Sum Matrix Product Problem 49

3 Experiments

In this section, we use experiments to validate the effectiveness of our algorithm.
Since the algorithms in [7] is considered as the previous best algorithm to com-
pute MSP, we only compare the running time performance of our algorithm with
the algorithms in [7]. There are two algorithms in [7] which are the algorithm
with integer queue and the algorithm without integer queue. All three algorithms
are implemented in C++ using the visual C++ compiler on an Intel i7 machine
running Windows 7 operating system.

The elements of all the input matrices are taken from four kinds of random
distributions which are uniform distribution of [0,1], exponential distribution of
[0,1], normal distribution of [0,10], and gamma distribution of [0,10]. For each
algorithm, we ran 10 test cases for n = 100, 200, . . . up to n=1000. For each test
case, we tested 100 input instances.

Fig. 1. Average Execution Time of Min-Sum Algorithms

Figure 1 shows the average execution time among these 100 instances for
each test case. The result validates that our algorithm has better performance
on random inputs. Specifically, when n is larger, our algorithm achieved better
performance.

We also tested the performance of min-sum product on multiple matrices
using the three algorithms as the basis. Besides matrix size n, a new parameter
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m, the number of matrices is introduced as one further dimension in the exper-
iments. Hence, for each algorithm, with the same setting above, we added one
further dimension m where m = 3, 4, . . . , 10.

Without modifying the algorithm, we implemented min-sum product of mul-
tiple matrices in a binary-tree-like association order. For example, assume the
number of matrices m = 5, the matrices are denoted as A, B, C, D, and E
respectively. The product order will be (A⊗B)⊗ ((C ⊗D)⊗E). This way, more
operations can be done on truly random input matrices.

Fig. 2. Average Running Time of Min-Sum Algorithms with Multiple Matrices

We fix one dimension to see how the performance changes with the other
dimension. The four diagrams in Figure 2 show the performance changes with
m=5,10, n=500,1000 respectively. The results show that our algorithm also per-
forms better than algorithms in [7]. However, for algorithms in [7], they have
different behaviors. When n = 500, m < 5, the algorithm with integer queue
performs better than the algorithm without integer queue, same as the exper-
iments for two matrices. However, when m ≥ 5, the behavior is reversed. The
algorithm without integer queue achieves better result as m increases.

In order to investigate the main reason of the poor performance of the algo-
rithm with integer queue when m increases, we need to look at how integer
queue is implemented. For the integer queue data structure, in the beginning,
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the maximum value in matrix A and B will be selected as the parameter k. Then
elements in matrix C are initialized to 2k. For our experiment, all matrix ele-
ments are in the range of [0,1], and hence k will be 1, and 2k will be 2. Suppose
we have a matrix with size n = 10. We need to create the buckets as follows:
bucket 0 stores values in [0, 0.01),
. . .
bucket 199 stores values in [1.99, 2),
bucket 200 stores anything ≥ 2.

Totally there will be 2n2 buckets. For min-sum product on two matrices, since
both matrices are truly-random matrices, each bucket will not store many items
on average. However, for multiple matrices case, as the input is not truly random,
the matrix elements will have a low chance to be evenly distributed to the buckets.
Thus, some of the buckets may contain lots of elements. Since the algorithm will
extract the minimum value from the bucket before computation, if there are lots
of items in a single bucket, the performance may degrade. This is the main reason
that the algorithm using integer queue performs worse when m is larger.

4 Conclusion

In this paper, we have investigated the average-case complexity of computing the
min-sum product of matrices, and improve previously known results under the
algebraic complexity setting. It remains an interesting question whether O(n2)
expected algebraic computations suffice also for the more general case, where a
constant number of (larger than two) matrices are given as inputs.

Moreover, the bottleneck of our algorithm is due to the selection and sorting
of the r smallest elements. If r can be further reduced, the running time of the
bottleneck can be improved. But this may cause more elements in D to remain
FALSE due to elements not minimized, and require to use the näıve algorithm
to retrieve the correct values. Hence, if we choose the small r, then it may take
longer time to execute the näıve algorithm. So it remains the question what is the
best value of r to choose in order to improve the running time of the algorithm.
Therefore we can consider this as our future works.

Besides the theoretical results we achieved, we run experiments to perform
the running time comparison of our algorithm and algorithms in [7]. The exper-
iments show that our algorithm achieves better result on random inputs. In
addition, we also run experiments with multiple matrices multiplication. The
results show that the improvement over algorithms in [7] is significant when m
is small.
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Abstract. We study the problem of efficiently correcting an erroneous
product of two n×n matrices over a ring. We provide a randomized algo-
rithm for correcting a matrix product with k erroneous entries running in
Õ(

√
kn2) time and a deterministic Õ(kn2)-time algorithm for this prob-

lem (where the notation Õ suppresses polylogarithmic terms in n and k).

Keywords: Matrix multiplication · Matrix product verification ·
Correction algorithms · Randomized algorithms

1 Introduction

Matrix multiplication is a basic operation used in many sciences and engineering.
There are several potential reasons for erroneous computational results, in par-
ticular erroneous matrix products. They include software bugs, computational
errors by logic circuits and bit-flips in memory. If the computation is done by
remote computers or by parallel processors, then some errors in the computed
result might also be introduced due to faulty communication.

In 1977, Freivalds presented a randomized algorithm for verifying if a matrix
C ′ is the matrix product of two n × n matrices A and B, running in O(n2) time
[7]. His algorithm has been up today one of the most popular examples showing
the power of randomization.

In spite of extensive efforts of the algorithmic community to derandomize it
without substantially increasing its time complexity, one has solely succeeded
partially, either decreasing the number of random bits to a logarithmic one
[2,9,12] or using exponentially large numbers and the unrealistic BSS computa-
tional model [10]. One can argue that the latter solutions in different ways hide
additional O(n) factors. By the way, if one can use quantum devices then even
an O(n5/3)-time verification of n × n matrix product over an integral domain is
possible [1].

Interestingly, the problem of verifying matrix products over the (min,+)
semi-ring seems to be much harder than that over an arbitrary ring. Namely, it

Christos Levcopoulos and Andrzej Lingas: Research supported in part by Swedish
Research Council grant 621-2011-6179.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 53–64, 2014.
DOI: 10.1007/978-3-319-13075-0 5



54 L. G ↪asieniec et al.

admits a truly subcubic algorithm if and only if there is a truly subcubic algo-
rithm for the all-pairs shortest path problem on weighted digraphs (APSP) [15].

Freivalds’ algorithm has also pioneered a new subarea of the so called certi-
fying algorithms [11]. Their purpose is to provide besides the output a certificate
or easy to verify proof that the output is correct. The computational cost of the
verification should be substantially lower than that incurred by recomputing the
output (perhaps using a different method) from scratch.

In 1977, when Freivalds published his algorithm, the asymptotically fastest
known algorithm for arithmetic matrix multiplication was that due to Strassen
running in O(n2.81) time [13]. Since then the asymptotic running time of fast
matrix multiplication algorithms has been gradually improved to O(n2.3728639)
at present [3,8,14] which is still substantially super-quadratic.

In this paper, we go one step further and consider a more complex problem
of not only verifying a computational result but also correcting it if necessary.
Similarly as Freivalds, as a subject of our study we choose matrix multiplication.

Our approach is very different from that in fault tolerant setting, where one
enriches input in order to control the correctness of computation (e.g., by check
sums in the so called ABFT method) [5,16,17]. Instead, we use here an approach
resembling methods from Combinatorial Group Testing where one keeps testing
larger groups of items in search for multiple targets, see, e.g. [4,6].

First, we provide a simple deterministic algorithm for correcting an n × n
matrix product C ′ over a ring, with at most one erroneous entry, in O(n2) time.
It can be regarded as a deterministic version of Freivalds’ algorithm (Section 3).
Next, we extend the aforementioned algorithm to include the case when C ′ con-
tains at most k erroneous entries. The extension relies on distributing erroneous
entries of C ′ into distinct submatrices by deterministically moving the columns of
C ′ and correspondingly the columns of B. The resulting deterministic algorithm
runs in Õ(k2n2) time, where the notation Õ suppresses polylogarithmic terms in
n and k (Section 4). Then we show how to reduce the time bound to Õ(kn2) by
applying this shuffling approach first with respect to the columns and then with
respect to the rows of C ′. In the same section, we discuss also a slightly random-
ized version of the aforementioned algorithm running in Õ(

√
kn2) expected time

using O(log2 k +log k log log n) random bits. For small k, this is less than the log-
arithmic in n number of random bits used in the best known O(n2)-time verifica-
tion algorithms for matrix multiplication obtained by a partial derandomization of
Freivalds’ algorithm [2,9,12]. Finally, in Section 5, we present a faster randomized
algorithm for correcting C ′ in O(

√
kn2 log n) time almost surely (i.e., with prob-

ability at least 1 − n−α for any constant α ≥ 1), where k is the non-necessarily
known number of erroneous entries of C ′. A slight modification of this algorithm
runs in O(

√
kn2) expected time provided that the number of erroneous entries in

known. Features of our algorithms are summarized in Table 1. Note that none of
them subsumes any other one in all aspects. We conclude with Final Remarks,
where we discuss how the O(

√
kn2)-expected-time algorithm from Section 5 and

the slightly randomized algorithm from Section 4 can also be adjusted to the sit-
uation when the number of erroneous entries is unknown.
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Table 1. The characteristics and time performances of the algorithms for correcting
an n×n matrix product with at most k erroneous entries presented in this paper. The
issue of adapting the algorithms presented in the second and fourth row (not counting
the title row) to unknown k is discussed in Final Remarks.

# errors = e ≤ k deterministic/randomized time complexity

k known deterministic Õ(kn2) time

k = e, known O(log2 k + log k log log n) random bits Õ(
√
kn2) expected time

k = e, unknown randomized O(
√
kn2 log n) almost surely

k = e, known randomized O(
√
kn2) expected time

2 Preliminaries

Let (U,+,×) be a semi-ring. For two n-dimensional vectors a = (a0, ..., an−1)
and b = (b0, ..., bn−1) with coordinates in U their dot product

∑n−1
i=0 ai × bi over

the semi-ring is denoted by a � b.
For an p × q matrix A = (aij) with entries in U, its i-th row (ai1, ..., ain) is

denoted by A(i, ∗). Similarly, the j-th column (a1j , ..., anj) of A is denoted by
A(∗, j). Given another q×r matrix B with entries in U, the matrix product A×B
of A with B over the semi-ring is a matrix C = (cij), where cij = A(i, ∗)�B(∗, j)
for 1 ≤ i, j ≤ n.

3 Correcting a Matrix Product with a Single Error

Given two matrices A, B of size p × q and q × r, respectively, and their possibly
erroneous p × r matrix product C ′ over a ring, Freivalds’ algorithm picks uni-
formly at random a vector in {0, 1}r and checks if A(BxT ) = C ′xT , where xT

stands for a transpose of x, i.e., the column vector corresponding to x [7]. For
i = 1, ..., p, if the i-th row of C ′ contains an erroneous entry, the i-th coordinates
of the vectors A(BxT ) and C ′xT will differ with probability at least 1/2.

In the special case, when C ′ contains a single error, we can simply determin-
istically set x to the vector (1, ..., 1) ∈ {0, 1}r in the aforementioned Freivalds’
test. The vectors A(BxT ), C ′xT will differ in exactly one coordinate whose num-
ber equals the number of the row of C ′ containing the single erroneous entry.
(Note that the assumption that there is only one error is crucial here since oth-
erwise two or more errors in a row of C ′ potentially could cancel out their effect
so that the dot product of the row with x, which in this case is just the sum of
entries in the row, would be correct.) Then, we can simply compute the i-th row
of the matrix product of A and B in order to correct C ′.

The time complexity is thus linear with respect to the total number of entries
in all three matrices, i.e., O(pq + qr + pr). More precisely, it takes time O(p · r)
to compute C ′xT , O(q · r) to compute BxT , and finally O(p · q) to compute the
product of A with BxT .
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Lemma 1. Let A, B, C ′ be three matrices of size p × q, q × r and p × r,
respectively, over a ring. Suppose that C ′ is different from the matrix product C
of A and B exactly in a single entry. We can identify this entry and correct it
in time linear with respect to the total number of entries, i.e., in O(pq + qr +pr)
time.

4 Correcting a Matrix Product with at Most k Errors

In this section, we shall repeatedly use a generalization of the deterministic
version of Freivalds’ test applied to detecting single erroneous entries in the
previous section.

Let A, B be two n × n matrices, and let C ′ be their possibly faulty product
matrix with at most k erroneous entries, over some ring. Let C∗ and B∗ denote
matrices resulting from the same permutation of columns in the matrices C ′ and
B.

Similarly as in the previous section, the generalized deterministic version of
Freivalds’ test verifies rows of C∗, but only for a selected set of consecutive
columns of the matrix. Such a set of columns will be called a strip.

We shall check each strip of C∗ independently for erroneous entries that occur
in a single column of the strip. To do this, when we determine the vector v to
be used in the coordinate-wise comparison of A(B∗vT ) with C∗vT , we set the
i-th coordinate of v to 1 if and only if the i-th column of the matrix C∗ belongs
to the strip we want to test. Otherwise, we set the coordinate to 0. (See Fig. 1.)

In this way, for each row in a strip, we can detect whether or not the strip row
contains a single error. The time complexity for testing a whole strip in this way
is O(n2), independently from the number of columns of the strip. If necessary,
we can also correct a single row of a strip by recomputing all its entries in time
proportional to n times the number of columns in the strip.

Our algorithm in this section relies also on the following number theoretical
lemma.

Lemma 2. Let P = {i1, ..., il} be a set of l different indices in {1, ..., n}. There
exists a constant c and for each im ∈ P, a prime pm among the first cl log n
/ log log n primes such that for iq ∈ P \ {im}, im mod pm �= iq mod pm.

Proof. It follows from the Chinese remainder theorem, the density of primes and
the fact that each index in P has O(log n) bits that there is a constant b such that
for each pair im, iq of distinct indices in P there are at most b log n/ log log n
primes p such that im mod p = iq mod p. Consequently, for each im ∈ P there
are at most b(l − 1) log n/ log log n primes p for which there exists iq ∈ P \ {im}
such that iq mod p = im mod p. Thus, it is sufficient to set the constant c to b
in order to obtain the lemma. 	


Given the generalized deterministic version of Freivalds’ test and Lemma 2,
the idea of our algorithm for correcting C ′ is simple, see Fig. 2.
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Fig. 1. Illustration of using the vector vT in order to “extract” the vertical strip V
from the matrix C∗

For each prime p among the first ck log n/ log log n primes, for j = 1, ..., n,
the j-th column is moved into a (vertical) strip corresponding to j mod p. Cor-
respondingly, the columns of the matrix B are permuted.

Let B∗ and C∗ denote the resulting shuffled matrices.
Next, for each strip V of C∗, we set v to the vector in {0, 1}n whose j-

th coordinate is 1 if and only if the j-th column belongs to V. We compute
and compare coordinate-wise the vectors A(B∗vT ) and C∗vT . Note that for
i = 1, ..., n, if there is a single erroneous entry in the i-th row of V then the vectors
A(B∗vT ), C∗vT are different in this coordinate. Simply, the i-th coordinate of
C∗vT is just the sum of the entries in the i-th row of V while that coordinate
of A(B∗vT ) is the sum of the entries in the i-th row of the vertical strip of the
product of A and B∗ corresponding to V.

It follows in particular that for each strip which contains only one erroneous
column, we shall find all erroneous rows in the strip. Furthermore, we can correct
all the erroneous entries in a detected erroneous row of the vertical strip V in
O(n2/p) time by computing O(n/p) dot products of rows of A and columns of
B∗.

It follows from Lemma 2, that for each erroneous column in C ′, there is
such a prime p that the column is a single erroneous column in one of the
aforementioned vertical strips of the shuffled matrix C∗. Hence, all the k errors
can be localized and corrected.
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Algorithm 1

Input: three n × n matrices A, B, C′ such that C′ differs from the matrix product of
A and B in at most k entries.
Output: the matrix product of A and B.

L ← the set of the first ck logn/ log log n primes;
C∗ ← C′; B∗ ← B;
for each prime p ∈ L do

1. for j = 1, ..., n do
(a) Move the j-th column of C∗ into the j mod p + 1 strip of columns in C∗;
(b) Correspondingly move the j-th column of B∗ into the j mod p + 1 strip of

columns in B∗;
2. for each strip V of C∗ do

(a) Set v to the vector in {0, 1}n whose j-th coordinate is 1 if and only if the j-th
column of C∗ belongs to V ;

(b) Compute the vectors A(B∗vT ) and C∗vT ;
(c) for each coordinate i in which A(B∗vT ) and C∗vT are different do

i. Compute the entries in the i-th row of the strip of A × B∗ corresponding
to V and correct the i-th row of V in C appropriately.

Output C∗.

Fig. 2. A deterministic algorithm for correcting at most k errors

Lemma 3. Let A, B, C ′ be three n×n matrices over a ring. Suppose that C ′ is
different from the matrix product C of A and B in at most k entries. Algorithm
1 identifies these erroneous entries and corrects them in Õ(k2n2) time.

Proof. The correctness of Algorithm 1 (see Fig. 2) follows from the above dis-
cussion and Lemma 2.

Algorithm 1 iterates over ck log n/ log log n smallest primes. Since an upper
bound on the i-th prime number is O(i log i) for any i > 1, it follows that the
largest prime considered by the algorithm has size O(ck log n log k), and hence
all these primes can be listed in O(c2k2 log2 n log k) time.

For a given prime p, the algorithm tests p vertical strips V for the containment
of rows with single errors by computing the vectors A(B∗vT ) and C∗vT . It takes
O(n2p) time in total, for all these strips.

By the upper bounds on the number of considered primes and their size,
it follows that the total time taken by the tests for all considered primes is
O(c2k2n2 log2 n log k/ log log n).

The correction of an erroneous entry in a detected erroneous row in a vertical
strip V takes O(n2/p) time. Thus, the correction of the at most k erroneous
entries in C∗, when the corresponding erroneous rows have been detected, takes
total time O(kn2).

Hence, the upper time bound for the tests dominates the running time of the
algorithm. 	
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In a practical implementation of the algorithm above, one can of course
implement the shuffling of the columns without actually copying data from one
column to another. For this purpose one could also define the strips in a different
way, i.e., they do not need to consist of consecutive columns.

Reducing the Time Bound to Õ(kn2). In order to decrease the power of k
in the upper bound of the time complexity from 2 to 1, we make the following
observation. Consider any column i of C ′. The number of erroneous entries in
column i that are in rows that have at least

√
k erroneous entries is at most

√
k.

We start by applying Algorithm 1 with the difference that we only use the
smallest c

√
k log n/ log log n primes. In this way all rows that have at most

√
k

erroneous entries will be found in total Õ((
√

k)2n2) time, and will be fixed in
O(n2) time for each detected erroneous row. So the time complexity up to this
stage is dominated by Õ(kn2).

Now, we let C ′′ be the partially corrected matrix and we apply the same
procedure but reversing the roles of columns and rows, i.e., we work with BT AT

and C ′′T . Since for any row of C ′′T , all its erroneous entries that were in columns
of C ′′T with at most

√
k errors were already corrected, now by the observation,

the number of erroneous entries in any row of C ′′T is at most
√

k. Thus Algorithm
1 will now find all remaining erroneous rows in time Õ(kn2) and we can correct
them in additional time O(kn2). Hence we obtain the following theorem:

Theorem 1. Let A, B, C ′ be three n × n matrices over a ring. Suppose that
C ′ is different from the matrix product C of A and B in at most k entries. We
can identify these erroneous entries and correct them in Õ(kn2) time.

Few Random Bits Help. We can decrease the power of k in the upper bound
of Theorem 1 from 1 to 0.5 by using O(log2 k + log k log log n) random bits as
follows and assuming that the exact number k of erroneous entries in C ′ is known.
(The removal of this assumption will be discussed later.) The idea is that instead
of testing systematically a sequence of primes, we start by producing four times
as many primes and then choose randomly among them in order to produce the
strips.

We call a faulty entry in C ′ 1-detectable if it lies in a row or column of C ′

with at most 2
√

k erroneous entries. From this definition it follows that most
faulty entries are 1-detectable. More specifically, we call an entry in C ′ 1-row-
detectable, respectively 1-column-detectable, if it lies in a row, respectively col-
umn, with at most 2

√
k erroneous entries.

We will aim at detecting first a constant fraction of the 1-row-detectable
(false) entries, and then a constant fraction of the 1-column-detectable entries.
For this purpose we start by producing, in a preprocessing phase, the smallest
4c

√
k log n/ log log n primes (i.e., four times as many primes as we did in the

deterministic algorithm of Theorem 1).
To detect sufficiently many 1-row-detectable entries we run one iteration of

Algorithm 1, with the difference that we use a prime chosen randomly among
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the produced 4c
√

k log n/ log log n smallest primes. In this way, for each 1-row-
detectable entry there is at least a probability 1/2 that it will be detected.

Then we repeat once more this procedure but reversing the role of columns
and rows, i.e., by working with BT AT and C ′T . In this way for each 1-column-
detectable entry there is at least a probability 1/2 that it will be detected.

In this way, now each 1-detectable entry has been detected with probability
at least 1/2. By correcting all these detected entries, we thus reduce the total
number of remaining false entries by an expected constant fraction.

Thus we can set k to the remaining number of false entries and start over
again with the resulting, partially corrected matrix C ′. We repeat in this way
until all erroneous entries are corrected.

The expected time bound for the tests and corrections incurred by the first
selected primes dominate the overall expected time complexity. Note that the
bound is solely O(c

√
kn2 log n log k).

The number of random bits needed to select such a random prime is O(log k+
log log n). The overall number of random bits, if we proceed in this way and use
fresh random bits for every new selection of a prime number, has to be multiplied
by the expected number of the O(log k) iterations of the algorithm. Thus, it
becomes O(log2 k + log k log log n).

Hence, we obtain the following slightly randomized version of Theorem 1.

Theorem 2. Let A, B, C ′ be three n×n matrices over a ring. Suppose that C ′

is different from the matrix product C of A and B in exactly k entries. There is
a randomized algorithm that identifies these erroneous entries and corrects them
in Õ(

√
kn2) expected time using O(log2 k + log k log log n) random bits.

If the number k or erroneous entries is not known, then our slightly ran-
domized method can be adapted in order to estimate the number of erroneous
columns and rows. Since similar issues arise in connection to another random-
ized approach presented in the next chapter, we postpone this discussion to Final
Remarks.

5 A Faster Randomized Approach

In this section, similarly as in the previous one, we shall repeatedly apply a
version of Freivalds’ test to (vertical) strips of the possibly erroneous matrix
product C ′ of two n × n matrices A and B. However, in contrast with the
previous section, the test is randomized. It is just a restriction of Freivalds’
original randomized algorithm [7] to a strip that detects each erroneous row of a
strip with probability at least 1/2 even if a row contains more than one erroneous
entry.

More precisely, the vector v used to test a strip of C ′ by comparing A(BvT )
with C ′vT is set as follows. For j = 1, ..., n, the j-th coordinate of v is set to 1
independently with probability 1/2 if and only if the j-th column of C ′ belongs
to the strip we want to test, otherwise the coordinate is set to 0. In this way, for
each row in the strip, the test detects whether or not the strip row contains an
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erroneous entry with probability at least 1/2, even if the row contains more than
one erroneous entry. The test for a whole strip takes O(n2) time, independently
from the number of columns of the strip.

Using the aforementioned strip test, we shall prove the following theorem.

Theorem 3. Let A, B and C ′ be three n×n matrices over a ring. Suppose that
C ′ is different from the matrix product C of A and B in k entries. There is a
randomized algorithm that transforms C ′ into the product A × B in O(

√
k · n2 ·

log n) time almost surely without assuming any prior knowledge of k.

Proof. Let us assume for the moment that k is known in advance (this assump-
tion will be removed later). Our algorithm (see Algorithm 2 in Fig. 2) will suc-
cessively correct the erroneous entries of C ′ until C ′ will become equal to A×B.
For easier description, let us also assume that

√
k is an integer, and that n is a

multiple of
√

k.
We consider a partition of the columns of C ′ into

√
k strips of equal size, i.e.,

consecutive groups of n/
√

k columns of C ′. We treat each such strip separately
and independently. For each strip, we apply our version of Freivalds’ test O(log n)
times. In this way, we can identify almost surely which rows of the tested strip
contain at least one error. (Recall that for each iteration and for each strip row,
the chance of detecting an error, if it exists, is at least 1/2.) Finally, for each
erroneous strip row, we compute the correct values for each one of its n/

√
k

entries.

Algorithm 2

Input: three n × n matrices A, B, C′ such that C′ differs from the matrix product of
A and B in at most k entries.
Output: the matrix product of A and B, almost surely.

for i = 1, ..., �√k� do

1. Run the strip restriction of Freivalds’ algorithm c · log n times on the i-th (vertical)
strip of C′;

2. For each erroneous strip row found in the i-th (vertical) strip of C′, compute each
entry of this strip row and update C′ accordingly;

Output C′.

Fig. 3. A randomized algorithm for correcting at most k errors

In each iteration of the test in Step 1 in the algorithm, each erroneous row in
the strip will be detected with a probability at least 1/2. Hence, for a sufficiently
large constant c (e.g., c=3) all erroneous rows will be detected almost surely
within c · log n iterations. If we use the straightforward method in order to
compute the correct values of an erroneous strip row, then it will take O(n) time
per entry. Since each strip row contains n/

√
k entries, the time taken by a strip

row becomes O(n2/
√

k). Since there are at most k erroneous strip rows, the total
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time for correcting all the erroneous strip rows in all strips is O(
√

k ·n2). Hence,
the total time complexity is dominated by applying the strip tests, O(log n) times
for each one of the strips. This yields an upper time bound of O(

√
k · n2 · log n).

In Algorithm 2, if we use, instead of the correct number k of erroneous entries,
a guessed number k′ which is larger than k, then the time complexity becomes
O(

√
k′ · n2 · log n). This would be asymptotically fine as long as k′ is within a

constant factor of k. On the other hand, if we guess k′ which is much smaller than k,
then the length of each erroneous strip row may become too large. For this reason,
first we have to find an appropriate size for the strips to be used by our algorithm.
For this purpose, we start by setting k′ to a small constant, e.g., to 4, and then
we multiply our guess by 4, until we reach a good balance. More precisely, for
each such guessed k′, without correcting any errors, we consider a partition of the
matrix C ′ into

√
k′ strips, and apply our test to each strip. As soon as we discover

more than k′ erroneous strip rows we break the procedure without correcting any
errors, and we start over with a four times larger guess k′.

The aforementioned method of guessing k′ may result in at most O(log k)
wrong guesses until we achieve a good guess. Since we multiply our guess every
time with 4, we obtain a geometric progression of the estimated costs of subse-
quent trials. In this way, the upper bound on the asymptotic complexity of the
whole algorithm is dominated by that of the final step. In this step, we test each
strip c · log n times in order to detect almost surely all erroneous strip rows.

Note that when the number of erroneous entries is at most four then our
algorithm will keep its first guess, i.e., k′ = 4, and so the number of strips will
be (and remain) 2. Hence, it will correct at most 4 erroneous rows in total time
O(n2). So, we can focus on the case when k > 4. With respect to our current
guess k′, the number of detected erroneous rows lies thus almost surely between
k′/4 and k′. Since each such an erroneous row contains n/

√
k′ entries, it can

be recomputed in O(n2/
√

k′) time. Consequently, the total time complexity of
correcting all the at most k′ erroneous rows becomes O(k′ ·n2/

√
k′) = O(

√
k′ ·n2).

Since k′ ≤ 4k holds, the theorem follows. 	

Algorithm 2 in the proof of Theorem 3 can be modified in order to achieve

an expected time bound of O(
√

k · n2) for correcting all errors, if k is known in
advance. (We discuss the removal of this assumption in Final Remarks.) Instead
of applying the strip restriction of Freivalds’ algorithm c · log n times for each
strip, we apply it only once for each strip and correct all erroneous rows which
we detect. By counting how many errors we have corrected, we compute how
many errors remain. Then we recurse in the same way on the partially corrected
matrix C ′ using as a parameter this new number of errors which remain to be
corrected.

During each iteration of the algorithm, each remaining error in C ′ will be
detected and corrected with probability at least 1/2. Thus, the expected number
of remaining errors will be halved after each iteration. Consequently, we obtain
a geometric progression on the expected time complexity of each iteration, and
so the total expected time complexity is dominated by the time taken by the
first iteration, which is O(

√
k · n2) . Thus we obtain the following theorem.
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Theorem 4. Let A, B, C ′ be three n×n matrices over a ring. Suppose that C ′

is different from the matrix product C of A and B in exactly k entries. There is
a randomized algorithm that identifies these erroneous entries and corrects them
in O(

√
k · n2) expected time.

6 Final Remarks

The algorithm used for Theorem 4 can be adapted for the case when the number
k of errors is unknown, by making guesses k′ of the form 4l, similarly to the proof
of Theorem 3, starting with k′ = 4. For each new guess k′, we divide the matrix
C ′ into

√
k′ strips and apply the strip-restricted variant of Freivalds’ algorithm

only once for each strip, counting the number of detected erroneous strip rows,
without performing any corrections. If the number of detected erroneous strip
rows is greater than k′, we break the procedure and start over with a four times
larger guess. Otherwise, we correct all errors in the detected erroneous strips,
and start over the algorithm with the partially corrected matrix C ′. However,
as a final phase we may have to perform O(log n) additional iterations to be
sufficiently sure that no errors remain.

A similar approach can also be used for refining the slightly randomized
method of Theorem 2 when the number of errors k is not known in advance.
However, if there is no knowledge at all concerning the number of errors, it may
be difficult to handle the case when no errors are detected: does this happen
because there are no errors at all, or because there are too many errors and we
chose a random prime from a too small range, thus failing to isolate 1-detectable
false entries? For this reason, if there is no known useful upper bound on the
remaining number of errors, and we do not detect any errors during a series of
iterations, we may have to resort to some of the known algorithms which test
whether there are any errors at all [2,9,12]. All such known algorithms running
in time O(n2) may need a logarithmic number of random bits, so if k is very
small then this may be asymptotically larger than the low number of random
bits stated in Theorem 2.

Finally, observe that any substantial improvement of our Õ(
√

kn2) bound
by a combinatorial method seems to be very hard to achieve. Simply, it would
lead to a substantially subcubic combinatorial algorithm for Boolean matrix
multiplication which would be a breakthrough [15].

Acknowledgments. We thank the anonymous referees for helping us to improve a
previous version of this paper.
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Abstract. The problem of partitioning an input rectilinear polyhedron
P into a minimum number of 3D rectangles is known to be NP-hard. We
first develop a 4-approximation algorithm for the special case in which P
is a 3D histogram. It runs in O(m logm) time, where m is the number of
corners in P . We then apply it to compute the arithmetic matrix product
of two n×n matrices A and B with nonnegative integer entries, yielding
a method for computing A × B in Õ(n2 + min{rArB , nmin{rA, rB}})
time, where Õ suppresses polylogarithmic (in n) factors and where rA
and rB denote the minimum number of 3D rectangles into which the 3D
histograms induced by A and B can be partitioned, respectively.

Keywords: Geometric decompositions · Minimum number rectangula-
tion · Polyhedron · Matrix multiplication · Time complexity

1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geom-

etry. It belongs to the class of polyhedron decomposition problems, whose applica-
tions range from data compression and database systems to pattern recognition,
image processing, and computer graphics [7,13]. The problem is to partition a
given rectilinear polyhedron into a minimum number of 3D rectangles. Dielissen
and Kaldewai have shown this problem to be NP-hard [4]. In contrast, the prob-
lem of partitioning a rectilinear (planar) polygonal region into a minimum num-
ber of 2D rectangles admits a polynomial-time solution [7,10]. Formally, the NP-
hardness proof by [4] is for polyhedra with holes, but the authors remark that
the proof should also work for simple polyhedra. To the best of our knowledge,
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no non-trivial approximation factors for minimum rectangular partition of simple
rectilinear polyhedra are known, even in restricted non-trivial cases such as that
of a 3D histogram (a natural generalization of a planar histogram, see Section 2).

The second problem we consider is that of multiplying two n × n matrices.
There exist fast algorithms that do so in substantially subcubic time, e.g., a
recent one due to Le Gall runs in O(n2.3728639) time [8], but they suffer from
very large overheads. On the positive side, input matrices in real world appli-
cations often belong to quite restricted matrix classes, so a natural approach
is to design faster algorithms for such special cases. Indeed, efficient algorithms
for sparse matrix multiplication have been known for long time. In the Boolean
case, despite considerable efforts by the algorithms community, the fastest known
combinatorial algorithms for Boolean n × n matrix multiplication barely run in
subcubic time (in O(n3(log log n)2/(log n)9/4)) time [1], to be precise), but much
faster algorithms for Boolean matrix product for restricted classes of Boolean
matrices have been developed [3,5,9]. For example, when at least one of the
input Boolean matrices admits an exact covering of its ones by a relatively
small number of rectangular submatrices, the Boolean matrix product can be
computed efficiently [9]; similarly, if the rows of the first input Boolean matrix
or the columns of the second input Boolean matrix can be represented by a
relatively cheap minimum cost spanning tree in the Hamming metric (or its gen-
eralization to include blocks of zeros or ones) then the Boolean matrix product
can be computed efficiently by a randomized combinatorial algorithm [3,5].

Our first contribution is an O(m log m)-time, 4-approximation algorithm for
computing a minimum 3D rectangular partition of an input 3D histogram with
m corners. It works by projecting the input histogram onto the base plane, par-
titioning the resulting planar straight-line graph into a number of 2D rectangles
not exceeding its number of vertices, and transforming the resulting 2D rectan-
gles into 3D rectangles of appropriate height. Importantly, the known algorithms
for minimum partition of a rectilinear polygon with holes into 2D rectangles
[7,10] do not yield the aforementioned upper bound on the number of rectangles
in the more general case of planar straight-line graphs.

Our second contribution is a new technique for multiplying two matrices with
nonnegative integer entries.We interpret thematricesas3Dhistogramsanddecom-
pose themintoblocks that canbeefficientlymanipulated inapairwisemannerusing
the interval tree data structure. LetAandB be twon×nmatriceswithnonnegative
integer entries, and let rA and rB denote theminimumnumber of 3D rectangles into
which the 3D histograms induced by A and B can be partitioned. By applying our
4-approximation algorithm above, we can compute A × B in Õ(n2 + rArB) time,
where Õ suppresses polylogarithmic (in n) factors. Furthermore, by using another
idea of slicing the histogram of A (or B) into parts corresponding to rows of A (or
columns of B) and measuring the cost of transforming a slice into a consecutive
one, we obtain an upper bound of Õ(n2 + n min{rA, rB}). We also give a general-
ization of the latter upper bound in terms of the minimum cost of a spanning tree
of the slices, where the distance between a pair of slices corresponds to the cost of
transforming one slice into the other.
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Organization: Section 2 presents our 4-approximation algorithm for a partition
of a 3D histogram into a minimum number of 3D rectangles. Section 3 presents
our algorithms for the arithmetic matrix product. Section 4 concludes with some
final remarks.

2 3D Histograms and Their Rectangular Partitions

A 2D histogram is a polygon with an edge e, which we call the base of the
histogram, having the following property: for every point p in the interior of
histogram, there is a (unique) line segment perpendicular to e, connecting p to
e and lying totally in the interior of the histogram. In this paper, we consider
orthogonal histograms only. For simplicity, we consider the base of a histogram
as being horizontal, and all other edges of the histogram lying above the base.
In this way, a 2D histogram can also be thought of as the union of rectangles
standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a
3D histogram, we need the concept of the “base plane”, which for simplicity we
define as the horizontal plane containing two of the axes in the Euclidean space.
A 3D histogram can then be thought of as the union of rectilinear 3D rectangles,
standing on the base plane. The base of the histogram is the union of the lower
faces (also called bases) of all these rectangles.

Definition 1. A 3D histogram is a union of a finite set C of rectilinear 3D
rectangles such that: (i) each element in C has a face on the horizontal base
plane; and (ii) all elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D his-
togramora1Dhistogramwhenusedtosummarize2Dor1Ddata, respectively [12].)

By a rectangular partition of 3D histogram P , we mean a rectilinear partition
of P into 3D rectangles. In Section 2.2 below, we consider the problem of finding
a rectangular partition of a given 3D histogram P into as few 3D rectangles as
possible. We present a 4-approximation algorithm for this problem with time
complexity O(m log m), where m denotes the number of vertices in P . The algo-
rithm partitions P into less than m′ 3D rectangles, where m′ is the number of
vertices in the vertical projection of P (i.e., m′ < m), by applying a subroutine
described in Section 2.1 that partitions any rectilinear planar straight-line graph
(PSLG) with m′ vertices into less than m′ 2D rectangles. Finally, the approxi-
mation factor is derived by observing that any rectangular partition of P must
contain at least m′/4 3D rectangles.

2.1 Partitioning a Rectilinear PSLG into 2D Rectangles

The problem of partitioning a rectilinear polygon into rectangles in two dimen-
sions has been well studied in the literature [7,10]. An optimal solution for this
problem can be computed in polynomial time [7,10]. However, to use the result
in 3D, we need a bound on the number of produced rectangles, expressed in
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terms of the number of vertices. Therefore, it is not so crucial for our purposes
to compute an optimal solution for the 2-dimensional problem, but instead, we
need to partition planar straight-line graphs (PSLGs) into at most m′ rectangles,
where m′ denotes the number of vertices in the input PSLG. We will show that
a simple algorithm suffices to obtain this bound.

Since this subsection considers 2D only, we use the term “horizontal” for line
segments parallel to the X-axis. By “vertical” lines, we mean lines or line seg-
ments parallel to the Y -axis. Each vertex in the planar graphs in our application
has degree 2, 3, or 4.

Definition 2. A planar straight-line graph (PSLG) PG = (V,E), as used in
this paper, is a planar graph where every vertex has an x- and a y-coordinate.
Each edge is drawn as a straight line segment, all edges meet at right angles, and
each vertex has degree 2, 3, or 4. A rectangular partition of PG is a partition
R = (V ∪ VR, E ∪ ER) that adds edges and vertices to PG so that R is still a
PSLG while every face in R is a rectangle.

Given a PSLG PG, we denote m′ = |V |. We say that a vertex v of PG is
concave if it has degree 2, its two adjacent edges are perpendicular to each other,
and the corner at v which is of 270 degrees does not lie in the outer, infinite face
of PG. Any vertex which is not concave is called convex.

We use a sweep line approach to generate a partition into less than m′ rect-
angles. We perform a horizontal sweep with a vertical sweep line [2], using the
vertices of PG as event points. Whenever the sweep line reaches a concave ver-
tex v, we insert into the graph PG a vertical line segment s connecting v to
the closest edge of PSLG upwards or downwards, thus canceling the concavity
at v and transforming v into a convex vertex of degree 3. Hence, if there was
already an edge of PG below v, then the new segment s is inserted above v, oth-
erwise it is inserted below v. To preserve the property that the resulting graph
is still a PSLG, the other endpoint of s may have to become a new vertex of the
PSLG. This is a standard procedure for trapezoidation; see, e.g., [2] for more
details. After the sweep is complete, all concave vertices have been eliminated.
(Remark: In a special case it may happen that two concave vertices with the
same x-coordinate are connected by a single vertical segment that is disjoint
from the rest of the input PSLG. In this case, the plane sweep algorithm will
produce this segment. Thus, no two segments produced by the algorithm overlap
or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave
corners of PG by adding vertical line segments. Hence, in the resulting PSLG,
each face, except for the outer face, is a rectangle. The running time of this
algorithm is dominated by the cost of the plane sweep, which is O(m′ log m′)
according to well-known methods in computational geometry; see, e.g., [2].

We need to relate the number of vertices in the input PSLG to the number
of 2D rectangles. This is done in the following lemma:

Lemma 1. Any PSLG PG = (V,E) with |V | = m′ and minimum vertex degree
2 can be partitioned into b rectangles with b < m′ using O(m′ log m′) time.
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Proof. Let R denote the set of rectangles in the rectangular partition produced
by the plane sweep algorithm described above. We use a “charging scheme” to
prove the stated inequality. The charging scheme starts by giving each vertex
v ∈ V four tokens; thus, a total of 4m′ tokens are used. Each vertex v then
distributes its tokens in a certain way to the rectangles in R that are adjacent
to v. We will show that every rectangle in R receives at least four tokens. Since
we started by giving a total of 4m′ tokens to the vertices, this will prove that
there exist at most m′ rectangles, and thus b ≤ m′. Moreover, vertices adjacent
to the outer face do not give away more than three tokens. We will thus obtain
the strict inequality b < m′.

Now, we describe the details of the charging scheme. (More explanations and
illustrating figures are included in the full version.) Let v be any vertex of V . The
vertex v gives one token to each rectangle r in R which in any way is adjacent to
it, with one exception. The exception occurs when v is a concave vertex; then,
v is partitioned by a vertical segment er added by the algorithm. This segment
partitions the three quadrants at the concave corner around the vertex so that
one rectangle occupies one quadrant and one occupies the two others. Then v
distributes two tokens to the new rectangle occupying only one quadrant, which
therefore has a corner at v, and only one token to each one of the other rectangles
of R adjacent to v.

We now show that each rectangle receives at least four tokens. Let r be any
rectangle in R. First note that each vertical segment added by the algorithm has
at least one endpoint at a vertex in V . Moreover, for any rectangle r in R, each of
the vertical sides of r includes at least one vertex of V . Therefore, each rectangle
is adjacent to at least two vertices of V . We distinguish three cases, depending
on the number of vertices of V adjacent to r. Observe that the adjacencies are
not necessarily at the corners of r.

– Case 1: r is adjacent to at least four vertices of V . Since r will receive at
least one token from each of them we are done.

– Case 2: r is adjacent to precisely three vertices of V . Then at one of the
vertical sides of r there is only one vertex of V . Moreover, this vertex v must
be at a corner of r and fulfills the criteria for giving two tokens to r. The
remaining two adjacent vertices of V give at least one token each, so we are
done.

– Case 3: r is adjacent to precisely two vertices of V . This must mean that
both vertical sides of r are segments added by the algorithm, and that one
of the endpoints of each of these sides is a vertex of V at a corner of r. This
corresponds to the condition for receiving two tokens mentioned earlier. So
in total, r receives four tokens from the two corners, and we are done. ��

2.2 Partitioning a 3D Histogram into 3D Rectangles

We now explain how to obtain the projected PSLG from the 3D histogram P
and how to use the rectangular partition of this PSLG to yield a good partition
into 3D rectangles.
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Definition 3. The planar projection PP is an orthogonal projection of the input
3D histogram P along the “down” direction onto the base plane in Definition 1.

We can interpret PP as a PSLG where each corner and each subdividing
point on a line segment corresponds to a vertex. The edges naturally correlate
to the connecting line segments between vertices. Each vertex in PP is the
vertical projection of at least two vertices of P . Two edges of the 3D histogram
may partially overlap in the 2D projection, but the edges in the 2D projection
are considered as non-overlapping. Thus, an edge of the 3D histogram may split
into several edges in the 2D projection, since vertices should only appear as
endpoints of edges.

Remark 1. Every vertex in PP must have at least two neighbors. This follows
from the fact that each vertex of P (and of any orthogonal polyhedron) has at
least two incident horizontal edges. It may happen that some vertex of PP is
the vertical projection of up to four vertices of P , so those four vertices of P
may have a total of eight neighbors in P . But since PP is an orthogonal PSLG,
no vertex of PP has more than four neighbors.

Now we are ready to show the main theorem of this section.

Theorem 1. For any 3D histogram P with m corners, a 4-approximation R
of a partition of P into as few 3D rectangles as possible can be computed in
O(m log m) time.

Proof. We use the projection in Definition 3, let PG = PP , and apply Lemma
1 to compute a planar partition R′. The final 3D partition R is obtained from
R′ by reversing the projection so that each 2D rectangle corresponds to the top
of a 3D rectangle in R.

To analyze the approximation factor, denote the number of 3D rectangles in
an optimal solution R∗ by OPT and the number of 3D rectangles produced by
the algorithm described above by b. We denote by m′ the number of vertices
in PP . By Lemma 1, we have b < m′ since each 2D rectangle corresponds to
one 3D rectangle. Every vertex of P must be adjacent to at least one vertical
edge of a 3D rectangle in R∗. Hence, each vertex in PP has to be at a corner of
the vertical projection of at least one 3D rectangle in R∗ onto the base plane.
Since each 3D rectangle in R∗ only has 4 vertical edges, its vertical projection
can be adjacent to at most 4 vertices of PP . It follows that m′ ≤ 4OPT and
b < m′ ≤ 4OPT .

Since the projection can be obtained by contracting each corner in P and all
of its vertical neighbors into one vertex, the projection can be implemented in
O(m) time. Thus, the O(m log m)-term from Lemma 1 will dominate the time
complexity. ��

3 Geometric Algorithms for Arithmetic Matrix Product

3.1 Geometric Data Structures and Notation

Our algorithms for arithmetic matrix multiplication use some data structures
for interval and rectangle intersection. An interval tree is a leaf-oriented binary
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search tree that supports intersection queries for a set Q of closed intervals on
the real line as follows:

Fact 1 [11]. Suppose that the left endpoints of the intervals in a set Q belong
to a subset U of real numbers of size l and |Q| = q. An interval tree T of depth
O(log l) for Q can be constructed in O(l + q log lq) time using O(l + q) space.
The insertion or deletion of an interval with left endpoint in U into T takes
O(log l + log q) time. The intersection query is supported by T in O(log l + r)
time, where r is the number of reported intervals.

Remark 2. The interval tree of Fact 1 ([11]) can easily be generalized to the
weighted case, where with an interval to insert or delete an integer weight is
associated. It can be done by maintaining in each node of the interval tree
the sum of weights of intervals whose fragments it represents. In effect, the
generalized interval insertions or deletions as well the intersection query have the
same time complexity as those in Fact 1. Moreover, the generalized interval tree
supports a weight intersection query asking for the total weight of the intervals
containing the query point in O(log l + log q) time.

We use the following data structure, easily obtained by computing all prefix
sums:

Fact 2. For a sequence of integers a1, a2,. . . ,an, one can construct a data struc-
ture that supports a query asking for reporting the sum

∑j
k=i ak for 1 ≤ i ≤ j ≤ n

in O(1) time. The construction takes O(n) time.

In the rest of the paper, A and B denote two n×n matrices with nonnegative
integer entries, and C stands for their matrix product. We also need the following
concepts:

1. For an n×n matrix D with nonnegative integer entries, consider the [0, n]×
[0, n] integer grid whose unit cells are in one-to-one correspondence with the
entries ofD. The grid cell between the horizontal lines i − 1 and i (counting
from the top) and vertical lines j − 1 and j (counting from the left) corre-
sponds to Di,j (see Fig. 1a). Then, his(D) stands for the 3D histogram whose
base consists of all unit cells of the [0, n] × [0, n] integer grid corresponding
to positive entries of D and whose height over the cell corresponding to Di,j

is the value of Di,j (see Fig. 1b).
2. For the n × n matrix D, nonnegative integers 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ k1 ≤

k2 ≤ n, and h1, h2, where h1 < h2 ≤ Di,j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,
recD(i1, i2, k1, k2, h1, h2) is the 3D rectangle with the corners (i1 − 1, k1 −
1, hl), (i1 − 1, k2, hl), (i2, k1 − 1, hl), (i2, k2, hl), where l = 1, 2, lying within
his(D).

3. For the matrix D, rD is the minimum number of 3D rectangles
recD(i1, i2, k1, k2, h1, h2) which form a partition of his(D). Note that
rD ≤ n2.
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Fig. 1. (a) A matrix D on a grid, and (b) its corresponding histogram his(D)

3.2 Algorithms

Our first geometric algorithm for nonnegative integer matrix multiplication relies
on the following key lemma.

Lemma 2. Let PA be a partition of the matrix A into 3D rectangles
recA(i1, i2, k1, k2, h1, h2) , and let PB be a partition of the matrix B into 3D
rectangles recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2). For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, the entry

Ci,j of the matrix product C of A and B is equal to the sum of (h2 − h1)(h′
2 −

h′
1) × #[k1, k2] ∩ [k′

1, k
′
2]. over rectangle pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,

recB(k′
1, k

′
2, j1, j2, h

′
1, h

′
2) ∈ PB satisfying i ∈ [i1, i2] and j ∈ [j1, j2].

Proof. For 1 ≤ l1 < l2 ≤ n and 1 ≤ m1 < m2 ≤ n, let I(l1, l2,m1,m2) be the
n×n 0−1 matrix where I(l1, l2,m1,m2)i,k = 1 iff l1 ≤ i ≤ l2 and m1 ≤ k ≤ m2.

Clearly, we have A =
∑

recA(i1,i2,k1,k2,h1,h2)∈PA
(h2 − h1)I(i1, i2, k1, k2). Sim-

ilarly, we have B =
∑

recB(k′
1,k′

2,j1,j2,h′
1,h′

2)∈PB
(h′

2 − h′
1)I(k′

1,
′ k2, j1, j2).

It follows that C = A×B is the sum over pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,
recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB of (h2 − h1)(h′

1 − h′
2)I(i1, i2, k1, k2) × I(k′

1, k
′
2,

j1, j2). It remains to observe that (I(i1, i2, k1 + 1, k2) × I(k′
1, k

′
2, j1 + 1, j2))i,j =

#[k1, k2] ∩ [k′
1, k

′
2] if i1 < i ≤ i2 and j1 < j ≤ j2 and it is equal to zero

otherwise. ��
Algorithm 1
Input: Two n × n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1. Find a partition PA of his(A) into 3D rectangles recA(i1, i2, k1, k2, h1, h2)
whose number is within O(1) of the minimum.

2. Find a partition PB of his(B) into 3D rectangles recB(k′
1, k

′
2, j1, j2, h

′
1, h

′
2)

whose number is within O(1) of the minimum.
3. Initialize an interval tree S on the k-coordinates of the rectangles in PA and

PB. For each 3D rectangle recA(i1, i2, k1, k2, h1, h2) ∈ PA insert [k1, k2], with
a pointer to A(i1, i2, k1, k2, h1, h2), into S.

4. Initialize interval lists Startj , Endj , for j = 1, . . . , n. For each rectangle
recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB report all intervals [k1, k2] in S that intersect

[k′
1, k

′
2]. For each such interval [k1, k2], with pointer to recA(i1, i2, k1, k2, h1, h2),

insert the interval [i1, i2] with the weight (h2 − h1) × (h′
2 − h′

1) × #[k1, k2] ∩
[k′

1, k
′
2] into the lists Startj1 and Endj2 .
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5. Initialize a weighted interval tree U on endpoints 1, . . . , n. For j = 1, . . . , n,
iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on
the list Endj−1 from U. Insert all weighted intervals [i1, i2] on the list Startj
into U. For i = 1, . . . , n, set Ci,j to the value returned by U in response to
the weight query at i.

Lemma 3. Let int(PA, PB) stand for the number of pairs recA(i1, i2, k1, k2,
h1, h2) ∈ PA, recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB, for which [k1, k2] ∩ [k′

1, k
′
2] �= ∅.

Algorithm 1 runs in time Õ(n2 + int(PA, PB)) = Õ(n2 + rArB).

Proof. To implement steps 1 and 2 in Õ(n2) time, use the algorithm from the pre-
ceding section (Theorem 1). Step 3 can be implemented in Õ(n+rA+rB) = O(n2)
time by Fact 1. In Step 4, the queries to S take Õ(int(PA, PB)) time by Fact 1.
In Step 5, the initialization of the data structure U takes Õ(n) time by Lemma 2.
Next, the updates of the data structure U take Õ(int(PA, PB)) time by Lemma 2,
while computing all columns of C takes Õ(n2) time by Remark 2. ��
Theorem 2. The matrix product of two n × n matrices A, B with nonnegative
integer entries can be computed in Õ(n2 + rArB) time.

Proof. Algorithm 1 yields the theorem. Its correctness follows from Lemma 2
that basically says that for each pair of 3D rectangles, recA(i1, i2, k1, k2, h1, h2) ∈
PA and recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB, Ci,j should be increased by (h2 − h1) ×

(h′
2−h′

1)×#[k1, k2]∩[k′
1, k

′
2] for i ∈ [i1, i2] and j ∈ [j1, j2]. In Step 4, two identical

intervals [i1, i2] corresponding to the left and right edge of the submatrix of C
whose entries should be increased by the aforementioned value are inserted in
the lists Startj1 and Endj2 , respectively. In both cases, they are weighted by the
aforementioned value. In Step 5, in iteration j1, the weighted interval [i1, i2] from
Startj1 is inserted into the weighted interval tree U , and in iteration (j2 + 1),
it is removed from U as its copy is in Endj2 . In the iterations j = j1, . . . , j2 in
Step 5, when the interval [i1, i2] is kept in the weighted interval tree, U and the
entries of the submatrix Ci,j , i1 ≤ i ≤ i2, j1 ≤ j ≤ j2, are evaluated, the weight
of the interval contributes to their value. The upper time bound follows from
Lemma 3. ��

When only one of the matrices A and B admits a partition of its 3D histogram
into relatively few 3D rectangles and we have to assume the trivial partition of
the other one into n2 3D rectangles, the upper bound of Theorem 2 in terms
of rA, rB and n seems too weak. In this case, an upper bound in terms of
int(PA, PB) and n in Lemma 3 may be much better. To derive a better upper
bound in terms of just min{rA, rB} and n, we shall design another algorithm
based on the slicing of the 3D histogram admitting a partition into relatively
few 3D rectangles.

For an n × n matrix D with nonnegative integer entries and i = 1, . . . , n, let
slicei(D) stand for the part of his(D) between the two planes perpendicular to
the Y axis whose intersection with the XY plane are the horizontal lines i − 1
and i on the [0, n] × [0, n] grid. In other words, slicei(D) is a 3D histogram for
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Fig. 2. Let slice1(D) be the 2D histogram on the left and slice2(D) the 2D histogram
on the right. Differentiating strips are shaded. Here, gd(slice1(D), slice2(D)) = 2.

the i-th row. Also note that a slicei(D) can be identified with a rectilinear 2D
histogram; see Fig. 2 for an example. We define a geometric distance between
two rectilinear 2D histograms H1 and H2 with a common base as the number of
maximal vertical strips s such that:

1. for i = 1, 2, s contains exactly one maximal subsegment ei of an edge of Hi

different from and parallel to the base of the histograms, and
2. the subsegments e1 and e2 do not overlap.

See Fig. 2. We shall call such strips differentiating strips. For slicei(D) and
slicek(D), we define the geometric distance gd(slicei(D), slicek(D)) as that for
the corresponding rectilinear 2D histograms.

Lemma 4. For an n × n matrix D with nonnegative integer entries,∑n−1
i=1 gd(slicei(D), slicei+1(D)) = O(rD) holds.

Proof. Each differentiating strip contributes, possibly jointly with one or two
neighboring differentiating strips, to two vertices in the projected planar graph
considered in the proof of Theorem 1. Thus, it contributes to the parameter
m′ in the aforementioned proof with at least 1. It follows

∑n−1
i=1 gd(slicei(D),

slicei+1(D)) ≤ m′. Hence, the inequality m′ ≤ 4OPT established in the proof
of Theorem 1 yields the thesis. ��
Algorithm 2
Input: Two n × n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1. For i = 1, . . . , n−1, find the differentiating strips for slicei(A) and slicei+1(A)
and for each such strip s the indices k1(s) and k2(s) of the interval of entries
Ai,k1(s), . . . , Ai,k2(s) in the i-th row of A corresponding to it, as well as the
difference h(s) between the common value of each entry in Ai,k1(s), . . . , Ai,k2(s)

and the common value of each entry in Ai+1,k1(s), . . . , Ai+1,k2(s).
2. For j = 1, . . . , n, iterate the following steps:

(a) Initialize a data structure Tj for counting partial sums of continuous
fragments of the j-th column of the matrix B.

(b) Compute C1,j .
(c) For i = 1, . . . , n − 1, iterate the following steps:
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i. Set Ci+1,j to Ci,j .
ii. For each differentiating strip s for slicei(A) and slicei+1(A), compute

∑k2(s)
k=k1(s)

Bk,j using Tj and set Ci+1,j to Ci+1,j +h(s)
∑k2(s)

k=k1(s)
Bk,j .

Lemma 5. Algorithm 2 runs in Õ(n(n + rA)) time.

Proof. Step 1 can be easily implemented in O(n2) time. Step 2 (a) takes Õ(n)
time according to Fact 2 while Step 2 (b) can be trivially implemented in
O(n) time. Finally, based on Step 1, Step 2 (c) (ii) takes Õ(gd(slicei(D),
slicei+1(D)) time. It follows that Step 2 (c) can be implemented in Õ(

∑n−1
i=1 gd

(slicei(A), slicei+1(A))) time, i.e., in Õ(rA) time by Lemma 4. Consequently,
Step 2 takes Õ(n(n + rA)) time. ��
Theorem 3. The arithmetic matrix product of two n × n matrices A, B with
nonnegative integer entries can be computed in Õ(n(n + min{rA, rB})) time.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating strip s for slicei(A) and slicei+1(A) yields the difference h(s)

∑k2(s)
k=k1(s)

Bk,j between Ci+1,j and Ci,j just on the fragment corresponding to Ai,k1(s), . . . ,
Ai,k2(s) and Ai+1,k1(s), . . . , Ai+1,k2(s), respectively. Lemma 5 yields the upper
bound Õ(n(n + rA)). The symmetric one Õ(n(n + rB)) follows from the equali-
ties AB = (BT AT )T , his(B) ≡ his(BT ), and consequently rB = rBT . ��

In Algorithm 2, the linear order in which the Ci,j are updated to Ci+1,j

for i = 1, . . . , n − 1, along the row order of the matrix A is not necessarily
optimal. Following the Boolean case [3,5], it may be more efficient to update
Ci,j while traversing a minimum spanning tree for the slices of his(A) under the
geometric distance. Here, however, we encounter the difficulty of constructing
such an optimal spanning tree or a close approximation in substantially subcubic
time. The next lemma will be useful.

Lemma 6. Consider the family of rectilinear planar histograms with the base
[0, n], n ≥ 2 and integer coordinates of its vertices in [0, 2M − 2], M = O(log n).
There is a simple O(n)-time transformation of any histogram H in the fam-
ily into an 0 − 1 string t(H), such that for any H1 and H2 in the family
gd(H1,H2) ≤ ch(t(H1), t(H2)) ≤ Mgd(H1,H2), where ch( , ) stands for the
Hamming distance.

Proof. Any histogram H in the family is uniquely represented by the vector
(H[1], . . . ,H[n]) ∈ {1, . . . , 2M − 1}n, where H[1], . . . ,H[n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5, 1.5, . . . , n − 0.5 respectively.

For any y ∈ {0, . . . , 2M −1} denote its binary representation of length exactly
M (padded with leading zeros if necessary) as bin(y).

Let f(H, i) =

{
bin(H[i]), i = 1 ∨ i > 1 ∧ H[i] �= H[i − 1]
bin(0), otherwise.



76 P. Floderus et al.

The transformation t is then defined as t(H) = f(H, 1) . . . f(H,n). We have
ch(t(H1), t(H2)) =

∑n
i=1 ch(f(H1, i), f(H2, i)) and

gd(H1,H2) =

{
1, H1[1] �= H2[1]
0, otherwise

+

+
n∑

i=2

{
1, (H1[i] �= H1[i − 1] ∨ H2[i] �= H2[i − 1]) ∧ (H1[i] �= H2[i])
0, otherwise.

Consider all possibilities that contribute exactly one to gd(H1,H2):

1. H1[1] �= H2[1]. In this case f(H1, 1) = bin(H1[1]), f(H2, 1) = bin(H2[1]) and
0 ≤ ch(bin(H1[1]),bin(H2[1])) ≤ M .

2. 2 ≤ i ≤ n ∧ H1[i] �= H1[i − 1] ∧ H2[i] = H2[i − 1] ∧ H1[i] �= H2[i]. In this case
f(H1, i) = bin(H1[i]), f(H2, i) = bin(0) and 1 ≤ ch(bin(H1[i]),bin(0)) ≤ M .

3. 2 ≤ i ≤ n ∧ H1[i] = H1[i − 1] ∧ H2[i] �= H2[i − 1] ∧ H1[i] �= H2[i]. See case 2.
4. 2 ≤ i ≤ n ∧ H1[i] �= H1[i − 1] ∧ H2[i] �= H2[i − 1] ∧ H1[i] �= H2[i]. See case 1.

To complete the proof, observe that in all other cases ch(f(H1, i), f(H2, i)) = 0.
��

Fact 3 [6]. For ε > 0, a (1 + ε)-approximation minimum spanning tree for a set
of n points in Rd with integer coordinates in O(1) under the L1 or L2 metric
can be computed by a Monte Carlo algorithm in O(dn1+1/(1+ε)) time.

By combining the transformation of Lemma 6 with Fact 3 applied to the L1

metric in {0, 1}n and selecting ε = log n, we obtain a Monte Carlo O(log2 n)-
approximation algorithm for the minimum spanning tree of the slices of his(A)
under the geometric distance, which runs in Õ(n2) time. This yields a gener-
alization of Algorithm 2 to Algorithm 3, described in the full version of our
paper. By an analysis of Algorithm 3 analogous to that of Algorithm 2 and a
proof analogous to that of Theorem 3, we obtain a randomized generalization of
Theorem 3:

Theorem 4. Let A, B be two n × n matrices A, B with nonnegative integer
entries in [0, nO(1)]. Next, for D ∈ {A,BT }, let MD be the minimum cost of a
spanning tree of slicei(D) for i = 1, . . . , n. The arithmetic matrix product of A
and B can be computed by a randomized algorithm in Õ(n(n+min{MA, MBT }))
time with high probability.

4 Final Remarks

A natural question is: Would it help to apply an algorithm that optimally rect-
angulates the 2D projection in Section 2.2? Although it would yield improved
results in certain cases, it would not give a better approximation factor than
4 in general for the minimum rectangular 3D partition. An example of this is
when the optimal 3D partition consists of k cubes lying on top of each other.
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Then the 2D projection is k concentric squares of different sizes and an optimal
rectangulation of the corresponding 2D projection consists of 4k − 3 rectangles.
Hence, for large k, the approximation factor tends to 4.

The 4-approximation algorithm for minimum rectangular partition of a 3D
histogram in case the histogram is his(D) for an input n × n matrix D with
nonnegative integer entries can easily be implemented in O(n2) time. Also note
that the resulting partition of his(D) can be used to form a compressed repre-
sentation of D requiring solely Õ(rD) bits if the values of the entries in D are
nO(1)-bounded.

Our geometric algorithms for integer matrix multiplication can also be applied
to derive faster (1+ε)-approximation algorithms for integer matrix multiplication;
if the range of an input matrix D is [0, nO(1)], then round each entry to the smallest
integer power of (1+ε) that is not less than the entry. The resulting matrix D′ has
only a logarithmic number of different entry values and hence rD′ may be much
less than rD.

Our algorithms and upper time bounds for integer n×n matrix multiplication
can easily be extended to include integer rectangular matrix multiplication.
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Abstract. The maximum common subgraph problem asks for the max-
imum size of a common subgraph of two given graphs. The problem is
NP-hard, but can be solved in polynomial time if both, the input graphs
and the common subgraph are restricted to trees. Since the optimal solu-
tion of the maximum common subtree problem is not unique, the problem
of enumerating all solutions, i.e., the isomorphisms between the two sub-
trees, is of interest. We present the first polynomial-delay algorithm for
the problem of enumerating all maximum common subtree isomorphisms
between a given pair of trees. Our approach is based on the algorithm
of Edmonds for solving the maximum common subtree problem using a
dynamic programming approach in combination with bipartite match-
ing problems. As a side result, we obtain a polynomial-delay algorithm
for enumerating all maximum weight matchings in a complete bipartite
graph. We show how to extend the new approach in order to enumerate
all solutions of the maximum weighted common subtree problem and to
the maximal common subtree problem. Our experimental evaluation on
both, randomly generated as well as real-world instances, demonstrates
the practical usefulness of our algorithm.

1 Introduction

In many application areas such as pattern recognition [4], or chem- and bioin-
formatics [10],[16], it is an important task to elucidate similarities between
structured objects like proteins or small molecules. A widely-used and successful
approach regarding this is to model objects as graphs and to identify their max-
imum common subgraphs (MCSs). As a MCS apparently is not unique, it is of
interest to find all solutions. Since the number of solutions may be superexpo-
nential in the input size, the running time cannot be expected to be polynomial
in this case. For this reason, enumeration algorithms are said to have polynomial
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total time if the running time is bounded by a polynomial in the input size and
the number of solutions. They have polynomial-delay if the running time before
the output of the first solution, and after the output of a solution until providing
the next solution or halting, is polynomially bounded in the input size [8].

Unfortunately, MCS is known to be NP-hard and consequently a polynomial-
time algorithm is not even known for finding a single maximum solution. How-
ever, it is straightforward to determine an isomorphism between common sub-
graphs that is maximal with respect to inclusion, but not necessarily maximum
possible. The enumeration of maximal common subgraph isomorphisms has been
considered in several papers, and algorithms are typically based on the one-to-
one-correspondence of isomorphisms between common subgraphs and cliques in
a product graph [13]. As a matter of fact it is possible to enumerate maximal
common subgraph isomorphisms with polynomial-delay, since maximal cliques
can be listed with polynomial-delay [8]. In practice a common approach is to
utilize the Bron-Kerbosch algorithm [2] for listing maximal cliques, which, how-
ever, does not yield a polynomial total time algorithm. Koch [3],[10] modified
this algorithm to enumerate cliques corresponding to maximal isomorphisms
between connected common subgraphs. Although not providing any guarantee
in terms of running time, this approach is considered to be more practical since
the number of solutions is drastically reduced.

Only few tractable variants of MCS are known. Edmonds was reported [14]
to have proposed a polynomial time algorithm for solving the maximum common
subtree problem, where the input graphs and the desired common subgraph are
trees, by means of maximum weight bipartite matching. Related problems like
the maximum agreement subtree of rooted trees are well-studied and are, for
example, considered in [9] using similar ideas to those of Edmonds [14]. Poly-
nomial time algorithms were presented to find connected MCSs in outerplanar
graphs under the additional requirement that blocks, i.e., maximal biconnected
subgraphs, and bridges of the input graphs are preserved [17]. The unrestricted
problem can be solved in polynomial time in outerplanar graphs of bounded
degree [1]. The problem also is tractable if one of the input graphs is a bounded-
degree partial k-tree and the other is a connected graph with a polynomial
number of spanning trees [19]. Recently, a polynomial-time algorithm to find
a biconnected MCS in series-parallel graphs has been developed [11]. However,
no enumeration algorithms with polynomial total time or polynomial-delay have
been proposed for any of these efficiently solvable variants of MCS by now.
Our Contribution. We address the problem to enumerate all isomorphisms
between maximum common subtrees of two given trees and present a polynomial-
delay algorithm. We utilize the idea of Edmonds’ algorithm to decompose trees
into subtrees and solve subproblems by weighted bipartite matching. In order to
enumerate maximum weight bipartite matchings with polynomial-delay we pro-
pose a new technique that is based on Uno’s algorithm for listing perfect match-
ings [18]. The isomorphisms subject to enumeration correspond to combined
solutions of multiple matching problems. Interrupting the enumeration process
of matchings for one instance in order to proceed with a different matching



Maximum Common Subtree Isomorphisms with Polynomial-Delay 83

problem, allows us to combine partial solutions and to output all maximum
isomorphisms without duplicates with polynomial-delay using only polynomial
space. Going beyond that, we present modifications to enumerate maximum
weight and maximal solutions. In an experimental evaluation we show that our
algorithms are efficient in practice on synthetic and real-world data sets from
cheminformatics. Our method is shown to outperform the algorithm proposed
by Koch [10] for arbitrary graphs on tree instances. The techniques we propose
can be taken as a basis for finding efficient enumeration algorithms for MCS
problems in more complex graph classes.

2 Preliminaries

In this paper, G = (V,E) is a simple undirected graph. We call v ∈ V a vertex and
e = uv = vu ∈ E an edge of G. For a graph G = (V,E) we define V (G) := V
and E(G) := E. Two graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic if
there is a bijective function (an isomorphism) ϕ : V1 → V2 such that uv ∈ E1 ⇔
ϕ(u)ϕ(v) ∈ E2. The size |ϕ| of an isomorphism is defined as the number of
vertices in each of the sets V1, V2, i.e., |ϕ| := |V1| = |V2|. A forest is a graph
without cycles; a tree is a connected forest. A tree T = (V,E) with an explicit root
vertex r ∈ V is a rooted tree. Let R and S be trees. If subtrees R′ of R and S′ of
S are isomorphic, we call an isomorphism ϕ : V (R′) → V (S′) a common subtree
isomorphism (CSTI) of R and S. If the input trees are clear from the context, we
omit them. A CSTI ϕ is a maximum common subtree isomorphism (maximum
CSTI) if there are no other CSTI of R and S with size greater than |ϕ|. A CSTI
ϕ is maximal if there is no CSTI ϕ′ with |ϕ′| > |ϕ| and ϕ(x) = ϕ′(x) for all
x ∈ R′ = dom(ϕ). For a graph G = (V,E) a matching M ⊆ E is a set of edges,
such that no two edges share the same vertex. A matching M of G is maximal
if there is no other matching M ′ � M of G. It is perfect, if 2 · |M | = |V |. A
weighted graph is a graph together with a function w : E → Q. For a matching
M of a weighted graph we define its weight by W (M) :=

∑
e∈M w(e). If the

vertices of a graph G can be separated into exactly two disjoint sets V, X such
that E(G) ⊆ V ×X, then the graph is called bipartite. In many cases the disjoint
sets are already given as part of the input. In this case we write G = (V ∪X,E),
where E ⊆ V × X. We call a matching M of a weighted bipartite graph G a
maximum weight bipartite matching (MaxWBM) if there is no other matching
M ′ of G with W (M ′) > W (M). We denote a perfect MaxWBM by MaxWBPM.

2.1 Edmonds’ Algorithm

Our approach is related to Edmonds’ algorithm, which solves the maximum
common subtree problem by means of maximum weight bipartite matching.
Consider a tree T and an edge e = uv ∈ E(T ) of the tree. By removing e
we obtain two subtrees. We denote by T v

u the rooted subtree not containing
v with root vertex u and refer to the other rooted subtree by T v

u := Tu
v , cf.
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Fig. 1. Two rooted subtrees (a) and (b) and the associated weighted bipartite matching
problem (c). Gray vertices and edges are not part of the subtrees, root vertices are
shown in solid black; edges without label in (c) have weight 1.

Fig. 1. For every pair of rooted subtrees of the two input trees R and S, the size
of a maximum CSTI is computed under the restriction that the isomorphism
maps the two roots to each other. The result is stored in a table D by dynamic
programming. Let Ri

s and Sj
t be two rooted subtrees and V = {s1, . . . , sn}

and X = {t1, . . . , tm} the children of s in Ri
s and t in Sj

t , respectively. Then
D(Ri

s, S
j
t ) = 1+M , where M is the size of a MaxWBM in the complete bipartite

graph with the vertex set V ∪X. The edge weights w of this graph are determined
by the entries in D for pairs of smaller rooted subtrees according to w(sk, tl) =
D(Rs

sk
, St

tl
), where k ∈ {1, . . . , n}, l ∈ {1, . . . , m}. The matching defines the

mapping of the children of the two roots, cf. Fig. 1. The table D is filled by
ordering the subtrees according to increased size of subtrees, thus the required
partial solutions are always available from D. Finally, the maximum size of a
CSTI is determined by combining all pairs of corresponding rooted subtrees.
That is, the result for Ri

s and Rs
i combined with Sj

t and St
j is D(Ri

s, S
j
t ) +

D(Rs
i , S

t
j), for any edge is ∈ E(R), jt ∈ E(S).

3 Enumeration of Maximum Weight Matchings with
Polynomial-Delay

In this section we develop a polynomial-delay algorithm to enumerate all max-
imum weight matchings in a complete bipartite graph. In Edmonds’ algorithm,
cf. Sect. 2.1, the size of a maximum common subtree isomorphism of two trees R
and S is calculated by determining MaxWBMs and using their weights for the
calculations. An approach to enumerate all maximum CSTIs of R and S is to
enumerate all the MaxWBMs in these graphs. We do this by reducing the enu-
meration of MaxWBMs in a graph G′ to the enumeration of perfect matchings
in another graph G∗, as described below.

The bipartite weighted graphs G′ = (V ′ ∪ X ′, E′) that occur in Edmonds’
algorithm, cf. Fig. 1, are complete, i.e., E′ = V ′×X ′. All the edge weights in these
graphs are positive. Due to this fact, every maximum weight bipartite matching
is maximal. We use this in our algorithm to achieve a reduction from MaxWBM
to MaxWBPM. The reduction from the weighted problem to an unweighted
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(a) Matching M1 (b) Matching M2

Fig. 2. Different matchings (thick edges) in the extended graph, which correspond to
the same matching in the initial graph (black vertices and edges only).

problem is achieved with help of the well-known Hungarian method [7], [12].
Finally we use a modification of an enumeration algorithm for perfect matchings
in a bipartite graph [18] to obtain our MaxWBMs. We describe the steps in
detail.

First, we show the reduction from the enumeration of MaxWBMs in G′ to
the enumeration of MaxWBPMs in another graph G. A perfect matching in a
bipartite graph requires the same number of vertices in both vertex sets. There-
fore we extend G′ by additional vertices and edges if |V ′| �= |X ′|. Assume w.l.o.g.
|V ′| < |X ′|, then we add vertices U and edges with zero weight between U and X ′

such that |V ′|+|U | = |X ′|. We refer to the resulting graph G := (V ∪X,V ×X) :=
((V ′ ∪U)∪X ′, (V ′ ∪U)×X ′) as the extended graph. It is obvious that the weight
of a MaxWBPM of G is identical to the weight of a MaxWBM of G′. The con-
struction of G implies that for every MaxWBM M ′ of G′ there is at least one
MaxWBPM M ⊇ M ′ of G. The issue that there may be more than one, will be
addressed later.

The problem of finding all minimum weight matchings in G can be reduced
to finding all perfect matchings in the admissible subgraph G∗ of an optimal
dual solution based on the standard LP formulation for the minimum weighted
matching problem of G. This is implied by the well-known Complementary
Slackness Theorem. The admissible subgraph and its construction is described
in [5], [7]. Note that G∗ and G share the same vertices, E(G∗) ⊆ E(G), and G∗

is unweighted. The reduction from maximum weight matchings is very similar.
For example the weights of G can be multiplied by −1 before calculating an
optimal dual solution and the admissible subgraph G∗.

We obtain all maximum weight bipartite matchings of the extended graph
G by enumerating all the perfect matchings in the admissible subgraph G∗.
Removing the additional vertices and edges from G yields all maximum weight
matchings of G′. Unfortunately, two different matchings M1,M2 of G can lead
to the same matching M of G′, as is shown in Fig. 2. We handle this by directly
modifying Uno’s algorithm for the enumeration of all perfect matchings in a
bipartite graph [18].

First, we briefly describe Uno’s algorithm. Given a bipartite graph and a
(first) perfect matching M , one edge e ∈ M is selected. The problem is then
divided into the enumeration of the perfect matchings containing e and those
not containing e. These subproblems lead to a graph G+(e) with initial matching
M and another graph G−(e) with initial matching M ′ as described below. Both
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graphs have less vertices and/or edges than the previous graph. The enumeration
continues recursively until no more edge e can be selected. The selection of e
is key to the algorithm. Uno proves that there is another perfect matching iff
there is an alternating cycle, i.e., a cycle of even length, where exactly every
second edge is part of the matching. If e is part of an alternating cycle, another
perfect matching M ′ can be obtained by exchanging the edges along the cycle,
i.e., an edge, that was part of the matching M , will no longer be included in the
matching, and vice versa. Edges that are not part of any cycle are removed in
each recursive step of the algorithm.

On a bipartite graph with n vertices and m edges, a perfect matching can
be calculated in time O(n1/2m) [18]. This is the first step in Uno’s algorithm.
In our case the initial graph is the bipartite admissible subgraph G∗; the perfect
matching is the one obtained during the calculation of G∗. Uno states O(n+m)
time per additional matching, which basically is the time to find an alternating
cycle, and improves this with amortized cost analysis to O(n).

If the search for an alternating cycle starts from a vertex that is part of
V ′ (black vertices in top row in Fig. 2), the newly obtained matching M ′ will
be different from the previous matching M regarding G′, i.e., M ′ ∩ E(G′) �=
M ∩ E(G′). If there is no such vertex, the current recursion has finished, as no
new matchings regarding G′ can be found. In this sense we prune the recursion
tree. Unfortunately, this means that the time per matching, O(n), is not valid
for our modification, since our algorithm stops the recursion as soon as there is
no more vertex v ∈ V ′. I.e., the higher costs of the first matchings cannot be
divided to the costs of the later matchings. As an example, in a nearly complete
graph with only one matching regarding G′, time O(n2) is needed to prove there
is no alternating cycle containing a vertex of V ′.

We now take a closer look at the recursion tree. Whenever an alternating
cycle is found, we obtain a new matching and the two subproblems G+(e) and
G−(e) mentioned above. If we do not find a cycle, the current recursion halts.
Hence, every vertex in the recursion tree has exactly 0 or 2 children. Therefore,
a recursion tree with n nodes yields (n − 1)/2 matchings and we obtain our first
lemma.

Lemma 1. All N maximum weight matchings of any bipartite graph G′ = (V ′ ∪
X ′, V ′×X ′) can be enumerated with polynomial-delay in total time O(n3+Nn2),
where n = |V ′| + |X ′|
Proof. The admissible subgraph G∗ of an optimal dual solution and the first
perfect matching are obtained in time O(n3) according to the Hungarian method.
They are the starting point for the modification of Uno’s algorithm. The total
time to enumerate all other perfect matchings is bounded by O(Nn2), as stated
above. Note that |E(G∗)| ∈ O(n2). The recursion in Uno’s algorithm stops as
soon as there is no more alternating cycle containing a vertex of V ′. At any
time there can be no more than |E(G∗)| recursions on the stack. Therefore our
algorithm to enumerate all MaxWBMs of G′ is a polynomial-delay algorithm
with total time O(n3 + Nn2). �
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Note that the calculation of the admissible subgraph is needed only once for
every pair of rooted subtrees. If the two disjoint sets of V (G′) have the same size,
we achieve a total time of O(n3 + Nn), because the recursion in our algorithm
is identical to the recursion in Uno’s algorithm.

4 Enumeration of Maximum Common Subtree
Isomorphisms with Polynomial-Delay

In this section we present a polynomial-delay algorithm for the enumeration of
all maximum common subtree isomorphisms of given trees R and S. We assume
that both trees have at least two vertices. Otherwise, the enumeration of the
maximum CSTIs is trivial. Our algorithm is based on Edmonds’ algorithm (Sect.
2.1). First, we describe the idea of acquiring a single maximum CSTI of R and
S. Then we outline our enumeration algorithm, before we go into detail.

To obtain a maximum CSTI ϕ of R and S, we first determine the size m of
a maximum CSTI with Edmonds’ algorithm. Then we consider pairs of rooted
subtrees (r, s) := (Ru

v , Sw
x ) with D(r, s) + D(r, s) = m. As described in Sec. 2.1,

we map ϕ(u) = w,ϕ(v) = x. A MaxWBM of the bipartite graph of the children
of v and x determines the mapping of these children (see Sec. 2.1). The same
applies to the children of the vertices u,w.

The idea to find all the maximum CSTIs of R and S is to enumerate all
MaxWBMs (instead of calculating only one) per bipartite graph and to combine
all possible solutions. To do this, we enumerate all pairs (r, s) of rooted subtrees
where D(r, s)+D(r, s) = m. For each of these pairs we enumerate all maximum
CSTIs and combine them with all maximum CSTIs of (r, s).

By enumerating a non-maximum CSTI on (r, s) or (r, s), the total size of the
CSTI of R and S would be less than m, thus no maximum. And by enumerating
and combining all maximum CSTIs of (r, s) and (r, s), we do not miss any
maximum CSTIs of R and S. For every maximum CSTI ϕ of R and S, the edges
of the matchings are directly given by the isomorphism; if ϕ(a) = b, then the
edge ab is included in a matching of the corresponding bipartite graph. All the
matchings have to be MaxWBMs, otherwise ϕ would be no maximum CSTI.
Thus this approach is correct.

First, we iterate through all rooted subtrees r = Ru
v of R. For each subtree r

we iterate through all rooted subtrees s = Sw
x of S with D(r, s) + D(r, s) = m.

For each of these pairs (r, s) we enumerate all MaxWBMs of the bipartite graph
of the children of v, x with our algorithm described in Sec. 3. The matchings
determine the mappings of the children, thus adding vertices to the currently
enumerated CSTI. Let M = {v1x1, . . . , vlxl} be a MaxWBM. Then we recur-
sively enumerate on the pairs (Rv

vk
, Sx

xk
) of rooted subtrees, ∀k ∈ {1, . . . , l},

where D(Rv
vk

, Sx
xk

) > 1, i.e., both subtrees are no single vertices. This means, we
first determine the first maximum CSTI on all of these pairs of rooted subtrees.
All these CSTIs together with the previous mappings (ϕ(v) = x, ϕ(v1) = x1, . . .)
give us the first maximum CSTI of the pair (r, s) of rooted subtrees. We acquire
the second maximum CSTI of (r, s) by enumerating the second CSTI on the
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pair (Rv
vl

, Sx
xl

) and so on, until there are no more. Then we calculate the second
CSTI on (Rv

vl−1
, Sx

xl−1
) and enumerate all maximum CSTIs on (Rv

vl
, Sx

xl
) again.

We repeat this until we enumerated all combinations, i.e., the last CSTIs of all
pairs (Rv

vk
, Sx

xk
). For every calculated maximum CSTI of (r, s) we enumerate,

as stated above, all maximum CSTIs of (r, s) and combine them to a maximum
CSTI of R and S and output the isomorphisms.

Although we do not miss any maximum CSTI with the presented algo-
rithm, and our algorithm from Sec. 3 enumerates every MaxWBM of the cor-
responding weighted bipartite graph exactly once, the algorithm for maximum
CSTIs outputs every maximum CSTI ϕ twice or more. Consider the trees R =
({a, b, c}, {ab, bc}) and S = ({1, 2, 3}, {12, 23}). By selecting r = Ra

b , s = S1
2 we

directly obtain ϕ(a) = 1, ϕ(b) = 2. The bipartite graph G′ = ({c, 3}, {c3}) with
weight w(c3) = 1 yields {c3} as a MaxWBM and therefore ϕ(c) = 3. If we select
r = Rb

a, s = S2
1 , or r = Rb

c, s = S2
3 , or r = Rc

b, s = S3
2 , we obtain the same

maximum CSTI ϕ. In general every maximum CSTI is reported twice for every
edge of the common subtree.

The problem can be solved by adding another step to our algorithm. Assume
r = Ru

v and the enumeration on this rooted subtree is finished. Before selecting
the next rooted subtree of R, we delete the edge uv from R and recalculate the
table D. Edmonds’ algorithm (the calculation of D) works on forests as well as
on trees, so the missing edge is no problem here. We call the new graph R′. If
the size of a maximum CSTI of (R′, S) is less than the size of a maximum CSTI
of (R,S) our algorithm halts. With the selection of Ru

v we enumerate every and
only maximum CSTI which contain both vertices u and v. After deleting the
edge uv, all subsequently enumerated maximum CSTI will contain at most one
of the two vertices u, v, as they are in different connected components in R′.
This means, all maximum CSTIs which were enumerated before removing uv
differ from all maximum CSTIs after removing uv. With the last modification
we have an algorithm that enumerates every maximum CSTI of trees R and S
exactly once.

We now analyze the time and space complexity of our algorithm. Every
enumerated maximum CSTI ϕ is determined by the rooted subtrees (r, s) and
maximum weight bipartite matchings Mi in some bipartite graphs G′

i, 1 ≤ i ≤ k,
for some k < |ϕ|. Let ri, si be the number of vertices of trees R,S in G′

i and
mi := max{ri, si}. Because the vertices in all the bipartite weighted graphs
G′

i are pairwise disjoint, we get
∑

i ri < |V (R)| and
∑

i si < |V (S)|. Given
the initial optimal solutions for the matching problems that are computed by
Edmonds’ algorithm, the amortized time to calculate a matching Mi is bounded
by O(m2

i ), see Lemma 1. We have
∑

i m
2
i =

∑
i max{ri, si}2 =

∑
{i|ri>si} r2i +

∑
{i|ri≤si} s2i < |V (R)|2 + |V (S)|2. Therefore the amortized time to enumerate

a single maximum CSTI is bounded by O(|V (R)|2 + |V (S)|2) excluding the
calculation of the table D. A worst case example is a pair of trees R,S, where
R is a path, i.e., all vertices have degree 1 or 2, and S contains exactly one path
of |V (R)| vertices.
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The table D is calculated every time a new rooted subtree r is selected. After
|v(R)|+2−|ϕ| calculations |v(R)|+1−|ϕ| edges have been removed from R, so
there are only |ϕ| − 1 vertices left, which is less than the size |ϕ| of a maximum
CSTI. This means, there is no other maximum CSTI of (R,S) and our algorithm
has stopped. Each calculation of D requires the calculation of O(|E(R)| · |E(S)|)
optimal dual solutions and admissible subgraphs. The time for each calculation
is bounded by O(max{|E(R)|, |E(S)|}3). This worst case running time occurs
for trees R,S, which are both ”stars”, i.e., all vertices of both trees are connected
to a single center vertex.

The total time for all calculations of D is polynomial, the time for each
maximum CSTI is also bounded by a polynomial, as each MaxWBM is calculated
in polynomial time. This proves that we have a polynomial-delay algorithm. The
total space needed for our algorithm is basically determined by the admissible
subgraphs. Each of them can be stored in space O(|V (R)| + |V (S)|) [5]. Thus,
we have achieved our goal.

Theorem 1. It is possible to enumerate all N maximum CSTI of size m of trees
R,S with polynomial-delay in total time O(|E(R)|·|E(S)|·max{|E(R)|, |E(S)|}3 ·
(|V (R)|+2−m)+(|V (R)|2 + |V (S)|2) ·N) and total space O((|V (R)|+ |V (S)|) ·
|V (R)| · |V (S)|).

Weighted Isomorphisms. In many application domains graphs are annotated
with additional information, e.g., labels on edges and vertices. In a graph which
is derived from a molecule a vertex label may represent the atom type or charge.
If we want to compare such graphs, not only the structure of the graph, but
also the similarity between labels must be taken into account. This is true, e.g.,
for the so-called feature trees [15] (cf. Sect. 6). In this section we describe the
inclusion of labels into the enumeration of common subtrees.

A labelled graph is a graph G = (V,E) with a label-function l : V ∪ E → Σ,
where Σ is a finite alphabet. To enumerate all maximum CSTIs on two labelled
trees R,S with label-functions lR : V (R)∪E(R) → Σ, lS : V (S)∪E(S) → Σ we
apply a symmetric weight-function w : Σ × Σ → Q. Instead of finding common
subtree isomorphism with maximum size, we want to enumerate all common
subtree isomorphism with maximum weight. We abbreviate this by maximum
CWSTI. Let R′ := (V ′

R, E′
R) and S′ := (V ′

S , E′
S) be subtrees of R and S, and

ϕ : V ′
R → V ′

S a CSTI of R and S. The weight of ϕ is defined by

W (ϕ) :=
∑

v∈V ′
R

w(lR(v), lS(ϕ(v))) +
∑

uv∈E′
R

w(lR(uv), lS(ϕ(u)ϕ(v))). (1)

We describe how to change our enumeration algorithm for maximum CSTIs
to handle the enumeration of maximum CWSTIs. First, we describe the nec-
essary modifications for vertices and then for edges. Both modifications consist
of modifying the calculation of the table D. For vertices, we change the table
entry D(Ri

s, S
j
t ) = 1 + M (cf. Sect. 2.1) to w(lS(s), lR(t)) + M , i.e., vertices

s, t do not add 1 to the weight (size), but instead add the weight defined by w.
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The changes for edges are similar. We add w(lR(is), lS(jt)) to the table entry
D(Ri

s, S
j
t ). Therefore D(Ri

s, S
j
t ) is the weight of a maximum CWSTI including

the weight for the mapped edges is, jt. When we add D(Ri
s, S

j
t ) + D(Rs

i , S
t
j)

we add the weight for the “center” edges, i.e., w(lR(is), lS(jt)), twice. So we
have to subtract it to get the weight of a maximum CWSTI ϕ of R and S with
ϕ(i) = j, ϕ(s) = t.

We have to be careful with negative weights for a pair of edges and non-
positive weights for a pair of vertices. In this case a maximum CWSTI might
not be maximal. The handling of this issue is more complicated and described
in [6]. It is obvious that the time complexity of the presented approach for
restricted weights remains unchanged compared to the unweighted algorithm.

5 Enumeration of Maximal Common Subtree
Isomorphisms

There are algorithms that calculate all connected maximal common subgraphs
of two input graphs, e.g., by reducing to the enumeration of cliques in a product
graph [3], [10]. If we input trees into these algorithms they output all maximal
CSTI of the input trees. However, these algorithms take no benefit from the
acyclic structure of trees. Also there is yet no other algorithm for enumerating
maximal CSTI of given trees. In this section we briefly show how to change
our algorithm for maximum CSTI from Section 4 to enumerate maximal CSTI
instead. This algorithm is faster than the general algorithm from [3], [10] in
theory and practice (cf. Table 1).

The main difference to the enumeration of maximum CSTIs is to enumer-
ate maximal matchings instead of maximum weight matchings in the bipartite
graphs given by Edmonds’ algorithm, cf. Sect. 4. However, we cannot apply
the edge deletion to enumerate every maximal CSTI only once. Consider the
trees R = ({a, b, c}, {ab, bc}) and S = ({1, 2, 3}, {12, 23}). One maximal CSTI is
ϕ(a) = 1, ϕ(b) = 2, ϕ(c) = 3. If we delete ab ∈ E(R), one subsequent CSTI will
be ϕ′(b) = 2, ϕ′(c) = 3, which is obviously not maximal. We solve this by not
deleting edges, but by assigning each edge e ∈ E(R) a unique natural number
I(e). Assume we selected Ru

v as a rooted subtree of R. We output a maximal
CSTI ϕ iff Rv

u has not yet been selected and I(uv) is less than I(e) for every
other edge e in the graph determined by dom(ϕ). This means, we select one of
the total 2|ϕ| − 2 identical isomorphisms, cf. Sect. 4, and output only this one.

We briefly discuss the time and space complexity of the approach, see [6]
for further details. Let m be the size of a maximum CSTI. Then |ϕ| ≤ m for
every maximal CSTI ϕ. Maximal matchings in a complete bipartite graph can
be enumerated in amortized time O(1) per matching [6]. Since every matching
yields at least one additional node to the currently enumerated CSTI, we have
time O(m) per enumerated CSTI. With regard to the above paragraph we get
amortized time O(m2) per outputted maximal CSTI. The space complexity is
O(|V (R)|+ |V (S)|). This is determined by the space needed for the enumeration
of maximal matchings in complete bipartite graphs.



Maximum Common Subtree Isomorphisms with Polynomial-Delay 91

Table 1. Maximal CSTI vs. reduction to cliques. Entries are average values (5%
quantile / 95% quantile) over 100 pairs of random trees; table columns are: edges of both
trees, number of maximal CSTIs, enumerated maximal CSTIs per second, total time
to enumerate all maximal CSTIs, maximal CSTIs per second by clique enumeration,
and the ratio between the total running times of the two algorithms; k abbreviates
thousand, M million.

Edges Maximal CSTIs CSTIs per s in M Total Time CSTI enum. Cliques/s Cl./CSTIs

20 59 (7 / 162) k 10.3 (5.6 / 15.4) 5 (1 / 13) ms 82.2 k 125

25 430 (28 / 1 942) k 11.9 (8.7 / 15.8) 35 (3 / 156) ms 34.8 k 342

30 2 713 (146 / 10 738) k 12.0 (9.7 / 15.3) 223 (14 / 913) ms 14.5 k 832

35 27 (1 / 73) M 12.2 (9.4 / 15.9) 1 955 (74 / 7 014) ms running time > 1d

40 145 (3 / 515) M 12.2 (9.5 / 15.8) 10 785 (284 / 40 738) ms running time > 1d

45 911 (22 / 2 858) M 11.8 (9.4 / 14.9) 75 (2 / 240) s running time > 1d

Theorem 2. It is possible to enumerate all N maximal common subtree isomor-
phism of trees R,S in total time O(m2N) and total space O(|V (R)| + |V (S)|),
where m is the size of a maximum CSTI of R and S.

The technique to avoid duplicates by means of a function I can also be
applied for the enumeration of maximum CSTI. With respect to practical run-
ning times on not too small random tree instances (cf. Sect. 6), this approach
performs similar to the method based on edge deletion. We save the time for the
recalculation of the table D, but we do not output all generated isomorphisms.
Note that when using the function I to select the isomorphisms to output, we
do not obtain a polynomial-delay algorithm any more. However, we still have
polynomial total time obviously.

We can apply the weighted variant from Sect. 4 to the enumeration of max-
imal CSTI. However, this does not change the isomorphisms, but yields the
weights instead of the size.

6 Experimental Evaluation

In this section, we report on our computational results. All experiments were per-
formed on an Intel Core i5 3570K CPU with 8 GB RAM. Both trees R and S have
the same number of edges if not stated otherwise and are pseudo-randomly gen-
erated using the Open Graph Drawing Framework1. First, we compare the time
to enumerate maximal CSTIs with our new algorithm to the time required by the
algorithm in [3,10] based on enumeration of cliques in the corresponding prod-
uct graphs. The results are shown in Table 1. As expected, our algorithm clearly
beats the more general clique based approach on trees, the relative speedup grows
with the size of the input. The second column shows a sublinear running time in
practice for the enumeration of all maximal CSTI on random trees.

1 http://www.ogdf.net/

http://www.ogdf.net/
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Table 2. Maximum CSTI. Notation: cf. Table 1; table columns are: edges of both
trees, number of maximum CSTIs, enumerated maximum CSTIs per second, total time
to enumerate all maximum CSTIs, the fraction of running time spent on (re)calculating
the table D with Edmonds’ algorithm, and the size of the maximum CSTIs.

Edges Maximum CSTIs CSTIs per s in M Total Time enum. Edmonds |M. CSTI|
40 385 (0.2 / 447) k 1.86 (0.01 / 5.67) 49 (16 / 83) ms 75% 28 (25 / 31)

50 8 616 (4.6 / 5 599) k 3.72 (0.17 / 9.72) 764 (27 / 1 014) ms 53% 34 (30 / 38)

60 14 402 (9.0 / 44 126) k 4.76 (0.22 / 11.40) 1 919 (43 / 9 346) ms 36% 39 (35 / 44)

70 374 (0.1 / 827) M 6.17 (1.17 / 12.08) 50 (0.1 / 218) s 18% 45 (40 / 50)

Next, the results for the enumeration of maximum CSTIs are displayed, cf.
Table 2. We can clearly observe that the time to calculate the table D is sig-
nificant through all examined tree sizes. An improvement of our basic imple-
mentation of the Hungarian method may lead to better results. As expected,
the enumeration of maximal CSTI is faster, but for tree instances with many
different maximum CSTI the enumeration is not much slower. In our randomly
generated trees the average size of the maximum CSTIs is about 2/3 the size of
the trees.

Finally, we evaluate our enumeration algorithm for maximum CWSTI on
real-world data from cheminformatics. Feature trees [15] are a simplified repre-
sentation of molecular structures consisting of trees with additional information.
We compare the first 1001 feature trees derived from a molecular data set2

regarding their pairwise similarity. Most trees vary from 3 to 15 vertices. We
define a weight function w with im (w) ⊆ ]0, 1] on the vertex labels as described
in [15]. Then, we calculate the relative weight of a maximum CWSTI ϕ of two
feature trees R and S to the size of the larger input tree, i.e, W (ϕ)/max{|V (R)|,
|V (S)|}. It takes 197 seconds to compute all (1 190 889 in total) maximum
CWSTIs between more than half a million pairs of feature trees. Investigation
of some of the best matches reveals that their structure is nearly identical. The
result shows that our algorithm allows a full analysis considering the ambiguity
of maximum CWSTIs even on large real-world data sets.

7 Conclusions

We have developed the first efficient algorithms for the enumeration of all maxi-
mum, maximal, and maximum weight CSTIs of two given trees. No enumeration
algorithms for MCSs with guarantee in terms of running time have been known
before. Our approach outputs all maximum and, respectively, maximum weight
CSTIs with polynomial-delay and can be modified to list all maximal CSTIs. We
as well proposed an algorithm enumerating MaxWBMs with polynomial-delay,
which is not only an integral part of our main algorithm, but also of interest in
itself. The key ideas of our approach can presumably be taken, too, as a basis
2 Pyruvate Kinase (AID 361), http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?

aid=361

http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=361
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=361
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for finding efficient enumeration algorithms for MCSs in more complex graph
classes; this is postponed to future research.
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Abstract. In this paper, we address the problem of enumerating all
induced subtrees in an input k-degenerate graph, where an induced sub-
tree is an acyclic and connected induced subgraph. A graph G = (V, E) is
a k-degenerate graph if for any its induced subgraph has a vertex whose
degree is less than or equal to k, and many real-world graphs have small
degeneracies, or very close to small degeneracies. Although, the studies
are on subgraphs enumeration, such as trees, paths, and matchings, but
the problem addresses the subgraph enumeration, such as enumeration
of subgraphs that are trees. Their induced subgraph versions have not
been studied well. One of few examples is for chordless paths and cycles.
Our motivation is to reduce the time complexity close to O(1) for each
solution. This type of optimal algorithms is proposed many subgraph
classes such as trees, and spanning trees. Induced subtrees are funda-
mental object thus it should be studied deeply and there possibly exist
some efficient algorithms. Our algorithm utilizes nice properties of k-
degeneracy to state an effective amortized analysis. As a result, the time
complexity is reduced to O(k) time per induced subtree. The problem is
solved in constant time for each in planar graphs, as a corollary.

1 Introduction

Subgraph enumeration problems are enumeration problems that given a graph
G and a graph class S, output all subgraphs S of G satisfying S ∈ S without
duplicates. Subgraph enumeration problems are widely studied [1–3,7–11]. Enu-
meration involves a huge number of solutions, thus enumeration algorithms are
supposed to run in short time, with respect to the number of solutions N . For
example, if an algorithm runs in O(Nf) time for small f , other than prepro-
cessing, we can consider the algorithm is efficient. In this case, we say that the
algorithm runs in O(f) time per solution, or O(f) time for each solution. Fur-
ther, the maximum computation time between two consecutive outputs called
delay is also considered as a more efficiency of enumeration algorithms. Note
that delay will not be O(f) even if an algorithm runs in O(f) time per solution.

Enumeration algorithms are widely studied in these days. Especially, the
data mining area has a large amount of studies on pattern mining problem. The
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 94–102, 2014.
DOI: 10.1007/978-3-319-13075-0 8
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algorithms have to deal with huge databases and a huge number of solutions,
thus there are great needs of the algorithm theory on efficient enumeration. As we
show below, many recent studies focus on the development of small complexity
algorithms. Compared to other algorithms, enumeration algorithms have some
unique aspects. For example, by operating only on the differences between the
solutions, one can develop algorithms that run in time shorter than the amount
of exact output. Other than this, since the recursion is much more structured
compared to optimization, we can develop a non-trivial amortized analysis. As
a consequent, researches on the numeration algorithms have great interests.

In what follows, we fix the input graph G = (V,E), and let m = |E|, n = |V |.
In the 1970s, Tarjan and Read [9] studied a problem of enumerating spanning
trees in the input graph. Their algorithm runs in O(m+n+mN) time. Shioura,
Tamura, and Uno [7] is improved the complexity to O(n+m+N) time. Tarjan [8]
proposed an algorithm for enumerating all cycle in O((|V | + |E|)(|C(G)| + 1))
time, where C(G) is all cycle in G. Birmelé et al. [2] improved the complexity to
in O(m+

∑
c∈C(G) |c|) total time. They also presented an enumeration algorithm

for all st-paths in the input graph G in O(m +
∑

π∈Pst(G) |π|) total time, where
Pst(G) is all st-paths in G. Ferreira et al. [3] proposed an enumeration algorithm
that enumerating all subtree having exactly k edges in G in O(kN) time. Wasa
et al. [11] presented an improved version of Ferreira et al.’s problem in con-
stant time delay when the input is a tree. As we see, speed up of enumeration
algorithms have been intensively studied in long history.

Compared to these studies, induced subgraph enumerations have not been
studied well. Avis and Fukuda [1] considered the connected induced subgraph
enumeration problem. Their algorithm is based on reverse search, and runs in
O(mnN) time. Uno [10] proposed an enumeration algorithm for enumerating all
chordless path connecting the given vertices s and t and all chordless cycle in
O((m + n)N) time. Ferreira et al. [4] also proposed an enumeration algorithm
for this problem. Their algorithm runs in Õ(|n|) time per chordless cycle. Their
algorithm also enumerates all st-chordless paths with the same complexity.

In this paper, we address the problem of enumerating all induced subtrees
in the given graph, where an induced subtree is a connected induced subgraph
that has no cycle. Assume that the set of vertices in an induced subtree is S.
Then, V \S is a feedback vertex set of G. Feedback vertices are also fundamental
graph objects and their enumeration problem is equivalent to that of induced
subtrees. If the input graph G is a tree, the connected induced subgraph of G
is a subtree. Thus, Wasa et al.’s shows that the induced subtree enumeration
problem can be solved in constant time delay when the input graph is a tree.
Tree is a simple graph class, so we are motivated whether we can do better in
more general graph classes with non-trivial algorithms.

As a main result of this paper, we propose an algorithm for the k-degenerate
graph case. The algorithm runs in O(k) time per solution, after (|V | + |E|)
preprocessing time. The algorithm starts from the empty subgraph, and adds a
vertex recursively to enlarge the induced subtree. The vertex to be added has
to be adjacent to the current induced subtree, and has not to make a cycle.
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By using the degeneracy, we efficiently maintain the addible vertices, and the
time complexity is bounded by a sophisticated amortized analysis. Real world
graphs usually have small degeneracies, or only few vertex removals result small
degeneracies, the algorithm is expected to be efficient in practice. Compared to
other graph classes, this is a strong point of k-degenerate graphs. There have been
not so many studies on the use of the degeneracy for enumeration algorithm, and
thus our approach introduces one of new way of developing practically efficient
and theoretically supported algorithms.

The rest of this paper is organized as follows: In Section 2, we gives definitions
in this paper and the definition of our problem. In Section 3, we propose a
basic enumeration algorithm based on a binary partition method. In Section 4,
we improve the algorithm by using a property of the degeneracy, and analyze
its time complexity. Finally, we conclude this paper and give future works in
Section 5.

2 Preliminaries

2.1 Graphs

Let G = (V,E) be an undirected graph, where V is the set of vertices and E ⊆ V 2

is the set of edges. In this paper, we assume that G is simple and finite. We denote
by (u, v) the edge connecting u and v. For any vertices u, v of V , we say that
u and v are adjacent to each other if (u, v) ∈ E. We denote by NG(u) the set
of all vertices adjacent to u in G. We define the degree dG(u) of u in V as the
number of vertices adjacent to u. In what follows, if it is clear from context, we
omit the subscript G.

A path in G is a sequence of distinct vertices π(u, v) = (v1 = u, . . . , vj = v),
such that vi and vi+1 are adjacent to each other for 1 ≤ i < j. If there is π(u, v)
in G, we say that the path connects u and v. The length of path π(u, v) is the
number of vertices in π(u, v) minus one. For any path π(u, v) of length larger
than one, π(u, v) is called a cycle if u = v. We say that G is connected if there
is a path connecting any pair of vertices in G. G is a tree if G has no cycle and
is connected.

2.2 Induced Subtrees

Let S be a subset of V . We denote by G[S] = (S,E[S]) the graph induced by S,
where E[S] = {(u, v) ∈ E | u, v ∈ S}. We call G[S] an induced subgraph of G.
If no confusion, we regard S as G[S]. |S| is the size of S. We say that S is an
induced subtree (see Fig. 1), if S is a tree. In the following, we state the problem
of this paper.

Problem (Induced subtree enumeration problem). Enumerate all induced sub-
trees in G = (V,E).
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Fig. 1. An induced subtree S1 in G1. In the figure, bolded vertices and edges represent
vertices and edges in S1. S1 consists of {2, 3, 5, 6, 7}. S1 is an induced subtree in G1

since S1 is connected and acyclic.

2.3 K-Degenerate Graphs

A graph G is k-degenerate [5] if any its induced subgraph of G has a vertex
whose degree is less than or equal to k. The degeneracy of G is defined as the
smallest k satisfying the definition of k-degenerate graphs. Examples of graph
classes with constant degeneracy include trees, grid graphs, outerplanar graphs,
and planer graphs, thus degenerate graph is a large class of sparse graphs. These
degeneracy are 1, 2, 2, and 5, respectively.

From the definition of k-degeneracy, we obtain a vertex sequence (u1, . . . , u|V |)
satisfying the condition

∀1 ≤ i ≤ |V |, |{uj ∈ N(ui) | i < j ≤ |V |}| ≤ k · · · (�).

This condition (�) implies that there exists an ordering among vertices of G such
that for any vertex u, the number of vertices adjacent to u larger than it is at
most k. Hereafter we assume that the vertices are indexed in this ordering. We
say u < v (u > v, respectively) if the index of u is smaller than v (u is larger
than v, respectively) with respect to this ordering. In Fig. 2, we show an example
of the ordering satisfying (�). Matula and Beck [6] proposed an algorithm for
obtaining the degeneracy of G and the ordering satisfying (�). By iteratively
choosing the smallest degree vertex and removing it from G, their algorithm
finds such an ordering in O(|V | + |E|) time.

3 Basic Binary Partition Algorithm

3.1 Candidate Sets and Forbidden Sets

Let S be an induced subtree of G. We define the adjacency of a vertex u ∈ V
to S as adj(S, u) = |S ∩ N(u)|, that is, adj(S, u) is the number of vertices of S
adjacent to u.

Lemma 1. Let S be any induced subtree in G and u be any vertex V \S. S∪{u}
is an induced subtree if and only if adj(S, u) = 1.



98 H. Wasa et al.

Fig. 2. An example of an ordering of G1 = (V1, E1). In the right graph, vertices are
sorted by the ordering that satisfies (�).

Proof. If adj(S, u) > 1, u is adjacent to two vertices v and w of S. Since S has
a path π connecting v and w, the addition of u yields a cycle in S ∪ {u}. If
adj(S, u) = 0, S ∪ {u} is disconnected. If adj(S, u) = 1, S ∪ {u} is connected.
Since the degree of u in G[S ∪ {u}] is one, u is not included in a cycle. Thus,
G[S ∪ {u}] does not contain a cycle. �	

In each iteration, we maintain the forbidden set X as the vertex set such that
any vertex u in X satisfies either u belongs to S, S ∪{u} includes a cycle, or u is
forbidden to include in the solution by some ancestor iterations of the iteration.
We also maintain the candidate set CAND as the set of vertices whose additions
yield induced subtrees and are not included in X. We maintain CAND and X
for efficient computation. From Lemma 1, they are disjoint, and for any vertex
u, if adj(S, u) > 0, u belongs to either CAND or X.

3.2 Basic Binary Partition

Our algorithm starts from the empty induced subtree S = ∅. In each iteration
given an induced subtree S, we remove a vertex u from CAND , and partition
the problem into two; enumeration of all induced subtrees including S ∪ {u},
and those including S but not including u. We recursively do this partition until
there is no vertex in CAND . The former can be solved by a recursive call with
setting S to S ∪ {u}. The latter is solved by a recursive call with setting X to
X ∪ {u}. In this way, we can enumerate all induced subtrees. We present the
main routine ISE of our algorithm in Algorithm 1. We show how to update
candidate sets and forbidden sets in the next two lemmas.

Lemma 2. For an induced subtree S and a vertex u ∈ CAND, when we add u
to S and remove u from CAND, CAND changes to

(CAND \ N(u)) ∪ (N(u) \ (CAND ∪ X))).

Proof. Any vertex in CAND other than N(u) remains in CAND after the addi-
tion of u to S since the adjacencies of the vertices do not change. If vertices in
N(u)∩(CAND ∪X) are added to S ∪{u}, then they are in S, they are forbidden
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Algorithm 1. Main routine ISE: Enumerating all induced subtrees in G

1: procedure ISE(G = (V, E), S,CAND , X)
2: if CAND = ∅ then output S; return;
3: choose the smallest vertex u from CAND and remove u from CAND ;
4: call ISE(G, S,CAND , X ∪ {u});
5: call ISE(G, S∪{u}, (CAND\N(u))∪(N(u)\CAND), X∪{u}∪(CAND∩N(u)));

to be add to S and its decendants, or they make cycles since they are adjacent
to u and other vertices in S. The adjacency of any vertex in N(u)\ (CAND ∪X)
is zero for S, and one for S∪{u}. Any vertex v /∈ S satisfying adj(S∪{u}, v) = 1
is either in N(u) or CAND . Thus, the statement holds. �	
Lemma 3. For an induced subtree S and a vertex u ∈ CAND, when we add u
to S and remove u from CAND, X changes to

X ∪ {u} ∪ (CAND ∩ N(u)).

Proof. Any vertex v ∈ X remains in X for S ∪ {u}, since adj(S ∪ {u}, v) ≥
adj(S, v) always holds. From the definition of the forbidden set, u is in X for
S ∪ {u}. Further, any vertex v in CAND ∩ N(u) makes cycles when they are
added to S ∪ {u}, since adj(S ∪ {u}, v) ≥ 2 holds. By adding u to S, no other
vertex is forbidden to be added, thus the statement holds. �	
Theorem 1. Algorithm ISE enumerates all induced subtrees in the input graph
G = (V,E) without duplicates.

4 Improved Binary Partition Algorithm

From Lemma 2 and Lemma 3, we can easily see that the computation time of
updating the candidate set and the forbidden set is O(dG(u)) by checking all
vertices adjacent to u. However, in this way, we must check some vertices again
and again. Specifically, let us assume u and v are consecutively added to S, and
w /∈ S is adjacent to u, v and another vertex in S. When we add u to S, we
check whether we can add w to the candidate set of S ∪ {u}. After generating
S ∪ {u}, we check w again when we add v to S ∪ {u}. In order to avoid this
redundant checking, we improve the way of updating the candidate set and the
forbidden set by using the following set.

Definition 1. Suppose that u is a vertex of CAND for an induced subtree of G.
We define a set Γ (u,X) as follows:

Γ (u,X) = {v ∈ N(u) | v /∈ X, v < u}.

Lemma 4. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. Then, the following formula
holds:

N(u) \ (CAND ∪ X) = (N�(u) \ (CAND ∪ X)) ∪ Γ (u,X),

where N�(u) = {v ∈ N(u) | u < v}.
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Fig. 3. This figure shows the changes between candidate set CAND by the addition
of u to S. S is an induced subtree and {u, v, . . . , x, w, z} is the candidate set of S. Let
assume that a < b < u < c and d < u. Since d does not belongs to Γ (u, X), d is skipped
checking.

Proof. Let Z be the set of vertices larger than u. Since u is the smallest vertex in
CAND , (N(u)\ (CAND ∪X))∩Z = (N�(u)\ (CAND ∪X)). From the definition
of Γ (u,X) and u is the smallest in CAND , (N(u) \ (CAND ∪ X)) ∩ (V \ Z) =
Ns(u) \ (CAND ∪ X) = (Ns(u) \ CAND) ∩ (Ns(u) \ X) = Γ (u,X), where
Ns(u) = {v ∈ N(u) | v < u}. This concludes the lemma. �	

In what follows, we implement CAND , X, and Γ by doubly linked lists.
Thanks to the doubly linked list, the cost for a removal and the recover of the
removed element can be done in constant time, and the merge of two sets can be
done in linear time of the sum of their sizes. In each iteration, we keep verticies
of each list sorted in the ordering that satisfies (�).

Lemma 5. When we add a vertex u to X, the update of Γ (v,X) for all vertices
v is done in O(k) time.

Proof. To update, it is suffice to remove u from Γ (v,X) from all v > u. Thus,
it takes O(k) time. �	
Lemma 6. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. When we add u to S and
remove u from CAND, the computation time of updating CAND and X are
O(k + |Γ (u,X)|) and O(k) time, respectively.

Proof. Since u is the smallest vertex in CAND , |Δ| ≤ k, where Δ = |CAND ∩
N(u)|. Since vertices in N(u) are sorted by the ordering, the computation time of
Δ is O(k). Thus, adding vertices in Δ and u to X and removing Δ from CAND
are done in O(k) time. From Lemma 4, since |{v ∈ N(u) | u < v}| ≤ k, the
computation time of adding these vertex to CAND is O(k + |Γ (u,X)|). Hence,
the lemma holds. �	

In Fig. 3, we show the changes of between the candidate set of S and that of
S ∪ {u} after adding u to S.
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Theorem 2. Let G = (V,E) be the input graph and k is the degeneracy of G.
Our algorithm enumerates all induced subtrees in G in O(k) time per solution
after O(|V |+|E|) preprocessing time without duplicates using O(|V |+|E|) space.
Proof. Since the update of CAND and X is correct, the correctness of the algo-
rithm is obvious. (I) We discuss the time complexity of the preprocessing. First,
our algorithm computes an ordering of vertices by Matula and Beck’s algo-
rithm [6] in O(|V | + |E|) time. Next, our algorithm sorts vertices belonging
to each adjacency list by using a bucket sort. Thus, the preprocessing time is
O(|V | + |E|).

(II) We consider an iteration inputting S, X, and CAND , and assume that
CAND ′ is the candidate set for S ∪ {u}. Line 2 and line 3 run in O(1) time.
From Lemma 5, line 4 needs O(k) time. From Lemma 6, since it is clear that
|Γ (u,X)| ≤ |CAND ′|, our algorithm needs O(k + |CAND ′|) time for computing
CAND ′. The update of Γ ’s is done in O(k|CAND ∩N(u)|) time, from Lemma 5.
We observe that for each vertex w such that v ∈ CAND ∩N(u) is removed from
Γ (w,X), w is in CAND of S ∪ {v}, that will be generated by a descendant of
this iteration. We charge the cost of constant time to remove v from Γ (w,X) to
the induced subtree S ∪{v, w}. Then, we can see that S ∪{v, w} is charged only
from iterations inputting S, that divides the problem by u′ such that (u′, v) ∈ E,
that is, the iteration generates S ∪ {u′}. We consider the average amount of the
charge over all induced subtrees of S ∪{v, w}, v ∈ CAND , and w is in CAND of
S ∪ {v}. Since the number of pairs {u, v} ⊆ CAND is at most k|CAND |, we can
see the average charge is O(k) for each S ∪ {v, w}. Thus, in summary, we can
see the update time for Γ in an iteration is bounded by O(k), on average. Thus,
an iteration takes O(k + |CAND ′|) time on average. We observe that the sum
of |CAND ′| over all iterations is no greater than the sum of |CAND | over all
induced subtrees, since CAND ′ is the candidate set of S ∪{u} and forbidden set
X ∪{u}, and S ∪{u} is generated only from S. Further, we can see that S ∪{u}
is generated only from S this iteration. Hence, thus the sum of |CAND | over all
induced subtrees is bounded by the number of induced subtrees. Therefore, the
computation time for each iteration is bounded by O(k) on average.

In a binary partition algorithm, each iteration at the leaf of the recursion
outputs a solution, and each non-leaf iteration generates exactly two recursive
calls. Thus, the number of iterations (recursive calls) of a binary partition algo-
rithm is at most 2N . Hence, the computation time per induced subtree is O(k).
All sets the algorithm maintains are of size O(|V | + |E|) in total.

We need a bit care to perform a recursive call. When a recursive call is made,
we record the operations to prepare the parameters given to the recursive call on
the memory. When the recursive call ends, we apply the inverse operations of the
recorded operations to recover the variables such as CAND and X. In this way,
we can recover the variables from the updated ones without increasing the time
complexity. Since no vertex is added or deleted from the same variable twice,
the accumulated space for the recorded operations is bounded by O(|V | + |E|).
From the above arguments, our algorithm runs in O(k) time per solution after
O(|V | + |E|) preprocessing time using O(|V | + |E|) space. �	
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5 Conclusion

In this paper, we have presented an algorithm for enumerating all induced sub-
trees in k-degenerate graph. Our algorithm runs in O(k) time per solution after
linear preprocessing time using linear space. From this result, we obtain the fol-
lowing corollary; if the input graph has a constant degeneracy, our algorithm
is optimal with respect to the computation time per solution. K-degenerate
graphs often appear in real-world data even when with much noise. Thus con-
sidering the applications, it is important to study on efficient computation on
k-degeneracy. This result is one of the first steps for such studies, and researches
on enumeration algorithms on k-degenerate graphs will be an important issue.
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Abstract. Topological orders of a directed graph are an important con-
cept of graph algorithms. The generation of topological orders is useful
for designing graph algorithms and solving scheduling problems. In this
paper, we generate and index all topological orders of a given graph.
Since topological orders are permutations of vertices, we can use the
data structure πDD, which generates and indexes a set of permutations.
In this paper, we propose Rot-πDDs, which are a variation of πDDs
based on a different interpretation. Compression ratios of Rot-πDDs for
representing topological orders are theoretically improved from the orig-
inal πDDs. We propose an efficient method for constructing a Rot-πDD
based on dynamic programming approach. Computational experiments
show the amazing efficiencies of a Rot-πDD: a Rot-πDD for 3.7 × 1041

topological orders has only 2.2 × 107 nodes and is constructed in 36 sec-
onds. In addition, the indexed structure of a Rot-πDD allows us to fast
post-process operations such as edge addition and random samplings.

Keywords: Topological orders · Linear extensions · Permutations ·
Decision diagrams · Enumerating algorithms · Experimental algorithms

1 Introduction

Topological sort is one of the classical and important concepts of graph algo-
rithms. Vertex orders obtained by topological sort are used to analyze charac-
teristics of a directed graph structure and support graph based algorithms [6].
Furthermore, topological orders are equivalent to linear extensions of a poset,
i.e., total orders which are in no contradiction with the partially ordered set
defined by directed edges of a graph. Thus, topological sort plays an important
role in several research areas such as discrete mathematics and computer science,
and has many applications such as graph problems and scheduling problems [14].

Linear time algorithms calculating a topological order are classical and well-
known algorithms, and dealt with by Cormen et al. [6]. In recent researches,
two derived problems are mainly discussed. One of these is an online topological
sort, i.e., calculation of a topological order on a dynamic graph. Bender et al. [2]
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-13075-0 9



104 Y. Inoue and S. Minato

proposed a topological sort algorithm which allows edge insertions, and Pearce
et al. [13] proposed an algorithm which can also handle edge deletions. Another
one is the enumeration problem of all topological orders. Ono et al. [12] presented
a worst case constant delay time generating algorithm using family trees. The
complexity of the counting problem has been studied from several aspects since
Brightwell et al. [3] proved that it is #P -complete. Bubley et al. [4] proposed
a randomized algorithm to approximate the number of all linear extensions.
Li et al. [10] provided an experimentally fast algorithm counting all topological
orders based on Divide & Conquer method. There are many polynomial time
counting algorithms when we restrict the graph structure or fix some graph
parameters, e.g., trees and bounded poset width [1,5].

In this paper, we deal with both of these problems. That is, our goal is
generation of all topological orders of given graphs and manipulation of these
orders when the graph is dynamically changed, e.g., edge addition. In addition,
we implicitly store all topological orders as a compressed data structure in order
to handle graphs that are as large as possible. Experimental results, which will
be described later, show that our algorithm and data structure work very well:
3.7×1041 topological orders of a directed graph with 50 vertices are generated in
36 seconds, and the compressed data size is only about 1 gigabyte. Furthermore,
an edge addition query for a directed graph with 25 vertices is done in 1 second.

Our method is based on an indexed data structure compactly represent-
ing a set of permutations, permutation decision diagram, also called πDD or
PiDD [11]. Although a πDD can be used to achieve our purpose, compression
ratio and query processing are not efficient enough practically or theoretically.
Thus, we developed a new variation of πDD, named Rot-πDD (Rotation-based
πDD). The key idea of our modification is a direct construction of a decision
diagram based on the dynamic programming approach. This modification real-
izes the practical efficiency of compression and query processing, which are also
bounded theoretically.

Our contributions in this paper are summarized as follows.

– We provide the first algorithm for implicit generation of all topological orders
with dynamic manipulation.

– Time and space for construction and query processing of our algorithm are
efficient experimentally and theoretically, while it is difficult to estimate the
size and computation time of decision diagrams in general.

The rest of this paper is organized as follows. Section 2 introduces a precise
definition of topological sort and algorithms for counting, which will be used
in our algorithm. Section 3 introduces πDDs and our modified version (Rot-
πDDs) for generation of all topological orders. Our algorithm for construction of
a Rot-πDD is also presented in Section 3. In Section 4, we prove the theoretical
bound of the time complexity of our algorithm and the size of the new permuta-
tion decision diagram for all topological orders. Section 5 presents experimental
results of generation and query processing, comparing with existing πDD and
other existing methods. Section 6 gives some consequences of this paper.
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Fig. 1. (a) A DAG and (b) the subgraph induced by the vertex set {2, 5, 6}

2 Topological Orders

We define a directed graph G = (V,E), where V is a vertex set and E is a
directed edge, i.e., E ⊆ {(u, v) | u, v ∈ V }. Note that (u, v) is an ordered pair
of two vertices. Let n be the number of vertices and m be the number of edges.
Without loss of generality, we can assume V = {1, 2, . . . , n}.

A topological order of a graph G is an ordering v1v2 . . . vn of all vertices such
that vi must precede vj if (vi, vj) ∈ E. For example, the graph in Fig. 1(a) has
four topological orders: 526413, 526431, 562413, and 562431.

A directed graph is a DAG (Directed Acyclic Graph) if the graph has no
cycle. In this paper, we assume that given graphs are DAGs because we can
determine whether or not a graph has cycles in linear time, and if so, there is
no topological order.

There are many linear time algorithms for computing a topological order of a
given graph [9,15]. One of the key ideas is deleting vertices whose out-degree is 0.
If there is no edge from v, v can be the rightmost element in a topological order,
because there is no element that must be preceded by v. We delete such v and
its incident edges, i.e., after the deletion of v, we can consider only the subgraph
induced by the vertex subset V \ {v}. Then, we repeat the same procedure for
the induced subgraph and obtain a topological order of the induced subgraph
recursively. Finally, we concatenate a topological order of the induced subgraph
and v to obtain a topological order of the given graph. The time complexity of
this algorithm is O(n + m).

Similarly, an algorithm counting all topological orders of a given graph can be
designed recursively. Let G(X) denote the subgraph of G induced by the vertex
subset X. For each recursion, we assume that the current vertex subset is V ′.
Then, for each vertex v whose out-degree is 0 in G(V ′), we sum up the numbers
of all topological orders of G(V ′ \ {v}). The time complexity of this algorithm is
O((n + m)TO(G)), where TO(G) is the number of the topological orders of the
graph G. Since TO(G) = O(n!), the time complexity is O((n + m)n!). We can
improve this complexity by a dynamic programming (DP) approach.

For example, in Fig. 1(a), we can delete vertices {1, 3, 4} in the order 134
or 314. (Note that a deletion order is the reverse of a topological order.) Then
we obtain the same induced subgraph on {2, 5, 6}. Although TO(G({2, 5, 6}))
is not changed, we redundantly count TO(G({2, 5, 6})) in each recursion of 134
and 314. Thus, by memorizing the calculation result TO(G(V ′)) for G(V ′) at
the first calculation, we can avoid duplicated calculations for each G(V ′). In
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other words, this is a top-down DP, which recursively calculates TO(G(V ′)) =∑
v∈V ′

0
TO(G(V ′ \ {v})), where V ′

0 is the set of vertices whose out-degree is 0 in
G(V ′). We define valid induced subgraphs of G as induced subgraphs G(V ′) that
can appear in the above DP recursion. Let IS(G) denote the number of valid
induced subgraphs of G. Then, this DP algorithm uses O((n + m)IS(G)) time
and O(IS(G)) space. In the worst case, IS(G) = 2n, which is the number of all
subsets of V . Therefore, we improve the complexity from factorial O((n+m)n!)
to exponential O((n + m)2n).

The idea of valid induced subgraphs is equivalent to upsets in a poset in
the talk of Cooper [5]. Cooper provided another upper bound O(nw) of IS(G),
where w is the width of a poset corresponding to G. The proof of this bound
and more precise analyses will be described in Section 4.

Here, we remember our goal in this paper again. Our goal is generating
and indexing all topological orders, which are permutations of vertices. Thus,
it is reasonable to expect that a compressed and indexed data structure for
permutations can be useful for this purpose. And if we can compress permu-
tations in the same way as the above DP, the compression size is bounded by
IS(G) = O(min{2n, nw}), which can be quite smaller than TO(G).

3 Permutation Decision Diagrams

In this section, we introduce a compressed and indexed data structure for per-
mutations, πDD, and discuss whether or not compression of a πDD is suitable
for the DP approach.

3.1 Existing Permutation Decision Diagrams: πDDs

First, we define some notations about permutations. A permutation of length n,
or n-permutation, is a numerical sequence π = π1π2 . . . πn such that all elements
are distinct and πi ∈ {1, 2, . . . , n} for each i. The identity permutation of length
n is denoted by en, which satisfies eni = i for each 1 ≤ i ≤ n.

We define a swap τi,j as the exchange of the ith element and the jth element.
Any n-permutation can be uniquely decomposed into a sequence of at most n−1
swaps. This swap sequence is defined as the series of swaps to obtain an objective
n-permutation π from the identity permutation en by a certain algorithm. The
algorithm repeats swaps to move πk to the kth position, where k runs from right
to left. For example, we consider a decomposition of the permutation π = 43152
into a swap sequence. We start with e5 = 12345. The 5th element of π is 2 and
2 is the 2nd element of en, hence we swap the 2nd element and the 5th element,
and obtain 15342 = τ2,5. Next, since the 4th element of π is 5, and 5 is the 2nd
element, we then obtain 14352 = τ2,5 · τ2,4. Repeating this procedure, we finally
obtain π = 43152 = τ2,5 · τ2,4 · τ1,3 · τ1,2.

A πDD is a data structure representing a set of permutations canonically [11],
and has efficient set operations for permutation sets. πDDs consist of five com-
ponents: nodes with a swap label, 0-edges, 1-edges, the 0-sink, and the 1-sink.
Fig. 2 shows the πDD representing topological orders of the graph in Fig. 1(a).
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Fig. 2. The πDD representing
{526413, 526431, 562413, 562431} Fig. 3. Two reduction rules of πDDs

Each internal node has exactly a 0-edge and a 1-edge. Each path in a πDD
represents a permutation: if a 1-edge originates from a node with label τx,y,
the decomposition of the permutation contains τx,y, while a 0-edge from τx,y
means that the decomposition excludes τx,y. If a path reaches the 1-sink, the
permutation corresponding to the path is in the set represented by the πDD. On
the other hand, if a path reaches the 0-sink, the permutation is not in the set.

A πDD becomes a compact and canonical form by applying the following
two reduction rules (Fig. 3):

(1) Merging rule: share all nodes which have the same labels and child nodes.
(2) Deletion rule: delete all nodes whose 1-edge points to the 0-sink.

Although the size of a πDD (i.e. the number of nodes in a πDD) can grow
exponentially (O(2n

2
)) with respect to the length of permutations, in many

practical cases, πDDs demonstrate high compression ratio. In addition, πDDs
support efficient set operations such as union, intersection, and set difference.
The computation time of πDD operations depends on the size of πDDs, not on
the number of permutations in the sets represented by the πDDs.

3.2 DP Approach and πDDs

Now, we consider whether or not we can directly construct a πDD in the same
way as the DP approach described in Section 2.

Here, we note that the swap decomposition algorithm behaves as deletions
of a vertex on an induced subgraph. We can represent the current recursive
state in DP procedure as a permutation, i.e., let k be the number of vertices of
the current induced subgraph, then the k-prefix of an n-permutation represents
the vertex set of the induced subgraph, and the (n−k)-suffix of the permutation
represents the reverse order of deletions. Furthermore, a deletion of a vertex v
can be described as a swap τi,k, where i is the position of v in the permutation.
For example, we can consider a permutation 625431 represents the subgraph in
Fig. 1(b) such that the deletion order is 134. When we delete the vertex 6, we
swap the 1st position, which is 6, and the 3rd position, which is the rightmost
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Fig. 4. The Rot-πDD representing {526413, 526431, 562413, 562431}

of the k-prefix representing the vertex subset. Then, we obtain 526431, which
represents the subgraph induced by {2, 5} and the reverse order of deletions.

By compressing swap sequences into a πDD, we can recursively construct
a πDD for all topological orders. That is, for each recursion represented as a
permutation π, if we apply τi,j to delete πi, we create the new πDD such that its
root node is τi,j , its 1-edge child is the πDD for swap sequences after applying τi,j ,
and its 0-edge child is the πDD for swap sequences in which we do not apply τi,j .
The πDDs for the 1-edge and 0-edge child are recursively constructed.

However, deletions by swaps are not available for DP. In order to use DP app-
roach, swap sequences for the same induced subgraph must be uniquely deter-
mined. Even if different prefixes of permutations represent the same induced
subgraph, their swap sequences can differ. For example, consider the DAG in
Fig. 1. Deletion sequences 314 and 134 generate the same induced subgraph
on {2, 5, 6}, and these states are represented as 526413 and 625431, respectively.
The induced subgraph on {2, 5, 6} has a topological order 526. In order to obtain
this, we apply no swap to 526413, while we apply τ1,3 to 625431. This means
there are multiple πDDs corresponding to the same induced subgraph.

3.3 New Permutation Decision Diagrams: Rot-πDDs

As described in the previous subsection, the DP approach cannot be used to
directly construct a πDD. To overcome this problem, we use another decom-
position where each vertex subset is uniquely represented as a prefix of per-
mutations. In order to realize this, we use the left-rotation decomposition. A
left-rotation ρi,j rearranges ith element into jth position, and kth element into
(k−1)th position for each i+1 ≤ k ≤ j. That is, ρi,j rearranges an n-permutation
π1 . . . πiπi+1 . . . πj . . . πn into π1 . . . πi+1 . . . πjπi . . . πn.

Left-rotations also can uniquely decompose a permutation. The left-rotation
decomposition is similar to the one for swaps: we start with en and repeatedly
apply ρi,j to move πi to the jth position, from right to left. For example, consider
to decompose 43152 into a sequence of left-rotations. We start with e5 = 12345.
Now, we move 2 from the 2nd position to the 5th position. Thus, we obtain
13452 = ρ2,5. Next, we move 5 from the 4th position to the 4th position, i.e., we
do not rotate. Repeating this procedure, we finally obtain 43152 = ρ2,5 ·ρ1,3 ·ρ1,2.
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Algorithm 1. Rot-πDD construction for all topological orders of G = (V,E)
ConstructRotP iDD(G):
if V is empty then

return 1-sink
else if have never memorized the Rot-πDD RG for G then

Rot-PiDD R ← 0-sink
for each v whose out-degree is 0 in G do

Integer i ← v’s position in the increasing sequence of V , j ← |V |
R ← the Rot-PiDD with root node ρi,j , left child R, and right child
ConstructRotP iDD(G(V \ {v}))

end for
memorize R as RG

end if
return RG

Left-rotations realize the unique representation of an induced subgraph as a
prefix of a permutation, because a prefix is always in an increasing order. Left-
rotation ρi,j only changes the relative order between the ith element and the
elements in [i+1, j], i.e., relative orders in [1, j −1] are not changed. This means
the (j − 1)-prefix is always in increasing order when we start with en and apply
ρi,j in decreasing order of j.

Thus, we can use the DP approach by using left-rotations as node labels of
πDDs. We call this left-rotation based πDD Rot-πDD, and existing πDD Swap-
πDD to distinguish. Fig. 4 illustrates the Rot-πDD for the same set as Fig. 2.
Algorithm 1 describes the DP based construction algorithm of a Rot-πDD.

3.4 Rot-πDD Operations

Since Rot-πDDs are decision diagrams, they can use the same set operations as
Swap-πDD such as union, intersection, and set difference. Some queries such as
random samplings and counting the cardinality of the set represented by a Rot-
πDD are also available without any modification. The runtime of these opera-
tions depends on only the size of the Rot-πDDs by using memo cache techniques.

On the other hand, some queries have to be redesigned. For example, the
precedence query R.Precede(u, v) returns the Rot-πDD that represents only
permutations π extracted from the Rot-πDD R such that u precedes v in π.
This query is equivalent to addition of the edge (u, v) in a graph. This query can
be designed as a recursive procedure described in Algorithm 2. The idea of the
algorithm is simulation of moves of the two elements u and v. Initially, we start
with the identity permutation, i.e. u and v are at the uth position and the vth
position, respectively. After a rotation, the positions of u and v may be changed.
If u or v are out of the range of later rotations, their relative order is fixed and
we can check whether or not u precedes v. The runtime of a precedence query
also depends on only the size of the Rot-πDDs thanks to memo cache.
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Algorithm 2. Precedence query for a Rot-πDD R

R.Precede(u, v):
if R is 0-sink then

return 0-sink
else if R is 1-sink then

if u < v then
return 1-sink

else
return 0-sink

end if
else

ρx,y ← the root node of R
if y < u and v < u then

return 0-sink
else if y < v and u < v then

return R
else

R0 ← the left child of R, R1 ← the right child of R
if x = v then

return the Rot-PiDD with root node ρx,y, left child R0.P recede(u, v), and
right child R1

else if x = u then
return R0.P recede(u, v)

else
if x < u then

u ← u − 1
end if
if x < v then

v ← v − 1
end if
return the Rot-PiDD with root node ρx,y, left child R0.P recede(u, v), and
right child R1.P recede(u, v)

end if
end if

end if

4 Theoretical Analysis

In this section, we analyze the time and the space complexity of DP based
counting and Rot-πDD construction. Here, we remember the definition of IS(G):
IS(G) is the number of the induced subgraphs of G that can be obtained by
deletions of vertices with out-degree 0. We start by proving the bound O(nw) of
IS(G). According to Dilworth’s theorem [7], the width w of a poset equals the
minimum path cover of the DAG corresponding to the poset, where a path cover
of a graph G is a set of paths in G such that each vertex of G must appear in at
least one of the paths. Therefore, it is sufficient to prove the following theorem.
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Theorem 1. Given a DAG G with n vertices and minimum path cover w,
IS(G) ≤ (n + 1)w holds.

Proof. Let pi be the ith path of the minimum path cover and li be the length
of pi. Here, all vertices in a valid induced subgraph must be consecutive in prefix
of each pi due to precedence. The number of the possible prefixes of each path
is at most li + 1, and the number of paths is w. Therefore, IS(G) is bounded by∏w

k=1(lk + 1). Since li is also bounded by n, IS(G) ≤ (n + 1)w holds. ��
In this proof, we use the rough estimation li = n, but in fact

∑w
k=1 lk = n

holds. We can prove a tighter bound using this restriction.

Lemma 1. If
∑w

k=1 lk = n holds,
∏w

k=1(lk + 1) ≤ (n/w + 1)w holds for all
positive integers n, 1 ≤ w ≤ n, and 1 ≤ li ≤ n.

Proof. The proof can be done by induction. We omit details. ��
Corollary 1. Given a DAG G with n vertices and minimum path cover w,
IS(G) ≤ (n/w + 1)w holds.

Proof. The proof follows from the proof of Theorem 1 and Lemma 1. ��
Corollary 1 gives a new bound of IS(G). Since (n/w + 1)w is monotonically

nondecreasing for all positive integers n and w, the range of (n/w + 1)w is
[n + 1, 2n] for 1 ≤ w ≤ n. This means the previous bound O(min{2n, nw}) can
be directly replaced by O((n/w + 1)w). Hence, we obtain the time complexity
O((n + m)(n/w + 1)w) and the space complexity O((n/w + 1)w) of the DP.

We can also estimate the size of a Rot-πDD representing all topological orders
and the time of the construction. The size of such a Rot-πDD is at most w times
larger than the space of DP because each DP recursion has at most w transitions,
while each node of a Rot-πDD has exactly two edges. Therefore, the size of such
a Rot-πDD is at most O(w(n/w + 1)w). 1 On the other hand, the time of the
construction is as fast as DP, because each node is only created for each vertex
deletion in constant time. Hence, the time complexity of the construction of a
Rot-πDD representing all topological orders is O((n + m)(n/w + 1)w).

5 Computational Experiments

We measured the performance of our Rot-πDD construction algorithm by com-
putational experiments. Experiment setting is as follows.

– Input: A DAG.
– Output: The number of topological orders of the given DAG.
– Test Cases: For each n = 5, 10, 15, . . . , 45, 50 and k = 1, 3, 5, 7, 9, we generate

exactly 30 random DAGs with n vertices and � k
10 × n(n−1)

2 � edges. (That is,
k provides the edge density of DAGs.)

1 Note that this bound is valid only for all topological orders. For any permutation set,

the worst size of Rot-πDDs is O(2n2
), which is same as the size bound of Swap-πDDs.
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Table 1. Experimental results on the cases k = 1

n The number of topological orders Rot-πDD size Time (sec)

5 60 16 0.00

10 270816 310 0.00

15 3849848730 3990 0.00

20 84248623806362 35551 0.04

25 1729821793136903967 179205 0.18

30 166022551499377802024339 695029 0.90

35 18897260805585874040859189398 2634015 3.78

40 192246224377065271125689349980187 4649639 6.68

45 7506858927008084384591070452622456252 8288752 12.69

50 375636607794991518114274279559952431497225 22542071 35.51

We also compared with other methods on the same setting. Comparisons are
Swap-πDD construction, DP counting, and Divide & Conquer counting [10].
Since direct construction of a Swap-πDD is inefficient, we apply precedence
queries for each edge individually. We implemented all algorithms in C++ and
carried out experiments on a 3.20 GHz CPU machine with 64 GB memory.

Fig. 5 and Fig. 6 show the average runtime and memory usage on n = 20
cases. Divide & Conquer method times-out on some cases of k = 1. These results
indicate that the worse cases of all algorithms are sparse graphs. In general,
sparse graphs tend to have a large poset width. In fact, the average w of k =
1 cases is 10.6, while that of k = 5 cases is 3.3. Therefore, the complexity
O((n/w + 1)w) also tends to become large on the sparse graph cases.

We therefore focus on sparse graphs. Table 1 shows the average numbers
of topological orders, the sizes of Rot-πDDs, and runtimes on the case k = 1.
It shows the amazing efficiency of Rot-πDDs: 3.7 × 1041 topological orders are
compressed into a Rot-πDD that has only 2.2 × 107 nodes in 36 seconds on the
case n = 50. Note that each node of Rot-πDDs consumes about 30 bytes.
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Fig. 7 and Fig. 8 show the average runtime and memory usage on k = 1 cases.
Swap-πDD and Divide & Conquer time-out on the case n ≥ 25 and n ≥ 20,
respectively. We can obtain a Rot-πDD, which supports many operations for
queries, with only tenfold increase in runtime and memory usage compared to
DP. We guess that the overhead time is used to store new nodes of a Rot-πDD
into the hash table, and the overhead memory is caused by the difference of the
space complexities between DP and Rot-πDD as described in Section 4.

We also carried out experiments to measure the performance of query pro-
cessing. On these experiments, we use 30 random DAGs with 25 vertices and 90
edges. We start with a graph having no edge, and add each edge individually.
The Rot-πDD method uses precedence queries for each edge addition, while DP
recomputes TC(G) for each addition. We measure the runtime and the size of a
Rot-πDD and a DP table. Note that the DP table size equals IS(G).

Fig. 9 and Fig. 10 show the results for query processing. In almost all cases,
Rot-πDDs can generate and index all topological orders faster than or equal to
DP. Especially in sparse cases, query processing of Rot-πDDs is very efficient.
It may be because Rot-πDDs (and Swap-πDDs) can represent the set of all
n-permutations with n(n − 1)/2 + 1 nodes (please refer to [8] for more details).
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6 Conclusion

In this paper, we gave an efficient method for generating and indexing all topo-
logical orders of a given DAG. We proposed a new data structure Rot-πDD,
which is suitable for indexing topological orders. Theoretical analysis and exper-
iments showed the efficiency of our construction algorithm, compression ratios
of Rot-πDDs, and query processing.

Future work is to apply Rot-πDDs to solve several scheduling problems. We
would like to develop new operations to process required queries and optimiza-
tions for each problem. Another topic is to apply the Rot-πDD construction
technique to other graph generation problems such as Hamiltonian paths and
perfect elimination orderings. These problems can also be recursively divided
into subproblems based on induced subgraphs.
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Abstract. In this paper, we introduce planar matchings on directed
pseudo-line arrangements, which yield a planar set of pseudo-line seg-
ments such that only matching-partners are adjacent. By translating the
planar matching problem into a corresponding stable roommates prob-
lem we show that such matchings always exist.

Using our new framework, we establish, for the first time, a com-
plete, rigorous definition of weighted straight skeletons, which are based
on a so-called wavefront propagation process. We present a generalized
and unified approach to treat structural changes in the wavefront that
focuses on the restoration of weak planarity by finding planar matchings.

Keywords: Planar matchings · Pseudo-line arrangements · Stable
roommates · Weighted straight skeletons

1 Introduction

The straight skeleton is a skeletal structure of a polygon P , similar to the Voronoi
diagram. It was introduced to computational geometry almost two decades ago
by Aichholzer et al. [1], and its definition is based on a so-called wavefront
propagation process, see Fig. 1: Each edge of P emits a wavefront edge that
moves towards the interior of P at unit speed in a self-parallel manner. The
polygons formed by these wavefront edges at any given time t ≥ 0 are the
wavefront, denoted by WP (t), and take the form of a mitered offset of P . Over
time, the wavefront undergoes two different kinds of topological changes, so-
called events, due to self-interference: roughly speaking, an edge event happens
when a wavefront edge collapses, and a split event happens when the wavefront
splits into parts. The straight skeleton S(P ) of P is then defined as the geometric
graph whose edges are the traces of the vertices of WP . Similar to Voronoi
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diagrams and the medial axis, straight skeletons became a versatile tool for
applications in various domains of science and industry [8].

The weighted straight skeleton, where wavefront edges do not necessarily move
at unit speed, was first mentioned by Eppstein and Erickson [5] and has since
been used in a variety of different applications [2,7,9,10]. Weighted straight
skeletons, with both positive and negative weights, also constitute a theoretical
tool to generalize straight skeletons to 3D [3]. Even though weighted straight
skeletons have already been applied in both theory and practice, only recently
Biedl et al. [4] showed that basic properties of unweighted straight skeletons
do not carry over to weighted straight skeletons in general. Biedl et al. [4] also
proposed solutions for an ambiguity in the definition of straight skeletons caused
by certain edge events and first mentioned by Kelly and Wonka [9] and Huber [8].

Fig. 1. The straight skeleton S(P ) (blue)
of a polygon P (bold) is defined as the
traces of wavefront vertices over time.
Instances of the wavefront WP (t) at dif-
ferent times t are shown in gray.

In this paper, we discuss another
open problem in the definition of
weighted straight skeletons caused by
split events. An event happens due to
a topological change in the wavefront
and the event handling was so far guided
by one fundamental principle: Between
events, the wavefront is a planar collec-
tion of wavefront polygons. This is eas-
ily achieved when handling edge events
and “simple” split events. However, is
it always possible to handle multiple
simultaneous, co-located split events in
a fashion that respects this fundamental
principle?

We will show that it is necessary to
weaken the requirement of strict planarity in the fundamental principle. After
that, we can answer the question to the affirmative and therefore show how to
define weighted straight skeletons safely in the presence of multiple simultaneous,
co-located split events. (Note that due to the discontinuous character of straight
skeletons, it is not possible to tackle this problem by means of simulation of
simplicity.) We first rephrase this problem as a planar matching problem of
directed pseudo-lines and show how to transform the planar matching problem
into a stable roommate problem. For the main result, we prove that our particular
stable roommate problem always possesses a solution and those solutions tell us
how to do the event handling of the wavefront in order to maintain planarity.

2 Weighted Straight Skeletons

2.1 The Wavefront

Let P denote a polygon, possibly with holes. We denote by σ(e) ∈ R \ {0} the
weight of the edge e of P and call σ the weight function. For every edge e of P ,
let n(e) denote the normal vector of e that points to the interior of P . Initially,
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every edge of P sends out a wavefront edge with fixed speed σ(e). That is, the
segments of the wavefront W(t) at time t that originate from edge e are contained
in e + t · σ(e) · n(e), where e denotes the supporting line of e. If σ(e) is negative,
the wavefront edge that emanated from e moves to the exterior of P .

p

Fig. 2. A wavefront before (dotted), at
(solid), and after an event (bold), with
blue arrows showing movement direction
of wavefront vertices. The standard pair-
ing technique for handling a split event
pairs each edge with its other neighbor
in the cyclical order.

Intuitively, an event happens when a
wavefront vertex meets another wave-
front edge or, in particular, another
wavefront vertex. The situation becomes
more complicated when two or more such
events are co-located at the same time
t. For unweighted straight skeletons, i.e.,
with all weights set to 1, the wavefront is
planar between events, and we can inter-
pret events as the incidences where pla-
narity is violated. Let us consider the
case where multiple wavefront vertices
meet at a point p. For ordinary straight
skeletons, we restore planarity by con-
sidering the cyclical order of wavefront
edges meeting at p and by re-pairing
each edge with a cyclically neighboring
edge, see Fig. 2. We call this the stan-
dard pairing technique.

p

v

u

v′′

v′

p p

(a)

(b) (c)

e

e

t+ δ

e

Fig. 3. Two wavefront vertices meet at p.
There are two possibilities, (b) and (c), in
order to pair up the edges such that the
wavefront remains planar in a weak sense.

In case of weighted straight skele-
tons, the situation becomes signifi-
cantly more difficult. First, (strict)
planarity cannot always be restored.
Second, (weak) planarity may not be
restored by the simple pairing scheme
mentioned above, and it is not even obvi-
ous why some other pairing scheme that
restores planarity must exist.

Consider Fig. 3, where two vertices,
u and v, meet simultaneously at point
p and time t. By construction, the ver-
tex v lies on the supporting line of e for
a positive-length time interval. We show
the supporting lines of the edges at time
t + δ, with δ being positive but small.
We have three combinatorial possibili-
ties to pair up the wavefront edges. One
of them leads to a crossing. The other
two possibilities are illustrated in Fig. 3 (b, c). Both remaining possibilities are
not planar in a strict sense. Still, there are no crossings—instead edges only
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touch. This shows there is no way to pair up the edges and remain strictly-
planar.

Let us suppose that we initially move v slightly away from p or slightly closer
to p. We obtain v′ and v′′ respectively, see Fig. 3 (a). We adapt their speeds such
that they still reach p at time t. Since v′ moves slightly faster than v and e, at
time t, the vertex v′ overtakes e. Similarly, e overtakes v′′. Hence, if we replace
v by v′, the pairing in Fig. 3 (b) becomes invalid, and if we replace v by v′′, the
pairing in Fig. 3 (c) becomes invalid. In particular, for the latter case the only
valid pairing is the original pairing and the standard pairing technique fails.

For our further discussions it will be necessary to define precisely what we
mean by event or weak planarity. Let Φ denote the set of all straight-line embed-
dings ϕ : V → R

2 of a graph G = (V,E). The pair (Φ, ‖.‖∞) constitutes a normed
space, where ‖.‖∞ is defined by ‖ϕ‖∞ = maxv∈V ‖ϕ(v)‖. Note that the set of
planar1 straight-line embeddings is an open subset of Φ w.r.t. the usual topology
induced by ‖.‖∞.

Definition 1. The set of weakly-planar embeddings of G is the topological clo-
sure of the set of planar embeddings of G.

This implies that every planar embedding is weakly-planar as well. In addi-
tion, for every weakly-planar embedding ϕ and for every ε > 0 there is a planar
ε-perturbation ϕ′ of ϕ, that is, ‖ϕ − ϕ′‖∞ < ε. This definition allows us now to
rephrase the fundamental principle as follows:

At all times, the wavefront is a weakly-planar collection of polygons.

Events. The wavefront W is initially weakly-planar. Informally, an event
occurs when the wavefront is about to cease being weakly-planar and event
handling needs to restructure the wavefront locally such that it can continue
propagating in a weakly-planar fashion.

Assume that W(t′) remains weakly-planar for all t′ ∈ [t − δ, t] and some
δ > 0. For this time interval, we can consider W to be a kinetic planar straight-
line graph with a fixed set of kinetic vertices and edges. For Definition 2, we
fix the vertex and edge set of W, including the velocities of the vertices and
temporarily ignore event handling. Furthermore, we denote by B(p, r) the closed
disk centered at p with radius r and by W(t′) ∩ B(p, r) the planar straight-line
graph W(t′) with all edges truncated to fit into B(p, r) or removed if they entirely
reside outside B(p, r).

Definition 2. At location p and time t an event happens if at least two vertices
meet at time t at p or if ∃ε0 > 0 ∀ε ∈ (0, ε0) ∃δ > 0 such that

(i) W(t′) ∩ B(p, ε) is non-empty and weakly-planar for t′ ∈ [t − δ, t] and
(ii) W(t′) ∩ B(p, ε) is non-empty and not weakly-planar for t′ ∈ (t, t + δ].

We call the edges that meet p at time t the edges which are involved in the event.
1 A straight-line embedding ϕ is called planar if its edges do not intersect except at

common endpoints.
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As this definition defines events localized at some point p, we can also talk
about multiple events occurring at the same time t at different locations. If an
event happens at location p and time t then, typically, weak planarity of W is
violated locally around p after time t. However, weak planarity is not violated
if, for instance, a wavefront polygon collapses to a point. Fig. 3 gives another
example where weak planarity is not violated after the event. The goal of event
handling is to restore weak planarity by locally adapting the wavefront structure.
We also want to remark that in certain cases multiple ways to correctly handle
an event may exist, where one solution yields only a weakly-planar wavefronts
while a different one produces a strictly-planar wavefront after the event.

Definition 3. We call the event at location p and time t elementary if three
edges are involved. We call it an edge event if B(p, ε) \ W(t − δ) consists of two
connected components and a split event otherwise. Non-elementary edge and
split events are called multi-edge and multi-split events respectively.

It is known how to handle edge events and elementary split events [4]. In
the following, we present one unified approach that is able to correctly handle
any type of event, including, in particular, multi-split events. Consequently, one
side effect of our definition of weighted straight skeletons is that the distinction
between edge events and split events becomes unnecessary.

2.2 Pairing Edges

Assume an event happens at time t at location p. Up until time t the wavefront
W is weakly-planar, and it becomes not weakly-planar after t. In order to restore
weak planarity, we have to transform the wavefront structure. This involves re-
pairing of wavefront edges.

We reduce the problem of pairing up wavefront edges during event han-
dling to a particular matching problem, discussed in Section 3. This problem,
which we study independently of straight skeletons, takes a pseudo-line arrange-
ment in general position as input and provides us with a means to construct
a weakly-planar wavefront again. In the following, we describe how to trans-
form a weakly-planar wavefront into a suitable pseudo-line arrangement for the
matching problem.

The pseudo-lines stem from the supporting lines of wavefront edges and are
required to be in general position. By general position we mean that any pair
of lines intersect in exactly one unique point. In particular, this implies that no
two lines are parallel, no two lines are identical, and no three lines intersect in a
common point.

At time t, several edges of the wavefront W are incident at location p. For
each such edge, either zero, one, or both endpoints approach p at time t. We
construct a simplified version of the wavefront, denoted by W ′, by dropping
edges where both endpoints reach p and joining its two endpoints. Furthermore,
any edge where no endpoint reaches p is split into two edges by a new wavefront
vertex that also reaches p at time t. Thus, in W ′ an even number of wavefront
edges have exactly one endpoint at point p at time t, see Fig. 4.
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pB(p, ε)

W(t− δ)

Fig. 4. A multi-split event occurs at
location p. The involved edges form 4
chains. The simplified wavefront W ′ con-
tains exactly 8 edges, shown in bold,
stemming from those chains.

Next, we choose ε and δ sufficiently
small, such that no other event happens
between t and t + δ and that exactly
the edges involved in the event intersect
B(p, ε) during the interval [t, t + δ]. We
obtain W ′′ from W ′ by perturbing the
locations of its vertices. This perturba-
tion shall satisfy the following proper-
ties: (i) The edges involved in the event
still reach p at time t. (ii) The support-
ing lines of involved edges are in general
position at time t + δ. (iii) The pertur-
bation is such that W ′′ is strictly-planar
everywhere outside B(p, ε) at time t+δ.
(iv) The perturbation is such that any
vertex is (at time t+δ) on the same side
of the supporting line through any edge
in both W ′ and W ′′. The set of support-
ing lines at time t + δ then shall be the input to the matching problem.

We use the new pairing obtained from the matching algorithm to construct
a new (still perturbed) wavefront W ′′′ from W ′′. The new pairing ensures that
W ′′′ is strictly-planar around p after time t, see Lemma 7 in Section 3.3. If sev-
eral multi-split events happen at the same time, then this procedure is repeated
for every such event independently. Each event will locally restore strict pla-
narity, and, thus, global strict planarity will be restored. Finally, we revert the
perturbation on W ′′′ and obtain the new post-event wavefront.

Lemma 1. The new post-event wavefront W� is weakly-planar.

Proof. Note that the perturbation we apply to obtain W ′′ from W ′ was suf-
ficiently small such that no vertex could “jump” over the supporting line of
any edge of the wavefront. Therefore, if we assume to the contrary that W� is
not weakly-planar, that would imply that the perturbed wavefront W ′′′ was not
(strictly) planar either. Since W ′′′ is (strictly) planar outside of B(p, ε) per our
requirement for the perturbation and is (strictly) planar within B(p, ε) due to
the new pairing, this is a contradiction.

3 Matchings and Roommates

For an even N , let L = {�1, . . . , �N} be an oriented pseudo-line arrangement
in general position, i.e., a set of directed Jordan-curves that begin and end at
infinity and intersect each other in single, unique points. Let C be a pseudo-circle
that encloses all intersections of pseudo-lines and that intersects each (directed)
pseudo-line � exactly twice, once in its begin-point b(�) and once in its end-point.

A matching M in L is a grouping of �1, . . . , �N into pairs. The matching
tail of �i is the sub-curve of �i from b(�i) to �i × M(�i), i.e., the point where �i

intersects its matching-partner M(�i).
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Definition 4. A matching in L is called planar if the union of the matching
tails gives a planar drawing.

The planar matching problem is the problem of finding a planar matching M
for a given pseudo-line arrangement L in general position. In the following we
translate the planar matching problem into a stable roommate problem.

3.1 The Stable Roommate Problem

Assume that we have an even number N of elements A = {a1, . . . , aN}. Each
element has a ranking of elements, which is complete and strict, i.e., all elements
are ranked and no two elements are ranked the same. Let M be a matching of
a1, . . . , aN . A pair {ai, aj} is a blocking pair for M if ai prefers aj over M(ai)
and aj prefers ai over M(aj). A matching is stable if there is no blocking pair.
The stable roommate problem asks for a stable matching in A. The stable room-
mate problem is a well-studied problem in optimization theory (see, for example,
Fleiner et al. [6] and the references therein). In particular, not every instance
of the stable roommate problem has a solution, and testing whether it has a
solution can be done in polynomial time.

Let us again consider the directed pseudo-line arrangement L. As we walk
along a pseudo-line �i from its begin-point to its end-point we encounter all other
pseudo-lines in L. This order naturally gives us a complete and strict ranking
for �i if we attach �i itself at the end of the list. Thus, L defines an instance of
the stable roommate problem.

Lemma 2. A directed pseudo-line arrangement has a planar matching if and
only if the corresponding stable roommate instance has a stable matching.

Proof. For a matching M , the matching tails of two pseudo-lines �i, �j cross if
and only if �i prefers �j over M(�i) and �j prefers �i over M(�j). Hence, the
matching is non-planar if and only if there is a blocking pair.

3.2 Stable Partitions

In order to solve our particular stable roommate problem, we review some results
on so-called stable partitions, mostly based on a paper by Tan and Hsueh [12].

Let A be an instance of a stable roommate problem, and let π be a permu-
tation on A, i.e., a bijective map A → A. This function partitions A into one or
more cycles, i.e., sequences a′

0, . . . , a
′
k−1 in A with a′

0
π−→ a′

1
π−→ . . .

π−→ a′
k−1

π−→ a′
0.

A cycle with k ≥ 3 is called a semi-party cycle if a′
i prefers π(a′

i) over π−1(a′
i).

A semi-party partition of A is a permutation of A where all cycles with k ≥ 3
are semi-party cycles.

Given a semi-party partition π, a pair {ai, aj} is called a party-blocking pair
if ai prefers aj over π−1(ai) and aj prefers ai over π−1(aj). A stable partition
is a semi-party partition that has no party-blocking pairs. The cycles of a sta-
ble partition are called parties. An odd (even) party is a party of odd (even)
cardinality. Furthermore, ai, aj are party-partners if ai = π(aj) or aj = π(ai).
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Theorem 1 ([11,12]). For any instance A of the stable roommate problem
the following statements hold:

1. A has a stable partition, and it can be found in polynomial time.
2. Any stable partition of A has the same number of odd parties.
3. A has a stable matching if and only if it has a stable partition with no odd

parties.

3.3 Existence of Planar Matchings

Now we consider parties that occur in stable roommate instances defined by a
directed pseudo-line arrangement L. Theorem 1(1) gives us a stable partition π
for L. Let a singleton-party, a pair-party, and a cycle-party be a party consisting
of one, two, and at least three pseudo-lines, respectively. For all pseudo-lines �
that are not a singleton-party, let their party-tail be the part between b(�) and
� × π−1(�). For any pseudo-line � that is a singleton-party, let its party-tail be
the part of � between begin-point and end-point.

Lemma 3. The party-tails of two pseudo-lines �, �′ do not intersect unless � and
�′ are party-partners.

Proof. Assume that �×�′ belongs to both party-tails, but � and �′ are not party-
partners. We first show that � prefers �′ over π−1(�). This holds automatically
if � is a singleton-party, because then π−1(�) = �, and any pseudo-line ranks
itself lowest. If � is not a singleton-party, then the party-tail of � consists of
the sub-curve between b(�) and � × π−1(�). Since �′ 	= π−1(�) by assumption,
and since no three pseudo-lines intersect in a point, � × �′ comes strictly earlier
than � × π−1(�) when walking along �. By definition of the ranking for directed
pseudo-lines, hence � prefers �′ over π−1(�).

Similarly one shows that �′ prefers � over π−1(�′). Hence, {�, �′} is a party-
blocking pair and π is not a stable partition, a contradiction.

Lemma 4. There cannot be two singleton-parties.

Proof. Assume that P and P ′ are two singleton-parties, with P = {�} and
P ′ = {�′}. Since they are singleton-parties, their party-tails extend from their
begin-points to their end-points. Since all pseudo-lines intersect within C, so do
� and �′. But � and �′ are not party-partners, in contradiction to Lemma 3.

Lemma 5. There cannot be two cycle-parties.

Proof. Assume we have two cycle-parties P1 = {�0, �1, . . . , �a−1} and P2 =
{�′

0, �
′
1, . . . , �

′
b−1}, with π(�i) = �i+1, addition modulo a, and π(�′

i) = �′
i+1 with

addition modulo b.
Let G(P1) be the graph formed by the party tails of P1 as follows: The

vertex set comprises b(�) and �×π(�) for every pseudo-line � in P1. We add each
party-tail as two edges (b(�), � × π(�)) and (� × π(�), π−1(�) × �), see Fig. 5.
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C1 C2

R1 R2

C �1

�0

�2

�′2

�′1

�′0

b(�0)
b(�′0)

b(�′2)

b(�′1)

b(�1)

b(�2)

Fig. 5. The two pseudo-lines �0 and �′
0

cannot intersect

Note that G(P1) has the following
structure: It consists of a cycle C1 of
edges of the form (� × π(�), π−1(�) × �)
together with one edge attached to each
vertex of C1 of the form (b(�), � × π(�)).
By Lemma 3, G(P1) is planar. Note
that the vertices b(�0), b(�1), . . . , b(�a−1)
lie on C and are ordered clockwise or
counterclockwise. Therefore, G(P1) tes-
sellates the area enclosed by C into a+1
regions. Note that exactly a of those
regions are partially bounded by C. The
remaining region is the one bounded by
C1. Similarly, we define G(P2) and C2.

Again by Lemma 3, G(P1)∪G(P2) is
planar, and it follows that G(P2) is entirely contained in one region of G(P1).
This region is not the region bounded by C1. We denote by R1 the union of
all regions of G(P1) that do not contain G(P2). Likewise, we denote by R2 the
union of all regions of G(P2) that do not contain G(P1). We observe that R1

and R2 are disjoint.
Without loss of generality, the boundary of R1 consists of parts of C as well

as the path b(�1), �1 × �2, �0 × �1, b(�0). Likewise, R2 is bounded by parts of C
and edges stemming from �′

1 and �′
0.

In the following, we will show that �0 cannot intersect R2, and, conversely,
�′
0 cannot intersect R1. Consequently, �0 does not intersect �′

0 within C, which is
a contraction as we require each pair of pseudo-lines to intersect exactly once in
the area enclosed by C. This concludes the proof.

Note that �0 starts at b(�0), then makes up parts of the boundary of R1 until
it reaches �0 × �1. Then, �0 moves into the interior of R1 as it makes up an
edge of C1, but not the one that is part of the boundary of R1. Once �0 enters
R1, it can leave only by intersecting C at its end-point as it is not allowed to
self-intersect or to intersect �1 a second time. After �0 has left the area enclosed
by C, it cannot enter again, as it intersects C exactly twice. Likewise, �′

0 will exit
the area enclosed by C through its end-point in R2 and cannot intersect R1.

Lemma 6. There cannot be a singleton-party and a cycle-party.

Proof. We follow the same idea as in the previous proof, and use P1 as the cycle-
party and P2 as the singleton-party. Let �0 be defined as previously, and use �′

0

as the single line in P2. Since the tail of �′
0 consists of all points between the

begin-point and the end-point of �′
0, again no intersection between �0 and �′

0 is
possible.

Theorem 2. No instance of a stable roommate problem defined by a directed
pseudo-line arrangement L can have an odd party.
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Fig. 6. A planar matching of pseudo-lines specifies how to construct a weakly-planar
post-event wavefront. One arrangement may have multiple planar matchings.

Proof. Assume to the contrary that some stable partition π has an odd party
P . As L comprises an even number of pseudo-lines, there needs to be another
odd party P ′. This can only happen if there are two singleton-parties, two (odd)
cycle parties, or a singleton-party and an (odd) cycle-party. These are ruled out
by Lemma 4, Lemma 5, and Lemma 6, respectively.

Theorem 3. Every directed pseudo-line arrangement has a planar matching,
and it can be found in polynomial time.

Proof. This is a direct result of Lemma 2, Theorem 1, and Theorem 2.

By Theorem 1 we can find a stable partition in polynomial time. By
Theorem 2 and Lemma 5, it consists of pair-parties, except for at most one cycle-
party P that has even length. If there is no cycle-party, then the stable partition
is in fact a stable matching. Otherwise, if say �1, . . . , �N is the even cycle-party,
then we can find stable matching M easily, and there are two choices: Either set
M(�2i) = π(�2i) and M(�2i+1) = π−1(�2i+1), or do the same after shifting all
indices by one.

3.4 Application to Straight Skeletons

The matching tails of the pseudo-lines play the role of wavefront edges after the
event. The matching tells us how to pair up the wavefront edges in order to
restore planarity locally at p, see Fig. 6.

Lemma 7. There exists a weakly-planar wavefront after the event if there is a
planar matching for L.

Using Theorem 3, we have found a stable matching and with it a weakly-
planar post-event wavefront, in polynomial time. Notice that if a cycle-party
exists, then there are two possible post-event wavefronts. Consequently, ambigu-
ities in the development of the wavefront may be caused by edge events between
parallel edges [4] and multi-split events alike.
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4 Conclusion

Although algorithms and even rudimentary implementations to construct the
weighted straight skeleton were previously presented, and even though several
applications are suggested in the literature, this paper is the first to provide a
concrete, constructive proof that a well-defined weighted straight skeleton actu-
ally exists in all cases. This result is based on two main ingredients: First, we
introduced and studied planar matchings on a directed pseudo-line arrangement
as a generic tool independent of straight skeletons. In particular, we showed
that planar matchings always exist. Second, our interpretation of an event as
violation of (weak) planarity unifies the classification of edge and split events
in 2D and promises to simplify the description and study of straight skeletons
in dimensions higher than two, where the number of types and complexity of
events would significantly increase otherwise.

Acknowledgments. We would like to thank David Eppstein for the idea of interpret-
ing the edge-pairing problem as a stable roommate problem.
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Abstract. We consider the problem of edge orientation, whose goal is to
orient the edges of an undirected dynamic graph with n vertices such that
vertex out-degrees are bounded, typically by a function of the graph’s
arboricity. Our main result is to show that an O(βα)-orientation can be

maintained in O( lg(n/(βα))
β

) amortized edge insertion time and O(βα)
worst-case edge deletion time, for any β ≥ 1, where α is the maximum
arboricity of the graph during update. This is achieved by performing a
new analysis of the algorithm of Brodal and Fagerberg [2]. Not only can
it be shown that these bounds are comparable to the analysis in Brodal
and Fagerberg [2] and that in Kowalik [7] by setting appropriate values
of β, it also presents tradeoffs that can not be proved in previous work.
Its main application is an approach that maintains a maximal matching
of a graph in O(α +

√
α lg n) amortized update time, which is currently

the best result for graphs with low arboricity regarding this fundamental
problem in graph algorithms. When α is a constant which is the case
with planar graphs, for instance, our work shows that a maximal match-
ing can be maintained in O(

√
lg n) amortized time, while previously the

best approach required O(lg n/ lg lg n) amortized time [13]. We further
design an alternative solution with worst-case time bounds for edge ori-
entation, and applied it to achieve new results on maximal matchings
and adjacency queries.

1 Introduction

The problem of orienting the edges of a dynamic undirected graph to guarantee a
low upper bound on the maximum out-degree of its vertices has attracted much
attention in recent years [2,6,7,13]. In this problem, an orientation of a graph
G = (V,E) is a directed graph

−→
G = (V,

−→
E ) defined by assigning each edge of

G a direction, and
−→
G is further called a Δ-orientation if the out-degree of each

vertex in
−→
G is upper bounded by Δ. The goal is to maintain a Δ-orientation

of G with efficient support of edge insertion and deletion, such that the value
of Δ is as small as possible. For dense graphs, Δ has to be large, and thus this
problem is more interesting when the graph is sparse.

As the arboricity of a graph is often used as a measurement of the spar-
sity of the graph, it is typically used as a parameter when bounding Δ. The
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arboricity, α, of a graph G can be formally defined by α = max
J

|E(J)|
|V (J)−1| , where

J = (V (J), E(J)) is any subgraph of G induced by at least two vertices. Many
classes of graphs in practice have constant arboricity, including planar graphs,
graphs with bounded genus and graphs with bounded tree width. Nash-Williams
[11,12] proved that G has arboricity α if and only if α is the smallest number
of subsets that E can be partitioned into, such that each subset of edges with
their endpoints is a forest. Such a decomposition can be computed in polyno-
mial time [3]. In this partition, if we orient each edge in a forest towards the root
of the tree containing this edge, then each vertex has out-degree at most one in
each forest, which immediately gives an α-orientation of the given static graph.

The most fundamental application of edge orientation is perhaps the repre-
sentation of dynamic graphs supporting adjacency queries. This is based on the
following observation [5]: With a Δ-orientation of G, if we store the at most Δ
out-neighbors of each vertex in a list, then an adjacency query can be answered
in O(Δ) time by scanning the list of each of the two vertices given in the query,
to see if one is an out-neighbour of the other. Thus if we can maintain a Δ-
orientation of a sparse graph efficiently, then we immediately have a linear-space
dynamic graph representation that answers adjacency queries in O(Δ) time [2].

Recently, Neiman and Solomon [13] found that edge orientation also has
applications in maintaining a maximal matching of a dynamic graph. A match-
ing, M , of a graph G is a set of non-adjacent edges of G. If a matching M has the
maximum number of edges, then it is called a maximum cardinality matching.
A maximal matching is defined to be a matching, M , that satisfies the follow-
ing condition: there does not exist an edge, g, of G, such that M ∪ {g} is still a
matching of G. It is well-known that any maximal matching is a 2-approximation
for maximum cardinality matching. Graph matching is a fundamental problem
in graph theory, and it has many applications in combinatorial optimization [10].
In the dynamic setting, the problem is to maintain a maximal matching or an
approximate maximum cardinality matching under edge insertion and deletion.
Recent progress on this [4,6,13] generated more interests in edge orientation.

Edge orientation has also been applied to other problems such as shortest
path in dynamic planar graphs [6,9] and graph colouring [8]. Motivated by all
these important applications, we study the problem of orienting dynamic graphs.

1.1 Previous Work

Brodal and Fagerberg [2] first studied the problem of maintaining an edge ori-
entation of a dynamic graph with n vertices under an arboricity α preserving
sequence of edge insertions and deletions. Here an update operation is consid-
ered arboricity α preserving if, when applied to an graph of arboricity at most α,
the arboricity of the graph after the update remains to be bounded by α. They
proposed an approach that can maintain an O(α)-orientation using O(m + n)
space, where m is the current number of edges, in O(1) amortized insertion
time and O(α + lg n) amortized deletion time1. In their algorithm for update
1 In this paper, lg n denotes log2 n.
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operations, some edges may change their orientation after each update, i.e., be
reoriented. They proved that in terms of the amortized number of edge reorien-
tations per update, their algorithm is O(1)-competitive compared against any
algorithm. Kowalik [7] further showed that Brodal and Fagerberg’s approach
can maintain an O(α lg n)-orientation with constant amortized insertion time
and constant worst-case deletion time. More recently, Kopelowitz et al. [6] con-
sidered the problem of designing solutions to maintain edge orientation with
worst-case time bounds. They showed how to maintain an O(Δ)-orientation in
O(m + n) space with O(βαΔ) worst-case insertion time and O(Δ) worst-case
deletion time, where Δ ≤ infβ>1{βα + �logβ n�}.

For maintaining matchings in arbitrary graphs, we refer to the recent work
of Neiman and Solomon [13] which can maintain a maximal matching (which is
also a 3/2-approximate maximum cardinality matching) in O(

√
m) worst-case

update time, and the work of Gupta and Peng [4] which maintains a (1 + ε)-
approximation maximum cardinality matching with O(

√
mε−2) update time for

any ε > 0. To support more efficient updates for graphs with low arboric-
ity, Neiman and Solomon [13] showed how to use edge orientation to main-
tain a maximal matching. Their approach can maintain a maximal matching in
O(m + n) space, such that each update can be performed in O(Δ + logΔ/α n)
amortized time for any Δ > 2α. When α = o(lg n), the update time becomes
O( lg n

lg((lg n)/α)+α). Following the same idea, Kopelowitz et al. [6] made use of their
solution for edge orientation to maintain a maximal matching, and the worst-
case update time is asymptotically the same as their update time for maintaining
edge orientation summarized in the previous paragraph.

As discussed previously, solutions to maintaining edge orientation can be
directly used to represent dynamic graphs to support adjacency queries. Kowa-
lik [7] showed that by maintaining the list of the out-neighbours of each vertex
using the dynamic dictionary of Andersson and Thorup [1], a graph can be rep-
resented in O(m + n) space to support adjacency query and edge deletion in
O(lg lg lg n) worst-case time, and edge insertion in O(lg lg lg n) amortized time,
provided that α = O(polylog(n)). Using the same strategy, Kopelowitz et al. [6]
presented a linear-space representation of graphs with α = polylog(n) arboricity
that can support adjacency queries in O(lg lg Δ) worst-case time, edge insertion
in O(βαΔ lg lg Δ) worst-case time, and edge deletion O(Δ lg lg Δ) worst-case
time, where Δ ≤ infβ>1{βα + �logβ n�}.

1.2 Our Results

We first analyzed the algorithm of Brodal and Fagerberg [2], by constructing a
new offline algorithm for their main reduction (summarized in Lemma 1). Our
new analysis shows that an O(βα)-orientations can be maintained in linear space
with O( lg(n/(βα))

β ) amortized insertion time and O(βα) worst-case deletion time,
for any β ≥ 1. Furthermore, no edge orientation is required when performing
edge deletion. This presents a tradeoff between the maximum out-degree of ver-
tices and insertion time in the analysis of the algorithm by Brodal and Fagerberg,
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which was never proved before. If we set β = 1, then our analysis shows that this
algorithm maintains an O(α)-orientation while supporting insertion in O(lg n)
amortized time and deletion in O(α) worst-case time. This is comparable to Bro-
dal and Fagerberg’s own analysis. By setting β = lg n, the algorithm maintains
an O(α lg n)-orientation with a constant number of edge reorientations per edge
insertion in the amortized sense and zero reorientation for each deletion, which
matches Kowalik [7]’s analysis.2 When β =

√
lg n, this algorithm maintains an

O(α
√

lg n)-orientation with O(
√

lg n) amortized insertion time and O(α
√

lg n)
worst-case deletion time. This tradeoff can not be shown using previous analysis.

We then apply our result on edge orientation to improve previous results on
maintaining maximal matchings under arboricity α preserving update sequences.
More specifically, we can maintain a maximal matching using O(m + n) space
in O(α +

√
α lg n) amortized update time, which is currently the best result on

maintaining a maximal matching for low arboricity graphs. Our result matches
the result of Neiman and Solomon [13] when α = Ω(lg n), while strictly improves
their results when α = o(lg n). To see the improvement when α = o(lg n),
suppose α = lg n

f(n) , where f(n) is an arbitrary function in ω(1). Then Neiman

and Solomon’s result supports updates in O( lg n
lg f(n) ) amortized time, while ours

requires O( lg n√
f(n)

). The improvement is even obvious for graphs with constant

arboricity such as planar graphs: a maximal matching can be maintained in
O(

√
lg n) amortized time with our work, while previously it required O(lgn/ lg lgn)

amortized time, and this improvement is surprising.
We further design solutions to these problems that guarantee worst-case time

bounds. We show how to maintain a Δ-orientation in O(Δ) worst-case insertion
and deletion time, where Δ ≤ 2α lg(n/α) + 2α. This is a new tradeoff when
compared with the result of Kopelowitz et al. [6]: When α = ω(lg n), our inser-
tion time is O(α lg n), which is better than their O(α2) insertion time, though
our maximum out-degree and deletion time are worse. It is noteworthy that our
approach is simpler and does not require edge reorientation during insertion.
The same bounds can be proved when applying our result to maintain a max-
imal matching, which again compares similarly to the result of Kopelowitz et
al. We can also use this to represent a graph with O(polylog(n)) arboricity to
support adjacency queries in O(lg lg Δ) worst-case time, edge insertion in O(Δ)
worst-case time, and edge deletion in O(Δ lg lg Δ) worst-case time. For graphs
with constant arboricity such as planar graphs, our representation supports adja-
cency query, insertion and deletion in O(lg lg lg n), O(lg n) and O(lg n lg lg lg n)
time, respectively, improving Kopelowitz et al.’s result which provides the same
2 Kowalik [7]’s analysis in deletion time does not include the time required to find the

location of the given edge within the list of out-neighbours of one of its endpoints
and thus his model implicitly requires such a location to be given when performing
deletion. In our work, unless otherwise specified, we follow the original model of Bro-
dal and Fagerberg [2], which maintains out-neighbours in linked lists, and the time
required to search each list for the edge to be deleted is part of deletion time. Thus
when comparing with Kowalik’s analysis, we consider the number of reorientations.
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support for query and deletion, but requires O(lg n lg lg lg n) time for insertion.
The fact that our insertion algorithm for edge orientation does not require reori-
entation makes such an improvement possible. For non-constant α, our result is
a new tradeoff: our insertion is faster than [6] but query and deletion may be
slower. All our solutions use O(n + m) space.

2 Preliminaries

2.1 Reduction from Online Orientations to Offline Orientations

Brodal and Fagerberg [2] analyzed their algorithm by reducing the problem of
maintaining an edge orientation under online updates to the problem of finding
a sequence of orientations for an update sequence given offline. A variant of their
reduction to be used in our solution can be summarized as:

Lemma 1 ([2]). Given an arbitrary arboricity α preserving sequence of edge
insertions and deletions over an initially empty graph, let G0 denote the ini-
tial empty graph, Gi denote the graph after the ith operation, and k denote the
number of edge insertions.

If there exists a sequence
−→
G0,

−→
G1, . . . ,

−→
Gp+q of δ-orientations that incurs

at most kr edge reorientations in total for a certain r, then starting with the
empty graph on n vertices under arbitrary arboricity α preserving updates, a
Δ-orientation can be maintained using O(m + n) space, where m is the current
number of edges, such that each edge insertion can be performed in O( r(Δ+1)

Δ+1−2δ )
amortized time, and an edge deletion in O(Δ) worst-case time, provided Δ ≥
2δ > 2α. Furthermore, the amortized number of edge reorientations incurred
during each insertion is O( r(Δ+1)

Δ+1−2δ ), and deletion requires no reorientation.

2.2 Data Structures for Dynamic Sets with Center Elements

Kopelowitz et al. [6] defined the following data structure problem to help them
maintain the invariants in their work, and we will also make use of this data
structure in our solution with worst-case time bounds: Let X be a dynamic
set, in which each element xi ∈ X is associated with a nonnegative integer key
ki. The element x0 is designated as the center element of X which can not be
inserted or deleted, but the value of its key can be updated. The goal is to
support the following operations:

– ReportMax(X): return a pointer to an element in X with the maximum key;
– Increment(X,x): Given a pointer to x ∈ X \ {x0}, increment x’s key;
– Decrement(X,x): Given a pointer to x ∈ X \ {x0}, decrement x’s key;
– Insert(X,x, k): Insert a new element x with key k into X, provided k ≤

k0 + 1;
– Delete(X,x): Given a pointer to x ∈ X \ {x0}, remove x from X;
– IncrementCenter(X): Increment k0;
– DecrementCenter(X): Decrement k0.
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The following lemma summarizes a solution to this problem:

Lemma 2 ([6]). Let X be a dynamic set in which each element xi is associated
with a key ki and a fixed element x0 is designated to be X’s center. Then X can be
maintained in O(|X|+k0) space to support ReportMax, Increment, Decrement,
Insert and Delete in O(1) time, and IncrementCenter and DecrementCenter
in O(k0) time.

3 Solutions with Amortized Time Bounds

In this section we first present a new offline algorithm to orient fully dynamic
graphs. Then we make use of Lemma 1 to prove our result on maintaining edge
orientation under online update operations.

In our offline strategy, let U be an arbitrary arboricity α preserving update
sequence on an initially empty graph G with n vertices. Denote by Gi the graph
after the ith update as in Lemma 1 (G0 denotes the initial empty graph). We
now show how to determine a sequence of δ-orientations

−→
G0,

−→
G1, . . . ,

−→
GU with a

provable upper bound on the total number of edge reorientations, for a parameter
δ to be determined later. Note that it is trivial to orient the empty graph G0.

We first divide U into phases each containing βαn consecutive update oper-
ations, except the last phase which may contain fewer operations, where β ≥ 1.
For simplicity, we assume that βαn is an integer. For the graph at the end of
each phase that contains βαn operations, we compute an α-orientation using the
approach described in the second paragraph of Section 1, which makes use of the
algorithm in [3]. This determines the orientation of the graph at the end of each
phase with the possible exception of the last phase, i.e.,

−→
Gβαn,

−→
G2βαn,

−→
G3βαn,

. . . ,
−→
G�|U |/(βαn)�(βαn). To further orient Gi where i is not divisible by βαn, we

have the following definition:

Definition 1. Consider a phase, P , of βαn consecutive updates on a graph G
with n vertices, in which an update operation that inserts or deletes an edge
between vertices x and y is said to update x and y. A vertex of G is hot in P if
it is updated by at least 4βα operations of P , and cold otherwise. The hot region,
H(G), of G in P is the subgraph of G induced by all the hot vertices of G in P ,
while the cold region, C(G), of G in P is defined to be G \ H(G).

The δ-orientation sequence is determined recursively. We use the following
strategy for each phase, P , of U . Without loss of generality, we assume that |P | =
βαn. Let Gi+j denote the graph after the jth operation in P . Thus Gi denotes the
graph immediately before any operation in P is performed, and by our previous
discussion,

−→
G i is a α-orientation of G. We determine the orientations of some of

the edges in Gi+j for j ∈ [1..βαn−1] in increasing order of j: For an edge that is
present in both Gi+j and Gi+j−1, if its orientation in Gi+j−1 has already been
determined, then in Gi+j , we maintain the same orientation. There are no new
edges to be oriented in Gi+j if the jth operation in P deletes an edge. If this
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operation inserts an edge instead, then there are three cases. In the first case,
this edge is between a hot vertex and a cold vertex, and we orient it from the
cold vertex to the hot vertex. In the second case, the edge is between two cold
vertices, and we orient it arbitrarily. In the remaining case, the edge is between
two hot vertices, and we do not orient this edge in this level of recursion.

So far we have finished describing our top-level partition, which determines−→
G i for i divisible by βαn, and for all other Gi’s, it determines the orientations
of the edges that are not inserted as an edge between two hot vertices during the
phase containing this insertion. Then, for each phase, P , of U , let n′ denote the
number of vertices of G that are hot vertices in this phase. As each hot vertex
is updated by at least 4βα operations in P and each operation may update up
to two hot vertices, the number of operations in P that update hot vertices is
at least 2βαn′. As this can not be larger than the total number of operations in
P , we have 2βαn′ ≤ βαn, which implies n′ ≤ n/2. If n′ < 4βα, we arbitrarily
orient the edges inserted between these hot vertices by operations in phase P
excluding the last operation (recall that after the last operation, the graph is
oriented by computing an α-orientation, so we exclude the last operation here).
Otherwise, we set n to be n′, set U to be the sequence of operations in P
that update hot vertices only, and apply the same recursive strategy to H(G).
Upon returning from the recursion on H(G), the direction of each edge inserted
between hot vertices have been decided as it is part of the graph H(G). Thus
we have oriented all the Gi’s. We now bound vertex out-degrees:

Lemma 3. The offline algorithm in this section computes a sequence of (4βα+
α)-orientations

−→
G0,

−→
G1, . . . ,

−→
Gp+q.

Proof. We prove by induction that at each level of recursion, we construct
(4βα + α)-orientations throughout each phase. In the base case where we stop
the recursion, we consider a graph with at most 4βα vertices. In this case, even
though we orient edges arbitrarily upon insertion, the maximum out-degree of
any vertex is at most 4βα − 1 as the total number of vertices is at most 4βα.

In the inductive case, for an arbitrary phase P , let Gi+j denote the graph
after the jth operation in P . Assume inductively that the out-degree of any
vertex in H(G) is at most 4βα + α during the execution of the operations in
P , and we now prove the same claim for G. We first consider an arbitrary cold
vertex x in this phase. Before any operation in P is performed, in Gi, the out-
degree of x is at most α as

−→
Gi is computed as an α-orientation. By Definition 1,

less than 4βα edges inserted in P have x as an endpoint. Thus the maximum
out-degree of x in phase P is less than α+4βα. We then argue about an arbitrary
hot vertex y. As any edge between y and a cold vertex is oriented towards y, the
out-degree of y is always equal to its out-degree in H(G), which is bounded by
4βα + α by inductive hypothesis. 
�

To bound the total number of edge reorientations, we have:

Lemma 4. The total number of edge reorientations among
−→
G0,

−→
G1, . . . ,

−→
GU is

O( |U | lg(n/(βα))
β ).
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Proof. We number each level of recursion by its recursion depth starting from
0. Thus at level 0, we consider the original graph G with n vertices. At level 1,
each of the subgraphs being considered corresponds to a phase at level 0 and
contains the hot region of G in this phase which has at most n/2 vertices, and so
on. The number of vertices in each subgraph considered at level i is thus at most
n/2i, and the number of vertices of each graph considered at the last level is at
most 4βα. Therefore, the number of levels is O(lg(n/(βα))) and the number of
edges in each subgraph considered at level i is at most α(n/2i − 1).

Note that at any given level, reorientation only happens at the end of each
phase defined for a subgraph at that level, when we recompute an a-orientation
and use it to orient the subgraph. We also observe that each operation in U may
be considered at most once at each level of partition. As the number of levels is
O(lg(n/(βα))), it suffices to prove that, when amortizing the number of reorien-
tations at the end of each phase at any level over the operations in that phase,
the number of reorientations charged to each operation in this phase is at most
1/β. To see this, let t denote the number of vertices in a subgraph considered
at an arbitrary level. By our algorithm, the update sequence considered for this
subgraph is divided into phases each containing βαt operations, except the last
phase which may contain fewer. Edge reorientations take place at the end of
each phase that contains exactly βαt operations. As the total number of edges
in the subgraph is at most α(t − 1), the number of edge reorientations at the
end of each such phase is thus at most α(t − 1). When amortizing these edge
reorientations over the βαt operations in the phase, each update is charged at
most α(t − 1)/(βαt) < 1/β edge reorientations. 
�

Combining Lemmas 3 and 4, we have:

Lemma 5. Given an arboricity α preserving sequence of edge insertions and
deletions on an initially empty graph and an arbitrary parameter β ≥ 1, there
is a sequence of (4βα + α)-orientations such that the amortized number of edge
reorientation for each edge insertion or deletion is O( lg(n/(βα))

β ).

We now present our first main result:

Theorem 1. Starting with the empty graph on n vertices under arboricity α
preserving updates, a Δ-orientation can be maintained in O(n+m) space, where
Δ ≥ 2δ, δ = (4β + 1)α, β is an arbitrary parameter greater or equal to 1 and m
is the current number of edges, such that an edge insertion can be performed in
O( lg(n/(βα))

β · Δ+1
Δ+1−2δ ) amortized time, and an edge deletion in O(Δ) worst-case

time. Furthermore, edge deletion does not incur edge reorientation.

Proof. As the graph is initially empty, the number, k, of insertions is greater
than or equal to the number, k′, of deletions in U . Thus Lemma 5 shows that the
total number of edge reorientations is O( (k+k′) lg(n/(βα))

β ) ≤ O( 2k lg(n/(βα))
β ) =

O(k · ( lg(n/(βα))
β )). The theorem thus follows from Lemma 1. 
�

The tradeoff summarized in Section 1.2 is obtained by setting Δ = 3δ. By
applying this to maximal matchings, we have the following theorem:
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Theorem 2. Starting with the empty graph on n vertices under arboricity α
preserving updates, a maximal matching can be maintained in O(α +

√
α lg n)

amortized time using O(n + m) space, where m is the current number of edges.

Proof. Neiman and Solomon [13] made use of the algorithm of Brodal and Fager-
berg [2] to maintain maximal matchings in dynamic settings. Their reduction
shows that if a Δ-orientation for a graph G on n vertices under arboricity α
preserving updates can be maintained in O(m+n) space with amortized update
time T , where m denotes the current number of edges, then a maximal matching
can also be maintained in O(m+n) space with O(Δ+T ) amortized update time.

We first observe that, according to Neiman and Solomon’s reduction, a max-
imal matching can be maintained in O(βα + lg(n/(βα))

β ) amortized update time
using O(n + m) space, following from Theorem 1 by setting Δ = 3δ. When

α ≥ lg n, we set β = 1 and the update time is O(α). Otherwise, we set β =
√

lg n
α ,

and the update time becomes O(
√

α lg n). The theorem thus follows. 
�

4 Solutions with Worst-Case Time Bounds

Let do(v) denote the out-degree of a vertex v. Our solution with worst-case time
bounds maintains the following invariant over the entire graph G during updates:

Invariant 1. For each vertex u, there exists an ordering of its out-neighbours,
v0, v1, v2, . . . , vdo(u)−1, such that do(vi) ≥ i for i = 0, 1, . . . , do(u) − 1.

There are connections between this invariant and the invariants considered
by Kopelowitz et al. [6], but they are different. The following two lemmas show
why Invariant 1 can be used to bound the maximum vertex out-degree.

Lemma 6. If the maximum out-degree, Δ, of a vertex in a directed graph G of
arboricity α satisfying Invariant 1 is greater than 4α, then there are 2kα vertices
whose out-degrees are at least Δ − 2kα ≥ 2α, for k = 1, 2, . . . , �Δ/(2α)
 − 1.

Proof. The maximum value of k guarantees that Δ−2kα ≥ 2α. To prove the rest
of the lemma besides this inequality, let u be a vertex with out-degree Δ in G. We
prove our claim by induction on k. In the base case, k = 1. Let v0, v1, v2, . . . , vΔ−1

be u’s out-neighbours listed in the order specified in Invariant 1. Then do(vd−1) ≥
d − 1, do(vd−2) ≥ d − 2, . . . , do(vΔ−2a) ≥ Δ − 2α by Invariant 1, which means u
has at least 2α out-neighbours with out-degrees greater than or equal to Δ−2α.

Assume the claim holds for k − 1, and we prove it for k. By the inductive
hypothesis, there is a set, V1, of 2k−1α vertices with out-degree at least Δ−2(k−
1)α. By Invariant 1, each vertex in V1 has 2α out-neighbours whose out-degrees
are at least Δ − 2(k − 1)α − 2α = Δ − 2kα. We add such 2α out-neighbours of
each vertex in V1 into another set V2. Note that some vertices in V1 may share
out-neighbors. Any vertex in V1 ∪ V2 has out-degree at least Δ − 2kα, and what
remains is to give a lower bound on |V1 ∪V2|. Consider the subgraph G∗ induced
by V1 ∪V2. For each vertex in V1, there are 2α distinct edges between it and the
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vertices in V2, and thus the number of edges in G∗ is at least 2α|V1| = 2kα2.
By the definition of arboricity, we have α ≥ |E(G∗)|

|V (G∗)|−1 ≥ 2kα2

|V1∪V2|−1 . Therefore,
|V1 ∪ V2| ≥ 2kα. As the out-degree of each vertex in V1 ∪ V2 is at least Δ − 2kα
from our previous discussion, our induction goes through. 
�
Lemma 7. If a directed graph G satisfies Invariant 1, then the out-degree of
any vertex in G is at most 2α lg(n/α) + 2α.

Proof. Let Δ denote the maximum out-degrees of the nodes in G. If Δ ≤ 4α, the
lemma holds because, in an undirected graph, we always have α ≤ n/2 and thus
2α lg(n/α) + 2α ≥ 4α. Otherwise, by Lemma 6, the number of vertices whose
out-degrees are at least 2α is 2�Δ/(2α)�−1α. Therefore, the total number of edges
of G is at least 2�Δ/(2α)�−1α ·2α = 2�Δ/(2α)�α2. Since the arboricity of G is α, we
have (2�Δ/(2α)�α2)/(n− 1) ≤ α, and thus (2Δ/(2α)−1α2)/(n− 1) < α. Therefore,
Δ < 2α lg n−1

α + 2α. This completes the proof. 
�
To maintain Invariant 1, we borrow ideas from [6] though our algorithms for

edge insertion and deletion turn out to be simpler. As in [6], for each vertex u,
we construct a data structure Bu to maintain information for its in-neighbours,
which is further used to decide which edges should be reoriented. More precisely,
for vertex u, we construct a dynamic set Bu whose center element is u itself,
with do(u) as its key. X \ {u} then contains as elements all the in-neighbours of
u, and the key for each such element is the out-degree of this in-neighbour. We
then represent Bu using Lemma 2. Clearly all these auxiliary data structures
use O(m + n) space in total, where m is the current number of edges in G.

We also construct the adjacency lists for G with edge orientations, by main-
taining the out-going edges of each vertex in a doubly linked list. This also
requires O(m + n) space. For each directed edge (u, v) in u’s list, we maintain a
bidirectional pointer between this edge and u’s representation in Bv. With this,
when our algorithm for edge deletion uses ReportMax to find an edge for reori-
entation, we can update adjacency lists in constant time. Such a construction
is also required to make the approach in [6] work, though it was not mentioned
explicitly. As it is trivial to maintain the adjacency lists with these pointers and
the maintenance cost is subsumed by our final time bounds, we do not explicitly
discuss how to update these lists in the rest of this section.

To insert an edge uv, assume without loss of generality that do(u) ≤ do(v).
Then we orient the edge from u to v. It can be easily shown that with this
strategy, Invariant 1 is maintained and no reorientation is required. We further
update Bu using IncrementCenter and Bu′ for each out-neighbour, u′, of u,
using Increment. Algorithm 1 presents the pseudo code for edge insertion.

Algorithm 2 presents the pseudocode for edge deletion. It first removes the
edge to be deleted in lines 2-3. After this, the out-degree of u is decreased by 1,
and the only vertices for which Invariant 1 may not hold have to be in-neighbours
of u. To find out whether the invariant is still maintained for all the in-neighbours
of u, we locate the in-neighbour, v′, with the largest out-degree in line 4. If the
test in the while statement at line 5 is false, then the invariant still holds for
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Algorithm 1. Insert(G, u, v)
1: {Assume without loss of generality that do(u) ≤ do(v)}
2: Orient edge (u, v) from u to v
3: IncrementCenter(Bu)
4: Insert(Bv, u, do(u))
5: for each out-neighbour, u′, of u such that u′ �= v do
6: Increment(Bu′ , u)

Algorithm 2. Deletion: Delete(G, u, v)
1: {Assume without loss of generality that the edge uv is oriented towards v}
2: Remove edge (u, v)
3: Delete(Bv, u)
4: v′ ← ReportMax(Bu)
5: while do(u) < do(v

′) − 1 do
6: Flip the orientation of edge (v′, u) so that it is oriented from u to v′

7: Delete(Bu, v′)
8: Insert(Bv′ , u, do(u))
9: u ← v′

10: v′ ← ReportMax(Bu)
11: DecrementCenter(Bu)
12: for each out-neighbour, v′, of u do
13: Decrement(Bv′ , u)

any in-neighbour of u. Otherwise, it is possible (though not necessary) that the
invariant is not maintained for v′ and some other in-neighbours of u. To maintain
the invariants for these vertices, we reverse the direction of the edge (v′, u) in
line 6, and update auxiliary data structures accordingly in lines 7-8. After this
the out-degree of u becomes the same as its original out-degree before this edge
deletion is performed, and thus the invariant can not be violated for any of its
in-neighbours whose out-degree did not change. The only in-neighbour whose
out-degree has been changed is v′, and it is easy to see that the invariant is
also maintained for v′ as a result of the above steps: v′ lost one out-neighbour
but its out-degree was also decreased by 1. Now the the only vertices for which
Invariant 1 may not hold have to be in-neighbours of v′. For v′, we then repeat
the same process that we applied to u. This process terminates in at most Δ+1
iterations, because each time we iterate on a node whose out-degree is strictly
greater than the node in the previous iteration and the maximum vertex out-
degree is Δ. From the description of this process, we can also claim that, after
the while loop in lines 5-10 terminates, the invariant is maintained, and lines
11-13 make sure that all the auxiliary structures are up-to-date.

As our algorithms for edge insertion and deletion maintain Invariant 1, by
Lemma 7, they can maintain a Δ-orientation of G for Δ = 2α lg(n/α) + 2α. To
analyze the running time of these two operations, we first observe that each loop
in the pseudocode of these two algorithms is iterated at most Δ times. Then,
applying Lemma 2, we claim that both operations require O(Δ) time. Thus:
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Theorem 3. A Δ-orientation of a graph on n vertices can be maintained in
O(n + m) space, where Δ ≤ 2α lg(n/α) + 2α, α is the current arboricity and
m is the current number of edges, such that an edge insertion or deletion can
be performed in O(Δ) worst-case time. Furthermore, an edge insertion does not
incur edge reorientation, while a deletion incurs at most Δ + 1 reorientations.

If we allow one reorientation in edge insertion, then we can bound Δ by
min(2α lg(n/α) + 2α,

√
m) without affecting update times. We omit the details

due to page limit. These results can then be easily applied to achieve new results
on maximal matchings and adjacency queries in dynamic graphs:

Theorem 4. A maximal matching of a graph on n vertices can be maintained
in O(min(α lg(n/α),

√
m)) worst-case update time using O(n + m) space, where

α is the current arboricity and m is the current number of edges.

Theorem 5. A graph with n vertices and m edges can be represented in O(m+
n) space to support adjacency queries in O(lg lg Δ) worst-case time, edge inser-
tion in O(Δ) worst-case time, and edge deletion in O(Δ lg lg Δ) worst-case time,
where Δ = O(α lg(n/α)) and α is the current arboricity of the graph, provided
α = O(polylog(n)).
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Abstract. We investigate labeling schemes supporting adjacency, ances-
try, sibling,and connectivity queries in forests. In the course of more than
20 years, the existence of log n + O(log log n) labeling schemes support-
ing each of these functions was proven, with the most recent being ances-
try [Fraigniaud and Korman, STOC ’10]. Several multi-functional labeling
schemes also enjoy lower or upper bounds of log n+Ω(log log n) or log n+
O(log log n) respectively. Notably an upper bound of log n+2 log log n for
adjacency+siblings and a lower bound of log n + log log n for each of the
functions siblings, ancestry, and connectivity [Alstrup et al., SODA ’03].
We improve the constants hidden in the O-notation, where our main
technical contribution is a log n+2 log log n lower bound for connectivity
+ancestry and connectivity+siblings.

In the context of dynamic labeling schemes it is known that ancestry
requires Ω(n) bits [Cohen, et al. PODS ’02]. In contrast, we show upper
and lower bounds on the label size for adjacency, siblings, and connec-
tivity of 2 log n bits, and 3 log n to support all three functions. We also
show that there exist no efficient dynamic adjacency labeling schemes
for planar, bounded treewidth, bounded arboricity and bounded degree
graphs.

1 Introduction

A labeling scheme is a method of distributing the information about the structure
of a graph among its vertices by assigning short labels, such that a selected
function on pairs of vertices can be computed using only their labels. The concept
was introduced by Kannan, Naor and Rudich [1], and explored by a wealth of
subsequent work [2–7].

Labeling schemes for trees have been studied extensively in the literature
due to their practical applications in improving the performance of XML search
engines. Indeed, XML documents can be viewed as labeled forests, and typical
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queries over the documents amount to testing classic properties such as adja-
cency, ancestry, siblings and connectivity between such labeled tree nodes [8].
In their seminal paper, Kannan et. al. [1] introduced labeling schemes using
at most 2 log n bits1 for each of the functions adjacency, siblings and ancestry.
Improving these results have been motivated heavily by the fact that a small
improvement of the label size may contribute significantly to the performance of
XML search engines. Alstrup, Bille and Rauhe [3] established a lower bound of
log n + log log n for the functions siblings, connectivity and ancestry along with
a matching upper bound for the first two. For adjacency, a log n + O(log∗ n)
labeling scheme was presented in [2]. A log n + O(log log n) labeling scheme for
ancestry was established only recently by Fraigniaud and Korman [4].

In most settings, it is the case that the structure of the graph to be labeled
is not known in advance. In contrast to the static setting described above, a
dynamic labeling scheme receives the tree as an online sequence of topological
events. Cohen, Kaplan and Milo [9] considered dynamic labeling schemes where
the encoder receives n leaf insertions and assigns unique labels that must remain
unchanged throughout the labeling process. In this context, they showed a tight
bound of Θ(n) bits for any dynamic ancestry labeling scheme. We stress the
importance of their lower bound by showing that it extends to routing, NCA,
and distance as well. In light of this lower bound, Korman, Peleg and Rodeh [10]
introduced dynamic labeling schemes where node re-label is permitted and per-
formed by message passing. In this model they obtain a compact labeling scheme
for ancestry, while keeping the number of messages small. Additional results in
this setting include conversion methods for static labeling schemes [10,11], as
well as specialized distance [11] and routing [12] labeling schemes. See [13] for
experimental evaluation.

Considering the static setting, a natural question is to determine the label
size required to support some, or all, of the functions. Simply concatenating the
labels mentioned yield a O(log n) label size, which is clearly undesired. Labeling
schemes supporting multiple functions2 were previously studied for adjacency
and sibling queries. Alstrup et al. [3] proved a log n + 5 log log n label size which
was improved by Gavoille and Labourel [14] to log n+2 log log n. See Table 1 for
a summary of labeling schemes for forests including the results of this paper.

1.1 Our Contribution

We contribute several upper and lower bounds for both dynamic and multi-
functional labeling schemes. First, we observe that the näıve 2 log n adjacency,
siblings and connectivity labeling schemes are suitable for the dynamic set-
ting without the need of relabeling. We then present simple families of inser-
tion sequences for which labels of size 2 log n are required, showing that in the
dynamic setting the näıve labeling schemes are in fact optimal. The result is
in contrast to the static case, where adjacency labels requires strictly fewer bits
1 Throughout this paper we let log n = �log2 n� unless stated otherwise.
2 We refer to such labeling schemes as multi-functional labeling schemes.
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Table 1. Upper and lower label sizes for labeling trees with n nodes (excluding additive
constants). Routing is reported in the designer-port model [17] and NCA with no pre-
existing labels [5]. Functions marked with * denote non-unique labeling schemes, and
bounds without a reference are folklore. Dynamic labeling schemes are all tight.

Function Static Label Size Static Lower Bound Dynamic

Adjacency log n + O(log∗ n) [2] log n + 1 2 log n (Th. 1)

Connectivity log n + log log n [3] log n + log log n [3] 2 log n (Th. 1)

Sibling log n + log log n [15] log n + log log n [3] 2 log n (Th. 1)

Ancestry log n + 2 log log n [4] log n + log log n [3] n [9]

AD/S log n + 2 log log n [16]) log n + log log n [3] 2 log n (Th. 1)

C/S log n + 2 log log n (Th. 5) log n + 2 log log n (Th. 6) 3 log n (Th. 4)

C/AN log n + 5 log log n (Th. 5) log n + 2 log log n (Th. 7) n [9]

C/AD/S log n + 3 log log n (Th. 5) log n + 2 log log n (Th. 6) 3 log n (Th. 4)

Routing (1 + o(1)) log n [6] log n + log log n [3] n (Sec. 3)

NCA 2.772 log n [5] 1.008 log n [5] n (Sec. 3)

Distance 1/2 log2 n [7] 1/8 log2 n [7] n (Sec. 3)

Sibling* log n log n log n

Connectivity* log n log n log n

C/S* log n + log log n (Th. 5) log n + log log n (Th. 8) 2 log n

than both sibling and connectivity. The labeling schemes also reveal an exponen-
tial gap between ancestry and the functions mentioned for the dynamic setting.
In Sec. 3.3 we show a construction of simple lower bounds of Ω(n) for adjacency
labeling schemes on various important graph families.

In the context of multi-functional labeling schemes, we show first that 3 log n
bits are necessary and sufficient for any dynamic labeling scheme supporting
adjacency and connectivity. The paper’s main technical contribution lies in Th. 6,
where we use a novel technique and prove a lower bound of log n+2 log log n for
any unique labeling scheme supporting both connectivity and siblings/ancestry.
This lower bound is preceded by a simple upper bound, proving that any label-
ing scheme of size S(n) growing faster than log n can be altered to support
connectivity as well by adding at most log log n bits. Note that in the case of
connectivity and siblings the upper and lower bounds match. All omitted proofs
appear in [18].

2 Preliminaries

A binary string x is a member of the set {0, 1}∗, and we denote its size by |x|,
and the concatenation of two binary strings x, y by x ◦ y. A label assignment
for a tree T = (V,E) is a mapping of each v ∈ V to a bit string L(v), called
the label of v. Given a tree T rooted in r with n nodes, and let u, v ∈ V . The
function adjacency(v, u) returns true if and only if u and v are adjacent in T 3,

3 A node is adjacent to itself.
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ancestry(v, u) returns true if and only if u is on the path r � v, siblings(v, u)
returns true if and only if u and v have the same parent in T 4, routing(v, u)
returns an identifier of the edge connected to u on the path to v, NCA(v, u)
returns the label of the first node in common on the paths u � r and v � r,
and distance(v, u) returns the length of the path from v to u. The functions
mentioned previously are also defined for forests. Given a rooted forest F with n
nodes, for any two nodes u, v in F the function connectivity(v, u) returns true
if v and u are in the same tree in F .

Given a function f defined on sets of vertices, an f-labeling scheme for
a family of graphs G consists of an encoder and decoder. The encoder is an
algorithm that receives a graph G ∈ G as input and computes a label assignment
eG. If the encoder receives G as a sequence of topological events5 the labeling
scheme is dynamic. The decoder is an algorithm that receives any two labels
L(v),L(u) and computes the query d(L(v),L(u)), such that d(L(v),L(u)) =
f(v, u). The size of the labeling scheme is the maximum label size. If for all
graphs G ∈ G, the label assignment eG is an injective mapping, i.e. for all distinct
u, v ∈ V (G), eG(u) �= eG(v), we say that the labeling scheme assigns unique
labels. Unless stated otherwise, the labeling schemes presented are assumed to
assign unique labels. Moreover, we allow the decoder to know the label size.

Let G be a graph in a family of graphs H and suppose that an f-labeling
scheme assigns a node v ∈ G the label L(v). If L(v) does not appear in any of
the label assignments for the other graphs in H, we say that the label is distinct
for the labeling scheme over H. This notion will be useful in proving the lower
bounds. All labeling schemes constructed in this paper require O(n) encoding
time and O(1) decoding time under the assumption of a Ω(log n) word size RAM
model. See [6] for additional details.

3 Dynamic Labeling Schemes

We first note that the lower bound for ancestry due to Cohen, et. al. also holds
for NCA, since the labels computed by an NCA labeling scheme can decide
ancestry: Given the labels L(u),L(v) of two nodes u, v in the tree T , return
true if L(u) is equal to the label returned by the original NCA decoder, and
false otherwise. Similarly, suppose a labeling scheme for routing6 assigns 0 as
the port number on the path to the root. Given L(u),L(v) as before, return true
if routing(L(u),L(v)) �= 0 and routing(L(v),L(u)) = 0. Peleg [19] proved that
any f(n) distance labeling scheme can be converted to f(n) + log(n) labeling
scheme for NCA by attaching the depth of any node. Since the depth of a node
inserted can not change in our dynamic setting, we conclude that the lower
bound applies to distance up to additive O(log n) factor.
4 By this definition, a node is a sibling to itself.
5 Cohen et al. defines such a sequence as a set of insertion of nodes into an initially

empty tree, where the root is inserted first, and all other insertions are of the form
“insert node u as a child of node v”. We extend it to support “remove leaf u”, where
the root may never be deleted.

6 Routing in the designer port model [17], in which this assumption is standard.
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3.1 Upper Bounds

The following näıve adjacency labeling scheme was introduced by Kannan
et al. [1]. Consider an arbitrary rooted tree T with n nodes. Enumerate the
nodes in the tree with the numbers 0 through n − 1, and let, for each node v,
Id(v) be the number associated with v. Let parent(v) be the parent of a node
v in the tree. The label of v is L(v) = (Id(v) ◦ Id(parent(v))), and the root is
labeled (0, 0). Given the labels L(v),L(v′) of two nodes v and v′, two nodes are
adjacent if and only if either Id(parent(v)) = Id(v′) or Id(parent(v′)) = Id(v)
but not both, so that the root is not adjacent to itself.

This is also a dynamic labeling scheme for adjacency with equal label size.
Moreover, it is also both a static and dynamic labeling scheme for sibling, in
which case, the decoder must check if Id(parent(v)) = Id(parent(v′)). A labeling
scheme for connectivity can be constructed by storing the component number
rather than the parent id. After n insertions, each label contains two parts, each
in the range [0, n − 1]. Therefore, the label size required is 2 log n.

The labeling schemes suggested extend to larger families of graphs. In par-
ticular, the dynamic connectivity labeling scheme holds for the family of all
graphs. The family of k-bounded degree graphs enjoys a similar dynamic adja-
cency labeling scheme of size (k + 1) log n.

3.2 Lower Bounds

We show that 2 log n is a tight bound for any dynamic adjacency labeling scheme
for trees. We denote by Fn(k) an insertion sequence of n nodes, creating an initial
path of length 1 < k ≤ n, followed by n − k adjacent leaves to node k − 1 on the
path. The family of all such insertions sequences is denoted Fn. For illustration
see Fig. 1.

Lemma 1. Fix some dynamic labeling scheme that supports adjacency. For any
1 < k < n, Fn(k) must contain at least n − k distinct labels for this labeling
scheme over Fn.

Proof. The labels of Fn(n) are set to P1 . . . Pn respectively. Since the encoder is
deterministic, and since every insertion sequence Fn(k) first inserts nodes on the
initial path, these nodes must be labeled P1 . . . Pk. Let the labels of the adjacent
leaves of such an insertion sequence be denoted by Lk

1 . . . Lk
n−k.

Clearly, Lk
1 . . . Lk

n−k must be different from P1 . . . Pn, as the only other labels
adjacent to Pk−1 are Pk−2 and Pk, which have already been used on the initial
path. Consider now any node labeled Lj

i of Fn(j) for j �= k. Assume w.l.o.g
that j > k. Such a node must be adjacent to Pj−1 and not to Pk−1, as Pk−1 is
contained in the path to Pj−1. Therefore we must have Lj

i /∈ {Lk
1 , . . . , L

k
n−k}.

Identical lower bounds are attained similarly for both sibling and
connectivity.

Theorem 1. Any dynamic labeling scheme supporting either adjacency, con-
nectivity, or sibling requires at least 2 log n − 1 bits.
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P4

P1

P2

P3

P4

P5

Fig. 1. Illustration of F5

Proof. According to Lem. 1, at least n +
∑n−1

i=2 i = n2/2 + O(n) distinct labels
are required to label Fn if adjacency or sibling requests are supported, and the
same applies for Fc

n if connectivity is supported.

A natural question is whether a randomized labeling scheme could provide
labels of size less than 2 log n − O(1). The next theorem, based on Thm. 3.4 in
[9] answer this question negatively.

Theorem 2. For any randomized dynamic labelling scheme supporting either
adjacency, connectivity, or sibling queries there exists an insertion sequence such
that the expected value of the maximal label size is at least 2 log n − O(1) bits.

3.3 Other Graph Families

In this section, we expand our lower bound ideas to adjacency labeling schemes
for the following families with at most n nodes: bounded arboricity-k graphs7

Ak, bounded degree-k graphs Δk, planar graphs P and bounded treewidth-k
graphs Tk. In the context of (static) adjacency labeling schemes, these families
are well studied [1,2,20,21]. In particular, Tk, P, Δk and Ak enjoy adjacency
labeling schemes of size log n + O(k log log(n/k)) [20], 2 log n + O(log log n) [20],
�Δ(n)

2 � + 1 [21], and k log n [21] respectively.
We consider a sequence of node insertions along with all edges adjacent to

them, such that an edge (u, v) may be introduced along with node v if node u
appeared prior in the sequence, and prove the following.

Theorem 3. Any dynamic adjacency labeling scheme for each A2, P and
T3 requires Ω(n) bits. Similarly, any dynamic adjacency labeling scheme for
Δk requires k log n bits.

Proof. Let S be the collection of all nonempty subsets of the integers 1 . . . n−1.
For every s ∈ S, we denote by Fn(s) an insertion sequence of n nodes, creating
a path of length n−1, followed by a single node v connected to the nodes on the
path whose number is a member of s. Such a graph has arboricity 2 since it can
be decomposed into an initial path and a star rooted in v. For each of the |S|
insertion sequences, v’s label must be distinct. We conclude that the number of
7 The arboricity of a graph G is the minimum number of edge-disjoint acyclic sub-

graphs whose union is G.
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bits required for any adjacency labeling scheme is at least log(|S|) = n − 1. See
Fig. 2 for illustration.

The construction of Fn(s) implies an identical lower bound for the family of
planar graphs, as well as interval graphs. By considering all sets s of at most k
elements instead, we get a bound of k log n label size for any adjacency labeling
scheme for Δk, where k is constant.

P1 P2 P3 P4 P5

V

Fig. 2. Illustration of F5(s). The dotted lines may or may not appear in the insertion
sequence depending on the element of S chosen.

4 Multi-Functional Labeling Schemes

In this section we investigate labeling schemes incorporating two or more of the
functions mentioned for both dynamic and static labeling schemes.

4.1 Dynamic Multi-functional Labeling Schemes

A 3 log n dynamic labeling scheme for any combination of connectivity, adjacency
and sibling queries can be obtained by setting the label of a node v to be (Id(v)◦
Id(parent(v)) ◦ component(v)), as described in Sec. 3.1.

We now show that this upper bound is in fact tight. More precisely, we
show that 3 log n bits are required to answer the combination of connectivity
and adjacency. Let In(j, k) be an insertion sequence designed as follows: First j
nodes are inserted creating an initial forest of single node trees. Then k nodes
are added as a path with root in the jth tree. At last, n − j − k adjacent path
leaves are added to the second-to-last node on the path. For a given n we define
In as the family of all such insertion sequences.

Lemma 2. Fix some dynamic labeling scheme that supports adjacency and con-
nectivity requests. For any 1 < j + k < n, In(k) must contain at least n − j − k
distinct labels for this labeling scheme over In.

According to this Lemma, at least
∑n−1

j=1

∑n−j−1
k=1 n − j − k = 1

6n3 − O(n2)
distinct labels are required to label the family In. We can thus conclude.

Theorem 4. Any dynamic labeling scheme supporting both adjacency and con-
nectivity queries requires at least 3 log n − O(1) bits.

The same family of insertion sequences can be used to show a 3 log n −
O(1) lower bound for any dynamic labeling scheme supporting both sibling and
connectivity queries. Furthermore, similarly to Thm. 2, the bound holds even
without the assumption that the encoder is deterministic.
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4.2 Upper Bounds for Static Multi-functional Labeling Schemes

As seen in Thm. 4, the requirement to support both connectivity and adjacency
forces an increased label size for any dynamic labeling scheme. In the remainder
of the paper we prove lower and upper bounds for static labeling schemes that
support those operations, both for the case where the labels are necessarily
unique, and for the case that they are not. From hereon, all labeling schemes
are on the family of rooted forests with at most n nodes. We show that most
labeling schemes can be altered to support connectivity as well.

Theorem 5. Consider any function f of two nodes in a single tree on n nodes.
If there exists an f-labeling scheme of size S(n), where S(n) is non-decreasing
and S(a) − S(b) ≥ log a − log b − O(1) for any a ≥ b. Then there exists an f-
labeling scheme, which also supports connectivity queries of size at most S(n) +
log log n + O(1).

Proof. We will consider the label L(v) = (C ◦ L ◦ sep) defined as follows. First,
sort the trees of the forest according to their sizes. For the ith biggest tree we set
C = i using log i bits. Since the tree has at most n/i nodes, we can pick the label
L internally in the tree using only S(n/i) bits. Finally, we need a separator, sep,
to separate C from L. We can represent this using log log n bits, since i uses at
most log n bits.

The total label size is log i+S(n/i)+ log log n+O(1) bits, which is less than
S(n) + log log n + O(1) if S(n) − S(n/i) ≥ log i − c for some constant c. Since
f is a function of two nodes from the same tree, this altered labeling scheme
can answer both queries for f as well as connectivity. It is now required that
any label assigned has size exactly S(n)+ log log n bits, so that the decoder may
correctly identify sep in the bit string. For that purpose we pad labels with less
bits with sufficiently many 0’s. The decoder can identify C in O(1) time.

As a corollary, we get labeling schemes of the sizes reported in Table 1.

4.3 Lower Bounds for Static Multi-functional Labeling Schemes

We now show that the upper bounds implied by Thm. 5 for labeling schemes
supporting siblings and connectivity are indeed tight for both the unique and
non-unique cases. To that end we consider the following forests: For any integers
a, b, n such that ab | n denote by Fn(a, b) a forest consisting of a components
(trees), each with b sibling groups, where each sibling group consist of n

a·b nodes.
Note that n ≤ |Fn(a, b)| < 2n since we add one auxiliary root per component.

Our proofs work as follows: Firstly, for any two forests Fn(a, b) and Fn(c, d)
as defined above, we establish an upper bound on the number of labels that
can be assigned to both Fn(a, b) and Fn(c, d). Secondly, for a carefully chosen
family of forests Fn(a1, b1), . . . , Fn(ak, bk), we show that when labeling Fn(ai, bi)
at least a constant fraction of the labels has to be distinct from the labels of
Fn(a1, b1), . . . , Fn(ai−1, bi−1). Finally, by summing over each Fn(ai, bi) we show
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that a sufficiently large number of bits are required by any labeling scheme
supporting the desired queries.

Our technique simplifies the boxes and groups argument of Alstrup et al. [3],
and generalizes to the case of two nested equivalence classes8, namely connec-
tivity and siblings.

Lemma 3. Let Fn(a, b) and Fn(c, d) be two forests such that ab ≥ cd. Fix some
unique labeling scheme supporting both connectivity and siblings, and denote the
set of labels assigned to Fn(a, b) and Fn(c, d) as e1 and e2 respectively. Then

|e1 ∩ e2| ≤ min(a, c) · min(b, d) · n

a · b
.

Proof. Consider label sets s1 and s2 of two sibling groups from Fn(a, b) and
Fn(c, d) respectively for which |s1 ∩ s2| ≥ 1. Clearly, we must have |s1 ∩ s2| ≤
min(|s1|, |s2|) = n

a·b . Furthermore, no other sibling group of Fn(a, b) or Fn(c, d)
can be assigned labels from s1 ∪ s2, as the sibling relationship must be main-
tained. We can thus create a one-to-one matching between the sibling groups
of Fn(a, b) and Fn(c, d), that have labels in common (note that not all sibling
groups will necessarily be mapped). Bounding the number of common labels thus
becomes a problem of bounding the size of this matching. In order to maintain
the connectivity relation, sibling groups from one component cannot be matched
to several components. Therefore at most min(b, d) sibling groups can be shared
per component, and at most min(a, c) components can be shared. Combining
this gives the final bound of min(a, c) · min(b, d) · n

a·b .

Lemma 4. Let Fn(a1, b1), . . . , Fn(ai, bi) be a family of forests with a1·b1 ≤ . . . ≤
ai · bi. Assume there exists a unique labeling scheme supporting both connectivity
and siblings, and let ej be the set of labels assigned by this scheme to the forest
Fn(aj , bj). Assume that the sets e1, . . . , ei−1 have been assigned. The number of
distinct labels introduced by the encoder when assigning ei is at least

n −
i−1∑

j=1

min(aj , ai) · min(bj , bi) · n

ai · bi
.

We demonstrate the use of Lem. 4 by showing the following known result [3].

Warm-up. Any static labeling scheme for connectivity queries requires at least
log n + log log n − O(1) bits.

Proof. Consider the family of log3 n forests Fn(30, 1), Fn(31, 1), . . . , Fn(3log3 n, 1).
This family is demonstrated in Fig. 3 for n = 9. Two nodes are siblings if and only
if they are connected in this family. Therefore we can use Lem. 4 even though
we want to show a lower bound for only connectivity. Note, that in Fig. 3 the
second forest can at most reuse 3 labels from the first, and the third can at most
reuse 4 from the two previous.
8 See [15] for definitions and further discussion.
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Let ej denote the label set assigned by an encoder for Fn(3j , 1). We assume
that the labels are assigned in the order e0, . . . , elog3 n. By Lem. 4 the number
of distinct labels introduced when assigning ej is at least

n − n

j−1∑

i=0

3i−j > n/2 .

It follows that labeling the log3 n forests in the family requires at least Ω(n log n)
distinct labels.

F9(1,1)

F9(3,1)

F9(9,1)

Fig. 3. The family of forests F9(1, 1), F9(3, 1), F9(9, 1). Nodes inside the same box are
connected and siblings. Note that component roots have been omitted.

We are now ready to prove the main theorem of this section.

Theorem 6. Any unique static labeling scheme supporting both connectivity and
sibling queries requires labels of size at least log n + 2 log log n − O(1).

Proof. Fix some integer x, and assume that n is a power of x. We consider the
family of forests Fn(1, 1), Fn(x, 1), Fn(1, x), Fn(x2, 1), Fn(x, x), Fn(1, x2), . . . ,
Fn(1, xlogx n).

Let eb
a denote the label set assigned to Fn(xa, xb) by an encoder. We assign

the labels in the order e00, e
0
1, e

1
0, e

0
2, e

1
1, . . . , e

logx n
0 . Thus, when assigning eb

a we
have already assigned all label sets ed

c with c + d < a + b or c + d = a + b and
d < b. By Lem. 4, the number of distinct labels introduced when assigning eb

a is
at least

n −
∑

c+d<a+b
c,d≥0

n

xa+b
· xmin(a,c)+min(b,d) +

b−1∑

d=0

n

xa+b
· xa+d

This counting argument is better demonstrated in Fig. 4. In the figure, we are
concerned with assigning the labels in e22. The grey boxes represent the label sets
already assigned, and the right-side figure shows the fractions of n that each set
ed

c at most has in common with e22. Observe that we can split the above sum
into three cases as demonstrated in the figure: If c ≤ a and d ≤ b the bound
supplied by Lem. 3 is xc+d−a−b. Otherwise, either c > a or d > b, but not both.
If c > a, recall that d < b so the bound is xd−b. For d > b the bound is xc−a
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by the same argument. Applying these rules, we see that the number of distinct
labels introduced is at least

n − n ·
(

a∑

c=0

b∑

d=0

xc+d−a−b +
b−1∑

d=0

(b − d) · xd−b +
a−2∑

c=0

(a − c) · xc−a

)

+ n

≥ n − n ·
(

x2 + x + 2
(x − 1)2

)

+ n = n − n · 3x + 1
(x − 1)2

.

Note that we add n, as we have also subtracted n labels for the case (c, d) = (a, b).
By setting x = 6 we get that the encoder must introduce 6n/25 distinct

labels for each eb
a. Since we have Θ(log2 n) forests, a total of Ω(n log2 n) labels

are required for labeling the family of forests. Each forest consists of no more
than 2n nodes, which concludes the proof.

e0
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e1
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e2
0

e3
0

e4
0

e0
1 e0

2 e0
3 e0

4

e1
1 e1

2 e1
3

e2
1 e2

2

e3
1

x-4

e2
2

-
-x-3

x-2

x-2

x-2

x-1
x-1
x-2
x-3 x-2

x-1

x-2

a+1

b

b+1 a-1

Fig. 4. Demonstration of the label counting for e22

The same proof technique is used to prove the following theorems.

Theorem 7. Any unique static labeling scheme supporting both connectivity and
ancestry queries requires labels of size at least log n + 2 log log n − O(1).

Theorem 8. Any static labeling scheme supporting both connectivity and sibling
queries requires at least log n+log log n−O(1) bits if the labels need not be unique.

Proof. Assume w.l.o.g. that n is a power of 3. Consider the family of log3 n
forests Fn(1, n), Fn(3, n/3), Fn(32, n/32), . . . , Fn(3log3 n, 1). Since each sibling
group of the forest Fn(3i, n/3i) has exactly one node, we note that no two nodes
are siblings. Thus each label of the forest has to be unique, since we have assumed
that a node is sibling to itself. We can thus use Lem. 3 as if we were in the unique
case for this family of forests.

Let ej denote the label set assigned by an encoder for Fn(3j , n/3j). We
assume that the labels are assigned in the order e0, . . . , elog3 n. By Lem. 4 the
number of distinct labels introduced when assigning ej is at least

n − n

j−1∑

i=0

3i−j > n/2.
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It follows that when labeling each of the log3 n forests in the family, any encoder
must introduce at least n/2 distinct labels, i.e. Ω(n log n) distinct labels in total.
The family consist of forests with no more than 2n nodes, which concludes the
proof.

5 Concluding Remarks

We have considered multi-functional labels for the functions adjacency, siblings
and connectivity. We also provided a lower bound for ancestry and connectivity.
A major open question is whether it is possible to have a label of size log n +
O(log log n) supporting all of the functions. It seems unlikely that the best known
labeling scheme for ancestry [4] can be combined with the ideas of this paper.

In the context of dynamic labeling schemes, if arbitrary insertion is permitted,
neither adjacency nor sibling labels are possible. All dynamic labeling schemes
also operate when leaf removal is allowed, simply by erasing the removed label.
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Abstract. We consider the problem of indexing a text T (of length n)
with a light data structure that supports efficient search of patterns P
(of length m) allowing errors under the Hamming distance. We propose a
hash-based strategy that employs two classes of hash functions—dubbed
Hamming-aware and de Bruijn—to drastically reduce search space and
memory footprint of the index, respectively.

We use our succinct hash data structure to solve the k-mismatch
search problem in 2n log σ + o(n log σ) bits of space with a random-
ized algorithm having smoothed complexity O((2σ)k(log n)k(log m+ξ)+
(occ + 1) · m), where σ is the alphabet size, occ is the number of occur-
rences, and ξ is a term depending on m, n, and on the amplitude ε of
the noise perturbing text and pattern. Significantly, we obtain that for
any ε > 0, for m large enough, ξ ∈ O(log m): our results improve upon
previous linear-space solutions of the k-mismatch problem.

1 Introduction

Indexing is a very efficient choice when one is interested in rapidly searching
and/or retrieving from a text all the occurrences of a large number of patterns. In
particular, indexing large texts for inexact pattern matching is a problem that is
lately receiving much attention, due to the continuously increasing rate at which
data is produced in areas such as bioinformatics and web information retrieval,
where, moreover, is critical to allow (a limited amount of) mismatches while
searching. Techniques based on the Burrows-Wheeler transform are the gold
standard when dealing with large text indexing; however, BWT-based indexes
offer a natural support for exact string matching only. As a consequence, to
deal with inexact search, simple space efficient strategies such as backtracking,
q-grams sampling, and hybrid techniques are usually employed. Letting m, k,
and σ be the query length, the maximum number of allowed errors and the
alphabet size, respectively, backtracking techniques have the disadvantage that
query times rapidly blow-up with a factor of σkmk and are thus impractical for
large patterns and number of errors (a backtracking strategy on the FM index
is implemented in the tool Bowtie [1]). q-gram based strategies do not suffer of
this exponential blow-up but their usage is limited to a small number of errors,
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 157–168, 2014.
DOI: 10.1007/978-3-319-13075-0 13
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due to the fact that q-grams are searched without errors (SOAP2 [2] implements
a q-gram strategy on the FM index). Hybrid strategies combine the two
approaches and are often able to obtain better time bounds without restrictions.
An example of this kind (yet requiring Θ(n log n) bits of space, where n is the text
length) is the hash-based algorithm rNA presented in [3,4] which employs the
notion of Hamming-aware hash function, to be discussed below. Other solutions
in the literature reach a time complexity often linear in the query length, at the
price of significant space consumption. Letting n be the text length, the index
of Cole et al. in [5] solves the problem in time O((log n)k log log n + m + occ),
but has the disadvantage of requiring O(n(log n)k+1) bits of space, often too
much to be of practical interest. Better space requirements have been obtained
at the price of search slow-down, with the solutions of Chan et al. in [6], where
the authors propose an index requiring O(n log n) bits of space (O(n) words)
and O(m + occ + (c log n)k(k+1) log log n) query time or, alternatively, O(n) bits
of space and O((m + occ + (c log n)k(k+2) log log n) logε n) query time (where
c is a constant and ε > 0). The above bounds concern worst-case analysis.
If average-case analysis is used, several interesting results have been proposed
which improve upon worst-case bounds. The metric index of Chávez et al. pre-
sented in [7] exploiting the fact that the employed distance defines a metric space,
was the first to remove the exponential dependency on the number of errors. This
solution requires O(m1+

√
2+εn) bits of space and has expected O(m1+

√
2+ε+occ)

query time. Maaß and Nowak in [8] propose an index requiring O(n logk n) bits
of space and O(m+occ) average query time (yet assuming a constant number of
errors). Finally, the index of Navarro and Baeza-Yates proposed in [9] requires
O(n log n) bits of space and has O(nλ log n) average retrieval time, where λ < 1
if k < m(1 − e/

√
σ) and e is the natural logarithm base.

When space is a concern in the design of the data structure, the sheer size
of such classic indexes as hash tables [3,10], suffix trees [11] or suffix arrays [12],
soon becomes prohibitive. Succinct, compressed, and self indexes (see [13] for
an accurate survey on the topic) are powerful notions that address and solve
most of these problems in an efficient and elegant way. A text index is called
succinct if it requires n log σ + o(n log σ) bits of space[14], compressed if the
space is proportional to that of the compressed text, and self index if the index
is compressed and does not require the original text to be stored in memory [13].

Suffix trees and suffix arrays can be implicitly represented in succinct or
compressed space with such techniques as the FM index. Our first contribution
shows that even hash indexes admit such a succinct representation. To obtain
this result, we introduce a class of hash functions (namely, de Bruijn hash func-
tions, that are homomorphisms on de Bruijn graphs) and use it to reduce space
occupancy of hash-based text indexes from Θ(n log n) to n log σ+o(n log σ) bits,
with only a O(log m) slow-down in the lookup operation.

We conclude illustrating the use of our proposed succinct hash data struc-
ture to describe a randomized algorithm for the k-mismatch problem operating
in linear space and having smoothed complexity [15] O((2σ)k(log n)k(log m +
ξ) + (occ + 1) · m) , where ξ = (mn)1+log2 c, c =

(
1 + (1 − 2ε)m/ logσ(mn)

)
/2,
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is a term which depends on m, n, as well as on the amplitude ε of the noise
perturbing text and pattern. Smoothed analysis [15,16] is a novel tool which
interpolates continuously—through the parameter ε—between worst and aver-
age case analysis, and therefore represents a more powerful tool than standard
average case analysis which is often used to analyse the performances of ran-
domized algorithms. Most importantly, we show that for any ε > 0, if m is large
enough, then ξ ∈ O(log m) and can, consequently, be ignored in the asymptotic
analysis. Alternatively, to make our bound comparable with average-case results
present in literature, one can set ε = 0.5 and obtain the standard average-case
complexity O((2σ)k(log n)k log m + (occ + 1) · m).

Our solution shows that, introducing randomization, it is possible to improve
upon previous known upper bounds for the k-mismatch problem in linear space.

Our data structure has been implemented (among other tools) in the C++
BWTIL library (https://github.com/nicolaprezza/BWTIL) and has been inte-
grated in the short-string alignment package ERNE, to be used in DNA analysis
and freely downloadable at: http://erne.sourceforge.net

2 Notation

Throughout this paper we will work with the alphabet Σ = {0, ..., σ−1}, σ = 2r,
r > 0, and with hash functions of the form h : Σm → Σw mapping length-m
Σ-strings to length-w Σ-strings, where m ≥ w and wr is considered the size of
the memory-word (i.e. we assume that σw − 1 fits into the computer memory-
word). If necessary, we will use the symbol m

wh instead of h when we need to
be clear on h’s domain and codomain sizes. Given a string P ∈ Σm, the value
h(P ) ∈ Σw will be also dubbed the fingerprint of P (in Σw). With T ∈ Σn

we will denote the text that we want to index using our data structure. T j
i will

denote T [i, ..., i + j − 1], i.e. the j-th prefix of the i-th suffix of T . A hash data
structure H for the text T with hash function h, will be a set of ordered pairs
(an index) such that H = {〈h(Tm

i ), i〉 : 0 ≤ i ≤ n−m}, that can be used to store
and retrieve the positions of length-m substrings of T (m is therefore fixed once
the index is built). A lookup operation on the hash H given the fingerprint h(P ),
will consist in the retrieval of all the positions 0 ≤ i < n such that 〈h(P ), i〉 ∈ H
and cases where 〈h(P ), i〉 ∈ H but Tm

i 	= P will be referred to as false positives.
⊕ is the exclusive OR (XOR) bitwise operator. a ⊕ b, where a, b ∈ Σ, will

indicate the bitwise XOR between (the bit representations of) a and b and,
analogously, x ⊕ y, where x, y ∈ Σm will indicate the bitwise XOR between
(the bit representations of) the two words x and y. dH(x, y) is the Hamming
distance between x, y ∈ Σm. Pr(E) is the probability of the event E. Be(p) is
the bernoullian distribution with success probability p. If X is a random variable
and f(X) a function of X, following [16], E

X
[f(X)] is the expected value of the

random variable f(X). If f(X) = X we simply write E[X]. Logarithms are base
2 if not differently specified.

https://github.com/nicolaprezza/BWTIL
http://erne.sourceforge.net
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3 de Bruijn Functions and the dB-Hash Data Structure

In this section we present a technique that can be used to represent succinctly
a hash index, using homomorphisms on de Bruijn graphs as hash functions. As
we said in the introduction, even though hash indexes offer fast access times,
their space requirements are usually quite high (Θ(n log n) bits). Our proposed
solution consists in “compacting” the fingerprints in a text of size n − m + w
that can then be indexed in succinct space using any of the popular techniques
available in the literature. Central in our proposal is the introduction of a class
of hash functions whose values on the text m-substrings overlap.

Definition 1. Let Σ = {0, ..., σ − 1}. We say that a function h : Σm → Σw is
a de Bruijn hash function if and only if, for every pair of strings σ1, σ2 ∈ Σm

σ1[1, ...,m − 1] = σ2[0, ...,m − 2] ⇒ h(σ1)[1, ..., w − 1] = h(σ2)[0, ..., w − 2].

This property guarantees that if two strings differ only for one character
shift, then this happens also for their hash values. With the following definition
we exhibit a de Bruijn hash function that will play an important role in the rest
of our work:

Definition 2. Let Σ = {0, ..., 2r − 1}, r > 0, P ∈ Σm. With h⊕ : Σm → Σw,
w ≤ m we denote the hash function defined as

h⊕(P ) =

⎛

⎝
�m/w�−2⊕

i=0

Pw
iw

⎞

⎠ ⊕ Pw
m−w

Theorem 1. h⊕ is a de-Bruijn hash function.

Proof. The key observation is that a character shift in P produces a shift in each
of the w-blocks XOR-ed by h⊕.

It is easy to show that de Bruijn hash functions correspond to homomor-
phisms on de Bruijn graphs (with set of nodes Σm and Σw): intuitively, let Gm

and Gw be two de Bruijn graphs with set of nodes Σm and Σw, respectively. Two
nodes x, y ∈ Σm share an edge if and only if x[1, ...,m−1] = y[0, ...,m−2] (simi-
larly for Gw). Then, applying a de Bruijn hash function m

wh to x and y, we obtain
h(x), h(y) ∈ Σw such that (by Definition 1) h(x)[1, ..., w −1] = h(y)[0, ..., w −2],
i.e. h(x) and h(y) share an edge in Gw.

Given a de Bruijn hash function m
wh : Σm → Σw we can naturally “extend”

it to another de Bruijn hash function n
n−m+wh : Σn → Σn−m+w operating on

input strings of length n ≥ m as described in the following definition.

Definition 3. Given m
wh : Σm → Σw de Bruijn hash function and n ≥ m, the

hash value of n
n−m+wh on T ∈ Σn, is the unique string n

n−m+wh(T ) ∈ Σn−m+w

such that:
n

n−m+wh(T )[i, ..., i + w − 1] = m
wh(T [i, ..., i + m − 1]),

for every 0 ≤ i ≤ n − m.
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Since m
wh univocally determines n

n−m+wh and the two functions coincide on the
common part Σm of their domain, in what follows we will simply use the symbol
h to indicate both. Notice that the hash value h(T ) can be trivially built in
O(mn/w) time exploiting Definition 3. However, particular hash functions may
permit more efficient algorithms: the hash function h⊕ defined in Definition 2,
in particular, can be shown to have an optimal O(n) time algorithm of this kind.

From Definitions 1 and 3 we can immediately derive the following important
property:

Lemma 1. If h is a de Bruijn hash function, n ≥ m, and P ∈ Σm occurs in T ∈
Σn at position i, then h(P ) occurs in h(T ) at position i. The opposite implication
does not (always) hold and we will refer to such cases as false positives.

On the ground of Lemma 1 we can propose, differently from other approaches,
to build a succinct index over the hash value of the text, instead of building
it over the text. A crucial aspect is that this can be done while preserving our
ability to locate substrings in the text, by simply turning our task into locating
fingerprints in the hash of the text. We name our data structure a dB-hash.

3.1 Implementing the dB-Hash Data Structure

In order to create our dB-hash data structure, we build a succinct (n log σ +
o(n log σ) bits) index over the hash h(T ) of the text, augmenting it with fur-
ther (light) structures described below. The problem of building a succinct—or
compressed—index of a text has been extensively discussed in literature (see
for example [17–19]), so here we omit the unnecessary details. Notice that, for
reasons discussed in detail in section 4.3, h(T ) could be very hard to compress.
For this reason, here we present an uncompressed (yet succinct) version of our
index. Briefly, our structure is an uncompressed FM index based on wavelet
trees (similar to the one proposed in [19]). In our structure, suffix array pointers
are sampled every ν = log1+η n/ log σ positions of h(T ), η > 0 (as described
in [17]) to reach o(n log σ) bits of space and O(ν log σ) = O(log1+η n) time for
the location of a pattern occurrence. This index supports search of a fingerprint
f ∈ Σw in O(w log σ) time (w backward search steps, each of cost log σ).

With a lookup on the dB-hash we indicate the operation of retrieving the
interval in h(T )BWT corresponding to occurrences of the searched fingerprint.
Since O(w log σ) cost for the lookup operation is far from the O(1) cost guaran-
teed by a standard hash, we choose to speed-up this operation augmenting the
structure with an auxiliary hash having overall memory occupancy of n/ log n
bits. The auxiliary hash is used to record the results of the backward search
algorithm (intervals on the BWT) on all the strings of length waux ≤ w. A
lookup operation on the dB-hash is then implemented with an initial lookup—
on the auxiliary hash—of the waux-length suffix of the pattern’s fingerprint
(cost O(1)) followed by backward search on the remaining portion of h(P ) (cost
O ((w − waux) log σ)). The n/ log n bits constraint on the auxiliary hash size lim-
its waux to be waux = logσ n − 2 logσ log n, so a lookup operation on our index
requires O(w− logσ n+2 logσ log n) backward search steps. In section 4.3 we will
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show that this auxiliary structure asymptotically reduces the cost of a lookup
operation from O(log n) to O(log m).

Summing up, the dB-hash data structure is constituted by a succinct index
over h(T ) augmented with an auxiliary hash of size n/ log n bits. This amounts
to an overall space occupancy of n log σ + o(n log σ) bits: the index1 is succinct.

4 de Bruijn Hash for the k-Mismatch Problem

The k-mismatch problem asks to find all occurrences up to k errors (under the
Hamming distance) of a given pattern P in a given text T . In this section we
use the results of [3,4] and Section 3 to describe an algorithm for this problem
having low smoothed complexity while requiring only linear space for the index.

4.1 Squeezing the Search Space: Hamming-Aware Functions

The core of our searching procedure is based on the algorithm rNA (Vezzi
et al. [3], Policriti et al. [4]), a hash-based randomized numerical aligner based on
the concept of Hamming-aware hash functions. Hamming-aware hash functions
are particular hash functions designed to “squeeze” the k-radius Hamming ball
centered on a pattern P , to a O(k)-radius Hamming ball centered on the hash
value h(P ) of P . This feature allows to search much more efficiently, reducing
search space size from O(mk) to O(wk) = O((log n)k). More formally:

Definition 4. A hash function h is Hamming-aware if there exist

– a set Z(k) ⊆ Σw such that |Z(k)| ∈ O(ckwk), for some constant c, and
– a binary operation φ : Σw × Σw → Σw computable in O(w) time,

such that if P ∈ Σm then the following inclusion holds:

{h(P ′) : P ′ ∈ Σm, dH(P, P ′) ≤ k} ⊆ {h(P ) φ z : z ∈ Z(k)} (1)

Given a query P , the algorithm rNA computes its fingerprint and efficiently
retrieves all the fingerprints of strings P ′ such that dH(P, P ′) ≤ k. This is done
computing h(P ) φ z, for z ∈ Z(k) and searching the index for each one of them.

Our search algorithm will have an overall structure that remains essentially
the same described in [3] and [4]. In order to couple the rNA technique with the
use of our proposed dB-hash, we only need to prove the existence of de Bruijn
hash functions satisfying the Hamming awareness condition. The following the-
orem shows that our exclusive-or based function is a possible solution:

Theorem 2. The de Bruijn hash function h⊕ defined in Definition 2 is a
Hamming-aware hash function. In particular:
1 Notice that this space is required to store the succinct hash index only; checking

for false positives requires also the storage of the text, for n log σ bits of additional
space consumption.
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– The binary operation φ for h⊕ is ⊕.
– Z(k) = {h⊕(P1) ⊕ h⊕(P2) : dH(P1, P2) ≤ k, P1, P2 ∈ Σm} has O((2σw)k)

elements.

Proof. First, it can be proved that representing h⊕ by a matrix (notice that h⊕
is a linear map), it has at most 2w − 1 distinct columns. The claim then follows
from the fact that the elements of Z(k) can be built XOR-ing together at most
k columns of h⊕.

Z(k) needs not to be explicitly stored in memory. Instead, we can compute
each z ∈ Z(k) in O(1) time on-the-fly during search, exploiting the following
tree representation T (k) of Z(k). Let v be a node of T (k) with l(v) ∈ Σw the
label of v. The root r is such that l(r) = 0w. Each node v in T (k) has |Z(1)|
children v(0), ..., v(|Z(1)| − 1), where l(v(i)) = l(v) ⊕ Z(1)[i] (Z(j)[i] being the
i-th element in the set Z(j)). The height of T (k) is k: as a consequence, its
size (number of nodes) is O((2σw)k). It can be shown that, if depth(v) = i
then l(v) ∈ Z(i). Conversely, if z ∈ Z(i) then there is at least one node v of
T (k) such that l(v) = z and depth(v) ≤ i. T (k) can be dfs-visited during the
search memorizing only the set Z(1) (O(σw log σ) bits) and, for each node v in
the current path, its label l(v) (w log σ bits) and a counter on the elements of
Z(1). This representation does not penalize performances and has a total space
consumption of O(kw log σ + σw log σ) bits.

4.2 The dB-rNA Algorithm

Let us briefly describe and analyse our algorithm, putting together the results
presented throughout the paper to tackle the k-mismatch problem. We name our
algorithm dB-rNA (de Bruijn randomized numerical aligner).

Given a pattern P , the algorithm computes its fingerprint h⊕(P ) (O(m)
steps) and, for each element z in Z(k), it executes a lookup in position h⊕(P )⊕
z of the dB-hash data structure (O(w − logσ n + 2 logσ log n) steps for each
lookup). Each lookup is followed by some BWT-to-text coordinate conversions
(O(log1+η n) time for each entry in position h⊕(P )⊕z of the dB-hash). For each
text coordinate i obtained in the previous step, the algorithm compares then
the pattern with the text substring Tm

i to detect false positives (O(m) for each
text position). The space required for the execution is that of the dB-hash data
structure (n log σ + o(n log σ) bits) plus that of the plain text (n log σ bits).

4.3 Complexity Analysis of the Algorithm

In order to study the complexity of our algorithm we need to establish an upper
bound on the expected collision lists length in the hash table. To accomplish this
task we chose to use smoothed analysis of D. A. Spielman and S. Teng [15], a tool
that has already been used in previous works for the analysis of string matching
algorithms—see [20]. Smoothed analysis aims at explaining the behavior of algo-
rithms in practice, where often standard worst and average case analysis do not
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provide meaningful bounds (see, for example, [16]). The key observation moti-
vating smoothed analysis is that, in practice, data is firstly generated by a source
and then perturbed by random noise (for example channel noise in communi-
cation theory or random genetic mutations in bioinformatics). While studying
complexity, the former step translates in the choice of a worst-case instance (as in
worst-case analysis) and the latter in the computation of an expected complexity,
with the noise being the source of randomness (as in average-case analysis). As
a by-product, smoothed analysis does not require to make assumptions—often
hard to motivate—on the distribution of input data.

In this section we first use smoothed analysis theory to give a (rather general)
result relating the presence of random noise perturbing text and pattern to the
expected collision lists length in the hash table. Our results are general and
apply to any hash function with the property of being a linear map between
Σm and Σw seen as vector spaces. Our bounds are then used to compute the
expected hash load distribution induced by h⊕ and, consequently, the smoothed
complexity of our algorithm.

Smoothed Analysis of Hashing with Linear Maps. Here we focus on hash
functions h that are linear maps between Σm and Σw seen as vector spaces.
We use the same symbol h to indicate also the characteristic matrix h ∈ Σw×m

associated with the linear map h; the specific interpretation of the symbol h
will be clear from the context. Even though our results could be stated in full
generality with respect to Σ = Zσ and sum modulo σ, for simplicity, we will give
them for the case Σ = Z2 with the corresponding sum operator being ⊕. One of
the advantages of this choice is that, in practice, fingerprints can be manipulated
in time O(1), since most of the modern computer architectures provide bitwise
XOR operator implemented in hardware. Let

Oh(T, P ) = |{i : h(Tm
i ) = h(P ), 0 ≤ i ≤ n − m}|,

be the number of text substrings of length m mapped by h to the value h(P ),
i.e. the length of the collision-list in position h(P ).

In smoothed analysis, usually, the (whole) problem instance is considered to
be perturbed. In our case an instance is the query pair 〈T, P 〉 constituted by
the text T ∈ Σn (to be indexed) and the pattern P ∈ Σm (to be searched in
T ). Let τ ∈ Σn and π ∈ Σm be the random noise vectors perturbing the text
and the pattern, respectively. T̃ = T ⊕ τ and P̃ = P ⊕ π are the perturbed text
and the perturbed pattern, respectively. τi and πj , 0 ≤ i < n, 0 ≤ j < m, are
independent and identically distributed as Be(ε), with 0 ≤ ε ≤ 0.5. Adopting
a notation similar to the one introduced in [15,16], we define the smoothed
hash-load distribution induced by h : Σm → Σw on texts of length n to be

Smoothedε
h(n) = max

T∈Σn,P∈Σm
E
τ,π

[ Oh(T̃ , P̃ ) ] (2)
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We will first work with linear maps h : Σm → Σw such that
∑w−1

i=0 hij ≤
1 for all j = 0, ...,m − 1, and define th = min

i=0,...,w−1

{∑m−1
j=0 hij

}
and ch =

(1 + (1 − 2ε)th) /2. The following theorem holds.

Theorem 3. Smoothedε
h(n) ≤ n(ch)w.

Proof. The proof is based on an analysis of the ⊕ of bernoullian r.v.’s, using the
hypotheses on the number of 1’s on rows and columns.

A weaker bound can be obtained on a a more general linear map h by a
simple transformation.

Corollary 1. Given h : Σm → Σw, let h′ be the linear map defined as

h′
ij =

{
hij if

∑w−1
i=0 hij ≤ 1

0 otherwise
, 0 ≤ i < w, 0 ≤ j < m.

Then, Smoothedε
h(n) ≤ n(ch′)w.

Since ch′ and th′ are univocally determined from h, when clear from the context
we will denote them simply by c and t.

In case of a more general alphabet Σ = {0, ..., 2r − 1}, simply considering a
Σ-digit as a group of r > 0 consecutive bits and h as a matrix of size wr × mr
with elements in Z2, the previous bound becomes:

Corollary 2. Smoothedε
h(n) ≤ n2rw log2 c = nσw log2 c.

As expected this bound interpolates, through the parameter ε, between worst-
case and average-case analysis: if ε = 0 (absence of noise) then σw log2 c = 1 and
we obtain the worst-case analysis Smoothedε

h(n) ≤ n. If ε = 0.5 (uniform noise)
then σw log2 c = σ−w and we obtain Smoothedε

h(n) ≤ nσ−w: the expected hash
load induced by a uniform random text (as predicted by average-case analysis).

Analysis of the Algorithm. The smoothed complexity of the dB-rNA algo-
rithm is defined as (see [16]):

Smoothedε
dB−rNA(n,m) = max

T∈Σn,P∈Σm
E
τ,π

[ TdB−rNA(〈T̃ , P̃ 〉) ] (3)

Using Corollary 2 and the definition of h⊕ the following lemma can be proved.

Lemma 2. Smoothedε
h⊕(n) ∈ O (

nσw log2 c
)
, where c =

(
1 + (1 − 2ε)m/w

)
/2.

Proof. First prove that each bit of h⊕(x) is the XOR of O(m/w) bits of x. The
result then follows from Corollary 2.

Letting ν = log1+η n be the cost of a BWT-to-text coordinate conversion
(see section 3.1), we will firstly make our calculations assuming m ≥ ν (so
that the coordinate conversion cost is absorbed by the cost of checking for a
false positive). This assumption simplifies the notation and is quite reasonable
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(considering that the main theoretic interest is on large patterns); however, for
completeness at the end of this section we will also give time bounds for patterns
such that m < ν.

According to Lemma 2, Theorem 2, and the algorithm description in section
4.2, (3) has the following upper bound:

O (|Z(k)| · (
(w − logσ n + 2 logσ log n) log σ + mnσw log2 c

)
+ (occ + 1) · m

)

(4)
where |Z(k)| ∈ O((2σw)k) and c =

(
1 + (1 − 2ε)m/w

)
/2.

At this point we can determine the optimal word size wopt for which the
above complexity reaches its minimum. To simplify the analysis we assume an
uniform distribution for the hash load, i.e. log2 c = −1 (this choice will affect only
the value found for wopt). Intuitively, decreasing w the term O(nσ−w) increases
exponentially while increasing it the term |Z(k)| increases polynomially, so it
is reasonable that (4) has a unique minimum wopt. Let C(n,m,w, k, σ) be the
complexity (4) where log2 c = −1. Solving ∂C(n,m,wopt, k, σ)/∂wopt = 0 one
can obtain

wopt = logσ(mn) + logσ

(
1 − k/wopt

log σ · ((k + 1) − k/wopt · (log n − log log n))

)

(5)

We assume that k ≈ 0, so the second term in (5) is small and can be ignored.
Notice that, using wopt = logσ(mn) as word size, a lookup operation in the dB-
hash requires O(wopt − logσ n + 2 logσ log n) = O(log m/ log σ) backward search
steps (O(log m) time). Substituting wopt = logσ(mn) in (4) we finally obtain:

Theorem 4. The smoothed complexity of the dB-rNA algorithm is

O((2σ)k(log n)k(log m + ξ) + (occ + 1) · m)

where ξ = (mn)1+log2 c and c =
(
1 + (1 − 2ε)m/ logσ(mn)

)
/2.

Alternatively, to make our bound comparable with average-case results present
in literature, one can set ε = 0.5 and obtain:

Theorem 5. The expected complexity (on uniformly distributed inputs) of the
dB-rNA algorithm is

O((2σ)k(log n)k log m + (occ + 1) · m)

We point out that for any ε > 0 and m large enough, the term ξ in Theorem
4 is small (ξ ≤ log m) and can be ignored 2. This is a strong result since it does
not make restrictive assumptions on the amplitude ε of the noise perturbing the
input instance and shows that, asymptotically, the smoothed and the expected
complexities of our algorithm coincide.

As stated above, these time bounds hold only for patterns such that m ≥ ν.
For short patterns such that m < ν the cost of a coordinate conversion dominates
that of the false-positive check, and our bound becomes O((2σ)k(log n)k(log m+
ξ) + (occ + 1) · log1+η n).
2 Such minimum m satisfies the inequality (mn)1+log2 c ≤ log m.
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5 Conclusions and Final Remarks

In this work we tackled one of the main bottlenecks of hashing, that is its space
requirements, introducing a strategy integrating hashing and (succinct) indexing.
We presented a succinct index, called dB-hash, designed on the hash value h(T )
of the text. This is done using homomorphisms on de Bruijn graphs as hash
functions—here dubbed de Bruijn hash functions. We proved that de Bruijn
hash functions with the additional feature of being Hamming aware—a property
granting the ability to significantly reduce search space—exist: our algorithm
improves upon previous linear-space strategies discussed in literature, and is one
of the few results taking into account randomization to solve the k-mismatch
problem. Moreover, we presented a smoothed analysis of hashing, i.e. the use of
smoothed analysis theory in the study of load distribution in a hash table.

As every hash-based index, our index suffers from the limitation that pattern
length m is fixed and need to be known at index construction time. This is a prob-
lem shared with others indexes for approximate pattern matching (see for exam-
ple [7]), and with hash indexes in general. A second drawback is the increased
query time with respect to the standard hash version (O(log m) for lookup and
O(log1+η n) for coordinate conversions). Despite this fact, we point out that in
practical implementations on large texts, only the dB-hash data structure is able
to use the optimal word size wopt = logσ(mn), and can thus reach the optimal
query time. As an example, consider indexing the Human genome (n = 3.2×109,
σ = 4) with pattern length m = 30. The optimal word size is wopt = 19. While
the dB-hash data structure still requires O(n log σ) bits of space, a standard hash
would require σwopt log n bits ≈ 1 TB of space only for the lookup table, which is
clearly unacceptable in practice. As a result, standard hash tables are limited to
sub-optimal word sizes and thus to sub-optimal query times.

We think this paper opens a number of possibilities for future work. First
of all notice that is possible a generalization of our results to the smoothed
analysis of hashing with alphabets of general size σ (this can be done consid-
ering linear maps modulo σ as hash functions). Then observe that the h(T )
construction technique can be used as a text-transformation preprocessing, ran-
domizing T , and coupled with existing pattern matching algorithms. Finally,
combining our strategy with metric indexes, such as the one presented in [7],
or through an extension of the notion of Hamming-awareness to a more general
distance-awareness, could lead to a generalization of our results to more complex
distances—such as the edit distance.
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Abstract. Let D = {T1,T2, . . . ,TD} be a collection of D string doc-
uments of n characters in total, that are drawn from an alphabet set
Σ = [σ]. The top-k document retrieval problem is to preprocess D into
a data structure that, given a query (P [1..p], k), can return the k docu-
ments of D most relevant to pattern P . The relevance is captured using
a predefined ranking function, which depends on the set of occurrences
of P in Td. For example, it can be the term frequency (i.e., the num-
ber of occurrences of P in Td), or it can be the term proximity (i.e., the
distance between the closest pair of occurrences of P in Td), or a pattern-
independent importance score of Td such as PageRank. Linear space and
optimal query time solutions already exist for this problem. Compressed
and compact space solutions are also known, but only for a few rank-
ing functions such as term frequency and importance. However, space
efficient data structures for term proximity based retrieval have been
evasive. In this paper we present the first sub-linear space data structure
for this relevance function, which uses only o(n) bits on top of any com-
pressed suffix array of D and solves queries in time O((p + k) polylog n).

1 Introduction

Ranked document retrieval, that is, returning the documents that are most rel-
evant to a query, is the fundamental task in Information Retrieval (IR) [1,6].
Muthukrishnan [19] initiated the study of this family of problems in the more
general scenario where both the documents and the queries are general strings
over arbitrary alphabets, which has applications in several areas [20]. In this sce-
nario, we have a collection D = {T1,T2, . . . ,TD} of D string documents of total
length n, drawn from an alphabet Σ = [σ], and the query is a pattern P [1..p]
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over Σ. Muthukrishnan considered a family of problems called thresholded doc-
ument listing: given an additional parameter K, list only the documents where
some function score(P, d) of the occurrences of P in Td exceeded K. For example,
the document mining problem aims to return the documents where P appears at
least K times, whereas the repeats problem aims to return the documents where
two occurrences of P appear at distance at most K. While document mining has
obvious connections with typical term-frequency measures of relevance [1,6], the
repeats problem is more connected to various problems in bioinformatics [4,12].
Also notice that the repeats problem is closely related to the term proximity
based document retrieval in IR field [5,29,32–34]. Muthukrishnan achieved opti-
mal time for both problems, with O(n) space (in words) if K is specified at
indexing time and O(n log n) if specified at query time.

A more natural version of the thresholded problems, as used in IR, is top-k
retrieval: Given P and k, return k documents with the best score(P, d) values.
Hon et al. [15,16] gave a general framework to solve top-k problems for a wide
variety of score(P, d) functions, which takes O(n) space, allows k to be specified
at query time, and solves queries in O(p + k log k) time. Navarro and Nekrich
[22] reduced the time to O(p + k), and finally Shah et al. [30] achieved time
O(k) given the locus of P in the generalized suffix tree of D. Recently, Munro
et al. [18] introduced an O(n)-word index, that can find the top-kth document
in O(log k) time, once the locus of P is given.

The problem is far from closed, however. Even the O(n) space (i.e., O(n log n)
bits) is excessive compared to the size of the text collection itself (n log σ bits),
and in data-intensive scenarios it often renders all these solutions impractical by
a wide margin. Hon et al. [16] also introduced a general framework for succinct
indexes, which use o(n) bits1 on top of a compressed suffix array (CSA) [21],
which represents D in a way that also provides pattern-matching functionalities
on it, all within space (|CSA|) close to that of the compressed collection. A CSA
finds the suffix array interval of P [1..p] in time ts(p) and retrieves any cell of the
suffix array or its inverse in time tSA. Hon et al. achieved O(ts(p)+k tSA log3+ε n)
query time, using O(n/ logε n) bits. Subsequent work (see [20,26]) improved the
initial result up to O(ts(p)+k tSA log2 k logε n) [24], and also considered compact
indexes, which may use o(n log n) bits on top of the CSA. For example, these
achieve O(ts(p) + k tSA log k logε n) query time using n log σ + o(n) further bits
[14], or O(ts(p)+ k log∗ k) query time using n log D + o(n log n) further bits [25].

However, all these succinct and compact indexes work exclusively for the term
frequency (or closely related, e.g., TF-IDF) measure of relevance. For the simpler
case where documents have a fixed relevance independent of P , succinct indexes
achieve O(ts(p) + k tSA log k logε n) query time [3], and compact indexes using
n log D + o(n log D) bits achieve O(ts(p) + k log(D/k)) time [10]. On the other
hand, there have been no succinct nor compact indexes for the term proximity
measure of relevance, tp(P, d) = min{{|i−j| > 0,Td[i..i+p−1] = Td[j..j+p−1] =
P} ∪ {∞}}. In this paper we introduce the first such result as follows.

1 If D = o(n), which we assume for simplicity in this paper. Otherwise it is
D log(n/D) + O(D) + o(n) bits.
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Theorem 1. Using a CSA plus o(n) bits data structure, one can answer top-k
term proximity queries in O(ts(p) + (log2 n + k(tSA + log k log n)) log2+ε n) time,
for any constant ε > 0.

2 Basic Concepts

Let T[1..n] = T1 ◦ T2 ◦ · · ·TD be the text (from an alphabet Σ = [σ] ∪ {$})
obtained by concatenating all the documents in D. Each document is terminated
with a special symbol $, which does not appear anywhere else. A suffix T[i..n]
of T belongs to Td iff i is in the region corresponding to Td in T. Thus, it holds
d = 1 + rankB(i − 1), where B[1..n] is a bitmap defined as B[j] = 1 iff T[j] = $
and rankB(i − 1) is the number of 1s in B[1..i − 1]. This operation is computed
in O(1) time on a representation of B that uses D log(n/D) + O(D) + o(n) bits
[28]. For simplicity, we assume D = o(n), and thus B uses o(n) bits.

Suffix Tree [31] of T is a compact trie containing all of its suffixes, where the
ith leftmost leaf, �i, represents the ith lexicographically smallest suffix. It is also
called the generalized suffix tree of D, GST. Each edge in GST is labeled by a
string, and path(x) is the concatenation of the edge labels along the path from
the GST root to node x. Then path(�i) is the ith lexicographically smallest suffix
of T. The highest node x with path(x) prefixed by P [1..p] is the locus of P , and
is found in time O(p) from the GST root. The GST uses O(n) words of space.

Suffix Array [17] of T, SA[1..n], is defined as SA[i] = n + 1 − |path(�i)|, the
starting position in T of the ith lexicographically smallest suffix of T. The suffix
range of P is the range SA[sp, ep] pointing to the suffixes that start with P ,
T[SA[i]..SA[i] + p − 1] = P for all i ∈ [sp, ep]. Also, �sp (resp., �ep) are the
leftmost (resp., rightmost) leaf in the subtree of the locus of P .

Compressed Suffix Array [8,11,21] of T , CSA, is a compressed representation of
SA, and usually also of T. Its size in bits, |CSA|, is O(n log σ) and usually much
less. The CSA finds the interval [sp, ep] of P in time ts(p). It can output any value
SA[i], and even of its inverse permutation, SA−1[i], in time tSA. For example, a
CSA using nHh(T) + o(n log σ) bits [2] gives ts(p) = O(p) and tSA = O(log1+ε n)
for any constant ε > 0, where Hh is the hth order empirical entropy.

Compressed Suffix Tree of T, CST, is a compressed representation of GST, where
node identifiers are their corresponding suffix array ranges. The CST can use
o(n) bits on top of a CSA [23] and compute (among others) the lowest common
ancestor (LCA) of two leaves �i and �j , in time O(tSA logε n), and the Weiner link
Wlink(a, v), which leads to the node with path label a◦path(v), in time O(tSA).2

OrthogonalRangeSuccessor/Predecessor. Givennpoints in [n]×[n], anO(n log n)-
bit data structure can retrieve the point in a given rectangle with lowest
2 Using O(n/ logε n) bits and no special implementation for operations SA−1[SA[i]±1].
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y-coordinate value, in time O(logε n) for any constant ε > 0 [27]. Combined with
standard range tree partitioning, the following result easily follows.

Lemma 1. Given n′ points in [n] × [n] × [n], a structure using O(n′ log2 n) bits
can support the following query in O(log1+ε n) time, for any constant ε > 0: find
the point in a region [x, x′] × [y, y′] × [z, z′] with the lowest/highest x-coordinate.

3 An Overview of Our Data Structure

The top-k term proximity is related to a problem called range restricted search-
ing, where one must report all the occurrences of P that are within a text range
T[i..j]. It is known that succinct data structures for that problem are unlikely
to exist in general, whereas indexes of size |CSA| + O(n/ logε n) bits do exist
for patterns longer than Δ = log2+ε n (see [13]). Therefore, our basic strategy
will be to have a separate data structure to solve queries of length p = π, for
each π ∈ {1, . . . , Δ}. Patterns with length p > Δ can be handled with a single
succinct data structure. More precisely, we design two different data structures
that operate on top of a CSA:

– An O(n log log n/(π logγ n))-bits structure for handling queries of fixed length
p = π, in time O(ts(p) + k(tSA + log log n + log k)π logγ n).

– An O(n/ logε n+(n/Δ) log2 n)-bits structure for handling queries with p > Δ
in time O(ts(p) + Δ(Δ + tSA) + k log k log2ε n(tSA + Δ log1+ε n)).

By building the first structure for every π ∈ {1, . . . , Δ}, any query can
be handled using the appropriate structure. The Δ structures for fixed pat-
tern length add up to O(n(log log n)2/ logγ n) = o(n/ logγ/2 n) bits, whereas
that for long patterns uses O(n/ logε n) bits. By choosing ε = 4ε = 2γ, the
space is O(n/ logε/4 n) bits. As for the time, the structures for fixed p = π are
most costly for π = Δ, where their time is k(tSA + log log n + log k)Δ logγ n.
Adding up the time of the second structure, we get O(ts(p) + Δ(Δ + k(tSA +
log k log1+ε n) log2ε n), which is upper bounded by O(ts(p) + (log2 n + k(tSA +
log k log n)) log2+ε n). This yields Theorem 1.

Now we introduce some formalization to convey the key intuition. The term
proximity tp(P, d) can be determined by just two occurrences of P in Td, which
are the closest up to ties. We call them critical occurrences, and a pair of two
closest occurrences is a critical pair. There can be multiple critical pairs.

Definition 1. An integer i ∈ [1, n] is an occurrence of P in Td if the suffix
T[i..n] belongs to Td and T[i..i + p − 1] = P [1..p]. The set of all occurrences of
P in T is called Occ(P ).

Definition 2. An occurrence id of P in Td is a critical occurrence if there exists
another occurrence i′d of P in Td such that |id − i′d| = tp(P, d). The pair (id, i′d)
is called a critical pair of Td with respect to P .
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A key concept in our solution is that of candidate sets of occurrences, which
contain sufficient information to solve the top-k query (note that, due to ties, a
top-k query may have multiple valid answers).

Definition 3. Let Topk(P, k) be a valid answer for the top-k query (P, k). A
set Cand(P, k) ⊆ Occ(P ) is a candidate set of Topk(P, k) if, for each document
identifier d ∈ Topk(P, k), there exists a critical pair (id, i′d) of Td with respect to
P such that id, i

′
d ∈ Cand(P, k).

Lemma 2. Given a CSA on D, a valid answer to query (P, k) can be computed
from Cand(P, k) in O(z log z) time, where z = |Cand(P, k)|.

Proof. Sort the set Cand(P, k) and traverse it sequentially. From the occurrences
within each document Td, retain the closest consecutive pair (id, i′d), and finally
report k documents with minimum values |id − i′d|. This takes O(z log z) time.

We show that this returns a valid answer set. Since Cand(P, k) is a candidate
set, it contains a critical pair (id, i′d) for d ∈ Topk(P, k), so this critical pair
(or another with the same |id − i′d| value) is chosen for each d ∈ Topk(P, k).
If the algorithm returns an answer other than Topk(P, k), it is because some
document d ∈ Topk(P, k) is replaced by another d′ /∈ Topk(P, k) with the same
score tp(P, d′) = |id′ − i′d′ | = |id − i′d| = tp(d). ��

Our data structures aim to return a small candidate set (as close to size k as
possible), from which a valid answer is efficiently computed using Lemma 2.

4 Data Structure for Queries with Fixed p = π ≤ Δ

We build an o(n/π)-bits structure for handling queries with pattern length p = π.

Lemma 3. There is anO(n log log n/(π logγ n))-bits data structure solving queries
(P [1..p], k) with p = π in O(ts(p) + k(tSA + log log n + log k)π logγ n) time.

The idea is to build an array F[1, n] such that a candidate set of size O(k),
for any query (P, k) with p = π, is given by {SA[i], i ∈ [sp, ep]∧F[i] ≤ k}, [sp, ep]
being the suffix range of P . The key property to achieve this is that the ranges
[sp, ep] are disjoint for all the patterns of a fixed length π. We build F as follows.

1. Initialize F[1..n] = n + 1.
2. For each pattern Q of length π,

(a) Find the suffix range [α, β] of Q.
(b) Find the list Tr1 ,Tr2 ,Tr3 , . . . of documents in the ascending order of

tp(Q, ·) values (ties broken arbitrarily).
(c) For each document Trκ

containing Q at least twice, choose a unique
critical pair with respect to Q, that is, choose two elements j, j′ ∈ [α, β],
such that (irκ

, i′rκ
) = (SA[j],SA[j′]) is a critical pair of Trκ

with respect
to Q. Then assign F[j] = F[j′] = κ.
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The following observation is immediate.

Lemma 4. For a query (P [1..p], k) with p = π and suffix array range [sp, ep] for
P , the set {SA[j], j ∈ [sp, ep] ∧ F[j] ≤ k} is a candidate set of size at most 2k.

Proof. A valid answer for (P, k) are the document identifiers r1, . . . , rk considered
at construction time for Q = P . For each such document Trκ

, 1 ≤ κ ≤ k, we
have found a critical pair (irκ

, i′rκ
) = (SA[j],SA[j′]), for j, j′ ∈ [sp, ep], and set

F[j] = F[j′] = κ ≤ k. All the other values of F[sp, ep] are larger than k (or ∞).
The size of the candidate set is thus at most 2k (or less, if there are less than k
documents where P occurs twice). ��

However, we cannot afford to maintain F explicitly within the desired space
bounds. Therefore, we replace F by a sampled array F′. The sampled array is
built by cutting F into blocks of size π′ = π logγ n and storing the logarithm of
the minimum value for each block. This will increase the size of the candidate
sets by a factor π′. More precisely, F′[1, n/π′] is defined as

F′[j] = �log min F [(j − 1)π′ + 1..jπ′]� .

Since F′[j] ∈ [0.. log n], the array can be represented using n log log n/ logγ n
bits. We maintain F′ with a multiary wavelet tree [9], which maintains the space
in O(n log log n/ logγ n) bits and, since the alphabet size is logarithmic, supports
in constant time operations rank and select on F′. Operation rank(j, κ) counts
the number of occurrences of κ in F′[1..j], whereas select(j, κ) gives the position
of the jth occurrence of κ in F′.

Query Algorithm. To answer a query (P [1..p], k) with p = π using a CSA and
F′, we compute the suffix range [sp, ep] of P in time ts(p), and then do as follows.

1. Among all the blocks of F overlapping the range [sp, ep], identify those con-
taining an element ≤ 2�log k�, that is, compute the set

Sblocks = {j, �sp/π′� ≤ j ≤ �ep/π′� ∧ F′[j] ≤ �log k�}.

2. Generate Cand(P, k) = {SA[j′], j ∈ Sblocks ∧ j′ ∈ [(j − 1)π′ + 1, jπ′]}.
3. Find the query output from the candidate set Cand(P, k), using Lemma 2.

For step 1, the wavelet tree representation of F′ generates Sblocks in time O(1+
|Sblocks|): All the 2t positions3 j ∈ [sp, ep] with F′[j] = t are j = select(rank(sp−
1, t)+i, t) for i ∈ [1, 2t]. We notice if there are no sufficient documents if we obtain
a j > ep, in which case we stop.

The set Cand(P, k) is a candidate set of (P, k), since any j ∈ [sp, ep] with
F[j] ≤ k belongs to some block of Sblocks. Also the number of j ∈ [sp, ep] with
F[j] ≤ 2�log k� is at most 2 · 2�log k� ≤ 4k, therefore |Sblocks| ≤ 4k.

Now, Cand(P, k) is of size |Sblocks|π′ = O(kπ′), and it is generated in step 2 in
time O(k tSA π′). Finally, the time for generating the final output using Lemma 2
is O(kπ′ log(kπ′))) = O(kπ logγ n(log k + log log n + log π)). By considering that
π ≤ Δ = log2+ε n, we obtain Lemma 3.
3 Except for t = 0, which has 2 positions.
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5 Data Structure for Queries with p > Δ

We prove the following result in this section.

Lemma 5. There is an O(n/ logε n+(n/Δ) log2 n)-bits structure solving queries
(P [1..p], k), with p > Δ, in O(ts(p)+Δ(Δ+tSA)+k log k log2ε n(tSA+Δ log1+ε n))
time.

We start with a concept similar to that of a candidate set, but weaker in the
sense that it is required to contain only one element of each critical pair.

Definition 4. Let Topk(P, k) be a valid answer for the top-k query (P, k). A set
Semi(P, k) ⊆ [n] is a semi-candidate set of Topk(P, k) if it contains at least one
critical occurrence id of P in Td for each document identifier d ∈ Topk(P, k).

Our structure in this section generates a semi-candidate set Semi(P, k). Then,
a candidate set Cand(P, k) is generated as the union of Semi(P, k) and the set
of occurrences of P that are immediately before and immediately after every
position i ∈ Semi(P, k). This is obviously a valid candidate set. Finally, we apply
Lemma 2 on Cand(P, k) to compute the final output.

5.1 Generating a Semi-candidate Set

This section proves the following result.

Lemma 6. A structure of O(n(log log n)2/ logδ n) bits plus a CSA can generate
a semi-candidate set of size O(k log k logδ n) in time O(tSA k log k logδ n).

Let Leaf(x) (resp., Leaf(y)) be the set of leaves in the subtree of node x (resp.,
y) in GST, Leaf(x\y) = Leaf(x) \ Leaf(y). The following lemma holds.

Lemma 7. The set Semi(path(y), k)∪{SA[j], �j ∈ Leaf(x\y)} is a semi-candidate
set of (path(x), k).

Proof. Let d ∈ Topk(path(x), k), then our semi-candidate set should contain id
or i′d for some critical pair (id, i′d). If there is some such critical pair where id or
i′d are occurrences of path(x) but not of path(y), then �j or �j′ are in L(x\y),
for SA[j] = id and SA[j′] = i′d, and thus our set contains it. If, on the other
hand, both id and i′d are occurrences of path(y) for all critical pairs (id, i′d), then
tp(path(y), d) = tp(path(x), d), and the critical pairs of path(x) are the critical
pairs of path(y). Thus Semi(y, k) contains id or i′d for some such critical pair. ��

Our approach is to precompute and store Semi(path(y), k) for carefully selected
nodes y ∈ GST and k values, so that any arbitrary Semi(path(x), k) set can be
computed efficiently. The succinct framework of Hon et al. [16] is adequate for this.

Node Marking Scheme. The idea [16] is to mark a set Markg of nodes in GST
based on a grouping factor g: Every gth leaf is marked, and the LCA of any two
consecutive marked leaves is also marked. Then the following properties hold.
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1. |Markg| ≤ 2n/g.
2. If there exists no marked node in the subtree of x, then |Leaf(x)| < 2g.
3. If it exists, then the highest marked descendant node y of any unmarked

node x is unique, and |Leaf(x\y)| < 2g.

We use this idea, and a later refinement [14]. Let us first consider a variant
of Lemma 6 where k = κ is fixed at construction time. We use a CSA and an
O(n/ logδ n)-bit CST on it, see Section 2. We choose g = κ log κ log1+δ n and,
for each node y ∈ Markg, we explicitly store a candidate set Semi(path(y), κ) of
size κ. The space required is O(|Markg|κ log n) = O(n/(log κ logδ n)) bits.

To solve a query (P, κ), we find the suffix range [sp, ep], then the locus
node of P is x = LCA(�sp, �ep). Then we find y = LCA(�g�sp/g�, �g�ep/g�), the
highest marked node in the subtree of x. Then, by the given properties of
the marking scheme, combined with Lemma 7, a semi-candidate set of size
O(g + κ) = O(κ log κ log1+δ n) can be generated in O(tSAκ log κ log1+δ n) time.

To reduce this time, we employ dual marking scheme [14]. We identify a
larger set Markg′ of nodes, for g′ = κ log κ logδ n. To avoid confusion, we call
these prime nodes, not marked nodes. For each node y′ ∈ Markg′ , we precom-
pute a candidate set Semi(path(y′), κ) of size κ. Let y be the (unique) highest
marked node in the subtree of y′. Then we store κ bits in y′ to indicate which of
the κ nodes stored in Semi(path(y), κ) also belong to Semi(path(y′), κ). By the
same proof of Lemma 7, elements in Semi(path(y′), κ) \ Semi(path(y), κ) must
have a critical occurrence in Leaf(y′\y). Then, instead of explicitly storing the
critical positions id ∈ Semi(path(y′), κ) \ Semi(path(y), κ), we store their left-
to-right position in Leaf(y′\y). Storing κ such positions in leaf order requires
O(κ log(g/κ)) = O(κ log log n) bits, using for example gamma codes. The total
space is O(|Markg′ |κ log log n) = O(n log log n/(log κ logδ)) bits.

Now we can apply the same technique to obtain a semi-candidate set from
Markg′ , yet of smaller size O(g′+κ) = O(κ log κ logδ n), in time O(tSAκ log κ logδ n).

We are now ready to complete the proof Lemma 6. We maintain structures as
described for all the values of κ that are powers of 2, in total O((n log log n/ logδ n)·
∑log D

i=1 1/i) = O(n(log log n)2/ logδ n) bits of space. To solve a query (P, k), we
compute κ = 2�log k� < 2k and return the semi-candidate set of (P, κ) using the
corresponding structure.

5.2 Generating the Candidate Set

The problem boils down to the task of, given P [1..p] and an occurrence q, finding
the occurrence of P closest to q. In other words, finding the first and the last
occurrence of P in T[q + 1..n] and T[1..q + p − 1], respectively. We employ suffix
sampling to obtain the desired space-efficient structure. The idea is to exploit
the fact that, if p > Δ, then for every occurrence q of P there must be an integer
j = Δ�q/Δ� (a multiple of Δ) and t ≤ Δ, such that P [1..t] is a suffix of T[1..j]
and P [t + 1..p] is a prefix of T[j + 1..n]. We call q an offset-t occurrence of P .
Then, Cand(P, k) can be computed as follows:
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1. Find Semi(P, k) using Lemma 6.
2. For each q ∈ Semi(P, k) and t ∈ [1,Δ], find the offset-t occurrences of P that

are immediately before and immediately after q.
3. The occurrences found in the previous step, along with the elements in

Semi(P, k), constitute Cand(P, k).

In order to perform step 2 efficiently, we maintain the following structures.

– Sparse Suffix Tree (SST): A suffix T[Δi + 1..n] is a sparse suffix, and
the trie of all sparse suffixes is a sparse suffix tree. The sparse suffix range
of a pattern Q is the range of the sparse suffixes in SST that are prefixed
by Q. Given the suffix range [sp, ep] of a pattern, its sparse suffix range
[ssp, sep] can be computed in constant time by maintaining a bitmap B[1..n],
where B[j] = 1 iff T[SA[j]..n] is a sparse suffix. Then ssp = 1 + rankB(sp −
1) and sep = rankB(sp). Since B has n/Δ 1s, it can be represented in
O((n/Δ) log Δ) bits while supporting rankB operation in constant time for
any Δ = O(polylog n) [28].

– Sparse Prefix Tree (SPT): A prefix T[1..Δi] is a sparse prefix, and the trie
of the reverses of all sparse prefixes is a sparse prefix tree. The sparse prefix
range of a pattern Q is the range of the sparse prefixes in SPT with Q as a
suffix. The SPT can be represented as a blind trie [7] using O((n/Δ) log n)
bits. Then the search for the sparse prefix range of Q can be done in O(|Q|)
time, by descending using the reverse of Q4. Note that the blind trie may
return a fake node when Q does not exist in the SPT.

– Orthogonal Range Successor/Predecessor Search Structure over a
set of �n/Δ� points of the form (x, y, z), where the yth leaf in SST corre-
sponds to T[x..n] and the zth leaf in SPT corresponds to T[1..(x − 1)]. The
space needed is O((n/Δ) log2 n) bits (recall Lemma 1).

The total space of the structures is O((n/Δ) log2 n) bits. They allow com-
puting first offset-t occurrence of P in T[q +1..n] as follows: find [sspt, sept] and
[ssp′

t, sep
′
t], the sparse suffix range of P [t + 1..p] and the sparse prefix range of

P [1..t], respectively. Then, using an orthogonal range successor query, find the
point (e, ·, ·) with the lowest x-coordinate value in [q + t + 1, n] × [sspt, sept] ×
[ssp′

t, sep
′
t]. Then, e−t is the answer. Similarly, the last offset-t occurrence of P in

T[1..q−1] is f−t, where (f, ·, ·) is the point in [1, q+t−1]×[sspt, sept]×[ssp′
t, sep

′
t]

with the highest x-coordinate value.
First, we compute all the ranges [sspt, sept] using the SST. This requires

knowing the interval SA[spt, ept] of P [t + 1..p] for all 1 ≤ t ≤ Δ. We compute
these by using the CSA to search for P [Δ + 1..p] (in time at most ts(p)), which
gives [spΔ, epΔ], and then computing [spt−1, ept−1] = Wlink(P [t], [spt, ept]) for
t = Δ − 1, . . . , 1. Using an o(n)-bits CST (see Section 2), this takes O(ΔtSA)
time. Then the SST finds all the [sspt, sept] values in time O(Δ). Thus the time
spent on the SST searches is O(ts(p) + ΔtSA).

4 Using perfect hashing to move in constant time towards the children.



178 J. I. Munro et al.

Second, we search the SPT for reverse pattern prefixes of lengths 1 to Δ,
and thus they can all be searched for in time O(Δ2). Since the SPT is a blind
trie, it might be either that the intervals [ssp′

t, sep
′
t] it returns are the correct

interval of P [1..t], or that P [1..t] does not terminate any sparse prefix. A simple
way to determine which is the case is to perform the orthogonal range search as
explained, asking for the successor e0 of position 1, and check whether the result-
ing position, e0−t, is an occurrence of P , that is, whether SA−1[e0 − t] ∈ [sp, ep].
This takes O(tSA + log1+ε n) time per verification. Considering the searches plus
verifications, the time spent on the SPT searches is O(Δ(Δ + tSA + log1+ε n)).

Finally, after determining all the intervals [sspt, sept] and [ssp′
t, sep

′
t], we

perform O(|Semi(P, k)|Δ) orthogonal range searches for positions q, in time
O(|Semi(P, k)|Δ log1+ε n), and keep the closest one for each q.

Lemma 8 . Given a semi-candidate set Semi(P, k), where p > Δ, a candidate
set Cand(P, k) of size O(|Semi(P, k)|) can be computed in time O(ts(p) + Δ(Δ +
tSA + |Semi(P, k)| log1+ε n)) using a data structure of O((n/Δ) log2 n) bits.

Thus, by combining Lemma 6 using δ = 2ε (so its space is o(n/ logε n) bits)
and Lemma 8, we obtain Lemma 5.

6 Concluding Remarks

We have obtained the first succinct result for top-k term-proximity queries. The
following additional results will be presented in the full version of this paper.

1. Another trade-off for top-k term-proximity queries with space and query
time 2n log σ + o(n log σ) + O(n log log n) bits and O(p + k log k log1+ε n),
respectively. Notice that, when log log n = o(log σ), the trade-off matches
with the best known result for top-k term-frequency queries [15].

2. In a more realistic scenario, score(·, ·) is a weighted sum of PageRank, term-
frequency and term-proximity with predefined non-negative weights [33].
Top-k queries with such ranking functions can be handled using an index of
space 2n log σ + o(n log σ) bits in time O(p + k log k log4+ε n).
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6. Büttcher, S., Clarke, C.L.A., Cormack, G.: Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press (2010)

7. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search
in external memory and its applications. J. ACM 46(2), 236–280 (1999)

8. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)
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Abstract. A static binary search tree where every search starts from
where the previous one ends (lazy finger) is considered. Such a search
method is more powerful than that of the classic optimal static trees,
where every search starts from the root (root finger), and less powerful
than when rotations are allowed—where finding the best rotation based
tree is the topic of the dynamic optimality conjecture of Sleator and
Tarjan. The runtime of the classic root-finger tree can be expressed in
terms of the entropy of the distribution of the searches, but we show that
this is not the case for the optimal lazy finger tree. A non-entropy based
asymptotically-tight expression for the runtime of the optimal lazy finger
trees is derived, and a dynamic programming-based method is presented
to compute the optimal tree.

1 Introduction

Static Trees. A binary search tree is one of the most fundamental data struc-
tures in computer science. In response to a search operation, some binary trees
perform changes in the data structure, while others do not. For example, the
splay tree [18] data structure performs a sequence of rotations that moves the
searched item to the root. Other binary search tree data structures do not change
at all during a search, for example, red-black trees [13] and AVL trees [1]. We
will call BSTs that do not perform changes in the structure during searches to
be static and call trees that perform changes BSTs with rotations. In this work
we do not consider insertions and deletions, only searches in the comparison
model, and thus can assume without loss of generality that all structures under
consideration are storing the integers from 1 to n and that all searches are to
these items.
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We consider two variants of static BSTs: root finger and lazy finger. In the
classic method, the root finger method, the first search proceeds from the root
to the item being searched. In the second and subsequent searches, a root finger
BST executes the searches in the same manner, always starting each search
from the root. In contrast, here we consider lazy finger BSTs to be those which
start each search at the destination of the previous search and move to the
item being searched. In general, this movement involves going up to the least
common ancestor (LCA) of the previous and current items being searched, and
then moving down from the LCA to the current item being searched. In order
to facilitate such a search, each node of the tree needs to be augmented with the
minimal and maximal elements in its subtree.

Notation and Definitions. A static tree T is a fixed binary search tree con-
taining n elements. No rotations are allowed. The data structure must process
a sequence of searches, by moving a single pointer in the tree. Let r(T, i, j) be
the time to move the pointer in the tree T from node i to j. If dT (i) represents
the depth of node i, with the root defined as having depth zero, then

r(T, i, j) = dT (i) − dT (LCAT (i, j)) + dT (j) − dT (LCAT (i, j))
= dT (i) + dT (j) − 2dT (LCAT (i, j)).

The runtime to execute a sequence X = x1, x2, . . . xm of searches on a tree
T using the root finger method is

Rroot(T,X) =
m∑

i=1

r(T, root(T ), xi) =
m∑

i=1

dT (xi)

and the runtime to execute the same sequence on a tree T using the lazy finger
method is

Rlazy(T,X) =
m∑

i=1

r(T, xi−1, xi) =

(
2

m∑

i=1

(dT (xi) − dT (LCAT (xi, xi−1)))

)
− dT (xm)

where x0 is defined to be the root of T , which is where the first search starts.

History of Optimal Static Trees with Root Finger. For the root finger
method, once the tree T is fixed, the cost of any single search in tree T depends
only on the search and the tree, not on any of the search history. Thus, the
optimal search tree for the root finger method is a function only of the frequency
of the searches for each item. Let fX(a) denote the number of searches in X to a.
Given fX , computing the optimal static BST with root finger has a long history.
In 1971, Knuth gave a O(n2) dynamic programming solution that finds the
optimum tree [15]. More interestingly is the discovery of a connection between
the runtime of the optimal tree and the entropy of the frequencies:
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H(fX) =
n∑

a=1

fX(a)
m

lg
m

fX(a)
.

Melhorn [16] showed that a simple greedy heuristic proposed by Knuth [15]
and shown to have a linear-time implementation by Fredman [11] produced a
static tree where an average search takes time 2+ 1

1−lg(
√
5−1)

H(fX). Furthermore,

Melhorn demonstrated a lower bound of 1
lg 3H(fX) for an average search in

an optimal static tree, and showed this bound was tight for infinitely many
distributions. Thus, by 1975, it was established that the runtime for an average
search in an optimal search tree with root finger was Θ(H(fX)), and that such
a tree could easily be computed in linear time.

Our Results. We wish to study the natural problem of what we have coined
search with a lazy finger in a static tree, i.e. have each search start where the
last one ended. We seek to characterize the optimal tree for this search strategy,
and describe how to build it.

The lazy finger method is asymptotically clearly no worse then the root
finger method; moving up to the LCA and back down is better than moving
to the root and back down, which is exactly double the cost of the root finger
method. But, in general, is the lazy finger method better? For the lazy finger
method, the cost of a single search in a static tree depends only on the current
search and the previous search—this puts lazy finger’s runtime dependence on
the search sequence between that of root finger and trees with rotations. Thus
the optimal search tree for the lazy finger method only depends on the frequency
of each search transition; let fX(a, b) be the number of searches in X to b where
the previous search was to a. Given these pairwise frequencies (from which the
frequencies fX(a) can easily be computed), is there a nice closed form for the
runtime of the optimal BST with lazy finger? One natural runtime to consider
is the conditional entropy:

Hc(fX) =
n∑

a=1

n∑

b=1

fX(a, b)
m

lg
fX(a)

fX(a, b)

This is of interest as information theory gives this as an expected lower
bound1 if the search sequence is derived from a Markov chain where n states
represents searching each item.

While a runtime related to the conditional entropy is the best achievable by
any algorithm parameterized solely on the pairwise frequencies, however, we will
show in Lemma 5 that the conditional entropy is impossible to be asymptotically
achieved for any BST, static or dynamic, within any o(log n) factor. Thus, for
the root finger, the lower bound given by information theory is achievable, yet
1 When multiplied by 1

lg 3
, as the information theory lower bound holds for binary

decisions and as observed in [16] needs to be adjusted to the ternary decisions that
occur at each node when traversing a BST.
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for lazy finger it is not related to the runtime of the optimal tree. In Section 7
we will present a simple static non-tree structure whose runtime is related to the
conditional entropy.

This still leaves us with the question: is there a simple closed form for the
runtime of the optimal BST with lazy finger? We answer this in the affirma-
tive by showing an equivalence between the runtime of BSTs with lazy finger
and something known as the weighted dynamic finger runtime. In the weighted
dynamic finger runtime, if item i is given weight wi, then the time to execute

search xi is lg
∑max(xi,xi−1)

k=min(xi,xi−1) wk

min(wxi−1 ,wxi
) . Our main theorem is that the runtime of the

best static tree with lazy finger, LF (X), is given by the weighted dynamic finger
runtime bound with the best choice of weights:

LF (X) = min
T

Rlazy(T,X) = Θ

⎛

⎝min
W

⎧
⎨

⎩

m∑

i=1

lg

∑max(xi,xi−1)
k=min(xi,xi−1)

wk

min(wxi−1 , wxi
)

⎫
⎬

⎭

⎞

⎠

To prove this, we first state the result of Seidel and Aragon [17] in Section 2
of how to construct a tree with the weighted dynamic finger runtime given a set
of weights. Then, in Section 3, we show how, given any static tree T , there exists
weights such that the runtime of T on a sequence using lazy finger can be lower
bounded using the weighted dynamic finger runtime with these weights. These
results are combined in Section 4 to give the main theorem.

While a nice closed-form formula for the runtime of splay trees is not known,
there are several different bounds on their runtime: working set, static finger,
dynamic finger, and static optimality [7,8,18]. One implication of our result is
that the runtime of the optimal lazy finger tree is asymptotically as good as that
of all of the aforementioned bounds with the exception of the working set bound
(see Theorem 3 for why the working set bound does not hold on a lazy finger
static structure).

While these results have served to characterize the best runtime for the opti-
mal BST, a concrete method is needed to compute the best tree given the pair-
wise frequencies. We present a dynamic programming solution in Section 6; this
solution takes time O(n3) to compute the optimal tree for lazy finger, given a
table of size n2 with the frequency of each pair of searches occurring adjacently.
This method could be extended using the ideas of Iacono and Mulzer [14] into
one which periodically rebuilds the static structure using the observed frequen-
cies so far; the result would be an online structure that for sufficiently long search
sequences achieves a runtime that is within a constant factor of the optimal tree
without needing to be initialized with the pairwise frequencies.

Relation to Finger Search Structures. The results here have a relation to
the various finger search structures that have been proposed. We note, first of
all, that the trees we are considering are not level linked; the only pointers are
to the parent and children. Secondly, while the basic finger search runtime of
O(

∑m
i=2 log |xi − xi−1|) (recall that we are assuming the xi are integers from
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1 to n) is long known to easily achievable in a static tree, it is easily shown
that there are some search sequences X for which the optimal tree performs far
better. For example, the search sequence xi = i

√
n mod n where n is a perfect

square can be easily executed in time O(m) on the best static tree with lazy
finger, which is much better than the O(m log n) of dynamic finger.

But this limitation of the O(
∑m

i=2 log |xi − xi−1|) runtime has been long
known, which is why the weighted version of finger search was proposed. Our
main contribution is to realize that the weighted dynamic finger runtime bound,
which was not proposed in the context of lazy finger, is the asymptotically tight
characterization of BSTs with lazy finger when used with the best choice of
weights.

Why Static Trees? Static trees are less powerful than dynamic ones in terms
of the classes of search sequence distributions that can be executed quickly, so
why are we studying them? One should use the simplest structure with the least
overhead that gets the job done. By completely categorizing the runtime of the
optimal tree with lazy finger, one can know if such a structure is appropriate for
a particular application or whether one should instead use the more powerful
dynamic trees, or simpler root-finger trees.

Rotation-based trees have horrible cache performance. However, there are
methods to map the nodes of a static tree to memory so as to have optimal
performance in the disk-access model and cache-oblivious models of the mem-
ory hierarchy [6,9,12,19]. One leading cache oblivious predecessor query data
structure that supports insertion and deletion works by having a static tree and
moves the data around in the fixed static tree in response to insertions and dele-
tions and only periodically rebuilds the static structure [4]—in such a structure
an efficient static structure is the key to obtaining good performance even with
insertions and deletions.

Also, concurrency becomes a real issue in dynamic trees, which requires
another layer of complexity to resolve (see, for example Bronson et al. [5]),
while static trees trivially support concurrent operations.

2 Weights Give a Tree

Theorem 1 (Seidel and Aragon [3]). Given a set of positive weights W =
w1, w2, . . . wn, there is a randomized method to choose a tree TW such that the

expected runtime is r(TW , i, j) = O

(

lg
∑max(i,j)

k=min(i,j) wk

min(wi,wj)

)

.

The method to randomly create TW is a straightforward random tree con-
struction using the weights: recursively pick the root using the normalized weights
of all nodes as probabilities. Thus, by the probabilistic method [2], there is a
deterministic tree, call it TW whose runtime over the sequence X is at most the
runtime bound of Seidel and Aragon for the sequence X on the best possible
choice of weights.



186 P. Bose et al.

Corollary 1. For any set of positive weights W = w1, w2, . . . wn there is a tree
TW (X) such that

m∑

i=1

r(TW (X), xi−1, xi) = O

⎛

⎝min
W

⎧
⎨

⎩

m∑

i=1

lg

∑max(xi,xi−1)
k=min(xi,xi−1)

wk

min(wxi−1 , wxi
)

⎫
⎬

⎭

⎞

⎠

Proof. This follows directly from Seidel and Aragon, where TW (X) is a tree that
achieves the expected runtime of their randomized method for the best choice
of weights. ��

3 Trees Can Be Represented by Weights

Lemma 1. For each tree T there is a set of weights WT = wT
1 , wT

2 , . . . wT
n such

that for all i, j r(T, i, j) = Θ

(

lg
∑max(i,j)

k=min(i,j) wT
k

min(wT
i ,wT

j )

)

.

Proof. These weights are simple: give a node at depth d in T a weight of 1
4d

.
Consider a search that starts at node i and goes to node j. Such a path goes
up from i to LCAT (i, j) and down to j. A lower bound on

∑max(i,j)
k=min(i,j) wT

k is the
weight of LCAT (i, j) which is included in this sum and is 1

4dT (LCAT (i,j)) . Thus we

can bound lg
∑max(i,j)

k=min(i,j) wT
k

min(wT
i ,wT

j )
as follows: lg

∑max(i,j)
k=min(i,j) wT

k

min(wT
i ,wT

j )
≥ lg

1
4dT (LCAT (i,j))

min
(

1
4dT (i) , 1

4dT (j)

) =

2max(dT (i), dT (j)) − 2dT (LCAT (i, j)) ≥ dT (i) + dT (j) − 2dT (LCAT (i, j)) =
r(T, i, j)

Similarly, an upper bound on
∑max(i,j)

k=min(i,j) wT
k is twice the weight of LCAT (i, j):

2
4dT (LCAT (i,j)) . This is because each of the two paths down from the LCA have
weights that when summed telescope to less than half that of the LCA:

lg
∑max(i,j)

k=min(i,j) wT
k

min(wT
i ,wT

j )
≤ lg

2
4dT (LCAT (i,j))

min
(

1
4dT (i) , 1

4dT (j)

) = 2max(dT (i), dT (j)) − 4dT (LCAT (i, j))

≤ 2dT (i) + 2dT (j) − 4dT (LCAT (i, j)) = 2r(T, i, j).
��

4 Proof of Main Theorem

Here we combine the results of the previous two sections to show that the runtime
of the optimal tree with lazy finger is asymptotically the weighted dynamic finger
bound for the best choice of weights.

Theorem 2

min
T

{∑m
i=1 r(T, xi−1, xi)} = Θ

(

min
W

{
∑m

i=1 lg
∑max(xi,xi−1)

k=min(xi,xi−1) wk

min(wxi−1 ,wxi
)

})
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Proof. Start by setting Tmin, to be the optimal tree. That is, Tmin = argminT

{∑m
i=1 r(T, xi−1, xi)}:

min
T

{∑m
i=1 r(T, xi−1, xi)} =

∑m
i=1 r(Tmin, xi−1, xi)

Using Lemma 1 there is a constant c such that:

≥ c
∑m

i=1 lg
∑max(xi,xi−1)

k=min(xi,xi−1) wTmin
k

min(wTmin
xi−1

,wxi
)

The weights wTmin
are a lower bound on the sum with the optimal weights

≥ cmin
W

m∑

i=1

lg

∑max(xi,xi−1)
k=min(xi,xi−1)

wk

min(wxi−1 , wxi
)

Using Theorem 1, there is a constant c′ such that:
≥ c′ ∑m

i=1 r(TW , xi−1, xi)
The sum with Tw is at most the sum for optimal T :

≥ min
T

{∑m
i=1 r(T, xi−1, xi)}

��

5 Hierarchy and Limitations of Models

In this section we show there is a strict hierarchy of runtimes from the root finger
static BST model to the lazy finger static BST model to the rotation-based
BST model. Let OPT (X) be the fastest any binary search with rotations can
execute X.

Theorem 3. For any sequence X, minT Rroot(T,X) = Ω (minT Rlazy(T,X)) =
Ω(OPT (X)). Furthermore there exist classes of search sequences of any length
m, X ′

m and X ′′
m such that minT Rroot(T,X ′

m) = ω (minT Rlazy(T,X ′
m)) and

minT Rlazy(T,X ′′
m) = ω(OPT (X ′′

m)).

Proof. We address each of the claims of this theorem separately.
Root finger can be simulated with lazy finger: minT Rroot(T,X)

= Ω (minT Rlazy(T,X)). For lazy finger, moving up to the LCA and back down
is no more work than than moving to the root and back down, which is exactly
the double of the cost of the root finger method.

Lazy finger can be simulated with a rotation-based tree: minT Rlazy(T,X) =
Ω(OPT (X)). The normal definition of a tree allowing rotations has a finger that
starts at the root at every operation and can move around the tree performing
rotations. The work of Demaine et al. [10] shows how to simulate with constant-
factor overhead any number of lazy fingers in a tree that allows rotations in the
normal tree with rotations and one single pointer that starts at the root. This
transformation can be used on a static tree with lazy finger to get the result.

Some sequences can be executed quickly with lazy finger but not with root
finger: There is a X ′

m such that minT Rroot(T,X ′
m) = ω (minT Rlazy(T,X ′

m)).



188 P. Bose et al.

One choice of X ′
m is the sequential search sequence 1, 2, . . . n, 1, 2, . . . repeated

until a search sequence of length m is created. So long as m ≥ n, this takes
time O(m) to execute on any tree using lazy finger, but takes Ω(m lg n) time to
execute on every tree using root finger.

Some sequences can be executed quickly using a BST with rotations, but not
with lazy finger. Pick some small k, say k = lg n. Create the sequence X ′′

m in
rounds as follows: In each round pick k random elements from 1..n, search each of
them once, and then perform n random searches on these k elements. Continue
with more rounds until a total of m searches are performed. A splay tree can
perform this in time O(m lg k). This is because splay trees have the working-set
bound, which states that the amortized time to search an item is at most big-O of
the logarithm of the number of different things searched since the last time that
item was searched. For the sequence X ′′

m, the n random searches in each round
have been constructed to have a working set bound of O(lg k) amortized, while
the k other searches in each round have a working set bound of O(lg n) amortized.
Thus the total cost to execute X ′′

m on a splay tree is O
(

m
n+k (n lg k + k lg n)

)

which is O(m lg lg n) since k = lg n.
However, for a static tree with lazy finger, X ′′

m is basically indistinguishable
from a random sequence and takes Ω(m lg n) expected time. This is because
the majority of the searches are random searches where the previous item was a
random search, and in any static tree the expected distance between two random
items is Ω(lg n). ��
Lemma 2. The runtime of a BST in any model cannot be related to the condi-
tional entropy of the search sequence.

Proof. Wilber [20] proved that the bit reversal sequence is performed in Ω(n lg n)
time in an optimal dynamic BST. This sequence is a precise permutation of all
elements in the tree. However, any single permutation repeated over and over
has a conditional entropy of 0, since every search is completely determined by
the previous one. ��

6 Constructing the Optimal Lazy Finger BST

Recall that fa,b = fX(a, b) is the number of searches in X where the current
search is to b and the previous search is to a, and fX(a) is the number of
searches to a in X. We will first describe one method to compute the cost to
execute X on some tree T . Suppose the nodes in [a, b] constitute the nodes of
some subtree of T , call it Ta,b and denote the root of the subtree as r(Ta,b).
We now present a recursive formula for computing the expected cost of a single
search in T . Let Rlazy(T,X, a, b) be the number of edges traversed in Ta,b when
executing X. Thus, Rlazy(T,X, 1, n) equals the runtime Rlazy(T,X). There is a
recursive formula for Rlazy(T,X, a, b):
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Rlazy(T,X, a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if b < a
(a)

︷ ︸︸ ︷
Rlazy(T,X, a, r(Ta,b) − 1)

+

(b)
︷ ︸︸ ︷
Rlazy(T,X, r(Ta,b) + 1, b)

+

(c)
︷ ︸︸ ︷
2
∑

i∈[a,r(Ta,b)−1]
j∈[r(Ta,b)+1,b]

(fi,j + fj,i)

+

(d)
︷ ︸︸ ︷∑

i�=r(fi,r(Ta,b) + fr(Ta,b),i)

+

(e)
︷ ︸︸ ︷∑

i∈[a,b]
i�=r(Ta,b)

j �∈[a,b]

(fi,j + fj,i)

otherwise

The formula is long but straightforward. First we recursively include the number
of edges traversed in the left (a) and right (b) subtrees of the root r(Ta,b). Thus,
all that is left to account for is traversing the edges between the root of the
subtree and its up to two children. Both edges to its children are traversed when
a search moves from the left to right subtree of ra,b or vice-versa (c). A single
edge to a child of the r(Ta,b) traversed if a search moves from either the left or
right subtrees of r(Ta,b) to r(Ta,b) itself or vice-versa (d), or if a search moves
from any node but the root in the current subtree containing the nodes [a, b] out
to the rest of T or vice-versa (e).

This formula can easily be adjusted into one to determine the optimal cost
over all trees—since at each step the only dependence on the tree was is root of
the current subtree, the minimum can be obtained by trying all possible roots.
Here is the resultant recursive formulation for the minimum number of edges
traversed in and among all subtrees containing [a, b]:

min
T

Rlazy(T,X, a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if b < a

minr∈[a,b]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minT Rlazy(T,X, a, r − 1)
+ minT Rlazy(T,X, r + 1, b)
+2

∑

i∈[a,r−1]
j∈[r+1,b]

(fi,j + fj,i)

+
∑

i�=r(fi,r + fr,i)
+

∑

i∈[a,b]
i�=r

j �∈[a,b]

(fi,j + fj,i)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

otherwise

This formula can trivially be evaluated using dynamic programming in O(n5)
time as there are O(n3) choices for a, b, and r and evaluating the summations
in the brute-force way takes time O(n2). The dynamic programming gives not
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only the cost of the best tree, but the minimum roots chosen at each step gives
the tree itself. The runtime can be improved to O(n3) by observing that when f
is viewed as a 2-D array, each of the sums is simply a constant number of partial
sum queries on the array f , each of which can be answered in O(1) time after
O(n2) preprocessing. (The folklore method of doing this is to store all the 2-D
partial sums from the origin; a generic partial sum can be computed from these
with a constant number of additions and subtractions).

We summarize this result in the following theorem:

Theorem 4. Given the pairwise frequencies fX finding the tree that minimizes
the execution time of search sequence X using lazy finger takes time O(n3).

This algorithm computes an optimal tree, and takes time linear in the size
of the frequency table f . Computing f from X can be done in O(m) time,
for a total runtime of O(m + n3). It remains open if there is any approach to
speed up the computation of the optimal tree, or an approximation thereof.
Note that although our closed form expression of the asymptotic runtime of
the best tree was stated in terms of an optimal choice of weights, the dynamic
program presented here in no way attempts to compute these weights. It would
be interesting if some weight-based method were to be discovered.

7 Multiple Trees Structure

Here we present a static data structure in the comparison model on a pointer
machine that guarantees an average search time of O(Hc(fX) logd n) for any
fixed value 1 ≤ d ≤ n, a runtime which we have shown to be impossible for any
BST algorithm, static or dynamic. This data structure requires O(dn) space. In
particular, setting d = nε gives a search time of O(Hc(fX)) with space O(n1+ε)
for any ε > 0. The purpose of this structure is to demonstrate that while no tree
can have a runtime related to the conditional entropy, pointer based structures
can.

As a first attempt, a structure could be made of n binary search trees
T1, T2, . . . Tn where each tree Ti is an optimal static tree given the previous
search was to i. By using tree Txi−1 to execute search Ti, the asymptotic con-
ditional entropy can be easily obtained. However the space of this structure is
O(n2). Thus space can be reduced by observing the nodes not near the root of
every tree are being executed slowly and thus need not be stored in every tree.

The multiple trees structure has two main parts. It is composed first by a
complete binary search tree T ′ containing all of S. Thus the height of T ′ is
O(lg n). The second part is n binary search trees {T1, T2, . . . , Tn}. A tree Ti

contains the d elements j that have the greatest frequencies fX(i, j); these are
the j elements most frequently searched after that i has been searched. The
depth of an element j in Ti is O(lg fX(i)

fX(i,j) ). For each element j in the entire
structure we add a pointer linking j to the root of Tj . The tree T ′ uses O(n)
space and every tree Tj uses O(d) space. Thus the space used by the entire
structure is O(dn).
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Suppose we have just searched the element i and our finger search is located
on the root of Ti. Now we proceed to the next search to the element j in the
following way: Search j in Ti. If j is in Ti then we are done, otherwise search j
in T ′. After we found j either in Tj or T ′ we move the finger to the root of Tj

by following the aforementioned pointer.
If j is in Ti then it is found in time O(lg fX(i)

fX(i,j) ). Otherwise if y is found
in T ′, then it is found in O(lg n) time. We know that if y is not in Tx this
means that optimally it requires Ω(lg d) comparisons to be found since Tx con-
tains the d elements that have the greatest probability to be searched after
that x has been accessed. Hence every search is at most O(lg n/ lg d) times
the optimal search time of O(lg fX(i)

fX(i,j) ). Thus a search for xi in X takes time

O
(
logd n lg fX(xi)

fX(xi−1,xi)

)
. Summing this up over all m searches xi in X gives the

runtime to execute X:

O
(∑m

i=1 logd n lg fX(xi)
fX(xi−1,xi)

)
= O

(∑n
a=1

∑n
b=1 fX(a, b) logd n lg fX(a)

fX(xa,xb)

)

= O(mHc(fX) logd n)

We summarize this result in the following theorem:

Theorem 5. Given the pairwise frequencies fX and a constant d, 1 ≤ d ≤ n, the
multiple trees structure executes X in time O(mHc(fX) logd n) and uses space
O(nd).

We conjecture that no pointer-model structure has space O(n) and search
cost O(Hc(fX)).
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Abstract. We consider the minimum-cost b-edge dominating set prob-
lem. This is a generalization of the edge dominating set problem, but
the computational complexity for trees is an astonishing open problem.
We make steps toward the resolution of this open problem in the follow-
ing three directions. (1) We give the first combinatorial polynomial-time
algorithm for paths. Prior to our work, the polynomial-time algorithm
for paths used linear programming, and it was known that the linear-
programming approach could not be extended to trees. Thus, our algo-
rithm would yield an alternative approach to a possible polynomial-time
algorithm for trees. (2) We give a fixed-parameter algorithm for trees
with the number of leaves as a parameter. Thus, a possible NP-hardness
proof for trees should make use of trees with unbounded number of
leaves. (3) We give a fully polynomial-time approximation scheme for
trees. Prior to our work, the best known approximation factor was two.
If the problem is NP-hard, then a possible proof cannot be done via a
gap-preserving reduction from any APX-hard problem unless P = NP.

1 Introduction

Covering problems are very fundamental in the study of graph algorithms. By
objects to cover and objects to be covered, the following terms are assigned.
When vertices cover vertices, we obtain the minimum dominating set problem;
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when vertices cover edges, we obtain the minimum vertex cover problem; when
edges cover vertices, we obtain the minimum edge cover problem; when edges
cover edges, we obtain the minimum edge dominating set problem. While the
minimum edge cover problem can be solved in polynomial time, the other three
problems are NP-hard for general graphs. Nevertheless, they can be solved in
linear time for trees.

In some applications, variations of these problems are considered. One varia-
tion imposes cost on objects to cover, and another variation imposes demand on
objects to be covered. Then, we want to select some objects to cover, possibly
multiple times, so that each object to be covered is covered at least as many
times as its demand. The objective is to minimize the total cost of selected
objects multiplied by the times they are selected. The focus of this paper is the
version for the minimum edge dominating set problem.

Formally, we define the minimum-cost b-edge dominating set problem (b-EDS,
for short) as follows. In b-EDS, we are given a simple graph G. We denote by V G
and EG the sets of vertices and edges of G, respectively. We adopt this notation
for any graphs in this paper. In addition, a demand function b : EG → Z+ and
a cost function c : EG → R+ are given.1 For each edge e of G, we denote δ(e) by
the set of all edges sharing end vertices with e, including e itself. For each vertex
v of G, we denote by δ(v) the set of edges containing v. A vector s in Z

EG
+ is

called a b-edge dominating vector of G, if s(δ(e)) ≥ b(e) for every edge e of G.2

The value s(e) represents the number of times the edge e is selected. The cost of
a b-edge dominating vector s of G, denoted by cost(s), is defined as 〈c, s〉, where
〈·, ·〉 represents the inner product of two vectors. The goal of b-EDS is to find a
b-edge dominating vector with the minimum cost. It is known [13] that b-EDS
is NP-hard for general graphs even if b(e) = 1 and c(e) = 1 for every edge e of
G. An 8/3-approximation algorithm for general graphs and a 2-approximation
algorithm for bipartite graphs were presented [1]. When b(e) = 1 for every edge
e of G, 2-approximation algorithms were also proposed [6,9].

One astonishing open problem on b-EDS is to determine the computational
complexity of the problem on trees. It is not known if the problem is NP-hard or
polynomial-time solvable. If b(e) = 1 for every edge e of G or c(e) = 1 for every
edge e of G, then b-EDS can be solved in polynomial time for trees [2].3 Therefore,
the combination of arbitrary b and arbitrary c makes the problem troublesome.
The best known approximation factor is two, which is a consequence from bipar-
titeness of trees [1]. Even for paths, no combinatorial polynomial-time algorithm
was known while a strongly polynomial-time algorithm can be designed via linear
programming [10,11].

1 We denote by Z, Z+, R, and R+ the sets of integers, nonnegative integers, real
numbers, and nonnegative real numbers, respectively.

2 For each set X, each vector ξ in R
X , and each subset Y of X, we define ξ(Y ) :=∑

x∈Y ξ(x). Thus, s(δ(e)) =
∑

e′∈δ(e) s(e′).
3 In [2], the authors claimed that b-EDS on trees can be solved in polynomial time via
linear programming. However this claim is not correct (see [3]).
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1.1 Contributions and Techniques

We make steps toward the resolution of the complexity status of b-EDS on trees
in the following three directions.

(1) Combinatorial Algorithm for Paths. In Section 2, we give the first
combinatorial algorithm for b-EDS on paths which runs in strongly polynomial
time. This result would yield an alternative approach to a possible polynomial-
time algorithm for trees for the attempt to prove that b-EDS can be solved in
polynomial time. A polynomial-time algorithm using linear programming could
not be extended to trees because the coefficient matrix of a natural integer-
programming formulation of the problem is totally unimodular for paths, but
not necessarily so for trees.

To give a combinatorial strongly polynomial-time algorithm for paths, we
first give a dynamic-programming algorithm which runs in pseudo-polynomial
time. Then, we construct a “compact” representation of the DP table. To con-
struct such a compact representation of the DP table, we find a partition R of
the domain of the DP table so that in each part in R, values of the DP table can
be represented by a linear function. We will prove that we can construct such a
partition whose size is bounded by a polynomial in the input size, which implies
that we can “simulate” our dynamic-programming algorithm in strongly polyno-
mial time. To the best of the authors’ knowledge, this technique of compressing
the DP table is new, and should be of independent interest.

(2) Fixed-Parameter Algorithm for Trees. In Section 3, we give a fixed-
parameter algorithm for b-EDS on trees with the number of leaves as a parameter.
This result implies that when the number of leaves is constant, then the problem
can be solved in polynomial time. Therefore, if we want to prove that the problem
is NP-hard, then a possible reduction should make use of trees with unbounded
number of leaves.

To give a fixed-parameter algorithm for trees, the following fact plays an
important role. On paths, there exists no gap between a natural integer pro-
gramming formulation of b-EDS and its linear-programming relaxation. By using
this fact, we will prove that b-EDS on trees with constant number of leaves can
be formulated as a mixed integer program with constant number of integer vari-
ables. Thus, a fixed-parameter algorithm follows from the result of Lenstra [8]
on fixed-parameter tractability of mixed integer programming when the number
of integer variables is a parameter.

(3) FPTAS for Trees. In Section 4, we give a fully polynomial-time approx-
imation scheme (FPTAS, for short) for b-EDS on trees. Prior to our work, the
best known approximation factor was two [1]. Thus, our algorithm improves the
approximation factor drastically. This result implies that b-EDS on trees is not
strongly NP-hard unless P = NP. Furthermore, if we want to prove the problem
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is NP-hard, then a possible proof cannot be done via a gap-preserving reduction
from any APX-hard problem unless P = NP.

To give an FPTAS for trees, we generalize the problem. In this generalization,
(i) there may exist parallel edges, (ii) each edge can be chosen at most once,
and (iii) each edge has an “influence.” If we choose an edge e with influence
p(e), then each edge in δ(e) is covered p(e) times by e. We first give a pseudo-
polynomial-time algorithm for this generalized problem on multitrees. Then, we
give a reduction from b-EDS on trees to this generalized problem on multitrees.
Finally, we prove that a pseudo-polynomial-time algorithm for this generalized
problem on multitrees yields an FPTAS for b-EDS on trees.

1.2 Preliminaries: Polynomial-Time Algorithms and NP-Hardness

For the problem with numerical inputs, several notions of polynomial-time algo-
rithms appear in the literature. Here, we summarize them.

Consider a problem in which we are given a combinatorial object O (in our
case, a tree T ) and a set of numbers (in our case b(e) and c(e) for all e ∈ ET )
at most M . Suppose that the object O has size n (in our case T has n vertices).

An algorithm runs in strongly polynomial time if the running time is bounded
by a polynomial in n. It runs in weakly polynomial time if the running time is
bounded by a polynomial in n and log M . It runs in pseudo-polynomial time if
the running time is bounded by a polynomial in n and M . It is easy to see that a
strongly polynomial-time algorithm is a weakly polynomial-time algorithm, and
a weakly polynomial-time algorithm is a pseudo-polynomial-time algorithm. In
this context, a polynomial-time algorithm is a weakly polynomial-time algorithm.

The problem is strongly NP-hard if it is NP-hard even if M is bounded by a
polynomial in n. The usual NP-hardness is referred to as weakly NP-hardness.

2 Combinatorial Algorithm for Paths

In this section, we present a combinatorial strongly polynomial-time algorithm
for b-EDS on a path P . Let V P = {v1, v2, . . . , vn}, EP = {e1, e2, . . . , en−1}, and
ei = (vi, vi+1) for each i ∈ {1, 2, . . . , n− 1}. For each i ∈ {1, 2, . . . , n}, we denote
by Pi the subpath of P induced by Vi = {v1, v2, . . . , vi}. Let B = max{b(e) | e ∈
EP}.

In the sequel, we first give a pseudo-polynomial-time algorithm for b-EDS on
P (Sect. 2.1), and the time complexity will be improved to polynomial (Sect. 2.2).

2.1 Dynamic Programming

For each i ∈ {2, 3, . . . , n}, each x ∈ {0, 1, . . . , B}, and each y ∈ {0, 1, . . . , 2B},
define ρi(x, y) as the minimum cost of a vector s in Z

EPi
+ satisfying (i) s(δ(ej)) ≥

b(ej) for every j ∈ {1, 2, . . . , i−2}, (ii) s(ei−1) = x, and (iii) s(ei−2)+y ≥ b(ei−1),
where s(e0) = 0. If such a vector s does not exist, then define ρi(x, y) = +∞.
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Roughly, these conditions mean that s satisfies the constraints for e1, e2, . . . , ei−1

if ei−1 is “chosen” x times and it is assumed to be “covered” s(ei−2) + y times.
We can compute ρi(x, y) by using the following formulae. If i = 2, then

(i) ρ2(x, y) = c(e1) · x if y ≥ b(e1), and (ii) ρ2(x, y) = +∞ otherwise. If i ∈
{3, 4, . . . , n}, then

ρi(x, y) = c(ei−1) · x + min{ρi−1(x̂, ŷ) | ŷ − x̂ = x, x̂ ≥ b(ei−1) − y}.

Then, the value ρi(x, y) can be computed by looking at O(B) values of ρi−1 for
each i, x, and y. Since we have O(nB2) choices of i, x, and y, we can compute
all values of ρi(x, y) in O(nB3) time. Since the optimal objective value of b-EDS
on P is equal to min{ρn(x, y) | x = y}, we can solve the problem in O(nB3)
time, which is pseudo-polynomial time.

2.2 Compression of the DP Table

Since the DP table ρi(x, y) has Θ(B2) entries for each i, explicit computation of
the table does not yield a polynomial-time algorithm. To achieve polynomiality,
we construct a compact representation of ρi. More precisely, we represent ρi as
a piecewise linear function such that the number of regions is bounded by a
polynomial in n.

For each function f : R2 → R∪{+∞}, define dom f = {(x, y) ∈ R
2 | f(x, y) <

+∞}. A function f : R2 → R ∪ {+∞} is said to be convex if it is convex in
dom f . A set R = {R1, R2, . . . , R�} of polygons (which might be unbounded)
in R

2 is called a partition of dom f if (i) R1 ∪ R2 ∪ · · · ∪ R� = dom f , and
(ii) Ri and Rj do not intersect except at their boundaries for every distinct
i, j ∈ {1, 2, . . . , �}. For each i ∈ {1, 2, . . . , �} and each point (x, y) in Ri, suppose
that a function f : R2 → R ∪ {+∞} satisfies the constraint f(x, y) = gi(x, y),
where R = {R1, R2, . . . , R�} is a partition of dom f and gi(x, y) is a linear
function on R

2. In such a case, f is said to be a piecewise linear function with
respect to R.

Our algorithm is based on the following lemmas. Recall that the domain of
ρi is {0, 1, . . . , B} × {0, 1, . . . , 2B}. We now extend the domain of this function
to R

2. We define ρ̄2 : R2 → R ∪ {+∞} by (i) ρ̄2(x, y) = c(e1) · x if y ≥ b(e1)
and x ≥ 0, and (ii) ρ̄2(x, y) = +∞ otherwise. For each i ∈ {3, 4, . . . , n}, define
ρ̄i : R2 → R ∪ {+∞} by

ρ̄i(x, y) = c(ei−1) · x + min{ρ̄i−1(x̂, ŷ) | ŷ − x̂ = x, x̂ ≥ b(ei−1) − y}
if x ≥ 0, and ρ̄i(x, y) = +∞ otherwise. The following lemmas reveal fundamental
properties of ρ̄i

Lemma 1. 1. For every i ∈ {3, 4, . . . , n}, we have dom ρ̄i = {(x, y) | x ≥ 0}.
2. For every i ∈ {2, 3, . . . , n}, there exists a partition Ri of dom ρ̄i such that ρ̄i

is a convex piecewise linear function with respect to Ri and |Ri| is at most
(3/2) · i(i − 1). Such a partition Ri and a linear function on each part of Ri

can be computed in strongly polynomial time.
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Lemma 2. For every i ∈ {2, 3, . . . , n}, we have the following.

1. For every x ≥ 0 and every y1, y2 ≥ B, we have ρ̄i(x, y1) = ρ̄i(x, y2).
2. For every x ≥ B and every y ∈ R, we have ρ̄i(x, y) ≥ ρ̄i(B, y).
3. For every x ∈ {0, 1, . . . , B} and every y ∈ {0, 1, . . . , 2B}, we have ρ̄i(x, y) =

ρi(x, y).

Assuming the lemmas, we may proceed as follows. By Lemma 1, we can com-
pute in polynomial time Ri and a linear function on each part R in Ri. Since
ρ̄i(x, y) = ρi(x, y) for every x ∈ {0, 1, . . . , B} and every y ∈ {0, 1, . . . , 2B}
by Lemma 2, we can compute the optimal value of b-EDS on P , which is
min{ρn(x, y) | x = y}, in strongly polynomial time.

Theorem 1. We can solve b-EDS on paths in strongly polynomial time.

We are left with proofs of Lemmas 1 and 2. Due to the limitation of the
space, we omit the full proofs. We sketch basic ideas for the proofs below.

2.3 Good Partitions and Zigzags

In the proof of Lemma 1, we stick to a partition of a special kind. Namely, a
partition R of dom f is called good if it satisfies the following.

For each part R in R, there exist xd, yd, dd in Z∪{−∞} and xu, yu, du in
Z∪{+∞} such that R is a polygon defined by xd ≤ x ≤ xu, yd ≤ y ≤ yu,
and dd ≤ y − x ≤ du.

The proof goes by induction on i. For fixed i ≥ 4, assume that dom ρ̄i−1 =
{(x, y) | x ≥ 0} and a good partition Ri−1 as in the statement has been obtained.
By the definition of ρ̄i, for every point (x, y) ∈ R

2 with x ≥ 0, we have

ρ̄i(x, y) = c(ei−1) · x + min{ρ̄i−1(x̂, ŷ) | ŷ − x̂ = x, x̂ ≥ b(ei−1) − y}
= c(ei−1) · x + min

ỹ≤y
min{ρ̄i−1(x̂, ŷ) | ŷ − x̂ = x, x̂ = b(ei−1) − ỹ}

= c(ei−1) · x + min
ỹ≤y

{ρ̄i−1(b(ei−1) − ỹ, b(ei−1) − ỹ + x)}.

We consider the functions g1, g2, g3, g4 : R2 → R ∪ {+∞} defined by

g1(x, y) = ρ̄i−1(b(ei−1) − y, b(ei−1) − y + x), g2(x, y) = min
ỹ≤y

g1(x, ỹ),

g3(x, y) = c(ei−1) · x + g2(x, y), g4(x, y) =

{
g3(x, y) if x ≥ 0
+∞ otherwise

for each point (x, y) in R
2. Then, we have ρ̄i = g4.

We take a careful look at the influence of g1, g2, g3, g4 to the partition. The
form of g1 suggests a linear transformation of the coordinate system, and indeed,
by the definition of a good partition, such a transformation maps a good partition
of dom ρi−1 to a good partition of dom g1. Assuming the existence of a good
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l3 l4
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Fig. 1. A good partition and an elementary zigzag of type (a)

partition for dom g2, we can see that such a good partition is also a good partition
of dom g3, from which we can easily obtain a good partition of dom g4. The size
of partitions will not increase for those cases. Thus, the only problem may arise
in finding a good partition of dom g2 from that of dom g1. This case needs a
special treatment, and gives rise to a concept of zigzags.

Let R = {R1, R2, . . . , R�} be a partition of dom f . The boundary of R is the
union of the boundaries of R1, R2, . . . , R�. A corner of R is a point in R

2 which
is on the boundary of at least three regions in R ∪ {R2 \ dom f}.

For a good partition R of dom f , an elementary zigzag through R is a sequence
l1, l2, . . . , lt of line segments (l1 and lt may be rays) in dom f such that l1, l2, . . . , lt
are oriented so that the head of li and the tail of li+1 coincide for each i ∈
{1, 2, . . . , t − 1}, and they satisfy one of the following conditions (see Fig. 1).

a. The directions of li are (1, 1) and (1, 0), alternately. If the direction of li is
(1, 0), then it is on the boundary of R.

b. The directions of li are (0,−1) and (−1,−1), alternately. If the direction of
li is (−1,−1), then it is on the boundary of R.

c. The directions of li are (−1, 0) and (0, 1), alternately. If the direction of li is
(0, 1), then it is on the boundary of R.

Note that in the definition of elementary zigzags of type (a), li is not necessarily
on the boundary of R if its direction is (1, 1). We also note that, elementary
zigzags of types (b) and (c) are obtained from one of type (a) by linear trans-
formation.

Our motivation for introducing elementary zigzags is the following lemma.
We omit the proof.

Lemma 3. Let f : R2 → R ∪ {+∞} be a convex piecewise linear function with
respect to a good partition R of dom f . Assume that, for any x ∈ R, there
exists a maximum minimizer h(x) (i.e., a maximum of the minimizers) of a
1-dimensional function f(x, ·). Then, {(x, h(x)) | x ∈ R} forms an elementary
zigzag of type (a) on the boundary of R.
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The construction of g2 from g1 can be done as follows. For fixed x ∈ R,
regard g1(x, ·) as a 1-dimensional function, and define h(x) as the maximum
minimizer of g1(x, ·). We may see that g1 satisfies the condition in Lemma 3.
Thus, {(x, h(x)) | x ∈ R} forms an elementary zigzag Z of type (a) on the
boundary of a good partition of dom g1. In particular, g2(x, y) = g1(x, y) if
y ≤ h(x) and g2(x, y) = g1(x, h(x)) if y > h(x). Therefore, the size of Z will
contribute to the size of a good partition of dom g2. This also means that we
need to keep track of the size of such an elementary zigzag in the induction. To
this end, we actually prove a stronger statement than Lemma 1, and use a more
generalized concept.

3 Fixed-Parameter Algorithm for Trees

In this section, we give a fixed-parameter algorithm for b-EDS on trees with the
number of leaves as a parameter. We first consider a subproblem on a path,
which can be solved by linear programming, and then describe how to formulate
b-EDS on trees using these subproblems.

3.1 Subproblem

Let P be a path such that V P = {v1, v2, . . . , vn}, EP = {e1, e2, . . . , en−1}, and
ei = (vi, vi+1) for each i ∈ {1, 2, . . . , n − 1}. Given integers y(e1), y(en−1), z(v1),
and z(vn), we consider the problem of finding x in Z

EP
+ that minimizes 〈c, x〉

subject to the following: when n ≥ 3,

x(ei−1) + x(ei) + x(ei+1) ≥ b(ei) (∀i ∈ {2, 3, . . . , n − 2}),
x(e2) + z(v1) ≥ b(e1), x(en−2) + z(vn) ≥ b(en−1),

x(e1) = y(e1), x(en−1) = y(en−1),
(1)

and, when n = 2,

x(e1) ≤ z(v1) + z(v2) − b(e1), x(e1) = y(e1). (2)

Note that these constraints mean that x(e1) = y(e1), x(en−1) = y(en−1), and if
v1 and vn are “covered” at least z(v1) and z(vn) times, respectively, then x is
a feasible solution of b-EDS on P . This problem can be written as the following
integer program:

min{〈c, x〉 | Ax ≥ b′, x ∈ Z
EP
+ }, (3)

where A is a 0-1 matrix and each entry of b′ is integer if y(e1), y(en−1), z(v1), and
z(vn) are integers. Since A is totally unimodular (A is an interval matrix) [10],
the optimal value of the problem is equal to that of its linear-programming
relaxation.
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3.2 Algorithm

Let T be a given tree with at most � leaves. Let L be the set of all leaves, and
let S be the set of all hub vertices of V T (i.e., vertices of degree at least three).
Define F :=

⋃{δ(v) | v ∈ L ∪ S}. We denote by P the set of all paths P such
that both end vertices of P are in L ∪ S and no inner vertex of P is in L ∪ S. It
is not difficult to see that P gives a partition of ET . For each path P in P, we
denote by bP the restriction of b to EP . We note that |L| ≤ �, |S| ≤ �, |P| ≤ 2�,
and |F | ≤ 2|P| ≤ 4�.

It is not difficult to see that b-EDS is equivalent to the problem of finding
vectors x in Z

ET
+ , y in Z

F
+, and z in Z

L∪S
+ that minimize 〈c, x〉 subject to

z(v) = y(δ(v)) for each vertex v in L ∪ S,

Condition (1) for each path P in P of length at least two,

Condition (2) for each path P in P of length one.
(4)

By the arguments in the previous subsection, the optimal value does not
change even if we drop the integrality of x. That is, b-EDS on T is equivalent
to minimizing 〈c, x〉 subject to x ∈ R

ET
+ , y ∈ Z

F
+, z ∈ Z

L∪S
+ , and (4), which

is a mixed integer program. Indeed, suppose we have an optimal solution x in
R

ET
+ , y in Z

F
+, and z in Z

L∪S
+ for this mixed integer program. Then, for the

fixed y in Z
F
+ and z in Z

L∪S
+ , the restriction xP of x on each path P in P is an

optimal solution to the linear-programming relaxation of (3), and hence there
exists an integer optimal solution to the linear-programming relaxation because
the coefficient matrix is totally unimodular. Since the number of integer variables
in this mixed linear program is bounded by |F | + |L ∪ S| ≤ 6�, it can be solved
in polynomial time by the following theorem (see also [10]).

Theorem 2 (Lenstra [8]). The problem of solving max{〈d1, x〉 + 〈d2, y〉 |
A1x + A2y ≤ b′, x is integral}, where A1 has rank at most �, is fixed-parameter
tractable with respect to �.

Note that the current best running time is 2O(� log �) times a polynomial of the
input size [4,5]. By using this theorem, we can obtain the following result.

Theorem 3. The problem b-EDS is fixed-parameter tractable with respect to the
number of leaves of an input tree.

4 FPTAS for Trees

We denote by OPT(T ) the optimal objective value for T . Precisely speaking,
OPT(T ) depends on b and c. However, we omit them for brevity. To give an
FPTAS, we first introduce a generalization of b-EDS (b-GEDS, for short), and
construct a pseudo-polynomial-time algorithm to solve b-GEDS. Based on the
algorithm, we then give an FPTAS for b-EDS on trees.
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In b-GEDS, an input graph G may have parallel edges. In addition to b(e)
and c(e), each edge e is associated with a nonnegative integer p(e), called the
influence of e. A subset D of E is called a generalized b-edge dominating set of
G, if p(δ(e) ∩ D) ≥ b(e) for every edge e of G. The cost of a generalized b-edge
dominating set D of G, denoted by cost(D), is defined as c(D). The goal of
b-GEDS is to find a generalized b-edge dominating set with the minimum cost;
we denote by GOPT(G) the optimal objective value for a given multigraph G.
We can prove that b-GEDS is weakly NP-hard on multitrees consisting of two
vertices (we omit the proof). Notice that a graph T is called a multitree if it is
a tree when we regard parallel edges as a single edge. We will show in Sect. 4.2
that b-EDS on trees can be reduced to b-GEDS on multitrees.

We note here that a pseudo-polynomial-time algorithm for b-EDS on trees
can be obtained without resorting to b-GEDS. However, such an algorithm is not
suited for applying the scale-and-round technique [7,12] to obtain an FPTAS
since bounding the error seems difficult; a similar situation occurs in the bounded
knapsack problem [7, Chapter 7].

4.1 Pseudo-Polynomial-Time Algorithm for b-GEDS on Multitrees

In this subsection, we prove the following theorem.

Theorem 4. On a multitree T with m edges, b-GEDS can be solved in O(mB4)
time, where B := max{b(e) | e ∈ ET}.
Proof. We give an algorithm to solve b-GEDS in the desired time complexity. Our
algorithm simply computes GOPT(T ). It is easy to modify our algorithm so that
it finds a generalized b-edge dominating set with the minimum cost GOPT(T ).

We choose an arbitrary vertex r as the root of T , and regard T as a rooted
tree. For each vertex v of T , let Tv be the subtree of T which is rooted at v
and is induced by v and all descendants of v on T . Let w1, w2, . . . , wq be the
children of v, ordered arbitrarily. For each j ∈ {1, 2, . . . , q}, we denote by T j

v

the subtree of T induced by {v} ∪ V Tw1 ∪ V Tw2 ∪ · · · ∪ V Twj
. For the sake of

notational convenience, we denote by T 0
v the tree consisting of a single vertex

v. Then, Tv = T 0
v for each leaf v of T . Let Evwj

be the set of (multiple) edges
joining v and wj .

For each vertex v of T , each j ∈ {0, 1, . . . , q}, and each x, y ∈ {0, 1, . . . , B},
we define hj

v(x, y) as the minimum cost of a subset Dj
v of ET j

v subject to

1. p(δ(e) ∩ Dj
v) ≥ b(e) (∀e ∈ ETwk

, ∀k ∈ {1, 2, . . . , j}),
2. p(δ(v) ∩ Dj

v) ≥ x, and
3. y + p(δ(e) ∩ ETwk

∩ Dj
v) ≥ b(e) (∀e ∈ Evwk

, ∀k ∈ {1, 2, . . . , j}).

If such a subset Dj
v does not exist, then define hj

v(x, y) = +∞. Roughly speaking,
x guarantees the influence on v from δ(v)∩ET j

v , and y specifies the total influence
guaranteed around v in T . For the notational convenience, we sometimes denote
hv(x, y) = hq

v(x, y), where q is the number of children of v.
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The proposed algorithm computes hj
v(x, y) for each vertex v of T , each j ∈

{0, 1, . . . , q}, and all x, y ∈ {0, 1, . . . , B}, from the leaves of T to the root r of
T , by means of dynamic programming. Since Tr = T for the root r of T , we can
compute GOPT(T ) = min{hr(x, y) | x = y ∈ {0, 1, . . . , B}} for a given multitree
T . Therefore, GOPT(T ) can be computed in O(B) time if we have computed the
values hr(x, y) for all x, y ∈ {0, 1, . . . , B}.

We now explain how to compute hj
v(x, y). We first consider the case where

j = 0. Recall that, for each vertex v of T , the subtree T 0
v is defined to be a single

vertex v. As the initialization, for each x, y ∈ {0, 1, . . . , B}, define h0
v(x, y) = 0.

This can be done in O(nB2) time for all vertices of T and all x, y ∈ {0, 1, . . . , B}.
We then consider the case where j ≥ 1, and hence v is an internal vertex

of T . Suppose that we have already computed hj−1
v (x, y) and hwj

(x, y) for all
x, y ∈ {0, 1, . . . , B}. For each z ∈ {0, 1, . . . , B}, let

π(Evwj
, z) = min{c(D) | D ⊆ Evwj

, p(D) ≥ z}.

If such a subset D does not exist, then we define π(Evwj
, z) = +∞. By a simple

dynamic-programming algorithm similar to the knapsack problem [7], we can
compute π(Evwj

, z) for all z ∈ {0, 1, . . . , B} in O(|Evwj
|B) time.

We now compute hj
v(x, y) for each x, y ∈ {0, 1, . . . , B}. We first fix the influ-

ence z ∈ {0, 1, . . . , x} obtained by the choice of Evwj
, and compute the following

value hj
v(x, y; z):

hj
v(x, y; z) = π(Evwj

, z) + min
{
hj−1

v (x − z, y) + hwj
(x′, x′ + z)

}
, (5)

where the minimum above is taken over all x′ ∈ {0, 1, . . . , B} such that y +x′ ≥
max{b(e) | e ∈ Evwj

}; let hj
v(x, y; z) = +∞ if such an integer x′ does not exist.

Then, we have

hj
v(x, y) = min{hj

v(x, y; z) | z ∈ {0, 1, . . . , x}}. (6)

We estimate the running time of this update computation. Recall that we
can compute the values π(Evwj

, z) for all z ∈ {0, 1, . . . , B} in O(|Evwj
|B) time.

For each x, y ∈ {0, 1, . . . , B}, by (5) and (6), hj
v(x, y) can be computed in O(B2)

time. Thus, for each vertex v of T and each j ∈ {1, 2, . . . , q}, we can compute
hj

v(x, y) for all x, y ∈ {0, 1, . . . , B} in O(|Evwj
|B + B4) time. Then, hr(x, y) for

the root r can be computed in total time
∑

v∈V T

∑

j

O(|Evwj
|B + B4) = O(mB + nB4) = O(mB4),

where n = |V T | and m = |ET |. Notice that n ≤ m + 1 since T is a multitree.
This completes the proof of Theorem 4. 
�

4.2 FPTAS for b-EDS on Trees

By using the following proposition, we can reduce b-EDS to b-GEDS. We omit
its proof.
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Proposition 1. Let (G′, b′, c′) be an instance of b′-EDS with B′ = max{b′(e) |
e ∈ EG′}. Then, one can construct an instance (G, b, c, p) of b-GEDS in polyno-
mial time such that

a. |V G| = |V G′| and |EG| = |EG′| · (�log B′� + 1),
b. max{b(e) | e ∈ EG} = B′, and
c. there exists a b′-edge dominating vector s of G′ with cost(s) = γ if and only

if there exists a generalized b-edge dominating set D of G with cost(D) = γ.

In particular, GOPT(G) = OPT(G′) holds.

To obtain an FPTAS for b-EDS on trees, we now rephrase Theorem 4 when
restricted to the instances corresponding to those of b-EDS. We omit the proof.

Lemma 4. Let T be the multitree obtained by Proposition 1 from a tree T ′ of
an instance of b′-EDS. Let U be any upper bound on GOPT(T ). Then, b-GEDS
on T can be solved in O(mU4) time, where m = |ET |.

We finally give an FPTAS for b-EDS on trees, based on the pseudo-polynomial-
time algorithm in Sect. 4.1.

Theorem 5. There exists an FPTAS for b-EDS on trees.

Our idea for the FPTAS is to combine techniques developed for the bounded
knapsack problem [7, Chapter 7] and the scale-and-round technique [7,12]. Due
to the limitation of the space, we omit the detail.

Acknowledgments. The authors would like to thank Yusuke Matsumoto and Chien-
Chung Huang for helpful discussions on this topic. The authors would like to thank
anonymous referees for helpful comments.
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Abstract. Suppose that we are given two independent sets I0 and Ir
of a graph such that |I0| = |Ir|, and imagine that a token is placed on
each vertex in I0. The token jumping problem is to determine whether
there exists a sequence of independent sets of the same cardinality which
transforms I0 into Ir so that each independent set in the sequence results
from the previous one by moving exactly one token to another vertex.
This problem is known to be PSPACE-complete even for planar graphs
of maximum degree three, and W[1]-hard for general graphs when para-
meterized by the number of tokens. In this paper, we present a fixed-
parameter algorithm for token jumping on planar graphs, where the
parameter is only the number of tokens. Furthermore, the algorithm can
be modified so that it finds a shortest sequence for a yes-instance. The
same scheme of the algorithms can be applied to a wider class of graphs
which forbid a complete bipartite graph K3,t as a subgraph for a fixed
integer t ≥ 3.

1 Introduction

The token jumping problem was introduced by Kamiński et al. [13], which can
be seen as a “dynamic” version of independent sets in a graph. An independent
set of a graph G is a set of vertices of G in which no two vertices are adjacent.
(See Fig. 1, which depicts six different independent sets of the same graph.)
Suppose that we are given two independent sets I0 and Ir of a graph G = (V,E)
such that |I0| = |Ir|, and imagine that a token is placed on every vertex in
I0. Then, the token jumping problem is to determine whether there exists a
sequence 〈I0, I1, . . . , I�〉 of independent sets of G such that

(a) I� = Ir, and |I0| = |I1| = · · · = |I�|; and
(b) for each index i ∈ {1, 2, . . . , �}, Ii can be obtained from Ii−1 by moving

exactly one token on a vertex u ∈ Ii−1 to another vertex v �∈ Ii−1, and
hence Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 208–219, 2014.
DOI: 10.1007/978-3-319-13075-0 17
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(a)  I0 (b)  I1 (c)  I2

(d)  I3

u

(e)  I4 (f )  I5 = Ir

Fig. 1. A sequence 〈I0, I1, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by large black circles (tokens)

Such a sequence is called a reconfiguration sequence between I0 and Ir. Figure 1
illustrates a reconfiguration sequence 〈I0, I1, . . . , I5〉 of independent sets, which
transforms I0 into Ir = I5; therefore, the answer is “YES” for this instance.

Recently, similar settings of problems have been extensively studied in the
framework of reconfiguration problems [9], which arise when we wish to find a
step-by-step transformation between two feasible solutions of a problem instance
such that all intermediate solutions are also feasible and each step abides by a
prescribed reconfiguration rule (i.e., an adjacency relation defined on feasible
solutions of the original problem). For example, the token jumping problem
can be seen as a reconfiguration problem for the (ordinary) independent set
problem: feasible solutions are defined to be all independent sets of the same
cardinality in a graph, as in the condition (a) above; and the reconfiguration rule
is defined to be the condition (b) above. This reconfiguration framework has been
applied to several well-studied combinatorial problems, including independent
set [2,4,8,9,11,13–16], satisfiability [6], set cover, clique, matching [9], vertex-
coloring [1,3], list edge-coloring [10], (list) L(2, 1)-labeling [12], and so on.

1.1 Known and Related Results

The first reconfiguration problem for independent set, called token sliding,
was introduced by Hearn and Demaine [8] which employs another reconfigura-
tion rule. Indeed, there are three reconfiguration problems for independent set,
called token jumping [4,11,13,16], token sliding [3,4,8,13,16], and token
addition and removal [2,9,13–16]. (See [13] for the definitions.) These are
the most intensively studied reconfiguration problems, and hence we here explain
only the results strongly related to this paper; see the references above for the
other results.

First, token jumping (indeed, all three reconfiguration problems for inde-
pendent set) is PSPACE-complete for planar graphs of maximum degree three [3,
8,11], for perfect graphs [13], and for bounded bandwidth graphs [16].
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Second, Kamiński et al. [13] gave a linear-time algorithm for token jumping
on even-hole-free graphs. Furthermore, their algorithm can find a reconfiguration
sequence with the shortest length.

Third, Ito et al. [11] proved that token jumping is W[1]-hard for gen-
eral graphs when parameterized only by the number of tokens. Therefore, it is
very unlikely that the problem admits a fixed-parameter algorithm for general
graphs when the parameter is only the number of tokens. They also gave a fixed-
parameter algorithm for general graphs when parameterized by both the number
of tokens and the maximum degree of graphs. Their algorithm can be modified
so that it finds a reconfiguration sequence with the shortest length.

1.2 Our Contribution

In this paper, we first give a fixed-parameter algorithm for token jumping on
planar graphs when parameterized only by the number of tokens. Recall that
token jumping is PSPACE-complete for planar graphs of maximum degree
three, and is W[1]-hard for general graph when the parameter is only the number
of tokens.

Interestingly, our algorithm for planar graphs utilizes only the property that
no planar graph contains a complete bipartite graph K3,3 as a subgraph [5]. We
show that the same scheme of the algorithm for planar graphs can be applied
to a wider class of graphs which forbid a complete bipartite graph K3,t as a
subgraph for a fixed integer t ≥ 3. (We call such graphs K3,t-forbidden graphs.)

In addition, the algorithm for K3,t-forbidden graphs (and hence for planar
graphs) can be modified so that it finds a reconfiguration sequence with the
shortest length for a yes-instance. We note that the reconfiguration sequence in
Fig. 1 is shortest. It is remarkable that the token on the vertex u in Fig. 1(a)
must make a “detour” to avoid violating the independence of tokens: it is moved
twice even though u ∈ I0 ∩ Ir. Our algorithm can capture such detours for
K3,t-forbidden graphs.

1.3 Strategy for Fixed-Parameter Algorithms

We here explain two main ideas to develop a fixed-parameter algorithm for
token jumping; formal descriptions will be given later.

The first idea is to find a sufficiently large “buffer space” to move the tokens.
Namely, we first move all the tokens from I0 to the buffer space, and then move
them from the buffer space to Ir; thus, the answer is “YES” if we can find such
a buffer space. Due to the usage, such a buffer space (a set of vertices) should
be mutually independent and preferably not adjacent to any vertex in I0 ∪ Ir.

The second idea is to “shrink the graph” into a smaller one with preserv-
ing the reconfigurability (i.e., the existence/nonexistence of a reconfiguration
sequence) between I0 and Ir. This idea is based on the claim that, if the size
of the graph is bounded by a function depending only on the parameter k, we
can solve the problem in a brute-force manner in fixed-parameter running time.
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Thus, it is useful to find such “removable” vertices in fixed-parameter running
time, and shrink the graph so that the size of the resulting graph is bounded by
a function of k.

The K3,t-forbiddance (and hence K3,3-forbiddance) of graphs satisfies the two
main ideas above at the same time: it ensures that the graph has a sufficiently
large independent sets, which may be used as a buffer space; and it characterizes
removable vertices.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

In this paper, we assume without loss of generality that graphs are simple. Let
G = (V,E) be a graph with vertex set V and edge set E. The order of G is the
number of vertices in G. We say that a vertex w in G is a neighbor of a vertex v
if {v, w} ∈ E. For a vertex v in G, let NG(v) = {w ∈ V | {v, w} ∈ E}. We also
denote NG(v)∪{v} by NG[v]. For a vertex set S ⊆ V , let NG(S) =

⋃
v∈S NG(v)

and NG[S] =
⋃

v∈S NG[v].
For a vertex set S ⊆ V of a graph G = (V,E), G[S] denotes the subgraph

induced by S, that is, G[S] = (S,E[S]) where E[S] = {{u, v} ∈ E | {u, v} ⊆ S}.
A vertex set S of G is an independent set of G if G[S] contains no edge. A
subgraph G′ of G is called a clique if every pair of vertices in G′ is joined by an
edge; we denote by Ks a clique of order s. For two positive integers p and q, we
denote by Kp,q a complete bipartite graph with its bipartition of size p and q.

A graph is planar if it can be embedded in the plane without any edge-
crossing [5]. In Section 3, our algorithms utilize an independent set of sufficiently
large size in a graph, as a buffer space to move tokens. As for independent sets of
planar graphs, the following is known, though the original description is about
the four-color theorem.

Proposition 1 ([17]). For a planar graph of order n = 4s, there exists an
independent set of size at least s, and it can be found in O(n2) time.

It is well known as Kuratowski’s theorem that a graph is planar if and only
if it does not contain a subdivision of K5 or K3,3 [5]. Therefore, any planar
graph contains neither K5 nor K3,3 as a subgraph. In this paper, we extend our
algorithm for planar graphs to a much larger class of graphs. For two positive
integers p and q, a graph is Kp,q-forbidden if it contains no Kp,q as a subgraph.
For example, any planar graph is K3,3-forbidden. It is important that any Kp,q-
forbidden graph contains no clique Kp+q of size p + q.

In our algorithm for K3,t-forbidden graphs in Section 3.2, we use Ramsey’s
theorem, instead of Proposition 1, to guarantee a sufficiently large independent
set. Ramsey’s theorem states that, for every pair of integers a and b, there exists
an integer n such that any graph of order at least n has an independent set
of size a or a clique of size b (see [7] for example). The smallest number n of
vertices required to achieve this property is called a Ramsey number, denoted
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by Ramsey(a, b). It is known that Ramsey(a, b) ≤ (
a+b−2

b−1

)
[7]. Since any Kp,q-

forbidden graph contains no Kp+q, we have the following proposition.

Proposition 2. For integers p, q and s, let G be a Kp,q-forbidden graph of order
at least Ramsey(s, p + q). Then, G has an independent set of size at least s.

3 Fixed-Parameter Algorithm

In this section, we present a fixed-parameter algorithm for planar graphs to
determine if a given token jumping instance is reconfigurable or not, as in the
following theorem.

Theorem 1. Token jumping with k tokens can be solved for planar graphs
G = (V,E) in O

(|E| +
(
f1(k)

)2k)
time, where f1(k) = 26k+1 + 180k3.

As a proof of Theorem 1, we will prove that Algorithm 1, described below,
is such an algorithm. In Section 3.1, we will explain the algorithm step by step,
together with its correctness. We will show in Section 3.2 that our algorithm for
planar graphs can be extended to that for K3,t-forbidden graphs, t ≥ 3.

3.1 Planar Graphs

As we have mentioned in Introduction, our algorithm is based on two main
ideas: it returns “YES” as soon as we can find a sufficiently large buffer space
(Lemmas 1 and 3); otherwise it shrinks the graph so as to preserve the exis-
tence/nonexistence of a reconfiguration sequence between two given independent
sets I0 and Ir (Lemma 4). After shrinking the graph into a smaller one of the
order depending only on k, we can solve the problem in a brute-force manner
(Lemma 5). It is important to notice that our algorithm returns “NO” only
in this brute-force step. In the following, we explain how the algorithm finds a
buffer space or shrinks the graph, which well utilizes the K3,3-forbiddance of G.

At the beginning part of the algorithm (lines 1–2), we set two parameters
α and β as 4k and 10k, respectively. These are the orders of (sub)graphs that
guarantee the existence of sufficiently large independent sets that will be used as
a buffer space. Let A = NG(I0 ∪Ir)\ (I0 ∪Ir), that is, the set of vertices that are
not in I0 ∪ Ir and have at least one neighbor in I0 ∪ Ir. Let R = V \ NG[I0 ∪ Ir].
Then, no vertex in R is adjacent with any vertex in I0 ∪ Ir. Notice that I0 ∪ Ir,
A and R form a partition of V .
Step 1: Lines 3–4 of Algorithm 1.

If |R| ≥ α = 4k, then by Proposition 1 the subgraph G[R] has an independent
set of size at least k. Then, the algorithm returns “YES” because we can use it
as a buffer space, as follows.

Lemma 1. If |R| ≥ α, there is a reconfiguration sequence between I0 and Ir.
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Algorithm 1. TokenJump for planar graphs
Input: A parameter k, a planar graph G = (V, E), and two independent sets I0 and

Ir of G such that |I0| = |Ir| = k.
Output: “YES” if there is a reconfiguration sequence between I0 and Ir; otherwise

“NO.”
1: α := 4k, β := 10k.
2: A := NG(I0 ∪ Ir) \ (I0 ∪ Ir), R := V \ NG[I0 ∪ Ir].
3: if |R| ≥ α then {Step 1: R has a sufficiently large buffer space}
4: return “YES” and exit.
5: else {|R| < α holds below}
6: for each vector x ∈ {0, 1}V \A do
7: A(x) := {v ∈ A | NG(v) ∩ (V \ A) = ON(x)}.
8: if |A(x)| ≥ β then
9: if |ON(x) ∩ I0| ≤ 1 and |ON(x) ∩ Ir| ≤ 1 then

10: {Step 2: A(x) has a sufficiently large buffer space}
11: return “YES” and exit.
12: else {Step 3: shrink the graph}
13: Choose an arbitrary subset B(x) of A(x) with β vertices, and remove all

vertices in A(x) \ B(x) from V (and update V ).
14: end if
15: end if
16: end for{|A(x)| ≤ β hold for all vectors x ∈ {0, 1}V \A}
17: end if{The order of G now depends only on k}
18: Check the existence of a reconfiguration sequence in a brute-force manner.

Proof. Let I ′ be an independent set of G[R] with |I ′| ≥ k; by Proposition 1 such
an independent set I ′ always exists. Since no vertex in G[R] is adjacent with any
vertex in I0 ∪ Ir, there is a reconfiguration sequence between I0 and Ir via I ′,
as follows: move all tokens on the vertices in I0 to vertices in I ′ one by one; and
move all tokens on vertices in I ′ to the vertices in Ir one by one. ��
Step 2: Lines 9–11 of Algorithm 1.

We now know that |R| < α. Since R was small, the algorithm then tries to
find a sufficiently large buffer space in A. Notice that

|V \ A| = |I0 ∪ Ir ∪ R| < 2k + α, (1)

which depends only on k. We will partition A into at most 22k+α = 26k subsets,
according to how the vertices in A are adjacent with vertices in V \ A.

Before partitioning A, we first introduce a new notation. For a vertex set
S ⊆ V , let x be an |S|-dimensional binary vector in {0, 1}S ; we denote by xv the
component of x corresponding to a vertex v ∈ S. For each vector x ∈ {0, 1}S ,
let ON(x) = {v ∈ S | xv = 1}. For example, if x = (10011) ∈ {0, 1}{1,4,5,6,8} for
a vertex set S = {1, 4, 5, 6, 8}, then x1 = 1, x4 = 0, x5 = 0, x6 = 1, x8 = 1 and
ON(x) = {1, 6, 8}.

To partition the vertex set A, we prepare all binary vectors in {0, 1}V \A. By
Eq. (1) the number of the prepared vectors is at most 22k+α = 26k. For each



214 T. Ito et al.

A(100) A(101) A(001)

A(011)
1 2

3

Fig. 2. Partitioning A of six large (blue) vertices into four subsets A(100), A(101),
A(011) and A(001), where each vertex in V \ A = {1, 2, 3} is represented by a small
(white) circle

vector x ∈ {0, 1}V \A, we define A(x) = {v ∈ A | NG(v) ∩ (V \ A) = ON(x)},
that is, x is used to represent a pattern of neighbors in V \ A. (See Fig. 2.)
Therefore, all vertices in the same subset A(x) have exactly the same neighbors in
V \A = I0∪Ir∪R, that is, the vertices in ON(x). Conversely, each vertex in ON(x)
is adjacent with all vertices in A(x). We thus have the following proposition.

Proposition 3. For each vector x ∈ {0, 1}V \A, G[A(x) ∪ ON(x)] contains a
complete bipartite graph K|A(x)|,|ON(x)| as a subgraph whose bipartition consists
of A(x) and ON(x).

Note that 0-vector (i.e., every component is 0) is not used, because each vertex
in A is adjacent to at least one vertex in I0 ∪ Ir. In this way, we partition
A into at most 22k+α subsets A(x) according to the vectors x ∈ {0, 1}V \A.
Proposition 3 and the K3,3-forbiddance give the following property on ON(x).
(Note that β ≥ 3.)

Lemma 2. If |A(x)| ≥ β holds for a vector x ∈ {0, 1}V \A, then |ON(x)| ≤ 2.

The algorithm tries to find a sufficiently large buffer space from one of the
subsets A(x), x ∈ {0, 1}V \A, such that |A(x)| ≥ β = 10k. The following lemma
proves the correctness of Step 2.

Lemma 3. Suppose that there exists a binary vector x ∈ {0, 1}V \A such that
|A(x)| ≥ β, |ON(x) ∩ I0| ≤ 1 and |ON(x) ∩ Ir| ≤ 1. Then, there exists a recon-
figuration sequence between I0 and Ir.

Proof. Suppose that such a vector x exists. Since |A(x)| ≥ β = 10k, by Propo-
sition 1 the graph G[A(x)] has an independent set I ′ of size at least 2k. Let
w0 ∈ ON(x) ∩ I0 and wr ∈ ON(x) ∩ Ir if such vertices exist; w0 = wr may hold.
Then, we obtain a reconfiguration sequence between I0 and Ir via I ′, as follows:

(a) move the token on w0 to an arbitrary vertex w′ in I ′;
(b) move all tokens in I0 \ {w0} to vertices in I ′ \ {w′} one by one;
(c) move tokens in I ′ \ {w′} to the vertices in Ir \ {wr} one by one; and
(d) move the last token on w′ ∈ I ′ to wr.

Note that no vertex in I0 \ {w0} is adjacent with any vertex in I ′ because
|ON(x)∩I0| ≤ 1. Furthermore, since I ′ is an independent set in G[A(x)], w′ ∈ I ′

is not adjacent with any vertex in I ′ \ {w′}. Therefore, we can execute both (a)
and (b) above without violating the independence of tokens. By the symmetric
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arguments, we can execute both (c) and (d) above, too. Thus, according to (a)–
(d) above, there exists a reconfiguration sequence between I0 and Ir. ��
Step 3: Line 13 of Algorithm 1.

We now consider to shrink the graph: the algorithm shrinks each subset A(x)
of size more than β into a smaller one B(x) of size β.

Consider any subset A(x) of size more than β. Then, by Lemma 2 we have
|ON(x)| ≤ 2. In fact, since we have executed Step 2, |ON(x)∩I0| = 2 or |ON(x)∩
Ir| = 2 holds (recall Lemma 3). We choose an arbitrary set B(x) of β = 10k
vertices from A(x). Then, localizing independent sets intersecting A(x) only to
B(x) does not affect the reconfigurability, as in the following lemma.

Lemma 4. G has a reconfiguration sequence between I0 and Ir if and only if
there exists a reconfiguration sequence 〈I0, I ′

1, I
′
2, . . . , I

′
�′ , Ir〉 such that I ′

j∩A(x) ⊆
B(x) holds for every index j ∈ {1, 2, . . . , �′}.
Proof. The if-part clearly holds, and hence we prove the only-if-part. Suppose
that G has a reconfiguration sequence 〈I0, I1, . . . , I�, Ir〉 between I0 and Ir. If
Ij ∩ A(x) ⊆ B(x) holds for every j ∈ {1, 2, . . . , �}, the claim is already satisfied.
Thus, let Ip and Iq be the first and last independent sets of G, respectively, in
the subsequence 〈I1, I2, . . . , I�〉 such that Ij ∩(A(x)\B(x)) �= ∅. Note that p = q
may hold. Then, Ip contains exactly one vertex wp in Ip ∩ (A(x) \ B(x)), and
Iq contains exactly one vertex wq in Iq ∩ (A(x) \ B(x)); wp = wq may hold. It
should be noted that both ON(x) ∩ Ip = ∅ and ON(x) ∩ Iq = ∅ hold, because
wp, wq ∈ A(x) are both adjacent with the two vertices in ON(x).

We first claim that G[B(x)] contains an independent set I∗ such that |I∗| ≥ k
and I∗ ∩NG[Ip ∪Iq] = ∅. By Proposition 3, G[A(x)∪ON(x)] contains a complete
bipartite graph K|A(x)|,2 as a subgraph; recall that |ON(x)| = 2. Therefore, due
to the K3,3-forbiddance of G, every vertex in V \ON(x) can be adjacent with at
most two vertices in A(x), and hence at most two vertices in B(x). Since both
ON(x) ∩ Ip = ∅ and ON(x) ∩ Iq = ∅ hold, we have Ip, Iq ⊆ V \ON(x) and hence

∣
∣B(x) \ NG[Ip ∪ Iq]

∣
∣ ≥ β − 3 · |Ip ∪ Iq| ≥ 10k − 6k = 4k. (2)

By Proposition 1 we conclude that G[B(x)\NG[Ip∪Iq]] contains an independent
set I∗ such that |I∗| ≥ k and I∗ ∩ NG[Ip ∪ Iq] = ∅.

We then show that the subsequence 〈Ip, Ip+1, . . . , Iq〉 can be replaced with
another sequence 〈Ĩp, Ĩp+1, . . . , Ĩq′〉 such that Ĩj ∩ A(x) ⊆ B(x) for every j ∈
{p, p+1, . . . , q′}. To do so, we use the independent set I∗ of G[B(x)\NG[Ip ∪Iq]]
as a buffer space. We now explain how to move the tokens:

(1) From the independent set Ip−1, we first move the token on the vertex up

in Ip−1 \ Ip to an arbitrarily chosen vertex v∗ in I∗, instead of wp. Let Ĩp

be the resulting vertex set, that is, Ĩp = (Ip \ {wp}) ∪ {v∗}.
(2) We then move all tokens in Ip−1\{up}

(
= Ip−1∩Ip

)
to vertices in I∗\{v∗}

one by one in an arbitrary order.
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(3) We move tokens in I∗ \ {v∗} to the vertices in Iq ∩ Iq+1

(
= Iq \ {wq}

)
one

by one in an arbitrary order. Let Ĩq′ be the resulting vertex set, that is,
Ĩq′ = (Iq \ {wq}) ∪ {v∗} = (Iq ∩ Iq+1) ∪ {v∗}.

Clearly, Ĩj ∩ A(x) ⊆ B(x) holds for every j ∈ {p, . . . , q′}. Furthermore, notice
that Iq+1 can be obtained from Ĩq′ by moving a single token on v∗ ∈ Ĩq′ to the
vertex in Iq+1 \ Iq. Therefore, 〈Ip, Ip+1, . . . , Iq〉 can be correctly replaced with
〈Ĩp, Ĩp+1, . . . , Ĩq′〉 if the vertex set Ĩj forms an independent set of G for every
j ∈ {p, . . . , q′}. For every j ∈ {p, . . . , q′}, notice that either Ĩj ⊂ Ip ∪ I∗ or
Ĩj ⊂ Iq ∪ I∗ holds. Then, since I∗ ∩ NG[Ip ∪ Iq] = ∅, the vertex set Ĩj forms an
independent set of G.

By this way, we obtain a reconfiguration sequence 〈I0, . . . , Ip−1, Ĩp, . . . , Ĩq′ ,
Iq+1, . . . , Ir〉 such that no vertex in A(x)\B(x) is contained in any independent
set in the sequence. ��

Lemma 4 implies that, even if we remove all vertices in A(x) \ B(x) for an
arbitrary chosen set B(x) ⊆ A(x) of β = 10k vertices, it does not affect the
existence/nonexistence of a reconfiguration sequence between I0 and Ir. Thus,
we can shrink the subset A(x) into B(x) of size β = 10k.

Step 4: Line 18 of Algorithm 1.
In this step, |A(x)| ≤ β = 10k hold for all vectors x ∈ {0, 1}V \A. Further-

more, Proposition 3 and the K3,3-forbiddance of G imply that |A(x)| ≤ 2 if
|ON(x)| ≥ 3. Since α = 4k and β = 10k, by Eq. (1) we have

|A| =
∑

{|A(x)| : x ∈ {0, 1}V \A, 1 ≤ |ON(x)| ≤ 2}
+

∑
{|A(x)| : x ∈ {0, 1}V \A, |ON(x)| ≥ 3}

≤ β ·
(

(2k + α) +
(

2k + α

2

))

+ 2 ·
(

22k+α − (2k + α) −
(

2k + α

2

))

= 26k+1 + 180k3 − 6k2 − 6k.

Then, since |I0 ∪ Ir| ≤ 2k and |R| ≤ α = 4k, we can bound |V | by

|V | = |I0 ∪ Ir| + |R| + |A| < 26k+1 + 180k3,

which is denoted by f1(k). Since the order f1(k) of G now depends only on k,
we can apply a brute-force algorithm as follows.

Lemma 5. If |V | ≤ f1(k), token jumping is solvable in O
((

f1(k)
)2k

)
time.

Proof. We construct a configuration graph C = (V, E), as follows:
(i) each node in C corresponds to an independent set of G with size k; and
(ii) two nodes in C are joined by an edge if and only if the corresponding two

independent sets can be reconfigured by just a single token jump.
Clearly, there is a reconfiguration sequence between I0 and Ir if and only if there
is a path in C between the two corresponding nodes.
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Since G has at most the number
(
f1(k)

k

)
of distinct independent sets of size

exactly k, we have |V| ≤ (
f1(k)

)k. The configuration graph C above can be
constructed in O(|V|2) time. Furthermore, by the breadth-first search on C which
starts from the node corresponding to I0, we can check if C has a desired path or
not in O(|V| + |E|) = O(|V|2) time. In this way, token jumping can be solved
in O(|V|2) = O

((
f1(k)

)2k)
time in total. ��

This completes the correctness proof of Algorithm 1.

Running Time
We now estimate the running time of Algorithm 1. We first claim that lines 1–
17 can be executed in O(|E|) time. Lines 6–16 can be clearly done in fixed-
parameter running time, but actually these lines can be done in O(|E|) time
because |A| = |⋃{A(x) : x ∈ {0, 1}V \A}| is at most n; we can compute x

implicitly. By Lemma 5 we can execute line 18 in O
((

f1(k)
)2k)

time. Thus, the

total running time of Algorithm 1 is O
(|E| +

(
f1(k)

)2k)
.

This completes the proof of Theorem 1.

3.2 K3,t-Forbidden Graphs

In this subsection, we show that our algorithm for planar graphs can be extended
to that for K3,t-forbidden graphs, and give the following theorem.

Theorem 2. For a fixed integer t ≥ 3, let G be a K3,t-forbidden graph. Then,
token jumping for G can be solved in fixed-parameter running time, when
parameterized by the number k of tokens.

We here give a sketch of how to adapt the fixed-parameter algorithm for
planar graphs in Section 3.1 to K3,t-forbidden graphs.

The first point is to set two parameters αt and βt that correspond to α and β,
respectively. Recall that α = 4k and β = 10k are the orders of (sub)graphs that
guarantee the existence of sufficiently large independent sets that will be used
as a buffer space. For K3,t-forbidden graphs, we set αt = Ramsey(k, t + 3) and
βt = Ramsey((2t + 1)k, t + 3). Then, Proposition 2 guarantees the existence of
independent sets of size k in R, and hence Step 1 of Algorithm 1 can be adapted
to K3,t-forbidden graphs. We note that, although no exact formula of Ramsey
number is known, we can bound it from above, say Ramsey(a, b) ≤ (

a+b−2
b−1

)
[7].

Therefore, we indeed set αt = (k + t + 1)t+2 and βt =
(
(2t + 1)k + t + 1

)t+2,
both of which are fixed-parameter size.

The second point is to extend Lemma 2 for planar graphs to that for K3,t-
forbidden graphs, as follows. (Note that βt ≥ t.)

Lemma 6. If |A(x)| ≥ βt holds for a vector x ∈ {0, 1}V \A, then |ON(x)| ≤ 2.

Then, since there is an independent set of size at least (2t + 1)k in A(x), Step 2
of Algorithm 1 can be adapted to K3,t-forbidden graphs.
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The third point is to modify Eq. (2) in the proof of Lemma 4 and shrink A(x)
to size βt. Recall that the vertices in ON(x) and A(x) form a complete bipartite
graph K2,|A(x)|, and hence any vertex other than ON(x) can be adjacent with at
most (t−1) vertices in A(x), due to the K3,t-forbiddance of the graph. Therefore,
if A(x) has an independent set of size at least (2t + 1)k, we still have at least k
vertices that can be used as a buffer space. Therefore, Lemma 4 can be adapted
to K3,t-forbidden graphs, and hence Step 3 of Algorithm 1 can be, too.

The running time of the adapted algorithm depends on the order of the
graph shrunk by Step 3. By the similar arguments for planar graphs, the order
of the shrunk graph depends only on αt and βt. Since both αt and βt are fixed-
parameter size, the adapted algorithm runs in fixed-parameter running time.

This completes the proof of Theorem 2.

4 Shortest Reconfiguration Sequence

In the previous section, we present an algorithm which simply determines if there
exists a reconfiguration sequence between two given independent sets I0 and Ir.
If the answer is yes, it is natural to consider how we actually move tokens on
I0 to Ir. For this question, it is easy to modify Algorithm 1 to output an actual
reconfiguration sequence, although it is not always shortest. In this section, we
consider how to move tokens on I0 to Ir in a shortest way.

Theorem 3. For a fixed integer t ≥ 3, let G be a K3,t-forbidden graph. Given
a yes-instance of token jumping on G, a shortest reconfiguration sequence can
be found in fixed-parameter running time, where the parameter is the number k
of tokens.

Proof sketch. We explain how to modify Algorithm 1 so as to find a short-
est reconfiguration sequence. The biggest change from Algorithm 1 is that the
modified algorithm does not stop until Step 4. Algorithm 1 can exit at Steps 1
and 2 after finding a buffer space, which means that there exists a reconfigu-
ration sequence from I0 to Ir via vertices only in R and vertices only in A(x),
respectively. However, this does not directly imply the existence of a shortest
reconfiguration sequence from I0 to Ir that uses vertices only in R (or only in
A(x)). Thus, we do not exit at Steps 1 and 2, but shrink R and A(x) of the
original graph into a fixed-parameter size so as to preserve the shortest length
of a reconfiguration sequence in the original graph; then we can find a short-
est reconfiguration sequence in Step 4 by the brute-force algorithm proposed in
Lemma 5. (Details are omitted from this extended abstract.) ��
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11. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the Para-
meterized Complexity for Token Jumping on Graphs. In: Gopal, T.V., Agrawal, M.,
Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer,
Heidelberg (2014)

12. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-labelings
in a graph. Theoretical Computer Science 544, 84–97 (2014)
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Abstract. We consider the problem of computing a solid cover of an
indeterminate string. An indeterminate string may contain non-solid
symbols, each of which specifies a subset of the alphabet that could
be present at the corresponding position. We also consider covering
partial words, which are a special case of indeterminate strings where
each non-solid symbol is a don’t care symbol. We prove that both inde-
terminate string covering problem and partial word covering problem
are NP-complete for binary alphabet and show that both problems are
fixed-parameter tractable with respect to k, the number of non-solid
symbols. For the indeterminate string covering problem we obtain a
2O(k log k)+nkO(1)-time algorithm. For the partial word covering problem

we obtain a 2O(
√
k log k) + nkO(1)-time algorithm. We prove that, unless

the Exponential Time Hypothesis is false, no 2o(
√
k)nO(1)-time solution

exists for this problem, which shows that our algorithm for this case is
close to optimal. We also present an algorithm for both problems which
is feasible in practice.

1 Introduction

A classic string is a sequence of symbols from a given alphabet Σ. In an inde-
terminate string, some positions may contain, instead of a single symbol from Σ
(called a solid symbol), a subset of Σ. Such a non-solid symbol indicates that
the exact symbol at the given position is not known, but is suspected to be one
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of the specified symbols. The simplest type of indeterminate strings are partial
words, in which every non-solid symbol is a don’t care symbol, denoted here ♦
(other popular notation is ∗).

Motivations for indeterminate strings can be found in computational biology,
musicology and other areas. In computational biology, analogous juxtapositions
may count as matches in protein sequences. In fact the FASTA format1 represent-
ing nucleotide or peptide sequences specifically includes indeterminate letters.
In music, single notes may match chords, or notes separated by an octave may
match; see [10].

Algorithmic study of indeterminate strings is mainly devoted to pattern
matching. The first efficient algorithm was proposed by Fischer and Paterson for
strings with don’t care symbols [9]. Faster algorithms for this case were after-
wards given in [15,16,21]. Pattern matching for general indeterminate strings,
known as generalized string matching, was first considered by Abrahamson [1].
Since then numerous variants of pattern matching in indeterminate strings were
considered. There were also practical approaches to the original problem; see
[10,22] for some recent examples. A survey on partial words, related mostly to
their combinatorics, can be found in a book by Blanchet-Sadri [6].

The notion of cover belongs to the area of quasiperiodicity, that is, a gener-
alization of periodicity in which the occurrences of the period may overlap [3]. A
cover of a classical string s is a string that covers all positions of s with its occur-
rences. Covers in classical strings were already extensively studied. A linear-time
algorithm finding the shortest cover of a string was given by Apostolico et al. [4]
and later on improved into an on-line algorithm by Breslauer [7]. A linear-time
algorithm computing all the covers of a string was proposed by Moore & Smyth
[20]. Afterwards an on-line algorithm for the all-covers problem was given by Li
& Smyth [18]. Other types of quasiperiodicities are seeds [12,17] and numerous
variants of covers and seeds, including approximate and partial covers and seeds.

The main problem considered here is as follows: Given an indeterminate
string, find the length of its shortest solid cover; see Fig. 1. We can actually
compute a shortest solid cover itself and all the lengths of solid covers, at no
additional cost in the complexity. However, for simplicity we omit the description
of such extensions in this version of the paper.

b b ♦ ♦ a b b ♦ ♦ b a ♦
bbaa

bbaa

bbaa

bbaa

b b ♦ ♦ a b b ♦ ♦ b a ♦
bbab

bbab

bbab

bbab

Fig. 1. Partial word bb♦♦abb♦♦ba♦ with its two shortest covers. Note that the same
non-solid symbol can match two different solid symbols for two different occurrences
of the same cover.

1 http://en.wikipedia.org/wiki/FASTA format

http://en.wikipedia.org/wiki/FASTA_format
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Throughout the paper we use the following notations: n for the length of the
given indeterminate string, k for the number of non-solid symbols in the input,
and σ for the size of the alphabet. We assume that 2 ≤ σ ≤ n and that each
non-solid symbol in the indeterminate string is represented by a bit vector of
size σ. Thus the size of the input is O(n + σk).

The first attempts to the problem of indeterminate string covering were made
in [2,5,11]. However, they considered indeterminate strings as covers and pre-
sented some partial results for this case. The common assumption of these papers
is that σ = O(1); moreover, in [2,5] the authors considered only so-called con-
servative indeterminate strings, for which k = O(1).

Our Results: In Section 3 we show an O(nσk/2kO(1))-time algorithm for cover-
ing indeterminate strings with a simple implementation. In Section 4 we obtain
an O(2O(k log k) + nkO(1))-time algorithm. In the same section we devise a more
efficient solution for partial words with O(2O(

√
k log k)+nkO(1))-time complexity.

Finally in Section 5 we show that both problems are NP-complete already for
binary alphabet. As a by-product we obtain that under the Exponential Time
Hypothesis no O(2o(

√
k)nO(1))-time solution exists for both problems.

2 Preliminaries

An indeterminate string (i-string, for short) T of length |T | = n over a finite
alphabet Σ is a sequence T [1] . . . T [n] such that T [i] ⊆ Σ, T [i] �= ∅. If |T [i]| = 1,
that is, T [i] represents a single symbol of Σ, we say that T [i] is a solid symbol.
For convenience we often write that T [i] = c instead of T [i] = {c} in this case
(c ∈ Σ). Otherwise we say that T [i] is a non-solid symbol. In what follows by k
we denote the number of non-solid symbols in the considered i-string T and by
σ we denote |Σ|. If k = 0, we call T a (solid) string. We say that two i-strings
U and V match (denoted as U ≈ V ) if |U | = |V | and for each i = 1, . . . , |U | we
have U [i] ∩ V [i] �= ∅.

Example 1. Let A = a {b, c}, B = a {a, b}, C = aa be indeterminate strings (C
is a solid string). Then A ≈ B, B ≈ C, however, A �≈ C.

If all T [i] are either solid or equal to Σ then T is called a partial word. In
this case the non-solid “don’t care” symbol is denoted as ♦.

By T [i..j] we denote a factor T [i] . . . T [j] of T . If i = 1 then it is called a
prefix and if j = n then it is called a suffix. We say that a pattern i-string S
occurs in a text i-string T at position j if S matches T [j..j + |S|−1]. A border of
T is a solid string which matches both a prefix and a suffix of T . A border-length
of T is a positive integer equal to the length of a border of T . A cover of T is
a solid string S such that, for each i = 1, . . . , n, there exists an occurrence of S
in T that contains the position i, i.e., an occurrence of S at one of the positions
{i − |S| + 1, . . . , i}. Note that, just as in solid strings, every cover of T is also a
border of T .
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Example 2. The shortest cover of an i-string T need not be one of the shortest
covers of the solid strings matching T . E.g., for the i-string a♦b, where ♦ =
{a, b}, the shortest cover ab has length 2, whereas none of the solid strings aab,
abb has a cover of length 2.

The following simple observation is an important tool in our algorithms.

Observation 3. There are at most k2 values ( shifts) i ∈ {1, . . . , n} such that
T [1 + �] and T [i + �] are both non-solid for some �.

For convenience, we compute the set T [i] ∩ T [j] for each pair T [i], T [j] of
non-solid symbols of T , and label different sets with different integers, so that
afterwards we can refer to any of them in O(1) space. In particular, after such
O(σk2)-time preprocessing, we can check in O(1) time if any two positions of T
match.

A longest common prefix (LCP) query in T , denoted as lcp(i, j), is a query
for the longest matching prefix of the i-strings T [i..n] and T [j..n]. Recall that
for a solid string we can construct in O(n) time a data structure that answers
LCP-queries in O(1) time, see [8]. Note that an LCP-query in an i-string can be
reduced to O(k) LCP-queries in a solid string:

Lemma 4. For an i-string with k non-solid symbols, after O(nk2)-time prepro-
cessing, one can compute the LCP of any two positions in O(k) time.

Lemma 4 lets us efficiently check if given pairs of factors of an i-string match
and thus it has useful consequences.

Corollary 5. Given i-strings S and T of total length n containing k non-solid
symbols in total, one can compute Occ(S, T ), the list of all positions where S
occurs in T , in O(nk2) time.

Corollary 6. The set of all border-lengths of an i-string can be computed in
O(nk2) time.

Note that a solid string of length at least n
2 is a cover of T if and only if it is a

border of T . Therefore Corollary 6 enables us to easily solve the covering problem
for cover lengths at least half of the word length. In the following sections we
search only for the covers of length at most

⌊
n
2

⌋
.

3 Algorithm Parameterized by k and σ

Let T be an i-string of length n with k non-solid symbols. We assume that
T [1..

⌊
n
2

⌋
] contains at most k/2 holes (otherwise we reverse the i-string).

We say that S is a solid prefix of T if S is a solid string that matches T [1..|S|].
For an increasing list of integers L = [i1, i2, i3, . . . , im], m ≥ 2, we define

maxgap(L) = max{it+1 − it : t = 1, . . . , m − 1}.
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A set P ⊆ Occ(S, T ) is a covering set for S if maxgap(P ∪ {n + 1}) ≤ |S|, i.e.,
the occurrences of S at positions in P already cover the whole text T .

We introduce a ShortestCover(S,L) subroutine which, for a given solid prefix
S of T and an increasing list of positions L, checks if there is a cover of T which
is a prefix of S for which the covering set is a sublist of L and, if so, returns the
length of the shortest such cover. A pseudocode of this operation can be found
on the next page. Correctness of the algorithm follows from the fact that

ShortestCover(S,L) = min
{

j : maxgap
( ⋃

t≥j

Lt ∪ {n + 1}
)

≤ j
}

.

Algorithm ShortestCover(S,L)

Input: S: a solid prefix of T ; L: a sublist of {1, . . . , n}
Output: The length of the shortest cover which is a prefix of S and has a

covering set being a sublist of L

preprocessing:

foreach i ∈ L do dist[i] := lcp(S, T [i..n]);

D := { dist[i] : i ∈ L };

foreach j ∈ D do Lj := { i ∈ L : dist[i] = j };

L := L ∪ {n + 1};

processing:

foreach j ∈ D in increasing order do

if maxgap(L) ≤ j then return maxgap(L);

foreach i ∈ Lj do remove i from L;

return no solution;

Lemma 7. The algorithm ShortestCover(S,L) works in O(nk) time assuming
that the data structure of Lemma 4 is accessible.

Proof. Assume that each time we remove an element from the list we update
maxgap(L). Then maxgap(L) may only increase. Each operation on the list L,
including update of maxgap(L), is performed in O(1) time.

By Lemma 4, all lcp values can be computed in O(nk) time. The lists Lj can
be computed easily in total time O(n). 
�

The shortest cover of T of length at most �n/2� is a prefix of a solid prefix
of T of length �n/2�. By the assumption made in the beginning of this section,
T has at most σk/2 solid prefixes of length �n/2�. For each of them we run
the ShortestCover(S,L) algorithm with L = {1, . . . , n}. Lemma 7 implies the
following result.

Theorem 8. The shortest cover of an i-string with k non-solid symbols can be
computed in O(nσk/2k) time.
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4 Algorithm Parameterized by k

A border-length of T is called ambiguous if there are at least two different solid
borders of T of this length, otherwise it is called unambiguous. A border of T
is called unambiguous if it corresponds to an unambiguous border-length. By
Observation 3, there are at most k2 ambiguous border-lengths. The main idea
of this section is to classify potential covers into two categories depending on
whether the length is an unambiguous or an ambiguous border length.

Each unambiguous border is uniquely determined by its length. The solution
for this case works in O(nk4) time and uses the subroutine from Section 3. As for
the second class, the number of ambiguous border-lengths is at most k2. Hence,
in this case the problem reduces to testing if there is a cover of a given length (this
is still quite nontrivial; as we show later, the whole problem is NP-complete). In
fact, the main difficulty is caused by the ambiguous borders.

Covering with Unambiguous Borders. For an i-string U of length m and
a position i in T such that U ≈ T [i..i + m − 1], we define:

U � i = U [1] ∩ T [i], . . . , U [m] ∩ T [i + m − 1].

Note that, for a prefix U of T , any i-string of the form U � i can be represented
in O(k) space (we only store the positions corresponding to non-solid symbols
of U). Also every solid prefix of T has such a small representation. We call this
a sparse representation.

Example 9. Let T = bb♦♦abb♦♦baa and U = b♦a♦. Then
U � 1 = U � 6 = bba♦, U � 2 = b♦aa, U � 7 = b♦ab, and U � 9 = bbaa.

The sparse representations of these i-strings are (b,♦), (♦, a), (♦, b) and (b, a).

A technical modification of the algorithm ShortestCover is required to show
the following lemma. We omit its full proof in this version of the paper.

Lemma 10. Let C be a collection of pairs (S,L), where each S is a solid prefix of
T given in the sparse representation and each L is an increasing list of positions
in T . If |C| ≤ n and

∑
(S,L)∈C |L| = O(nk2) then ShortestCover(S,L) for all

instances (S,L) ∈ C can be computed in O(nk3) time.

By SolidOcc(U, T ) (NonSolidOcc(U, T )) we denote the lists of all occurrences
i ∈ Occ(U, T ) for which U � i is a solid string (is not a solid string, respectively).
All occurrences of U in T can be found using Corollary 5, and divided into
these two sets in O(nk2) time. By Observation 3, if U is a prefix of T then
|NonSolidOcc(U, T )| ≤ k2.

Example 11. Let U = a♦, T = bb♦♦abb♦♦ba♦. Then
SolidOcc(U, T ) = {4, 5, 9}, NonSolidOcc(U, T ) = {3, 8, 11}.

Theorem 12. The shortest cover being an unambiguous border can be computed
in O(nk4) time.



226 M. Crochemore et al.

Proof. Let T be an i-string of length n and p1 < p2 < . . . < pr be all non-
solid symbols in its first half. Let p0 = 1 and pr+1 = �n/2� + 1. We divide all
border-lengths into disjoint intervals [pj , pj+1 − 1], for j = 0, . . . , r.

Consider the interval I = [pj , pj+1 − 1] and let U = T [1..pj ]. We compute
the lists E = SolidOcc(U, T ) and H = NonSolidOcc(U, T ). Note that for each
unambiguous border-length d ∈ I we have n − d + 1 ∈ E.

We construct a set C of different pairs (S,L), where each S is of the form:

S = (U � i)T [pj + 1 .. pj+1 − 1] for i ∈ E

and L is the list of occurrences of U � i in E merged with the list H. If the
shortest cover of T corresponds to an unambiguous border-length from I, it will
be found in one of ShortestCover(S,L) calls for (S,L) ∈ C. Note that the lists
L are disjoint on positions from E and |H| ≤ k2. We apply Lemma 10 for C to
obtain O(nk3) time for one instance I, U , and O(nk4) time in total. 
�

Covering Using Ambiguous Border-Lengths. In this section we are search-
ing for a solid cover of T which matches its given prefix U = T [1..m]. We intro-
duce the following auxiliary problem.

Problem 13. Given an i-string T , an integer m and a set P ⊆ Occ(T [1..m], T ),
find a solid cover S ≈ T [1..m] with a corresponding covering set P ′ ⊆ P or state
that no such S, P ′ exist.

In Lemma 14 we use the ShortestCover algorithm in a very similar way to the
proof of Theorem 12. We omit the details.

Lemma 14. Problem 13 can be solved in O(nk3) time if the set
P ′ ∩ SolidOcc(T [1..m], T ) is non-empty.

For an integer m ∈ {1, . . . , �n/2�} and a set of positions P ′, we introduce an
auxiliary operation TestCover(m,P ′) which returns true iff there is a cover of T
of length m for which P ′ is a covering set. This operation is particularly simple
to implement for partial words; see the following lemma.

Lemma 15. After O(22kk + nk2)-time preprocessing, TestCover(m,P ′) can be
implemented in O(|P ′|k) time. If T is a partial word then O(nk2)-time prepro-
cessing suffices.

Proof. First consider the simpler case when T is a partial word. By definition,
P ′ can be a covering set for a cover of length m if and only if 1 ∈ P ′ and
maxgap(P ′ ∪ {n + 1}) ≤ m. These conditions can be easily checked in O(|P ′|)
time without any preprocessing.

Now it suffices to check if there is a solid string S of length m such that
T [i..i + m − 1] ≈ S for all i ∈ P ′. After O(nk2)-time preprocessing, we can
compute lcp(1, i) for all i ∈ P ′ and check if each of those values is at least m.
If not, then certainly such a string S does not exist. Otherwise, let the set Y
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contain positions of all don’t care symbols in T [1..m]. We need to check, for each
j ∈ Y , if the set

Xj = {T [i − 1 + j] : i ∈ P ′}
contains at most one solid symbol. This last step is performed in O(|P ′| k) time.

If T is a general i-string, the only required change is related to processing the
Xj sets. If a set Xj contains a solid symbol, then it suffices to check if this symbol
matches all the other symbols in this set. Otherwise we need some additional
preprocessing.

Let Z be the set of all non-solid positions in T . We wish to compute, for
each subset of Z, if there is a single solid symbol matching all the positions
in this subset. For this, we first reduce the size of the alphabet. For each solid
symbol c ∈ Σ, we find the subset of Z which contains this symbol. Note that
if for two different solid symbols these subsets are equal, we can remove one of
those symbols from the alphabet (just for the preprocessing phase). This way
we reduce the alphabet size to at most 2k. Afterwards we simply consider each
subset of Z and look for a common solid symbol, which takes O(22kk) time. 
�
We use Lemma 15 to obtain a solution to Problem 13.

Lemma 16. If |P| ≤ k2, Problem 13 can be solved in O(2(2n/m) log |P|nk/m +
22kk + nk2) time or O(2(2n/m) log |P|nk/m + nk2) time if T is a partial word.

Proof. Assume there is a solid string S ≈ T [1..m] for which there exists a cov-
ering set P ′ = {i1, . . . , ir} ⊆ P in T and further assume that |P ′| is minimal.
Notice that for each j ∈ {1, . . . , r−2}, ij+2 ≥ ij+m. Indeed, otherwise P ′\{ij+1}
would also be a covering set for S in T . Hence, r ≤ 2n/m.

In the algorithm we choose every subset P ′ ⊆ P of size at most �2n/m� and
run TestCover(m,P ′). By Lemma 15, the whole algorithm works in

O
(
22kk + nk2 +

∑

i≤2n/m

(|P|
i

)
ik

)
= O

(
22kk + nk2 + |P|2n/m n

mk
)

= O
(
2(2n/m) log |P|nk/m + 22kk + nk2

)

time. If T is a partial word, the 22kk term can be dropped. 
�
Theorem 17. The shortest cover of an i-string with k non-solid symbols can be
computed in O(2O(k log k) + nk5) time.

Proof. As candidates for the length of the shortest cover of a given i-string
T of length n, we consider all border-lengths. By Theorem 12, we can con-
sider all unambiguous border-lengths in O(nk4) time. There are at most k2

ambiguous border-lengths. If the cover of such a length m has an occurrence
in SolidOcc(T [1..m], T ), due to Lemma 14 it can be computed in O(nk3) time.
Across all lengths this gives O(nk5) time.
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Note that, by the pigeonhole principle, T must contain a solid factor of length
at least n−k

k+1 . Thus, if m ≤ 1
2

n−k
k+1 , any cover of length m must have an occur-

rence within this factor, and consequently an occurrence in SolidOcc(T [1..m], T ).
Therefore, if the cover has no occurrence in SolidOcc(T [1..m], T ), we have m >
n−k
2k+2 . If k ≤ n

3 this concludes that m > n
3k+3 and consequently Lemma 16 for

P = NonSolidOcc(T [1..m], T ) yields an O(2O(k log k)+nk2)-time algorithm. Oth-
erwise k = Θ(n). Hence, Lemma 16 applied for |P| ≤ k2 yields an 2O(n log k) =
2O(k log k)-time solution. 
�

More Efficient Covering of Partial Words. The Exponential Time Hypoth-
esis (ETH) [13,19] asserts that for some ε > 0 the 3-CNF-SAT problem cannot
be solved in O(2εp) time, where p is the number of variables. By the Sparsifica-
tion Lemma [14,19], ETH implies that for some ε > 0 the 3-CNF-SAT problem
cannot be solved in O(2ε(p+m)), and consequently in 2o(p+m) time, where m is
the number of clauses.

We show an algorithm for covering partial word which is more efficient than
the generic algorithm for covering i-string. We also show that, unless ETH is
false, our algorithm is not far from optimal.

Theorem 18.
(a) The shortest cover of a partial word with k don’t care symbols can be com-
puted in O(2O(

√
k log k) + nk5) time.

(b) Unless the Exponential Time Hypothesis is false, there is no 2o(
√

k)nO(1)-time
algorithm computing the shortest cover of a partial word over binary alphabet.

Proof. (a) We improve the algorithm from the proof of Theorem 17. The only
part of that algorithm that does not work in O(nk5) time is searching for a cover
of length m being an ambiguous border-length of T , having all its occurrences
in H = NonSolidOcc(T [1..m], T ). Recall that |H| ≤ k2. We solve this part more
efficiently for partial word T .

Let U = T [1..m]. Let P ⊆ H be the set of positions such that i ∈ P if and
only if U � i has at most

√
k don’t care symbols. We consider two cases.

Case 1: the cover of length m has an occurrence i ∈ P. Let i1, . . . , ir be the
don’t care positions in U � i. Let M1, . . . , Mr be the sets of all solid symbols at
positions i1, . . . , ir of U � j for j ∈ H. If any of the sets Ma is empty, we insert
an arbitrary symbol from Σ to it.

Let us construct all possible strings by inserting symbols from M1, . . . , Mr

at positions i1, . . . , ir in U � i. For each such solid string S, we simply compute
a list L of all positions j ∈ H such that U � j ≈ S and check if 1 ∈ L and if
maxgap(L∪{n+1}) ≤ m. Since r ≤ √

k and |Ma| ≤ |H| ≤ k2 for all a = 1, . . . , r,
this shows that Case 1 can be solved in O(k2

√
k+1) = 2O(

√
k log k) time.

Case 2: the cover of length m has all its occurrences in H \ P. Let us divide T
into �√k� fragments of length at least �n/

√
k� each. By the pigeonhole principle,

at least one of those fragments contains at most �√k� don’t care symbols. No
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occurrence of the cover may be located totally inside this fragment. Therefore,
m ≥ � n

2
√

k
�. Lemma 16 solves this case in 2O(

√
k log k) + O(nk2) time.

(b) In Section 5 we show that the satisfiability problem (CNF-SAT) with p
variables and m clauses can be reduced to finding the shortest cover of a binary
partial word of length n = O((p + m)2). Thus, unless ETH is false, the latter
problem has no 2o(

√
n)-time solution, i.e., no 2o(

√
k)nO(1) solution. 
�

5 Hardness of Covering i-Strings and Partial Words

The negative results obtained for partial words remain valid in the more general
setting of the i-strings, so in this section we consider partial words only. We shall
prove that the following decision problem is NP-complete.

Problem 19 ( d-Cover in Partial Words). Given a partial word T of
length n over an alphabet Σ and an integer d, decide whether there exists a
solid cover S of T of length d.

We will reduce from the CNF-SAT problem. Recall that in this problem we
are given a Boolean formula with p variables and m clauses, C1 ∧ C2 ∧ . . . ∧ Cm,
where each clause Ci is a disjunction of (positive or negative) literals, and our
goal is to check if there exists an interpretation that satisfies the formula. Below
we present a problem which is equivalent to the CNF-SAT problem, but more
suitable for our proof.

Problem 20 (Universal Mismatch). Given binary partial words W1, . . . , Wm

each of length p, check if there exists a binary partial word V of length p such
that V �≈ Wi for any i.

Observation 21. The Universal Mismatch problem is equivalent to the
CNF-SAT problem, and consequently it is NP-complete.

Example 22. Consider the formula

φ = (x1 ∨ x2 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x5)

with m = 3 and five variables (x1, x2, x3, x4, x5). In the corresponding instance
of the Universal Mismatch problem, for each clause Ci we construct a partial
word Wi such that Wi[j] = 0 if xj ∈ Ci, Wi[j] = 1 if ¬xj ∈ Ci, and Wi[j] = ♦
otherwise:

W1 = 001♦0, W2 = 1♦♦0♦, W3 = ♦10♦1.

The interpretations (1, 0, 1, 1, 0), (1, 1, 1, 1, 0) satisfy φ. They correspond to par-
tial words 10110, 11110 and 1♦110, none of which matches any of the partial
words W1, W2, W3.
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Consider an instance W = (W1, . . . , Wm), |Wj | = p, of the Universal
Mismatch problem. We construct a binary partial word T of length O(p(p+m))
which, as an instance of the d-Cover in Partial Words with d = 4p + 2, is
equivalent to W. Due to space constraints, we do not give a rigorous correctness
proof of our construction.

We define a morphism

h : 0 → 0100, 1 → 0001, ♦ → 0000,

and construct T so that V is a solution to W if and only if S = 11h(V ) covers T .
The word T is of the form 11πpβ1 . . . βpγW1 . . . γWm

, where π = 0♦0♦ and βi,
γW are gadgets to be specified later. These gadgets are chosen so that any d-cover
of T must be a d-cover of each gadget string.

The prefix 11πp of T enforces that any d-cover S of T is of the form S =
11s1 . . . sp where sj ≈ π for each j. Thus, in order to make sure that S is of the
form h(V ) for some partial word V , for each j we need to rule out the possibility
that sj = 0101. To this end, we define βj = 11πp−1 0♦4j+1 00♦d.

Lemma 23. Let S = 11s1 . . . sp be a solid string with si ≈ π for each i. Then
S covers βj if and only if sj �= 0101.

Consequently, the d-covers of 11πpβ1 . . . βp are precisely the strings of the form
11h(V ) for binary partial words V of length p.

We encode the constraints V �≈ W using gadgets γW = 11μ(WR)01♦d, where
WR denotes the reverse of a partial word W and μ is the following morphism:

μ : 0 → ♦♦0♦, 1 → 0♦♦♦, ♦ → 0♦0♦.

Lemma 24. Let V and W be binary partial words of length p. Then 11h(V )
covers γW if and only if V �≈ W .

Note that 11h(V ) covers γW if and only if it occurs in μ(WR)01♦4p. Thus the
key idea behind the proof of Lemma 24 is the following relation between μ and
h; see also Fig. 2.

1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

♦ ♦ 0 ♦ 0 ♦ ♦ ♦ 0 ♦ 0 ♦ ♦ ♦ 0 ♦ 0 1 ♦ ♦

µ(0) µ(Y )

h(X) h(1)

(a)

1 1 0 1 0 0 0 1 0 0 0 1 0 0

0 ♦ ♦ ♦ ♦ ♦ 0 ♦ ♦ ♦ 0 ♦ 0 1 ♦ ♦

µ(1) µ(Y )

h(X) h(0)

(b)

Fig. 2. Illustration of Lemma 25: an occurrence of 11h(Xc) in µ(c′Y ) 01 ♦♦ for (a)
Xc = 0101, c′Y = 01♦0; (b) Xc = 000, c′Y = 100. In general, 11h(Xc) is a prefix of
µ(c′Y ) 01 ♦♦ if c = 1 and c′ = 0, and a suffix — if c = 0 and c′ = 1.
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Lemma 25. Let c, c′ ∈ {0, 1,♦}, and let X, Y be partial words of the same
length. Then 11h(Xc) occurs in μ(c′Y ) 01♦♦ if and only if c �≈ c′.

The reduction described above shows that the d-Cover in Partial Words
problem, restricted to the binary alphabet, is NP-hard. Clearly, this problem also
belongs to NP, which yields the main result of this section.

Theorem 26. The d-Cover in Partial Words problem is NP-complete even
for the binary alphabet.

6 Conclusions

We considered the problems of finding the length of the shortest solid cover of
an indeterminate string and of a partial word. The main results of the paper
are fixed-parameter tractable algorithms for these problems parameterized by
k, that is, the number of non-solid symbols in the input. For the partial word
covering problem we obtain an O(2O(

√
k log k) + nkO(1))-time algorithm whereas

for covering a general indeterminate string we obtain an O(2O(k log k) + nkO(1))-
time algorithm. The latter can actually be improved to O(2O(k) + nkO(1)) time
by extending the tools used in the proof of Theorem 18. In all our algorithms
a shortest cover itself and all the lengths of covers could be computed without
increasing the complexity.

One open problem is to determine if the shortest cover of indeterminate
strings can be found as fast as the shortest cover of partial words. Another
question is to close the complexity gap for the latter problem, considering the
lower bound resulting from the Exponential Time Hypothesis, which yields that
no 2o(

√
k)nO(1)-time solution exists for this problem.
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Abstract. We study the dynamic scheduling problem for jobs with fixed
start and end times on multiple machines. The problem is to maintain an
optimal schedule under the update operations: insertions and deletions
of jobs. Call the period of time in a schedule between two consecutive
jobs in a given machine an idle interval. We show that for any set of jobs
there exists a schedule such that the corresponding set of idle intervals
forms a tree under the set-theoretic inclusion. Based on this result, we
provide a data structure that updates the optimal schedule in O(d+log n)
worst-case time, where d is the depth of the set idle intervals and n is
the number of jobs. Furthermore, we show this bound to be tight for any
data structure that maintains a nested schedule.

1 Introduction
Imagine an operator in a delivery company with two responsibilities. The first is
to provide delivery service to clients who request specific times for delivery. The
second is to schedule the requests for the drivers such that conflicting requests
are assigned to different drivers. The goal of the operator is to accept all client
requests and to use as few drivers as possible. The work becomes harder if clients
often cancel their requests or change the delivery times of their requests.

The example above is a basic setup for the interval scheduling problem, one
of the well-known problems in the theory of scheduling [10,11]. Formally, the
problem can be described as follows. An interval a is the usual closed non-empty
interval [s(a), f(a)] on the real line. Two intervals a and b overlap if a ∩ b �= ∅;
otherwise they are compatible. We are given a set I of n intervals. A subset
J ⊆ I is compatible if the intervals in J are pairwise compatible. The problem is
to partition I into compatible sets S1, . . . , Sk such that k is as small as possible.

Depending on the context, we view an interval a as either a process or as a
set of real numbers. In the first case, s(a) and f(a) are respectively the start and
the end of a. In the second case, s(a) and f(a) are the left and right endpoints
of a. The partition of I represent schedules for the machines. The depth of I
is the maximal number d(I) of intervals in I that contain a common point; it
c© Springer International Publishing Switzerland 2014
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is the maximal number of processes that pass over any single point on the time
line. We linearly order elements in the set I by their left endpoints. Namely, we
set a ≺ b whenever s(a) < s(b) for all a, b ∈ I.

A scheduling function for the set of intervals I is a function σ : I → {1, . . . , k}
such that for any two distinct intervals a, b ∈ I if σ(a) = σ(b) then a and b are
compatible. The number k is called the size of the scheduling function. The
scheduling function σ : I → {1, . . . , k} partitions I into k schedules S1, . . . , Sk,
where for each i ∈ {1, . . . , k} we have Si = {a ∈ I | σ(a) = i}. It is easy to see
that d(I) is the smallest size of any scheduling function of I. This gives us the
following definition.

Definition 1. We call a scheduling function σ optimal if its size is d(I).

We briefly describe two algorithms solving the basic interval scheduling prob-
lem. The standard greedy algorithm [7], which we call Algorithm 1, finds an
optimal scheduling function σ for the given set of intervals I as follows. It starts
with sorting the intervals in order of their starting time. Let a1, a2, . . ., an be
the listing of the intervals in this order. Schedule a1 into the first machine, that
is, set σ(a1) = 1. Then, for the given interval ai and each j < i, if ai and aj

overlap, exclude the machine σ(aj) for ai. Schedule ai into the first machine m
that has not been excluded for ai and set σ(ai) = m. The correctness proof of
this algorithm is an easy induction [7]. The algorithm runs in O(n2) time. It is
important to observe that this algorithm works in a static context in the sense
that the set of intervals I is given a priori and it is not subject to change.

The second algorithm due to Gupta et al. [5], which we call Algorithm 2,
computes an optimal schedule in O(n log n) time. Gupta et al. also show that
Algorithm 2 is the best possible. In this algorithm, we work with endpoints of
the intervals in I. Let p1, p2, . . . , p2n be endpoints of intervals sorted in increasing
order. Scan the endpoints from left to right. For each pj , if pj is the start of some
interval a, find the first available machine and schedule a into that machine.
Otherwise, pj is the end of some interval b. Therefore, mark the machine σ(b) as
available. The correctness of the algorithm can be easily verified. Just as above,
this algorithm works in a static context.

The Problem Setup. In practical applications, the instance of the interval
scheduling problem is often changed by a real-time events, and a previously
optimal schedule may become sub-optimal. Examples of real-time events include
job cancellation, the arrival of an urgent job, and changes in job processing
times. To avoid the repetitive work of rerunning the static algorithm every time
when the problem instance has changed, there is a demand for efficient dynamic
algorithms for solving the partitioning problem on the changed instances. In
this dynamic context, the set of intervals changes through a number of update
operations, such as insertion or removal. Thus, the dynamic interval scheduling
problem asks for maintaining an optimal scheduling function σ for a set I of
closed intervals, subject to the following update operations:

– insert(a): insert an interval a into the set I

– delete(a): delete an interval a from the set I (if it is already there).



Dynamic Interval Scheduling for Multiple Machines 237

Contribution of the Paper. There are three main technical contributions
of the paper. The first concerns the concept of idle intervals. An interval (t0, t1)
is idle in a given schedule σ if some machine σ(k) stays idle during the time
period from t0 to t1. Intuitively, an idle interval is a place in the schedule where
we can insert a new interval if its endpoints are between t0 and t1. Now, call
the collection of all idle intervals nested if any two idle intervals either have
no points in common or one interval is included in the other. Firstly, we prove
in Lemma 3 that nested schedules are always optimal. Secondly, we prove in
Theorem 1 that there are optimal schedules for which the set of idle intervals
is nested. This theorem allows us to represent idle intervals of the schedule as a
tree, and perform the update operations through maintaining the idle intervals
of the schedule. Here we note that Diedrich et al. use idle intervals in [2], where
they call them gaps, to approximate algorithms for scheduling with fixed jobs. In
[2] idle intervals are static and do not depend on the schedule. On the contrary,
we describe how to effectively maintain a dynamic set of idle intervals.

Our second contribution is that we provide an optimal data structure that
represents nested schedules and supports insert and delete operations. The data
structure and its efficiency is based on Theorem 1. Namely, it maintains the nest-
edness property of the schedules. Theorem 2 proves that all the update oper-
ations run in O(d + log(n)) in the worst-case. Note that if we naively make
Algorithm 1 or Algorithm 2 dynamic, the update operations of such algorithms
will be significantly slower.

Finally, our third contribution is that we prove in Theorem 4 that the bound
O(d + log(n)) is tight for any data structure representing nested schedules.

Related Work. There are many surveys on the interval scheduling problem
and its variants, also known as “k-coloring of intervals”, “channel assignment”,
“bandwidth allocation” and many others [10,11]. Gertsbakh and Stern [4] stud-
ied the basic problem of scheduling intervals on unlimited number of identical
machines. Arkin and Silverber [1] described and solved a weighted version of the
interval scheduling problem. In their work the number of machines is restricted
and each job has a value. The goal is to maximize the value of completed jobs. A
further generalization of the problem, motivated by maintenance of aircraft, was
extensively studied by Kroon, Salomon and Wassenhove [12,13] and by Kolen
and Kroon [8,9]. In this generalization, each job has a class, and each machine
is of specific type. The type of a machine specifies which classes of jobs it can
process. Since it was shown in [1] that the problem of scheduling classified jobs is
NP-complete, the authors study approximation algorithms. Later, Spieksma [17]
studied the question of approximating generalized interval scheduling problem.

2 Idle Intervals and Nested Scheduling

2.1 Idle Intervals

Definition 2. Let J = {a1, a2, . . . , am} be a compatible set of intervals such
that ai ≺ ai+1 for each i ∈ {1, . . . , m − 1}. Define the set of idle intervals of J
as the following set:
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Idle(J) =
m−1⋃

i=1

{ [f(ai), s(ai+1)] } ∪ { [−∞, s(a1)] } ∪ { [f(am),∞] }.

Note that an idle interval can start at −∞ or end at ∞; they represent a period
when a machine is continuously available before or after some moment of time.

The idea behind considering the set of idle intervals is the following. Let
σ : I → {1, . . . , k} be a scheduling function. Recall that σ partitions I into
the schedules S1, . . . , Sk. When we insert a new interval a into I, we would like
to find a gap in some schedule Si that fully covers a. Similarly, a deletion of
an interval a from I creates a gap in the schedule Sσ(a). Thus, intuitively the
insertion and deletion operations are intimately related to the set of idle intervals
of the current schedules S1, . . ., Sk. Therefore, we need to have a mechanism
that efficiently maintains the idle intervals of the scheduling function σ.

Definition 3. The set of idle intervals of the scheduling function σ is

Idle(σ) = {[−∞,∞]} ∪ Idle(S1) ∪ Idle(S2) ∪ . . . ∪ Idle(Sk).

The scheduling function σ enumerates the idle intervals. Namely, the schedule
number σ(b) of the idle interval b ∈ Idle(σ) is i if b ∈ Idle(Si), and is k + 1 if b =
[−∞,∞]. The next lemma states that the depth of the idle interval set is greater
than or equal to the depth of the interval set. The proof is straightforward.

Lemma 1. We have d(I) ≤ k ≤ d(Idle(σ)).

Definition 4. A set J of intervals is nested if [−∞,∞] ∈ J and for all b1, b2 ∈
J , it is either that b1 covers b2 or b2 covers b1 or b1, b2 are compatible.

Any nested set of intervals J defines a tree under set-theoretic inclusion ⊆.
Indeed, here the nodes in the tree are the intervals in J , and an interval b2 is a
descendent of another interval b1 if b2 ⊂ b1. We call this tree the nested tree of
J and denote it by Nest(J). We order siblings in Nest(J) by the left endpoints
of the corresponding intervals. Recall that the height of a tree is the maximum
number of edges in a path that goes from the root to any leaf.

Lemma 2. For any nested set J of intervals, the depth of J equals to the height
of the nested tree Nest(J).

Proof. Let J be a nested set of intervals and h be the height of Nest(J). To
show that d(J) ≤ h, we take a maximal path in Nest(J), b0, b1, . . . , bh where
b0 = [−∞,∞], and bi+1 ⊂ bi for all i ∈ {0, . . . , h − 1}. The starting point s(bh)
intersects with h intervals. Hence d(J) ≤ h
To show the reverse inequality, take any real number x ∈ R and let C be the set
of intervals in J that contain x. Then C is a nested set as well. In particular,
C contains a sequence b1, b2, . . . , b� where bi ⊂ bi+1 for all i ∈ {1, . . . , �}. This
sequence defines a single path in the tree Nest(J). Thus h ≤ d(J). 
�
In the next subsection we connect idle interval sets with the nested trees.
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2.2 Nested Scheduling

Definition 5. Let σ be a scheduling function of the set of intervals I. We say
that σ is a nested schedule if the set Idle(σ) of idle intervals is nested.

The next lemma shows the usefulness of the notion of nested schedules. In
particular, nested schedules are optimal.

Lemma 3. If σ : I → {1, . . . , k} is a nested scheduling function, then the depth
of the idle intervals Idle(σ) coincides with the depth of I. In particular, every
nested schedule is optimal.

Proof. Let σ : I → {1, . . . , k} be a nested scheduling function for I. By Lemma 1,
d(I) ≤ d(Idle(σ)). To show that d(Idle(σ)) ≤ d(I), by Lemma 2, it is sufficient
to prove that the height h of the nested tree Nest(Idle(σ)) is at most d(I).

Take a maximal path b0, b1, . . . , bh in Nest(Idle(σ)) such that f(b1) �= ∞. For
each i ∈ {1, . . . , h} let Si be a schedule such that bi ∈ Idle(Si). We show that in
every schedule Si there exists an interval ai such that f(b1) intersects with ai.

For contradiction, assume that there exists a schedule Sj such that f(b1)
does not intersect with any interval in Sj . Then there exists an idle interval
c ∈ Idle(Sj) such that f(b1) ∈ c. Therefore s(c) < f(b1). On the other hand,
since bj ∈ Idle(Sj), we have s(b1) < f(bj) < s(c). These imply that the idle
intervals b1 and c overlap, which contradicts with the fact that Idle(σ) is a
nested schedule. Thus h is at most d(I). 
�

A natural question is whether the schedule constructed by either Algorithm
1 or Algorithm 2 is nested. Fig. 1 gives a negative answer to this question, where
both algorithms yield the same scheduling, which is not nested:

S2

S1

Fig. 1. Dotted lines define the idle interval set

2.3 Extending Nestedness

We next prove that every interval set I possesses a nested scheduling. The proof
will also provide a way that maintains the interval set I by keeping the nestedness
property invariant under the update operations.

Suppose that σ : I → {1, . . . , k} is a nested scheduling function for the
interval set I. Recall that we use S1, . . . , Sk to denote the k schedules with
respect to σ. Let a be a new interval not in I. We introduce the following
notations and make several observations to give some intuition to the reader.

– Let L ⊂ Idle(σ) be the set of all the idle intervals that contain s(a), but
do not cover a. The set L, as Idle(σ) is nested, is a sequence of embedded
intervals x1 ⊃ · · · ⊃ x�, where � ≥ 1. Note that L can be the empty set.
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– Let R ⊂ Idle(σ) be the set of all the idle intervals that contain f(a), but
do not cover a. The set R, as above, is a sequence of embedded intervals
y1 ⊃ · · · ⊃ yr, where r ≥ 1. Again, R can be empty as well.

– Let z be the shortest interval in Idle(σ) that covers a. Such an interval exists
since [−∞,∞] ∈ Idle(σ). To simplify the presentation, we set x0 = y0 = z.
Note that x0 ⊃ x1 and y0 ⊃ y1.

Now our goal is to construct a new nested schedule based on σ and the
content of the sets L and R. For that we consider several cases.

Case 1: The sets L and R are empty. In this case we can easily extend σ to
the domain I ∪ {a} and preserve the nestedness property. Indeed, as a ⊂ z, we
simply extend σ by setting σ(a) = σ(z). We do not need to change any other
schedule. It is not too hard to see that the resulting set of idle intervals is nested.

Case 2: The set L is not empty, but the set R = ∅. We reorganise the schedule σ
as follows. We schedule interval a for the machine σ(x�). We move all the jobs d
of the machine σ(x�) such that d � x� to machine σ(x�−1). We continue this on
until we reach the jobs scheduled for the machine σ(x1). At this stage, we move
all the jobs d of the machine σ(x1) such that d � x1 to the machine σ(z). Recall
that z = x0. Now, for z there are two cases. We analyse both.

Case A: f(z) = +∞. In this case we stop our rescheduling. Denote the
resulting schedule by σ1. Note that if z = [−∞,+∞] then for all c such that
σ(c) = σ(x1) and c � x1 we have σ1(c) = k + 1. We claim:

Claim A. The scheduling σ1 defined is nested.
Indeed, Idle(σ1) consists of the new interval [f(a),+∞] together with all the

idle intervals of σ where the idle intervals x�, x�−1, . . ., x1, and x0 are changed to
the following new idle intervals [s(x�), s(a)], [s(x�−1), f(x�)], . . ., [s(x1), f(x2)],
and [s(x0), f(x1)], respectively. We denote the set of changed intervals by L′.

Let u and v be two idle intervals of σ1. We want to show that either u∩v = ∅
or one of these two intervals is contained in the other. If both u and v are old
or both u and v are new then we are done. So, say u is new, and v is old. First,
assume that u is [f(a),+∞]. The interval v does not contain f(a) because, by
assumption, R = ∅. Therefore, if f(a) ≤ s(v) then v ⊂ u; and if s(v) < f(a)
then v∩u = ∅. Second, assume u is [s(xi), f(xi+1)], one of the changed intervals.
Suppose that u and v intersects. If v contains s(a) then v must contain x0 since
v is old. Hence u ⊂ v. Otherwise, suppose that v contains some point r ∈ u.
Then either r ∈ xi or r ∈ xi+1. Hence, v ⊂ xi or v ⊂ xi+1. If the first case we
have v ⊂ [s(xi), s(a)], and in the second case v ⊂ [s(a), f(xi+1)]. In either case,
v ⊂ [s(xi), f(xi+1)]. This proves the claim.

Case B: f(z) < +∞. Consider σ1 defined above. In this case σ1 might not
even be a schedule since the jobs of the machine σ(z) can be incompatible with
the jobs of the machine σ1(z). So, we change σ1 slightly by moving all the
intervals d of the machine σ(z) such that d � z to the machine σ(x�). Let us
denote the resulting schedule by σ2.
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Claim B. The scheduling σ2 defined is nested.
Indeed, one uses the same terminology as in the previous claim. The idle

interval [f(a),+∞] of σ1 is now replaced with the new idle interval [f(a), f(z)].
The rest of the proof is the same as the the proof of Claim A.

Case 3: The set R is not empty but L = ∅. This case is symmetric to the previous
case. So, we leave the details to the reader.

Case 4: Both sets L and R are non-empty. We reorganize the schedule σ in two
steps. In the first step, we proceed exactly as in Case 2. Namely, we move all
the intervals d of the machine σ(x�) that start after x� to σ(x�−1); we continue
this by moving all intervals of σ(xi) that start after xi to σ(xi−1). When we
reach the machine σ(x0), we move all the jobs d of the machine σ(x0) such that
d � x0 to the machine k + 1, that is, to the idle interval [−∞,+∞]. Denote the
resulting schedule by σ1. Note that in case x0 = [−∞,+∞], no intervals in Sk+1

overlap. A formal definition of σ1 is in Fig. 2. In the second step, starting from
σ1(yi), where i = 1, . . . , r − 1, we move all intervals of the machine σ1(yi) that
start after yi to the machine σ(yi+1); see Fig. 3.

σ1(d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ(x�) if d = a,
σ(xi−1) if σ(d) = σ(xi) and d � xi,

where 0 < i ≤ �,
k + 1, if σ(d) = σ(x0) and d � x0,
σ(d) otherwise.

a

x2

x1

x0 = z = y0

y1

Fig. 2. The first step of rescheduling: defining σ1

σ2(d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1(a) if σ1(d) = σ1(yr) and d � yr,
σ1(yi+1) if σ1(d) = σ1(yi) and d � yi,

where 0 < i < r,
σ1(y1) if σ1(d) = k + 1,
σ1(d) otherwise.

a

y1

Fig. 3. The second step of rescheduling: defining σ2

Lemma 4. The scheduling function σ2 is nested.

Proof. Let K = {d ∈ Idle(σ2) | d ⊂ x0}. By construction Idle(σ2) \ K =
Idle(σ) \ K, and by nestedness of Idle(σ), Idle(σ2) \ K is also an nested set.
Furthermore, it is clear that for any interval p ∈ K and q ∈ Idle(σ) \ K, it is
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either that p, q are compatible or p ⊂ q. Therefore it only remains to show that
the set K is also a nested set. We show that any two intervals p, q ∈ K are either
compatible or one is covered by the other.

Suppose p contains s(a). Then the start of p is s(xi) for some 0 � i � �.
Moreover, the end of p is s(a), if i = �, and f(xi+1), otherwise. Note that p ⊂ xi.
Consider two cases with respect to q:

– Case 1: q contains s(a). Then, similarly to p, the start of q is s(xj) for some
0 � j � �. If xj ≺ xi then q covers p. Otherwise, p covers q.

– Case 2: q does not contain s(a). Let xj be the smallest interval that covers q.
If q ≺ xj+1 or xi ≺ xj then p covers q. Otherwise p and q are compatible. In
case xj = x�, we compare starting times of p and a, that is we set x�+1 = a.

qxi+1

xi

xi−1

p

qyi+1

yi

yi−1

p

Fig. 4. Nestedness is preserved

Now suppose p contains f(a). Then the end of p is f(yi) for some 0 � i � r.
Moreover, the start of p is f(a), if i = r, and s(yi+1), otherwise. Similarly to
the previous case, if q contains f(a) then, depending on the end of q, one of the
intervals covers the other. If q does not contain f(a), there are two cases:

– Case 1: q is covered by yr. If a ≺ q or yi ≺ yr then p covers q. Otherwise p
and q are compatible.

– Case 2: p is covered by yj for some 0 ≤ j < r but not covered by yj+1. If
yi+1 ≺ q or yi ≺ yj , then p coveres q. Otherwise, p and q are compatible.

Finally, suppose that neither p nor q contain s(a) or f(a). Then, by construction
of σ2, p and q are in Idle(σ). Therefore they are either compatible or one covers
the other. Thus the set K is nested and σ2 is a nested scheduling function. 
�
Theorem 1. For any set of closed intervals I there is a scheduling function σ
such that Idle(σ) is a nested set.

Proof. We prove by induction on |I|. When |I| = 1 the statement is clear. The
inductive step follows from the construction of σ2 and Lemma 4. 
�
3 Optimal Data Structure for Nested Scheduling

While various data structures [3,6] can maintain a set of nested intervals, they
are not optimal in maintaining the nested schedule. Recall that a nested schedule
depends on the set of interval I. Therefore when we insert or delete an interval,
we need to update O(d) intervals in a nested schedule.

In this section we describe a data structure that takes O(d + log n) time for
an update operation. Furthermore, we show this bound is tight for any data
structure representing nested schedules.
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3.1 Optimal Data Structure

Our data structure stores idle intervals Idle(σ) that depends on the scheduling
function σ and the set of intervals I. We assume that every endpoint is linked
to two corresponding intervals, real and idle (e.g. if a schedule contains intervals
[3,6] and [8,9], we store the idle interval [6,8]). After each update of I we restore
the nestedness of the idle interval set. Therefore when we insert or delete an
interval a, we update all idle intervals that intersect with the endpoints of a.
Below we describe how to maintain a nested schedule and perform updates.

We store idle intervals in an interval tree [14], which is a leaf-oriented binary
search tree where leaves store endpoints of the intervals in increasing order.
Intervals themselves are stored in the internal nodes as follows. For each internal
node v the set I(v) consists of intervals that contain the split point of v and are
covered by the range of v. The split point of v, denoted by split(v), is a number
such that the leaves of the left subtree of v store endpoints smaller than split(v),
and the leaves of the right subtree of v store endpoints greater than split(v).
The range of v, denoted by range(v), is defined recursively as follows. The range
of the root is (−∞,∞]. For a node v, where range(v) = (l, r], the range of the
left child of v is (l, split(v)], and the range of the right child of v is (split(v), r].
An example of an interval tree is shown in Figure 5.

[−∞, ∞]

[5, ∞]

[5, 11]

1 2 3 4 6 7 8 9 10 12 13 14 15 16 17 18

Fig. 5. Nested set of intervals represented by interval tree data structure

Now we describe the update operations on the interval set. Recall that when
we insert an interval a, we need to update idle intervals that intersect with the
endpoints of a. Let L be the set of idle intervals that contain s(a), but not f(a).
Let R be the set of idle intervals that contain f(a), but not s(a). Let z be the
shortest idle interval that contains both endpoints of a. We show how to update
intervals in L. The update of intervals in R is similar.

Let v0 be a node such that z ∈ I(v0). This node is our starting position.
To find intervals in L, we walk down a path v0, . . . , vk defined by s(a). When
visiting a node vi, we iterate through I(vi) and put intervals that contains s(a)
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into L. We delete intervals from I(vi) that we put in L. We stop when we reach
a leaf node.

Let x1 ⊃ · · · ⊃ x� be intervals we have put in L. We iterate through L and
walk up the path we have traversed. We start iteration from the last interval x�.
For an interval xj , we set s(xj) = s(xj−1). Then we check if xj belongs to I(vi),
i.e. if split(vi) ∈ xj ⊂ range(vi). If xj satisfies these conditions, we put xj at the
beginning of I(vi) and remove it from L . Otherwise, we walk up the path until
we find a node with a satisfactory split point and range. Note that no interval
in I(vi) contains s(a), since on the way down we removed all such intervals.
Therefore, by the nestedness of idle intervals, xj covers all intervals in I(vi).

Finally, we insert s(a) into the tree. Once inserted, we search for the lowest
common ancestor v of the leaves containing s(x�) and s(a). We add interval
[s(x�), s(a)] into I(v).

Deletion of an interval a is symmetric to insertion. First we delete the end-
points s(a) and f(a) and corresponding idle intervals [p, s(a)] and [f(a), q] from
the interval tree. Now, as the place occupied by a is free, we have an idle interval
b = [p, q]. An example is shown in Figure 6. The interval b may violate the nest-
edness of the idle interval set. Therefore we update idle intervals that intersects
with b. We leave the details of these updates to the reader.

a

y1

x1

p q

Fig. 6. Rescheduling after deletion of the interval a

Theorem 2. The data structure described above maintains the optimal schedul-
ing and supports insertions and deletions in O(d + log n) worst-case time.

Proof. When we insert or delete an interval, we update only two sets L and
R of idle intervals. These two sets corresponds to two paths of length at most
O(log n). Furthermore, all intervals in each set share a common point. Therefore
the size of each set is at most d. Since the intervals in internal nodes are ordered,
it takes O(d) time to add intervals into L and R. When we put updated intervals
back, we add them at the beginning of the lists. Therefore it takes O(d) time to
add intervals from L and R into the internal nodes. Finally, we insert or delete
at most two leaves. Thus, an update takes O(d + log n) time.

The optimality of scheduling after insertion follows from Lemma 4. The opti-
mality of scheduling after deletion can be proved in a similar way. 
�
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3.2 Lower Bound

In this subsection we show that complexity of any data structure that maintains
a nested tree is at least Ω(log n + d), where d is the height of the nested tree.
First we recall a lower bound for the static interval scheduling problem:

Theorem 3 (Shamos and Hoey [15]). O(n log n) is a lower bound on the
time required to determine if n intervals on a line are pairwise disjoint.

Lemma 5. O(log n) is a tight bound on the time required to update a data struc-
ture that maintains a nested tree.

Proof. For contradiction, assume that there is a data structure with a complexity
f(n) ∈ o(log n). We create a nested tree of n intervals using this data structure.
If the height of the tree is 1, then the intervals do not intersect. However, the
time taken is n · f(n) ∈ o(n log n), which contradicts Theorem 3. 
�
Lemma 6. If σ and τ are nested scheduling functions then Idle(σ) = Idle(τ).

Proof. For contradiction, assume that there exist two nested scheduling functions
σ and τ such that Idle(σ) �= Idle(τ). Then there exist two idle intervals a0 ∈
Idle(σ) and b0 ∈ Idle(τ) such that they have the same non-infinite starting
time, but different finishing times, i.e. s(a0) = s(b0) �= −∞ and f(a0) �= f(b0).
Without loss of generality, suppose that f(a0) < f(b0). Now we take an interval
b1 from Idle(τ) that finishes at f(a0). If its starting time is less than s(b0) then
intervals b0 and b1 overlap, which contradicts the nestedness of τ . Otherwise, we
continue to Idle(σ) and take an interval a1 that starts at s(b1). If f(a1) > f(a0)
then a1 and a0 overlap and it is a contradiction. Otherwise, we continue in the
same manner to Idle(τ). Since I is finite, this process eventually stops and one
of the scheduling functions appears to be not nested. 
�
Theorem 4. An update operation in a data structure representing a nested tree
takes at least Ω(log n + d) time.

Proof. Let I be an interval set and Nest(I) be the nested tree of I. By Lemma 6,
Nest(I) is unique. Let v0v1 . . . vd be longest path in Nest(I). Now consider an
interval a, which starts in the middle of vd and finishes after the end of v1.
Clearly, s(a) intersects with exactly d idle intervals. Therefore the trees Nest(I)
and Nest(I ∪ a) differ in Ω(d) nodes. Taking into account Lemma 5, an update
operation of a nested tree requires Ω(log n + d) time. 
�
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Abstract. In the classical energy minimization problem, introduced in
[Yao et al., FOCS’95], we are given a set of n jobs each one characterized
by its release date, its deadline, its processing volume and we aim to find a
feasible schedule of the jobs on a single speed-scalable machine so that the
total energy consumption is minimized. Here, we study the throughput
maximization version of the problem where we are given a budget of
energy E and where every job has also a value. Our goal is to determine a
feasible schedule maximizing the (weighted) throughput of the jobs that
are executed between their respective release dates and deadlines. We
first consider the preemptive non-migratory multiprocessor case in a fully
heterogeneous environment in which every job has a machine-dependent
release date, deadline and processing volume and every machine obeys
to a different speed-to-power function. We present a polynomial time
greedy algorithm based on the primal-dual scheme that approximates the
optimum solution within a factor depending on the energy functions (the
factor is constant for typical energy functions of form P (z) = zα). Then,
we focus on the non-preemptive case for which we consider a fixed number
of identical parallel machines and two important families of instances: (1)
equal processing volume jobs; and (2) agreeable jobs. For both cases we
present optimal pseudo-polynomial-time algorithms.

1 Introduction

Power management has become a major issue in our days. One of the mecha-
nisms used for saving energy in computing systems is speed-scaling where the
speed of the machines can dynamically change over time. We adopt the model
first introduced by Yao et al. [24] and we study the multiprocessor scheduling
problem of maximizing the throughput of jobs for a given budget of energy.
Maximizing throughput, i.e. the number of jobs or the total weight of jobs exe-
cuted on time for a given budget of energy, is a very natural objective in this
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setting. Indeed mobile devices, such as mobile phones or computers, have a lim-
ited energy capacity depending on the quality of their battery, and throughput
is one of the most popular objectives in scheduling literature for evaluating the
performance of scheduling algorithms for problems involving jobs that are sub-
ject to release dates and deadlines [13,22]. Different variants of the throughput
maximization problem in the online speed-scaling setting have been studied in
the literature [12,15,16,21,23]. However, in the off-line context, only recently,
an optimal pseudopolynomial-time algorithm has been proposed for preemptive
scheduling (i.e., the execution of a job may be interrupted and resumed later)
on a single machine [4]. Up to our knowledge no results are known for the
throughput maximization problem in the multiprocessor case. In this paper, we
address this issue. More specifically, we first consider the case of a set of paral-
lel machines in a fully heterogeneous environment [10]. Every job has a value,
a machine-dependent release date, deadline and processing volume and every
machine obeys to a different speed-to-power function. We propose a polynomial-
time constant factor approximation algorithm for the problem of maximizing the
weighted throughput in the preemptive non-migratory setting (i.e, a job must be
executed entirely on at most one machine). Our algorithm combines the use of
the knapsack inequalities, presented in [14], in order to minimize the integral-
ity gap of the relaxation and the use of a primal-dual scheme on a linearized
version of a convex program with linear constraints that is inspired by the app-
roach used in [18] for the online matching problem. In the second part of the
paper, we study the non-preemptive throughput maximization problem. Given
that the non-preemptive energy minimization problem has been recently proved
APX-hard for the heterogeneous model [17] and that no constant factor approx-
imation is known for the identical machines case. We focus on the throughput
maximization problem with a fixed number of identical parallel machines for two
important families of instances. More precisely, we study the case where all the
jobs have the same processing volume, and the case where the jobs have arbitrary
processing volumes, but their release dates and deadlines are agreeable where
earlier released jobs have earlier deadlines. We propose exact algorithms that are
based on a discretization of the problem and the use of dynamic programming.

Problem Definition and Notations. In the first part of the paper, we consider
the problem in a fully heterogeneous environment. Formally, there are m par-
allel machines and n jobs. Each job j has its release date rij , deadline dij , and
its processing volume pij on machine i. Moreover, job j has weight wj which
represents its value. If a job is executed on machine i then it must be entirely
processed during its available time interval [rij , dij ] on that machine without
migration. The weighted throughput of a schedule is

∑
i,j wj where the sum is

taken over jobs j completed on machine i. At any time, a machine can choose
a speed to process a job. If the speed of machine i at time t is si(t) then the
energy power at t is Pi(si(t)) where Pi is a given convex power energy function
of machine i. Typically, one has Pi(z) := zαi where 2 ≤ αi ≤ 3. The consumed
energy on machine i is

∫ ∞
0

Pi(si(t))dt. Our objective is to maximize the weighted
throughput for a given budget of energy E. Hence, the scheduler has to decide
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the set of jobs that will be executed, assign the jobs to machines and choose
appropriate speeds to schedule these jobs without exceeding the energy budget.

In the second part of the paper we consider identical parallel machines
where the job parameters (i.e., its release date, deadline, processing volume) are
not machine-dependent and the energy power functions are the same for every
machine, e.g., P (z) = zα. We study the problem for two families of instances:
(1) instances with identical processing volumes, i.e. pi,j = p for every i and j,
and (2) agreeable instances, i.e. instances for which ri ≤ rj if and only if di ≤ dj .

In the sequel, we need the following definition: Given arbitrary convex func-
tions Pi as the energy power functions, define Γ := maxi maxz>0 zP ′

i (z)/Pi(z)
(a parameter of function P ). As said before, for the most studied case in the
literature one has Pi(z) = zαi , and therefore Γ = maxi αi is constant.

1.1 Related Work

Many papers considered the closely related problem of minimizing the consumed
energy. For the preemptive single-machine case, Yao et al. [24] in their seminal
paper proposed an optimal polynomial-time algorithm. Since then, a lot of papers
appeared in the literature (for a survey see [1]). Antoniadis and Huang [7] have
considered the non-preemptive energy minimization problem. They proved that
the non-preemptive single-machine case is strongly NP-hard and they proposed
an approximation algorithm. This result has been improved recently in [10] and
[17]. For instances in which all the jobs have the same processing volume, a 2α-
approximation for the single-machine case has been presented in [9]. However
the complexity status of this problem remained open. In this paper, we settle
this question even for the identical machine case where the number of machines
is a fixed constant. Notice that independently, Huang et al. in [20] proposed a
polynomial-time algorithm for the single machine case.

The multiple machine case where the preemption and the migration of jobs
are allowed can be solved in polynomial time [2,6,11]. For the heterogeneous
multiprocessor speed-scaling problem with preemptions and migrations allowed,
an algorithm that returns a solution which is within an additive factor of ε far
from the optimal solution and runs in time polynomial to the size of the instance
and to 1

ε has been proposed in [10]. Albers et al. [3] considered the multiple
machine problem where the preemption of jobs is allowed but not their migration.
They provided numerous exact and approximation algorithms for instances with
equal processing volumes and/or agreeable instances. Their approximation ratio
for agreeable instances has been improved to (2 − 1/m)α−1 in [9]. Greiner et
al. [19] proposed a B�α�-approximation algorithm for general instances, where
B�α� is the α-th Bell number. For the heterogeneous multiprocessor speed-scaling
problem with preemption but no migrations, an approximation algorithm of
ratio (1 + ε)B̃α where B̃α is the generalized Bell number, has been proposed
in [10]. For the non-preemptive multiple machine energy minimization problem,
a 2(1 + ε)(5(1 + ε))α−1B̃α-approximation algorithm have been proposed in [17]
for the case where all the processing volumes of the jobs are the same. For
arbitrary machine-dependent processing volumes, Cohen-Addad et al. in [17]
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proved that the problem becomes APX-hard and they proposed a non-constant
factor approximation algorithm with an approximation factor that depends on
the maximum ratio between two processing volumes.

Angel et al. studied the throughput maximization problem in the offline set-
ting in [5]. They provided a polynomial time algorithm to solve optimally the
single-machine problem for agreeable instances. More recently in [4], they proved
that there is a pseudo-polynomial time algorithm for solving optimally the pre-
emptive single-machine problem with arbitrary release dates and deadlines and
arbitrary processing volumes. For the weighted version, the problem is NP-hard
even for instances in which all the jobs have common release dates and dead-
lines. Angel et al. [5] showed that the problem admits a pseudo-polynomial time
algorithm for agreeable instances. Furthermore, Antoniadis et al. [8] considered
a generalization of the classical knapsack problem where the objective is to max-
imize the total profit of the chosen items minus the cost incurred by their total
weight. The case where the cost functions are convex can be translated in terms
of a weighted throughput problem where the objective is to select the most prof-
itable set of jobs taking into account the energy costs. Antoniadis et al. presented
a FPTAS and a fast 2-approximation algorithm for the non-preemptive problem
where the jobs have no release dates or deadlines.

Up to the best of our knowledge, no work is known for the offline throughput
maximization problem in the case of multiple machines.

1.2 Our Approach and Contributions

In Section 2, we consider the throughput maximization problem of scheduling
a set of n jobs on m parallel speed-scalable machines in a fully heterogeneous
environment. Every job has a machine-dependent release date, deadline and
processing volume and every machine obeys to a different speed-to-power func-
tion. Instead of studying the problem directly, we study the related problem of
minimizing the consumed energy under the constraint that the total weighted
throughput must be at least some given throughput demand W .

For the problem of minimizing the energy’s consumption under the through-
put constraint, we present a polynomial time algorithm which has the following
property: the consumed energy of the algorithm given a throughput demand W
is at most that of an optimal schedule with throughput demand 2(Γ + 1)W .
The algorithm is based on a primal-dual scheme for mathematical programs
with linear constraints and a convex objective function. Specifically, our app-
roach consists in considering a relaxation with convex objective and linear con-
straints. Then, we linearize the convex objective function and construct a dual
program. Using this procedure, the strong duality is not necessarily ensured but
the weak duality always holds and that is indeed the property that we need for
our approximation algorithm. The linearization and the dual construction fol-
low the scheme introduced in [18] for online matching. In the relaxation, we also
make use of the knapsack inequalities, presented in [14], in order to reduce the
integrality gap in the multiprocessor environments. The algorithm follows the
standard primal-dual framework: at any time, some dual variables are greedily
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increased until some dual constraint becomes tight. Then some job is selected
and is dispatched to the corresponding machine revealed by the dual constraint.
Typically, one will bound the primal objective value by the dual one. In the
analysis, instead of comparing the primal and its dual, we bound the primal by
the dual of the original relaxation but with the new demand which is 2(Γ + 1)
times larger. An advantage in the analysis is that the feasible solutions of the
dual program corresponding to the primal with demand W is also feasible for
the dual corresponding to the primal with demand 2(Γ + 1)W .

For the problem of maximizing the throughput under a given budget of
energy, we apply a dichotomy search using as subroutine the algorithm for the
problem of minimizing the energy’s consumption with a given weighted through-
put demand. Our algorithm is a 2(Γ + 1)(1 + ε)-approximation for the weighted
throughput where ε > 0 is an arbitrarily small constant. The algorithm’s run-
ning time is polynomial in the input size of the problem and 1/ε. Clearly, one
may be interested in finding a tradeoff between the precision and the running
time of the algorithm.

Given that the non-preemptive energy minimization problem is proved APX-
hard for the heterogeneous model [17] and that no constant factor approximation
is known for the identical machines case, in Section 3, we focus on the throughput
maximization problem with a fixed number of identical parallel machines for two
important families of instances. By identical machines, we mean that pi,j = pj ,
i.e. the processing volume of every job is independent of the machine on which
it will be executed. Moreover, rij = rj and dij = dj for every job j and every
machine i. The problem is weakly NP-hard even in a very restricted special case
in which there is a single machine, jobs have equal processing volume and the
release dates and deadlines are agreeable (for every jobs j and j′, if rj < rj′ then
dj ≤ dj′). Hence, we focus on two cases: (1) jobs that have the same processing
volumes, but arbitrary release dates and deadlines; and (2) jobs that have arbi-
trary processing volumes, but their release dates and deadlines are agreeable.
We present pseudo-polynomial time algorithms based on dynamic programming
for these variants. Specifically, when all jobs have the same processing volume,
our algorithm has running time O(n12m+7W 2) where W =

∑
j wj . Note that

when jobs have unit weight, the algorithm has polynomial running time. When
jobs are agreeable, our algorithm has running time O(n2m+2V 2m+1Wm) where
V =

∑
j pj . Using standard techniques, these algorithms may lead to approxi-

mation schemes.

2 Approximation for Non-Migratory Scheduling

We first study a related problem in which we look for an algorithm that minimizes
the consumed energy under the constraint of throughput demand. Then, we
use that algorithm as a sub-routine to derive an algorithm for the problem of
maximizing throughput under the energy constraint.

Energy Minimization with Throughput Demand Constraint. In the problem,
there are n jobs and m parallel machines. A job j has release date rij , deadline
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dij , weight wj and processing volume pij if it is scheduled on machine i. Given a
throughput demand of W , the scheduler needs to choose a subset of jobs, assign
them to the machines and decide the speed to process these jobs in such a way
that the total weight (throughput) of completed jobs is at least W and the con-
sumed energy is minimized. Jobs are allowed to be processed preemptively, but
without migration.

Let xij be a variable indicating whether job j is scheduled on machine i. Let
sij(t) be a variable representing the speed that the machine i uses in order to
process job j at time t. The problem can be formulated as the primal convex
relaxation (P).

min
∑

i

∫ ∞

0

Pi(si(t))dt (P)

subject to si(t) =
∑

j

sij(t) ∀i, t

∑

i

xij ≤ 1 ∀j (1)

∫ dij

rij

sij(t)dt ≥ pijxij ∀i, j (2)

∑

i

∑

j:j /∈S

wS
j xij ≥ W − w(S) ∀S ⊂ {1, . . . , n} (3)

xij , sij(t) ≥ 0 ∀i, j, t

In the formulation, constraints (1) ensure that a job can be chosen at most
once. Constraints (2) guarantee that job j must be completed if it is assigned to
machine i. To satisfy the throughput demand constraint, we use the knapsack
inequalities (3) introduced in [14]. Note that in the constraints, S is a subset of
jobs, w(S) =

∑
j∈S wj and wS

j := min{wj ,W − w(S)}. Intuitively, if S is the
set of jobs which will be completed then one need to cover W − w(S) amount of
throughput over jobs not in S in order to satisfy the demand. These constraints
reduce significantly the integrality gap of the relaxation compared to the natural
constraint

∑
ij wjxij ≥ W .

Observe that the primal consist of linear constraints and a convex objective
function. Hence, the idea of the approach is to derive a closed form dual program
which is intuitive in the sense of linear programming by linearizing the objective
function. Define functions Qi(z) := Pi(z)− zP ′

i (z) for every machine i. Consider
the following dual program (D).

The construction of the dual (D) is inspired by [18] and is obtained by lin-
earizing the convex objective of the primal. By this procedure the strong duality
is not necessarily guaranteed, but the weak duality always holds. Indeed we
only need the weak duality for approximation algorithms. In fact, the dual (D)
gives a meaningful lower bound that we will exploit to design our approximation
algorithm.
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max
∑

S

(W − w(S))βS +
∑

i

∫ ∞

0

Qi(vi(t))dt −
∑

j

γj (D)

s.t λij ≤ P ′
i (vi(t)) ∀i, j, ∀t ∈ [rij , dij ] (4)

∑

S:j /∈S

wS
j βS ≤ γj + λijpij ∀i, j (5)

βS , λij , γj , vi(t) ≥ 0 ∀i, j, ∀t, ∀S ⊂ {1, . . . , n}

Lemma 1 (Weak Duality). The optimal value of the dual program (D) is at
most the optimal value of the primal program (P).

The primal/dual programs (P) and (D) highlight the main ideas of the algo-
rithm. Intuitively, if a job j is assigned to machine i then one must increase the
speed of job j on machine i at arg min P ′

i (vi(t)) in order to always satisfy the
constraint (4). Moreover, when constraint (5) becomes tight for some job j and
machine i, one could assign j to i in order to continue to raise some βS and
increase the dual objective. The formal algorithm is given below.

Algorithm 1. Minimizing the consumed energy under the throughput
constraint
1: Initially, set si(t), sij(t), vi(t) and λij , γj equal to 0 for every job j, machine i and

time t.
2: Initially, T ← ∅.
3: while W > w(T ) do
4: for every job j /∈ T and every machine i do
5: Continuously increase sij(t) at arg min P ′

i (vi(t)) for rij ≤ t ≤ dij and simul-

taneously update vi(t) ← vi(t) + sij(t) until
∫ dij

rij
sij(t)dt = pij .

6: Set λij ← minrij≤t≤dij P ′
i (vi(t)).

7: Reset vi(t) as before, i.e., vi(t) ← vi(t) − sij(t) for every t ∈ [rij , dij ].
8: end for
9: Continuously increase βT until

∑
S:j /∈S wS

j βS = pijλij for some job j and
machine i.

10: Assign job j to machine i. Set si(t) ← si(t)+sij(t) and vi(t) ← si(t) for every t.

11: Set T ← T ∪ {j}. Moreover, set γj ← pijλij .
12: Reset λi′j ← 0 and si′j(t) ← 0 for every i′ 
= i.
13: end while

In the algorithm arg minP ′
i (vi(t)) for rij ≤ t ≤ dij is defined as {t : t ∈

[rij , dij ] and P ′
i (vi(t)) = minrij≤x≤dij

P ′
i (vi(x))}, this is usually a set of intervals,

and thus the speed sij is increased simultaneously on a set of intervals. Notice
also that since Pi is a convex function, P ′

i is non decreasing. Hence, in line 5 of
the algorithm, arg min P ′

i (vi(t)) can be replaced by arg min vi(t); so we can avoid
the computation of the derivative P ′

i (z). Note that at the end of the algorithm
variables vi(t) are indeed equal to si(t) — the speed of machine i for every i.
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Given the assignment of jobs and the speed function si(t) of each machine i
returned by the algorithm, one can process the jobs on each machine using the
Earliest Deadline First (EDF) order.

Lemma 2. The solution βS , γj and vi(t) for every i, j, S, t constructed by Algo-
rithm 1 is feasible for the dual (D).

Theorem 1. The consumed energy of the schedule returned by the algorithm 1
with a throughput demand of W is at most the energy of the optimal schedule
with a throughput demand 2(Γ + 1)W .

Proof. Let OPT (2(Γ + 1)W ) be the energy consumed by the optimal schedule
with the throughput demand 2(Γ + 1)W . By Lemma 1, we have that:
OPT (2(Γ+1)W ) ≥ ∑

S(2(Γ+1)W−w(S))βS+
∑

i

∫ ∞
0

Qi(vi(t))dt−∑
j γj where

the variables βS , vi, γj satisfy the same constraints in the dual (D). Therefore, it
is sufficient to prove that latter quantity is larger than the consumed energy of the
schedule returned by the algorithm with the throughput demand W , denoted by
ALG(W ). Specifically, we will prove a stronger claim. For βS , γj and vi (which
is equal to si) in the feasible dual solution constructed by Algorithm 1 with
the throughput demand W , it always holds that: 2(Γ + 1)

∑
S(W − w(S))βS +∑

i

∫ ∞
0

Qi(si(t))dt − ∑
j γj ≥ ∑

i

∫ ∞
0

Pi(si(t))dt.
By the algorithm, we have that

∑

i,j∈T
pijλij =

∑

j∈T

∑

S:j /∈S

wS
j βS =

∑

S

βS

( ∑

j∈T \S

wS
j

)

≤ 2
∑

S

βS(W − w(S)) (6)

In the second sum, βS �= 0 iff S equals T at some step during the execution of
the algorithm. Thus, we consider only such sets in that sum. Let j∗ be the last
element added to T . For S ⊂ T \ {j∗} and βS > 0, by the while loop condition
w(S)+

∑
j /∈S,j∈T \{j∗} wS

j < W . Moreover, wS
j∗ ≤ W −w(S) by definition. Hence,

∑
j /∈S,j∈T wS

j ≤ 2(W − w(S)) and the inequality (6) follows.
Fix a machine i and let {1, . . . , k} be the set of jobs assigned to machine

i (renaming jobs if necessary). Let ui1(t), . . . , uik(t) be the speed of machine i
at time t after assigning jobs 1, . . . , k, respectively. In other words, ui�(t) =
∑�

j=1 sij(t) for every 1 ≤ 	 ≤ k. By the algorithm, we have λi� =
minr�≤t≤d�

P ′
i (ui�(t)) for every 1 ≤ 	 ≤ k. As every job 	 is completed in machine

i,
∫ d�

r�
si�(t)dt = pi�. Note that si�(t) > 0 only at t in arg minr�≤t≤d�

P ′
i (ui�(t)).

Thus,

k∑

�=1

λi�pi� =
k∑

�=1

∫ d�

r�

si�(t)P ′
i

( �∑

j=1

sij(t)
)

dt =
k∑

�=1

∫ ∞

0

si�(t)P ′
i

( �∑

j=1

sij(t)
)

dt

≥
k∑

�=1

∫ ∞

0

[

Pi

( �∑

j=1

sij(t)
)

−Pi

(�−1∑

j=1

sij(t)
)]

dt

=
∫ ∞

0

[

Pi(uik(t)) − Pi(0)
]

dt =
∫ ∞

0

Pi(si(t))dt (7)
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where in the second equality, note that si�(t) = 0 for t /∈ [r�, d�]; the inequality
is due to the convexity of Pi.

As inequality (7) holds for every machine i, summing over all machines we
get

∑
i,j∈T pijλij ≥ ∑

i

∫ ∞
0

Pi(si(t))dt. Together with (6), we deduce that

2(Γ + 1)
∑

S

βS(W − w(S)) +
∑

i

∫ ∞

0

Qi(si(t))dt −
∑

j

γj

≥
∑

i,j∈T
pijλij + Γ

∑

i

∫ ∞

0

Pi(si(t))dt +
∑

i

∫ ∞

0

Qi(si(t))dt −
∑

j

γj

≥
∑

i

∫ ∞

0

Pi(si(t))dt = ALG(W ).

where the last inequality is due to the definition of Γ (recall that Γ =
maxi maxz zP ′

i (z)/Pi(z) for every z such that P (z) > 0) and γj =
∑

i λijpij

for every job j in T (by the algorithm). �	

Corollary 1. For the single machine setting, the consumed energy of the sched-
ule returned by the algorithm with a throughput demand of W is at most that of
the optimal schedule with a throughput demand 2Γ · W .

Corollary 2. If the demand is W = minj wj then the energy induced by Algo-
rithm 1 is optimal (compared to the optimal solution with the same demand).

Throughput Maximization with Energy Constraint. We use the algorithm in the
previous section as a subroutine and make a dichotomy search in the feasible
domain of the total throughput. The formal algorithm and the proof of the
following theorem are given in the following.

Algorithm 2. Maximizing throughput under the energy constraint
1: For a throughput demand W , denote E(W ) the consumed energy due to Algo-

rithm 1.
2: Let ε > 0 be a constant.
3: Initially, set W ← minj wj and W ← ∑

j wj where the sum is taken over all jobs
j.

4: if E(W ) > E then
5: return the total throughput is 0
6: end if
7: while E((1 + ε)W ) ≤ E and (1 + ε)W ≤ W do
8: W ← (1 + ε)W .
9: end while

10: return the schedule which is the solution of Algorithm 1 with throughput demand
W .

Theorem 2. Given an energy budget E, there exists a polynomial time algo-
rithm with respect to the size of input and 1/ε, and which is 2(Γ + 1)(1 + ε)-
approximate in throughput for arbitrarily small ε > 0.
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3 Exact Algorithms for Non-Preemptive Scheduling

In this section, we consider schedules without preemption with a fixed number m
of identical machines. So the parameters of a job j are the same on every machine.
Without loss of generality, we assume that all parameters of the problem such as
release dates, deadlines and processing volumes of jobs are integer. We rename
jobs in non-decreasing order of their deadlines, i.e. d1 ≤ d2 ≤ . . . ≤ dn. We
denote by rmin := min1≤j≤n rj the minimum release date. Define Ω as the set
of release dates and deadlines, i.e., Ω := {rj |j = 1, . . . , n} ∪ {dj |j = 1, . . . , n}.
Let J(k, a, b) := {j|j ≤ k and a ≤ rj < b} be the set of jobs among the k
first ones w.r.t. the edf (Earliest Deadline First) order, whose release dates are
within a and b. We consider time vectors a = (a1, a2, . . . , am) ∈ R

m
+ where each

component ai is a time associated to the machines i for 1 ≤ i ≤ m. We say that
a � b if ai ≤ bi for every 1 ≤ i ≤ m. Moreover, a ≺ b if a � b and a �= b. The
relation � is a partial order over the time vectors. Given a vector a, we denote
by amin := min1≤i≤m ai.

Observations. We give some simple observations on non-preemptive scheduling
with the objective of maximizing throughput under the energy constraint. First,
it is well known that due to the convexity of the power function P (z) := zα,
each job runs at a constant speed during its whole execution in an optimal
schedule. This follows from Jensen’s Inequality. Second, for a restricted version
of the problem in which there is a single machine, jobs have the same processing
volume and are agreeable, the problem is already NP-hard. That is proved by
a simple reduction from Knapsack.

In the following sections, we show pseudo-polynomial-time exact algorithms
for particular settings: (1) setting with equal length jobs; and (2) setting with
agreeable jobs.

3.1 Equal Processing Volume, pj = p ∀j
Definition 1. Let Θa,b := {a + 	 · b−a

k | k = 1, . . . , n and 	 = 0, . . . , k and a ≤
b} and Θ :=

⋃{Θa,b|a, b ∈ Ω}. Moreover, let Λ := { �·p
b−a | 	 = 1, . . . , n and

a, b ∈ Ω and a < b}.
Lemma 3. There exists an optimal schedule in which the starting time and com-
pletion time of each job belong to the set Θ. Consequently, each job is processed
at some speed which belongs to Λ.

Definition 2. For 0 ≤ w ≤ W , define Ek(a,b, w, e) as the minimum energy
consumption of a non-preemptive (non-migration) schedule S such that

• S ⊂ J(k, amin, bmin) and
∑

j∈S wj ≥ w where S is the set of jobs scheduled
in S,

• if j ∈ S is assigned to machine i then it is entirely processed in [ai, bi] for
every 1 ≤ i ≤ m,
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• a � b,
• for some machine 1 ≤ h ≤ m, it is idle during interval [ah, e],
• for arbitrary machines 1 ≤ i �= i′ ≤ m, bi′ is at least the last starting time

of a job in machine i.

Note that Ek(a,b, w, e) = ∞ if no such schedule S exists.

Proposition 1. One has E0(a,b, 0, e) = 0, E0(a,b, w, e) = +∞ ∀w �= 0

Ek(a,b, w, e) = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ek−1(a,b, w, e)

min u∈Θm

a
u≺b
s∈Λ,1≤h≤m,

e′=uh+
p
s

rk≤uh<e′≤dk

0≤w′≤w−wk

{
Ek−1(a,u, w′, e) + pα

(e′−uh)α−1

+Ek−1(u,b, w − w′ − wk, e′)

}

Theorem 3. The dynamic program in Proposition 1 has a running time of
O(n12m+7W 2).

3.2 Agreeable Jobs

In this section, we focus on another important family of instances. More precisely,
we assume that the jobs have agreeable deadlines, i.e. for any pair of jobs i and
j, one has ri ≤ rj if and only if di ≤ dj .

By using a similar discretization as in the previous subsection, we can obtain
the following result:

Theorem 4. The weighted throughput problem for agreeable instances can be
solved by dynamic programming in O(n2m+2V 2m+1Wm) time.
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Abstract. We revisit the non-preemptive speed-scaling problem, in
which a set of jobs have to be executed on a single or a set of paral-
lel speed-scalable processor(s) between their release dates and deadlines
so that the energy consumption to be minimized. We adopt the speed-
scaling mechanism first introduced in [Yao et al., FOCS 1995] according
to which the power dissipated is a convex function of the processor’s
speed. Intuitively, the higher is the speed of a processor, the higher
is the energy consumption. For the single-processor case, we improve
the best known approximation algorithm by providing a (1 + ε)αB̃α-
approximation algorithm, where B̃α is a generalization of the Bell num-
ber. For the multiprocessor case, we present an approximation algorithm
of ratio B̃α((1 + ε)(1 + wmax

wmin
))α improving the best known result by a

factor of ( 5
2
)α−1(wmax

wmin
)α. Notice that our result holds for the fully hetero-

geneous environment while the previous known result holds only in the
more restricted case of parallel processors with identical power functions.

1 Introduction

Speed-scaling (or dynamic voltage scaling) is one of the main mechanisms to
save energy in modern computing systems. According to this mechanism, the
speed of each processor may dynamically change over time, while the energy
consumed by the processor is proportional to a convex function of the speed.
More precisely, if the speed of a processor is equal to s(t) at a time instant t,
then the power dissipated is P (s(t)) = s(t)α, where α > 1 is a small constant.
For example, the value of α is theoretically between two and three for CMOS
devices, while some experimental studies showed that α is rather smaller: 1.11
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for Intel PXA 270, 1.62 for Pentium M770 and 1.66 for a TCP offload engine
[21]. Intuitively, higher speeds lead to higher energy consumption. The energy
consumption is the integral of the power over time, i.e., E =

∫
P (s(t))dt.

In order to handle the energy consumption in a computing system with
respect to the speed-scaling mechanism, we consider the following scheduling
problem. We are given a set of jobs and a single processor or a set of parallel
processors. Each job is characterized by a release date, a deadline and an amount
of workload that has to be executed between the job’s release date and deadline.
The objective is to find a feasible schedule that minimizes the energy consump-
tion. In order to describe such a feasible schedule, we have to determine not only
the job that has to be executed on every processor at each time instant, but also
the speed of each processor.

Speed-scaling scheduling problems have been extensively studied in the lit-
erature. Since the seminal paper by Yao et al. [22] in 1995 until very recently,
all the energy minimization works considered the preemptive case in which the
execution of a job may be interrupted and restarted later on the same or even
on a different processor (migratory case). However, the last three years, there
are some works studying the non-preemptive case. In this paper, we improve the
best known approximation algorithms for the non-preemptive case for both the
single-processor and the multiprocessor environments.

Problem definition and notation. We consider a set J of n jobs, each one cha-
racterized by an amount of work wj , a release date rj and a deadline dj . We
will consider both the single-processor and the multiprocessor cases. If the speed
of a processor is equal to s(t) at a time instant t, then the power dissipated is
P (s(t)) = s(t)α, where α > 1 is a small constant. In the multiprocessor environ-
ment, we denote by P the set of the m available parallel processors. Moreover,
we distinguish between the homogeneous and the heterogeneous multiprocessor
cases. In the latter one, we assume that each processor i ∈ P has a different con-
stant αi, capturing in this way the existence of processors with different energy
consumption rate. For simplicity, we define α = maxi∈P{αi}. Moreover, in the
fully heterogeneous case we additionally assume that each job j ∈ J has a differ-
ent work wi,j , release date ri,j and deadline di,j on each processor i ∈ P. In all
cases, the objective is to find a schedule that minimizes the energy consumption,
E =

∫
P (s(t))dt, with respect to the speed-scaling mechanism, such that each

job j ∈ J is executed during its life interval [rj , dj ]. The results presented in
this paper assume that the preemption of jobs is not allowed; and hence neither
their migration in the multiprocessor environments.

In what follows, we denote by wmax and wmin the maximum and the minimum
work, respectively, among all jobs. Moreover, we call an instance agreeable if
earlier released jobs have earlier deadlines, i.e., for each j and j′ with rj ≤
rj′ then dj ≤ dj′ . Finally, given a schedule S we denote by E(S) its energy
consumption.

Related work. In [22], a polynomial-time algorithm has been presented that
finds an optimal preemptive schedule when a single processor is available. In
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the case where the preemption and also the migration of jobs are allowed, sev-
eral polynomial-time algorithms have been proposed when a set of homogeneous
parallel processors is available [3,6,10,12], while in the fully heterogeneous envi-
ronment an OPT + ε algorithm with complexity polynomial to 1

ε has been pre-
sented in [9]. In the case where the preemption of jobs is allowed but not their
migration, the problem becomes strongly NP-hard even if all jobs have equal
release dates and equal deadlines [4]. For this special case, the authors in [4]
observed that a PTAS can be derived from [17]. For arbitrary release dates and
deadlines, a B�α�-approximation algorithm is known [16], where B�α� is the �α�-
th Bell number. This result has been extended in [9] for the fully heterogeneous
environment, where an approximation algorithm of ratio (1 + ε)αB̃α has been
presented, where B̃α =

∑∞
k=0

kαe−1

k! is a generalization of the Bell number that
is also valid for fractional values of α.

When preemptions are not allowed, Antoniadis and Huang [7] proved that
the single-processor case is strongly NP-hard, while they have also presented
a 25α−4-approximation algorithm. In [9], an approximation algorithm of ratio
2α−1(1 + ε)αB̃α has been proposed, improving the ratio given in [7] for any
α < 114. Recently, an approximation algorithm of ratio (12(1 + ε))α−1 is given
in [15], improving the approximation ratio for any α > 25. Moreover, the relation
between preemptive and non-preemptive schedules in the energy-minimization
setting has been studied in [8]. The authors show that starting from the optimal
preemptive solution created by the algorithm in [22], it is possible to obtain a
non-preemptive solution which guarantees an approximation ratio of (1+ wmax

wmin
)α.

In the special case where all jobs have equal work this leads to a constant fac-
tor approximation of 2α. Recently, for this special case, Angel et al. [5] and
Huang and Ott [18], independently, proposed an optimal polynomial-time algo-
rithm based on dynamic programming. Note also that for agreeable instances
the single-processor non-preemptive speed-scaling problem can be solved to opti-
mality in polynomial time, as the algorithm proposed by Yao et al. [22] for the
preemptive case returns a non-preemptive schedule for agreeable instances.

For homogeneous multiprocessors when preemptions are not allowed, an
approximation algorithm with ratio mα( m

√
n)α−1 has been presented in [8]. More

recently, Cohen-Addad et al. [15] proposed an algorithm of ratio (52 )α−1B̃α((1+
ε)(1 + wmax

wmin
))α, transforming the problem to the fully heterogeneous preemptive

non-migratory case and using the approximation algorithm proposed in [9]. This
algorithm leads to an approximation ratio of 2(1+ε)α5α−1B̃α for the case where
all jobs have equal work. The authors in [15] observe also that their algorithm
can be used when each job j ∈ J has a different work wi,j on each processor
i ∈ P, by loosing an additional factor of (wmax

wmin
)α.

Several other results concerning scheduling problems in the speed-scaling
setting have been presented, involving the optimization of some Quality of Ser-
vice (QoS) criterion under a budget of energy, or the optimization of a linear
combination of the energy consumption and some QoS criterion (see for exam-
ple [11,13,20]). Moreover, two other energy minimization variants of the speed-
scaling model have been studied in the literature, namely the bounded speed
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model in which the speeds of the processors are bounded above and below (see
for example [14]), and the discrete speed model in which the speeds of the pro-
cessors can be selected among a set of discrete speeds (see for example [19]). The
interested reader can find more details in the surveys [1,2].

Our contribution. In Section 2 we revisit the single-processor non-preemptive
speed-scaling problem, and we present an approximation algorithm of ratio
(1 + ε)α−1B̃α which becomes the best algorithm for any α ≤ 77. Recall that
in practice α is a small constant and usually α ∈ (1, 3]. In [8], where the rela-
tion between preemptive and non-preemptive schedules has been explored, an
example has been proposed which shows that the ratio of the energy consump-
tion of the optimal non-preemptive schedule over the energy consumption of
the optimal preemptive schedule can be Ω(nα−1). A similar example was used
in [15] to show that the standard configuration linear programming formula-
tion has the same integrality gap. In both cases, wmax = n and wmin = 1 and
the worst-case ratio of the energy consumption of the optimal non-preemptive
schedule over the energy consumption of the optimal preemptive one can be
seen as Ω((wmax

wmin
)α−1). In this direction, a (1 + wmax

wmin
)α−1-approximation algo-

rithm for the single-processor case has been presented in [8]. To overcome the
above lower bound, all known constant-factor approximation algorithms for the
single-processor problem [7,9,15] consider an initial partition of the time horizon
into some specific intervals defined by the so-called landmarks. These intervals
are defined in such a way that there is not a job whose life interval is included
in one of them. Intuitively, this partition is used in order to improve the lower
bound by focusing on special preemptive schedules that can be transformed to
a feasible non-preemptive schedule without loosing a lot in terms of approxima-
tion. Here, we are able to avoid the use of this partition improving in this way
the result of [9] by a factor of 2α−1. In order to do that, we modify the con-
figuration linear program proposed in [9] by including an additional structural
property that is valid for any feasible non-preemptive schedule. This property
helps us to obtain a “good” preemptive schedule after a randomized rounding
procedure. We transform this “good” preemptive schedule to a new instance of
the energy-minimization single-processor problem that is agreeable by choosing
in an appropriate way new release dates and deadlines for the jobs. In this way,
it is then sufficient to apply the algorithm proposed in [22] in order to get a non-
preemptive schedule of energy consumption at most the energy consumption of
the preemptive one.

In Section 3 we consider the fully heterogeneous non-preemptive speed-scaling
problem, and we improve the approximation ratio of (wmax

wmin
)α( 52 )α−1B̃α((1 +

ε)(1 + wmax
wmin

))α given in [15] to B̃α((1 + ε)(1 + wmax
wmin

))α. Consecutively, our result
generalizes and improves the approximation ratio for the equal-works case from
2(1 + ε)α5α−1B̃α to (2(1 + ε))αB̃α. Note also that we generalize the machine
environment and we pass from the homogeneous with different wi,j ’s to the
fully heterogeneous one. Our algorithm combines two basic ingredients: the
B̃α(1 + ε)α-approximation algorithm of [9] for the fully heterogeneous preemp-
tive non-migratory speed-scaling problem and the (1 + wmax

wmin
)α-approximation
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algorithm of [8] for the single-processor non-preemptive speed-scaling problem.
The first algorithm is used in order to assign the jobs to the processors, while
the second one to get a non-preemptive schedule for each processor indepen-
dently. The key observation here is that the algorithm for the single-processor
non-preemptive case presented in [8] transforms the optimal preemptive sched-
ule obtained by the algorithm in [22] into a non-preemptive one. In this way, its
approximation ratio is computed with respect to the energy consumption of the
optimal preemptive schedule, which is a lower to the energy consumption of the
optimal non-preemptive schedule.

We summarize our results with respect to the existing bibliography in Table 1.

Table 1. Comparison of the approximation ratios obtained in this paper with the
previously best known approximation ratios

Machine environment Previous known result Our results

single-processor
2α−1(1 + ε)αB̃α [9]

(1 + ε)αB̃α(12(1 + ε))α−1 [15]

homogeneous ( 5
2
)α−1B̃α((1 + ε)(1 + wmax

wmin
))α [15]

homogeneous with wi,j ’s ( 5
2
)α−1B̃α((1 + ε)(1 + wmax

wmin
)wmax

wmin
)α [15]

fully heterogeneous B̃α((1 + ε)(1 + wmax
wmin

))α

2 Single-Processor

In this section we consider the single-processor non-preemptive case and we
present an approximation algorithm of ratio (1 + ε)B̃α, improving upon the
previous known results [7,9,15] for any α ≤ 77. Our algorithm is based on a
linear programming formulation combining ideas from [9,15] and the randomized
rounding proposed in [9].

Before formulating the problem as a linear program we need to discretize the
time into slots. Consider the set of all different release dates and deadlines of
jobs in increasing order, i.e., t1 < t2 < . . . < tk. For each � , 1 ≤ � ≤ k − 1, we
split the time between t� and t�+1 into n2(1 + 1

ε ) equal length slots as proposed
in [18]. Let T be the set of all created slots. Henceforth, we will consider only
solutions in which each slot can be occupied by at most one job which uses the
whole slot. Huang and Ott [18] proved that this can be done by loosing a factor
of (1 + ε)α−1.

Our formulation is based on the configuration linear program which was pro-
posed in [9]. In [15], an additional constraint was used for the single-processor
non-preemptive problem. This constraint implies that the life interval of a job
cannot be included to the execution interval of another job. We explicitly incor-
porate this constraint in the definition of the set of configurations for each job.
More specifically, for a job j ∈ J , we define a configuration c to be a set of
consecutive slots in [rj , dj ] such that there is not another job j′ whose life inter-
val [rj′ , dj′ ] is included in c. Let Cj be the set of all possible configurations for
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the job j. We introduce a binary variable xj,c which is equal to one if the job
j is executed according the configuration c ∈ Cj . Let |c| be the length (in time)
of the configuration c. Note that the number of configurations is polynomial as
they only contain consecutive slots and the number of slots is also polynomial.

For notational convenience, we write t ∈ c if the slot t ∈ T is part of the
configuration c ∈ Cj of job j ∈ J . By the convexity of the power function, each
job in an optimal schedule runs in a constant speed (see for example [22]). Hence,
the quantity wα

j

|c|α−1 corresponds to the energy consumed by j if it is executed
according to c, as the constant speed that will be used for j is equal to wj

|c| .
Consider the following integer linear program.

min
∑

j∈J

∑

c∈Cj

xj,c

wα
j

|c|α−1

∑

c∈Cj

xj,c ≥ 1 ∀j ∈ J
∑

j∈J

∑

c∈Cj :t∈c

xj,c ≤ 1 ∀t ∈ T

xj,c ∈ {0, 1} ∀j ∈ J , c ∈ Cj

The first constraint ensures that each job is executed according to a configu-
ration. The second constraint implies that at each slot at most one configuration
and hence at most one job can be executed.

We consider the randomized rounding procedure proposed in [9] for the fully
heterogeneous preemptive non-migratory speed-scaling problem, adapted to the
single processor environment. More specifically, for each job j ∈ J we choose at
random with probability xj,c a configuration c ∈ Cj . By doing this, more than
one jobs may be assigned in a slot t ∈ T which has as a result to get a non-
feasible schedule. In order to deal with this infeasibility, for each slot t ∈ T we
perform an appropriate speed-up that leads to a feasible preemptive schedule.
The above procedure is described formally in Algorithm 1.

Algorithm 1
1: Solve the configuration LP relaxation.
2: For each job j ∈ J , choose a configuration at random with probability xj,c.
3: Let wj(t) be the amount of work executed for job j during the slot t ∈ T according

to its chosen configuration.
4: Set the processor’s speed during t as if

∑
j∈J wj(t) units of work are executed with

constant speed during the entire t, i.e.,
∑

j∈J wj(t)/|t|, where |t| is the length of t.

5: return the obtained schedule Spr.

The analysis of the above procedure in [9] is done independently for each
slot, while the speed-up performed leads to a loss of a factor of B̃α to the
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approximation ratio. We can use exactly the same analysis and get the same
approximation guarantee for our problem, that is

E(Spr) ≤ B̃α · LP ∗ (1)

where LP ∗ is the objective value of an optimal solution of the configuration LP
relaxation.

In what follows, given the feasible preemptive schedule Spr obtained by Algo-
rithm 1, we will create a feasible non-preemptive schedule Snpr of energy con-
sumption at most E(Spr). In fact, we first create a restricted agreeable instance
I ′ of our initial instance I based on Spr. Then, we will apply the algorithm
proposed by Yao et al. [22] that finds the optimal preemptive schedule on a sin-
gle processor, which turns to be a non-preemptive schedule since the instance is
agreeable. A formal description of our algorithm follows.

Algorithm 2
1: Run Algorithm 1 in the initial instance I and get the schedule Spr.
2: for each job j ∈ J do
3: Let bj be the time at which the first piece of j begins in Spr.
4: Let ej be the time at which the last piece of j ends in Spr.
5: Select r′

j and d′
j such that

– rj ≤ r′
j ≤ bj and r′

j is minimum;
– ej ≤ d′

j ≤ dj and d′
j is maximum;

– for any other job i ∈ J \ {j}, it cannot hold that r′
j < ri < di < d′

j .
6: Create the instance I′ in which each job j ∈ J has:

– release date r′
j ,

– deadline d′
j ,

– work wj .
7: Run the algorithm proposed in [22] in the transformed instance I′ and get the

schedule Snpr.
8: return Snpr.

An example of the above transformation is given in Fig. 1. In this picture,
the life intervals of jobs J1 and J4 are shortened. For example, in the preemptive
schedule Spr the job J4 is executed on the right of the job J5. Hence, in the
restricted instance we cut down the part of the life interval of J4 which is on the
left of the release date of J5. Intuitively, we decide if J4 should be executed on
the left or on the right of J5 with respect to Spr and we transform the initial
instance appropriately.

Lemma 1. The restricted instance I ′ is agreeable.

Proof. Assume for contradiction that there are two jobs i, j ∈ J in I ′ such that
r′
j < r′

i < d′
i < d′

j . The algorithm did not select a smaller r′
i because either

there is a job k ∈ J such that r′
i = rk < dk < d′

i or r′
i = ri. In the first case,

we have that r′
j < rk < dk < d′

j , which is a contradiction to the definition of
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I
J1

J2 J4

J3 J5

Spr

time

J2 J1 J3 J1 J5 J4

I′
J1

J2 J4

J3 J5

Fig. 1. The transformation of an instance I into a restricted (agreeable) instance I′

based on the feasible preemptive schedule Spr

configurations and the selection of r′
j . In the second case, the algorithm did not

select a bigger d′
i because either there is a job � ∈ J such that r′

i < r� < d� = d′
i

or d′
i = di. In both last subcases we have again a contradiction, as either r′

j <
r� < d� < d′

j or r′
j < ri < di < d′

j . 	


Theorem 1. Algorithm 2 achieves an approximation ratio of (1 + ε)α−1B̃α for
the single-processor non-preemptive speed-scaling problem.

Proof. By construction, the life interval of each job j ∈ J in the restricted
instance I ′ is a superset of its execution interval in Spr, i.e., [bj , ej ] ⊆ [r′

j , d
′
j ].

Hence, the schedule Snpr is a feasible preemptive schedule for I ′.
By Lemma 1, I ′ is an agreeable instance. Thus, by applying the algorithm

proposed by Yao et al. [22], the schedule Snpr is a non-preemptive schedule for
I ′. Moreover, the life interval of each job j ∈ J in I ′ is a subset of its life
interval in the initial instance I, i.e., [r′

j , d
′
j ] ⊆ [rj , dj ]. Hence, the schedule Snpr

is a feasible non-preemptive schedule for I.
Concerning the energy consumption, it holds that E(Snpr) ≤ E(Spr) since

Snpr is an optimal schedule for I ′ for both preemptive and non-preemptive
versions. Hence, by using Equation (1) we have that E(Snpr) ≤ B̃α ·LP ∗. Finally,
taking into account the factor we loose by the discretization of the time proposed
in [18], the theorem follows. 	


3 Parallel Processors

In this section we consider the fully heterogeneous multiprocessor case and we
propose an approximation algorithm of ratio B̃α((1+ε)(1+ wmax

wmin
))α, generalizing

the recent result by Cohen-Addad et al. [15] from the homogeneous with different
wi,j ’s to the fully heterogeneous environment and improving their ratio by a
factor of (wmax

wmin
)α( 52 )α−1. Our algorithm uses the following result proposed in [8].
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Theorem 2. [8] There is an approximation algorithm for the single-processor
non-preemptive speed-scaling problem that returns a schedule S with energy con-
sumption E(S) ≤ (1 + wmax

wmin
)αE(S∗

pr) ≤ (1 + wmax
wmin

)αE(S∗
npr), where S∗

pr and
S∗

npr are the optimal schedules for the preemptive and the non-preemptive case,
respectively.

The key observation in the above theorem concerns the first inequality of The-
orem 2 that the energy consumption of the non-preemptive schedule S created
by the algorithm in [8] is bounded within a factor of (1 + wmax

wmin
)α by the energy

consumption of the optimal preemptive schedule S∗
pr. Based on this, we propose

Algorithm 3 which uses the (1+ ε)αB̃α-approximation algorithm proposed in [9]
for the fully heterogeneous preemptive non-migratory speed-scaling problem to
find a good assignment of the jobs to the processors and then applies Theorem 2
to create a non-preemptive schedule independently for each processor.

Algorithm 3
1: Find a preemptive non-migratory schedule S using the algorithm proposed in [9]

for the fully heterogeneous environment.
2: for each processor i ∈ P do
3: Let Ji be the set of jobs assigned to processor i according to S.
4: Find a single-processor non-preemptive schedule Si,npr using the algorithm pro-

posed in [8] (Theorem 2) with input Ji.
5: return the non-preemptive schedule Snpr which consists of the non-preemptive

schedules Si,npr, 1 ≤ i ≤ m.

Theorem 3. Algorithm 3 achieves an approximation ratio of B̃α((1 + ε)(1 +
wmax
wmin

))α for the fully heterogeneous non-preemptive speed-scaling problem.

Proof. Consider first the schedule S obtained in Line 1 of the algorithm, and
let Si,pr be the (sub)schedule of S that corresponds to the processor i ∈ P. In
other words, each Si,pr is a feasible preemptive schedule of the subset of jobs Ji.
As S is a non-migratory schedule the subsets of jobs J1,J2, . . . ,Jm are pairwise
disjoint. Hence, we have that

∑

i∈P
E(Si,pr) = E(S) ≤ (1 + ε)αB̃αE(S∗) (2)

where S∗ is the optimal non-preemptive schedule for our problem and the inequal-
ity holds by the result in [9] and the fact that the energy consumption in an
optimal preemptive-non-migratory schedule is a lower bound to the energy con-
sumption of S∗.

Consider now, for each processor i ∈ P, the schedule Si,npr created in Line 4
of the algorithm. By Theorem 2 we have that

E(Si,npr) ≤
(

1 +
wmax

wmin

)α

E(S∗
i,pr)
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where S∗
i,pr is an optimal preemptive schedule for the subset of jobs Ji. As S∗

i,pr

and Si,pr are schedules concerning the same set of jobs and S∗
i,pr is the optimal

preemptive schedule, we have that

E(Si,npr) ≤
(

1 +
wmax

wmin

)α

E(Si,pr) (3)

Since Snpr is the concatenation of Si,npr for all i ∈ P, and by using Equa-
tions (2) and (3), the theorem follows. 	


Algorithm 3 can be also used for the case where all jobs have equal work on
each processor, i.e., each job j ∈ J has to execute an amount of work wi,j = wi

if it is assigned on processor i ∈ P. In this case we get the following result.

Corollary 1. Algorithm 3 achieves a constant-approximation ratio of B̃α(2(1+
ε))α for the fully heterogeneous non-preemptive speed-scaling problem when all
jobs have equal work on each processor.

4 Conclusions

In this paper, we have presented algorithms with improved approximation
ratios for both the single-processor and the multiprocessor environments. A chal-
lenging question left open in this work is the existence of a constant approxi-
mation ratio algorithm for the multiprocessor case. Also, there is a need for
non-approximability results in the same vein as the one presented in [15].
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Abstract. Consider any Boolean function F (X1, . . . , XN ) that has

more than 2−Nδ · 2N satisfying assignments for some δ, 0 < δ < 1,
and that can be expressed by a CNF formula with at most Nd clauses
for some d > 0. Then how many variables do we need to fix in order
to satisfy F? We show that one can always find some “short” partial
assignment on which F evaluates to 1 by fixing at most αN variables
for some constant α < 1; that is, F has an implicant of size ≤ αN .
A lower bound for such α is also shown in terms of δ and d. We also
discuss an algorithm for obtaining a short partial assignment. For any δ
and ε such that 0 < δ + ε < 1, we show a deterministic algorithm that

finds a short partial assignment in Õ(2Nβ

)-time1 for some β < 1 for any

CNF formula with at most N1+ε clauses having more than 2−Nδ · 2N

satisfying assignments. (This is an extended abstract, and some detailed
explanations are omitted; see [6] for the details.)

1 Introduction

Consider any CNF formula Boolean function F (X1, . . . , XN ) that has a relatively
large number of satisfying assignments. Can we find some large subset of these
satisfying assignments sharing some common partial assignment? We show that
F has a relatively short implicant; that is, it is satisfied by some large set of
satisfying assignments expressed by a short partial assignment.

To state our result we introduce some notation. Throughout this paper, let
F be a given Boolean function over N variables, and we assume that it is given
as a CNF formula with M clauses and that it has P2N satisfying assignments,
where P will be referred as the sat. assignment ratio of F . We introduce two
parameters δ, 0 < δ < 1, and d > 0, and consider the following situation: (i)
P ≥ 2−Nδ

, and (ii) M ≤ Nd. For such a CNF formula F , we discuss the size of
its implicant in terms of δ and d. As our main result, we show that if δ < 1, then

1 By Õ(2Nβ

) we mean O
(
2Nβ · NO(1)

)
.

c© Springer International Publishing Switzerland 2014
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one can always find some “short” and “satisfying” partial assignment, where by
“short” we mean that it fixes αN variables for some constant α < 1 and by
“satisfying (or, sat.) partial assignment” we mean that F is evaluated to 1 (i.e.,
true) under this partial assignment. (In this paper, for any partial assignment,
by its “size” we will mean the number of variables fixed by this assignment.)

If a Boolean function F has a short sat. partial assignment, then it has
many sat. assignments. Our result shows that a certain converse relation holds
provided that F is expressed as a CNF formula consisting of some fixed poly-
nomial number of clauses. Our investigation is motivated by the hardness of
the CNF-SAT problem, i.e., the satisfiability problem of general2 CNF formulas.
While the k-CNF-SAT problem for any constant k is solved by some Õ(cn)-time
algorithm for some c < 2, it has been open whether CNF-SAT has a similar
nontrival exponential-time algorithm. We would like to shed light to this open
problem by considering the structure of sat. solutions of CNF-SAT. In fact, a
quite strong result has been known for k-CNF formulas; Hirsch [5] showed that
any k-CNF formula with sat. assignment ratio P has a partial assignment of
size O(2k log(1/P )), which is sublinear in N when k is constant and P ≥ 2−Nδ

.
Unfortunately, though, his argument does not seem to work for general CNF for-
mulas. In fact, Hirsch proved the existence of a general CNF formula that has no
sublinear size sat. partial assignment even though it has a large sat. assignment
ratio, say, P ≥ 0.5. We show here that even in the general case, it still has a
(1 − Ω(1))N -size sat. partial assignment. We hope that this structural property
would be of some help for designing algorithms for CNF-SAT.

The Switching Lemma of H̊astad [4] also can be used to discuss the existence
of somewhat short satisfying partial assignments. For example, it is not so hard
to show that any CNF formulas with some fixed polynomial number of clauses
and constant sat. assignment ratio has a satisfying partial assignment of size
≤ (1−1/ log N)N . But it seems that there is no trivial way to improve this bound.
The contribution of this paper is to improve the upper bound to (1 − Ω(1))N
(even for much smaller sat. assignment ratio).

We also consider an algorithmic way to get such a short sat. partial assign-
ment, and obtain a deterministic subexponential-time algorithm that finds one
of short sat. partial assignments for CNF formulas with subquadratic number
of clauses. More precisely, for any δ and ε such that δ + ε < 1, we can define
a deterministic algorithm that takes any F satisfying (i) and (ii) with δ and
d = 1 + ε and computes its sat. partial assignment of size ≤ αN in Õ(2Nβ

)-
time for some constants α < 1 and β < 1. Clearly, our deterministic algorithm
for computing a short sat. partial assignment can be used for solving the CNF-
SAT problem, and it has some advantages over previously known algorithms.
An obvious randomized algorithm for the SAT problem for instances with many
sat. assignments is to search for a sat. assignment by generating assignments
uniformly at random. Such an algorithm finds a sat. assignment with proba-
bility ≥ 2−Nδ

for any function with sat. assignment ratio ≥ 2−Nδ

. Then for
2 A CNF formula is called k-CNF if its all clauses consist of at most k literals. By a

“general” CNF formula we mean a formula with no such restriction.
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the CNF-SAT problem, we may design a deterministic algorithm by applying
some good pseudo random sequence generator (prg in short) against CNF for-
mulas to this randomized algorithm. That is, an algorithm that tries to find a
sat. assignment among assignments generated by such a prg from all possible
seeds. In order to ensure that this algorithm obtains some sat. assignment for
any CNF formula with sat. assignment ratio ≥ 2−Nδ

, we need to choose the seed
length of the prg so that a generated pseudo random sequence (of length N) is
γ := O(2−Nδ

) close to the uniform distribution for any CNF formula (with, say,
NO(1) clauses). For this application, the current best upper bound for the seed
length is Õ(log(1/γ)2) (ignoring minor factors for our discussion) due to the prg
proposed by De et al. [3]. For this seed length, the running time of the simple
deterministic algorithm becomes Õ(2N2δ

), which is subexponential if δ < 1/2.
On the other hand, our algorithm’s time bound Õ(2Nβ

) with β = 1 − (1−(δ+ε))2

3
is subexponential if δ + ε < 1.

2 Notation and Results

Throughout this paper, we will fix the usage of the following symbols: Let F be
any Boolean function over N Boolean variables X1, . . . , XN , where N is our size
parameter. We assume that F has P2N sat. assignments where P ≥ 2−Nδ

, and
that F is given as a CNF formula with M ≤ Nd clauses for some d > 0. In this
paper we regard parameters δ and d as constants; whenever necessary, we may
assume that N is large enough for each choice of δ and d. We use |F | to denote the
number of clauses in F , and for any clause C, we use |C| to denote the number
of literals in C. The number of elements in a set W is denoted as ‖W‖. Symbols
ρ and σ are used to denote partial assignments over X1, . . . , XN . Any partial
assignment ρ takes value 0, 1, or Xi on each variable Xi. We say that ρ fixes (the
value of) Xi if ρ(Xi) = 0 or 1, and that ρ leaves Xi unassigned if ρ(Xi) = Xi.
By F |ρ, we mean a function evaluated by replacing each occurrence of Xi with
ρ(Xi). We say that ρ is a sat. partial assignment if F |ρ = 1; this is a natural
generalization of the standard satisfying assignment notion. We use Fix(ρ) to
denote the set of variables that are fixed by ρ. Let sat(F ) denote the set of sat.
assignments of F . Then the sat. assignment ratio of F (denoetd as sat.ratio(F ))
is defined by sat.ratio(F ) = ‖sat(F )‖/2N . This quantity is naturally generalized
to F |ρ for any partial assignment ρ, which is denoted as sat.ratio(F |ρ). For any
partial assignments ρ1 and ρ2 such that Fix(ρ1) ∩ Fix(ρ2) = ∅, we write ρ1 ◦ ρ2

to denote a partial assignment fixing the coordinates fixed by ρ1 or ρ2 to the
appropriate value and leaves others unassigned.

In this paper, we use symbols α and β for some constants w.r.t. N , which are
defined in terms of δ and d (and some other technical parameters). On the other
hand, symbol c is used to denote some constants independent from N , δ, and
d. For simplifying our notation during the analysis, we will use some concrete
constants such as 0.1, 0.5, etc. whenever we can choose them appropriately when
N is sufficiently large. Also we will sometimes use three digit numbers, e.g.,
0.99 to denote 1 − o(1). When stating our results formally, these constants and
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numbers will be replaced with some corresponding standard notation such as
O(N), Ω(N), 1−o(1), etc. We simply write log for log2 and ln for loge. Let ce =
log2 e. When necessary, we write ex and 2x as exp(x) and exp2(x) respectively
for showing the exponent clearly.

Our main result is now stated as follows.

Theorem 1. For any δ, 0 < δ < 1, and for any d > 0, let F be any CNF
formula such that (i) it has sat. assignment ratio P ≥ exp2(−N δ), and (ii) it
consists of M ≤ Nd clauses. Then it has some sat. partial assignment ρ̂ of size
≤ αN , where α is defined by

α = 1 − 1 − δ

cd
exp2

(

− (1 + o(1))d
1 − δ

)

, (1)

with some constant c > 0.

On the other hand, we show the following lower bound, which is much
stronger than the one given in [5].

Theorem 2. For any δ, 0 < δ < 1, and for any d ≥ 1, consider α defined by

α =
d − (1 + o(1))

d − δ
> 1 − 1 − δ + o(1)

d
. (2)

Then we have some CNF formula F such that (i) it has sat. assignment ratio P
≥ exp2(−N δ), (ii) it consists of M ≤ Nd clauses, and (iii) it has no sat. partial
assignment ρ of size ≤ αN .

We also have an algorithmic version of Theorem 1 when the number of clauses
is bounded by N1+ε for some ε < 1 such that δ + ε < 1 holds.

Theorem 3. For any δ > 0 and ε > 0 such that δ + ε < 1, there exists a
deterministic algorithm such that for any given CNF formula F satisfying (i)
and (ii) of Theorem 1 w.r.t. δ and d = 1 + ε, it runs in Õ(2Nβ

)-time for some
β < 1 and yields some sat. partial assignment ρ̂ for F of size ≤ αN , where α is
defined by

α = 1 − 1 − (δ + ε)
c1

· exp2

(

− c2

(1 − (δ + ε))(1 − δ)

)

(3)

with some constants c1, c2 ≥ 1.
Remark. We can show that the above time bound holds for any β such that β

≥ 1 − (1−(δ+ε))2

3 .

We recall some common bounds that will be used often in this paper. For
any integer n ≥ 1, we have
(

1 − 1

n

)n

≤ e−1 ≤
(

1 − 1

n + 1

)n

, and

(
1 +

1

n

)n

≤ e ≤
(

1 +
1

n

)n+1

.
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3 Upper Bound Proof

In this section we give a proof of Theorem 1, showing an upper bound on the size
of short sat. partial assignments. Throughout this section, for any δ, 0 < δ < 1
and any d > 0, we consider sufficiently large N and fix any F satisfying (i) and
(ii) of the theorem w.r.t. δ and d.

The key tool of our proof is the following lemma, which can be shown as a
corollary of the analysis given by Hirsch [5]. By the width of a clause, we mean
the number of literals appearing in the clause.

Lemma 1. Consider any CNF formula consisting of clauses of width ≤ k with
sat. assignment ratio Q > 0. Then it has a partial satisfying assignment of size
≤ 4ce2k log Q−1.
Remark. We may consider k as a function in N . For simplicity, we assume
that and Q < 1/4.

Let us first see the outline of our proof. For given F , we show the existence
of some partial assignment ρ12 that assigns some (1 − η)N variables for some
η < 1 and converts F to a formula consisting of narrow clauses, clauses of
width, say, ≤ 0.99(1 − δ) log N , while keeping relatively large sat. assignment
ratio Q ≥ 2−2Nδ

. Then the theorem follows from the above lemma. For showing
ρ12, we use the idea of Ajtai introduced in [1] and define ρ12 in two stages. In
the first stage, we define a partial assignment ρ1 to eliminate all wide clauses,
clauses of width ≥ Ad ln N where A ≥ 1 is some parameter defined later. We
then define ρ2 in the second stage that converts all clauses to narrow ones. We
show that ρ12 = ρ2 ◦ ρ1 has the desired properties.

Now we explain each stage precisely from the first stage for defining ρ1. We
show a procedure for defining a sequence of partial assignments σ1, σ2, . . . , σT

so that ρ1 is defined by ρ1 = σT ◦ · · · ◦ σ1. Intuitively, the main objective of
the procedure is to eliminate wide clauses. Consider the situation where we have
determined σ1, . . . , σt−1, and let Ft−1 denote F |σt−1 ◦· · ·◦σ1. Also let W denote
the set of wide clauses in Ft−1. Note that there must be some variable Xi that
appears in more than ‖W‖Ad log N

N clauses of W ; then either Xi or Xi is a literal
that appears more than ‖W‖Ad log N

2N clauses of W , which we call a popular literal
among W . We would like to define σt to assign positively to one of such popular
literals, thereby killing many wide clauses. But we should be careful not to reduce
the sat. assignment ratio too much by this assignment. Here we check whether
the assignment reduces the sat. assignment ratio too much, specifically, less than
multiplying 1 − p1, and if so, use the opposite assignment to the popular literal.
Note that this opposite assignment increases the sat. assignment ratio by 1+p1.
From this, we can show that such opposite assignments do not occur so many
times (since the sat. assignment ratio cannot go beyond 1). Though very natural,
this is a somewhat new technical point for implementing the idea of Ajtai for
our problem.

Define the probability parameter p1 by p1 = AN−(1−δ)/2, and using this
p1, we formally describe our idea as a procedure in Figure 1. We iterate this
procedure until no wide clause exists.
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procedure for σt (where t ≥ 1)
// assume that σ1, . . . , σt−1 have been defined, and let Ft−1 denote F |σt−1 ◦ · · · ◦ σ1.

if Ft−1 has no wide clause
then stop and output the obtained sequence as σ1, . . . , σT ;

W = the set of wide clauses in Ft−1;

Yi = (any) one of the popular literal (either Xi or Xi) among W ;
if sat.ratio(Ft−1|(Yi := 1)) ≤ (1 − p1) · sat.ratio(Ft−1)

then σt = (Yi := 0); (Case I)
else σt = (Yi := 1); (Case II)
// σt leaves the other variables unassigned.

Fig. 1. Procedure for defining σt

Lemma 2. Define T be the number of iterations of the above procedure needed
until no wide clause exists in FT . Then we have T ≤ 6N/A. Also we have
sat.ratio(FT ) ≥ 0.99 · 2−2Nδ

.

Proof. Let T1 and T2 denote respectively the number of iterations such that Case
I and Case II occurs. We show that each of them is bounded by O(N/A).

We first show that T2 ≤ 2N/A. For any t ≥ 1, suppose that Case II occurs
at the tth iteration of our procedure. That is, the algorithm finds some literal
Yi (either Xi or Xi) that is popular among the set W of wide clauses in Ft−1,
and it indeed assigns true to Yi. This assignment satisfies (and hence removes)
more than ‖W‖Ad log N

2N clauses of W , which reduces the number of wide clauses
by (1− Ad log N

2N ). Thus, since we have initially at most M (≤ Nd) wide clauses, if
Case II occurs for T ′ times, then the remaining number of wide clauses becomes
at most

M

(

1 − Ad ln N

2N

)T ′

< Ndexp
(

−Ad ln N

2N
T ′

)

= NdN−d· A
2N ·T ′

.

Thus, the remaining number of wide clauses becomes less than 1 (that is, 0)
if T ′ ≥ 2N/A. Hence, Case II does not occur more than 2N/A times, that is,
T2 ≤ 2N/A.

We can also show here that the sat. ratio does not decrease so much by an
assignment defined by this first stage. Note that the sat. ratio may decrease only
by assignments defined at Case II. On the other hand, for any iteration t where
Yi is selected as a popular literal, Case II would not be chosen if the sat. ratio is
increased by 1+p1 by an assignment Yi := 0. Hence, when Case II is chosen, it is
guaranteed that the sat. ratio does not get decreased less than 1−p1 by assigning
Yi true. Thus, from our bound for T2, for any tth iteration of the procedure, we
have sat.ratio(F |σt ◦ · · · ◦ σ1) ≥ sat.ratio(F ) (1 − p1)

T2 , which can be bounded
by, say, 0.99 · 2−2Nδ

by our choice of p1. In particular, this bound holds when
the iteration stops with no wide clause.

Next we give a bound T1 ≤ 4N/A. From the above, we know that the sat.
ratio cannot be smaller than 0.99 · 2−2Nδ

by the assignments of Case II. On the
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other hand, at each step where Case I is chosen, the sat. ratio gets increased by
1+p1. Hence, if Case I occurs T ′ times by some tth iteration, then the sat. ratio
of Ft becomes at least 0.99 · 2−2Nδ

(1 + p1)T ′
, which can be bounded by

0.99 · 2−2Nδ

(

1 +
ceA

2
N−(1−δ)

)T ′

≥ 0.992exp2

(

−2N δ + 2N δ AT ′

4N

)

.

Thus, if T ′ > 4N/A, then the sat. ratio of Ft becomes larger than 1, a contradic-
tion. Therefore we have T1 ≤ 4N/A. From these bounds the lemma follows. �

With A = 12 use our procedure to define ρ1 = σT ◦ · · · ◦ σ1. Then Lemma 2
guarantees that FT = F |ρ1 has no wide clause, it has sat. ratio ≥ 0.99 · 2−2Nδ

,
and ρ1 fixes at most 6N/A = N/2 variables. Next we consider the second stage
to define ρ2 for converting all clauses of FT to narrow ones. Without loss of
generality (by renaming variable indecies) we may assume that, for some N ′ ≥
N/2, X = {X1, . . . , XN ′} is the set of variables of FT ; that is, X1, . . . , XN ′ are
variables unassigned by ρ1. The idea is to show the existence of some subset S
of X such that (i) each clause of FT has at most k = 0.99(1 − δ) log N variables
in S, and (ii) ‖S‖ = Ω(N). Then from (i) it follows that any assignment to X\S
transform FT to a formula consisting of only narrow clauses. From such partial
assignments, we choose one with the largest sat. ratio as ρ2.

Lemma 3. Use notation as above. There exists a subset S of X (= the set of all
variables of FT ) such that (i) every clause in FT has at most k = 0.99(1−δ) log N
variables in S, and (ii) ‖S‖ ≥ 0.99ηdN/2, where

ηd =
0.99(1 − δ)

70d
exp2

(

− d

0.98(1 − δ)

)

.

Hence, FT |ρ′ has only narrow clauses for any partial assignment ρ′ that fixes all
and only variables in X\S. Furthermore, among such partial assignments, there
exists some ρ2 such that sat.ratio(FT |ρ2) ≥ 0.99 · 2−2Nδ

holds.

Proof. We generate S randomly by selecting each Xi ∈ X with probability
ηd independently. Then with high probability, we have ‖S‖ ≥ 0.99ηdN

′ (≥
0.99ηdN/2) by Chernoff bound, we can bound the probability that ‖S‖ < 0.99ηdN ′

occurs by, say, 0.1 (for sufficiently large N).
Consider any clause C of FT , and we estimate the probability that it has

at least k = 0.99(1 − δ) log N literals in S. For any fixed k literals in C, the
probability that they (i.e., these variables) all selected in S is ηk

d . Hence, by
using the union bound, the probability that some k literals are all selected in S
is at most

(
Ad log N

k

)

ηk
d ≤

(
ceAd log N

k

)k

ηk
d =

(

ηd
ce12d log N

0.99(1 − δ) log N

)k

<

(

ηd
70d

0.99(1 − δ)

)k

= exp2

(

− dk

0.98(1 − δ)

)

≤ N−1.01d.
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Thus, again by the union bound, the probability that FT has some clause that
has more than k literals in S is less than 0.9. Therefore, with some positive
probability some S (among randomly generated ones) satisfies the theorem.

Note that each assignment to variables in X − S yields a disjoint partial
assignment ρ′ of FT . Thus, among them there should be some ρ′ that has at
least the sat. ratio of FT , which is at least 0.99 · 2−2Nδ

. �

We summarize our analysis and prove the theorem. For a given formula F ,
we define ρ1 and ρ2 as stated in Lemma 2 and Lemma 3 respectively. We use
A = 12 as mentioned above. Then we can guarantee that the resulting formula
F ′ = F |ρ2 ◦ ρ1 has at least N ′ = 0.99ηdN/2 variables, which are the variables in
the set S that ρ2 keeps unassigned among variables in FT = F |ρ1. Note also that
F ′ consists of clauses of width ≤ k = 0.99(1 − δ) log N and has sat. assignment
ratio Q ≥ 0.99 · 2−2Nδ

. Hence we apply Lemma 1 to this formula to show the
existence of some partial assignment ρ3 (to F ′) of size at most

4ce2k log Q−1 ≤ 4ceN
0.99(1−δ) · (2N δ − log 0.99) ≤ 8.01ceN

1−0.01(1−δ),

which is smaller than N ′/2 for sufficiently large N . Thus, by defining ρ̂ = ρ3 ◦
ρ2 ◦ ρ1, we have a satisfying partial assignment that keeps at least

N ′

2
=

0.99 · 0.99(1 − δ)

2 · 70d
exp2

(
− d

0.98(1 − δ)

)
· N ≥ 1 − δ

cd
exp2

(
− (1 + o(1))d

1 − δ

)
· N

variables unassigned for some constant c > 0. This gives the desired upper bound
to the size of our defined partial assignment ρ̂.

4 A Lower Bound

We move on to the proof of Theorem 2. The idea is relatively easy. For any δ,
0 < δ < 1, and d ≥ 1, consider α satisfying (2) of Theorem 2. To be concrete, let
us assume that α = (d − 1.01)/(d − δ). Let Π be the set of partial assignments
fixing αN variables. Our goal is to show F that satisfies the conditions (i) and
(ii) of the theorem and (iii) that is satisfied by no ρ ∈ Π.

We define F randomly as the conjunction of at most Nd random clauses
chosen independently. Roughly speaking, each clause is a disjunction of approx-
imately 2s randomly chosen literals. The parameter s is chosen large enough to
guarantee that each clause is satisfiable with a certain probability so that F ’s
sat. assignment ratio exceeds exp2(−N δ) with probability larger than some p.
On the other hand, we keep s small enough so that each clause is satisfied with
relatively small probability by fixing values of at most αN variables, thereby
ensuring that F |ρ = 1 for some partial assignments ρ ∈ Π with probability 	 p.
Then with the probabilistic argument, we can show the existence of our target
Boolean formula F .

We start our detailed explanation with a precise way to generate a random
clause. For some parameter s defined below, we consider the following way to
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generate a random clause: For each i ∈ [N ] independently, we select Xi as a
literal of the clause with prob. s/N , select Xi as a literal of the clause with
prob. s/N , and discard Xi with prob. 1 − 2s/N . The resulting clause is just
the disjunction of the selected literals. In the following claim, we assume that
C is a random clause obtained by this random clause generation. We fix s by
s = (d − δ) ln N + 1. Then we have 0 < s/N < 1; hence, we can use s/N as a
parameter for our random clause generation.

Claim 1. For any assignment a ∈ {0, 1}N and any partial assignment ρ ∈ Π,
we have PrC [C(a) = 0 ] ≤ e−s, and PrC [C|ρ 
= 1 ] ≥ 0.99e−sα.

For generating a random formula F we iterate this random clause gener-
ation procedure independently for Nd times and define F as the conjunction
of obtained clauses. In the following analysis, we use F as a random variable
denoting a random formula generated in this way. We define p = exp2(−N δ),
and by the following two claims, we can show the probability that F satisfies the
conditions of the theorem is at least, say, 0.9p > 0, thereby proving the existence
of the desired formula.

Claim 2. PrF [ sat.ratio(F ) ≥ p ] ≥ exp2

(−N δ
)

(= p).

Claim 3. PrF

[∃ρ ∈ Π
[
F |ρ = 1

] ] ≤ (3e−2)N < 0.1p for sufficiently large N .

5 Algorithmic Version

In this section we explain the proof of Theorem 3. Due to the space limitation,
we only give rough explanation of our proof.

The key tool is to use an algorithmic version of the Lovász Local Lemma,
which has been improved greatly [2,7,8]. Our idea is simple. We show a sub-
exponential-time deterministic algorithm that reduces our task to the CNF-SAT
problem and use an algorithmic version of the Lovász Local Lemma. Here we
use the version3 reported in [2].

We specify our target problem and state the lemma in a slightly simpler
way. Consider any sufficiently large N ′, and let FN ′ denote the set of CNF
formulas over N ′ Boolean variables with at most (N ′)2 clauses. The lemma
gives an algorithm that finds a sat. assignment for any formula in FN ′ satisfying
a certain condition. Let F ′ be any given formula in FN ′ . Consider a random
assignment to its N ′ variables, and for each clause C of F ′, let EC denote an
event that C becomes false by the assignment. Our goal (and the task of our
algorithm) is to find an assignment avoiding EC for all clauses C of F ′, that
is, to find a sat. assignment for this F ′ ∈ FN ′ . Let Γ (C) be the set of clauses

3 In their paper, as a typical application of the lemma, an efficient deterministic algo-
rithm is shown for k-CNF formulas with no variable appearing in many clauses. This
may be used in our situation; but here we go back to the original lemma to confirm
that our parameter choice works.
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that shares some variable with C; note that EC is independent from EC′ for any
C ′ 
∈ Γ (C). In the lemma we consider some mapping x (for this F ′); by using
this x, we also define x′(EC) by

x′(EC) = x(EC)
∏

C′∈Γ(C)

(1 − x(EC′)) .

Now we state the following algorithmic version of the Lovász Local Lemma [2].

Lemma 4. For any y > 0, there exists a deterministic algorithm that takes any
F ′ ∈ FN ′ for any N ′ ≥ 1 as input, and runs in time O((N ′)(cLLL/y)) yielding
some sat. assignment of F ′ if we can define some mapping x for F ′ that satisfies

Pr[EC ] ≤ x′(EC)1+y, x(EC) < 1/2, and x′(EC) ≥ (N ′)−1 (4)

for all its clauses C, where cLLL > 0 is a constant independent from y and N ′.

In the following, we show some algorithmic way to transform F to another
formula F ′; we then apply this lemma to F ′ to obtain its sat. assignment, which
can be used to define our desired partial assignment. Here, in order to explain
requirements for F ′, we consider some rough strategy for defining x for F ′ to
satisfy the conditions of (4). For any clause C of F ′, we have Pr[EC ] = 2−|C|.
Thus, it is natural to define x(EC) ≈ 2−|C|. Then we need to require that |C|
is not so small, that is, C is not “very narrow” to satisfy the first and the third
conditions of (4). We need, for example, |C| ≥ log N ′. Also in order to avoid the
situation where x′(EC) gets too small compared with x(EC), we need to require
that ‖Γ (C)‖ is not so large, that is, C is not so “popular.” When constructing
F ′, we need to consider these two requirements.

Now we explain the definition of our target sat. partial assignment ρ̂. First
let us fix input related parameters. Let F be any given CNF formula satisfying
the condition of the theorem with parameters δ and ε, and let α be the constant
defined by (3). Let γ = 1 − (δ + ε), which is positive, though potentially small
constant4. Fix F , δ, ε, γ, and α from now on. We define ρ̂ in three stages. In the
first stage, a partial assignment ρ1 is defined in a way similar to the first stage
in the proof of Theorem 1. In the second stage, we convert F to F ′ by removing
some number of variables randomly from F |ρ1 so that it is still satisfiable and
we can use the algorithm of the above lemma to find one of its sat. assignments.
Then in the third stage, we use the above algorithm to compute a sat. assignment
of F ′. Note that this complete assignment to F ′ can be regarded as a sat. partial
assignment ρ2 of F |ρ1 that leaves all (and only) removed variables unassigned;
we define our final assignment ρ̂ by ρ̂ = ρ2 ◦ ρ1. The partial assignment ρ1 is
defined to satisfy the following two requirements: (a′) F |ρ1 has no “narrow”

4 For simplicity, we assume that γ < 0.5. The case where γ ≥ 0.5 can be analyzed
similarly with different setting for our technical parameters b and B.
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clause, and (b) F |ρ1 has no “popular” literal. Then from (a′) we can show that
(a) F ′ has no “very narrow” clause with high probability after removing some
number of variables. By using (a) together with (b), we can satisfy the conditions
of (4). (Note that F ′ clearly satisfies (b) if F |ρ1 does.) More specifically with
parameters 
 and L defined below, we say that a clause is narrow if its width is
less than 
, and a literal is popular (in a currently considered CNF formula) if it
appears in more than L clauses.


 = b(1 − δ) log N, and L = N (1−bγ)(1−δ).

Here b is some constant b < 1; for example, we can show that the whole proof
goes through by choosing b by 1 − 0.4γ.

We can show that the assignment ρ̂ = ρ2 ◦ ρ1 defined above leaves Ω(N)
variables unassigned as desired. First, we show that ρ1 leaves some (1 − o(1))N
variables unassigned. Like the previous ρ1, our ρ1 is defined by using a sequence
σ1, σ2, . . . of very short partial assignments defined step by step. Here we need to
eliminate narrow clauses and popular literals. To eliminate each narrow clause,
we fix the values of all literals in the clause. We show that the sat. ratio increases
a good amount by using an appropriate assignment to those literals. Hence, the
number of applying very short partial assignments of this type is limited (because
otherwise, the sat. ratio exceeds 1). On the other hand, we eliminate popular
literas (here w.r.t. all clauses in the current formula) in the same way as before,
and by the same reasoning, we can bound the number of applying this step.
Altogether we can show that there exists some ρ1 that satisfies both (a′) and
(b) by fixing at most O(Nβ) variables, where β < 1 is the constant specified in
the theorem. Then we show that with high probability one can remove Ω(N)
variables from F |ρ1 while keeping both (a) and (b) so that we can apply the
above lemma to find an assignment satisfying F ′.

We can give a deterministic algorithm implementing these three stages. First
for finding the best ρ1, the algorithm tries all possible candidate partial assign-
ments. We can show that this brute force search is conducted in Õ(2Nβ

) steps.
Next, the random removable of variables of the second stage can be derandom-
ized in polynomial-time by the standard method of conditional probabilities.
Thus, F ′ is obtained deterministically in Õ(2Nβ

)-time. Then the above lemma
guarantees that one of its sat. assignment is computed in O(NO(1/y))-time. Since
the last time bound is subsumed by Õ(2Nβ

), we can conclude that ρ̂ = ρ2 ◦ ρ1 is
deterministically computable in Õ(2Nβ

)-time. This is the outline of our deter-
ministic algorithm for computing ρ̂.
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Abstract. The Weighted Vertex Integrity (wVI) problem takes as
input an n-vertex graph G, a weight function w : V (G) → N, and an
integer p. The task is to decide if there exists a set X ⊆ V (G) such that
the weight of X plus the weight of a heaviest component of G − X is at
most p. Among other results, we prove that:
(1) wVI is NP-complete on co-comparability graphs, even if each vertex

has weight 1;
(2) wVI can be solved in O(pp+1n) time;
(3) wVI admits a kernel with at most p3 vertices.

Result (1) refutes a conjecture by Ray and Deogun (J. Combin. Math.
Combin. Comput. 16: 65–73, 1994) and answers an open question by Ray
et al. (Ars Comb. 79: 77–95, 2006). It also complements a result by Kratsch
et al. (Discr. Appl. Math. 77: 259–270, 1997), stating that the unweighted
version of the problem can be solved in polynomial time on
co-comparability graphs of bounded dimension, provided that an inter-
section model of the input graph is given as part of the input.

An instance of the Weighted Component Order Connectivity
(wCOC) problem consists of an n-vertex graph G, a weight function w :
V (G) → N, and two integers k and �, and the task is to decide if there
exists a set X ⊆ V (G) such that the weight of X is at most k and the weight
of a heaviest component of G − X is at most �. In some sense, the wCOC
problem can be seen as a refined version of the wVI problem. We obtain
several classical and parameterized complexity results on the wCOC prob-
lem, uncovering interesting similarities and differences between wCOC
and wVI. We prove, among other results, that:
(4) wCOC can be solved in O(min{k, �}·n3) time on interval graphs, while

the unweighted version can be solved in O(n2) time on this graph
class;

(5) wCOC is W[1]-hard on split graphs when parameterized by k or by �;
(6) wCOC can be solved in 2O(k log �)n time;
(7) wCOC admits a kernel with at most k�(k + �) + k vertices.

We also show that result (6) is essentially tight by proving that wCOC
cannot be solved in 2o(k log �)nO(1) time, even when restricted to split graphs,
unless the Exponential Time Hypothesis fails.
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1 Introduction

Motivated by a multitude of practical applications, many different vulnerability
measures of graphs have been introduced in the literature over the past few
decades. The vertex and edge connectivity of a graph, although undoubtedly
being the most well-studied of these measures, often fail to capture the more
subtle vulnerability properties of networks that one might wish to consider,
such as the number of resulting components, the size of the largest or smallest
component that remains, and the largest difference in size between any two
remaining components. The two vulnerability measures we study in this paper,
vertex integrity and component order connectivity, take into account not only
the number of vertices that need to be deleted in order to break a graph into
pieces, but also the number of vertices in the largest component that remains.

The vertex integrity of an unweighted graph G is defined as ι(G) = min{|X|+
n(G−X) | X ⊆ V (G)}, where n(G−X) is the number of vertices in the largest
connected component of G − X. This vulnerability measure was introduced by
Barefoot, Entringer and Swart [2] in 1987. For an overview of structural results
on vertex integrity, including combinatorial bounds and relationships between
vertex integrity and other vulnerability measures, we refer the reader to a survey
on the subject by Bagga et al. [1]. We mention here only known results on the
computational complexity of determining the vertex integrity of a graph.

The Vertex Integrity (VI) problem takes as input an n-vertex graph
G and an integer p, and asks whether ι(G) ≤ p. This problem was shown to
be NP-complete, even when restricted to planar graphs, by Clark, Entringer,
and Fellows [6]. On the positive side, Fellows and Stueckle [8] showed that the
problem can be solved in O(p3pn) time, and is thus fixed-parameter tractable
when parameterized by p. In the aforementioned survey, Bagga et al. [1] mention
that Vertex Integrity can be solved in O(n3) time when the input graph is a
tree or a cactus graph. Kratsch, Kloks, and Müller [12] studied the computational
complexity of determining the value of several vulnerability measures in classes of
intersection graphs. Their results imply that Vertex Integrity can be solved
in O(n3) time on interval graphs, in O(n4) time on circular-arc graphs, and in
O(n5) time on permutation graphs and trapezoid graphs. Kratsch et al. [12] also
mention that the problem can be solved in O(n2d+1) time on co-comparability
graphs of dimension at most d, provided that an intersection model of the input
graph is given as part of the input.

Ray and Deogun [14] were the first to study the more general Weighted
Vertex Integrity (wVI) problem. This problem takes as input an n-vertex
graph G, a weight function w : V (G) → N, and an integer p. The task is to
decide if there exists a set X ⊆ V (G) such that the weight of X plus the weight
of a heaviest component of G − X is at most p. Using a reduction from 0-1
Knapsack, Ray and Deogun [14] identified several graph classes on which the
Weighted Vertex Integrity problem is weakly NP-complete. In particular,
their result implies that the problem is weakly NP-complete on trees, bipartite
graphs, series-parallel graphs, and regular graphs, and therefore also on super-
classes such as chordal graphs and comparability graphs. A common property of
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these classes is that they contain graphs with arbitrarily many asteroidal triples
and induced paths on five vertices; any graph class that does not have this
property is not covered by the result Ray and Deogun. They conjectured that
the Weighted Vertex Integrity problem can be solved in polynomial time
on co-comparability graphs, a well-known example of a class of graphs that do
not contain asteroidal triples at all. More than a decade later, Ray et al. [15]
presented a polynomial-time algorithm for Weighted Vertex Integrity on
interval graphs, a subclass of co-comparability graphs. In the same paper, they
pointed out that the complexity of the problem on co-comparability graphs
remained unknown.

We now turn our attention to the second vulnerability measure studied in
this paper. For any positive integer �, the �-component order connectivity of a
graph G is defined to be the cardinality of a smallest set X ⊆ V (G) such that
n(G − X) < �. We refer to the survey by Gross et al. [10] for more background
on this graph parameter. Motivated by the definitions of �-component order con-
nectivity and the Weighted Vertex Integrity problem, we introduce the
Weighted Component Order Connectivity (wCOC) problem. This prob-
lem takes as input a graph G, a weight function w : V (G) → N, and two integers
k and �. The task is to decide if there exists a set X ⊆ V (G) such that the
weight of X is at most k and the weight of a heaviest component of G − X is
at most �. Observe that the Weighted Component Order Connectivity
problem can be interpreted as a more refined version of Weighted Vertex
Integrity. We therefore find it surprising that, to the best of our knowledge,
the Weighted Component Order Connectivity problem has not yet been
studied in the literature. We do however point out that the techniques described
by Kratsch et al. [12] yield polynomial-time algorithms for the unweighted ver-
sion of the problem on interval graphs, circular-arc graphs, permutation graphs,
and trapezoid graphs, and that very similar problems have received some atten-
tion recently [3,10].

Our Contribution. In Section 2, we present our results on Vertex Integrity
and Weighted Vertex Integrity. We show that VI is NP-complete on co-
bipartite graphs, and hence on co-comparability graphs. This refutes the afore-
mentioned conjecture by Ray and Deogun [14] and answers an open question by
Ray et al. [15]. It also forms an interesting contrast with the result by Kratsch
et al. [12] stating that VI can be solved in O(n2d+1) time on co-comparability
graphs of dimension at most d if an intersection model is given as part of the
input. We also show that even though VI can be solved in linear time on split
graphs, the problem remains NP-complete on chordal graphs. Interestingly, we
prove that unlike the unweighted variant of the problem, the wVI problem is
NP-complete when restricted to split graphs; observe that this does not follow
from the aforementioned hardness result by Ray and Deogun [14], as split graphs
do not contain induced paths on five vertices.

Recall that Fellows and Stueckle [8] showed that VI can be solved in O(p3pn)
time on general graphs. We strengthen this result by showing that even the wVI
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problem can be solved in O(pp+1n) time. We also show that wVI admits a kernel
with at most p3 vertices, each having weight at most p.

Table 1. An overview of the classical complexity results proved in this paper. Previ-
ously known results are given with a reference.

VI wVI COC wCOC

general NPc [6] NPc [6] NPc [6] NPc [6]

co-bipartite NPc NPc NPc NPc

chordal NPc NPc NPc NPc

split O(n + m) [13] NPc NPc NPc

interval O(n3) [12] O(n6 log n) [15] O(n2) O(min{k, �} · n3)

complete O(n) O(n) O(n) weakly NPc

Section 3 contains our results on Component Order Connectivity and
Weighted Component Order Connectivity. The observation that there
is a polynomial-time Turing reduction from VI to COC implies that the latter
problem cannot be solved in polynomial time on any graph class for which VI is
NP-complete, unless P=NP. We prove that wCOC is weakly NP-complete already
on complete graphs, while the unweighted variant of the problem, which is trivial
on complete graphs, remains NP-complete when restricted to split graphs. We
find the latter result particularly interesting in light of existing polynomial-time
algorithms for computing similar (unweighted) vulnerability measures of split
graphs, such as toughness [16], vertex integrity, scattering number, tenacity, and
rupture degree [13]. To complement our hardness results, we present a pseudo-
polynomial-time algorithm that solves the wCOC problem in O(min{k, �} · n3)
time on interval graphs. We then modify this algorithm to solve the unweighted
version of the problem in O(n2) time on interval graphs, thereby improving
the O(n3)-time algorithm that follows from the results by Kratsch et al. [12].
Observe that the aforementioned hardness results rule out the possibility of
solving wCOC in polynomial time on interval graphs or in pseudo-polynomial
time on split graphs.

In Section 3, we also completely classify the parameterized and kernelization
complexity of COC and wCOC on general graphs with respect to the parameters
k, �, and k + �. We first observe that both problems are para-NP-hard when
parameterized by � due to the fact that COC is equivalent to Vertex Cover
when � = 1. We then prove that if we take either k or � to be the parameter, then
COC is W[1]-hard even on split graphs. On the positive side, we show that wCOC
becomes fixed-parameter tractable when parameterized by k + �. We present an
algorithm for solving the problem in time 2O(k log �)n time, before proving that
the problem cannot be solved in time 2o(k log �)nO(1) unless the Exponential Time
Hypothesis fails. Finally, we show that wCOC admits a polynomial kernel with
at most k�(k + �) + k vertices, where each vertex has weight at most k + �.
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Notation and Terminology. For a reader not familiar with graph classes
and parameterized complexity, we refer to the full version of the paper [7] for
additional terminology.

Let G be a graph and w : V (G) → N = {0, 1, . . .} a weight function on
the vertices of G. The weight of a subset X ⊆ V (G) is defined as w(X) =∑

v∈X w(v). We define wcc(G) to be the weight of a heaviest component of G,
i.e., wcc(G) = max{w(V (Gi)) | 1 ≤ i ≤ r}, where G1, . . . , Gr are the components
of G. The weighted vertex integrity of G is defined as

ι(G) = min{w(X) + wcc(G − X) | X ⊆ V (G)} ,

where G − X denotes the graph obtained from G by deleting all the vertices
in X. Any set X ⊆ V (G) for which w(X)+wcc(G−X) = ι(G) is called an ι-set
of G. We consider the following two decision problems:

Weighted Vertex Integrity (wVI)
Instance: A graph G, a weight function w : V (G) → N, and an integer p.
Question: Is ι(G) ≤ p?

Weighted Component Order Connectivity (wCOC)
Instance:A graph G, a weight function w : V (G) → N, and two integers k and �.
Question: Is there a set X ⊆ V (G) with w(X) ≤ k such that wcc(G − X) ≤ �?

The unweighted versions of these two problems, where w(v) = 1 for every vertex
v ∈ V (G), are called Vertex Integrity (VI) and Component Order Con-
nectivity (COC), respectively. Recall that the vertex integrity of an unweighted
graph G is defined as ι(G) = min{|X| + n(G − X) | X ⊆ V (G)}, where n(G − X)
is the number of vertices in the largest connected component of G − X.

2 Vertex Integrity

As mentioned in the introduction, Ray et al. [15] asked whether Weighted Ver-
tex Integrity can be solved in polynomial time on co-comparability graphs.
We show that this is not the case, unless P = NP. In fact, we prove a much
stronger result in Theorem 1 below by showing NP-completeness of an easier
problem (Vertex Integrity) on a smaller graph class (co-bipartite graphs).

Theorem 1. Vertex Integrity is NP-complete on co-bipartite graphs.

Proof. The problem is clearly in NP. To show that it is NP-hard, we give a
polynomial-time reduction from the Balanced Complete Bipartite Sub-
graph problem. This problem, which is known to be NP-complete [9], takes as
input a bipartite graph G = (A,B,E) and an integer k ≥ 1, and asks whether
there exist subsets A′ ⊆ A and B′ ⊆ B such that |A′| = |B′| = k and G[A′∪B′] is
a complete bipartite graph. Let (G, k) be an instance of Balanced Complete
Bipartite Subgraph, where G = (A,B,E) is a bipartite graph on n vertices.



290 P.G. Drange et al.

We claim that (G, k) is a yes-instance of Balanced Complete Bipartite
Subgraph if and only if (G,n − k) is a yes-instance of Vertex Integrity.

Suppose there exist subsets A′ ⊆ A and B′ ⊆ B such that |A′| = |B′| = k and
A′ ∪ B′ induces a complete bipartite subgraph in G. Observe that in G, both A′

and B′ are cliques, and there is no edge between A′ and B′. Hence, if we delete
all the vertices in V (G) \ (A′ ∪ B′) from G, the resulting graph has exactly two
components containing exactly k vertices each. Since |V (G)\(A′ ∪B′)| = n−2k,
it holds that ι(G) ≤ n − 2k + k = n − k, and hence (G,n − k) is a yes-instance
of Vertex Integrity.

For the reverse direction, suppose (G,n − k) is a yes-instance of Vertex
Integrity. Then there exists a subset X ⊆ V (G) such that |X| + n(G − X) ≤
n − k. The assumption that k ≥ 1 implies that G − X is disconnected, as
otherwise |X| + n(G − X) = V (G) = n. Let A′ = A \ X and B′ = B \ X.
Since G is co-bipartite, both A′ and B′ are cliques. Moreover, since G − X is
disconnected, there is no edge between A′ and B′. Hence, G[A′] and G[B′] are the
two components of G − X. Without loss of generality, suppose that |A′| ≥ |B′|.
Then |B′| = n − (|X| + |A′|) = n − (|X| + n(G − X)) ≥ n − (n − k) = k
and hence |A′| ≥ |B′| ≥ k. This, together with the observation that A′ ∪ B′

induces a complete bipartite subgraph in G, implies that (G, k) is a yes-instance
of Balanced Complete Bipartite Subgraph. �	

Ray and Deogun [14] proved that Weighted Vertex Integrity is NP-
complete on any graph class that satisfies certain conditions. Without explicitly
stating these (rather technical) conditions here, let us point out that any graph
class satisfying these conditions must contain graphs with arbitrarily many aster-
oidal triples and induced paths on five vertices. Theorem 1 shows that neither
of these two properties is necessary to ensure NP-completeness of Weighted
Vertex Integrity, since co-bipartite graphs contain neither asteroidal triples
nor induced paths on five vertices.

In Theorem 2 below, we show that Weighted Vertex Integrity is NP-
complete on split graphs. Since split graphs do not contain induced paths on five
vertices, this graph class is not covered by the aforementioned hardness result
of Ray and Deogun [14].

Lemma 1. (�)1 For every graph G and weight function w : V (G) → N, there
exists an ι-set X that contains no simplicial vertices of G.

Given a graph G, the incidence split graph of G is the split graph G∗ =
(C∗, I∗, E∗) whose vertex set consists of a clique C∗ = {vx | x ∈ V (G)} and
an independent set I∗ = {ve | e ∈ E(G)}, and where two vertices vx ∈ C∗ and
ve ∈ I∗ are adjacent if and only if vertex x is incident with edge e in G. The
following lemma will be used in the proofs of hardness results not only in this
section, but also in Section 3.
1 Due to page restrictions, proofs of results marked with a star have been deferred to

the full version [7].
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Lemma 2. (�) Let G = (V,E) be a graph, G∗ = (C∗, I∗, E∗) its incidence split
graph, and k < |V | a non-negative integer. Then the following statements are
equivalent:

(i) G has a clique of size k;
(ii) there exists a set X ⊆ C∗ such that |X| ≤ k and |X| + n(G∗ − X) ≤

|V | + |E| − (
k
2

)
;

(iii) there exists a set X ⊆ C∗ such that |X| ≤ k and n(G∗ − X) ≤ |V | + |E| −(
k
2

) − k.

Theorem 2. Weighted Vertex Integrity is NP-complete on split graphs.

Proof. We give a reduction from the NP-hard problem Clique. Given an instance
(G, k) of Clique with n = |V (G)| and m = |E(G)|, we create an instance
(G′, w, p) of Weighted Vertex Integrity as follows. To construct G′, we start
with the incidence split graph G∗ = (C∗, I∗, E∗) of G, and we add a single iso-
lated vertex z. We define the weight function w by setting w(z) = n+m−(

k
2

)−k

and w(v) = 1 for every v ∈ V (G′) \ {z}. Finally, we set p = n + m − (
k
2

)
. For

convenience, we assume that k < n.
We claim that G has a clique of size k if and only if ι(G′) ≤ p. Since G′ is a

split graph and all the vertex weights are polynomial in n, this suffices to prove
the theorem.

First suppose G has a clique S of size k. By Lemma 2, there exists a set X ⊆ C
such that |X| ≤ k and n(G∗ −X) ≤ n+m−(

k
2

)−k. Since w(z) = n+m−(
k
2

)−k
and every other vertex in G′ has weight 1, it follows that wcc(G′ −X) = n+m−(
k
2

) − k. Consequently, w(X) + wcc(G′ − X) ≤ n + m − (
k
2

)
= p, so we conclude

that ι(G′) ≤ p.
For the reverse direction, suppose ι(G′) ≤ p, and let X ⊆ V (G′) be an

ι-set of G′. Due to Lemma 1, we may assume that X ⊆ C. We claim that
|X| ≤ k. For contradiction, suppose |X| ≥ k + 1. Then w(X) = |X| ≥ k + 1 and
wcc(G′−X) ≥ w(z) = p−k. This implies that ι(G′) = w(X)+wcc(G′−X) ≥ p+1,
yielding the desired contradiction. Now let H be the component of G′ − X
containing the clique C\X. The fact that every vertex in V (G′)\{z} has weight 1
and the assumption that k < n imply that |V (H)| = n(G∗ −X) = wcc(G∗ −X).
Now observe that |X|+n(G∗ −X) ≤ |X|+max{w(Z), wcc(G∗ −X)} = ι(G′) ≤
p = n + m − (

k
2

)
. We can therefore invoke Lemma 2 to conclude that G has a

clique of size k. �	
The following result, previously obtained by Li et al. [13], is an easy conse-

quence of Lemma 1. Theorem 4 below shows that this result is in some sense
best possible.

Theorem 3 ([13]). Vertex Integrity can be solved in linear time on split
graphs.

Theorem 4. (�) Vertex Integrity is NP-complete on chordal graphs.



292 P.G. Drange et al.

Recall that Fellows and Stueckle [8] proved that Vertex Integrity can be
solved in time O(p3pn). Their arguments can be slightly strengthened to yield
the following result.

Theorem 5. (�) Weighted Vertex Integrity can be solved in O(pp+1n)
time.

We prove that the problem admits a polynomial kernel with respect to param-
eter p.

Theorem 6. (�) Weighted Vertex Integrity admits a kernel with at
most p3 vertices, where each vertex has weight at most p.

3 Component Order Connectivity

It is easy to see that (G, p) is a yes-instance of Vertex Integrity if and
only if there exist non-negative integers k and � with k + � = p such that
(G, k, �) is a yes-instance of Component Order Connectivity. Hence, any
instance (G, p) of Vertex Integrity can be solved by making at most p calls
to an algorithm solving Component Order Connectivity, implying that
Component Order Connectivity cannot be solved in polynomial time on
any graph class for which Vertex Integrity is NP-complete, unless P=NP.

Our next two results identify graph classes for which wCOC and COC are
strictly harder than wVI and VI, respectively.

Theorem 7. (�) Weighted Component Order Connectivity is weakly
NP-complete on complete graphs.

Theorem 8. (�) Component Order Connectivity is NP-complete on split
graphs.

We now present a pseudo-polynomial algorithm, called wCOC, that solves
Weighted Component Order Connectivity in O(kn3) time on interval
graphs. We refer to Figure 1 for pseudocode of the algorithm.

Given an instance (G,w, k, �), where G is an interval graph, the algorithm
first removes every vertex of weight 0. It then computes a clique path of G, i.e.,
an ordering K1, . . . ,Kt of the maximal cliques of G such that for every vertex v ∈
V (G), the maximal cliques containing v appear consecutively in this ordering.
Since G is an interval graph, such an ordering exists and can be obtained in O(n2)
time [5]. For convenience, we define two empty sets K0 and Kt+1. The algorithm
now computes the set Si = Ki ∩ Ki+1 for every i ∈ {0, . . . , t}. Observe that S0

and St are both empty by construction, and that the non-empty sets among
S1, . . . , St−1 are exactly the minimal separators of G (see, e.g., [11]). For every
q ∈ {0, . . . , t+1}, we define Gq = G[

⋃q
i=0 Ki]. Also, for any two integers i, j with

0 ≤ i < j ≤ t, the algorithm computes the set Vi,j = V (G[
⋃j

p=i+1 Kp\(Si∪Sj)]).
Informally speaking, the set Vi,j consists of the vertices of G that lie “in between”
separators Si and Sj .
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Algorithm wCOC

Input: An instance (G, w, k, �) of Weighted Component Order
Connectivity, where G is an interval graph

Output: “yes” if (G, w, k, �) is a yes-instance, and “no” otherwise

Remove every vertex of weight 0 from G
Construct K0, . . . , Kt+1

Construct S0, . . . , St

Construct Vi,j for every 0 ≤ i < j ≤ t

Set all elements of dp to k + 1
Set dp[0] = 0

for j from 1 to t do
for i from j − 1 to 0 do

Let v1, . . . , v|Vi,j | be the vertices of Vi,j

Let wp = w(vp) for every p ∈ {1, . . . , |Vi,j |}
if w(Vi,j) ≤ k + � then

Let I = MinSup((w1, . . . , w|Vi,j |), w(Vi,j) − �)
Let Yi,j = {vp ∈ Vi,j | p ∈ I}
dp[j] = min

{
dp[j]

dp[i] + w(Yi,j) + w(Sj \ Si)

end

end

end

return “yes” if dp[t] ≤ k, and “no” otherwise

Fig. 1. Pseudocode of the algorithm wCOC that solves the Weighted Component
Order Connectivity problem on interval graphs in O(kn3) time

Let us give some intuition behind the next phase of the algorithm. Sup-
pose (G,w, k, �) is a yes-instance of Weighted Component Order Connec-
tivity, and let X be a solution for this instance. Generally speaking, X fully
contains some minimal separators of G whose removal is necessary to break the
graph into pieces, as well as additional vertices that are deleted from these pieces
with the sole purpose of decreasing the weight of each piece to at most �. The
constructed clique path K1, . . . ,Kt corresponds to a linear order of the minimal
separators S1, . . . , St−1 of G. We will use this linear structure to find a minimum
solution by doing dynamic programming over the minimal separators of G.

For every q ∈ {0, . . . , t}, let kq denote the smallest integer such that there
exists a set X ⊆ V (G) satisfying the following three properties:

– w(X) = kq;
– Sq is a subset of X;
– X is a solution for the instance (Gq, w, kq, �).
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In other words, X is a “cheapest” solution for (Gq, w, kq, �) that fully contains
the minimal separator Sq. The algorithm now constructs an array dp with t + 1
entries, each of which is an integer from {0, . . . , k +1}. Initially, all the elements
of the array are set to k + 1. For any q ∈ {0, . . . , t}, we say that the entry dp[q]
has reached optimality if

dp[q] =

{
kq if kq ≤ k

k + 1 otherwise .

Recall that St = ∅ and that Gt = G. Hence, if dp[t] has reached optimality, then
the input instance (G,w, k, �) is a yes-instance if and only if dp[t] ≤ k.

The algorithm uses a subroutine MinSup that, given a multiset of r weights
(w1, . . . , wr) and a target W such that

∑r
i=1 wi ≥ W , finds a set I ⊆ {1, . . . , r}

such that
∑

i∈I wi is minimized with respect to the constraint
∑

i∈I wi ≥ W .
Note that this subroutine MinSup can be implemented to run in time O(Wr)
using the classical dynamic programming algorithm for Subset Sum.

Theorem 9. (�) Weighted Component Order Connectivity can be
solved in O(min{k, �} · n3) time on interval graphs.

Theorem 10. Component Order Connectivity can be solved in O(n2)
time on interval graphs.

Proof. We describe a modification of the algorithm wCOC, called uCOC, that
solves the unweighted Component Order Connectivity problem in O(n2)
time on interval graphs. There are two reasons why the algorithm wCOC does
not run in O(n2) time: constructing all the sets Vi,j takes O(n3) time in total,
and each of the O(n2) executions of the inner loop takes O(kn) time, which is
the time taken by the subroutine MinSup to compute the set Yi,j of vertices that
are to be deleted.

Recall that for every j ∈ {1, . . . , t} and every i ∈ {0, . . . , j − 1}, the set Yi,j

computed by the algorithm wCOC is defined to be the minimum-weight subset
of Vi,j for which the weight of the subgraph G[Vi,j ]−Yi,j is at most �. Also recall
that once the set Yi,j is computed, the value of dp[j] is updated as follows:

dp[j] = min

{
dp[j]

dp[i] + w(Yi,j) + w(Sj \ Si)

When solving the unweighted variant of the problem, we can decrease the
weight (i.e., order) of the subgraph G[Vi,j ] to at most � by simply deleting |Vi,j |−�
vertices from Vi,j in a greedy manner. In other words, it is no longer important to
decide which vertices to delete from Vi,j , but only how many vertices to delete.
This means that we can replace the entire body of the inner loop by the following
line:

dp[j] = min

{
dp[j]

dp[i] + (|Vi,j | − �) + |Sj \ Si|
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Hence it suffices to argue that we can precompute the values |Vi,j | and |Sj \ Si|
for every j ∈ {1, . . . , t} and i ∈ {0, . . . , j − 1} in O(n2) time in total.

Recall that Vi,j = V (G[
⋃j

p=i+1 Kp \ (Si ∪ Sj)]) by definition, so

|Vi,j | = |
j⋃

p=i+1

Kp| − |Si| − |Sj | + |Si ∩ Sj | .

Moreover, it is clear that

|Sj \ Si| = |Sj | − |Si ∩ Sj | .

The algorithm uCOC starts by computing the sets K0, . . . ,Kt+1 and S0, . . . , St

as before in O(n2) time, as well as the cardinalities of these sets. For each
v ∈ V (G), let L(v) denote the largest index i such that v ∈ Ki. Observe that
we can compute the value L(v) for all v ∈ V (G) in O(n2) time in total. The
algorithm then computes the value |⋃i

p=0 Kp| for every i ∈ {0, . . . , t}. Using
these values, it then computes the value

|
j⋃

p=i+1

Kp| = |
j⋃

q=0

Kq| − |
i⋃

r=0

Kr| + |Ki ∩ Ki+1| = |
j⋃

q=0

Kq| − |
i⋃

r=0

Kr| + |Si|

for every j ∈ {1, . . . , t} and every i ∈ {0, . . . , j − 1}. Observe that this can also
be done in O(n2) time in total since all the terms in the expression has been
precomputed.

It remains to show that we can compute the value |Si ∩ Sj | for all indices
i and j with 0 ≤ i < j ≤ t in O(n2) time in total. Let us fix an index i ∈
{0, . . . , t}. Since we precomputed the L-value of each vertex and we can order
the vertices in Si by increasing L-value in O(n) time, we can compute the value
|Si ∩ Sj | = |{v ∈ Si | L(v) ≥ j + 1}| = |Si ∩ Sj−1| − |{v ∈ Si | L(v) = j + 1}| for
all j ∈ {i+1, . . . , t}. Observe that the expression |{v ∈ Si | L(v) = j+1}| can be
computed for every j by one sweep through Si since Si is ordered by L-values.
Hence the computation of |Si ∩ Sj |, for a fixed i and every j can be performed
in O(n) time. This completes the proof. �	

To conclude this section, we investigate the parameterized complexity and
kernelization complexity of COC and wCOC. As mentioned in the introduction,
both problems are para-NP-hard when parameterized by � due to the fact that
Component Order Connectivity is equivalent to Vertex Cover when
� = 1. Our next result shows that when restricted to split graphs, both problems
are W[1]-hard when parameterized by k or by �.

Theorem 11. (�) Component Order Connectivity is W[1]-hard on split
graphs when parameterized by k or by �.

On the positive side, our next result shows that both problems become fixed-
parameter tractable when parameterized by k + �.
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Theorem 12. Weighted Component Order Connectivity can be solved
in time O(�k(k + �)n) = 2O(k log �)n.

Proof. Let (G,w, k, �) be an instance of Weighted Component Order Con-
nectivity, and let n = |V (G)| and m = |E(G)|. We assume that every vertex
in G has weight at least 1, as vertices of weight 0 can simply be deleted from
the graph. Suppose that (G,w, k, �) is a yes-instance. Then there exists a set
X ⊆ V (G) such that w(X) ≤ k and wcc(G − X) ≤ �. Let G1, . . . , Gr be the
components of G − X. We can construct a path decomposition of G by taking
as bags the sets X ∪ V (Gi) for all i ∈ {1, . . . , r}. Since every vertex has weight
at least 1, we know that each bag contains at most k + � vertices, implying that
G has treewidth at most k + � − 1. Consequently, G has at most (k + � − 1)n
edges [4]. We may therefore assume that m ≤ (k + � − 1)n, as our algorithm can
safely reject the instance otherwise.

We now describe a simple branching algorithm that solves the problem. Now,
at each step of the algorithm, we use a depth-first search to find a set L ⊆ V (G)
of at most �+1 vertices such that wcc(G[L]) ≥ �+1 and G[L] induces a connected
subgraph. If such a set does not exist, then every component of the graph has
weight at most �, so we are done. Otherwise, we know that any solution contains
a vertex of L. We therefore branch into |L| ≤ �+1 subproblems: for every v ∈ L,
we create the instance (G − v, w, k − w(v), �), where we discard the instance in
case k−w(v) < 0. Since the parameter k decreases by at least 1 at each branching
step, the corresponding search tree T has depth at most k. Since T is an (�+1)-
ary tree of depth at most k, it has at most ((�+1)k+1 − 1)/((�+1)− 1) = O(�k)
nodes. Due to the assumption that m ≤ (k + � − 1)n, the depth-first search at
each step can be performed in time O(n + m) = O((k + �)n). This yields an
overall running time of O(�k(k + �)n) = 2O(k log �)n. �	

We now show that the branching algorithm in Theorem 12 is in some sense
tight.

Theorem 13. (�) There is no 2o(k log �)nO(1) time algorithm for Component
Order Connectivity, even when restricted to split graphs, unless the ETH
fails.

We conclude this section by showing that Weighted Component Order
Connectivity admits a polynomial kernel.

Theorem 14. (�) Weighted Component Order Connectivity admits
a kernel with at most k�(k + �) + k vertices, where each vertex has weight at
most k + �.

4 Concluding Remarks

Our NP-completeness result for Vertex Integrity on co-comparability graphs,
together with the polynomial-time algorithm for Weighted Vertex Integrity
by Ray et al. [15] on interval graphs, raises the question whether Weighted
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Vertex Integrity can be solved in polynomial time on permutation graphs.
Recall that the unweighted version of this problem can be solved in O(n5) time
on this graph class [12].

We showed that the Component Order Connectivity problem does not
admit a 2o(k log �)nO(1) time algorithm, unless the ETH fails. Can the problem be
solved in time ck+�nO(1) for some constant c? Similarly, it would be interesting
to investigate whether it is possible to solve Vertex Integrity in time cpnO(1)

for some constant c.

Acknowledgments. The authors are grateful to Daniel Lokshtanov for pointing out
that k × k Clique admits no O(2k log k) time algorithm unless ETH fails.
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Abstract. Co-clustering, that is, partitioning a matrix into “homoge-
neous” submatrices, has many applications ranging from bioinformatics
to election analysis. Many interesting variants of co-clustering are NP-
hard. We focus on the basic variant of co-clustering where the homo-
geneity of a submatrix is defined in terms of minimizing the maximum
distance between two entries. In this context, we spot several NP-hard
as well as a number of relevant polynomial-time solvable special cases,
thus charting the border of tractability for this challenging data cluster-
ing problem. For instance, we provide polynomial-time solvability when
having to partition the rows and columns into two subsets each (meaning
that one obtains four submatrices). When partitioning rows and columns
into three subsets each, however, we encounter NP-hardness even for
input matrices containing only values from {0, 1, 2}.

1 Introduction

Co-clustering, also known as biclustering, performs a simultaneous clustering of
the rows and columns of a data matrix. Roughly speaking, the problem is, given
a numerical input matrix A, to partition the rows and columns of A into subsets
minimizing a given cost function (measuring “homogeneity”). For a given subset
of rows I and a subset of columns J , the corresponding cluster consists of all
entries aij with i ∈ I and j ∈ J . The cost function usually defines homogeneity in
terms of distances (measured in some norm) between the entries of each cluster.
Note that the variant where clusters are allowed to “overlap”, meaning that some
rows and columns are contained in multiple clusters, has also been studied [10].
We focus on the non-overlapping variant which can be stated as follows.

Co-ClusteringL
Input: A matrix A ∈ R

m×n and two positive integers k, � ∈ N.
Task: Find a partition of A’s rows into k subsets and a partition of A’s

columns into � subsets such that a given cost function (defined with
respect to some norm L) is minimized for the corresponding clustering.
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Co-clustering is a fundamental paradigm for unsupervised data analysis. Its
applications range from microarrays and bioinformatics over recommender sys-
tems to election analysis [1,3,10]. Due to its enormous practical significance,
there is a vast amount of literature discussing various variants; however, due
to the observed NP-hardness of “almost all interesting variants” [10], most of
the literature deals with heuristic, typically empirically validated algorithms.
Indeed, there has been very active research on co-clustering in terms of heuristic
algorithms while there is little substantial theoretical work for this important
clustering problem. Motivated by an effort towards a deeper theoretical analysis
as started by Anagnostopoulos et al. [1], we further refine and strengthen the
theoretical investigations on the computational complexity of a natural special
case of Co-ClusteringL for the maximum norm L = L∞.

Anagnostopoulos et al. [1] provided a thorough analysis of the polynomial-
time approximability of Co-ClusteringL (with respect to Lp-norms), present-
ing several constant-factor approximation algorithms. While their algorithms are
almost straightforward, relying on one-dimensionally clustering first the rows
and then the columns, their main contribution lies in the sophisticated mathe-
matical analysis of the corresponding approximation factors. Note that Jegelka
et al. [9] further generalized this approach to higher dimensions, then called ten-
sor clustering. In this work, we study (efficient) exact instead of approximate
solvability. To this end, we investigate a more limited scenario, focussing on Co-
Clustering∞, where the problem comes down to minimizing the maximum
distance between entries of a cluster. In particular, our exact and combinatorial
polynomial-time algorithms exploit structural properties of the input matrix and
do not solely depend on one-dimensional approaches.

Related Work. Our main point of reference is the work of Anagnostopoulos et al.
[1]. Their focus is on polynomial-time approximation algorithms, but they also
provide computational hardness results. In particular, they point to challenging
open questions concerning the cases k = � = 2, k = 1, or binary input matrices.
Within our more restricted setting using the maximum norm, we can resolve
parts of these questions. The survey of Madeira and Oliveira [10]1 provides an
excellent overview on the many variations of Co-ClusteringL, there called
biclustering, and discusses many applications in bioinformatics and beyond. In
particular, they also discuss the special case where the goal is to partition into
uniform clusters [8] (that is, each cluster has only one entry value). Our stud-
ies indeed generalize this very puristic scenario by not demanding completely
uniform clusters (which would correspond to clusters with maximum entry dif-
ference 0) but allowing some variation between maximum and minimum cluster
entries. Finally, Califano et al. [4] aimed at clusterings where in each submatrix
the distance between entries within each row and within each column is upper-
bounded. Except for the work of Anagnostopoulos et al. [1], all investigations
mentioned above are empirical in nature.

1 According to Google Scholar, accessed September 2014, cited more than 1350 times.
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Table 1. Overview of results for (k, �)-Co-Clustering∞ with respect to vari-
ous parameter constellations (m: number of rows, |Σ|: alphabet size, k/�: size of
row/column partition, c: cost), where ∗ indicates a value being part of the input and
� indicates that the corresponding value(s) is/are the parameter.

m |Σ| k � c Complexity

∗ ∗ ∗ ∗ 0 P [Observation 1]
∗ 2 ∗ ∗ ∗ P [Observation 1]
∗ ∗ 1 ∗ ∗ P [Theorem 4]
∗ ∗ 2 2 ∗ P [Theorem 5]
∗ ∗ 2 � 1 FPT [Corollary 2]
� ∗ � � � FPT [Lemma 2]
∗ 3 3 3 1 NP-h [Theorem 1]
2 ∗ 2 ∗ 2 NP-h [Theorem 2]

Our Contributions. In terms of defining “cluster homogeneity”, we focus on min-
imizing the maximum distance between two entries within a cluster (maximum
norm). Table 1 surveys most of our results. Our main conceptual contribution
is to provide a seemingly first study on the exact complexity of a natural spe-
cial case of Co-ClusteringL, thus potentially stimulating a promising field of
research. Our main technical contributions are as follows. Concerning the com-
putational intractability results with respect to even strongly restricted cases,
we put a lot of effort in finding the “right” problems to reduce from in order
to make the reductions as natural and expressive as possible, thus making non-
obvious connections to fields such as geometric set covering. Moreover, seemingly
for the first time in the context of co-clustering, we demonstrate that the inher-
ent NP-hardness does not stem from the permutation combinatorics behind: the
problem remains NP-hard when all clusters must consist of consecutive rows
or columns. This is a strong constraint (the search space size is tremendously
reduced—basically from �n · km to

(
n
�

) · (m
k

)
) which directly gives a polynomial-

time algorithm for k and � being constants. Note that in the general case we
have NP-hardness for constant k and �. Concerning the algorithmic results, we
developed a novel reduction to SAT solving (instead of the standard reductions
to integer linear programming) which may prove beneficial on the theoretical
but also on the practical side. Notably, however, as opposed to previous work
on approximation algorithms [1,9], our methods seem to be tailored for the
two-dimensional case (co-clustering) and the higher dimensional case (tensor
clustering) appears to be out of reach.

Due to the lack of space, several details are deferred to a full version.

2 Formal Definitions and Preliminaries

We use standard terminology for matrices. A matrix A = (aij) ∈ R
m×n consists

of m rows and n columns where aij denotes the entry in row i and column j. We
define [n] := {1, 2, . . . , n} and [i, j] := {i, i+1, . . . , j} for n, i, j ∈ N. Throughout
this paper, we assume that arithmetical operations require constant time.
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0 4 3 0
2 2 1 3
1 3 4 1

A =
0 0 4 3
1 1 3 4
2 3 2 1
J1 J2

I1

I2

J1 = {1, 4}, J2 = {2, 3}
I1 = {2}, I2 = {1, 3}

0 3 0 4
2 1 3 2
1 4 1 3

J1 J2
I1

I2

J1 = {1, 3, 4}, J2 = {2}
I1 = {1}, I2 = {2, 3}

Fig. 1. The example shows two (2, 2)-co-clusterings (middle and right) of the same
matrix A (left-hand side). It demonstrates that by sorting rows and columns according
to the co-clustering, the clusters can be illustrated as submatrices of this (permuted)
input matrix. The cost of the (2, 2)-co-clustering in the middle is three (because of the
two left clusters) and that of the (2, 2)-co-clustering on the right-hand side is one.

Problem Definition. We follow the terminology of Anagnostopoulos et al. [1].
For a matrix A ∈ R

m×n, a (k, �)-co-clustering is a pair (I,J ) consisting of
a k-partition I = {I1, . . . , Ik} of the rows of A (more specifically, a partition of
the row indices [m]) and an �-partition J = {J1, . . . , J�} of the columns (the
column indices [n], respectively) of A. We call the elements of I (J ) row blocks
(column blocks, resp.). Additionally, we require I and J to not contain empty
sets. For (r, s) ∈ [k] × [�], the set Ars := {aij ∈ A | (i, j) ∈ Ir × Js} is called a
cluster.

The cost of a co-clustering (under maximum norm, which is the only norm we
consider here) is defined as the maximum difference between any two entries in
any cluster, formally cost(I,J ) := max(r,s)∈[k]×[�](max Ars − min Ars). Herein,
max Ars (min Ars) denotes the maximum (minimum, resp.) entry in Ars.

The decision variant of Co-ClusteringL with maximum norm is as follows.

Co-Clustering∞
Input: A matrix A ∈ R

m×n, integers k, � ∈ N, and a cost c ≥ 0.
Question: Is there a (k, �)-co-clustering (I,J ) of A with cost(I,J ) ≤ c?

See Figure 1 for an introductory example. We define Σ := {aij ∈ A | (i, j) ∈
[m]× [n]} to be the alphabet of the input matrix A (consisting of the values that
occur in A). We use the abbreviation (k, �)-Co-Clustering∞ to refer to Co-
Clustering∞ with constants k, � ∈ N, and by (k, ∗)-Co-Clustering∞ we
refer to the case where only k is constant and � is part of the input. Clearly,
Co-Clustering∞ is symmetric with respect to k and � in the sense that any
(k, �)-co-clustering of a matrix A is equivalent to an (�, k)-co-clustering of the
transposed matrix AT . Hence, we always assume that k ≤ �.

We next collect some simple observations. First, determining whether there is
a cost-zero (perfect) co-clustering is easy. Moreover, since, for a binary alphabet,
the only interesting case is a perfect co-clustering, we get the following.

Observation 1. Co-Clustering∞ is solvable in polynomial time for cost zero
and also for any size-two alphabet.



302 L. Bulteau et al.

Proof. Let (A, k, �, 0) be a Co-Clustering∞ instance. For a (k, �)-co-clustering
with cost 0, it holds that all entries of a cluster are equal. This is only possi-
ble if there are at most k different rows and at most � different columns in A
since otherwise there will be a cluster containing two different entries. Thus,
the case c = 0 can be solved by lexicographically sorting the rows and columns
of A. ��

We further observe that the input matrix can, without loss of generality, be
assumed to contain only integer values (by some rescaling arguments preserving
the distance relations between elements).

Observation 2. For any Co-Clustering∞-instance with arbitrary alphabet
Σ ⊆ R, one can find in O((mn)2) time an equivalent instance with alphabet Σ′ ⊆
Z and cost value c′ ∈ N.

Parameterized Algorithmics. We briefly introduce the relevant notions from
parameterized algorithmics. A parameterized problem, each instance consist-
ing of the “classical” problem instance I and an integer k, is fixed-parameter
tractable (FPT) if there is a computable function f and an algorithm solving
any instance in f(k) · |I|O(1) time. The corresponding algorithm is called FPT-
algorithm.

3 Intractability Results

In the previous section, we observed that Co-Clustering∞ is easy to solve
for binary input matrices (Observation 1). In contrast to this, we show in this
section that its computational complexity significantly changes as soon as the
input matrix contains at least three different entries. In fact, even for very
restricted special cases we can show NP-hardness. These special cases comprise
co-clusterings with a constant number of clusters or input matrices with only
two rows. We also show NP-hardness of finding co-clusterings where the row and
column partitions are only allowed to contain consecutive blocks.

3.1 Constant Number of Clusters

We start by showing that for input matrices containing three different entries,
Co-Clustering∞ is NP-hard even if the co-clustering consists only of nine
clusters.

Theorem 1. (3, 3)-Co-Clustering∞ is NP-hard for Σ = {0, 1, 2}.
Proof. We reduce from the NP-complete 3-Coloring [7], where the task is to par-
tition the vertex set of an undirected graph into three independent sets. Let G =
(V,E) be a 3-Coloring instance with V = {v1, . . . , vn} and E = {e1, . . . , em}.
We construct a (3, 3)-Co-Clustering∞ instance (A ∈ {0, 1, 2}m×n, k := 3, � :=
3, c := 1) as follows. The columns of A correspond to the vertices V and the rows
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correspond to the edges E. For an edge ei = (vj , vj′) ∈ E with j < j′, we set
aij := 0 and aij′ := 2. All other matrix entries are set to one. Hence, each row cor-
responding to an edge {vj , vj′} consists of 1-entries except for the columns j and j′,
which contain 0 and 2. Thus, every co-clustering of A with cost at most c = 1 puts
column j and column j′ into different column blocks. We next prove that there
is a (3, 3)-co-clustering of A with cost at most c = 1 if and only if G admits a
3-coloring.

First, assume that V1, V2, V3 is a partition of the vertex set V into three inde-
pendent sets. We define a (3, 3)-co-clustering (I,J ) of A as follows. The column
partition J := {J1, J2, J3} one-to-one corresponds to the three sets V1, V2, V3,
that is, Js := {i | vi ∈ Vs} for all s ∈ {1, 2, 3}. By the construction above, each
row has exactly two non-1 entries being 0 and 2. We define the type of a row to
be a permutation of 0, 1, 2, denoting which of the column blocks J1, J2, J3 con-
tain the 0-entry and the 2-entry. For example, a row is of type (2, 0, 1) if it has a 2
in a column of J1 and a 0 in a column of J2. The row partition I := {I1, I2, I3}
is defined as follows: All rows of type (0, 2, 1) or (0, 1, 2) are put into I1. Rows of
type (2, 0, 1) or (1, 0, 2) are contained in I2 and the remaining rows of type (2, 1, 0)
or (1, 2, 0) are contained in I3. Clearly, for (I,J ), it holds that the non-1 entries
in any cluster are either all 0 or all 2, implying that cost(I,J ) ≤ 1.

Next, assume that (I, {J1, J2, J3}) is a (3, 3)-co-clustering of A with cost at
most 1. The vertex sets V1, V2, V3, where Vs contains the vertices corresponding
to the columns in Js, form three independent sets: If an edge connects two vertices
in Vs, then the corresponding row would have the 0-entry and the 2-entry in the
same column block Js, yielding a cost of 2, which is a contradiction. ��
Theorem 1 can even be strengthened further.

Corollary 1. Co-Clustering∞ is NP-hard even when k = m (that is, each
row is in its own cluster), � is fixed with � ≥ 3, Σ = {0, 1, 2}, and the column
blocks are forced to have equal sizes |J1| = . . . = |J�|.
Proof (Sketch). Note that the reduction in Theorem 1 can easily be adapted to
the NP-hard �-Coloring problem with balanced partition sizes [7]. Note also
that the proof holds for any k ≥ 3. Hence, the problem is NP-hard for k = m
row blocks. ��

3.2 Constant Number of Rows

The reduction in the proof of Theorem 1 outputs matrices with an unbounded
number of rows and columns containing only three different values. We now show
that also the “dual restriction” is NP-hard, that is, the input matrix only has a
constant number of rows (two) but contains an unbounded number of different
values. Interestingly, this special case is closely related to a two-dimensional
variant of geometric set covering.

Theorem 2. Co-Clustering∞ is NP-hard for k = m = 2.
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Proof. We give a polynomial-time reduction from the NP-complete Box Cover
problem [6]. Given a set P ⊆ Z

2 of n points in the plane and � ∈ N, Box Cover
is the problem to decide whether there are � squares S1, . . . , S�, each with side
length 2, covering P , that is, P ⊆ ⋃

1≤i≤� Si.
Let I = (P, �) be a Box Cover instance. We define the instance I ′ :=

(A, k, �′, c) as follows: The matrix A ∈ Z
2×n has the points p1, . . . , pn in P as

columns. Further, we set k := 2, �′ := �, c := 2.
The correctness can be seen as follows: Assume that I is a yes-instance,

that is, there are � squares S1, . . . , S� covering all points in P . We define J1 :=
{i | pi ∈ P ∩ S1} and Jj := {i | pi ∈ P ∩ Sj \ (

⋃
1≤l<j Sl)} for all 2 ≤ j ≤

�. Note that (I = {{1}, {2}},J = {J1, . . . , J�}) is a (2, �)-co-clustering of A.
Moreover, since all points with indices in Jj lie inside a square with side length 2,
it holds that each pair of entries in A1j as well as in A2j has distance at most 2,
implying cost(I,J ) ≤ 2.

Conversely, if I ′ is a yes-instance, then let ({{1}, {2}},J ) be the (2, �)-co-
clustering of cost at most 2. For any Ji ∈ J , it holds that all points corresponding
to the columns in Ji have pairwise distance at most 2 in both coordinates. Thus,
there exists a square of side length 2 covering all of them. ��

3.3 Clustering into Consecutive Clusters

One is tempted to assume that the hardness of the previous special cases of Co-
Clustering∞ is rooted in the fact that we are allowed to choose arbitrary sub-
sets for the corresponding row and column partitions since the problem remains
hard even for a constant number of clusters and also with equal cluster sizes.
Hence, in this section, we consider a restricted version of Co-Clustering∞,
where the row and the column partition has to consist of consecutive blocks.
Formally, for row indices R = {r1, . . . , rk−1} with 1 < r1 < . . . < rk−1 ≤ m
and column indices C = {c1, . . . , c�−1} with 1 < c1 < . . . < c�−1 ≤ n, the
corresponding consecutive (k, �)-co-clustering (IR,JC) is defined as

IR := {{1, . . . , r1 − 1}, {r1, . . . , r2 − 1}, . . . , {rk−1, . . . , m}},

JC := {{1, . . . , c1 − 1}, {c1, . . . , c2 − 1}, . . . , {c�−1, . . . , n}}.

TheConsecutiveCo-Clustering∞ problem now is to find a consecutive (k, �)-
co-clustering of a given input matrix with a given cost. Again, also this restriction
is not sufficient to overcome the inherent intractability of co-clustering, that is, we
prove it to be NP-hard. Similarly to Section 3.2, we encounter a close relation of
consecutive co-clustering to a geometric problem, namely to find an optimal dis-
cretization of the plane [5]. The NP-hard Optimal Discretization problem [5]
is the following: Given a set S of points in the plane, each either colored black B
or white W , and integers k, � ∈ N, decide whether there is a consistent set
of k horizontal and � vertical (axis-parallel) lines. That is, the vertical and hor-
izontal lines partition the plane into rectangular regions such that no region
contains two points of different colors (see Figure 2 for an example). Here, a
vertical (horizontal) line is a simple number denoting its x-(y-)coordinate.
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Fig. 2. Example instance of Optimal Discretization (left) and the corresponding
instance of Consecutive Co-Clustering∞ (right). A solution to the Consecutive
Co-Clustering∞ instance (shaded clusters) naturally translates into a consistent set
of lines.

Theorem 3. Consecutive Co-Clustering∞ is NP-hard for Σ = {0, 1, 2}.
Proof (Sketch).Wegive apolynomial-time reduction fromOptimalDiscretiza-
tion. Let (S, k, �) be an Optimal Discretization instance and let X :=
{x∗

1, . . . , x
∗
n} be the set of different x-coordinates and let Y := {y∗

1 , . . . , y
∗
m} be

the set of different y-coordinates of the points in S. Note that n and m can be
smaller than |S| since two points can have the same x- or y-coordinate. Further-
more, assume that x∗

1 < . . . < x∗
n and y∗

1 < . . . < y∗
m. We now define the Consec-

utive Co-Clustering∞ instance (A, k + 1, � + 1, c) as follows: The matrix A ∈
{0, 1, 2}m×n has columns labeled with x∗

1, . . . , x
∗
n and rows labeled with y∗

1 , . . . , y
∗
m.

For (x, y) ∈ X × Y , the entry axy is defined as 0 if (x, y) ∈ B, 2 if (x, y) ∈ W , and
otherwise 1. The cost is set to c := 1. Clearly, this instance can be constructed in
polynomial time. We prove correctness in a full version of the paper. ��

Note that even though Consecutive Co-Clustering∞ is NP-hard, there
still is some difference in its computational complexity compared to the general
version. In contrast to Co-Clustering∞, the consecutive version is polynomial-
time solvable for constants k and � by trying out all O(mkn�) consecutive par-
titions of the rows and columns.

4 Tractability Results

In Section 3, we showed that Co-Clustering∞ is NP-hard for k = � = 3 and
also for k = 2 in case of unbounded � and |Σ|. In contrast to these hardness
results, we now investigate which parameter combinations yield tractable cases.
It turns out that the problem is polynomial-time solvable for k = � = 2 and
for k = 1. We can even solve the case k = 2 and � ≥ 3 for |Σ| = 3 in polynomial
time by showing that this case is in fact equivalent to the case k = � = 2.
Note that these tractability results nicely complement the hardness results from
Section 3. We further show fixed-parameter tractability for the parameters size
of the alphabet |Σ| and the number of column blocks �.

We start by describing a reduction of Co-Clustering∞ to CNF-SAT (the
satisfiability problem for boolean formulas in conjunctive normal form). Later on,
it will be used in some special cases (see Theorem 5 and Theorem 7) because
there the corresponding formula—or an equivalent formula—only consists of
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clauses containing two literals, thus being a polynomial-time solvable 2-Sat-
instance.

4.1 Reduction to CNF-SAT Solving

To start with, we introduce the concept of cluster boundaries, which are basically
lower and upper bounds for the values in a cluster of a co-clustering. Formally,
given two integers k, �, an alphabet Σ, and a cost c, we define a cluster boundary
to be a matrix U = (urs) ∈ Σk×�. We say that a (k, �)-co-clustering of A satisfies
a cluster boundary U if Ars ⊆ [urs, urs+c] for all (r, s) ∈ [k]× [�]. It can easily be
seen that a given (k, �)-co-clustering has cost at most c if and only if it satisfies
at least one cluster boundary (urs), namely, the one with urs = min Ars.

The following “subtask” of Co-Clustering∞ can be reduced to a certain
CNF-SAT instance: Given a cluster boundary U and a Co-Clustering∞-
instance I, find a co-clustering for I that satisfies U . The reduction provided by
the following lemma can be used to obtain exact Co-Clustering∞ solutions
with the help of SAT solvers and we use it in our subsequent algorithms.

Lemma 1. Given a Co-Clustering∞-instance (A, k, �, c) and a cluster bound-
ary U , one can construct in polynomial time a CNF-SAT-instance φ with at
most max{k, �} variables per clause such that φ is satisfiable if and only if there
is a (k, �)-co-clustering of A which satisfies U .

Proof. Given an instance (A, k, l, c) of Co-Clustering∞ and a cluster bound-
ary U = (urs) ∈ Σk×�, we define the following boolean variables: For each
(i, r) ∈ [m] × [k], the variable xi,r represents the expression “row i could be put
into row block Ir”. Similarly, for each (j, s) ∈ [n]×[�], the variable yj,s represents
that “column j could be put into column block Js”.

We now define a boolean CNF formula φA,U containing the following clauses:
A clause Ri := xi,1∨xi,2∨ . . .∨xi,k for each row i ∈ [m] and a clause Cj := yj,1∨
yj,2∨. . .∨yj,� for each column j ∈ [n]. Additionally, for each (i, j) ∈ [m]×[n] and
each (r, s) ∈ [k]×[�] such that element aij does not fit into the cluster boundary at
coordinate (r, s), that is, aij /∈ [urs, urs+c], there is a clause Bijrs := ¬xi,r∨¬yj,s.
Note that the clauses Ri and Cj ensure that row i and column j are put into
some row and some column block respectively. The clause Bijrs expresses that
it is impossible to have both row i in block Ir and column j in block Js if aij

does not satisfy urs ≤ aij ≤ urs + c. Clearly, φA,U is satisfiable if and only if
there exists a (k, �)-co-clustering of A satisfying the cluster boundary U . Note
that φA,U consists of O(km + �n) variables and O(mnk�) clauses. ��

4.2 Polynomial-Time Solvability

We first present a fairly simple algorithm for (1, ∗)-Co-Clustering∞, that is,
the variant where all rows belong to one row block.

Theorem 4. (1, ∗)-Co-Clustering∞ is solvable in O(n(m + log n)) time.
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Algorithm 1. Algorithm for (1, ∗)-Co-Clustering∞
Input: A ∈ R

m×n, � ≥ 1, c ≥ 0
Output: A partition of [n] into at most � blocks yielding a cost of at most c, or

no if no such partition exists.
1 for j ← 1 to n do
2 αj ← min{aij | 1 ≤ i ≤ m};
3 βj ← max{aij | 1 ≤ i ≤ m};
4 N ← [n];
5 for s ← 1 to � do
6 Let xs ∈ N be the index such that αxs is minimal;
7 Js ← {j ∈ N | βj − αxs ≤ c};
8 N ← N \ Js;
9 if N = ∅ then

10 return (J1, . . . , Js);

11 return no ;

Proof. We show that Algorithm 1 solves (1, ∗)-Co-Clustering∞. In fact, it
even computes the minimum � such that A has a (1, �)-co-clustering of cost c.

If Algorithm 1 returns (J1, . . . , J�′) at line 10, then this is a column parti-
tion into �′ ≤ � blocks satisfying the cost constraint. First, it is a partition by
construction: The sets Js are successively removed from N until it is empty.
Now, let s ∈ [�′]. Then, for all j ∈ Js, it holds αj ≥ αxs

(by definition of xs)
and βj ≤ αxs

+ c (by definition of Js). Thus, A1s ⊆ [αxs
, αxs

+ c] holds for
all s ∈ [�′], which yields cost({[m]}, {J1, . . . , J�′}) ≤ c. Otherwise, if Algorithm 1
returns no at Line 11, then it has computed indices xs, s ∈ [�], and there exists
at least one element x�+1 in N when the algorithm terminates. Consider any
1 ≤ s < s′ ≤ � + 1. By construction, xs′ /∈ Js. Therefore, βxs′ > αxs

+ c holds,
and columns xs and xs′ contain elements with distance more than c. Thus, in
any co-clustering with cost at most c, columns x1, . . . , x�+1 must be in different
blocks, which is impossible by the pigeon-hole principle. Hence, this is indeed a
no-instance.

The time complexity is seen as follows. The first loop examines all elements
of the matrix in O(mn) time. The second loop can be performed in O(n) time
if the αj and the βj are sorted beforehand, requiring O(n log n) time. Overall,
the running time is in O(n(m + log n)). ��
From now on, we focus on the k = 2 case, that is, we need to partition the rows
into two blocks. We first consider the simplest case, where also � = 2.

Theorem 5. (2, 2)-Co-Clustering∞ is solvable in O(|Σ|2mn) time.

Proof. We use the reduction to CNF-SAT provided by Lemma 1. First, note
that a cluster boundary U ∈ Σ2×2 can only be satisfied if it contains the ele-
ments min Σ and min{a ∈ Σ | a ≥ max Σ − c}. The algorithm enumerates all
O(|Σ|2) of these cluster boundaries. For a fixed U , we construct the boolean
formula φA,U . Observe that this formula is in 2-CNF form: The formula consists



308 L. Bulteau et al.

of k-clauses, �-clauses, and 2-clauses, and we have k = � = 2. Hence, we can
determine whether it is satisfiable in linear time [2] (note that the size of the
formula is in O(mn)). Overall, the input is a yes-instance if and only if φA,U is
satisfiable for some cluster boundary U . ��

Finally, we claim that it is possible to extend the above result to any number
of column blocks for size-three alphabets (refer to the full version for a proof).

Theorem 6. (2, ∗)-Co-Clustering∞ is polynomial-time solvable for |Σ| = 3.

4.3 Fixed-Parameter Tractability

We develop an algorithm solving (2, ∗)-Co-Clustering∞ for c = 1 based on our
reduction to CNF-SAT (see Lemma 1). The main idea is, given matrix A and
cluster boundary U , to simplify the boolean formula φA,U into a 2-Sat formula
which can be solved efficiently. This is made possible by the constraint on the
cost, which imposes a very specific structure on the cluster boundary. This app-
roach requires to enumerate all (exponentially many) possible cluster boundaries,
but yields fixed-parameter tractability for the combined parameter (�, |Σ|).
Theorem 7. (2, ∗)-Co-Clustering∞ is O(|Σ|3�n2m2)-time solvable for c = 1.

A subresult in the proof of Theorem 7 (deferred to a full version) is the following
lemma, which we use to solve the case where the number 2m of possible row
partitions is less than |Σ|�.
Lemma 2. For a fixed row partition I, one can solve Co-Clustering∞ in
O(|Σ|k�mn�) time. Moreover, Co-Clustering∞ is fixed-parameter tractable
with respect to the combined parameter (m, k, �, c).

Proof. Given a fixed row partition I, the algorithm enumerates all |Σ|k� different
cluster boundaries U = (urs). We say that a given column j fits in column
block Js if, for each r ∈ [k] and i ∈ Ir, we have aij ∈ [urs, urs + c] (this can be
decided in O(m) time for any pair (j, s)). The input is a yes-instance if and only
if for some cluster boundary U , every column fits in at least one column block.

Fixed-parameter tractability with respect to (m, k, �, c) is obtained from two
simple further observations. First, all possible row partitions can be enumerated
in O(km) time. Second, since each of the k� clusters contains at most c + 1
different values, the alphabet size |Σ| for yes-instances is upper-bounded by (c+
1)k�. ��

Finally, we obtain the following simple corollary.

Corollary 2. (2, ∗)-Co-Clustering∞ with c = 1 is fixed-parameter tractable
with respect to parameter |Σ| and with respect to parameter �.

Proof. Theorem 7 presents an FPT-algorithm with respect to the combined
parameter |Σ| and �. For (2, ∗)-Co-Clustering∞ with c = 1, both parame-
ters are equivalent. Indeed, � < |Σ|2 (otherwise there are two column blocks
with identical cluster boundaries, which could be merged) and |Σ| < 2(c +
1)� = 4� (each column block may contain two intervals, each covering at most
c + 1 elements). ��
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5 Conclusion

Contrasting previous theoretical work on approximation algorithms [1,9], we
started to closely investigate the time complexity of exactly solving the NP-
hard Co-Clustering∞ problem, contributing a detailed view on its computa-
tional complexity landscape. Refer to Table 1 for an overview on most of our
results. From a practical perspective, both our polynomial-time algorithms and
our reduction to CNF-SAT solving—notably, exact solving approaches for Co-
ClusteringL so far mostly rely on integer linear programming—may prove
useful.

Several open questions derive from our work. Perhaps the most pressing
open question is whether the most basic three-dimensional case—(2,2,2)-Co-
Clustering∞ on three-dimensional input matrices—is polynomial-time
solvable or NP-hard. Indeed, other than the techniques for deriving approxi-
mation algorithms [1,9] our exact methods do not seem to generalize to higher
dimensions.

Acknowledgments. We thank Stéphane Vialette for stimulating discussions.
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Abstract. Wepresent tight bounds on the spanning ratio of a large family
of ordered θ-graphs. A θ-graph partitions the plane around each vertex into
m disjoint cones, each having aperture θ = 2π/m. An ordered θ-graph is
constructed by inserting the vertices one by one and connecting each vertex
to the closest previously-inserted vertex in each cone.We show that for any
integer k ≥ 1, ordered θ-graphs with 4k + 4 cones have a tight spanning
ratio of 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We also show that for any
integer k ≥ 2, ordered θ-graphs with 4k + 2 cones have a tight spanning
ratio of 1/(1 − 2 sin(θ/2)). We provide lower bounds for ordered θ-graphs
with 4k+3 and 4k+5 cones. For ordered θ-graphs with 4k+2 and 4k+5
cones these lower bounds are strictly greater than the worst case spanning
ratios of their unordered counterparts. These are the first results showing
that ordered θ-graphs haveworse spanning ratios than unordered θ-graphs.
Finally, we show that, unlike their unordered counterparts, the ordered θ-
graphs with 4, 5, and 6 cones are not spanners.

1 Introduction

In a weighted graph G, let the distance δG(u, v) between two vertices u and v
be the length of the shortest path between u and v in G. A subgraph H of G is
a t-spanner of G if for all pairs of vertices u and v, δH(u, v) ≤ t · δG(u, v), t ≥ 1.
The spanning ratio of H is the smallest t for which H is a t-spanner. The graph
G is referred to as the underlying graph [13]. We consider the situation where the
underlying graph G is a straightline embedding of the complete graph on a set
of n points in the plane. The weight of each edge uv is the Euclidean distance
|uv| between u and v. A spanner of such a graph is called a geometric spanner.
We look at a specific type of geometric spanner: θ-graphs.

Introduced independently by Clarkson [10] and Keil [12], θ-graphs are con-
structed as follows: for each vertex u, we partition the plane into m disjoint cones
with apex u, each having aperture θ = 2π/m. The θ-graph is constructed by, for
each cone with apex u, connecting u to the vertex v whose projection along the
bisector of the cone is closest. When m cones are used, we denote the resulting
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θ-graph as θm. Ruppert and Seidel [14] showed that the spanning ratio of these
graphs is at most 1/(1−2 sin(θ/2)), when θ < π/3, i.e. there are at least 7 cones.

In this paper, we look at the ordered variant of θ-graphs. The ordered θ-graph
is constructed by inserting the vertices one by one and connecting each vertex
to the closest previously-inserted vertex in each cone (a more precise definition
follows in the next section). These graphs were introduced by Bose et al. [6] in
order to construct spanners with nice additional properties, such as logarithmic
maximum degree and logarithmic diameter. The current upper bound on the
spanning ratio of these graphs is 1/(1 − 2 sin(θ/2)), when θ < π/3, i.e. there are
at least 7 cones.

Recently, Bonichon et al. [3] showed that the unordered θ6-graph has span-
ning ratio 2. This was done by dividing the cones into two sets, positive and
negative cones, such that each positive cone is adjacent to two negative cones
and vice versa. It was shown that when edges are added only in the positive
cones, in which case the graph is called the half-θ6-graph, the resulting graph is
equivalent to the TD-Delaunay triangulation (the Delaunay triangulation where
the empty region is an equilateral triangle) whose spanning ratio is 2, as shown
by Chew [9]. An alternative, inductive proof of the spanning ratio of the half-
θ6-graph was presented by Bose et al. [5]. This inductive proof was generalized
to show that the θ(4k+2)-graph has spanning ratio 1 + 2 sin(θ/2), where k is an
integer and at least 1. This spanning ratio is tight, i.e. there is a matching lower
bound. Recently, the upper bounds on the spanning ratio of the θ(4k+4)-graph
was improved to 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)) and those of the θ(4k+3)-
graph and the θ(4k+5)-graph were improved to cos(θ/4)/(cos(θ/2)−sin(3θ/4)) [8].

By applying techniques similar to the ones used to improve the spanning ratio
of unordered θ-graphs, we improve the spanning ratio of the ordered θ(4k+4)-
graph to 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)) and show that this spanning ratio
is tight. Unfortunately, this inductive proof cannot be applied to ordered θ-
graphs with an odd number of cones, as the triangle we apply induction on can

Table 1. An overview of upper and lower bounds on the spanning ratio of ordered
θ-graphs

Upper Bound Lower Bound

θ3, θ4, θ5, and θ6-graph - Not spanners.

θ(4k+2)-graph
1

1−2 sin( θ
2 )

, for k ≥ 2 [6] 1

1−2 sin( θ
2 )

θ(4k+3)-graph
1

1−2 sin( θ
2 )

[6] cos( θ
4 )+sin θ

cos( 3θ
4 )

θ(4k+4)-graph 1 +
2 sin( θ

2 )
cos( θ

2 )−sin( θ
2 )

1 +
2 sin( θ

2 )
cos( θ

2 )−sin( θ
2 )

θ(4k+5)-graph
1

1−2 sin( θ
2 )

[6] 1 +
2 sin( θ

2 )·cos( θ
4 )

cos( θ
2 )−sin( 3θ

4 )
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become larger, depending on the order in which the vertices are inserted. We
also show that the ordered θ(4k+2)-graph (k ≥ 2) has a tight spanning ratio of
1/(1 − 2 sin(θ/2)).

Next, we provide lower bounds for ordered θ-graphs with 4k + 3 and 4k + 5
cones (see Table 1). For ordered θ-graphs with 4k+2 and 4k+5 cones these lower
bounds are strictly greater than the worst case spanning ratios of their unordered
counterparts. Finally, we show that ordered θ-graphs with 3, 4, 5, and 6 cones
are not spanners. For the ordered θ3-graph this is not surprising, as its unordered
counterpart is connected [1], but not a spanner [11]. For the ordered θ4, θ5, and
θ6-graph, however, this is a bit surprising since their unordered counterparts have
recently been shown to be spanners [2,3,7]. In other words, we show, for the first
time, that obtaining the nice additional properties of the ordered θ-graphs comes
at a price.

2 Preliminaries

We define a cone C to be a region in the plane between two rays originating from
a vertex referred to as the apex of the cone. When constructing an (ordered) θm-
graph, for each vertex u consider the rays originating from u with the angle
between consecutive rays being θ = 2π/m. Each pair of consecutive rays defines
a cone. The cones are oriented such that the bisector of some cone coincides with
the vertical halfline through u that lies above u. Let this cone be C0 of u and
number the cones in clockwise order around u (see Figure 1). The cones around
the other vertices have the same orientation as the ones around u. We write Cu

i

to indicate the i-th cone of a vertex u. For ease of exposition, we only consider
point sets in general position: no two points lie on a line parallel to one of the
rays that define the cones and no two vertices lie on a line perpendicular to the
bisector of a cone.

C0

C1C5

C4

C3

C2

u

Fig. 1. The cones having apex u in the
(ordered) θ6-graph

u

v

Fig. 2. Three previously-inserted ver-
tices are projected onto the bisector of a
cone of u. Vertex v is the closest vertex.

Given some ordering of the vertices, the ordered θm-graph is constructed
as follows: we insert the vertices in the order given by the ordering. When a
vertex u is inserted, for each cone Ci of u, we add an edge from u to the closest
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previously-inserted vertex in that cone, where distance is measured along the
bisector of the cone (see Figure 2). Note that our general position assumption
implies that each vertex adds at most one edge per cone to the graph. As the
ordered θ-graph depends on the ordering of the vertices, different orderings can
produce different θ-graphs.

w

u

m

α

Fig. 3. The canonical triangle Tuw

Given a vertex w in cone Ci of vertex u,
we define the canonical triangle Tuw as the
triangle defined by the borders of Ci and the
line through w perpendicular to the bisector
of Ci. We use m to denote the midpoint of
the side of Tuw opposite u and α to denote
the smaller unsigned angle between uw and
um (see Figure 3). Note that for any pair of
vertices u and w, there exist two canonical
triangles: Tuw and Twu.

Before we bound the spanning ratios of
ordered θ-graphs, we first introduce a few use-
ful geometric lemmas. Note that Lemmas 1
and 2 are proven in [8]. We use ∠xyz to denote
the smaller angle between line segments xy
and yz.

Lemma 1. Let u, v and w be three vertices in the θ(4k+x)-graph, where x ∈
{2, 3, 4, 5}, such that w ∈ Cu

0 and v ∈ Tuw, to the left of w. Let a be the
intersection of the side of Tuw opposite to u with the left boundary of Cv

0 . Let
Cv

i denote the cone of v that contains w and let c and d be the upper and
lower corner of Tvw. If 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, then
max {|vc| + |cw|, |vd| + |dw|} ≤ |va| + |aw| and max {|cw|, |dw|} ≤ |aw|.

u

wa

v

c

dCv
i

Fig. 4. The situation where we
apply Lemma 1

w

v

z

a

y

γ

β

Fig. 5. The situation where we
apply Lemma 2
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Lemma 2. Let u, v and w be three vertices in the θ(4k+x)-graph, such that
w ∈ Cu

0 , v ∈ Tuw to the left of w, and w �∈ Cv
0 . Let a be the intersection of the

side of Tuw opposite to u with the left boundary of Cv
0 . Let c and d be the corners

of Tvw opposite to v. Let β = ∠awv and let γ be the unsigned angle between vw
and the bisector of Tvw. Let c be a positive constant. If c ≥ cos γ−sinβ

cos( θ
2 −β)−sin( θ

2+γ) ,

then max {|vc| + c · |cw|, |vd| + c · |dw|} ≤ |va| + c · |aw|.

3 The Ordered θ(4k+4)-Graph

In this section, we give tight bounds on the spanning ratio of the ordered θ(4k+4)-
graph, for any integer k ≥ 1. We start by improving the upper bounds.

Theorem 1. Let u and w be two vertices in the plane such that w was inserted
before u. Let m be the midpoint of the side of Tuw opposite u and let α be the
unsigned angle between uw and um. There exists a path connecting u and w in
the ordered θ(4k+4)-graph of length at most

(
cos α

cos
(

θ
2

) + c ·
(

cos α · tan
(

θ

2

)

+ sinα

))

· |uw|,

where c equals 1/(cos(θ/2) − sin(θ/2)).

Proof. We assume without loss of generality that w ∈ Cu
0 . We prove the theorem

by induction on the rank, when ordered by area, of the canonical triangles Txy

for all pairs of vertices where y was inserted before x. Let a and b be the upper
left and right corners of Tuw. Our inductive hypothesis is δ(u,w) ≤ max{|ua| +
c · |aw|, |ub| + c · |bw|}, where δ(u,w) denotes the length of the shortest path
from u to w in the ordered θ(4k+4)-graph and c equals 1/(cos(θ/2) − sin(θ/2)).

We first show that this induction hypothesis implies the theorem. Basic
trigonometry gives us the following equalities: |um| = |uw| · cos α, |mw| =
|uw| · sin α, |am| = |bm| = |uw| · cos α · tan(θ/2), and |ua| = |ub| = |uw| ·
cos α/ cos(θ/2). Thus the induction hypothesis gives that δ(u,w) is at most
|uw| · (cos α/ cos(θ/2) + c · (cos α · tan(θ/2) + sinα)).

Base Case: Tuw has rank 1. Since this triangle is a smallest triangle where
w was inserted before u, it is empty: if it is not empty, let x be a vertex in Tuw.
Since Tux and Txu are both smaller than Tuw, the existence of x contradicts
that Tuw is the smallest triangle where w was inserted before u. Since Tuw is
empty, w is the closest vertex to u in Cu

0 . Hence, since w was inserted before
u, u adds an edge to w when it is inserted. Therefore, the edge uw is part of
the ordered θ(4k+4)-graph, and δ(u,w) = |uw|. From the triangle inequality and
the fact that c ≥ 1, we have |uw| ≤ max{|ua| + c · |aw|, |ub| + c · |bw|}, so the
induction hypothesis holds.

Induction Step: We assume that the induction hypothesis holds for all
pairs of vertices with canonical triangles of rank up to j. Let Tuw be a canonical
triangle of rank j + 1.
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If uw is an edge in the ordered θ(4k+4)-graph, the induction hypothesis follows
by the same argument as in the base case. If there is no edge between u and w,
let v be the vertex in Tuw that u connected to when it was inserted, let a′ and
b′ be the upper left and right corners of Tuv, and let a′′ be the intersection of
the side of Tuw opposite u and the left boundary of Cv

0 (see Figure 6).
We need to perform case distinction on whether w was inserted before or

after v, to determine whether we can apply induction on Tvw or Twv. Let c
and d be the left and right corners of Tvw and let c′ and d′ be the left and
right corner of Twv. We note that since the ordered θ(4k+4)-graph has an even
number of cones, vcwc′ and vdwd′ form two parallelograms. Thus, we have that
|vc|+c · |cw| = |wc′|+c · |c′v| and |vd|+c · |dw| = |wd′|+c · |d′v|. Hence, we can
assume without loss of generality that the canonical triangle we need to look at
is Tvw.

Without loss of generality, we assume that v lies to the left of or has the
same x-coordinate as w. Since we need to show that δ(u,w) ≤ max{|ua| + c ·
|aw|, |ub|+ c · |bw|}, it suffices to show that δ(u,w) ≤ |ua|+ c · |aw|. We perform
a case analysis based on the cone of v that contains w: (a) w ∈ Cv

0 , (b) w ∈ Cv
i

where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, (c) w ∈ Cv
k and |cw| > |dw|,

(d) w ∈ Cv
k+1. To prove that δ(u,w) ≤ |ua| + c · |aw|, it suffices to show that

δ(v, w) ≤ |va′′| + c · |a′′w|, as |uv| ≤ |ua′| + c · |a′v| and v, a′′, a, and a′ form a
parallelogram (see Figure 6).

(a) (b) (c)

w

u

a b

va′ b′

w

u

a b

va′

c

d

a′′

u

a b

a′ d

c

a′′ w

v

(d)

u

a b

a′

d

ca′′ w

v

a′′

Fig. 6. The four cases based on the cone of v that contains w

Case (a): Vertex w lies in Cv
0 (see Figure 6a). Since Tvw has smaller area

than Tuw, we apply the inductive hypothesis to Tvw. Since v lies to the left of
or has the same x-coordinate as w, we have δ(v, w) ≤ |va′′| + c · |a′′w|.

Case (b): Vertex w lies in Cv
i , where 1 ≤ i ≤ k − 1, or i = k and

|cw| ≤ |dw|. Since Tvw is smaller than Tuw, by induction we have δ(v, w) ≤
max{|vc| + c · |cw|, |vd| + c · |dw|} (see Figure 6b). Since w ∈ Cv

i where 1 ≤
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i ≤ k − 1, or i = k and |cw| ≤ |dw|, we can apply Lemma 1. Note that
point a in Lemma 1 corresponds to point a′′ in this proof. Hence, we get that
max {|vc| + |cw|, |vd| + |dw|} ≤ |va′′|+|a′′w| and max {|cw|, |dw|} ≤ |a′′w|. Since
c ≥ 1, this implies that max {|vc| + c · |cw|, |vd| + c · |dw|} ≤ |va′′| + c · |a′′w|.

Case (c): Vertex w lies in Cv
k and |cw| > |dw|. Since Tvw is smaller than Tuw

and |cw| > |dw|, the induction hypothesis for Tvw gives δ(v, w) ≤ |vc|+c·|cw| (see
Figure 6c). Let β be ∠a′′wv and let γ be the angle between vw and the bisector
of Tvw. We note that γ = θ − β. Hence Lemma 2 gives that |vc| + c · |cw| ≤
|va′′|+c · |a′′w| holds when c ≥ (cos(θ−β)−sin β)/(cos(θ/2−β)−sin(3θ/2−β)).
As this function is decreasing in β for θ/2 ≤ β ≤ θ, it is maximized when β equals
θ/2. Hence c needs to be at least (cos(θ/2) − sin(θ/2))/(1 − sin θ), which can be
rewritten to 1/(cos(θ/2) − sin(θ/2)).

Case (d): Vertex w lies in Cv
k+1 (see Figure 6d). Since Tvw is smaller than

Tuw, we can apply induction on it. Since w lies above the bisector of Tvw, the
induction hypothesis for Tvw gives δ(v, w) ≤ |vd| + c · |dw|. Let β be ∠a′′wv
and let γ be the angle between vw and the bisector of Tvw. We note that γ = β.
Hence Lemma 2 gives that |vd|+c·|dw| ≤ |va′′|+c·|a′′w| holds when c ≥ (cos β−
sin β)/(cos(θ/2−β)−sin(θ/2+β)), which is equal to 1/(cos(θ/2)−sin(θ/2)). ��

Since cos α/ cos(θ/2)+(cos α·tan(θ/2)+sin α)/(cos(θ/2)−sin(θ/2)) is increas-
ing for α ∈ [0, θ/2], for θ ≤ π/4, it is maximized when α = θ/2, and we obtain
the following corollary:

Corollary 1. The ordered θ(4k+4)-graph (k ≥ 1) is a
(
1 +

2 sin( θ
2 )

cos( θ
2 )−sin( θ

2 )

)
-spanner.

Next, we provide a matching lower bound.

Lemma 3. The ordered θ(4k+4)-graph (k ≥ 1) has spanning ratio at least 1 +
2 sin( θ

2 )
cos( θ

2 )−sin( θ
2 )
.

Proof. To prove the lower bound, we first construct a point set, after which we
specify the order in which they are inserted into the graph. We place a vertex
u and we place a vertex w arbitrarily close to the right boundary of Cu

0 . Next,
we place a vertex v1 arbitrarily close to the left corner of Tuw, followed by a
vertex v2 arbitrarily close to the upper corner of Twv1 . Finally, we repeat the
following two steps an arbitrary number of times: we place a vertex vi arbitrarily
close to the left corner of Tvi−2vi−1 , followed by a vertex vi+1 arbitrarily close to
the upper corner of Tvi−1vi

. Let vn be the last vertex placed in this fashion. We
insert the vertices in the following order: vn, vn−1, ..., v2, v1, w, u. The resulting
ordered θ(4k+4)-graph consists of a single path between u and w and is shown in
Figure 7. Note that when a vertex v is inserted, all previously-inserted vertices
lie in the same cone of v. This ensures that no shortcuts are introduced when
inserting v.

We note that edges uv1 and edges of the form vivi+2 (for odd i ≥ 1) lie
on a line. We also note that edges wv2 and edges of the form vivi+2 (for even
i ≥ 2) lie on a line. Let x be the intersection of these two lines and let β be



320 P. Bose et al.

u

w
v1

v2v3

v4

Fig. 7. A lower bound for the ordered
θ(4k+4)-graph

u

wv1 l1

v2
r1

v3

l2

r2

Fig. 8. A lower bound for the ordered
θ(4k+2)-graph

∠xwv1. Hence, as the number of vertices approaches infinity, the total length of
the path approaches |ux|+ |xw|. Using that ∠uxw = (π − θ)/2−β, we compute
the following edge lengths: |ux| = |uw| · sin ((π − θ)/2 + β) / sin ((π − θ)/2 − β)
and |xw| = |uw| · sin θ/ sin ((π − θ)/2 − β). Since for the ordered θ(4k+4)-graph
β = θ/2, the sum of these equalities is 1/(cos θ + tan θ), which can be rewritten
to 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). ��
Theorem 2. The ordered θ(4k+4)-graph (k ≥ 1) has a tight spanning ratio of

1 +
2 sin( θ

2 )
cos( θ

2 )−sin( θ
2 )
.

4 Lower Bounds

Next, we provide lower bounds for the ordered θ(4k+2)-graph, the ordered θ(4k+3)-
graph, and the ordered θ(4k+5)-graph. For the ordered θ(4k+2)-graph, this lower
bound implies that the current upper bound on the spanning ratio is tight. For
the ordered θ(4k+2)-graph and the ordered θ(4k+5)-graph, these lower bounds
are strictly larger than the upper bound on the worst case spanning ratio of its
unordered counterpart.

Lemma 4. The ordered θ(4k+2)-graph (k ≥ 2) has spanning ratio at least
1

1−2 sin( θ
2 )
.

Proof. To prove the lower bound, we first construct a point set, after which we
specify the order in which they are inserted into the graph. We place a vertex



The Price of Order 321

u, we place a vertex w arbitrarily close to the right boundary of Cu
0 , and we

place a vertex v1 arbitrarily close to the left corner of Tuw. Next, we place the
following configuration an arbitrary number of times: place a vertex l1 in Tv1w

arbitrarily close to v1, place a vertex v2 in the right corner of Twv1 , place a vertex
l2 close to the right boundary of Tv1v2 arbitrarily close to v1, place a vertex r1
in the intersection of Tv2l2 and Cl2

0 arbitrarily close to v2, place a vertex v3 in
the left corner of the intersection of Tl1r1 and Tl2r1 , and place a vertex r2 in the
intersection of Tv2v3 and Tv3v2 such that v3r2 is parallel to v1w. Since v3r2 is
parallel to v1w, we can repeat placing this configuration, constructing a staircase
of vertices (see Figure 8). When we place the i-th configuration, we place vertices
l2i−1, v2i, l2i, r2i−1, v2i+1, and r2i. Let k be the total number of configurations.

We insert these vertices into the ordered θ(4k+2)-graph in the following order:
starting from the k-th configuration down to the first one, insert the vertices of
the i-th configuration in the order r2i, r2i−1, v2i+1, l2i, l2i−1, v2i. Finally, we
insert w, v1, and u. The resulting ordered θ(4k+2)-graph is essentially a path
between u and w and is shown in Figure 8.

We note that edges uv1 and edges of the form vivi+2 (for odd i ≥ 1) lie
on a line. We also note that edges wv2 and edges of the form vivi+2 (for even
i ≥ 2) lie on a line. Let x be the intersection of these two lines. Hence, as the
number of vertices approaches infinity, the total length of the path approaches
|ux| + |xw|. Using that ∠xuw = θ, ∠xwu = (π + θ)/2, ∠uxw = (π − 3θ)/2,
and the law of sines, we compute the following edge lengths: |ux| = |uw| ·
sin ((π + θ)/2) / sin ((π − 3θ)/2) and |xw| = |uw| · sin θ/ sin ((π − 3θ)/2). Hence,
the spanning ratio of the ordered θ(4k+2)-graph is at least (sin((π + θ)/2) +
sin θ)/ sin((π − 3θ)/2), which can be rewritten to 1/(1 − 2 sin(θ/2)). ��

Since it is known that the θ(4k+2)-graph has a spanning ratio of at most
1/(1 − 2 sin(θ/2)) [6], this lower bound implies the following theorem.

Theorem 3. The ordered θ(4k+2)-graph (k ≥ 2) has a tight spanning ratio of
1

1−2 sin( θ
2 )
.

We also note that since the worst case spanning ratio of the unordered θ(4k+2)-
graph is 1+2 sin(θ/2) [4], this shows that the ordered θ(4k+2)-graph has a worse
worst case spanning ratio.

Lemma 5. The ordered θ(4k+3)-graph (k ≥ 1) has spanning ratio at least
cos( θ

4 )+sin θ

cos( 3θ
4 ) .

Proof. The proof is analogous to the proof of Lemma 3, where β = θ/4, and shows
that the spanning ratio of the ordered θ(4k+3)-graph is at least (sin(π/2 − θ/4) +
sin θ)/ sin(π/2 − 3θ/4), which can be rewritten to (cos(θ/4) + sin θ)/ cos(3θ/4).

��
Lemma 6. The ordered θ(4k+5)-graph (k ≥ 1) has spanning ratio at least 1 +
2 sin( θ

2 )·cos( θ
4 )

cos( θ
2 )−sin( 3θ

4 )
.
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Proof. The proof is analogous to the proof of Lemma 3, where β = 3θ/4, and
shows that the spanning ratio of the ordered θ(4k+5)-graph is at least (sin(π/2 +
θ/4)+sin θ)/ sin(π/2−5θ/4), which can be rewritten to 1+2 sin(θ/2) ·cos(θ/4)/
(cos(θ/2) − sin(3θ/4)). ��

We note that this lower bound on the spanning ratio of the ordered θ(4k+5)-
graph is the same as the current upper bound on θ-routing on the unordered
θ(4k+5)-graph, which is strictly greater than the current upper bound on the
spanning ratio of the unordered θ(4k+5)-graph.

5 Ordered Theta-Graphs with Few Cones

In this section we show that ordered θ-graphs with 3, 4, 5, or 6 cones are not
spanners. For the ordered θ4, θ5, and θ6-graph, this is surprising, since their
unordered counterparts were recently show to be spanners [2,3,7].

For each of these ordered θ-graphs, we build a tower similar to the ones
from the previous section. However, unlike the towers in the previous section,
the towers of ordered θ-graphs that have at most 6 cones do not converge, thus
giving rise to point sets where the spanning ratio depends on the size of these
sets.

Lemma 7. The ordered θ4-graph is not a spanner.

Proof. To prove that the ordered θ4-graph is not a spanner, we first construct a
point set, after which we specify the order in which they are inserted into the
graph. We place a vertex u and we place a vertex w slightly to the right of the
bisector of Cu

0 . Next, we place a vertex v1 arbitrarily close to the left corner of
Tuw and we place a vertex v2 arbitrarily close to the upper corner of Twv1 . Note
that the placement of v2 implies that it lies slightly to the right of the bisector of
Cv1

0 . Because of this, we can repeat placing pairs of vertices in a similar fashion,
constructing a staircase of vertices (see Figure 9). Let vn denote the last vertex
that was placed.

We insert these vertices into the ordered θ4-graph in the following order: vn,
vn−1, vn−2, vn−3, ..., v2, v1, w, u. The resulting ordered θ4-graph consists of a
single path between u and w and is shown in Figure 9.

When we take |uw| to be 1, all diagonal edges have length c =
√

2 and the
total length of the path is 1 + n · √

2. Hence, we have a graph whose spanning
ratio depends on the number of vertices, implying that there does not exist a
constant t, such that it is a t-spanner. ��
Lemma 8. The ordered θ3-graph is not a spanner.

Proof. The proof is analogous to the proof of Lemma 7, where c = cos(π/6) =√
3/2, and shows that the total length of the path is 1 + n · √

3/2. Hence, we
have a graph whose spanning ratio depends on the number of vertices, implying
that there does not exist a constant t, such that it is a t-spanner. ��
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Fig. 9. The ordered θ4-graph is not a
spanner
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v1 l1

v2r1v3 l2
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Fig. 10. The ordered θ6-graph is not a
spanner

Lemma 9. The ordered θ5-graph is not a spanner.

Proof. The proof is analogous to the proof of Lemma 7, where vertex w is placed
such that the angle between uw and the bisector of Cu

0 is θ/4 = π/10 and
c = cos(π/10)/ cos(π/5), and shows that the total length of the path is 1 + n ·
cos(π/10)/ cos(π/5). Hence, we have a graph whose spanning ratio depends on
the number of vertices, implying that there does not exist a constant t, such that
it is a t-spanner. We note that the placement of vi (for even i) implies that the
angle between vi−1vi and the bisector of C

vi−1
0 is θ/4. Hence, every pair vi−1, vi

of the staircase has the same relative configuration as the pair u,w. ��
Lemma 10. The ordered θ6-graph is not a spanner.

Proof. To prove that the ordered θ6-graph is not a spanner, we first construct a
point set, after which we specify the order in which they are inserted into the
graph. We place a vertex u, we place a vertex w arbitrarily close to the right
boundary of Cu

0 , and we place a vertex v1 arbitrarily close to the left corner of
Tuw. Next, we place the following configuration an arbitrary number of times:
place a vertex l1 in Tv1w arbitrarily close to v1, place a vertex v2 in the right
corner of Twl1 , place a vertex r1 in Tv2l1 arbitrarily close to v2, and place a
vertex v3 in the left corner of Tl1r1 . Note that the line segment v3r1 is parallel
to v1w. Because of this, we can repeat placing four vertices in a similar fashion,
constructing a staircase of vertices (see Figure 10). When we place the i-th
configuration, we place vertices li, v2i, ri, and v2i+1. Let k be the total number
of configurations we placed.

We insert these vertices into the ordered θ6-graph in the following order:
starting from the k-th configuration down to the first one, insert the vertices
of the i-th configuration in the order ri, v2i+1, li, v2i. Finally, we insert w, v1,
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and u. The resulting ordered θ6-graph is essentially a path between u and w and
is shown in Figure 10.

When we take |uw| to be 1, we note that every configuration of four vertices
extends the path length by 2. Hence, we have a graph whose spanning ratio
depends on the number of vertices, implying that there does not exist a constant
t, such that it is a t-spanner. ��

6 Conclusion

We have provided tight spanning ratios for ordered θ-graphs with 4k + 2 or
4k +4 cones. We also provided lower bounds for ordered θ-graphs with 4k +3 or
4k +5 cones. The lower bounds for ordered θ-graphs with 4k +2 or 4k +5 cones
are strictly greater than those of their unordered counterparts. Furthermore, we
showed that ordered θ-graphs with fewer than 7 cones are not spanners. For the
ordered θ4, θ5, and θ6-graph, this is surprising, since their unordered counterparts
were show to be spanners [2,3,7]. Thus we have shown for the first time that the
nice properties obtained when using ordered θ-graphs come at a price.

A number of open problems remain with respect to ordered θ-graphs. For
starters, though we provided lower bounds for ordered θ-graphs with 4k + 3 or
4k + 5 cones, they do not match the current upper bound of 1/(1 − 2 sin(θ/2)).
Hence, the obvious open problem is to find tight matching bounds for these
graphs.

However, more importantly, there is currently no routing algorithm known for
ordered θ-graphs. The θ-routing algorithm used for unordered θ-graphs cannot
be used, since it assumes that when there exist vertices in a cone of the current
vertex, there also exists an edge to a vertex in that cone. This assumption does
not need to hold for ordered θ-graphs, since whether or not an edge is present
depends on the order of insertion as well.
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Abstract. Given a set P of n uncertain points on the real line, each rep-
resented by its one-dimensional probability density function, we consider
the problem of building data structures on P to answer range queries of
the following three types: (1) top-1 query: find the point in P that lies in
I with the highest probability, (2) top-k query: given any integer k ≤ n
as part of the query, return the k points in P that lie in I with the
highest probabilities, and (3) threshold query: given any threshold τ as
part of the query, return all points of P that lie in I with probabilities
at least τ . We present data structures for these range queries with linear
or near linear space and efficient query time.

1 Introduction

In this paper, we study range queries on uncertain data. Let R be any real line
(e.g., the x-axis). In the (traditional) deterministic version of this problem, we
are given a set P of n deterministic points on R, and the goal is to build a data
structure (also called “index” in database) such that given a range, specified by
an interval I ⊆ R, one point (or all points) in I can be retrieved efficiently. It is
well known that a simple solution for this problem is a binary search tree over all
points which is of linear size and can support logarithmic (plus output size) query
time. However, in many applications, the location of each point may be uncertain
and the uncertainty is represented in the form of probability distributions [3,5,
11,19,20]. In particular, an uncertain point p is specified by its probability density
function (pdf) fp : R → R

+ ∪ {0}.
Let P be the set of n uncertain points in R (with pdfs specified as input).

Our goal is to build data structures to quickly answer range queries on P . In
this paper, we consider the following three types of range queries, each of which
involves a query interval I = [xl, xr]. For any point p ∈ P , we use Pr[p ∈ I] to
denote the probability that p is contained in I.
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x1 x2 x3 x4 x5 x6 x7 x

f(x)

Fig. 1. The pdf of an uncertain point

x1 x2 x3 x4 x5 x6 x7 x

F(x)

Fig. 2. The cdf of the uncertain point in Fig. 1

Top-1 query: Return the point p of P such that Pr[p ∈ I] is the largest.
Top-k query: Given any integer k, 1 ≤ k ≤ n, as part of the query, return the

k points p of P such that Pr[p ∈ I] are the largest.
Threshold query: Given a threshold τ , as part of the query, return all points

p of P such that Pr[p ∈ I] ≥ τ .

We assume fp is a step function, i.e., a histogram consisting of at most c
pieces for some integer c ≥ 1 (e.g., see Fig. 1). More specifically, fp(x) = yi for
xi−1 ≤ x < xi, i = 1, . . . , c, with x0 = −∞, xc = ∞, and y1 = yc = 0. We assume
c is a constant. The cumulative distribution function (cdf) Fp(x) =

∫ x

−∞ fp(t)dt
is a monotone piecewise-linear function consisting of c pieces (e.g., see Fig. 2).
Note that Fp(+∞) = 1, and for any interval I = [xl, xr] the probability Pr[p ∈ I]
is Fp(xr) − Fp(xl). As discussed in [2], the histogram model can be used to
approximate most pdfs with arbitrary precision in practice, including the discrete
pdf where each uncertain point can only appear in a finite number of locations.

We also study an important special case where the pdf fp is a uniform dis-
tribution function, i.e., f is associated with an interval [xl(p), xr(p)] such that
fp(x) = 1/(xr(p) − xl(p)) if x ∈ [xl(p), xr(p)] and fp(x) = 0 otherwise. Clearly,
the cdf Fp(x) = (x − xl(p))/(xr(p) − xl(p)) if x ∈ [xl(p), xr(p)], Fp(x) = 0 if
x ∈ (−∞, xl(p)), and Fp(x) = 1 if x ∈ (xr(p),+∞). Uniform distributions have
been used as a major representation of uncertainty in some previous work (e.g.,
[10,11,16]). We refer to this special case the uniform case and the more general
case where fp is a histogram distribution function as the histogram case.

Throughout the paper, we will always use I = [xl, xr] to denote the query
interval. The query interval I is unbounded if either xl = −∞ or xr = +∞. For
the threshold query, we will always use m to denote the output size of the query,
i.e., the number of points p of P such that Pr[p ∈ I] ≥ τ .

Range reporting on uncertain data has many applications [2,11,15,18–20], As
shown in [2], our problems are also useful even in some applications that involve
only deterministic data. For example, consider the movie rating system in IMDB
where each reviewer gives a rating from 1 to 10. A top-k query on I = [7,+∞)
would find “the k movies such that the percentages of the ratings they receive
at least 7 are the largest”; a threshold query on I = [7,+∞) and τ = 0.85 would
find “all the movies such that at least 85% of the ratings they receive are larger
than or equal to 7”. Note that in the above examples the interval I is unbounded,
and thus, it would also be interesting to have data structures particularly for
quickly answering queries with unbounded query intervals.
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1.1 Previous Work

The threshold query was first introduced by Cheng et al. [11]. Using R-trees, they
[11] gave heuristic algorithms for the histogram case, without any theoretical
performance guarantees. For the uniform case, if τ is fixed for any query, they
proposed a data structure of O(nτ−1) size with O(τ−1 log n + m) query time
[11]. These bounds depend on τ−1, which can be arbitrarily large.

Agarwal et al. [2] made a significant theoretical step on solving the thresh-
old queries for the histogram case. If τ is fixed, their approach can build an
O(n) size data structure in O(n log n) time, with O(m+log n) query time. If the
threshold τ is not fixed, they built an O(n log2 n) size data structure in expected
O(n log3 n) time that can answer each query in O(m + log3 n) time. Tao et al.
[19,20] considered the threshold queries in two and higher dimensions. They pro-
vided heuristic results and a query takes O(n) time in the worst case. Recently,
Abdullah et al. [1] extended the notion of geometric coresets to uncertain data
for range queries in order to obtain efficient approximate solutions.

As discussed in [2], our uncertain model is an analogue of the attribute-
level uncertainty model in the probabilistic database literature. Another popular
model is the tuple-level uncertainty model [5,12,21], where a tuple has fixed
attribute values but its existence is uncertain. The range query under the latter
model is much easier since a d-dimensional range searching over uncertain data
can be transformed to a (d+1)-dimensional range searching problem over certain
data [2,21]. In contrast, the problem under the former model is more challenging,
partly because it is unclear how to transform it to an instance on certain data.

1.2 Our Results

We say the complexity of a data structure is O(A,B) if it is of size O(B) and can
be built in O(A) time. For the histogram case, we build data structures on P
for answering queries with unbounded query intervals, and the complexities for
the three type of queries are all O(n log n, n). The top-1 query time is O(log n);
the top-k query time is O(k) if k = Ω(log n log log n) and O(log n + k log k)
otherwise; the threshold query time is O(log n + m). Note that we consider c as
a constant, otherwise all our results hold by replacing n by c · n.

For the uniform case, we also present data structures for bounded query inter-
vals. For the top-1 query, the complexity of our data structure is O(n log n, n),
with query time O(log n). For other two queries, the data structure complexities
are both O(n log2 n, n log n); the top-k query time is O(k) if k = Ω(log n log log n)
and O(log n + k log k) otherwise, and the threshold query time is O(log n + m).

For the histogram case with bounded query intervals, Agarwal et al. [2] built a
data structure of size O(n log2 n) in expected O(n log3 n) time, which can answer
each threshold query in O(m+log3 n) time. Our results for the threshold queries
are clearly better than the above solution for the uniform case and the histogram
case with unbounded query intervals. Further, our algorithms are deterministic.

In Section 2, we give some observations. We discuss the uniform case and
the histogram case in Sections 3 and 4, respectively. Due to the space limit, all
lemma proofs are omitted and can be found in the full paper.
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2 Preliminaries

For each uncertain point p, we call Pr[p ∈ I] the I-probability of p. Let F be the
set of the cdfs of all points of P . Since each cdf is an increasing piecewise linear
function, depending on the context, F may also refer to the set of the O(n) line
segments of all cdfs. Recall that I = [xl, xr] is the query interval.

Lemma 1. If xl = −∞, then for any uncertain point p, Pr[p ∈ I] = Fp(xr).

Let L be the vertical line with x-coordinate xr. Since each cdf Fp is a mono-
tonically increasing function, there is only one intersection between Fp and L. It
is easy to know that for each cdf Fp of F , the y-coordinate of the intersection of
Fp and L is Fp(xr), which is the I-probability of p by Lemma 1. For each point
in any cdf of F , we call its y-coordinate the height of the point.

In the uniform case, each cdf Fp has three segments: the leftmost one is a
horizontal segment with two endpoints (−∞, 0) and (xl(p), 0), the middle one,
whose slope is 1/(xr(p)−xl(p)), has two endpoints (xl(p), 0) and (xr(p), 1), and
the rightmost one is a horizontal segment with two endpoints (xr(p), 1) and
(+∞, 1). We transform each Fp to the line lp containing the middle segment of
Fp. Consider an unbounded interval I with xl = −∞. We can use lp to compute
Pr[p ∈ I] in the following way. Suppose the height of the intersection of L and
lp is y. Then, Pr[p ∈ I] = 0 if y < 0, Pr[p ∈ I] = y if 0 ≤ y ≤ 1, Pr[p ∈ I] = 1
if y > 1. Therefore, once we know lp ∩ L, we can obtain Pr[p ∈ I] in constant
time. Hence, we can use lp instead of Fp to determine the I-probability of p.
The advantage of using lp is that lines are usually easier to deal with than line
segments. Below, with a little abuse of notation, for the uniform case we simply
use Fp to denote the line lp for any p ∈ P and now F is a set of lines.

Fix the query interval I = [xl, xr]. For each i, 1 ≤ i ≤ n, denote by pi the
point of P whose I-probability is the i-th largest. Based on the above discussion,
we obtain Lemma 2, which holds for both the histogram and uniform cases.

Lemma 2. If xl = −∞, then for each 1 ≤ i ≤ n, pi is the point of P such that
L ∩ Fpi

is the i-th highest among the intersections of L and all cdfs of F .

Suppose xl = −∞. Based on Lemma 2, to answer the top-1 query on I, it is
sufficient to find the cdf of F whose intersection with L is the highest; to answer
the top-k query, it is sufficient to find the k cdfs of F whose intersections with
L are the highest; to answer the threshold query on I and τ , it is sufficient to
find the cdfs of F whose intersections with L have y-coordinates ≥ τ .

Half-Plane Range Reporting. As the half-plane range reporting data struc-
ture [9] is important for our later developments, we briefly discuss it in the dual
setting. Let S be a set of n lines. Given any point q, the goal is to report all lines
of S that are above q. An O(n)-size data structure can be built in O(n log n)
time that can answer each query in O(log n + m′) time, where m′ is the number
of lines above the query point q [9]. The data structure can be built as follows.

Let US be the upper envelope of S (e.g., see Fig. 3). We represent US as an
array of lines l1, l2, . . . , lh ordered as they appear on US from left to right. For
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Fig. 3. Partitioning S into three layers:
L1(S) = {1, 2, 3}, L2(S) = {4, 5, 6},
L3(S) = {7, 8}. The thick polygonal chain
is the upper envelope of S.

qI
ρl

ρu

q*

Fig. 4. Dragging a segment of slope 1 out
of the corner at qI : q∗ is the first point that
will be hit by the segment

each line li, li−1 is its left neighbor and li+1 is its right neighbor. We partition
S into a sequence L1(S), L2(S), . . ., of subsets, called layers (e.g., see Fig. 3).
The first layer L1(S) ⊆ S consists of the lines that appear on US . For i > 1,
Li(S) consists of the lines that appear on the upper envelope of the lines in
S \ ⋃i−1

j=1 Lj(S). Each layer Li(S) is represented in the same way as US . To
answer a half-plane range reporting query on a point q, let l(q) be the vertical
line through q. We first determine the line li of L1(S) whose intersection with
l(q) is on the upper envelope of L1(S), by doing binary search on the array of
lines of L1(S). Then, starting from li, we walk on the upper envelope of L1(S) in
both directions to report the lines of L1(S) above the point q, in linear time with
respect to the output size. Next, we find the line of L2(S) whose intersection
with l(q) is on the upper envelope of L2(S). We use the same procedure as for
L1(S) to report the lines of L2(S) above q. Similarly, we continue on the layers
L3(S), L4(S), . . ., until no line is reported in a certain layer. By using fractional
cascading [7], after determining the line li of L1(S) in O(log n) time by binary
search, the data structure [9] can report all lines above q in constant time each.

For any vertical line l, for each layer Li(S), denote by li(l) the line of Li(S)
whose intersection with l is on the upper envelope of Li(S). By fractional cas-
cading [7], we have the following lemma for the data structure [9].

Lemma 3. [7,9] For any vertical line l, after the line l1(l) is known, we can
obtain the lines l2(l), l3(l), . . . in this order in O(1) time each.

3 The Uniform Distribution

Recall that F is a set of lines in the uniform distribution.

3.1 Queries with Unbounded Intervals

We first discuss the unbounded case where I = [xl, xr] is unbounded and some
techniques introduced here will also be used later for the bounded case. Without
loss of generality, we assume xl = −∞, and the other case where xr = +∞ can
be solved similarly. Recall that L is the vertical line with x-coordinate xr.
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For top-1 queries, by Lemma 2, we only need to maintain the upper envelope
of F , which can be computed in O(n log n) time and O(n) space. For each query,
it is sufficient to determine the intersection of L with the upper envelope of F ,
which can be done in O(log n) time. Next, we consider top-k queries.

Given I and k, by Lemma 2, it suffices to find the k lines of F whose inter-
sections with L are the highest, and we let Fk denote the set of the above k
lines. As preprocessing, we build the half-plane range reporting data structure
(see Section 2) on F , in O(n log n) time and O(n) space. Suppose the layers of
F are L1(F), L2(F), . . .. In the sequel, we compute the set Fk. Let the lines in
Fk be l1, l2, . . . , lk ordered from top to bottom by their intersections with L.

Let li(L) be the line of Li(F) which intersects L on the upper envelope of the
layer Li(F), for i = 1, 2, . . .. We first compute l1(L) in O(log n) time by binary
search on the upper envelope of L1(F). Clearly, l1 is l1(L). Next, we determine
l2. Let the set H consist of the following three lines: l2(L), the left neighbor (if
any) of l1(L) in L1(F), and the right neighbor (if any) of l1(L) in L1(F).

Lemma 4. l2 is the line in H whose intersection with L is the highest.

We refer to H as the candidate set. By Lemma 4, we find l2 in H in O(1)
time. We remove l2 from H, and below we insert at most three lines into H such
that l3 must be in H. Specifically, if l2 is l2(L), we insert the following three
lines into H: l3(L), the left neighbor of l2(L), and the right neighbor of l2(L).
If l2 is the left (resp., right) neighbor l of l1(L), we insert the left (resp., right)
neighbor of l in L1(F) into H. By generalizing Lemma 4, we can show l3 must
be in H (the details are omitted). We repeat the same algorithm until we find
lk. To facilitate the implementation, we use a heap to store the lines of H whose
“keys” in the heap are the heights of the intersections of L and the lines of H.

Lemma 5. The set Fk can be found in O(log n + k log k) time.

We can improve the algorithm to O(log n + k) time by using the selection
algorithm in [14] for sorted arrays. The key idea is that we can implicitly obtain
2k sorted arrays of O(k) size each and Fk can be computed by finding the largest
k elements in these arrays. The result is given in Lemma 6 with details omitted.

Lemma 6. The set Fk can be found in O(log n + k) time.

Remark: The above builds a data structure of O(n log n, n) complexity that can
answer each top-k query in O(log n + k) time for the uniform unbounded case.

For the threshold query, we are given I and a threshold τ . We again build
the half-plane range reporting data structure on F . To answer the query, as
discussed in Section 2, we only need to find all lines of F whose intersections
with L have y-coordinates larger than or equal to τ . We first determine the line
l1(L) by doing binary search on the upper envelope of L1(F). Then, by Lemma
3, we find all lines l2(L), l3(L), . . . , lj(L) whose intersections have y-coordinates
larger than or equal to τ . For each i with 1 ≤ i ≤ j, we walk on the upper
envelope of Li(F), starting from li(L), on both directions in time linear to the
output size to find the lines whose intersections have y-coordinates larger than
or equal to τ . Hence, the running time for answering the query is O(log n + m).
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3.2 Queries with Bounded Intervals

Now we assume I = [xl, xr] is bounded. Consider any point p ∈ P . Recall that
p is associated with an interval [xl(p), xr(p)] in the uniform case. Depending on
the positions of I = [xl, xr] and [xl(p), xr(p)], we classify [xl(p), xr(p)] and the
point p into the following three types with respect to I.

L-type: [xl(p), xr(p)] and p are L-type if xl ≤ xl(p).
R-type: [xl(p), xr(p)] and p are R-type if xr ≥ xr(p).
M-type: [xl(p), xr(p)] and p are M-type if I ⊂ (xl(p), xr(p)).

Denote by PL, PR, and PM the sets of all L-type, R-type, and M -type of
points of P , respectively. In the following, for each kind of query, we will build an
data structure such that the different types of points will be searched separately
(note that we will not explicitly compute the three subsets PL, PR, and PM ). For
each point p ∈ P , we refer to xl(p) as the left endpoint of the interval [xl(p), xr(p)]
and refer to xr(p) as the right endpoint. For simplicity of discussion, we assume
no two interval endpoints of the points of P have the same value.

The Top-1 Queries. For any point p ∈ P , denote by Fr(p) the set of the
cdfs of the points of P whose intervals have left endpoints larger than or equal
to xl(p). Again, as discussed in Section 2 we transform each cdf of Fr(p) to a
line. We aim to maintain the upper envelope of Fr(p) for each p ∈ P . If we
compute the n upper envelopes explicitly, we would have an data structure of
size Ω(n2). To reduce the space, we choose to use the persistent data structure
[13] to maintain them implicitly such that data structure size is O(n). The details
are given below.

We sort the points of P by the left endpoints of their intervals from left to
right, and let the sorted list be p′

1, p
′
2, . . . , p

′
n. For each i with 2 ≤ i ≤ n, observe

that the set Fr(p′
i−1) has exactly one more line than Fr(p′

i). If we maintain the
upper envelope of Fr(p′

i) by a balanced binary search tree (e.g., a red-black
tree), then by updating it we can obtain the upper envelope of Fr(p′

i−1) by an
insertion and a number of deletions on the tree, and each tree operation takes
O(log n) time. An easy observation is that there are O(n) tree operations in total
to compute the upper envelopes of all sets Fr(p′

1),Fr(p′
2), . . . ,Fr(p′

n). Further,
by making the red-black tree persistent [13], we can maintain all upper envelopes
in O(n log n) time and O(n) space. We use L to denote the above data structure.

We can use L to find the point of PL with the largest I-probability in O(log n)
time, as follows. First, we find the point p′

i such that xl(p′
i−1) < xl ≤ xl(p′

i). It
is easy to see that Fr(p′

i) = PL. Consider the unbounded interval I ′ = (−∞, xr].
Consider any point p whose cdf is in Fr(p′

i). Due to xl(p) ≥ xl, we can obtain
that Pr[p ∈ I] = Pr[p ∈ I ′]. Hence, the point p of Fr(p′

i) with the largest
value Pr[p ∈ I] also has the largest value Pr[p ∈ I ′]. This implies that we can
instead use the unbounded interval I ′ as the query interval on the upper envelope
of Fr(p′

i), in the same way as in Section 3.1. The persistent data structure L
maintains the upper envelope of Fr(p′

i) such that we can find in O(log n) time
the point p of Fr(p′

i) with the largest value Pr[p ∈ I ′].



Range Queries on Uncertain Data 333

Similarly, we can build a data structure R of O(n) space in O(n log n) time
that can find the point of PR with the largest I-probability in O(log n) time.

To find the point of PM with the largest I-probability, the approach for PL

and PR does not work because we cannot reduce the query to another query with
an unbounded interval. Instead, we reduce the problem to a “segment dragging
query” by dragging a line segment out of a corner in the plane, as follows.

For each point p of P , we define a point q = (xl(p), xr(p)) in the plane, and
we say that p corresponds to q. Similar transformation was also used in [11]. Let
Q be the set of the n points defined by the points of P . For the query interval
I = [xl, xr], we also define a point qI = (xl, xr) (this is different from [11], where
I defines a point (xr, xl)). If we partition the plane into four quadrants with
respect to qI , then we have the following lemma.

Lemma 7. The points of PM correspond to the points of Q that strictly lie in
the second quadrant (i.e., the northwest quadrant) of qI .

Let ρu be the upwards ray originating from qI and let ρl be the leftwards ray
originating from qI . Imagine that starting from the point qI and towards north-
west, we drag a segment of slope 1 with two endpoints on ρu and ρl respectively,
and let q∗ be the point of Q hit first by the segment (e.g., see Fig. 4).

Lemma 8. The point of P that defines q∗ is in PM and has the largest I-
probability among all points in PM .

Based on Lemma 8, to determine the point of PM with the largest I-probability,
we only need to solve the above query on Q by dragging a segment out of a corner.
More specifically, we need to build a data structure on Q to answer the following
out-of-corner segment-dragging queries: Given a point q, find the first point of Q
hit by dragging a segment of slope 1 from q and towards the northwest direction
with the two endpoints on the two rays ρu(q) and ρl(q), respectively, where ρu(q)
is the upwards ray originating from q and ρl(q) is the leftwards ray originating
from q. By using Mitchell’s result in [17] (reducing the problem to a point loca-
tion problem), we can build an O(n) size data structure on Q in O(n log n) time
that can answer each such query in O(log n) time.

Hence, for the uniform case, we can build in O(n log n) time an O(n) size data
structure on P that can answer each top-1 query in O(log n) time.

The Top-k Queries. To answer a top-k query, we will do the following. First,
we find the top-k points in PL (i.e., the k points of PL whose I-probabilities are
the largest), the top-k points in PR, and the top-k points in PM . Then, we find the
top-k points of P from the above 3k points. Below we build three data structures
for computing the top-k points in PL, PR, and PM , respectively.

We first build the data structure for PL. Again, let p′
1, p

′
2, . . . , p

′
n be the list

of the points of P sorted by the left endpoints of their intervals from left to right.
We construct a complete binary search tree TL whose leaves from left to right store
the n intervals of the points p′

1, p
′
2, . . . , p

′
n. For each internal node v, let Pv denote
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the set of points whose intervals are stored in the leaves of the subtree rooted at v.
We build the half-plane range reporting data structure discussed in Section 2 on
Pv, denoted by Dv. Since the size of Dv is |Pv|, the total size of the data structure
TL is O(n log n), and TL can be built in O(n log2 n) time.

We use TL to compute the top-k points in PL as follows. By the standard app-
roach and using xl, we find in O(log n) time a set V of O(log n) nodes of TL such
that PL =

⋃
v∈V Pv and no node of V is an ancestor of another node. Then, we

can determine the top-k points of PL in similarly as in Section 3.1. However, since
we now have O(log n) data structures Dv, we need to maintain the candidate sets
for all such Dv’s. Specifically, after we find the top-1 point in Dv for each v ∈ V ,
we use a heap H to maintain them where the “keys” are the I-probabilities of the
points. Let p be the point of H with the largest key. Clearly, p is the top-1 point of
PL; assume p is from Dv for some v ∈ V . We remove p from H and insert at most
three new points from Dv into H, in a similar way as in Section 3.1. We repeat the
same procedure until we find all top-k points of PL.

To analyze the running time, for each node v ∈ V , we can determine in O(log n)
time the line in the first layer of Dv whose intersection with L is on the upper enve-
lope of the first layer, and subsequent operations on Dv each takes O(1) time due
to fractional cascading. Hence, the total time for this step in the entire algorithm
is O(log2 n). However, we can do better by building a fractional cascading struc-
ture [7] on the first layers of Dv for all nodes v of the tree TL. In this way, the above
step only takes O(log n) time in the entire algorithm, i.e., do binary search only
at the root of TL. In addition, building the heap H initially takes O(log n) time.
Note that the additional fractional cascading structure on TL does not change the
size and construction time of TL asymptotically [7]. The entire query algorithm
has O(k) operations on H in total and the size of H is O(log n + k). Hence, the
total time for finding the top-k points of PL is O(log n + k log(k + log n)), which
is O(log n + k log k) by Lemma 9.

Lemma 9. log n + k log(k + log n) = O(log n + k log k).

If k = Ω(log n log log n), we have a better result in Lemma 10. Note that com-
paring with Lemma 6, we need to use other techniques to obtain Lemma 10 since
the problem here involves O(log n) half-plane range reporting data structures Dv

while Lemma 6 only needs to deal with one such data structure.

Lemma 10. If k = Ω(log n log log n), we can compute the top-k points in PL in
O(k) time.

To compute the top-k points of PR, we build a similar data structure TR, in a
symmetric way as TL, and we omit the details.

Finally, to compute the top-k points in PM , we do the following transforma-
tion. For each point p ∈ P , we define a point q = (xl(p), xr(p), 1/(xr(p) − xl(p))
in the 3-D space with x-, y-, and z-axes. Let Q be the set of all points in the 3-D
space thus defined. Let the query interval I define an unbounded query box (or
3D rectangle) BI = (−∞, xl) × (xr,+∞) × (−∞,+∞). Similar to Lemma 7 in
Section 3.1, the points of PM correspond exactly to the points of Q∩BI . Further,
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the top-k points of PM correspond to the k points of Q ∩ BI whose z-coordinates
are the largest. Denote by QI the k points of Q ∩ BI whose z-coordinates are the
largest. Below we build a data structure on Q for computing the set QI for any
query interval I and thus finding the top-k points of PM .

We build a complete binary search tree TM whose leaves from left to right store
all points of Q ordered by the increasing x-coordinate. For each internal node v
of TM , we build an auxiliary data structure Dv as follows. Let Qv be the set of
the points of Q stored in the leaves of the subtree of TM rooted at v. Suppose all
points of Qv have x-coordinates less than xl. Let Q′

v be the points of Qv whose
y-coordinates are larger than xr. The purpose of the auxiliary data structure Dv

is to report the points of Q′
v in the decreasing z-coordinate order in constant time

each after the point of qv is found, where qv is the point of Q′
v with the largest

z-coordinate. To achieve this goal, we use the data structure given by Chazelle [8]
(the one for Subproblem P1 in Section 5), and the data structure is a hive graph
[6], which can be viewed as the preliminary version of the fractional cascading
techniques [7]. By using the result in [8], we can build such a data structure Dv of
size O(|Qv|) in O(|Qv| log |Qv|) time that can first compute qv in O(log |Qv|) time
and then report other points of Q′

v in the decreasing z-coordinate order in constant
time each. Since the size of Dv is |Qv|, the size of the tree TM is O(n log n), and
TM can be built in O(n log2 n) time.

Using TM , we find the set QI as follows. We first determine the set V of O(log n)
nodes of TM such that

⋃
v∈V Qv consists of all points of Q whose x-coordinates less

than xl and no point of V is an ancestor of another point of V . Then, for each node
v ∈ V , by using Dv, we find qv, i.e., the point of Qv with the largest z-coordinate,
and insert qv into a heap H, where the key of each point is its z-coordinate. We find
the point in H with the largest key and remove it from H; denote the above point
by q′

1. Clearly, q′
1 is the point of QI with the largest z-coordinate. Suppose q′

1 is in
a node v ∈ V . We proceed on Dv to find the point of Qv with the second largest
z-coordinate and insert it into H. Now the point of H with the largest key is the
point of QI with the second largest z-coordinate. We repeat the above procedure
until we find all k points of QI .

To analyze the query time, finding the set V takes O(log n) time. For each
node v ∈ V , the search for qv on Dv takes O(log n) time plus the time linear to
the number of points of Dv in QI . Hence, the total time for searching qv for all
vertices v ∈ V is O(log2 n) time. Similarly as before, we can remove a logarith-
mic factor by building a fractional cascading structure on the nodes of TM for
searching such points qv’s, in exactly the same way as in [6]. With the help of the
fractional cascading structure, all these qv’s for v ∈ V can be found in O(log n)
time. Note that building the fractional cascading structure does not change the
construction time and the size of TM asymptotically [6]. In addition, building the
heap H initially takes O(log n) time. In the entire algorithm there are O(k) opera-
tions on H in total and the size of H is always bounded by O(k+log n). Therefore,
the running time of the query algorithm is O(log n + k log(k + log n)), which is
O(log n + k log k) by Lemma 9.

Using similar techniques as in Lemma 10, we obtain the following result.
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Lemma 11. If k = Ω(log n log log n), we can compute the top-k points in PM in
O(k) time.

In summary, for the uniform case, we can build in O(n log2 n) time an O(n log n)
size data structure on P that can answer each top-k query in O(k) time if k =
Ω(log n log log n) and O(k log k + log n) time otherwise.

For the threshold queries, we build the same data structure as for the top-k
queries, i.e., the three trees TL, TM , and TR. The query algorithmic scheme is also
similar. We omit the details.

4 The HistogramDistribution

In this section, we present our data structures for the histogram case, where I =
[xl, xr] is unbounded. Again, we assume w.l.o.g. that xl = −∞. Recall that L is
the vertical line with x-coordinate xr. In the histogram case, the cdf of each point
p ∈ P has c pieces; recall that we assumed c is a constant, and thus F is still a set
of O(n) line segments. Note that Lemmas 1 and 2 are still applicable.

For the top-1 queries, as in Section 3.1 it is sufficient to maintain the upper
envelope of F . Although F now is a set of line segments, its upper envelope is still
of size O(n) and can be computed in O(n log n) time [4]. Given the query interval
I, we can compute in O(log n) time the cdf of F whose intersection with L is on
the upper envelope of F .

For the threshold query, as discussed in Section 2 we only need to find the cdfs
of F whose intersections with L have y-coordinates at least τ . Let qI be the point
(xr, τ) on L. A line segment is vertically above qI if the segment intersects L and
the intersection is at least as high as qI . Hence, to answer the threshold query on
I, it is sufficient to find the segments of F that are vertically above qI . Agarwal
et al. [2] gave the following result on the segment-below-point queries. For a set S of
O(n) line segments in the plane, a data structure of O(n) size can be computed in
O(n log n) time that can report the segments of S vertically below a query point
q in O(m′ + log n) time, where m′ is the output size. In our problem, we need
a data structure on F to solve the segments-above-point queries, which can be
solved by using the similar approach as [2]. Therefore, we can build in O(n log n)
time an O(n) data structure on P that can answer each threshold query with an
unbounded query interval in O(m + log n) time.

For the top-k queries, we only need to find the k segments of F whose intersec-
tions with L are the highest. To this end, we can slightly modify the data structure
for the segment-below-point queries in [2]. The details are omitted.
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Abstract. We consider the problem of nearest-neighbor searching among
a set of stochastic sites, where a stochastic site is a tuple (si, πi) consisting
of a point si in a d-dimensional space and a probability πi determining its
existence. The problem is interesting and non-trivial even in 1-dimension,
where the Most Likely Voronoi Diagram (LVD) is shown to have worst-
case complexity Ω(n2). We then show that under more natural and less
adversarial conditions, the size of the 1-dimensional LVD is significantly
smaller: (1) Θ(kn) if the input has only k distinct probability values, (2)
O(n log n) on average, and (3) O(n

√
n) under smoothed analysis. We also

present an alternative approach to the most likely nearest neighbor (LNN)
search usingPareto sets, which gives a linear-space data structure and sub-
linear query time in 1D for average and smoothed analysis models, as well
as worst-case with a bounded number of distinct probabilities. Using the
Pareto-set approach, we can also reduce the multi-dimensional LNN search
to a sequence of nearest neighbor and spherical range queries.

1 Introduction

There is a growing interest in algorithms and data structures that deal with
data uncertainty, driven in part by the rapid growth of unstructured databases
where many attributes are missing or difficult to quantify [5,6,10]. Furthermore,
an increasing amount of analytics today happens on data generated by machine
learning systems, which is inherently probabilistic unlike the data produced by
traditional methods. In computational geometry, the data uncertainty has typi-
cally been thought of as imprecision in the positions of objects—this viewpoint
is quite useful for data produced by noisy sensors (e.g. LiDAR or MRI scanners)
or associated with mobile entities, and many classical geometric problems includ-
ing nearest-neighbors, convex hull, range searching and geometric optimization
have been investigated in recent years [2–4,14,16–18].

Our focus, in this paper, is on a different form of uncertainty: each object’s
location is known precisely but its presence, or activation, is subject to uncer-
tainty. For instance, a company planning to open stores may know all the res-
idents’ locations but has only a probabilistic knowledge about their interest in
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its products. Similarly, many phenomena where influence is transmitted through
physical proximity involve entities whose positions are known but their ability
to influence others is best modeled probabilistically: opinions, diseases, political
views, etc. With this underlying motivation, we investigate one of the most basic
proximity search problems for stochastic input.

Let a stochastic site be a tuple (si, πi), where si is a point in d-dimensional
Euclidean space and πi is the probability of its existence (namely, activation).
Let S = {(s1, π1), (s2, π2), . . . , (sn, πn)} be a set of stochastic sites, where we
assume that the points si’s are distinct, and that the individual probabilities
πi are independent. Whenever convenient, we will simply use si to refer to the
site (si, πi). We want to preprocess S for answering most likely nearest neighbor
(LNN) queries: a site si is the LNN of a query point q if si is present and all
other sites closer than si to q are not present. More formally, let πi = 1 − πi,
and let B(q, si) be the set of sites sj for which ‖q − sj‖ < ‖q − si‖. Then the
probability that si is the LNN of q is πi × ∏

sj∈B(q,si)
πj . For ease of reference,

we call this probability the likeliness of si with respect to q, and denote it as

�(si, q) = πi ×
∏

sj∈B(q,si)

πj (1)

The LNN of a query point q is the site s for which �(s, q) is maximized.
An important concept related to nearest neighbors is the Voronoi Diagram: it

partitions the space into regions with the same nearest neighbor. In our stochas-
tic setting, we seek the most likely Voronoi Diagram (LVD) of S: a partition of
the space into regions so that all query points in a region have the same LNN.
In addition to serving the role of a convenient data structure for LNN of query
points, the structure of LVD also provides a compact representation of each
stochastic site’s region of likely influence.

Related Work. The topic of uncertain data has received a great deal of atten-
tion in recent years in the research communities of databases, machine learning,
AI, algorithms and computational geometry. Due to limited space, we mention
just a small number of papers that are directly relevant to our work. A num-
ber of researchers have explored nearest-neighbors and Voronoi diagrams for
uncertain data [2,4,14], however, these papers focus on the locational uncer-
tainty, with the goal of finding a neighbor minimizing the expected distance.
In [19], Kamousi-Chan-Suri consider the stochastic (existence uncertainty) model
but they also focus on the expected distance. Unfortunately, nearest neighbors
under the expected measure can give non-sensical answers—a very low probabil-
ity neighbor gets a large weight simply by being near the query point. Instead,
the most likely nearest neighbor gives a more intuitive answer.

Over the past decade, smoothed analysis has emerged as a useful approach for
analyzing problems in which the complexity of typical cases deviates significantly
from the worst-case. A classical example is the Simplex algorithm whose worst-
case complexity is exponential and yet it runs remarkably well on most practical
instances of linear programming. The smoothed analysis framework proposed [22]
offers a more insightful analysis than simple average case. Smoothed analysis is
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also quite appropriate for many geometric problems [7,8,11,12], because data is
often the result of physical measurements that are inherently noisy.

Our Results. We first show that the most likely Voronoi diagram (LVD) has
worst-case complexity Ω(n2) even in 1D, which is easily seen to be tight. We
then show that under more natural, and less pathological, conditions the LVD
has significantly better behavior. Specifically, (1) if the input has only k distinct
probability values, then the LVD has size Θ(nk); (2) if the probability values
are randomly chosen (average-case analysis), then the LVD has expected size
O(n log n); (3) if the probability values (or the site positions) are worst-case
but can be perturbed by some small value (smoothed analysis), then the LVD
has size O(n

√
n). Of course, the LVD immediately gives an O(log n) time data

structure for LNN queries. Next, we propose an alternative data structure for
LNN queries using Pareto sets. In 1-dimension, this data structure has linear size
and answers LNN queries in worst-case O(k log n) time when the input has only
k distinct probability values, and in O(log2 n) and O(

√
n log n) time under the

average case and smoothed analysis models, respectively. Finally, the Pareto-set
approach can be generalized to higher dimensions by reducing the problem to
a sequence of nearest neighbor and spherical range queries. We give a concrete
example of this generalization to finding the LNN in two dimensions.

2 The LVD Can Have Quadratic Complexity in 1D

The most likely nearest neighbor problem has non-trivial complexity even in the
simplest of all settings: points on a line. Indeed, the LNN even violates a basic
property often used in data structure design: decomposability. With deterministic
data, one can split the input into a number of subsets, compute the nearest
neighbor in each subset, and then choose the closest of those neighbors. As the
following simple example shows, this basic property does not hold for the LNN.

qs1 s2 s3

1
4

1
3

3
5

Fig. 1. The LNN of q is s2

Let the input have 3 sites {(−2, 1
4 ), (1, 1

3 ), (3, 3
5 )},

and consider the query point q = 0 (see Figure 1).
Suppose we decompose the input into two sub-
sets, sites to the left, and sites to the right of the
query point. Then, it is easy to check that s1 is
the LNN on the left, and s3 is the LNN for the right subset. However, the overall
LNN of q turns out to be s2, as is easily verified by the likeliness probabilities:
�(s1, q) = 2

3 · 1
4 = 1

6 , �(s2, q) = 1
3 , and �(s3, q) = 2

3 · 3
4 · 3

5 = 3
10 .

The likeliness region for a site is also not necessarily connected: in fact, the
following theorem shows that the LVD on a line can have quadratic complexity.

Theorem 1. The most likely Voronoi diagram (LVD) of n stochastic sites on a
line can have complexity Ω(n2).

Proof. Due to limited space, we sketch the main idea, deferring some of the techni-
cal details to the full version of the paper. The input for the lower bound consists
of two groups of n sites each, for a total of 2n. In the first group, called S, the ith
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s1 s2 sn t1 t2 t3

ε ε ε
1
1

1
2

1
n

mn1 m12 m22

s2 is LNN

Fig. 2. The lower bound example of Theorem 1 with Ω(n2) complexity

site has position si = i/n, and probability πi = 1/i, for i = 1, 2, . . . , n. In the
second group, called T , the ith site has position ti = i + 1, and probability ε, for
a choice of ε specified later (see Figure 2). We will focus on the n2 midpoints mij ,
namely the bisectors, of pairs of sites si ∈ S and tj ∈ T , and argue that the LNN
changes in the neighborhood of each of these midpoints, proving the lower bound.

By construction, the midpoints mij are ordered lexicographically on the line,
first by j and then by i. We will show that the LNN in the interval immediately
to the left of the midpoint mij is si, which implies that the LVD has size Ω(n2).
In this proof sketch we assume that if two sites have the same likeliness then
the site with the lower index is chosen as the LNN. Without this assumption
the same bound can be obtained with a slightly altered construction, but the
analysis becomes more complicated.

Let us consider a query point q that lies immediately to the left of the first mid-
point m11. It is easy to verify that �(si, q) = 1

n , for all 1 ≤ i ≤ n, and therefore s1
is q’s LNN. As the query point moves past m11, only the likeliness of s1 changes
to 1−ε

n , making s2 the LNN. The same argument holds as q moves past other mid-
points towards the right, with the likeliness of corresponding sites changing to 1−ε

n
in order, resulting in si becoming the new LNN when q lies just to the left of mi1.
After q passes mn1, all sites of S have the same likeliness again, and the pattern
is repeated for the remaining midpoints. To ensure that no site in T can ever be
the LNN, we require that (1−ε)n

n > ε, which holds for ε = n−2. �

3 Upper Bounds for the LVD in 1D

A matching upper bound of O(n2) for the 1-dimensional LVD is easy: only the
midpoints of pairs of sites can determine the boundary points of the LVD. In
this section, we prove a number of stronger upper bounds, which may be more
reflective of practical data sets. In particular, we show that if the number of
distinct probability values among the stochastic sites is k, then the LVD has size
Θ(kn), where clearly k ≤ n. Thus, the LVD has size only O(n) if the input prob-
abilities come from a fixed, constant size universe, not an unrealistic assumption
in practice. Second, the lower bound construction of Theorem 1 requires a highly
pathological arrangement of sites and their probabilities, unlikely to arise in prac-
tice. We therefore analyze the LVD complexity using average-case and smoothed
analysis, and prove upper bounds of O(n log n) and O(n

√
n), respectively.

3.1 Structure of the LVD
We first establish some structural properties of the LVD; in particular, which
midpoints (bisectors) form the boundaries between adjacent cells of the LVD.
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For ease of reference, let us call these midpoints critical. Given a query point q,
let L(q) denote the sorted list of sites in S by their (increasing) distance to q.
Clearly, as long as the list L(q) does not change by moving q along the line, its
LNN remains unchanged. The order only changes at a midpoint mij , in which
case si and sj swap their positions in the list. The following lemmas provide a
simple rule for determining critical midpoints.

Lemma 1. Suppose that the midpoint mij of two sites si and sj (si<sj) is criti-
cal, and consider the points q′ immediately to the left of mij, and q′′ immediately
to the right of mij. Then, either si is the LNN of q′, or sj is the LNN of q′′.

Proof. Suppose, for the sake of contradiction, that the LNN of q′ is not si,
but instead some other site sz. Consider the list L(q′) of sites ordered by their
distance to the query, and consider the change to this list as the query point shifts
from q′ to q′′. The only change is swapping of si and sj . Then the likeliness of
si and sj satisfy �(si, q

′′) < �(si, q
′) and �(sj , q

′′) > �(sj , q
′), while for all other

sites s, we have �(s, q′) = �(s, q′′). Therefore, the LNN of q′′ is either sj or sz. If
sz is the LNN of q′′, then mij is not critical (a contradiction). So sj must be the
LNN of q′′ satisfying the condition of the lemma. �

Lemma 2. If the midpoint mij of sites si and sj, for si < sj, is critical, then
there cannot be a site sz with sz ∈ [si, sj ] and πz ≥ max(πi, πj).

Proof. Suppose, for the sake of contradiction, that such a site sz exists. By
the position of sz, we must have ‖sz − mij‖ < min{‖si − mij‖, ‖sj − mij‖},
and the same also holds for any query point q arbitrary close to mij . Because
πz ≥ max(πi, πj), we have �(sz, q) > �(si, q) and �(sz, q) > �(sj , q), implying
that sz is more likely than both si and sj to be the nearest neighbor of any q
arbitrary close to mij . By Lemma 1, however, if mij is critical, then there exists
a q close to mij for which the LNN is either si or sj . Hence sz cannot exist. �

3.2 Refined Upper Bounds

Our first result shows that if the stochastic input has only k distinct probabili-
ties, then the LVD has size O(kn). Let {S1, . . . , Sk} be the partition of the input
so that each group has sites of the same probability, ordered by increasing prob-
ability; that is, any site in Sj has higher probability than a site in Si, for j > i.
We write ni = |Si|, where

∑k
i=1 ni = n.

Lemma 3. The LVD of n stochastic sites on a line, with at most k distinct
probabilities, has complexity Θ(kn).

Proof. The lower bound on the size follows from an easy modification of the
construction in Theorem 1: we use only k − 1 points for the left side of the con-
struction. We now analyze the upper bound. Suppose the midpoint mij defined
by two sites si ∈ Sa and sj ∈ Sb is critical, where 1 ≤ a < b ≤ k, and without
loss of generality, assume that si lies to the left of sj . The sites in Sb have higher
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probability than those in Sa, because of our assumption that a < b. Hence, by
Lemma 2, there cannot be a site s ∈ Sb such that s ∈ [si, sj ]. By the same rea-
soning, the midpoint of si and a site s ∈ Sb with s > sj also cannot be critical.
Therefore, si can form critical midpoints with at most two sites in Sb: one on
each side. Altogether, si can form critical midpoints with at most 2k other sites
sj with πj ≥ πi. Thus, |LV D| ≤ 2k

∑k
i=1 ni = 2kn. �

3.3 Average-Case and Smoothed Analysis of the LVD

We now show that even with n distinct probability values among the stochastic
sites, the LVD has significantly smaller complexity as long as those probabilities
are either assigned randomly to the points, or they can be perturbed slightly to
get rid of the highly unstable pathological cases. More formally, for the average-
case analysis we assume that we have a fixed set of n probabilities, and we
randomly assign these probabilities to the sites. That is, we consider the average
over all possible assignments of probabilities to sites. The smoothed analysis
fixes a noise parameter a > 0, and draws a noise value δi ∈ [−a, a] uniformly
at random for each site (si, πi). This noise is used to perturb the input, either
the location of a site or its probability. The location perturbation changes each
site’s position to s′

i = si + δi, resulting in the randomly perturbed input S ′ =
{(s′

1, π1), . . . , (s′
n, πn)}, which is a random variable. The smoothed complexity of

the LVD is the expected complexity of the LVD of S ′, where we take the worst
case over all inputs S. The smoothed complexity naturally depends on the noise
parameter a, which for the sake of simplicity we assume to be a constant—more
detailed bounds involving a can easily be obtained. Of course, for this model we
need to restrict the positions of sites to [0, 1]. The smoothed model perturbing
the probabilities instead of the positions is defined analogously.

Our analysis uses a partition tree T defined on the sites as follows. The tree
is rooted at the site si with the highest probability. The remaining sites are
split into a set S1, containing the sites on the left of si, and a set S2 containing
the rest (excluding si, see Figure 3 right). We then recursively construct the
partition trees for S1 and S2, whose roots become the children of si. (In case of
ties, choose si to make the partition as balanced as possible.) The partition tree
has the following useful property.

Lemma 4. Let si and sj be two sites with πi ≤ πj. If the midpoint mij is
critical, then sj is an ancestor of si in T .

Proof. Let sz be the lowest common ancestor of si and sj in T , assuming sz �= sj .
By construction, sz ∈ [si, sj ] and πz ≥ πj . Hence, by Lemma 2, mij cannot be
critical. �

Corollary 1. If the depth of T is d, then the size of the LVD is O(dn).

Thus, we can bound the average and smoothed complexity of the LVD by
analyzing the average and smoothed depth of the partition tree T . In the aver-
age case, T is essentially a random binary search tree. It is well known that
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the depth of such a tree is O(log n) (see e.g. [21]). In the smoothed model, if
the perturbation is on the position of the sites, then a result by Manthey and
Tantau [20, Lemma 10] shows that the smoothed depth of T is O(

√
n).1 We can

easily extend that analysis to the perturbation on the probability values, instead
of the positions of the sites. In a nutshell, the proof by Manthey and Tantau relies
on the fact that the input elements can be partitioned into O(

√
n/ log n) groups

such that the binary search tree of a single group is essentially random, and in
this random tree, we can simply swap the roles of probabilities and positions.
Thus, the smoothed depth of T is also O(

√
n) if the probabilities are perturbed.

(If a perturbed probability falls outside [0, 1], it is truncated, but the analysis
holds due to our tie-breaking rule.)

Theorem 2. Given a set of n stochastic sites on the line, its most likely Voronoi
Diagram (LVD) has average-case complexity O(n log n), and smoothed complex-
ity O(n

√
n).

4 Algorithms for Constructing the LVD

Our main tool for constructing the LVD is the likeliness curve �(si) : R → R of a
site si, which is simply the function �(si, q) with q ranging over the entire real line
R. A likeliness curve �(si) has O(n) complexity and it is a bimodal step function,
achieving its maximum value at q = si (see Figure 4). By presorting all the sites in
the left-to-right order, we can easily compute each �(si) in O(n) time, as follows.
Start at q = si and walk to the left updating the value �(si, q) at every midpoint
of the form mij with 1 ≤ j < i. We do the same for the right portion of �(si),
walking to the right instead (and i < j ≤ n). In the same way we can compute a
restriction of �(si) to some interval I: assuming si ∈ I, it is easy to see that this
restriction can be computed in time proportional to its complexity.

We can now compute the LVD by constructing the upper envelope U of all
�(si), for i = 1, . . . , n. A naive construction, however, still takes O(n2) time since
the total complexity of all likeliness curves is quadratic. Instead, we restrict the
likeliness curve of every site to a critical subpart such that the upper envelope

s1 s2 s3 s4 s5 s6 s7 s8 s9

I6
I2

I1 I4
I3 I5

I7
I9

I8

s6

s2 s7

s1 s4

s8s3 s5

s9

T

Fig. 3. The influence intervals (left) and the partition tree (right)

1 In [20] a binary search tree is constructed from a sequence of real numbers. We obtain
this sequence fromour input by ordering the stochastic sites by decreasing probabilities.
The construction of binary search trees in [20] then matches our construction of T .



On the Most Likely Voronoi Diagram and Nearest Neighbor Searching 345

si

Ii

�′(si)

�(si)

Fig. 4. The likeliness curve �(si) of si and its restriction �′(si) to Ii

of these partial curves gives the correct U . In particular, for each site si, define
the influence interval Ii as follows. Let sj be the first site encountered on the
left of si for which πj ≥ πi, and let sz be such a site on the right side of si.
Then we define Ii = [mji,miz]. (If sj and/or sz does not exist, we replace mji

with −∞ and/or miz with ∞, respectively.) Observe that, for any q /∈ Ii, either
�(si, q) < �(sj , q) or �(si, q) < �(sz, q), since either sj or sz is closer to q and
πj , πz ≥ πi. We define �′(si) as the restriction of �(si) to the interval Ii (see
Figure 4). Clearly, U can be constructed by computing the upper envelope of
just these restrictions �′(si), and the complexity of each �′(si) is exactly the
number of midpoints involving si that lie in Ii. Thus, given the defining sites sj

and sz of Ii, the complexity of �′(si) is the number of sites in the interval [sj , sz]
minus one (excluding si).

Lemma 5. The complexity of the union of all �′(si), for i = 1, 2, . . . , n, is O(nd),
where d is the depth of the partition tree T of the input sites. Furthermore, the
union of �′(si) can be represented by d curves of O(n) complexity each.

Proof. Let σ1, . . . , σr be the set of sites at a fixed depth in the partition tree
T in order, and let τi, for 1 ≤ i < r, be the lowest common ancestor of σi

and σi+1 in the tree. It is easy to see that the influence interval of a site σi is
defined by a site in [τi−1, σi] (possibly τi−1) and a site in [σi, τi] (possibly τi),
assuming 1 < i < r (otherwise the influence interval may extend to −∞ or
+∞, see Figure 3). Hence the complexity of �′(σi) is bounded by the number
of sites in the interval [τi−1, τi]. Furthermore, all influence intervals of the sites
σ1, . . . , σr are disjoint, and so we can combine all �′(σi) into a single curve with
O(n) complexity. The result follows by constructing such a curve for each level
of the partition tree. �

We can use Lemma 5 to efficiently compute the upper envelope U . First, we
compute the d curves f1, . . . , fd mentioned in Lemma 5, one for each level of T .
As we construct T , we simultaneously compute �′(si) for each site si, in time
O(|�′(si)|) time. This takes O(n) time per level of T . We can then easily combine
the individual parts �′(si) to obtain the curves f1, . . . , fd. The total running time
of computing the curves f1, . . . , fd is O(n log n + dn).

Finally we can construct U by computing the upper envelope of the curves
f1, . . . , fd. We scan through the curves from left to right, maintaining two priority
queues: (1) a priority queue for the events at which the curves change, and (2) a
priority queue for maintaining the curve with the highest likeliness. Both priority
queues have size d, which means that each event can be handled in O(log d) time.
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Lemma 6. If d is the depth of T , then the LVD can be constructed in O(n log n+
dn log d) time.

The algorithm is easily adapted for the case of k distinct probabilities. Con-
sider the sites σ1, . . . , σr (in order) for a single probability value. Since they all
have the same probability, they bound each other’s influence intervals, and hence
all influence intervals are interior disjoint. Now assume that a site sj is contained
in the interval [σi, σi+1]. Then sj can add to the complexity of only �′(σi) and
�′(σi+1), and no other �′(σz) with z �= i, i + 1. Thus, we can combine the partial
likeliness curves �′(σi) into a single curve of O(n) complexity. In total we obtain
k curves of O(n) complexity each, from which we can construct the LVD.

Theorem 3. The LVD of n stochastic sites in 1D can be computed in worst-case
time O(n log n+nk log k) if the sites involve k distinct probabilities. Without the
assumption on distinct probabilities, the construction takes O(n log n log log n)
time in the average case,2 and O(n

√
n log n) time in the smoothed analysis model.

5 Time-Space Tradeoffs for LNN Searching

The worst-case complexity of the LVD is Ω(n2) even in 1 dimension and the
Voronoi region of a single site can have Ω(n) disjoint intervals. This raises a
natural question: can the 1-dimensional LNN search be solved by a data structure
of subquadratic size and sub-linear query time? While we cannot answer that
question definitively, we offer an argument suggesting its hardness below.

5.1 A 3SUM Hard Problem

Consider the following problem, which we call the Next Midpoint Problem:
given a set of n sites on a line, preprocess them so that for a query q we can
efficiently compute the midpoint (for some pair of sites) that is immediately to
the right of q. The problem is inspired by the fact that an LNN query essentially
needs to decide the location of the query point among the (potentially Ω(n2)
critical) midpoints of the input. The following lemma proves 3SUM-hardness
of this problem. (Recall that the 3SUM problem asks, given a set of numbers
a1, . . . , an, does there exist a triple (ai, aj , az) satisfying ai + aj + az = 0.)

Lemma 7. Building the data structure plus answering 2n queries of the Next
Midpoint Problem is 3SUM-hard.

Proof. Consider an instance of the 3SUMproblemconsisting of numbersa1, . . . , an.
We use these numbers directly as sites for theNextMidpoint Problem. If there
exists a triple for which ai +aj +az = 0, then the midpoint mij is at −az/2. Thus,
for every input number az, we query the Next Midpoint data structure just to
the left and just to the right of −az/2 (all numbers are integers, so this is easy).
If the next midpoint is different for the two queries, then there exists a triple for
which ai + aj + az = 0. Otherwise, such a triple does not exist. �
2 In general, E[d log d] �= E[d] log E[d], but using the results of [13], we can easily show

that E[d log d] = O(log n log log n) in our setting.
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Remark. Thus, unless 3SUM can be solved in significantly faster than O(n2)
time, either the preprocessing time for the Next Midpoint problem is Ω(n2), or
that the query time is Ω(n). However, our reduction does not imply a hardness
for the LNN problem in general: the order of the midpoints in the example of
Theorem 1 follows a very simple pattern, which can be encoded efficiently.

5.2 LNN Search Using Pareto Sets

We now propose an alternative approach to LNN search using Pareto sets, which
trades query time for space. Consider a query point q, and suppose that its LNN
is the site si. Then, si must be Pareto optimal with respect to q, that is, there
cannot be a site sj closer to q with πj ≥ πi. In fact, recalling the influence
intervals Ii from the previous section, it is easy to check that si is Pareto optimal
for q if and only if q ∈ Ii. This observation suggests the following algorithm for
LNN: (1) compute the set S of sites si with q ∈ Ii, (2) compute �(s, q) for each
s ∈ S, and (3) return s ∈ S with the maximum likeliness.

Step (1) requires computing the influence intervals for all sites, which is easily
done as follows. Sort the sites in descending order of probability, and suppose
they are numbered in this order. We incrementally add the sites to a balanced
binary search tree, using the position of a site as its key. When we add a site si

to the tree, all the sites with a higher probability are already in the tree. The
interval Ii is defined by the two consecutive sites sj and sz in the tree such that
si ∈ [sj , sz]. Thus, we can find sj and sz in O(log n) time when adding si to
the tree, and compute all the influence intervals in O(n log n) total time.3 To
find the intervals containing the query point, we organize the influence intervals
in an interval tree, which takes O(n log n) time and O(n) space, and solves the
query in O(log n+ r) time, where r is the output size. By the results in previous
sections, we have r ≤ min{k, d}, where k is the number of distinct probabilities
and d is the depth of T .

Step (2) requires computing the likeliness of each site efficiently, and we do
this by rewriting the likeliness function as follows:

�(si, q) = πi ×
∏

sj∈(q−a,q+a)

πj where a = |q − si| (2)

With Equation (2), we can compute the likeliness of a site by a single range
search query: an augmented balanced binary search tree, requiring O(n) space
and O(n log n) construction time, solves this query in O(log n) time.

Theorem 4. There is a data structure for 1D LNN search that needs O(n)
space and O(n log n) construction time and answers queries in (1) worst-case
O(k log n) time if the sites involve k distinct probabilities, (2) expected time
O(log2 n) in the average case, and (3) expected time O(

√
n log n) in the smoothed

analysis model.
3 If there are sites with the same probability, we must first determine their influence

intervals among sites with the same probability, before adding them to the tree. This
can easily be achieved by first sorting the sites on position.
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Remark. The query bounds of Theorem 4 for the average and smoothed analysis
model are strong in the sense that they hold for all query points simultaneously,
and not just for a fixed query point. That is, the bounds are for the expected
worst case query time, rather than the expected query time.

6 The Pareto-Set Approach in Higher Dimensions

Our Pareto-set approach essentially requires the following two operations: (1)
find the Pareto set for a query point q, and (2) compute the likeliness of a site
w.r.t. q. In higher dimensions, the second operation can be performed with a
spherical range query data structure, for which nearly optimal data structures
exist [1]. The first operation can be reduced to a sequence of nearest neighbor
queries, as follows: (1) find the nearest neighbor of q, say si, among all sites and
add si to the Pareto set, (2) remove all sites with probability at most πi, and (3)
repeat steps (1) and (2) until no sites are left. We, therefore, need a data structure
supporting the following query: given a query point q and a probability π, find
the closest site to q with probability higher than π. A dynamic nearest neighbor
data structure can be adapted to answer this query as follows: incrementally add
sites in decreasing order of probability, and make the data structure partially
persistent. In this way, the data structure can answer the query we need, and
partially persistent data structures often require only little extra space.

The required number of nearest neighbor and spherical range queries is pre-
cisely the number of elements in the Pareto set. For a query point q, consider
the sequence of the sites’ probabilities ordered by their increasing distance to q.
Observe that the size of the Pareto set is precisely the number of left-to-right
maxima in this sequence (see [20]). Therefore, the size of the Pareto set is (1) at
most k when the input has at most k distinct probabilities, (2) O(log n) in the
average case model, and (3) O(

√
n) in the smoothed analysis model. (Unlike the

bound of Section 5.2, however, this result holds for any arbitrary query but not
for all queries simultaneously.) A concrete realization of this abstract approach
is discussed below for LNN search in 2D.

2D Euclidean LNN Search. For the sake of illustration, we consider only the
average case of LNN queries. In this case, an incremental construction ordered
by decreasing probabilities is simply a randomized incremental construction. We
can then use the algorithm by Guibas et al. [15, Section 5] to incrementally
construct the Voronoi diagram including a planar point location data structure,
which uses O(n) space on average. Although not explicitly mentioned in [15], this
data structure is partially persistent. Using this data structure we can answer a
nearest neighbor query in O(log2 n) time. For the circular range queries, we use
the data structure by Chazelle and Welzl [9, Theorem 6.1], which uses O(n log n)
space and can answer queries in O(

√
n log2 n) time. The final result is a data

structure that uses, on average, O(n log n) space and can answer LNN queries
in O(log2 n · log n +

√
n log2 n · log n) = O(

√
n log3 n) time.
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7 Concluding Remarks

The introduction of uncertainty seems to make even simple geometric problems
quite hard, at least in the worst case. At the same time, uncertain data problems
and algorithms may be particularly well-suited for average-case and smoothed
analyses: after all, probabilities associated with uncertain data are inherently
fuzzy measures, and problem instances whose answer changes dramatically with
minor perturbations of input may suggest fragility of those probabilistic assump-
tions.

Our research suggests a number of open problems and research questions. In
the 1-dimensional setting, we are able to settle the complexity of the LVD under
all three analyses (average, smoothed, and worst-case), and it will be interesting
to extend the results to higher dimensions. In particular, we believe the worst-
case complexity of the d-dimensional LVD is Ω(n2d), but that is work in progress.
Settling that complexity in the average or smoothed analysis case, as well as in
the case of k distinct probabilities, is entirely open.
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Abstract. Given a collection of multisets {X1, X2, . . . , Xk} (k ≥ 2) of
positive integers, a multiset S is a common integer partition for them
if S is an integer partition of every multiset Xi, 1 ≤ i ≤ k. The mini-
mum common integer partition (k-MCIP) problem is defined as to find
a CIP for {X1, X2, . . . , Xk} with the minimum cardinality. We present
a 6

5
-approximation algorithm for the 2-MCIP problem, improving the

previous best algorithm of ratio 5
4

designed in 2006. We then extend it
to obtain an absolute 0.6k-approximation algorithm for k-MCIP when k
is even (when k is odd, the approximation ratio is 0.6k + 0.4).

1 Introduction

The minimum common integer partition (MCIP) problem was introduced to
the computational biology community by Chen et al. [7], formulated from their
work on ortholog assignment and DNA fingerprint assembly. Mathematically, a
partition of a positive integer x is a multiset σ(x) = {a1, a2, . . . , at} of positive
integers such that a1 + a2 + . . . + at = x, where each ai is called a part of the
partition of x [2,3]. For example, {3, 2, 2, 1} is a partition of x = 8; so is {6, 1, 1}.
A partition of a multiset X of positive integers is the multiset union of the
partition σ(x) for all x of X, i.e., σ(X) = �x∈Xσ(x). For example, as {3, 2, 2, 1}
is a partition of x1 = 8 and {3, 2} is a partition of x2 = 5, {3, 3, 2, 2, 2, 1} is a
partition for X = {8, 5}.

Given a collection of multisets {X1,X2, . . . , Xk} (k ≥ 2), a multiset S is a
common integer partition (CIP) for them if S is an integer partition of every
multiset Xi, 1 ≤ i ≤ k. For example, when k = 2 and X1 = {8, 5} and X2 =
{6, 4, 3}, {3, 3, 2, 2, 2, 1} is a CIP for them since {3, 3, 2, 2, 2, 1} is also a partition
for X2 = {6, 4, 3}: 3 + 3 = 6, 2 + 2 = 4, and 2 + 1 = 3. The minimum common
integer partition (MCIP) problem is defined as to find a CIP for {X1,X2, . . . , Xk}
with the minimum cardinality, and it is denoted as MCIP(X1,X2, . . . , Xk). For
example, one can verify that, for the above X1 = {8, 5} and X2 = {6, 4, 3},
MCIP(X1,X2) = {6, 3, 2, 2}. We use k-MCIP to denote the restricted version of
the MCIP problem when the number of input multisets is fixed to be k.

For simplicity, we denote the optimal, i.e. the minimum cardinality, CIP
for {X1,X2, . . . , Xk} as OPT(X1,X2, . . . , Xk), or simply OPT when the input
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 353–364, 2014.
DOI: 10.1007/978-3-319-13075-0 28
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multisets are clear from the context; analogously, we denote the CIP for {X1,X2,
. . . , Xk} produced by an algorithm A as CIPA(X1,X2, . . . , Xk), or simply CIPA;
without the algorithm subscript, we use CIP to denote any feasible common
integer partition.

1.1 Known Results

For integer x ∈ Z
+, its number of integer partitions increases very rapidly with

x. For example, integer 3 has three partitions, namely {3}, {2, 1}, and {1, 1, 1};
integer 4 has five partitions, namely {4}, {3, 1}, {2, 2}, {2, 1, 1}, and {1, 1, 1, 1};
while integer 10 has 190,569,292 partitions according to [2].

Given a collection of multisets {X1,X2, . . . , Xk} (k ≥ 2), they have a CIP if
and only if they have the same summation over their elements. Multisets with
this property are called related [6], and we assume throughout the paper that
the multisets in any instance of MCIP are related, as the verification takes only
linear time.

One can see that the 2-MCIP problem generalizes the well-known subset
sum problem [8], and thus it is NP-hard [6]. Chen et al. showed that 2-MCIP
is APX-hard [6], via a linear reduction (also called an approximation preserving
reduction) from the maximum bounded 3-dimensional matching problem [9].

Let m = |X1| + |X2| + . . . + |Xk| denote the total number of integers in the
k-MCIP problem. For the positive algorithmic results, Chen et al. presented a
linear time 2-approximation algorithm and an O(m9)-time 5/4-approximation
algorithm for 2-MCIP [6], based on a heuristic for the maximum weighted set
packing problem [9]. The 5/4-approximation can be taken as a subroutine to
design a 0.625k-approximation algorithm for k-MCIP (when k is even; when k
is odd, the approximation ratio is 0.625k + 0.375) [10]. Woodruff developed a
framework for capturing the frequencies of the integers across the input multisets
and presented a randomized O(m log k)-time approximation algorithm for k-
MCIP, with worst-case performance ratio 0.6139k(1 + o(1)) [10]. The basic idea
is, when there are not too many distinct integers in the input multisets, most
of the low frequency integers will have to be split into at least two parts in any
common partition. Inspired by this idea, Zhao et. al. [11] formulated the k-MCIP
problem into a flow decomposition problem in an acyclic k-layer network with
the goal to find a minimum number of directed simple paths from the source
to the sink. Since this minimum number can be bounded by the number of
arcs in the network according to the well-known flow decomposition theorem [1],
Zhao et. al. presented a scheme to reduce the number of arcs in the network,
resulting in a de-randomized approximation algorithm with performance ratio
0.5625k(1 + o(1)), which is the currently best.

1.2 Our Contributions

In this paper, we present a polynomial-time 6/5-approximation algorithm for
2-MCIP. Subsequently, we obtain a 0.6k-approximation algorithm for k-MCIP
when k is even (when k is odd, the approximation ratio is 0.6k+0.4). It is worth
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pointing out that the ratio of 0.5625k in [11] is asymptotic, that it holds for only
sufficiently large k; while our ratio of 0.6k is absolute, that it holds for all k.

2 A 6/5-Approximation Algorithm for 2-MCIP

In this section, we deal with the 2-MCIP problem. For ease of presentation, we
denote the twomultisets of positive integers in an instance asX = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}, and assume without loss of generality that they are
related. Recall that, OPT(X,Y ) denotes the optimal solution — the minimum car-
dinality CIP for {X,Y }, and CIPA(X,Y ) denotes the solution CIP produced by
algorithm A.

2.1 Preliminaries

Chen et al. presented a simple linear time 2-approximation algorithm for 2-
MCIP [5,6], denoted as Apx21. In each iteration of Apx21, it chooses an (arbi-
trary) element x ∈ X and an (arbitrary) element y ∈ Y , and adds min{x, y} to
the solution CIPApx21; subsequently, if x = y then x is removed from X and y
is removed from Y ; otherwise min{x, y} is removed from the multiset it appears
in and max{x, y} is replaced with max{x, y} − min{x, y} in the other multiset.
Its performance ratio of 2 is seen from the fact that |OPT(X,Y )| ≥ max{m,n}
and that the solution CIPApx21 contains no more than m + n − 1 integers. Con-
sequently, we have the following lemma.

Lemma 1. [5,6] max{m,n} ≤ |OPT(X,Y )| ≤ |CIPApx21| ≤ m + n − 1.

Given an instance {X,Y } of 2-MCIP and an arbitrary CIP that specifies the
integer partitions for all elements of X and Y , we say that xi ∈ X is mapped
to yj ∈ Y if there exists an element of CIP that is a part of the partition for
xi and is also a part of the partition for yj . This mapping relationship gives
rise naturally to a bipartite graph G(X,Y ), in which the two disjoint subsets of
vertices are X and Y , respectively, and vertex xi and vertex yj are adjacent if
and only if xi is mapped to yj according to the CIP. Note that an edge of the
bipartite graph G one-to-one corresponds to an element of CIP, and there could
be multiple edges between a pair of vertices in G(X,Y ). In the sequel, we use
integer xi and vertex xi interchangeably, and use an edge of G and an element
of CIP interchangeably.

For a connected component of the bipartite graph G(X,Y ), let X ′ denote its
subset of vertices in X and Y ′ denote its subset of vertices in Y , respectively;
then X ′ and Y ′ are related and they are called a pair of related sub-multisets of
X and Y ; furthermore, the edges in this connected component form a common
integer partition for X ′ and Y ′ and denoted as CIP(X ′, Y ′), with |CIP(X ′, Y ′)| ≥
|X ′| + |Y ′| − 1.

It might happen that the induced bipartite graph G(X,Y ) by any CIP of
{X,Y } is connected, or equivalently speaking X and Y has no pair of related
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proper sub-multisets. In this case X and Y are basic related multisets. For exam-
ple, X = {3, 3, 4} and Y = {6, 2, 2} are not basic since {3, 3} and {6} is a pair of
related proper sub-multisets; while X = {1, 4} and Y = {2, 3} are basic. Define
the size of a pair of related multisets X and Y to be the total number of elements
in the two multisets, i.e. |X| + |Y |.
Lemma 2. [5,6] If X and Y are a pair of basic related multisets, then |OPT
(X,Y )| = |X| + |Y | − 1.

If the minimum size of any pair of related sub-multisets of X and Y is c,
then |OPT(X,Y )| ≥ c−1

c (|X| + |Y |).
In the sequel, a set containing a single element is also denoted by the element,

when there is no ambiguity, and X −X ′ is the set minus/subtraction operation.
The next lemma handles size-2 related sub-multisets.

Lemma 3. [5,6] For an instance {X,Y } of 2-MCIP, if xi = yj for some xi ∈ X
and yj ∈ Y , then xi � OPT(X − xi, Y − yj) is a minimum CIP for X and Y ,
i.e., |OPT(X,Y )| = |OPT(X − xi, Y − yj)| + 1.

2.2 The Algorithm

In this section we present a new approximation algorithm, denoted as Apx65,
for computing a CIP for the given two related multisets X and Y . The running
time and worst-case performance analyses are done in the next section. Essen-
tially, algorithm Apx65 extends the set packing idea in the 5/4-approximation
algorithm [5,6], to pack the pairs of basic related sub-multisets of sizes 3, 4, and
5. Nonetheless, our set packing process is different from the process in the 5/4-
approximation algorithm, and the performance analysis is built on several new
properties we uncover between OPT(X,Y ) and our CIPApx65.

Let Z = X ∩Y denote the sub-multiset of common elements of X and Y . By
Lemma 3 we know that OPT(X − Z, Y − Z) � Z is an optimal CIP for X and
Y . Therefore, in the sequel we assume without loss of generality that X and Y
do not share any common integer. In the first step of algorithm Apx65, all pairs
of basic related sub-multisets of X and Y of sizes 3, 4, and 5 are identified. A
pair of basic related sub-multisets of size i is called an i-set, for i = 3, 4, 5; the
weight w(·) of a 3-set (4, 5-set, respectively) is set to 3 (2, 1, respectively). We
use C to denote this collection of i-sets for i = 3, 4, 5.

Let the ground multiset U contain all elements of X and Y that appear in
some i-set of C. In the second step, the algorithm is to find a set packing of large
weight for the Weighted Set Packing [4] instance (U, C). To do so, a graph H is
constructed in which a vertex one-to-one corresponds to an i-set of C and two
vertices are adjacent if and only if the two corresponding i-sets intersect. This
step of computing a heavy set packing is iterative [4], denoted by Greedy37:
suppose P is the current set packing (equivalently an independent set in H,
which was initialized to contain all isolated vertices of H), and let w2(P ) =∑

p∈P w2(p) be the sum of squared weights of all i-sets of P ; an independent set
T of H (equivalently a sub-collection of disjoint i-sets of C) improves w2(P ) if



An Improved Approximation Algorithm for the MCIP Problem 357

w2(T ) > w2(N(T, P )), where N(T, P ) denotes the closed neighborhood of T in
P ; finally, if there is an independent set T of size ≤ 37 which improves w2(P ),
then P is replaced by (P − N(T, P )) ∪ T ; otherwise, the process terminates and
returns the current P as the solution set packing.

Input: Related multisets X and Y .
Output: A common integer partition CIPApx65 of X and Y .

1. 1.1. Let Z = X ∩ Y ;
1.2. X ← X − Z, Y ← Y − Z;
1.3. Identify C of all basic related sub-multisets of sizes 3, 4, 5;

2. 2.1. Let U be the ground multiset;
2.2. Compute a heavy set packing P for instance (U, C) by Greedy37;

3. 3.1. Let X ′ and Y ′ be the sub-multisets of elements covered by P ;
3.2. Run Apx21 to compute CIPApx21(X − X ′, Y − Y ′);

3.3. Return Z �
(⊎

X0�Y0∈P OPT(X0, Y0)
)

� CIPApx21(X − X ′, Y − Y ′).

Fig. 1. A high-level description of algorithm Apx65

Let P denote the set packing computed in the second step, and X ′ and Y ′

denote the sub-multisets of X and Y , respectively, of which the elements are
“covered” by the i-sets of P . Note that P is maximal, in the sense that no more
i-set of C can be appended to P . Therefore, in the remainder 2-MCIP instance
(X−X ′, Y −Y ′), the minimum size of any pair of related sub-multisets of X−X ′

and Y − Y ′ is at least 6. In the last step, algorithm Apx21 is run on instance
(X−X ′, Y −Y ′) to output a solution CIPApx21(X−X ′, Y −Y ′); the final solution
CIPApx65(X,Y ) is

Z �
(

⊎

X0�Y0∈P

OPT(X0, Y0)

)

� CIPApx21(X − X ′, Y − Y ′), (1)

where X0 � Y0 ∈ P is an i-set in the computed set packing P . A high-level
description of algorithm Apx65 is depicted in Fig. 1.

2.3 Performance Analysis

The key to the performance guarantee is to analyze the quality of the computed
set packing P in the second step of the algorithm. Let Pi denote the collec-
tion of i-sets in P , for i = 3, 4, 5, respectively. For the weighted set packing
instance (U, C), we consider one optimal set packing Q∗ and let Q∗

i denote the
sub-collection of i-sets in Q∗, for i = 3, 4, 5, respectively. Let pi = |Pi| and
q∗
i = |Q∗

i |, for i = 3, 4, 5.
We further let Q∗

ij be the sub-collection of Q∗
i , each i-set of which inter-

sects with exactly j sets of the computed set packing P , for i = 3, 4, 5 and
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j = 1, 2, . . . , i. Let q∗
ij = |Q∗

ij |. Because the set packing P is maximal, each set
of Q∗ must intersect with certain set(s) in P . This implies

q∗
i =

i∑

j=1

q∗
ij , i = 3, 4, 5. (2)

On the other hand, every i-set of Q∗
ij intersects with exactly j sets of P ; therefore

5∑

i=3

i∑

j=1

(j × q∗
ij) ≤ |X ′| + |Y ′| =

5∑

i=3

(i × pi). (3)

Eq. (2) and Eq. (3) together give

3q∗
3 + 2q∗

4 + q∗
5

= 3
3∑

j=1

q∗
3j + 2

4∑

j=1

q∗
4j +

5∑

j=1

q∗
5j

≤
⎛

⎝
3∑

j=1

jq∗
3j + 2q∗

31 + q∗
32

⎞

⎠ +

⎛

⎝
4∑

j=1

jq∗
4j + q∗

41

⎞

⎠ +

⎛

⎝
5∑

j=1

jq∗
5j

⎞

⎠

=

⎛

⎝
5∑

i=3

i∑

j=1

jq∗
ij

⎞

⎠ + 2q∗
31 + q∗

32 + q∗
41

≤ (3p3 + 4p4 + 5p5) + 2q∗
31 + q∗

32 + q∗
41. (4)

The following Lemma 4 states a key structural relationship between the com-
puted set packing P and the optimal set packing Q∗. Section 3 is devoted to the
proof of this lemma.

Lemma 4. 3q∗
3 + 2q∗

4 + q∗
5 ≤ 5(p3 + p4 + p5).

By Lemma 3, we assume that there are no common integer elements between
the two input multisets X and Y . Lemma 5 presents a quality guarantee on the
computed CIPApx65(X,Y ), in terms of the set packing P .

Lemma 5. |CIPApx65(X,Y )| ≤ m + n − (p3 + p4 + p5 + 1).

Proof. Note from the description of algorithm Apx65 in Fig. 1, that for every i-set
of the computed set packing P , its common integer partition has the minimum
size i − 1, for i = 3, 4, 5. That is,

∣
∣
∣
∣
∣

⊎

X0�Y0∈P

OPT(X0, Y0)

∣
∣
∣
∣
∣
= 2p3 + 3p4 + 4p5, (5)

where X0�Y0 ∈ P is an i-set in the computed set packing P . On the other hand,
on the remainder instance of X − X ′ and Y − Y ′, algorithm Apx21 returns a
solution

|CIPApx21(X − X ′, Y − Y ′)| ≤ m + n − (3p3 + 4p4 + 5p5) − 1. (6)

The lemma immediately follows from Eqs. (5, 6). �	
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We now estimate OPT(X,Y ). Let Q′
i, for i = 3, 4, 5 be the collection of pairs

of basic related multisets of size i induced by OPT(X,Y ), and let q′
i = |Q′

i|. It
is clear that

3q′
3 + 2q′

4 + q′
5 ≤ 3q∗

3 + 2q∗
4 + q∗

5 (7)

because Q∗ is the maximum weight set packing of the instance (U, C) and cer-
tainly Q = Q′

3 ∪ Q′
4 ∪ Q′

5 is also a set packing.

Lemma 6. |OPT(X,Y )| ≥ 5
6 (m + n) − 1

6 (3q∗
3 + 2q∗

4 + q∗
5).

Proof. Note that for every i-set of the set packing Q, its common integer parti-
tion has the minimum size i − 1, for i = 3, 4, 5. Every other connected compo-
nent in graph G(X,Y ) induced by OPT(X,Y ) has size at least 6. Therefore, by
Lemma 2 we have

|OPT(X,Y )| ≥ 2q′
3 + 3q′

4 + 4q′
5 +

5
6

(m + n − 3q′
3 − 4q′

4 − 5q′
5)

=
5
6
(m + n) − 1

6
(3q′

3 + 2q′
4 + q′

5)

≥ 5
6
(m + n) − 1

6
(3q∗

3 + 2q∗
4 + q∗

5).

This proves the lemma. �	
Theorem 1. Algorithm Apx65 is a 6

5 -approximation for 2-MCIP.

Proof. We first examine the time complexity of algorithm Apx65. From the
description of algorithm Apx65 in Fig 1, steps 1.1 and 1.2 can be done in O(m+n)
and step 1.3 takes O((m + n)5) time as there are at most O((m + n)5) sets in C.
Our weighting scheme ensures that each iteration of Greedy37 increases the sum
of squared weights by at least 1. Note that the sum of squared weights of any
set packing is upper bounded by 3(m + n). We conclude that the total number
of iterations in Greedy37 is O(m + n). In each iteration, we check every sub-
collection of C of size ≤ 37, which takes O((m + n)5×37) = O((m + n)185) time.
That is, step 2 costs O((m + n)186) time. Step 3 takes linear time as algorithm
Apx21 runs in linear time. In summary, the total running time of our algorithm
Apx65 is O((m + n)186).

For its worst case performance ratio, by Lemmas 4, 5 and 6, we have

CIPApx65(X,Y )
OPT(X,Y )

≤ m + n − (p3 + p4 + p5 + 1)
5
6 (m + n) − 1

6 (3q∗
3 + 2q∗

4 + q∗
5)

≤ 6
5

× m + n − (p3 + p4 + p5 + 1)
m + n − 1

5 (3q∗
3 + 2q∗

4 + q∗
5)

≤ 6
5

× m + n − (p3 + p4 + p5 + 1)
m + n − (p3 + p4 + p5)

<
6
5
,

where m = |X| and n = |Y |. Therefore, Apx65 is a 6
5 -approximation. �	
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3 Proof of Lemma 4

Recall the termination condition of algorithm Greedy37 for computing the heavy
set packing P , that is, there is no independent set T such that |T | ≤ 37 and T
improves w2(P ). Also recall the weighting scheme (w3, w4, w5) = (3, 2, 1), where
wi is the weight of an i-set of C. We summarize in the following Lemma 7 some
useful properties of the sets in Q∗

31, Q∗
41, and Q∗

32, see also Fig. 2. Their proofs
are straightforward using the termination condition and the weight scheme, and
we skip them.

Lemma 7. (a) Every set of Q∗
31 intersects with a set of P3, and no other set

of Q∗
31 ∪ Q∗

41 can intersect with this set of P3; such sets of P3 form a sub-
collection denoted as P 1

3 .
(b) Every set of Q∗

41 intersects with a set of P3 ∪ P4.
(b1) If two sets of Q∗

41 intersect with a common set of P , then this set belongs
to P3, and no other set of Q∗

41 can intersect with this set of P3; such sets
of P3 form a sub-collection denoted as P 2

3 , and such sets of Q∗
41 form a

sub-collection denoted as Q∗1
41.

(b2) If only one set of Q∗
41 intersects with a set of P3, then no other set

of Q∗
31 ∪ Q∗

41 can intersect with this set of P3; such sets of P3 form a
sub-collection denoted as P 3

3 , and such sets of Q∗
41 form a sub-collection

denoted as Q∗2
41.

(b3) Otherwise, a set of Q∗
41 intersects with a set of P4, and no other set

of Q∗
31 ∪ Q∗

41 can intersect with this set of P4; such sets of Q∗
41 form a

sub-collection denoted as Q∗3
41.

Let P 4
3 = P3 − P 1

3 − P 2
3 − P 3

3 . Clearly, {P 1
3 , P 2

3 , P 3
3 , P 4

3 } is a partition of P3;
so is {Q∗1

41, Q
∗2
41, Q

∗3
41} a partition of Q∗

41.
(c) Every set of Q∗

32 must intersect a set of P3.

Q∗
31 Q∗1

41 Q∗1
41 Q∗2

41 Q∗3
41

P 1
3 P 2

3 P 3
3 P4

Fig. 2. The definitions of sub-collections of P3 and Q41∗ using the set intersecting con-
figurations, where a solid (dashed, respectively) line indicates a firm (possible, respec-
tively) set intersection

Let pj
3 = |P j

3 | for j = 1, 2, 3, 4, and q∗j
41 = |Q∗j

41| for j = 1, 2, 3.

Lemma 8. We have the following relationships: p3 = p13 + p23 + p33 + p43, q∗
41 =

q∗1
41 + q∗2

41 + q∗3
41 , p13 = q∗

31, p23 = 1
2q∗1

41 , and p33 = q∗2
41 .
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Proof. The first two equalities hold since, by Lemma 7(b), {P 1
3 , P 2

3 , P 3
3 , P 4

3 } is a
partition of P3, and {Q∗1

41, Q
∗2
41, Q

∗3
41} is a partition of Q∗

41.
The third equality holds by Lemma 7(a) that the sets of Q∗

31 and the sets of
P 1
3 one-to-one correspond to each other. Analogously, the fourth equality holds

due to Lemma 7(b1) that the sets of Q∗1
41 are paired up, and these pairs and

the sets of P 2
3 one-to-one correspond to each other; the fifth equality holds by

Lemma 7(b2) that the sets of Q∗2
41 and the sets of P 3

3 one-to-one correspond to
each other. �	

We next construct a bipartite graph H ′, which is an induced subgraph of
graph H that we constructed for the Weighted Set Packing instance (U, C), as
follows: One subset of vertices of H ′ is Q∗

31 ∪Q∗
32 ∪Q∗

41 (which is a sub-collection
of the optimal set packing Q∗), and the other subset of vertices of H ′ is P (which
is the computed set packing), and again two vertices are adjacent if and only if
the corresponding two sets intersect. In the sequel, we use the set of C and the
vertex of graph H (or H ′) interchangeably; we also abuse the sub-collection, such
as Q∗

31, of sets to denote the corresponding vertex subset in graph H (or H ′).
Once again recall that the termination condition of Greedy37 tells that there is
no improving subset of Q∗

31 ∪ Q∗
32 ∪ Q∗

41 of size ≤ 37.
We prove Lemma 4 by showing that the inequality holds in every connected

component of graph H ′, followed by a straightforward linear summation over
all connected components. We therefore assume without loss of generality that
graph H ′ is connected.

Lemma 9. If p4 + p5 ≥ 2, then in graph H ′ the length of the shortest path
between any two vertices a, b ∈ P4 ∪ P5 is d(a, b) ≥ 76; consequently, p3 ≥ 37
and p4 + p5 ≤ 1

18p3.

Proof. Let a and b be two vertices of P4 ∪ P5 such that there is no other vertex
from P4 ∪ P5 on a shortest path connecting them in graph H ′. Since H ′ is
bipartite, this path has an even length and is denoted as

〈a = a0, c0, a1, c1, . . . , a�, c�, a�+1 = b〉,
for some � ≥ 0 (see Fig. 3). Since every vertex ci on the path has degree at least
2, it has to belong to Q∗

32 and consequently it has degree exactly 2 in graph H ′.
It follows that for the independent set T = {c0, c1, . . . , c�}, w2(T ) = 9(� + 1)
and w2(N(T, P )) = w2({a0, a1, . . . , a�+1}) ≤ 9� + 8. We conclude that � ≥ 37 as
otherwise T would be an improving subset of vertices. Therefore, the length of the
above shortest path is d(a, b) ≥ 76 and it contains at least � ≥ 37 vertices of P3.

To prove the second half of the lemma, we notice that graph H ′ is connected.
For every vertex a ∈ P4 ∪ P5, we pick arbitrarily another vertex b ∈ P4 ∪ P5 and
consider a shortest path connecting them in graph H ′ that does not contain any
other vertex from P4 ∪ P5:

〈a = a0, c0, a1, c1, . . . , a�, c�, a�+1 = b〉,
for some � ≥ 37. Initially every vertex of P4 ∪ P5 is worth 1 token; through this
path, vertex a distributes its 1 token evenly to vertices a1, a2, . . . , a18, which are
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a = a0 a1 · · · · · · a� a�+1 = b

c0 c1 · · · · · · c�

P

Q∗
31 ∪ Q∗

32 ∪ Q∗
41

Fig. 3. The configuration of the shortest path connecting a, b ∈ P4 ∪ P5

all vertices of P3. After every vertex of P4 ∪ P5 has distributed its token, from
� ≥ 37 we conclude that every vertex of P3 receives no more than 1

18 token.
Therefore,

p4 + p5 ≤ 1
18

p3.

This proves the lemma. �	
From Lemma 9, we see that the number of 4-sets and 5-sets in the computed

set packing P is very small compared against the number of 3-sets. In the fol-
lowing Lemma 10 we prove that 2q∗

31+q∗
32+q∗

41 ≤ 2p3+p4 through an amortized
analysis. By Eq. (4), Lemma 10 is sufficient to prove Lemma 4.

Lemma 10. 2q∗
31 + q∗

32 + q∗
41 ≤ 2p3 + p4.

Proof. The proof of the lemma is through an amortized analysis, and is done
via five distinct cases. We assign 2 tokens for each vertex of Q∗

31 and 1 token for
each vertex of Q∗

32 ∪ Q∗
41. So we have a total of 2q∗

31 + q∗
32 + q∗

41 tokens. We will
prove that 2q∗

31 +q∗
32 +q∗

41 ≤ 2p3 +p4 by distributing these tokens to the vertices
of P .

We consider the following five distinct cases of graph H ′, which are separately
dealt:

Case 1. q∗
31 = q∗

41 = 0,
Case 2. q∗

31 = 1 and q∗
41 = 0,

Case 3. q∗
31 = 0 and q∗

41 = 1,
Case 4. q∗

31 = 0 and q∗
41 = 2 with either q∗1

41 = 2 or q∗2
41 = 2,

Case 5. q∗
31 + q∗

41 ≥ 2 excluding Case 4.

Due to space constraint, in the following we only prove the inequality for Case
1: if q∗

31 = q∗
41 = 0, then 2q∗

31 + q∗
32 + q∗

41 ≤ 2p3 + p4.
Firstly, from Lemma 7(c), every set of Q∗

32 must intersect a set of P3. If
p4 + p5 ≤ 1, then we have 2q∗

32 ≤ 3p3 + 5. It follows that when p3 ≥ 5, 2q∗
32 ≤

3p3 + 5 ≤ 4p3 and thus 2q∗
31 + q∗

32 + q∗
41 ≤ 2p3 + p4. When p3 = 4 (3, 2, 1, 0,

respectively), w2(P ) ≤ 40 (31, 22, 13, 4, respectively) and thus q∗
32 ≤ 4 (3, 2, 1, 0,
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respectively) by algorithm Greedy37; that is, q∗
32 ≤ p3, and consequently 2q∗

31 +
q∗
32 + q∗

41 ≤ 2p3 + p4.
If p4 + p5 > 1, every set of Q∗

32 distributes 1
2 token to each adjacent set of P .

Note that every i-set of P receives at most i
2 token, by Lemma 9,

q∗
32 ≤

5∑

i=3

i

2
pi ≤ 3

2
p3 +

5
2
(p4 + p5) ≤ 3

2
p3 +

5
2

× 1
18

p3 =
59
36

p3,

and consequently 2q∗
31 + q∗

32 + q∗
41 ≤ 2p3 + p4.

The other four cases can be analogously proved. �	

4 A 0.6k-Approximation Algorithm for k-MCIP

Given an instance of the k-MCIP problem {X1,X2, . . . , Xk}, we first divide
these k multisets into �k/2
 pairs {X2i−1,X2i}, i = 1, 2, . . . , �k/2
, plus the last
multiset Xk if k is odd. Next, we run algorithm Apx65 on each pair {X2i−1,X2i}
to obtain a solution Zi = CIPApx65(X2i−1,X2i), for i = 1, 2, . . . , �k/2
, plus
Z(k+1)/2 = Xk if k is odd. We continue this dividing and running Apx65 on
{Z1, Z2, . . . , Z�(k+1)/2�} if �(k + 1)/2� ≥ 2, and repeat until we have only one
multiset left, denoted as CIPfinal. Clearly, CIPfinal is a common integer partition
of the given multisets X1,X2, . . . , Xk.

Theorem 2. k-MCIP admits a 0.6k-approximation algorithm when k is even,
or a (0.6k + 0.4)-approximation algorithm when k is odd.

Proof. The algorithm in the last paragraph producing a feasible solution CIPfinal

runs in polynomial time. We next estimate its performance, and assume that k
is even. By Theorem 1, we have |Zi| < 6

5 |OPT(X2i−1,X2i)|, for i = 1, 2, . . . , k/2.
Let OPT denote the minimum common integer partition for X1,X2, . . . , Xk.
One clearly sees that |OPT(X2i−1,X2i)| ≤ |OPT|, and from Lemma 1 we have

|CIPfinal| <

k/2∑

i=1

|Zi| <

k/2∑

i=1

6
5
|OPT| =

3k

5
|OPT|.

When k is odd,

|CIPfinal| <

(k−1)/2∑

i=1

|Zi| + |Xk| <

(k−1)/2∑

i=1

6
5
|OPT| + |OPT| =

3k + 2
5

|OPT|,

using |Xk| ≤ |OPT| from Lemma 1. This completes the proof. �	

5 Conclusion

We presented an improved 6
5 -approximation algorithm for the 2-MCIP problem;

the previous best approximation algorithm has a performance ratio of 5
4 and
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was designed in 2006. Subsequently, we obtained an absolute 0.6k-approximation
algorithm for k-MCIP when k is even (when k is odd, the approximation ratio is
0.6k+0.4). It is worth pointing out that the ratio of 0.5625k in [11] is asymptotic,
that it holds for only sufficiently large k; while our ratio of 0.6k is absolute, that
it holds for all k.
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Abstract. Triple patterning lithography (TPL) is one of the major tech-
niques for 14 nm technology node and beyond. This paper discusses
TPL layout decomposition which maximizes objective value represent-
ing decomposition quality. We introduce a maximization problem of the
weighted sum of resolved conflicts and unused stitch candidates. We pro-
pose a polynomial time (7/9)-approximation algorithm based on positive
semidefinite relaxation and randomized rounding procedure.

Our algorithm returns a decomposition such that the expectation of
the corresponding objective value is at least (7/9) times the optimal value
even in the worst case problem instance. To our knowledge, the result is
the first approximation algorithm with a constant approximation ratio
for TPL.

Keywords: Triple patterning · Positive semidefinite relaxation · Approx-
imation algorithm

1 Introduction

As the feature size decreases, various types of techniques including design for man-
ufacture are investigated in lithography. Although extreme ultra violet (EUV)
and electric beam lithography (EBL) are used as the next generation lithogra-
phy recently, they are not widely used due to their slow throughput and etc. Triple
patterning lithography (TPL) and self-aligned double patterning (SADP) are can-
didates for the 14 nm node. Among them, TPL receives more attention from indus-
try to fabricate complicated patterns which are typically found in metal 1 layer
since SADP restricts the flexibility of pattern. For example, researches on TPL
layout decomposition [2,5,9–12,14,15] and TPL aware design [6,7,13] are found.

The problem of finding an assignment of polygons in TPL is essentially equiv-
alent to a problem of vertex 3-coloring for undirected graph, which is NP-hard
in general [3,14]. Therefore, methods proposed so far are heuristics, or exact
solvers such as ILP and SAT are used for small problems.
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 365–375, 2014.
DOI: 10.1007/978-3-319-13075-0 29
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As for TPL layout decomposition, Fang et al. [2] proposed several graph
simplification techniques. Kuang and Young [5] and Zhang et al. [15] proposed
several coloring heuristics. Several structural restrictions were discussed by Tian
et al. in [9,10] and SAT solver was used. Yu et al. [14] proposed a decomposition
method using a vector programming with positive semidefinite programming
(SDP) techniques, and the density balance was taken into account in [12]. Also,
Yu et al. [11] proposed a method using ILP for TPL with cut process where third
mask is used to trim patterns. Although various methods have been proposed so
far, to our knowledge, there is no method that has theoretical guarantees except
the cases when exact solvers can output the results.

In this paper, TPL layout decomposition which maximizes objective value
representing decomposition quality is discussed. We introduce a maximization
problem of the weighted sum of resolved conflicts and unused stitch candidates.
Our maximization problem is essentially equivalent to an ordinary problem of
minimizing weighted sum of the number of conflicts and number of used stitch
candidates [2,5,6,14,15]. We propose a polynomial time (7/9)-approximation
algorithm based on positive semidefinite relaxation and randomized rounding
procedure. Our algorithm returns a decomposition such that the expectation of
the corresponding objective value is at least (7/9) times the optimal value even
in the worst case problem instance. To our knowledge, the result is the first
approximation algorithm with a constant approximation ratio for TPL.

Our positive semidefinite relaxation, which gives a maximization problem,
is essentially equivalent to that proposed in [14], which minimizes an objective
function. It is well-known that a positive semidefinite programming problem
can be solved by interior point methods in polynomial time. The runtime of
SDP solver required in our proposed algorithm is expected to comparable to the
methods in [12,14] since the formulations are similar. However, our proposed
algorithm has the guarantee in the quality of the obtained solution. One can also
apply our randomized rounding procedure to an optimal solution of the positive
semidefinite relaxation problems proposed in [12,14].

The rest of this paper is organized as follows: in Section 2, we formulate
a problem of TPL layout decomposition. A vector programming formulation is
described in Section 3. Section 4 presents a positive semidefinite relaxation prob-
lem. We propose a randomized rounding procedure in Section 5, followed by a
discussion of an approximation ratio in Section 6. Finally, we discuss the synthe-
sis of our rounding procedure and existing methods, and conclude in Section 7.

2 Problem

Let V = {1, 2, . . . , n} be a set of polygons. A polygon may represent a polygon
decomposed by given stitch candidates. (See Figure 1(a).) In the rest of this
paper, a polygon v ∈ V is also called a “vertex.” We introduce a simple graph
(containing no loops or multiple edges) defined on vertex set V . (See Figure 1(b).)
A stitch edge is defined between two polygons if and only if two polygons are
decomposed by a stitch candidate. A polygon conflict edge is defined between
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two polygons if and only if two polygons are too close to assign the same mask.
A set of conflict edges and a set of stitch edges are denoted by EC and ES,
respectively. Here we note that both EC and ES are families of unordered pairs
of polygons in V . (See Figure 1(c).)

triple patterning

conflict edge
stitch edge

verticesstitch
candidate

polygons

(a) (b) (c) (d)

Fig. 1. Set of polygons and a graph

This paper deals with a problem to assign one of three masks to each polygon.
The problem of finding an assignment of polygons is essentially equivalent to a
vertex three coloring problem. We represent a 3-coloring of polygons V by a map
c : V → {0, 1, 2}. (See Figures 1(c) and (d).) When c(v) = i, we say that vertex
v has color i. Given a 3-coloring c, a subset of resolved conflict edges, defined by

CE(c) def.= {{u, v} ∈ EC | c(u) �= c(v)},

denotes a subset of conflict edges connecting vertices whose colors are different.
Similarly, we define a set of unused stitch candidates

SE(c) def.= {{u, v} ∈ ES | c(u) = c(v)},

i.e., a subset of stitch edges connecting vertices with a common color.
This paper discusses TPL layout decomposition which maximizes objective

value representing decomposition quality. The problem maximizes the weighted
sum of resolved conflicts and unused stitch candidates;

P1: maximize α1|CE(c)| + α2|SE(c)|
subject to c(v) ∈ {0, 1, 2} (∀v ∈ V ).

The above problem is similar to the correlation clustering problem introduced
by Bansal, Blum, and Chawla [1] and an approximation algorithm is proposed
by Swamy [8].
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3 Vector Programming

For any 3-coloring c, we introduce a map, presented in [14], defined by

x(v) def.=

⎧
⎪⎪⎨

⎪⎪⎩

(1, 0)� (c(v) = 0),
(
− 1

2 ,
√
3
2

)�
(c(v) = 1),

(
− 1

2 ,−
√
3
2

)�
(c(v) = 2).

The above definition directly implies that
[

c(u) �= c(v) ↔ x(u)�x(v) = − 1
2

]

and
[

c(u) = c(v) ↔ x(u)�x(v) = 1
]

. Then the sizes of CE(c) and SE(c) satisfy

|CE(c)| =
∑

{u,v}∈EC

(−2x(u)�x(v)

3
+

2

3

)
, and |SE(c)| =

∑

{u,v}∈ES

(
2x(u)�x(v)

3
+

1

3

)
.

From the above properties, we formulate P1 as a vector programming problem;

P2: max. α1

∑

{u,v}∈EC

(−2x(u)�x(v)
3

+
2
3

)

+ α2

∑

{u,v}∈ES

(
2x(u)�x(v)

3
+

1
3

)

s. t. x(v)�∈
{

(1, 0),
(
− 1

2 ,
√
3
2

)
,
(
− 1

2 ,−
√
3
2

)}
.

4 SDP Relaxation

We introduce a matrix X of variables whose (u, v) element satisfies Xuv =
x(u)�x(v). Clearly, diagonal elements of X are equal to 1, every element of
X is greater than or equal to −1/2 and X is positive-semidefinite. In the follow-
ing, Sn

+ denotes the set of all the symmetric positive-semidefinite n×n matrices.
Then the problem P2 is formulated as;

P3: max. α1

∑

{u,v}∈EC

(−2Xuv

3
+

2
3

)

+ α2

∑

{u,v}∈ES

(
2Xuv

3
+

1
3

)

s. t. Xuv ≥ − 1
2 (∀(u, v) ∈ V 2),

Xvv = 1 (∀v ∈ V ),
X ∈ Sn

+,

Xuv = x(u)�x(v) (∀(u, v) ∈ V 2), (1)

x(v)�∈
{

(1, 0),
(
− 1

2 ,
√
3
2

)
,
(
− 1

2 ,−
√
3
2

)}
. (2)
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When we remove constraints (1,2) and eliminate variables x(v) (v ∈ V ), we
obtain the following relaxation problem:

SDP: max. α1

∑

{u,v}∈EC

(−2Xuv

3
+

2
3

)

+ α2

∑

{u,v}∈ES

(
2Xuv

3
+

1
3

)

s. t. Xuv ≥ − 1
2 (∀(u, v) ∈ V 2),

Xvv = 1 (∀v ∈ V ),
X ∈ Sn

+,

which is a positive semidefinite programming problem. Interior point methods
solve a positive semidefinite programming problem in polynomial time. If we
denote the optimal value of a problem by z(·), then it is obvious that z(P1) =
z(P2) = z(P3) ≤ z(SDP).

In the following, we briefly show that our positive semidefinite relaxation is
essentially equivalent to that proposed in [14]. It is easy to see that we use the
same constraints. The objective of problem SDP is equivalent to minimizing

−α1

∑

{u,v}∈EC

(−2Xuv

3
+

2
3

)

− α2

∑

{u,v}∈ES

(
2Xuv

3
+

1
3

)

= α1

∑

{u,v}∈EC

(
2Xuv

3
+

1
3

)

+ α2

∑

{u,v}∈ES

(

−2Xuv

3
+

2
3

)

−|EC| − |ES|.

By removing the constant term −|EC| − |ES|, we obtain the objective function
of positive semidefinite relaxation problem proposed in [14].

5 Randomized Rounding

In this section, we propose a randomized rounding procedure based on the hyper-
plane separation technique proposed by Goemans and Williamson [4], which
outputs a 3-coloring from an optimal solution of the problem SDP defined in
the previous section and Cholesky decomposition. For any positive semidefinite
symmetric matrix X ∈ Sn

+, there exists a matrix M satisfying X = M�M . This
decomposition is called Cholesky decomposition.

We solve problem SDP and obtain an optimal solution X̃. Let M̃�M̃ be the
Cholesky decomposition of X̃ and d be the number of rows of M̃ . Here we note
that columns of M̃ are indexed by polygons in V and the length of every column
vector is equal to 1. For each polygon v ∈ V , vector x̃(v) ∈ R

d denotes the
corresponding column vector of M̃ . Now we propose a procedure for generating
a 3-coloring c̃ : V → {0, 1, 2} from a set of (column) vectors x̃(v) ∈ R

d (v ∈ V ).
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Algorithm RR
Step 1: Generate two random unit vectors u0,u1 ∈ R

d (satisfying ||u0|| =
||u1|| = 1).

Step 2: Construct four vertex subsets

V +
0 = {v ∈ V | x̃(v)�u0 > 0}, V −

0 = V \ V +
0 ,

V +
1 = {v ∈ V | x̃(v)�u1 > 0}, V −

1 = V \ V +
1 .

Step 3: For each pair of indices (i, s) ∈ {0, 1} × {+,−}, construct a 3-coloring
c(i, s) : V → {0, 1, 2}, illustrated in Figure 2, defined by

c(i, s)(v) =

⎧
⎨

⎩

0 (v ∈ V s
i ),

1 (v ∈ (V \ V s
i ) ∩ V +

1−i),
2 (v ∈ (V \ V s

i ) ∩ V −
1−i).

Output c̃ ∈ {c(0,+), c(0,−), c(1,+), c(1,−)} which attains the largest objec-
tive function value.

1

0

V0
＋V0

－

V1
＋

V1
－

1

0

1

0

1

0

1

0

C(0,＋)

C(1,＋)

C(0,－)

C(1,－)

Fig. 2. Generated two cuts and four 3-colorings

The above procedure finds a TPL layout decomposition, which is a feasible
solution of problem P1. In the next section, we discuss the quality of the obtained
solution by estimating α1|CE(c̃)| + α2|SE(c̃)|, which corresponds to the value of
the objective function in original problem P1.

6 Approximation Ratio

In this section, we theoretically estimate the quality of a solution obtained by
Algorithm RR. Let Z̃ be the objective value α1|CE(c̃)|+α2|SE(c̃)| corresponding
to 3-coloring c̃ obtained by Algorithm RR. Here we note that Algorithm RR is
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a randomized algorithm, and thus the objective value Z̃ is a random variable.
In the following, we discuss the expectation E[Z̃] of the random variable Z̃.

We denote the objective values of four 3-colorings generated in Step 3 of
Algorithm RR by Z(i, s) ((i, s) ∈ {0, 1} × {+,−}). These four values are also
random variables. Then, E[Z̃] has the following trivial lower bound:

E
[
Z̃
]

= E
[

max{Z(0,+), Z(0,−), Z(1,+), Z(1,−)}
]

≥ E
[
Z(0,+) + Z(0,−) + Z(1,+) + Z(1,−)

4

]

.

Next, we introduce three families of pairs of polygons appearing in Figure 3,
precisely defined as follows;

E0 = {{u, v} ⊆ V | u �= v and ∃(i, s) ∈ {0, 1} × {+,−}, {u, v} ⊆ V s
i } ,

E1 =
{

{u, v} ⊆ V

∣
∣
∣
∣
u �= v and ∃(i, s) ∈ {0, 1} × {+,−},
u ∈ V s

i ∩ V +
1−i and v ∈ V s

i ∩ V −
1−i

}

,

E2 = {{u, v} ⊆ V | u �= v} \ (E0 ∪ E1).

Clearly, {E0, E1, E2} is a partition of all the unordered pairs of polygons.

1

0

1

0

1

0

E0 E1 E2

(a) (b) (c)

Fig. 3. Three edge subsets

The expectation

E
[
Z(0,+) + Z(0,−) + Z(1,+) + Z(1,−)

4

]

is equal to the expectation of the objective value when we choose one of four
3-colorings c(0,+), c(0,−), c(1,+), c(1,−) uniformly at random. If we choose one
of four 3-colorings randomly, then the following properties hold;

1. ∀{u, v} ∈ E0, polygons u and v have a same color,
2. ∀{u, v} ∈ E1, color of u differs from that of v with probability (3/4),
3. ∀{u, v} ∈ E2, colors of polygons u and v are different.
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The above properties directly imply that

E
[
Z̃
]

≥ E
[
Z(0,+) + Z(0,−) + Z(1,+) + Z(1,−)

4

]

= E

⎡

⎢
⎢
⎣

α1

(

|E2 ∩ EC| + (3/4)|E1 ∩ EC|
)

+α2

(

|E0 ∩ ES| + (1/4)|E1 ∩ ES|
)

⎤

⎥
⎥
⎦

= α1

∑

e∈EC

(

Pr[e ∈ E2] + (3/4)Pr[e ∈ E1]
)

+α2

∑

e∈ES

(

Pr[e ∈ E0] + (1/4)Pr[e ∈ E1]
)

.

For any pair of polygons (u, v) ∈ V 2, we denote the angle of two vectors
x̃(u), x̃(v) ∈ R

d by θ̃uv = θ̃vu[rad]. Then it is obvious that the equalities

cos θ̃uv = ||x̃(u)|| · ||x̃(v)|| cos θ̃uv = x̃(u)�x̃(v) = X̃uv

hold. Since an optimal solution X̃ of P3 satisfies X̃uv ≥ −1/2 for any (u, v) ∈ V 2,
every pair (u, v) ∈ V 2 satisfies inequalities 0 ≤ θ̃uv ≤ 2π/3.

For any pair of vectors x̃(u), x̃(v) ∈ R
d, Huv denotes the 2-dimensional linear

subspace spanned by these vectors. Let u′0 and u′1 be projections of vectors u0

and u1 (generated at Step 1 in Algorithm RR) onto Huv. Then the randomness
of vectors u0 and u1 implies that the normalized vectors of u′0 and u′1, defined
by u′0/||u′0|| and u′1/||u′1||, are uniformly distributed on a unit circle in the
plane Huv. Thus, we have that ∀(u, v) ∈ V 2, ∀i ∈ {0, 1}, a hyperplane H =
{x ∈ R

d | ui�x = 0} does not separate two points x̃(u), x̃(v) ∈ R
d with the

probability

Pr
[∃s ∈ {+,−}, {u, v} ⊆ V s

i

]
= 1 − θ̃uv

π
.

The independency of {u0,u1} induces that for any mutually different pair of
polygons u, v ∈ V ;

Pr
[{u, v} ⊆ E0] =

(

1 − θ̃uv

π

)2

,

Pr
[{u, v} ⊆ E1] = 2

(
θ̃uv

π

)(

1 − θ̃uv

π

)

,

Pr
[{u, v} ⊆ E2] =

(
θ̃uv

π

)2

.

Now we have the following lemma, which plays an important role in estimat-
ing an approximation ratio.
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Lemma 1. If an angle θ satisfies 0 ≤ ∀θ ≤ 2π
3 , then the following inequalities:

(
θ

π

)2

+
(

3
4

)

2
(

θ

π

)(

1 − θ

π

)

≥
(

7
9

)(−2 cos θ

3
+

2
3

)

,

(

1 − θ

π

)2

+
(

1
4

)

2
(

θ

π

)(

1 − θ

π

)

≥
(

7
9

)(
2 cos θ

3
+

1
3

)

,

hold.

Proof. The above inequalities follow by simple calculus (see Figure 4). �
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Fig. 4. Approximation ratio

The above Lemma directly implies the following lower bound of E[Z̃]:

E[Z̃] ≥ α1

∑

{u,v}∈EC

⎛

⎝

(
θ̃uv

π

)2

+
(

3
4

)

2

(
θ̃uv

π

)(

1 − θ̃uv

π

)⎞

⎠

+α2

∑

{u,v}∈ES

⎛

⎝

(

1 − θ̃uv

π

)2

+
(

1
4

)

2

(
θ̃uv

π

)(

1 − θ̃uv

π

)⎞

⎠

≥ α1

∑

{u,v}∈EC

(
7
9

)(−2 cos θ̃uv

3
+

2
3

)

+ α2

∑

{u,v}∈ES

(
7
9

)(
2 cos θ̃uv

3
+

1
3

)

=
(

7
9

)
⎛

⎝α1

∑

{u,v}∈EC

(
−2X̃uv

3
+

2
3

)

+ α2

∑

{u,v}∈ES

(
2X̃uv

3
+

1
3

)⎞

⎠

=
(

7
9

)

z(SDP) ≥
(

7
9

)

z(P1),

where z(SDP) and z(P1) denote the optimal values of SDP and P1, respectively.
From the above discussion, we have the following theorem.
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Theorem 1. For any problem instance of P1, the expectation of the objective
value corresponding to a 3-coloring obtained by Algorithm RR is greater than or
equal to (7/9) times the optimal value of the original problem P1.

7 Discussions

In this paper, we proposed an approximation algorithm for TPL layout decom-
position, which opens a new theoretical perspective of methods for TPL with
guaranteed accuracy.

We formulate a problem of TPL layout decomposition which maximizes
objective value representing decomposition quality. Our maximization problem
is essentially equivalent to an ordinary problem of minimizing weighted sum of
the number of conflicts and number of used stitch candidates [2,5,6,14,15].

Comparing to existing methods, our algorithm has a theoretical precision of
an output, i.e., the expectation of the corresponding objective function value is
greater than or equal to (7/9) times the optimal value of original problem even in
the worst case problem instance. Our result is the first approximation algorithm
with a constant approximation ratio for TPL layout decomposition.

Algorithm RR applies the hyperplane separation technique twice and obtain
a partition of vertices consisting of four vertex subsets (see Figure 3 (a)). If
we apply the hyperplane separation technique three times, we obtain a parti-
tion of vertices consisting of eight vertex subsets (see (a) and (b) of Figure 5).
Figure 5 (c) indicates a rounding technique for generating vertex 3-coloring,
which has 12 variations obtained by rotating Figure 5. If we execute both Algo-
rithm RR and the rounding method indicated by Figure 5, then a better solution
gives a vertex 3-coloring, whose approximation ratio is greater than 0.78855.
(Here we omit the detail due to limitations of space.)

Fig. 5. Rounding technique for a partition obtained by three hyperplanes

We can extend the existing method proposed by Yu et al. in [14] to a method
with guaranteed accuracy by simply adding our randomized rounding procedure
and selecting a better solution (from a pair of solutions obtained by the existing
method and our randomized rounding procedure). Here we note that we need
not to solve SDP twice. Even in the case that the existing method finds a better
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solution, the above synthesis gives a certificate of accuracy to output. Since
our randomized rounding procedure only requires positive semi-definiteness of a
solution, one can apply our procedure to an optimal solution of existing positive
semidefinite relaxation problems for TPL layout decomposition (e.g., [12]), even
if its objective function includes different terms.
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Abstract. Computing high dimensional volumes is a hard problem,
even for approximation. It is known that no polynomial-time determin-
istic algorithm can approximate with ratio 1.999n the volumes of con-
vex bodies in the n dimension as given by membership oracles. Several
randomized approximation techniques for #P-hard problems has been
developed in the three decades, while some deterministic approximation
algorithms are recently developed only for a few #P-hard problems. For
instance, Stefankovic, Vempala and Vigoda (2012) gave an FPTAS for
counting 0-1 knapsack solutions (i.e., integer points in a 0-1 knapsack
polytope) based on an ingenious dynamic programming. Motivated by a
new technique for designing FPTAS for #P-hard problems, this paper
is concerned with the volume computation of 0-1 knapsack polytopes: it
is given by {x ∈ R

n | a�x ≤ b, 0 ≤ xi ≤ 1 (i = 1, . . . , n)} with a
positive integer vector a and a positive integer b as an input, the volume
computation of which is known to be #P-hard. Li and Shi (2014) gave
an FPTAS for the problem by modifying the dynamic programming for
counting solutions. This paper presents a new technique based on approx-
imate convolution integral for a deterministic approximation of volume
computations, and provides an FPTAS for the volume computation of
0-1 knapsack polytopes.

Keywords: Approximate convolution integral · Volume computation ·
#P-hard · Knapsack polytope

1 Introduction

Computing a volume in n-dimensional space is a hard problem, even for approxi-
mation. Lovász [16] showed that no polynomial-time deterministic algorithm can
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approximate with ratio 1.999n the volumes of convex bodies in the n dimensional
space as given by membership oracles (see also [2,7]).

Several randomized approximation techniques for #P-hard problems has been
developed, such as the Markov chain Monte Carlo method. For the volume com-
putation of general convex bodies given by a membership oracle in the n dimen-
sional space, Dyer, Frieze and Kannan [6] gave the first fully polynomial-time
randomized approximation scheme (FPRAS ), giving a rapidly mixing Markov
chain. In fact, the running time of the FPRAS is O∗(n23) where O∗ ignores
poly(log n) and 1/ε terms. Subsequently, several techniques have been devel-
oped for the volume computation, and Lovász and Vempala [17] finally gave an
improved algorithm of O∗(n4)-time.

In contrast, it is a major challenge to design deterministic approximation
algorithms for #P-hard problems, and not many results seem to be known. A
remarkable progress is the correlation decay argument due to Weitz [21]; he
designed a fully polynomial time approximation scheme (FPTAS ), for counting
independent sets in graphs of maximum degree Δ ≥ 5. A similar technique is
independently presented by Bandyopadhyay and Gamarnik [1], and there are
several recent developments on the technique, e.g., [3,8,12,13,15]. For count-
ing 0-1 knapsack solutions, Gopalan, Klivans and Meka [9], and Stefankovic,
Vempala and Vigoda [19] gave deterministic approximation algorithms based on
the dynamic programming (see also [10]), in a similar way to a simple random
sampling algorithm by Dyer [4]. Modifying the dynamic programming, Li and
Shi [14] recently gave an FPTAS for computing a distribution function of sum of
random variables, including the volume computation of 0-1 knapsack polytopes.

Motivated by a new technique of designing FPTASs for #P-hard problems,
this paper is concerned with the volume computation of 0-1 knapsack polytopes:
Given a positive integer1 vector a� = (a1, . . . , an) ∈ Z

n
>0 and a positive integer

b ∈ Z>0, the 0-1 knapsack polytope is given by

K(b) def= {x = (x1, . . . , xn) ∈ R
n | a�x ≤ b, 0 ≤ xi ≤ 1 (i = 1, . . . , n)}.

For the simplicity of description, we in the following assume that a1 ≤ · · · ≤ an,
without loss of generality. Computing the volume of K(b) is known to be #P-
hard (see e.g., [5]). Remark that counting solutions corresponds to counting the
integer points in K(b), and it is different from the volume computation, but
closely related.

This paper presents a new technique for designing a deterministic approxima-
tion algorithm for volume computations, and provides an FPTAS for the volume
computation of 0-1 knapsack polytopes, i.e., our main result is the following:

Theorem 1.1. For any ε > 0, there exists an O(τn4/ε)-time deterministic
algorithm to approximate Vol(K(b)) with approximation ratio 1 + ε, where τ
denotes the complexity of a numerical computation, which is bounded by τ = O(n
log(max{an, b})) in the algorithm.
1 For the simplicity of arguments, this paper assumes integer, while our technique is

also applied to real valued inputs. See e.g., [11,20] for a treatment of real values.
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The idea of our algorithm is based on the classical convolution integral, while
there seems no known technique (explicitly) using an approximate convolution
integral to design an FPTAS for #P-hard problems. In fact, our algorithm
repeats a recursive approximate convolution with O(n3/ε) iterations for n times,
meaning that the number of iteration is independent of the values ai and b.

In comparison with Li and Shi [14], the running time of their algorithm is
O

(
(n3/ε2) log (1/Vol(K(b))) log b

)
where notice that Vol(K(b)) ≤ 1 holds by

the definition of K(b). Their algorithm is based on the dynamic programming
by [19], and then the number of iterations is Ω(1/ε) and Ω(log(Vol(K(b)))),
i.e., depending on Ω(log ai) or Ω(log b), in their algorithm. In contrast, our
technique is completely different, and the algorithm requires O(n4/ε) iterations;
the algorithm is somehow combinatorial (or “strongly polynomial,” in a sense)
rather than arithmetic.

This paper is organized as follows. In Section 2, we describe the volume
computation in terms of the recursive convolution integral, to explain the idea
of our algorithm. In Section 3, we explain our algorithm, and give an analysis
under the assumption that ai ≤ b (i = 1, . . . , n). In Section 4, we briefly explain
how to get rid of the assumption. In Section 5, we conclude the paper.

2 Distribution Function of Uniform Sum

Let Y = (Y1, . . . , Yn) be a uniform random variable over [0, 1]n. Then, it is not
difficult to see that [a�Y ≤ b] if and only if [Y ∈ K(b)], meaning that

Pr[a�Y ≤ b] = Pr[Y ∈ K(b)] =
Vol(K(b))
Vol([0, 1]n)

= Vol(K(b))

hold. For the convenience of the later arguments, let Xi = aiYi for each i ∈
{1, . . . , n}. Then, we observe that

Pr[X1 + · · · + Xn ≤ b] = Pr[Y ∈ K(b)]

holds, meaning that Pr[X1 + · · · + Xn ≤ b] = Vol(K(b)). Clearly, each Xi is
uniformly distributed over [0, ai], and X1, . . . , Xn are mutually independent.
Let fi(x) and Fi(x) = Pr[Xi ≤ x] respectively denote the probability density
function and the probability distribution function of Xi, i.e.,

fi(x) =

⎧
⎪⎨

⎪⎩

1
ai

0 ≤ x ≤ ai,

0 otherwise,
Fi(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 0,

x

ai
0 ≤ x ≤ ai,

1 x ≥ ai.

Now, we define Φ0(x) = 0 for x ≤ 0, while Φ0(x) = 1 for x > 0. Inductively,
for x ∈ R and i = 1, 2, . . . , n, we define

Φi(x) def=
∫ +∞

−∞
Φi−1(s)fi(x − s)ds.



An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes 379

Proposition 2.1. For each i ∈ {1, 2, . . . , n} and for any x ∈ R,

Φi(x) = Pr [X1 + · · · + Xi ≤ x]

Proof. To begin with, consider the case in which i = 1. By the definition of Φ0,

Φ1(x) =

∫ +∞

−∞
Φ0(s)f1(x − s)ds =

∫ +∞

0

f1(x − s)ds =

∫ x

−∞
f1(t)dt = Pr[X1 ≤ x]

and we obtain the claim in the case.
Now, inductively assuming that Φi−1(x) = Pr [X1 + · · · + Xi−1 ≤ x] holds,

we prove the case of i (i = 1, 2, . . . , n).

Pr [X1 + · · · + Xi ≤ x] =

∫ +∞

−∞
Pr [X1 + · · · + Xi−1 ≤ x − s] fi(s)ds

=

∫ +∞

−∞
Φi−1(x−s)fi(s)ds =

∫ +∞

−∞
Φi−1(s)fi(x−s)ds = Φi(x).

We obtain the claim. ��
For convenience, let Φ(b) denote Φn(b).

Corollary 2.2. Φ(b) = Vol(K(b)).

3 Approximation Algorithm

For simplicity, we assume that an ≤ b in this section. The assumption will be
removed in Section 4.

3.1 The Idea

To begin with, this subsection explains the idea of our algorithm, that is a
recursive computation of approximate convolutions Gi(x), in an analogy with
Φi(x). Let G0(x) = Φ0(x), i.e., G0(x) = 0 for x ≤ 0 while G1(x) = 1 for x > 0.
Inductively assuming Gi−1(x) (i = 1, . . . , n), we define

Gi(x) def=
∫ ∞

−∞
Gi−1(s)fi(x − s)ds

for x ∈ R, as an intermediate of Gi(x) for convenience. Let ri
def=

∑i
i′=1 ai′ (i.e.,

ri = sup{r ∈ R | Gi(r) < 1} holds, in fact), and let M ∈ Z>0 be a discretization
parameter of the algorithm. Then, let Gi(x) be a staircase approximation of
Gi(x), which is given by

Gi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 0

Gi

(
j

M ri

)
if j−1

M ri < x ≤ j
M ri (j = 1, . . . , M),

1 if x > ri.
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Since Gi(x) is a staircase function, our algorithm only requires the values of
Gi

(
j

M ri

)
= Gi

(
j

M ri

)
for j = 1, . . . , M , instead of all x ∈ R.

Here, we briefly discuss the computation of Gi

(
j

M ri

)
, that is Gi

(
j

M ri

)
, for

j = 1, . . . , M from Gi−1(x). In the concerning case, that is 0 < x ≤ ri, we see
that

Gi(x) =
∫ ∞

−∞
Gi−1(s)fi(x − s)ds

=
∫ x

0

Gi−1(s)fi(x − s) ds (since Gi−1(s) = 0 for s ≤ 0)

=
∫ x

max{0,x−ai}
Gi−1(s)· 1

ai
ds (consider s s.t. fi(x − s) �= 0)

hold. Thus,

Gi

(
j

M
ri

)

= Gi

(
j

M
ri

)

=
1
ai

∫ j
M ri

max{0, j
M ri−ai}

Gi−1(s) ds

holds. For each j ∈ {1, . . . , M}, the following four cases are considered:

Case 1: j satisfies j
M ri < ai and j

M ri ≤ ri−1,
Case 2: j satisfies j

M ri < ai and j
M ri > ri−1,

Case 3: j satisfies j
M ri ≥ ai and j

M ri ≤ ri−1,
Case 4: j satisfies j

M ri ≥ ai and j
M ri > ri−1.

In the Case 1, for instance, let j∗ = max{j′ ∈ {1, . . . , M} | j′

M ri−1 < j
M ri} (i.e.,

j∗ = �j ri

ri−1
	), and then we obtain that

Gi

(
j

M
ri

)
=

1

ai

∫ j
M

ri

0

Gi−1(s) ds =
1

ai

∫ j∗
M

ri−1

0

Gi−1(s) ds +
1

ai

∫ j
M

ri

j∗
M

ri−1

Gi−1(s) ds

=
1

ai

j∗∑

j′=1

∫ j′
M

ri−1

j′−1
M

ri−1

Gi−1(s) ds +
1

ai
·
(

j

M
ri − j∗

M
ri−1

)
· Gi−1

(
j

M
ri

)

=
1

ai

j∗∑

j′=1

ri−1

M
· Gi−1

(
j′

M
ri−1

)
+

1

ai
·
(

j

M
ri − j∗

M
ri−1

)
· Gi−1

(
j

M
ri

)

where we remark that
∫ j′

M ri−1
j′−1
M ri−1

Gi−1(s) ds = ri−1
M ·Gi−1

(
j′

M ri−1

)
since Gi−1(x) is

a staircase function. Thus, it is not difficult to see that we can compute Gi

(
j

M ri

)

in O(Mτ) time where τ denotes the time complexity of a numerical computation.
Similarly, we can compute Gi

(
j

M ri

)
in O(Mτ) time, in other Cases 2–4.

3.2 Algorithm and Analysis

Based on the arguments in Section 3.1, our algorithm is described as follows.
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Algorithm 1
Input: a = (a1, . . . , an) ∈ Z

n
>0 and b ∈ Z>0.

1. Let G0(x) := 0 for x ≤ 0, and let G0(x) := 1 for x > 0;
2. For i = 1, . . . , n
3. For j = 1, . . . , M
4. Compute Gi( j

M ri);
5. Output Gn(b).

For convenience, let G(b) denote Gn(b), in the following. Firstly, we discuss the
time complexity of Algorithm 1.

Proposition 3.1. The running time of Algorithm 1 is O(nM2τ).

Proof. As stated in Section 3.1, Gi( j
M ri) is computed at line 4 in O(Mτ) time.

Now, the claim is easy. ��
In fact, we can improve the time complexity to O(nMτ), improving the time

complexity of lines 3 and 4 into O(Mτ) by inductively computing Gi( j
M ri) using

the result Gi( j−1
M ri). It is somehow complicated, but straightforward.

Lemma 3.2. The running time of Algorithm 1 is O(nMτ).

Next, we establish the following approximation ratio of Algorithm 1, which
we will prove in the next subsection.

Lemma 3.3. For any ε > 0, set M ≥ n2(n+1)
2 ε−1, then we have

Φ(b) ≤ G(b) ≤ (1 + ε)Φ(b).

Now, Theorem 1.1 is immediate from Lemmas 3.2 and 3.3.

3.3 Proof of Lemma 3.3, for Approximation Ratio

As a preliminary, we observe the following facts from the definitions of Gi(x)
and Gi(x).

Observation 3.4. For any i ∈ {1, 2, . . . , n}, Φi(x), Gi(x) and Gi(x) are mono-
tone nondecreasing (with respect to x), respectively.

Observation 3.5. For each i ∈ {1, 2, . . . , n}, Gi(x) ≤ Gi(x) ≤ Gi(x + 1
M ri)

holds for any x ∈ R.

Proposition 3.6. For each i ∈ {1, 2, . . . , n}, Φi(x) ≤ Gi(x) for any x ∈ R.

Proof. By the definition, Φ0(x) = G0(x) for any x ∈ R. Inductively assuming
that Φi−1(x) ≤ Gi−1(x) holds for any x ∈ R, we have that

Φi(x) =
∫ ∞

−∞
Φi−1(s)fi(x − s)ds ≤

∫ ∞

−∞
Gi−1(s)fi(x − s)ds (Induction hypo.)

≤
∫ ∞

−∞
Gi−1(s)fi(x − s)ds = Gi(x) (by Obs 3.5)

for any x ∈ R. ��



382 E. Ando and S. Kijima

Now, we establish the following Lemma 3.7, which claims a “horizontal” approx-
imation ratio, in spite of Lemma 3.3 claiming a “vertical” bound. For convenience,
let �i

def=
∑i

j=1 rj/M , i.e.,

�i =
i∑

j=1

∑j
j′=1 aj′

M
=

∑i
j=1

∑j
j′=1 aj′

M
=

∑i
j=1 jaj

M
≤ i(i + 1)

2
· ai

M
(1)

where the last inequality follows from the assumption that a1 ≤ · · · ≤ an.

Lemma 3.7. For each i ∈ {1, . . . , n} and any x ∈ R, we have

Φi(x) ≤ Gi(x) ≤ Φi (x + �i) .

Proof. The former inequality is immediate from Proposition 3.6 and Obser-
vation 3.5. Now, we are concerned with the latter inequality. Observation 3.5
implies that

G1(x) ≤ G1

(
x +

r1
M

)
= Φ1

(
x +

r1
M

)
,

and obtain the claim for i = 1. Inductively assuming that Gi−1(x) ≤ Φi−1(x +
�i−1) for any x ∈ R, we show that Gi(x) ≤ Φi(x + �i). Notice that

Gi(x) =
∫ ∞

−∞
Gi−1(s)fi(x−s)ds ≤

∫ ∞

−∞
Φi−1(s + �i−1)fi(x−s)ds (induction hypo.)

=
∫ ∞

−∞
Φi−1(t)fi(x + �i−1 − t)dt (t := s + �i−1)

= Φi(x + �i−1) (2)

hold for any x ∈ R. Using Observation 3.5, (2) implies that

Gi(x) ≤ Gi

(
x +

ri

M

)
≤ Φi

(
x +

ri

M
+ �i−1

)
= Φi(x + �i)

where the last equality follows from the definition of �i. We obtain the claim. ��
The following Lemma 3.8 will be established in Section 3.4.

Lemma 3.8. Let φ(x) def= d
dxΦ(x) (recall that Φ(x) = Φn(x)). Then, for any

x > 0, we have

φ(x)
Φ(x)

≤ n

x
.

Now, we show Lemma 3.3, using Lemmas 3.7 and 3.8.

Proof (of Lemma 3.3). The first inequality Φ(b) ≤ G(b) is immediate from
Lemma 3.7. Thus, we give an upper bound of Φ(b + �n)/Φ(b). By the mean
value theorem, there exists c ∈ R satisfying b ≤ c ≤ b + �n, such that Φ(b +
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�n) = Φ(b) + φ(c)�n holds. Let β be either one of b, c or b + �n achieving that
φ(β) = max{φ(b), φ(c), φ(b + �n)}. Then,

Φ(b)
Φ(b + �n)

=
Φ(b + �n) − φ(c)�n

Φ(b + �n)
= 1 − φ(c)�n

Φ(b + �n)

≥ 1 − φ(β)�n

Φ(b + �n)
≥ 1 − φ(β)�n

Φ(β)
(3)

hold, where the last inequality follows that Φ(x) is monotone nondecreasing with
respect to x (Observation 3.4), and that b ≤ β. Since Lemma 3.8 implies that
φ(β)
Φ(β) ≤ n

β , using (1) that is �n ≤ n(n+1)
2 · an

M ,

(3) ≥ 1 − n

β
· n(n + 1)an

2M
≥ 1 − n2(n + 1)

2M
(since an ≤ b ≤ β)

≥ 1 − ε
(
since M ≥ n2(n+1)

2 ε−1
)

.

We obtain the claim since we have 1 + (γ + 1)ε ≥ 1/(1 − ε) for any constant
γ ≥ ε. For example, we have

1 + 2ε ≥ 1
1 − ε

≥ Φ(b + �n)
Φ(b)

,

for ε ≤ 1. ��

3.4 Proof of Lemma 3.8

We use the following definition and lemmas in the proof of Theorem 1.1.

Definition 3.9. For given a ∈ Z
n
>0 and b ∈ Z>0, let P (b) = {x ∈ R

n | a�x =
b}. For a bounded point set B ⊂ P (b), the area Area(B) of B is given by

Area(B) =
∫

x∈P (b)

μ(B,x)dx, (4)

where μ(B,x) is a function satisfying μ(B,x) = 1 if x ∈ B, and μ(B,x) = 0
otherwise.

Lemma 3.10. Consider, for a real number x ∈ R, any bounded point set B ⊆
P (b) and a cone C ⊆ R

n that is given by B and the points in between B and the
origin. That is, C = {x ∈ R

n | ∃c ∈ R, s.t. cx ∈ B, 0 ≤ c ≤ 1}. Then we have

Area(B)
Vol(C)

=
n

b
.

Fig. 1 shows an example of B and C in the case of n = 3.
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Fig. 1. An example of B and C in the case n = 3

Proof. Consider a point set B′(t) = {x ∈ R
n|(t/b)x ∈ B} on hyperplane P (t)

and a cone C ′(t) = {x ∈ R
n | ∃c ∈ R, s.t. cx ∈ B′(t), 0 ≤ c ≤ 1} for t ∈ R.

Since C ′(t) is obtained by scaling C ′(1), we have that

Vol(C ′(t)) = tnVol(C ′(1)).

Then, we have

Area(B′(t)) =
d
dt

Vol(C ′(t)) = ntn−1Vol(C ′(1)),

Since B = B′(b) and C = C ′(b), the lemma is proved.
��

Proof (of Lemma 3.8). Let B be a point set

B = {x ∈ R
n | a�x = b, 0 ≤ xi ≤ 1 (i = 1, . . . , n)},

where e = (1, . . . , 1) and a = (a1, . . . , an) ∈ Z
n
>0. Then, let C be a cone given

by

C = {x ∈ R
n | ∃c ∈ R s.t. cx ∈ B, 0 ≤ c ≤ 1}.

By Lemma 3.10, we have that Area(B)/Vol(C) = n/b.
Since Area(B) = φ(b) and Vol(C) ≤ Φ(b) (∵ C ⊆ K(b)), the lemma is

proved. ��

4 In Case of b < an

Here we consider how to deal with the cases where the input has parameters
that are larger than b. Let a1 ≤ · · · ≤ an′ ≤ b ≤ an′+1 ≤ · · · ≤ an and
an′,n = (an′+1, . . . , an) ∈ R

n−n′
. Then, by using the algorithm 1, we first

symbolically compute Gn′(x) for a1, . . . , an′ and b. After that, we compute
the volume Sn−n′(x) of an (n − n′)-dimensional simplex S that is given by
S = {x ∈ R

n−n′ |a�
n−n′x ≤ b, xi ≥ 0 (i = 1, . . . , n)}. Then, we output the value

obtained by the following convolution

G(b) =
∫ b

−∞
Gn′(b − s)

d
dx

Sn−n′(s)ds. (5)
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Since we can exactly compute Sn−n′(x) as

Sn−n′(x) =
xn−n′

(n − n′)!

n∏

i=n′+1

1
ai

(6)

in time O((n − n′)τ), we have the same order of computational time as in the
previous section. When Gn′(x) is given within approximation ratio 1 + ε, it is
easy to see that the approximation ratio of the above (5) is at most 1 + ε.
This is verified by checking that Φn(b + �n′) ≥ G(b) ≥ Φn(b). Note that the
horizontal difference between the upper bound and the lower bound is not �n

but �n′ because Sn−n′(x) is exact for x ≤ b ≤ an′+1.

5 Concluding Remarks

Motivated by a new technique of designing FPTAS for #P-hard problems, we
have presented an FPTAS for computing the 0-1 knapsack volume, based on
recursive approximate convolutions of O(n4/ε) iterations. Applications of the
proposing technique to other #P-hard problems are future work.
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Abstract. Suppose that we are given two independent sets I b and I r

of a graph such that |I b| = |I r|, and imagine that a token is placed on
each vertex in I b . Then, the sliding token problem is to determine
whether there exists a sequence of independent sets which transforms I b

and I r so that each independent set in the sequence results from the
previous one by sliding exactly one token along an edge in the graph.
This problem is known to be PSPACE-complete even for planar graphs,
and also for bounded treewidth graphs. In this paper, we show that the
problem is solvable for trees in quadratic time. Our proof is constructive:
for a yes-instance, we can find an actual sequence of independent sets
between I b and I r whose length (i.e., the number of token-slides) is
quadratic. We note that there exists an infinite family of instances on
paths for which any sequence requires quadratic length.

1 Introduction

Recently, reconfiguration problems attract the attention in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step trans-
formation between two feasible solutions of a problem such that all intermediate
results are also feasible and each step abides by a fixed reconfiguration rule (i.e.,
an adjacency relation defined on feasible solutions of the original problem). This
kind of reconfiguration problem has been studied extensively for several well-
known problems, including independent set [4,6,9–12,15,17,18,20], satisfia-
bility [8,16], set cover, clique, matching [11], vertex-coloring [2,5,20],
list L(2, 1)-labeling [13], shortest path [3,14], and so on. (See also a recent
survey [19].)

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 389–400, 2014.
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(a) Ib = I1 (b) I2 (c) I3 (d) I4 (e) Ir = I5

w wwww

Fig. 1. A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by large black circles (tokens)

1.1 sliding token

The sliding token problem was introduced by Hearn and Demaine [9] as a one-
player game, which can be seen as a reconfiguration problem for independent
set. Recall that an independent set of a graph G is a vertex-subset of G in which
no two vertices are adjacent. (Figure 1 depicts five different independent sets in
the same graph.) Suppose that we are given two independent sets Ib and Ir of a
graph G = (V,E) such that |Ib| = |Ir|, and imagine that a token (coin) is placed
on each vertex in Ib. Then, the sliding token problem is to determine whether
there exists a sequence 〈I1, I2, . . . , I�〉 of independent sets of G such that

(a) I1 = Ib, I� = Ir, and |Ii| = |Ib| = |Ir| for all i, 1 ≤ i ≤ �; and
(b) for each i, 2 ≤ i ≤ �, there is an edge {u, v} in G such that Ii−1 \ Ii = {u}

and Ii \Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly
one token on a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.

Such a sequence is called a reconfiguration sequence between Ib and Ir. Figure 1
illustrates a reconfiguration sequence 〈I1, I2, . . . , I5〉 of independent sets which
transforms Ib = I1 into Ir = I5. Hearn and Demaine proved that sliding token
is PSPACE-complete for planar graphs, as an example of the application of their
powerful tool, called the nondeterministic constraint logic model, which can be
used to prove PSPACE-hardness of many puzzles and games [9], [10, Sec. 9.5].

1.2 Related and Known Results

As the (ordinary) independent set problem is a key problem among thousands
of NP-complete problems, sliding token plays a very important role since
several PSPACE-hardness results have been proved using reductions from it.
Indeed, sliding token is one of the most well-studied reconfiguration problems.

In addition, reconfiguration problems for independent set (ISReconf, for
short) have been studied under different reconfiguration rules, as follows.

• Token Sliding (TS rule) [5,6,9,10,15,20]: This rule corresponds to the
sliding token problem, that is, we can slide a single token only along
an edge of a graph.

• Token Jumping (TJ rule) [6,12,15,20]: A single token can “jump” to any
vertex (including non-adjacent one) if it results in an independent set.

• Token Addition and Removal (TAR rule) [4,11,15,17,18,20]: We can either
add or remove a single token at a time if it results in an independent set
of cardinality at least a given threshold. Therefore, under the TAR rule,
independent sets in the sequence do not have the same cardinality.
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Ib Ir

Fig. 2. A yes-instance for ISReconf under the TJ rule, which is a no-instance for the
sliding token problem

We note that the existence of a desired sequence depends deeply on the reconfigu-
ration rules. (See Fig. 2 for example.) However, ISReconf is PSPACE-complete
under any of the three reconfiguration rules for planar graphs [5,9,10], for per-
fect graphs [15], and for bounded bandwidth graphs [20]. The PSPACE-hardness
implies that, unless NP = PSPACE, there exists an instance of sliding token
which requires a super-polynomial number of token-slides even in a minimum-
length reconfiguration sequence. In such a case, tokens should make “detours” to
avoid violating independence. (For example, see the token placed on the vertex
w in Fig. 1(a); it is moved twice even though w ∈ Ib ∩ Ir.)

We here explain only the results which are strongly related to this paper,
that is, sliding token on trees; see the references above for the other results.

Results for TS rule (sliding token)
Kamiński et al. [15] gave a linear-time algorithm to solve sliding token for
cographs (also known as P4-free graphs). They also showed that, for any yes-
instance on cographs, two given independent sets Ib and Ir have a reconfiguration
sequence such that no token makes detour.

Very recently, Bonsma et al. [6] proved that sliding token can be solved in
polynomial time for claw-free graphs. Note that neither cographs nor claw-free
graphs contain trees as a (proper) subclass. Thus, the complexity status for trees
was open under the TS rule.

Results for trees
In contrast to the TS rule, it is known that ISReconf can be solved in linear
time under the TJ and TAR rules for even-hole-free graphs [15], which include
trees. Indeed, the answer is always “yes” under the two rules when restricted
to even-hole-free graphs (as long as two given independent sets have the same
cardinality for the TJ rule.) Furthermore, tokens never make detours in even-
hole-free graphs under the TJ and TAR rules.

On the other hand, under the TS rule, tokens are required to make detours
even in trees. (See Fig. 1.) In addition, there are no-instances for trees under
TS rule. (See Fig. 2.) These make the problem much more complicated, and we
think they are the main reasons why sliding token for trees was open, despite
the recent intensive algorithmic research on ISReconf [4,6,12,15,18].

1.3 Our Contribution

In this paper, we show that the sliding token problem can be solved in time
O(n2) for any tree T with n vertices. Therefore, we can conclude that ISReconf
for trees is in P under any of the three reconfiguration rules.
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We give a constructive proof: for a yes-instance, we can find an actual recon-
figuration sequence between two given independent sets whose length is O(n2).
We note that there exists an infinite family of instances on paths for which any
reconfiguration sequence requires Ω(n2) length.

We note that, since the treewidth of any graph G can be bounded by the
bandwidth of G, the result of [20] implies that sliding token is PSPACE-
complete for bounded treewidth graphs. (See [1] for the definition of treewidth.)
Thus, there exists an instance on bounded treewidth graphs which requires a
super-polynomial number of token-slides even in a minimum-length reconfigu-
ration sequence unless NP = PSPACE. Therefore, it is remarkable that any
yes-instance on a tree, whose treewidth is one, has an O(n2)-length reconfigura-
tion sequence even though trees certainly require to make detours to transform.

1.4 Technical Overview

We here explain our main ideas; formal descriptions will be given later.
We say that a token on a vertex v is “rigid” under an independent set I of a

tree T if it cannot be slid at all, that is, v ∈ I ′ holds for any independent set I ′

of T which is reconfigurable from I. (For example, in Fig. 2, every token in the
two independent sets is rigid.) Our algorithm is based on the following two key
points.

(1) In Lemma 1, we will give a simple but non-trivial characterization of rigid
tokens, based on which we can find all rigid tokens of two given indepen-
dent sets Ib and Ir in time O(n2). Note that, if Ib and Ir have different
placements of rigid tokens, then it is a no-instance (Lemma 4).

(2) Otherwise, we obtain a forest by deleting the vertices with rigid tokens
together with their neighbors (Lemma 5). We will prove in Lemma 6 that
the answer is “yes” as long as each tree in the forest contains the same
number of tokens in Ib and Ir.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

In this section, we introduce some basic terms and notation.

2.1 Graph Notation

In the sliding token problem, we may assume without loss of generality that
graphs are simple and connected. For a graph G, we sometimes denote by V (G)
and E(G) the vertex set and edge set of G, respectively.

In a graph G, a vertex w is said to be a neighbor of a vertex v if {v, w} ∈ E(G).
For a vertex v in G, let N(G, v) = {w ∈ V (G) | {v, w} ∈ E(G)}. Let N [G, v] =
N(G, v)∪{v}. For a subset S ⊆ V (G), we simply write N [G,S] =

⋃
v∈S N [G, v].

For a subgraph G′ of a graph G, we denote by G\G′ the subgraph of G induced
by the vertices in V (G) \ V (G′).
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u
v

T u
v

Fig. 3. Subtree Tu
v in the whole tree T

Let T be a tree. For two vertices v and w in T , the unique path between v
and w is simply called the vw-path in T . We denote by dist(v, w) the number
of edges in the vw-path in T . For two vertices u and v of a tree T , let Tu

v be
the subtree of T obtained by regarding u as the root of T and then taking the
subtree rooted at v which consists of v and all descendants of v. (See Fig. 3.) It
should be noted that u is not contained in the subtree Tu

v .

2.2 Definitions for sliding token

Let Ii and Ij be two independent sets of a graph G such that |Ii| = |Ij |. If there
exists exactly one edge {u, v} in G such that Ii \ Ij = {u} and Ij \ Ii = {v},
then we say that Ij can be obtained from Ii by sliding the token on u ∈ Ii to its
adjacent vertex v along the edge {u, v}, and denote it by Ii ↔ Ij . We note that
the tokens are unlabeled, while the vertices in a graph are labeled. We sometimes
omit to say the vertex on which a token is placed, and simply say a token in an
independent set I.

A reconfiguration sequence between two independent sets I1 and I� of G is
a sequence 〈I1, I2, . . . , I�〉 of independent sets of G such that Ii−1 ↔ Ii for i =
2, 3, . . . , �. We sometimes write I ∈ S if an independent set I of G appears in the
reconfiguration sequence S. We write I1

G� I� if there exists a reconfiguration
sequence S between I1 and I� such that all independent sets I ∈ S satisfy
I ⊆ V (G); we here define the notation emphasized with the graph G, because
we will apply this notation to a subgraph of G. The length of a reconfiguration
sequence S is defined as the number of independent sets contained in S. For
example, the length of the reconfiguration sequence in Fig. 1 is 5.

Given two independent sets Ib and Ir of a graph G, the sliding token prob-
lem is to determine whether Ib

G� Ir or not. We may assume without loss of
generality that |Ib| = |Ir|; otherwise the answer is clearly “no.” Note that slid-
ing token is a decision problem asking for the existence of a reconfiguration
sequence between Ib and Ir, and hence it does not ask for an actual reconfigura-
tion sequence. We always denote by Ib and Ir the initial and target independent
sets of G, respectively.

3 Algorithm for Trees

In this section, we give the main result of this paper.

Theorem 1. For a tree T with n vertices, the sliding token problem can be
solved in O(n2) time.
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t1

t2 t5 t6

t3
t4 t7

TT

Fig. 4. An independent set I of a tree T , where t1, t2, t3, t4 are (T, I)-rigid tokens and
t5, t6, t7 are (T, I)-movable tokens. Token t1 is (T ′, I ∩ T ′)-movable for the subtree T ′,
and tokens t6 and t7 are (T ′′, I ∩ T ′′)-rigid for the subtree T ′′.

As a proof of Theorem 1, we give an O(n2)-time algorithm which simply
solves sliding token for a tree with n vertices. In Section 3.3 we will show
that an actual reconfiguration sequence can be obtained for a yes-instance on
trees, and we will estimate its length.

3.1 Rigid Tokens

In this subsection, we formally define the concept of rigid tokens, and give their
nice characterization.

Let T be a tree, and let I be an independent set of T . We say that a token on
a vertex v ∈ I is (T, I)-rigid if v ∈ I ′ holds for any independent set I ′ of T such
that I

T� I ′. Conversely, if a token on a vertex v ∈ I is not (T, I)-rigid, then
it is (T, I)-movable; in other words, there exists an independent set I ′ such that
v 
∈ I ′ and I

T� I ′. For example, in Fig. 4, the tokens t1, t2, t3, t4 are (T, I)-rigid,
while the tokens t5, t6, t7 are (T, I)-movable. Note that, even though t6 and t7
cannot be slid to any neighbor in I, we can slide them after sliding t5 downward.

We then extend the concept of rigid/movable tokens to subtrees of T . For any
subtree T ′ of T , we denote simply I ∩T ′ = I ∩V (T ′). Then, a token on a vertex
v ∈ I ∩ T ′ is (T ′, I ∩ T ′)-rigid if v ∈ J holds for any independent set J of T ′

such that I ∩ T ′ T ′
� J ; otherwise the token is (T ′, I ∩ T ′)-movable. For example,

in Fig. 4, the token t1 is (T ′, I ∩ T ′)-movable even though it is (T, I)-rigid in
the whole tree T , while tokens t6 and t7 are (T ′′, I ∩ T ′′)-rigid even though they
are (T, I)-movable in T . Note that, since independent sets are restricted only to
the subtree T ′, we cannot use any vertex (and hence any edge) in T \ T ′ during
the reconfiguration. Furthermore, the vertex-subset J ∪ (

I ∩ (T \ T ′)
)

does not
necessarily form an independent set of the whole tree T .

We now give our first key lemma, which gives a characterization of rigid
tokens. (See also Fig. 5(a) for the claim (b) below.)

Lemma 1. Let I be an independent set of a tree T , and let u be a vertex in I.
(a) Suppose that |V (T )| = |{u}| = 1. Then, the token on u is (T, I)-rigid.
(b) Suppose that |V (T )| ≥ 2. Then, a token on u is (T, I)-rigid if and only if,

for all neighbors v ∈ N(T, u), there exists a vertex w ∈ I ∩ N(Tu
v , v) such

that the token on w is (T v
w, I ∩ T v

w)-rigid.



Polynomial-Time Algorithm for Sliding Tokens on Trees 395

u
v
w

Tv
w

Tu
v

u
v

w

Tv
w

(a) (b)
Fig. 5. (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u

Proof. Obviously, the claim (a) holds. In the following, we thus assume that
|V (T )| ≥ 2 and prove the claim (b).

We first show the if-part. Suppose that, for all neighbors v ∈ N(T, u), there
exists a vertex w ∈ I ∩ N(Tu

v , v) such that the token on w is (T v
w, I ∩ T v

w)-rigid.
(See Fig. 5(a).) Then, we will prove that the token t on u is (T, I)-rigid. Since
we can slide a token only along an edge of T , if t is not (T, I)-rigid (and hence
is (T, I)-movable), then it must be slid to some neighbor v ∈ N(T, u). By the
assumption, v is adjacent with another token t′ placed on w ∈ I ∩N(Tu

v , v), and
hence we first have to slide t′ to one of its neighbors other than v. However, this
is impossible since the token t′ on w is assumed to be (T v

w, I ∩ T v
w)-rigid and

hence w ∈ J holds for any independent set J of T v
w such that I ∩ T v

w

T v
w� J . We

can thus conclude that t is (T, I)-rigid.
We then show the only-if-part by taking a contrapositive. Suppose that u

has a neighbor v ∈ N(T, u) such that either I ∩ N(Tu
v , v) = ∅ or all tokens on

w ∈ I ∩ N(Tu
v , v) are (T v

w, I ∩ T v
w)-movable. (See Fig. 5(b).) Then, we will prove

that the token t on u is (T, I)-movable; in particular, we can slide t from u to
v. Since any token t′ on a vertex w ∈ I ∩ N(Tu

v , v) is (T v
w, I ∩ T v

w)-movable, we
can slide t′ to some vertex in T v

w via a reconfiguration sequence Sw in T v
w. Recall

that only the vertex v is adjacent with a vertex in T v
w and v 
∈ I. Therefore, Sw

can be naturally extended to a reconfiguration sequence S in the whole tree T
such that I ′ ∩ (

T \ T v
w

)
= I ∩ (

T \ T v
w

)
holds for any independent set I ′ ∈ S of

T . Apply this process to all tokens on vertices in I ∩ N(Tu
v , v), and obtain an

independent set I ′′ of T such that I ′′ ∩ N(Tu
v , v) = ∅. Then, we can slide the

token t on u to v. Thus, t is (T, I)-movable. 
�
Lemma 1 implies that we can check whether one token in an independent set

I of a tree T is (T, I)-rigid or not in linear time.

Lemma 2. Given a tree T with n vertices, an independent set I of T , and a
vertex u ∈ I, it can be decided in O(n) time whether the token on u is (T, I)-rigid.

The following lemma is useful for our algorithm in Section 3.2.

Lemma 3. Let I be an independent set of a tree T such that all tokens are
(T, I)-movable, and let v be a vertex such that v 
∈ I. Then, there exists at most
one neighbor w ∈ I ∩ N(T, v) such that the token on w is (T v

w, I ∩ T v
w)-rigid.

Proof. Suppose for a contradiction that there exist two neighbors w and w′

in I ∩ N(T, v) such that the tokens on w and w′ are (T v
w, I ∩ T v

w)-rigid and
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Fig. 6. Illustration for Lemma 3

(T v
w′ , I ∩ T v

w′)-rigid, respectively. (See Fig. 6.) Since the token t on w is (T v
w, I ∩

T v
w)-rigid but is (T, I)-movable, there is a reconfiguration sequence St starting

from I which slides t to v. However, before sliding t to v, St must slide the token
t′ on w′ to some vertex in N(T v

w′ , w′). This contradicts the assumption that t′

is (T v
w′ , I ∩ T v

w′)-rigid. 
�

3.2 Algorithm

In this subsection, we describe a quadratic-time algorithm to solve the sliding
token problem on trees, and prove its correctness.

Let T be a tree with n vertices, and let Ib and Ir be two given independent
sets of T . For an independent set I of T , we denote by R(I) the set of all vertices
in I on which (T, I)-rigid tokens are placed.

Step 1. Compute R(Ib) and R(Ir) using Lemma 2. If R(Ib) 
= R(Ir), then
return “no”; otherwise go to Step 2.

Step 2. Delete the vertices in N [T,R(Ib)] = N [T,R(Ir)] from T , and obtain
a forest F consisting of q trees T1, T2, . . . , Tq. If |Ib ∩ Tj | = |Ir ∩ Tj |
holds for every j ∈ {1, 2, . . . , q}, then return “yes”; otherwise return
“no.”

By Lemma 2 we can determine whether one token in an independent set
I of T is (T, I)-rigid or not in O(n) time, and hence Step 1 can be done in
time O(n) × (|Ib| + |Ir|) = O(n2). Clearly, Step 2 can be done in O(n) time.
Therefore, our algorithm above runs in O(n2) time in total. In the remainder of
this subsection, we thus prove the correctness of our algorithm.

We first show the correctness of Step 1.

Lemma 4. Suppose that R(Ib) 
= R(Ir) for two given independent sets Ib and
Ir of a tree T . Then, it is a no-instance.

We then show the correctness of Step 2. We first claim that deleting the ver-
tices with rigid tokens together with their neighbors does not affect the recon-
figurability.

Lemma 5. Suppose that R(Ib) = R(Ir) for two given independent sets Ib and
Ir of a tree T , and let F be the forest obtained by deleting the vertices in
N [T,R(Ib)] = N [T,R(Ir)] from T . Then, Ib

T� Ir if and only if Ib∩F
F� Ir ∩F .

Furthermore, all tokens in Ib∩F are (F, Ib∩F )-movable, and all tokens in Ir ∩F
are (F, Ir ∩ F )-movable.
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v

u

w

Fig. 7. A degree-1 vertex v of a tree T which is safe

Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a
tree T . Let F be the forest consisting of q trees T1, T2, . . . , Tq, which is obtained
from T by deleting the vertices in N [T,R(Ib)] = N [T,R(Ir)]. Since we can slide
a token only along an edge of F , we clearly have Ib ∩ F

F� Ir ∩ F if and only if

Ib ∩ Tj
Tj� Ir ∩ Tj for all j ∈ {1, 2, . . . , q}. Furthermore, Lemma 5 implies that,

for each j ∈ {1, 2, . . . , q}, all tokens in Ib ∩Tj are (Tj , Ib ∩Tj)-movable; similarly,
all tokens in Ir ∩ Tj are (Tj , Ir ∩ Tj)-movable.

We now give our second key lemma, which completes the correctness proof
of our algorithm.

Lemma 6. Let Ib and Ir be two independent sets of a tree T such that all tokens
in Ib and Ir are (T, Ib)-movable and (T, Ir)-movable, respectively. Then, Ib

T� Ir

if and only if |Ib| = |Ir|.
The only-if-part is trivial, and hence we prove the if-part. In our proof, we

do not reconfigure Ib into Ir directly, but reconfigure both Ib and Ir into some
independent set I∗ of T .

We say that a degree-1 vertex v of T is safe if its unique neighbor u has at
most one neighbor w of degree more than one. (See Fig. 7.) Note that any tree
has at least one safe degree-1 vertex.

As the first step of the if-part proof, we give the following lemma.

Lemma 7. Let I be an independent set of a tree T such that all tokens in I are
(T, I)-movable, and let v be a safe degree-1 vertex of T . Then, there exists an
independent set I ′ such that v ∈ I ′ and I

T� I ′.

Proof. Suppose that v 
∈ I; otherwise the lemma clearly holds. We will show
that one of the closest tokens from v can be slid to v. Let M = {w ∈ I |
dist(v, w) = minx∈I dist(v, x)}. Let w be an arbitrary vertex in M , and let P =
(p0 = v, p1, . . . , p� = w) be the vw-path in T . (See Fig. 8.) If � = 1 and hence
p1 ∈ I, then we can simply slide the token on p1 to v. Thus, we may assume
that � ≥ 2.

We note that no token is placed on the vertices p0, . . . , p�−1 and the neighbors
of p0, . . . , p�−2, because otherwise the token on w is not closest to v. Let M ′ =
M ∩ N(T, p�−1). Since p�−1 
∈ I, by Lemma 3 there exists at most one vertex
w′ ∈ M ′ such that the token on w′ is (T p�−1

w′ , I ∩ T
p�−1
w′ )-rigid. We choose such a

vertex w′ if it exists, otherwise choose an arbitrary vertex in M ′ and regard it
as w′.
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Fig. 8. Illustration for Lemma 7

Since all tokens on the vertices w′′ in M ′\{w′} are (T p�−1
w′′ , I∩T

p�−1
w′′ )-movable,

we first slide the tokens on w′′ to some vertices in T
p�−1
w′′ . Then, we can slide the

token on w′ to v along the path P . In this way, we can obtain an independent
set I ′ such that v ∈ I ′ and I

T� I ′. 
�
We then prove that deleting a safe degree-1 vertex with a token does not

affect the movability of the other tokens.

Lemma 8. Let v be a safe degree-1 vertex of a tree T , and let T̄ be the subtree
of T obtained by deleting v, its unique neighbor u, and the resulting isolated
vertices. Let I be an independent set of T such that v ∈ I and all tokens are
(T, I)-movable. Then, all tokens in I \ {v} are (T̄ , I \ {v})-movable.

In Lemma 8, note that the token on v is (Tu
v , I ∩ Tu

v )-rigid since Tu
v consists of

a single vertex v. Therefore, no token is placed on degree-1 neighbors of u other
than v, because otherwise it contradicts to Lemma 3; recall that all tokens in I
are assumed to be (T, I)-movable.

Proof of the if-part of Lemma 6
We prove the if-part of the lemma by the induction on the number of tokens
|Ib| = |Ir|. The lemma clearly holds for any tree T if |Ib| = |Ir| = 1, because T
has only one token and hence we can slide it along the unique path in T .

We choose an arbitrary safe degree-1 vertex v of a tree T , whose unique
neighbor is u. Since all tokens in Ib are (T, Ib)-movable, by Lemma 7 we can
obtain an independent set I ′

b of T such that v ∈ I ′
b and Ib

T� I ′
b. By Lemma 8

all tokens in I ′
b \ {v} are (T̄ , I ′

b \ {v})-movable, where T̄ is the subtree defined in
Lemma 8. Similarly, we can obtain an independent set I ′

r of T such that v ∈ I ′
r,

Ir
T� I ′

r and all tokens in I ′
r \{v} are (T̄ , I ′

r \{v})-movable. Apply the induction
hypothesis to the pair of independent sets I ′

b \ {v} and I ′
r \ {v} of T̄ . Then, we

have I ′
b \ {v} T̄� I ′

r \ {v}. Recall that both u 
∈ I ′
b and u 
∈ I ′

r hold, and u is the
unique neighbor of v in T . Therefore, we can extend the reconfiguration sequence
in T̄ between I ′

b \ {v} and I ′
r \ {v} to a reconfiguration sequence in T between

I ′
b and I ′

r. We thus have Ib
T� Ir.

This completes the proof of Lemma 6, and hence completes the proof of
Theorem 1. 
�
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IrIb

Fig. 9. No-instance for an interval graph such that all tokens are movable

3.3 Length of Reconfiguration Sequence

In this subsection, we show that an actual reconfiguration sequence can be found
for a yes-instance on trees, by implementing our proofs in Section 3.2. Further-
more, the length of the obtained reconfiguration sequence is at most quadratic.

Theorem 2. Let Ib and Ir be two independent sets of a tree T with n vertices.
If Ib

T� Ir, then there exists a reconfiguration sequence of length O(n2) between
Ib and Ir, and it can be found in O(n2) time.

It is interesting that there exists an infinite family of instances on paths
for which any reconfiguration sequence requires Ω(n2) length, where n is the
number of vertices. For example, consider a path (v1, v2, . . . , v8k) with n = 8k
vertices for any positive integer k, and let Ib = {v1, v3, v5, . . . , v2k−1} and Ir =
{v6k+2, v6k+4, . . . , v8k}. In this yes-instance, any token must be slid Θ(n) times,
and hence any reconfiguration sequence requires Θ(n2) length to slide them all.

4 Concluding Remarks

In this paper, we have developed an O(n2)-time algorithm to solve the sliding
token problem for trees with n vertices, based on a simple but non-trivial char-
acterization of rigid tokens. We have shown that there exists a reconfiguration
sequence of length O(n2) for any yes-instance on trees, and it can be found in
O(n2) time; while there exists an infinite family of instances on paths for which
any reconfiguration sequence requires Ω(n2) length.

Recently, we have improved the running time of our algorithm [7]: we pro-
posed a linear-time algorithm which simply decides whether Ib

T� Ir or not, for
two given independent sets Ib and Ir of a tree T .

The complexity status of sliding token remains open for chordal graphs
and interval graphs. Interestingly, these graphs have no-instances such that all
tokens are movable. (See Fig. 9 for example.)
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Abstract. Interval graphs are intersection graphs of closed intervals.
A generalization of recognition called partial representation extension
was introduced recently. The input gives an interval graph with a partial
representation specifying some pre-drawn intervals. We ask whether the
remaining intervals can be added to create an extending representation.

In this paper, we characterize the minimal obstructions which make
a partial representation non-extendible. This generalizes Lekkerkerker
and Boland’s characterization of minimal forbidden induced subgraphs of
interval graphs. Each minimal obstruction consists of a forbidden induced
subgraph together with at most four pre-drawn intervals. A Helly-type
result follows: A partial representation is extendible if and only if every
quadruple of pre-drawn intervals is extendible by itself. Our characteri-
zation leads to the first polynomial-time certifying algorithm for partial
representation extension of intersection graphs.

1 Introduction

The main motivation for graph drawing and geometric representations is finding
ways to visualize some given data efficiently. We study famous interval graphs
(INT), introduced by Hájos [10] in 1957. An interval representation R is a col-
lection of closed intervals {〈x〉 : x ∈ V (G)} where 〈x〉 ∩ 〈y〉 �= ∅ if and only if
xy ∈ E(G); so edges are encoded by intersections. A graph is an interval graph
if it has an interval representation; see Fig. 1a.

Interval graphs have many applications [3,12,21] and nice theoretical prop-
erties. They are perfect and closely related to path-width decompositions. Fulk-
erson and Gross [9] characterized them by consecutive orderings of maximal
cliques (see Section 3 for details). This lead Booth and Lueker [5] to invent PQ-
trees, which are an efficient data structure to deal with consecutive orderings,
can recognize interval graphs in linear time, and have many other applications.

For the full version of this paper, see arXiv:1406.6228. This work was initiated
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x y z

u v

(a) G R
x y z

u v

(b) R′

x z y

Fig. 1. (a) An interval graph G with one of its interval representations R. (b) A non-
extendible partial representation R′. Pre-drawn intervals are bold in all figures.

Chordal graphs (CHOR) are graphs containing no induced cycle of length
four or more, or alternatively intersection graphs of subtrees of trees. Given a
graph, three vertices form an asteroidal triple if there exists a path between every
pair of them avoiding the neighborhood of the third vertex. Asteroidal triple-
free graphs (AT-FREE) are graphs containing no asteroidal triple. Lekkerkerker
and Boland [19] characterized interval graphs as INT = CHOR∩AT-FREE. They
described this characterization using minimal forbidden induced subgraphs,
which we call Lekkerkerker-Boland obstructions (LB); see Fig. 2.
Partial Representation Extension. This problem was introduced by Klav́ık
et al. [17]. For interval graphs, a partial representation R′ is an interval represen-
tation {〈x〉′ : x ∈ V (G′)} of an induced subgraph G′ of G. The vertices/intervals
of G′ are called pre-drawn. A representation R of G extends R′ if and only
if it assigns the same intervals to the vertices of G′, i.e., 〈x〉 = 〈x〉′ for every
x ∈ V (G′). For an example, see Fig. 1b.

Problem: Partial Representation Extension – RepExt(INT)
Input: A graph G and a partial representation R′ of G′.

Output: Is there an interval representation of G extending R′?

For interval graphs, the partial representation extension problem was solved
in O(n2) time in [17], and currently there are two different linear-time algorithms
for this problem [4,16]. A linear-time algorithm for proper interval graphs and an
almost quadratic-time algorithm for unit interval graphs are given in [14].
Polynomial-time algorithms are further known for circle graphs [7], and permuta-
tion and function graphs [13]. The partial representation extension problems for
chordal graphs and contact representations of planar graphs are NP-hard [6,15].

Partially embedded planar graphs can be extended in linear-time [1]. Even
though every planar graph has a straight-line embedding, extension of such
embeddings is NP-hard [20]. Kuratowski’s characterization of minimal forbidden
minors was extended to partially embedded planar graphs by Jeĺınek
et al. [11]. Our research has a similar spirit as this last result.

≥ 1

y

x z

x

y

z

x

y

z≥ 1

x

y

z

≥ 0

Fig. 2. Five types of LB obstructions which are minimal forbidden induced subgraphs
of INT. The leftmost obstruction is an induced cycle of length four or more. The
remaining obstructions are minimal asteroidal triples (x, y, z) which are chordal graphs.
In all figures, curly lines denote induced paths and dashed edges are non-edges.
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x1

y1

z1
P1

R′
H

x1 y1 z1

(a)
1-FAT

x2
y2 = z1 x1

z2 = y1t2

P2

P1

R′
H

x2 y2 z2

(b)
2-FAT

z1

u

x1 y1
P1 P ′

1

R′
H

z1u

(c)
(1, 1)-CE

Fig. 3. Three examples of minimal obstructions. Each of them consists of a graph H
and a non-extendible partial representation R′

H .

Our Results. In this paper, we generalize the characterization of Lekkerkerker
and Boland [19] to describe extendible partial representations. The main class
of obstructions for extendability, called k-FAT obstructions, has three wrongly
ordered disjoint pre-drawn intervals xk, yk and zk; see Fig. 3a and b. There
are seven other infinite classes of obstructions which are derived from k-FAT
obstructions by adding a few vertices and having different pre-drawn vertices.
The last infinite class of (k, �)-CE obstructions consists of a k-FAT obstruction
glued to an �-FAT obstruction; see Fig. 3c. See Section 2 for definitions.

Theorem 1.1. A partial representation R′ of G is extendible if and only if G
and R′ contain no LB, SE, k-FAT, k-BI, k-FS, k-EFS, k-FB, k-FDS, k-EFDS,
k-FNS and (k, �)-CE obstructions.

We use the characterization of extendible partial representations of [16] by
maximal cliques, which we describe in Section 4. We extend these structural
results. In Section 5, we get forbidden configurations of maximal cliques which
we translate into minimal obstructions. We get the following Helly-type result:

Corollary 1.2. A partial representation is extendible if and only if every four
pre-drawn intervals are extendible by themselves.

All previously known algorithms for partial representation extension are able
to certify solvable instances by giving an extending representation. Using our
minimal obstructions, we construct the first algorithm for partial representation
extension certifying also non-extendible partial representations.1

Corollary 1.3. There exists an O(nm) certifying algorithm for the partial rep-
resentation extension problem, where n is the number of vertices and m is the
number of edges of the input graph. If the answer is “yes”, it outputs an extending
representation. If the answer is “no”, it detects one of the minimal obstructions.

Notation. For a graph G, we denote by V (G) its vertices and by E(G) its edges.
We denote the closed neighborhood of x by N [x]. Maximal cliques are denoted by
the letters a to f , and vertices by the remaining letters. For an interval 〈x〉, we
denote its left endpoint by �(x) and its right endpoint by r(x). Omitted details
and proofs can be found in the full version, see arXiv:1406.6228.
1 Formally speaking, the polynomial-time algorithm of [16] certifies non-extendible

instances by outputting “no” and by the proof of its correctness. Our algorithm
outputs a simple proof that a given partial representation is non-extendible. This
proof can be independently verified which is desirable.
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2 Definition of Minimal Obstructions

Every obstruction consists of a graph H and a non-extendible partial represen-
tation R′

H . We describe H using some vertices and induced paths. For inner
vertices of the induced paths, we specify their adjacencies with the remainder of
H. Since these induced paths do not have fixed lengths, each description with
an induced path defines an infinite class of forbidden subgraphs H.

An obstruction consisting of H and R′
H is contained in G and R′ if (i) H is an

induced subgraph of G, (ii) the pre-drawn vertices of H are mapped to pre-drawn
vertices of G, and (iii) the endpoints in R′

H are ordered the same as the endpoints
of the corresponding pre-drawn vertices in R′. An obstruction is minimal if R′

H

becomes extendible when any vertex or induced path is removed, or some pre-
drawn interval is made free by removing it from the partial representation R′

H .

u

x y

H

R′
H

u = v

u v

x y

H

R′
H

u v

Fig. 4. Two SE obstructions. On the left we have u = v, while on the right u �= v.

xk zk−1 yk−1 xk−1

yk zk

tk

Pk

Hk−1
(a) (b)

xk yk zk

tk

zk−1 yk−1 xk−1

Pk

RH

xk tk

xk−1tk−1

xk−2 tk−2

x2 t2
x1y1z1

zkyk

Pk

Pk−1

Pk−2

P2

...

RH

(c)

Fig. 5. (a) A k-FAT obstruction is created from a (k − 1)-FAT obstruction by adding
vertices xk and tk connected by an induced path Pk. In other words, a k-FAT obstruc-
tion consists of vertices x1, . . . , xk, t2, . . . , tk, yk, zk, and induced paths P1, . . . , Pk.
The adjacencies are defined inductively as above. (b) In every representation RH , the
pre-drawn interval 〈xk〉′ together with Pk and tk force xk−1 to be placed on the right
of zk. Therefore, the induced (k − 1)-FAT obstruction is forced. (c) The global zig-zag
pattern forced by a k-FAT obstruction, with k nested levels going across yk and zk. It
is an obstruction, since P1 with all inner vertices non-adjacent to y1 cannot be placed.
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Aside from LB obstructions of [19] with R′
H = ∅, we have ten other classes.

SE obstructions. These are two simple shared endpoint obstructions which
deal with shared endpoints in R′. They are depicted in Fig. 4.
k-FAT obstructions. The class of forced asteroidal triple obstructions con-
sists of obstructions containing three pre-drawn vertices and k induced paths
P1, . . . , Pk. The obstructions are defined inductively.

The 1-FAT obstruction consists of three pre-drawn non-adjacent vertices x1,
y1 and z1 such that y1 is between x1 and z1. Further, x1 and z1 are connected
by an induced path P1 and y1 is non-adjacent to the inner vertices of P1. See
Fig. 3b. The k-FAT obstruction is defined as follows. Let Hk−1 be a graph for
(k − 1)-FAT. To get k-FAT, we add to Hk−1 two vertices xk and tk connected
by an induced path Pk. We name yk = zk−1 and zk = yk−1. Concerning edges,

xk yk zk

Hk

⇒

⇒⇒⇒

⇒

⇒ ⇒ ⇒

R′
˜Hk

xk yk zk

k-FAT

xk yk zk

u v

Hk

H̃k

R′
˜Hk

xk yk zk

u v

k-BI

xk yk zk

u

Hk

H̃k

R′
˜Hk

xk yk zk

u

k-FS

xk yk zk

u v

Hk

H̃k

R′
˜Hk

xk yk zk

u v

k-EFS

xk yk zk

u

Hk

H̃k

R′
˜Hk

xk yk zk

u

k-FB

xk yk zk

u v

Hk

H̃k

R′
˜Hk

xk yk zk

u v

k-FDS

xk yk zk

u v w

Hk

H̃k

R′
˜Hk

xk yk zk

u v

w

k-EFDS

xk yk zk

u v w

Hk

H̃k

R′
˜Hk

xk yk zk

u v

w

k-FNS

xk = y′
� zk = z′

�

u

yk = x′
�

Hk H�

H̃k,�

R′
˜Hk,�

xk yk zk

u

(k, �)-CE

Fig. 6. The classes of obstructions derived from k-FAT: blocked intersection obstruc-
tions (k-BI), forced side obstructions (k-FS), extended forced side obstructions (k-EFS),
forced betweeness obstructions (k-FB), forced different sides obstructions (k-FDS),
extended forced different sides obstructions (k-EFDS), forced nested side obstructions
(k-FNS), and covered endpoint obstuctions ((k, �)-CE).
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tk is adjacent to all vertices of Hk−1, except for xk−1. All vertices of Hk−1 are
non-adjacent to xk and to the inner vertices of Pk. See Fig. 5a.

The k-FAT obstruction has three pre-drawn vertices xk, yk and zk such that
yk is placed in R′

Hk
between xk and zk. The role of xk, Pk and tk is to force

xk−1 to be placed on the other side of zk = yk−1 than yk = zk−1, thus forcing
the (k − 1)-FAT obstruction of Hk−1; see Fig. 5b. The global structure forced
by a k-FAT obstruction is depicted in Fig. 5c.
Derived Classes. The remaining eight classes, depicted in Fig. 6, are derived
from k-FAT obstructions. Let Hk denote the graph of a k-FAT obstruction.
Except for the last class (k, �)-CE, we create the graphs H̃k of these obstructions
by adding a few vertices to Hk. The more complex (k, �)-CE obstructions consist
of two FAT obstructions glued together. If 〈xk〉 is on the left of 〈yk〉, then this
leads to a k-FAT obstruction; if 〈xk〉 is on the right of 〈yk〉, then this leads to
an �-FAT obstruction. The precise definitions are in the full version.

Lemma 2.1. SE, k-FAT, k-BI, k-FS, k-EFS, k-FB, k-FDS, k-EFDS, k-FNS
and (k, �)-CE obstructions are non-extendible and minimal.

This implies the first part of Theorem 1.1, which states that if G and R′

contain one of the obstructions, then R′ is non-extendible. We establish the
harder opposite implication in Section 5.

3 Maximal Cliques and MPQ-Trees

A linear ordering < of the maximal cliques of a graph is consecutive if, for
each vertex, the maximal cliques containing this vertex appear consecutively.
Fulkerson and Gross [9] proved that a graph is an interval graph if and only if
there exists a consecutive ordering of its maximal cliques. The reason is that
the intervals of every maximal clique a have a common intersection. Given a
representation, we can pick one point for a called a clique-point cp(a), and the
left-to-right ordering of these clique-points gives <. See Fig. 7 for an example.
PQ-trees. Booth and Lueker [5] invented PQ-trees to work efficiently with
consecutive orderings. A PQ-tree T is a rooted tree. Its leaves are in one-to-one
correspondence with the maximal cliques of G. Its inner nodes are of two types:
P-nodes and Q-nodes. Each P-node has at least two children, and each Q-node
has at least three. Further, for every inner node, the ordering of its children is
fixed. Every PQ-tree T represents one linear ordering <T of the maximal cliques
called the frontier of T , which is the ordering of the leaves from left to right.

s

t

p

q

r

u v

w
x

y
z

G a b c d e f R1

p
q

r

s
t
u v w x

y

z

f e c d b a R2

y

z

s
t
x v w u

q

r

p

Fig. 7. An interval graph G and two of its representations with different left-to-right
orderings of the maximal cliques. Some choices of clique-points are depicted.
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a b

c d

e f

(a)

f e

c d

b a

p, q p, q, s, t s, t s, t, y y

[r] [u]

[v] [w]

[x] [z]∅
(b)

Fig. 8. (a) Two equivalent PQ-trees with frontiers a < b < c < d < e < f and
f < e < c < d < b < a. (b) The MPQ-tree corresponding to the left PQ-tree.

Every PQ-tree T additionally represents other linear orderings. These order-
ings are frontiers of equivalent PQ-trees. A PQ-tree T ′ is equivalent to T if it can
be constructed from T by a sequence of equivalent transformations, which can
be of two types: (i) an arbitrary reordering of the children of a P-node, and (ii)
a reversal of the order of the children of a Q-node. Fig. 8a depicts two equivalent
PQ-trees corresponding to the interval graph from Fig. 7.

Booth and Lueker proved that, for every interval graph, there exists a unique
PQ-tree representing all consecutive orderings of the maximal cliques. This tree
describes all possible interval representations of this interval graph.
MPQ-trees. The modified PQ-tree (MPQ-tree), introduced by Korte and Möh-
ring [18], gives information about the relation between the vertices of G and the
structure of the PQ-tree. We note that the same idea is already present in the
paper of Colbourn and Booth [8]. The MPQ-tree is an augmentation of the PQ-
tree in which the nodes of T have assigned subsets of V (G) called sections. To a
leaf representing a clique a, we assign one section s(a). Similarly, to each P-node
P , we assign one section s(P ). For a Q-node Q with subtrees T1, . . . , Tn, we have
n sections s1(Q), . . . , sn(Q), each corresponding to one subtree.

The section s(a) has all vertices contained in the maximal clique a and in
no other maximal clique. The section s(P ) of a P-node P has all vertices that
are contained in all maximal cliques of the subtree rooted at P and in no other
maximal clique. Sections of Q-nodes are more complicated. Let Q be a Q-node
with subtrees T1, . . . , Tn. Let x be a vertex contained only in maximal cliques of
the subtree rooted at Q, and suppose that it is contained in maximal cliques of
at least two subtrees. Then x is contained in every section si(Q) such that some
maximal clique of Ti contains x. Figure 8b depicts the sections for the example
in Fig. 7. It follows [18] that every vertex x is placed in the sections of exactly
one node of T . For a Q-node, x is placed in consecutive sections of this node.
Further, if x is placed in si(Q), then x is contained in all cliques of Ti.

Let N be a node of the MPQ-tree. By G[N ] we denote the subgraph induced
by all the vertices in the sections of the subtree rooted at N . For a subtree T ′, we
denote the subgraph induced by the vertices in its sections by G[T ′]. Similarly,
for a node N , let T [N ] denote the subtree of T with the root N .

4 Characterizing Extendible Partial Representations

In this section, we restate the characterization of extendible partial representa-
tions by Klav́ık et al. [16] generalizing the theorem of Fulkerson and Gross [9].
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R′
u

v

y

x z

(a)

↓a↓b ↓c↓d
(b)

Ia Ib

Ic Id

Fig. 9. (a) Four maximal cliques with P (a) = {u, v}, P (b) = {y}, P (c) = {x, y}, and
P (d) = {y, z} and the possible positions ↓a, ↓b, ↓c, and ↓d of their clique-points.
(b) The corresponding open intervals Ia, Ib, Ic and Id.

The Interval Order �. Suppose that there exists a representation R extending
R′. Then R gives some ordering < of the maximal cliques from left to right. We
want to show that pre-drawn intervals pose some constraints on this ordering.

For a maximal clique a, let P (a) denote the set of all pre-drawn intervals
contained in a. Then P (a) restricts the possible position of the clique-point
cp(a) to the points which are covered in R′ by the pre-drawn intervals of P (a)
and no others. We denote this set of points by ↓a; see Fig. 9a. By [2], we get:
↓a=

(⋂
u∈P (a) 〈u〉′) \ (⋃

v/∈P (a) 〈v〉′). We set �(a) = inf ↓a and �(a) = sup ↓a.
We use an open interval Ia = (�(a), �(a)) to represent ↓a; see Fig. 9b. There
might be points between �(a) and �(a) where cp(a) cannot be placed.

For maximal cliques a and b, we write a � b if �(a) ≤ �(b), i.e., if Ia is on
the left of Ib. The definition of � is quite natural, since a � b implies that every
extending representation R has to place cp(a) to the left of cp(b). The ordering
� is a so called interval order represented by open intervals, since a � b if and
only if the two intervals Ia and Ib are disjoint and Ia is on the left of Ib.

Lemma 4.1 (Klav́ık et al. [16]). A partial representation R′ is extendible if
and only if a consecutive ordering of the maximal cliques extending � exists.

In this paper, we extend these results by showing an additional property of
�. We say that a pair of intervals Ia and Ib single overlaps if both Ia \ Ib and
Ib \ Ia are non-empty. If no single overlaps are allowed, every pair of intervals is
either disjoint, or one interval is contained in the other.

Lemma 4.2. No pair of intervals Ia and Ib single overlaps.

Lemma 4.3. If Ia ∩ Ib = ∅, then at least one of P (a) \ P (b) and P (b) \ P (a) is
non-empty. If Ia ⊆ Ib, then P (a) ⊇ P (b).

5 Locating Minimal Obstructions

Using the characterization of Section 4, we prove that every non-extendible par-
tial representation contains one of the minimal obstructions defined in Section 2.
Due to space limitations, we just explain the general strategy.
Testing Extendibility. For any two disjoint subtrees Ti and Tj of the PQ-tree
T , we write Ti � Tj if and only if there exist cliques a ∈ Ti and b ∈ Tj such that
a � b. For a given interval graph G, a PQ-tree T represents all feasible orderings
of the maximal cliques. By Lemma 4.1, a partial representation is extendible if
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and only if there exists a reordering T ′ of T such that the frontier of T ′ extends
�. The paper [16] gives the following algorithm for testing this.

The algorithm processes the PQ-tree T from the bottom to the root. When
a P-node is processed, we test whether there exists a linear extension of � on
its subtrees. It exists if and only if � induced on its subtrees is acyclic. If there
exists a cycle, the PQ-tree cannot be reordered according to �. When a Q-node
is processed, there are two possible orderings of its subtrees, and we just check
whether one of them is compatible with �.

If a partial representation is not extendible, we know that this reordering fails
in some node of T . A node which cannot be reordered is called obstructed. This
insight is key in our strategy, since we can divide the argument according to the
types of obstructed nodes of T . A set of maximal cliques creates an obstruction
if the ordering of this set in � already makes the node obstructed. We can show
that every obstruction is created by at most three maximal cliques.
5.1 Obstructed Leaves. Suppose that some clique-point a cannot be placed
at all, so ↓a= ∅. Then �(a) = ∞ and �(a) = −∞. In terms of �, we get a � a.
By the definition of ↓a, we derive a 1-BI obstruction; recall Fig. 6 (top-left).
5.2 Obstructed P-nodes. Suppose that the reordering algorithm fails for a
P-node. Then we have some cycle T ′

1 � T ′
2 � · · · � T ′

n � T ′
1 on its subtrees. We

first show that there exists a two-cycle T1 � T2 � T1. This two-cycle is created
by at most four maximal cliques, and we show that three are sufficient.

Lemma 5.1 (The P-node case). If a P-node is obstructed, then G and R′

contain an SE, a 1-FAT or a 1-BI obstruction.

Proof (Sketch). For two maximal cliques a and b such that a � b � a, we get
�(a) = �(a) = �(b) = �(b), which leads to an SE obstruction; recall Fig. 4.

Assume that three maximal cliques create this obstruction. Let a, c ∈ T1 and
b ∈ T2 such that a � b � c. Thus we have three non-intersecting intervals Ia,
Ib and Ic; see Fig. 10. We show that there always exist p ∈ P (a) \ P (b) and
r ∈ P (c) \ P (a) which have to be pre-drawn like in Fig. 10.

If there also exists q ∈ P (b) \ P (a), we get a 1-FAT obstruction for x1 = p,
y1 = q and z1 = r; see Fig. 10a. If not, we use that Ib is in the middle. There

Px1,p Pr,z1
Ia Ib Ic

p r
u

v

x1 z1

(b)
x1 z1

u v

y1

Ia Ib Ic

p q r(a)
p

q

r
P1

Fig. 10. (a) If P (b) \ P (a) �= ∅, we get a 1-FAT obstruction. (b) If P (b) \ P (a) = ∅, we
get a 1-BI obstruction.
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are two intervals 〈u〉′ and 〈v〉′ such that each point of 〈u〉′ ∩ 〈v〉′ outside Ib is
covered by some pre-drawn interval not in P (b). We choose x1 /∈ P (b) which
covers �(v) and z1 /∈ P (b) which covers r(u); see Fig. 10. We suitably choose
y1 ∈ b non-adjacent to both x1 and z1, and we get a 1-BI obstruction; recall
Fig. 6 (top-left). ��

5.3 Obstructed Q-nodes. An obstructed Q-node with subtrees T1, . . . , Tn

leads to a variety of minimal obstructions. First, we show that there are at
most three maximal cliques creating this obstruction, which is harder than for
P-nodes. These cliques are contained in two or three different subtrees.

Lemma 5.2 (The Q-node case A). In the case of two different subtrees, G
and R′ contain an SE, a 1-FAT, a 2-FAT, a 1-BI, or a 2-BI obstruction.

Lemma 5.3 (The Q-node case B). In the case of three different subtrees, G
and R′ contain a k-FAT, k-BI, k-FS, k-EFS, k-FB, k-FDS, k-EFDS, k-FNS,
or a (k, �)-CE obstruction.

The proof of Lemma 5.3 deals with many situations which lead to different
obstructions. We assume that a ∈ Tα, b ∈ Tβ and c ∈ Tγ such that α < β < γ
and a � b � c. We know that both Ia and Ic appear on the left of Ib, but they
might be in inclusion or disjoint. For instance, if Ia is on the left of Ic, we would
like to get p ∈ P (a), q ∈ P (c) and r ∈ P (b), similarly as in Fig. 10a. We get
different cases according to which of these exist and how they overlap.

The following lemma is repeatedly used in the proof. It says that if pre-drawn
intervals are ordered differently than in the Q-node, we find a k-FAT obstruction.

Lemma 5.4 (k-FAT). Let a, b and c be three cliques of T [Q] contained respec-
tively in Tα, Tβ and Tγ for α < β < γ. Let xk ∈ P (a), yk ∈ P (c) and zk ∈ P (b)
be three disjoint pre-drawn intervals such that 〈yk〉′ is between 〈xk〉′ and 〈zk〉′.
Then G[Q] and R′ contain a k-FAT obstruction.

Proof (Sketch). See Fig. 11. We give an inductive argument. Either we find a
1-FAT or a 2-FAT obstruction directly, or we recurse on a smaller part of the
Q-node where we find an almost (k − 1)-FAT obstruction, in which xk−1 is free.
Together with xk and some other vertices, we construct a k-FAT obstruction.

xk yk zk

Tα Tβ Tγ

xk zk yk

tk

· · · · · ·

Wk

Pkxk

yk

zk

C(xk) N [yk]

Wk

Fig. 11. On the left, the position of the pre-drawn intervals xk, yk and zk. In the
middle, the construction of Wk � N [yk] in G[Q]. On the right, the Q-node with the
three considered subtrees and the intervals of Wk depicted in their sections.



Minimal Obstructions for Partial Representations of Interval Graphs 411

Suppose that there exists a path from xk to zk such that all inner vertices
are non-adjacent to yk. Then we get a 1-FAT obstruction. Otherwise, let C(xk)
be the connected component of G[Q] \ N [yk] containing xk; by our assumption,
zk /∈ C(xk). We denote by Wk the subset of the vertices of N [yk] adjacent to
some vertex of C(xk); see Fig. 11 (middle). It can be shown that every vertex of
Wk is also adjacent to zk. Therefore, Wk ⊆ sβ(Q) ∩ sγ(Q); see Fig. 11 (right).

Let tk be a vertex of Wk which ends in the sections of the Q-node most to
the left; tk is the top interval in Fig. 11. Let Pk be a shortest path from xk

to tk, with all inner vertices in C(xk). We denote the component of G[Q] \ Wk

containing yk by C(yk) and the one containing zk by C(zk). We put yk−1 = zk

and zk−1 = yk. It is not possible that tk is adjacent to every vertex in C(yk),
otherwise the MPQ-tree would be incorrect. Therefore, we choose a non-neighbor
xk−1 ∈ C(yk). If C(yk) �= C(zk), together with some path Pk−1 from xk−1 to
zk−1, we get a 2-FAT obstruction, so k = 2. But if C(yk) = C(zk), we cannot
guarantee that the inner vertices of this path are non-adjacent to yk−1. We solve
this issue by applying the entire argument of this proof recursively to C(yk).

We know that tk stretches from C(xk) to zk, completely covering yk. So xk−1

has to be placed to the right of zk = yk−1 in every extending representation.
We assume that xk−1 is pre-drawn on the right of yk−1 and repeat the same
argument for the graph induced by C(yk), where the role of xk, yk and zk is
played by xk−1, yk−1 and zk−1, respectively. By the induction hypothesis, we
find a (k − 1)-FAT obstruction. By making xk−1 free and adding xk, tk and Pk,
we get a k-FAT obstruction in the original partial representation. ��

This lemma is used to locate other obstructions. Suppose that we have xk,
zk, u and v pre-drawn as in Fig. 10b. If we find yk located suitably in the Q-
node, then we can assume 〈yk〉′ is pre-drawn between 〈xk〉′ and 〈zk〉′. Therefore,
we apply Lemma 5.4 for a different partial representation and we get a k-FAT
obstruction. With free yk and together with u and v, it gives a k-BI obstruction.

5.4 Proof of the Main Theorem. We just put all results together:

Proof (Theorem 1.1). If G and R′ contain one of the obstructions, then R′ is
non-extendible by Lemma 2.1. It remains to prove the converse. If G is not an
interval graph, it contains according to [19] an LB obstruction. Otherwise, G is
an interval graph and there exists an MPQ-tree T for it. By Lemma 4.1, we know
that a partial representation R′ is extendible if and only if T can be reordered
according to �. If it cannot be reordered, the reordering algorithm fails in some
node of T . If this reordering fails in a leaf, we get a 1-BI obstruction. If it fails
in a P-node, we get a 1-FAT or a 1-CI obstruction by Lemma 5.1. And if it fails
in a Q-node, we get one of the minimal obstructions by Lemmas 5.2 and 5.3. ��

Since every minimal obstruction contains at most four pre-drawn intervals,
a partial representation R′ is extendible if and only if every quadruple of pre-
drawn intervals is extendible by itself (Corollary 1.2). Since minimal obstructions
are build constructively, we get as Corollary 1.3 a certifying algorithm for the
partial representation extension problem.



412 P. Klav́ık and M. Saumell

6 Open Problems

Circle graphs (CIRCLE) are intersection graphs of chords of a circle. Function
graphs (FUN) are intersection graphs of continuous functions f : [0, 1] → R and
permutation graphs (PERM) are function graphs which can be represented by
linear functions. Proper interval graphs (PROPER INT) are intersection graphs
of intervals in which no interval is a proper subset of another interval. Unit
interval graphs (UNIT INT) are intersection graphs of intervals of length one.

Problem 6.1. What are minimal obstructions for extendible partial representa-
tions of the classes CIRCLE, FUN, PERM, PROPER INT, and UNIT INT?

The bounded representation problems generalize the partial representation
problems [2,14]. In 1984, Skrien [22] introduced the chronological ordering prob-
lem which even generalizes bounded representations.

Problem 6.2. What are minimal obstructions for the chronological ordering prob-
lem and for the bounded representation problem?
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Abstract. The fastest known algorithms for computing the R* consen-
sus tree of k rooted phylogenetic trees with n leaves each and identical
leaf label sets run in O(n2√log n) time when k = 2 (ref. [10]) and O(kn3)
time when k ≥ 3 (ref. [4]). This paper shows how to compute it in O(n2)
time for k = 2, O(n2 log4/3 n) time for k = 3, and O(n2 logk+2 n) time
for unbounded k.

1 Introduction

Distinctly leaf-labeled, unordered trees known as phylogenetic trees are used by
scientists to describe evolutionary history [8,13]. Given a set S of phylogenetic
trees with the same leaf labels but different branching structures, a single phy-
logenetic tree that summarizes the trees in S according to some well-defined
rule is called a consensus tree [4,8,13]. Consensus trees are used when dealing
with unreliable data; e.g., to infer an accurate phylogenetic tree for a fixed set
of species, one may first construct a collection of alternative trees by applying
resampling techniques such as bootstrapping to the same data set, by running
different tree construction algorithms, or by using many independent data sets,
and then compute a consensus tree from the obtained trees.

A number of different consensus trees have been defined and studied in the
literature; see [4], Chapter 30 in [8], or Chapter 8.4 in [13] for some surveys. This
paper deals with one particular consensus tree called the R* consensus tree [4],
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T :1
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T :2
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T :3
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d e

d eba c

R*:

Fig. 1. An example. Let S = {T1, T2, T3} as above. Then Rmaj = {ab|d, ab|e, ac|d,
ac|e, de|a, bc|d, bc|e, de|b, de|c} and the R* consensus tree of S is the tree on the right.

defined in Section 1.1 below. The R* consensus tree has several nice mathe-
matical properties [7]. On the negative side, the existing algorithms for building
it [4,10,11] are rather slow. To alleviate this issue, we present faster algorithms.

1.1 Definitions and Notation

In this paper, a phylogenetic tree is a rooted, unordered, leaf-labeled tree in
which every internal node has at least two children and all leaves have different
labels. See Fig. 1 for some examples. (Unrooted phylogenetic trees are also useful
in many contexts [8], but will not be considered here.) Phylogenetic trees are
called “trees” from here on, and every leaf in a tree is identified with its label.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are
denoted by V (T ) and Λ(T ), respectively. For any u ∈ V (T ), Tu is the subtree
of T rooted at u. For any X ⊆ V (T ), lcaT (X) is the lowest common ancestor
in T of the nodes in X; when |X| = 2, we simplify the notation to lcaT (u, v),
where X = {u, v}, and if T is unambiguous, we sometimes just write lca(u, v).

A triplet is a tree with exactly three leaves. Suppose t is a triplet with Λ(t) =
{x, y, z}. If t is non-binary, it has one internal node; in this case, t is called a
fan triplet and is denoted by x|y|z. Otherwise, t is binary and has two internal
nodes; in this case, t is called a resolved triplet and is denoted by xy|z where
lcat(x, y) is a proper descendant of lcat(x, z) = lcat(y, z). Thus, there are four
possible triplets x|y|z, xy|z, xz|y, yz|x for any set of three leaves {x, y, z}.
For any tree T and {x, y, z} ⊆ Λ(T ), x|y|z is said to be consistent with T if
lcaT (x, y) = lcaT (x, z) = lcaT (y, z), and xy|z is consistent with T if lcaT (x, y)
is a proper descendant of lcaT (x, z) = lcaT (y, z). Let T ||{x,y,z} be the unique
triplet with leaf set {x, y, z} that is consistent with T . For any tree T , let r(T )
be the set of resolved triplets consistent with T and let t(T ) be the set of all
triplets (resolved triplets as well as fan triplets) consistent with T , i.e., define
r(T ) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T ) and T ||{x,y,z} is a resolved triplet} and
t(T ) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T )}.

Next, let S = {T1, . . . , Tk} be a given set of trees with Λ(T1) = ... =
Λ(Tk) = L. Write n = |L|. For any {a, b, c} ⊆ L, define #ab|c as the number of
trees Ti ∈ S for which ab|c ∈ t(Ti). The set of majority resolved triplets, denoted
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by Rmaj , is defined as
{
ab|c : a, b, c ∈ L and #ab|c > max{#ac|b, #bc|a}}

.
(Note that the fan triplets consistent with the trees in S have no impact here.)
An R* consensus tree of S is a tree τ with Λ(τ) = L that satisfies r(τ) ⊆ Rmaj

and that maximizes the number of internal nodes. See Fig. 1 for an example.

For any leaf label set L, a cluster of L is any nonempty subset of L, and
a tree T is said to include a cluster A of L if T contains a node u such that
Λ(Tu) = A. Let R be a set of triplets over a leaf label set L =

⋃
r∈R Λ(r) such

that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x belongs
to R. A cluster A of L is called a strong cluster of R if aa′|x ∈ R for all a, a′ ∈ A
with a �= a′ and all x ∈ L \A. Furthermore, L as well as every singleton set of L
is also defined to be a strong cluster of R. Strong clusters provide an alternative
characterization of R* consensus trees, stated in the last part of the next lemma:

Lemma 1. [4,10] The R* consensus tree always exists, is unique, and includes
every strong cluster of Rmaj and no other clusters.

1.2 Previous Work

The R* consensus tree can be computed in O(kn3) time, where k = |S| and
n = |L|, by an algorithm from [4]: First construct r(Ti) for all Ti ∈ S in O(kn3)
time, then construct Rmaj by counting the occurrences in the r(Ti)-sets of the
different resolved triplets for every {x, y, z} ∈ L in O(kn3) total time, and finally
apply the O(n3)-time strong cluster algorithm from Corollary 2.2 in [5] to Rmaj .
For k = 2, an older algorithm for computing the so-called RV-III tree of two input
trees in O(n3) time [11] can also be used [4] to achieve the same running time.

Since Rmaj may contain Ω(n3) elements, any method that explicitly con-
structs Rmaj requires Ω(n3) time. For the special case of k = 2, it was shown
in [10] that the R* consensus tree can in fact be computed in O(n2

√
log n)

(= o(n3)) time. The algorithm from [10] is reviewed in Section 1.3.

1.3 Overview and Organization of the Paper

To compute the R* consensus tree without constructing Rmaj , the algorithm
in [10] for k = 2 and the new algorithms in this paper follow the same basic
strategy, summarized as Algorithm R* consensus tree in Fig. 2. To explain
the details, some additional definitions are needed.

Suppose that R is a given set of triplets over a leaf label set L =
⋃

r∈R Λ(r)
such that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x
belongs to R. For each a, b ∈ L with a �= b, define sR(a, b) =

∣
∣{y ∈ L : ab|y ∈

R}∣∣, and for each a ∈ L, define sR(a, a) =
∣
∣L

∣
∣ − 1. A cluster A of L is called

an Apresjan cluster of sR if sR(a, a′) > sR(a, x) for all a, a′ ∈ A and x ∈ L \ A.
Since every strong cluster of R is an Apresjan cluster of sR [4,10], we see that
in the case R = Rmaj , the set of Apresjan clusters of sRmaj

forms a superset of
the set of strong clusters of Rmaj . Moreover, by Theorem 2.3 in [5], there are
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Algorithm R* consensus tree

Input: A set S = {T1, . . . , Tk} of trees with Λ(T1) = . . . = Λ(Tk) = L
Output: The R* consensus tree of S
1: Compute and store sRmaj (a, b) for all a, b ∈ L
2: Compute the Apresjan clusters of sRmaj

3: for each Apresjan cluster A of sRmaj do
4: Determine if A is a strong cluster of Rmaj

5: end for
6: Let C be the set of strong clusters of Rmaj , and build a tree T which includes

all clusters in C and no other clusters of L
7: Output T

Fig. 2. Algorithm R* consensus tree

O(n) Apresjan clusters of sRmaj
and they form a nested hierarchy on L, i.e., a

tree, which can be constructed in O(n2) time with the method of Corollary 2.1
in [5] when the value of sRmaj

(a, b) for any a, b ∈ L is available in O(1) time.

Now, the idea behind Algorithm R* consensus tree is to first compute a
superset of the set of strong clusters of Rmaj , namely the Apresjan clusters
of sRmaj

(Steps 1 and 2), then remove any clusters that are not strong clusters
of Rmaj (Steps 3–5), and return a tree that includes precisely the remaining
clusters (Steps 6–7). By Lemma 1, this tree is the R* consensus tree.

The algorithm’s time complexity depends on various factors. As shown in [10],
if k = 2 then computing the values of sRmaj

(a, b) for all a, b ∈ L in Step 1 can
be done in O(n2

√
log n) time in total, while all other steps take O(n2) time.

Section 2 below improves it to O(n2), yielding an O(n2)-time solution for k = 2.
For k ≥ 3, we observe that Steps 2, 6, and 7 do not depend on k, so these

steps take a total of O(n2) time as in [10]. However, Steps 1 and 3–5 have
to be modified; for example, the condition from Lemma 13 in [10] for check-
ing if a given cluster is a strong cluster of Rmaj does not work if k = 3. As
for Step 1, Sections 3.1–3.3 show how to compute sRmaj

(a, b) for all a, b ∈ L

in O(n2 log4/3 n) time when k = 3, and Section 4.1 in O(n2 logk n) time for
unbounded k. For Steps 3–5, Section 3.4 gives an O(n2α(n))-time solution when
k = 3, where α(n) is the inverse Ackermann function of n, while Section 4.2
gives an O(n2 logk+2 n)-time solution for unbounded k. In summary, we obtain:

Theorem 1. Let S be an input set of k trees with n leaves each and identical
leaf label sets. The R* consensus tree of S can be computed in:

• O(n2) time when k = 2;
• O(n2 log4/3 n) time when k = 3; and
• O(n2 logk+2 n) time when k is unbounded.

Thus, if k < log n
(log log n)1+ε for some ε > 0, the time complexity is subcubic in n.

Due to space constraints, most of the proofs have been omitted from the
conference proceedings version of this paper.
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2 Computing the R* Consensus Tree When k = 2

This section proves that sRmaj
(a, b) for all a, b ∈ L with a �= b can be computed in

O(n2) time in total when k = 2, thereby reducing the time complexity of Step 1 of
Algorithm R* consensus tree in Section 1.3 (and hence the algorithm’s overall
running time) to O(n2).

Recall that sRmaj
(a, b) =

∣
∣{w : ab|w ∈ Rmaj}

∣
∣ for any a, b ∈ L with a �= b,

and sRmaj
(a, a) = |L| − 1 for any a ∈ L. By definition, ab|w ∈ Rmaj if and only

if it is consistent with both T1 and T2, or it is consistent with one of T1 and T2

and a|b|w is consistent with the other tree. By Corollary 1 in [10], sRmaj
(a, b) =

countr,r(a, b)+countr,f (a, b)+countf,r(a, b) for every a, b ∈ L with a �= b, where
countr,r(a, b) =

∣
∣{w ∈ L \ {a, b} : ab|w ∈ t(T1) ∩ t(T2)}

∣
∣, countr,f (a, b) =∣

∣{w ∈ L \ {a, b} : ab|w ∈ t(T1), a|b|w ∈ t(T2)}
∣
∣, and countf,r(a, b) =

∣
∣{w ∈

L\{a, b} : a|b|w ∈ t(T1), ab|w ∈ t(T2)}
∣
∣. It was shown in [10] that countr,r(a, b),

countr,f (a, b), and countf,r(a, b) for all a, b ∈ L can be calculated in O(n2
√

log n),
O(n2), and O(n2) total time, respectively. We now eliminate the bottleneck.

Lemma 2. For every a, b ∈ L, it holds that countr,r(a, b) = |L|−|Λ(T lca(a,b)
1 )|−

|Λ(T lca(a,b)
2 )| + |Λ(T lca(a,b)

1 ) ∩ Λ(T lca(a,b)
2 )|.

Lemma 3. countr,r(a, b) for all a, b ∈ L can be computed in O(n2) time in total.

Proof. For i ∈ {1, 2}, compute and store all values of |Λ(Tu
i )|, where u ∈ V (Ti),

in O(n) time by doing a bottom-up traversal of each tree. Also, compute and
store all values of |Λ(Tu

1 )∩Λ(T v
2 )|, where u ∈ V (T1) and v ∈ V (T2), in O(n2) time

by the postorder traversal-based method used in Lemma 7.1 in [1]. Preprocess
T1 and T2 in O(n) time so that any subsequent lca-query can be answered in
O(1) time [2,9]. Next, for each a, b ∈ L, obtain countr,r(a, b) in O(1) time by
applying the formula in Lemma 2. The total running time is O(n2). �	

3 Computing the R* Consensus Tree When k = 3

We now focus on the case k = 3. Sections 3.1–3.3 and Section 3.4 describe how to
implement Step 1 and Steps 3–5, respectively, of Algorithm R* consensus tree.

3.1 Computing sRmaj
When k = 3

Suppose S = {T1, T2, T3}. For every ab|w ∈ Rmaj , there are three possibilities:

Lemma 4. For any a, b, w ∈ L, ab|w ∈ Rmaj if and only if either

1. ab|w is consistent with T1, T2, and T3; or
2. ab|w is consistent with Ti and Tj but not Tk for {i, j, k} = {1, 2, 3}; or
3. ab|w is consistent with one of T1, T2, T3, and a|b|w with the other two.
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To count the triplets covered by the different cases in Lemma 4, define:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

countr,r,r(a, b) =
∣∣{w ∈ L \ {a, b} : ab|w ∈ t(T1) ∩ t(T2) ∩ t(T3)}

∣∣

count
Ti,Tj
r,r,∗ (a, b)=

∣∣{w ∈ L \ {a, b} : ab|w ∈ t(Ti) ∩ t(Tj)}
∣∣, i, j ∈ {1, 2, 3}, i < j

countTi
r,f,f (a, b) =

∣∣{w ∈ L \ {a, b} : ab|w ∈ t(Ti) and a|b|w is consistent with

the other two trees}∣∣, for i ∈ {1, 2, 3}

Then, sRmaj (a, b) can be expressed as in the next lemma.

Lemma 5. Let a, b ∈ L with a �= b. Then sRmaj (a, b) =
∑3

i=1 countTi
r,f,f (a, b) +

∑
1≤i<j≤3 count

Ti,Tj
r,r,∗ (a, b) − 2countr,r,r(a, b).

For each pair i, j ∈ {1, 2, 3} with i < j, the values of count
Ti,Tj
r,r,∗ (a, b) for all

a, b ∈ L can be obtained in O(n2) time by the method from Lemma 3 in Section 2
with Ti and Tj as the two input trees. The next subsections show how to calculate
the values of countr,r,r(a, b) for all a, b ∈ L in O(n2 log4/3 n) time (Lemma 9 in
Section 3.2) and countTi

r,f,f (a, b) for all a, b ∈ L for each i ∈ {1, 2, 3} in O(n2) time
(Lemma 12 in Section 3.3). Then, we can apply the formula in Lemma 5 to get each
value of sRmaj (a, b) in O(1) time. In summary:

Lemma 6. When k = 3, the values of sRmaj (a, b) for all a, b ∈ L can be computed in

O(n2 log4/3 n) time in total.

3.2 Computing countr,r,r

First, rewrite countr,r,r(a, b) in a way analogous to the expression in Lemma 2:

Lemma 7. For every a, b ∈ L, countr,r,r(a, b) = |L|−∑3
i=1 |Λ(T

lca(a,b)
i )|+∑1≤i<j≤3 |

Λ(T
lca(a,b)
i ) ∩ Λ(T

lca(a,b)
j )| − |Λ(T

lca(a,b)
1 ) ∩ Λ(T

lca(a,b)
2 ) ∩ Λ(T

lca(a,b)
3 )|.

Lemma 8. Let a ∈ L be fixed. Then the values of |Λ(T
lca(a,b)
1 )∩Λ(T

lca(a,b)
2 )∩Λ(T

lca(a,b)
3 )|

for all b ∈ L \ {a} can be computed in O(n log4/3 n) time in total.

Proof. For w ∈ L \ {a} and i ∈ {1, 2, 3}, let dTi(w) be the distance in Ti from a

to lca(a, w). For any b, w ∈ L \ {a} and i ∈ {1, 2, 3}, w ∈ Λ(T
lca(a,b)
i ) if and only if

dTi(w) ≤ dTi(b). Thus, for b ∈ L \ {a}, |Λ(T
lca(a,b)
1 ) ∩ Λ(T

lca(a,b)
2 ) ∩ Λ(T

lca(a,b)
3 )| =

|{w ∈ L \ {a, b} : dT1(w) ≤ dT1(b), dT2(w) ≤ dT2(b), dT3(w) ≤ dT3(b)}|.
Represent each w ∈ L\{a} as a 3D point with coordinates (dT1(w), dT2(w), dT3(w)).

For any b ∈ L\{a}, |Λ(T
lca(a,b)
1 )∩Λ(T

lca(a,b)
2 )∩Λ(T

lca(a,b)
3 )| equals the number of points

on or inside the box [1 : dT1(b)] × [1 : dT2(b)] × [1 : dT3(b)]. Use Corollary 4.1 in [6] for
offline orthogonal range counting in 3D to obtain these numbers for all b ∈ L \ {a} in
O(n log3−2+1/3 n) = O(n log4/3 n) total time. �	

Lemma 9. The values of countr,r,r(a, b) for alla, b ∈ L can be computed inO(n2 log4/3 n)
total time.
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3.3 Computing countTi

r,f,f

This subsection describes how to compute all values of countT1
r,f,f (a, b) =

∣∣{w ∈ L \
{a, b} : ab|w ∈ t(T1), a|b|w ∈ t(T2), and a|b|w ∈ t(T3)}

∣∣, where a, b ∈ L. (The two

functions countT2
r,f,f and countT3

r,f,f can be computed in the same way.)
Suppose that a ∈ L is fixed. Let v0 = a, v1, . . . , vp be the path in T3 from

leaf a to the root of T3. For j ∈ {1, . . . , p}, define Wj = Λ(T
vj

3 ) \ Λ(T
vj−1
3 ). Impor-

tantly, {W1, . . . , Wp} forms a partition of L \ {a}. For any S ⊆ L and b ∈ S, define
σT1,¬T2(S, b) = |{w ∈ S : ab|w ∈ t(T1) and a|b|w ∈ t(T2)}|. Lemma 10 explains how to
use σT1,¬T2(S, b) to compute countT1

r,f,f (a, b).

Lemma 10. For any Wj, j ∈ {1, . . . , p}, and any b ∈ Wj, let cb be the child of vj

such that b ∈ Λ(T
cb
3 ). Then countT1

r,f,f (a, b) = σT1,¬T2(Wj , b) − σT1,¬T2(Λ(T
cb
3 ), b).

Lemma 11. After O(n) time preprocessing, given any S ⊆ L, σT1,¬T2(S, b) for all
b ∈ S can be computed in O(|S|) time.

This suggests the following algorithm, which we call Compute count rff T1, for
computing countT1

r,f,f (a, b) for all b ∈ L \ {a} for any fixed a ∈ L. First, it builds
the partition {W1, . . . , Wp} of L \ {a}. This takes O(n) time. Then, T1 and T2 are
preprocessed in O(n) time so Lemma 11 can be applied. For each j ∈ {1, . . . , p},
the algorithm then computes σT1,¬T2(Wj , b) and σT1,¬T2(Λ(T

cb
3 ), b) for all b ∈ Wj .

By Lemma 11, this step takes O(
∑p

j=1 |Wj |) = O(n) time. (For every b ∈ Wj , to

identify the child cb of vj such that b ∈ Λ(T
cb
3 ) in O(1) time, one can store the depths

of all nodes in T3 and use the level-ancestor data structure after O(n) time extra
preprocessing [3].) Finally, Lemma 10 is used to obtain countT1

r,f,f (a, b) for every b ∈ Wj

and j ∈ {1, . . . , p} in O(n) time. In total, the time complexity of Compute count rff T1

is O(n). By running Compute count rff T1 once for each a ∈ L, we get countT1
r,f,f (a, b)

for all a, b ∈ L in O(n2) total time.

Lemma 12. For each i ∈ {1, 2, 3}, the values of countTi
r,f,f (a, b) for all a, b ∈ L can be

computed in O(n2) total time.

3.4 Determining if a Given Cluster Is a Strong Cluster When k = 3

Steps 3–5 of R* consensus tree in Section 1.3 need to determine which Apresjan
clusters of sRmaj are strong clusters of Rmaj . This subsection presents a method for
doing so efficiently. Let A ⊆ L. For any j ∈ {1, 2, 3}, a leaf x ∈ L\A is called an outsider
in Tj if x is not a descendant of uj

A in Tj , where uj
A = lcaTj (A). Define the following

two disjoint subsets of L \ A: (i) PA = the set of all x ∈ L \ A such that lcaTj (a, x) is
a proper descendant of uj

A for some a ∈ A and some j ∈ {1, 2, 3}; and (ii) QA = the
set of all x ∈ L \ A such that lcaTj (a, x) = uj

A for all a ∈ A and all j ∈ {1, 2, 3}. (If
|A| = 1 then PA = QA = ∅.) Also define an undirected graph GA = (A, EA), whose
edge set is EA =

{{a, a′} : lcaTj (a, a′) is a proper descendant of uj
A for at least one

j ∈ {1, 2, 3}}. Then we have:

Lemma 13. For any A ⊆ L, A is a strong cluster of Rmaj if and only if: (1) each
x ∈ PA is an outsider in exactly two trees from {T1, T2, T3}; and (2) if QA is nonempty,
the graph GA is a complete graph.
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Procedure Check all Apresjan clusters

Input: A tree A of all Apresjan clusters of sRmaj

Output: A list of all the strong clusters of Rmaj

1: for all nodes v in A in bottom-up order do
2: Let A be the Apresjan cluster of sRmaj corresponding to v;
3: if v is a leaf then
4: /* Without loss of generality, assume A = {a} */
5: Set u1

A = u2
A = u3

A to be the leaf with label a and let GA be a graph with
a single vertex a. Let B1

A = B2
A = B3

A = {A};
6: else
7: Let A1, . . . , Am be the Apresjan clusters corresponding to the children of v

and form GA by merging GA1 , . . . , GAm ;
8: for j = 1, 2, 3 do
9: Update uj

A = lcaTj (uj
A1

, . . . , uj
Am

). Partition A into a set of blocks Bj
A

such that each block B ∈ Bj
A contains all the elements of A that appear

in the same subtree attached to uj
A;

10: Compute ZB =
⋃m

i=1(Bj
Ai

|B) for every block B ∈ Bj
A;

11: for every block B ∈ Bj
A do

12: Insert all edges {x, y} into GA where x ∈ X, y ∈ Y and where X and
Y are two different sets in ZB ;

13: end for
14: end for
15: end if
16: If A satisfies the condition in Lemma 13 then output A;
17: end for

Fig. 3. Procedure for finding all strong clusters of Rmaj

Procedure Check all Apresjan clusters in Fig. 3 applies the condition in
Lemma 13 to find all strong clusters of Rmaj . To avoid building each GA-graph from
scratch, it assumes that the Apresjan clusters are specified in the form of a tree A,
so that the information in the GA-graphs can be reused as it goes upwards in A. (As
mentioned in Section 1.3, A can be obtained in O(n2) time [5].) The procedure builds
the GA-graphs for all Apresjan clusters A bottom-up, according to the given tree A.
Each GA is represented as a set of edges. To simplify the construction, for j = {1, 2, 3},
the procedure maintains uj

A = lcaTj (A). It also maintains Bj
A, which is the partition

of A such that each block B ∈ Bj
A contains all elements in A that appear in one subtree

attached to the node uj
A.

For any set X of subsets of L and any L′ ⊆ L, let X|L′ = {X ∈ X : X ⊆ L′}.

Lemma 14. Procedure Check all Apresjan clusters outputs all strong clusters
of Rmaj in O(n2α(n)) time, where α(n) is the inverse Ackermann function.

4 Computing the R* Consensus Tree for Unbounded k

Section 4.1 computes sRmaj (a, b) for all a, b ∈ L in O(n2 logk n) time. Section 4.2 checks

which Apresjan clusters are strong clusters in O(n2 logk+2 n) time.
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4.1 Computing sRmaj
for Unbounded k

Here, we give a procedure that, for any fixed a ∈ L, computes sRmaj (a, b) for all

b ∈ L \ {a} in O(n logk n) time.
Let occ(ab|w, T[i..j]) be the number of occurrences of ab|w in t(Ti), . . . , t(Tj). Denote

sW,x,y,z
T[1..i]

(a, b) =
∣∣{w ∈ W : occ(ab|w, T[1..i]) + x > max{occ(aw|b, T[1..i]) + y, occ(bw|a,

T[1..i]) + z}}∣∣. For a fixed a ∈ L, our goal is to compute sRmaj (a, b) = sL,0,0,0
T[1..k]

(a, b)

for all b ∈ L \ {a}. Note that in the formula for sW,x,y,z
T[1..i]

(a, b), W is not any arbitrary

subset of L; we require, for all w ∈ W , that x, y and z are the number of occurrences
of ab|w, aw|b and bw|a, respectively, in Ti+1, . . . , Tk. These three integers will be used
to pass information during recursive calls.

IneachtreeTi ∈ {T1, . . . , Tk}, anyw ∈ L\{a} is representedbyapair (dTi(w), πi(w)),
wheredTi(w) is thedistance inTi froma to lcaTi(a, w), andπi(w) = j,wherew is a descen-
dant of the jth child of lcaTi(a, w). The occurrence of a triplet in t(Ti) is then given by
(cf. Theorem 1 in [12] and Lemma 7 in [10]):

Lemma 15. Let b ∈ L \ {a}. For any w ∈ L \ {a, b} and i ∈ {1, . . . , k}:
1. ab|w ∈ t(Ti) if and only if dTi(b) < dTi(w);
2. aw|b ∈ t(Ti) if and only if dTi(b) > dTi(w); and
3. bw|a ∈ t(Ti) if and only if dTi(b) = dTi(w) and πi(b) = πi(w).

We build a data structure BW,k in O(|W | logk |W |) time that yields the value
of sW,x,y,z

T[1..k]
(a, b) for any b ∈ W \ {a} and any x, y, z in O(logk |W |) time as follows.

For the base case k = 1, the data structure BW,1 consists of a balanced binary
search tree BT (W, T1) for all distinct dT1(w)-values, where w ∈ W . There may be
multiple elements of W with the same dT1(w)-value. For each such node, we replace
it by a balanced binary search tree for these multiple elements and index them using
the keys π1(w). The additional nodes are called yellow nodes. The data structure BW,1

can be constructed in O(|W |) time.
Now we show how to compute sW,x,y,z

T[1..1]
(a, b) from BW,1. For any b ∈ W , let P be

the path from the root of BT (W, T1) to b. Since BT (W, T1) is balanced, P is of length
O(log |W |). We partition the subtrees attached to P into four sets:

• Wfan is the set of subtrees attached to the yellow nodes of P where π1(b) �= π1(w)
for all leaves w in the subtrees of Wfan.

• Wmid is the set of subtrees attached to the yellow nodes of P where π1(b) = π1(w)
for all leaves w in the subtrees of Wmid.

• Wleft is the set of left subtrees attached to the non-yellow nodes of P .
• Wright is the set of right subtrees attached to the non-yellow nodes of P .

Note that a|b|w ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wfan. Similarly, bw|a ∈ t(T1) for
all w ∈ Λ(S) and S ∈ Wmid. Also, aw|b ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wleft, and
ab|w ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wright.

By the definitions and Lemma 15, sW,x,y,z
T[1..1]

(a, b) = A + B + C + D where:

• A =
∑

S∈Wfan
|Λ(S)| if x > y, x > z; and 0 otherwise.

• B =
∑

S∈Wmid
|Λ(S)| if x > y, x > 1 + z; and 0 otherwise.

• C =
∑

S∈Wleft
|Λ(S)| if x > 1 + y, x > z; and 0 otherwise.

• D =
∑

S∈Wright
|Λ(S)| if x + 1 > y, x + 1 > z; and 0 otherwise.
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Procedure counting query

Input: Integer i ∈ {0, 1, . . . , k}, W ⊆ L, integers x, y, z, leaf b ∈ L \ {a}.
Output: sW,x,y,z

T[1..i]
(a, b)

1: if i = 0 then
2: if x > y and x > z then
3: return |W |;
4: else
5: return 0;
6: end if
7: else
8: Let P be the path from the root of BT (W, Ti) to b;
9: Compute the sets Wfan, Wmid, Wright, Wleft of subtrees attached to P ;

10: A =
∑

S∈Wfan
counting query(i − 1, Λ(S), x, y, z, b);

11: B =
∑

S∈Wmid
counting query(i − 1, Λ(S), x, y, z + 1, b);

12: C =
∑

S∈Wleft
counting query(i − 1, Λ(S), x, y + 1, z, b);

13: D =
∑

S∈Wright
counting query(i − 1, Λ(S), x + 1, y, z, b);

14: return A + B + C + D;
15: end if

Fig. 4. Procedure for computing sW,x,y,z
T[1..i]

(a, b), assuming BW,i is available

There are O(log |W |) subtrees, so we can find sW,x,y,z
T[1..1]

(a, b) in O(log |W |) time.

Next, assume we can create a data structure BW,k−1 from which sW,x,y,z
T[1..k−1]

(a, b)

can be computed in O(logk−1 |W |) time. Then we build the data structure BW,k,
consisting of two parts, as follows. Firstly, similar to the case k = 1, we build a
binary search tree BT (W, Tk). Secondly, for every subtree S in BT (W, Tk), we build
the data structure BΛ(S),k−1. The time required to build BW,k depends on the time
needed for the two parts. For the first part, as shown above, BT (W, Tk) can be con-
structed in O(|W | log |W |) time. For the second part,

∑{|Λ(S)| : S is a subtree
of BT (W, Tk)} = O(|W | log |W |). Since BΛ(S),k−1 can be constructed in O(|Λ(S)|
logk−1 |Λ(S)|) time, the second part takes O(|W | logk |W |) time.

We now discuss how to use BW,k to compute sW,x,y,z
T[1..k]

(a, b). For any b ∈ W , similar

to the case k = 1, first find the path P from the root of BT (W, Tk) to b. There are
O(log |W |) subtrees attached to P . Partition them into the sets Wfan, Wmid, Wleft,
and Wright according to the same criteria as for k = 1 above. Then:

Lemma 16. For any b ∈ W , it holds that sW,x,y,z
T[1..k]

(a, b) = A + B + C + D, where

A =
∑

S∈Wfan
s

Λ(S),x,y,z
T[1..k−1]

(a, b), B =
∑

S∈Wmid
s

Λ(S),x,y,z+1
T[1..k−1]

(a, b), C =
∑

S∈Wleft

s
Λ(S),x,y+1,z
T[1..k−1]

(a, b), and D =
∑

S∈Wright
s

Λ(S),x+1,y,z
T[1..k−1]

(a, b).

Fig. 4 lists the pseudocode of the procedure counting query for computing
sW,x,y,z

T[1..k]
(a, b), given BW,k. The next lemma bounds its running time.

Lemma 17. Given the data structure BW,k for a fixed a ∈ L, for any b ∈ L \ {a},
counting query(k, W, x, y, z, b) computes sW,x,y,z

T[1..k]
(a, b) in O(logk n) time.
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4.2 Determining if a Given Cluster Is a Strong Cluster for
Unbounded k

Let A be the tree of all Apresjan clusters. For any A ⊆ L and a, b ∈ A with a �= b,
define sA

Rmaj
(a, b) = |{w ∈ A : ab|w ∈ Rmaj}|. The following lemma allows us to

verify if A is a strong cluster.

Lemma 18. Let A ⊆ L. A is a strong cluster of Rmaj if and only if sRmaj (a, b) =

|L \ A| + sA
Rmaj

(a, b) for all a, b ∈ A with a �= b.

Observe that sA
Rmaj

(a, b) = sA,0,0,0
T[1..k]

(a, b), using the notation from Section 4.1. For

any fixed a ∈ L, the next lemma gives a data structure for computing sA
Rmaj

(a, b) in

O(logk+1 n) time for any cluster A ∈ A and b ∈ A \ {a}.

Lemma 19. For any a ∈ L, we can construct a data structure in O(n logk+1 n) time
which enables us to compute sA

Rmaj
(a, b) = sA,0,0,0

T[1..k]
(a, b) in O(logk+1 n) time for any

cluster A ∈ A that contains the element a and any b ∈ A \ {a}.

Lemma 20. If a node u in A satisfies sRmaj (a, b) = |L\Λ(Au)| + s
Λ(Au)
Rmaj

(a, b), then,

for every ancestor u′ of u, sRmaj (a, b) = |L \ Λ(Au′
)| + s

Λ(Au′
)

Rmaj
(a, b) holds.

Thus, A contains a node ua,b
min such that sRmaj (a, b) = |L \ Λ(Au)| + s

Λ(Au)
Rmaj

(a, b)

for any ancestor u of ua,b
min. In fact, ua,b

min can be found in O(logk+2 n) time:

Lemma 21. Given the data structure in Lemma 19, ua,b
min for any b ∈ L can be found

in O(logk+2 n) time.

Finally, we describe the procedure Verify strong clusters for checking which clus-
ters in A are strong clusters. See Fig. 5 for the pseudocode. First, initialize count(u) = 0
for every node u in A. Then, compute ua,b

min for all a, b ∈ L using Lemma 21, and increase

Procedure Verify strong clusters

Input: A tree A of all Apresjan clusters of sRmaj

Output: A tree including all strong clusters of Rmaj

1: Set count(u) = 0 for all nodes u in A;
2: for a, b ∈ L do
3: Find ua,b

min by Lemma 21 and set count(ua,b
min) = count(ua,b

min) + 1;
4: end for
5: Set sum(u) = 0 for all leaves u in A;
6: for every internal node u ∈ A in bottom-up order do
7: Set sum(u) = count(u) +

∑{
sum(c) : c is a child of u in A};

8: if sum(u) <
(|Λ(Au)|

2

)
then

9: Contract node u; /* Λ(Au) is not a strong cluster */
10: end if
11: end for
12: return A;

Fig. 5. Procedure for checking which Apresjan clusters are strong clusters
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each count(ua,b
min) by 1. Next, set sum(u) to be the total sum of count(v) for all descen-

dants v of u in A. By Lemma 22 below, if sum(u) =
(|Λ(Au)|

2

)
then Λ(Au) is a strong

cluster; otherwise, it is not. In case Λ(Au) is not a strong cluster, contract u in A (that
is, attach all children of u to the parent of u in A and remove the node u). By Lemmas 19
and 21, the running time of Verify strong clusters is O(n2 logk+2 n).

Lemma 22. For any node u in A, Λ(Au) is a strong cluster if and only if sum(u) =(|Λ(Au)|
2

)
.
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Abstract. In this paper, we study the parameterized complexity of the
problems of partitioning the vertex set of a graph into two parts VA

and VB such that VA induces a graph with degree at most a (resp., an
a-regular graph) and VB induces a graph with degree at most b (resp., a b-
regular graph). These two problems are called Upper-Degree-Bounded
Bipartition and Regular Bipartition respectively. First, we prove
that the two problems are NP-complete with any nonnegative integers
a and b except a = b = 0. Second, we show that the two problems with
parameter k being the size of VA of a bipartition (VA, VB) are fixed-
parameter tractable for fixed integer a or b by deriving some problem
kernels for them.

1 Introduction

In graph algorithms and graph theory, there is a series of important problems
that require us to partition the vertex set of a graph into several parts such that
each part induces a subgraph satisfying some degree constraints. For example,
the k-coloring problem is to partition the graph into k parts each of which
induces an independent set (a 0-regular graph). Most of these kinds of problems
are NP-hard, even if the problems are to partition a given graph into only two
parts, which is called a bipartition.

For bipartition with a degree constraint on each part, we can find many
references related to this topic. Here is a definition of the problem:

Degree-Constrained Bipartition
Instance: A graph G = (V,E) and four integers a, a′, b and b′.
Question: Is there a partition (VA, VB) of V such that

a′ ≤ degVA
(v) ≤ a ∀v ∈ VA and b′ ≤ degVB

(v) ≤ b ∀v ∈ VB,

where degX(v) denotes the degree of a vertex v in the induced subgraph G[X]?

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 429–440, 2014.
DOI: 10.1007/978-3-319-13075-0 34
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There are three special cases of Degree-Constrained Bipartition. If
there are no constraints on the upper bounds (resp., lower bounds) of the degree
in Degree-Constrained Bipartition, i.e., a = b = ∞ (resp., a′ = b′ = 0),
we call the problem Lower-Degree-Bounded Bipartition (resp., Upper-
Degree-Bounded Bipartition). We call Degree-Constrained Biparti-
tion with a special case of a = a′ and b = b′ Regular Bipartition.

Lower-Degree-Bounded Bipartition has been extensively studied in
the literature. The problem with 4-regular graphs is NP-complete for a′ = b′ =
3 [7] and linear-time solvable for a′ = b′ = 2 [4]. More polynomial-time solvable
cases with restrictions on the structure of given graphs and constraints on a′

and b′ can be found in [2,3,7,12,16].
For Regular Bipartition, when a = b = 0, the problem becomes a

polynomial-solvable problem of checking whether a given graph is bipartite
or not; when a = 0 and b = 1, the problem becomes Dominating Induced
Matching, a well studied NP-hard problem also known as Efficient Edge
Domination [11,14]. However, not many results are known about Upper-
Degree-Bounded Bipartition and Regular Bipartition with other values
of a and b.

In this paper, we first show that Upper-Degree-Bounded Bipartition
and Regular Bipartition are NP-complete with any nonnegative integers a
and b except a = b = 0. The major contributions of this paper are vertex kernels
for these two problems, which also implies that for constants a and b they are
fixed-parameter tractable (FPT) with parameter k = |VA|. We also discuss the
fixed-parameter intractability of our problems with parameter only k = |VA|
where b is not fixed.

We also note some related problems, in which the degree constraint on one
part of the bipartition changes to a constraint on the size of the part. Bounded-
Degree Deletion asks us to delete at most k vertices from a graph to make the
remaining graph having maximum vertex degree at most a.Maximum Regular
Induced Subgraph asks us to delete at most k vertices from a graph to make
the remaining graph an a-regular graph. These two problems can be regarded as
such a kind of bipartition problems and have been well studied in parameterized
complexity. They are FPT with parameters k and a and W[1]-hard with only
parameter k [10,15,16]. Let tw denote the treewidth of an input graph. Betzler
et. al. also proved that Bounded-Degree Deletion is FPT with parameters
k and tw and W[2]-hard with only parameter tw [6]. The parameterized com-
plexity of some other related problems, such as Minimum Regular Induced
Subgraph are studied in [1].

The remaining parts of the paper are organized as follows: Section 2 intro-
duces a notation system. Section 3 proves the NP-hardness of our problems.
Section 4 gives the problem kernels, and Section 5 shows the fixed-parameter
intractability. Finally, some concluding remarks are given in the last section.
Proofs of some lemmas are omitted due to space limitation.
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2 Preliminaries

In this paper, a graph stands for a simple undirected graph. We may simply use
v to denote the set {v} of a single vertex v. Let G = (V,E) be a graph, and
X ⊆ V be a subset of vertices. The subgraph induced by X is denoted by G[X],
and G[V \X] is also written as G\X. Let E(X) denote the set of edges between
X and V \ X. Let N(X) denote the neighbors of X, i.e., the vertices y ∈ V \ X
adjacent to a vertex x ∈ X, and denote N(X) ∪ X by N [X]. The degree deg(v)
of a vertex v is defined to be |N(v)|. A vertex in X is called an X-vertex, and
a neighbor u ∈ X of a vertex v is called an X-neighbor of v. The number of X-
neighbors of v is denoted by degX(v); i.e., degX(v) = |N(v)∩X|. The vertex set
and edge set of a graph H are denoted by V (H) and E(H), respectively. When
X is equal to V (H) of some subgraph H of G, we may denote V (H)-vertices
by H-vertices, V (H)-neighbors by H-neighbors, and degV (H)(v) by degH(v) for
simplicity. For a subset E′ ⊆ E, let G − E′ denote the subgraph obtained from
G by deleting edges in E′. For an integer p ≥ 1, a star with p + 1 vertices is
called a p-star. The unique vertex of degree > 1 in a p-star with p > 1 is called
the center of the star, and any vertex in a 1-star is a center of the star.

For a graph G and two nonnegative integers a and b, a partition of V (G) into
VA and VB is called (a, b)-bounded if degVA

(v) ≤ a for all vertices in v ∈ VA and
degVB

(v) ≤ b for all vertices in v ∈ VB . An (a, b)-bounded partition (VA, VB) is
called (a, b)-regular if degVA

(v) = a for all vertices in v ∈ VA and degVB
(v) = b for

all vertices in v ∈ VB. An instance I = (G, a, b) of Upper-Degree-Bounded
Bipartition (resp., Regular Bipartition) consists of a graph G and two
nonnegative integers a and b, and asks us to test whether an instance (G, a, b)
admits an (a, b)-bounded partition (resp., (a, b)-regular partition) or not.

3 NP-Hardness

Theorem 1. Upper-Degree-Bounded Bipartition is NP-complete for any
nonnegative integers a and b except a = b = 0.

Before proving Theorem 1, we first provide some properties on complete
graphs in Upper-Degree-Bounded Bipartition. Without loss of generality
we assume that a ≤ b and b ≥ 1 in this section.

An (a+1, b+1, a+1)-complete graph W is defined to be the graph consisting
of two complete graphs of size a+ b+ 2 that share exactly b+ 1 vertices, where
|V (W )| = 2(a + b + 2) − (b + 1) = 2a + b + 3 holds and the set of b + 1 vertices
shared by the two complete graphs is denoted by S(W ).

Lemma 1. Let (G, a, b) admit an (a, b)-bounded partition (VA, VB).

(i) If G contains a clique K of size a + b + 2, then |V (K) ∩ VA| = a + 1 and
|V (K) ∩ VB | = b + 1; and

(ii) Assume that G contains an (a + 1, b + 1, a + 1)-complete graph W . Then
{V (W )∩VA, V (W )∩VB} = {S(W ), V (W )\S(W )} (or V (W )∩VA = V (W )\
S(W ) and V (W ) ∩ VB = S(W ) when a 
= b), N(VA ∩ V (W )) \ V (W ) ⊆ VB

and N(VB ∩ V (W )) \ V (W ) ⊆ VB.
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We here construct a special graph that consists of an (a + 1, b + 1, a + 1)-
complete graph, several complete graphs with size a + b + 2 and some edges
joining them. Given two positive integers n and m, we first construct an (a +
1, b + 1, a + 1)-complete graph W and (n + m) complete graphs X1,X2, . . . , Xn

and C1, C2, . . . , Cm with size a + b + 2. Next we choose a vertex vA ∈ V (W ) \
S(W ) and a vertex vB ∈ S(W ) arbitrarily, and add edges between {vA, vB} and
{X1, . . . , Xi, . . . , Xn} ∪ {C1, . . . , Cj , . . . , Cm} as follows:

1. For each Xi, join vB to arbitrary a vertices u1, . . . , ua ∈ V (Xi) via new
edges, and join vA to arbitrary b vertices u′

1, . . . , u
′
b ∈ V (Xi) \ {u1, . . . , ua}

via new edges;
2. For each Cj , join vB to arbitrary a vertices u1, . . . , ua ∈ V (Cj) via new edges,

and join vA to arbitrary (b − 1) vertices u′
1, . . . , u

′
b−1 ∈ V (Cj) \ {u1, . . . , ua}

via new edges, where b − 1 ≥ 0 since b ≥ 1 is assumed; and
3. Let Gn,m denote the resulting graph.

Vertices in Xi (i = 1, 2, . . . , n) or Cj (j = 1, 2, . . . ,m) not adjacent to vA or
vB are called free. Each Xi contains exactly two free vertices, denoted by vi and
v′
i, and each Cj contains exactly three free vertices, denoted by v1

j , v
2
j and v3

j .

Fig. 1. Constructing graph Gn,m + E0

Let E0 be an arbitrary set of new edges between free vertices in ∪1≤i≤nXi

and free vertices in ∪1≤j≤mCj in Gn,m. Let Gn,m + E0 be the graph obtained
from Gn,m by adding the edges in E0. See Figure 1. We have

Lemma 2. Let (VA, VB) be a partition of V (Gn,m + E0), where if a = b then
we assume without loss of generality that vA ∈ VA. Then (VA, VB) is an (a, b)-
bounded partition of Gn,m + E0 if and only if the following hold:
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(i) Every subgraph H ∈ {W,X1, . . . , Xn, C1, . . . , Cm} satisfies that
degV (H)∩VA

(v) = a for all vertices v ∈ V (H) ∩ VA and degV (H)∩VB
(v) = b

for all vertices v ∈ V (H) ∩ VB;
(ii) S(W ) ⊆ VB, V (W ) \ S(W ) ⊆ VA, N(vB) \ V (W ) ⊆ VA, and N(vA) \

V (W ) ⊆ VB;
(iii) For each Xi, exactly one of the two free vertices in Xi is contained in VA

and the other is in VB; and
(iv) For each Cj, exactly one of the three free vertices in Cj is contained in VA

and the other two are in VB; and (v) For each uv ∈ E0, |{u, v} ∩ VA| =
|{u, v} ∩ VB | = 1.

Now we are ready to prove Theorem 1. Clearly Upper-Degree-Bounded
Bipartition is in NP. In what follows, we construct a polynomial reduction
from the NP-complete problem One-In-Three 3SAT [12].

One-In-Three 3SAT
Instance: A set C ofm clauses c1, c2, . . . , cm on a setX ofn variables x1, x2, . . . , xn

such that each clause cj consists of exactly three literals �1j , �2j and �3j .
Question: Is there a truth assignment X → {true, false}n such that each
clause cj has exactly one true literal?

Given an instance F = (C,X ) of One-In-Three 3SAT and nonnegative
integers a ≤ b (≥ 1), we will construct an instance IF = (GF , a, b) of Upper-
Degree-Bounded Bipartition such that IF has an (a, b)-bounded partition if
and only if F is feasible. Such an instance IF is constructed on the graph Gn,m by
setting GF = Gn,m +E0, where a set E0 of edges between {X1, . . . , Xi, . . . , Xn}
and {C1, . . . , Cj , . . . , Cm} according to the relationship between X and C in F
as follows:

For each clause cj = (�1j , �
2
j , �

3
j ) ∈ C and the k-th literal �kj , k = 1, 2, 3, if

�kj is a positive (resp., negative) literal of a variable xi, then join free vertex
vk
j ∈ V (Cj) to free vertex vi ∈ V (Xi) (resp., v′

i ∈ V (Xi)) via a new edge.
Let GF = Gn,m +E0 be the resulting graph. We remark that Xi serves as a

gadget for variable xi ∈ X and Cj serves as a gadget for clause cj ∈ C.
This completes the construction of instance IF = (GF , a, b). We interpret

conditions (iii) and (iv) on free vertices in Lemma 2 as follows:

vi ∈ VB (resp., vi ∈ VA) ⇔ true (resp., false) is assigned to xi, and

vk
j ∈ VA (resp., vk

j ∈ VB) ⇔ �kj = true (resp., �kj = false).

Hence we see by Lemma 2 that IF = (GF = Gn,m + E0, a, b) admits an (a, b)-
bounded partition if and only if F is feasible. This completes a proof of Theo-
rem 1.

By Lemma 2, F is feasible if and only if IF = (GF = Gn,m+E0, a, b) admits
an (a, b)-regular partition. Hence the problem of testing whether an instance
(G, a, b) admits an (a, b)-regular partition is also NP-complete for any nonnega-
tive integers a and b except a = b = 0.



434 M. Xiao and H. Nagamochi

Corollary 1. Regular Bipartition is NP-complete for any nonnegative inte-
gers a and b except a = b = 0.

4 Kernelization

This section studies the parameterized complexity and kernels of our problems.
For this, we introduce the following constrained versions of the problems.

Constrained Upper-Degree-Bounded Bipartition
Instance: A graph G, two subsets A,B ⊆ V (G), and nonnegative integers a, b
and k.
Question: Is there an (a, b)-bounded partition (VA, VB) of V (G) such that A ⊆
VA, B ⊆ VB , and |VA| ≤ k?

In the same way, we can define Constrained Regular Bipartition by
replacing “(a, b)-bounded partition” with “(a, b)-regular partition” in the above
definition. Note that we do not assume a ≤ b in this section. We call a partition
(VA, VB) satisfying the condition in the definitions of Constrained Upper-
Degree-Bounded Bipartition and Constrained Regular Bipartition a
solution to the problem instance. An instance (G,A,B, a, b, k) is called feasible
if it admits a solution. A vertex in V (G) \ (A ∪ B) is called undecided, and we
always denote V (G) \ (A ∪ B) by U . Clearly each of the two problems can be
solved in 2|U ||V |O(1) time. We say that an instance (G,A,B, a, b, k) is reduced
to an instance (G,A′, B′, a, b, k) such that (G,A,B, a, b, k) is feasible if and only
if so is (G,A′, B′, a, b, k). Note that when it turns out that (G,A,B, a, b, k) is
infeasible we can say that it is reduced to an infeasible instance (G,A′, B′, a, b, k)
such as one with A′ ∩ B′ 
= ∅.

In this paper, we say that a problem admits a kernel of size O(f(k)) if any
instance of the problem can be reduced in polynomial time in n into an instance
(G,A,B, a, b, k) with |V (G)| = O(f(k)) for a function f(k) of k. The main results
in this section are the following.

Theorem 2. Constrained Upper-Degree-Bounded Bipartition admits
a kernel of size O((b+1)2(b+k)k), and is fixed-parameter tractable with param-
eter k for a constant b.

Theorem 3. Constrained Regular Bipartition admits a kernel of size
O((b + 1)(b + k)k2) for a ≤ b or of size O((b + 1)(b + k)k2 + (ak)(a−b+1)k) for
a > b, and is fixed-parameter tractable with parameter k for constants a and b.

4.1 Kernels for Constrained Upper-Degree-Bounded Bipartition

In this subsection, an instance always means the one of Constrained Upper-
Degree-Bounded Bipartition. We have only five simple reduction rules to
get a kernel to this problem.
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Rule 1. Conclude that an instance is infeasible if one of the following holds:
A ∩ B 
= ∅; |A| > k; degA(v) > a for some vertex v ∈ A; and degB(u) > b for
some vertex u ∈ B.

Rule 2. Move to B any U -vertex v with degA(v) > a, and move to A any
U -vertex u with degB(u) > b.

If we include to B a U -vertex v with deg(v) > b+k, then the instance cannot
have a solution, because at least k + 1 neighbors of v need to be included to A,
implying that |VA| cannot be bounded by k.

Rule 3. Move to A any U -vertex v with deg(v) > b + k.

Lemma 3. Let v be a U ∪ B-vertex in an instance I = (G,A,B, a, b, k) such
that deg(u) ≤ b for all vertices u ∈ N [v]. Let I ′ = (G − {v}, A,B′, a, b, k) be the
instance obtained from I by deleting the vertex v, where B′ = B if v ∈ U and
B′ = B − {v} if v ∈ B. The instance I is feasible if and only if so is I ′.

Proof. It is clear that if I has a solution then I ′ also has a solution, because
deleting a vertex never increases the degree of any of the remaining vertices.
Assume that I ′ admits a solution (VA, VB). We show that (VA, VB ∪ {v}) is a
solution to I. Note that adding v to VB may increase the degree of a vertex only
in N [v]. However, by the choice of the vertex v, for any vertex u ∈ N [v] it holds
b ≥ deg(u) ≥ degVB∪{v}(u). Hence (VA, VB ∪ {v}) is a solution to I. ��
Rule 4. Remove from the graph of an instance any U ∪ B-vertex v such that
deg(u) ≤ b for all vertices u ∈ N [v].

Lemma 4. An instance I = (G,A,B, a, b, k) is infeasible if G contains more
than k vertex-disjoint (b + 1)-stars.

Proof. For a solution (VA, VB) to I, if there is a (b + 1)-star disjoint with VA,
then a center v of the star would satisfy degVB

(v) ≥ b+1. Hence VA must contain
at least one from each of more than k vertex-disjoint (b+1)-stars. This, however,
contradicts |VA| ≤ k. ��
Rule 5. Compute a maximal set S of vertex-disjoint (b + 1)-stars in G of an
instance I = (G,A,B, a, b, k) (not only in G[U ]). Conclude that the instance is
infeasible if |S| > k.

Now we analyze the size |V (G)| of an instance I = (G,A,B, a, b, k) where
none of the above five rules can be applied anymore. Assume that when Rule 4
is applied to a maximal set of vertex-disjoint (b + 1)-stars S in G, it holds
|S| ≤ k now. Let S0 be the set of all vertices in S, S1 = N(S0) and S2 =
N(S1 ∪ S0) = N(S1) \ S0. We first show that V (G) = A ∪ S0 ∪ S1 ∪ S2. By
the maximality of S, we know that there is no vertex of degree ≥ b + 1 in the
graph after deleting S0. Then all vertices u with deg(u) ≥ b + 1 are in S0 ∪ S1,
and |S2| ≤ b|S1| holds. Since Rule 4 is no longer applicable, each U ∪ B-vertex
v with deg(v) ≤ b is adjacent to a vertex u with deg(u) ≥ b + 1 that is in
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S0 ∪ S1. Then all U ∪ B-vertices u with deg(u) ≤ b are in S1 ∪ S2. Hence
V (G) = A ∪ S0 ∪ S1 ∪ S2. We have that |A| ≤ k, |S0| ≤ (b + 2)|S| ≤ (b + 2)k,
|S1| ≤ (b+k)|S0| ≤ (b+k)(b+2)k by Rule 3 and |S2| ≤ b|S1| ≤ b(b+k)(b+2)k.
Therefore |V (G)| ≤ |A| + |S0| + |S1| + |S2| = O((b + 1)2(b + k)k). This proves
Theorem 2.

4.2 Kernels for Constrained Regular Bipartition

In this subsection, an instance always stands for the one in Constrained Reg-
ular Bipartition. When we introduce a reduction rule, we assume that all
previous reduction rules cannot be applied anymore.

We see that an instance I = (G,A,B, a, b) is infeasible if one of the following
conditions holds:

(i) A ∩ B 
= ∅ or |A| > k;
(ii) There is a vertex v ∈ V (G) with deg(v) < min{a, b};
(iii) There is a vertex v ∈ A with degV (G)\B(v) < a or degA(v) > a; and
(iv) There is a vertex v ∈ B with degV (G)\A(v) < b or degB(v) > b.

Rule 6. Conclude that an instance is infeasible if one of the above four condi-
tions holds.

Rule 7. Move to B any U -vertex v with degV (G)\B(v) < a or degA(v) > a or
adjacent to a B-vertex u with degB(u) + degU (u) = b. Move to A any U -vertex
v with degV (G)\A(v) < b or degB(v) > b or adjacent to an A-vertex u with
degA(u) + degU (u) = a.

Rule 8. Remove from the graph of an instance any edges between A and B.
Delete the set V (H) of vertices in any b-regular component H of G such that
V (H) ⊆ U ∪ B.

Rule 9. Move to A any U -vertex v with deg(v) > b + k.

We say that a vertex v is tightly-connected from a U -vertex u if there is
a path P from u to v such that each vertex w ∈ V (P ) \ {u} is a U -vertex
with degV (G)\A(w) = b. For each U -vertex u, let T (u) denote the set U -vertices
tightly-connected from u, which has the following property: when we include a
U -vertex u to A, all the vertices T (u) need to be included to A, because the
degree of each vertex v ∈ T (u) \ {u} in G[U ∪ B] will be less than b. Hence if we
include a U -vertex u with |T (u)| > k, then |A| will increase by |T (u)| > k and
the resulting instance cannot have a solution.

Rule 10. Move to B any U -vertex u with |T (u)| > k.

Rule 11. Conclude that an instance is infeasible if |B∩N(U)| > bk or |E(B)| >
b(b + 1)k.

In what follows, we assume that b(b+1)k > |E(B)| ≥ |N(B)|. By Rule 10, it
holds that |T (u)| ≤ k for each vertex u ∈ N(B). Let T ∗ = N(B)∪(∪u∈N(B)T (u)).
Then |T ∗| ≤ |N(B)|(k + 1) ≤ b(b + 1)k(k + 1). We have
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Lemma 5. When none of Rule 6-Rule 11 is applicable, it holds that |T ∗| =
O(b2k2).

We compute a maximal set S of vertex-disjoint (b + 1)-stars in the induced
graph G[U ]. We see that an instance I = (G,A,B, a, b) is infeasible if G[U ]
contains more than k vertex-disjoint (b + 1)-stars. This is because |VA| ≤ k
means that at least one (b + 1)-star must become disjoint with VA and a center
v of the star would satisfy degVB

(v) ≥ b + 1.

Rule 12. Conclude that an instance is infeasible if |S| > k.

Let S0 be the set of all vertices in the (b + 1)-stars in S. For each integer
i > 0, we denote by Si the set U ∩N(Si−1) \ (T ∗ ∪ (∪i−1

j=0Sj)). Let S∗ = ∪i≥0Si.

Lemma 6. When none of Rule 6-Rule 12 is applicable, every U -vertex u with
degU (u) ≥ b + 1 is in S0 ∪ S1. For each vertex v ∈ U \ (T ∗ ∪ S0 ∪ S1), it holds
degV (G)\A(v) = degU (v) = b.

Lemma 7. When none of Rule 6-Rule 12 is applicable, it holds that |S∗| =
O((b + 1)(b + k)k2).

Lemma 8. When none of Rule 6-Rule 12 is applicable, any U \ (T ∗ ∪ S∗)-
vertex is in a component H of G[U ] such that V (H) ⊆ U \ (T ∗ ∪ S∗) and
V (H) ∩ N(A) 
= ∅.

We call a component H of G[U ] residual if V (H) ⊆ U \ (T ∗ ∪ S∗) and
V (H) ∩ N(A) 
= ∅. For a vertex u in a residual component H, it holds that
degV (G)\A(u) = degU (u) = b for u ∈ V (H) ∩ N(A), and deg(u) = degU (u) = b
for u ∈ V (H) \ N(A) by Lemma 6.

Lemma 9. Let H be a residual component in G[U ] of an instance. Then any
(a, b)-regular partition (VA, VB) satisfies either V (H) ⊆ VA or V (H) ⊆ VB.

Hence if a residual component H contains a vertex u ∈ V (H) ∩ N(A) with
deg(u) 
= a or is adjacent to an A-vertex v with degH(v) > a, then V (H) cannot
be contained in a set VA of any (a, b)-regular partition (VA, VB).

Rule 13. Move to B all vertices in a residual component H that satisfies one
of the following:

(i) There is a vertex u ∈ V (H) ∩ N(A) with deg(u) 
= a; and
(ii) There is an A-vertex v with degH(v) > a.

By Lemma 8, we know that each U -vertex is either in T ∗ ∪ S∗ or a residual
component. Note that for any vertex u ∈ V (H)∩N(A) in a residual component
H, it holds deg(u) = degU (u) + degA(u) ≥ b+ 1, which indicates that deg(u) ≥
b+1 > a if a ≤ b. Hence when a ≤ b, after Rule 13 is applied, there is no residual
component. We get the following lemma by Lemma 5 and Lemma 7.
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Lemma 10. If a ≤ b, then the number |U | of undecided vertices in the instance
after applying all above rules is O((b + 1)(b + k)k2).

Lemma 11. Assume that there is a residual component H in G[U ]. Then a > b,
V (H) ⊆ N(A), |V (H)| ≤ k, and every vertex in u ∈ V (H) satisfies degU (u) = b
and degA(u) = a − b.

Next we consider the case that a > b. Let all the vertices in A be indexed by
w1, w2, . . . , w|A|, and define the code c(H) of a residual component H in G[U ]
to be a vector

(degH(w1),degH(w2), . . . ,degH(w|A|)),

where 0 ≤ degH(wi) ≤ a for each i. We say that two residual components H
and H ′ are equivalent if they have the same code c(H) = c(H ′), where we see
that |V (H)| = |V (H ′)| since each vertex u in a residual component has the
same degrees in A and U by Lemma 11. Hence the feasibility of the instance
is independent of the current graph structure among equivalent components.
Moreover, if there are more than a equivalent components, then one of them is
not contained in VA of some (a, b)-regular partition when the instance is feasible.

Rule 14. If there are more than a equivalent residual components for some code,
choose arbitrarily one of them and include the vertices of the component to B.

Lemma 12. The number of vertices in all residual components isO((ak)(a−b+1)k).

By Lemma 5, Lemma 7, and Lemma 12, we have the following.

Lemma 13. If a > b, the number |U | of undecided vertices in any instance after
applying all above rules is O((b + 1)(b + k)k2 + (ak)(a−b+1)k).

We finally derive an upper bound on the size of B in an instance I. Let
B1 = B ∩ N(U) and B2 = B \ B1, where degB(u) < b for each vertex u ∈ B1

by Rule 6, and degB(u) = b for each vertex u ∈ B2. Note that if b ≤ 1 then
B2 = ∅ by Rule 8, and that if |E(B1, B2)| is odd then b is also odd since
b|B2| − |E(B1, B2)| = 2|E(G[B2])|. Observe that the feasibility of I will not
change even if we replace the subgraph G[B2] with a smaller graph G′ of degree-
b B-vertices as long as each vertex u ∈ B1 has the same degree degV (G′)(u) =
degB2

(u) as before. The next lemma ensures that there is such a graph G′ with
O(|B1| + b2) vertices.

Lemma 14. Let b ≥ 2 be an integer, V1 = {u1, u2, . . . , un} be a set of n vertices,
and δ = (d1, d2, . . . , dn) be a sequence of nonnegative integers at most b− 1 such
that b is odd if d =

∑
1≤i≤n di is odd. Then there is a graph G′ = (V2, E2) with

|V2| ≤ n+ b2 + b+1 and a set E(V1, V2) of d edges between V1 and V2 such that
after adding E(V1, V2) between V1 and V2, it holds that degV2

(ui) = di for each
ui ∈ V1 and degV1∪V2

(vi) = b for each vi ∈ V2. Such a pair of graph G′ and edge
set E(V1, V2) can be constructed in polynomial time in n.
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Rule 15. When b ≥ 2, remove the subgraph G[B2], and add a graph G′ =
(V2, E2) with edge set E(V1 = B1, V2) according to Lemma 14, where n = |B1|,
V1 = B1 = {u1, u2, . . . , un} and δ = (degB2

(u1),degB2
(u2), . . . ,degB2

(un)).

Lemma 15. After applying all above rules, the number of vertices in A is at
most k and the number of vertices in B is O(bk + b2).

Proof. After Rule 6, the number of vertices in A is at most k. After Rule 15,
all new vertices added in Rule 15 will form the new vertex set B2. Then |B| =
|B1| + |B2| = |B1| + |V2| ≤ 2|B1| + b2 + b + 1 = 2bk + b2 + b + 1. ��

Lemma 10, Lemma 13, and Lemma 15 establish Theorem 3.

5 Fixed-Parameter Intractability

This section discusses the fixed-parameter intractability of our problems.

Theorem 4. Upper-Degree-Bounded Bipartition is W[2]-hard with
parameter k = |VA|.

ForUpper-Degree-BoundedBipartition, we give a reduction fromDom-
inating Set, a well-knownW[2]-hard problem.Dominating Set asks us to test
whether a graph G admits a vertex subset D ⊆ V (G) of size k such that each
vertex in V (G) \ D is adjacent to at least one vertex in D. Given an instance
I = (G, k) of Dominating Set with a graph G of maximum degree d ≥ 2,
we augment G to G′ = (V (G) ∪ V1, E(G) ∪ E1) so that each vertex v ∈ V (G)
will be of degree d by adding d − deg(v) new vertices adjacent to only v, where
V1 and E1 are the sets of new added degree-1 vertices and edges, respectively. Let
I ′ = (G′, a = d, b = d−1, k) be an instance of Upper-Degree-BoundedBipar-
tition. We prove that I is a yes-instance if and only if I ′ is feasible. If G has a
dominating set D of size at most k, then (VA = D,V (G′) \ D) is a solution to
I ′, because each degree-d vertex in G′ is adjacent to at least one vertex in D, and
degV (G′)\D(u) ≤ max{1, d − 1} holds for each vertex u ∈ V (G′) \ D. When I ′ is
feasible, we claim that I ′ always admits a solution (VA, VB) such that VA ⊆ V (G).
The reason is that any vertex v ∈ VA\V (G) must be a degree-1 vertex in G′ whose
unique neighbor u is in V (G), and thereby we can replace v with u in VA to get
another solution to I ′. For a solution (VA ⊆ V (G), VB) to I ′, we see that VA is a
dominating set in the original graph G.

For Regular Bipartition, we will show that a special case of this problem
is equivalent to Perfect Code in d-regular graphs. Perfect Code asks us
to test whether G admits a set S ⊆ V (G) of at most k vertices such that for
each vertex v ∈ V (G) there is precisely one vertex in N [v] ∩ S. It is W[1]-hard
when k is taken as the parameter [9]. It is easy to see that an instance (G, k)
of Perfect Code in a d-regular graph G is yes if and only if the instance
(G, 0, d − 1, k) of Regular Bipartition is feasible. It is quite possible that
Perfect Code with parameter k remains W[1]-hard even if input graphs are
restricted to regular graphs.
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Abstract. We prove that the model checking problem for the existen-
tial fragment of first order (FO) logic on partially ordered sets is fixed-
parameter tractable (FPT) with respect to the formula and the width
of a poset (the maximum size of an antichain). While there is a long
line of research into FO model checking on graphs, the study of this
problem on posets has been initiated just recently by Bova, Ganian and
Szeider (LICS 2014), who proved that the existential fragment of FO
has an FPT algorithm for a poset of fixed width. We improve upon their
result in two ways: (1) the runtime of our algorithm is O(f(|φ|, w) · n2)
on n-element posets of width w, compared to O(g(|φ|) · nh(w)) of Bova
et al., and (2) our proofs are simpler and easier to follow. We comple-
ment this result by showing that, under a certain complexity-theoretical
assumption, the existential FO model checking problem does not have a
polynomial kernel.

1 Introduction

The model checking problem, asking whether a logical formula holds true on a
given input structure, is a fundamental problem of theoretical computer science
with applications in many different areas, e.g. algorithm design or formal verifi-
cation. One way to see why providing efficient algorithms for model checking is
important is to note that such algorithms automatically establish efficient solv-
ability of whole classes of problems. For the first-order (FO) logic, the model
checking problem is known to be PSPACE-complete when the formula is part of
the input, and polynomial time solvable when the formula is fixed in advance.

However, this does not tell the whole story. In the latter scenario we would
like to identify the instances where we could do significantly better—in regard to
running times—and quantify these gains. Stated in the parlance of parameterized
complexity theory, we wish to identify classes of input structures on which we can
evaluate every FO formula φ in polynomial time f(|φ|) ·nc, where c is a constant
independent of the formula. If it is true, we say that FO model checking problem
is fixed-parameter tractable (FPT) on this class of structures.

Research funded by the Czech Science Foundation under grant 14-03501S.
Sebastian Ordyniak: Research funded by Employment of Newly Graduated Doctors
of Science for Scientific Excellence (CZ.1.07/2.3.00/30.0009).

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 441–451, 2014.
DOI: 10.1007/978-3-319-13075-0 35



442 J. Gajarský et al.

Over the past decade this line of research has been very active and led to
several important results on (mainly) undirected graphs, which culminated in
the recent result of Grohe, Kreutzer and Siebertz [10], stating that FO model
checking is fixed-parameter tractable on all nowhere dense classes of graphs.

In contrast, almost nothing is known about the complexity of FO model
checking on other finite algebraic structures. Very recently, Bova, Ganian and
Szeider [4] initiated the study of the model checking problem for FO and par-
tially ordered sets. Despite similarities between posets and graphs (e.g., in Hasse
diagrams), the existing FO model checking results from graphs do not seem to
transfer well to posets, perhaps due to lack of usable notions of “locality” and
“sparsity” there. This feeling is supported by several negative results in [4], too.

The main result of Bova et al. [4] then is that the model checking problem for
the existential fragment of FO (Poset ∃-FO-Model Checking) can be solved
in time f(|φ|) · ng(w), where n is the size of a poset and w its width, i.e. the size
of its largest antichain. In the language of parameterized complexity, this means
that the problem is FPT in the size of the formula, but only XP with respect to
the width of the poset. Note that this is not an easy result since, for instance,
posets of fixed width can have unbounded clique-width [4].

The proof in [4] goes by first showing that the model checking problem for
the existential fragment of FO is equivalent to the embedding problem for posets
(which can be thought as analogous to the induced subgraph problem), and
then reducing the embedding problem to a suitable family of instances of the
homomorphism problem of certain semilattice structures.

While postponing further formal definitions till Section 2, we now state our
main result which improves upon the aforementioned result of Bova et al.:

Theorem 1. Poset ∃-FO-Model Checking is fixed-parameter tractable in
the formula size and the width of an input poset; precisely, solvable in time
h(|φ|, w) · O(n2) where n is the size of a poset and w its width.

Our improvement is two-fold; (1) we show that the existential FO model
checking problem is fixed-parameter tractable in both the size of the formula
and the width of the poset, and (2) we give two simpler proofs of this result, one
of them completely self-contained. Regarding improvement (2), we use the same
reduction of existential FO model checking to the embedding problem from [4],
but our subsequent solution to embedding is faster and at the same time much
more straightforward and easier to follow.

As stated above, we give two different FPT algorithms solving the poset
embedding problem (and thus also the existential FO model checking problem).
The first algorithm (Section 3) is a natural, and easy to understand, polynomial-
time reduction to a CSP (Constraint Satisfaction Problem) instance closed under
min polymorphisms, giving us an O(n4) dependence of the running time on the
size of the poset. The second algorithm (Section 4) has even better, quadratic,
time complexity and works by reducing the embedding problem to a restricted
variant of the multicoloured clique problem, which is then efficiently solved.

To complement the previous fixed-parameter tractability results, we also inves-
tigate possible kernelization of the embedding problem for posets (Section 5).
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We show that the embedding problem does not have a polynomial kernel, unless
coNP ⊆ NP/poly, which is thought to be unlikely. This means the embedding
problem (and therefore also the existential and full FO model checking problems)
cannot be efficiently reduced to an equivalent instance of size polynomial in the
parameter.

Full version of the paper, which includes all omitted proofs, is available at
arxiv.org [9].

2 Preliminaries

2.1 Posets and Embedding

A poset P is a pair (P,≤P ) where P is a set and ≤P is a reflexive, antisymmetric,
and transitive binary relation over P . The size of a poset P = (P,≤P ) is ‖P‖ :=
|P |. We say that p covers p′ for p, p′ ∈ P , denoted by p′ �P p, if p′ ≤P p, p �= p′,
and for every p′′ with p′ ≤P p′′ ≤P p it holds that p′′ ∈ {p, p′}. We say that p
and p′ are incomparable (in P), denoted p ‖P p′ if neither p ≤P p′ nor p′ ≤P p.
A chain C of P is a subset of P such that x ≤P y or y ≤P x for every x, y ∈ C.
An anti-chain A of P is a subset of P such that for all x, y ∈ P it is true that
x ‖P y. A chain partition of P is a tuple (C1, . . . , Ck) such that {C1, . . . , Ck} is
a partition of P and for every i with 1 ≤ i ≤ k the poset induced by Ci is a chain
of P. The width of a poset P, denoted by width(P) is the maximum cardinality
of any anti-chain of P.

Proposition 2.1 ([7, Theorem1]). LetP be a poset. Then in timeO(width(P) ·
‖P‖2), it is possible to compute both width(P) = w and a corresponding chain par-
tition (C1, . . . , Cw) of P.

Let Q = (Q,≤P ) and P = (P,≤P ) be two posets. An embedding from Q to P
is an injective function e : Q → P such that q ≤Q q′ if, and only if, f(q) ≤P f(q′)
for every q, q′ ∈ Q. The embedding problem for posets is thus defined as:

Embedding Parameter: width(P), ‖Q‖
Input: Two posets Q = (Q,≤Q) and P = (P,≤P ).
Question: Is there an embedding from Q into P?

2.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) I is a triple 〈V,D,C〉, where V is a finite
set of variables over a finite set (domain) D, and C is a set of constraints. A
constraint c ∈ C consists of a scope, denoted by V (c), which is an ordered subset
of V , and a relation, denoted by R(c), which is a |V (c)|-ary relation on D. For
a CSP I = 〈V,D,C〉 we sometimes denote by V (I), D(I), and C(I), its set of
variables V , its domain D, and its set of constraints C, respectively. A solution to
a CSP instance I is a mapping τ : V → D such that 〈τ [v1], . . . , τ [v|V (c)|]〉 ∈ R(c)
for every c ∈ C with V (c) = 〈v1, . . . , v|V (c)|〉.

arxiv.org
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Given a k-ary relation R over some domain D and a function φ : Dn → D,
we say that R is closed under φ, if for all collections of n tuples t1, . . . , tn from R,
the tuple 〈φ(t1[1], . . . , tn[1]), . . . , φ(t1[k], . . . , tn[k])〉 belongs to R. The function
φ is also said to be a polymorphism of R. We denote by Pol(R) the set of all
polymorphisms φ such that R is closed under φ.

Let I = 〈V,D,C〉 be a CSP instance and c ∈ C. We write Pol(c) for the set
Pol(R(c)) and we write Pol(I) for the set

⋂
c∈C Pol(c). We say that I is closed

under a polymorphism φ if φ ∈ Pol(I).
We will need the following type of polymorphism. A polymorphism φ : D2 →

D is a min polymorphism if there is an ordering of the elements of D such that
for every d, d′ ∈ D, it holds that φ(d, d′) = φ(d′, d) = min{d, d′}.

Proposition 2.2 ([11, Corollary 4.3]). Any CSP instance I that is closed
under a min polymorphism (that is provided with the input) can be solved in time
O((ct)2), where c = |C(I)| and t is the maximum cardinality of any constraint
relation of I.

2.3 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory.
For more details, we refer to text books on the topic [6,8,12]. An instance of a
parameterized problem is a pair 〈x, k〉 where x is the input and k a parameter.
A parameterized problem is fixed-parameter tractable if every instance 〈x, k〉 can
be solved in time f(k)·|x|c, where f is a computable function, and c is a constant.
FPT denotes the class of all fixed-parameter tractable problems.

A kernelization [1] for a parameterized problem A is a polynomial time algo-
rithm that takes an instance 〈x, k〉 of A and maps it to an equivalent instance
〈x′, k′〉 of A such that both |x′| and k′ are bounded by some function f of k.
The output 〈x′, k′〉 is called a kernel. We say that A has a polynomial kernel if f
is a polynomial. Every fixed-parameter tractable problem admits a kernel, but
not necessarily a polynomial kernel [5].

A polynomial parameter reduction fromaparameterized problemA to a param-
eterized problem B is a polynomial time algorithm, which, given an instance 〈x, k〉
of A produces an instance 〈x′, k′〉 of B such that 〈x, k〉 is aYes-instance of A if and
only if 〈x′, k′〉 is a Yes-instance of B and k′ is bounded by some polynomial of k.
The following results show how polynomial parameter reductions can be employed
to prove the non-existence of polynomial kernels.

Proposition 2.3 ([2, Theorem 8]). Let A and B be two parameterized prob-
lems such that there is a polynomial parameter reduction from A to B. If B has
a polynomial kernel, then so has A.

AnOR-composition algorithm for a parameterized problem A maps t instances
〈x1, k〉, . . . , 〈xt, k〉 of A to one instance 〈x′, k′〉 of A such that the algorithm runs in
time polynomial in

∑
1≤i≤t |xi|+k, the parameter k′ is bounded by a polynomial in

the parameter k, and 〈x′, k′〉 is a Yes-instance if and only if there exists 1 ≤ i ≤ t
such that 〈xi, k〉 is a Yes-instance.
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Proposition 2.4 ([3, Lemmas 1 and 2]). If a parameterized problem A has
an OR-composition algorithm and its unparameterized version is NP-complete,
then A has no polynomial kernel, unless coNP ⊆ NP/poly.

2.4 Existential First-Order Logic

In this paper we deal with the, well known, relational first-order (FO) logic.
Formulas of this logic are built from (a finite set of) variables, relational symbols,
logical connectives (∧,∨,¬) and quantifiers (∃,∀). A sentence is a formula with
no free variables. We restrict ourselves to formulas that are in prefix normal
form. (A first-order formula is in prefix normal form if all quantifiers occur in
front of the formula and all negations occur in front of the atoms.) Furthermore
an existential first-order formula is a first-order formula in prefix normal form
that uses only existential quantifiers.

The problem we are interested in is so-called model checking problem for the
existential FO formulas (and posets), which is formally defined as follows:

Poset ∃-FO-Model Checking Parameter: width(P), |φ|
Input: An existential first-order sentence φ and a poset P = (P,≤P ).
Question: Is it true P |= φ, i.e., is P a model of φ?

We remark here that all first-order formulas in this paper are evaluated over
posets. In particular, the vocabulary of these formulas consists of only one binary
relation ≤P and atoms of these formulas can be either equalities between vari-
ables (x = y) or applications of the predicate ≤P (x ≤P y). For a more detailed
treatment of the employed setting, we refer the reader to [4].

As shown in [4], the existential FO model checking problem is closely related
to the aforementioned embedding problem for posets:

Proposition 2.5 ([4]). Poset ∃-FO-Model Checking is fixed-parameter
tractable if and only if so is Embedding. Moreover, there is a polynomial param-
eter reduction from Embedding to Poset ∃-FO-Model Checking.

Proof. The first statement of the proposition follows immediately from [4, Propo-
sition 1]. The second statement of the proposition follows from the proof of [4,
Proposition 1] by observing that the obvious reduction from Embedding to
Poset ∃-FO-Model Checking is polynomial parameter preserving. ��
Remark 1. Even though [4] does not state the precise runtime and “instance
blow-up” for Proposition 2.5, these can be alternatively bounded from above as
follows. For an instance (P, φ) where φ ≡ ∃x1 . . . ∃xq. ψ(x1, . . . , xq), we exhaus-
tively enumerate all posets Q on Q = {x1, . . . , xq} (modulo equality = on Q)
such that Q |= ψ, and produce a separate instance of Embedding from this
particular Q into the same P. Then P |= φ if and only if at least one of the con-
structed Embedding instances is Yes. The number of produced instances (of Q)
is trivially less than the number of all posets on q elements factorized by equal-
ity, < 4q2

= 2O(|φ|2), and time spent per each one of them in the construction
is O(|φ|2).
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3 Fixed-Parameter Tractability Proof

In this section we prove the first half of the main result of our paper (The-
orem 1) that the existential FO model checking problem for posets is in FPT.
By Proposition 2.5, it is enough to consider the embedding problem for that:

Theorem 3.1. Let Q = (Q,≤Q) and P = (P,≤P ) be two posets. Then the
embedding problem from Q into P is fixed-parameter tractable, more precisely,
it can be solved in time O

(
width(P)|Q| · |Q|4 · |P |4).

The remainder of this section is devoted to a proof of the above theorem. Let
w := width(P) for the rest of this section. The algorithm starts by computing a
chain partition C = (C1, . . . , Cw) of P. This can be done in time O(width(P) ·
|P |2) by Proposition 2.1.

To make the proof clearer, we will, for an embedding, keep track into which
chain each element of Q is mapped. We say that an embedding e from Q into P
is compatible with a function f from Q to {1, . . . , w} if e(q) ∈ Cf(q) for every
q ∈ Q. Observe that every embedding e is trivially compatible with the unique
function f , where f(q) = i if and only if e(q) ∈ Ci. Also note that there are at
most (width(P)|Q|) such functions f .

Our algorithm now will do the following: We generate all possible functions
f (as defined in the previous paragraph) and for each such f we test whether
there is an embedding compatible with f . The following lemma, stating that we
can perform such test efficiently, forms the core of our proof.

Lemma 3.2. Let f be a function from Q to {1, . . . , w} where w = width(P).
Then one can decide in time O

(|Q|4 · |P |4) whether there is an embedding e from
Q to P that is compatible with f .

Proof. We will prove the lemma by reducing the problem (of finding a compatible
embedding) in polynomial time to a CSP instance that is closed under a certain
min polymorphism and hence can be solved in polynomial time. We start by
defining the CSP instance I for given Q, P, f , and C as above.

I has one variable xq for every q ∈ Q whose domain are the elements of
Cf(q). Furthermore, for every pair q, q′ of distinct elements of Q, I contains one
constraint cq,q′ whose scope is (xq, xq′) and whose relation R(cq,q′) contains all
tuples (p, p′) such that p ∈ Cf(q), p′ ∈ Cf(q′), and simultaneously

1. p ≤P p′ iff q ≤Q q′,
2. p′ ≤P p, iff q′ ≤Q q.

This completes the construction of I. Observe that a solution τ : V (I) → D(I)
of I gives rise to an embedding e : Q → P from Q to P that is compatible with
f by setting e(q) = τ(xq). Additionally, every embedding e : Q → P from Q to
P that is compatible with f gives rise to a solution τ : V (I) → D(I) of I by
setting τ(xq) = e(q). Hence, I has a solution if and only if there is an embedding
from Q to P that is compatible with f and such an embedding can be easily
obtained from a solution of I.
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Concerning the runtime, I can be constructed in time O((|Q| · |P |)2). Since
there are less than |Q|2 constraints and every constraint relation contains O(|P |2)
pairs, Proposition 2.2 provides a solution to I in time O((|Q|2 · |P |2)2). To finish
it is enough to verify that I is closed under a certain min polymorphism—
Lemma 3.3 below. ��
Lemma 3.3. For every Q, P, f , and C defined as above, the CSP instance I is
closed under any min polymorphism that is compatible with the partial order ≤P .

Proof (of Theorem 3.1). We can generate the chain partition in time O(width(P)·
|P |2). Then, for each of the (width(P)|Q|) functions f we test the existence of
an embedding compatible with f , which can be done in time O

(|Q|4 · |P |4) by
Lemma 3.2. This proves our theorem. ��

4 Embedding and Multicoloured Clique

In the previous section we have proved that the embedding problem for posets
Q and P is fixed-parameter tractable w.r.t. both width(P) and ‖Q‖, with the
running time of O

(
width(P)‖Q‖ · ‖Q‖4 · ‖P‖4). In this section we improve upon

this result by giving an alternative self-contained algorithm for Embedding with
running time O

(
width(P)‖Q‖ ·‖Q‖3 ·‖P‖2). In combination with Proposition 2.5

(and Remark 1) we thus finish the proof of main Theorem 1.
This new algorithm achieves better efficiency by exploiting some special prop-

erties of the problem that are not fully utilized in the previous reduction to CSP.
We pay for this improvement by having to work a little bit harder. The core idea
is to show that the problem of finding a compatible embedding is reducible (in
polynomial time) to a certain restricted variant of Multicoloured Clique.

The Multicoloured Clique problem takes as an input a graph G together
with a proper k-colouring of the vertices of G. The question is whether there is
a k-clique in G, i.e., a clique consisting of exactly one vertex of each colour.

Multicoloured Clique Parameter: k
Input: A graph G with a proper k-colouring of its vertices.
Question: Is there a clique (set of pairwise adjacent vertices) of size k in
G?

Consider a chain partition (C1, . . . , Cw) of P = (P,≤P ) where w = width(P),
and Q = (Q,≤Q) with Q = {1, . . . , k}. Let f : Q → {1, . . . , w}. For an f -
compatible poset embedding instance from Q into P, we construct a k-coloured
clique instance G simply as follows. The vertex set is a disjoint union V (G) =
V1 ∪̇ . . . ∪̇Vk of k colour classes where Vi, 1 ≤ i ≤ k, is a copy of Cf(i). Let
p ∈ Va, q ∈ Vb be copies of p′ ∈ Cf(a), q

′ ∈ Cf(b). Then pq ∈ E(G) if and only
if a �= b and the following hold; p′ ≤P q′ iff a ≤Q b, and p′ ≥P q′ iff a ≥Q b.
We associate each class Vi of G with a linear order ≤G naturally inherited from
the corresponding chain of P (we are not going to compare between different
classes).

Trivially, constructed G is a Yes-instance of k-coloured clique if, and only
if, Q has an f -compatible embedding into P.
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Lemma 4.1. Let G be a graph on V (G) = V1 ∪̇ . . . ∪̇Vk constructed from a
compatible embedding instance as above. Suppose any 1 ≤ a < b ≤ k.

a) For any p ∈ Va, q1, q2, q3 ∈ Vb such that q1 ≤G q2 ≤G q3 it holds; if pq1, pq3 ∈
E(G) then also pq2 ∈ E(G).

b) For any p1, p2 ∈ Va, q1, q2 ∈ Vb such that p1 ≤G p2, q1 ≤G q2 it holds; if
p1q2, p2q1 ∈ E(G) then also p1q1, p2q2 ∈ E(G).

We call a Multicoloured Clique instance G interval-monotone if the
colour classes of G can be given linear order(s) such that both claims a),b) of
Lemma 4.1 are satisfied.

Corollary 4.2. Let G be an interval-monotone (wrt. ≤G) multicoloured clique
instance with colour classes V1, . . . , Vk. Let I ⊆ {1, . . . , k}. If K1, . . . , K� ⊆⋃

i∈I Vi are cliques of size |I|, then also the set

K =
{

min≤G

(
(K1 ∪ · · · ∪ K�) ∩ Vi

) | i ∈ I
}
,

called the minimum of K1, . . . , K� wrt. ≤G and I, is a clique in G. The same
holds for analogous maximum of K1, . . . , K� wrt. ≤G and I.

For smooth explanation of our algorithm, we introduce the following short-
hand notation. Let [i, j] = {i, i + 1, . . . , j}. Let V (G) = V1 ∪̇ . . . ∪̇Vk. Then
Ni(v) denotes the set of neighbours of v ∈ V (G) in Vi, and moreover, NI(v) :=⋃

i∈I Ni(v) and NI(X) :=
⋂

v∈X NI(v). Provided that G is equipped with linear
order(s) ≤G on each Vi, N↑

i (v) denotes the set of all w ∈ Vi such that there is
w′ ∈ Ni(v) and w′ ≤G w (all the vertices which are “above” some neighbour of
v in Vi), and this is analogously extended to N↑

I (v) and N↑
I (X).

Algorithm 4.1. Input: An interval-monotone k-coloured clique instance G,
the colours classes V (G) = V1 ∪̇ . . . ∪̇Vk and the order ≤G on them.

Output: Yes if G contains a clique of size k, and No otherwise.
Algorithm: Dynamically compute, for i = 2, 3, . . . , k, sets MinKi(v) and

MaxKi(v) where v ∈ Vi; such that MinKi(v) is the minimum of all the cliques
of size i in G which are contained in {v} ∪ V1 ∪ · · · ∪ Vi−1 (note, these cliques
must contain v), or ∅ if nonexistent, and MaxKi(v) is described analogously.

The computation of MaxKi,MinKi using values MaxK2, . . . , MaxKi−1

and MinK2, . . . , MinKi−1 is described in the pseudocode below. Note that we
have to compute both MinKi and MaxKi because we compute MinKi from
previously computed MaxKj , j < i, and vice versa.

1. For every v ∈ Vi, set X := {v} and repeat:
a) For j = i − 1, . . . , 1, and as long as X �= ∅, do the following:

find the minimum (wrt. ≤G) element x ∈ Nj(X) such that j = 1 or
∅ �= MaxKj(x) ⊆ N↑

[1,j−1](X) ∪ {x}. If x does not exist then X := ∅,
and otherwise set X := X ∪ {x}. Continue with next j.

b) Set MinKi(v) := X.



Faster Existential FO Model Checking on Posets 449

2. Analogously finish computation of MaxKi(v) using previous MinKj(x).
3. Output Yes if there is v ∈ Vk such that MinKk(v) �= ∅, and No otherwise.

Theorem 4.4. Algorithm 4.1 correctly solves any instance G of interval-mono-
tone k-coloured Multicoloured Clique problem, in time O(k · |E(G)|).
Proof. It is enough to prove that the value of each MinKi(v) and MaxKi(v)
is computed correctly in the algorithm. Let Ki,v be the minimum of all the
cliques of size i in G which are contained in {v}∪V1 ∪· · ·∪Vi−1 (well-defined by
Corollary 4.2)—the correct value for MinKi(v). Assume that some MinKi(v) =
K ′

i,v value is computed wrong, i.e., Ki,v �= K ′
i,v, and that i is minimal among

such wrong values. Clearly, i > 2.
If K ′

i,v = ∅ then Ki,v �= ∅ = K ′
i,v. Otherwise we observe that, by the choices

x ∈ Nj(X) in step 1.a), K ′
i,v �= ∅ is a clique of size i in G contained in {v} ∪

V1 ∪ · · · ∪ Vi−1. Consequently, K ′
i,v �= ∅ implies Ki,v �= ∅, too.

Let K ′′
i,v = K ′

i,v if K ′
i,v �= ∅, and otherwise let K ′′

i,v be the last nonempty value
of X in the course of computation of MinKi(v) in step 1.a) of the algorithm.
Since the tests in step 1.a) of the algorithm always succeed for x being Ki,v ∩Vj

and X = Ki,v ∩ (Vj+1 ∪ · · · ∪ Vi), there exists j < i (and we choose such j
maximum) such that {x} = Ki,v ∩Vj �= K ′′

i,v ∩Vj = {x′}. By the same argument,
actually, x >G x′.

Now, following iteration j of step 1.a) of the algorithm (which has “wrongly”
chosen x′ instead of x), let K0 = MaxKj(x′) ∪ (

Ki,v ∩ (Vj+1 ∪ · · · ∪ Vi)
)
. The

minimum of Ki,v and K0 is also a clique of size i, by the interval-monotone
property and Corollary 4.2, contradicting minimality of Ki,v at x.

In any case, indeed Ki,v = K ′
i,v.

It remains to analyse the running time. We consider separately every iteration
of step 1, each v ∈ Vi, for i = 2, . . . , k. Thanks to the interval-monotone property
of G, we can preprocess the neighbours of v into subintervals of the classes
V1, . . . , Vi−1 with respect to ≤G. This is done in time O

(|N[1,i−1](v)|). After
that, every iteration j of step 1.a) takes time O

(|Nj(v)| ·k)
, and so whole step 1

takes time O
(
k · |N[1,i−1](v)|). Summing this over v and i as in the algorithm we

arrive right at the estimate O(k · |E(G)|). ��
Corollary 4.5. Embedding can be solved in time O

(
width(P)|Q| · |Q|3 · |P |2).

Proof. The reduction from embedding to compatible embedding has been shown
within Theorem 3.1. By the reduction here, |V (G)| = O(|Q| · |P |), |E(G)| =
|V (G)|2, and k = |Q|. The runtime bound thus follows as in Theorem 3.1. ��

5 Kernelization Lower Bound

Having shown that the Embedding problem is fixed-parameter tractable, it
becomes natural to ask whether it also allows for a polynomial kernel. In this
section we will show that this unfortunately is not the case, i.e., we show that
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Embedding does not have a polynomial kernel unless coNP ⊆ NP/poly. Con-
sequently, this also excludes a polynomial kernel for the Poset FO-Model
Checking problem, of which Embedding is a special case. (Poset FO-Model
Checking is an extension of Poset ∃-FO-Model Checking to the full FO
logic.)

We will show our kernelization lower bound for Embedding using the OR-
composition technique outlined by Proposition 2.4. Unfortunately, due to the
generality of the Embedding problem it turns out to be very tricky to give an
OR-composition algorithm directly for the Embedding problem. To overcome
this problem, we introduce a restricted version of Embedding, which we call
Independent Embedding, for which an OR-composition algorithm is much
easier to find and whose unparameterized version is still NP-complete, as we
prove below.

Let Ik = (Ik,≤Ik) be the poset that has k mutually incomparable chains
consisting of three elements each. Then the Independent Embedding problem
is defined as follows.

Independent Embedding Parameter: width(P), k
Input: A poset P = (P,≤P ) and a natural number k.
Question: Is there an embedding from Ik to P?

NP-completeness of Independent Embedding follows straightforwardly
from NP-completeness of the ordinary independent set problem on graphs. As to
an OR-composition algorithm for Independent Embedding, the other ingredi-
ent in Proposition 2.4, we do roughly as follows: we first align a given collection of
instances to the same (maximum) value of the parameter k, and then we “stack”
these instances on top of one another (all elements of a lower instance are “≤P ”
than all those of a higher instance), making a combined instance of Indepen-
dent Embedding which is an OR-composition of all the input instances and
whose width does not exceed the maximum of their widths.

Here we formulate these two claims without formal proofs, which can be
found in the full version of the paper [9].

Lemma 5.1. Independent Embedding is NP-complete.

Lemma 5.2. Independent Embedding does not have a polynomial kernel
unless coNP ⊆ NP/poly.

We are now ready to summarize the main result of this section:

Theorem 5.3. Embedding, Poset ∃-FO-Model Checking and Poset FO-
Model Checking have no polynomial kernel unless coNP ⊆ NP/poly.

6 Conclusions

Besides establishing tractability of existential FO model checking on posets of
bounded width, the authors of [4] also considered several other poset invariants,
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giving (in-)tractability results for existential FO model checking for these vari-
ants. This makes, together with our simplification of proof of their main result,
the parameterized complexity of the existential FO model checking on posets
rather well understood.

The main direction for further research, suggested already in [4], is the param-
eterized complexity of model checking of full FO logic on restricted classes of
posets, especially on posets of bounded width. This problem is challenging,
because currently known techniques for establishing tractability of FO model
checking are based on locality of FO and cannot be applied easily to posets—
transitivity of ≤ causes that, typically, the whole poset is in a small neighbour-
hood of some element. On the other hand, attempts to evaluate an FO formula
on a Hasse diagram (i.e., on the graph of the cover relation of a poset) fail
precisely because of locality of FO.
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Abstract. In the Vertex Cover Reconfiguration (VCR) problem,
given graph G = (V, E), positive integers k and �, and two vertex covers S
and T of G of size at most k, we determine whether S can be transformed
into T by a sequence of at most � vertex additions or removals such that
each operation results in a vertex cover of size at most k. Motivated
by recent results establishing the W[1]-hardness of VCR when param-
eterized by �, we delineate the complexity of the problem restricted to
various graph classes. In particular, we show that VCR remains W[1]-
hard on bipartite graphs, is NP-hard but fixed-parameter tractable on
graphs of bounded degree, and is solvable in time polynomial in |V (G)|
on even-hole-free graphs and cactus graphs. We prove W[1]-hardness
and fixed-parameter tractability via two new problems of independent
interest.

1 Introduction

Under the reconfiguration framework, we consider structural and algorithmic
questions related to the solution space of a search problem Q. Given an instance I,
an optional range [rl, ru] bounding a numerically quantifiable property Ψ of fea-
sible solutions for Q, and a symmetric adjacency relation (usually polynomially-
testable) A on the set of feasible solutions, we can construct a reconfiguration graph
RQ(I, rl, ru) for each instance I of Q. The nodes of RQ(I, rl, ru) correspond to
the feasible solutions of Q having rl ≤ Ψ ≤ ru, with an edge between each pair of
nodes corresponding to solutions adjacent under A (viewed as a reconfiguration
step transforming one solution into the other). One can ask if there exists a walk
(reconfiguration sequence) in RQ(I, rl, ru) between feasible solutions S and T of
I, or for the shortest such walk.

These types of reconfiguration questions have received considerable attention
in recent literature [9,11] and are interesting for a variety of reasons. From an
algorithmic standpoint, reconfiguration problems model dynamic situations in
which we seek to transform a solution into a more desirable one, maintaining fea-
sibility during the process. Moreover, the study of reconfiguration yields insights
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into the structure of the solution space of the underlying problem, crucial for the
design of efficient algorithms [3,9]. Reconfiguration problems have so far been
studied mainly under classical complexity assumptions, with most work devoted
to determining the existence of a reconfiguration sequence between two given
solutions. For most NP-complete problems, this question has been shown to
be PSPACE-complete [11], while for some problems in P, the reconfiguration
question could be either in P [11] or PSPACE-complete [2]. As PSPACE-
completeness implies that the length of reconfiguration sequences can be expo-
nential in the size of the input graph, it is natural to ask whether tractability
is possible when the running time depends on the length of the sequence or on
other properties of the problem. These results motivated Mouawad et al. [13] to
study reconfiguration under the parameterized complexity framework [5].

Overview of Our Results. For the Vertex Cover Reconfiguration
(VCR) problem, the node set of RVC(G, 0, k) consists of all vertex covers of size
at most k of an n-vertex graph G and two nodes are adjacent in RVC(G, 0, k)
if the vertex cover corresponding to one can be obtained from the other by the
addition or removal of a single vertex. VCR is known to be PSPACE-hard even
when restricted to planar graphs of maximum degree three [10]. Recently [13],
the problem was shown to be W[1]-hard when parameterized by �. Hence,
for the general case, one cannot hope for an algorithm solving the problem
in O(f(�)(nk)O(1)) time, for some computable function f . However, as noted
by Mouawad et al. [13], there is a close relation between the fixed-parameter
tractability of the problem parameterized by � and the size of the symmetric dif-
ference of the two vertex covers in question. In particular, when the size of the
symmetric difference is greater than �, we have a trivial no-instance. When the
size is equal to �, the problem is solvable by a simple O(�!) time enumeration
algorithm. In fact, it is easy to see that even when the size of the symmetric
difference is �−c, for any constant c, we can solve the problem in O(��

(
n
c

)
) time.

In some sense, these observations imply that the problem becomes “harder” as
the number of “choices” we have to make “outside” of the symmetric difference
increases.

In this work, we embark on a systematic investigation of the (parameterized)
complexity of the problem to better understand the relationship between the
(fixed-parameter) tractability of the problem and the size and structure of the
symmetric difference. In Section 3, we show, via a new problem of independent
interest, that VCR parameterized by � remains W[1]-hard when restricted to
bipartite graphs. The main motivation behind considering bipartite graphs is
due to another observation relating the structure of the input graph to the size
of the symmetric difference. That is, when the size of the symmetric difference
is equal to n, the input graph is bipartite (Observation 2) and � must be greater
than or equal to n. Thus, even if � = n, the enumeration algorithm mentioned
above would run in time exponential in n. Can we do any better if � � n and
the input graph is bipartite? Our hardness result answers this question in the
negative unless FPT = W[1]. The result also answers a question left open by
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Mouawad et al. [13] by providing the first example of a search problem in P
whose reconfiguration version is W[1]-hard parameterized by �.

Interestingly, excluding odd cycles does not seem to make the VCR prob-
lem any easier, whereas excluding (induced or non-induced) even cycles puts
the problem in P. We prove this result in Section 4. Although at first glance
this positive result does not seem to be related to the symmetric difference, we
show that we can in fact obtain polynomial-time algorithms whenever the sym-
metric difference has some “nice” properties. We show that for even-hole-free
graphs the symmetric difference is indeed a forest. The structure is slightly more
complex for cactus graphs. Moreover, in both cases, the number of vertices we
need to consider outside of the symmetric difference is bounded by a constant.
We note that a similar polynomial-time algorithm for even-hole-free graphs was
also recently, and independently, obtained by Kamiński et al. for solving several
variants of the Independent Set Reconfiguration problem [12].

In Section 5, we start by introducing the notion of nice reconfiguration
sequences and show that any reconfiguration sequence can be converted into
a nice one. A nice reconfiguration sequence can be split into smaller “pieces”
where the added/removed vertices in the first and last piece induce independent
sets in the input graph G and the added/removed vertices in all other pieces
induce a biclique in G. For graphs of degree at most d, each biclique has at most
d vertices on each side. Given this rather intriguing structure, we believe that
nice reconfiguration sequences deserve a more careful study. Using the notion of
nice reconfiguration sequences, we show in two steps that VCR is NP-hard on
4-regular graphs. In the first step, we prove a general hardness result showing
that VCR is at least as hard as the compression variant of the Vertex Cover
(VC) problem. Then, we construct a 4-regular gadget Wk on 6k2 vertices with
the following property: There exist two minimum vertex-disjoint vertex covers
S and T of Wk, each of size 3k2, such that there exists a path of length 6k2

between the nodes corresponding to S and T in RVC(Wk, 0, 3k2 + g(k)) but no
such path exists in RVC(Wk, 0, 3k2 + g(k) − 1), for some computable function g
and k − 2 ≤ g(k) ≤ k +3. The existence of graphs with properties similar to Wk

has played an important role in determining the complexity of other reconfigu-
ration problems [3,14]. For instance, the existence of a 3-regular version of Wk,
combined with the fact that reconfiguration is at least as hard as compression,
would immediately imply that VCR is NP-hard on 3-regular graphs.

Finally, we show that even though NP-hard on 4-regular graphs, VCR can
be solved in O(f(�, d)(nk)O(1)) time on graphs of degree at most d, for some
computable function f . This result answers another open question [13], present-
ing the first fixed-parameter algorithm for VCR parameterized by �, in this case
for graphs of bounded degree. The algorithm is rather technical, as it involves
reductions to three intermediary problems, uses a structural decomposition of
the input graph, and exploits the properties of nice reconfiguration sequences.
However, at a very high level, this result relates to the symmetric difference as
follows: In any yes-instance of the VCR problem on graphs of degree at most
d, one can easily bound the size of the symmetric difference and the set of
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vertices “not too far away” from it, i.e. the distance is some function of � and
d. However, to guarantee that the capacity constraint k, i.e. the maximum size
of a vertex cover, is never violated, it may be necessary to add/remove vertices
which are ”far” from (maybe not even connected to) the symmetric difference.
Hence, the main technical challenge is to show that finding such vertices can be
accomplished “efficiently”.

We believe that the techniques used in both our hardness proofs and positive
results can be extended to cover a host of graph deletion problems defined in
terms of hereditary graph properties [13]. It also remains to be seen whether our
FPT result can be extended to a larger class of sparse graphs similar to the
work of Fellows et al. on local search [7].

2 Preliminaries

For general graph theoretic definitions, we refer the reader to the book of Diestel
[4]. Unless otherwise stated, we assume that each graph G is a simple, undirected
graph with vertex set V (G) and edge set E(G), where |V (G)| = n and |E(G)| =
m. The open neighborhood of a vertex v is denoted by NG(v) = {u | (u, v) ∈
E(G)} and the closed neighborhood by NG[v] = NG(v)∪{v}. For a set of vertices
S ⊆ V (G), we define NG(S) = {v �∈ S | (u, v) ∈ E(G), u ∈ S} and NG[S] =
NG(S) ∪ S. The subgraph of G induced by S is denoted by G[S], where G[S]
has vertex set S and edge set {(u, v) ∈ E(G) | u, v ∈ S}.

Vertices s and t (vertex sets A and B) are separated if there is no edge (s, t)
(no edge (a, b) for a ∈ A, b ∈ B). The distance between two vertices s and t of
G, distG(s, t), is the length of a shortest path in G from s to t. For r ≥ 0, the
r-neighborhood of a vertex v ∈ V (G) is defined as Nr

G[v] = {u | distG(u, v) ≤ r}.
We write B(v, r) = Nr

G[v] and call it a ball of radius r around v; for A ⊆ V (G),
B(A, r) =

⋃
v∈A Nr

G[v]. Section 5 makes use of the following:

Observation 1. For any graph G of degree at most d, v ∈ V (G), and A ⊆
V (G), |B(v, r)| ≤ dr+1 and |B(A, r)| ≤ |A|dr+1.

To avoid confusion, we refer to nodes in reconfiguration graphs, as distin-
guished from vertices in the input graph. We denote an instance of the VCR
problem by (G,S, T, k, �), where G is the input graph, S and T are the source
and target vertex covers respectively, k is the maximum allowed capacity, and
� is an upper bound on the length of the reconfiguration sequence we seek in
RVC(G, 0, k). By a slight abuse of notation, we use upper case letters to refer
to both a node in the reconfiguration graph as well as the corresponding vertex
cover. For any node S ∈ V (RVC(G, 0, k)), the quantity k−|S| corresponds to the
available capacity at S. We partition V (G) into the sets CST = S ∩ T (vertices
common to S and T ), SR = S \ CST (vertices to be removed from S in the
course of reconfiguration), TA = T \ CST (vertices to be added to form T ), and
OST = V (G) \ (S ∪ T ) = V (G) \ (CST ∪ SR ∪ TA) (all other vertices). A vertex
is touched in the course of a reconfiguration sequence from S to T if v is either
added or removed at least once.
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Due to space limitations, most proofs have been removed from the current
version of the paper. The affected observations, propositions, lemmas, and the-
orems have been marked with a star.

Observation 2. (*) For a graph G and two vertex covers S and T of G, G[SR∪
TA] is bipartite, and there is no edge (u, v) for u ∈ SR ∪ TA and v ∈ OST .

Observation 3. For a graph G and vertex covers S and T of G, in any recon-
figuration sequence of length at most � from S to T a vertex can be touched at
most �−|SR ∪TA|+1 times, each vertex in SR ∪TA being touched an odd number
of times and each other vertex being touched an even number of times.

Throughout this work, we implicitly consider VCR as a parameterized prob-
lem with � as the parameter. The reader is referred to the book of Downey
and Fellows [5] for more on parameterized complexity. We sometimes use the
modified big-Oh notation O∗ that suppresses all polynomially bounded factors.

3 Bipartite Graphs

For a graph G = (V,E), a crown is a pair (W,H) satisfying the following prop-
erties: (i) W �= ∅ is an independent set of G, (ii) NG(W ) = H, and (iii) there
exists a matching in G[W ∪ H] which saturates H [1]. Crown structures have
played a central role in the development of kernelization algorithms for the VC
problem [1]. We define a (k, d)-constrained crown as a crown (W,H) such that
|H| ≤ k and |W |−|H| ≥ d ≥ 0. Given a bipartite graph G = (A∪B,E) and two
positive integers k and d, the (k, d)-Bipartite Constrained Crown ((k, d)-
BCC) problem asks whether G has a (k, d)-constrained crown (W,H) such that
W ⊆ A and H ⊆ B.

Lemma 1. (k, d)-BCC parameterized by k + d is W[1]-hard even when the
graph, G = (A ∪ B,E), is C4-free and vertices in A have degree at most two.

Proof. We give an FPT reduction from k-Clique, known to be W[1]-hard, to
(k,

(
k
2

)
)-Bipartite Constrained Crown. For (G, k) an instance of k-Clique,

we let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}.
We first form a bipartite graph G′ = ((X ∪Z)∪Y,E1∪E2), where vertex sets

X and Y contain one vertex for each vertex in V (G) and Z contains one vertex for
each edge in E(G). More formally, we set X = {x1, . . . , xn}, Y = {y1, . . . , yn},
and Z = {z1, . . . , zm}. The edges in E1 join each pair of vertices xi and yi for
1 ≤ i ≤ n and the edges in E2 join each vertex z in Z to the two vertices yi and
yj corresponding to the endpoints of the edge in E(G) to which z corresponds.
Since each edge either joins vertices in X and Y or vertices in Y and Z, it is not
difficult to see that the vertex sets X ∪ Z and Y form a bipartition.

By our construction, G′ is C4-free; vertices in X have degree 1, and since
there are no double edges in G, i.e. two edges between the same pair of vertices,
no pair of vertices in Y can have more than one common neighbour in Z.
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For (G′, k,
(
k
2

)
) an instance of (k,

(
k
2

)
)-BCC, A = X ∪ Z, and B = Y , we

claim that G has a clique of size k if and only if G′ has a (k,
(
k
2

)
)-constrained

crown (W,H) such that W ⊆ A and H ⊆ B.
If G has a clique K of size k, we set H = {yi | vi ∈ V (K)}, namely the

vertices in Y corresponding to the vertices in the clique. To form W , we choose
{xi | vi ∈ V (K)} ∪ {zi | ei ∈ E(K)}, that is, the vertices in X corresponding to
the vertices in the clique and the vertices in Z corresponding to the edges in the
clique. Clearly H is a subset of size k of B and W is a subset of size k +

(
k
2

)
of

A; this implies that |W | − |H| ≥ d =
(
k
2

)
, as required. To see why NG′(W ) = H,

it suffices to note that every vertex xi ∈ W is connected to exactly one vertex
yi ∈ H and every degree-two vertex zi ∈ W corresponds to an edge in K whose
endpoints {vi, vj} must have corresponding vertices in H. Moreover, due to E1

there is a matching between the vertices of H and the vertices of W in X, and
hence a matching in G′[W ∪ H] which saturates H.

Assuming that G′ has a (k,
(
k
2

)
)-constrained crown (W,H) such that W ⊆

X∪Z and H ⊆ Y , it suffices to show that |H| must be equal to k, |W ∩Z| must be
equal to

(
k
2

)
, and hence |W ∩ X| must be equal to k; from this we can conclude

the vertices in {vi | yi ∈ H} form a clique of size k in G as |W ∩ Z| =
(
k
2

)
,

requiring that edges exist between each pair of vertices in the set {vi | yi ∈ H}.
Moreover, since |W ∩ X| = k and NG′(W ) = H, a matching that saturates H
can be easily found by picking all edges (xi, yi) for yi ∈ H.

To prove the sizes of H and W , we first observe that since |H| ≤ k, NG′(W ) =
H, and each vertex in Y has exactly one neighbour in X, we know that |W ∩X| ≤
|H| ≤ k. Moreover, since |W | = |W ∩X|+ |W ∩Z| and |W |−|H| ≥ (

k
2

)
, we know

that |W ∩ Z| = |W | − |W ∩ X| ≥ (
k
2

)
+ |H| − |W ∩ X| ≥ (

k
2

)
. If |W ∩ Z| =

(
k
2

)

our proof is complete since, by our construction of G′, H is a set of at most k
vertices in the original graph G and the subgraph induced by those vertices in
G has

(
k
2

)
edges. Hence, |H| must be equal to k. If instead |W ∩ Z| >

(
k
2

)
, since

each vertex of Z has degree two, the number of neighbours of W ∩ Z in Y is
greater than k, violating the assumptions that NG′(W ) = H and |H| ≤ k. ��

Combining Lemma 1 with an FPT reduction from (k, d)-BCC to VCR yields
the main theorem of this section:

Theorem 1 (*). VCR parameterized by � is W[1]-hard on bipartite graphs.

4 Even-Hole-Free and Cactus Graphs

A cactus graph is a connected graph in which each edge is in at most one cycle.
A graph G is even-hole-free if no induced subgraph of G is a cycle on an even
number of vertices. Examples of even-hole-free graphs include trees, interval
graphs, and chordal graphs.

We present a characterization of instances of the VCR problem solvable in
time polynomial in n, and then apply this characterization to trees, even-hole-
free graphs, and cactus graphs. In all cases, we find reconfiguration sequences of
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shortest possible length and therefore ignore the parameter �. Reconfiguration
sequences are represented as ordered sequences of nodes in RVC(G, 0, k).

Definition 1. Given two vertex covers A and B of G, a reconfiguration sequence
β from A to some vertex cover A′ is a c-bounded prefix of a reconfiguration
sequence α from A to B, denoted A

c, B←−→ A′, if and only if all of the following
conditions hold: (1) |A′| ≤ |A|, (2) for each node A′′ in β, |A′′| ≤ |A|+c, (3) for
each node A′′ in β, A′′ is obtained from its predecessor by either the removal or
the addition of a single vertex in the symmetric difference of the predecessor and
B, and (4) no vertex is touched more than once in the course of β. Moreover,

A
c, B←−→ A′ implies A

d, B←−→ A′ for all d > c.

Lemma 2 (*). Given two vertex covers S and T of G and two positive integers
k and c such that |S|, |T | ≤ k, a reconfiguration sequence α of length |SR|+|TA| =
|SΔT | from S to T exists if: (1) |S| ≤ k − c, (2) |T | ≤ k − c, and (3) for any
two vertex covers A and B of G such that |A| ≤ k − c and |B| ≤ k − c, either

A
c, B←−→ A′ or B

c, A←−→ B′, where A′ and B′ are vertex covers of G. Moreover, if
c-bounded prefixes can be found in time polynomial in n, then so can α.

The proof of Theorem 2 shows that Lemma 2 applies if G is a tree and S and
T are of size at most k − 1, as we can always find 1-bounded prefixes S

1, T←−→ S′

or T
1, S←−→ T ′ in time polynomial in n. Further refinements are required when at

least one of S and T is of size greater than k − 1.

Theorem 2 (*). VCR on trees can be solved in time polynomial in n.

The proof of Theorem 2 uses G being a tree only to establish the fact that
G[SR ∪ TA] is a forest. This fact holds for any even-hole-free graph, since a
graph that is bipartite (Observation 2) and has no induced even cycles is a
forest, hence:

Corollary 1. VCR on even-hole-free graphs can be solved in time polynomial
in n.

To extend Corollary 1 to all cactus graphs (which are not necessarily even-hole-
free), we show in Lemmas 3 and 4 that the third condition of Lemma 2 is satisfied
for cactus graphs with c = 2 and that 2-bounded prefixes can be found in time
polynomial in n.

Lemma 3 (*). Given two vertex covers S and T of G, there exists a vertex

cover S′ (or T ′) of G such that S
2, T←−→ S′ (or T

2, S←−→ T ′) if one of the follow-
ing conditions holds: (1) G[SR ∪ TA] has a vertex v ∈ SR (v ∈ TA) such that
|NG[SR∪TA](v)| ≤ 1, or (2) there exists a cycle Y in G[SR ∪ TA] such that all
vertices in Y ∩ SR (Y ∩ TA) have degree exactly two in G[SR ∪ TA]. Moreover,
both conditions can be checked in time polynomial in n and when one of them is
true the corresponding 2-bounded prefix can be found in time polynomial in n.
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Lemma 4 (*). If G is a cactus graph and S and T are two vertex covers of

G, then there exists a vertex cover S′ (or T ′) of G such that S
2, T←−→ S′ (or

T
2, S←−→ T ′). Moreover, finding such 2-bounded prefixes can be accomplished in

time polynomial in n.

Theorem 3 (*). VCR on cactus graphs can be solved in time polynomial in n.

5 Graphs of Bounded Degree

Nice Edit Sequences. We represent a partially specified reconfiguration
sequence in terms of markers E = {∅, a, r} ∪ Ea ∪ Er, where Ea = {a1, . . . , an}
and Er = {r1, . . . , rn}. An edit sequence α is an ordered sequence of elements
of E , where the markers ai, a, rj , r, and ∅ represent the addition of vertex vi,
an unspecified addition, the removal of vertex vj , an unspecified removal, and
a blank placeholder, respectively. We refer to Ea ∪ {a} and Er ∪ {r} as the sets
of addition markers and removal markers, respectively. An edit sequence α is
unlabeled if it contains no markers in Ea ∪ Er, partly labeled if it contains at least
one element from each of the sets {a, r} and Ea ∪ Er, and labeled if it contains
no markers in {a, r}. We say α is partial if it contains at least one ∅ and is full
otherwise.

Observation 4. The total number of possible full (partial) unlabeled edit
sequences of length at most � is

∑�
i=1 2i < 2�+1 (

∑�
i=1 3i < 3�+1).

The length of α, |α|, is the number of markers in α. We use α[p] ∈ E , 1 ≤
p ≤ |α| to denote the marker at position p in α, and refer to it as a blank
marker if α[p] = ∅. By extension, α[p1, p2], 1 ≤ p1 ≤ p2 ≤ |α|, denotes the edit
sequence of length p2 − p1 + 1 formed from α[p1] through α[p2]; such a sequence
is a segment of α. Two segments β and β′ are consecutive if β = α[p1, p2] and
β′ = α[p2 + 1, p3] for some p1 ≤ p2 ≤ p3; β′ (β) is the successor (predecessor)
of β (β′). A segment β of α is an add-remove segment if β contains addition
markers followed by removal markers, and a d-add-remove segment, d > 0, if it
is an add-remove segment with i addition and j removal markers, 1 ≤ i ≤ d and
1 ≤ j ≤ d. A piece is a group of zero or more consecutive segments.

Definition 2. Given a positive integer d > 0, an edit sequence α is d-well-
formed if it is subdivided into three consecutive pieces such that: (1) The starting
piece consists of zero or more removal markers, (2) the central piece consists of
zero or more d-add-remove segments, and (3) the ending piece consists of zero
or more addition markers.

We can form the length |β|+ |γ| concatenation concat(β, γ) of two edit sequences
β and γ in the obvious way, and cut the marker at position p by forming
concat(β[1, p − 1], β[p + 1, |α|]). The edit sequence clean(β) is formed by cut-
ting all blank markers. Given a partial edit sequence β and a full edit sequence
γ, the merging operation consists of replacing the pth blank marker in β with the
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pth marker in γ. We say a full edit sequence γ is a filling edit sequence of partial
edit sequence β if merge(β, γ) produces a full edit sequence. Given t ≥ 2 full
labeled edit sequences α1, . . ., αt, the mixing of those sequences, mix(α1, . . . , αt),
produces the set of all full labeled edit sequences of length |α1|+ . . .+ |αt|. Each
α ∈ mix(α1, . . . , αt) consists of all markers in each αi, 1 ≤ i ≤ t, such that the
respective orderings of markers from each αi is maintained, i.e. if we cut from α
the markers of all sequences except α1, we obtain α1.

To relate edit and reconfiguration sequences, for graph G and edit sequence
α, we use V (α) to denote the set of vertices touched in α, i.e. V (α) = {vi | ai ∈
α ∨ ri ∈ α}. For α full and labeled, V (S, α) denotes the set of vertices obtained
after executing all reconfiguration steps in α on G starting from some vertex
cover S of G. If each set V (S, α[1, p]), 1 ≤ p ≤ |α|, is a vertex cover of G, then
α is valid (and invalid otherwise). Even if |S| ≤ k, α is not necessarily a walk
in RVC(G, 0, k), as α might violate the maximum allowed capacity constraint
k. We say α is tight if it is valid and max1≤p≤|α|(|V (S, α[1, p])|) ≤ k. A partial
labeled edit sequence α is valid or tight if clean(α) is valid or tight.

Observation 5. Given a graph G and two vertex covers S and T of G, an edit
sequence α is a reconfiguration sequence from S to T if and only if α is a tight
edit sequence from S to T .

Given a graph G, a vertex cover S of G, a full unlabeled edit sequence α, and an
ordered sequence L = {l1, . . . , l|α|} of (not necessarily distinct) labels between
1 and n, the label operation, denoted by label(α,L), returns a full labeled edit
sequence α′; each marker in α′ is copied from α and assigned the corresponding
label from L. A full unlabeled edit sequence α can be applied to G and S if there
exists an L such that label(α,L) is valid starting from S.

Definition 3. For t ≥ 2, graph G, and vertex cover S of G, valid labeled edit
sequences α1, . . ., αt are compatible if each α ∈ mix(α1, . . . , αt) is a valid edit
sequence starting from S, and incompatible otherwise.

Definition 4. For a graph G of degree at most d and a vertex cover S of G,
a valid edit sequence α starting from S is a nice edit sequence if it is valid,
d-well-formed, and satisfies the following invariants:

– Connectivity invariant: G[V (βi)] is connected for all i, where βi denotes
the ith d-add-remove segment in the central piece of α.

– Early removal invariant: For 1 ≤ p1 < p2 < p3 ≤ |α|, if α[p1] ∈ Ea,
α[p2] ∈ Ea, and α[p3] ∈ Er, then V (α[p3]) and V (α[p1 + 1, p3 − 1]) are not
separated.

Intuitively, the early removal invariant states that every removal marker in
a nice edit sequence must occur “as early as possible”. In other words, a vertex
is removed right after its neighbors (and possibly itself) are added.

Lemma 5 (*). Given a graph G of degree at most d and two vertex covers
S and T of G, it is possible to transform any valid edit sequence α from S to
T into a nice edit sequence α′ in O(n4|α|42d) time such that |V (S, α′[1, p])| ≤
|V (S, α[1, p])| for all 1 ≤ p ≤ |α|. In other words, if α is tight then so is α′.
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NP-Hardness on 4-Regular Graphs. We prove our result by demonstrating
a reduction from Vertex Cover Compression (VCC) to VCR where the
input graph is restricted to be 4-regular; given a graph G and a vertex cover of
size k, VCC asks whether G has a vertex cover of size k − 1.

Theorem 4 (*). VCR is at least as hard as VCC.

Theorem 4 relies on a reduction involving the disjoint union of an instance
of VCC and a biclique Kk,k; the instance of VCR can be reconfigured only if
compression is possible. Using this idea, we show that VCR remains NP-hard
for 4-regular graphs by constructing a 4-regular gadget Wk which will replace
the Kk,k biclique. Theorem 5 then follows from the facts that VC is NP-hard
on 4-regular graphs [8] and any algorithm which solves the VCC problem can
be used to solve VC.

Theorem 5 (*). VCR is NP-hard on 4-regular graphs.

FPT Algorithm for Graphs of Bounded Degree. We make use of three
different problems. In the Annotated VCR (AVCR) problem, the vertex set
of the input graph is partitioned into sets X, W , and R such that X and R are
separated, SR ∪ TA ⊆ X, and we seek a reconfiguration sequence in which no
vertex in W is touched. In the Vertex Cover Walk (VCW) problem, given
a graph G, a vertex cover S of G, and a full unlabeled edit sequence σ of length
� ≥ 1, the goal is to determine whether we can apply σ to G and S. In the
parameterized setting, VCW is at least as hard as the problem of determining,
given a graph G, a vertex cover S of G, and integer � ≥ 1, whether G has a
vertex cover S′ such that |S′| < |S| and |S′ΔS| ≤ � (Vertex Cover Local
Search (VCLS)) [7], known to be W[1]-hard on graphs of bounded degeneracy
and FPT on graphs of bounded degree [7].

Lemma 6 (*). When parameterized by �, VCW is at least as hard as VCLS.

Finally, we also make use of �-Multicolored Independent Set (�-MIS),
the problem of determining, for a graph G, a positive integer �, and a (not
necessarily proper) vertex-coloring c : V (G) → {c1, . . . , c�}, whether G has an
independent set of size � including exactly one vertex of each color. Using a
reduction from the W[1]-hard �-Multicolored Clique problem [6] in which
we complement all edges in the input graph, �-MIS is W[1]-hard in general
graphs. For c(v) the color assigned to v ∈ V (G), we say v belongs to color
class c(v), and let Vi(G) denote the set of vertices assigned colored ci in G, i.e.
Vi(G) = {v ∈ V (G) | c(v) = ci}.

Lemma 7 (*). The �-MIS problem parameterized by � can be solved in (FPT)
O∗((d�)2�) time if for every vertex v ∈ V (G) such that c(v) = ci, |NG(v) ∩
Vj(G)| ≤ d, for some fixed constant d, i �= j, and 1 ≤ i, j ≤ �.

Our FPT algorithm for VCR relies on a combination of enumeration and
reductions to the aforementioned problems, starting with a reduction to AVCR:
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Lemma 8 (*). For any instance of VCR, there exists a set of 2� instances
{I1, . . . , I2�} of AVCR such that the original instance is a yes-instance for
VCR if and only if at least one Ix is a yes-instance for AVCR, 1 ≤ x ≤ 2� and
for each Xx, SR ∪ TA ⊆ Xx.

The algorithm implicit in the proof of Lemma 8 generates 2� instances of
AVCR such that the original instance is a yes-instance of VCR if and only if a
generated instance is a yes-instance of AVCR. In each instance, there is a subset
W of CST separating a superset X of SR ∪ TA from a vertex set R such that no
vertex in W is touched during reconfiguration. We use enumeration to generate
all partial labeled edit sequences that touch only vertices in X; if any produces
a tight sequence that transforms S to T , we have a yes-instance. Otherwise,
we consider sequences which are valid and transform S to T but exceed the
capacity constraint. By finding an appropriate labeled filling sequence γ′ that
touches vertices in R, we can free up capacity so that merge(β, γ′) is tight.

We can find such a γ′ trivially if there is a sufficiently large independent
set in the vertices of S ∩ R with no neighbours in OST , as our reconfiguration
sequence will consist of removing the vertices in the independent set to free up
capacity, applying β, and then adding back the vertices in the independent set.
Otherwise, we reduce the problem of finding γ′ to an instance of VCW on G[R]
for each suitable unlabeled edit sequence γ of length the number of blanks in β.

Lemma 9 (*). If VCW is solvable in O∗(f(d, �)) time, for some computable
function f , on a graph G of degree at most d, then VCR is solvable in O∗(2�3�+1

(�d2�+1)2�+2(d + �)�2�f(d, �)) time on G.

To try all possible ways of generating γ′, we start by enumerating all d-
well-formed full unlabeled edit sequences γ of the appropriate length, and for
each try all possible choices for the starting piece; by Lemma 5 this is sufficient.
Given γ and a starting piece, we create t instances of VCW, where instance Jy

corresponds to the graph induced by the labeled central piece having y connected
components. To solve instance Jy, we consider all ways of assigning the d-add-
remove segments to connected components. This allows us to create a sequence
for each component, where γh touches only vertices in component h, and all
vertices touched by γ′

h can be found in a ball of radius |γ′
h|.

We can reduce each such subproblem to an instance of y-MIS satisfying
Lemma 7, where a color ch corresponds to component h. We denote the corre-
sponding auxiliary graph by GA. In GA, we create vertices for each labeled full
edit sequence λ, where G[V (λ)] is connected and λ can be derived by adding
labels to γh. There is an edge between two vertices in GA if they have differ-
ent colors and the sets of vertices associated with their edit sequences are not
separated. Thus, a solution to y-MIS indicates that there are y full labeled edit
sequences with separated vertex sets, as required to complete the central piece
of γ. As the ending piece of γ′ will be determined by the starting and central
pieces, this completes the algorithm.
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Lemma 10 (*). Each instance of the VCW problem generated by our algo-
rithm for AVCR can be solved in O∗(f(d, �)) time, for some computable function
f , on graphs of degree at most d.

Combining Lemmas 9 and 10 yields the main theorem of this section:

Theorem 6. For every fixed constant d, VCR parameterized by � is fixed-
parameter tractable for graphs of degree at most d.
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Abstract. This paper focuses on finding a spanning tree of a graph to
maximize its internal vertices in number. We propose a new upper bound
for the number of internal vertices in a spanning tree, which shows that
for any undirected simple graph, any spanning tree has less internal ver-
tices than the edges a maximum path-cycle cover has. Thus starting with
a maximum path-cycle cover, we can devise an approximation algorithm
with a performance ratio 3

2
for this problem on undirected simple graphs.

This improves upon the best known performance ratio 5
3

achieved by the
algorithm of Knauer and Spoerhase. Furthermore, we can improve the
algorithm to achieve a performance ratio 4

3
for this problem on graphs

without leaves.

Keywords: Algorithm · Complexity · Approximation · Maximum Inter-
nal Spanning Tree

1 Introduction

The Maximum Internal Spanning Tree problem, MIST briefly, is motivated by
the design of cost-efficient communication networks[14]. It asks to find a spanning
tree of a graph such that its number of internal vertices is maximized. Since a
Hamilton path (if exists) of a graph is also a spanning tree of that graph with its
internal vertices maximized, and finding a Hamilton path in a graph is NP-Hard
classically[7], MIST is NP-hard of course.

MIST admits approximation algorithms with a constant performance ratio.
Prieto et al. [11] first presented a 2-approximation local search algorithm in
2003. Later, by a modification of depth-first search, Salamon et al [14] improved
Prieto’s 2-approximation algorithm to running in linear-time. Besides, they pro-
posed a 3

2 -approximation algorithm on claw-free graphs and a 6
5 -approximation

algorithm on cubic graphs [14]. Salamon even showed that his 2-approximation
algorithm in [14] can achieve a performance ratio r+1

3 on r-regular graphs [16].
Furthermore, by local optimization, Salamon [15] devised a O(n4)-time and 7

4 -
approximation algorithm on graphs without leaves. Through a different analysis,
Knauer et al. [9] showed that Salamon’s algorithm in [15] can actually take O(n3)
time to achieve a performance ratio 5

3 even on undirected simple graphs.
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-13075-0 37
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Salamon et al. [15] also studied the vertex-weighted cases of MIST which asks
for a maximum weighted spanning tree of a vertex weighted graph. They gave a
O(n4)-time and (2Δ−3)-approximation algorithm for weighted MIST on graphs
without leaves, where Δ is the maximum degree of the graph. They also gave
a O(n4)-time and 2-approximation algorithm for weighted MIST on claw-free
graphs without leaves. Later, Knauer et al. [9] presented a (3+ε)-approximation
algorithm for weighted MIST on undirected simple graphs.

Fixed parameter algorithms of MIST have also been extensively studied in
the recent years. Prieto and Sloper [11] designed the first FPT-algorithm with
running time O∗(24klogk) in 2003. Coben et al. [3] improved this algorithm to
achieve a time complexity O∗(49.4k). Then an FPT-algorithm for MIST with
time complexity O∗(8k) was proposed by Fomin et al. [6], who also gave an
FPT-algorithm for its directed version with time complexity O∗(16k+o(k)) [5].
For directed graphs, a randomized FPT algorithm proposed by M. Zehavi is by
now the fastest one which runs in O∗(2(2− Δ+1

Δ(Δ−1) )k) time [18], where Δ is the
vertex degree bound of a graph. On cubic graphs in which each vertex has degree
three, Binkele-Raible et al. [2] proposed an O∗(2.1364k) time algorithm.

For the kernalization of MIST, Prieto and Sloper first presented an O(k3)-
vertex kernel [11,12]. Later, they improved it to O(k2) [13]. Recently, Fomin et
al. [6] gave a 3k-vertex kernel for this problem, which is the best by now.

As for the exact exponential algorithms to solve MIST, Binkele-Raible et al.
[2] proposed a dynamic programming algorithm with time complexity O∗(2n).
Moreover, on graphs with maximum vertex degree bounded by 3, they devised
a branching algorithm with O(1.8612n) time and polynomial space.

Several years have passed since the 5
3 -approximation algorithm for MIST was

proposed. In this paper, we devote to approximate MIST to a better performance
ratio. All our progresses are based on a new observation for bounding the number
of the internal vertices in a spanning tree, which shows that any spanning tree
has less internal vertices than the edges a maximum path-cycle cover has. Thus
starting with a maximum path-cycle cover, we can devise a 1.5-approximation
algorithm for MIST on undirected simple graphs. By a slight modification of
the 1.5-approximation algorithm, we can devise a 4

3 -approximation algorithm
for MIST on graphs without leaves.

This paper is organized as follows. Section 2 presents the concepts and nota-
tions related to path cover, path-cycle cover and maximum internal spanning
tree on graphs. Section 3 uses a maximum path-cycle cover of a graph to bound
the number of internal vertices in a spanning tree of that graph. Section 4 shows
that a graph can be pruned by removing some of its leaves so that its maximum
internal spanning tree can have as many internal vertices as those the maximum
internal spanning tree of the original graph has. In section 5, we present an algo-
rithm for MIST to achieve the performance ratio 3

2 . In section 6, we present an
algorithm for MIST on graphs without any leaves to achieve the performance
ratio 4

3 . Section 7 is concluded by looking forward to the future work for MIST.
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2 Preliminaries

In this paper, all graphs in which we are going to find spanning trees are undi-
rected, simple and connected. Each path or cycle in a graph is always simple.
The first and the last vertices of a path are the endpoints of that path, while the
others except the endpoints of a path are the inner vertices of that path. The
length of a path or cycle is the number of edges in it. A connected component
of a graph is a subgraph in which any two vertices are connected to each other
by paths, and which is connected to no additional vertices in the supergraph. A
connected component of a graph is referred to as a path (cycle) component if it
is a path (cycle) of that graph. A vertex in a graph is a leaf if its degree is 1, and
internal if its degree is larger than 1. Two vertices, say u and v, are adjacent
respecting an edge of a graph if (u, v) is an edge of that graph.

Let G = (V,E) be an undirected simple graph. For V1 ⊆ V , a subgraph of
G is induced by V1 if it has the vertex set V1 and all the edges of G with both
ends in V1. The subgraph of G induced by V1 is denoted by G[V1]. A subgraph
of G is referred to as a spanning subgraph of G if it has the vertex set V and the
edge set E1 ⊆ E.

A spanning subgraph of G is a path-cycle cover of G if every vertex in it is
incident with at most 2 edges. A path-cycle cover of G is maximum if its number
of edges are maximized over all path-cycle covers of G. A spanning subgraph of
G is a path cover if every connected component of it is a path. A path cover of
G is maximum if its number of edges are maximized over all path covers of G.

A maximum path cover of a graph is also a path-cycle cover. Since a path-
cycle cover can be found for every graph in polynomial time [4,17], the number
of edges in a path cover of a graph can be bounded by the following lemma.

Lemma 1. There are not more edges in a maximum path cover of a graph than
those in a maximum path-cycle cover of that graph.

A maximum internal spanning tree of G is a spanning tree of G whose number
of internal vertices are maximized over all spanning trees of G. The Maximum
Internal Spanning Tree problem, MIST namely, is given by an undirected simple
graph, and asks to find a maximum internal spanning tree for that graph.

3 Bounding the Number of Internal Vertices in a
Spanning Tree

Let G be an undirected simple graph instead of a tree. In this section we show
that the number of internal vertices in a spanning tree of G can be bounded by
the number of edges in a maximum path-cycle cover of G.

Lemma 2. If a tree has more than one vertex, then there is a path cover of the
tree such that the path cover has less path components than the leaves that tree
has.(The proof is omitted.)

By Lemma 2, the number of leaves in a spanning tree can be bounded by,
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Lemma 3. A maximum internal spanning tree of G has more leaves than the
path components a maximum path cover of G has.(The proof is omitted.)

This lemma leads to an upper bound for the number of internal vertices a
spanning tree of G has. That is,

Theorem 1. A maximum internal spanning tree of G has less internal vertices
than the edges a maximum path cover of G has.(The proof is omitted.)

Recall by Lemma 1 that a maximum path cover of G cannot have more edges
than those a maximum path-cycle cover of G has. Thus,

Corollary 1. A maximum internal spanning tree of G has less internal vertices
than the edges a maximum path-cycle cover of G has.

Inspired by Corollary 1, we can start with a maximum path-cycle cover of
a graph to construct a spanning tree of that graph for the hope that a good
performance ratio can be achieved. . In order to make it possible to construct
a spanning tree with at least two thirds times as many internal vertices as the
edges a maximum path-cycle cover has, we have to prune some leaves away from
G. The pruning for a graph will be stated in the next section.

4 Pruning a Graph

In this section, G is supposed to be an undirected simple graph instead of a tree.
We show that G can be pruned by removing some of its leaves, thus into such a
special subgraph of G that a maximum internal spanning tree of that subgraph
has not less internal vertices than those a maximum internal spanning tree of G
has. Therefore, we just need to pay attention to those special graphs for finding
spanning trees of them. The pruning for G is derived from the following lemma.

Lemma 4. If in G, two leaves, say v1, v2, both are adjacent to the same internal
vertex respecting an edge of G, then the subgraph of G induced by V (G)−{v1} or
V (G)−{v2} must have a spanning tree which has the same set of internal vertices
as that a maximum internal spanning tree of G has.(The proof is omitted.)

If two or more leaves are adjacent to one internal vertex of G, then by Lemma
4, all but one of them can be removed safely for finding a maximum internal
spanning tree of it. This is the so called pruning for G. That is,

Corollary 2. There exists such a subgraph of G that (1)each internal vertex is
adjacent to at most one leaf respecting an edge of the subgraph; (2)a maximum
internal spanning tree of it has not less internal vertices than those a maximum
internal spanning tree of G has.(The proof is omitted.)

In what follows, the pruning for G refers to removing some of its leaves so
that the subgraph satisfies Corollary 2. If G1 is the subgraph resulted from the
pruning for G, then each spanning tree of G1 can be transformed into a spanning
tree of G by adding those leaves removed by the pruning for G. That is,



Approximating the MIST Problem 471

Lemma 5. For any spanning tree of G1, there is a spanning tree of G which
has not less internal vertices than those the spanning tree of G1 has.(The proof
is omitted.)

A graph is well-pruned if every internal vertex of it is adjacent to at most
one leaf respecting an edge of the graph. As an example, Fig. 1 presents a graph
as well as a well-pruned subgraph of it. Let G1 be the graph resulted from the
pruning for G. Then G1 must be well-pruned. Let T1 be a spanning tree of G1.
A spanning tree, say T , of G can be constructed by adding those leaves removed
in the pruning process. Recall that T satisfies Lemma 5. Let respectively, I(T ),
I(T1) be the sets of internal vertices in T and T1, while I(G), I(G1) be the sets
of internal vertices in the maximum internal spanning trees of G and G1. Then
|I(G)|
|I(T )| ≤ |I(G1)|

|I(T1)| follows from Corollary 2 and Lemma 5. In other words, if one can
design an algorithm for MIST on the well-pruned graphs with some substantial
performance ratio, one can design an algorithm for MIST on all graphs with
the same performance ratio. Thus in the next section, we only focus on the
well-pruned graphs to ask for their spanning trees.

(a) (b)

Fig. 1. The pruning for G. (a) A graph (G) in which one internal vertex can be
adjacent to more than one leaf. (b)A well-pruned subgraph (G1) resulted from the
pruning for G.

5 Finding a Spanning Tree of a Well-Pruned Graph

Our algorithm for MIST starts with an arbitrary maximum path-cycle cover of a
well-pruned graph. In this section, G1 always stand for a well-pruned graph. We
aim to assemble the connected components in a maximum path-cycle cover into
a spanning tree of G1 which has at least two thirds as many internal vertices
as those a maximum internal spanning tree of G1 has. To meet this aim, we
have to construct a spanning forest of G1, such that each subtree of the forest is
made from a group of connected components in the maximum path-cycle cover
of G1, and has at least two thirds as many internal vertices as the edges these
connected components have. For convenience to construct such a forest, we try
to reconstruct a maximum path-cycle cover at first.
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5.1 Reconstructing a Maximum Path-Cycle Cover

We also treat a maximum path-cycle cover as a set of cycle components and path
components. A path component is a singleton if its length is zero. Following the
notions in Section 2, a vertex of a path component is inner if its degree in
it is 2, and an endpoint otherwise. In particular the endpoint of a singleton
is the singleton itself. Note that although two vertices in distinct connected
components in a maximum path-cycle cover are not adjacent respecting any
edge in the maximum path-cycle cover, they can be adjacent respecting an edge
of G1.

In this section, a maximum path-cycle cover is always supposed to have
more than one connected component. Otherwise, a genuine maximum internal
spanning tree can be trivially obtained from that maximum path-cycle cover.
Since G1 is connected, every connected component of a maximum path-cycle
cover of G1 must have at least one vertex which is adjacent to a vertex outside
of it respecting an edge of G1.

Moreover, one can even find that a maximum path-cycle cover can be trans-
formed into one in which every path component of length no large than 2 must
have one endpoint adjacent to a vertex outside of it respecting an edge of G1.
That is,

Lemma 6. There must be a maximum path-cycle cover of G1 in which, if a path
component is of length no larger than 2, then respecting an edge of G1, at least
one endpoint of it is adjacent to a vertex which falls outside of it.(The proof is
omitted.)

Since an endpoint of a path component cannot be adjacent to an endpoint of
another path component respecting an edge of G1, we have a stronger statement
than that of Lemma 6. That is,

Lemma 7. There must be a maximum path-cycle cover of G1 in which, if a path
component is of length no larger than 2, then respecting an edge of G1, at least
one endpoint of it is adjacent to a vertex of a cycle component or an inner vertex
of another path component.(The proof is omitted.)

If a path component has an endpoint adjacent to a vertex of a cycle compo-
nent respecting an edge of G1, they can be merged into a path component.

Lemma 8. There is such a maximum path-cycle cover that no path component
has an endpoint adjacent to a vertex of a cycle component respecting an edge of
G1.(The proof is omitted.)

Due to Lemma 7, a path component of length 1 or 2 can be eliminated if
it has an endpoint adjacent to an inner vertex of another path component of
length 1 or 2 respecting an edge of G1. That is,

Lemma 9. There is a maximum path-cycle cover of G1 in which, if a path
component is of length 1 or 2, then respecting an edge of G1, at least one endpoint
of it must be adjacent to an inner vertex of a path component of length larger
than 2.(The proof is omitted.)
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By Lemma 6, 8 and 9, there is a reconstruction for any maximum path-
cycle cover of G1 so that the resultant maximum path-cycle cover satisfies the
following lemma.

Lemma 10. There is a maximum path-cycle cover such that, (1)every singleton
must be adjacent to an inner vertex of a path component respecting an edge of
G1; (2)every path component of length 1 or 2 must have one endpoint adjacent
to an inner vertex of a path component of length larger than 2 respecting an edge
of G1.(The proof is omitted.)

In the next subsection, we’ll build up a spanning tree of G1 from a maximum
path-cycle cover for which Lemma 10 holds true.

5.2 Assembling a Maximum Path-Cycle Cover into a Spanning Tree

Let Hnew be a maximum path-cycle cover of G1 for which Lemma 10 holds true.
Let p, c be a path and a cycle component respectively in Hnew, while T be a
subtree of G1. Then p joins T , if V (p) ⊆ V (T ) and E(p) ⊆ E(T ), and c joins
T , if V (c) ⊆ V (T ) and |E(c)∩E(T )| ≥ |E(c)|−1. We specially pay attention to
those subtrees of G1 which are joined by at least one connected component in
Hnew. A connected component in Hnew joins a sub-forest of G1, if it joins some
tree in this sub-forest. A subtree of G1 is α-approximate (0 ≤ α ≤ 1), if it has at
least α times as many internal vertices as the edges of the connected components
which join it. A sub-forest of G1 is α-approximate (0 ≤ α ≤ 1), if all the trees
in it are α-approximate. In this subsection, we aim to assemble the connected
components in Hnew into a 2

3 -approximate spanning tree of G1. To meet this
aim, we show that the connected components in Hnew can be assembled into
such a 2

3 -approximate spanning forest of G1 that every connected component in
Hnew joins just one tree of it.

A path component of length larger than 2 must be 2
3 -approximate . Thus,

Lemma 11. There is a 2
3 -approximate sub-forest of G1, such that every path

component of length larger than 2 in Hnew joins one tree of it.(The proof is
omitted.)

Those singletons and path components of length 1 or 2 in Hnew can be assem-
bled together with the path components of length larger than 2 respectively, thus
into a 2

3 -approximate forest of larger size. That is,

Lemma 12. There is a 2
3 -approximate sub-forest of G1, such that every path

component in Hnew joins one tree of it.(The proof is omitted.)

The remainder is to construct a 2
3 -approximate forest such that all connected

components in Hnew join it.

Lemma 13. There is a 2
3 -approximate sub-forest of G1, such that every con-

nected component in Hnew joins one tree of it.(The proof is omitted.)
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By Lemma 11, 12 and 13, a 2
3 -approximate forest can be constructed with

each connected component in Hnew joining just one tree of it. Namely, this forest
must be a spanning forest of G1. Since G1 is connected, we can use a set of edges
of G1 to link the trees in the forest into a spanning tree of G1, which has not less
internal vertices than those all trees in the forest have. Finally, we summarize
for finding a spanning tree of a well-pruned graph as in Algorithm 1.

Algorithm 1. Finding a maximum internal spanning tree of a well-pruned graph
Input:

G1: a graph with each internal vertex adjacent to at most one leaf.
Output:

A spanning tree of G1.
1: Find a maximum path-cycle cover H of G1;
2: Reconstruct H into Hnew; (Lemma 6, 8, 9)
3: F ← {p ∈Hnew : p is a path component and |E(p)| > 2}; (Lemma 11)
4: Assemble all path components of length 0, 1 and 2 into F ; (Lemma 12)
5: Assemble all cycle components into F ; (Lemma 13)
6: Link the trees in F into a spanning tree of G1 and output it.

Lemma 14. Algorithm 1 can always output a spanning tree of G1 which has at
least two thirds as many internal vertices as those a maximum internal spanning
tree of G1 has.(The proof is omitted.)

Let V1 and E1 be the vertex set and the edge set of G1 respectively. It takes
O(|V1| |E1|1.5 log|V1|) time to find a maximum path-cycle cover of G1 [17]; it
takes O(|V1|+ |E1|) time to reconstruct a maximum path-cycle cover. Thus, Step
1, 2 take O(|V1| |E1|1.5 log|V1|) time. Each step of 4 and 5 for assembling those
connected components into a sub-forest of G1 takes O(|V1|+ |E1|) time. To sum
up, the time complexity of Algorithm 1 is O(|V1| |E1|1.5 log|V1|).

Recall from section 4 that there is an r-approximation algorithm for MIST
on general undirected simple graphs if an r-approximation algorithm exists for
MIST on well-pruned graphs. Thus,

Theorem 2. For any undirected simple graph, finding a maximum internal
spanning tree can be approximated to a performance ratio 1.5 in polynomial
time.(The proof is omitted.)

Tightness Let’s give an example in Fig. 2. For G1 given in Fig. 2(a) as an
instance of MIST, if Algorithm 1 starts with a maximum path-cycle cover exactly
containing k cycles of length 3, then it will return the spanning tree T with 2k
internal vertices while T ∗ is a maximum internal spanning tree with 3k − 2
internal vertices. Increasing k, we come close to a 3

2 ratio.
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Fig. 2. (a)A well-pruned graph (G1). (b)A maximum path-cycle cover of G1 which has
k triangles. (b)The spanning tree of 2k internal vertices Algorithm 1 returns if starting
with the maximum path-cycle cover in (b). (d)A maximum internal spanning tree of
3k − 2 internal vertices.

6 A 4
3
-Approximation Algorithm for the Graphs without

Leaves

MIST on graphs without any leaves is NP-hard because the Hamilton-path
problem on 2-connected cubic bipartite planar graphs is NP-Hard [1], and a
2-connected cubic bipartite planar graph must be simple and have all its ver-
tices each incident to at least 2 edges. A maximum path-cycle cover of a graph
with n vertices and m edges can be found in O(n2m) time [8], even if the maxi-
mum path-cycle cover is restricted to have each cycle component with at least 4
edges. In this section, a graph does not contain any leaves whenever it is men-
tioned, and each cycle component in a maximum path-cycle cover has at least
4 edges. We present an approximation algorithm for MIST and show that the
algorithm can achieve the performance ratio 4

3 for a graph without any leaves.
We denote by G′ an undirected simple graph without any leaves in this section.

6.1 Reconstructing a Maximum Path-Cycle Cover

The reconstruction tries to transform an arbitrary maximum path-cycle cover
into one in which every path component of length 1, 2, or 3 has at least one
endpoint adjacent to an inner vertex of a path component of length at least 4
respecting an edge of G

′
.

Moreover, a maximum path-cycle cover of G′ is supposed to have more than
one connected component again, for the same reason as stated in Section 5.1.
Since G′ is connected, every connected component of a maximum path-cycle
cover of G′ must have at least one vertex which is adjacent to a vertex outside
of it respecting an edge of G′.

Note that there must be a maximum path-cycle cover of G
′
for which Lemma

6 and 7 still hold, even if each cycle component in the maximum path-cycle cover
has at least 4 edges. In order to reconstruct a maximum path-cycle cover of G

′
,

the following two lemmas are necessary as supplements to Lemma 6 and 7.

Lemma 15. There must be a maximum path-cycle cover of G
′
in which, if a path

component is of length three, then respecting an edge of G
′
, at least one endpoint

of it is adjacent to a vertex which falls outside of it.(The proof is omitted.)

The lemma 15 can be strengthened by the following lemma.
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Lemma 16. There must be a maximum path-cycle cover of G
′
in which, if a

path component is of length three, then respecting an edge of G
′
, at least one

endpoint of it is adjacent to a vertex of a cycle component or an inner vertex of
another path component.(The proof is omitted.)

By Lemma 15 and 16, a maximum path-cycle cover can be reconstructed so
that it subjects to,

Lemma 17. There is such a maximum path-cycle cover of G
′
that, (1)every

singleton must be adjacent to an inner vertex of a path component respecting an
edge of G′; (2)every path component of length 1, 2 or 3 has at least one endpoint
adjacent to an inner vertex of a path component of length at least 4 respecting
an edge of G

′
.(The proof is omitted.)

In the next subsection, we’ll use a maximum path-cycle cover for which
Lemma 17 holds true to build up a spanning tree of G′.

6.2 Assembling a Maximum Path-Cycle Cover into a Spanning Tree

Let H
′
new be a maximum path-cycle cover for which Lemma 17 holds true. We

aim at assembling all the connected components in H
′
new into a 3

4 -approximate
spanning tree of G

′
. There will be a 3

4 -approximate spanning tree of G′, if there
is a 3

4 -approximate spanning forest of G′. Actually, a 3
4 -approximate forest can

be constructed by almost the same method as that in section 5.2. That is,

Lemma 18. There is a 3
4 -approximate spanning forest of G

′
, such that every

connected component in H
′
new joins one tree of it.(The proof is omitted.)

Algorithm 2. Finding a spanning tree of a graph without leaves
Input:

G′: a graph without leaves.
Output:

A spanning tree of G′.
1: Find a maximum path-cycle cover H ′ of G′;
2: Reconstruct H ′ into H

′
new; (Lemma 6, 8, 9, 17)

3: Assemble the connected components in H
′
new into a spanning forest F ; (Lemma

18)
4: Link the trees in F into a spanning tree of G′ and output it.

Lemma 18 immediately implies a 4
3 -approximation algorithm for the MIST

on graphs without leaves which is summarized in Algorithm 2

Theorem 3. MIST can be approximated to within 4
3 in polynomial time for an

undirected simple graph without leaves.(The proof is omitted.)
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Tightness In Fig. 3, we give an example to verify the performance of the algo-
rithm. The 4

3 -approximation algorithm starts with a maximum path-cycle cover
exactly containing k cycles of length 4 which is marked as bold edges in Figure
3(a). The algorithm will output T as its solution which is showed as solid edges in
Figure 3(b), while T ∗ is a spanning tree as an optimal solution which is marked
as solid edges in Figure 3(c). Since T has 3k internal vertices, while T ∗ has 4k−2
internal vertices, thus increasing k, we come close to a 4

3 ratio.

Fig. 3. (a)A graph (G′) without leaves, where those k squares with bold edges serves as
a maximum path-cycle cover. (b)The spanning tree of 3k internal vertices the algorithm
outputs, if it starts with a path-cycle cover of G′ as in (a) of this figure. (c)A maximum
internal spanning tree of 4k − 2 internal vertices.

7 Conclusions and Discussions

We have presented an algorithm for MIST which can achieve the performance
ratio 3

2 on undirected simple graphs, and an algorithm for MIST which can
achieve the performance ratio 4

3 on the graphs without leaves. We believe that the
method of this paper can be used to design approximation algorithms for other
problems whose solutions can be bounded by the size of the maximum path-
cycle covers of graphs. It is interesting and open whether there is a polynomial
algorithm with performance ratio equal to or less than 4

3 on undirected simple
graphs.
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C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

10. Lu, H., Ravi, R.: The power of local optimization approximation algorithms for
maximum-leaf spanning tree. Technical report. Department of Computer Science,
Brown University (1996)

11. Prieto, E., Sloper, C.: Either/Or: using Vertex Cover structure in designing
FPT-algorithms — the case of k -Internal Spanning Tree. In: Dehne, F., Sack,
J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Hei-
delberg (2003)

12. Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, The
University of Newcastle, Australia (2005)

13. Prieto, E., Sloper, C.: Reducing to independent set structurethe case of k-internal
spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

14. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information
Processing Letters 105(5), 164–169 (2008)

15. Salamon, G.: Approximating the Maximum Internal Spanning Tree problem. The-
oretical Computer Scientc 410(50), 5273–5284 (2009)

16. Salamon, G.: Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest
University of Technology and Ecnomics, Hungary (2009)

17. Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Pro-
cess. Lett. 12(2), 89–92 (1981)

18. Zehavi, M.: Algorithms for k -Internal Out-Branching. In: Gutin, G., Szeider, S.
(eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)



Approximation Algorithms Inspired
by Kernelization Methods

Faisal N. Abu-Khzam1(B), Cristina Bazgan2,5,
Morgan Chopin3, and Henning Fernau4

1 Lebanese American University, Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

2 PSL, University of Paris-Dauphine, LAMSADE UMR 7243, Paris, France
bazgan@lamsade.dauphine.fr

3 Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany
morgan.chopin@uni-ulm.de

4 Fachbereich 4, Informatikwissenschaften, Universität Trier, Trier, Germany
fernau@uni-trier.de

5 Institut Universitaire de France, Paris, France

Abstract. Kernelization algorithms in the context of Parameterized
Complexity are often based on a combination of reduction rules and
combinatorial insights. We will expose in this paper a similar strategy for
obtaining polynomial-time approximation algorithms. Our method fea-
tures the use of approximation-preserving reductions, akin to the notion
of parameterized reductions. We exemplify this method to obtain the
currently best approximation algorithms for Harmless Set, Differen-
tial and Multiple Nonblocker, all of them can be considered in the
context of securing networks or information propagation.

1 Introduction

In this paper, for the purpose of illustrating our method, we will mainly deal with
maximization problems that are obtained from domination-type graph problems.
We first describe these problems, using standard graph-theoretic terminology.

Let G = (V,E) be an undirected graph and D ⊆ V .

1. D is called a dominating set if, for all x ∈ V \ D, there is a y ∈ D ∩ N(x).
V \ D is known as an enclaveless set [28] or as a nonblocker set [17].

2. D is called a total dominating set if, for all x ∈ V , there is a y ∈ D ∩ N(x).
V \ D has been introduced as a harmless set or robust set (with unaminity
thresholds) in [6].

3. If D can be partitioned as D = D1 ∪ D2 such that, for all x ∈ V \ D, there
is a y ∈ D2 ∩ N(x), then (D2,D1) defines a Roman domination function
fD1,D2 : V → {0, 1, 2} such that fD1,D2(V ) = 2|D2|+|D1|. According to [10],
|V | − fD1,D2(V ) is also known as the differential of a graph (as introduced
in [25]) if fD1,D2(V ) is smallest possible.

4. If for all x ∈ V \D, there are k elements in D∩N(x), then D is a k-dominating
set, see [14,16,21]. We will call V \ D a k-nonblocker set.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 479–490, 2014.
DOI: 10.1007/978-3-319-13075-0 38



480 F.N. Abu-Khzam et al.

The maximization problems derived from these four definitions are: Non-
blocker, Harmless Set, Differential, and k-Nonblocker. Although
these problems are all better known from the minimization perspective, there is a
good reason to study them in this complementary way: All of these minimization
problems do not possess constant-factor approximations under reasonable com-
plexity assumptions (the reduction shown in [15] for (Total) Dominating Set
starts from Set Cover), while the complementary problems can be treated in
this favorable way. For Roman Domination, observe that the reduction shown
in [20] works from Set Cover, so that again (basically) the same lower bounds
follow. This move is related to differential approximation [3]. Notice that this
comes along with similar properties from the perspective of Parameterized Com-
plexity: While natural parameterizations of the minimizations lead to W[2]-hard
problems [18,20], the natural parameterizations of the maximization counter-
parts are fixed-parameter tractable. However, as this is more customary as a
combinatorial entity, let us refer (as usual) by γ(G) to the size of the smallest
dominating set of G, by γt(G) to the size of the smallest total dominating set,
by γR(G) to the Roman domination number of G, i.e., the smallest value of
a Roman domination function of G, and by γk(G) to the size of the smallest
k-dominating set of G.

Some graph-theoretic notations. Let G = (V,E) be a simple undirected graph.
We denote by N(x) the set of neighbors of vertex x; the cardinality of N(x) is
the degree of x. A vertex of degree zero is known as an isolated vertex, and a
vertex of degree one as a leaf. The number of vertices of a graph is called its
order. Given U ⊆ V , G[U ] denotes the subgraph induced by U . A repetition-free
sequence x1, . . . , xk of vertices is a path in G (of length k − 1) if xixi+1 ∈ E for
i = 1, . . . , k − 1. A chain is an induced path whose interior vertices are of degree
two in G. The diameter of G is the greatest length of a shortest path in G.

Main Results. We introduce a notion of approximation-preserving reductions
analogous to parameter-preserving reductions known in Parameterized Com-
plexity in order to obtain new approximation algorithms. We introduce a general
methodology to obtain constant-factor approximations for various problems. For
instance, along with an algorithmic version of the upper bound obtained in [24]
on the size of a total dominating set, we present a factor-two approximation
algorithm for Harmless Set, beating the previously known factor of three [6].
Moreover, we are deriving a factor-113 approximation algorithm for Differen-
tial, which was set up as an open problem in [9], where this approximability
question could be only settled for bounded-degree graphs; our approach also
improves on the factor-4 approximation exhibited in [7]. Finally, we present
constant-factor approximation algorithms for k-Nonblocker.

Organization of the paper. Section 2 explains the use of reduction rules within
maximization problems. It also exhibits the general method. Section 3 shows
how to employ our general method to one specific problem in a non-trivial way.



Approximation Algorithms Inspired by Kernelization Methods 481

Sections 4 and 5 show that the same method can be also applied to other prob-
lems. We conclude with discussing further directions of research.

All proofs and some more details that are omitted due to space restrictions
can be found in the long version of this paper [1].

2 Approximation Preserving Reductions for
Maximization Problems

A maximization problem P can be specified by a triple (IP ,SOLP ,mP), where

1. IP is the set of input instances of P;
2. SOLP is a function that associates to x ∈ IP the set SOLP(x) of feasible

solutions of x;
3. mP provides on (x, y), where x ∈ IP and y ∈ SOLP(x), a positive integer

which is the value of the solution y.

An optimum solution y∗ to x satisfies: (i) y∗ ∈ SOLP(x), and (ii) mP(y∗) =
max{mP(y) | y ∈ SOLP(x)}. The value mP(y∗) is also referred to as m∗

P(x) for
brevity. The subscript P will be dropped when no ambiguity exists.

Given a maximization problem P, a factor-α approximation, α ≥ 1, associates
to each x ∈ IP some y ∈ SOLP(x) such that α · mP(x, y) ≥ m∗

P(x). A solution
y ∈ SOLP(x) satisfying α · mP(x, y) ≥ m∗

P(x) is also called an α-approximate
solution for x.

We are now going to present a first key notion for this paper.

Definition 1. An α-preserving reduction, with α ≥ 1, is a pair of mappings
instP : IP → IP and solP which, given y′ ∈ SOLP(instP(x)), produces some
y ∈ SOLP(x) such that there are constants a, b ≥ 0 satisfying a ≤ α · b and the
following inequalities:

1. m∗
P(instP(x)) + a ≥ m∗

P(x),
2. for each y′ ∈ SOLP(instP(x)), the corresponding solution y = solP(y′)

satisfies: mP(instP(x), y′) + b ≤ mP(x, y).

When referring to this definition, we mostly explicitly specify the constants
a and b for ease of verification. An important trivial example is given by a
pair of identity mappings that are α-preserving for any α ≥ 1. Notice that
a similar notion has been introduced in the context of minimization problems
in [12,13,22].

Theorem 1. Let P = (IP ,SOLP ,mP) be some maximization problem. If the
pair (instP , solP) describes an α-preserving reduction and if, given some
instance x, y′ ∈ SOLP(instP(x)) is an α-approximate solution for instP(x),
then y = solP(y′) is an α-approximate solution for x.
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Proof. We have to prove that α · mP(x, y) ≥ m∗
P(x). Now,

m∗
P(x)

mP(x, y)
≤ m∗

P(instP(x)) + a

mP(instP(x), y′) + b
≤ αmP(instP(x), y′) + αb

mP(instP(x), y′) + b
= α

as required. 	

This shows that an α-preserving reduction leads to a special AP-reduction

as defined in [4]. But there, these reductions were mainly used to prove hardness
results, as it is also the case of [22] that we already mentioned. However, we use
this notion to obtain approximation algorithms.

The notion of an α-preserving reduction was coined following the successful
example of kernelization reductions known from Parameterized Complexity [18].
One of the nice features of those is that they are usually compiled from simpler
rules that are often based on some applicability conditions. In the following, we
describe that this also works out for approximation. We need two further notions
to make this precise.

We call an α-preserving reduction (instP , solP) strict if | instP(x)| < |x|
for all x ∈ IP , and it is called polynomial-time computable if the two mappings
comprising the reduction can be computed in polynomial time.

Lemma 1. If (instP , solP) and (inst′
P , sol′

P) are two α-preserving reductions,
then the composition (i, s) := (instP ◦ inst′

P , sol′
P ◦ solP) is also an α-

preserving reduction. If both (instP , solP) and (inst′
P , sol′

P) are strict (poly-
time computable, resp.), then the composition (i, s) is strict (poly-time computable,
resp.).

Reductions are often described in some conditional form:

if condition then do action

Our previous considerations apply also for this type of conditioned reductions,
apart from the fact that an instance may not change, assuming that the reduc-
tion was not applicable, which means that the condition was not true for that
instance. Further discussions can be found in the long version of the paper [1].

The general strategy that we follow can be sketched as follows:

1. Apply (strict, poly-time computable) α-preserving reduction rules as long as
possible.

2. Possibly modify the resulting graph so that it meets some requirements from
known combinatorial results on the graph parameter of interest.

3. Compute some solution for the modified graph that satisfies the mentioned
combinatorial bounds.

4. Construct from this solution a good approximate solution for the original
instance.

In order to illustrate the use of this strategy, let us elaborate on Non-
blocker, matching a result from [27]; the current record is given in [2]. This
goes along the lines of the kernelization result by Dehne et al. [17], but kernel-
ization needs no constructive proof of the combinatorial backbone result; the
non-constructive proof of [26] is hence sufficient.
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1. Delete all isolates. (If the resulting graph is of minimum degree at least two,
we are ready to directly apply the algorithm of Nguyen et al. [27].)

2. Merge all leaf neighbors into a single vertex.
3. Delete all leaves but one, which is x. This yields the graph G of order nG.
4. Create a copy G′ of the graph G; call the vertices in the new graph by

priming the names of vertices of G. Let H be the graph union of G and G′

plus the edge xx′. H is of minimum degree at least two by construction.
5. Take the algorithm of Nguyen et al. [27] to obtain a dominating set DH of

H satisfying |DH | ≤ 2
5nH . Should the solution DH contain x or x′, it is not

hard to modify it to contain the leaf neighbors y or y′, instead.
6. Hence, DG = VG∩DH is a dominating set for G with |DG| ≤ 2

5nG. Trivially,
NG = VG \ DG is a nonblocker solution for G that is 5

3 -approximate.
7. As the merging and deletion reductions are α-preserving for each α ≥ 1,

we can safely undo them and hence obtain a 5
3 -approximate solution for the

original graph instance.

3 Harmless Set

We are now turning towards Harmless Set as the most elaborate example of
our methodology. First, we are going to present the combinatorial backbone of
our result. Let S2(G) be the set all vertices of degree two within G.

Theorem 2. (Lam and Wei [24]) Let G be a graph of order nG and of minimum
degree at least two such that G[S2(G)] decomposes into K1- and K2-components.
Then, γt(G) ≤ nG/2.

The proof of this theorem is non-constructive, as it uses tools from extremal
combinatorics. In [1], we show how to obtain a polynomial-time algorithm that
actually computes a total dominating set (TDS) D with |D| ≤ nG/2 under the
assumptions of Theorem 2. Our approximation algorithm for Harmless Set is
based on obtaining a (small enough) TDS in a graph H obtained from the input
G after a number of modifications (mainly vertex deletions). In the reduction
from G to H, we distinguish between the number of deleted vertices d (to get
from G to H) and the number of vertices a that are added to convert the TDS
DH to DG.

Theorem 3. Let G be a graph of order nG and let H be a graph of order nH

obtained from G by deleting d vertices and possibly adding some edges. Let DG

and DH be TDS solutions of G and Hsuch that a = |DG|− |DH | ≤ d. If |DH | ≤
c·nH and d ≤ γt(G), then V (G)\DG is a harmless set of G whose size nG−|DG|
is within a factor of (1 − c)−1 from optimum.

Proof. As nH = nG − d, |DG| = |DH | + a ≤ c(nG − d) + a = cnG + (a − cd) ≤
cnG + d − cd = cnG + (1 − c)d ≤ cnG + (1 − c)γt(G). Hence, nG − |DG| ≥
nG − cnG − (1 − c)γt(G) = (1 − c)(nG − γt(G)). This immediately yields an
approximation factor of (1 − c)−1. 	
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In the following, we will present reduction rules that produce a graph G
with the property (*) that each vertex of degree bigger than one has at most
one leaf neighbor. The surgery that produces a graph H from G as indicated
in Theorem 3 includes removing all d leaves and adding edges to ensure that
H has minimum degree of two and satisfies that each component of H[S2(H)]
has diameter at most one. Notice that all leaf neighbors in G belong to some
optimum TDS of G without loss of generality. Due to (*), γt(G) ≥ d as required.
Moreover, given some TDS solution DH for H, we can produce a valid TDS
solution DG for G by adding all d leaf neighbors to DH . Notice that Theorem 3
leads to a factor-2 approximation algorithm for Harmless Set based on a
polynomial-time, constructive version of Theorem 2.

Now, we list α-preserving reductions for Harmless Set. All missing cor-
rectness proofs can be found in the long version of this paper [1]. We start with
two very simple rules.

Isolate Reduction. If there is some isolated vertex, produce the instance
({x}, ∅) that has trivially no solution.

Leaf Reduction. If there are two leaf vertices u, v with common neighbor w,
then delete u. (It would go into the harmless set.)

Observation 4. The Leaf Reduction is α-preserving for any α ≥ 1.

Hence from now on, no vertex can have two leaf neighbors.
We shall use the term chain to denote a path whose interior vertices are of

degree two in G. A chain with one leaf endpoint is a pendant chain. A floating
chain is a chain with two leaves. A support vertex is a non-pendant endpoint of
a pendant chain. Support vertices may have more than one pendant chain. We
shall reduce the length of pendant chains to at most two, based on the following
reduction rules.

Floating Chain Reduction. Delete all floating chains.
Clearly, a maximum harmless set (and a minimum TDS) can be computed

in linear time on such trivial connected components. Hence, we can verify the
definition with suitably chosen values for a = b, which proves:

Observation 5. The Floating Chain Reduction is α-preserving for any α ≥ 1.

Long Chain Reduction. Assume that G is a graph that contains a path
x − u − v − w − y, where u, v, w are three consecutive vertices of degree two,
where |N(y)| ≥ 2. Then, construct the graph G′ by merging x and y and deleting
u, v, w.

Theorem 6. The Long Chain Reduction is α-preserving for any α ≥ 1.
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Proof. Let G be the original graph and G′ the graph obtained from G by deleting
the path u, v, w and merging x and y as described by the rule. We show that
a = b = 2 works out in our case by considering several cases.
(a) Let C be a maximum harmless set (HS) for G. The special case when N(x) =
{u} is easy to verify. In the following discussion, we can hence assume that x has
at least two neighbors. We now consider cases whether or not x ∈ C or y ∈ C.
(a1) Assume that x ∈ C and y ∈ C. Hence, u,w are not dominated neither
by x nor by y. Since C is maximum, we can assume |C ∩ {u, v, w}| = 1, as
min{|N(x)|, |N(y)|} ≥ 2; hence, if all of u, v and w are in V \ C, then we can
replace w by another neighbor of y and obtain another optimum solution. Then,
C ′ = C \ {x, u, v, w} is a HS of G′, with |C ′| = |C| − 2.
(a2) Assume that x /∈ C and y /∈ C. First, let us discuss the possibility that
u /∈ C and w /∈ C. As C is maximum, the purpose of this is to dominate (i)
v and (ii) x and y. To accomplish (i), either u /∈ C or w /∈ C would suffice.
However, as C is maximum, condition (ii) means that N(x) \ C = {u} and that
N(y) \ C = {w}. By our assumptions, min{|N(x)|, |N(y)|} ≥ 2. Hence, there is
a vertex z ∈ N(y), z 
= w. Now, C̃ = (C \ {z}) ∪ {w} is also a maximum HS
satisfying {v, w} ⊆ C̃. From now on, we assume that |C ∩ {u, v, w}| = 2 and
that |((N(x) ∪ N(y)) \ ({u,w} ∪ C)| ≥ 1. Hence, C ′ = C \ {u, v, w} is a HS of
G′ with |C ′| = |C| − 2.
(a3) Assume now that x ∈ C and y /∈ C. (Clearly, the case that x /∈ C and
y ∈ C is symmetric.) As u is not dominated by x, either (i) {u, v} ⊆ V \C or (ii)
{v, w} ⊆ V \C. In case (i), x is dominated by u, but y must (still) be dominated
by some vertex from N(y) \ {w}. In case (ii), symmmetrically y is dominated
by w, but x must be dominated by some vertex from N(x) \ {u}. In both cases,
C̃ = (C \ {x}) ∪ {v} is another maximum harmless set of G. This leads us back
to the previous item (i.e., |C ′| = |C| − 2.)

Summarizing, we have shown that from C we can construct a harmless set
C ′ for G′ with |C ′| = |C| − 2.
(b) Conversely, assume C ′ is some harmless set for G′. We distinguish two cases:
(b1) Assume that y ∈ C ′. Then, y is dominated by some z in its neighborhood
(in G′). We consider two cases according to the situation in G. (i) If z ∈ N(x),
then C = C ′ ∪ {x, u} is a HS in G. (ii) If z ∈ N(y), then C = C ′ ∪ {x,w} is a
HS in G. In both cases, |C| = |C ′| + 2.
(b2) If y /∈ C, then again y is dominated by some z in its neighborhood (in G′).
We perform the same case distinction as in the previous case: (i) If z ∈ N(x),
then C = C ′ ∪ {u, v} is a HS in G. (ii) If z ∈ N(y), then C = C ′ ∪ {v, w} is a
HS in G. In both cases, |C| = |C ′| + 2.
(c) The reasoning from (b) shows that, if C is an optimum solution for G, then
C ′ as obtained in part (a) of this proof is an optimum solution for G′. 	


Similarly, one sees the correctness of the following rule.

Cycle Chain Reduction. If G is a graph that contains a cycle x−u−v−w−x,
where u, v, w are three consecutive vertices of degree two, then construct G′ by
deleting u.
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Finally, we deal with support vertices with multiple pendant chains. Assum-
ing the Long Chain Reduction has been applied, any pendant chain is of length
two or less. Accordingly, a support vertex where two of more pendant chains
meet does belong to some optimum solution. The following rule makes this idea
more precise.

Pendant Chain Reduction. Assume that G = (V,E) is a graph that contains
two pendant chains with common endpoint v of which at least one path is of
length two. Then, construct the graph G′ = (V ′, E′) by deleting one of the two
pendant chains, keeping one which is of length two.

Theorem 7. The Pendant Chain Reduction is α-preserving for any α ≥ 1.

We are now ready to apply Theorem 3. Assume the graph G = (V,E) is
reduced according to the reduction rules described so far. Hence, G satisfies: (a)
G contains no chain of three vertices of degree two. (b) By the Leaf Reduction
rule, any vertex has at most one leaf neighbor. Let G′ be a graph isomorphic to
G so that each vertex v of G corresponds to a vertex v′ of G′, under the assumed
isomorphism f : V (G) −→ V (G′). We construct a graph H obtained from the
disjoint union of G and G′ simply by adding edges between each leaf neighbor
vertex v of G and v′ = f(v) ∈ V (G′). Then, we remove all leaves.

Due to the application of Pendant Chain Reduction to G (and G′), the addi-
tion of edges between corresponding leaf neighbors in G and G′ does not intro-
duce induced cycles with more than two consecutive degree-two vertices.

To the resulting graph H, apply Long Chain Reduction as long as possible.
Notice that an application of this rule does never decrease degrees, adds two
vertices to the solution and removes four vertices of the graph.

This results in a graph H ′ of order nH′ with minimum degree at least two
containing no chain of three vertices of degree two. Hence, we can apply the
(algorithmic) version of Theorem 2 that returns a TDS DH′ for H ′ with 2|DH′ | ≤
nH′ . Undoing the c Long Chain Reductions that we applied, we obtain a TDS
DH for H with 2|DH | = 2(|DH′ | + 2c) ≤ nH′ + 4c = nH . By symmetry, we can
assume that |DH ∩ V (G)| ≤ |DH ∩ V (G′)|. Now, we add all support vertices to
DH ∩ V (G) and further vertices to obtain DG by the following rules:

– If a support vertex already belongs to DH , then it could have been dominated
via the edge that we introduced. As this interconnects to another support
vertex, both already belonged to DH . We arbitrarily select two neighbors (in
G) of these support vertices and put them into DG. Hence, the mentioned
support vertices and the attached leaves are totally dominated.

– If a support vertex x did not already belong to DH , two cases arise: (a) If
it was dominated (in H) via an edge already belonging to G, then we do
nothing on top of what we said. (b) If the support vertex x was dominated (in
H) by an edge xy not belonging to G, then we must add another neighbor z
(in G) of x to DG. However, as (obviously) the vertex y belonged to DH and
was dominated by a neighbor (in G) in DH , we add (in total) two vertices
x, z for the two support vertices x, y. Seen from the other side, this covers the
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case of a support vertex that already belonged to DH but was not dominated
via the edge that we introduced.

Altogether, we see that we delete all leaves and introduce at most that many
vertices into DG (in comparison to DH ∩ V (G)). By Theorem 3 and since all
reduction rules take polynomial time, we obtain:

Theorem 8. Harmless Set is factor-2 polynomial-time approximable.

4 The Differential of a Graph

Let us start with an alternative presentation of this notion. Let G = (V,E) be
a graph. For D0 ⊆ V , let ∂(D0) :=

∣
∣
(⋃

x∈D0
N(x)

) \ D0

∣
∣ − |D0|. ∂(D0) is called

the differential of the set D0, and our aim is to find a vertex set that maximizes
this quantity. This maximum quantity is known as the differential of G, written
∂(G). The following combinatorial results are known:

Theorem 9. [8] Let G be a connected graph of order n. (a) If n ≥ 3, then
∂(G) ≥ n/5. (b) If G has minimum degree at least two, then ∂(G) ≥ 3n

11 , apart
from five exceptional graphs, none of them having more than seven vertices.

It is not hard to turn the first combinatorial result into a kernelization result,
yielding a kernel bound of 5k, where k is the natural parameterization of the Dif-
ferential. In [7], this result was improved to a kernel whose order is bounded
by 4k. This way, we can also get a factor-4 approximation. However, Theorem 9
suggests a possible improvement to a factor of 11

3 by our framework.
First, we have to show (see [1] more details) that the reduction rules presented

in [7] as kernelization rules can be also interpreted as α-preserving rules. We use
some non-standard terminology. A hair is a sequence of two vertices uv, where
u is a leaf and v has degree two. Then, u is also called a hair leaf.

Lemma 2. [7] Let G = (V,E) be a graph where none of the Differential
reduction rules listed in [1,7] applies. Then, G has the following properties:

(1) To each vertex, at most one leaf or one hair is attached, but not both together.
(2) If we remove all leaves and all hairs from G, then the remaining graph G̃ =

(Ṽ , Ẽ), henceforth called nucleus, has minimum degree of at least two.
(3) If a hair is attached to a vertex u in the nucleus, then no hair is attached to

any neighbor of u within the nucleus.

We compute a sufficiently big solution for the nucleus and then use:

Theorem 10. Let G be a graph of order nG and let H be a graph of order
nH obtained from G by deleting d vertices. Let DG = DG,1 ∪ DG,2 and DH =
DH,1 ∪ DH,2 be Roman DS solutions of G and H, with DH,2 = DG,2 and a =
|DG,1| − |DH,1| ≤ d. If |DH,1| + 2|DH,2| ≤ c · nH and d ≤ γR(G), then ∂(V (G) \
DG) = nG − 2|DG,2| − |DG,1| is within a factor of (1 − c)−1 from optimum.

We can turn the (non-constructive) combinatorial reasoning of [8] into a
polynomial-time algorithm (see [1]), which allows us to conclude:

Theorem 11. Differential is factor-113 polynomial-time approximable.
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5 Multiple Nonblocker Sets

We shall assume k > 1 in this section and, as usual, we consider a combinatorial
upper bound on the size of some feasible solution of the minimization problem.

Theorem 12 ([16]). Let G be a graph of order nG and a minimum degree at
least k. Then γk(G) ≤ k

k+1nG.

The known non-constructive proof can be turned into a polynomial-time
algorithm (see [1]) computing a k-dominating set D with |D| ≤ k

k+1nG.

Theorem 13. For a given graph G of order nG and minimum degree at least k,
one can compute a k-dominating set D with |D| ≤ k

k+1nG in polynomial time.

Our approximation algorithm is based on obtaining a k-dominating set in a
graph H obtained from the input G after adding the complete bipartite graph
Kk,k and after a number of modifications.

Theorem 14. Let G be a graph of order nG and let H be a graph of order nH

obtained from G by deleting d vertices and adding 2k new vertices, d > k. Let DG

and DH be k-dominating set solutions of G and H such that a = |DG|− |DH | =
d − k. If |DH | ≤ c · nH for some c < 1 and d ≤ γk(G), then V (G) \ DG is a
k-nonblocker of G whose size nG − |DG| is within a factor of (1 − c)−1 from
optimum.

This result is understood modulo the additive constant k(2c − 1) < k.
Given a graph G as input, we construct a graph G′ obtained from G by adding

a complete bipartite graph Kk,k with (new) vertices u1, . . . , uk, v1, . . . , vk. This
transformation is an L-reduction (as defined in [4]) and thus the approximation
ratio is preserved. Now, we present reduction rules that when applied to G′

produce a graph H with minimum degree at least k. Our reduction rules mainly
deal with vertices of degree k − 1 or less. We refer to such vertices as low-degree
vertices. Each such vertex must be in any k-dominating set.

Low-Degree Vertex Deletion. If a low-degree vertex v has only low-degree
neighbors, then delete v. If there is a vertex u with at least k + 1 low-degree
neighbors, then delete the edge between u and one low-degree neighbor of u.

Observation 15. Low-Degree Vertex Deletion is α-preserving for any α ≥ 1.

Low-Degree Merging. Consider a graph that has been subject to the Low-
Degree Vertex Deletion rule. For every vertex v of degree at least k, having q
low-degree neighbors w1, . . . , wq, with q ≤ k, connect v to v1, . . . , vq (from the
Kk,k that was added as described above). Finally, delete all low-degree vertices.

Observation 16. Low-Degree Merging is α-preserving for any α ≥ 1.

The reductions above take polynomial time, so that Theorem 14 allows us to
conclude:

Theorem 17. k-Nonblocker is factor-(k + 1) polynomial-time approximable
(modulo an additive constant less than k).
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6 Conclusions

We presented a framework for obtaining approximations for maximization prob-
lems, inspired by similar reasonings for obtaining kernelization results. We see
five directions from this approach:

– Paraphrasing [19], we might say that not only FPT, but also polynomial-time
maximization is P-time extremal structure. This should inspire mathemati-
cians working in combinatorics to work out useful bounds on different graph
parameters. We started on domination-type parameters, and this might be a
first venue of continuation, for example, along the lines sketched in [11,23].

– Conversely, approximation algorithms that stay within the combinatorial
grounds of their problem tend to reveal (combinatorial) insights into the
problem that might get lost when moving for instance into the area of Math-
ematical Programming.

– The notion of α-preserving reduction is similar to the local ratio techniques [5]
that allowed to re-interpret many approximation algorithms (for minimiza-
tion problems) in a purely combinatorial fashion. We see hope for similar
developments using α-preserving reduction for maximization problems.

– The fact that α-preserving reductions are inspired by FPT techniques should
allow to adapt these notions for parameterized approximation algorithms.

– Reductions are often close to practical heuristics and hence allow for fast
implementations.

Acknowledgments. We are grateful for the support by the bilateral research coop-
eration CEDRE between France and Lebanon (grant number 30885TM).
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Abstract. Sorting permutations by short block moves is an interesting
combinatorial problem derived from genome rearrangements. A short
block move is an operation on a permutation that moves an element at
most two positions away from its original position. The problem of sort-
ing permutations by short block moves is to sort a permutation by the
minimum number of short block moves. Our previous work showed that
a special class of sub-permutations (named umbrella) can be optimally
sorted in O(n2) time. In this paper, we devise an 5/4-approximation algo-
rithm for sorting general permutations by short block moves, improving
Heath’s approximation algorithm with a factor 4/3 and our previous
work with an approximation factor 14/11. The key step of our algorithm
is to decompose the permutation into a series of related umbrellas, then
we can repeatedly exploit the polynomial algorithm for sorting umbrellas.
To obtain the approximation factor of 5/4, we also present an implicit
lower bound of the optimal solution, which improves Heath and Vergara’s
result greatly.

1 Introduction

Sorting permutations by rearrangement operations has been studied widely dur-
ing the last twenty years, since the three basic operations: reversals, transposi-
tions and translocations was proposed by Sankoff [11].

A transposition is a rearrangement operation that operates on only one per-
mutation. Precisely, a transposition cuts a segment out of the permutation and
pastes it in a different location; i.e., it swaps two adjacent subpermutations. A
transposition is also called a block-move. A lot of work was done for sorting a
permutation by transpositions [1–4].

Actually, in the evolution process of the genomes, a segment is rarely moved
far away from its original position. Naturally, Heath and Vergara proposed the
problem of sorting by bounded block-moves [6], where the blocks must be moved
within a bounded distance. A short block-move (also called 3-bounded transpo-
sition in [10]) is a transposition on a permutation such that the total length of
the two segments swapped is at most three. Heath and Vergara presented an 4/3-
approximation algorithm for this problem, as well as polynomial algorithms for
some special permutations [7]. Mahajan et al. simplified Heath and Vergara’s
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 491–503, 2014.
DOI: 10.1007/978-3-319-13075-0 39
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approximation algorithm, and described a linear-time algorithm to optimally
sort the “correcting-hop-free” permutations [10]. Jiang et al. presented an O(n2)
algorithm to sort a special permutation with a structure called “umbrella”, then
devised an (1 + ε)-approximation algorithm for permutations with many inver-
sions [8], later, they also devised an 14/11-approximation algorithm for sorting
general permutations by short block moves [9].

In this paper, we show an implicit lower bound of the short block move
distance, and devise a new 1.25-algorithm approximating it within a factor 1.25.

2 Preliminaries

In the context of genome rearrangements, generally, genomes are represented by
permutations, where each element stands for a gene. If there are n elements in a
permutation, we denote them by the set In = {1, 2, . . . , n}. For example, π=[4,
1, 3, 2, 7, 5, 8, 6] is a permutation of eight elements. Let ιn = [1, 2, . . . , n−1, n] be
the identity permutation of n elements. A block ( also called sub-permutation )
is a segment of contiguous elements or just one element. A short block is a block
which contains at most two elements. A short block move operation swaps two
adjacent short blocks, the total length of which is at most three. There are three
possible forms of short block-moves:

1. skip: ρ([i],[i+1]), which exchanges the element πi with the element πi+1.
2. right-hop: ρ([i], [i+1,i+2]), which exchanges the element πi with the block

[πi+1, πi+2], called a right hop of πi.
3. left-hop: ρ([i,i+1],[i+2]), which exchanges the block [πi, πi+1] with the ele-

ment πi+2, called a left hop of πi+2 similarly.

For the sake of convenience, we also use ρ(πi, πi+1) to denote a skip and
ρ(πi, πi+1 πi+2) (resp. ρ(πi πi+1, πi+2)) to denote a right (resp. left) hop.
Problem: Sorting by Short Block-Moves.
Input: A permutation π = [π1, π2, . . . , πn], πi ∈ In, 1≤ i ≤ n.
Question: Is there a sequence of short block-moves ρ1, ρ2, . . . , ρt such that
π·ρ1·ρ2 · · · ρt = ιn = [1, 2, . . . , n], and t is minimized? The minimum integer t is
the short block move distance of π.

An inversion in a permutation is a pair of elements {πi, πj} that are not in
their correct relative order (i.e., i < j and πi > πj). There is no inversion in the
identity permutation. A correcting short block-move corrects the relative order
of the elements moved, i.e., a correcting skip erases a single inversion, while a
correcting hop erases a pair of inversions.

Heath and Vergara showed that it suffices to consider only correcting short
block-moves when seeking for an optimal sorting sequence of short block moves
for a permutation. This result is summarized in the following Theorem.

Theorem 1. For a permutation π, there exists an optimal sequence of short
block-moves ρ1, ρ2, . . . , ρt that sorts π such that each short block move is a
correcting short block move [6].
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In the following context of this paper, when referring to the optimal solution,
we mean that all of its short block moves are correcting short block moves.

The following graph representation of a permutation serves as a fundamental
tool for solving the sorting by short block moves problem. The permutation graph
of π is a graph G(π) = (V,E), where V = {π1, π2, . . . , πn}, E = {(πi, πj)|i < j
and πi > πj}. (Actually, the arcs in a permutation graph are directed, but as
all the arcs direct form left to right, so we ignore its direction in the following
context.)

Every arc of G(π) represents an inversion in π. Two arcs in the permutation
graph are compatible if they share an identical endpoint. A lone-arc is an arc
which does not share an identical endpoint with any arc.

As aforementioned, a correcting short block move corresponds to the removal
of arcs in the permutation graph. a correcting Skip removes a single arc, and a
correcting Hop removes two compatible arcs. If two arcs can be removed by a
single Hop, we say that they form a hop-match. So, half of the number of arcs
is a lower bound of the short block move distance.

3 An Implicit Lower Bound

In this section, we present a new lower bound for the number of short block
moves to sort a permutation.

Definition 1. A permutation π = [π1, π2, . . . , πm] is double increasing, if π can
be completely decomposed into two disjoint sequences πA = πp1 , πp2 , . . . , πpi

and
πB = πq1 , πq2 , . . . , πqj , satisfying that

– pk < pk+1, πpk
< πpk+1 , for 1 ≤ k ≤ i − 1;

– qr < qr+1, πqr < πqr+1 , for 1 ≤ r ≤ j − 1;
– pk �= qr, for 1 ≤ k ≤ i and 1 ≤ r ≤ j;
– {πp1 , πp2 , . . . , πpi

} ∪ {πq1 , πq2 , . . . , πqj} = {π1, π2, . . . , πm}.
A double increasing permutation has the following property.

Property 1. A permutation is double increasing if and only if in the correspond-
ing permutation graph there is no vertex with non-zero in-degree and non-zero
out-degree.

Actually, in the permutation graph of a double increasing permutation, either
the in-degree of a vertex is zero, let it be in πA; or its out-degree is zero, let it
be in πB ; or both, let it be in either πA or πB . The lower bound of the number
of short block moves for sorting a permutation is exactly followed by detecting
double increasing sub-permutations in the input permutation, since sorting a
double increasing sub-permutation must fulfill the following lemma.

Lemma 1. Given a permutation π = [π1, π2, . . . , πn], if πi1 < πi2 < · · · < πil <
πh, where h < i1 < i2 < · · · < il, then the arc (πh, πij ) can not form hop-match
with (πh, πik), where |j − k| ≥ 2, and 1 ≤ j, k ≤ l.
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Proof. W.L.O.G, assume to the contrary that (πh, πij ) and (πh, πij+r
) form

a hop-match, where r ≥ 2 ( the case for r ≤ −2 is similar). Consider the
scenario of the permutation π′ immediately before that Hop can be applied,
π′=[· · · , πh, πij , πij+r

, · · · ]. Then, either πij+1 is located on the left of πh, a new
arc (πij+1 , πij ) is generated; or πij+1 is located on the right of πij+r

, a new arc
(πij+r

, πij+1) is generated. Both contradict to the assumption of Theorem 1( all
short block moves are correcting in some optimal solution ).

Corollary 1. Given a permutation π = [π1, π2, . . . , πn], if πh < πi1 < πi2 <
· · · < πil , where i1 < i2 < · · · < il < h, then the arc (πij , πh) can not form
hop-match with (πik , πh), where |j − k| ≥ 2, and 1 ≤ j, k ≤ l.

Now, we construct the match graph GM
π , which shows possible hop-matches,

for a permutation π. Each edge of the permutation graph corresponds to a vertex
in GM

π . There is an edge between vertices if their corresponding edges in the
permutation graph can form a hop-match.

Note that a maximum matching in the match graph is an upper bound of
the number of hops while sorting the permutation by short block moves, and the
unmatched vertices should be removed by Skips.

The match graph of a general permutation is actually the traditional edge
graph of the permutation graph, but the match graph of a double increasing
permutation is quite different, since it excludes some edges in light of Lemma 1
and Corollary 1. When drawing the match graph of a double increasing per-
mutation, we list the vertices of πB from left to right along the horizontal line
in ascending order, and the vertices of πA top-down along the vertical line in
descending order. Then vertex corresponding to the edge (πpi

, πqj ) is located on
the intersection of the horizontal line of πpi

and the vertical line of πqj , and its
coordinates are (j, i).

As the edges of a hop-match should share an endpoint in the permutation
graph, the edges in the match graph are either horizontal or vertical. Let the
length of the edge between (j, i) and (j, k) (resp. (k, i)) be |i − k| (resp. |j − k|).
From Lemma 1 and Corollary 1, we have, each edge is of length one.

Lemma 2. The match graph of a double increasing permutation is bipartite.

Given the match graph GM
π of a double increasing permutation π, after a

bread-first search of GM
π , we can denote GM

π as (LM
π , RM

π , EM
π ). Given a bipartite

graph G = (L,R,E), let X ⊆ L be a set of vertices, define NG(X) = {v|(u, v) ∈
E, u ∈ X, v ∈ R}.

Lemma 3. A bipartite graph G = (L,R,E) has an L-saturating matching, if
and only if |NG(X)| ≥ |X|, for all X ⊆ L. [5]

Since an unmatched vertex in the match graph corresponds to a Skip, the
number of unmatched vertices is a lower bound on the number of Skips needed
while sorting the permutation by short block moves. From Lemma 3, we have,
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Lemma 4. In the match graph GM
π = (LM

π , RM
π , EM

π ) of a double increasing
permutation π, for any X ⊆ LM

π , if |NG(X)| < |X|, at least (|X| − |NG(X)|)
skips are needed to remove the |X| arcs, while sorting π by short block moves.

Given a general permutation, a maximal double increasing sup-permutation
(abbreviated as MDP ) is a double increasing sup-permutation, which satisfies:
(1) the first element is of in-degree zero; (2) the last element is of out degree
zero; (3) the other elements are either in-degree zero or out degree zero or both;
(4) it is not contained in any other double increasing sup-permutation fulfilling
(1),(2),(3). For example, in the permutation [4,2,1,6,8,3,5,11,7,10,9], [8,3,5,11,7]
is double increasing but not a MDP , while [6,8,3,5,11,7] is a MDP . We can
detect all maximal double increasing sub-permutations by scanning the permu-
tation from left to right.

For these double increasing sub-permutations, some vertices in the match
graph could possibly match to vertices not contained in the match graph, we
will mark those vertices in the match graph.

Lemma 5. In the match graph of a maximal double increasing sub-permutation
of a permutation π, for any X ⊆ LM

π , where each vertex x ∈ X is unmarked, if
|NG(X)| < |X|, at least (|X| − |NG(X)|) skips are needed to eliminated the |X|
arcs, while sorting π by short block moves.

Proof. Since an unmarked vertex will either match to another vertex in the
match graph or remain unmatched, then the lemma holds straightly due to
Lemma 4.

The Skips detected by Lemma 5, can not be avoided in any optimal solution,
we call them necessary Skips. It is obviously that the number of necessary Skips
is a lower bound of the number of Skips the optimal solution.

4 An Equivalent Goal

Here, we present an equivalent condition to obtain the factor 5/4.

Theorem 2. Let H∗ and S∗ be the number of Hops and Skips in the optimal
solution respectively, H and S be the number of Hops and Skips of our algorithm
respectively, S′ be the number of necessary Skips. If (H + S′)/(S − S′) ≥ 3/2,
then (H + S)/(H∗ + S∗) ≤ 5/4.

Therefore, to reach the ratio 5/4, it is sufficient for our algorithm to seek for
enough Hops such that (H + S′)/(S − S′) ≥ 3/2.

5 The Algorithm

5.1 Preprocessing

Firstly, we regulate the form of the input permutation π = [π1, π2, . . . , πn]. An
independent sub-permutation is a sub-permutation π[i → k] = [πi, πi+1, . . . , πk]
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such that πh < πj < πl for 1 ≤ h < i ≤ j ≤ k < l ≤ n. A minimal independent
sub-permutation is an independent sub-permutation, which does not contain
any other independent sub-permutation. Since there is no arc between distinct
minimal independent sub-permutations, we can sort each minimal independent
sub-permutation independently. So it is sufficient to sort a minimal independent
sub-permutation only.

In the following context of this paper, we assume the input permutation to
be a minimal independent permutation.

Next, we show that some Hops must be in some optimal solution by checking
the several left-most and right-most elements.

Lemma 6. Let π = [π1, π2, . . . , πn] be a minimal independent permutation.

– If π3 < π2 < πi, for all 1 ≤ i ≤ n, i �= 2, 3, then there exists some optimal
solution containing the Hop ρ(π1π2, π3).

– If πn−2 > πn−1 > πj, for all 1 ≤ j ≤ n, j �= n − 2, n − 1, then there exists
some optimal solution containing the Hop ρ(πn−2, πn−1πn).

– If π3 < π1 < πi, for all 1 ≤ i ≤ n, i �= 1, 3, then there exists some optimal
solution containing the Hop ρ(π1π2, π3).

– If πn−2 > πn > πj, for all 1 ≤ j ≤ n, j �= n − 2, n, then there exists some
optimal solution containing the Hop ρ(πn−2, πn−1πn).

In the following context of this paper, we assume that the input permutation
π = [π1, π2, . . . , πn] is preprocessed, i.e., π does not satisfy the conditions in
Lemma 6.

5.2 Sort an Umbrella

The following structure in the permutation graph plays an important role for
our algorithm.

Definition 2. Let π = [π1, π2, . . . , πn], the sub-permutation U = [πh, πh+1, . . . ,
πh+l] (where 1 ≤ h ≤ h + l ≤ n), satisfying that πh > πh+j for all 1 ≤ j ≤ l, is
called an umbrella.

πh is called the head of the umbrella, and πh+j ’s (1 ≤ j ≤ l) are called the
members of the umbrella. The length L[U ] of the umbrella U is the number of
its members. We also call an umbrella of length l an l-umbrella.

In the permutation graph of an umbrella U , there are L[U ] arcs connecting the
head and the members, we call them head-arcs. There may also be arcs between
members, we call them member-arcs. An umbrella containing only head-arcs are
called claw-umbrella. Both head-arcs and member-arcs are called inside-arcs,
denoted by E[U ]. An umbrella U is odd (resp. even) if |E[U ]| is odd (resp.
even).

An umbrella U is simple if there is no correcting hop that can be applied to
any three contiguous members in U . It is obvious that U is simple if L[U ] ≤ 3.
From definition, we can convert a umbrella into a simple umbrella by applying
hops between members greedily. Our previous work prove the following lemmas.
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Lemma 7. Given a simple umbrella U = [πh, πh+1, . . . , πh+l], either πh+1 or
πh+2 is the minimum member. [8]

Lemma 8. Given any umbrella U , there exists 	 |E[U ]|
2 
 hops and (|E[U ]| − 2 ·

	 |E[U ]|
2 
) skips that sort U . [8]

5.3 Sort Related Umbrellas

While sorting a single umbrella, we may need to apply a Skip provided that the
umbrella is odd. To avoid this Skip, we attempt to sort a series umbrella together
so that two Skips may be substituted by a Hop.

Definition 3. The two simple umbrellas U1 = [πh1 , πh1+1, . . . , πh1+l1 ] and U2 =
[πh2 , πh2+1, . . . , πh2+l2 ] are related, if they satisfy that

– πh1+1 < πh1+2

– h2 + l2 + 1 = h1, i.e. they appear consecutively in π;
– πh2+j < πh1+i, for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2;
– πh2 > πh1+1.

we also say that U2 is related to U1 and the arc (πh2 , πh1+1) is called the related
arc.

How do we identify the related umbrellas from the input permutation π? We
identify U1 such that πh1 is the maximum element in π. Assume that we have
identified Ui, if Ui satisfies one of the following conditions,

– condition (1):|E[Ui]| = 5, and πhi+2 > πhi+1 after converting Ui to be simple;
– condition (2):|E[Ui]| = 3, and πhi+2 > πhi+1;
– condition (3):|E[Ui]| = 1.

we scan π from right to left starting from πhi
, the first element which is greater

than πhi+1 (if exists) is πhi+1 ; otherwise we stop and U1, . . . , Ui is a series
of related umbrellas. So the last umbrella Uk, in a series of related umbrellas
Uk, Uk−1, . . . , U1, do not satisfy condition (1), (2), (3), then it satisfies one of
the following conditions,

– condition (4):|E[Uk]| is even;
– condition (5):|E[Uk]| is odd, and |E[Uk]| ≥ 6;
– condition (6):|E[Uk]| is odd, and |E[Uk]| ≤ 5, and πhk+2 < πhk+1;
– condition (7):|E[Ui]| is odd, and πhi+1 is the minimum element in the mini-

mal independent sub-permutation.

The algorithm for identifying related umbrellas is shown below.
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Algorithm: Identify-Related-Umbrella(•)
Input: π=[π1, π2, . . . , πn], A preprocessed minimal independent sub-permutation.
Output: a series of related umbrellas μ = [Uk, Uk−1, . . . , U1].
1 k = 1, πhk

= max{πi|πi �= i, 1 ≤ i ≤ n}, Uk = [πhk
, πhk+1, . . . , πn]

2 While (Uk �= ∅)
{

3 if (Uk fulfils one of the conditions (1)(2)(3)){
4 let 0 < j < hk and j = min{i|πhk−i > πhk+1}
5 if (j exists){
6 k = k + 1, πhk

= πhk−1−j , Uk = [πhk
, πhk+1, . . . , πhk−1+1]

7 else break. }
8 else break.}

}
9 return μ = [Uk, Uk−1, . . . , U1].

Lemma 9. Given a series of related umbrellas Uk, Uk−1, . . . , U1, where Ui is
related to Ui−1 (2 ≤ i ≤ k), if U1, . . . , Uk−1 are all odd and Uk is even ( resp.
odd) , then there exists a group of Hops( resp. and one skip), which can remove
all the inside-arcs of each umbrella, as well as the k − 1 related arcs.

The algorithm for sorting related umbrellas is shown below.

Algorithm: Sort-Related-Umbrellas(•)
1 for i= k down to 1{
2 Sort-Single-Umbrella(Ui), d = d + � |E[Ui]|

2 
.
3 if(i > 1)
4 { ρ[d] = ρ(πhi

πhi−1 , πhi−1+1), d = d + 1
5 Ui−1 = [πhi−1 , πhi+2, . . . , πhi+li ].}}
6 μ′ = μ · ρ[1] · · · ρ[d]
7 return ρ[0 ∼ d − 1], μ′.

5.4 Eliminate Crossing Arcs

Besides the inside-arcs and the related arcs, there may also be the following four
types of arcs:

– type-1 (head-member crossing arcs): arcs from πhi
to the members (except

πhi−1+1) of Uj (2 ≤ j < i ≤ k).
– type-2 (head-head crossing arcs): arcs form πhi

to πhj
(2 ≤ j < i ≤ k).

– type-3 (external-head arcs): arcs from the elements not in μ to πhi
(2 ≤ i ≤

k).
– type-4 (external-member arcs): arcs from the elements not in μ to the mem-

bers of Ui (1 ≤ i ≤ k).

Then, we try to remove the two types crossing arcs. Consider the scenario of
the permutation μ′ after performing the algorithm Sort-Related-Umbrella(•),
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let re(Ui) be the sorted sub-permutation of the members of Ui except πhi+1,
then μ′ =

[πhk+1, re(Uk), πhk−1+1, πhk
, re(Uk−1), · · · , re(U2), πh1+1, πh2 , re(U1), πh1 ].(�)

We now present some properties of μ′. Firstly, μ′ would be in sorted order pro-
vided that we had deleted all the πhi

’s (2 ≤ i ≤ k). So we have,

Property 2. The head-member crossing arcs from πhi
(2 ≤ i ≤ k) to some ele-

ments of [re(Ui−1), πhi−2+1] form a claw-umbrella.

We use U ′
i to denote this kind of new claw-umbrella, with πhi

being the head.
Note that U ′

1 = ∅. Actually, the head-arcs of each U ′
i are type-1 crossing arcs from

πhi
to the members (except πhi−1+1 ) of Ui−1 or from πhi

to πhi−2+1 (2 ≤ i ≤ k).

Property 3. If L[U ′
i ] > 1, then L[Ui−1] ≥ 3.

The U ′
is may be also related, and the related arcs are type-1 head-member cross-

ing arcs before performing the algorithm Sort-Related-Umbrella(•), so there
could be some minimal independent sub-permutations in μ′, the permutation
graph of such a minimal independent sub-permutation form a connected com-
ponent. Let Cj→i be the connected component from U ′

j to U ′
i . Then we have,

Property 4. Only the the connected component containing U ′
k can have type-

3,4 arcs, and if so, there must also be type-3,4 arcs to all the elements of
[πhk+1, re(Uk), πhk−1+1].

So while sorting μ′, we remove arcs of the connected components from left to
right respectively, provided that the connected component does not have type-
3,4 arcs. For the connected component Cj→i, we check each πhr

as r increases
from i to j, once we find an umbrella Ur” with πhr

being the head, and there is
no type-2 arc from other elements to πhr

, then the umbrella Ur” can be sorted.
The algorithm for removing crossing arcs is shown below.

Algorithm: Remove-Crossing-Arcs(•)
1 for each connected component Cj→i, not containing type-3,4 arcs.{
2 for r= i to j
3 if (there is no type-2 arcs to πhr

)
4 { Sort-Single-Umbrella(Ur”), d = d + � |E[Ur”]|

2 
.}}
5 return ρ[d ∼ d + d′].

The connected component, containing type-3,4 arcs, is not handled here, and
will be handled in our full algorithm. Our main algorithm is as follows.

In the algorithm Sort-Short-Block-Moves(•), each iteration of the While-
Loop is call a round. There are two stage in each round, the fist stage is Sort-
Related-Umbrellas(•), and the second stage is Remove-Crossing-Arcs(•).
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Algorithm: Sort-Short-Block-Moves(•)
Input: π, A preprocessed minimal independent sub-permutation.
Output: The short block move operations to sort π.
1 While (there exist j such that πj �= j){
2 Identify-Related-Umbrella(•).
3 If(Uk is odd and |E[Uk]| ≤ 6 and πhk+1 > πhk+2)
4 {Apply Hop ρ(πhk

πhk+1, πhk+2), Uk = [πhk
, πhk+3, . . . , πhk+lk ]}.

5 If(Uk is odd and |E[Uk]| ≤ 6 and πhk+1 < πhk+2)
6 {Apply Skip ρ(πhk

, πhk+1), Uk = [πhk
, πhk+2, . . . , πhk+lk ]}.

7 Sort-Related-Umbrellas(•).
8 Remove-Crossing-Arcs(•).}

In each round, after the second stage, there may also be some arcs (the
connected component containing type-3,4 arcs ) not removed. These arcs will
flow into the next round.

6 The Approximation Factor Is 1.25

In this section, we prove that the algorithm Sort-Short-Block-Moves(•) approx-
imates the optimal solution within a factor 5/4. Recall that, from Theorem 2, it
is sufficient to prove that (H +S′)/(S −S′) ≥ 3/2. We show that this inequality
holds for each round of our algorithm. The following lemma is directly from the
algorithm Sort-Related-Umbrellas(•).

Lemma 10. Given a series of related umbrellas Uk, Uk−1, . . . , U1, where Ui is
related to Ui−1 (2 ≤ i ≤ k), and Ui = [πhi

, πhi+1, . . . , πhi+li ] (1 ≤ i ≤ k), there
are k − 1 Hops of the form ρ(πhi

πhi−1 , πhi−1+1), which remove the related arcs
and a head-arc of Ui−1 (2 ≤ i ≤ k), while performing the algorithm Sort-Related-
Umbrellas(•).
We call the k − 1 Hops of the form ρ(πhi

πhi−1 , πhi−1+1) existing-hops. The
lemma followed is straightly from Lemma 8 and the algorithm Remove-Crossing-
Arcs(•).

Lemma 11. Given a series of related umbrellas Uk, Uk−1, . . . , U1, where Ui is
related to Ui−1 (2 ≤ i ≤ k), and Ui = [πhi

, πhi+1, . . . , πhi+li ] (1 ≤ i ≤ k), there
are at most k − 1 Skips of the form ρ(πhi

, ∗), which remove a cross edge of πhi

(2 ≤ i ≤ k), while perform the algorithm Remove-Crossing-Arcs(•).
Further, we analyze the number of Hops and Skips while performing the algo-
rithm Remove-Crossing-Arcs(•).

Lemma 12. Given a series of related umbrellas Uk, Uk−1, . . . , U1, where Ui is
related to Ui−1 (2 ≤ i ≤ k), and Ui = [πhi

, πhi+1, . . . , πhi+li ] (1 ≤ i ≤ k).
If |E[Ui]| ≤ 3, |E[Ui−1]| ≤ 3 and |E[Ui−2]| ≤ 3 then U ′

i and U ′
i−1 can not be

both lone-arc, unless there exists a necessary Skip to remove U ′
i and U ′

i−1, for
3 ≤ i ≤ k.



An 5/4-Approximation Algorithm for Sorting Permutations 501

Proof. Since each umbrella of Uk−1, . . . , U1 fulfills one of conditions (1),(2),(3),
if |E[Ui]| ≤ 3, |E[Ui−1]| ≤ 3 and |E[Ui−2]| ≤ 3, then they are 3-claws or 1-
claws, which means [U ′

i ,U
′
i−1,U

′
i−2] is a double increasing sub-permutation. In

the (�) formula, if U ′
i is a lone-arc, it is either (πhi

, πhi−2+1) ( which implies
|E[Ui−1]| = 1) or (πhi

, πhi−1+r) ( where πhi−1+r is the second minimum element
in Ui−1 ). This statement also holds for U ′

i−1. By enumerating the four possible
cases, we can prove that there exists a necessary Skip.

Corollary 2. For any pair of umbrellas Ui and Ui−1 (3 ≤ i ≤ k), one of the
three cases holds: (I) at least one of U ′

i and U ′
i−1 is not lone arc; (II) there exists

a necessary Skip to remove U ′
i and U ′

i−1; (III) at least one of Ui, Ui−1 and Ui−2

has at least five inside-arcs.

Note that case (I) implies that there is at least one Hop while remove U ′
i and

U ′
i−1 in the algorithm Remove-Crossing-Arcs(•); case(III) implies that there are

at least two Hops while sort the umbrella with five edges in the algorithm Sort-
Related-Umbrellas(•). So, case(I) is worst.

In the t’th round of the algorithm Sort-Short-Block-Moves(•), letμ=[U t
k,

U t
k−1,. . . , U t

1] be the related umbrellas, where U t
i is related to U t

i−1 (2 ≤ i ≤ k),
and U t

i =[πt
hi

, πt
hi+1, . . . , πt

hi+li
] (1 ≤ i ≤ k). Let U ′′t

j (2 ≤ j ≤ k) be the last
umbrella handled by the algorithm Remove-Crossing-Arcs(•). Let H,S, S′ be the
number of Hops, Skips and necessary Skips respectively, while performing the
algorithms Sort-Related-Umbrellas(•) and Remove-Crossing-Arcs(•). According
to the condition of U t

k, we have the following two lemmas.

Lemma 13. If U t
k satisfies one of conditions (4),(5),(6), then, (H + S′ − (k −

j))/(S − S′ − (k − j)) ≥ 3/2.

Proof. From Lemma 10, H ≥ k − 1, including the j − 1 existing-hops of the
form ρ(πt

hi
πt

hi−1
, πt

hi−1+1) (2 ≤ i ≤ j). From Lemma 11, S ≤ k −1, including the
skips of πt

hi
(2 ≤ i ≤ j). If U ′t

2 is a lone-arc, |E[U t
1]| ≥ 3, which means there is

at least one Hop while sorting U t
1. Consider the contribution of two consecutive

umbrellas U t
i and U t

i−1 (2 ≤ i ≤ j − 1) for each case in Corollary 2. If it is case
(I), the numerator would be added by one; if it is case (II), the numerator would
be added by one, while the denominator would be subtracted by one; if it is case
(III), the numerator would be added by two.

If U ′t
2 is a lone-arc, there are at least 	(j−2)/2
 more Hops ( the contribution

of U t
2, . . . , U

t
j−1 ), so we have

(H + S′ − (k − j))/(S − S′ − (k − j)) ≥ (j + 	(j − 2)/2
)/(j − 1) ≥ 3/2.

If U ′t
2 is not a lone-arc, there are at least 	(j − 3)/2
 more Hops ( the contri-

bution of U t
3, . . . , U

t
j−1 ), so we have

(H + S′ − (k − j))/(S − S′) ≥ (j − 1 + 	(j − 3)/2
)/(j − 2) ≥ 3/2.

��
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It remains to consider the short block moves to remove the type-3 external-
head arcs and type-4 external-member arcs. We handle the two possibilities:
k = j or not respectively. The details are not shown here due to space limitation.

Due to our algorithm Identify-Related-Umbrella(•), only the last umbrella of
the last round could satisfy condition (7), and there are no type-4 external-
member arcs in the last round. Letμ = [Um

k , Um
k−1, . . . , U

m
1 ] be the related

umbrellas of the last round, where Um
i is related to Um

i−1 (2 ≤ i ≤ k), and
Um

i = [πm
hi

, πm
hi+1, . . . , π

m
hi+li

] (1 ≤ i ≤ k). Let H,S, S′ be the number of Hops,
Skips and necessary Skips respectively, while performing the algorithms Sort-
Related-Umbrellas(•) and Remove-Crossing-Arcs(•).

Lemma 14. If U t
k satisfies condition (7), then (H + S′)/(S − S′) ≥ 3/2.

Proof. Since Um
k can be converted into an even umbrella by performing the Skip

ρ(πm
hk

, πm
hk+1), if U ′m

k is not a lone arc, according to Lemma 13, we are done.
If U ′m

k does be a lone arc, we prove this lemma by analyzing the size of E[Um
k ].

If |E[Um
k ]| ≤ 3, i.e., Um

k is a 1-claw or a 3-claw, then |E[Um
k−1]| = 5; otherwise,

according to Lemma 5, there exists a necessary Skip. Consider the contribution
of two consecutive umbrellas Um

i and Um
i−1 (2 ≤ i ≤ k − 2) for each case in

Corollary 2. If U ′t
2 is a lone-arc, there are at least 	(k − 3)/2
 more Hops, so we

have

(H + S′)/(S − S′) ≥ (k − 1 + 1 + 2 + 	(k − 3)/2
)/(k − 1 + 1) ≥ 3/2.

If U ′t
2 is not a lone-arc, there are at least 	(k − 4)/2
 more Hops, so we have

(H + S′)/(S − S′) ≥ (k − 1 + 2 + 	(k − 4)/2
)/(k − 2 + 1) ≥ 3/2.

If |E[Um
k ]| ≥ 5, then there are at least two Hops while sorting Um

k . Consider
the contribution of two consecutive umbrellas Um

i and Um
i−1 (2 ≤ i ≤ k − 1) for

each case in Corollary 2.
If U ′t

2 is a lone-arc, there are at least 	(k − 2)/2
 more Hops, so we have

(H + S′)/(S − S′) ≥ (k − 1 + 1 + 2 + 	(k − 2)/2
)/(k − 1 + 1) ≥ 3/2.

If U ′t
2 is not a lone-arc, there are at least 	(k − 3)/2
 more Hops, so we have

(H + S′)/(S − S′) ≥ (k − 1 + 2 + 	(k − 3)/2
)/(k − 2 + 1) ≥ 3/2.

��
Theorem 3. The algorithm Sort-Short-Block-Moves(•) approximates the short
block move distance with a factor 1.25.
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Abstract. We propose two strategies for Presenter in on-line graph col-
oring games. The first one constructs bipartite graphs and forces any
on-line coloring algorithm to use 2 log2 n − 10 colors, where n is the
number of vertices in the constructed graph. This is best possible up to
an additive constant. The second strategy constructs graphs that contain

neither C3 nor C5 as a subgraph and forces Ω( n
logn

1
3 ) colors. The best

known on-line coloring algorithm for these graphs uses O(n
1
2 ) colors.

1 Introduction

A proper coloring of a graph G is an assignment of colors to the vertices of
the graph such that adjacent vertices receive distinct colors. An n-round on-line
coloring game on a class of graphs G is a two-person game, played by Presenter
and Algorithm. In each round Presenter introduces a new vertex of a graph with
its adjacency status to all vertices presented earlier. The only restriction for Pre-
senter is that in every moment the currently presented graph is in G. Algorithm
assigns colors to the incoming vertices in such a way that the coloring of the
presented graph is always proper. The color for a new vertex has to be assigned
before Presenter introduces the next vertex. The assignment is irrevocable. The
goal of Algorithm is to minimize the number of different colors used during the
game.

Throughout the paper log and ln are logarithm functions to base 2 and e,
respectively. By the size of a graph we mean the number of vertices in the graph.

For most classes of graphs the number of colors necessary in the corre-
sponding on-line coloring game can not be bounded in terms of the chromatic
number of the constructed graph. Rare examples of classes where it is possible
include interval graphs [8], more generally cocomparability graphs [6] or P5-free
graphs [7]. All of these results are covered by the main result of [6] that says
that for any tree T with radius 2, the class of graphs that do not contain an
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induced copy of T can be colored on-line with number of colors being a function
of T and chromatic number of presented graph.

Usually, for general enough classes of graphs, the best one can hope for is
to bound the number of colors used in an on-line coloring game in terms of the
number of rounds (i.e. the size of the constructed graph).

It is a popular exercise to show a strategy for Presenter that constructs
forests of size n and forces Algorithm to use at least �log n� + 1 colors. On
the other hand, First-Fit strategy for Algorithm (that is a strategy that colors
each incoming vertex with the least admissible natural number), uses at most
�log n� + 1 colors on forests of size n.

When the game is played on bipartite graphs, Presenter can easily trick out
First-Fit strategy and force

⌈
n
2

⌉
colors on a bipartite graph of size n. Lovász, Saks

and Trotter [11] gave a simple strategy for Algorithm using at most 2 log n colors
on bipartite graphs of size n. Recently, Bianchi et al. [2] proposed a strategy for
Presenter that forces Algorithm to use at least �1.13746 log n − 0.49887� colors
on bipartite graphs of size n. We improve this bound to 2 log n − 10, which
matches an upper bound from [11] up to an additive constant.

Theorem 1. There exists a strategy for Presenter that forces at least 2 log2 n−
10 colors on bipartite graphs of size n.

Perhaps, the most exciting open problem in the area is whether there is a
strategy for Algorithm using O(n1−ε) colors on triangle-free graphs of size n, for
some ε > 0. The only non-trivial on-line algorithm for triangle-free graphs, given
by Lovász et al. [11], uses O( n

log log n ) colors on graphs of size n. Triangle-free
graphs may have arbitrarily large chromatic number, but the chromatic number
in this case has a precise bound in terms of the number of vertices. Ajtai, Komlós
and Szemerédi [1] proved that the chromatic number of any triangle-free graph
of size n is O

(
n

log n

1
2

)
. Kim [9] presented a probabilistic construction of triangle-

free graphs with chromatic number Ω
(

n
log n

1
2

)
.

The girth of a graph G is the length of the shortest cycle in G. The odd-girth
of G is the length of the shortest odd cycle in G. Thus, triangle-free graphs have
odd-girth at least 5. For bipartite graphs the odd-girth is not defined and for
convenience it is set to ∞. For graphs with odd-girth at least 7, i.e. C3- and
C5-free, Kierstead [5] gave a strategy for Algorithm that uses O

(
n

1
2

)
colors on

such graphs of size n. Curiously, no better strategy for Algorithm is known even
for classes of graphs with odd-girth larger than any g � 7. On the off-line side,
Denley [3] has shown that the chromatic number of graphs of size n with odd-
girth at least g � 7 is O

(
n

log n

2
g−1

)
. For the lower bound, it is well-known (see

Lemma 6.1 in Krivelevich [10]) that there are graphs of size n and with girth at
least g with chromatic number Ω

(
n

1
g−2

)
.

For a good introduction to our second result, we present a simple strategy
for Presetner by Diwan, Kenkre and Vishwanathan [4] that forces Algorithm to
use Ω

(
n

1
2

)
colors on triangle-free graphs of size n. Note that it improves the
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bound that trivially follows from the non-trivial off-line construction only by a
logarithmic factor. For the case of graphs with odd-girth at least 7 we propose
a strategy for Presenter that forces Algorithm to use Ω

(
n

log n

1
3

)
colors.

Theorem 2. There exists a strategy for Presenter that forces Ω
(

n
log n

1
3

)
colors

on graphs of size n with odd-girth at least 7.

2 Bipartite Graphs

Proof (Proof of Theorem 1). We give a strategy for Presenter that forces Algo-
rithm to use c different colors on bipartite graphs of size

(
8 + 7

√
2
)
2

c
2 . Thus,

Presenter can force
⌊
2 log n − 2 log(8 + 7

√
2)

⌋
� �2 log n − 8.32� colors on bipar-

tite graphs of size n.
At any moment during the game the presented graph is bipartite and consists

of a number of connected components. Each component has the unique biparti-
tion into two independent sets which we call the sides of the component. A color
α is one-sided in a component C if there is a vertex in C colored with α but only
in one out of the two sides of C. A color α is two-sided in C if there are vertices
in both sides of C colored with α. The set of two-sided colors in a component
C is denoted by ts(C). The level of a component C, denoted by lev(C), is the
number of two-sided colors in C.

The strategy is divided into phases in which carefully chosen components are
merged or a new component being a single edge is introduced. After each phase,
for each presented component C the strategy maintains two selected vertices in
opposite sides of C colored with one-sided colors. The two-element set of colors
assigned to the selected vertices of a component C is denoted by sel(C).

Consider a single phase of the strategy. If a new component C, which is
always a single edge, is introduced then C has no two-sided colors and both
vertices of C are selected. If the strategy merges components C1, . . . , Ck, all
with the same level, then for every Ci the strategy fixes one side of Ci to be the
left side, and the other to be the right side. After that, two adjacent vertices a
and b are introduced. The vertex a is adjacent to all the vertices in the left sides
of components C1, . . . , Ck and b is adjacent to all the vertices in the right sides.
Let C be the component created by this merge. The colors assigned to a and
b are one-sided colors in C and the strategy chooses a and b to be selected for
C. Observe that ts(C) =

⋃k
i=1 ts(Ci) ∪ X, where a color α is in X if there are

different Ci and Cj such that α is one-sided in both Ci and Cj , α appears on a
vertex in the left side of Ci and on a vertex in the right side of Cj .

A single phase is described by the following four rules. For each phase the
strategy uses the first applicable rule.

(1) Merge Different. If there are two components C1, C2 with the same level
and |ts(C1) � ts(C2)| � 2, then merge those two components into a new
component C. Note that lev(C) � lev(C1) + 2 and |C| = |C1| + |C2| + 2.
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(2) Merge Similar. If there are two components C1, C2 with the same level
and |ts(C1) � ts(C2)| = 1 and sel(C1) ∩ sel(C2) �= ∅, then merge those two
components into a new component C in such a way that a common one-
sided color becomes two-sided in C. Note that lev(C) � lev(C1) + 2 and
|C| = |C1| + |C2| + 2.

(3) Merge Equal. If there are k � 2 components C1, . . . , Ck with the same
level and ts(C1) = . . . = ts(Ck) and there are k distinct colors α1, . . . , αk

such that sel(C1) = {α1, α2}, sel(C2) = {α2, α3}, . . ., sel(Ck) = {αk, α1},
then merge those k components into a new component C in such a way that
each of the αi’s becomes two-sided in C. Note that lev(C) � lev(C1) + k

and |C| =
∑k

i=1 |Ci| + 2.
(4) Introduce. Introduce a new component C being a single edge. Note that

lev(C) = 0 and |C| = 2.

This concludes the description of a single phase of the strategy. Now we present
two simple invariants kept by the strategy.

Invariant 1. |C| � 2
lev(C)

2 +2 − 2 for every component C after each phase of
the strategy.

The statement vacuously holds at the beginning of the on-line game. We
show that the invariant holds from phase to phase. Clearly, it suffices to argue
that a component C created in a considered phase satisfies the statement. If C
is a product of k � 2 components C1, . . . , Ck by one of the merging rules (1)-(3)
then

|C| =
k∑

i=1

|Ci| + 2 �
k∑

i=1

(
2

lev(Ci)
2 +2 − 2

)
+ 2

� k · 2
lev(C)−k

2 +2 − 2(k − 1) = 2
lev(C)

2 − k
2+log k+2 − 2(k − 1)

� 2
lev(C)

2 +2 − 2.

If C is a component introduced by Rule (4), then invariant holds trivially.
Invariant 2. After each phase, none of the merging rules (1)-(3) applies to

the set of all available components without the component created in the last
phase.

The statement trivially holds after the first phase. Let Ck be the component
created in the k-th phase. If Ck is introduced by Rule (4), then rules (1)-(3)
do not apply in the graph without Ck. If Ck is merged from some components
available after phase k − 1, then by induction hypothesis Ck−1 is one of the
merged components. Thus, the set of components after phase k without Ck is a
subset of the set of components after phase k − 1 without Ck−1. Therefore, the
statement follows by induction hypothesis.

For the further analysis we need one more observation. Suppose that Rule (3)
does not apply to the current set of components and there is a set of colors T
and p distinct components C1, . . . , Cp with ts(Ci) = T for all i ∈ {1, . . . , p}. We
claim that |⋃p

i=1 sel(Ci)| � p + 1. Indeed, consider a multigraph M with vertex
set

⋃p
i=1 sel(Ci) and p edges formed by all pairs of colors on selected vertices in
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the components (i.e. for each Ci there is an edge connecting colors in sel(Ci)). If
|⋃p

i=1 sel(Ci)| � p then there is a cycle in M . Say that a cycle is defined by q � 2
edges originating from components Ci1 , . . . , Ciq

. Then Rule (3) can be applied
to components Ci1 , . . . , Ciq

, contradicting our assumption.
Fix c � 3 and consider the situation in a game after a number of phases.

Suppose that Algorithm used so far fewer than c colors. We are going to argue
that Presenter introduced fewer than

(
8 + 7

√
2
)
2

c
2 vertices and this will conclude

the proof. Clearly, for any available component C we have lev(C) � c − 3 and
therefore by Invariant 1 we have |C| � 2

c−3
2 +2 − 2. Let C be the set of all

components but the one created in the last phase. By Invariant 2 none of the
merging rules (1)-(3) applies to C.

Fix � ∈ {0, . . . , c − 3} and let C� be the set of C ∈ C with lev(C) = �.
Now, we want to bound the number of components in C�. Let {T1, . . . , Tm}
be the set of values of ts(C) attained for C ∈ C�. Let pi be the number of
components C ∈ C� with ts(C) = Ti and let Si =

⋃
C∈C�,

ts(C)=Ti

sel(C). As Rule (1)

can not be applied |Ti − Tj | = 1 for all distinct i, j ∈ {1, . . . , m}. In particular,
|T1 ∩ Si| � 1 for all i ∈ {2, . . . , m}. As Rule (2) can not be applied Si ∩ Sj = ∅
for all distinct i, j ∈ {1, . . . , m}. As Rule (3) can not be applied |Si| � pi + 1
for all i ∈ {1, . . . , m}. All this give a lower bound on the number of colors in⋃m

i=1 Si ∪ T1.

c − 1 �
∣
∣
∣
∣
∣

m⋃

i=1

Si ∪ T1

∣
∣
∣
∣
∣
=

m∑

i=1

|Si| + |T1| −
m∑

i=1

|T1 − Si|

�
m∑

i=1

(pi + 1) + � − (m − 1).

Thus, |C�| =
∑m

i=1 pi � c − � − 2.
We define an auxiliary function f(i) =

∑n
j=0(i − j)2

j
2 and observe an easy

bound f(i) <
(
4 + 3

√
2
)
2

i
2 . Using Invariant 1 and the bound on the number of

components with any particular level, we get the following bound on the total
number of vertices within components in C:

c−3∑

�=0

|C�| ·
(
2

�
2+2 − 2

)
�

c−3∑

�=0

(c − � − 2) ·
(
2

�
2+2 − 2

)

<
c−2∑

�=0

(c − 2 − �) · 4 · 2
�
2 = 4f(c − 2).

To finish the proof we sum up the upper bounds on the size of the last
produced component and the total size of all remaining components, that is

2
c−3
2 +2 − 2 + 4

(
4 + 3

√
2
)
2

c−2
2 <

(
8 + 7

√
2
)
2

c
2 .

��
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3 The Odd-Girth

In this section we consider classes of graphs with odd-girth bounded from below.
The high value of odd-girth of a graph implies that the graph is locally bipartite.
However, it seems hard to exploit this property in an on-line framework. The
only known on-line algorithms, that can use large odd-girth, is the one by Lovász
et al. [11] using O( n

log log n ) colors for graphs of girth at least 4 and of size n, and

the one by Kierstead [5] using O
(
n

1
2

)
colors on graphs of size n with odd-girth

at least 7. We present constructions that prove lower bounds for these problems
for odd-girth at least 5 and at least 7.

Theorem 3 (Diwan, Kenkre, Vishwanathan [4]). There exists a strategy
for Presenter that forces Ω

(
n

1
2

)
colors on triangle-free graphs of size n.

Proof. We give a strategy for Presenter that forces Algorithm to use c different
colors. An auxiliary structure used by Presenter during the game is a table with
c rows and c columns. Each cell of the table is initially empty, but over the time
Presenter puts vertices into the table. There will be at most one vertex in each
cell. Each time Algorithm colors a vertex with color i, the vertex is put into the
last empty cell in the i-th row, e.g. the first vertex colored with i ends up in the
cell in the i-th row and c-th column. Anytime Algorithm uses c different colors
Presenter succeeds and the construction is complete.

The strategy is divided into c phases numbered from 0 to c − 1. Let I0 = ∅
and for k > 0 let Ik be the set of vertices in the k-th column at the beginning
of phase k. Now, as long as there is no vertex in the (k + 1)-th column with a
color different than all the colors of the vertices in Ik, Presenter introduces new
vertices adjacent to all vertices in Ik (and no other). The phase ends when some
vertex v is put in the (k+1)-th column. Clearly, each phase will end as Algorithm
must use colors different than colors used on Ik for all vertices presented in the
k-th phase and the space in the table where these vertices are stored is limited.
Observe also, that the vertices presented in the k-th phase are never put into the
k-th column. Hence, each edge connects vertices in different columns and each
column in the table forms an independent set. As Presenter introduces only
vertices with neighborhood contained within one column the constructed graph
is triangle-free. Observe also that Ik+1 is strictly larger than Ik and therefore
|Ik| � k. Thus, after the completion of the (c − 1)-th phase each cell of the c-th
column is filled and therefore Algorithm has already used c colors. As there are
only c2 cells in the table, Presenter introduced at most that many vertices. ��

Note that when Algorithm uses First-Fit strategy, the graphs constructed by
Presenter are exactly shift graphs (a well known class of triangle-free graphs with
chromatic number logarithmic in terms of their size). In the same vein the next
strategy, for graphs with odd-girth at least 7, is inspired by the construction of
double-shift graphs.

Proof (Proof of Theorem 2). We describe a strategy for Presenter that forces
Algorithm to use c different colors. This time an auxiliary structure used by
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Presenter is a table with c rows and 3c columns. Each cell of the table is initially
empty, but over the time Presenter puts vertices into the table. There will be at
most 3c vertices in each cell. All vertices put in the i-th row will be of color i.
Every vertex in the table will have assigned a non-negative weight. If at some
point Algorithm uses c different colors, Presenter succeeds and the construction
is complete.

Color i is available for the j-th column, or the cell in the i-th row and j-th
column is available, when there are fewer than 3c vertices in this cell. Otherwise,
the color, or the cell is blocked.

The strategy is divided into 3c phases numbered from 0 to 3c − 1. In the
k-th phase, Presenter selects 3c groups of vertices that are already in the table.
If k = 0 or there are no blocked cells in the k-th column then all the groups are
empty. Otherwise, Presenter splits vertices of blocked colors for the k-th column
in such a way that each group contains a vertex of each blocked color and no
other vertices. Now for each group R, Presenter plays according to the following
rules.

Rule 1: If there is a color available for the k-th column but blocked for all
the columns to the right of the k-th column (i.e. for columns k + 1, . . . , 3c − 1),
then the whole phase is finished and Presenter starts the next phase. Phases that
ended for this reason are called broken. Clearly, the number of broken phases is
bounded by the number of colors, that is by c.

Otherwise, Presenter introduces an independent set F of 3c(1 + 
ln 3c�) new
vertices adjacent to all the vertices in R. Set F is called a fan. Now, Presenter
investigates the possibilities of putting some of the vertices in F into the table
but he restricts himself to put them only into one column which is to the right
of the k-th column. We are going to use this property in the proof that the
constructed graph contains neither C3 nor C5 as a subgraph.

Rule 2: If there is a cell in the table in a column to the right of the k-th
column, say the cell in the i-th row and j-th column, such that there are m < 3c
vertices in the cell (in particular the cell is available) and there are at least 3c−m
vertices in F colored by Algorithm with i, then Presenter puts 3c − m vertices
in F colored with i into the cell. From now on this cell is blocked. All vertices
put into the table by this rule receive weight 0. All the other vertices in F (with
color different than i) are discarded and will not be used as neighbors for vertices
introduced in the future.

Rule 3: If there is no such cell (i.e. we cannot apply Rule 2), then we call
F an interesting fan. Let ti, for i ∈ {1, . . . , c} be the number of columns to the
right of the k-th column for which color i is available. Consider a bipartite graph
with one part formed by 3c − 1 − k columns to the right of the k-th column
and the second part formed by 3c(1 + 
ln 3c�) vertices in F . We put an edge in
the graph between the j-th column and a vertex v ∈ F of color i if color i is
available for the j-th column. To vertex v ∈ F of color i we assigned weight 3c

ti
.

All its incident edges also get weight 3c
ti

. The total weight of all the edges in the
graph is
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∑

i∈{1,...,c}

∑

v∈F
v is colored with i

ti · 3c

ti
= |F | · 3c.

This means that for some column j > k, the total weight of incident edges
is at least |F | · 3c

3c−1−k � |F |. Presenter puts all the vertices in F colored with
available colors for the j-th column into the j-th column. The remaining vertices
in F are discarded. Note that after this step all the cells in the j-th column still
have at most 3c vertices as otherwise Presenter would use Rule 2. Note also that
the total weight assigned to the vertices put into the table is at least |F |. This
finishes the description of the strategy for Presenter.

Note that there are at most 3c phases of the game, and that in every phase
at most 3c fans of size 3c(1 + 
ln 3c�) each, are presented. This gives no more
than 27c3(1 + 
ln 3c�) vertices in total. We claim that before the end of the last
phase Algorithm has to use c different colors. Suppose it does not. At most c
of the phases are broken. During remaining phases Presenter introduces at least
2c ·3c fans. As there are c ·3c cells in the table, and each cell can be blocked only
once, at most 3c2 fans are used to block some cell. Thus, we have at least 3c2

interesting fans produced in the construction. The total number of vertices in
the interesting fans is at least 3c2 ·3c(1 + 
ln 3c�). Recall that the total weight of
vertices put into the table during the construction upper bounds the total size
of all the interesting fans. We conclude that the weight of all the vertices put
into the table during the construction is at least 9c3(1 + 
ln 3c�). Observe that
for each row i of the table and for each t = 1, . . . , 3c the number of vertices with
weight greater or equal to 3c

t is at most 3c · t. Indeed, let v be the first vertex
put into the i-th row with weight at least 3c

t . This means that there are at most
t available cells in the i-th row at the time when v is put into the table. Since in
each cell there are at most 3c vertices we know that at most 3c · t more vertices
may end up in the i-th row. Thus, there are at most 3c vertices of weight 3c

1 and
at most 6c vertices of weight at least 3c

2 and so on, and it is easy to see that the
total weight of the vertices in any row is at most

3c∑

t=1

3c

t
· 3c = 9c2

3c∑

t=1

1
t

< 9c2(1 + ln 3c).

If the game does not end before phase 3c then vertices of total weight at
least 9c3(1 + 
ln 3c�) are put into the table. However, total weight of vertices in
any row is strictly smaller than 9c2(1 + ln 3c). Since there are c rows, we get a
contradiction.

During the game Presenter introduced at most 27c3(1 + 
ln 3c�) vertices and
forced Algorithm to use c colors. Inverting the function, we get that Presenter
forces Algorithm to use Ω

(
n

log n

1
3

)
colors on graphs of size n.

To finish the proof, we need to argue that the constructed graph contains
neither C3 nor C5 as a subgraph. For C3 observe that any vertex v introduced by
Presenter has all the neighbors contained within one column (at the moment of
introduction). Moreover, the vertex v itself ends up in the column to the right of
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the column of its neighbors or is discarded. This implies that vertices in a single
column form an independent set. Since the neighborhood of each vertex at the
moment of introduction is an independent set the whole graph is triangle-free.

Now, assume to the contrary that C5 is contained in the constructed graph.
As the graph does not contain C3, the copy of C5 is an induced subgraph on
some vertices v0, v1, v2, v3, v4. We can assume, that all these vertices are put into
the table. If it is otherwise, then we can exchange a discarded vertex u to any
of the non discarded vertices, say w, in the same fan. All neighbors of u are
also neighbors of w and we still get a C5. We can choose v2 to be the vertex
in the left most column of the five possibilities. By the construction, we know
that v1 and v3 are introduced in a single fan of vertices adjacent to the group of
vertices containing v2. This implies that v1 and v3 are in the same column. All
the neighbors of v1 in the columns to the left of v1 are in the same group (and
column) as v2. The same holds for v3. If v0 and v4 were both in columns to the
left of the column of v1 and v3 then they are in the same column as v2 and v0 is
not adjacent to v4. So at least one of v0 or v4 is in a column to the right of v1.
Say it is v0. If v4 is in a column to the left of v0 then it is in the same column
as both v1 and v3 and v4 is not adjacent to v3. If v4 is in a column to the right
of v0 then both v0 and v3 are in different columns to the left of v4, and one of
them is not adjacent to v4. ��
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Abstract. The existence of an on-line competitive algorithm for color-
ing bipartite graphs remains a tantalizing open problem. So far there
are only partial positive results for bipartite graphs with certain small
forbidden graphs as induced subgraphs, in particular for P7-free bipar-
tite graphs. We propose a new on-line competitive coloring algorithm for
P8-free bipartite graphs. Our proof technique improves the result, and
shortens the proof, for P7-free bipartite graphs.

1 Introduction

A proper coloring of a graph is an assignment of colors to its vertices such that
adjacent vertices receive distinct colors. It is easy to devise an (linear time)
algorithm 2-coloring bipartite graphs. Now, imagine that an algorithm receives
vertices of a graph to be colored one by one knowing only the adjacency status
of the vertex to vertices already colored. The color of a vertex must be fixed
before the algorithm sees the next vertices and it cannot be changed afterwards.
This kind of algorithm is called an on-line coloring algorithm.

Formally, an on-line graph (G, π) is a graph G with a permutation π of
its vertices. An on-line coloring algorithm A takes an on-line graph (G, π), say
π = (v1, . . . , vn) as an input. It produces a proper coloring of the vertices of G
where the color of a vertex vi, for i = 1, . . . , n, depends only on the subgraph
of G induced by v1, . . . , vi. It is convenient to imagine that consecutive vertices
along π are revealed by some adaptive (malicious) adversary and the coloring
process is a game between that adversary and an on-line algorithm.

Still, it is an easy exercise that if an adversary presents a bipartite graph
and all the time the graph presented so far is connected then there is an on-line
algorithm 2-coloring these graphs. But if an adversary can present a bipartite
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graph without any additional constraints then (s)he can trick out any on-line
algorithm to use an arbitrary number of colors!

Indeed, there is a strategy for adversary forcing any on-line algorithm to use
at least �log n� + 1 colors on a forest of size n. On the other hand, the First-Fit
algorithm (that is an on-line algorithm coloring each incoming vertex with the
least admissible natural number) uses at most �log n�+1 colors on forests of size
n. When the game is played on bipartite graphs, an adversary can easily trick
out First-Fit and force �n

2 � colors on a bipartite graph of size n. Lovász, Saks
and Trotter [12] proposed a simple on-line algorithm (in fact as an exercise; see
also [8]) using at most 2 log n+1 colors on bipartite graphs of size n. This is best
possible up to an additive constant as Gutowski et al. [4] showed that there is a
strategy for adversary forcing any on-line algorithm to use at least 2 log n − 10
colors on a bipartite graph of size n.

For an on-line algorithm A by A(G, π) we mean the number of colors that A
uses against an adversary presenting graph G with presentation order π.

An on-line coloring algorithm A is competitive on a class of graphs G if there
is a function f such that for every G ∈ G and permutation π of vertices of G
we have A(G, π) � f(χ(G)). As we have discussed, there is no competitive col-
oring algorithm for forests. But there are reasonable classes of graphs admitting
competitive algorithms, e.g., interval graphs can be colored on-line with at most
3χ − 2 (where χ is the chromatic number of the presented graph; see [11]) and
cocomparability graphs can be colored on-line with a number of colors bounded
by a tower function in terms of χ (see [9]). Also classes of graphs defined in terms
of forbidden induced subgraphs were investigated in this context. For example,
P4-free graphs (also known as cographs) are colored by First-Fit optimally, i.e.
with χ colors, since any maximal independent set meets all maximal cliques in
a P4-free graph. Also P5-free graphs can be colored on-line with O(4χ) colors
(see [10]). And to complete the picture there is no competitive algorithm for
P6-free graphs as Gyárfás and Lehel [6] showed a strategy for adversary forcing
any on-line algorithm to use an arbitrary number of colors on bipartite P6-free
graphs.

Confronted with so many negative results, it is not surprising that Gyárfás,
Király and Lehel [5] introduced a relaxed version of competitiveness of an on-line
algorithm. The idea is to measure the efficiency of an on-line algorithm compared
to the best on-line algorithm for a given input (instead of the chromatic number).
Hence, the on-line chromatic number of a graph G is defined as

χ∗(G) = inf
A

max
π

A(G, π),

where the infimum is taken over all on-line algorithms A and the maximum is
taken over all permutation π of vertices of G. An on-line algorithm A is on-line
competitive for a class of graphs G, if there is a function f such that for every
G ∈ G and permutation π of vertices of G we have A(G, π) � f(χ∗(G)).

Why are on-line competitive algorithms interesting? Imagine that you design
an algorithm and the input graph is not known in advance. If your algorithm is
on-line competitive then you have an insurance that whenever your algorithm
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uses many colors on some graph G with presentation order π then any other
on-line algorithm may be also forced to use many colors on the same graph G
with some presentation order π′ (and it includes also those on-line algorithms
which are designed only for this single graph G!). The idea of comparing the
outputs of two on-line algorithms directly (not via the optimal off-line result) is
present in the literature. We refer the reader to [1], where a number of measures
are discussed in the context of on-line bin packing problems. In particular, the
relative worst case ratio, introduced there, is closely related to our setting for
on-line colorings.

It may be true that there is an on-line competitive algorithm for all graphs.
This is open as well for the class of all bipartite graphs. To the best of the
authors knowledge, there is no promissing approach for the negative answer for
these questions. However, there are some partial positive results. Gyárfás and
Lehel [7] have shown that First-Fit is on-line competitive for forests and it is
even optimal in the sense that if First-Fit uses k colors on G then the on-line
chromatic number of G is k as well. They also have shown [5] that First-Fit is
competitive (with an exponential bounding function) for graphs of girth at least
5. Finally, Broersma, Capponi and Paulusma [2] proposed an on-line coloring
algorithm for P7-free bipartite graphs using at most 8χ∗ + 8 colors on graphs
with on-line chromatic number χ∗.

The contribution of this paper is the following theorem.

Theorem 1. There is an on-line competitive algorithm that properly colors P8-
free bipartite graphs. Moreover, there are on-line coloring algorithms for bipartite
graphs using at most

(i) 4χ∗ − 2 colors on P7-free graphs,
(ii) 3(χ∗ + 1)2 colors on P8-free graphs,

where χ∗ is the on-line chromatic number of the presented graph.

We wish to point out that we can improve the given bounds on the absolute
values. But since this would need a more involved analysis and on the other hand
the improvement would be small, we decided to present the weaker results. Fur-
thermore, we can use our techniques to show that there is an on-line competitive
algorithm for coloring P9-free bipartite graphs. This result is not presented in
this paper due to the page limitation.

2 Forcing Structure

In this section we introduce a family of bipartite graphs without long induced
paths (P6-free) and with arbitrarily large on-line chromatic number. All the on-
line algorithms we are going to study have the property that whenever they use
many colors on a graph G then G has a large graph from our family as an induced
subgraph and therefore G has a large on-line chromatic number, as desired.

A connected bipartite graph G has a unique partition of vertices into two
independent sets. We call these partition sets the sides of G. A vertex v in a
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X2 = X3 = X4 =

Xk Xk−1 Xk−1
=

Fig. 1. Family of bipartite graphs

bipartite graph G is universal to a subgraph C of G if v is adjacent to all vertices
of C in one of the sides of G.

Consider a family of connected bipartite graphs {Xk}k�1 defined recursively
as follows. Each Xk has a distinguished vertex called the root. The side of Xk

containing the root of Xk, we call the root side of Xk, while the other side we
call the non-root side. X1 is a single vertex being the root. X2 is a single edge
with one of its vertices being the root. Xk, for k � 3, is a graph formed by two
disjoint copies of Xk−1, say X1

k−1 and X2
k−1, with no edge between the copies,

and one extra vertex v adjacent to all vertices on the root side of X1
k−1 and all

vertices on the non-root side of X2
k−1. The vertex v is the root of Xk. Note that

for each k, the root of Xk is adjacent to the whole non-root side of Xk, i.e.,
the root of Xk is universal in Xk. See Figure 1 for a schematic drawing of the
definition of Xk.

A family of P6-free bipartite graphs with arbitrarily large on-line chromatic
number was first presented in [6]. The family {Xk}k�1 was already studied in
[3], in particular Claim 2 is proved there. Due to page limitation we omit the
proof here. We encourage the reader to verify that Xk is P6-free for k � 1.

Claim 2. If G contains Xk as an induced subgraph, then χ∗(G) � k.

3 P7-Free Bipartite Graphs

In this section we present an on-line algorithm using at most 4χ∗ − 2 colors on
P7-free bipartite graphs with on-line chromatic number χ∗. The algorithm itself,
see Algorithm 1, is taken from [2,3] where it is called BicolorMax and proved
that it uses at most 2χ∗−1 colors on P6-free bipartite graphs and at most 8χ∗+8
colors on P7-free bipartite graphs with on-line chromatic number χ∗. Thus, we
improve the bounding function for the P7-free case and yet we present a much
simpler proof.

Algorithm 1 uses two disjoint pallettes of colors, {an}n�1 and {bn}n�1. In
the following whenever the algorithm fixes a color of a vertex v we are going
to refer to it by color(v). Also for any set of vertices X we denote color(X) =
{color(x) | x ∈ X}. We say that v has color index i if color(v) ∈ {ai, bi}.

Suppose an adversary presents a new vertex v. Let Gi[v] be the subgraph on
the vertices presented so far that have a color from {a1, . . . , ai, b1, . . . , bi} and
with one extra vertex, namely v, which is uncolored yet. Now, Ci[v] denotes the
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connected component of Gi[v] containing vertex v. Furthermore, let Ci(v) be
the graph Ci[v] without vertex v. The graph Ci(v) is not necessarily connected
and in fact, as we will show, whenever v has color index k � 2, Ci(v) contains
at least 2 connected components for 1 � i < k. Note that by these definitions
it already follows that if w ∈ Ci(v) then Cj [w] ⊆ Ci(v) for all j � i since w is
presented before v and has a smaller color index than v. We say that a color c is
mixed in a connected induced subgraph C of G if c is used on vertices on both
sides of C.

Now we are ready for a description of Algorithm 1.

Algorithm 1. On-line competitive for P7-free bipartite graphs
an adversary introduces a new vertex v
m ← max {i � 1 | ai is mixed in Ci[v]} + 1 // max {} := 0
let I1, I2 be the sides of Cm[v] such that v ∈ I1
if am ∈ color(I2) then color(v) = bm
else color(v) = am

It is not hard to see that Algorithm 1 colors bipartite graphs properly. We
leave it as an exercise for the reader.

Claim 3. Algorithm 1 gives a proper coloring of on-line bipartite graphs.

The following claim is already proven in [2,3], for the sake of completeness
we added it here. It is quite essential for the other proofs.

Claim 4. Suppose an adversary presents a bipartite graph G to Algorithm 1.
Let v ∈ G and let x, y be two vertices from opposite sides of Ci[v] both colored
with ai. Then x and y lie in different connected components of Ci(v).

Proof. Let v, x and y be like in the statement of the claim. We are going to
prove that at any moment after the introduction of x and y, x and y lie in
different connected components of the subgraph spanned by vertices colored
with a1, b1, . . . , ai, bi.

Say x is presented before y. First note that x �∈ Ci[y] as otherwise x had to
be on the opposite side to y (because it is on the opposite side at the time v
is presented) and therefore y would receive color bi. Now consider any vertex w
presented after y and suppose the statement is true before w is introduced. If
x �∈ Ci[w] or y �∈ Ci[w] then whatever color is used for w this vertex does not
merge the components of x and y in the subgraph spanned by vertices presented
so far and colored with a1, b1, . . . , ai, bi. Otherwise x, y ∈ Ci[w]. This means that
color ai is mixed in Ci[w] and therefore w receives a color with an index at least
i + 1. Thus, the subgraph spanned by the vertices of the colors a1, b1, . . . , ai, bi

stays the same and x and y remain in different connected components of this
graph.

Since all vertices in Ci(v) are colored with a1, b1, . . . , ai, bi, we conclude that
x and y lie in different components of Ci(v). 	
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wCk−1[v]
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Xu Xw

Fig. 2. Schematic drawing of some defined components. The color classes of G belong
to the top and bottom side of the boxes. Vertex v has color index k. Vertices x and y
certify that color ak−1 is mixed in Ck−1[v]. The component Ck−1[v] consists of both
green boxes and vertex v, which is merging these.

As a consequence of Claim 4 it holds that if v has color index k � 2 then
Ci(v) is disconnected for all 1 � i < k. This is simply because there are vertices
x and y certifying that color ai is mixed in Ci[v]. It also means that if we forget
about the vertices presented so far that are not in Ci[v], vertex v is merging
independent connected subgraphs of G which are intuitively large in the case
i = k−1 as they contain vertices (x and y) with a high color index. See Figure 2
for a better understanding.

Claim 5. Suppose an adversary presents a P7-free bipartite graph to Algorithm 1.
Let v be a vertex with color index k and 1 � i < k. Then v is universal to all but
possibly one component of Ci(v).

Proof. Suppose to the contrary that there are 2 components C1 and C2 in Ci(v)
to which v is not universal. Then there are vertices v1 ∈ C1 and v2 ∈ C2 that
both have distance at least 3 from v in Ci[v]. It follows that a shortest path
connecting v1 and v in Ci[v], combined with a shortest path connecting v and
v2 in Ci[v] results in an induced path of length at least 7, a contradiction. 	


Theorem 6. Algorithm 1 uses at most 4χ∗−2 colors on P7-free bipartite graphs
with an on-line chromatic number χ∗.

Proof. Let G be a P7-free bipartite graph that is presented by an adversary to
Algorithm 1. Suppose color a2k for some k � 1 is used on a vertex v of G. We
prove by induction on k that C2k−1[v] contains Xk+1 as an induced subgraph
such that v corresponds to the root of Xk+1.

If k = 1 then v is colored with a2 and v must have neighbors in C1[v]. We
embed X2 being a single edge onto v and its neighbor. So suppose k � 2 and
v is colored with a2k. Since color a2k−1 is mixed in C2k−1[v] there are vertices
x and y of color a2k−1 lying on opposite sides of C2k−1[v]. By Claim 4 vertices
x and y lie in different components of C2k−1(v), say Cx and Cy. If we forget
about the color index of v in Figure 2 then Cx corresponds to the left and Cy

to the right green box. Using Claim 5 we conclude that v must be universal to
at least one of Cx and Cy. We can assume that this is true for Cx. Since the
color index of x is smaller than of v, we have that C2k−2[x] ⊆ Cx. Now consider
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vertices u and w in C2k−2[x] certifying that color a2k−2 is mixed in C2k−2[x].
Let Cu and Cw be the components of C2k−2(x) containing u and v, respectively,
which are distinct by Claim 4 (see left and right brown box in Figure 2). Observe
that C2k−3[u] and C2k−3[w] are subgraphs of Cu and Cw, respectively. By the
induction hypothesis there are induced copies Xu and Xw of Xk in C2k−3[u]
and C2k−3[w], respectively, such the roots correspond to u and v (see Figure 2).
Since Xu ⊆ Cu and Xw ⊆ Cw, there is no edge between the copies and v is
universal to both them. Using the fact that u and w appear on opposite sides
of C2k−1[v] we conclude that v together with Xu and Xw form an Xk+1 with v
being the root of it. This completes the induction.

Let now k � 1 be maximal such that Algorithm 1 used the color a2k on
a vertex of G. It might be that also the colors b2k, a2k+1 and b2k+1 are used,
but not any aj or bj for j � 2k + 2. Thus, Algorithm 1 used at most 4k + 2
colors. On the other hand, G contains an Xk+1 and by Claim 2 it follows that
χ∗(G) � k +1. We conclude that Algorithm 1 used at most 4k +2 � 4χ∗(G)− 2
colors. 	


4 P8-Free Bipartite Graphs

Inspired by Algorithm 1 and an argument from the previous section we present a
new on-line algorithm for bipartite graphs and refer to it by Algorithm 2. In this
section we prove that this algorithm is on-line competitive for P8-free bipartite
graphs.

Algorithm 2 uses three disjoint pallettes of colors, {an}n�1, {bn}n�1 and
{cn}n�1. Similar to the case of P7-freeness we make the following definitions.
Whenever the algorithm fixes a color of a vertex v we are going to refer to it by
color(v). Also for any set of vertices X we denote color(X) = {color(x) | x ∈ X}.
We say that a vertex v has color index i, if color(v) ∈ {ai, bi, ci}.

Now, suppose an adversary presents a new vertex v of a bipartite graph G.
Then let Gi[v] be the subgraph spanned by the vertices presented so far and
colored with a color from {a1, . . . , ai, b1, . . . , bi, c1, . . . , ci} and vertex v, which is
uncolored yet. With Ci[v] we denote the connected component of Gi[v] containing
v. For convenience put C0[v] = {v}. Furthermore, let Ci(v) be the graph Ci[v]
without vertex v. For a vertex x in Ci(v) it will be convenient to denote by
Cx

i (v) the connected component of Ci(v) that contains x. We say that a color c
is mixed in a connected subgraph C of G if c is used on vertices on both sides
of C.

Again, a proof for the proper coloring we leave as a fair exercise.

Claim 7. Algorithm 2 gives a proper coloring of on-line bipartite graphs.

To prove the following claim, it is enough to follow the lines of the proof for
Claim 4.

Claim 8. Suppose an adversary presents a bipartite graph G to Algorithm 2.
Let v ∈ G and let x, y be two vertices from opposite sides of Ci[v] both colored
with ai. Then x and y lie in different connected components of Ci(v).
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Algorithm 2. On-line competitive for P8-free bipartite graphs
an adversary introduces a new vertex v
m ← max {i � 1 | ai is mixed in Ci[v]} + 1 // max {} := 0
let I1, I2 be the sides of Cm[v] such that v ∈ I1
if am ∈ color(I2) then color(v) = bm
else if cm ∈ color(I2) then color(v) = am

else if ∃u ∈ I1 ∪ I2 and ∃u′ ∈ I2 such that u has color index
j � m − �√m − 1� and u′ is universal to Cj−1[u] then color(v) = cm
else color(v) = am

Now, whenever a vertex v has color index k � 2, let v1 and v2 be the first
introduced vertices in Ck−1(v) that certify that color ak−1 is mixed in Ck−1(v).
By Claim 8 it follows that Cv1

k−1(v) and Cv2
k−1(v) are distinct (and in particular

no edge is between them). In the following we will refer to v1 and v2 as the
children of v.

In the contrast to the P7-free case, observe that v does not have to be univer-
sal to at least one of the components Cv1

k−1(v) and Cv2
k−1(v) if G is only P8-free.

However, as the next claim shows, we can expect a vertex on the other side of
v in Ck−1(v) that is universal to some component in this case. This component
will be only slightly smaller than Ck−1(v) whenever we use Claim 9 in our final
proof. Also note that Algorithm 2 is inspired by this observation.

Claim 9. Suppose an adversary presents a P8-free bipartite graph G to Algo-
rithm 2. Let x be a vertex with color index i � 2. Suppose that vertex y ∈ Ci−1(x),
with color index j, lies on the other side of x in G and y is not adjacent to x.
Then one of the following holds:

(i) x has a child x′ such that x is universal to Ci−2[x′], or
(ii) x has a neighbor in Cy

i−1(x) that is universal to Cj−1[y].

Proof. We can assume that y has color index j � 2, as otherwise Cj−1[y] =
C0[y] = {y} and vacuosly any neighbor of x is universal to Cj−1[y] (as the side it
must be adjacent to is empty). Let x1 and x2 be the children of x. By Claim 8 the
components Cx1

i−1(x) and Cx2
i−1(x) are distinct. Vertex y is contained in at most

one of them, say y �∈ Cx1
i−1(x), and therefore Cx1

i−1(x) and Cy
i−1(x) are distinct. In

order to prove the claim suppose that (i) is not satisfied. Then x is not universal
to Ci−2[x1] and in particular not to Cx1

i−1(x). It follows that there is an induced
path of length 4 ending at x in Cx1

i−1[x]. As G is P8-free we conclude that Cy
i−1[x]

does not contain an induced path of length 5 with one endpoint in x. With this
observation in mind we will prove (ii) now.

First, let us consider the case that x has a neighbor z in Cj−1[y] ⊆ Cy
i−1(x)

(see Figure 3 for this case). Since x and y are not adjacent we have y �= z.
As Cz

j−1[y] is connected, there is an induced path P connecting x and y that
has only vertices of Cz

j−1(y) as inner vertices. Clearly, P has even length at
least 4. Now the color index of y, namely j � 2, assures the existence of a
mixed pair in Cj−1[y] and with Claim 8 it follows that Cj−1(y) has at least two
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Fig. 3. Claim 9: Situation in which x has a neighbor z in Cj−1[y]

connected components. In particular, there is a component C ′ of Cj−1(y) other
than Cz

j−1(y). Clearly, y has a neighbor z′ in C ′, which we use to prolong P at
y. Since there is no edge between Cz

j−1(y) and C ′, vertex z′ is not adjacent to
the inner vertices of P . And as G is bipartite z′ cannot be adjacent to x. We
conclude the existence of an induced path of length 5 in Cy

i−1[x] with x and z′

being its endpoints, a contradiction.
Second, we consider the case that x has no neighbor in Cj−1[y]. By our

assumptions a shortest path connecting x and y in Cy
i−1[x] must have length

exactly 4. Let P = (x, r, s, y) be such a path. We claim that vertex r is uni-
versal to Cj−1[y]. Suppose to contrary that there is a vertex s′ in Cj−1[y]
which is on the other side of y and which is not adjacent to r. Let Q =
(y, s1, r1, . . . , s�−1, r�−1, s� = s′) be a shortest path connecting y and s′ in
Cj−1[y]. For convenience put s0 = s. Now we choose the minimal m � 0 such
that r is adjacent to sm but not to sm+1. Such an m exists since r is adjacent
to s0 = s but not to s�. If m = 0 then the path (x, r, s, y, s1) is an induced path
of length 5 and if m > 0 then the path (x, r, sm, rm, sm+1) has length 5 and
is induced unless x and rm are adjacent. But the latter is not possible since x
has no neighbor in Cj−1[y]. Thus, in both cases we get a contradiction and we
conclude that r is universal to Cj−1[y]. 	


In the following we write v →i w for v, w ∈ G, if there is a sequence v =
x1, . . . , xj = w with j � i and x�+1 is a child of x�, for all � ∈ {1, . . . , j − 1}.
Moreover, we define Si(v) = {w | v →i w}.

We make some immediate observations concerning this definition. Let v ∈ G
be a vertex with color index k � 2. Then all vertices in Si(v) have color index at
least k−i+1. Furthermore, each vertex in Si(v) is connected to v by a path in G
and all vertices in the path, except v, have color index at most k−1. This proves
that Si(v) ⊆ Ck−1[v], for all i � 1. Note also that if v1 and v2 are the children
of v then we have Si(v) = {v} ∪ Si−1(v1) ∪ Si−1(v2) and Si−1(v1) ⊆ Cv1

k−1(v),
Si−1(v2) ⊆ Cv2

k−1(v). By Claim 8, we get that Cv1
k−1(v) and Cv2

k−1(v) are distinct.
In particular, Si−1(v1) and Si−1(v2) are disjoint and there is no edge between
them.

For a vertex v ∈ G, Si(v) is complete in G if for every u,w ∈ Si(v) such that
u →i w and u,w lying on opposite sides of G, we have u and w being adjacent
in G. Note that v is a universal vertex in Si(v), provided Si(v) is complete.
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Claim 10. Suppose an adversary presents a bipartite graph G to Algorithm 2.
Let v ∈ G be a vertex with color index k and let k � i � 1. If Si(v) is complete
then Si(v) contains an induced copy of Xi in G with v being the root of the copy.

Proof. We prove the claim by induction on i. For i = 1 we work with S1(v) and
X1 being graphs with one vertex only, so the statement is trivial. For i � 2, let v1
and v2 be the children of v. Recall that Si(v) = {v} ∪ Si−1(v1) ∪ Si−1(v2). Since
Si(v) is complete it also follows that Si−1(v1) and Si−1(v2) are complete. So by
the induction hypothesis there are induced disjoint copies X1

i−1, X2
i−1 of Xi−1 in

Si−1(v1) and Si−1(v2), respectively, and rooted in v1, v2, respectively. Recall that
Si−1(v1) and Si−1(v1) are disjoint and there is no edge between them. Thus, the
copies X1

i−1 and X2
i−1 of Xi−1 are disjoint and there is no edge between them,

as well. Since Si(v) is complete v is universal to both of the copies, and since v1
and v2 lie on opposite sides in G we get that the vertices of X1

i−1 ∪ X2
i−1 ∪ {v}

induce a copy of Xi in G. 	

Claim 11. Suppose an adversary presents a P8-free bipartite graph G to Algo-
rithm 2 and suppose vertex v is colored with ak. Then Ck[v] contains an induced
copy of X�√

k� such that its root lies on the same side as v in G.

Proof. The claim is easy to verify for 1 � k � 8. So suppose that k � 9. Consider
the set S�√

k�(v). If it is complete then by Claim 10 we get an induced copy of
X�√

k� with a root mapped to v. So we are done.
From now on we assume that S�√

k�(v) is not complete. Let (I1, I2) be the
bipartition of Ck[v] such that v ∈ I1. First, we will prove that there are vertices
z, z′ ∈ Ck[v] such that z′ ∈ I1, z has color index � � k − �√k − 1� and z′ is
universal to C�−1[z]. To do so we consider the reason why Algorithm 2 colors v
with ak instead of bk or ck.

The first possible reason is that the second if-condition of the algorithm is
satisfied, that is, there is a vertex u ∈ I2 colored with ck. Now u can only receive
color ck if there are vertices w,w′ ∈ Ck[u] such that w′ is on the other side of
u in Ck[u], w has color index j � k − �√k − 1� and w′ is universal to Cj−1[w].
Since Ck(u) ⊆ Ck(v) and u ∈ I2 we have w′ ∈ I1. Therefore, w and w′ prove the
existence of vertices that we are looking for in this case.

The second reason for coloring v with ak is that Algorithm 2 reaches its last
line. In particular this means, that there is no vertex of color ak or ck in I2. Now
we are going to make use of the fact that S�√

k�(v) is not complete. There are
vertices x, y ∈ S�√

k�(v) ⊆ Ck[v] such that x →�√
k� y, vertices x and y lie on

different sides of Ck[v] and are not adjacent. Let i and j be the color indices of x
and y, respectively. Note that k � i > j � k−�√k�+1. By Claim 9 vertex x has
a child x′ such that x is universal to Ci−2[x′] or x has a neighbor r ∈ Cy

i−1(x)
that is universal to Cj−1[y]. In the first case let w′ be x and w be x′, and in the
second case we set w′ to be r and w to be y. Then, in both cases it holds that
w′ is universal to C�−1[w], where � is the color index of w. Furthermore we have

� � min{i − 1, j} � k − �
√

k� + 1 � k − �√k − 1�
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for all k � 1. Since w′ ∈ Ck[v] we have w′ ∈ I1 or w′ ∈ I2. However, the latter
is not possible as otherwise w and w′ would fulfill the conditions of the third
if-statement in Algorithm 2, which contradicts the fact that Algorithm 2 reached
the last line for v. We conclude that w′ ∈ I1, which completes the proof of our
subclaim.

So suppose we have vertices z and z′ like in our subclaim. Let z1 and z2 be
the children of z (they exist as � � 2). Both vertices received color a�−1 and
are on different sides of G. By the induction hypothesis C�−1[z1] and C�−1[z2]
contain a copy of X�√

�−1� such that the roots are on the same side as z1 and z2,
respectively. Since there is no edge between C�−1[z1] and C�−1[z2] and both are
contained in C�[z], it follows that z′ together with the copies of X�√

�−1� induce
a copy of X�√

�−1�+1 that has z′ as its root. Since C�[z] is contained in Ck[v] and
z′ is on the same side as v and since

�√� − 1� + 1 �
⌊√

k − �√k − 1� − 1
⌋

+ 1 � �
√

k�,

for all k � 1, this completes the proof. 	

Now we are able to prove our main theorem.

Theorem 12. On each on-line P8-free bipartite graph (G, π), Algorithm 2 uses
at most 3(χ∗(G) + 1)2 colors.

Proof. Let k be the highest color index on the vertices of G. By the definition
of Algorithm 2 the color ak appears on some vertex of G. Using Claim 11 it
follows that G contains X�√

k�. Now, by Claim 2, χ∗(G) � �√k� and therefore

Algorithm 2 uses at most 3k � 3(�√k� + 1)2 � 3(χ∗(G) + 1)2 colors. 	
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Abstract. Unconstrained submodular maximization captures many NP-
hard combinatorial optimization problems, including Max-Cut, Max-
Dicut, and variants of facility location problems. Recently, Buchbinder
et al. [4] presented a surprisingly simple linear time randomized greedy-
like online algorithm that achieves a constant approximation ratio of 1

2
,

matching optimally the hardness result of Feige et al. [10].Motivated by the
algorithm of Buchbinder et al., we introduce a precise algorithmic model
called double-sided myopic algorithms. We show that while the algorithm
of Buchbinder et al. can be realized as a randomized online double-sided
myopic algorithm, no such deterministic algorithm, even with adaptive
ordering, can achieve the same approximation ratio. With respect to the
Max-Dicut problem, we relate the Buchbinder et al. algorithm and our
myopic framework to the online algorithm and inapproximation of Bar-
Noy and Lampis [2].

1 Introduction

Submodularity emerges in natural settings such as economics, algorithmic game
theory, and operations research; many combinatorial optimization problems can
be abstracted as the maximization/minimization of submodular functions. In par-
ticular, submodular maximization generalizes NP-hard problems such as Max-
(Di)cut [1,14,15],Max-Coverage [8], expected influence in a social network [17]
and facility location problems [6,7]. As such, a number of approximation heuristics
have been studied in the literature. For monotone submodular functions,
maximization under a cardinality constraint can be achieved greedily with an
approximation ratio of (1− 1

e ) [20], which is in fact optimal in the value oraclemodel
[19]. The same approximation ratio is obtainable for the more general matroid con-
straints [5,12], as well as knapsack constraints [18,24]. We limit our discussion to
unconstrained non-monotone submodular maximization (USM) — typical exam-
ples of which includeMax-Cut andMax-Dicut. We refer the reader to our paper
version [16] for a more comprehensive discussion on related works.

Recently, linear time (linear in counting one step per oracle call) double-
sided greedy algorithms were developed by Buchbinder et al. [4] for the general
USM. The deterministic version of their algorithm achieves an approximation

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 528–539, 2014.
DOI: 10.1007/978-3-319-13075-0 42



Bounds on Double-Sided Myopic Algorithms 529

ratio of 1
3 , while the randomized version achieves 1

2 in expectation - improving
upon the 2

5 randomized local-search approach in [10], and the 0.42 simulated-
annealing technique in [11,13], in terms of approximation ratio, time complexity
and arguably, algorithmic simplicity. While the hardness result of Feige et al.
[10] implies optimality of the randomized algorithm, the gap between the deter-
ministic and randomized variants remains an open problem. More specifically,
is there any de-randomization that would preserve both the greedy aspect of
the algorithm as well as the approximation? To address this question, we adapt
the priority algorithms framework of Borodin et al. [3]. Specifically, we define
a double-sided myopic algorithms framework that captures the Buchbinder et
al. algorithms; and show that no deterministic algorithm in this framework can
de-randomize the 1

2 -ratio double-sided greedy algorithm.
In addition to [4], Bar-Noy and Lampis [2] give a 1

3 deterministic online greedy
algorithm for Max-Dicut matching the deterministic approximation obtained
by Buchbinder et al. for USM. They also give an improved 2

3
√
3

approximation
for Max-Dicut on DAGs, and a precise online model with respect to which
this approximation is optimal. Feige and Jozeph [9] introduce oblivious online
algorithms for Max-Dicut and give a 0.483 approximation and a 0.4899 inap-
proximation for randomized oblivious algorithms. Independent of our work, Paul,
Poloczek and Williamson [22] have very recently derived a number of determin-
istic algorithms, and deterministic and randomized inapproximations for Max-
Dicut with respect to the priority algorithm framework.

Algorithm 1. DeterministicUSM(f,N )
1: S0 ← ∅, T0 ← N
2: for i = 1 to n do
3: ai ← f(Si−1 ∪ {ui}) − f(Si−1)
4: bi ← f(Ti−1 \ {ui}) − f(Ti−1)
5: if ai ≥ bi then
6: Si ← Si−1 ∪ {ui}, Ti ← Ti−1

7: else
8: Ti ← Ti−1 \ {ui}, Si ← Si−1

9: end if
10: end for
11: return Sn

1.1 Basic Definitions

A set function f : 2N → R is submodular if for any S, T ⊆ N , f(S ∪ T ) + f(S ∩
T ) ≤ f(S) + f(T ). We say f is monotone if f(S) ≤ f(T ) for all S ⊆ T ⊆ N ,
and non-monotone otherwise. In USM, the goal is to find a subset S ⊆ N =
{u1, ..., un} maximizing f(S) for a specified submodular function f . In general,
since the specification of f requires knowing its value on all possible subsets, f
is accessed via a value oracle which given X ⊆ N , returns f(X). We state the 1

3
deterministic double greedy algorithm by Buchbinder et al. in Algorithm 1.
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1.2 Our Contribution

We introduce a formalization of double-sided myopic algorithms - an adaptation
of the priority framework under a restricted value oracle model. To make this
precise, we will introduce three types of relevant oracle queries. In Proposition 1
and 2 we show that the double-sided greedy algorithms of Buchbinder et al. can
be realized as online double-sided myopic algorithms. Moreover, our framework
also captures the online model of Bar-Noy and Lampis for Max-Dicut, upon
which Theorem 1 follows essentially by definition.

Algorithm 2. OnlineMyopic(f, f̄)
1: X0 ← ∅, Y0 ← ∅
2: for i = 1 to n do
3: ai ← f(Xi−1 ∪ {ui}) − f(Xi−1)
4: bi ← f̄(Yi−1 ∪ {ui}) − f̄(Yi−1)
5: if ai ≥ bi then
6: Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

7: else
8: Yi ← Yi−1 ∪ {ui}, Xi ← Xi−1

9: end if
10: end for
11: return Xn

Proposition 1. The deterministic double greedy algorithm in [4] can be modeled
by Algorithm 2, a Q-Type 1 online double-sided myopic algorithm.

Proposition 2. The randomized double greedy algorithm in [4] can be modeled
by a random-choice Q-Type 1 online double-sided myopic algorithm.

Theorem 1. No deterministic online double-sidedmyopic algorithm (with respect
to our strongest oracle model Q-Type 3) can achieve a competitive ratio of 2

3
√
3
+ε ≈

0.385 + ε for any ε > 0 for USM.

As our main contribution, we extend to the class of (deterministic) fixed and
adaptive priority algorithms in Theorem 2 and 3. We construct via linear pro-
gramming submodular functions and corresponding adversarial strategies that
would force an inapproximability ratio strictly less than 1

2 . In terms of ora-
cle restrictiveness, our inapproximation holds for the all subsets query model
(Q-Type 3) for the fixed case and the already attained partial solution query
model (Q-Type 2), which is more powerful than what is sufficient to achieve the
1
2 ratio by the online randomized greedy algorithm (Q-Type 1). Due to space
constraint we refer to [16] for missing proofs as well as further discussion.

Theorem 2. There exists a problem instance such that no fixed priority double-
sided myopic algorithm with respect to oracle model Q-Type 3 can achieve an
approximation ratio better than 0.450.
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Theorem 3. There exists a problem instance such that no adaptive priority
double-sided myopic algorithm with respect to oracle model Q-Type 2 can achieve
an approximation ratio better than 0.432.

2 The Double-Sided Myopic Algorithms Framework

By integrating a restricted value oracle model in a priority framework, we propose
a general class of double-sided myopic algorithms that captures the Buchbinder
et al. double-sided greedy algorithm. Using a pair of complementary objective
functions, we rephrase the double-sided procedure (i.e. simultaneously evolving
a bottom-up and a top-down solution) as a single sided sweep common to most
greedy algorithms; and this facilitates an adaptation of a priority-like framework.
We must also specify how input items are represented and accessed. The gener-
ality of USM raises some representational issues, which we address by employing
a marginal value representation that is compatible with both the value oracle
model and the priority framework.

While a precise description of a data item is necessary in determining the
input ordering and in quantifying the availability of information in the decision
step, the value oracle model measures complexity in terms of information access.
An apparent incompatibility arises when an exact description of a data item can
trivialize query complexity - as in the case of the marginal value representation,
where exponentially many queries are needed to fully describe an item when f
is an arbitrary submodular function. For this reason, we propose a hierarchy
of oracle restrictions that categorizes the concept of myopic short-sightedness,
while preserving the fundamental characteristics of the priority framework.

2.1 Value Oracle and the Marginal Value Representation

Since f may not have a succinct encoding, to avoid having an exponential sized
input we employ a value oracle. That is, given a query S ⊆ N , the value oracle
returns the value of f(S). Abusing notation, we will interchangeably refer to f
as the objective function (i.e. when referring to f(S) as a real number) and as
the value oracle (i.e. when an algorithm submits a query to f).

We also introduce for notational convenience a complementary oracle f̄ , such
that f̄(X) = f(N \ X). This allows us to express the double-sided myopic algo-
rithm similar to the priority setting in [3], where the solution set X is constructed
using only locally available information. In other words, the introduction of f̄
allows access to f(N \X) using X (which is composed of items that have already
been considered) as query argument, instead of N \X. The double-sidedness of
the framework follows in the sense that f and f̄ can be simultaneously accessed.

We wish to model greedy-like algorithms that process the problem instance
item by item. But what is an item when considering an arbitrary submodu-
lar function? While the natural choice is that an item is an element of N (to
include or not include in the solution S), the input of USM is the objective func-
tion itself, drawn from the family F = {f |f : 2N → R} of all submodular set
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functions over a fixed N . To address this issue, we propose the marginal value
representation, in which f is instilled into the elements of N . Specifically, we
describe a data item as an element u ∈ N , plus a list of marginal differences
ρ(u|S) = f(S ∪ {u}) − f(S), and ρ̄(u|S) = f̄(S ∪ {u}) − f̄(S) for every subset
S ⊆ N . A complete representation in this form is not only exponential in |N |, it
leads to a trivial optimal greedy algorithm. Therefore we assume that an oracle
query must be made by the algorithm in order to access each marginal value.
However, if certain natural constraints are imposed on allowable oracle queries
during the computation, then the model allows us to justify when input items
are indistinguishable. In fact, our inapproximation results will not be based on
bounding of the number of oracle queries but rather by the restricted myopic
nature of the algorithm.

2.2 Classes of Relevant Oracle Queries

The myopic condition of our framework is imposed both by the nature of the
ordering in the priority model, which we describe later on, as well as by restricting
the algorithm to make only relevant oracle queries. To avoid ambiguity, assume
the oracles are given in terms of f and f̄ , with ρ and ρ̄ being used purely for
notational simplicity. That is, when we say that the algorithm queries ρ(u|S),
we assume that it queries both f(S ∪ {u}) and f(S). At iteration i, define
(respectively) Xi−1 and Yi−1 to be the currently accepted and rejected sets, and
ui to be the next item considered by the algorithm. We introduce three models
of relevant oracle queries in order of increasing information.1

Next attainable partial solution query (Q-Type 1)
The algorithm is permitted to only query f(Xi−1∪{ui}) and f̄(Yi−1∪{ui}),
i.e. the values of the next possible partial solution. In all models, the algo-
rithm can then use this information in any way. For example, the determin-
istic algorithm of Buchbinder et al. greedily chooses to add ui to Xi−1 if
ρ(ui|Xi−1) = a ≥ b = ρ̄(ui|Yi−1). In our model, the decision about ui can
be any (even non-computable) function of a and b and the “history”of the
algorithm thus far.
Already attained partial solutions query (Q-Type 2)
In this model we allow queries of the form ρ(ui|Xj) and ρ̄(ui|Yj) for all j < i.
All subsets query (Q-Type 3)
Here, the algorithm can query ρ(ui|S) and ρ̄(ui|S) for every S ⊆ Xi−1∪Yi−1.
Note that in this very general model, the algorithm can potentially query
exponentially many sets so that in principle such algorithms are not subject
to the 1

2 inapproximation result of Feige et al [9].

2.3 Internal Memory or History

We define an algorithm’s internal memory or history as a record of the following:
1 See Section 5 for further motivation.
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– All previously considered items and the decisions made for these items.
– The outcomes of all previous relevant query results.
– Anything deducible from previously considered items, decisions and relevant

queries. Consequently, the algorithm can rule out all submodular functions
contradicting the observed marginal values for previously considered items.

At the start of iteration i, allow the algorithm to perform any possible rel-
evant queries. Let Ni−1 = Xi−1 ∪ Yi−1 be the set of all previously seen (and
decided upon) items. The algorithm’s internal memory under each query restric-
tion type contains the following:

Q-Type 1 myopic model
• The decision made for every u ∈ Ni−1.
• ρ(uj |Xj−1) and ρ̄(uj |Yj−1) for 0 < j ≤ i.

Q-Type 2 myopic model
• The decision made for every u ∈ Ni−1.
• ρ(uj |Xk) and ρ̄(uj |Yk) for 0 ≤ k < j ≤ i.

Q-Type 3 myopic model
• The decision made for every u ∈ Ni−1.
• ρ(u|S) and ρ̄(u|S) for all u ∈ Ni and all S ⊆ Ni.

2.4 Priority Models

Finally, we specify the order in which input items are considered. We catego-
rize double-sided myopic algorithms into the following subclasses: online, fixed
priority, and adaptive priority. For all templates, the algorithm makes an irre-
vocable decision for the current item based on the history of relevant queries.
Initially, |N | is the only accessible information. Revealing the input length allows
for a broader and potentially more powerful class of algorithms compared to the
priority framework. That is, an adversary cannot abruptly end a computation.
We begin with a description of the online model.

Online 2-Sided Myopic Template

while not empty(N )

next := lowest index (determined by adversary) of items in N
Relevant Query: Perform any set of relevant queries and update
the internal memory
Decision: As a function of the internal memory, irrevocably accept
or reject unext, and remove unext from N

A priority function is any injection π : Q(u) → R, where Q(u) is the vector
of item u’s marginals accessible under the appropriate relevant query model.
The priority function determines the ordering of the input items. Specifically,
at each iteration the item unext ∈ N with the highest priority (i.e. unext =
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argminv∈N [π(Q(v))]) is given to the algorithm. This leads to the more general
models of fixed and adaptive priority algorithms.

Fixed Priority 2-Sided Myopic Template

Ordering: Specify a priority function π : R × R → R

while not empty(N )

next := index i of the item in N that minimizes π(ρ(ui|∅), ρ̄(ui|∅))
Relevant Query: Using unext as the next item, perform any set of
relevant queries and update the internal memory
Decision: As a function of the internal memory, irrevocably accept
or reject unext, remove unext from N and update internal memory.

Adaptive Priority 2-Sided Myopic Template

while not empty(N )

Ordering: Given the internal memory, specify a priority function π
next := index i of the item in N that minimizes π(Q(ui))
Relevant Query: Using unext as the next item, perform any set of
relevant queries and update the internal memory
Decision: As a function of the internal memory, irrevocably accept
or reject unext, remove unext from N and update internal memory.

A fixed priority algorithm determines π before it makes any oracle queries,
and this ordering remains unchanged. For all relevant query models, Q(u) ini-
tially corresponds to the pair of u’s marginal gains in f and f̄ w.r.t. the empty
set. Thus we write π : R × R → R.

On the other hand, an adaptive priority algorithm may specify a new ordering
function after each item is processed. Observe that in Q-Type 2 and 3, the length
of Q increases with the iterations.

In both fixed and adaptive models, updating the internal memory also means
deducing that certain marginal descriptions cannot exist and applying relevant
queries (for the given Q-type) to obtain additional information. In particular,
if unext ∈ N is the item with the minimum π value, then any item uj with
π(Q(uj)) < π(Q(unext)) cannot appear later. We note that our inapproximabil-
ity arguments result solely from information theoretic arguments. That is, the
complexity or even computability of the ordering and decision steps is arbitrary,
and there is no limitation on the size of the memory.

3 A 0.450 Inapproximation for Fixed Priority Algorithms

We design an LP whose solution gives the complete mapping of a submodular
function f : 2N → R, over a small ground set N . In the construction of f ,
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we require certain items to be indistinguishable to the algorithm - allowing the
adversary to control the input ordering. Denote by k the number of initial steps
taken by the algorithm that the adversary will anticipate. That is, for 2k possible
partial solutions, the adversary prepares an input ordering (consistent with the
algorithm’s queries in these k steps) such that any extendible solution has a
bad approximation ratio. Since f may not have a succinct representation, we
exemplify the adversarial strategy on a small Max-Dicut instance, albeit with
a worse lower bound.

Theorem 4. For unweighted Max-Dicut, no fixed order Q-Type 3 double-
sided myopic algorithm can achieve an approximation ratio greater than 2

3 .

Proof. Let v1, ..., v6 be the vertices along a directed 6-cycle G with unit edge
weights. Clearly, OPT = 3 is achieved by {v1, v3, v5} or {v2, v4, v6}. The regu-
larity of G ensures that π(v1) = ... = π(v6) for any π, allowing the adversary to
specify any input ordering. Suppose the algorithm accepts (resp. rejects) v1 in
the first step, the adversary fixes ui2 = {v3, v4} as the next set of possible inputs
in the sequence. At this point, v3 and v4 are indistinguishable to the algorithm,
since ρ(v3|S) = ρ(v4|S) = 1 and ρ̄(v3|S) = ρ̄(v4|S) = 1 for any S ⊆ N1 = {v1}.
If the algorithm accepts ui2 , then the adversary sets ui2 = v4 (resp. ui2 = v3);
otherwise it sets ui2 = v3 (resp. ui2 = v4). Both cases contradict the optimal
solutions, and the maximum cut value is now at most 2. ��

3.1 Construction of the LP for Theorem 2

Lemma 1. No fixed Q-Type 3 double-sided myopic algorithm can achieve an
approximation ratio greater than 1

c if there exists a (non-negative) submodular
function f satisfying the following conditions:

Cond. 1 f({u}) = f({v}), f̄({u}) = f̄({v}),∀u, v ∈ N .
Cond. 2 There exist subsets A = {a1, ..., ak} ⊆ N , R = {r1, ..., rk} ⊆ N ,

A∩R = ∅, such that for every 0 < i < k and every Ci ∈ {a1, r1}×{a2, r2}×
... × {ai, ri} and every subset S ⊆ Ci,

f(S ∪ {ai+1}) = f(S ∪ {ri+1})
f̄(S ∪ {ai+1}) = f̄(S ∪ {ri+1})

Semantically, A ( resp. R) is the set of items that the algorithm is tricked into
accepting ( resp. rejecting). This is achievable if aj , rj are indistinguishable
to the algorithm at round j, in the Q-Type 3 restricted oracle model.

Cond. 3 For every Ck ∈ {a1, r1} × {a2, r2} × ... × {ak, rk}, any solution S ⊆ N
such that Ck ∩ A ⊆ S and S ∩ Ck ∩ R = ∅ ( i.e. S is an extension of Ck) must
have f(S) ≤ 1.

Cond. 4 There exists a set S∗ ∈ 2N such that f(S∗) ≥ c.

We formulate these conditions as an LP that maximizes c. For fixed n
and k, define N = {s1, ..., s� n

2 �, o1, ..., o� n
2 	} as the ground set, and designate
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O = {o1, ..., o� n
2 	} as the optimal solution. Set A = {s1, ..., sk} and R = {o1, ..., ok}

to deter the algorithm from O as much as possible. For every S ⊆ N , we abuse
notation and refer to f(S) directly as the LP variable corresponding to the value
of f on S. As this construction entails exponentially many variables, this is indeed
only feasible in practice when restricted to a small N . For interpretability, we
may refer to the variable f̄(Si) as alias for the variable f(N \ Si) (following the
definition of f̄). Define the linear program as follows:

Objective

max f({o1, ..., o� n
2 	}) (Obj)

Constraints

f(S ∪ {v}) + f(S ∪ {u}) − f(S ∪ {v, u}) ≥ f(S) ∀S ⊆ N , (v, u) ∈ N \ S
(Sub)

f({v}) − f({u}) = 0,

f̄({v}) − f̄({u}) = 0 ∀v, u ∈ N (C1)
f(S ∪ {ai+1}) − f(S ∪ {ri+1}) = 0,

f̄(S ∪ {ai+1}) − f̄(S ∪ {ri+1}) = 0 ∀S ⊆ Ci,

∀Ci ∈ {a1, r1} × ... × {ai, ri},

0 < i < k (C2)
f(S) ≤ 1 ∀S s.t. ∃Ck, Ck ∩ A ⊆ S

∧ S ∩ Ck ∩ R = ∅ (C3)
f(S) ≥ 0 ∀S (C4)
f(∅) = 0 (C5)

Inequality (Sub) is a necessary and sufficient condition for submodularity
[20], and (C4) and (C5) constrain f to be non-negative and normalized. The
remaining constraints correspond to conditions 1-3 of Lemma 1. If the LP is
feasible, then the objective value in (Obj) is a lower bound for c in condition 4.

Proof of Theorem 2. Using n = 8 and k = 4, the LP described above produces
a solution of c = 2.2222. By Lemma 1, this demonstrates a 1

2.2222 ≈ 0.450
inapproximation. ��

4 A 0.432 Inapproximation for Adaptive Priority
Algorithms

Lemma 2. No Q-Type 2 adaptive double-sided myopic algorithm can achieve an
approximation ratio greater than 1

c if there exists a (non-negative) submodular
function f that satisfies Cond. 3 and 4 of Lemma 1, as well as the following:
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Cond. 2* There exist subsets A = {a1, ..., ak} ⊆ N , R = {r1, ..., rk} ⊆ N ,
A ∩ R = ∅, such that for every i < k and every Ci ∈ {a1, r1} × {a2, r2} ×
... × {ai, ri} and all pairs v, u ∈ N \ Ci,

f((Ci ∩ A) ∪ {u}) = f((Ci ∩ A) ∪ {v})
f̄((Ci ∩ R) ∪ {u}) = f̄((Ci ∩ R) ∪ {v})

Cond. 2* is the analog of Cond. 2 of Lemma 1. Indistinguishability w.r.t.
the weaker Q-Type 2 queries is now imposed on all remaining items in the first k
steps (subsuming Cond. 1). As in Section 3.1, this leads to an LP representation.

Proof of Theorem 3. Using n = 8 and k = 4, the LP described above produces
a solution of c = 2.3158, giving us an inapproximability of 1

c ≈ 0.432. ��

5 Further Discussion of the Double-Sided Myopic Model

Adapting the priority framework [3], we define the class of double-sided myopic
algorithms and show the Buchbinder et al. algorithm can be realized as an online
double-sided myopic algorithm. Similar to Poloczek’s [23] Max-Sat inapproxi-
mation, our inapproximation results for deterministic double-sided myopic algo-
rithms provide evidence that the randomized 1

2 -approximation double greedy
for USM cannot be de-randomized even if the algorithms allow reasonable input
orderings beyond the online constraint. Our double-sided interpretation of the
greedy algorithm of [4] satisfies the deterministic model of Bar-Noy and Lampis
[2], for which they give a 2

3
√
3

online inapproximability for Max-Dicut.
Allowing randomized decisions, our myopic model also captures the obliv-

ious algorithms of Feige and Jozeph [9] for the Max-Dicut problem. Specifi-
cally, they define an oblivious algorithm as an online randomized algorithm that
independently accepts each vertex v as a randomized function of the bias of the
vertex, where bias(v) = win(v)

win(v)+wout(v)
. We note that the win (respectively, wout)

values, as defined by [9], are precisely the values of ρ̄(v|∅) (resp. ρ(v|∅)). Hence,
the bias of every node can be determined within our Q-Type 2 model. In fact, we
could have included the initial marginals ρ̄(v|∅) and ρ(v|∅) within the Q-Type
1 model as all our inapproximations ensure that all initial marginals are iden-
tical. We could have also introduced a Q-Type 0 model allowing only access to
the initial marginals which suffices to model oblivious algorithms as randomized
online myopic algorithms. However, to capture the Feige and Jozeph inapproxi-
mation bound, we would have to further restrict our algorithms so that decisions
are not memory dependent. We note that the Paul et al. [21] derandomization
of the Feige and Jozeph oblivious algorithm results in an online non-oblivious
algorithm that goes beyond our myopic framework as it is specific to a graph
input model where each vertex is represented by its bias as well as the bias of
its neighbors. The myopic framework does not have access to individual edges
and hence cannot determine the adjacent nodes.

We introduced a hierarchy of query types (respectively priority orderings)
to illustrate the restricted nature of the Buchbinder et al. algorithm (Q-Type
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1 and online) in contrast to more general input and priority models which can
reasonably be said to follow the same double sided greedy approach introduced
by Buchbinder et al. We believe that Q-Type 3 is perhaps the most general value
oracle model that one can allow in a myopic algorithm. The fact that Q-Type
3 allows exponential time and memory only strengthens the inapproximation
results. From a positive point of view, an efficient myopic algorithm would only
make a small (e.g. linear or polynomial) number of oracle calls but would have
exponentially many from which to choose. Q-Type 2 provides a natural way to
restrict algorithms to polynomially many query calls.

Our inapproximations follow from an LP formulation of possible algorithmic
decisions, and at present does not yield a succinctly defined problem. However,
we provide a 2

3 -inapproximation for Max-Dicut for fixed priority double-sided
myopic algorithms. We again emphasize the generality of the myopic framework
as it allows very general input orderings without imposing greediness in the deci-
sions (as to rejecting or accepting an input). We also observe that non-greediness
appears to be essential in both the randomized double-greedy algorithm of Buch-
binder et al. as well as the deterministic approximation of Bar-Noy and Lampis
for Max-Dicut on DAGs; in contrast, the Buchbinder et al. deterministic algo-
rithm does make greedy decisions.

Acknowledgments. The authors thank Yuval Filmus for the idea of employing LP,
and Matthias Poloczek and Charles Rackoff for their helpful suggestions.
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Abstract. Given a set of n elements that are partitioned into equiva-
lence classes, we study the problem of assigning unique labels to these
elements in order to support the query that asks whether the elements
corresponding to two given labels belong to the same equivalence class.
This problem has been studied by Katz et al [11], Alstrup et al [1], and
Lewenstein et al [12]. Lewenstein et al [12] showed that if the labels were
to be assigned from the set {1, ..., n}, a data structure of size Θ(

√
n) bits

is necessary and sufficient to represent the equivalence classes. They
also showed that with no auxiliary data structure, a label space of size∑n

i=1�n
i
� is necessary and sufficient. Our main result is that if we allow

a label space of size cn for any constant c > 1, a data structure of size
Θ(log n) bits is necessary and sufficient. We also show that the equiva-
lence query in such a data structure can be answered in Θ(1) time. We
believe that our work can trigger further work on tradeoffs between label
space and auxiliary data structure space for other labeling problems.

1 Introduction and Motivation

Given a partition of an n element set into equivalence classes, our problem is to
preprocess the set, assigning a unique label to each element, to obtain a data
structure with minimum space to support the following query: given two labels,
determine whether their corresponding elements are in the same equivalence
class. We call such queries ‘equivalence queries’. This is a fundamental data
structures problem and it has various applications such as testing whether two
vertices are in the same connected component in an undirected graph or in the
same strongly connected component in a directed graph. We study the problem
from the perspective of succinct data structures. Our aim is to develop data
structures whose size is within a constant factor of the information theoretic
lower bound. Designing succinct data structures is an area of interest in the-
ory and practice motivated by the need of storing large amount of data using
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the smallest space possible. For succinct representations of dictionaries, trees,
arbitrary graphs and partially ordered sets see [2–8,14–16]

Kannan, Naor and Rudich [10] were the first to introduce the concept of
labeling schemes to answer graph adjacency queries. Katz, Katz, Korman and
Peleg [11] extended this notion to support graph flow and connectivity queries.
They studied the problem of assigning (not necessarily distinct) labels to graph
nodes so that queries can be answered by just looking at the labels of the queried
nodes. They showed that to answer k-connectivity queries the length of each
label has a lower bound of Ω(k log n) bits. For the problem that is considered in
this paper k = 1, their lower bound implies a �log n� lower bound for the length
of each label. However, in some situations we may want to distinguish between
individual nodes within the same component, so we may want to give unique
labels to each node. Lewenstein et al [12] studied this problem in two models:

• In the first model, the query is to be answered by just examining the labels
of the queried elements. They called this problem the direct equivalence
queries problem. They tightened the lower bound in [1] to a label space
of

∑n
i=1�n

i �, which can be represented in log n + log log n − Ω(1) bits, and
proved that it is sufficient. Moreover, they showed that one can solve the
problem using log n + log log n + 2 bits such that equivalence queries can be
answered in Θ(1) time.

• In the second model, the n elements are to be assigned unique labels from the
set {1, ..., n}. They showed that an auxiliary data structure of size Θ(

√
n)

bits is necessary and sufficient to represent the equivalence class information.
They supported the query in such a structure in Θ(log n) time. Moreover,
they developed structures where queries can be answered:

• in O(log log n) time using O(
√

n log n/log log n) bits, and
• in O(1) time using O(

√
n log n) bits of space.

Our first observation in this paper is that one can combine their data struc-
tures to obtain a structure that uses O(

√
n log n/f(n)) bits of space, and answer

queries in O(f(n)) time for any f(n) in O(log n). We also notice an inversely
proportional relation between label space and auxiliary data structure size. If
the label space is in the range of

∑n
i=1�n

i �, no data structure is required. Once
the label space range is decreased to n, a data structure of size O(

√
n) bits is nec-

essary. In this paper, we further investigate this relation. Our work is motivated
by the fact that unless n is a power of two or a little less than a power of two, we
can increase the label space by a constant factor without increasing the number
of bits required to store each address. To be more specific, we investigate the
case where the labels are to be assigned from the set {1, ..., cn} where c > 1 (c
can be a decimal less than 2). We show that an auxiliary data structure whose
size is Θ(log n) bits is necessary and sufficient to represent the equivalence class
information in this case. Such a structure can be completely stored in cache
memory. Moreover, we can support the query in such a structure in Θ(1) time.

The rest of this paper is divided as follows. In Section 2, we present some
basic definitions. In Section 3, we provide the scheme that unites the three
data structures presented in [12]. In Section 4 we present our data structure to
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represent an equivalence class using O(log n) bits once we allow the label space
to be cn for some c > 1. In Section 5, we show that Ω(log n) bits are necessary
with such a label space. In section 6, we give a data structure that represent an
equivalence class using O(log n/log f(n)) bits once we allow the label space to
be f(n) · n where f(n) ∈ ω(1) and f(n) ∈ O(log(n)). Finally, we conclude our
work in Section 6.

2 Definitions

In this section, we briefly describe the required definitions and backgrounds. An
integer partition p of n is a multiset of positive integers that sum to n. We
call these positive integers the classes of p, and we denote by |p| this number
of classes. We say that a partition p of n dominates a partition q of m where
n > m if q fits in p. To be more precise p dominates q if:

– |p| ≥ |q| and
– for 1 ≤ i ≤ |q|, the ith largest class (breaking ties arbitrarily) in p is at least

as big as the ith largest class in q.

For example, the partition {7, 7, 6} of 20 dominates the partition {5, 5} of 10,
but not the partition {8, 2} of 10. Given a partition p of n, we define a part q
of length k to be a collection of classes in p that sum to k. We say that a size s
fills q if q contains �k/s� classes of size s and a class of size k mod s. Finally we
say that two parts intersect if they share a common class; otherwise, they are
non-intersecting.

3 Time-Space Tradeoffs with Label Space [1, 2, . . . , n]

We assume that the equivalence class is given by a tuple containing the sizes of
the classes, and our task is to give each element a unique label from the range 1
to n.

Towards the end of this section, based on the work in [12], we show that for any
function f(n) = O(log n) there exists a data structure using O(

√
n log n/f(n))

bits that has O(f(n)) query time. First, we revise the main data structure of [12].
The number of partitions of an n element set into equivalence classes is the

same as the number of integer partitions of n, which by the Hardy-Ramanujan
formula [9] is asymptotically equivalent to 1

4n
√
3
eπ

√
2n
3 . Thus the information

theoretic lower bound for representing the equivalence class relation is Θ(
√

n).
Let k be the number of distinct class sizes. For i = 1 to k, let si be the

distinct sizes of the classes, and let ni be the number of classes of size si. Order
the classes in non-decreasing order of γi = sini so that for i = 1 to k − 1,
sini ≤ si+1ni+1. Notice that since

∑k
i=1 sini = n, k is bounded by

√
2n. The

primary data structure is made up of two sequences:
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– the sequence s that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for i = 2
to k and

– the sequence m that consists of ni, for i = 1 to k.

Elements of the two sequences are represented in binary. Since the length of
each element may vary, we store two other sequences that shadow the primary
sequences. The shadow sequences have a 1 at the starting point of each element
in the shadowed sequence and a 0 elsewhere. Also store a select structure (see
[13] or [8,16]) on the two shadow sequences in order to identify the 1s quickly.
It is shown in [12] that the space occupied by these sequences is O(

√
n).

Assign labels to elements based on the first sequence. To be more specific,
for the classes of size si, assign label values from

∑i−1
j=1 sjnj + 1 to

∑i
j=1 sjnj .

Next, we show how to implement the equivalence query. Given an element
labeled x, first find the predecessor p(x) of x, which is max{j|∑j

i=1 sini < x}.
Given x and y, if p(x) 
= p(y) then x and y belong to different equivalence
classes. If p(x) = p(y), then we know that x and y belong to equivalence
classes of the same size. They are in the same equivalence class if and only
if �(x − ∑p(x)

i=1 sini)/np(x)+1� is equal to �(y − ∑p(y)
i=1 sini)/np(y)+1�. Using the

select data structures saved we can find the value of ni in constant time, so what
is left is answering the predecessor query.

Given any function f(n) = O(log n) we can store the values of
∑i

j=1 sjnj for
each i that is a multiple of f(n) in a fully indexable dictionary [16] with the
improved redundancy of [8] (which supports the predecessor query in constant
time) using O((

√
n/f(n))1+ε) bits. However due to Lemma 2 in [12] this can be

done in O(
√

n log n/f(n)) bits. Now p(x) can be obtained by doing a constant
time look up on the partial sum values, then the actual predecessor can be found
by doing a linear search on the delta values in this range.

The following theorem gives a uniform treatment for the three techniques of
[12], and provides a generic trade-off between the auxiliary data structure size
and query time.

Theorem 1. Given a partition of an n element set into equivalence classes and
a function f(n) = O(log n), O(

√
n log n/f(n)) bits are sufficient for storing the

partition and to answer the equivalence query in O(f(n)) time if each element
is to be given a unique label in the range {1, 2, . . . , n}.
– By setting f(n) = log n, we get a structure using O(

√
n) bits that can answer

the equivalence query in O(log n) time.
– By setting f(n) = log log n, we get a structure using O(

√
n log n/log log n)

bits that can answer the equivalence query in O(log log n) time.
– By setting f(n) = 1, we get a structure using O(

√
n log n) bits that can

answer the equivalence query in O(1) time.

4 Succinct Data Structures with Label Space [1, 2, . . . , cn]

In this section, we move on to designing data structures where the n elements
can be freely labelled with unique labels in the range of 1 to cn. Our work is
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motivated by the fact that unless n is a power of two or a little less than a power
of two, we can increase the address space by a constant factor without increasing
the number of bits required to store each address. The queries can be answered
by looking at an auxiliary data structure. We are interested in time and space
efficient data structures that are within a constant factor from the information
theoretic lower bound. We first assign an implicit ordering of the elements. Each
element gets a label according to this ordering, and the queries are answered by
looking at these labels and the auxiliary data structure. Theorem 2 and 3 are
to lead the reader to our main result in this section which is Theorem 4.

Theorem 2. Given a partition of an n element set into equivalence classes,
O(log2 n) bits are sufficient for storing the partition and to answer the equiv-
alence query in O(1) time if the elements are to be given unique labels in the
range {1, 2, . . . , cn} for any constant c > 1.

Proof. Given a partition, first round the size of each class to the nearest power
of c. The required address space will increase from n to at most cn because the
size of each class increased by at most a factor of c. As in Section 2, let k be
the number of distinct class sizes (note that k ≤ logc(n)). For i = 1 to k, let si

be the distinct sizes of the classes, and let ni be the number of classes of size
si. Order the classes in non-decreasing order of γi = sini so that for i = 1 to
k − 1, sini ≤ si+1ni+1. Assign labels to elements such that classes of size si are
assigned values from

∑i−1
j=1 sjnj + 1 to

∑i
j=1 sjnj . Our data structure consists

of:

– a fully indexable dictionary [16] with the improved redundancy of [8]
that supports the predecessor query in constant time, storing the values∑i

j=1 sjnj for i = 1 to k. This structure uses Θ(log2 n) bits or Θ(log n)
words (see Lemma 2 in [12]), and

– a sequence that consists of ni, for i = 1 to k.

The equivalence query can be answered in O(1) time using the method
described in Section 3. ��

To further reduce the size of the data structure, round the size of each class
to the nearest power of

√
c, then round each ni value to the nearest power of

√
c.

These operations will increase the address space by at most a factor of (
√

c)2 = c.
To store the equivalence relation, it is sufficient to store the logarithm of the ni

values, which can be done in O(log n log log n) bits.

Theorem 3. Given a partition of an n element set into equivalence classes,
O(log n log log n) bits are sufficient for storing the partition and to answer the
equivalence queries in constant time if each element has to be given a unique
label in the range {1, 2, . . . , cn} for any constant c > 1.



548 H. El-Zein et al.

Finally we describe how to obtain a data structure whose size is O(log n)
bits. First we round the size of each class to the nearest power of

√
c, increas-

ing the label space by at most a factor of
√

c. Next, we make sure that
the distinct class sizes fill non-intersecting parts whose length is a multiple of
s = �kn/(�log√

c(n)�)� where k = c − √
c. Since we have at most �log√

c(n)�
distinct class sizes, this operation will increase our address space by at most kn,
so the new address space will have an upper bound of:

n(
√

c + k) = n(
√

c + (c − √
c))

= cn

as we desired. Let the length of the part filled by �(√c)i� be equal to cis (note
that ci can be equal to 0). Notice that:

�log√
c(n)�∑

i=0

ci ≤ cn/s

= c�log√
c(n)�/k

= O(log(n))

To represent the equivalence class relation it is sufficient to store the ci values.
Our data structure consists of a single bit vector ψ that stores the ci values
in unary with a 0 separator between each two consecutive values. We also
store a select structure on ψ to identify the 1s and 0s quickly, and we store a
rank structure to count the 1s and 0s quickly. The space required is O((c/k +
1)�log√

c(n)�) = O(log n) bits.
Assign labels to elements such that classes of size �(√c)i� are assigned values

from the range
∑i−1

j=0 cjs to (
∑i

j=0 cjs) − 1.

Implementing the Equivalence Query. Now given an element labeled x,
we can determine the size of the equivalence class that x belongs to by getting
the number of zeroes i before the �x/s�-st 1 in ψ. Once we find i we know that
x belongs to an equivalence class of size �(√c)i�. Given two elements x and y,
if they belong to classes with different sizes, then x and y are not in the same
equivalence class.

If x and y both belong to a class of size �(√c)i�, then calculate j the number
of 1s before the i-th 0 in ψ. x and y are in the same equivalence class if and
only if �(x − js)/�(√c)i�� = �(y − js)/�(√c)i��.1

Theorem 4. Given a partition of an n element set into equivalence classes,
O(log n) bits are sufficient for storing the partition and to answer the equivalence
query in O(1) time if each element is to be given a unique label in the range
{1, 2, . . . , cn} for any constant c > 1.

1 We assume that we are working in a RAM Model where (
√

c)i can be computed in
O(1) time. Relaxing this assumption would increase the query time to O(log log(n)).
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5 Lower Bound

In this section, we show that the space bound of Theorem 4 is optimal for the
range of label space used. Without loss of generality, to make our calculations
easier, we assume that n is a power of 2.

Let Scn be the set of all partitions of �cn� and Sn the set of all partitions
of n. While one partition of �cn� can dominate many partitions of n, we argue
first that at least (log n)/2c partitions of �cn� are necessary to dominate all
partitions of n. Let S be the smallest set of partitions of �cn� that dominates
all the partitions of n. Our first claim is that:

Lemma 1. |S| ≥ log n/(2c)

Proof. Consider the subset Q of Sn defined as follows:

– Q contains log n + 1 partitions, and
– the ith partition, for i = 0 to log n, qi of Q contains n/2i classes of size 2i.

Let p be a partition of �cn� that dominates partitions qj1 , qj2 , ..., qjm of Q where
j1 < j2 < ... < jm.

To dominate qjm , p must contain at least n/2jm classes of size 2jm . Since p
dominates qji+1 , for any 1 ≤ i < m, there must exist at least n/2ji+1 classes of
size greater then 2ji in p. Therefore, for p to dominate qji , p must contain at
least:

n/2ji − n/2ji+1 ≥ n/2ji − n/2ji+1

≥ n/2ji+1

additional classes of size greater than or equal to 2ji . Consequently:

cn ≥ n +
m−1∑

k=1

2jkn/2jk+1

≥
m∑

k=1

n/2

≥ mn/2

and m ≤ 2c. Thus any partition of �cn� can dominate at most 2c partitions
of Q, and to dominate Q we need a minimum of (log n + 1)/(2c) = Ω(log n)
partitions of �cn�. Since Q is a subset of Sn, our claim holds. ��

Extending the above argument, we show

Lemma 2. Let k ≥ 1 be any integer such that log (n/k) > 2ck, then |S| ≥
(
log(n/k)

k

)
/
(
2ck
k

)
.
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Proof. Divide n into k parts each of size n/k. Let Q be the set formed by filling
each part with a distinct power of 2, clearly |Q| =

(
log(n/k)

k

)
.

Let p be a partition of �cn� such that p dominates m parts filled by the
following distinct powers of 2: 2j1 , 2j2 , ..., 2jm where j1 < j2 < ... < jm.

To dominate the part filled by 2jm , p must contain at least n/(k2jm) classes
of size 2jm . Since p dominates the part filled by 2ji+1 , for any 1 ≤ i < m, there
must exist at least n/(k2ji+1) classes of size greater than 2ji in p. Therefore, for
p to dominate the part filled by 2ji , p must contain at least:

n/(k2ji) − n/(k2ji+1) ≥ n/(k2ji) − n/(k2ji+1)

≥ n/(k2ji+1)

additional classes of size greater than or equal to 2ji . Consequently:

cn ≥ n/k +
m−1∑

i=1

2jin/(k2ji+1)

≥
m∑

i=1

n/(2k)

≥ mn/(2k)

and m ≤ 2ck. Thus any partition of �cn� can dominate at most 2ck distinct
parts, and any partition of �cn� can dominate at most

(
2ck
k

)
partitions of Q.

Hence, to dominate Q we need a minimum of
(
log(n/k)

k

)
/
(
2ck
k

)
partitions of �cn�.

Since Q is a subset of Sn our claim holds. ��
The information theoretic lower bound for space to represent the equivalence
class information is given by log(|S|) ≥ log(

(
log(n/k)

k

)
/
(
2ck
k

)
), if we choose k =

log n/4c we get our desired bound log(|S|) = Ω(log n).

Theorem 5. Given a partition of an n element set into equivalence classes,
Θ(log n) bits are necessary and sufficient for storing the partition if each element
is to be given a unique label in the range {1, 2, . . . , cn} for any constant c > 1.
Moreover, the equivalence query in such a structure can be answered in O(1)
time.

6 Data Structure with Label Space [1, 2, . . . , f(n) · n]

In this section, we generalize the techniques presented in section 4 to design a
data structure where the n elements can be freely labelled with unique labels in
the range of 1 to f(n)n where f(n) ∈ ω(1) and f(n) ∈ O(log(n)).

Theorem 6. Given a partition of an n element set into equivalence classes and a
function f(n) where f(n) ∈ ω(1) and f(n) ∈ O(log(n)), O(log(n)/ log(f(n))) bits
are sufficient for storing the partition and to answer the equivalence query in O(1)
time if the elements are to be given unique labels in the range {1, 2, . . . , f(n)n}.
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Proof. Let l = f(n)/2, we round the size of each class to the nearest power of
l, increasing the label space by at most a factor of l. Then, we make sure that
the distinct class sizes fill non-intersecting parts whose length is a multiple of
s = �2�log(n)�f(n)/(4�logl(n)�)�. Since we have at most �logl(n)� distinct class
sizes, this operation will increase our address space by at most 2�log(n)�f(n)/4,
so the new address space will have an upper bound of:

n(f(n)/2) + 2�log(n)�f(n)/4 ≤ n(f(n)/2) + 2nf(n)/4
= f(n)n

as we desired. Let the length of the part filled by �(l)i� be equal to cis. Notice
that:

�logl(n)�∑

i=0

ci ≤ f(n)n/s

≤ 4�logl(n)�
= O(log(n)/log(f(n)))

To represent the equivalence class relation, we store the value of �log(n)�
and f(n) using O(log log(n)) bits. Moreover, we store the ci values in
O(log(n)/log(f(n))) bits using the same method as in Theorem 4. To answer
the equivalence query, we calculate the value of s and l, then we apply the same
procedure as in Theorem 4. ��

7 Conclusion

We have discussed the trade-off between label space and auxiliary space for the
fundamental problem of supporting equivalence queries. Our main result is to
show that once labels are assigned from the range cn a data structure whose size
is Θ(log n) bits is necessary and sufficient to represent the equivalence classes.
Our scheme allows an implicit labeling of elements and supports equivalence
queries in O(1) time. The main motivation behind our work is that when n is
not a power of 2 or slightly less than a power of 2, we can increase the address
space without increasing the number of bits required to store each label. Thus,
for most values of n, our result is achieved using an optimal number of bits,
which is �log n� bits.

Apart from providing, what we believe, a non-trivial data structure requiring
only Θ(log n) bits, we have also touched upon the interesting tradeoff issue
between auxiliary space and the label space. As there is a huge body of research
in ‘labeling schemes’ (see [1]), investigation into such a tradeoff for other labeling
schemes maybe interesting.
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Abstract. We provide algorithms performing Depth-First Search (DFS)
on a directed or undirected graph with n vertices and m edges using
only O(n) bits. One algorithm uses O(n) bits and runs in O(m logn)
time. Another algorithm uses n+ o(n) bits and runs in polynomial time.
Furthermore, we show that DFS on a directed acyclic graph can be done
in space n/2Ω(

√
log n) and in polynomial time, and we also give a simple

linear-time O(log n)-space algorithm for the depth-first traversal of an
undirected tree. Finally, we also show that for a graph having an O(1)-
size feedback set, DFS can be done in O(log n) space. Our algorithms
are based on the analysis of properties of DFS and applications of the
s-t connectivity algorithms due to Reingold and Barnes et al., both of
which run in sublinear space.

1 Introduction

Computation with limited memory has been a quite active topic of research
recently. Partly motivated by the massive data phenomenon in practice, classical
computational problems have been reconsidered in terms of various streaming
models, for example. This paper is concerned with the more classical Random
Access Machine (RAM) model, where input data is in read-only random access
memory, and computation proceeds using additional working space, which, for
example, consists of O(log n) or o(n) or O(n) bits. The output will be stored
in a write-only output tape. For this model, recent works have given some new
interesting memory-limited algorithms: Elberfeld et al. [7] and Elberfeld and
Kawarabayashi [8] have given O(log n)-space algorithms for solving a family
of fundamental graph problems (more precisely those problems expressibly in
monadic second-order language on graphs of bounded tree-width) and for the
canonization of graphs of bounded genus. Very recently, Asano et al. [5] and
Imai et al. [9] have shown that the reachability problem on directed graphs can
be solved using only Õ(

√
n) space for planar graphs.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 553–564, 2014.
DOI: 10.1007/978-3-319-13075-0 44
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In this paper, we investigate how one can perform Depth-First Search (DFS) of
a given graph using limited amount of memory. DFS, being one of the most funda-
mental and important ways to search or explore a graph, is used as a subroutine in
many prominent graph algorithms [15]. A better understanding of DFS in terms
of space complexity and memory-efficient algorithms is desirable, but it appears
that such aspects of DFS have not been considered much. This is perhaps because
the problem is trivial if one uses O(n log n) bits of memory on one hand, where
n is the number of vertices of a graph, and, on the other hand, the problem is P-
complete [13] and thus polylogarithmic-space algorithms are unlikely to exist.

1.1 The DFS Problem

Before we outline previous work on DFS, we explain some technical details about
the DFS problem. We can cast a DFS problem in various ways. The output can be
(1) the DFS tree, or the output can be (2) the DFS numbering of each vertex, that
is, the ordering of vertices with respect to the time of the first visit, or (3) the input
can be a graph together with two vertices u and v, and the output can be the yes/no
answer as to whether vertex u is visited before vertex v in DFS. For our purposes,
which of the three variants above we consider does not matter since they can all
be reduced to each other using O(log n) space. Furthermore, all the algorithms we
present can directly handle any of the three variants in a straightforward way. For
definiteness, we think of DFS problem as the DFS tree construction problem.

We assume that an input graph is given by an adjacency list. Suppose that
DFS is visiting a vertex v for the first time, reaching v from vertex u. DFS
will now visit the first unvisited neighbor of v, where the “first” is usually with
respect to either one of the following two orders: (1) the appearance order in v’s
adjacency list; or, (2) in the case of undirected graphs: under the assumption
that n vertices are numbered 1, . . . , n and with respect to the cyclic ordering of
1, . . . , n, the unvisited vertex x among v’s neighbors that appears first after u in
the cyclic ordering.

DFS with respect to either one of the two scenarios above is sometimes called
lexicographically smallest DFS or lexicographic DFS or lex-DFS [16], [17] (and
sometimes simply called DFS). Usually, a lex-DFS algorithm can handle both
scenarios (1) and (2) in the same manner, and one does not need to distinguish
the two scenarios. All algorithms in this paper perform lex-DFS.

In contrast to lex-DFS, we can also consider an algorithm that outputs some
DFS tree of a given graph. Such an algorithm treats an adjacency list as a set ,
ignoring the order of appearance of vertices in it, and outputs a spanning tree T
such that there exists some adjacency ordering R such that T is the DFS tree
with respect to R. We say that such a DFS algorithm performs general-DFS .

1.2 Related Work

Reif [13] has shown that lex-DFS is P-complete. Anderson and Mayr [2] have
shown that computing the lexicographically first maximal path, that is, comput-
ing the leftmost root-to-leaf path of the lex-DFS tree, is already P-complete.
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Aggarwal and Anderson [1] have shown that general-DFS is computable in
RNC, that is, computable by a randomized parallel algorithm with polynomi-
ally many processors and in polylogarithmic parallel time in the PRAM model,
or, equivalently, by randomized polynomial-size poly-logarithmic depth circuits.
There is no known deterministic NC algorithm for general-DFS.

In a seminal work, Reingold [14] has given a deterministic O(log n)-space
algorithm for the Undirected s-t Connectivity Problem:

Theorem 1 (Reingold [14]). Given an undirected graph and two vertices s
and t, determining whether s and t are connected can be done in deterministic
O(log n) space.

Using Reingold’s algorithm, one can compute a minimum spanning tree of a
given graph in O(log n) space.

The s-t connectivity problem for directed graphs is NL-complete. This prob-
lem can be solved using O(log2 n) space and nO(log n) time by Savitch’s algorithm
(see [12]). Concerning polynomial-time algorithms solving this problem, the best
known upper bound for space is the following slightly sublinear one due to Barnes
et al. [6]:

Theorem 2 (Barnes et al. [6]). Directed s-t connectivity can be solved deter-
ministically in n/2Ω(

√
log n) space and in polynomial time.

This is also the best space upper bound for polynomial-time algorithms solv-
ing the following problems: computing the distance between a vertex s and a
vertex t in an undirected or directed unweighted graph, computing the single-
source shortest-path tree in a weighted undirected or directed graph [10], and a
computing the breadth-first search tree.

2 Preliminaries

Throughout the paper, we assume that the set of vertices of a given graph is the
set {1, . . . , n}.

We think of DFS in the following way: Initially, all the vertices are white.
When vertex v is visited from vertex u, the color of v changes from white to gray
and the search head moves from u to v. When there is no more white neighbor
of v, the search at v is finished, the color of v changes from gray to black , and
the search head returns from v to u.

Suppose that in a given undirected or directed graph, m vertices are reachable
from the DFS starting vertex s. At time t = 0, all vertices are white. At time t =
1, the starting vertex s becomes gray. At each time t ≥ 1, exactly one vertex
changes its color, either from white to gray, or, from gray to black. At time t =
2m, the color of s becomes black and the search is completed. For a vertex v,
the discovery time of v is the time when v changes its color from white to gray
and the finishing time is the time when v changes its color from gray to black.

Note that the gray vertices always form a simple path from the starting
vertex s to the vertex where the search head is currently located. We can also
think of this path as residing in the depth-first-search tree.
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We let Reachable(x, u,G) denote a subroutine that decides, given a graph G
and two vertices x and u, whether vertex u is reachable from vertex x in G. If G is
a directed graph, reachability is interpreted in terms of a directed path, and if G
is undirected, it simply means connectivity. To implement Reachable(x, u,G)
we apply Reingold’s algorithm and Barnes et al.’s algorithm for the cases of
undirected and directed graphs, respectively.

3 Characterizations for the Gray and Black Vertices

In this section, for the sake of convenience, we collect our lemmas characterizing
the gray vertices, the gray path, and the black vertices in several settings. These
lemmas naturally yield our algorithms in the next section and they are crucial to
explain their correctness. For most lemmas, proofs are immediate and omitted.

Lemma 1 (All-White Path). Vertex v is visited during DFS while vertex u
is gray, (i.e., v is a descendant of u in the DFS tree) if and only if the following
holds: At the time u is discovered, v is white and v can be reached from u by an
all-white path.

Let s be the starting vertex of a DFS. In the following we assume that the
state of the DFS at time t is such that the search head is at a gray vertex u. Let
p = 〈i0 = s, i1, . . . , ik−1, ik = u〉 be the gray path at time t, where ij+1 is visited
from ij (for 0 ≤ j < k).

The following lemma characterizes the gray path in terms of black vertices.

Lemma 2 (Gray Path from Black Vertices). The gray path p = 〈i0 =
s, i1, . . . , ik−1, ik = u〉 satisfies the following. For j ∈ {0, . . . , k − 1}, vertex ij+1

is the first vertex x in the adjacency list of vertex ij such that (1) x is not black
at time t, and that (2) x is not in {i0, . . . , ij}.
Proof. Vertex ij+1 becomes gray only after all the vertices in the adjacency
list of ij preceding ij+1 have become non-white. �

Let C = {i0, . . . , ik} be the set of gray vertices comprising the gray path P .
The following characterization explains how to reconstruct the path P from the
set C.

Lemma 3 (Gray Path from Gray Set). Let P ′ = 〈i0, . . . , ij〉 be the initial
segment of P of length j. Then, the following characterizes the immediate suc-
cessor x = ij+1 of ij in P .
(1) x is in C.
(2) x is a neighbor of ij.
(3) x is not in {i0, . . . , ij}.
(4) x is the first vertex in the adjacency list of ij satisfying (1), (2), and (3).

For our algorithms we need to be able to reconstruct the gray path p =
〈i0 = s, i1, . . . , ik−1, ik = u〉 from the two endpoints s and u alone. The fol-
lowing lemma characterizes the vertices i1, . . . , ik−1 in such a way that one can
reconstruct them given s and u. The proof immediately follows from Lemma 1
(All-White Path).
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Lemma 4 (Gray Path). For j ∈ {1, . . . , k − 1}, vertex ij is the first vertex
x in the adjacency list of ij−1 from which vertex u can be reached without going
through any of the vertices in {i0, . . . , ij−1}.
Corollary 1 (Gray Path Reconstruction). Using an n-bit vector one can
reconstruct i1, . . . , ik−1 one by one as follows. For j = 1, . . . , k − 1, for each
vertex x adjacent to ij−1, use Reachable(x, u,G−{i0, . . . , ij−1}) and the previous
lemma to determine whether x is ij.

When considering DFS on a DAG the characterization and reconstruction of
the gray path simplifies as follows.

Lemma 5 (Gray Path in a DAG). For j ∈ {1, . . . , k − 1}, vertex ij is the
first vertex x in the adjacency list of ij−1 such that vertex u is reachable from x.

Proof. Let P be a directed simple path from x to u. Then no vertex y in
{i0, . . . , ij−1} can appear on the path P since x is reachable from y and the
graph is acyclic. �

Corollary 2 (Gray Path Reconstruction in a DAG). For a DAG, one can
reconstruct i1, . . . , ik−1 similarly as in the Gray Path Reconstruction Corollary
above but without keeping track of i0, . . . , ij−1 by replacing the call to the routine
Reachable(x, u,G − {i0, . . . , ij−1}) with Reachable(x, u,G).

Let s be a starting vertex of a DFS. Assume that at time t − 1, the gray
path is of the form 〈i0 = s, . . . , ik = u, ik+1 = v〉, and that at time t, vertex v
gets finished, and thus the gray path is now of the form 〈i0 = s, . . . , ik = u〉.
Let the adjacency list of vertex u be 〈l1, . . . , lq−1, lq = v, lq+1, . . . , lr〉. DFS has
backtracked from v to u and now we want to find the first unvisited, white vertex
x among lq+1, . . . , lr in order to visit x next. If we find out that such an x does
not exist, we backtrack further from u.

Suppose y ∈ {lq+1, . . . , lr}. We can determine whether y has been visited or
not, that is, whether y is black, gray or white using the following lemma.

Lemma 6 (Black Vertex in a Directed Graph). Vertex y is black at time t
if and only if there exist j ∈ {0, . . . , k} and vertex α such that the following hold:

1. The directed edge (ij , α) exists.
2. In the adjacency list of ij, vertex α precedes vertex ij+1.
3. Vertex y is reachable from vertex α without going through any of the vertices

{i0, . . . , ij}.
Proof. Vertex y is black if and only if the path from s to y in the DFS tree
is lexicographically smaller than the path from s to u. We can easily finish the
proof using the Lemma 1 (All-White Path). �

For undirected graphs, we can simplify the lemma above as follows.

Lemma 7 (White-Black Not Adjacent in Undirected DFS). During a
DFS in an undirected graph, a white vertex is never adjacent to a black vertex.
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Proof. Initially, the property holds, and the property is maintained during
DFS since a vertex becomes black only when all of its neighbors are non-white.
�

Lemma 8 (Black Vertex in an Undirected Graph). Vertex y is black at
time t if and only if the following holds: There exists a vertex w ∈ {l1, . . . , lq−1}
such that y is reachable from w without going through {i0, . . . , ik}.
Proof. When vertex u is first visited from ik−1, none neighbor of us is black by
Lemma 7 (White-Black Not Adjacent in Undirected DFS), and hence j and α,
as required in Lemma 6 (Black Vertex in Directed Graph), cannot exist if j < k.
�

4 O(n)-Space DFS Algorithms

Our algorithms maintain the color of each vertex. For example, our 4-color algo-
rithm uses 2 bits per vertex to hold the current color and thus uses 2n bits in
total for color information. Any additional space used is o(n), and thus the space
used to maintain the colors dominates the space complexity of our algorithms.

A basic problem that we face when restricted to O(n) space is that we cannot
store, for example, the ordered list of the vertices that are currently gray since
that would require Θ(n log n) space. A basic solution is to retrieve information
by restarting the search from the starting vertex.

Algorithm 1: a 4-Color Algorithm. Our first algorithm, Algorithm 1, uses 4
colors for each vertex. It uses white, gray, and black according to the definitions
of these colors explained in Section 2. To backtrack, it retraces the current gray
path using Lemma 3 (Gray Path from Gray Set) by using one new color, blue,
to keep track of the gray vertices in the initial segment reconstructed so far. We
describe the algorithm in greater detail. Initially the starting vertex is colored
gray and all other vertices are colored white. Suppose during the DFS we are at
a vertex u (which must then be gray). If u has a white neighbor then we proceed
with the search going to the first white neighbor of u, which is then colored gray.
If u has no white neighbor, we color u black and backtrack. When backtracking,
in case u is the starting vertex the search ends. Otherwise we need to determine
the parent of u which is done by retracing the gray path as follows. We color the
starting vertex blue. Then we repeatedly find the smallest gray vertex v that is a
neighbor of the last vertex that was colored blue until this vertex is u. When u is
colored blue, the parent of u is the last vertex that was colored blue just before
that. We then recolor all blue vertices to be gray (by once again retracing the
path), recolor u to be black, and have successfully backtracked.

Theorem 3. Given an undirected or directed graph G consisting of n vertices
and m edges, DFS on G can be done in O(mn) time and in 2n+O(log n) space.

Proof. As explained in Section 2, the total number of color changes is 2n.
Between any two color changes, each edge is inspected at most O(1) times. �
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Algorithm 2: a Faster 4-Color Algorithm. We can speed up Algorithm 1
while still using only O(n) bits as follows. Algorithm 2 uses a double-ended queue
(DEQ) holding O(n/ log n) items, where each item in the queue is the O(log n)-
bit name of some vertex. The queue holds the most recently visited O(n/ log n)
gray vertices.

Backtracking to vertex u can be done in O(1) time if the queue holds u, that
is, if the queue is nonempty. When the queue becomes empty, we reconstruct
the gray path in O(m) time, but such reconstructions happen at most O(log n)
times. Thus we have the following.

Theorem 4. DFS on undirected and directed graphs can be done in O(m log n)
time and in O(n) space.

Remark 1: When using space s, where n ≤ s ≤ n log n, the algorithm above
can be adjusted to run in time O(m n log n/s). Thus this algorithm is memory-
adjustable in the sense of [3], [4], and [11].

Algorithm 3: a 3-Color Algorithm. By repeatedly restarting, we can reduce
the number of colors by one. In each iteration, Algorithm 3 identifies one new
black vertex. Starting from vertex s, we proceed using colors white, gray and
black until we find the first gray vertex v that is now changing its color from
gray to black. At such a point, we globally update the color of v as black, change
the color of all the other gray vertices from gray back to white, and start a new
iteration, again from s. Correctness of Algorithm 3 follows from Lemma 2 (Gray
Path from Black Vertices).

Remark 2: In the description of Algorithm 3 above, vertex x being white does
not always imply that x has never been visited: Even when x has been visited,
the color of x becomes white again in a new iteration on the black-or-white
graph.

With Algorithm 3 have obtain following theorem.

Theorem 5. For every ε > 0, DFS on undirected and directed graphs can be
done in O(mn) time and in (log2(3) + ε + o(1))n space.

Three Situations of a DFS. To describe our next two algorithms we think
of the following three situations in which a DFS algorithm can be:

1. First visit: This situation arises if a vertex v has just been visited for the
first time. The successor of v will be the first white vertex in the adjacency
list of v if such a vertex exists. Otherwise we backtrack.

2. Backtrack: When vertex v becomes black, we backtrack to the parent ver-
tex u.

3. Pivot: After backtracking from v to u, if the adjacency list of u is
〈l1, . . . , lq = v, lq+1, . . . , lr〉, we wish to find the first white vertex x among
lq+1, . . . , lr, and visit x next if such an x exists; otherwise we backtrack
further.
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We now describe algorithms in terms of how they proceed in each of the three
situations.

Algorithm 4: a 2-Color Algorithm. Our two color algorithm maintains the
gray path but does not distinguish between black and white vertices. The three
situations of the DFS are handled in the following way.

1. First visit: When v has just been visited for the first time, the color of v had
been white and has just become gray. This situation is essentially a special
case of the situation Pivot except that there is no vertex v from which we
have just returned. To reduce this situation to the pivot situation, we simply
pretend that there is an auxiliary black vertex v not part of the actual input
graph incident only to the edge (u, v) from which we have just backtracked
to u. For this, the vertex v is treated as the first neighbor of u.

2. Backtrack: In order to backtrack we memorize the current vertex u and
then retrace the gray path from the starting vertex s to u. To do so, we
first reinitialize so that all vertices are white. Using Corollary 1 (Gray Path
Reconstruction), we iteratively reconstruct the gray path from the starting
vertex s to u, and thereby find u’s parent. In applying Corollary 1 we use
the Reachable routine and one color, gray.

3. Pivot: Using Corollary 1 (Gray Path Reconstruction) together with
Lemmas 6 and 8 (Black Vertex in Directed/Undirected Graph), we find the
white vertex x to be visited next by using the Reachable routine and using
one color, gray. If no such vertex x exists, we perform a backtracking step.

The space used by Algorithm 4 is n bits plus the space used by the routine
Reachable.

Algorithm 5: an algorithm without colors for DAGs. For the case of
DAGs, we do not need to use any color. The algorithm copies the behavior of
Algorithm 4, which in the case the input graph is a DAG simplifies as follows.

1. First visit: As in the case of Algorithm 4, this situation reduces to the pivot
situation.

2. Backtrack: Similar to the Backtrack situation of Algorithm 4, we can just
retrace the gray path from the starting vertex s to the current vertex u.
Applying Corollary 2 instead of Corollary 1 we always use Reachable(x, u,G)
instead of Reachable(x, u,G − {i0, . . . , ij−1}), thus avoid using any colors.

3. Pivot: Again Similar to the respective situation in Algorithm 4, we can follow
the gray path by reconstructing one gray edge at a time, thereby forgetting
the previous gray edges, and by then invoking Reachable(x, u,G).

With Algorithms 4 and 5 and Theorems 1 and 2, we can conclude as follows.

Theorem 6. (1) DFS on a directed graph can be done in n+n/2Ω(
√
log n) space

and in polynomial time.
(2) DFS on an undirected graph can be done in n + O(log n) space and in poly-
nomial time.
(3) DFS on a DAG can be done either in space n/2Ω(

√
log n) and in polynomial

time or in space O(log2 n) and in time nO(log n).
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5 Tree-Walking

In this section, we consider undirected trees and forests. We give a simple
O(log n)-space algorithm for the depth-first traversal of a tree. The algorithm
can be extended to an O(log n)-space algorithm for deciding whether two given
vertices are connected in a given forest and to an O(log n)-space algorithm for
deciding if a given undirected graph contains a cycle.

Throughout the section, we assume that each vertex u holds a cyclic list of
its neighbors, and Nextu(v) denotes the vertex that immediately follows vertex v
in the cyclic list of vertex u. We can follow a tree in the depth-first order starting
from any edge (u, v) as follows:

procedure EdgeFollow(u, v)
c = 0; (u0, v0) = (u, v);
repeat

Output the edge (u, v);
w = Nextv(u);
u = v; v = w; c = c + 1;

until u = u0 and v = v0;
return c;

Lemma 9. Let G be a tree of n vertices and (u, v) be any edge. Then, the
procedure EdgeFollow(u, v) returns 2n − 2 after visiting every edge of G exactly
twice.

Proof. We prove the lemma by induction on n. Let Adj(u) = (v = v0, v1, . . . , va)
and Adj(v) = (u = u0, u1, . . . , ub) be the cyclic adjacency list of u and v, respec-
tively. We also assume that removal of (u, v) from G results in two trees Tu and Tv,
where Tu (resp. Tv) is the tree containing the vertex u (resp. v). By the induction
hypothesis, if we apply the procedure EdgeFollow(u, v) to the tree (u, v)+Tv, then
it returns 2|Tv| after traversing all the edges in (u, v) + Tv. Similarly, applying the
procedureEdgeFollow(v, u) to the tree (v, u)+Tu, it traversesall the edgesofTu and
returns 2|Tu|. SinceNextu(v) = v1 andNextv(ub) = u,we can combine the two edge
sequences produced by EdgeFollow(u, v) and EdgeFollow(v, u) to obtain the com-
plete sequence of the depth-first search on T . The lemma follows since |Tu ∪Tv| = n
and the edge (u, v) is contained twice in each of the sequences. Note that the excep-
tional cases when Tu or Tv is empty are dealt with appropriately. �

Theorem 7. Using Edge-Follow, deciding s-t connectivity in a forest and detect-
ing a cycle in an undirected graph can both be done in O(log n) space and in O(n)
time.

6 DFS in O(logn)-Space for Undirected Graphs with
O(1)-Size Feedback Vertex Set

Now we consider the case where the input is an undirected graph G = (V,E)
having feedback vertex set F of constant size. A feedback vertex set F ⊆ V of G
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is a set of vertices such that G − F contains no cycle. If a graph has a feedback
vertex set of constant size, we can easily find a constant-size feedback vertex
set in polynomial time and logarithmic space O(|F | log n). Thus, from now on,
assume that we are given an undirected graph G = (V,E) and a feedback vertex
set F ⊆ V of constant size. Furthermore, without loss of generality, assume that
the set F includes a DFS-starting vertex s. (We may always add s to F if s 
∈ F .)
Note that G − F is a forest.

Our overall strategy will be similar to Algorithm 4. By exploiting the fact
that G − F is a forest, we can proceed similarly as in Algorithm 4 without
remembering all the gray vertices and without using any color for reconstructing
the gray path.

In particular, for the current gray path P , we only keep in memory the fol-
lowing parts of P : the vertices x in the feedback set F that appear in P , together
with appearance order information, and for each such x, the non-feedback ver-
tices that immediately precede and follow x in P if such vertices exist.

For simplicity of explanation, assume that precisely four vertices in the set F ,
namely vertices i, j, k and l, appear in the current gray path P in this order.
Then, we will keep in memory the following parts of path P as our data (We do
not keep in memory the parts corresponding to “. . . ”.):

i, i1, . . . , j0, j, j1, . . . , k0, k, k1, . . . , l0, l, l1, . . . , lc,

where all of the above are in the order of appearance in P , i is the starting
vertex s, lc is the vertex where the current head lies, and, for example, j0, j,
and j1 are consecutive vertices in the path P . It may happen that, for example,
i1 = j0, or that neither i1 nor j0 exist (in this case two feedback vertices i
and j appear consecutively in P ). Since the size of the feedback vertex set F is
constant, the data above has size only O(log n).

How can we reconstruct the whole gray path P from the data above? Con-
sider, for example, the vertices appearing between j1 and k0 in the path P . These
vertices, together with the appearance ordering, can be characterized as vertices
appearing in the unique simple path connecting vertices j1 and k0 in the forest
G − F .

Note that we can follow the vertices appearing in path P consecutively, one
at a time, using only the tree-walking algorithm and without using Reingold’s
s-t connectivity algorithm. We can thus in space O(log n) determine at any point
in time whether a vertex is gray and within the same space complexity compute
the predecessor of a vertex on the gray path.

In analogy to Algorithm 4 it remains to explain how to perform the pivot
situation in a DFS. In order to proceed as in Algorithm 4, we have to be able
to check whether vertices y and z are connected in G − C, where C is the set
of the vertices that are currently gray and vertices y and z are two neighbors of
the vertex u to which we have just backtracked.

We claim that connectivity checking for the restricted case of constant-size
feedback vertex set can be done using only the tree-walking algorithm (again
without using Reingold’s s-t connectivity algorithm) as follows. Since paths with-
out internal vertices from the feedback vertex set and without gray vertices can
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be found using the tree-walking algorithm, it suffices to show that for each pair of
vertices in the feedback vertex set we can determine whether they are connected
in G − C.

For each pair of feedback vertices f and g, we can determine, using tree-
walking, whether f and g are connected by a path going only though non-
feedback vertices that are not gray. So, by first checking whether f and g are
connected in G − (C ∪ F ), where C is the set of vertices that are currently gray,
and taking the transitive closure, we can obtain the complete table as to which
pairs of feedback vertices are connected in G−C. Note that since F has constant
size, taking the transitive closure can be done in space O(log n). We conclude
the following.

Theorem 8. For undirected graphs whose minimum feedback vertex set are of
constant size, DFS can be done in O(log n) space using only the tree-walking
algorithm (i.e., without appealing to Reingold’s s-t connectivity algorithm).

7 Open Questions

We conclude with two open questions.
Open Question 1: Can DFS be done in cn space for some constant c < 1?
Open Question 2: Using O(n) space, can DFS be done in o(m log n) time?
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Abstract. In the path reporting problem, we preprocess a tree on n
nodes each of which is assigned a weight, such that given an arbitrary
path and a weight range, we can report the nodes whose weights are
within the range. We consider this problem in dynamic settings, and pro-
pose the first non-trivial linear-space solution that supports path report-
ing in O((lg n/ lg lg n)2 + occ lg n/ lg lg n) time, where occ is the output
size, and the insertion and deletion of a node of an arbitrary degree in
O(lg2+ε n) amortized time, for any constant ε ∈ (0, 1). Obvious solutions
based on directly dynamizing solutions to the static version of this prob-
lem all require Ω((lg n/ lg lg n)2) time for each node reported, and thus
our query time is much faster. For the counting version of this problem,
we design a structure that supports path counting in O((lg n/ lg lg n)2)
time, and insertion and deletion in O((lg n/ lg lg n)2) amortized time.
This matches the current best result for 2D dynamic range counting,
which can be viewed as a special case of path counting.

1 Introduction

In computer science, trees are widely used in modeling and representing dif-
ferent types of data. In many scenarios, objects are represented by nodes and
their properties are characterized by weights assigned to nodes. Researchers have
studied the problems of maintaining a weighted tree, such that, given any pair of
nodes, certain functions over the path between these two nodes can be computed
efficiently [1,5–7,14,15,17,18,21]. The inquires of the values of these functions
are referred to as path queries.

Previously, most work on path queries focus on static weighted trees, i.e., the
structure and the weights of nodes remain unchanged over time. This assump-
tion is not always realistic and it is highly inefficient to rebuild the whole data
structure when handling updates. In this paper, we consider the problem of
maintaining dynamic weighted trees and design data structures that support
path counting and path reporting queries in linear space and efficient time. More
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precisely, given a query path and a query range, these types of queries return the
number/set of nodes on the path whose weights are in the given range. As men-
tioned in He et al.’s work [14,15], these path queries generalize two-dimensional
range counting and reporting queries.

Without loss of generality, we represent the input tree as an ordinal one,
i.e., a rooted tree in which children of a node are ordered. Our data structures
allow to change the weight of an existing node, insert a new node, or delete an
existing node. These updates are referred to as modify weight, node insert,
and node delete, respectively. For node insert and node delete, we adopt the
same powerful updating protocol as Navarro and Sadakane [20], which allows us
to insert or delete a leaf, a root, or an internal node. A newly inserted internal
node will become the parent of consecutive children of an existing node, and a
deleted root must have only zero or one child. The deletion of a non-root node
is described in Section 2.2.

It is natural to identify nodes with their preorder ranks in static ordinal trees.
However, preorder ranks of nodes can change over time in dynamic trees. Thus,
in our dynamic data structures, nodes are identified by immutable identifiers of
sizes O(lg n) bits1. Unless otherwise specified, the underlying model of computa-
tion in this paper is the unit-cost word RAM model with word size w = Ω(lg n).

Previous Work. The problems of supporting static path counting and path
reporting queries have been heavily studied in recent years [6,14,15,21]. Given an
input tree on n nodes whose weights are drawn from [1..σ], He et al. [15] designed
succinct data structures to support path counting queries in O(lg σ/ lg lg n + 1)
time, and path reporting queries in O((occ + 1)(lg σ/ lg lg n + 1)) time, where
occ is the size of output. Later, Chan et al. [6] achieved more time/space trade-
offs for path reporting queries. They developed an O(n)-word structure with
O(lgε n + occ · lgε n) query time, where ε is an arbitrary constant in (0, 1);
an O(n lg lg n)-word structure with O(lg lg n + occ · lg lg n) query time; and an
O(n lgε n)-word structure with O(lg lg n + occ) query time.

There are other heavily studied path query problems such as path minimum
queries, and we refer to Chan et al. [6] for a recent survey on the static version of
this problem. The dynamic version of the path minimum problem has also been
studied extensively. Brodal et al. [5] designed a linear space data structure that
supports queries and changes to the weight of a node in O(lg n/ lg lg n) time, and
handles insertions or deletions of a node with zero or one child in O(lg n/ lg lg n)
amortized time. The query time is optimal under the cell probe model provided
that the update time is O(lgO(1) n) [2]. For the more restricted case in which
only insertions and deletions of leaves are allowed, queries can be answered in
O(1) time and updates can be supported in O(1) amortized time [1,5,17].

Our Contributions. We develop efficient dynamic data structures for path
counting and path reporting queries, all of which occupy O(n) words. Our data
structure supports path counting queries in O((lg n/ lg lg n)2) time, and handles
changes of weights, insertions and deletions in O((lg n/ lg lg n)2) amortized time.
This structure matches the best known result for dynamic range counting [12].

1 We use lg to denote the base-2 logarithm.
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For path reporting queries, our data structure requires O(lg2+ε n) time for
updates, but answers queries in O((lg n/ lg lg n)2 + occ lg n/ lg lg n)) time, where
occ is the output size. By slightly sacrificing the update time, our structure
significantly improves the query time over the straightforward approaches that
dynamize known static data structures [6,14,15,21]: One could dynamize the
static structure of He et al. [14] by replacing static labeled ordinal trees with
dynamic unlabeled trees and dynamic bit vectors, and managing weight ranges
using a red-black tree [8]. This leads to an O(n)-word data structure with O((1+
occ) lg2 n/ lg lg n) query time and O(lg2 n/ lg lg n) update time. Alternatively, one
could obtain another O(n)-word structure with O(lg2+ε n + occ · (lg n/ lg lg n)2)
query time and O((lg n/ lg lg n)2) update time, by dynamizing the improved
result of He et al. [15] in a similar manner. It is unclear how to dynamize the
structures designed by Patil et al. [21] and Chan et al. [6] within linear space.

All of our dynamic structures presented in this paper are able to handle
insertions and deletions of nodes with multiple children, which are not sup-
ported in previous dynamic data structures for path queries [1,5,17]. Our app-
roach is almost completely different from He et al.’s [15] approach for static
path queries. To develop our data structures, we employ a various of techniques
including topology trees, tree extraction, and balanced parentheses. In particular,
for dynamic path reporting, one key strategy is to carefully design transforma-
tions on trees that preserve certain properties, such that the idea of dynamic
fractional cascading can be adapted to work on multiple datasets in which
each set represents tree-structured data. This new approach may be of general
interest.

Section 2 reviews the techniques used in our data structures. Section 3
describes our dynamic data structures for path reporting. Due to the page limi-
tation, the support for path counting is deferred to the full version of this paper.

2 Preliminary

2.1 Restricted Multilevel Partition and Topology Trees

Frederickson [9–11] proposed topology trees to maintain connectivity information
and minimum spanning trees of dynamic graphs, and to support operations over
dynamic trees. We make use of a variant of topology trees based on a restricted
partition of a binary tree B, where the nodes of B are clustered into disjoint
sets such that the elements in each set are nodes of a connected component of
B. Each of such components is called a cluster, and its external degree is the
number of edges with exactly one endpoint being a vertex in the cluster. A
restricted partition of order s of B is defined to be a partition that satisfies the
following conditions: each cluster has external degree at most 3; each cluster
with external degree 3 contains only one node; each cluster with external degree
less than 3 has at most s nodes, and no two adjacent clusters can be combined
without breaking the above conditions. Frederickson gave a linear-time algorithm
that creates a restricted partition of order s for a given binary tree on n nodes,
and proved that the number of clusters is Θ(�n/s�).
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The endpoints of the edges that connect different clusters are called boundary
nodes. We further follow the notation of He et al. [13] and define the preorder
segments of a cluster to be the maximal contiguous subsequences of nodes in
the preorder sequence that are in the same cluster. Thus Frederickson’s app-
roach guarantees that each cluster has up to two boundary nodes and up to
three preorder segments. The clusters including the root may have 3 preorder
segments.

Frederickson further defined a restricted multi-level partition of a binary tree
B consisting of a set of h partitions of the nodes which can be computed recur-
sively as follows: The clusters at level 0, which are called base clusters, are
obtained by computing a restricted partition of order s of B. Then, to compute
the level-l clusters for any level l > 0, we view each cluster at level l − 1 as a
node, and then compute a restricted partition of order 2 of the resulting tree.
This recursion stops when the partition contains only one cluster containing all
the nodes, which is the level-h cluster.

A topology tree H is defined for a restricted multi-level partition of a binary
tree B. H contains h + 1 levels. Each node of H at level l represents a level-l
cluster, and the up to two children of a node at level l each corresponds to one
of the two level-(l − 1) clusters that this level-l cluster consists of. Additional
links are maintained between each pair of adjacent nodes at the same level of H.
Frederickson proved that h = O(lg n). Topology trees were used in maintaining a
dynamic forest of binary trees, to support two operations: link which combines
two trees in the forest into one by adding an edge between the root of one binary
tree and an arbitrary given node of the other that has less than two children,
and cut which breaks one tree into two by removing an arbitrary given edge.
The following lemma summaries a special case of their results to be used in our
solutions, in which we say that a cluster is modified during updates if it is deleted
or created during this update, its nodes or edges have been changed or an edge
with an endpoint in the cluster has been inserted or deleted:

Lemma 1 ([10,11]). The topology trees of the binary trees in a given forest
F on n nodes can be maintained in O(s + lg n) time for each link and cut,
where s is the maximum size of base clusters. Furthermore, each link or cut
modifies O(1) clusters at any level of the topology trees maintained for the two
binary trees updated by this operation, and once a cluster is modified, the clusters
represented by the ancestors of its corresponding node in the topology tree are
all modified. These topology trees have Θ(f + n/s) nodes in total, where f is the
current number of trees in F , and occupy O(S + (f + n/s) lg n) bits in total,
where S is the total space required to store the tree structures of base clusters.

2.2 Tree Extraction

Tree extraction has proved to be a powerful technique in supporting various
types of static path queries [6,14–16]. This technique is based on the deletion
operation defined in the context of tree edit distance [4]. To delete a non-root
node u, which is a child of v, the children of u are inserted in place of u in the
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list of children of v, preserving the original order. Let T be an ordinal weighted
tree and I be a weight range. For the sake of convenience, we add a dummy node
r to be the new root of T , which has a NULL weight and will be the parent of the
original root. We define TI to be the extracted tree obtained by deleting all the
non-root nodes whose weights are not in I from the argumentation of T . That
is, TI only consists of the dummy root and the nodes whose weights are in I.
The crucial observation is that tree extraction preserve the ancestor-descendant,
preorder, and postorder relationships among the remaining nodes.

3 Dynamic Path Reporting

Let T be a dynamic tree on n weighted nodes. W.l.o.g, we assume that node
weights are distinct. We construct a weight-balanced B-tree [3], W , with leaf
parameter 1 and branching factor d = ��lg n�ε� for any positive constant ε less
than 1/2. When the value of d changes due to updates, we reconstruct the entire
data structure and amortize the cost of rebuilding to updates. By the properties
of weight-balanced B-trees, each internal node of W has at least d/4 and at
most 4d children, and the only exception is the root which is allowed to have
fewer children. Each leaf of W represents a weight range [a, b), where a and b
are weights assigned to nodes of T , and there is no node of T whose weight is
between a and b. An internal node of W represents a (contiguous) range which is
the union of the ranges represented by its children, where the children are sorted
by the left endpoints of these weight ranges. The levels of W are numbered
0, 1, 2, . . . , t, starting from the leaf level, where t = O(lg n/ lg lg n) denotes the
number of the root level. The tree structure of W together with the weight range
represented by each node is maintained explicitly.

For each internal node v of W , we conceptually construct a tree T (v) as
follows: Let [a, b) denote the weight range represented by v. We construct a tree
T[a,b) consisting of nodes of T whose weights are in [a, b) using the tree extraction
approach described in Section 2.2. For each node x in T[a,b), we then assign an
integer label i ∈ [1..4d] if the weight of x is within the weight range of the ith
child of v. The resulting labeled tree is T (v).

We do not store each T (v) explicitly. Instead, we transform the tree structure
of each T (v) into a binary tree B(v) as in [6]: For each node x of T (v) with k > 2
children denoted as x1, x2, · · · , xk, we add k − 1 dummy nodes y1, y2, · · · , yk−1.
Then, x1 and y1 become the left and the right children of x, respectively. For
i = 1, 2, . . . , k−2, the left and the right children of yi are set to be xi+1 and yi+1,
respectively. Finally, xk becomes the left and only child of yk−1. In B(v), the
node corresponding to the dummy root of T (v) is also considered a dummy node,
and a node is called an original node if it is not a dummy node. We observe that
this transformation preserves the preorder and postorder relationships among
the original nodes in T (v). Furthermore, the set of original nodes along the path
between any two original nodes remains unchanged after transformation. Each
original node in B(v) is associated with its label in T (v), which is an integer in
[1..4d], while each dummy node is assigned with label 0.
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Let Fi denote the forest containing all the binary trees created for the nodes
at the ith level of W for i > 0, i.e., Fi = {B(v) : v is a node at the ith level of W}
for i ∈ [1..t]. Thus Ft contains only one binary tree which corresponds to the root
of W , and this tree contains all the nodes of the given tree T as original nodes.
This allows us to maintain a bidirectional pointer between each node in T and its
corresponding original node in Ft.

W and T are stored using standard, pointer-based representations of trees. In
the rest of this section, we first present, in Section 3.1, a data structure that can
be used to maintain a dynamic forest in which each node is assigned a label from
an alphabet of sub-logarithmic size, to support a set of operations including path
summary queries which is to be defined later. This structure is of independent
interest and will be used to encode each Fi. We next show, in Section 3.2, how
to maintain pointers between forests constructed for different levels of W , which
will be used to locate appropriate nodes of these forests when answering path
reporting queries. Finally we describe how to answer path reporting queries and
perform updates in weighted trees in Section 3.3.

3.1 Representing Dynamic Forests with Small Labels to Support
Path Summary Queries

We now describe a data structure which will be used to encode Fi in subse-
quent subsections. As this structure may be of independent interest, we formally
describe the problem its addresses as follows. Let F be a dynamic forest of binary
trees on n nodes in total, in which each node is associated with a label from the
alphabet [0..σ], where σ = O(lgε n) for an arbitrary constant ε ∈ (0, 1/2). Our
objective is to maintain F to support link, cut and the following operations:

– parentα(x): return the α-parent of node x, i.e., the lowest ancestor of x that
has label α, which can be x itself.

– LCA(x, y): return the lowest common ancestor of two given nodes x and y
residing in the same binary tree.

– pre succα(x): return the α-successor of x in preorder, i.e., the first α-node
in preorder that succeeds x (this could be x itself).

– post predα(x): return the α-predecessor of x in postorder, i.e., the last α-
node in postorder that precedes x (this could be x itself).

– summary(x, y): given two nodes x and y residing in the same binary tree,
return a bit vector of σ + 1 bits in which the αth bit is 1 iff there exists an
α-node along the path from x to y. This query is called path summary.

– modify(x, α): change the value of x’s label to α.

We first set s = � �lg n�
lg�lg n�� in Lemma 1, and use the lemma to maintain the

topology trees of the binary trees in F . We call each base cluster a micro-tree.
We next define a subset of levels of the topology trees marked levels. For

i = 0, 1, . . ., the ith marked level of a topology tree is level i�ε lg lg n� of this
topology tree. Since in a topology tree, the restricted partition at each level
except level 0 is of order 2, each internal node of the topology tree has at most
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two children. Therefore, for i ≥ 1, each cluster at the ith marked level contains
at most 2�ε lg lg n� ≤ 2ε lg lg n = lgε n clusters at the (i − 1)st marked level. We
then define the macro-tree for a node at the ith marked level of a topology tree,
for i ≥ 1, to be the tree obtained by viewing each cluster at the (i−1)st marked
level as a single node and adding an edge between two of these nodes if and only
if their corresponding clusters are adjacent. As shown in the discussion above,
each macro-tree is a binary tree with at most lgε n nodes. A macro-tree is called a
tier-i macro-tree if it is constructed for a node at the ith marked level. A node in
a tier-i macro-tree is called a boundary node if its corresponding cluster contains
the endpoint of an edge that has only one endpoint in this tier-i macro-tree. By
the properties of restricted multi-level partitions, each macro-tree has at most
two boundary nodes and at most one of them is a leaf in the macro tree.

We construct auxiliary data structures for each micro-tree and macro-tree.
Our main idea is to create structures that can fit in 1

2 lg n bits (in addition to
maintaining pointers such as those that can be used to map macro tree nodes to
macro trees at the lower marked level), so that we can construct o(n)-bit lookup
tables to perform operations in each micro-tree or macro tree. Operations over
F are then supported by operating on a constant number of micro-trees and a
constant number of macro-trees at each marked level. The proof of the following
lemma is omitted due to the page limitation.

Lemma 2. Let F be a dynamic forest of binary trees on n nodes in total, in
which each node is associated with a label from the alphabet [0..σ], where σ =
O(lgε n) for any constant ε ∈ (0, 1/2) . F can be represented in O(n lg lg n+f lg n)
bits to support parentα, LCA, summary, pre succα, post predα and modify in
O(lg n/ lg lg n) time, and link and cut in O(lg1+ε n) time, where f is the current
number of trees in F .

3.2 Navigation Between Different Levels of W

As discussed previously, we use Lemma 2 to encode each Fi for i > 0. For each
node at the ith level of W , we store a pointer to the root of its corresponding
topology tree in Fi. Each tree node in Fi can be uniquely identified by a pointer
to the micro-tree containing the node and its preorder rank in the micro-tree.
We call this pair of pointer and preorder rank the local id of this node in Fi.

Since each node, x, of T appears once in Fi as an original node for each
i ∈ [0..t], x has one local id at each level of W . In our algorithm for path
reporting, given the local id of x in Fi, we need find its local id in Fi−1 and
Fi+1. Explicitly storing the answers would require too much space. Thus, our
overall strategy is to precompute, for only a subset of nodes of T , their local
ids in Fi−1 and Fi+1. Then, we design an algorithm to compute local ids of
other nodes, by making use of the fact that both tree extraction and our way of
transforming each T (v) to B(v) preserve relative preorder among nodes of T .

We now describe our strategy in details. In Fi, we call the clusters at the first
marked level of the topology trees mini-trees. By our discussions in Section 3.1,
each mini-tree then contains at most lgε n micro-trees, and has O(lg1+ε n) tree
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nodes. There is a one-to-one correspondence between mini-trees and tier-1 macro-
trees, but they are conceptually different: each node in a mini-tree is a node of
Fi, while a node in a tier-1 macro-tree represents a micro-tree. Because of this
one-to-one correspondence, however, we do not distinguish the pointers to a tier-
1 macro-tree from a pointer to its corresponding mini-tree. We say a micro-tree is
the ith micro-tree of a mini-tree (or its corresponding tier-1 macro-tree), if this
micro-tree is represented by the ith node in preorder of the tier-1 macro-tree
corresponding to this mini-tree.

A node in Fi can also be uniquely identified by a pointer to the mini-tree
containing the node and its preorder rank in the mini-tree. Conversions between
this type of identification and the local id of the node can be done in constant
time (the details are omitted). Thus we consider each of these two different
identifiers as a valid local id of a node in Fi in the rest of the paper. Furthermore,
we consider the support of parentα within any given mini-tree, i.e., given a node
x, we are interested in finding its α-parent in the same mini-tree if it exists. We
also consider the following two operators over a mini-tree:

– pre rankα(x), which computes the number of α-nodes preceding x in pre-
order (including x itself if it is labeled α);

– pre selectα(i), which locates the ith α-node in preorder.

In the above definition, we allow α be set to 0̄, which matches any label that
is not 0. We have the following lemma. The proof is omitted here.

Lemma 3. With o(n) additional bits, parentα, pre rankα and pre selectα

can be supported in O(1) time over each mini-tree in Fi.

We next define a set of pointers between mini-trees at different levels of W
and we call these pointers inter-level pointers. These pointers are defined for
each mini-tree μ in any Fi. Let v be the node of W such that B(v) contains μ. If
i < t, then for each preorder segment of μ, we create an up pointer for the first
original node, x, of this segment in preorder. This pointer points from x to the
original node in Fi+1 that corresponds to the same node of T . Next, if i > 1,
for each preorder segment of μ and for each label α ∈ [1..4d], if node y is the
first node in this segment in preorder that is labeled α, we store a down pointer
from y to the original node in Fi−1 that corresponds to the same node of T that
y represents. No pointers are created for nodes labeled 0, as they are dummy
nodes. So far we have created at most 3(4d+1) = O(lgε n) inter-level pointers for
each mini-tree, as each mini-tree has at most three preorder segments. Finally,
we create a back pointer for each up or down pointer, doubling the total number
of inter-level pointers created over all the levels of W .

To store inter-level pointers physically, we maintain all the pointers that
leave from mini-tree μ (again, suppose that μ is in B(v) which is part of Fi) in
a structure called Pμ, including up and down pointers created for nodes in μ,
and back pointers for some of the up and down pointers created for mini-trees
at adjacent levels of W . We further categorize these pointers into at most 4d+1
types: A type-0 pointer arrives at a mini-tree in Fi+1, i.e., goes to the level above,
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and a type-α pointer for α > 1 arrives at a mini-tree in B(u), where u is the
αth child of v. Note that it is possible that an up or down pointer of μ and a
back pointer from an adjacent level stored in Pμ have the same source (a node
in μ) and destination (a node in the forest for an adjacent level of W ). In this
case, the back pointer is not stored separately in Pμ, and hence each inter-level
pointer in Pμ can be uniquely identified by its type and the preorder rank of its
source node in μ. We also maintain the preorder rank of the first node of each of
the (at most three) preorder segments in μ. We use the approach of Navarro and
Nekrich [19, Section A.3] with trivial modifications to encode Pμ in |Pμ| words,
so that given a node x in μ, we can retrieve in O(1) time the closest preceding
node (this can be x itself) in the preorder segment of μ containing x that has an
inter-level pointer of a given type α, as well as the local id of the destination of
this pointer. Insertion and deletion of inter-level pointers can also supported in
O(1) time. The details are deferred to the full version due to space limitation.
We can now prove the following lemma:

Lemma 4. Give the local id of a original node x in Fi, the local id of the original
node in Fi+1 (if i < t) or Fi−1 (if i > 1) that represents the same node of T can
be computed in O(1) time.

Proof. We first show how to locate the node, y, in Fi+1 that represents the same
node of T . We start to find the closest node, x′, that precedes x in preorder, has
a type-0 inter-level pointer, and resides in the same preorder segment, s0, of the
mini-tree containing x (x′ is allowed to be x itself). The destinate node, y′, of
this pointer is also retrieved during the same process, and it is a node in Fi+1.
Node x′ always exists because the first original node of each preorder segment
in a mini-tree has an up pointer.

If x′ happens to be x itself, then y′ is y which is the answer. If not, we observe
that y and y′ are in the same preorder segment of a mini-tree in Fi+1. Suppose
that u is the αth node of v. It then follows that the number of α-nodes of B(v)
that are between y′ and y in preorder is equal to the number, k, of original nodes
between x′ and x in B(u). As the number of original and dummy nodes between
x′ and x in B(u) is equal to the difference between the preorder ranks of x′ and x,
it suffices to compute the number of dummy nodes between them, which can be
computed as pre rank0(x) − pre rank0(x

′) in B(u). By Lemma 3, this requires
constant time since they are in the same mini-tree. Then, the preorder of y can
be computed as pre selectα(pre rankα(y′) + k) in B(v), which again requires
constant time. This gives us the local id of y′, and the entire process uses O(1)
time. The node, z, in Fi−1 that represents the same node of T as x does can be
located using a similar process. 	


3.3 Supporting Path Reporting

Lemma 5. The structures in this section can answer a path reporting query in
O((lg n/ lg lg n)2 + occ lg n/ lg lg n) time, where occ is the output size.
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Proof. Let x and y be the two nodes that define the query path, and let [p, q] be
the query weight range. We perform a top-down traversal in W to locate its up
to two leaves that represent ranges containing p and q. During this traversal, at
each level, i, of W , we visit at most two nodes of W , and each node to visit at
the next level can be located using a binary search in O(lg d) = O(lg lg n) time,
as each node has at most 4d children. As there are O(lg n/ lg lg n) levels in W ,
the total time required to determine the nodes of W to visit is O(lg n).

For each node, v, of W visited during the above top-down traversal, we also
determine the original nodes xv and yv in B(v) respectively corresponding to
the lowest ancestors of x and y in T that are represented by nodes in B(v) (each
node is considered to be its own ancestor). These nodes are located during the
top-down traversal as follows. Let u denote the parent of v in W , and suppose
that v is the αth child of u. Then to compute xv, if xu is labeled with α, then
we use Lemma 4 to locate xv in constant time. Otherwise, we first locate xu’s
lowest α-parent, x′, using Lemma 2 in O(lg n/ lg lg n) time, and then compute
xv as the node corresponding to x′ in B(v) in O(1) time using Lemma 4. yv can
be computed in a similar manner. The total time required to locate all these
nodes in our query algorithm is thus O((lg n/ lg lg n)2).

For each node, v, of W visited during the traversal, if the range of at least one
of v’s children is contained entirely in [p, q], then we compute zv = LCA(xv, yv) in
B(v). We also perform a path summary query using xv and yv as the endpoints of
the query path, and let V be the bit vector returned by the query. Suppose that
the children of v whose ranges are contained in [p, q] are numbered j, j+1, . . . , k.
Since V has O(lgε n) bits, then we can use an o(n)-bit table to retrieve the
position of each 1 bit in V [j..k] in constant time. Then for each l ∈ [j..k] such
that V [l] = 1, we claim that there are nodes along the path between xv and yv in
B(v) that are labeled l, and these nodes correspond to nodes of T to be reported.
Each node from xv to zv (including xv and zv) labeled l can be located using
parentl over B(v) (when we reach a node whose preorder in B(v) is less than or
equal to that of zv, we have located all these nodes), and for each node found,
we keep finding its local id in the level above, until we find its local id at the root
level of W which immediately gives us a node in T , and we report this node of T .
The nodes from yv to zv (including xv but excluding zv) labeled l can be located
and have their corresponding nodes in T reported using the same approach.
We observe that a constant number of LCA and summary are performed at each
level of W , which require O((lg n/ lg lg n)2) time in total. Then, for each node
reported, only O(lg n/ lg lg n) time is spent: if we always charge each parentα

operation to the last node reported before this operation is performed, then each
node is charged a constant number of times, and the process described above
which finds the node of T given its local id in B(v) requires O(lg n/ lg lg n) time.
This completes the proof. 	

Lemma 6. The structures in this section support node insert, node delete
and modify weight in O(lg2+ε n) amortized time.

Proof. We only show how to support node insert; the other update operations
can be handled similarly. Note that update operations may eventually change
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the value of �lg n�, but this can be handled by standard techniques of dynamic
data structures.

Suppose that we insert a new node h with weight wh. The new node h is
inserted as a child of x, and a set of consecutive children of x between and includ-
ing child nodes y and z become the children of h after the insertion. Here we
consider the general case in which y and z exist and are different nodes; degener-
ate cases can be handled similarly. In the first step of our insertion algorithm, we
insert the weight wh into W by creating a new leaf for it. This may potentially
cause the parent of this new leaf to split, but for now, we consider the case in
which a split will not happen. The support for node splits in W is omitted due
to the page limitation.

We next perform a top-down traversal of W to fix the structures created for
the forest Fi at each level i of W . In our description, when we say node h (or
x, etc.) in Fi, we are referring to the original node, either to be inserted to Fi

or already exist in Fi, that corresponds to this node in T . At the top level, i.e.,
the tth level, of W , the forest Ft contains one single binary tree. As we maintain
bidirectional pointers between nodes in T and nodes in Ft, we can immediately
locate the nodes x, y and z in Ft. Let x1, x2, . . . be the dummy nodes created
for x in Ft, among which xj and xk are the dummy nodes that are parents of
y and z, respectively. We then perform a constant number of updates to Ft as
follows. First we perform the cut operation twice to remove the edge between
xj−1 and xj , and the edge between xk and xk + 1. This divides Ft into three
trees. We then create a tree on a new node x′

j which is a dummy node, and
temporarily include this tree into Ft. Note that creating the topology tree and
associated auxiliary data structures for a tree on a single node can be trivially
done in constant time. We then replace the dummy node xj by the node h to be
inserted. This can be done by first performing binary searches in the ranges of
the children of the root, r, of W , so that we know the correct label, α, to assign
to h. We then simply call modify to change the label, 0, assigned to x′

j , to α
using modify. We then perform link to add three edges so that x′

j becomes the
right child of xj−1, h becomes the left child of x′

j , and xk+1 becomes the right
child of x′

j . It is clear that all these operations require O(lg1+ε n) time in total.
To update Ft−1, let v be the αth child of r. We observe that it suffices to

update B(v) without making changes to any other tree in Ft−1. Then we claim
that if x is also labeled α in B(r), then in B(v), we will also insert h as a
child of the original node corresponding to x; otherwise, we insert h as a child
of the original node of B(v) that corresponds to the node, x′, in B(r) that is
parentα(x). If x′ does not exist, then h is inserted as a child of the dummy root
of B(v). We then observe that h will be inserted to B(v) as the new parent of
the set of children of x, x′ or the dummy root (depending on which of the above
three cases applies) that are between and including the original nodes in B(v)
that correspond to the nodes pre succα(y) and post predα(z) in B(r). Thus,
in O(lg n/ lg lg n) time, we have found where to insert h in Ft−1, and by the
approach shown in the previous paragraph, we can use link, cut and modify
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to update Fi−1 in O(lg1+ε n) time. This process can then be repeated at each
successive level of W . Hence it requires O(lg2+ε n/ lg lg n) time to update all the
Fi’s.

When updating the Fi’s, we also update inter-level pointers. The details for
that are deferred to the full version. 	


The space analysis is also omitted. We thus have the final result:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), an ordi-
nal tree on n weighted nodes can be stored in O(n) words of space, such that path
reporting queries can be answered in O((lg n/ lg lg n)2 + occ lg n/ lg lg n) time,
where occ is the output size, and modify weight, node insert and node delete
can be supported in O(lg2+ε n) amortized time for any constant ε ∈ (0, 1).
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Abstract. The apportionment problem deals with the fair distribution
of a discrete set of k indivisible resources (such as legislative seats) to
n entities (such as parties or geographic subdivisions). Highest averages
methods are a frequently used class of methods for solving this problem.
We present an O(n)-time algorithm for performing apportionment under
a large class of highest averages methods. Our algorithm works for all
highest averages methods used in practice.

1 Introduction

After an election, in parliamentary systems based on party-list proportional
representation, the problem arises of allocating seats to parties so that each
party’s number of seats is (approximately) proportional to its number of votes [1].
Several methods, which we survey in more detail below, have been devised for
calculating how many seats to allocate to each party. Often, these methods
involve sequential allocation of seats under a system of priorities calculated from
votes and already-allocated seats. For instance, the Sainte-Laguë method, used
for elections in many countries, allocates seats to parties one at a time, at each
step choosing the party that has the maximum ratio of votes to the denominator
2s + 1, where s is the number of seats already allocated to the same party.

Legislative apportionment, although mathematically resembling seat alloca-
tion, occurs at a different stage of the political system, both in parliamentary
systems and in the U.S. Congress [2,3]. It concerns using population counts to
determine how many legislative seats to allocate to each state, province, or other
administrative or geographic subdivision, prior to holding an election to fill those
seats. Again, many apportionment methods have been developed, some closely
related to seat allocation methods. For instance, a method that generates the
same results as Sainte-Laguë (calculated by a different formula) was proposed by
Daniel Webster for congressional seat apportionment. However, although simi-
lar in broad principle, seat allocation and apportionment tend to differ in detail
because of the requirement in the apportionment problem that every administra-
tive subdivision have at least one representative. In contrast, in seat allocation,
sufficiently small parties might fail to win any seats and indeed some seat alloca-
tion methods use artificially high thresholds to reduce the number of represented
parties.
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 581–592, 2014.
DOI: 10.1007/978-3-319-13075-0 46
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We may formalize these problems mathematically as a form of diophantine
approximation: we are given a set of k indivisible resources (legislative seats) to
be distributed to n entities (parties or administrative subdivisions), each with
score vi (its vote total or population), so that the number of resources received
by an entity is approximately proportional to its score. The key constraint here
is that the entities can only receive an integral amount of resources; otherwise,
giving the ith entity kvi/

∑
vi units of resource solves the problem optimally.

Outside of political science, forms of the apportionment problem also appear in
statistics in the problem of rounding percentages in a table so that they sum to
100% [4] and in manpower planning to allocate personnel [5].

Broadly, most apportionment methods can be broken down into two classes:
largest remainder methods in which a fractional solution to the apportionment
problem is rounded down to an integer solution, and then the remaining seats
are apportioned according to the distance of the fractional solution from the
integer solution, and highest averages methods like the Sainte-Laguë method
described above, in which seats are assigned sequentially prioritized by a combi-
nation of their scores and already-assigned seats. Largest remainder methods are
trivial from the algorithmic point of view, but are susceptible to certain electoral
paradoxes. Highest averages methods avoid this problem, and are more easily
modified to fit different electoral circumstances, but appear a priori to be slower.
When implemented naively, they might take as much as O(n) time per seat, or
O(nk) overall. Priority queues can generally be used to reduce this naive bound
to O(log n) time per seat, or O(k log n) overall [6], but this is still suboptimal,
especially when there are many more seats than parties (k � n). We show here
that many of these methods can be implemented in time O(n), an optimal time
bound as it matches the input size. We do not expect this speedup to have much
effect in actual elections, as the time to compute results is typically minuscule
relative to the time and effort of conducting an election; however, the speedup
we provide may be of benefit in simulations, where a large number of simulated
apportionment problems may need to be solved in order to test different varia-
tions in the parameters of the election system or a sufficiently large sample of
projected election outcomes.

1.1 Highest Averages

We briefly survey here highest averages methods (or Huntington methods), a
class of methods used to solve the apportionment problem [7,8]. Balinski and
Young [9] showed that divisor methods, a subclass of the highest averages meth-
ods, are the only apportionment methods that avoid undesirable outcomes such
as the Alabama paradox, in which increasing the number of seats to be allocated
can cause a party’s individual allocation to decrease. Because they avoid prob-
lematic outcomes such as this one, almost all apportionment methods in use are
highest averages methods.

In a highest averages method, a sequence of divisors d0, d1, . . . is given as
part of the description of the method and determines the method. To apportion
the resources, each entity is assigned an initial priority vi/d0. The entity with the
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highest priority is then given one unit of resource and has its priority updated to
use the next divisor in the sequence (i.e., if the winning entity i is currently on
divisor dj , then its priority is updated as vi/dj+1). This process repeats until all
the resources have been exhausted. The priorities vi/dj are also called averages,
giving the method its name. Table 1 gives the sequence of divisors for several
common highest averages methods.

Table 1. Divisors for common highest averages methods

Method Other Names Divisors

Adams Smallest divisors 0, 1, 2, 3, . . . , j, . . .

Jefferson Greatest divisors, d’Hondt 1, 2, 3, 4, . . . , j + 1, . . .

Sainte-Laguë Webster, Major fractions 1, 3, 5, 7, . . . , 2j + 1, . . .

Modified Sainte-Laguë — 1.4, 3, 5, 7, . . .

Huntington–Hill Equal proportions, Geometric mean 0,
√

2,
√

6, . . . ,
√

j(j + 1), . . .

Dean Harmonic mean 0, 4/3, 12/5, . . . , 2a(a+1)
2a+1

, . . .

Imperiali — 2, 3, 4, 5, . . . , j + 2, . . .

Danish — 1, 4, 7, 10, . . . , 3j + 1, . . .

A zero at the start of the divisor sequence prioritizes the first assignment to
each entity over any subsequent assignment, in order to ensure that (if possible)
every entity is assigned at least one unit. If a zero is given, but the number of
units is less than the number of entities, the entities are prioritized by their vi
values.

1.2 New Results

In this paper, we present an O(n)-time algorithm for simulating a highest aver-
ages method. Our algorithm works only for divisor sequences that are close
to arithmetic progressions; however, this includes all methods used in practice,
since this property is necessary to achieve approximately-proportional appor-
tionment. For divisor sequences that are already arithmetic progressions, our
algorithm transforms the problem into finding the kth smallest value in the dis-
joint union of n implicitly defined arithmetic progressions, which we solve in
O(n) time. For methods with divisor sequences close to but not equal to arith-
metic progressions, we use an arithmetic progression to approximate the divisor
sequence, and show that this still gives us the desired result.

1.3 Related Work

An alternative view of a number of highest averages methods is to find a multi-
plier λ > 0 such that

∑
i [λvi] = k, where [·] is a suitable rounding function for

the method. The ith entity is then apportioned the amount [λvi]. For example,
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the standard rounding function gives rise to the Sainte-Laguë method and the
floor function gives rise to the Adam method. For these methods, the problem
can be solved in O(n2) time, or O(n log n) with a priority queue [10,11]1. The
algorithm works by initializing λ = k/

∑
j vj and iteratively choosing a new

apportionment that reduces the difference between
∑

i [λvi] and k. The number
of new apportionments can be shown to be at most n.

Selecting the kth smallest element in certain other types of implicitly defined
sets has also been well studied. Gagil and Megiddo studied the assignment of
k workers to n jobs, where the implicitly defined sets are induced by concave
functions giving the utility of assigning ki workers to job i [14]. Their O(n log2 k)
algorithm was improved by Frederickson and Johnson to O(n+p log(k/p)) where
p = min(k, n) [15]. For implicit sets given as an n × m matrix with sorted rows
and columns, Federickson and Johnson found an O(h log(2k/h2)) time algorithm,
where h = min(

√
k,m) and m ≤ n [16]. Sorting the inputs would turn our prob-

lem into sorted matrix selection, but the O(n log n) sorting time would already
exceed our time bound.

2 Preliminaries

Given strictly increasing divisors d0, d1, d2, . . . , our goal is to simulate the high-
est averages method induced by those divisors in time linear in the number of
entities. Instead of directly selecting the entities with the k largest priorities,
we take advantage of the arithmetic progression structure of the divisors and
consider the problem as selecting the k smallest inverted priorities. Associate
the ith entity to the increasing sequence

Ai =
{

dj
vi

: j = 0, 1, 2, . . .

}

.

Let A = {A1, A2, . . . , An} and U(A) be the multiset formed from the disjoint
union of the sequences. The problem is to find the value of the kth smallest
element of U(A).

We do not actually produce the k smallest elements, only the value of the kth
smallest one, allowing us to eliminate any dependence on k in our time bounds.
An explicit list of the k smallest elements is also not necessary for the election
problem, since we are primarily interested in the total amount of resources allo-
cated to each entity, which can be calculated from the value of the kth smallest
element. When a rank function (defined in the following paragraph) can be com-
puted in constant time, we may use it to compute, in constant time for each Ai,
the largest index j such that dj/vi is at most the computed value, which gives

1 An anonymous reviewer suggested that linear-time algorithms were given previously
in two Japanese papers [12,13]. However, we were unable to track down these papers
nor could we determine whether their time was linear in the number of votes, seats,
or parties. The second reference, in particular, does not appear to be on the IEICE
website, neither searching by year and page number nor with broad search terms.
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the allocation to entity i. Producing only the value of the kth smallest element
also sidesteps the issue of tie-breaking when several entities have the same pri-
orities and are equally eligible for the last resource. The rules for breaking ties
are application-dependent, so it is best to leave them out of the main algorithm.

For a sequence A, let A(j) denote the jth element of the sequence A, with
the first element at index 0. We let A(−1) = −∞ to avoid corner cases in the
algorithm; however, when counting elements of A, this −∞ value should be
ignored. Define the rank of a number x in A as the number of elements of A less
than or equal to x. Equivalently, for a strictly monotonic sequence, this is the
index j such that A(j) ≤ x < A(j + 1). We denote the rank function by r(x,A).
For a set A of sequences, we define r(x, A) =

∑
A∈A r(x,A). If the set A is clear

from context, we will drop A and simply write r(x).
In our algorithm, we assume that the rank function for each sequence Ai can

be computed in constant time. When the sequences are arithmetic progressions
(as they are in most of the voting methods we consider), these functions can
be computed using only a constant number of basic arithmetic operations, so
this is not a restrictive assumption. The Huntington–Hill method involves square
roots, but its rank function may still be calculated using a constant number of
operations that are standard enough to be included as hardware instructions on
modern processors.

Observe a small subtlety about the rank function: if τ is the kth smallest
element, then r(τ) is not necessarily k. Indeed, r(τ) can be greater than k, as in
the case where there are k − 1 elements of U(A) less than τ and τ is duplicated
twice, in which case r(τ) = k + 1. In general, we have k ≤ r(τ) ≤ k + n − 1. The
rank of the kth smallest element can still be characterized, through the following
observation.

Observation 1. τ is the value of the kth smallest element in U(A) if and only
if r(τ) ≥ k and for all x < τ , r(x) < k.

Now define L(x,A) as the largest value in A less than x; similary, define
G(x,A) as the smallest value in A greater than x. Note that L(x,A) and G(x,A)
can be computed easily from the rank of x: if r = r(x,A), then L(x,A) and
G(x,A) must be the value of either A(r − 1), A(r), or A(r + 1). For A, we
use the similar notation L(x, A) (respectivley G(x, A)) to denote the multiset of
L(x,A) (respectively G(x,A)) over all A ∈ A.

Lastly, we make note of one notational convention. In our descriptions, the
input variables to an algorithm may change within the algorithm, and it is useful
to talk about both the values of the variables as they change and their initial
values. Therefore, we use a tilde to denote the initial value of a variable, and the
lack of a tilde to denote the changing value over the course of the algorithm. For
example, Ã means the initial value and A means the value at an intermediate
point of the algorithm.
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Algorithm 1. LowerRankCoarseSolution(Ã, k̃, ξ)

Input: Ã: set of increasing sequences; k̃: positive integer; ξ: a coarse solution with
r(ξ, Ã) ≥ k

Output: another coarse solution ξ′ with r(ξ′, Ã) < k
1: A ← Ã, k ← k̃, u ← ξ
2: loop
3: x̄ ← median of L(u, A)
4: if r(x̄, A) ≥ k then
5: u ← x̄
6: else if r(x̄, A) < k − n then
7: B ← {A : A ∈ A and L(u, A) ≤ x̄}
8: k ← k −∑A∈B r(x̄, A)
9: A ← A \ B

10: else
11: return x̄
12: end if
13: end loop

3 The Algorithm

Our algorithm has three parts. In the first part, we show how the value of the
kth smallest element of U(A) can be found from a coarse solution, a value whose
rank is within O(n) positions of k. In the second part, we handle a special
case of the problem in which every sequence in A is an arithmetic sequence, by
showing how the rank function over A can be inverted in this case to produce
a coarse solution. And in the last part, we deal with more general sequences,
by showing how arithmetic sequences that approximate them can be used to
produce a coarse solution.

3.1 From Coarse to Exact Solutions

In this section, we show how to compute the value of the kth smallest element
of U(A), given a coarse solution. A value ξ is called a coarse solution for k if
|k−r(ξ)| ≤ cn for some constant c. Equivalently, this means there are only O(n)
elements between ξ and the kth smallest element. Note that ξ does not have to
be an element of U(A).

Before presenting the algorithm, we first show that the coarse solution can
be assumed to have a rank smaller than k.

Lemma 1. Let ξ be a coarse solution for k, and assume r(x,A) can be computed
in constant time for every A ∈ A. If r(ξ, A) ≥ k, then another coarse solution ξ′

with r(ξ′, A) < k can be found in O(n) time.

Proof. We find a ξ′ such that k̃ − n ≤ r(ξ′, Ã) < k̃. To find this value, start
with u = ξ. Then, repeatedly update u and A as follows, until the median x̄ of
L(u, A) has rank between k − n and k:
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1. If r(x̄, A) ≥ k, then set u = x̄.
2. If r(x̄, A) < k − n, then any sequence A in A with L(u,A) ≤ x̄ can no

longer help us get closer to a value in the desired range, so we remove those
sequences and update k accordingly to compensate for their removal (i.e.,
subtract from k the ranks r(x̄, A) over all removed sequences A).

Algorithm 1 summarizes this procedure.
Let q be the sum of two quantities: the distance from the rank of u to k̃,

and the number of sequences remaining in A. Then q is initially O(n) by the
assumption that ξ̃ is a coarse solution. Each iteration of the loop of the algorithm
takes time O(|A|) and reduces q by O(|A|) units, either by reducing the rank of u
in the first case or by eliminating sequences from A in the second case. Eventually
(before q can be reduced to zero) the algorithm must terminate, at which point
it has taken time proportional to the total reduction in q, which is O(n). When
it terminates, the returned value is clearly a coarse solution whose rank is less
than k, as desired. �	

We now present the algorithm to convert a coarse solution to an exact one.
The algorithm is similar to a binary search, where we maintain both a lower
bound and an upper bound that narrow the possible candidates as the algorithm
progresses. The lower bound is initially derived from the coarse solution, which
guarantees that it is close to the true solution. The main difference between our
algorithm and a standard binary search is that we do not know the distribution
of the sequences’ elements within the bounds, so we cannot reduce search space
by a constant proportion simply by splitting the range halfway between the lower
and upper bounds. Instead, we split on the median of some well-chosen set within
the bounds, which will allow us to reduce the number of candidates by at least
|A|/2 in each step. To make the algorithm run in linear time, sequences that no
longer have elements between the bounds are removed from A. The procedure
is similar to the one in Algorithm 1. But instead of moving down in U(A) with
L(·, A), the algorithm moves up with G(·, A). Because of this, compensating k
when removing a sequence is no longer as straight-forward. In particular, we
may need to query the rank of the upper bound u, so we need an extra variable
to keep track of the possible under-compensation to the rank for these values.
The details are presented in the theorem below.

Theorem 2. Let A be a set of increasing sequences. Assume r(x,A) can be
computed in constant time for every A ∈ A. If a coarse solution ξ is given, then
the value of the kth smallest element in U(A) can be found in O(n) time.

For space reasons we defer a detailed proof to the full paper.

3.2 Coarse Solution for Arithmetic Sequences

In this section, we focus on the special case where every sequence in A is an arith-
metic sequence. In particular, each sequence A is of the form A(j) = xA + yA · j
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Algorithm 2. CoarseToExact(Ã, k̃, ξ)

Input: Ã: set of increasing sequences; k̃: positive integer; ξ: coarse solution with
r(ξ, Ã) < k

Output: the value of the k̃th smallest element in U(Ã)
1: A ← Ã, k ← k̃
2: l ← ξ, u ← ∞, m ← 0
3: repeat
4: x̄ ← median of G(l, A)
5: if r(x̄, A) < k then
6: l ← x̄
7: else
8: u ← x̄
9: m ← 0

10: end if
11: if |{A : G(l, A) = u}| ≥ 1 then
12: m ← m + |{A : G(l, A) = u}| − 1
13: end if
14: A ′ ← {A : A ∈ A and G(l, A) < u} ∪ {any one A ∈ A such that G(l, A) = u}
15: k ← k −∑A∈A\A′ r(l, A)

16: A ← A ′

17: until G(l, A) has only one value t and ( r(t, A) ≥ k or (t = u and r(t, A) ≥ k−m)
)

18: return t

with yA > 0, for j = 0, 1, 2, . . . . In this case, the rank function is given by

r(x) =
∑

A∈A

r(x,A) =
∑

A∈A

(

1 +
⌊

x − xA

yA

⌋)

Ix≥xA
(1)

where Ix≥xA
is the indicator function that is 1 when x ≥ xA and 0 otherwise.

We can think of the problem of finding the value of the kth smallest element
as “inverting” the rank function to find x such that r(x) is close to k. Of course,
the inverse of r(·) does not make sense, since the function is neither one-to-one
nor onto N. However, if we drop the floor and the plus one, and consider

s(x) = s(x, A) =
∑

A∈A

s(x,A) =
∑

A∈A

(
x − xA

yA

)

Ix≥xA
, (2)

the resulting function is piecewise linear with a well-defined inverse.
Call the sequence A contributing for k if s(A(0)) = s(xA) ≤ k. To invert

s(x), we need to first find the contributing sequences of A for k. This can be
done in O(n) time, as shown in the next lemma.

Lemma 2. Suppose A is a set of arithmetic sequences of the form A(j) = xA +
yA · j with yA > 0, then the contributing sequences of A can be found in O(n)
time.
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Algorithm 3. FindContributingSequences(Ã, k)
Input: Ã: set of arithmetic sequences of the form A(j) = xA + yAj; k: integer > n
Output: subset C of Ã of contributing sequences for k
1: A ← Ã, C ← ∅.
2: while A is nonempty do
3: x̄ ← median of {xA : A ∈ A}
4: if s(x̄, Ã) > k then
5: A ← {A : A ∈ A and xA < x̄}
6: else
7: C ← C ∪ {A : A ∈ A and xA ≤ x̄}
8: A ← {A : A ∈ A and xA > x̄}
9: end if

10: end while
11: return C

Proof. The algorithm to find the contributing sequences is given in Algorithm 3.
In the main loop, we repeatedly compute the median x̄ of the first element of
remaining sequences A. Comparison of s(x̄, Ã) to k then eliminates a portion of
those sequences and determines which of the eliminated sequences are contribut-
ing:

1. If s(x̄, Ã) > k: None of the sequences with xA ≥ x̄ can be contributing, so
we reduce A to only those with xA < x̄.

2. If s(x̄, Ã) ≤ k: The sequences with xA ≤ x̄ are contributing, so we add them
all to the list C , and reduce A to only those sequences with xA > x̄.

The loop repeats until A is empty, at which time C is the output.
The algorithm’s correctness follows from the fact that a sequence is added to

C if and only if it is contributing. For the algorithm to run in O(n) time, each
iteration of the loop must run in O(|A|) time. In particular, we must compute
s(x̄, Ã) = s(x̄, A)+ s(x̄, C) in O(|A|) time. To do this, note that when a sequence
A is added to C , all subsequent x̄ have x̄ > xA. This means we can consider
s(·, C) as a linear function, whose value can be computed in constant time by
keeping track of the two coefficients of the linear function and updating them
whenever sequences are added to C . �	

Once the contributing sequences C are found, we can restrict our search for
x to the last interval of s(·, C), which is a linear function without breakpoints
and can be inverted easily. In particular, the inverse is given by

s−1(k) =

(
∑

A∈C

1
yA

)−1 (

k +
∑

A∈C

xA

yA

)

(3)

which can be interpreted as a weighted and shifted harmonic mean of the slopes
of contributing arithmetic sequences. Since r(x) − s(x) ≤ n, s−1(k) is a coarse
solution, applying Theorem 2 immediately gives the following.
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Theorem 3. If A is a set of arithmetic sequences, then the value of the kth
smallest element in U(A) can be found in O(n) time.

While not necessary for subsequent sections, a slight generalization can be
made here. The main property of arithmetic sequences we used is that r(x,A) is
approximable by a function that can be written as wAf(x) + uA, where f is an
invertible function independent of A; wA, uA are constants; and wA > 0. When
r(x,A) can be approximated in this way, the inverse is given by:

s−1(k) = f−1

(
k − ∑

A∈C uA
∑

A∈C wA

)

(4)

where C is the set of contributing sequences. For example, if A(j) = 2j/vA,
then the rank function is given by r(x,A) = 
log(xvA)� and is approximable by
log x + log vA. The coarse solution is then given by

s−1(k) = e
1

|C| (k−∑A∈C log vA). (5)

3.3 Coarse Solution for Approximately-Arithmetic Sequences

In this section, we show how to handle more general sequences for highest aver-
ages methods. Our strategy works as long as the divisor sequence D = {dj} is
close to an arithmetic progression E = {ej}, where closeness here means that
there is a constant c so that |dj − ej | ≤ c for every j ≥ 0.

Suppose A is the set of (arithmetic) sequences induced by the arithmetic
divisor sequence E and B is the set of sequences induced by the divisor sequence
D. We show that, if E and D are close, then the rank of every number x in A
is within a constant of the rank in B. This means that a coarse solution for A is
also a coarse solution for B. Hence, to do apportionment for these more general
sequences, we just use the results from the previous section to find a coarse
solution for the approximating arithmetic sequences, then apply Theorem 2 to
the original sequences with that coarse solution.

Lemma 3. Let A be an arithmetic progression A(j) = xA+yAj with slope yA >
0, and let B be an increasing sequence such that for every j, |A(j)−B(j)| ≤ cyA
for some constant c. Then |r(x,A) − r(x,B)| ≤ c′ for another constant c′.

Proof. Fix x. Let a = r(x,A) and b = r(x,B). Note that A(a) (respectively
B(b)) is largest value of A (respectively B) less than or equal to x. We have two
cases:

Case A(b) ≥ x: Note that a ≤ b since A(a) ≤ x ≤ A(b). Furthermore,

A(b) − A(a) ≤ [A(b) − B(b)] + [x − A(a)] ≤ cyA + yA.

This means that there are at most c + 1 elements of A between A(a) and
A(b), so b − a ≤ c + 1.
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Case A(b) < x: Note that b ≤ a. Furthermore,

x − B(b) < B(b + 1) − B(b)
≤ |B(b + 1) − A(b + 1)| + |A(b + 1) − A(b)| + |A(b) − B(b)|
≤ cyA + yA + cyA = (2c + 1)yA

It follows that A(a) − A(b) ≤ [x − B(b)] + |B(b) − A(b)| ≤ (2c + 1)yA + cyA,
and a − b ≤ 3c + 1.

In both cases, we have |r(x,A) − r(x,B)| = |b − a| ≤ const, as needed. �	
From the lemma, the following is immediate.

Theorem 4. Let the divisor sequence E = {ej} be an arithmetic progression,
and suppose D = {dj} is another divisor sequence such that for every j ≥ 0,
|dj − ej | ≤ c for some constant c. If A is the set of sequences induced by E and
B the set of sequences induced by D, then for every x, |r(x, A) − r(x, B)| ≤ c′n,
for some constant c′.

Proof. Let A ∈ A and B be the corresponding sequence in B with score v. We
have

|A(j) − B(j)| =
|dj − ej |

v
≤ c

v
.

Note that the slope of A is 1/v, so by Lemma 3, |r(x,A)−r(x,B)| ≤ c′ for some
constant c′. Summing over all sequences gives the desired result. �	

The strategy in this section works for all the methods in Table 1 with non-
arithmetic divisor sequences. The Huntington–Hill and Dean methods have divi-
sor sequences where each element of the sequence is the geometric or harmonic
mean respectively of consecutive natural numbers. Hence, each element is within
1 of the arithmetic sequence dj = j, so finding a coarse solution under the divisor
sequence dj = j is enough to find a coarse solution for those two methods. For
methods like the modified Sainte-Laguë method, where the divisor sequence is
arithmetic except for a constant number of elements, we may ignore the non-
arithmetic elements and find a coarse solution solely from the remaining elements
that do form an arithmetic progression.

4 Conclusion

We have shown that many commonly used apportionment methods can be imple-
mented in time linear in the size of the input (vote totals for each entity), based
on a transformation of the problem into selection in multisets formed from unions
of arithmetic or near-arithmetic sequences. Our method can be extended to selec-
tion in unions of other types of sequences, as long as the rank functions of the
sequences can be approximately inverted and aggregated. It would be of interest
to determine whether forms of diophantine approximation from other application
areas can be computed as efficiently.

Acknowledgments. This research was supported in part by NSF grant 1228639, and
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Abstract. Let G = (A ∪ P, E) be a bipartite graph where A denotes
a set of agents, P denotes a set of posts and ranks on the edges denote
preferences of the agents over posts. A matching M in G is rank-maximal
if it matches the maximum number of applicants to their top-rank post,
subject to this, the maximum number of applicants to their second rank
post and so on.

In this paper, we develop a switching graph characterization of rank-
maximal matchings, which is a useful tool that encodes all rank-maximal
matchings in an instance. The characterization leads to simple and effi-
cient algorithms for several interesting problems. In particular, we give
an efficient algorithm to compute the set of rank-maximal pairs in an
instance. We show that the problem of counting the number of rank-
maximal matchings is #P -Complete and also give an FPRAS for the
problem. Finally, we consider the problem of deciding whether a rank-
maximal matching is popular among all the rank-maximal matchings in
a given instance, and give an efficient algorithm for the problem.

1 Introduction

We consider the problem of matching applicants to posts where applicants have
preferences over posts. This problem is motivated by several important real-world
applications like allocation of graduates to training positions [5] and families to
government housing [16]. The input to the problem is a bipartite graph G =
(A ∪ P, E), where A is a set of applicants, P is a set of posts, and the set E can
be partitioned as E = E1 ∪ . . . ∪ Er, where Ei contains the edges of rank i. An
edge (a, p) ∈ Ei if p is an ith choice of a. An applicant a prefers a post p to p′ if,
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for some i < j, (a, p) ∈ Ei and (a, p′) ∈ Ej . Applicant a is indifferent between p
and p′ if i = j. This ranking of posts by an applicant is called the preference list
of the applicant. When applicants can be indifferent between posts, preference
lists are said to contain ties, else preference lists are strict.

The problem of matching under one-sided preferences has received lot of
attention and there exist several notions of optimality like pareto-optimality [1],
rank-maximality [7], popularity [2], and fairness. We focus on the well-studied
notion of rank-maximal matchings which are guaranteed to exist in any instance.
Rank-maximality was first studied under the name of greedy matchings by Irv-
ing [6], who also gave an algorithm for computing such matchings in case of
strict lists. A rank-maximal matching matches maximum number of applicants
to their rank 1 posts, subject to that, maximum number of applicants to their
rank 2 posts and so on. Given an instance of the rank-maximal matchings prob-
lem possibly involving ties, Irving et al. [7] gave an O(min(n + r, r

√
n)m) time

algorithm to compute a rank-maximal matching. Here n = |A| + |P|, m = |E|,
and r denotes the maximal rank in the instance. The weighted and capacitated
versions of this problem have been studied in [11] and [14] respectively.

In this paper, we study the structure of the rank-maximal matchings using
the notion of a switching graph. This notion was introduced in the context of
popularity which is an alternative criterion of optimality in the one-sided pref-
erences model. See [2] for a definition of popular matchings. McDermid and
Irving [12] studied the switching graph of popular matchings for strict instances,
and Nasre [13] extended it to the case of ties. This characterization has turned
out to be useful for several problems like counting the number of popular match-
ings in strict instances, computing an optimal popular matching, developing an
optimal manipulation strategy for an agent etc.

It is natural to extend the switching graph characterization to analyze rank-
maximal matchings. Besides being interesting in its own right, it turns out to
be useful in answering several natural questions. For instance, given instance
G = (A ∪ P, E), is there a rank-maximal matching in G which matches an
applicant a to a particular post p? Is a rank-maximal matching preferred by a
majority of applicants over other rank-maximal matchings in the instance? We
show the following new results in this paper:

– A switching graph characterization of the rank-maximal matchings problem,
and its properties, using which, we answer the questions mentioned above.

– An efficient algorithm for computing the set of rank-maximal pairs. An edge
(a, p) ∈ E is a rank-maximal pair if there exists a rank-maximal matching
in G that matches a to p.

– We show that the problem of counting the number of rank-maximal match-
ings is #P-complete even for strict preference lists. We then give an FPRAS
for the problem by reducing it to the problem of counting the number of
perfect matchings in a bipartite graph.

– In order to choose one among possibly several rank-maximal matchings in a
given instance G, we consider the question of finding a rank-maximal match-
ing that is popular among all the rank-maximal matchings in G. We call
such a matching a popular rank-maximal matching. We show that, given a
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rank-maximal matching, it can be efficiently checked whether it is a popular
rank-maximal matching. If not, we output a rank-maximal matching which
is more popular than the given one.

We remark that the switching graph is a weighted directed graph constructed
with respect to a particular matching. In case of popular matchings, it is known
from [2] that, there are at most two distinct ranked posts in an applicant’s prefer-
ence list, to which he can be matched in any popular matching. This results in a
switching graph with edge-weights {+1,−1, 0}. In case of rank-maximal match-
ings, the situation becomes more interesting since an applicant can be matched
to one among several distinct ranked posts, and the edge-weights in the switch-
ing graph could be arbitrary. Surprisingly, the characterization still turns out
to be similar to that of popular matchings, although the proofs are significantly
different. We expect that the switching graph will find several applications apart
from those shown in this paper.

2 Preliminaries

A matching M of G is a subset of edges, no two of which share an end-point.
For a matched vertex u, we denote by M(u) its partner in M .

Properties of Maximum Matchings in Bipartite Graphs. Let G = (A ∪ P, E) be
a bipartite graph and let M be a maximum matching in G. The matching M
defines a partition of the vertex set A∪P into three disjoint sets, defined below:

Definition 1 (Even, Odd, Unreachable Vertices). A vertex v ∈ A ∪ P
is even (resp. odd) if there is an even (resp. odd) length alternating path with
respect to M from an unmatched vertex to v. A vertex v is unreachable if there
is no alternating path from an unmatched vertex to v.

The following lemma is well-known in matching theory; see [15] or [7] for a proof.

Lemma 1 ([15]). Let E, O, and U be the sets of even, odd, and unreachable
vertices defined by a maximum matching M in G. Then,

(a) E, O, and U are disjoint, and are the same for all the maximum matchings
in G.

(b) In any maximum matching of G, every vertex in O is matched with a vertex
in E, and every vertex in U is matched with another vertex in U . The size
of a maximum matching is |O| + |U|/2.

(c) No maximum matching of G contains an edge with one end-point in O and
the other in O ∪ U . Also, G contains no edge with one end-point in E and
the other in E ∪ U .
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Rank-Maximal Matchings. An instance of the rank-maximal matchings problem
consists of a bipartite graph G = (A∪P, E), where A is a set of applicants, P is
a set of posts, and E can be partitioned as E1 ∪ E2 ∪ . . . ∪ Er. Here Ei denotes
the edges of rank i, and r denotes the maximum rank any applicant assigns to
a post. An edge (a, p) has rank i if p is an ith choice of a.

Definition 2 (Signature). The signature of a matching M is defined as an
r-tuple ρ(M) = (x1, . . . , xr) where, for each 1 ≤ i ≤ r, xi is the number of
applicants who are matched to their ith rank post in M .

Let M , M ′ be two matchings in G, with signatures ρ(M) = (x1, . . . , xr) and
ρ(M ′) = (y1, . . . , yr). Define M � M ′ if xi = yi for 1 ≤ i < k ≤ r and xk > yk.

Definition 3 (Rank-Maximal Matching). A matching M in G is rank-
maximal if M has the maximum signature under the above ordering �.

Observe that all the rank-maximal matchings in an instance have the same
cardinality and the same signature.

Computing Rank-Maximal Matchings. Now we recall Irving et al.’s algorithm [7]
for computing a rank-maximal matching in a given instance G = (A ∪ P, E1 ∪
. . .∪Er). Recall that Ei is the set of edges of rank i. For the sake of convenience,
for each applicant a, we add a dummy last-resort post �(a) at rank r + 1 in a’s
preference list, and refer to the modified instance as G. This ensures that every
rank-maximal matching is A-complete i.e. matches all the applicants.

Let Gi = (A ∪ P, E1 ∪ . . . ∪ Ei). The algorithm starts with G′
1 = G1 and any

maximum matching M1 in G′
1.

For i = 1 to r do the following and output Mr+1:

1. Partition the vertices in A ∪ P into even, odd, and unreachable as in
Definition 1 and call these sets Ei,Oi,Ui respectively.

2. Delete those edges in Ej , j > i, which are incident on nodes in Oi ∪ Ui.
These are the nodes that are matched by every maximum matching in
G′

i.
3. Delete all the edges from G′

i between a node in Oi and a node in Oi ∪Ui.
We refer to these edges as OiOi and OiUi edges respectively. These are
the edges which do not belong to any maximum matching in G′

i.
4. Add the edges in Ei+1 to G′

i and call the resulting graph G′
i+1.

5. Determine a maximum matching Mi+1 in G′
i+1 by augmenting Mi.

The algorithm constructs a graph G′
r+1. We construct a reduced graph G′

by deleting all the edges from G′
r+1 between a node in Or+1 and a node in

Or+1 ∪ Ur+1. The graph G′ will be used in subsequent sections.
We note the following invariants of Irving et al.’s algorithm:

(I1) For every 1 ≤ i ≤ r, every rank-maximal matching in Gi is contained in G′
i.
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(I2) The matching Mi is rank-maximal in Gi, and is a maximum matching in G′
i.

(I3) If a rank-maximal matching in G has signature (s1, . . . , si, . . . sr) then Mi

has signature (s1, . . . , si).
(I4) The graphs G′

i, 1 ≤ i ≤ r + 1 constructed at the end of iteration i of
Irving et al.’s algorithm, and G′ are independent of the rank-maximal
matching computed by the algorithm. This follows from Lemma 1 and
invariant I2.

3 Switching Graph Characterization

In this section, we describe the switching graph characterization of rank-maximal
matchings, and show its application in computing rank-maximal pairs.

Let M be a rank-maximal matching in G and let G′ = (A ∪ P, E′) be the
reduced graph as described in Section 2.

Definition 4 (Switching Graph). The switching graph GM = (VM , EM )
with respect to a rank-maximal matching M is a directed weighted graph with
VM = P and EM = {(pi, pj) | ∃a ∈ A, (a, pi) ∈ M, (a, pj) ∈ E′}. Further, weight
of an edge (pi, pj) is w(pi, pj) = rank(a, pj) − rank(a, pi), where rank(a, p) is
the rank of a post p in the preference list of an applicant a.

Thus an edge (pi, pj) ∈ EM iff there exists an applicant a such that (a, pi) ∈
M and (a, pj) is an edge in the graph G′. We define the following notation:

1. Sink vertex: A vertex p of GM is called a sink vertex, if p has no outgoing edge
in GM and p ∈ E1 ∩E2 ∩ . . .∩Er+1. Recall that Ei is the set of vertices which
were even in the graph G′

i constructed in the ith iteration of Irving et al.’s
algorithm.

2. Sink and non-sink components of GM : A connected component X in the
underlying undirected graph of GM is called a sink component if X contains
one or more sink vertices, and a non-sink component otherwise.

3. Switching paths and switching cycles: A path T = 〈p0, p1 . . . , pk−1〉 in GM is
called a switching path if T ends in a sink vertex and w(T ) = 0. Here, w(T )
is the sum of the weights of the edges in T . A cycle C = 〈p0, . . . , pk−1, p0〉
in GM is called a switching cycle if w(C) = 0.

4. Switching operation: Let T = 〈p0, p1 . . . , pk−1〉 be a switching path in GM .
Let AT = {a ∈ A | M(a) ∈ T}. Further, let M(ai) = pi for 0 ≤ i ≤ k−2. We
denote by M ′ = M · T , the matching obtained by applying T to M . Thus,
for ai ∈ AT , M ′(ai) = pi+1, and for a /∈ AT , M ′(a) = M(a). The matching
M ·C, obtained by applying a switching cycle C to M is defined analogously.
We also refer to M · C or M · T as a switching operation.

Figure 1 illustrates an example instance along with its switching graph.
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a1 : p1 p2 p3

a2 : p1 p2 p4

a3 : p1

a4 : p5 p6 p7

a5 : p5 p6 p7

a6 : p5 p6 p7

(a)

p1

p2

p3

p4 p5 p6

p7

−1
−1

−1−1

1

1
1

2

−2

−2

(b)

Fig. 1. (a) Preference lists of agents {a1, . . . , a6} in increasing order of ranks.
(b) Switching graph GM with respect to rank-maximal matching M =
{(a1, p3), (a2, p2), (a3, p1), (a4, p7), (a5, p5), (a6, p6)}. The vertex p4 is the only sink-
vertex and the path (p3, p2, p4) is a switching path. Note that every directed cycle
is a switching cycle.

3.1 Properties of the Switching Graph

In this section, we prove several useful properties of the switching graph by
characterizing switching paths and switching cycles.

In the following lemma, we show that a switching operation on a rank-
maximal matching M results in another rank-maximal matching in G.

Lemma 2. Let T (resp. C) be a switching path (resp. switching cycle) in GM .
Then, M ′ = M · T (resp. M ′ = M · C) is a rank-maximal matching in G.

Proof. We prove the lemma for a switching path T . A similar argument follows
for a switching cycle. To show that M ′ is rank-maximal, we show that M and
M ′ have the same signature.

Let T = 〈p0, p1, . . . , pk−1〉 be a switching path in GM . Let AT = {a | M(a) ∈
T}. By the definition of a switch, we know that |M | = |M ′| and for each a /∈ AT ,
we have M ′(a) = M(a). Thus, it suffices to show that the signatures of M
and M ′ restricted to the applicants in AT are the same. We denote them by
ρT (M) = (x1, x2, . . . , xr) and ρT (M ′) = (y1, y2, . . . , yr) respectively. Note that
an edge of rank i in M contributes −i to the weight of T , whereas one in M ′

contributes i. Further, since T is a switching path, w(T ) = 0. Thus,

w(T ) = (y1 − x1) + 2(y2 − x2) + . . . + r(yr − xr) = 0 (1)

Since we consider only applicants in AT , we know that,
∑r

i=1 xi =
∑r

i=1 yi, i.e.,

r∑

i=1

(xi − yi) = 0 (2)

For contradiction, assume that ρT (M) � ρT (M ′). That is, there exists an index
j such that xj > yj and, for 1 ≤ i < j, we have xi = yi. Then, for Eqn. 2 to be
satisfied, there exists an index � > j such that x� < y�. In fact we will show the
following stronger claim:
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Claim. There exists an index � > j such that
∑�

i=1(xi − yi) < 0.

Before proving the claim, we show how it suffices to complete the proof of
the lemma. Assuming the claim, consider the reduced graph G′

� constructed in
the �th iteration of Irving et al.’s algorithm.

As
∑�

i=1(xi−yi) < 0, we have
∑�

i=1 xi <
∑�

i=1 yi. Thus |M∩G′
�| < |M ′∩G′

�|.
However, by Invariant (I2) (ref. Section 2), this contradicts the fact that every
rank-maximal matching restricted to any rank � is also a maximum matching
in the reduced graph G′

�. This completes the proof of the lemma. We prove the
claim below.

Proof (of claim): Assume the contrary, i.e.
∑k

i=1(xi − yi) ≥ 0 for all k. Note
that this is trivially true for k ≤ j, by our choice of j. Equivalently,

∑r
i=k+1(xi −

yi) ≤ 0 for all k. Define Tk =
∑r

i=k(xi − yi) for 1 ≤ k ≤ r. Thus, to prove the
claim, it suffices to show that there exists an index � such that T� > 0. Now
consider Eqn. 1. It can be rewritten as follows:

(x1 − y1) + 2(x2 − y2) + . . . + r(xr − yr) = T1 + T2 + . . . + Tr = 0 (3)

We know that T1 = 0, because it is the left-side of Eqn. 2. Now, consider the
term Tr = xr − yr. If Tr = 0, we can eliminate xr and yr and get equations in
r − 1 variables. If Tr > 0, then Eqn. 2 implies that the claim holds for k = r − 1.
So, without loss of generality, we can assume Tr < 0. But then, to satisfy Eqn. 3,
there exists an index i, 1 < i < r, such that Ti > 0. This implies that the claim
holds for � = i − 1. This completes the proof of the claim. �

Now we address the question of recognition of switching paths and switching
cycles in GM . In Lemma 3, we show that every cycle in GM is in fact a switching
cycle, that is, a zero-weight cycle. In Lemma 4, we characterize switching paths.
The proofs for both these lemmas can be found in [4].

Lemma 3. Let M be a rmm in G, and C be a cycle in GM . Then w(C) = 0.

Proof. (Sketch) Let C ′ be the alternating cycle in G′, corresponding to the cycle
C in GM . To prove the Lemma, it suffices to show that, C ′ has an equal number of
matched and unmatched edges of any rank i, and hence w(C) = 0. We complete
the proof by induction on i. �

Lemma 4. Let M be a rmm in G, and GM be the switching graph with respect
to M . Recall that Ei is the set of even vertices in the graph G′

i constructed in the
ith iteration of Irving et al.’s algorithm. The following properties hold :

1. Let p be an unmatched post in M . Then p ∈ E1 ∩ . . . ∩ Er+1 and therefore is
a sink in GM .

2. A post p belongs to a sink component iff p ∈ Er+1. A post p belongs to a
non-sink component iff p ∈ Ur+1.

3. Let T be a path from a post p to some sink q in GM . Then w(T ) = 0 iff
p ∈ E1 ∩ . . . ∩ Er+1.
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In the following theorem, we prove that every rank-maximal matching can
be obtained from M by applying suitable switches.

Theorem 1. Every rank-maximal matching M ′ in G can be obtained from M
by applying to M vertex-disjoint switching paths and switching cycles in GM .

Proof. Consider any rank-maximal matching M ′ in G. We show that M ′ can
be obtained from M by applying a set of vertex-disjoint switching paths and
switching cycles of GM . Consider M ⊕M ′ which is a collection of vertex-disjoint
paths and cycles in G. Also note that the cycles and paths contain alternating
edges of M and M ′. We show that the paths and cycles in M ⊕M ′ are switching
paths and switching cycles in GM .

From the invariants of Irving et al.’s algorithm mentioned in Section 2, all
the edges of M and M ′ are also present in G′. A cycle in M ⊕M ′ has alternating
edges of M and M ′, and hence has a corresponding directed cycle in GM . As
proved in Lemma 3, every cycle in GM is a switching cycle.

Now we consider paths in M ⊕ M ′. All the paths are of even length,
since all the rank-maximal matchings are of the same cardinality. Let TG =
〈p1, a1, . . . , pk, ak, pk+1〉 be any even-length path in M⊕M ′ with pk+1 unmatched
in M and p1 unmatched in M ′. For every 1 ≤ i ≤ k, let M(pi) = ai. It is easy
to see that the path T = 〈p = p1, p2, . . . , pk+1 = p′〉 is present in GM and it
ends in a sink p′. Our goal is to show that w(T ) = 0. For this, we prove that
p1 ∈ E1 ∩ . . . ∩ Er+1. Note that M ′ is a rank-maximal matching in G and M ′

leaves the post p = p1 unmatched. As every post in Oi ∪ Ui for any i is matched
in every rank-maximal matching, p1 /∈ Oi ∪ Ui for 1 ≤ i ≤ r + 1. Therefore
p1 ∈ E1 ∩ . . .∩Er+1; Thus, using Lemma 4, we can conclude that the path T has
weight w(T ) = 0 in GM , and hence is a switching path in GM .

Applying these switching paths and cycles to M gives us the desired matching
M ′, thus completing the proof. �


3.2 Generating All Rank-Maximal Pairs
In this section we give an efficient algorithm to compute the set of rank-maximal
pairs, defined below:

Definition 5. An edge (a, p) is a rank-maximal pair if there exists a rank-
maximal matching M in G such that M(a) = p.

We refer to rank-maximal pairs as rmm-pairs. We show that the set of rmm-pairs
can be computed in time linear in the size of the switching graph GM constructed
with respect to any rank-maximal matching M . We prove the following theorem:

Theorem 2. The set of rmm-pairs for an instance G = (A ∪ P, E) can be
computed in O(min(n + r, r

√
n)m) time.

Proof. We note that, by Theorem 1, an edge (a, p) is a rmm-pair iff (i) (a, p) ∈ M
or, (ii) the edge (M(a), p) belongs to a switching cycle in GM or, (iii) the edge
(M(a), p) belongs to a switching path in GM .
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Condition (i) can be checked by computing a rank-maximal matching M
which takes O(min(n + r, r

√
n)m) time. Condition (ii) can be checked by com-

puting strongly connected components of GM , which takes time linear in the
size of GM .

To check Condition (iii), note that a post p has a zero-weight path to a sink
if and only if p ∈ E1 ∩ . . . ∩ Er+1 by Lemma 4 (3). Moreover, all the paths from
such a post p to a sink have weight zero. Therefore, performing a DFS from each
p ∈ E1 ∩ . . . ∩ Er+1 and marking all the edges encountered in the DFS (not just
the tree edges) gives all the pairs which satisfy Condition (iii). �


4 Counting Rank-Maximal Matchings

We prove that the problem of counting the number of rank-maximal matchings
in an instance is #P-complete, and give an FPRAS for the same.

4.1 Hardness of Counting

We prove #P-hardness by reducing the problem of counting the number of
matchings in 3-regular bipartite graphs to counting the number of rank-maximal
matchings. The former was shown to be #P-complete by Dagum and Luby [3].
Reduction for lists with ties: First let us consider the case when preference
lists may contain ties1. Let H = (X ∪ Y,E) be a 3-regular bipartite graph.
We construct an instance G of the rank-maximal matchings problem by setting
G = H and assigning rank 1 to all the edges in E. It is well-known that a k-
regular bipartite graph admits a perfect matching for any k. It is easy to see that
every perfect matching in H is a rank-maximal matching in G and vice versa.
This proves the #P-hardness of the problem for the case of ties.
Reduction for strict lists: Let H = (X ∪ Y,E) be a 3-regular bipartite
graph, with |X| = |Y | = n. The corresponding instance G = (A ∪ P, EG) of the
rank-maximal matchings problem is as follows:

A = {ax : x ∈ X} ∪ {ad1, ad2, . . . , adn−3}; P = {py : y ∈ Y } ∪ {pd1, pd2, . . . , pdn−3}

Here adi, pdi, 1 ≤ i ≤ n − 3 are dummy agents and dummy posts respectively.
To construct the preference lists of agents in A, we fix an arbitrary ordering

on the vertices in Y i.e. order : Y → {1, . . . , n}. This assigns an ordering on the
posts in P. The preference lists of the agents can be described as below:

– A dummy agent adi has a preference list of length one, with dummy post
pdi as his rank 1 post.

– The preference list of an agent ax consists of posts py1 , py2 , py3 ranked at
order(y1), order(y2), and order(y3) respectively, where y1, y2, y3 denote the
3 neighbors of x in H. The remaining places in the preference list of ax are
filled using the n − 3 dummy posts.

1 Recall that preference lists are said to contain ties if an applicant ranks two or more
posts at the same rank.
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Following Lemma (see [4] for proof) shows the correctness of the reduction.

Lemma 5. Let H be a 3-regular bipartite graph and let G be the rank-maximal
matchings instance constructed from H as above. There is a one-to-one corre-
spondence between perfect matchings in H and rank-maximal matchings in G.

Using Lemma 5 and our observation for ties, we conclude the following:

Theorem 3. The problem of counting the number of rank-maximal matchings
in an instance is #P-Complete for both strict and tied preference lists.

4.2 An FPRAS for Counting Rank-Maximal Matchings

Given the hardness result in Section 4.1, it is unlikely to be able to count the
number of rank-maximal matchings in an instance in polynomial time. We now
show that there exists a fully polynomial-time randomized approximation scheme
(FPRAS) for the problem. We use the following result by Jerrum et al. [9]:

Theorem 4 ([9]). There exists an FPRAS for the problem of counting the
number of perfect matchings in a bipartite graph.

We give a polynomial-time reduction from the problem of counting the number
of rank-maximal matchings (denoted as #RMM) to the problem of counting the
number of perfect matchings in a bipartite graph (denoted as #BPM).
Reduction from #RMM to #BPM: Given an instance G = (A ∪ P, E) of
the rank-maximal matchings problem, we first construct another instance H of
the rank-maximal matchings problem, which is used to get an instance I of the
bipartite perfect matchings problem. The steps of the construction are as follows:

1. For every a ∈ A, introduce a dummy last-resort post �(a) ranked r +1. This
ensures that every rank-maximal matching is A-complete.

2. Let M be any rank-maximal matching in G, let G′ be the reduced graph
obtained by Irving et al.’s algorithm (ref. Section 2).

3. Let k be the number of unmatched posts in G′. Introduce k dummy appli-
cants ad1, . . . , adk. The preference list of each dummy applicant consists of
all the posts in G′ which are in E1 ∩ . . . ∩ Er+1, tied at rank r + 2.

4. The instance H consists of all the applicants in G and their preference lists in
G, together with the dummy applicants and their preference lists introduced
above. The set of posts in H is the same as that in G.

5. The instance I of bipartite perfect matchings problem is simply the reduced
graph H ′, obtained by executing Irving et al.’s algorithm on H.

Correctness of the reduction follows from the following lemma, the proof (in [4])
uses the switching graph characterization.

Lemma 6. Let G be the rank-maximal matchings instance and let H and I
be the rank-maximal matchings instance and the bipartite perfect matchings
instance respectively constructed as above. Then, the following hold:
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1. Corresponding to each rank-maximal matching M in G, there are exactly k!
distinct rank-maximal matchings in H.
2. Each rank-maximal matching in H matches all the applicants and posts, and
all its edges appear in I. Hence it is a perfect matching in the instance I.
3. A matching in G that is not rank-maximal has no corresponding perfect match-
ing in I.

The FPRAS for #RMM involves the following steps:

1. The reduction from #RMM instance G to #BPM instance I,
2. Running Jerrum et al.’s FPRAS on I to get an approximate count, say C, of

the number of perfect matchings in I,
3. Dividing C by k! to get an approximate count of number of rank-maximal

matchings in G.

Steps 1 and 2 clearly work in polynomial time. For step 3, note that both C and
k are at most n! and can be represented in O(n log n) bits, which is polynomial
in the size of G. Therefore Step 3 also works in polynomial time. This completes
the FPRAS for #RMM problem.

5 Popularity of Rank-Maximal Matchings

As mentioned earlier, an instance of the rank-maximal matchings problem may
admit more than one rank-maximal matching. To choose one rank-maximal
matching, it is natural to impose an additional optimality criterion. Such a ques-
tion has been considered earlier in the context of popular matchings by [10,12]
and also in the context of the stable marriage problem [8]. The additional notion
of optimality that we impose is the notion of popularity, defined below:

Definition 6 (Popular Matching). A matching M is more popular than
matching M ′ (denoted by M �p M ′) if the number of applicants that prefer M
to M ′ is more than the number of applicants that prefer M ′ to M . A matching
M is popular if no matching M ′ is more popular than M .

An applicant a prefers matching M to M ′ if either (i) a is matched in M and
unmatched in M ′, or (ii) a is matched in both and prefers the post M(a)
to M ′(a). We consider the following question: Given an instance of the rank-
maximal matchings problem, is there a rank-maximal matching that is popular
in the set of all rank-maximal matchings? We refer to such a matching as a
popular rank-maximal matching. There are simple instances in which there is no
popular matching; further there is no popular rank-maximal matching. However,
if a popular rank-maximal matching exists, it seems an appealing choice since it
enjoys both rank-maximality and popularity. We make partial progress on this
question. Using the switching graph characterization developed in Section 3, we
give a simple algorithm to determine if a given rank-maximal matching M is a
popular rank-maximal matching. If not, our algorithm outputs a rank-maximal
matching M ′ which is more popular than M .
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Outline of the Algorithm. Given a graph G = (A ∪ P, E) and a rank-maximal
matching M in G, the algorithm first constructs the switching graph GM corre-
sponding to M . Now consider the following re-weighted graph G̃M where positive
weights of edges in GM are replaced by +1 weights and negative weights by −1.
Thus a −1 weight edge (pi, pj) in G̃M implies that M(pi) prefers pj to pi.

Let T be a switching path in GM , and let T̃ be the corresponding path in
G̃M . It is easy to see that if w(T̃ ) < 0 in G̃M , then M ′ = M · T is more popular
than M . Same holds for a switching cycle in GM . Therefore, M is a popular
rank-maximal matching, if and only if there is no negative-weight path to sink
or negative-weight cycle in G̃M .

To check this, we use shortest path computations using Bellman-Ford algo-
rithm in a suitably modified graph. The details of the algorithm and proof of
the following lemma, which establishes correctness, can be found in [4].

Lemma 7. A given rank-maximal matching M is popular if and only if there is
no negative-weight path to a sink or a negative-weight cycle in the re-weighted
switching graph.

Thus we get an O(mn) time algorithm for checking whether a given rank-
maximal matching is a popular rank-maximal matching, where m and n are
number of edges and vertices in the switching graph respectively.

Acknowledgments. We thank Partha Mukhopadhyay for a proof of Lemma 2.
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Abstract. In this paper, we are concerned with the generalized popular
condensation problem, which is an extension of the popular matching
problem. An instance of the popular matching problem consists of a set
of applicants A, a set of posts P , and a set of preference lists. According
to the preference lists, the goal is to match each applicant with at most
one unique post so that the resulting matching is “popular.” A match-
ing M mapping from A to P is popular if there is no other matching
M ′ such that more applicants prefer M ′ to M than prefer M to M ′.
However, such a matching does not always exist. To fulfill the popular
matching requirements, a possible manipulation is to neglect some appli-
cants. Given that each applicant is appended with a cost for neglecting,
the generalized popular condensation problem asks for a subset of appli-
cants, with minimum sum of costs, whose deletion results in an instance
admitting a popular matching. We prove that this problem is NP-hard,
and it is also NP-hard to approximate to within a certain factor, assum-
ing ties are involved in the preference lists. For the special case where
the costs of all applicants are equal, we show that the problem can be
solved in O(

√
nm) time, where n is the number of applicants and posts,

and m is the total length of the preference lists.

1 Introduction

The popular matching problem has been proposed for decades [4], and recently
characteristic and algorithmic results were given by Abraham et al. [1]. Later,
plenty of extensions or variants emerged for different criteria [2,9,15–17,19]. In
the popular matching problem, one is given a set of applicants A, a set of posts
P , and a set of preference lists that correspond one-to-one to the applicants
in A. Each preference list is a sequence of posts, representing the preference of
posts given by a specific applicant. A popular matching M defined as follows is
a way of assigning at most one post for each applicant, and no two applicants
get the same post. We say that an applicant a prefers a matching M to M ′ if

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 606–617, 2014.
DOI: 10.1007/978-3-319-13075-0 48
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a is matched to a post p in M and a post p′ in M ′, where a prefers p to p′, or
a is matched in M but not matched in M ′. A matching M is popular if there
is no other matching M ′ such that more applicants prefer M ′ to M than prefer
M to M ′. Abraham et al. [1] gave an O(

√
nm)-time algorithm to find a popular

matching if it exists, where n is the number of applicants and posts, and m is
the total length of the preference lists.

Popular matchings for a given instance do not always exist. For example,
suppose there are three applicants and three posts p1, p2, p3 and each applicant
ranks p1, p2, p3 in exactly the same way. It is not difficult to verify that there
exists no popular matching in such an instance. For those instances which do not
have a popular matching, there are many investigations focusing on this matter.
Manipulations such as adding more posts [12] or neglecting some applicants [22]
so that the resulting instance admits a popular matching are proposed.

The manipulation of neglecting some applicants is modeled as the popular
condensation problem [22]. In that problem, one is asked for the least number of
applicants to be neglected such that there is a popular matching in the resulting
instance. In this paper, we generalize the popular condensation problem in such
a way that all applicants are appended with costs, and the goal is to find a
subset of applicants, with minimum sum of costs, to be neglected such that the
resulting instance admits a popular matching.

1.1 Related Work

Since the popular matching problem was proposed by Gardenfors [4] and was
characterized by Abraham et al. [1] in 2005, there have been several exciting
extensions in recent years. For those instances with more than one popular
matching, Kavitha and Nasre [11] and McDermid and Irving [18] investigated
the notions of optimality among all popular matchings. There are also extensions
such as weighted popular matchings [19], many-to-one [16] and many-to-many
matchings [20], dynamic matchings (where applicants and posts can be inserted
or deleted dynamically) [2], random popular matchings [15], and popular match-
ings in the stable marriage and the roommates problems [3,6,7,10].

Similar to our motivation, there are some investigations that focus on the
case where no popular matching exists in the instance. The popular condensation
problem proposed by Wu et al. [22] focuses on the case where preference lists are
strictly ordered. The authors proposed an O(n+m)-time algorithm. In contrast
to the idea of condensing the size of the set of applicants, Kavitha and Nasre [12]
found another substitute solution by expanding the set of posts until the instance
admits a popular matching. In other words, they asked for the minimum number
of posts to copy for an instance to have a popular matching, where each post
is assigned with an upper bound on the number of copies. They proved that
this problem is NP-hard. The authors also gave a polynomial-time algorithm for
a variant of the problem above, where the total number of copies is bounded
by an integer. In [13], Kavitha et al. considered the problem of augmenting G
at minimum cost such that the new instance admits a popular matching, given
that each item (namely, post) is associated with a copy cost. They proved that
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this problem is NP-hard. Furthermore, it is NP-hard to approximate to within
a factor of

√
n1/2, where n1 is the number of applicants.

1.2 Problem Definition

In this subsection, we formally define the generalized popular condensation prob-
lem. An instance of this problem consists of

– a set of applicants, denoted by A;
– a set of posts, denoted by P ;
– a set of preference lists, each of which ranks a subset of posts for an applicant;
– a cost function c : A → R

+ ∪ {0}.

The instance is often formulated as a bipartite graph G = (A ∪ P,E), called
the instance graph, where (a, p) ∈ E if p is on a’s preference list. We denote
by rG(a, p) the rank of post p on a’s preference list. Note that there may be
multiple posts of the same rank on an applicant’s preference list. We say that a
prefers p to p′ if rG(a, p) < rG(a, p′) and denote such a relation by p ≺a p′. If
rG(a, p) = rG(a, p′), the two posts p and p′ are indifferent to a, and we denote the
relation by p �a p′. For simplicity, we omit the subscript if there is no ambiguity.
For any two matchings M and M ′ of G, we say applicant a prefers M to M ′ if
rG(a, p) < rG(a, p′) where (a, p) ∈ M and (a, p′) ∈ M ′, or a is matched in M
but not in M ′.

Given an instance graph G, a matching M is said to be popular if there
exists no matching M ′ such that more applicants prefer M ′ to M than prefer
M to M ′. As already observed, popular matchings do not always exist. We
say that an instance H = (AH ∪ P,EH) is a popular condensation of a given
instance graph G = (A ∪ P,E) if H admits a popular matching, AH ⊆ A,
EH = {(a, p) ∈ E : a ∈ AH}, and rH(a, p) = rG(a, p) for all (a, p) ∈ EH . The set
A \ AH is called a condensing set of G with respect to H, and the cost of H is
the sum of the costs of those applicants in its condensing set, i.e.,

∑
a∈A\AH

c(a).
Let Cond(G) denote the set of all popular condensations of G. The following is
a formal definition of the generalized popular condensation problem.

Problem 1 (The Generalized Popular Condensation Problem). Given an instance
graph G = (A ∪ P,E), the generalized popular condensation problem asks for a
condensing set D∗ of G with respect to H∗, where H∗ is a popular condensation
H∗ = (AH∗ ∪ P,EH∗) of G satisfying

H∗ = arg min
H∈Cond(G)

∑

a∈A\AH

c(a).

For an instance graph G, a condensing set D∗ we seek in Problem 1 is called
an optimal condensing set, and a popular condensation H∗ is called an optimal
popular condensation. Clearly, for any instance G = (A ∪ P,E), if |A| − 1 appli-
cants are neglected, then the resulting instance must admit a popular matching.
Therefore, a popular condensation sought in Problem 1 always exists.
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The rest of this paper is organized as follows. First, we highlight some
essential properties of popular matchings in Section 2. Then, we prove the NP-
hardness of the generalized popular condensation problem in Section 3, and show
the inapproximability of this problem. For the special case where all the costs are
the same, we show that the problem can be solved in O(

√
nm) time in Section 4,

where n is the number of applicants and posts, and m is the total length of the
preference lists. Finally, we summarize our main results in Section 5.

2 Preliminaries

In this section, we define the notation and summarize some previous results
which are related to our work. We first briefly introduce the idea of the Gallai-
Edmonds decomposition on the vertex set of a bipartite graph [5]. Given a bipar-
tite graph G = (A ∪ P,E) and a matching M of G, an M -alternating path is a
path on which any pair of adjacent edges contains exactly one edge in M . Sup-
pose that M is a maximum matching of G. A node v is even (respectively odd) if
there is an M -alternating path of even (respectively odd) length leading from an
unmatched vertex to v. A node v is unreachable if there is no M -alternating path
leading from an unmatched vertex to v. Let EG,OG, and UG denote the set of
all even, odd, and unreachable vertices, respectively. Clearly, {EG,OG,UG} is a
partition of A∪P . Such a partition is called the Gallai-Edmonds decomposition.
For any edge (a, p) ∈ E, we say that (a, p) is of type X–Y if a ∈ X and p ∈ Y ,
where X,Y ∈ {EG,OG,UG}.

For an instance graph G = (A∪P,E), if p ∈ P is the top-ranked post on some
applicant’s preference list, we say that p is an f-post with respect to G and denote
the set of all f-posts of G by FG. Let fG(a) denote the set of top-ranked posts
on a’s preference list. The first-choice graph of G is defined as G1 = (A∪P,E1),
where E1 = {(a, p) ∈ E : rG(a, p) = 1}, that is, the graph consists of all rank-one
edges. As in [1], there is a unique last resort post appended at the end of every
applicant a’s preference list. Let sG(a) denote the set of top-ranked posts in a’s
preference list that are even in G1. We say that p is an s-post if p ∈ sG(a) for
some applicant a ∈ A. By appending last resort posts, every applicant has at
least one choice that nobody else competes with him/her, thus sG(a) 	= ∅.

The reduced graph G′ = (A ∪ P,E′) is a subgraph of G, where E′ = {(a, p) :
p ∈ fG(a) or p ∈ sG(a)}, that is, G′ contains only those edges connecting a to
its f -posts and s-posts for each applicant a. The neighborhood NG(a) of a vertex
a in G is the set of vertices adjacent to a. For simplicity, we denote

⋃
x∈X NG(x)

as NG(X). For any matching M of G′, M is said to be applicant-complete if
all applicants are matched in M . Abraham et al. showed in [1, Theorem 3.1] a
necessary and sufficient condition for a matching to be popular of G. Moreover,
in the process of computing a popular matching of G, they further modified G′

by removing all edges of types OG1–OG1 , OG1–UG1 , and UG1–OG1 . We call such
a subgraph the simplified reduced graph of G and denote it by G′′. To pave a
way for the proofs later in Section 4, we extend the result of [1, Theorem 3.1] as
in Lemma 1. The proof is omitted here.
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Lemma 1. The following statements are equivalent.

a. M is a popular matching of G.
b. M ∩ E1 is a maximum matching of G1, and M is applicant-complete in G′.
c. M ∩ E1 is a maximum matching of G1, and M is applicant-complete in G′′.

3 Inapproximability Results

In this section, we show the complexity results of the generalized popular con-
densation problem. Some ideas are inspired from [13]. We proceed with the
decision version of this problem, formally stated as follows: Given an instance
graph G = (A ∪ P,E) and a nonnegative value κ, determine whether G has
a condensing set with cost at most κ. This decision problem is abbreviated as
GPC.

3.1 The NP-Completeness

We start by arguing that the GPC problem belongs to NP. Given an instance
graph and a value κ, a certificate consisting of a set of applicants, a set of posts,
and a set of preference lists can be verified by checking if it belongs to Cond(G),
and checking whether the cost of the corresponding condensing set is at most κ.
This process can certainly be done in polynomial time.

To prove the NP-hardness, we show a reduction from the monotone one-in-
three SAT problem, which is a variant of SAT such that each variable occurs
only unnegated in all clauses and each clause contains exact three literals. The
monotone one-in-three SAT problem asks if there is a satisfying assignment to
the variables such that only one literal is set to true in each clause. The monotone
one-in-three SAT problem is proved to be NP-hard by Schaefer [21].

For convenience, we define some notations here only for this section. Let φ be
an instance of the monotone one-in-three SAT problem, where C1, C2, ..., Cμ are
the clauses and X1,X2, ...,Xν are the variables in φ. Let cj denote the number
of clauses in which Xj appears. We construct an instance graph G of GPC from
φ as follows.

For each variable Xj , we have cj global applicants Aj = {x
(k)
j : k = 1, 2, . . . , cj}

and cj global posts Pj = {u
(k)
j : k = 1, 2, . . . , cj}. The preference list of each global

applicant x
(k)
j is of length one, and consists of the post u

(k)
j , where 1 � k � cj (see

Figure 1). The cost of each global applicant is set to be one. Let clause Ci be
(Xj1 ,Xj2 ,Xj3), where j1, j2, j3 ∈ {1, 2, . . . , ν}. For this clause, six local appli-
cants Bi = {a

(1)
i , a

(2)
i , a

(3)
i , a

(4)
i , a

(5)
i , a

(6)
i } and three local posts Qi = {pi, qi, ri}

are introduced. Posts pi and qi belong to the preference lists of applicants
in {a

(1)
i , a

(2)
i , a

(3)
i }, whereas ri belongs to the preference lists of applicants in

{a
(4)
i , a

(5)
i , a

(6)
i }. Additionally, global posts Pj1 , Pj2 , and Pj3 also belong to some
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Fig. 1. Preference lists of the cj global applicants in Aj . The cost of each global
applicant is one.
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(1)
j1

� u
(2)
j1

� · · · � u
(cj1 )

j1

a
(5)
i ri ≺ u

(1)
j2

� u
(2)
j2

� · · · � u
(cj2 )

j2

a
(6)
i ri ≺ u

(1)
j3

� u
(2)
j3

� · · · � u
(cj3 )

j3

Fig. 2. Preference lists of the six local applicants in Bi. The cost of each local applicant
is µ+ 1.

preference lists of applicants in Bi. The preference lists of applicants in Bi are
shown in Figure 2. The cost of each local applicant is set to be μ + 1.

To sum up, according to the reduction above, we have an instance graph
G = (A ∪ P,E), where the set of applicants A is the union of

⋃
j∈{1,2,...,ν} Aj

and
⋃

i∈{1,2,...,μ} Bi, and the set of posts P is the union of
⋃

j∈{1,2,...,ν} Pj and
⋃

i∈{1,2,...,μ} Qi.

Property 1. G does not admit a popular matching.

Since each global post u
(k)
j is the unique top-ranked post for exact one global

applicant x
(k)
j , where 1 � k � cj , the global posts are unreachable in the first-

choice graph G1 of G. Consider the local applicants in Bi: for each applicant
a ∈ {a

(1)
i , a

(2)
i , a

(3)
i }, we have fG(a) = {pi} and sG(a) = {qi}. It shows that a

(1)
i ,

a
(2)
i , and a

(3)
i compete for only two posts in G′. Since a popular matching must

be an applicant-complete matching of G′ (refer to Lemma 1), G does not admit
a popular matching. As stated in Lemma 2, φ is one-in-three satisfiable if and
only if G has a popular condensation with cost at most μ.

Lemma 2. There is a one-in-three satisfying assignment for φ if and only if G
has a condensing set with cost at most μ.

Here we conclude this section with the following theorem.

Theorem 1. The generalized popular condensation problem is NP-hard.

3.2 The Inapproximability

We show that the generalized popular condensation problem is NP-hard to
approximate to within a factor of α∗ − ε, where α∗ = max{n/11,m/2,

√
W/2},
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x
(1)
j u

(1)
j

x
(2)
j u

(2)
j

...
...

x
((µ3+1)cj)

j u
((µ3+1)cj)

j

Fig. 3. Preference lists of the (µ3+1)cj global applicants in Aj . The cost of each global
applicant is one.

a
(1)
i pi ≺ u

(1)
j1

� · · · � u
((µ3+1)cj1 )

j1
≺ qi

a
(2)
i pi ≺ u

(1)
j2

� · · · � u
((µ3+1)cj2 )

j2
≺ qi

a
(3)
i pi ≺ u

(1)
j3

� · · · � u
((µ3+1)cj3 )

j3
≺ qi

a
(3t+1)
i rti ≺ u

(1)
j1

� · · · � u
((µ3+1)cj1 )

j1

a
(3t+2)
i rti ≺ u

(1)
j2

� · · · � u
((µ3+1)cj2 )

j2

a
(3t+3)
i rti ≺ u

(1)
j3

� · · · � u
((µ3+1)cj3 )

j3

Fig. 4. Preference lists of the 3µ3 + 6 local applicants in Bi, t = 1, 2, . . . , µ3 + 1. The
cost of each local applicant is µ3 + 1.

ε > 0 is any constant, n is the number of applicants and posts, m is the total
length of preference lists, and W is the sum of costs of all applicants. Again, we
give a reduction from the monotone one-in-three SAT problem here. Given an
instance φ of the monotone one-in-three SAT problem, we construct an instance
G = (A ∪ P,E) of GPC in a manner similar to that in Section 3.1. Only the
differences are pointed out as follows.

• For each variable Xj , instead of having cj global applicants and posts as in
Section 3.1, now we have (μ3 + 1)cj global applicants in Aj = {x

(k)
j : k =

1, 2, . . . , (μ3 +1)cj} and equal-sized global posts in Pj = {u
(k)
j : k = 1, 2, . . . ,

(μ3 +1)cj}. The preference list of each global applicant x
(k)
j is of length one,

and consists of the post u
(k)
j , where 1 � k � (μ3 + 1)cj .

• For each clause Ci = (Xj1 ,Xj2 ,Xj3), instead of having six local applicants
and three local posts, here we have 3μ3 + 6 local applicants in Bi = {a

(k)
i :

k = 1, 2, . . . , 3μ3 + 6} and μ3 + 3 local posts in Qi = {pi, qi} ∪ {r
(k)
i : k =

1, 2, . . . , μ3 + 1}.
• Regarding the costs of applicants, global applicants are still appended with

cost one, whereas local applicants are appended with cost μ3 + 1.

The preference lists of applicants in Aj and Bi are illustrated in Figure 3 and
Figure 4, respectively.

Lemma 3. If there is a one-in-three satisfying assignment for φ, G has a con-
densing set of cost μ. Otherwise, the cost of any condensing set of G is at least
μ3 + 1.
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Due to the space limitation, we omit the proof of Lemma 3 here. Based on
the reduction, for μ > 3, we have

(1) the number of applicants and posts in G is n = 2(μ3+1)
∑

j=1,2,...,ν

cj+μ(4μ3+

9) = 2(μ3 + 1)(3μ) + μ(4μ3 + 9) = 10μ4 + 15μ � 11μ4;
(2) the total length of the preference lists is m = (μ3 + 1)

∑

j=1,2,...,ν

cj + μ(6 +

(μ3 + 1)) +
∑

j=1,2,...,ν

c2j (μ
3 + 1) � (μ3 + 1)(3μ) + (μ4 + 7μ) + (μ6 + μ3) =

μ6 + 4μ4 + μ3 + 10μ � 2μ6; and
(3) the sum of costs of all applicants is W = (μ3 + 1)

∑

j=1,2,...,ν

cj + μ(3μ3 +

6)(μ3 + 1) = 3μ7 + 12μ4 + 10μ � 4μ7.

Theorem 2. The generalized popular condensation problem is NP-hard to
approximate to within a factor of α, where α = max{(n/11)

1
2 , (m/2)

1
3 , (W/4)

2
7 },

n is the number of applicants and posts, m is the total length of preference lists,
and W is the sum of costs of all applicants.

Proof. We only show that there is no polynomial-time (n/11)
1
2 -approximation

algorithm for the generalized popular condensation problem, unless NP = P. For
(m/2)

1
3 and (W/4)

2
7 , the results can be derived in a similar way.

Suppose to the contrary that there is a (n/11)
1
2 -approximation algorithm X.

If φ is one-in-three satisfiable, by Lemma 3, X returns a popular condensation
of G with cost at most (

√
n/11)μ = (

√
11μ4/11)μ = μ3. If φ is not one-in-three

satisfiable, all popular condensations of G are of cost greater than μ3. Hence,
X returns an answer of cost at least μ3 + 1. As a result, we can use X and the
reduction mentioned in this subsection to determine whether φ is one-in-three
satisfiable in polynomial time. �


In fact, for any given ε > 0, by simply increasing the number of global
applicants in Aj to (μβ + 1)cj , and the number of local applicants in Bi to
3μβ+6, with β = � 2−ε

ε �, we can derive that the problem cannot be approximated
to within a factor of (n/11)1−ε in polynomial time, unless NP = P. Similarly,
by setting β to be � 4−3ε

ε � and � 3−ε
2ε �, the factor can be refined as (m/2)1−ε and

(
√

W/2)1−ε, respectively. We summarize the results in Corollary 1. Notice that
a similar analysis can be applied to [13] to improve its inapproximability result.

Corollary 1. The generalized popular condensation problem is NP-hard to
approximate to within a factor of α∗ − ε, where α∗ = max{n/11,m/2,

√
W/2},

ε > 0 is any constant, n is the number of applicants and posts, m is the total
length of preference lists, and W is the sum of costs of all applicants.

4 A special Case Where Applicants’ Costs Are Equal

In this section, we consider the case where applicants’ costs are equal. We show
that the optimal solution can be computed in O(

√
nm) time by modifying the
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algorithm given in [1]. The modified algorithm is given in Section 4.2, and the
correctness is based on the lower bound on |D∗| given in Section 4.1, where D∗

is the condensing set w.r.t. an optimal popular condensation.

4.1 A Lower Bound on |D∗|
Given an instance in which applicants’ costs are equal, let H∗ be an optimal
solution of the generalized popular condensation problem. Let the elements in
A \ AH∗ be ordered arbitrarily as a1, a2, . . . , ak, where k = |A \ AH∗ |, and let
H(i) be an instance graph (A(i)∪P,E), where A(i) = A\{a1, . . . , ai}. Obviously,
by definition, no matter how the elements in A \ AH∗ are ordered, the instance
graph H(i) admits no popular matching unless i = k.

Let M ′′
G be a maximum matching of G′′. In this subsection, we claim that

|A| − |M ′′
G| is a lower bound on k. According to Lemma 1, there is an applicant-

complete matching in H∗, and such a matching is a maximum matching of H∗. If
|A|−|M ′′

G| > k, then by the pigeonhole principle, there must be some i satisfying
|M ′′

H(i−1) | < |M ′′
H(i) |. Assume that G = H(0), our strategy to prove the claim is

to show |M ′′
H(i−1) | � |M ′′

H(i) |, for 1 � i � k.
Let G be a bipartite graph, and let H = G − a be the subgraph of G in

which vertex a is removed. In dealing with the Gallai-Edmonds decomposition
of G and H, Lovàsz and Plummer [14] gave a useful lemma that describes how
the Gallai-Edmonds decomposition changes from G to H. The lemma is called
the stability lemma, as shown in Lemma 4.

Lemma 4 (theStabilityLemma[14]). LetGbeabipartite graph,{EG,OG,UG}
be the Gallai-Edmonds decomposition, and u be a vertex of G.

a. If u ∈ OG, then OG−u = OG \ {u}, UG−u = UG and EG−u = EG.
b. If u ∈ UG, then OG−u ⊇ OG, UG−u ⊆ UG \ {u} and EG−u ⊇ EG.
c. If u ∈ EG, then OG−u ⊆ OG, UG−u ⊇ UG, and EG−u ⊆ EG \ {u}.

Based on the stability lemma, we may further characterize the Gallai-Edmonds
decompositions of G and H by Lemmata 5 and 6. Due to the space limitation, we
omit the proofs of the following lemmata.

Lemma 5. Let G = (A∪P,E) be a bipartite graph, and let H = G−a for some
a ∈ A. If a ∈ EG, then EH ∩ P = EG ∩ P and OH ∩ A = OG ∩ A.

Lemma 6. Let a ∈ UG1 . If v ∈ OH1 \OG1 , then NH′′(v) ⊆ EH1 \EG1 . Moreover,
there is a matching in G′′ that matches all vertices in {a} ∪ (OH1 \ OG1) to
EH1 \ EG1 .

To prove the claim given at the beginning of this subsection, that is, |A|−|M ′′
G|

is a lower bound on |D∗|, it suffices to prove Lemma 7.

Lemma 7. Let H = G − a where a ∈ A, and let M ′′
H and M ′′

G be maximum
matchings of H ′′ and G′′, respectively. We have that |M ′′

H | � |M ′′
G|.
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4.2 Computing an Optimal Condensing Set

Given any instance graph, an optimal condensing set can be computed by mod-
ifying the algorithm proposed by Abraham et al. [1] as follows.

Algorithm 1. PopularCondensation(G = (A ∪ P,E))

1 Compute G1 = (A ∪ P,E1), where E1 = {(a, p) : rG(a, p) = 1};
2 Compute a maximum matching M1 of G1;
3 Compute the simplified reduced graph G′′;
4 Compute a maximum matching M of G′′ by augmenting M1;
5 D := the set of applicants in A not matched by M ;
6 return D ;

To show the correctness, we claim that (i) M is a popular matching of H =
((A \ D) ∪ P,EH), where EH = {(a, p) ∈ E : a ∈ A \ D}; (ii) D is a condensing
set of minimum cardinality. Condition (ii) is shown in Section 4.1. To show that
Condition (i) holds, we proceed with the following lemma.

Lemma 8. For an instance graph G = (A∪P,E) in which applicants’ costs are
equal, PopularCondensation(G) computes a condensing set w.r.t. an optimal
popular condensation of G.

Proof. Let D be the output of PopularCondensation(G), M be the corre-
sponding matching, and H = (AH ∪ P,EH) be the instance graph with AH =
A \ D, EH = E \ {(a, p) : a ∈ D}, and rH(e) = rG(e). Let H1 = (AH ∪ P,EH1)
be the first-choice graph of H and H ′ be the reduced graph of H. By Lemma 1,
it suffices to show that M ∩ EH1 is a maximum matching of H1, and M is an
applicant-complete matching of H ′.

First, we show that M ∩EH1 is a maximum matching of H1. Let |M | denote
the size of the matching M . Suppose that MH1 and MG1 are maximum matchings
of H1 and G1, respectively. Since H1 is a subgraph of G1, we have |MH1 | � |MG1 |.
As shown in [1, Lemma 3.6], M ∩ E1 is a maximum matching of G1, and thus
we have

|M ∩ E1| = |M ∩ EH1 | � |MH1 | � |MG1 | = |M ∩ E1|.
Therefore, the equality |M ∩ EH1 | = |MH1 | holds, and M ∩ EH1 is a maximum
matching of H1.

Next, we show that M is an applicant-complete matching of H ′. For each
(a, p) ∈ M , if p is an f -post of a, then (a, p) is still an edge of H ′. Otherwise, p is
an s-post of a in G. Since M is obtained by augmenting an maximum matching of
G1, all vertices in UG1 are matched in M , and thus D consists of only applicants
in OG1 ∪ EG1 . By the stability lemma and Lemma 5, EH1 ∩ P = EG1 ∩ P , and
therefore (a, p) ∈ E(H ′). As a result, M is a subgraph of H ′, and we can conclude
that M is applicant-complete in H ′. �
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For the time complexity of PopularCondensation(G), the most time-
consuming steps are to compute the maximum matchings of G1 and G′′, which
can be done in O(

√
nm) by the algorithm of Hopcroft and Karp [8]. Together

with the lower bound analyzed in Section 4.1, we conclude this section by the
following theorem.

Theorem 3. Given that all applicants’ costs are equal, the generalized popular
condensation problem can be solved in O(

√
nm) time.

5 Concluding Remarks

This paper generalizes the result of the original popular condensation prob-
lem [22]. We show that when applicants are appended with costs and the pref-
erence lists may contain ties, it is NP-hard to compute a condensing set with
minimum cost such that the resulting instance admits a popular matching. We
further show that it is in fact NP-hard to approximate the problem within a
factor of α∗ − ε, where α∗ = max{n/11,m/2,

√
W/2}, and ε > 0 is any constant.

For the special case where all applicants’ costs are equal, we show that comput-
ing an optimal condensing set can be done in O(

√
nm) time. Note that since

the generalized popular condensation problem under the special case is at least
as hard as the popular matching problem, which is equivalent to the maximum-
cardinality bipartite matching problem [1], all these problems have equivalent
time complexity.
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Abstract. A cluster S in a massive graph G is characterised by the
property that its corresponding vertices are better connected with each
other, in comparison with the other vertices of the graph. Modeling,
finding and analyzing clusters in massive graphs is an important topic
in various disciplines. In this work we study local random walks that
always stay in a cluster S. Moreover, we initiate the study of the local
mixing time and the almost stable distribution, by analyzing Dirichlet
eigenvalues in graphs. We prove that the Dirichlet eigenvalues of any
connected subset S can be used to bound the ε-uniform mixing time,
which improves the previous best-known result. We further present two
applications of our results. The first is a polynomial-time algorithm for
finding clusters with an improved approximation guarantee, while the
second is the significance ordering of vertices in a cluster.

1 Introduction

Random walks are one of the fundamental tools in various disciplines such as
mathematics, physics and computer science, and have been studied from dif-
ferent aspects (e.g., mixing time, cover time, relations to the eigenvalue gap of
the stochastic matrix, conductance of graphs), and under many variations (e.g.,
multiple random walks [8], coalescing random walks [7], and deterministic ran-
dom walks [9]). In computer science, random walks are widely used in designing
distributed, randomized and local algorithms, in which the global information
of the graph is unknown to every vertex, and vertices can only exchange infor-
mation with their neighbors. Some specific problems in which random walks are
used include graph exploration [3], load balancing [15], and local algorithms for
finding clusters [10].

The most widely studied form of random walks is the lazy random walk. Let
G = (V,E) be an undirected and connected graph, and deg(u) be the degree of
vertex u. A lazy random walk in G is a sequence of random vertices X0,X1, . . . Xt

modelled according to the following rule. There is an initial vertex X0 ∈ V from
which the random walk starts, and in each step i � 1 every vertex Xi−1 = u

This work has been partially funded by the Cluster of Excellence “Multimodal
Computing and Interaction” within the Excellence Initiative of the German Federal
Government.
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stays at the current vertex u with probability 1/2 or moves to a random neighbor
with probability 1/2deg(u).

In the this paper we study a local random walk. Let S ⊆ V be a subset with
∂S �= ∅, where ∂S � {(u, v)

∣
∣ u ∈ S and v ∈ V \ S} and consider a random

process X0, . . . , Xt in which every Xi ∈ S for 1 � i � t, i.e., the lazy random
walk always stays inside S during the first t steps. Of particular interest is the
case when vertices in S are well connected, in contrast to the vertices between
S and V \ S. In this case, the set S corresponds to a cluster in social networks,
where the connections between people inside a cluster are substantially more, in
comparison with the connections between different clusters. Theoretical studies
on local random walks have significantly influenced the design of local algorithms
for finding well-connected clusters [1,2,10,16,17].

We first address several theoretical aspects on local random walks. One basic
and well-known result on lazy random walks is that after a certain number
of steps, the distribution of Xt in step t becomes stable, i.e. the probability
that vertex u is visited is approximately proportional to deg(u). In contrast, the
situation for local random walks is much more complicated. Since ∂S �= ∅, in each
step the random walk leaves S with (probably) non-zero probability, and this
probability changes with respect to the current location u of the random walk.
The probability that the random walk leaves S in the next step is proportional
to the number of neighbors of u outside S and deg(u). Interestingly, we show
that the phenomenon of stableness exists even for local random walks. Our first
result is summarized in Theorem 1, and we refer the reader to Theorem 6 for a
precise and formal statement.

Theorem 1 (Informal). Let G be an undirected and connected graph, and S
a subset of vertices. Let PS,w[Xt = v] be the probability that a lazy random walk
starting from w ∈ S stays in S during the first t steps and reaches v in step t.
Then, for any ε there is a step MIXS(ε), called the local mixing time, such that
it holds for any u, v ∈ S and t � MIXS(ε) that

(1 − ε′) · (pS)u

(pS)v
� PS,w[Xt = u]

PS,w[Xt = v]
� (1 + ε′) · (pS)u

(pS)v
,

where ε′ = 2ε/(1−ε) and pS is the almost stable distribution that is independent
of step t.

Since the random walk may leave S with non-zero probability in each step and
there is no “real” stationary distribution for local random walks, in Theorem 1
we study the ratio between the probabilities of the local random walk visiting
different vertices u, v ∈ S that start from the same initial vertex w ∈ S. We prove
that this ratio is preserved after MIXS(ε) steps. Equivalently, once MIXS(ε) steps
are performed the “shape” of the resulting distribution becomes stable, and this
almost stable distribution can be precisely characterized by Dirichlet eigenvalues
and the associated eigenvectors. When S = V , the almost stable distribution
coincides with the standard stationary distribution, and MIXS(ε) matches the
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well-known bound on the uniform mixing time, implying that our result is a
natural generalization of the result for global random walks.

We further address the influence of the structure of S on the mixing rate of
(non-local) lazy random walks. Formally, we study the ε-uniform mixing time
τ(ε) [11], which is defined by

τ(ε) � min
{

t :
∣
∣
∣
∣
Pu[Xt = v] − πv

πv

∣
∣
∣
∣ � ε, ∀u, v ∈ V

}

. (1)

Here π ∈ R
V is the stationary distribution of a lazy random walk in G, and

Pu[Xt = v] is the probability that a t-step random walk staring from u reaches
v. We prove that for any connected subset S ⊂ V , the Dirichlet eigenvalue λS

(i.e., the largest eigenvalue of matrix MS
1) gives a lower bound on τ(ε). This

bound presents an improvement over the previous best result [10].

Theorem 2. Let G = (V,E) be an undirected and connected graph. For 1 �
γ � vol(V )/2, 0 < ε < 1, and any subset S ⊂ V satisfying vol(S) � γ, G[S] is
connected and λS � 1/4, it holds that τ (ε) � [2(1 − λS)]−1 · ln

(
vol(V )

/
2γ

)
.

Our results have several practical implications. First, we present an improved
algorithm for finding well-connected clusters. Our result is summarized in
Theorem 3, and the algorithm is presented in Section 6.

Theorem 3. There is a polynomial-time algorithm that takes as input an undi-
rected and connected graph G = (V,E) with minimum degree at least 4, a target
largest eigenvalue λ and a real number 0 < ε < 1/2, and outputs a set S satisfy-
ing the following condition: If λmax(MU ) � λ, for some connected subset U ⊂ V ,
then vol(S) � 2 vol(U)1+ε and λmax(MS) � 1 − √

2(1 − λ)/ε.

Second, our result on almost stable distribution (Theorem 1) implies an order-
ing of vertices in S according to their significance. A vertex has high significance
if a local random walk started from that vertex stays inside S with high proba-
bility. We prove that the vector representing the significance of vertices can be
expressed as a scaled Dirichlet eigenvector. Our result is summarized as follows.

Theorem 4 (Informal). Let G = (V,E) be an undirected and connected graph,
S ⊆ V such that G[S] is connected, and v is the eigenvector corresponding to
the Dirichlet eigenvalue λS of matrix MS. Then, the vector zS � D

−1/2
S v gives

significance ordering of vertices in S.

Interestingly, the significance ordering of vertices in S, which is based on
Dirichlet eigenvectors, corresponds to the so-called sweep ordering [1,10,13,14]
of the vector pS . In particular, it holds that (zS)u1

� · · · � (zS)uS
if and

only if (pS)u1

/
deg(u1) � · · · � (pS)u1

/
deg(uS). This suggests that further

connections among finding significant vertices, Dirichlet eigenvectors and sweep
sets may exist.
1 Matrix MS is a normalized adjacency sub-matrix consisting of rows and columns
indexed by the vertices in S. We refer to Section 2 for all formal definitions.
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Related Work. There are several studies that are closely related to our work. The
first line involves spectral analysis of subgraphs. Chung and Yau [6] showed a
relation between isoperimetric inequalities and Laplacian operators with Dirichlet
conditions. Moreover, a relation between expansion of an induced subgraph and
the Dirichlet eigenvalue, a.k.a. local Cheeger inequality, was shown in [5]. The sec-
ond line deals with the design of local algorithms for finding well-connected clus-
ters. Various local algorithms based on truncated random walks [12,16],
PageRank [1,17], and Evolving Sets [2,10] have been proposed in the last decade.

2 Background Knowledge & Notations

Let G = (V,E) be an undirected and connected graph with n vertices. Let A be
the adjacency matrix of graph G, and let D be the diagonal matrix consisting
of degrees of vertices in G. The normalized adjacency matrix of graph G is
defined by M � D−1/2AD−1/2. For any subset S ⊆ V , the induced subgraph
determined by S has edge set consisting of all edges of G with both endpoints in
S. We denoted by G[S] the induced subgraph determined by S. The conductance
of set S is defined by

φS � |∂S|
min{vol(S), vol(V \S)} , (2)

where vol(S) �
∑

v∈S deg(v) is the volume of S. The conductance of a graph G
is defined by

φG � min
∅�=S⊂V

vol(S)�vol(G)/2

φS .

We further define the local Cheeger constant by

hS � min
T⊆S

|∂T |
vol(T )

,

and we call a set S with vol(S) � vol(V )/2 a cluster if hS = φS , i.e., S is the
set such that all subsets T ⊂ S have better conductance than the set S itself.

We use MS to represent the sub-matrix of M that consists of rows and
columns indexed by the vertices in S. The matrices DS and AS are defined in
the same way. The eigenvalues of an n by n matrix are expressed by λmax(·) =
λ1(·) � λ2(·) � · · · � λn(·) in the non-increasing order.

We study the functions with the Dirichlet boundary conditions, i.e., we con-
sider the space of functions {f : S ∪δS 	→ R} that satisfy the Dirichlet condition
f(x) = 0 for any x in the vertex boundary δS of S, where δS � {u �∈ S : (u, v) ∈
E and v ∈ S}. We use the notation f ∈ D� to denote that f satisfies the Dirich-
let boundary condition. By Courant-Fischer Formula, the largest eigenvalue λS

of matrix MS , can be written as

λS = max
x∈Rn,x∈D�

xᵀMx
xᵀx

,

and we call the vector restricted to R
S the Dirichlet eigenvector.



Dirichlet Eigenvalues, Local Random Walks 625

Lemma 1 ([5]). Let G be a graph, and S ⊆ V a subset such that G[S] is
connected. Then, the Dirichlet eigenvalue satisfies

1 − φS � 1 − hS � λS � 1 − h2
S/2.

Notice that hS = φS and λS � 1 − φ2
S/2, if S is a cluster. For further

discussion about the Dirichlet eigenvalues, we refer the reader to [4].
We use A,B, . . . to express matrices, and x,y, . . . for column vectors. We will

write x ∈ R
V and A ∈ R

V ×V to emphasise that they are indexed by the vertices
of a graph G. We denote by 1 � (1, 1, ..., 1)ᵀ the all one vector, whereas 1S is
the characteristic vector of a subset S ⊂ V . We abuse the notation and use 1v

instead of 1{v}. We write p (S) �
∑

u∈S pu, for a subset S ⊆ V .

3 The Staying Probability

We first consider the lazy random walk in G in which the random walk stays
at the current vertex u with probability 1/2 or moves to a random neighbor
with probability 1/2deg(u). This random walk is characterized by the transition
matrix W � (I + D−1A)/2. Let Xt be the vertex in which the random walk
stays in step t and π be the stationary distribution of the random walk.

For any set S ⊆ V , vertex u and integer t � 0 we write rem(u, t, S) to denote
the probability that a lazy random walk starting from a vertex v always stays
in S during the first t steps. The motivation behind studying rem(u, t, S) is to
analyze the performance of a random walk when S is a cluster. In this case, we
expect the random walk to stay entirely in S with reasonable probability for a
relatively large number of steps t. Our result on staying probability is as follows.

Theorem 5. Let G = (V,E) be a connected and undirected graph, S ⊆ V such
that G[S] is connected, and WS be the sub-matrix of W consisting of rows and
columns indexed by the vertices in S. Then, it holds for any integer t > 0 that

Eu∼pS
[rem(u, t, S)] =

(

1 − 1 − λS

2

)t

= λmax (WS)t
, (3)

where pS � DSzS/ ‖DSzS‖1 and zS is the eigenvector with respect to λmax(WS).

Remark 1. Since WS = (IS + D−1
S AS)/2 by definition, it is easy to check that

[1 + λi (MS)] /2 = λi (WS) for all 1 � i � |S|. Thus, (1 + λS) /2 = λmax (WS).

Theorem 5 implies the existence of good vertices, i.e., vertices from which
the random walk always stays in S with substantially higher probability.

Corollary 1. Let G = (V,E) be a graph, and S ⊆ V a subset such that G[S] is
connected. Then, for any integer t > 0, there is at least one vertex u ∈ S such
that

rem(u, t, S) �
(

1 − 1 − λS

2

)t

= λmax (WS)t
.
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Lemma 2. Let G[S] be a connected graph. Then, λS = 1 − φS if and only if the
significance vector zS = 1/

√
vol(S) is a constant vector.

Comparing with Corollary 1, all previous bounds on the staying probability
are with respect to the conductance of S [10,16]. Gharan and Trevisan proved
that Eu∼πS

[rem(u, t, S)] � (1 − φS/2)t for any set S ⊆ V , where (πS)u =
deg(u)/ vol(S) if u ∈ S, and 0 otherwise. Their result implies the existence
of a vertex u ∈ S such that rem(u, t, S) � (1 − φS/2)t. Due to Lemma 1 and
Lemma 2, in almost all cases our result strictly improves the previous best. The
main technique used in proving Theorem 5 is to analyze the Dirichlet eigenvalues
and the corresponding eigenvectors of matrix MS . We remark that Kwok and
Lau [12] implicitly established an identical result to Theorem 5.

4 Local Mixing Time

For any random walk with transition matrix W , the stationary distribution π
satisfy πᵀM = πᵀ. For a lazy random walk on any undirected graph with the
transition matrix M , the stationary distribution π exists and is determined by
the eigenvector corresponding to the largest eigenvalue of matrix M . However,
for any subset S, the random walk started in S may leave S with non-zero
probability in each step. This fact implies the non-existence of stable distribution
in the case of local random walks (w.r.t. set S).

On the other hand, Corollary 1 shows that the spectral structure of the matrix
WS influences the staying probability of set S. This interesting fact motivates
us to study the local mixing time with respect to Dirichlet eigenvalues and the
corresponding eigenvectors.

Let G = (V,E) be a graph, and S ⊆ V a subset. We denote the induced
Markov chain by MS(G[S],WS), where WS =

(
IS + D−1

S AS

)
/2 is a non-

stochastic matrix. The next theorem proves that the mixing rate of a local
random walk is determined by the first and the second largest eigenvalues of
WS , and the eigenvector corresponding to the largest eigenvalue of WS .

Theorem 6. Let M(G,W ) be a finite, time-reversible, and ergodic Markov
chain, and S ⊂ V such that G[S] is connected. Let MS(G[S],WS) be the induced
Markov chain. Then, for any ε > 0 there is a step MIXS(ε) such that it holds
for any different vertices u, v ∈ S and step t � MIXS(ε) that

∣
∣
∣
(
W t

S

)
uv

− α(t)
u · (pS)v

∣
∣
∣ � ε · α(t)

u · (pS)v , (4)

where each coordinate of α(t) is defined by

α(t)
u � (zS)u · λmax (WS)t · ‖DSzS‖1 , (5)

and zS is the eigenvector corresponding to λmax(WS). Moreover, the local mixing
time is upper bounded by

MIXS(ε) � λmax (WS)
λmax (WS) − λ2 (WS)

· ln

⎛

⎜
⎝

1

min
u∈S

{
deg(u) · (zS)2u

} · 1
ε

⎞

⎟
⎠ . (6)
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Let us first discuss the meaning of the local mixing time. For a t-step random
walk with transition matrix WS and starting vertex u ∈ S, the probability that
the walk reaches vertex v is (W t

S)u,v. Theorem 6 states that after t � MIXS(ε)
steps, the induced pseudo distribution2 1ᵀ

uW t
S becomes almost stable, in the sense

that for ε′ = 2ε/(1 − ε) and any vertices v, w ∈ S it holds that

(1 − ε′) · (pS)v

/
(pS)w �

(
W t

S

)
uv

/ (
W t

S

)
uw

� (1 + ε′) · (pS)v

/
(pS)w .

Hence, all induced pseudo distributions {1ᵀ
uW t

S}u∈S have approximately the
same shape as the distribution pS . This is the reason why we call pS the almost
stable distribution.

Proof (Proof of Theorem 6). Our proof generalizes the approach proposed in [11].
Let |S| = k. We define by WN

S � D
1/2
S WSD

−1/2
S = (IS + MS) /2 a normalized

and symmetric matrix. Observe that
(
WN

S

)t = D
1/2
S (WS)t

D
−1/2
S and hence

W t
S = D

−1/2
S

(
WN

S

)t
D

1/2
S .

Moreover, by Remark 1 and since WN
S is symmetric,

(
WN

S

)t has an eigen-

decomposition of the form
(
WN

S

)t =
∑k

i=1

(
1+λi

2

)t
viv

ᵀ
i =

∑k
i=1 λi (WS)t viv

ᵀ
i ,

where vi and λi are the ith eigenvector and eigenvalue of matrix MS respectively.
We prove next the upper bound on MIXS(ε) for any ε > 0. To simplify

the notations we define by V
(i)
S � D

−1/2
S viv

ᵀ
i D

1/2
S the scaled tensor product of

eigenvector vi. Notice that

(
W t

S

)
uv

= λmax (WS)t ·
(
V

(1)
S

)

uv
+

k∑

i=2

λi (WS)t ·
(
V

(i)
S

)

uv
. (7)

By definition, for every vertex u ∈ S it holds that

λmax (WS)t · 1ᵀ
uV

(1)
S =

[
(zS)u · λmax (WS)t · ‖DSzS‖1

]
· pᵀ

S , (8)

Now we set α
(t)
u � (zS)u · λmax (WS)t · ‖DSzS‖1. By (7), (8) and due to the

orthogonality of eigenvectors {v1, . . . ,vk} it follows that

k∑

i=2

∣
∣
∣
(
V

(i)
S

)

uv

∣
∣
∣ =

√
deg (v)

√
deg (u)

k∑

i=2

|(vi)u| |(vi)v| �
√

deg (v)
deg (u)

,

and hence

∣
∣
∣
(
W t

S

)
uv

− α(t)
u · (pS)v

∣
∣
∣ =

∣
∣
∣
∣
∣

k∑

i=2

λi (WS)t ·
(
V

(i)
S

)

uv

∣
∣
∣
∣
∣
� λ2 (WS)t ·

√
deg (v)
deg (u)

. (9)

Furthermore, by definition of pS , zS and α
(t)
u it holds that

1

α
(t)
u · (pS)v

=

√
deg (u)
deg (v)

· 1
vuvv

· 1
λmax (WS)t . (10)

2 A pseudo distribution q ∈ R
S satisfies: 1ᵀq < 1 and qi � 0 for every i ∈ S.
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By (9), (10) and zS = D
−1/2
S v we have multiplicative approximation of W t

S

∣
∣
∣(W t

S)uv − α
(t)
u · (pS)v

∣
∣
∣

α
(t)
u · (pS)v

� 1

min
v∈S

{
deg (v) · (zS)2v

} ·
(

λ2 (WS)
λmax (WS)

)t

. (11)

Straightforward checking shows that the right hand side of (11) is at most ε > 0

for any t � λmax(WS)
λmax(WS)+λ2(WS) · ln

(

1

min
v∈S

{deg(v)·(zS)2v} · 1
ε

)

. This yields the desired

upper bound on the local mixing time MIXS(ε). �

We further remark that the notation of the local mixing time is a natural
generalization of the well-studied uniform mixing time of Markov chains. To see
this, we apply Theorem 6 with S = V and obtain that

max
u,v∈V

∣
∣
∣
∣
(W t)uv − πv

πv

∣
∣
∣
∣ � λ2(W )t

minw∈V πw
, (12)

which implies that MIXS(ε) � 1
1−λ2(W ) · ln

(
vol(V )

minu∈S deg(u) · 1
ε

)
.

5 ε-Uniform Mixing Time

We further study ε-Uniform Mixing Time (ε-UMT) defined in (1). By defintion,
τ(ε) is the minimum number of steps such that the largest relative difference
between Pu[Xt = v] and πv is at most ε · πv, maximized over all initial vertices
u, v ∈ V (G). It was proven in [11] that the ε-UMT of any lazy random walk
satisfies

τ(ε) � 2
φ2

G

log
(

1
minv∈V πv

· 1
ε

)

.

Gharan and Trevisan [10] presented a lower bound on τ(ε), for any 0 < ε < 1,
by proving that

τ(ε) � 1
2φS

ln
(

vol(V )
2γ

)

, (13)

where 1 � γ � vol(V )/2 and φS � 0.7. Our result for the ε-UMT is as follows.

Theorem 2 (from page 623). Let G = (V,E) be an undirected and connected
graph, and Sγ � {S ⊆ V | vol(S) � γ, G [S] is connected and λS � 1/4}. Then,

τ (ε) � max
1�γ�vol(S)/2

max
S∈Sγ

{
1

2 (1 − λS)
ln

(
vol(V )

2γ

)}

. (14)

Comparing with the previous best known result (13) that only depends on
the conductance of subsets, the result in Theorem 2 is based on the Dirichlet



Dirichlet Eigenvalues, Local Random Walks 629

eigenvalue λS . Moreover, Theorem 2 provides an improved result over the state
of the art, due to 1 − λS � φS (cf. Lemma 1).

Furthermore, since the value of λS depends on both the inner structure of
G[S] and the conductance of S, Theorem 2 implies that in contrast to simply
considering φS , the inner structure of G[S] influences the ε-UMT. To the best
of our knowledge, this is the first result relating the mixing time to the local
structure of connected subsets of vertices in G.

6 An Improved Algorithm for Graph Partitioning

In this section we present and analyze the algorithm corresponding to Theorem 3.
We start with introducing one technique introduced by Lovasz and Simonovits

[13,14]. Let q be a probability distribution over the vertices in G and σ : V 	→ V a
permutation of vertices such that it is non-increasing with respect to qu/deg(u),
where the ties are resolved lexicographically, i.e.

q(σ(1))
deg(σ(1))

� · · · � q(σ(i))
deg(σ(i))

� · · · � q(σ(n))
deg(σ(n))

.

We write Ti(q) to denote a sweep set of the first i vertices taken with respect
to the permutation σ, i.e., Ti(q) � {σ(1), . . . , σ(i)}. For simplicity we write Ti

instead of Ti(q) when q is clear from the context.
Our algorithm follows the framework in [10], and finds a cluster with the

worst case guarantee with respect to the Dirichlet eigenvalue λS , instead of
conductance φS . The formal description is as follows.

Algorithm 1. ASSEP(λ, ε)

For all vertices v ∈ V and all integers 1 � i � n − 1 and 1 � t � ε·ln vol(V )
1−λ

,

let T be the family of all connected sweep sets Ti(1
ᵀ
vW t) satisfying the inequality

1 − λmax(MTi) �
√

2(1 − λ)/ε

return the set with minimum volume in T .

Now we analyze Algorithm 1. We first state a useful lemma that will be used
in proving Theorem 3.

Lemma 3 ([10]). For any vertex v ∈ V , 0 � γ � m, t � 0 and 0 � Φ � 1/2, if
for all t � T , all sweep sets Ti (1ᵀ

vW t) of volume at most γ have conductance at
least Φ, then it holds for any 0 � t � T that

C
(
1ᵀ

vW t, x
)

� x

γ
+

√
x

deg (v)

(

1 − Φ2

2

)t

.
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Proof of Theorem 3. We follow the proof in [10], but in contrast apply Corollary 1
to obtain an improved lower bound on the staying probability expressed in terms
of Dirichlet eigenvalue λS . We define by

γ = vol(U), T = ε/(1 − λ) · ln γ, Γ = 2γ1+ε, and Φ =
√

2(1 − λ)/ε.

We show that the algorithm ASSEP (λ, ε) returns a set S of volume at most
Γ with the Dirichlet eigenvalue λS at least 1 − √

2(1 − λ)/ε. The proof is by
contradiction.

Assume for contradiction that the output set S has volume larger than Γ . We
show that Lemma 3 and Corollary 1 can not hold simultaneously. By Corollary 1,
there is a vertex u ∈ U , such that

rem(u, t, U) �
(

1 − 1 − λmax(MU )
2

)t

�
(

1 − 1 − λ

2

) ε
1−λ ln γ

� γ−ε. (15)

We denote by q = 1ᵀ
uW t and construct a vector w ∈ R

V such that w(v) = 1,
for all v ∈ U and w(v) = 0, otherwise. By the definition of Lovasz-Simonovits
Curve [13,14] and (15), we obtain that

C(q, γ) �
∑

v∈V

w(v) · qu =
∑

v∈U

qv � rem(u, t, U) � γ−ε. (16)

By the assumption and the description of algorithm ASSEP (λ, ε), it follows
that the minimum volume over all connected sweep sets with 1 − λmax(MTi

) �√
2(1 − λ)/ε is at least Γ . Thus, each connected sweep set Ti of volume at

most Γ satisfies the inequality 1 − λmax(MTi
) �

√
2(1 − λ)/ε. Furthermore, by

Lemma 1 it follows that

ΦTi
� 1 − λmax(MTi

) �
√

2(1 − λ)/ε. (17)

The desired contradiction is obtained by combining (16), (17) and Lemma 3,
since

C (q, γ) � γ

Γ
+

√
γ

deg (v)

⎛

⎜
⎝1 −

(√
2(1 − λ)/ε

)2

2

⎞

⎟
⎠

t

� 1
2γε

+
√

γ

deg (v)

(

1 − 1 − λ

ε

) ε
1−λ ln γ

< γ−ε,

where the first inequality uses the monotonicity of C(q, ·) and the fact that
x = vol(U) � γ, and the last inequality follows by ε < 1/2 and deg(v) � 4. �

7 The Vertex Significance Ordering

In real networks a random walk starting from different vertices stays entirely in
a cluster S with different probabilities, i.e., random walks initialized from the
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boundary vertices leave S with higher probability, while random walks starting
from the center vertices leave S with lower probabilities. This suggests a natural
ordering of vertices in a cluster according to the staying probability of a t-step
random walk.

From a theoretical point of view, random walks starting from vertices of
higher significance have better chance to explore the whole cluster, and for some
practical applications the staying probability of a vertex in t steps presents its
significance in a cluster. Using probabilistic methods [16] showed that there is
a subset of good vertices, and random walks starting from these vertices have
provably higher chance to stay in S.

We further relate the significance of vertices in S to their associated staying
probability. Recall that by Corollary 1, for any step t there is a vertex u such that
rem(u, t, S) � λmax (WS)t. Our result shows that for any t � MIXS(ε) the staying
probability rem (u�, t, S) of the most significant vertex u� ∈ S can be lower
bounded by the expected staying probability Eu∼pS

[rem(u, t, S)] = λmax (WS)t

(cf. to Theorem 5) up to a (1 − ε) factor.

Theorem 7. Let M (G = (V,E),W ) be a finite, time-reversible, ergodic Markov
chain, S ⊂ V such that G[S] is connected, and MS (G [S] ,WS) an induced Markov
chain. Then, for all ε > 0, t � MIXS(ε) and any vertex u ∈ S, it holds that

{(1 − ε) ξt} (zS)u � rem(u, t, S) �
{
(1 + ε) ξt

}
(zS)u ,

where ξt = λmax (WS)t · ‖DSzS‖1. Furthermore, the most significant vertex u�

satisfies
rem (u�, t, S) � (1 − ε) · λmax (WS)t

.

Now we present an efficient algorithm that orders the vertices in S according
to their significance. Our algorithm is based on the analysis of local random
walks in Section 4, and its description is as follows.

Algorithm 2. Vertex Significance Ordering (VSO)
Require: Graph G = (V, E) with the adjacency matrix A and subset S ⊆ V of |S| = k

vertices such that G [S] is connected.

1: Compute the vector zS = D
−1/2
S v, where v ∈ R

S
>0 is the normalized eigenvector of

matrix MS = D
−1/2
S ASD

−1/2
S with corresponding eigenvalue λS .

2: Sort all entries of zS in non-increasing order and resolve ties lexicographically.
3: return the index set {τ1, . . . , τk} such that (zS)τ1 � · · · � (zS)τk

.

As a straightforward application of Theorem 7, Algorithm 2 and Theorem 5
we obtain the following result.

Corollary 2. Let G = (V,E) be a graph, S ⊂ V a subset such that G[S] is
connected, and ε > 0 an accuracy parameter. Then, given the set S, Algorithm 2
efficiently finds a vertex u� ∈ S such that for any t � MIXS(ε) it holds that

rem (u�, t, S) � (1 − ε) · λmax (WS)t = (1 − ε) · Eu∼pS
[rem(u, t, S)] .
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Abstract. Motivated by finding planar embeddings that lead to draw-
ings with favorable aesthetics, we study the problems MinMaxFace and
UniformFaces of embedding a given biconnected multi-graph such that
the largest face is as small as possible and such that all faces have the
same size, respectively. We prove a complexity dichotomy for MinMax-
Face and show that deciding whether the maximum is at most k is
polynomial-time solvable for k ≤ 4 and NP-complete for k ≥ 5. Fur-
ther, we give a 6-approximation for minimizing the maximum face in
a planar embedding. For UniformFaces, we show that the problem is
NP-complete for odd k ≥ 7 and even k ≥ 10. Moreover, we charac-
terize the biconnected planar multi-graphs admitting 3- and 4-uniform
embeddings (in a k-uniform embedding all faces have size k) and give an
efficient algorithm for testing the existence of a 6-uniform embedding.

1 Introduction

While there are infinitely many ways to embed a connected planar graph into the
plane without edge crossings, these embeddings can be grouped into a finite num-
ber of equivalence classes, so-called combinatorial embeddings, where two embed-
dings are equivalent if the clockwise order around each vertex is the same. Many
algorithms for drawing planar graphs require that the input graph is provided
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together with a combinatorial embedding, which the algorithm preserves. Since
the aesthetic properties of the drawing often depend critically on the chosen
embedding, e.g. the number of bends in orthogonal drawings, it is natural to ask
for a planar embedding that will lead to the best results.

In many cases the problem of optimizing some cost function over all
combinatorial embeddings is NP-complete. For example, it is known that it is
NP-complete to test the existence of an embedding that admits an orthogonal
drawing without bends or an upward planar embedding [10]. On the other hand,
there are efficient algorithms for minimizing various measures such as the radius
of the dual [1,2] and attempts to minimize the number of bends in orthogonal
drawings subject to some restrictions [3,4,6].

Usually, choosing a planar embedding is considered as deciding the circular
ordering of edges around vertices. It can, however, also be equivalently viewed as
choosing the set of facial cycles, i.e., which cycles become face boundaries. In this
sense it is natural to seek an embedding whose facial cycles have favorable prop-
erties. For example, Gutwenger and Mutzel [12] give algorithms for computing
an embedding that maximizes the size of the outer face. The most general form
of this problem is as follows. The input consists of a graph and a cost function
on the cycles of the graph, and we seek a planar embedding where the sum of
the costs of the facial cycles is minimum. This general version of the problem
has been introduced and studied by Mutzel and Weiskircher [14]. Woeginger [15]
shows that it is NP-complete even when assigning cost 0 to all cycles of size up
to k and cost 1 for longer cycles. Mutzel and Weiskircher [14] propose an ILP
formulation for this problem based on SPQR-trees.

In this paper, we focus on two specific problems of this type, aimed at reduc-
ing the visual complexity and eliminating certain artifacts related to face sizes
from drawings. Namely, large faces in the interior of a drawing may be perceived
as holes and consequently interpreted as an artifact of the graph. Similarly, if the
graph has faces of vastly different sizes, this may leave the impression that the
drawn graph is highly irregular. However, rather than being a structural prop-
erty of the graph, it is quite possible that the artifacts in the drawing rather stem
from a poor embedding choice and can be avoided by choosing a more suitable
planar embedding.

We thus propose two problems. First, to avoid large faces in the drawing, we
seek to minimize the size of the largest face; we call this problem MinMaxFace.
Second, we study the problem of recognizing those graphs that admit perfectly
uniform face sizes; we call this problem UniformFaces. Both problems can be
solved by the ILP approach of Mutzel and Weiskircher [14] but were not known
to be NP-hard.

Our Contributions. First, in Section 3, we study the computational complexity of
MinMaxFace and its decision version k-MinMaxFace, which asks whether the
input graph can be embedded such that the maximum face size is at most k. We
prove a complexity dichotomy for this problem and show that k-MinMaxFace
is polynomial-time solvable for k ≤ 4 and NP-complete for k ≥ 5. Our hard-
ness result for k ≥ 5 strengthens Woeginger’s result [15], which states that
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it is NP-complete to minimize the number of faces of size greater than k for
k ≥ 4, whereas our reduction shows that it is in fact NP-complete to decide
whether such faces can be completely avoided. Furthermore, we give an efficient
6-approximation for MinMaxFace.

Second, in Section 4, we study the problem of recognizing graphs that admit
perfectly uniform face sizes (UniformFaces), which is a special case of k-
MinMaxFace. An embedding is k-uniform if all faces have size k. We character-
ize the biconnected multi-graphs admitting a k-uniform embedding for k = 3, 4
and give an efficient recognition algorithm for k = 6. Finally, we show that for
odd k ≥ 7 and even k ≥ 10, it is NP-complete to decide whether a planar graph
admits a k-uniform embedding.

For space limitations, proofs are sketched or omitted; refer to [5] for full
proofs.

2 Preliminaries

A graph G = (V,E) is connected if there is a path between any two vertices.
A cutvertex is a vertex whose removal disconnects the graph. A separating pair
{u, v} is a pair of vertices whose removal disconnects the graph. A connected
graph is biconnected if it does not have a cutvertex and a biconnected graph
is 3-connected if it does not have a separating pair. Unless specified otherwise,
throughout the rest of the paper we will consider graphs without loops, but with
possible multiple edges.

We consider st-graphs with two special pole vertices s and t. The family of
st-graphs can be constructed in a fashion very similar to series-parallel graphs.
Namely, an edge st is an st-graph with poles s and t. Now let Gi be an st-
graph with poles si, ti for i = 1, . . . , k and let H be a planar graph with two
designated adjacent vertices s and t and k + 1 edges st, e1, . . . , ek. We call H
the skeleton of the composition and its edges are called virtual edges; the edge
st is the parent edge and s and t are the poles of the skeleton H. To compose
the Gi’s into an st-graph with poles s and t, we remove the edge st from H and
replace each ei by Gi for i = 1, . . . , k by removing ei and identifying the poles of
Gi with the endpoints of ei. In fact, we only allow three types of compositions:
in a series composition the skeleton H is a cycle of length k + 1, in a parallel
composition H consists of two vertices connected by k + 1 parallel edges, and in
a rigid composition H is 3-connected.

For every biconnected planar graph G with an edge st, the graph G − st
is an st-graph with poles s and t [7]. Much in the same way as series-parallel
graphs, the st-graph G − st gives rise to a (de-)composition tree T describing
how it can be obtained from single edges. The nodes of T corresponding to edges,
series, parallel, and rigid compositions of the graph are Q-, S-, P-, and R-nodes,
respectively. To obtain a composition tree for G, we add an additional root Q-
node representing the edge st. We associate with each node μ the skeleton of
the composition and denote it by skel(μ). For a Q-node μ, the skeleton consists
of the two endpoints of the edge represented by μ and one real and one virtual
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edge between them representing the rest of the graph. For a node μ of T , the
pertinent graph pert(μ) is the subgraph represented by the subtree with root μ.
For a virtual edge ε of a skeleton skel(μ), the expansion graph of ε is the pertinent
graph pert(μ′) of the neighbor μ′ corresponding to ε when considering T rooted
at μ.

The SPQR-tree of G with respect to the edge st, originally introduced by
Di Battista and Tamassia [7], is the (unique) smallest decomposition tree T for
G. Using a different edge s′t′ of G and a composition of G − s′t′ corresponds
to rerooting T at the node representing s′t′. It thus makes sense to say that
T is the SPQR-tree of G. The SPQR-tree of G has size linear in G and can
be computed in linear time [11]. Planar embeddings of G correspond bijectively
to planar embeddings of all skeletons of T ; the choices are the orderings of the
parallel edges in P-nodes and the embeddings of the R-node skeletons, which are
unique up to a flip. When considering rooted SPQR-trees, we assume that the
embedding of G is such that the root edge is incident to the outer face, which is
equivalent to the parent edge being incident to the outer face in each skeleton.
We remark that in a planar embedding of G, the poles of any node μ of T are
incident to the outer face of pert(μ). Hence, in the following we only consider
embeddings of the pertinent graphs with their poles lying on the same face.

3 Minimizing the Maximum Face

In this section we present our results on MinMaxFace. We first strengthen
the result of Woeginger [15] and show that k-MinMaxFace is NP-complete
for k ≥ 5 and then present efficient algorithms for k = 3, 4. In particular, the
hardness result also implies that the problem MinMaxFace is NP-hard. Finally,
we give an efficient 6-approximation for MinMaxFace on biconnected graphs.
Recall that we allow graphs to have multiple edges.

Theorem 1. k-MinMaxFace is NP-complete for any k ≥ 5.

Sketch of Proof. Clearly, the problem is in NP. We sketch hardness for k = 5.
Our reduction is from Planar 3-Sat where every variable occurs at most three
times, which is NP-complete [8, Lemma 2.1]. Note that we can assume without
loss of generality that for each variable both literals appear in the formula and,
by replacing some variables by their negations, we can assume that a variable
with three occurrences occurs twice as a positive literal. Let ϕ be such a formula.

We construct gadgets where some of the edges are in fact two parallel paths,
one consisting of a single edge and one of length 2 or 3. The ordering of these
paths then decides which of the faces incident to the gadget edge is incident to
a path of length 1 and which is incident to a path of length 2 or 3; see Fig. 1a.
Due to this use, we also call these gadgets (1, 2)- and (1, 3)-edges, respectively.

The gadget for a variable with three occurrences is shown in Fig. 1b. The cen-
tral (1, 3)-edge (variable edge) decides the truth value of the variable. Depending
on its flip either the positive literal edges or the negative literal edge must be
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Fig. 1. Illustration of the gadgets for the proof of Theorem 1. (a) A (1, 3)-edge. (b) A
variable gadget for a variable that occurs twice as a positive literal and once as a
negative literal. Changing the flip of the (1, 3)-edge in the middle (variable edge) forces
flipping the upper two literal edges. (c) A clause gadget for a clause of size 3.

embedded such that they have a path of length 2 in the outer face, which corre-
sponds to a literal with truth value false. Figure 1c shows a clause gadget with
three incident literal variables. Its inner face has size at most 5 if not all incident
(1, 2)-edges transmit value false. Clauses of size 2 and variables occurring only
twice work similarly.

We now construct a graph Gϕ by replacing in the plane variable–clause graph
of ϕ each variable and each clause by a corresponding gadget and identifying
(1, 2)-edges that represent the same variable, taking into account the embedding
of the variable–clause graph. Finally, we arbitrarily triangulate all faces that are
not inner faces of gadgets. Then the only embedding choices are the flips of the
(1, 2)- and (1, 3)-edges. We claim that ϕ is satisfiable if and only if Gϕ has a
planar embedding where every face has size at most 5. ��

3.1 Polynomial-Time Algorithm for Small Faces

Next, we show that k-MinMaxFace is polynomial-time solvable for k = 3, 4.
Note that, if the input graph is simple, the problem for k = 3 is solvable if and
only if the input graph is maximal planar. A bit more work is necessary if we
allow parallel edges.

Let G be a biconnected planar graph. We devise a dynamic program on the
SPQR-tree T of G. Let T be rooted at an arbitrary Q-node and let μ be a node
of T . We call the clockwise and counterclockwise paths connecting the poles of
μ along the outer face the boundary paths of pert(μ). We say that an embedding
of pert(μ) has type (a, b) if and only if all its inner faces have size at most k and
its boundary paths have length a and b, respectively. Such an embedding is also
called an (a, b)-embedding. We assume that a ≤ b.

Clearly, each of the two boundary paths of pert(μ) in an embedding Eμ of
type (a, b) will be a proper subpath of the boundary of a face in any embedding
of G where the embedding of pert(μ) is Eμ. Hence, when seeking an embedding
where all faces have size at most k, we are only interested in the embedding Eμ

if 1 ≤ a ≤ b ≤ k − 1. We define a partial order on the embedding types by
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(a′, b′) � (a, b) if and only if a′ ≤ a and b′ ≤ b. Replacing an (a, b)-embedding Eμ

of pert(μ) by (a reflection of) an (a′, b′)-embedding E ′
μ with (a′, b′) � (a, b) does

not create faces of size more than k; all inner faces of E ′
μ have size at most k

by assumption, and the only other faces affected are the two faces incident to
the two boundary paths of E ′

μ, whose length does not increase. We thus seek to
compute for each node μ the minimal pairs (a, b) for which it admits an (a, b)-
embedding. We remark that pert(μ) can admit an embedding of type (1, b) for
some value of b only if μ is either a P-node or a Q-node.

Theorem 2. 3-MinMaxFace can be solved in linear time for biconnected graphs.

We now deal with the case k = 4, which is similar but more complicated.
The relevant types are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3). We note that
precisely the two elements (2, 2) and (1, 3) are incomparable with respect to �.
Thus, it seems that, rather than computing only the single smallest type for
which each pertinent graph admits an embedding, we are now forced to find all
minimum pairs for which the pertinent graph admits a corresponding embedding.
However, by the above observation, if a pertinent graph pert(μ) admits a (1, 3)-
embedding, then μ must be a P-node. However, if the parent of μ is an S-node or
an R-node, then using a (1, 3)-embedding results in a face of size at least 5. Thus,
such an embedding can only be used if the parent is the root Q-node. If there is
the choice of a (2, 2)-embedding in this case, it can of course also be used at the
root. Therefore, we can mostly ignore the (1, 3)-case and consider the linearly
ordered embedding types (1, 1), (1, 2), (2, 2), (2, 3) and (3, 3). The running time
stems from the fact that, for an R-node, we need to find a matching between the
virtual edges whose expansion graphs admit a (1, 2)-embedding and the incident
triangular faces of the skeleton.

Theorem 3. 4-MinMaxFace can be solved in O(n1.5) time for biconnected
graphs.

3.2 Approximation Algorithm

In this section, we present a constant-factor approximation algorithm for the
problem of minimizing the largest face in an embedding of a biconnected graph G.
We omit the correctness proofs and some of the technical details.

We again solve the problem by dynamic programming on the SPQR-tree
of G.

Let G be a biconnected planar graph, and let T be its SPQR-tree, rooted at
an arbitrary Q-node. Let μ be a node of T . We also include the parent edge in
the embedding of skel(μ), by drawing it in the outer face. In such an embedding,
the two faces incident to the parent edge are called the outer faces; the remaining
faces are inner faces.

Recall that an (a, b)-embedding of pert(μ) is an embedding whose boundary
paths have lengths a and b, where we always assume that a ≤ b. We say that
an (a, b)-embedding of pert(μ) is out-minimal if for any (a′, b′)-embedding of
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pert(μ), we have a ≤ a′ and b ≤ b′. Note that an out-minimal embedding need
not exist; e.g., pert(μ) may admit a (2, 4)-embedding and a (3, 3)-embedding,
but no (a, b)-embedding with a ≤ 2 and b ≤ 3. We will later show, however, that
such a situation can only occur when μ is an S-node.

Let Opt(G) denote the smallest integer k such that G has an embedding
whose every face has size at most k. For a node μ of T , we say that an embedding
of pert(μ) is c-approximate, if each inner face of the embedding has size at most
c · Opt(G).

Call an embedding of pert(μ) neat if it is out-minimal and 6-approximate.
The main result of this section is the next proposition.

Proposition 1. Let G be a biconnected planar graph with SPQR tree T , rooted
at an arbitrary Q-node. Then the pertinent graph of every Q-node, P-node or
R-node of T has a neat embedding, and this embedding may be computed in
polynomial time.

Since the pertinent graph of the root of T is the whole graph G, the proposi-
tion implies a polynomial 6-approximation algorithm for minimizing the largest
face.

Our proof of Proposition 1 is constructive. Fix a node μ of T which is not
an S-node. We now describe an algorithm that computes a neat embedding of
pert(μ), assuming that neat embeddings are available for the pertinent graphs of
all the descendant nodes of μ that are not S-nodes. We distinguish cases based
on the type of the node μ. We here only present the two difficult cases, when μ
is a P-node or an R-node.

P-nodes. Suppose that μ is a P-node with k child nodes μ1, . . . , μk, represented
by k skeleton edges e1, . . . , ek. Let Gi be the expansion graph of ei. We construct
the expanded skeleton skel∗(μ) as follows: if for some i the child node μi is an
S-node whose skeleton is a path of length m, replace the edge ei by a path of
length m, whose edges correspond in a natural way to the edges of skel(μi).

Every edge e′ of the expanded skeleton corresponds to a node μ′ of T which
is a child or a grand-child of μ. Moreover, μ′ is not an S-node, and we may thus
assume that we have already computed a neat embedding for pert(μ′). Note that
pert(μ′) is the expansion graph of e′.

For each i ∈ {1, . . . , k} define �i to be the smallest value such that Gi has
an embedding with a boundary path of length �i. We compute �i as follows: if
μi is not an S-node, then we already know a neat (ai, bi)-embedding of Gi, and
we may put �i = ai. If, on the other hand, μi is an S-node, then let m be the
number of edges in the path skel(μi), and let G1

i , G
2
i , . . . , G

m
i be the expansion

graphs of the edges of the path. For each Gj
i , we have already computed a neat

(aj , bj)-embedding, so we may now put �i =
∑m

j=1 aj . Clearly, this value of �i

corresponds to the definition given above.
We now fix two distinct indices α, β ∈ {1, . . . , k}, so that the values �α and

�β are as small as possible; formally, �α = min{�i; i = 1, . . . , k} and �β =
min{�i; i = 1, . . . , k and i �= α}.
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Let us fix an embedding of skel(μ) in which eα and eβ are adjacent to the
outer faces. We extend this embedding of skel(μ) into an embedding of pert(μ)
by replacing each edge of skel∗(μ) by a neat embedding of its expansion graph,
in such a way that the two boundary paths have lengths �α and �β . Let E be the
resulting (�α, �β)-embedding of pert(μ). The embedding E is neat (we omit the
proof).

R-nodes. Suppose now that μ is an R-node. As with P-nodes, we define the
expanded skeleton skel∗(μ) by replacing each edge of skel(μ) corresponding to
an S-node by a path of appropriate length. The graph skel∗(μ) together with
the parent edge forms a subdivision of a 3-connected graph. In particular, its
embedding is determined uniquely up to a flip and a choice of outer face. Fix
an embedding of skel∗(μ) and the parent edge, so that the parent edge is on the
outer face. Let f1 and f2 be the two faces incident to the parent edge of μ.

Let e be an edge of skel∗(μ), let Ge be its expansion graph, and let Ee be a
neat (a, b)-embedding of Ge, for some a ≤ b. The boundary path of Ee of length
a will be called the short side of Ee, while the boundary path of length b will be
the long side. If a = b, we choose the long side and short side arbitrarily.

Our goal is to extend the embedding of skel∗(μ) into an embedding of pert(μ)
by replacing each edge e of skel∗(μ) with a copy of Ee. In doing so, we have to
choose which of the two faces incident to e will be adjacent to the short side of
Ee.

First of all, if e is an edge of skel∗(μ) incident to one of the outer faces f1
or f2, we embed Ee in such a way that its short side is adjacent to the outer
face. Since f1 and f2 do not share an edge in skel∗(μ), such an embedding is
always possible, and guarantees that the resulting embedding of pert(μ) will be
out-minimal.

It remains to determine the orientation of Ee for the edges e that are not
incident to the outer faces, in such a way that the largest face of the resulting
embedding will be as small as possible. Rather than solving this task optimally,
we formulate a linear programming relaxation, and then apply a rounding step
which will guarantee a constant factor approximation.

Intuitively, the linear program works as follows: given an edge e incident to a
pair of faces f and g, and a corresponding graph Ge with a short side of length
a and a long side of length b, rather than assigning the short side to one face
and the long side to the other, we assign to each of the two faces a fractional
value in the interval [a, b], so that the two values assigned by e to f and g have
sum a + b, and the maximum total amount assigned to a single face of skel∗(μ)
from its incident edges is as small as possible.

More precisely, we consider the linear program with the set of variables

{M} ∪ {xe,f ; e is an edge adjacent to face f},

where the goal is to minimize M subject to the following constraints:

– For every edge e adjacent to a pair of faces f and g, we have the constraints
xe,f + xe,g = a + b, a ≤ xe,f ≤ b and a ≤ xe,g ≤ b, where a ≤ b are the
lengths of the two boundary paths of Ee.
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– Moreover, if an edge e is adjacent to an outer face f ∈ {f1, f2} as well as an
inner face g, then we set xe,f = a and xe,g = b, with a and b as above.

– For every inner face f of skel∗(μ), we have the constraint
∑

e xe,f ≤ M ,
where the sum is over all edges incident to f .

Given an optimal solution of the above linear program, we determine the
embedding of pert(μ) as follows: for an edge e of skel∗(μ) incident to two inner
faces f and g, if xe,f ≤ xe,g, embed Ee with its short side incident to f and long
side incident to g. Let Eμ be the resulting embedding. It can be shown that Eμ

is neat.
Proposition 1 yields a 6-approximation algorithm for the minimization of

largest face in biconnected graphs.

Theorem 4. A 6-approximation for MinMaxFace in biconnected graphs can
be computed in polynomial time.

4 Perfectly Uniform Face Sizes

In this section we study the problem of deciding whether a biconnected planar
graph admits a k-uniform embedding. Note that, due to Euler’s formula, a con-
nected planar graph with n vertices and m edges has f = m − n + 2 faces. In
order to admit an embedding where every face has size k, it is necessary that
2m = fk. Hence there is at most one value of k for which the graph may admit
a k-uniform embedding.

In the following, we characterize the graphs admitting 3-uniform and 4-
uniform embeddings, and we give an efficient algorithm for testing whether a
graph admits a 6-uniform embedding. Finally, we show that testing whether a
graph admits a k-uniform embedding is NP-complete for odd k ≥ 7 and even
k ≥ 10. We leave open the cases k = 5 and k = 8.

Our characterizations and our testing algorithm use the recursive structure of
the SPQR-tree. To this end, it is necessary to consider embeddings of pertinent
graphs, where we only require that the interior faces have size k, whereas the
outer face may have different size, although it must not be too large. We call
such an embedding almost k-uniform. The following lemma states that the size
of the outer face in such an embedding depends only on the number of vertices
and edges in the pertinent graph.

Lemma 1. Let G be a graph with n vertices and m edges with an almost k-
uniform embedding. Then the outer face has length � = k(n − m − 1) + 2m.

Thus, for small values of k, where the two boundary paths of the pertinent
graph may have only few different lengths, the type of an almost k-uniform
embedding (as defined in Section 4) is essentially fixed. Using this fact, the
biconnected graphs (with possible multiple edges) admitting a k-uniform dual
for k = 3, 4 can be characterized. We remark that the simple graphs admitting
3-uniform and 4-uniform embeddings are precisely the maximal planar graphs
and the maximal planar bipartite graphs.
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Theorem 5. A biconnected planar graph G admits 3-uniform embedding if and
only if its SPQR-tree satisfies all of the following conditions.
(i) S- and R-nodes are only adjacent to Q- and P-nodes.
(ii) Every R-node skeleton is a planar triangulation.
(iii) Every S-node skeleton has size 3.
(iv) Every P-node with k neighbors has k even and precisely k/2 of the neighbors

are Q-nodes.

Theorem 6. A biconnected planar graph admits a 4-regular dual if and only if
it is bipartite and satisfies the following conditions.
(i) For each P-node either all expansion graphs satisfy me = 2ne − 4, or half

of them satisfy me = 2ne − 5 and the other half are Q-nodes.
(ii) For each S- or R-node all faces have size 3 or 4; the expansion graphs of

all edges incident to faces of size 4 satisfy me = 2ne − 3 and for each
triangular face, there is precisely one edge whose expansion graph satisfies
me = 2ne − 4, the others satisfy me = 2ne − 3.

Theorems 5 and 6 can be used to construct linear-time algorithms to test
whether a biconnected planar graph admits a 3-regular dual and a 4-regular
dual, respectively.

Theorem 7. It can be tested in O(n1.5) time whether a biconnected planar graph
admits a 6-uniform embedding.

Sketch of Proof. To test the existence of a 6-uniform embedding, we again use
bottom-up traversal of the SPQR-tree and are therefore interested in the types
of almost 6-uniform embeddings of pertinent graphs. Clearly, each of the two
boundary paths of a pertinent graph may have length at most 5. Thus, only
embeddings of type (a, b) with 1 ≤ a ≤ b ≤ 5 are relevant. By Lemma 1 the
value of a + b is fixed and in order to admit a k-uniform embedding with k
even, it is necessary that the graph is bipartite. Thus, for an almost 6-uniform
embedding the length of the outer face must be in {2, 4, 6, 8, 10}. Moreover, the
color classes of the poles in the bipartite graph determine the parity of a and b.

For length 2 and length 10, the types must be (1, 1) and (5, 5), respectively.
For length 4, the type must be (1, 3) or (2, 2), depending on the color classes of
the poles. For length 6, the possible types are (2, 4) or (3, 3) (it can be argued
that (1, 5) is not possible). Finally, for length 8, the possible types are (3, 5) and
(4, 4) and again the color classes uniquely determine the type.

Thus, we know for each internal node μ precisely what must be the type
of an almost 6-uniform embedding of pert(μ) if one exists. It remains to check
whether for each node μ, assuming that all children admit an almost 6-uniform
embedding, it is possible to put them together to an almost 6-uniform embedding
of pert(μ). For this, we need to decide (i) an embedding of skel(μ) and (ii) for
each child the flip of its almost k-uniform embedding. The main issue are R-
nodes, where we have to solve a generalized matching problem to ensure that
every face gets assigned a total boundary length of 6. This can be solved in
O(n1.5) time [9]. ��
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Fig. 2. Illustration of the gadgets used for the hardness proof in Theorem 8. (a) A
(1, 4)-edge. (b) A variable gadget for a variable with three occurrences. (c), (d) Crossing
gadgets for a pipe of (1, 2)-edges with a pipe of (1, 3)- and (1, 4)-edges, respectively.
The red arrows indicate the information flow.

Finally, we prove NP-hardness for testing the existence of a k-uniform embed-
ding for k = 7 and k ≥ 9 by giving a reduction from the NP-complete problem
Planar Positive 1-in-3-SAT where each variable occurs at least twice and at
most three times and each clause has size two or three. The NP-completeness of
this version of satisfiability follows from the results of Moore and Robson [13].

Theorem 8. k-UniformFaces is NP-complete for all odd k ≥ 7 and even
k ≥ 10.

Sketch of Proof. We sketch the reduction for k = 7, the other cases are similar.
We reduce from Planar Positive 1-in-3-SAT where each variable occurs two
or three times and each clause has size two or three. Essentially, we perform
a standard reduction, replacing each variable, each clause, and each edge of
the variable–clause graph by a corresponding gadget, similar to the proof of
Theorem 1.

First, it is possible to construct subgraphs that behave like (1, 2)-, (1, 3)-,
and (1, 4)-edges, i.e., their embedding is unique up to a flip, the inner faces have
size 7 and the outer face has a path of length 1 and a path of length 2, 3 or 4
between the poles; see Fig. 2a for an example.

A variable is a cycle consisting of (1, 2)-edges, called output edges (one for
each occurrence of the variable) and one sink-edge, which is a (1, 3)- or a (1, 4)-
edges depending on whether the variable occurs two or three times; see Fig. 2b.
It is not hard to construct clauses with two or three incident (1, 2)-edges whose
internal face has size 7 if and only if exactly one of the incident (1, 2)-edges
contributes a path of length 1 to the internal face. We then use simple pipes to
transmit the information encoded in the output edges to the clauses in a planar
way. The main issue are the sink-edges, which have different length depending on
whether the corresponding variable is true or false. To this end, we transfer the
information encoded in all sink edges via pipes to a single face. We use the fact
that sink-edges are (1, k)-edges with k > 2 to cross over pipes transmitting these
values using the crossing gadgets shown in Fig. 2c,d. Note that the construction
in Fig. 2d is necessary since crossing a pipe of (1, 4)-edges with a pipe of (1, 2)-
edges in the style of Fig. 2c would require face size at least 8.
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Fig. 3. Illustration of a shift ring (the left and right dark gray edges are identified)
that allows to transpose adjacent (1, 2)-edges encoding different states. The read arrows
show the flow of information encoded in the (1, 2)-edges.

Now we have collected all the information encoded in the sink edges in a
single face. By attaching variable gadgets to each of the corresponding pipes, we
split this information into (1, 2)-edges, whose endpoints we identify such that
they all form a single large cycle C.

Now, for all faces except for the inner faces of the gadgets and the face inside
cycle C, we apply the following simple procedure. We triangulate them and insert
into each triangle a new vertex connected to all its vertices by edges subdivided
sufficiently often so that all faces have size 7. As a result the only remaining
embedding choices are the flips of the (1, d)-edges used in the gadgets. We have
that the original 1-in-3SAT formula is satisfiable if and only if the (1, d)-edges
can be flipped so that all faces except the one inside C have size 7.

It follows from Lemma 1 that the length of the face inside C is uniquely deter-
mined if all other faces have size 7, but we do not know which of the (1, 2)-edges
contribute paths of length 1 and which contribute paths of length 2. It then remains
to give a construction that can subdivide the interior of C into faces of size 7 for
any possible distribution. This is achieved by inserting ring-like structures that
allow to shift and transpose adjacent edges that contribute paths of length 1 and
length 2; see Fig. 3. By nesting sufficiently many such rings, we can ensure that in
the innermost face the edges contributing paths of length 1 are consecutive, and
the first one (in some orientation of C) is at a fixed position. Then we can assume
that we know exactly what the inner face looks like and we can use one of the
previous constructions to subdivide it into faces of size 7. ��

5 Conclusions and Open Problems

Throughout the paper we consider embeddings of planar multi-graphs on the
sphere, that is, no face is regarded as the outer face. On the other hand, when deal-
ing with embeddings in the plane, it seems natural to consider the variants of the
MinMaxFace and UniformFaces problems in which the size of the outer face
is not constrained. To simplify the analysis, we decided not to explicitly discuss
these variants. However, both the hardness results and the embedding algorithms
presented in the paper can be easily modified to handle outer faces of arbitrary
size. In fact, in the reduction for k-MinMaxFace and k-UniformFaces, we can
insert in any triangular face a cycle of arbitrary length and triangulate any but the
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inner face bounded by the cycle. Also, when computing the type of an embedding
of a node of the SPQR-tree, it is not difficult to additionally consider embeddings
of the corresponding pertinent graph in which one of the two paths bounding the
outer face has length greater than or equal to k.

We list some interesting open questions: What is the complexity of k-
UniformFaces for k = 5 and k = 8? Are UniformFaces and MinMaxFace
polynomial-time solvable for biconnected series-parallel graphs? Are they FPT
with respect to treewidth?

Acknowledgments. We thank Bartosz Walczak for discussions.
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5. Da Lozzo, G., Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: Planar Embeddings with Small
and Uniform Faces. ArXiv e-prints (September 2014)

6. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM Journal on Computing 27(6), 1764–1811 (1998)

7. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In:
Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg
(1990)

8. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of
induced minors and related problems. Algorithmica 13, 266–282 (1995)

9. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In: Theory of Computing, STOC 1983,
pp. 448–456. ACM (1983)

10. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. on Comput. 31(2), 601–625 (2001)

11. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

12. Gutwenger, C., Mutzel, P.: Graph embedding with minimum depth and maximum
external face. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 259–272. Springer,
Heidelberg (2004)

13. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26(4), 573–590 (2001)

14. Mutzel, P., Weiskircher, R.: Optimizing over all combinatorial embeddings of a
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Abstract. We study the problem of scheduling unit jobs on a single
machine with a common deadline where some jobs may be rejected. Each
job has a weight and a profit and the objective is to minimize the sum of the
weighted completion times of the scheduled jobs plus the sum of the profits
of the rejected jobs. Our main result is an O(n log n)-time algorithm for
this problem. In addition, we show how to incorporate weighted tardiness
penalties with respect to a common due date into the objective while pre-
serving the O(n log n) time bound. We also discuss connections to a special
class of unit-demand auctions. Finally, we establish that certain natural
variations of the scheduling problems that we study are NP-hard.

1 Introduction

In many scheduling problems, we are given a set of jobs, and our goal is to
design a schedule for executing the entire set of jobs that optimizes a particular
scheduling criterion. Scheduling with rejection, however, allows some jobs to
be rejected, either to meet deadlines or to optimize the scheduling criterion,
while possibly incurring penalties for rejected jobs. In this paper we study the
problem of scheduling unit jobs (i.e., jobs with an execution requirement of one
time unit) with individual weights (wi) and profits (ei) on a single machine with
a common deadline (d) where some jobs may be rejected. If a job is scheduled by
the deadline then its completion time is denoted by Ci; otherwise it is considered
rejected. Let S denote the set of scheduled jobs and S denote the set of rejected
jobs. The goal is to minimize the sum of the weighted completion times of the
scheduled jobs plus the total profits of the rejected jobs. Hence job profits can be
equivalently interpreted as rejection penalties. We represent the problem using
the scheduling notation introduced by Graham et al. [10] as:

1 | pi = 1, di = d |
∑

S

wiCi +
∑

S

ei . (1)

We assume that the number of jobs is at least d. If not, letting U+ (resp., U−)
denoting the set of the jobs with nonnegative (resp., negative) weights, it is easy
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to observe that there exists a solution in which each job in U+ (resp., U−) that
is not rejected is scheduled in one of the first |U+| (resp., last |U−|) slots. Using
this observation, we can solve the given instance by solving two smaller instances
for which our assumption is satisfied.

Like many other scheduling problems involving unit jobs, Problem 1 can
be solved in polynomial time by a reduction to the maximum weight matching
problem in bipartite graphs. Our contribution is an O(n log n)-time algorithm
for Problem 1 where n denotes the number of jobs. Engels et al. [6] give a pseudo-
polynomial-time dynamic programming algorithm for the same objective except
that variable processing times are allowed and no deadline restriction is imposed.
Engels et al. first show that the decision version of the problem is NP-complete
and then give an FPTAS. They also remark that a running time of O(n2) can
be achieved for the special case of unit processing times; our work improves this
bound to O(n log n).

More general cases of Problem 1, almost all dealing with variable processing
times, have been studied extensively. One of the earliest works that considers
job specific profits and lateness penalties [20] reduces to our problem in the
special case of setting all processing times to 1 and all due dates to 0. Two
recent surveys review the research on various scheduling problems in which it
is typically necessary to reject some of the jobs in order to achieve optimality
[16,19]. Epstein et al. [7] focus on unit jobs but consider only the online version
of the problem. Shabtay et al. [17] split the scheduling objective into two criteria:
the scheduling cost, which depends on the completion times of the jobs, and the
rejection cost, which is the sum of the penalties paid for the rejected jobs. In
addition to optimizing the sum of these two criteria, the authors study other
variations of the problem such as optimizing one criterion while constraining
the other, or identifying all Pareto-optimal solutions for the two criteria. The
scheduling cost in that work is not exactly the weighted sum of the completion
times; however, several other similar objectives are considered. We show that
our problem becomes NP-hard if we split our criteria in the same manner and
aim for optimizing one while bounding the other.

Given the improvement in running time that we achieve for Problem 1, it is
natural to ask whether our approach can be adapted to obtain fast algorithms
for interesting variants of Problem 1. We show the following generalization of
Problem 1 can also be solved in O(n log n) time:

1 | pi = 1, di = d, di = d |
∑

S

wiCi + c
∑

S

wiTi +
∑

S

ei . (2)

In Problem 2, every job also has a common due date d, and completing a job after
the due date incurs an additional tardiness penalty that depends on its weight
and a positive constant c. The tardiness of a job is defined as Ti = max{0, Ci−d}.
Similar to Problem 1, we assume that the number of jobs is at least d.

We solve Problems 1 and 2 by finding a maximum weight matching (MWM)
in a complete bipartite graph that represents the scheduling instance. Due to
the special structure of the edge weights, the space required to represent this
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graph is linear in the number of vertices. Thus, aside from the scheduling applica-
tions, this work contributes to the research aimed at developing quasilinear algo-
rithms for matching problems in compactly representable bipartite graphs. Both
unweighted and vertex-weighted matching problems in convex bipartite graphs,
the graphs in which the right vertices can be enumerated such that the neighbors
of each left vertex are consecutive, have been studied extensively [8,9,12,14,21].
Plaxton [15] studies vertex-weighted matchings in two-directional orthogonal ray
graphs, which generalize convex bipartite graphs. In contrast, the current paper
focuses on a class of compactly representable bipartite graphs that is simpler in
terms of the underlying graph structure (all edges are present), but allows for
more complex edge weights.

The cost (distance) matrix of the complete bipartite graph that we construct
for solving Problems 1 and 2 is a Monge matrix. An n × m matrix C = (cij) is
called a Monge matrix if cij + crs ≤ cis + crj for 1 ≤ i < r ≤ n, 1 ≤ j < s ≤ m.
Burkard [2] provides a survey of the rich literature on applications of Monge
structures in combinatorial optimization problems. When the cost matrix of a
bipartite graph is a Monge matrix, an optimal maximum cardinality matching
can be found in O(nm) time where n is the number of rows and m is the number
of columns. If n = m then the diagonal of the cost matrix is a trivial solution.
Aggarwal et al. [1] study several weighted bipartite matching problems where,
aside being a Monge matrix, additional structural properties are assumed for
the cost matrix. The authors present an O(n log m)-time divide and conquer
algorithm for the case where the number of rows n is at most the number of
columns m and each row is bitonic, i.e., each row is a non-increasing sequence
followed by a non-decreasing sequence. If we represent the edge weights of the
bipartite graph that we construct for solving our problems in a matrix so that
the rows correspond to the jobs and the columns correspond to the time slots,
then both the Monge property and the bitonicity property are satisfied; in fact
each row is monotonic. However, we end up having more rows than columns,
which renders the algorithm of [1] inapplicable for our problems. If we had more
columns than rows, as assumed in [1], then we would have a trivial solution
which could be constructed by sorting the jobs with respect to their weights. In
summary, similar to [1], our algorithm efficiently solves the weighted bipartite
matching problem for Monge matrices having an additional structure on the
rows. In contrast, the structural assumption we place on the rows is stronger
than that of [1], and we require more rows than columns, whereas [1] requires
the opposite.

Another application of bipartite graphs is in the context of unit-demand
auctions. In a unit-demand auction, a collection of items is to be distributed
among several bidders and each bidder is to receive at most one item [4,13,18].
Each bidder has a private value for each item, and submits to the auction a unit-
demand bid that specifies a separate offer for each item. The VCG mechanism
can be used to determine the outcome of a unit-demand auction, i.e., allocation
and pricing of the items. The VCG allocation corresponds to an (arbitrary)
MWM of the bipartite graph in which each left vertex represents a bid, each
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right vertex represents an item, and the weight of the edge from a bid u to an
item v represents the offer of the bid u for item v. The VCG mechanism is known
to enjoy a number of desirable properties including efficiency, envy-freedom,
and strategyproofness. Another contribution of this paper is an O(n log n)-time
algorithm for computing the VCG prices, given a VCG allocation of an auction
instance that can be represented by a more general class of the complete bipartite
graphs than the ones that we construct to solve Problems 1 and 2.

Organization. Section 2 describes the fast O(n log n)-time algorithm for
Problem 1. Section 3 describes how to extend the algorithm to solve Prob-
lem 2 within the same time bound. Section 4 views the problem from a unit-
demand auction perspective and briefly presents the approach we take in the
O(n log n)-time algorithm for computing the VCG prices. Due to space limi-
tations, some details are omitted from this conference version. The companion
technical report [5] includes all of the material in the present version plus five
appendices. Some of the proofs related to the algorithm for Problem 1 and a
brief implementation are deferred to App. A [5]. The details of the extension
for Problem 2 are explained in App. B [5]. Appendix C [5] presents the algo-
rithm for computing the VCG prices in detail. Finally, App. E [5] proves the
NP-hardness of the bicriteria variations of Problem 1 via reductions from the
partition problem.

2 A Fast Algorithm for Problem 1

We encode an instance of Problem 1 as a weighted matching problem on a graph
drawn from a certain family. Below we define this family, which we call G, and
we discuss how to express an instance of Problem 1 in terms of a graph in G.

We define G as the family of all complete edge-weighted bipartite graphs
G = (U, V,w) such that the following conditions hold: |U | ≥ |V |; each left vertex
u in U has two associated integers u.profit and u.priority ; the left vertices are
indexed from 1 in non-decreasing order of priorities, breaking ties arbitrarily;
right vertices are indexed from 1; the weight w(u, v) of the edge between a left
vertex u and a right vertex v is equal to u.profit + u.priority · j where j denotes
the index of v. Note that a graph G = (U, V,w) in G admits an O(|U |)-space
representation.

Let I be an instance of Problem 1. The instance I consists of a set of n jobs
to schedule, each with a profit and a weight, and a common deadline d where we
assume that n ≥ d as discussed in Sect. 1. We encode the instance I as a graph
G = (U, V,w) in G such that the following conditions hold: |U | = n; |V | = d;
each left vertex represents a distinct job in I; each right vertex represents a time
slot in which a job in I can be scheduled; for each job in I and the vertex u that
represents that job, u.profit is equal to the profit of the job and u.priority is equal
to the negated weight of the job. It is easy to see by inspecting the objective of
Problem 1 that minimizing the weighted sum of completion times is equivalent
to maximizing the same expression with negated weights, and minimizing the
sum of the profits of the rejected jobs is equivalent to maximizing the sum of
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the profits of the scheduled jobs. Hence, instance I of Problem 1 is equivalent
to the problem of finding a maximum weight matching (MWM) of a graph
G = (U, V,w) in G that encodes I. Given this correspondence between the two
problems, we refer to the left vertices (resp., right vertices) of a graph in G as
jobs (resp., slots). The problem of computing an MWM of a graph G = (U, V,w)
in G can be reduced to the maximum weight maximum cardinality matching
(MWMCM) problem by adding |V | dummy jobs, each with profit and priority
zero, to obtain a graph that also belongs to G.

As a result of the equivalence of the two problems mentioned above and
the reduction from the MWM to the MWMCM problem, we can obtain an
O(n log n)-time algorithm for Problem 1 by providing an O(|U | log |U |)-time
algorithm to compute an MWMCM of a graph G = (U, V,w) in G. Before dis-
cussing this algorithm further, we introduce some useful definitions.

Let G = (U, V,w) be a graph in G. We say that a subset U ′ of U is optimal for
G if there exists an MWMCM M of G such that the set of jobs that are matched
in M is equal to U ′. Lemma 1 below shows that it is straightforward to efficiently
construct an MWMCM of G given an optimal set of jobs for G. Let U ′ be a subset
of U with size |V | and let i1 < · · · < i|V | denote the indices of the jobs in U ′. Then
we define matching(U ′) as the set of |V | job-slot pairs obtained by pairing the
job with index ik to the slot with index k for 1 ≤ k ≤ |V |. The following lemma is
a straightforward application of the rearrangement inequality [11, Section 10.2,
Theorem 368] to our setting.

Lemma 1. Let G = (U, V,w) be a graph in G. Let U ′ be a subset of U with
size |V |. Let W denote the maximum weight of any MCM of G that matches U ′.
Then matching(U ′) is of weight W .

Having established Lemma 1, it remains to show how to efficiently identify
an optimal set of jobs for a given graph G = (U, V,w) in G. The main technical
result of this section is an O(|U | log |U |)-time dynamic programming algorithm
for accomplishing this task. The following definitions are useful for describing
our dynamic programming framework.

Let G = (U, V,w) be a graph in G. For any integer i such that 0 ≤ i ≤ |U |,
we define Ui as the set of jobs with indices 1 through i. Similarly, for any integer
j such that 0 ≤ j ≤ |V |, we define Vj as the set of slots with indices 1 through j.
For any integers i and j such that 0 ≤ j ≤ i ≤ |U | and j ≤ |V |, we define Gi,j as
the subgraph of G induced by the vertices Ui ∪ Vj , and we define W (i, j) as the
weight of an MWMCM of Gi,j . Note that any subgraph Gi,j of G also belongs
to G.

Let us define G∗ as the family of all graphs in G having an equal number of
slots and jobs. Given a graph G = (U, V,w) in G∗, our dynamic programming
algorithm computes in O(|U | log |U |) total time an optimal set of jobs for each
G|U |,j for 1 ≤ j ≤ |U |. For any graph G′ = (U, V ′, w′) in G, we can construct
a graph G = (U, V,w) in G∗ satisfying G′|U |,j = G|U |,j for all 1 ≤ j ≤ |V ′| by
defining V as the set of |U | slots indexed from 1 through |U |. Thus, given any
graph G′ = (U, V ′, w′) in G, our algorithm can be used to identify an optimal
set of jobs for each subgraph G′|U |,j for 1 ≤ j ≤ |V ′| in O(|U | log |U |) total time.
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Throughout the remainder of this section, we fix a graph instance G = (U, V,w)
in G∗. The presentation of the algorithm is organized as follows. Section 2.1 intro-
duces the core concept, which we call the acceptance order, that our algorithm is
built on. Section 2.2 presents the key idea (Lemma 5) underlying our algorithm for
computing the acceptance order. Finally, Sect. 2.3 describes an efficient augmented
binary search tree implementation of the algorithm.

2.1 Acceptance Orders

Lemma 1 reduces Problem 1 to the problem of identifying an optimal subset of
U for G. In addition to an optimal set of jobs for G, our algorithm determines
for each integer i and j such that 0 ≤ j ≤ i ≤ |U |, a subset best(i, j) of Ui that is
optimal for Gi,j (Lemma 3). There are quadratically many such sets, so in order
to run in quasilinear time, we compute a compact representation of those sets by
exploiting the following two properties. The first property is that best(i, j − 1)
is a subset of best(i, j) for 1 ≤ j ≤ i ≤ |U |. Thus, for a fixed i, the sequence
of sets best(i, 1), . . . , best(i, i) induces an ordering σi of jobs Ui, which we later
define as the acceptance order of Ui, where the job at position j of σi is the one
that is present in best(i, j) but not in best(i, j − 1). The second property is that
σi−1 is a subsequence of σi for 1 ≤ i ≤ |U |. This second property suggests an
incremental computation of σi’s which will be exploited to find the weights of
MWMCMs for all prefixes of jobs to solve Problem 2, as described in Sect. 3.

We now give the formal definitions of the acceptance order and the optimal
set best(i, j), and present two associated lemmas. The proofs of these two lemmas
are provided in the companion technical report [5, Appendix A.1].

We say that a vertex is essential for an edge-weighted bipartite graph G if it
belongs to every MWMCM of G.

For any integer i such that 0 ≤ i ≤ |U | we define σi inductively as follows:
σ0 is the empty sequence; for i > 0 let u denote the job with index i, then σi

is obtained from σi−1 by inserting job u immediately after the prefix of σi−1

of length p − 1 where p, which we call the position of u in σi, is the minimum
positive integer such that job u is essential for Gi,p. It is easy to see that σi is
a sequence of length i and that 1 ≤ p ≤ i since u is trivially essential for Gi,i.
Furthermore, σi−1 is a subsequence of σi for 1 ≤ i ≤ |U |, as claimed above.

We say that σi is the acceptance order of the set of jobs Ui. Note that σ|U |
is the acceptance order of the set of all jobs.

Lemma 2. Let i and j be any integers such that 1 ≤ j ≤ i ≤ |U | and let u
denote the job with index i. Then job u is essential for Gi,j if and only if the
position of u in σi is at most j.

For any integers i and j such that 0 ≤ j ≤ i ≤ |U |, we define best(i, j) as
the set of the first j jobs in σi. Thus, best(i, j − 1) is a subset of best(i, j) for
1 ≤ j ≤ i ≤ |U |, as claimed above.

Lemma 3. Let i and j be any integers such that 0 ≤ j ≤ i ≤ |U |. Then
matching(best(i, j)) is an MWMCM of Gi,j.
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Lemmas 1 and 3 imply that once we compute the acceptance order σ|U |, we
can sort its first d jobs by their indices to obtain a matching to solve Problem 1.

2.2 Computing the Acceptance Order

As we have established the importance of the acceptance order σ|U |, we now
describe how to compute it efficiently. We start with σ1 and introduce the tasks
one by one in index order to compute the sequences σ2, . . . , σ|U | incrementally.
Once we know σi−1, we just need to find out where to insert the job with index i
in order to compute σi. We first introduce some definitions and a lemma, whose
proof is provided in the companion technical report [5, Appendix A.1], and then
we describe the key idea (Lemma 5) for finding the position of a job in the
corresponding acceptance order.

For any integers i and j such that 1 ≤ j ≤ i ≤ |U |, let σi[j] denote the job
with position j in σi, where σi[1] is the first job in σi.

For any job u that belongs to U , we define better(u) as the set of jobs that
precede u in σi where i denotes the index of u. Thus |better(u)| = p − 1 where
p is the position of u in σi. The set better(u) is the set of jobs that precede u
both in index order and in acceptance order.

Lemma 4. Let i and j be integers such that 1 ≤ j ≤ i ≤ |U |, and let i′ denote
the index of job σi[j]. Then the set of jobs in best(i, j − 1) with indices less than
i′ is equal to better(σi[j]).

For any subset U ′ of U , we define sum(U ′) as
∑

u∈U ′ u.priority .
Now we are ready to discuss the idea behind the efficient computation of the

acceptance orders incrementally. Assume that we already know the acceptance
order σi−1 of the set of the first i−1 jobs for some integer i such that 1 < i ≤ |U |.
Let u denote the job with index i. If we can determine in constant time, for any
job in the set Ui−1, whether u precedes that job in σi, then we can perform a
binary search in order to find in logarithmic time the position of u in σi. Suppose
that we would like to know whether u precedes σi−1[j] in σi for some integer
j such that 1 ≤ j < i. In other words we would like to determine whether the
position of u in σi is at most j. In what follows, let u′ denote the job σi−1[j] and
let v denote the slot with index j. Then by Lemma 2, job u precedes u′ in σi if
and only if u is essential for Gi,j .

In order to determine whether job u is essential for Gi,j , we need to compare
the weight of a heaviest possible matching for Gi,j that does not include u to the
weight of a heaviest possible matching for Gi,j that includes u. The former weight
is W (i − 1, j). Since job u has the highest index among the jobs with indices 1
through i, by Lemma 1, the latter weight is equal to w(u, v) + W (i − 1, j − 1).

Let X denote best(i − 1, j − 1). Since best(i − 1, j − 1) + u′ = best(i − 1, j),
Lemma 3 implies that the weight of matching(X + u′) is equal to W (i − 1, j).
By Lemma 3, the weight of matching(X) is W (i − 1, j − 1). Since job u has
the highest index among the jobs in X + u, the weight of matching(X + u) is
w(u, v) + W (i − 1, j − 1).
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σ9

X

u′

better(u′)

(a) Acceptance order σ9

v′ v

matching(X + u′)

matching(X + u)

(b) The two matchings to compare

Fig. 1. An example in which we try to determine whether the job with index 10 precedes
σ9[7] in σ10. Each box represents the job whose index is shown inside.

Combining the results of the preceding paragraphs, we conclude that job u
is essential for Gi,j if and only if the weight of matching(X + u) is greater than
the weight of matching(X + u′).

Figure 1 shows an example where i = 10 and j = 7. Thus we are trying to
determine whether the job with index 10 precedes σ9[7] in σ10. In this example,
u denotes the job with index 10 and u′ denotes σ9[7], which is the job with
index 5, as shown in Fig. 1a. The set X is the first 6 jobs in σ9. The jobs
appearing past u′ in σ9, jobs with indices 7 and 2, do not participate in the
matchings that we are interested in so they are crossed out. Figure 1b shows
the two matchings matching(X + u′) and matching(X + u) of which we would
like to compare the weights. As seen in Fig. 1b, each job in X with index less
than that of job u′, shaded light gray in the figure, is matched to the same slot
in both matching(X + u) and matching(X + u′). By Lemma 4, those jobs are
the ones in the set better(u′), which are the jobs with indices 1, 3 and 4 in the
example. Hence job u′ occurs in position |better(u′)| + 1 when we sort the set of
jobs X +u′ by index and thus it is matched to the slot with index |better(u′)|+1
in matching(X + u′). Moreover, each job in X with index greater than that of
job u′ is matched to a slot with index one lower in matching(X + u) than in
matching(X + u′), as depicted by the arrows in Fig. 1b for the jobs with indices
6, 8, and 9.

Hence the weight of matching(X + u) minus the weight of matching(X + u′)
is equal to w(u, v)−w(u′, v′) plus the sum of the priorities of all jobs in best(i−
1, j−1) with indices greater than that of u′, where v′ denotes the slot with index
|better(u′)|+1. By Lemma 4, the latter sum is equal to sum(best(i− 1, j − 1))−
sum(better(u′)). These observations establish the proof of the following lemma
which we utilize in computing the acceptance orders incrementally.

Lemma 5. Let i and j be integers such that 1 ≤ j < i ≤ |U |. Let u denote
the job with index i and let u′ denote the job σi−1[j]. Then the following are
equivalent: (1) The position of u in σi is at most j; (2) Job u is essential for
Gi,j; (3) The weight of matching(best(i−1, j −1)+u) is greater than the weight
of matching(best(i − 1, j − 1) + u′); and (4) w(u, v) > w(u′, v′) + sum(best(i − 1,
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j − 1))− sum(better(u′)) where v denotes the slot with index j and v′ denotes the
slot with index |better(u′)| + 1.

2.3 Binary Search Tree Implementation

We obtain an efficient algorithm utilizing a self-balancing augmented binary
search tree (BST) for incrementally computing the acceptance orders by a suit-
able choice of ordering the jobs, and an augmentation that is crucial in applying
Lemma 5 in constant time. The jobs are stored in the BST so that an inorder
traversal of the BST yields the acceptance order. The algorithm runs |U | itera-
tions where the job with index i is inserted into the BST at iteration i to obtain
σi from σi−1 by performing a binary search. We first give some definitions that
are useful in the description of the algorithm and then we state in Lemma 6 how
to perform the comparisons for the binary search.

For a binary tree T and an integer i such that 1 ≤ i ≤ |U |, we define the
predicate ordered(T, i) to hold if T contains i nodes that represent the jobs Ui,
and the sequence of the associated jobs resulting from an inorder traversal of T
is σi. The job represented by a node x is denoted by x.job.

Let T be a binary tree satisfying ordered(T, i) for some i. For any node x
in T , precede(x, T ) is defined as the set of jobs associated with the nodes that
precede x in an inorder traversal of T .

Lemma 6. Let i be an integer such that 1 < i ≤ |U | and let u denote the job
with index i. Let T be a binary tree satisfying ordered(T, i − 1) and let x be a
node in T . Assume that |precede(x, T )|, sum(precede(x, T )), |better(x.job)|, and
sum(better(x.job)) are given. Then we can determine in constant time whether
u precedes x.job in σi.

Proof. Let j denote |precede(x, T )|+1. Then ordered(T, i−1) implies that x.job
is σi−1[j] and sum(precede(x, T )) is equal to sum(best(i − 1, j − 1)). Now let u′

denote σi−1[j]. Then we can test Inequality 4 of Lemma 5 in constant time to
determine whether the position of u in σi is at most j, thus whether u precedes
u′ in σi. ��

Lemma 6 implies that once we know certain quantities about a node x in
the BST then we can tell in constant time whether the new job precedes x.job
in the acceptance order. The necessary information to compute the first two of
those quantities can be maintained by standard BST augmentation techniques
as described in [3, Chapter 14]. The other two quantities turn out to be equal to
the first two at the time the node is inserted into the BST and they can be stored
along with the node. The details are in the proof of the following result, which
is presented together with a concise implementation in the companion technical
report [5, Appendices A.2 and A.3].

Theorem 1. The acceptance order of U can be computed in O(|U | log |U |) time.
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As mentioned earlier, once σ|U | is computed, we can extract an MWMCM
of G|U |,j for any j such that 1 ≤ j ≤ |U |. If we are only interested in solutions
for j up to some given m, then the algorithm can be implemented in O(n log m)
time by keeping at most m nodes in the BST. We achieve this by deleting the
rightmost node when the number of nodes exceeds m. Note that if the jobs are
not already sorted by priorities then we still need to spend O(n log n) time.

If we would like to find out the weights of the MWMCMs of G|U |,j for all
j such that 1 ≤ j ≤ |U |, a naive approach would be to sort all prefixes of σ|U |
and to compute the weights. The companion technical report [5, Appendix D]
explains how to compute all those weights incrementally in linear time.

3 Introducing Tardiness Penalties

Given the improvement in running time that we achieve for Problem 1, we con-
sider solving several variations of that problem and other related problems in
more general families of compact bipartite graphs than the one we introduced in
Sect. 2. A possible variation of Problem 1 is to allow a constant number of jobs
to be scheduled in each time slot instead of only one. However, our approach
of comparing the weights of two matchings that we illustrate in Fig. 1b fails
because only some of the jobs, instead of all, in the set X having indices greater
than the job we compare with are shifted to a lower slot. Solving this variation
would enable us to address scheduling problems having symmetric earliness and
tardiness penalties with respect to a common due date.

Another related problem is finding an MWM in a more general complete
bipartite graph family that is still representable in space linear in the number
of vertices. Consider the following extension to the complete bipartite graph
G = (U, V,w) that is introduced in Sect. 2. For each slot (right vertex) v in
V , we introduce an integer parameter v.quality . We assume that the slots are
indexed from 1 in non-decreasing order of qualities, breaking ties arbitrarily.
We allow an arbitrary number of slots that is less than the number of jobs. We
also modify the edge weights so that w(u, v) between job u and slot v becomes
u.profit + u.priority · v.quality . While we have not been able to solve the MWM
problem in such a graph faster than quadratic time yet, we describe in Sect. 4
how to compute the VCG prices given an MWM of such a graph that represents
a unit-demand auction instance.

Here we describe a special case of the graph structure that is introduced in the
previous paragraph. Suppose that the qualities of the slots form a non-decreasing
sequence which is the concatenation of two arithmetic sequences. We are able
to solve the MWM problem in such a graph instance, thus we solve Problem 2
introduced in Sect. 1 in O(n log n) time. The key idea is to utilize the incremental
computation of the acceptance orders so that we can find the weights of the
MWMCMs between the slots whose qualities form the first arithmetic sequence
(the slots before the common due date) and every possible prefix of jobs. Then
we do the same between the slots whose qualities form the second arithmetic
sequence (the slots after the common due date) and every possible suffix of jobs.
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Then in linear time we find an optimal matching by determining which jobs to
assign to the first group of slots and which jobs to the second group. The details
are explained in the companion technical report [5, Appendix B].

4 Unit-Demand Auctions and VCG Prices

In this section, we view an instance G = (U, V,w) of the general complete bipar-
tite graph family introduced in Sect. 3 from the perspective of unit-demand
auctions. We refer to elements of U as bids and to elements of V as items. For
any bid u and item v, the weight w(u, v) represents the amount offered by bid
u to item v. We present an O(n log n)-time algorithm for computing the VCG
prices given a VCG allocation (an MWM of G).

We review some standard definitions related to unit-demand auctions and we
present the details of the algorithm in the companion technical report
[5, Appendix C]. Here we briefly describe the approach we take in order to
obtain the desired performance. One characterization of the VCG prices is that
it is the minimum stable price vector [13]. Thus a naive algorithm would start
with zero prices and then look for and eliminate the instabilities. While inspect-
ing a particular instability, the algorithm would increase the prices just enough
to eliminate that instability.

We take a similar approach that uses additional care. We start with a min-
imum price vector that does not cause an instability involving unassigned bids,
by utilizing the geometric concept of the upper envelope. We then inspect the
instabilities in a particular order, with two scans of the items, first in increas-
ing and then in decreasing order of qualities. The most expensive step is the
computation of the upper envelope, which takes O(n log n) time.

Acknowledgments. In the early stages of this work we had developed an O(n log2 n)-
time algorithm for the problem considered in Sect. 2. The authors wish to thank Eric
Price for pointing out how to improve this bound to O(n log n), and for allowing us to
include this improvement in the present paper.
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Abstract. The classical secretary problem investigates the question of
how to hire the best secretary from n candidates who come in a uniformly
random order. In this work we investigate a parallel generalizations of this
problem introduced by Feldman and Tennenholtz [14]. We call it shared
Q-queue J-choice K-best secretary problem. In this problem, n candidates
are evenly distributed into Q queues, and instead of hiring the best one,
the employer wants to hire J candidates among the best K persons. The
J quotas are shared by all queues. This problem is a generalized version
of J-choice K-best problem which has been extensively studied and it has
more practical value as it characterizes the parallel situation.

Although a few of works have been done about this generalization, to
the best of our knowledge, no optimal deterministic protocol was known
with general Q queues. In this paper, we provide an optimal determin-
istic protocol for this problem. The protocol is in the same style of the
1
e
-solution for the classical secretary problem, but with multiple phases

and adaptive criteria. Our protocol is very simple and efficient, and we
show that several generalizations, such as the fractional J-choice K-best
secretary problem and exclusive Q-queue J-choice K-best secretary prob-
lem, can be solved optimally by this protocol with slight modification and
the latter one solves an open problem of Feldman and Tennenholtz [14]. In
addition, we provide theoretical analysis for two typical cases, including
the 1-queue 1-choice K-best problem and the shared 2-queue 2-choice 2-

best problem. For the former, we prove a lower bound 1−O( ln2 K
K2 ) of the

competitive ratio. For the latter, we show the optimal competitive ratio
is ≈ 0.372 while previously the best known result is 0.356 [14].

1 Introduction

The classical secretary problem considers the situation that an employer wants
to hire the best secretary from n candidates that come one by one in a uniformly
random order [16]. Immediately after interviewing a candidate, the employer has
to make an irrevocable decision of whether accepting this candidate or not. It
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is well known that the optimal solution is in a phase style: the employer firstly
interviews n/e candidates without selecting anyone, then, he/she chooses the
first candidate who is better than all previous ones. This protocol hires the best
candidate with probability 1/e and it is optimal [12,29]. This problem captures
many scenarios and has been studied extensively in many fields, such as decision
theory [29], game theory [3,20,24] and theory of computation [6,15], etc.

The classical secretary problem has many generalizations. Kleinberg [24] con-
sidered that employer selects multiple candidates with the objective to maximize
the expectation of the total values of selected persons, and he proposed the first
protocol whose expected competitive ratio tends to 1 when the number of choices
goes to infinity. Buchbinder et al. [7] revealed an important relationship between
the secretary problem and linear programming, which turns out to be a powerful
method to construct optimal (randomized) protocols for many variants of secre-
tary problems. Those variants include the so called J-choice K-best problem that
the employer wants to hire J candidates from the best K candidates of all. Another
important variant is proposed by Feldman et al. [14]. They were the first to intro-
duce the parallel model. In their work, the candidates are divided into several
queues to be interviewed by different interviewers. They studied two interesting
settings: the quotas are pre-allocated and the quotas are shared by all interviewers.
For these settings, they designed algorithms and analyzed the competitive ratios
based on the random time arrival model [13]. Chan et al. [9] combined the results
of Buchbinder et al. [7] with the random time arrival model [13] and considered
infinite candidates. Under their model, they constructed a (J,K)-threshold algo-
rithm for J-choice K-best problem. They also showed that their infinite model
can be used to capture the asymptotic behavior of the finite model.

In this work, we focus on the shared parallel model introduced by Feldman
et al. [14]. All the algorithms and analysis are based on the classical discrete
and finite model. The parallel model can characterize many important situa-
tions where resource is limited or low latency is required. A typical case is the
emergency diagnosis in hospital. To shorten the waiting time, patients are diag-
nosed by ordinary doctors in parallel. The serious patients are selected to be
diagnosed by the expert doctors, since the experts are not enough and they can
only deal with limited number of patients.

Our main result is an optimal deterministic protocol, which we call Adaptive
Observation-Selection Protocol, for the shared Q-queue J-choice K-best secretary
problem (abbreviated as shared (Q, J,K) problem). In this problem, n candidates
are assigned to Q queues and interviewed in parallel. All queues share the J
quotas. Besides, there is a set of weights {wk | 1 ≤ k ≤ K} where wk stands for
how important the k-th rank is. The employer wants to maximize the expectation
of the summation of the weight associated with the selected secretaries.

To design an optimal protocol, we generalize the linear program technique
introduced by Buchbinder et al. [7]. Based on the optimal solution of LP model,
one can design a randomized optimal algorithm. However, it is time consuming
to solve the LP (the LP has nJK variables) and the randomized algorithm
is unpractical to apply. Besides, although this LP model has been adopted in



Solving Multi-choice Secretary Problem in Parallel 663

many work, its structure hasn’t been well studied in general. With digging into
its structure, we develop a nearly linear time algorithm to solve the LP within
O(nJK2) time. More importantly, our protocol is deterministic. It is also simple
and efficient. After solving the LP, the employer only spends O(log K) time for
each candidate. Our results answer the doubt in the work [7] that “the linear
program which characterizes the performance may be too complex to obtain a
simple mechanism”. Our protocol can be extended to solve other extensions, as
their LP models have the similar structure essentially. Among those extensions,
the optimal protocol for exclusive Q-queue J-choice K-best secretary problem
addresses an open problem in the work of Feldman et al. [14].

Our protocol is a nature extension of the well known 1/e-protocol of the
classical problem. In the 1/e-protocol, the employer can treat the first n/e can-
didates as an observation phase and set the best candidate in this phase to be
a criteria. In the second phase, the employer makes decision based on this crite-
ria. In our problem, it is natural to extend the above idea to multiple phases in
each queue and the criteria may change in different phases. Actually, the similar
intuition has been used in many previous works, not only the secretary problem
[2,14], but also some other online problems such as online auction [20] and online
matching [23]. This intuition seems straightforward, but it is hard to explain why
it works. In this work, we theoretically prove that this intuition indicates the
right way and can lead to optimality in our case.

Another contribution is that we provide theoretical analysis for the com-
petitive ratio of non-weighted cases of our problem. For the (1, 1,K) case, we
provide a lower bound 1−O

(
ln2 K
K2

)
and some numerical results. For the shared

(2, 2, 2) case, we show that the optimal competitive ratio is approximately 0.372
which is better than 0.356 that obtained by Feldman et al. [14].

Due to the space limitation, all the proofs in this work are omitted. Details
can be see in the full version [31].
More Related Work. Ajtai et al. [1] have considered the K-best problem with
the goal to minimize the expectation of the sum of the ranks (or powers of ranks)
of the accepted objects. In the Matroid secretary problem [4,8,10,11,18,21,22,
25,30], it introduces some combinatorial restrictions (called matroid restriction)
to limit the possible set of selected secretaries. Another kind of combinatorial
restriction is the knapsack constraints [2,3]. They combined the online knapsack
problem and the idea of random order in secretary problem. Another branch of
works consider the value of selected secretaries. It is no longer the summation of
values of each selected one, but will be a submodular function among them [5,13,
19]. Besides, Feldman et al. [13] considered the secretary problem from another
interesting view. They assumed all of the candidates come to the interview at a
random time instead of a random order. Some works talked about the case that
only partial order between candidates are known for the employer [17,27]. There
are also some works considering the secretary problem from the view of online
auction [2–4,20,23,24,26,28]. In these works, one seller wants to sell one of more
identical items to n buyers, and the buyers will come to the market at different
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time and may leave after sometime. The goal of the seller is to maximize his/her
expected revenue as well as the concern of truthfulness.

2 Preliminaries

In this section we formally define the shared (Q, J,K) problem. Given positive
integers Q, J, K and n with Q, J, K ≤ n, suppose the employers want to hire
J secretaries from n candidates that come one by one in a uniformly random
order. There are Q interviewers. Due to practical reason, like time limitation,
they do the interview in parallel. All candidates are divided into Q queues, that
is, the i-th person is assigned to the queue numbered imod Q (i = 1, . . . , n).
The employers then interview those candidates simultaneously. All the J quotas
are shared by the Q queues. That means in each queue, the employers can
hire a candidate if the total number of hired persons is less than J . The only
information shared among Q queues is the number of the candidates already
hired. Thus the employer in each queue only knows the relative order about those
candidates already interviewed in his/her own queue but has no idea about those
unseen ones and persons in other queues. After interviewing each candidate,
the employer should make an irrevocable decision about whether employ this
candidate or not. For the sake of fairness, we make a reasonable assumption
that the duration of the interviewing for each candidate is uniform and fixed.
This ensures the interview in each queue is carried out in the same pace. When
employers in several queues want to hire the candidate in their own queues at
the same time, to break the tie, the queues with smaller number have higher
priority. Besides, we suppose the employers only value the best K candidates
and assign different weights to every one of the K candidates and those weights
satisfies w1 ≥ w2 ≥ · · · ≥ wK > 0 where the wk stands for the importance
of the k-th best candidate in the employer’s view. Candidates not in best K
can be considered have a weight 0. The object function is to maximize the
expectation of the summation of the weight of selected candidates. This is the
so called shared Q-queue J-choice K-best secretary problem, and we abbreviate
it as shared (Q, J,K) problem for convenience.

3 Optimal Protocol for Shared (Q, J,K) Problem

In this section, we first characterize the shared (Q, J,K) problem by a linear
program and then construct a deterministic protocol for the shared (Q, J,K)
problem. We will talk about the relationship between the linear program and
our protocol, and finally use the idea of primal and dual to show our protocol is
optimal.

3.1 Linear Program for the Shared (Q, J,K) Secretary Problem

We use a linear program to characterize the shared (Q, J,K) problem and provide
its dual program. This approach was introduced by Buchbinder et al. [7] to model
the J-choice K-best problem. We are the first to generalize it to the shared
(Q, J,K) problem.
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Primal Program for the Shared (Q, J,K) Problem. Without loss of gener-
ality, we assume n is a multiple of Q. Let cq,i stand for the i-th candidate in q-th
queue and x

j|k
q,i stand for the probability that cq,i is selected as the j-th one given

that he/she is the k-th best person up to now in q-th queue. When the J, K and
the weights are given, we know the offline optimal solution is

∑min(J,K)
l=1 wl. We

denote it as W . Then we can model the shared (Q, J,K) problem as follow.

max z =
1

nW

Q∑

q=1

J∑

j=1

K∑

l=1

n∑

i=1

K∑

k=l

wk

(
i−1
l−1

)(
n−i
k−l

)
(
n−1
k−1

) x
j|k
q,i

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x
j|k
q,i ≤

Q∑

m=1

i−1∑

s=1

1

s

K∑

l=1

(
xj−1|l
m,s − xj|l

m,s

)
+

q−1∑

m=1

1

i

K∑

l=1

(
x
j−1|l
m,i − x

j|l
m,i

)
,

(1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ k ≤ K, 1 ≤ j ≤ J)

x
j|k
q,i ≥ 0, (1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ k ≤ K, 1 ≤ j ≤ J).

(1)

For further analysis, we provide several definitions about the primal program.

Definition 1 (Crucial Constraint). We call the constraint

x
j|k
q,i ≤

Q∑

m=1

i−1∑

s=1

1

s

K∑

l=1

(
xj−1|l
m,s − xj|l

m,s

)
+

q−1∑

m=1

1

i

K∑

l=1

(
x
j−1|l
m,i − x

j|l
m,i

)

for 1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K, the crucial constraint for
x
j|k
q,i .

Definition 2 ((0, 1)-solution and Crucial Position). Given a feasible solu-
tion of the primal program, if there are JKQ points {i′q,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤
J, 1 ≤ k ≤ K} satisfy

x
j|k
q,i =

⎧
⎪⎪⎨

⎪⎪⎩

Q∑

m=1

i−1∑

s=1

1

s

K∑

l=1

(
x
j−1|l
m,s − x

j|l
m,s

)
+

q−1∑

m=1

1

i

K∑

l=1

(
x
j−1|l
m,i − x

j|l
m,i

)
> 0, i

′
q,j,k ≤ i ≤ n/Q

0, 1 ≤ i < i
′
q,j,k

for all 1 ≤ q ≤ Q, 1 ≤ j ≤ J , 1 ≤ k ≤ K, we call this feasible solution
(0, 1)-solution of the primal program, and i′q,j,k is the crucial position for xj,k

q,i .

Note that, in a (0, 1)-solution, only when x
j|k
q,i > 0, we consider the cru-

cial constraint for the x
j|k
q,i is tight, otherwise, the crucial constraint is slack,

even though the constraint may be actually tight when x
j|k
q,i =

∑Q
m=1

∑i−1
s=1

1
s

∑K
l=1

(
x
j−1|l
m,s − x

j|l
m,s

)
+

∑q−1
m=1

1
i

∑K
l=1

(
x
j−1|l
m,i − x

j|l
m,i

)
= 0.
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Dual Program. Suppose bki =
∑K

l=k wl
(i−1
k−1)(n−i

l−k)
(n−1
l−1)

. We have the dual program:

min z =

Q∑

q=1

K∑

k=1

n/Q∑

i=1

y
1|k
q,i

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y
j|k
q,i +

1

i

Q∑

m=1

n/Q∑

s=i+1

K∑

l=1

(
yj|l
m,s − yj+1|l

m,s

)
+

1

i

Q∑

m=q+1

K∑

l=1

(
y
j|l
m,i − y

j+1|l
m,i

)
≥ bki

nW
,

(1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K)

y
j|k
q,i ≥ 0, (1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K).

In this program, we add a set of dummy variables y
(J+1)|k
q,i and set them to

be 0 for the brief. Respectively, we can define the crucial constraint and crucial
position for the y

j|k
q,i and the (0, 1)-solution for this dual program.

3.2 Protocol Description

Algorithm 1. Preprocessing Part
input : n, J , K, Q, {wk | 1 ≤ k ≤ K}
output: {iq,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K}

1 iq,j,k (1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K): JKQ crucial positions, initially
1

2 y
j|k
q,i (1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J + 1, 1 ≤ k ≤ K): initially 0

3 for i = n/Q to 1 do
4 for q = Q to 1 do
5 for j = J to 1 do
6 for k = K to 1 do

7 y
j|k
q,i ← bki

nW
+ 1

i

Q∑
m=1

n/Q∑
s=i+1

K∑
l=1

(
y
j+1|l
m,s − y

j|l
m,s

)
+

1
i

Q∑
m=q+1

K∑
l=1

(
y
j+1|l
m,i − y

j|l
m,i

)

8 if y
j|k
q,i ≤ 0 then

9 y
j|k
q,i ← 0

10 if i = n or y
j|k
q,i+1 > 0 then

11 iq,j,k ← i + 1 � Find and record the crucial position

The protocol consists of two parts. The first part (Algorithm 1) takes J ,
K, Q and n as inputs and outputs JKQ positions {iq,j,k | 1 ≤ q ≤ Q, 1 ≤
j ≤ J, 1 ≤ k ≤ K}. We will show some properties about these positions later.
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The preprocessing part actually solves the dual program as defined in Section
3.1. But it is more efficient than the ordinary LP solver. It is easy to check if we
calculate the value of y

j|k
q,i in line 7 carefully, the time complexity of the algorithm

is O(nJK2).
The second part (Algorithm 2) takes the output of preprocessing part as

input and does the interview on Q queues simultaneously. For each queue, this
protocol consist of J rounds. When j (1 ≤ j ≤ J − 1) persons were selected
from all queues, the protocol will enter the (j +1)-th round immediately. In each
round, the protocol divided candidates in each queue into K + 1 phases. For
each queue, in the k-th (1 ≤ k ≤ K) phase, that’s from (iq,j,k−1)-th candidate
to (iq,j,k − 1)-th candidate, the protocol selects the (k − 1)-th best person of
previous k − 1 phases in this queue as criteria, and just hires the first one that
better than this criteria. Candidates in each queue come up one by one. For each
candidate, the employers check the number of candidates selected to determine
the current round, and then query the current phase based on the position
of current candidate, and finally make decision by comparing with criteria of
this phase. The protocol will terminate when all candidates were interviewed
or J candidates are selected. In the protocol, we define a global order which is
consistent with the problem definition. Using cq,i to stand for the i-th candidate
of q-th queue. We say cq′,i′ comes before cq,i if i′ < i or i′ = i and q′ < q.

Algorithm 2. Adaptive Observation-Selection Protocol
input : n, Q, J , K, {iq,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K}
output: the selected persons

1 let iq,j,K+1 to be n + 1
2 for all queues simultaneously do
3 � suppose q is the number of an arbitrary queue
4 for i = 1 to iq,1,1 − 1 do interview without selecting anyone
5 for i = iq,1,1 to n/Q do
6 interview current candidate cq,i
7 let j to be the number of selected persons before cq,i in global order
8 if j = J then return
9 let k to be the current phase number of (j + 1)-th round � that’s

the k satisfies iq,j+1,k−1 ≤ i < iq,j+1,k

10 let s to be the (k − 1)-th best one from the first candidate to
(iq,j+1,k−1)-th candidate

11 if cq,i is better than s then
12 select cq,i

3.3 Optimality of the Adaptive Observation-Selection Protocol
In the rest of this work, we use y

j|k∗
q,i to stand for the value of y

j|k
q,i obtained from

the preprocessing part for 1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J + 1, 1 ≤ k ≤ K.
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These two notations y
j|k
q,i and y

j|k∗
q,i should be clearly distinguished. The former

is a variable in the dual program, while the latter is a value we get from the
preprocessing part.

Preparations. For the clarity of the proof, we distill some fundamental results
in this part. The Proposition 1 talks about two properties of bki defined in the
dual program, and the Lemma 1, 2 reveal some important properties of the
preprocessing part. The Lemma 3 considers a recurrence pattern. This recurrence
can be used to explore the structure of the constraints of the dual program.

Proposition 1. For 1 ≤ k ≤ K, 1 ≤ i ≤ n/Q, bki satisfies (a) ibki ≤ (i+1)bki+1

and (b) bki ≥ bk+1
i .

Lemma 1. The {iq,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K} obtained from
the preprocessing part satisfies iq,j,t ≤ iq,j,k, and we have y

j|t∗
q,i ≥ y

j|k∗
q,i > 0 for

1 ≤ t < k.

Lemma 2. According to the preprocessing part, if y
j|k∗
q,i > 0 and y

j|k∗
q,i ≥ y

j+1|k∗
q,i ,

we have y
j|t∗
q,i ≥ y

j+1|t∗
q,i for 1 ≤ t < k.

Lemma 3. Suppose m, t, Q, K are positive integers and c is a constant real
number. {ft}mt=1, {gt}mt=1 and {ht}mt=1 are three sequences. Let i =

⌊
t−1
Q

⌋
+ 1,

if the recursion ft + K
i

∑m
s=t+1(fs − gs) + c

i = hi is held, then all the values in
{ft}nt=1 will increase when c decreases or values in {gt}nt=1 increase.

Main Frame of the Proof. The main idea of the proof is described as follow.
Firstly we show the fact that the Adaptive Observation-Selection protocol can
be mapped to a feasible (0, 1)-solution of the primal program (Lemma 4) while
the {y

j|k∗
q,i | 1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K} obtained

from the preprocessing part is corresponding to a feasible (0, 1)-solution of the
dual program (Lemma 5). Then, we argue that these two feasible (0, 1)-solutions
satisfy the theorem of complementary slackness (Theorem 1). Thus both the
solutions are optimal respectively. This means our protocol is optimal.
Lemma 4. Taking the {iq,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K} obtained from
the preprocessing part as input, the Adaptive Observation-Selection Protocol can
be mapped to a (0, 1)-solution of the primal program and the iq,j,k is the crucial
position of x

j|k
q,i .

The proof is achieved by calculating the probability that cq,i is selected in j-th
round by the protocol given that he/she is the k-th best up to now, that’s the
x
j|k
q,i . We can find that the x

j|k
q,i obtained from the protocol exactly satisfies the

definition of (0, 1)-solution.
The relationship between the preprocessing part and the dual program is

the essential and most complicate part in this work. As the dual program is
extremely complex, insight on the structure should be raised. The proof relies
heavily on the properties of the preprocessing part and the dual program revealed
in preparation part.
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Lemma 5. The {y
j|k∗
q,i | 1 ≤ q ≤ Q, 1 ≤ i ≤ n/Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K}

obtained from the preprocessing part is a (0, 1)-solution of the dual program.

The crucial positions play a key role in the protocol, and up to now, some
properties of them have been revealed. We summarize those properties here.

Proposition 2. For 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K, we have iq+1,j,k ≤
iq,j,k, iq,j,k ≤ iq,j+1,k, and iq,j,k ≤ iq,j,k+1.

Employing the complementary slackness theorem, we can show the our pro-
tocol is optimal.

Theorem 1. Taking the {iq,j,k | 1 ≤ q ≤ Q, 1 ≤ j ≤ J, 1 ≤ k ≤ K} obtained
from the preprocessing part as input, the Adaptive Observation-Selection Protocol
is optimal for the shared (Q, J,K) problem.

4 Extensions and Analysis of the Optimal Protocol

4.1 Applications in Other Generalizations
Our optimal protocol is based on the essential structure of the LP model. Several
variants can be characterized by LP model with similar structure. Thus our
optimal protocol can be extended to solve these related variants.

It is obvious that we can obtain an optimal protocol for weighted J-choice
K-best secretary problem when Q is set to be 1. Based on the J-choice K-best
problem, we consider another variant: the employer just interviews the first m
candidates, 1 ≤ m ≤ n, due to time or resource limitation. Other settings keep
unchanged. We call this problem fractional J-choice K-best secretary problem.
We can characterize this problem with LP program called FLP (see the full
version). The FLP has the same structure with the LP 1, and all the properties
used to show the optimality of the Adaptive Observation-Selection protocol are
still held. Thus, our protocol can be easily generalized to solve this problem.

In the shared (Q, J,K) problem, all interviewers share the J quotas. Another
case is that a fixed quota is preallocated to each queue, that’s to say, in any
queue q, the employer can only hire at most Jq candidates where J =

∑Q
q=1 Jq.

Besides, we suppose there are nq candidates in queue q so that n =
∑Q

q=1 nq.
Other settings, except the synchronous requirement, keep unchanged compared
to the shared (Q, J,K) problem. This is the problem which is called exclusive
Q-queue J-choice K-best secretary problem (abbreviated as exclusive (Q, J,K)
problem). Feldman et al. [14] have considered the non-weighted version of the
exclusive (Q, J,K) problem with the condition J = K. Actually, for each queue
of the exclusive (Q, J,K) problem, since what we care about is the expectation
and the candidates’ information and quotas can not be shared, how employer
selects candidate has no influence on other queues. So, it is an independent
fractional weighted Jq-choice K-best secretary problem with m = nq in each
queue. Then, running the modified Adaptive Observation-Selection protocol on
each queue is an optimal protocol for exclusive (Q, J,K) problem.
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4.2 Competitive Ratio Analysis

Let α(Q, J,K) stand for the competitive ratio of Adaptive Observation-Selection
Protocol. For the general case, α(Q, J,K) is complicated to analyze either from
the view of protocol or the dual program. In this section, we provide analysis
about two typical cases: the (1, 1,K) case and the (2, 2, 2) case. Both the cases
we deal with are the uniformly weighted (or non-weighted) versions of shared
(Q, J,K) problem, i.e. w1 = w2 = · · · = wK = 1.

The first one we study is the (1, 1,K) case that selecting 1 candidate among
the top K of n candidates with just one queue. It is also called K-best problem.
For this case, we provide a simple 3-phase algorithm. This algorithm actually
divides the candidates into 3 phases. In the first phase, the algorithm hires no
one, and then in the second phases, it hires a candidate if he/she is the best one
up to now. In the last phase, it hires a candidate if he/she is the best or the
second best candidate so far. As our Adaptive Observation-Selection protocol
is optimal, the performance of this 3-phase algorithm is a lower bound of our
protocol. We get the following lower bound of α(1, 1,K) based on the analysis
of this three-phase algorithm.

Theorem 2. α(1, 1,K) ≥ 1 − O
(

ln2 K
K2

)
when K is large enough and n � K.

The Adaptive Observation-Selection protocol performs much better in fact.
Table 1 is the result of numerical experiment for small K. As we can see,
α(1, 1,K) goes to 1 sharply. But it is too complex to analyze when there are
K + 1 phases.

Table 1. The value of α(1, 1, K) when n = 10000

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
0.3679 0.5736 0.7083 0.7988 0.8604 0.9028 0.9321 0.9525 0.9667 0.9766

K = 11 K = 12 K = 13 K = 14 K = 15 K = 16 K = 17 K = 18 K = 19 K = 20
0.9835 0.9884 0.9918 0.9942 0.9959 0.9971 0.9980 0.9986 0.9990 0.9993

K = 21 K = 22 K = 23 K = 24 K = 25 K = 26 K = 27 K = 28 K = 29 K = 30
0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 >0.9999 >0.9999 >0.9999

Another case is when Q = J = K = 2 and we have the following result.

Theorem 3. When n is large enough, the Adaptive Observation-Selection pro-
tocol achieves a competitive ratio α(2, 2, 2) ≈ 0.372.

The main idea is to calculate the optimal (0, 1)-solution of the dual program
based on the preprocessing part. This analysis is almost accurate when n is large
enough.
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5 Conclusion

In this paper, we deal with a generalization of secretary problem in the parallel
setting, the shared Q-queue J-choice K-best secretary problem, and provide
a deterministic optimal protocol. This protocol can be applied to a series of
relevant variants while keeps optimal. In addition, we provide some analytical
results for two typical cases: the 1-queue 1-choice K-best case and the shared
2-queue 2-choice 2-best case.

There are several interesting open problems. The first one is making a tighter
analysis of the competitive ratio for shared Q-queue J-choice K-best secretary
problem. For the 1-queue 1-choice K-best case, we conjecture that the competi-
tive ratio has the form of 1 − O(f(K)K) for some negligible function f . For the
general case, there is no notable result up to now and lots of work remain to be
done. Another interesting aspect is to know whether the technique in this paper
can be used to find deterministic protocol for other variations such as matroid
secretary problem, submodular secretary problem, knapsack secretary problem
etc.
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Abstract. We present an integer linear program (IP), for the Graph
Isomorphism (GI) problem, which has non-empty feasible solution if and
only if the input pair of graphs are isomorphic. We study the polytope
of the convex hull of the solution points of IP, denoted by B[2]. Exponen-
tially many facets of this polytope are known. We show that in case of
non-isomorphic pairs of graphs if a feasible solution exists for the linear
program relaxation (LP) of the IP, then it violates a unique facet of B[2].
We present an algorithm for GI based on the solution of LP and prove
that it detects non-isomorphism in polynomial time if the solution of the
LP violates any of the known facets.

Keywords: Graph isomorphism problem · Linear programming · Poly-
hedral combinatorics

1 Introduction

The graph isomorphism problem (GI) is a well-studied computational problem:
Formally, given two graphs G1 and G2 on n vertices, decide if there exists a
bijection σ : V (G1) → V (G2) such that {u, v} ∈ E(G1) iff {σ(u), σ(v)} ∈ E(G2).
Each such bijection is called an isomorphism. Without loss of generality, we
assume that the vertices in both the graphs are labelled by integers 1, . . . , n.
Hence V (G1) = V (G2) = [n] and each bijection is a permutation of 1, . . . , n. It
remains one of the few problems that are unlikely to be NP-complete [1] and
for which no polynomial time algorithm is known. The fastest known graph
isomorphism algorithm for general graphs has running time 2O(

√
n log n) [4].

Several approaches to solve GI have been adopted. Most prominent of these
has been the one that finds a canonical labeling of the vertices of the two graphs
[3],[5]. For a comprehensive list of all the approaches there are some survey
papers on the works published on this problem, such as [6].

Another problem of interest in the present context is Quadratic Assignment
Problem (QAP) [8]. The QAP polytope is defined as the convex hull of all the
feasible solutions to its linear formulation [9]. The polyhedral combinatorics of
this polytope was studied by Volker Kaibel in his PhD thesis [7]. In the thesis he
identifies a class of facets of this polytope and the dimension of its affine plane.

In this work we derive an integer linear program for graph isomorphism.
Each (integer) solution of this program corresponds to one permutation. The

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 674–685, 2014.
DOI: 10.1007/978-3-319-13075-0 53
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convex hull of these points is denoted by B[2] when both graphs are ([n], ∅). The
polytope of the corresponding linear program (LP) is denoted by P. We show
that each maximally connected region of P \ B[2] is separated from B[2] by only
one facet. Hence in case of non-isomorphic graph pairs if the linear program is
feasible, then the solutions violate exactly one facet of B[2]. Several facets of B[2]

are already known and many new facets are identified in this paper.
We describe an algorithm which is based on the linear program. We show that

if the linear program gives a feasible solution for non-isomorphic pair, then the
algorithm correctly detects in polynomial time that the pair is non-isomorphic
if the solution is separated from B[2] by any of the known facets. We show in [2]
that there must be several additional facets of B[2] which are yet to be discovered.
This is the reason that we cannot yet claim that this algorithm solves the graph
isomorphism problem in polynomial time.

2 Integer Linear Program for GI

Define a second-order permutation matrix P
[2]
σ corresponding to a permutation

σ as (P [2]
σ )ij,kl = (Pσ)ij(Pσ)kl. We call the convex hull of the second-order per-

mutation matrices, the second-order Birkhoff polytope B[2]. In [10] a completely
positive formulation of Quadratic Assignment Problem (QAP) is given. The fea-
sible region of this program is precisely B[2], see theorem 3 in [10].

Let B[2]
G1G2

denote the convex hull of the P
[2]
σ where σ are the isomorphisms

between G1 and G2. If the graphs are non-isomorphic, then B[2]
G1G2

= ∅. Clearly

B[2] = B[2]
G1G2

when G1 = G2 = ([n], ∅) or G1 = G2 = Kn.

Observation 1. Given a pair of graphs, there exists a linear program (probably
with exponentially many conditions) such that the feasible region of the program
(B[2]

G1G2
) is non-empty if and only if the graphs are isomorphic.

Next we will develop an integer linear program such that the convex hull of
its feasible points is B[2]

G1G2
. It is easy to verify that for every permutation σ,

Y = P
[2]
σ satisfies equations 1a-1d.

Yij,kl − Ykl,ij = 0 ∀i, j, k, l (1a)
Yij,il = Yji,li = 0 ∀i,∀j �= l (1b)

∑

k

Yij,kl =
∑

k

Yij,lk = Yij,ij ∀i, j, l (1c)

∑

j

Yij,ij =
∑

j

Yji,ji = 1 ∀i (1d)

Lemma 1. The solution plane, P , of equations 1a-1d is the affine plane spanned
by P

[2]
σ ’s, i.e., P = {∑

σ ασP
[2]
σ |∑σ ασ = 1}.
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Proof. We will first show that the dimension of the solution plane is no more
than n!/(2(n − 4)!) + (n − 1)2 + 1.

In the following discussion we will split matrix Y into n2 non-overlapping
sub-matrices of size n × n which will be called blocks. The n blocks that contain
the diagonal entries of Y will be called diagonal blocks. Note that Yij,kl is the
jl-th entry of the ik-th block.

From the equation 1b, the off-diagonal entries of the diagonal blocks are
zero. Assume that the first n − 1 diagonal entries of each of the first n − 1
diagonal blocks are given. Then all diagonal entries can be determined using
equations 1d.

Consider any off diagonal block in the region above the main diagonal, other
than the right most (n-th) block of that row. Note that the first entry of such
a block will be Yr1,s1 where r < s < n. From the equation 1b we see that its
diagonal entries are zero. The sum of the entries of any row of this block is same
as the main diagonal entry of that row in Y , see equation 1c. Same holds for the
columns from symmetry condition 1a. Hence by fixing all but one off-diagonal
entries of the first principal sub-matrix of the block of size (n − 1) × (n − 1),
we can fill in all the remaining entries. An exception to above is the second-last
block of the (n − 2)-th block-row (with first entry Y(n−2)1,(n−1)1). Here only the
upper diagonal entries of the first principal sub-matrix of size (n−1)×(n−1) are
sufficient to determine all the remaining entries of that block. From equation 1c
all the entries of the right most blocks can be determined. Lower diagonal entries
of Y are determined by symmetry. Hence we see that the number of free variables
is no more than (n−1)2+((n−1)(n−2)−1)(2+· · ·+(n−2))+(n−1)(n−2)/2 =
n!/(2(n − 4)!) + (n − 1)2 + 1.

In [7] it is shown that the dimension of B[2] polytope is n!
2(n−4)! +(n−1)2 +1.

This claim along with the result of the previous paragraph leads to the conclusion
that equations 1a-1d define the affine plane spanned by the P

[2]
σ s. �

Corollary 1. B[2] is a full dimensional polytope in P .

Lemma 2. The only 0/1 solutions of Equations 1a-1d are P
[2]
σ ’s.

Proof. Let Y be a 0/1 solution of the above system of linear equations. Note
that equations 1d and the non-negativity of the entries ensure that the diagonal
of the solution is a vectorized doubly stochastic matrix. As the solution is a 0/1
matrix, the diagonal must be a vectorized permutation matrix, say Pσ. Then
Yij,ij = (Pσ)ij .

Equations 1c imply that Yij,kl = 1 if and only if Yij,ij = 1 and Ykl,kl = 1.
Equivalently, Yij,kl = Yij,ij · Ykl,kl = (Pσ)ij · (Pσ)kl = (P [2]

σ )ij,kl.
Equations 1a and 1b describe the remaining entries. �
Let G1 = ([n], E1) and G2 = ([n], E2) be simple graphs on n vertices each.

Define a graph G = (V,E), where V = [n] × [n] and {ij, kl} ∈ E if either
{i, k} ∈ E1 and {j, l} ∈ E2 or {i, k} /∈ E1 and {j, l} /∈ E2.

Corollary 2. The only 0/1 solutions of equations 1a-1d and Yij,kl = 0∀{ij, kl}
/∈ E, are the P

[2]
σ where σ are the isomorphisms between G1 and G2.
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Corollary 2 gives the following integer program for GI.

IP-GI: Find a point Y

subject to 1a-1d (2a)
Yij,kl = 0 , {ij, kl} /∈ E (2b)
Yij,kl ∈ {0, 1} , ∀ i, j, k, l

Note. This is a feasibility formulation of GI. To formulate an optimization pro-
gram for GI, replace the conditions 1d by

∑
i Yij,ij ≤ 1 and

∑
j Yij,ij ≤ 1, and

set the maximization objective function to be
∑

i,j Yij,ij . The solutions of IP-GI
coincide with those solutions of the optimization version where the objective
function evaluates to n.

The LP relaxation, LP-GI, is IP-GI with relaxed conditions on the variables.
Here we only require that Yij,kl ≥ 0 for all i, j, k, l. The condition Yij,kl ≤ 1
is implicit for all i, j, k, l. Let PG1G2 denote the feasible region of LP-GI. So
B[2]

G1G2
⊆ PG1G2 . Define P = PG1G2 where G1 = G2 = ([n], ∅) or G1 = G2 = Kn.

P is contained in the unit-cube {0, 1}n2×n2
, so it is a polytope. It is also contained

in the plane P , hence it too is a full-dimensional polytope in that plane.
The following observations are in order.

Observation 2. Graphs G1, G2 are isomorphic if and only if the feasible region
of LP-GI shares at least one point with B[2].

Observation 3. The complete set of facets of P is Yij,kl = 0∀i �= k ∀j �= l.

Observation 4. Vertices of B[2] (i.e., P
[2]
σ ) are a subset of the vertices of P.

3 Facial Structure of B[2]

The feasible region of LP-GI for an isomorphic graph pair, G1, G2, will always
contain at least one point from B[2]

G1G2
. In case of non-isomorphic pair, either the

feasible region will be empty or it will be confined to P\B[2]. While such solutions
satisfy the non-negativity conditions, they occur on the wrong side of some of
the facets of B[2]. We cannot include the corresponding inequalities into the
linear program (even if we know them) and get an exact program for GI because
they are exponentially large in number. It is easy to devise an algorithm for GI
based on the present LP. Our goal is to identify the facets of B[2] and using the
corresponding inequalities prove that this algorithm will take only polynomial
time to detect that the entire LP feasible region is outside B[2]. Hence our first
task is to identify all the B[2] facets. Exponentially many of these facets are
already identified in the literature and we will identify exponentially many new
facets.

We will represent a facet by an inequality f(x) ≥ 0 which defines the half
space that contains the polytope and the plane f(x) = 0 contains that facet. All
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the known facets of B[2] are special instances of a general inequality
∑

ijkl

nijnklYij,kl + (β − 1/2)2 ≥ (2β − 1)
∑

ij

nijYij,ij + 1/4 (3)

where β ∈ Z and nij ∈ Z for all (ij).
The first set of facets are the instances of this inequality where ni0j0 = nk0l0 =

1 for some (i0j0) �= (k0l0), all other nij = 0, and β = 1.

Theorem 5. Yi0j0,k0l0 ≥ 0 defines a facet of B[2] for every i0, j0, k0, l0 such that
i0 �= k0 and j0 �= l0.

The above theorem is proven in [7].
The next set of facets are due to β = np1q1 = np2q2 = np1q2 = 1, nkl = −1,

and the rest of the nij are zero. Here p1, p2, k are any distinct set of indices.
Similarly q1, q2, l are also any set of distinct indices.

Theorem 6. Inequality Yp1q1,kl +Yp2q2,kl +Yp1q2,kl ≤ Ykl,kl +Yp1q1,p2q2 defines a
facet of B[2], where p1, p2, k are distinct and q1, q2, l are also distinct and n ≥ 6.

The third set of facets is due to β = ni1j1 = · · · = nimjm = 1, nkl = −1 and
the remaining nij = 0.

Theorem 7. Inequality Yi1j1,kl+Yi2j2,kl+. . .+Yimjm,kl ≤ Ykl,kl+
∑

r �=s Yirjr,isjs ,
defines a facet of B[2], where i1, . . . , im, k are all distinct and j1, . . . , jm, l are also
distinct. In addition, n ≥ 6,m ≥ 3.

Theorems 6,7 appear with proof in [2] as Theorems 10,17 respectively.
The next two sets of facets are established in [7]. Let P1 and P2 be disjoint

subsets of [n]. Similarly let Q1 and Q2 also be disjoint subsets of [n]. In these
facets nij = 1 if (ij) ∈ (P1 × Q2) ∪ (P2 × Q1) and nij = −1 if (ij) ∈ (P1 × Q1) ∪
(P2 × Q2). All other nij are zero. In the following case P2 = Q1 = ∅.

Theorem 8. [7, Definition 8.5] Following inequality defines a facet of B[2]

(β − 1)
∑

(ij)∈P1×Q2
Yij,ij ≤ ∑

(ij) �=(kl)∈P1×Q2,i<k Yij,kl + (1/2)(β2 − β)
when β + 1 ≤ |P1|, |Q2| ≤ n − 3;|P1| + |Q2| ≤ n − 3 + β; β ≥ 2.

The next set of facets, with Q1 = ∅, is given in the following theorem.

Theorem 9. [7, Definition 8.6] Following inequality defines a facet of B[2]

−(β − 1)
∑

(ij)∈P1×Q2
Yij,ij +β

∑
(ij)∈P2×Q2

Yij,ij +
∑

(ij) �=(kl)∈P2×Q2,i<k Yij,kl +∑
(ij) �=(kl)∈P1×Q2,i<k Yij,kl − ∑

(ij)∈P1×Q2,(kl)∈P2×Q2
Yij,kl + (1/2)(β2 − β) ≥ 0

where the conditions on the parameters are as given in [7, Definition 8.6].

From Observations 3, 4 and Theorem 5 we have the following result.

Theorem 10. All facet defining planes of P also define facets of B[2] and all
vertices of B[2] are also vertices of P. Besides, the dimensions of the two polytopes
are same (both are full dimensional polytopes in plane P ).
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Let the sets of vertices and the facet planes of B[2] be denoted by V (B[2])
and F (B[2]) respectively. Similarly denote the respective sets for P.

Since V (B[2]) ⊂ V (P), B[2] is contained in P. F (P) is a subset of F (B[2]) and
these facet planes are Yij,kl = 0 planes so we refer to them as zero-planes and
the corresponding facets as trivial facets of B[2]. Each facet X ∈ F (B[2]) \ F (P)
partitions P into two parts because the two polytopes are of the same dimension.
One part contains B[2]. We will refer to the other part of P by a pocket. Note
that the points on the facet X do not belong to the pocket. The non-P [2]

σ vertices
of P do not belong to X since it is a facet of B[2] and it is the convex-hull of the
P

[2]
σ s belonging to it. Clearly only non-P [2]

σ vertices must occur in the pockets.
In the following lemma we will show that these pockets do not overlap, hence
each vertex of V (P) \ V (B[2]) belongs to a unique pocket.

Lemma 3. All pockets are disjoint.

Proof. Polytope P is the intersection of half spaces (Yij,kl ≥ 0) ∩ P in the
underlying space P . Let I be the index set such that P is contained in the plane
Ypq,rs = 0 for all (pq, rs) ∈ I. Hence a point Z ∈ P belongs to the interior of P
if and only if Zij,kl > 0 for all (ij, kl) /∈ I. Each pocket K is bounded by some
zero planes, (Yij,kl = 0) ∩ P , and one facet plane X ∈ F (B[2]) \ F (P). So all
pockets are full dimensional in P . By definition the points of X do not belong
to K. Let K̃ denote the interior of pocket K, which is a subset of the interior of
P.

Let K1 and K2 be two distinct pockets which are separated from B[2] by
facet planes X1 and X2 respectively.

Let Z ∈ K1 ∩K2. Assume that Z /∈ K̃2 but belongs to K̃1. Then Z is a point
on a face of K2 which is in the intersection of some zero planes. Let B(Z, ε) be
an infinitesimally small ball in P centered at Z with radius ε. For small enough
radius B(Z, ε) ⊂ K̃1. This is absurd because Z being on the intersection of some
zero planes, there is a point in the ball which has at least one coordinate negative,
which is not possible in the interior of K1. Hence any zero plane bounding one
pocket does not intersect the interior of the other pocket. We also know that
X1∩K2 = X2∩K1 = ∅. Hence the interior of either pocket contains no boundary
point of the other pocket.

Above argument shows that either K̃1 = K̃2 or K̃1 ∩ K̃2 = ∅. The former
implies K1 = K2, which is not true. We deduce that the interiors of the pockets
are disjoint.

Then the point Z must belong to a face in each pocket. These faces must be
due to the intersection of some of the zero planes in P . Once again consider a
ball B(Z, ε) in P . Let B′(Z, ε) denote the subset of the ball where all the non-I
coordinates are positive. Then for a small enough ε, B′(Z, ε) must belong to the
interior of K̃1 as well as of K̃2. This implies that K̃1 ∩ K̃2 �= ∅. But that is not
true as shown in the previous paragraph. So we conclude that K1 ∩ K2 must be
empty. �

Corollary 3. Each pocket is a maximal connected region of P \ B[2]. And there
is a one to one correspondence between facets of F (B[2]) \F (P) and the pockets.
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Each vertex of V (P) \ V (B[2]) belongs to a unique pocket. So we have the
following combinatorial result.

Corollary 4. |F (B[2]) \ F (P)| ≤ |V (P) \ V (B[2])|.
Lemma 4. The feasible region of LP-GI for non-isomorphic graphs, if non-
empty, lies entirely in a unique pocket.

Proof. Let the feasible region span multiple pockets. Let these include the pocket
of the non-trivial facet X1. By the definition of the feasible region, it cannot cross
the boundary of P hence it must cross X1 to enter another pocket. But X1 is a
part of B[2] so the feasible region contains at least one point of B[2]. This implies
that the graphs are isomorphic, falsifying the assumption. �

Corollary 5. Every point in the feasible region of LP-GI for non-isomorphic
graphs violates only one of the non-trivial facets of B[2].

3.1 There are More Facets

All the known facets of B[2] are instances of a general inequality
∑

i,j,k,l nijnkl

Yij,kl + (β − 1/2)2 ≥ (2β − 1)
∑

ij nijYij,ij + 1/4. It is possible that there are
more instances of this inequality which are also facets. Could there be facets of
this polytope which are not the instances of this inequality. The answer to this
question is in the affirmative. In [2, Section 5] we prove this claim.

In the following section we will show that a simple algorithm can be devised
using LP-GI which can detect non-isomorphism in polynomial time, whenever
the solution of a non-isomorphic pair belongs to a pocket corresponding to one of
the facets described in this section. Hence it is essential to identify the remaining
facets to determine how effective this algorithm is.

4 The Algorithm

We have seen that the feasible region of the linear program LP-GI strictly con-
tains B[2]

G1G2
. Therefore if the feasible region of LP-GI is empty, then we can

conclude that the graphs are non-isomorphic. But no conclusion can be derived
in case LP-GI has a solution. In this section we propose an exact algorithm
for graph isomorphism and show that if the solution is confined to any pocket
which corresponds to any known facet (discussed in the previous section), then
the time complexity of the algorithm is polynomial.

Let E denote the set of equations (2a-2b) and some additional equations of
the form Yij,kl = 0 or Yij,kl = 1. Let U denote the set of live variables which
are not yet set to a fixed value (0 or 1) in E. Let LP (E,U) denote the linear
program involving the equations E and inequalities Yij,kl ≥ 0 for each Yijkl ∈ U .
Let SearchV ar(E,U) be a subroutine which takes one variable Yijkl from U at a
time and finds if the linear program is infeasible on setting this variable to 0 (then



A Geometric Approach to Graph Isomorphism 681

returns (Yij,kl, 0)) or on setting it to 1 (then returns (Yij,kl, 1)). If the program
is feasible for each assignment of each variable, then it returns (null, −1).

Initially E0 denotes the system of equations (2a-2b) and U0 is the set of
variables which are live with respect to equations (2a-2b). The main algorithm
GISolver given in Algorithm 1 is called with parameters E0 and U0.

Function: GISolver(E,U)
if LP (E,U) is infeasible then

return false/* Graphs are non-isomorphic */

else
if LP (E,U) is feasible and U = ∅ then

return true/* Graphs are isomorphic */

else
(x, r) := SearchV ar(E,U);
if r = 1 then

return GISolver(E ∪ {x = 0}, U \ {x});
else

if r = 0 then
return GISolver(E ∪ {x = 1}, U \ {x});

else
Select a variable x from U ;
return GISolver(E ∪ {x = 0}, U \ {x}) ∨
GISolver(E ∪ {x = 1}, U \ {x});

end

end

end

end
Algorithm 1. Algorithm for GI

If we view the space searched by GISolver as a tree with (E0, U0) as the
root, then those nodes, (E,U), have two child nodes where SearchV ar(E,U)
returns (null, −1). Call them split nodes. All other internal nodes have one child
each. Let there be at most τ split nodes along any path from root to the leaves.
Then the time complexity of this algorithm is O(p(n)2τ ) where p(n) denotes a
polynomial in n.

4.1 Algorithm 1 Is Polynomial Time for Pockets of the Known
Facets

In this subsection we will show that if the feasible region of the linear program
for a non-isomorphic pair is confined to a pocket corresponding to any of the
known facets, then the algorithm will detect it in polynomial time. We will show
that in these cases no split nodes will occur in the search-tree generated by the
algorithm and hence τ will be zero.

Lemma 5. τ = 0 when the feasible region lies in a pocket defined by any facet
in Theorem 7 with m > 3.
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Proof. Suppose the solution of a non-isomorphic pair is contained in the pocket
of

∑
r∈[m] Yirjr,kl ≤ Ykl,kl +

∑
r<s∈[m] Yirjr,is,js , then the solutions will satisfy

∑m
r=1 Yirjr,kl > Ykl,kl +

∑
r<s Yirjr,is,js . From Corollary 5, the solutions cannot

violate any other facet. Let a be an arbitrary element of [m] and define S =
[m]\{a}. Then we have a facet due to

∑
r∈S Yirjr,kl ≤ Ykl,kl +

∑
r<s∈S Yirjr,is,js

which must be satisfied by the solutions. Subtracting the second from the first
we have Yiaja,kl >

∑
r∈S Yirjr,iaja ≥ 0. The last inequality is due to the non-

negativity condition in the linear program. This implies that when Yiaja,kl will
be set to zero in the algorithm, the linear program will declare it infeasible.
Hence Yiaja,kl will be set to 1. Since a is any arbitrary index, eventually Yiaja,kl

will be set to 1 for each a ∈ [m]. These will force Ykl,kl and Yirjr,isjs∀r, s ∈ [m]
to 1. Then the first inequality will be violated since the left hand side will be m
but the right hand side will be 1 +

(
m
2

)
where m ≥ 4. �

Lemma 6. τ = 0 when the feasible region lies in a pocket defined by any facet
in Theorem 8 with |P | > β + 1 or |Q| > β + 1.

Proof. Assume that the inequality (β−1)
∑

(ij)∈P×Q Yij,ij ≤ ∑
(ij) �=(kl)∈P×Q,i<k

Yij,kl + (1/2)(β2 − β) is violated and |P | > β + 1. We have

(β − 1)
∑

(ij)∈P×Q

Yij,ij >
∑

(ij) �=(kl)∈P×Q,i<k

Yij,kl + (1/2)(β2 − β) (4)

Let i0 ∈ P and j0 /∈ Q. Define P ′ = P \ {i0}. Suppose during a call of
SearchVar the algorithm forces Yi0j0,i0j0 to 1. Since P ′ and Q both have at least
β + 1 elements, the solution must satisfy the inequality

(β − 1)
∑

(ij)∈P ′×Q

Yij,ij ≤
∑

(ij) �=(kl)∈P ′×Q,i<k

Yij,kl + (1/2)(β2 − β). (5)

(4) minus (5) gives (β − 1)
∑

j∈Q Yi0j,i0j >
∑

j∈Q

∑
(kl)∈P ′×Q Yi0j,kl.

Since Yi0j0,i0j0 = 1 where j0 /∈ Q,
∑

j∈Q Yi0j,i0j = 0. The non-negativity
condition implies that the right-hand-side is non-negative so we conclude that
0 > 0. As Yi0j0,i0j0 = 1 renders the problem infeasible, the algorithm will set
Yi0j,i0j = 0 for all j /∈ Q. As i0 was an arbitrary element of P , eventually the
algorithm will set Yij,ij = 0 for all i ∈ P and all j /∈ Q.

Next consider an arbitrary (i0j0) ∈ P × Q. Suppose algorithm sets Yi0j0,i0j0 =
1. Let P ′ = P \ {i0}. Then the violated inequality (4) reduces to (β − 1)(1 +
∑

(ij)∈P ′×Q Yij,ij) >
∑

(ij) �=(kl)∈P ′×Q,i<k Yij,kl+
∑

j∈Q

∑
(kl)∈P ′×Q Yi0j,kl+β2−β

2 .
Subtracting (5) from the above inequality gives (β − 1) >

∑
j∈Q

∑
(kl)∈P ′×Q

Yi0j,kl. Since Yi0j,kl = 0 for all j �= j0,
∑

j /∈Q

∑
(kl)∈P ′×Q Yi0j,kl = 0. Adding this

term to the right hand side of the inequality we get (β−1) >
∑

j∈[n]

∑
(kl)∈P ′×Q

Yi0j,kl =
∑

(kl)∈P ′×Q Ykl,kl. From the first part of the proof, Ykl,kl = 0 for any
k ∈ P and l /∈ Q. So we have

∑
(kl)∈P ′×Q Ykl,kl = |P ′| > β+1−1 = β. It reduces

to infeasible β − 1 > β, which leads the algorithm to set Yi0j0,i0j0 = 0. Hence
eventually Yij,ij is set to zero for all (ij) ∈ P × Q. Combining with the fact that
Yij,ij = 0 for all i ∈ P, j /∈ Q, we have 1 =

∑
j∈[n] Yij,ij = 0 for any i ∈ P . Hence

algorithm will report non-isomorphic pair. �
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Lemma 7. τ = 0 when the feasible region lies in a pocket defined by any facet
in Theorem 8 with |P | = |Q| = β + 1 and β > 2.

Proof. The violation of (β − 1)
∑

(ij)∈P×Q Yij,ij ≤ ∑
(ij) �=(kl)∈P×Q,i<k Yij,kl +

(1/2)(β2 − β) gives inequality (4), given in the last proof.
Let i0 ∈ P and P ′ = P \ {i0}. Then the solution must satisfy the facet with

parameters P ′, Q, β − 1. So we have

(β − 2)
∑

(ij)∈P ′×Q

Yij,ij ≤
∑

(ij) �=(kl)∈P ′×Q,i<k

Yij,kl + (1/2)((β − 1)2 − (β − 1)) (6)

(4) minus (6) gives
∑

(ij)∈P ′×Q

Yij,ij + (β − 1)
∑

j∈Q

Yi0j,i0j >
∑

j∈Q

∑

(kl)∈P ′×Q

Yi0j,kl + (β − 1). (7)

Since (β − 1)
∑

j∈Q Yi0j,i0j = (β − 1) − (β − 1)
∑

j /∈Q Yi0j,i0j , the inequality
transforms to

∑
(ij)∈P ′×Q Yij,ij > (β−1)

∑
j /∈Q Yi0j,i0j+

∑
j∈Q

∑
(kl)∈P ′×Q Yi0j,kl

= (|P ′| − 1)
∑

j /∈Q Yi0j,i0j +
∑

j∈Q

∑
k∈P ′

∑
l∈Q Yi0j,kl, because β + 1 = |P | =

|P ′| + 1.
For Y is a solution of the LP, Yi0j,i0j =

∑
l∈[n] Yi0j,kl for any k. So |P ′|∑j /∈Q

Yi0j,i0j =
∑

k∈P ′
∑

j /∈Q

∑
l∈[n] Yi0j,kl. Plugging this equation in the previous

inequality we get
∑

(ij)∈P ′×Q Yij,ij > −∑
j /∈Q Yi0j,i0j +

∑
k∈P ′

∑
l∈[n]

∑
j /∈Q

Yi0j,kl +
∑

k∈P ′
∑

l∈Q

∑
j∈Q Yi0j,kl. Combining the last two terms we get∑

(ij)∈P ′×Q Yij,ij > −∑
j /∈Q Yi0j,i0j +

∑
(kl)∈P ′×Q

∑
j∈[n] Yi0j,kl = −∑

j /∈Q

Yi0j,i0j+
∑

k∈P ′
∑

l∈Q Ykl,kl. It simplifies to
∑

j /∈Q Yi0j,i0j > 0.
If the algorithm sets Yi0j,i0j = 1 for some j ∈ Q, then the above inequality will

reduce to 0 > 0 making it infeasible. So eventually algorithm will set Yij,ij = 0
for all (ij) ∈ P × Q. This will make (4) infeasible and the algorithm will report
that the graphs are non-isomorphic. �

Lemmas 6 and 7 lead to the following corollary.

Corollary 6. τ = 0 if the solution for a non-isomorphic pair is confined to a
pocket defined by one of the facets given in Theorem 8 except when β = 2 and
|P | = |Q| = 3.

Lemma 5 and Corollary 6 imply that by adding additional inequalities cor-
responding to the base cases of facets in Theorems 7 and 8 to the constraints
of LP-GI we can detect non-isomorphic graph pairs if their solution falls in any
pocket defined by the facets given in Theorems 7 and 8. Moreover the facets in
Theorem 6 can all be added to LP-GI. The additional inequalities will be polyno-
mial in number (O(n8)), hence the modified LP-GI can be solved in polynomial
time. Note that the facets given in Theorem 5 are already part of LP-GI.

Lemma 8. τ = 0 when the feasible region lies in a pocket defined by any
facet in Theorem 9 subject to restrictions: (i) |P1|, |P2| ≥ 3, (ii) if β ≥ 0
and min{|Q|, |P1|} ≥ β + 1 then |Q| + |P1| + 3 ≤ n + β, (iii) if β < 0 and
min{|Q|, |P2|} ≥ 2 − β then |Q| + |P2| + 3 ≤ n + 1 − β.
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Proof. Given that a 2-box facet (P1, P2, Q, β) is violated by the solution face,
every solution point satisfies

− (β − 1)
∑

(ij)∈P1×Q

Yij,ij + β
∑

(ij)∈P2×Q

Yij,ij +
∑

(ij) �=(kl)∈P1×Q,i<k

Yij,kl

+
∑

(ij) �=(kl)∈P2×Q,i<k

Yij,kl −
∑

(ij)∈P1×Q,(kl)∈P2×Q

Yij,kl +
β2 − β

2
< 0.

(8)

Let i0 ∈ P1 and i′0 ∈ P2 be two arbitrary indices. Let P ′
1 = P1 \ {i0} and

P ′
2 = P2 \ {i′0}. Then all the solutions must satisfy the inequality corresponding

to the 2-box facet of (P ′
1, P

′
2, Q, β). We have

− (β − 1)
∑

(ij)∈P ′
1×Q

Yij,ij + β
∑

(ij)∈P ′
2×Q

Yij,ij +
∑

(ij) �=(kl)∈P ′
1×Q,i<k

Yij,kl

+
∑

(ij) �=(kl)∈P ′
2×Q,i<k

Yij,kl −
∑

(ij)∈P ′
1×Q,(kl)∈P ′

2×Q

Yij,kl +
β2 − β

2
≥ 0.

(9)

Case 1: In the algorithm when Yi0j0,i′
0j′

0
is set to 1, where j0, j

′
0 ∈ Q, j0 �= j′

0,
(8) minus (9) gives 0 < 0 which is absurd. Hence algorithm will set Yij,i′j′ = 0
for all i ∈ P1, i

′ ∈ P2, j, j
′ ∈ Q.

Case 2: When the algorithm sets Yi0j0,i′
0j′

0
= 1, where j0 /∈ Q, j′

0 ∈ Q. Then
(8) minus (9) gives β +

∑
(i,j)∈P ′

2×Q Yij,ij < 0, where we used the result of the
previous case. Note that it is impossible if β ≥ 0.

Case 3: When the algorithm sets Yi0l0,i′
0l′0 = 1, where l0 ∈ Q, l′0 /∈ Q. Then (8)

minus (9) gives −(β − 1) +
∑

(i,j)∈P ′
1×Q Yij,ij < 0, which is impossible if β < 0.

If β ≥ 0, then combining the results of cases 1 and 2 we see that the algorithm
sets Yij,kl = 0 for all i ∈ P1, k ∈ P2, j ∈ [n], l ∈ Q which is same as setting
Yij,ij = 0 for all ij ∈ P2 × Q. Similarly we can see that if β < 0, then the
algorithm will set Yij.ij = 0 for all ij ∈ P1 × Q.

Plugging these values in inequality (8) we have following simplified cases

β < 0 : β
∑

(ij)∈P2×Q

Yij,ij +
∑

(ij) �=(kl)∈P2×Q,i<k

Yij,kl +
β2 − β

2
< 0. (10)

β ≥ 0 : −(β − 1)
∑

(ij)∈P1×Q

Yij,ij +
∑

(ij) �=(kl)∈P1×Q,i<k

Yij,kl +
β2 − β

2
< 0. (11)

In the remainder we will prove that neither of these inequalities can be sat-
isfied by the solution of the linear program in the subsequent phase of the algo-
rithm. Hence, at this stage, the algorithm will find no solution and conclude that
the graphs are non-isomorphic.

We will first consider inequality (11). If β ≤ 1 then clearly (11) is violated.
So assume that β ≥ 2. Next if |P1|, |Q| ≥ β +1, then (11) implies that the 1-box
facet corresponding to (P1, Q, β) is violated. But that is impossible since the
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solution can violate at most one non-trivial facet. That leaves us the case when
min{|P1|, |Q|} ≤ β.

First assume that |P1| ≤ |Q|. Consider the identity
∑

ij �=kl∈P1×Q,i<k Yij,kl =
|P1|(|P1| − 1)/2 +

∑
ij �=kl∈P×Q,i<k Yij,kl − (|P1| − 1)

∑
ij∈P1×Q Yij,ij . Plugging

into the inequality (11) gives −(β − 1)
∑

ij∈P1×Q Yij,ij + |P1|(|P1| − 1)/2 +∑
ij �=kl∈P1×Q,i<k Yij,kl − (|P1| − 1)

∑
ij∈P1×Q Yij,ij + β(β − 1)/2 < 0. But the

left hand side of the above inequality is at least −(β − 1)
∑

i∈P1,j∈[n] Yij,ij +
∑

ij �=kl∈P1×Q,i<k Yij,kl+(β(β−1)+|P1|(|P1|−1))/2 ≥ ((β−|P1|)2−(β−|P1|))/2 ≥
0 since

∑
i∈P1,j∈[n] Yij,ij = |P1| and β, |P1| are both integral. Hence we find that

inequality (11) is impossible.
The case of |Q| ≤ |P1|, is handled similarly since P1 and Q have similar

role. In case of inequality (10) we rewrite it by replacing β by −(γ − 1). We
get −(γ − 1)

∑
(ij)∈P2×Q Yij,ij +

∑
(ij) �=(kl)∈P2×Q,i<k Yij,kl + (1/2)(γ2 − γ) < 0.

We can now use the same argument as above to establish that (10) is also
impossible. �
Theorem 11. Algorithm 1, using modified LP-GI, detects non-isomorphic graph
pairs in polynomial time if the solution is confined to a pocket due to any of the
facets described in Theorems 7,8 and a subset of facets described in Theorem 9.

5 Conclusion

We have formulated GI as a geometric problem. The next challenge in estab-
lishing that GI is in class P lies in identifying the remaining facets of B[2] and
proving that the corresponding τ is at most O(log n). This does not contradict
the fact that QAP is an NP-hard problem since in the present approach for GI,
unlike QAP, the polytope of the linear program is not B[2].

References

1. Arvind, V., Torán, J.: Isomorphism testing: Perspective and open problems. Bul-
letin of the EATCS 86, 66–84 (2005)

2. Aurora, P.K., Mehta, S.K.: New Facets of the QAP-Polytope. ArXiv e-prints
(September 2014)

3. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In:
FOCS, pp. 39–46 (1979)

4. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)
5. Babai, L., Erdös, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.,

628–635 (1980)
6. Fortin, S.: The graph isomorphism problem. Technical report, University of Alberta

(1996)
7. Kaibel, V.: Polyhedral Combinatorics of the Quadratic Assignment Problem. PhD

thesis, Faculty of Mathematics and Natural Sciences, University of Cologne (1997)
8. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of eco-

nomic activities. Technical report, Cowles Foundation, Yale University (1955)
9. Lawler, E.L.: The quadratic assignment problem. Management Science 9(4), 586–

599 (1963)
10. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assign-

ment problem. Discrete Optimization 6(3), 231–241 (2009)



Concentrated Hitting Times of Randomized
Search Heuristics with Variable Drift

Per Kristian Lehre1(B) and Carsten Witt2

1 School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, UK

PerKristian.Lehre@nottingham.ac.uk
2 DTU Compute, Technical University of Denmark, 2800 Lyngby, Denmark

cawi@dtu.dk

Abstract. Drift analysis is one of the state-of-the-art techniques for the
runtime analysis of randomized search heuristics (RSHs) such as evolu-
tionary algorithms (EAs), simulated annealing etc. The vast majority of
existing drift theorems yield bounds on the expected value of the hitting
time for a target state, e. g., the set of optimal solutions, without making
additional statements on the distribution of this time. We address this
lack by providing a general drift theorem that includes bounds on the
upper and lower tail of the hitting time distribution. The new tail bounds
are applied to prove very precise sharp-concentration results on the run-
ning time of a simple EA on standard benchmark problems, including
the class of general linear functions. The usefulness of the theorem out-
side the theory of RSHs is demonstrated by deriving tail bounds on
the number of cycles in random permutations. All these results handle
a position-dependent (variable) drift that was not covered by previous
drift theorems with tail bounds. Moreover, our theorem can be special-
ized into virtually all existing drift theorems with drift towards the target
from the literature. Finally, user-friendly specializations of the general
drift theorem are given.

1 Introduction

Randomized search heuristics (RSHs) such as simulated annealing, EAs, ant
colony optimization etc. are highly popular techniques in black-box optimiza-
tion, the problem of optimizing a function with only oracle access to the func-
tion. These heuristics often imitate some natural process, and are rarely designed
with analysis in mind. Their extensive use of randomness, such as in the muta-
tion operator, render the underlying stochastic processes non-trivial. While the
theory of RSHs is less developed than the theory of classical, randomized algo-
rithms, significant progress has been made in the last decade [2,11,18]. This
theory has mainly focused on the optimization time, which is the random vari-
able TA,f defined as the number of oracle accesses the heuristic A makes before
the maximal argument of f is found. Most studies considered the expectation
of TA,f , however more information about the distribution of the optimization
time is often needed. For example, the expectation can be deceiving when the
c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 686–697, 2014.
DOI: 10.1007/978-3-319-13075-0 54
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runtime distribution has a high variance. Also, for other performance measures,
such as fixed-budget computation [5], tail bounds can be helpful.

Drift analysis is a central method for analyzing the hitting time of stochastic
processes and was introduced to the analysis of simulated annealing as early as
in 1988 [22]. Informally, it allows long-term properties of a discrete-time stochas-
tic process (Xt)t≥0 to be inferred from properties of the one-step change Δt :=
Xt −Xt+1. In the context of EAs, one has been particularly interested in the ran-
dom variable Ta defined as the smallest t such that Xt ≤ a. For example, if Xt rep-
resents the “distance” of the current solution in iteration t to an optimum, then
T0 is the optimization time. Since its introduction to evolutionary computation by
He and Yao in 2001 [10], drift analysis has been widely used to analyze the opti-
mization time of EAs. Many drift theorems have been introduced, such as additive
drift theorems [10], multiplicative drift [4,6], variable drift [12,17,21], simplified
drift [19,20], and population drift [14]. Different assumptions and notation used
in these theorems make it hard to abstract out a unifying statement.

Most drift theorems used in theory of RSHs relate to the expectation of the hit-
ting time Ta, and there are fewer results about the tails Pr(Ta > t) and Pr(Ta < t).
From the simple observation that Pr(Ta > t) ≤ Pr(

∑t
i=0 Δi < a − X0), the

problem is reduced to bounding the deviation of a sum of random variables. If the
Δt were independent and identically distributed, then one would be in the famil-
iar scenario of Chernoff/Hoeffding-like bounds. The stochastic processes origi-
nating from RSHs are rarely so simple, in particular the Δt are often dependent
variables, and their distributions are not explicitly given. However, bounds on
the form E(Δt | Xt) ≥ h(Xt) for some function h often hold. The drift is called
variable when h is a non-constant function. The variable drift theorem provides
bounds on the expectation of Ta given some conditions on h. However, there have
been no general tail bounds from a variable drift condition. The only results in this
direction seem to be the tail bounds for probabilistic recurrence relations from [13];
however, this scenario corresponds to the specific case of non-increasing Xt.

Our main contribution is a new, general drift theorem that provides sharp
concentration results for the hitting time of stochastic processes with variable
drift, along with concrete advice and examples how to apply it. The theorem is
used to bound the tails of the optimization time of the well-known (1+1) EA
[7] to the benchmark problems OneMax and LeadingOnes, as well as the
class of linear functions, which is an intensively studied problem in the area
[25]. Surprisingly, the results show that the distribution is highly concentrated
around the expectation. The probability of deviating by an r-factor in lower
order terms decreases exponentially with r. In a different application outside the
theory of RSHs, we use drift analysis to analyze probabilistic recurrence relations
and show that the number of cycles in a random permutation of n elements is
sharply concentrated around the expectation lnn. As a secondary contribution,
we prove that our general drift theorem can be specialized into virtually all
variants of drift theorems with drift towards the target (in particular, variable,
additive, and multiplicative drift) that have been scattered over the literature
on runtime analysis of RSHs. Unnecessary assumptions such as discrete or finite
search spaces will be removed from these theorems.
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This paper is structured as follows. Section 2 introduces notation and basics
of drift analysis. Section 3 presents the general drift theorem with tail bounds and
suggestions for user-friendly corollaries. Section 4 applies the tail bounds from
our theorem. Sharp-concentration results on the running time of the (1+1) EA
on OneMax, LeadingOnes and general linear functions are obtained. The
application outside the theory of RSHs is described at the end of this section.

2 Preliminaries

We analyze time-discrete stochastic processes represented by a sequence of non-
negative random variables (Xt)t≥0. For example, Xt could represent a certain
distance value of an RSH from an optimum. In particular, Xt might aggregate
several different random variables realized by an RSH at time t into a single one.
In contrast to existing drift theorems, we do not assume that the state space is
discrete (e. g., all non-negative integers) or continuous but only demand that it
is bounded, non-negative and includes the “target” 0.

We adopt the convention that the process should pass below some threshold
a ≥ 0 (“minimizes” its state) and define the first hitting time Ta := min{t | Xt ≤
a}. If the actual process seeks to maximize its state, typically a straightforward
mapping allows us to stick to the convention of minimization. In an important
special case, we are interested in the hitting time T0 of target state 0. Note that
Ta is a stopping time and that we assume that the stochastic process is adapted
to some filtration (Ft)t≥0, such as its natural filtration σ(X0, . . . , Xt).

The expected one-step change δt := E(Xt − Xt+1 | Ft) for t ≥ 0 is called
drift. Note that δt is in general a random variable as the outcomes of X0, . . . , Xt

are random. Suppose we manage to bound δt from below by some δ∗ > 0 for all
possible outcomes of δt, where t < T . Then we know that the process decreases its
state (“progresses towards 0”) in expectation by at least δ∗ in every step, and the
additive drift theorem (see Theorem 1 below) will provide a bound on T0 that only
depends on X0 and δ∗. In fact, the very natural-looking result E(T0 | X0) ≤ X0/δ∗

will be obtained. However, bounds on the drift might be more complicated. For
example, a bound on δt might depend on Xt or states at even earlier points of
time, e. g., if the progress decreases as the current state decreases. This is often
the case in applications to EAs. However, for such algorithms the whole “history”
is rarely needed. Simple EAs and other RSHs are Markov processes such that often
δt = E(Xt − Xt+1 | Xt) for an appropriate Xt.

We now present the first drift theorem for additive drift. It is based on [10],
from which we removed the unnecessary assumptions that the search space is
discrete and the Markov property. We only demand a bounded state space.

Theorem 1 (Additive Drift, following [10]). Let (Xt)t≥0, be a stochastic
process over a bounded state space S ⊆ R+

0 . Assume that E(T0 | X0) < ∞. Then:

(i) If E(Xt − Xt+1 ; Xt > 0 | Ft) ≥ δu then E(T0 | X0) ≤ X0
δu

.
(ii) If E(Xt − Xt+1 ; Xt > 0 | Ft) ≤ δ� then E(T0 | X0) ≥ X0

δ�
.
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Summing up, additive drift is concerned with the simple scenario that there
is a progress of at least δu from all non-optimal states towards the target in (i)
and a progress of at most δ� in (ii). Since the δ-values are independent of Xt, one
has to use the worst-case drift over all non-optimal Xt. This might lead to very
bad bounds on the first hitting time, which is why more general theorems (as
mentioned in the introduction) were developed. Interestingly, these more general
theorems are often proved based on Theorem 1 using an appropriate mapping
(sometimes called potential function, distance function or drift function) from
the original state space to a new one. Informally, the mapping “smoothes out”
position-dependent drift into an (almost) position-independent drift.

3 General Drift Theorem

In this section, we present our general drift theorem. As pointed out in the intro-
duction, we strive for a very general statement, which is partly at the expense
of simplicity. More user-friendly specializations will be given later. Nevertheless,
the underlying idea of the complicated-looking general theorem is the same as in
all drift theorems. We look into the one-step drift E(Xt − Xt+1 | Ft) and assume
we have a (upper or lower) bound h(Xt) on the drift, which (possibly heavily)
depends on Xt. Based on h, we define a new function g (see Remark 1), with
the aim of “smoothing out” the dependency, and the drift w. r. t. g (formally,
E(g(Xt) − g(Xt+1) | Ft)) is analyzed. Statements (i) and (ii) of the following
Theorem 2 provide bounds on E(T0) based on the drift w. r. t. g. In fact, g can
be defined in a very similar way as in existing variable-drift theorems [12,17,21],
such that Statements (i) and (ii) can be understood as generalized variable drift
theorems for upper and lower bounds on the expected hitting time, respectively.

Statements (iii) and (iv) are concerned with tail bounds on the hitting time.
Here moment-generating functions (mgfs.) of the drift w. r. t. g come into play,
formally E(e−λ(g(Xt)−g(Xt+1)) | Ft) is bounded. Again for generality, bounds on
the mgf. may depend on the point of time t, as captured by the bounds βu(t)
and β�(t). We will see an example in Section 4 where the mapping g smoothes
out the position-dependent drift into a (nearly) position-independent and time-
independent drift, while the mgf. of the drift w. r. t. g still heavily depends on
the current point of time t (and indirectly on the position expected at this time).

It can be shown (see proofs in [16]) that our drift theorem generalizes virtually
all existing drift theorems, including the variable drift theorems for upper [12,
17,21] and lower bounds [3], a non-monotone variable drift theorem [8], and
multiplicative drift theorems [4,25]. It can also be shown (see proofs in [16]) that
our theorem generalizes fitness-level theorems [23,24,26], another well-known
technique in the analysis of randomized search heuristics.

Remark 1. If for some function h : [xmin, xmax] → R+ where 1/h(x) is integrable
on [xmin, xmax], either E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≥ h(Xt) or E(Xt − Xt+1;
Xt ≥ xmin) ≤ h(Xt) hold, it is recommended to define the function g in Theorem 2
as g(x) := xmin

h(xmin)
+

∫ x

xmin

1
h(y) dy for x ≥ xmin and g(0) := 0.



690 P.K. Lehre and C. Witt

Theorem 2 (General Drift Theorem1). Let (Xt)t≥0, be a stochastic process,
adapted to a filtration (Ft)t≥0, over some state space S ⊆ {0} ∪ [xmin, xmax],
where xmin ≥ 0. Let g : {0} ∪ [xmin, xmax] → R≥0 be any function such that
g(0) = 0, and 0 < g(x) < ∞ for all x ∈ [xmin, xmax]. Let Ta = min{t | Xt ≤ a}
for a ∈ {0} ∪ [xmin, xmax]. Then:

(i) If E(g(Xt) − g(Xt+1) ; Xt ≥ xmin | Ft) ≥ αu for some αu > 0 then
E(T0 | X0) ≤ g(X0)

αu
.

(ii) If E(g(Xt) − g(Xt+1) ; Xt ≥ xmin | Ft) ≤ α� for some α� > 0 then
E(T0 | X0) ≥ g(X0)

α�
.

(iii) If there exists λ > 0 and a function βu : N0 → R+ such that
E(e−λ(g(Xt)−g(Xt+1)) ; Xt > a | Ft) ≤ βu(t) then
Pr(Ta > t | X0) <

(∏t−1
r=0 βu(r)

)
· eλ(g(X0)−g(a)) for t > 0.

(iv) If there exists λ > 0 and a function β� : N0 → R+ such that
E(eλ(g(Xt)−g(Xt+1)) ; Xt > a | Ft) ≤ β�(t) then
Pr(Ta < t | X0 > a) ≤

(∑t−1
s=1

∏s−1
r=0 β�(r)

)
· e−λ(g(X0)−g(a)) for t > 0.

If additionally the set of states S ∩ {x | x ≤ a} is absorbing, then
Pr(Ta < t | X0 > a) ≤

(∏t−1
r=0 β�(r)

)
· e−λ(g(X0)−g(a)).

Special Cases of (iii) and (iv). If E(e−λ(g(Xt)−g(Xt+1)) ; Xt > a | Ft) ≤ βu

for some time-independent βu, then Statement (iii) simplifies to Pr(Ta > t |
X0) < βt

u · eλ(g(X0)−g(a)); similarly for Statement (iv). The proof of our main
theorem is not too complicated and can be found in [16]. The tail bounds in
(iii) and (iv) are obtained by the exponential method (a generalized Chernoff
bound), which idea is also implicit in [9].

Given some assumptions on the “drift” function h that typically hold, The-
orem 2 can be simplified.

Corollary 1. Let (Xt)t≥0, be a stochastic process, adapted to a filtration
(Ft)t≥0, over some state space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let
h : [xmin, xmax] → R+ be a function such that 1/h(x) is integrable and h(x)
differentiable on [xmin, xmax]. Then the following hold for the first hitting time
T := min{t | Xt = 0}.

(i) If E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≥ h(Xt) and d
dxh(x) ≥ 0, then

E(T | X0) ≤ xmin
h(xmin)

+
∫ X0

xmin

1
h(y) dy.

(ii) If E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≤ h(Xt) and d
dxh(x) ≤ 0, then

E(T | X0) ≥ xmin
h(xmin)

+
∫ X0

xmin

1
h(y) dy.

(iii) If E(Xt −Xt+1 ; Xt ≥ xmin | Ft) ≥ h(Xt) and d
dxh(x) ≥ λ for some λ > 0,

then Pr(T > t | X0) < exp
(
−λ

(
t − xmin

h(xmin)
− ∫ X0

xmin

1
h(y) dy

))
.

(iv) If E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≤ h(Xt) and d
dxh(x) ≤ −λ for some

λ > 0, then Pr(T < t | X0 > 0) < eλt−eλ

eλ−1
exp

(
− λxmin

h(xmin)
− ∫ X0

xmin

λ
h(y) dy

)
.

1 Proofs omitted from this paper due to space restrictions can be found in [16].
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Condition (iii) and (iv) of Theorem 2 involve an mgf., which may be tedious
to compute. Inspired by [9] and [15], we show that bounds on the mgfs. fol-
low from more user-friendly conditions based on stochastic dominance between
random variables, here denoted by ≺.

Theorem 3. Let (Xt)t≥0, be a stochastic process, adapted to a filtration
(Ft)t≥0, over some state space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0.
Let h : [xmin, xmax] → R+ be a function such that 1/h(x) is integrable on
[xmin, xmax]. Suppose there exist a random variable Z and some λ > 0 such that
|∫ Xt

Xt+1
1/h(x) dx| ≺ Z for Xt ≥ xmin and E(eλZ) = D for some D > 0. Then

the following two statements hold for the first hitting time T := min{t | Xt = 0}.

(i) If E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≥ h(Xt) then for any δ > 0, and
η := min{λ, δλ2/(D − 1 − λ)} and t > 0 it holds that Pr(T > t | X0) ≤
exp

(
η(

∫ X0

xmin
1/h(x) dx − (1 − δ)t)

)
.

(ii) If E(Xt − Xt+1 ; Xt ≥ xmin | Ft) ≤ h(Xt) then for any δ > 0, η :=
min{λ, δλ2/(D − 1 − λ)} and t > 0 it holds

Pr(T < t | X0) ≤ exp

(

η

(

(1 + δ)t −
∫ X0

xmin

1/h(x) dx

))
1

η(1 + δ)
.

If state 0 is absorbing then

Pr(T < t | X0) ≤ exp

(

η((1 + δ)t −
∫ X0

xmin

1/h(x) dx)

)

.

4 Applications of the Tail Bounds

As our main contribution, we show that the general drift theorem (Theorem 2),
together with the function g defined explicitly in Remark 1 in terms of the one-
step drift, constitute a very general and precise tool for analysis of stochastic
processes. In particular, it provides very sharp tail bounds on the running time
of randomized search heuristics which were not obtained before by drift analysis.
Virtually all existing drift theorems dealing with drift towards a target can be
phrased as special cases of the general drift theorem (see [16]). It also provides tail
bounds on random recursions, such as those in analysis of random permutations
(see Section 4.2).

We first give sharp tail bounds on the optimization time of the (1+1) EA
which maximizes pseudo-Boolean functions f : {0, 1}n → R. We consider classi-
cal benchmark problems from the theory of RSHs. Despite their simplicity, their
analysis has turned out surprisingly difficult and research is still ongoing.



692 P.K. Lehre and C. Witt

Algorithm 1. (1+1) Evolutionary Algorithm (EA)
Choose uniformly at random an initial bit string x0 ∈ {0, 1}n.
for t := 0 to ∞ do

Create x′ by flipping each bit in xt independently with probability 1/n (mutation).
xt+1 := x′ if f(x′) ≥ f(xt), and xt+1 := xt otherwise (selection).

end for

4.1 OneMax, Linear Functions and LeadingOnes

A simple pseudo-Boolean function is given by OneMax(x1, . . . , xn) = x1 +
· · · + xn. It is included in the class of so-called linear functions f(x1, . . . , xn) =
w1xn+ · · ·+wnxn, where wi ∈ R for 1 ≤ i ≤ n. We start by deriving very precise
bounds on first the expected optimization time of the (1+1) EA on OneMax
and then prove tail bounds. The lower bounds obtained will imply results for
all linear functions. Note that in [3], it was already shown using variable drift
analysis that the expected optimization time of the (1+1) EA on OneMax is at
most en ln n−c1n+O(1) and at least en ln n−c2n for certain constants c1, c2 > 0.
The constant c2 is not made explicit in [3], whereas the constant c1 is stated as
0.369. However, unfortunately this value is due to a typo in the very last line
of the proof – c1 should have been 0.1369 instead. We correct this mistake in
a self-contained proof. Furthermore, we improve the lower bound using variable
drift. To this end, we use the following bound on the drift.

Lemma 1. Let Xt denote the number of zeros of the current search point of the
(1+1) EA on OneMax. Then

(

1 − 1
n

)n−x
x

n
≤ E(Xt−Xt+1 | Xt = x) ≤

((

1 − 1
n

) (

1 +
x

(n − 1)2

))n−x
x

n
.

Theorem 4. The expected optimization time of the (1+1) EA on OneMax is
at most en ln n − 0.1369n + O(1) and at least en ln n − 7.81791n − O(log n).

Knowing the expected optimization time precisely, we now turn to our main
new contribution, i. e., to derive sharp bounds. Note that the following upper
concentration inequality in Theorem 5 is not new but is already implicit in the
work on multiplicative drift analysis by [6]. In fact, a very similar upper bound is
even available for all linear functions [25]. By contrast, the lower concentration
inequality is a novel and non-trivial result.

Theorem 5. The optimization time of the (1+1) EA on OneMax is at least
en ln n − cn − ren, where c is a constant, with probability at least 1 − e−r/2 for
any r ≥ 0. It is at most en ln n + ren with probability at least 1 − e−r.

We only consider the lower tail. The aim is to prove it using Theorem 2.(iv),
which includes a bound on the moment-generating function of the drift of g. We
first set up the h (and thereby the g) used for our purposes. Obviously, xmin := 1.
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Lemma 2. Consider the (1+1) EA on OneMax and let the random vari-
able Xt denote the current number of zeros at time t ≥ 0. Then h(x) :=
exp (−1 + 2�x�/n) · (�x�/n) · (1 + c∗/n) , where c∗ > 0 is a sufficiently large
constant, satisfies the condition E(Xt −Xt+1 | Xt = i) ≤ h(i) for i ∈ {1, . . . , n}.
Moreover, define g(i) := xmin/h(xmin) +

∫ i

xmin
1/h(y) dy and Δt := g(Xt) −

g(Xt+1). Then g(i) =
∑i

j=1 1/h(j) and Δt ≤ ∑Xt

j=Xt+1+1 e1−2Xt+1/n · (n/j).

The next lemma provides a bound on the mgf. of the drift of g, which will
depend on the current state. Later, the state will be estimated based on the
current point of time, leading to a time-dependent bound on the mgf. Note that
we do not need the whole natural filtration based on X0, . . . , Xt but only Xt

since we are dealing with a Markov chain.

Lemma 3. Let λ := 1/(en) and i ∈ {1, . . . , n}. Then E(eλΔt | Xt = i) ≤
1 + λ + 2λ/i + o(λ/log n).

The bound on the mgf. of Δt derived in Lemma 3 is particularly large for
i = O(1), i. e., if the current state Xt is small. If Xt = O(1) held during the whole
optimization process, we could not prove the lower tail in Theorem 5 from the
lemma. However, it is easy to see that Xt = i only holds for an expected number
of at most en/i steps. Hence, most of the time the term 2λ/i is negligible, and
the time-dependent β�(t)-term from Theorem 2.(iv) comes into play. We make
this precise in the following proof, where we iteratively bound the probability of
the process being at “small” states.

Proof (of Theorem 5, Lower Tail). With overwhelming probability 1 − 2−Ω(n),
X0 ≥ (1 − ε)n/2 for an arbitrarily small constant ε > 0, which we assume to
happen. We consider phases in the optimization process. Phase 1 starts with
initialization and ends before the first step where Xt < e

ln n−1
2 =

√
n · e−1/2.

Phase i, where i > 1, follows Phase i − 1 and ends before the first step where
Xt <

√
n · e−i/2. Obviously, the optimum is not found before the end of Phase

ln(n); however, this does not tell us anything about the optimization time yet.
We say that Phase i is typical if it does not end before time eni − 1. We

will prove inductively that the probability of one of the first i phases not being
typical is at most c′e

i
2 /

√
n = c′e

i−ln n
2 for some constant c′ > 0. This implies the

theorem since an optimization time of at least en ln n − cn − ren is implied by
the event that Phase lnn − �r − c/e� is typical, which has probability at least
1 − c′e

−r+c/e+1
2 = 1 − e

−r
2 for c = e(2 ln c′ + 1).

Fix some k > 1 and assume for the moment that all first k − 1 phases are
typical. Then for 1 ≤ i ≤ k − 1, we have Xt ≥ √

ne−i/2 in Phase i, i. e., when
en(i−1) ≤ t ≤ eni−1. We analyze the event that additionally Phase k is typical,
which subsumes the event Xt ≥ √

ne−k/2 throughout Phase k. According to
Lemma 3, we get in Phase i, where 1 ≤ i ≤ k,

E
(
eλΔt | Xt

) ≤ 1 + λ + 2λei/2/
√

n + o(λ/ ln n) ≤ e
λ+ 2λei/2√

n
+o( λ

ln n ).



694 P.K. Lehre and C. Witt

The expression now depends on the time only, therefore for λ := 1/(en)

enk−1∏

t=0

E
(
eλΔt | X0

) ≤ e
λenk+ 2λen√

n

∑k
i=1 ei/2+enk·o( λ

ln n ) ≤ e
k+ 6ek/2

n
√

n
+o(1) ≤ ek+o(1),

where we used that k ≤ ln n. From Theorem 2.(iv) for a =
√

ne−k/2 and t =
enk − 1 we obtain Pr(Ta < t) ≤ ek+o(1)−λ(g(X0)−g(

√
ne−k/2)). From the proof of

of Theorem 4, lower bound part, we already know that g(X0) ≥ en ln n−c′′n for
some constant c′′ > 0 (which is assumed large enough to subsume the −O(log n)
term). Moreover, g(x) ≤ en(ln x + 1) according to Lemma 2. We get

Pr(Ta < t) ≤ ek+o(1)−lnn+O(1)−k/2+(lnn)/2 = e
k−ln n+O(1)

2 = c′′′ek/2/
√

n,

for some sufficiently large constant c′′′ > 0, which proves the bound on the prob-
ability of Phase k not being typical (without making statements about the earlier
phases). The probability that all phases up to and including Phase k are typical
is at least 1 − (

∑k
i=1 c′′′ei/2)/

√
n ≥ 1 − c′ek/2/

√
n for a constant c′ > 0. �

We now deduce a concentration inequality w. r. t. linear functions, i. e., func-
tions of the kind f(x1, . . . , xn) = w1x1 + · · · + wnxn, where wi �= 0.

Theorem 6. The optimization time of the (1+1) EA on an arbitrary linear
function with non-zero weights is at least en ln n−cn−ren, where c is a constant,
with probability at least 1−e−r/2 for any r ≥ 0. It is at most en ln n+(1+r)en+
O(1) with probability at least 1 − e−r.

Proof. The upper tail is proved in Theorem 5.1 in [25]. The lower bound follows
from the lower tail in Theorem 5 in conjunction with the fact that the opti-
mization time within the class of linear functions is stochastically smallest for
OneMax (Theorem 6.2 in [25]). ��

Finally, we consider LeadingOnes(x1, . . . , xn) :=
∑n

i=1

∏i
j=1 xj , another

intensively studied standard benchmark problem from the analysis of RSHs. Tail
bounds on the optimization time of the (1+1) EA on LeadingOnes were derived
in [5]. This result represents a fundamentally new contribution, but suffers from
the fact that it depends on a very specific structure and closed formula for the
optimization time. Using a simplified version of Theorem 2 (see Theorem 3),
it is possible to prove similarly strong tail bounds without needing this exact
formula. As in [5], we are interested in a more general statement. Let T (a) be
the number of steps until an LeadingOnes-value of at least a is reached, where
0 ≤ a ≤ n. Let Xt := max{0, a − LeadingOnes(xt)} be the distance from the
target a at time t. Lemma 4 states the drift of (Xt)t≥0 exactly [5].

Lemma 4. E(Xt − Xt+1 | Xt = i) = (2 − 2−n+a−i+1)(1 − 1/n)a−i(1/n) for all
i > 0.

We can now supply the tail bounds, formulated as Statements (ii) and (iii) in
the following theorem. The first statement is an exact expression for the expected
optimization time, which has already been proved without drift analysis [5].
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Theorem 7. Let T (a) the time for the (1+1) EA to reach a LeadingOnes-
value of at least a. Moreover, let r ≥ 0. Then

(i) E(T (a)) = n2−n
2

((
1 + 1

n−1

)a

− 1
)
.

(ii) For 0 < a ≤ n − log n, with probability at least 1 − e−Ω(rn−3/2)

T (a) ≤ n2

2

((

1 +
1

n − 1

)a

− 1
)

+ r.

(iii) For log2 n−1 ≤ a ≤ n, with probability at least 1−e−Ω(rn−3/2)−e−Ω(log2 n)

T (a) ≥ n2 − n

2

((

1 +
1

n − 1

)a

− 1 − 2 log2 n

n − 1

)

− r.

4.2 An Application to Probabilistic Recurrence Relations

Drift analysis is not only useful in the theory of RSHs, but also in classical
theoretical computer science. Here, we study a probabilistic recurrence relation
of the kind T (n) = a(n) + T (h(n)), where n is the problem size, T (n) the total
amount of work, a(n) the amount of work at the current level of recursion, and
h(n) is a random variable, denoting the size of the problem at the next recursion
level. Karp [13] studied this scenario using different probabilistic techniques than
ours. Assuming knowledge of E(h(n)), he proved upper tail bounds for T (n),
more precisely he analyzed the probability of T (n) exceeding the solution of the
“deterministic” process T (n) = a(n) + T (E(h(n))).

We pick up the example from [13, Section 2.4] on the number of cycles in
a permutation π ∈ Sn drawn uniformly at random, where Sn denotes the set
of all permutations of the n elements {1, . . . , n}. A cycle is a sub-sequence of
indices i1, . . . , i� such that π(ij) = i(j mod �)+1 for 1 ≤ j ≤ �. Each permutation
partitions the elements into disjoint cycles. The expected number of cycles in a
random permutation is Hn = ln n + Θ(1). The asymptotic probability distribu-
tion (letting n → ∞) of the number of cycles is well studied [1], but there are
few results for finite n.

It is easy to see that the length of the cycle containing any fixed element
is uniform on {1, . . . , n}. This gives rise to the probabilistic recurrence T (n) =
1 + T (h(n)) expressing the random number of cycles, where h(n) is uniform on
{0, . . . , n − 1}. As a result, [13] shows that the number of cycles is larger than
log2(n + 1) + a with probability at most 2−a+1. Note that the log2(n), which
results from the solution of the deterministic recurrence, is already by a constant
factor away from the expected value. Lower tail bounds are not obtained in [13].
Using our drift theorem (Theorem 2), it however follows that the number of
cycles is sharply concentrated around its expectation.

Theorem 8. Let N be the number of cycles in a random permutation of n

elements. Then Pr(N < (1 − ε)(ln n)) ≤ e− ε2
4 (1−o(1)) lnn for any constant 0 <

ε < 1. And for any constant ε > 0, Pr(N ≥ (1 + ε)((ln n) + 1)) ≤ e−min{ε,ε2}
6 lnn.
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For appropriate functions g(x), our drift theorem may provide sharp concen-
tration results for other probabilistic recurrences, such as the case a(n) > 1.

5 Conclusions

We have presented a new drift theorem with tail bounds. It can be understood as
a general variable drift theorem and can be specialized into all existing variants
of variable, additive and multiplicative drift theorems we found in the literature
as well as the fitness-level technique. Moreover, it provides lower and upper tail
bounds, which were not available before in the context of variable drift. Tail
bounds were used to prove sharp concentration inequalities on the optimization
time of the (1+1) EA on OneMax, linear functions and LeadingOnes. Despite
the highly random fashion this RSH operates, its optimization time is highly con-
centrated up to lower order terms. The drift theorem also leads to tail bounds
on the number of cycles in random permutations. The proofs illustrate how to
use the tail bounds and we provide simplified (specialized) versions of the cor-
responding statements. We believe that this research helps consolidate the area
of drift analysis. The general formulation of drift analysis increases our under-
standing of its power and limitations. The tail bounds imply more practically
useful statements on the optimization time than the expected time. We expect
further applications of our theorem, also to classical randomized algorithms.

Acknowledgments. This research received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 618091 (SAGE).
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Abstract. Given a set of n points in the Euclidean plane, such that
just k points are strictly inside the convex hull of the whole set, we
want to find the shortest tour visiting every point. The fastest known
algorithm for the version with few inner points, i.e., small k, works in

O(kO(
√

k)k1.5n3) time [Knauer and Spillner, WG 2006], but also requires

space of order kΘ(
√

k)n2. The best linear space algorithm takes O(k!kn)
time [Deineko, Hoffmann, Okamoto, Woeginer, Oper. Res. Lett. 34(1),

106-110]. We construct a linear space O(nk2 + kO(
√

k)) time algorithm.
The new insight is extending the known divide-and-conquer method
based on planar separators with a matching-based argument to shrink
the instance in every recursive call.

1 Introduction

The traveling salesman problem is one of the most natural optimization ques-
tions. It is NP-hard even in the most natural Euclidean version [6], and a simple
O(2nn2) dynamic programming can be used to solve the general version, where
n is the number of points. One can do much better by exploiting the additional
properties of the Euclidean variant, as independently observed by Smith [7],
Kann [3], and Hwang, Chang, and Lee [2], who all applied a similar reason-
ing, which we will call the strategy of searching over separators, to achieve an
O(nO(

√
n)) running time. A natural approach to NP-hard problem is to construct

an algorithm whose running time depends exponentially only on some (hope-
fully small) parameter k of the input. We say that a problem is fixed-parameter
tractable, if it is possible to achieve a running time of the form O(f(k)nc). A
closely connected notion is admitting a bikernel, which means that we can reduce
in polynomial time an instance to an instance (of a different problem) whose size
is bounded by a function of k. (The notion of (bi)kernels is usually used for deci-
sion problems, while we will be working with an optimization question, but this
is just a technicality.) In case of the Euclidean traveling salesman problem, a
natural parameterization is to choose k to be the number of inner points, where
a point is inner if it lies strictly inside the convex hull of the input. A result of
Deineko, Hoffman, Okamoto and Woeginger [1] is that in such setting O(2kk2n)
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time can be achieved (see their paper for an explanation why such parameteri-
zation is natural). This was subsequently improved to O(kO(

√
k)k1.5n3) with a

generic method given by Knauer and Spillner [4] (see the companion technical
report for the details). The space usage of their method (and the previous) is
superpolynomial, as they apply a dynamic programming on kΘ(

√
k)n2 states.

Contribution. Our goal is to construct an efficient linear space algorithm. As
the previously mentioned exact algorithm for the non-parametrized version [2]
requires polynomial space, a natural approach is to apply the same strategy.
In our case we want the total running time to depend mostly on k, though,
so we devise a technique of reducing the size of current instance by applying
a matching-based argument, which allows us to show that the problem admits
a bikernel of quadratic size. By applying the same strategy of searching over
separators on the bikernel, we achieve O(nk2 + kO(k)) running time. To further
improve on that, we extend the strategy using weighted planar separators, which
give us a better handle on how the number of inner points decreases in the
recursive calls. The final result is an O(nk2+kO(

√
k)) time linear space algorithm.

Overview. As in the previous papers, we start with the simple observation that
the optimal traveling salesman tour visits the points on the convex hull in the
cyclic order. Hence we can treat subsequent points on the convex hull as the
start and end points of subpaths of the whole tour that go only through the
inner points. At most k such potential subpaths include any inner points. We call
them important and show that we can reduce (in polynomial time) the number of
pairs of subsequent points on the convex hull creating the important subpaths to
k2, and for the remaining pairs we can fix the corresponding edge of the convex
hull to be a part of the optimal tour, which shows that the problem admits a
quadratic bikernel. The reduction shown in Section 2 is based on a matching-
based argument and works in O(nk2+k6) time and linear space. The second step
is to generalize the Generalized Euclidean Traveling Salesman Problem [2] as to
use the properties of the convex hull more effectively. In Section 3 we modify the
strategy of searching over separators, so that its running time depends mostly
on the number of inner points. We use the weighted planar separator theorem of
Miller [5] to prove that there exists a separator of size proportional to the square
root of the number of inner points, irrespectively of the number of outer points.
If the number of outer points is polynomial, which can be ensured by extending
the matching-based reduction, we can iterate over all such separators. Having
the separator, we guess its intersection with the solution, and recurse on the
two smaller subproblems. The separator is chosen so that the number of inner
points decreases by a constant factor in each subproblem, so then assuming the
reduction is performed in every recursive call, we obtain the promised complexity.

Assumptions. We work in the Real RAM model, which ignores the issue of
computing the distances only up to some accuracy. d(p, q) denotes the Euclidean
distance between p and q. In the rest of the paper, by planar graph we actually
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mean its fixed straight-line embedding, as the nodes will be always known points
in the plane. Whenever we are talking about sets of points, we want distinct
points, which can be ensured by perturbing them.

2 The Reduction

We want to construct an efficient algorithm for a variant of the Euclidean Travel-
ing Salesman Problem, called k-ETSP, in which we are given a set V of n points
such that exactly k of them lie strictly inside CH(V ), which is the convex hull of
the whole set. The algorithm first reduces the problem in O(nk2 + k6) time to
an instance of the Generalized Euclidean Traveling Salesman Problem of size at
most O(k2), and then solves the instance in O(kO(

√
k)) time. By size we mean

the value of n + 2m, where n and m are defined as below.

Generalized Euclidean Traveling Salesman Problem (V, T )-GETSP

Given a set V = {v1, . . . , vn} of inner points and a set T =
{(t1, t′1), . . . , (tm, t′m)} of terminal pairs of points, find a set of m paths with
the smallest total length such that:

1. the i-th path is built on (ti, t′i), i.e., starts from ti and returns to t′i,
2. every vi is included in exactly one of these paths,

assuming that in any optimal solution the paths have no self-intersections,
and no path intersects other paths, except possibly at the ends.

It is well-known that in an optimal solution to an instance of k-ETSP the
outer points are visited in order in which they appear on CH(V ) (otherwise the
solution intersects itself and can be shortened). Hence we can reduce k-ETSP to
(V ′, T )-GETSP by setting V ′ = V \ CH(V ) and T = {(x1, x2), . . . , (xn−k, x1)},
where CH(V ) = 〈x1, . . . , xn−k〉. As any optimal solution to k-ETSP has no self-
intersections, the paths in any optimal solution to the resulting instance have no
self-intersections and do not intersect each other, except possibly at the ends.

We will show that given any instance of (V, T )-GETSP, we can quickly reduce
the number of terminal pairs to O(n2). A path in a solution to such instance
is important if it includes at least one point from V , and redundant otherwise.
Obviously, a redundant path consists of just one edge (ti, t′i) for some i, and
the number of important paths in any solution is at most n. What is maybe
less obvious, we can efficiently determine a set of at most n2 terminal pairs
such that the paths built on the other terminal pairs are all redundant in some
optimal solution. To prove this, we will notice that every solution to an instance
of (V, T )-GETSP corresponds to a matching, and apply a simple combinatorial
lemma. The idea is that every important path 〈u0, u1, . . . , u�, u�+1〉 consists of
the middle part 〈u1, . . . , u�〉 containing only inner points, and the endpoints
u0 = t, u�+1 = t′ for some terminal pair (t, t′). We create a weighted complete



704 P. Gawrychowski and D. Rusak

t

t′

u u′

+d(t, u)

−d(t, t′)

+d(u′, t′)

(a) (b) (c)

Fig. 1. (a) A solution with important paths marked with thick lines, (b) connecting
the inner parts of important paths to form a solution, (c) connecting a single inner
part 〈u, . . . , u′〉 to a terminal pair (t, t′) costs d(t, u) + d(u′, t′) − d(t, t′)

bipartite graph, where every possible pair of inner points (u, u′) corresponds to
a left vertex, and every terminal pair corresponds to a right vertex. The weight
of an edge between (u, u′) and (t, t′) is d(t, u) + d(u′, t′) − d(t, t′), see Fig. 1(c).

First we present a simple combinatorial lemma. Given a weighted complete
bipartite graph G = (U ∪V,U ×V, c), where c(u, v) is the weight of an edge (u, v),
cost(X,Y ) denotes the weight of a cheapest matching of X ⊆ U to Y ⊆ V , if
|X| ≤ |Y |. If M is a matching of X to Y , then we denote by M [X] and M [Y ]
the subsets of X and Y matched by M .

Lemma 1. Let G = (U ∪ V,U × V, c) be a weighted complete bipartite graph,
where |U | ≤ |V |. If Mmin is a cheapest matching of U to V , then for every A ⊆ U
we have cost(A,Mmin[V ]) = cost(A, V ).

Proof. Assume the opposite, i.e., there is some A ⊆ U such that for any cheapest
matching M of A to V we have M [V ] �⊆ Mmin[V ]. Fix such A and take any
cheapest matching M of A to V . If there are multiple such M , take the one with
the largest |M [V ] ∩ Mmin[V ]|. Then look at M ⊕ Mmin, which is the set of edges
belonging to exactly one of M and Mmin. It consists of node-disjoint alternating
cycles and alternating paths, and the alternating paths can be of either odd
or even length. Because M [V ] �⊆ Mmin[V ], there is a vertex x ∈ V such that
x ∈ M [V ] \ Mmin[V ]. It is clear that there is a (nontrivial) path P starting at x,
as x ∈ M [V ] but x /∈ Mmin[V ]. We want argue that its length is even. Its first
edge comes from M , so if the total length is odd, then the last edge comes from
M as well, so the path ends at a vertex y ∈ A. But all such y are matched in
Mmin, so P cannot end there. Hence it ends at a vertex y ∈ Mmin[V ]\M [V ], and
its length is even. Now we consider three cases depending on the sign of cost(P ),
which is the total weight of all edges in P ∩ Mmin minus the total weight of all
edges in P ∩ M :

1. if cost(P ) > 0 then Mmin ⊕ P is cheaper than Mmin, so Mmin was not a
cheapest matching of U to V ,

2. if cost(P ) < 0 then M ⊕ P is cheaper than M , so M was not a cheapest
matching of A to V ,
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3. if cost(P ) = 0, then M ′ = M ⊕ P is a cheapest matching of A to V , and
|M ′[V ] ∩ Mmin[V ]| > |M [V ] ∩ Mmin[V ]|, so M was not a cheapest matching
of A to V with the largest |M [V ] ∩ Mmin[V ]| in case of a tie.

Hence there is a cheapest matching M of A to V such that M [V ] ⊆ Mmin[V ]. ��
Lemma 2. With a read-only constant-time access to a weighted complete bipar-
tite graph G = (U∪V,U×V, c), where |U | ≤ |V |, we can find a cheapest matching
of U to V in O(|U |3 + |U ||V |) time and O(|V |) space.

Proof. Let p = |U | and q = |V |. The naive approach would be to find a cheapest
matching using p iterations of Dijkstra’s algorithm implemented with a Fibonacci
heap in O(p+ q) space and O(p((p+ q) log(p+ q)+ pq)) total time. The claimed
complexities can by achieved by appropriately truncating the input graph. ��
Theorem 1. Given an instance of (V, T )-GETSP with m ≥ n2, we can find
T0 ⊆ T of size m − n2, such that there is an optimal solution in which the paths
built on pairs from T0 are all redundant, in O(mn2 + n6) time and O(m) space.

Proof. Let W = V × V and G = (W ∪ T,W × T, c) be a weighted complete
bipartite graph with W and T as the left and right vertices, respectively. The
weight of an edge connecting (v, v′) and (t, t′) is defined as c((v, v′), (t, t′)) =
d(t, v) + d(v′, t′) − d(t, t′). Informally, given a path 〈v, . . . , v′〉 consisting of inner
points, c((v, v′), (t, t′)) is the cost of replacing a redundant path 〈t, t′〉 with an
important path 〈t, v, . . . , v′, t′〉, assuming that we have already taken into account
the length of the inner part 〈v, . . . , v′〉, see Fig. 1(c). Now any solution corre-
sponds to a matching in G, because for every important path 〈ti, vi, . . . , v

′
i, t

′
i〉

we can match (vi, v
′
i) to (ti, t′i). More precisely, if we denote by i1 < . . . < is the

indices of all these important paths and fix their inner parts 〈vij , . . . , v
′
ij

〉, then
the solution corresponds to a matching of W ′ = {(vi1 , v

′
i1

), . . . , (vis , v
′
is

)} to T ,
and the cost of the solution is equal to the total length of all inner parts plus∑

i d(ti, t′i) plus the cost of the matching. In the other direction, any matching
of W ′ to T corresponds to a solution with the given set of inner parts (but pos-
sibly different indices of important paths). The cost of that solution is, again,
equal to the total length of all inner parts plus

∑
i d(ti, t′i) plus the cost of the

matching, so any cheapest matching corresponds to an optimal solution. By
Lemma 1 we know, that cost(W ′,Mmin[T ]) = cost(W ′, T ), so there is always
a cheapest matching of W ′ to T which uses only the nodes in Mmin[T ], where
Mmin is a cheapest matching of W to T in the whole G. Therefore, we can set
T0 = T \ Mmin[T ], because there is at least one optimal solution, where the
paths built on pairs from such T0 are all redundant. Clearly, |T0| = m − n2.
Finally, Lemma 2 allows us to construct a cheapest matching efficiently, as we
can implement read-only access to any c((v, v′), (t, t′)) without explicitly storing
the graph, so the total space usage is O(n) and the total time complexity is
O(mn2 + n6) as claimed. ��
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3 Searching over Separators

In this section we briefly recap the method of searching over separators used
in [2] to solve the Euclidean Traveling Salesman Problem. At a high level, it is
a divide-and-conquer algorithm. We know that an optimal solution has no self-
intersections, hence we can treat it as a planar graph. Every planar graph has a
small simple cycle separator, which is a simple cycle, which can be removed as to
split the whole graph into smaller pieces. Such separator can be used to divide
the original problem into smaller subproblems, which are then solved recursively.

Theorem 2 (Miller [5]). In any 2-connected planar graph with nonnegative
weights summing up to 1 assigned to nodes, there exists a simple cycle, called a
simple cycle separator, on at most 2

√
2 �d/2� N vertices, dividing the graph into

the interior and the exterior part, such that the sum of the weights in each part
is at most 2

3 , where d is the maximum face size and N is the number of nodes.

Consider an instance of (V, T )-GETSP and its optimal solution, which by the
assumption has no self-intersections, so there exists a planar graph such that any
edge of the solution appears there. Then by Theorem 2 there is a simple cycle
on at most 2

√
2�d/2�(n + 2m) nodes such that any edge of the solution is either

completely outside, completely inside, or lies on the cycle, and furthermore there
are at most 2

3 (n + 2m) points in either the exterior and the interior part. We
want the cycle to be small, so we need to bound d. For all inner faces, this can
be ensured by simply triangulating them. To ensure that the outer face is small,
we add three enclosing points.

Now consider how the paths in the solution intersect with the simple cycle
separator. Each path is either completely outside, completely inside, or inter-
sects with one of the nodes of the separator. Any such intersecting path can
be partitioned into shorter subpaths, such that the endpoints of the subpaths
are either the endpoints of the original paths or the nodes of the separator, and
every subpath is outside or inside, meaning that all of its inner nodes are com-
pletely outside or completely inside. This suggests that we can create two smaller
instances of (V, T )-GETSP corresponding to the interior and the exterior part
of the graph, such that the solutions of these two smaller subproblems can be
merged to create the solution for the original problem, see Fig. 2.

(a) (b) (c) (d)

Fig. 2. (a) A solution, (b) the triangulated planar graph and its simple cycle separator,
(c) a solution to the interior subproblem, (d) a solution to the exterior problem
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Of course we don’t know the solution, so we cannot really find a simple cycle
separator in its corresponding triangulated planar graph. But the size of the
separator is at most c

√
n + 2m + 3 for some constant c, so we can iterate over all

possible simple cycles of such length, and for every such cycle check if it partitions
the instance into two parts of sufficiently small sizes. The number of cycles is at
most c

√
n + 2m + 3

(
n+2m+3

c
√

n+2m+3

)
(c

√
n + 2m + 3)!, which is O((n+2m)O(

√
n+2m)).

Similarly, because we don’t know the solution, we cannot check how it inter-
sects with our simple cycle separator, but we can iterate over all possibilities.
To bound the number of possibilities, we must be a little bit more precise about
what intersection with the separator means. We create a number of new terminal
pairs. Every node of the separator appears in one or two of these new terminal
pairs. The new terminal pairs might contain some of the original terminal points,
under the restriction that for any original terminal pair, either none of its points
are used in the new terminal pairs, or both are (and in the latter case, we remove
the original terminal pair), and no sequence of new terminal pairs creates a cycle,
i.e., there is no (p1, p2), . . . , (p�, p1) with � ≥ 3. Then, for every new terminal pair
(p, p′), we decide if its path lies fully within the exterior or the interior part (if
it directly connects two consecutive points on the cycle, we can consider it as
belonging to either part). If p is one of the original terminal points, and p′ is
a new terminal point, then the corresponding path lies fully within the part
where p belongs to. Such a choice allows us to partition the original problem
into two smaller subproblems, so that their optimal solutions can be merged to
recover the whole solution, and that the subproblems are smaller instances of
(V, T )-GETSP. Hence iterating over all choices and choosing an optimal solution
in every subproblem allows us to solve the original instance.

To bound the number of choices, the whole process can be seen as parti-
tioning the nodes of the separator into ordered subsets, selecting two of the
original terminal points for every of these subsets, and finally guessing, for every
two nodes subsequent in one of the subsets, whether the path connecting them
belongs to the exterior or the interior part. We must also check if for any orig-
inal pair (p, p′) either none of its points was selected, or both of them were,
but even without this last easy check the number of possibilities is bounded by
Bc

√
n+2m+3(c

√
n + 2m + 3)!

(
2m

2c
√

n+2m+3

)
2c

√
n+2m+3, where Bs is the s-th Bell

number. This is, again, O((n + 2m)O(
√

n+2m)).
The algorithm iterates over all separators and over all possibilities of how

the solution intersects with each of them. For each choice, it recurses on the
resulting two smaller subproblems, and combines their solutions. Even though
we cannot guarantee that all optimal solutions in these subproblems have no self-
intersections, any optimal solution to the original problem has such property,
so for at least one choice the subproblems will have such property, which is
enough for the correctness. Because the size of every subproblem is at most
b = 2

3 (n+2m)+c
√

n + 2m + 3, the recurrence for the total running time is: T (n+
2m) = O((n+2m)O(

√
n+2m)) ·2T (b). For large enough n+2m, we have that b ≤

3
4 (n+2m), and the recurrence solves to T (n+2m) = O((n+2m)O(

√
n+2m)). The
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space complexity is linear, because we only need to generate the subproblems,
which requires iterating over all subsets and all partitions into ordered subsets.

By first applying Theorem 1 and then using the method of searching over
separators on the resulting graph, we can solve an instance of k-ETSP in O(nk2+
kO(k) time and linear space.

4 (V, T,H)-GETSP

To extend the divide-and-conquer algorithm described in the previous section,
we need to work with a version of (V, T )-GETSP, which is more sensitive to the
number of terminal pairs such that both points belong to the convex hull. We
call the extended version (V, T,H)-GETSP, and define its size to be n+2m+2�.
Given an instance of k-ETSP, we can reduce the problem to solving an instance
of (V, T,H)-GETSP with |V | = k, |T | = 0, and |H| = n − k.

Generalized EuclideanTraveling SalesmanProblem (V, T, H)-GETSP

Given a set V = {v1, . . . , vn} of inner points, a set T = {(t1, t
′
1), . . . , (tm, t′

m)}
of terminal pairs of points, and a set H = {(h1, h

′
1), . . . , (h�, h

′
�)} of hull pairs of

points, where for any i the point hi and h′
i are neighbors on the convex hull of

the set of all points1, find a set of m + � paths with the smallest total length such
that:

1. the i-th path is built on (ti, t
′
i), for i = 1, 2, . . . , m,

2. the m + i-th path is built on (hi, h
′
i), for i = 1, 2, . . . , �,

3. every vi is included in exactly one of these paths,

assuming that in any optimal solution the paths have no self-intersections, and no
path intersects other paths, except possibly at the ends.

We will show that if � = poly(n), then (V, T,H)-GETSP can be solved in
O((n + 2m)O(

√
n+2m)) time and linear space using an extension of the method

from the previous section. Combined with Theorem 1, this gives an O(nk2 +
kO(

√
k)) time and linear space solution for k-ETSP. First we extend Theorem 1.

Lemma 3. Given an instance of (V, T,H)-GETSP with n = |V |, m = |T |,
and � = |H|, where m + � ≥ n2, we can find T0 ⊆ T and H0 ⊆ H such that
|T0| + |H0| = m + � − n2, such that there is an optimal solution in which the
paths built on pairs from T0 ∪ H0 are all redundant in O((m + �)n2 + n6) time
and O(m + �) space.

Recall that the recursive method described in the previous section iterates
over simple cycle separators. Because now the (unknown) graph is on n+2m+2�
vertices, the best bound on the length of the separator that we could directly
get from Theorem 2 is c

√
n + 2m + 2� + 3, which is too large. But say that we

1 Other points given in the input might or might not lie on the convex hull.
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could show that there exists a simple cycle separator of length O(
√

n + 2m + 2),
such that the value of n + 2m decreases by a constant factor in both parts.
Iterating over all such simple cycle separators takes O((n + 2m + 2�)O(

√
n+2m))

time, and iterating over all possibilities of how the separator intersects with the
solution then takes BO(

√
n+2m)O(

√
n + 2m!)

(
n+2m+2�

O(
√

n+2m)

)
2O(

√
n+2m) time. All in

all, the total number of possibilities becomes O((n + 2m + 2�)O(
√

n+2m)), which
assuming that � = poly(n) is O((n + 2m)O(

√
n+2m)). Applying this reasoning in

a recursive manner as in the previous section results in Algorithm 1. Compared
to the algorithm from the previous section, the changes are:

1. in every recursive call we reduce the number of terminal and hull pairs using
Lemma 3,

2. we add just two enclosing points (instead of three) as explained in Lemma 4,
3. when forming the subproblems, we might connect both some terminal points

and some hull points with the nodes of the separator, and in the latter case,
the new pair always becomes a terminal pair in the subproblem.

If � = poly(n) in the original instance, then we can maintain such invariant in
all recursive calls without increasing the running time, because the (polynomial)
cost of the reduction in a subproblem can be charged to its parent. Therefore,
because the value of n+2m decreases by a constant factor in both subproblems,
the total time is O((n + 2m)O(

√
n+2m)) by the same recurrence as previously.

Now the goal is to prove that it is enough to consider simple cycle separators
of length c

√
n + 2m + 2. To this end, we will prove that there exists a planar

graph with the following properties:

(a) its set of nodes includes all inner and terminal points together with the two
enclosing points, and possibly some hull points,

(b) any edge from the solution is either its edge, or lies within one of its faces,
(c) all of its faces are of size at most 4 and its size is O(n + 2m).

If such a graph exists, then by Theorem 2 it has a simple cycle separator of size
O(

√
n + 2m) due to (c). By assigning equal weights summing up to one to all

inner and terminal points, which by (a) are nodes of the graph, and zero weights
to the remaining nodes, we get a simple cycle separator which, by (b), divides
the original problem into two subproblems, such that the optimal solution to
the subproblems can be combined to form an optimal solution to the original
problem, and there are at most 2

3 (n + 2m) inner and terminal points in every
subproblem, so Algorithm 1 is correct. Before we show that such a graph exists,
we explain how to choose the enclosing points.

Lemma 4. For any set of points A we can find two enclosing points I1, I2, lying
outside CH(A), and two nodes of CH(A) called vup, vdown, such that:

1. all points of CH(A) between vup and vdown (clockwise) lie inside �I2vupvdown,
and all points of CH(A) between vdown and vup lie inside �I1vupvdown,

2. for any point w of CH(A) between vup and vdown, I1w has no common point
with CH(A) except for w, and for any w between vdown and vup, I2w has no
common point with CH(A) except for w.
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(a) (b) (c) (d)

Fig. 3. (a) The segments in S, (b) the segments in S′, (c) the initial triangulated planar
graph, (d) the remaining segments. Points from U are filled.

Any optimal solution to an instance of (V, T,H)-GETSP corresponds to a hull
structure (U,H, S), where U contains all inner and terminal points, H contains
all hull points, and S contains all segments constituting the paths, meaning that:

1. U and H are two sets of points in the plane with H ⊆ CH(U ∪ H),
2. S is a collection of segments connecting the points in U ∪ H such that no

segment intersects other segment, except possibly at the ends,
3. any point from U ∪ H is an endpoint of at most two segments in S,
4. every segment in S connecting two points from H lies on CH(U ∪ H).

Lemma 5. If (U,H, S) is a hull structure, and I1, I2 are the points enclosing
U ∪ H, then there exists a planar graph, such that:

1. the nodes are all points from U ∪ {I1, I2} and possibly some points from H,
2. any segment from S is either an edge of the graph, or lies within its face,
3. all of its faces are of size at most 4,
4. the size of the graph is O(|U |).
Proof. The enclosing points I1, I2 are defined by applying Lemma 4 on U ∪ H,
same for vup and vdown. The subsets of U ∪H on the same side of the line going
through vupvdown as I1 and I2 will be called V1 and V2, respectively. The subset
of S containing all segments with at least one endpoint in U will be called S′.
Because any point of U is an endpoint of at most two segments, |S′| = O(|U |). We
define U ′ to be the whole U together with the points of H which are an endpoint
of some segment in S′, and create the first approximation of the desired planar
graph using U ′ as its set of nodes, and S′ as its set of edges. We triangulate this
planar graph, so that its inner faces are of size 3. Notice that all of its edges are
inside or on CH(U ′), and all remaining segments in S \ S′ lie on CH(U ∪ H),
see Fig. 3. So far, the size of the planar graph is O(|U |), its faces are small,
and the nodes are all points from U and possible some points from H, and any
segment from S′ is an edge there. Therefore, we just need to make sure that any
remaining segment is either an edge, or lies within a face.

To deal with the remaining segments, we add I1 and I2 to the set of nodes.
Fix any point P strictly inside CH(U ′) and, for every node P ′ of CH(U ′), draw
a ray starting in P and going through P ′. All these rays partition the region
outside CH(U ′) into convex subregions R1, R2, . . . , R|CH(U ′)|. The intersection
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of Ri with CH(U ∪ H), called Ti, contains exactly two vertices of CH(U ′), call
them yi and y′

i, see Fig 4(a). We will process every such Ti separately, extending
the current graph by adding new triangles. Consider the sequence of points
vai

, vai+1, . . . , vbi of CH(U ∪ H), which belong to Ti. If the sequence is empty,
there is nothing to do. Otherwise we have two cases:

1. if ai = bi, create a new triangle �vbiyiy
′
i to T , see Fig. 4(b),

2. if ai �= bi, create two new triangles �vai
yiy

′
i, �vai

vbiy
′
i. Then add a triangle

�Ijvai
vbi if both vai

and vbi belong to the same Vj , see Fig. 5(a). Otherwise
either vup or vdown is in vai

, . . . , vbi , and we add three triangles as in Fig. 5(b).

Now any remaining segment which lies within a single Ti is inside one of the
new triangles. For each such segment vjvj+1 we simply add either �I1vjvj+1 or
�I2vjvj+1, see Fig. 5(c). This is correct because any two consecutive points on
CH(H) always either both belong to V1 or both belong to V2. One ray can cross
at most one edge, so the number of triangles created in this step is at most |U ′|.

By the construction, the insides of any new triangles are disjoint. Also, they
all lie outside CH(U ′). Hence we can add the new triangles to the initial planar
graph to form a larger planar graph. Because we created O(|U ′|) new triangles,
the size of the new planar graph is still O(|U |), though. Now some of its faces
might be large, though, so we include I1, I2, vup, vdown in its set of nodes, and all
I1vup, I1vdown, I2vup, I2vdown in its set of edges. Finally, we triangulate the large
inner faces, if any. The size of the final graph is O(|U |) and we ensured that any
segment from S is either among its edges, or lies within one of its faces. ��

Lemma 5 shows that it is indeed enough to iterate over separators of size
c
√

n + 2m + 2, hence Algorithm 1 is correct. The remaining part is to argue that
it needs just linear space. By Lemma 3, the reduction uses O(m + �) additional
space which can be immediately reused. Iterating through all ordered subsets
of size at most c

√
n + 2m + 2 can be easily done with O(

√
n + 2m) additional

space. Bounding the space necessary to iterate over all possibilities of how the
solution intersects with the separator is less obvious, but the same bound can
be derived by looking at how the possibilities were counted. The O(

√
n + 2m)

additional space must be stored for every recursive call. Additionally, for each
call we must store its arguments V, T and H, which takes O(n + 2m + 2�)

vbi

y y′P

Ri

Ti

y

y′

(a) (b)

Fig. 4. (a) The intersection Ti, (b) adding one triangle when ai = bi
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vup

vai vbi

y y′

vbi

vai

y y′

vj+1

vj

(a) (b) (c)

Fig. 5. (a) vai , vbi in the same Vj , (b) vup between vai and vbi , (c) a remaining segment

additional space. As n + 2m decreases by a constant factor in every recursive
call, the recursion depth is O(log(n + 2m)), which in turn implies O(n + 2m +
2� log(n + 2m)) overall space consumption. Even though we always reduce the
instance so that � ≤ n2, this bound might be superlinear.

Recall that the hull pairs in the subproblems are disjoint subsets of all hull
pairs in the original problem. Hence, instead of copying the hull pairs into the
subproblems, we can store them in one global array. Before the recursive calls,
we rearrange the fragment so that the hull pairs which should be processed
in both subproblems are, stored in contiguous fragments of the global array.
The rearranging can be done in linear space and constant additional space. The
remaining issue is that when we return from the subproblems, the fragment
containing the hull pairs might have been arbitrarily shuffled. This is a problem,
because we are iterating over the ordered subsets of all points, which requires
operating on their indices. Now the order of the hull pairs might change, so
we cannot identify a hull point by storing the index of its pair. Nevertheless,
we can maintain an invariant that all hull pairs in the current problem are
lexicographically sorted. In the very beginning, we just sort the global array.
Then, before we recurse on a subproblem, we make sure that its fragment is
sorted. After we are done with both subproblems, we re-sort the fragment of the
global array corresponding to the current problem. This decreases the overall
space complexity to linear.

Theorem 3. k-ETSP can be solved in O(nk2 + kO(
√

k)) time and linear space.
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Abstract. Given two finite point sets A and B in the plane, we study the
minimization of the bottleneck distance between the smaller set B and
an equally-sized subset of A under translations. We relate this problem
to a Voronoi-type diagram and derive polynomial bounds for its com-
plexity that are tight in the size of A. We devise efficient algorithms for
the construction of such a diagram and its lexicographic variant, which
generalize to higher dimensions. We use the diagram to find the optimal
bottleneck matching under translations, and to compute a connecting
path of minimum bottleneck cost between two positions of B.

1 Introduction

Applications often demand algorithms to find an occurrence of a point pattern in
a bigger set of points. It is also common to define a similarity measure between
the pattern and the point set as the minimum among the images of the pattern
under a set of allowed transformations.

One of the most studied similarity measures for two finite point sets A and B
in R

d is the directed Hausdorff distance, which is the maximum of the (Euclidean)
distances from each point in B to its nearest neighbor in A. For some applica-
tions, it is required that each point of the smaller set is matched to a distinct
point in the bigger one. The resulting distance is called the bottleneck distance
and was introduced for equally-sized sets in [2] as

Δ(B,A) = min
σ:B↪→A

max
b∈B

‖b − σ(b)‖,

where ‖ · ‖ denotes the Euclidean norm and the minimum is taken over all
injections from B into A. In contrast to the directed Hausdorff distance, the
bottleneck distance has the advantage of being symmetric for equally-sized sets.
On the other hand, it is harder to compute, since the points cannot be regarded
independently. Note that there might be several matchings that minimize the
bottleneck distance, even when all the distances between points are distinct.
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When this is to be avoided, the matching that lexicographically minimizes the
distances between matched points is often considered [6,10,18].

In this paper, we are interested in a dynamic version of the bottleneck
distance. More precisely, we want to efficiently compute the minimum bottle-
neck distance among all translated copies of B with respect to A, that is,
mint∈Rd Δ(B + t, A). This problem will be called bottleneck partial-matching
under translations. It was introduced for equally-sized point sets in the plane by
Alt et al. [2], who gave an algorithm running in O(n6 log n) time for point sets
of size n. Their bound was improved to O(n5 log2 n) by Efrat et al. [12].

To the best of our knowledge, bottleneck matching under translations has
not been studied with the focus on algorithms whose complexity is sensitive to
the size of the smaller set. In order to do so, we associate Voronoi-type diagrams
to the problem, which we call bottleneck diagrams and lex-bottleneck diagrams,
respectively. This follows an idea of Rote [17] who partitioned the space of trans-
lations according to the (partial) matching that minimizes the least-squares dis-
tance between translated copies of B and A (cf. [3,15] for follow-up studies). Our
diagrams partition R

d into polyhedral cells that correspond to locally-optimal
(lexicographic-)bottleneck matchings. A non-archival abstract containing part of
our studies appeared in [14].

In Section 2, we formally introduce the Voronoi-type diagrams before inves-
tigating their basic properties and combinatorial complexity. It turns out that
there exists a (lex-)bottleneck diagram of complexity O(n2k6) for any given pla-
nar point sets A,B with k = |B| ≤ |A| = n, and that this bound cannot be
improved with respect to the size of A. Based on these complexity results, we
devise construction algorithms in Section 3 that run in time O(n2k8) for bottle-
neck diagrams and in time O(n2k10) for lex-bottleneck diagrams. Once having
constructed a bottleneck diagram, the partial-matching problem under transla-
tions can be solved in the same asymptotic running time. A k-sensitive analysis
of the algorithm of Alt et al. shows that it solves the bottleneck partial-matching
problem in O(n3k3 log n) time, which implies that our method outperforms it
whenever k = O((n log n)1/5). Moreover, our study of bottleneck diagrams gen-
eralizes easily to high dimensions and has applications toward related questions.
For instance, as shown in Section 4, we can use the bottleneck diagram to com-
pute a bottleneck path between two given positions of a pattern in the plane.

2 Bottleneck Partial-Matching Voronoi Diagrams

In this section, we introduce the bottleneck partial-matching Voronoi diagram
and its lexicographic variant. We identify basic properties of these diagrams
which help us to establish bounds on their combinatorial complexity.

Throughout the paper, we assume that we are given two point sets A,B ⊂ R
d

with k = |B| ≤ |A| = n and that B is allowed to be translated. We use the term
edge for a pair of points (a, b) ∈ A × B and denote it by ab for short. The length
of the edge ab is defined as the Euclidean distance ‖b − a‖. In this context,
we will identify every injection of B into A with the matching (set of edges) it
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induces. Our aim is to subdivide the space of translations in a way that, for every
translation of B, we can retrieve a matching whose longest edge is as short as
possible. For the ease of presentation, we assume that there are no two different
pairs (a, b), (a′, b′) ∈ A × B such that a − b = a′ − b′. However, it can be shown
that the bounds on the complexity and running time in this paper still hold if
the point sets violate this general-position assumption. Given m ∈ N, we denote
by [m] the set {1, . . . , m}.

Definition 1. A bottleneck matching for two finite point sets A,B ⊂ R
d with

|B| ≤ |A| is an injection π : B ↪→ A such that

max
b∈B

‖b − π(b)‖ ≤ max
b∈B

‖b − σ(b)‖,

for every other matching σ. The bottleneck cost of a matching σ is the function
fσ : Rd → R defined as

fσ(t) = max
b∈B

‖b + t − σ(b)‖2.

The bottleneck value of a translation t ∈ R
d is

E(t) = min
σ:B↪→A

fσ(t).

Note that whether a matching is bottleneck depends on the Euclidean length
of its edges while the cost of a matching depends on the square of it. This
squaring does not change our problem and will be convenient later on.

For a given translation t ∈ R
d, a bottleneck matching for B + t and A, and

hence the value E(t), can be computed applying the algorithms described at
the beginning of Section 3. However, we are interested in finding a bottleneck
matching for every fixed position of the point set B.

Observe that there is no one-to-one correspondence between quadratic pieces
of E and bottleneck matchings. In fact, it is not hard to see that for an open
set of positions of B, there may be Ω(nk) different bottleneck matchings with
the same longest edge, and a matching may be bottleneck along more than one
quadratic piece of E . In addition, the regions of the minimization diagram of E
might be non-convex and even disconnected.

A standard approach to break ties between bottleneck matchings for a given
position in order to be more sensitive to the geometry of the point sets is to
consider a lexicographic version. That is, among the matchings whose longest
edge is as short as possible, consider those whose second longest edge is as short
as possible, and so on. In order to give a formal definition, we recall that the
lexicographic order on R

k is defined as the total order induced by the relation
(x1, . . . , xk) � (y1, . . . , yk) if and only if there exists an m ∈ [k] such that xi = yi

for all i < m, and xm < ym, or (x1, . . . , xk) = (y1, . . . , yk).

Definition 2. Let A,B ⊂ R
d be two finite point sets with k = |B| ≤ |A|. The

lex-bottleneck cost of a matching σ is the function gσ : R
d → R

k where the
i-th coordinate of gσ(t) is given by the length of the i-th longest edge of σ for
B + t and A. A lex-bottleneck matching for A and B is a matching π such that
gπ(0) � gσ(0) for every other matching σ.
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A B

Fig. 1. A label-induced coarsening of a bottleneck diagram for A and B

Observe that, despite the assumed general position of A and B, the lex-
bottleneck matching is not unique everywhere. However, we will prove later
that it is unique for all translations except for a nowhere-dense set. Due to the
non-uniqueness issues, the definition of the Voronoi-type diagram associated to
bottleneck and lex-bottleneck matchings needs some care. We define them as
polyhedral complexes, which simplifies traversing and optimizing in faces of the
diagram. Hereafter, only full-dimensional faces will be called cells.

Definition 3. A bottleneck partial-matching Voronoi diagram (for short, bot-
tleneck diagram) for point sets A,B ⊂ R

d is a polyhedral complex T covering R
d

and such that for every cell C of T there is at least one matching πC such that
fπC

(t) ≤ fσ(t) for all t ∈ C and all matchings σ. A bottleneck labeling of this
diagram is a function mapping each cell of T to one such matching.

Figure 1 shows a pair of point sets and a coarsening of a bottleneck diagram
for them (neighboring cells with the same label have been merged). Observe that
for B = {b} the Voronoi diagram of A + b is a bottleneck diagram.

Definition 4. A lex-bottleneck partial-matching Voronoi diagram (for short,
lex-bottleneck diagram) for point sets A,B ⊂ R

d is a polyhedral complex T
covering R

d and such that for every face c of T there is at least one matching πc

such that gπc
(t) � gσ(t) for all t in the relative interior of c and all matchings σ.

A lex-bottleneck labeling of this diagram is a function mapping each face of T
to one such matching.

Note that the lex-bottleneck label of a cell is not necessarily a lex-bottleneck
matching on its boundary, which justifies the previous definition.

Since any lex-bottleneck diagram is a bottleneck diagram, we prove some
properties for the first, more restrictive type.

Proposition 1. For any pair of point sets A,B ⊂ R
d with k = |B| ≤ |A| = n,

there exists a lex-bottleneck diagram of complexity O(n2dk2d).
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Proof. The edge ab ∈ A × B for a position t ∈ R
d of B has (squared) length

‖b + t − a‖2 = ‖t‖2 + ‖b − a‖2 + 2 〈t, b − a〉 .

For a pair of edges ab, a′b′ ∈ A × B, let h(ab, a′b′) be the locus of points t ∈ R
d

for which ‖b + t − a‖2 = ‖b′ + t − a′‖2 or, equivalently, for which

2 〈t, b − a − (b′ − a′)〉 = ‖b′ − a′‖2 − ‖b − a‖2.
By our general position assumption on A and B, this defines a hyperplane in R

d.
Let H be the arrangement induced by all these hyperplanes h(ab, a′b′) and let c
be a face of H. The order (and the ties) of the values ‖b + t − a‖, ab ∈ A × B,
does not change when t is restricted to be a point in the relative interior of c.
Hence, the set of lex-bottleneck matchings is the same for all such points and
any matching in the set can thus be used as a label for c. Since H is induced by
O(n2k2) hyperplanes in R

d, its complexity is O((n2k2)d) (cf. [11]). 
�
Motivated by the construction in the previous proof, for given finite point

sets A,B ⊂ R
d, we define H(A,B) to be the arrangement of the hyperplanes

h(ab, a′b′) = {t ∈ R
d : ‖b + t − a‖ = ‖b′ + t − a′‖},

for ab, a′b′ ∈ A×B. In order to show that there are some hyperplanes of H(A,B)
that we can safely ignore, we introduce some technical definitions and notation.

Definition 5. Let A,B ⊂ R
d be two finite point sets with k = |B| ≤ |A|. Given

t ∈ R
d and b ∈ B, we define the neighborhood Eb(t) ⊆ A × {b} of b at t as the

set including an edge ab if and only if ‖b+ t− a‖ is among the k smallest values
in {‖b + t − a′‖ : a′ ∈ A}. Let E(t) = ∪b∈BEb(t). A set E ⊆ Eb(t) is a minimal
set for b at t if |E| = k and ‖b + t − a‖ ≤ ‖b + t − a′‖ for all ab ∈ E and all
a′b ∈ A×{b}\E. Let X ⊂ R

d be the (dense) set consisting of points t ∈ R
d such

that |Eb(t)| = k for all b ∈ B. An edge ab ∈ A × B is called relevant if there
exists t ∈ X such that ab ∈ Eb(t). Let R(A,B) be the arrangement induced by
h(ab, a′b′), with both ab, a′b′ ∈ A × B relevant.

Proposition 2. Let A,B ⊂ R
d be finite point sets. The arrangement R(A,B)

is a lex-bottleneck diagram for A and B. Furthermore, there is a unique lex-
bottleneck matching for every point interior to a cell of this arrangement.

Proof. Note first that if E(t) contains a minimal set at t for all b ∈ B, then E(t)
contains a lex-bottleneck matching for B + t and A. Moreover, if |Eb(t)| = k for
all b ∈ B, then every bottleneck matching is contained in E(t).1

Observe that Eb(t1) = Eb(t2) for every pair of points t1, t2 interior to a
cell C of R(A,B), and that |Eb(t1)| = k, for all b ∈ B. Thus, any lex-bottleneck
matching for a point interior to C is contained in E(t1). Moreover, since the
lengths of the edges in E(t) are distinct and their ordering is the same for all t
interior to C, there is a unique way to label C.
1 Both claims will be implied by observations in the next section.
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Let t0 be a point in a lower-dimensional face c of R(A,B), and let C ⊃ c be
a cell. For continuity reasons, if t is interior to C, then Eb(t) is a minimal set
for b at t0, which implies that there is a lex-bottleneck matching for t0 in E(t).
Consequently, for every translation there is a lex-bottleneck matching using only
relevant edges. Since in the relative interior of every face of R(A,B), the order
(considering also the ties) of the lengths of the relevant edges is fixed, every face
can be labeled with a lex-bottleneck matching. 
�

The following result used in [3] will allow us to improve the bound of Propo-
sition 1 in low dimensions.

Lemma 1 ([3]). Let A ⊂ R
2 be a set of n points. There are O(nk) bisectors

that support all edges of j-th order Voronoi diagrams of A for all j ≤ k.

Theorem 1. Given A,B ⊂ R
2 (resp. A,B ⊂ R) with k = |B| ≤ |A| = n, there

is a lex-bottleneck diagram for A and B of complexity O(n2k6) (resp. O(nk3)).

Proof. Given a cell C of R(A,B), let E(C) denote E(t) for any point t interior
to C. We say that an edge e of R(A,B) between two cells Cl and Cr uses a
bisector h = h(ab, a′b′) if h supports e and ab, a′b′ ∈ E(Cl) ∪ E(Cr). As seen
in the proof of Proposition 2, there is a lex-bottleneck labeling of R(A,B) that
uses in every face c only edges from E(C) with C a cell containing c. Therefore,
if no edge uses a bisector h, then h can be omitted from R(A,B); the resulting
arrangement will still be a lex-bottleneck diagram.

Let h(ab, a′b) be a bisector used by an edge e = Cl ∩ Cr, and consider the
point set S(b) = A − b. Using that the locus of points in the plane at the same
distance from three different given points is either a point or the empty set, it
follows that for any point t interior to e only a − b and a′ − b are at distance
‖b + t − a‖ from t, and the set of points of S(b) closer than a − b is the same. In
addition, since ab and a′b are relevant, the aforementioned set has cardinality at
most k − 1. Thus, e must be supported by a j-th order Voronoi edge of S(b) for
some j ≤ k.

Let h(ab, a′b′) with b �= b′ be a bisector used by an edge e = Cl ∩ Cr,
and consider the point set S(b, b′) = (A − b) � (A − b′). Note that the previous
union is disjoint because of our general-position assumption. Simple algebraic
manipulations show that t ∈ R

2 is closer to a1 − b than to a2 − b′ if and only
if b + t is closer to a1 than b′ + t is to a2, for any choice of a1, a2 ∈ A. The
observation in the previous paragraph implies that for a point t in the relative
interior of e, the only points in S(b, b′) at distance ‖b + t − a‖ from t are a − b
and a′ − b′. In addition, since both edges are relevant, the (open) disk centered
at t0 and through a − b and a′ − b′ contains at most k − 1 points of A − b and at
most k − 1 points of A − b′. Thus, the bisector h(ab, a′b′) supports a j-th order
Voronoi edge of S(b, b′) for some j ≤ 2k − 1.

Applying Lemma 1 to S(b) for all b ∈ B and to S(b, b′) for every pair b, b′ ∈ B,
it follows that the number of bisectors that are used by some edge is O(k2 · nk).
The complexity of the arrangement of these bisectors is thus O(n2k6). We refer
henceforth to this arrangement as L(A,B).

The case of the line is proven analogously. 
�
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Based on a one-dimensional example of Rote [17], one may derive a lower
bound on the complexity of any lex-bottleneck diagram.

Proposition 3. Given k, n ∈ N with n ≥ k ≥ d, there exist point sets A,B ⊂ R
d

with |B| = k and |A| = n such that any lex-bottleneck diagram for A and B has
complexity Ω(kd(n − k)d).

3 Construction of Bottleneck Diagrams

We first discuss algorithmic techniques to construct an unlabeled bottleneck or
lex-bottleneck diagram for a pair of point sets in the plane.

Lemma 2. A lex-bottleneck diagram for any given pair of point sets A,B ⊂ R
2

with k = |B| ≤ |A| = n can be constructed in O(n2k6) time.

Proof. We construct the arrangement L(A,B) of bisectors supporting some edge
of the j-th order Voronoi diagram of S(b) for all b ∈ B and all j ≤ k, and the
bisectors supporting some edge of the j-th order Voronoi diagram of S(b, b′) for
all pairs b, b′ ∈ B and all j ≤ 2k − 1, as defined in the proof of Theorem 1. To
select the bisectors generated by each of these point sets, we use an algorithm by
Chan [7] that constructs the facial structure of the (≤s)-level of an arrangement
of m planes in R

3 in O(m log m+ms2) expected time or O(ms2(log m/ log s)O(1))
deterministic time. This requires O(m) space using the data structure in [1]. We
can thereby construct the O(k2) necessary structures and discover the bisectors
belonging to L(A,B). We then compute the arrangement of these O(nk3) lines
in O((nk3)2) time using, for instance, the incremental algorithm in [8]. 
�

Our aim is now to find a bottleneck labeling of L(A,B). The problem of
finding a bottleneck matching for a fixed position of B can be translated into a
matching problem in a weighted bipartite graph on A and B, where the weight of
an edge from a ∈ A to b ∈ B is the Euclidean distance between the corresponding
points. Therefore, we first introduce the necessary notation on bottleneck assign-
ments in bipartite graphs and discuss the known methods that are relevant for
our purposes.

Let G = (U, V ;E) be a bipartite graph with edge set E and vertex set
partitioned into components U and V of sizes k = |U | ≤ |V | = n. In this section,
the notion of matching in G will be relaxed to admit any set of pairwise-disjoint
edges σ ⊆ E. Given a matching σ, a vertex belonging to some edge of σ is called
a matched vertex. A matching is complete if all the vertices in U are matched.
An alternating path for σ is a path in G (with no repeated vertices) such that the
even edges are in σ and the odd ones are in E \ σ. An augmenting path for σ is
an alternating path starting and ending at non-matched vertices. Note that, if γ
is an augmenting path for σ, the matching τ = (σ \ γ) ∪ (γ \ σ) has one more
matched vertex than σ.

As in the geometric setting, we simplify notation by denoting the edge
{u, v} ∈ E by uv, and we identify a complete matching in G with the injec-
tion of U into V it induces. We assume that G is complete and that its edges
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have weights given by a function w : E → R≥0. For our purposes, there is no loss
of generality in assuming that the weights are integers, thus spending O(nk log n)
extra time, we could sort them and replace the weight of an edge by its position
in the sorted list. An injection π : U ↪→ V is called a bottleneck matching in G
with respect to w if

max
i∈U

w(iπ(i)) ≤ max
i∈U

w(iσ(i)),

for every injection σ : U ↪→ V .
The lexicographic bottleneck assignment problem was introduced by Burkard

and Rendl in [6]. Analogously to the geometric setting, the cost of a complete
matching π : U ↪→ V in this problem depends on the values w(uπ(u)) for
u ∈ U : a lexicographic-bottleneck matching in G with respect to w is an injection
minimizing the cost when the edge weights are compared lexicographically.

Given r ∈ [kn], we define G(r) to be the graph that remains after removing
the edges from G whose weight is not among the r smallest. An important
observation is that a complete matching σ in G(r) is bottleneck if and only if
G(r−1) has no complete matching.

We now assume that G is bipartite complete, and hence we know that it
contains a complete matching. Analogously to the geometric case, given u ∈ U ,
we say that a set Eu ⊆ {u} × V of k edges is a minimal set for u if no edge
in {u} × V \ Eu has weight smaller than an edge in Eu. Therefore, if a set
E ⊆ V × U contains a minimal set Eu for every u ∈ U , it must contain a
lexicographic-bottleneck matching. Indeed, if a matching uses an edge uv that is
not in Eu, this edge can be replaced by an edge of Eu, since at least one of these
edges is unmatched. The resulting matching has better or equal lexicographic
cost. We may restrict then the attention to a set of k2 edges, after sorting the
edges incident to each vertex in O(nk log n) time. For a graph with k2 edges
and whose matching of maximum cardinality is of size k, the Gabow-Tarjan
algorithm [13] finds a bottleneck matching in O(k2

√
k log k) time, according to

the analysis in [5]. A lexicographic-bottleneck assignment can be computed in
O(k4) time by combining the approach in [18] with the algorithm for the linear
sum assignment problem proposed in [16].

In order to find a bottleneck labeling of L(A,B) we will traverse it main-
taining relevant information to update the matching. To this end, we need some
insight into the dynamic behavior of bottleneck matchings. The following lemma,
whose proof must be postponed to a full version of this work, analyzes how a
bottleneck matching is affected by local changes.

Lemma 3. Let G = (U, V ;E,w) be a bipartite graph with w : E → [|E|] giving
weights to its edges. Let μ be a bottleneck matching for G, and let l ∈ E be the
longest edge of μ in G. For a fixed j ∈ [|E| − 1], let G′ = (U, V ;E,w′) where w′

coincides with w except that w′(e) = j if w(e) = j + 1 and w′(e′) = j + 1 if
w(e′) = j, for all e ∈ E.

1. If w(l) �∈ {j, j + 1}, then μ is a bottleneck matching for G′.
2. If w(l) ∈ {j, j + 1} and G′(j) does not have a complete matching, then μ is

a bottleneck matching for G′.
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3. If w(l) ∈ {j, j+1} and G′(j) has a complete matching ν, then ν is a bottleneck
matching for G′.

We are now ready to prove the main result of this section.

Theorem 2. Given A,B ⊂ R
2 with k = |B| ≤ |A| = n, a bottleneck diagram for

A and B (and a labeling of it) can be computed in O(n2k8) time and a (labeled)
lex-bottleneck diagram in O(n2k10) time.

Proof. We first construct the arrangement L(A,B) as in Lemma 2, making sure
that we remember for every selected line which are the two edges of A × B with
the same length on the line. We pick a point t interior to an arbitrary cell C of
L(A,B) and sort, for every b ∈ B, the values {‖b + t − a‖ : a ∈ A}. Then, we
construct the set E(t) of k2 edges, and the weight function w representing the
order of the edges in E(t) according to their lengths.

For the construction of a bottleneck labeling, we first find a bottleneck match-
ing μ in G = (A,B;E(t), w) in O(k2

√
k log k) time using the Gabow-Tarjan

algorithm. Since E(t) contains a minimal set for every point in B, the match-
ing will be bottleneck for the complete graph as well. We then traverse L(A,B)
maintaining the graph G for a point t interior to the current cell and μ as a
bottleneck matching for G. More precisely, when a bisector of L(A,B) involving
edges e1 = ab and e2 = a′b with e2 ∈ E(t), e1 �∈ E(t) is traversed, we replace
e2 with e1 (weighted by w(e2)) in G. In the other cases, we only need to swap
the weights of the corresponding edges if both belong to E(t). We update the
bottleneck matching as indicated in Lemma 3. In order to do so, we might need
to check whether the “new” G(j) has a complete matching for the correspond-
ing j ∈ [k2]. Note that, if e is the edge increasing its length and μ is an “old”
bottleneck matching, μ \ e is a matching in the new G(j) of size at least k − 1.
If its size is k − 1, Berge’s lemma [4] ensures that there is a complete matching
in G(j) if and only if there is an augmenting path for μ \ e in G(j), which can
be checked in O(k2) time. Note that, even under our general-position assump-
tion, the bisectors of several different pairs of edges might coincide supporting
a single edge of L(A,B). Fortunately, such multiple edges can be handled by
sequentially performing simple updates as described above. In addition, if one
looks into the proof of Lemma 1 based on the Clarkson-Shor technique [9], it is
clear that the bound holds even if the bisectors are counted with multiplicities
(i.e., if the bisectors defined by m pairs of points happen to coincide, the line is
counted m times). This works because the bound used for the number of bisec-
tors contributing to a Voronoi diagram is actually a bound for its number of
edges. Therefore, the bound of O(n2k6) on the complexity of L(A,B) holds even
if the coincident bisectors are infinitesimally perturbed to be parallel, distinct
lines. Since the number of simple updates is bounded by the number of edges in
this perturbed arrangement, the traversal requires O(k2 · n2k6) time.

For the lex-bottleneck labeling, we attain the claimed bound by maintaining
the graph G as before and computing a label from scratch in every face (where
w might need to be modified in order to indicate ties) of L(A,B) in O(k4) time
as noted before. 
�



Bottleneck Partial-Matching Voronoi Diagrams and Applications 723

In higher dimensions, the bounds on the complexity of the arrangement
L(A,B) and on the running time for its construction resulting from extending
our results in the plane are not better than the simpler approach of constructing
and labeling H(A,B). Our algorithms can be adapted without difficulties to this
end, leading to the following result.

Theorem 3. Let A,B ⊂ R
d be two point sets with k = |B| ≤ |A| = n. There is

a lex-bottleneck diagram of complexity O(n2dk2d). A bottleneck labeling for this
diagram can be computed in O(n2dk2d+2) time, and a lex-bottleneck labeling in
O(n2dk2d+4) time.

4 Applications

We conclude our investigations by discussing applications of bottleneck dia-
grams. For convenience of presentation, we restrict ourselves to problems in
the plane.

A bottleneck diagram for point sets A and B is a useful tool to solve the
bottleneck partial-matching problem and provide, in addition, the translation
minimizing the distance. More precisely, we will find a translation t∗ ∈ R

2 and
an injection π : B ↪→ A such that E(t∗) = mint∈R2 E(t) = fπ(t∗).

Corollary 1. The bottleneck partial-matching problem for point sets A,B ⊂ R
2

with k = |B| ≤ |A| = n can be solved in O(n2k8) time.

Proof. We first construct L(A,B) and a labeling for it in time O(n2k8) as
described in the proof of Theorem 2. We then traverse the arrangement optimiz-
ing the function f(t) = ‖b + t − a‖2 in every (convex) cell keeping the minimum
throughout the diagram, where ab is the longest edge of the bottleneck match-
ing that labels the current cell. Let C be a cell in L(A,B) and let t0 = a − b
be the global minimum of the function f(t). If t0 ∈ C, obviously f(t0) = 0 is
the global minimum we are after. Otherwise, the minimum is attained at the
intersection of an edge of the cell with the line perpendicular to it through t0
(if it is non-empty) or at a vertex of C. Note that during the traversal every
edge will be examined twice and every vertex once for every cell containing it.
Thus, the total time needed to perform the mentioned optimization in every cell
is proportional to the complexity of the diagram. 
�

We consider now the problem of finding a motion for B from an initial posi-
tion to a final position such that the maximum bottleneck value (as defined
in Definition 1) attained during the motion is minimized.

Definition 6. The bottleneck value of a curve γ : [0, 1] → R
2 with respect to

point sets A,B ⊂ R
2 with k = |B| ≤ |A| = n is

F (γ) = max
s∈[0,1]

E(γ(s)) = max
s∈[0,1]

min
σ:B↪→A

max
b∈B

‖b + γ(s) − σ(b)‖2.

The curve γ is a called a bottleneck path if F (γ) ≤ F (ϕ) for every other curve
ϕ : [0, 1] → R

2 with ϕ(0) = γ(0) and ϕ(1) = γ(1).
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A bottleneck path between two positions can be useful in motion planning
where the points of A represent fixed anchor points and the points of B represent
the position of articulations of a moving robot. The dual graph of the arrange-
ment L(A,B) contains the necessary information to compute a bottleneck path
from any initial position to any final position.

Definition 7. The bottleneck graph of two finite point sets A,B ⊂ R
2 is the

weighted graph L(A,B)∗ dual to L(A,B), where an edge e∗ of the graph dual to
an edge e of L(A,B) has weight mint∈e E(t).

Via the bottleneck graph we can now characterize the existence of a path of
given bottleneck value.

Lemma 4. Let t0, t1 ∈ R
2 and δ ∈ R. Let C0 and C1 be cells of L(A,B) such

that t0 ∈ C0 and t1 ∈ C1. There is a path with bottleneck value at most δ from t0
to t1 if and only if E(t0), E(t1) ≤ δ and there is a path from C∗

0 to C∗
1 in L(A,B)∗

whose longest edge has weight at most δ.

Proof. Observe that in every cell of L(A,B) there is a bottleneck matching whose
cost coincides with E in the cell. By definition, E is a convex function in every
such (convex) cell. Hence, assuming that C0 = C1, the line segment joining t0
and t1 has bottleneck value max{E(t0), E(t1)} and no path can attain a smaller
value. We assume now that C0 �= C1 and let γ be any path from t0 to t1. We
can replace each of the connected arcs of γ entering a cell C of L(A,B) in a
point tin and leaving it in a point tout by the line segment joining these two
points without increasing the bottleneck value of the path. Again, we do not
increase the bottleneck value of the path when we substitute this line segment
by the one joining the points t∗in and t∗out, where t∗in is the point with minimum
bottleneck value on the edge of C that contains tin, and t∗out is the one attaining
the minimum value on the edge containing tout. Similarly, the parts of the path
in C0 and C1, starting at t0 and ending at t1, respectively, can be replaced with
the line segment from t0 (or t1) to the point attaining the minimum of E on
whichever edge of C0 (or C1) the path crosses first (or last).

The previous observations imply that a bottleneck path is among the polyg-
onal paths whose vertices (except for t0 and t1) lie on the minima of E along
edges of L(A,B). The bottleneck value of such a path is the maximum of the
weights of the edges in the corresponding path in L(A,B)∗ and the values E(t0)
and E(t1). 
�
Theorem 4. Given t0, t1 ∈ R

2, a bottleneck path from t0 to t1 with respect to
A,B ⊂ R

2 with k = |B| ≤ |A| = n can be computed in time O(n2k6(k2 +log n)).

Proof. We first compute the arrangement L(A,B) and the associated bottle-
neck graph L(A,B)∗ in time O(n2k8) by Theorem 2. The number of edges and
vertices of L(A,B)∗ is O(n2k6) due to Theorem 1 and the weights of its edges
are all nonnegative. Therefore, the path with minimum bottleneck value in the
graph can be found in O(n2k6 log n) time via the implementation of Dijkstra’s
algorithm using heaps. By Lemma 4, the associated polygonal path is guaran-
teed to be a bottleneck path from t0 to t1. 
�
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Abstract. The linear-time ham-sandwich cut algorithm of Lo, Matoušek,
and Steiger for bi-chromatic finite point sets in the plane works by appro-
priately selecting crossings of the lines in the dual line arrangement with
a set of well-chosen vertical lines. We consider the setting where we are
not given the coordinates of the point set, but only the orientation of each
point triple (the order type) and give a deterministic linear-time algorithm
for the mentioned sub-algorithm. This yields a linear-time ham-sandwich
cut algorithm even in our restricted setting. We also show that our meth-
ods are applicable to abstract order types.

1 Introduction

Goodman and Pollack investigated ways of partitioning the infinite number of
point sets in the plane into a finite number of equivalence classes. To this end
they introduced circular sequences [13] and order types [14]. Two point sets S1

and S2 have the same order type iff there exists a bijection between the sets s.t.
a triple in S1 has the same orientation (clockwise or counterclockwise) as the
corresponding triple in S2 (in this paper we only consider point sets in general
position, i.e., no three points are collinear).

The order type determines many important properties of a point set, e.g.,
its convex hull and which spanned segments cross. Determining the orientation
of a point triple (called a sidedness query) can be done in a computationally
robust way [4]. Therefore, algorithms that base their decisions solely on sidedness
queries allow robust implementations [6]. Furthermore, this restriction is helpful
for mechanically proving correctness of algorithms [23,24].

The duality between point sets and their dual line arrangements is a well-
established tool in discrete and computational geometry. Line arrangements can
be generalized to pseudo-line arrangements, and many combinatorial and algo-
rithmic questions that can be asked for line arrangements are also interesting
for pseudo-line arrangements. The order type of a point set is encoded in the
structure of the dual line arrangement of a point set, in particular by the lines
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(and even by the number of lines [14]) above and below a crossing in the dual
arrangement. See [16] for an in-depth treatment of that topic. The orientation
of a triple of pseudo-lines can be obtained from the ordering of crossings just
as for lines. The triple-orientations fulfill certain axioms, and concepts like the
convex hull can be defined for sets with appropriate triple-orientations [17] even
though they may not be realizable by a point set. Such a generalization of order
types is known as abstract order type. Besides their combinatorial properties,
algorithmic aspects of abstract order types have been studied. Knuth devotes a
monograph [17] to this generalization and its variants, in particular w.r.t. convex
hulls. Motivated by Knuth’s open problems, Aichholzer, Miltzow, and Pilz [3]
show how to obtain, for a given pair (a, b) of an abstract order type, the edges
of the convex hull that are intersected by the supporting line of ab in linear
time, using only sidedness queries. There appears to be no known reasonable
algorithmic problem that can be formulated for both order types and abstract
order types such that there is an algorithm for order types that is asymptoti-
cally faster than any possible algorithm for abstract order types (see also the
discussion in [11, p. 29]). In this paper, we show that the ham-sandwich cut is
another problem that does not provide such an example. Apart from being of
theoretical interest, abstract order types that are not realizable by point sets
occur naturally when the point set is surrounded by a simple polygon and point
triples are oriented w.r.t. the geodesics between them [2].

Given a pair (a, b) of points of a bi-chromatic point set S of n points that
are either red or blue, the supporting line of a and b is a ham-sandwich cut
if not more than half of the red and half of the blue points are on either side
of ab. This can be verified by using only sidedness queries (implying a brute-
force algorithm running in Θ(n3) time). Megiddo [22] presented a linear-time
algorithm for the case in which the points of one color are separable from the
points of the other color by a line. Edelsbrunner and Waupotitsch [10] gave an
O(n log(min{nr, nb})) time algorithm for the general case, with nr red and nb

blue points. Eventually, a linear-time algorithm was provided by Lo, Matoušek,
and Steiger [18] for the general setting (abbrev. LMS algorithm). Their approach
generalizes to arbitrary dimensions. Bose et al. [7] generalize ham-sandwich cuts
to points inside a simple polygon, obtaining a randomized O((n+m) log r) time
algorithm, where m is the number of vertices of the polygon, of which r are reflex.
Ham-sandwich cuts belong to a class of problems in computational geometry
that deal with partitioning finite sets of points by hyperplanes while imposing
constraints on both the subsets of the partition as well as on the hyperplanes;
see, e.g., [26] for algorithms for related problems.

The LMS algorithm works on the dual line arrangement of the point set and
has to solve the following sub-problem.

Problem 1. Given a line arrangement A in the plane and two lines p and q of
that arrangement, let v be the vertical line passing through the crossing of p
and q. For a subset B of the lines in A and an integer k ≤ |B|, find a line m ∈ B
such that the y-coordinate of the point v ∩ m is of rank k in the sequence of
y-coordinates of the finite point set v ∩ ⋃

b∈B b.
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Fig. 1. Crossings along a vertical line

This problem can be solved in
linear time by directly applying the
linear-time selection algorithm [5] to
the y-coordinates of the intersections
of all lines in B with v. Clearly, the
order of the intersections of lines with
a vertical line at a crossing is not
a property of the order type repre-
sented by the arrangement (e.g., in
Fig. 1, one could change the order of
the lines 2 and 4 above the crossing
between line 5 and line 6). The order
type only determines the set of lines
above and below a crossing.

A reformulation of Problem 1 for abstract order types faces two problems.
First, the vertical direction is not determined by the order type; there is, in gen-
eral, an exponential number of different ways to draw a pseudo-line arrangement
representing the abstract order type (w.r.t. the x-order of crossings), yielding
too many different orders of the pseudo-lines along the vertical line through a
crossing. Second, even when such a vertical line is given, directly applying the
linear-time selection algorithm requires that a query comparing the order of two
pseudo-lines on the vertical line can be answered in constant time.

In this paper, we show how to overcome these two problems. We define a
“vertical” pseudo-line through each crossing in a pseudo-line arrangement and
show how to select the pseudo-line of a given rank in the order defined by such
a “vertical” pseudo-line. We give the precise definition in Section 2 where we
also examine properties of the construction. The result is presented in terms of a
(dual) pseudo-line arrangement in the Euclidean plane E2. However, in our model
we are not given an explicit representation but are only allowed sidedness queries.
In Section 3, we first explain how the queries about a pseudo-line arrangement
can be mapped to sidedness queries, and then give a linear-time algorithm for
selecting a pseudo-line with a given rank. Our result allows for replacing vertical
lines in the LMS algorithm, showing that it also works for abstract order types.
An analysis of the LMS algorithm under this aspect and all omitted proofs are
given in the full version of this paper.

The observation that the LMS algorithm in principle also works for pseudo-
line arrangements has been used by Bose et al. [7] for their randomized linear-
time algorithm for geodesic ham-sandwich cuts. However, their pseudo-lines are
given by (weakly) x-monotone polygonal paths with a constant number of edges.
Hence, the intersection of such a path with a vertical line can be computed in
constant time, like in the straight-line setting. Their randomized algorithm runs
in O((n+m) log r) time, where n is the number of red and blue points, m is the
number of vertices of the polygon, of which r are reflex. Geodesic order types
are a subset of abstract order types [2]. When applying a result from [1] to get,
after O(m) preprocessing time, the orientation of each triple of points in a simple
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polygon in O(log r) time in combination with the ham-sandwich cut algorithm
for abstract order types, we obtain a deterministic O(n log r+m) time algorithm
for geodesic ham-sandwich cuts “for free”. (Note that this does not contradict
optimal worst-case behavior shown by Bose et al. [7] for their algorithm, as their
analysis is parameterized by (n + m) and r.)

A pseudo-line is an x-monotone plane curve in E
2. A pseudo-line arrangement

is the cell complex defined by the dissection of E2 by a set of pseudo-lines such
that each pair of pseudo-lines intersects in exactly one point, at which they cross.
An arrangement is simple if no three pseudo-lines intersect in the same point.
Let A be a simple arrangement of n pseudo-lines. The two vertically unbounded
cells in A are called the north face and the south face. The k-level of A is the
set of all points that lie on a pseudo-line of A and have exactly k − 1 pseudo-
lines strictly above them. The level of a crossing pq is denoted by lv(pq). The
upper envelope of an arrangement is its 1-level, i.e., the union of the segments
of pseudo-lines that are incident to the north face.

2 Pseudo-Verticals

It will be convenient to consider all pseudo-lines being directed towards positive
x-direction. Let p and q be two pseudo-lines in A and let p start above q. We
denote the latter by p ≺ q. Our first aim is to define a pseudo-vertical through
a crossing, i.e, an object that can be used like a vertical line through a crossing
in our abstract setting.

For a crossing pq with p ≺ q let γpq be a curve described by the following
local properties. Initially, γpq passes through the crossing pq and enters the cell C
directly above pq; see Fig. 2 (a). To define γpq it is convenient to think of it as
consisting of two parts. The northbound ray is the part starting at pq leading to
the north face while the southbound ray connects pq to the south face. Starting
from pq the northbound ray follows p against its direction moved slightly into the
interior of cell C. In general the northbound ray of γpq will be slightly above some
line ai moving against the direction of ai. When ai is crossed by a pseudo-line aj

we have two cases. If ai is crossed from below, γpq also crosses aj , and continues
following ai; see Fig. 2 (b). If ai is crossed by aj from above, γpq leaves ai and
continues following aj against its direction; see Fig. 2 (c). This is continued until
γpq follows some line ai and there is no further crossing on ai ahead (i.e., to the
left). At that point, the northbound ray moves to the line at infinity and follows
that line to the north face (i.e., it crosses all lines a with a ≺ ai in decreasing
≺-order). The southbound ray of γpq is defined in a similar manner. It follows
some pseudo-lines in their direction but slightly below. It starts with p and when
following ai it changes to aj at a crossing only when aj is crossing from above
(see Fig. 2 (d) and Fig. 2 (e)). The final part may again consist of some crossings
with lines a with a ≺ ai in decreasing ≺-order.

We call γpq a pseudo-vertical and, in the following, identify several proper-
ties of such a curve. Note that, while we used the (rather informal) notion of
“following” a pseudo-line, γpq is actually defined by the cells it traverses (i.e.,
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Fig. 2. Local definition of a pseudo-vertical γpq
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Fig. 3. A pseudo-vertical γpq in a pseudo-line arrangement

two paths in the dual graph of the cell complex starting at the cells above and
below pq). As γpq always follows a pseudo-line of A or continues in a vertical
direction, we note that γpq is x-monotone.

Observation 1. The number of pseudo-lines above a point moving along γpq in
positive x-direction is a monotone function, it increases at every crossing of γpq

with a pseudo-line of A.

Lemma 1. For any crossing pq in a pseudo-line arrangement A, the curve γpq

is a pseudo-line such that A can be extended by γpq to a new (non-simple) pseudo-
line arrangement.

We say that pseudo-line a is above a crossing pq if a is intersected by the
northbound ray of γpq. If a is intersected by the southbound ray of γpq it is
considered to be below pq. (Note that this is equivalent to a separating pq from
the north face or the south face, respectively.) Just like a vertical line in a line
arrangement, a pseudo-vertical defines a total order on the pseudo-lines of A by
the order it crosses them. We denote the rank of a pseudo-line m ∈ A in this
order by rkpq(m). The following lemma shows how we can determine the rank
of an element.

Let L(pq) be the set of pseudo-lines in A such that each a ∈ L(pq) is below
pq and a ≺ p.

Lemma 2. The northbound ray of γpq starting from the crossing pq until reach-
ing an unbounded cell for the first time, follows the upper envelope of the sub-
arrangement defined by L(pq) ∪ {p}.

Note that every pseudo-line that passes through the upper envelope (from
below) will cross γpq immediately after that crossing.
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Corollary 1. Let m be a pseudo-line in A that is above pq and for which there
exists a pseudo-line a ∈ L(pq) ∪ {p} such that a ≺ m, i.e., m crosses the upper
envelope of L(pq) ∪ {p} by crossing some e ∈ L(pq) ∪ {p} with e ≺ m. Then the
rank rkpq(m) equals the number of pseudo-lines above the crossing of e and m.

If m does not intersect the upper envelope of L(pq) ∪ {p} at some point in
negative x-direction of pq, it crosses q before crossing any of the pseudo-lines
of L(pq). Therefore, we observe:

Observation 2. If a pseudo-line m starts above every pseudo-line in L(pq),
then the rank of m along γpq is given by the number of pseudo-lines starting
above m increased by 1, i.e., |{a ∈ A : a ≺ m}| + 1.

Given two different crossings pq and rs in A, it is easy to see that γpq and
γrs may follow the same part of a pseudo-line. Nevertheless, one can show that
γpq and γrs will never intersect when drawn appropriately.

Lemma 3. The set of pseudo-verticals for all crossings of a pseudo-line arrange-
ment A can be drawn such that no two pseudo-verticals intersect.

An augmentation of A with a complete collection of non-intersecting pseudo-
verticals defines a total order on the vertices in the arrangement (cf. the notion
of “P -augmentation” in [15]). Given an arrangement of lines, Edelsbrunner and
Guibas [8,9] define a topological sweep as a sweep of an arrangement of lines with
a moving curve that intersects each line exactly once. The topological sweep has
been generalized to pseudo-line arrangements by Snoeyink and Hershberger [27].
At any point in time during the sweep, the sweeping curve may pass over at least
one crossing of the arrangement, maintaining the property that it intersects each
line exactly once. However, in contrast to a straight vertical line, there can be
several crossings that may be passed next by the sweep curve. It can be observed
that we obtain the order of crossings determined by the pseudo-verticals by
always sweeping over the lowest-possible crossing in a topological sweep.

Lemma 4. The relative order of two pseudo-verticals can be obtained by a linear
number of sidedness queries and queries of the form a ≺ b.

3 Linear-Time Pseudo-Line Selection

We now discuss algorithmic properties of pseudo-verticals. For the definition of
pseudo-verticals and rank we assumed full knowledge about A. The next task
will be to make the notions accessible in the setting where we can only query
the abstract order type through an oracle. At the end we aim at using the oracle
to select a pseudo-line of given rank w.r.t. a pseudo-vertical in O(n) time.
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3.1 An Oracle for an Arrangement

Let P be a predicate representing an abstract order type on a set S as a coun-
terclockwise oracle, i.e., if there is a primal point set for S then P (x, y, z) tells us
whether the three points form a counterclockwise oriented triangle or not, in the
general setting P represents a chirotope. From [3] we borrow a linear-time proce-
dure to determine an extreme point x of S using only queries to P . We then use
the following internal representation: For all a ∈ S \ {x}, we define that x ≺ a.
For two points a, a′ ∈ S \{x}, we define that a ≺ a′ if and only if P (x, a, a′), i.e.,
in the arrangement the crossing ax precedes a′x on x. For two points p, q ∈ S
with p ≺ q, the dual pseudo-line r is below the crossing pq if and only if P (p, q, r).
Hence, for three points u, v, w ∈ S \ {x}, the dual line r is below the crossing
defined by the (unordered) pair (u, v) if and only if P (u, v, w) = P (u, v, x), i.e.,
above/below queries for the arrangement of pseudo-lines corresponding to P can
be answered in constant time. Note that a constant number of these queries also
specify whether the crossing ap precedes the crossing bp on p.

Our linear-time rank selection algorithm will depend on removing a linear
fraction of the pseudo-lines in each iteration. However, the procedure must not
remove the extreme point x, to keep the sub-arrangements consistent with the
full arrangement.

3.2 Selecting a Pseudo-Line

For a given k, we want to select the pseudo-line m of rank k along γpq. For a
subset B of pseudo-lines and m ∈ B, we denote with rkpq(m,B) the rank of m
within B on γpq.

In the straight-line version, a linear-time selection algorithm can be used to
find an element of rank k in O(n) time. This relies on the fact that the relative
position of two lines can be computed in constant time. Comparing rkpq(s) and
rkpq(r) in the abstract setting can be reduced to deciding whether the crossing rs
is below some pseudo-line a ∈ L(pq) ∪ {p}. Doing this naively results in a linear
number of queries and hence we get a selection algorithm with Ω(n2) worst-case
behavior. We therefore need a more sophisticated method.

Let m be the (unknown) pseudo-line of rank k within B. We use a prune-
and-search approach to identify m. By counting the elements of B above pq, we
determine whether m is above or below pq (using O(n) queries). Without loss
of generality, assume m is above pq (the other case is symmetric) and let U be
the set of pseudo-lines above pq. Since removing pseudo-lines from U does not
change the structure of the northbound part of γpq, we can restrict attention to
UB = U ∩ B. We can also ignore (remove) pseudo-lines below pq that are not in
L(pq), i.e., each pseudo-line l below pq such that p ≺ l.

As a next step, we can, in linear time, verify whether m starts above all
pseudo-lines in L(pq) ∪ {p}. If this is the case, the rank of m is determined
by the order in which the pseudo-lines start, and we can apply the standard
selection algorithm using this order (recall Observation 2).
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We are therefore left with the case where m starts below some element a ∈
L(pq) ∪ {p}. By Corollary 1, we know that we have to find the pseudo-line e
where m crosses the upper envelope of L(pq) ∪ {p} (recall that we have e ≺ m).

Basically, the algorithm continues as follows. We alternatingly remove ele-
ments in UB and L(pq) such that the pseudo-lines e and m remain in the respec-
tive set until we are left with only a constant number of pseudo-lines in the
arrangement. We describe these two pruning steps in two versions, first in a
randomized version and after that in a deterministic version. In particular the
pruning of UB turns out to be much simpler in the randomized version.

Randomized Pruning. We first show how to remove pseudo-lines from UB:
Pick uniformly at random a pseudo-line u ∈ UB . In time proportional to the size
of L(pq) we find the last a ∈ L(pq) ∪ {p} crossed by u. Since the crossing of u
with γpq is immediately after the crossing with a we can use the crossing ua to
split UB into elements of rank less than rkpq(u,UB) and elements of larger rank.
One of the two sets can be pruned.

Now we turn to removing pseudo-lines from L(pq): One approach is to con-
sider the k-level σ in the sub-arrangement induced by UB. We observe that no
element of L(pq) can cross σ from below before σ crosses the upper envelope
of L(pq) ∪ {p}, as such a pseudo-line of L(pq) would have to cross that element
of UB again before pq. All pseudo-lines in L(pq) that start below σ can there-
fore be pruned. Among the remaining elements of L(pq), the crossings with σ
define a total order. From the remaining elements, pick, uniformly at random, a
pseudo-line b ∈ L(pq) and select (in O(n) time) the pseudo-line m′ ∈ UB where
b crosses σ. We know that m′ is unique for the choice of b. We may prune all
elements b′ ∈ L(pq) that are below bm′, as no element of L(pq) can cross σ more
than once, and hence, no such b′ can be e (the pseudo-line where m leaves the
upper envelope of L(pq) ∪ {p}). The total order on the remaining elements in
L(pq) implies that we can expect half of the elements to be pruned.

With the target of obtaining a deterministic version of our algorithm in mind,
we describe the following alternative variant for pruning L(pq). Suppose we are
given any crossing vw, with v, w ∈ L(pq) and v ≺ w, on the upper envelope of
L(pq)∪{p}; see Fig. 4. Let lv(vw) be the number of pseudo-lines of UB above the
crossing vw. Depending on the value of lv(vw), we remove the pseudo-lines of
L(pq) that cannot be on the part of the upper envelope that contains the crossing
with m: On p consider the crossings vp and wp. Elements of L(pq) that contribute
to the upper envelope between vw and pq cross p after wp. Similarly, elements of
L(pq) that contribute to the upper envelope between the north face and vw cross
p before vp. Hence, depending on lv(vw), we can remove either the pseudo-lines
in L(pq) that cross p before wp or after vp. It remains to choose vw to prune
enough points. The median t of the intersections of pseudo-lines from L(pq) with
p can be found with a linear number of queries (even deterministically). Based
on t, we partition L(pq) into the left part L and the right part R. Find the
≺-minimal element r� of R and remove all elements l ∈ L with r� ≺ l. The
removed elements do not contribute to the upper envelope of L(pq) ∪ {p}. If all
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elements of L are removed by that, we are done. Otherwise, we want to find the
unique crossing vw of a pseudo-line v ∈ L and a pseudo-line w ∈ R on the upper
envelope of L(pq). Observe that, in the primal, vw corresponds to an edge of the
convex hull of L(pq) ∪ {p} that is stabbed by the supporting line of pt. Finding
vw in linear time is described in [3]. For the sake of self-containment, we give a
description of the randomized variant of that algorithm in terms of calls to our
oracle. We start by picking, uniformly at random, a pseudo-line r ∈ R and then
determine the last crossing rl with a pseudo-line from L on r. It can be argued
that every pseudo-line r′ ∈ R whose crossing with l is behind the crossing rl
fails to be a candidate for w and can hence be removed (we give a proof in the
full version). We expect to remove half of the pseudo-lines from R through this.
A symmetric step can be used to reduce the size of L. By always applying the
reduction to the larger of the two we obtain a procedure that outputs the pair vw
with expected O(|L(pq)|) queries. Next we determine which elements of UB are
above and which below vw. From this we deduce whether the element m ∈ UB

with rkpq(m,UB) = k intersects γpq in the part where it follows the envelope of
L or where it follows the envelope of R. Depending on this we can either prune
L or R from L(pq). The analysis of the randomized approach (given in the full
version) shows that the expected number of queries is in O(n).

vw

pqt
v

w

Fig. 4. Partitioning the pseudo-lines in L(pq) along p by a pseudo-line t

Note that, by removing pseudo-lines from L(pq), we obtain a new arrange-
ment A′, in which the pseudo-vertical γpq will, in general, follow different pseudo-
lines from L(pq) along its northbound ray. Still, the number of pseudo-lines above
the crossing em that we look for remains the same, and m will have the same
rank with respect to the new pseudo-vertical γ′

pq in A′.

Deterministic Pruning. To remove pseudo-lines from L(pq) deterministi-
cally, we can directly apply the deterministic algorithm given in [3] to find vw
after O(n) queries.
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Recall that to remove elements of UB , we pick a pseudo-line u ∈ UB . We
compute the rank rkpq(u,B) by finding the corresponding pseudo-line b ∈ L(pq)∪
{p} at which u passes through the upper envelope of L(pq) ∪ {p}. Clearly, this
can be done in linear time using our basic operations. If u = m, we are done. If
rkpq(u,B) < k, then all pseudo-lines in UB below bu can be removed (we will see
how to choose u to remove a constant fraction of the pseudo-lines). Otherwise,
we remove all pseudo-lines in UB above bu and update k accordingly. While by
this operation we obtain a new arrangement A′, the northbound ray of γpq in A′

is defined by the same pseudo-lines as in A, and we can therefore safely continue
with the next iteration. It remains to show how to pick u in a deterministic way
such that at least a constant fraction of UB can be removed. To this end, we use
the concept of ε-approximation of range spaces.

Our definitions follow [20]. A range space is a pair Σ = (X,R) where X is a
set and R is a set of subsets of X. The elements of R are called ranges. For X
being finite, a subset A ⊆ X is an ε-approximation for Σ if, for every range R ∈
R, we have |(|A ∩ R|/|A| − |X ∩ R|/|X|)| ≤ ε. A subset Y of X is shattered by R
if every possible subset of Y is a range of Y . The Vapnik-Chervonenkis dimension
(VC-dimension) of Σ is the maximum size of a shattered subset of X. For |X| =
n, the shatter function πR(n) of a range space (X,R) is defined by πR(n) =
max{|{Y ∩ R : R ∈ R}| : Y ⊆ X}. Vapnik and Chervonenkis [28] show that, for
a range space (X, R) of VC-dimension d, πR(n) ∈ O(nd) holds. Matoušek [19,21]
gives, for a constant ε, a linear-time algorithm for computing a constant-size ε-
approximation for range spaces of finite VC-dimension d, provided there exists a
subspace oracle. A subspace oracle for a range space (X,R) is an algorithm that
returns, for a given subset Y ⊆ X, the set of all distinct intersections of Y with
the ranges in R, i.e., the set {Y ∩R : R ∈ R} and runs in time O(|Y |·h), where h
is the number of sets returned. Observe that, for such a range space, the running
time of the subspace oracle is bounded by O(|Y |d+1), as h is at most πR(|Y |).
Let X be a point set and let R consist of all possible subsets of X defined by
half-planes (i.e., R is the set of semispaces of X). The VC-dimension of (X, R)
is known to be 3 [20]. We therefore have a constant-size ε-approximation for X.
A subspace oracle returns, for any subset Y of points, all possible ways a line
can separate Y , which can easily be done in time O(|Y |3). The VC-dimension
of 3 for that range space holds also for abstract order types (see also [12]).

Consider again the set UB of pseudo-lines above the crossing pq in A. We
obtain an ε-approximation A ⊂ U for the range space of semispaces. A is of
constant size for a fixed ε. For each pseudo-line o ∈ A, we obtain the crossing
of o with the pseudo-lines in L(pq) that defines the rank rkpq(o) in O(n) time.
Let uA ∈ A have the median rank among the elements of A. Then not less than
1/2 − ε pseudo-lines of U are above and below the crossing buA on the upper
envelope of L(pq); we may prune a constant fraction of the elements in UB.

Analysis. In each iteration we prune the larger of U and L(pq). In both cases,
we remove at least half of the pseudo-lines on one side of pq, and therefore
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n/4 − O(1) pseudo-lines in each iteration. Since each iteration takes O(n) time,
we have overall a linear-time prune-and-search algorithm.

Theorem 1. Given an arrangement A of pseudo-lines, a subset B of its pseudo-
lines, a crossing pq, and a natural number k ≤ |B|, the pseudo-line m ∈ B of
rank k in B on the pseudo-vertical through pq, i.e., rkpq(m,B), can be found in
linear time using only sidedness queries.

A detailed analysis of the LMS algorithm (given in the full version) reveals
that selecting an intersection point at a vertical line is the only part of the
algorithm that cannot directly be implemented using only sidedness queries.

Compared to L(pq), pruning UB deterministically required the technically
involved step of selecting an ε-approximation. Is there a more “light-weight”
deterministic way to prune UB , similar to the one used for L(pq)?
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Abstract. Flows over time are used to model many real-world logistic
and routing problems. The networks underlying such problems – streets,
tracks, etc. – are inherently undirected and directions are only imposed
on them to reduce the danger of colliding vehicles and similar problems.
Thus the question arises, what influence the orientation of the network
has on the network flow over time problem that is being solved on the
oriented network. In the literature, this is also referred to as the con-
traflow or lane reversal problem.

We introduce and analyze the price of orientation: How much flow is
lost in any orientation of the network if the time horizon remains fixed?
We prove that there is always an orientation where we can still send 1

3
of

the flow and this bound is tight. For the special case of networks with a
single source or sink, this fraction is 1

2
which is again tight. We present

more results of similar flavor and also show non-approximability results
for finding the best orientation for single and multicommodity maximum
flows over time.

1 Introduction

Robbins [13] studied the problem of orienting streets as early as 1939, motivated
by the problem of controlling congestion by making streets of a city one-way
during the weekend. He showed that a strongly connected digraph could be
obtained by orienting the edges of an undirected graph if and only if it is 2-edge
connected.

The problem of prescribing or changing the direction of road lanes is a strategy
employed to mitigate congestion during an emergency situation or at rush hour.
This is called a contraflow problem (or sometimes reversible flow or lane reversal
problem). Contraflows are an important tool for hurricane evacuation [18], and
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in that context the importance of modeling time has become prevalent in the
past decade [19]. It is also employed to handle traffic during rush hours [6].

Flows over time (also referred to as dynamic flows) have been introduced by
Ford and Fulkerson [4] and extend the classic notion of static network flows.
They can model a time aspect and are therefore better suited to represent real-
world phenomena such as traffic, production flows or evacuations. For the latter,
quickest flows (over time) are the model of choice. They are based on the idea
that a given number of individuals should leave a dangerous area as quickly as
possible [1,3]. Such an evacuation scenario is modeled by a network, with nodes
representing locations. Nodes containing evacuees are denoted as sources while
the network’s sinks model safe areas or exits. For networks with multiple sources
and sinks, quickest flows are also referred to as quickest transshipments [9] and
the problem of computing them is called an evacuation problem [15]. A strongly
polynomial algorithm for the quickest flow problem was described in [8]. For a
more extensive introduction to flows over time, see [14].

In this paper, we are interested in combining the orientation of a network with
flows over time – we want to orient the network such that the orientation is as
beneficial as possible for the flow over time problem. We will assume that we can
orient edges in the beginning, and cannot change the orientation afterwards. The
assumption is reasonable in an evacuation setting as altering the orientation in
the middle of an evacuation process can be difficult or even infeasible, depending
on the resources available. We also assume that each edge has to be routed
completely in one direction – but this will not impose any restriction to our
modeling abilities, as we can model lanes with parallel edges if we want to orient
them individually.

If there is only a single source and sink, we can apply the algorithm of Ford and
Fulkerson [4] to obtain an orientation and a solution. Furthermore, it was shown
that finding the best orientation for a quickest flow problem with multiple sources
and sinks is NP-hard [10,12]. Due to the hardness of the problem, heuristic and
simulation tools are predominantly used in practice [10,16–18].
Our Contribution. In Section 3 we study the price of orientation for networks
with single and multiple sources and sinks, i. e., we deal with the following ques-
tions: How much flow is lost in any orientation of the network given a fixed
time horizon? And how much longer do we need in any orientation to satisfy all
supplies and demands, compared to the undirected network?

The price of orientation can also be seen as a comparison tool for different
orientation models (e.g., models that allow to change orientations multiple times
vs. models which fix the orientations at the beginning). We will study the price
of orientation for the case where the orientation has to fixed at the beginning,
as this model is the easiest to realize for applications like evacuations, and leave
other models to further research.

To our knowledge, the price of orientation has not been studied for flows
over time so far. It follows from the work of Ford and Fulkerson [4] that for
s-t-flows over time the price of orientation is 1: Ford and Fulkerson proved that
a maximum flow over time can be obtained by temporally repeating a static



Graph Orientation and Flows over Time 743

Table 1. An overview of price of orientation results

Sources Sinks Flow Value Time

Price Reference Price Reference

1 1 1 Ford, Fulkerson [4] 1 Ford, Fulkerson [4]
2+ 1 2 Theorem 3 Ω(n) Theorem 4
1 2+ 2 Theorem 3 Ω(n) Theorem 4

2+ 2+ 3 Theorem 1, 2 Ω(n) Theorem 4

min-cost flow and thus uses every edge in one direction only. The latter property
no longer holds if there is more than one source or sink.

We are able to give tight bounds for the price of orientation with regard to
the flow value, and we show that the price of orientation with regard to the
time horizon cannot be smaller than linear in the number of nodes. Table 1
shows an overview of our results. Our main result is the tight bound of 3 on the
flow price of orientation for the multiple sources and sinks case. We describe an
algorithm that is capable of simulating balances through capacities of auxiliary
edges. This allows us to transform a problem with supplies and demands to the
much simpler case of a single source with unbounded supply and a single sink
with unbounded demand. We characterize the properties that the capacities of
the auxiliary edges should have for a good approximation, and describe how they
can be obtained using an iterative approach that uses Brouwer fixed-points. On
the negative side, we give an instance whose price of orientation is not better
than 3.

Since we have two ways to pay the price of orientation – decreasing the flow
value or increasing the time horizon – the question arises whether it might be
desirable to pay the price partly as flow value and partly as time horizon. We
prove that by doing so, we can achieve a bicriteria-price of 2/2 for the case of
multiple sources and sinks, i. e., we can send at least half the flow value in twice
the amount of time.

In Section 4 we analyze the complexity of finding the best orientation to
minimize the loss in time or flow value for a specific instance. We are able to
show that these problems cannot be approximated with a factor better than 2,
unless P = NP . Furthermore, we extend this to two multicommodity versions
of this problem and show that these become inapproximable, unless P = NP .

2 Preliminaries

Networks and Orientations. An undirected network over time N consists of an
undirected graph G with a set of nodes V (G), a set of edges E(G), capacities
ue ≥ 0 and transit times τe ≥ 0 on all edges e ∈ E(G), balances bv on all
nodes v ∈ V (G), and a time horizon T ≥ 0. For convenience, we define V (N) :=
V (G), E(N) := E(G). The capacity ue is interpreted as the maximal inflow rate
of edge e and flow entering an edge e with a transit time of τe at time θ leaves
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e at time θ + τe. We extend the edge and node attributes to sets of edges and
nodes by defining: u(E) :=

∑
e∈E ue, τ(E) :=

∑
e∈E τe and b(V ) :=

∑
v∈V bv.

We denote the set of edges incident to a node v by δ(v).
We define S+ := {v ∈ V (G) | bv > 0} as the set of nodes with positive

balance (also called supply), which we will refer to as sources. Likewise, we
define S− := {v ∈ V (G) | bv < 0} as the set of nodes with negative balance
(called demand), which we will refer to as sinks. Additionally, we assume that∑

v∈V (G) bv = 0 and define B :=
∑

v∈S+ bv. To define a directed network over
time, replace the undirected graph with a directed one. In a directed network, we
denote the set of edges leaving a node v by δ+(v) and the set of edges entering
v by δ−(v) for all v ∈ V (G).

An orientation
−→
N of an undirected network over time N is a directed network

over time
−→
N = (

−→
G,−→u , b,−→τ , T ), such that

−→
G , −→u and −→τ are orientations of G,

u and τ , respectively. This means that for every edge {v, w} ∈ E(G) there is
either (v, w) or (w, v) in E(

−→
G) (but not both) and (assuming (v, w) ∈ E(

−→
G))−→u (v,w) = u{v,w} and −→τ (v,w) = τ{v,w}. Recall that we can use parallel edges if

we want to model streets with multiple lanes – each parallel edge can then be
oriented individually.

Flows over Time. A flow over time f in a directed network over time N =
(G, u, b, τ, T ) assigns a Lebesgue-integrable flow rate function fe : [0, T ) → R

+
0

to every edge e ∈ E(G). We assume that no flow is left on the edges after the time
horizon, i. e., fe(θ) = 0 for all θ ≥ T −τe. The flow rate functions fe have to obey
capacity constraints, i. e., fe(θ) ≤ ue for all e ∈ E, θ ∈ [0, T ). Furthermore, they
have to satisfy flow conservation constraints. For brevity, we define the excess
of a node as the difference between the flow reaching the node and leaving it:
exf (v, θ) :=

∑
e∈δ−(v)

∫ θ−τe
0

fe(ξ) dξ − ∑
e∈δ+(v)

∫ θ

0
fe(ξ) dξ. Additionally, we

define ex(v) := ex(v, T ). Then we can write the flow conservation constraints as

ex(v) = 0, ex(v, θ) ≥ 0 for all v ∈ V (N)\(S+ ∪ S−), θ ∈ [0, T ),

0 ≥ ex(v, θ) ≥ −bv for all v ∈ S+, θ ∈ [0, T ),

0 ≤ ex(v, θ) ≤ −bv for all v ∈ S−, θ ∈ [0, T ).

The value |f |θ of a flow over time f until time θ is the amount of flow that has
reached the sinks until time θ: |f |θ :=

∑
s−∈S− exf (s−, θ) with θ ∈ [0, T ]. For

brevity, we define |f | := |f |T .
We define flows over time in undirected networks over time N by transforming

N into a directed network N ′, using the following construction. We replace every
undirected edge e = {v, w} ∈ E(N) by introducing two additional nodes vw, vw′

and edges (v, vw), (w, vw), (vw, vw′), (vw′, v), (vw′, w). We set u(vw,vw′) = ue

and τ(vw,vw′) = τe, the rest of the new edges gets zero transit times and infinite
capacities. This transformation replaces all undirected edges with directed edges,
giving us the directed network N ′. Every flow unit that could have used {v, w}
from either v to w or w to v must now use the new edge (vw, vw′), which has
the same attributes as {v, w}. The other four edges just ensure that (vw, vw′)
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can be used by flow from v to w or w to v. Thus, whenever we consider flows
over time in N , we interpret them as flows over time in N ′ instead.

Maximum Flows over Time. The maximum flow over time problem consists of a
directed or undirected network over time N = (G, u, b, τ, T ) where the objective
is to find a flow over time of maximum value. The sources and sinks have usually
unbounded supplies and demands in this setting but it can also be studied with
finite supplies and demands. In the latter case, the problem is sometimes referred
to as transshipment over time problem.

Ford and Fulkerson [4] showed that the case of unbounded supplies and
demands can be solved by a reduction to a static minimum cost circulation
problem. This yields a temporally repeated flow as an optimal solution. Such
a flow x is given by a family of paths P along which flow is sent at constant
rates xP , P ∈ P during the time intervals [0, T − τP ), with τP :=

∑
e∈P τe.

The algorithm of Ford and Fulkerson obtains these paths by decomposing the
solution to the minimum cost circulation problem. This algorithm has the nice
property that edges are only used in one direction, as it is based on a static flow
decomposition.

The maximum contraflow over time problem is given by an undirected network
over time N = (G, u, b, τ, T ) and the objective is to find an orientation

−→
N of N

such that the value of a maximum flow over time in
−→
N is maximal over all

possible orientations of N .

Quickest Flows. The quickest flow problem or quickest transshipment problem
is given by a directed or undirected network over time N = (G, u, b, τ) and
the objective is to find the smallest time horizon T such that all supplies and
demands can be fulfilled, i. e., a flow over time with value B can be sent. Hoppe
and Tardos [8] gave a polynomial algorithm to solve this problem. However, an
optimal solution to this problem might have to use an edge in both directions.
The quickest contraflow problem is given by an undirected network over time
N = (G, u, b, τ) and the objective is to find an orientation

−→
N of N such that

the time horizon of a quickest flow in
−→
N is minimal over all possible orientations

of N .

3 The Price of Orientation

We study two different models for the price of orientation. The flow price of
orientation for an undirected network over time N = (G, u, b, τ, T ) is the ratio
between the value of a maximum flow over time fN in N and maximum of the
values of maximum flows over time f−→

N
in orientations

−→
N of N :

|fN |/ max−→
N orientation ofN

|f−→
N

|.

Similarly, the time price of orientation for an undirected network over time N =
(G, u, b, τ) is the ratio between the minimal time horizon T (f−→

N
) of a quickest
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s t

Fig. 1. The modified network consisting of the original network (white), the superter-
minals (black) and the dashed auxiliary edges

flow f−→
N

in an orientation
−→
N of N and the time horizon T (fN ) of a quickest flow

over time fN in N :
min−→

N orientation ofN

T (f−→
N

)/T (fN ).

3.1 Price in Terms of Flow Value

In this subsection, we will examine the flow price of orientation. We will see that
orientation can cost us two thirds of the flow value in some instances, but not
more.

Theorem 1. Let N = (G, u, b, τ, T ) be an undirected network over time, in
which B units of flow can be sent within the time horizon T . Then there exists
an orientation

−→
N of N in which at least B/3 units of flow can be sent within

time horizon T .

Proof. The idea of this proof is to simplify the instance, such that a temporally
repeated solution can be found. Such a solution gives us an orientation that
we can use, if the simplification does not cost us too much in terms of flow
value. We will achieve this by simulating the balances using additional edges
and capacities, creating a maximum flow over time problem which permits a
temporally repeated solution. Then we show that the resulting maximum flow
over time problem is close enough to the original problem for our claim to follow.

Simulating the Balances. We achieve this by adding a super source s and a
super sink t to the network, resulting in an undirected network over time N ′ =
(G′, u′, τ ′, s, t, T ) with V (G′) := V (G)∪{s, t}, E(G′) := E(G)∪{{s, s+}}|{s+ ∈
S+}∪{{s−, t} | s− ∈ S−}, u′

e := ue for e ∈ E(G) and ∞ otherwise, τ ′
e := τe for

e ∈ E(G) and 0 otherwise. We refer to the newly introduced edges of E(G′)\E(G)
as auxiliary edges. Furthermore, we sometimes refer to an auxiliary edge by the
unique terminal node it is adjacent to and write uv for ue, e = (s, v), fv for
fe, e = (s, v) and so on. An illustration of this construction can be found in
Fig. 1.

The network N ′ describes a maximum flow over time problem which has an
optimal solution that is a temporally repeated flow, which uses each edge only in



Graph Orientation and Flows over Time 747

one direction during the whole time interval [0, T ). Thus, there is an orientation−→
N ′ such that the value of a maximum flow over time in N ′ is the same as in−→
N ′. However, an optimal solution for N ′ will generally be infeasible for N , since
there are no balances in N ′.

Thus, we need to modify N ′ such that balances of N are respected – but
without using actual balances. This leaves us the option to modify the capaci-
ties of the auxiliary edges. In the next step, we will show that we can always find
capacities that enforce that the balances constraints are satisfied and have nice
properties for bounding the loss in flow value incurred by the capacity modifi-
cation. These properties are then used in the last step to complete the proof.

Enforcing Balances by Capacities for Auxiliary Edges. In this step, we show
that we can choose capacities for the auxiliary edges in such a way that there
is a maximum flow over time in the resulting network that respects the original
balances. Choosing finite capacities for some of the auxiliary edges will – in
general – reduce the maximum flow value that can be sent, though. In order to
bound this loss of flow later on, we need capacities with nice properties, that
can always be found.

Lemma 1. There are capacities u′′
e that differ from u′

e only for the auxiliary
edges, such that the network N ′′ = (G′, u′′, τ ′, s, t, T ) has a temporally repeated
maximum flow over time f with the following properties

– the balances of the nodes in the original setting are respected:
|fv| :=

∫ T

0
fv(θ) dθ ≤ |bv| ∀v ∈ S+ ∪ S−,

– and that terminals without tightly fulfilled balances have auxiliary edges with
unbounded capacity: |fv| < |bv| ⇒ uv = ∞ ∀v ∈ S+ ∪ S−.

Proof. The idea of this proof is to start with unbounded capacities and itera-
tively modify the capacities based on the balance and amount of flow currently
going through an node, until we have capacities satisfying our needs. In order
to show that such capacities exist, we apply Brouwer’s fixed-point theorem on
the modification function to show the existence of a fix point. By construction
of the modification function, this implies the existence of the capacities.

Prerequisites for Using Brouwer’s Fixed Point-Theorem. We begin by defining
U :=

∑
v∈S+

∑
a=(v,·)∈E(G) ua as an upper bound for the capacity of auxiliary

edges and we will treat U and ∞ interchangeably from now on. This allows us to
consider capacities in the interval [0, U ], which is convex and compact, instead of
[0,∞). This will be necessary for applying Brouwer’s fixed point theorem later
on.

Now assume that we have some capacities u ∈ [0, U ]S
+∪S−

for the auxiliary
edges. Since we leave the capacities for all other edges unchanged, we identify
the capacities for the auxiliary edges with the capacities for all edges. Compute a
maximum flow over time f(u) for (G′, u, τ ′, s, t, T ) by using Ford and Fulkersons’
reduction to a static minimum cost flow. For this proof, we need to ensure that
small changes in u result in small changes in f(u), i. e., we need continuity. Thus,
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we will now specify that we compute the minimum cost flow by using successive
computations of shortest s-t-paths. In case there are multiple shortest paths in
an iteration, we consider the shortest path graph, and choose a path in this
graph by using a depth-first-search that uses the order of edges in the adjacency
list of the graph as a tie-breaker. The path decomposition of the minimum cost
flow deletes paths in the same way. This guarantees us that we choose paths
consistently, leading to the continuity that we need.

Defining the Modification Function. In order to obtain capacities for a maximum
flow over time that respects the balances, we define a function h : [0, U ]S

+∪S− →
[0, U ]S

+∪S−
which will reduce the capacities of the auxiliary edges, if balances

are not respected:

(h(u))v := min
{

U,
bv

|fv(u)|uv

}

∀v ∈ S+ ∪ S−.

|fv(u)| refers to the amount of flow going through the auxiliary edge of terminal
v ∈ S+ ∪ S− in this definition. If |fv(u)| = 0, we assume that the minimum is
U . Due to our rigid specification in the maximum flow computation, |fv(u)| is
continuous, and therefore h is continuous as well.

Using Brouwer’s Fixed-Point Theorem. Thus, h is continuous over a convex,
compact subset of R

S+∪S−
. By Brouwer’s fixed-point theorem it has a fixed

point u with h(u) = u, meaning that for every v ∈ S+ ∪ S− either uv = U or
uv = bv

|fv(u)|uv ⇔ bv = |fv(u)| holds, which is exactly what we require of our
capacities. ��
We can now choose capacities u′′ in accordance to Lemma 1, and thereby gain
a maximum flow over time problem instance N ′′ = (G′, u′′, τ ′, s, t, T ), that has
a temporally repeated optimal solution which does not violate the original bal-
ances. What is left to do is to analyze by how much the values of optimal solutions
for N and N ′′ are apart.

Bounding the Difference in Flow Value between N and N ′′. We now want to
show that we can send at least B/3 flow units in the network N ′′ with the
auxiliary capacities of the previous step. For the purpose of this analysis, we
partition the sources and sinks as follows.

S+
1 :=

{
s+ ∈ S+

∣
∣ us+ < ∞}

, S+
2 :=

{
s+ ∈ S+

∣
∣ us+ = ∞}

,

S−
1 :=

{
s− ∈ S− ∣

∣ us− < ∞}
, S−

2 :=
{

s− ∈ S− ∣
∣ us− = ∞}

.

The partitioning is also shown in Fig. 2.
Now let f be a temporally repeated maximum flow in N ′′ that does not

violate balances. Notice that the auxiliary edges to terminals in S+
2 and S−

2 ,
respectively, have infinite capacity and that the supply / demand of nodes in S+

1

and S−
1 is fully utilized. Thus, |f | ≥ max

{
b(S+

1 ), b(S−
1 )

}
. Should b(S+

1 ) ≥ B/3
or b(S−

1 ) ≥ B/3 hold, we would be done – so let us assume that b(S+
1 ) < B/3

and b(S−
1 ) < B/3. It follows that b(S+

2 ) ≥ 2/3B and b(S−
2 ) ≥ 2/3B must
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S+
1

S+
2

S−
1

S−
2

Fig. 2. The partitioning based on the capacities of the auxiliary edges. Dashed edges
have finite capacity, dotted edges have infinite capacities.

hold in this case. Now consider the network N ′ with the terminals of S+
1 and

S−
1 removed, leaving only the terminals of S+

2 and S−
2 . We call this network

N ′(S+
2 , S−

2 ). Let |f ′| be the value of a maximum flow over time in N ′(S+
2 , S−

2 ).
Since B units of flow can be sent in N (and therefore N ′ as well), we must
be able to send at least B/3 units in N ′(S+

2 , S−
2 ). This is due to the fact that

b(S+
2 ) ≥ 2/3B, b(S−

2 ) ≥ 2/3B – even if B/3 of these supplies and demands were
going to S−

1 and coming from S+
1 , respectively, this leaves at least B/3 units

that must be send from S+
2 to S−

2 . Thus, B/3 ≤ |f ′|. Since the capacities of the
auxiliary edges of S+

2 and S−
2 are infinite, we can send these B/3 flow units in

N ′′ as well, proving this part of the claim.
Thus, we have shown that a transshipment over time problem can be trans-

formed into a maximum flow over time problem with auxiliary edges and capac-
ities. If these edges and capacities fulfill the requirements of Lemma 1, we can
transfer solutions for the maximum flow problem to the transshipment problem
such that at least one third of the total supplies of the transshipment problem
can be send in the flow problem. Finally, the proof of Lemma 1 shows that such
capacities do always exist, completing the proof. ��

Notice that the algorithm described in the proof is not efficient – it relies
on Brouwer’s fixed-point theorem, and finding an (approximate) Brouwer fixed-
point is known to be PPAD-complete [11] and exponential lower bounds for the
common classes of algorithms for this problem are known [7]. Since the algorithm
is efficient aside from finding a Brouwer fixed-point, our problem is at least
not harder than finding a Brouwer fixed-point. Thus, our problem is probably
not FNP-complete (with FNP being the functional analog of NP) as PPAD-
completeness indicates that a problem is not FNP-complete [11]. However, it is
possible that the fixed-point can efficiently be found for the specific function we
are interested in. One problem for finding such an algorithm is however, that
changing the capacity of one auxiliary edge does not only modify the amount
flow through its associated terminal but through other terminals as well – and
this change in flow value can be an increase or decrease, making monotonicity
arguments problematic.
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Another potential approach could be to find a modification function for which
(approximate) Brouwer fixed-points can be found efficiently. Using approximate
Brouwer fixed-points would result in a weaker version of Lemma 1, where an
additional error is introduced due to the approximation. This error can be made
arbitrarily small by approximating the Brouwer fixed-point more closely, or by
using alternative modification functions. However, finding a modification func-
tion for which an approximation of sufficient quality can be found efficiently
remains an open question.

Now that we have an upper bound for the flow price of orientation and it
turns out that this bound is tight. The proof for the next theorem can be found
in the full version of the paper.

Theorem 2. For any ε > 0, there are undirected networks over time N =
(G, u, b, τ, T ) in which B units of flow can be sent, but at most B/3 + ε units of
flow can be sent in any orientation

−→
N of N .

With these theorems, we have a tight bound for the flow price of orientation in
networks with arbitrarily many sources and sinks. In the case of a single source
and sink, we have a maximum flow over time problem and we can always find
an orientation in which we can send as much flow as in the undirected network.
This leaves the question about networks with either a single source or a single
sink open. However, if we use the knowledge that only one source (or sink) exists
in the analysis done in the proofs of Theorem 1 and Theorem 2, we achieve a
tight factor of 2 in these cases (the proof can again be found in the full version
of the paper).

Theorem 3. Let N = (G, u, b, τ, T ) be an undirected network over time with
a single source or sink, in which B units of flow can be sent within the time
horizon T . Then there exists an orientation

−→
N of N in which at least B/2 units

of flow can be sent within time horizon T , and there are undirected networks
over time for which this bound is tight.

3.2 Price in Terms of the Time Horizon

In this part, we examine by how much we need to extend the time horizon in
order to send as much flow in an orientation as in the undirected network. It
turns out that there are instances for which we have to increase the time horizon
by a factor that is linear in the number of nodes. This is due to the fact that
we have to send everything, which can force us to send some flow along very
long detours – this is similar to what occurs in [5]. For this reason it is not a
good idea to pay the price of orientation in time alone. A detailed proof of the
theorem can be found in the full version of the paper.

Theorem 4. There are undirected networks over time N = (G, u, b, τ, T + 1)
with either a single source or a single sink in which B units of flow can be sent
within a time horizon of T , but it takes a time horizon of at least (n − 1)/4 · T

to send B units of flow in any orientation
−→
N of N . This bound also holds if G

is a tree with multiple sources and sinks.
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A similar bound holds for trees with unit-capacities – details can be found in
the full version of the paper.

3.3 Price in Terms of Flow and Time Horizon

We have seen now that the price of orientation is 3 with regard to the flow value,
and Ω(n) with regard to the time horizon. We can improve on these bounds
if we allow to pay the price of orientation partly in terms of flow value and
partly in terms of the time horizon. This is possible by combining the reduction
to maximum flows over time from Theorem 1 with the concept of temporally
averaged flows (see , e. g., [2]). The proof can be found in the full version of the
paper.

Theorem 5. Let N = (G, u, b, τ, T ) be an undirected network over time, in
which B units of flow can be sent within the time horizon T . Then there exists
an orientation

−→
N of N in which at least B/2 units of flow can be sent within time

horizon 2T . The orientation and a transshipment over time with this property
can be obtained in polynomial time.

Earliest Arrival Flows. We now have tight bounds for the flow and time price
of orientation for maximum or quickest flows over time. However, for application
in evacuations, it would be nice if we could analyze the price of orientation for
so-called earliest arrival flows as well, as they provide guarantees for flow being
sent at all points in time. Unfortunately, we can create instances where not
even approximate earliest arrival contraflows exist, because the trade-off between
different orientations becomes too high. Details can be found in full version of
the paper.

4 Complexity Results

Furthermore, we can show non-approximability results for several contraflow over
time problems. More specifically, we can show that neither quickest contraflows
nor maximum contraflows over time can be approximated better than a factor
of 2, unless P = NP . For multicommodity contraflows over time, we can even
show that maximum multicommodity concurrent contraflows and quickest mul-
ticommodity contraflows cannot be approximated at all, even with zero transit
times, unless P = NP . The complete theorems and proofs can be found in the
full version of the paper.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
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Abstract. We present a novel simpler method for the min-cost flow
problem and prove that its expected running time is bounded by Õ(m3/2).
This matches the best known bounds, which have previously been
achieved only by far more complex algorithms or by algorithms for spe-
cial cases. Our contribution contains three algorithmic parts that are
interesting in their own right: (1) We provide a linear time construction
of an equivalent auxiliary network and interior primal and dual points,
i.e. flows, node potentials and slacks, with potential P0 = Õ(

√
m). (2) We

present a potential reduction algorithm that transforms initial solutions
of potential P0 to ones with duality gap below 1 in Õ(P0 · CEF(n, m, ε))
time, where ε−1 = O(m2) and CEF(n, m, ε) denotes the running time
of any algorithm that computes an ε-approximate electrical flow. (3) We
show that, taking solutions with duality gap less than 1 as input, one can
compute optimal integral node potentials in O(m + n log n) time with
our novel crossover procedure. Altogether, using a variant of a state-of-
the-art ε-electrical flow solver, we obtain a new simple algorithm for the
min-cost flow problem running in Õ(m3/2).

1 Introduction

The min-cost flow problem is one of the best studied problems in combinato-
rial optimization. Moreover, it represents an important special case of Linear
Programming (LP) due to the integrality of the primal and dual polyhedra for
arbitrary given integer costs c, capacities u, and demands b. That is, there are
always integral primal and dual optimal solutions, provided that the problem
is feasible and finite. It was first shown by Edmonds and Karp [1] in 1970 that
these solutions can be computed in polynomial-time. Since then, there were
many contributions to this problem. Due to space limitations, we can only men-
tion some of the most important results such as the strongly polynomial time
algorithm by Orlin [2] running in O(n2 log2 n+nm log n).1 Further scaling tech-
niques like (generalized) cost-scaling were presented by Goldberg and Tarjan [3],
1 We denote U := ‖u‖∞, C := ‖c‖∞ and γ := max{C, U}. Moreover, we will use the

Õ-notation to hide log-factors in n, C, U and ‖b‖∞.
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and the double scaling technique by Ahuja et al. [4], which yields a running time
bound of O(nm log log U log(nC)). However, all these algorithms failed to break
through the barrier of n2, even for sparse graphs, where m = O(n). On the
other hand, the asymptotically fastest known algorithms for solving general LPs
are interior point methods. Karmarkar [5] presented the first poly-time interior
point method running in O(n3.5L2) time, where n is the number of variables
and L the size of the input. Later on, the work on interior point methods, and
in particular, on the so-called potential reduction methods, was significantly
advanced by Ye [6]. He presented an O(n3L)-time algorithm. Vaidya [7] was
the first to specialize interior point methods to network flow problems in 1989.
He obtained a running time of O(n2

√
m log(nγ)), which matched the then best

known bounds up to log-factors. Later on, there were many other contributions
presenting specialized interior point methods for network flow problems. For the
max-flow problem, Madry gave an elaborate interior point method [8] in 2008
that improved over a more than 30 year old bound. For the min-cost flow prob-
lem, Daitch and Spielman [9] gave a method running in Õ(m3/2) expected time.
It is a dual central path following method and, in fact, solves a more general
problem (lossy generalized flow) and thus is very involved and more technical
than necessary for the classical min-cost flow problem. They use an efficient
randomized solver for symmetric diagonally dominant (SDD) systems of lin-
ear equations based on the seminal work of Spielman and Teng [10] and later
by Koutis et al. [11]. Recently, Kelner et al. [12] presented a simple, combinato-
rial, nearly-linear time algorithm for computing approximate electrical flows and
thus also for approximately solving SDD systems. Motivated by their result, we
show in this paper that such approximate electrical flows suffice for a potential
reduction algorithm to obtain a much simpler min-cost flow algorithm running
in Õ(m3/2) time, which matches the best known bounds up to log-factors. To
this end, we also provide a new initialization technique and a novel crossover
procedure, that both run in (near-)linear time and heavily exploit the network
structure of the problem. We present a combinatorial view on potential reduction
interior point methods for min-cost flow:

We, first of all, construct an auxiliary network with the same optimum, a
primal interior solution (flows) and dual interior solutions (node potentials and
dual slacks, i.e. reduced costs) for it. We then update these solutions iteratively
by using electrical flow computations. To this end, we maintain a spanning tree
of low stretch w.r.t. the resistances, which are determined by the current primal
interior point, such that the smaller the value of the primal variable is, the
higher the resistance of an arc gets. Now, an approximation of the electrical
flow and corresponding node voltages are computed in this electrical network
by augmenting electrical current along the fundamental cycles of the low-stretch
tree in logarithmic time per augmentation. Unlike with the network simplex, the
tree is not changed in every iteration, but only when the currents approximate
the electrical flow sufficiently well, either a cycle update or a cut update of the
interior point is performed, which then could lead to another tree that differs
by more than one arc. In a cycle update, the flow is changed according to the
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electrical currents. In a cut update, the slacks and node potentials are modified
along cuts using the previously computed node voltages. The updates are such
that a potential function decreases by at least some constant per step. This
potential function is designed to serve in two ways: (1) when it drops below
0, the duality gap is smaller than 1 and we may stop since we are close to
the optimal vertex, (2) it keeps us away from the boundary. We hereby take a
shortcut through the polyhedron: instead of walking on the boundary as with
most of the other combinatorial methods, e.g. minimum-mean cycle canceling, we
warp to the basic solution corresponding to the new low-stretch tree. At the end,
we apply our novel crossover procedure. It jumps from interior points of duality
gap less than 1 to a solution with optimal integral node potentials in near-linear
time. All running times in this paper are stated in terms of basic operations that
also include comparisons in addition to the arithmetic operations. Due to space
limitations, we have to omit some proofs in this version of the paper. They can
be found in the full version.

1.1 Contribution

Our main contribution is a very simple algorithm for the min-cost flow problem
terminating in O(m3/2(log γ + log n) log3 n log log n) = Õ(m3/2) time, with high
probability. In order to obtain this, our contribution contains the following three
algorithmic parts that are already interesting in their own right.

1. We show that it suffices to compute primal and dual points with duality gap
below 1, since our novel crossover procedure then finds optimal potentials in
O(m + n log n).

2. We give a potential reduction method that, taking interior points of potential
P0, outputs interior points with duality gap below 1 in Õ(P0 ·CEF(n,m, ε)),
where CEF(n,m, ε) is the complexity of a certifying ε-electrical flow compu-
tation.

3. We give a method that, taking any min-cost flow problem as input, yields
an auxiliary network with the same optimum and interior primal and dual
points of potential P0 = O(

√
m(log γ + log n)) in linear time.

Our crossover procedure takes solutions with duality gap less than one and effi-
ciently rounds the potentials to integral values. Using one max-flow computation
in the admissible network, one can also obtain primal optimal solutions. This
method does not rely on perturbation to remove degeneracy. However, if one
prefers random perturbation over solving a max-flow problem (which does not
increase the asymptotic running time), then the Separation Lemma [9, Lemma
3.13] can be applied at the beginning and our O(m+n log n) time crossover will
also identify the basic variables on its own additionally to the optimum dual
solution, which is found even in the degenerate case. For the potential reduction
method, we show how to use approximate electrical flow computations to reduce
the duality gap of given primal and dual interior points of potential P0 below
any constant c ∈ R>0 in time Õ(P0 · CEF(n,m, ε)). We show that it suffices to
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pick an ε such that ε−1 is polynomially bounded in n (i.e. ε−1 = O(m2)). Note
that CEF typically scales logarithmically with ε−1 and thus its contribution is
in O(log n). We also remove the necessity to compute the 2-norm of the primal
update that is used for normalization in similar algorithms, as for example the
one by Ye [6]. We show how to use the maximum of 1 and the ∞-norm instead
of the 2-norm. In this way, our algorithm gets along with the field operations on
rationals, similar to Kelner et al.’s.

1.2 The Min-Cost Flow Problem and Its Dual

In its most general form, the min-cost flow problem is stated as follows. Given a
directed graph G = (V,A) with |V | = n and |A| = m, node demands b ∈ Z

n with
1T b = 0, arc costs c ∈ Z

m and arc capacities u ∈ (N ∪ {∞})m, find a feasible
flow x∗ ∈ R

m, i.e. 0 ≤ x∗ ≤ u and x∗(δin(v)) − x∗(δout(v)) = bv for every v ∈ V ,
2 such that cT x∗ ≤ cT x for all feasible flows x or assert that no such flow exists.
However, it is well-known, see e.g. [13], that this problem can be reduced to a
setting without capacity constraints and only non-negative costs. Furthermore,
we assume w.l.o.g. that the problem is feasible as well as finite from now on.
We will discuss how to reduce the general problem to the setting used here in
Section 4. For the time being, we write the problem as primal-dual pair

min{cT x : Ax = b and x ≥ 0} = max{bT y : AT y + s = c and s ≥ 0},

where A ∈ {−1, 0, 1}n×m is the node-arc incidence matrix of G, i.e. A contains a
column α for every arc (v, w) with αv = −1, αw = 1 and αi = 0 for all i /∈ {v, w}.

2 Snapping to the Optimum

In this section, we show that solving the min-cost flow problem approximately,
by the means of computing primal and dual solutions x and y0, s0 of duality gap
less than 1, is sufficient, since optimal integral potentials might be found in linear
time then. The main underlying idea of our new linear time rounding procedure
is the following. We iteratively construct sets Sk, starting with S1 := {s} for
an arbitrary vertex s. During one iteration k, we proceed as follows. Let us first
assume b(Sk) < 0. Then, there has to be an outgoing arc from Sk, otherwise
the problem would be infeasible. We enlarge Sk by the vertex wk such that
ak = (vk, wk) for vk ∈ Sk has minimal slack among all outgoing arcs from Sk

and we increase the potentials yw of all w ∈ V \ Sk by this minimal slack. It
follows that the dual constraint of the arc ak is satisfied with slack 0 and all
other non-negativity constraints remain fulfilled. The objective value bT y will
be increased by this potential shift, since b(V \ Sk) > 0. In the case b(Sk) ≥ 0,
we decrease the potentials in V \ Sk, analogously by the minimum slack of all
ingoing arcs. However to achieve a near-linear running time, these potential
changes need to be performed in a lazy way. Using Fibonacci heaps, we can
even reduce the running time to O(m+n log n). We give the pseudo-code of this
method in Alg. 1 and show its correctness in Thm. 1.
2 We write f(S) :=

∑
a∈S fa for S ⊆ A for any vector f ∈ R

m.
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Algorithm 1. Crossover
Input : Connected graph G = (V, A), solution x and y0, s0 in G with xT s0 < 1.
Output: Optimal node potentials y in G.

Let s ∈ V be arbitrary and let Δ0 := −y0
s , ys ← 0, S1 := {s}.

for k = 1, . . . , n − 1 do

if b(Sk) < 0 or δin(Sk) = ∅ then

Let Δk = min{ca + yv − y0
w : a = (v, w) ∈ δout(Sk)}

and ak = (vk, wk) ∈ δout(Sk) s.t. Δk = cak + yvk − y0
wk .

else

Let Δk = − min{ca + y0
w − yv : a = (w, v) ∈ δin(Sk)}

and ak = (wk, vk) ∈ δin(Sk) s.t. Δk = −cak − y0
wk + yvk .

ywk ← y0
wk + Δk, Sk+1 ← Sk ∪ {wk}

return potentials y.

Theorem 1. Let Alg. 1 be initialized with primal and dual solutions x and y0, s0

with xT s0 < 1. Then Alg. 1 outputs optimal integral potentials y in O(m +
n log n).

Proof. We assume w.l.o.g. that the vertices are labeled 1, . . . , n in the order in
which they are added to S. We show, by induction, that the potentials

yk
v =

{
y0

v + Δk−1, k ≤ v

yk−1
v , k > v

are feasible, i.e. sk
a := ca+yk

v−yk
w ≥ 0 ∀a = (v, w).

For the induction base, we note that y1
v is just y0

v shifted by Δ0 = −y0
s and hence

it constitutes valid potentials. For the inductive step let us consider iteration k >
1 and let a = (v, w) be an arbitrary arc. Let i := min{v, w} and j := max{v, w}.
With the convention c(j,i) = −c(i,j) and thus sk

(j,i) = −sk
(i,j), we obtain

sk
(i,j) = c(i,j) + yk

i − yk
j = c(i,j) +

⎧
⎪⎨

⎪⎩

y0
i − y0

j , k ≤ i

yk−1
i − (y0

j + Δk−1), i < k ≤ j

yk−1
i − yk−1

j , j < k

.

For the first and third case, we apply the induction hypothesis and obtain sk
a ≥ 0.

For the second case, we first note that

Δk−1 = σ · cak−1 + yvk−1 − y0
wk−1 where σ =

{
1 if b(Sk−1) < 0 or δin(Sk−1) = ∅
−1 otherwise

= σ · cak−1 + (yvk−1 − Δk−2) − y0
wk−1 + Δk−2 = σ · sk−1

ak−1 + Δk−2

Since i < k ≤ j and thus (i, j) ∈ δout(Sk−1), this yields

sk
(i,j) = c(i,j) + yk−1

i − (y0
j + Δk−2) − σ · sk−1

ak−1 = sk−1
(i,j) − σ · sk−1

ak−1 .
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Independent of a being (i, j) or (j, i), we get sk
a = sk−1

a ± sk−1
ak−1 ≥ 0 since ak−1

is a minimizer and by the non-negativity of the slacks due to the induction
hypothesis. Hence, the output potentials are feasible. In addition, we construct
one tight constraint in each iteration, since sk

a = 0 if a = ak−1. Since ys = 0 and
c ∈ Z

m, we conclude that after termination y is integral. Note that the optimum
objective value is integer and thus 	bT y0
 because xT s0 < 1. We have

bT yk − bT yk−1 =
∑

v∈V

bvyk
v −

∑

v∈V

bvyk−1
v =

∑

v≥k

bv(y0
v + Δk−1) −

∑

v≥k

bvyk−1
v

=
∑

v≥k

bvy0
v +

∑

v≥k

bvΔk−1 −
∑

v≥k

bvy0
v −

∑

v≥k

bvΔk−2

= −σ · sk−1
ak−1 · b(Sk−1) ≥ 0,

because δin(Sk−1) = ∅ implies that b(Sk−1) ≤ 0 or that the instance is infeasible.
Since b, y ∈ Z

n and bT y − 	bT y0
 < 1 we have that y is optimal. A similar
implementation as used for Dijkstra’s algorithm but with two Fibonacci Heaps,
one for the nodes adjacent to Sk through δin(Sk) and δout(Sk) each, yields the
run time of O(m + n log n). �


3 Potential Reduction Algorithm

We will now describe our Potential Reduction Algorithm, which is inspired by
Ye’s algorithm [6]. It maintains a primal solution x and dual slacks s. We evaluate
such a pair by the potential function P (x, s) := q ln(xT s) − ∑

a∈A ln(xasa) −
m ln m for some scalar q = m + p ∈ Q to be chosen later. Note that the duality
gap xT s = cT x − bT y serves as measure for the distance to optimality of x and
s. An equivalent formulation of the potential function yields

P (x, s) = p ln(xT s) + m ln
( 1

m

∑

a∈A

xasa

)
− m ln m

√∏

a∈A

xasa ≥ p ln(xT s), (1)

because the arithmetic mean is bounded by the geometric mean from below.
Thus, P (x, s) < 0 implies xT s < 1. As we have shown in Section 2, solutions
satisfying xT s < 1 can be efficiently rounded to integral optimal solutions. Thus,
we follow the strategy to minimize the potential function by a combinatorial
gradient descent until the duality gap drops below 1. To this end, we shall project
the gradient g := ∇xP = q

xT s
s − X−11, where X := diag(x), on the cycle space

of the network. However, we do not use the standard scalar product for the
projection but a skewed one as it is common in the literature on interior point
methods. This skewed scalar product may also be considered as the standard
one in a scaled space where x is mapped to X−1x = 1. By setting s′ := Xs, the
duality gap xT s = 1T s′ and the potential function P (x, s) = P (1, s′) remain
unchanged. Accordingly, we define Ā := AX and g′ := ∇xP |x=1,s=s′ = Xg.

We start with given initial primal and dual solutions x, s or rather with their
analogs 1, s′ in the scaled space, which may be found for example with our
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initialization method described in Section 4. Now, it would be desirable to move
the scaled flows x′ in the direction of −g′, the direction of steepest descent of
the potential function. However, g′ may not be a feasible direction, i.e. might
not be a cycle 3 , since Āg′ �= 0 in general. Thus, we wish to find a direction
d′ in the kernel of Ā, i.e. a cycle that is closest to g′. Computing d′ amounts to
solve the convex optimization problem

min{‖g′ − d′‖22 : Ād′ = 0} = min{‖f‖2R : Af = χ}, (2)

where we set f = X(g′ − d′), R = X−2 and χ = Āg′. The latter is actually an
electrical flow problem. We briefly review electrical flows, for more details, see
for example [8,12].

Electrical Flows. Let χ ∈ Q
n be a current source vector with 1T χ = 0

and let r ∈ Q
m
≥0 be a resistance vector on the arcs, denote R = diag(r) and

‖v‖R :=
√

vT Rv for v ∈ R
m.

Definition 1 (Electrical Flow). Let χ ∈ Q
n with 1T χ = 0.

1. The unique flow f∗ ∈ Q
m with ‖f∗‖2R := min{‖f‖2R : Af = χ} is the

electrical flow.
2. Let ε ≥ 0 and f ∈ R

m with Af = χ and ‖f‖2R ≤ (1 + ε)‖f∗‖2R, then f is
called an ε-electrical flow.

3. Let s be a fixed node, T a spanning tree, P (s, v) the unique path in T from s
to v and f ∈ R

m. The tree induced voltages π ∈ R
n are defined by π(v) :=∑

a∈P (s,v) fara.
4. For any a = (v, w) ∈ A \ T , we define Ca := {a} ∪ P (w, v) and r(Ca) :=∑

b∈Ca
rb. We write τ(T ) :=

∑
a∈A\T r(Ca)/ra for the tree condition number

of T .

The dual of the electrical flow problem is max{2πT χ − πT AR−1AT π : π ∈ R
n},

where π are called voltages. We conclude that an optimal solution π∗ satisfies
AR−1AT π∗ = χ.

Definition 2 (Certifying ε-Electrical Flow Algorithm). Let ε > 0. A cer-
tifying ε-electrical flow algorithm is an algorithm that computes an ε-electrical
flow f and voltages π ∈ Q

n such that ‖π − π∗‖2AR−1AT ≤ ε‖π∗‖2AR−1AT , where
π∗ is an optimal dual solution. We define CEF(n,m, ε) to be a bound on the
running time of a certifying ε-electrical flow algorithm for directed graphs with
n nodes and m arcs.

Kelner et al. [12] present a simple ε-electrical flow algorithm with expected
approximation guarantee. However, we transform their algorithm to one with
an exact approximation guarantee and linear running time with high probabil-
ity. Similarly to them, we compute a low-stretch spanning tree T (w.r.t. the
3 The kernel of Ā, up to the scaling with X, corresponds to the cycle space of the

graph.
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resistances), which has tree condition number τ(T ) = O(m log n log log n) using
the method of Abraham and Neiman [14] that runs in O(m log n log log n). We
then sample non-tree edges a according to the same probability distribution
pa := 1

τ(T )
r(Ca)

ra
and push flow along the cycle Ca until the gap between primal

and dual objective value becomes less than ε. The running time of this approach
is O(m log2 n log(n/ε) log log n) = Õ(m) for ε−1 = O(poly(n)) with high proba-
bility as we show in Thm. 2. Note that it suffices for our purpose to mimic their
SimpleSolver, which scales with log(n/ε) instead of log(1/ε) as their improved
version does. We remark that, as in their solver, the flow and voltage updates
should be performed using a special tree data structure [12, Section 5], which
allows updating the flow in O(log n). Moreover, gap should only be computed
every m iterations, which results in O(1) amortized time per iteration for the
update of gap.

The Method. Using any certifying ε-electrical flow algorithm, we can compute
an approximation of d′ by solving problem (2) and obtain an ε-electrical flow f .
We will now describe how to use this approximate electrical flow for our updates.
In our electrical flow problem the resistances R are given by X−2 and the current
sources χ by Āg′. We compute a cycle x̂′ = g′ −X−1f from the flow as well as a
cut ŝ′ = ĀT π from the voltages π. Note that x̂a = ga/ra−fa and ŝa = πw−πv, so
x̂a is computed using the battery divided by the resistance of an arc subtracted
by the electrical flow, whereas ŝa is just the voltage difference of the two nodes.
The idea is to push flow around the cycle x̂′ in a primal step, whereas, in a dual
step, we modify the slacks and node potentials corresponding to the cut ŝ′. In
usual gradient descent methods, like for example in Ye’s algorithm the decision
whether to make a primal or dual step is made dependent on ‖d′‖2, the length of
the projection of the gradient on the null-space. In our setting, however, we do
not know the exact projection d′ of g′. Nevertheless, we can show that the 2-norm
of z′ = g′ − ŝ′ does not differ too much from ‖d′‖2, so deciding dependent on
‖z′‖22 is possible. We note that another crucial difference between our Potential
Reduction Algorithm and other algorithms, as for example Ye’s algorithm, is
that we normalize the cycle x̂′ by max{1, ‖x̂′‖∞}, whereas in Ye’s algorithm the
normalization is done with ‖x̂′‖2.

We remark that our method works with any certifying ε-electrical flow algo-
rithm. However, we merge the version of the SimpleSolver of Kelner et al. [12]
as described above in our pseudocode implementation of Alg. 2 to be more self-
contained.

Analysis. It is not hard to see that that the primal and dual steps in the
algorithm are in fact feasible moves, for a proof see the full version of the paper.

Lemma 1. The new iterates x̄ = X(1 − λ x̂′
max{1,‖x̂′‖∞} ), ȳ = y + μπ and s̄ =

X−1(s′ − μŝ′) are primal and dual feasible solutions.
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Algorithm 2. Potential Reduction Algorithm
Input : Feasible flow x > 0, feasible dual variables y and s > 0, parameter δ
Output: Feasible flow x > 0, feasible dual variables y and s > 0 s.t. xT s < 1.

while xT s ≥ 1 do
g′ := q

xT s
Xs − 1, χ := Āg′, r := X−21

/* ε-electrical flow computation, similar to SimpleSolver in [12] */

T := low-stretch spanning tree w.r.t. r, τ(T ) :=
∑

a∈A\T
r(Ca)

ra
, pa := r(Ca)

τ(T )ra

f := tree solution with Af = χ for T , π := tree induced voltages of f

gap := fT Rf − 2πT χ + πT ĀĀT π
repeat

Randomly sample a ∈ A \ T with probability pa

Update f by pushing
∑

b∈Ca
rbfb/r(Ca) flow through Ca in the

direction of a
Update voltages π and occasionally compute gap

until gap < δ
/* Make a primal or dual update. */

Set x̂′ := g′ − X−1f , ŝ′ = ĀT π and z′ = g′ − ŝ′.
if ‖z′‖2

2 ≥ 1/4 then

Cycle update: x′ := 1 − λ x̂′
max{1,‖x̂′‖∞} , where λ = 1/4.

else

Cut update: s′ := s′ − μŝ′ and y := y + μπ, where μ = 1T s′
q

.

return x and y, s

The following lemma, whose proof may also be found in the full version, shows
that the potential is reduced by a constant amount in each step. We remark that
although the proof for the dual step is essentially similar to the proof for Ye’s
algorithm, the normalization with the ∞-norm in the primal step and the fact
that x̂′ is only an approximation of d′ requires non-trivial changes in the proof
for the primal step.

Lemma 2. If δ ≤ 1/8 and p2 ≥ m ≥ 4, the potential reduction is constant in
each step, more precisely it holds that

P (1, s′)−P (1−λ
x̂′

max{1, ‖x̂′‖∞} , s′) ≥ 1/64 and P (1, s′)−P (1, s′−μŝ′) ≥ 1
12

.

We already remarked that P (x, s) < 0 implies xT s < 1, hence P (x, s) ≥ 0
holds throughout the algorithm. With Lemma 2, the initial potential bounds the
number of iterations.

Theorem 2. Given primal and dual interior points with potential P0 as input,
Alg. 2 outputs interior primal and dual solutions x and y, s with xT s < 1 after
O(P0) iterations. It can be implemented such that it terminates after O(P0 ·
m log3(m) log log m)) time with probability at least 1−exp(−m log3(m) log log m).
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The proof of this theorem may be found in the full version of the paper. The
theorem follows by an application of Markov’s inequality to the probability that
the gap is larger than δ after one iteration of the Repeat-Until loop. We remark
that we can also keep running the algorithm until xT s < c for any c ∈ R≥0

without affecting the running time. In addition, we get the following more general
result. To prove it, it remains to show that a 1/(16q2)-electrical flow fulfills
gap ≤ 1/8.

Theorem 3. Given primal and dual interior points with a potential of P0 as
input, there is an algorithm that outputs interior primal and dual solutions x
and y, s with xT s < 1 and needs O(P0 · CEF(n,m, 1/(16q2))) time, where q =
m+min{k ∈ Z : k2 ≥ m} and CEF(n,m, ε) is the running time of any certifying
ε-electrical flow algorithm.

Proof. It remains to show that a 1/(16q2)-electrical flow fulfills gap ≤ 1/8. The
approximation guarantee from the certifying ε-electrical flow algorithm for the
primal and dual solution yield

‖g′ − x̂′‖22 ≤ (1 + ε)‖g′ − d′‖22 and ‖π − π∗‖2ĀĀT ≤ ε‖π∗‖2ĀĀT , (3)

the second guarantee equivalently writes as

ε‖g′ − d′‖22 ≥ ‖z′ − d′‖22 = ‖z′‖22 − 2d′T (g′ − ĀT π) + ‖d′‖22 = ‖z′‖22 − ‖d′‖22.
Together with (3), we obtain

gap = fT Rf − 2πT χ + πT ĀĀT π = ‖g′ − x̂′‖2
2 − 2g′T (g′ − z′) + ‖g′ − z′‖2

2

= ‖g′ − x̂′‖2
2 − ‖g′‖2

2 + ‖z′‖2
2 ≤ (1 + ε)‖g′ − d′‖2

2 − ‖g′‖2
2 + ε‖g′ − d′‖2

2 + ‖d′‖2
2

≤ 2ε‖g′ − d′‖2
2 ≤ 2ε‖g′‖2

2 ≤ 2εq2 ≤ 1

8
.

4 Initialization

In this section, we describe how to find initial points with P0 = Õ(
√

m) that we
can use to initialize Alg. 2. We assume w.l.o.g. that the given min-cost flow
instance is finite, that the capacities are finite and that the costs are non-
negative. In order to be self-contained, we also justify these assumptions in the
full version of the paper. We remark that we do not need to check feasibility,
since the crossover procedure presented above enables us to recognize infeasibil-
ity. This is described at the end of this section.

Removing Capacity Constraints. Using a standard reduction, we modify
the network in order to get rid of the upper bound constraints x ≤ u. Let
G0 = (V0, A0) denote the original input graph. For an edge a = (v, w) ∈ A0,
we proceed as follows, see from left to middle in Figure 1: Remove a, insert a
node vw, insert arcs á = (v, vw) and à = (w, vw) with cá = ca and cà = 0,
respectively.4 Moreover, set bvw = ua and subtract ua from bw.
4 We remark that the accents reflect the direction in which the arc is drawn in

Figure 1.
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vw

w

v

(ua, ca)

bw

bv

vw

w

v

(∞, ca)

(∞, 0)

bv

bw − ua

ua vw

w

v

ca

0

câ

bw

bv

bvw

Fig. 1. The transition from the left to the middle, which is done for each arc, removes
the capacity constraint. From the middle to the right: In order to balance the xasa, we
introduce the arc â = (v, w) with high cost câ and reroute flow along it. The direction
of â depends on a tree solution z in G0. It is flipped if za ≤ ua/2.

Finding the Initial Flow. Recall the equivalent form of the potential function
in (1). It illustrates that the potential becomes small if the ratio between the
arithmetic and the geometric mean does, this in turn is the case if the variance
of the xasa is low over all a ∈ A. This observation is crucial for our routine Alg. 3
that finds an initial flow with low potential. Our aim is to balance the flows on
(v, vw) and (w, vw), by introducing the arc (v, w) or (w, v), see Figure 1 from
middle to right. Since we perform the two transitions of Figure 1 together, we will
refer to the resulting graph as G1 = (V1, A1) with |V1| = n1 and |A1| = m1 = 3m.
For the sake of presentation, we assume w.l.o.g. that all capacities ua of the
original graph G were odd such that za − ua/2 �= 0 for all integers za. 5

Algorithm 3. Balance Arcs
Input : G0 = (V0, A0), parameter t.
Output: Graph G1, primal and dual solutions x, and y, s, such that

xasa ∈ [t, t + CU/2].

Compute a tree solution in G0, obtain integral (not necessarily feasible) flow z.
for every arc a ∈ A0 do

Insert node vw, arcs á = (v, vw), à = (w, vw) with cá = ca, cà = 0, set
xá = xà = ua/2
if za > ua/2 then

Replace a by â = (v, w)

else
Replace a by â = (w, v)

câ =
⌈
t/|za − ua/2|⌉, xâ := |za − ua/2|, yvw := −2t/ua and yv, yw := 0

return the resulting graph G1 = (V1, A1) and x, y with corresponding slacks s.

5 This is justified by the following argument: If the capacity of an arc is even, then we
add a parallel arc of capacity 1 and reduce the capacity of the original arc by 1.
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Theorem 4. Let G1 = (V1, A1), x, y, s be output by Alg. 3, let Γ := max{C,U,
‖b‖1/2}. Then, it holds that xasa ∈ [t, t+Γ 2] for all a ∈ A1. Furthermore, setting
t = mΓ 3 and p = min{k ∈ Z : k2 ≥ m1} yields P (x, s) = O(

√
m log(nγ)).

Proof. Let a ∈ A0 be any arc in G0. We have xá = xà = ua/2. It holds that,

xásá =
ua

2

(

cá +
2t

ua

)

= t +
uaca

2
≤ t + Γ 2, xàsà =

ua

2

(

cà +
2t

ua

)

= t and

xâsâ ≥
∣
∣
∣za − ua

2

∣
∣
∣

t

|za − ua

2 | = t and xâsâ ≤
∣
∣
∣za − ua

2

∣
∣
∣

(
t

|za − ua

2 | + 1
)

≤ t + Γ.

We now consider the potential function with q = m1 + p, we will fix p below:

P (x, s) : = q ln(xT s) −
∑

a∈A1

ln(xasa) − m1 ln m1 ≤ q ln
(
m1t + 2mΓ 2)− m1 ln m1t

≤ q ln
(
1 +

m1Γ
2

m1t

)
+ p ln m1t ≤ m1 + p

mΓ
+ p ln(m2

1Γ
3), since t = mΓ 3.

For p = min{z ∈ Z : z2 ≥ m1}, we get P (x, s) = O(
√

m log nΓ ) = O(
√

m log nγ).
�


Alg. 3 can be implemented in O(m) time. We remark that, due to the high
costs of the arcs A1 \A0, there will never be flow on them in an optimal solution.
In particular, these arcs are more expensive than any path in the original network
because câ = 	t/|za − ua/2|
 ≥ mCU . Therefore, the optimum of the problem
is not changed by the introduction of the arcs â. We remark that the resulting
network is always feasible. This is why we can assume feasibility in Section 2.

Summary. We first run Alg. 3 on the input graph G0 to construct the auxil-
iary network G1. We then initialize Alg. 2 with the obtained interior points. If
	bT y0
 > mCU , the problem in G0 was infeasible, since any solution in G0 is
bounded by mCU . Otherwise, we apply Alg. 1 and obtain optimal integral opti-
mal potentials y in G1. Let H1 be the admissible network, i.e. the graph G1 with
all arcs with slack 0. Consider H0, the graph resulting by removing all arcs â from
H1 that were introduced by Alg. 3. By a max-flow computation we compute a
feasible solution x in H0, which is optimal in G0 by complementary slackness x.
If H0 is however infeasible, there is a set S with b(S) ≤ −1 and δoutH0

(S) = ∅ [15,
Corollary 11.2h]. Since y is optimal in G1, there is an arc â ∈ δoutG1

(S) with sâ = 0,
thus â ∈ δoutH1

(S). It follows that there is always a feasible and integral solution
z in H1 with zâ ≥ 1 that is optimal in G1. With câ ≥ mCU , we conclude that
the cost of z is larger than mCU , which contradicts 	bT y0
 ≤ mCU . Since the
max-flow computation requires O(m3/2 log(n2/m) log U) if it is carried out with
the algorithm of Goldberg and Rao [16], this yields the overall run-time.
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Abstract. We consider the all pairs all shortest paths (APASP) prob-
lem, which maintains the shortest path dag rooted at every vertex in a
directed graph G = (V, E) with positive edge weights. For this problem
we present a decremental algorithm (that supports the deletion of a ver-
tex, or weight increases on edges incident to a vertex). Our algorithm
runs in amortized O(ν∗2 · log n) time per update, where n = |V |, and
ν∗ bounds the number of edges that lie on shortest paths through any
given vertex. Our APASP algorithm can be used for the decremental
computation of betweenness centrality (BC), which is widely used in the
analysis of large complex networks. No nontrivial decremental algorithm
for either problem was known prior to our work. Our method is a gen-
eralization of the decremental algorithm of Demetrescu and Italiano [3]
for unique shortest paths, and for graphs with ν∗ = O(n), we match
the bound in [3]. Thus for graphs with a constant number of shortest
paths between any pair of vertices, our algorithm maintains APASP and
BC scores in amortized time O(n2 · log n) under decremental updates,
regardless of the number of edges in the graph.

1 Introduction

Given a directed graph G = (V,E), with a positive real weight w(e) on each edge
e, we consider the problem of maintaining the shortest path dag rooted at every
vertex in V (we will refer to these as the SP dags). We use the term all-pairs
ALL shortest paths (APASP) to denote the collection of SP dags rooted at all
v ∈ V , since one can generate all the (up to exponential number of) shortest
paths in G from these dags. These dags give a natural structural property of G
which is of use in any application where several or all shortest paths need to be
examined. A particular application that motivated our work is the computation
of betweenness centrality (BC) scores of vertices in a graph [4].

In this paper we present a decremental algorithm for the APASP problem,
where each update in G either deletes or increases the weight of some edges
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incident on a vertex. Our method is a generalization of the method developed
by Demetrescu and Italiano [3] (the ‘DI’ method) for decremental APSP where
only one shortest path is needed. The DI algorithm [3] runs in O(n2 · log n)
amortized time per update, for a sufficiently long update sequence. In [3] the
result is extended to a fully dynamic algorithm that runs in O(n2 · log3 n) time,
and this result was improved to O(n2 · log2 n) amortized time by Thorup [14].
We briefly discuss the fully dynamic case at the end of our paper. In these earlier
algorithms, the unique shortest paths assumption is crucial.

In addition to APASP, our method gives decremental algorithms for the
following two problems.
Locally Shortest Paths (LSPs). For a path πxy ∈ G, we define the πxy

distance from x to y as w(πxy) =
∑

e∈πxy
w(e), and the πxy length from x to y

as the number of edges in πxy. For any x, y ∈ V , d(x, y) denotes the shortest path
distance from x to y in G. A path πxy in G is a locally shortest path (LSP) [3] if
either πxy contains a single vertex, or every proper subpath of πxy is a shortest
path in G. As noted in [3], every shortest path (SP) is an LSP, but an LSP need
not be an SP (e.g., every single edge is an LSP).

The DI method maintains all LSPs in a graph with unique shortest paths,
and these are key to efficiently maintaining shortest paths under decremental
and fully dynamic updates. The decremental method we present here maintains
all LSPs for all (multiple) shortest paths in a graph.
Betweenness Centrality (BC). Betweenness centrality is a widely-used mea-
sure in the analysis of large complex networks, and is defined as follows. For any
pair x, y in V , let σxy denote the number of shortest paths from x to y in G,
and let σxy(v) denote the number of shortest paths from x to y in G that pass
through v. Then, BC(v) =

∑
s �=v,t�=v

σst(v)
σst

. This measure is often used as an
index that determines the relative importance of v in the network. Some applica-
tions of BC include analyzing social interaction networks [7], identifying lethality
in biological networks [11], and identifying key actors in terrorist networks [2,8].
Heuristics for dynamic betweenness centrality with good experimental perfor-
mance are given in [5,9,13], but none of these algorithms provably improve on
the widely used static algorithm by Brandes [1], which runs in O(mn+n2 · log n)
time on any class of graphs, where m = |E|.

Recently, we gave a simple incremental BC algorithm [10], that provably
improves on Brandes’ on sparse graphs, and also typically improves on Brandes’
in dense graphs (e.g., in the setting of Theorem 2 below). In this paper, we
complement the results in [10]; however, decremental updates are considerably
more challenging (similar to APSP, as noted in [3]).

The key step in the recent incremental BC algorithm [10] is the incremental
maintenance of the APASP dags (achieved using techniques unrelated to the
current paper). After the updated dags are obtained, the BC scores can be
computed in time linear in the combined sizes of the APASP dags (plus O(n2)).
Thus, if we instead use our decremental APASP algorithm in the key step in [10],
we obtain a decremental algorithm for BC with the same bound as APASP.
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Our Results. Let ν∗ be the maximum number of edges that lie on shortest
paths through any given vertex in G; thus, ν∗ also bounds the number of edges
that lie on any single-source shortest path dag. Let m∗ be the number of edges
in G that lie on shortest paths (see, e.g., Karger et al. [6]). Our main result is
the following theorem, where we have assumed that ν∗ = Ω(n).

Theorem 1. Let Σ be a sequence of decremental updates on G = (V,E). Then,
all SP dags, all LSPs, and all BC scores can be maintained in amortized time
O(ν∗2 · log n) per update when |Σ| = Ω(m∗/ν∗).

Discussion of the Parameters. As noted in [6], it is well-known that m∗ =
O(n log n) with high probability in a complete graph where edge weights are cho-
sen from a large class of probability distributions. Since ν∗ ≤ m∗, our algorithms
will have an amortized bound of O(n2 · log3 n) on such graphs. Also, ν∗ = O(n)
in any graph with only a constant number of shortest paths between every pair
of vertices, even though m∗ can be Θ(n2) in the worst case even in graphs with
unique shortest paths. In fact ν∗ = O(n) even in some graphs that have an
exponential number of shortest paths between some pairs of vertices. In all such
cases, and more generally, when the number of edges on shortest paths through
any single vertex is O(n), our algorithm will run in amortized O(n2 · log n) time
per decremental update. Thus we have:

Theorem 2. Let Σ be a sequence of decremental updates on graphs where the
number of edges on shortest paths through any single vertex is O(n). Then, all
SP dags, all LSPs, and all BC scores can be maintained in amortized time O(n2 ·
log n) per update when |Σ| = Ω(m∗/n).

Corollary 1. If the number of shortest paths for any vertex pair is bounded
by a constant, then decremental APASP, LSPs, and BC have amortized cost
O(n2 · log n) per update when the update sequence has length Ω(m∗/n).

x′

x

a1 a2 a3

vv1 v2

b1 b

yy1

2

4

2

Fig. 1. Graph G

Set G (before update on v)

P (x, y) {((xa1, by), 4, 1), ((xa2, by), 4, 2),

= P ∗(x, y) ((xa3, by), 4, 1)}
P (x, b1) {(xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
P ∗(x, b1) {((xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
L∗(v, y1) {a1, a2}
L(v, b1y1) {a1, a2}
R∗(x, v) {b, b1}
R(xa2, v) {b, b1}

Fig. 2. A subset of the tuple-system for G in Fig. 1

The DI Method. Here we will use an example to give a quick review of the
DI approach [3], which forms the basis for our method. Consider the graph G in
Fig. 1, where all edges have weight 1 except for the ones with explicit weights.
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As in DI, let us assume here that G has been pre-processed to identify a
unique shortest path between every pair of vertices. In G the shortest path from
a1 to b1 is 〈a1, v, b1〉 and has weight 2, and by definition, the paths p1 = 〈a1, b1〉
and p2 = 〈a1, v1, b1〉 of weight 4 are both LSPs. Now consider a decremental
update on v that increases w(a1, v) to 10 and w(a2, v) to 5, and let G′ be
the resulting graph (see Fig. 3). In G′ both p1 and p2 become shortest paths.
Furthermore, a left extension of the path p1, namely p3 = 〈x, a1, b1〉 becomes a
shortest path from x to b1 in G′. Note that the path p3 is not even an LSP in the
graph G; however, it is obtained as a left extension of a path that has become
shortest after the update.

The elegant method of storing LSPs and creating longer LSPs by left and
right extending shortest paths is the basis of the DI approach [3]. To achieve this,
the DI approach uses a succinct representation of SPs, LSPs and their left and
right extensions using suitable data structures. It then uses a procedure cleanup
to remove from the data structures all the shortest paths and LSPs that contain
the updated vertex v, and a complementary procedure fixup that first adds all
the trivial LSPs (corresponding to edges incident on v), and then restores the
shortest paths and LSPs between all pairs of vertices. The DI approach thus
efficiently maintains a single shortest path between all pairs of vertices under
decremental updates.

In this paper we are interested in maintaining all shortest paths for all vertex
pairs and this requires several enhancements to the methods in [3]. In Section 2
we present a new tuple system which succinctly represents all LSPs in a graph
with multiple shortest paths. In the rest of the paper we present our decremental
algorithm for maintaining this tuple system, and hence for maintaining APASP
and BC scores.

2 A System of Tuples

In this section we present an efficient representation of the set of SPs and LSPs
for an edge weighted graph G = (V,E). We first define the notions of tuple and
triple.
Tuple. A tuple, τ = (xa, by), represents the set of LSPs in G, all of which use
the same first edge (x, a) and the same last edge (b, y). The weight of every path
represented by τ is w(x, a) + d(a, b) + w(b, y). We call τ a locally shortest path
tuple (LST). In addition, if d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a
shortest path tuple (ST). Fig. 5(a) shows a tuple τ .
Triple. A triple γ = (τ, wt, count), represents the tuple τ = (xa, by) that con-
tains count > 0 number of paths from x to y, each with weight wt. In Fig. 1, the
triple ((xa2, by), 4, 2) represents two paths from x to y, namely p1 = 〈x, a2, v, b, y〉
and p2 = 〈x, a2, v2, b, y〉 both having weight 4.
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Storing Locally Shortest Paths. We use triples to succinctly store all LSPs
and SPs for each vertex pair in G. For x, y ∈ V , we define:

P (x, y) = {((xa, by), wt, count): (xa, by) is an LST from x to y in G}
P ∗(x, y) = {((xa, by), wt, count): (xa, by) is an ST from x to y in G}.

Note that all triples in P ∗(x, y) have the same weight. We will use the term LST
to denote either a locally shortest tuple or a triple representing a set of LSPs,
and it will be clear from the context whether we mean a triple or a tuple.

x′

x

a1 a2 a3

vv1 v2

b1 b

yy1

2

4

2

10 5

Fig. 3. Graph G′

Set G′ (with w(a1, v) = 10, w(a2, v) = 5)

P (x, y) {((xa2, by), 4, 1), ((xa3, by), 4, 1)}
= P ∗(x, y)

P (x, b1) {((xa1, v1b1), 5, 1), ((xa2, vb1), 7, 1),

((xa1, a1b1), 5, 1)}
P ∗(x, b1) {((xa1, v1b1), 5, 1), ((xa1, a1b1), 5, 1)}
L∗(v, y1) {a2}
L(v, b1y1) {a2}
R∗(x, v) ∅
R(xa2, v) {b1}

Fig. 4. A subset of the tuple-system for G′

x

a

b

y

(a) tuple τ = (xa, by)

x

a

y

(b) �-tuple τ� = (xa, y)

x

b

y

(c) r-tuple τr = (x, by)

Fig. 5. Tuples

Left Tuple and Right Tuple. A left tuple (or 
-tuple), τ� = (xa, y), represents
the set of LSPs from x to y, all of which use the same first edge (x, a). The weight
of every path represented by τ� is w(x, a) + d(a, y). If d(x, y) = w(x, a)+d(a, y),
then τ� represents the set of shortest paths from x to y, all of which use the first
edge (x, a). A right tuple (r-tuple) τr = (x, by) is defined analogously. Fig. 5(b)



Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality 771

and Fig. 5(c) show a left tuple and a right tuple respectively. In the following,
we will say that a tuple (or 
-tuple or r-tuple) contains a vertex v, if at least one
of the paths represented by the tuple contains v.

ST and LST Extensions. For a shortest path r-tuple τr = (x, by), we define
L(τr) to be the set of vertices which can be used as pre-extensions to create
LSTs in G. Similarly, for a shortest path 
-tuple τ� = (xa, y), R(τ�) is the set of
vertices which can be used as post-extensions to create LSTs in G. We do not
define R(τr) and L(τ�). So we have:

L(x, by) = {x′ : (x′, x) ∈ E(G) and (x′x, by) is an LST in G}
R(xa, y) = {y′ : (y, y′) ∈ E(G) and (xa, yy′) is an LST in G}.

For x, y ∈ V , L∗(x, y) denotes the set of vertices which can be used as pre-
extensions to create shortest path tuples in G; R∗(x, y) is defined symmetrically:

L∗(x, y) = {x′ : (x′, x) ∈ E(G) and (x′x, y) is a 
-tuple representing SPs in G}
R∗(x, y) = {y′ : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple representing SPs in G}.

Fig. 2 shows a subset of these sets for the graph G in Fig. 1.

Key Deviations from DI [3]. The assumption of unique shortest paths in
[3] ensures that τ = (xa, by), τ� = (xa, y), and τr = (x, by) all represent exactly
the same (single) locally shortest path. However, in our case, the set of paths
represented by τ� and τr can be different, and τ is a subset of paths represented
by τ� and τr. Our definitions of ST and LST extensions are derived from the
analogous definitions in [3] for SP and LSP extensions of paths. For a path
π = x → a � b → y, DI defines sets L, L∗, R and R∗. In our case, the analog of
a path π = x → a � b → y is a tuple τ = (xa, by), but to obtain efficiency, we
define the set L only for an r-tuple and the set R only for an 
-tuple. Furthermore,
we define L∗ and R∗ for each pair of vertices.

In the following two lemmas we bound the total number of tuples in the graph
and the total number of tuples that contain a given vertex v. These bounds also
apply to the number of triples since there is exactly one triple for each tuple in
our tuple system.

Lemma 1. The number of LSTs in G = (V,E) is bounded by O(m∗ · ν∗).

Proof. For any LST (×a,××), for some a ∈ V , the first and last edge of any such
tuple must lie on a shortest path containing a. Let E∗

a denote the set of edges that
lie on shortest paths through a, and let Ia be the set of incoming edges to a. Then,
there are at most ν∗ ways of choosing the last edge in (×a,××) and at most
E∗

a ∩ Ia ways of choosing the first edge in (×a,××). Since
∑

a∈V |E∗
a ∩ Ia| = m∗,

the number of LSTs in G is at most
∑

a∈V ν∗ · |E∗
a ∩ Ia| ≤ m∗ · ν∗. �	

Lemma 2. The number of LSTs that contain a vertex v is O(ν∗2).
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Proof. We distinguish three different cases:
1. Tuples starting with v: for a tuple that starts with edge (v, a), the last

edge must lie on a’s SP dag, so there are at most ν∗ choices for the last edge.
Hence, the number of tuples with v as start vertex is at most

∑
a∈V \v ν∗ ≤ n ·ν∗.

2. Similarly, the number of tuples with v as end vertex is at most n · ν∗.
3. For any tuple τ = (xa, by) that contains v as an internal vertex, both (x, a)

and (b, y) lie on a shortest path through v, hence the number of such tuples is
at most ν∗2. �	

3 Decremental Algorithm

Here we present our decremental APASP algorithm. Recall that a decremental
update on a vertex v either deletes or increases the weights of a subset of edges
incident on v. We begin with the data structures we use.
Data Structures. For every x, y, x 
= y in V , we maintain the following:

1. P (x, y) – a priority queue containing LSTs from x to y with weight as key.
2. P ∗(x, y) – a priority queue containing STs from x to y with weight as key.
3. L∗(x, y) – a balanced search tree containing vertices with vertex ID as key.
4. R∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

For every 
-tuple we have its right extension, and for every r-tuple its left
extension. These sets are stored as balanced search trees (BSTs) with the vertex
ID as a key. Additionally, we maintain all tuples in a BST dict, with a tuple τ =
(xa, by) having key [x, y, a, b]. We also maintain pointers from τ to R(xa, y) and
L(x, by), and to the corresponding triple containing τ in P (x, y), (and in P ∗(x, y)
if (xa, by) is an ST). Finally, we maintain a sub-dictionary of dict called Marked-
Tuples (explained below). Marked-Tuples, unlike the other data structures, is
specific only to one update.
The Algorithm. Given the updated vertex v and the updated weight function
w′ over all the incoming and outgoing edges of v, the decremental algorithm
performs two main steps cleanup and fixup, as in DI. The cleanup procedure
removes from the tuple system every LSP that contains the updated vertex v.
The following definition of a new LSP is from DI [3].

Definition 1. A path that is shortest (locally shortest) after an update to vertex
v is new if either it was not an SP (LSP) before the update, or it contains v.

The fixup procedure adds to the tuple system all the new shortest and locally
shortest paths. In contrast to DI, recall that we store locally shortest paths in
P and P ∗ as triples. Hence removing or adding paths implies decrementing or
incrementing the count in the relevant triple; thus a triple is removed or added
only if its count goes down to zero or up from zero. Moreover, new tuples may
be created through combining several existing tuples. Some of the updated data
structures for the graph G′ in Fig. 3, obtained after a decremental update on v
in the graph G in Fig. 1, are schematized in Fig. 4.



Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality 773

3.1 The Cleanup Procedure

Alg. 1 (cleanup) uses an initially empty heap Hc of triples. It also initializes the
empty dictionary Marked-Tuples. The algorithm then creates the trivial triple
corresponding to the vertex v and adds it to Hc (Step 2, Alg. 1). For a triple
((xa, by), wt, count) the key in Hc is [wt, x, y]. The algorithm repeatedly extracts
min-key triples from Hc (Step 4, Alg. 1) and processes them. The processing of
triples involves left-extending (Steps 5–17, Alg. 1) and right-extending triples
(Step 18, Alg. 1) and removing from the tuple system the set of LSPs thus
formed. This is similar to cleanup in DI. However, since we deal with a set of
paths instead of a single path, we need significant modifications, of which we now
highlight two: (i) Accumulation used in Step 4 and (ii) use of Marked-Tuples in
Step 7 and Step 11.

Algorithm 1. cleanup(v)
1: Hc ← ∅; Marked-Tuples ← ∅
2: γ ← ((vv, vv), 0, 1); add γ to Hc

3: while Hc �= ∅ do
4: extract in S all the triples with min-key [wt, x, y] from Hc

5: for every b such that (x×, by) ∈ S do
6: let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

7: for every x′ ∈ L(x, by) such that (x′x, by) /∈ Marked-Tuples do
8: wt′ ← wt + w(x′, x); γ′ ← ((x′x, by), wt′, fcount′); add γ′ to Hc

9: remove γ′ in P (x′, y) // decrements count by fcount
10: if a triple for (x′x, by) exists in P (x′, y) then
11: insert (x′x, by) in Marked-Tuples
12: else
13: delete x′ from L(x, by) and delete y from R(x′x, b)
14: if a triple for (x′x, by) exists in P ∗(x′, y) then
15: remove γ′ in P ∗(x′, y) // decrements count by fcount
16: if P ∗(x, y) = ∅ then delete x′ from L∗(x, y)
17: if P ∗(x′, b) = ∅ then delete y from R∗(x′, b)
18: perform symmetric steps 5 – 17 for right extensions

Accumulation. In Step 4 we extract a collection S of triples all with key
[wt, x, y] from Hc and process them together in that iteration of the while loop.
Assume that for a fixed last edge (b, y), S contains triples of the form (xat, by),
for t = 1, . . . , k. Our algorithm processes and left-extends all these triples with
the same last edge together. This ensures that, for any x′ ∈ L(x, by), we generate
the triple (x′x, by) exactly once. The accumulation is correct because any valid
left extension for a triple (xai, by) is also a valid left extension for (xaj , by) when
both triples have the same weight.

Marked-Tuples. The dictionary of Marked-Tuples is used to ensure that every
path through the vertex v is removed from the tuple system exactly once and
therefore counts of paths in triples are correctly maintained. Note that a path of
the form (xa, by) can be generated either as a left extension of (a, by) or by a right
extension of (xa, b). This is true in DI as well. However, due to the assumption of
unique shortest paths they do not need to maintain counts of paths, and hence
do not require the book-keeping using Marked-Tuples.



774 M. Nasre et al.

3.1.1 Complexity and Correctness. Lemma 3 establishes the correctness
of Alg. 1 and can be proved using a suitable loop invariant for the while loop in
Step 3. The time bound in Lemma 4 follows from Lemma 2 since every triple
examined in cleanup has at least one path that contains v.

Lemma 3. After Alg. 1 is executed, the counts of triples in P (P ∗) repre-
sent counts of LSPs (SPs) in G that do not pass through v. Moreover, the sets
L,L∗, R,R∗ are correctly maintained.

Lemma 4. For an update on a vertex v, Alg. 1 takes O(ν∗2 · log n) time.

3.2 The Fixup Procedure

The goal of the fixup procedure is to add to the tuple system all new shortest
and locally shortest paths (recall Definition 1).

The fixup procedure (pseudo-code in Alg. 2) works with a heap of triples
(Hf here), which is initialized with a candidate shortest path triple for each pair
of vertices. The algorithm repeatedly extracts the set of triples with minimum
key and processes them. The main invariant for the algorithm (similar to DI [3])
is that for a pair x, y, the weight of the first set of triples extracted from Hf

gives the distance from x to y in the updated graph. Thus, these triples are
all identified as shortest path triples, and we need to extend them if in fact
they represent new shortest paths. To readily identify triples containing paths
through v we use some additional book-keeping: for every triple γ we store the
update number (update-num(γ)) and a count of the number of paths in that
triple that pass through v (paths(γ, v)). Finally, similar to cleanup, the fixup
procedure also left and right extends triples to create triples representing new
locally shortest paths.

Alg. 2 initializes Hf in Steps 2–5 as follows. (i) For every edge incident on
v, it creates a trivial triple γ which is inserted into Hf and P . It also sets
update-num(γ) and paths(γ, v) for each such γ; (ii) For every x, y ∈ V , it adds a
candidate min-weight triple from P (x, y) to Hf (even if P (x, y) contains several
min-weight triples; this is done for efficiency).

Alg. 2 executes Steps 10–17 when for a pair x, y, the first set of triples S′, all
of weight wt, are extracted from Hf . We claim (Invariant 3) that wt denotes the
shortest path distance from x to y in the updated graph. The goal of Steps 10–17
is to create a set S of triples that represent new shortest paths, and this step is
considerably more involved than the corresponding step in DI. In DI [3], only a
single path p is extracted from Hf possibly resulting in a new shortest path from
x to y. If p is new then it is added to P ∗ and the algorithm extends it to create
new LSP. In our case, we extract not just multiple paths but multiple shortest
path triples from x to y, and some of these triples may not be in Hf . We now
describe how our algorithm generates the new shortest paths in Steps 10–17.
Steps 10–17, Alg. 2 – As mentioned above, Steps 10–17 create a set S of triples
that represent new shortest paths. There are two cases.
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– P ∗(x, y) is empty: Here, we process the triples in S′, but in addition, we may
be required to process triples of weight wt from the set P (x, y). To see this,
consider the example in Fig. 1 and consider the pair a1, b1. In G, there is
one shortest path 〈a1, v, b1〉 which is removed from P (a1, b1) and P ∗(a1, b1)
during cleanup. In G′, d(a1, b1) = 4 and there are 2 shortest paths, namely
p1 = 〈a1, b1〉 and p2 = 〈a1, v1, b1〉. Note that both of these are LSPs in G
and therefore are present in P (a1, b1). In Step 5, Alg. 2 we insert exactly one
of them into the heap Hf . However, both need to be processed and also left
and right extended to create new locally shortest paths. Thus, under this
condition, we examine all the min-weight triples present in P (a1, b1).

– P ∗(x, y) is non-empty: After a decremental update, the distance from x to
y can either remain the same or increase, but it cannot decrease. Further,
cleanup removed from the tuple system all paths that contain v. Hence, if
P ∗(x, y) is non-empty at this point, it implies that all paths in P ∗(x, y) avoid
v. In this case, we can show (Invariant 4) that it suffices to only examine the
triples present in Hf . Furthermore, the only paths that we need to process
are the paths that pass through the vertex v.

Steps 19–29, Alg. 2 – These steps left-extend and right-extend the triples in S
representing new shortest paths from x to y.

Algorithm 2. fixup(v,w′)
1: Hf ← ∅; Marked-Tuples ← ∅
2: for each edge incident on v do
3: create a triple γ; set paths(γ, v) = 1; set update-num(γ); add γ to Hf and to P ()
4: for each x, y ∈ V do
5: add a min-weight triple from P (x, y) to Hf

6: while Hf �= ∅ do
7: extract in S′ all triples with min-key [wt, x, y] from Hf ; S ← ∅
8: if S′ is the first extracted set from Hf for x, y then
9: {Steps 10–17: add new STs (or increase counts of existing STs) from x to y.}
10: if P ∗(x, y) is empty then
11: for each γ′ ∈ P (x, y) with weight wt do
12: let γ′ = ((xa′, b′y), wt, count′)
13: add γ′ to P ∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)
14: else
15: for each γ′ ∈ S′ containing a path through v do
16: let γ′ = ((xa′, b′y), wt, count′)
17: add γ′ with paths(γ′, v) in P ∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)
18: {Steps 19–28: add new LSTs (or increase counts of existing LSTs) that extend SPs from

x to y.}
19: for every b such that (x×, by) ∈ S do
20: let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

21: for every x′ in L∗(x, b) do
22: if (x′x, by) /∈ Marked-Tuples then
23: wt′ ← wt + w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)
24: set update-num(γ′); paths(γ′, v) ←∑

γ=(x×,by) paths(γ, v); add γ′ to Hf

25: if a triple for (x′x, by) exists in P (x′, y) then
26: add γ′ with paths(γ′, v) in P (x′, y); add (x′x, by) to Marked-Tuples
27: else
28: add γ′ to P (x′, y); add x′ to L(x, by) and y to R(x′x, b)
29: perform steps symmetric to Steps 19 – 28 for right extensions.

Fixup maintains the following invariants. Invariant 3 is proved similarly to
Invariant 3.1 in [3]. The proof of Invariant 4 requires a careful analysis of various
cases to show that indeed all new shortest paths are inserted into the set S.
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Finally, Lemma 5 is proved using a suitable loop invariant for the while loop in
Step 6 of Alg. 2.

Invariant 3. If the set S′ in Step 7 of Alg. 2 is the first extracted set from Hf

for x, y, then the weight of each triple in S′ is the shortest path distance from x
to y in the updated graph.

Invariant 4. The set S of triples constructed in Steps 10–17 of Alg. 2 represents
all of the new shortest paths from x to y.

Lemma 5. After execution of Alg. 2, for any (x, y) ∈ V , the counts of the triples
in P (x, y) and P ∗(x, y) represent the counts of LSPs and SPs from x to y in the
updated graph. Moreover, the sets L,L∗, R,R∗ are correctly maintained.

3.2.1 Complexity of Fixup. As in DI, we observe that shortest paths and
LSPs are removed only in cleanup and are added only in fixup. In a call to fixup,
accessing a triple takes O(log n) time since it is accessed on a constant number
of data structures. So, it suffices to bound the number of triples accessed in a
call to fixup, and then multiply that bound by O(log n).

We will establish an amortized bound. The total number of LSTs at any time,
including the end of the update sequence, is O(m∗ · ν∗) (by Lemma 1). Hence,
if fixup accessed only new triples outside of the O(n2) triples added initially to
Hf , the amortized cost of fixup (for a long enough update sequence) would be
O(ν∗2 · log n), the cost of a cleanup. This is in fact the analysis in DI, where fixup
satisfies this property. However, in our algorithm fixup accesses several triples
that are already in the tuple system: In Steps 11–13 we examine triples already
in P , in Steps 15–17 we could increment the count of an existing triple in P ∗,
and in Steps 19–28 we increment the count of an existing triple in P . We bound
the costs of these steps in Lemma 6 below by classifying each triple γ as one of
the following disjoint types:

– Type-0 (contains-v): γ represents at least one path containing vertex v.
– Type-1 (new-LST): γ was not an LST before the update but is an LST

after the update, and no path in γ contains v.
– Type-2 (new-ST-old-LST): γ is an ST after the update, and γ was an

LST but not an ST before the update, and no path in γ contains v.
– Type-3 (new-ST-old-ST): γ was an ST before the update and continues

to be an ST after the update, and no path in γ contains v.
– Type-4 (new-LST-old-LST): γ was an LST before the update and con-

tinues to be an LST after the update, and no path in γ contains v.

The following lemma establishes an amortized bound for fixup which is the
same as the worst case bound for cleanup. This proves Theorem 1.

Lemma 6. The fixup procedure takes timeO(ν∗2·log n) amortized over a sequence
of Ω(m∗/ν∗) decremental-only updates.
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Proof. We bound the number of triples examined; the time taken is O(log n)
times the number of triples examined due to the data structure operations per-
formed on a triple. The initialization in Steps 1–5 takes O(n2) time. We now con-
sider the triples examined after Step 5. The number of Type-0 triples is O(ν∗2)
by Lemma 2. The number of Type-1 triples is addressed by amortizing over the
entire update sequence as described in the paragraph below. For Type-2 triples
we observe that since updates only increase the weights on edges, a shortest path
never reverts to being an LSP. Further, each such Type-2 triple is examined only
a constant number of times (in Steps 10–13). Hence we charge each access to a
Type-2 triple to the step in which it was created as a Type-1 triple. For Type-3
and Type-4, we note that for any x, y we add exactly one candidate min-weight
triple from P (x, y) to Hf , hence initially there are at most n2 such triples in
Hf . Moreover, we never process an old LST which is not an ST so no additional
Type-4 triples are examined during fixup. Finally, triples in P ∗ that are not
placed initially in Hf are not examined in any step of fixup, so no additional
Type-3 triples are examined. Thus the number of triples examined by a call to
fixup is O(ν∗2) plus O(X), where X is the number of new triples fixup adds to
the tuple system. (This includes an O(1) credit placed on each new LST for a
possible later conversion to an ST.)

Let σ be the number of updates in the update sequence. Since triples are
removed only in cleanup, at most O(σ ·ν∗2) triples are removed by the cleanups.
There can be at most O(m∗ · ν∗) triples remaining at the end of the sequence
(by Lemma 1), hence the total number of new triples added by all fixups in
the update sequence is O(σ · ν∗2 + m∗ · ν∗). When σ > m∗/ν∗, the first term
dominates, and this gives an average of O(ν∗2) triples added per fixup, and the
desired amortized time bound for fixup. �	
Discussion. We have presented an efficient decremental algorithm to main-
tain all-pairs all shortest paths (APASP). The space used by our algorithm is
O(m∗ · ν∗), the worst case number of triples in our tuple system. By using this
decremental APASP algorithm in place of the incremental APASP algorithm
used in [10], we obtain a decremental algorithm for maintaining BC scores with
the same bound.

Very recently, two of the authors have obtained a fully dynamic APASP
algorithm [12] that combines elements in the fully dynamic APSP algorithms in
[3] and [14], while building on the results in the current paper. When specialized
to unique shortest paths (i.e., APSP), this algorithm is about as simple as the
one in [3] and matches its amortized bound.
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Waleń, Tomasz 220
Wang, Haitao 3, 326
Wang, Hung-Lung 606
Wasa, Kunihiro 94
Watanabe, Osamu 273
Wiechert, Veit 516

780 Author Index



Witt, Carsten 686
Wu, Yen-Wei 606

Xiao, Mingyu 429

Yamada, Takeshi 389
Yang, Linji 41
Yiu, Siu-Ming 414
Yuan, Hao 41

Zavershynskyi, Maksym 27
Zeh, Norbert 128
Zhang, Jia 661
Zhang, Jialin 661
Zhang, Jingru 3
Zhou, Gelin 565
Zhu, Daming 467, 491
Zhu, Xuding 507

Author Index 781


	Preface
	Organization
	Invited Talks
	Biconnectivity in Directed Graphs
	Social Network Algorithmics

	Contents
	Computational Geometry I

	Line-Constrained k-Median, k-Means, and k-Center Problems in the Plane
	1 Introduction
	1.1 Previous Work
	1.2 Our Approaches

	2 Preliminaries
	3 The Constrained  k -Median
	3.1 An Algorithmic Scheme for All Metrics
	3.2 The Constrained  k -Median under the  L -Metric
	3.3 The Constrained k-Median Problem under L1-Metric

	4 The Constrained  k -Center
	4.1 The L2 Metric
	4.2 The  L1  and  L Metrics
	4.3 The Unweighted Case under  L1  and  L Metrics

	References

	Reconstructing Point Set Order Typesfrom Radial Orderings
	1 Introduction
	2 Bootstrapping
	3 Reconstruction Algorithms
	4 Triangular Convex Hulls
	5 Discussion and Open Problems
	References

	A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams
	1 Introduction
	2 Preliminaries
	3 Randomized Divide and Conquer Algorithm
	3.1 Refined Diagram
	3.2 Computing the Voronoi Vertices of Vk(S)
	3.3 Analysis

	4 First Sub-Algorithm: Iterative Construction
	5 Second Sub-Algorithm: Random Walk Method
	References


	Combinatorial Optimization I

	Average-Case Complexity of the Min-Sum Matrix Product Problem
	1 Introduction
	2 Min-Sum Product of Two Matrices
	3 Experiments
	4 Conclusion
	References

	Efficiently Correcting Matrix Products
	1 Introduction
	2 Preliminaries
	3 Correcting a Matrix Product with a Single Error
	4 Correcting a Matrix Product with at Most k Errors
	5 A Faster Randomized Approach
	6 Final Remarks
	References

	3D Rectangulations and Geometric Matrix Multiplication
	1 Introduction
	2 3D Histograms and Their Rectangular Partitions
	2.1 Partitioning a Rectilinear PSLG into 2D Rectangles
	2.2 Partitioning a 3D Histogram into 3D Rectangles

	3 Geometric Algorithms for Arithmetic Matrix Product
	3.1 Geometric Data Structures and Notation
	3.2 Algorithms

	4 Final Remarks
	References


	Graph Algorithms: Enumeration

	Enumeration of Maximum Common Subtree Isomorphisms with Polynomial-Delay
	1 Introduction
	2 Preliminaries
	2.1 Edmonds' Algorithm

	3 Enumeration of Maximum Weight Matchings with Polynomial-Delay
	4 Enumeration of Maximum Common Subtree Isomorphisms with Polynomial-Delay
	5 Enumeration of Maximal Common Subtree Isomorphisms
	6 Experimental Evaluation
	7 Conclusions
	References

	Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Induced Subtrees
	2.3 K-Degenerate Graphs

	3 Basic Binary Partition Algorithm
	3.1 Candidate Sets and Forbidden Sets
	3.2 Basic Binary Partition

	4 Improved Binary Partition Algorithm
	5 Conclusion
	References

	An Efficient Method for Indexing All Topological Orders of a Directed Graph
	1 Introduction
	2 Topological Orders
	3 Permutation Decision Diagrams
	3.1 Existing Permutation Decision Diagrams: DDs
	3.2 DP Approach and DDs
	3.3 New Permutation Decision Diagrams: Rot-DDs
	3.4 Rot-DD Operations

	4 Theoretical Analysis
	5 Computational Experiments
	6 Conclusion
	References


	Matching and Assignment I

	Planar Matchings for Weighted Straight Skeletons
	1 Introduction
	2 Weighted Straight Skeletons
	2.1 The Wavefront
	2.2 Pairing Edges

	3 Matchings and Roommates
	3.1 The Stable Roommate Problem
	3.2 Stable Partitions
	3.3 Existence of Planar Matchings
	3.4 Application to Straight Skeletons

	4 Conclusion
	References

	Orienting Dynamic Graphs, with Applications to Maximal Matchings and Adjacency Queries
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Preliminaries
	2.1 Reduction from Online Orientations to Offline Orientations
	2.2 Data Structures for Dynamic Sets with Center Elements

	3 Solutions with Amortized Time Bounds
	4 Solutions with Worst-Case Time Bounds
	References

	Dynamic and Multi-Functional Labeling Schemes
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Dynamic Labeling Schemes
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Other Graph Families

	4 Multi-Functional Labeling Schemes
	4.1 Dynamic Multi-functional Labeling Schemes
	4.2 Upper Bounds for Static Multi-functional Labeling Schemes
	4.3 Lower Bounds for Static Multi-functional Labeling Schemes

	5 Concluding Remarks
	References


	Data Structures and Algorithms I

	Hashing and Indexing: Succinct DataStructures and Smoothed Analysis
	1 Introduction
	2 Notation
	3 de Bruijn Functions and the dB-Hash Data Structure
	3.1 Implementing the dB-Hash Data Structure

	4 de Bruijn Hash for the k-Mismatch Problem
	4.1 Squeezing the Search Space: Hamming-Aware Functions
	4.2 The dB-rNA Algorithm
	4.3 Complexity Analysis of the Algorithm

	5 Conclusions and Final Remarks
	References

	Top-k Term-Proximity in Succinct Space
	1 Introduction
	2 Basic Concepts
	3 An Overview of Our Data Structure
	4 Data Structure for Queries with Fixed p = 
	5 Data Structure for Queries with p > 
	5.1 Generating a Semi-candidate Set
	5.2 Generating the Candidate Set

	6 Concluding Remarks
	References

	The Power and Limitations of Static Binary Search Trees with Lazy Finger
	1 Introduction
	2 Weights Give a Tree
	3 Trees Can Be Represented by Weights
	4 Proof of Main Theorem
	5 Hierarchy and Limitations of Models
	6 Constructing the Optimal Lazy Finger BST
	7 Multiple Trees Structure
	References


	Fixed-Parameter Tractable Algorithms I

	Minimum-Cost b-Edge Dominating Sets on Trees
	1 Introduction
	1.1 Contributions and Techniques
	1.2 Preliminaries: Polynomial-Time Algorithms and NP-Hardness

	2 Combinatorial Algorithm for Paths
	2.1 Dynamic Programming
	2.2 Compression of the DP Table
	2.3 Good Partitions and Zigzags

	3 Fixed-Parameter Algorithm for Trees
	3.1 Subproblem
	3.2 Algorithm

	4 FPTAS for Trees
	4.1 Pseudo-Polynomial-Time Algorithm for b-GEDS on Multitrees
	4.2 FPTAS for b-EDS on Trees

	References

	Fixed-Parameter Tractability of Token Jumping on Planar Graphs
	1 Introduction
	1.1 Known and Related Results
	1.2 Our Contribution
	1.3 Strategy for Fixed-Parameter Algorithms

	2 Preliminaries
	3 Fixed-Parameter Algorithm
	3.1 Planar Graphs
	3.2 K3,t-Forbidden Graphs

	4 Shortest Reconfiguration Sequence
	References

	Covering Problems for Partial Words and for Indeterminate Strings
	1 Introduction
	2 Preliminaries
	3 Algorithm Parameterized by k and 
	4 Algorithm Parameterized by k
	5 Hardness of Covering i-Strings and Partial Words
	6 Conclusions
	References


	Scheduling Algorithms

	Dynamic Interval Scheduling for Multiple Machines
	1 Introduction
	2 Idle Intervals and Nested Scheduling
	2.1 Idle Intervals
	2.2 Nested Scheduling
	2.3 Extending Nestedness

	3 Optimal Data Structure for Nested Scheduling
	3.1 Optimal Data Structure
	3.2 Lower Bound

	References

	Throughput Maximization in Multiprocessor Speed-Scaling
	1 Introduction
	1.1 Related Work
	1.2 Our Approach and Contributions

	2 Approximation for Non-Migratory Scheduling
	3 Exact Algorithms for Non-Preemptive Scheduling
	3.1 Equal Processing Volume, pj = p  j
	3.2 Agreeable Jobs

	References

	Speed-Scaling with No Preemptions
	1 Introduction
	2 Single-Processor
	3 Parallel Processors
	4 Conclusions
	References


	Computational Complexity

	A Short Implicant of a CNF Formula with Many Satisfying Assignments
	1 Introduction
	2 Notation and Results
	3 Upper Bound Proof
	4 A Lower Bound
	5 Algorithmic Version
	References

	On the Computational Complexity of Vertex Integrity and Component Order Connectivity
	1 Introduction
	2 Vertex Integrity
	3 Component Order Connectivity
	4 Concluding Remarks
	References

	Co-Clustering Under the Maximum Norm
	1 Introduction
	2 Formal Definitions and Preliminaries
	3 Intractability Results
	3.1 Constant Number of Clusters
	3.2 Constant Number of Rows
	3.3 Clustering into Consecutive Clusters

	4 Tractability Results
	4.1 Reduction to CNF-SAT Solving
	4.2 Polynomial-Time Solvability
	4.3 Fixed-Parameter Tractability

	5 Conclusion
	References


	Computational Geometry II

	The Price of Order
	1 Introduction
	2 Preliminaries
	3 The Ordered (4 k + 4)-Graph
	4 Lower Bounds
	5 Ordered Theta-Graphs with Few Cones
	6 Conclusion
	References

	Range Queries on Uncertain Data
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Preliminaries
	3 The Uniform Distribution
	3.1 Queries with Unbounded Intervals
	3.2 Queries with Bounded Intervals

	4 The Histogram Distribution
	References

	On the Most Likely Voronoi Diagramand Nearest Neighbor Searching
	1 Introduction
	2 The LVD Can Have Quadratic Complexity in 1D
	3 Upper Bounds for the LVD in 1D
	3.1 Structure of the LVD
	3.2 Refined Upper Bounds
	3.3 Average-Case and Smoothed Analysis of the LVD

	4 Algorithms for Constructing the LVD
	5 Time-Space Tradeoffs for LNN Searching
	5.1 A 3SUM Hard Problem
	5.2 LNN Search Using Pareto Sets

	6 The Pareto-Set Approach in Higher Dimensions
	7 Concluding Remarks
	References


	Approximation Algorithms

	An Improved Approximation Algorithmfor the Minimum Common IntegerPartition Problem
	1 Introduction
	1.1 Known Results
	1.2 Our Contributions

	2 A 6/5-Approximation Algorithm for 2-MCIP
	2.1 Preliminaries
	2.2 The Algorithm
	2.3 Performance Analysis

	3 Proof of Lemma 4
	4 A 0.6k-Approximation Algorithm for k-MCIP
	5 Conclusion
	References

	Positive Semidefinite Relaxation and Approximation Algorithm for Triple Patterning Lithography
	1 Introduction
	2 Problem
	3 Vector Programming
	4 SDP Relaxation
	5 Randomized Rounding
	6 Approximation Ratio
	7 Discussions
	References

	An FPTAS for the Volume Computationof 0-1 Knapsack Polytopes Based on Approximate Convolution Integral
	1 Introduction
	2 Distribution Function of Uniform Sum
	3 Approximation Algorithm
	3.1 The Idea
	3.2 Algorithm and Analysis
	3.3 Proof of Lemma 3.3, for Approximation Ratio
	3.4 Proof of Lemma 3.8

	4 In Case of b < an
	5 Concluding Remarks
	References


	Graph Theory and Algorithms

	Polynomial-Time Algorithm for Sliding Tokens on Trees
	1 Introduction
	1.1 sliding token
	1.2 Related and Known Results
	1.3 Our Contribution
	1.4 Technical Overview

	2 Preliminaries
	2.1 Graph Notation
	2.2 Definitions for sliding token

	3 Algorithm for Trees
	3.1 Rigid Tokens
	3.2 Algorithm
	3.3 Length of Reconfiguration Sequence

	4 Concluding Remarks
	References

	Minimal Obstructions for Partial Representations of Interval Graphs
	1 Introduction
	2 Definition of Minimal Obstructions
	3 Maximal Cliques and MPQ-Trees
	4 Characterizing Extendible Partial Representations
	5 Locating Minimal Obstructions
	6 Open Problems
	References

	Faster Algorithms for Computing the R* Consensus Tree
	1 Introduction
	1.1 Definitions and Notation
	1.2 Previous Work
	1.3 Overview and Organization of the Paper

	2 Computing the R* Consensus Tree When k = 2
	3 Computing the R* Consensus Tree When k = 3
	3.1 Computing sRmaj When k = 3
	3.2 Computing countr,r,r
	3.3 Computing countr,f,fTi
	3.4 Determining if a Given Cluster Is a Strong Cluster When k = 3

	4 Computing the R* Consensus Tree for Unbounded k
	4.1 Computing sRmaj for Unbounded k
	4.2 Determining if a Given Cluster Is a Strong Cluster for Unbounded k

	References


	Fixed-Parameter Tractable
Algorithms II

	Complexity and Kernels for Bipartition into Degree-bounded Induced Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Hardness
	4 Kernelization
	4.1 Kernels for Constrained Upper-Degree-Bounded Bipartition
	4.2 Kernels for Constrained Regular Bipartition

	5 Fixed-Parameter Intractability
	References

	Faster Existential FO Model Checking on Posets
	1 Introduction
	2 Preliminaries
	2.1 Posets and Embedding
	2.2 Constraint Satisfaction Problems
	2.3 Parameterized Complexity
	2.4 Existential First-Order Logic

	3 Fixed-Parameter Tractability Proof
	4 Embedding and Multicoloured Clique
	5 Kernelization Lower Bound
	6 Conclusions
	References

	Vertex Cover Reconfiguration and Beyond
	1 Introduction
	2 Preliminaries
	3 Bipartite Graphs
	4 Even-Hole-Free and Cactus Graphs
	5 Graphs of Bounded Degree
	References


	Graph Algorithms: Approximation I

	Approximating the Maximum Internal Spanning Tree Problem via a Maximum Path-Cycle Cover
	1 Introduction
	2 Preliminaries
	3 Bounding the Number of Internal Vertices in a Spanning Tree
	4 Pruning a Graph
	5 Finding a Spanning Tree of a Well-Pruned Graph
	5.1 Reconstructing a Maximum Path-Cycle Cover
	5.2 Assembling a Maximum Path-Cycle Cover into a Spanning Tree

	6 A 43-Approximation Algorithm for the Graphs without Leaves
	6.1 Reconstructing a Maximum Path-Cycle Cover
	6.2 Assembling a Maximum Path-Cycle Cover into a Spanning Tree

	7 Conclusions and Discussions
	References

	Approximation Algorithms Inspired by Kernelization Methods
	1 Introduction
	2 Approximation Preserving Reductions for Maximization Problems
	3 Harmless Set
	4 The Differential of a Graph
	5 Multiple Nonblocker Sets
	6 Conclusions
	References

	An 5/4-Approximation Algorithm for Sorting Permutations by Short Block Moves
	1 Introduction
	2 Preliminaries
	3 An Implicit Lower Bound
	4 An Equivalent Goal
	5 The Algorithm
	5.1 Preprocessing
	5.2 Sort an Umbrella
	5.3 Sort Related Umbrellas
	5.4 Eliminate Crossing Arcs

	6 The Approximation Factor Is 1.25
	References


	Online and Approximation Algorithms

	Lower Bounds for On-line Graph Colorings
	1 Introduction
	2 Bipartite Graphs
	3 The Odd-Girth
	References

	An On-line Competitive Algorithm for Coloring P8-free Bipartite Graphs
	1 Introduction
	2 Forcing Structure
	3 P7-Free Bipartite Graphs
	4 P8-Free Bipartite Graphs
	References

	Bounds on Double-Sided Myopic Algorithmsfor Unconstrained Non-monotoneSubmodular Maximization
	1 Introduction
	1.1 Basic Definitions
	1.2 Our Contribution

	2 The Double-Sided Myopic Algorithms Framework
	2.1 Value Oracle and the Marginal Value Representation
	2.2 Classes of Relevant Oracle Queries
	2.3 Internal Memory or History
	2.4 Priority Models

	3 A 0.450 Inapproximation for Fixed Priority Algorithms
	3.1 Construction of the LP for Theorem 2

	4 A 0.432 Inapproximation for Adaptive Priority Algorithms
	5 Further Discussion of the Double-Sided Myopic Model
	References


	Data Structures and Algorithms II

	Tradeoff Between Label Space and Auxiliary Space for Representation of Equivalence Classes
	1 Introduction and Motivation
	2 Definitions
	3 Time-Space Tradeoffs with Label Space [1, 2, …, n]
	4 Succinct Data Structures with Label Space [1, 2, …, cn]
	5 Lower Bound
	6 Data Structure with Label Space [1, 2, …, f(n)n]
	7 Conclusion
	References

	Depth-First Search Using O(n) Bits
	1 Introduction
	1.1 The DFS Problem
	1.2 Related Work

	2 Preliminaries
	3 Characterizations for the Gray and Black Vertices
	4 O(n)-Space DFS Algorithms
	5 Tree-Walking
	6 DFS in O(logn)-Space for Undirected Graphs with O(1)-Size Feedback Vertex Set
	7 Open Questions
	References

	Dynamic Path Counting and Reporting in Linear Space
	1 Introduction
	2 Preliminary
	2.1 Restricted Multilevel Partition and Topology Trees
	2.2 Tree Extraction

	3 Dynamic Path Reporting
	3.1 Representing Dynamic Forests with Small Labels to Support Path Summary Queries
	3.2 Navigation Between Different Levels of W
	3.3 Supporting Path Reporting

	References


	Matching and Assignment II

	Linear-Time Algorithms for Proportional Apportionment
	1 Introduction
	1.1 Highest Averages
	1.2 New Results
	1.3 Related Work

	2 Preliminaries
	3 The Algorithm
	3.1 From Coarse to Exact Solutions
	3.2 Coarse Solution for Arithmetic Sequences
	3.3 Coarse Solution for Approximately-Arithmetic Sequences

	4 Conclusion
	References

	Rank-Maximal Matchings -- Structureand Algorithms
	1 Introduction
	2 Preliminaries
	3 Switching Graph Characterization
	3.1 Properties of the Switching Graph
	3.2 Generating All Rank-Maximal Pairs

	4 Counting Rank-Maximal Matchings
	4.1 Hardness of Counting
	4.2 An FPRAS for Counting Rank-Maximal Matchings

	5 Popularity of Rank-Maximal Matchings
	References

	The Generalized Popular Condensation Problem
	1 Introduction
	1.1 Related Work
	1.2 Problem Definition

	2 Preliminaries
	3 Inapproximability Results
	3.1 The NP-Completeness
	3.2 The Inapproximability

	4 A special Case Where Applicants' Costs Are Equal
	4.1 A Lower Bound on |D*|
	4.2 Computing an Optimal Condensing Set

	5 Concluding Remarks
	References


	Graph Algorithms: Approximation II

	Dirichlet Eigenvalues, Local Random Walks,and Analyzing Clusters in Graphs
	1 Introduction
	2 Background Knowledge & Notations
	3 The Staying Probability
	4 Local Mixing Time
	5  -Uniform Mixing Time
	6 An Improved Algorithm for Graph Partitioning
	7 The Vertex Significance Ordering
	References

	Planar Embeddings with Small and Uniform Faces
	1 Introduction
	2 Preliminaries
	3 Minimizing the Maximum Face
	3.1 Polynomial-Time Algorithm for Small Faces
	3.2 Approximation Algorithm

	4 Perfectly Uniform Face Sizes
	5 Conclusions and Open Problems
	References

	Scheduling Unit Jobs with a Common Deadline to Minimize the Sum of Weighted Completion Times and Rejection Penalties
	1 Introduction
	2 A Fast Algorithm for Problem 1
	2.1 Acceptance Orders
	2.2 Computing the Acceptance Order
	2.3 Binary Search Tree Implementation

	3 Introducing Tardiness Penalties
	4 Unit-Demand Auctions and VCG Prices
	References


	Combinatorial Optimization II

	Solving Multi-choice Secretary Problemin Parallel: An OptimalObservation-Selection Protocol
	1 Introduction
	2 Preliminaries 
	3 Optimal Protocol for Shared (Q,J,K) Problem 
	3.1 Linear Program for the Shared (Q,J,K) Secretary Problem
	3.2 Protocol Description
	3.3 Optimality of the Adaptive Observation-Selection Protocol

	4 Extensions and Analysis of the Optimal Protocol
	4.1 Applications in Other Generalizations
	4.2 Competitive Ratio Analysis 

	5 Conclusion
	References

	A Geometric Approach to Graph Isomorphism
	1 Introduction
	2 Integer Linear Program for GI
	3 Facial Structure of B[2]
	3.1 There are More Facets

	4 The Algorithm
	4.1 Algorithm 1 Is Polynomial Time for Pockets of the Known Facets

	5 Conclusion
	References

	Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift
	1 Introduction
	2 Preliminaries
	3 General Drift Theorem
	4 Applications of the Tail Bounds
	4.1 OneMax, Linear Functions and LeadingOnes
	4.2 An Application to Probabilistic Recurrence Relations

	5 Conclusions
	References


	Computational Geometry III

	Euclidean TSP with Few Inner Pointsin Linear Space
	1 Introduction
	2 The Reduction
	3 Searching over Separators
	4 (V, T,H)-GETSP

	References

	Bottleneck Partial-Matching VoronoiDiagrams and Applications
	1 Introduction
	2 Bottleneck Partial-Matching Voronoi Diagrams
	3 Construction of Bottleneck Diagrams
	4 Applications
	References

	Ham-Sandwich Cuts for Abstract Order Types
	1 Introduction
	2 Pseudo-Verticals
	3 Linear-Time Pseudo-Line Selection
	3.1 An Oracle for an Arrangement
	3.2 Selecting a Pseudo-Line

	References


	Network and Scheduling Algorithms

	Graph Orientation and Flows over Time
	1 Introduction
	2 Preliminaries
	3 The Price of Orientation
	3.1 Price in Terms of Flow Value
	3.2 Price in Terms of the Time Horizon
	3.3 Price in Terms of Flow and Time Horizon

	4 Complexity Results
	References

	A Simple Efficient Interior Point Method for Min-Cost Flow
	1 Introduction
	1.1 Contribution
	1.2 The Min-Cost Flow Problem and Its Dual

	2 Snapping to the Optimum
	3 Potential Reduction Algorithm
	4 Initialization
	References

	Decremental All-Pairs ALL Shortest Pathsand Betweenness Centrality
	1 Introduction
	2 A System of Tuples
	3 Decremental Algorithm
	3.1 The Cleanup Procedure
	3.2 The Fixup Procedure

	References


	Author Index



