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Preface

Since the 1980s there has been an upsurge in the application of meta-analysis
to medical research. Over the same period there have been great strides in the
development and refinement of the associated statistical methodology. These
developments have mainly been due to greater emphasis on evidence-based
medicine and the need for reliable summaries of the vast and expanding volume
of clinical research. Most meta-analyses within the field of clinical research have
been conducted on randomized controlled trials, and the focus of this book is on
the planning, conduct and reporting of a meta-analysis as applied to a series of
randomized controlled trials.

There is wide variation in the amount and form of data which might be available
for a meta-analysis. At one extreme lie individual patient data and at the other
just a p-value associated with each test of the treatment difference. Consequently,
a number of different approaches to the conduct of a meta-analysis have been
developed, and this has given the impression that the methodology is a collection
of distinct techniques. My objective has been to present the various approaches
within a general framework, enabling the similarities and differences between the
available techniques to be demonstrated more easily. In addition, I have attempted
to place this general framework within mainstream statistical methodology, and
to show how meta-analysis methods can be implemented using general statistical
packages. Most of the analyses presented in this book were conducted using the
standard statistical procedures in SAS. Other statistical packages, namely MLn,
BUGS and PEST, were used for the implementation of some of the more advanced
techniques.

In this book, the meta-analysis techniques are described in detail, from their
theoretical development through to practical implementation. Emphasis is placed
on the consequences of choosing a particular approach and the interpretation of
the results. Each topic discussed is supported by detailed worked examples. The
example data sets and the program code may be downloaded from either the
Wiley website or my own (for details, see Section 1.6).

Meta-analyses have often been performed retrospectively using summary
statistics from reports of individual clinical trials. However, the advantages of
prospectively planning a meta-analysis are now being recognized. The advan-
tages of using individual patient data are also well accepted. The techniques
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xiv Preface

covered in the book include those for conducting prospectively planned meta-
analyses as well as retrospective meta-analyses. Methods based on individual
patient data are included, as well as those based on study summary statistics.
This book will be of relevance to those working in the public sector and in the
pharmaceutical industry.

This book is based on a short course which has been presented numerous
times to practicing medical statisticians over the last ten years and has also been
influenced by my involvement in several large meta-analyses. I am grateful to
colleagues with whom I have undertaken collaborative research, in particular,
Andrea Bailey, Jacqueline Birks, Nicola Bright, Diana Elbourne, Julian Higgins,
Rumana Omar, Rebecca Turner, Elly Savaluny, Simon Thompson and John
Whitehead.

I am grateful to John Lewis, Stephen Senn, Sue Todd, John Whitehead and
Paula Williamson for providing helpful comments and suggestions on earlier
drafts of the book.

Anne Whitehead
Reading

2002
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Introduction

1.1 THE ROLE OF META-ANALYSIS

Meta-analysis was defined by Glass (1976) to be ‘the statistical analysis of a
large collection of analysis results from individual studies for the purpose of
integrating the findings’. Although Glass was involved in social science research,
the term ‘meta-analysis’ has been adopted within other disciplines and has
proved particularly popular in clinical research. Some of the techniques of meta-
analysis have been in use for far longer. Pearson (1904) applied a method for
summarizing correlation coefficients from studies of typhoid vaccination, Tippet
(1931) and Fisher (1932) presented methods for combining p-values, and Yates
and Cochran (1938) considered the combination of estimates from different
agricultural experiments. However, the introduction of a name for this collection
of techniques appears to have led to an upsurge in development and application.

In the medical world, the upsurge began in the 1980s. Some of the key medical
questions answered by meta-analyses at this time concerned the treatment of heart
disease and cancer. For example, Yusuf et al. (1985) concluded that long-term
beta blockade following discharge from the coronary care unit after a myocardial
infarction reduced mortality, and the Early Breast Cancer Trialists’ Collaborative
Group (1988) showed that tamoxifen reduced mortality in women over 50 with
early breast cancer. By the 1990s published meta-analyses were ubiquitous.
Chalmers and Lau (1993) claimed: ‘It is obvious that the new scientific discipline
of meta-analysis is here to stay’. They reported a rise in the number of publications
of meta-analyses of medical studies from 18 in the 1970s to 406 in the 1980s.
Altman (2000) noted that Medline contained 589 such publications from 1997
alone.

The rapid increase in the number of meta-analyses being conducted during
the last decade is mainly due to a greater emphasis on evidence-based medicine
and the need for reliable summaries of the vast and expanding volume of clinical
research. Evidence-based medicine has been defined as ‘integrating individual
clinical expertise with the best available external clinical evidence from systematic
research’ (Sackett et al., 1997). A systematic review of the relevant external
evidence provides a framework for the integration of the research, and meta-
analysis offers a quantitative summary of the results. In many cases a systematic
review will include a meta-analysis, although there are some situations when

1



2 Introduction

this will be impossible due to lack of data or inadvisable due to unexplained
inconsistencies between studies.

The Cochrane Collaboration, launched in 1993, has been influential in the
promotion of evidence-based medicine. This international network of individuals
is committed to preparing, maintaining and disseminating systematic reviews
of research on the effects of health care. Their reviews are made available
electronically in the Cochrane Database of Systematic Reviews, part of the
Cochrane Library (http://www.update-software.com/cochrane).

Within the pharmaceutical industry, meta-analysis can be used to summarize
the results of a drug development programme, and this is recognized in the
International Conference on Harmonization (ICH) E9 guidelines (ICH, 1998). In
accordance with ICH E9, meta-analysis is understood to be a formal evaluation of
the quantitative evidence from two or more trials bearing on the same question.
The guidelines indicate that meta-analysis techniques provide a useful means
of summarizing overall efficacy results of a drug application and of analysing
less frequent outcomes in the overall safety evaluation. However, there is a
warning that confirmation of efficacy from a meta-analysis only will not usually
be accepted as a substitute for confirmation of efficacy from individual trials.
Certainly the magnitude of the treatment effect is likely to be an important
factor in regulatory decision-making. If the treatment effect is smaller than
anticipated, then statistical significance may not be reached in the individual
trials. Even if statistical significance is reached in the meta-analysis, the magnitude
of the treatment effect may not be clinically significant, and thus be considered
insufficient for approval.

Fisher (1999) considered the two conditions under which one large trial might
substitute for the two controlled trials usually required by the Food and Drug
Administration (FDA) in the USA. The first relates to the strength of evidence
for demonstrating efficacy. He showed that if the evidence required from the two
controlled trials is that they should each be statistically significant at the two-
sided 5% significance level, then the same strength of evidence is obtained from
one large trial if it is statistically significant at the two-sided 0.125% level. The
same type of argument could be applied to combining trials in a meta-analysis.
It would seem reasonable to set a more stringent level of statistical significance
corresponding to proof of efficacy in a meta-analysis than in the individual trials.

The second condition discussed by Fisher relates to evidence of replicability,
and he proposes criteria which need to be met by the one large trial. A meta-
analysis will always involve at least two trials, and it will be important to
assess the consistency of the results from the individual trials. The extent of any
inconsistencies amongst the trials will be influential in the choice of model for the
meta-analysis and in the decision whether to present an overall estimate. These
issues are discussed in detail in Chapter 6 of this book.

A recent ‘Points to Consider’ document (Committee for Proprietary Medicinal
Products, 2001) has provided guidance on when meta-analyses might usefully
be undertaken. Reasons include the following:
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• To provide a more precise estimate of the overall treatment effects.
• To evaluate whether overall positive results are also seen in pre-specified

subgroups of patients.
• To evaluate an additional efficacy outcome that requires more power than the

individual trials can provide.
• To evaluate safety in a subgroup of patients, or a rare adverse event in all

patients.
• To improve the estimation of the dose-response relationship.
• To evaluate apparently conflicting study results.

There is much to be gained by undertaking a meta-analysis of relevant studies
before starting a new clinical trial. As Chalmers and Lau (1993) note, this
allows investigators to ascertain what data are needed to answer the important
questions, how many patients should be recruited, and even whether a new
study is unnecessary because the questions may have already been answered.
Meta-analysis also has a useful role to play in the generation of hypotheses for
future studies.

The conduct of a meta-analysis requires a team, which should include both
statisticians and knowledgeable medical experts. Whilst the statistician is equipped
with the technical knowledge, the medical expert has an important role to play
in such activities as identifying the trials, defining the eligibility criteria for trials
to be included, defining potential sources of heterogeneity and interpreting the
results.

Most meta-analyses within the field of medical research have been conducted
on randomized controlled trials, and this is the focus of this book. Other appli-
cation areas include epidemiological studies and diagnostic studies. The special
problems associated with observational studies are outside the scope of this book,
and the interested reader is referred to Chapter 16 of Sutton et al. (2000) and
Chapters 12–14 of Egger et al. (2001).

Over the last twenty years there have been great strides in the development and
refinement of statistical methods for the conduct of meta-analyses, as illustrated
in the books by Sutton et al. (2000) and Stangl and Berry (2000). A number of
different approaches have been taken, giving the impression that the methodology
is a collection of distinct techniques. The present book is self-contained and
describes the planning, conduct and reporting of a meta-analysis as applied
to a series of randomized controlled trials. It attempts to present the various
approaches within a general unified framework, and to place this framework
within mainstream statistical methodology.

1.2 RETROSPECTIVE AND PROSPECTIVE
META-ANALYSES

Meta-analyses are often performed retrospectively on studies which have not been
planned with this in mind. In addition, many are based on summary statistics
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which have been extracted from published papers. Consequently, there are a
number of potential problems which can affect the validity of such meta-analyses.

A major limitation is that a meta-analysis can include only studies for which
relevant data are retrievable. If only published studies are included, this raises
concern about publication bias, whereby the probability of a study being published
depends on the statistical significance of the results. Even if a study is published,
there may be selective reporting of results, so that only the outcomes showing a
statistically significant treatment difference are chosen from amongst the many
analysed. If the outcomes of interest have not been defined or recorded in the
same way in each trial, it may not be appropriate or possible to combine them.
Even if identical outcomes have been recorded in each trial, the way in which
the summary statistics have been calculated and reported may differ, particularly
with regard to the choice of the subjects included and the mechanism of dealing
with missing values. Matters can be improved if time and effort are devoted
to obtaining data from all (or nearly all) of the randomized trials undertaken,
irrespective of their publication status. Retrieving individual patient data from
trial investigators is especially advantageous.

Typically, the objective of a meta-analysis is to estimate and make inferences
about the difference between the effects of two treatments. This involves choosing
an appropriate measure of the treatment difference, for example the log-odds
ratio for binary data or the difference in means for normally distributed data, and
calculating individual study estimates and an overall estimate of this difference.
In a retrospective meta-analysis the available studies may vary in design, patient
population, treatment regimen, primary outcome measure and quality. Therefore,
it is reasonable to suppose that the true treatment difference will not be exactly
the same in all trials: that is, there will be heterogeneity between trials. The effect
of this heterogeneity on the overall results needs to be considered carefully, as
discussed by Thompson (1994). Great care is needed in the selection of the trials
to be included in the meta-analysis and in the interpretation of the results.

Prospectively planning a series of studies with a view to combining the results
in a meta-analysis has distinct advantages, as many of the problems associated
with retrospective meta-analyses then disappear. The individual trial protocols
can be designed to be identical with regard to the collection of data to be included
in the meta-analysis, and individual patient data can be made available.

In drug development, a co-ordinated approach to the trial programme, in
which meta-analyses are preplanned, would seem to be a natural way to proceed.
The results of a meta-analysis will be more convincing if it is specified prior to
the results of any of the individual trials being known, is well conducted and
demonstrates a clinically relevant effect.

Within the public sector, collaborative groups are beginning to form in order
to conduct prospective meta-analyses. For example, the Cholesterol Treatment
Trialists’ Collaboration (1995) reported on their protocol for conducting an
overview of all the current and planned randomized trials of cholesterol treatment
regimens. In such cases it is unlikely that the meta-analysis can be planned before
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the start of any of the trials, but certainly the preparation of a protocol prior to the
analysis of any of them offers considerable advantages.

The conduct of both retrospective and prospective meta-analyses will be dis-
cussed in this book. Many of the analysis methods are common to both, although
methodological difficulties tend to be fewer and more manageable for the prospec-
tive meta-analysis.

1.3 FIXED EFFECTS VERSUS RANDOM EFFECTS

One of the controversies relating to meta-analysis has concerned the choice
between the fixed effects model and the random effects model for providing an
overall estimate of the treatment difference. The topic has usually been discussed
in the context of a meta-analysis in which the data consist of trial estimates of
the treatment difference together with their standard errors. In the fixed effects
model, the true treatment difference is considered to be the same for all trials. The
standard error of each trial estimate is based on sampling variation within the
trial. In the random effects model, the true treatment difference in each trial is
itself assumed to be a realization of a random variable, which is usually assumed
to be normally distributed. As a consequence, the standard error of each trial
estimate is increased due to the addition of this between-trial variation.

The overall estimate of treatment difference and its confidence interval based on
a fixed effects model provide a useful summary of the results. However, they are
specific to the particular trials included in the meta-analysis. One problem is that
they do not necessarily provide the best information for determining the difference
in effect that can be expected for patients in general. The random effects model
allows the between-trial variability to be accounted for in the overall estimate and,
more particularly, its standard error. Therefore, it can be argued that it produces
results which can be considered to be more generalizable. In principle, it would
seem that the random effects model is a more appropriate choice for attempting
to answer this question. However, there are some concerns regarding the use of
the random effects model in practice. First, the random effects model assumes that
the results from the trials included in the meta-analysis are representative of the
results which would be obtained from the total population of treatment centres.
In reality, centres which take part in clinical trials are not chosen at random.
Second, when there are only a few trials for inclusion in the meta-analysis, it may
be inappropriate to try to fit a random effects model as any calculated estimate of
the between-study variance will be unreliable. When there is only one available
trial, its analysis can only be based on a fixed effects model.

When there is no heterogeneity between trials both models lead to the same
overall estimate and standard error. As the heterogeneity increases the standard
error of the overall estimate from the random effects model increases relative to
that from the fixed effects model. The difference between the overall estimates
from the two approaches depends to a large extent on the magnitude of the
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estimates from the large informative trials in relation to the others. For example,
if a meta-analysis is based on one large study with a small positive estimate
and several small studies with large positive estimates, the overall estimate from
the random effects model will be larger than that from the fixed effects model,
the difference increasing with increasing heterogeneity. The more conservative
approach of the random effects model will in general lead to larger numbers of
patients being required to demonstrate a significant treatment difference than the
fixed effects approach.

It may be useful in many cases to consider the results from both a fixed
effects model and a random effects model. If they lead to important differences in
conclusion, then this highlights the need for further investigation. For example,
this could be due to variability in study quality, differences in study protocols, or
differences in the study populations.

When individual patient data are available the models can be extended to
include the trial effect. As the trial effect may also be included as a fixed or random
effect, this leads to an increased choice of models, as discussed by Senn (2000).
These models are presented in detail in Chapter 5 of this book, and comparisons
made between them.

1.4 INDIVIDUAL PATIENT DATA VERSUS SUMMARY
STATISTICS

There is wide variation in the amount and form of data which might be available
for a meta-analysis. At one extreme a common outcome measure may have been
used in all studies, with individual data available for all patients. At the other
extreme the only available data may be the p-value from each study associated
with the test of a treatment difference, or, even worse, a statement in a published
paper to the effect that the p-value was or was not smaller than 0.05. In between,
we may be confronted with summary statistics from published papers, individual
patient data based on similar but not identically defined outcome measures, or a
mixture of individual patient data and summary statistics.

A meta-analysis using individual patient data is likely to prove more comprehen-
sive and reliable than one based on summary statistics obtained from publications
and reports. Such an analysis will benefit from a standardized approach being
taken to the extraction of relevant data and to the handling of missing data. In
addition, if data at a patient level, such as age, gender or disease severity, are
available, the relationship between these and the treatment difference can be
explored. To be successful, such a meta-analysis will usually involve a consider-
able amount of time devoted to the planning, data collection and analysis stages.
The advantages of a prospectively planned meta-analysis now become apparent.

Pharmaceutical statisticians are often in a good position to perform a meta-
analysis on individual patient data, as they will usually have access to all original
data from trials on the company’s own as yet unlicensed product. Even if the
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meta-analysis is retrospective, data from the various trials will often have been
stored electronically in similarly structured databases. Outside the pharmaceutical
industry, the task is more daunting. Details of the practical issues involved in such
an undertaking can be found in Stewart and Clarke (1995), a paper resulting
from a workshop held by the Cochrane working group on meta-analysis using
individual patient data.

Meta-analyses based on individual patient data have clear advantages over
those based on extracted summary statistics. However, they are time-consuming
and costly, and the situation may arise in which the additional resources needed
to obtain individual patient data are not available or cannot be justified. Even if it
is planned to obtain individual patient data, it may not be possible to obtain these
from all relevant studies. Therefore, many meta-analyses are conducted using
summary statistics collected from each trial.

If the purpose of the meta-analysis is to provide an overall estimate of treatment
difference, an individual trial can only be included if there is sufficient information
from that trial to calculate an estimate of the treatment difference and its standard
error. In some cases the summary statistics which are available from a trial enable
the same calculations to be performed as if individual patient data were available.
For example, for a binary outcome knowledge of the number of successes and
failures in each treatment group is sufficient.

Because of the variety of ways in which data are made available for meta-
analyses, a number of different techniques for conducting meta-analyses have
been developed. This book attempts to present the various approaches within a
general framework, highlighting the similarities and differences.

1.5 MULTICENTRE TRIALS AND META-ANALYSIS

Multicentre trials are usually conducted to enable the required number of patients
to be recruited within an acceptable period of time and to provide a wider
representation of the patient population than would be found at a single centre. A
multicentre trial will have been designed prospectively with a combined analysis
of the data from all centres as its main objective. Individual centres are expected to
follow a common protocol, at least with respect to collection of the main efficacy
data. When a meta-analysis is to be undertaken on a series of clinical trials, in
which a common outcome measure has been recorded and individual patient data
are available, it could be analysed using the same linear modelling techniques as
are applied to the analysis of a multicentre trial. Here ‘trial’ would play the role of
‘centre’. On the other hand the analysis of a multicentre trial could be conducted
using traditional meta-analysis methods, in which ‘centre’ plays the role of ‘trial’.

There is a continuum from the true multicentre trial, in which all centres
follow an identical protocol, to a collection of trials addressing the same general
therapeutic question but with different protocols. The same statistical methods
can be applied across the continuum, but the choice of the most appropriate
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method and the validity of the results may vary. There are differences between
the approaches traditionally applied to the analysis of multicentre trials and those
applied in meta-analysis, as discussed by Senn (2000). This is perhaps because
most of the meta-analyses which appear in the medical literature are retrospective
and based on summary data from published papers. The differences relate to the
way in which the trial estimates of treatment difference are combined and the
choice between random and fixed effects models. These issues will be covered in
Chapter 5.

1.6 THE STRUCTURE OF THIS BOOK

The focus of this book is on the planning, conduct and reporting of a meta-analysis
as applied to a series of randomized controlled trials. It covers the approaches
required for retrospective and prospective meta-analyses, as well as for those
based on either summary statistics or individual patient data.

The meta-analysis techniques are described in detail, from their theoretical
development through to practical implementation. The intention is to present
the various statistical methods which are available within a general unified
framework, so that the similarities and differences between them become apparent.
This is done at a level that can be understood by medical statisticians and
statistically minded clinicians and health research professionals. Emphasis is
placed on the consequences of choosing a particular approach, the implementation
of the chosen method and the interpretation of the results. For interested readers,
the mathematical theory underlying the methods is summarized in the Appendix.

The methodology throughout this book is illustrated by examples. All of the
methods presented can be implemented using mainstream statistical packages.
Most of the analyses presented in the book were conducted using the stan-
dard statistical procedures in SAS (Version 8.0: website at http://www.sas.com).
At appropriate places in the text, SAS code relating to the specification of
the model is provided. For fitting random effects models when individual
patient data are available and the response type is binary or ordinal, the
program MLn (Version 1.0A) or its interactive Windows version MLwiN (Ver-
sion 1.10: website at http://multilevel.ioe.ac.uk) was utilized. The interactive
Windows version of BUGS, WinBUGS (Version 1.3: website at http://www.mrc-
bsu.cam.ac.uk/bugs) was used for the Bayesian analyses and PEST 4 (website
at http://www.rdg.ac.uk/mps/mps home/software/software.htm) was used for
the cumulative meta-analyses. For these other packages, the details of their
implementation are discussed in the text. The example data sets and the pro-
gram code for the analyses may be obtained electronically from the Wiley ftp
site at ftp://ftp.wiley.co.uk/pub/books/whitehead and also from the author at
http://www.rdg.ac.uk/mps/mps home/misc/publications.htm.

There is now a wide range of software available specifically for performing
a meta-analysis. These include both specialist packages and general statistical
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packages with meta-analysis routines. They have not been used for the imple-
mentation of the methods presented in this book because they have a limited
range of options and lack the flexibility to accommodate the more advanced
statistical modelling techniques. A recent review of meta-analysis software has
been undertaken by Sterne et al. (2001b) and the reader is referred to this for
further details. This review updates a previous one by Egger et al. (1998).

The preparation of a protocol is an important first stage in the conduct of a
meta-analysis, and the items which need to be considered for inclusion in the
protocol are discussed in Chapter 2.

The main statistical methods used in performing a meta-analysis are described
in Chapters 3–5. The methodology is presented in detail for the situation in
which each trial has a parallel group design, and a comparison is to be made
between two treatments each of which are studied in each trial. This is the
most straightforward application and the most common in practice. Usually one
treatment will be the newly developed treatment of interest and the other a
placebo or standard treatment. The main emphasis is on estimating and making
inferences about the difference between the effects of the two treatments.

Meta-analyses are being conducted for an increasing diversity of diseases and
conditions, involving a variety of outcome measures. In this book five different
types of outcome are discussed in detail, namely binary, survival, interval-censored
survival, ordinal and normally distributed. Chapter 3 is divided into sections, each
of which considers one particular type of data. For each data type, the choice
of an appropriate measure of treatment difference is addressed, together with
the methods of estimation which are traditionally used within the context of an
individual clinical trial.

Chapter 4 presents a methodology for combining the trial estimates of a
treatment difference, based on Whitehead and Whitehead (1991). This approach
is of use primarily when data available for the meta-analysis consist of summary
statistics from each trial. It may also be used when individual patient data are
available, but in this case the more advanced statistical modelling techniques of
Chapter 5 may be preferred. In Chapter 4, meta-analyses based on the fixed effects
model are illustrated for the different data types. The extension to the random
effects model is also presented.

Chapter 5 considers various models which can be fitted making full use of
individual patient data. These models include terms for the trial effect, which can
be assumed to be a fixed effect or a random effect. The pros and cons of each model
are discussed, and comparisons made with models used for multicentre trials.

It is important to assess the consistency between the individual trial estimates
of treatment difference. Chapter 6 discusses the issues involved in this assessment,
and how the amount of heterogeneity might affect the choice of model for the
meta-analysis or even whether to present an overall estimate at all. In some
situations the treatment difference may be expected to vary from one level of a
factor to another. Regression techniques can be used to explore this if additional
data at the trial level or at the patient level are available. Such techniques are
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described in this chapter. Finally, a strategy for dealing with heterogeneity is
proposed.

The presentation and interpretation of results is addressed in Chapter 7. The
QUOROM statement (Moher et al., 1999) which provides guidance on the report-
ing of meta-analyses of clinical trials is used as a basis for the discussion of the
structure of a report. Graphical displays, which have an important role to play,
are described.

When judging the reliability of the results of a meta-analysis, attention should
focus on factors which might systematically influence the overall estimate of the
treatment difference. One important factor is the selection of studies for inclusion
in the meta-analysis. Chapter 8 considers the possible reasons why some trials
may be excluded from a meta-analysis and how the problems might be addressed,
focusing particularly on publication bias.

Chapter 9 deals with some of the issues arising from non-standard data sets.
These include the problems of having no events in one or more of the treatment
arms of individual trials and the use of different rating scales or different times of
assessment across trials. Ways of combining trials which report different summary
statistics and of combining p-values when it is impossible to estimate the treatment
difference are also discussed.

Although the main focus of the book is on parallel group studies comparing two
treatments, it is often desirable to consider the inclusion of other types of study
in the meta-analysis. Chapter 10 considers the incorporation of data from multi-
centre trials, cross-over trials and sequential trials. Also, the handling of multiple
treatment comparisons and the investigation of dose – response relationships are
discussed.

Most of the statistical methods presented in this book have been derived from
a classical (frequentist) approach. Chapter 11 presents a Bayesian approach
to meta-analysis. Comparisons are made with the results from the frequentist
analyses.

A cumulative meta-analysis involves repeated meta-analyses following com-
pletion of a further one or more studies addressing the same question. Repeated
meta-analyses are becoming more common, and are encouraged within the
Cochrane Collaboration so that the information in the Cochrane Library can be
kept up to date. An analogy can be made with the conduct of a sequential clinical
trial, in which information about the treatment difference is updated by conduct-
ing interim analyses. Chapter 12 considers the role that sequential methods may
play in the conduct of a cumulative meta-analysis. Application to prospectively
planned meta-analyses is discussed.
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Protocol Development

2.1 INTRODUCTION

Before starting a clinical trial it is standard practice to prepare a study protocol,
specifying in detail the procedures to be followed. Likewise, it should be standard
practice to prepare a protocol for conducting a meta-analysis, particularly as
this is often a complex process. As is the case for an individual study, it may
be necessary to make changes to the meta-analysis protocol due to unforeseen
circumstances. Protocol amendments can be made for a meta-analysis, in the
same way as they can for an individual trial. Such changes should be documented
and their impact on the results discussed. In a meta-analysis protocol it will
be necessary to state the key hypotheses of interest. This should not prevent
the conduct of exploratory analyses, undertaken to explain the findings and to
suggest hypotheses for future studies. However, when the results are reported it
is important to make a clear distinction between the preplanned analyses and the
exploratory analyses.

In the development of a new drug or medical intervention there is an obvious
advantage in designing the clinical trial programme to take account of the need
for a meta-analysis. Individual trial protocols can include common elements,
such as identically defined outcome measures. Preparation of the protocol for a
meta-analysis before the start of any of the trials is the ideal situation. Certainly the
existence of a meta-analysis protocol is a reminder that the impact of changes to a
study protocol needs to be considered on a global scale rather than on an individual
trial basis. There will, of course, be times when the need for a meta-analysis will
not be identified until after some or all of the trials have started. Provided that
the meta-analysis protocol is prepared before results from any of the trials are
available, this is unlikely to compromise the integrity of the meta-analysis in any
important way.

The preparation of a protocol is perhaps even more crucial for a retrospective
meta-analysis, or for one planned following the disclosure of the results from
one or more trials. For such meta-analyses there is the possibility of bias being
introduced due to study selection. In many cases it may only be possible to
perform the meta-analysis on a subset of the studies because of inconsistency
in the recording and/or reporting of outcome measures or incompatible trial

11
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designs. Further, if the meta-analysis is restricted to data obtained from pub-
lished papers, the overall treatment difference may be overestimated because
studies with statistically significant results are more likely to be published than
those without. If the meta-analysis is undertaken because of the announce-
ment of some very positive results, this may lead to an overestimation of the
treatment difference. As a consequence, more attention will need to be given
in the protocol to addressing the implications of these potential biases for the
meta-analysis.

This chapter is concerned with the content of a meta-analysis protocol. Many
of the items discussed will be common to both prospective and retrospective
meta-analyses, although for a retrospective analysis the investigation of selection
bias will require specific attention. Comprehensive guidelines for undertaking
systematic reviews have been produced (see, for example, Cook et al., 1995; Deeks
et al., 1996; Clarke and Oxman, 2001). Their focus is on retrospective reviews
and meta-analyses, usually undertaken on summary statistics extracted from
published papers. In this chapter, the list of topics covered is similar to those
which appear in these guidelines. However, the topics are discussed in the context
of a prospective as well as a retrospective meta-analysis, and also for individual
patient data as well as summary statistics.

2.2 BACKGROUND

Background information helps to set the scene for the meta-analysis. Topics
which might be included are a definition of the disease or condition in question,
its incidence, prognosis, public health importance and alternative available
treatments. General information on the treatment being evaluated will relate
to its mechanism of action, results from its use in other indications and the
rationale for its use in the disease or condition in question. The results of
earlier meta-analyses could be discussed. The reasons for undertaking the current
meta-analysis should be provided.

2.3 OBJECTIVES

The main objectives of the meta-analysis should be stated. For example, in the
case of a new treatment for Alzheimer’s disease, the objective might be to evaluate
the efficacy and safety of the new treatment, when administered for up to six
months according to a particular dosing regimen to patients with mild to moderate
Alzheimer’s disease, where efficacy is assessed in terms of cognitive performance
and clinical global impression, and safety is assessed in terms of the occurrence of
adverse events. A brief description should be provided of the types of study which
will be examined.
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2.4 OUTCOME MEASURES AND BASELINE INFORMATION

A list of all of the outcome measures to be analysed, with definitions where appro-
priate, should be given. As in the case of an individual trial, it is advisable to specify
which of the efficacy measures is the primary one, so that the problem associated
with multiple testing – that is, too many false positives – can be minimized. Often
assessments are repeated at various timepoints during the trial, and how these
are to be dealt with should be mentioned. If the assessment at one particular
timepoint is of primary interest this should be stated. For example, the primary
efficacy measure in the Alzheimer’s disease meta-analysis might be the change
in the cognitive subscale of the Alzheimer’s Disease Assessment Scale between
baseline and the six-month assessment.

It will often be important to obtain data on baseline variables such as demo-
graphic characteristics, prognostic factors and baseline assessments of efficacy
and safety measures. There are several ways in which such data may be useful.
First, they can be used to check the comparability of patients allocated to each
of the treatment arms in each study, enabling within-study and between-study
comparisons to be made. Second, if individual patient data are available, an
analysis of covariance may be performed in which adjustment is made for one
or more baseline variables considered likely to have an important affect on the
outcome measure. Such variables would be prespecified. Third, baseline variables
may be used to investigate heterogeneity in the treatment difference across studies
or subgroups.

2.5 SOURCES OF DATA

In order to minimize problems associated with selection bias, it is important to
identify all trials which could potentially contribute to the meta-analysis. This
part of the protocol should provide details of the search strategy to be employed.
When the meta-analysis is preplanned no search strategy is required because
the relevant trials are identified before they are undertaken. A pharmaceutical
company undertaking a retrospective meta-analysis on one of its own unlicensed
drugs is likely to know about all trials which have been undertaken with the
drug. In this case the search strategy will be reasonably straightforward, and a
list of the company data sources can be provided. However, in all other cases
careful thought needs to be given to the search strategy. Possible information
sources include online bibliographic databases of published and unpublished
research, trial registries, expert informants and the pharmaceutical industry. The
restrictions to be applied, such as, publication status, language of publication
and the time-frame concerning the year of publication should be specified. For
example, in a meta-analysis conducted to examine the benefits of adding salmeterol
as opposed to increasing the dose of inhaled steroid in subjects with symptomatic
asthma, the EMBASE, Medline and GlaxoWellcome databases were searched for
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all relevant publications and abstracts from 1985 until 1998 in any language
(Shrewsbury et al., 2000). For further information about searching strategies, the
reader is referred to Chapters 4–7 of Cooper and Hedges (1994) and Clarke and
Oxman (2001).

2.6 STUDY SELECTION

The selection criteria for studies in the meta-analysis should be specified. If there
is more than one hypothesis to be tested it may be necessary to define separate
selection criteria for each one. In addition, for each hypothesis of interest, it may
be desirable to create two groups of studies. The first group would consist of the
primary studies on which the formal meta-analysis would be undertaken. The
second group would consist of additional studies whose results may be included
in a sensitivity analysis, or in a graphical presentation of individual study results.
Such studies may involve different patient populations or treatment comparisons
from the primary studies, or may have less appropriate designs. However, their
results may still be informative.

Careful thought needs to be given to the selection criteria for the primary studies.
If they are very strict, the results of the meta-analysis may only be applicable to
a small subset of the patient population or to a very specific treatment regimen,
whereas if they are too liberal, it may not be possible to combine the individual
trial results in an informative way.

Typically, the selection criteria will define the treatment of interest and the
relevant subject population. This should follow logically from the statement of
the objectives of the meta-analysis. In addition, they may relate to the type of
study design used. For example, the selection criteria used in the salmeterol
meta-analysis mentioned in Section 2.5 were stated as follows: a randomized
controlled trial; direct comparison between adding salmeterol to the current dose
of inhaled steroid and increasing (at least doubling) the dose of the current inhaled
steroid; study duration of 12 weeks or longer; subjects aged 12 years or older with
symptomatic asthma on the current dose of inhaled steroids.

The assessment of the methodological quality of a trial may also be used
to determine its eligibility for inclusion in the group of primary studies. The
most important aspect of this assessment concerns the avoidance of bias in the
estimation of the treatment difference of interest. Therefore, design issues, such
as the method of randomizing subjects to treatment group, blinding, method
of assessing patient outcome, follow-up of patients, and handling of protocol
deviations and patient withdrawals from the trial, are likely to feature prominently.
It may be appropriate to categorize studies according to how well they adhere to
important methodological standards. For further discussion on the types of scoring
systems which have been devised, the reader is referred to Moher et al. (1995).

In the report of a meta-analysis it will be necessary to include a list of studies
which were excluded as well as a list of studies which were included. The reason
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for exclusion should be provided for each excluded study. It may be advantageous
to have more than one assessor decide independently which studies to include
or exclude, together with a well-defined checklist and a procedure which will be
followed when they disagree.

In some cases, new information may surface during the reading of the study
reports which indicate a need to modify the study selection criteria.

2.7 DATA EXTRACTION

A specification of the data items to be extracted should be provided. It may be
useful to produce an additional document which details the desired format for the
data, the recommended coding and the data checking procedures.

A meta-analysis based on individual patient data is likely to provide the most
reliable information, as it will not depend on the way in which individual trial
results are reported. For such a meta-analysis the aim should be to obtain
individual patient data from all randomized subjects in all relevant trials. This
will enable a consistent approach to be taken towards the coding of data and the
handling of missing data across all trials. If there is a common database structure
for all trials, this will facilitate the integration of their data. However, for many
retrospective meta-analyses the data are not centrally located, and considerable
time and effort are required to collect all of the necessary items together. Stewart
and Clarke (1995) discuss the practical aspects of data collection and data
checking when data are being supplied by individual trialists.

In many cases meta-analyses are conducted using summary information from
published papers or trial reports. Even if the plan is to collect individual patient
data from all trials, there may be some trials for which this is not possible.
Also, as part of a sensitivity analysis it may be desirable to include results from
additional studies from which only summary information is available. In these
situations, consideration needs to be given to the type of information which will
be required. Take, for example, the case of a dichotomous outcome, in which
the patient response is either ‘success’ or ‘failure’. To use the meta-analysis
methodology described in Chapter 4, a measure of treatment difference must be
chosen. Suppose that the chosen measure is the log-odds ratio of success on the
new treatment relative to placebo. A trial can only be included in the meta-analysis
if the available data from the trial enable an estimate of the log-odds ratio and its
variance to be calculated. Knowledge of the number of successes and failures in
each treatment group in each trial is sufficient. However, if the only available data
from a trial is the estimate of the difference in the success probabilities between
the two treatment groups, the trial cannot be included. Further details about
what constitutes sufficient information are provided in Chapter 3. In addition,
Section 9.5 considers ways of combining trials which report different summary
statistics and Section 9.6 ways of imputing estimates of the treatment difference
and its variance.
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If the data available for the meta-analysis are mainly summary statistics from
trial reports and publications, then it may be possible to extract some useful
additional information from the trialists. For example, the trialist may be able
to clarify whether the reported analysis of a binary response was based on all
randomized patients or on a selected subset. If the latter, the trialist may be able to
provide the numbers of ‘successes’ and ‘failures’ amongst the excluded patients.
A data collection form, detailing the information required, can be distributed
to the trialists. The process of extracting additional information from trialists is
facilitated by having as part of the meta-analysis team clinical experts who know
the field and the trialists.

2.8 STATISTICAL ANALYSIS

The principal features of the statistical analysis should be included in the main
protocol, although it may also be useful to produce separately a detailed statistical
analysis plan. For each outcome variable to be analysed the following items should
be considered.

2.8.1 Analysis population

The set of subjects who are to be included in the meta-analysis should be defined.
This will usually be based on the intention-to-treat principle, which in respect
of an individual trial specifies that all randomized patients should be included in
the analysis as members of the treatment group to which they were randomized.
This principle is important in preventing bias and providing an objective basis for
statistical analysis.

In the ideal situation in which all randomized subjects satisfy all of the trial
selection criteria, comply with all of the trial procedures and provide complete
data, the intention-to-treat analysis is straightforward to implement. However,
this ideal situation is unlikely to be achieved in practice. Provided that there is
proper justification and that bias is unlikely to be introduced, it may be considered
appropriate to exclude certain randomized subjects from the analysis set. In the
ICH E9 (ICH, 1998) guidelines the term ‘full analysis’ set is used to describe
the analysis set which is as complete as possible and as close as possible to the
intention-to-treat ideal of including all randomized subjects.

Reports of clinical trials often include analyses undertaken on a second set of
subjects, referred to as the ‘per protocol’ set. The ‘per protocol’ set is a subset
of patients who are more compliant with the protocol. For example, they are
not classified as major protocol violators, they complete a minimum period on
study treatment and provide data for the primary efficacy analysis. Sometimes an
analysis is undertaken on all subjects who complete the study period and provide
data on the primary efficacy variable, referred to as a ‘completers’ analysis. This is
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an example of a ‘per protocol’ analysis. Because adherence to the study protocol
may be related to the treatment and to the outcome, analyses based on the ‘per
protocol’ set may be biased. For example, in a comparison of a new treatment with
placebo, if patients who cannot tolerate the new treatment withdraw early from
the trial, the analysis based on the ‘per protocol’ set may produce a larger estimate
of the treatment difference than that based on the ‘full analysis’ set. Therefore,
whilst a meta-analysis based on a ‘per protocol’ set may be undertaken as part of
a sensitivity analysis, the evidence from an analysis based on the ‘full analysis’ set
will usually be more convincing.

Whilst it is envisaged that most meta-analyses will be undertaken to determine
if one treatment is superior to another, some will be undertaken to determine if
two treatments are equivalent. In the latter case, the conservative nature of the
intention-to-treat approach may be inappropriate and the meta-analysis based
on a ‘per protocol’ set should be looked at on a more equal footing with that based
on the ‘full analysis’ set.

When the meta-analysis is to be conducted using individual patient data, it is
desirable to obtain data from all randomized patients, so that the most appropriate
analysis can be undertaken. Difficulties may arise when a meta-analysis is based on
summary information from published papers or trial reports in which the various
authors have chosen different criteria for their main analysis set. In particular,
some papers may only provide results from a ‘full analysis’ set, whereas others
may only provide results from a ‘per protocol’ set. In such situations it may
be advisable to separate the studies using ‘full analysis’ sets from those using
‘per protocol’ sets, before ascertaining whether or not it would be appropriate to
combine them.

The set of subjects to be included in the assessment of safety and tolerability
is often defined as those subjects who received at least one dose of the study
medication, and is sometimes referred to as the ‘safety analysis’ set. The ‘safety
analysis’ set would seem to be an appropriate choice for a meta-analysis of safety
and tolerability data.

2.8.2 Missing data at the subject level

Difficulties arise in the analysis of a clinical trial when data are missing from some
subjects. The intention-to-treat principle defines the set of subjects to be included
in the analysis, but does not specify how to deal with missing data. As for an
individual trial, the effect of data missing at the subject level on the overall results
from a meta-analysis will need to be addressed.

Some subjects who meet the criteria for the ‘full analysis’ set may not provide
data on some of the outcomes of interest, including the primary efficacy variable.
This could occur if a subject withdraws from treatment part-way through the
study and provides no further data after this point or if the subject is lost to
follow-up. One option is to perform the analysis of each outcome variable using
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only those subjects who provide data on that particular variable. This means that
the set of subjects contributing to each analysis may vary. More importantly,
this approach relies on the assumption that data are missing at random, that
is, the absence of a recorded value is not dependent on its actual value (see,
for example, Little and Rubin, 1987). In particular, if the mechanisms for data
being missing differs between the study treatments, then the exclusion of the
subject from the analysis may introduce bias into the estimate of the treatment
difference.

An alternative strategy is to substitute values for the missing data. If the
outcome of interest is measured at various timepoints during the study, values
from early timepoints can be used to impute data for the later missing values.
Imputation techniques range from carrying forward the last observation to the
use of complex mathematical models (see, for example, Rubin, 1987; Little, 1995).
However, caution is required as imputation techniques may themselves lead to
biased estimates of the treatment difference. In some trials data continue to be
collected according to the intended schedule on patients who withdraw early
from study treatment. Such data may be used in the analysis, although careful
thought needs to be given to this as such patients may have received alternative
medication.

If there is a substantial amount of missing data, the reliability of the analysis
may be questioned. In this case it may be useful to undertake sensitivity analyses
in which the effects of different imputation schemes are compared.

When the meta-analysis is to be performed using individual patient data,
the planned method for dealing with missing data should be described. If no
imputation is to be undertaken, then this should be stated.

When meta-analyses are based on summary information from published papers,
the amount of missing data and the way in which they have been handled by the
author may be factors for consideration in the assessment of the methodological
quality of a trial.

2.8.3 Analysis of individual trials

It is important to present the results from the individual trials as well as the results
from the meta-analysis. Individual trial summaries may not be the same as those
presented in earlier trial reports and publications because it is desirable to take
the same approach to the analysis of each of the trials and to make this consistent
with the meta-analysis. When individual patient data are available a reanalysis
using a common approach will often be possible. However, this is unlikely to be
the case for meta-analyses based on summary information. In this situation one
hopes that the summary information will permit the use of the same measure of
treatment difference in all studies.

The chosen measure of treatment difference should be specified. For example,
for binary data this might be the log-odds ratio or for continuous data it might
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be the absolute difference in means. Details of the various measures of treatment
difference which can be used for commonly occurring types of data are presented
in Chapter 3.

2.8.4 Meta-analysis model

The proposed meta-analysis model should be specified, including which terms
are to be treated as fixed effects and which random effects. Models which
can be used for the combination of trial estimates of treatment difference are
discussed in Chapter 4. A model which assumes that the parameter measuring
treatment difference is the same across all trials is typically referred to as a
‘fixed effects’ model. A model which allows this parameter to act as a random
variable taking different values from one trial to the next is typically referred to
as a ‘random effects’ model. Issues relating to the choice of a fixed or random
effects model are discussed in Chapter 6. When individual patient data are
available the statistical modelling approach of Chapter 5 may be used. Within this
framework it is straightforward to include additional covariates in the model, to
enable adjustment for prognostic factors which are considered likely to affect the
outcome data.

2.8.5 Estimation and hypothesis testing

The main hypotheses to be tested should be specified. For example, in the
comparison of a new treatment against the standard treatment the null hypothesis
of no treatment difference might be tested against the two-sided alternative of
some difference between the two treatments. If the new treatment has been tested
at more than one dose level, it may not be appropriate to combine the data from
all doses together. There may be one dose level of prime interest. Alternatively, or
additionally, it may be of interest to investigate the dose-response relationship.

2.8.6 Testing for heterogeneity

Meta-analyses are often performed retrospectively on studies which were not
planned with this in mind. In many situations it might be expected that differences
in the study protocols will produce heterogeneity. Also, even if the same protocols
are used for all studies, variability in study quality, possibly due to mistakes
in implementing the protocol, may give rise to heterogeneity. Therefore, it is
common to include a test for heterogeneity in the treatment difference parameter
across studies. A test for heterogeneity when trial estimates are being combined is
presented in Chapter 4, and analogous tests based on individual patient data are
presented in Chapter 5.
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The test for heterogeneity is sometimes used to decide whether to present
an overall fixed effects or an overall random effects estimate of the treatment
difference. For example, if the p-value is less than or equal to 0.05 then the
random effects estimate may be calculated, and otherwise the fixed effects estimate.
Although the result of a statistical test for heterogeneity provides some useful
descriptive information about the variability between trials, a decision based
purely on the p-value, as described above, is not to be recommended. Further
discussion of this point is provided in Chapter 6.

2.8.7 Exploration of heterogeneity

Potential sources of heterogeneity can be identified in advance, and methods
for their investigation described. Their investigation can be undertaken via the
inclusion of covariate by treatment interaction terms in the meta-analysis model.
Further details are given in Chapter 6. If an interaction reaches statistical and
clinical significance, then it will be appropriate to present the relationship between
the magnitude of the treatment difference and the covariate. For a continuous
variable, such as age, a graphical display of its effect on the magnitude of the
treatment difference may be informative. When the covariate term represents a
factor with a small number of levels, the treatment difference can be presented
for each level of the factor. This is often referred to as a subgroup analysis. A test
of the hypothesis of a common treatment difference across all subgroups is the
same as a test of the hypothesis that a covariate by treatment interaction term is
zero. To avoid too many false positive results, it is desirable to limit the number of
covariates investigated in this way.

2.9 SENSITIVITY ANALYSES

Consideration should be given to performing sensitivity analyses to test the key
assumptions made. In particular, meta-analyses may be repeated with some trials
excluded. Alternatively, or in addition, the results from studies not classified as
primary studies can be considered. One option is to display their results alongside
the primary studies in a graphical display. Also, the meta-analysis can be repeated
with these results included.

Potential sources of systematic bias in the overall estimate of treatment dif-
ference need to be addressed. In the case of a retrospective meta-analysis, or a
meta-analysis conducted after some of the individual trial results are available, the
selection of studies for inclusion in the meta-analysis may introduce a systematic
bias. The possible impact that this may have on the results of the meta-analysis
needs to be addressed. Selection bias is discussed in detail in Chapter 8.
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2.10 PRESENTATION OF RESULTS

Thought should be given to the way in which the results are to be reported. For
example, individual study estimates of treatment difference and their confidence
intervals can be presented and displayed graphically together with those from the
meta-analysis. Further discussion of this topic is deferred to Chapter 7.





3

Estimating the
Treatment Difference

in an Individual Trial

3.1 INTRODUCTION

Many meta-analyses concern the comparison of two treatments in terms of a
selected set of outcome measures. For each chosen outcome measure, the aim
is usually to estimate and make inferences about the difference between the
effects of the two treatments. This involves choosing an appropriate measure
(parameterization) of the treatment difference, and calculating individual study
estimates and an overall estimate of this difference. A traditional meta-analysis
is one in which the overall estimate of treatment difference is calculated from a
weighted average of the individual study estimates.

Meta-analyses may be performed on studies for which the available data are in
the form of summary information from trial reports or publications, or on studies
for which individual patient data are available. The form of the data available
from each study has implications for the meta-analysis, and here three forms
which are commonly encountered are considered.

The first consists of an estimate of the treatment difference and its variance or
standard error – the minimum amount of information needed. If a study provides
an estimate of treatment difference which is not an estimate of the chosen
parameterization it may not be possible to include it. For example, in the context
of binary data, we may wish to estimate the log-odds ratio, and so a study for
which only an estimate of the probability difference is available cannot be used.

The second form of data is slightly more detailed, consisting of summary statistics
for each treatment group, enabling a choice to be made between several different
parameterizations of the treatment difference. For example, in the context of
normally distributed data, knowing the sample size, mean and standard deviation
for each treatment group allows estimation of the absolute mean difference or the
standardized mean difference.

The third form, individual patient data, allows the most flexibility. In this case it
is possible to choose any sensible parameterization of the treatment difference and

23
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method of estimation. In addition, if all the studies provide individual patient data,
a more thorough analysis can be undertaken by employing a statistical modelling
approach.

The traditional meta-analysis approach can be used when the available data
are in the form of study estimates, study summary statistics, individual patient
data or a combination of the different forms of data. This chapter focuses on the
estimation of the treatment difference from an individual study, and Chapter 4
presents a methodology for combining such study estimates.

In this chapter five different types of outcome data are discussed in detail, namely
binary, survival, interval-censored survival, ordinal and normally distributed. The
chapter is divided into sections, each of which addresses one particular data type.
At the start of each section an example data set is introduced for illustrative
purposes. Then, within the context of a parallel group study comparing a treated
group with a control group, there is discussion of the various parameterizations
of the treatment difference and methods of estimation which are commonly used.
Methods of estimation based on individual patient data are presented. The reasons
for this are twofold. First, these methods could be used to calculate study estimates
when individual patient data are indeed available. Second, these methods are
likely to be the ones used to calculate study estimates which are presented in trial
reports or publications.

In an individual clinical trial the likelihood ratio test is frequently used to test
the hypothesis concerning the treatment difference. The maximum likelihood
(ML) estimate of the treatment difference is then typically presented with a
standard error or confidence interval. ML estimation has the advantages of
asymptotic optimality and general availability in statistical packages. This is the
principal method of estimation which is presented in this book. As ML estimation
involves iterative procedures and is usually performed via a statistical package,
a specification of the methodology is presented together with a SAS procedure
which could be utilized. The likelihood approach to a single clinical trial can be
extended to the meta-analysis of all of the trials when individual patient data are
available. This likelihood approach to meta-analysis is described in Chapter 5,
and the mathematical formulation of the underlying statistical models is deferred
to that chapter.

A simpler approach to estimation, based on the efficient score and Fisher’s
information statistics, has been widely used for meta-analysis, and so will also
be presented in this chapter and discussed in some of the later chapters. This
approach, on which a number of commonly used statistical tests are based,
produces approximate ML estimates. Explicit formulae are available, which are
straightforward to use.

Notation is now introduced that will be used in this and later chapters. The
parameter θ will denote the measure of treatment difference. Usually, θ will
be defined to take the value 0 when the two treatments are equivalent. The
estimate of θ will be represented by θ̂, the estimated variance of θ̂ by var(θ̂) and
its standard error by se(θ̂). The efficient score for θ evaluated under the null
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hypothesis that θ = 0 is denoted by Z, and the observed Fisher’s information also
evaluated at θ = 0 by V. When θ is small, the approximate distributional result
Z ∼ N(θV, V) can be used. The estimate θ̂ = Z/V is an approximate ML estimate,
with corresponding standard error 1/

√
V and variance = 1/V. The score test

statistic Z2/V can be referred to the chi-squared distribution on one degree of
freedom in an approximate likelihood ratio test.

The technical detail showing the relationship between the ML approach and
that based on efficient score and Fisher’s information is presented in Section A.5
of the Appendix. The estimate of θ given by Z/V is sometimes referred to as the
‘one-step estimate’ because it is obtained on the first step of a Newton–Raphson
procedure to maximize the log-likelihood function when the starting value for θ

is 0. Although this estimate is asymptotically unbiased under the null hypothesis
that θ = 0, it becomes increasingly biased the further θ moves from 0. This has
been discussed in the context of the log-odds ratio parameter for binary data
by Greenland and Salvan (1990). The usual concerns about the accuracy of
the asymptotic theory underlying the properties of both the ML and the score
approaches are less pertinent in meta-analysis, where total sample sizes are almost
always large.

3.2 BINARY DATA

3.2.1 Example: Stroke in hypertensive patients

Collins et al. (1990) presented a meta-analysis of the results from 14 randomized
trials of antihypertensive drugs, which were chiefly diuretics or beta-blockers.
These trials were conducted in patients with hypertension in which comparison
was made between antihypertensive treatment and either placebo or ‘usual
care’. The trials were grouped according to the level of hypertension of the
patients. Four trials included only people with mild hypertension (diastolic blood
pressure (DBP) < 110 mmHg) at entry, and a further three included only people
with mild to moderate hypertension (DBP � 115 mmHg). One of the trials, the
Hypertension Detection and Follow-up Program (HDFP) study, was reported in
such a way that people with DBP < 110 mmHg and 110–115 mmHg could be
examined separately from those with DBP > 115 mmHg and therefore the results
from each stratum were presented separately. Here, as in Collins et al., each
stratum will be considered as a separate study. The response of interest will be
taken to be the effects of antihypertensive treatment on stroke. Table 3.1 shows
the number of patients who suffered a stroke in each treatment group in each
study. Patients had been followed up for an average of 5 years.

3.2.2 Measurement of treatment difference

A binary variable takes one of two possible values, commonly referred to as
‘success’ and ‘failure’. A binary outcome is recorded for each patient. The
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Table 3.1 The number of hypertensive patients experiencing a stroke

Study Treated group Control group Treated Control

Number Total Number Total
group % group %

of strokes number of strokes number
strokes strokes

Trials in which all patients had entry DBP < 110 mmHg
1 VA-NHLB1 0 508 0 504 0.0 0.0
2 HDFP (Stratum I) 59 3 903 88 3 922 1.5 2.2
3 Oslo 0 406 5 379 0.0 1.3
4 ANBPS 13 1 721 22 1 706 0.8 1.3
5 MRC 60 8 700 109 8 654 0.7 1.3

Trials in which all patients had entry DBP � 115 mmHg
6 VAII 5 186 20 194 2.7 10.3
7 USPHS 1 193 6 196 0.5 3.1
8 HDFP (Stratum II) 25 1 048 36 1 004 2.4 3.6
9 HSCSG 43 233 52 219 18.5 23.7

Trials in which some or all patients had entry DBP > 115 mmHg
10 VAI 1 68 3 63 1.5 4.8
11 WOLFF 2 45 1 42 4.4 2.4
12 Barraclough 0 58 0 58 0.0 0.0
13 Carter 10 49 21 48 20.4 43.8
14 HDFP (Stratum III) 18 534 34 529 3.4 6.4
15 EWPHE 32 416 48 424 7.7 11.3
16 Coope 20 419 39 465 4.8 8.4

Total 289 18 487 484 18 407 1.6 2.6

underlying model for the data recorded from one study is that patients in the
treated group succeed with probability pT and patients in the control group succeed
with probability pC. Suppose that outcome data are available on nT patients in
the treated group and nC patients in the control group. The numbers of successes
and failures in the treated group are given by sT and fT respectively, and in the
control group by sC and fC respectively. The data can be presented in the form
of a 2 × 2 table as shown in Table 3.2. When the response is a binary variable,
knowledge of the individual patient data adds nothing to the summary shown in
this table for the purpose of estimating the treatment difference. The summary
statistics presented in a trial report or publication usually enable this table to be
constructed, so that an identical estimate to that based on individual patient data
can be calculated.

In the example of stroke in hypertensive patients, interest lies in modelling
the probability of a stroke. In this application the occurrence of a stroke will
play the role that a ‘success’ plays in the generic description above. Naturally,
in this application it is desirable for the probability of a stroke to be lower on
the treatment than on the control. Table 3.3 presents the data for study 2 in the
format of Table 3.2.
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Table 3.2 Data for a parallel group study with a binary outcome

Outcome Treated group Control group Total

Success sT sC s
Failure fT fC f

Total nT nC n

Table 3.3 Occurrence of a stroke in hypertensive patients in study 2

Outcome Treated group Control group Total

Success (stroke) 59 88 147
Failure (no stroke) 3844 3834 7678

Total 3903 3922 7825

For binary data, there are several measures of treatment difference which could
be used. One is the probability difference, pT − pC. If the event of interest being
modelled is undesirable, for example the occurrence of a stroke, pT − pC may
be referred to as the risk difference. A second is the log-odds ratio, log[pT(1 −
pC)/{pC(1 − pT)}]. A third is the log-relative risk, log(pT/pC), although this name
makes sense only when an undesirable event is being modelled. Of these, the log-
odds ratio is to be preferred, because the adherence of corresponding test statistics
to their asymptotic normal or chi-squared distributions is closest (Sprott, 1973).
Problems can arise with the use of the probability difference, as it is restricted to
values between −1 and +1, yet confidence intervals based on asymptotic theory
can include points outside these limits. An additional advantage of the log-odds
ratio over the log-relative risk is that if the probability of failure is put in place of
the probability of success, the resulting log-odds ratio will be of opposite sign and
equal magnitude, whereas the log-relative risk will be of opposite sign but not of
equal magnitude. The main reason for using the log-odds ratio as opposed to the
odds ratio is that the latter has only a finite interval from 0 to 1 to represent values
corresponding to a lower relative success probability in the treated group, but an
infinite interval from 1 upwards for a higher relative success probability.

It should be noted that the weight of one study relative to another will differ from
one parameterization of the treatment difference to another. This has implications
for the meta-analysis and is discussed further in Section 4.2.5.

Log-odds ratio

Consider the log-odds ratio

θ = log
{

pT(1 − pC)

pC(1 − pT)

}
,
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where the logarithm is to base e, as is the case for all logarithms in this book. This
is the log-odds of success on treatment relative to control.

Methods for analysing binary data using the full likelihood consider an uncon-
ditional distribution of the data based on the binomial distribution, in which
sT and sC are treated as observations from random variables. The ML estimate
of the log-odds ratio can be found by fitting a linear logistic regression model,
using for example SAS PROC GENMOD. For the GENMOD procedure, the data for
each patient can be entered separately. Suppose that the binary response (resp) is
coded ‘1’ for a success and ‘0’ for a failure, and the explanatory variable (treat)
is an indicator variable, which takes the value 0 for the control group and 1
for the treated group. The treatment indicator variable is coded in this way and
considered as a continuous covariate in all of the models presented in this chapter.
The following statement defines the model:

MODEL resp = treat / dist = bin link = logit;

The ‘dist’ option specifies the distribution of the observations which in this case
is binomial, and the ‘link’ option specifies the link function (see Section 5.3). The
estimate of θ appears in the SAS output as the ‘treat’ parameter estimate.

For a more efficient way of running the program, the data can be entered in
binomial form. In this case the number of successes (succ) out of the total number
of patients (tot) are provided for each treatment group, resulting in just two lines
of data in this case. The MODEL statement now changes to

MODEL succ/tot = treat / dist = bin link = logit;

The ML estimate of the log-odds ratio can also be calculated from an explicit
formula: it is the sample log-odds ratio, given by

θ̂ = log
(

sTfC

sCfT

)
. (3.1)

The asymptotic estimate of variance derived by the delta method (see, for example,
Azzalini, 1996) and used in the Wald test is

var(θ̂) = 1
sT

+ 1
sC

+ 1
fT

+ 1
fC

. (3.2)

Using formulae (3.1) and (3.2) for study 2 in the stroke example gives

θ̂ = log
(

59 × 3834
88 × 3844

)
= −0.402

and

var(θ̂) = 1
59

+ 1
88

+ 1
3844

+ 1
3834

= 0.029.
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The corresponding efficient score and Fisher’s information statistics are given by

Z = sT − nTs
n

(3.3)

and

V = nTnCsf
n3

. (3.4)

The score test statistic Z2/V is that used in Pearson’s chi-squared test and usually
denoted by ∑4

k=1(Ok − Ek)
2

Ek
,

where the summation is over the four cells in the 2 × 2 table, and Ok and Ek are
the observed and expected number of counts in the kth cell. Using formulae (3.3)
and (3.4) for study 2 gives

Z = 59 − 3903 × 147
7825

= −14.322,

V = 3903 × 3922 × 147 × 7678
78253

= 36.059,

θ̂ = Z
V

= −0.397

and
var(θ̂) = 1

V
= 0.028.

Binary data can also be analyzed using a likelihood which conditions on the
total number of successes in the study. Under the null hypothesis, the number
of successes in the treated group then follows the hypergeometric distribution.
The ML estimate of the log-odds ratio can be found by fitting a conditional linear
logistic regression model, using for example SAS PROC PHREG. If the binary
outcome (resp2) is coded ‘1’ for a success and ‘2’ for a failure, then it can be
analysed as a survival time with a failure considered to be a censored observation.
To use PROC PHREG the binary outcomes must be presented as separate records
for each patient, and the adjustment for ties based on the Cox approach should be
used by setting ties = discrete. The MODEL statement is

MODEL resp2*cens(0) = treat / ties = discrete;

where cens is the censoring variable, taking the value 0 if resp2 = 2 and 1
otherwise. The estimate of θ appears as the ‘treat’ parameter estimate. This
approach is analogous to that for grouped survival data, and is considered in more
detail in Section 3.3.2.
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Estimates for study 2 in the stroke example computed using PROC PHREG are
given by

θ̂ = −0.402

and
var(θ̂) = 0.029.

The corresponding efficient score and Fisher’s information statistics are given by

Z = sT − nTs
n

(3.5)

and

V = nTnCsf
n2(n − 1)

. (3.6)

It can be seen from formulae (3.3) and (3.5) that the same Z is obtained from
both the unconditional and conditional approaches. The V from the conditional
approach (3.6) is n/(n − 1) times the V from the unconditional approach (3.4).
For study 2 of the stroke example, the V for the conditional approach is given by
36.064. Because of the large number of subjects in study 2, it can be seen that
this value is very close to that based on the unconditional approach. This will be
true for large sample sizes.

The Peto method used for the meta-analysis of binary data, described in Yusuf
et al. (1985), is based on formulae (3.5) and (3.6). Notice that Z can be expressed
as O − E, where O and E are the observed and expected number of successes in
the treated group under the null hypothesis of no treatment difference. The Z
and V statistics for the conditional approach can alternatively be obtained from
a statistical package which calculates the log-rank statistic and its null variance
for survival data, such as SAS PROC LIFETEST. To use PROC LIFETEST the data
should be available in the same form as for PROC PHREG described above. The
treatment groups would form the strata and the test is conducted using a STRATA
statement. This method uses the adjustment for ties based on the Cox approach.
PROC LIFETEST does not have a MODEL statement. Instead the following lines of
code are required:
TIME resp2*cens(0);
STRATA treat;

In the SAS output, the value of Z appears under the heading ‘Rank Statistics’
under the column headed ‘Log-Rank’ in the row associated with treat = 1. The
value of V appears on the diagonal of the ‘Covariance Matrix for the Log-Rank
Statistics’.

Probability difference

Consider setting the parameter θ equal to the probability difference

θ = pT − pC.
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The unconditional ML estimate of the probability difference is given by the
difference in the observed success probabilities

θ̂ = sT

nT
− sC

nC
. (3.7)

The asymptotic estimate of variance derived by the delta method is

var(θ̂) = sTfT

n3
T

+ sCfC

n3
C

. (3.8)

The estimate and variance for the difference in the probability of a stoke on
antihypertensive treatment and on control in study 2 would be given by

θ̂ = 59
3903

− 88
3922

= −0.007 32

and

var(θ̂) = 59 × 3844
39033

+ 88 × 3834
39223

= 0.000 009 4.

Log-relative risk

Consider setting the parameter θ equal to the log-relative risk

θ = log
(

pT

pC

)
.

The unconditional ML estimate of the log-relative risk is given by the sample
log-relative risk,

θ̂ = log
(

sT/nT

sC/nC

)
. (3.9)

The asymptotic estimate of variance derived by the delta method is

var(θ̂) = fT

sTnT
+ fC

sCnC
. (3.10)

The estimate and variance for the log-relative risk of a stoke on antihypertensive
treatment compared with control in study 2 would be given by

θ̂ = log
(

59/3903
88/3922

)
= −0.395

and

var(θ̂) = 3844
59 × 3903

+ 3834
88 × 3922

= 0.028.
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3.3 SURVIVAL DATA

3.3.1 Example: Mortality following myocardial infarction

The Multicenter Diltiazem Postinfarction Trial (MDPIT) was designed to determine
whether long-term therapy with diltiazem in patients with a previous myocardial
infarction would reduce rates of mortality and infarction (Multicenter Diltiazem
Postinfarction Trial Research Group, 1988). A total of 2466 patients from 38
hospitals in the United States and Canada were randomized to either diltiazem or
placebo and followed up for between 12 and 52 months. Here the mortality data
will be considered. Mortality rates were found to be almost identical in the two
treatment groups. The analyses as described in the paper provide the definitive
results. For the purpose of illustrating meta-analysis methodology for survival
data, the data arising from each of seven geographical regions will be treated as
if from a separate study. Table 3.4 shows the number of deaths in each treatment
group from each region. The 2-year mortality rates obtained from Kaplan–Meier
estimation of the survival curves are also presented.

The survival times were recorded to the nearest day, and analyses based on these
data will be presented. However, this level of detail is unlikely to be available from
published papers. Therefore, additional analyses based on grouped data, which
might be reported or which might be read off survival curves, will be presented.
Table 3.5 shows the survival times grouped into yearly intervals. Patients whose
survival time is known to be 1 year or more count towards the number of survivors
of the interval 0–1, those whose survival time is known to be 2 years or more
contribute to the number of survivors of the interval 1–2, and so on. Patients
who have a censored survival time during a particular time interval count as a

Table 3.4 Mortality data from the MDPIT study

Region Diltiazem Placebo Diltiazem Placebo

Deaths Total Deaths Total
2-year 2-year

number number
Mortality (%)∗ Mortality (%)∗

New York
City (US)

33 262 25 256 11.5 8.4

Northeast (US) 46 305 39 298 12.2 9.9
Mideast (US) 4 72 13 71 4.2 14.4
Midwest (US) 24 127 19 125 16.4 12.6
Southwest (US) 23 169 28 184 11.9 11.8
Ontario

(Canada)
21 121 27 122 19.3 22.0

Quebec
(Canada)

15 176 16 178 8.7 8.3

∗Kaplan–Meier estimation.
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Table 3.5 Survival times from the MDPIT study grouped into yearly intervals

Region Interval Diltiazem Placebo
(years)

Survival Death Withdrawal Survival Death Withdrawal

New York City (US) 0–1 229 23 10 234 17 5
1–2 175 6 48 182 4 48
2–3 103 3 69 107 3 72
3–4 19 1 83 21 1 85

Northeast (US) 0–1 281 24 0 276 21 1
1–2 189 11 81 191 7 78
2–3 104 7 78 106 10 75
3–4 21 4 79 22 1 83

Mideast (US) 0–1 68 3 1 58 10 3
1–2 49 0 19 44 0 14
2–3 24 1 24 21 2 21
3–4 3 0 21 1 1 19

Midwest (US) 0–1 110 12 5 110 11 4
1–2 75 7 28 83 4 23
2–3 41 5 29 49 4 30
3–4 16 0 25 12 0 37

Southwest (US) 0–1 151 14 4 171 12 1
1–2 117 5 29 122 8 41
2–3 70 4 43 71 6 45
3–4 23 0 47 19 2 50

Ontario (Canada) 0–1 102 15 4 101 16 5
1–2 50 6 46 49 8 44
2–3 6 0 44 10 3 36
3–4 0 0 6 0 0 10

Quebec (Canada) 0–1 162 9 5 164 10 4
1–2 69 5 88 63 4 97
2–3 0 1 68 0 2 61
3–4 0 0 0 0 0 0

withdrawal during that time interval. Patients who have a censored survival time
at the upper limit of a time interval are considered to be a withdrawal during the
following time interval.

3.3.2 Measurement of treatment difference

A survival analysis uses the time from randomization until the time of the
event of interest. This might, for example, be the time until death or the time
until recurrence of a tumour. This time is referred to as a ‘survival time’. The
mathematical model is expressed in terms of the hazard function or the survivor
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function. The hazard function is the limiting probability that the event occurs
at time t, conditional on it not occurring before t. The survivor function is the
probability that the event occurs after time t. Let hT(t) and hC(t) represent the
hazard functions for the treated and control groups and ST(t) and SC(t) their
respective survivor functions.

The survival time will be known for each patient observed to have had the
event. Patients who have not had the event during the follow-up time or who
are lost to follow-up before the event occurred have unknown survival times.
These patients have a right-censored survival time, calculated from the date of
randomization to the last date seen. The actual survival time is known to be larger
than this value. It is assumed that non-informative censoring occurs, that is, that
censoring occurs independently of the survival time.

At the time of analysis, the data available can be tabulated as in Table 3.6. If
survival times are recorded exactly, then the ordered survival times t1, . . . , td of
the d patients experiencing the event will be distinct. Each of o1, . . . , od will be
equal to 1, and the okT and okC will be equal to 0 or 1. The rk-values represent the
‘at risk’ group of patients at time tk, that is, those patients who are event-free and
uncensored at a time just prior to tk.

Consider the log-hazard ratio as a measure of treatment difference

θ = log
{

hT(t)
hC(t)

}
.

The proportional hazards model under which hT(t) = exp(θ)hC(t) for all t is being
assumed. As a positive effect of treatment would be to reduce the hazard, θ

will be negative when the treated group is better than the control group. An
alternative and equivalent form for θ available in terms of the survivor functions
is given by

θ = log[− log{ST(t)}] − log[− log{SC(t)}].

Table 3.6 Data for a parallel group study with a survival outcome

Treated group Control group Total

Number of events OT OC O

Number of survival times equal to
t1 o1T o1C o1
...

...
...

...
td odT odC od

Number of survival times greater than
or equal to
t1 r1T r1C r1
...

...
...

...
td rdT rdC rd
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Cox (1972) proposed a method for analysing survival data, based on a partial
likelihood function. The ML estimate of the log-hazard ratio can be found by fitting
the Cox proportional hazards model, using for example SAS PROC PHREG. If the
survival time (time) is recorded for each patient, and the censoring variable (cens)
takes the value 0 if the survival time is censored and 1 otherwise, the following
MODEL statement can be used:

MODEL time*cens(0) = treat;

In the SAS output, the estimate of θ appears as the ‘treat’ parameter estimate.
Efficient score and Fisher’s information statistics based on the same likelihood

function are given by

Z = OT −
d∑

k=1

okrkT

rk
(3.11)

and

V =
d∑

k=1

ok(rk − ok)rkTrkC

(rk − 1)r2
k

. (3.12)

As all of the ok are in fact equal to one, the above formulae can be simplified. The
forms above are presented for later generalization.

An alternative and equivalent expression for Z is

Z =
d∑

k=1

rkCokT − rkTokC

rk
.

The statistic Z is the log-rank statistic and the associated score test is the log-rank
test. Values of Z and V can be obtained from any statistical package which
calculates the log-rank statistic and its null variance for survival data, such as
SAS PROC LIFETEST. Instead of a MODEL statement, the following lines of code
are required:

TIME time*cens(0);
STRATA treat;

In the SAS output, the value of Z appears under the heading ‘Rank Statistics’
under the column headed ‘Log-Rank’ in the row associated with treat = 1. The
value of V appears on the diagonal of the ‘Covariance Matrix for the Log-Rank
Statistics’.

For some meta-analyses, we may only have access to grouped data as illustrated
in Table 3.5. The data now take the general form presented in Table 3.7, where
u1, . . . , um represent the upper limits of the time intervals.

One way of approaching such data is to treat them as if each event occurred
at the upper limit of the time interval in which it lies. In this case the likelihood
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Table 3.7 Data for a parallel group study with grouped survival data

Treated group Control group Total

Number of events OT OC O

Number of events in the interval
(0, u1] o1T o1C o1
..
.

..

.
..
.

..

.
(um−1, um] omT omC om

Number of patients recruited at least time t ago,
and still being followed up, for t equal to
u1 r1T r1C r1

..

.
..
.

..

.
..
.

um rmT rmC rm

function has to be modified to allow for the resulting tied observations. This is
done in Cox (1972), resulting in a form of likelihood similar to that based on
distinct survival times, deduced from a discrete survival model. The measure of
treatment difference is the log-odds ratio

θ = log
{

πkT(1 − πkC)

πkC(1 − πkT)

}
, for k = 1, . . . , m,

where πkT is the probability of an event in the interval (uk−1, uk], conditional on
survival to time uk−1, and πkC is similarly defined. The first interval is defined by
setting u0 = 0. In the limit as the width of the discrete time intervals becomes zero,
the log-odds ratio tends to the log-hazard ratio. In practice this distinction is often
blurred. In general, survival times will be recorded to the nearest day, month or
year and so in a typical survival analysis some survival times will share the same
value. The approach described for grouped data can also be applied to ungrouped
data with ties, letting the uk represent each distinct event time. This is the more
conventional use of the methodology.

In order to apply the Cox approach for ties the observed survival times have
been chosen to equal the upper limit of the interval in which they occur, that is,
u1, . . . , um. In addition, censored survival times will be set to the lower limit of
the interval during which they occur. This means that patients with a censored
survival time in a particular interval do not count in the risk set for events
in that interval. In particular, patients withdrawn during the first interval are
right-censored at 0 and do not influence the analysis at all.

The ML estimate of the parameter θ can be found by fitting the Cox proportional
hazards model, using for example SAS PROC PHREG. To use PROC PHREG the
survival time (timegp) must be presented as a separate record for each patient,
and the adjustment for ties based on the Cox approach can be made by setting



Survival data 37

ties = discrete. The MODEL statement presented earlier in this section needs to be
changed to

MODEL timegp*cens(0) = treat / ties = discrete;

Using the individual survival times recorded to the nearest day, the estimate
and variance for the log-hazard ratio for New York City are

θ̂ = 0.282, var(θ̂) = 0.070.

The grouped survival data for New York City, shown in Table 3.8, provide the
estimates

θ̂ = 0.305, var(θ̂) = 0.075,

where θ now represents the log-odds ratio defined above.
When ties are present the formulae for Z and V follow from the discrete form

of Cox’s likelihood. The formulae are similar to (3.11) and (3.12), except that the
summation takes place over the m time intervals instead of the d distinct survival
times. The values of ok, okT and okC now relate to the number of events within the
kth time interval and, therefore, may be greater than one.

Values of Z and V can be obtained from any statistical package which calculates
the log-rank statistic and its null variance for survival data, such as SAS PROC
LIFETEST. To use PROC LIFETEST the survival time must be presented as a
separate record for each patient. The following statements would be used:

TIME timegp*cens(0);
STRATA treat;

The values of Z and V for New York City using individual survival times recorded
to the nearest day from formulae (3.11) and (3.12) give

Z = 4.064,

V = 14.496,

θ̂ = Z
V

= 0.280

Table 3.8 Grouped survival data for New York City

Interval Diltiazem Placebo
(years)

Survival Death At risk Survival Death At risk

(0, 1] 229 23 252 234 17 251
(1, 2] 175 6 181 182 4 186
(2, 3] 103 3 106 107 3 110
(3, 4] 19 1 20 21 1 22
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and
var(θ̂) = 1

V
= 0.069.

The values of Z and V for New York City using the grouped survival times from
formulae (3.11) and (3.12) give

Z = 4.132,

V = 13.613,

θ̂ = Z
V

= 0.304

and
var(θ̂) = 1

V
= 0.073.

For grouped survival data decisions are required regarding the choice of
the timepoint to represent the event time in each time interval, how cen-
sored times will be handled, and the method for dealing with tied observa-
tions. Alternative methods of adjustment for ties are given by Breslow (1974)
and Efron (1977) and are discussed by Collett (1994). The Cox approach to
ties used in this chapter has assumed that all events within the same time
interval occur simultaneously. If the time intervals are large, a more appro-
priate approach is one based on interval-censored survival data, described in
Section 3.4.2.

3.4 INTERVAL-CENSORED SURVIVAL DATA

3.4.1 Example: Ulcer recurrence

To illustrate the meta-analysis of interval-censored survival data, the data reported
in Whitehead (1989) are considered. They are from a double-blind clinical trial of a
new drug intended to inhibit relapse after primary therapy has successfully healed
an endoscopically proven ulcer. A total of 337 patients were randomized between
the new drug (treatment 2) and a control (treatment 1). Regular and frequent
visits to doctors’ surgeries were arranged for all patients, but endoscopies were
planned routinely only for the visits at 6 and 12 months. Between the scheduled
endoscopies patients could experience symptoms of relapse, visit the doctor and
be diagnosed, perhaps by an unscheduled endoscopy. Such relapses are referred
to as interval-detected relapses. The data for analysis are therefore drawn from a
mixture of asymptomatic relapses diagnosed at scheduled times and symptomatic
interval-detected relapses, and consist of the time of diagnosis of each relapse.
Interest centres on the difference in times to relapse between the two treatments.
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To avoid being misled by treatment effects on suppression of symptoms, the actual
time to relapse is not analysed. Instead the time to relapse is allocated to one of
two intervals, the first being before or at the 6-month scheduled visit and the
second being after the 6-month but before or at the 12-month scheduled visit.
Patients who have a negative endoscopy at their final visit are given a censored
time of 12 months, if the final visit is at 12 months, and a censored time of 6
months if the final visit is at or after 6 months but before 12 months. The 36
patients who dropped out without having any of the scheduled endoscopies are
given a censored time of 0 and therefore have no influence in the analysis. The
study took place in five countries, and for the purpose of illustrating meta-analysis
methodology the data from each country are considered as comprising a separate
study. It should be noted that here patient 182 has been included as ulcer-free
at 12 months and consequently ulcer-free at 6 months, whereas in the original
paper he was omitted from the 6-month analysis. The data are presented in
Table 3.9.

3.4.2 Measurement of treatment difference

Situations can arise where the event is known to have occurred during a particular
interval of time but the exact time cannot be ascertained, as illustrated in the
ulcer recurrence example. The data are in the form of interval-censored survival
data. In the example recurrences are known to have occurred in the interval (0,
6] or (6, 12], or are right-censored at 0, 6 or 12 months. If it is assumed that all
events occurring within the same time interval occur at the same time, then the

Table 3.9 The number of patients experiencing a recurrence of their ulcer

Country Interval Treatment 2 Treatment 1
(months)

No Recur- With- No Recur- With-
recurrence rence drawal recurrence rence drawal

Austria (0, 6] 40 12 3 38 15 6
(6, 12] 34 3 3 27 4 7

Belgium (0, 6] 22 2 5 16 3 4
(6, 12] 17 5 0 12 1 3

France (0, 6] 15 4 3 15 5 5
(6, 12] 10 1 4 12 1 2

Holland (0, 6] 55 0 7 46 6 3
(6, 12] 47 5 3 38 3 5

Norway (0, 6] 3 0 0 4 0 0
(6, 12] 3 0 0 3 0 1
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Cox approach for ties could be used, as described in the previous section. A more
appropriate approach which does not make this assumption is described here.

In general, consider that data are collected at scheduled visits by the patient to
the doctor at times u1, u2, . . . , um after randomization. At each visit information
about whether the event has occurred since the last visit will be recorded. At
the time of analysis the data can be tabulated as in Table 3.7. Knowledge of
the individual patient data adds nothing to the summary shown in this table
for the purpose of estimating the treatment difference. Provided it is possible to
extract the necessary summary statistics to create such a table, then the estimate
obtained will be identical to that calculated using individual patient data.

Consider the measure of treatment difference to be the log-hazard ratio

θ = log
{

hT(t)
hC(t)

}
.

Each patient contributes multiple binary records, equal to the number of intervals
of observation, that is, the number of intervals during which they belong to the
‘at risk’ set. Occurrence of the event during an interval constitutes a ‘success’;
otherwise the binary outcome is recorded as a ‘failure’. The likelihood can
be presented in terms of the conditional probabilities πkT and πkC, for k =
1, . . . , m, defined in Section 3.3.2. The method of analysis described in Whitehead
(1989) – see also Chapter 8 of Collett (1994) – is based on a full likelihood.
Assuming that the proportional hazards model holds, the data are related to the
log-hazard ratio, θ, through a binary model with the complementary log-log link
function. This is given by

log{− log(1 − πkT)} = αk + θ

and
log{− log(1 − πkC)} = αk,

where αk is the parameter associated with the kth interval.
The ML estimate of the log-hazard ratio can be found using a logistic regression

procedure such as SAS PROC GENMOD with the CLOGLOG link. For the GENMOD
procedure, the data can be entered separately for each time interval of observation
for each patient. The binary outcome (resp) is coded ‘1’ if the event occurs in that
particular interval for that patient and ‘0’ if the patient is event-free during that
particular interval. In addition to the treatment indicator variable, it is necessary
to include a factor which associates each binary observation with its time interval
(int). The following SAS statements can be used:

CLASS int;
MODEL resp = int treat / dist = bin link = cloglog;
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Table 3.10 Interval-censored survival data from Austria

Interval Treatment 2 Treatment 1
(months)

No Recur- At risk No Recur- At risk
recurrence rence recurrence rence

(0, 6] 40 12 52 38 15 53
(6, 12] 34 3 37 27 4 31

The link function selected is the complementary log-log link function (see
Section 5.6). The estimate of θ appears in the SAS output as the ‘treat’ parameter
estimate.

Alternatively, the data can be entered in binomial form. For each time interval
for each treatment group the number of patients experiencing the event (succ)
out of the total number of patients being observed during that time interval (tot)
can be provided. The MODEL statement now changes to

MODEL succ/tot = int treat / dist = bin link = cloglog;

Consider the data from Austria which are extracted into Table 3.10. The
ML estimate for the log-hazard ratio of a recurrence on treatment 2 relative to
treatment 1 and its variance are given by

θ̂ = −0.290, var(θ̂) = 0.120.

The corresponding efficient score and Fisher’s information statistics are given by

Z =
m∑

k=1

qk

ok
(rkCokT − rkTokC) (3.13)

and

V =
m∑

k=1

q2
k (rk − ok)rkTrkC

okrk
, (3.14)

where

qk = − log
(

1 − ok

rk

)
, k = 1, . . . , m.

When few events have occurred in each interval, so that the ok are small relative
to the rk, qk ≈ ok/rk. Making this substitution in Z gives the log-rank statistic.
Substituting in V gives the null variance of the log-rank statistic apart from a
factor of rk/(rk − 1). Therefore, when the intervals form a fine grid, the method of
this section reduces to the method of the previous section.
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The estimates based on the Z and V formulae (3.13) and (3.14) for the Austrian
data are

Z = −2.439, V = 8.435,

θ̂ = Z
V

= −0.289, var(θ̂) = 1
V

= 0.119.

This approach can also be applied to the MDPIT data set from Section 3.3
as grouped by year in Table 3.5. For New York City the ML estimate and its
variance are

θ̂ = 0.297, var(θ̂) = 0.070.

Estimates based on Z and V from formulae (3.13) and (3.14) are

Z = 4.273, V = 14.492,

θ̂ = Z
V

= 0.295, var(θ̂) = 1
V

= 0.069.

3.5 ORDINAL DATA

3.5.1 Example: Global impression of change in Alzheimer’s
disease

The Clinical Global Impression of Change (CGIC) scale is used to provide an
overview by the clinician of whether a patient with Alzheimer’s disease is getting
better or worse. It is a seven-point scale that is intended to assess change
from baseline, where scores 1, 2 and 3 represent ‘very much improved’, ‘much
improved’ and minimally improved’, 4 indicates ‘no change’, and 5, 6 and 7
represent ‘minimally worse’, ‘much worse’ and ‘very much worse’. Table 3.11
shows the results from five trials comparing tacrine with placebo, in which the
CGIC scale was used. A meta-analysis of these data has been reported by Qizilbash
et al. (1998). As can be seen from the table, the majority of patients were placed
in the middle three categories, with hardly any in the two extreme categories. For
the meta-analysis presented in this book, categories 1 and 2 will be combined, as
will categories 6 and 7, to give a five-category response.

3.5.2 Measurement of treatment difference

Patient responses fall into one of m categories C1, . . . , Cm which are ordered
in terms of desirability: C1 is the best and Cm the worst. The mathematical
model is expressed in terms of the probability of falling into category k given
by pkT, k = 1, . . . , m for the treated group and pkC, k = 1, . . . , m for the control
group. Cumulative probabilities of falling into category Ck or better for the treated
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Table 3.11 Number of patients in each category of the CGIC scale in the tacrine studies

Study Treatment CGIC scale Total

1 2 3 4 5 6 7

1 Tacrine 2 2 23 45 22 2 0 96
Placebo 0 2 22 54 29 3 0 110

2 Tacrine 0 14 119 180 54 6 0 373
Placebo 0 1 22 35 11 3 0 72

3 Tacrine 1 12 20 24 10 1 0 68
Placebo 0 7 16 17 10 3 0 53

4 Tacrine 3 18 106 175 62 15 2 381
Placebo 0 8 24 73 52 13 0 170

5 Tacrine 0 3 14 19 3 0 0 39
Placebo 0 2 13 18 7 1 0 41

and control groups are denoted by QkT and QkC, respectively:

QkT = p1T + · · · + pkT, QkC = p1C + · · · + pkC, k = 1, . . . , m.

The data can be presented in the form of an m × 2 table as shown in Table 3.12.
The summary data shown in this table are sufficient for estimating the treatment
difference. Provided that it is possible to extract the necessary information to
create such a table, the estimate will be identical to that based on individual
patient data.

Two measures of treatment difference will be considered for ordinal data. The
first is a log-odds ratio based on the proportional odds model, and the second is a
log-odds ratio based on the continuation ratio model. The latter is analogous to
the log-odds ratio for the discrete survival model as described in Section 3.3.2.

Log-odds ratio (proportional odds model)

Consider the log-odds ratio

θ = log
{

QkT (1 − QkC)

QkC (1 − QkT)

}
.

Table 3.12 Data for a parallel group study with an ordinal outcome

Number of patients Treated group Control group Total
in category

C1 n1T n1C n1
.
..

.

..
.
..

.

..
Cm nmT nmC nm

Total nT nC n
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It is assumed that θ is constant over all values of k. The parameterθcan be viewed in
the same way as the log-odds ratio for binary data: it is the log-odds of being better
off on treatment relative to control. Suppose that the ordinal scale is reduced
to a success/failure outcome, with categories C1, . . . , Ck representing success
and Ck+1, . . . , Cm representing failure. Then QkT and 1 − QkT are the respective
probabilities of success and failure for the treated group; QkC and 1 − QkC are
defined similarly for the control group. There are m − 1 possible binary splits of
the m categories. The proportional odds assumption is equivalent to supposing
that all m − 1 binary analyses refer to the same log-odds ratio θ. When there are
only two response categories the proportional odds model is equivalent to the
usual linear logistic model for binary data.

McCullagh (1980) proposed a method for fitting the proportional odds model
using the full likelihood function based on a multinomial distribution. The ML
estimate of the log-odds ratio can be found using for example SAS PROC GENMOD.
For PROC GENMOD the data can be entered for each patient individually. The
response variable (resp) would take the value k if the patient had a response in
category k. The MODEL statement is as follows:

MODEL resp = treat/ dist = multinomial link = cumlogit;

The link function selected is the cumulative logit link function (see Section 5.4).
PROC GENMOD does not require the data from each patient to be presented
as a separate record, as the nkT and nkC can be entered via a weighting
variable. In this case, the data consist of three items for each category in
each treatment group, namely the category (cat), the treatment group (treat)
and the number of patient responses (num). The MODEL statement above is
replaced by

FREQ num;
MODEL cat = treat/ dist = multinomial link = cumlogit;

Consider the 5 × 2 table (Table 3.13) created for study 1. The ML estimate for
study 1 and its variance are given by

θ̂ = 0.284, var(θ̂) = 0.068.

Table 3.13 CGIC data from tacrine study 1

Treatment Category Total

C1 C2 C3 C4 C5

Tacrine 4 23 45 22 2 96
Placebo 2 22 54 29 3 110
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Using a marginal likelihood based on the ranks, with allowance for ties (Jones
and Whitehead, 1979), the test statistics Z and V for this case are given by

Z = 1
n + 1

m∑
k=1

nkC(LkT − UkT) (3.15)

and

V = Z2

n + 2
+ B

(n + 1)(n + 2)
, (3.16)

where

LkT = n1T + · · · + n(k−1)T, k = 2, . . . , m,

UkT = n(k+1)T + · · · + nmT, k = 1, . . . , m − 1,

L1T = UmT = 0,

with similar expressions defining LkC and UkC, and

B =
m∑

k=1

{nkT (nC − nkC) + nkTnkC (n − nk) + 2nkTLkCUkC + 2nkCLkTUkT}.

An approximate large-sample formula for V is

V′ = nTnCn
3(n + 1)2

{
1 −

m∑
k=1

(nk

n

)3
}

. (3.17)

Comparison of Z2/V′ with the chi-squared distribution on one degree of freedom
amounts to performing the Mann–Whitney U test (Mann and Whitney, 1947).

Using the data from Table 3.13 estimates are calculated as follows:

Z = 4.155, V = 14.668,

θ̂ = Z
V

= 0.283, var(θ̂) = 1
V

= 0.068.

Formula (3.17) gives V′ = 14.611, which is close to V.
A further interpretation of θ can be made when the categories are a result of

grouping originally continuous data. A continuous response Y is observed on
each patient, and then the patient is designated as category Ck if Y lies between
αk−1 and αk for some increasing sequence of numbers α0, . . . , αm. If the response
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of a subject in the treated group is denoted by YT and that in the control group YC,
then the probability that the person in the treated group does better is

P(YT > YC) = 1 − e−θ − θe−θ(
1 − e−θ

)2 .

Log-odds ratio (continuation ratio model)

Consider the probability of being in a particular category conditional on being
in that category or a worse one. This is a sort of ‘discrete hazard’, but it is of a
desirable outcome. The approach to the analysis is similar to that described for
grouped survival data in Section 3.3.2. Here we define hkT as

hkT = pkT

1 − Q(k−1)T
,

where Q0T = 0. The term hkC is defined similarly.
Consider the log-odds ratio

θ = log
{

hkT(1 − hkC)

hkC(1 − hkT)

}
, for k = 1, . . . , m − 1.

Because the hazard is of a desirable event, θ will be positive if the treated group is
better than the control group.

It can be seen that for k = 1, the log-odds ratio based on the proportional
odds model is the same as the log-odds ratio based on the continuation ratio
model. Therefore, estimates from the two approaches are likely to be of the same
order of magnitude. McCullagh (1978) has called the proportional odds model
‘palindromic invariant’, meaning that modelling cumulative probabilities starting
with the best category and moving towards the worst will only change the sign
and not the magnitude of the parameter estimates which would be obtained by
starting with the worst category and moving towards the best. However, the
continuation ratio model is not palindromic invariant. For the continuation ratio
model it is important to decide whether to model the hazard of a desirable event or
of an undesirable event. Reversing the order of the categories and modelling the
hazard of an undesirable event would make the analogy with grouped survival
data more obvious.

If the continuation ratio model is chosen, the estimation of the corresponding
log-odds ratio proceeds as follows. Table 3.14 shows how the data can be presented
in a way analogous to grouped survival data shown in Table 3.7. Here

RkT = nkT + UkT, k = 1, . . . , m − 1,

and RkC is similarly defined.
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Table 3.14 Data for a parallel group study with ordinal data, presented in the form of
survival data

Treated group Control group Total

Number of patients in categories C1 to
Cm−1

L(m−1)T L(m−1)C L(m−1)

Number of patients in category
C1 n1T n1C n1
.
..

.

..
.
..

.

..
Cm−1 n(m−1)T n(m−1)C n(m−1)

Number of patients in the same or a
worse (higher) category than
C1 R1T R1C R1
.
..

.

..
.
..

.

..
Cm−1 R(m−1)T R(m−1)C R(m−1)

The likelihood which conditions on the Rk, k = 1, . . . , m − 1, is equivalent to
the discrete form of the partial likelihood under the Cox proportional hazards
model. It is therefore possible to calculate the ML estimate for the log-odds ratio
from any package which fits the Cox proportional hazards model. To carry out the
analysis, a response variable (cat) would be calculated to take the value k if the
patient had a response in category k. This response variable would then be treated
as a survival time, with values in the highest category considered as censored
observations with value m. To use SAS PROC PHREG the response variable from
each patient must be presented as a separate record, and the adjustment for ties
based on the Cox approach should be used by setting ties = discrete. The MODEL
statement would be

MODEL cat*cens(0) = treat / ties = discrete;

where cens is the censoring variable, taking the value 0 if the patient’s response
is in category m and 1 otherwise.

Table 3.15 shows the data from tacrine study 1, already shown in Table 3.13,
in the form of survival data. The ML estimate and its variance are given by

θ̂ = 0.227, var(θ̂) = 0.050.

The corresponding values of Z and V can be calculated as follows. Substitute
L(m−1)T, nkT, nkC, nk, RkT, RkC and Rk for OT, okT, okC, ok, rkT, rkC and rk in formulae
(3.11) and (3.12), and sum over k from 1 to m − 1 to calculate Z and V as for the
log-rank statistic and its null variance:

Z = L(m−1)T −
m−1∑
k=1

(
nkRkT

Rk

)
(3.18)
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Table 3.15 Data from tacrine study 1 in the form of survival data

Category Tacrine Placebo

Number Number Number Number Number Number
in worse in category in this or in worse in category in this or
category worse category worse

category category

1 92 4 96 108 2 110
2 69 23 92 86 22 108
3 24 45 69 32 54 86
4 2 22 24 3 29 32

and

V =
m−1∑
k=1

{
nk(Rk − nk)RkTRkC

(Rk − 1)R2
k

}
. (3.19)

For study 1 this gives

Z = 4.576, V = 20.190,

θ̂ = Z
V

= 0.227, var(θ̂) = 1
V

= 0.050.

The values of Z and V may also be obtained from PROC LIFETEST, using the
following statements:

TIME cat*cens(0);
STRATA treat;

As an alternative to the conditional likelihood approach described above, a full
likelihood based on the multinomial distribution can be utilized. In this approach
each patient contributes multiple recordings of binary data, dependent on the
category into which their response falls. If the response falls into category k the
patient contributes a ‘success’ to category k and a ‘failure’ to each of categories
1 to k − 1. No contribution is made to categories with index larger than k. The
likelihood can be presented in terms of the conditional probabilities hkT and hkC, for
k = 1, . . . , m − 1. These binary data are related to the log-odds ratio, θ, through
a binary model with the logit link function. This is given by

log
{

hkT

(1 − hkT)

}
= αk + θ

and

log
{

hkC

(1 − hkC)

}
= αk,

where αk is the parameter associated with the kth category.
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The ML estimate of the log-odds ratio can therefore be found, using for
example SAS PROC GENMOD with the LOGIT link. A patient with a response in
category k provides a binary outcome (resp) for categories 1, . . . , k. For categories
1, . . . , k − 1, resp = 0, and for category k, resp = 1. The data can be entered as
a separate record for each category for each patient. In addition to the treatment
indicator variable, it is necessary to include a factor which associates each binary
observation with the appropriate category (level). The following SAS statements
can be used:

CLASS level;
MODEL resp = level treat / dist = bin link = logit;

Once again, the estimate of θ appears in the SAS output as the ‘treat’ parameter
estimate. The data could alternatively be entered in binomial form in a similar
way to that indicated in Section 3.4.2.

The estimate for tacrine study 1 and its variance are

θ̂ = 0.228, var(θ̂) = 0.050.

If there are a large number of categories this approach is unsatisfactory and
the model cannot be fitted. In particular, if there are zero cells in the m × 2 table,
this may result in non-convergence. In such cases the approach based on the
conditional likelihood is to be preferred.

The Z and V statistics based on the full likelihood are given by

Z = L(m−1)T −
m−1∑
k=1

(
nkRkT

Rk

)
(3.20)

and

V =
m−1∑
k=1

{
nk(Rk − nk)RkTRkC

R3
k

}
. (3.21)

It can be seen that the V from the conditional approach (3.19) differs from
the V from the unconditional approach (3.21) by a factor (Rk − 1)/Rk in the
denominator of each summand. The value of V for study 1 from formula (3.21) is
20.062. As can be seen from formulae (3.18) and (3.20), the same Z is obtained
from both the unconditional and conditional approaches.

3.6 NORMALLY DISTRIBUTED DATA

3.6.1 Example: Recovery time after anaesthesia

A multicentre study was undertaken to compare two anaesthetic agents (A
and B) in patients undergoing short surgical procedures, where rapid recovery
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Table 3.16 Recovery time (log-transformed) after anaesthesia

Centre Treatment A Treatment B

Number Mean Standard Number Mean Standard
of patients deviation of patients deviation

1 4 1.141 0.967 5 0.277 0.620
2 10 2.165 0.269 10 1.519 0.913
3 17 1.790 0.795 17 1.518 0.849
4 8 2.105 0.387 9 1.189 1.061
5 7 1.324 0.470 10 0.456 0.619
6 11 2.369 0.401 10 1.550 0.558
7 10 1.074 0.670 12 0.265 0.502
8 5 2.583 0.409 4 1.370 0.934
9 14 1.844 0.848 19 2.118 0.749

is important. Here data from nine of the centres are considered as being from
separate studies, for inclusion in a meta-analysis. The response of interest is the
recovery time (time from when the anaesthetic gases are turned off until the
patient opens their eyes (minutes)). Following a logarithmic transformation of
the data, they are treated as being normally distributed. Means and standard
deviations for each treatment group within each centre are shown in Table 3.16.

3.6.2 Measurement of treatment difference

A quantitative measurement on a continuous scale can often be treated as
following a normal distribution. Even if this is not the case, a transformation
applied to the values may produce normally distributed data. Data from subjects
in the treated group are modelled as being normally distributed with mean µT

and standard deviation σ. For subjects in the control group the mean is µC and the
standard deviation σ. Here a common between-patient standard deviation within
each treatment group is being assumed. Suppose that there are nT subjects in
the treated group with responses yjT, j = 1, . . . , nT, and nC subjects in the control
group with responses yjC, j = 1, . . . , nC. For the treated group the sample mean
(yT), sample standard deviation (sT), sum of the observations (AT) and sum of
squares of the observations (BT) are defined as follows:

yT = 1
nT

nT∑
j=1

yjT,

s2
T =

(∑nT
j=1 y2

jT

) − nTy2
T

nT − 1
,
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AT =
nT∑

j=1

yjT,

BT =
nT∑

j=1

y2
jT.

yC, s2
C, AC and BC are similarly defined for the control group, and A = AT + AC,

and B = BT + BC. The data are summarized in Table 3.17.
Often published reports present the number of patients, sample mean and

sample standard deviation for each treatment group, and this is all that is needed
to estimate the treatment difference. The values of AT and BT can be calculated
from the sample mean and sample standard deviation as follows:

AT = nTyT

and
BT = (nT − 1)s2

T + nTy2
T.

Table 3.18 shows the data from centre 1 of the anaesthetic study presented in
the form of Table 3.17.

For normally distributed data two parameters of treatment difference will be
considered. They are the absolute difference between means, µT − µC, and the
standardized difference between means, (µT − µC)/σ. The absolute difference is

Table 3.17 Data for a parallel group study with normally distributed outcomes

Data Treated group Control group Total

Number of patients nT nC n
Mean yT yC
Standard deviation sT sC

Sum of observations AT AC A
Sum of squares of observations BT BC B

Table 3.18 Recovery time (log-transformed) from centre 1 of the anaesthetic study

Data Treated group Control group Total

Number of patients 4 5 9
Mean 1.141 0.277
Standard deviation 0.967 0.620
Sum of observations 4.564 1.385 5.949
Sum of squares of observations 8.013 1.921 9.934
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easier to interpret and is appropriate if the same measurement has been used in
all studies. However, because the standardized difference is dimensionless, it can
be used when different units or scales are to be combined. In addition, it is possible
to calculate the probability that a patient in the treated group will do better than
a patient in the control group in terms of the standardized difference.

For θ = (µT − µC)/σ, P(YT > YC) = �(θ/
√

2), where � is the standard normal
distribution function.

Absolute difference between means

Using the full likelihood, the ML estimate of the absolute difference between means
is the difference between the sample means,

θ̂ = yT − yC. (3.22)

The variance is given by

var(θ̂) = σ2
(

1
nT

+ 1
nC

)
. (3.23)

In order to calculate the variance of θ̂, it is necessary to choose an appropriate
estimate for the variance component, σ2. One choice is the ML estimate σ̂2

M, where

σ̂2
M = BT − A2

T/nT + BC − A2
C/nC

n
. (3.24)

However, as this estimate is known to be biased, it is more common to use the
usual pooled sample standard deviation s2, an unbiased estimate obtained by
replacing the denominator in formula (3.24) by n − 2. This estimate is known as
the (residual) restricted maximum likelihood estimate (see, for example, Searle
et al., 1992). Thus,

s2 = BT − A2
T/nT + BC − A2

C/nC

n − 2
. (3.25)

The ML estimate θ̂ and its variance based on s2 can be found from fitting a
general linear model, using for example SAS PROC GLM. For the GLM procedure
the data from each patient are entered as a separate record. If the response variable
is denoted by y, the following MODEL statement can be used:

MODEL y = treat;

In the SAS output the estimate of θ appears as the ‘treat’ parameter estimate and
s2 appears as the error mean square in the analysis of variance table.
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For centre 1 of the anaesthetic study,

θ̂ = 0.864,

s2 = 0.621

and
var(θ̂) = 0.279.

The efficient score and Fisher’s information could be obtained for this parame-
terization of the treatment difference, but this approach is not very accurate and
is little used in practice. Consequently, further details are not presented here.

Standardized difference between means

The ML estimate of the standardized difference between means is

θ̂ = yT − yC

σ̂M
. (3.26)

More often the unbiased estimate of σ2 is used, giving

θ̂ = yT − yC

s
. (3.27)

In either case the approximate variance of θ̂ is given by

var(θ̂) = n
nTnC

. (3.28)

Estimates for centre 1 of the anaesthetic study based on formulae (3.27)
and (3.28) are

θ̂ = 0.864
0.788

= 1.097, var(θ̂) = 0.450.

Glass (1976) proposed an estimate of σ obtained only from the control group,
because otherwise, if several treatments were compared with control in a study,
the pairwise comparisons of each treated group with control could lead to different
standardized values of identical mean differences. Although the sample standard
deviations will generally differ amongst the treatment groups, in many cases the
assumption of a common variance is reasonable. In Chapter 5 of Hedges and Olkin
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(1985) it is shown that the estimate θ̂ given in (3.27) is biased in small samples.
They define a new estimate to remove this bias:

θ̂ = J(n − 2)(yT − yC)

s
, (3.29)

with variance estimate

var(θ̂) = n
nTnC

+ θ̂2

2n
, (3.30)

where values of the function J(m) are listed in Table 3.19, and for large m can be
found from

J(m) ≈ 1 − 3
4m − 1

.

As m gets large J(m) approaches unity, so that the distributions of the estimates
defined in (3.27) and (3.29) tend to a normal distribution with identical means
and variances.

Estimates for centre 1 of the anaesthetic study from formulae (3.29) and
(3.30) are

θ̂ = 0.973, var(θ̂) = 0.503.

The efficient score and Fisher’s information for the standardized mean differ-
ence are

Z = nTnC(yT − yC)

ns∗ (3.31)

Table 3.19 Exact values of the bias correction factor J(m)

m J(m) m J(m) m J(m) m J(m)

2 0.5642 15 0.9490 27 0.9719 39 0.9806
3 0.7236 16 0.9523 28 0.9729 40 0.9811
4 0.7979 17 0.9551 29 0.9739 41 0.9816
5 0.8408 18 0.9577 30 0.9748 42 0.9820
6 0.8686 19 0.9599 31 0.9756 43 0.9824
7 0.8882 20 0.9619 32 0.9764 44 0.9828
8 0.9027 21 0.9638 33 0.9771 45 0.9832
9 0.9139 22 0.9655 34 0.9778 46 0.9836

10 0.9228 23 0.9670 35 0.9784 47 0.9839
11 0.9300 24 0.9684 36 0.9790 48 0.9843
12 0.9359 25 0.9699 37 0.9796 49 0.9846
13 0.9410 26 0.9708 38 0.9801 50 0.9849
14 0.9453

Reproduced from Hedges and Olkin, 1985 (Table 2, Chapter 5) by permission of Academic Press.
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and

V = nTnC

n
− Z2

2n
, (3.32)

where

s∗ =
√√√√{

B
n

−
(

A
n

)2
}

.

The estimate s∗ is the ML estimate of σ under the assumption that µT = µC.
When θ is small and n large then Z/V and θ̂ from (3.29) are approximately

equal, and V ≈ 1/ var(θ̂) from (3.30) because

(
n

nTnC
+ θ̂2

2n

)−1

= nTnC

n

(
1 − θ̂2nTnC

2n2

)
≈ nTnC

n
−

(
Z
V

)2 V2

2n
= V.

Estimates for centre 1 of the anaesthetic study from equations (3.31) and
(3.32) are

θ̂ = 1.227, var(θ̂) = 0.522.





4

Combining Estimates
of a Treatment Difference

Across Trials

4.1 INTRODUCTION

This chapter presents a methodology for combining the study estimates of a
treatment difference, as described in Whitehead and Whitehead (1991). The
methodology is for use primarily when the data available from each study
consist solely of estimates of treatment difference (with their standard errors)
or of summary statistics. It can also be used when individual patient data
are available. However, in the latter case, it may be advantageous to exploit
the more advanced statistical modelling techniques discussed in Chapter 5. The
methodology presented in this chapter can also be used for combining studies
some of which provide individual patient data and others only estimates of
treatment difference or summary statistics. For example, even if the primary
meta-analysis is based on individual patient data, it may be desirable as part of
a sensitivity analysis to include additional studies for which only summary data
are available.

As in Chapter 3, it is assumed that each study has a parallel group design
comparing a treated group with a control group. It is also assumed that the
meta-analysis is to be conducted on an outcome measure which has been
recorded in the same way in each trial, and that the same parameterization
of the treatment difference and method of estimation is used for each trial. A
general fixed effects parametric approach, which is applicable to many different
data types, is presented in Section 4.2. This includes the calculation of an overall
estimate of treatment difference and a statistic for testing the null hypothesis
that there is no difference between the two treatments. In addition, a statistic for
testing for heterogeneity between the study parameters of treatment difference is
presented. This approach is then illustrated using the five examples introduced in
Chapter 3.

When meta-analyses are performed retrospectively there are likely to be dif-
ferences in the study protocols. These differences might be expected to lead

57
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to heterogeneity. In other situations there may be strong evidence of hetero-
geneity from the study estimates. If heterogeneity is believed to exist, then the
reasons for its presence should be explored, and this is discussed in detail in
Chapter 6. In cases where no reason is found to explain heterogeneity or if no
further data are available to explore heterogeneity it is still possible to allow
for the parameter measuring treatment difference to vary from study to study
by considering a random effects model. In Section 4.3 a general random effects
parametric approach is presented, and illustrated using some of the examples
from Chapter 3.

4.2 A GENERAL FIXED EFFECTS PARAMETRIC
APPROACH

4.2.1 A fixed effects meta-analysis model

Suppose that there are r independent studies each comparing the treated group
with the control group. There is a common outcome measure reported for
each patient. The parameter representing the measure of treatment difference is
denoted by θ. This may, for example, be the difference between treatment means
for normally distributed data or the log-odds ratio for binary data. It is assumed
here that θ equals 0 when the two treatments have equal effect. Denote by θ̂i an
estimate of θ from the ith study. The general fixed effects model is given by

θ̂i = θ + εi, (4.1)

for i = 1, . . . , r, where the εi are error terms and are realizations of normally
distributed random variables with expected value 0 and variance denoted by ξ2

i .
It follows that

θ̂i ∼ N(θ, ξ2
i ).

4.2.2 Estimation and hypothesis testing of the treatment
difference

Usually, the estimated variance of θ̂i, var(θ̂i), is treated as if it were the true
variance ξ2

i , that is, no allowance is made for error in the calculated term
var(θ̂i). Let wi be the estimated inverse variance of θ̂i, that is, wi = 1/var(θ̂i). The
distributional assumption that is made is that

θ̂i ∼ N(θ, w−1
i ),

for i = 1, . . . , r. Under the null hypothesis that the treatment difference in each
study is equal to 0,

θ̂iwi ∼ N(0, wi),
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for i = 1, . . . , r, and, as the study estimates are independent,

r∑
i=1

θ̂iwi ∼ N

(
0,

r∑
i=1

wi

)
.

The global null hypothesis that the treatment difference in all studies is equal to 0
is tested by comparing the statistic

U =
(∑r

i=1 θ̂iwi

)2

∑r
i=1 wi

with the chi-squared distribution with one degree of freedom. Assuming that
there is a common treatment difference in all studies,

r∑
i=1

θ̂iwi ∼ N

(
θ

r∑
i=1

wi,

r∑
i=1

wi

)

and the overall fixed effect θ can be estimated by θ̂, where

θ̂ =
∑r

i=1 θ̂iwi∑r
i=1 wi

.

If wi were the true inverse variance of θ̂i, rather than being an estimate, then θ̂

would be the maximum likelihood estimate of θ. The standard error of θ̂ is given by

se(θ̂) =
√

1∑r
i=1 wi

,

and an approximate 95% confidence interval (CI) for θ is given by

θ̂ ± 1.96

√
1∑r

i=1 wi
.

The calculations require an estimate of the treatment difference and its variance
from each study. Usually a trial report will quote the standard error, and then wi

can be calculated as 1/{se(θ̂i)}2. If using efficient score and Fisher’s information
statistics, θ̂i = Zi/Vi. For this choice of θ̂i it follows that wi = Vi. Also θ̂iwi = Zi and
θ̂2

i wi = Z2
i /Vi. Thus

θ̂ =
∑r

i=1 Zi∑r
i=1 Vi
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and

U =
(∑r

i=1 Zi
)2∑r

i=1 Vi
.

The fixed effects approach is sometimes referred to as an ‘assumption-free’
approach (see, for example, Early Breast Cancer Trialists’ Collaborative Group,
1990) because it is argued that the fixed effects estimate does not rely on the
assumption of a common treatment difference parameter across all studies.
Suppose that the assumption of a common treatment difference in all studies is
relaxed and that the distributional assumption for the individual study estimates
becomes

θ̂i ∼ N(θi, w−1
i ),

where θi is the treatment difference parameter in study i. The overall fixed effect
estimate θ̂ can now be viewed as an estimate of

∑r
i=1 θiwi∑r

i=1 wi
,

the weighted mean of the study treatment difference parameters. Whilst this is
an acceptable interpretation of θ̂, it would not appear to go far enough. Once
variation between studies is conceded it would seem natural to investigate the
amount of heterogeneity and to allow for it when making inferences about the
difference between the two treatments.

4.2.3 Testing for heterogeneity across studies

To test for heterogeneity in the treatment difference parameter across the studies,
a large-sample test is used. This is based on the statistic

Q =
r∑

i=1

wi(θ̂i − θ̂)2,

which is a weighted sum of squares of the deviations of individual study estimates
from the overall estimate (Cochran, 1954). When treatment difference parameters
are homogeneous, Q follows a chi-squared distribution with r − 1 degrees of
freedom. An easier and equivalent formula for calculation is given by

Q =
r∑

i=1

θ̂2
i wi − U.
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When using efficient score and Fisher’s information statistics, Q can be written as

Q =
r∑

i=1

Vi

(
Zi

Vi
−

∑r
i=1 Zi∑r
i=1 Vi

)2

=
r∑

i=1

(
Z2

i

Vi

)
−

(∑r
i=1 Zi

)2∑r
i=1 Vi

.

4.2.4 Obtaining the statistics via weighted least-squares
regression

The test statistics U and Q and the estimate θ̂ and its standard error can
be obtained by performing a weighted least-squares regression, in which the
observed responses (y) are the study estimates of treatment difference, θ̂i, and
there are no explanatory variables, only a constant term. The weights (w) are
the values wi. Further details about the method of weighted least squares can be
found in Section A.3 of the Appendix. This method is available in many statistical
packages, for example PROC GLM in SAS. Within PROC GLM the following
statements can be used:

MODEL y = / inverse;
WEIGHT w;

There are no explanatory variables on the right-hand side of the MODEL statement,
and in the SAS output the value for θ̂ appears as the estimate for the ‘intercept’
parameter. The option ‘inverse’ in the MODEL statement requests the matrix
(X′WX)−1 to be printed, where X is the matrix of explanatory variables which
in this case is a vector of length r with components equal to 1, and W is a r × r
diagonal matrix with the ith diagonal element equal to wi. In this case (X′WX)−1

consists of one element, which is associated with the ‘intercept’ parameter and
equal to

(∑r
i=1 wi

)−1
, the variance of θ̂. It should be noted that the standard

error and test statistics displayed for the intercept parameter are incorrect for
the required model, because they assume that var(εi) = σ2/wi, where σ2 is to be
estimated from the data, instead of equal to 1. This will also be the case for other
statistical packages.

The U statistic will appear as the model sum of squares and the Q statistic as the
error sum of squares in the analysis of variance table. Again, the test statistics in
this table are incorrect for the required model.

4.2.5 Example: Stroke in hypertensive patients

Consider the stroke example described in Section 3.2.1. From Table 3.1 it can be
seen that two of the studies (1 and 12) have no occurrence of stroke in either
treatment group and one study (3) has no occurrence of stroke in the treated
group. These three studies are omitted from the meta-analyses presented in this
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chapter because for some of the estimation methods described in Section 3.2.2 a
study estimate of the treatment difference cannot be calculated. This issue will be
addressed in Section 9.2.

Table 4.1 shows the study estimates of the log-odds ratio of a stroke on
antihypertensive treatment relative to control treatment (placebo or ‘usual care’).
Calculations in the table are based on formulae (3.1) and (3.2), the unconditional
ML approach. A negative estimate indicates that antihypertensive treatment has
a beneficial effect in preventing strokes. All of the individual study estimates, with
the exception of study 11, are negative. Six of the studies show a statistically
significant benefit of the treatment; the other seven are equivocal. A CI plot is
presented in Figure 4.1.

Table 4.2 shows the results of the fixed effects meta-analysis based on the
study estimates from Table 4.1. The Q statistic is not statistically significant
(p = 0.65), indicating that there is no strong evidence of heterogeneity amongst
the studies. The overall estimate of treatment difference shows a beneficial effect
of antihypertensive treatment (θ̂ = −0.535), and the U statistic is statistically
significant (p < 0.001), providing strong evidence of an effect.

In Section 3.2.2, four approaches to the estimation of the individual study
log-odds ratios were presented. The results of a fixed effects meta-analysis based
on each approach are presented in Table 4.3 for comparison. It can be seen that
there is good agreement between all of the approaches. The performance of a
meta-analysis on trials which were not originally planned with that in mind
is not going to be an exact science. It is likely that the decision about which
method of estimation to use will be relatively unimportant compared with the
decision about which studies to include in the meta-analysis. However, there
are a few points to note. First, the study estimates based on the efficient score

Table 4.1 Study estimates of the log-odds ratio of a stroke on antihyper-
tensive treatment relative to control treatment, based on the unconditional
maximum likelihood approach (formulae (3.1) and (3.2))

Study θ̂i se(θ̂i) 95% CI

2 HDFP (Stratum I) −0.402 0.170 (−0.735, −0.070)
4 ANBPS −0.540 0.352 (−1.229, 0.149)
5 MRC −0.608 0.161 (−0.925, −0.292)
6 VAII −1.426 0.511 (−2.428, −0.424)
7 USPHS −1.802 1.085 (−3.929, 0.324)
8 HDFP (Stratum II) −0.420 0.264 (−0.938, 0.098)
9 HSCSG −0.319 0.232 (−0.773, 0.135)

10 VAI −1.209 1.168 (−3.499, 1.081)
11 WOLFF 0.646 1.244 (−1.793, 3.084)
13 Carter −1.110 0.459 (−2.008, −0.211)
14 HDFP (Stratum III) −0.678 0.298 (−1.262, −0.093)
15 EWPHE −0.427 0.239 (−0.896, 0.043)
16 Coope −0.602 0.284 (−1.158, −0.046)
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Study   2
Study   4
Study   5
Study   6
Study   7
Study   8
Study   9
Study 10
Study 11
Study 13
Study 14
Study 15
Study 16

Fixed

Random

−5 −4 −3 −2 −1 0

Log-odds ratio

1 2 3 4 5

Figure 4.1 The log-odds ratio of a stroke on antihypertensive treatment relative to
control. Individual study estimates and overall fixed and random effects estimates are
presented, with 95% CIs. Individual study calculations are based on formulae (3.1) and
(3.2). The method of moments estimate of τ2 is used.

and Fisher’s information statistics are reasonably good approximations to the ML
estimates when the values are small, that is, between −1 and 1. For more extreme
values, the approximation is less good (Greenland and Salvan, 1990). Typically,
the estimates based on the efficient score and Fisher’s information statistics are
underestimates (closer to 0), as are the associated standard errors.

Consider now the parameterization of the treatment difference in terms of
the probability difference. In the stroke example, this could be presented as
the difference in the risk of a stroke between patients on antihypertensive
treatment and those on control. A negative value indicates a beneficial effect
of the treatment. Table 4.4 shows the study estimates for this risk differ-
ence, and Figure 4.2 the corresponding CI plot. Calculations in the table are
based on (3.7) and (3.8), the unconditional ML approach. As for the log-odds
ratio estimates, a negative estimate indicates that antihypertensive treatment
has a beneficial effect in preventing strokes. All estimates, with the excep-
tion of study 11, are negative, and the same six studies show a statistically
significant benefit of the treatment as was the case with the log-odds ratio
parameterization. However, the CI plots for the two parameterizations look quite
different. The log-odds ratio estimates in Figure 4.1 appear to be reasonably
homogeneous, whereas the probability difference estimates indicate some het-
erogeneity. In particular, study 13 shows a much larger effect than the other
studies.
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Table 4.4 Study estimates of the difference in the probability of a stroke between
antihypertensive treatment and control treatment, based on the unconditional
maximum likelihood approach (formulae (3.7) and (3.8))

Study θ̂i se(θ̂i) 95% CI

2 HDFP (Stratum I) −0.0073 0.0031 (−0.0133, −0.0013)
4 ANBPS −0.0053 0.0034 (−0.0121, 0.0014)
5 MRC −0.0057 0.0015 (−0.0086, −0.0028)
6 VAII −0.0762 0.0248 (−0.1249, −0.0275)
7 USPHS −0.0254 0.0133 (−0.0516, 0.0007)
8 HDFP (Stratum II) −0.0120 0.0075 (−0.0268, 0.0028)
9 HSCSG −0.0529 0.0384 (−0.1281, 0.0223)

10 VAI −0.0329 0.0305 (−0.0928, 0.0270)
11 WOLFF 0.0206 0.0387 (−0.0552, 0.0965)
13 Carter −0.2334 0.0919 (−0.4135, −0.0533)
14 HDFP (Stratum III) −0.0306 0.0132 (−0.0565, −0.0047)
15 EWPHE −0.0363 0.0202 (−0.0758, 0.0033)
16 Coope −0.0361 0.0165 (−0.0686, −0.0037)

Fixed

Random

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

Probability difference

0.1 0.2 0.3 0.4 0.5

Study   2
Study   4
Study   5
Study   6
Study   7
Study   8
Study   9
Study 10
Study 11

Study 14
Study 15
Study 16

Study 13

Figure 4.2 The difference in the probability of a stroke between antihypertensive treat-
ment and control. Individual study estimates and overall fixed and random effects estimates
are presented, with 95% CIs. Individual study calculations are based on formulae (3.7) and
(3.8). The method of moments estimate of τ2 is used.

Table 4.5 shows the results of the fixed effects meta-analysis based on the
study estimates from Table 4.4. Compared with Table 4.2, the study estimates, θ̂i,
and weights, wi, are of completely different orders of magnitude, because of the
change in the parameterization of the treatment difference. It can also be seen that
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the weight of one study relative to another changes from one parameterization
to the other. For example, study 9 has a much larger weight than study 11
for the log-odds ratio parameterization, but they have almost the same weight
for the probability difference parameterization. The weight for the log-odds ratio
parameterization calculated from (3.2) will be small if the number of successes
or failures in either treatment group is close to 0. For a given sample size, the
closer the proportion of successes in each treatment group is to 0.5 the higher the
weight. The reverse is true for the weight calculated from (3.8) for the probability
difference parameterization. In fact, if there are either no successes or no failures
in both treatment groups the weight is equal to infinity. This means that small
studies will be given a large weight when they have no or very few successes
(failures).

For the probability difference parameterization, the Q statistic is highly sig-
nificant (p = 0.005), indicating that there is strong evidence of heterogeneity
amongst the studies. It can be seen from Table 3.1 that amongst these 13 studies
the percentage of patients in the control group who suffered a stroke varied
considerably (from 1.3% to 43.8%), and the absolute risk difference has a positive
relationship with risk in the control group. The overall estimate of treatment
difference shows a beneficial effect of antihypertensive treatment (θ̂ = −0.0070),
and the U statistic is significant (p < 0.001). However, because of the evident
heterogeneity of the study estimates, it would be unwise to make inferences from
such results. The log-odds ratio parameterization seems more reasonable for this
data set.

The third parameterization of the treatment difference considered in
Section 3.2.2 was the log-relative risk. In the stroke example, this would be
the log-relative risk of a stroke on antihypertensive treatment relative to the
control. A negative value indicates a beneficial effect of the treatment. Table 4.6
shows the study estimates for the log-relative risk. Calculations in the table are
based on (3.9) and (3.10), the unconditional ML approach. Comparing Tables 4.1
and 4.6, it can be seen that for many of the studies the estimate of the log-relative
risk is similar to the estimate of the log-odds ratio. This is generally the case when
the event of interest, in this case a stroke, is an infrequent occurrence – that is,
when (1 − pC)/(1 − pT) is close to 1. However, when this is not the case there
can be substantial differences; see, for example, studies 9 and 13. It is important,
therefore, to be clear about which parameterization is being used. There can be
a problem when study estimates are extracted from published papers, as an odds
ratio is sometimes referred to as a relative risk.

The weight for the log-relative risk parameterization calculated from (3.10)
will be small if the number of successes in either treatment group is close to 0,
but will be large if the number of failures in both treatment groups is close to 0. If
there are no failures in both treatment groups the weight is equal to infinity. This
means that small studies will be given a large weight when they have no or very
few failures. When the event of interest occurs infrequently, the weights will be
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Table 4.6 Study estimates of the log-relative risk of a stroke on anti-
hypertensive treatment compared with control treatment, based on the
unconditional maximum likelihood approach (formulae (3.9) and (3.10))

Study θ̂i se(θ̂i) 95% CI

2 HDFP (Stratum I) −0.395 0.167 (−0.722, −0.068)
4 ANBPS −0.535 0.348 (−1.217, 0.148)
5 MRC −0.602 0.160 (−0.916, −0.289)
6 VAII −1.344 0.489 (−2.303, −0.385)
7 USPHS −1.776 1.075 (−3.884, 0.331)
8 HDFP (Stratum II) −0.408 0.257 (−0.910, 0.095)
9 HSCSG −0.252 0.183 (−0.611, 0.107)

10 VAI −1.175 1.141 (−3.412, 1.062)
11 WOLFF 0.624 1.206 (−1.739, 2.988)
13 Carter −0.763 0.326 (−1.402, −0.123)
14 HDFP (Stratum III) −0.645 0.285 (−1.204, −0.087)
15 EWPHE −0.386 0.218 (−0.813, 0.040)
16 Coope −0.564 0.267 (−1.086, −0.041)

similar to those for the log-odds ratio parameterization. However, as the rate of
occurrence increases the difference between the two weights becomes larger.

Table 4.7 shows the results of the fixed effects meta-analysis based on the study
estimates from Table 4.6. They are very similar to those in Table 4.2. The Q
statistic is not significant (p = 0.65), indicating that there is no strong evidence
of heterogeneity amongst the studies. The overall estimate of treatment difference
shows a beneficial effect of antihypertensive treatment (θ̂ = −0.494), and the U
statistic is significant (p < 0.001), providing strong evidence of an effect.

If it were decided to model the probability of not having a stroke instead of the
probability of having a stroke, then the parameter for the meta-analysis would be
the log-relative ‘risk’ of not having a stroke on antihypertensive treatment relative
to the control. In addition to the changes to the study estimates, there would be
substantial changes to the weights. For example, the weight for study 9 would
change from 29.74 to 417.86, and the weight for study 11 would change from
0.69 to 619.46. The test for heterogeneity now becomes statistically significant
(Q = 27.51, 12 df, p = 0.007). In general, the results of the meta-analysis based
on the probability of not having the event will be different from those based
on the probability of having the event. This is not the case for the other two
parameterizations discussed.

4.2.6 Example: Mortality following myocardial infarction

For the MDPIT study described in Section 3.3.1, interest lies in estimating the
log-hazard ratio for mortality on diltiazem relative to placebo. Table 4.8 shows
the estimates from each region, and Figure 4.3 the corresponding CI plot. These
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are ML estimates based on the individual survival times recorded to the nearest
day. A negative estimate indicates that diltiazem reduces mortality relative to
placebo, and a positive estimate that it increases mortality. There is no statistically
significant difference between the treatments in any of the regions with the
exception of the Mideast, in which diltiazem is shown to reduce mortality
significantly.

Table 4.9 shows the results of the fixed effects meta-analysis based on the study
estimates from Table 4.8. The Q statistic is not significant (p = 0.22), indicating
that there is no strong evidence of heterogeneity amongst the different regions.

Table 4.8 Estimates of the log-hazard ratio for mortality in each region
of the MDPIT study based on individual survival times recorded to the
nearest day and using a maximum likelihood approach

Region θ̂i se(θ̂i) 95% CI

New York City (US) 0.282 0.265 (−0.238, 0.802)
Northeast (US) 0.145 0.218 (−0.282, 0.571)
Mideast (US) −1.244 0.572 (−2.365, −0.123)
Midwest (US) 0.258 0.307 (−0.345, 0.860)
Southwest (US) −0.122 0.282 (−0.674, 0.429)
Ontario (Canada) −0.293 0.291 (−0.864, 0.278)
Quebec (Canada) −0.071 0.359 (−0.776, 0.634)

NY City
Northeast

Mideast
Midwest

Southwest
Ontario
Quebec

Fixed

Random

−3 −2 −1 0
Log-hazard ratio

1 2 3

Figure 4.3 The log-hazard ratio for mortality on diltiazem relative to placebo. Individual
region estimates and overall fixed and random effects estimates are presented, with 95%
CIs. Individual region calculations are based on maximum likelihood estimates from
individual survival times recorded to the nearest day. The method of moments estimate of
τ2 is used.
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There is no evidence of a treatment difference (θ̂ = 0.005), in fact there seems to
be quite strong evidence that diltiazem has no effect on mortality. The estimate
from the Mideast has the smallest weight as it is based on the smallest number of
deaths.

In Section 3.3.2, four approaches to the estimation of the treatment difference
in the individual regions were described. The results of a fixed effects meta-analysis
based on each approach are presented in Table 4.10 for comparison. In the first
two approaches the study estimates are calculated from individual survival times
recorded to the nearest day, and the treatment difference is the log-hazard ratio
for diltiazem relative to placebo. In the last two the survival times are grouped into
yearly intervals, and the treatment difference is the log-odds ratio for an earlier
death on diltiazem relative to placebo. As was the case for the log-odds ratios for
binary data, the estimates based on the efficient score and Fisher’s information
statistics are reasonably good approximations to the ML estimates, although they
tend to be smaller and have smaller standard errors. There is a larger difference
between the estimates based on the aggregated survival times and those based
on the survival times recorded to the nearest day. The way in which the survival
times are aggregated and the way in which censored observations are treated will
affect the estimates. Nevertheless, the overall conclusion from all four approaches
is very similar.

4.2.7 Example: Ulcer recurrence

The ulcer recurrence study was described in detail in Section 3.4.1, and the
data displayed in Table 3.9. From that table it can be seen that there are very
few patients in Norway, and none of these have suffered a relapse. Because an
estimate of the treatment difference using the methods presented in Section 3.4.2
cannot be calculated in this situation, the data from Norway have been pooled
with the data from Holland for the meta-analyses presented in this chap-
ter. The issue of pooling data across subsets of studies will be addressed in
Section 9.2.

Table 4.11 shows the study estimates of the log-hazard ratio of ulcer recurrence
on treatment 2 relative to treatment 1, and Figure 4.4 the corresponding CI plot.
Calculations in the table are based on ML estimation. A negative estimate indicates
that treatment 2 has a more beneficial effect in preventing ulcer recurrence than
treatment 1. In Belgium treatment 2 seems to be worse than treatment 1, but in
the other three countries treatment 2 seems to be better. However, there is no
statistically significant difference between treatments in any country.

Table 4.12 shows the results of the fixed effects meta-analysis based on the
country estimates from Table 4.11. The Q statistic is not significant (p = 0.72),
indicating that there is no strong evidence of heterogeneity amongst the studies.
The overall estimate of treatment difference indicates a beneficial effect of treatment
2 (θ̂ = −0.278), but this is not statistically significant (p = 0.25).
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Table 4.11 Estimates of the log-hazard ratio for ulcer recurrence on
treatment 2 relative to treatment 1 from each country, based on a
maximum likelihood approach

Country θ̂i se(θ̂i) 95% CI

Austria −0.290 0.347 (−0.970, 0.389)
Belgium 0.195 0.628 (−1.035, 1.426)
France −0.129 0.607 (−1.319, 1.062)
Holland and Norway −0.748 0.558 (−1.842, 0.346)

Austria

Belgium

France

Holl & Nor

Fixed

Random

−3 −2 −1 0

Log-hazard ratio

1 2 3

Figure 4.4 The log-hazard ratio of ulcer recurrence on treatment 2 relative to treatment
1. Individual country estimates and overall fixed and random effects estimates are pre-
sented, with 95% CIs. Individual country calculations are based on maximum likelihood
estimation. The method of moments estimate of τ2 is used.

Comparison of the fixed effects meta-analyses based on the two methods of
estimation described in Section 3.4.2 indicates close agreement (Table 4.13). As
found with the other example data sets, the individual country estimates based
on the efficient score and Fisher’s information statistics are underestimates, as
are the associated standard errors. However, this has not led to a smaller overall
estimate of treatment difference than that based on ML estimation.

Revisiting the MDPIT study described in Section 3.3.1, it can be seen that
the survival times when grouped into yearly intervals can be considered as
interval-censored survival data. Table 4.14 shows the results of two fixed effects
meta-analyses of the log-hazard ratio as calculated using the interval-censored
survival approach, one based on ML estimates and the other on the efficient score
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Table 4.13 Fixed effects meta-analysis of the log-hazard ratio for
ulcer recurrence on treatment 2 relative to treatment 1: comparison
of two methods of calculating country estimates. Estimates with
standard error in square brackets

Country Estimation method

ML Z and V:
(3.13), (3.14)

Austria −0.290 [0.347] −0.289 [0.344]
Belgium 0.195 [0.628] 0.193 [0.617]
France −0.129 [0.607] −0.128 [0.605]
Holland and Norway −0.748 [0.558] −0.736 [0.537]

U (1 df) 1.30; p = 0.25 1.36; p = 0.24
Q (3 df) 1.34; p = 0.72 1.37; p = 0.71
θ̂ [se(θ̂)] −0.278 [0.244] −0.280 [0.241]
95% CI (−0.757, 0.200) (−0.752, 0.191)

Table 4.14 Fixed effects meta-analysis of the log-hazard ratio for
mortality on diltiazem relative to placebo for the MDPIT study, based on
an interval-censored survival approach: comparison of two methods of
calculating region estimates. Estimates with standard error in square
brackets

Region Estimation method

ML Z and V:
(3.13), (3.14)

New York City (US) 0.297 [0.265] 0.295 [0.263]
Northeast (US) 0.158 [0.218] 0.158 [0.217]
Mideast (US) −1.322 [0.573] −1.198 [0.486]
Midwest (US) 0.286 [0.307] 0.285 [0.305]
Southwest (US) −0.126 [0.282] −0.125 [0.280]
Ontario (Canada) −0.217 [0.292] −0.216 [0.290]
Quebec (Canada) −0.021 [0.378] −0.021 [0.378]

U (1 df) 0.07; p = 0.80 0.02; p = 0.89
Q (6 df) 8.64; p = 0.19 9.47; p = 0.15
θ̂ [se(θ̂)] 0.029 [0.112] 0.016 [0.110]
95% CI (−0.190, 0.247) (−0.200, 0.232)
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and Fisher’s information statistics. The results are in good agreement with those
in the last two columns of Table 4.10.

4.2.8 Example: Global impression of change in Alzheimer’s
disease

Consider the example of global impression of change in Alzheimer’s disease
described in Section 3.5.1, for the situation in which the chosen parameterization
of the treatment difference is the log-odds ratio from the proportional odds model.
Table 4.15 shows the estimates of the log-odds ratio for being in a better category
on tacrine than on placebo, and the corresponding CI plot is shown in Figure 4.5.
These are ML estimates, for which a positive value indicates that tacrine is better
than placebo. All five studies indicate a beneficial effect of tacrine, but only study
4 demonstrates a statistically significant effect, the estimate from this study being
considerably larger than the other four estimates.

Table 4.16 shows the results of the fixed effects meta-analysis based on the study
estimates from Table 4.15. The Q statistic is not significant (p = 0.30), indicating
that there is no strong evidence of heterogeneity amongst the studies. There is
evidence of a treatment difference. The overall estimate shows a beneficial effect
of tacrine (θ̂ = 0.503), and the U statistic is significant (p < 0.001). Comparison
with the results based on the efficient score and Fisher’s information (Table 4.17)
shows good agreement.

The second parameterization of the treatment difference considered in Sec-
tion 3.5.2 was the log-odds ratio from the continuation ratio model. This
parameterization is the same as the log-odds ratio from the discrete survival
model, but in the CGIC example it is concerned with a hazard of a desirable
outcome. A positive value for the log-odds ratio indicates a beneficial effect of
tacrine. Table 4.18 shows the conditional ML estimates of this log-odds ratio for
the five studies.

As expected, the estimates from the continuation ratio model (Table 4.18)
are of a similar magnitude to the estimates from the proportional odds model

Table 4.15 Study estimates of the log-odds ratio from
the proportional odds model for the tacrine studies,
based on the maximum likelihood approach

Study θ̂i se(θ̂i) 95% CI

1 0.284 0.261 (−0.228, 0.797)
2 0.224 0.242 (−0.251, 0.699)
3 0.360 0.332 (−0.290, 1.011)
4 0.785 0.174 ( 0.444, 1.126)
5 0.492 0.421 (−0.334, 1.318)
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Figure 4.5 The log-odds ratio for being in a better CGIC category on tacrine than on
placebo. Individual study estimates and overall fixed and random effects estimates are
presented, with 95% CIs. Individual study calculations are based on maximum likelihood
estimation for the proportional odds model. The method of moments estimate of τ2 is used.

Table 4.16 Fixed effects meta-analysis of the log-odds ratio from the proportional odds
model for the tacrine studies, based on the study estimates from Table 4.15

Study Treatment Category θ̂i wi θ̂iwi θ̂2
i wi

C1 C2 C3 C4 C5

1 Tacrine 4 23 45 22 2 0.284 14.63 4.16 1.18
Placebo 2 22 54 29 3

2 Tacrine 14 119 180 54 6 0.224 17.02 3.81 0.85
Placebo 1 22 35 11 3

3 Tacrine 13 20 24 10 1 0.360 9.08 3.27 1.18
Placebo 7 16 17 10 3

4 Tacrine 21 106 175 62 17 0.785 33.03 25.92 20.34
Placebo 8 24 73 52 13

5 Tacrine 3 14 19 3 0 0.492 5.63 2.77 1.36
Placebo 2 13 18 7 1

Total 79.41 39.94 24.92

U = (39.94)2/79.41 = 20.09; (1 df) p < 0.001
Q = 24.92 − 20.09 = 4.83; (4 df) p = 0.30
θ̂ = 39.94/79.41 = 0.503; se(θ̂) = 1/

√
79.41 = 0.112

95% CI = (0.503 ± 1.96/
√

79.41) = (0.283, 0.723)
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Table 4.17 Fixed effects meta-analysis of the log-odds ratio
from the proportional odds model for the tacrine studies:
comparison of two methods of calculating study estimates.
Estimates with standard error in square brackets

Study Estimation method

ML Z and V:
(3.15), (3.16)

1 0.284 [0.261] 0.283 [0.261]
2 0.224 [0.242] 0.224 [0.242]
3 0.360 [0.332] 0.358 [0.331]
4 0.785 [0.174] 0.778 [0.172]
5 0.492 [0.421] 0.487 [0.420]

U (1 df) 20.09; p < 0.001 20.30; p < 0.001
Q (4 df) 4.83; p = 0.30 4.80; p = 0.31
θ̂ [se(θ̂)] 0.503 [0.112] 0.502 [0.112]
95% CI (0.283, 0.723) (0.284, 0.721)

Table 4.18 Study estimates of the log-odds ratio from
the continuation ratio model for the tacrine studies,
based on the conditional maximum likelihood approach

Study θ̂i se(θ̂i) 95% CI

1 0.227 0.223 (−0.210, 0.664)
2 0.228 0.205 (−0.174, 0.631)
3 0.339 0.264 (−0.179, 0.857)
4 0.600 0.142 ( 0.321, 0.879)
5 0.502 0.362 (−0.208, 1.211)

(Table 4.15). The results of the fixed effects meta-analysis (Table 4.19) are similar
in interpretation to those in Table 4.16.

Comparison of the four approaches to the estimation of the log-odds ratio from
the continuation ratio model shows very similar results in all cases (Table 4.20).

For completeness, the fixed effects meta-analyses for the MDPIT study described
in Section 3.3.1, in which survival times are grouped into yearly intervals, are
shown for the unconditional likelihood approach to the continuation ratio model.
The aggregated survival times correspond to the ordered categories, and it is the
hazard of dying which is being modelled. Table 4.21 shows the results of a fixed
effects meta-analysis based on ML estimates and on the efficient score and Fisher’s
information statistics from this approach. The results are in good agreement with
those in the last two columns of Table 4.10.
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Table 4.19 Fixed effects meta-analysis of the log-odds ratio from the continuation ratio
model for the tacrine studies, based on the study estimates from Table 4.18

Study Treatment Category θ̂i wi θ̂iwi θ̂2
i wi

C1 C2 C3 C4 C5

1 Tacrine 4 23 45 22 2 0.227 20.09 4.56 1.03
Placebo 2 22 54 29 3

2 Tacrine 14 119 180 54 6 0.228 23.69 5.41 1.24
Placebo 1 22 35 11 3

3 Tacrine 13 20 24 10 1 0.339 14.30 4.85 1.64
Placebo 7 16 17 10 3

4 Tacrine 21 106 175 62 17 0.600 49.35 29.62 17.78
Placebo 8 24 73 52 13

5 Tacrine 3 14 19 3 0 0.502 7.63 3.83 1.92
Placebo 2 13 18 7 1

Total 115.07 48.27 23.62

U = (48.27)2/115.07 = 20.25; (1 df) p < 0.001
Q = 23.62 − 20.25 = 3.37; (4 df) p = 0.50
θ̂ = 48.27/115.07 = 0.419; se(θ̂) = 1/

√
115.07 = 0.093

95% CI = (0.419 ± 1.96/
√

115.07) = (0.237, 0.602)

Table 4.20 Fixed effects meta-analysis of the log-odds ratio from the continuation ratio
model for the tacrine studies: comparison of four methods of calculating study estimates.
Estimates with standard error in square brackets

Study Estimation method

Conditional Conditional Unconditional Unconditional
ML Z and V: ML Z and V:

(3.18), (3.19) (3.20), (3.21)

1 0.227 [0.223] 0.227 [0.223] 0.228 [0.224] 0.228 [0.223]
2 0.228 [0.205] 0.227 [0.204] 0.229 [0.206] 0.228 [0.204]
3 0.339 [0.264] 0.336 [0.261] 0.343 [0.266] 0.340 [0.263]
4 0.600 [0.142] 0.580 [0.137] 0.602 [0.143] 0.581 [0.137]
5 0.502 [0.362] 0.495 [0.356] 0.510 [0.365] 0.504 [0.359]

U (1 df) 20.25; p < 0.001 20.71; p < 0.001 20.37; p < 0.001 20.82; p < 0.001
Q (4 df) 3.37; p = 0.50 3.17; p = 0.53 3.36; p = 0.50 3.17; p = 0.53
θ̂ [se(θ̂)] 0.419 [0.093] 0.415 [0.091] 0.422 [0.093] 0.417 [0.091]
95% CI (0.237, 0.602) (0.236, 0.593) (0.239, 0.605) (0.238, 0.596)
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Table 4.21 Fixed effects meta-analysis of the log-odds ratio for ear-
lier death on diltiazem relative to placebo for the MDPIT study, based
on the continuation ratio model: comparison of two methods of cal-
culating region estimates from an unconditional likelihood approach.
Estimates with standard error in square brackets

Region Estimation method

ML Z and V:
(3.20), (3.21)

New York City (US) 0.306 [0.274] 0.304 [0.271]
Northeast (US) 0.164 [0.226] 0.164 [0.225]
Mideast (US) −1.374 [0.595] −1.251 [0.510]
Midwest (US) 0.300 [0.321] 0.299 [0.319]
Southwest (US) −0.132 [0.291] −0.132 [0.290]
Ontario (Canada) −0.232 [0.313] −0.231 [0.311]
Quebec (Canada) −0.021 [0.390] −0.021 [0.390]

U (1 df) 0.07; p = 0.79 0.03; p = 0.87
Q (6 df) 8.67; p = 0.19 9.41; p = 0.15
θ̂ [se(θ̂)] 0.031 [0.116] 0.019 [0.115]
95% CI (−0.197, 0.258) (−0.207, 0.244)

4.2.9 Example: Recovery time after anaesthesia

Table 4.22 shows the individual centre estimates of the absolute mean difference
(treatment A − treatment B) in recovery time (log-transformed) from the anaes-
thetic study described in Section 3.6.1. For each centre, the usual pooled sample
variance, s2

i , is calculated from (3.25). The standard error and 95% CI for the
estimate of treatment difference are based on si. The CI plot is shown in Figure 4.6
In centres 1–8 the recovery time is longer on anaesthetic A than on anaesthetic
B, significantly so in six of the centres. However, in centre 9 the effect is reversed,
although the treatment difference does not reach statistical significance.

Consider the first parameterization of the treatment difference described in
Section 3.6.2, that is the absolute mean difference. The fixed effects meta-analysis
based on the estimates of absolute mean difference could proceed in one of two
ways. The first depends on the assumption of a common within-treatment group
variance across all centres, σ2. This common variance is estimated by s2

p , where

s2
p =

∑r
i=1 (ni − 2)s2

i∑r
i=1 (ni − 2)

,

and ni is the total number of patients from centre i. For the recovery time example
s2

p = 0.506, with corresponding standard deviation 0.711. Table 4.23 presents
the fixed effects meta-analysis results based on (3.22) and (3.23), in which σ2
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Table 4.22 Estimates of the absolute mean difference (treatment A − treatment B) in
log-recovery time for each centre in the anaesthetic study (formulae (3.22) and (3.23))

Centre Pooled sample
variance (s2

i )
Pooled standard

deviation (si)
θ̂i se(θ̂i) 95% CI

1 0.621 0.788 0.864 0.528 (−0.172, 1.900)
2 0.453 0.673 0.646 0.301 ( 0.056, 1.235)
3 0.676 0.822 0.272 0.282 (−0.281, 0.825)
4 0.670 0.819 0.916 0.398 ( 0.136, 1.696)
5 0.318 0.564 0.867 0.278 ( 0.322, 1.412)
6 0.232 0.482 0.819 0.210 ( 0.407, 1.232)
7 0.341 0.584 0.809 0.250 ( 0.319, 1.299)
8 0.469 0.685 1.212 0.459 ( 0.312, 2.113)
9 0.627 0.792 −0.273 0.279 (−0.820, 0.274)

Centre 1
Centre 2
Centre 3
Centre 4
Centre 5
Centre 6
Centre 7
Centre 8
Centre 9

Fixed

Random

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

Absolute mean difference

0.5 1.0 1.5 2.0 2.5

Figure 4.6 Difference in mean log-recovery time between treatment A and treatment B.
Individual centre estimates and overall fixed and random effects estimates are presented,
with 95% CIs. The calculations for each centre are based on formulae (3.22) and (3.23),
with the pooled sample variance from that centre. The overall fixed and random effects
calculations use the pooled sample variance from all centres. The method of moments
estimate of τ2 is used.

is replaced by s2
p . The Q statistic is significant (p = 0.02), indicating evidence of

heterogeneity amongst the centres. Although the overall estimate of treatment
difference demonstrates a longer recovery time with anaesthetic A (θ̂ = 0.535),
and the U statistic is significant (p < 0.001), centre 9 indicates the reverse effect
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Table 4.23 Fixed effects meta-analysis of the absolute mean difference (treatment A −
treatment B) in log-recovery time, assuming a common variance across all centres

Centre Treatment A Treatment B θ̂i wi θ̂iwi θ̂2
i wi

n Mean n Mean

1 4 1.141 5 0.277 0.864 4.40 3.80 3.28
2 10 2.165 10 1.519 0.646 9.89 6.39 4.12
3 17 1.790 17 1.518 0.272 16.81 4.58 1.25
4 8 2.105 9 1.189 0.916 8.38 7.68 7.03
5 7 1.324 10 0.456 0.867 8.15 7.07 6.13
6 11 2.369 10 1.550 0.819 10.36 8.49 6.95
7 10 1.074 12 0.265 0.809 10.79 8.73 7.06
8 5 2.583 4 1.370 1.212 4.40 5.33 6.46
9 14 1.844 19 2.118 −0.273 15.95 −4.35 1.19

Total 89.12 47.69 43.48

U = (47.69)2/89.12 = 25.52; (1 df) p < 0.001
Q = 43.48 − 25.52 = 17.95; (8 df) p = 0.02
θ̂ = 47.69/89.12 = 0.535; se(θ̂) = 1/

√
89.12 = 0.106

95% CI = (0.535 ± 1.96/
√

89.12) = (0.328, 0.743)

and is the centre with the second highest weight. Further investigation is required,
and this is discussed in detail in Chapter 6.

The second approach to the fixed effects meta-analysis does not make the
assumption of a common within-treatment group variance across all centres.
Instead centre i has its own variance term, σ2

i , which is estimated by s2
i . Table 4.24

provides a comparison of the two sets of calculations. The change in the weights
due to the use of individual centre variance estimates has led to an increase in the
overall fixed effect estimate of treatment difference. However, the Q statistic is still
significant (p = 0.04), and the overall picture is not changed substantially.

The assumption of a common variance parameter across all centres can be
investigated using Bartlett’s test (Bartlett, 1937). The test statistic is given by

1
c

{
(n − 2r) log s2

p −
r∑

i=1

(ni − 2) log s2
i

}
,

where

c = 1 + 1
3(r − 1)

{(
r∑

i=1

1
ni − 2

)
− 1

n − 2r

}
.

When variances are homogeneous, the test statistic follows a chi-squared distri-
bution with r − 1 degrees of freedom. For the anaesthetic study, the test statistic
is equal to 10.21, and compared with the chi-squared distribution on 8 degrees of
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Table 4.24 Fixed effects meta-analysis of the absolute
mean difference (treatment A − treatment B) in log-
recovery time: comparison of two methods. In the first
pair of columns, a common variance parameter across
all centres is estimated by s2

p . In the second pair of
columns a different variance parameter is estimated for
each centre. Estimates with standard error in square
brackets

Centre Absolute mean difference

Common variance Different variances
(s2

p ) (s2
i )

1 0.864 [0.477] 0.864 [0.528]
2 0.646 [0.318] 0.646 [0.301]
3 0.272 [0.244] 0.272 [0.282]
4 0.916 [0.345] 0.916 [0.398]
5 0.867 [0.350] 0.867 [0.278]
6 0.819 [0.311] 0.819 [0.210]
7 0.809 [0.304] 0.809 [0.250]
8 1.212 [0.477] 1.212 [0.459]
9 −0.273 [0.250] −0.273 [0.279]

U (1 df) 25.52; p < 0.001 40.33; p < 0.001
Q (8 df) 17.95; p = 0.02 16.46; p = 0.04
θ̂ [se(θ̂)] 0.535 [0.106] 0.627 [0.099]
95% CI (0.328, 0.743) (0.433, 0.820)

freedom is not significant (p = 0.25). Therefore, there is insufficient evidence to
challenge the assumption of a common variance.

The decision to assume a common variance could be taken if the test does not
provide significant evidence (for example, p > 0.05) of heterogeneity amongst
the individual centre variance estimates. However, strict adherence to a specific
significance level for this test is inadvisable. It suffers from the same problem as the
test for heterogeneity of treatment difference estimates, in that for small sample
sizes large variation may not reach statistical significance, whereas for large
sample sizes small variation may reach statistical significance (see Section 6.2).
Also, Scheffé (1959) notes that Bartlett’s test is extremely sensitive to non-
normality of the data. For the anaesthetic study the ratios of the individual centre
estimates of standard deviation do not vary by more than a factor of 2, and so the
assumption of a common variance is not unreasonable. Under the assumption
of a common variance, the overall pooled estimate is considered to be a better
estimate for use with each centre.

The second parameterization of treatment difference considered in Section 3.6.2
was the standardized mean difference. Table 4.25 shows the individual centre
estimates based on (3.27) and (3.28), and Figure 4.7 the corresponding CI plot.
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Table 4.25 Study estimates of the standardized mean difference (treatment A − treat-
ment B) in log-recovery time, based on formulae (3.27) and (3.28)

Centre θ̂i Pooled standard
deviation (si)

se(θ̂i) 95% CI

1 1.097 0.788 0.671 (−0.218, 2.411)
2 0.959 0.673 0.447 ( 0.083, 1.836)
3 0.331 0.822 0.343 (−0.341, 1.003)
4 1.119 0.819 0.486 ( 0.167, 2.072)
5 1.537 0.564 0.493 ( 0.571, 2.503)
6 1.701 0.482 0.437 ( 0.844, 2.557)
7 1.386 0.584 0.428 ( 0.547, 2.225)
8 1.770 0.685 0.671 ( 0.455, 3.085)
9 −0.345 0.792 0.352 (−1.035, 0.346)

Centre 1
Centre 2
Centre 3
Centre 4
Centre 5
Centre 6
Centre 7
Centre 8
Centre 9

Fixed

Random
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Figure 4.7 The standardized mean difference in log-recovery time between treatment A
and treatment B. Individual centre estimates and overall fixed and random effects estimates
are presented, with 95% CIs. The calculations for each centre are based on formulae
(3.27) and (3.28), with the pooled sample variance from that centre. The overall fixed and
random effects calculations use formulae (3.29) and (3.30), with the individual centre
pooled sample variances. The method of moments estimate of τ2 is used.

For each centre, the usual pooled sample variance, s2
i , is calculated using (3.25).

The estimate of the standardized mean difference for centre i can be seen to be
equal to the estimate of the absolute mean difference for centre i (Table 4.22)
divided by si.
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Table 4.26 shows the results of the fixed effects meta-analysis based on the
Hedges and Olkin approach (formulae (3.29) and (3.30)), in which the estimate
of the standardized mean difference is adjusted to remove the sample bias in the
estimate si. The results are similar to those based on the absolute mean difference,
in that the Q statistic is significant (p = 0.02), indicating evidence of heterogeneity
amongst the centres.

The overall fixed effects estimate of the standardized mean difference is 0.749.
This is on a dimensionless scale and cannot be compared directly with the estimate
of 0.535 from Table 4.23, which has the same units as the observations. It can
be seen that multiplication of 0.749 by the overall pooled estimate of standard
deviation, 0.711, results in a value of 0.533, which is close to the fixed effects
estimate of the absolute difference. The question of how to present results from
the analysis based on the standardized difference is considered in more detail in
Chapter 7.

In Section 3.6.2 three approaches to the estimation of the standardized mean
difference were presented. The results of the fixed effects meta-analysis based on
each approach are presented in Table 4.27. The overall picture from the three
methods is similar. In all cases there is evidence of heterogeneity between the
centres. As expected, the individual centre estimates are smaller for the Hedges
and Olkin method than for the other methods, resulting in a smaller overall fixed
effects estimate.

Table 4.26 Fixed effects meta-analysis of the standardized mean difference (treatment A
− treatment B) for log-recovery time, based on the Hedges and Olkin approach, with σ2

i
estimated by s2

i

Centre Treatment A Treatment B θ̂i wi θ̂iwi θ̂2
i wi

n Mean n Mean

1 4 1.141 5 0.277 0.974 1.99 1.94 1.89
2 10 2.165 10 1.519 0.919 4.52 4.16 3.82
3 17 1.790 17 1.518 0.323 8.39 2.71 0.88
4 8 2.105 9 1.189 1.062 3.71 3.94 4.19
5 7 1.324 10 0.456 1.459 3.27 4.78 6.97
6 11 2.369 10 1.550 1.633 3.93 6.42 10.48
7 10 1.074 12 0.265 1.333 4.47 5.96 7.95
8 5 2.583 4 1.370 1.572 1.70 2.68 4.21
9 14 1.844 19 2.118 −0.336 7.95 −2.67 0.90

Total 39.94 29.91 41.27

U = (29.91)2/39.94 = 22.39; (1 df) p < 0.001
Q = 41.27 − 22.39 = 18.88; (8 df) p = 0.02
θ̂ = 29.91/39.94 = 0.749; se(θ̂) = 1/

√
39.94 = 0.158

95% CI = (0.749 ± 1.96/
√

39.94) = (0.439, 1.059)
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Table 4.27 Fixed effects meta-analysis of the standardized mean difference (treatment A
− treatment B) for log-recovery time: comparison of three approaches. Estimates with
standard error in square brackets

Centre Estimation method

Hedges and Olkin Modified ML: Z and V:
bias correction: (3.27), (3.28) (3.31), (3.32)
(3.29), (3.30)

1 0.974 [0.709] 1.097 [0.671] 1.227 [0.726]
2 0.919 [0.470] 0.959 [0.447] 1.005 [0.472]
3 0.323 [0.345] 0.331 [0.343] 0.341 [0.345]
4 1.062 [0.519] 1.119 [0.486] 1.178 [0.521]
5 1.459 [0.553] 1.537 [0.493] 1.587 [0.550]
6 1.632 [0.504] 1.701 [0.437] 1.714 [0.495]
7 1.333 [0.473] 1.386 [0.428] 1.422 [0.471]
8 1.572 [0.766] 1.770 [0.671] 1.893 [0.774]
9 −0.336 [0.355] −0.345 [0.352] −0.356 [0.355]

U (1 df) 22.39; p < 0.001 33.32; p < 0.001 27.32; p < 0.001
Q (8 df) 18.88; p = 0.02 23.48; p = 0.003 22.60; p = 0.004
θ̂ [se(θ̂)] 0.749 [0.158] 0.860 [0.149] 0.827 [0.158]
95% CI (0.439, 1.059) (0.568, 1.152) (0.517, 1.137)

4.3 A GENERAL RANDOM EFFECTS PARAMETRIC
APPROACH

4.3.1 A random effects meta-analysis model

In a random effects model it is assumed that the treatment difference parameters in
the r studies (θ1, . . . , θr) are a sample of independent observations from N(θ, τ2).
The general random effects model is given by

θ̂i = θ + νi + εi, (4.2)

for i = 1, . . . , r, where the νi are normally distributed random effects with mean 0
and variance τ2. The terms νi and εi are assumed to be independently distributed.
It follows that

θ̂i ∼ N(θ, ξ2
i + τ2).

4.3.2 Estimation and hypothesis testing of the treatment
difference

Usually τ2 is unknown and must be estimated from the data. Therefore, the
distributional assumption that is made is that

θ̂i ∼ N(θ, w−1
i + τ̂2),
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where τ̂2 is an estimate of τ2. By setting

w∗
i = (w−1

i + τ̂2)−1,

it follows that
θ̂i ∼ N(θ, (w∗

i )
−1).

Treating the term (w∗
i )

−1 as if it were the true variance of θ̂i provides the test
statistic

U∗ =
(∑r

i=1 θ̂iw∗
i

)2

∑r
i=1 w∗

i
,

which follows a chi-squared distribution with one degree of freedom under the
null hypothesis of no treatment difference (θ = 0). If (w∗

i )
−1 is the true variance

of θ̂i, then the ML estimate of θ is given by θ̂∗, where

θ̂∗ =
∑r

i=1 θ̂iw∗
i∑r

i=1 w∗
i

.

Now θ̂∗ is asymptotically unbiased for θ, with variance approximately equal to
1/

∑r
i=1 w∗

i . The standard error is given by

se(θ̂∗) =
√

1∑r
i=1 w∗

i
,

and an approximate 95% CI for θ is given by

θ̂∗ ± 1.96

√
1∑r

i=1 w∗
i
.

If τ̂2 is small then the modified weights w∗
i will be close to the original weights

wi. In this case the standard error and CI obtained from the random effects model
will be similar to those from the fixed effects model. Also the overall estimate
of treatment difference from both models will be similar. If τ̂2 is large then
the standard error and CI will be much larger for the random effects model.
The random effects estimate of treatment difference will move closer towards the
arithmetic mean of the individual study estimates. How much this estimate differs
from the fixed effects estimate will depend on the extent to which the studies
with the largest original weights wi are associated with the extreme estimates of
treatment difference.
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4.3.3 Estimation of τ2 using the method of moments

The approach to the estimation of τ2 considered here is that based on the method of
moments. This estimate can be readily calculated without the need for a statistical
software package. Discussion of the approach based on likelihood methods is
considered in Section 4.3.8.

The following considerations provide the method of moments estimate for τ2.
Under the random effects model, the fixed effects estimate of θ,

θ̂ =
∑r

i=1 θ̂iwi∑r
i=1 wi

,

still has mean θ, but its variance is now given by

var(θ̂) =
∑r

i=1 w2
i var(θ̂i)(∑r

i=1 wi
)2 =

∑r
i=1 w2

i (w−1
i + τ2)∑r

i=1 w2
i

= 1∑r
i=1 wi

+ τ2 ∑r
i=1 w2

i(∑r
i=1 wi

)2 .

The statistic Q used for testing heterogeneity is

Q =
r∑

i=1

wi(θ̂i − θ̂)2 =
r∑

i=1

wi(θ̂i − θ)2 −
(

r∑
i=1

wi

)
(θ̂ − θ)2,

so that the expected value of Q, E(Q), is given by

E(Q) =
r∑

i=1

wivar(θ̂i) −
(

r∑
i=1

wi

)
var(θ̂)

=
r∑

i=1

wi(w−1
i + τ2) −

(
r∑

i=1

wi

){
1∑r

i=1 wi
+ τ2 ∑r

i=1 w2
i(∑r

i=1 wi
)2

}

= (r − 1) + τ2

(
r∑

i=1

wi −
∑r

i=1 w2
i∑r

i=1 wi

)
.

This motivates use of the method of moments estimate τ̂2 for τ2, where

τ̂2 = Q − (r − 1)∑r
i=1 wi − ∑r

i=1 w2
i

/∑r
i=1 wi

,

as described by DerSimonian and Laird (1986).
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Because of the possibility of a negative method of moments estimate, in practice
the estimate used is the maximum of the values 0 and τ̂2. This means that
when Q is smaller than its degrees of freedom the method of moments estimate
will be set equal to 0. Examples of this situation can be seen in Tables 4.2
and 4.12.

The test for heterogeneity, using Q, is a test of H0: τ2 = 0. Should τ̂2 � 0,
a fixed effects analysis is more appropriate, because this happens when Q <

E(Q; τ2 = 0) = r − 1. It can be seen that setting τ2 = 0 in the random effects
model leads to the fixed effects model. If τ̂2 > 0 the following approximate result
may be used:

θ̂i ∼ N(θ, w−1
i + τ̂2) ≡ N(θ, (w∗

i )
−1).

4.3.4 Obtaining the statistics via weighted least-squares
regression

In a similar way to that described in Section 4.2.4, the test statistic U∗ and the
estimate θ̂∗ and its standard error can be obtained by performing a weighted
least-squares regression. The only difference is that for the random effects analysis
the weights are the values w∗

i instead of wi.
In some packages, for example PROC GLM, it is possible to store the residuals

from a fitted model and then add them to the original data set. The residuals
from the model presented in Section 4.2.4 are the values θ̂i − θ̂, from which the
statistic Q can be calculated. Therefore, by fitting the model in Section 4.2.4. and
adding the residuals to the original data set, it is possible to calculate the method
of moments estimate of τ2 and the values w∗

i for use in the weighted least-squares
regression needed for the random effects model.

4.3.5 Example: Mortality following myocardial infarction

In this subsection a random effects model is fitted to the log-hazard ratios presented
in Table 4.9. The test for heterogeneity was not statistically significant (p = 0.22).
However, as the Q statistic is larger than its associated degrees of freedom, it is
possible to calculate a method of moments estimate of τ2. The estimated value
was 0.033 (Table 4.28). Comparison of the modified weights w∗

i with the original
weights wi shows a moderate decrease in magnitude. The random effects estimate
θ̂∗ is −0.016, a small change from the fixed effects estimate of 0.005, with an
increase in the standard error from 0.111 to 0.134. Although the width of the
CI based on the random effects model has increased relative to that based on
the fixed effects model, the overall conclusion has not changed much. As there
seems to be little evidence of a treatment difference, this increase will be important
only if the limits of the CI from the random effects model extend beyond the
limits of a clinically important difference, whereas for the fixed effects model they
did not.
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4.3.6 Example: Global impression of change in Alzheimer’s
disease

The random effects model is fitted to the log-odds ratios presented in Table 4.16. As
was the case for the MDPIT study, the test for heterogeneity was not statistically
significant (p = 0.30). As the Q statistic was slightly larger than its associated
degrees of freedom, a method of moments estimate of τ2 can be calculated, and is
found to be 0.014 (Table 4.29). Because the estimate of τ2 is small the modified
weights w∗

i are not substantially different from the wi. The random effects estimate
of the log-odds ratio, calculated to be 0.481, is similar to that of 0.503 calculated
from the fixed effects model. The standard error and CI have increased slightly
(Figure 4.5).

4.3.7 Example: Recovery time after anaesthesia

The test for heterogeneity based on the estimates of absolute mean difference
from Table 4.23 was statistically significant (p = 0.02). In this case the method
of moments estimate of τ2, 0.128, is large enough to have a substantial impact
on the weights (Table 4.30). It can be seen that the modified weights w∗

i are

Table 4.29 Random effects meta-analysis of the log-odds ratio from the proportional
odds model for the tacrine studies, based on study estimates from Table 4.16

Study Treatment Category θ̂i wi w2
i w∗

i θ̂iw∗
i

C1 C2 C3 C4 C5

1 Tacrine 4 23 45 22 2 0.284 14.63 214.1 12.09 3.44
Placebo 2 22 54 29 3

2 Tacrine 14 119 180 54 6 0.224 17.02 289.9 13.67 3.06
Placebo 1 22 35 11 3

3 Tacrine 13 20 24 10 1 0.360 9.08 82.5 8.03 2.89
Placebo 7 16 17 10 3

4 Tacrine 21 106 175 62 17 0.785 33.03 1 091.2 22.39 17.57
Placebo 8 24 73 52 13

5 Tacrine 3 14 19 3 0 0.492 5.63 31.7 5.21 2.56
Placebo 2 13 18 7 1

Total 79.41 1 709.4 61.39 29.53

Q = 4.83; k − 1 = 4
τ̂2 = (4.83 − 4)/(79.41 − 1709.4/79.41) = 0.014
U∗ = (29.53)2/61.39 = 14.20; (1 df) p < 0.001
θ̂∗ = 29.53/61.39 = 0.481; se(θ̂∗) = 1/

√
61.39 = 0.128

95% CI = (0.481 ± 1.96/
√

61.39) = (0.231, 0.731)
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Table 4.30 Random effects meta-analysis of the absolute mean difference (treatment A
− treatment B), based on centre estimates from Table 4.23

Centre Treatment A Treatment B θ̂i wi w2
i w∗

i θ̂iw∗
i

n Mean n Mean

1 4 1.141 5 0.277 0.864 4.40 19.3 2.81 2.43
2 10 2.165 10 1.519 0.646 9.89 97.8 4.36 2.81
3 17 1.790 17 1.518 0.272 16.81 282.7 5.32 1.45
4 8 2.105 9 1.189 0.916 8.38 70.2 4.04 3.70
5 7 1.324 10 0.456 0.867 8.15 66.3 3.98 3.45
6 11 2.369 10 1.550 0.819 10.36 107.4 4.45 3.64
7 10 1.074 12 0.265 0.809 10.79 116.4 4.52 3.66
8 5 2.583 4 1.370 1.212 4.40 19.3 2.81 3.41
9 14 1.844 19 2.118 −0.273 15.95 254.3 5.23 −1.43

Total 89.12 1 033.8 37.52 23.12

Q = 17.95; k − 1 = 8
τ̂2 = (17.95 − 8)/(89.12 − 1 033.8/89.12) = 0.128
U∗ = (23.12)2/37.52 = 14.25; (1 df) p < 0.001
θ̂∗ = 23.12/37.52 = 0.616; se(θ̂∗) = 1/

√
37.52 = 0.163

95% CI = (0.616 ± 1.96/
√

37.52) = (0.296, 0.936)

substantially smaller than the original weights wi. This has the effect of increasing
the standard error and the width of the CI for the overall estimate of treatment
difference. The random effects estimate of θ is 0.616, which is also different from
the fixed effects estimate of 0.535. The two centres with the highest weights in
the fixed effects model also had the lowest estimates of treatment difference. In
the random effects model the weights move closer together and as a result the
weighted average moves towards the other higher centre estimates (Figure 4.6).

4.3.8 A likelihood approach to the estimation of τ2

The random effects model has the distributional assumption

θ̂i ∼ N(θ, ξ2
i + τ2).

In the likelihood approach to the estimation of τ2 described here, w−1
i is treated as

if it were known and equal to ξ2
i . The contribution to the likelihood function from

study i is

L(θ, τ2; θ̂i) = 1√
2π(w−1

i + τ2)

exp

{
−(θ̂i − θ)2

2(w−1
i + τ2)

}
.
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For a meta-analysis which involves r independent studies the likelihood function
is given by the product of the individual study likelihood functions, and the
log-likelihood function by

�(θ, τ2; θ̂i, i = 1, . . . , r) = constant − 1
2

r∑
i=1

log(w−1
i + τ2) − 1

2

r∑
i=1

(θ̂i − θ)2

(w−1
i + τ2)

.

ML estimates of τ2 and θ can be found through an iterative scheme, in which
each iteration involves two steps. First, the variance parameter τ2 is treated as
fixed and the value of θ which maximizes the log-likelihood is calculated. Then
θ is treated as fixed and the value of τ2 which maximizes the log-likelihood is
calculated. Thus the estimate of θ at the (t + 1)th cycle of the iteration is given by

θ̂∗
t+1 =

∑r
i=1 θ̂iw∗

it∑r
i=1 w∗

it
, (4.3)

for t = 0, 1, . . ., where w∗
it = (w−1

i + τ̂2
M,t)

−1 and τ̂2
M,t is the ML estimate of τ2 at

the tth cycle of the iteration. The ML estimate of τ2 at the (t + 1)th cycle of the
iteration can be found using the Newton–Raphson procedure. Alternatively, as it
needs to satisfy the equation

r∑
i=1

w∗
i,t+1 =

r∑
i=1

(w∗
i,t+1)

2(θ̂i − θ̂∗
t+1)

2,

an approximate estimate is given by

τ̂2
M,t+1 =

∑r
i=1 (w∗

it)
2{(θ̂i − θ̂∗

t+1)
2 − w−1

i }∑r
i=1 w∗

it
2 . (4.4)

To start the iterative process the method of moments estimate of τ2 could be used
as the initial value τ̂2

M,0.
The maximum likelihood estimate of τ2 will usually be an underestimate

because the method takes no account of the information used in estimating θ.
Residual (or restricted) maximum likelihood (REML) takes account of this loss of
information by modifying the likelihood equation to eliminate the parameter θ

(see Section A.7 in the Appendix, or Chapter 2 of Brown and Prescott, 1999). The
REML log-likelihood function is based on the residual terms, (θ̂i − θ̂∗

t+1), instead
of the observations θ̂i, and is given by

�R{τ2; (θ̂i − θ̂∗
t+1)i = 1, . . . r} = constant − 1

2

r∑
i=1

log(w−1
i + τ2)

− 1
2

r∑
i=1

(θ̂i − θ̂∗
t+1)

2

(w−1
i + τ2)

− 1
2

log

{
r∑

i=1

1

(w−1
i + τ2)

}
.
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REML estimates are found via a similar iterative scheme to that described
above, where now w∗

it = (w−1
i + τ̂2

R,t)
−1. At the (t + 1)th cycle of the iteration,

(4.3) is used to calculate an updated estimate of θ. The REML estimate of τ2 at
the (t + 1)th cycle of the iteration can be found using the Newton–Raphson
procedure. Alternatively, as it needs to satisfy the equation

r∑
i=1

w∗
i,t+1 =

r∑
i=1

(w∗
i,t+1)

2(θ̂i − θ̂∗
t+1)

2 +
∑r

i=1 (w∗
i,t+1)2∑r

i=1 w∗
i,t+1

,

an approximate estimate is given by

τ̂2
R,t+1 =

∑r
i=1(w∗

it)
2{r(θ̂i − θ̂∗

t+1)
2/(r − 1) − w−1

i }∑r
i=1(w∗

it)
2

. (4.5)

Programs can be written to calculate the ML and REML estimates based on
(4.3)–(4.5). Alternatively, ML and REML estimates can be found from statistical
packages which fit multilevel models such as MLn and SAS PROC MIXED. This
is achieved in SAS PROC MIXED by reversing the roles of the within-study
and between-study variance components to enable the within-study variance
components w−1

i to be treated as known without error and the between-study
variance component τ2 to be estimated.

REML estimates can be obtained from PROC MIXED in the following way.
Suppose that the values of i, θ̂i and wi have been entered into the data set ‘meta’
under the variable names ‘study’, ‘y’ and ‘w’ respectively. It is necessary to create
a diagonal variance matrix with the estimated within-study variance components
as the diagonal elements. The following code can be used for this purpose:

DATA remlma;
SET meta;
var = 1/w;
col = n ;
row = n ;
value = var;

Then the following PROC MIXED statements are required:

PROC MIXED data = remlma method = reml order = data;
CLASS study;
MODEL y = / solution;
RANDOM study / gdata = remlma;
REPEATED diag;

In the SAS output, the REML estimate of τ2 appears as a covariance parameter
estimate for ‘diag’ and the REML estimate of θ appears as the estimate of the fixed
effect ‘intercept’, together with its standard error. Further details may be found in
Normand (1999). Maximum likelihood estimates may be obtained by replacing
‘method = reml’ with ‘method = ml’ in the PROC MIXED line.
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Comparison of the three methods of estimation of τ2 can be made for the three
example data sets presented in Sections 4.3.5–4.3.7. Table 4.31 shows that for
the MDPIT study both ML and REML estimates are set to 0. It should be noted that
for this example SAS PROC MIXED produces estimates which are greater than
0, but these are incorrect. On looking at the log file, the message ’Estimated G
matrix is not positive definite’ appears, indicating a problem. This will occur if the
unconstrained estimate of τ2 is less than 0.

For the tacrine studies (Table 4.32) the ML and method of moments estimates
are similar, and for the anaesthetic study (Table 4.33) the REML and the method
of moments estimates are similar.

4.3.9 Allowing for the estimation of τ2

In the above approaches to fitting the random effects meta-analysis model, the
estimated variance of θ̂∗ is treated as if it were the true variance, with no allowance

Table 4.31 Comparison of estimation methods for τ2 for
the MDPIT study based on region estimates from Table 4.9

Estimation method τ̂2 θ̂∗ se(θ̂∗)

Method of moments 0.033 −0.016 0.133
ML 0 0.006 0.111
REML 0 0.006 0.111

Table 4.32 Comparison of estimation methods for τ2 for
the tacrine studies based on study estimates from Table 4.16

Estimation method τ̂2 θ̂∗ se(θ̂∗)

Method of moments 0.014 0.481 0.128
ML 0.017 0.478 0.130
REML 0.031 0.467 0.143

Table 4.33 Comparison of estimation methods for τ2

for the anaesthetic study based on centre estimates from
Table 4.23

Estimation method τ̂2 θ̂∗ se(θ̂∗)

Method of moments 0.128 0.616 0.163
ML 0.102 0.608 0.154
REML 0.124 0.615 0.162
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made for error in the calculated terms wi and τ̂2. Therefore, the CI obtained for θ

will be too small.
Hardy and Thompson (1996) consider a likelihood approach using profile log-

likelihoods to construct likelihood based CIs for θ and τ2. They obtain maximum
likelihood estimates of θ and τ2as determined from (4.3) and (4.4), although
REML estimates could be used instead. When there are only a small number of
studies the CI for τ2 will necessarily be wide, and this will impact on the CI for θ.
However, Hardy and Thompson showed that the increased width of the CI for θ

depends more on the strength of the relationship between τ̂2 and θ̂∗ than simply
on the number of trials and the precision of τ̂2.

Hartung (1999) proposes an alternative test statistic for testing the null
hypothesis that θ = 0. This test statistic,

θ̂∗√{∑r
i=1 w∗

i (θ̂i − θ̂∗)2
}/{

(r − 1)
∑r

i=1 w∗
i

} ,

approximately follows the t distribution with r − 1 degrees of freedom under the
null hypothesis. Estimates of θ and τ2 are required to evaluate the test statistic.
These could be based on the method of moments, maximum likelihood or REML
approaches.

So far no allowance has been made for imprecision in the calculated wi-values.
This can be addressed by using exact methods based on the full likelihood. Hardy
and Thompson argue that the use of exact methods is unnecessarily sophisticated
for most practical purposes. The within-study variances are most imprecisely
estimated when the sample size is small. Such studies have least weight in the
meta-analysis, and also their relative weight is determined more by the value of
τ̂2 than by wi.



5

Meta-Analysis Using
Individual Patient Data

5.1 INTRODUCTION

When individual patient data are available, individual study estimates of treatment
difference can be calculated and combined using the methods of Chapter 4.
However, dealing with the outcome measurement on a patient basis instead of a
study basis allows for a more extensive exploration of the data, particularly when
individual patient data on demographic and prognostic variables are available.
In this chapter attention is focused on a statistical modelling approach based on
likelihood theory. When individual patient data are available, the meta-analysis
model can be viewed as a natural extension of the linear model for a single
study, and can often be fitted using the same statistical software. In particular, a
meta-analysis can be undertaken in precisely the same way as the analysis of a
multicentre study.

The meta-analysis models are considered within a general framework which
encompasses the traditional meta-analysis approach presented in Chapter 4, as
well as meta-regression and investigation of patient-level covariates which are
discussed in Chapter 6. It is assumed that the same outcome measure has been
recorded in the same way in each trial. Fixed effects models which are analogous
to the general fixed effects parametric approach of Section 4.2 are presented first.
For each response type one specific parameter measuring treatment difference will
be considered in detail, each being in some sense a natural model parameter. The
models and parameter estimation for normally distributed data are discussed first,
because the methodology is more straightforward in this case and forms a basis
for extension to other data types. The inclusion of the treatment difference as a
random instead of a fixed effect is then addressed within the framework of a mixed
model. This is analogous to the general random effects parametric approach of
Section 4.3. Finally, the meta-analysis model is extended to include random study
effects.

In the final section of this chapter, a comparison is made between the various
meta-analysis models and the differences between them are highlighted. The
traditional approach to meta-analysis, as described in Chapter 4, is different from

99
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that typically taken towards the analysis of a multicentre trial. This issue is also
discussed.

5.2 FIXED EFFECTS MODELS FOR NORMALLY
DISTRIBUTED DATA

5.2.1 A fixed effects meta-analysis model

Let yij denote the response from patient j in study i, where j = 1, . . . , ni, for
i = 1, . . . , r, and let n = ∑r

i=1 ni be the total number of patients in all of the
studies combined. The observation yij is assumed to be a realization of a random
variable Yij, which is normally distributed with expected value µij and variance
σ2. The general linear model can be written as

yij = µij + εij,

where the εij are error terms and are realizations of normally distributed random
variables with expected value 0 and variance σ2. Initially it is assumed that the
error terms are uncorrelated and homogeneous.

The systematic part of the model may be written as

µij = α + ηij,

where α is the intercept and ηij = β1x1ij + β2x2ij + · · · + βqxqij is a linear combi-
nation of explanatory variables. Explanatory variables can be quantitative, such
as age or number of years since diagnosis. Alternatively, they can correspond to
qualitative variables referred to as factors, which take a limited number of values,
known as the levels of the factor. An example of a factor is study. A factor is
handled by including it in the model as a linear combination of indicator variables,
which take the value 0 or 1. For example, the study effect, denoted by β0i, could
be expressed as

β0i = β01x01ij + β02x02ij + · · · + β0(r−1)x0(r−1)ij,

where x0hij = 1 if the patient is in study h and 0 otherwise. This results in the
parameter β0r being constrained to equal 0. Many statistical modelling packages
generate indicator variables automatically when a term in the model has been
specified as a factor. However, as there are a number of ways in which this can be
done, it is essential to know which one has been used in any implementation, so
that the parameter estimates can be interpreted correctly.

In many of the SAS procedures, a variable is identified as a factor by its inclusion
in the CLASS statement. If the coding of the levels of a factor is numerical, then
SAS lists the factor levels in ascending numerical order. Other orderings of the
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factor levels are possible, such as alphabetical. Whichever ordering is chosen, SAS
generates the indicator variables in the same way. This is illustrated here for the
study effect. The variable x0hij = 1 if the patient is in the hth study in the list and 0
otherwise, for h = 1, . . . , r − 1. The parameter β0h, h = 1, . . . , r − 1, represents
the difference in effect between the hth study in the list and the rth (last) study in
the list.

In this book, the term ‘covariate’ will be used to include both quantitative
variables and indicator variables. The values of the covariates are assumed to
be fixed and known without error. Unless otherwise stated, the following coding
of the study and treatment covariates is adopted. Studies are ordered as study 1,
study 2, etc., and the study covariates, x0hij, h = 1, . . . , r − 1, are defined as
above. When the comparison is between a treated group and a control group, the
treatment covariate, x1ij, is coded ‘1’ for the treated group and ‘0’ for the control
group.

The model which will provide an overall fixed effects estimate of the absolute
mean difference between the two treatments, analogous to that in Chapter 4,
includes study and treatment as covariates. It is given by

µij = α + β0i + β1x1ij. (5.1)

For the adopted coding of the treatment and study covariates, the term α + β0i

represents the effect in the control group in study i, and α represents the effect
in the control group in study r. The parameter β1 represents the absolute mean
difference between the treated and control groups, which is common across all
studies. To obtain the fixed effects model of Section 4.2.1, put β1 = θ.

5.2.2 Estimation and hypothesis testing

Estimates of the fixed effect parameters and the variance component, σ2, are
obtained using the method of least squares. A covariance matrix is obtained for
the estimates of the fixed effect parameters, from which the standard error of a
single parameter estimate or a linear combination of the parameter estimates can
be calculated. Confidence intervals are based on the t distribution. Hypothesis
tests for the fixed effect parameters are based on changes in the residual sum of
squares between two models, of which one contains the parameter(s) of interest
and the other is identical except that it does not contain the parameter(s) of
interest. The resulting test statistic is compared with the F distribution. Further
details are provided in Section A.2 of the Appendix. Many statistical packages can
fit a general linear model. For example, the procedure PROC GLM in SAS can
be used.

To test the null hypothesis that the treatment difference in all studies is equal
to 0, model (5.1) is compared with a model which only contains the study effects,
namely

µij = α + β0i. (5.2)
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Model (5.2) has r degrees of freedom associated with the model terms and
model (5.1) has r + 1, so that the numerator of the F statistic is associated with
one degree of freedom. The estimate of σ2 from model (5.1), which forms the
denominator of the F statistic, is associated with n − r − 1 degrees of freedom.
The resulting F statistic is compared with the F distribution with 1 and n − r − 1
degrees of freedom.

The following SAS statements may be used to fit model (5.1) and to obtain the
results of the F test mentioned above:

PROC GLM;
CLASS study;
MODEL y = study treat / ss1 solution;

Here ‘y’ contains the values of yij, ‘study’ the code for the study and ‘treat’ the
values of x1ij. The variable ‘study’ is defined as a factor via the CLASS statement.
The option ‘ss1’ refers to the type I sum of squares, as defined by SAS. This option
gives the effect of each explanatory variable in the model adjusted only for those
that come before it in the MODEL statement. Changing the order of variables
in the MODEL statement will change the type I sum of squares. In the SAS
output, the required F statistic is that associated with the term ‘treat’. The option
‘solution’ provides a printout of the parameter estimates, standard errors and
associated statistics, in which the estimate of β1 appears as the ‘treat’ parameter
estimate.

As an alternative, the following set of SAS statements, which include ‘treat’ as
a factor via the CLASS statement, may be used:

PROC GLM;
CLASS study treat;
MODEL y = study treat / ss1 solution;
LSMEANS treat / pdiff cl;

However, in order to obtain the estimate of β1 instead of −β1, it is necessary
to ensure that the control treatment appears as the last level of the factor.
The LSMEANS statement requests that the least-squares mean estimates of the
treatment effects be printed. The least-squares mean estimate of the new treatment
minus the least-squares mean estimate of the control provides an estimate of β1.
The ‘pdiff’ option requests that the p-value for the difference between treatments
be printed, and ‘cl’ requests that the confidence intervals for the treatment means
and difference be presented.

For the fixed effects analyses with two treatment groups it makes no differ-
ence whether ‘treat’ is handled as a continuous covariate or a factor. However,
when random effects are introduced into the model in Section 5.8, it will be
seen that whilst the two approaches lead to an identical parameterization of
the treatment difference, they will lead to different parameterizations of some
of the variance components. In order to maintain comparability with the ran-
dom effects model of Chapter 4, ‘treat’ should be considered as a continuous
covariate, enabling the model to be expressed within a multilevel framework.



Fixed effects models for normally distributed data 103

When ‘treat’ is considered as a factor, the model is expressed as a tradi-
tional mixed linear model. The latter framework is particularly useful when
there are more than two treatment groups. The connection between the mul-
tilevel model and the traditional mixed linear model is considered in detail in
Section 5.8.4. Unless specified otherwise, the SAS code presented in this book
will include ‘treat’ as a continuous covariate when there are only two treatment
groups.

5.2.3 Testing for heterogeneity in the absolute mean difference
across studies

In order to perform a test for heterogeneity of the treatment difference parameter
across all studies, it is necessary to fit the model which includes the study by
treatment interaction term. This is given by

µij = α + β0i + β1ix1ij, (5.3)

where the β1i may now differ from study to study. This has 2r degrees of freedom
associated with the model terms and n − 2r degrees of freedom associated with
the estimate of σ2. The test for heterogeneity is a test of the study by treatment
interaction term and involves the comparison of models (5.1) and (5.3). The
resulting F statistic is compared with the F distribution on r − 1 and n − 2r
degrees of freedom.

Model (5.3) may be fitted and the test for heterogeneity conducted by changing
the MODEL statement in Section 5.2.2 as follows:

MODEL y = study treat study*treat / ss1 solution;

The appropriate F statistic is that associated with the ‘study*treat’ term. When
‘treat’ is entered as a continuous covariate, the estimate which appears alongside
‘treat’ is an estimate of the absolute mean difference between the treated and con-
trol groups in study r(β1r). The estimate which appears alongside the parameter
‘study i * treat’, for i = 1, . . . , r − 1, is the estimate of the mean difference between
the treated and control groups in study i minus the estimate of the mean difference
between the treated and control groups in study r – that is, it is an estimate of
β1i − β1r.

5.2.4 Example: Recovery time after anaesthesia

Consider the anaesthetic study described in Section 3.6.1. Results of the hypothesis
tests in connection with the overall treatment difference and the centre by
treatment interaction are presented in Table 5.1. The F statistic for testing the
centre by treatment interaction term is significant (p = 0.03), indicating evidence
of heterogeneity in the treatment difference between centres.
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Table 5.1 Recovery time after anaesthesia: comparison of models

Model
comparisons

Effect
tested

Change
in

residual
sums of
squares

Change
in

degrees
of

freedom

Estimate
of σ2

Degrees
of

freedom

F statistic p-value

(5.1) vs (5.2) Treat 12.90 1 0.535 172 24.13 <0.001
(5.3) vs (5.1) Centre by

Treat
9.07 8 0.506 164 2.24 0.03

Table 5.2 Fixed effects meta-analysis of the absolute mean difference (treatment A −
treatment B) in log-recovery time, assuming a common variance across all centres

Centre Treatment A Treatment B θ̂i se(θ̂i)

n Mean n Mean
(based on s2

i )

1 4 1.141 5 0.277 0.864 0.528
2 10 2.165 10 1.519 0.646 0.301
3 17 1.790 17 1.518 0.272 0.282
4 8 2.105 9 1.189 0.916 0.398
5 7 1.324 10 0.456 0.867 0.278
6 11 2.369 10 1.550 0.819 0.210
7 10 1.074 12 0.265 0.809 0.250
8 5 2.583 4 1.370 1.212 0.459
9 14 1.844 19 2.118 −0.273 0.279

Test of treatment difference, F = 24.13; (1, 172 df), p < 0.001
Test for heterogeneity, F = 2.24; (8, 164 df), p = 0.03
Estimate of treatment difference (β̂1) = 0.535; se(β̂1) = 0.109
95% CI = (0.535 ± 1.974 × 0.109) = (0.320, 0.750)

Table 5.2 shows the results of the fixed effects meta-analysis. Each individual
centre estimate of the absolute mean difference (treatment A − treatment B),
θ̂i, and its standard error have been calculated as in Table 4.22. Each standard
error is based on the individual centre pooled sample variance s2

i . The standard
error for the fixed effects estimate of treatment difference, β̂1, is calculated
from the estimate of σ2, denoted by s2

f , from fitting model (5.1). The value of
s2

f for the anaesthetic study is 0.535. This is also used in the F test for the
overall treatment difference. The F test for the centre by treatment interaction
uses the overall pooled sample variance, s2

p , which for the anaesthetic study
is equal to 0.506. Details of the calculation of s2

i and s2
p can be found in

Section 4.2.9.
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5.2.5 Modelling of individual patient data versus combining
study estimates

The meta-analysis based on the modelling of individual patient data has similarities
with and differences from that based on combining study estimates as presented
in Table 4.23. In both cases a common variance parameter, σ2, is assumed,
although estimates of σ2 may differ. For models (5.1)–(5.3), the estimate of σ2 is
dependent on the fixed effect parameters present in the model. As a result, the
estimate of σ2 obtained from model (5.1), s2

f , will usually be different from the
overall pooled sample variance, s2

p , obtained from model (5.3). The fixed effect
estimates, β̂1 and θ̂ are the same. It can be seen from Tables 4.23 and 5.2 that
θ̂ and β̂1 are both equal to 0.535. It is the standard error of β̂1 computed from
individual patient data which will be different from the standard error of θ̂, as
these depend on the estimate of σ2 used. For the former, the estimate s2

f is used,
which is obtained from the model without interaction terms. For the latter, the
estimate s2

p is used, which is obtained from the model with interaction terms, even
though a fixed effects meta-analysis is being performed. If the study by treatment
interaction effect is small the two estimates of σ2 will be close. For the anaesthetic
study s2

f = 0.535 and s2
p = 0.506, resulting in similar standard errors of 0.109

and 0.106 respectively for the fixed effects estimate.
When the U and Q statistics, described in Chapter 4, are based on (3.22)

and (3.23) and use s2
p they have close connections with the F statistics introduced

in this chapter. To test the null hypothesis of no treatment difference, model (5.1)
would be compared with model (5.2), using the F test with 1 and n − r − 1 degrees
of freedom. The F statistic used is equal to Us2

p/s2
f . To test the null hypothesis of no

study by treatment interaction, model (5.3) would be compared with model (5.1),
using the F test with r − 1 and n − 2r degrees of freedom. The F statistic used
is equal to Q/(r − 1), as both test statistics would be calculated using s2

p . For
the test for heterogeneity of the treatment difference across trials, comparison
with the F(r−1,n−2r) distribution is to be preferred to comparison with the χ2

r−1
distribution, as it takes account of the estimation of σ2. These two distributions
become the same when n − 2r approaches ∞, so that σ2 is effectively known. The
same argument applies to the test of the treatment difference.

5.2.6 Heterogeneity in the variance parameter across studies

The assumption of a common variance parameter, σ2, across all of the stud-
ies can be investigated by using Bartlett’s test (Bartlett, 1937). Details of its
application are given in Section 4.2.9. For the anaesthetic study, Bartlett’s test
for heterogeneity in the variance parameter across the centres was not statis-
tically significant (p = 0.25). Therefore, the assumption of a common variance
is not contradicted. However, as discussed in Section 4.2.9, the decision to
assume or not assume a common variance should not depend solely on the
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p-value from Bartlett’s test. Scheffé (1959) notes that the test is extremely
sensitive to non-normality of the data and does not recommend its routine
use. Another justification for proceeding with the methods described above
is that they are reasonably robust, even if the variances are unequal, as
long as there are approximately equal numbers of patients in each treatment
arm per trial. In situations where the assumption of a common variance
is not acceptable, there are alternative ways to proceed, two of which are
described here.

The first approach is of use if the same outcome measure has been recorded
in each trial and interest lies in estimating the absolute mean difference. In this
case, the analysis proceeds as above, except that a separate variance parameter
is specified for each trial. Now εij are realizations of normally distributed random
variables with expected value 0 and variance σ2

i , resulting in the need to estimate r
variance parameters. Estimation and hypothesis testing proceed as for the general
linear mixed model, details of which are provided in Section A.7 of the Appendix.
The approach based on residual (restricted) maximum likelihood is generally
preferred to that based on maximum likelihood as it avoids the downward bias of
ML estimates of the variance parameters. The procedure PROC MIXED in SAS can
be utilized for this purpose. The following statements may be used to fit model (5.1):

PROC MIXED method = reml;
CLASS study;
MODEL y = study treat / htype = 1 ddfm = kenwardroger solution;
REPEATED / group = study;

In general, all of the fixed effect parameters should appear in the MODEL statement
and there is no RANDOM statement, because in this case there are no random
effects in the model. The ‘htype = 1’ option plays a similar role to the ‘ss1’ option
in PROC GLM. The ‘group’ option within the REPEATED statement introduces
different variance parameters for each study. Both ML and REML approaches are
available with PROC MIXED. As the default option is REML, the option ‘method
= reml’ may be omitted. Wald test statistics, produced by PROC MIXED, can
be used for inferences concerning the fixed effect parameters. The Wald test
statistic approximately follows an F distribution, but it is necessary to estimate
the denominator degrees of freedom instead of using the default produced by
the program. The option ‘ddfm = kenwardroger’ is used to inflate the estimated
variance matrix of the fixed and random effects to allow for estimation of the
variance components and to estimate the denominator degrees of freedom using
Satterthwaite’s procedure (Satterthwaite, 1941; Kenward and Roger, 1997).
Alternative methods for testing the fixed effect parameters are discussed in
Section A.7 of the Appendix. In the case of the anaesthetic study, the results from
such an analysis (Table 5.3) differ a little from those in Table 5.2.

There is a connection between this meta-analysis based on the modelling
of individual patient data and that based on combining study estimates. For
model (5.3), the estimate of σ2

i is s2
i , which is the same as that used in the
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Table 5.3 Fixed effects meta-analysis of the absolute mean difference (treatment A −
treatment B) in log-recovery time, allowing different variance estimates from each centre

Centre Treatment A Treatment B θ̂i se(θ̂i)

n Mean n Mean
(based on s2

i )

1 4 1.141 5 0.277 0.864 0.528
2 10 2.165 10 1.519 0.646 0.301
3 17 1.790 17 1.518 0.272 0.282
4 8 2.105 9 1.189 0.916 0.398
5 7 1.324 10 0.456 0.867 0.278
6 11 2.369 10 1.550 0.819 0.210
7 10 1.074 12 0.265 0.809 0.250
8 5 2.583 4 1.370 1.212 0.459
9 14 1.844 19 2.118 −0.273 0.279

Test of treatment difference, F = 33.49; (1, 140 df), p < 0.001
Test for heterogeneity, F = 1.87; (8, 44.1 df), p = 0.09
Estimate of treatment difference (β̂1) = 0.658; se(β̂1) = 0.109
95% CI = (0.658 ± 1.977 × 0.109) = (0.443, 0.873)

calculations for the meta-analysis presented in the ‘different variances’ columns
of Table 4.24. If the F statistic calculated for the test for heterogeneity is not
adjusted to account for estimation of the variance components it would be equal
to Q/(r − 1). For model (5.1), the estimates of σ2

i will usually be different from s2
i ,

and therefore even the unadjusted F statistic for testing the treatment difference
will not be equal to U. The fixed effect estimates, β̂1 and θ̂, will usually be different.
Although both estimates are calculated as a weighted average of study estimates,
the weight attached to study i is a function of the estimate of σ2

i , which is different
in the two cases. For the recovery time example β̂1 and θ̂ are given by 0.658 and
0.627, respectively.

The second approach to heterogeneity of variance is to consider the standardized
treatment difference as the parameter of interest and to proceed using the methods
described in Section 4.2.9.

5.3 FIXED EFFECTS MODELS FOR BINARY DATA

5.3.1 A fixed effects meta-analysis model

The observation yij is assumed to be a realization of a random variable Yij, which
has a binomial distribution with parameter pij and denominator nij = 1. If pij

represents the probability of success for patient j in trial i, then yij = 1 if the patient
response is a ‘success’ and 0 if the response is a ‘failure’. The expected value of Yij

is pij and the variance pij(1 − pij).
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In order to model the dependence of pij on the explanatory variables
x1, x2, . . . , xq, a transformation which maps the unit interval (0, 1) onto the
real line (−∞, ∞) is used. This transformation is known as the link function. The
natural choice for estimating odds ratios is the logit link function, given by

log
(

pij

1 − pij

)
.

The logit link function leads to the linear logistic model

log
(

pij

1 − pij

)
= α + ηij,

where α is the intercept and ηij is a linear combination of explanatory variables.
This model is an example of a generalized linear model, details of which can be
found in Section A.6 of the Appendix. An analogy with the general linear model
can be seen with log{pij/(1 − pij)} replacing µij.

The model which will provide an overall fixed effects estimate of treatment
difference, analogous to that in Chapter 4, includes study and treatment as
covariates. It is given by

log
(

pij

1 − pij

)
= α + β0i + β1x1ij. (5.4)

The parameter β1 represents the common log-odds ratio of success on treatment
relative to control.

Discussion about other link functions, which can be used with binary data,
can be found in Collett (1991) and McCullagh and Nelder (1989). One of
these, the complementary log-log function, will be considered in Section 5.6 for
interval-censored survival data.

5.3.2 Estimation and hypothesis testing

Parameter estimates are obtained using the method of maximum likelihood, as
described in Sections A.4 and A.6 of the Appendix. The standard error for a single
parameter or a linear combination of the parameters can be calculated from
the observed or expected Fisher’s information matrix. Confidence intervals are
based on asymptotic normality. Models are compared by means of the likelihood
ratio test statistic, that is, the change in deviance (−2 times the log-likelihood)
between two models, one of which contains the parameter(s) of interest while the
other is identical except that it does not contain the parameter(s) of interest. This
test statistic is compared with the chi-squared distribution. Further details are
provided in Section A.4 of the Appendix. Any package which fits a linear logistic
regression model can be utilized, for example PROC GENMOD in SAS.
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To test the null hypothesis that the treatment difference in all studies is equal
to 0, model (5.4) is compared with a model which only contains the study effects,
namely

log
(

pij

1 − pij

)
= α + β0i. (5.5)

Model (5.4) has r + 1 degrees of freedom associated with the model terms and
model (5.5) has r. The likelihood ratio statistic, equal to the change in deviance
between the two models, is compared with the chi-squared distribution with one
degree of freedom, in the same way as the U statistic described in Chapter 4.

The following SAS statements may be used to fit model (5.4) and to obtain the
results of the likelihood ratio test mentioned above:

PROC GENMOD;
CLASS study;
MODEL y = study treat / type1 dist = bin link = logit waldci;

The option ‘type 1’ plays the role of ‘ss1’ in PROC GLM (see Section 5.2.2), the
‘dist’ option specifies the distribution of the observations yij which in this case is
binomial, and the ‘link’ option specifies the link function. In the SAS output β1 is
associated with the parameter ‘treat’. Wald CIs for the parameter estimates can
be obtained via the ‘waldci’ option. Alternatively, the option ‘lrci’ can be used to
obtain CIs based on the profile likelihood. In PROC GENMOD, the default option is
to use the observed Fisher’s information matrix in the computation of parameter
estimates, variances and associated statistics. The ‘scoring’ option can be inserted
in the MODEL statement to request that the expected Fisher’s information matrix
be used instead.

For a more efficient way of running the program, the data can be entered in
binomial form, in which for each treatment group in each study the number of
patients (n) and the sum of the yij(s) are provided. The analysis proceeds with the
MODEL statement above replaced by

MODEL s/n = study treat / type1 dist = bin link = logit waldci;

The GENMOD procedure also allows inclusion of ‘treat’ as a factor via the CLASS
statement.

5.3.3 Testing for heterogeneity in the log-odds ratio across
studies

In order to perform a test for heterogeneity of the treatment difference parameter
across studies it is necessary to fit the model which includes the study by treatment
interaction term. This is given by

log
(

pij

1 − pij

)
= α + β0i + β1ix1ij, (5.6)
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which has 2r degrees of freedom associated with the model terms. The test for
heterogeneity is a test of the study by treatment interaction term and involves the
comparison of models (5.4) and (5.6). The change in deviance between these two
models is compared with the chi-squared distribution on r − 1 degrees of freedom,
in the same way as the Q statistic described in Chapter 4.

Model (5.6) may be fitted and the test for heterogeneity conducted by changing
the MODEL statement in Section 5.3.2 as follows:

MODEL y = study treat study*treat / type1 dist = bin link = logit;

In the SAS output, the appropriate chi-squared statistic is that associated with
the ‘study*treat’ term. As noted in Section 5.2.3, the parameter associated with
‘treat’ is β1r and the parameter associated with ‘study i * treat’ is β1i − β1r.

5.3.4 Example: Stroke in hypertensive patients

Results of the hypothesis tests in connection with the overall treatment difference
and the study by treatment interaction are presented in Table 5.4 for the stroke
example described in Section 3.2.1. The chi-squared statistic for testing the study
by treatment interaction term is not significant (p = 0.56), providing no evidence
for heterogeneity in the log-odds ratio between studies. There is a statistically
significant difference between treatments (p < 0.001).

Table 5.5 shows the results of the fixed effects meta-analysis. Each individual
study estimate of the log-odds ratio and its standard error have been calculated
as in Table 4.1. The fixed effects estimate of the log-odds ratio is −0.545, with
standard error 0.077.

5.3.5 Modelling of individual patient data versus combining
study estimates

The meta-analysis based on modelling individual patient data is similar but not
identical to that based on combining study estimates using (3.1) and (3.2) and
presented in Table 4.2. The tests of treatment difference and heterogeneity in the
log-odds ratios, described in Sections 5.3.2 and 5.3.3, are based on likelihood ratio

Table 5.4 Stroke in hypertensive patients: comparison of models

Model
comparisons

Effect
tested

Change in
deviance

Change in
degrees of
freedom

p-value

(5.4) vs (5.5) Treat 51.48 1 <0.001
(5.6) vs (5.4) Study by Treat 10.60 12 0.56
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Table 5.5 Fixed effects meta-analysis of the log-odds ratio of a stroke on antihypertensive
treatment relative to control

Study Treated group Control group θ̂i se(θ̂i)

Success Failure Success Failure
(stroke) (stroke)

2 HDFP (Stratum I) 59 3844 88 3834 −0.402 0.170
4 ANBPS 13 1708 22 1684 −0.540 0.352
5 MRC 60 8640 109 8545 −0.608 0.161
6 VAII 5 181 20 174 −1.426 0.511
7 USPHS 1 192 6 190 −1.802 1.085
8 HDFP (Stratum II) 25 1023 36 968 −0.420 0.264
9 HSCSG 43 190 52 167 −0.319 0.232
10 VAI 1 67 3 60 −1.209 1.168
11 WOLFF 2 43 1 41 0.646 1.244
13 Carter 10 39 21 27 −1.110 0.459
14 HDFP

(Stratum III)
18 516 34 495 −0.678 0.298

15 EWPHE 32 384 48 376 −0.427 0.239
16 Coope 20 399 39 426 −0.602 0.284

Test of treatment difference, χ2 = 51.48; (1 df), p < 0.001
Test for heterogeneity, χ2 = 10.60; (12 df), p = 0.56
Estimate of treatment difference (β̂1) = −0.545; se(β̂1) = 0.077
95% CI = (−0.696, −0.394)

test statistics, whereas the U and Q statistics in Table 4.2 use the assumption of
normality for the log-odds ratio in each individual study as used by the Wald test.
The reader is referred to Section A.5 of the Appendix for further details. The fixed
effects estimate of the log-odds ratio and its standard error will also be slightly
different for the two approaches. From Table 4.2 the log-odds ratio estimate is
−0.535 with standard error 0.078, whereas from Table 5.5 they are −0.545 and
0.077, respectively. The overall conclusions from the two approaches will usually
be the same.

The U statistic calculated using (3.3) and (3.4) is the score test statistic,
analogous to the likelihood ratio test statistic for testing the treatment difference
as described in Section 5.3.2.

5.4 FIXED EFFECTS MODELS FOR ORDINAL DATA

5.4.1 A fixed effects meta-analysis model

Suppose that each patient has a response which falls into one of m categories,
C1, . . . , Cm, which are ordered in terms of desirability: C1 is the best and Cm the
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worst. The patient observation yij is assumed to be a realization of a random
variable Yij, which has a multinomial distribution with parameters pijk, where
k = 1, . . . , m, and denominator nij = 1. The observation yij takes the value k if
the jth subject in study i has a response in the kth category. The parameter pijk is
the probability that the jth subject in study i has a response in the kth category.
Let Qijk be the associated probability of a response in category k or better, so that
Qijk = pij1 + · · · + pijk and Qijm = 1.

The modelling approach taken here is based on the proportional odds model,
and is described in detail in Whitehead et al. (2001). This model has the advantage
that it is consistent with the existence of a ‘latent’ continuous variable for the
response of each patient, a property which proves useful when different cut-points
are used amongst studies. When there are only two response categories it is
equivalent to the usual linear logistic model for binary data.

The proportional odds model is defined by

log
(

Qijk

1 − Qijk

)
= αk + ηij, k = 1, . . . , m − 1,

where αk is referred to as the kth intercept and ηij is a linear combination of
explanatory variables. The model assumes ‘proportional odds’ in that the log-odds
ratio βp, associated with a unit increase in the pth explanatory variable, does not
depend on the intercept k.

The model can be considered as arising from a ‘latent’ continuous variable.
Assume that the response of the jth subject in study i is truly equal to Gij, although
this ‘latent’ response will never be observed. Suppose that Gij has a logistic
distribution with parameters −ηij and 1, that is,

P(Gij � x) = 1
1 + e−(x−µij)/σij

,

where µij = −ηij and σij = 1.
If α1, . . . , αm−1, are the cut-points for determining the response category, then

putting

Qijk = P(Gij � αk) = 1
1 + e−(αk+ηij)

results in the proportional odds model defined above.
Consider the proportional odds model in which the explanatory variables are

study and treatment. Here

log
(

Qijk

1 − Qijk

)
= αk + β0i + β1x1ij. (5.7)

The parameter β1 represents the log-odds ratio of having a better response on the
experimental treatment than on the control, which is assumed common across
all intercepts and studies.
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In model (5.7) there is an assumption of proportional odds across all covari-
ates, implying a shift in the distribution of the underlying latent variable
according to study and treatment group but not a change of shape. This
means that within each study there is a common log-odds ratio, β1, for the
treated group relative to control for each value of k, k = 1, . . . , m − 1. It also
means that within each treatment group there is a common log-odds ratio,
β0i − β0i′ , for any study i relative to a different study i′ for each value of k.
This second assumption in relation to the studies seems to be rather restrictive
and perhaps unlikely to be true in practice. It can be relaxed by consider-
ing a stratified model, in which the covariates representing the study effects
are allowed to vary with the level of k. Such a model assumes proportional
odds between treatments, but stratifies by study. This means that the cut-
points associated with the distribution of the underlying latent variable for
determining the response category are allowed to vary from study to study
but are the same for both treatment groups within a study. The model is
given by

log
(

Qijk

1 − Qijk

)
= αik + β1x1ij. (5.8)

The term αik represents the kth intercept for the ith study. It is model (5.8) which
is analogous to that used in Chapter 4, as in both cases there is stratification
by study. Attention will be focused on models stratified by study, although in
Section 5.4.7 there is a discussion of the approach based on the meta-analysis
model (5.7).

5.4.2 Estimation and hypothesis testing

Maximum likelihood estimation of the parameters can be based on the full likeli-
hood for the multinomial distribution. The standard error for a single parameter
or a linear combination of the parameters can be calculated from the observed or
expected Fisher’s information matrix. Confidence intervals are based on asymp-
totic normality. Models are compared by means of the likelihood ratio test statistic,
that is, the change in deviance (−2 times the log-likelihood) between two models,
one of which contains the parameter(s) of interest while the other is identical
except that it does not contain the parameter(s) of interest. This test statistic
is compared with the chi-squared distribution. Further details can be found in
Section A.4 of the Appendix.

The stratified proportional odds models can be fitted using PROC NLMIXED
in SAS. Although its main purpose is to fit non-linear mixed models, PROC
NLMIXED can also be used to obtain ML estimates for fixed effects mod-
els. In the case of the stratified proportional odds models, this is achieved
by constructing the log-likelihood function using SAS programming state-
ments. Each subject’s contribution to the log-likelihood function is specified
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in terms of the model parameters. The contribution from the jth subject in
study i is

m∑
k=1

δijk log(pijk),

where δijk is 1 if the subject has a response in category k and 0 otherwise. The terms
pijk are expressed as functions of the Qijk, that is pijk = Qijk − Qij,k−1, k = 2, . . . , m
and pij1 = Qij1.

As an example, the following code could be used to fit model (5.8) with two
studies and an ordinal response with three categories:

PROC NLMIXED data = one;
PARMS a11 a12 a21 a22 =1, beta1 =0;
BOUNDS a12 a22 > 0;

eta = beta1*treat;

if study = 1 and y = 1 then do;
qk = 1/(1+exp(-a11-eta));
qk 1 = 0;
end;
if study = 1 and y = 2 then do;
qk = 1/(1+exp(-(a11 + a12)-eta));
qk 1 = 1/(1+exp(-a11-eta));
end;
if study = 1 and y = 3 then do;
qk = 1;
qk 1 = 1/(1+exp(-(a11 + a12)-eta));
end;
if study = 2 and y = 1 then do;
qk = 1/(1+exp(-a21-eta));
qk 1 = 0;
end;
if study = 2 and y = 2 then do;
qk = 1/(1+exp(-(a21 + a22)-eta));
qk 1 = 1/(1+exp(-a21-eta));
end;
if study = 2 and y = 3 then do;
qk = 1;
qk 1 = 1/(1+exp(-(a21 + a22)-eta));
end;

p =qk-qk 1;
if p>1e-8 then ll =log(p);
else ll =-1e100;

MODEL y ∼ general(ll);
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The data set ‘one’ contains the variables ‘study’, ‘treat’ and ‘y’. In order to
preserve the ordering of the intercept terms, αik, they are expressed in terms of the
parameters aik, where

αik =
k∑

h=1

aih,

and the aik are restricted to being greater than 0 for k = 2, . . . , m − 1. The model
parameters and their initial values are specified in the PARMS statement, and the
bounds for the aik parameters are specified in the BOUNDS statement. The rest of
the program is devoted to calculating the log-likelihood function. An error trap is
included in case the likelihood becomes too small.

The SAS output includes the (−2×) log-likelihood value and parameter esti-
mates and associated statistics. PROC NLMIXED uses the observed Fisher’s
information matrix. The estimate of β1 appears as the ‘beta1’ parameter estimate.

PROC NLMIXED does not require the data from each patient to be pre-
sented as a separate record. The data set ‘one’ may consist of four items
for each category in each treatment group in each study, namely the cat-
egory (cat), the treatment group (treat), the study (study) and the number
of patient responses (num). The variable ‘cat’ replaces ‘y’ in the above SAS
statements, and the following additional statement appears after the MODEL
statement.

REPLICATE num;

To test the null hypothesis that the treatment difference in all studies is equal
to 0, model (5.8) is compared with a model which only contains the study effects,
namely

log
(

Qijk

1 − Qijk

)
= αik. (5.9)

Model (5.8) has (m − 1)r + 1 degrees of freedom associated with the model terms
and model (5.9) has (m − 1)r. The change in deviance between these two models
is compared with the chi-squared distribution with one degree of freedom. This
is analogous to the U statistic described in Chapter 4. Model (5.9) may be fitted
by removing the ‘beta1’ and ‘eta’ terms in the PROC NLMIXED statements
above.

5.4.3 Testing for heterogeneity in the log-odds ratio across
studies

Heterogeneity can be tested by including a study by treatment interaction term in
the model. A model which includes the study by treatment interaction would be
given by
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log
(

Qijk

1 − Qijk

)
= αik + β1ix1ij, (5.10)

which has mr degrees of freedom associated with the model terms. The test for
heterogeneity is a test of the study by treatment interaction term and involves the
comparison of models (5.8) and (5.10). The change in deviance between these
two models is compared with the chi-squared distribution on r − 1 degrees of
freedom. Such a test is analogous to the test for heterogeneity based on the Q
statistic described in Chapter 4.

Model (5.10) may be fitted by replacing lines 2 and 4 in the PROC NLMIXED
program in Section 5.4.2 by

PARMS a11 a12 a21 a22 =1, beta11 beta12 = 0;

eta = beta11*treat*study1 + beta12*treat*study2;

where ‘study1’ takes the value 1 for patients in study 1 and 0 otherwise, and
‘study2’ takes the value 1 for patients in study 2 and 0 otherwise. The parameters
β11 and β12 are associated with ‘beta11’ and ‘beta12’ respectively in the SAS
output.

5.4.4 Example: Global impression of change in Alzheimer’s
disease

Table 5.6 shows the results of hypothesis tests for the tacrine studies described in
Section 3.5.1. The chi-squared statistic for testing the study by treatment inter-
action term is not significant (p = 0.30), providing no evidence of heterogeneity
in the log-odds ratio across studies. There is a statistically significant difference
between treatments (p < 0.001).

Table 5.7 shows the results of the fixed effects meta-analysis. Each individual
study estimate of the log-odds ratio and its standard error have been calculated
as in Table 4.15. The fixed effects estimate of the log-odds ratio is 0.505, with
standard error 0.112.

Table 5.6 Global impression of change in Alzheimer’s disease: comparison of models

Model
comparisons

Effect
tested

Change in
deviance

Change in
degrees of
freedom

p-value

(5.8) vs (5.9) Treat 20.43 1 <0.001
(5.10) vs (5.8) Study by Treat 4.84 4 0.30



Fixed effects models for ordinal data 117

Table 5.7 Fixed effects meta-analysis of the log-odds ratio from a stratified proportional
odds model for the tacrine studies

Study Treatment Category θ̂i se(θ̂i)

C1 C2 C3 C4 C5

1 Tacrine 4 23 45 22 2 0.284 0.261
Placebo 2 22 54 29 3

2 Tacrine 14 119 180 54 6 0.224 0.242
Placebo 1 22 35 11 3

3 Tacrine 13 20 24 10 1 0.360 0.332
Placebo 7 16 17 10 3

4 Tacrine 21 106 175 62 17 0.785 0.174
Placebo 8 24 73 52 13

5 Tacrine 3 14 19 3 0 0.492 0.421
Placebo 2 13 18 7 1

Test of treatment difference, χ2 = 20.43; (1 df), p < 0.001
Test for heterogeneity, χ2 = 4.84; (4 df), p = 0.30
Estimate of treatment difference (β̂1) = 0.505; se(β̂1) = 0.112
95% CI = (0.285, 0.725)

5.4.5 Modelling of individual patient data versus combining
study estimates

The meta-analysis based on modelling individual patient data is similar but not
identical to that based on combining study estimates presented in Table 4.16. The
reasons for this are the same as those outlined in Section 5.3.5 for binary data.
From Table 4.16 the log-odds ratio estimate is 0.503 with standard error 0.112,
and from Table 5.7 they are 0.505 and 0.112 respectively. For this example,
there is very good agreement between the two approaches. In general, the overall
conclusions from the two approaches will be the same.

5.4.6 Testing the assumption of proportional odds between
treatments

The assumption of proportional odds between treatments can be tested separately
for each study, for example by using the score test in PROC LOGISTIC in SAS. A
global test of this assumption, however, involving all studies will be more powerful
and is presented here.
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The assumption of proportional odds between treatments across intercepts can
be investigated by fitting the model

log
(

Qijk

1 − Qijk

)
= αik + β2kx1ij. (5.11)

This model, which has (m − 1)(r + 1) degrees of freedom associated with the
model terms, is compared with model (5.8). The change in deviance between
these two models is compared with the chi-squared distribution with m − 2
degrees of freedom.

To fit model (5.11) the PROC NLMIXED program in Section 5.4.2. should be
modified as follows:

PARMS a11 a12 a21 a22 =1, beta21 beta22 =0;
BOUNDS a12 a22 > 0;

if study = 1 and y = 1 then do;
qk = 1/(1+exp(-a11-beta21));
qk 1 = 0;
end;
if study = 1 and y = 2 then do;
qk = 1/(1+exp(-(a11 + a12)-beta22));
qk 1 = 1/(1+exp(-a11-beta21));
end;
if study = 1 and y = 3 then do;
qk = 1;
qk 1 = 1/(1+exp(-(a11 + a12)-beta22));
end;
if study = 2 and y = 1 then do;
qk = 1/(1+exp(-a21-beta21));
qk 1 = 0;
end;
if study = 2 and y = 2 then do;
qk = 1/(1+exp(-(a21 + a22)-beta22));
qk 1 = 1/(1+exp(-a21-beta21));
end;
if study = 2 and y = 3 then do;
qk = 1;
qk 1 = 1/(1+exp(-(a21 + a22)-beta22));
end;

For the tacrine studies, the change in deviance was calculated to be 0.91,
which compared with the chi-squared distribution on three degrees of freedom
is not statistically significant (p = 0.82). This indicated that the assumption of
proportional odds between treatments was satisfactory.
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5.4.7 A proportional odds model for studies and treatments

A test of the assumption of proportional odds between studies would involve
a comparison between model (5.7), which has m + r − 1 degrees of freedom
associated with the model terms, and model (5.8). The change in deviance between
the two models is compared with the chi-squared distribution on (m − 2)(r − 1)

degrees of freedom.
The proportional odds models, of which model (5.7) is an example, can be

fitted using PROC NLMIXED. However, such models can be fitted more easily
using PROC GENMOD. The SAS statements are similar to those presented in
Section 5.3.2 for binary data, and the following can be used to fit model (5.7):

PROC GENMOD;
CLASS study;
MODEL y = study treat/ type1 dist = multinomial link = cumlogit

waldci;

In the SAS output β1 is associated with the parameter ‘treat’.
As was the case with binary data, PROC GENMOD does not require the category

from each patient to be presented as a separate record. Instead the number of
patient responses (num) in each category (cat) in each treatment group in each
study can be provided. The MODEL statement above is replaced by

FREQ num;
MODEL cat = study treat/ type1 dist = multinomial link = cumlogit

waldci;

For the tacrine studies, the change in deviance between models (5.7) and (5.8)
was calculated to be 29.93, which compared with the chi-squared distribution on
12 degrees of freedom is statistically significant (p = 0.003). This indicated that
the assumption of proportional odds between studies was not appropriate.

When the assumption of proportional odds across all covariates is appropriate,
the meta-analysis model (5.7) can be used, and the test for heterogeneity in the
log-odds ratios across studies can be tested by fitting a model which extends
model (5.7) to include a study by treatment interaction term. This interaction
term can be fitted and tested by changing the MODEL statement to

MODEL y = study treat study*treat/ type1 dist = multinomial
link = cumlogit;

Table 5.8 shows the meta-analysis results under the proportional odds assumption
for the tacrine studies. It can be seen that, even though the assumption of
proportional odds between studies was not considered appropriate, making this
assumption has had little effect on the estimate of the treatment difference.
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Table 5.8 Fixed effects meta-analysis of the log-odds ratio from a proportional odds
model for the tacrine studies

Study Treatment Category θ̂i se(θ̂i)

C1 C2 C3 C4 C5

1 Tacrine 4 23 45 22 2 0.284 0.261
Placebo 2 22 54 29 3

2 Tacrine 14 119 180 54 6 0.224 0.242
Placebo 1 22 35 11 3

3 Tacrine 13 20 24 10 1 0.360 0.332
Placebo 7 16 17 10 3

4 Tacrine 21 106 175 62 17 0.785 0.174
Placebo 8 24 73 52 13

5 Tacrine 3 14 19 3 0 0.492 0.421
Placebo 2 13 18 7 1

Test of treat difference, χ2 = 21.23; (1 df), p < 0.001
Test for heterogeneity, χ2 = 5.93; (4 df), p = 0.20
Estimate of treatment difference (β̂1) = 0.517; se(β̂1) = 0.113
95% CI = (0.296, 0.737)

Comparison with Table 5.7 shows a change in the estimate of the log-odds ratio
from 0.505 to 0.517, and a change in the standard error from 0.112 to 0.113.

5.5 FIXED EFFECTS MODELS FOR SURVIVAL DATA

5.5.1 A fixed effects meta-analysis model

Suppose that the response variable yij is the time from randomization until the
event of interest occurs, referred to as the ‘survival time’. A patient who has been
observed to have the event of interest will have a known survival time. A patient
who has not will have a right-censored survival time, censored at the date they
were last seen. The actual survival time is to be used in the analysis. Let hij(t) be
the hazard function and Sij(t) the survivor function for patient j in study i.

The modelling approach taken here is based on the proportional hazards
model (Cox, 1972). This model is referred to as a semi-parametric model as no
distributional assumption is made for the survival times. The proportional hazards
model is defined by

log
(

hij(t)
h0(t)

)
= ηij, t > 0,

where ηij is a linear combination of explanatory variables, and h0(t) is the hazard
function relating to a patient for whom all values of the explanatory variables are
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set to 0. The function h0(t) is known as the baseline hazard function. No assumption
is made about its actual form.

Consider the proportional hazards model in which the explanatory variables
are study and treatment:

log
(

hij(t)
h0(t)

)
= β0i + β1x1ij. (5.12)

The parameter β1 represents the log-hazard ratio for treatment relative to control,
which is assumed common across all studies and for all t > 0.

In model (5.12) there is an assumption of a common baseline hazard function
for all patients. However, the assumption of a common baseline hazard function
across all studies seems to be rather restrictive. This assumption can be relaxed
by allowing a different baseline hazard function for each study. This results in
a stratified model, similar to that discussed in Section 5.4.1 in connection with
ordinal data. The stratified model is given by

log
(

hij(t)
h0i(t)

)
= β1x1ij, (5.13)

where h0i represents the baseline hazard function for patients in study i (in this
case patients in the control group). It is model (5.13) which is analogous to that
used in Chapter 4, as in both cases there is stratification by study. Attention will
be focused on the models stratified by study, although in Section 5.5.7 there is
discussion of the approach based on the meta-analysis model (5.12).

5.5.2 Estimation and hypothesis testing

Maximum likelihood estimation of the parameters for both the Cox proportional
hazards model and the stratified models can be obtained, for example using SAS
PROC PHREG. This procedure uses the observed Fisher’s information matrix.

Models are compared by means of the likelihood ratio statistic, that is, the
change in deviance (−2 times the log-likelihood) between two models, one of
which contains the parameter(s) of interest while the other is identical except
that it does not contain the parameter(s) of interest. The resulting test statistic
is compared with the chi-squared distribution. Further details are provided in
Section A.4 of the Appendix.

To fit model (5.13), the following SAS statements can be used:

PROC PHREG;
MODEL y * cens(0) = treat / ties = discrete;
STRATA study;

where ‘cens’ is the censoring variable which takes the value 0 if the survival time
is censored and 1 otherwise. The option ‘ties = discrete’ requests that the Cox
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approach to the adjustment for tied survival times is used. In the SAS output, the
parameter β1 is associated with the parameter ‘treat’.

To test the null hypothesis that the treatment difference in all studies is equal to
0, model (5.13) is compared with a model in which there are no terms,

log
(

hij(t)
h0i(t)

)
= 0. (5.14)

The change in deviance between models (5.13) and (5.14) is compared with the
chi-squared distribution with one degree of freedom. This test statistic is produced
in the SAS output from fitting model (5.13), and is analogous to the U statistic
described in Chapter 4.

5.5.3 Testing for heterogeneity in the log-hazard ratio across
studies

Heterogeneity can be tested by fitting a model which includes a study by treatment
interaction term. A model which assumes a common baseline hazard function
for all patients in the same study and includes the study by treatment interaction
would be given by

log
(

hij(t)
h0i(t)

)
= β1ix1ij. (5.15)

The test for heterogeneity would involve a comparison between model (5.13) and
model (5.15). The change in deviance between the two models is compared with
the chi-squared distribution on r − 1 degrees of freedom. Such a test is analogous
to the test for heterogeneity based on the Q statistic described in Chapter 4.

As an example, the following code could be used to fit model (5.15) with four
studies:

PROC PHREG;
MODEL y * cens(0) = treat1 treat2 treat3 treat4 / ties =discrete;
STRATA study;

where ‘treat1’ takes the value 1 for a subject in the treated group in study 1 and 0
otherwise, ‘treat2’ takes the value 1 for a subject in the treated group in study 2
and 0 otherwise, and so on.

5.5.4 Example: Mortality following myocardial infarction

Consider the MDPIT study described in Section 3.3.1. The survival times recorded
to the nearest day are used in the analyses presented in this chapter. Results
of the hypothesis tests in connection with the overall treatment difference and
the region by treatment interaction are presented in Table 5.9. The chi-squared
statistic for testing the region by treatment interaction term is not significant
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Table 5.9 Mortality following myocardial infarction: comparison of models

Model
comparisons

Effect
tested

Change in
deviance

Change in
degrees of
freedom

p-value

(5.13) vs (5.14) Treat 0.003 1 0.96
(5.15) vs (5.13) Region by Treat 9.16 6 0.16

Table 5.10 Fixed effects meta-analysis of the log-hazard ratio for mortality on diltiazem
relative to placebo for the MDPIT study, based on a stratified proportional hazards model

Region Diltiazem Placebo θ̂i se(θ̂i)

Number of Total number Number of Total number
deaths of patients deaths of patients

New York City (US) 33 262 25 256 0.282 0.265
Northeast (US) 46 305 39 298 0.145 0.218
Mideast (US) 4 72 13 71 −1.244 0.572
Midwest (US) 24 127 19 125 0.258 0.307
Southwest (US) 23 169 28 184 −0.123 0.282
Ontario (Canada) 21 121 27 122 −0.293 0.291
Quebec (Canada) 15 176 16 178 −0.071 0.359

Test of treatment difference, χ2 = 0.003; (1 df), p = 0.96
Test for heterogeneity, χ2 = 9.16; (6 df), p = 0.16
Estimate of treatment difference (β̂1) = −0.006; se(β̂1) = 0.110
95% CI = (−0.221, 0.209)

(p = 0.16), providing no evidence of heterogeneity in the log-hazard ratio across
regions. There is no evidence either of a treatment difference (p = 0.96).

Table 5.10 shows the results of the fixed effects meta-analysis. Each individual
region estimate of the log-hazard ratio and its standard error have been calculated
as in Table 4.8. The fixed effects estimate of the log-hazard ratio is −0.006, with
standard error 0.110.

5.5.5 Modelling of individual patient data versus combining
study estimates

For the reasons detailed in Section 5.3.5, the meta-analysis based on modelling
individual patient data is similar but not identical to that based on combining study
estimates presented in Table 4.9. From Table 4.9 the log-hazard ratio estimate
is 0.005 with standard error 0.111, and from Table 5.10 they are −0.006 and
0.110 respectively. For this example, there is good agreement between the two
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approaches, both indicating very little difference between the treatments. In
general, the overall conclusions from the two approaches will be the same.

5.5.6 Testing the assumption of proportional hazards between
treatments

The assumption of proportional hazards between treatments can be investigated
by fitting a piecewise Cox model. Suppose that the time period for patient follow-up
is divided into m intervals (0, u1], (u1, u2], . . . , (um−1, ∞]. Within each of these
intervals it is assumed that the hazards are proportional. The piecewise Cox model
is given by

log
(

hij(t)
h0i(t)

)
= β1x1ij +

m∑
k=2

β2kx2kij(t)x1ij, (5.16)

where x2kij(t) is equal to 1 if uk−1 < t � uk, and 0 otherwise, for k = 2, . . . , m
and um = ∞. The terms x2kij(t)x1ij are known as time-dependent variables. The
log-hazard ratio for the treatment relative to the control changes from one time
interval to the next. For the first time interval it is equal to β1, for the second
interval it is equal to β1 + β22, and so on. To test the assumption of proportional
hazards between treatments model (5.16), with m degrees of freedom associated
with the model terms, is compared with model (5.13). The change in deviance
between the two models is compared with the chi-squared distribution with m − 1
degrees of freedom.

As an example, the following SAS statements may be used to fit model (5.16)
for the four time intervals (0, 365], (365, 731], (731, 1096], (1096, ∞]:
PROC PHREG;
MODEL y*cens(0) = treat piece2 piece3 piece4 / ties = discrete;
piece2 = ((y gt 365) - (y gt 731))*treat;
piece3 = ((y gt 731) - (y gt 1096))*treat;
piece4 = (y gt 1096)*treat;
STRATA study;

In the MODEL statement, programming statements have been included to create
the time-dependent explanatory variables.

For the MDPIT study, the follow-up time was divided into seven intervals. These
consisted of 6-monthly intervals for the first 3 years plus a last category of more
than 3 years. The change in deviance between the two models was calculated
to be 4.58 which, compared with the chi-squared distribution with six degrees
of freedom, was not significant (p = 0.60). This indicated that the assumption of
proportional hazards between treatments was satisfactory.

5.5.7 A proportional hazards model for studies and treatments

When the assumption of a common baseline hazard function across all studies
is appropriate, the meta-analysis model (5.12) can be used and the test for
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heterogeneity in the log-hazard ratio across studies can be tested by fitting a model
which extends model (5.12) to include a study by treatment interaction term.

As an example, the following SAS statements can be used to fit model (5.12) to
data from four studies:

PROC PHREG;
MODEL y*cens(0) = study1 study2 study3 treat / ties = discrete;

Unfortunately PROC PHREG does not contain a CLASS statement, so that factors
must be entered into the MODEL statement as a set of indicator variables. The
term ‘study1’ takes the value 1 for a patient in study 1 and 0 otherwise, ‘study2’
takes the value 1 for a patient in study 2 and 0 otherwise, and so on. In the SAS
output β1 is associated with the parameter ‘treat’.

To test for heterogeneity in the log-hazard ratios across studies, a study by
treatment interaction term can be included in the MODEL statement as follows:

MODEL y*cens(0) = study1 study2 study3 treat s1trt s2trt s3trt/
ties = discrete;

where ‘s1trt’ takes the value 1 for patients in the treated group in study 1 and 0
otherwise, ‘s2trt’ takes the value 1 for patients in the treated group in study 2 and
0 otherwise, and so on.

Table 5.11 shows the meta-analysis results under the proportional hazards
assumption for studies and treatments. The results are very similar to those in
Table 5.10.

Table 5.11 Fixed effects meta-analysis of the log-hazard ratio for mortality on diltiazem
relative to placebo for the MDPIT study, based on a proportional hazards model

Region Diltiazem Placebo θ̂i se(θ̂i)

Number of Total number Number of Total number
deaths of patients deaths of patients

New York City (US) 33 262 25 256 0.282 0.265
Northeast (US) 46 305 39 298 0.145 0.218
Mideast (US) 4 72 13 71 −1.244 0.572
Midwest (US) 24 127 19 125 0.258 0.307
Southwest (US) 23 169 28 184 −0.123 0.282
Ontario (Canada) 21 121 27 122 −0.293 0.291
Quebec (Canada) 15 176 16 178 −0.071 0.359

Test of treatment difference, χ2 = 0.005; (1 df), p = 0.94
Test for heterogeneity, χ2 = 9.41; (6 df), p = 0.15
Estimate of treatment difference (β̂1) = −0.008, se(β̂1) = 0.110
95% CI = (−0.223, 0.207)
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5.6 FIXED EFFECTS MODELS FOR INTERVAL-CENSORED
SURVIVAL DATA

5.6.1 A fixed effects meta-analysis model

Consider the situation in which the response variable is a survival time, but
the exact time of the event is unknown. Instead, it is known that the event
occurred during a particular interval of time. The time intervals are defined by
(0, u1], (u1, u2], . . . , (um, ∞]. Let Sij(t) be the survivor function for patient j in
study i. Let πijk be the probability that patient j from study i has an event in the
interval (uk−1, uk] given that they have not had an event in a previous interval,
where k = 1, . . . , m, and u0 = 0.

The modelling approach taken is to assume a proportional hazards model which
can be shown (Whitehead, 1989; Collett, 1994) to be equivalent to the model

log{− log(1 − πijk)} = αk + ηij, k = 1, . . . , m,

where the intercept αk is equal to log[−log{S0(uk)/S0(uk−1)}], ηij is a linear
combination of explanatory variables, and S0(t) is the survivor function of
a patient for whom all values of the explanatory variables are set to 0. No
assumption is made about the actual form of the baseline survivor function. The
model is a linear model for the complementary log-log transformation of πijk, and
can be fitted using standard methods for modelling binary data.

Consider the proportional hazards model

log{− log(1 − πijk)} = αk + β0i + β1x1ij, (5.17)

in which the explanatory variables are study and treatment. The parameter β1

represents the log-hazard ratio which is assumed common across all intercepts
and studies. In this model there is an assumption of proportional hazards across
all studies, so that the survival distributions for the individual studies share
common features, as defined by the αk. It can be seen that model (5.17) is similar
to model (5.7), and that the assumption with regard to studies can be relaxed by
fitting a model which is similar to model (5.8), namely

log{− log(1 − πijk)} = αik + β1x1ij. (5.18)

It is model (5.18) which is analogous to that used in Chapter 4, as in both cases
there is stratification by study. Attention will be focused on models stratified by
study, although in Section 5.6.7 there is discussion of the approach based on the
meta-analysis model (5.17).
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5.6.2 Estimation and hypothesis testing

Parameter estimates are obtained using the method of maximum likelihood. The
approach is similar to that for the linear logistic regression model, as described in
Section 5.3.2. However, in this case, each patient contributes multiple recordings
of binary data, equal to the number of time intervals of observation, that is, the
number of intervals during which they belong to the ‘at risk’ set. Occurrence of
the event during an interval constitutes a ‘success’; otherwise the binary outcome
is recorded as a ‘failure’. As the underlying binary variables are independent,
estimation and hypothesis testing proceed as for logistic regression analysis as
described in Section 5.3.2, with the exception that the complementary log-log
function is used instead of the logit function as the link function.

To test the null hypothesis that the treatment difference in all studies is equal to
0, model (5.18) is compared with a model which only contains the study effects,
namely

log{− log(1 − πijk)} = αik. (5.19)

Model (5.18) has mr + 1 degrees of freedom associated with the model terms,
and model (5.19) has mr. The change in deviance between these two models is
compared with the chi-squared distribution with one degree of freedom. This is
analogous to the U statistic described in Chapter 4.

To fit model (5.18) and to obtain the results of the likelihood ratio test mentioned
above, the following SAS statements can be used:

PROC GENMOD;
CLASS int study;
MODEL y = int study int*study treat / type1 dist = bin

link = cloglog waldci;

where ‘y’ takes the value 1 if the event occurs in that particular time interval for
that patient and 0 otherwise, and ‘int’ is a factor which associates each binary
observation with the corresponding time interval. The estimate of β1 is associated
with the parameter ‘treat’ in the SAS output. As discussed in Section 5.3.2, the
data may alternatively be entered in binomial form, and the MODEL statement
modified accordingly.

5.6.3 Testing for heterogeneity in the log-hazard ratio across
studies

Heterogeneity in the log-hazard ratio across studies can be tested by including a
study by treatment interaction term in the model. A model which includes the
study by treatment interaction would be given by

log{− log(1 − πijk)} = αik + β1ix1ij, (5.20)
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which has (m + 1)r degrees of freedom associated with the model terms. The test
for heterogeneity is a test of the study by treatment interaction term and involves
the comparison of models (5.18) and (5.20). The change in deviance between
these two models is compared with the chi-squared distribution on r − 1 degrees
of freedom. Such a test is analogous to the test for heterogeneity based on the Q
statistic described in Chapter 4.

Model (5.20) may be fitted and the test for heterogeneity conducted by changing
the MODEL statement in Section 5.6.2 as follows:

MODEL y = int study int*study treat study*treat / type1 dist = bin
link = cloglog;

In the SAS output, the appropriate chi-squared statistic is that associated with
the ‘study*treat’ term. As noted in Section 5.2.3, the parameter associated with
‘treat’ is β1r and the parameter associated with ‘study i * treat’ is (β1i − β1r).

5.6.4 Example: Ulcer recurrence

For the ulcer recurrence example described in Section 3.4.1, the chi-squared
statistic for testing the country by treatment interaction term is not significant
(p = 0.71), providing no evidence of heterogeneity in the log-hazard ratio across
countries (Table 5.12). The treatment difference is also not statistically significant
(p = 0.24).

Table 5.13 shows the results of the fixed effects meta-analysis. Each individual
country estimate of the log-hazard ratio and its standard error have been calculated
as in Table 4.11. The fixed effects estimate of the log-odds ratio is −0.280, with
standard error 0.241.

5.6.5 Modelling of individual patient data versus combining
study estimates

As is the case for binary data (see Section 5.3.5), the meta-analysis of interval-
censored survival data based on modelling individual patient data is similar but
not identical to that based on combining study estimates presented in Table 4.12.

Table 5.12 Ulcer recurrence: comparison of models

Model
comparisons

Effect Change in
deviance

Change in
degrees of
freedom

p-value

(5.18) vs (5.19) Treat 1.35 1 0.24
(5.20) vs (5.18) Country by Treat 1.39 3 0.71
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Table 5.13 Fixed effects meta-analysis of the log-hazard ratio for ulcer recurrence on
treatment 2 relative to treatment 1, based on a stratified proportional hazards model

Country Treatment 2 Treatment 1 θ̂i se(θ̂i)

Number Total Number Total
with ulcer number with ulcer number
recurrence patients recurrence patients

Austria 15 55 19 59 −0.290 0.347
Belgium 7 29 4 23 0.195 0.630
France 5 22 6 25 −0.129 0.607
Holland and

Norway
5 65 9 59 −0.748 0.558

Test of treatment difference, χ2 = 1.35; (1 df), p = 0.24
Test for heterogeneity, χ2 = 1.39; (3 df), p = 0.71
Estimate of treatment difference (β̂1) = −0.280; se(β̂1) = 0.241
95% CI = (−0.752, 0.193)

From Table 4.12 the log-hazard ratio estimate is −0.278 with standard error
0.244, and from Table 5.13 they are −0.280 and 0.241 respectively. For this
example, there is good agreement between the two approaches. In general, the
overall conclusions from the two approaches will be the same.

5.6.6 Testing the assumption of proportional hazards between
treatments across timepoints

The assumption of proportional hazards for treatments across timepoints can be
investigated by fitting the model

log{− log(1 − πijk)} = αik + β2kx1ij. (5.21)

This model, which has m(r + 1) degrees of freedom associated with the model
terms, is compared with model (5.18). The change in deviance between the two
models is compared with the chi-squared distribution with m − 1 degrees of
freedom.

Model (5.21) may be fitted and the test for proportional hazards conducted by
changing the MODEL statement in Section 5.6.2 as follows:

MODEL y = int study int*study treat int*treat / type1 dist = bin
link = cloglog;

In the SAS output, the appropriate chi-squared statistic is that associated with the
‘int*treat’ term. The parameter associated with ‘treat’ is β2m and the parameter
associated with ‘int k * treat’ is β2k − β2m.
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For the ulcer recurrence example, the change in deviance was calculated to
be 2.00, which compared with the chi-squared statistic with 1 degree of freedom
was not statistically significant (p = 0.16). This indicated that the assumption of
proportional hazards between treatments across timepoints was satisfactory.

5.6.7 A proportional hazards model for studies and treatments

A test of the assumption of proportional hazards between studies would involve
a comparison between model (5.17) and model (5.18), which have respectively
m + r and mr + 1 degrees of freedom associated with the model terms.

Model (5.17) may be fitted by changing the MODEL statement in Section 5.6.2
as follows:

MODEL y = int study treat / type1 dist = bin link = cloglog waldci;

For the ulcer recurrence example, the change in deviance between mod-
els (5.17) and (5.18) was calculated to be 7.52, which compared with the
chi-squared distribution on three degrees of freedom just failed to reach statis-
tical significance (p = 0.06). This indicated that the assumption of proportional
hazards between studies might not be satisfactory.

When the proportional hazards assumption across studies and treatments is
considered appropriate, the meta-analysis model (5.17) can be used and the test
for heterogeneity in the log-hazard ratio across studies can be tested by fitting a
model which extends model (5.17) to include a study by treatment interaction
term. In order to include and test the interaction term, the MODEL statement is
modified as follows:

Table 5.14 Fixed effects meta-analysis of the log-hazard ratio for ulcer recurrence on
treatment 2 relative to treatment 1, based on a proportional hazards model

Country Treatment 2 Treatment 1 θ̂i se(θ̂i)

Number Total Number Total
with ulcer number with ulcer number
recurrence patients recurrence patients

Austria 15 55 19 59 −0.290 0.347
Belgium 7 29 4 23 0.195 0.630
France 5 22 6 25 −0.129 0.607
Holland and

Norway
5 65 9 59 −0.748 0.558

Test of treatment difference, χ2 = 1.32; (1 df), p = 0.25
Test for heterogeneity, χ2 = 1.42; (3 df), p = 0.70
Estimate of treatment difference (β̂1) = −0.276, se(β̂1) = 0.241
95% CI = (−0.748, 0.196)
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MODEL y = int study treat study*treat/ type1 dist = bin
link = cloglog;

Table 5.14 shows the meta-analysis results under the proportional hazards
assumption for studies and treatments. The results are very similar to those in
Table 5.13.

5.7 THE TREATMENT DIFFERENCE AS A RANDOM
EFFECT

Random effects can be introduced into a meta-analysis model within the frame-
work of a hierarchical (multilevel) model. The usual approach is to include the
random effects as part of the term ηij, which represents the linear combination
of explanatory variables, and assume that they have a multivariate normal dis-
tribution, the variance components of which are to be estimated from the data.
In this case there are two levels: patient at the lower level (level 1) nested within
study at the higher level (level 2).

Consider the fixed effects model (5.3), which contains the study by treatment
interaction term. Here ηij is defined as

ηij = β0i + β1ix1ij.

As an alternative to defining the study by treatment interaction terms as fixed
effects, they can be defined as level 2 random effects as follows:

ηij = β0i + γ1ix1ij, (5.22)

where γ1i = β1 + ν1i, and the ν1i are normally distributed random effects with
mean 0 and variance τ2. Rewriting this, grouping separately the fixed and random
effects, yields

ηij = β0i + β1x1ij + ν1ix1ij. (5.23)

The meta-analysis model (5.23) is an example of a mixed model, because it
contains both fixed and random effects. The analogy with the random effects
model presented in Section 4.3.1 as (4.2) can be seen, as β1 is equal to θ and ν1i is
equal to νi.

5.8 RANDOM EFFECTS MODELS FOR NORMALLY
DISTRIBUTED DATA

5.8.1 A random effects meta-analysis model

The random effects meta-analysis model for the normally distributed responses yij

is given by
yij = α + β0i + β1x1ij + ν1ix1ij + εij. (5.24)
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This model contains two random terms, namely ν1i and εij, and is an example of
a general linear mixed model. It fits into a general framework for meta-analysis
models, as discussed by Higgins et al. (2001). The εij, which are the level 1 terms,
are assumed to be uncorrelated with the level 2 terms, ν1i.

5.8.2 Estimation and hypothesis testing

Estimates will be required for the fixed effect parameters α, β0i and β1 and
the variance components σ2 (or σ2

i ) and τ2. These can be calculated using a
maximum likelihood approach. However, the alternative residual (restricted)
maximum likelihood approach is generally preferred, as it avoids the downward
bias of ML estimates of the variance parameters. The ML and REML approaches
are analogous to those described in Section 4.3.8, although when individual
patient data are available the full likelihood for the data can be utilized, instead of
the likelihood based on study estimates of the treatment difference. For the fixed
effects model (5.1), in which there is only the one variance component σ2, at level
1, REML is equivalent to the method of least squares.

The random effects ν1i can be estimated using shrinkage estimates. Shrinkage
estimates of γ1i = β1 + ν1i can also be obtained. The shrinkage estimate of γ1i is a
prediction of the location within the normal distribution from which the estimate
of treatment difference from study i has arisen. It is an optimally weighted
linear combination of the estimated overall treatment difference, β̂1, and the
estimated treatment difference from study i. The degree of shrinkage depends on
the magnitude of the variation in the study estimates of treatment difference and
the number of patients in study i, ni. When ni is small, the shrinkage estimate for
the treatment difference in study i will be close to the overall estimate β̂1, but as ni

increases it moves closer to the estimated difference from study i.
Some details of the methods mentioned above can be found in Section A.7 of the

Appendix, but for a comprehensive coverage the reader is referred to Brown and
Prescott (1999), which also discusses their implementation in SAS PROC MIXED.
The next two paragraphs present a brief summary of the procedures which can
be used for hypothesis testing.

Wald tests can be used for inferences concerning the variance components.
Although valid for large samples, the Wald test can be unreliable due to the skewed
and bounded nature of the sampling distribution for a variance component.
Likelihood ratio tests based on the REML likelihood are preferable, although
the results should be interpreted with caution when estimates of the variance
components are close to 0. For the likelihood ratio test the change in deviance
(−2 times the REML log-likelihood) between models with and without the terms
of interest is compared with the chi-squared distribution with degrees of freedom
equal to the difference in the number of variance components between the two
models (Morrell, 1998). Alternatively, parametric bootstrapping can be utilized
(Efron and Tibshirani, 1993).
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Wald tests can be used for inferences concerning the fixed effect parameters. The
Wald test statistic has a chi-squared distribution under the null hypothesis when
the variance components are known. However, when the variance components
are estimated, the estimated standard errors of the fixed effect parameters will tend
to be downwardly biased. One option is to compare the Wald test statistic with the
F distribution. Usually this statistic only approximately follows the F distribution
and the denominator degrees of freedom must be estimated. Kenward and Roger
(1997) consider a scaled Wald statistic together with an F approximation to its
sampling distribution, and estimate the denominator degrees of freedom using
Satterthwaite’s (1941) procedure. Likelihood ratio tests may be performed for
the fixed effect parameters. However, the (−2×) log-likelihood values used in
the comparison should be obtained from the ML procedure as the penalty term
associated with REML depends on the fixed effect terms in the model. Welham and
Thompson (1997) consider a likelihood ratio statistic based on modified REML
log-likelihoods. Alternatively, parametric bootstrapping may be utilized.

REML procedures are now available in a number of statistical packages. SAS
PROC MIXED implements both the ML and REML methods, the default option being
REML. The package MLn uses an iterative generalized least-squares estimation
procedure (IGLS) which has been shown to be equivalent to ML (Goldstein,
1986) and a restricted iterative generalized least-squares estimation procedure
(RIGLS) which has been shown to be equivalent to REML (Goldstein, 1989).
Details of the approach adopted by MLn can be found in Section A.8 of the
Appendix. Wald statistics for the variance components are produced by both
packages. The preferable REML likelihood ratio test statistics are available with
SAS, and the parametric bootstrap may be performed using MLn. For the fixed
effect parameters, SAS PROC MIXED produces Wald F and t statistics with the
option of using the Kenward and Roger approach, amongst others. Within MLn
parametric bootstrapping may be used.

The following PROC MIXED program may be used to fit model (5.24):

PROC MIXED;
CLASS study;
MODEL y = study treat/ htype = 1 ddfm = kenwardroger solution;
RANDOM treat/ subject = study;

The fixed effect terms appear in the MODEL statement and the random effect terms
in the RANDOM statement. The ‘subject = study’ option declares that the random
effect ‘treat’ varies from study to study. The ‘htype = 1’ option plays a similar role
to the ‘ss1’ option in PROC GLM (see Section 5.2.2).

5.8.3 Example: Recovery time after anaesthesia

Table 5.15 shows the results of the random effects meta-analysis based on
individual patient data for the anaesthetic study, in which a common variance
parameter σ2 has been assumed across all centres. The estimate of σ2 is 0.503,
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Table 5.15 Random effects meta-analysis of the absolute mean difference
(treatment A − treatment B) in log-recovery time, assuming a common σ2 across
all centres

Random effects
(individual patient

data) REML

Random effects
(combining centre
estimates) REML

Test of β1 = 0 14.29 (cf. F1,9.26)
p = 0.004

14.48 (cf. χ2
1)

p < 0.001
β̂1 [se(β̂1)]
95% CI

0.615 [0.163]
(0.249, 0.982)

0.615 [0.162]
(0.298, 0.932)

σ̂2 0.503 0.506
τ̂2 0.124 0.124

which is very close to 0.506, the estimated pooled variance s2
p from Section 4.2.9.

For comparison, the results of the random effects analysis using REML estimation
in conjunction with the centre estimates of the treatment difference (Table 4.33)
are also shown in Table 5.15. Comparison of the two columns shows identical
estimates (to three decimal places) of the treatment difference, β̂1 = θ̂∗ = 0.615,
with corresponding standard errors of 0.163 and 0.162. The REML estimates of the
heterogeneity parameter are also identical (to three decimal places), τ̂2 = 0.124.
The confidence interval for the treatment difference in the first column is wider
than that in the second, as it makes an allowance for the estimation of the variance
components. The former is based on the t distribution with degrees of freedom
estimated to be 9.26 using Satterthwaite’s procedure, as opposed to the normal
distribution. This results in multiplication of the standard error by 2.253 instead
of 1.96.

5.8.4 The connection between the multilevel model and the
traditional mixed effects linear model

This subsection shows the connection, as described by Higgins et al. (2001),
between the multilevel model (model 5.24) and the traditional mixed effects
linear model, described in Searle (1971). The latter has a longer history than the
multilevel model, and provides a useful framework when there are more than two
treatment groups.

Within the traditional mixed effects linear model, let yihj be the response from
patient j in treatment group h in study i. The model which includes the study,
treatment and study by treatment interaction terms is given by

yihj = µ + si + th + (st)ih + εihj, (5.25)

where µ is a constant, si is the effect of being in study i, for i = 1, . . . , r, th

the effect of being on treatment h, for h = T, C, (st)ih the study by treatment
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interaction term, and εihj the residual error terms, for j = 1, . . . , nhi. In the case
of homogeneous error terms, εihj are uncorrelated normally distributed random
effects with expected value 0 and variance σ2. The random effects meta-analysis
model (5.24) corresponds to model (5.25) in which the study and treatment effects
are fixed and the study by treatment interaction term is random. In the traditional
mixed effects linear model, the treatment effects are fixed and the study and study
by treatment interaction terms are random. Model (5.25) can be viewed as a
three-level model with study at the highest level, treatment at the middle level
and patient at the lowest level.

In order to facilitate the comparison with the multilevel model (24), the
subscript h can be removed and indicator variables used to code the treatment
effects in model (5.25). Let x1Tij and x1Cij be the treatment indicator variables such
that x1Tij takes the value 1 for a patient in the treated group and 0 otherwise
and x1Cij takes the value 1 for a patient in the control group and 0 otherwise.
The comparison with the random effects meta-analysis model can be made by
expressing model (5.25) as

yij = µ + si + β1Tx1Tij + β1Cx1Cij + ν1Tix1Tij + ν1Cix1Cij + εij, (5.26)

where j = 1, . . . , ni, ni = nTi + nCi, si is the fixed study effect, β1T = tT and β1C = tC

are the fixed treatment effects, ν1Ti = (st)iT and ν1Ci = (st)iC are the random study
by treatment interaction effects and the εij are uncorrelated normally distributed
random effects with expected value 0 and variance σ2. The correlations between
all of the random effects are assumed to be zero.

In model (5.26) constraints are required on β1T, β1C, ν1Ti and ν1Ci in order
to make all parameters identifiable. Particular choices of constraints lead to the
random effects meta-analysis model (5.24) with differing codings of the treatment
covariate, x1ij. For example, setting ν1Ci = 0, for i = 1, . . . , r, β1C = 0 and ν1Ti to
be normally distributed with mean 0 and variance σ2

τ leads to x1ij being coded 1
for the treated group and 0 for the control group. In this case, β1T = β1, ν1Ti = ν1i

and σ2
τ = τ2. Alternatively, setting ν1Ti + ν1Ci = 0, for i = 1, . . . , r, β1T + β1C = 0

and ν1Ti to be normally distributed with mean 0 and variance σ2
τ leads to x1ij

being coded +1
2 for the treated group and − 1

2 for the control group. In this case,
β1T = β1/2, ν1Ti = ν1i/2 and σ2

τ = τ2/2.
In order to fit the mixed effects linear model, in which the study and treatment

effects are fixed and the study by treatment interaction is random, the following
set of SAS statements may be used:

PROC MIXED;
CLASS study treat;
MODEL y = study treat / htype = 1 ddfm = kenwardroger;
RANDOM study*treat;
LSMEANS treat / pdiff cl;

Provided that the control group appears as the last level of the factor ‘treat’, the
output produced is that from fitting model (5.26), in which β1C = 0, ν1Ci = −ν1Ti,
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for i = 1, . . . , r, and ν1Ti is normally distributed with mean 0 and variance σ2
τ .

This is equivalent to a random effects meta-analysis model given by

yij = α + β0i + β1x1ij + ν1ix2ij + εij,

where x1ij takes the value 1 for the treated group and 0 for the control group and
x2ij takes the value + 1

2 for the treated group and −1
2 for the control group. In

this case β1T = β1, ν1Ti = ν1i/2 and σ2
τ = τ2/2. In the SAS output the difference

between the treatment least-squares means provides an estimate of β1, and
the estimate alongside the covariance parameter ‘study*treat’ is an estimate
of τ2/2.

5.9 RANDOM EFFECTS MODELS FOR BINARY DATA

5.9.1 A random effects meta-analysis model

The random effects meta-analysis model for the binary response in which the logit
link function is to be used is given by

log
(

pij

1 − pij

)
= α + β0i + β1x1ij + ν1ix1ij, (5.27)

and has been discussed by Turner et al. (2000). This model is an example of a
generalized linear mixed model.

5.9.2 Estimation and hypothesis testing

The methodology and the software for fitting generalized linear mixed models
has recently been and still is undergoing development. For a full maximum
likelihood analysis based on the joint marginal distribution, numerical integration
techniques are required for calculation of the log-likelihood, score equations and
Fisher’s information matrix. As one of its options, the SAS procedure PROC
NLMIXED directly maximizes an approximate integrated likelihood, using a
numerical quadrature approach (see, for example, Hedeker and Gibbons, 1994;
or Diggle et al., 1994). Maximum likelihood estimates of the parameters are
produced in this case.

Approximate inference, which is available with the MLn program, involves the
use of either marginal quasi-likelihood (MQL) or penalized quasi-likelihood (PQL),
and either first-order or second-order Taylor expansion approximations for the
logit link function. Approximate ML and REML estimates are found via the IGLS
and RIGLS procedures. PQL produces improved estimates of variance components
in mixed models, in general, whilst model convergence is more easily achieved
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with MQL. The second-order Taylor expansion provides greater accuracy than the
first-order expansion. Some details of this approach can be found in Section A.9
of the Appendix. For further details about generalized linear mixed models, the
reader is referred to Brown and Prescott (1999).

Wald tests can be used for inferences concerning the variance components.
However, for the reasons given in Section 5.8.2, likelihood ratio tests based on
the REML are preferable. Wald tests can be used for inferences concerning the
fixed effect parameters. However, the calculated standard errors of the parameter
estimates and the corresponding CIs are usually too narrow, because no allowance
is made for the estimation of the variance components. Within MLn parametric
bootstrapping may be used.

For the examples in Sections 5.9.3 and 5.10.2, the package MLn or its interactive
Windows version MLwiN was utilized. MLn is a command-driven program, and
the commands for fitting model (5.27) are as follows:

DINPUT c1-c7
meta.dat
NAME c1 ‘subject’ c2 ‘study’ c3 ‘treat’ c4 ‘y’ c5 ‘cons’ c6 ‘bcons’
c7 ‘denom’
RESP ‘y’
IDEN 1 ‘subject’ 2 ‘study’
EXPL ‘treat’ ‘cons’ ‘bcons’
FPAR ‘bcons’
SETV 2 ‘treat’
LINK ‘bcons’ G9
SETV 1 ‘bcons’
DUMM ‘study’ c8-c15
EXPL c8-c15
FPAT c:\mln\discrete
PREF pre
POST post
SET b10 0
SET b11 1
SET b12 1
SET b13 0
SET b14 0
SET b15 1
SET b16 0
METH 0

The data set ‘meta.dat’ is a rectangular file containing seven variables. When
the data are entered individually for each subject, the variable ‘subject’ contains
a unique value for each subject, ‘study’ contains the study number, ‘treat’ the
value of x1ij, and ‘y’ the y-values. The data must be ordered according to the
hierarchical structure of the model, with the values of the lowest level changing
the most often. The variable ‘denom’ is the number of subjects contributing to
the line of data, which in this case is 1. The variables ‘cons’ and ‘bcons’ take
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the value 1 everywhere. The variable ‘cons’ is used to define the intercept term
in the model. The variable ‘bcons’ is needed to model the level 1 variance. If
‘bcons’ is set to 1, then the variation is purely binomial. The commands ‘DINPUT’
and ‘NAME’ read the data from ‘meta.dat’ into MLn. The data are held by MLn
in the columns of a worksheet, referred to as c1, c2, and so on. The command
‘RESP’ defines the binary response variable. The command ‘IDEN’ defines the
hierarchical structure of the data, that is, ‘subject’ is at level 1 and ‘study’ at
level 2. The ‘EXPL’ command declares all variables which are involved in the
model, including those connected with the variance terms. The ‘FPAR’ command
acts as a toggle between adding and removing variables from the fixed effects part
of the model. As ‘bcons’ is included in the ‘EXPL’ command, it is automatically
included in the fixed effects part of the model unless removed by means of
the ‘FPAR’ command. The first ‘SETV’ command requests that the treatment
difference be random across studies. The ‘LINK’ and second ‘SETV’ commands set
up the binomial errors. The command ‘DUMM’ creates a set of indicator variables
for the study effect. In this example, there are nine studies, so that eight indicator
variables are created. The subsequent ‘EXPL’ command declares these as fixed
terms in the model.

MLn macros are used to fit non-linear models (Yang et al., 1996), and it is
assumed that these are located in the subdirectory called ‘discrete’. The non-
linear models are implemented by having two sets of macro instructions: the
option ‘PREF’ makes the necessary data transformations to run a non-linear
model and the option ‘POST’ transforms the data back to their original state. The
settings for the non-linear macros are specified by the values in boxes B10–B16.
B10 specifies the distribution of the data, which is set to 0 for the binomial
distribution. B11 specifies whether a first- or second-order Taylor expansion is to
be used, coded as 1 and 2 respectively. B12 specifies whether MQL or PQL is to
be used, coded as 0 or 1 respectively. B13 specifies the link function, which in
this case is 0 for the logit link function. B14 controls the estimation of the level 1
variance. If it is set to 0 then the variance is constrained to be binomial. B15 is set
to 1 for a univariate model, and B16 set to 0 because it is not a mixed response
model. The command ‘METH’ acts as a toggle between the use of IGLS and RIGLS.
The default option is IGLS. The ‘METH’ command then switches the method to
RIGLS.

It is possible to obtain approximate REML estimates based on a first-order PQL
from SAS, although not via an established SAS procedure. Instead, a SAS macro
known as GLIMMIX may be utilized. This macro, which can be used to fit all types
of generalized linear mixed models, was written by Russ Wolfinger (from SAS) and
is available from the SAS website at http://www.sas.com. The macro iteratively
computes a pseudo-variable based on a first-order Taylor expansion of the link
function and fits a weighted mixed model using PROC MIXED. It is based on the
approach described in Wolfinger and O’Connell (1993). The following SAS code
may be used for fitting model (5.27):
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%inc ‘c:\glimmix.sas’;
%GLIMMIX( stmts = %str(

CLASS study;
MODEL y = study treat/ htype = 1 solution;
RANDOM treat/ subject = study;
),
error = binomial,
link = logit

)
RUN;

It can be seen that the SAS code includes a mixture of PROC MIXED and PROC
GENMOD statements. The ‘stmts’ parameter includes the PROC MIXED statements
which are similar to the PROC MIXED program in Section 5.8.2. However, ‘y’ now
contains the binary observations. The ‘error’ option specifies the error distribution,
which in this case is binomial. It plays the role of ‘dist’ in PROC GENMOD. The
‘link’ option specifies the link function as in PROC GENMOD.

5.9.3 Example: Pre-eclampsia

To illustrate the methodology a second example concerning binary data is
introduced in which there is heterogeneity between the study estimates. This
example, which involves nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia, has been discussed by Brown and
Prescott (1999) and Turner et al. (2000). The data, together with the individual
study estimates of the log-odds ratio of pre-eclampsia on diuretic treatment relative
to control, are presented in Table 5.16. Each study estimate and its standard error

Table 5.16 Trial estimates of the log-odds ratio of pre-eclampsia on diuretic treatment
versus control during pregnancy, based on formulae (3.1) and (3.2)

Trial Treated group Control group θ̂i se(θ̂i)

Cases of Total Cases of Total
pre-eclampsia pre-eclampsia

1 14 131 14 136 0.042 0.400
2 21 385 17 134 −0.924 0.343
3 14 57 24 48 −1.122 0.422
4 6 38 18 40 −1.473 0.547
5 12 1011 35 760 −1.391 0.338
6 138 1370 175 1336 −0.297 0.121
7 15 506 20 524 −0.262 0.347
8 6 108 2 103 1.089 0.828
9 65 153 40 102 0.135 0.261
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Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8
Trial 9

Fixed

Random

−4 −3 −2 −1 0

Log-odds ratio

1 2 3 4

Figure 5.1 The log-odds ratio of pre-eclampsia on diuretic treatment relative to control.
Individual study estimates and overall fixed and random effects estimates are presented,
with 95% confidence intervals. Individual study calculations are based on formulae (3.1)
and (3.2). The fixed and random effects estimates are calculated using the methods of
Chapter 4 with the method of moments estimate of τ2.

are calculated using the unconditional maximum likelihood approach (3.1)
and (3.2). A CI plot is shown in Figure 5.1.

The results of various meta-analyses of this dataset are presented in Table 5.17.
In the first column are the results from a fixed effects meta-analysis of the study
estimates from Table 5.16, based on the general fixed effects parametric approach
described in Chapter 4. The fixed effects estimate from this analysis is the one
presented in Figure 5.1. The fixed effects analysis based on individual patient data,
as described in Section 5.3, is presented in the second column. These two sets
of results are very similar. In the third and fourth columns are the results from
random effects analyses using the general random effects parametric approach
of Chapter 4. In the first case the estimation of the heterogeneity parameter τ2 is
based on the method of moments (Figure 5.1) and in the second case on REML.
Although the overall estimate of the log-odds ratio is similar in both cases, the
larger estimate of τ2 from REML produces a wider CI. The last column shows
the results of a random effects analysis using individual patient data. In this
analysis, first-order PQL estimates under RIGLS were derived using MLn. The
Wald test statistic is presented in the table for testing the treatment effect. The
estimate of the log-odds ratio from this approach is similar to those obtained in
the third and fourth column. Further analyses of this data set, including the use
of bootstrapping to obtain a more accurate CI for the log-odds ratio, can be found
in Turner et al. (2000). Brown and Prescott (1999) do not fit model (5.27), but
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instead consider the model in which both the study effects and the treatment
differences are random. Such models are considered in Section 5.11.

5.10 RANDOM EFFECTS MODELS FOR OTHER DATA
TYPES

Multilevel models for ordinal responses and for survival and interval-censored
survival data are discussed by Goldstein (1995) and may be fitted using MLn via
macros (Yang et al., 1996). However, methods for inference are more complicated
than for normally distributed and binary data, and are currently restricted to
the use of Wald test statistics. In this section we consider application to ordinal
responses, using the tacrine data set described in Section 3.5.1 as an illustration.

5.10.1 A random effects meta-analysis model for ordinal data

The random effects meta-analysis model for the ordinal response, stratified by
study, is given by

log
(

Qijk

1 − Qijk

)
= αik + β1x1ij + ν1ix1ij, (5.28)

and has been discussed by Whitehead et al. (2001). To fit model (5.28) using MLn,
the ordinal response for patient j in study i is considered as a correlated set of
m − 1 binary response variables Yij1, . . . , Yij,m−1, where the observed values are
denoted by yij1, . . . , yij,m−1. Let yijk equal 1 if patient j in study i has a response in
a category less than or equal to k, and 0 otherwise. This means that if the patient
has a response in category 1 then yij1 = yij2 = . . . . = yij,m−1 = 1, if the patient
has a response in category 2 then yij1 = 0 and yij2 = . . . . = yij,m−1 = 1, and so
on. For a response in category m, yij1 = yij2 = . . . . = yij,m−1 = 0. The random
variable Yijk has expected value Qijk. The (h, k)th element of the covariance
matrix associated with the binary responses for patient j in study i is given
by Qijh(1 − Qijk), for h � k, and Qijk(1 − Qijh) for h > k, k = 1, . . . , m − 1. The
model is then considered to have three levels, namely category (level 1), patient
(level 2) and study (level 3), where category refers to the m − 1 correlated binary
responses.

The following MLn commands may be used to fit model (5.28) with two studies
and an ordinal response with three categories:

DINPUT c1-c12
meta.dat
NAME c1 ‘binm’ c2 ‘subject’ c3 ‘study’ c4 ‘treat’
NAME c5 ‘alpha11’ c6 ‘alpha12’ c7 ‘alpha21’ c8 ‘alpha22’
NAME c9 ‘y’ c10 ‘cons’ c11 ‘bcons’ c12 ‘denom’
RESP ‘y’
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IDEN 1 ‘binm’ 2 ‘subject’ 3 ‘study’
EXPL ‘cons’ ‘bcons’ ‘alpha11’ ‘alpha12’ ‘alpha21’ ‘alpha22’
EXPL ‘treat’
FPAR ‘bcons’ ‘cons’
SETV 3 ‘treat’
LINK ‘bcons’ G9
SETV 1 ‘bcons’
FPAT c:\mln\multicat
PREF pre
POST post

SET b10 1
SET b11 1
SET b12 1
SET b13 0
SET b14 0
SET b16 0
METH 0

The data set ‘meta.dat’ is a rectangular file containing 12 variables. Each patient
contributes m − 1 lines of data. For patient j in study i the m − 1 values of ‘y’
are yij1, . . . , yij,m−1. The variable ‘binm’ takes the value k when the value in ‘y’ is
yijk. The variable ‘alphaik’ for i = 1, . . . , r and k = 1, . . . , m − 1 takes the value 1
when the patient is in study i and the value in ‘y’ is yijk, and 0 otherwise. The data
must be ordered according to the hierarchical structure – that is, by study, subject
and binary response variable – with the lowest level changing the most quickly.
It is assumed that the MLn macros used to fit the non-linear model are located
in the subdirectory called ‘multicat’. The settings for the non-linear macros are
specified by the values in boxes B10–B16. B10 specifies the distribution of the
data, which is set to 1 for an ordered multinomial distribution. B14 controls the
estimation of the level 1 variance; if it is set to 0 then the variance is constrained
to be multinomial. The other boxes serve the same purpose as described for the
program presented in Section 5.9.2.

5.10.2 Example: Global impression of change in Alzheimer’s
disease

Table 5.18 shows the results of fitting model (5.28) to the tacrine studies described
in Section 3.5.1. using individual patient data. In the analysis first-order PQL
estimates under RIGLS were derived using MLn. The estimate of the overall log-
odds ratio and its standard error, based on individual patient data, are identical
(to three decimal places) to those based on combining study estimates using the
REML approach (Table 4.32). Estimates of the heterogeneity parameter are in
close agreement.
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Table 5.18 Random effects meta-analysis of the
log-odds ratio from a stratified proportional odds
model for the tacrine studies

Random effects
(individual patient

data) REML

Test of β1 = 0 10.67 (cf. χ2
1)

p = 0.001
β̂1[se(β̂1)]
95% CI

0.467 [0.143]
(0.187, 0.747)

τ̂2 0.032

5.11 RANDOM STUDY EFFECTS

In the two-level hierarchical model it perhaps seems logical also to include the
study effects as random effects rather than fixed effects. In this case patient groups
recruited into different studies are considered to be a random sample from a
wider collection of patient populations. Treating the study effects as random
parameters is controversial in the field of meta-analysis. The issue is analogous
to that for multicentre trials, about which there has been considerable debate.
The implications of fitting the study effects as fixed or random is discussed further
in Section 5.12. The present section presents the models and discusses their
implementation.

Random study effects can be introduced as additional level 2 random effects, so
that model (5.22) becomes

ηij = γ0i + γ1ix1ij, (5.29)

where γ0i = β0 + ν0i, and ν0i are normally distributed random effects with mean 0
and variance ζ2. Rewriting this, grouping separately the fixed and random effects,
yields

ηij = β0 + β1x1ij + ν0i + ν1ix1ij. (5.30)

Because model (5.30) now contains two level 2 random effects terms, it is neces-
sary to consider the correlation between them. The covariance matrix for ηij is
given by

cov(ηih, ηij) = ζ2 + τ2x1ihx1ij + ρζτ(x1ih + x1ij),

cov(ηih, ηi′j) = 0, for i �= i′,

where ρ is the correlation between ν0i and ν1i.
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There are now three variance components to be estimated. In the case of
a meta-analysis based on a small number of studies, when estimation of the
correlation coefficient is problematic or impossible, it may be necessary to make
the assumption of zero correlation. If ρ is required to be 0, then care will be needed
regarding the coding of the treatment covariate. In order to produce a common
variance for ηij for each treatment group, x1ij will need to take the value −1

2 for
the control group and +1

2 for the treated group.
Including the study effects as random effects allows recovery of any between-

study treatment information which will be present when the relative sizes of the
treatment groups differ between studies.

5.11.1 Random study and study by treatment effects: normally
distributed data

The model for the yij based on (5.30) is given by

yij = β0 + β1x1ij + ν0i + ν1ix1ij + εij. (5.31)

This now contains three random effects terms. The level 1 and level 2 random
effects are assumed to be uncorrelated, but it is necessary to consider the correlation
between the two level 2 random effects ν0i and ν1i, as described a few paragraphs
ago. Also note that the term α + β0i in model (5.24) has now been replaced by
the term β0 + ν0i. In model (5.31), the term β0 represents the mean effect in the
control group across the whole population of studies.

To fit model (5.31) in which ρ = 0, the following SAS statements can be used:

PROC MIXED;
CLASS study;
MODEL y = treat/ htype = 1 ddfm = kenwardroger solution;
RANDOM int treat/ subject = study;

Note that ‘treat’ will need to take the value −1
2 for the control group and +1

2 for
the treated group.

To fit Model (5.31) in which ρ is estimated, the ‘RANDOM’ statement needs to
be changed as follows:

RANDOM int treat/ type = un subject = study;

The ‘type’ option specifies the structure of the covariance matrix for the two level 2
random effects within each study. The default is that there is no correlation, and
the choice of ‘type = un’ specfies an unstructured covariance matrix, to allow ρ

to be estimated.
Model (5.31) can also be expressed as a traditional mixed effects linear model,

in which the treatment effects are fixed and the study and study by treatment
interaction terms are random. Suppose that in model (5.25) the study effects, si,
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are normally distributed random effects with mean 0 and variance σ2
s . When

using the traditional mixed effects linear model it is common to assume that
all random effects are uncorrelated, which is equivalent to model (5.31) in
which ρ = 0. This model can be fitted by using the SAS statements presented in
Section 5.8.4, but in which the MODEL and RANDOM statements are altered as
follows:

MODEL y = treat / htype = 1 ddfm = kenwardroger;
RANDOM study study*treat;

In the SAS output, the estimate of σ2
s is printed alongside the covariance parameter

‘study’. The constraints used by PROC MIXED lead to the connections β1T = β1,
σ2

τ = τ2/2 and σ2
s = ζ2 − τ2/4.

5.11.2 Example: Recovery time after anaesthesia

Table 5.19 shows the results of the meta-analysis of the anaesthetic study, in
which there are two level 2 random effects, for centre and treatment difference
within centre. In the first column the correlation between the two level 2 random
effects is assumed to be 0. In the second column the correlation between the two
random effects is estimated. The results with respect to the treatment difference
are very similar for both analyses.

Comparison of the two sets of results with the first column of Table 5.15 indicates
little difference in the estimate of the treatment difference and its standard error
between the three analyses. For this data set there is no gain in information by
including centre as a random effect.

Table 5.19 A mixed model for the absolute mean difference
(treatment A − treatment B) in log-recovery time, assuming a
common σ2 across all centres. The two level 2 random effects
are for centre and the treatment difference in each centre

ρ = 0 ρ is estimated

Test of β1 = 0 14.29 (cf. F1,9.21) 14.50 (cf. F1,9.29)
p = 0.004 p = 0.004

β̂1[se(β̂1)] 0.623 [0.165] 0.623 [0.164]
95% CI (0.252, 0.995) (0.255, 0.992)
σ̂2 0.502 0.504
ζ̂2 0.287 0.279
ρζ̂τ – −0.103
τ̂2 0.130 0.125
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5.11.3 Random study and study by treatment effects: other data
types

Other data types can be handled in a similar fashion to that illustrated for normally
distributed data. However, for ordinal, survival and interval-censored survival
data, where the stratified models are considered to be the more appropriate, some
thought needs to be given to the inclusion of random study effects. It is difficult to
envisage incorporating a random effect for the αik terms in the stratified model as
this could lead to intercept terms which do not follow the natural ordering. Using
the ordinal model as an example, a random study effect could be incorporated, as
follows:

log
(

Qijk

1 − Qijk

)
= αk + γ0i + γ1ix1ij.

Rewriting this, grouping separately the fixed and random effects, yields

log
(

Qijk

1 − Qijk

)
= αk + β0 + β1x1ij + ν0i + ν1ix1ij.

Models which include the two level 2 random effects can be fitted using MLn.

5.12 COMPARISONS BETWEEN THE VARIOUS MODELS

Three types of meta-analysis model have been presented in this chapter. In the first
case, study effects were treated as fixed and the treatment difference parameter as
fixed and common across all studies. In the second case the treatment difference
parameter was allowed to vary randomly across studies, and in the third case
study effects were additionally allowed to vary randomly. In this section we look
at the implications of using the different models.

When individual patient data are available, a meta-analysis can be undertaken
in the same way as the analysis of a multicentre trial. Therefore, the issues involved
in the choice of the model might be expected to be the same for both situations.
Brown and Prescott (1999) present the same models for both a meta-analysis
and the analysis of a multicentre trial. However, as discussed by Senn (2000),
there are differences between the approaches traditionally applied to each. These
differences are highlighted in the discussion of the various models.

The various models are presented within the context of normally distributed
data, although the same issues apply to other data types. Table 5.20 presents the
three meta-analysis models (5.1), (5.24) and (5.31) together with three additional
ones, (5.3), (5.32) and (5.33). Model (5.3) is a fixed effects model, which is similar
to model (5.1) except that it includes study by treatment interaction terms.
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Table 5.20 Models for meta-analysis and multi-
centre trials

Model Fixed effects Random effects

(5.32) α + β1x1ij –
(5.1) α + β0i + β1x1ij –
(5.3) α + β0i + β1ix1ij –
(5.33) β0 + β1x1ij ν0i

(5.24) α + β0i + β1x1ij ν1ix1ij

(5.31) β0 + β1x1ij ν0i + ν1ix1ij

Model (5.32) only includes one fixed effect term, the treatment difference, and
model (5.33) extends this model to include random study effects. These six models
are based on those presented by Senn. He also considers Bayesian approaches,
but in this section we focus on the frequentist approaches. A Bayesian approach
to meta-analysis is presented in Chapter 11.

Model (5.32), which contains only the treatment effect, is the simplest model
for the analysis of an individual trial. It is the model underlying the calculation
of study estimates of treatment difference as presented in Chapter 3. When data
from a number of studies are said to be ‘pooled’, for example in the case of safety
data, it is likely to be this model which is used. Model (5.32) is not used for
meta-analysis because no allowance is being made for any differences between
the patients recruited to the different studies. Neither is the model used for the
analysis of a multicentre trial, unless there are a large number of centres and the
number of patients per centre is very small. In such situations, however, centres
may be pooled together in homogeneous groups to form larger units.

Model (5.1) is commonly used for the analysis of multicentre trials, and is
the model analogous to the ‘traditional’ fixed effects meta-analysis model of
Section 4.2. The overall estimate of treatment difference from this model is a
weighted average of the individual centre (trial) estimates of treatment difference,
where the weight is the inverse variance of the estimate. When the residual error
terms have a common variance, σ2, each patient is given equal weight. If this
model is used, then the overall estimate of treatment difference is specific to those
centres (trials) included in the analysis. If the results from the individual centres
(trials) appear to be reasonably consistent then it may be reasonable to conclude
that the treatment difference does not depend on the centre (trial).

In Model (5.3) the centre (trial) by treatment interaction terms are included
as fixed effects. The overall estimate of treatment difference from this model is
obtained by giving equal weight to each centre (trial) estimate. This corresponds
to using the type III sums of squares for the treatment effect, as defined by
SAS. This model has been used for the analysis of multicentre trials, but it is
controversial (Senn, 1997). If there are large differences in the number of patients
in each centre, then the results can be quite different from those obtained from
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model (5.1). Another potential problem is that the overall estimate of treatment
difference cannot be estimated unless there are results from both treatments in
each centre. Model (5.3) is not used for estimating the treatment difference in a
meta-analysis, but can be used for testing heterogeneity in the study estimates
of treatment difference, as discussed in Section 5.2.3. In addition, if the estimate
of σ2 from this model is used as opposed to that from model (5.1), then the
meta-analysis based on model (5.1) is identical to the ‘traditional’ fixed effects
meta-analysis model of Section 4.2 (see Section 5.2.5). This latter approach
has also been recommended for the analysis of a multicentre trial (Kallen,
1997).

Model (5.33) includes the centre (trial) as a random effect and the treatment
difference as a fixed effect. This approach is rarely used. Taking the trial effect as
random would allow recovery of any between-trial treatment information which
will be present when the relative sizes of the treatment groups differ between trials.
This may lead to smaller standard errors for the treatment difference than would
be obtained from model (5.1). In many cases there will be little between-study
information to recover, because the degree of imbalance is small. However, the
recovery of extra information gains in importance when there are more than two
treatments to compare and not all of the treatments are included in every trial.
In a meta-analysis the recovery of between-trial treatment information involves
comparing patients across trials, which may be undesirable. This may not be as
much of a problem for a multicentre trial.

The random effects meta-analysis model is described by model (5.24). In this
case the trial effects are fixed and the treatment difference varies randomly across
trials. This model is analogous to model (4.2), which is applied to trial estimates of
treatment difference. Because these trial estimates eliminate the trial effects, there
is no possibility of recovering between-trial treatment information. The random
effects model is commonly used in meta-analysis, probably because meta-analyses
are often performed retrospectively on studies which have not been planned with
this in mind. In such cases it is believable that differences in study design and
inclusion criteria will lead to some heterogeneity in the treatment difference across
studies. The random effects analysis allows the between-trial variability in the
estimates of treatment difference to be accounted for in the overall estimate and its
standard error. It is argued that it produces results which are more generalizable
than those from model (5.1). However, this assumes that the results from the
included trials are representative of what one would see from the total population
of treatment centres, even though centres taking part in clinical trials are not
chosen at random. In the case of a meta-analysis with a small number of studies,
the variance term associated with the heterogeneity parameter, τ2, will be poorly
estimated. Random effects models are rarely used for the analysis of multicentre
trials. Given that such trials are designed prospectively with a combined analysis
of the data in mind, there may be less reason to suspect heterogeneity than for the
retrospective meta-analysis. This may also be the case for a prospectively planned
meta-analysis.
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Model (5.31) contains random effects for both study and treatment difference.
As with model (5.33), this allows recovery of any between-study treatment
information which will be present when the relative sizes of the treatment groups
differ between studies. The amount of extra information will depend on the degree
of the treatment imbalance across studies and the ratio of the between-study
variance component, ζ2, and the heterogeneity parameter associated with the
treatment difference, τ2. The issues involved in the recovery of between-study
information are the same as for model (5.33). In model (5.31) there are now two or
possibly three variance components at the study level. When there are only a small
number of studies in the meta-analysis, this may be problematic. Model (5.31) is
rarely used for meta-analysis or for the analysis of a multicentre trial.
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Dealing with Heterogeneity

6.1 INTRODUCTION

Meta-analyses are often undertaken retrospectively, so that results are combined
from studies which have not followed a common protocol. In a prospectively
planned multicentre study, on the other hand, it is usual for all centres to follow
a common protocol for the collection of key data. There is a continuum from the
prospectively planned multicentre study to the retrospectively conducted meta-
analysis in terms of the validity of combining results. There would generally be
less concern in presenting combined results from a multicentre study than from
a meta-analysis in which different patient selection criteria, treatment regimens
and definitions of the response measure may have been used. As discussed in
Chapter 5, the same statistical methods can be used for a meta-analysis as for
the analysis of a multicentre trial. The studies in a meta-analysis are considered
in the same way as centres in a multicentre trial. However, the validity of the
assumptions made in order to conduct the analysis may be different in the two
cases.

Any mathematical model chosen for a meta-analysis is only an approximation
to the truth. It is important to choose models which aid the interpretation of the
results. Often there are a large number of analyses which might be undertaken.
Therefore, in order to provide a focus, it is necessary to define the main analysis
strategy a priori. Once the main analyses have been completed, then additional
exploratory analyses may be undertaken to aid interpretation of the results or to
address secondary issues.

A number of the issues which need to be addressed in the specification and/or
conduct of the main analysis concern heterogeneity in the treatment difference
across trials. Deciding whether or not the amount of heterogeneity is of concern
and, if it is, how to deal with it is not straightforward. This task is made easier if
certain issues are addressed at the protocol design stage, as discussed in Chapter 2.
In this chapter these issues are discussed in detail.

In Section 6.2 the use of a formal test for heterogeneity is discussed. Factors
affecting the choice between a fixed effects and a random effects model and the
situations in which it is inappropriate to present any overall estimate of treatment
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difference are considered in Sections 6.3 and 6.4, respectively. The choice of an
appropriate measure of treatment difference is addressed in Section 6.5.

In some situations the treatment difference may be expected to vary from one
level of a factor to another. For example, a larger difference might be expected
in patients with a severe form of the disease than a mild form. Such factors
are sometimes referred to as potential effect modifiers. Specification a priori of
a small number of factors as potential sources of heterogeneity is useful. If the
size of the treatment difference is affected by the level of one of these factors – for
example, if there is indeed a larger effect in patients with the severe form of the
disease than the mild form – then the treatment difference can be presented for
each of the subgroups separately. The additional data which are available for
investigation of heterogeneity might be at the study level or the patient level.
When individual patient data are available, there is also the possibility of adjusting
for prognostic factors which are considered likely to affect the outcome data. This
is commonly undertaken in the analysis of individual trials. For example, in trials
of an antihypertensive agent blood pressure may be adjusted for the age of the
patient, and in trials in Alzheimer’s disease cognitive impairment may be adjusted
for baseline disease severity. If the randomization scheme has produced important
differences in the distributions of these prognostic factors for the two treatment
groups, then the calculated treatment difference needs to be adjusted to account
for this. The use of study-level covariate information is addressed in Section 6.6
and patient-level covariate information in Section 6.7.

A case study which illustrates the types of investigations which might be
undertaken in order to explore heterogeneity is presented in Section 6.8. This is
followed in Section 6.9 by a suggested strategy for dealing with heterogeneity.

6.2 THE USE OF A FORMAL TEST FOR HETEROGENEITY

A formal statistical test for heterogeneity across trials, of the parameter measuring
treatment difference, can be performed. Appropriate test statistics were described
in Chapter 4 for the case in which study estimates of the treatment difference are
to be combined, and in Chapter 5 for the case in which individual patient data are
available. In the latter situation heterogeneity was tested via a likelihood ratio test.
Such a test is sometimes used to decide whether to present an overall fixed effects
or an overall random effects estimate of the treatment difference. For example, if
the p-value is less than or equal to 0.05 then the random effects estimate may be
calculated, and otherwise the fixed effects estimate.

Although the result of a statistical test for heterogeneity provides some useful
descriptive information about the variability between trials, a decision based
purely on the p-value is not to be recommended. It is necessary to distinguish
between a clinically important difference and a statistically significant difference.
Usually a single study is designed with sufficient power to detect a clinically
important difference. There is an attempt to match statistical significance with
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clinical significance. In a retrospective meta-analysis there is usually no control
over the sample size, therefore it is helpful to consider the amount of variation in
the size of the effect which would be considered clinically important. In large data
sets a trivial amount of heterogeneity may be statistically significant, whereas
in small data sets a large amount of heterogeneity may not be statistically
significant. In the random effects model (4.2), the study treatment difference
parameters are assumed to be independent observations from N(θ, τ2). The
coefficient of variation, τ/θ, therefore might be a useful additional measure. It
can be estimated by substituting estimates of τ and θ into the numerator and
denominator, respectively.

Hardy and Thompson (1998) investigated the power of the test for heterogeneity
based on the statistic Q (defined in Section 4.2.3) under different scenarios. These
included varying the size of the heterogeneity parameter, τ2, the number of trials
included in the meta-analysis (r), and the weight wi allocated to the ith study, for
i = 1, . . . , r. They concluded that the power can be low especially in the case of
sparse data or when one trial has a much larger weight than the others. They
state that the result of the test for heterogeneity for assessing the validity of the
fixed effects model is of limited use, particularly when the total information (sum
of the weights) is low, or when there is large variability between the weights of
the trials.

6.3 THE CHOICE BETWEEN A FIXED EFFECTS AND A
RANDOM EFFECTS MODEL

The choice between a fixed effects and a random effects model should not be made
solely on the statistical significance of the test for heterogeneity. Additional criteria
such as the number of trials and the distribution of the study estimates of treatment
difference need to be considered. For a meta-analysis based on a small number
of studies, the estimate of the heterogeneity parameter from the data is likely to
be unreliable. If the results from the trials appear to be reasonably consistent
then the fixed effects analysis may be the more appropriate one to present. If
there is inconsistency then no overall estimate should be calculated, and further
investigation into the cause of the inconsistency needs to be undertaken. For a
meta-analysis based on a larger number of trials the random effects analysis may
be preferred anyway, for reasons given in the next paragraph. However, if the
distribution of the trial estimates is very far from the assumed normal distribution
then further investigation needs to be undertaken.

The overall estimate from the fixed effects model provides a summary of
the results obtained from the particular sample of patients contributing data.
Extrapolation of the results from the fixed effects model to the total population of
patients makes the assumption that the characteristics of patients contributing
data to the meta-analysis are the same as those in the total patient population.
A common argument in favour of the random effects model is that it produces
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results which can be considered to be more generalizable. However, the underlying
assumption of the random effects model is that the results from studies in the
meta-analysis are representative of the results which would be obtained from the
total population of treatment centres, and study centres are usually not chosen at
random. The choice of a normal distribution for modelling the heterogeneity in the
treatment difference parameter across trials is made because of its robustness and
computational ease, although alternatives could be considered. One advantage
of the random effects model is that it allows the between-study variability in
the treatment difference estimates to influence the overall estimate and, more
particularly, its precision. Therefore, if there is substantial variability this will
be reflected in a wide confidence interval. This more conservative approach will
in general lead to larger numbers of patients being required to demonstrate a
significant treatment benefit than the fixed effects approach. As a result, definitive
evidence of treatment efficacy from a random effects model will usually be more
convincing.

It may be useful in many cases to consider the results from both a fixed effects
model and a random effects model. If there is no heterogeneity, then the random
effects analysis will be the same as the fixed effects analysis, because τ2 will be
estimated to be 0. On the other hand, if the two analyses lead to important
differences in conclusion, this highlights the need for further investigation.
Sections 6.5–6.9 discuss various approaches which might then be taken.

6.4 WHEN NOT TO PRESENT AN OVERALL ESTIMATE OF
TREATMENT DIFFERENCE

If the study estimates differ substantially then it may be inappropriate to present
an overall estimate. Consider the following hypothetical example concerned with
three studies comparing a new drug against placebo (Table 6.1). Each study
individually shows a statistically significant difference in favour of the new drug,
as illustrated by the 95% CIs, all of which lie entirely above 0 (Figure 6.1). Studies
1 and 3 have a similar size of effect, but in study 2 the effect is much larger.
Consider a meta-analysis of these studies using the methods for combining study
estimates described in Chapter 4. The 95% CI based on a fixed effects model (0.85,
1.33) lies between the two extremes but is not consistent with either: it does not
seem an appropriate summary of the results. The test for heterogeneity using the Q
statistic is highly significant. The 95% CI based on a random effects model (−0.09,
2.81) is much wider and includes small negative values. Using the random effects
model the treatment difference is not significantly different from 0 at the 5% level.
It does not seem appropriate to present this CI either. Clearly it would be desirable
to investigate the studies further, in particular to investigate why the effect in
study 2 is different from the other two.

Even though all three studies show a statistically significant benefit for the new
drug, there should be concern about the variation in the size of the effect. If the
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Table 6.1 Hypothetical example: meta-analysis of three studies comparing a new
drug with placebo. The measure of treatment difference is denoted by θ, which is
positive when the new drug is beneficial

Study θ̂i 95% CI wi θ̂iwi θ̂2
i wi

1 0.6 (0.2, 1.0) 22 13.2 7.9
2 3.0 (2.5, 3.5) 15 45.0 135.0
3 0.5 (0.1, 0.9) 30 15.0 7.5

Total 67 73.2 150.4

U = (73.2)2/67 = 80.0; (1 df) p < 0.001
θ̂ = 73.2/67 = 1.09; se(θ̂) = 1/

√
67 = 0.12; 95% CI = (0.85, 1.33)

Q = 150.4 − 80.0 = 70.4; (2 df) p < 0.001
τ̂2 = (70.4 − 2)/(67 − 1609/67) = 1.59
U∗ = (2.487)2/1.831 = 3.37; (1 df) p = 0.07
θ̂∗ = 2.487/1.831 = 1.36; se(θ̂∗) = 1/

√
1.831 = 0.74; 95% CI = (−0.09, 2.81)

Study 1

Study 2

Study 3

Random

−2 −1 0
Treatment difference

1 2 3 4

Fixed

Figure 6.1 Hypothetical example: individual study estimates and overall fixed and
random effects estimates are presented, with 95% confidence intervals.

random effects model is used to calculate the probability that the new drug is
worse than placebo at a fourth centre, which is 1 − �(1.36/

√
1.59), where �

is the standard normal distribution function, we find that the resulting value of
0.14 is not reassuringly small.

A distinction can be made between quantitative interaction and qualitative
interaction. Quantitative interaction is the term applied to heterogeneity between
studies, when the effects are either all positive or all negative, whereas qualitative
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interaction implies that the drug may be beneficial in some cases and harmful in
others. More concern is expressed if qualitative interaction occurs. The example
described above illustrates quantitative interaction. However, by subtracting 2
from all of the study estimates and CIs, we would have qualitative interaction. In
this case studies 1 and 3 would have individually concluded a significant effect
in favour of placebo, whilst study 2 would still have shown a significant effect in
favour of the new drug. Is it right that more effort should be put into exploring
heterogeneity under this latter scenario? Surely, quantitative interaction needs to
be understood too.

6.5 THE CHOICE OF AN APPROPRIATE MEASURE OF
TREATMENT DIFFERENCE

For many of the response variables which are encountered in clinical trials there is
more than one measure of treatment difference which could be used. For example,
consider the Collins et al. (1990) data set from Table 3.1. In Section 4.2.5 three
parameterizations of the treatment difference were considered, namely the log-
odds ratio, the probability difference and the log-relative risk, and a fixed effects
meta-analysis based on study estimates performed for each of them. On choosing
the log-odds ratio or the log-relative risk as a measure of treatment difference, it
was found that the test for heterogeneity was not significant (Tables 4.2 and 4.7).
On the other hand, on choosing the probability difference there was significant
heterogeneity (Table 4.5). In this data set it can be seen that the percentage of
strokes in the control group varies from 1.3 to 43.8. On the whole the estimates of
the log-relative risk and log-odds ratio are similar, but because of the advantages
of the log-odds ratio discussed in Section 3.2.2 the latter is to be preferred as the
measure of treatment difference for binary data. Because there is not a linear
relationship between the log-odds ratio and the probability difference, unless the
treatment difference is zero, homogeneity of the treatment effect across all studies
in one scale implies heterogeneity in the other. Heterogeneity in the probability
difference scale is likely to arise if the control rates take a wide range of values,
or if all the rates are close to 0% or close to 100%. If the control rate is 43.8%, a
reduction of 0.05 on the probability difference scale leads to a rate in the treated
group of 38.8%. If the control rate is 1.3%, a reduction of 0.05 on the probability
difference scale leads to a rate of −3.7%, which is not possible: the largest possible
difference is 0.013. In this example it is perhaps more plausible that the treatment
will reduce the rate by a multiplicative factor, for example reduce the rate to
90% of the control rate. The log-odds ratio is a more satisfactory measure in this
respect. Unless there are good reasons to choose otherwise, the parameterization
which can if necessary be used in a more general regression approach should be
chosen. Such parameterizations were discussed in Chapter 5 in connection with
meta-analysis models using individual patient data.
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6.6 META-REGRESSION USING STUDY ESTIMATES OF
TREATMENT DIFFERENCE

The dependence of the treatment difference on one or more characteristics of the
trials in the meta-analysis can be explored via meta-regression. This corresponds
to a regression analysis in which the trial estimates of treatment difference are
the observations and trial-level covariates, each of which have a value defined
for each trial, are the explanatory variables. Unless there are a large number
of studies, however, it may be practicable to investigate only one covariate (or
factor) at a time. Therefore the case of one explanatory variable is discussed in
detail, although extension to more than one is straightforward.

To incorporate a trial-level covariate within the fixed effects model, equa-
tion (4.1) is extended as follows:

θ̂i = β1 + ηi + εi, (6.1)

where ηi = β2x2i in the case of a continuous explanatory variable x2i, and
ηi = β2x2i + β3x3i + · · · + βqxqi in the case of a factor with q levels. Here x2i, . . . , xqi

are a set of q − 1 indicator variables which take the values 0 or 1 (see Section 5.2.1).
The error terms, εi, are realizations of normally distributed random variables with
expected value 0 and variance ξ2

i . If there were no explanatory variables then β1

would be equal to θ.
Maximum likelihood estimates of the βs can be obtained by performing a

weighted least-squares regression of θ̂i on the explanatory variables, with weights
wi, where wi is the estimated inverse variance of θ̂i (see Section A.3 in the Appendix
and Hedges, 1994). This is similar to the approach described in Section 4.2.4 for
the calculation of the test statistics U and Q. To perform this analysis in PROC
GLM in SAS for the case of one explanatory variable ‘x2’, the MODEL statement
used in Section 4.2.4 should be modified as follows:

MODEL y = x2 / inverse;

As discussed in Section 4.2.4, although the correct estimates of the regression
coefficients are presented in the SAS output, the standard errors and test statistics
are incorrect for the meta-analysis model. In common with other statistical
packages, the assumption that is made is that ξ2

i = σ2/wi, where σ2 is to be
estimated from the data, instead of ξ2

i = 1/wi. To obtain the correct standard
error for β̂j, the standard error for β̂j given by the package should be divided by
the square root of the residual (error) mean square. Alternatively, the correct
standard errors can be obtained as the square roots of the diagonal elements
of the matrix (X′ WX)−1, where X is the r × q matrix of explanatory variables
associated with the βs, and W is the r × r diagonal matrix with ith element wi.
Many packages will present this matrix as an option. For example, the option
‘inverse’ in the MODEL statement above requests that this matrix be printed in
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the SAS output. Confidence intervals for the regression coefficients are based on
asymptotic normality.

As discussed in Section 4.2.4, if the model includes only the intercept term β1,
the estimate of β1 is the overall fixed effect estimate θ̂. In addition, the U and Q
statistics appear as the model sum of squares and residual (error) sum of squares
respectively in the analysis of variance table. When an explanatory variable is
fitted, the Q statistic is divided into two components, both of which appear in
the analysis of variance table. The first, QB, is the variation explained by the
covariate (or factor), and this appears as the model sum of squares. The second,
QW, is the remaining unexplained variation, which appears as the residual sum
of squares.

If the explanatory variable is a factor with q levels, then to test for heterogeneity
in the treatment difference parameter between studies which have the same
factor level, QW is compared with the chi-squared distribution with r − q degrees
of freedom. In order to test for heterogeneity between studies due to the different
levels of the factor, QB is compared with the chi-squared distribution with q − 1
degrees of freedom. The statistic QB is given by

QB =
q∑

k=1



(∑nk

i=1 wkiθ̂ki

)2

∑nk
i=1 wki


 −

(∑q
k=1

∑nk
i=1 wkiθ̂ki

)2

∑q
k=1

∑nk
i=1 wki

, (6.2)

where θ̂ki is the estimate of treatment difference from the ith study at the kth level
of the factor and wki its weight, for i = 1, . . . , nk and k = 1, . . . , q. When using
efficient score and Fisher’s information statistics, QB can be written as

QB =
q∑

k=1

{(∑nk
i=1 Zki

)2∑nk
i=1 Vki

}
−

(∑q
k=1

∑nk
i=1 Zki

)2∑q
k=1

∑nk
i=1 Vki

, (6.3)

where Zki and Vki are the efficient score and Fisher’s information from the ith study
at the kth level of the factor.

If the additional explanatory variable is a continuous covariate, then QB is
compared with the chi-squared distribution with one degree of freedom. The
statistic QB is then given by

QB =
{∑r

i=1 wi (x2i − x2) θ̂i

}2

∑r
i=1 wi (x2i − x2)2 , (6.4)

where

x2 =
∑r

i=1 wix2i∑r
i=1 wi

.
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When using efficient score and Fisher’s information statistics, QB can be written as

QB =
{(∑r

i=1 x2iZi
) − x2

∑r
i=1 Zi

}2(∑r
i=1 x2

2iVi
) − x2

∑r
i=1 x2iVi

, (6.5)

where

x2 =
∑r

i=1 Vix2i∑r
i=1 Vi

.

Formula (6.5) is related to the statistic for testing for a linear trend when there is
a natural ordering to the levels of a factor (see, for example, Early Breast Cancer
Trialists’ Collaborative Group, 1990). If the factor levels are ordered and assigned
values 1, 2, 3, etc., then Z and V are calculated for each factor level and x2 takes
the value 1, 2, 3, etc., depending on the factor level. The summation is over the
different levels of the factor.

If models are fitted which include additional explanatory variables, comparisons
between models can be made using the residual sum of squares from each model.
Suppose that a model with q parameters is to be compared with a model which
includes these q parameters and an additional p parameters. If RSS(1) and RSS(2)
are the residual sum of squares on fitting these two models, then under the null
hypothesis that all of the additional p parameters are equal to 0, RSS(1) − RSS(2)
follows a chi-squared distribution with p degrees of freedom.

To allow for the remaining unexplained variation between studies a random
effect can be incorporated as follows:

θ̂i = β1 + ηi + νi + εi, (6.6)

where the νi are normally distributed random effects with mean 0 and variance τ2

and the εi are realizations of normally distributed random variables with expected
value 0 and variance ξ2

i . The terms νi and εi are assumed to be independently
distributed. It can be seen that model (6.6) is an extension of model (4.2). The
νi represents the ith trial’s deviation from the mean of all trials having the same
covariate values specified in x2i (or the xji, j = 2, . . . , q, for a factor).

Maximum likelihood estimates of the βs and τ2 can be obtained by an iterative
process, similar to that defined by equations (4.3) and (4.4). The estimates of the
βs at the (t + 1)th cycle of the iteration are obtained by calculating a weighted
least-squares regression of θ̂i on the explanatory variables, using weights w∗

it, and
an estimate of τ2 is then given by

τ̂2
M,t+1 =

∑r
i=1(w∗

it)
2{(θ̂i − β̂1,t+1 − η̂i,t+1)2 − w−1

i }∑r
i=1(w∗

it)
2

, (6.7)

for t = 0, 1, . . ., where w∗
it = (w−1

i + τ̂2
M,t)

−1. To start the iterative process an
initial estimate of τ2 is required, for example τ̂2

M,0 = 0.
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Residual (restricted) maximum likelihood estimates can also be calculated. An
approximate updated REML estimate of τ2 can be calculated as follows:

τ̂2
R,t+1 =

∑r
i=1(w∗

it)
2{(r/(r − q − 1))(θ̂i − β̂1,t+1 − η̂i,t+1)2 − w−1

i }∑r
i=1(w∗

it)
2

. (6.8)

Implementation of these methods is similar to that described in Section 4.3.8.
However, for meta-regression the fixed effect part of the regression model is
β1 + ηi instead of β1. For example, to obtain REML estimates using SAS PROC
MIXED for the case of one explanatory variable ‘x2’, the MODEL statement used
in Section 4.3.8 should be modified as follows:

MODEL y = x2 / solution;

Berkey et al. (1995) consider a similar approach to that based on the approx-
imate REML estimate given in equation (6.8), by replacing the (w∗

it)
2 terms by

w∗
it.
The method of moments approach to the estimation of τ2, as described in

Section 4.3.3, can also be extended to the case when there are covariates.
However, this extension is neither as accurate or straightforward as those given
above, and so it is not presented here. Thompson and Sharp (1999) discuss the
method of moments procedure in the case of one covariate.

Although originally applied to the situation in which the observations are the
study estimates, this type of analysis can be undertaken with individual patient
data. In fact a covariate which takes a common value for all patients in the
same study is just a special type of patient-level covariate. Meta-regression when
individual patient data are available is considered in Section 6.7.4.

6.6.1 Example: Global impression of change in Alzheimer’s
disease

We return to the data from the tacrine studies, described in Section 3.5.1. The test
for heterogeneity across the studies in Table 4.16 was not statistically significant
(p = 0.30). However, it was of interest to investigate the effect of the dose of
tacrine on the treatment difference, the log-odds ratio. The relationship between
the log-odds ratio and dose was difficult to assess because in most studies the
dose for each patient was titrated to or selected to be the patient’s best dose.
The average final dose actually received by patients in a trial was considered to
be a measure of the intended level of dosing for the trial. These doses were 62,
39, 66, 135 and 65 mg/day for studies 1–5, respectively. Figure 6.2 shows a
CI plot of the study estimates from Table 4.15, in which the studies are ordered
by increasing dose. This indicates an increase in the treatment effect as the dose
increases. Dose was considered as a continuous variable in the meta-regression,
and is associated with the parameter β2. Table 6.2 shows that the residual sum of
squares from fitting the null model, that is, the model with the intercept term only,
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−2.0 −1.5 −1.0 −0.5 0.0

Log-odds ratio

39 mg/day (study 2)

62 mg/day (study 1)

65 mg/day (study 5)

66 mg/day (study 3)

135 mg/day (study 4)

Fixed

Random

0.5 1 1.5 2.0

Figure 6.2 Global impression of change in Alzheimer’s disease: the log-odds ratio for
being in a better CGIC category on tacrine than on placebo (Figure 4.5 with studies ordered
by dose of tacrine).

Table 6.2 Global impression of change in
Alzheimer’s disease: meta-regression of the
log-odds ratio from the proportional odds
model on the dose of tacrine

Model Residual sum
of squares

Degrees of
freedom

Intercept only 4.83 4
Dose 0.15 3

is equal to the value for the Q statistic in Table 4.16. Inclusion of the covariate
for dose substantially reduces the residual sum of squares from 4.83 to 0.15, that
is, by 4.68. Comparing 4.68 with the chi-squared distribution with one degree
of freedom gives a p-value of 0.03, indicating that the log-odds ratio increases
significantly with dose. Estimates of the log-odds ratio from the meta-regression for
doses of 65 and 135 (Table 6.3) show good agreement with the individual study
estimates. The residual sum of squares after fitting dose is very small. Compared
with the chi-squared distribution with three degrees of freedom, the value of
0.15 is not statistically significant, p = 0.98. Both ML and REML estimates of the
residual variance component after fitting dose were 0.

6.6.2 Example: Recovery time after anaesthesia

The anaesthetic study was introduced in Section 3.6.1. From Table 4.23 it can
be seen that there is heterogeneity between the individual centre estimates.
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Table 6.3 Global impression of change in Alzheimer’s disease: parameter estimates
from the meta-regression of the log-odds ratio from the proportional odds model on
the dose of tacrine

Parameter Estimate Standard error 95% CI

β1 −0.023 0.268 (−0.549, 0.502)
β2 0.005 97 0.002 76 (0.000 56, 0.011 39)
Dose

65 mg/day
(β1 + 65β2)

0.365 0.129 (0.112, 0.618)

Dose
135 mg/day
(β1 + 135β2)

0.783 0.171 (0.447, 1.119)

Table 6.4 Recovery time after anaesthesia:
meta-regression of the absolute mean differ-
ence on premedication

Model Residual sum
of squares

Degrees of
freedom

Intercept only 17.95 8
Premedication 5.27 7

In particular, a negative absolute mean difference in centre 9 indicates that
anaesthetic A reduces recovery time relative to anaesthetic B, whereas in the other
eight centres the reverse is the case. The test for heterogeneity was statistically
significant (p = 0.02). Further investigation of the study protocol showed that
the centres were able to choose the premedication drug administered, provided
that the same drug was used for all patients at that centre. Centre 9 used a
different premedication drug from centres 1–8, which had all used the same one.
A study-level covariate can, therefore, be created based on the premedication
drug used. Let this covariate take the value 0 for premedication 1 used in centres
1–8 and 1 for premedication 2 used in centre 9, and be associated with the
parameter β2. Table 6.4 shows that the residual sum of squares from fitting the
model with the intercept term only is equal to the value for the Q statistic in
Table 4.23. Inclusion of the covariate for premedication substantially reduces the
residual sum of squares from 17.95 to 5.27, that is, by 12.68. Comparing 12.68
with the chi-squared distribution with one degree of freedom gives a p-value less
than 0.001, indicating that the type of premedication has a significant effect
on the treatment difference. Anaesthetic B significantly reduces recovery time
relative to anaesthetic A when premedication 1 is used (Table 6.5). However, for
premedication 2 there is some evidence that anaesthetic A is better, although
this is not statistically significant. The same estimates of the treatment difference
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Table 6.5 Recovery time after anaesthesia: parameter estimates from the meta-
regression of the absolute mean difference on premedication

Parameter Estimate Standard error 95% CI

β1 0.711 0.117 (0.482, 0.940)
β2 −0.984 0.276 (−1.526, −0.443)
Premedication 1 (β1) 0.711 0.117 (0.482, 0.940)
Premedication 2

(β1 + β2)
−0.273 0.250 (−0.764, 0.218)

and its standard error for premedication 1 as obtained from the meta-regression
could have been calculated from a fixed effects meta-analysis of centres 1–8
only, provided that the same estimate of σ2 was used. For example, this might be
the pooled variance estimate s2

p presented in Section 4.2.9, but calculated from
centres 1–8 only. More generally, for the situation in which the one explanatory
variable is a factor, there are two options. The first is to perform a meta-regression
as illustrated. The second is to perform a fixed effects meta-analysis for each level
of the factor. Provided that the same weights, wi, are used in both cases, the same
estimates and standard errors for each level of the factor will be obtained.

The residual sum of squares after fitting premedication can be compared with
the chi-squared distribution with seven degrees of freedom. The value of 5.27 is
not statistically significant (p = 0.63), indicating that there is no strong evidence
of heterogeneity between the first eight studies. Both ML and REML estimates of the
residual variance component after fitting premedication were 0. The conclusion
that could be drawn from this meta-regression is that the choice of anaesthetic
agent might depend on the premedication to be used. For premedication 1
anaesthetic B provides a quicker recovery time. For premedication 2 the result is
not clear-cut, but there is some indication that anaesthetic A might be better.

6.6.3 Extension to study estimates of treatment difference from
subgroups

When study estimates of treatment difference are available for different subgroups
of patients, the meta-regression technique may be used to explore the variation
in the magnitude of the treatment difference between these subgroups. When the
subgroups are represented by a factor with q levels, the fixed effects model (6.1)
can be extended as follows:

θ̂ki = β1 + ηki + εki,

where θ̂ki is the estimate of treatment difference from the kth subgroup in the ith
study, for k = 1, . . . , q and i = 1, . . . r. The term ηki is equal to β2x2ki + β3x3ki +
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· · · + βqxqki, and x2ki, . . . , xqki are a set of q − 1 indicator variables which take the
values 0 or 1 (see Section 5.2.1). The error terms, εki, are realizations of normally
distributed random variables with expected value 0 and variance ξ2

ki. It is assumed
that ξ2

ki is known and equal to 1/wki, where wki is the estimated inverse variance
of θ̂ki.

When a weighted least-squares regression analysis is performed for the θ̂ki on
the explanatory variables in ηki, using weights wki, the model sum of squares, QB,
is identical to formula (6.2) with the exception that nk is replaced by r. The same is
also true in respect of formula (6.3). In order to test for heterogeneity between the
different subgroups, QB is compared with the chi-squared distribution with q − 1
degrees of freedom.

If there is a natural ordering to the factor levels, the factor levels can be ordered
and given numerical values, for example, 1, 2, . . . , q. Now ηki = β2x2ki, where
x2ki is a continuous covariate. In this case, the model sum of squares from the
weighted least-squares regression analysis will be similar to formula (6.4). The
statistic QB will be given by

QB =
{∑q

k=1

∑r
i=1 wki(x2ki − x2)θ̂ki

}2

∑q
k=1

∑r
i=1 wki(x2ki − x2)2

,

where

x2 =
∑q

k=1

∑r
i=1 wkix2ki∑q

k=1

∑r
i=1 wki

.

When using the efficient score and Fisher’s information, the formula for QB will
be similar to formula (6.5), and is given by

QB =
{(∑q

k=1

∑r
i=1 x2kiZki

) − x2
∑q

k=1

∑r
i=1 Zki

}2(∑q
k=1

∑r
i=1 x2

2kiVki
) − x2

∑q
k=1

∑r
i=1 x2kiVki

,

where

x2 =
∑q

k=1

∑r
i=1 Vkix2ki∑q

k=1

∑r
i=1 Vki

.

and Zki and Vki are the efficient score and Fisher’s information for the kth subgroup
in the ith study. Under the null hypothesis of no linear trend amongst the
subgroups, QB follows a chi-squared distribution on one degree of freedom.

The analyses described in this section can be undertaken when individual
patient data are available. In fact it is very likely that they will only be undertaken
if there is access to individual patient data, because the required summary
statistics for the various subgroups are usually not presented in published papers
or trial reports. However, if individual patient data are available, it may be
advantageous to exploit the more advanced statistical modelling techniques
described in Section 6.7.2.
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6.7 PATIENT-LEVEL COVARIATES

When the meta-analysis is based on individual patient data, covariates measured
at the level of the individual patient may be incorporated into the meta-analysis
model. The models presented in Chapter 5 can be extended to accommodate these
covariates. Several options are available in practice, requiring choices of whether
to allow the covariates to be fixed or random effects or to include fixed or random
effects for an interaction with treatment. An important consideration is to avoid
inappropriate complexity and over-fitting of the data. The various uses to which
covariate information may be put are described and illustrated in the rest of this
section.

6.7.1 Adjustment for imbalance in prognostic factors

If a modelling approach is to be utilized, as described in Chapter 5, it is straightfor-
ward to adjust for prognostic factors common to all studies through the inclusion
of patient-level covariates. Consider the fixed effects model (5.1) which contains
study effects and the treatment difference. Here ηij, the linear combination of
explanatory variables for the regression model, is defined as

ηij = β0i + β1x1ij.

Inclusion of p patient-level covariates leads to the model

ηij = β0i + β1x1ij +
p+1∑
a=2

βaxaij. (6.9)

In this model, the regression coefficients, βa, a = 2, . . . , p, are common across
all studies. As an alternative βa could be replaced by βai, so that the coefficients
vary across studies. This would correspond to adjusting for covariates separately
within each trial.

Random effects can be introduced into the model in place of one or more of the
βa, a = 1, . . . , p + 1. For example βa could be replaced by γai, with

γai = βa + νai,

where νai is normally distributed with mean 0 and variance σ2
a . It should be noted

that if there is more than one study level (level 2) random effect term then it will be
necessary to consider the correlation between them, as was the case for random
study effects and random treatment differences in Section 5.11.

Analyses are still possible if different covariates are available from trial to trial.
For each trial the estimate of treatment difference can be adjusted for particular
prognostic factors, and the adjusted estimates combined using the methods of
Chapter 4.
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If a fixed effects meta-analysis is to be conducted using the methods of Chapter 4
with efficient score and Fisher’s information statistics, it is possible to adjust for
prognostic factors. There are two ways in which this can be accomplished, the first
using stratification and the second covariate adjustment. For the stratification
method, the patients must be allocated to mutually exclusive subgroups referred
to as strata, which can arise from one factor or a combination of two or more
factors. The Z and V statistics are calculated for each stratum. Each stratum plays
the role of study in the traditional meta-analysis. Typically, study will be included
as one of the factors. If, in addition, there is one prognostic factor with q levels,
then the fixed effects estimate is given by

θ̂ =
∑q

k=1

∑r
i=1 Zki∑q

k=1

∑r
i=1 Vki

,

where Zki and Vki are the efficient score and Fisher’s information for the kth
stratum in the ith study. This is equivalent to a model which adjusts for study,
prognostic factor and their interaction. Details of the method using covariate
adjustment are not provided here but can be found in Chapter 7 of J. Whitehead
(1997).

6.7.2 Investigation of potential sources of heterogeneity

Investigation of factors which might affect the magnitude of the treatment
difference may be undertaken by adding interaction terms between treatment and
patient-level covariates to the model. Model (6.9) could then be extended to

ηij = β0i + β1x1ij +
p+1∑
a=2

(βaxaij + βa+pxaijx1ij). (6.10)

The interaction coefficients, βa+p, must be interpreted with care. They describe a
mixture of between-trial and within-trial relationships. In particular, if the same
spread of covariate values appears in every trial then they are based entirely
on within-trial relationships, whereas if all covariate values are identical within
each trial then they describe between-trial relationships. In most applications the
situation will lie between these extremes.

Theoretically, it is possible to replace the fixed effect parameters in model (6.10)
by random effects. If β1, the treatment difference parameter, is treated as random
across studies then it would be logical to treat the interaction terms involving
treatment likewise. However, the majority of meta-analyses include rather few
trials and it is problematic to estimate more than one or two variance components
across a small number of trials. Therefore, it is the fixed effect models that are
more likely to be of use in practice.
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6.7.3 Example: Global impression of change in Alzheimer’s
disease

Baseline data were collected from individual patients in the tacrine studies. Here
we consider one covariate, the assessment of disease severity by the Mini-Mental

State Examination (MMSE); see Folstein et al. (1975). The MMSE can take values
between 0 and 30, where a lower value relates to a higher disease severity. In
the following analyses, the MMSE is treated as a continuous covariate. First, we
extend model (5.8) to include the MMSE as a covariate. This fixed effects model is
given by

log
(

Qijk

1 − Qijk

)
= αik + β1x1ij + β2x2ij, (6.11)

where x2ij is the MMSE of the jth patient in study i.
This model can be fitted using PROC NLMIXED in SAS, by modifying the program

in Section 5.4.2 as follows. The number of intercept terms ‘aik’ is increased to
cater for five studies and four cut-points, and one additional parameter ‘beta2’ is
included. The fourth line of code is replaced by

eta = beta1*treat + beta2*mmse;

As the MMSE was missing for 17 patients, the comparisons made below are based
on 1386 patients instead of 1403. The new estimate of the log-odds ratio (tacrine
relative to placebo) from model (5.8) is 0.494 with a standard error of 0.113.
Adjusting for MMSE (model (6.11)), the estimate of the log-odds ratio changes to
0.478 with a standard error of 0.113. It can be seen that adjustment for MMSE
has had little effect on the estimate of treatment difference.

To test whether there is an interaction between MMSE and treatment, the
following model can be fitted:

log
(

Qijk

1 − Qijk

)
= αik + β1x1ij + β2x2ij + β3x2ijx1ij. (6.12)

The change in deviance (−2 times the log-likelihood) between model (6.11) and
model (6.12) is compared with the chi-squared distribution on one degree of
freedom.

To fit model (6.12) in PROC NLMIXED, an additional parameter ‘beta3’ is
added, and the fourth line of code is changed to

eta = beta1*treat + beta2*mmse + beta3*mmse*treat;

The change in deviance is calculated to be 0.12, which is not statistically significant
(p = 0.73). This indicates that the magnitude of the treatment difference is not
affected by disease severity.
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6.7.4 Meta-regression using individual patient data

The case in which there is a single continuous covariate x2ij, taking different
values from one trial to the next but the same value for all patients within a
trial, leads to a model which is similar to model (6.1). It is referred to here as
meta-regression using individual patient data. By writing the covariate as x2i it
can be seen that model (6.10) reduces to

ηij = β0i + β1x1ij + β2x2i + β3x2ix1ij. (6.13)

Noting that β0i and β2x2i are not separately identifiable and may be written as a
single fixed trial effect, β0i, model (6.13) becomes

ηij = β0i + β1x1ij + β3x2ix1ij. (6.14)

As in model (6.1), β1 is the treatment difference when x2i is 0. The parameter β3

is the same as β2 in model (6.1). Although the meta-regression based on study
estimates of treatment difference and the meta-regression based on model (6.14)
are similar, they are not identical. For the latter the hypothesis tests associated
with the β parameters are based on likelihood ratio test statistics, whereas for the
former they are based on the assumption of normality for the study estimates of
treatment difference.

Random effects can be introduced into model (6.14), as described in
Section 6.7.1.

6.7.5 Example: Recovery time after anaesthesia

The meta-regression on the premedication covariate undertaken in Section 6.6.2
is now repeated using individual patient data. To test the effect of premedication on
the treatment difference, two models are compared. The first is model (5.1), which
includes study and treatment as covariates. The second includes the treatment
by premedication interaction term, and is model (6.14) expressed in terms of µij,
that is,

µij = α + β0i + β1x1ij + β3x2ix1ij. (6.15)

The parameter β1 from model (6.15) is the same β1 as that defined in Section 6.6.2,
and β3 is the same as β2. Model (6.15) was fitted using PROC GLM in SAS with
the following statements.

CLASS centre;
MODEL y = centre treat premed*treat/ ss1 solution;

The results are presented in Tables 6.6 and 6.7. The estimates of treatment
difference in Table 6.7 are identical to those presented in Table 6.5. The standard
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Table 6.6 Recovery time after anaesthesia: meta-regression of the absolute mean differ-
ence on premedication, using individual patient data

Model
comparisons

Effect
tested

Change
in

residual
sums of
squares

Change
in

degrees
of

freedom

Estimate
of σ2

Degrees
of

freedom

F statistic p-value

(6.15) vs (5.1) Treat by
Premed

6.41 1 0.500 171 12.82 <0.001

(6.16) vs (6.15) Centre by
Treat

2.66 7 0.506 164 0.75 0.63

Table 6.7 Recovery time after anaesthesia: parameter estimates from the meta-
regression of the absolute mean difference on premedication, using individual patient
data

Parameter Estimate Standard error 95% CI

β1 0.711 0.116 (0.482, 0.941)
β3 −0.984 0.275 (−1.527, −0.442)
Premedication 1 (β1) 0.711 0.116 (0.482, 0.941)
Premedication 2

(β1 + β3)
−0.273 0.249 (−0.765, 0.219)

errors are slightly smaller because the estimate of σ2 is slightly smaller, 0.500
as opposed to 0.506. The CIs in Table 6.7 are based on the t distribution with
171 degrees of freedom, whereas those in Table 6.5 are based on the normal
distribution.

To investigate whether the significant centre by treatment interaction has been
explained by the premedication by treatment interaction, the following model is
fitted and compared with model (6.15):

µij = α + β0i + β1x1ij + β3x2ix1ij +
7∑

s=1

β1sx1ijδsi, (6.16)

where δsi is Kronecker delta, taking the value 1 if s = i and 0 otherwise.
Model (6.16) was fitted using PROC GLM with the above MODEL statement
changed to

MODEL y = centre treat premed*treat centre*treat/ ss1
solution;

The F statistic of 0.75, compared with the F distribution on 7 and 164 degrees
of freedom, is not significant (p = 0.63); see Table 6.6. This is in close agreement
with the result from the meta-regression of Section 6.6.2.
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6.8 AN INVESTIGATION OF HETEROGENEITY: ASPIRIN IN
CORONARY HEART DISEASE

This example is taken from Canner (1987). It concerns the overview of six major
clinical trials of aspirin compared with placebo in coronary heart disease. The all-
cause mortality figures are given in Table 6.8. The meta-analysis is based on the
unconditional maximum likelihood estimation of the log-odds ratio for mortality
on aspirin relative to placebo (formulae (3.1) and (3.2)). A CI plot (Figure 6.3)
shows that the first five trials are in remarkably good agreement. The test of
heterogeneity is not significant (p = 0.96), and the overall test of a treatment
difference is highly significant (p = 0.001). However, when study 6 is added the
picture is changed dramatically. In study 6 there is higher mortality on aspirin than
on placebo. Because this study is much larger than the other studies, its inclusion
reduces the positive effect to a level which is not statistically significant (p = 0.11).
In addition, the test for heterogeneity is pushed towards borderline significance
(p = 0.08). Canner presents his investigations of this apparent heterogeneity of
the findings, focusing on the large difference between study 6 and the others.

The first potential source of heterogeneity explored was that to do with the
design and operational features of the six trials. Table 6.9 shows some of the
design features of the trials. Study 6 had the smallest mean age, but the range
across all trials was very small. Two of the trials included males only, but study
6 was one of the four that included both sexes. The total daily dose of aspirin
varied from 300 mg to 1500 mg, but study 6 with a dose of 1000 mg was close
to three other studies (2, 4 and 5). The dosage schedule ranged from once to

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6

Fixed (1−6)

Random (1−6)

Fixed (1−5)

Random (1−5)

−2.0 −1.5 −1.0 −0.5 0.0

Log-odds ratio

0.5 1.0 1.5 2.0

Figure 6.3 Aspirin in coronary heart disease: the log-odds ratio of mortality on aspirin
relative to placebo. Individual study estimates and overall fixed and random effects estimates
are presented, with 95% confidence intervals.
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Table 6.8 Aspirin in coronary heart disease: log-odds ratio of mortality on aspirin relative
to placebo, using formulae (3.1) and (3.2)

Study Aspirin Placebo θ̂i wi θ̂iwi θ̂2
i wi

Number of Total Number of Total
deaths number deaths number

patients patients

1 49 615 67 624 −0.329 25.7 −8.46 2.78
2 44 758 64 771 −0.385 24.3 −9.34 3.59
3 27 317 32 309 −0.216 13.3 −2.86 0.62
4 102 832 126 850 −0.220 48.8 −10.71 2.35
5 85 810 52 406 −0.225 28.4 −6.41 1.44
Total (1–5) 140.5 −37.78 10.78

6 246 2267 219 2257 0.125 104.0 12.96 1.62
Total (1–6) 244.5 −24.82 12.40

Studies 1–5
U = (−37.78)2/140.5 = 10.16; (1 df) p = 0.001
Q = 10.78 − 10.16 = 0.63; (4 df) p = 0.96
θ̂ = −37.78/140.5 = −0.269; se(θ̂) = 1/

√
140.5 = 0.084

95% CI = (−0.269 ± 1.96/
√

140.5) = (−0.434,−0.104)

Studies 1–6
U = (−24.82)2/244.5 = 2.52; (1 df) p = 0.11
Q = 12.40 − 2.52 = 9.88; (5 df) p = 0.08
θ̂ = −24.82/244.5 = −0.102; se(θ̂) = 1/

√
244.5 = 0.064

95% CI = (−0.102 ± 1.96/
√

244.5) = (−0.227, 0.024)

three times daily, although study 6 had a twice daily dosing regimen. The mean
time from the qualifying myocardial infarction to entry into the trial ranged from
8 days to 85 months, with study 6 having a mean of 25 months. The mean
duration of follow-up varied from study to study from 11.9 to 41.0 months, with
studies 5 and 6 having the longest follow-up times. Canner concluded that there
was nothing obvious in the design features of the studies that might explain any
possible differences in the mortality results.

The next line of investigation undertaken by Canner was to consider adjustment
of the individual study estimates for prognostic factors. For each of seven risk
factors (history of congestive heart failure, history of angina pectoris, history
of ECG-documented arrhythmia, use of digitalis, use of nitroglycerin, use of
propranolol or other beta-blockers, and use of other drugs), it was found that
the occurrence was significantly higher in the aspirin group than the placebo
group in study 6. This might explain the more negative findings of the study.
For three of the studies (2, 5 and 6) it was possible to adjust the log-odds ratio
estimate for a variety of baseline characteristics. As different baseline variables
were collected in each study, the adjustment was undertaken separately for each
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Table 6.9 Aspirin in coronary disease: design features of the studies

Study1 Study 2 Study 3 Study 4 Study 5 Study 6

Time period 1971–73 1972–75 1970–77 1975–79 1975–79 1975–79

Number of
patients

1126 1529 626 1682 1216 4524

Mean age 55.0 56.5 58.9 56.2 56.3 54.8

Gender M M M, F M, F M, F M, F

Total daily
dose (mg)

300 972 1500 900 972 1000

Dosage
schedule

o.d. t.i.d. t.i.d. t.i.d. t.i.d. b.i.d.

Time from
qualifying
MI to
entry

mean 70 days 85 mo. 40 days 8 days 20 mo. 25 mo.
range 0.5–6 mo. 21 days– 28–42 days– 2–60 mo. 2–60 mo.

22 yr days weeks

Duration of
patient
follow-up
(months)

mean 11.9 22.0 24.0 12.0 41.0 39.6
range 2–30 10–28 24–24 12–12 35–48 35–48

Notes: MI = myocardial infarction; o.d. = once daily; b.i.d. = twice daily; t.i.d. = three times daily.

study. The estimates of the log-odds ratios presented in the rest of this section
are calculated from summary statistics from the Canner paper and so will be
approximate. Adjustment in study 6 resulted in a reduction of the log-odds ratio
to 0.054, but there was only a minor effect on studies 2 and 5. No adjustment was
possible for the other three studies. A repeated fixed effects meta-analysis of the
six studies using the three adjusted estimates in place of the unadjusted estimates
was undertaken. The Q statistic changed from 9.88 to 7.30, resulting in a p-value
of 0.20. The fixed effects estimate of the log-odds ratio changed from −0.102 to
−0.128, a statistically significant effect (p = 0.04). Thus the baseline imbalance
in study 6 may have contributed to the heterogeneity.

Although the data so far have been treated as binary responses, it may be more
appropriate to treat them as survival times as this would allow for the differing
follow-up times of the patients. In addition, mortality rates over specific time
periods, such as one-year mortality rates, could be investigated using survival
analysis techniques. In the paper, mortality within each year of follow-up was
analysed, using the log-odds ratio approach based on binary data. The results are
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Table 6.10 Aspirin in coronary heart disease: log-odds ratio of mortality on aspirin
relative to placebo by year of follow-up

Study 1st year 2nd year 3rd and 4th years

1 −0.312 −0.676 ∞
2 −0.200 −0.842 0.938
3 −0.245 −0.146 –
4 −0.214 – –
5 −0.063 −0.673 −0.059
6 −0.178 0.214 0.260

θ̂ −0.211 −0.174 0.231
U (1 df) 6.00; p = 0.01 1.72; p = 0.19 3.06; p = 0.08
Q 0.48; (5 df) p = 0.99 11.52; (4 df) p = 0.02 2.53; (3 df) p = 0.47

presented in Table 6.10. For mortality during the first year of follow-up, there is a
consistent beneficial effect of aspirin amongst all six trials. The fixed effects estimate
of the log-odds ratio was −0.211, a statistically significant effect (p = 0.01). The
test for heterogeneity was not significant (Q = 0.48 (5 df), p = 0.99). For the
second year of follow-up study 4 is excluded because it only had a 1-year follow-
up period. There is evidence of heterogeneity amongst the other five studies
(Q = 11.52 (4 df), p = 0.02). In study 6 there is higher mortality in the aspirin
group than in the placebo group, whereas the opposite is true for the other studies.
During the third and fourth years of follow-up the four studies contributing data
show no effect or an adverse effect of aspirin over placebo. As there were no deaths
during this period in the placebo group in study 1, the estimated log-odds ratio is
∞, although this study appears to have been included in the analysis presented in
the paper. Heterogeneity is not significant (Q = 2.53 (3 df), p = 0.47). It appears
that after a consistently positive effect of aspirin in the first year, the benefit
disappears by the third year. In study 6 the reversal of the effect occurs earlier
than in the other studies, causing the apparent heterogeneity.

To see whether or not heterogeneity was confined just to mortality, fixed
effects meta-analyses were undertaken on a number of non-fatal outcomes. Data
on the occurrence of non-fatal myocardial infarction reported in studies 2–6
provided evidence of a strong beneficial aspirin effect but no significant evidence
of heterogeneity. On a number of other cardiovascular and gastrointestinal
outcomes reported in studies 2, 5 and 6 there was good agreement between the
studies.

Summarizing the results of the investigation into the apparent heterogeneity
of the mortality results amongst the studies, the following conclusions were
drawn. There was no obvious difference in the design of study 6 to offer an
explanation. The heterogeneity was confined to the second year of follow-up,
during which a reversal of the beneficial effect of aspirin began for study 6 but
not the other studies. This reversal did not begin in the other longer-term studies
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until later. With respect to a number of other outcomes recorded, there was good
agreement between study 6 and the other studies. Adjustment for imbalance in
the distribution of risk factors between the two treatment groups in study 6 helped
to reduce the amount of heterogeneity. The overall conclusion was that it seemed
as if there was no real heterogeneity in mortality findings amongst the six studies,
and that the results were consistent with a true aspirin effect that was beneficial
in the short term of 1–2 years.

6.9 A STRATEGY FOR DEALING WITH HETEROGENEITY

In any meta-analysis it is important to evaluate heterogeneity. Investigation of
heterogeneity can be divided into two parts, the first of which is specified a priori
in the protocol, and the second is an additional exploratory approach which may
or may not be required.

Topics that might be addressed in the protocol include:

(a) the smallest treatment difference which would be considered to be clinically
important;

(b) the statistic which will be used for testing heterogeneity;

(c) study-level covariates for inclusion in a meta-regression;

(d) patient-level covariates to adjust for imbalance in the distribution of specific
prognostic factors and baseline characteristics across treatment groups;

(e) patient-level covariates to be evaluated as potential effect modifiers.

If the amount of heterogeneity found is considered to be clinically important and
cannot be explained by the potential sources of heterogeneity specified above, then
extra exploratory analyses involving other covariates may be needed. In addition,
it would be advisable to check that the chosen parameterization of the treatment
difference is appropriate. For example, in the case of binary data, should it be the
log-odds ratio or the probability difference? Analysis of other related variables will
indicate whether or not the heterogeneity is restricted to the primary response
variable. If no explanation can be found for the heterogeneity then consideration
should be given to fitting a random effects model, which allows for the treatment
difference to vary from study to study.
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Presentation and
Interpretation of Results

7.1 INTRODUCTION

It is important that the report of a meta-analysis provides the reader with the
information required to evaluate and interpret its results. The reader needs to know
how the meta-analysis was performed in order to be able to judge the reliability
of the findings. Of particular concern are factors which might systematically
influence the estimates of treatment difference. In 1996 the CONSORT statement
(Begg et al., 1996) was published with a view to improving the quality of
reporting of randomized controlled trials. This comprised a checklist of key
items of information considered necessary for the evaluation of the internal and
external validity of the trial, and a flow diagram of the numbers of patients
progressing through various stages of the trial. In a similar vein, the QUOROM
statement (Moher et al., 1999) was subsequently published in relation to the
reporting of meta-analyses of clinical trials. Although the QUOROM statement
focuses on the reporting of retrospective meta-analyses, it also provides a useful
guideline for the reporting of prospective meta-analyses. It is therefore used as a
basis for the discussion of the structure of a report in Section 7.2. Other guidelines
for the reporting of a meta-analysis have been presented (see, for example,
Deeks et al., 1996; Clarke and Oxman, 2001; and Halvorsen, 1994). They focus
on retrospective meta-analyses, based on summary information from published
papers, and include more detail than is presented in this chapter.

Graphical displays have an important role to play in a report of a meta-analysis,
as they can allow the reader to assimilate key information easily and quickly.
When present in a report they are often the main focus of attention for the reader.
Such displays are discussed in Section 7.3.

Although in the conduct of a meta-analysis the choice of parameterization
of the treatment difference should be based on statistical considerations, it may
be desirable to present the results in a way that is more interpretable in a
clinical setting. Section 7.4 considers ways in which this might be achieved by
transforming the original parameter.

175
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7.2 STRUCTURE OF A REPORT

In many respects the report of a meta-analysis is similar to that for a clinical
trial, and the main headings for the QUOROM checklist (Table 7.1) are identical
to those of the CONSORT checklist. The term ‘RCT’ used in the checklist stands
for randomized controlled trial. For an example of a publication based on the
QUOROM statement, see Shrewsbury et al. (2000).

There should be a close correspondence between the meta-analysis protocol
and the report, and many of the items in the QUOROM checklist were discussed
in Chapter 2. The importance of these items in relation to the meta-analysis was
considered in detail in that chapter, whereas here the focus is on the reporting
aspects. The items which need to be addressed in the report will depend on
the specific meta-analysis. For a retrospective meta-analysis based on published
papers, it is likely that all items are relevant, whereas for a planned meta-analysis
within the drug development process, the items relating to the searching strategy,
the selection of studies, the assessment of methodological quality and publication
bias will not usually be required.

When reporting the results of a meta-analysis it is useful to include the
term ‘meta-analysis’ in the title, and to include a structured abstract or sum-
mary. The QUOROM statement divides the body of the report into four main
sections – introduction, methods, results and discussion – each of which is now
discussed in turn.

7.2.1 Introduction

The introduction will usually be based on the material included in the ‘Back-
ground’ and ‘Objectives’ section of the protocol (see Sections 2.2 and 2.3). At the
end of the introduction section the reader should be told what information they
might expect to obtain from reading the report.

7.2.2 Methods

A statement can be made regarding the existence of a protocol prior to the conduct
of the meta-analysis. The prespecified hypotheses should be stated. Modifications
to the protocol during the meta-analysis procedure should be described, with
reasons given. A clear distinction between prespecified hypotheses and hypotheses
generated after the data have been inspected should be made.

The methods section will include such items as the searching procedure and
study selection criteria. These were discussed and illustrated in Sections 2.5 and
2.6. The validity assessment mentioned in the checklist in Table 7.1 relates to the
methodological quality of the trials. Shrewsbury et al. (2000) provide an example
of the reporting of the validity assessment:
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Table 7.1 The QUOROM statement checklist

Heading Subheading Descriptor

Title Identify the report as a meta-analysis (or
systematic review) of RCTs.

Abstract Use a structured format.
Objectives Describe the clinical question explicitly.
Data sources Describe the databases (i.e. list) and other

information sources.
Review

methods
Describe the selection criteria (i.e. population,

intervention, outcome, and study design),
methods for validity assessment, data
abstraction, study characteristics, and
quantitative data synthesis in sufficient detail
to permit replication.

Results Describe the characteristics of the RCTs
included and excluded, qualitative and
quantitative findings (i.e. point estimates and
confidence intervals), and subgroup analyses.

Conclusion Describe the main results.

Introduction Describe the explicit clinical problem, biological
rationale for the intervention, and rationale
for the review.

Methods Searching Describe the information sources in detail (e.g.
databases, registers, personal files, expert
informants, agencies, hand-searching), and
any restrictions (years considered,
publication status, language of publication).

Selection Describe the inclusion and exclusion criteria
(defining population, intervention, principal
outcomes and study design).

Validity
assessment

Describe the criteria and process used (e.g.
masked conditions, quality assessment, and
their findings).

Data
abstraction

Describe the process or processes use (e.g.
completed independently, in duplicate).

Study
characteristics

Describe the type of study design, participants’
characteristics, details of intervention,
outcome definitions, and how heterogeneity
was assessed.

Quantitative
data synthesis

Describe the principal measures of effect (e.g.
relative risk), method of combining results
(statistical testing and confidence intervals),
handling of missing data, how statistical
heterogeneity was assessed, a rationale for
any a priori sensitivity and subgroup analyses,
and any assessment of publication bias.

Results Trial flow Provide a meta-analysis profile summarizing
trial flow (see Figure 7.1).

(continued overleaf )
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Table 7.1 (continued)

Heading Subheading Descriptor

Study
characteristics

Present descriptive data for each trial (e.g. age,
sample size, intervention, dose, duration,
follow-up period).

Quantitative
data synthesis

Report agreement on the selection and validity
assessment, present simple summary results
(for each treatment group in each trial, for
each primary outcome), present data needed
to calculate effect sizes and confidence
interals in intention-to-treat analyses (e.g.
2 × 2 tables of counts, means and standard
deviations, proportions).

Discussion Summarize key findings, discuss clinical
inferences based on internal and external
validity, interpret the results in light of the
totality of available evidence, describe
potential biases in the review process (e.g.
publication bias), and suggest a future
research agenda.

All included studies were sponsored by Glaxo-Wellcome and all met company-wide
minimum quality thresholds. All were randomised . . .. In all studies, maintenance
of the treatment blind was carefully managed with adherence to in-house standard
operating procedures. In all studies, treatment packs were supplied numbered in non-
identifiable packaging and were dispensed by investigators to the next sequential
patient to be randomised in the trial. All studies were conducted according to good
clinical practice, and all had received ethical approval.

The outcome measures and baseline data used (see Section 2.4) and the methods
of data extraction (see Section 2.7) should be outlined. Shrewsbury et al. (2000)
describe the data extraction method as follows:

Data abstraction was based on reported summary statistics (mean, SD and SE,
proportions) for the intention to treat population. Two independent coworkers
extracted data from study reports and manuscripts, and their results were compared.
Discrepancies were resolved by consensus.

For each hypothesis tested the method used for the statistical analysis
(see Section 2.8) should be described. Any sensitivity analyses performed (see
Section 2.9) should be described. Finally, an explanation of the summary statistics
which will presented in the results section should be given.

7.2.3 Results

Careful consideration needs to be given to the tabular and graphical presentation
of results.
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For retrospective meta-analyses, information on the number of included and
excluded studies, from the list of studies which could potentially contribute, should
be presented. The excluded studies should be summarized by reason for exclusion.
This will also be necessary for prospective meta-analyses if for some reason some
studies were excluded. The QUOROM statement flow diagram (Figure 7.1) is a
useful way of presenting these data.

Descriptive data showing the main design characteristics of the included
studies should be presented. This can usefully be presented in tables. For example,
Table 7.2 reproduces Table 2 from Shrewsbury et al. (2000). The objective of this

Potentially relevant RCTs identified
and screened for retrieval (n = …)

RCTs excluded with reasons (n = …)

RCTs retreived for more detailed
examination (n = …)

RCTs excluded with reasons (n = …)

Potentially appropriate  RCTs  to be
included in the meta-analysis (n = …)

RCTs excluded from meta-analysis
with reasons (n = …)

RCTs included in meta-analysis
(n = …)

RCTs withdrawn, by outcome,  with
reasons (n = …)

RCTs  with usable information, by
outcome (n = …)

Figure 7.1 QUOROM statement flow diagram.
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meta-analysis was to examine the benefits for patients with symptomatic asthma
of adding salmeterol to the current dose of inhaled corticosteroid compared
with increasing the dose of the latter. This table provides information about
the countries in which each trial was conducted, and the number of patients
in and duration of each trial. The last three columns provide details of the
inhaled steroid. It should be noted that for the meta-analysis the Van Noord study
was split into two, one part comprising patients who at the start of the study
were on a low dose of inhaled steroid and the other comprising patients on a
high dose.

Each hypothesis of interest, as specified in the protocol, should be addressed in
turn. Individual study results should be presented, as well as the overall results
from the meta-analysis. Simple summary information for each treatment group
within each study should be provided, as well as study estimates of treatment
difference and their confidence intervals. For simple meta-analyses using the
methods of Chapter 4, it may be possible for the reader to reproduce the results
from such summary information. Even though this is unlikely to be the case for the
methods described in Chapter 5, the summary information may still provide some
useful insight into the data. Table 7.3 demonstrates one option for presenting
results for the stroke example introduced in Section 3.2.1. This table includes
information extracted from Tables 3.1, 4.1 and 4.2, and presents the treatment
difference as a log-odds ratio. If preferred, the exponential of the log-odds ratio
estimates and the upper and lower limits of the 95% CIs can be presented instead,
providing results in terms of the odds ratio. In this case a standard error cannot
be presented.

If it were planned to adjust for covariates in the main meta-analysis, then the
adjusted results should be presented instead of the unadjusted ones. The results
of prespecified tests of covariate by treatment interactions should be presented.
If these interaction terms are statistically and clinically significant, consideration
should be given to presenting the results separately for each subgroup. In the
case of a continuous covariate the estimate and CI for the regression coefficient
representing the relationship between the treatment difference and the covariate
can be provided.

Finally, the results of any sensitivity analyses and any exploratory analyses
should be discussed.

7.2.4 Discussion

The discussion section is for summarizing the key findings and drawing inferences
from the results. Methodological limitations of the included studies and the
meta-analysis, particularly in relation to the possibility of systematic bias in the
estimation of treatment difference, should be addressed. An assessment of the
clinical significance of the findings and their interpretation in the context of other
available evidence is needed. Clinical recommendations and proposals for future
research can be made.
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Table 7.3 The occurrence of a stroke in hypertensive patients: comparison between
antihypertensive treatment and control treatment from 13 studies

Study Patients with stroke/Total number (%) Log-odds Std. 95% CI

Treated group Control group
ratio∗ error

2 HDFP 59/3903 (1.5) 88/3922 (2.2) −0.40 0.17 (−0.74, −0.07)
(Stratum I)

4 ANBPS 13/1721 (0.8) 22/1706 (1.3) −0.54 0.35 (−1.23, 0.15)
5 MRC 60/8700 (0.7) 109/8654 (1.3) −0.61 0.16 (−0.93, −0.29)
6 VAII 5/186 (2.7) 20/194 (10.3) −1.43 0.51 (−2.43, −0.42)
7 USPHS 1/193 (0.5) 6/196 (3.1) −1.80 1.09 (−3.93, 0.32)
8 HDFP 25/1048 (2.4) 36/1004 (3.6) −0.42 0.26 (−0.94, 0.10)
(Stratum II)

9 HSCSG 43/233 (18.5) 52/219 (23.7) −0.32 0.23 (−0.77, 0.14)
10 VAI 1/68 (1.5) 3/63 (4.8) −1.21 1.18 (−3.50, 1.08)
11 WOLFF 2/45 (4.4) 1/42 (2.4) 0.65 1.24 (−1.79, 3.08)
13 Carter 10/49 (20.4) 21/48 (43.8) −1.11 0.46 (−2.01, −0.21)
14 HDFP 18/534 (3.4) 34/529 (6.4) −0.68 0.30 (−1.26, −0.09)

(Stratum III)
15 EWPHE 32/416 (7.7) 48/424 (11.3) −0.43 0.24 (−0.90, 0.04)
16 Coope 20/419 (4.8) 39/465 (8.4) −0.60 0.28 (−1.16, −0.05)

Meta-analysis

Fixed effects estimate −0.54 0.08 (−0.69, −0.38)
Random effects estimate −0.54 0.08 (−0.69, −0.38)
Test for treatment difference (χ2) (fixed effects

model)
47.59; (1 df) p < 0.001

Test for treatment difference (χ2) (random
effects model)

47.59; (1 df) p < 0.001

Test for heterogeneity (χ2) 9.57; (12 df) p = 0.65

∗The log-odds ratio of a stroke on antihypertensive treatment relative to control treatment.

7.3 GRAPHICAL PRESENTATION

A good graphical display will provide information on the magnitude of the
individual study estimates of treatment difference, an indication of the precision
of these estimates and a means of assessing consistency amongst the studies.
Even if it is not considered appropriate to calculate an overall estimate of the
treatment difference, a graphical display of the individual study results can be
informative. When an overall estimate has been calculated, this can be included.
Two types of graphical display, the CI plot and the radial plot, are considered
below.
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7.3.1 A confidence interval plot

One commonly used graphical display is the CI plot, examples of which have
appeared earlier in this book. This is also referred to as a forest plot, although the
origin of this name appears to be unknown (Lewis and Clarke, 2001). Consider
Figure 4.1, which shows a CI plot for the Collins et al. (1990) data set, in which
the treatment difference is the log-odds ratio of a stroke on antihypertensive
treatment relative to control. Typically, studies are listed down the page. The
x-axis represents the treatment difference, θ, and usually a vertical line is drawn
at the point which represents no treatment difference. For each study there is a
symbol marking the point estimate of treatment difference and a horizontal line
joining the lower and upper limits of the 95% CI.

This type of display is good at providing information on the magnitude of each
study estimate and its precision. Given a point estimate θ̂i and the assumption
of asymptotic normality, the 95% CI would be given by θ̂i ± 1.96se(θ̂i), that is,
it would have width 3.92se(θ̂i). Precision is defined as the inverse of variance,
1/[se(θ̂i)]2 (or wi), and so the shorter the CI the greater the precision. The relative
precision of two study estimates can be seen by comparison of the widths of
their CIs.

To provide the reader with a visual assessment of relative precision, it is
necessary for the CIs to be symmetrical about their point estimates. This means
that the scale for the x-axis must be linear in terms of the parameterization of
the treatment difference used in the meta-analysis. For example, when using the
log-odds ratio for binary data, then the x-axis scale should be linear on the log-
odds ratio scale (Figure 4.1), and not linear on the odds ratio scale (Figure 7.2).
Figure 7.3, in which the x-axis represents the odds ratio on a log scale, is equivalent
to Figure 4.1, and may be preferred because it provides tick marks and labelling
for particular values of the odds ratio. In Figure 7.2 the CIs do not appear to be
symmetrical about their point estimates. This is demonstrated clearly for study
10. The reason for this is that the point estimates are given by exp(θ̂i), and the
95% CIs by exp[θ̂i ± 1.96se(θ̂i)]. This also means that the width of the CI depends
not only on the standard error but also on the study estimate. For two studies
with equal precision, the one having a larger odds ratio will be associated with
a wider CI. Whereas in Figure 4.1 studies 7 and 10 had CIs of similar width, in
Figure 7.2 the width of the CI for study 10 is more than twice that of study 7.
Notice also in Figure 7.2 that the full length of the CI for study 11 cannot be
shown, because on this scale it is far too long to present meaningfully with the
other ones. An additional problem with Figure 7.2 is in the visual comparison of
positive and negative results. The values of an odds ratio and its reciprocal, for
example 2 and 0.5, represent treatment differences of the same magnitude but
in opposite directions. When these two values are plotted on a linear odds ratio
scale they are not equidistant from 1. However, if plotted on a log-odds ratio scale
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Study   2
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Figure 7.2 Confidence interval plot on the odds ratio scale. Estimates and 95% confidence
intervals of the odds ratio of a stroke on antihypertensive treatment relative to control
treatment, calculated from the data in the first column of Table 4.3.
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Odds ratio
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Figure 7.3 Confidence interval plot of odds ratios on the log scale, using the same data
as in Figure 7.2.

they are equidistant from 0, taking the values ±0.693. This is a second reason for
keeping the x-axis linear on the log-odds ratio scale.

Although Figure 4.1 provides some information about the precision of study
estimates, a better visual impact is obtained by making the size of the symbol
representing the study estimate proportional to the precision. This has been
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Study   2
Study   4
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Study   6
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Figure 7.4 Confidence interval plot on the log-odds ratio scale, using the same data as
in Figure 7.2. The area of the circle is proportional to the inverse variance of the estimate.

achieved in a number of published meta-analyses by presenting a shaded square,
with the length of its sides proportional to 1/[se(θ̂i)] and centred at the point
estimate θ̂i. Alternatively, as illustrated in Figure 7.4, a shaded circle could
be produced, centred at θ̂i and with radius proportional to 1/[se(θ̂i)]. Usually,
a different symbol from that used for the individual studies is chosen for the
overall estimate. In the examples presented in this chapter, the same constant of
proportionality for the area of this symbol has been used for the overall estimates
and the individual studies.

For the CI plot there is a choice about the order in which the study estimates
appear on the vertical axis. For example, if based on published papers one might
chose alphabetical order of the first author, or date of publication. Alternatively,
it may be more enlightening to order them according to some aspect of the study
design or a study-level covariate. Figure 6.2 illustrates a plot of the tacrine studies
by the dose of tacrine used. Another possibility is to order them according to
precision. In the absence of any bias in the selection of studies included in the
meta-analysis, one would expect to see a higher degree of consistency amongst
the estimates from studies with higher precision than those with lower precision.
This is shown for the Collins et al. data set in Figure 7.5.

Although the CI plot has some useful features and is fairly straightforward
to produce, it is often difficult to obtain from it a measure of the amount
and importance of heterogeneity between the studies. It is expected that study
estimates will differ from one another because of sampling error, but it is not
obvious how the plot will change when there are underlying differences between
studies.
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Study   5
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Study 15
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Figure 7.5 Confidence interval plot on the log-odds ratio scale, identical to Figure 7.4
with the exception that the studies are ordered by decreasing precision.

7.3.2 A radial plot

The radial plot, described by Galbraith (1988), is a bivariate scatter plot (x, y)
of the ‘standardized estimate’ of treatment difference against ‘precision’ for each
study. The ‘standardized estimate’ is given by θ̂i/se(θ̂i) (or θ̂i

√
wi). Galbraith

defines ‘precision’ as 1/[se(θ̂i)] (or
√

wi), which is the square root of the usual
definition of precision. Figure 7.6 shows a radial plot for the Collins et al. data set.
The circular axis represents the treatment difference, θ. The value of an individual
study estimate θ̂i can be read from the θ scale by drawing a line from (0, 0) through
the point (xi, yi). Because a larger x-value corresponds to higher precision, small
trials correspond to points lying close to the origin whereas large trials provide
influential points on the right-hand edge of the plot.

If a linear regression line of the ‘standardized estimate’ on ‘precision’ were
to be fitted so as to pass through the origin, then the least-squares estimate of
the slope would be given by the fixed effects estimate θ̂ = ∑r

i=1 θ̂iwi
/∑r

i=1 wi.
The line y = θ̂x is drawn in Figure 7.6 meeting the θ-axis at θ̂ = −0.535. Under
the fixed effects model (4.1) the ‘standardized estimate’ will have a variance of
1. The residual from the fitted regression line associated with study i is equal
to (θ̂i − θ̂)

√
wi, which has a variance of 1 − wi

/∑r
i=1 wi. Assuming that this

variance is approximately equal to 1, a plot of the parallel lines y = θ̂x ± 2
provides an approximate 95% confidence band for individual study results. If
there is a common treatment difference, θ, across all studies, then 95% of study
estimates would be expected to lie within this band and 5% outside. Trials which
are not consistent with the overall picture are easily identified because they
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Figure 7.6 Radial plot of the study ‘standardized estimates’ of the log-odds ratio of a
stroke on antihypertensive treatment relative to control treatment, against ‘precision’. The
fitted regression line which passes through the origin and meets the circular axis at the
fixed effects estimate is represented by a solid line. The dashed parallel lines provide an
approximate 95% confidence band for individual study results. The arc to the right of the
circular axis represents the 95% confidence interval for the fixed effects estimate.

correspond to points falling outside this confidence band. This is analogous to
identifying outliers from a plot of standardized residuals. All of the studies in
Figure 7.6 fall within this confidence band, indicating no obvious problem with
heterogeneity, and consistent with the non-significant test for heterogeneity found
in Chapter 4. This is to be contrasted with the radial plot based on the probability
difference parameterization, in which two studies fall outside of the confidence
band (Figure 7.7). For this parameterization the test for heterogeneity was found
to be statistically significant.

The way in which study estimates scatter about the regression line can be
informative. In the absence of any bias in the selection of studies included in
the meta-analysis, one would expect to see a random scatter of study estimates
about the fitted regression line, with points above and below the line at all levels
of precision. If, on the other hand, there is publication bias, resulting in larger
estimates of treatment difference from smaller studies than from larger studies,
then points on the left-hand side of the plot will tend to fall on one side of the
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Figure 7.7 Radial plot of the study ‘standardized estimates’ of the difference in the
probability of a stroke on antihypertensive treatment relative to control treatment, against
‘precision’.

regression line, whereas the points on the right-hand side will tend to fall on
the opposite side. There is no obvious pattern to the study estimates shown in
Figure 7.6.

Care should be taken in the interpretation of the 95% confidence band. This
band does not represent the 95% CI for the fixed effects estimate θ̂. Therefore, to
avoid confusion, the lines y = θ̂x ± 2 should not extend to the θ-axis. A CI for the
overall estimate can be presented as an arc close to but to the right of the θ-axis,
as illustrated in Figure 7.6.

In summary, the radial plot provides information on the magnitude of the
individual study estimates of treatment difference, an indication of the precision
of these estimates and a means of assessing consistency amongst the studies. It
is this last property which provides its advantage over the CI plot. However, it is
more difficult to construct using graphical software, due mainly to the circular
axis. Although desirable, it is not essential for this axis to be circular. For example,
a vertical axis on the right-hand side of the diagram could be used, as illustrated
in Figure 7.8.
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Figure 7.8 A radial plot identical to Figure 7.6 with the exception that the log-odds ratio
axis is vertical instead of circular.

7.4 CLINICALLY USEFUL MEASURES OF TREATMENT
DIFFERENCE

The choice of the parameterization of the treatment difference and the method of
estimation in both individual studies and the meta-analysis needs to be made on
the basis of statistical considerations. For full scientific evaluation, it is important
for the results to be available in terms of the chosen parameterization. However,
the results of a meta-analysis are likely to be of interest to a wide range of
people, including statisticians, clinicians, regulators, health care providers and
patients, and consideration needs to be given to appropriate ways of presenting
the results to the different audiences.

Sometimes the chosen parameterization itself has a straightforward inter-
pretation. In other cases, a simple transformation of the parameter may be
helpful. This is illustrated in Section 7.4.1 for some typical parameterizations. In
Sections 7.4.2 and 7.4.3, two particular types of transformation are discussed
in detail.
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7.4.1 Simple transformations of the treatment difference
parameter

First consider continuous measurements, which are assumed to be normally dis-
tributed. The means in the treated and control groups are µT and µC respectively,
and the common variance within each treatment group is σ2. The interpretation of
the absolute mean difference parameter θ = µT − µC seems to be straightforward.
For example, in the case of blood pressure measurements, this represents the mean
change in blood pressure between two treatments. When the standardized mean
difference, θ = (µT − µC)/σ, has been used, the interpretation is more difficult.
One option is to select a value for σ. Multiplying θ by σ will provide a value for the
mean difference on the original scale. The calculated mean difference and its 95%
CI are obtained by multiplying respectively the estimated treatment difference for
θ and its 95% confidence limits by σ. The value of σ chosen may be a pooled
estimate calculated from relevant studies in the meta-analysis, or from a specific
population of patients for whom the results are being interpreted.

For binary data, consider the log-odds ratio given by

θ = log
{

pT (1 − pC)

pC (1 − pT)

}
,

where pC and pT are the success probabilities in the control and treated groups
respectively. The odds ratio is given by exp(θ). The calculated odds ratio and
its 95% CI are obtained by exponentiating respectively the estimated treatment
difference for θ and its 95% confidence limits. Alternatively, pT can be calculated
for a chosen value pC using the log-odds ratio. Here

pT = pC exp(θ)

(1 − pC) + pC exp(θ)
. (7.1)

The calculated probability and its 95% CI are obtained by substituting respectively
the estimated treatment difference for θ and its 95% confidence limits in (7.1).
If (pTL, pTU) is the 95% CI for pT, then (pTL − pC, pTU − pC) is a 95% CI for the
difference in success probabilities. The estimate and CI for the difference in success
probabilities will depend on the chosen value of pC. One possibility is to calculate
the overall proportion of successes in the control groups from all of the trials
contributing to the meta-analysis. However, as the proportion of successes in the
control group can often vary considerably from trial to trial, this may give rise to
misleading information. In the context of the calculation of the ‘number needed to
treat’ (Section 7.4.3), Smeeth et al. (1999) have argued that a better alternative
is to use estimates obtained for specific patient populations. Alternatively, a
graphical presentation of the results might be considered. For example, the curve
of 100pT against 100pC may be produced, for pC taking values between 0 and 1
in (7.1) and with θ replaced by its estimate. In addition, the curves of the 95%



Clinically useful measures of treatment difference 191

0
0

10

20

30

40

50

60

70

80

90

100

E
ve

nt
 r

at
e 

on
 tr

ea
tm

en
t (

%
)

10 20 30 40 50

Event rate on control (%)

60 70 80 90 100

Figure 7.9 The event rate on treatment as a function of the event rate on control,
calculated for a log-odds ratio of −0.535 with 95% confidence interval (−0.688, −0.383).
The estimates of the event rate on treatment are indicated by the solid curve, and the 95%
confidence limits by the dashed curves.

confidence limits for 100pT could be included. Figure 7.9 demonstrates this for the
Collins et al. data set. As presented in the first column of Table 4.3, the estimate of
the log-odds ratio of a stroke on antihypertensive treatment relative to control is
−0.535, with 95% CI (−0.688, −0.383). For specific values of the control event
rate (100pC), the estimate and CI for the treated event rate (100pT) can be read
off the graph. Instead of plotting (100pT) on the y-axis, one may wish to plot
100(pT − pC).

Suppose that the chosen parameter for ordinal data is the log-odds ratio based
on the proportional odds assumption. In this case θ is given by

θ = log
{

QkT (1 − QkC)

QkC (1 − QkT)

}
, k = 1, . . . , m − 1,

where there are m ordered categories, QkT is the cumulative probability of a
response in categories 1, . . . , k in the treated group, and QkC is defined similarly
for the control group. The term QkT is then calculated from a formula similar
to (7.1):

QkT = QkC exp(θ)

(1 − QkC) + QkC exp(θ)
. (7.2)

For a particular value of k, QkT can be considered as the probability of ‘success’ in
the treated group. In this respect QkT and QkC can be treated in the same way as
pT and pC above.
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For survival data, consider the log-hazard ratio given by

θ = log[− log{ST(t)}] − log[− log{SC(t)}],

where SC(t) and ST(t) are the survival probabilities at time t in the control and
treatment groups, respectively. Interest may lie in calculating the difference in
survival probabilities between the two treatments at a specific timepoint, say t1.
Given a value of SC(t1), the value of ST(t1) may be calculated from the log-hazard
ratio, θ, as follows:

ST(t1) = exp{exp(θ) log(SC(t1)}. (7.3)

The calculated survival probability and its 95% CI are obtained by substituting
respectively the estimated treatment difference for θ and its 95% confidence limits
in (7.3). A CI for the difference in survival probabilities can be obtained in the
same way as for the difference in success probabilities. As the estimate and CI for
the difference in survival probabilities will depend on SC(t1), a suitable choice is
needed for application to a specific patient population.

7.4.2 Probability of doing better on treatment than on control

On making a decision about the health care of a patient, one might ask whether the
patient is likely to have a better response if given the new treatment than if given
the control treatment. This question can be answered through the calculation of
the probability of being better off on the new treatment, expressed in this or an
alternative form. For example, a probability of 0.8 can be expressed as an 80%
chance or odds of 4:1 of being better off on the new treatment than on the control
treatment. It will usually be possible to calculate this probability from the overall
estimate of treatment difference from the meta-analysis, and this is illustrated
here for some typical parameterizations of treatment difference.

Suppose that YT is the random variable associated with the response of a subject
taking the new treatment and YC that associated with a subject taking the control
treatment. The probability that a person on the new treatment does better than
one on the control treatment is P(YT > YC).

Consider, first, continuous measurements which are assumed to be normally
distributed. If YT is normally distributed with mean µT and variance σ2, and YC

is normally distributed with mean µC and variance σ2, then YT − YC is normally
distributed with mean µT − µC and variance 2σ2. So

P(YT > YC) = P{(YT − YC) > 0} = �

(
µT − µC

σ
√

2

)
,

where � is the standard normal distribution function.
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If the absolute mean difference parameterization has been chosen for the
meta-analysis, so that θ = µT − µC, then

P(YT > YC) = �

(
θ

σ
√

2

)
. (7.4)

An estimate of σ is required for the calculation. However, if the standardized mean
difference has been chosen, so that θ = (µT − µC)/σ, then

P(YT > YC) = �

(
θ√
2

)
, (7.5)

which can be calculated from the value of θ alone.
For binary data the log-odds ratio parameterization

θ = log
{

pT(1 − pC

pC(1 − pT)

}

will be considered. The distributions of YC and YT are now discrete, whereas in
the previous example they were continuous. For a pair of responses, one from a
patient on the new treatment and one from a patient on the control treatment,
there are only four possible outcomes: a success from the new treatment and a
failure from the control; a success from the control and a failure from the new; a
success from both; and a failure from both. Interest lies in the situation of success
on one treatment and failure on the other. Given this scenario the probability that
the success is on the new treatment can be calculated. Denoting a success by 1
and a failure by 0, a probability that expresses the chance of doing better on the
new treatment is

P{YT = 1|YT + YC = 1} = pT (1 − pC)

pT (1 − pC) + pC (1 − pT)
= 1

1 + e−θ
. (7.6)

Now consider ordinal data for which the assumption of proportional odds
between treatments is made. The parameterization of treatment difference is the
log-odds ratio, given by

θ = log
{

QkT (1 − QkC)

QkC (1 − QkT)

}
, k = 1, . . . , m − 1,

where m is the number of categories. Generalization of formula (7.6) becomes
more difficult in this case, because the number of potential outcomes is much
larger. Instead we derive an expression in terms of the underlying latent variables,
which were discussed in Section 5.4.1. This approach could also be applied to
the binary case. In this context YT and YC will represent the continuous ‘latent’
variables for the treated and control groups, respectively. Under the proportional
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odds assumption, YC and YT can be considered to have logistic distributions,
so that

P(YC � y) = 1
1 + e−y

and
P(YT � y) = 1

1 + e−(y+θ)
.

When categories are ordered with C1 being the best to Cm being the worst, it is
P(YC > YT) that is required. It can be shown that

P(YC > YT) = 1 − e−θ − θe−θ(
1 − e−θ

)2 . (7.7)

For survival data or interval-censored survival data the log-hazard ratio is
typically chosen to measure treatment difference. The variables YC and YT now
represent survival times in the two treatment groups. Here YC and YT are assumed
to have continuous distributions. Expressing the log-hazard ratio θ in terms of
survivor functions, it can be seen that

θ = log[− log{ST(t)}] − log[− log{SC(t)}],

where ST(t) = P(YT > t) and SC(t) = P(YC > t).
Under the proportional hazards assumption YC and YT are considered to have

exponential distributions, so that

P(YC > t) = e−λt

and
P(YT > t) = e−λψt,

where ψ = eθ. The required probability is given by

P(YT > YC) = 1
ψ + 1

. (7.8)

In all cases, the calculated probability and its 95% CI are obtained by substituting
respectively the estimated treatment difference for θ and its 95% confidence limits
in the appropriate formula (7.4)–(7.8).

7.4.3 The number needed to treat

The number needed to treat (NNT) has become a popular way of reporting the
results from both individual trials and meta-analyses. The NNT can be calculated
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when the response of interest is a binary outcome. It is defined as the number
of patients who need to be treated with the new treatment rather than the
control treatment for one additional patient to benefit. It is the inverse of the
probability difference, NNT = 1/(pT − pC), where pT and pC are the probabilities
of success on new treatment and control, respectively. Its proponents claim that
it is a more meaningful measure of treatment benefit than alternatives such as
the probability difference or odds ratio. However, it does have some undesirable
statistical properties. These will be explained below.

As the probability difference pT − pC takes values between −1 and 1, the NNT
takes values between −∞ and −1 and between 1 and ∞. As the probability
difference moves from a very small positive value through 0 to a very small
negative value, the NNT moves from ∞ to −∞ without going through 0. If
some studies show a positive effect of the new treatment and some studies a
negative effect, then the overall result from a meta-analysis based on the NNT
parameterization may produce a nonsensical result. The scale of the NNT is
not suitable for the calculations involved in a meta-analysis. This is shown in
more detail by Lesaffre and Pledger (1999), who demonstrate that it is better to
conduct the meta-analysis using the probability difference parameterization and
then calculate the NNT from the overall estimate of the probability difference.

If the meta-analysis has been conducted using the probability difference, the
NNT can be calculated as the inverse of the overall estimate of the probability
difference. A CI for the NNT can also be calculated by taking the inverse of the
limits of the CI for the probability difference. However, this latter calculation may
be problematic. If the CI for the probability difference includes both positive and
negative values, then its interpretation on the NNT scale is difficult. For example,
a 95% CI on the probability difference scale of (−0.05, 0.1) would correspond to a
95% CI on the NNT scale which comprises the two regions (−∞, −20) and (10,
∞). In an attempt to present the disjoint CIs in a more meaningful way, Altman
(1998) proposed using the notation NNTB and NNTH. The number of patients
needed to be treated for one additional patient to benefit (to be harmed) is denoted
NNTB (NNTH). The 95% CI on the NNT scale would then become (NNTH 20 to
∞ to NNTB 10). He suggests that a CI plot based on the probability difference, in
which the x-axis is relabelled in terms of NNTB and NNTH, can be presented.

Given the problems surrounding the NNT, it is not at all clear why the NNT is
thought to be easier to understand than the probability difference. As discussed by
Hutton (2000), the probability difference can be given a simple interpretation in
terms of numbers of patients. For example, 100(pT − pC) is the additional number
of patients per 100 treated who benefit from the new treatment compared with
control. Hutton argues that both the meta-analysis and the presentation of the
results should be based on the probability difference.

The interpretation of the NNT runs into more difficulties if the most appropriate
parameterization for the meta-analysis is the log-odds ratio or log-relative risk, as
is very often the case. The NNT can be calculated from each of these parameters
as follows. If the log-odds ratio has been used, the NNT can be calculated
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from the equation

NNT = pC
(
eθ − 1

) + 1

pC (1 − pC)
(
eθ − 1

) , (7.9)

where

θ = log
{

pT (1 − pC)

pC (1 − pT)

}
.

If the log-relative risk has been used, the NNT calculation is based on the equation

NNT = 1

pC
(
eθ − 1

) , (7.10)

where θ = log(pT/pC).
To produce an estimate of the NNT it is necessary to substitute the estimated

treatment difference for θ in either (7.9) or (7.10). However, in addition it is
also necessary to provide a value for pC. If the log-odds ratio (log-relative risk) is
approximately constant over a range of values of pC, then the NNT will not be.
Therefore, reporting the NNT in the absence of the value of pC can be potentially
misleading. As discussed in Section 7.4.1, when making inferences about specific
populations, it is advisable to use the estimate of pC which is relevant to that
population. A CI for the NNT can be calculated by substituting the upper and
lower limits of the 95% CI for the log-odds ratio in formula (7.9) or the log-relative
risk in (7.10). However, there may still be the same problem with the CI for the
NNT as discussed above.

In conclusion, there are difficulties in the calculation of the NNT estimate and
its CI and plenty of scope for misinterpretation. Smeeth et al. (1999) comment
that the NNT is no better understood than other parameterizations.
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Selection Bias

8.1 INTRODUCTION

When judging the reliability of the results of a meta-analysis, attention should
focus on factors which might systematically influence the overall estimate of
treatment difference. One important factor is the selection of studies for inclusion
in the meta-analysis. In this regard, bias may be introduced in two different ways.
One is by including studies which have themselves produced biased estimates of
the treatment difference. The other is by selective exclusion of the results of some
eligible studies, perhaps because relevant data are not available.

The first scenario is easier to handle, because sensitivity analyses can be
conducted in which studies suspected of producing a biased estimate can be
excluded. The main challenge is in identifying potential sources of bias. Bias
may be introduced into the results of a study because of methodological flaws.
In Section 2.6, the methodological quality of a trial was considered as a means
of determining which trials should be included in the meta-analysis. In this
case, trials which do not adhere to important methodological standards, such
as unbiased allocation of patients to treatment groups, are omitted from the
meta-analysis. Bias may also be introduced by the order in which studies are
conducted. For example, large-scale clinical trials of a new treatment are often
undertaken following promising results from small trials. In particular, in a
drug development programme promising results from phase II studies will lead
to phase III studies, whereas disappointing results will not. A meta-analysis may
be undertaken in the former case, but is unlikely to be performed in the latter.
Therefore, given that a meta-analysis is being undertaken, larger estimates of
treatment difference are more likely from the small early studies than from the
later larger studies. A meta-analysis can be performed which excludes the small
early studies. Such a meta-analysis may be planned either as the main analysis
or as a supporting sensitivity analysis. It should be noted that the inclusion
of such studies in a meta-analysis will have little effect on the overall fixed
effects estimate of treatment difference due to their small weights. However,
if the difference between these studies and the later larger ones is sufficient
to produce significant heterogeneity, the random effects estimate may alter
substantially.

197
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The second scenario causes difficulties because sensitivity analyses may require
specific assumptions to be made about the extent of and reasons for data being
missing. These assumptions cannot usually be validated. Therefore, although
sensitivity analyses may provide some useful information on the reliability of
the meta-analysis, they are unlikely to overcome the problem completely. One
reason why relevant data are missing is publication bias. Publication bias may
be encountered if a meta-analysis is restricted to the combination of results
obtained from trials which have been published. Often, the decision to submit
or accept a manuscript is influenced by whether or not statistical significance is
achieved for a treatment comparison, so that studies with statistically significant
results are more likely to be published than are those showing no significant
difference. The direction of the treatment difference is also likely to be influential.
For example, studies which indicate that a new treatment is worse than a
standard or control treatment are less likely to be published than those indicating
a benefit. Publication bias will result in overestimation of the benefit of the new
treatment.

Publication bias has received much attention in the literature, and this chap-
ter focuses on methods for detecting it and correcting for it. A meta-analysis
concerning the effect of intravenous magnesium on mortality following acute
myocardial infarction is introduced in Section 8.2 and will be used as an example.
Section 8.3 considers the ‘funnel plot’ for the graphical detection of publication
bias. Statistical methods for the detection and correction of publication bias are
discussed in Section 8.4. In Section 8.5, the related problem of bias due to selective
reporting within studies is addressed.

When using the methods of Sections 8.3 and 8.4 it should be borne in mind
that other causes of bias may be confounded with publication bias. For example, it
may be impossible to distinguish between the bias due to the overestimation of the
treatment benefit in early small studies, as discussed earlier, and publication bias
resulting in the lack of data from small negative studies. Sterne et al. (2001a) also
note that studies with lower methodological quality tend to show larger treatment
benefits and also tend to be small. Therefore, any bias detected by these methods
should not automatically be ascribed to publication bias.

Another reason why relevant data might not be available is that different rating
scales or methods of assessment may have been used across studies. If the meta-
analysis is conducted only on trials using a common outcome measure, this may
lead to selection bias, although this will not necessarily result in overestimation
of the benefit of the new treatment. A related problem occurs when the times at
which patients are assessed vary from trial to trial. Furthermore, even if the same
outcome measure has been used in all studies, the way in which the results are
presented in a published paper or report may vary from one study to another. This
may make it difficult or impossible to extract the relevant data from all studies.
Methods for combining different types of information are discussed in Chapter 9.
An appropriate choice of one of these methods may be used as the basis for a
sensitivity analysis.
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8.2 AN INVESTIGATION OF PUBLICATION BIAS:
INTRAVENOUS MAGNESIUM FOLLOWING ACUTE
MYOCARDIAL INFARCTION

To illustrate the investigation of publication bias, a set of trials undertaken to
investigate the effect on short-term mortality of giving intravenous magnesium to
patients with acute myocardial infarction will be used. The data from 16 trials are
presented in Table 8.1. The treatment difference is the log-odds ratio of mortality on
magnesium relative to control, based on the binary yes/no outcome for mortality.
The calculations are based on the efficient score and Fisher’s information statistics
from the conditional likelihood (formulae (3.5) and (3.6)). Teo and Yusuf (1993)
reported the results of a fixed effects meta-analysis undertaken following the
publication of the results of the LIMIT-2 study (Woods et al., 1992). This meta-
analysis (see Table 8.2) was based on the first ten clinical trials presented in
Table 8.1. They noted a smaller effect in the LIMIT-2 study than in most of
the smaller studies, but concluded that there was no statistical evidence of
real differences between the trials, as the 95% confidence intervals of all trials
overlapped (see Figure 8.1). If they had conducted a test for heterogeneity, they
would have found that this almost reached statistical significance (p = 0.07,
Table 8.2). A radial plot (Figure 8.2) suggests a possibility of heterogeneity, but
does not provide strong evidence. However, the random effects estimate of the
log-odds ratio is considerably larger than the fixed effects estimate, as it gives more
weight to the smaller studies (Table 8.2). In a subsequent editorial, Yusuf et al.
(1993) concluded: ‘it appears that intravenous magnesium is a safe, effective,
widely practicable, and inexpensive intervention that has the potential of making
an important impact on the management of patients with MI in most countries
throughout the world’. In 1995, the results from the large ISIS-4 trial (ISIS-4
Collaborative Group, 1995) showed that magnesium had no effect on mortality.
Egger and Davey Smith (1995) considered possible reasons for the difference in
the findings between the meta-analysis and the ISIS-4 study. One possibility was
selective identification of positive studies for inclusion in the meta-analysis. Egger
and Davey Smith conducted a more extensive search and discovered another five
small studies (studies 11–15 in Table 8.1). However, all five studies indicated a
beneficial effect of magnesium, two of them showing a statistically significant
effect. Publication bias was considered as another possibility. Based on a funnel
plot, they concluded that ‘selective non-publication of negative trials seems to be
a likely explanation for the discrepant findings of the magnesium meta-analysis’.

8.3 A FUNNEL PLOT

Light and Pillemer (1984) introduced the ‘funnel plot’ for the graphical detection
of publication bias. The funnel plot is a bivariate scatter plot (x, y) of the study
sample size against the study estimate of treatment difference. It is based on the
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Figure 8.1 Intravenous magnesium following acute myocardial infarction. Estimates
and 95% confidence intervals of the log-odds ratio of mortality for intravenous magnesium
relative to control.
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Figure 8.2 Intravenous magnesium following acute myocardial infarction: radial plot of
the ‘standardized estimates’ of the log-odds ratio of mortality for intravenous magnesium
relative to control, against ‘precision’.
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Table 8.2 Intravenous magnesium following acute myocardial infarction: meta-analysis
of the log-odds ratio of mortality for intravenous magnesium relative to control, applying
the methods of Chapter 4 with the method of moments estimate of τ2 to the study estimates
in Table 8.1

Log-odds
ratio

Std. error 95% CI

Meta-analysis (studies 1–10)
Fixed effects estimate −0.50 0.12 −0.73, −0.27
Random effects estimate −0.75 0.22 −1.19, −0.32
Test for treatment difference

(χ2), fixed effects model
18.31; (1 df) p < 0.001

Test for treatment difference
(χ2), random effects model

11.76; (1 df) p < 0.001

Test for heterogeneity (χ2) 15.67; (9 df) p = 0.07

Meta-analysis (studies 1–15)
Fixed effects estimate −0.60 0.11 −0.81, −0.39
Random effects estimate −0.86 0.18 −1.21, −0.51
Test for treatment difference

(χ2), fixed effects model
30.54; (1 df) p < 0.001

Test for treatment difference
(χ2), random effects model

22.88; (1 df) p < 0.001

Test for heterogeneity (χ2) 21.99; (14 df) p = 0.08

Meta-analysis (all studies)
Fixed effects estimate 0.01 0.03 −0.05, 0.07
Random effects estimate −0.76 0.19 −1.13, −0.39
Test for treatment difference

(χ2), fixed effects model
0.04; (1 df) p = 0.84

Test for treatment difference
(χ2), random effects model

15.86; (1 df) p < 0.001

Test for heterogeneity (χ2) 55.80; (15 df) p < 0.001

premise that the precision in estimating the treatment difference will increase as
the sample size of the study increases. Usually, there is good correlation between
the two. As an alternative, the reciprocal of the standard error of the estimate
(‘precision’) of the treatment difference may be used instead of the study sample
size. In the absence of any selection bias, the spread of results will be wide at the
bottom of the graph where small studies are placed, and will become narrower as
the studies become larger: the plot will resemble a symmetrical inverted funnel,
as indicated in Figure 8.3. The funnel plot for the Collins et al. (1990) results
from Table 4.2 is shown in Figure 8.4. The vertical dashed line is placed at the
fixed effects estimate of the log-odds ratio. In Section 4.2.5 it was noted that there
was little evidence of heterogeneity between the study estimates. It is possible to
imagine where the funnel might be drawn, and there is no strong evidence of
selection bias.
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Figure 8.3 Funnel plot in the absence of selection bias.
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One plausible way in which publication bias may be introduced is as follows.
First, the probability of selection increases as the one-sided p-value for testing the
benefit of the new treatment decreases. This means that the magnitude of the bias
in the estimate of treatment difference will increase as the sample size decreases.
Second, the probability of selection increases with the size of the study. It is more
likely that the results from a large study will be published than those from a
small study, and this is especially true if the benefit from the new treatment is
not statistically significant. This scenario will lead to an absence of small negative
studies. A funnel plot of the ten studies from Teo and Yusuf (1993) is shown in
Figure 8.5. For these studies there is a suggestion of heterogeneity (as discussed
in Section 8.2). In the absence of selection bias, the presence of heterogeneity
will affect the shape of the funnel plot by reducing the difference in the spread of
results between large and small studies. However, selection bias will still result in
an absence of small negative studies. Figure 8.5 suggests there may be selection
bias as there is a blank space in the bottom right-hand corner of the funnel plot.
However, the visual impact is dominated by the position of the LIMIT-2 study at
the top. Egger and Davey Smith (1995) present a funnel plot for studies 1–15.
The additional five trials all indicate a benefit from magnesium (Table 8.1), so that
their funnel plot looks even more asymmetric. They conclude that the funnel plot
is not symmetrical.

In Figure 8.4 it is possible to imagine where the funnel might be drawn. In
other cases the position of the funnel would not be as obvious. An alternative
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Figure 8.5 Intravenous magnesium following acute myocardial infarction: funnel plot
of sample size against the log-odds ratio of mortality for intravenous magnesium relative
to control. The dashed vertical line lies at the overall fixed effects estimate.
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approach is to plot sample size against the ‘standardized estimate’ (as defined in
Section 7.3.2). In the absence of selection bias and heterogeneity between the
study estimates, the spread of results should be the same at all values of the sample
size, whereas in the absence of small negative studies the spread would become
narrower at small sample sizes. A second alternative is to use the radial plot, in
which the ‘standardized estimate’ is plotted against ‘precision’. In the absence of
selection bias and heterogeneity between the study estimates, the spread of points
around the regression line should be the same for all levels of precision, with
points above and below the regression line for all levels of precision. Figure 8.2
shows that seven of the nine small studies lie below the regression line, whereas
the LIMIT-2 study on the right-hand side of the plot lies above the line, indicating
a difference in the size of effect between the small studies and the LIMIT-2 study.

8.4 STATISTICAL METHODS FOR THE DETECTION AND
CORRECTION OF PUBLICATION BIAS

A number of methods for identifying and modelling publication bias have been
proposed in the literature. Three particular methods are presented in detail in this
section in order to illustrate the different types of approach taken. The reader is
referred to Begg and Berlin (1988) and Begg (1994) for a more comprehensive
coverage of the topic.

8.4.1 A test of funnel plot asymmetry

Egger et al. (1997) present a formal test for publication bias based on linear
regression analysis. Although discussed in the context of a funnel plot, the x and
y variables that they use for the linear regression are the same as those defined
for the radial plot. Because it is an extension of the regression approach already
presented for the radial plot, it is discussed here in the context of the radial plot.

The linear regression of the ‘standardized estimate’ on ‘precision’ was discussed
in Section 7.3.2. In that section attention focused on fitting a regression line
which passed through the origin. If the fixed effects model is appropriate, this
calculated regression line will be a good fit to the data. If, however, the estimates
of treatment difference from smaller studies differ systematically from those from
larger trials, it will not be a good fit to the data. A more appropriate model would
then include both intercept and slope parameters, and be given by

yi = α + βxi + εi,

for i = 1, . . . , r, where r is the number of studies, yi is the ‘standardized estimate’
(θ̂i

√
wi), xi is the ‘precision’ (

√
wi), and the error terms, εi, are realizations of

normally distributed random variables with expected value 0 and variance 1.
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A test of publication bias would be a test of the null hypothesis that α is equal to
zero. The intercept, α, provides a measure of funnel plot asymmetry: the larger its
deviation from zero, the more pronounced the asymmetry. Suppose that positive
values of θ are associated with a beneficial effect of the new treatment over control.
If there are larger beneficial effects in the smaller studies than in the larger studies,
the estimated slope, β̂, will be less than the fixed effects estimate θ̂, and may even
be negative. The estimated intercept will be greater than zero.

The least-squares estimates of α and β are given by

α̂ =
∑r

i=1(θ̂i − β̂)
√

wi

r

and

β̂ =
r
∑r

i=1 θ̂iwi −
(∑r

i=1
√

wi
) (∑r

i=1 θ̂i
√

wi

)
r
∑r

i=1 wi −
(∑r

i=1
√

wi
)2 .

Under the fixed effects model (4.1), the variance of α̂ is given by

var(α̂) =
∑r

i=1 wi

r
∑r

i=1 wi −
(∑r

i=1
√

wi
)2 .

A test of the null hypothesis that the intercept is equal to zero can be conducted
by comparing the statistic α̂/se(α̂) with the standard normal distribution.

The parameter estimates α̂ and β̂ can be obtained by performing a least-squares
regression of θ̂i

√
wi on

√
wi (see Section A.2 in the Appendix). Such an analysis

can be performed in many packages, for example by using PROC GLM in SAS.
These produce the correct estimates of the regression coefficients. However, the
standard errors and test statistics computed by these packages are incorrect for
the required model, because they assume that var(εi) = σ2, where σ2 is to be
estimated from the data, instead of equal to 1. To obtain the correct standard error
for α̂, the standard error for the intercept given by the package should be divided
by the square root of the residual (error) mean square. Alternatively, the correct
standard error can be obtained as the square root of the first diagonal element
of the matrix (X′X)−1, where X is the r × 2 matrix of explanatory variables
associated with α and β. Many packages, such as SAS PROC GLM, will present this
matrix as an option (see Section 4.2.4). A confidence interval for the intercept is
based on asymptotic normality and is given by α̂ ± 1.96se(α̂).

For the Collins et al. data set of 13 studies, the estimate of the intercept was
−0.79, with 95% CI (−1.93, 0.34). As the CI includes zero, the null hypothesis
that α = 0 is not rejected. There is no strong evidence of a difference between the
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Figure 8.6 Stroke in hypertensive patients: radial plot with fitted regression line for the
log-odds ratio of a stroke on antihypertensive treatment relative to control treatment. The
95% confidence interval for the intercept of the regression line is shown to the right of the
vertical axis.

smaller and larger studies (Figure 8.6). This concurs with the visual inspection of
the funnel plot (Figure 8.4).

The fitted regression line for the ten magnesium trials is shown in Figure 8.7,
together with the 95% CI for the intercept. The estimate of the intercept was
−1.07, with 95% CI (−2.05, −0.09). This is significant evidence that α is not
equal to 0. As a negative estimate ofθ is associated with a benefit of magnesium, the
negative estimate for the intercept shows that the smaller studies are associated
with larger estimates of benefit than the larger one. Again, this concurs with the
visual inspection of the funnel plot (Figure 8.5).

Another method associated with the funnel plot is the ‘trim and fill’ procedure
proposed by Duval and Tweedie (2000a, 2000b). This consists of adding studies
to a funnel plot until it becomes symmetrical. The procedure involves a number of
steps. First, the number of studies in the asymmetric outlying part of the funnel is
estimated. These studies are removed, or ‘trimmed’, and either a fixed or a random
effects meta-analysis (whichever is considered to be the more appropriate) is
performed on the remaining studies. The estimated treatment difference from this
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Figure 8.7 Intravenous magnesium following acute myocardial infarction: radial plot
with fitted regression line for the log-odds ratio of mortality for intravenous magnesium
relative to control. The 95% confidence interval for the intercept of the regression line is
shown to the right of the vertical axis.

analysis provides an estimate of the true centre of the funnel. Each ‘trimmed’ study
is then replaced together with its missing counterpart, which is its mirror image
about the estimated centre of the funnel plot. The final estimate of the treatment
difference is obtained from a meta-analysis which includes the ‘filled’ studies.

Although the ‘trim and fill’ procedure provides a simpler approach than using
the selection models of Section 8.4.3, it has been shown in a simulation exercise
to add studies in a substantial proportion of meta-analyses, even in the absence of
publication bias (Sterne and Egger, 2000).

8.4.2 Rosenthal’s file-drawer method

The method of Rosenthal (1979) is a very simple means of assessing the impact of
missing studies on the overall estimate of treatment difference. It determines the
number of unpublished studies with an average observed treatment difference of
zero which would be needed to produce a test statistic for the overall treatment
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difference which just failed to reach statistical significance. The term ‘file-drawer’
is used because the results from unpublished studies are assumed to be hidden
away in filing cabinets. The information required from each of the r studies
providing results is the one-sided significance level p1i, i = 1, . . . , r, for the null
hypothesis that the new treatment is equal to the control versus the alternative
that the new treatment is better. Let u(p1i) be the upper 100p1ith percentage point
of the standard normal distribution, that is,

u(p1i) = �−1(1 − p1i),

where � is the standard normal distribution function. Under the null hypothesis
of no treatment difference in any study, the sum of the u(pi) values is normally
distributed with mean 0 and variance r. To test the global hypothesis that there
is no difference between the treatments against the one-sided alternative that the
new treatment is better, the statistic

Ur =
∑r

i=1 u(p1i)√
r

is compared with the standard normal distribution. The null hypothesis is rejected
at level α if Ur > u(α).
As u(p1i) is equal to θ̂i

√
wi, an alternative form of the test statistic Ur is given by

Ur =
∑r

i=1 θ̂i
√

wi√
r

.

Suppose that k is the number of additional studies required such that the statistic

Ur,k =
∑r

i=1 u(p1i)√
r + k

< u(α).

Then k will satisfy

k > −r +
{∑r

i=1 u(p1i)
}2

{u(α)}2
= −r +

{∑r
i=1 θ̂i

√
wi

}2

{u(α)}2
.

Applying this method to the ten magnesium trials, and using a one-sided 2.5%
significance level so that α = 0.025 and u(α) = 1.96, it can be seen that

k > −10 +
(−14.765

1.96

)2

= 46.7.

This means that if there are 47 or more unpublished studies, with an average
estimate of the treatment difference being zero, the apparent statistical significance
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of the meta-analysis would be lost. Whether or not such a figure is plausible must
be judged within the context of the meta-analysis. In this case, the chance of such
a large number of unpublished studies must be almost zero.

Although this method is simple, the assumption on which it is based may be
unrealistic. It assumes that the average of the treatment difference parameters in
the unpublished studies is equal to zero. Also, it ignores the size of the studies and
is not influenced by differences in the estimates of treatment difference between
small and large studies.

8.4.3 Models for the probability of selection

A number of authors (Lane and Dunlap, 1978; Hedges, 1984, 1992; Iyengar and
Greenhouse, 1988; Dear and Begg, 1992; Copas, 1999) have proposed models for
the probability of selection and used a conditional likelihood approach (sometimes
referred to as weighted distribution theory) to adjust the meta-analysis for selection
bias. The general approach is as follows. Suppose that the treatment difference
parameter, θ, is greater than zero if the new treatment is better than control.
The estimate of treatment difference in study i, θ̂i, is a realization of a random
variable Yi, which has density function fYi(yi). The distribution of Yi will depend
on the model chosen for the meta-analysis. For example, for the random effects
model of Section 4.3.1 the distributional assumption is that Yi ∼ N(θ, w−1

i + τ2).
However, when selection bias is present the study estimate is not a random
sample from this distribution: instead it is a random sample from the conditional
distribution of Yi given that study i has been selected. Let Si be the random variable
associated with the selection of study i. Then Si has a Bernoulli distribution, taking
the value 1 if study i is selected and 0 otherwise. The conditional density function
of Yi given that study i has been selected is given by

fYi|Si(yi|Si = 1) = fYi(yi)P(Si = 1|Yi = yi)∫ ∞
−∞ fYi(u)P(Si = 1|Yi = u) du

,

where P(Si = 1|Yi = yi) is the probability that study i is selected for the meta-
analysis given that the estimate of treatment difference is yi. A likelihood function
is constructed by taking the product of the individual study likelihood functions,
that is, the fYi|Si(yi|Si = 1), in which yi is replaced by θ̂i. Maximum likelihood
estimates of unknown parameters can then be obtained.

To calculate the likelihood function it is necessary to choose an appropriate
model to define the conditional selection probability, P(Si = 1|Yi = yi). If the
conditional selection probability is the same for all studies, then no bias is
introduced. If it is small for estimates of treatment difference which are close
to zero and large for those of greater magnitude the bias will be substantial.
The simplest model was examined by Hedges (1984), following work by Lane
and Dunlap (1978). It assumes that the study will only be selected if statistical
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significance is reached in the test of the treatment difference. If applied in the
context of a one-sided alternative hypothesis (θ > 0), with significance level α,
this model is defined by

P(Si = 1|Yi = yi) =
{

1 if yi � Cαi,
0 otherwise,

where Cαi is the critical value for the one-sided α test for study i. In this case the
contribution to the likelihood function for study i is

fYi(θ̂i)∫ ∞
Cαi

fYi(u) du
if θ̂i � Cαi,

and 0 otherwise. In the case of the random effects model of Section 4.3.1, the
contribution to the likelihood function from study i would be

L(θ, τ2; θ̂i) = 1√
2π(w−1

i + τ2)

exp

{
−(θ̂i − θ)2

2(w−1
i + τ2)

}

× 1

1 − �{(Cαi − θ)/
√

(w−1
i + τ2)} , if θ̂i � Cαi,

and 0 otherwise, where � is the standard normal distribution function.
In a later paper (Hedges, 1992), the model was generalized to allow the

conditional probability of selection to depend on the p-value calculated for the
study. As the p-value decreases the probability of selection increases. Alternative
relationships between the probability of selection and p-values are given by
Iyengar and Greenhouse (1998) and Dear and Begg (1992).

Copas (1999) increased the complexity of the model. In his approach study
selection is associated with a normally distributed latent variable. Let Xi be the
latent variable for study i which has mean γ0 + γ1

√
ni and variance 1, where ni

is the sample size of study i. The study is selected only if the realization of Xi for
study i is greater than zero. That is, Si = 1 if xi > 0. In the absence of selection
bias, the probability of selection for study i is �(γ0 + γ1

√
ni). Assuming that γ1 is

positive, large studies are more likely to be selected than small studies. Selection
bias is modelled by assuming that the variables Xi and the random variable Yi

of which θ̂i is a realization have a bivariate normal distribution with correlation
coefficient ρ. If ρ = 0 there is no selection bias. If, however, ρ > 0, the selected
studies which have positive values of xi will tend to have positively biased values
of θ̂i. The conditional density function of Yi given that study i has been selected is
given by

fYi|Xi(yi|Xi > 0) = fYi(yi)P(Xi > 0|Yi = yi)

P(Xi > 0)
= fYi(yi)P(Xi > 0|Yi = yi)∫ ∞

−∞ fYi(u)P(Xi > 0|Yi = u) du
.
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Consider the application to the random effects model of Section 4.3.1. From
multivariate normal theory, the conditional distribution of Xi given Yi is

Xi|Yi ∼ N
(

γ0 + γ1
√

ni + ρ(Yi − θ)

(w−1
i + τ2)1/2

, 1 − ρ2
)

.

The contribution to the likelihood function from study i would be

L(θ, τ2, γ0, γ1, ρ; θ̂i) = 1√
2π(w−1

i + τ2)

exp

{
−(θ̂i − θ)2

2(w−1
i + τ2)

}
�(ai)

�(bi)
,

where

ai = γ0 + γ1
√

ni + ρ(θ̂i − θ)(w−1
i + τ2)−1/2

(1 − ρ2)1/2

and
bi = γ0 + γ1

√
ni.

Copas suggests that it will not be possible to estimate reliably more than three out
of the five parameters θ, τ2, γ0, γ1 and ρ. As γ0 and γ1 have a direct interpretation
in terms of the probability of selection, they can be given fixed values, and ML
estimates of the other three can be found. The sensitivity of θ̂ to the choice of
values for γ0 and γ1 can then be explored and displayed in a contour plot.

Consider the application of the Copas model to the first 15 magnesium studies.
The number of patients per study ranges from about 40 to 2300. If the probabilities
of selection for studies of size 40 and 2300 are 0.1 and 0.9 respectively, then
γ0 = −1.673 and γ1 = 0.0616. If the data set ‘meta’ contains the values of θ̂i, ni

and wi under the variable names ‘y’, ‘n’ and ‘w’, then the following SAS PROC
NLMIXED program can be used to calculate ML estimates of θ, τ2 and ρ.

PROC NLMIXED data =meta;
PARMS tausq = 1 rho theta =0;
BOUNDS tausq >= 0, -1 <= rho <=1;

gamma0 = -1.673;
gamma1 = 0.0616;
var = 1/w + tausq;
b = gamma0+gamma1*sqrt(n);
a = (b + rho*(y-theta)/sqrt(var))/sqrt(1-rho*rho);
phia = probnorm(a);
phib = probnorm(b);
ll = -0.5*log(var)-0.5*(y-theta)**2/var + log(phia)- log(phib);
MODEL y ∼ general(ll);

When γ0 = −1.673 and γ1 = 0.0616, the estimates of θ and its standard error
are −0.43 and 0.19, respectively. Compared with the random effects estimate of



Selective reporting within studies 213

−0.86 which assumed no selection bias (Table 8.2), the treatment difference is
reduced by about half. The estimate of ρ is −0.55.

8.5 BIAS DUE TO SELECTIVE REPORTING WITHIN
STUDIES

The models discussed in Section 8.4.3 consider only one outcome measure of
interest. The probability that a study is selected for the meta-analysis is dependent
on the significance level or magnitude of the estimate of treatment difference of
that one outcome measure. However, bias can also be introduced via the selective
reporting of results from a study. If a number of outcome variables have been
analysed, only the ones showing a statistically significant benefit of the new
treatment may be reported. Hutton and Williamson (2000) consider a model
in which the outcome with the smallest significance level, out of a possible p
outcomes analysed, is the only one reported.

Subgroup analyses are often undertaken to investigate heterogeneity in a
meta-analysis. A study can only be included in a subgroup analysis if the estimate
of treatment difference and its standard error have been reported for the specific
subgroup. Again, bias can be introduced due to selective reporting of subgroup
analyses based on statistical significance. Hahn et al. (2000) perform a sensitivity
analysis under the assumption that subgroup results have been selected for
presentation when the p-value is less than 0.05.





9

Dealing with Non-Standard
Data Sets

9.1 INTRODUCTION

For some meta-analyses, the characteristics of the available data make it difficult
or impossible to implement the methods described in Chapters 4 and 5. In this
chapter, various commonly occurring problems are discussed and solutions
suggested.

Section 9.2 considers the problem in which the outcome measure is a binary
response and there are no ‘successes’ or no ‘failures’ in one or both of the treatment
arms of individual trials. This situation is likely to arise when the event of interest
has a low probability of occurring. In particular, it will be a common situation for
rarely occurring adverse events.

A common problem which occurs in a retrospective meta-analysis is when
different rating scales or methods of assessment have been used from one trial
to the next. If the meta-analysis is conducted only on trials using a common
outcome measure, this will lead to loss of power and the possibility of selection
bias. Methods for combining the data from different rating scales are discussed in
Section 9.3. A related problem, addressed in Section 9.4, occurs when the times
at which patients are assessed vary from trial to trial.

Even if the same outcome measure has been used in all studies, the way in which
the results are presented in a published paper or report may vary from one study
to another. Section 9.5 considers ways of combining trials which report different
summary statistics. Sometimes the estimate of the chosen measure of treatment
difference and its variance are not directly reported, but may be computed from
other available data. Ways in which this may be done are presented in Section 9.6.

It may be planned to perform a meta-analysis using individual patient data,
but it may only be possible to obtain summary information from some studies. In
this case there will be a need to combine estimates of treatment difference based
on summary statistics with those based on individual patient data, and this is
discussed in Section 9.7.

Finally, Section 9.8 considers methods for combining p-values when it is
impossible to calculate estimates of treatment difference from individual studies.
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9.2 NO EVENTS IN TREATMENT ARMS OF INDIVIDUAL
TRIALS

In the stroke example described in Section 3.2.1, there were two studies (1 and
12) in which there was no occurrence of stroke in either treatment group,
and one study (3) in which there was no occurrence of stroke in the treated
group (Table 3.1). For the analysis of the stroke example described in Chap-
ters 4 and 5, the three studies were excluded. In this section, the implications
of this approach are discussed and other possibilities considered. The issues
are discussed in relation to the log-odds ratio parameterization, although dif-
ficulties also arise with the other parameterizations which were discussed in
Section 3.2.2.

The traditional meta-analysis methods presented in Chapter 4 involve the
calculation of an overall estimate of treatment difference from a weighted average
of individual study estimates. For the stroke example, the measure of treatment
difference is the log-odds ratio of a stroke on antihypertensive treatment relative
to control. In Section 3.2.2, four methods of estimating the log-odds ratio for an
individual study were presented. These are maximum likelihood estimation and
the approach using the efficient score and Fisher’s information statistics, both of
which can be based either on an unconditional or a conditional likelihood. Each
of the four methods is discussed in turn below.

The unconditional ML estimate of the log-odds ratio (formula (3.1)) is undefined
for studies 1, 3 and 12. In addition, the inverse variance of the estimate (3.2) is
equal to 0, so that these studies would contribute nothing towards the overall
estimate. However, Gart and Zweifel (1967) showed that adding 0.5 to the
number of ‘successes’ and ‘failures’ in each treatment group improved the
estimate of the log-odds ratio by reducing its bias. This also allows an estimate to
be calculated in the case of zero cells in the 2 × 2 table. Formulae (3.1) and (3.2)
now become

θ̂ = log
{

(sT + 0.5)(fC + 0.5)

(sC + 0.5)(fT + 0.5)

}
(9.1)

and

var(θ̂) = 1
(sT + 0.5)

+ 1
(sC + 0.5)

+ 1
(fT + 0.5)

+ 1
(fC + 0.5)

. (9.2)

Table 9.1 shows the results from a fixed effects meta-analysis in which formu-
lae (9.1) and (9.2) have been used for all 16 studies. Although the estimates from
studies 1, 3 and 12 are now included in the analysis, they have larger standard
errors than the other studies and consequently smaller weight. For most of the
other studies the impact of adding 0.5 to each of the cells has been slight (see
Table 4.3). However, this is not the case for studies 7, 10 and 11 which have a
small number of strokes. Nevertheless, the overall fixed effects estimate of −0.532
(standard error 0.077) has hardly changed.
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Table 9.1 Fixed effects meta-analysis of the log-odds ratio of a stroke on antihypertensive
treatment relative to control. Estimates with standard error in square brackets

Study Estimation method

Unconditional ML Conditional
(adding 0.5 to all cells): (9.1), (9.2) Z and V: (3.5), (3.6)

1 VA-NHLB1 −0.008 [2.001] –
2 HDFP (Stratum I) −0.400 [0.169] −0.397 [0.167]
3 Oslo −2.480 [1.479] −2.082 [0.897]
4 ANBPS −0.525 [0.346] −0.528 [0.340]
5 MRC −0.604 [0.161] −0.591 [0.155]
6 VAII −1.355 [0.492] −1.240 [0.414]
7 USPHS −1.477 [0.912] −1.439 [0.763]
8 HDFP (Stratum II) −0.414 [0.262] −0.416 [0.260]
9 HSCSG −0.317 [0.231] −0.319 [0.231]

10 VAI −0.957 [0.992] −1.112 [1.016]
11 WOLFF 0.464 [1.055] 0.620 [1.176]
12 Barraclough 0.000 [2.009] –
13 Carter −1.079 [0.451] −1.073 [0.435]
14 HDFP (Stratum III) −0.665 [0.295] −0.657 [0.284]
15 EWPHE −0.421 [0.238] −0.421 [0.235]
16 Coope −0.590 [0.281] −0.580 [0.270]

U (1 df) 48.23; p < 0.001 53.33; p < 0.001
Q 10.64; (15 df) 12.35; (13 df)

p = 0.78 p = 0.50
θ̂ [se(θ̂)] −0.532 [0.077] −0.544 [0.075]
95% CI (−0.683, −0.382) (−0.690, −0.398)

The conditional ML estimate is also undefined for studies 1, 3 and 12 and the
corresponding inverse variances are equal to 0. Using this approach, all three
studies must be excluded from the meta-analysis.

The methods based on efficient score and Fisher’s information statistics do allow
study 3 to be included, but not studies 1 and 12. The meta-analysis using the Peto
approach ((3.5) and (3.6)) is shown in Table 9.1. The inclusion of study 3, which
indicates a large benefit from antihypertensive treatment, changes the overall
estimate from −0.533 (Table 4.3) to −0.544.

In addition to the four methods of estimation, there is the Mantel–Haenszel
estimate (Mantel and Haenszel, 1959), which is a weighted average of the indi-
vidual study estimates of the odds ratio. If the odds ratio is denoted by ψ, where
ψ = exp(θ), each study estimate, ψ̂i, and weight, wi, can be calculated as follows:

ψ̂i = sTi fCi

sCi fTi
(9.3)

and

wi = sCi fTi

ni
. (9.4)
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The Mantel–Haenszel estimate is given by

ψ̂ =
∑r

i=1 ψ̂iwi∑r
i=1 wi

=
∑r

i=1(sTi fCi/ni)∑r
i=1(sCi fTi/ni)

. (9.5)

The calculation of the Mantel–Haenszel estimate for the stroke example is
shown in Table 9.2. Although the contributions to the numerator and denomi-
nator in (9.5) are defined for all 16 studies, studies 1 and 12 do not contribute
to the overall estimate of the odds ratio, because for these studies both terms are
zero. The same overall estimate is obtained when both studies are removed from
the analysis. However, the results from study 3 do make a contribution.

Although the Mantel–Haenszel estimate has been shown to have good statisti-
cal properties, it is an estimate of the odds ratio rather than the log-odds ratio. As
a result, it does not have a symmetric distribution, so that the assumption that ψ̂

has arisen from a normal distribution with variance (
∑r

i=1 wi)
−1 is inappropriate.

Emerson (1994) recommends the use of the variance estimate due to Robins et al.
(1986) for the log-odds ratio estimate to provide a confidence interval for the odds

Table 9.2 Mantel–Haenszel estimate of the odds ratio of a stroke on antihypertensive
treatment relative to control treatment

Study Treated group Control group sTi fCi/ni sCi fTi/ni

Success Failure Success Failure
(stroke) (stroke)

1 VA-NHLB1 0 508 0 504 0.00 0.00
2 HDFP (Stratum I) 59 3844 88 3834 28.91 43.23
3 Oslo 0 406 5 374 0.00 2.59
4 ANBPS 13 1708 22 1684 6.39 10.96
5 MRC 60 8640 109 8545 29.54 54.27
6 VAII 5 181 20 174 2.29 9.53
7 USPHS 1 192 6 190 0.49 2.96
8 HDFP (Stratum II) 25 1023 36 968 11.79 17.95
9 HSCSG 43 190 52 167 15.89 21.86

10 VAI 1 67 3 60 0.46 1.53
11 WOLFF 2 43 1 41 0.94 0.49
12 Barraclough 0 58 0 58 0.00 0.00
13 Carter 10 39 21 27 2.78 8.44
14 HDFP (Stratum III) 18 516 34 495 8.38 16.50
15 EWPHE 32 384 48 376 14.32 21.94
16 Coope 20 399 39 426 9.64 17.60

Total 131.83 229.86

ψ̂ = 131.83/229.86 = 0.574
95% CI = (0.493, 0.667)
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ratio. If θ̂ is the estimated log-odds ratio, where θ̂ = log(ψ̂), then this variance
estimate is given by

var(θ̂) = 1
2

r∑
i=1

(
AiCi

C2
+ AiDi + BiCi

CD
+ BiDi

D2

)
, (9.6)

where

Ai = sTi + fCi

ni
, Bi = sCi + fTi

ni
, Ci = sTi fCi

ni
, Di = sCi fTi

ni
,

C =
r∑

i=1

Ci, D =
r∑

i=1

Di.

A 95% CI for the odds ratio is then given by

[exp{θ̂ − 1.96se(θ̂)}, exp{θ̂ + 1.96se(θ̂)}].

The Mantel–Haenszel estimate (95% CI) for the overall odds ratio in the stroke
example is 0.574 (0.493, 0.667) (Table 9.2). These are similar to the values
of 0.580 (0.502, 0.672) obtained by exponentiating the results from the Peto
approach (Table 9.1). It should be noted that the Mantel–Haenszel test statistic is
the U statistic calculated from the Peto approach. Therefore, within the framework
of the general fixed effects parametric approach presented in Section 4.2, the
Mantel–Haenszel test statistic is connected with the Peto estimate rather than
the Mantel–Haenszel estimate. Because the Mantel–Haenszel estimate does not
fit into the general meta-analysis framework, it is difficult to see how a random
effects model or meta-regression might be accommodated.

The Mantel–Haenszel test statistic, the Mantel–Haenszel estimate and 95% CI
(using the Robins et al. method) can be obtained using PROC FREQ in SAS via the
following statements:

PROC FREQ;
TABLES trial*treat*y/cmh2;

In the SAS output, the test statistic is referred to as the ‘Cochran–Mantel–Haenszel
Statistic’, and the appropriate Mantel–Haenszel estimate is the odds ratio associ-
ated with the ‘Case-Control’ study. Also included in the output is what is termed
the ‘Logit’ estimate of the odds ratio. This is calculated from the fixed effects
meta-analysis using (3.1) and (3.2). However, studies which have no ‘successes’
or no ‘failures’, such as studies 1 and 12 in the stroke example, are omitted from
the calculations, and for studies which have other types of occurrence of zero
cells, such as study 3, (9.1) and (9.2) are used instead.

When fitting the meta-analysis models for binary data described in Chap-
ter 5, care is needed if there are no ‘successes’ or no ‘failures’ in one or both
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treatment arms. If the ith trial has either no ‘successes’ or no ‘failures’ in
both treatment arms then the estimate of the trial effect, β0i, in model (5.4)
will not be defined. When confronted with this problem, statistical packages
will tend to produce a very large negative (no ‘successes’) or large positive (no
‘failures’) estimate of the trial effect, the magnitude depending on the largest
value which can be stored. If all trials have at least one ‘success’ and one
‘failure’ then model (5.4) may be fitted and an overall fixed effects estimate of
the log-odds ratio obtained. If, however, the ith trial has either no ‘successes’
or no ‘failures’ in one treatment arm, the estimate of the trial by treatment
interaction term, β1i, in model (5.6) will not be defined, and the same problem
arises.

In summary, when there are studies with no ‘successes’ or no ‘failures’ in both
treatment arms, the usual meta-analysis methods which stratify by study may
not be appropriate. These methods effectively ignore the data from such studies.
Depending on the method used, problems may also be encountered when a study
has either no ‘successes’ or no ‘failures’ in one treatment arm. Although for the
stroke example the exclusion of studies 1, 3 and 12 did not appear to alter the
overall conclusion, this might not always be the case. For the situation in which
there are very few events in any of the studies, an analysis which pools all the data
and only includes the treatment effects in the model (for example, model (5.32)),
may provide a sensible summary. In some cases, alternative stratification factors
might be considered. For example, studies may be pooled together in homogeneous
groups to form larger units, as is sometimes done with centres in a multicentre
trial. Alternatively, a specific prognostic factor might be considered. In some
situations exact methods may provide a solution (see, for example, Emerson,
1994).

9.3 DIFFERENT RATING SCALES OR METHODS OF
ASSESSMENT ACROSS TRIALS

The use of rating scales to assess outcome is common in clinical trials. For example,
they can be found in the assessment of quality of life, cognition and functional
ability. For the situation in which there is no consensus on the most appropriate
scale to use for a particular assessment, it is common to find a wide variety of
alternatives. Therefore, when undertaking a retrospective meta-analysis on trials
some of which were conducted in the more distant past, it is not unusual to find
that there is no single scale which has been used in all of the relevant studies.
If the meta-analysis is restricted to studies in which the same scale is used, then
the power to detect a treatment difference will be reduced, but more importantly
bias may be introduced into the overall estimate. To obtain an overall picture it is
desirable to perform a meta-analysis which includes as many studies measuring
the same therapeutic benefit or health outcome as possible. If a common scale
has been used in the majority of studies, the main analysis may concern this scale
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alone, and the analysis involving all trials may be undertaken as a sensitivity
analysis. However, if this is not the case, the latter may become the main analysis.

In order to combine the results from different rating scales, it is important to
establish that the scales to be combined are measuring the same effect. Having
established this, the type of meta-analysis which can be undertaken will be
dependent on the characteristics of the scales. Three different scenarios are
discussed here.

First, suppose that for each rating scale there is a clear ordering to the scale and
that the clinical importance of a jump of x units on the scale is the same throughout
the scale. If, in addition, the data are approximately normally distributed, the
meta-analysis may be conducted using the standardized mean difference as the
measure of treatment difference.

As an illustration, consider a meta-analysis of selegiline versus placebo in
the treatment of patients with Alzheimer’s disease, presented in Wilcock et al.
(2002). The outcome considered here is the effect on activities of daily living at
approximately 3 months following the start of treatment. Data are available from
seven trials, but five different rating scales have been used. These scales are the
Blessed Dementia Scale (scores 0 to 84), the Dependence Scale (scores 1 to 7),
the Gottfries–Brane–Steen scale (scores 0 to 36), the Nurses’ Observation Scale
for Inpatient Evaluation (scores 0 to 320), and the Physical and Instrumental
Activities of Daily Living (scores 0 to 24). In all cases a low score is good.
The summary data are presented in Table 9.3 in relation to the change from
baseline at 3 months. A negative value indicates improvement. It can be seen that
there is good agreement between the two estimates of standard deviation within
each trial, but wide variation between trials. To a large extent this reflects the
differences in the lengths of the rating scales. The standardized mean difference
was calculated for each study using (3.29) and (3.30). Fixed and random effects
meta-analyses were performed using the methods of Chapter 4, with the method of

Table 9.3 Comparison between selegiline and placebo on activities of daily living for
patients with Alzheimer’s disease. For each rating scale, the outcome of interest is change
from baseline at 3 months

Trial Rating Scale Selegiline Placebo

No. of Mean Standard No. of Mean Standard
patients deviation patients deviation

1 GBS 9 −0.73 6.24 9 0.62 6.42
2 BDS 15 0.13 0.64 15 0.23 1.08
3 NOSIE 79 −0.84 6.28 77 0.43 6.64
4 BDS 59 −1.90 3.47 49 1.04 3.52
5 BDS 62 −2.02 2.44 46 0.63 2.59
6 DS 172 −0.02 0.89 169 0.01 0.89
7 PIADL 25 0.88 2.82 24 0.08 2.83
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Table 9.4 Meta-analysis of the standardized mean difference (selegiline minus placebo),
using formulae (3.29) and (3.30), and the methods of Chapter 4 with the method of
moments estimate of τ2

Trial Standardized
mean difference

Std. error 95% CI

1 −0.20 0.47 (−1.13, 0.72)
2 −0.11 0.37 (−0.83, 0.61)
3 −0.20 0.16 (−0.51, 0.12)
4 −0.84 0.20 (−1.23, −0.44)
5 −1.05 0.21 (−1.46, −0.64)
6 −0.03 0.11 (−0.25, 0.18)
7 0.28 0.29 (−0.28, 0.84)

Fixed effects estimate −0.27 0.07 (−0.41, −0.13)
Random effects estimate −0.33 0.18 (−0.69, 0.03)
Test for heterogeneity (χ2) 30.90; (6 df) p < 0.001

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7

Fixed

Random

−3 −2 −1 0

Standardized mean difference

1 2 3

Figure 9.1 Activities of daily living for patients with Alzheimer’s disease. Estimates and
95% confidence intervals for the standardized mean difference (selegiline−placebo) on
change from baseline at 3 months. Negative values indicate a benefit of selegiline.

moments estimate of the heterogeneity parameter, τ2 (Table 9.4 and Figure 9.1).
The random effects estimate (95% CI) of the standardized mean difference is −0.33
(−0.69, 0.03), which just fails to reach statistical significance at the 5% level.
The authors considered that the size of the effect was unlikely to be of clinical
relevance. In order to interpret the overall results in terms of a particular rating
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scale one may multiply the overall standardized mean difference by a typical
standard deviation for that rating scale.

Second, suppose that for each rating scale there is a clear ordering to the
scale, but that the assumptions of equal spacing between consecutive scores and
normality are not appropriate. If the rating scales have a small number of possible
values, then the methods described for ordered categorical data may be used. If a
rating scale has a large number of possible values, then the same methodology
can be applied following the division of the scale into a small number of interval-
based categories. Whitehead (1993) concludes that there is little to be gained in
efficiency by creating more than five categories. To avoid bias in the estimate of
treatment difference, the choice of cut-points should have a clinical rationale and
not be based on the data. If individual patient data are available models such
as the fixed effects meta-analysis model (5.8) may be used. This model assumes
proportional odds between treatments, but stratifies by study. This means that the
cut-points associated with the distribution of the latent variable for determining
the response category are allowed to vary from study to study but are the same
for both treatment groups within a study.

As an example, consider a set of eight trials conducted in patients suffering from
arthritis. The trials were designed to investigate whether concurrent treatment
with the synthetic prostaglandin, misoprostol, would prevent or at least reduce
the degree of gastrointestinal damage without reducing the anti-inflammatory
effect of non-steroidal anti-inflammatory drugs. The data for these eight trials
can be found as studies 6–13 in Whitehead and Jones (1994) and are shown in
Table 9.5. Amongst the eight trials, different schemes for classifying the extent
of gastrointestinal damage detected by endoscopy had been used to create an
ordinal response variable. Although the definition of category 1, for example,
is not the same across studies, within each study there is an ordering of the
response, so that category 1 is always clinically the best response. In study
10 sucralfate was given to the control group. As this study was included in
the original meta-analysis, it is also included here. Misoprostol is apparently
associated with better outcome than placebo/control in each trial. For each study,
the ML estimate of the log-odds ratio was obtained by fitting a proportional
odds model based on the number of categories used in that study. Fixed and
random effect meta-analyses were performed using the methods of Chapter 4
(Figure 9.2). Results from the fixed effects analysis show a significant treatment
effect, the log-odds ratio of 1.25 indicating a substantial benefit of misoprostol
over control. The test for heterogeneity does not reach statistical significance, but
the estimate of the heterogeneity parameter is greater than zero. The random
effects analysis produces increased estimates of the log-odds ratio and its standard
error.

Finally, for the situation in which it is not possible to estimate a common
measure of treatment difference in all studies, one may have to resort to the
methods of combining p-values, described in Section 9.8.
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Table 9.5 Endoscopic classification in the misoprostol trials: meta-analysis of the log-
odds ratio of being in a better category on misoprostol than on placebo from the proportional
odds model, using the methods of Chapter 4 with the method of moments estimate of τ2

Study Treatment Category Total Log-odds

1 2 3 4 5
ratio [se]∗

6 Misoprostol 93 5 3 1 1 103 1.176
Placebo 85 10 10 4 5 114 [0.395]

7 Misoprostol 61 12 0 73 1.193
Placebo 49 28 3 80 [0.390]

8 Misoprostol 45 1 0 46 1.840
Placebo 65 6 3 74 [1.072]

9 Misoprostol 138 1 139 2.965
Placebo 121 17 138 [1.037]

10 Misoprostol 126 2 128 2.487
Sucralfate 110 21 131 [0.751]

11 Misoprostol 30 1 1 32 2.567
Placebo 20 11 7 38 [0.797]

12 Misoprostol 56 12 8 0 76 0.647
Placebo 50 15 12 5 82 [0.339]

13 Misoprostol 12 3 1 0 16 1.112
Placebo 11 5 2 3 21 [0.710]

Fixed effects estimate = 1.250; se = 0.186; 95% CI = (0.885, 1.614)
Test for heterogeneity: Q = 11.74; (7 df) p = 0.11
τ̂2 = 0.207 – method of moments estimate
Random effects estimate = 1.428; se = 0.267; 95% CI = (0.906, 1.951)

∗From a proportional odds model for an individual study.

Study   6
Study   7
Study   8
Study   9
Study 10
Study 11
Study 12
Study 13

Fixed

Random

−2 −1 0 1 2
Log-odds ratio

3 4 5

Figure 9.2 Endoscopic classification of gastrointestinal damage. Estimates and 95%
confidence intervals for the log-odds ratio of being in a better category on misoprostol than
on placebo.
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9.4 DIFFERENT TIMES OF ASSESSMENT ACROSS TRIALS

In clinical trials which follow up subjects over a long period of time, it is common to
find that the same assessment is carried out at a number of timepoints during the
trial. For example, in the treatment of patients with Alzheimer’s disease, cognitive
function may be recorded prior to randomization and then every 3 months follow-
ing the start of study treatment. If there is no consensus regarding the duration of
the treatment period or the timing of repeated assessments, then a meta-analysis
conducted at a specific timepoint may exclude some studies. In an attempt to
obtain a fuller picture, one might wish to fit a model to the repeated assessments
and choose an appropriate parameter to measure treatment difference.

As an example, consider the data from five trials comparing selegiline with
placebo, for the treatment of Alzheimer’s disease, in which the cognitive function
was measured by the Mini-Mental State Examination. The MMSE takes integer
values between 0 and 30, where 30 is good, and is considered here to be normally
distributed. The five trials were of different duration, and without a common time-
point for post-treatment assessment across all trials. Table 9.6 shows summary

Table 9.6 Selegiline studies: summary statistics for MMSE across time

Week Study Placebo Selegiline

Number Mean Standard Number Mean Standard
deviation deviation

0 1 20 18.80 5.01 18 19.56 4.49
2 86 18.78 3.51 84 18.80 3.63
3 26 17.25 3.53 25 18.28 4.39
4 168 12.26 5.40 172 12.81 5.35
5 25 19.96 6.42 25 18.16 4.62

4 4 166 12.33 5.61 165 13.07 5.40
5 25 19.88 6.27 25 17.72 5.67

5 3 24 17.08 4.33 22 17.73 6.78
8 5 24 19.33 6.35 25 17.56 4.93
9 1 20 18.30 4.40 18 18.78 6.28

3 23 18.04 5.00 23 17.43 6.71
13 3 21 17.95 4.80 23 17.70 6.41
17 3 20 17.20 4.49 23 18.00 6.28

4 151 11.84 5.57 156 12.28 5.47
21 3 20 17.40 5.17 24 18.92 6.53
24 2 68 20.32 5.16 64 19.80 5.46
25 3 18 16.33 5.40 23 17.74 6.24
30 4 139 11.14 5.95 144 11.23 5.68
35 1 18 16.17 6.22 17 17.12 6.38
43 4 125 9.94 6.01 134 10.45 5.74
56 4 112 9.59 6.01 121 9.79 6.05
65 1 17 15.47 6.34 15 13.07 7.41
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statistics for the MMSE for each treatment group in each study for each timepoint,
with a corresponding plot of mean scores in Figure 9.3. The simplest model to
fit is one assuming a linear trend over time. Alzheimer’s disease is a progressive
disease, and it is hoped that treatment would slow down the progression.

The meta-analysis may now be considered within the framework of a hierar-
chical model, in which there are three levels: study at the highest (level 3), patient
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Figure 9.3 Selegiline studies: mean MMSE across time. (a) Placebo. (b) Selegiline.
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at the next level down (level 2) and time at the lowest (level 1). The models of
Chapter 5 can be extended to incorporate this additional level, and terms may be
included as either fixed or random effects as appropriate. For example, consider
the model in which there is a linear relationship for the MMSE scores over time,
the intercept differs from study to study and the slope is dependent on study and
treatment. Each patient’s intercept and slope will be randomly distributed about
the line described by the particular study and treatment group to which they
belong. The model is given by

yijk = α + β0i + β2x2ijk + β3ix2ijk + β1x1ijkx2ijk + ν0ij + ν2ijx2ijk + εijk,

where yijk denotes the response from patient j in study i at the kth timepoint,
x1ijk is the treatment covariate, which takes the value 0 for the placebo group
and 1 for the selegiline group, and x2ijk is the number of weeks post-treatment.
The terms ν0ij and ν2ij are normally distributed random effects with mean 0,
variances σ2

0 and σ2
2 respectively, and correlation coefficient ρ. The error terms

εijk are normally distributed with 0 mean and variance σ2, independently of the
level 2 random effects. The model can be fitted using the following PROC MIXED
statements:

PROC MIXED;
CLASS study;
MODEL mmse = study time study*time treat*time/ htype =1

ddfm =kenwardroger solution;
RANDOM = int time/type = un subject = patient;

Table 9.7 shows estimated MMSE scores using the above model. There is
reasonable agreement between these values and the observed means. The overall
fixed effects estimate of the difference between selegiline and placebo at 8 weeks

Table 9.7 Selegiline studies: estimated MMSE scores at weeks 8 and 24 assum-
ing a linear trend over time

Study Treatment Week 8 Week 24

1 Placebo 18.60 17.51
Selegiline 18.53 17.31

2 Placebo 19.22 20.10
Selegiline 19.15 19.89

3 Placebo 17.68 17.73
Selegiline 17.61 17.52

4 Placebo 12.34 11.35
Selegiline 12.27 11.14

5 Placebo 18.64 17.85
Selegiline 18.57 17.65

Overall (selegiline – placebo) −0.07 [se = 0.05] −0.21 [se = 0.16]
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post-treatment is−0.07 (standard error 0.05), and at 24 weeks is−0.21 (standard
error 0.16), which do not reach statistical significance.

Clearly, this approach is dependent on the model chosen to reflect the relation-
ship between the response and time. Provided an appropriate model is chosen, it
provides a fuller picture than meta-analyses performed at specific timepoints on
subsets of studies. As part of this consideration it is necessary to reach a decision
regarding the handling of subjects who withdraw early or are lost to follow-up.
Such subjects provide data at the early timepoints and these data may be included
in the analysis. In the selegiline example, such data were included and there was
no imputation of missing data for these subjects. This assumed that the linear
relationship between the recorded MMSE scores for a subject at the start of the
study period would not change after they had stopped taking study medication.

9.5 COMBINING TRIALS WHICH REPORT DIFFERENT
SUMMARY STATISTICS

There is variation in the way summary statistics for a particular outcome measure
are reported. This partly reflects differences between the methods of analysis which
may have been undertaken. However, it can create a problem if the meta-analysis
is based on summary information from published papers. The extent of the
problem will depend on the type of outcome measure which is to be combined. For
example, there is rarely a problem for a binary outcome, as sufficient information
is usually available to enable the calculation of the number of patients in each
of the two categories for each treatment group. On the other hand, for ordinal
data with more than two categories, the number of patients in each category are
rarely provided. This section focuses on ways of combining trials which report
different summary statistics when the outcome measure is continuous, ordinal or
a survival time.

9.5.1 Continuous outcomes

An outcome measured on a continuous quantitative scale is often treated as arising
from a normal distribution. The summary statistics which are often presented in
published papers are the number of patients, sample mean and standard deviation
for each treatment group. However, the summary information from a continuous
outcome can occasionally be reported as if it related to a binary outcome. For
example, a patient can be classified as a responder if a particular value on the
continuous scale is exceeded, and a non-responder otherwise. In order to combine
summaries of binary outcomes with those of continuous outcomes one might
chose the log-odds ratio as a common measure of treatment difference. Details of
this methodology can be found in Whitehead et al. (1999). It is illustrated by a
series of perinatal trials investigating the effect of prophylactic use of oxytocics on
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postpartum blood loss during labour. One of the meta-analyses presented in the
paper concerned the combination of eight trials reporting binary outcomes and
three reporting continuous outcomes, and this is considered here.

The binary outcome in the perinatal trials was whether or not a woman had
a postpartum haemorrhage, usually defined by a blood loss of 500 ml or more in
the first 24 hours following delivery of the baby. The continuous outcome was
the actual amount of blood lost. The log-odds ratio of a postpartum haemorrhage
on the oxytocic treatment relative to the control treatment is defined as

θ = log
{

pT(1 − pC)

pC(1 − pT)

}
,

where pT and pC are the probabilities of a haemorrhage in the oxytocic and control
groups respectively. For studies in which summary information on the binary
outcome was reported, the log-odds ratio and its variance were estimated from
(3.1) and (3.2).

For the continuous outcome, the reported summary statistics were the number
of patients, mean and standard deviation in each treatment group. Let YT and
YC represent the continuous outcome variables in one trial for the oxytocic and
control treatments, respectively. Individual patient observations are assumed to be
normally distributed, with yTj ∼ N(µT, σ2), j = 1, . . . , nT, and yCj ∼ N(µC, σ2),
j = 1, . . . , nC. Let A be the cut-point value so that pT = P(YT > A) and pC =
P(YC > A). The ML estimate of pT is 1 − �(AT), where AT = (A − yT)/σ̂M) and �

is the standard normal distribution function. The statistics yT and σ̂M are the ML
estimates of µT and σ2 respectively, as defined in Section 3.6.2. The estimate of pC

is similarly defined. The ML estimate of θ is given by

θ̂ = log
[
�(AC){1 − �(AT)}
�(AT){1 − �(AC)}

]
.

The variance of θ̂ is obtained by the delta method and given by

var(θ̂) = {φ(AT)}2(1/nT + A2
T/2n)

[�(AT){1 − �(AT)}]2
+ {φ(AC)}2(1/nC + A2

C/2n)

[�(AC){1 − �(AC)}]2

− ATACφ(AT)φ(AC)

n�(AT)� (1 − AT)�(AC)�(1 − AC)
,

where n = nT + nC, and φ is the standard normal density function.
The summary statistics from the 11 trials are given in Table 9.8. In all trials

reporting binary outcomes, apart from trial 1, a postpartum haemorrhage was
defined as a blood loss of 500 ml or more. In trial 1 a cut-point value of 20 oz
was used, which converts to 568 ml. For the continuous outcomes, the standard
deviation presented in the published papers was assumed to be the usual unbiased
estimate rather than the ML estimate. For a trial consisting of more than one
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Table 9.8 Prophylactic use of oxytocics on postpartum haemorrhage: summary statistics
for each trial

(a) Binary outcomes

Trial Oxytocic Control

Haemorrhage Total Haemorrhage Total

1 45 490 80 510
2 1 150 5 50
3 14 591 4 177
5 24 963 25 470
9 34 346 42 278

11 50 846 152 849
12 0 10 1 15
13 14 705 60 724

(b) Continuous outcomes

Trial Oxytocic Control

Number Mean Standard Number Mean Standard
deviation (sT); df deviation (sC); df

6 41 150.49 86.31; 35 10 305.00 59.86; 9
8 97 188.35 84.18; 95 43 213.65 119.35; 42

10 319 125.14 97.68; 317 122 233.20 107.40; 121

oxytocic group, the results were pooled to provide one oxytocic group. In the
case of the continuous data, this meant assuming a common mean and variance
for each oxytocic treatment. The denominator for the calculation of the pooled
variance is shown as degrees of freedom (df) in the table.

Table 9.9 shows estimates of the percentage of women experiencing a haem-
orrhage and the log-odds ratio from each trial. It should be noted that in trial 12
the ML estimate could not be calculated because there were no haemorrhages
in the oxytocic group. In order to include this trial in the analysis, an approx-
imate ML estimate was obtained by adding 0.5 to all cells in the 2 × 2 table.
Fixed and random effects meta-analyses were performed using the methods of
Chapter 4 and the method of moments estimate of τ2. It can be seen that the
estimates of the percentage of women experiencing a haemorrhage in the three
trials reporting continuous summary statistics are generally much smaller than
those in the other trials. This may be due to very few or no women actually
experiencing more than 500 ml of blood loss in these trials. In order to present
a measure of treatment difference, the authors may have resorted to reporting
the continuous outcome. Two of the three log-odds ratio estimates have larger
magnitude than those based on the binary outcomes. Although there may be
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Table 9.9 Meta-analysis of the log-odds ratio of a haemorrhage on oxytocics relative to
control, using the methods of Chapter 4 with the method of moments estimate of τ2

Trial Estimated % of women Log-odds ratio Std. error 95%
experiencing a haemorrhage CI

Oxytocic Control

1 9.2 15.7 −0.61 0.20 (−1.00, −0.22)
2 0.7 10.0 −2.81 1.11 (−4.98, −0.63)
3 2.4 2.3 0.05 0.57 (−1.08, 1.17)
5 2.5 5.3 −0.79 0.29 (−1.36, −0.22)
6 <0.01 0.5 −7.84 1.88 (−11.52, −4.15)
8 0.05 0.1 −0.91 0.63 (−2.13, 0.32)
9 9.8 15.1 −0.49 0.25 (−0.97, −0.01)

10 <0.01 0.4 −3.75 0.42 (−4.58, −2.93)
11 5.9 17.9 −1.24 0.17 (−1.58, −0.91)
12 0.0 6.7 −0.78 1.68 (−4.07, 2.52)
13 2.0 8.3 −1.50 0.30 (−2.09, −0.90)

Fixed effects estimate −1.08 0.09 (−1.26, − 0.89)
Random effects estimate −1.38 0.31 (−1.99, −0.77)
Test for heterogeneity (χ2) 74.79; (10 df) p < 0.001

some doubt over the magnitude of the treatment difference, the conclusion that
may be drawn from the meta-analysis is that the routine use of oxytocic drugs
is beneficial in reducing the risk of excessive bleeding in the third stage of labour
(Figure 9.4).

One concern about including the trials reporting continuous data was the
assumption of normality. Positive skewness would be expected under the likely
scenario that a few women experience heavy blood loss compared with the
rest who experience none or very little. This problem is not confined to the
situation described here, but is of general concern when continuous outcomes
are summarized. The lognormal distribution may be a more appropriate choice.
Further details can be found in Whitehead et al. (1999).

9.5.2 Ordinal data

Ordinal data may be reported in many different ways. Sometimes an ordinal
outcome is reported as if it were a binary outcome. For example, a ‘suc-
cess’ may constitute a response in the best category or perhaps one of the
best categories. The same ordinal outcome may be recorded in each study,
but the definition of ‘success’ may vary from one study to another. If the
numbers of patients in the ‘success’ and ‘failure’ categories are reported for
each treatment group in each study, then the meta-analysis may be per-
formed on the log-odds ratio. It should be noted that even meta-analyses based
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Figure 9.4 Prophylactic use of oxytocics on postpartum haemorrhage. Estimates and
95% confidence intervals for the log-odds ratio of a haemorrhage on oxytocic treatment
relative to control.

only on binary data may be making an implicit assumption of proportional
odds if the definition of a ‘success’ is not the same across all studies. If
for some studies the numbers of responses in more than two categories are
available for each treatment group, then the log-odds ratio can be calcu-
lated from a proportional odds model. Indeed, the meta-analysis may be per-
formed in the same way as that for the misoprostol example described in
Section 9.3.

Sometimes ordinal data are analysed as if they were continuous data aris-
ing from a normal distribution, and the same summary statistics as those
described in Section 9.5.1 are presented. However, this is appropriate only if
the difference between two consecutive scores is of equal clinical importance
throughout the scale, and the data are approximately normally distributed. If
this is the case, the approaches of Section 9.5.1 are appropriate. The need to
combine studies some of which report binary summary statistics and others
continuous summary statistics is likely to be frequent in the case of an ordi-
nal outcome. The meta-analysis could proceed as for the oxytocic example. It
might seem more appropriate to consider a logistic distribution rather than a
normal distribution to model the continuous data. Although the two distributions
are similar, the logistic distribution has the proportional odds property, which
means that the log-odds ratio remains constant across all cut-points. However,
extraction of relevant data pertaining to the logistic distribution is likely to be
problematic.
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9.5.3 Survival data

The log-hazard ratio is usually the parameter of interest for comparing two survival
curves. Unfortunately, published reports do not often present the estimate of the
log-hazard ratio and its standard error or variance. Sometimes the results are
presented as the number of events in each treatment group before a fixed point
in time. It is then possible to construct a 2 × 2 table as for binary data, in which
‘failure’ is associated with occurrence of the event within the defined time period
and ‘success’ with being event-free at the fixed point in time. The number of
‘successes’ is usually calculated by subtracting the number of ‘failures’ from the
number randomized, although some assumption has to be made about censoring.
The methods of Section 3.4 can then be applied to obtain estimates of the log-
hazard ratio and its variance, as this is an example of interval-censored survival
data with one time interval.

9.6 IMPUTATION OF THE TREATMENT DIFFERENCE AND
ITS VARIANCE

When the estimate of treatment difference and its variance (or standard error)
are not presented in the published report of a trial, the challenge is to find ways
of using the available data in order to compute them. Two specific measures of
treatment difference which have received attention in the literature in this respect
are the absolute mean difference for continuous outcomes and the log-hazard
ratio for survival data. These are discussed below.

9.6.1 Absolute mean difference for continuous outcomes

A quantitative measurement on a continuous scale is often treated as following
a normal distribution. Consequently, the summary statistics which are often
presented include the number of patients, the sample mean and the standard
deviation for each treatment group. Here, the number of patients refers to the
number used in the calculation of the mean and standard deviation. In this case,
an estimate of the absolute mean difference together with its variance can be
calculated using the methods described in Section 3.6. That is,

θ̂ = yT − yC,

and

var(θ̂) = s2
(

1
nT

+ 1
nC

)
,

where yT and yC are the sample means in the treated and control groups, nT and
nC are the number of patients in the treated and control groups, and s2 is the
pooled sample variance.
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When no variance estimates are reported, it may be possible to calculate a value
for var(θ̂) from other statistics presented. For example, if the t statistic is provided,
where

t = yT − yC

se(yT − yC)
,

then

var(θ̂) =
(

yT − yC

t

)2

. (9.7)

Alternatively, if the two-sided p-value, p2, for the t statistic is provided, then

t ≈
{

F−1
ν (1 − p2/2), if yT − yC � 0,

−F−1
ν (1 − p2/2), if yT − yC < 0,

where Fν(x) is the probability that a random variable, with a t distribution on ν

degrees of freedom, will be less than or equal to x. The degrees of freedom ν may
be approximated by nT + nC − 2. This value of t may be substituted into (9.7).
As ν increases the t distribution is approximated well by the normal distribution,
enabling Fν(x) to be approximated by �(x).

If θ̂ is reported with a two-sided 100(1 − α)% CI (θL, θU) instead of a variance,
the variance can be calculated as

var(θ̂) =
(

θU − θL

2tν(α/2)

)2

, (9.8)

where tν(α/2) is the upper (100α/2)th percentage point of the t distribution. That
is, tν(α/2) is equal to F−1

ν (1 − α/2). For large ν, tν(α/2) can be approximated by
�−1(1 − α/2). In the case of a 95% CI based on the normal distribution,

var(θ̂) ≈
(

θU − θL

4

)2

.

For some meta-analyses, the situation may arise in which a variance estimate,
s2, is available for some trials but not others. If it is reasonable to assume a common
within-treatment group variance across all trials, then an estimate of this common
variance may be obtained by pooling the variance estimates from those trials for
which the correctly calculated values are available (see Section 4.2.9 for details).
This pooled estimate, s2

p , is then used in the calculation of the variance of each of
the individual study estimates of treatment difference.

Sometimes the outcome of interest is the change in the measurement between
two timepoints. For example, the difference between a pre-treatment and a post-
treatment assessment is often reported. However, some publications may report
means and standard deviations for each timepoint, while others report means
and standard deviations for the change between two timepoints. If the sample size
is the same for both timepoints it is possible to calculate the mean change from
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the difference in the mean values at the two timepoints. However, if the sample
sizes differ this calculation will only be approximate. Also, the variance of the
change between two timepoints cannot be calculated just from the variances of
the assessments at each timepoint. If y1 and y2 are the observations on one patient
at the two timepoints, then

var(y1 − y2) = var(y1) + var(y2) − 2 cov(y1, y2).

Usually no information is available on the covariance term. There is likely to be a
positive correlation between two observations on the same patient, in which case
the covariance term will be positive. A calculation which ignores the covariance
term is, therefore, likely to lead to an overestimate. Only in the extremely unlikely
event that there is zero correlation between the two sets of observations would
such a calculation be correct. The approaches to this problem are similar to
those described above. One is to calculate the appropriate variance from other
statistics presented and another is to calculate a pooled estimate of the variance
of the change between two assessment times from trials for which the correctly
calculated values are reported. Further details can be found in Follmann et al.
(1992).

9.6.2 The log-hazard ratio for survival data

Authors of publications of trials in which the outcome of interest is the time to an
event often do not present the estimate of the log-hazard ratio and its standard
error or variance. Instead, values need to be calculated from other statistics or
from diagrams showing estimated survival curves. Parmar et al. (1998) present
three methods of extracting the relevant information. Two of them are discussed
in this section.

The first method can be used if the estimate of the log-hazard ratio and a CI are
provided. In this case the variance of the log-hazard ratio can be calculated using
(9.8), in which tν(α/2) is replaced by �−1(1 − α/2).

However, as noted by Altman et al. (1995), the p-value for the log-rank test is
frequently quoted. Therefore, the second method makes use of this information.
The log-rank chi-squared statistic, χ2, is equal to Z2/V, where Z is the log-rank
statistic and V its null variance, as defined in (3.11) and (3.12). If the two-sided
p-value, p2, for the log-rank chi-squared statistic is reported, then

χ2 = {�−1(1 − p2/2)}2,

and

Z=
{

�−1(1 − p2/2)
√

V, if the new treatment increases the risk of an event,
−�−1(1 − p2/2)

√
V, if the new treatment reduces the risk of an event.
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To complete the calculations, a value for V is required. Three alternatives are
given by

V = O
4

, (9.9)

V = OTOC

O
(9.10)

and

V = OnTnC

n2
, (9.11)

where OT and OC are the total number of events in the treated and control
groups, nT and nC are the number of patients in the treated and control groups,
O = OT + OC and n = nT + nC.

Formulae (9.9) and (9.10) are identical if there are an equal number of events
in each treatment group, and formulae (9.9) and (9.11) are identical if there
are equal sample sizes in both groups. If the treatment difference is fairly small
and there is approximately equal allocation of patients to the two groups,
then Formula (9.9) is a reasonable approximation. It can be shown that this
approximation is always an overestimate of V, but the bias reduces as the amount
of censoring increases. Collette et al. (1998) compared the three formulae in a
simulation exercise of meta-analyses of ten trials. They concluded that all three
performed well, but that (9.10) was the best when the amount of censoring
is small, and in the case of unequal allocation to treatment group (9.11) is
preferable.

The third method described by Parmar et al. (1998) involves extracting data
from survival curves, and the reader is referred to the paper for further details.
Tudur et al. (2001) apply all three methods to two meta-analysis data sets and
highlight the problems involved. They also consider an extension of the third
method to incorporate information reported on the numbers of patients at risk at
various timepoints.

9.7 COMBINING SUMMARY STATISTICS AND
INDIVIDUAL PATIENT DATA

A meta-analysis using individual patient data is likely to prove more reliable
than one based on summary statistics from trial reports. However, the situation
can arise in which individual patient data are not available for some of the
eligible trials. Such trials may be incorporated into the meta-analysis provided
that sufficient summary information is presented in the trial report. At the very
least it will be desirable to perform such a meta-analysis as a sensitivity analysis,
although in some cases this may become the primary meta-analysis.
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In order to implement the meta-analysis methods of Chapter 4, it is necessary
to calculate an estimate of the chosen parameter measuring treatment difference,
together with an estimate of its variance. If these quantities are not directly
available, the approaches described in Sections 9.3, 9.5 and 9.6 may be considered.
For some data types (such as binary), there may be sufficient summary information
to enable the methods of Chapter 5 to be implemented. For the specific case of
normally distributed data, Goldstein et al. (2000) present a model for combining
individual patient data with study-level data.

9.8 COMBINING P-VALUES

A typical meta-analysis involves the calculation of study estimates of treatment
difference and an overall estimate. However, in some cases there may be insufficient
data to enable these calculations to be undertaken, particularly if the only
available information is that obtained from published papers. An alternative is
to use methods developed during the 1930s for the combination of p-values,
provided that these have been reported. This approach may also be taken if
different outcome measures have been reported from one study to the next, and
the assumptions required for either of the two approaches discussed in Section 9.3
are not met.

Methods which have been derived for summarizing p-values are based on
one-sided p-values. As an illustration of the approach, consider the situation in
which there is a common parameter, θ, measuring the treatment difference in
all studies. Suppose that θ equals 0 when the two treatments are equivalent and
takes positive values if the new treatment is better than the control. Interest lies
in testing the null hypothesis that θ equals 0 against the one-sided alternative
that θ is greater than 0. The one-sided p-value is the probability of obtaining a test
statistic at least as extreme as that calculated in favour of this one-sided alternative
given that the null hypothesis is true. Let p1i be the one-sided p-value for study i.
The p-value presented in a trial report or publication is not usually p1i: it is more
common to report p2i, the p-value associated with the two-sided alternative that
θ is not equal to 0. The value of p1i can be calculated from p2i, but care is needed.
First, it is necessary to check whether the estimate of θ is positive or negative. If
the estimate is positive then p1i = p2i/2. However, if the estimate is negative then
p1i = 1 − p2i/2. When the p-values from different outcome measures are to be
combined, it is important to check that p1i relates to the one sided alternative that
the new treatment is better than the control.

The methods for combining p-values also assume that the p-value is a continuous
variable, that is, it can take all values between 0 and 1. Fisher (1932) derived a
chi-squared statistic, based on the p1i, for testing the global null hypothesis that
the two treatments are equivalent against the one-sided alternative that in at least
one study the new treatment is better than control. Under the null hypothesis, p1i

is uniformly distributed between 0 and 1. Therefore, the statistic Ti = −2 log(p1i)
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has a chi-squared distribution with two degrees of freedom. This can be shown as
follows:

P(Ti > t) = P(−2 log(p1i) > t) = P(p1i < exp(−t/2)) = exp(−t/2).

As the r studies are independent, if the null hypothesis is true for each study, then

P =
r∑

i=1

Ti

follows a chi-squared distribution with 2r degrees of freedom.
To test the global hypothesis that the two treatments are equivalent against the

one-sided alternative that in at least one study the new treatment is worse than
control, the test statistic

P− = −2
r∑

i=1

log(1 − p1i)

is compared with the chi-squared distribution with 2r degrees of freedom.
For the Canner (1987) data set discussed in Section 6.8, the parameter of

interest, θ, is the log-odds ratio for mortality on aspirin relative to control. In
this case negative values indicate that aspirin is better than control, and interest
lies in testing the global null hypothesis that θ equals 0 against the one-sided
alternative that θ is negative. Table 9.10 shows the one-sided p-values for each
study calculated from the Wald chi-squared statistic. Fisher’s chi-squared statistic
is equal to 26.32, and its associated degrees of freedom are 12, that is, twice
the number of studies. The one-sided p-value of 0.01 indicates a statistically
significant difference in favour of aspirin. One of the disadvantages of Fisher’s
method is that equal weight is given to each study. For the Canner example this
means that the influence of study 6 is considerably downweighted relative to its
influence in the traditional meta-analysis presented in Table 6.8.

Table 9.10 Fisher’s combination of p-values applied to the Canner data set

Study Log-odds
ratio∗

Std. error Wald χ2 p1i Ti

1 −0.329 0.197 2.78 0.048 6.09
2 −0.385 0.203 3.59 0.029 7.08
3 −0.216 0.275 0.62 0.216 3.07
4 −0.220 0.143 2.35 0.063 5.54
5 −0.225 0.188 1.44 0.115 4.33
6 0.125 0.098 1.62 0.898 0.21

Total 26.32
χ2 = 26.32; (12 df) p = 0.01

∗Log-odds ratio of mortality on aspirin relative to placebo.
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Methods related to that of Fisher are those of Tippett (1931) and Stouffer et al.
(1949). Tippett’s minimum p test rejects the global null hypothesis that the two
treatments are equivalent against the one-sided alternative that in at least one
study the new treatment is better than control if any of the p1i, i = 1, . . . , r is less
than α∗, where

α∗ = 1 − (1 − α)1/r,

and α is the prespecified significance level for the combined significance test. The
Stouffer et al. method was used as the basis for Rosenthal’s file-drawer method,
described in Section 8.4.2. The statistic Ur, given by

Ur =
∑r

i=1 u(p1i)√
r

,

where u(p1i) = �−1(1 − p1i), is compared with the standard normal distribution.
If Ur > u(α), the global null hypothesis that the two treatments are equivalent is
rejected at level α against the one-sided alternative. This method is also referred to
as the ‘sum of zs method’ as u(p1i) is often written as z(p1i) because it is a standard
normal deviate.

In common with Fisher’s approach, these two methods have the disadvantage
that equal weight is given to each study. Instead, it would seem more appropriate
to give more accurate studies larger weights. Mosteller and Bush (1954) suggested
a generalization of the Stouffer et al. method which allows each of the standard
normal deviates u(p1i) to be weighted. In this approach, the statistic Ur is replaced
by Ugr, where

Ugr =
∑r

i=1 giu(p1i)√∑r
i=1 g2

i

,

and
r∑

i=1

g2
i = 1.

Ugr is compared with the standard normal distribution. This method is also referred
to as the ‘weighted sum of zs method’.

Consider now the choice of values for the weights gi, i = 1, . . . , r. If they
are all set equal to 1/

√
r, then Ugr = Ur. As an alternative, suppose that the

same outcome measure has been recorded in each trial and that the parameter
measuring treatment difference is also identically defined. If the p1i are calculated
using the assumption that

θ̂i ∼ N(θ, w−1
i ),

then p1i = 1 − �(θ̂i
√

wi) and u(p1i) = θ̂i
√

wi. Setting gi = √
wi gives

Ugr =
∑r

i=1 θ̂iwi√∑r
i=1 wi

.
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Table 9.11 Mosteller and Bush method of combining p-
values, with weights equal to the square root of the study
sample size, applied to the Canner data set

Study p1i u(p1i) u(p1i)
√

ni ni

1 0.048 1.67 58.70 1 239
2 0.029 1.90 74.11 1 529
3 0.216 0.79 19.67 626
4 0.063 1.53 62.90 1 682
5 0.115 1.20 41.91 1 216
6 0.898 −1.27 −85.49 4 524

Total 171.80 10 816
Ugr = 171.80/

√
10816 = 1.65; p1 = 0.049

In this case U2
gr is equal to the U statistic defined in Section 4.2.2, that is, it is

the test statistic for testing the treatment difference in a traditional fixed effects
meta-analysis. Hall and Ding (2001) considered this approach for the specific case
in which the efficient score and Fisher’s information statistics are used. That is,
u(p1i) = Zi/

√
Vi and gi = √

Vi.
In the absence of information on wi, a suitable choice for gi might be

√
ni,

where ni is the total number of patients in the two treatment groups. Using this
weight for the Canner data set, the statistic Ugr is equal to 1.65, which has a
one-sided p-value equal to 0.049 (Table 9.11). Compared with the result from
Fisher’s approach, this result is in much closer agreement with that from the fixed
effects meta-analysis presented in Table 6.8. It can be seen that the value of 2.73
for U2

gr is close to the value of 2.52 for U. It should be noted that the p-value of
0.11 associated with U is a two-sided p-value. The one-sided p-value is 0.055.
For this data set, the same outcome measure was used in all trials, and, therefore,
weighting by the square root of the sample size is a reasonable approach. This
weighting scheme may not be appropriate if different outcome measures have
been used across the studies.

Numerous other methods have been derived for combining p-values, most of
which are straightforward to implement. For a comprehensive coverage of the
topic, the reader is referred to Becker (1994). In comparison with the meta-
analysis approach based on combining study estimates of treatment difference,
methods for combining p-values are much less informative and are easier to
misinterpret.
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Inclusion of Trials with
Different Study Designs

10.1 INTRODUCTION

In Chapters 3–5, methods for conducting a meta-analysis were described in detail
for the situation in which each trial has a parallel group design. The focus was on
the comparison of two treatments, each of which were studied in each trial. Only
the data pertaining to the two treatments were included in the meta-analysis. In
this chapter, other scenarios are considered.

It is often the case that more than two treatment groups have been included
in some or all of the studies to be combined in a meta-analysis. For example, a
new treatment may have been compared with both an active standard therapy
and placebo. There may be interest in making a comparison of the new treat-
ment with both the active comparator and placebo. A straightforward approach
would be to perform a separate meta-analysis for each pairwise comparison,
using only the subset of the data which pertains to that specific comparison. A
more informative analysis would be to estimate both parameters of treatment
difference simultaneously. Even if the interest lies in one particular pairwise
comparison, a more precise estimate of the treatment difference may be obtained
by including data from other treatment comparisons. This topic is discussed in
Section 10.2.

It may be the case that a new treatment has been tested at several different dose
levels. Indeed, this is a common occurrence in the development of a new drug.
If the drug shows signs of activity, then the magnitude of the effect will depend
on the dose administered. Therefore, performing a meta-analysis in which all
dose groups are pooled together will usually not be very informative. Instead, it
will be of interest to explore the dose–response relationship and to determine the
optimum dose. Section 10.3 considers this special case.

Frequently, some of the studies to be combined in a meta-analysis are multicen-
tre trials. The question then arises as to how the centre effect should be handled
in the meta-analysis. This issue is discussed in Section 10.4.

In a cross-over trial, subjects receive two or more treatments in a sequence
so that information concerning the treatment difference is obtained from

241



242 Inclusion of trials with different study designs

within-subject comparisons. The fact that a study has been designed as a
cross-over study is not a reason in itself to exclude it from a meta-analysis,
and Section 10.5 considers the incorporation of data from such studies into a
meta-analysis.

Sequential designs are now a familiar part of clinical trial methodology. Such
designs allow for successive interim analyses of the accumulating data, with stop-
ping rules for study termination which are dependent on the observed treatment
difference. Section 10.6 considers the incorporation of data from sequential trials
into a meta-analysis.

10.2 MORE THAN TWO TREATMENT GROUPS

This section extends the models for individual patient data described in Chapter 5
to deal with more than two treatment groups, illustrating the approach specifically
for the case of three treatments.

10.2.1 A fixed effects meta-analysis model

The meta-analysis model for more than two treatment groups is developed here
for the case of normally distributed responses. Model (5.1), which is the fixed
effects meta-analysis model for two treatments, will be extended. The approach
may also be used for the other data types presented in this book. An example based
on binary data is discussed in Section 10.2.4.

Model (5.1) can be written as µij = α + ηij. The term ηij includes study and
treatment as covariates, and is defined as

ηij = β0i + β1x1ij,

where x1ij takes the value 0 for the control group and 1 for the treated group.
Suppose now that there are three treatment groups, denoted by A, B and C. It
is necessary to include two indicator variables instead of one, so that the model
becomes

ηij = β0i + β11x11ij + β12x12ij. (10.1)

If, for example, x11ij takes the value 1 for treatment A and 0 otherwise, and
x12ij takes the value 1 for treatment B and 0 otherwise, then β11 represents the
absolute mean difference A − C, and β12 the absolute mean difference B − C.
The absolute mean difference A − B is given by β11 − β12. Studies which include
all three treatments contribute information on all three pairwise comparisons.
However, it is not necessary for each study to include all three treatment groups.
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If a study compares two of the treatments, then it will contribute information
on that particular treatment comparison. A meta-analysis which includes the
two-treatment studies as well as the three-treatment studies is similar to the
analysis of an incomplete block design, in which ‘study’ plays the role of ‘block’
(see, for example, Cochran and Cox, 1957).

For t treatment groups, it is necessary to include t − 1 indicator variables,
x11ij, . . . , x1(t−1)ij, where, for example, x1hij = 1 if the patient is in treatment group
h and 0 otherwise. Models with three or more treatment groups can be fitted by
many statistical packages. In particular, they can be fitted using the GLM and
GENMOD procedures in SAS by including ‘treat’ in the CLASS statement (see
Sections 5.2.1 and 5.2.2). For the PHREG and NLMIXED procedures, however,
each indicator variable must be calculated and entered into the appropriate model
statement. Studies which compare a subset of the t treatments may be included in
the meta-analysis.

Study by treatment interaction terms can be included in model (10.1) to give

ηij = β0i + β11ix11ij + β12ix12ij. (10.2)

The test of the study by treatment interaction term involves a comparison between
model (10.2) and model (10.1). In the case of normally distributed responses,
model (10.2) can be fitted by including a ‘study*treat’ interaction term in the
MODEL statement (see Section 5.2.3). The appropriate F statistic is that associated
with the ‘study*treat’ term. Care should be taken if the LSMEANS statement is used
when fitting an interaction term. In this case, the overall estimates of treatment
difference are obtained by giving equal weight to each study, instead of weighting
by precision.

10.2.2 A random effects meta-analysis model

The random effects model (5.23) can be extended to incorporate the three treat-
ment groups A, B and C. This model is given by

ηij = β0i + β11x11ij + β12x12ij + ν11ix11ij + ν12ix12ij, (10.3)

where ν11i and ν12i are level 2 random effects which are normally distributed with
mean 0 and variances τ2

1 and τ2
2, respectively. It is also necessary to consider the

correlation between the two random effects from the same study, which will be
denoted by ρ1.

The three variance components describe the degree of heterogeneity between
the three pairwise treatment comparisons. Let γACi, γBCi and γABi represent the
absolute mean difference parameters for A − C, B − C, and A − B in the ith study.
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Using the coding for x11ij and x12ij as presented in Section 10.2.1,

var(γACi) = var(ν11i) = τ2
1,

var(γBCi) = var(ν12i) = τ2
2,

var(γABi) = var(ν11i − ν12i) = var(ν11i) + var(ν12i) − 2cov(ν11i, ν12i)

= τ2
1 + τ2

2 − 2ρ1τ1τ2.

In order to simplify the model, it may be appropriate to assume that each pairwise
treatment comparison has the same amount of heterogeneity. In this case, let τ2

1
and τ2

2 equal τ2. For this particular coding of the treatment indicator variables,
this means that ρ1 must equal 1

2 , as discussed by Higgins and Whitehead (1996).
As the number of treatments increases, the number of variance components will

increase, and it may be impractical to fit separate variance and covariance terms
for each pairwise comparison. Again, the model may be simplified by assuming
the same amount of heterogeneity for each pairwise treatment comparison. If
there are t treatments and the indicator variables are defined as in Section 10.2.1,
then all variance terms can be set to τ2 and all correlation coefficients to 1

2 . Most
statistical packages do not allow the user to enter this particular structure for the
variance matrix. However, they often permit the models to be fitted if they are
expressed as mixed effects linear models. For example, for normally distributed
responses, the SAS statements presented in Section 5.8.4 may be used. In the
SAS output the difference between the least-squares means of any two treatments
provides an estimate of that particular treatment difference. As before, the estimate
alongside the covariance parameter ‘study*treat’ is an estimate of τ2/2. As was
the case for the fixed effects meta-analysis, it is possible to incorporate studies
which only compare a subset of the treatments.

10.2.3 Random study effects

Random study effects may be incorporated into model (10.3), in a similar way
to that described in Section 5.11. When there are more than two treatment
groups, it is usually easier to fit the model by expressing it as a traditional mixed
effects linear model, in which all random effects are uncorrelated. For normally
distributed responses, the model can be fitted using the SAS statements presented
in Section 5.8.4, but with the MODEL and RANDOM statements altered as follows:

MODEL y = treat / htype = 1 ddfm = kenwardroger;
RANDOM study study*treat;

Again, it is possible to incorporate studies which only compare a subset of the
treatments. When there are more than two treatments to compare and not all of
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the treatments are included in each study, it is possible to recover between-study
information about treatment differences by including study as a random rather
than a fixed effect. This is analogous to the recovery of inter-block information
from incomplete block designs, discussed by Yates (1940) in the case of balanced
incomplete blocks.

10.2.4 Example: First bleeding in cirrhosis

The example considered in this section relates to three treatment groups and a
binary response. Therefore, the models presented in Sections 10.2.1–10.2.3 will
be applied within the binary context.

Pagliaro et al. (1992) investigated the use of beta-blockers and sclerotherapy for
the prevention of first bleeding in cirrhosis. There were 26 trials in total, of which
7 involved a comparison between beta-blockers and the control treatment, 17 a
comparison between sclerotherapy and control, and 2 a comparison between all
three treatments (Table 10.1). Whilst direct comparisons between beta-blockers
and control and between sclerotherapy and control can be made from 9 and
19 trials respectively, there are only two trials providing a direct comparison
of beta-blockers with sclerotherapy. In the following analyses, beta-blockers,
sclerotherapy and control treatment are denoted as treatments A, B and C,
respectively.

In Pagliaro et al. (1992) the two pairwise comparisons involving the control
treatment were presented. The study estimates of the log-odds ratio of bleeding
on experimental treatment relative to control were combined using efficient
score and Fisher’s information statistics (formulae (3.5) and (3.6)), and based
on the fixed effects model of Chapter 4. Both experimental treatments were
shown to be significantly better than control. Although the test for heterogeneity
was statistically significant in both cases, no random effects meta-analysis was
performed. Table 10.1 shows fixed and random effects estimates for each of
the three two-treatment comparisons, in which the trial log-odds ratio and its
variance were estimated from (3.5) and (3.6) and the method of moments estimate
of the heterogeneity parameter was used. From the meta-analyses based on the
comparison of beta-blockers with control and of sclerotherapy with control, both
experimental treatments appear to be better than control, with beta-blockers
showing a slightly larger treatment advantage than sclerotherapy, although
there is not much in it.

The two studies in which beta-blockers can be compared directly with scle-
rotherapy provide estimates of the log-odds ratio of bleeding on beta-blockers
relative to sclerotherapy of −1.472 (standard error 0.643) and −0.011 (standard
error 0.440). Both fixed and random effects estimates can be calculated from these
two studies, although the latter may be considered an inappropriate summary
due to the lack of information about the heterogeneity parameter. The random
effects estimate is larger than the fixed effects estimate, but neither is statistically
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Table 10.1 Randomized trials of treatment of first bleeding in cirrhosis. The log-odds
ratio and its standard error from each trial are based on formulae (3.5) and (3.6). Fixed
and random effects meta-analyses are conducted on each pairwise comparison using the
methods of Chapter 4

Trial Number of patients Treatment Log-odds Std. error

Beta- Sclerotherapy Control
comparison ratio

blockers (A) (B) (C)
bled/total bled/total bled/total

1 2/43 9/42 13/41 A − B −1.472 0.643
A − C −1.823 0.567
B − C −0.521 0.494

2 12/68 13/73 13/72 A − B −0.011 0.440
A − C −0.028 0.440
B − C −0.017 0.431

3 4/20 4/16 A − C −0.281 0.796
4 20/116 30/111 A − C −0.567 0.320
5 1/30 11/49 A − C −1.465 0.642
6 7/53 10/53 A − C −0.416 0.527
7 18/85 31/89 A − C −0.671 0.336
8 2/51 11/51 A − C −1.571 0.591
9 8/23 2/25 A − C 1.590 0.704

10 4/18 0/19 B − C 2.242 1.045
11 3/35 22/36 B − C −2.271 0.493
12 5/56 30/53 B − C −2.167 0.409
13 5/16 6/18 B − C −0.092 0.724
14 3/23 9/22 B − C −1.393 0.667
15 11/49 31/46 B − C −1.803 0.411
16 19/53 9/60 B − C 1.109 0.435
17 17/53 29/60 B − C −0.473 0.387
18 10/71 29/69 B − C −1.381 0.376
19 12/41 14/41 B − C −0.223 0.472
20 0/21 3/20 B − C −2.158 1.185
21 13/33 14/35 B − C −0.025 0.492
22 31/143 23/138 B − C 0.322 0.302
23 20/55 19/51 B − C −0.038 0.401
24 3/13 12/16 B − C −2.008 0.734
25 3/21 5/28 B − C −0.256 0.773
26 6/22 2/24 B − C 1.290 0.770

Fixed effects estimate A − B −0.477 0.363
Random effects estimate (method of moments τ̂2 =0.76) A − B −0.666 0.727
Fixed effects estimate A − C −0.612 0.159
Random effects estimate (method of moments τ̂2 =0.39) A − C −0.611 0.273
Fixed effects estimate B − C −0.552 0.111
Random effects estimate (method of moments τ̂2 =0.96) B − C −0.546 0.260
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significant. In an attempt to improve the inference which can be made about the
treatment difference, an analysis which uses all of the data from the 26 trials was
undertaken.

In fitting a fixed effects model for the three treatment groups, the binary
observation, yij for patient j in trial i, takes the value 1 if bleeding occurs and 0
otherwise. The model, which is based on model (10.1), is given by

log
(

pij

1 − pij

)
= α + β0i + β11ix11ij + β12ix12ij, (10.4)

and can be fitted using PROC GENMOD in SAS with the following statements:

PROC GENMOD;
CLASS trial treat;
MODEL y = trial treat/ type1 dist=bin link=logit;
LSMEANS treat/pdiff cl;

The results are presented in the first row of Table 10.2. The estimate of the
log-odds ratio of bleeding on beta-blockers relative to sclerotherapy is −0.117,
considerably smaller than the estimate of −0.477 in Table 10.1. On the other
hand, the estimates of the log-odds ratios of each of these treatments relative to
control have not changed much.

In order to take account of the heterogeneity between trials, a random effects
model with a common heterogeneity parameter was fitted using MLwiN. In
Section 5.9.2, a set of MLn commands was provided for fitting model (5.27), a
random effects model for binary data in the case of two treatments. In Section 5.8.4,
the relationship between the multilevel model and the traditional mixed effects
linear model was discussed for the case of normally distributed responses. This

Table 10.2 Log-odds ratio for first bleeding in cirrhosis. Estimates with standard error in
square brackets

Model Test of τ̂2 Treatment comparison
treatment

A − B A − C B − Cdifferences

Fixed study χ2 = 39.31; – −0.117 −0.670 −0.553
Fixed treatment (2 df) [0.189] [0.161] [0.113]

p < 0.001 p = 0.54 p < 0.001 p < 0.001

Fixed study χ2 = 6.81; 1.17 −0.162 −0.737 −0.574
Fixed treatment (2 df) [0.469] [0.403] [0.283]
Random study by treatment p = 0.03 p = 0.73 p = 0.07 p = 0.04

Random study χ2 = 10.84; 0.92 −0.526 −0.981 −0.455
Fixed treatment (2 df) [0.328] [0.312] [0.239]
Random study by treatment p = 0.004 p = 0.11 p = 0.002 p = 0.06
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approach may also be taken for other data types. In the case of binary responses,
model (5.25) becomes

log
(

pihj

1 − pihj

)
= µ + si + th + (st)ih. (10.5)

Model (5.27), the random effects meta-analysis model for binary responses, may
be written as model (10.5), in which (st)ih is normally distributed with mean 0
and variance σ2

τ .
Model (10.5) may be fitted in MLn by introducing treatment as an additional

level in the hierarchy. In this case patient is at the lowest level (level 1), nested
within treatment at the middle level (level 2), which is nested in turn within study
at the highest level (level 3). The first set of commands presented in Section 5.9.2
would need to be changed as follows:

DINPUT c1-c8
meta.dat
NAME c1 ‘subject’ c2 ‘trtmnt’ c3 ‘study’ c4 ‘treat’ c5 ‘y’
c6 ‘cons’ c7 ‘bcons’ c8 ‘denom’
RESP ‘y’
IDEN 1 ‘subject’ 2 ‘trtmnt’ 3 ‘study’
EXPL ‘treat’ ‘cons’ ‘bcons’
FPAR ‘bcons’
SETV 2 ‘cons’
LINK ‘bcons’ G9
SETV 1 ‘bcons’
DUMM ‘study’ c9-c16
EXPL c9-c16

The data set needs to include an extra variable ‘trtmnt’, which contains a unique
number for each treatment. The first SETV command requests that the study by
treatment interaction term is random. As was the case with PROC MIXED, the
variance component at the treatment level is σ2

τ , which is equal to τ2/2. The
parameter associated with ‘treat’ is β1.

This new set of commands can be used for the Pagliaro et al. data set, with the
exception that there would need to be two treatment indicator variables instead
of ‘treat’, and the number of studies would need to be increased to 26.

The results from fitting the random effects model, using first-order penalized
quasi-likelihood estimates under restrictive generalized least squares, are shown
in the second row of Table 10.2. Compared with the first row, the log-odds ratio
estimates have changed, but not substantially. However, the standard errors have
increased substantially due to the between-trial heterogeneity.

The inclusion of the trial effect as random rather than fixed allows the recovery
of between-trial treatment information, which is likely to be substantial for the
comparison between beta-blockers and sclerotherapy. This model may be fitted
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by removing the study effects from the fixed part of the model and including them
as random effects by issuing the command

SETV 3 ‘cons’

The log-odds ratio estimates from this model, shown in the last row of Table 10.2,
are substantially different from the previous row. They indicate a larger beneficial
effect of beta-blockers relative to sclerotherapy, although this does not reach
statistical significance. The standard errors of all three estimates are smaller,
in particular the beta-blockers versus sclerotherapy comparison, illustrating the
amount of information which has been recovered. However, even with the
additional information there is insufficient evidence to draw any conclusions
about the comparison between beta-blockers and sclerotherapy.

The GLIMMIX macro discussed in Section 5.9.2 could also be used to fit the
random effects model by changing the CLASS, MODEL and RANDOM statements
in the program presented in that section to

CLASS trial treat;
MODEL y = trial treat/htype = 1 solution;
RANDOM trial*treat;

The model which includes trial as a random rather than a fixed effect can also be
fitted by changing the MODEL and RANDOM statements to

MODEL y = treat/htype = 1 solution;
RANDOM trial trial*treat;

10.3 DOSE–RESPONSE RELATIONSHIPS

This section deals with the situation in which the treatment groups represent
different doses of the same compound. If each dose is considered as a separate
treatment, then the methods described in Section 10.2 can be applied and pairwise
comparisons made. In addition, a model describing the dose–response relationship
may be fitted, using an extension of the methods described in Section 6.7.

Sometimes the studies to be combined in the meta-analysis will include the
same selection of doses. However, it is more likely that the selected doses will vary
from one trial to the next. In this latter case the dose–response relationship will
describe a mixture of between-trial and within-trial relationships and care needs
to be taken with the interpretation.

In this section, data from the tacrine studies described in Section 3.5.1 are
used to illustrate the methods. For simplification, the Clinical Global Impression
of Change scale is dichotomized, so that categories 1–3 represent a ‘success’ and
categories 4–7 a ‘failure’. As discussed in Section 6.6.1, in most studies the dose
for each patient was titrated to or selected to be the patient’s best dose. However,
the analysis shown in this section would require each patient to be randomized
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to one of the selection of six doses in order to be valid. This analysis is thus
for illustrative purposes only, and not a recommendation of how to analyse the
tacrine data set.

The studies together included six doses: 0, 20, 40, 80, 120 and 160 mg/day
of tacrine. Table 10.3 shows the number and percentage of successes in each
treatment group in each study. All studies include a placebo (0 mg/kg) group and
four include the 80 mg/kg group. Data on the other dose groups occur in only
one or two studies, although they do occur with several other doses within the
same study. Estimates of the log-odds ratio of success for each dose group relative
to placebo are presented in Table 10.4. These were calculated separately for each
study using the following SAS statements:

PROC GENMOD;
CLASS dose;
MODEL y = dose/ type1 dist=bin link=logit;
LSMEANS dose/pdiff cl;
BY study;

There appears to be some evidence of an increasing effect with increasing dose.
The fixed effects model (10.4), extended to include six treatment groups, was fitted
using the SAS statements

PROC GENMOD;
CLASS study dose;
MODEL y = study dose/ type1 dist=bin link=logit;
LSMEANS dose/pdiff cl;

Table 10.3 Global impression of change in Alzheimer’s disease. Number
(percentage) of successful responses in each tacrine dose group

Dose (mg) Study

1 2 3 4 5

0 24/110 23/72 23/53 32/170 15/41
(21.8) (31.9) (43.4) (18.2) (36.6)

20 – 53/152 – – –
(34.9)

40 27/96 47/147 – – –
(28.1) (32.0)

80 – 33/74 33/68 16/50 17/39
(44.6) (48.5) (32.0) (43.6)

120 – – – 50/144 –
(34.7)

160 – – – 61/187 –
(32.6)



Dose–response relationships 251

Table 10.4 Global impression of change in Alzheimer’s disease. Log-odds ratio of success
for each tacrine dose group relative to placebo. Study estimates are shown with standard
error in square brackets

Dose (mg) Study

1 2 3 4 5

20 – 0.132 – – –
[0.305]

40 0.338 0.001 – – –
[0.324] [0.309]

80 – 0.539 0.207 0.708 0.292
[0.344] [0.368] [0.361] [0.458]

120 – – – 0.830 –
[0.263]

160 – – – 0.736 –
[0.251]

This indicated a statistically significant difference amongst the doses (χ2 =
16.55, 5 df, p = 0.005), with the three highest doses being better than placebo
(Table 10.5). A test of the study by dose interaction was undertaken by changing
the MODEL statement above to

MODEL y = study dose study*dose / type1 dist=bin link=logit;

This was not statistically significant (χ2 = 1.95, 4 df, p = 0.74), although it is
based mainly on the 80 mg/kg dose.

The random effects model in which the dose was considered as a factor with
six levels was fitted using MLwiN. This produced almost identical results to the
fixed effects model because the heterogeneity parameter was estimated to be zero
(Table 10.5). Inclusion of a random instead of a fixed study effect has had a small
effect on the estimates of the log-odds ratios, and an even smaller effect on their
precision. The relative rankings of the dose groups remain unchanged. From these
analyses it appears that the dose of 120 mg/day provides the best efficacy result,
although it should be noted that study 4 is the only study which provides data on
this dose.

The simplest form of dose–response relationship which can be fitted is a straight
line. This is easily fitted within any of the fixed or random effects models by treating
dose as a continuous covariate rather than a factor. Here, the model which has
a fixed linear dose response and a random study effect was fitted. This model is
given by

log
(

pij

1 − pij

)
= α + ν0i + β1dij, (10.6)
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where dij is the dose of tacrine (mg/kg) and β1 now represents the change in the
log-odds of success with each 1 mg/kg increase in dose. The model can be fitted in
MLwinN as a two-level hierarchical model, the levels being study and patient. The
estimate of β1 was 0.004 55 (standard error 0.001 26), producing a log-odds ratio
relative to placebo of 0.546 at 120 mg/kg and 0.728 at 160 mg/kg. The linear
dose–response relationship is not satisfactory, because it predicts an increasing
effect with increasing dose. Therefore, a quadratic dose–response curve was
considered. The model is given by

log
(

pij

1 − pij

)
= α + ν0i + β1dij + β2d2

ij . (10.7)

Estimates of β1 and β2 were calculated to be 0.008 73 (standard error 0.003 71)
and 0.000 030 5 (standard error 0.000 025 3) respectively, resulting in an opti-
mum dose of 143 mg/kg.

10.4 MULTICENTRE TRIALS

When multicentre trials are to be included in a meta-analysis, consideration needs
to be given to the handling of the centre effects. When the available data consist
of summary statistics from published papers there may be no choice. However,
when individual patient data are available there are numerous possibilities to
consider. Some of the various options are discussed in this section.

One option is to use the methods of Chapter 4 to combine study estimates of
treatment difference. This means that study would remain the stratifying factor for
the meta-analysis. There is then a decision to be made regarding the calculation
of the study estimate from the multicentre trial. Should the study estimate be
stratified by centre or not? To some extent this will depend on the analysis which
was planned for the multicentre trial. The model which is commonly used for the
analysis of a multicentre trial is the fixed effects meta-analysis model of Chapter 5,
in which ‘centre’ plays the role of ‘study’ (see Section 5.12). This leads to an
estimate stratified by centre, and so for consistency it is this estimate which should
be used in the meta-analysis. An alternative approach is to combine the estimates
from each centre using the fixed effects model of Chapter 4. Some multicentre
trials consist of a large number of centres with few patients per centre. In this case,
stratifying by centre may result in too much loss of power. Instead, centres may
be pooled together in homogeneous groups, perhaps by geographical location, to
form larger units for stratification. If this is not possible then there should be no
stratification.

A second option is to use the methods of Chapter 4, but make centre the
stratifying factor. Then estimates from each centre would act as separate studies
in the meta-analysis. This might have a dramatic effect on the number of
‘studies’ in the meta-analysis. However, if the centre estimates are reasonably
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homogeneous this is unlikely to produce results which are very different from the
approach in the previous paragraph. On the other hand, if there is heterogeneity
between centres within studies the results from the two approaches may differ, as
the first approach ignores this.

When individual patient data are available, the models of Chapter 5 can be used
with centres acting as separate studies. As another option, an additional level
may be introduced into the hierarchical model: study at the highest level (level
3), centre at the next level down (level 2) and patient at the lowest level (level 1).

10.5 CROSS-OVER TRIALS

In a parallel group trial, subjects are randomized to receive one of the set of
treatments being compared. By contrast, a cross-over trial is one in which subjects
receive two or more of the treatments, with randomization being to one of the set
of treatment sequences. In many of the cross-over trials undertaken, each subject
receives each of the treatments being compared. Their use is limited in practice
because they are only suitable if the disease or condition under study is chronic
and stable.

The advantage that cross-over trials have over parallel group trials is that
they can lead to a saving in resources. This is because the same number of
observations can be obtained from fewer subjects and also fewer observations are
needed to obtain the same precision in the estimate of treatment difference. The
disadvantage is that there are potential problems which may arise because of
the nature of the design. One of these is the carry-over effect from one treatment
period into the next, the magnitude of which depends on the treatment received
in the earlier period. Cross-over designs need to include sufficiently long washout
periods between the treatment periods in order to allow the effect of the previous
treatment to disappear. A second problem occurs if a number of the subjects drop
out of the trial before providing data from each treatment period. This can lead to
complications of the analysis and interpretation of the results.

The cross-over trial has a hierarchical structure, in which there are two levels:
patient at the higher level (level 2) and treatment period at the lower level (level
1). Information concerning the treatment comparisons is mainly obtained from
the lower level. In some respects, the analysis of a cross-over study can be viewed
in the same light as the analysis of a multicentre trial or a meta-analysis, where
‘subject’ plays the role of ‘centre’ or ‘study’. The subject effects can be treated as
fixed or random. However, the treatment effect is usually considered as fixed, with
no subject by treatment interaction terms. Often, adjustment is made for period
effects. For details of the analysis of a cross-over trial, the reader is referred to Senn
(1993) or Brown and Prescott (1999).

If individual patient data are available from a cross-over trial, the data from
all treatment periods can be used to provide estimates of the treatment difference
and its standard error. If the data from the later treatment periods are considered
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to be unreliable because, for example, the washout period is too short, it may be
necessary to use the data from the first period only. In this case the analysis is
identical to that for a parallel group study. Estimates from both parallel group
studies and cross-over trials may be combined in the same meta-analysis using
the methods of Chapter 4.

Difficulties may arise if the only data available from a cross-over study are
summary statistics from a published paper. In particular, caution is needed if the
reported statistics are the mean and standard deviation for each treatment. These
standard deviations relate to the variability between patients and not between
periods for the same patient. It is the latter which is required for the meta-analysis.
This is similar to the problem discussed in Section 9.6.1 when the outcome of
interest was the change in measurement between two timepoints.

If the trials to be included in a meta-analysis have a variety of designs, it may
be possible to combine the data using a hierarchical model. Frost et al. (1999)
consider this approach for investigating the effect on blood cholesterol of changes
in intake of various dietary lipids. Parallel group, cross-over and Latin square
designs were amongst the study designs included.

10.6 SEQUENTIAL TRIALS

In a non-sequential study with a fixed sample size, there will be one analysis
at the end of the study when all of the data have been collected. In this case,
frequentist point estimates, confidence intervals and p-values are based on an
imaginary infinite number of repetitions of the same study with the same sample
size. However, in a sequential study the data are examined repeatedly in a way
which might lead to early stopping, and so the fixed sample size analysis will not
be valid. Without adjustment, repeated significance tests using a fixed sample size
analysis will result in an excessive number of false positive conclusions when no
treatment difference exists and the conventional estimate of treatment difference
will be biased.

If a study is to incorporate a series of interim analyses, then these should
follow some predetermined sequential design. Once the study has been stopped,
frequentist analyses should concern infinite repetitions of that design. In this
way, estimates and confidence intervals can be constructed which have desirable
properties. Data from trials which have been stopped due to an interim analysis,
without any predetermined design, are far more difficult to interpret.

There are two main types of sequential procedure which are implemented
in practice. The first is derived from a boundaries approach, in which the test
statistics Z and V discussed in Chapter 3 are plotted against one another until
certain stopping boundaries are crossed. The second is a repeated significance
test approach, in which a series of conventional analyses are performed with
significance levels adjusted to allow for the repetition. Further details can be found
in J. Whitehead (1997) and Jennison and Turnbull (2000). Computer programs



256 Inclusion of trials with different study designs

are available to provide valid analyses, including estimates of the treatment
difference which are either unbiased or median unbiased – see, for example,
PEST 4 EaSt (website at http://www.cytel.com) and S-Plus SeqTrial (website at
http://www.insightful.com/products/addons.asp).

Suppose that one of the studies to be included in a meta-analysis has been
conducted using a predetermined sequential design. The meta-analysis methods
of Chapter 4 assume that the estimate of the treatment difference from each
study is normally distributed. The overall fixed effects estimate is then calculated
as a weighted average of the individual study estimates in which the weights
are the inverse variances of these estimates. An obvious choice for the estimate
of treatment difference from the sequential trial is a bias-adjusted maximum
likelihood estimate. However, such an estimate is not normally distributed and
also does not have a symmetrical distribution. Therefore, it is not clear what
weight should be attached to it.

Todd (1997) presented the results of a simulation exercise, in which sequential
trials are incorporated into a fixed effects meta-analysis, using the Z and V statistics
calculated at the termination of the study. For a fixed sample size design, Z/V
is an approximate ML estimate of the treatment difference parameter, θ. The
bias of this estimate is small for small values of θ, but increases with increasing
values of θ. For a sequential design, an additional source of bias is introduced
due to the nature of the design. Todd considered the scenario in which the meta-
analysis includes five trials, of which between one and four are sequential trials
whilst the remainder have a fixed sample size design. Binary outcome data were
generated. The triangular test (J. Whitehead, 1997) and the O’Brien and Fleming
design (O’Brien and Fleming, 1979) were the chosen sequential procedures, each
investigated separately. The triangular test allows early stopping either when the
new treatment is shown to be better than the control or when it is shown to offer
no advantage. With the O’Brien and Fleming design, early stopping is unlikely,
and the number of subjects is similar to the equivalent fixed sample size design.
Therefore, the bias after using the O’Brien and Fleming design is expected to be
less than that after using the triangular test. Todd showed that the bias inherent
in a single sequential study was not carried through into a meta-analysis. This is
probably because a sequential trial which stops early, giving a large, often biased
estimate of treatment difference, has a relatively small weight in the meta-analysis.
Sequential trials which continue for longer, lead to less biased estimates, and their
larger weight in the meta-analysis is not a problem.

Previously, Green et al. (1987) had considered the effect of including in a meta-
analysis studies which had been stopped early using inappropriate stopping rules.
In a simulation exercise, studies with survival time as the primary measure were
stopped early whenever the p-value for the log-rank test statistic reached 0.05 or
less. It was assumed that studies which had stopped early were only a minority
of those to be included in the meta-analysis. Green et al. concluded that inclusion
of the unadjusted results from such studies had little effect on the p-value of the
test of treatment difference in a meta-analysis. They also found this to be the case
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for correctly designed sequential trials. The designs considered were those based
on repeated significance testing, which included the O’Brien and Fleming design.
They concluded that publication bias was likely to have a greater effect on the
p-value.

Hughes et al. (1992) considered the impact of sequential trials on the amount
of heterogeneity in a meta-analysis. They considered sequential designs based on
repeated significance testing, and normally distributed subject responses. Like the
earlier authors, they observed that the inclusion of the unadjusted results from
sequential trials had little effect on the p-value of the test of treatment difference
in a fixed effects meta-analysis. However, they found that if the true treatment
difference was small, then artificial heterogeneity was introduced, increasing the
p-value for the test for heterogeneity, whereas if the true treatment difference
was large, then the heterogeneity may be underestimated. An overestimate of
the heterogeneity parameter in a random effects meta-analysis leads to a larger
weight being given to smaller trials. In this case, the sequential trials which stop
early become more influential, leading to a biased random effects estimate of
treatment difference.

The approach discussed by Hall and Ding (2001) for combining p-values, based
on efficient score and Fisher’s information statistics (see Section 9.8), may provide
a means of combining results from sequential trials and non-sequential trials.
In this approach, the test of the null hypothesis of no treatment difference is
conducted by comparing the statistic

Ugr =
∑r

i=1 giu(p1i)√∑r
i=1 g2

i

with the standard normal distribution. For all trials, the weight gi = √
Vi. For non-

sequential trials, u(p1i) = Zi/
√

Vi, and for sequential trials u(p1i) = �−1(1 − p1i),
where p1i is the correctly calculated one-sided p-value, taking account of the
interim analyses. In this case, U2

gr is analogous to the U statistic defined in
Section 4.2.2 for testing the treatment difference in a traditional fixed effects
meta-analysis.
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A Bayesian Approach to
Meta-Analysis

11.1 INTRODUCTION

The statistical procedures presented so far in this book have been derived from a
classical or frequentist approach, in which point estimates, confidence intervals
and hypothesis tests are prominent features. The frequentist approach is concerned
with an imagined infinite number of repetitions of the same inferential problem for
fixed values of the unknown parameters. For example, consider inferences about
the treatment difference parameter, θ, based on data collected during a clinical
trial. A one-sided p-value, for a test of the null hypothesis that θ is zero against the
alternative that θ is greater than zero, is the proportion of such infinite repetitions
when θ is zero in which the test statistic is greater than or equal to its calculated
value. A 95% CI, (θL, θU), has the property that in 95% of repetitions it will include
the true value of θ. This is not the same as saying ‘θ has a 95% chance of falling in
the interval (θL, θU)’, as θ is fixed and not a random variable.

The Bayesian philosophy is fundamentally different from the frequentist,
although it can lead to methods which are numerically very similar. In the
Bayesian approach, all unknown parameters, such as θ, are treated as random
variables, and these have a joint probability distribution specified prior to obser-
vation of data. In principle, these prior distributions are reflections of subjective
opinion. The updating of the prior distribution in the light of the data, governed by
Bayes’ theorem, leads to the posterior distribution. Bayesian inference is based on
this posterior distribution. From it can be calculated such quantities as P(θ < 0),
the probability that θ is less than zero. The analogue of a frequentist confidence
interval is the credibility interval. The 95% credibility interval, (θL, θU), has the
property that the Bayesian is 95% certain that θ lies within it.

The Bayesian approach has two important aspects. The first is the expression
of subjective opinion as the prior distribution. As the posterior distribution is
influenced by the choice of the prior distribution it is also subjective. The choice
of a prior distribution is therefore important and often controversial. In a meta-
analysis, the two main parameters are the treatment difference, θ, and the
heterogeneity, τ2. In this chapter only non-informative prior distributions are

259



260 A Bayesian approach

considered for θ. Usually, the amount of information from the trials considered
in a meta-analysis would overwhelm any prior information about θ, so that
the choice of prior distribution is not crucial. On the other hand, when there
are only a small number of trials, the estimate of τ2 from the data is usually
imprecise. In addition to non-informative prior distributions, consideration is
given to empirical prior distributions for τ2. The second important aspect of the
Bayesian approach is the method of combining and updating evidence. Because
all unknown parameters are treated as random variables, the combination of
diverse information is facilitated. The recent development of software, such as
BUGS, to deal with the intensive computations makes it possible to implement
these methods quite easily.

An important advantage of the Bayesian approach is the ability to account
for uncertainty of all relevant sources of variability in the model. In a Bayesian
analysis, the posterior density is fully evaluated and exact posterior standard
deviations and credibility intervals can be obtained from the posterior distributions
for each model parameter. By contrast, in the frequentist approach, the standard
errors and CIs are often computed using formulae which assume that the variance
components are known.

It is not the intention here to provide a detailed account of the Bayesian
approach. There are a number of books which provide this (see, for example,
Lee, 1989; Bernado and Smith, 1993; O’Hagan 1994). In this chapter, the focus
is on describing some of the Bayesian techniques which are of relevance to a
meta-analysis, together with their implementation. The software package BUGS
is used to implement the methods.

In this chapter, a number of the meta-analysis models presented in earlier
chapters within a frequentist framework will be discussed within a Bayesian
framework. To facilitate the comparison with the frequentist approach, the
models will be referred to by the names given to them within the frequentist
setting. Within the Bayesian setting, the ‘fixed effect’ parameters will be treated
as random, and will usually be given non-informative prior distributions.

In Section 11.2 the Bayesian formulation is introduced in relation to the random
effects meta-analysis model, for which the data consist of the study estimates of
treatment difference. The choice of prior distributions is discussed in Section 11.3,
and the implementation of the method using BUGS is presented in Section 11.4.
In Sections 11.5 and 11.6 the model is extended to allow for study-level covariates
and individual patient data, respectively.

External information from related trials can be incorporated into the model
to provide more precise posterior distributions for the parameters of interest.
In Sections 11.7 and 11.8, two ways of incorporating external information are
discussed. The first uses data from trials comparing one of the treatments in the
treatment comparison of interest with a common third treatment to improve
the inference on both heterogeneity and the treatment difference. This topic was
discussed within the frequentist setting in Section 10.2. The second uses data
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from previous meta-analyses in the same therapeutic area to formulate a prior
distribution for the heterogeneity parameter.

Other examples of the application of a Bayesian approach to meta-analysis may
be found in Eddy et al. (1992) and Stangl and Berry (2000).

11.2 A BAYESIAN APPROACH TO THE RANDOM EFFECTS
MODEL FOR STUDY ESTIMATES

This section considers a Bayesian approach to the random effects meta-analysis
model described in Chapter 4 within the frequentist setting. In the Bayesian
approach, parameters such as θi become random variables, and a hierarchical
model, which has similarities with the model described in Section 4.3, is consid-
ered. The data consist of study estimates of treatment difference, θ̂i, i = 1, . . . , r,
where

θ̂i ∼ N(θi, ξ2
i ). (11.1)

The parameter θi is given the prior distribution

θi ∼ N(θ, τ2). (11.2)

In this model, it is assumed that the θi are exchangeable, that is, they may be
expected to be different, but there is no prior belief about their ordering. For
consistency with the frequentist approach, it is assumed that ξ2

i is known and is
replaced by the calculated value w−1

i , i = 1, . . . , r. The vector of study estimates,
θ̂i, is denoted by y, the corresponding vector of parameters, θi, by ψ, the joint
density (likelihood) function for the data by f (y|ψ) and the prior distribution for
ψ by p(ψ|θ, τ2).

As a simple example of the Bayesian approach, consider the situation in which
θ and τ2 are both known. In this case the posterior distribution for ψ, obtained
using Bayes’ theorem, would be given by

p(ψ|y, θ, τ2) = p(y, ψ|θ, τ2)

p(y|θ, τ2)
= f (y|ψ)p(ψ|θ, τ2)∫

f (y|u)p(u|θ, τ2) du
, (11.3)

where ∫
f (y|u)p(u|θ, τ2) du =

∫∫
. . .

∫
f (y|u)p(u|θ, τ2) du1 du2 . . . dur.

As θ and τ2 are both known, they can both be suppressed in the notation, and
equation (11.3) can be expressed in a more shortened form, as

p(ψ|y) ∝ f (y|ψ)p(ψ), (11.4)
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that is, the posterior is proportional to the likelihood multiplied by the prior.
Substituting the appropriate normal density functions into the right-hand side of
(11.4) gives

p(ψ|y) ∝ exp

[
−1

2

{
r∑

i=1

wi(θ̂i − θi)
2 +

∑r
i=1(θi − θ)2

τ2

}]
.

It can be shown that this posterior distribution is multivariate normal, with means
and variances of the θi given by

E(θi|y) = θ̂iτ
2 + θw−1

i

τ2 + w−1
i

= θ̂iwi + θτ−2

wi + τ−2

and

var(θi|y) = τ2w−1
i

τ2 + w−1
i

.

The prior information is worth extra data with mean θ and weight τ−2 in the ith
study. The estimate of treatment difference in the ith study is ‘shrunk’ towards the
value of θ. If τ2 = 0, then the θi are all assumed to be equal to θ, and if τ2 = ∞,
then the studies are assumed to be unrelated, so the individual study estimates
remain unchanged. For other values of τ2, the amount of shrinkage depends on
wi, decreasing as wi increases.

In practice one may want to consider θ and τ2 as hyperparameters, and to
give them prior distributions. For example, θ and τ2 may have independent prior
distributions represented by a normal distribution and inverse gamma distribution
respectively, so that

θ ∼ N(θ0, σ2
0), (11.5)

and
τ2 ∼ IG(α, λ). (11.6)

The inverse gamma distribution with parameters α and λ has density of the form

p(x) = λα

�(α)
x−α−1 exp

(−λ

x

)
,

where

�(α) =
∞∫

0

xα−1 exp(−x) dx

for α > 0.
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The parameters of these prior distributions could also be given prior distributions
(and this process could continue indefinitely), although this possibility will not be
considered here.

The unknown parameters now consist of ψ, θ and τ2, and their joint posterior
distribution, using Bayes’ theorem, is given by

p(ψ, θ, τ2|y) ∝ f (y|ψ)p(ψ|θ, τ2)p(θ)p(τ2), (11.7)

where p(θ) and p(τ2) are the prior distributions for θ and τ2, such as those given
in (11.5) and (11.6).

Inference about each parameter may be made by integrating over the other
parameters. It can be shown (Higgins, 1997) that the marginal posterior distri-
butions of the parameters given the data are given by

p(θ|y) =
∫

f (y|θ, τ2)p(θ)p(τ2)∫
f (y|θ, τ2)p(θ) dθ

dτ2, (11.8)

p(τ2|y) =
∫

f (y|θ, τ2)p(θ)p(τ2)∫
f (y|θ, τ2)p(τ2) dτ2

dθ, (11.9)

p(ψ|y) =
∫∫

f (y|ψ)p(ψ|θ, τ2)p(θ)p(τ2)

f (y|θ, τ2)
dθ dτ2. (11.10)

Unless the prior distributions are very simple, these integrals cannot be calculated
in closed form. This is a general problem with the Bayesian approach which has
restricted its use in practice until recently. Solutions to the problem include the use
of asymptotic methods to obtain analytical approximations to the posterior density,
numerical integration and simulation. In the latter category, Markov chain Monte
Carlo methods such as the Gibbs sampler provide a way of approximating posterior
distributions, by sampling large numbers of observations from them. As its name
suggests, the software package BUGS (Bayesian inference Using Gibbs Sampling),
uses the Gibbs sampling approach. For details of other approaches, see, for
example, Carlin and Louis (1996).

11.3 CHOICE OF THE PRIOR DISTRIBUTION

It is computationally convenient to choose a distribution for the prior which
is conjugate to the likelihood function, that is, one that produces a posterior
distribution of the same type as the prior. In the case of a normal likelihood, the
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Figure 11.1 Densities of prior distributions for τ2: (a) IG(0.001, 0.001); (b) IG(0.5,
0.005); (c) IG(1.0, 0.2). Reproduced from Higgins and Whitehead, 1996 (Figure 1) by
permission of John Wiley & Sons, Ltd.

conjugate prior for the mean is a normal distribution and for the variance an
inverse gamma distribution.

A prior normal distribution with a very large variance for θ will have little
influence on the eventual posterior. Similarly, an inverse gamma prior distribu-
tion with parameters close to zero for τ2 will have little effect. Thus choices such
as N(0, 104) and IG(0.001, 0.001) respectively are often used. Such prior dis-
tributions are referred to as non-informative. The IG(0.001, 0.001) distribution is
shown in Figure 11.1(a). In this chapter only non-informative prior distributions
are considered for θ. For τ2 both non-informative and databased prior distributions
are considered.
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11.4 IMPLEMENTATION USING THE BUGS SOFTWARE

The BUGS software allows the user to specify the model via a graphical structure,
in which nodes in the graph represent the data and parameters of the model.
Figure 11.2 shows the graphical model for the random effects meta-analysis model
of Section 11.2. There are three types of node: stochastic nodes for parameters and
observed variables (such as θ, τ2, θi, θ̂i), fixed value nodes for known constants
and covariates (such as wi), and deterministic nodes for logical functions of
other nodes. In this example there are no deterministic nodes. An example of a
deterministic node is given in Section 11.4.1. Directed links are drawn from parent
nodes to children nodes. These links may indicate either a stochastic dependence
or a logical function. In order to specify the model fully, it is only necessary to
provide the parent–child distributions. The full joint probability distribution of all
of the parameters and observed variables has a simple factorization in terms of the
conditional distribution of each node given its parents. For our particular model
the factorization is given by

p(ψ, θ, τ2, y) = f (y|ψ)p(ψ|θ, τ2)p(θ)p(τ2).

It can be shown that this factorization leads to the posterior distributions defined
by (11.7)–(11.10).

The sampling distributions required for the Gibbs sampling algorithm are set up
by BUGS, following the specification of the model. The basis of the Gibbs sampler
algorithm is as follows. Suppose that there are k parameters in the model, denoted
by φ1, . . . , φk, and that the conditional distributions p(φi|φj�=i, y), i = 1, . . . , k, are
available for sampling. Then given a set of starting values (φ(0)

1 , . . . , φ
(0)

k ), for the

Trial i

τ2 θi

θi
^

wi

θ

Figure 11.2 Graphical model for random effects meta-analysis using study estimates of
treatment difference.
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first iteration one samples

φ
(1)
1 |y from p(φ1|φ(0)

2 , . . . , φ
(0)

k , y),

φ
(1)
2 |y from p(φ2|φ(1)

1 , φ
(0)
3 , . . . , φ

(0)

k , y),

...

φ
(1)

k |y from p(φk|φ(1)
1 , . . . , φ

(1)

k−1, y).

The process continues until after n iterations a sample (φ(n)
1 , . . . , φ

(n)

k ) is obtained.
The iterative process follows a Markov chain, which converges to its stationary
distribution, that being the joint posterior distribution of the k parameters. The
marginal posterior distribution for φi is estimated from sampled values of that
parameter or can be smoothed using kernel density estimation. Usually there is
an initial period, referred to as the burn-in period, during which the output chain
converges to its stationary distribution. It is advisable to exclude sampled values
collected during the burn-in period.

For every node it is therefore necessary to define the full conditional distribution
given all other nodes. These are obtained by exploiting the factorization of the full
joint probability distribution. The required conditional distribution of a parameter
is proportional to the terms in the factorization which contain that parameter.
For our example, it can be seen that

p(θ|τ2, ψ, y) ∝ p(ψ|θ, τ2)p(θ),

p(τ2|ψ, θ, y) ∝ p(ψ|θ, τ2)p(τ2)

and
p(ψ|θ, τ2, y) ∝ f (y|ψ)p(ψ|θ, τ2).

More generally, the full conditional distribution of any node depends only on the
values of its parents, children and co-parents, through the parent–child prior
distributions and likelihood components arising from each of its children.

For many hierarchical models with conjugate priors, the sampling distributions
are available in closed form. For example, if the prior distributions (11.5) and
(11.6) are used, then it can be shown (Higgins, 1997) that

p(θ|τ2, ψ, y) ∼ N
(

σ2
0

∑r
i=1 θi + µ0τ2

rσ2
0 + τ2

,
σ2

0τ2

rσ2
0 + τ2

)
,

p(τ2|ψ, θ, y) ∼ IG
(

α + r
2

,

∑r
i=1(θi − θ)2

2
+ λ

)
,

and

p(ψ|, θ, τ2, y) ∼ N

(
τ2θ̂i + w−1

i θ

τ2 + w−1
i

,
τ2w−1

i

τ2 + w−1
i

)
.
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There are a number of different methods for checking the convergence of
the output chain, ranging from inspection of graphical output to complicated
techniques based on time series analysis (see, for example, Brooks and Gelman,
1998; Gewecke, 1992). Some of these methods have been incorporated into a
menu-driven set of S-Plus functions under the name CODA (Best et al., 1995).
CODA computes convergence diagnostics and statistical and graphical summaries
for the samples produced by the Gibbs sampler, from BUGS or other programs.

For the examples in this and the following sections, the interactive Windows
version of BUGS, WinBUGS, was used. WinBUGS provides a graphical interface
called DoodleBUGS to assist the user in constructing the model. Model statements
can be generated from the DoodleBUGS diagram or can be written directly. There
are menu-driven windows for controlling the analysis and graphical tools for
monitoring convergence of the simulation. All the results presented are based on
50 000 iterations following a burn-in of 10 000.

11.4.1 Example: Recovery time after anaesthesia

The anaesthetic study described in Section 3.6.1 and used to illustrate many
of the frequentist methods is revisited to illustrate the Bayesian random effects
meta-analysis. The graphical model for this analysis is shown in Figure 11.2. The
following programming statements were written to perform the analysis:

model
{
for (i in 1:r)
{
y[i] ~ dnorm(psi[i],w[i])
psi[i] ~ dnorm(theta,t)

}
theta ~ dnorm(0,1.0E-4)
t ~ dgamma(0.001,0.001)
tausq <- 1/t

}

list(y = c(0.864, 0.646, 0.272, 0.916, 0.867, 0.819, 0.809, 1.212, -0.273),
w = c(4.40, 9.89, 16.81, 8.38, 8.15, 10.36, 10.79, 4.40, 15.95), r = 9)

list(theta = 0, t = 1, psi = c(0,0,0,0,0,0,0,0,0))

The observed data consist of the centre estimates of the absolute mean difference
in the log-recovery time between treatments A and B (Table 4.30). These study
estimates become the elements of the vector y, and their calculated inverse
variances, wi, become the elements of the vector w. In the WinBUGS code,
the likelihood function for the data y, f (y|ψ), and the prior distribution for ψ,
p(ψ|θ, τ2), are both specified as normal distributions. It should be noted that
WinBUGS parameterizes the normal distribution in terms of precision, that is, the
inverse variance as opposed to the variance itself. This introduces an additional
parameter, t, which is the inverse of τ2. However, as interest lies in τ2, a logical
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Table 11.1 A Bayesian random effects analysis of the anaesthetic study, based on centre
estimates of absolute mean difference (treatment A − treatment B) from Table 4.30

Parameter Mean (median) Standard deviation 95% credibility
interval

θ 0.600 (0.592) 0.169 (0.285, 0.957)
τ2 0.138 (0.093) 0.164 (0.002, 0.548)
θ1 0.675 (0.651) 0.292 (0.139, 1.313)
θ2 0.612 (0.604) 0.229 (0.172, 1.088)
θ3 0.408 (0.419) 0.204 (−0.017, 0.785)
θ4 0.726 (0.705) 0.257 (0.273, 1.278)
θ5 0.703 (0.684) 0.255 (0.243, 1.252)
θ6 0.693 (0.677) 0.236 (0.266, 1.196)
θ7 0.690 (0.674) 0.233 (0.270, 1.180)
θ8 0.779 (0.740) 0.316 (0.250, 1.487)
θ9 0.113 (0.118) 0.277 (−0.438, 0.613)

function link is created between t andτ2, to enable the posterior distribution ofτ2 to
be simulated. Hereτ2 is a deterministic node. A non-informative IG(0.001, 0.001)

prior distribution is used for t, and a non-informative N(0, 104) prior distribution
for θ. The data to be used in fitting the model are provided in the first list statement,
and the initial values for the parameters for the Gibbs sampler are provided in the
second list statement.

The treatment difference parameter, θ, has a posterior mean of 0.600
(Table 11.1), slightly smaller than the residual (restricted) maximum likelihood
estimate of 0.615 (Table 4.33). Its posterior standard deviation of 0.169 is
slightly larger than the value of 0.162 obtained from the REML analysis. It will
usually be the case that the posterior standard deviation is larger than the REML
estimate because full allowance is being made for uncertainty in the estimation
of the heterogeneity parameter, τ2, in the former but not the latter approach. The
posterior distribution of τ2 is skewed, with a median of 0.093 and a 95% credibility
interval from 0.002 to 0.548. Comparison of the centre estimates of treatment
difference (Table 4.30) with the posterior means shows the amount of shrinkage
which has taken place. All values have shrunk towards the posterior mean of θ.
The amount of shrinkage depends on wi. Centres with a small value of wi, such
as centre 1, have shrunk more than those with larger values, such as centre 6. In
fact, centres 1 and 6 are reversed in terms of their relative magnitudes.

11.5 BAYESIAN META-REGRESSION

It is relatively straightforward to introduce a trial-level covariate into the analysis.
The prior distribution for θi, given by (11.2), is now extended to give

θi ∼ N(µi, τ2),
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where
µi = β1 + ηi

and β1 and ηi are as defined in Section 6.6.
The approach is illustrated by the anaesthetic study in which the covariate

is the premedication drug, as discussed in Section 6.6.2. In this case ηi = β2x2i,
where x2i takes the value 0 for centres 1–8, at which premedication 1 is used, and
1 for centre 9 at which premedication 2 is used. Figure 11.3 shows the graphical
model for the analysis. This is similar to Figure 11.2, with the exception that the
node θ is replaced by the node µi, which is dependent on the two parameters β1

and β2. Non-informative prior distributions of N(0, 104) are given to β1 and β2.
The covariate x2i enters as a fixed value node. The programming statements are
as follows:

model
{

for (i in 1: r)
{

y[i] ~ dnorm(psi[i],w[i])
psi[i] ~ dnorm(mu[i],t)
mu[i] <- beta1 + beta2 * x2[i]

}
beta1 ~ dnorm(0.0,1.0E-4)
beta2 ~ dnorm(0.0,1.0E-4)
t ~ dgamma(0.001,0.001)
tausq <- 1/t
premed2 <- beta1 + beta2

}

list(y = c(0.864, 0.646, 0.272, 0.916, 0.867, 0.819, 0.809, 1.212, -0.273),
w = c(4.40, 9.89, 16.81, 8.38, 8.15, 10.36, 10.79, 4.40, 15.95),
x2 = c(0,0,0,0,0,0,0,0,1), r = 9)

list(beta1 = 0, beta2 = 0, t = 1, psi = c(0,0,0,0,0,0,0,0,0))

A logical function link has been created between ‘premed2’ and the parameters
‘beta1’ and ‘beta2’ to enable the distribution of the treatment difference for
the second premedication to be simulated. The treatment difference for the first
medication is given by ‘beta1’.

The posterior distribution for the treatment difference has a mean of 0.725 when
premedication 1 is used and −0.274 when premedication 2 is used (Table 11.2).
These are similar to the values of 0.711 and −0.273 from Table 6.5. The posterior
standard deviations of 0.134 and 0.310 are larger than those of 0.117 and 0.250
given in Table 6.5. This is because τ2 is given the value 0 in Table 6.5, whereas in
the Bayesian analysis τ2 takes a small positive value and allowance is made for the
uncertainty in its estimation. Posterior means for the treatment difference at each
centre are different from those in Table 11.1. In Table 11.2 those for centres 1–8
are now closer together, whereas centre 9 has not been shrunk at all.
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Figure 11.3 Graphical model for meta-regression using study estimates of treatment
difference.

Table 11.2 A Bayesian random effects analysis of the anaesthetic study, based on centre
estimates of absolute mean difference (treatment A − treatment B) from Table 4.30, with
type of premedication as a centre covariate

Parameter Mean (median) Standard deviation 95% credibility
interval

Premedication 1 0.725 (0.721) 0.134 (0.469, 0.993)
(β1)
Premedication 2 −0.274 (−0.272) 0.310 (−0.878, 0.330)
(β1 + β2)
τ2 0.032 (0.011) 0.061 (0.001, 0.185)
θ1 0.737 (0.729) 0.190 (0.382, 1.151)
θ2 0.709 (0.708) 0.167 (0.374, 1.041)
θ3 0.615 (0.631) 0.177 (0.211, 0.921)
θ4 0.752 (0.741) 0.179 (0.429, 1.146)
θ5 0.743 (0.734) 0.177 (0.412, 1.122)
θ6 0.737 (0.731) 0.169 (0.416, 1.089)
θ7 0.736 (0.729) 0.167 (0.422, 1.091)
θ8 0.770 (0.751) 0.200 (0.424, 1.234)
θ9 −0.273 (−0.272) 0.253 (−0.771, 0.216)

11.6 A BAYESIAN RANDOM EFFECTS MODEL BASED ON
INDIVIDUAL PATIENT DATA

When individual patient data are available the Bayesian hierarchical model can be
based on the models described in Chapter 5, which take account of the underlying
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distribution of the patient’s response. This involves replacing the distribution
presented in (11.1) by the appropriate distribution specific to the type of data. This
section presents the approach for three different data types. The extension of the
models to include covariates is discussed, as is the inclusion of the study effects as
a random sample from an overall population.

11.6.1 Normally distributed data

Let yij be the normally distributed response from patient j in study i. The random
effects model of Section 5.8.1 can be presented in the Bayesian framework in the
following way:

yij ∼ N(µij, σ2), (11.11)

where
µij = β0i + γ1ix1ij,

and
γ1i ∼ N(β1, τ2). (11.12)

In this subsection, the intercept term α in model (5.24) is set to zero so that β0i

now represents the effect in the control group in study i. The treatment difference
parameter is β1, and γ1i represents the treatment difference in study i. The
distributions (11.11) and (11.12) now replace (11.1) and (11.2). Compared with
the model of Section 11.2, there are additional parameters, namely the within-
study variance component, σ2, and the study effects, β0i. These can be given
non-informative inverse gamma and independent normal prior distributions,
respectively.

The graphical model is presented in Figure 11.4. The following programming
statements were used in connection with the anaesthetic study:

model
{
for (i in 1:r)
{
for(j in n[i]+1:n[i+1])
{

y[j] ~ dnorm(mu[j],s)
mu[j] <- beta0[i] + gamma1[i] * x1[j]

}
gamma1[i] ~ dnorm(beta1,t)
beta0[i] ~ dnorm(0,1.0E-4)

}
beta1 ~ dnorm(0,1.0E-4)
s ~ dgamma(0.001,0.001)
t ~ dgamma(0.001,0.001)
sigmasq <- 1/s
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tausq <- 1/t
}

list(r = 9, n = c(0,9,29,63,80,97,118,140,149,182))
x1[] y[]
0.5 1.79176
0.5 0.69315

. . .

list(beta1= 0, s = 1, t = 1, beta0 = c(0,0,0,0,0,0,0,0,0), gamma1 =
c(0,0,0,0,0,0,0,0,0) )

The data are provided in the first list statement. The individual patient data on the
treatment covariate and observed response are entered as a rectangular array.
Note that for this example the treatment covariate is coded ‘0.5’ for treatment A
and ‘−0.5’ for treatment B, as this data file will also be used for fitting the model
in which the centre effects are randomly distributed with a common mean (see
Section 5.11). The data are sorted by centre and the vector n contains the row
numbers of the last patient in each centre. The second list file contains the initial
values for the Gibbs sampler.

The results of the analysis are presented in Table 11.3. There is very close
agreement between the estimates in this table and those in Table 11.1 (note that
β1 should be compared with θ and γ1i with θi). This is to be expected as the
individual patient data are treated as being normally distributed. The standard

σ2

τ2

yij

x1ij
µij

β0i

β1

γ1i

Patient j

Trial i

Figure 11.4 Graphical model for a random effects meta-analysis using normally dis-
tributed individual patient data.
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Table 11.3 A Bayesian random effects analysis of the anaesthetic study, based on
individual patient data and assuming a common σ2 across all centres

Parameter Mean (median) Standard deviation 95% credibility
interval

β1 0.600 (0.593) 0.171 (0.283, 0.957)
σ2 0.515 (0.510) 0.058 (0.414, 0.639)
τ2 0.139 (0.092) 0.168 (0.002, 0.553)
γ1 0.671 (0.648) 0.291 (0.137, 1.306)
γ2 0.612 (0.605) 0.232 (0.169, 1.086)
γ3 0.411 (0.421) 0.207 (−0.020, 0.788)
γ4 0.725 (0.705) 0.257 (0.269, 1.277)
γ5 0.704 (0.685) 0.256 (0.242, 1.253)
γ6 0.693 (0.676) 0.237 (0.265, 1.197)
γ7 0.690 (0.676) 0.235 (0.257, 1.180)
γ8 0.778 (0.740) 0.315 (0.243, 1.488)
γ9 0.115 (0.118) 0.281 (−0.445, 0.625)

deviations in Table 11.3 are slightly larger than those in Table 11.1, due to the
estimation of σ2.

There is a connection between the Bayesian approach and the REML approach
described in Section 5.8.2. Suppose that within the Bayesian context the variance
components (in this case τ2 and σ2) are assumed fixed and unknown and that
the ‘fixed effects parameters’ (in this case β0i, i = 1, . . . , r, and β1) are given
independent uniform prior distributions. Integrating over all parameters in the
joint posterior distribution which are not variance components (in this case
β0i, γ1i, i = 1, . . . , r, and β1), leads to a posterior distribution for the variance
components which is the same as the REML likelihood. Details may be found in
Searle et al. (1992).

11.6.2 Binary data

If yij is a binary observation, it takes the value 1 if the patient response is a
success and 0 if the response is a failure. The distribution in (11.11) is therefore
replaced by

yij ∼ Bin(pij, nij), (11.13)

where

log
(

pij

1 − pij

)
= β0i + γ1ix1ij.

In order to run the model in WinBUGS, the code in the fourth and fifth lines of
the program in Section 11.6.1 need to be replaced as follows:
y[j] ~ dbin(p[j], ni[j]);

logit(p[j]) <- beta0[i] + gamma1[i] * x1[j];
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If each subject’s data are entered individually then nij = 1. However, the program
will run more efficiently if the data are entered in binomial form – one line for each
treatment group in each study, with yij equal to the total number of successes and
nij the total number of patients in that treatment group and study.

Table 11.4 shows the results from the Bayesian analysis of the pre-eclampsia
data set described in Section 5.9.3. The parameter of interest is the log-odds ratio
of pre-eclampsia on diuretic treatment versus control during pregnancy. Also
given are the results from a Bayesian analysis based on the study estimates of
the log-odds ratio from Table 5.16 using the approach in Section 11.2. Estimates
of the log-odds ratio are similar in both cases, although the standard deviation
based on the binary model is slightly larger. Estimates of τ2 are not so close.
In comparison with the random effects models fitted in Chapter 5 (Table 5.17),
estimates of the log-odds ratio from the Bayesian approaches are similar, but have
larger standard errors.

11.6.3 Ordinal data

For an ordinal response with m categories the observation yij takes the value k
if subject j in study i has a response in category k, k = 1, . . . , m. The parameter
pijk is the probability that patient has a response in the kth category, and Qijk

is the cumulative probability of a response in category k or better, that is,
Qijk = pij1 + · · · + pijk and Qijm = 1. For a Bayesian analysis comparable with the
stratified proportional odds model defined in (5.28), the following relationship
holds:

log
(

Qijk

1 − Qijk

)
= αik + γ1ix1ij, k = 1, . . . , m − 1.

The following WinBUGS code can be used to perform the analysis of the tacrine
data set described in Section 3.5.1:

Table 11.4 A Bayesian random effects analysis of the pre-eclampsia data set: comparison
between one based on individual patient data and the other based on study estimates from
Table 5.16

Parameter Individual patient
data

Study estimates

β1 (θ) Mean −0.510 −0.506
Median −0.507 −0.500
Standard deviation 0.258 0.242
95% credibility interval (−1.035, 0.009) (−1.000, −0.022)

τ2 Mean 0.447 0.381
Median 0.317 0.265
Standard deviation 0.476 0.416
95% credibility interval (0.030, 1.643) (0.0013, 1.443)
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model
{
for (i in 1:r)
{
for(j in n[i]+1:n[i+1])
{

y[j] ~ dcat(p[j, ])
p[j,1] <- Q[j,1]
for (k in 2:mminus1)
{

p[j,k] <- Q[j,k] - Q[j,k-1]
}
p[j,mminus1+1]<- 1 - Q[j,mminus1]
for (k in 1:mminus1)
{

logit(Q[j,k]) <- a[i,k] + gamma1[i]*x1[j]
}

}
gamma1[i] ~ dnorm(beta1, t)
a[i,1] ~ dnorm(0,1.0E-4)I ( , a[i,2])
a[i,2] ~ dnorm(0,1.0E-4)I(a[i,1], a[i,3])
a[i,3] ~ dnorm(0,1.0E-4)I(a[i,2], a[i,4])
a[i,4] ~ dnorm(0,1.0E-4)I(a[i,3], )

}
beta1 ~ dnorm(0,1.0E-4)
t ~ dgamma(0.001,0.001)
tausq <- 1/t

}

list(r = 5, mminus1 = 4, n = c(0,206,651,772,852,1403))
x1[] y[]
0 3
1 3
. . .

list(beta1 = 0, t = 1, gamma1 = c(0,0,0,0,0), a = structure(.Data =
c(0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3), .Dim = c(5,4)))

The intercept terms αik are constrained to be ordered within each study and given
non-informative N(0, 104) prior distributions. In the program above, the data are
entered as one line per subject. However, the program will run more efficiently if
the data are entered in multinomial form, with one line for each treatment group
in each study. The data required in each line are the number of responses in each
category and the total number of subjects. The fourth line of the code should be
replaced by

y[j, 1:mminus1+1] ~ dmulti(p[j,], ni[j])

and the data set by

list(r = 5, mminus1 = 4, n = c(0,2,4,6,8,10))
x1[] y[ ,1] y[ , 2] y[ ,3] y[ ,4] y[ ,5] ni[]
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1 4 23 45 22 2 96
0 2 22 54 29 3 110
. . .

The results from the Bayesian analysis of the Tacrine data set using individual
patient data are presented in Table 11.5, together with those based on the study
estimates of the log-odds ratio from Table 4.16. The results are very similar. In
comparison with the random effects models fitted in Chapters 4 and 5 (Tables 4.32
and 5.18), the estimates of the log-odds ratio from the Bayesian approach are
similar, but have larger standard errors.

11.6.4 Study-level and patient-level covariates

The inclusion of covariates in the meta-analysis models based on individual
patient data was discussed in Section 6.7. These same models can be used within
a Bayesian approach. In the Bayesian approach it is necessary to provide prior
distributions for all of the parameters associated with these covariate terms.

11.6.5 Random study effects

In this subsection, the anaesthetic study is used to illustrate the Bayesian approach
to fitting the model which contains random study and random study by treatment
effects. Within the Bayesian framework, model (5.31) becomes

yij ∼ N(µij, σ2),

where
µij = γ0i + γ1ix1ij

Table 11.5 A Bayesian random effects analysis of the tacrine studies: comparison
between one based on individual patient data and the other based on study estimates from
Table 4.29

Parameter Individual patient
data

Study estimates

β1 (θ) Mean 0.479 0.473
Median 0.484 0.478
Standard deviation 0.165 0.164
95% credibility interval (0.141, 0.782) (0.137, 0.779)

τ2 Mean 0.063 0.066
Median 0.020 0.021
Standard deviation 0.171 0.200
95% credibility interval (0.0008, 0.369) (0.0008, 0.392)
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and (
γ0i

γ1i

)
∼ N

((
β0

β1

)
,

(
ζ2 ρζτ

ρζτ τ2

))
. (11.14)

In contrast to the model described in Section 11.6.1, the prior distribution (11.14)
specifies that the study effects are no longer independent of one another. Addition-
ally, the study effects are no longer independent of the treatment difference effects.
The parameters β0 and β1 are given non-informative normal prior distributions,
and the variance matrix (

ζ2 ρζτ

ρζτ τ2

)

is given a non-informative Wishart(R, 2) distribution. The degrees for the Wishart
distribution have been set to 2, the rank of the variance matrix. Values assigned
to the scale matrix R are an assessment of the order of magnitude of the variance
matrix.

The following WinBUGS code can be used to fit this model to the anaesthetic
study:

model
{
for (i in 1:r)
{
for(j in n[i] +1:n[i+1])
{

y[j] ~ dnorm(mu[j],s);
mu[j] <- delta[i, 1] + delta[i, 2] * x1[j]

}
delta[i, 1:2] ~ dmnorm(b[], t[,])
gamma0[i] <- delta[i,1]
gamma1[i] <- delta[i,2]

}
b[1] ~ dnorm(0,1.0E-4)
b[2] ~ dnorm(0,1.0E-4)
s ~ dgamma(0.001,0.001)
t[1:2, 1:2] ~ dwish(R[,], 2)
R[1,1] <- 1.0
R[1,2] <- 0.0
R[2,1] <- 0.0
R[2,2] <- 0.1
beta0 <- b[1]
beta1 <- b[2]
sigmasq <- 1/s
for (i in 1:2)
{
for (j in 1:2)
{
omega[i, j] <- inverse(t[, ], i,j)

}
}
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zetasq <- omega[1,1]
tausq <- omega[2,2]
covar <- omega[1,2]
rho <- omega[1,2]/(sqrt(omega[1,1])*sqrt(omega[2,2]))
}

list( s = 1, b=c(0,0), t = structure(.Data = c(1,0,0,1), .Dim =
c(2,2)), delta = structure(.Data =
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), .Dim = c(9,2)) )

The data set described in Section 11.6.1 can be used with this program.
For the model in which ρ = 0, the multivariate normal distribution described

by (11.14) is replaced by
γ0i ∼ N(β0, ζ2)

and
γ1i ∼ N(β1, τ2), (11.15)

and the programming statements are changed as follows:

mu[j] <- gamma0[i] + gamma1[i] * x1[j]
}

gamma0[i] ~ dnorm(beta0, t0)
gamma1[i] ~ dnorm(beta1, t)
}

beta0 ~ dnorm(0,1.0E-4);
beta1 ~ dnorm(0,1.0E-4);
s ~ dgamma(0.001, 0.001);
t0 ~ dgamma(0.001, 0.001);

Table 11.6 A Bayesian model equivalent to the mixed model (5.31) for the anaesthetic
study, based on individual patient data and assuming a common σ2 across all centres, with
ρ set equal to 0 and ρ estimated

Parameter Mean (median) Standard deviation 95% credibility
interval

ρ = 0
β1 0.611 (0.603) 0.174 (0.288, 0.978)
σ2 0.515 (0.511) 0.058 (0.414, 0.639)
ζ2 0.386 (0.309) 0.307 (0.109, 1.114)
τ2 0.148 (0.100) 0.174 (0.002, 0.586)

ρ included as a parameter
β1 0.609 (0.605) 0.168 (0.288, 0.953)
σ2 0.513 (0.509) 0.057 (0.413, 0.636)
ζ2 0.483 (0.402) 0.321 (0.166, 1.279)
ρζτ −0.077 (−0.058) 0.134 (−0.389, 0.128)
τ2 0.136 (0.101) 0.127 (0.022, 0.461)
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t ~ dgamma(0.001, 0.001)
sigmasq <- 1/s
zetasq <- 1/t0
tausq <- 1/t
}

list( s = 1, t0 = 1, t = 1, beta0 = 0, beta1 = 0, gamma0 =
c(0,0,0,0,0,0,0,0,0), gamma1 = c(0,0,0,0,0,0,0,0,0))

The results of the Bayesian analyses, the first of which assumes that ρ = 0 and
the second of which estimates ρ, are presented in Table 11.6. Estimates of the
treatment difference are similar, and both slightly smaller than those calculated
from the frequentist analysis (Table 5.19). The standard errors in Table 11.6 are
slightly larger than those in Table 5.19.

11.7 INCORPORATING DATA FROM OTHER TREATMENT
COMPARISONS

The Pagliaro et al. (1992) data set described in Section 10.2.4 is used here for
illustrative purposes. This data set consists of 26 studies, 7 of which involve
a comparison between beta-blockers and control treatment, 17 a comparison
between sclerotherapy and control, and 2 a comparison between all three
treatments. In Section 10.2.4, data from all studies were combined in a meta-
analysis in order to improve the inference concerning the treatment difference
parameters. In this section, a Bayesian approach to the problem is presented. This
is based on the work by Higgins and Whitehead (1996) which focuses on the
inference about the difference in effect between beta-blockers and sclerotherapy.

The 26 trials fall into three groups. Group 1 contains trials 1 and 2, which
compare all three treatment groups, group 2 contains trials 3–9, which compare
beta-blockers with control, and group 3 contains trials 10–26, which com-
pare sclerotherapy with control. Assuming a common heterogeneity parameter
for the three pairwise treatment comparisons, the random effects model from
Section 11.6.2 can be extended to accommodate the three groups of trials as
follows. As in Section 10.2.4, x11ij takes the value 1 for the beta-blocker treatment
and 0 otherwise, and x12ij takes the value 1 for the sclerotherapy treatment and
0 otherwise. For group 1,

log
(

pij

1 − pij

)
= β0i + γ11ix11ij + γ12ix12ij,

where (
γ11i

γ12i

)
= N

((
β11

β12

)
,

(
τ2 τ2/2

τ2/2 τ2

))
.
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For group 2,

log
(

pij

1 − pij

)
= β0i + γ11ix11ij,

where
γ11i ∼ N(β11, τ2).

For group 3,

log
(

pij

1 − pij

)
= β0i + γ12ix12ij,

where
γ12i ∼ N(β12, τ2).

The study effects, β0i, and the treatment difference parameters, β11 and β12, are
given non-informative normal prior distributions, and the variance component,
τ2, a non-informative inverse gamma distribution.

The following WinBUGS code can be used to perform the analysis:

model
{
for (i in set[1] +1: set[2]) {

for(j in n[i] + 1: n[i+1]) {
y[j] ~ dbin(p[j], ni[j])

logit(p[j]) <- b0abc[i] + g[i,1] * x11[j] + g[i,2] * x12[j]
}
g[i, 1] ~ dnorm(beta1ac, ts)
mubc[i] <- beta1bc + 0.5*(g[i,1] - beta1ac)
g[i, 2] ~ dnorm(mubc[i], precbc)
gam1ab[i] <- g[i,1] - g[i,2]
b0abc[i] ~ dnorm(0,1.0E-4)
}
varbc <- 0.75/ts
precbc <- 1/varbc

for (i in set[2] +1: set[3]) {
for(j in n[i] + 1: n[i+1]) {

y[j] ~ dbin(p[j], ni[j])
logit(p[j]) <- b0ac[i-set[2]] + gam1ac[i-set[2]] * x11[j]

}
gam1ac[i -set[2]] ~ dnorm(beta1ac, ts)
b0ac[i-set[2]] ~ dnorm(0,1.0E-4)
}

for (i in set[3]+1: set[4]) {
for(j in n[i] + 1: n[i+1]) {

y[j] ~ dbin(p[j], ni[j])
logit(p[j]) <- b0bc[i-set[3]] + gam1bc[i -set[3]] * x12[j]

}
gam1bc[i - set[3]] ~ dnorm(beta1bc, ts)
b0bc[i-set[3]] ~ dnorm(0,1.0E-4)
}
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beta1ac ~ dnorm(0,1.0E-4)
beta1bc ~ dnorm(0,1.0E-4)
beta1ab <- beta1ac - beta1bc
ts ~dgamma(0.001,0.001)
tausq <- 1/ts

}

list( ts = 1, beta1ac= 0, beta1bc = 0, b0abc = c(0,0), b0ac =
c(0,0,0,0,0,0,0), b0bc= c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
g = structure(.Data = c(0,0,0,0), .Dim = c(2,2)), gam1bc=
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), gam1ac = c(0,0,0,0,0,0,0))

list(set = c(0,2,9,26), n =
c(0,3,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48
,50,52,54))
x11[] x12[] y[] ni[]
1 0 2 43
0 1 9 42
0 0 13 41
. . .

The bivariate normal distribution for γ11i and γ12i is specified as two independent
univariate normal distributions, one for γ11i given by

γ11i ∼ N(β11, τ2),

and one for γ12i conditional on γ11i given by

γ12i|γ11i ∼ N(β12 + 0.5(γ11i − β11), 0.75τ2).

The results of the analysis (Table 11.7) are similar to those from the frequentist
analysis (second row of Table 10.2).

Table 11.7 A Bayesian random effects meta-analyses of the Pagliaro et al. data set, based
on data from all 26 studies, using a non-informative prior distribution of IG(0.001, 0.001)
and an empirical prior distribution of IG(1.0, 0.35) for the heterogeneity parameter τ2

Parameter Mean (median) Standard deviation 95% credibility
interval

Non-informative prior distribution
log-odds ratio (A−B) −0.185 (−0.183) 0.515 (−1.214, 0.836)
log-odds ratio (A−C) −0.784 (−0.782) 0.442 (−1.664, 0.082)
log-odds ratio (B−C) −0.599 (−0.599) 0.312 (−1.213, 0.018)
τ2 1.46 (1.33) 0.64 (0.60, 3.03)

Empirical prior distribution
log-odds ratio (A−B) −0.176 (−0.175) 0.489 (−1.147, 0.784)
log-odds ratio (A−C) −0.775 (−0.772) 0.419 (−1.612, 0.051)
log-odds ratio (B−C) −0.599 (−0.600) 0.297 (−1.183, −0.011)
τ2 1.29 (1.19) 0.55 (0.54, 2.64)
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11.8 AN EMPIRICAL PRIOR DISTRIBUTION FOR THE
HETEROGENEITY PARAMETER

The heterogeneity parameter is typically included in the meta-analysis model
to allow for unexplained variation in the treatment difference between trials.
However, when there are only a small number of trials in the meta-analysis, the
estimate of heterogeneity calculated from them will be imprecise. In this case,
trials of treatments for similar interventions might provide useful information
on the likely amount of variation to expect in the current meta-analysis. Such
information can then be used to create a prior distribution for τ2.

Smith (1995) formed a prior distribution from method of moments estimates of
τ2, obtained from 30 meta-analyses in a variety of indications. Calculation of the
empirical cumulative distribution function and use of kernel density estimation
led to the choice of an IG(0.5, 0.005) distribution (Figure 11.1(b)). When applied
to a meta-analysis of 22 randomized trials, she found little difference in the
results based on this prior distribution and the non-informative prior distribution.
However, it is likely that the information contained in the 22 trials overwhelmed
that contained in the prior distribution. When there are only a small number of
trials to be included in the meta-analysis this will not be the case.

Higgins and Whitehead (1996) considered an approach based on combining
the data from previous meta-analyses, conducted on therapies used in similar
indications to that in the current meta-analysis, in one large Bayesian meta-
analysis of meta-analyses. In this approach, the treatment difference parameter
in the ith study of the jth meta-analysis was denoted by θij, where i = 1, . . . , rj

and j = 1, . . . , m, and prior distributions were specified as follows:

θij ∼ N(θj, τ2
j )

θj ∼ N(0, 103),

τ2
j ∼ IG(α, λ),

α ∼ Gamma(0.001, 0.001),

λ ∼ Gamma(0.001, 0.001).

The predictive distribution of a ‘new’ heterogeneity parameter, τ2
new, provides a

prior distribution for τ2 in the current meta-analysis. This predictive distribution
may be specified as follows:

τ2
new ∼ IG(α, λ).

As it will be necessary to approximate this predictive distribution by a parametric
distribution, an alternative simpler approach is to use, say, the median values of α
and λ from their posterior distributions. The prior distribution for τ2 would then
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be given by IG(α̂, λ̂). However, in cases in which the credibility intervals for α and
λ are wide, this approach is not recommended.

Higgins and Whitehead illustrated the approach using the Pagliaro et al. data
set described in Section 10.2.4. Their main focus was on the comparison between
beta-blockers and sclerotherapy. If the only data available are the results from
the beta-blocker and sclerotherapy treatments in the first two studies, then
there is very little information about τ2. To overcome this problem, Higgins
and Whitehead undertook a literature search of trials in gastroenterology. This
produced 18 sets of very similar types of study, all investigating the occurrence or
reoccurrence of gastrointestinal bleeding following treatment. A prior distribution
could be formulated for τ2 based on these 18 meta-analyses.

First, they calculated the method of moments estimates of τ2 from each of the
18 meta-analysis data sets. The closest-fitting inverse gamma distribution to the
empirical cumulative distribution function of these estimates was found to be
one with parameters α = 1.0 and λ = 0.2 (Figure 11.1(c)). As its parameters are
larger than those used by Smith, it is a more influential prior distribution.

Second, they calculated a prior distribution for τ2 by performing a Bayesian
meta-analysis of meta-analyses. The predictive distribution for τ2 was found
to have a posterior median of 0.42 and a 95% credibility interval (0.05, 7.1).
The kernel density estimate of this distribution is illustrated in Figure 11.5(a). A
close-fitting inverse gamma distribution was found to have parameters α = 1.0
and λ = 0.35 (Figure 11.5(b)), which agreed reasonably with those obtained
by the simpler first method. A repeat of the exercise, with the τ2

j assumed
to be equal across all studies, led to a very narrow predictive distribution for
τ2(Figure 11.5(c)). Indeed, half of the individual method of moments estimates
lie outside the 95% credibility interval. The random effects model for the τ2

j was
therefore felt to be more appropriate than the fixed effects model.

To see the effect of using an empirical prior distribution for τ2, two analyses
were performed based on the data from the sclerotherapy and beta-blocker
treatment groups from the first two studies. Using the approach of Section 11.6.2,
the first was an attempt to fit a Bayesian random effects model, in which an
IG(0.001, 0.001) distribution was used as the prior distribution for τ2. This did
not give a satisfactory convergent chain, even after many iterations, mainly
because of the lack of information regarding the heterogeneity parameter. The
analysis was repeated using an IG(1.0, 0.35) prior distribution for τ2, and in
this case convergence diagnostic tests were passed. The posterior mean (95%
credibility interval) for the log-odds ratio of bleeding on beta-blockers relative
to sclerotherapy was −0.74 (−2.61, 0.95). The posterior mean (95% credibility
interval) of the log-odds ratio from trials 1 and 2 was −1.28 (−2.85, −0.05) and
−0.21 (−1.08, 0.65), respectively.

With regard to the analysis of the complete data set from the 26 trials, the effect
of using an IG(1.0, 0.35) prior distribution for τ2 was less dramatic (Table 11.7).
This was to be expected as the data set itself provides a lot of information about
τ2. The effect has been to tighten the posterior distributions for all parameters,
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Figure 11.5 Kernel density estimates of posterior distributions following meta-analysis
of 18 meta-analysis data sets: (a) assuming random effects for heterogeneity parameters,
15 000 iterations of the Gibbs sampler following a burn-in of 1000; (b) a parametric
approximation to (a), IG(1.0, 0.35); (c) assuming equal heterogeneity parameter in all
meta-analyses, 15 000 iterations following a burn-in of 1000. Reproduced from Higgins
and Whitehead, 1996 (Figure 2) by permission of John Wiley & Sons, Ltd.

resulting in a 95% credibility interval for the comparison of sclerotherapy with
control which excludes zero.

In principle it should be possible to incorporate the information about τ2 from
previous meta-analyses within a frequentist meta-analysis. However, the lack of
a prescribed procedure and suitable software makes implementation difficult. As
the models become more complicated, the Bayesian approach offers advantages.
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Sequential Methods for
Meta-Analysis

12.1 INTRODUCTION

Sometimes meta-analyses are repeated following completion of further studies
addressing the same question. Indeed, this is encouraged within the Cochrane
Collaboration, to enable the information in the Cochrane Database of Systematic
Reviews to be kept up to date. The term ‘cumulative meta-analysis’ has been
used to define the technique of conducting a new meta-analysis every time the
results of a new trial become available. In this chapter the term will be used
more generally to include an updating based on additional data, whether it be
from one or more ongoing or completed studies. A ‘cumulative meta-analysis’
may also be performed retrospectively in order to determine the date at which
sufficient evidence was available to demonstrate a beneficial treatment effect.
Even though the latter process is retrospective, the same statistical issues arise as
for the prospective updating of a meta-analysis.

Typically, each meta-analysis in the course of this cumulative procedure is
conducted without any of the allowances for the issues of multiple testing and
biased estimation which have become an accepted part of the conduct of interim
analyses for an individual clinical trial. Chalmers and Lau (1993) question the
need to correct for multiple looks within a cumulative meta-analysis. One of the
reasons which they give is that the decision to stop is not being made by the
meta-analyst. However, the absence of a formal stopping rule does not remove
the multiple-looks problem. When there is no difference between two treatments,
a cumulative meta-analysis which continues to add studies will eventually show
a statistically significant treatment difference. Repeated significance tests, each
of which have a fixed significance level of 5%, will approach a cumulative level
of 100% as the number of trials gets very large. This point was also appreciated
by Pogue and Yusuf (1997), who proposed the use of sequential monitoring
procedures which allow for repeated analyses.

Cumulative meta-analyses are usually conducted in a reactive way, in that the
meta-analyst has no influence on the decision to undertake new studies. However,
in some situations it may be possible to conduct a cumulative meta-analysis in

285
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a proactive way, by prospectively determining and applying a suitable stopping
rule. This situation might arise within a pharmaceutical company, when it is
advantageous to obtain an answer as quickly as possible on one of the outcomes
measured, perhaps the primary efficacy variable. For example, in the evaluation
of a drug for relieving an unwanted effect resulting from chemotherapy given
to cancer patients, different studies may deal with patients having cancers at
different sites. However, all recruited patients would have the unwanted effect,
and the primary efficacy variable, which is the elimination of the unwanted effect,
is the same in all studies. Alternatively, the outcome of interest may be a safety
variable such as the occurrence of a serious side-effect. In such cases individual
fixed sample size studies may be designed for the primary efficacy variable, but
the safety variable would be analysed according to a sequential design with
stopping boundaries. Significant evidence demonstrating that the new treatment
was harmful could then lead to the stopping of all current studies. Another
scenario would be when a particular assessment is undertaken on a subset of
the patients, possibly because it is expensive or time-consuming, or because there
is a secondary question to answer which concerns only some of the patients.
Individual fixed sample size studies may be designed for the primary efficacy
variable. If the secondary variable is analysed sequentially then once a stopping
boundary is crossed, data collection on this variable can be stopped.

Section 12.2 considers the proactive cumulative meta-analysis, and discusses
the methodological aspects of implementing a formal stopping rule. Section 12.3
then considers the reactive cumulative meta-analysis, in which the decision to
stop is not governed completely by the evidence from the accumulating data. In
this case the meta-analyst may utilize a sequential design, but updating of the
meta-analysis is less clear-cut.

12.2 A PROACTIVE CUMULATIVE META-ANALYSIS

Suppose that a series of studies is to be conducted, following broadly similar
protocols, comparing a new treatment with a control treatment. A cumulative
meta-analysis is to be conducted on one chosen outcome variable. The choice of
the sequential design will depend on whether the outcome variable is a measure of
efficacy or safety and on the situations in which it is desirable to stop. The choice
of design is discussed in Section 12.2.1.

In a typical cumulative meta-analysis, an interim meta-analysis is undertaken
following completion of a further study or group of studies. However, it is not
necessary to wait until a study is completed before including it. It can be planned
to include all currently available data from all studies at each meta-analysis.
Although for administrative reasons it may be helpful to plan the interim meta-
analyses in advance, it is not mathematically necessary to specify the number and
timing of such analyses. Also, the analyses do not need to be conducted at regular
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intervals. The important point is that the timing of the analyses should not depend
on the apparent magnitude of the treatment difference as this will introduce bias.

If it is assumed that the measure of treatment difference is the same across all
studies, then the interim meta-analyses will be based on a fixed effects model. If
allowance is to be made for differences in the magnitude of the treatment difference
amongst studies, then the interim meta-analyses will be based on a random effects
model. The fixed and random effects approaches, as discussed by A. Whitehead
(1997), are presented in Sections 12.2.2 and 12.2.3 respectively, and illustrated
by an example in Section 12.2.4. One particular problem which arises for the
random effects model is the estimation of the heterogeneity parameter, τ2. This
issue is discussed in Section 12.2.5.

12.2.1 Choice of a sequential design

For a sequential design, as for a fixed sample size design, it is necessary to specify
the clinically important treatment difference, the power required to detect it and
the overall significance level. For an individual trial, the overall significance level
is frequently set at 5% (two-sided alternative), and the power at 80% or 90%.
This may be a suitable choice for some cumulative meta-analyses. However, if
the objective is to obtain a result which is as close to definitive as possible, then a
lower significance level (1% or 0.1%) and a higher power (95% or 97.5%) may be
desirable.

The next stage is to select an appropriate sequential design. As discussed
in Section 10.6, there are two main types of sequential procedure which are
implemented in practice. Here we consider the boundaries approach described
by J. Whitehead (1997), because it is based on the test statistics Z and V, which
have been introduced into the meta-analysis framework in Chapter 3. In the
boundaries approach, Z and V are plotted against one another until certain
stopping boundaries are crossed. Four types of sequential design are considered in
this section, and the scenarios in which each are appropriate are discussed. For
details of other designs the reader is referred to J. Whitehead (1997) and Jennison
and Turnbull (2000). The designs and examples presented in this chapter have
been implemented using the package PEST 4.

To aid the comparison between the different designs, they are illustrated for the
case in which the response is binary and there is to be a 5% significance level and
90% power to detect a change in the success rate from 50% to 70%, corresponding
to a log-odds ratio of 0.847. For binary data it is the log-odds ratio which is used
as the measure of treatment difference, θ, and the corresponding Z and V statistics
are those defined by formulae (3.3) and (3.4).

The triangular test (Figure 12.1) has been widely used for individual clinical
trials. It has the property that it will stop early if there is sufficient evidence to
declare that the new treatment is significantly better than the control treatment.
It will also stop early for futility, that is, when there is very little chance that
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Figure 12.1 The triangular test designed for detecting a log-odds ratio of 0.847 (70%
success rate on a new treatment versus 50% success rate on control treatment) with 90%
power using a global two-sided 5% significance level.

the new treatment will be shown to be better than control. There will not be a
continuation just to determine whether the new treatment is no different from the
control treatment or is significantly worse. The triangular test may be appropriate
for an efficacy variable, when interest lies in the superiority of the new treatment.

The restricted procedure (Figure 12.2) is designed to stop early only if one
treatment is substantially superior to the other. It will not stop early for futility:
if no treatment difference becomes apparent, then continuation will be to the
planned maximum size. The maximum sample size of the restricted procedure is
a little larger than the equivalent fixed sample size as a consequence of the early
stopping option. The choice of horizontal upper and lower stopping boundaries
leads to the O’Brien and Fleming design (O’Brien and Fleming, 1979). The
restricted procedure may be used for either efficacy or safety outcomes, and
is appropriate if the full sample is required for the study of the other measured
outcomes. If the design is to be used for a safety outcome measure, it is desirable that
the maximum sample size be large enough to ensure that the power requirement
of the primary efficacy measure is met.

The double triangular test (Figure 12.3) consists of combining a triangular test
with a reverse triangular test. By itself, the reverse triangular test has a high
power of detecting inferiority. In terms of the example, it has a 90% power to
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Figure 12.2 The restricted procedure designed for detecting a log-odds ratio of 0.847
(70% success rate on new treatment versus 50% success rate on control treatment) or
−0.847 (30% success rate on new treatment versus 50% success rate on control treatment)
with 90% power using a global two-sided 5% significance level.
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Figure 12.3 The double triangular test designed for detecting a log-odds ratio of 0.847
(70% success rate on new treatment versus 50% success rate on control treatment) or
−0.847 (30% success rate on new treatment versus 50% success rate on control treatment)
with 90% power using a global two-sided 5% significance level.
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detect a log-odds ratio of −0.847, which would correspond to a change in the
success rate from 50% to 30%. It will also stop early when there is very little
chance that the new treatment will be shown to be worse than control. When the
triangular test and the reverse triangular test are combined to create the double
triangular test, and the study continues until both component tests have stopped,
the design has high power to detect both superiority and inferiority. In contrast
to the restricted procedure, the double triangular test stops early for futility, that
is, when there is little chance of showing that the two treatments are different.
By choosing an appropriate power, it may be used for determining equivalence
(Whitehead, 1996). For example, suppose that equivalence may be claimed if the
two-sided 95% confidence interval for θ is contained in the interval (−θR, θR).
By setting a power of 97.5% to detect a treatment difference of θR, equivalence
may be claimed as soon as the sample path enters the middle wedge-shaped area
indicating no significant difference. This design, which is suitable for an efficacy
measure, is substantially more economic than the restricted procedure when θ

lies in the interval (−θR, θR). Only for values of θ well outside this interval is the
restricted procedure likely to lead to smaller sample sizes.

A design specifically intended for a safety outcome is the safety monitoring pro-
cedure described by Bolland and Whitehead (2000). This procedure (Figure 12.4)
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Figure 12.4 The safety monitoring procedure designed so that there is a 90% chance of
stopping at or before 270 patients have provided data if the log-odds ratio is −0.847 (70%
adverse event rate on new treatment versus 50% adverse event rate on control treatment),
and a 2.5% chance if the log-odds ratio is 0 (50% adverse event rate on each treatment).
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recommends stopping as soon as there is sufficient evidence that the new treat-
ment is worse than the control. If the new treatment is not worse than the control,
then it is desirable that recruitment should continue until the sample size is large
enough to ensure that the power requirement of the primary efficacy measure
is met. The safety monitoring procedure has an advantage over the restricted
procedure in that there is no maximum sample size at which the monitoring stops.
Instead, the properties of the safety procedure are described by the probability of
stopping at or before the data from n subjects have been included when the true
treatment difference is θ. In the specification of the design, attention is focused on
n = n∗, where n∗ is the sample size required for primary efficacy.

12.2.2 A fixed effects model

Suppose that there are a total of r studies to be conducted, each of which compares
the new treatment with the control treatment. Under the fixed effects model, it
is assumed that the treatment difference parameter takes the same value in each
study. Each time an interim meta-analysis is conducted, the Z and V statistics are
calculated for each study and combined according to the fixed effects approach of
Chapter 4. Studies with no available data do not contribute to the analysis: the Z
and V statistics are equal to zero.

Let the cumulative efficient score and Fisher’s information for the ith study,
i = 1, . . . , r, at the ath interim analysis be given by Zia and Via. Suppose that at the
ath inspection the first ha studies have started. The combined cumulative efficient
score and Fisher’s information for plotting on the sequential design are given by
Za and Va respectively, where

Za =
ha∑

i=1

Zia

Va =
ha∑

i=1

Via.

The estimate of θ from the ith study at the ath inspection, θ̂ia, is given by

θ̂ia = Zia

Via
.

The overall estimate of θ, at the ath inspection, θ̂a, is given by

θ̂a =
∑ha

i=1 θ̂iaVia∑ha
i=1 Via

= Za

Va
.
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12.2.3 A random effects model

For the random effects model it is assumed that the treatment difference parameters
from the r studies (θ1, . . . , θr) are a sample of independent observations from
N(θ, τ2). In a random effects meta-analysis based on the efficient score and
Fisher’s information statistics, the fixed effects Zi and Vi are simply replaced by
their random counterparts Z∗

i and V∗
i , where V∗

i = (V−1
i + τ̂2)−1 and Z∗

i = θ̂iV∗
i .

It is tempting to make the same substitution in the sequential setting, although
the mathematical correctness of this has not been established.

In the sequential setting, θ̂ia ∼ N(θ, V−1
ia + τ2) and the estimate of θ at the ath

inspection is given by θ̂∗
a , where

θ̂∗
a =

∑ha
i=1 θ̂iaV∗

ia∑ha
i=1 V∗

ia

,

V∗
ia = (V−1

ia + τ̂2
a )−1

and τ̂2
a is an estimate of τ2. Setting

Z∗
ia = θ̂iaV∗

ia,

Z∗
a =

ha∑
i=1

Z∗
ia,

V∗
a =

ha∑
i=1

V∗
ia,

then

θ̂∗
a = Z∗

a

V∗
a

and
Z∗

a ∼ N(θV∗
a , V∗

a ).

The heterogeneity parameter, τ2, may be estimated using either the method
of moments (see Section 4.3.3) or likelihood methods (see Section 4.3.8). If the
method of moments is used, then τ̂2

a is given by

τ̂2
a = Qa − (ha − 1)∑ha

i=1 Via −
(∑ha

i=1 V2
ia

) / ∑ha
i=1 Via

.
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Here, Qa is the homogeneity test statistic at the ath inspection given by

Qa =
ha∑

i=1

Via(θ̂ia − θ̂a)
2 =

ha∑
i=1

Z2
ia

Via
−

(∑ha
i=1 Zia

)2

∑ha
i=1 Via

.

If τ̂2
a � 0 then the estimate is set to 0 so that the fixed effects statistics are used.

In the random effects analysis, Z∗
a is plotted against V∗

a on the sequential design.
Notice that V∗

a will be smaller than Va when τ̂ > 0 and will decrease as τ̂ increases.
A. Whitehead (1997) showed in a simulation exercise that the random effects

meta-analysis model used with the triangular test achieves the specified error
probabilities with reasonable accuracy provided that the heterogeneity parameter
is relatively small. Ignoring the random effect when it is present and using a fixed
effects meta-analysis model instead leads to increased error probabilities.

12.2.4 Example: The triangular test for a primary efficacy
outcome

A. Whitehead (1997) presents a simulated example to illustrate the random
effects cumulative meta-analysis, and this is described briefly in this subsection.
The example concerns the use of the triangular test (Figure 12.1) for a primary
efficacy outcome. The power requirement was that defined in Section 12.2.1, that
is, a 90% power to detect a change in the success rate from 50% to 70%. For this
design, the maximum sample size under a fixed effects model is 380 subjects. The
equivalent fixed sample size would be 244. Ten parallel group trials, comparing
the new treatment with the control treatment, were each planned to recruit 50
patients. Therefore, each study had an 80% power to detect a change in the
success rate from 50% to 85%. The maximum sample size of 500 was chosen to
provide a high probability that a stopping boundary is crossed before all of the
subjects have completed.

The upper and lower boundaries of the triangular test are given by

Z = 5.823 + 0.2573V

and
Z = −5.823 + 0.7718V.

A random effects model was chosen to allow for some heterogeneity between
the trials. Four inspections of the data were planned to occur after approximately
every 125 completed subjects. To preserve the overall error rates, a correction for
discrete monitoring, referred to as the ‘Christmas tree correction’, was applied to
the boundaries. This leads to stopping if

Z∗
a � 5.823 + 0.2573 V∗

a − 0.583
√

V∗
a − V∗

a−1
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or if
Z∗

a � −5.823 + 0.7718 V∗
a + 0.583

√
V∗

a − V∗
a−1,

for a = 1, . . . , 4 and V∗
0 = 0.

Individual binary outcomes were simulated, and the data for the first interim
analysis are summarized in Table 12.1. At this analysis data are only available
from the first six studies. The log-odds ratio for the ith study, θi, is estimated by
Zi1/Vi1, and Z2

i1/Vi1 is the score statistic which in a fixed sample size analysis
would follow the chi-squared distribution with one degree of freedom if θi were
equal to 0. From Table 12.1 it can be seen that study 4 already shows a significant
effect (Z2

41/V41 = 4.750; p = 0.03), when sequential monitoring and multiplicity
are not allowed for. Studies 1, 2 and 5 are positive. Studies 3 and 6 show negative
effects, although study 6 has few patients.

The homogeneity test statistic, Q1, is equal to 7.125, which compared with the
chi-squared distribution with five degrees of freedom is not significant (p = 0.21).
The method of moments estimate, τ̂2

1, is equal to 0.417. The resulting statistics for
plotting on the sequential design are Z∗

1 = 3.758 and V∗
1 = 4.217 (Figure 12.5).

Using the Christmas tree correction, the upper and lower critical values for Z∗
1 are

5.71 and −1.371. As Z∗
1 lies between these, the trials all continue to the second

interim analysis.
The data from the second interim analysis are also shown in Table 12.1. Study 4

remains significantly positive. Study 6 remains negative. Now Q2 is equal to 9.932,
which compared with the chi-squared distribution with nine degrees of freedom
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Figure 12.5 Simulated example of a proactive meta-analysis, using the triangular test
from Figure 12.1.
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Table 12.1 Simulated example of a proactive cumulative meta-analysis, using the
triangular test for a primary efficacy outcome

First interim analysis

Trial New treatment Control Vi1 Zi1 Zi1/Vi1 Z2
i1/Vi1 V∗

i1 Z∗
i1

Success Failure Success Failure

1 13 2 9 5 1.373 1.621 1.180 1.913 0.873 1.031
2 8 5 5 7 1.622 1.240 0.764 0.948 0.968 0.740
3 8 4 9 3 1.293 −0.500 −0.387 0.193 0.840 −0.325
4 10 0 6 4 0.842 2.000 2.375 4.750 0.623 1.480
5 6 1 3 5 0.960 1.800 1.875 3.375 0.686 1.285
6 2 1 3 0 0.250 −0.500 −2.000 1.000 0.226 −0.453

Total 47 13 35 24 6.341 5.661 12.179 4.217 3.758

Second interim analysis

Trial New treatment Control Vi2 Zi2 Zi2/Vi2 Z2
i2/Vi2 V∗

i2 Z∗
i2

Success Failure Success Failure

1 21 3 16 7 2.010 2.106 1.048 2.207 1.703 1.785
2 10 6 6 10 2.065 2.000 0.969 1.938 1.742 1.688
3 15 5 14 5 1.907 0.128 0.067 0.009 1.629 0.110
4 19 0 13 0 1.473 3.410 2.316 7.897 1.301 3.013
5 11 3 8 6 1.583 1.500 0.947 1.421 1.387 1.314
6 8 3 9 1 0.848 −0.905 −1.067 0.965 0.788 −0.841
7 5 3 4 3 0.960 0.200 0.208 0.042 0.884 0.184
8 7 0 4 3 0.6635 1.500 2.364 3.545 0.600 1.419
9 4 0 4 1 0.247 0.444 1.800 0.800 0.242 0.435

10 3 0 2 1 0.250 0.500 2.000 1.000 0.245 0.489
Total 103 23 80 44 11.997 10.885 19.824 10.521 9.596

Reproduced from Whitehead, 1997 (Table IV) by permission of John Wiley & Sons, Ltd.

is not statistically significant (p = 0.36). The method of moments estimate, τ̂2
2,

is equal to 0.090. The resulting statistics for plotting on the sequential design
are Z∗

2 = 9.596 and V∗
2 = 10.521. The upper and lower critical values for Z∗

2 are
7.066 and 3.761 (Figure 12.5). As Z∗

2 is greater than the upper critical value,
there is sufficient evidence to declare that the new treatment is superior to the
control treatment.

In cases such as this where the outcome of interest is the primary efficacy
variable, it is envisaged that patient recruitment would stop once a stopping
boundary has been crossed. A final analysis conducted using PEST 4, allowing
for the previous interim analysis, gives a p-value of 0.005 (two-sided). A median
unbiased estimate of the log-odds ratio is 0.905, with 95% CI (0.289, 1.512). If it
is considered to be more likely that study 6 produced a random poor result than
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that the new treatment does not work for the type of patients in study 6, then the
overall positive result is an appropriate summary.

12.2.5 Estimation of the heterogeneity parameter

Whilst the methodology for conducting a fixed effects cumulative meta-analysis
has a solid foundation, that for conducting the random effects cumulative meta-
analysis is tentative. Methodological issues which still need to be addressed
are ones connected with the estimation of the heterogeneity parameter. Three
particular problems are described in this section.

First, if based only on a small subset of the trials, the parameter estimate of
τ2 will be unreliable. If practical, it may be better to postpone the first interim
analysis until the majority of the studies can provide patient data. Alternatively,
an empirical prior distribution for τ2 may be utilized, as discussed in Section 11.8.
At the first interim analysis, the mean of this prior distribution can be used in
the calculation of the Z and V statistics, and a posterior distribution for τ2 can be
determined. This posterior distribution can be used as the prior distribution for
the second interim analysis, and so on.

The second problem is that if the estimate of τ2 changes at each interim
analysis, it is possible for the sample path to go backwards. The interpretation
of such an event is that because of new evidence indicating larger heterogeneity
than previously believed, there is less information in the data about the treatment
difference than at the previous analysis. Higgins (1997) has suggested possible
ways of avoiding this problem, although none has yet been investigated. These
include adapting the parameter estimation of τ2 to avoid large changes, and
altering the boundaries so that they incorporate the current estimate. This
problem will be illustrated in the context of a reactive cumulative meta-analysis
in Section 12.3.1 (see Figure 12.9).

The third problem is that of bias in the estimation of τ2 at the final analysis.
If by chance τ̂2

a is smaller than the true parameter, then a stopping boundary is
more likely to be crossed. This is because Z∗

a and V∗
a will be larger than they would

be if calculated using the true parameter value. Therefore, at the point when a
boundary is crossed, τ̂2

a will on average be an underestimate. This means that
the estimate of treatment difference, even when corrected for interim inspections,
will on average be an overestimate. Possible solutions, which have not yet
been investigated include altering the boundaries and adapting the parameter
estimation of τ2 (Higgins, 1997).

12.3 A REACTIVE CUMULATIVE META-ANALYSIS

In a reactive cumulative meta-analysis, the meta-analyst usually has little or no
influence on the number and size of studies which are available for inclusion.
Instead, the decision to undertake a new study is likely to be made by a group
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of clinical investigators, using different criteria from those which might be used
for a formal stopping rule. Chalmers and Lau (1993) stress the importance of
conducting a meta-analysis before undertaking a new study, so that investigators
can evaluate the number of patients and data items required to answer the
clinical question. The availability of results from a cumulative meta-analysis
could influence their decision-making.

A reactive cumulative meta-analysis is more likely to be undertaken for a
new treatment with promising early results than for one which does not. Often,
if a new treatment does not show promising results in the initial studies, no
further studies are undertaken. As a consequence there never arises a need for a
cumulative meta-analysis. On the other hand, if the initial studies indicate some
useful clinical benefit, further studies will be initiated. There may then be an
interest in performing a cumulative meta-analysis. This introduces selection bias,
as discussed in Section 8.1. If these early results are included in the cumulative
meta-analysis, it is especially important to adjust for the multiple inspections of
the data in order to minimize the number of false positives.

In Section 12.3.1, an example of how a sequential design may be used for a
retrospective cumulative meta-analysis is discussed, together with the practical
aspects of its implementation. Alternative procedures which do not have a formal
stopping rule are discussed in Section 12.3.2.

12.3.1 Example: Endoscopic haemostasis for bleeding peptic
ulcers

Sacks et al. (1990) present the data from 23 trials comparing endoscopic
haemostasis with a control treatment in the treatment of bleeding peptic ulcers.
The outcome variable of interest is the occurrence of bleeding following treatment.
In this section, the measure of treatment difference is taken to be the log-odds ratio
of no bleeding (endoscopic haemostasis relative to control). Therefore, a positive
log-odds ratio indicates the superiority of endoscopic haemostasis. The Z and V
statistics (formulae (3.3) and (3.4)) are presented for each study in Table 12.2.
Studies are ordered by publication date, and the last column of the table shows the
study estimates of the log-odds ratio. The CI plot indicates heterogeneity between
the study estimates (Figure 12.6). Indeed, the test for heterogeneity based on all
23 studies is highly significant (p < 0.001).

This data set was also discussed in the context of a cumulative meta-analysis by
Chalmers and Lau (1993). They present the results of both a fixed and a random
effects cumulative meta-analysis, but with no allowance made for multiple looks.
Although they acknowledge that the p-values are not corrected for multiple looks,
they still base their conclusions on them. In this section a formal sequential
procedure is considered.

Suppose that it had been planned to conduct a cumulative meta-analysis,
with interim analyses after the results of each study had been published. The
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Table 12.2 Randomized trials of bleeding peptic ulcers: log-odds ratio of no bleeding
(endoscopic haemostasis relative to control)

Trial Haemostasis Control Vi Zi Zi/Vi

Bled Total Bled Total

1. Vallon 1980 20 68 23 68 7.35 1.50 0.20
2. Swain 1981 11 36 17 40 4.41 2.26 0.51
3. Papp 1982 1 16 13 16 1.97 6.00 3.05
4. Rutgeerts 1982 5 52 19 54 4.64 6.77 1.46
5. MacLeod 1983 6 21 8 24 2.40 0.53 0.22
6. Jensen 1984 2 7 7 9 0.97 1.94 2.00
7. Kernohan 1984 9 21 7 24 2.57 −1.53 −0.60
8. Goudie 1984 7 21 5 25 2.20 −1.52 −0.69
9. Freitas 1985 7 36 17 42 4.13 4.08 0.99

10. Swain 1986 7 69 27 68 6.39 10.12 1.58
11. O’Brien 1986 17 101 34 103 9.56 8.25 0.86
12. Krejs 1987 19 85 18 89 7.28 −0.93 −0.13
13. Brearley 1987 6 20 8 21 2.30 0.83 0.36
14. Moreto 1987 1 16 11 21 1.99 4.19 2.11
15. Laine 1987 0 10 12 14 1.46 5.00 3.43
16. Panes 1987 3 55 25 58 5.26 10.63 2.02
17. Chung 1987 0 34 34 34 4.25 17.00 4.00
18. Balanzo 1988 7 36 15 36 3.82 4.00 1.05
19. Fellerton 1989 0 20 5 23 1.10 2.33 2.12
20. Angerinas 1989 7 33 4 32 2.28 −1.42 −0.62
21. Rutgeerts 1989 10 40 12 20 3.10 4.67 1.51
22. Chiozzini 1989 4 34 5 19 1.72 1.77 1.03
23. Laine 1989 7 38 15 37 3.89 4.15 1.07

sequential design to be considered is the O’Brien and Fleming design (or restricted
procedure with boundary slope zero – Figure 12.7). The design has an overall
significance level of 1% (two-sided alternative) and a 90% power to detect an odds
ratio of 2 (log-odds ratio of 0.693). This design will allow early stopping only if
one treatment is substantially superior to the other. In practice, the design and
clinically relevant difference would need to be carefully thought out by a group of
experts.

First, consider a cumulative meta-analysis based on a fixed effects model. The
sample path is plotted (Figure 12.8) using the values of Za and Va, a = 1, . . . , 23,
from Table 12.3. It can be seen that the upper stopping boundary is crossed at
the fourth inspection, indicating that endoscopic haemostasis is better than the
control treatment. An analysis conducted using PEST 4, allowing for the previous
inspections, gives a p-value of 0.0001 (two-sided). A median unbiased estimate of
the log-odds ratio is 0.897, with 95% CI (0.438, 1.356).

However, to allow for possible heterogeneity between the studies, it would
be preferable to use the random effects model. This is also likely to be the
preferred choice in practice, because if the cumulative meta-analysis is planned
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Figure 12.6 Randomized trials of bleeding peptic ulcers. Estimates and 95% confidence
intervals of the log-odds ratio of no bleeding (endoscopic haemostasis versus control).
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Figure 12.7 The O’Brien and Fleming design for the bleeding peptic ulcer data set. The
design has a 90% power to detect a log-odds ratio of 0.693 (odds ratio of 2) using a global
two-sided 1% significance level.
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Table 12.3 Randomized trials of bleeding peptic ulcers: log-odds ratio of no bleeding
(endoscopic haemostasis relative to control). Cumulative Z and V statistics for both fixed
and random effects models

Trial Haemostasis Control Cumulative τ̂2
a Cumulative

(fixed effects) (random effects)

Bled Total Bled Total Va Za V∗
a Z∗

a

1 20 68 23 68 7.35 1.50 – 7.35 1.50
2 11 36 17 40 11.76 3.76 0.00 11.76 3.76
3 1 16 13 16 13.73 9.76 1.34 1.86 2.12
4 5 52 19 54 18.37 16.54 0.91 3.44 4.11
5 6 21 8 24 20.77 17.07 0.75 4.86 4.90
6 2 7 7 9 21.74 19.01 0.71 5.60 6.20
7 9 21 7 24 24.30 17.47 0.81 5.94 5.21
8 7 21 5 25 26.50 15.95 0.86 6.46 4.49
9 7 36 17 42 30.63 20.03 0.71 8.47 6.14

10 7 69 27 68 37.02 30.15 0.68 9.83 8.14
11 17 101 34 103 46.59 38.40 0.52 13.48 11.17
12 19 85 18 89 53.87 37.48 0.54 14.59 10.68
13 6 20 8 21 56.17 38.31 0.50 16.47 11.63
14 1 16 11 21 58.16 42.50 0.53 16.70 13.17
15 0 10 12 14 59.62 47.50 0.69 14.70 13.60
16 3 55 25 58 64.88 58.13 0.73 15.16 15.26
17 0 34 34 34 69.13 75.13 1.27 10.62 12.90
18 7 36 15 36 72.95 79.13 1.18 11.95 14.37
19 0 20 5 23 74.05 81.45 1.17 12.57 15.56
20 7 33 4 32 76.33 80.04 1.20 12.86 14.80
21 10 40 12 20 79.43 84.70 1.15 14.03 16.37
22 4 34 5 19 81.15 86.48 1.11 15.02 17.43
23 7 38 15 37 85.03 90.62 1.04 16.53 19.08

prospectively, the amount of heterogeneity will be unknown at the start. The
sample path is now plotted using the values Z∗

a and V∗
a from Table 12.3. In the

calculation of these values, the heterogeneity parameter, τ2, has been estimated
using the method of moments. Because of the amount of heterogeneity present,
the values of V∗

a are generally much smaller than the corresponding values of Va.
When using the random effects model, a decision has to be taken regarding the
timing of the first interim analysis. In the absence of prior information on τ2, it is
perhaps reasonable to delay this until at least three trials have been published.

Figure 12.9 shows the sample path based on the random effects model The first
point represents the results from the first three trials. Thereafter, the sample path
is plotted after each additional study. It can be seen that information increases
with each additional study until trial 15 is included. The values of V∗

14 and V∗
15

are 16.70 and 14.70 respectively, that is, the sample path goes backwards. This
is an illustration of the problem mentioned in Section 12.2.5. In this situation,
PEST 4 automatically replaces the value of V by the maximum value recorded so
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Figure 12.8 Randomized trials of bleeding peptic ulcers. Fixed effects cumulative meta-
analysis using the Za and Va values from Table 12.3.
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Figure 12.9 Randomized trials of bleeding peptic ulcers. Random effects cumulative
meta-analysis using the Z∗
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a values from Table 12.3.
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far, so that the value at 15 trials is set to 16.70. The rationale behind this decision
is that for a fixed effects analysis, for which the package is designed, a reduction
in V from one interim analysis to the next is very rare. If it does happen, the
reduction in V will tend to be small. In that context, the approximation adopted
by PEST 4 is likely to be a reasonable one. In the present setting it is not clear
that this is so. Neither is it clear that the calculated value of 14.70 is a valid
alternative.

With this particular data set, it can be seen that the amount of information
never increases beyond 16.70. When all values of V∗

a for a = 15, . . . , 21 are
replaced by 16.70, the upper stopping boundary is crossed after 21 trials. At
this point analysis can be conducted using PEST 4, allowing for previous interim
analyses, but because the sample path has gone backwards its validity will be
uncertain. For comparative purposes the results from three approaches are shown
in Table 12.4. The first row shows the results based on final values of Z and V given
by 16.37 and 16.70, respectively. As it is now difficult to allow for increments in
V between interim analyses, a continuous monitoring approximation is specified
by setting the penultimate value of V to be very close to the final value of 16.70,
such as 16.69. This gives a median unbiased estimate of the log-odds ratio of 0.92
with CI (0.44, 1.40). The second row shows the results based on final values of
Z and V given by 16.37 and 14.03, respectively. That is, the calculated value
V∗

21 is used. Continuous monitoring is again specified by setting the penultimate
value of V to be smaller but very close to the final value. As expected, this gives
a larger estimate of the log-odds ratio of 1.10, with a CI which is also shifted
upwards. Finally, a fixed sample size analysis, which does not adjust for the interim
analyses at all, is performed, based on the values of Z and V given by 16.37 and
14.03, respectively. This analysis is based on the score statistics Z and V and the
approximate N(θV, V) distribution for Z. Because no adjustment is being made
for the interim analyses, this method produces the largest estimate of the log-odds
ratio at 1.17. The three approaches have produced estimates which do not differ
markedly, and there appears to be strong evidence that endoscopic haemostasis

Table 12.4 Random effects cumulative meta-analysis of the randomized trials of bleeding
peptic ulcers: estimates of the log-odds ratio of no bleeding (endoscopic haemostasis relative
to control) following the crossing of a stopping boundary

Median unbiased
estimate

95% CI p-value

Using the maximum value of V and
assuming continuous monitoring

0.92 (0.44, 1.40) 0.000 2

Using the actual final value of V and
assuming continuous monitoring

1.10 (0.58, 1.63) 0.000 04

Using the actual final value of V and
performing a fixed sample size
analysis

1.17 (0.64, 1.69) 0.000 01
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reduces the odds of bleeding for patients with a bleeding peptic ulcer compared
with the control treatment.

12.3.2 Alternative approaches to a formal stopping rule

For the sequential designs which have been presented so far, it has been assumed
that once a stopping boundary has been crossed data accrual ends. However, in a
reactive cumulative meta-analysis, the meta-analyst may specify a stopping rule,
but additional studies may be undertaken after a stopping boundary has been
crossed. A sequential procedure which accounts for the multiple looks but which
does not involve stopping boundaries would be attractive.

Repeated confidence intervals, developed by Jennison and Turnbull (1989), are
a sequence of intervals (θLa, θUa), with the property that

P{θ ∈ (θLa, θUa) for all a = 1, 2, . . .} = 1 − α.

At the ath interim analysis, the interval (θLa, θUa) is calculated from the available
data, adjusting for the multiple looks. Each of these intervals will be wider than
the 100(1 − α)% fixed sample size CI. For this procedure it is necessary to specify
the maximum information, Vmax. Alternatively, the number and timings of the
interim analyses can be specified.

Repeated confidence intervals are closely related to sequential testing proce-
dures. For example, if �1, �2, . . . and u1, u2, . . . are the sequences of lower and
upper stopping limits for the restricted procedure, then

θLa = Za − ua

Va

and
θUa = Za − �a

Va

for a = 1, 2, . . ., form a 100(1 − α)% confidence sequence for θ. Crossing the
upper or lower boundary of the restricted procedure is then equivalent to the
current repeated confidence interval excluding zero.

Repeated confidence intervals can be reported following each interim analysis.
Early stopping is not a formal part of their formulation. Their defining property
holds provided that data are accrued until V = Vmax. If the cumulative meta-
analysis is stopped before this point, the intervals will be conservative. If the
cumulative meta-analysis continues beyond this point, the repeated confidence
interval calculated at Vmax is the last valid member of the sequence.

The confidence sequence, an antecedent of repeated confidence intervals,
introduced by Robbins (1970), allows the number of interim analyses to be left
open. A (1 − α)-level confidence sequence is a continuous sequence of intervals
(θL(V), θU(V)), with the property that

P{θ ∈ (θL(V), θU(V)) for all V � 0} = 1 − α.
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However, because the sequence contains the true value of θ with probability 1 − α

for all values of V from zero to infinity, these intervals tend to be wider than the
repeated confidence intervals.

Within a Bayesian framework, a cumulative meta-analysis may be undertaken
without the concern about repeated significance tests. Unlike the frequentist
confidence interval, the Bayesian credibility interval at any interim analysis
does not depend on the sampling scheme used to obtain the data. With each
interim analysis the Bayesian meta-analyst would update his/her beliefs about
the treatment difference. The posterior distribution of the model parameters from
the first interim analysis would become the prior distribution for the second
interim analysis and so on. If between-trial heterogeneity increases during the
process, the credibility interval may become wider, but this causes no problem.

Bayesian stopping rules for individual clinical trials have been proposed by
various authors (see, for example, Berry, 1985; Freedman and Spiegelhalter,
1989). The following rules provide a simple example: stop and recommend the
new treatment if

P(θ > θA|data) > 1 − δ;

stop and reject the new treatment if

P(θ < θB|data) > 1 − ε.

If θA and θB were both zero and δ and ε were both 0.025, then stopping would
occur when the 95% credibility interval excluded zero.

As the sequential design does not affect the Bayesian inference, the credibility
interval at any interim analysis is not corrected for multiple looks. However,
Bayesian monitoring procedures can have very poor frequentist properties, as
discussed by Jennison and Turnbull (2000). In particular, the overall significance
level is not controlled and can be greatly inflated. Spiegelhalter et al. (1994)
consider the use of ‘pragmatic Bayes’ prior distributions in order to control the
frequentist properties of a Bayesian monitoring system.

In conclusion, the methodology for conducting a reactive cumulative meta-
analysis is still in its infancy. None of the methods which have been discussed yet
provides an ideal solution, and further research is needed in this area.



Appendix: Methods
of Estimation and

Hypothesis Testing

A.1 INTRODUCTION

This appendix gives a summary of the main methods of estimation and hypothesis
testing which are used in individual trials, focusing primarily on those which
can be extended to the meta-analysis of all of the trials when individual patient
data are available. The model for a single trial and the model for a fixed effects
meta-analysis based on individual patient data are both examples of fixed effects
models. With the inclusion of random effects, the meta-analysis model becomes a
mixed model.

The first part of the appendix deals with fixed effects models. In Section A.2
fixed effects models for normally distributed data are considered within the
framework of a general linear model. Parameter estimates are obtained using the
method of least squares. The extension to a weighted least-squares procedure is
described in Section A.3, as this procedure can be utilized for the combination
of study estimates of a treatment difference. For other data types, maximum
likelihood (ML) estimation can be used. A general description of iterative ML
estimation is given in Section A.4. An approach which is related to, but simpler
than, the ML approach is that based on efficient score and Fisher’s information
statistics. This simpler approach has been widely used for the calculation of study
estimates of a treatment difference prior to their combination in a meta-analysis.
The relationship between the two approaches is presented in Section A.5 in the
context of an individual trial. In Section A.6 the fixed effects models for binary
data and interval-censored survival data are considered within the framework of
a generalized linear model, and it is shown that ML estimates can be obtained via
an iteratively weighted least-squares procedure.

The second part of the appendix deals with mixed models. For normally dis-
tributed data the meta-analysis models containing random effects are considered
within the framework of a general linear mixed model. Parameter estimates of
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both the fixed effect parameters and the variance components can be obtained
using methods based on ML or residual (restricted) maximum likelihood (REML).
These approaches are described in Section A.7. For other data types it is traditional
to assume that the random effects have a multivariate normal distribution. A
joint marginal distribution for the observations can be obtained by integrating
the likelihood function over the variance components. A full ML analysis based
on the joint marginal distribution requires numerical integration techniques for
calculation of the log-likelihood, efficient score and information matrix. Because of
the computational complexity, this approach is not considered further here. How-
ever, approximate methods based on either a marginal quasi-likelihood approach
or a penalized quasi-likelihood approach are available in some of the mainstream
packages. In Section A.8 the method of iterative generalized least squares, as
proposed by Goldstein (1986) and used in the MLn software, is described in the
context of normally distributed data. Its extension to other data types is considered
in Section A.9.

A.2 THE METHOD OF LEAST SQUARES

The general linear model is the basis of many of the most frequently used statistical
techniques, including simple linear regression and multiple regression analysis,
analysis of variance and analysis of covariance. The model takes the general form

y = Xβ + ε,

where y is the vector of observations of length n, X is the n × q matrix of
explanatory variables associated with the fixed effects, β is the vector of fixed
effect parameters of length q, and ε is a vector of errors of length n. In this and
other models presented in this appendix, the dummy covariates associated with
the intercept terms are included in the X matrix and their parameters in the β

vector. The error terms are assumed to be realizations of independent normally
distributed random variables with expected value 0 and variance σ2. If Y is the
vector of random variables associated with y, then Y has a multivariate normal
distribution with expected value Xβ and variance � = σ2In, where In is the n × n
identity matrix.

The least-squares estimates β̂ of the parameters β are those which minimize the
residual sum of squares

n∑
i=1


yi −

q∑
j=1

β̂jxij




2

.

Written in matrix notation, the residual sum of squares is given by

(y − Xβ̂)′(y − Xβ̂),
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and the least squares estimates of β by

β̂ = (X′X)−1X′y, (A.1)

with variance (dispersion) matrix

D(β̂) = σ2(X′X)−1. (A.2)

An unbiased estimate of the variance component σ2 is given by s2, where

s2 = (n − q)−1(y − Xβ̂)′(y − Xβ̂).

The estimate s2 is called the residual mean square. The degrees of freedom
associated with estimating σ2 are n − q. The variance matrix of the fixed effect
parameters is calculated by substituting s2 for σ2 in equation (A.2). The standard
errors of the parameter estimates can be obtained as the square roots of the
diagonal elements of s2(X′X)−1.

Models are compared on the basis of the residual sum of squares. Suppose that
a model with q parameters is to be compared with a model which includes these q
parameters and an additional p parameters. Let RSS(1) and RSS(2) be the residual
sums of squares on fitting the two models, which have n − q and n − q − p degrees
of freedom, respectively. Then under the null hypothesis that all of the additional
p parameters are equal to 0,

{RSS(1) − RSS(2)}/p
RSS(2)/(n − p − q)

follows an F distribution with p and n − q − p degrees of freedom.
Confidence intervals for single parameters or a linear combination of parameters

from a model with n − q degrees of freedom associated with the residual sum of
squares can be calculated using the t distribution with n − q degrees of freedom.
If the linear combination of parameters given by A′β can be estimated from the
model, then

D(A′β̂) = σ2A′(X′X)−1A

and the two-sided 100(1 − α)% confidence interval for A′β is given by

A′β̂ ± tα/2

√
D(A′β̂),

where tα/2 is the upper (100α/2)th percentage point of the t distribution with
n − q degrees of freedom. The estimated variance s2 is substituted for σ2.

Further details of the methodology in this section can be found in Searle (1971).
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A.3 THE METHOD OF WEIGHTED LEAST SQUARES

If instead of a common variance σ2, the error terms εi, i = 1, . . . , n, have a
variance of the form σ2/wi, where wi is known, then the method of weighted least
squares can be used. In this case the quantity to be minimized is the weighted
residual sum of squares,

n∑
i=1

wi


yi −

q∑
j=1

β̂jxij




2

.

The weighted least-squares estimates β̂ of β are given by

β̂ = (X′WX)−1X′Wy,

with variance
D(β̂) = σ2(X′WX)−1, (A.3)

where W is a diagonal matrix with diagonal elements wi.
An unbiased estimate of the variance component σ2 is given by the residual

mean square s2, where

s2 = (n − q)−1(y − Xβ̂)′W(y − Xβ̂).

The degrees of freedom associated with estimating σ2 are n − q. The variance
matrix of the fixed effect parameters is calculated by substituting s2 for σ2 in (A.3).
The standard errors of the parameter estimates can be obtained as the square
roots of the diagonal elements of s2 (X′WX)−1. Standard tests of significance and
methods for calculating confidence intervals as described in the previous section
can be used.

A.4 ITERATIVE MAXIMUM LIKELIHOOD ESTIMATION

In the context of this section β is taken as the vector of fixed effect parameters
associated with the explanatory variables and intercept terms, and is of length
q. However, the results presented here are valid for any vector of parameters,
which might include nuisance parameters such as σ2 in the case of normally
distributed data. The vector of observations is denoted by y and is of length n.
The likelihood function will be denoted by L(β; y) and the log-likelihood function
by �(β) ≡ log L(β; y). Let �β(β) and �ββ(β) denote respectively the first and second
derivatives of �(β) with respect to β, so that �β(β) is a vector of length q with
ith component ∂�(β) / ∂βi, and �ββ(β) is a q × q matrix with (i, j)th element
∂2�(β) / ∂βi∂βj. The vector comprising the q derivatives of the log-likelihood
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function with respect to β1, . . . , βq is known as the efficient score. The matrix �ββ(β)

containing the observed second derivatives is known as the Hessian matrix. The
matrix −�ββ(β) is known as the observed Fisher’s information matrix.

Let β̂ be the ML estimate of β. Using a Taylor series to expand �β(β̂) about �β(β
∗),

where β∗ is close to β̂, it can be seen that

�β(β̂) ≈ �β(β
∗) + �ββ(β

∗)(β̂ − β∗). (A.4)

The ML estimates of the βs must satisfy the equations

∂�(β)

∂βi

∣∣∣∣
β̂

= 0,

for i = 1, . . . , q, so that �β(β̂) = 0. It follows from (A.4) that

β̂ ≈ β∗ − {�ββ(β
∗)}−1�β(β

∗).

The Newton–Raphson procedure utilizes this approximation in an iterative
scheme for calculating the ML estimate of the βs. In this scheme the estimate of β

at the (t + 1)th cycle of the iteration is given by

β̂t+1 = β̂t −
{
�ββ

(
β̂t

)}−1
�β(β̂t)

for t = 0, 1 . . ., where β̂0 is a vector of initial estimates of β. As t → ∞, β̂t → β̂,
the ML estimate of β.

The variance of β̂ is given by

D(β̂) = −
{
�ββ

(
β̂
)}−1

.

The standard errors of the parameter estimates can be obtained as the square
roots of the diagonal elements of −{�ββ(β̂)}−1.

An alternative procedure is Fisher’s method of scoring, in which the expected
Fisher’s information matrix, I(β), whose (i, j)th element is −E{∂2�(β)/∂βi∂βj},
is used instead of the observed Fisher’s information matrix. In this scheme the
estimate of β at the (t + 1)th cycle of the iteration is given by

β̂t+1 = β̂t +
{

I
(
β̂t

)}−1
�β(β̂t). (A.5)

A corresponding alternative estimate of the variance of β̂ is given by

D(β̂) =
{

I
(
β̂
)}−1

, (A.6)
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and the standard errors of the parameter estimates can be obtained as the square
roots of the diagonal elements of {I(β̂)}−1.

Models are compared by means of the likelihood ratio test statistic. Suppose
that a model with q parameters β1, . . . , βq is to be compared with a model which
includes these q parameters and an additional p parameters, that is, it contains the
parameters β1, . . . , βq, βq+1, . . . , βq+p. Let β̂(q) denote the vector of ML estimates
for the model with the q parameters β1, . . . , βq, and β̂(q+p) the vector of ML
estimates for the model with all q + p parameters. The likelihood ratio test of the
null hypothesis that all of the additional p parameters are equal to 0 is based on
the statistic

−2
{
�
(
β̂(q)

)
− �

(
β̂(q+p)

)}
.

For large samples this likelihood ratio test statistic follows the chi-squared distri-
bution with p degrees of freedom under the null hypothesis.

The score test (Rao, 1948) and the Wald test (Wald, 1943) are approximations
to the likelihood ratio test. The score test statistic is given by

[�β(β̂(q))]′[D(β̂(q))][�β(β̂(q))].

The Wald test statistic is given by

[β̂(q+p)]′[D(β̂(q+p))]−1[β̂(q+p)].

Both of these test statistics can be calculated using either the observed or expected
Fisher’s information matrix. Under the null hypothesis they have an asymptotic
chi-squared distribution with p degrees of freedom.

Confidence intervals for single parameters or a linear combination of parameters
from a model can be calculated based on the asymptotic normal distribution of
the ML estimates. If the linear combination of parameters given by A′β can be
estimated from the model, then

D(A′β̂) = A′{D(β̂)}A,

and the two-sided 100(1 − α)% confidence interval for A′β is given by

A′β̂ ± uα/2

√
D(A′β̂),

where uα/2 is the upper (100α/2)th percentage point of the standard normal
distribution.

Further details of ML estimation can be found in Azzalini (1996), Lindsey
(1996) and Cox and Hinkley (1974).
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A.5 LIKELIHOOD, EFFICIENT SCORE AND FISHER’S
INFORMATION

This section concerns the estimation of the parameter measuring treatment
difference, θ, from an individual study. Suppose that the individual patient data
collected from one study are represented by y. The model being used to describe
the behaviour of y will be known apart from the values of a certain number of
parameters, one of these being the scalar parameter of interest θ and the others
forming a vector φ of length b of nuisance parameters. So the vector of fixed effect
parameters, β, from the previous section is partitioned into two components θ and
φ. The likelihood of θ and φ based on the data y will be known. The likelihood will
be denoted by L(θ, φ; y) and the log-likelihood by �(θ, φ) ≡ log L(θ, φ; y).

When nuisance parameters have to be estimated, it is often useful to work with
the profile log-likelihood of θ, in which φ is replaced by the ML estimate of φ

for a given true value of θ. In particular, efficient score and Fisher’s information
statistics can be calculated from the profile log-likelihood.

The likelihood ratio test of the null hypothesis that θ = 0 is based on the statistic

−2{�(0, φ̂0) − �(θ̂, φ̂)},

where θ̂ and φ̂are ML estimates, and φ̂0 is the ML estimate of φ under the constraint
that θ = 0. For large sample sizes, it follows the chi-squared distribution with one
degree of freedom under the null hypothesis.

Let �θ(θ, φ) and �θθ(θ, φ) denote respectively the first and second derivatives
of �(θ, φ) with respect to θ, and let �φ(θ, φ) and �φφ(θ, φ) denote respectively
the first and second derivatives of �(θ, φ) with respect to φ; �θφ(θ, φ) will denote
the mixed derivative. As φ is a vector with components φ1, . . . , φb, �φ(θ, φ) will
be a vector with ith component ∂�(θ, φ)/∂φi, �φφ(θ, φ) will be a matrix with
(i, j)th element ∂2�(θ, φ)/∂φi∂φj and �θφ(θ, φ) will be a vector with ith component
∂2�(θ, φ)/∂θ∂φi.

Asymptotically,(
θ̂

φ̂

)
∼ N

((
θ

φ

)
,

(
iθθ(θ, φ) iθφ(θ, φ)

iθφ(θ, φ) iφφ(θ, φ)

)−1
)

,

where iθ θ(θ, φ) = −E(�θ θ(θ, φ)), etc. and the matrix of i-values is the expected
Fisher’s information matrix. Also, asymptotically

θ̂ ∼ N(θ, iθθ(θ, φ)),

where
{iθθ(θ, φ)}−1 = iθθ(θ, φ) − {iθφ(θ, φ)}′{iφφ(θ, φ)}−1iθφ(θ, φ).

The variance of θ̂ is estimated by iθθ(θ̂, φ̂).
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An alternative approximation to the variance of θ̂ can be based on the observed
second derivatives and is given by {−�θθ(θ, φ)}, where

{�θθ(θ, φ)}−1 = �θθ(θ, φ) − {�θφ(θ, φ)}′{�φφ(θ, φ)}−1�θφ(θ, φ).

The variance estimate is {−�θθ(θ̂, φ̂)}.
The score test is based on two statistics Z and V, where Z is the efficient score for

θ evaluated under the null hypothesis that θ = 0 and V is the observed Fisher’s
information also evaluated at θ = 0:

Z = �θ(0, φ̂0)

V =
(
−�θθ(0, φ̂0)

)−1
.

When θ is small, the approximate distributional result Z ∼ N(θV, V) can be used.
The ratio Z/V is an approximate ML estimate for θ. The estimate Z/V is sometimes
referred to as the ‘one-step estimate’ because it is obtained on the first step of a
Newton–Raphson procedure to maximize the profile log-likelihood function when
the starting value for θ is 0. Although this estimate is asymptotically unbiased
under the null hypothesis that θ = 0, it becomes increasingly biased the further
that θ moves from 0. An estimate of the variance of θ̂ is given by 1/V. The score
test statistic Z2/V is an approximate likelihood ratio test statistic. For further
details, see Chapter 3 of J. Whitehead (1997). The approach based on the Z and
V statistics has the advantage that it does not require iterative calculations to
implement.

In certain circumstances it is preferable to use a marginal or conditional
likelihood instead of the full likelihood. Often this will remove dependence on
nuisance parameters, so their estimation becomes unnecessary. In the case of
a proportional hazards model for survival data it is the partial likelihood (Cox,
1975) that is generally used.

A.6 ITERATIVELY WEIGHTED LEAST SQUARES

The generalized linear model, introduced by Nelder and Wedderburn (1972),
was originally developed for distributions of the exponential family, such as the
binomial distribution. In a generalized linear model, y, the vector of observations,
is assumed to be a realization of a vector of random variables, Y, independently
distributed with the vector of expected values given by µ, and diagonal variance
matrix �. The diagonal element of �, λi, is a function of the expected value µi,
i = 1, . . . , n. The dependence of µ on explanatory variables is modelled via a
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transformation g(µ). If η is the linear predictor based on the explanatory variables
and any intercept terms, so that

η = Xβ,

then η = g(µ). The transformation g(µ) is known as the link function because it
links the systematic and random components of the model.

It can be shown that for a generalized linear model Fisher’s method of scoring
is equivalent to using an iteratively weighted least-squares procedure. In this
weighted regression the dependent variable at the (t + 1)th iteration is y∗

t , a
vector of length n with ith component η̂it + (yi − µ̂it)g′(µ̂it), where

g′(µ̂it) = ∂ηi

∂µi
,

with

µi = µ̂it, µ̂it = g−1(η̂it), η̂it =
q∑

j=1

β̂jtxij.

The weight matrix is denoted by Wt, an n × n diagonal matrix with diagonal
elements wit, where

wit =
[
λit

{
g′ (µ̂it

)}2
]−1

and λit is the variance of yi, a function of µi, with µi = µ̂it.
The estimate of β at the (t + 1)th iteration is

β̂t+1 = (X′WtX)−1X′Wty∗
t , (A.7)

which is identical to that obtained from (A.5). As t → ∞, β̂t → β̂, the ML estimate
of β. The variance of β̂ is given by

D(β̂) = (X′WX)−1. (A.8)

which is identical to that obtained from (A.6). The standard errors of the
parameter estimates can be obtained as the square roots of the diagonal elements
of (X′WX)−1.

It can be seen that in the case of the general linear model based on normally
distributed data, equation (A.7) reduces to (A.1) and equation (A.8) reduces to
(A.2), as in this case ηi = µi, ∂ηi/∂µi = 1, and λi = σ2.

Further details about generalized linear models can be found in McCullagh and
Nelder (1989).
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A.7 MAXIMUM LIKELIHOOD METHODS FOR GENERAL
LINEAR MIXED MODELS

The general linear mixed model contains both fixed and random effects and is
an extension of the general linear model presented in Section A.2. The general
linear mixed model assumes that the random effects have a multivariate normal
distribution, whose variance components need to be estimated from the data. It
has the equation

y = Xβ + Mν + ε,

where M is the n × p matrix of constants associated with the random effects, and
ν is the vector of random effects of length p.

Let the variance matrix of the random variables associated with the vector
of errors, ε, be denoted by R, and the one associated with the ν terms by G.
Assuming that the random effects, ν, and the error terms, ε, are uncorrelated,
then Y, the vector of random variables associated with y, has a multivariate
normal distribution with expected value Xβ and variance � = MGM′ + R. Let �

be the vector of length h containing the variance components which appear in
the G and R matrices. In model (5.24), � would be a vector with two components,
namely σ2 and τ2.

If the variance matrix � is known, then the estimates β̂ of β can be obtained
using generalized least squares, and are given by

β̂ = (X′�−1X)−1X′�−1y,

with variance
D(β̂) = (X′�−1X)−1.

If � contains variance components which need to be estimated, then iterative
generalized least squares is required. In this scheme the estimate of β at the
(t + 1)th cycle of the iteration is given by

β̂t+1 = (X′�̂−1
t X)−1X′�̂−1

t y, (A.9)

for t = 0, 1, . . ., where �̂0 contains the initial estimates of �.
Maximum likelihood estimates of � can then be calculated by maximizing

the log-likelihood in which the estimates β̂t+1 are inserted in place of β in the
log-likelihood function. The form of this log-likelihood function is

�(�; y, β̂t+1) = constant − 1
2 log |�| − 1

2 (y − Xβ̂t+1)′�−1(y − Xβ̂t+1). (A.10)

However, this procedure takes no account of the information used in estimating
the fixed effects and so leads to downwardly biased estimates of �. Residual
(restricted) maximum likelihood takes account of this loss of information by
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modifying the likelihood equation to exclude the contribution from fixed effects.
The REML log-likelihood function is based on the residual terms (y − Xβ̂t+1)
instead of the observations y, and is given by

�R(�; y − Xβ̂t+1) = constant − 1
2 log |�| − 1

2 (y − Xβ̂t+1)
′�−1(y − Xβ̂t+1)

+ 1
2 log

∣∣X′�−1X
∣∣−1

. (A.11)

Estimation using REML proceeds in an iterative manner as for the ML procedure
but with equation (A.11) replacing equation (A.10). The Newton–Raphson
procedure as described in Section A.4 can be utilized to obtain either ML or REML
estimates for the variance components. The standard errors of these estimates can
be obtained as the square roots of the diagonal elements of the observed Fisher’s
information matrix.

When there is only one variance component, that is � = σ2, as defined for the
general linear model, the procedure using REML is identical to the method of least
squares described in Section A.2. Therefore, s2 is the REML estimator.

The variance of β̂ is given by

D(β̂) = (X′�̂−1X)−1. (A.12)

The standard errors of the fixed effect parameter estimates can be obtained as the
square roots of the diagonal elements of (X′�̂−1X)−1.

Random effects are estimated using shrinkage estimators. The estimates of ν

are given by
ν̂ = ĜM′�̂−1(y − Xβ̂).

The variance matrix for ν̂ is given by

D(ν̂) = ĜM′�̂−1MĜ − ĜM′�̂−1X(X′�̂−1X)−1X′�̂−1MĜ.

If � is known, β̂ is the best linear unbiased estimator of β (see, for example
Robinson, 1991). In addition, substitution of β̂ and ν̂ into a linear combination
of these parameters would provide the best linear unbiased predictor. In practice,
the components of � will usually have to be estimated.

When the variance components are estimated, the variance and covariance
terms for β̂ and ν̂ tend to underestimate the true sampling variability for β̂ and ν̂

because no account is made for the uncertainty in estimating � .
Likelihood ratio tests can be performed for the variance components, based

on either ML or REML methods. However, the results should be interpreted with
caution when estimates of the variance components are close to zero. Although
valid for large samples, the Wald test can be unreliable due to the skewed and
bounded nature of the sampling distribution for a variance component (Brown
and Kempton, 1994).
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The Wald test statistic for the fixed effect parameters based on the variance
matrix given in (A.12) asymptotically has a chi-squared distribution under the
null hypothesis when the variance components are known. However, when
the variance components are estimated, account needs to be taken of this. One
option is to compare the Wald test statistic with the F distribution. Usually
this statistic only approximately follows the F distribution and the denominator
degrees of freedom must be estimated. Satterthwaite’s (1941) procedure may be
used to obtain an estimate for the denominator degrees of freedom. Kenward and
Roger (1997) consider a scaled Wald statistic together with an F approximation
to its sampling distribution. Likelihood ratio tests may be performed for the
fixed effect parameters. However, the (−2×) log-likelihood values used in the
comparison should be obtained from the ML procedure as the penalty term
associated with REML depends on the fixed effect terms in the model. Welham
and Thompson (1997) consider a likelihood ratio test statistic based on modified
REML log-likelihoods.

Further details of the methodology in this section can be found in Searle et al.
(1992) and Brown and Prescott (1999).

A.8 ITERATIVE GENERALIZED LEAST SQUARES FOR
NORMALLY DISTRIBUTED DATA

For normally distributed data the iterative generalized least-squares (IGLS) esti-
mation procedure (Goldstein, 1986) and the restricted iterative generalized
least-squares (RIGLS) estimation procedure (Goldstein, 1989) are equivalent
to ML and REML, respectively.

In the IGLS procedure, (A.9) is used to update the estimates of the fixed effect
parameters. A generalized least-squares procedure is then used to estimate the
variance components, � . If β is known,

E{(Y − Xβ)(Y − Xβ)′} = �.

In the generalized least-squares procedure the dependent variable at the (t + 1)th
iteration is y∗∗

t+1, a vector of length n2 created from stacking the columns of the
matrix

(y − Xβ̂t+1)(y − Xβ̂t+1)′ (A.13)

underneath each other. The matrix of explanatory variables for the variance
components is given by M∗, which is an n2 × h matrix. The weight matrix is the
inverse of the n2 × n2 matrix �̂∗

t given by

�̂∗
t = �̂∗

t ⊗ �̂∗
t ,
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where ⊗ is the Kronecker product. Note that if A is an r × c matrix and B an s × d
matrix, then A ⊗ B is an rs × cd matrix given by


a11B a12B . . . a1cB
a21B a22B . . . a2cB
. . . . . . . . . . . .

ar1B ar2B . . . arcB


 .

The estimate of � is given by

�̂t+1 =
{

M∗′ (
�̂∗

t

)−1
M∗

}−1

M∗′ (
�̂∗

t

)−1
y∗∗

t+1. (A.14)

The variance of �̂ is given by

D(�̂) =
{

M∗′ (
�̂∗

)−1
M∗

}−1

M∗′ (
�̂∗

)−1

cov
(
y∗∗) (

�̂∗
)−1

M∗′
{

M∗′ (
�̂∗

)−1
M∗

}−1

,

which reduces to 2
{

M∗′
(
�̂∗

)−1
M∗

}−1

.

For the RIGLS procedure, (A.9) is used to update the estimates of the fixed effect
parameters. The generalized least-squares procedure then used to estimate the
variance components is identical to (A.14), except that the dependent variable
now includes a bias correction term. Instead of the matrix defined in (A.13) the
following matrix is used:

(y − Xβ̂t+1)
′(y − Xβ̂t+1) + X(X′�̂−1

t X)−1X′.

Further details can be found in Goldstein (1995).

A.9 MARGINAL QUASI-LIKELIHOOD AND PENALIZED
QUASI-LIKELIHOOD METHODS FOR DISCRETE DATA

Marginal quasi-likelihood is the name given to the procedure proposed by Goldstein
(1991) as an extension of his work on multilevel modelling to generalized linear
models. Suppose that y is the vector of observations, X is the n × q matrix of
explanatory variables and intercept terms associated with the fixed effects, β is
the vector of fixed effect parameters of length q, M is the n × p matrix of constants
associated with the random effects, and ν is the vector of random effects of length
p. The vector of observations, y, is assumed to be a realization of a vector of random
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variables Y with variance matrix �. The expected value of Y conditional on the
random effects is modelled by

E(Y|ν) = µ(ν) = f (Xβ + Mν). (A.15)

In the case of the generalized linear mixed model, the function f would be the
inverse of the link function g described in Section A.6. In this case the linear
predictor η is given by

η = g(µ(ν)) = f −1(µ(ν)) = Xβ + Mν.

The marginal model concerns the marginal mean given by

E(Y) = µ = f (Xβ), (A.16)

which, unless the link function is the identity, will not usually be equal to the
marginal mean calculated from (A.15). As discussed by Breslow and Clayton
(1993), (A.16) can be thought of as a crude first-order approximation to (A.15),
valid in the limit as the variance components approach 0.

The random effects ν are assumed to have a multivariate normal distribution
with expected value 0 and variance matrix G. An approximation for � is obtained
as follows. Writing the model in the form

yi = µi(ν) + εi,

where µi(ν) = f (x′
iβ + m′

iν),

X =



x′
1
...

x′
n


 , M =




m′
1
...

m′
n


 , ε =




ε1
...

εn


 ,

and R is the variance matrix associated with ε, and using the first-order Taylor
expansion for f (x′

iβ + m′
iν) about f (x′

iβ) given by

f (x′
iβ + m′

iν) ≈ f (x′
iβ) + f ′(x′

iβ)m′
iν, (A.17)

yi can be approximated by

f (x′
iβ) + f ′(x′

iβ)m′
iν + εi.

The first-order variance approximation for Y is given by

� = �MGM′� + R, (A.18)
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where � is an n × n diagonal matrix with diagonal elements f ′(x′
iβ). The IGLS

or RIGLS approach of Section A.8 is used, in which y, X and �̂t are replaced as
follows.

The estimate of β at the (t + 1)th cycle of the iteration is given by equation
(A.9), in which yi is replaced by y+

it , where

y+
it = yi − f (x′

iβ̂t) + f ′(x′
iβ̂t)x′

iβ̂t, (A.19)

the X matrix is replaced by X+
t , with ith row given by f ′(x′

iβ̂t)x′
i, and �̂t is equal to

the right-hand side of (A.18), evaluated at the tth iteration.
The variance components � are then estimated from (A.14), in which y∗∗

t+1 is
created from the matrix

(y − f (Xβ̂t+1))(y − f (Xβ̂t+1))
′

where f (Xβ̂t+1) is a vector with ith element f (x′
iβ̂t+1), and M∗ is replaced by M+

t+1,
the latter being the matrix of explanatory variables for the variance components
contained in the matrix � = �MGM′� + R.

A second-order Taylor expansion may be used in place of (A.17) in order to
improve the estimates. Its inclusion defines further terms for (A.18) and (A.19).
Details can be found in Goldstein (1995).

In the penalized quasi-likelihood model the random effect terms are incorporated
into the linear predictor so that the working dependent vector y+

it now becomes

y+
it = yi − f (x′

iβ̂t + m′
iν̂t) + f ′(x′

iβ̂t + m′
iν̂t)(x′

iβ̂t + m′
iν̂t),

and the variance matrix is modified. Again either first- or second-order Taylor
expansions can be used with the random terms. Further details are found in
Goldstein (1995).
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