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Preface to the Second Edition

I have always had an idea that I would have made a highly efficient criminal. This is the
chance of my lifetime in that direction. See here! This is a first-class, up-to-date burgling kit,
with nickel-plated Jimmy, diamond-tipped glass-cutter, adaptable keys, and every modern
improvement which the march of civilization demands.
Sherlock Holmes in “The Adventure of Charles Augustus Milverton”

The statistical science has seen new paradigms and more complex and richer
data sets. These include data on human genomics, social networks, huge climate
and weather data, and, of course, high frequency financial and economic data.
The statistical community has reacted to these challenges by developing modern
mathematical tools and by advancing computational techniques, e.g., through
fresher Quantlets and better hardware and software platforms. As a consequence, the
book Härdle, W. and Simar, L. (2015) Applied Multivariate Statistical Analysis, 4th
ed. Springer Verlag had to be adjusted and partly beefed up with more easy access
tools and figures. An extra chapter on regression models with variable selection was
introduced and dimension reduction methods were discussed.

These new elements had to be reflected in the exercises and solutions book
as well. We have now all figures completely redesigned in the freely available
software R (R Core Team, 2013) that implements the classical statistical interactive
language S (Becker, Chambers, & Wilks, 1988; Chambers & Hastie, 1992). The R
codes for the classical multivariate analysis in Chaps. 11–17 are mostly based on
library MASS (Venables & Ripley, 2002). Throughout the book, some examples
are implemented directly in the R programming language but we have also used
functions from R libraries aplpack (Wolf, 2012), ca (Nenadic & Greenacre, 2007),
car (Fox & Weisberg, 2011), depth (Genest, Masse, & Plante, 2012), dr (Weisberg,
2002), glmnet (Friedman, Hastie, & Tibshirani, 2010), hexbin (Carr, Lewin-Koh,
& Maechler, 2011), kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004), KernS-
mooth (Wand, 2012), lasso2 (Lokhorst, Venables, Turlach, & Maechler, 2013),
locpol (Cabrera, 2012), MASS (Venables & Ripley, 2002), mvpart (Therneau,
Atkinson, Ripley, Oksanen, & Deáth, 2012), quadprog (Turlach & Weingessel,
2011), scatterplot3d (Ligges & Mächler, 2003), stats (R Core Team, 2013), tseries
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viii Preface to the Second Edition

(Trapletti & Hornik, 2012), and zoo (Zeileis & Grothendieck, 2005). All data sets
and computer codes (quantlets) in R and MATLAB may be downloaded via the
quantlet download center: www.quantlet.org. or the Springer web page. For
interactive display of low-dimensional projections of a multivariate data set, we
recommend GGobi (Swayne, Lang, Buja, & Cook, 2003; Lang, Swayne, Wickham,
& Lawrence, 2012).

As the number of available R libraries and functions steadily increases, one
should always consult the multivariate task view at http://www.r-project.org before
starting any new analysis. As before, analogues of all quantlets in the MATLAB
language are also available at the quantlet download center.

The set of exercises was extended and all quantlets have been revised and opti-
mized. Such a project would not be possible without numerous help of colleagues
and students. We also gratefully acknowledge the support of our cooperation via
the Erasmus program and through the Faculty of Mathematics and Physics at
Charles University in Prague and C.A.S.E.—the Centre for Applied Statistics and
Economics at Humboldt-Universität zu Berlin.

We thank the following students who contributed some of the R codes used in the
second edition: Alena Babiaková, Dana Chromíková, Petra Černayová, Tomáš Hov-
orka, Kristýna Ivanková, Monika Jakubcová, Lucia Jarešová, Barbora Lebdušková,
Tomáš Marada, Michaela Maršálková, Jaroslav Pazdera, Jakub Pečánka, Jakub
Petrásek, Radka Picková, Kristýna Sionová, Ondřej Šedivý, and Ivana Žohová. We
thank Awdesch Melzer who carefully reviewed all R codes and pointed out several
errors that escaped our attention in the first edition of this book.

We also acknowledge support of the Deutsche Forschungsgemeinschaft through
CRC 649 “Economic Risk” and IRTG 1792 “High Dimensional Non Stationary
Time Series Analysis”.

Berlin, Germany Wolfgang K. Härdle
Prague, Czech Republic Zdeněk Hlávka
May 2015

www.quantlet.org
http://www.r-project.org


Preface to the First Edition

There can be no question, my dear Watson, of the value of exercise before breakfast.
Sherlock Holmes in “The Adventure of Black Peter”

The statistical analysis of multivariate data requires a variety of techniques that
are entirely different from the analysis of one-dimensional data. The study of the
joint distribution of many variables in high dimensions involves matrix techniques
that are not part of standard curricula. The same is true for transformations and
computer-intensive techniques, such as projection pursuit.

The purpose of this book is to provide a set of exercises and solutions to help the
student become familiar with the techniques necessary to analyze high-dimensional
data. It is our belief that learning to apply multivariate statistics is like studying the
elements of a criminological case. To become proficient, students must not simply
follow a standardized procedure, they must compose with creativity the parts of the
puzzle in order to see the big picture. We therefore refer to Sherlock Holmes and
Dr. Watson citations as typical descriptors of the analysis.

Puerile as such an exercise may seem, it sharpens the faculties of observation, and teaches
one where to look and what to look for.
Sherlock Holmes in “Study in Scarlet”

Analytic creativity in applied statistics is interwoven with the ability to see and
change the involved software algorithms. These are provided for the student via the
links in the text. We recommend doing a small number of problems from this book
a few times a week. And, it does not hurt to redo an exercise, even one that was
mastered long ago. We have implemented in these links software quantlets from
XploRe and R. With these quantlets the student can reproduce the analysis on the
spot.

This exercise book is designed for the advanced undergraduate and first-year
graduate student as well as for the data analyst who would like to learn the various
statistical tools in a multivariate data analysis workshop.

The chapters of exercises follow the ones in Härdle, W. and Simar, L. (2003)
Applied Multivariate Statistical Analysis, 1st ed. Springer Verlag. The book is
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x Preface to the First Edition

divided into three main parts. The first part is devoted to graphical techniques
describing the distributions of the variables involved. The second part deals
with multivariate random variables and presents from a theoretical point of view
distributions, estimators, and tests for various practical situations. The last part
is on multivariate techniques and introduces the reader to the wide selection of
tools available for multivariate data analysis. All data sets are downloadable at the
authors’ web pages. The source code for generating all graphics and examples are
available on the same web site. Graphics in the printed version of the book were
produced using XploRe. Both XploRe and R code of all exercises are also available
on the authors’ Web pages. The names of the respective programs are denoted by
the symbol .

In Chap. 1 we discuss boxplots, graphics, outliers, Flury–Chernoff faces,
Andrews’ curves, parallel coordinate plots, and density estimates. In Chap. 2
we dive into a level of abstraction to relearn the matrix algebra. Chapter 3 is
concerned with covariance, dependence, and linear regression. This is followed
by the presentation of the ANOVA technique and its application to the multiple
linear model. In Chap. 4 multivariate distributions are introduced and thereafter
are specialized to the multinormal. The theory of estimation and testing ends the
discussion on multivariate random variables.

The third and last part of this book starts with a geometric decomposition
of data matrices. It is influenced by the French school of data analysis. This
geometric point of view is linked to principal component analysis in Chap. 11. An
important discussion on factor analysis follows with a variety of examples from
psychology and economics. The section on cluster analysis deals with the various
cluster techniques and leads naturally to the problem of discrimination analysis.
The next chapter deals with the detection of correspondence between factors. The
joint structure of data sets is presented in the chapter on canonical correlation
analysis, and a practical study on prices and safety features of automobiles is
given. Next the important topic of multidimensional scaling is introduced, followed
by the tool of conjoint measurement analysis. Conjoint measurement analysis
is often used in psychology and marketing to measure preference orderings for
certain goods. The applications in finance (Chap. 19) are numerous. We present
here the CAPM model and discuss efficient portfolio allocations. The book closes
with a presentation on highly interactive, computationally intensive, and advanced
nonparametric techniques.

A book of this kind would not have been possible without the help of many
friends, colleagues, and students. For many suggestions on how to formulate the
exercises we would like to thank Michal Benko, Szymon Borak, Ying Chen, Sigbert
Klinke, and Marlene Müller. The following students have made outstanding propos-
als and provided excellent solution tricks: Jan Adamčák, David Albrecht, Lütfiye
Arslan, Lipi Banerjee, Philipp Batz, Peder Egemen Baykan, Susanne Böhme, Jan
Budek, Thomas Diete, Daniel Drescher, Zeno Enders, Jenny Frenzel, Thomas
Giebe, LeMinh Ho, Lena Janys, Jasmin John, Fabian Kittman, Lenka Komárková,
Karel Komorád, Guido Krbetschek, Yulia Maletskaya, Marco Marzetti, Dominik
Michálek, Alena Myšičková, Dana Novotny, Björn Ohl, Hana Pavlovičová, Stefanie
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Radder, Melanie Reichelt, Lars Rohrschneider, Martin Rolle, Elina Sakovskaja,
Juliane Scheffel, Denis Schneider, Burcin Sezgen, Petr Stehlík, Marius Steininger,
Rong Sun, Andreas Uthemann, Aleksandrs Vatagins, Manh Cuong Vu, Anja Weiß,
Claudia Wolff, Kang Xiaowei, Peng Yu, Uwe Ziegenhagen, and Volker Ziemann.
The following students of the computational statistics classes at Charles University
in Prague contributed to the R programming: Alena Babiaková, Blanka Hamplová,
Tomáš Hovorka, Dana Chromíková, Kristýna Ivanková, Monika Jakubcová, Lucia
Jarešová, Barbora Lebdušková, Tomáš Marada, Michaela Maršálková, Jaroslav
Pazdera, Jakub Pečánka, Jakub Petrásek, Radka Picková, Kristýna Sionová, Ondřej
Šedivý, Tereza Těšitelová, and Ivana Žohová.

We acknowledge support of MSM 0021620839 and the teacher exchange
program in the framework of Erasmus/Sokrates.

We express our thanks to David Harville for providing us with the LaTeX
sources of the starting section on matrix terminology Harville (2001). We thank
John Kimmel from Springer Verlag for continuous support and valuable suggestions
on the style of writing and the content covered.

Berlin, Germany Wolfgang K. Härdle
Prague, Czech Republic Zdeněk Hlávka
April 2007





Contents

Part I Descriptive Techniques

1 Comparison of Batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part II Multivariate Random Variables

2 A Short Excursion into Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Moving to Higher Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Theory of the Multinormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Theory of Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Part III Multivariate Techniques

8 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10 Decomposition of Data Matrices by Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xiii



xiv Contents

13 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

14 Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

15 Correspondence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

16 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

17 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

18 Conjoint Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

19 Applications in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

20 Highly Interactive, Computationally Intensive Techniques . . . . . . . . . . . . 319

A Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.1 Athletic Records Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.2 Bank Notes Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.3 Bankruptcy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
A.4 Car Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
A.5 Car Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
A.6 Classic Blue Pullover Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
A.7 Fertilizer Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
A.8 French Baccalauréat Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
A.9 French Food Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
A.10 Geopol Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
A.11 German Annual Population Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
A.12 Journals Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
A.13 NYSE Returns Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A.14 Plasma Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A.15 Time Budget Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A.16 Unemployment Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
A.17 U.S. Companies Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
A.18 U.S. Crime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
A.19 U.S. Health Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
A.20 Vocabulary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
A.21 WAIS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357



Symbols and Notation

I can’t make bricks without clay.
Sherlock Holmes in “The Adventure of The Copper Beeches”

Basics

X;Y Random variables or vectors
X1;X2; : : : ;Xp Random variables
X D .X1; : : : ;Xp/

> Random vector
X � � X has distribution �
A;B Matrices
�;� Matrices
X ;Y Data matrices
˙ Covariance matrix
1n Vector of ones .1; : : : ; 1

„ ƒ‚ …

n-times

/>

0n Vector of zeros .0; : : : ; 0
„ ƒ‚ …

n-times

/>

Ip Identity matrix
I.:/ Indicator function, for a set M is I D 1 on M,

I D 0 otherwise
i

p�1
) Implication
, Equivalence
� Approximately equal
˝ Kronecker product
iff If and only if, equivalence

xv



xvi Symbols and Notation

Characteristics of Distribution

f .x/ pdf or density of X
f .x; y/ Joint density of X and Y
fX.x/; fY.y/ Marginal densities of X and Y
fX1 .x1/; : : : ; fXp.xp/ Marginal densities of X1; : : : ;Xp

Ofh.x/ Histogram or kernel estimator of f .x/
F.x/ cdf or distribution function of X
F.x; y/ Joint distribution function of X and Y
FX.x/;FY.y/ Marginal distribution functions of X and Y
FX1.x1/; : : : ;FXp.xp/ Marginal distribution functions of X1; : : : ;Xp

fYjXDx.y/ Conditional density of Y given X D x
'X.t/ Characteristic function of X
mk kth moment of X
�j Cumulants or semi-invariants of X

Moments

E X;E Y Mean values of random variables or vectors X
and Y

E.YjX D x/ Conditional expectation of random variable or
vector Y given X D x

�YjX Conditional expectation of Y given X
Var.YjX D x/ Conditional variance of Y given X D x
�2YjX Conditional variance of Y given X

�XY D Cov.X;Y/ Covariance between random variables X and Y
�XX D Var.X/ Variance of random variable X

�XY D Cov.X;Y/
p

Var.X/Var.Y/
Correlation between random variables X and Y

˙XY D Cov.X;Y/ Covariance between random vectors X and Y,
i.e., Cov.X;Y/ D E.X � E X/.Y � E Y/>

˙XX D Var.X/ Covariance matrix of the random vector X



Symbols and Notation xvii

Samples

x; y Observations of X and Y
x1; : : : ; xn D fxign

iD1 Sample of n observations of X
X D fxijgiD1;:::;nIjD1;:::;p (n � p) data matrix of observations of X1; : : : ;Xp

or of X D .X1; : : : ;Xp/
T

x.1/; : : : ; x.n/ The order statistic of x1; : : : ; xn

H Centering matrix, H D In � n�11n1
>
n

Empirical Moments

x D 1

n

n
X

iD1
xi Average of X sampled by fxigiD1;:::;n

sXY D 1

n

n
X

iD1
.xi � x/.yi � y/ Empirical covariance of samples fxigiD1;:::;n and

fyigiD1;:::;n

sXX D 1

n

n
X

iD1
.xi � x/2 Empirical variance of the sample fxigiD1;:::;n

rXY D sXYp
sXXsYY

Empirical correlation of X and Y

S D fsXiXjg Empirical covariance matrix of data matrix X
R D frXiXjg Empirical correlation matrix of data matrix X



xviii Symbols and Notation

Distributions

'.x/ Density of the standard normal distribution
ˆ.x/ Distribution function of the standard normal

distribution
N.0; 1/ Standard normal or Gaussian distribution
N.�; �2/ Normal distribution with mean � and variance �2

Np.�;˙/ p-Dimensional normal distribution with mean �
and covariance matrix ˙

L�! Convergence in distribution
P�! Convergence in probability

CLT Central Limit Theorem
�2p �2 Distribution with p degrees of freedom
�21�˛Ip 1 � ˛ Quantile of the �2 distribution with p

degrees of freedom
tn t-Distribution with n degrees of freedom
t1�˛=2In 1 � ˛=2 Quantile of the t-distribution with n

degrees of freedom
Fn;m F-Distribution with n and m degrees of freedom
F1�˛In;m 1 � ˛ Quantile of the F-distribution with n and m

degrees of freedom
Wp.˙; n/ Wishart distribution of a p-dimensional sample

covariance matrix with parameters˙ and n
T2p;n Hotelling T2-distribution with p and n degrees of

freedom
T21�˛Ip;n 1 � ˛ Quantile of the Hotelling T2-distribution

with p and n degrees of freedom

Mathematical Abbreviations

tr.A/ Trace of matrix A
diag.A/ Diagonal of matrix A
diag.x/ Diagonal matrix with vector x on its diagonal, i.e.,

diagfdiag.x/g D x
rank.A/ Rank of matrix A
det.A/ or jAj Determinant of matrix A
abs.x/ Absolute value of x
hull.x1; : : : ; xk/ Convex hull of points fx1; : : : ; xkg
span.x1; : : : ; xk/ Linear space spanned by fx1; : : : ; xkg



Some Terminology

I consider that a man’s brain originally is like a little empty attic, and you have to stock it
with such furniture as you choose. A fool takes in all the lumber of every sort that he comes
across, so that the knowledge which might be useful to him gets crowded out, or at best is
jumbled up with a lot of other things so that he has a difficulty in laying his hands upon it.
Now the skilful workman is very careful indeed as to what he takes into his brain-attic. He
will have nothing but the tools which may help him in doing his work, but of these he has
a large assortment, and all in the most perfect order. It is a mistake to think that little room
has elastic walls and can distend to any extent. Depend upon it there comes a time when for
every addition of knowledge you forget something that you knew before. It is of the highest
importance, therefore, not to have useless facts elbowing out the useful ones.
Sherlock Holmes in “Study in Scarlet”

This section contains an overview of some terminology that is used throughout
the book. We thank David Harville, who kindly allowed us to use his TeX
files containing the definitions of terms concerning matrices and matrix algebra;
see Harville (2001). More detailed definitions and further explanations of the
statistical terms can be found, e.g., in Breiman (1973), Feller (1966), Härdle and
Simar (2015), Mardia, Kent, & Bibby (1979), or Serfling (2002).

Adjoint matrix The adjoint matrix of an n � n matrix A D faijg is the transpose
of the cofactor matrix of A (or equivalently is the n�n matrix whose ijth element
is the cofactor of aji).

Asymptotic normality A sequence X1;X2; : : : of random variables is asymptot-
ically normal if there exist sequences of constants f�ig1

iD1 and f�ig1
iD1 such that

��1
n .Xn ��n/

L�! N.0; 1/. The asymptotic normality means that for sufficiently
large n, the random variable Xn has approximately N.�n; �

2
n / distribution.

Bias Consider a random variable X that is parametrized by 	 2 
. Suppose that
there is an estimator O	 of 	 . The bias is defined as the systematic difference
between O	 and 	 , Ef O	 � 	g. The estimator is unbiased if E O	 D 	 .

xix
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Characteristic function Consider a random vector X 2 R
p with pdf f . The

characteristic function (cf) is defined for t 2 R
p:

'X.t/ � EŒexp.it>X/� D
Z

exp.it>X/f .x/dx:

The cf fulfills 'X.0/ D 1, j'X.t/j � 1. The pdf (density) f may be recovered from
the cf: f .x/ D .2�/�p

R

exp.�it>X/'X.t/dt.
Characteristic polynomial (and equation) Corresponding to any n � n matrix

A is its characteristic polynomial, say p.:/, defined (for �1 <  < 1) by
p./ D jA � Ij, and its characteristic equation p./ D 0 obtained by setting
its characteristic polynomial equal to 0; p./ is a polynomial in  of degree n
and hence is of the form p./ D c0 C c1 C � � � C cn�1n�1 C cn

n, where the
coefficients c0; c1; : : : ; cn�1; cn depend on the elements of A.

Cofactor (and minor) The cofactor and minor of the ijth element, say aij, of an
n � n matrix A are defined in terms of the .n � 1/� .n � 1/ submatrix, say Aij, of
A obtained by striking out the ith row and jth column (i.e., the row and column
containing aij): the minor of aij is jAijj, and the cofactor is the “signed” minor
.�1/iCjjAijj.

Cofactor matrix The cofactor matrix (or matrix of cofactors) of an n � n matrix
A D faijg is the n � n matrix whose ijth element is the cofactor of aij.

Conditional distribution Consider the joint distribution of random vector X 2
R

p and random variable Y 2 R with pdf f .x; y/ W R
pC1 �! R. The marginal

densities are fX.x/ D R

f .x; y/dy and fY.y/ D R

f .x; y/dx. The conditional density
of X given Y is fXjY.xjy/ D f .x; y/=fY.y/. Similarly, the conditional density of Y
given X is fYjX.yjx/ D f .x; y/=fX.x/.

Conditional moments Consider two random vectors X 2 R
p and Y 2 R

q with
joint pdf f .x; y/. The conditional moments of Y given X are defined as the
moments of the conditional distribution.

Contingency table Suppose that two random variables X and Y are observed
on discrete values. The two-entry frequency table that reports the simultaneous
occurrence of X and Y is called a contingency table.

Critical value Suppose one needs to test a hypothesis H0 W 	 D 	0. Consider a
test statistic T for which the distribution under the null hypothesis is given by
P	0 . For a given significance level ˛, the critical value is c˛ such that P	0.T >

c˛/ D ˛. The critical value corresponds to the threshold that a test statistic has to
exceed in order to reject the null hypothesis.

Cumulative distribution function (cdf) Let X be a p-dimensional random vec-
tor. The cumulative distribution function (cdf) of X is defined by F.x/ D P.X �
x/ D P.X1 � x1;X2 � x2; : : : ;Xp � xp/.

Derivative of a function of a matrix The derivative of a function f of an m � n
matrix X D fxijg of mn “independent” variables is the m � n matrix whose
ijth element is the partial derivative @f=@xij of f with respect to xij when f is
regarded as a function of an mn-dimensional column vector x formed from X by
rearranging its elements; the derivative of a function f of an n � n symmetric (but
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otherwise unrestricted) matrix of variables is the n�n (symmetric) matrix whose
ijth element is the partial derivative @f=@xij or @f=@xji of f with respect to xij or
xji when f is regarded as a function of an n.n C 1/=2-dimensional column vector
x formed from any set of n.n C 1/=2 nonredundant elements of X .

Determinant The determinant jAj of an n � n matrix A D faijg is (by definition)
the (scalar-valued) quantity

P

.�1/j� ja1�.1/ � � � an�.n/, where �.1/; : : : ; �.n/ is a
permutation of the first n positive integers and the summation is over all such
permutations.

Eigenvalues and eigenvectors An eigenvalue of an n � n matrix A is (by
definition) a scalar (real number), say , for which there exists an n�1 vector, say
x, such that Ax D x, or equivalently such that .A � I/x D 0; any such vector
x is referred to as an eigenvector (of A) and is said to belong to (or correspond to)
the eigenvalue . Eigenvalues (and eigenvectors), as defined herein, are restricted
to real numbers (and vectors of real numbers).

Eigenvalues (not necessarily distinct) The characteristic polynomial, say p.:/,
of an n � n matrix A is expressible as

p./ D .�1/n. � d1/. � d2/ � � � . � dm/q./ .�1 <  < 1/;

where d1; d2; : : : ; dm are not-necessarily-distinct scalars and q.:/ is a polynomial
(of degree n � m) that has no real roots; d1; d2; : : : ; dm are referred to as the not-
necessarily-distinct eigenvalues of A or (at the possible risk of confusion) simply
as the eigenvalues of A. If the spectrum of A has k members, say 1; : : : ; k,
with algebraic multiplicities of �1; : : : ; �k, respectively, then m D Pk

iD1 �i, and
(for i D 1; : : : ; k) �i of the m not-necessarily-distinct eigenvalues equal i .

Empirical distribution function Assume that X1; : : : ;Xn are iid observations of
a p-dimensional random vector. The empirical distribution function (edf) is
defined through Fn.x/ D n�1Pn

iD1 I.Xi � x/.
Empirical moments The moments of a random vector X are defined through

mk D E.Xk/ D R

xkdF.x/ D R

xkf .x/dx. Similarly, the empirical moments are
defined through the empirical distribution function Fn.x/ D n�1Pn

iD1 I.Xi � x/.
This leads to Omk D n�1Pn

iD1 Xk
i D R

xkdFn.x/.
Estimate An estimate is a function of the observations designed to approximate

an unknown parameter value.
Estimator An estimator is the prescription (on the basis of a random sample) of

how to approximate an unknown parameter.
Expected (or mean) value For a random vector X with pdf f the mean or

expected value is E.X/ D R

xf .x/dx:
Gradient (or gradient matrix) The gradient of a vector f D .f1; : : : ; fp/>

of functions, each of whose domain is a set in R
m, is the m � p matrix

Œ.Df1/>; : : : ; .Dfp/>�, whose ijth element is the partial derivative Difj D @fj
@xi

.
The gradient of f is the transpose of the Jacobian matrix of f.
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Gradient vector The gradient vector of a function f , with domain in R
m, is the

m-dimensional column vector .Df /> whose ith element is the partial derivative
Dif D @f

@xi
of f .

Hessian matrix The Hessian matrix of a function f , with domain in R
m, is the

m � m matrix whose ijth element is the ijth partial derivative D2
ijf D @2f

@xi@xj
of f .

Idempotent matrix A (square) matrix A is idempotent if A2 D A.
Jacobian matrix The Jacobian matrix of a p-dimensional vector f D
.f1; : : : ; fp/> of functions, each of whose domain is a set in R

m, is the p � m
matrix .D1f ; : : : ;Dmf / whose ijth element is Djfi D @fi

@xj
; in the special case

where p D m, the determinant of this matrix is referred to as the Jacobian (or
Jacobian determinant) of f.

Kernel density estimator The kernel density estimator Of of a pdf f , based on a
random sample X1;X2; : : : ;Xn from f , is defined by

Of .x/ D 1

nh

n
X

iD1
K

�

x � Xi

h

�

:

The properties of the estimator Of .x/ depend on the choice of the kernel function
K.:/ and the bandwidth h. The kernel density estimator can be seen as a smoothed
histogram; see also Härdle, Müller, Sperlich, & Werwatz (2004).

Likelihood function Suppose that fxign
iD1 is an iid sample from a popula-

tion with pdf f .xI 	/. The likelihood function is defined as the joint pdf of
the observations x1; : : : ; xn considered as a function of the parameter 	 , i.e.,
L.x1; : : : ; xnI 	/ D Qn

iD1 f .xiI 	/. The log-likelihood function, `.x1; : : : ; xnI 	/ D
log L.x1; : : : ; xnI 	/ D Pn

iD1 log f .xiI 	/, is often easier to handle.
Linear dependence or independence A nonempty (but finite) set of matrices (of

the same dimensions .n � p/), say A1;A2; : : : ;Ak, is (by definition) linearly
dependent if there exist scalars x1; x2; : : : ; xk, not all 0, such that

Pk
iD1 xiAi D

0n0
>
p ; otherwise (if no such scalars exist), the set is linearly independent. By

convention, the empty set is linearly independent.
Marginal distribution For two random vectors X and Y with the joint pdf f .x; y/,

the marginal pdfs are defined as fX.x/ D R

f .x; y/dy and fY.y/ D R

f .x; y/dx.
Marginal moments The marginal moments are the moments of the marginal

distribution.
Mean The mean is the first-order empirical moment x D R

xdFn.x/ D
n�1Pn

iD1 xi D Om1.
Mean squared error (MSE) Suppose that for a random vector X with a distribu-

tion parametrized by 	 2 
 there exists an estimator O	 . The mean squared error
(MSE) is defined as EX. O	 � 	/2.

Median Suppose that X is a continuous random variable with pdf f .x/. The
median q0:5 lies in the center of the distribution. It is defined as

R q0:5
�1 f .x/dx D

R C1
q0:5

f .x/dx D 0:5.
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Moments The moments of a random vector X with the distribution function F.x/
are defined through mk D E.Xk/ D R

xkdF.x/. For continuous random vectors
with pdf f .x/, we have mk D E.Xk/ D R

xkf .x/dx.
Normal (or Gaussian) distribution A random vector X with the multinormal

distribution N.�;˙/ with the mean vector � and the variance matrix˙ is given
by the pdf

fX.x/ D j2�˙ j�1=2 exp

�

�1
2
.x � �/>˙�1.x � �/

�

:

Orthogonal complement The orthogonal complement of a subspace U of a
linear space V is the set comprising all matrices in V that are orthogonal to U .
Note that the orthogonal complement of U depends on V as well as U (and also
on the choice of inner product).

Orthogonal matrix An .n � n/ matrix A is orthogonal if A>A D AA> D In.

Partitioned matrix A partitioned matrix, say

0

B

B

B

@

A11 A12 : : : A1c

A21 A22 : : : A2c
:::

:::
:::

Ar1 Ar2 : : : Arc

1

C

C

C

A

; is a matrix

that has (for some positive integers r and c) been subdivided into rc submatrices
Aij (i D 1; 2; : : : ; r; j D 1; 2; : : : ; c), called blocks, by implicitly superimposing
on the matrix r�1 horizontal lines and c�1 vertical lines (so that all of the blocks
in the same “row” of blocks have the same number of rows and all of those in the
same “column” of blocks have the same number of columns). In the special case
where c D r, the blocks A11;A22; : : : ;Arr are referred to as the diagonal blocks
(and the other blocks are referred to as the off-diagonal blocks).

Probability density function (pdf) For a continuous random vector X with cdf
F, the probability density function (pdf) is defined as f .x/ D @F.x/=@x.

Quantile For a continuous random variable X with pdf f , the � quantile q� is
defined through:

R q�
�1 f .x/dx D � .

p-value The critical value c˛ gives the critical threshold of a test statistic T for
rejection of a null hypothesis H0 W 	 D 	0. The probability P	0.T > c˛/ D p
defines that p-value. If the p-value is smaller than the significance level ˛, the
null hypothesis is rejected.

Random variable and vector Random events occur in a probability space with
a certain event structure. A random variable is a function from this probability
space to R (or Rp for random vectors) also known as the state space. The concept
of a random variable (vector) allows one to elegantly describe events that are
happening in an abstract space.

Scatterplot A scatterplot is a graphical presentation of the joint empirical
distribution of two random variables.
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Singular value decomposition (SVD) An m�n matrix A of rank r is expressible
as

A D P
�D1 0

0 0

�

Q> D P1D1Q>
1 D

r
X

iD1
sipiq

>
i D

k
X

jD1
˛jUj ;

where Q D .q1; : : : ; qn/ is an n � n orthogonal matrix and D1 D diag.s1; : : : ; sr/

an r � r diagonal matrix such that Q>A>AQ D
�D2

1 0
0 0

�

; where s1; : : : ; sr are

(strictly) positive, where Q1 D .q1; : : : ; qr/, P1 D .p1; : : : ; pr/ D AQ1D�1
1 ,

and, for any m � .m � r/ matrix P2 such that P>
1 P2 D 0, P D .P1;P2/, where

˛1; : : : ; ˛k are the distinct values represented among s1; : : : ; sr , and where (for
j D 1; : : : ; k) Uj D P

fi W siD˛jg piq>
i ; any of these four representations may be

referred to as the singular value decomposition of A, and s1; : : : ; sr are referred
to as the singular values of A. In fact, s1; : : : ; sr are the positive square roots of the
nonzero eigenvalues of A>A (or equivalently AA>), q1; : : : ; qn are eigenvectors
of A>A, and the columns of P are eigenvectors of AA>.

Spectral decomposition A p � p symmetric matrix A is expressible as

A D ��� > D
p
X

iD1
i�i�

>
i

where 1; : : : ; p are the not-necessarily-distinct eigenvalues of A; �1; : : : ; �p

are orthonormal eigenvectors corresponding to 1; : : : ; p, respectively, � D
.�1; : : : ; �p/, D D diag.1; : : : ; p/.

Subspace A subspace of a linear space V is a subset of V that is itself a linear
space.

Taylor expansion The Taylor series of a function f .x/ in a point a is the power

series
P1

nD0
f .n/.a/

nŠ .x�a/n. A truncated Taylor series is often used to approximate
the function f .x/.
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Chapter 1
Comparison of Batches

Like all other arts, the Science of Deduction and Analysis is one which can only be acquired
by long and patient study nor is life long enough to allow any mortal to attain the highest
possible perfection in it. Before turning to those moral and mental aspects of the matter
which present the greatest difficulties, let the enquirer begin by mastering more elementary
problems.
Sherlock Holmes in “Study in Scarlet”

The aim of this chapter is to describe and discuss the basic graphical techniques
for a representation of a multidimensional data set. These descriptive techniques are
explained in detail in Härdle and Simar (2015, Chap. 1).

The graphical representation of the data is very important for both the correct
analysis of the data and full understanding of the obtained results. The following
answers to some frequently asked questions provide a gentle introduction to the
topic.

We discuss the role and influence of outliers when displaying data in boxplots,
histograms, hexagon plots, and kernel density estimates. Flury–Chernoff faces—a
tool for displaying up to 32 dimensional data—are presented together with parallel
coordinate plots. Finally, Andrews’ curves and draftsman plots are applied to data
sets from various disciplines.

Exercise 1.1 Is the upper extreme always an outlier?

An outlier is defined as an observation which lies beyond the outside bars of the
boxplot, the outside bars being defined as:

FU C 1:5dF

FL � 1:5dF;

where FL and FU are the lower and upper fourths (these are good approximations of
q0:25, q0:75, actually) and dF D FU �FL is the interquartile range. The upper extreme
is the maximum of the data set. The terms outlier and extreme could be sometimes

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_1
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Fig. 1.1 Boxplots for the
mileage of the U.S., Japanese,
and European cars.
SMSboxcar
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mixed up! As the minimum or maximum do not have to lie outside the bars, they
are not always the outliers.

Plotting the boxplot for the car data set given in Appendix A.4 provides a nice
example, see Fig. 1.1.

Exercise 1.2 Is it possible for the mean or the median to lie outside of the fourths
or even outside of the outside bars?

The median lies between the fourths per definition. The mean, on the contrary,
can lie even outside the bars because it is very sensitive with respect to the presence
of extreme outliers.

Thus, the answer is: NO for the median, but YES for the mean. It suffices to have
only one extremely high outlier as in the following sample: 1, 2, 2, 3, 4, 99. The
corresponding depth values are 1; 2; 3; 3; 2; 1. The median depth is .6 C 1/=2 D
3:5. The depth of F is .depth of medianC1/=2 D 2:25. Here, the median and the
mean are:

x0:5 D 2C 3

2
D 2:5;

Nx D 18:5:

The fourths are FL D 2, FU D 4. The outside bars therefore are 2 � 2 � 1:5 D �1
and 4C 2 � 1:5 D 7. The mean clearly falls outside the boxplot’s outside bars.

Exercise 1.3 Assume that the data are normally distributed N.0; 1/. What percent-
age of the data do you expect to lie outside the outside bars?

In order to solve this exercise, we have to make a simple calculation.

http://www.quantlet.de/codes/sms/SMSboxcar.html
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For sufficiently large sample size, we can expect that the characteristics of the
boxplots will be close to the theoretical values. Thus the mean and the median are
expected to lie very close to 0, the fourths FL and FU should be lying close to
standard normal quartiles z0:25 D �0:675 and z0:75 D 0:675.

The expected percentage of outliers is then calculated as the probability of having
an outlier. The upper bound for the outside bar is then

c D FU C 1:5dF D �.FL � 1:5dF/ � 2:7;

where dF is the interquartile range. With ˆ denoting the cumulative distribution
function (cdf) of a random variable X with standard normal distribution N.0; 1/, we
can write

P.X … Œ�c; c�/ D 1 � P.X 2 Œ�c; c�/

D 1 � fˆ.c/�ˆ.�c/g
D 2f1�ˆ.c/g
D 2f1�ˆ.2:7/g
� 2f1� 0:9965/g
D 0:007

Thus, on average, 0.7 % of the data will lie outside of the outside bars.

Exercise 1.4 What percentage of the data do you expect to lie outside the outside
bars if we assume that the data are normally distributed N.0; �2/ with unknown
variance �2?

From the theory we know that � changes the scale, i.e., for large sample sizes the
fourths FL and FU are now close to �0:675� and 0:675� . One could therefore guess
that the percentage of outliers stays the same as in Exercise 1.3 since the change of
scale affects the outside bars and the observations in the same way.

Our guess can be verified mathematically. Let X denote random variable with
distribution N.0; �2/. The expected percentage of outliers can now be calculated for
c D FU C 1:5dF D �.FL � 1:5dF/ � 2:7� as follows:

P.X … Œ�c; c�/ D 1 � P.X 2 Œ�c; c�/

D 1 � P

�

X

�
2
h

� c

�
;

c

�

i
�

D 1 �
n

ˆ
� c

�

�

�ˆ
�

� c

�

�o

D 2
n

1 �ˆ
� c

�

�o
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D 2f1�ˆ.2:7/g
� 0:007:

Again, 0.7 % of the data lie outside of the bars.

Exercise 1.5 How would the Five Number Summary of the 15 largest U.S. cities
differ from that of the 50 largest U.S. cities? How would the five-number summary
of 15 observations of N.0; 1/-distributed data differ from that of 50 observations
from the same distribution?

In the Five Number Summary, we calculate the upper fourth or upper quartile
FU, the lower fourth (quartile) FL, the median and the extremes. The Five Number
Summary can be graphically represented by a boxplot.

15 Largest cities

Minimum 77,355

25% Quartile 84,650

Median 104,091

75% Quartile 134,319

Maximum 591,004

All 50 cities

Minimum 1,212

25% Quartile 36,185

Median 56,214

75% Quartile 83,564

Maximum 591,004

Taking 50 instead of 15 largest cities results in a decrease of all characteristics in
the five-number summary except for the upper extreme, which stays the same (we
assume that there are not too many cities of an equal size).

15 Observations

Minimum �2.503

25% Quartile �1.265

Median �0.493

75% Quartile �0.239

Maximum 1.950

50 Observations

Minimum �2.757

25% Quartile �1.001

Median �0.231

75% Quartile 0.209

Maximum 2.444

In the case of normally distributed data, the obtained result depends on the
randomly generated samples. The median and the fourths should be, on average, of
the same magnitude in both samples and they should lie a bit closer to the theoretical
values ˆ�1.0:25/ D �0:6745 and ˆ�1.0:75/ D 0:6745 in the bigger sample.

We can expect that the extremes will lie further from the center of the distribution
in the bigger sample.

Exercise 1.6 Is it possible that all five numbers of the five-number summary could
be equal? If so, under what conditions?

Yes, it is possible. This can happen only if the maximum is equal to the minimum,
i.e., if all observations are equal. Such a situation is in practice rather unusual.
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Exercise 1.7 Suppose we have 50 observations of X � N.0; 1/ and another 50
observations of Y � N.2; 1/. What would the 100 Flury–Chernoff faces (Chernoff,
1973; Flury & Riedwyl, 1981) look like if X and Y define the face and hair lines?
Do you expect any similar faces? How many faces look like observations of Y even
though they are X observations?

One would expect many similar faces, because for each of these random variables
47:7% of the data lie between 0 and 2.

You can see the resulting Flury–Chernoff faces plotted in Figs. 1.2 and 1.3. The
“population” in Fig. 1.2 looks thinner and the faces in Fig. 1.3 have more hair.
However, many faces could claim that they are coming from the other sample
without arousing any suspicion.

Exercise 1.8 Draw a histogram for the mileage variable of the car data
(Appendix A.4). Do the same for the three groups (U.S., Japan, Europe). Do you
obtain a similar conclusion as in the boxplots in Fig. 1.1?

The histogram is a density estimate which gives us a good impression of the
shape distribution of the data.

The interpretation of the histograms in Fig. 1.4 doesn’t differ too much from the
interpretation of the boxplots in Fig. 1.1 as far as only the European and the U.S. cars
are concerned.

The distribution of mileage of Japanese cars appears to be multimodal—the
amount of cars which achieve a high fuel economy is considerable as well as the
amount of cars which achieve a very low fuel economy. In this case, the median and
the mean of the mileage of Japanese cars don’t represent the data properly since the
mileage of most cars lies relatively far away from these values.

Exercise 1.9 Use some bandwidth selection criterion to calculate the optimally
chosen bandwidth h for the diagonal variable of the bank notes. Would it be better
to have one bandwidth for the two groups?

The bandwidth h controls the amount of detail seen in the histogram. Too
large bandwidths might lead to loss of important information, whereas a too small
bandwidth introduces a lot of random noise and artificial effects. A reasonable
balance between “too large” and “too small” is provided by bandwidth selection
methods. The Silverman’s rule of thumb—referring to the normal distribution—is
one of the simplest methods.

Using Silverman’s rule of thumb for Gaussian kernel, hopt D O�n�1=51:06,
the optimal bandwidth is 0:1885 for the genuine banknotes and 0:2352 for the
counterfeit ones. The optimal bandwidths are different and indeed, for comparison
of the two density estimates, it would be sensible to use the same bandwidth.

Exercise 1.10 In Fig. 1.5, the densities overlap in the region of diagonal � 140:4.
We partially observe this also in the boxplots. Our aim is to separate the two groups.
Will we be able to do this effectively on the basis of this diagonal variable alone?
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Fig. 1.2 Flury–Chernoff faces of the 50 N.0; 1/ distributed data. SMSfacenorm

http://www.quantlet.de/codes/sms/SMSfacenorm.html
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No, using the variable diagonal alone, the two groups cannot be effectively
separated since the densities overlap too much. However, the length of the diagonal
is a very good predictor of the genuineness of the banknote.

Exercise 1.11 Draw a parallel coordinates plot (PCP) for the car data.

PCP is a handy graphical method for displaying multidimensional data. The
coordinates of the observations are drawn in a system of parallel axes. Index j of
the coordinate is mapped onto the horizontal axis, and the .0; 1/ normalized value
xj is mapped onto the vertical axis. The PCP of the car data set is drawn in Fig. 1.6.
Different line styles allow to visualize the differences between groups and/or to find
suspicious or outlying observations. The styles scheme in Fig. 1.6 shows that the
European and Japanese cars are quite similar. American cars, on the other hand,
show much larger values of the 7th variable (Trunk space) up to 11th variable

Cars data

P M R78 R77 H R Tr W L T D G C

Fig. 1.6 Parallel coordinates plot for the car data. The full line marks U.S. cars, the dotted line
marks Japanese cars, and the dashed line marks European cars. SMSpcpcar

http://www.quantlet.de/codes/sms/SMSpcpcar.html


12 1 Comparison of Batches

(Displacement). The parallelism of the lines in this region shows that there is a
positive relationship between these variables. Checking the corresponding variable
names in Appendix A.4 reveals that these five variables describe the size of the car.
Indeed, U.S. cars tend to be larger than European or Japanese cars.

The large amount of intersecting lines between the first and the second axis
proposes a negative relationship between the first and the second variable, price
and mileage. The disadvantage of PCP is that the type of relationship between two
variables can be seen clearly only on neighboring axes. Thus, we recommend that
also some other type of graphics, e.g., scatterplot matrix, complements the analysis.

Exercise 1.12 How would you identify discrete variables (variables with only a
limited number of possible outcomes) on a PCP?

Discrete variables on a PCP can be identified very easily since for discrete
variable all the lines join in a small number of knots.

Look for example at the last variable, X13 D C D company headquarters, on the
PCP for the car data in Fig. 1.6.

Exercise 1.13 Is the height of the bars of a histogram equal to the relative
frequency with which observations fall into the respective bin?

The histogram is constructed by counting the number of observations in each bin
and then standardizing it to integrate to 1. The statement is therefore true.

Exercise 1.14 Must the kernel density estimate always take on values only between
0 and 1?

False. The values of the density itself can lie anywhere between 0 and C1. Only
the integral of the density has to be equal to one.

Exercise 1.15 Let the following data set represent the heights (in m) of 13 students
taking a multivariate statistics course:

1:72; 1:83; 1:74; 1:79; 1:94; 1:81; 1:66; 1:60; 1:78; 1:77; 1:85; 1:70; 1:76:

1. Find the corresponding five-number summary.
2. Construct the boxplot.
3. Draw a histogram for this data set.

Let us first sort the data set in ascending order:

1:60; 1:66; 1:70; 1:72; 1:74; 1:76; 1:77; 1:78; 1:79; 1:81; 1:83; 1:85; 1:94:

As the number of observations is n D 13, the depth of the median is .13C1/=2 D 7

and the median is equal to the 7th observation x.7/ D 1:77. Next, the depth of fourths
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is defined as Œdepth of medianC1�
2

D 7C1
2

D 4 and the fourths are FU D x.4/ D 1:72 and
FL D x.10/ D 1:81. This leads the following Five Number Summary:

Height

Minimum 1.60

25% Quartile 1.72

Median 1.77

75% Quartile 1.81

Maximum 1.94

In order to construct the boxplot, we have to compute the outside bars. The
F-spread is dF D FU � FL D 1:81 � 1:72 D 0:09 and the outside bars are equal to
FL � 1:5dF D 1:585 and FU C 1:5dF D 1:945: Apparently, there are no outliers, so
the boxplot consists only of the box itself, the mean and median lines, and from the
whiskers.

The histogram is plotted in Fig. 1.7. The binwidth h D 5 cmD 0:05m seems to
provide a nice picture here.

Histogram of student heights

height (m)

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95

0
1

2
3

4

Fig. 1.7 Histogram of student heights. SMShisheights

http://www.quantlet.de/codes/sms/SMShisheights.html
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Exercise 1.16 Analyze data that contain unemployment rates of all German federal
states (Appendix A.16) using various descriptive techniques.

A good way to describe one-dimensional data is to construct a boxplot. In the
same way as in Exercise 1.15, we sort the data in ascending order,

5:8; 6:2; 7:7; 7:9; 8:7; 9:8; 9:8; 9:8; 10:4; 13:9; 15:1; 15:8; 16:8; 17:1; 17:3; 19:9;

and construct the boxplot. There are n D 16 federal states, the depth of the median
is therefore .16C 1/=2 D 8:5 and the depth of fourths is 4.75.

The median is equal to the average of the 8th and 9th smallest observation, i.e.,

M D 1
2

�

x. n
2 /

C x. n
2C1/

�

D 10:1 and the lower and upper fourths (quartiles) are

FL D 1
2
.x.4/ C x.5// D 8:3, FU D 1

2
.x.12/ C x.13// D 16:3.

The outside bars are FU C 1:5dF D 28:3 and FL � 1:5dF D �3:7, and hence we
can conclude that there are no outliers. The whiskers end at 5.8 and 19.9, the most
extreme points that are not outliers.

The resulting boxplot for the complete data set is shown on the left-hand side of
Fig. 1.8. The mean is greater than the median, which implies that the distribution

●

●

All East West

6
8

10
12

14
16

18
20

Unemployment in Germany

Fig. 1.8 Boxplots for the unemployment data. SMSboxunemp

http://www.quantlet.de/codes/sms/SMSboxunemp.html
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of the data is not symmetric. Although 50 % of the data are smaller than 10.1, the
mean is 12. This indicates that there are a few observations that are much bigger
than the median. Hence, it might be a good idea to explore the structure of the
data in more detail. The boxplots calculated only for West and East Germany show
a large discrepancy in unemployment rate between these two regions. Moreover,
some outliers appear when these two subsets are plotted separately.

Exercise 1.17 Using the yearly population data in Appendix A.11, generate

1. a boxplot (choose one of the variables),
2. an Andrews’ curve (choose ten data points),
3. a scatterplot,
4. a histogram (choose one of the variables).

What do these graphs tell you about the data and their structure?

A boxplot can be generated in the same way as in the previous examples.
However, plotting a boxplot for time series data might mislead us since the
distribution changes every year and the upward trend observed in this data makes
the interpretation of the boxplot very difficult.

A histogram gives us a picture about how the distribution of the variable looks
like, including its characteristics such as skewness and heavy tails. In contrast to the
boxplot it can also show multimodality. Similarly as the boxplot, a histogram would
not be a reasonable graphical display for this time series data.

In general, for time series data in which we expect serial dependence, any plot
omitting the time information may be misleading.

Andrews’ curves are calculated as a linear combination of sine and cosine curves
with different frequencies, where the coefficients of the linear combination are the
multivariate observations from our data set (Andrews, 1972). Each multivariate
observation is represented by one curve. Differences between various observations
lead to curves with different shapes. In this way, Andrews’ curves allow to discover
homogeneous subgroups of the multivariate data set and to identify outliers.

Andrews’ curves for observations from years 1970 to 1979 are presented in
Fig. 1.9. Apparently, there are two periods. One period with higher (years 1975–
1979) and the other period with lower (years 1970–1974) values.

A scatterplot is a two-dimensional graph in which each of two variables is put on
one axis and data points are drawn as single points (or other symbols). The result
for the analyzed data can be seen in Fig. 1.9. From a scatterplot you can see whether
there is a relationship between the two investigated variables or not. For this data
set, the scatterplot in Fig. 1.9 provides a very informative graphic. Plotted against the
population (that increased over time) one sees the sharp oil price shock recession.

Exercise 1.18 Make a draftsman plot for the car data with the variables

X1 D price;

X2 D mileage;
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Fig. 1.9 Andrews’ curves SMSandcurpopu and scatterplot of unemployment against num-
ber of inhabitants SMSscapopu for population data

X8 D weight;

X9 D length:

Move the brush into the region of heavy cars. What can you say about price, mileage,
and length? Move the brush onto the high fuel economy. What are the differences
among the Japanese, European, and U.S. cars?

The so-called draftsman plot is a matrix consisting of all pairwise scatterplots.
Clearly, the matrix is symmetric and hence we display also estimated density
contour plots in the upper right part of the scatterplot matrix in Fig. 1.10.

The heaviest cars in Fig. 1.10 are all American, and any of these cars are
characterized by high values of price, mileage, and length. Europeans and Japanese
prefer smaller, more economical cars.

Exercise 1.19 What is the form of a scatterplot of two independent normal random
variables X1 and X2?

The standard normal point cloud in 2D space, see the plots in Fig. 1.11, seems
to have a circular shape and the density of observations is highest in the center of
the circle. This corresponds to the density of two-dimensional normal distribution
which is discussed in Härdle and Simar (2015, Chap. 5).

Exercise 1.20 Rotate a three-dimensional standard normal point cloud in 3D
space. Does it “almost look the same from all sides”? Can you explain why or
why not?

http://www.quantlet.de/codes/sms/SMSandcurpopu.html
http://www.quantlet.de/codes/sms/SMSscapopu.html
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Fig. 1.10 Draftsman plot and density contour plots for the car data. In scatterplots, the
squares mark U.S. cars, the triangles mark Japanese cars, and the circles mark European cars.

SMSdrafcar

The standard normal point cloud in 3D space, see Fig. 1.12, looks almost the
same from all sides, because it is a realization of random variables whose variances
are equal and whose covariances are zero.

The density of points corresponds to the density of a three-dimensional normal
distribution which has spherical shape. Looking at the sphere from any point of
view, the cloud of points always has a circular (spherical) shape.

http://www.quantlet.de/codes/sms/SMSdrafcar.html
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Fig. 1.11 A 2D scatterplot with contours of the kernel density estimator and hexagon plot of the
standard normal distributed data (300 observations). SMSscanorm2
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Fig. 1.12 A 3D scatterplot of the standard normal distributed data (300 observations).
SMSscanorm3
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Part II
Multivariate Random Variables



Chapter 2
A Short Excursion into Matrix Algebra

Dirty-looking rascals, but I suppose every one has some little immortal spark concealed
about him.
Sherlock Holmes in “The Sign of Four”

In statistics, data sets mostly come in matrix form and the characteristics of the
data can be written in terms of matrix operations. Understanding matrix algebra
is crucial for investigating the properties of the observed data, see, e.g., Searle
(1982), Lütkepohl (1996), Harville (1997, 2001), Seber (2008), or Puntanen, Styan,
& Isotalo (2011).

The importance of matrix algebra lies in a great simplification of many math-
ematical formulas and derivations. The spectral decomposition is one of the most
commonly used tools in multivariate statistics because it allows a nice representation
of large dimensional matrices in terms of their eigenvalues and eigenvectors.

Calculation of the determinant of partitioned matrices helps us in calculating
constrained maximum likelihood estimators and testing of hypothesis. Properties of
projection matrices are useful in least squares regression analysis, and iso-distance
ellipsoids help us to understand covariance structures.

Exercise 2.1 Compute the determinant for a .3 � 3/ matrix.

For a square matrix A, the determinant is defined as:

det.A/ D jAj D
X

.�1/j� j a1�.1/ : : : ap�.p/;

the summation is over all permutations � of f1; 2; : : : ; pg, and .�1/j� j denotes
the sign of the permutation � . For a three-dimensional matrix A3�3 D faijg, the
determinant of A becomes

jAj D a11a22a33 C a12a23a31 C a13a21a32 � a31a22a13 � a32a23a11 � a33a21a12:

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_2
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In terms of the eigenvalues 1, 2, and 3, the determinant can be written as jAj D
123.

Exercise 2.2 Suppose that jAj D 0. Is it possible that all eigenvalues of A are
positive?

Given An�n, the eigenvalues i, for i D 1; : : : ; n are the roots of the polynomial

jA � Ij D 0: (2.1)

If jAj D 0, then one of the solutions of (2.1) is  D 0. Hence, if jAj D 0, then there
exists at least one eigenvalue such that i D 0.

Exercise 2.3 Suppose that all eigenvalues of some (square) matrix A are different
from zero. Does the inverse A�1 of A exist?

The fact that all eigenvalues are different from zero implies that also the
determinant jAj D Q

i i ¤ 0 and the inverse matrix A�1 can be calculated as
A�1 D jAj�1C, where C is the so-called adjoint matrix of A, see the introductory
section on terminology for more details.

Exercise 2.4 Write a program that calculates the spectral decomposition of the
matrix

A D
0

@

1 2 3

2 1 2

3 2 1

1

A :

Check the properties of the spectral decomposition numerically, i.e., calculate jAj
as in Exercise 2.1 and check that it is equal to 123.

We obtain the following matrix of eigenvectors

� D .�1; �3; �3/ D
0

@

0:3645 0:6059 �0:7071
�0:8569 0:5155 0:0000

0:3645 0:6059 0:7071

1

A

and the following eigenvalues

� D
0

@

�0:7016 0:0000 0:0000

0:0000 5:7016 0:0000

0:0000 0:0000 �2:0000

1

A :

Now it can be easily verified that ��� > D A, � >� D I, tr.A/ D 1 C 2 C 3,
jAj D 123, etc. SMSjordandec

Exercise 2.5 Suppose that a is a .p � 1/ vector and that A is a .p � p/ symmetric

matrix and prove that @a>x
@x D a, @x>Ax

@x D 2Ax, and @2x>Ax
@x@x>

D @2Ax
@x D 2A.

http://www.quantlet.de/codes/sms/SMSjordandec.html
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Recall the gradient vector definition from the introductory section on terminol-
ogy. The kth element of the vector of partial derivatives @a>x

@x is equal to @a>x
@xk

D ak.
It follows immediately that

@a>x

@x
D a:

Similarly, differentiating

@x>Ax

@x
D
@
�
Pp

iD1
Pp

jD1 aijxixj

�

@x

with respect to xk gives

@.:/

@xk
D @akkx2k

@xk
C @

P

i6Dk aikxixk

@xk
C @

P

j6Dk akjxkxj

@xk
D 2

p
X

jD1
akjxj;

which is just the kth element of vector 2Ax.
Using the above two properties, we have the following for the last formula

@2x>Ax

@x@x> D @2Ax

@x> D 2A:

Exercise 2.6 Show that a projection (idempotent) matrix has eigenvalues only in
the set f0; 1g.

A is a projection matrix if A D A2 D A>. Let i be an eigenvalue of A and �i

its corresponding eigenvector:

A�i D i�i

A2�i D iA�i

A�i D iA�i

A�i D 2i �i

i�i D 2i �i

i D 2i :

It is obvious that i D 2i only if i is equal to 1 or 0.

Exercise 2.7 Draw some iso-distance ellipsoids fx 2 R
pj.x � x0/>A.x � x0/ D d2g

for the metric A D ˙�1, where ˙ D
�

1 �

� 1

�

.
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The eigenvalues of ˙ are solutions to:

ˇ

ˇ

ˇ

ˇ

1 �  �

� 1 � 

ˇ

ˇ

ˇ

ˇ
D 0:

Hence, 1 D 1 C � and 2 D 1 � �. Notice, that the eigenvalues of matrix A
are equal to �1

1 and �1
2 . The eigenvector corresponding to 1 D 1 C � can be

computed from the system of linear equations:

�

1 �

� 1

��

x1
x2

�

D .1C �/

�

x1
x2

�

or

x1 C �x2 D x1 C �x1
�x1 C x2 D x2 C �x2

and thus x1 D x2. The first (standardized) eigenvector is

�1 D
�

1
ıp

2

1
ıp

2

�

:

The second eigenvector (orthogonal to �1) is

�2 D
�

1
ıp

2

�1ıp
2

�

:

The axes of the ellipsoid point in the directions provided by the eigenvectors. The
length of each axis is equal to d

p
i.

Four ellipses for varying values of d and � are plotted in Fig. 2.1. Please note that
the shape of the ellipsoid is in accordance with the correlation �.

Exercise 2.8 Find a formula for jA C aa>j and for .A C aa>/�1:

We define matrix B D
�

1 �a>
a A

�

and apply the formulas for determinant and

inverse of a partitioned matrix. The determinant of B can be written in two ways as

jBj D j1jjA C aa>j (2.2)

jBj D jAjj1C a>A�1aj: (2.3)

Comparing (2.2) and (2.3) implies that

jA C aa>j D jAjj1C a>A�1aj:
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Fig. 2.1 Ellipses for varying � and d. SMSellipse

Next, using the formula for inverse of the partitioned matrix B, we obtain

.A C aa>/�1 D A�1 � A�1aa>A�1

1C a>A�1a
:

This result will prove to be useful in the derivation of the variance efficient portfolios
discussed in Exercises 19.1 and 19.3.

Exercise 2.9 Prove the binomial inverse theorem for two non-singular matrices
A.p � p/ and B.p � p/: .A C B/�1 D A�1 � A�1.A�1 C B�1/�1A�1:

http://www.quantlet.de/codes/sms/SMSellipse.html
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Let us define C D
� A Ip

�Ip B�1
�

: Considering the formula for the inverse of a

partitioned matrix, the submatrix C11 of C�1 can be obtained in two ways:

C11 D .A C IBI/�1

D .A C B/�1 (2.4)

C11 D A�1 C A�1I.B�1 � IA�1I/�1IA�1

D A�1 � A�1.A�1 C B�1/�1A�1: (2.5)

Comparing expressions (2.4) and (2.5) proves the binomial inverse theorem.



Chapter 3
Moving to Higher Dimensions

At first it was but a lurid spark upon the stone pavement. Then it lengthened out until it
became a yellow line, and then without any warning or sound, a gash seemed to open and a
hand appeared, . . .
“The Red-Headed League”

The basic tool used for investigating dependencies between the ith and jth
components of a random vector X is the covariance

�XiXj D Cov.Xi;Xj/ D E.XiXj/� .E Xi/.E Xj/:

From a data set, the covariance between the ith and jth columns can be estimated as

sXiXj D 1

n

n
X

kD1
.xik � Nxi/.xjk � Nxj/:

The covariance tells us how one variable depends linearly on another variable.
The concept of covariance and correlation is therefore strongly tied to linear
statistical modeling. The significance of correlation is measured via Fisher’s Z-
transformation, and the fit of regression lines is judged by the coefficient of
determination. The analysis of variance (ANOVA) decomposition helps us under-
stand certain types of linear models.

We discuss here linear models for a marketing example (the sales of classic blue
pullovers) and study theoretical properties of covariance and correlation. The least
squares method is revisited and analyzed with analytical tools.

ANOVA can be seen as a special case of the linear model with an appropriately
selected design matrix. Similarly, the test of the ANOVA hypothesis of the equality
of mean effects in more treatment groups can be seen as a special case of an F-test
in the linear model formulation.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_3
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Fig. 3.1 Scatterplot of variables X4 vs. X5 of the entire bank data set. SMSscabank45

Exercise 3.1 The covariance sX4X5 between X4 and X5 for the entire bank data set is
positive. Given the definitions of X4 and X5, we would expect a negative covariance.
Using Fig. 3.1 can you explain why sX4X5 is positive?

Variables X4 and X5 are defined as the distance of the inner frame to the lower or
upper border, respectively. In general, small deviations in the position of the center
picture would lead to negative dependencies between variables X4 and X5.

Surprisingly, the empirical covariance is equal to 0:16.
An explanation is shown in Fig. 3.1. We observe in fact two clouds of points,

the counterfeit and the genuine banknotes. The relationship between X4 and X5 is
negative inside these groups. The calculation of the empirical covariance ignores
this information and it is confused by the relative position of these two groups of
observations.

Exercise 3.2 Consider the two sub-clouds of counterfeit and genuine bank notes
in Fig. 3.1 separately. Do you still expect sX4X5 (now calculated separately for each
cloud) to be positive?

Considering the covariance of X4 and X5 for the full bank data set gives a result
which does not have any meaningful interpretation. As expected, the covariances

http://www.quantlet.de/codes/sms/SMSscabank45.html
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for the first hundred observations (�0:26) and for the second hundred observations
(�0:49) are negative.

Exercise 3.3 It is well known that for two normal random variables, zero covari-
ance implies independence. Why does this not apply to the following situation:
X � N.0; 1/, Cov.X;X2/ D E X3 � E X E X2 D 0 � 0 D 0 but obviously X2 is
totally dependent on X?

It is easy to show that independence of two random variables implies zero
covariance:

Cov.X;Y/ D E.XY/ � E X E Y
ind.D E X E Y � E X E Y D 0:

The opposite is true only if X and Y are jointly normally distributed which can be
checked by calculating the joint density and the product of the marginals.

From above we see that, for standard normally distributed random variable X, we
have Cov.X;X2/ D 0. In this example, zero covariance does not imply independence
since the random variable X2 is not normally distributed.

Exercise 3.4 Compute the covariance between the variables

X2 D miles per gallon,

X8 D weight

from the car data set (Appendix A.4). What sign do you expect the covariance to
have?

The empirical covariance is �3732. It is negative as expected since heavier
cars tend to consume more gasoline and this leads to lower mileage. The negative
covariance corresponds to a negative slope that could be observed in a scatterplot.

It is very difficult to judge the strength of the dependency between weight
and mileage on the basis of the covariance. A more appropriate measure is the
correlation which is a scale independent version of the covariance.

Correlation lies always between �1 and 1. Values close to 1 or �1 indicate strong
positive or negative relationship, respectively. Correlation rX2X8 D �0:823 between
weight and mileage suggests rather strong negative relationship. Using Fisher’s Z-
transformation, we can prove the statistical significance of rX2X8 , see Härdle and
Simar (2015, Example 3.5).

Exercise 3.5 Compute the correlation matrix of the variables in “classic blue”
pullover data set (Appendix A.6). Comment on the sign of the correlations and test
the hypothesis

�X1X2 D 0:
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The correlation matrix is

R D

0

B

B

@

1:000 �0:168 0:867 0:633

�0:168 1:000 0:121 �0:464
0:867 0:121 1:000 0:308

0:633 �0:464 0:308 1:000

1

C

C

A

:

The correlation rX1X2 D �0:168 says that the relationship between sales and prices
is negative as predicted by the economic theory. On the other hand, we observe
positive correlation of sales with advertisement and presence of a sale assistant
which suggests that investments in advertisement and sale assistants increase the
sales.

Using the Fisher Z-transformation and standardizing the transformed value, we
obtain the value z D �0:4477 and hence we cannot reject the null hypothesis H0 W
� D 0 since this is a nonsignificant value.

Considering the small sample size, n D 10, we can improve the test using
Hotelling’s transformation

w� D w � 3w C tanh.w/

4.n � 1/ D �0:1504

which is also nonsignificant since �0:1504p
n � 1 D �0:4513 2 .�1:96; 1:96/.

Exercise 3.6 Suppose you have observed a set of observations fxign
iD1 with Nx D 0,

sXX D 1 and n�1Pn
iD1.xi � Nx/3 D 0. Define the variable yi D x2i . Can you

immediately tell whether rXY ¤ 0?

Plugging yi D x2i into the following formula for calculating the empirical
covariance

sXY D 1

n

n
X

iD1
xiyi � NxNy

we obtain

sXY D sXX2 D 1

n

n
X

iD1
x2i xi � NyNx D 1

n

n
X

iD1
x3i D 1

n

n
X

iD1
.x3i � Nx/ D 0:

We remark that this calculation holds for any finite value of sXX .

Exercise 3.7 Find the values Ǫ and Ǒ that minimize the sum of squares

n
X

iD1
.yi � ˛ � ˇxi/

2 (3.1)
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The values Ǫ and Ǒ are actually estimates of an intercept and a slope, respectively,
of a regression line fitted to data f.xi; yi/gn

iD1 by the least squares method. More
formally, the estimators can be expressed as

. Ǫ ; Ǒ/ D arg min
.˛;ˇ/

n
X

iD1
.yi � ˛ � ˇxi/

2:

One has to understand that Ǫ and Ǒ are random variables since they can be expressed
as functions of random observations xi and yi. Random variables Ǫ and Ǒ are called
estimators of the true unknown (fixed) parameters ˛ and ˇ.

The estimators can be obtained by differentiating the sum of squares (3.1) with
respect to ˛ and ˇ and by looking for a zero point of the derivative. We obtain

@
Pn

iD1.yi � ˛ � ˇxi/
2

@˛
D �2

n
X

iD1
.yi � ˛ � ˇxi/ D 0; (3.2)

˛ D n�1
n
X

iD1
yi � n�1ˇ

n
X

iD1
xi; (3.3)

and

@
Pn

iD1.yi � ˛ � ˇxi/
2

@̌
D �2

n
X

iD1
.yi � ˛ � ˇxi/xi D 0: (3.4)

Substituting for ˛ leads to

0 D
n
X

iD1
yixi � n�1

n
X

iD1
yi

n
X

iD1
xi C n�1ˇ

 

n
X

iD1
xi

!2

� ˇ

n
X

iD1
x2i :

Solving the above equation in ˇ gives the following estimate

ˇ D n�1Pn
iD1 yi

Pn
iD1 xi �Pn

iD1 yixi

n�1 �Pn
iD1 xi

	2 �Pn
iD1 x2i

D
Pn

iD1 yixi � n�1Pn
iD1 yi

Pn
iD1 xi

Pn
iD1 x2i � n�1 �Pn

iD1 xi
	2

D
Pn

iD1 yixi � nNyNx
Pn

iD1 x2i � nNx2

D sXY

sXX
:

Hence, the sum of squares is minimized for ˛ D Ǫ D Ny � ǑNx and ˇ D Ǒ D sXY
sXX

.
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Exercise 3.8 How many sales does the textile manager expect with a “classic blue”
pullover price of x D 120?

The least squares estimates of the intercept and slope are

Ǫ D 210:774 and Ǒ D �0:364

and the estimated linear regression model can be written as

Sales D 210:774� 0:364 � Price C ":

Plugging in the pullover price 120 leads to expected sales equal to 210:774�0:364�
120 D 167:094. This value can be interpreted also as the conditional expected value
of the random variable “sales” conditioned on the event {price D 120}.

Exercise 3.9 What does a scatterplot of two random variables look like for r2 D 1

and r2 D 0?

The coefficient of determination, r2 is defined as

r2 D
Pn

iD1.Oyi � Ny/2
Pn

iD1.yi � Ny/2 ;

i.e., it is a ratio of the explained sum of squares and the total sum of squares. The
coefficient r2 is equal to one only if the numerator and denominator are equal. Now,
the decomposition of the total sum of squares

n
X

iD1
.yi � Ny/2 D

n
X

iD1
.yi � Oyi/

2 C
n
X

iD1
.Oyi � Ny/2 (3.5)

implies that this can happen only if the first term on the right-hand side of (3.5) is
equal to zero, i.e., if yi D Oyi for all 1 � i � n. Hence, r2 D 1 if and only if all yi’s
plotted as a function of the corresponding xi’s are lying on a straight line.

Similarly, we can see that r2 D 0 only if
Pn

iD1.Oyi � Ny/2 D 0. This can happen
only if all Oyi’s are equal to each other. In other words, this happens if we do not
observe any trend in the scatterplot of yi’s plotted against the xi’s.

Interestingly, observations lying on a straight horizontal line satisfy both of the
above conditions. Closer look at the definition of the coefficient of determination
reveals that in this case, it is not defined.

Exercise 3.10 Prove the variance decomposition (3.5) and show that the coefficient
of determination is the square of the simple correlation between X and Y.
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First, as

n
X

iD1
.yi � Ny/2 D

n
X

iD1
.yi � Oyi C Oyi � Ny/2

D
n
X

iD1
.Oyi � Ny/2 C

n
X

iD1
.yi � Oyi/

2 C 2

n
X

iD1
.Oyi � Ny/.yi � Oyi/;

it is enough to show that the last term on the right-hand side is equal to zero. This
follows immediately from the first order conditions (3.2) and (3.4) once we rewrite
the expression a bit:

n
X

iD1
.Oyi � Ny/.yi � Oyi/ D

n
X

iD1
.Oa � Ny/.yi � Oa � Obxi/C

n
X

iD1
Obxi.yi � Oa � Obxi/:

Note that it implies NOy D Ny and
Pn

iD1 xi.yi � Oyi/ D 0.
Next, we shall prove that r2 D r2XY , i.e.,

n
P

iD1
.Oyi � Ny/2

n
P

iD1
.yi � Ny/2

D

�

n
P

iD1
.yi � Ny/.xi � Nx/

�2

n
P

iD1
.yi � Ny/2

n
P

iD1
.xi � Nx/2

:

Using the conclusions reached above, this reduces to

1 D

�

n
P

iD1
.Oyi � NOy/.xi � Nx/

� 2

n
P

iD1
.Oyi � NOy/2

n
P

iD1
.xi � Nx/2

D r2OYX
:

This holds by definition since Oyi D Ǫ C Ǒxi, i D 1 : : : ; n, is a linear function of xi.

Exercise 3.11 Make a boxplot for the residuals "i D yi � Ǫ � Ǒxi for the “classic
blue” pullover data (Appendix A.6). If there are outliers, identify them and run the
linear regression again without them. Do you obtain a stronger influence of price
on sales?

The boxplot of the residuals "i is plotted in the right graphics in Fig. 3.2. The
left graphics in Fig. 3.2 shows the dependency of pullover sales on the price, the
regression with the outliers (dashed line) and the regression without the outliers
(full line). The two outliers are marked by red triangles. Performing the regression
without the outliers shows evidence for stronger influence of price on sales.
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Fig. 3.2 Linear regression (dashed black line) and the corrected linear regression without outliers
(full blue line). The second graph shows a boxplot of the residuals. SMSlinregpull

In this case, the influence of the outliers on the regression line does not seem
to be too large. Deleting only one of the outliers would lead to much different
results. Moreover, such an outlier might influence the regression line so that it is
not detectable using only the residuals.

Exercise 3.12 Under what circumstances would you obtain the same coefficients
from the linear regression lines of Y on X and of X on Y?

Let us recall the formulas derived in Exercise 3.7:

Ǫ D Ny � ǑNx and Ǒ D sXY

sXX
:

From the formula for the slope of the regression line, Ǒ, it follows that the slopes
are identical if the variances of X and Y are equal, sXX D sYY , or if the covariance
between X and Y is equal to zero, sXY D 0.

If the slopes are equal, then it is obvious from the formula for the intercept of the
regression line Ǫ that the intercepts are equal if and only if the means of X and Y are
the same.

Exercise 3.13 Compute an approximate confidence interval for the correlation
coefficient �X4X1 between the presence of the sales assistants (X4) and the number
of sold pullovers (X1). Hint: start from a confidence interval for tanh�1.�X4X1 / and
then apply the inverse transformation.

The estimate of the correlation is rX4X1 D 0:633. In order to calculate the
approximate confidence interval, we can apply the Fisher’s Z-transformation

W D tanh�1.rX4X1 / D 1

2
log

�

1C rX4X1

1� rX4X1

�

http://www.quantlet.de/codes/sms/SMSlinregpull.html
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which has approximately a normal distribution with the expected value E W D
1
2

logf.1 C �X4X1/=.1 � �X4X1/g and the variance Var W D 1=.n � 3/, see Härdle
and Simar (2015, Theorem 3.2).

Hence, with tanh.x/ D .e2x � 1/=.e2x C 1/:

1 � ˛ � P
�

jpn � 3ftanh�1.rX4X1 /� tanh�1.�X4X1/gj � ˆ�1.1 � ˛=2/
�

D P

��

tanh�1.rX4X1/˙ ˆ�1.1 � ˛=2/p
n � 3

�

3 tanh�1.�X4X1 /

�

D P

�

tanh

�

tanh�1.rX4X1/˙ ˆ�1.1 � ˛=2/p
n � 3

�

3 �X4X1

�

and we can say that the (random) interval

�

tanh

�

tanh�1.rX4X1 /˙ ˆ�1.1 � ˛=2/p
n � 3

��

covers the unknown value of the true correlation coefficient �X4X1 with probability
approximately 1 � ˛.

For our example, we choose ˛ D 0:05 which implies that ˆ�1.1 � ˛=2/ D 1:96

and with rX4X1 D 0:633 and n D 10, we obtain the approximate 95 % confidence
interval .0:0055; 0:9028/.

Exercise 3.14 Using the exchange rate of 1 EUR D 106 JPY, compute the empirical
covariance between pullover sales and prices in Japanese Yen rather than in EUR.
Is there a significant difference? Why?

The covariance is sEUR
X1X2

D �80:02 in EUR and sJPY
X1X2

D �8482:14 in Japanese
Yen. The difference is caused entirely by the change of scale. The covariance in Yen
can be expressed from the covariance in EUR as

sJPY
X1X2 D sEUR

X1X2 � 106 D �80:02 � 106 D �8482:12:

The remaining small difference 0:02 is due to the rounding error.
Notice that the calculation would look differently for covariance between the

price (X2) and advertisement cost (X3) since

sJPY
X2X3

D sEUR
X1X2

� 1062:

Here, we change the scale of both variables by factor 106 and, hence, we have to
multiply the covariance by 1062.
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Exercise 3.15 Why does the correlation have the same sign as the covariance?

The correlation is defined as

�XY D Cov.X;Y/
p

Var.X/Var.Y/

and the denominator
p

Var.X/Var.Y/ is a nonnegative quantity. Hence, the corre-
lation is equal to the covariance multiplied by a positive constant. Notice that the
correlation is defined only if the variances of X and Y are greater than 0.

Exercise 3.16 Show that rank.H/ D tr.H/ D n � 1, where H D In � n�11n1
>
n is

the so-called centering matrix.

The centering matrix H has dimension n � n and its diagonal elements are hii D
n�1

n , i D 1; : : : ; n. Hence, tr.H/ D Pn
iD1 hii D n n�1

n D n � 1.
Notice that HH D .In � n�11n1

>
n /.In � n�11n1

>
n / D In � 2n�11n1

>
n C

n�2n1n1
>
n D H. This means that the matrix H is idempotent which implies that

its eigenvalues, i, i D 1; : : : ; n can be only 0 or 1, see Exercise 2.6. The rank of
the centering matrix H is equal to the number of nonzero eigenvalues, i.e., to the
number of eigenvalues which are equal to 1. Now, using the fact that the trace of a
matrix is equal to the sum of its eigenvalues, we can write

rank.H/ D
n
X

iD1
i D tr.H/ D n � 1:

Exercise 3.17 Define X� D HXD�1=2, where X is a .n � p/ matrix, H is
the centering matrix, and D�1=2 D diag.s�1=2

11 ; : : : ; s�1=2
pp /. Show that X� is the

standardized data matrix, i.e., Nx� D 0p and SX�
D RX , the correlation matrix

of X .

The vector of means, Nx�, can be expressed as

Nx� D 1>
n X�=n

D 1>
n HXD�1=2=n

D 1>
n .In � n�11n1

>
n /XD�1=2=n

D .1>
n � 1>

n n�11n1
>
n /XD�1=2=n

D .1>
n � 1>

n /XD�1=2=n

D 0p:
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Similarly, we have for the variance matrix, SX�
, of X� that

SX�
D Var.HXD�1=2/

D Var.InXD�1=2/C Var.n�11n1
>
n /XD�1=2

D D�1=2 Var.X /D�1=2

D D�1=2SXD�1=2

D RX :

Closer inspection of the above formulas reveals that multiplication from the left
by the centering matrix H subtracts the column means, whereas the multiplication
from the right by the matrix D�1=2 divides each column by the estimated standard
deviation.

Exercise 3.18 Compute for the pullover data (Appendix A.6) the regression of X1
on X2;X3 and of X1 on X2;X4. Which one has the better coefficient of determination?

Performing the calculation in any statistical software leads to coefficients of
determination r2X2;X3 D 0:8276 and r2X2;X4 D 0:4207. A better coefficient of
determination is achieved by the regression of sales (X1) on price and advertisement
cost (X2 and X3).

From the following output for dependency on price and advertisement cost,
we see that the parameter corresponding to advertisement cost (X3), denoted by
Advertisement in the computer output, is highly significant.

Call:

lm(formula = Sales ~ Price + Advertisement, data = pullover)

Residuals:

Min 1Q Median 3Q Max

-12.836 -9.023 -5.423 2.817 32.684

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 176.69193 36.50781 4.840 0.001878 **
Price -0.60125 0.34343 -1.751 0.123462

Advertisement 0.56634 0.09941 5.697 0.000737 ***
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.98 on 7 degrees of freedom

Multiple R-squared: 0.8276,Adjusted R-squared: 0.7783

F-statistic: 16.8 on 2 and 7 DF, p-value: 0.002128

SMSdeterpull

http://www.quantlet.de/codes/sms/SMSdeterpull.html
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Exercise 3.19 Compare for the pullover data the coefficient of determination for
the regression of X1 on X2, of X1 on X2;X3 (Exercise 3.18), and of X1 on X2;X3;X4.
Observe that the coefficient of determination is increasing with the number of
predictor variables. Is this always the case?

The coefficients of determination for the models are: r2X2 D 0:02808, r2X2;X3 D
0:82758, and r2X2;X3;X4 D 0:90671.

The coefficient of determination is defined as the ratio of the explained and total
variation. Including more variables in the model has no effect on the total variation
(of the dependent variable) and cannot decrease the explained variation. Hence,
adding more variables cannot decrease the coefficient of determination.

SMSdete2pull

Exercise 3.20 A company decides to compare the effect of three marketing strate-
gies

1. advertisement in local newspaper,
2. presence of sales assistant,
3. special presentation in shop windows,

on the sales of their portfolio in 30 shops. The 30 shops were divided into
3 groups of 10 shops. The sales using the strategies 1, 2, and 3 were y1 D
.9; 11; 10; 12; 7; 11; 12; 10; 11; 13/>, y2 D .10; 15; 11; 15; 15; 13; 7; 15; 13; 10/>,
and y3 D .18; 14; 17; 9; 14; 17; 16; 14; 17; 15/>, respectively. Define xi as the index
of the shop, i.e., xi D i; i D 1; 2; : : : ; 30. Using this notation, the null hypothesis
corresponds to a constant regression line, E Y D �. What does the alternative
hypothesis involving a regression curve look like?

There are p D 3 factors and n D 30 observations in the data set. The company
wants to know whether all three marketing strategies have the same effect or whether
there is a difference. The null hypothesis is H0 W �1 D �2 D �3 and the alternative
hypothesis is H1 W �l ¤ �l0 for some l and l0. The standard approach to this problem
is the ANOVA technique which leads to an F-test.

In this exercise, we use an alternative and in fact equivalent approach based on the
regression model. The null hypothesis can be tested in a regression model that has
explanatory variables defined as z2i D I.xi 2 .11; 20// and z3i D I.xi 2 .21; 30//.
These two variables now allow to describe the difference in sales due to the
marketing strategies.

The regression model can be written as

0

@

y1
y2
y3

1

A D
0

@

110 010 010
110 110 010
110 010 110

1

A

0

@

ˇ1
ˇ2
ˇ3

1

AC ":

Here, the regression curve corresponding to the alternative hypothesis in the
ANOVA model looks like three horizontal lines, each of them corresponding to one
marketing strategy.

http://www.quantlet.de/codes/sms/SMSdete2pull.html
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The F-test for testing the null hypothesis H0 W ˇ2 D ˇ3 D 0 corresponds to
the test of the null hypothesis that the effect of the three marketing strategies is the
same.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 2 102.6 51.300 8.7831 0.001153 **
Residuals 27 157.7 5.841

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.6000 0.7642 13.870 8.44e-14 ***
x2 1.8000 1.0808 1.665 0.107392

x3 4.5000 1.0808 4.164 0.000287 ***
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.417 on 27 degrees of freedom

Multiple R-squared: 0.3942,Adjusted R-squared: 0.3493

F-statistic: 8.783 on 2 and 27 DF, p-value: 0.001153

SMSanovapull
The above computer output shows that the value of the F-statistic for our null

hypothesis is 8:783, the corresponding p-value is smaller than 0.05. Thus, on the
usual confidence level 95 %, the null hypothesis is rejected.

The computer output also contains the mean sales of all three marketing
strategies. The mean sales for the first marketing strategy were 10:6, for the second
strategy 10:6C 1:8 D 12:4, and for the third strategy 10:6C 4:5 D 15:1.

Exercise 3.21 Perform the test in Exercise 3.20 for the shop example with a 0:99
significance level. Do you still reject the hypothesis of equal marketing strategies?

From the p-value (0.0012), we can immediately tell that the null hypothesis is
rejected also on the 0:99 significance level.

Exercise 3.22 Consider the ANOVA problem from Exercise 3.20 again. Establish
the constraint matrix A for testing H0 W �1 D �2 against H1 W �1 ¤ �2 and test the
hypothesis.

Using the notation � D .�1; �2; �3/
>, where �i denotes mean sales for the i-

th strategy, and the constraint matrix A D .1;�1; 0/>, the null hypothesis H0 W
�1 D �2 can be expressed in the following form: H0 W A>� D 0. Formally, the test
can be performed by comparing the sum of squares under the null and alternative

http://www.quantlet.de/codes/sms/SMSanovapull.html
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hypothesis. Under the null hypothesis, the F-statistics

F D fjjy � X Ǒ
H0 jj2 � jjy � X Ǒ

H1 jj2g=r

jjy � X Ǒ
H1 jj2=.n � r/

(3.6)

has F-distribution with r and n�r degrees of freedom, where r denotes the difference
in the number of parameters of the null and alternative linear model.

In our testing problem, the F-statistics, 2:77, is smaller than the appropriate
critical value F0:95I1;27 D 4:21. The null hypothesis is not rejected at a 0:95
significance level and we can say that the difference between the effect of the first
and the second marketing strategy is not statistically significant.

Exercise 3.23 The linear model can be written as

Y D Xˇ C "; (3.7)

where X is of full rank and " are the random errors. Show that the least squares
solution,

Ǒ D arg min
ˇ
.Y � Xˇ/>.Y � Xˇ/ D arg min

ˇ
">"; (3.8)

can be expressed as Ǒ D .X>X /�1X>Y.

We define the function f .ˇ/ D .Y � Xˇ/>.Y � Xˇ/, i.e.,

f .ˇ/ D Y>Y � 2ˇ>X>Y C ˇ>X>Xˇ:

The minimum of f .ˇ/ can be found by searching for the zero of its derivative

@f .ˇ/

@̌
D @Y>Y � 2ˇ>X>Y C ˇ>X>Xˇ

@̌
D �2X>Y C 2X>Xˇ D 0:

It follows that the solution, Ǒ, has to satisfy Ǒ D .X>X /�1X>Y.
Let us now verify that we have found the minimum by calculating the second

derivative of the function f .ˇ/ in the point Ǒ:

@2f .ˇ/

@̌ @̌ > D @.�2X>Y C 2X>Xˇ/
@̌

D 2X>X :

The matrix X has full rank, therefore the matrix X>X is positive definite and,
hence, Ǒ is indeed the location of the minimum of the residual square function f .ˇ/.
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Exercise 3.24 Consider the linear model Y D Xˇ C " where the estimator Ǒ D
arg min

ˇ
">" is subject to the linear constraint A Ǒ D a, where A.q � p/; .q � p/ is

of rank q and a is of dimension .q � 1/.
Show that

Ǒ D Ǒ
OLS � .X>X /�1A> ˚A.X>X /�1A>
�1 �A Ǒ

OLS � a
�

where Ǒ
OLS D .X>X /�1X>Y is the unconstrained (ordinary) least squares

estimator.

Similarly, as in the previous exercise, we define

f .ˇ; / D .Y � Xˇ/>.Y � Xˇ/ � >.Aˇ � a/;

where  2 R
q and solve the system of equations:

@f .ˇ; /

@̌
D 0

@f .ˇ; /

@
D 0:

Evaluating the derivatives, we obtain the system of equations:

@f .ˇ; /

@̌
D �2X>Y C 2X>X Ǒ � A> O D 0; (3.9)

@f .ˇ; /

@
D �.A Ǒ � a/ D 0:

Rearranging (3.9) with respect to Ǒ leads to

Ǒ D .X>X /�1X>Y C 1

2
.X>X /�1A> O; (3.10)

A Ǒ D A Ǒ
OLS C 1

2
A.X>X /�1A> O: (3.11)

Next, rearranging (3.11) with respect to O implies that

O D 2
˚A.X>X /�1A>
�1 �

a � A Ǒ
OLS

�

: (3.12)

Plugging (3.12) in (3.10) finally leads to the desired formula

Ǒ D Ǒ
OLS � .X>X /�1A> ˚A.X>X /�1A>
�1 �A Ǒ

OLS � a
�

:
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Exercise 3.25 Compute the covariance matrix S D Cov.X / where X denotes the
matrix of observations on the counterfeit bank notes. Make a spectral decomposition
of S. Why are all of the eigenvalues positive?

The covariance matrix of all 6 variables in the bank notes data set is

V D

0

B

B

B

B

B

B

B

@

0:142 0:031 0:023 �0:103 �0:019 0:084

0:031 0:130 0:108 0:216 0:105 �0:209
0:023 0:108 0:163 0:284 0:130 �0:240

�0:103 0:216 0:284 2:087 0:165 �1:037
�0:019 0:105 0:130 0:165 0:645 �0:550
0:084 �0:209 �0:240 �1:037 �0:550 1:328

1

C

C

C

C

C

C

C

A

:

The eigenvalues of V , .3:000; 0:936; 0:243; 0:195; 0:085; 0:036/ are, indeed, all
positive.

In general, the eigenvalues of any variance matrix are always nonnegative. This
property can be demonstrated by realizing that, for arbitrary vector a, we have for
the linear combination Xa that its variance Var.Xa/ D a> Var.X / a � 0. This
implies that any variance matrix is positive semidefinite and, hence, it cannot have
any negative eigenvalues. SMScovbank

Exercise 3.26 Compute the covariance of the counterfeit notes after they are
linearly transformed by the vector a D .1; 1; 1; 1; 1; 1/>.

The variance of the sum of all lengths for the counterfeit variables is Var.Xf a/ D
1:7423.

As explained in Exercise 3.25, the relation Var.Xf a/ D a> Var.Xf / a and the
nonnegativity of the variance imply the positive semidefiniteness of the variance
matrix VarXf . SMScovbank

http://www.quantlet.de/codes/sms/SMScovbank.html
http://www.quantlet.de/codes/sms/SMScovbank.html


Chapter 4
Multivariate Distributions

Individuals vary, but percentages remain constant. So says the statistician.
Sherlock Holmes in “The Sign of Four”

A random vector is a vector of random variables. A random vector X 2 R
p has

a multivariate cumulative distribution function (cdf) and a multivariate probability
density function (pdf). They are defined as:

FX.x/ D P.X � x/

D P.X1 � x1;X2 � x2; : : : ;Xp � xp/

D
1
Z

�1
: : :

1
Z

�1
fX.x1; x2; : : : ; xp/dx1dx2 : : : dxp;

and if the cdf FX.:/ is differentiable, the pdf fX.:/ is

fX.x/ D @pF.x/

@x1 : : : @xp
:

Important features that can be extracted from FX.:/ and fX.:/ are the mutual
dependencies of the elements of X, moments, and multivariate tail behavior.

In the multivariate context the first moment, the expected value, is a vector E X of
the same dimension p as X. The generalization of the one-dimensional variance to
the multivariate case leads to the .p � p/ covariance matrix ˙ D Var.x/ containing
the covariances of all pairs of components of X. Another important feature that
needs to be considered is the behavior of a random vector after it is (nonlinearly)
transformed and the conditional distribution given other elements of the random
vector.

In this chapter, we discuss a variety of exercises on moment and dependence
calculations. We also study in depth the characteristics of the cdf and pdf of the

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_4
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44 4 Multivariate Distributions

transformed random vectors. In particular, we present the CLT of transformed
statistics and calculate several examples for conditional distributions.

Exercise 4.1 Assume that the random vector Y has the following normal distribu-
tion: Y � Np.0; I/. Transform it to create X � N.�;˙/ with mean� D .3; 2/> and

˙ D
�

1

�1:5
�1:5
4

�

. How would you implement the resulting formula on a computer?

Let us consider the transformation

X D �C˙1=2Y:

We know that a linearly transformed normally distributed random vector is again
normally distributed. From the rules for the mean and variance matrix of the linearly
transformed random variable we know that E X D �C˙1=2 E Y D � and Var X D
˙1=2 Var Y.˙1=2/> D ˙ .

On a computer, the square root matrix ˙1=2 can be easily calculated from ˙

using spectral decomposition:

˙1=2 D
��0:38 0:92
0:92 0:38

��

4:62 0

0 0:38

�1=2 ��0:38 0:92
0:92 0:38

�

D
�

0:84 �0:54
�0:54 1:95

�

:

One then applies the above formula that linearly transforms Y into X.

Exercise 4.2 Prove that if X � Np.�;˙/, then the variable U D .X��/>˙�1.X�
�/ has a �2p distribution.

For a random vector X � Np.�;˙/ such that ˙ > 0, the p-dimensional random
vector

.Y1; : : : ;Yp/
> D Y D ˙�1=2.X � �/

has a multivariate normal distribution with mean vector E Y D 0p and covariance
matrix Var.Y/ D Ip, see Härdle and Simar (2015, Theorem 4.5).

The linear transformation ˙�1=2.X � �/ is called the Mahalanobis transforma-
tion.

Hence, the random variable

U D .X � �/>˙�1.X � �/ D Y>Y D
p
X

iD1
Y2i

is a sum of squares of independent random variables with standard normal distribu-
tion and therefore it has the �2p distribution.
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Exercise 4.3 Suppose that X has mean zero and covariance ˙ D
�

1
0
0
2

�

. Let Y D
X1 C X2. Write Y as a linear transformation, i.e., find the transformation matrix A.
Then compute Var.Y/.

Clearly,

Y D X1 C X2 D AX D .1; 1/

�

X1
X2

�

and Var.AX/ D Ef.AX�EAX/.AX�EAX/>g D AfE.X�E X/.X�E X/>gA> D
AVar.X/A>.

Hence,

Var.Y/ D A˙A> D .1; 1/ ˙

�

1

1

�

D .1; 1/

�

1 0

0 2

��

1

1

�

D 3

Another possibility is to write

Var.Y/ D Var .X1 C X2/ D Var.X1/C 2Cov.X1;X2/C Var.X2/ D 3:

Exercise 4.4 Calculate the mean and the variance of the estimator Ǒ D
.X>X /�1X>Y in a linear model Y D Xˇ C ", E " D 0n, Var."/ D �2In.

The estimate Ǒ D .X>X /�1X>Y of the unknown parameter ˇ in the linear
model has been derived in Exercise 3.23. It follows that

E Ǒ D .X>X /�1X> E Y D .X>X /�1X>.Xˇ C E "/ D ˇ

since we assume that E " D 0n.
For the variance we have

Var Ǒ D Varf.X>X /�1X>Yg
D .X>X /�1X> Var.Y/X .X>X /�1

D .X>X /�1X>�2InX .X>X /�1

D �2.X>X /�1;

where we used the assumption Var.Y/ D Var."/ D �2In.

Exercise 4.5 Compute the conditional moments E.X2 j x1/ and E.X1 j x2/ for the
two-dimensional pdf

f .x1; x2/ D
�
1
2
x1 C 3

2
x2 0 � x1; x2 � 1

0 otherwise
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The marginal densities of X1 and X2, for 0 � x1; x2 � 1, are

fX1 .x1/ D
Z 1

0

f .x1; x2/dx2 D
�

1

2
x1x2 C 3

4
x22

�1

0

D 1

2
x1 C 3

4

and

fX2.x2/ D
Z 1

0

f .x1; x2/dx1 D
�

1

4
x21 C 3

2
x1x2

�1

0

D 1

4
C 3

2
x2:

Now, the conditional expectations, for 0 � x1; x2 � 1, can be calculated as follows

E.X2jX1 D x1/ D
Z 1

0

x2f .x2jx1/dx2

D
Z 1

0

x2
f .x1; x2/

fX1 .x1/
dx2

D
Z 1

0

x2

 

1
2
x1 C 3

2
x2

1
2
x1 C 3

4

!

dx2

D
2

4

x1x22
4

C x32
2

3
4

C x1
2

3

5

1

0

D x1 C 2

3C 2x1

and

E.X1jX2 D x2/ D
Z 1

0

x1f .x1jx2/dx1

D
Z 1

0

x1
f .x1; x2/

fX2.x2/
dx1

D
Z

x1

 

1
2
x1 C 3

2
x2

3
2
x2 C 1

4

!

dx1

D
2

4

x31
6

C 3x21x2
4

1
4

C 3x2
2

3

5

1

0

D 2C 9x2
3C 18x2

:
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Exercise 4.6 Prove that E X2 D EfE.X2jX1/g, where E.X2jX1/ is the conditional
expectation of X2 given X1.

Since E.X2jX1 D x1/ is a function of x1, it is clear that E.X2jX1/ is a random
vector (function of random vector X1).

Assume that the random vector X D .X1;X2/> has the density f .x1; x2/. Then

EfE.X2jX1/g D
Z �Z

x2f .x2jx1/dx2

�

f .x1/dx1

D
Z �Z

x2
f .x2; x1/

f .x1/
dx2

�

f .x1/dx1 D
Z Z

x2f .x2; x1/dx2dx1

D E X2:

Exercise 4.7 Prove that

Var.X2/ D EfVar.X2jX1/g C VarfE.X2jX1/g: (4.1)

Hint: Note that VarfE.X2jX1/g D EfE.X2jX1/ E.X>
2 jX1/g � E.X2/ E.X>

2 / and that
EfVar.X2jX1/g D EfE.X2X>

2 jX1/� E.X2jX1/ E.X>
2 jX1/g:

Let us start with the right-hand side of the relation (4.1):

EfVar.X2jX1/g C VarfE.X2jX1/g
D EfE.X2X

>
2 jX1/� E.X2jX1/E.X>

2 jX1/g C EfE.X2jX1/E.X>
2 jX1/g

� E.X2/E.X>
2 /

D E.X2X
>
2 /� E.X2/E.X>

2 /

D Var.X2/:

Exercise 4.8 Compute the pdf of the random vector Y D AX with A D
�

1 1

1 �1
�

for the random vector X with the pdf:

fX.x/ D fX.x1; x2/ D
(

1
2
x1 C 3

2
x2 0 � x1; x2 � 1

0 otherwise:

The pdf of Y is given by

fY.y/ D abs.jJ j/fXfu.y/g;

where u.:/ is the inverse transformation, i.e., X D u.Y/, and where J is the Jacobian
of u.:/. In this case, X D u.Y/ D A�1Y D J Y.
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We solve y1 D x1 C x2 and y2 D x1 � x2 for x1 and x2:

x1 D u1.y1; y2/ D .y1 C y2/=2

x2 D u2.y1; y2/ D .y1 � y2/=2

and it follows that the Jacobian of u.:/ is

J D
 

@u1.y/
@y1

@u1.y/
@y2

@u2.y/
@y1

@u2.y/
@y2

!

D
�

1
2

1
2

1
2

� 1
2

�

:

Next, jJ j D � 1
2

and abs.jJ j/ D 1
2

and we obtain the density of the transformed
random vector Y,

fY.y/ D 1

2
fXfu.y/g D 1

2
fX

(
�
1
2

1
2

1
2

� 1
2

�
 

y1
y2

!)

D 1

2
fX

�

1

2
.y1 C y2/;

1

2
.y1 � y2/

�

for 0 � u1.y1; y2/; u2.y1; y2/ � 1 and fY.y/ D 0 otherwise.
Plugging in the pdf of X, we obtain

fY.y/ D
(

1
2



1
2
f 1
2
.y1 C y2/g C 3

2
f 1
2
.y1 � y2/g

�

0 � y1 ˙ y2 � 2;

0 otherwise

and, using simple algebra to determine the region for which the pdf fY.y/ is greater
than zero, we have finally

fY.y/ D
(

1
2
y1 � 1

4
y2 0 � y1 � 2; jy2j � 1 � j1 � y1j

0 otherwise:

Exercise 4.9 Show that the function

fY.y/ D
(

1
2
y1 � 1

4
y2 0 � y1 � 2; jy2j � 1 � j1 � y1j

0 otherwise

is a pdf.

The area for which the above function is nonzero is plotted in Fig. 4.1.
In order to verify that fY.y/ is a two-dimensional pdf, we have to check that it is

nonnegative and that it integrates to 1.
It is easy to see that the function fY.y/ is nonnegative inside the square plotted in

Fig. 4.1 since y1 � 0 and y1 � y2 implies that y1=2� y2=4 > 0.
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Fig. 4.1 The support of the
pdf fY.y1; y2/ given in
Exercise 4.9

�
y1

�
y2

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

−1

1

1 2

It remains to verify that the function fY.y/ integrates to one by calculating the
integral

Z

fY.y/dy

for which we easily obtain the following:

Z Z

fY.y1; y2/dy2dy1 D
1
Z

0

y1Z

�y1

fY.y/dy2dy1 C
2
Z

1

2�y1Z

y1�2
fY.y/dy2dy1

D
1
Z

0

y1
Z

�y1

�

1

2
y1 � 1

4
y2

�

dy2dy1C
2
Z

1

2�y1
Z

y1�2

�

1

2
y1 � 1

4
y2

�

dy2dy1

D
1
Z

0

�

1

2
y1y2 � 1

8
y22

�y1

�y1

dy1 C
2
Z

1

�

1

2
y1y2 � 1

8
y22

�2�y1

y1�2
dy1

D
1
Z

0

y21dy1 C
2
Z

1

�y21 C 2y1dy1

D
�

1

3
y31

�1

0

C
�

�1
3

y31 C y21

�2

1

D 1

3
C 2

3
D 1:
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Exercise 4.10 Determine the distribution of the random vector Y D AX with A D
�

1 1

1 �1
�

, where X D .X1;X2/> has two-dimensional standard normal distribution.

Show that the transformed random variables Y1 and Y2 are independent. Give a
geometrical interpretation of this result based on iso-distance curves.

The random vector Y has a two-dimensional normal distribution since it is
defined as a linear transformation of a normally distributed random vector.

The normal distribution is fully determined by its mean and covariance matrix
for which we have

E Y D EAX D AE X D A02 D 02

and

Var.Y/ D Var.AX/ D AVar.X/A> D AI2A> D AA> D
�

2 0

0 2

�

:

Thus Y1 and Y2 are uncorrelated and, for jointly normal random variables, zero
covariance implies independence.

The density of the random vector X,

fX.x1; x2/ D 1

2�
exp

�

1

2
.x1; x2/

�

x1
x2

��

;

is obviously constant on circles with center in .0; 0/> since its value changes only

when the value of the quadratic form .x1; x2/

�

x1
x2

�

D x21 C x22 changes. We remark

that a circle with diameter r is defined as a set of points x D .x1; x2/> 2 R
2

satisfying the equation x21 C x22 D r2.
The density of the transformed random vector Y is also constant on the circles,

but the distribution is more spread out. The transformation Y D AX corresponds to
the rotation and then multiplication by factor

p
2.

Exercise 4.11 Consider the Cauchy distribution which has no finite moment, so
that the CLT cannot be applied. Simulate the distribution of Nx (for different n’s).
What can you expect for n ! 1?

Hint: The Cauchy distribution can be simulated by the quotient of two indepen-
dent standard normally distributed random variables.

For the Cauchy distribution, the distribution of Nx is the same as the distribution
of X1. Thus, the sample mean cannot be used for statistical inference.

In the simulations, you can observe that increasing the sample size doesn’t
improve the behavior of the sample mean as an estimator of the expected value.
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Exercise 4.12 A European car company has tested a new model and reports the
consumption of gasoline (X1/ and oil (X2). The expected consumption of gasoline is
8 L per 100 km (�1) and the expected consumption of oil is 1 L per 10,000 km (�2).
The measured consumption of gasoline is 8.1 L per 100 km (Nx1) and the measured
consumption of oil is 1.1 L per 10,000 km (Nx2). The asymptotic distribution of

p
n

��Nx1
Nx2
�

�
�

�1

�2

��

is N

��

0

0

�

;

�

0:1 0:05

0:05 0:1

��

:

For the American market the basic measuring units are miles (1 mile � 1.6 km)
and gallons (1 gallon � 3.8 L). The consumptions of gasoline (Y1) and oil (Y2) are
usually reported in miles per gallon. Can you express Ny1 and Ny2 in terms of Nx1 and
Nx2? Recompute the asymptotic distribution for the American market!

The transformation of “liters per 100 km” to “miles per gallon” is given by the
function

x liters per 100 km D 1:6x

380
gallons per mile D 380

1:6x
miles per gallon:

Similarly, we transform the oil consumption

x liters per 10,000 km D 38;000=.1:6x/miles per gallon:

Thus, the transformation is given by the functions

f1.x/ D 380=.1:6x/

f2.x/ D 38;000=.1:6x/:

According to Härdle and Simar (2015, Theorem 4.11), the asymptotic distribution is

p
n

��

f1.Nx1/
f2.Nx2/

�

�
�

f1.�1/
f2.�2/

��

� N

��

0

0

�

;D>
�

0:1 0:05

0:05 0:1

�

D
�

;

where

D D
�

@fj
@xi

�

.x/

ˇ

ˇ

ˇ

ˇ

xD�

is the matrix of all partial derivatives.
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In our example,

D D
 � 380

1:6x21
0

0 � 38000

1:6x22

!ˇ

ˇ

ˇ

ˇ

ˇ

xD�

�
 � 380

1:6Nx21 0

0 � 38000

1:6Nx22

!

�
��3:62 0

0 �19628:10
�

:

Hence, the variance of the transformed random variable Y is given by

˙Y D D>
�

0:1 0:05

0:05 0:1

�

D

�
��3:62 0

0 �19628:10
��

0:1 0:05

0:05 0:1

���3:62 0

0 �19628:10
�

�
�

1:31 3552:69

3552:69 38526230:96

�

:

The average fuel consumption, transformed to American units of measurements is
Ny1 D 29:32miles per gallon and the transformed oil consumption is Ny2 D 19628:10.
The asymptotic distribution is

p
n

��Ny1
Ny2
�

�
�

f1.�1/
f2.�2/

��

� N

��

0

0

�

;

�

1:31 3552:69

3552:69 38526230:96

��

:

Exercise 4.13 Consider the pdf fX.x1; x2/ D e�.x1Cx2/; x1; x2 > 0 and let U1 D
X1 C X2 and U2 D X1 � X2. Compute f .u1; u2/.

For the linear transformation

U D AX D
�

1 1

1 �1
�

X;

the inverse transformation is X D A�1U, the Jacobian of the inverse transformation
is J D A�1, and, hence, the density of the transformed random vector is

fU.u/ D abs.jAj�1/fX.A�1u/:
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We have

jAj D �2; A�1 D �1
2

��1 �1
�1 1

�

and it follows immediately that

fU.u/ D 1

2
fX

�

1

2

�

1 1

1 �1
��

u1
u2

��

D 1

2
exp

�

�
�

1

2
.u1 C u2/C 1

2
.u1 � u2/

��

D 1

2
exp.�u1/:

The support of the distribution has to be investigated carefully. The density of the
random variable U1 is nonzero only for u1 > 0 since it is the sum of two positive
random variables. The limits on U2 are the following:

U2 D X1 � X2 < X1 C X2 D U1;

U2 D �.X1 � X2/ > �.X2 C X1/ D �U1:

We conclude that the pdf of the transformed random vector U is

fU.u/ D
(

1
2

exp.�u1/ u1 > 0; u2 < ju1j;
0 otherwise:

Exercise 4.14 Consider the functions

f1.x1; x2/ D 4x1x2 exp.�x21/ x1; x2 > 0;
f2.x1; x2/ D 2 0 < x1; x2 < 1 and x1 C x2 < 1
f3.x1; x2/ D 1

2
exp.�x1/ x1 > jx2j:

Check whether they are pdfs and then compute E.X/, Var.X/, E.X1jX2/, E.X2jX1/,
Var.X1jX2/, and Var.X2jX1/.

It is easy to see that the first function,

f1.x1; x2/ D 4x1x2 expf�x21g; x1; x2 > 0;
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is not a pdf. For any value of x1, we can choose x2 such that f1.x1; x2/ is arbitrarily
large on an infinite interval. Hence, it is clear that

Z C1

0

Z C1

0

f1.x1; x2/dx2dx1 D C1

and therefore the function f1.x1; x2/ cannot be a pdf.
The second function,

f2.x1; x2/ D 2; 0 < x1; x2 < 1 and x1 C x2 < 1;

is nonnegative and it obviously integrates to one. Hence, it is a pdf. Notice that the
function is symmetric in x1 and x2 and it follows that E X1 D E X2 and Var X1 D
Var X2.

For the expected value, we have

E X1 D
Z 1

0

Z 1�x1

0

x12dx2dx1

D
Z 1

0

2x1.1 � x1/dx1

D
�

x21 � 2

3
x31

�1

0

D 1

3
:

We have already observed that E X1 D E X2 and, thus,

E X D
�

1

3
;
1

3

�>
:

The variances, Var X1 D Var X2, can be calculated as follows

Var X1 D E X21 � .E X21/

D
Z 1

0

Z 1�x1

0

x212dx2dx1 � 1

9

D
Z 1

0

2x21.1 � x1/dx1 � 1

9

D
�

2

3
x31 � 2

4
x41

�1

0

� 1

9

D 1

6
� 1

9
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D 1

18
:

The covariance Cov.X1;X2/ is equal to

Cov.X1;X2/ D E X1X2 � E X1 E X2

D
Z 1

0

Z 1�x1

0

x1x22dx2dx1 � 1

9

D
Z 1

0

2x1

�

x22
2

�1�x1

0

dx1 � 1

9

D
Z 1

0

x1.1� x1/
2dx1 � 1

9

D
Z 1

0

x1 � 2x21 C x31dx1 � 1

9

D
�

1

2
x21 � 2

3
x31 C 1

4
x41

�1

0

� 1

9

D 1

2
� 2

3
C 1

4
� 1

9

D 18� 24C 9 � 4
36

D � 1

36
:

The resulting covariance matrix is

Var.X/ D
�

1
18

� 1
36

� 1
36

1
18

�

:

The conditional expectations could be calculated by evaluating the appropriate
integrals. However, in this case, the solution can be seen immediately. Clearly, the
conditional distribution of X2 given X1 D x1 is uniform on .0; 1� x1/. The expected
value of uniform distribution is its center, i.e., E.X2jX1 D x1/ D .1 � x1/=2. Due to
the symmetry of the distribution, we have also that E.X1jX2 D x2/ D .1 � x2/=2.
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The conditional variances are also variances of uniform distributions:

Var.X2jX1 D x1/ D E.X22jX1 D x1/� fE.X2jX1 D x1/g2

D
Z 1�x1

0

x22
1 � x1

dx2 �
�

.1 � x1/

2

�2

D 1

1 � x1

�

1

3
x32

�1�x1

0

� .1 � x1/2

4

D .1 � x1/2

3
� .1� x1/2

4

D .1 � x1/2

12
:

Due to the symmetry, we have also that

Var.X1jX2 D x2/ D .1 � x2/2

12
:

For the third function,

f3.x1; x2/ D 1

2
expf�x1g x1 > jx2j;

we again start by verifying that it is a pdf. We have

Z C1

0

Z x1

�x1

f3.x1; x2/dx2dx1 D
Z C1

0

Z x1

�x1

1

2
expf�x1gdx2dx1

D
Z C1

0

x1 expf�x1gdx1

D 1:

Here, it is helpful to notice that the value of f3.x1; x2/ is for any value of x1
symmetric around zero in x2 and that the value of the pdf does not depend on x2.

Notice that the conditional expected value of X2 is finite since X2 has bounded
support for each value of X1. From the symmetry, it follows that E.X2jX1 D x1/ D 0,
this in turn implies that E X2 D EfE.X2jX1/g D 0.

The fact that the value of the pdf does not depend on x2 implies that the
conditional distribution of X2 given X1 D x1 is uniform on the interval .�x1; x1/.
Looking at the above calculations for the variance of the uniform distribution, we
can immediately write:

Var.X2jX1 D x1/ D .2x1/2

12
D x21

3
:
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In order to calculate the moments of X1, we have to evaluate some integrals:

E X1 D
Z C1

0

Z x1

�x1

1

2
x1 expf�x1gdx2dx1

D
Z C1

0

x21 expf�x1gdx1

D Œx21 exp �x1�
C1
0 C

Z C1

0

2x1 expf�x1gdx1

D Œ2x1 exp �x1�
C1
0 C 2

Z C1

0

expf�x1gdx1

D 2Œ� expf�x1g�C1
0 D 2:

Hence, the vector of expected values is E X D .2; 0/>.
The variance of X1 can be calculated similarly as the expected value

Var X1 D E X21 � .E X1/
2

D
Z C1

0

Z x1

�x1

1

2
x21 expf�x1gdx2dx1 � 4

D
Z C1

0

x31 expf�x1gdx1 � 4

D
Z C1

0

3x21 expf�x1gdx1 � 4

D 3E X1 � 4 D 2:

Now it is easy to calculate also the unconditional variance of X2 since

Var.X2/ D EfVar.X2jX1/g C VarfE.X2jX1/g D E

�

X21
3

�

D 2:

Notice that the symmetry of the pdf in x2 implies that also the distribution of
the random variable X1X2 is symmetric around 0 and, hence, its expected value
E X1X2 D 0. It follows that

Cov.X1;X2/ D E X1X2 � E X1 E X2 D 0:

The variance matrix of the random vector X is Var X D
�

2 0

0 2

�

:



58 4 Multivariate Distributions

It remains to investigate the conditional moments of X1 given X2 D x2. The
conditional density of X1 given X2 is

fX1jX2Dx2.x1/ D f3.x1; x2/

fX2 .x2/
D exp.�x1/
R C1

jx2j exp.�x1/dx1

D exp.�x1/

Œ� exp.�x1/�
C1
jx2j

D exp.�x1/

exp.�jx2j/ ;

for x1 > jx2j and 0 otherwise.
The conditional expectation of X1 can be calculated as

E.X1jX2 D x2/ D
Z C1

jx2j
x1fX1jX2Dx2 .x1/dx1

D
Z C1

jx2j
x1

exp.�x1/

exp.�jx2j/dx1

D 1

exp.�jx2j/
Z C1

jx2j
x1 exp.�x1/dx1

D 1

exp.�jx2j/
�

Œx1 exp.�x1/�
C1
jx2j C

Z C1

jx2j
exp.�x1/dx1

�

D 1

exp.�jx2j/ fjx2j exp.�jx2j/C exp.�jx2j/g

D jx2j C 1:

Finally, the conditional variance of X1 given X2 D x2 is

Var.X1jX2 D x2/ D E.X21 jX2 D x2/� fE.X1jX2 D x2/g2

D
Z C1

jx2j
x21

exp.�x1/

exp.�jx2j/dx1 � .jx2j C 1/2

D 1

exp.�jx2j/
Z C1

jx2j
x21 exp.�x1/dx1 � .jx2j C 1/2

D 1

exp.�jx2j/
�

Œ�x21 exp.�x1/�
C1
jx2j C 2

Z C1

jx2j
x1 exp.�x1/dx1

�

� .jx2j C 1/2

D 1

exp.�jx2j/
jx2j2 exp.�jx2j/C2fjx2j exp.�jx2j/C exp.�jx2j/g

�

� .jx2j C 1/2

D jx2j2 C 2jx2j C 2 � .jx2j C 1/2

D 1:
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Exercise 4.15 Consider the pdf

f .x1; x2/ D 3

4
x

� 1
2

1 ; 0 < x1 < x2 < 1:

Compute P.X1 < 0:25/;P.X2 < 0:25/ and P.X2 < 0:25jX1 < 0:25/:
The probabilities can be expressed as integrals of the pdf as follows

P.X1 < 0:25/ D
Z 0:25

0

Z 1

x1

f .x1; x2/dx2dx1

D
Z 0:25

0

Z 1

x1

3

4
x

� 1
2

1 dx2dx1

D 3

4

Z 0:25

0

x
� 1
2

1 Œx2�
1
x1dx1

D 3

4

Z 0:25

0

x
� 1
2

1 .1 � x1/dx1

D 3

4

Z 0:25

0

x
� 1
2

1 � x
1
2

1 dx1

D 3

4

�

2x
1
2

1 � 2

3
x
3
2

1

�0:25

0

D 3

4

�

1 � 1

12

�

D 33

48
:

Similarly,

P.X2 < 0:25/ D
Z 0:25

0

Z x2

0

f .x1; x2/dx1dx2

D
Z 0:25

0

Z x2

0

3

4
x

� 1
2

1 dx1dx2

D 3

4

Z 0:25

0

�

2x
1
2

1

�x2

0

dx2

D
Z 0:25

0

3

2
x
1
2

2 dx2

D
�

x
3
2

2

�0:25

0

D 1

8
:
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The conditional probability is defined as

P.X2 < 0:25jX1 < 0:25/ D P.X1 < 0:25;X2 < 0:25/

P.X1 < 0:25/
:

It remains to calculate the probability in the numerator. Noticing that
P.X1 > X2/ D 0, we can write

P.X2 < 0:25jX1 < 0:25/ D P.X1 < 0:25;X2 < 0:25/

P.X1 < 0:25/

D P.X2 < 0:25/

P.X1 < 0:25/
D 6

33
:

Exercise 4.16 Consider the pdf

f .x1; x2/ D 1

2�
; 0 < x1 < 2�; 0 < x2 < 1:

Let U1 D sin X1
p�2 log X2 and U2 D cos X1

p�2 log X2. Compute f .u1; u2/.

Notice that

U2
1 C U2

2 D �2 log X2.sin2 X1 C cos2 X1/ D �2 log X2

and

U1

U2

D sin X1
cos X1

D tan X1:

Hence, the inverse transformation is

X1 D arctan
U1

U2

;

X2 D exp

�

�1
2
.U2

1 C U2
2/

�

:

Here, it is important to notice that this is not a one-to-one transformation! The
calculation has to be carried out very carefully.

In order to obtain a one-to-one transformation, we consider the conditional pdfs

fXjX12.�=2;3�=2/.x1; x2/ D 1

�
Ifx1 2 .�=2; 3�=2/g

fXjX1 62.�=2;3�=2/.x1; x2/ D 1

�
Ifx1 62 .�=2; 3�=2/g
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which allow us to rewrite the pdf f .:/ as

f .x/ D
(

1
2
fXjX12.�=2;3�=2/.x/ for x1 2 .�=2; 3�=2/
1
2
fXjX1 62.�=2;3�=2/.x/ for x1 62 .�=2; 3�=2/

since
Z

x2I
f .x/dx D P.X 2 I/

D PfX 2 IjX1 2 .�=2; 3�=2/g PfX1 2 .�=2; 3�=2/g
C PfX 2 IjX1 62 .�=2; 3�=2/g PfX1 62 .�=2; 3�=2/g

D
Z

x2I

�

fXjX12.�=2;3�=2/.x/
1

2
C fXjX1 62.�=2;3�=2/.x/

1

2

�

dx

D
Z

x2I

1

2

˚

fXjX12.�=2;3�=2/.x/C fXjX1 62.�=2;3�=2/.x/



dx:

We transform each of the conditional pdfs separately and then combine the
results into the pdf of the transformed random vector U. For the conditional pdf
fXjX12.�=2;3�=2/, the Jacobian of the inverse transformation is given by

J D
 

u2
u22Cu21

� u1
u22Cu21

�u1 exp
˚� 1

2
.u21 C u22/


 �u2 exp
˚� 1

2
.u21 C u22/




!

:

Plugging into the formula for the pdf of the transformed random variable, we obtain
this:

fUjU2<0.u/ D abs jJ jfXjX12.�=2;3�=2/ff1.u/; f2.u/g

D abs

��

u21
u22 C u21

C u22
u22 C u21

�

exp

�

�1
2
.u21 C u22/

��

1

�

D 1

�
exp

�

�1
2
.u21 C u22/

�

for u1 2 R; u2 < 0 and fUjU2<0.u/ D 0 otherwise.
Similarly, it can be shown that

fUjU2>0.u/ D 1

�
exp

�

�1
2
.u21 C u22/

�

for u1 2 R; u2 > 0 and fUjU2>0.u/ D 0 otherwise.
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Combining the conditional pdfs fUjU2>0.:/ and fUjU2<0.:/, we obtain the
(marginal) pdf of the transformed two-dimensional random vector

fU.u/ D fUjU2<0.u/P.U2 < 0/C fUjU2>0.u/P.U2 > 0/

D 1

2

˚

fUjU2<0.u/I.u2 < 0/C fUjU2>0.u/I.u2 > 0/



D 1

2

�

1

�
exp

˚�.u21 C u22/=2



I.u2 < 0/

C 1

�
exp

˚�.u21 C u22/=2



I.u2 > 0/
�

D 1

2�
exp

˚�.u21 C u22/=2



for u1; u2 2 R.
Notice that the pdf fU.:/ defines a two-dimensional multinormal distribution with

zero mean and identity variance matrix. This transformation is at the heart of the
Box-Muller method to generate standard normal (pseudo) random numbers.

Exercise 4.17 Consider f .x1; x2; x3/ D k.x1 C x2x3/I 0 < x1; x2; x3 < 1:

a) Determine k so that f is a valid pdf of .X1;X2;X3/ D X:
b) Compute the .3 � 3/ matrix ˙X.
c) Compute the .2�2/matrix of the conditional variance of .X2;X3/ given X1 D x1.

Ad a) We have to determine k for which

Z 1

0

Z 1

0

Z 1

0

f .x1; x2; x3/ dx1 dx2 dx3 D 1:

Evaluating the integral leads to:

Z 1

0

Z 1

0

Z 1

0

f .x1; x2; x3/ dx1 dx2 dx3

D
Z 1

0

Z 1

0

Z 1

0

k.x1 C x2x3/ dx1 dx2 dx3

D k
Z 1

0

Z 1

0

�

1

2
x21 C x1x2x3

�1

0

dx2 dx3

D k
Z 1

0

Z 1

0

�

1

2
C x2x3

�

dx2 dx3

D k
Z 1

0

�

1

2
x2 C 1

2
x22x3

�1

0

dx3
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D k
Z 1

0

�

1

2
C 1

2
x3

�

dx3

D k

�

1

2
x3 C 1

4
x23

�1

0

D 3

4
k:

It follows that k D 4=3.
Ad b) For the expected values of Xi, i D 1; : : : ; 3, we have that

E X1 D
Z 1

0

Z 1

0

Z 1

0

x1f .x1; x2; x3/ dx1 dx2 dx3

D 4

3

Z 1

0

Z 1

0

Z 1

0

.x21 C x1x2x3/ dx1 dx2 dx3

D 11

18

E X2 D 4

3

Z 1

0

Z 1

0

Z 1

0

.x1x2 C x22x3/ dx1 dx2 dx3

D 5

9
:

The pdf is symmetric in x2 and x3, E X2 D E X3 and, hence,

E X D
�

11

18
;
5

9
;
5

9

�>
:

In order to compute the covariance matrix of the three-dimensional random
vector X, one has to compute the variances and covariances of its components:

˙ D
0

@

Var.X1/ Cov.X1;X2/ Cov.X1;X3/
Cov.X2;X1/ Var.X2/ Cov.X2;X3/
Cov.X3;X1/ Cov.X3;X2/ Var.X3/

1

A :

We have

E X21 D 4

3

Z 1

0

Z 1

0

Z 1

0

.x31 C x21x2x3/ dx1 dx2 dx3

D 4

9
;
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E X22 D 4

3

Z 1

0

Z 1

0

Z 1

0

.x1x
2
2 C x32x3/ dx1 dx2 dx3

D 7

18
;

E X23 D E X22 :

Now, we can compute the covariances using the formula Cov.X1;X2/ D E X1X2 �
E X1 E X2 as

˙ D
0

@

23
324

� 1
162

� 1
162

� 1
162

13
162

1
162

� 1
162

1
162

13
162

1

A :

Ad c) The conditional density of .X2;X3/> given X1 D x1 can be expressed as a
ratio of the joint density of .X1;X2;X3/> and the marginal density of X1.

The marginal density of X1 is

fX1 .x1/ D
Z 1

0

Z 1

0

f .x1; x2; x3/dx2dx3

D
Z 1

0

Z 1

0

4

3
.x1 C x2x3/dx2dx3

D 4

3

Z 1

0

�

x1x2 C 1

2
x22x3

�1

0

dx3

D 4

3

Z 1

0

x1 C 1

2
x3dx3

D 4

3

�

x1x3 C 1

4
x23

�1

0

D 4

3

�

x1 C 1

4

�

:

It follows that the conditional density of X2 and X3 is

f .x2; x3jx1/ D x1 C x2x3
x1 C 1

4

:

Let us now compute the conditional moments E.X2jX1 D x1/ D E.X3jX1 D x1/,
E.X22jX1 D x1/ D E.X23jX1 D x1/, and E.X2X3jX1 D x1/.
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E.X2jX1 D x1/ D 1

x1 C 1
4

Z 1

0

Z 1

0

.x1x2 C x22x3/ dx2 dx3

D 6x1 C 2

12x1 C 3
;

E.X22 jX1 D x1/ D 1

x1 C 1
4

Z 1

0

Z 1

0

.x1x
2
2 C x32x3/ dx2 dx3

D 8x1 C 3

24x1 C 6
:

Now we can compute the conditional variances of X2 and X3:

Var.X2jX1 D x1/ D E.X22 jX1 D x1/ � ŒE.X2jX1 D x1/�
2

D 8x1 C 3

2.12x1 C 3/
� 36x21 C 24x1 C 4

.12x1 C 3/2

D 96x21 C 60x1 C 9

2.12x1 C 3/2
� 72x21 C 48x1 C 8

2.12x1 C 3/2

D 24x21 C 12x1 C 1

2.12x1 C 3/2
:

Next, we have to compute E.X2X3jX1 D x1/:

E.X2X3jX1 D x1/ D 1

x1 C 1
4

Z 1

0

Z 1

0

.x1x2x3 C x22x
2
3/ dx2 dx3

D 9x1 C 4

36x1 C 9
:

Now, the conditional covariance can be expressed as:

Cov.X2;X3jX1 D x1/ D E.X2X3jX1 D x1/ � E.X2jX1 D x1/E.X3jX1 D x1/

D 9x1 C 4

3.12x1 C 3/
� 36x21 C 24x1 C 4

.12x21 C 3/2

D 108x21 C 75x1 C 12

3.12x1 C 3/2
� 108x21 C 72x1 C 12

3.12x1 C 3/2

D x1
.12x1 C 3/2

:
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Summarizing the above results, the conditional covariance matrix is given by:

Var

��

X2
X3

�

jX1 D x1

�

D 1

2.12x1 C 3/2

�

24x21 C 12x1 C 1 2x1
2x1 24x21 C 12x1 C 1

�

Exercise 4.18 Let X � N2

��

1

2

�

;

�

2 a
a 2

��

.

a) Represent the contour ellipses for a D 0I � 1
2
I C 1

2
I 1:

b) For a D 1
2

find the regions of X centered at � which cover the area of the true
parameter with probability 0:90 and 0:95.

Ad a) The eigenvalues 1; 2 of the covariance matrix ˙ are obtained as a
solution of the equation j˙ � I2j D 0. The eigenvectors �1; �2 are solutions of

˙�i D i�i ; i D 1; 2:

The contour ellipse has principal axes in the direction of �1 and �2 and it can be
represented as follows:

Ed D ˚

x 2 R
2 j .x � �/>˙�1.x � �/ D d2




:

The half-lengths of the axes of the ellipse Ed are d1=2i , where i D 1; 2.

(i) For a D 0, we obtain

X � N2

��

1

2

�

;

�

2 0

0 2

��

and we have

ˇ

ˇ

ˇ

ˇ

2 �  0

0 2 � 

ˇ

ˇ

ˇ

ˇ
D .2 � /2 D 0:

Hence,

1 D 2 D 2;

�1 D .1; 0/>;

�2 D .0; 1/>

and

d2 D .x1 � 1; x2 � 2/
�
1
2
0

0 1
2

��

x1 � 1
x2 � 2

�

D .x1 � 1/2 C .x2 � 2/2

2
:
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The contour ellipse is centered in .1; 2/>, its principal axes are in the direction
.1; 0/>, .0; 1/> and it can be represented as:

Ed D
�

x 2 R
2 j .x1 � 1/2 C .x2 � 2/2

2
D d2

�

:

The half-lengths of both axes are equal to d
p
2.

(ii) For a D �1=2, we have

X � N2

��

1

2

�

;

�

2 � 1
2

� 1
2

2

��

and from the equation

ˇ

ˇ

ˇ

ˇ

2 �  � 1
2

� 1
2
2 � 

ˇ

ˇ

ˇ

ˇ
D .2 � /2 � 1

4
D 0:

it follows that 1 D 5=2, 2 D 3=2 and �1 D 1p
2
.1;�1/>, �2 D 1p

2
.1; 1/>.

d2 D .x1 � 1; x2 � 2/

�
8
15

2
15

2
15

8
15

��

x1 � 1

x2 � 2

�

D 4

15
.2x21 C 2x22 � 6x1 � 9x2 C x1x2 C 12/

The contour ellipse is centered in .1; 2/>, its principal axes are in directions of
.1;�1/>, .1; 1/> and it can be represented as:

Ed D
�

x 2 R
2 j 4
15
.2x21 C 2x22 � 6x1 � 9x2 C x1x2 C 12/ D d2

�

:

The half-lengths of its axes are equal to d
p

5=2 and d
p

3=2.
(iii) For a D 1=2, we have

X � N2

��

1

2

�

;

�

2 1
2

1
2
2

��

and from the equation

ˇ

ˇ

ˇ

ˇ

2 �  1
2

1
2

2 � 

ˇ

ˇ

ˇ

ˇ
D .2 � /2 � 1

4
D 0

it follows that 1 D 5
2
; 2 D 3

2
and �1 D 1p

2
.1; 1/>, �2 D 1p

2
.1;�1/>.
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d2 D .x1 � 1; x2 � 2/
�

8
15

� 2
15

� 2
15

8
15

��

x1 � 1

x2 � 2

�

D 4

15
.2x21 C 2x22 � 2x1 � 7x2 � x1x2 C 8/

The contour ellipse is centered in .1; 2/>, its principal axes are in directions of
.1; 1/>, .1;�1/>, and it can be represented as:

Ed D
�

x 2 R
2 j 4
15
.2x21 C 2x22 � 2x1 � 7x2 � x1x2 C 8/ D d2

�

:

The half-lengths of its axes are d
p

5=2 and d
p

3=2.
(iv) For a D 1 we have

X � N2

��

1

2

�

;

�

2 1

1 2

��

and from the equation

ˇ

ˇ

ˇ

ˇ

2 �  1

1 2 � 

ˇ

ˇ

ˇ

ˇ
D .2 � /2 � 1 D 0

it follows that 1 D 3, 2 D 1 and �1 D 1p
2
.1; 1/>, �2 D 1p

2
.1;�1/>.

d2 D .x1 � 1; x2 � 2/
�

2
3

� 1
3

� 1
3

2
3

��

x1 � 1

x2 � 2

�

D 2

3
.x21 C x22 � 3x2 � x1x2 C 3/

The contour ellipse is centered in .1; 2/>, its principal axes are in the direction
of .1; 1/>, .1;�1/>, and the ellipse can be represented as:

Ed D
�

x 2 R
2 j 2
3
.x21 C x22 � 3x2 � x1x2 C 3/ D d2

�

:

The half-lengths of its axes are d
p
3 and d.

Ad b) We know that the random variable U D .X � �/>˙�1.X � �/ has a �22
distribution. The definition of critical value says that P.U � �20:90I2/ D 0:90 and
P.U � �20:95I2/ D 0:95. This implies that the desired confidence regions for X can
be written as

�

x 2 R
2 j 4
15
.2x21 C 2x22 � 2x1 � 7x2 � x1x2 C 8/ � �20:90I2 D 4:61

�
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covering realizations of X with probability 0:90 and

�

x 2 R
2 j 4
15
.2x21 C 2x22 � 2x1 � 7x2 � x1x2 C 8/ � �20:95I2 D 5:99

�

containing future realizations of X with probability 0:95. The regions are ellipses
corresponding to d20:90 D �20:90I2 D 4:61 and d20:95 D �20:95I2 D 5:99.

Exercise 4.19 Consider the pdf

f .x1; x2/ D 1

8x2
exp

�

�
�

x1
2x2

C x2
4

��

; x1; x2 > 0:

Compute f .x2/ and f .x1jx2/. Also give the best (MSE) approximation of X1 by a
function of X2. Compute the variance of the error of the approximation.

The marginal distribution of x2 can be calculated by “integrating out” x1 from the
joint pdf f .x1; x2/:

fX2 .x2/ D
Z C1

0

f .x1; x2/dx1

D �1
4

exp
n

�x2
4

o
Z C1

0

� 1

2x2
exp

�

� x1
2x2

�

dx1

D �1
4

exp
n

�x2
4

o
�

exp

�

� x1
2x2

��C1

0

D 1

4
exp

n

�x2
4

o

;

for x2 > 0, in other words, the distribution of X2 is exponential with expected value
E X2 D 4.

The conditional distribution f .x1jx2/ is calculated as a ratio of the joint pdf
f .x1; x2/ and the marginal pdf fX2.x2/:

fX1jX2Dx2.x1/ D f .x1; x2/

fX2 .x2/

D 1

2x2
exp

�

� x1
2x2

�

;

for x1; x2 > 0. Note that this is just the exponential distribution with expected value
2x2.

The best approximation of X1 by X2, from the point of view of MSE, is
the conditional expectation E.X1jX2 D x2/. We have already remarked that the
conditional expected value is E.X1jX2 D x2/ D 2x2.
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The variance of the “error of approximation” is the variance of X1 around its
expected value, i.e., the conditional variance of X1 given X2 D x2. From the
properties of the exponential distribution, we can immediately say that it is equal
to Var.X1jX2 D x2/ D 4x22.

Exercise 4.20 Prove Theorem 4.6 in Härdle and Simar (2015), i.e., that the linear
transformation of a p-variate normally distributed random variable Y D AX C b
(A is square and nonsingular) has again a p-variate normal distribution.

The multinormal distribution has pdf

fX.x/ D j2�˙ j�1=2 exp

�

�1
2
.x � �/>˙�1.x � �/

�

:

For the linear transformation, Y D AX C b, the inverse transformation is X D
A�1Y � b, the Jacobian of the inverse transformation is J D A�1, and the density
of the transformed random vector is

fY.y/ D abs.jAj�1/fXfA�1.y � b/g:

From the assumption, that A is square and nonsingular, we know that the inverse
matrix A�1 exists and we can write the pdf of the transformed random vector as

fY.y/

D j2�˙ j�1=2 abs.jAj�1/ exp

�

�1
2

fA�1.y � b/� �g>˙�1fA�1.y � b/� �g
�

Dj2�A˙A>j�1=2 exp

�

�1
2

fy�.b C A�/g>.A�1/>˙�1A�1fy � .b C A�/g
�

D j2�A˙A>j�1=2 exp

�

�1
2

fy � .b C A�/g> �A˙A>	�1 fy � .b C A�/g
�

:

This is the pdf of a p-variate multinormal distribution with mean E Y D A�Cb and
variance matrix Var.Y/ D A˙A> and we conclude that

AX C b D Y � Np.A�C b;A˙A>/:



Chapter 5
Theory of the Multinormal

. . . while the individual man is an insoluble puzzle, in the aggregate he becomes a
mathematical certainty.
Sherlock Holmes in “The Sign of Four”

In the preceding chapter we realized the importance of the multivariate normal
distribution, its geometry and connection with elliptic dependence structures. The
multivariate normal comes into play in many applications and statistical tests.
It is therefore important to know how this distribution behaves when we apply
conditioning or linear or nonlinear transformation.

It is also of interest to check whether partitioned random vectors are still normally
distributed and how the multinormal distribution is popping out of theoretical
concepts. It is stable under linear transforms, zero correlation corresponds to
independence, the marginals and all the conditionals are also multivariate normal
variates, etc. The mathematical properties of the multinormal make analyses much
simpler. We consider here best linear approximations, partial correlation (expressed
via partitioned matrices), and conditioning on parts of a multinormal random vector.

In order to better explain the basic properties of the multivariate normal
distribution, we start by introducing several theorems.

Theorem 5.1 says that a subvector of a multivariate normal vector has again
multivariate normal distribution, and it shows how to calculate its orthogonal
(independent) complement.

Theorem 5.1 Let X D �X1
X2

	 � Np.�;˙/, X1 2 R
r, and X2 2 R

p�r. Define X2:1 D
X2 �˙21˙

�1
11 X1 from the partitioned covariance matrix

˙ D
�

˙11 ˙12

˙21 ˙22

�

:

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_5
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Then

X1 � Nr.�1;˙11/; (5.1)

X2:1 � Np�r.�2:1; ˙22:1/ (5.2)

are independent with

�2:1 D �2 �˙21˙
�1
11 �1; ˙22:1 D ˙22 �˙21˙

�1
11 ˙12: (5.3)

Theorem 5.2 says that a linear transformation of a multivariate normal vector
also has a multivariate normal distribution. The mean and the variance matrix of
the linearly transformed random vector actually follow from the results presented in
previous chapters.

Theorem 5.2 If X � Np.�;˙/, A.q � p/, c 2 R
q, and rank.A/ D q � p, then

Y D AX C c is a q-variate normal, i.e.,

Y � Nq.A�C c;A˙A>/:

Theorem 5.3 gives the formula for conditional distribution, which is also
multivariate normal.

Theorem 5.3 The conditional distribution of X2 given X1 D x1 is normal with mean
�2 C˙21˙

�1
11 .x1 � �1/ and covariance˙22:1, i.e.,

.X2 j X1 D x1/ � Np�r.�2 C˙21˙
�1
11 .x1 � �1/;˙22:1/: (5.4)

Using Theorem 5.1, we can say that the conditional distribution .X2 j X1 D x1/
and the random vector X1 are independent.

Apart from the multivariate normal distribution, we mention the Wishart and the
Hotelling distributions, which can be seen as generalizations of the one-dimensional
�2 and t-distribution, respectively.

For a data matrix X .n�p/, containing n independent observations of the centered
normal vector X � Np.0;˙/, the estimated covariance matrix is proportional to
X>X . The distribution of the random matrix M.p � p/ D X>X D Pn

iD1 xix>
i is

the so-called Wishart distribution Wp.˙; n/, which proves to be very useful in the
analysis of estimated covariance matrices.

Suppose that the random vector Y � Np.0; I/ is independent of the random
matrix M � Wp.I; n/. Then the random variable n Y>M�1Y has a Hotelling T2p;n
distribution. The Hotelling T2p;n is closely related to the F-distribution:

T2p;n D np

n � p C 1
Fp;n�pC1:
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Exercise 5.1 Consider X � N2.�;˙/ with � D .2; 2/> and ˙ D
�

1

0

0

1

�

and the

matrices A D
 

1

1

!>
, B D

 

1

�1

!>
. Show that AX and BX are independent.

Since X � N2.�;˙/ is multivariate normal, Theorem 5.2 implies that also both
AX and BX are normal. More precisely, AX � N.A�;A˙A>/ D N.4; 2/ and
BX � N.B�;B˙B>/ D N.0; 2/.

However, in order to show the independence, we have to study the joint
distribution of .AX;BX/>. Theorem 5.2 implies that

�AX
BX

�

D
�A
B
�

X � N2

��

4

0

�

;

�

2 0

0 2

��

With this diagonal structure of the covariance matrix, the joint pdf of .AX;BX/
can be factorized as follows:

f .x1; x2/ D 1

4�
exp

�

�1
2

� .x1 � 4; x2/

�

1
2
0

0 1
2

��

x1 � 4
x2

��

D 1

4�
exp

�

� .x1 � 4/2 C x22

4

�

D 1

2
p
�

exp

�

� .x1 � 4/2

4

�

1

2
p
�

exp

�

�x22

4

�

D fAX.x1/fBX.x2/;

i.e., as the product of the marginal densities of .AX and BX/. This factorization,
following from the diagonal structure of the variance matrix of multivariate normal
distribution, proves the independence of the random variables AX and BX, see also
Exercise 4.10.

Exercise 5.2 Prove that if X1 � Nr.�1;˙11/ and .X2jX1 D x1/ � Np�r.Ax1 C
b;˝/ where ˝ does not depend on x1, then X D �X1

X2

	 � Np.�;˙/, where

� D
 

�1

A�1 C b

!

and ˙ D
�

˙11 ˙11A>
A˙11 ˝ C A˙11A>

�

:

The conditional distribution of .X2jX1 D x1/ can be written as X2 D Ax1CbCX3,
where X3 � N.0;˝/ is independent of X1. Hence, the marginal distribution of the
random vector X2 is the same as the distribution of AX1 C b C X3. Now, according
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to Theorem 5.2, the random vector

X D
�

X1
X2

�

D
 

Ip 0p0
>
p

A Ip

!
�

X1
X3

�

C
�

0

b

�

has a multivariate normal distribution.
It remains to calculate E.X/ and Var X:

E.X2/ D EfE.X2jX1/g D EfAX1 C b C X3g
D A�1 C b;

Var.X2/ D EfVar.X2jX1/g C VarfE.X2jX1/g
D Ef˝g C VarfAX1 C bg
D ˝ C A˙11A>;

Cov.X1;X2/ D Ef.X1 � E X1/.X2 � E X2/
>g D

D Ef.X1 � �1/.AX1 C b � A�1 � b/>g D
D Ef.X1 � �1/.X1 � �1/>A>g D ˙11A>:

Since X1 � Nr.�1;˙11/, it follows that

X D
�

X1
X2

�

� Np

��

�1
A�1 C b

��

˙11 ˙11A>
A˙11 ˝ C A˙11A>

��

:

Exercise 5.3 Let X .n � p/ be a data matrix from a Np.�;˙/ distribution. Show
that nS D X>HX is distributed as Wp.˙; n � 1/.

In order to arrive at the Wishart distribution, we have to consider transformations
of X that will allow us to write S in terms of independent centered identically
distributed multivariate normal observations.

The centering matrix H.n � n/ is idempotent, see Exercise 3.16, and rank.H/ D
tr.H/ D n.1� 1=n/ D n � 1. Thus, the spectral decomposition of H can be written
as H D � In�1� >.

Define the data matrix Y D � >X D .�iXj/iD1;:::;n�1IjD1;:::;p D .yij/iIj, where �i

denotes the ith eigenvector of H and Xj is the jth column of matrix X .
We start by rewriting the spectral decomposition of the centering matrix:

H D � In�1� >

� >H� D In�1
� >.In � n�11n1

>
n /� D In�1

� >� � n�1� >1n1
>
n � D In�1

n�1� >1n1
>
n � D 0n�10>

n�1:
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The above equality means that � >1n D 0n�1 which in turn implies, for any j D
1; : : : ; p and i D 1; : : : ; n � 1, that

E yij D E �>
i Xj D �>

i EXj D �j�
>
i 1n D 0;

i.e., the expected value of every element of matrix Y is zero.
Next, for any j; k D 1; : : : ; p and i D 1; : : : ; n � 1, we can write

Cov.yij; yik/ D Cov.�>
i Xj; �

>
i Xk/ D �jk�

>
i �i D �jk

and it follows that all rows of the random matrix Y have the same variance matrix
˙ . Furthermore, the rows of the matrix Y are independent since, for any i; h D
1; : : : ; n � 1, i ¤ h and j; k D 1; : : : ; p, we have

Cov.yij; yhk/ D Cov.�>
i Xj; �

>
h Xj/ D �jk�

>
i �h D 0:

From Theorem 5.2 and from the normality of X it follows that the distribution of Y
is also multivariate normal.

Now we can write

nS D X>HX D X>� � >X D Y>Y;

where the n � 1 rows of the matrix Y are independent observations of multivariate
normally distributed random vector Y � Np.0;˙/. From the definition of the
Wishart distribution, it is now straightforward that nS � Wp.˙; n � 1/.

Exercise 5.4 Let

X � N2

��

1

2

�

;

�

2 1

1 2

��

and

Y j X � N2

��

X1
X1 C X2

�

;

�

1 0

0 1

��

:

a) Determine the distribution of Y2 j Y1.
b) Determine the distribution of W D X � Y.

We start by computing the joint distribution of the vector .X1;X2;Y1;Y2/> from
the marginal distribution of X and the conditional distribution Y j X. Exercise 5.2,
where

A D
�

1 0

1 1

�

; b D
�

0

0

�

; ˝ D
�

1 0

0 1

�

;
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provides the following result:

�

X
Y

�

� N4

0

B

B

@

0

B

B

@

1

2

1

3

1

C

C

A

;

0

B

B

@

2 1 2 3

1 2 1 3

2 1 3 3

3 3 3 7

1

C

C

A

1

C

C

A

:

In particular, the marginal distribution of Y is

Y � N2

��

1

3

�

;

�

3 3

3 7

��

:

Now we are ready to solve our problem.

a) The conditional distribution of Y2 given Y1 is normal

Y2 j Y1 D N.Y1 C 2; 4/

by Theorem 5.3.
b) It is clear that W can be written as a linear transformation W D X � Y D

B.X1;X2;Y1;Y2/>, where

B D
�

1 0 �1 0

0 1 0 �1
�

:

Using Theorem 5.2, we obtain

W � N2

��

0

�1
�

;

�

1 0

0 3

��

:

Exercise 5.5 Consider

0

@

X
Y
Z

1

A � N3.�;˙/: Compute � and˙ knowing that

Y j Z � N1.�Z; 1/ (5.5)

�ZjY D �1
3

� 1

3
Y (5.6)

X j Y;Z � N1.2C 2Y C 3Z; 1/: (5.7)

Determine the conditional distributions of X j Y and of X j Y C Z.



5 Theory of the Multinormal 77

Since we know the conditional distribution YjZ � N1.�Z; 1/, we can apply
Theorem 5.3:

�YjZ D �Y C �YZ�
�1
ZZ .Z � �Z/ D �Z (5.8)

˙YY:Z D �YY � �YZ�
�1
ZZ �YZ D 1 (5.9)

By calculating the expected value and the variance of both sides of (5.8) we get:

�Y D ��Z

�YZ D �ZZ :

The Eq. (5.9) now implies:

�YY D 1C �YZ D 1C �ZZ :

Now we are ready to use (5.6). Theorem 5.3 allows to express the expected value
�ZjY of the conditional distribution ZjY as

�ZjY D �Z C �ZY�
�1
YY .Y � �Y/ D �1

3
� 1

3
Y

Again, by calculating the expected value and the variance of both sides of the above
formula, we obtain:

�3�Z D 1C �Y

�ZY D 1

3
�YY :

For the expected values of Y and Z we now have the system of equations:

�Y D ��Z

�3�Z D 1C �Y

so that �Z D � 1
2

and �Y D 1
2
.

The equations for the covariances are:

�YY D 1C �YZ

�ZY D 1

3
�YY

�YZ D �ZZ

and it is easy to calculate �YY D 3
2
, �YZ D 1

2
and �ZZ D 1

2
.
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Thus, we have derived the distribution of the vector

�

Y
Z

�

� N2

��

1
2

� 1
2

�

;

�

3
2
1
2

1
2
1
2

��

and, since we know that Xj.Y;Z/ � N1.2 C 2Y C 3Z; 1/, it is straightforward to
apply the result derived in Exercise 5.2 with ˝ D 1, A D .2; 3/, and b D 2. We
obtain

0

@

X
Y
Z

1

A � N3

0

@

0

@

3
2
1
2

� 1
2

1

A ;

0

@

35
2

9
2
5
2

9
2

3
2
1
2

5
2

1
2
1
2

1

A

1

A :

The distribution of XjY can now be found easily by applying Theorem 5.3:

�XjY D �X C �XY�
�1
YY .Y � �Y/ D 3

2
C 9

2

2

3

�

Y � 1

2

�

D 3Y

�2XjY D �XX � �XY�
�1
YY �XY D 35

2
� 9

2

2

3

9

2
D 4:

Hence, the conditional distribution is XjY � N1.3Y; 4/.
To determine the conditional distribution of XjY C Z we first determine the joint

distribution of Y C Z:

�YCZ D �Y C �Z D 1

2
� 1

2
D 0

�2YCZ D �YY C �ZZ C 2�YZ D 3

2
C 1

2
C 2

1

2
D 3

�X;YCZ D �XY C �XZ D 9

2
C 5

2
D 7:

Now we can use Theorem 5.3 again and write

�XjYCZ D �X C �X;YCZ�
�1
YCZ;YCZ.Y C Z � �YCZ/

D 3

2
C 7

3
.Y C Z/

�2XjYCZ D �XX � �X;YCZ�
�1
YCZ;YCZ�X;YCZ D 35

2
� 49

3
D 7

6

so that Xj.Y C Z/ � N1
�

7
3
.Y C Z/C 3

2
; 7
6

	



5 Theory of the Multinormal 79

Exercise 5.6 Knowing that

Z � N1.0; 1/

Y j Z � N1.1C Z; 1/

X j Y;Z � N1.1 � Y; 1/

a) find the distribution of

0

@

X
Y
Z

1

A and of Y j .X;Z/.

b) find the distribution of

�

U
V

�

D
�

1C Z
1 � Y

�

:

c) compute E.Y j U D 2/.

a) The distribution of the random vector

0

@

X
Y
Z

1

A can be derived easily by applying the

result derived in Exercise 5.2 repeatedly. In the first step, we find the distribution
of

�

Y
Z

�

� N2

��

1

0

�

;

�

2 1

1 1

��

and, applying the same procedure with b D 1, A D .�1; 0/, and ˝ D 1, we can

combine the known distributions of

�

Y
Z

�

and X j .Y;Z/ to obtain

0

@

X
Y
Z

1

A � N3

0

@

0

@

0

1

0

1

A ;

0

@

3 �2 �1
�2 2 1

�1 1 1

1

A

1

A :

The conditional distribution Y j .X;Z/ can be derived using Theorem 5.3. The
moments of the resulting normal distribution are

�Yj.X;Z/ D 1C .�2; 1/
�

3 �1
�1 1

��1 ��
X
Z

�

�
�

0

0

��

D 1C .�2; 1/1
2

�

1 1

1 3

��

X
Z

�
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D 1C 1

2
.�1; 1/

�

X
Z

�

D 1 � X

2
C Z

2

and

�2Yj.X;Z/ D 2 � .�2; 1/
�

3 �1
�1 1

��1 ��2
1

�

D 2 � .�2; 1/1
2

�

1 1

1 3

���2
1

�

D 2 � 3

2
D 1

2
:

Hence, we arrive at the conditional distribution Y j .X;Z/ � N1
�

1 � X
2

C Z
2
; 1
2

	

.

b) The distribution of

�

U
V

�

D
�

1C Z
1 � Y

�

is obviously normal since it is a linear

transformation of normally distributed random vector, see Theorem 5.2. The
distribution of .U;V/> can be deduced by calculating the corresponding first
and second moments:

�U D E.1C Z/ D 1C E Z D 1

�V D E.1 � Y/ D 0

�2U D �2Z D 1

�2V D �2Y D 2

�UV D ��ZY D �1

and it follows that the distribution of .U;V/> is

�

U
V

�

D
�

1C Z
1 � Y

�

� N2

��

1

0

�

;

�

1 �1
�1 2

��

:

c) The conditional distribution of .YjU D 2/ is the same as the conditional
distribution of .YjZC1 D 2/, i.e., .YjZ D 1/. We know that Y j Z � N1.1CZ; 1/
and thus, the conditional distribution of .YjU D 2/ is

.YjU D 2/ � N1.1C 1; 1/ D N1.2; 1/:
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Exercise 5.7 Suppose

�

X
Y

�

� N2.�;˙/ with ˙ positive definite. Is it possible

that

a) �XjY D 3Y2,
b) �XXjY D 2C Y2,
c) �XjY D 3 � Y, and
d) �XXjY D 5 ?

Using Theorem 5.3, we see that c) and d) are, in principle, possible (the
conditional mean is a linear function of the condition and the conditional variance
is constant).

Parts a) and b) are not possible since the resulting conditional means and
variances in Theorem 5.3 do not contain any quadratic term.

Exercise 5.8 Let X � N3

0

@

0

@

1

2

3

1

A ;

0

@

11 �6 2

�6 10 �4
2 �4 6

1

A

1

A.

a) Find the best linear approximation of X3 by a linear function of X1 and X2 and
compute the multiple correlation coefficient between X3 and .X1;X2/.

b) Let Z1 D X2 � X3; Z2 D X2 C X3 and .Z3 j Z1;Z2/ � N1.Z1 C Z2; 10/. Compute

the distribution of

0

@

Z1
Z2
Z3

1

A.

a) The best linear approximation of X3 by a linear function of X1 and X2 is given by
the conditional expected value calculated according to Theorem 5.3:

�X3j.X1;X2/ D 3C .2;�4/
�

11 �6
�6 10

��1 �
X1 � 1
X2 � 2

�

D 3C .2;�4/ 1
74

�

10 6

6 11

��

X1 � 1

X2 � 2

�

D 3C 1

74
.�4; 32/

�

X1 � 1
X2 � 2

�

D 3C 1

74
.�4; 32/

�

X1 � 1
X2 � 2

�

D 145

37
� 2

37
X1 � 16

37
X2;
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The multiple correlation coefficient, �3:12, between X3 and .X1;X2/ is defined as
the correlation between X3 and its best linear approximation based on X1 and X2, i.e.,

�3:12 D Cov.X3;� 2
37

X1 � 16
37

X2/
q

Var.X3/Var.� 2
37

X1 � 16
37

X2/

D � Cov.X3;X1 C 8X2/
p

Var.X3/Var.X1 C 8X2/

D � Cov.X3;X1/C 8Cov.X3;X2/
p

Var.X3/fVar.X1/C 64Var.X2/C 16Cov.X1;X2/g

D � 2 � 32
p

6.11C 640� 96/

D 30p
3330

D
r

10

37

:D 0:5199:

b) The random vector

�

Z1
Z2

�

can be calculated as a linear transformation of the

random vector X as
�

Z1
Z2

�

D AX C b;

where A D
�

0 1 �1
0 1 1

�

and b D 0. According to Theorem 5.2, the vector

.Z1;Z2/> is normally distributed with the expected value

�12 D A� D
�

0 1 �1
0 1 1

�

0

@

1

2

3

1

A D
��1
5

�

and the variance matrix

˙12 D A˙A> D
�

0 1 �1
0 1 1

�

0

@

11 �6 2

�6 10 �4
2 �4 6

1

A

0

@

0 0

1 1

�1 1

1

A D
�

24 4

4 8

�

:

Since we know .Z3jZ1Z2/ � N.Z1 C Z2; 10/, we can apply the result derived in

Exercise 5.2 with A D
�

1

1

�

, b D 0, and˝ D 10. Then

Z D
0

@

Z1
Z2
Z3

1

A � N3.�Z ; ˙Z/;
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where

�Z D
�

�Z12

A�Z12 C b

�

D
0

@

�1
5

4

1

A

and

˙Z D
�

˙12 ˙12A>
A˙12 ˝ C A˙12A>

�

D
0

@

24 4 28

4 8 12

28 12 50

1

A :

Exercise 5.9 Let .X;Y;Z/> be a tri-variate normal r.v. with

Y j Z � N1.2Z; 24/

Z j X � N1.2X C 3; 14/

X � N1.1; 4/

and �XY D 0:5:

Find the distribution of .X;Y;Z/> and compute the partial correlation between X
and Y for fixed Z. Do you think it is reasonable to approximate X by a linear function
of Y and Z?

Using the known marginal distribution X � N1.�X; �
2
X/ � N.1; 4/ and the

conditional distribution ZjX � N1.AX C b;˝/ � N.2X C 3; 14/, the method
explained in Exercise 5.2 leads to

�

X
Z

�

� N2

��

�X

A�X C b

�

;

�

�2X A�2X
A�2X A�2XA C˝

��

� N2

��

1

2C 3

�

;

�

4 8

8 16C 14

��

� N2

��

1

5

�

;

�

4 8

8 30

��

:

Clearly, the marginal distribution of the random variable Z is Z � N.5; 30/ and
the same rule can be used to determine the joint distribution of .Y;Z/> from the
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conditional distribution YjZ � N.CZ C d; ˚/ � N.2Z; 24/:

�

Y
Z

�

� N2

��C�Z C d
�Z

�

;

�C�2ZC C ˚ C�2Z
C�2Z �2Z

��

� N2

��

10

5

�

;

�

120C 24 60

60 30

��

� N2

��

10

5

�

;

�

144 60

60 30

��

Finally, the correlation �XY of X and Y allows us to calculate the covariance �XY

of X and Y:

�XY D �XY
p
�XX�YY

D 1

2

p
4 � 144 D 12

and the joint distribution of the random vector .X;Y;Z/> is thus

0

@

X
Y
Z

1

A � N3

0

@

0

@

1

10

5

1

A ;

0

@

4 12 8

12 144 60

8 60 30

1

A

1

A :

The partial correlation coefficient, �XYjZ , of X and Y for fixed Z can be written in
terms of simple correlation coefficients as

�XYjZ D �XY � �XZ�YZ
q

.1 � �2XZ/.1 � �2YZ/

:

Plugging in the appropriate elements of the covariance matrix, we obtain

�XYjZ D
�XYp
�XX�YY

� �XZ�YZp
�XX�YY�

2
ZZ

q

.1 � �2XZ
�XX�ZZ

/.1 � �2YZ
�YY�ZZ

/

D
12p
4�144 � 8�60p

4�144�302
q

.1 � 82

4�30 /.1 � 602

144�30 /

D
1
2

� 2
3

q

. 56
120
/. 1
6
/

D �
1
6

q

7
90

D �1
2

r

10

7

:D �0:5976:
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The best linear approximation of X in terms of Y and Z is given by the conditional
expectation �XjYZ which, using Theorem 5.3, can be calculated as

�XjYZ D �X C .12; 8/

�

144 60

60 30

��1 �
Y � �Y

Z � �Z

�

D 1C .12; 8/
1

720

�

30 �60
�60 144

��

Y � 10

Z � 5

�

D 1C 1

720
.�120; 432/

�

Y � 10
Z � 5

�

D 1C 1

720
.�120; 432/

�

Y � 10
Z � 5

�

D �1
3

� 1

6
Y C 3

5
Z:

Such a linear approximation seems to make a good sense, the quality of the linear
approximation can be assessed via the multiple correlation coefficient:

�X:YZ D �5�XY C 18�XZ
p

�XX.25�YY C 324�ZZ � 180�YZ/

D �60C 144
p

4.3600C 9720� 10800/

D 84

2
p
2520

D 7p
70

D
r

7

10
� 0:8367

suggesting quite a strong relationship between X and .Y;Z/>.

Exercise 5.10 Let X � N4

0

B

B

@

0

B

B

@

1

2

3

4

1

C

C

A

;

0

B

B

@

4 1 2 4

1 4 2 1

2 2 16 1

4 1 1 9

1

C

C

A

1

C

C

A

:

a) Give the best linear approximation of X2 as a function of .X1;X4/ and evaluate
the quality of the approximation.

b) Give the best linear approximation of X2 as a function of .X1;X3;X4/ and
compare your answer with part a).
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a) The best linear approximation of X2 in terms of X1 and X4 is the conditional
expectation, �2j14, given as:

�2j14 D �2 C �

�21 �24
	

�

�11 �14
�14 �44

��1 �
X1 � �1
X4 � �4

�

D 2C .1; 1/

�

4 4

4 9

��1 �
X1 � 1

X4 � 4

�

D 2C .1; 1/
1

20

�

9 �4
�4 4

��

X1 � 1

X4 � 4

�

D 2C 1

20
.5; 0/

�

X1 � 1

X4 � 4

�

D 7

4
C 1

4
X1:

b) To determine the best linear approximation of X2 as a function of .X1;X2;X3/,
we use the same procedure so that

�2j134 D �2 C �

�21 �23 �24
	

0

@

�11 �13 �14
�31 �33 �34

�41 �43 �44

1

A

�10

@

X1 � �1
X3 � �3

X4 � �4

1

A

D 2C .1; 2; 1/

0

@

4 2 4

2 16 1

4 1 9

1

A

�10

@

X1 � 1
X3 � 3
X4 � 4

1

A

D 2C .1; 2; 1/
1

296

0

@

143 �14 �62
�14 20 4

�62 4 60

1

A

0

@

X1 � 1

X3 � 3

X4 � 4

1

A

D 2C 1

296
.53; 30; 6/

0

@

X1 � 1

X3 � 3

X4 � 4

1

A

D 425

296
C 53

296
X1 C 15

148
X3 C 3

148
X4:

This exercise demonstrates that the variable X4, which was not important for the
prediction of X2 based on X1 and X4, can enter the formula for the conditional
expected value when another explanatory variable, X3, is added. In multivariate
analyses, such dependencies occur very often.

Exercise 5.11 Prove Theorem 5.2.
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As in Theorem 5.2, let us assume that X � Np.�;˙/, A.q � p/, c 2 R
q, and

rank.A/ D q � p. Our goal is to calculate the distribution of the random vector
Y D AX C c.

Recall that the pdf of X � Np.�;˙/ is

fX.x/ D j2�˙ j�1=2 exp

�

�1
2
.x � �/>˙�1.x � �/

�

: (5.10)

We start by considering the linear transformation

Z D
�A
B
�

X C
�

c

0p�q

�

D DX C e;

where B contains in its rows p � q arbitrary linearly independent vectors orthogonal

to the rows of the matrix A. Hence, the matrix D D
�A
B
�

has full rank and the

density of Z can be expressed as:

fZ.z/

D abs jDj�1fXfD�1.z � e/g

D .jDj2/�1=2j2�˙ j�1=2 exp

�

�1
2

fD�1.z � e/� �g>˙�1fD�1.z � e/� �g
�

D j2�D˙Dj�1=2 exp

�

�1
2
.z � e � D�/>.D�1/>˙�1D�1.z � e � D�/

�

D j2�D˙Dj�1=2 exp

�

�1
2

fz � .D�C e/g>.D˙D>/�1fz � .D�C e/g
�

:

Notice that the above formula is exactly the density of the p-dimensional normal
distribution Np.D�C e;D˙D>/.

More precisely, we can write that

Z � Np.D�C e;D˙D>/

� Np

��A
B
�

�C e;

�A
B
�

˙.A>;B>/
�

� Np

��A�C c
B�

�

;

�A˙A> A˙B>
B˙A> B˙B>

��

Noticing that the first part of the random vector Z is exactly the random vector Y
and applying Theorem 5.1 we have that the distribution of Y D AX C c is q-variate
normal, i.e.,

Y � Nq.A�C c;A˙A>/:
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Exercise 5.12 Let X D
�

X1
X2

�

� Np.�;˙/, ˙ D
�

˙11 ˙12

˙21 ˙22

�

. Prove that ˙12 D
0 if and only if X1 is independent of X2.

We already know, from the previous chapters, that independence implies zero
covariance since, for X1 and X2 independent, we have

Cov.X1;X2/ D E X1 E X2 � E X1X2 D E X1 E X2 � E X1 E X2 D 0:

It remains to show that, for normally distributed random vectors, zero covariance
implies independence.

Applying Theorem 5.1 with the given covariance matrix

˙ D
�

˙11 0

0 ˙22

�

we obtain that X2:1 D X2 C 0˙�1
11 �1 D X2 and from Theorem 5.1 we immediately

have that X2 D X2:1 and X1 are independent.

Exercise 5.13 Show that if X � Np.�;˙/ and given some matrices A and B , then
AX and BX are independent if and only if A˙B> D 0.

Let us define the random vector

Z D
�A
B
�

X D
�AX
BX

�

:

Using the result of the previous Exercise 5.12, where X1 D AX and X2 D BX, it is
clear that the multivariate random vectors AX and BX are independent if and only
if their covariance matrix A˙B> is equal to zero.



Chapter 6
Theory of Estimation

No, no; I never guess. It is a shocking habit—destructive to the logical faculty.
Sherlock Holmes in “The Sign of Four”

The basic objective of statistics is to understand and model the underlying
processes that generate the data. This involves statistical inference, where we extract
information contained in a sample by applying a model. In general, we assume
an i.i.d. random sample fxign

iD1 from which we extract unknown characteristics of
its distribution. In parametric statistics these are condensed in a p-variate vector 	
characterizing the unknown properties of the population pdf f	 .x/ D f .xI 	/: this
could be the mean, the covariance matrix, kurtosis, or something else.

The aim is to estimate 	 from the sample X through estimators O	 that are
functions of the sample: O	 D b.X /. When an estimator is proposed, we must derive
its sampling distribution to analyze its properties: are they related to the unknown
characteristic it is supposed to estimate?

Let the symbol X .n � p/ denote the data matrix containing p-dimensional
observations, xi � f .:I 	/, i D 1; : : : ; n, in each row. The maximum likelihood
estimator (MLE) of 	 is defined as

O	 D arg max
	

L.X I 	/ D arg max
	
`.X I 	/;

where L.X I 	/ D Qn
iD1 f .xiI 	/ is the likelihood function, i.e., the joint density

of the observations xi � f .:; 	/ considered as a function of 	 and `.X I 	/ D
log L.X I 	/ is the log-likelihood function.

The score function s.X I 	/ is the derivative of the log-likelihood function w.r.t.
	 2 R

k

s.X I 	/ D @

@	
`.X I 	/ D 1

L.X I 	/
@

@	
L.X I 	/:
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The covariance matrix

Fn D Efs.X I 	/s.X I 	/>g D Varfs.X I 	/g D � E

�

@2

@	@	> `.X I 	/
�

is called the Fisher information matrix.
The importance of the Fisher information matrix is explained by the following

Cramer–Rao theorem, which gives the lower bound for the variance matrix for any
unbiased estimator of 	 . An unbiased estimator with the variance equal to F�1

n is
called a minimum variance unbiased estimator.

Theorem 6.1 (Cramer–Rao) If O	 D t D t.X / is an unbiased estimator for 	 , then
under regularity conditions

Var.t/ � F�1
n :

Another important result says that the MLE is asymptotically unbiased, efficient
(minimum variance), and normally distributed.

Theorem 6.2 Suppose that the sample fxign
iD1 is i.i.d. If O	 is the MLE for 	 2 R

k,
then under some regularity conditions, as n ! 1:

p
n. O	 � 	/

L�! Nk.0;F�1
1 /;

where F1 denotes the Fisher information for sample size n D 1.

Whenever we are not able to calculate the exact distribution of the MLE O	 ,
Theorem 6.2 gives us a very useful and simple approximation.

In this chapter we present calculation of the Fisher information matrix for
several examples. We also discuss and calculate Cramer–Rao lower bounds for these
situations. We will illustrate the estimation for multivariate normal pdf in detail and
discuss constrained estimation.

Exercise 6.1 Consider a uniform distribution on the interval Œ0; 	�. What is the
MLE of 	? (Hint: the maximization here cannot be performed by means of
derivatives. Here the support of x depends on 	!)

The density of the uniform distribution on the interval Œ0; 	� is

f .x/ D
�
1
	

if x 2 Œ0; 	�;
0 else:

Assuming that we have n independent and identically distributed (iid) random
variables, X1; : : : ;Xn, from this distribution, the likelihood function

L.X1; : : : ;XnI 	/ D
�

	�n if X1; : : : ;Xn 2 Œ0; 	�;
0 else:
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The maximum of the likelihood is achieved by choosing 	 as small as possible such
that 0 � X1; : : : ;Xn � 	 . The maximum likelihood estimator,

O	 D arg max
	

L.X1; : : : ;XnI 	/;

can thus be written as O	 D maxiD1;:::;n Xi.

Exercise 6.2 Consider an iid sample of size n from a bivariate population with pdf

f .x1; x2/ D 1
	1	2

exp
n

�
�

x1
	1

C x2
	2

�o

, x1; x2 > 0. Compute the MLE of 	 D .	1; 	2/
>.

Find the Cramer–Rao lower bound. Is it possible to derive a minimum variance
unbiased estimator of 	?

The function f .:/ is a probability density function (pdf) only if 	1; 	2 > 0.
Let X .n � 2/ D .xij/ denote the data matrix containing in its rows the n

independent bivariate observations from the given pdf.
The marginal densities can be calculated by integrating the bivariate pdf:

f1.x1/ D
Z C1

0

f .x1; x2/dx2 D 1

	1
exp.�x1=	1/;

f2.x2/ D
Z C1

0

f .x1; x2/dx1 D 1

	2
exp.�x2=	2/:

Notice that f .x1; x2/ D f1.x1/f2.x2/. Thus, the marginal distributions are indepen-
dent.

The expected values, �1 and �2, of the marginal distributions are

�1 D
Z C1

0

x1
1

	1
exp.�x1=	1/dx1

D Œ�x1 exp.�x1=	1/�
C1
0 C

Z C1

0

exp.�x1=	1/dx1

D � Œ	1 exp.�x1=	1/�
C1
0 D 	1

and �2 D 	2 since the marginal distributions are identical. Similarly, the variances
are

�21 D E.X2/� �21

D
Z C1

0

x21
1

	1
exp.�x1=	1/dx1 � �21

D 	21

and �22 D 	22 .
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After writing down the log-likelihood function, `.X I 	1; 	2/, where the pdf f .:/
is thought of as a function of the (unknown) parameters 	1 and 	2,

`.X I 	1; 	2/ D log
n
Y

iD1
f .xi1; xi2I 	1; 	2/

D log
n
Y

iD1

1

	1	2
e�

�

xi1
	1

C xi2
	2

�

D n log
1

	1
C n log

1

	2
�

n
X

iD1

xi1

	1
�

n
X

iD1

xi2

	2
;

the MLE of 	1 and 	2 are obtained by solving the system of equations

@`.X I 	1; 	2/
@	1

D � n

	1
C

n
X

iD1

xi1

	21
D 0

and

@`.X I 	1; 	2/
@	2

D � n

	2
C

n
X

iD1

xi2

	22
D 0:

It follows that the MLEs are the sample means O	1 D Nx1 and O	2 D Nx2.
The Cramer–Rao lower bound for the variance of any unbiased estimator for 	

is F�1
n , the inverse of the Fisher information matrix Fn D Efs.X I 	/s.X I 	/>g D

Var s.X I 	/, where s.X I 	/ D @
@	
`.X I 	/ is the so-called score function.

In this exercise, the score function is

s.X I 	/ D

0

B

B

@

� n
	1

C
n
P

iD1
xi1

	21

� n
	2

C
n
P

iD1
xi2

	22

1

C

C

A

Since the observations are iid, the Fisher information matrix Fn D nF1 and from
the Fisher information matrix calculated as if n D 1,

F1 D Var

 � 1
	1

C x11
	21

� 1
	2

C x12
	22

!

D
 

1

	21
0

0 1

	22

!

we easily obtain the Cramer–Rao lower bound:

F�1
n D 1

n
F�1
1 D 1

n

�

	21 0

0 	22

�

:



6 Theory of Estimation 93

Calculating the expected values and variances of the maximum likelihood estima-
tors:

E. O	1/ D E
1

n

n
X

iD1
xi1 D �1;

E. O	2/ D �2;

Var. O	1/ D Var
1

n

n
X

iD1
xi1 D 1

n
Var xi1 D 1

n
	21 ;

Var. O	2/ D 1

n
	22 ;

we can see that the estimators O	1 and O	2 achieve the Cramer–Rao lower bound
and, hence, O	 D . O	1; O	2/> is the minimum variance unbiased estimator of the
parameter 	 .

Exercise 6.3 Consider a sample fxign
iD1 from Np.	; Ip/, where 	 2 R

p is the mean
vector parameter. Show that the MLE of 	 is the minimum variance estimator.

The log-likelihood is in this case

`.X I 	/ D
n
X

iD1
logff .xiI 	/g

D log .2�/�np=2 � 1

2

n
X

iD1
.xi � 	/>.xi � 	/

D log .2�/�np=2 � 1

2

n
X

iD1

˚

.xi � Nx/>.xi � Nx/C .Nx � 	/>.Nx � 	/

C 2.Nx � 	/>.xi � Nx/


D log .2�/�np=2 � 1

2

n
X

iD1
.xi � Nx/>.xi � Nx/� n

2
.Nx � 	/>.Nx � 	/

The last term is the only part depending on 	 and it is obviously maximized for
	 D Nx. Thus O	 D Nx is the MLE of 	 for this family of pdfs f .x; 	/.

It follows that the score function is

s.X I 	/ D @

@	
`.X I 	/

D �n

2

@

@	
.Nx � 	/>.Nx � 	/

D n .Nx � 	/:
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We obtain the Fisher information matrix as the variance of the score function:

Fn D Varfs.X I 	/g D Varfn.Nx � 	/g D n2 Var Nx D n Ip

and the Cramer–Rao lower bound for this case is

F�1
n D 1

n
Ip: (6.1)

We know that the mean and the variance of O	 D Nx are:

E Nx D 	;

Var Nx D 1

n
Ip:

Hence, the MLE estimator is unbiased and its variance attains the Cramer–Rao lower
bound, see (6.1). Thus it is the minimum variance unbiased estimator.

Exercise 6.4 We know from Exercise 6.3 that the MLE of parameter 	 based on
observations from the multinormal distribution Np.	; Ip/ has the Fisher information
F1 D Ip. This leads to the asymptotic distribution

p
n.Nx � 	/

L�! Np.0; Ip/;

see also Theorem 6.2. Can you derive an analogous result for the square Nx2?
One possibility is to consider Nx2 as a transformation of the statistics Nx. In this way,

with transformation f .x/ D .x21; : : : ; x
2
p/, we immediately obtain that the matrix of

partial derivatives is

D D
�

@fj
@xi

�

.x/

ˇ

ˇ

ˇ

ˇ

xD	
D diag.2	1; : : : ; 2	p/

and that the asymptotic distribution of the transformed asymptotically normal
statistics is

p
n.Nx2 � 	2/ L�! Np.0;D>IpD/ D Np.0; 4 diag.	21 ; : : : ; 	

2
p //:

Second possibility, in this situation more straightforward, is to denote by x � y the
componentwise product of vectors x and y and to write

p
n.Nx2 � 	2/ D .Nx C 	/ � p

n.Nx � 	/
L�! 2	Np.0; Ip/ D Np.0; 4	

2Ip/

since .Nx C 	/
P�! 2	 and

p
n.Nx � 	/ � Np.0; Ip/.
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Exercise 6.5 Consider an iid sample of size n from the bivariate population with
pdf

f .x1; x2/ D 1

	21 	2

1

x2
exp

�

�
�

x1
	1x2

C x2
	1	2

��

; x1; x2 > 0:

Compute the MLE, O	 , of the unknown parameter 	 D .	1; 	2/
>. Find the Cramer–

Rao lower bound and the asymptotic variance of O	 .

The estimator O	 is the maximizer of the log-likelihood function

`.X I 	1; 	2/ D log
n
Y

iD1
f .xi1; xi2I 	1; 	2/

D log
n
Y

iD1

1

	21 	2

1

xi2
e�

�

xi1
	1xi2

C xi2
	1	2

�

D n log
1

	21 	2
C

n
X

iD1
log

1

xi2
�

n
X

iD1

�

xi1

	1xi2
C xi2

	1	2

�

D �n.2 log	1 C log 	2/�
n
X

iD1
log xi2 �

n
X

iD1

�

xi1

	1xi2
C xi2

	1	2

�

:

The MLE of 	 can be found by solving the system of equations

@`.X I 	1; 	2/
@	1

D �2n

	1
C

n
X

iD1

�

xi1

	21 xi2
C xi2

	21 	2

�

D 0

and

@`.X I 	1; 	2/
@	2

D � n

	2
C

n
X

iD1

xi2

	1	
2
2

D 0:

From the second equation it follows that Nx2 D 	1	2. Plugging this into the first
equation leads to the MLE

O	1 D 1

n

n
X

iD1

xi1

xi2
and O	2 D Nx2

O	1
D nNx2
Pn

iD1
xi1
xi2

:
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From the score function,

s.X I 	/ D

0

B

B

@

� 2n
	1

C
n
P

iD1

�

xi1

	21 xi2
C xi2

	21 	2

�

� n
	2

C
n
P

iD1
xi2

	1	
2
2

1

C

C

A

;

we can express the Fisher information matrix

Fn D nF1

D n Var

0

@

� 2
	1

C
�

x11
	21 x12

C x12
	21 	2

�

� 1
	2

C x12
	1	

2
2

1

A ;

where the variance matrix can be calculated from the moments similarly as in
Exercise 6.2:

Var

�

x11
x12

�

D E

�

x211
x212

�

�
�

E

�

x11
x12

�� 2

D 	21 and Var.x12/ D 	22 	
2
1 :

The covariance, Cov
�

x11
x12
; x12

�

D 0 because the given density can be decomposed

into a product of two independent parts. We obtain

F1 D
 

2

	21

1
	1	2

1
	1	2

1

	22

!

;

which leads to the Cramer–Rao lower bound

F�1
n D 1

n
F�1
1 D 	21 	

2
2

n

 
1

	22
� 1
	1	2

� 1
	1	2

2

	21

!

D 1

n

�

	21 �	1	2
�	1	2 2	22

�

:

From Theorem 6.2, we can finally say that the maximum likelihood estimator O	 is
asymptotically multivariate normally distributed:

p
n. O	 � 	/ L�! N2.02;F�1

1 /:

Exercise 6.6 Consider an iid sample fxign
iD1 from Np.�;˙0/ where ˙0 is known.

Compute the Cramer–Rao lower bound for �. Can you derive a minimum variance
unbiased estimator for �?

For the case of n iid observations, we know that the Fisher information matrix
Fn D nF1. Hence, we start by writing down the likelihood, the log-likelihood,
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and the score function for a “sample” containing only one observation x1 D
.x11; : : : ; x1p/:

L.x1I�/ D
1
Y

iD1
f .xi; �/ D j2�˙0j�1=2 exp

�

�1
2
.x1 � �/>˙�1

0 .x1 � �/

�

`.x1I�/ D log L.x1I�/ D �1
2

log j2�˙0j � 1

2
.x1 � �/>˙�1

0 .x1 � �/

s.x1I�/ D @

@�
`.x1I�/ D ˙�1

0 .x1 � �/:

Next, we calculate the Fisher information F1 as the variance matrix of the score
function:

F1 D Var˙�1
0 .x1 � �/ D ˙�1

0 Var.x1/˙
�1
0 D ˙�1

0 ˙0˙
�1
0 D ˙�1

0

with inverse F�1
1 D ˙0. We thus obtain the Cramer–Rao lower bound is F�1

n D
1
nF�1

1 D 1
n˙0.

Remember that for the sample mean, Nxn, we have that E.Nxn/ D � and Var.Nxn/ D
1
n˙0. In other words, the sample mean is an unbiased estimator achieving the
Cramer–Rao lower bound, i.e., the minimum variance unbiased estimator. By
maximizing the log-likelihood function, `.X I�/, it can be shown that it is also the
MLE.

Exercise 6.7 Let X � Np.�;˙/ where ˙ is unknown but we know that ˙ D
diag.�11; �22; : : : ; �pp/. From an iid sample of size n, find the MLE of � and of ˙ .

Let � denote the vector of the unknown parameters .�11; �22; : : : ; �pp/
>. The

likelihood and the log-likelihood, based on the data matrix X containing the n
observations x1; : : : ; xn, are

L.X I�; �/ D
n
Y

iD1
f .xiI�; �/

D
n
Y

iD1
j2� diag.�/j�1=2 exp

�

�1
2
.xi � �/> diag.��1/.xi � �/

�

D
0

@2�

p
Y

jD1
�jj

1

A

�n=2
n
Y

iD1
exp

�

�1
2
.xi � �/> diag.��1/.xi � �/

�

;

`.X I�; �/ D log L.X I�; �/

D �n

2
log.2�/ � n

2

p
X

jD1
log �jj � 1

2

n
X

iD1
.xi � �/> diag.��1/.xi � �/:
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In order to maximize this log-likelihood function, we first have to compute the
partial derivatives

@

@�
`.X I�; �/ D diag.��1/

n
X

iD1
.xi � �/

@

@�
`.X I�; �/ D �n

2
��1 � 1

2

@

@�

n
X

iD1
trf.xi � �/> diag.��1/.xi � �/g

D �n

2
��1 � 1

2

@

@�

n
X

iD1
trf.xi � �/.xi � �/> diag.��1/g

D �n

2
��1 C 1

2

n
X

iD1
diagf.xi � �/.xi � �/>g��2:

Setting the partial derivatives equal to zero, we obtain the MLE

0 D diag.��1/
n
X

iD1
.xi � O�/

n O� D
n
X

iD1
xi

O� D 1

n

n
X

iD1
xi

and

0 D �n

2
O��1 C 1

2

n
X

iD1
diagf.xi � �/.xi � �/>g O��2

n O� D
n
X

iD1
diagf.xi � �/.xi � �/>g

O� D diag

(

1

n

n
X

iD1
.xi � �/.xi � �/>

)

D diag.S/

where S is the empirical covariance matrix.

Exercise 6.8 Reconsider the setup of the previous exercise with the diagonal
covariance matrix ˙ D diag.�/ D diag.�11; �22; : : : ; �pp/. Derive the Cramer–
Rao lower bound for the parameter 	 D .�1; : : : ; �p; �11; : : : ; �pp/

>.
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The score function s.X I�; �/ consists of the partial derivatives of the log-
likelihood that were derived in the previous Exercise 6.7:

@

@�
`.X I�; �/ D diag.��1/

n
X

iD1
.xi � �/

@

@�
`.X I�; �/ D �n

2
��1 C 1

2

n
X

iD1
diagf.xi � �/.xi � �/>g��2:

In this exercise, we will calculate the Fisher information matrix as

Fn D � E

�

@2

@	@	> `.X I 	/
�

D � E

 

@2

@��>
`.X I�; �/ @2

@��>
`.X I�; �/

@2

@��>
`.X I�; �/ @2

@��>
`.X I�; �/

!

:

We split the calculation into three steps by evaluating each of the four submatrices
separately, i.e.,

� E
@2

@��> `.X I�; �/ D � E
@

@�> diag.��1/
n
X

iD1
.xi � �/

D � diag.��1/
n
X

iD1
E

@

@�> .xi � �/

D � diag.��1/
n
X

iD1
E diag.�1p/

D diag.n��1/ D n˙;

� E
@2

@��> `.X I�; �/ D � E
@

@�> diag.��1/
n
X

iD1
.xi � �/

D diag.��2/E
n
X

iD1
.xi � �/

D 0p0
>
p ;
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� E
@2

@��> `.X I�; �/ D � E
@

@�>

(

�n

2
��1

C 1

2

n
X

iD1
diagf.xi � �/.xi � �/>g��2

)

D �n

2
diag.��2/

C E
n
X

iD1
diagf.xi � �/.xi � �/>g diag.��3/

D �n

2
diag.��2/C diag.��3/n diag.�/

D n

2
diag.��2/:

Due to its simple diagonal structure, we can now write directly the Cramer–Rao
lower bound for the parameter 	 as the inverse of the derived Fisher information
matrix:

F�1
n D

 

1
n diag� 0p0

>
p

0p0
>
p

2
n diag.�2/

!

D
 

1
n˙ 0p0

>
p

0p0
>
p

2
n˙

2

!

:

Exercise 6.9 Prove that if s D s.X I 	/ is the score function and if O	 D t D t.X ; 	/
is any function of X and 	 , then under certain regularity conditions

E.st>/ D @E.t>/
@	

� E

�

@t>

@	

�

: (6.2)

Note that

s.X I 	/ D @`.X I 	/
@	

D 1

L.X I 	/
@L.X I 	/
@	

:

Next, assuming that the regularity conditions allow us to permute the integral and
the derivative, we write

@EŒft.X I 	/g>�
@	

D @

@	

Z

ft.X I 	/g>L.X I 	/dX

D
Z �

@ft.X I 	/g>L.X I 	/
@	

�

dX
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D
Z �

@ft.X I 	/g>

@	
L.X I 	/C @L.X I 	/

@	
ft.X I 	/g>

�

dX

D
Z

@ft.X I 	/g>

@	
L.X I 	/dX C

Z

s.X I 	/ft.X I 	/g>L.X I 	/dX

D E

�

@ft.X I 	/g>

@	

�

C EŒs.X I 	/ft.X I 	/g>�

and rearranging terms proves the statement (6.2).

Exercise 6.10 Prove that the score function has zero expectation.

We start by writing down the expectation as an integral with respect to the
appropriate pdf, the likelihood, of all observations:

Efs.X I 	/g D
Z

s.X I 	/L.X I 	/dX :

Similarly as in the previous exercise, we assume that the regularity conditions are
such that we can exchange the integral and the derivative in the following formulas:

Efs.X I 	/g D
Z �

1

L.X I 	/
@L.X I 	/
@	

�

L.X I 	/dX

D
Z

@

@	
L.X I 	/dX

D @

@	

Z

L.X I 	/dX D @

@	
1p D 0p:



Chapter 7
Hypothesis Testing

Criminal cases are continually hinging upon that one point. A man is suspected of a
crime months perhaps after it has been committed. His linen or clothes are examined, and
brownish stains discovered upon them. Are they blood stains, or mud stains, or rust stains,
or fruit stains, or what are they? That is a question which has puzzled many an expert, and
why? Because there was no reliable test. Now we have the Sherlock Holmes’ test, and there
will no longer be any difficulty.
Sherlock Holmes in “Study in Scarlet”

A first step in data modeling and understanding is the estimation of parameters
in a supposed model. The second step—and very important statistical work—
is the inferential conclusion on a hypothesis of the involved parameters. The
construction of tests for different kinds of hypotheses is at the heart of this
chapter.

A likelihood ratio is the ratio of the likelihood calculated under the null,
H0, and the alternative, H1. The null hypothesis involves the supposed values of
the parameter, e.g., H0: � D 0. The ratio of the two likelihoods measures the
closeness of the two hypotheses H0 and H1. By taking logarithms, the likelihood
ratio is transformed into a difference of log likelihoods. By Wilks’ theorem, two
times this difference converges to a �2 distribution. Large values of this test
statistic indicate a deviance from the null H0 and thus lead us to reject the null
hypothesis.

Formally, we will consider two hypotheses:

H0 W 	 2 ˝0;

H1 W 	 2 ˝1;

where 	 is a parameter of the distribution of fxign
iD1, xi 2 R

p.

© Springer-Verlag Berlin Heidelberg 2015
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Theorem 7.1 (Wilks’ Theorem) If ˝1 	 R
q is a q-dimensional space and if

˝0 	 ˝1 is an r-dimensional subspace, then under regularity conditions:

8 	 2 ˝0 W �2 log D 2.`�
1 � `�

0 /
L�! �2q�r as n ! 1;

where `�
j , j D 1; 2 are the maxima of the log-likelihood for each hypothesis.

We will learn how to apply Theorem 7.1 to construct likelihood ratio tests and
how to build confidence regions. We focus on the parameters of the multivariate
normal distribution, e.g., we study (simultaneous) confidence intervals for linear
combinations of the mean vector. The presented exercises and solutions cover the
questions of testing dice, comparing company outputs, and testing the profiles of
citrate concentrations in plasma. Other applications contain the linear regression
model for the bank notes data and prediction of the vocabulary score for eighth
graders.

Exercise 7.1 Suppose that X has pdf f .xI 	/, 	 2 R
k. Using Theorem 7.1, construct

an asymptotic rejection region of size ˛ for testing, the hypothesis H0 W 	 D 	0
against alternative H1 W 	 ¤ 	0.

Let `.X I 	/ D Pn
iD1 log f .xiI 	/ be the log-likelihood function and `�

j D
max	2˝j `.X I 	/. We construct the log-likelihood test statistic:

�2 log D 2.`�
1 � `�

0 /

for which the rejection region can be expressed as:

R D fX W �2 log > �g

The critical value � has to be determined so that, if H0 is true, P.�2 log > �/ D ˛.
In line with Theorem 7.1 we know that under H0 the log-likelihood ratio test

statistic �2 log is asymptotically distributed as:

�2 log
L! �2q�r as n ! 1;

where r D dim˝0 and q D dim˝1 denote the dimensions of the parameter spaces
under the null and the alternative hypothesis. Fixing the value of the k-dimensional
parameter 	 reduces the dimension of the parameter space by q � r D k and it
follows that the asymptotic rejection region of H0 (vs. H1) of size ˛ is:

R D fX W �2 log > �21�˛Ikg:

Exercise 7.2 Use Theorem 7.1 to derive a test for testing the hypothesis that a dice
is balanced, based on n tosses of that dice.
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The probability that the number 1 occurs x1-times, 2 occurs x2-times, . . . , and
6 occurs x6-times, is given by the multinomial distribution:

P.x1; : : : ; x6/ D nŠ

x1Š : : : x6Š
px1
1 : : : p

x6
6 ; (7.1)

where
P6

iD1 xi D n and pi, i D 1; : : : ; 6, is the probability of i in a single toss,
P6

iD1 pi D 1.
The null hypothesis, the balanced dice, is H0 W p1 D � � � D p6 D 1

6
and we will

test it against the alternative hypothesis H1 W 9i; j 2 f1; : : : ; 6g W pi ¤ pj.
Let X D .x1; : : : ; x6/> denote the observed frequencies. The likelihood and the

log-likelihood functions are based on (7.1):

L.XI p1; : : : ; p6/ D nŠ

x1Š : : : x6Š
px1
1 : : : p

x6
6 ;

`.XI p1; : : : ; p6/ D log nŠ�
6
X

jD1
log xjŠC

6
X

jD1
xj log pj

D log nŠ�
6
X

jD1
log xjŠC

5
X

jD1
xj log pj C x6 log

0

@1 �
5
X

jD1
pj

1

A :

Setting the derivative of the log-likelihood w.r.t. the unknown parameters equal
to zero, we obtain that xj=pj D x6=p6, j D 1; : : : ; 5. This entails that dim˝1 D 5.
From the condition

P6
jD1 pj D 1 it follows that the MLE for each of the unknown

parameters is Opj D xj=n, j D 1; : : : ; 6 which implies that the maximum of the log-
likelihood under the alternative hypothesis is

`�
1 D log nŠ�

6
X

jD1
log xjŠC

6
X

jD1
xj log

�xj

n

�

:

Under the null hypothesis ˝0 D f.1=6; 1=6; : : : ; 1=6/g with dim˝0 D 0, the
maximum of the log-likelihood is, obviously,

`�
0 D log nŠ�

6
X

jD1
log xjŠC

6
X

jD1
xj log

�

1

6

�

:

Thus, we have for the likelihood ratio statistics:

�2 log D 2.`�
1 � `�

0 / D 2

 

6
X

iD1
xi log xi � n log n C n log 6

!

� �25;
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where the degrees of freedom of the asymptotic �2 distribution were determined,
according to Theorem 7.1, as dim˝1 � dim˝0 D 5 � 0.

The application of this result is straightforward: the observed frequencies
x1; : : : ; x6 are used to calculate the value of the likelihood ratio test statistics which
is then compared to the appropriate quantile of the �25 distribution: if  is too large,
we reject the null hypothesis in favor of the alternative.

For example, if the observed frequencies are X D .10; 7; 8; 12; 13; 6/>, we obtain
the value of the likelihood ratio statistics �2 log D 4:23. This value is smaller than
the 95 % critical value of the asymptotic �25 distribution, �20:95I5 D 11:07, and we do
not reject the null hypothesis. The null hypothesis is not rejected since the observed
values are consistent with a balanced dice.

Exercise 7.3 In Exercise 6.5, we have considered the pdf

f .x1; x2/ D 1

	21 	2x2
e�

�

x1
	1x2

C x2
	1	2

�

; for x1; x2 > 0:

Solve the problem of testing H0 W 	> D .	01; 	02/ from an iid sample xi D .xi1; xi2/
>,

i D 1; : : : ; n, for large number of observations n.

Both the log-likelihood function:

`.X I 	1; 	2/ D log
n
Y

iD1
f .xi1; xi2I 	1; 	2/

D �n.2 log 	1 C log 	2/�
n
X

iD1
log xi2 �

n
X

iD1

�

xi1

	1xi2
C xi2

	1	2

�

and the MLEs maximizing the likelihood under the alternative hypothesis:

O	1 D 1

n

n
X

iD1

xi1

xi2
and O	2 D Nx2

O	1
D nNx2
Pn

iD1
xi1
xi2

are given in Exercise 6.5
The likelihood ratio test statistic can be derived as follows:

�2 log D 2.`�
1 � `�

0 /

D 2f`.X I O	1; O	2/� `.X I 	01; 	02/g

D �2n.2 log O	1 C log O	2/� 2

n
X

iD1

�

xi1

O	1xi2

C xi2

O	1 O	2

�

C 2n.2 log 	01 C log 	02/C 2

n
X

iD1

�

xi1

	01xi2
C xi2

	01	02

�
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D 2n

�

2 log
	01

O	1
C log

	02

O	2

�

� 4n C 2

n
X

iD1

�

xi1

	01xi2
C xi2

	01	02

�

:

Note that dim˝1 D 2 and dim˝0 D 0. The likelihood ratio test statistic has,
under the null hypothesis, asymptotically �2 distribution with 2 � 0 D 2 degrees of
freedom.

Exercise 7.4 Consider a N3.�;˙/ distribution. Formulate the hypothesis H0 W
�1 D �2 D �3 in terms of A� D a.

One possibility is to select a matrix

A1 D
�

1 �1 0

0 1 �1
�

and vector a D .0; 0/>.
Then, the equation A1� D a can be written as

A1

0

@

�1
�2

�3

1

A D
�

�1 � �2
�2 � �3

�

D
�

0

0

�

;

which implies conditions �1 � �2 D 0 and �2 � �3 D 0 from which we get
�1 D �2 D �3 as desired.

Notice that the hypothesis H0 can be written in infinitely many ways, e.g., using
matrices

A2 D
�

1 � 1
2

� 1
2

0 1 �1
�

or A3 D
�

1 �1 0

1 0 �1
�

:

Exercise 7.5 Simulate a normal sample with � D �
1
2

	

and ˙ D
�

1
0:5

0:5
2

�

and test

H0 W 2�1 � �2 D 0:2 first with ˙ known and then with ˙ unknown. Compare the
results.

In general, suppose that X1; : : : ;Xn is an iid random sample from a Np.�;˙/

population and consider the hypothesis:

H0 W A� D a; ˙ known versus H1 W no constraints,

where A.q � p/, q � p, has linearly independent rows. Under H0, we have that:

n.ANx � a/>.A˙A>/�1.ANx � a/ � X 2
q ; (7.2)

and we reject H0 if this test statistic is too large at the desired significance level.
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The test statistics (7.2) cannot be calculated if the variance matrix ˙ is not
known. Replacing the unknown variance matrix ˙ by its estimate S leads to the
test:

.n � 1/.ANx � a/>.ASA>/�1.ANx � a/ � T2q;n�1: (7.3)

The tests described in (7.2) and (7.3) can be applied in our situation with a D 0:2

and A D .2;�1/ since the null hypothesis H0 W 2�1 � �2 D 0:2 can be written as

H0 W .2;�1/
�

�1

�2

�

D 0:2:

First, applying the test (7.2) with the known variance matrix and n D 100

simulations, we obtain the test statistics 0:1369. Comparing this value with the
appropriate critical value �20:95I1 D 3:8415 of the �21 distribution, we see that the
observed values are at level 95% not significantly different from the assumed values.

Performing the test (7.3), where the variance matrix˙ is replaced by the estimate
S, we obtain the test statistics 0:1600 which is again smaller than the 95% critical
value of the Hotelling T2 distribution, T20:95I1;99 D F0:95I1;99 D 3:9371.

Notice that the tests (7.2) and (7.3) with the known and unknown variance matrix
are very similar. The critical value for the test (7.3) is slightly larger since it has
to reflect also the uncertainty coming from the estimation of the variance matrix.
However, for large number of observations, both tests should provide very similar
results. SMStestsim

Exercise 7.6 Suppose that x1; : : : ; xn is an iid random sample from a Np.�;˙/

population. Show that the maximum of the log-likelihood under H0 W � D �0 with
unknown variance matrix ˙ is

`�
0 D `.X I�0;S C dd>/; d D .Nx � �0/:

From the likelihood function for parameters˙ and �:

L.X I�;˙/ D j2�˙ j�n=2 exp

(

�1
2

n
X

iD1
.xi � �/>˙�1.xi � �/

)

we obtain the log-likelihood

`.X I�;˙/ D �n

2
log j2�˙ j � 1

2

n
X

iD1
.xi � �/>˙�1.xi � �/: (7.4)

Notice that, in the definition of the multinormal pdf given in Exercise 4.20, we
assume that the variance matrix ˙ is positive definite.

http://www.quantlet.de/codes/sms/SMStestsim.html
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Under the null hypothesis H0 W � D �0, we have to maximize (w.r.t. ˙) the
expression

`0.X I˙/

D �n

2
log j2�˙ j � 1

2

n
X

iD1
.xi � �0/>˙�1.xi � �0/

D �np log2�

2
� n

2
log j˙ j � 1

2

n
X

iD1

˚

tr˙�1.xi � �0/.xi � �0/
>


D �np log2�

2
� n

2
log j˙ j � 1

2

(

tr˙�1
n
X

iD1
.xi � �0/.xi � �0/

>
)

: (7.5)

Let us now state two useful rules for matrix differentiation (Lütkepohl, 1996;
Harville, 1997):

@ log jX j
@X D .X>/�1 and

@trX>A
@X D A

which are in turn applied to express the derivative of the log-likelihood (7.5) with
respect to the unknown parameter˙�1 as follows:

@`0.X I˙/
@.˙�1/

D n

2
˙ � 1

2

n
X

iD1
.xi � �0/.xi � �0/>:

Setting the derivative equal to zero, we immediately obtain the MLE of the unknown
parameter˙ as:

Ȯ D 1

n

n
X

iD1
.xi � �0/.xi � �0/>

D 1

n

n
X

iD1

˚

.xi � Nx/.xi � Nx/> C .Nx � �0/.Nx � �0/
> C 2.Nx � �0/.xi � Nx/>


D 1

n

n
X

iD1
.xi � Nx/.xi � Nx/> C 1

n

n
X

iD1
.Nx � �0/.Nx � �0/> C 0

D 1

n

n
X

iD1
.xi � Nx/.xi � Nx/> C .Nx � �0/.Nx � �0/

>

D S C dd>;
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where S is the empirical covariance matrix and d D .Nx � �0/. It is clear that the
maximum of the log-likelihood under the null hypothesis is

`�
0 D max

˙
`0.X I˙/ D `0.X I Ȯ / D `.X I�0; Ȯ / D `.X I�0;S C dd>/:

Exercise 7.7 Suppose that X1; : : : ;Xn is an iid random sample from a Np.�;˙/

population and consider the test of the hypothesis

H0 W � D �0; ˙ unknown versus H1 W no constraints.

Show that the likelihood ratio test statistic is equal to

�2 log D 2.`�
1 � `�

0 / D n log.1C d>S�1d/; d D .Nx � �0/:

The maximum of the likelihood under the null hypothesis, `�
0 , was already

derived in Exercise 7.6:

`�
0 D `.X I�0;S C dd>/; d D .Nx � �0/:

In order to calculate the maximum of the likelihood under the alternative
hypothesis, we have to maximize (w.r.t. .�;˙/) the log-likelihood:

`.X I�;˙/ D �n

2
log j2�˙ j � 1

2

n
X

iD1
.xi � �/>˙�1.xi � �/

D �np log 2�

2
� n

2
log j˙ j � 1

2

(

tr˙�1
n
X

iD1
.xi � �/.xi � �/>

)

:

Let us start by calculating the derivative of the likelihood w.r.t. the parameter �:

@`.X I˙/
@�

D �1
2
˙�1

n
X

iD1
.xi � �/

and we see the MLE O� is equal to the sample mean Nx for any matrix˙�1.
Let us now maximize the function `.X I Nx; ˙/ in terms of the parameter ˙ .

Similarly as in Exercise 7.6, we express the derivative of the log-likelihood
`.X I Nx; ˙/ with respect to the unknown parameter˙�1 as follows:

@`.X I˙/
@˙�1 D n

2
˙ � 1

2

n
X

iD1
.xi � Nx/.xi � Nx/>:
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Setting the derivative equal to zero, we immediately obtain that the MLE Ȯ is equal
to the sample variance matrix

S D 1

n

n
X

iD1
.xi � Nx/.xi � Nx/>

and the maximum of the log-likelihood under the alternative hypothesis is

`�
1 D `.X I Nx;S/:

Hence, using the rule for calculating the determinant derived in Exercise 2.8, the
likelihood ratio test statistic can be written as

�2 D 2.`�
1 � `�

0 /

D 2f`.X I Nx;S/ � `.X I�0;S C dd>/g

D �n log jSj C n log jS C dd>j � tr

(

S�1
n
X

iD1
.xi � Nx/.xi � Nx/>

)

C tr

(

.S C dd>/�1
n
X

iD1
.xi � �0/.xi � N�0/>

)

D n logfjSj.1C d>S�1d/g � n log jSj
D n log.1C d>S�1d/:

Exercise 7.8 In the U.S. companies data set in Appendix A.17, test the equality
of means between the energy and manufacturing sectors taking the full vector of
observations X1 to X6. Derive simultaneous confidence intervals for the differences.

Assume that we have a random sample consisting of Xi1 � Np.�1;˙/, i D
1; : : : ; n1, and Xj2 � Np.�2;˙/, j D 1; : : : ; n2. The test of the equality of the means
�1 and �2 can be formally written as

H0 W �1 D �2; versus H1 W no constraints.

Both samples provide the statistics Nxk and Sk, k D 1; 2. Let ı D �1 � �2 and
n D n1 C n2. We have

.Nx1 � Nx2/ � Np

�

ı;
n

n1n2
˙

�

and n1S1 C n2S2 � Wp.˙; n1 C n2 � 2/:
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Let S=.n1 C n2/�1.n1S1 C n2S2/ be the weighted mean of S1 and S2. This leads to
a test statistic with a Hotelling T2-distribution:

n1n2.n � 2/

n2
f.Nx1 � Nx2/� ıg> S�1 f.Nx1 � Nx2/ � ıg � T2p;n�2

or

f.Nx1 � Nx2/� ıg> S�1 f.Nx1 � Nx2/� ıg � pn2

.n � p � 1/n1n2
Fp;n�p�1:

This result can be used to test the null hypothesis of equality of two means, H0 W
ı D 0, or to construct a confidence region for ı 2 R

p.
The rejection region of the test is given by:

n1n2.n � p � 1/

pn2
.Nx1 � Nx2/> S�1 .Nx1 � Nx2/ � F1�˛Ip;n�p�1: (7.6)

A .1� ˛/ confidence region for ı is given by the ellipsoid centered at .Nx1 � Nx2/

fı � .Nx1 � Nx2/g> S�1 fı � .Nx1 � Nx2/g � pn2

.n � p � 1/.n1n2/
F1�˛Ip;n�p�1:

The simultaneous confidence intervals for all linear combinations a>ı of the
elements of ı are given by

a>ı 2 a>.Nx1 � Nx2/˙
s

pn2

.n � p � 1/.n1n2/
F1�˛Ip;n�p�1a>Sa:

In particular, we have at the .1 � ˛/ level, for j D 1; : : : ; p,

ıj 2 .Nx1j � Nx2j/˙
s

pn2

.n � p � 1/.n1n2/F1�˛Ip;n�p�1sjj: (7.7)

In the U.S. companies data set, we observe altogether 6 variables. We have
n1 D 15 observations from the energy sector and n2 D 10 observations from the
manufacturing sector.

The test statistic

n1n2.n � p � 1/
pn2

.Nx1 � Nx2/>S�1.Nx1 � Nx2/ D 2:15

is smaller than the corresponding critical value F1�˛Ip;n�p�1 D F0:95I6;18 D 2:66

and, hence, we do not reject the null hypothesis.
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Let us now derive the simultaneous confidence interval for the difference of the
means at level 1 � ˛ D 95% by calculating the intervals

.Nx1j � Nx2j/˙
s

pn2

n1n2.n � p � 1/
F1�˛Ip;n�p�1sjj

for j D 1; : : : ; p.
We only have to take the mean and the variances of the variables into account

since the covariances do not appear in the formula. At the 95% level we have the
confidence intervals:

�7639 � ı1 � 7193

�9613 � ı2 � 4924

�2924 � ı3 � 2103

�295 � ı4 � 536

�527 � ı5 � 791

�102 � ı6 � 20:

We remark that all the above confidence intervals contain zero which corresponds
to not rejecting the null hypothesis. SMStestuscomp

Exercise 7.9 Consider an iid sample of size n D 5 from a bivariate normal
distribution

X � N2

�

�;

�

3 �

� 1

��

where � is a known parameter. Suppose Nx> D .1; 0/. For what value of � would the
hypothesis H0 W �> D .0; 0/ be rejected in favor of H1 W �> 6D .0; 0/ (at the 5 %
level)?

Since the variance matrix˙ is known, we can use the test statistic:

�2 log D n.Nx � �0/
>˙�1.Nx � �0/

which has, under the null hypothesis, exactly a �2 distribution with p D 2 degrees
of freedom.

Plugging in the observed values, we obtain

n.Nx � �0/>˙�1.Nx � �0/ D 5.1; 0/

�

3 �

� 1

��1 �
1

0

�

http://www.quantlet.de/codes/sms/SMStestuscomp.html
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D 5.1; 0/
1

3� �2

�

1 ��
�� 3

��

1

0

�

D 5

3 � �2

and it follows that the null hypothesis is rejected if

5

3 � �2
> �20:95I2 D 5:99;

i.e., if abs.�/ >
p

3 � 5=5:99 D 1:471.
At the same time, abs.�/ <

p
3 since the variance matrix must be positive

definite (and the covariance � D ˙p
3 if the correlation coefficient is equal to

˙1).
Hence, the null hypothesis is rejected for covariances � such that

abs.�/ 2
 

3 � 5

�20:95I2
;
p
3

!

D .1:471; 1:732/:

Exercise 7.10 Consider X � N3.�;˙/. An iid sample of size n D 10 provides:

Nx D .1; 0; 2/> and S D
0

@

3 2 1

2 3 1

1 1 4

1

A :

a) Knowing that the eigenvalues of S are integers, describe a 95 % confidence
region for �.

b) Calculate the simultaneous confidence intervals for �1; �2 and �3.
c) Can we assert that �1 is an average of �2 and �3?

a) The test statistic .n � p/.�� Nx/>S�1.�� Nx/ has Fp;n�p distribution. Comparison
of the test statistic with the appropriate quantile of its distribution yields the
following confidence region, covering the unknown parameter�with probability
1 � ˛:

�

� 2 R
pI j.�� Nx/>S�1.� � Nx/j � p

n � p
F1�aIp;n�p

�

:

In our case, we obtain

�

� 2 R
3j.� � Nx/TS�1.�� Nx/ 6 3

7
F0:95I3;7

�

(7.8)
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Calculating the trace and the determinant of S:

jSj D 18 D
3
Y

jD1
j and tr.S/ D 3C 3C 4 D 10

3
X

jD1
j

and searching for positive integers satisfying these two equations yields easily  D
.1:2; 3/

> D .6; 3; 1/>.
Next, we can calculate the eigenvectors �1; �2; �3 by solving the three systems of

equations .S � iI3/ D 03, respectively:

0

@

�3 2 1

2 �3 1

1 1 �2

1

A �1 D 03;

0

@

0 2 1

2 0 1

1 1 1

1

A �2 D 03; and

0

@

2 2 1

2 2 1

1 1 3

1

A �3 D 03

and it is easy to verify that �1 D .1; 1; 1/>=
p
3, �2 D .1; 1;�2/>=p6, and �3 D

.�1; 1; 0/>=p2.
The confidence region (7.8) can now be described in words as a three-

dimensional ellipsoid with axes of lengths
q

3
7
F0:95I3;7i, i D 1; 2; 3, oriented

in the directions of the eigenvectors �1, �2, and �3, respectively.

b) Simultaneous confidence intervals for components of � may be calculated using
the formula:

Nxj �
r

p

n � p
F1�˛Ip;n�psjj < �j < Nxj C

r

p

n � p
F1�˛Ip;n�psjj

In this particular case we have

Nxj �
r

3

7
F0:95I3;7sjj < �j < Nxj C

r

3

7
F0:95I3;7sjj:

It should be noticed that these intervals define a rectangle inscribing the
confidence ellipsoid (7.8) for � given above. Calculations yield:

�1:364 < �1 < 3:364
�2:364 < �2 < 2:364
�0:729 < �3 < 4:730:

c) The problem can be solved applying the test statistic:

.n � 1/.ANx � a/>.ASA>/�1.ANx � a/ � T2q;n�1
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where A D .2;�1;�1/. In this case, with the observed Nx D .1; 0; 2/>, the value
of the test statistic is zero and the null hypothesis H0 W �1 D .�2 C �3/=2 (or
equivalently H0 W A� D 0) cannot be rejected.

Exercise 7.11 Let X � N2.�;˙/ where ˙ is known to be ˙ D
�

2 �1
�1 2

�

. We

have an iid sample of size n D 6 providing Nx> D �

1 1
2

	

. Solve the following test
problems (˛ D 0:05):

a) H0: � D �

2; 2
3

	>
H1: � ¤ �

2; 2
3

	>

b) H0: �1 C �2 D 7
2

H1: �1 C �2 ¤ 7
2

c) H0: �1 � �2 D 1
2

H1: �1 � �2 ¤ 1
2

d) H0: �1 D 2 H1: �1 ¤ 2

For each case, calculate the rejection region and comment on their size and
location.

a) For X � Np.�;˙/, the test statistic .X � �0/
>˙�1.X � �0/ has under the null

hypothesis H0 W � D �0 exactly a �2p distribution.
The test is based on the known distribution of the sample mean, i.e.,

Nx � N2

��

1
1
2

�

;
1

6

�

2 �1
�1 2

��

Since in our case the variance matrix ˙ > 0 is known, we can calculate its
inverse

�

1

6
˙

��1
D
�

4 2

2 4

�

and obtain the value of the test statistic 4:78 which is smaller than the critical
value �22.0:05/ D 5:99. Hence, the null hypothesis cannot be rejected at level
˛ D 0:05.

Here, the rejection region contains all values greater than the critical value
5:99, i.e., the interval .5:99;C1/.

b) We could use the test statistic (7.2) with A D .1; 1/ but it is more straightforward
to use the univariate normal distribution of the random variable

.1; 1/Nx � N.�1 C �2; 2=6/:

The test statistic .1; 1/Nx has, under the null hypothesis, a normal distribution
N.7=2; 2=6/. We reject the null hypothesis since the value of the test statistic,
�

3
2

� 7
2

	p

6=2 D �3:4641 is smaller than the critical value of the standard
normal distribution ˆ�1.0:025/ D �1:96.
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The rejection region is the union of the intervals .�1;�1:96/[ .1:96;C1/.
We reject the null hypothesis if the observed and the hypothesized mean value
are far away from each other.

c) Since Nx1 � Nx2 D 1
2
, the value of the test statistic (7.2) is equal to zero and we

cannot reject H0 at any level ˛ 2 .0; 1/.
d) Again, we could use formula (7.2) with A D .1; 0/. However, we can also realize

that the test concerns only the first component of the observed random vector and,
since the test statistic .1 � 2/p6=2 D �1:7321 is now lying between the critical
values ˆ�1.0:025/ D �1:96 and ˆ�1.0:975/ D 1:96, we do not reject the null
hypothesis at level ˛ D 0:05.

The rejection region is .�1;�1:96/[ .1:96;C1/.

Exercise 7.12 Repeat the Exercise 7.11 with˙ unknown and the empirical covari-

ance matrix S D
�

2 �1
�1 2

�

. Compare the results.

a) Tests concerning the mean vector of a multivariate normal distribution can be
based on the test statistic

.n � 1/.Nx � �0/
>S�1.Nx � �0/ � T2p;n�1;

or equivalently

�

n � p

p

�

.Nx � �0/
>S�1.Nx � �0/ � Fp;n�p: (7.9)

In this case an exact rejection region may be defined as

�

n � p

p

�

.Nx � �0/>S�1.Nx � �0/ > F1�˛Ip;n�p:

Alternatively, we could apply Theorem 7.1 which leads to the approximate
(asymptotically valid) rejection region:

n logf1C .Nx � �0/>S�1.Nx � �0/g > �21�˛Ip:

However, it is preferable to use the exact approach.

It is interesting to see that the test statistic is quite similar to the test statistic
calculated in Exercise 7.11. The only differences are different norming constant
.n � p/=p instead of n and different critical values. Comparing the formula, the
value of the test statistic can be calculated as

n � p

pn
4:78 D 4

24
4:78
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which is obviously smaller than the corresponding critical value F0:95I2;4 D 6:9443.
As in Exercise 7.11, we do not reject the null hypothesis.

b) The standard univariate t-test, allowing for unknown variance matrix, is actually
using the same test statistic as given in Exercise 7.11. The only difference is
the critical value t0:975I5 D 2:5759. The test statistic, �3:4641, is smaller than
the critical value �2:5759 and, exactly as in Exercise 7.11, we reject the null
hypothesis.

Notice that the rejection region .�1;�2:5759/[ .2:5759;C1/ is smaller than
in Exercise 7.11, and we can say that it is more difficult to reject the null hypothesis
if the variance is not known.

c) Since Nx1 � Nx2 D 1
2
, the value of the test statistic will be again equal to zero and

we cannot reject H0 at any level ˛ 2 .0; 1/. This decision is identical to our
conclusion in Exercise 7.11.

d) The test statistic of the univariate t-test .1 � 2/
p

6=2 D �1:7321 is lying
between the corresponding critical values t0:025I5 D �2:5759 and t0:975I5 D
2:5759 which implies that we do not reject the null hypothesis at level ˛ D 0:05.

Exercise 7.13 Test the hypothesis of the equality of the covariance matrices on two
simulated four-dimensional samples of sizes n1 D 30 and n2 D 20.

Let Xih � Np.�h; ˙h/, i D 1; : : : ; nh, h D 1; 2; be independent random vectors.
The test problem of testing the equality of the covariance matrices can be written as

H0 W ˙1 D ˙2 versus H1 W no constraints.

Both subsamples provide Sh, an estimator of ˙h, with the Wishart distribution
nhSh � Wp.˙h; nh � 1/. Under the null hypothesis H0 W ˙1 D ˙2, we have for the
common covariance matrix that

P2
hD1 nhSh � Wp.˙; n � 2/, where n D P2

hD1 nh.
Let S D n1S1Cn2S2

n be the weighted average of S1 and S2. The likelihood ratio
test leads to the test statistic

� 2 log D n log jSj �
2
X

hD1
nh log jShj (7.10)

which under H0 is approximately distributed as a �2m with m D 1
2
.2 � 1/p.p C 1/

degrees of freedom.
We test the equality of the covariance matrices for the three data sets given

in Härdle and Simar (2015, Example 7.14) who simulated two independent normal
distributed samples with p D 4 dimensions and the sample sizes of n1 D 30 and
n2 D 20 leading to the asymptotic distribution of the test statistics (7.10) with
m D 1

2
.2 � 1/4.4C 1/ D 10 degrees of freedom.



7 Hypothesis Testing 119

a) With a common covariance matrix in both populations˙1 D ˙2 D I4, we obtain
the following empirical covariance matrices:

S1 D

0

B

B

@

0:812 �0:229 �0:034 0:073

�0:229 1:001 0:010 �0:059
�0:034 0:010 1:078 �0:098
0:073 �0:059 �0:098 0:823

1

C

C

A

and

S2 D

0

B

B

@

0:559 �0:057 �0:271 0:306

�0:057 1:237 0:181 0:021

�0:271 0:181 1:159 �0:130
0:306 0:021 �0:130 0:683

1

C

C

A

The determinants are jSj D 0:590, jS1j D 0:660 and jS2j D 0:356 leading to the
likelihood ratio test statistic:

�2 log D 50 log.0:590/� 30 log.0:660/� 20 log.0:356/ D 6:694

The value of the test statistic is smaller than the critical value �20:95I10 D 18:307

and, hence, we do not reject the null hypothesis.
b) The second simulated samples have covariance matrices˙1 D ˙2 D 16I4. Now,

the standard deviation is 4 times larger than in the previous case. The sample
covariance matrices from the second simulation are:

S1 D

0

B

B

@

21:907 1:415 �2:050 2:379

1:415 11:853 2:104 �1:864
�2:050 2:104 17:230 0:905

2:379 �1:864 0:905 9:037

1

C

C

A

;

S2 D

0

B

B

@

20:349 �9:463 0:958 �6:507
�9:463 15:502 �3:383 �2:551
0:958 �3:383 14:470 �0:323

�6:507 �2:551 �0:323 10:311

1

C

C

A

and the value of the test statistic is:

�2 log D 50 log.40066/� 30 log.35507/� 20 log.16233/D 21:693:

Since the value of the test statistic is larger than the critical value of the
asymptotic distribution, �20:95I10 D 18:307, we reject the null hypothesis.
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c) The covariance matrix in the third case is similar to the second case˙1 D ˙2 D
16I4 but, additionally, the covariance between the first and the fourth variable
is �14 D �41 D �3:999. The corresponding correlation coefficient is r41 D
�0:9997.

The sample covariance matrices from the third simulation are:

S1 D

0

B

B

@

14:649 �0:024 1:248 �3:961
�0:024 15:825 0:746 4:301

1:248 0:746 9:446 1:241

�3:961 4:301 1:241 20:002

1

C

C

A

and

S2 D

0

B

B

@

14:035 �2:372 5:596 �1:601
�2:372 9:173 �2:027 �2:954
5:596 �2:027 9:021 �1:301

�1:601 �2:954 �1:301 9:593

1

C

C

A

:

The value of the test statistic is:

�2 log D 50 log.24511/� 30 log.37880/� 20 log.6602:3/ D 13:175

The value of the likelihood ratio test statistic is now smaller than the critical value,
�20:95I10 D 18:307, and we do not reject the null hypothesis.

Notice that in part b), we have rejected a valid null hypothesis. One should always
keep in mind that a wrong decision of this type (so-called type I error) is possible
and it occurs with probability ˛. SMStestcov

Exercise 7.14 Test the equality of the covariance matrices from the two groups in
the WAIS data set (Morrison, 1990). The data set is given in Appendix A.21.

The data set can be summarized by calculating the vectors of means,

Nx1 D .12:57; 9:57; 11:49; 7:97/> Nx2 D .8:75; 5:33; 8:50; 4:75/>;

and the empirical covariance matrices

S1 D

0

B

B

@

11:164 8:840 6:210 2:020

8:840 11:759 5:778 0:529

6:210 5:778 10:790 1:743

2:020 0:529 1:743 3:594

1

C

C

A

S2 D

0

B

B

@

9:688 9:583 8:875 7:021

9:583 16:722 11:083 8:167

8:875 11:083 12:083 4:875

7:021 8:167 4:875 11:688

1

C

C

A

in both groups.

http://www.quantlet.de/codes/sms/SMStestcov.html
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Let us assume that the first set of n1 D 37 observations comes from four-
dimensional normal distribution N4.�1;˙1/ and the second set of the remaining
n2 D 12 observations corresponds to N4.�2;˙2/

For testing the equality of the two covariance matrices,˙1 D ˙2, we use the test
described in Exercise 7.13. Formally, the null and the alternative hypotheses are:

H0 W ˙1 D ˙2 versus H1 W ˙1 ¤ ˙2:

In order to calculate the likelihood ratio test statistic (7.6), we have to define the
matrix S D .n1S1 C n2S2/=n, i.e., the weighted average of the observed matrices.
We get

S D n1S1 C n2S2
n

D 37S1 C 12S2
49

D

0

B

B

@

10:803 9:022 6:863 3:245

9:022 12:974 7:077 2:399

6:863 7:077 11:107 2:510

3:245 2:399 2:510 5:576

1

C

C

A

and we easily obtain the test statistic:

�2 log D n log jSj �
2
X

hD1
nh log jShj

D 49 log jSj � .37 log jS1j C 12 log jS2j/ D 20:7:

This value of the test statistics leads to the rejection of the null hypothesis of the
equality of the two covariance matrices since it is larger than the critical value
�20:95I10 D 18:307, where the degrees of freedom were determined for k D 2 groups
as m D 1

2
.k � 1/p.p C 1/ D 1

2
.2 � 1/4.4C 1/ D 10. SMStestcovwais

Exercise 7.15 Consider two independent iid samples, each of size 10, from two
bivariate normal populations. The results are summarized below:

Nx1 D .3; 1/>I Nx2 D .1; 1/>

S1 D
�

4 �1
�1 2

�

I S2 D
�

2 �2
�2 4

�

:

Provide a solution to the following tests:

a) H0: �1 D �2 H1: �1 6D �2
b) H0: �11 D �21 H1: �11 6D �21
c) H0: �12 D �22 H1: �12 6D �22

Compare the solutions and comment.

http://www.quantlet.de/codes/sms/SMStestcovwais.html
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a) Let us start by verifying the assumption of equality of the two covariance
matrices, i.e., the hypothesis:

H0 W ˙1 D ˙2 versus H1 W ˙1 ¤ ˙2:

This hypothesis can be tested using the approach described in Exercise 7.13
where we used the test statistic (for k D 2 groups):

�2 log D n log jSj �
2
X

hD1
nh log jShj

which is under the null hypothesis H0 W ˙1 D ˙2 approximately �2m distributed,
where m D 1

2
.k � 1/p.p C 1/ D 1

2
.2 � 1/2.2C 1/ D 3.

We calculate the average of the observed variance matrices

S D
�

3 �1:5
�1:5 3

�

and we get the value of the test statistic

�2 log D 20 log jSj � .10 log jS1j C 10 log jS2j/ D 4:8688

which is smaller than the critical value �20:95I3 D 7:815. Hence, the value of the test
statistic is not significant, we do not reject the null hypothesis, and the assumption
of the equality of the variance matrices can be used in testing the equality of the
mean vectors.

Now, we can test the equality of the mean vectors:

H0 W �1 D �2 versus H1 W �1 ¤ �2:

The rejection region is given by

n1n2.n1 C n2 � p � 1/

p.n1 C n2/p
.Nx1 � Nx2/>S�1.Nx1 � Nx2/ � F1�˛Ip;n1Cn2�p�1:

For ˛ D 0:05 we get the test statistic 3:7778 � F0:95I2;17 D 3:5915. Hence, the null
hypothesis H0 W �1 D �2 is rejected and we can say that the mean vectors of the
two populations are significantly different.

b) For the comparison of the two mean vectors first components we calculate the
95 % simultaneous confidence interval for the difference. We test the hypothesis

H0 W �11 D �21 versus H1 W �11 ¤ �21:
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This test problem is only one-dimensional and it can be solved by calculating the
common two-sample t-test. The test statistic

Nx11 � Nx21
q

4
n1

C 2
n2

D 2
q

6
10

D 2:5820

is greater than the corresponding critical value t0:95I18 D 2:1011 and hence we
reject the null hypothesis.

c) The comparison of the second component of the mean vectors can be also based
on the two-sample t-test. In this case, it is obvious that the value of the test
statistic is equal to zero (since Nx12 D Nx22 D 1) and the null hypothesis cannot
be rejected.

In part a) we have rejected the null hypothesis that the two mean vectors are
equal. From the componentwise test performed in b) and c), we observe that the
reason for rejecting the equality of the two-dimensional mean vectors was mainly
due to differences in the first component.

Exercise 7.16 Assume that X � Np.�;˙/ where ˙ is unknown.

a) Derive the log-likelihood ratio test for testing the independence of the p
components, that is H0 W ˙ is a diagonal matrix.

b) Assume that ˙ is a diagonal matrix (all the variables are independent). Can an
asymptotic test for H0 W � D �0 against H1 W � ¤ �0 be derived? How would
you compare it to p independent univariate t-tests on each �j?

c) Provide an easy derivation of an asymptotic test for testing the equality of the p
means. Compare this to the simple ANOVA procedure.

In order to derive the likelihood ratio test statistic, we have to calculate `�
0 and `�

1 ,
the maxima of the log-likelihood under the null and alternative hypothesis. Using
the results derived in Exercise 6.7, we can write

`�
0 D `fNx; diag.S/g D �n

2
log j2� diag.S/j � n

2
tr
�

diag.S/�1S	

and, from the solution of Exercise 7.7, we know that

`�
1 D `.Nx;S/ D �n

2
log j2�Sj � n

2
tr
�S�1S	 D �n

2
log j2�Sj � n

2
p;

where diag.S/ D diag
�

s11; : : : ; spp
	

and d D .Nx � �/. Then

�2 log D 2
�

`�
1 � `�

0

	

D �n
˚

log j2�Sj � log j2� diag.S/j C p � tr
�

diag.S/�1S	


D �n
˚

log
ˇ

ˇdiag.S/�1ˇˇ jSj C p � tr
�

diag.S/�1S	
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D �n
˚

log
ˇ

ˇdiag.S/�1=2S diag.S/�1=2ˇˇC p

� tr
�

diag.S/�1=2S diag.S/�1=2	


D �n .log jRj C p � trR/
D �n log jRj ;

where R D diag.S/�1=2S diag.S/�1=2 is the empirical correlation matrix.
According to Theorem 7.1, the test of the null hypothesis can be based on the

fact that the likelihood ratio test statistics �n log jRj has asymptotically �2p.p�1/=2
distribution, where the number of degrees of freedom is the difference in the number
of parameters under the alternative and null hypothesis: p.p � 1/=2 D dim.˝1/ �
dim.˝0/ D p.p C 1/=2� p.

b) Again, using Theorem 7.1, the test can be derived by calculating the likelihood
ratio test statistics �2 log D �2 �`�

1 � `�
0

	

comparing the maximum of the log-
likelihood under the null and alternative hypothesis.

Under the null hypothesis H0 W � D �0, we maximize the log-likelihood
`.X I�0;˙/ under the assumption that the variance˙ is diagonal, i.e., the unknown
parameters are the diagonal elements of ˙ , � D diag.˙/. Similarly, as in
Exercise 6.7, the log-likelihood `.X I�0; �/ is

�n

2
log.2�/ � n

2

p
X

jD1
log �jj � 1

2

n
X

iD1
.xi � �0/> diag.��1/.xi � �0/:

Setting the partial derivative of the log-likelihood w.r.t. the vector of unknown
parameters � D diag.˙/ equal to zero,

@

@�
`.X I�0; �/ D �n

2
��1 � 1

2

@

@�

n
X

iD1
trf.xi � �0/

> diag.��1/.xi � �0/g

D �n

2
��1 C 1

2

n
X

iD1
diagf.xi � �0/.xi � �0/>g��2:

we obtain the MLE

0 D �n

2
O��1 C 1

2

n
X

iD1
diagf.xi � �0/.xi � �0/

>g O��2

O� D diag

(

1

n

n
X

iD1
.xi � �0/.xi � �0/

>
)

D diag.S C dd>/;
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where S is the empirical covariance matrix and d D .Nx � �0/ as in Exercise 7.6.
Thus,

`�
0 D `.X I�0; diag.S C dd>/:

The maximum of the log-likelihood under the alternative hypothesis has already
been derived in Exercise 6.7,

`�
1 D `.X I Nx; diag S/

and we can calculate the likelihood ratio test statistic similarly as in Exercise 7.7:

�2 log D 2
�

`�
1 � `�

0

	

D 2
˚

`.X I Nx; diag S/ � `.X I�0; diag.S C dd>/



D �n log j diag.S/j C n log j diag.S C dd>/j

� tr

(

diag.S�1/
n
X

iD1
.xi � Nx/.xi � Nx/>

)

C tr

"

fdiag.S C dd>/g�1
n
X

iD1
.xi � �0/.xi � N�0/>

#

D n log
j diag.S C dd>/j

j diag.S/j D n log
p
Y

jD1

Pn
iD1.xij � �0j/

2

Pn
iD1.xij � Nxj/2

D n log
p
Y

jD1

Pn
iD1.xij � Nxj C Nxj � �0j/

2

Pn
iD1.xij � Nxj/2

D n
p
X

jD1
log

nsjj C n.Nxj � �0j/
2

nsjj

D n
p
X

jD1
log

�

1C .Nxj � �0j/
2

sjj

�

:

The derived test statistics has asymptotically a �2 distribution with p degrees of
freedom.

Using a first order Taylor expansion of log.1Cx/ � x, the test statistics �2 log
may be approximated by the expression

p
X

jD1
n
.Nxj � �0j/

2

sjj
D

p
X

jD1

� Nxj � �0j

sjj=
p

n

�2

;
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i.e., a sum of squared univariate one-sample t-test statistics calculated for each
dimension separately. Hence, the multivariate test is, in this case, approximately
equivalent to a combination of the p univariate t-tests.

c) The hypothesis of the equality of the p means can be equivalently written as
H0 W C� D 0, where C is a contrast matrix

C..p � 1/ � p/ D

0

B

B

B

@

1 �1 0 � � � 0
0 1 �1 � � � 0
:::

: : :
: : :

:::

0 � � � 0 1 �1

1

C

C

C

A

and a test could be based on the statistic

.n � 1/Nx>C>.C diagSC>/�1C Nx � T2p;n�1

or, equivalently,

n � p C 1

p � 1 Nx>C>.CSC>/�1C Nx � Fp�1;n�pC1: (7.11)

The analysis of variance (ANOVA) technique is, in this case, based on the test
statistic

fSS.reduced/� SS.full/g=fdf .r/� df .f /g
SS.full/=df .f /

� Fdf .r/�df .f /;df .f /;

i.e.,

n

n
Pp

jD1
�Nxj � NNx	2

o

=.p � 1/

Pp
jD1

Pn
iD1

�

xij � NNx	2 =.np � 1/
� Fp�1;np�1; (7.12)

where NNx D 1
p .Nx1 C � � � C Nxp/.

A comparison of the test statistics and their asymptotic distributions in (7.11)
and (7.12) reveals that the tests behave differently. The main difference is that the
analysis of variance (7.12) assumes that the the variances �11; : : : ; �pp are equal.
Thus, (7.11) is, in principle, a modification of ANOVA for heteroscedastic (unequal
variances within groups) observations.

Exercise 7.17 The yields of wheat have been measured in 30 parcels that have been
randomly attributed to 3 lots prepared by one of 3 different fertilizers A, B, and C.
The data set is given in Appendix A.7.
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Using Exercise 7.16,

a) test the independence between the 3 variables.
b) test whether � D .2; 6; 4/> and compare this to the 3 univariate t-tests.
c) test whether �1 D �2 D �3 using simple ANOVA and the �2 approximation.

a) We assume that the observations, x1; : : : ; x30, have three-dimensional normal
distribution N3.�;˙/ where ˙ is unknown. The null and alternative hypothesis
are:

H0 W ˙ is diagonal vs. H1 W no constraints

The corresponding likelihood ratio test statistic, derived in Exercise 7.16,

�n log jRj D �n log

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1:000 �0:400 0:152

�0:400 1:000 �0:027
0:152 �0:027 1:000

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �n log 0:819 D 1:987

is smaller than the corresponding critical value of the �26 distribution �26I0:95 D
12:592 at level ˛ D 0:05. Hence, we do not reject the hypothesis that the variance
matrix is diagonal.

b) The corresponding test statistic:

.n � 1/.Nx � �0/>S�1.Nx � �0/ � T2pIn�1

follows under H0 a Hotelling T2-distribution, with p D 3 and n � 1 D 9 degrees
of freedom. From the data set, we calculate the mean vector

Nx D
0

@

3:2

6:7

2:2

1

A

and the inverse of the variance matrix S

S�1 D
0

@

0:776 0 0

0 0:407 0

0 0 0:937

1

A :

The test statistic is

9.1:2; 0:7;�1:8/
0

@

0:776 0 0

0 0:407 0

0 0 0:937

1

A

0

@

1:2

0:7

�1:8

1

A D 39:188
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The critical value of the Hotelling T23;9 distribution is

T20:95I3;9 D 3 � 9
9 � 3C 1

F0:95I3;9�3C1 D 16:76

and it follows that we reject the null hypothesis H0 W � D .2; 6; 4/> since the test
statistic is larger than the critical value.

The three univariate tests for the single means are:

H0 W �1 D 2 vs. H1 W no constraints,

H0 W �2 D 6 vs. H1 W no constraints,

H0 W �3 D 4 vs. H1 W no constraints.

The test statistics

Ti D p
n

Nx � �i

sii
; for i D 1; 2; 3;

follow a Student t-distribution with n � 1 D 9 degrees of freedom.
In our case, we obtain

T1 D 3:342; T2 D 1:413; and T3 D �5:511:

The null hypothesis is rejected if the absolute value of the test statistic is larger than
the critical value t0:975I9 D 2:263. The null hypothesis is rejected for �1 D 2 and
�3 D 4.

In practice, it is not a good idea to perform a series of univariate tests instead of
one overall multivariate. It is easy to see that the probability of finding false positive
result (rejecting valid null hypothesis) increases with the number of performed
univariate tests.

c) The ANOVA hypothesis is:

H0 W �1 D �2 D �3 vs. H1 W no constraints.

The sums of squares for the ANOVA procedure are SS.full/ D P3
lD1

P10
kD1.xkl �

Nxl/
2 D 43:30 and SS.reduced/ D P3

lD1
P10

kD1.xkl � Nx/2 D 154:97. The test
statistic

F D fSS.reduced/ � SS.full/g=.df .r/� df .f //

SS.full/=df .f /
D 34:816

follows a F-distribution with df .f / D n � 3 D 27 and df .r/ D n � 1 D 29

degrees of freedom.
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Since the test statistic 34:816 > F0:95I2;27 D 3:354, we reject the null hypothesis
of equality of the three means.

Without assuming the equality of the variances (homoscedasticity) the hypothesis
can be written as

H0 W C� D 02 versus H1 W no constraints

under the assumption that the variance matrix ˙ is diagonal, where

C D
�

1 �1 0

1 0 �1
�

:

The t-test statistic:

�2 log D n log
˚

1C .C Nx � a/>.CSC>/�1.C Nx/


follows under the null hypothesis H0 asymptotically a �2-distribution. From the
observed data set, we obtain

C Nx D
��3:5

1

�

and .ASA>/�1 D
�

0:329 �0:180
�0:180 0:523

�

:

The test statistic is

�2 log D 10 log

�

1C .�3:5; 1/
�

0:329 �0:180
�0:180 0:523

���3:5
1

��

D 19:19

and we reject the null hypothesis at level ˛ D 0:05 since the test statistic is larger
than the corresponding critical value �20:95I2 D 5:99.

Exercise 7.18 Test the first sample (n1 D 30) simulated in parts b) and c) of
Exercise 7.13 to see if its covariance matrix is equal to ˙0 D 4I4 (the sample
covariance matrix to be tested is given by S1).
a) We have a random sample from a four-dimensional normal distribution with a

sample size of 30 and the empirical covariance matrix:

S1 D

0

B

B

@

21:907 1:415 �2:050 2:379

1:415 11:853 2:104 �1:864
�2:050 2:104 17:230 0:905

2:379 �1:864 0:905 9:037

1

C

C

A

The test of the hypothesis

H0 W ˙ D ˙0 versus H1 W no constraints



130 7 Hypothesis Testing

can be carried out by likelihood ratio test based on the test statistic

�2 log D 2.`�
1 � `�

0 /

D 2f`.X I Nx;S/ � `.X I Nx; ˙0/g
D n tr

�

˙�1
0 S	 � n log

ˇ

ˇ˙�1
0 Sˇˇ � np

which has, under the null hypothesis, asymptotically �2m distribution with m D
p.p � 1/=2 degrees of freedom.

Plugging in the observed covariance matrix, we get �2 log D 182:2 >

�20:95I10 D 18:31 and we reject the null hypothesis H0 W ˙ D 4I4.
b) For the second observed covariance matrix,

S1 D

0

B

B

@

14:649 �0:024 1:248 �3:961
�0:024 15:825 0:746 4:301

1:248 0:746 9:446 1:241

�3:961 4:301 1:241 20:002

1

C

C

A

;

we obtain the test statistic �2 log D 179:5 and, comparing it to the same
critical value �20:95I10 D 18:31, we again see that the observed covariance matrix
is significantly different from ˙0 D 4I4. SMStestcov4i

Exercise 7.19 Consider the bank data set in Appendix A.2. For the counterfeit bank
notes, we want to know if the length of the diagonal (X6) can be predicted by a
linear model in X1 to X5. Estimate the linear model and test if the coefficients are
significantly different from zero.

We consider the linear regression model,

X6 D .1;X1; : : : ;X5/ˇ C ";

where ˇ D .ˇ0; : : : ; ˇ5/
> is the vector of the regression parameters and " is the

random error distributed as N.0; �2/. The parameter estimates and the related tests
are summarized in the following computer output:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 47.34541 34.93498 1.355 0.17859

Length 0.31930 0.14831 2.153 0.03388 *
‘Height Left‘ -0.50683 0.24829 -2.041 0.04403 *
‘Height Right‘ 0.63375 0.20208 3.136 0.00229 **
‘Inner Frame Lower‘ 0.33250 0.05963 5.576 2.35e-07 ***
‘Inner Frame Upper‘ 0.31793 0.10391 3.060 0.00289 **
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4714 on 94 degrees of freedom

Multiple R-squared: 0.322,Adjusted R-squared: 0.2859

F-statistic: 8.927 on 5 and 94 DF, p-value: 5.757e-07

http://www.quantlet.de/codes/sms/SMStestcov4i.html
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The last line of the output concerns the test of the hypothesis

H0 W ˇ1 D � � � D ˇ5 D 0 vs. H1 W ˇi ¤ 0 for some i D 1; : : : ; 5:

The value of the F-statistics is 8:927 and the small p-value (< ˛ D 0:05) indicates
that the null hypothesis is rejected. This proves that the response variable X6 depends
on the variables X1; : : : ;X5.

The upper part of the computer output contains information on the parameter
estimates (or coefficients) Ǒ

i, i D 0; : : : ; 5. The parameter ˇ0 D (Intercept)
estimates the intercept (absolute term). The remaining parameters ˇi, i D 1; : : : ; 5

measure the influence of the variables Xi on the response variable X6, see Chap. 3
for more details. Each row contains a result of the univariate t-test of the hypothesis

H0 W ˇi D 0 vs. H1 W ˇi ¤ 0:

From the p-values given in the last column, we can see that all regression coefficients
are statistically significant on level ˛ D 0:05. SMSlinregbank2

Exercise 7.20 In the vocabulary data set (Bock, 1975) given in Appendix A.20,
predict the vocabulary score of the children in eleventh grade from the results in
grades 8–10. Estimate a linear model and test its significance.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4782 0.2999 4.929 6.86e-06 ***
grade8 0.2015 0.1582 1.273 0.2078

grade9 0.2278 0.1152 1.977 0.0526 .

grade10 0.3965 0.1304 3.041 0.0035 **
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.073 on 60 degrees of freedom

Multiple R-squared: 0.7042,Adjusted R-squared: 0.6894

F-statistic: 47.61 on 3 and 60 DF, p-value: 7.144e-16

Regression analysis reveals a reasonably high coefficient of determination. The
hypothesis of independence (H0 W all parametersD 0) is rejected on level ˛ D 0:05

since the F-statistics is statistically significant (the p-value is smaller than ˛ D
0:05).

The vocabulary score from tenth grade (ˇ3 Dgrade10) is statistically signif-
icant for the forecast of performance in eleventh grade. The other two variables,
vocabulary scores from the eighth and ninth grade, are not statistically significant
at level ˛ D 0:05. More formally, the test does not reject the hypothesis that
parameters ˇ2 and ˇ3 are equal to zero.

One might be tempted to simplify the model by excluding the insignificant
variables. Excluding only the score in eighth grade leads to the following result

http://www.quantlet.de/codes/sms/SMSlinregbank2.html
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which shows that the variable measuring the vocabulary score in ninth grade has
changed its significance.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2355 0.2327 5.309 1.63e-06 ***
grade9 0.2893 0.1051 2.752 0.00779 **
grade10 0.5022 0.1011 4.969 5.75e-06 ***
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.079 on 61 degrees of freedom

Multiple R-squared: 0.6962,Adjusted R-squared: 0.6862

F-statistic: 69.89 on 2 and 61 DF, p-value: < 2.2e-16

Hence, the final model explains the vocabulary score in grade eleven using
vocabulary scores in the previous two grades. SMSlinregvocab

Exercise 7.21 Assume that we have observations from two p-dimensional normal
populations, xi1 � Np.�1;˙/, i D 1; : : : ; n1, and xi2 � Np.�2;˙/, i D
1; : : : ; n2. The mean vectors �1 and �2 are called profiles. An example of two
such five-dimensional profiles is given in Fig. 7.1. Propose tests of the following
hypotheses:

1. Are the profiles parallel?
2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, are they also horizontal?

The above questions are easily translated into linear constraints on the means and
a test statistic can be obtained accordingly.

a) Let C be a .p � 1/ � p contrast matrix defined as

C D
0

@

1 �1 0 � � � 0

0 1 �1 � � � 0

0 � � � 0 1 �1

1

A :

The hypothesis of parallel profiles is equivalent to

H.1/
0 W C�1 � C�2 D C.�1 � �2/ D 0p�1:

The test of parallel profiles can be based on:

C .Nx1 � Nx2/ � Np�1
�

C .�1 � �2/ ;
n1 C n2

n1n2
C˙C>

�

:

http://www.quantlet.de/codes/sms/SMSlinregvocab.html
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Fig. 7.1 Example of population profiles. SMSprofil

Next, for the pooled covariance matrix S D .n1S1 C n2S2/=.n1 C n2/ we have the
Wishart distribution:

n1S1 C n2S2 � Wp .˙; n1 C n2 � 2/

C .n1S1 C n2S2/C> � Wp�1
�C˙C>; n1 C n2 � 2

	

:

Under the null hypothesis, we know that C .�1 � �2/ D 0p�1 and it follows that the
statistic

.n1 C n2 � 2/ fC .Nx1 � Nx2/g>
�

n1 C n2
n1n2

C .n1S1 C n2S2/ C>
��1

C .Nx1 � Nx2/

D .n1 C n2 � 2/ fC .Nx1 � Nx2/g>
�

n1 C n2
n1n2

.n1 C n2/ CSC>
��1

C .Nx1 � Nx2/

D .n1 C n2 � 2/ n1n2

.n1 C n2/
2

fC .Nx1 � Nx2/g> fCSCg�1 C .Nx1 � Nx2/

http://www.quantlet.de/codes/sms/SMSprofil.html


134 7 Hypothesis Testing

has the Hotelling T2 distribution T2p�1;n1Cn2�2 and the null hypothesis of parallel
profiles is rejected if

n1n2.n1 C n2 � p/

.n1 C n2/2.p � 1/ fC.Nx1 � Nx2/g> �CSC>	�1 C.Nx1 � Nx2/ > F1�˛Ip�1;n1Cn2�p:

(7.13)

b) Assuming that the two profiles are parallel, the null hypothesis of the equality of
the two levels can be formally written as

H.2/
0 W 1>

p .�1 � �2/ D 0:

For 1>
p .Nx1 � Nx2/, as a linear function of normally distributed random vectors, we

have

1>
p .Nx1 � Nx2/ � N1

�

1>
p .�1 � �2/;

n1 C n2
n1n2

1>
p ˙1p

�

:

Since

1>
p .n1S1 C n2S2/ 1p � W1

�

1>
p f˙1p; n1 C n2 � 2

	

;

we have that

.n1 C n2/1
>
p S1p � W1.1

>
p ˙1p; n1 C n2 � 2/;

where S is the pooled empirical variance matrix. The test of equality can be based
on the test statistic:

.n1 C n2 � 2/ f1>
p .Nx1 � Nx2/g>

�

n1 C n2
n1n2

C .n1S1 C n2S2/C>
��1

1>
p .Nx1 � Nx2/

D n1n2.n1 C n2 � 2/

.n1 C n2/
2

˚

1>
p .Nx1 � Nx2/


2

1>
p S1p

� T21;n1Cn2�2

which leads directly the rejection region:

n1n2.n1 C n2 � 2/
.n1 C n2/2

˚

1>
p .Nx1 � Nx2/


2

1>
p S1p

> F1�˛I1;n1Cn2�2: (7.14)

c) If it is accepted that the profiles are parallel, then we can exploit the information
contained in both groups to test if the two profiles also have zero slope, i.e., the
profiles are horizontal. The null hypothesis may be written as:

H.3/
0 W C.�1 C �2/ D 0:
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The average profile Nx D .n1Nx1 C n2 Nx2/=.n1 C n2/ has a p-dimensional normal
distribution:

Nx � Np

�

n1�1 C n2�2
n1 C n2

;
1

n1 C n2
˙

�

:

Now the horizontal, H.3/
0 W C.�1C�2/ D 0p�1, and parallel, H.1/

0 W C.�1��2/ D
0p�1, profiles imply that

C
�

n1�1 C n2�2
n1 C n2

�

D C
n1 C n2

.n1�1 C n2�2/

D C
2.n1 C n2/

f.n1 C n2/.�1 C �2/C .n1 � n2/.�1 � �2/g

D 0p�1:

So, under parallel and horizontal profiles we have

C Nx � Np�1
�

0p�1;
1

n1 C n2
C˙C>

�

:

and

C.n1 C n2/SC> D C .n1S1 C n2S2/ C> � Wp�1
�C˙C>; n1 C n2 � 2	:

Again, we get under the null hypothesis that

.n1 C n2 � 2/.C Nx/>.CSC>/�1C Nx � T2 .p � 1; n1 C n2 � 2/

which leads to the rejection region:

n1 C n2 � p

p � 1
.C Nx/>.CSC>/�1C Nx > F1�˛Ip�1;n1Cn2�p: (7.15)

Exercise 7.22 In Olkin and Veath (1980), the evolution of citrate concentrations in
plasma is observed at three different times of day for two groups of patients who
follow different diet. (The patients were randomly attributed to each group under a
balanced design n1 D n2 D 5). The data set is given in Appendix A.14.

Test if the profiles of the groups are parallel, if they are at the same level and if
they are horizontal.

The observed profiles are plotted in Fig. 7.2. We apply the test statistics derived
in Exercise 7.21 to test the statistical significance of the difference between the
observed profiles.
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Fig. 7.2 Groups profiles of the evolution of citrate concentrations in plasma observed at three
different times of day. SMSprofplasma

a) The test for parallel profiles (7.13) leads to the test statistic:

n1n2.n1 C n2 � p/

.n1 C n2/2.p � 1/
fC.Nx1 � Nx2/g>.CSC>/�1C.Nx1 � Nx2/ D 0:08

and we do not reject the null hypothesis since 0:08 < F1�˛Ip�1;n1Cn2�p D
F0:95I2;7 D 4:74.

b) Let us now use (7.14) to test the equality of the profiles: The test statistic

n1n2.n1 C n1 � 2/f1>
p .Nx1 � Nx2/g2

.n1 C n2/21>
p S1p

D 10:90

is larger than the critical value F1�˛I1;n1Cn2�2 D F0:95I1;8 D 5:32 and the
hypothesis of equal profiles is rejected.

Hence, the profiles could be parallel but we already know that the levels of
citrate concentrations in the two groups are significantly different.

c) Using the test statistic (7.15), we can assert the horizontality of the observed
profiles, i.e., we can decide whether the concentrations change during the day.

http://www.quantlet.de/codes/sms/SMSprofplasma.html
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Considering the average profile Nx D n1 Nx1Cn2Nx2
n1Cn2

, the test statistic is

n1 C n2 � p

p � 1
.C Nx/>.CSC>/�1C Nx D 3:78

and we do not reject the null hypothesis since it is smaller than the critical
value F1�˛Ip�1;n1Cn2�p D F0:95I2;7 D 4:74. Thus, the observed profiles are not
significantly changing throughout the day. SMSprofplasma

http://www.quantlet.de/codes/sms/SMSprofplasma.html
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Chapter 8
Regression Models

Perhaps, when a man has special knowledge and special powers like my own, it rather
encourages him to seek a complex explanation when a simpler one is at hand.
Sherlock Holmes in “The Adventure of the Abbey Grange”

In Chap. 3, we have introduced the linear model

Y D Xˇ C "; (8.1)

where Y denotes a .n�1/ random vector of observations of the response variable, X
is the .n � r/ design matrix containing the corresponding values of the explanatory
variables, ˇ is a .r � 1/ vector of unknown parameters and " is a .n � 1/ random
vector such that E " D 0n and Var " D �2In.

Assuming that the design matrix X has full rank, we have shown in Exercise 3.23
that the least squares estimator of ˇ may be written as

Ǒ D .X>X /�1X>Y: (8.2)

Using tools of Chap. 4, it is easy to show that

E Ǒ D E.X>X /�1X>Y D .X>X /�1X> E Y

D .X>X /�1X> E.Xˇ C "/ D .X>X /�1X>.Xˇ C 0n/ D ˇ

and

Var Ǒ D Varf.X>X /�1X>Yg D .X>X /�1X>.Var Y/X .X>X /�1

D .X>X /�1X>�2InX .X>X /�1 D �2.X>X /�1:

Notice that the correlations of the parameter estimators Ǒ
i, i D 1; : : : ; r, depend

only on the design matrix X . Design matrix X with mutually orthogonal columns

© Springer-Verlag Berlin Heidelberg 2015
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leads to a diagonal variance matrix Var Ǒ. On the other hand, correlated explanatory
variables (i.e., nearly dependent columns in the design matrix) may increase the
variance of the estimators Ǒ

i, see e.g. Belsley et al. (1980) for more detailed
information.

Linear Regression

Assuming additionally normality of the random vector ", we obtain that

Ǒ
i � N.ˇi; �

2vii/;

where vii is the ith diagonal element of the matrix V D .X>X /�1. The natural
estimator of the unknown variance �2 is the Mean Squared Error

O�2 D MSE D 1

n � r

n
X

iD1
.yi � xi

Ǒ/2 D .y � X Ǒ/>.y � X Ǒ/=n:

Standard tools may be used to verify the independence of the estimators Ǒ and O�2
in order to derive that

. Ǒ
i � ˇi/= O�v1=2ii � tn�r:

It follows that we will reject the null hypothesis H0 W ˇi D 0 against the alternative
H1 W ˇi ¤ 0 if

jtij D j Ǒ
ij= O�v1=2ii � t1�˛=2In�r: (8.3)

Standard statistical software usually reports the estimates Ǒ
i, i D 1; : : : ; r, estimate

of standard errors SE. Ǒ
i/ D O�v1=2ii , and test statistics ti given in (8.3) with

corresponding p-values.
In practice, one is often interested in linear combination of the regression

parameters, say �> Ǒ. Most often, such linear combination represents a fitted value,
i.e., estimated conditional expected value (mean response) given that the vector of
predictors is equal to � but, sometimes, it can be used to test hypotheses concerning,
e.g., a difference of two regression parameters. It is easy to see that the variance of
�> Ǒ is:

Var.�> Ǒ/ D �> Var. Ǒ/� D �2�>.X>X /�1�

and that

�> Ǒ � �>ˇ
p

�2�>.X>X /�1�
� N.0; 1/: (8.4)
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Next, replacing the unknown parameter �2 by its natural estimator O�2, we obtain the
t-distribution with n � r degrees of freedom:

�> Ǒ � �>ˇ
p O�2�>.X>X /�1�

� tn�r: (8.5)

It directly follows that we reject the null hypothesis H0 W �>ˇ D �0 against the
two-sided alternative if

j�> Ǒ � �0j
p O�2�>.X>X /�1�

� t1�˛=2;n�r

and that

�> Ǒ ˙ t1�˛=2In�r

q

O�2�>.X>X /�1� (8.6)

is a 1 � ˛ two-sided confidence interval for �>ˇ.
Similarly, it is straightforward to construct prediction intervals, i.e., intervals cap-

turing future observation YnC1 D xnC1ˇC "nC1 with a prescribed probability 1�˛.
Proceeding similarly as in (8.5), we obtain that Var YnC1 D �2xnC1.X>X /�1x>

nC1C
�2 leading to the t-distribution

xnC1 Ǒ � xnC1ˇ
q

O�2f1C xnC1.X>X /�1x>
nC1g

� tn�r:

It is now easy to see that the interval

xnC1 Ǒ ˙ t1�˛=2In�r

q

O�2f1C xnC1.X>X /�1x>
nC1g (8.7)

will capture the value YnC1 with probability 1 � ˛.
We should also note that simultaneous confidence and prediction intervals may

be obtained by replacing the 1� ˛=2 quantile of the t-distribution in (8.6) and (8.7)
by the expression

p

rF1�˛Ir;n�r , see Neter et al. (1996) or Fahrmeir et al. (2013) or
some other textbook on linear regression for more detailed information.

Simultaneous testing of several hypothesis concerning the vector parameter ˇ
may be reformulated as a test of a linear constraint. In Exercise 3.24, we have
already derived an estimator ǑA;a of the parameter ˇ subject to the linear constraint
Aˇ D a. This allows us to test the null hypothesis H0 W Aˇ D a against the
alternative H1 W Aˇ ¤ a by comparing the sums of squared residuals obtained in the
constrained and the unconstrained model. More precisely, under the null hypothesis
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H0 W Aˇ D a, it can be shown that

F D .kY � X ǑA;ak2 � kY � X Ǒk2/= rank.A/
kY � X Ǒk2=.n � r/

� Frank.A/;n�r (8.8)

and the null hypothesis H0 W Aˇ D a may be rejected on level ˛ if F �
F1�˛Irank.A/;n�r.

In practice, we usually set r D p C 1 and write ˇ D .ˇ0; ˇ1; : : : ; ˇp/
> with the

coefficient ˇ0 corresponding to the intercept—in other words, we assume that the
first column of the design matrix X is 1n. In this setting, standard statistical software
usually reports also the coefficient of determination, see Exercise 3.9 and a test of
the hypothesisˇ1 D ˇ2 D � � � D ˇp D 0, i.e., a test of the hypothesis H0 W Aˇ D 0p,
where A is a .p � p C 1/ matrix with elements aij D I.i D j C 1/, see (8.8).

The classical ANOVA and ANCOVA models may be seen as special cases of the
linear regression model with categorical (or factor) explanatory variables.

Logistic Regression

Other very popular and useful regression-type models, such as the logistic regression
or the log-linear model suitable for categorical response variable, do not fall into
the framework of linear model because a nonlinear relationship between the linear
predictor and the nonnormally distributed response is assumed.

The logistic regression model has been designed for modeling a binary response
variable. In order to describe the dependency of the binary response Yi, i D 1; : : : ; n,
on the vector of explanatory variables xi, we assume that the expectation E.Yijxi/ D
P.Yi D 1jxi/ 2 .0; 1/ of the binary response variable is equal to a logistic function
P.t/ D f1C exp.�t/g�1 of a linear combination of the explanatory variables x>

i ˇ 2
.�1;1/. In principle, any function from .�1;1/ ! .0; 1/ could be used to link
the linear predictor (2 .�1;1/) and the probability of P.Yi D 1/ 2 .0; 1/ but the
logistic function has the advantage of leading to a very straightforward interpretation
of the regression coefficients.

The logistic regression model may be written as

p.xi/ D P.Yi D 1jxi/ D 1

1C exp �x>
i ˇ

D exp x>
i ˇ

exp x>
i ˇ C 1

; i D 1; : : : ; n:

Expressing the linear predictor as a function of p.xi/, we arrive at

x>
i ˇ D log

�

p.xi/

1 � p.xi/

�

D logfodds.xi/g;

i.e., the linear predictor x>
i ˇ is the log odds.

Increasing, e.g., the value of xir by one leads to a log odds equal to fxi C
.0; : : : ; 0; 1/g>ˇ D x>

i ˇ C ˇr and the regression parameter ˇr can be expressed



8 Regression Models 145

as the log odds ratio

ˇr D log Œoddsfxi C .0; : : : ; 0; 1/g�� log fodds.xi/g

D log

�

oddsfxi C .0; : : : ; 0; 1/g
odds.xi/

�

:

Hence, each regression parameter ˇi is the log odds ratio corresponding to unit
increase in the ith explanatory variable assuming that the values of the remaining
explanatory variables do not change. Positive value of a regression parameter means
that the corresponding explanatory variable is positively related to the probability
of success.

The parameter estimates are obtained by MLE. The asymptotic Maximum
Likelihood theory, described in Chap. 7, is also used to test hypothesis concerning
regression parameters. The value of the likelihood ratio test statistic comparing
the fitted model to the so-called saturated model, i.e., a model having as many
parameters as observations, is called the deviance or the residual deviance. The
deviance of a valid model should have roughly �2n�r distribution. It is also easy
to see that changes in deviance correspond to likelihood ratio test statistics.

An illustration of logistic regression is given in Exercise 8.7; for more details on
logistic regression see, e.g., Hosmer and Lemeshow (1989).

Both logistic and linear regression belong into the family of the so-called
Generalized Linear Models (GLM) that are usually defined by the following three
components McCullagh and Nelder (1989):

1. a response with a probability distribution from the exponential family,
2. a linear predictor � D Xˇ,
3. a link function g.:/ as a connection between E.Y/ and the linear predictor �, i.e.,

E.Y/ D � D g�1.�/.

It is easy to see that linear regression is a GLM with Gaussian (Normal) response
and identity link function. Logistic regression is a GLM with Alternative distribution
and logit link function.

Exercise 8.1 For the one factor ANOVA model, show that if the model is balanced,
we have O� D NY.

The one factor ANOVA (Analysis of Variance) model is a linear regression model
with normally distributed response and one explanatory factor variable.

The ANOVA model is balanced if each level of the explanatory factor variable
occurs with the same frequency in our dataset. This assumption is not unrealistic
because ANOVA models are often applied in designed experiments, where the
values of the explanatory variable are fixed in advanced.

The standard way to present one factor ANOVA model with r levels is

Ykl D �C ˛l C "kl; k D 1; : : : ;m and l D 1; : : : ; r; (8.9)

where ˛l is the effect of the lth level of the explanatory variable and "kl are indepen-
dent, centered, and normally distributed random errors with the variance �2 > 0.
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Looking at the design matrix implied by the linear regression model (8.9), we
obtain

X D

0

B

B

B

B

B

@

1m 1m 0m 0m : : : 0m 0m

1m 0m 1m 0m : : : 0m 0m
:::
:::
:::
:::

:::
:::

1m 0m 0m 0m : : : 1m 0m

1m 0m 0m 0m : : : 0m 1m

1

C

C

C

C

C

A

:

The design matrix X does not have full rank and this means that the parameters
of this model are not estimable or, in other words, the parameters in this linear
regression model are not uniquely defined.

In order to obtain an easily interpretable result, we have to reparameterize the
model assuming that, e.g.,

˛1 D 0 using 1st level as a reference with the parameter ˛i estimating the effect
of the ith level compared to the 1st level,

˛r D 0 using the last level as a reference,
P

˛i D 0 using the overall mean as a reference.

Depending on the hypothesis, one could also use Helmert contrasts comparing each
level to the mean of the previous levels or polynomial contrasts based on orthogonal
polynomials that are particularly suitable for ordered factor levels.

This exercise concerns the overall mean and, therefore, we use the constraint
P

˛i D 0 which leads to an estimator of the overall mean. Noticing that the
constraint

P

˛i D 0 is equivalent to ˛r D �˛1 � � � � � ˛r , we have the design
matrix

X D

0

B

B

B

B

B

@

1m 1m 0m 0m : : : 0m

1m 0m 1m 0m : : : 0m
:::

:::
:::

:::
:::

1m 0m 0m 0m : : : 1m

1m �1m �1m �1m : : : �1m

1

C

C

C

C

C

A

;

where the parameter ˛r has been replaced by the linear combination �˛1 � � � � � ˛r

and the vector of unknown parameters is .�; ˛1; : : : ; ˛r�1/>.
Denoting n D rm the total number of observations, we have

X>X D

0

B

B

B

B

B

@

n 0 0 0 : : : 0

0 2m m m : : : m
0 m 2m m : : : m
:::
:::

:::
:::

:::

0 m m m : : : 2m

1

C

C

C

C

C

A
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and it is easy to see that the first row of the matrix .X>X /�1 is .n�1; 0; 0; : : : ; 0/.
Next, we apply (8.2) and obtain O� as the first element of the vector of the least
squares estimators, i.e.,

O� D .n�1; 0; 0; : : : ; 0/X>Y

D .n�1; 0; 0; : : : ; 0/

0

B

B

B

B

B

@

Pr
lD1

Pm
kD1 Ykl

Pm
kD1.Yk1 � Ykr/

Pm
kD1.Yk2 � Ykr/

:::
Pm

kD1.Yk;r�1 � Ykr/

1

C

C

C

C

C

A

D
r
X

lD1

m
X

kD1
Ykl=n D NY :

It is important to understand that the interpretation of the parameter � in (8.9)
depends on the chosen parameterization of the explanatory factor variable and, in
practice, one should be very careful before interpreting coefficients estimated semi-
automatically by some statistical software.

Exercise 8.2 What is the relationship between O� and NY if the ANOVA model is not
balanced?

Proceeding similarly as in Exercise 8.1, we assume the unbalanced ANOVA
model

Ykl D �C ˛l C "kl; k D 1; : : : ;ml and l D 1; : : : ; r (8.10)

and, using the constraint
Pr

lD1 ˛l D 0, we arrive at the design matrix

X D

0

B

B

B

B

B

@

1m1 1m1 0m1 0m1 : : : 0m1

1m2 0m2 1m2 0m2 : : : 0m2
:::

:::
:::

:::
:::

1mr�1 0mr�1 0mr�1 0mr�1 : : : 1mr�1

1mr �1mr �1mr �1mr : : : �1mr

1

C

C

C

C

C

A

so that

X>X D

0

B

B

B

B

B

@

n m1 � mr m2 � mr m3 � mr : : : mr�1 � mr

m1 � mr m1 C mr mr mr : : : mr

m2 � mr mr m2 C mr mr : : : mr
:::

:::
:::

:::
:::

mr�1 � mr mr mr mr : : : mr�1 C mr

1

C

C

C

C

C

A

;

where n D Pr
l�1 ml denotes the total number of observations.

Instead of inverting the above matrix as in the previous exercise, we rewrite the
expression (8.2) that has to be satisfied by the vector of the unknown parameters
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ˇ D .�; ˛1; : : : ; ˛r�1/> as the system of the so-called normal equations X>Xˇ D
X>Y and obtain

X>X

0

B

B

B

@

�

˛1
:::

˛r�1

1

C

C

C

A

D X>Y D

0

B

B

B

@

P

k

P

l Ykl
P

k Yk1 �P

k Ykr
:::

P

k Yk;r�1 �P

k Ykr

1

C

C

C

A

: (8.11)

We notice that the relationship between O� and NY is described in the first equation
in (8.11) implying that

NY D O�C m1 � mr

n
Ǫ1 C � � � C mr�1 � mr

n
Ǫr�1

D O�C m1

n
Ǫ1 C � � � C mr�1

n
Ǫr�1 C mr

n
.� Ǫ1 � � � � � Ǫr�1/mr

D O�C m1

n
Ǫ1 C � � � C mr�1

n
Ǫr�1 C mr

n
Ǫr:

Hence, in unbalanced ANOVA model, the estimator of the parameter � does not
have to be equal to the sample mean NY even if the constraint

Pr
lD1 ˛l D 0 is used to

identify the parameters.

Exercise 8.3 Calculate the mean vector and the variance matrix of the vector of
residuals O" defined as

O" D Y � OY;

where OY D X Ǒ are the fitted values.

The residuals O" are usually interpreted as estimators of the random errors " �
N.0n; �

2In/. However, looking at the mean and variance of the vector of residuals,
we obtain

E O" D E.Y � X Ǒ/ D E Y � EX Ǒ D Xˇ � X E Ǒ D 0n

and

Var O" D Var.Y � X Ǒ/ D VarfY � X .X>X /�1X>Yg
D VarŒfIn � X .X>X /�1X>gY�

D fIn � X .X>X /�1X>g�2InfIn � X .X>X /�1X>g
D �2fIn � X .X>X /�1X>g D �2.In � H/;

where H is called the hat matrix since OY D HY.



8 Regression Models 149

The diagonal elements hii of H are called leverage and it measures the weight of
Yi in OYi D Pn

iD1 hijYi, i.e., the influence of Yi on the fitted value. It is easy to see that
the hat matrix is idempotent and, using tools of Chap. 2 (Exercise 2.6), it follows
that

Pn
iD1 hii D tr.H/ D rank.X / D r. Thus, the “average leverage” is equal to r=n

and an observation will be called influential if its leverage is too high, for example,
if hii > 3r=n.

We have shown that the residuals O" are correlated and that O"i � N.0; �2.1� hii//.
This suggests to define the standardized residuals as

ui D O"i

O�p
1 � hii

; i D 1; : : : ; n: (8.12)

Some real life regression diagnostic plots of residuals, leverage, and standardized
residuals are shown in Fig. 8.2 in the following Exercise 8.5. More types of influence
measures and residuals are described, e.g., in Belsley et al. (1980).

Exercise 8.4 Calculate the prediction interval for “classic blue” pullover sales
corresponding to price = 120 using Exercise 3.8.

In Exercise 3.8, we have seen that the fitted value corresponding to price equal
to 120 may be calculated as xi> Ǒ D 210:774 � 0:364 � 120 D 167:094, where
˛ D .1; 120/>.

Using (8.7), we arrive to the 95 % prediction interval .77:1; 257:1/. In other
words, the sales manager knows that (if the price is set to 120) the above prediction
interval should cover the future sales with probability 0:95.

The 95 % confidence interval for the corresponding mean response, see (8.6), is
.129:8; 204:4/. This confidence interval covers the unknown conditional expected
value, corresponding to priceD 120, with probability 0.95.

Compared to the prediction interval (for the future sales), the confidence interval
for the mean is somewhat shorter because it does not take into account the variability
of the next observation. SMSlinregpull2

Exercise 8.5 Use linear regression in order to investigate the dependency of the
mileage on weight, displacement, and company headquarters in the cars data set,
see A.4.

In order to decrease the level of heteroscedasticity in the dataset, we will analyze
the data set on logarithmic scale.

In Fig. 8.1, we display the dependency of log(Mileage) on the explanatory
variables; see also Exercise 1.18 for scatterplot matrix containing some of these
plots on the original scale. It seems that the mileage is a roughly linearly decreasing
function both of weight and displacement and, on average, U.S. cars have the lowest
and Japanese cars the highest mileage. The plot in lower right corner in Fig. 8.1
shows that there is a strong dependency between the explanatory variables. Such
dependency does not violate the assumptions of the linear regression model but it
is not desirable because it increases the variance of the corresponding parameter
estimators.

http://www.quantlet.de/codes/sms/SMSlinregpull2.html
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Fig. 8.1 Scatterplots of the analyzed variables in the cars data set. SMSlinregcar

We start with the linear regression model with continuous explanatory variables
log.Weight/ and log.Displacement/ and categorical (factor) explanatory variable
Origin with factor levels U.S., Japan, and Europe.

The following computer output shows that the car weight has significant effect
on the mileage and we also reject the null hypothesis that there is no difference
between the mileage of European and U.S. cars.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.21060 0.74575 13.692 < 2e-16 ***
log(Weight) -0.85981 0.13390 -6.421 1.46e-08 ***
log(Displacement) -0.05688 0.08032 -0.708 0.4812
OriginJapan -0.07518 0.05087 -1.478 0.1440
OriginEurope -0.15620 0.05038 -3.100 0.0028 **

Residual standard error: 0.1268 on 69 degrees of freedom
Multiple R-squared: 0.7756,Adjusted R-squared: 0.7626
F-statistic: 59.62 on 4 and 69 DF, p-value: < 2.2e-16

http://www.quantlet.de/codes/sms/SMSlinregcar.html
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More formally, the corresponding linear regression model may be written as:

log.Mileagei/ D ˇ0 C ˇ1 log.Weighti/C ˇ3 log.Displacementi/

Cˇ4I.Origini D Japan/C ˇ5I.Origini D Europe/C "i;

where the parameter ˇ0 is the absolute term for U.S. cars, because the software
automatically reparameterized the factor variable in the ANOVA model (8.9) by
omitting the column with “indicators of U.S. cars” in the design matrix, i.e., by
using the mileage of U.S. cars as a baseline. The parameters ˇ4 and ˇ5 estimate
the change for Japanese and European cars compared to the U.S. baseline. Contrary
to the boxplot in Fig. 8.1, it seems that with weight and displacement taken into
account, U.S. cars have highest mileage.

In order to assess the significance of the factor variable “Origin,” we test the null
hypothesis H0 W ˇ4 D ˇ5 D 0. This can be easily done by the F-test (8.8) and
the following computer output implies that the origin, i.e., the location of company
headquarters, indeed has significant effect on the mileage:

Analysis of Variance Table

Model 1: log(Mileage) ~ log(Weight) + log(Displ.) + Origin
Model 2: log(Mileage) ~ log(Weight) + log(Displ.)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 69 1.1089
2 71 1.2638 -2 -0.15494 4.8207 0.01097 *

In order to assess the quality of the regression model, we plot some standard
regression diagnostic plots based mostly on residuals in Fig. 8.2.

The diagnostic plots in Fig. 8.2 suggest that the assumptions of the linear
regression model (homoscedasticity, normality of residuals) do not seem to be
violated but 71st observation (VW Rabbit Diesel) could be an outlier.

Finally, in order to produce a nice plot of the regression model, we simplify the
model by removing the insignificant variable displacement:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.56123 0.55568 19.006 < 2e-16 ***
log(Weight) -0.94108 0.06875 -13.688 < 2e-16 ***
OriginJapan -0.06591 0.04898 -1.346 0.18278
OriginEurope -0.14469 0.04752 -3.045 0.00328 **

Residual standard error: 0.1263 on 70 degrees of freedom
Multiple R-squared: 0.774,Adjusted R-squared: 0.7643
F-statistic: 79.89 on 3 and 70 DF, p-value: < 2.2e-16

In this way, we obtain a regression model depending only on the continuous
variable weight and the factor variable origin, where the fitted values may be nicely
plotted as three parallel lines, see Fig. 8.3.
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Fig. 8.2 Standard regression diagnostic plots for cars data set. SMSlinregcar

Figure 8.3 and the above corresponding parameter estimates show that heavier
cars have lower mileage and that, considering the weight of the cars, European cars
have significantly lower mileage than U.S. cars. However, such comparison might
be misleading because we have seen in Fig. 8.1 that U.S. cars are typically much
heavier than European cars.

Exercise 8.6 Test the significance of the interaction between weight and location
of company headquarters in the linear regression model for mileage in the previous
Exercise 8.5.

Fitting the linear regression model with interaction leads the following parameter
estimates:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.21992 0.61465 16.627 <2e-16 ***
log(Wght) -0.89883 0.07606 -11.818 <2e-16 ***
OrigJapan 3.67677 2.40542 1.529 0.131
OrigEuro 0.83818 1.55118 0.540 0.591

http://www.quantlet.de/codes/sms/SMSlinregcar.html
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Fig. 8.3 Scatterplot of log(Mileage) vs. log(Weight) for the cars data set with three parallel
regression lines (U.S.: squares and full line, Japan: triangles and dashed line, Europe: circles and
dotted line). SMSlinregcar

log(Wght):OrigJapan -0.48341 0.31103 -1.554 0.125
log(Wght):OrigEurope -0.12500 0.19876 -0.629 0.532

Residual standard error: 0.1257 on 68 degrees of freedom
Multiple R-squared: 0.7824,Adjusted R-squared: 0.7664
F-statistic: 48.91 on 5 and 68 DF, p-value: < 2.2e-16

This linear regression model, with one continuous and one factor explanatory
variable and their interaction, may be plotted as three distinct regression lines, see
Fig. 8.4.

The table with regression coefficients suggests that the interaction terms (ˇ4
and ˇ5) are not significant when considered separately. This is confirmed by the
following F-test that does not reject the null hypothesis H0 W ˇ4 D ˇ5 D 0:

Analysis of Variance Table

Model 1: log(Mileage) ~ log(Weight) + Origin
Model 2: log(Mileage) ~ (log(Weight) + Origin)^2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 70 1.117
2 68 1.075 2 0.041917 1.3257 0.2724

http://www.quantlet.de/codes/sms/SMSlinregcar.html
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Fig. 8.4 Scatterplot of log(Mileage) vs. log(Weight) for the cars data set and the linear regression
fit with interactions (U.S.: squares and full line, Japan: triangles and dashed line, Europe: circles
and dotted line). SMSlinregcar2

Since the interaction term is not significant, we have actually not rejected the
hypothesis that the regression lines for U.S., Japan, and Europe are parallel.

Exercise 8.7 Investigate the dependency of probability of bankruptcy on the prof-
itability and the leverage of company using the data set in Appendix A.3.

We start by redefining the response variable in the bankruptcy data set so that
it is equal to 1 for bankrupt companies and to 0 for surviving companies. Logistic
regression is used to describe the dependency of the probability of bankruptcy on
two explanatory variables: the index of profitability (net income/total assets) and the
index of leverage (total liabilities/total assets). The resulting parameter estimates are
the following:

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.565 1.088 -1.438 0.1504
Profitability -13.211 5.305 -2.490 0.0128 *
Leverage 2.458 1.495 1.644 0.1001

Null deviance: 116.45 on 83 degrees of freedom
Residual deviance: 94.92 on 81 degrees of freedom
AIC: 100.92

http://www.quantlet.de/codes/sms/SMSlinregcar2.html
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Fig. 8.5 The estimated probability of bankruptcy as a function of leverage and probability and a
scatterplot of the observations. Crosses denote bankrupt companies and circles denote surviving
companies. SMSlogitbankrupt

We conclude that profitability of a company decreases the probability of
bankruptcy. Higher leverage seems to be related to higher probability of bankruptcy
but the relationship is not statistically significant. The estimated probabilities as a
function of profitability and leverage are plotted on the left-hand side in Fig. 8.5.
The plot confirms that profitable companies with low leverage have low probability
of bankruptcy.

The null deviance is the deviance of the model containing only the intercept.
Comparing the null and the residual deviance, we see that with two parameters, we
have achieved a significant decrease in the deviance. The computer output contains
also Akaike’s Information Criterion (AIC) defined as �2� the maximized likelihood
+ 2� the number of parameters. In this case, it is equal to the residual deviance + 6.
The AIC allows an easy and fast comparison of different models.

Let us now investigate the interaction term:

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.354 1.135 -1.194 0.2326
Profitability -28.692 11.659 -2.461 0.0139 *
Leverage 2.277 1.535 1.483 0.1381
Profitability:Leverage 19.112 10.355 1.846 0.0649 .

Null deviance: 116.449 on 83 degrees of freedom
Residual deviance: 93.157 on 80 degrees of freedom
AIC: 101.16

The interaction is not significant but the p-value is quite low. As expected, the
deviance of the model with interaction is lower than the deviance of the model
without interaction. On the other hand, the AIC corrects for the extra parameter
and it is lower for the model without interactions.

http://www.quantlet.de/codes/sms/SMSlogitbankrupt.html
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Finally, we look at the estimated probabilities in Fig. 8.5. The contours of
the estimated probabilities for our two models look quite different, but a closer
inspection reveals that most of the differences occur in regions with very few
observations. Thus, Fig. 8.5 is in a good agreement with the formal test and the
AIC according to which the interaction term is not statistically significant.



Chapter 9
Variable Selection

It is of the highest importance in the art of detection to be able to recognize, out of a number
of facts, which are incidental and which vital. Otherwise your energy and attention must be
dissipated instead of being concentrated.
Sherlock Holmes in “The Reigate Puzzle”

We have already remarked that multicollinearity, i.e., nearly linearly dependent
columns in the design matrix, may increase the variance of the estimators Ǒ

i. For
simplicity of presentation, we will assume throughout this section that the response
is centered and predictor variables are standardized. More formally, Zvára (2008,
Theorem 11.1) observes in the linear model (8.1) that

E k Ǒk2 D kˇk2 C �2 tr.X>X /�1

and

E k OYk2 D kXˇk2 C �2 rank.X /:

It follows that multicollinearity does not affect the fitted values OY D X Ǒ because
the expectation of its squared length depends only on �2 and the rank of the model
matrix X . On the other hand, the expectation of the squared length of the estimator
Ǒ depends on the term tr.X>X /�1 D P

�1
i , where i are the eigenvalues of X>X .

If the columns of X are nearly dependent, some of these eigenvalues may be very
small and E k Ǒk2 then may become very large even if, technically, the design matrix
still has full rank.

The effects of multicollinearity in the regression model may be summarized
using variance inflation factors (VIF). Simply speaking, the j-th VIF factor
is a factor multiplying the variance of the j-th regression coefficient Ǒ

j due to
correlations between explanatory variables (Belsley, Kuh, & Welsch, 1980).

We have already seen that multicollinearity concerns the regression coefficients
Ǒ
j and it does not affect the fitted values OY. Therefore, we may ignore multicollinear-

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_9
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ity whenever we are interested only in the fitted values, i.e., in-sample predictions.
On the other hand, the regression coefficients describing the relationship between
the explanatory variables and the response are needed for the interpretation of the
model. Therefore, in most situations, we have to attempt to estimate regression
coefficients as precisely as possible.

In order to obtain more stable regression coefficients in presence of multi-
collinearity, we may apply some of the classical simple regularization or variable
selection techniques:

Regression on PC’s: By replacing the design matrix X by its PC transformation
X PC , we may easily move to the orthogonal design case. Unfortunately, the most
important PC’s may not be correlated with the response and the interpretation of
the resulting regression coefficients may be very difficult. A related dimension
reduction method suitable for regression analysis is Sliced Inverse Regression
described in Chap. 20.

Ridge regression: This method modifies the diagonal of X>X (by adding a
ridge) so that the resulting estimator Ǒridge./ becomes more stable. The ridge
regression may be also rewritten as a minimization of the penalized LS criterion
Pn

iD1.yi �P

j ˇjxij/
2 C 

P

j ˇ
2
j , where  is a tuning parameter.

Stepwise model selection: One may also drop explanatory variables that do not
contribute enough information on the response. One possibility is to apply
the forward, backward, or stepwise variable selection algorithm using, e.g.,
Akaike’s Information Criterion (AIC), see function stepAIC() in R library
MASS (Venables & Ripley, 2002).

A modern variable selection technique that may be derived also as a modification
of the ridge regression is the least absolute shrinkage and selection operator (lasso)
proposed by Tibshirani (1996):

Ǒlasso./ D arg min
ˇ

n
n
X

iD1
.yi �

X

j

ˇjxij/
2 C 

X

j

jˇjj
o

: (9.1)

Tibshirani (1996) shows that lasso combines subset selection and ridge regression
because it can produce regression coefficients that are exactly 0 and demonstrates
that lasso outperforms ridge regression in scenarios with small to moderate number
of large- or moderate-sized effects.

The so-called elastic net (Zou & Hastie, 2005) is a further generalization of both
ridge regression and lasso:

Ǒen.1; 2/ D .1C 2/ arg min
ˇ

n
n
X

iD1
.yi �

X

j

ˇjxij/
2 C 1

X

j

jˇjj C 2
X

j

ˇ2j

o

proposed in order to combine the good properties of these methods mainly in
situations with groups of highly correlated explanatory variables or when the
number of explanatory variables is larger than the number of observations.
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A detailed account of lasso and elastic net algorithms and properties may be
found, e.g., in Osborne, Presnell, & Turlach (2000), Knight and Fu (2000), Hastie,
Tibshirani, & Friedman (2009), Tibshirani (2011), Bühlmann and van de Geer
(2011), Fahrmeir, Kneib, Lang, & Marx (2013), and Lockhart, Taylor, Tibshirani, &
Tibshirani (2013).

Notice that variable selection techniques, such as stepwise regression, lasso, and
elastic net, are applicable also in the GLM framework.

Exercise 9.1 Derive a formula for the lasso estimator (9.1) in the orthogonal
design case.

Considering the linear model (8.1) with standardized explanatory variables X
and centered response Y, the intercept ˇ0 D 0 and we are interested only in
the estimation of ˇ D .ˇ1; : : : ; ˇp/

>. Assuming that X>X D Ip, we have
Ǒ D .X>X /�1X>Y D X>Y and we may rewrite the lasso criterion (9.1) in the

following way:

L.ˇ; / D
n
X

iD1
.yi �

p
X

jD1
ˇjxij/

2 C 

p
X

jD1
jˇjj

D .Y � Xˇ/>.Y � Xˇ/C 1>
p abs.ˇ/

D Y>Y � 2Y>Xˇ C ˇ>X>Xˇ C 1>
p abs.ˇ/

D Y>Y � 2 Ǒ>ˇ C ˇ>ˇ C 1>
p abs.ˇ/

D Y>Y C
p
X

jD1
Lj.ˇj; /;

where Lj.ˇj; / D �2 Ǒ
jˇj C 2ˇ2j C  abs.ˇj/.

Next, leaving aside the possibility ˇj D 0, we calculate the derivatives of
Lj.ˇj; / with respect to ˇj for abs.ˇj/ > 0:

Lj.ˇj; /

@̌ j
D �2 Ǒ

j C 2ˇj C  sign.ˇj/

and it follows that Ǒlasso
j may be either 0 or it solves the equation:

ˇj C  sign.ˇj/=2 D Ǒ
j;

i.e.,

Ǒlasso
j D

( Ǒ
j � =2 if Ǒlasso

j > 0 .i.e., if Ǒ
j > =2/;

Ǒ
j C =2 if Ǒlasso

j < 0 .i.e., if Ǒ
j < �=2/:
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If abs. Ǒ
j/ � =2, we obtain

Lj.ˇj; / D �2 Ǒ
jˇj C 2ˇ2j C  abs.ˇj/ � �ˇj C  abs.ˇj/ � 0 D Lj.0; /

and, clearly, Ǒlasso
j D 0 if abs. Ǒ

j/ � =2.
Combining the above expressions, we may finally write

Ǒlasso
j D sign.ˇj/maxŒ0; fabs.ˇj/� =2g�: (9.2)

In other words, lasso with orthonormal design matrix shrinks large regression
coefficients towards 0 by =2 and smaller regression coefficients are replaced by 0.

Exercise 9.2 Consider the orthonormal design case and compare graphically
lasso and ridge regression. Why does lasso produce variable selection and ridge
regression does not?

The solution to ridge regression for orthogonal design matrix may be derived
similarly as in Exercise 9.1.

For the ridge regression criterion function R.ˇ; / we obtain the following
expression:

R.ˇ; / D
n
X

iD1
.yi �

p
X

jD1
ˇjxij/

2 C 

p
X

jD1
ˇ2j

D .Y � Xˇ/>.Y � Xˇ/C ˇ>ˇ

D Y>Y � 2Y>Xˇ C ˇ>X>Xˇ C ˇ>ˇ

D Y>Y � 2 Ǒ>ˇ C .1C /ˇ>ˇ

D Y>Y C
p
X

jD1
Rj.ˇj; /;

where Rj.ˇj; / D �2 Ǒ
jˇj C .1C /ˇ2j .

Next, setting the derivative of Rj.ˇj; / equal to zero, we get that

@Rj.ˇj; /

@̌ j
D �2 Ǒ

j C 2.1C /ˇj

and we immediately obtain

Ǒridge
j D 1

1C 
Ǒ
j: (9.3)
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Fig. 9.1 Dependency of Ǒlasso
j ./ and Ǒridge

j ./ on the ordinary least squares regression estimator
Ǒj with orthogonal design matrix and  D 1. SMSlassoridge

Comparing the expressions (9.3) and (9.2), it is clear that Ǒridge
j is equal to 0,

i.e., the j-th explanatory variable is dropped from the model, whenever Ǒ
j � =2.

The ridge regression coefficient is also getting smaller for large  but nonzero LS
coefficient Ǒ

j always leads to nonzero ridge regression coefficient Ǒridge
j and all

explanatory variables thus remain in the ridge regression model, see also Fig. 9.1.

Exercise 9.3 Investigate the car price (Appendix A.4) using linear regression and
lasso and optimize the value of the tuning parameter so that the resulting model has
smallest residuals.

We replace the factor variable company headquarters by two dummy variables
(although this would be done automatically by the statistical software). Mileage
(M) and displacement (D) are considered on logarithmic scale.

Function VIF() from library car identifies multicollinearity problems mainly
for weight (W) where variance increases 28�. Problems may be caused also
by variables length (L) and logarithm of displacement (log(D)) with VIF equal,
respectively, to 18 and 15.

Concerning the tuning parameter choice, it is important to realize that smallest
residuals (measured by MSE) are obtained by the ordinary LS estimator minimizing
the sum of squared residuals without any constraints. This corresponds to tuning
parameters  D 0 or to s D 1. Therefore, the choice of the tuning parameter is
usually based on cross-validation. The idea of cross-validation is to estimate the i-th
residual in a model without i-th observation and, therefore, it is sometimes called
the leave-one-out estimator.

Using the function l1ce from library lasso2, we plot the value of the
generalized cross-validation (GCV) (Wang, 2012) as a function of the fraction of
the L1-norm s in the lower plot of Fig. 9.2. In practice, the fraction s is often
used instead of the penalty  from (9.1). In Fig. 9.2, the minimal value of GCV
is obtained for 0:975 corresponding to a very small value of . The values of the
regression coefficients are plotted in the upper part of Fig. 9.2 also as a function of

http://www.quantlet.de/codes/sms/SMSlassoridge.html
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the fraction s. Finally, the regression coefficients corresponding to the GCV-optimal
value of the tuning parameter are:

Value Std. Error Z score Pr(>|Z|)
(Intercept) 26211.288803 12841.709749 2.0411058 4.124031e-02
log(M) -539.530856 1786.785229 -0.3019562 7.626855e-01
R77 565.120251 415.360651 1.3605532 1.736549e-01
R78 -261.006248 406.749748 -0.6416875 5.210761e-01
H -538.271391 377.236913 -1.4268789 1.536148e-01
R 173.625653 113.789595 1.5258482 1.270477e-01
Tr -50.499150 101.391289 -0.4980620 6.184403e-01
W 7.461142 1.414427 5.2750289 1.327351e-07
L -116.773868 40.564076 -2.8787509 3.992536e-03
T -259.231117 148.650273 -1.7438994 8.117664e-02
log(D) -1226.375991 1761.388982 -0.6962551 4.862691e-01
G -1526.552234 1013.301941 -1.5065127 1.319356e-01
C.EU 2506.674417 1162.323559 2.1566064 3.103635e-02
C.US -1813.521626 984.970647 -1.8411936 6.559320e-02

Actually, these coefficients and standard errors are not very different from coeffi-
cients obtained by ordinary least squares. This is due to the choice of the tuning
parameter that does not constrain the coefficients a lot. For smaller values of the
parameter s (corresponding to higher values of the constraint parameter ), the lasso
leads to biased estimators and, therefore, the interpretation of the p-value calculated
from the regression coefficient and its estimated standard error is unclear. Recently,
Lockhart et al. (2013) proposed a covariance test statistic, similar to (8.3) and (8.8),
for testing the statistical significance of a single variable entering the model during
the lasso algorithm.

Exercise 9.4 Investigate the high car prices (Appendix A.4) using logistic regres-
sion and lasso. Optimize the value of the tuning parameter.

Similarly as in Härdle and Simar (2015, Example 9.4), we define the response
as the indicator of expensive cars, i.e., cars that cost more than 6000$. Trying to fit
the logistic regression model using all available explanatory variables, we obtain the
error messages:

glm.fit: algorithm did not converge
glm.fit: fitted probabilities numerically 0 or 1 occurred

indicating numerical problems caused by too many explanatory variables.
In order to apply lasso, the residual sum of squares in (9.1) is replaced by negative

log-likelihood in the R library glmnet (Friedman, Hastie, & Tibshirani, 2010). The
estimated regression coefficients are plotted in Fig. 9.3 as a function of log./: it is
clearly visible that the coefficients become too large for small  as a consequence
of a large number of correlated explanatory variables. In the lower part of Fig. 9.3,
we plot the value of the CV criterion based on the deviance. The optimal value of
log./ is marked by a dashed vertical line on both plots.
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The estimated coefficients for the  selected by CV are:

M -0.050983693
R78 .
R77 .
H -0.221051891
R 0.106341322
Tr .
W 0.002442590
L .
T .
D 0.006945569
G .
C.US -3.987223235
C.EU 2.095450692

Notice that library glmnet does not report standard errors because the L1 con-
straints cause bias and standard error may not be meaningful, see also the discussion
in the previous Exercise 9.3.

Comparing the lasso coefficients to the output of standard logistic regression
using the selected variables, we see that some of the lasso coefficients are really
somewhat smaller:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.588580 8.986429 -2.291 0.02196 *
M -0.037045 0.133031 -0.278 0.78065
H -0.958662 0.913593 -1.049 0.29403
R 0.213218 0.239461 0.890 0.37325
W 0.006820 0.003194 2.135 0.03273 *
D 0.006069 0.015697 0.387 0.69902
C.US -9.225817 3.143921 -2.934 0.00334 **
C.EU 3.710133 2.067920 1.794 0.07279 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Chapter 10
Decomposition of Data Matrices by Factors

There is Mr. Frankland, of Lafter Hall, who is also an unknown factor, and there are one or
two other neighbours. These are the folk who must be your very special study.
Sherlock Holmes in “The Hound of the Baskervilles”

In this chapter, we take a descriptive perspective and show how using a
geometrical approach can be a good way to reduce the dimension of a data matrix.
We derive the interesting projections with respect to a least-squares criterion. The
results will be low-dimensional graphical pictures of the data matrix. This involves
the decomposition of the data matrix into factors. These factors will be sorted in
decreasing order of importance. The approach is very general and is the core idea of
many multivariate techniques. We deliberately use the word “factor” here as a tool
or transformation for structural interpretation in an exploratory analysis.

In practical studies, we apply this factorial technique to the Swiss bank notes, the
time budget data, and the French food data. We will see that these transformations
provide easier interpretations in lower-dimensional spaces. An important measure
of resolution of information in a low-dimensional projected space is the notion of
inertia. We will calculate this inertia for several practical examples.

Representation of the p-Dimensional Data Cloud

On one hand, the data set X can be understood as a cloud of n points in R
p. The

best representation of the p-dimensional data set in q < p dimensions can be found
by searching for directions uj 2 R

p, j D 1; : : : ; q, minimizing the distance

n
X

iD1
kxi � pxik2; (10.1)

© Springer-Verlag Berlin Heidelberg 2015
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where

pj;xi D x>
i

uj

kujk D x>
i uj (10.2)

are projections of observations xi into the jth direction uj. The best subspace is
generated by u1; u2; : : : ; uq, the orthonormal eigenvectors of X>X associated with
the corresponding eigenvalues 1 � 2 � � � � � q.

The coordinates of the n individuals on the kth factorial axis, uk, are given by
the kth factorial variable zk D Xuk for k D 1; : : : ; q. Each factorial variable
zk D .z1k; z2k; : : : ; znk/

> is a linear combination of the original variables whose
coefficients are given by the elements of the corresponding eigenvector uk, i.e.,
zik D x>

i uk.
In general, the scalar product y>y is called the inertia of y 2 R

n w.r.t. the origin.
Note that k D .Xuk/

>.Xuk/ D z>
k zk. Thus, k is the inertia of the jth factorial

variable w.r.t. the origin.

Representation of the n-Dimensional Data Cloud

On the other hand, we can interpret the data set X as a cloud of p variables observed
in n-dimensional space R

n.
The best q-dimensional subspace is generated by the orthonormal eigenvectors

v1; v2; : : : ; vq of XX> associated with the eigenvalues �1 � �2 � : : : � �q.
The coordinates of the p variables on the kth factorial axis are given by the

factorial variables wk D X>vk, k D 1; : : : ; q. Each factorial variable wk D
.wk1;wk2; : : : ;wkp/

> is a linear combination of the original n-dimensional vectors
xŒi� whose coefficients are given by the kth eigenvector, i.e., wki D x>

Œi�vk.

Duality Relations

Both views at the data set are closely related. The precise description of this
relationship is given in the following theorem.

Theorem 10.1 Let r be the rank of X . For k � r, the eigenvalues k of X>X and
XX> are the same and the eigenvectors (uk and vk, respectively) are related by

uk D 1p
k

X>vk and vk D 1p
k

Xuk:
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Note that uk and vk provide the singular value decomposition (SVD) of X .
Letting U D .u1; u2; : : : ; ur/, V D .v1; v2; : : : ; vr/, and � D diag.1; : : : ; r/,
we have

X D V�1=2U>:

Exercise 10.1 Prove Theorem 10.1.

Consider the eigenvector equations in the n-dimensional space, .XX>/vk D
�kvk, for k � r, where r D rank.XX>/ D rank.X / � min.p; n/. Multiplying
by X>, we have

.X>X /.X>vk/ D �k.X>vk/

so that each eigenvector vk of XX> corresponds to an eigenvector .X>vk/ of X>X
associated with the same eigenvalue �k. This means that every nonzero eigenvalue
of XX> is also an eigenvalue of X>X . The corresponding eigenvectors are related
by uk D ckX>vk, where ck is some constant.

Now consider the eigenvector equations in the p-dimensional space, .X>X /uk D
kuk, for k � r. Multiplying by X , we have

.XX>/.Xuk/ D k.Xuk/;

i.e., each eigenvector uk of X>X corresponds to an eigenvector Xuk of XX>
associated with the same eigenvalue k D �k. Therefore, every nonzero eigenvalue
of .X>X / is an eigenvalue of XX>. The corresponding eigenvectors are related by
vk D dkXuk, where dk is some constant.

Now, since u>
k uk D v>

k vk D 1 we have

1 D u>
k uk D v>

k X c2kX>vk D c2kv
>
k XX>vk D c2kv

>
k kvk D c2kk

1 D v>
k vk D u>

k X>d2kXuk D d2ku>
k X>Xuk D d2ku>

k kuk D d2kk

and it follows that

ck D dk D 1p
k
:

Exercise 10.2 Describe the relation between the projections of the individuals and
the variables on the factorial axes.

Note that the projection of the p variables on the kth factorial axis vk is given by

wk D X>vk D 1p
k

X>Xuk D
p

k uk:
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Therefore, the projections on the factorial axis vk are rescaled eigenvectors of X>X .
Consequently, the eigenvectors vk do not have to be explicitly recomputed to get the
projections wk.

Similarly, we have also for the projections zk of the n observations on the kth
factorial axis uk that

zk D Xuk D 1p
k

XX>vk D
p

k vk:

Exercise 10.3 Let uk, k D 1; : : : ; r be the first r eigenvectors of X>X . Define zk D
Xuk and prove that n�1Z>Z is the covariance of the centered data matrix, where
Z is the matrix formed by the columns zk, k D 1; : : : ; r.

Let us write the spectral decomposition of the matrix X>X as X>X D U�U>.
Then, we have Z D XU and we obtain:

n�1Z>Z D n�1U>X>XU D n�1U>U�U>U D n�1�:

For the mean of Z we have

Nz> D 1>
n Z D 1>

n XU D Nx>U

and it follows that performing the factorial technique on a centered data set X leads
to a centered data set Z . The empirical covariance matrix SZ of the centered data
set Z can now be written as

SZ D 1

n
Z>Z D 1

n
�:

Observe that the marginal variances of Z are the eigenvalues of X>X and that the
vectors of Z are orthogonal.

Exercise 10.4 Apply the factorial technique to the French food data (Appendix A.9)
and relate the results to the SVD of the same data matrix.

The French food data set gives the food expenditures of various types of French
families (manual workers = MA, employees = EM, managers = CA) with varying
numbers of children (2, 3, 4, or 5 children).

We shall now represent food expenditures and households simultaneously using
two factors. First, note that in this particular problem the origin has no specific
meaning (it represents a “zero” consumer). So it makes sense to compare the
consumption of any family to that of an “average family” rather than to the origin.
Therefore, the data is first centered (the origin is translated to the center of gravity,
Nx). Furthermore, since the dispersions of the 7 variables are quite different, each
variable is standardized so that each has the same weight in the analysis (mean
0 and variance 1). Finally, for convenience, we divide each element in the matrix
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by
p

n D p
12. (This will only change the scaling of the plots in the graphical

representation.)
The data matrix to be analyzed is therefore:

X� D 1p
n
HXD�1=2;

where H is the centering matrix and D D diag.sXiXi/. Note that from standardizing
by

p
n, it follows that X>� X� D R where R is the correlation matrix of the original

data.
A standard way of evaluating the quality of the factorial representations in a

subspace of dimension q is given by the ratio

�q D 1 C 2 C � � � C q

1 C 2 C � � � C p
: (10.3)

The sum
Pq

jD1 j is the sum of the inertia of the first q factorial variables
z1; z2; : : : ; zq. The denominator in (10.3) is a measure of the total inertia of the p
variables because

p
X

jD1
j D tr.X�>X�/ D

p
X

jD1

n
X

iD1
x2ij D

p
X

jD1
x>
Œj�xŒj�:

Therefore, the ratio �q (10.3) is usually interpreted as the percentage of the inertia
explained by the first q factors.

Calculating the eigenvalues  D .4:33; 1:83; 0:63; 0:13; 0:06; 0:02; 0:00/>
shows that the directions of the first two eigenvectors play a dominant role
(�2 D 88%), whereas the other directions contribute less than 15 % of inertia.
A two-dimensional plot should therefore suffice for interpreting this data set.

The representation of the n individuals on a plane is then obtained by plotting
z1 D X�u1 versus z2 D X�u2 (z3 D X�u3 may eventually be added if a third
dimension is helpful). Using Theorem 10.1, representations for the p variables can
easily be obtained. These representations can be visualized in a scatterplot of w1 Dp
1 u1 against w2 D p

2u2.
In the first window of Fig. 10.1 we see the representation of the p D 7 variables

given by the first two factors. The plot shows the factorial variables w1 and w2. We
see that the points for meat, poultry, vegetables, and fruits are close to each other in
the lower left of the graph. The expenditures for bread and milk can be found in the
upper left, whereas wine stands alone in the upper right. The first factor, w1, may
be interpreted as the meat/fruit factor of consumption, the second factor, w2, as the
bread/wine component.

On the right-hand side of Fig. 10.1, we show the factorial variables z1 and z2
from the fit of the n D 12 household types. Note that by the duality relations of
Theorem 10.1, the factorial variables zj are linear combinations of the factors wk
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Fig. 10.1 Representation of food expenditures and family types in two dimensions.
SMSdecofood

from the left window. The points displayed in the consumer window (graph on
the right) are plotted relative to an average consumer represented by the origin.
The manager families are located in the lower left corner of the graph, whereas the
manual workers and employees tend to be in the upper right. The factorial variables
for CA5 (managers with five children) lie close to the meat/fruit factor. Relative to
the average consumer this household type is a large consumer of meat/poultry and
fruits/vegetables.

The SVD of the centered and standardized French food data set, X�, is given as

X� D ���>;

where

� D
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http://www.quantlet.de/codes/sms/SMSdecofood.html
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@
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0:46 0:14 �0:21 �0:05 0:41 0:09 0:74

0:44 0:20 �0:36 �0:32 0:22 0:35 �0:60
0:28 �0:52 0:44 0:45 0:34 0:33 �0:15

�0:21 �0:48 �0:78 0:31 �0:07 0:14 0:04
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;

� D diagf.2:08; 1:35; 0:79; 0:36; 0:24; 0:14; 0:03/>g:

It is easy to see that the singular values are equal to the square roots of the
eigenvalues of the correlation matrix R of the original data.

The coordinates of the representation of the n points and p variables given
in Fig. 10.1 are given by the first two columns of � and � multiplied by the
corresponding singular values. The only difference might be an opposite sign—
since multiplication of any eigenvector by �1 leads to an equivalent SVD.

Exercise 10.5 Recall the factorial analysis of the French food data of Exercise 10.4
and compute �3; �4; : : :.

The eigenvalues of the correlation matrix, corresponding to the centered and
standardized data matrix X� are calculated in Exercise 10.4:

 D .4:33; 1:83; 0:63; 0:13; 0:06; 0:02; 0:00/> :

It follows that

�3 D 4:33C 1:83C 0:63

4:33C 1:83C 0:63C 0:13C 0:06C 0:02C 0:00
D 0:970

�4 D 0:989

�5 D 0:997

�6 D �7 D 1:000:

As we have seen in Exercise 10.4, each �q can be interpreted as the percentage of the
inertia explained by the first q factors. We see that 97 % of the inertia is explained
by the first three factors. Recalling that �1 D 0:619 and �2 D 0:880, we see that the
third factor explains 9 % of the inertia. The fourth and fifth factor explain together
less than 3 % of the inertia.

Exercise 10.6 How do the eigenvalues and eigenvectors in Exercise 10.4 change if
we take the prices in USD instead of EUR? Does it make a difference if some of the
prices are in EUR and others in USD?
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The eigenvalues and eigenvectors in Exercise 10.4 do not change because they
are calculated from the correlation matrix which does not change for different units
of measurement.

If some prices are quoted in EUR and some in USD, the standardization of the
prices performed in Exercise 10.4 leads to the same result: the eigenvalues and
eigenvectors are unaffected by such a scale change.

To make an example, assume that the prices in the United States are: XUS D
1:2XEUR. Then, the SVD of XEUR D ���> leads to a SVD of XUS D � .1:2�/�>,
i.e., the matrix XUS has the same eigenvectors as XEUR. The singular values of XUS

are equal to the singular values of XEUR multiplied by the exchange rate 1:2. The
eigenvalues of X>

USXUS are equal to the eigenvalues of X>
EURXEUR multiplied by the

constant 1:22 D 1:44.
Hence, reporting all the prices in different currency affects only the eigenvalues.

The proportions of explained inertia, defined as the ratio of the eigenvalues, remain
the same. The projections on the factorial axes (which are proportional to the
square root of the eigenvalue) will be multiplied by the constant

p
1:44, i.e., by

the exchange rate 1:2.

Exercise 10.7 Apply the factorial techniques to the Swiss bank notes
(Appendix A.2). Give an interpretation of the factorial variables.

We follow the same steps as in Exercise 10.4. Centering the data matrix bases
the decomposition of the data matrix on differences from “average banknote.”
Standardizing the data set makes the measurements of different lengths comparable,
i.e., the importance of the different measurements does not depend on the scale.

The vector of the eigenvalues is:

 D .2:95; 1:28; 0:87; 0:45; 0:27; 0:19/>

and it leads immediately the following proportions of explained inertia:

� D .0:49; 0:70; 0:85; 0:92; 0:97; 1:00/> :

The choice of the number of factorial variables can be based on various criteria.
A reasonable approach is to choose the factorial variables that explain “larger than
average” percentage of inertia. In this case, this rule leads to q D 2. However, in
this example the third factorial variable is still rather important with 15% of the
explained inertia and we choose q D 3 in order to demonstrate the factorial analysis
in three dimensions.

The three factorial variables are presented using the multivariate tools described
in Chap. 1. In Figs. 10.2 and 10.3, we plot the projections onto the factorial axes in a
scatterplot matrix. In Fig. 10.4, we plot the projections onto the 3 factorial axes in a
3D-scatterplot, running the program SMSdecobank allows interactive rotation
of the graphic. The genuine and forged bank notes are denoted by letters “G” and
“F,” respectively.

http://www.quantlet.de/codes/sms/SMSdecobank.html
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Fig. 10.2 Representation of the variables for Swiss bank notes in three dimensions.
SMSdecobank

The data set contains six variables of various distances: height and length of
the bank note, the length of the diagonal, and also some measurements concerning
the position of the central picture on the bank note. For detailed description, see
Appendix A.2.

In Fig. 10.2, we observe the projections of the variables. The first factorial
variable, w1, measures the contrast between X6 (length of the diagonal) and X2–
X5 (distances related to the height of the bank notes). The second factorial variable
consists mainly of X1, the length of the bank note. The third factorial variable could
be interpreted as a contrast between X4 (distance of inner frame to the lower border)
and X5 (distance of inner frame to the upper border). A possible explanation of the
third factor could be that it measures the position of the central picture on the bank
note. Note that these three factorial variables explain almost 98 % of the total inertia
of the (centered and standardized) data set.

In Figs. 10.3 and 10.4, we show the projections of the individuals. It seems that
in both graphics, the separation of the forged and of the genuine bank notes is quite

http://www.quantlet.de/codes/sms/SMSdecobank.html
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Fig. 10.3 Representation of the individuals for Swiss bank notes in a scatterplot matrix.
SMSdecobank

good. However, the separation would be more apparent if we would rotate the three-
dimensional graphics displayed in Fig. 10.4.

The factorial analysis of the Swiss bank notes provides interesting insights into
the structure of the data set. The three-dimensional representation of the data set
keeps 97.8 % of the inertia of the complete six-dimensional data set that would be
very difficult to visualize.

Exercise 10.8 Apply the factorial techniques to the time budget data
(Appendix A.15) which gives the amount of time a person spent on ten activities
over 100 days in 1976 Volle (1985).

The following analysis is based on the centered data set as it seems to be more
natural to consider the differences from the average time spent on various activities.
However, the times spent on different activities are left on the original scale: here,
the scale is the same for all variables and this approach guarantees that the analysis
will concentrate on the activities that really occupy the largest share of the time.

http://www.quantlet.de/codes/sms/SMSdecobank.html
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Fig. 10.4 Representation of Swiss bank notes in three-dimensional scatterplot.
SMSdecobank

The vector of the eigenvalues is:

 D .87046; 7085; 2623:7; 1503:4; 315:9; 156:6; 71:5; 42:6; 25:8; 0:0/> :

The last eigenvalue has to be equal to zero since the time spent on all activities has
to sum to 24 hours/day and thus the data matrix cannot have full rank.

The proportions of the explained inertia:

� D .0:8804; 0:9521; 0:9786; 0:9938; 0:9970; 0:9986; 0:9993; 0:9997; 1:00; 1:00/>

suggest that here it would suffice to use only one factorial variable. Notice the large
difference in scale: the first factorial variable explains 88 % of total inertia, whereas
the second factorial variable is approximately 10� less important.

In Figs. 10.5 and 10.6, we present the two-dimensional projections; see the
description in Appendix A.15 for the names of the various activities used in
Fig. 10.5.

The factorial representation of the variables in Fig. 10.5 shows that the first
factor, explaining 88 % of the inertia, is just the contrast between the household and

http://www.quantlet.de/codes/sms/SMSdecobank.html
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Fig. 10.5 Representation of the variables for the time budget data. SMSdecotime

professional activities. The second factorial variable, explaining 7 % of the inertia,
is the contrast between leisure activities on one side and household and professional
activities on the other side. The fact that the other activities lie close to the origin
is partially caused by the fact that these activities either do not vary a lot among
the observed individuals or they take less time. Notice that “kids” are lying in the
direction of household activities and that “transportation” lies in the direction of
professional activities.

The four letter codes in Fig. 10.6 indicate the sex (m: man, w: woman), activity
(a: active, n: nonactive, m: married, s: single) and country (us: U.S., we: West,
yo: Yugoslavia, es: East). For example, “mmus” denotes married man in United
States. The projections of the individuals in Fig. 10.6 allow us to judge the effects of
the factorial variables on the individuals. We see that all men are lying close to each
other on the right-hand side of the plot: comparison with Fig. 10.5 suggests that men
at that year 1976 are more involved in professional than in household activities. On
the left-hand side of Fig. 10.6 you will find married and nonactive women, whereas
single and active women are located in the central region. It seems that married

http://www.quantlet.de/codes/sms/SMSdecotime.html
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Fig. 10.6 Representation of the individuals for the time budget data. SMSdecotime

women are involved mainly in household activities while single women balance
between the household and professional activities.

The second direction distinguishes between “professional and household” and
“leisure” activities. In the direction of “professional activities” you will find active
women (without U.S.) and married women from Eastern countries and Yugoslavia.
In the direction of “leisure” we can see mainly singles and married and nonactive
women in U.S.

The factorial analysis provides again interesting insights into the structure of the
data set. For the time budget data, two factorial variables explain 95 % of the inertia
of the (centered but not standardized) data set.

Exercise 10.9 Assume that you wish to analyze a data matrix consisting of p
orthogonal, standardized, and centered columns. What is the percentage of the
inertia explained by the first factor? What is the percentage of the inertia explained
by the first q factors?

http://www.quantlet.de/codes/sms/SMSdecotime.html
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If the columns of the matrix X are orthogonal, centered, and standardized, then
X>X D n diag.1p/ and the spectral decomposition can be written as

X>X D Ipn diag.1p/Ip:

Hence, all eigenvalues, 1; : : : ; p, of X>X are equal to n. The total inertia of such
data set is equal to np and the proportion of inertia explained by the first factorial
variable is obviously

�1 D 1

1 C � � � C p
D n

np
D 1

p
:

The proportion of inertia explained by the first q factors is

�q D 1 C � � � C q

1 C � � � C p
D nq

np
D q

p
:

Exercise 10.10 Reconsider the setup of the Exercise 10.9. What does the eigenvec-
tor, corresponding to the first factor, look like.

Let us return to the spectral decomposition of the matrix X>X derived in
Exercise 10.9:

X>X D nIp D ��� > D Ipn diag.1p/Ip:

Since all eigenvalues are equal to n, we have that� D n diag.1p/ and it follows that
the matrix � has to satisfy the equation

nIp D X>X D � n diag.1p/�
> D n� � >;

i.e., � can be chosen as any matrix satisfying the condition � >� D � � > D Ip.
Hence, the first eigenvector �1 can be any vector with norm k�1k D 1. A reasonable
choice would be �1 D .1; 0; 0; : : : ; 0/>.

Exercise 10.11 Suppose that the data matrix consists of two columns, xŒ1� and xŒ2�,
and that xŒ2� D 2xŒ1�. What do the eigenvalues and eigenvectors of the empirical
correlation matrix R look like? How many eigenvalues are nonzero?

The correlation matrix is

R D
�

1 1

1 1

�

:
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It has rank 1, one eigenvalue must therefore be zero. The eigenvalues can be found
by solving the equation

0 D jR � I2j D
ˇ

ˇ

ˇ

ˇ

�

1 �  1

1 1 � 

�ˇ

ˇ

ˇ

ˇ
D .1 � /2 � 1 D 2 � 2 D . � 2/;

i.e., the eigenvalues are 1 D 2 and 2 D 0.
The corresponding eigenvectors can be found by solving the systems of equations

�

1 1

1 1

��

�1i

�2i

�

D
�

�1i

�2i

�

i;

for i D 1; 2. For the first eigenvalue, 1 D 2, we obtain that

�11 C �21 D 2�11 D 2�21:

Since the length of the eigenvector, .�212 C �221/
1=2, has to be equal to 1, we obtain

�11 D �21 and j�11j D 1=
p
2.

For the second eigenvalue, 2 D 0, we have

�12 C �22 D 0

which leads to conditions �12 D ��22 and j�12j D 1=
p
2.

Notice that the sign of the eigenvectors is not determined uniquely.
From the derived eigenvalues and eigenvectors, we have the spectral decomposi-

tion of the correlation matrix

R D
�

1 1

1 1

�

D ��� > D
�

1=
p
2 1=

p
2

1=
p
2 �1=p2

��

2 0

0 0

��

1=
p
2 1=

p
2

1=
p
2 �1=p2

�

:

Exercise 10.12 What percentage of inertia is explained by the first factor in
Exercise 10.11?

In Exercise 10.11, the eigenvalues of the correlation matrix are 1 D 2 and
2 D 0. Hence, the percentage of inertia explained by the first factor is

�1 D 2

2
D 100%

and one-dimensional representation explains all inertia contained in the data set.



Chapter 11
Principal Component Analysis

I tried one or two explanations, but, indeed, I was completely puzzled myself. Our friend’s
title, his fortune, his age, his character, and his appearance are all in his favour, and I know
nothing against him, unless it be the dark fate which runs in his family.
“The Hound of the Baskervilles”

This chapter addresses the issue of reducing the dimensionality of a multivariate
random variable by using linear combinations (the principal components). The
identified principal components are ordered in decreasing order of importance.
When applied in practice to a data matrix, the principal components will turn out to
be the factors of a transformed data matrix (the data will be centered and eventually
standardized).

For a random vector X with E.X/ D � and Var.X/ D ˙ D ��� >, the principal
component (PC) transformation is defined as

Y D � >.X � �/: (11.1)

It will be demonstrated in Exercise 11.1 that the components of the random vector
Y have zero correlation. Furthermore, it can be shown that they are also standardized
linear combinations with the largest variance and that the sum of their variances,
P

Var Yi, is equal to the sum of the variances of X1; : : : ;Xp.
In practice, the PC transformation is calculated using the estimators Nx and S

instead of � and ˙ . If S D GLG> is the spectral decomposition of the empirical
covariance matrix S, the principal components are obtained by

Y D .X � 1nNx>/G: (11.2)

Theorem 11.1 describes the relationship between the eigenvalues of ˙ and the
eigenvalues of the empirical variance matrix S.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_11
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Theorem 11.1 Let ˙ > 0 with distinct eigenvalues and let U � m�1Wp.˙;m/
with spectral decompositions˙ D ��� > and U D GLG>. Then

p
m.` � / L�! Np.0; 2�

2/;

where ` D .`1; : : : ; `p/
> and  D .1; : : : ; p/

> are the diagonals of L and�.

The proof and the asymptotic distribution of G can be found, e.g., in Härdle and
Simar (2015, Theorem 11.4).

The resulting PCA (principal component analysis) or NPCA (normalized PCA)
is presented in a variety of examples, including U.S. crime and health data. A
PCA is also performed for an OECD data set on variables of political nature (life
expectance, literacy, etc.).

Exercise 11.1 Calculate the expected value and the variance of the PC transfor-
mation Y defined in (11.1). Interpret the results.

For the expected value, E Y, we have

E Y D E� >.X � �/ D � > E.X � �/ D � >.E X � �/ D 0p:

The variance matrix, Var.Y/, can be calculated as

Var.Y/ D Varf� >.X � �/g D � >˙� D � >��� >� D �:

Hence, the random vector Y is centered (its expected value is equal to zero) and its
variance matrix is diagonal.

The eigenvalues 1; : : : ; p are variances of the principal components Y1; : : : ;Yp.
Notice that

p
X

iD1
Var.Xi/ D tr.˙/ D tr.��� >/ D tr.� >��/ D tr.�/ D

p
X

iD1
i D

p
X

iD1
Var.Yi/:

Hence, the variances of Xi are decomposed into the variances of Yi which are
given by the eigenvalues of ˙ . The sum of variances of the first q principal
components,

Pq
iD1 i, thus measures the variation of the random vector X explained

by Y1; : : : ;Yq. The proportion of the explained variance,

 q D 1 C � � � C q

1 C � � � C p
;

will be important for the interpretation of results of the practical analyses presented
in the following exercises.

Exercise 11.2 Calculate the correlation between X and its PC transformation Y.
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The covariance between the PC vector Y and the original vector X is:

Cov.X;Y/ D CovfX; � >.X � �/g D Cov.X;Y/� D ˙� D ��� >� D ��:

The correlation, �XiYj , between variable Xi and the PC Yj is

�XiYj D �ijj

.�XiXij/1=2
D �ij

�

j

�XiXi

�1=2

:

The correlations describe the relations between the PCs and the original variables.
Note that

Pp
jD1 j�

2
ij D �>

i ��i is the .i; i/-element of the matrix ��� > D ˙ , so
that

p
X

jD1
�2XiYj

D
Pp

jD1 j�
2
ij

�XiXi

D �XiXi

�XiXi

D 1:

Hence, the correlation �2XiYj
may be seen as the proportion of variance of the ith

variable Xi explained by the jth principal component Yj.
Notice that the percentage of variance of Xi explained by the first q PCs

Y1; : : : ;Yq is
Pq

jD1 �2XiYj
< 1. The distance of the point with coordinates

.�XiY1 ; : : : ; �XiYq/ from the surface of the unit ball in q-dimensional space can
be used as a measure of the explained variance of Xi.

Exercise 11.3 Apply the PCA to the car marks data in Appendix A.5. Interpret the
first two PCs. Would it be necessary to look at the third PC?

The eigenvalues of the covariance matrix,

 D .5:56; 1:15; 0:37; 0:10; 0:08; 0:05; 0:04; 0:02/>;

lead to the following proportions of the explained variance:

 D .0:76; 0:91; 0:96; 0:98; 0:99; 0:99; 1:00; 1:00/>:

Observing that the first two principal components explain more than 90 % of the
variability of the data set, it does not seem necessary to include also the third PC
which explains only 5 % of the variability. A graphical display of the eigenvalues,
the screeplot, is plotted in the lower right part in Fig. 11.1.

The first two eigenvectors of the covariance matrix are

�1 D .�0:22; 0:31; 0:44;�0:48; 0:33; 0:39; 0:42;�0:01/>

and

�2 D .0:54; 0:28; 0:22; 0:30;�0:14;�0:16; 0:46; 0:49/>:
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Fig. 11.1 Scatterplots of the first three principal components and a screeplot of the eigenvalues,
car marks data set. SMSpcacarm

Hence, the first two principal components are defined as:

Y1 D �0:22 � econ C 0:31 � serv C 0:44 � value � 0:48 � price C 0:33 � desi

C 0:39 � sport C 0:42 � safe � 0:01 � easy;

Y2 D 0:54 � econ C 0:28 � serv C 0:22 � value C 0:30 � price � 0:14 � desi

� 0:16 � sport C 0:46 � safe C 0:49 � easy:

Using the coefficients of the PCs for interpretation might be misleading especially
when the variables are observed on different scales. It is advisable to base the
interpretations on the correlations of PCs with the original variables which are
plotted in Fig. 11.2.

http://www.quantlet.de/codes/sms/SMSpcacarm.html
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Fig. 11.2 Correlations of the first two principal components with the original variables in the car
marks data set. SMSpcacarm

For the car marks data set both the coefficients of the PCs and their correlations
with the original variables in Fig. 11.2 suggest that the first principal components
distinguishes the expensive and design cars from the cheap and less sporty vehicles.
This interpretation is confirmed by the plot of the first principal component, Y1,
on Fig. 11.1. On the right-hand side, we observe the not so cool brands such as
Wartburg, Trabant, Lada, or Fiat, whereas on the left-hand side, we see Jaguar,
Ferrari, BMW, and Mercedes-Benz.

The second PC distinguishes economic cars that are easy to handle, such as
Volkswagen and Opel, from the cars that consume a lot of gas and their handling is
more problematic such as Ferrari, Wartburg, Jaguar, and Trabant.

Figure 11.2 shows that all of the original variables are very well explained by
the first two PCs since all points can be found very close to the unit circle, see the
explanation in Exercise 11.2.

Exercise 11.4 Test the hypothesis that the proportion of variance explained by the
first two PCs in Exercise 11.3 is  D 0:85.

http://www.quantlet.de/codes/sms/SMSpcacarm.html
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The variance explained by the first q PCs,  q D .1 C � � � C q/=
Pp

jD1 j, is in

practice estimated by O q D .`1 C � � � C `q/=
Pp

jD1 `j. From Theorem 11.1 we know

the distribution of
p

n � 1.` � / and, since O q is a function of asymptotically
normally distributed random vector `, we obtain that

p
n � 1. O q �  q/

L�! N.0;D>VD/

where V D 2�2 from Theorem 11.1 and D D .d1; : : : ; dp/
> with

dj D @ q

@j
D

8

ˆ
<

ˆ
:

1 �  q

tr.˙/
if 1 � j � q;

� q

tr.˙/
if q C 1 � j � p:

:

It follows that

p
n � 1. O q �  q/

L�! N.0; !2/;

where

!2 D D>VD
D 2

ftr.˙/g2
˚

.1 �  /2.21 C � � � C 2q/C  2.2qC1 C � � � C 2p/



D 2 tr.˙2/

ftr.˙/g2 . 
2 � 2ˇ q C ˇ/

and

ˇ D 21 C � � � C 2q

21 C � � � C 2p
D 21 C � � � C 2q

tr.˙2/
:

In practice, we work with an estimate O!2 based on the spectral decomposition of the
empirical covariance matrix.

In Exercise 11.3 we have calculated the eigenvalues:

 D .5:56; 1:15; 0:37; 0:10; 0:08; 0:05; 0:04; 0:02/>

and the proportions of the explained variance:

 D .0:76; 0:91; 0:96; 0:98; 0:99; 0:99; 1:00; 1:00/>:

It follows that, for q D 2, we obtain Ǒ D 0:99524 and O!2 D 0:0140. Under
the null hypothesis, H0 W  2 D 0:85, the test statistic

p
n � 1. O 2 � 0:85/=! has
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asymptotically standard normal distribution. In our case the value of the test statistic,
2:4401, is in absolute value larger than the critical value of the normal distribution
ˆ�1.0:975/ D 1:96 and we reject the null hypothesis.

Hence, on confidence level ˛ D 0:95, we have proved that the proportion of
variance explained by the first two principal components is larger than 85 %.

Exercise 11.5 Take the athletic records for 55 countries given in Appendix A.1 and
apply the NPCA. Interpret your results.

The athletic records data set contains national records in 8 disciplines (100, 200,
400, 800, 1,500 m, 5, 10 km, and marathon) for n D 55 countries. Clearly, the times
and hence also the differences between countries will be much larger for longer
tracks. Hence, before running the PC analysis, the dataset is normalized by dividing
each variable by its estimated standard deviation. The resulting analysis will be
called NPCA.

In principle, the same results can be obtained by calculating the spectral
decomposition of the empirical correlation matrix of the original data set. One only
has to be very careful and keep in mind that the derived coefficients of the PCs apply
to the normalized variables. Combining these coefficients with the original variables
would lead to misleading results.

The eigenvalues and the proportions of explained variance are

 D .6:04; 0:99; 0:60; 0:13; 0:10; 0:07; 0:05; 0:02/>

and

 D .0:75; 0:88; 0:95; 0:97; 0:98; 0:99; 1:00; 1:00/>:

Notice that the sum of all eigenvalues is equal to 8. This follows from the fact that
the variances of the standardized variables are equal to 1 and from the relationship
Pp

iD1 i D trS D Pp
iD1 1 D p D 8.

Considering the above eigenvalues and proportions of explained variance, it
would be reasonable to investigate only 1 principal component, see also the screeplot
in Fig. 11.3. A commonly accepted rule says that it suffices to keep only PCs that
explain larger than the average number of the total variance. For NPCA, it is easy
to see that larger than average proportion of variance is explained by PCs with
corresponding eigenvalue larger than 1.

However, the second eigenvalue 2 D 0:99 is so close to 1 that we have decided
to discuss also the second PC. The coefficients of the linear combinations are given
by the eigenvectors

�1 D .0:32; 0:16; 0:37; 0:38; 0:39; 0:39; 0:39; 0:37/>

and

�2 D .0:39; 0:85; 0:03;�0:04;�0:13;�0:16;�0:17;�0:22/>:
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Fig. 11.3 Scatterplots of the first three principal components and a screeplot of the eigenvalues,
athletic records data set. SMSnpcathletic

In this exercise, it is very important to keep in mind the meaning of the
measurements. Larger values correspond here to longer, i.e., worse times. The first
PC is positively related to all original variables and it can be interpreted as the
arithmetic average of the records with slightly smaller weight of the record on 200 m
track, see also the correlations in Fig. 11.4. In Fig. 11.3, we can see that large values
of this “average time” component are achieved in Cook Islands, West Samoa, and
Mauritius. On contrary, fastest times are achieved in USA.

The second principal component is strongly positively related to 200 m and
100 m record whereas longer tracks have smaller weight and mostly negative sign.
The second principal component separates Mauritius and The Netherlands which
show poor records in 200 m.

http://www.quantlet.de/codes/sms/SMSnpcathletic.html
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Fig. 11.4 Correlations of the first two principal components with the original variables in the
athletic records data set. SMSnpcathletic

In Fig. 11.4, we see that two principal components explain very well all original
variables. Using only one PC would lead to much worse explanation of the 200 m
records.

Exercise 11.6 Apply a PCA to ˙ D
�

1 �

� 1

�

, where 0 < � < 1. Now change the

scale of X1, i.e., consider the covariance of cX1 and X2, where c > 1. How do the
PC directions change with the screeplot?

The spectral decomposition of matrix ˙ has already been investigated in
Exercise 2.7. Recall that we have

˙ D ��� > D 1p
2

�

1 1

1 �1
��

1C � 0

0 1 � �
�

1p
2

�

1 1

1 �1
�

:

Since � > 0, the PCs are Y1 D .X1 C X2/=
p
2 and Y1 D .X1 � X2/=

p
2.

http://www.quantlet.de/codes/sms/SMSnpcathletic.html
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Multiplying X1 by constant c > 0 leads the covariance matrix:

Varf.cX1;X2/
>g D ˙.c/ D

�

c2 c�
c� 1

�

:

The spectral decomposition of˙.c/ can be derived similarly as in Exercise 2.7. The
eigenvalues of ˙.c/ are solutions to:

ˇ

ˇ

ˇ

ˇ

c2 �  c�
c� 1 � 

ˇ

ˇ

ˇ

ˇ
D 0:

Hence the eigenvalues are

1;2.c/ D 1

2

�

c2 C 1˙
p

.c2 � 1/2 C 4c2�2
�

:

The eigenvector corresponding to 1 can be computed from the system of linear
equations:

�

c2 c�
c� 1

��

x1
x2

�

D 1

�

x1
x2

�

which implies that x1 D x2.1 � 1/=c� and the first PC is pointing in the direction
.cX1/.1 � 1/=c�C X2.

Next, observe that 1 > 1 and the function 1.c/=c is increasing in c. Hence,
x1 > x2 and, furthermore, the ratio of x1 and x2 is an increasing function of c.

Summarizing the above results, we can say that as c increases, the first eigenvalue
1 becomes larger and the rescaled random variable cX1 gains more weight in the
first principal component.

The choice of scale can have a great impact on the resulting principal com-
ponents. If the scales differ, it is recommended to perform the NPCA, i.e., to
standardize each variable by its standard deviation.

Exercise 11.7 Suppose that we have standardized some data using the Maha-
lanobis transformation. Would it be reasonable to apply a PCA?

Standardizing any given data set X by the Mahalanobis transformation leads to
a data set Z D XS�1=2 with the covariance matrix

SZ D S�1=2SS�1=2 D Ip:

It immediately follows that all eigenvalues of SZ are equal to 1 and that the principal
components of Z have exactly the same variances as the original variables. Hence,
such analysis would be entirely useless.

Principal components analysis of Z leads always to this same uninteresting
result.
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Exercise 11.8 Apply a NPCA to the U.S. crime data set in Appendix A.18. Interpret
the results. Would it be necessary to look at the third PC? Can you see any difference
between the four regions?

The U.S. crime data set consists of the reported number of crimes in the 50
U.S. states in 1985. The crimes were classified according to 7 categories: murder,
rape, robbery, assault, burglary, larceny, and auto theft. The dataset also contains
identification of the region: Northeast, Midwest, South, and West.

The NPCA means that, before running the analysis, all observed variables are
put on the same scale.

The eigenvalues of the correlation matrix are:

 D .4:08; 1:43; 0:63; 0:34; 0:25; 0:14; 0:13/>

and we obtain the proportions of explained variance:

 D .0:58; 0:79; 0:88; 0:93; 0:96; 0:98; 1:00/>:

The data set is well described by the first two NPCs, each of the first two NPCs
describes larger than average amount of variance. The first two NPCs describe
together 79 % of the total variability, see also the screeplot in Fig. 11.5.

The first two eigenvectors are:

�1 D .0:28; 0:42; 0:39; 0:39; 0:44; 0:36; 0:35/>;

�2 D .�0:64;�0:12; 0:05;�0:46; 0:26; 0:40; 0:37/>:
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Fig. 11.5 Scatterplot of the first two principal components and a screeplot of the eigenvalues, U.S.
crime data set. SMSnpcacrime

http://www.quantlet.de/codes/sms/SMSnpcacrime.html
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Fig. 11.6 Correlations of the first two principal components with the original variables in the U.S.
crime data set. SMSnpcacrime

The first principal component combines the numbers of all crimes with approxi-
mately constant (0:28–0:44) weights and we can interpret it as the overall crime rate,
see also the correlations in Fig. 11.6. The second principal component is negatively
correlated with 1st and 4th variable (murder and assault) and positively correlated
with the 5th till 7th variable (burglary, larceny, auto theft). The second NPC can be
interpreted as “type of crime” component.

In Fig. 11.5, we denote each of the four regions by a different plotting symbol.
It looks as if the symbol changes in the direction of the second, type of crime,
principal component. In the upper part of the graph, we see mainly circles, squares,
and crosses corresponding to the regions 1, 2, and 4. In the lower part, we observe
mainly triangles corresponding to the third South region. Hence, it seems that in
region 3 occur more murders and assaults and less burglaries, larcenies, and auto
thefts than in the rest of USA.

Exercise 11.9 Repeat Exercise 11.8 using the U.S. health data set in
Appendix A.19.

http://www.quantlet.de/codes/sms/SMSnpcacrime.html
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The U.S. health data set consists of reported number of deaths in the 50
U.S. states classified according to 7 categories: accident, cardiovascular, cancer,
pulmonary, pneumonia flu, diabetes, and liver.

Here, we have decided to run the usual PC analysis. Normalizing the data
set would mean that, in certain sense, all causes of death would have the same
importance. Without normalization, we can expect that the variables responsible
for the largest number of deaths will play the most prominent role in our analysis,
see also Exercise 11.6 for theoretical justification.

The eigenvalues of the covariance matrix are:

 D .8069:40; 189:22; 76:03; 25:21; 10:45; 5:76; 3:47/>

and the huge first eigenvalue stresses the importance of the first principal compo-
nent. Calculating the proportions of the explained variance,

 D .0:96; 0:99; 0:99; 1:00; 1:00; 1:00; 1:00/>;

we see that the first PC explains 96 % of the total variability. The screeplot is plotted
in Fig. 11.7.

The first (most important) eigenvectors is:

�1 D .�0:06; 0:94; 0:34; 0:03; 0:02; 0:03; 0:01/>

and we see that the first PC reflects the most common causes of death: cardiovascular
diseases and, with smaller weight, cancer. The second eigenvector,

�2 D .�0:34;�0:34; 0:86; 0:01;�0:11; 0:09; 0:11/>;
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Fig. 11.7 Correlations of the first two principal components with the original variables and the
screeplot for the U.S. health data set. SMSpcahealth
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Fig. 11.8 Scatterplot of the first two principal components for U.S. health data set.
SMSpcahealth

is strongly positively correlated with cancer and less strongly negatively correlated
with cardiovascular and pulmonary diseases, see also Fig. 11.7. The first principal
component explains satisfactorily only variables cardiovascular and cancer.

In Fig. 11.8, we show the values of the first two PCs for the 50 observed U.S.
states. Keeping in mind the meaning of the principal components, we should see
the states with large number of deaths due to cardiovascular diseases and cancer on
the right-hand side (Florida, New York, Pennsylvania). From the point of view of
the first PC, the best quality of life can be found in Alaska, Hawaii, New Mexico,
Wyoming, and Colorado. The much less important second PC suggests that cancer
is more common cause of death in Maryland than in South Dakota.

Exercise 11.10 Do a NPCA on the Geopol data set, Appendix A.10, which com-
pares 41 countries with respect to different aspects of their development. Why or
why not would a PCA be reasonable here?

The Geopol data set contains a comparison of 41 countries according to 10
political and economic parameters. We will perform the analysis without the first

http://www.quantlet.de/codes/sms/SMSpcahealth.html
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variable, size of population. The variables to be analyzed, X2–X9 are: gross internal
product per habitant (giph), rate of increase of the population (ripo), rate of urban
population (rupo), rate of illiteracy (rlpo), rate of students (rspo), expected lifetime
(eltp), rate of nutritional needs realized (rnnr), number of newspaper and magazines
per 1,000 habitants (nunh), and number of televisions per 1,000 inhabitants (nuth).

Clearly, these variables are measured on very different scales and, in order to
produce trustworthy results, the data set has to be normalized. In this exercise, we
have to perform NPCA.

The eigenvalues of the correlation matrix are:

 D .5:94; 0:87; 0:70; 0:54; 0:43; 0:18; 0:15; 0:12; 0:08/>

and we obtain the percentages of explained variance:

 D .0:66; 0:76; 0:83; 0:89; 0:94; 0:96; 0:98; 0:99; 1:00/>:

The screeplot is plotted in Fig. 11.9. It would suffice to keep only one NPC, but we
decide to keep the first three principal components although Y2 and Y3 contribute
only little to the total variability.

The coefficients of the first three normalized principal components are given by
the first three eigenvectors:

�1 D .0:34;�0:34; 0:29;�0:36; 0:30; 0:37; 0:28; 0:33; 0:37/>;
�2 D .0:41; 0:38; 0:23; 0:20; 0:16;�0:20;�0:61; 0:36; 0:19/>;
�3 D .�0:18; 0:37; 0:34;�0:02; 0:66;�0:05; 0:14;�0:49; 0:06/>:

The correlations of Y1; : : : ;Y3 with the original variables are plotted in Fig. 11.10.
From the correlations plotted in Fig. 11.10, we can interpret the first PC as the

overall quality of life component: notice that it is positively related to all variables
apart from rate of increase of the population and rate of illiteracy. In Fig. 11.9, we
can see that large values of this component are achieved in the former West Germany
(BRD), Canada, and the USA. Smallest values of this component are observed in
Kenya, Cameroon, Gabon, and India.

The second PC seems to point mainly in the direction opposite to the rnnr (rate
of nutritional needs realized). The third PC is positively correlated to the rate of
students and negatively correlated to the number of newspapers. From Fig. 11.9, we
can see that already one PC is enough to explain substantial part of the variability
of all variables.

Exercise 11.11 Let U be an uniform random variable on Œ0; 1�. Let a D
.a1; a2; a3/> 2 R

3 be a vector of constants. Suppose that X D .X1;X2;X3/> D aU.
What do you expect the NPCs of X to be?

Let us assume that ai ¤ 0, i D 1; 2; 3. Next, normalizing the random vector X
by subtracting its expected value and by dividing it by its standard deviation leads
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Fig. 11.9 Scatterplots of the first three principal components and a screeplot of the eigenvalues,
Geopol data set. SMSnpcageopol

to the normalized random vector

Z D ˚

diag
�

a2�2U
	
�1=2

.X � E X/ D ˚

diag
�

a2�2U
	
�1=2

a.U � E U/

with the variance matrix

Var.Z/ D ˚

diag
�

a2�2U
	
�1=2

Var.X/
˚

diag
�

a2�2U
	
�1=2

D ˚

diag
�

a2�2U
	
�1=2

a�2Ua> ˚diag
�

a2�2U
	
�1=2

http://www.quantlet.de/codes/sms/SMSnpcageopol.html
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Fig. 11.10 Correlations of the first three principal components with the original variables in the
Geopol data set. SMSnpcageopol

D
�

aiaj

abs ai abs aj

�

i;jD1;2;3
D ˚

sign.aiaj/



i;jD1;2;3 :

Clearly, the rank of the variance matrix Var.Z/ is equal to 1 and it follows that it has
only one nonzero eigenvalue. Hence, the spectral decomposition of Var.Z/ leads to
only one principal component explaining 100 % of total variability of Z .

http://www.quantlet.de/codes/sms/SMSnpcageopol.html
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The NPC can be written as

Y1 D 1p
3

fsign.a1/Z1 C sign.a2/Z2 C sign.a3/Z3g

D 1p
3

fsign.a1/a1U C sign.a2/a2U C sign.a3/a3Ug

D U
abs.a1/C abs.a2/C abs.a3/p

3
;

i.e., the normalized principal components analysis of X D aU leads us back to the
one-dimensional random variable U.

Exercise 11.12 Let U1 and U2 be two independent uniform random variables on
Œ0; 1�. Suppose that X D .X1;X2;X3;X4/> where X1 D U1, X2 D U2, X3 D U1 C
U2 and X4 D U1 � U2. Compute the correlation matrix P of X. How many PCs

are of interest? Show that �1 D
�

1p
2
; 1p

2
; 1; 0

�>
and �2 D

�

1p
2
; �1p

2
; 0; 1

�>
are

eigenvectors of P corresponding to the nontrivial ’s. Interpret the first two NPCs
obtained.

For random variables U1 and U2 � UŒ0; 1�, we have E U1 D 1=2 and Var U1 D
Var U2 D 1=12. It follows that also Var X1 D Var X2 D 1=12.

For the variance of X3 D U1 C U2 and X4 D U1 � U2, we obtain

Var.X3/ D Var.X4/ D Var.U1/C Var.U2/ D 1

6

since U1 and U2 are independent. The covariances can be calculated as

Cov.X1;X3/ D Cov.U1;U1 C U2/ D Var.U1/C Cov.U1;U2/ D 1

12

and

Cov.X3;X4/ D Cov.U1 C U2;U1 � U2/ D Var.U1/� Var.U2/ D 0:

The remaining elements of the variance matrix can be calculated in the same way
leading to

Var.X/ D 1

12

0

B

B

@

1 0 1 1

0 1 1 �1
1 1 2 0

1 �1 0 2

1

C

C

A

:
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Dividing each row and each column by the square root of the corresponding
diagonal element gives the correlation matrix

P D

0

B

B

B

B

@

1 0 1p
2

1p
2

0 1 1p
2

� 1p
2

1p
2

1p
2

1 0
1p
2

� 1p
2

0 1

1

C

C

C

C

A

:

Now it is easy to verify that �1 and �2 are indeed eigenvectors of the correlation
matrix P since

P�1 D

0

B

B

B

B

@

1 0 1p
2

1p
2

0 1 1p
2

� 1p
2

1p
2

1p
2

1 0
1p
2

� 1p
2

0 1

1

C

C

C

C

A

:

0

B

B

B

@

1p
2
1p
2

1

0

1

C

C

C

A

D

0

B

B

@

p
2p
2

2

0

1

C

C

A

D 2�1:

and, similarly, P�2 D 2�2. This, by the way, implies that also P.�2 C �1/ D 2.�1 C
�2/ and hence, any linear combination of �1 and �2 is also an eigenvector of P with
the same eigenvalue.

Thus, we have the eigenvalues 1 D 2 D 2. The remaining two eigenvalues, 3
and 4, are equal to 0 because the rank of the correlation matrix is equal to 2.

The first two NPCs are not determined uniquely. Choosing the coefficients as
�1 and �2 and keeping in mind that these coefficients correspond to the normalized
variables we have:

Y1 D
p
12p
2

X1 C
p
12p
2

X2 C p
6X3 D 2

p
6.U1 C U2/

Y2 D
p
12p
2

X1 �
p
12p
2

X2 C p
6X4 D 2

p
6.U1 � U2/:

The NPCs, Y1 and Y2, can be now interpreted respectively as the sum and the
difference of U1 and U2.

Exercise 11.13 Simulate a sample of size n D 50 for the r.v. X in Exercise 11.12
and analyze the results of a NPCA.

Performing the NPCA for the simulated data set, we obtain the eigenvalues:

O D .2:06; 1:94; 0:00; 0:00/>

and the proportions of the explained variance:

O D .0:51; 1:00; 1:00; 1:00/>:
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Fig. 11.11 Scatterplots of the first two principal components and a screeplot of the eigenvalues,
simulated data set. SMSnpcasimu

These numbers correspond well to the theoretical values 1 D 2 D 2 derived in
Exercise 11.12. The remaining two eigenvalues are equal to zero because of the
linear dependencies in the data set. The screeplot is plotted in Fig. 11.11 and we see
that the first two NPCs explain each approximately 50 % of the variability, whereas
the other two NPCs do not explain anything.

The first two eigenvectors are

O�1 D .0:60; 0:38; 0:68; 0:17/>

and

O�2 D .�0:36; 0:60; 0:16;�0:70/>

and the resulting values for the 50 NPCs are plotted in Fig. 11.11. Rewriting the
resulting NPCs in terms of the original variables and rounding the coefficients
leads that the first NPC points approximately in the direction 2U1 C U2 and the
second NPC in the direction �U1. This result differs from the eigenvectors �1 and
�2 calculated in Exercise 11.12 because �1 and �2 are not uniquely defined.

In Fig. 11.12, we plot the correlation of the NPCs with the normalized variables
X1; : : : ;X4. The correlations correspond to the coefficients of the NPCs. All of the
original variables are perfectly explained by two NPCs because all four points are
lying on the unit circle.

http://www.quantlet.de/codes/sms/SMSnpcasimu.html
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Fig. 11.12 Correlations of the first two principal components with the original variables in the
simulated data set. SMSnpcasimu

The simulated data set changes with every simulation. One can observe that the
eigenvalues O do not vary a lot for different runs of the simulation. However, the
eigenvectors can vary a lot due to the fact that they are not defined uniquely.

http://www.quantlet.de/codes/sms/SMSnpcasimu.html


Chapter 12
Factor Analysis

A certain selection and discretion must be used in producing a realistic effect.
Sherlock Holmes in “A Case of Identity”

In factor analysis, we address the same problem of reducing the dimension of
a multivariate random variable, but we want to fix, from the start, the number
of factors. Each factor will then be interpreted as a latent characteristic of the
individuals revealed by the original variables.

From a statistical point of view, the essential purpose of factor analysis is to
describe, if possible, the covariance relationships among many variables in terms of
a few underlying, but unobservable, random quantities called factors.

The ultimate goal is to find underlying reasons that explain the data variation. In
achieving this goal we need to check the relation of the factors and original variables
and give them an interpretation in the framework of how the data were generated.

Factor Analysis Model

The factor analysis model used in practice is:

X D QF C U C �; (12.1)

where Q is a .p � k/ matrix of the (nonrandom) loadings of the common factors
F.k � 1/ and U is a .p � 1/ matrix of the (random) specific factors. It is assumed
that the common factors F are uncorrelated random variables and that the specific
factors are uncorrelated and have zero covariance with the common factors. More
precisely, it is assumed that: E F D 0, Var.F/ D Ik, E U D 0, Cov.Ui;Uj/ D 0,
i ¤ j, and Cov.F;U/ D 0.

The random vectors F and U are unobservable. Define Var.U/ D � D
diag. 11; : : : ;  pp/; then the variance matrix of X can be written as Var.X/ D

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_12
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˙ D QQ> C � , and we have for the ith component of the random vector X
that �XjXj D Var.Xj/ D Pk

`D1 q2j` C  jj. The quantity h2j D Pk
`D1 q2j` is called

the communality and  jj the specific variance. The objective of factor analysis is to
find a small number, k, of common factors leading to large communalities and small
specific variances.

Estimation of the Factor Model

In practice, we have to find estimates OQ of the loadings Q and estimates O� of the
specific variances � such that S D OQ OQ> C O� , where S denotes the empirical
covariance of X . The most commonly used methods are the following:

The maximum likelihood method is based on the assumption of normality.
The equations resulting from the maximization of the log-likelihood under the
assumption˙ D QQ> C� are complicated and have to be solved by iterative
numerical algorithms.
The method of principal factors starts with a preliminary estimate of Oh2j and

the specific variances O jj D 1 � Ohj. In the next step, the matrix of loadings
is estimated from the spectral decomposition of the reduced covariance matrix
S � O� . This procedure can be iterated until convergence is reached.
The principal component method starts by obtaining estimated loadings OQ
from a spectral decomposition of the matrix S. The specific variances are then
estimated by the diagonal elements of the matrix S � OQ OQ>.

Rotation

Suppose that G is an orthogonal matrix. Then X in (12.1) can also be written as
X D .QG/.G>F/ C U C �. This implies that the factors are not defined uniquely
because equivalent models with factors G>F and loadings QG are valid for an
arbitrary orthogonal matrix G. In practice, the choice of an appropriate rotation G of
the loadings Q results in a matrix of loadings Q� D QG that are easier to interpret.

A well-known algorithm for choosing a reasonable rotation of the factor loadings
is given by the varimax rotation method proposed by Kaiser (1985). The idea of this
popular method is to find the angles that maximize the sum of the variances of the
squared loadings q�

ij within each column of Q�. The varimax criterion attempts to
split the variables automatically into disjoint sets, each associated with one factor.

Another useful approach is the promax rotation proposed by Hendrickson and
White (1964). Compared to the varimax method, the disadvantage of the promax
rotation is that it leads to a non-orthogonal (oblique) rotation. On the other hand,
factors obtained by the promax method often have simpler structure with easier
interpretation.
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Strategy for Factor Analysis

1. Perform a principal component factor analysis, look for suspicious observations,
try varimax rotation.

2. Perform maximum likelihood factor analysis, including varimax rotation.
3. Compare the factor analyses: do the loadings group in the same manner?
4. Repeat the previous steps for other numbers of common factors.

After the estimation and interpretation of factor loadings and communalities,
estimate the factor values. The estimated values of the factors are called the factor
scores and may be useful in the interpretation as well as in the diagnostic analysis.
To be more precise, the factor scores are estimates of the unobserved k-dimensional
random vectors F for each individual xi, i D 1; : : : ; n. Johnson and Wichern (1998)
describe three methods that in practice yield very similar results. The regression
method (see Exercise 12.6) is also described in Härdle and Simar (2015, Sect. 12.3).

Exercise 12.1 Compute the orthogonal factor model for

˙ D
0

@

1:0 0:9 0:7

0:9 1:0 0:4

0:7 0:4 1:0

1

A :

We have to find loadingsQ and specific variances� satisfying the decomposition
˙ D QQ> C � . The problem is difficult to solve due to the non-uniqueness of the
solutions. An acceptable technique is to impose some additional constraints such as:
Q>��1Q is diagonal.

The factor analysis without any constraints has pkCk unknown parameters of the
matrixQ and the diagonal of� . The diagonality ofQ>��1Q introduces 1

2
fk.k�1/g

constraints. Therefore, the degrees of freedom of a model with k factors is d D
1
2
.p � k/2 � 1

2
.p C k/.

If d < 0, then there are infinitely many solutions. If d D 0, then there is an
unique solution to the problem (except for rotation). In practice, we usually have
that d > 0 and an exact solution does not exist. Evaluating the degrees of freedom,
d, is particularly important, because it already gives an idea of the upper bound on
the number of factors we can hope to identify in a factor model.

If p D 3, we can identify at most k D 1 factor. This factor is then given uniquely
since d D 1

2
.3�1/2� 1

2
.3C1/ D 0. Implementing a simple iterative procedure, i.e.,

the principal factor method described in the introduction, we arrive to the following
exact solution:

˙ D
0

@

1:0 0:9 0:7

0:9 1:0 0:4

0:7 0:4 1:0

1

A
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D
0

@

1:25

0:72

0:56

1

A .1:25; 0:72; 0:56/C
0

@

�0:57 0:00 0:00
0:00 0:49 0:00

0:00 0:00 0:69

1

A :

The obvious disadvantage of this unique solution is that it cannot be interpreted as
a factor analysis model since the specific variance  11 cannot be negative. Hence,
the ability to find a unique solution of the orthogonal factor model does not have to
lead to the desired result. SMSfactsigma

Exercise 12.2 Using the bank data set in Appendix A.2, how many factors can you
find with the method of principal factors?

The number of variables is p D 6. For k D 3 factors, the orthogonal factor model
would have

d D 1

2
.p � k/2 � 1

2
.p C k/ D 4:5 � 4:5 D 0

degrees of freedom, see Exercise 12.1. It follows that for 3 factors, we would have
an exact solution. Unfortunately, as we have seen in Exercise 12.1, the unique exact
solution does not have to be interpretable. In this situation, it is advisable to work
with at most k D 2 factors.

The empirical correlation analysis calculated from the given six-dimensional data
set is:

R D

0

B

B

B

B

B

B

B

@

1:00 0:23 0:15 �0:19 �0:06 0:19

0:23 1:00 0:74 0:41 0:36 �0:50
0:15 0:74 1:00 0:49 0:40 �0:52

�0:19 0:41 0:49 1:00 0:14 �0:62
�0:06 0:36 0:40 0:14 1:00 �0:59
0:19 �0:50 �0:52 �0:62 �0:59 1:00

1

C

C

C

C

C

C

C

A

:

The communalities h2j , j D 1; : : : ; 6, measure the part of variance of each variable
that can be assigned to the common factors. One possibility to define a reasonable
starting estimates is to set Oh2j D maxi¤j;iD1;:::;6 jrXjXi j. For the Swiss bank notes, we
obtain

Oh2 D .Oh21; : : : ; Oh26/> D .0:23; 0:74; 0:74; 0:62; 0:59; 0:62/>:

The estimates of the specific variances  jj, j D 1; : : : ; 6 are

O D . O 11; : : : ; O 66/> D .0:77; 0:26; 0:26; 0:38; 0:41; 0:38/>

http://www.quantlet.de/codes/sms/SMSfactsigma.html
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and the reduced correlation matrix R � O� is

R � diag. O / D

0

B

B

B

B

B

B

B

@

0:23 0:23 0:15 �0:19 �0:06 0:19

0:23 0:74 0:74 0:41 0:36 �0:50
0:15 0:74 0:74 0:49 0:40 �0:52

�0:19 0:41 0:49 0:62 0:14 �0:62
�0:06 0:36 0:40 0:14 0:59 �0:59
0:19 �0:50 �0:52 �0:62 �0:59 0:62

1

C

C

C

C

C

C

C

A

:

The vector of the eigenvalues of the reduced correlation matrix is:

 D .2:62; 0:72; 0:48; 0:01;�0:08;�0:18/>:

At this step, some of the eigenvalues can be negative. The possibility that the
reduced correlation matrix does not have to be positive definite has to be taken into
account in the computer implementation of the factor analysis.

The matrix of eigenvectors of the reduced correlation matrix is:

� D

0

B

B

B

B

B

B

B

@

�0:00 �0:62 0:05 �0:14 0:77 0:06

0:48 �0:45 �0:07 �0:58 �0:46 �0:12
0:50 �0:33 �0:11 0:77 �0:13 0:14

0:40 0:35 �0:60 �0:04 0:35 �0:48
0:35 0:17 0:78 0:06 0:13 �0:47

�0:48 �0:39 �0:11 0:23 �0:21 �0:71

1

C

C

C

C

C

C

C

A

:

With k D 2 factors, we obtain the factor loadings

OQ D

0

B

B

B

B

B

B

B

@

0:00 �0:62
�0:48 �0:45
�0:50 �0:33
�0:40 0:35

�0:35 0:17

0:48 �0:39

1

C

C

C

C

C

C

C

A

�p
2:62 0

0
p
0:72

�

D

0

B

B

B

B

B

B

B

@

0:00 �0:53
�0:78 �0:38
�0:81 �0:28
�0:64 0:30

�0:57 0:14

0:78 �0:33

1

C

C

C

C

C

C

C

A

:

If the variables are normalized, i.e., if the analysis is based on the correlation matrix,
the factor loadings Q are the correlations between the original variables and the
unobserved factors.

The final estimates of the two factor model, given in Table 12.1, were obtained
by several iterations of the described algorithm.

The next step in the analysis is a rotation of the two factor loadings leading to
better interpretable results. In Fig. 12.1 you can see both the original factor loadings
as given in Table 12.1 and the same factor loadings rotated by the angle 7�=12
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Table 12.1 Estimated factor loadings, communalities, and specific variances, PFM, Swiss bank
notes data set. SMSfactbank

Estimated factor Specific
Loadings Communalities variances

Oq1 Oq2 Oh2j O jj D 1� Oh2j
1 Length 0.00 �0.54 0.29 0.71

2 Height measured left �0.79 �0.42 0.80 0.20

3 Height measured right �0.80 �0.30 0.73 0.27

4 Lower frame distance �0.59 0.19 0.39 0.61

5 Upper frame distance �0.51 0.11 0.27 0.73

6 Length of the diagonal 0.88 �0.45 0.98 0.02
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Fig. 12.1 Rotation of the factor loadings in the Swiss bank notes data set. The original and rotated
factor loadings are on the left and right-hand side, respectively. SMSfactbank

counterclockwise. The rotation, i.e., multiplication of the factor loadings by the
rotation matrix

G.	/ D
�

cos 	 sin 	
� sin 	 cos 	

�

;

where 	 D 7�=12 changes only the factor loadings and their interpretation. In
Fig. 12.1, we suggest rotation leading to one factor positively correlated to X1, X2,
and X4, whereas the second factor is strongly positively related to X6 and strongly
negatively related to X2, X3, X4, and X5.

Further insight into the factors might be achieved by estimating their values for
our observations. This part of the factor analysis will be demonstrated in detail in
Exercise 12.6.

http://www.quantlet.de/codes/sms/SMSfactbank.html
http://www.quantlet.de/codes/sms/SMSfactbank.html
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Exercise 12.3 An example of an orthogonal matrix in two-dimensions is the so-
called rotation matrix

G.	/ D
�

cos 	 sin 	
� sin 	 cos 	

�

;

representing a clockwise rotation of the coordinate axes by the angle 	 . Generalize
the two-dimensional rotation matrix G.	/ to three-dimensional space.

The two-dimensional rotation matrix G.	/ rotates two-dimensional coordinates
counterclockwise by angle 	 with respect to the origin .0; 0/>, see Fig. 12.1 for an
illustration.

In three-dimensional space, we can fix three angles, 	1, 	2, and 	3 specifying
three two-dimensional rotations. In the first step, we can rotate the given three-
dimensional points in the first two coordinates and keep the third coordinate fixed;
this can be achieved by the rotation matrix:

G12.	3/ D
0

@

cos 	3 sin 	3 0
� sin 	3 cos 	3 0
0 0 1

1

A :

Rotating the points only in the first coordinates can be described as a rotation of the
thee-dimensional cloud of points around the third axis by angle 	3.

The rotation in the first and third coordinate (around the second axis) is
achieved by:

G13.	2/ D
0

@

cos 	2 0 sin 	2
0 1 0

� sin 	2 0 cos 	2

1

A

and for the rotation in the second and third coordinate (around the first axis), we
have:

G23.	1/ D
0

@

1 0 0

0 cos 	1 sin 	1
0 � sin 	1 cos 	1

1

A :

Arbitrary rotation in three-dimensional space can now be written as a combination
of the two-dimensional rotations G23.	1/, G13.	2/, and G12.	3/. We define the
general three-dimensional rotation matrix:

G123.	1; 	2; 	3/ D G23.	1/G13.	2/G12.	3/:

Similarly, the two-dimensional rotation matrices can be used to define a rotation in
n-dimensional space.
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Exercise 12.4 Perform a factor analysis on the type of families in the French food
data set A.9. Rotate the resulting factors in a way which provides a reasonable
interpretation. Compare your result to the varimax method.

The French food data set contains average expenditures on seven types of
food for different types of families (manual workers, employees, managers) in
France. The abbreviations MA, EM, and CA denote respectively manual workers,
employees, and managers. The number denotes the number of children. In this
exercise, we consider the dataset as consisting of 7 measurements of the 12 types of
family variables.

A first look at the data set reveals that the structure of expenditures strongly
depends on the type of food. Hence, before running the factor analysis, we put all
measurements on the same scale by standardizing the expenditures for each type of
food separately.

We choose k D 3 factors. The corresponding factor loadings were estimated
by the principal factors method. In order to obtain more interpretable results, we
have rotated the factor loadings in Fig. 12.2. After the manual rotation of the factor
loadings, the first factor seems to be related to the number of children. The second
and the third factor are related to the type of family. The main disadvantage of this
approach is that a manual rotation of the factor loadings is rather time consuming
and that the final result might be strongly influenced by prior beliefs of the data
analyst.

Hence, in practice, we recommend to use the varimax rotation which in this case
leads to very similar result, see Fig. 12.3. A comparison of Figs. 12.2 and 12.3 shows
that the varimax methods find automatically a rotation which is very similar to the
result obtain by manual rotation of factor loadings. The main difference seems to be
the order and the signs of the factors.

Exercise 12.5 Perform a factor analysis on the variables X4 to X10 in the U.S.
health data set in Appendix A.19. Would it make sense to use all of the variables
for the factor analysis?

From the discussion of the degrees of freedom of the factor analysis model in
Exercises 12.1 and 12.2, it follows that we can estimate at most k D 3 factors in this
seven-dimensional data set. The results of the factor analysis are given in Table 12.2
and Fig. 12.4. The factor analysis model was estimated by the maximum likelihood
method with varimax rotation.

Table 12.2 shows that the three factor model explains very well most of the orig-
inal variables. Only variables accident and pulmonary have lower communalities.

The plots of the factor loadings in Fig. 12.4 suggest that the first factor corre-
sponds to causes of death related by cardiovascular problems, cancer, and diabetes.
The second factor seems to be strongly positively related to pneumonia flu and
somewhat less strongly positively related to cancer, pulmonary, and cardiovascular
problems. The third factor is strongly related to liver. The discussion of the meaning
of the factors will be continued in Exercise 12.7, where we present the estimation
of the corresponding factor scores for each state.
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Fig. 12.2 Factor loadings for the French food data set after manual rotation of the factor loading
obtained by PFM method. SMSfactfood

Let us now investigate the question whether the three factors derived in this
exercise describe sufficiently the dependencies within the U.S. health data set. This
question can be answered by formal statistical test based on the likelihood ratio
approach that has been demonstrated in Chap. 7.

Assuming that OQ and O� are the estimates obtained by the maximum likelihood
method, the likelihood ratio (LR) test statistic for the null hypothesis H0 W ˙ D
QQ> C � can be derived as:

� 2 log

�

maximized likelihood under H0

maximized likelihood

�

D n log

 

j OQ OQ> C O� j
jSj

!

: (12.2)

http://www.quantlet.de/codes/sms/SMSfactfood.html
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Fig. 12.3 Varimax rotation for French food data set. SMSfactfood

Under the null hypothesis, the LR test statistic has asymptotically the �21
2 f.p�k/2�p�kg

distribution. Bartlett (1954) suggested a correction which improves the above �2

approximation by replacing n by n � 1� .2p C 4k C 5/=6 in (12.2). The LR test can
be applied only if the degrees of freedom are positive, see also the discussion of the
degrees of freedom in Exercise 12.1.

Let us now test the null hypothesis H0 W k D 3. The value of the LR test statistic
with Bartlett correction is 3:66 and we cannot reject the null hypothesis H0 W ˙ D
QQ> C � since the observed value of the test statistic is smaller than the critical
value �20:95I3 D 7:81. It seems that the factor analysis model with k D 3 factors is
appropriate for the U.S. health data set.

http://www.quantlet.de/codes/sms/SMSfactfood.html
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Table 12.2 Estimated factor loadings after varimax rotation, communalities, and specific vari-
ances, MLM, U.S. health data set. SMSfactushealth

Estimated factor Specific
Loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Accident �0.57 �0.14 �0.08 0.35 0.65

2 Cardiovascular 0.80 0.53 0.04 0.92 0.08

3 Cancer 0.89 0.35 0.26 0.99 0.01

4 Pulmonary 0.24 0.45 0.24 0.32 0.68

5 Pneumonia flu 0.08 0.90 �0.12 0.83 0.17

6 Diabetes 0.80 �0.04 0.05 0.64 0.36

7 Liver 0.13 0.00 0.95 0.91 0.09
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Fig. 12.4 Factor loadings for the U.S. health data set after varimax rotation.
SMSfactushealth

http://www.quantlet.de/codes/sms/SMSfactushealth.html
http://www.quantlet.de/codes/sms/SMSfactushealth.html
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Exercise 12.6 Perform a factor analysis on the U.S. crime data set in
Appendix A.18 and estimate the factor scores.

The U.S. crime data set states the reported number of crimes in the 50 states of
the USA classified according to 7 categories. Hence, at most k D 3 factors can be
considered for the factor analysis.

The factor loadings presented in Table 12.3 and plotted in Fig. 12.5 were obtained
by the maximum likelihood method and varimax rotation.

The LR test of the hypothesis that three factors are enough to describe the
dependencies within the U.S. crime data set leads to the p-value 0:8257 and the
null hypothesis H0 W k D 3 cannot be rejected.

The first factor could be described as the assault and murder criminality factor.
The second factor is strongly positively related to larceny, burglary, and rape. The
third factor is related mainly to auto theft, robbery, and burglary.

In order to describe the differences between different states, we have to estimate
the values of the factor scores for individual observations. The idea of the commonly
used regression method is based on the joint distribution of .X ��/ and F. The joint
covariance matrix of .X � �/ and F is:

Var

�

X � �
F

�

D
�QQ> C � Q

Q> Ik

�

D
�

˙ Q
Q> Ik

�

: (12.3)

In practice, we replace the unknown Q, ˙ and � by corresponding estimators,
leading to the estimated individual factor scores:

Ofi D OQ>S�1.xi � x/:

The same rule can be followed when using R instead of S. Then (12.3) remains
valid when standardized variables, i.e., Z D D�1=2

˙ .X ��/, are considered if D˙ D

Table 12.3 Estimated factor loadings after varimax rotation, communalities, and specific vari-
ances, MLM, U.S. crime data set. SMSfactuscrime

Estimated factor Specific
Loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Murder 0.88 0.01 0.06 0.78 0.22

2 Rape 0.56 0.53 0.31 0.69 0.31

3 Robbery 0.37 0.24 0.65 0.61 0.39

4 Assault 0.90 0.21 0.26 0.93 0.07

5 Burglary 0.26 0.67 0.57 0.84 0.16

6 Larceny 0.05 0.91 0.31 0.93 0.07

7 Autotheft 0.06 0.33 0.80 0.76 0.24

http://www.quantlet.de/codes/sms/SMSfactuscrime.html
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Fig. 12.5 Factor loadings for the U.S. crime data set after varimax rotation.
SMSfactuscrime

diag.�11; : : : ; �pp/. In this case the factors are given by

Ofi D OQ>R�1.zi/;

where zi D D�1=2
S .xi � x/, OQ is the loading obtained with the matrix R, and DS D

diag.s11; : : : ; spp/.
The factor scores corresponding to the factor loadings given in Table 12.3 are

plotted in Fig. 12.6. The estimated factor scores for the first factor, murder and
assault, seem to be largest in North Carolina. The second factor suggests that
larceny is common mainly in Arizona and California. The third factor, auto theft and
robbery, reaches the highest estimated factor scores in New York and Massachusetts.

http://www.quantlet.de/codes/sms/SMSfactuscrime.html
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Fig. 12.6 Factor scores for the U.S. crime data set estimated by the regression method. Northeast
(squares), Midwest (circles), South (triangles) and West (crosses). SMSfactuscrime

Exercise 12.7 Estimate the factor scores for the U.S. health data set analyzed in
Exercise 12.5 and compare the estimated factor scores to the scores obtained for
the U.S. crime data set in Exercise 12.6.

The factor scores for the U.S. health data set, corresponding to the factor loadings
obtained in Exercise 12.5, are plotted in Fig. 12.7.

The first factor, corresponding to diabetes, cancer, and cardiovascular problems,
leads to higher factor scores in Rhode Island. On the other side, these causes of
death are less common mainly in Alaska, Wyoming, Colorado, and Utah.

The second health factor, positively related to pneumonia flu, has highest
estimated values in South Dakota and smallest values in Alaska. The third health
factor, strongly positively related to liver, has high values in Florida, California, and
New York and small values in Hawaii and Mississippi. Looking at the geographical
codes, it is interesting to note that Florida seems to be a regional outlier from the

http://www.quantlet.de/codes/sms/SMSfactuscrime.html
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Fig. 12.7 Factor scores for the U.S. health data set estimated by the regression method. Northeast
(squares), Midwest (circles), South (triangles) and West (crosses). SMSfactushealth

point of view of the third factor. The most healthy U.S. states are Alaska, Hawaii,
and Utah.

Both for crime and health factors scores, we obtain similar factor scores for states
coming from the same region, see Figs. 12.6 and 12.7. However, apart from the
similarity of estimated factor scores for geographically close U.S. states, there does
not seem to be any other relation between the health and crime factors.

The factor analysis is not designed to investigate the similarities between two sets
of variables. Such comparisons ought to be carried out by the method of canonical
correlations described in Chap. 16.

Exercise 12.8 Analyze the vocabulary data given in Appendix A.20.

http://www.quantlet.de/codes/sms/SMSfactushealth.html
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The vocabulary data set contains test scores of 64 pupils from the eighth through
eleventh grade levels. For each pupil we have one test score per grade which leads to
a four-dimensional data set. Recalling the considerations presented in Exercises 12.1
and 12.2, we see that in this exercise we can estimate only one factor.

Performing the LR test (12.2) of the hypothesis H0 W k D 1, we obtain the value
of the LR test statistic 1:57, which is smaller than the corresponding critical value
�20:95I2 D 5:9915 (p-value 0:457). Hence, one factor seems to be appropriate for the
factor analysis of this four-dimensional data set.

The results obtained by maximum likelihood method are summarized in
Table 12.4. The rotation on the one-dimensional factor loadings would not have
any meaning. The resulting factor can be interpreted as an overall vocabulary score
strongly positively related to the test score in all four grades.

The estimated one-dimensional factor scores are plotted in Fig. 12.8 by means of
a dot-plot. The position of each observation on the horizontal axis is given by the
estimated factor score. The values on the vertical axis are randomly chosen so that
the plotted numbers are readable. The best values were achieved in observations 36
and 38, whereas the 5th observation seems to be extremely bad.

Exercise 12.9 Analyze the athletic records data set in Appendix A.1. Can you
recognize any patterns if you sort the countries according to the estimates of the
factor scores?

The athletic records data set provides data on athletic records in 100 m up to a
marathon for 55 countries.

Performing the estimation of the factor loadings by the maximum likelihood
method allows us to test the hypothesis H0 W k D 3 by means of the likelihood
ratio test statistic (12.2). In this exercise, we obtain the test statistic 7:66 which is
smaller than the critical value �20:95I7 D 14:07. The p-value of the test is 0:363. The
hypothesis that 3 factors are enough to describe the athletic records data set thus
cannot be rejected.

The estimated factor loadings obtained by maximum likelihood method and
varimax rotation are given in Table 12.5 and plotted in Fig. 12.9. The communalities
and specific variances show that three factors explain very well all of the original
variables up to the record in 200 m.

Table 12.4 Estimated factor
loadings, communalities, and
specific variances, MLM,
vocabulary data set.

SMSfactvocab

Estimated factor Specific
Loadings Communalities variances

Oq1 Oh2j O jj D 1� Oh2j
1 Grade 8 0.93 0.86 0.14

2 Grade 9 0.86 0.74 0.26

3 Grade 10 0.93 0.86 0.14

4 Grade 11 0.86 0.74 0.26

http://www.quantlet.de/codes/sms/SMSfactvocab.html
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Fig. 12.8 Dot-plot of the one-dimensional factor scores for the vocabulary data set estimated by
the regression method. SMSfactvocab

Table 12.5 Estimated factor loadings after varimax rotation, communalities, and specific vari-
ances, MLM, athletic records data set. SMSfacthletic

Estimated factor Specific
Loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 100 m 0.27 0.71 0.65 1.00 0.00

2 200 m 0.14 0.12 0.55 0.34 0.66

3 400 m 0.54 0.69 0.32 0.87 0.13

4 800 m 0.69 0.63 0.19 0.91 0.09

5 1.5 km 0.80 0.52 0.18 0.94 0.06

6 5 km 0.90 0.32 0.24 0.96 0.04

7 10 km 0.90 0.31 0.26 0.98 0.02

8 Marathon 0.91 0.21 0.20 0.92 0.08

http://www.quantlet.de/codes/sms/SMSfactvocab.html
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Fig. 12.9 Factor loadings for the athletic records data set after varimax rotation.
SMSfacthletic

The first factor is most strongly related to times achieved in longer distances,
the second factor is positively related mainly to the records in middle distances and
100 m, and the third factor has positive relationship to the records in 100 and 200 m.
It is important to keep in mind that high numbers here correspond to worse times
and, therefore, the athletic nations should exhibit smaller values of the factor scores.

The factor scores estimated by the regression method are plotted in Fig. 12.10.
Furthermore, Table 12.6 lists the best and the worst countries according to each
factor.
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Fig. 12.10 Factor scores for the athletic records data set estimated by the regression method.
SMSfacthletic

Keeping in mind the interpretation of the factors, we can say that the best times on
long distances are on average achieved by Portugal, New Zealand, Ireland, Norway,
and Kenya. On 100 and 400–1,500m, the best countries are Dominican Republic,
USA, Bermuda, Great Britain, and Thailand. The estimated factor scores Of3 suggest
that West Samoa, Italy, Columbia, Singapore, and USSR possess the best sprinters.

It is also interesting to notice that some of the countries which have some very
good factor scores may have, at the same time, very bad some other factor scores.
See, for example, Dominican Republic, West Samoa, The Netherlands, Thailand, or
Kenya.

http://www.quantlet.de/codes/sms/SMSfacthletic.html
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Table 12.6 Countries sorted
according to the factor scores
estimated for the athletic
records data set.

SMSfacthletic

Rank 1 2 3

1 Portugal Dom Rep W Samoa

2 NZ USA Italy

3 Ireland Bermuda Columbia

4 Norway GB Singapore

5 Kenya Thailand USSR

6 The Netherlands FRG Dom Rep

7 Finland Malaysia USA
:
:
:

:
:
:

:
:
:

:
:
:

49 Bermuda Columbia India

50 Malaysia P Korea NZ

51 Cook Is W Samoa Kenya

52 Singapore Png The Netherlands

53 Dom Rep Guatemala Philippines

54 Thailand Costa Rica Mauritius

55 W Samoa Cook Is Cook Is

http://www.quantlet.de/codes/sms/SMSfacthletic.html


Chapter 13
Cluster Analysis

From a drop of water, a logician could infer the possibility of an Atlantic or a Niagara
without having seen or heard of one or the other. So all life is a great chain, the nature of
which is known whenever we are shown a single link of it.
Sherlock Holmes in “Study in Scarlet”

When considering groups of objects in a multivariate data set, two situations can
arise. Given a data set containing measurements on individuals, in some cases we
want to see if some natural groups or classes of individuals exist, and in other cases,
we want to classify the individuals according to a set of existing groups. Cluster
analysis develops tools and methods concerning the former case, that is, given a
data matrix containing multivariate measurements on a large number of individuals
(or objects), the objective is to build subgroups or clusters of individuals. This
is done by grouping individuals that are “similar” according to some appropriate
criterion.

Cluster analysis is applied in many fields, including the natural sciences, the
medical sciences, economics, and marketing. In marketing, for instance, it is useful
to build and describe the different segments of a market from a survey of potential
consumers. An insurance company, on the other hand, might be interested in the
distinction among classes of potential customers so that it can derive optimal prices
for its services. Other examples are provided in this chapter.

In this chapter we will concentrate on the so-called agglomerative hierarchical
algorithms. The clustering algorithms start by calculating the distances between all
pairs of observations, followed by stepwise agglomeration of close observations into
groups.

Agglomerative Algorithm

1. Compute the distance matrix D D .dij/i;jD1;:::;n.
2. Find two observations with the smallest distance and put them into one cluster.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_13
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3. Compute the distance matrix between the n � 1 clusters.
4. Find two clusters with the smallest intercluster distance and join them.
5. Repeat step 4 until all observations are combined in one cluster.

The properties of the clustering algorithm are driven mainly by the choice of
distance.

Intercluster Distance

Assume that two observations or clusters, P and Q, are combined in a cluster denoted
by P[Q. Let d.P;Q/ denote the distance between clusters P and Q and nP and nQ the
number of observations belonging to clusters P and Q, respectively. Some common
methods for defining the distance between the cluster P [ Q and some other cluster,
say R, are:

Single linkage: d.P [ Q;R/ D minfd.P;R/; d.Q;R/g.
Complete linkage: d.P [ Q;R/ D maxfd.P;R/; d.Q;R/g.
Average linkage: d.P [ Q;R/ D fd.P;R/C d.Q;R/g=2.
Average linkage (weighted): d.P [ Q;R/ D fnPd.P;R/C nQd.Q;R/g=.nP C nQ/:

Median: d2.P [ Q;R/ D fd2.P;R/C d2.Q;R/g=2� d2.P;Q/=4.
Centroid: d2.P [ Q;R/ is defined as the squared distance between R and the

weighted (coordinatewise) average of P and Q; see Exercise 13.1.
Ward method: the heterogeneity of group R is measured by the inertia IR D
PnR

iD1 d2.xi; NxR/ (Ward, 1963). In each step, we join the groups P and Q that
give the smallest increase, �.P;Q/, of the overall inertia; see Exercises 13.2
and 13.3.

Dendrogram

The successive joining of observations to the clusters is finally plotted in the so-
called dendrogram. The construction of the dendrogram is explained in detail in
Exercise 13.4.

Exercise 13.1 Prove that the centroid distance d2.R;P [ Q/, defined as the
(squared) distance between R D .r1; : : : ; rp/

> and the weighted average
fnP.p1; : : : ; pp/

> C nQ.q1; : : : ; qp/
>g=.nP C nQ/ of P and Q, can be calculated as

nP

nP C nQ
d2.R;P/C nQ

nP C nQ
d2.R;Q/� nPnQ

.nP C nQ/2
d2.P;Q/:
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Let us calculate the Euclidean distance between the center .r1; : : : ; rp/
> of the

cluster R and the weighted “center of gravity” of clusters P and Q:

d2.P [ Q;R/

D
p
X

iD1

�

ri � pinP C qinQ

nQ C nP

� 2

D
p
X

iD1

"

r2i � 2ri
pinP C qinQ

nQ C nP
C
�

pinP C qinQ

nQ C nP

� 2
#

D
p
X

iD1

�

nP

nP C nQ
.ri � pi/

2 C nQ

nP C nQ
.ri � qi/

2 � nPnQ

.nP C nQ/2
.qi � pi/

2

�

D nP

nP C nQ
d2.R;P/C nQ

nP C nQ
d2.R;Q/� nPnQ

.nP C nQ/2
d2.P;Q/:

Hence, the intercluster distance between R and P [ Q can be calculated from
the distance between R, P, and Q. This property greatly simplifies the software
implementation of the clustering algorithm since all calculations can be carried out
using only the distance matrix between the n observations.

Exercise 13.2 Derive the formula for the increase of the inertia �.P;Q/ in the
Ward method.

In the Ward method, the heterogeneity of group R is measured by the inertia
defined as:

IR D
nR
X

iD1
d2.xi; NxR/;

where NxR is the arithmetic average and nR the number of observations within group
R. If the usual Euclidean distance is used, then IR represents the sum of the variances
of the p components of xi inside group R, see Exercise 13.3.

The Ward algorithm joins the groups P and Q that give the smallest increase,
�.P;Q/, of the inertia. The common inertia of the new group P[Q can be written as:

IP[Q D
nPCnQ
X

iD1
d2.xi � NxP[Q/ D

nPCnQ
X

iD1

p
X

jD1
.xij � NxP[Q;j/

2

D
p
X

jD1

(

nP
X

iD1
.xP;ij � NxP[Q;j/

2 C
nQ
X

iD1
.xQ;ij � NxP[Q;j/

2

)
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D
p
X

jD1

(

nP
X

iD1
.xP;ij � NxP;j/

2 C nP.NxP;j � NxP[Q;j/
2

C
nQ
X

iD1
.xQ;ij � NxQ;j/

2 C nQ.NxQ;j � NxP[Q;j/
2

)

D IP C IQ C
p
X

jD1

˚

nP.NxP;j � NxP[Q;j/
2 C nQ.NxQ;j � NxP[Q;j/

2



Hence, the inertia of P [ Q can be split into the sum of IP and IQ and a remainder
term �.P;Q/ for which we have:

�.P;Q/ D
p
X

jD1

˚

nP.NxP;j � NxP[Q;j/
2 C nQ.NxQ;j � NxP[Q;j/

2



D
p
X

jD1

(

nP

�

nQNxP;j � nQNxQ;j

nP C nQ

�2

C nQ

�

nP NxP;j � nP NxQ;j

nP C nQ

�2
)

D nPnQ

nP C nQ

p
X

jD1

�NxP;j � NxQ;j
	2 D nPnQ

nP C nQ
d2.P;Q/:

The change of inertia �.P;Q/ resulting from the joining of the groups P and Q
can be considered as a distance of the clusters P and Q. In order to implement the
Ward method numerically, we have to derive a formula for the intercluster distance
between cluster R and the newly created cluster P [ Q.

Applying the result of Exercise 13.1, we can write:

�.R;P [ Q/ D nR.nP C nQ/

nR C nP C nQ
d2 .R;P [ Q/

D nR.nP C nQ/

nR C nP C nQ

�

nP

nP C nQ
d2.R;P/C nQ

nP C nQ
d2.R;Q/

� nPnQ

.nP C nQ/2
d2.P;Q/

�

D 1

nR C nP C nQ

�

nRnP d2.R;P/C nRnQ d2.R;Q/

� nRnPnQ

nP C nQ
d2.P;Q/

�
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D nR C nP

nR C nP C nQ
�.R;P/C nR C nQ

nR C nP C nQ
�.R;Q/

� nR

nR C nP C nQ
�.P;Q/:

The ability to express �.R;P [ Q/ using the distances �.R;P/, �.R;Q/, and
�.P;Q/ greatly simplifies the computer implementation of the Ward algorithm.

Exercise 13.3 Prove that in the Ward method, the inertia IR D nR tr.SR/, where SR

denotes the empirical covariance matrix of the observations contained in group R.

The inertia is defined as:

IR D
nR
X

iD1
d2.xi; NxR/:

Assuming that d.xi; NxR/ is the usual Euclidean distance between the ith observation
xi D .xi1; : : : ; xip/

> and the sample mean within group R, NxR D .xR1; : : : ; xRp/
>, we

have:

IR D
nR
X

iD1
d2.xi; NxR/ D

nR
X

iD1

p
X

jD1
.xij � NxRj/

2

D nR

p
X

jD1

1

nR

nR
X

iD1
.xij � NxRj/

2 D nR

p
X

jD1
sXjXj D nR tr.SR/:

Exercise 13.4 Explain the differences between various proximity measures by
means of the 8 points example given in Härdle and Simar (2015, Example 13.5).

The eight points from Example 13.5 in Härdle and Simar (2015) are plotted
in Fig. 13.1. Selected distances between some of the points are marked by lines.
Different proximity measures assign different values to these interpoint distances. It
is clear that the choice of the proximity measure can influence the behavior of the
clustering algorithm.

In Fig. 13.2, we plot the dendrograms obtained for the eight points example using
two different simple distances. In both dendrograms, we can see how the n points
were consecutively joined into only one cluster. The intercluster distances are given
on the vertical axis. In both plots in Fig. 13.2 we can see that in the first step of
the algorithm, the points 3 and 5 were combined. Both the Euclidean and squared
Euclidean distance between these points are equal to 1, see also Fig. 13.1.

The distance in the right plot of Fig. 13.2 is equal to the square root of the
distance in the left plot. Thanks to the single linkage algorithm which defines the
intercluster distance as the distance between closest points, we obtain exactly the
same clustering in both plots. The only difference is the change of scale on the
vertical axis.
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Fig. 13.2 Single linkage using squared Euclidean and Euclidean distance. SMSclus8pd

The last step in cluster analysis is the choice of the number of clusters. For
example, three clusters in the 8 points example can be obtained by cutting the
dendrogram given in Fig. 13.2 at a specified level. In this case, we would obtain
clusters f1; 2g, f3; 4; 5g, and f6; 7; 8g.

Exercise 13.5 Repeat the 8 point example (Exercise 13.4) using the complete
linkage and the Ward algorithm. Explain the difference to single linkage.

http://www.quantlet.de/codes/sms/SMSclus8pd.html
http://www.quantlet.de/codes/sms/SMSclus8pd.html
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Fig. 13.3 Ward algorithm. SMSclus8p
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Fig. 13.4 Complete linkage. SMSclus8p

The dendrograms obtained by complete linkage and Ward method are plotted
on the right-hand side in Figs. 13.3 and 13.4. The left plots contain the original
points with lines describing the successive joining of the clusters. The lines plotted
in Fig. 13.4 demonstrate how the intercluster distances are calculated in the complete
linkage. For example, the line connecting points 5 and 8 gives the distance between
the clusters consisting of points {3,4,5} and {6,7,8}. In the single linkage method
used in Exercise 13.4, the distance between these clusters would be given by the
distance of the closest points, i.e., by the distance of points 3 and 7.

Comparing the dendrograms in Figs. 13.2 and 13.4, we see that, in this example,
the three clustering algorithms arrive to the same result. The only difference lies in
the scale on the vertical axis. Both the Ward algorithm in Fig. 13.3 and the complete

http://www.quantlet.de/codes/sms/SMSclus8p.html
http://www.quantlet.de/codes/sms/SMSclus8p.html
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linkage in Fig. 13.4 strongly suggest that the choice of three clusters might be
appropriate in this case. The intercluster distances between the same three clusters
are relatively smaller if single linkage is used.

In practice, the Ward algorithm usually provides the best interpretable results
since it tends to create “homogeneous” clusters. On the contrary, the single linkage
algorithm often finds chains of observations which do not have any other clear
structure.

Exercise 13.6 Perform a cluster analysis for 20 randomly selected Swiss bank
notes in Appendix A.2.

Recall that the data set contains 200 six-dimensional observations. The first 100
observations correspond to genuine and the other half to counterfeit bank notes.
Here, we use only a subsample of size 20 so that the resulting dendrogram in
Fig. 13.5 is still readable. On the left plot in Fig. 13.5 we plot the first two principal
components for the data set. From Chap. 11 we know that this is, in some sense, the
best two-dimensional representation of the data set. One can observe that the plot
consists of two point clouds: on the left-hand side, we have the genuine bank notes
with numbers smaller than 100 and, on the right-hand side, we observe point cloud
of the counterfeit bank notes. The observation 167 is a bit separated from both these
groups.

The dendrogram, resulting from the Ward algorithm using the squared Euclidean
distance, is plotted on the right-hand side of Fig. 13.5. If the dendrogram is cut to
two clusters, we obtain exactly the genuine and counterfeit bank notes. The outlying
observation 167 was correctly put into the counterfeit cluster but the dendrogram
shows that the distance from the other counterfeit bank notes is largest from all
(counterfeit) observations.
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Fig. 13.5 Cluster analysis of 20 Swiss bank notes using Ward algorithm and squared Euclidean
distance. SMSclusbank

http://www.quantlet.de/codes/sms/SMSclusbank.html
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The dendrograms obtained by the single and complete linkage clustering algo-
rithms are given in Exercise 13.7.

Exercise 13.7 Repeat the cluster analysis of the bank notes example in Exer-
cise 13.6 with single and complete linkage clustering algorithms.

The dendrograms for both the single and complete linkage are plotted in
Figs. 13.6 and 13.7. The complete linkage plotted in Fig. 13.6 provides better result
since it correctly puts the observation 167 into the counterfeit group. However, com-
paring the complete linkage and the dendrogram obtained by the Ward algorithm in
Fig. 13.5, the Ward distance seems to be more appropriate in this case.

The single linkage dendrogram in Fig. 13.7 shows the chain building tendency of
this method. The observations are usually added one by one and the result of this
method often consists of two clusters: one containing almost all observations and
the other one or two outliers. This is exactly what happened in Fig. 13.7, where the
outlying observation 167 was put into a cluster by itself.

Exercise 13.8 Repeat the cluster analysis of the bank notes example in Exer-
cise 13.6 using the L1 distance.
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Fig. 13.6 Cluster analysis of 20 Swiss bank notes using squared Euclidean distance with complete
linkage. SMSclusbank2
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Fig. 13.7 Cluster analysis of 20 Swiss bank notes using squared Euclidean distance with single
linkage. SMSclusbank2

The Euclidean distance is just a special case of the Lr-norms, r � 1,

dij D jjxi � xjjjr D
(

p
X

kD1
jxik � xjkjr

) 1=r

; (13.1)

where xik denotes the value of the kth variable measured on the ith individual.
Apart of the usual Euclidean distance (L2-norm), the L1-norm is the most

popular member of this family. The L1 distance has very simple interpretation since
from (13.1) it is easy to see that the L1 distance is just the sum of the absolute values
of the differences observed in each variable. In non-mathematical terms, this may
be described as a walking distance between two points lying on a perpendicular grid
of streets. For this reason, the L1 distance is often called the Manhattan distance.
The L1 metric is useful whenever we want to assign less weight to the outlying
observations.

In the previous exercises, it appeared that the Ward method leads to nice and
interpretable results. Hence, we apply the Ward method with L1 distance to obtain
the dendrogram plotted in Fig. 13.8. The same analysis with the squared Euclidean
distance was carried out in Exercise 13.6. Instead of the squared Euclidean distance,
we have now selected the L1 distance which should assign less weight to outlying
observations.

http://www.quantlet.de/codes/sms/SMSclusbank2.html
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The overall shape of the dendrogram plotted in Fig. 13.8 looks very similar to
the dendrogram given in Fig. 13.5. Again, the bank notes are clearly split into two
groups.

Exercise 13.9 Analyze the U.S. companies data set in Appendix A.17 using the
Ward algorithm and L1 distance.

The six dimensional data set contains the information on the assets, sales, market
value, profits, cash flow, and number of employees of 79 U.S. companies. The
companies are classified according to their type: Communication, Energy, Finance,
Hi-Tech, Manufacturing, Medical, Other, Retail, and Transportation.

In Fig. 13.9, we plot the first two principal components for a rescaled version of
the data set. The rescaling is in this case necessary since otherwise we observe most
of the points concentrated in the lower left corner with the two largest companies
(IBM and General Electric) dominating the plot. The transformation was used only
for plotting in Figs. 13.9 and 13.11 and the cluster analysis was performed using the
L1 distances calculated from the original data set.

The transformation which is used on all columns of the data set for plotting is

f .x/ D logŒx � min.x/C fmax.x/ � min.x/g=200�:

In this case, the choice of the transformation is quite arbitrary. The only purpose is
to plot the observations on a scale that allows us to distinguish different companies
in Figs. 13.9 and 13.11.

http://www.quantlet.de/codes/sms/SMSclusbank3.html
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Fig. 13.9 Plot of the first two principal components for the rescaled U.S. companies data set.
SMScluscomp

Short inspection of the data set given in Appendix A.17 reveals that the units
of measurements for different variables are not comparable. For example, it would
not make much sense to assume that a unit change in the number of employees has
the same significance as a unit change in sales or market value. Hence, the cluster
analysis is performed on the standardized data set where all variables were divided
by their estimated standard deviation.

In Fig. 13.10, we display the dendrogram obtained by running the Ward algorithm
on the L1 distances calculated from the standardized U.S. companies data set. From
the graphics, it looks reasonable to split the data set into 3 or 5 clusters. In Fig. 13.10,
we give also the first two letter of the type of the company. It is interesting that
in Fig. 13.10, the same types of company are often close to each other. See, for
example, the large groups of financial or energy companies. However, if we choose
lower number of cluster, these groups are mixed with other types of companies.

The resulting five clusters are plotted in Fig. 13.11 where different plotting
symbols were used for each cluster. The type of each company is also specified
by the first two letters. Two hi-tech companies form a cluster by themselves: IBM
and General Electric. In the upper part of Fig. 13.11, we can observe a large group

http://www.quantlet.de/codes/sms/SMScluscomp.html
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Fig. 13.11 Plot of the first two principal components for the rescaled U.S. companies data set with
five clusters denoted by different symbols. SMScluscomp

of retail companies. Unfortunately, the Ward algorithm puts this group into two
different clusters. The same could be said for the group of financial companies
visible in the lower left part of Fig. 13.11.

The cluster analysis could be summarized in the following way: the clusters
seem to split the data set mainly in the direction of the first principal component
which seems to be related mainly to the size of the company. Hence, the clustering
algorithm does not recover the type of company which seems to be better explained
by the (less important) second principal component.

An improvement in clustering might be achieved also by transforming the data
set before calculating the distance matrix used in the clustering algorithm. One
possible transformation might be the logarithmic transformation used for plotting
in Figs. 13.9 and 13.11 or possibly another transformation correcting for the effect
of the size of the company.

http://www.quantlet.de/codes/sms/SMScluscomp.html
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Exercise 13.10 Analyze the U.S. crime data set in Appendix A.18 with the Ward
algorithm. Use the �2-metric measuring differences between rows of a contingency
table and compare the results to the usual L2-norm on standardized variables.

The U.S. crime data set contains the reported number of 7 types of crimes in the
50 USA states. The entries in this data set can be interpreted as counts and the data
set as a .50 � 7/ contingency table.

In a given contingency table, the ith row can be interpreted as the conditional
frequency distribution xik

xi�
, k D 1; : : : ; p, where xi� D Pp

jD1 xij. The distance

between the ith and jth row can be defined as a �2 distance between the respective
frequency distributions:

d2.i; j/ D
p
X

kD1

1
�

x�k
x��

�

�

xik

xi�
� xjk

xj�

�2

;

see, e.g., Härdle and Simar (2015, Sect. 13.2).

�2 Distance

The �2 distances between the rows (observations) in the U.S. crime data set are used
to construct the distance matrix. The dendrogram plotted in Fig. 13.12 was obtained
by the Ward method. Each observation displayed in the dendrogram in Fig. 13.12 is
marked by the abbreviation of the state and by the region number (1 D Northeast,
2 D Midwest, 3 D South, 4 D West).

The dendrogram suggests that it would be reasonable to split the data set into 4
clusters. Let us define cluster one as ME, NH, VT, CT, OH, IN, MN, NE, KS, DE,
VA, CO, AZ, NV, WA, OR, CA, AK, and HI. Cluster 2 consists of MA, RI, NY, NJ,
PA, IL, MI, MO, and MD, cluster 3 contains WI, IA, ND, SD, MT, ID, WY, and
UT. Cluster 4 is MV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX, NM.
In Table 13.1, we give the average relative frequencies within the four clusters. The
information given in Table 13.1 allows us to describe the differences between the
clusters. It seems that larceny is very “popular” mainly in cluster 3 consisting only
of West and Midwest states (region code 4). Auto theft is relatively more spread
out in cluster 2 consisting mostly from Northeast and Midwest states. Cluster 2 also
contains more robberies. Cluster 4, consisting mainly of southern states (region code
3), slightly overrepresents rape and burglaries.

Euclidean Distance

The results of the Ward algorithm performed on the Euclidean distances between
standardized observations are summarized in Fig. 13.13 and Table 13.2. Here, we
have chosen to consider four clusters.
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Fig. 13.12 Cluster analysis of U.S. crime data set using Ward algorithm and �2 distance.
SMScluscrimechi2

Table 13.1 The average relative frequencies for U.S. crimes within the 5 clusters obtained with
�2 distance. SMScluscrimechi2

Murder Rape Robbery Assault Burglary Larceny Auto theft

1 0.00 0.00 0.02 0.04 0.27 0.56 0.10

2 0.00 0.00 0.05 0.04 0.27 0.48 0.15

3 0.00 0.00 0.01 0.02 0.21 0.70 0.06

4 0.00 0.01 0.02 0.08 0.31 0.49 0.09

The first cluster contains the states: ME, NH, VT, PA, WI, IA, ND, SD, NE, MV,
MT, ID, and WY. The second cluster is MA, RI, CT, NJ, OH, IN, MN, KS, UT,
WA, OR, and HI. The third cluster consists of VA, NC, SC, GA, KY, TN, AL, MS,
AR, and OK. The fourth cluster contains NY, IL, MI, MO, DE, MD, FL, LA, TX,

http://www.quantlet.de/codes/sms/SMScluscrimechi2.html
http://www.quantlet.de/codes/sms/SMScluscrimechi2.html
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Table 13.2 The averages of the standardized U.S. crime data set within the 4 clusters obtained
with Euclidean distance. SMScluscrime

Murder Rape Robbery Assault Burglary Larceny Auto theft

1 �0.96 �0.91 �0.80 �1.03 �1.07 �0.70 �0.97

2 �0.72 �0.37 �0.06 �0.63 0.37 0.40 0.62

3 1.06 �0.14 �0.43 0.55 �0.40 �0.82 �0.66

4 0.70 1.18 1.03 1.03 0.91 0.83 0.78

CO, NM, AZ, NV, CA, and AK. From the regional point of view, it is interesting to
notice that the third cluster contains only southern states.
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Fig. 13.13 Cluster analysis of U.S. crime data set using Ward algorithm and Euclidean distance.
SMScluscrime

http://www.quantlet.de/codes/sms/SMScluscrime.html
http://www.quantlet.de/codes/sms/SMScluscrime.html


242 13 Cluster Analysis

Table 13.2 allows us to describe the differences between clusters. Cluster 1
contains the states with low criminality since the average of the standardized number
of all crimes is negative. On the other side, cluster 4 contains the states with high
criminality rate. Cluster 2 corresponds to states with a tendency towards burglary,
larceny, and auto theft. The southern cluster 3 has large rates of murder and assault.

Comparison

We have seen that each distance leads to another view at the data set. The �2

distance compares relative frequencies, whereas the Euclidean distance compares
the absolute values of the number of each crime. The choice of the method depends
in practice mainly on the point of view of the investigator.

Exercise 13.11 Perform the cluster analysis of the U.S. health data set in
Appendix A.19.

The description of the U.S. health data set is given in Appendix A.19. Basically,
it contains the number of deaths in 50 U.S. states classified according to 7 causes
of death. We are interested in the numbers of deaths and hence we have decided to
perform the analysis using Euclidean analysis on the original data set. The resulting
dendrogram is plotted in Fig. 13.14.

Cluster 1 contains ME, MA, RI, NY, NJ, PA, IA, MO, SD, NE, MV, FL, and AR.
Cluster 2 consists of VT, CT, OH, IN, IL, MI, WI, KS, DE, KY, TN, AL, MS, and
OK. Cluster 3 is NH, MN, ND, MD, VA, NC, SC, GA, LA, TX, MT, ID, AZ, NV,
WA, OR, and CA, and the last cluster 4 consists of WY, CO, NM, UT, AK, and HI.
Cluster 4 contains only western states (region code 4). The other three clusters are
regionally less homogeneous.

The differences between clusters are summarized in Table 13.3. It seems that
most of the differences are due to the number of deaths due to cancer and
cardiovascular problems, i.e., to the most common causes of deaths.
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Fig. 13.14 Cluster analysis of U.S. health data set using Ward algorithm and Euclidean distance.
SMSclushealth

Table 13.3 The averages of
the U.S. health data set within
the 4 clusters.

SMSclushealth

acc card canc pul pneu diab liv

1 39.56 484.70 210.73 29.35 23.87 16.95 11.78

2 42.48 432.56 189.33 26.41 20.69 16.29 9.99

3 45.55 365.65 168.25 26.16 20.54 13.52 10.48

4 55.37 225.58 111.68 21.37 17.13 10.58 9.38

In Fig. 13.15, we plot the first two principal components. The observations be-
longing to the four different clusters are plotted using different text size. Obviously,
the cluster separated the observations according to their position on the horizontal
axis of the plot, i.e., according to the value of the first principal component, see also
the principal component analysis in Exercise 11.9.

http://www.quantlet.de/codes/sms/SMSclushealth.html
http://www.quantlet.de/codes/sms/SMSclushealth.html
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Fig. 13.15 Plot of the first
two principal components of
the U.S. health data. The size
of the symbols is given by the
clustering using Ward
algorithm and Euclidean
distance.
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Chapter 14
Discriminant Analysis

. . . if a gentleman walks into my rooms smelling of iodoform, with a black mark of nitrate
of silver upon his right fore-finger, and a bulge on the side of his top-hat to show where he
has secreted his stethoscope, I must be dull indeed, if I do not pronounce him to be an active
member of the medical profession.
Sherlock Holmes in “A Scandal in Bohemia”

Discriminant analysis is used in situations where the clusters are known a
priori. The aim of discriminant analysis is to classify an observation, or several
observations, into these known groups. For instance, in credit scoring, a bank knows
from past experience that there are good customers (who repay their loan without
any problems) and bad customers (who have had difficulties repaying their loans).
When a new customer asks for a loan, the bank has to decide whether or not to
give the loan. The information of the bank is given in two data sets: multivariate
observations on the two categories of customers (including age, salary, marital
status, the amount of the loan, and the like).

The discrimination rule has to classify the customer into one of the two existing
groups, and the discriminant analysis should evaluate the risk of a possible misclas-
sification. Many other examples are described herein. We present ML discrimination
and Fisher’s linear discrimination function.

In the mathematical formulation of the problem, we try to allocate an observation
to one of the populations ˘j; j D 1; 2; : : : ; J. A discriminant rule is a separation of
the sample space (in general Rp) into disjoint sets Rj such that if a new observation
falls into the region Rj, it is identified as a member of population˘j.

The quality of a discriminant rule can be judged on the basis of the error of
misclassification.

If the probability density functions in the populations ˘j are known, we may
easily derive a discriminant rule based on the maximum likelihood approach.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_14
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Maximum Likelihood Discriminant Rule

Let us assume that each population ˘j, j D 1; : : : ; J, can be described by a
probability density function (pdf) fj.x/.

The maximum likelihood discriminant rule (ML rule) allocates the new
observation x to the population ˘k, maximizing the likelihood Lk.x/ D fk.x/ D
maxiD1;:::;J fi.x/.

Formally, the sets Rj, j D 1; : : : ; J, given by the ML discriminant rule are:

Rj D fx W fj.x/ � fi.x/ for i D 1; : : : ; Jg:

In practice, the sets Rj are constructed from estimates of the unknown densities. If
the densities are assumed to have a known shape, i.e., normal distribution, it suffices
to estimate the unknown parameters; see Exercise 14.1.

Bayes Discriminant Rule

The quality of the ML discriminant rule may be improved if some prior information
about the probability of the populations is known. Let �j denote the prior probability
of class j. Note that

PJ
jD1 �j D 1.

The Bayes discriminant rule allocates x to the population˘k that gives the largest
value of �ifi.x/, �kfk.x/ D maxiD1;:::;J �ifi.x/. The Bayes discriminant rule can be
formally defined by:

Rj D fx W �jfj.x/ � �ifi.x/ for i D 1; : : : ; Jg:

The Bayes rule is identical to the ML discriminant rule if �j D 1=J.

Fisher’s Linear Discrimination Function

The classical Fisher’s linear discriminant rule is based on the maximization of the
ratio of the between to the within variance of a projection a>x.

Suppose we have samples Xj, j D 1; : : : ; J, from J populations. Let Y D Xa
and Yj D Xja denote linear combinations of observations. The within-group sum of
squares is given by

J
X

jD1
Y>

j HjYj D
J
X

jD1
a>X>

j HjXja D a>Wa; (14.1)
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where Hj denotes the .nj � nj/ centering matrix. The between-group sum of
squares is

J
X

jD1
nj.Nyj � Ny/2 D

J
X

jD1
njfa>.Nxj � Nx/g2 D a>Ba; (14.2)

where Nyj and Nxj denote the means of Yj and Xj and Ny and Nx denote the sample means
of Y and X .

Fisher noticed that the vector a that maximizes a>Ba=a>Wa is the eigenvector
of W�1B that corresponds to the largest eigenvalue.

Finally, observation x is classified into group j, which is closest to the projected
a>x,

Rj D fx W ja>.x � Nxj/j � ja>.x � Nxi/j for i D 1; : : : ; Jg:

Exercise 14.1 Derive the ML discriminant rule if ˘j � Np.�j; ˙/, j D 1; : : : ; J.
Discuss the special case J D 2.

Let us assume that the variance matrix ˙ is positive definite. The likelihood of
observation x in each of the populations˘j, j D 1; : : : ; J is

Lj.x/ D fj.x/ D j2�˙ j�1=2 exp

�

�1
2
.x � �j/

>˙�1.x � �j/

�

:

According to the ML rule, we allocate x to the population ˘j with the largest like-
lihood. Omitting the constant j2�˙ j�1=2 and taking logarithms, the maximization
problem may be equivalently solved by minimizing

ı2.x; �j/ D .x � �j/
>˙�1.x � �j/

D f˙�1=2.x � �j/g>˙�1=2.x � �j/:

Clearly, ı2.x; �j/ is the square of the Mahalanobis distance between x and �j, see
also Exercise 11.7 for the discussion of the Mahalanobis transformation.

Hence, in case of normal distribution with common covariance matrix, the ML
rule allocates x to the closest group in the Mahalanobis sense.

For J D 2, the observation x is allocated to ˘1 if

.x � �1/
>˙�1.x � �1/ � .x � �2/

>˙�1.x � �2/:

Rearranging terms leads to

0 � �2�>
1 ˙

�1x C 2�>
2 ˙

�1x C �>
1 ˙

�1�1 � �>
2 ˙

�1�2
0 � 2.�2 � �1/

>˙�1x C .�1 � �2/>˙�1.�1 C �2/
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0 � .�1 � �2/
>˙�1fx � 1

2
.�1 C �2/g

0 � ˛>.x � �/;

where ˛ D ˙�1.�1 � �2/ and � D 1
2
.�1 C �2/.

It follows that in case of two multinormal populations, the discriminant rule can
be written as:

R1 D fx W ˛>.x � �/ � 0g:

Exercise 14.2 Apply the rule from Exercise 14.1 for J D 2 and p D 1 and modify
it for unequal variances.

For two univariate normally distributed populations ˘1 W N.�1; �/ and ˘2 W
N.�2; �/, the ML rule can be written as

R1 D
�

x W .�1 � �2/
�

x � �1 C �2

2

�

� 0

�

R1 D
�

x W sign.�1 � �2/

�

x � �1 C �2

2

�

� 0

�

R1 D
�

x W sign.�1 � �2/x � sign.�1 � �2/�1 C �2

2

�

:

Assuming that �1 < �2, we obtain

R1 D
�

x W x � �1 C �2

2

�

;

i.e., we classify x to R1 if it is closer to �1 than to �2.
Assuming that the two normal populations have different variances, ˘1 W

N.�1; �21 / and ˘2 W N.�2; �22 /, we allocate x to R1 if L1.x/ > L2.x/, where the
likelihood is:

Li.x/ D .2��2i /
�1=2 exp

(

�1
2

�

x � �i

�i

�2
)

:

L1.x/ � L2.x/ is equivalent to L1.x/=L2.x/ � 1 and we obtain

�2

�1
exp

(

�1
2

"
�

x � �1

�1

�2

�
�

x � �2

�2

�2
#)

� 1

log
�2

�1
� 1

2

"
�

x � �1

�1

�2

�
�

x � �2

�2

�2
#

� 0
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1

2

"
�

x � �1

�1

�2

�
�

x � �2

�2

�2
#

� log
�2

�1

x2
�

1

�21
� 1

�22

�

� 2x

�

�1

�21
� �2

�22

�

C
�

�21
�21

� �22
�22

�

� 2 log
�2

�1
:

If �1 D �2, most of the terms in the above formula disappear and the result simplifies
to the discriminant rule obtained in Exercise 14.1.

Exercise 14.3 Calculate the ML discrimination rule based on observations of a
one-dimensional variable with an exponential distribution.

The pdf of the exponential distribution Exp./ is:

f .x/ D  exp f�xg for x > 0:

Comparing the likelihoods for two populations˘1 W Exp.1/ and ˘2 W Exp.2/, we
allocate the observation x into population˘1 if

L1.x/ � L2.x/

L1.x/=L2.x/ � 1

1

2
exp f�x.1 � 2/g � 1

log
1

2
� x.1 � 2/ � 0

x.1 � 2/ � log
1

2
:

Assuming that 1 < 2, we obtain the discriminant rule:

R1 D
�

x W x � log1 � log2
1 � 2

�

:

The observation x is classified into population ˘1 if it is greater than the constant
.log1 � log2/=.1 � 2/.
Exercise 14.4 Calculate the ML discrimination rule based on observations of a
two-dimensional random vector, where the first component has an exponential
distribution and the other has an alternative distribution. What is the difference be-
tween the discrimination rule obtained in this exercise and the Bayes discrimination
rule?

Let us assume that the two populations, ˘1 W fExp.1/;Alt.p1/g> and ˘2 W
fExp.2/;Alt.p2/g>, are characterized by the exponential distribution with parame-
ter j and the alternative distribution with parameter pj, j D 1; 2. The corresponding
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likelihood can be written as:

Lj.x1; x2/ D j exp.�jx1/fpjx2 C .1 � pj/.1� x2/g:

Since x2 has the alternative distribution, it can have only two possible outcomes.
Assuming that x2 D 1, we allocate the observation .x1; x2/> to ˘1 if L1.x1; 1/ �

L2.x1; 1/, i.e.,

L1.x1; 1/=L2.x1; 1/ � 1

1p1
2p2

exp f�x1.1 � 2/g � 1

log
1p1
2p2

� x1.1 � 2/ � 0

x1.1 � 2/ � log
1p1
2p2

Similarly, if x2 D 0, we allocate the observation .x1; x2/> to ˘1 if

x1.1 � 2/ � log
1.1 � p1/

2.1 � p2/
:

Combining both cases and assuming that 1 < 2, the discriminant rule R1 can be
written as:

��

x1
x2

�

W x1 � 1fx2p1 C .1 � x2/.1 � p1/g � 2fx2p2 C .1� x2/.1 � p2/g
1 � 2

�

:

If the prior probabilities of ˘1 W Exp.1/ and ˘2 W Exp.2/ are �1 and �2 D
1 � �1, respectively, the Bayes rule can be derived by comparing �iLi.x/, i D 1; 2,
exactly as in Exercise 14.3:

R1 D
�

x W x � log�11 � log�22
1 � 2

�

:

Now, it is easy to see that the conditional discriminant rule obtained for the two-
dimensional random vector under the condition x2 D 1 is equivalent to the Bayes
discriminant rule for exponential distribution with �1 D p1=.p1 C p2/. Similarly,
the conditional discriminant rule if x2 D 0 is a Bayes discriminant rule with �1 D
.1 � p1/=.2� p1 � p2/.

Exercise 14.5 Apply the Bayes rule to the car data in Appendix A.4 in order
to discriminate between U.S., Japanese, and European cars. Consider only the
variable milage (miles per gallon) and take the relative frequencies as prior
probabilities.
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The three regions of origins in the data set are denoted by numbers 1, 2, and 3
standing for U.S., Japanese, and European cars, respectively. Based on the available
74 observations, we will construct a discriminant rule that would allow us to classify
a new (75th) car with unknown origin.

Let us start with the maximum likelihood discriminant rule. Usually, the ML
rule is based upon assumptions of normality. However, plots of the observed milage
suggest that the normality is violated. Hence, instead of mileage measured in miles
per gallon, we analyze fuel efficiency measured in liters per 100 km. The averages
in U.S., Japan, and Europe are: Nx1 D 12:5207, Nx2 D 9:4577, Nx3 D 10:7712. On
average, Japanese cars (group 2) are more fuel efficient than European and U.S. cars.

The ML discriminant rule is calculated according to the description given in
Exercise 14.1. In Fig. 14.1, we plot the three point clouds corresponding to the three
regions and, as vertical lines, we show also the points that separate the discriminant
rules R1, R2, and R3. The lowest point cloud (squares) in Fig. 14.1 contains U.S. cars,
the middle point (circles) cloud the Japanese, and the top point cloud (triangles) the
European cars. The correctly classified cars are denoted by empty symbols, whereas
the filled symbols denote misclassified cars. The counts are given in Table 14.1.

The apparent error rate (APER), defined as the percentage of misclassified
observations is .11C 8C 2 C 2 C 3 C 5/=79 D 41:89%. It seems that the rule is
not particularly good since we have less than 60% chance of correct classification.
Moreover, this estimate is based on the observations which were used to construct
the discriminant rule and it might be way too optimistic.

●

●

●

●●●●
● ●

●

●

Fig. 14.1 Discrimination of the three regions according to “liters per 100 km” with the ML
discriminant rule. SMSdisccar

Table 14.1 The true region
of origins and the region
suggested by the ML
discriminant rule based on
fuel efficiency

R1: U.S. R2: JPN R3: EUR

Group 1 (U.S. ) 33 11 8

Group 2 (Japanese) 2 7 2

Group 3 (European) 3 5 3

The number of correct classifications for each region is
given on the diagonal of the table

http://www.quantlet.de/codes/sms/SMSdisccar.html
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Let us now consider the Bayes rule which is based on the comparison of the
likelihoods weighted by the prior probabilities of the groups. More formally, we
allocate the new observation x to the population˘j maximizing

�jLj.x/ D �jfj.x/ D �jj2�˙ j�1=2 exp

�

�1
2
.x � �j/

>˙�1.x � �j/

�

;

where �j, j D 1; : : : ; J are the prior probabilities of the respective populations.
Similarly as in Exercise 14.1, this problem is equivalent to minimizing

ı2.x; �j; �j/ D .x � �j/
>˙�1.x � �j/� log�j

D f˙�1=2.x � �j/g>˙�1=2.x � �j/� log�j:

For J D 2, the observation x is allocated to ˘1 if

.x � �1/>˙�1.x � �1/� log�1 � .x � �2/
>˙�1.x � �2/� log�2:

Rearranging terms leads to

log�1 � log�2 � �2�>
1 ˙

�1x C 2�>
2 ˙

�1x C �>
1 ˙

�1�1 � �>
2 ˙

�1�2
log�1 � log�2 � 2.�2 � �1/>˙�1x C .�1 � �2/

>˙�1.�1 C �2/

log�2 � log�1 � .�1 � �2/
>˙�1fx � 1

2
.�1 C �2/g

log
�2

�1
� ˛>.x � �/;

where ˛ D ˙�1.�1 � �2/ and � D 1
2
.�1 C �2/. Hence, the Bayes discriminant

rule can be written as:

R1 D
�

x W ˛>.x � �/ � log
�2

�1

�

:

In our car data example, we use the relative frequencies observed in the data set,
�1 D 0:7027, �2 D 0:1486, �3 D 0:1486, as the prior probabilities.

The resulting discriminant rule is graphically displayed in Fig. 14.2. Notice
that with these weights, it is impossible to classify any new observation as a
European car.

The same results are given in Table 14.2. The APER is equal to 28:38%.
Obviously, the Bayes discriminant rule leads to better results since it gives large
weights to U.S. cars which constitute more than 60% of the entire data set.

Exercise 14.6 Derive simple expressions for matrices W and B and the Fisher
discriminant rule in the setup of the Swiss bank notes data set given in Appendix A.2.
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●
● ● ●

●
●

●
● ●

● ●

Fig. 14.2 Discrimination of the three regions according to “liters per 100 km” using the Bayes
rule. SMSdiscbaycar

Table 14.2 The true region
of origin and the region
suggested by the Bayes
discriminant rule based on
fuel efficiency

R1: U.S. R2: JPN R3: EUR

Group 1 (U.S.) 51 1 0

Group 2 (Japanese) 9 2 0

Group 3 (European) 10 1 0

The number of correct classifications for each region is
given on the diagonal of the table

The Swiss bank notes data set, X , contains six measurements taken on 100
genuine and 100 counterfeit bank notes. Let us denote the measurements taken
on genuine and counterfeit by Xg and Xf , respectively. The corresponding linear
combinations are Y D Xa, Yg D Xga, and Yf D Xf a.

The within-group sum of squares (14.1) satisfies the relation

Y>
f HfYf C Y>

g HgYg D a>Wa;

where Hf and Hg denote the appropriate centering matrices of dimensions nf D
ng D 100. Observe that

a>Wa D a>.X>
f HfXf C X>

g HgXf /a

and, hence, the matrix W can be written as:

W D X>
f HfXf C X>

g HgXg D HfX>
f HfXf C HgX>

g HgXg

D nfSf C ngSg D 100.Sf C Sg/;

where Sg and Sf denote the empirical covariances w.r.t. the genuine and counterfeit
bank notes.

http://www.quantlet.de/codes/sms/SMSdiscbaycar.html
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For the between-group sum of squares (14.2) we have

a>Ba D nf .Nyf � Ny/2 C ng.Nyg � Ny/2;

where Ny, Nyf , and Nyg denote respectively the sample means of Y , Yf , and Yg. It follows
that

a>Ba D a>fnf .Nxf � Nx/.Nxf � Nx/> C ng.Nxg � Nx/.Nxg � Nx/>ga;

where Nx, Nxf , and Nxg denote respectively the column vectors of sample means of X ,
Xf , and Xg. Hence, we obtain

B D nf .Nxf � Nx/.Nxf � Nx/> C ng.Nxg � Nx/.Nxg � Nx/>

D 100f.Nxf � Nx/.Nxf � Nx/> C .Nxg � Nx/.Nxg � Nx/>g

D 100

(
�

Nxf � Nxf C Nxg

2

��

Nxf � Nxf C Nxg

2

�>

C
�

Nxg � Nxf C Nxg

2

��

Nxg � Nxf C Nxg

2

�>)

D 25.Nxf � Nxg/.Nxf � Nxg/
>:

The vector a maximizing the ratio a>Ba=a>Wa can be calculated as the
eigenvector of W�1B corresponding to the largest eigenvalue, see Härdle and Simar
(2015, Theorem 14.4).

For the Swiss bank notes, it is easy to see that the matrix W�1B can have at
most one nonzero eigenvalue since rankB � 1. The nonzero eigenvalue 1 can be
calculated as:

1 D
p
X

jD1
j D tr.W�1B/ D trfW�125.Nxf � Nxg/.Nxf � Nxg/

>g

D 25 trf.Nxf � Nxg/
>W�1.Nxf � Nxg/g D 25.Nxf � Nxg/

>W�1.Nxf � Nxg/:

From the equation:

W�1BW�1.Nxf � Nxg/ D 25.Nxf � Nxg/
>W�1.Nxf � Nxg/W�1.Nxf � Nxg/

it follows that the eigenvector of W�1B corresponding to the largest eigenvalue is
a D W�1.Nxf � Nxg/. Assuming that Nyf > Nyg, the corresponding discriminant rule can
be formally written as:

Rf D fx W .Nxf � Nxg/
>W�1.x � Nx/ � 0g:
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Exercise 14.7 Compute Fisher’s linear discrimination function for the 20 bank
notes from Exercise 13.6. Apply it to the entire bank data set. How many obser-
vations are misclassified?

Applying the formulas derived in the previous Exercise 14.6 with nf D
ng D 10, using the randomly chosen observations with indices 7, 8, 16, 39,
71, 73, 89, 94, 94, 100, 110, 121, 129, 131, 149, 150, 154, 161, 163, and
174, we obtain Nxg D .214:72; 129:79; 129:64; 8:00; 10:18; 141:48/>, Nxf D
.214:85; 130:13; 130:13; 10:33; 11:31; 139:53/>, and

W D

0

B

B

B

B

B

B

B

@

3:36 0:40 0:90 �3:32 �0:00 0:38

0:40 1:49 0:95 0:41 �0:52 0:91

0:90 0:95 1:91 2:43 �1:38 1:31

�3:32 0:41 2:43 18:02 �10:17 2:86

�0:00 �0:52 �1:38 �10:17 11:46 �2:39
0:38 0:91 1:31 2:86 �2:39 3:66

1

C

C

C

C

C

C

C

A

:

The eigenvector of W�1B corresponding to the largest eigenvalue can then be
calculated as

.Nxf � Nxg/
>W�1 D .�1:56;�1:19; 1:38;�1:21;�0:88; 0:87/>:

The new observation x will be allocated as a counterfeit bank note if a>.x �
Nx/ � 0. Calculating the Fisher linear discriminant rule for all observations in the
Swiss bank notes data set, we obtain altogether six genuine bank notes classified as
counterfeit. None of the counterfeit bank notes is classified as genuine. Hence, the
estimated error rate is 6=200 D 3%. This estimate might be too optimistic since
some of the bank notes used for the construction were used also for the evaluation
of the rule.

Exercise 14.8 Derive a discriminant rule based on the ML method with J D 2

minimizing the expected cost misclassification considering the prior probability
�1 D 1

3
and the expected cost of misclassification C.2j1/ D 2C.1j2/.

The expected cost of misclassification is given by ECM D C.2j1/p21�1 C
C.1j2/p12�2, where p21 is the probability of wrong classification of observation
coming from group 1 and p12 is the probability of wrong classification of observa-
tion coming from group 2.

Assuming that the populations ˘1 and ˘2 are characterized by the probability
densities f1.:/ and f2.:/, we can derive the loss L.R1/ as a function of the discriminant
rule R1:

L.R1/ D C.2j1/�1p21 C C.1j2/�2p12
D C.2j1/�1

Z

R2

f1.x/dx C C.1j2/�2
Z

R1

f2.x/dx
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D C.2j1/�1
Z

f1� I.x 2 R1/gf1.x/dx C C.1j2/�2
Z

I.x 2 R1/f2.x/dx

D C.2j1/�1 C
Z

I.x 2 R1/fC.1j2/�2f2.x/ � C.2j1/�1f1.x/gdx:

The loss L.R1/ is obviously minimized if R1 is chosen so that x 2 R1 is equivalent
to C.1j2/�2f2.x/ � C.2j1/�1f1.x/ < 0. Hence, the optimal discriminant rule is:

R1 D fx W C.1j2/�2f2.x/� C.2j1/�1f1.x/ < 0g
D fx W C.2j1/�1f1.x/ > C.1j2/�2f2.x/g

D
�

x W f1.x/

f2.x/
>

C.1j2/�2
C.2j1/�1

�

:

Assuming that �1 D 1
3

and that the expected cost of misclassification C.2j1/ D
2C.1j2/ leads �2 D 1 � �1 D 2=3 D 2�1 and the resulting discriminant rule is:

R1 D
�

x W f1.x/

f2.x/
>

C.1j2/2�1
2C.1j2/�1

�

D
�

x W f1.x/

f2.x/
> 1

�

D fx W f1.x/ > f2.x/g ;

i.e., we obtain the ML discriminant rule. SMSdisfbank

Exercise 14.9 Explain the effect of changing �1 or C.1j2/ on the relative location
of the region Rj; j D 1; 2 in Exercise 14.8.

In Exercise 14.8, we have derived the discriminant rule

R1 D
�

x W f1.x/

f2.x/
>

C.1j2/�2
C.2j1/�1

�

:

Increasing the cost of misclassification C.1j2/ would increase the constant in the
definition of R1 and, hence, it would make the region R1 smaller.

Increasing the prior probability �1 of the population ˘1 would make the same
constant smaller and the region R1 would grow.

Exercise 14.10 Prove that Fisher’s linear discrimination function is identical to
the ML rule for multivariate normal distributions with equal covariance matrices
.J D 2/.

The ML rule in this situation has been derived in Exercise 14.1,

RML
1 D fx W ˛>.x � �/ � 0g;

where ˛ D ˙�1.�1 � �2/ and � D 1
2
.�1 C �2/.

http://www.quantlet.de/codes/sms/SMSdisfbank.html
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Fisher’s linear discrimination rule derived for J D 2 in Exercise 14.6 is:

RF
1 D fx W .Nx1 � Nx1/>W�1.x � Nx/ � 0g:

In the same exercise, we have also shown that W D nS, where S denotes the pooled
covariance matrix and n the number of observations. Defining the empirical version
of ˛ as Ǫ D .Nx1 � Nx2/>S�1, we can rewrite the Fisher’s discriminant rule as:

RF
1 D fx W Ǫ>.x � Nx/ � 0g:

Comparing this expression with the ML discriminant rule, we see that Fisher’s rule
RF
1 may be interpreted as the empirical version (estimate) of the ML discriminant

rule RML
1 .

Exercise 14.11 Suppose that the observations come from three distinct popula-
tions, ˘1, ˘2, and ˘3, characterized by binomial distributions:

˘1 W X � Bi.10; 0:2/ with the prior probability �1 D 0:5I
˘2 W X � Bi.10; 0:3/ with the prior probability �2 D 0:3I
˘3 W X � Bi.10; 0:5/ with the prior probability �3 D 0:2:

Use the Bayes method to determine the discriminant rules R1, R2, and R3.

The corresponding Bayes discriminant rules Rj for j D 1; 2; 3 are defined as:

Rj D ˚

x 2 f0; 1; : : : ; 9; 10g W �jfj.x/ � �ifi.x/ for i D 1; 2; 3



:

The values of �ifi.x/, for i D 1; : : : ; 3 and x D 0; : : : ; 10 are given in Table 14.3
from which it directly follows that the discriminant rules are:

R1 D f0; 1; 2; 3g;
R2 D f4g;
R3 D f5; 6; 7; 8; 9; 10g:

Exercise 14.12 Use the Fisher’s linear discrimination function on the WAIS data
set (Appendix A.21) and evaluate the results by re-substitution to calculate the
probabilities of misclassification.

The WAIS data set contains results of four subtests of the Wechsler Adult
Intelligence Scale for two categories of people. Group 2 contains 12 observations of
those presenting a senile factor and group 1 contains 37 people serving as a control.
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Table 14.3 The values of the likelihood and Bayesian likelihood for three binomial distributions

x f1.x/ f2.x/ f3.x/ �1f1.x/ �2f2.x/ �3f3.x/ �jfj.x/ j

0 0.107374 0.028248 0.000977 0.053687 0.008474 0.000195 0.053687 1

1 0.268435 0.121061 0.009766 0.134218 0.036318 0.001953 0.134218 1

2 0.301990 0.233474 0.043945 0.150995 0.070042 0.008789 0.150995 1

3 0.201327 0.266828 0.117188 0.100663 0.080048 0.023438 0.100663 1

4 0.088080 0.200121 0.205078 0.044040 0.060036 0.041016 0.060036 2

5 0.026424 0.102919 0.246094 0.013212 0.030876 0.049219 0.049219 3

6 0.005505 0.036757 0.205078 0.002753 0.011027 0.041016 0.041016 3

7 0.000786 0.009002 0.117188 0.000393 0.002701 0.023438 0.023438 3

8 0.000074 0.001447 0.043945 0.000037 0.000434 0.008789 0.008789 3

9 0.000004 0.000138 0.009766 0.000002 0.000041 0.001953 0.001953 3

10 0.000000 0.000006 0.000977 0.000000 0.000002 0.000195 0.000195 3

Applying the formulas derived in Exercise 14.6 and proceeding as in Exer-
cise 14.7, we obtain the eigenvector

.Nx2 � Nx1/>W�1 D .�0:0006;�0:0044;�0:0002;�0:0095/>:

Calculating the Fisher’s discriminant rule from all observations leads to 4 misclas-
sified observations in group 2 and 8 misclassified observations in group 1.

Hence, the APER is equal to .4 C 8/=49 D 24:49%. The disadvantage of
this measure of the quality of the discriminant rule is that it is based on the same
observations that were used to construct the rule.

In order to obtain a more appropriate estimate of the misclassification probability,
we may proceed in the following way:

1. Calculate the discrimination rule from all but one observation.
2. Allocate the omitted observation according to the rule from step 1.
3. Repeat steps 1 and 2 for all observations and count the number of correct and

wrong classifications.

The estimate of the misclassification rate based on this procedure is called the actual
error rate (AER).

Running the algorithm for the WAIS data set, we misclassify 4 observations in
group 2 and 11 observations in group 1. The AER is .4C 11/=49 D 30:61%.

Hence, if a new patient arrives, he will be correctly classified with probability
approximately 70%. SMSdisfwais

http://www.quantlet.de/codes/sms/SMSdisfwais.html


Chapter 15
Correspondence Analysis

The method was no doubt suggested to Clay’s ingenious mind by the colour of his
accomplice’s hair.
Sherlock Holmes in “The Red-Headed League”

Contingency tables contain information about the joint distribution of statistical
variables. For a large number of classes (for each variable) the resulting n � p
frequency matrix can be hard to interpret. Correspondence analysis is a tool
for developing simple indices that show us relations between row and column
categories.

These indices tell us, for example, which column categories have more weight
in a row category and vice versa. A typical example is the statistical analysis of
consumer preferences.

Suppose that one has recorded the frequencies of newspaper distribution across
regions. If the number of newspapers and regions is big, then one sits in front of a
huge n � p matrix with numbers from which we have to tell which region prefers
which newspaper. Correspondence analysis provides a way out of this: reducing the
dimensionality of the table via factors helps to concentrate on the most important
variables.

The basic idea is to extract the indices in a decreasing order of importance so
that the main information of the table can be summarized in spaces with smaller
dimensions. If only two factors (indices) are used, the results can be shown in two-
dimensional graphs. The dimension reduction techniques are similar to the principal
component method but, due to the different character of the categorical data, we
decompose a measure of dependency (�2-statistic) between the variables rather than
the variance.

A contingency table X .n � p/ consists of frequencies of joint occurrence of row
and column events—the entry xij in the table X is the number of observations in a
sample that simultaneously fall in the ith row category and the jth column category.
The symbol xi� D Pn

jD1 xij denotes the number of observations falling into the
ith row category. Similarly, x�j D Pn

iD1 xij. The total number of observations is

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_15
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x�� D Pn
iD1 xi� D Pn

jD1 x�j. For simplification, define the matrices A .n � n/ and
B .p � p/ as

A D diag.xi�/ and B D diag.x�j/: (15.1)

These matrices provide the marginal row frequencies a.n � 1/ D .x1�; : : : ; xn�/>
and the marginal column frequencies b.p � 1/.x�1; : : : ; x�p/

>:

a D A1n and b D B1p: (15.2)

Eij is the estimated expected value in the .i; j/th category under the assumption
of independence, i.e.,

Eij D xi� x�j

x��
: (15.3)

Technically speaking, the basic idea is to decompose the �2-statistic of dependence:

t D
n
X

iD1

p
X

jD1
.xij � Eij/

2=Eij: (15.4)

Under the hypothesis of independence of the row and column categories, the statistic
t has a �2.n�1/.p�1/ distribution.

The correspondence analysis is targeted toward the analysis of the contributions
to the �2-statistic (15.4):

cij D .xij � Eij/=E1=2ij ; (15.5)

which may be viewed as a measure of the departure of the observed xij from
independence. The desired lower-dimensional decomposition is then produced by
the singular value decomposition (SVD) of the matrix C D .cij/iD1;:::;nIjD1;:::;p.
The exact expressions for the row and column factors (rk and sk, respectively) are
given in Exercise 15.2. Their mean and variance and the relationship to the �2-
statistic (15.4) are investigated in Exercises 15.3 and 15.4.

Both the basic properties of the factors and some applications of correspondence
analysis are demonstrated in the following exercises.

Exercise 15.1 Show that the matrices A�1XB�1X> and B�1X>A�1X have an
eigenvalue equal to 1 and that the corresponding eigenvectors are proportional to
.1; : : : ; 1/>.

It suffices to show that for A�1XB�1X>. The second equation follows by
exchanging rows and columns of the contingency table X . Eigenvalue  and
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eigenvector � are solutions of the equation

A�1XB�1X>� D � (15.6)

and it remains to show that (15.6) is satisfied for  D 1 and � D .1; : : : ; 1/> D 1n:

A�1XB�1X>

0

B

B

B

@

1

1
:::

1
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C

C
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@
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0 : : : 0

0 1
x2�
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:::
: : :
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x11 x12 : : : x1p

x21 x22 : : : x2p
:::

:::
: : :

:::

xn1 xn2 : : : xnp

1

C

C

C

A

�

0

B

B

B

B

@

1
x�1

0 : : : 0

0 1
x�2

: : : 0
:::

:::
: : :

:::

0 0 : : : 1
x�p

1

C

C

C

C

A

0

B

B

B

@

x11 x21 : : : xn1

x12 x22 : : : xn2
:::

:::
: : :

:::

x1p x2p : : : xnp

1

C

C

C

A

0

B

B

B

@

1

1
:::

1

1

C

C

C

A

D

0

B

B

B

@

E11 E12 : : : E1p

E21 E22 : : : E2p
:::

:::
: : :

:::

En1 En2 : : : Enp

1

C

C

C

A

0

B

B

B

@

x11 x21 : : : xn1

x12 x22 : : : xn2
:::

:::
: : :

:::

x1p x2p : : : xnp

1

C

C

C

A

0

B

B

B

@

1

1
:::

1

1

C

C

C

A

D
 

p
X

kD1
Eikxjk

!

iD1;:::;nIjD1;:::;n

0

B

B

B

@

1

1
:::

1

1

C

C

C

A

D
0

@

n
X

jD1

p
X

kD1
Eikxjk

1

A

iD1;:::;n

D
 

p
X

kD1
Eikx�k

!

iD1;:::;n

D
 

p
X

kD1

xikx�k

xi�x�k

!

iD1;:::;n

D

0

B

B

B

@

1

1
:::

1

1

C

C

C

A

:



262 15 Correspondence Analysis

Hence, (15.6) is satisfied for  D 1 and � D 1n and we have proven the statement
proposed in Exercise 15.1.

Exercise 15.2 Let ık and �k denote the kth eigenvectors of C>C and CC>, respec-
tively. Verify the relations:

C
p

b D 0 and C>p
a D 0; (15.7)

ı>
k

p
b D 0 and �>

k

p
a D 0; (15.8)

r>
k a D 0 and s>

k b D 0: (15.9)

Notice that the second part of all equations follows by applying the first part to
the contingency table X>.

The ith element of the vector C.n�p/

p
b.p�1/ is

Pp
jD1

xij�Eijp
Eij

p
x�j, for i D 1; : : : ; n.

Using simple algebra we write

C
p

b D
0

@

p
X

jD1

xij � Eij
p

Eij

p
x�j

1

A

iD1;:::;n

D

0

B

@

p
X

jD1

xij � xi�x�j

x��
q

xi�x�j

x��

p
x�j

1

C

A

iD1;:::;n

D
0

@

p
X

jD1

xijx�� � xi�x�j

x��

p
x��p

xi�x�j

p
x�j

1

A

iD1;:::;n

D
0

@

p
X

jD1

x��xijp
x��

p
xi�

�
p
X

jD1

xi�x�jp
x��

p
xi�

1

A

iD1;:::;n

D
0

@

p
x��p
xi�

p
X

jD1
xij �

p
xi�p
x��

p
X

jD1
x�j

1

A

iD1;:::;n

D
�p

x��p
xi�

xi� �
p

xi�p
x��

x��
�

iD1;:::;n
D �p

x��xi� � p
x��xi�

	

iD1;:::;n
D 0n:

This proves the first part of (15.7). The second part follows from the symmetry of
the situation.

The symbol ı>
k in relation (15.8) denotes the kth eigenvector of C>C and �>

k is
the kth eigenvector of CC>. From the properties of SVD (Härdle & Simar, 2015,
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Chap. 10) we know the relationship between ık and �k:

ık D 1p
k

C>�k and �k D 1p
k

Cık: (15.10)

Applying the above proved formula (15.7) leads directly

ı>
k

p
b D 1p

k
�>

k C
p

b D 1p
k
�>

k 0 D 0

and

�>
k

p
a D 1p

k
ı>

k C>p
a D 1p

k
ı>

k 0 D 0:

The row coordinates rk and the column coordinates sk are defined as

rk D A� 1
2 Cık

sk D B� 1
2 C>�k: (15.11)

Using this definition and (15.7) it follows that

r>
k a D ı>

k C>A� 1
2 a D ı>

k C>p
a D ı>

k 0 D 0

and

s>
k b D �>

k CB� 1
2 b D �>

k C
p

b D �>
k 0 D 0:

The vectors of row and column coordinates, rk and sk, are the row and column
factors. In practice, statistical software may return differently scaled values. For
example, functions corresp() and ca() in R (R Core Team, 2013) libraries
MASS (Venables & Ripley, 2002) and ca (Nenadic & Greenacre, 2007) standardize
row and column factors by canonical correlations �k D .k=x��/1=2.

Exercise 15.3 Rewrite the �2-statistic (15.4) in terms of the matrix C. Describe the
relationship of the �2-statistic to the SVD of C.

The SVD of C yields C D ���> with � D diag.1=21 ; : : : ; 
1=2
R /, where

1; : : : ; R are the nonzero eigenvalues of both C>C and CC> (Härdle & Simar,
2015, Chap. 10).

Now, it is easy to see that

t D
n
X

iD1

p
X

jD1
.xij � Eij/

2=Eij D
n
X

iD1

p
X

jD1
c2ij D tr.CC>/ D

R
X

kD1
k:
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Hence, the SVD of the matrix C decomposes the �2-statistic t. In Exercise 15.4,
we will show that also the variances of the row and column factors provide a
decomposition of the �2-statistic.

Exercise 15.4 Calculate the means and variances of the row and column factors rk

and sk.

Using the relation (15.9), it is easy to see that the means (weighted by the row
and column marginal frequencies) are:

rk D 1

x��
r>

k a D 0;

sk D 1

x��
s>

k b D 0:

Hence, both row and column factors are centered.
For the variances of rk and sk we have the following:

Var.rk/ D 1

x��

n
X

iD1
xi�r2ki D r>

k Ark=x�� D ı>
k C>Cık=x�� D k

x��
;

Var.sk/ D 1

x��

p
X

jD1
x�js

2
kj D s>

k Bsk=x�� D �>CC>�k=x�� D k

x��
:

Hence, the proportion of the variance explained by the kth factor is

Var.rk/=

R
X

iD1
Var.rk/ D k=

R
X

iD1
i:

The variance of the kth row factor, Var.rk/, can be further decomposed into the
absolute single row contributions defined as

Ca.i; rk/ D xi�r2ki

k
; for i D 1; : : : ; n; k D 1; : : : ;R:

Similarly, the proportions

Ca.j; sk/ D x�js2kj

k
; for j D 1; : : : ; p; k D 1; : : : ;R

are the absolute contributions of column j to the variance of the column factor
sk. These absolute contributions may help to interpret the row and column factors
obtained by the correspondence analysis.
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Table 15.1 Eigenvalues and
cumulated percentage of
explained variance for the car
marks data

Nr. of factors Eigenvalues Cumulated percentage

1 31:0730 0.8133

2 4:5016 0.9311

3 1:1900 0.9623

4 0:5806 0.9775

5 0:3454 0.9865

6 0:3298 0.9952

7 0:1849 1.0000

Exercise 15.5 Do a correspondence analysis for the car marks data in
Appendix A.5. Explain how this data set can be considered as a contingency
table.

The car marks data set consists of averaged marks. The numbers could be seen as
“number of points” corresponding to the quality of cars (the worse the more points).
In this way, the entries in the data set can be interpreted as counts and the data set
as a contingency table.

Correspondence analysis is based on SVD of matrix C. The eigenvalues tell us
the proportion of explained variance. From Table 15.1 we can see that the first
two eigenvalues account for 93 % of the variance. Here, representation in two
dimensions is satisfactory.

Figure 15.1 shows the projections of the rows (the 23 types of cars) and columns
(the 8 features). The projections on the first 3 axis along with their absolute
contributions to the variance of the axis are given in Table 15.2 for the cars and
in Table 15.3 for features.

Figure 15.1 shows that price on the left side and value on the right side are
most strongly responsible for the variation on the first axis. The second axis can
be described as a contrast between sport and easy and safe. This interpretation is
confirmed in Table 15.3, where in the first column factor s1, the difference between
the coefficient of price (�0.4254) and value (0.2149) is the largest, and in the second
column factor s2, the difference between the coefficient of sport (0.1463) and safety
(�0.1121) is the largest. These two axes are quite sensible since expensive cars (with
high marks in price) tend to depreciate faster (with low marks in value), and sport
cars tend to be less safe and less easily handled.

In Fig. 15.1, Mitsubishi, Toyota, Renault, and Peugeot are quite close to the
center, which means they are kind of average cars (with average marks in the 8
features). On the left we see the more expensive cars and on the right the cheaper
ones. Cars in the lower sector are more safe and easily handled than those on
the upper sector. Among all cars, Ferrari plays an important role on each axis.
On the first axis it is opposed to Trabant and Wartburg, which are the cheapest
(lowest marks in price). On the second axis it is opposed to Volkswagen Golf and
Mercedes. About half of the cars are concentrated in the right part of the picture
and not far from the origin, these the most common types of cars. In this data set,
the interpretation of car properties from Fig. 15.1 is somewhat complicated because
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Fig. 15.1 Projections of rows and columns for car marks data. SMScorrcarm

higher mark means that the car is not good in that category. For example, Fig. 15.1
shows that BMW is expensive and that Trabant, Wartburg, and Lada are not very
valuable.

Exercise 15.6 Compute the �2-statistic and test independence for the French
baccalauréat data.

The �2-statistic of independence compares observed counts xij to their estimated
(under the hypothesis of independence) expected values Eij (15.3):

t D
n
X

iD1

p
X

jD1
.xij � Eij/

2=Eij: (15.12)

Under the hypothesis of independence, t has the �2.n�1/.p�1/ distribution.
For the French baccalauréat data, the test statistic is t D 4346:14 and the 0:95

quantile of the �2-distribution �2.n�1/.p�1/ D 176:29 SMSchi2bac. The test
statistic is larger than the critical value and we reject independence between the row
and column categories.

http://www.quantlet.de/codes/sms/SMScorrcarm.html
http://www.quantlet.de/codes/sms/SMSchi2bac.html
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Table 15.2 Coefficients and absolute contributions for the cars in car marks data

Cars r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

Audi �0:1862 0:0536 0:0114 0:0272 0:0156 0:0027

BMW �0:4385 0:0650 �0:0702 0:1374 0:0208 0:0919

Cit 0:1498 0:0267 0:0042 0:0205 0:0045 0:0004

Ferr �0:4400 �0:2143 0:0128 0:1663 0:2725 0:0037

Fiat 0:2356 0:0385 0:0781 0:0502 0:0092 0:1442

Ford 0:1161 �0:0470 0:0432 0:0105 0:0119 0:0380

Hyun 0:1421 �0:0182 0:0212 0:0153 0:0017 0:0089

Jagu �0:4657 �0:1493 �0:0029 0:1633 0:1159 0:0002

Lada 0:2162 �0:0192 �0:0319 0:0448 0:0024 0:0255

Mazd 0:0971 �0:0659 0:0671 0:0079 0:0250 0:0979

Merc �0:3406 0:1659 �0:0425 0:0806 0:1320 0:0327

Mit �0:0349 0:0072 0:0249 0:0010 0:0003 0:0127

Nis 0:1937 �0:0060 �0:0143 0:0308 0:0002 0:0044

OpCo 0:1045 0:0882 0:0108 0:0078 0:0392 0:0022

OpVe �0:1142 0:0463 0:0338 0:0093 0:0105 0:0212

Peug 0:0889 0:0072 �0:0012 0:0065 0:0003 0:0000

Rena 0:0532 �0:0062 0:0323 0:0022 0:0002 0:0215

Rov �0:1454 �0:0341 �0:0199 0:0171 0:0065 0:0083

Toy 0:0537 �0:0272 0:0545 0:0022 0:0040 0:0601

Tra 0:2918 �0:0501 �0:1061 0:0937 0:0191 0:3234

VwGo �0:2156 0:1833 �0:0043 0:0343 0:1708 0:0004

VwPa �0:0303 0:1441 0:0094 0:0007 0:1024 0:0016

War 0:2493 �0:0669 �0:0577 0:0702 0:0349 0:0981

Table 15.3 Coefficients and absolute contributions for features in car marks data

Feature s1 s2 s3 Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

Econ. �0:2810 0:0023 �0:0821 0:1923 0:0000 0:4292

Service 0:1239 �0:0553 0:0271 0:0348 0:0478 0:0433

Value 0:2149 �0:0407 �0:0070 0:1077 0:0267 0:0030

Price �0:4254 0:0376 0:0582 0:4384 0:0236 0:2146

Design 0:1553 0:1024 0:0545 0:0571 0:1714 0:1836

Sport 0:1587 0:1436 �0:0431 0:0646 0:3653 0:1244

Safety 0:1722 �0:1121 �0:0046 0:0721 0:2110 0:0013

Easy �0:1263 �0:1040 0:0033 0:0329 0:1540 0:0006
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Exercise 15.7 Prove that C D A�1=2.X � E/B�1=2px�� and E D ab>x�1�� and
verify:

rk D
r

x��
k

A�1X sk; (15.13)

sk D
r

x��
k

B�1X>rk: (15.14)

Some properties of the row and column coordinates rk and sk and of the matrix
C were discussed already in Exercise 15.2. Using the definitions of A, B, C, and Eij,
we have

A�1=2.X � E/B�1=2px��
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The relation E D ab>x�1�� is very easy to show since

ab>

x��
D 1

x��

0

B

B

B

@

x1�
x2�
:::

xn�

1

C

C

C

A

�

x�1; x�2; : : : ; xn�
	

D 1

x��

0

B

B

B

@

x1�x�1 x1�x�2 : : : x1�x�p

x2�x�1 x2�x�2 : : : x2�x�p
:::

:::
: : :

:::

xn�x�1 xn�x�2 : : : xn�x�p

1

C

C

C

A

D E:

It follows from definition (15.11) of sk and from the relation (15.10) between �k

and ık that

sk D B�1=2C>�k D
p

kB�1=2ık:

Next, using the definition (15.11) of rk and applying the above proved properties
and (15.9), we have

rk D A�1=2Cık D p
x��A�1=2A�1=2.X � E/B�1=2ık

D
r

x��
k

A�1.X � E/sk D
r

x��
k

A�1
�

X sk � ab>sk

x��

�

D
r

x��
k

A�1X sk:

The expression for sk follows exactly in the same way.

Exercise 15.8 Do the full correspondence analysis of the U.S. crime data in
Appendix A.18, and determine the absolute contributions for the first three axes.
How can you interpret the third axis? Try to identify the states with one of the four
regions to which it belongs. Do you think the four regions have a different behavior
with respect to crime?

The eigenvalues and percentages of explained variance for all states are given in
Table 15.4. It seems that two or three factors explain sufficiently large part of the
overall variability.

The results of the correspondence analysis for the U.S. crime data are presented
in Table 15.5 containing the projections and absolute contributions of the rows
(states) and in Table 15.6 which contains the corresponding projections and absolute
contributions of the columns (crimes).
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Table 15.4 Eigenvalues and
explained proportion of
variance for U.S. crime data.

SMScorrhealth

j Percentage of variance Cumulated percentage

4399.01 0:49 0:49

2213.64 0:25 0:74

1382.39 0:15 0:89

870.68 0:10 0:99

50.97 0:01 1:00

34.75 0:00 1:00

Table 15.5 Coefficients and absolute contributions for regions according to U.S. crimes.
SMScorrcrime

State r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

ME �0:1188 �0:0382 0:1062 0:0059 0:0012 0:0151

NH �0:0639 0:0242 0:1573 0:0016 0:0005 0:0308

VT �0:0778 �0:1068 0:2051 0:0026 0:0098 0:0578

MA 0:3142 0:2536 0:2139 0:0840 0:1088 0:1240

RI 0:1334 0:2381 0:1228 0:0173 0:1093 0:0466

CT 0:0683 0:0849 0:1301 0:0037 0:0114 0:0427

NY 0:3812 �0:0012 �0:1769 0:1585 0:0000 0:1085

NJ 0:2003 0:1111 0:0149 0:0325 0:0199 0:0006

PA 0:2300 0:0569 �0:0004 0:0258 0:0031 0:0000

OH 0:0834 0:0941 �0:0465 0:0056 0:0143 0:0056

IN 0:0489 0:0816 0:0039 0:0018 0:0099 0:0000

IL 0:1756 0:0415 �0:1926 0:0265 0:0029 0:1014

MI 0:0991 �0:0506 �0:1442 0:0123 0:0064 0:0828

WI �0:2485 0:1085 �0:0626 0:0380 0:0144 0:0077

MN �0:0621 0:1099 �0:0253 0:0028 0:0175 0:0015

IA �0:2700 0:0779 �0:0680 0:0416 0:0069 0:0084

MO 0:1541 0:0076 �0:0255 0:0227 0:0001 0:0020

ND �0:3916 0:1048 �0:1064 0:0595 0:0085 0:0140

SD �0:2841 �0:0295 �0:0421 0:0377 0:0008 0:0026

NE �0:0718 0:0516 �0:0487 0:0030 0:0031 0:0044

KS �0:1629 0:0007 �0:0459 0:0220 0:0000 0:0056

DE 0:0392 0:0333 0:0305 0:0015 0:0021 0:0029

MD 0:1912 �0:0271 �0:2101 0:0386 0:0015 0:1483

VA �0:0642 �0:0259 �0:0442 0:0031 0:0010 0:0047

WV �0:0634 �0:1672 0:0255 0:0013 0:0174 0:0006

NC 0:0344 �0:3622 0:0569 0:0007 0:1567 0:0062

SC 0:0396 �0:1880 0:1168 0:0011 0:0491 0:0303

GA �0:0052 �0:0828 �0:0041 0:0000 0:0105 0:0000

FL 0:0080 �0:1259 �0:0194 0:0000 0:0381 0:0015

KY 0:1314 �0:0094 0:0744 0:0097 0:0000 0:0100

(continued)

http://www.quantlet.de/codes/sms/SMScorrhealth.html
http://www.quantlet.de/codes/sms/SMScorrcrime.html
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Table 15.5 (continued)

State r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

TN 0:2057 �0:1591 0:1108 0:0231 0:0274 0:0213

AL 0:1021 �0:2626 0:1161 0:0057 0:0750 0:0235

MS �0:0162 �0:3623 0:0515 0:0000 0:0772 0:0025

AR �0:0220 �0:2719 0:1117 0:0003 0:0811 0:0219

LA 0:1515 �0:1232 �0:0191 0:0173 0:0227 0:0009

OK �0:0427 �0:0422 0:0531 0:0012 0:0024 0:0061

TX 0:0313 �0:0667 �0:0004 0:0009 0:0082 0:0000

MT �0:2471 0:0595 �0:0339 0:0400 0:0046 0:0024

ID �0:3161 �0:0051 �0:0575 0:0717 0:0000 0:0075

WY �0:2884 0:0157 �0:0447 0:0562 0:0003 0:0043

CO �0:0183 0:0296 0:0164 0:0004 0:0021 0:0010

NM �0:0631 �0:0487 0:0493 0:0038 0:0045 0:0075

AZ �0:1042 �0:0097 �0:0091 0:0146 0:0003 0:0004

UT �0:2381 0:0833 �0:0466 0:0542 0:0132 0:0066

NV 0:0480 0:0278 0:0219 0:0030 0:0020 0:0020

WA �0:1148 �0:0005 0:0305 0:0146 0:0000 0:0033

OR �0:1266 �0:0141 �0:0127 0:0171 0:0004 0:0005

CA 0:0295 0:0095 0:0014 0:0013 0:0003 0:0000

AK 0:0057 0:0849 0:0210 0:0000 0:0124 0:0012

HI �0:1047 0:1307 0:0737 0:0131 0:0406 0:0207

Table 15.6 Coefficients and absolute contributions for U.S. crimes. SMScorrcrime

Crime s1 s2 s3 Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

Murder 0:1727 �0:4860 0:0643 0:0023 0:0366 0:0010

Rape 0:0661 �0:1874 �0:0079 0:0008 0:0124 0:0000

Robbery 0:5066 �0:0261 �0:4045 0:2961 0:0016 0:6009

Assault 0:1807 �0:3933 0:0116 0:0503 0:4731 0:0007

Burglary 0:0620 �0:0631 0:0830 0:0406 0:0837 0:2320

Larceny �0:1199 0:0222 �0:0345 0:3176 0:0217 0:0835

Auto theft 0:2644 0:2113 0:0785 0:2923 0:3710 0:0820

The third axis could be interpreted as contrast between robbery versus burglary.
The states with largest contributions to the 3rd axis are MA in contrast to IL, MI,
and MD.

The differences between different regions can be best assessed in a graphics.
Figure 15.2 shows the projections of all states and crimes where each region
is colored differently. The biggest differences are between states from Northeast
(squares) and South (triangles). The distributions of the crimes in Midwest (trian-
gles) and West (crosses) are very similar, the points are relatively close to the origin.

http://www.quantlet.de/codes/sms/SMScorrcrime.html
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Fig. 15.2 Projection of rows (states) and columns (crimes) in U.S. crime data. Northeast (square),
Midwest (circle), South (triangle) and West (cross). SMScorrcrime

Table 15.7 Eigenvalues and
explained proportion of
variance for U.S. health Data.

SMScorrhealth

j Percentage of variance Cumulated percentage

255:390 0:6046 0:6046

75:097 0:1778 0:7824

41:518 0:0983 0:8807

19:749 0:0468 0:9275

19:126 0:0453 0:9728

11:512 0:0273 1:0000

Exercise 15.9 Repeat Exercise 15.8 with the U.S. health data in Appendix A.19.
Only analyze the columns indicating the number of deaths per state.

The eigenvalues and percentages of explained variance for all states are given in
Table 15.7. The first three factors explain 88% of the total variance. As the third
factor explains less than 10 % of the dependency between the rows and columns of
the given contingency table, in the following analyses we will concentrate mainly
on the first two factors.

The plot in Fig. 15.3 displays the projections of rows and columns. It suggests
that AK (Alaska) is very different from all other states (an outlier). Repeating the

http://www.quantlet.de/codes/sms/SMScorrcrime.html
http://www.quantlet.de/codes/sms/SMScorrhealth.html
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Fig. 15.3 Projection of rows (states) and columns (causes of death) for U.S. health data
with Alaska. Northeast (square), Midwest (circle), South (triangle), and West (cross).

SMScorrhealth

analysis without Alaska—which is also geographically far away from the other
states—results in the plot in Fig. 15.4. The differences between the remaining 49
states are now more clear. The corresponding projection on the three axes and the
absolute contributions are summarized in Table 15.8 for the states and in Table 15.9
for causes of death.

Looking at the plot in Fig. 15.4 (without Alaska) we could interpret the first axis
as an accident(+) factor with dominating states NV(C), NM(C), and WY(C) versus
RI(�). This first factor seems to be important in the West. The second axis may be
described as liver versus pneumonia flu factor. Large values of the second factor
are observed in the West (NM and NV) and in the Northeast (RI). The majority of
Midwest and Southern states have negative values of the second factor.

From Table 15.9, we see that the third axis is the diabetes versus pulmonary and
pneumonia flu factor. The states with large value of this factor are lying mainly in
the South LA(C), DE(C), MS(C) in contrast to Western States CO(�), OR(�), and
AZ(�).

http://www.quantlet.de/codes/sms/SMScorrhealth.html
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Fig. 15.4 Projection of rows (states) and columns (causes of death) for U.S. health data
without Alaska. Northeast (square), Midwest (circle), South (triangle), and West (cross).

SMScorrhealth

Table 15.8 Coefficients and absolute contributions for regions in U.S. health data set.
SMScorrhealth

State r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

ME �0:0508 0:0365 �0:0321 0:0081 0:0143 0:0200

NH �0:0287 0:0302 �0:0115 0:0022 0:0084 0:0022

VT �0:0096 0:0091 �0:0409 0:0003 0:0008 0:0302

MA �0:0891 0:0201 �0:0342 0:0247 0:0043 0:0223

RI �0:1154 0:0803 0:0354 0:0427 0:0703 0:0247

CT �0:0634 0:0297 0:0009 0:0116 0:0087 0:0000

NY �0:1018 0:0113 �0:0233 0:0335 0:0014 0:0108

NJ �0:0984 0:0390 0:0098 0:0299 0:0159 0:0018

PA �0:1007 0:0131 0:0198 0:0336 0:0019 0:0080

OH �0:0791 0:0217 0:0136 0:0184 0:0047 0:0034

IN �0:0526 �0:0142 0:0146 0:0079 0:0019 0:0038

(continued)

http://www.quantlet.de/codes/sms/SMScorrhealth.html
http://www.quantlet.de/codes/sms/SMScorrhealth.html
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Table 15.8 (continued)

State r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

IL �0:0853 �0:0002 �0:0028 0:0213 0:0000 0:0001

MI �0:0602 0:0181 �0:0057 0:0100 0:0031 0:0006

WI �0:0840 �0:0237 0:0114 0:0203 0:0055 0:0023

MN �0:0396 �0:0317 �0:0211 0:0042 0:0091 0:0073

IA �0:0597 �0:0503 �0:0283 0:0113 0:0274 0:0156

MO �0:0439 �0:0179 �0:0147 0:0061 0:0035 0:0042

ND 0:0097 �0:0553 0:0358 0:0003 0:0281 0:0213

SD 0:0070 �0:1107 �0:0317 0:0002 0:1326 0:0196

NE �0:0414 �0:0701 �0:0423 0:0053 0:0516 0:0339

KS �0:0211 �0:0450 �0:0183 0:0013 0:0206 0:0061

DE �0:0405 0:0739 0:0668 0:0046 0:0525 0:0777

MD �0:0408 0:0710 0:0303 0:0043 0:0444 0:0147

VA �0:0181 0:0074 �0:0066 0:0008 0:0005 0:0007

WV �0:0293 �0:0298 0:0013 0:0028 0:0098 0:0000

NC 0:0096 �0:0212 0:0171 0:0002 0:0040 0:0048

SC 0:0300 �0:0355 0:0474 0:0023 0:0108 0:0348

GA 0:0450 �0:0255 0:0164 0:0051 0:0056 0:0042

FL �0:0388 0:0605 �0:0042 0:0052 0:0428 0:0004

KY 0:0040 �0:0191 0:0048 0:0000 0:0037 0:0004

TN �0:0109 �0:0322 �0:0009 0:0003 0:0100 0:0000

AL 0:0101 �0:0012 0:0441 0:0003 0:0000 0:0334

MS 0:0502 �0:0671 0:0641 0:0071 0:0430 0:0710

AR �0:0123 �0:0431 0:0132 0:0005 0:0201 0:0034

LA 0:0293 �0:0241 0:0938 0:0023 0:0052 0:1423

OK 0:0688 �0:0537 0:0268 0:0142 0:0293 0:0132

TX 0:0789 �0:0181 0:0374 0:0142 0:0025 0:0196

MT 0:1231 �0:0023 �0:0216 0:0407 0:0000 0:0077

ID 0:1303 �0:0223 �0:0297 0:0393 0:0039 0:0126

WY 0:3139 �0:0452 0:0095 0:1962 0:0138 0:0011

CO 0:1482 �0:0078 �0:0822 0:0449 0:0004 0:0848

NM 0:2959 0:1168 0:0364 0:1756 0:0930 0:0163

AZ 0:1107 0:0604 �0:0645 0:0301 0:0305 0:0629

UT 0:1280 �0:0434 0:0267 0:0273 0:0107 0:0073

NV 0:1778 0:1030 �0:0097 0:0733 0:0836 0:0013

WA 0:0346 0:0305 �0:0416 0:0030 0:0080 0:0269

OR 0:0198 0:0082 �0:0612 0:0011 0:0006 0:0620

CA 0:0278 0:0576 �0:0561 0:0020 0:0286 0:0491

HI 0:0744 0:0707 0:0298 0:0093 0:0284 0:0091
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Table 15.9 Coefficients and absolute contributions for causes of death in the U.S. health data set.
SMScorrhealth

Cause of death s1 s2 s3 Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

Accident 0:2990 �0:0333 0:0500 0:7453 0:0314 0:1283

Cardiovascular �0:0372 �0:0274 0:0013 0:1072 0:1980 0:0008

Cancer �0:0218 0:0520 0:0068 0:0165 0:3180 0:0099

Pulmonary 0:1370 0:0456 �0:1070 0:0967 0:0364 0:3627

Pneumonia flu 0:0708 �0:0711 �0:0953 0:0204 0:0700 0:2273

Diabetes �0:0050 0:0899 0:1100 0:0000 0:0795 0:2153

Liver 0:0826 0:1969 �0:0669 0:0138 0:2666 0:0557

The regions have clearly different behavior with respect to causes of death. We
could even say that the axes of the graph divide the states into four groups which
correspond to the four U.S. regions. The biggest differences are observed between
Western and Midwestern states.

Exercise 15.10 Consider a .n � n/ contingency table being a diagonal matrix X .
What do you expect the factors rk; sk to be like?

If X is a diagonal matrix, then both the column totals xi� and row totals x�i for
i D 1; : : : ; n are equal to the diagonal elements xii. It follows thatX D A D B. Now,
we can apply the relations (15.13) and (15.14) between rk and sk from Exercise 15.7
and we obtain:

rk D
r

x��
k

A�1X sk D
r

x��
k

sk

and

sk D
r

x��
k

B�1X>rk D
r

x��
k

rk:

Plugging the first formula into the other one leads that rk D sk and x��=k D 1, i.e.,
k D x�� for all k D 1; : : : ; n.

In other words, for each k, the coordinates of the kth row correspond perfectly to
the coordinates of the kth column and correspondence analysis always discovers the
true structure if there is a perfect dependency between rows and columns.

Exercise 15.11 Assume that after some reordering of the rows and the columns, the
contingency table has the following structure:

X D
J1 J2

I1 
 0

I2 0 

:

http://www.quantlet.de/codes/sms/SMScorrhealth.html
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That is, the rows Ii only have weights in the columns Ji, for i D 1; 2. What do you
expect the graph of the first two factors to look like?

A contingency table with a structure given in Exercise 15.11 displays strong
negative dependency between rows I1 and columns J2 and between rows I2 and
columns J1. One can expect that such a strong relationship will be reflected in the
first factor. In the graph of the first two factors, the projections of the rows I1 and
projections of the columns J1 should lie close to each other and their position on the
x-axis should be opposite to the projections of the rows I2 and columns J2.

As an illustration, we calculate the factors for a .2n � 2n/ contingency table X
containing only ones in the blocks on the diagonal

X D
�

1n1
>
n 0n0

>
n

0n0
>
n 1n1

>
n

�

:

Clearly, Eij D n2=2n2 D 1=2 and

C D 1

2

�

1n1
>
n �1n1

>
n

�1n1
>
n 1n1

>
n

�

D
�

1n

�1n

�

1

2

�

1>
n �1>

n

	

:

Matrix C has only one nonzero eigenvalue and the representation in one dimension
describes all dependencies in the contingency table. The projections of the first n
rows coincide with the projections of the first n columns and have opposite sign
than the projections of the remaining rows and columns.

In practice, the output of correspondence analysis will depend on the data
contained in the given contingency table and it might differ a lot from our
expectations.

Exercise 15.12 Redo Exercise 15.11 using the following contingency table:

X D
J1 J2 J3

I1 
 0 0

I2 0 
 0

I3 0 0 

:

In a contingency table with the above structure, one could expect that the first two
factors will be driven by the block diagonal structure. Two factors should suffice to
display clearly the strong negative dependency between the different blocks of the
variables. In the graph of the first two factors, we should see three groups of points,
one corresponding to rows I1 and columns J1, second group to rows I2 and columns
J2 and third group to rows I3 and columns J3.
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As in Exercise 15.11, we calculate the factors for an idealized .3n � 3n/
contingency table X containing ones in the .n � n/ blocks on the diagonal

X D
0

@

1n1
>
n 0n0

>
n 0n0

>
n

0n0
>
n 1n1

>
n 0n0

>
n

0n0
>
n 0n0

>
n 1n1

>
n

1

A :

Here, Eij D n2=3n2 D 1=3 and

C D 1

3

0

@

2.1n1
>
n / �1n1

>
n �1n1

>
n

�1n1
>
n 2.1n1

>
n / �1n1

>
n

�1n1
>
n �1n1

>
n 2.1n1

>
n /

1

A

D 1

3

0

@

1n 0n

�.1=2/1n .3=4/1=21n

�.1=2/1n �.3=4/1=21n

1

A

�

2 0

0 2

��

1>
n �.1=2/1>

n �.1=2/1>
n

0>
n .3=4/1=21>

n �.3=4/1=21>
n

�

:

Matrix C has two nonzero eigenvalues and the representation in two dimensions
describes all dependencies in the contingency table. The projections of the first n
rows coincide with the projections of the first n columns, second n rows have the
same coordinates as the second n columns, and the last n rows overlap with the last
n columns. Notice that the first factor explains the same amount of dependency as
the second factor. Also the distances between the projections for all three groups are
identical.

Again, the exact shape of the two-dimensional graph will strongly depend on the
data and, depending on the structure inside the blocks lying on the diagonal, it might
lead to other results.

Exercise 15.13 Consider the French food data in Appendix A.9. Given that all of
the variables are measured in the same units (French Francs), explain how this table
can be considered as a contingency table. Perform a correspondence analysis and
compare the results to those obtained in the NPCA analysis in Härdle and Simar
(2015, Chap. 11).

The amount of money spent by a certain family on a certain kind of food can be
rephrased as, e.g., number of one-franc notes falling into that category. Hence, we
can say that the entries in the French food data set are counts and the data set can be
interpreted as a contingency table.

From Table 15.10, we can see that the first two eigenvalues account for 91 %
of the variance. Representation in two dimensions will be satisfactory. Figure 15.5
plots the projections of the rows (12 types of families) and columns (7 kinds of
food). The projections on the first three axes along with their absolute contribution to
the variance of the axes are given in Table 15.11 for the families and in Table 15.12
for the food. The row labels describe the type of family using the following code:
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Table 15.10 Eigenvalues
and cumulated percentage of
explained variance for the
French food data.

SMScorrfood

j Percentage of variance Cumulated percentage

852.44 0:6606 0:6606

319.78 0:2478 0:9084

61.04 0:0473 0:9557

31.89 0:0247 0:9804

18.23 0:0141 0:9945

7.01 0:0055 1:0000
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Fig. 15.5 Factorial decomposition of the French food data. SMScorrfood

MA denotes manual worker, EM denotes employees, and CA denotes manager
families. The number denotes the number of children.

Figure 15.5 shows that wine on the left side and fruits and poultry on the right
side are most strongly responsible for the variation on the first axis. The second axis
describes an opposition between milk and wine. These interpretations are confirmed
in Table 15.12, where in the first column factor s1, the difference between the
coefficient of wine (�0.2345) and fruits (0.1267) is the largest, and in the second
column factor s2, the difference between the coefficient of wine (�0.1856) and milk
(0.1517) is the largest.

http://www.quantlet.de/codes/sms/SMScorrfood.html
http://www.quantlet.de/codes/sms/SMScorrfood.html
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Table 15.11 Coefficients and absolute contributions for row factors of the French food data.
SMScorrfood

Type of family r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

MA2 �0:0977 �0:1443 0:0418 0:0420 0:2443 0:1072

EM2 0:0414 �0:0158 0:0319 0:0078 0:0030 0:0638

CA2 0:0756 �0:0909 �0:0093 0:0351 0:1355 0:0074

MA3 �0:1298 �0:0461 0:0151 0:0808 0:0272 0:0153

EM3 �0:0798 �0:0115 0:0312 0:0308 0:0017 0:0657

CA3 0:1580 �0:0464 �0:0336 0:1772 0:0408 0:1121

MA4 �0:1529 0:0240 �0:0265 0:1272 0:0084 0:0534

EM4 �0:0509 �0:0079 0:0143 0:0153 0:0010 0:0170

CA4 0:1680 �0:0175 �0:0300 0:1953 0:0056 0:0871

MA5 �0:1695 0:0298 �0:0404 0:1833 0:0151 0:1454

EM5 �0:0277 0:1215 �0:0206 0:0053 0:2731 0:0412

CA5 0:1091 0:1046 0:0493 0:0996 0:2442 0:2844

Table 15.12 Coefficients and absolute contributions for column factors of the French food data.
SMScorrfood

Food category s1 s2 s3 Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

Bread �0:1862 0:0437 �0:0536 0:2179 0:0320 0:2525

Vegetables 0:0077 0:0030 0:0638 0:0001 0:1251 0:0032

Fruits 0:0352 0:1355 0:0074 0:1140 0:0030 0:2782

Meat 0:0808 0:0272 0:0153 0:0355 0:0455 0:0297

Poultry 0:1224 �0:0166 �0:0448 0:1694 0:0083 0:3173

Milk �0:1875 0:1517 0:0369 0:1773 0:3095 0:0957

Wine �0:2345 �0:1856 0:0179 0:2852 0:4766 0:0233

The relationship between the row and the column categories can be assessed by
looking at the position of the row and column projections in Fig. 15.5. On the x-
axis, the employee families are lying close to the origin and seem to have a general
food structure consisting mainly of meat and vegetables. On the left, we observe
the poorer group consisting of manual workers close to wine, bread, and milk. On
the right we find the richer manager families which are projected close to fruits and
poultry.

The position of the projections on the y-axis corresponds to the number of
children in the family. The families with many children lie in the upper part of
the graph together with the projections of the column categories milk, vegetables,
and bread. The families with less children seem to be related to the column category
wine.

The results of the correspondence analysis are in a good agreement with the
results of the principal component analysis of the same data set in Härdle and Simar
(2015, Example 11.6) although the method is based on a different look at the data.

http://www.quantlet.de/codes/sms/SMScorrfood.html
http://www.quantlet.de/codes/sms/SMScorrfood.html


Chapter 16
Canonical Correlation Analysis

A glance at our friend here reveals the rounded head of the Celt, which carries inside it the
Celtic enthusiasm and power of attachment.
Dr. Mortimer in “The Hound of the Baskervilles”

The association between two sets of variables may be quantified by canonical
correlation analysis (CCA). Given a set of variables X 2 R

q and another set Y 2 R
p,

one asks for the linear combination a>X that “best matches” a linear combination
b>Y. The best match in CCA is defined through maximal correlation. The task of
CCA is therefore to find a 2 R

q and b 2 R
p so that the correlation �.a; b/ D

�a>X;b>Y is maximized. These best-matching linear combinations a>X and b>Y
are then called canonical correlation variables; their correlation is the canonical
correlation coefficient. The coefficients a and b of the canonical correlation variables
are the canonical vectors.

Let us assume that the two random vectors under investigation, X and Y, have the
following covariance structure

Var

 

X

Y

!

D
�

˙XX

˙YX

˙XY

˙YY

�

:

The algorithm of CCA consists of calculating the matrix

K D ˙
�1=2
XX ˙XY˙

�1=2
YY

and its SVD

K D ���>:

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_16
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The diagonal elements of the matrix � are the canonical correlation coefficients.
The canonical correlation vectors can be obtained as

ai D ˙
�1=2
XX �i;

bi D ˙
�1=2
YY ıi;

and the canonical correlation variables are

�i D a>
i X;

'i D b>
i Y:

It can be easily verified that

Var

�

�

'

�

D
�Ik �

� Ik

�

:

Exercise 16.1 Calculate the canonical variables for the complete car marks data
set. Interpret the coefficients.

As in Härdle and Simar (2015, Example 16.1), we split the observed variables
into two logical subsets: X D .price, value/> and Y D .economy, service, design,
sportiness, safety, easy handling/>.

The empirical covariance matrix is

S D

0

B

B

B

B

B

B

B

B

B

B

B

@

1:41 �1:11 0:78 �0:71 �0:90 �1:04 �0:95 0:18

�1:11 1:19 �0:42 0:82 0:77 0:90 1:12 0:11

0:78 �0:42 0:75 �0:23 �0:45 �0:42 �0:28 0:28

�0:71 0:82 �0:23 0:66 0:52 0:57 0:85 0:14

�0:90 0:77 �0:45 0:52 0:72 0:77 0:68 �0:10
�1:04 0:90 �0:42 0:57 0:77 1:05 0:76 �0:15
�0:95 1:12 �0:28 0:85 0:68 0:76 1:26 0:22

0:18 0:11 0:28 0:14 �0:10 �0:15 0:22 0:32

1

C

C

C

C

C

C

C

C

C

C

C

A

:

In this case, the first random vector has only two components. Hence, we
can obtain only two pairs of canonical variables. The corresponding canonical
correlations are r1 D 0:98 and r2 D 0:89. The relationship between both pairs
of canonical variables seems to be quite strong.

The first pair of canonical vectors, corresponding to r1, is

a1 D .�0:33; 0:59/>;
b1 D .�0:43; 0:19; 0:00; 0:46; 0:22; 0:38/>;
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and the second pair of canonical vectors

a2 D .1:602; 1:686/>;

b2 D .0:568; 0:544;�0:012;�0:096;�0:014; 0:915/>:

These coefficients lead to the canonical variables

�1 D �0:33x1 C 0:59x2;

'1 D �0:43y1 C 0:19y2 C 0:46y4 C 0:22y5 C 0:38y6;

and

�2 D 1:602x1 C 1:686x2;

'2 D 0:568y1 C 0:544y2 � 0:012y3 � 0:096y4 � 0:014y5 C 0:915y6:

From the first canonical variables, we see that x1 (price) is positively related to y1
(economy) and negatively related to the remaining characteristics of a car (service,
sportiness, safety, and easy handling). The variable x2 (value) is negatively related
to y1 (economy) and positively related to the other characteristics.

The canonical variable �1 can be interpreted as a value index of the car. On
the one side, we observe cars with good (low) price and bad (high) appreciation
of value such as Trabant and Wartburg, and, on the other side, we see cars with
high price and good (low) appreciation of value such as BMW, Jaguar, Ferrari,
and Mercedes. Similarly, '1 can be interpreted as a quality index consisting of
variables such as sportiness and easy handling. The value and quality indices are
highly correlated with the canonical correlation coefficient 0.98. We can see this
correlation in Fig. 16.1.

The second pair of canonical variables provides more insight into the relationship
between the two sets of variables. �2 has low values for cars with good marks both
in price and value, e.g., VW and Opel. On the right-hand side, we should see cars
with bad marks in these two variables such as Ferrari and Wartburg. The canonical
variable '2 consists mainly of variables easy handling, economy, and service. The
position of cars is displayed in Fig. 16.2.

Exercise 16.2 Perform the CCA for the following subsets of variables: X corre-
sponding to fpriceg and Y corresponding to feconomy, easy handlingg from the car
marks data in Appendix A.5.

The estimated covariance matrix S corresponding to the random vector .price,
economy, easy handling/> is

S D
0

@

1:412 0:778 0:181

0:778 0:746 0:284

0:181 0:284 0:318

1

A :
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Fig. 16.1 Scatterplot of first canonical variables for the car marks data set. SMScancarm1

The canonical vectors maximizing the correlation between linear combinations
of fpriceg and feconomy, easy handlingg are a D �0:84155 and b D
.�1:3378; 0:58526/>. The canonical variables are thus � D �0:84155�price and
' D �1:3378�economyC0:58526�easy handling. In this example, we obtain only
one pair of canonical variables. We observe that the price has negative influence
on the canonical variable � which means that good (low) price is positively related
to economy and negatively related to easy handling. The canonical correlation
coefficient is r D 0:78718.

From Fig. 16.3, we can that see the relationship between the two canonical
variables is not so strong as in Exercise 16.1 where more variables from the same
data set are analyzed.

Exercise 16.3 Use the SVD of matrix K to show that the canonical variables �1
and �2 are not correlated.

Recall that the canonical vectors are defined as a>
i D ˙

� 1
2

XX �i, where �i are

eigenvectors of matrix KK> with K D ˙
� 1
2

XX ˙XY˙
� 1
2

YY .

http://www.quantlet.de/codes/sms/SMScancarm1.html
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Fig. 16.2 Second canonical variables for the car marks data set. SMScancarm2

To show that the correlation between the first two canonical variables �i D a>
i X,

i D 1; 2 is equal to zero, it is sufficient to show that the covariance between these
random variables is zero:

Cov.�1; �2/ D Cov.�>
1 ˙

� 1
2

XX X; �>
2 ˙

� 1
2

XX X/

D �>
1 ˙

� 1
2

XX Cov.X;X/˙
� 1
2

XX �2

D �>
1 ˙

� 1
2

XX ˙XX˙
� 1
2

XX �2

D �>
1 �2

D 0

because the columns of the matrix � are orthogonal eigenvectors.

Exercise 16.4 Express the singular value decomposition of matrices K and K>
using eigenvalues and eigenvectors of matrices K>K and KK>, show that the

http://www.quantlet.de/codes/sms/SMScancarm2.html
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Fig. 16.3 Scatterplot of the first pair of canonical variables for a subset of the car marks data
set. SMScancarm

eigenvalues of KK> and K>K are identical and verify that the number of nonzero
eigenvalues is equal to rank.˙XY/.

Using the singular value decomposition K D ���>, we obtain the decomposi-
tions

KK> D ��2� >;

K>K D ��2�>;

where� is a diagonal matrix containing nonzero values on its diagonal. This implies
that the spectral decompositions of matrices KK> and K>K can be written as

KK> D �

� �2
	

�

�2 0k0
>
k

0k0
>
k 0k0

>
k

��

� >
� >
2

�
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and

K>K D �

� �2

	

�

�2 0k0
>
k

0k0
>
k 0k0

>
k

��

�>
�>
2

�

;

i.e., we see that the nonzero eigenvalues of the two matrices are identical.
We remark that the number of zero eigenvalues depends on the dimension of

matrix K. The number of nonzero eigenvalues of both KK> and K>K is identical
and it is equal to the dimension of the matrix � and hence also to

rank.K/ D rank

�

˙
� 1
2

XX ˙XY˙
� 1
2

YY

�

D rank.˙XY/

because the matrices˙XX and ˙YY have full rank.

Exercise 16.5 What will be the result of CCA for Y D X?

We know that the variance matrix of the canonical variables is equal to

Var

�

�

'

�

D
�Ik �

� Ik

�

:

Defining � D ˙
�1=2
XX X D ˙

�1=2
YY Y D ' leads to the desired correlation structure

with all canonical correlation coefficients equal to one.

Exercise 16.6 What will be the results of CCA for Y D 2X and for Y D �X?

Similarly as in the previous Exercise 16.5, we define � D ˙
�1=2
XX X and ' D

˙
�1=2
YY Y in order to obtain the perfect correlation structure

Var

�

�

'

�

D
�Ik Ik

Ik Ik

�

:

Exercise 16.7 What results do you expect if you perform CCA for X and Y such
that ˙XY D 0p0

>
q ? What if ˙XY D Ip?

CCA for two uncorrelated sets of variables, with ˙XY D 0p0
>
q , would lead to

zero canonical correlation coefficients. The canonical variables would be the Maha-
lanobis transformations of the original variables and, due to the zero correlation, the
assignment of the variables to the pairs could be arbitrary.

The assumption ˙XY D Ip means that both vectors have the same dimension.
The canonical correlation coefficients and canonical variables cannot be deduced
only from this information, we would need to know also the variance matrices of X
and Y. We can say only that each component of X is positively related to the same
component of Y. Thus, we can expect that both canonical variables � and ' will
be calculated as weighted averages of the variables X and Y, respectively, with all
weights positive.



Chapter 17
Multidimensional Scaling

It was a nice question, for the Cape de Verds were about 500 miles to the north of us, and
the African coast about 700 miles to the east. On the whole, as the wind was coming round
to north, we thought that Sierra Leone might be best, . . .
James Armitage in “The Adventure of the “Gloria Scott””

Multidimensional scaling (MDS) is a mathematical tool that uses proximities
between observations to produce their spatial representation. In contrast to the
techniques considered so far, MDS does not start from the raw multivariate data
matrix X , but from an .n � n/ dissimilarity or distance matrix, D, with the elements
ıij and dij, respectively. Hence, the underlying dimensionality of the data under
investigation is in general not known.

MDS is a data reduction technique because it is concerned with the problem of
finding a set of points in low dimension that represents the configuration of data in
high dimension.

The metric MDS solution may result in projections of data objects that conflict
with the ranking of the original observations. The nonmetric MDS solves this
problem by iterating between a monotonizing algorithmic step and a least squares
projection step. The examples presented in this chapter are based on reconstructing
a map from a distance matrix and on marketing concerns such as ranking the outfit
of cars.

The Euclidean distance between the ith and jth points, dij, is defined as

d2ij D
p
X

kD1
.xik � xjk/

2;

where p is the dimension of the observations. MDS aims to find the original
Euclidean coordinates from a given distance matrix D D .dij/i;jD1;:::;n.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_17
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With aij defined as �d2ij=2 and

ai� D 1

n

n
X

jD1
aij; a�j D 1

n

n
X

iD1
aij; and a�� D 1

n2

n
X

iD1

n
X

jD1
aij; (17.1)

we get

bij D aij � ai� � a�j C a��; (17.2)

where bij D x>
i xj. The inner product matrix B D .bij/ can be expressed as

B D XX>; (17.3)

where X D .x1; : : : ; xn/
> is the .n � p/ matrix of coordinates. The matrix B

is symmetric, positive semidefinite, and of rank p; hence it has p nonnegative
eigenvalues and n � p zero eigenvalues and thus a spectral decomposition

B D ��� >; (17.4)

which allows us to obtain the matrix of coordinates X containing the point
configuration in R

p as

X D ��
1
2 : (17.5)

Nonmetric Solution

The idea of a nonmetric MDS is to demand a less-rigid relationship between the
final configuration of the points and the distances. In nonmetric MDS, it is assumed
only that this relationship can be described by some monotone function.

More formally, let us assume that we want to find a configuration of points
corresponding to a given dissimilarities ıij. In nonmetric MDS, we attempt to find
a configuration of points in a lower-dimensional space such that their Euclidean
distances are f .ıij/, where f .:/ is some increasing function.

The most common approach is the iterative Shepard–Kruskal algorithm. In the
first step, we calculate the Euclidean distance dij from an initial configuration of
the points. In the second step, we calculate the so-called disparities Odij such that
they are a monotone function of the given dissimilarities ıij and the quality of the
configuration of the points is measured by the STRESS measure:

STRESS D
 P

i<j.dij � Odij/
2

P

i<j d2ij

!1=2

: (17.6)



17 Multidimensional Scaling 291

In the third step, based on the differences between dij andbdij D Of .ıij/, we define a
new position of the points:

xNEW
ik D xik C ˛

n � 1
n
X

j D 1

j ¤ i

�

1 � Odij=dij

�

.xjk � xik/;

where ˛ determines the step width of the iteration. In the fourth step, the STRESS
measure is used to decide whether the change as a result of the last iteration is
sufficiently small or if the iterative procedure has to be continued.

Exercise 17.1 Apply the MDS method to the Swiss bank note data. What do you
expect to see?

We apply MDS on the 200 � 200 matrix D of Euclidean distances between all
Swiss bank notes. We try to reconstruct the original configuration of points using
metric MDS.

The results of metric MDS are displayed in Fig. 17.1. One would expect that our
results would be very similar to the principal component analysis (Härdle & Simar,
2015, Chap. 11).

The correlations of the projections with the original variables look indeed
quite similar. Contrary to our expectations, the scatterplot of the two-dimensional
projections look rather different. One can see that the separation of the two point
clouds is much better in the MDS method. The reason could be that principal
components are based only on an estimated of a covariance matrix which is wrong if
the data set consists of more subgroups. MDS is based only on the distance matrix,
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Fig. 17.1 MDS for Swiss bank notes. SMSmdsbank

http://www.quantlet.de/codes/sms/SMSmdsbank.html
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it is based only on the distances between observations and it does not assume any
covariance structure.

Exercise 17.2 Using (17.1), show that bij in (17.2) can be written in the form (17.3).

In the following calculation, we shall use the relations aij D �d2ij=2 and d2ij D
x>

i xi C x>
j xj � 2x>

i xj and we assume that the observations are centered, i.e.,
P

xi D
0p.

bij D aij � ai� � a�j C a��

D �1
2

(

d2ij � 1

n

n
X

kD1
d2ik � 1

n

n
X

kD1
d2kj C 1

n2

n
X

kD1

n
X

lD1
d2kl

)

D �1
2

(

x>
i xi C x>

j xj � 2x>
i xj � 1

n

n
X

kD1
.x>

k xk C x>
j xj � 2x>

k xj/

�1
n

n
X

kD1
.x>

i xi C x>
k xk � 2x>

i xk/C 1

n2

n
X

kD1

n
X

lD1
.x>

k xk C x>
l xl � 2x>

k xl/

)

D �1
2

(

x>
i xi C x>

j xj � 2x>
i xj � 1

n

n
X

kD1
x>

k xk � x>
j xj � x>

i xi � 1

n

n
X

kD1
x>

k xk

C2

n

n
X

kD1
x>

k xk

)

D x>
i xj:

In matrix notation, we can write

B D .x>
i xj/iD1;:::;nIjD1;:::;n D XX>

and the matrix B is called the inner product matrix.

Exercise 17.3 Show that

1. bii D a�� � 2ai�I bij D aij � ai� � a�j C a��I i 6D j,
2. B D Pp

iD1 xix>
i ,

3.
Pn

iD1 i D Pn
iD1 bii D 1

2n

Pn
i;jD1 d2ij.

The first part of this question was verified in the previous exercise. The formula
for bii follows immediately by setting i D j in (17.2).

Also from the previous exercise, we know that B D XX>. Let us now investigate
the matrix B elementwise.

B D .x>
i xj/iD1;:::;nIjD1;:::;n



17 Multidimensional Scaling 293

D
 

p
X

kD1
xikxjk

!

iD1;:::;nIjD1;:::;n

D
p
X

kD1
.xikxjk/iD1;:::;nIjD1;:::;n

D
p
X

kD1
xŒk�x

>
Œk�;

where xŒk� denotes the kth column of the matrix X .
The sum of eigenvalues is equal to the trace of the matrix B,

p
X

iD1
i D

n
X

iD1
bii

D
p
X

iD1
.a�� � 2ai�/

D �1
2

p
X

iD1

(

1

n2
X

k

X

l

d2kl � 2

n

X

k

d2ik

)

D � 1

2n

X

k

X

l

d2kl C 1

n

X

i

X

k

d2ik

D 1

2n

X

i

X

j

d2ij

Exercise 17.4 Redo a careful analysis of the car marks data based on the following
dissimilarity matrix:

1 2 3 4

i j Nissan Kia BMW Audi

1 Nissan -

2 Kia 2 -

3 BMW 5 6 -

4 Audi 3 4 1 -

The dissimilarity matrix contains obviously only ranks of dissimilarity. Applying
metric MDS may not be appropriate in this situation. Nonmetric MDS, on the other
hand, does not assume that the distance matrix is Euclidean. It only assumes that
the dissimilarities are monotone functions of the Euclidean distances and it uses
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Fig. 17.2 Nonmetric MDS for four cars. SMSnmdscarm

the iterative Shepard–Kruskal algorithm to find a configuration of points in two
dimensions that satisfy this monotonicity.

The outcome of the Shepard–Kruskal algorithm is given in Fig. 17.2. Audi and
BMW are lying very close to each other in opposition to Nissan and Kia. Nissan and
Audi are somewhat closer than Kia and BMW. It is important that both axes have
the same scale, different scales could lead to wrong interpretations.

The Euclidean distances between the points are:

1 2 3 4

i j Nissan Kia BMW Audi

1 Nissan -

2 Kia 2.00 -

3 BMW 5.02 6.02 -

4 Audi 3.20 4.16 1.88 -

These distances are different from the original dissimilarities but their order is the
same, i.e., the STRESS measure is equal to 0.

Exercise 17.5 Apply the MDS method to the U.S. health data. Is the result in
accordance with the geographic location of the U.S. states?

The results of both the metric and nonmetric MDS are displayed in Fig. 17.3.
The metric MDS on the left-hand side is used as the first iteration for the

http://www.quantlet.de/codes/sms/SMSnmdscarm.html
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Fig. 17.3 Nonmetric MDS for the original, the 0–1 scaled, and the standardized U.S. health data
set. SMSnmdsushealth

http://www.quantlet.de/codes/sms/SMSnmdsushealth.html
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Shepard–Kruskal algorithm. The last iteration of the algorithm is displayed on the
right-hand side of the graphics.

We can see that standardization leads to a more informative and a much better
scaled plot than the original data set.

Metric MDS applied on the original data set shows large differences between
Texas and all other states. Nonmetric MDS shifts the positions of the states slightly
and one can see California and New York emerging. These states, together with
Alaska, stand out also on the graphics based on the standardized data set.

We can also see some geographical East/West structure inside the big cloud
containing the majority of the states. Closer to New York, we see Eastern states
such as Florida or New Jersey. On the opposite side, closer to Alaska, we see
Western states such as Utah, Idaho, or Nevada. California and Texas stand out of
this structure and seem to be very different from the other states.

Exercise 17.6 Redo Exercise 17.5 with the U.S. crime data set.

The results of nonmetric MDS are displayed in Fig. 17.4. We standardize the data
set by subtracting the sample mean and dividing by its standard deviation.
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Fig. 17.4 Nonmetric MDS for U.S. crime data set. Northeast (squares), Midwest (circles), South
(triangles) and West (crosses). SMSnmdsuscrime

http://www.quantlet.de/codes/sms/SMSnmdsuscrime.html


17 Multidimensional Scaling 297

Fig. 17.5 U.S. states. Source: U.S. Census Bureau

Similarly as in the previous exercise, we see that New York, California, and
Alaska stand somewhat aside. The other states seem to form groups of similar and
neighboring states, see also the map in Fig. 17.5. The four census regions are clearly
separated in the direction of the vertical axis. The West (denoted by crosses) lies in
the upper part of Fig. 17.4. Northeastern states (squares) are located in the lower
part of the graphics. The South (triangles) seem to be more similar to West, whereas
Midwest lies closer to Northeast (Fig. 17.4).

Exercise 17.7 Perform the MDS analysis on the athletic records data in
Appendix A.1. Can you see which countries are “close to each other”?

Applying the nonmetric MDS in Fig. 17.6, we see a cloud containing most of the
countries. At some distance we observe four outliers: The Netherlands, Mauritius,
West Samoa, and Cook Islands. Closer look at the original data set reveals that West
Samoa and Cook Islands are very bad in all disciplines and that Mauritius and The
Netherlands are very bad in 200 m.

It seems that the horizontal direction of the scatterplot corresponds to the overall
performance of each country with Cook Islands as the worst and the USA as the
best country. Neighboring countries seem to be usually quite close to each other.
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Fig. 17.6 Nonmetric MDS for the the standardized athletic records data set.
SMSnmdsathletic

Exercise 17.8 Repeat Exercise 17.7 without the outlying countries: The Nether-
lands, West Samoa, Mauritius, and Cook Islands.

In Fig. 17.7, we can see the structure of the athletic records more clearly. The
countries with the best athletic records, such as the USA, Italy, USSR, and GB are
located on the left. The countries with worse national athletic records can be found
on the right-hand side. These countries are also more spread out since, for example,
Dominican Republic is quite good in short distance while Costa Rica performs well
in marathon.

In this exercise, the removal of the outliers leads to a better graphical display for
the remaining countries.

http://www.quantlet.de/codes/sms/SMSnmdsathletic.html
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Fig. 17.7 Nonmetric MDS for the the standardized athletic records data set without the four most
outlying countries. SMSnmdsathlesub

http://www.quantlet.de/codes/sms/SMSnmdsathlesub.html


Chapter 18
Conjoint Measurement Analysis

It only remains, therefore, to discover what is wanted by this German who writes upon
Bohemian paper, and prefers wearing mask to showing his face.
Sherlock Holmes in “A Scandal in Bohemia”

Conjoint measurement analysis is a technique to investigate the utilities attributes
to certain factor levels. It is heavily used in marketing and in the analysis of
consumer preferences. The statistical core of conjoint measurement analysis is
ANOVA in a linear model with a specially constrained design matrix X .

We observe the factors (elements of X ) and the preferences Y . The aim is to
estimate the part-worth that is the contribution of each factor level to its preference.

In the metric solution, the distance between any two adjacent preference
orderings corresponds to the same difference in utility, i.e., the utility gain between
products ranked 1st and 2nd is the same as the gain between say the 4th- and 5th-
ranked product.

In the nonmetric solution, one adjusts the estimated utilities by the PAV (pool-
adjacent-violators) algorithm and iterates in order to minimize a stress measure.

Design of Data Generation

A stimulus is defined as a combination of the factor levels of different components.
The profile method investigates the utility of each stimulus, i.e., we need to ask

the tester for the utility of each combination of the components. For example, three
components with four levels each would lead to 4 � 4 � 4 D 64 different stimuli.

If the number of components and their levels is increasing, the number of
stimuli might soon become too large for a questionnaire. In such a situation, we
can investigate only selected subset of stimuli. One possibility is the two-factor
method, which considers only pairwise combinations of the components. For three
components with four levels, we would observe only 4 �4C4 �4C4 �4D 48 stimuli.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_18
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302 18 Conjoint Measurement Analysis

The utilities of stimuli are then decomposed into the part-worths of the factor
levels by the standard ANOVA procedure.

Estimation of Preferences

The estimation procedure is formulated here only for data collected by the profile
method. The necessary modifications for other data setups are straightforward.

The conjoint measurement problem for one individual may be rewritten as a
linear regression model:

Y D Xˇ C "

with X being a design matrix with dummy variables. If the profile method is used,

the row dimension of X is K D
J
Q

jD1
Lj (the number of stimuli) and the column

dimension D D
J
P

jD1
Lj � J C 1.

In practice we have more than one person to answer the utility rank question for
the different factor levels. The design matrix is then obtained by stacking the design
matrix n times. Hence, for n persons we have a design matrix:

X � D 1n ˝ X D

0

B

B

B

B

@

X
:::
:::

X

1

C

C

C

C

A

9

>
>
>
>
=

>
>
>
>
;

n � times

with dimensions .nK/.L � J/ (where L D
J
P

jD1
Lj ) and Y� D .Y>

1 ; : : : ;Y
>
n /

>.

The linear model can now be written as:

Y� D X �ˇ C "�: (18.1)

The solution to the least squares problem, leading to estimates of the vector of the
part-worths ˇ, is in fact provided by the standard analysis of variance (ANOVA)
technique.

Nonmetric Solution

Often, the utilities are not measured on a metric scale. In this situation, we
may use the monotone ANOVA (Kruskal, Kruskal (1965)) based on a monotone
transformation OZ D f . OY/ to the observed stimulus utilities Y:
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The transformation OZk D f . OYk/ of the fitted values OYk is introduced to guarantee
monotonicity of preference orderings. The relationship is now monotone, but
model (18.1) may now be violated. Hence, as in (17.6) in Chap. 17, the procedure is
iterated until the STRESS measure

STRESS D

K
P

kD1
. OZk � OYk/

2

K
P

kD1
. OYk � NOY/2

is minimized over ˇ and the monotone transformation f .:/.

Exercise 18.1 Compute the part-worths for the following table of rankings

X2
1 2

1 1 2
X1 2 4 3

3 6 5

:

The given table contains the respondents rankings of the utilities of the stimuli
given by all six combinations of L1 D 3 levels of X1 and L2 D 2 levels of X2.

The design matrix X has K D L1L2 D 6 rows and D D L1 C L2 � 2 C 1 D
4 linearly independent columns. The design matrix is not unique and its choice
depends largely on the desired interpretation of the coefficients. It is possible to
increase the number of columns of X if we add linear constraints on the parameters
ˇ of the linear model.

For example, we can parametrize the model by calculating the overall mean
utility, b� D .1 C 2 C 4 C 3 C 6 C 5/=6 D 3:5. The part-worths of X1 can be
described by the parameter vector ˇ1 D .ˇ11; ˇ12; ˇ13/

> satisfying the constraint
1>
3 ˇ1 D ˇ11 C ˇ12 C ˇ13 D 0. The part worths are given by ˇ2 D .ˇ22; ˇ22/

> such
that ˇ22 C ˇ22 D 0.

Formally, this linear model can be written in the matrix form:

Y D

0

B

B

B

B

B

B

B

@

Y1
Y2
Y3
Y4
Y5
Y6

1

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

@

1

2

4

3

6

5

1

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

@

1 1 0 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

1 1 0 0 0 1

1 0 1 0 1 0

1 0 0 1 0 1

1

C

C

C

C

C

C

C

A

0

@

�

ˇ1
ˇ2

1

AC " D Xˇ C ";

under two linear constraints 1>
3 ˇ1 D 0 and 1>

2 ˇ2. The estimation procedure is
demonstrated in Table 18.1, where we provide also the mean utilities Npx1� and Npx2�
for all levels of the factor X1 and X2, respectively.
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Table 18.1 Metric solution
for the example

X2
1st level 2nd level Npx1�

bˇ1l

X1 1st level 1 2 1.5 �2
2nd level 4 3 3.5 0

3rd level 6 5 5.5 2

Npx2� 3.67 3.33 3.5
bˇ2l 0:17 �0:17

The coefficients (part-worths) were calculated as the difference of the marginal
mean utility and the overall mean utility,bˇji D Npxji � �. The resulting part worths,

bˇ11 D �2 bˇ21 D 0:17
bˇ12 D 0 bˇ22 D �0:17
bˇ13 D 2

;

model the utility for each stimulus. For example, the estimated utility for the
stimulus given by 1st level of X1 and 2nd level of X2 is bY2 D b� C bˇ11 C bˇ22 D
3:5 � 2 � 0:17 D 1:33.

Exercise 18.2 Rewrite the design matrix X .K � .D C 2// given in Exercise 18.1
and the parameter vector ˇ without the parameter for the overall mean effect �
and without the additional constraints on the parameters, i.e., find a design matrix
X 0.K � D/ such that Xˇ D X 0ˇ0.

The design matrix X .6 � 6/ proposed in Exercise 18.1 allowed to interpret
the model parameters as the overall mean utility � and the part-worths ˇji as the
deviation from�. As the design matrix is not uniquely given, we can choose it to suit
different interpretations. Often, some of the factor levels is considered as a reference
level and the model parameters are the constructed to describe the differences with
respect to the reference. This leads to the model:

Y D
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B

B

B

B

B

B

@
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Y2
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Y4
Y5
Y6
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C
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0
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B

B

B

B

B

B
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6

5
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C
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C

C

C

C

A

D
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B

B

B

B

@

1 0 0 0

1 0 0 1

1 1 0 0

1 1 0 1

1 0 1 0

1 0 1 1

1

C

C

C

C

C

C

C

A

0

B

B

@

ˇ0
11

ˇ0
12

ˇ0
13

ˇ0
22

1

C

C

A

C " D X 0ˇ0 C ";

where the parameter ˇ0
11 is the reference stimulus corresponding to the combination

of the 1st level of X1 and 1st level X2. The remaining parameters then measure the
part-worths with respect to the reference level.
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The parameter estimates may be obtained similarly as in Exercise 18.1 from the
marginal mean utilities,

Ǒ
11 D 1:67; Ǒ

12 D 2; Ǒ
13 D 4; Ǒ

22 D �0:34:

Hence, the utility of the second stimulus, given by 1st level of X1 and 2nd level of
X2, is OY2 D ˇ0

11 C ˇ0
22 D 1:67 � 0:34 D 1:33, the same value as in Exercise 18.1.

For the utility of the last stimulus, given by 3rd level of X1 and 2nd level of X2, we
would obtain OY6 D ˇ0

11 C ˇ0
13 C ˇ0

22 D 1:67C 4 � 0:34 D 5:33.

Exercise 18.3 Is it possible that different rankings lead to identical part-worths?

Yes, this can happen. It suffices to realize that the parameter estimates are based
only on the marginal mean utilities. Modifying the data set in a way that does not
change this means leads to the same results. An example is given in Table 18.2.
The resulting coefficients (part-worths), calculated as the difference of the marginal
mean utility and the overall mean utility,

bˇ11 D �2 bˇ21 D 0:17
bˇ12 D 0 bˇ22 D �0:17
bˇ13 D 2

;

are identical to the coefficients obtained from different rankings in Exercise 18.1.

Exercise 18.4 Compute the design matrix in the setup of Exercise 18.1 for n D 3

persons ranking the same products with X1 and X2.

As described in the introduction to this chapter, the design matrix X � is obtained
by stacking three identical individual design matrices X . Denoting by Y the vector
of the all nK D 18 rankings of the 6 stimuli by the 3 people, we can write the model
as:

Table 18.2 Metric solution
for the counterexample
demonstrating the
nonuniqueness of the problem

X2
1st level 2nd level Npx1�

bˇ1l

X1 1st level 2 1 1.5 �2
2nd level 4 3 3.5 0

3rd level 5 6 5.5 2

Npx2� 3.67 3.33 3.5
bˇ2l 0:17 �0:17
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@
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where 1>
3 ˇ1 D 0 and 1>

2 ˇ2. The parameters �, ˇ, ˇ1, and ˇ2 have the same
interpretation and dimension as in Exercise 18.1.

Exercise 18.5 Compare the predicted and observed utilities for the example ana-
lyzed in Exercise 18.1.

The observed and predicted rankings, denoted respectively by Yk and OYk, k D
1; : : : ; 6 are given in Table 18.3.

We observe that largest deviations in Table 18.3 occur for the first level of X1.
However, we would need larger sample of respondents for meaningful analysis of
the part-worths.

Table 18.3 Deviations
between model and data

Stimulus X1 X2 Yk OYk Yk � OYk .Yk � OYk/
2

1 1 1 1 1:67 �0:67 0:44

2 1 2 2 1:33 �0:67 0:44

3 2 1 4 3:67 �0:33 0:11

4 2 2 3 3:33 �0:33 0:11

5 3 1 6 5:67 �0:33 0:11

6 3 2 5 5:33 �0:33 0:11
P

- - 21 21 �0 1:33
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Table 18.4 Metric solution
for the example with n D 3

X2
1st level 2nd level Npx1�

bˇ1l

X1 1st level 1,1,3 2,3,1 1.83 �1:67
2nd level 4,4,5 3,2,2 3.33 �0:17
3rd level 6,5,6 5,6,4 5.33 1.83

Npx2� 3.89 3.11 3.5
bˇ2l 0.39 �0:39

Exercise 18.6 Compute the part-worths on the basis of the following tables of
rankings observed on n D 3 persons:

X2
1 1 2

X1 2 4 3
3 6 5

,

X2
1 3

X1 4 2
5 6

,

X2
3 1

X1 5 2
6 4

.

The analysis can be carried out similarly as in Exercise 18.1. We obtain
Table 18.4 summarizing the results.

For computer implementation of this procedure, it is better to use the
parametrization in terms of parameters ˇ0 described in Exercise 18.2. The
corresponding parameter estimates calculated by the appropriate statistical software
are:

bˇ0
1 D 2:22; bˇ0

2 D 1:50; bˇ0
3 D 3:50; bˇ0

4 D �0:78;

and it is easy to see that these values correspond exactly to the values calculated by
hand in Table 18.4.

The main advantage of performing the analysis on a computer is that a reasonable
software implementations of the two-way ANOVA give us also statistical tests of
significance of the X1 and X2 factors.

The hypothesis H1
0 W “no effect of X1”, tested by the usual F-test, leads to p-value

0:0001. The hypothesis H2
0 : “no effect of X2” leads, in the same way, the p-value

0:1062. Hence, the effect of X1 on the product utilities is statistically significant
whereas the effect of X2 is not. SMSconjexmp

Exercise 18.7 Suppose that in the car example a person has ranked cars by
the profile method on the following characteristics: X1=motor, X2=safety, and
X3=doors.

http://www.quantlet.de/codes/sms/SMSconjexmp.html
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The preferences are given in the following tables:

X1 X2 X3 preference
1 1 1 1
1 1 2 3
1 1 3 2

1 2 1 5
1 2 2 4
1 2 3 6

,

X1 X2 X3 preference
2 1 1 7
2 1 2 8
2 1 3 9

2 2 1 10
2 2 2 12
2 2 3 11

,

X1 X2 X3 preference
3 1 1 13
3 1 2 15
3 1 3 14

3 2 1 16
3 2 2 17
3 2 3 18

.

Estimate and analyze the part-worths.

There are k D 18 observations corresponding to 3 levels of X1, 2 levels of X2,
and 3 levels of X3. Due to the profile method, we have observations for all 3 � 2 � 3 D
18 possible combinations (stimuli) of the factor levels. The part-worths and mean
utilities are summarized in Table 18.5.

The tests of significance of the factors can be carried out by the usual F-test. For
the significance of X1, X2, and X3, we respectively obtain p-values 0.0000, 0.2445,
and 0.9060.

We conclude that factor X1, motor, has significant influence on the consumer
preferences. The part-worths of factors safety (X2) and doors (X3) are not statisti-
cally significant. SMSconjcars

Table 18.5 Metric solution
for the ranking of the cars

X2
1st level 2nd level Npx1�

bˇ1l

X1 1st level 1,3,2 5,4,6 3.5 �6
2nd level 7,8,9 10,12,11 9.5 0

3rd level 13,15,14 16,17,18 15.5 6

Npx3�
bˇ3l

X3 1st level 1,7,13 5,10,16 8.67 �0:83
2nd level 3,8,15 4,12,17 9.83 0:33

3rd level 2,9,14 6,11,18 10.00 0.50

Npx2� 8 11 9.5
bˇ2l �1.5 1.5

http://www.quantlet.de/codes/sms/SMSconjcars.html


Chapter 19
Applications in Finance

“It is interesting, chemically, no doubt,” I answered, “but practically —”
Dr. Watson in “Study in Scarlet”

Multivariate statistical analysis is frequently used in quantitative finance, risk
management, and portfolio optimization. A basic rule says that one should diversify
in order to spread financial risk. The question is how to assign weights to the differ-
ent portfolio positions. Here we analyze a so-called mean-variance optimization that
leads to weights that minimize risk given a budget constraint. Equivalently, we may
optimize the weights of a portfolio for maximal return given a bound on the risk
structure. The discussion naturally leads to links to the capital asset pricing model
(CAPM).

Financial data sets are of multivariate nature because they contain information
about the joint development of assets, derivatives, important market indicators, and
the likes.

A typical investor question is how much he should invest in what type of asset.
Suppose that pij denotes the price of the jth asset in the ith time period. The return
from this asset is then xij D .pij � pi�1;j/=pij.

Let us assume that the random vector X of returns of selected p assets has p-
dimensional probability distribution X .�;˙/. The return of a given portfolio is the
weighted sum of the individual returns:

Q D c>X;

where c denotes the proportions of the assets in the portfolio, c>1p D 1. Each asset
contributes with a weight cj, j D 1; : : : ; p, to the portfolio. The performance of the
portfolio c>X is a function of both the stochastic random vector X and the weights
c D .c1; : : : ; cp/

>. The mean return of the portfolio is defined as the expected
value of Q D c>X, whereas the variance Var.Q/ D c>˙c measures the risk of
the portfolio.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3_19
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Given a certain level of risk, an investor wants to know how much he should
invest in what asset. Put into mathematical terms this is equivalent to asking how
to choose the vector c of asset weights in order to optimize a certain portfolio risk
measure.

The first part of the exercises will analyze the minimization of Var.Q/ D c>˙c
with respect to c. We then consider the relation to the CAPM model.

Efficient Portfolios

The variance efficient portfolio, defined as the portfolio with minimum risk
(measured by the variance), is derived in Theorem 19.1.

Theorem 19.1 Assume that the returns X have multivariate distribution .�;˙/ and
that ˙ > 0.

The variance efficient portfolio weights are c D f1>
p ˙

�11pg�1˙�11p.

Including in the portfolio a riskless asset with a fixed return and zero variance
allows one to derive a portfolio with a given mean return, E Q D N�, and minimum
variance. Such a portfolio is called the mean-variance efficient.

Theorem 19.2 Assume that a riskless asset has constant return r and that the re-
maining returns X D .X1; : : : ;Xp/

> have multivariate distribution .�;˙/, ˙ > 0.
The weights of mean-variance efficient portfolio are

c D f�>˙�1.� � r1p/g�1 N�˙�1.�� r1p/

for the risky assets X and cr D 1 � 1>
p c for the riskless asset.

In practice, the variance matrix ˙ is estimated from the past returns. However,
this approach assumes that the covariance structure is stable over time. In practice,
one can expect that this assumption might be broken; see Franke, Härdle, & Hafner
(2011) for an overview of the commonly used modern methods.

Capital Asset Pricing Model

The CAPM investigates the relation between a mean-variance efficient portfolio
and an asset uncorrelated with this portfolio. This is typically a market index or
the riskless interest rate. Starting from the mean-variance efficient portfolio weights
given in Theorem 19.2, we can arrive at � D r1p C˙cfc>˙cg�1. N��r/; see Härdle
and Simar (2015, Sect. 19.4). Setting ˇ D ˙cfc>˙cg�1, we arrive at the well-
known CAPM model:

� D r1p C ˇ. N� � r/;
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where r is the return of the riskless asset or the index and N� is the expected return
of the market. The difference N� � r is the risk premium. The beta factors ˇ D
.ˇ1; : : : ; ˇp/

> are a measure of the relative performance (or sensitivity) of the p
assets with respect to the market risk. The econometric interpretation of the CAPM
model says that the expected return of any asset is a sum of the return of the riskless
asset plus the risk premium determined by the asset beta factor (Franke et al., 2011).

We start with two exercises on matrix inversion. These inversion techniques are
used later in the construction of efficient portfolios.

Exercise 19.1 Derive the inverse of .1 � �/Ip C �1p1
>
p .

In Exercise 2.8, we have already shown that

.A C aa>/�1 D A�1 � A�1aa>A�1

1C a>A�1a
:

Setting A D .1 � �/Ip and a D .sign �/
p
�1p, we easily obtain:

f.1� �/Ip C �1p1
>
p g�1

D f.1 � �/Ipg�1 � f.1 � �/Ipg�1�1p1
>
p f.1 � �/Ipg�1

1C �1>
p f.1 � �/Ipg�11p

D Ip

1 � �
� �1p1

>
p

.1 � �/2f1C .1 � �/�1�1>
p 1pg

D Ip

1 � �
� �1p1

>
p

.1 � �/.1 � �C �p/
D Ip

1 � � � �1p1
>
p

.1 � �/f1C �.p � 1/g :

Notice that the above derivation applies only if � ¤ 1 and, for p > 1, also � ¤
�1=.p � 1/.
Exercise 19.2 For which values of � is the matrix Q D .1� �/Ip C �1p1

>
p positive

definite?

The eigenvalues are found by solving jQ�Ipj D 0. According to the expression
jA C aa>j D jAjj1C a>A�1aj derived in Exercise 2.8, we can write:

j˙ � Ipj D j.1 � � � /Ip C �1p1
>
p j

D j.1 � � � /Ipjj1C �1>
p f.1� � � /Ipg�11pj

D .1 � � � /j1C �p.1� � � /�1j:

Hence, the eigenvalues are  D 1 � � and  D 1 � �C �p D 1C �.p � 1/.
The matrix Q is positive definite if and only if all its eigenvalues are positive.

This implies that Q > 0 if 1 � � > 0 and 1 C �.p � 1/ > 0, i.e., � < 1 and
� > �.p � 1/�1.
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Exercise 19.3 Calculate the variance efficient portfolio of equally correlated assets
with equal variances.

According to Theorem 19.1, the assets have to be weighted by

c D f1>
p ˙

�11pg�1˙�11p:

In our case, the variance matrix of the returns can be written as:

˙ D �2Q D �2

0

B

B

B

@

1 � � � � �
� 1 � � � �
:::
:::
: : :

:::

� � � � � 1

1

C

C

C

A

;

where �.p � 1/�1 < � < 1 guarantees that the matrix ˙ is positive definite, see
Exercise 19.2.

According to Exercise 19.1, the inverse is

˙�1 D ��2Q�1 D Ip

�2.1 � �/
� �1p1

>
p

�2.1 � �/f1C .p � 1/�g
and it follows that

˙�11p D 1p

�2.1 � �/ � �1p1
>
p 1p

�2.1 � �/f1C .p � 1/�g

D Œf1C .p � 1/�g � �p�1p

�2.1 � �/f1C .p � 1/�g D .1 � �/1p

�2.1 � �/f1C .p � 1/�g

D 1p

�2f1C .p � 1/�g
which yields

1>
p ˙

�11>
p D p

�2f1C .p � 1/�g :

The weights of the variance efficient portfolio are thus

c D f1>
p ˙

�11pg�1˙�11p D 1

p
1p;

i.e., all assets are equally weighted.

Exercise 19.4 Calculate the variance efficient portfolio of equally correlated
assets.
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Let �2i > 0 be the variance of ith asset Xi, i D 1; : : : ; p, and define D D
diag.�21 ; : : : ; �

2
p /. The variance matrix of X can be written as ˙ D D1=2QD1=2,

where Q is the correlation matrix defined in Exercise 19.3.
Obviously, the inverse of the variance matrix is ˙�1 D D�1=2Q�1D�1=2.

Expressing the inverse Q�1 as in Exercise 19.1, we have

˙�11p D D�1=2Q�1D�1=21p

D D�11p

1 � � � �D�1=21p1
>
p D�1=21p

.1� �/f1C .p � 1/�g

D
(

��2
i

1 � �
� ���1

i

Pp
jD1 ��1

j

.1 � �/f1C .p � 1/�g

)

iD1;:::;p
:

Hence, the weight of the ith asset in the variance efficient portfolio can be expressed
as:

ci D

8

ˆ
<

ˆ
:

p
X

jD1
��2

j �
�
�
Pp

jD1 ��1
j

�2

f1C .p � 1/�g

9

>
=

>
;

�1
(

��2
i � ���1

i

Pp
jD1 ��1

j

f1C .p � 1/�g

)

:

Exercise 19.5 How does the result of Exercise 19.4 look like if � D 0.

Setting � D 0 in the variance efficient portfolio weights derived in Exercise 19.4
leads to

ci D ��2
i

Pp
jD1 ��2

j

:

Hence, the weight of the ith asset in the variance efficient portfolio is decreasing
function of its variance. This result corresponds to Härdle and Simar (2015,
Corollary 19.3).

Exercise 19.6 Derive the variance efficient portfolio for IBM, PanAm, and the
Digital Equipment company using the returns given in Appendix A.13.

The empirical covariance matrix is:

S D
0

@

0:0035 0:0017 0:0026

0:0017 0:0174 0:0035

0:0026 0:0035 0:0098

1

A :

Using S as estimate of the unknown variance matrix˙ and applying Theorem 19.1
leads the estimated variance efficient portfolio weights

c D .0:829; 0:092; 0:078/>:
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Fig. 19.1 Returns of the equally weighted and variance efficient portfolio for IBM, PanAm and
DEC. SMSportfol

The large majority should be invested in IBM which, as we see from the empirical
covariance matrix, has also the smallest variance.

In Fig. 19.1, we compare the returns of the variance efficient and equally
weighted portfolio. Both plots are using the same scale and, as expected, the
variability of the variance efficient portfolio is obviously much smaller.

Exercise 19.7 The empirical covariance between the 120 returns of IBM and
PanAm in Exercise 19.6 is 0:0017. Test if the true covariance is zero.

The value sIBM;PanAm D 0:0017 seems to be quite small but we have to keep in
mind that it depends on the scale of measurement. In this case, it is better to work
with correlations which are scale independent and zero covariance is equivalent to
zero correlation.

The empirical correlation matrix of the variables analyzed in Exercise 19.6 is

R D
0

@

1:0000 0:2126 0:4441

0:2126 1:0000 0:2654

0:4441 0:2654 1:0000

1

A :

http://www.quantlet.de/codes/sms/SMSportfol.html
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The empirical correlation of IBM and PanAm returns is rIBM;PanAm D 0:2126.
The significance of the correlation coefficient can be tested using Fisher’s Z-

transformation, see also Exercise 3.5. Under the null hypothesis, H0 W �IBM;PanAm D
0, the random variable

W D 1

2
log

�

1C rIBM;PanAm

1� rIBM;PanAm

�

has asymptotically normal distribution with expected value E W D 0 and variance
Var W D .n � 3/�1.

Comparing the value

p
n � 3
2

log

�

1C rIBM;PanAm

1 � rIBM;PanAm

�

D
p
117

2
log

1:2126

0:7874
D 2:3352

to the appropriate quantile of the standard normal distribution, u0:975 D 1:96, we
reject the null hypothesis.

Hence, on probability level 1 � ˛ D 95%, we conclude that the covariance
between IBM and PanAm returns is significantly positive.

Exercise 19.8 Explain why in both the equally and optimally weighted portfolio
plotted on Fig. 19.1 in Exercise 19.6 have negative returns just before the end of the
series, regardless of whether they are optimally weighted or not!

In the NYSE returns data set, we can clearly see that at the end of the data set,
all considered stocks have negative returns. In such situation, it is clear that any
positively weighted portfolio ends up in a loss.

The worst results can be seen in the third row from the end of the data set. Since
the data set contains monthly returns and it stops in December 1987, the worst
results are achieved in October 1987. Actually, the stock market crash of October
19th 1987 was one of the largest market crashes in history. On this so-called Black
Monday, the Dow-Jones index lost 22.6 % of its value (Sobel, 1988).

Exercise 19.9 Could some of the weights in Exercise 19.6 be negative?

The efficient portfolio weights, c D f1>
p ˙

�11pg�1˙�11p, are given in Theo-
rem 19.1. Clearly, the denominator 1>

p ˙
�11p is always positive since the variance

matrix ˙ is positive definite. Thus, the weight of the ith asset ci < 0 if and only if
the ith element of the vector˙�11p < 0.

Noticing that the vector ˙�11p contains the sums of row elements of the matrix
˙�1, we just need to design a suitable positive definite matrix. For example,

˙�1 D
0

@

1:0 �0:8 �0:4
�0:8 1:0 0:2

�0:4 0:2 1:0

1

A
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is a positive definite matrix with negative row sums. The corresponding variance
matrix of the asset returns would be:

˙ D .˙�1/�1 D
0

@

3:3333 2:5000 0:8333

2:5000 2:9167 0:4167

0:8333 0:4167 1:2500

1

A :

It is now easy to see that the variance efficient portfolio weights are indeed c D
.�0:2; 0:4; 0:8/> with c1 D �0:2 < 0.

Hence, we conclude that the variance efficient portfolio weights (see Theo-
rem 19.1 and Exercise 19.6) could be negative for certain covariance structures of
the asset returns.

Exercise 19.10 In the CAPM the ˇ value tells us about the performance of the
portfolio relative to the riskless asset. Calculate the ˇ value for each single stock
price series relative to the “riskless” asset IBM.

We have already seen in Exercise 19.6 that IBM returns have smallest variance.
Hence, it makes sense to use IBM as a replacement of the market index in CAPM.

Let us denote the returns of the index (IBM) by ri, i D 1; : : : ; n. The coefficient
ˇj corresponding to the jth asset returns xij, j D 1; : : : ; p, can be estimated using the
following linear model:

xij D ˛i C ˇjri C "i;

where "i are iid random variables with zero mean and variance �2. As shown in
Exercise 3.7, the estimates of ˇi by the least squares method can be calculated as:

Ǒ
i D sXi;R

sRR
;

where sXi;R denotes the empirical covariance of the ith asset returns and the market
index and sR;R is the empirical variance of the market index.

The betas can now be calculated from the covariance matrix given in Exer-
cise 19.6:

Ǒ
2 D 0:0017=0:0035 D 0:49;

Ǒ
3 D 0:0026=0:0035 D 0:74:

The estimated regression lines are plotted in Fig. 19.2 where the larger sensitivity of
DEC is clearly visible.

The estimated betas suggest that both the companies, PanAm ( Ǒ
2) and DEC ( Ǒ

3),
are less sensitive to market changes than the “index” IBM.
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Fig. 19.2 Returns of PanAm and DEC plotted against IBM returns with the corresponding
regression lines. SMScapmnyse
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Chapter 20
Highly Interactive, Computationally Intensive
Techniques

Then we have stopped all the holes. And now we must be silent and wait.
Sherlock Holmes in “The Red-Headed League”

Modern statistics is impossible without computers. The introduction of modern
computers in the last quarter of the twentieth century created the subdiscipline
“computational statistics.” This new science has subsequently initiated a variety
of new computer-aided techniques. Some of these techniques, such as brushing of
scatter plots, are highly interactive and computationally intensive.

Computer-aided techniques can help us to discover dependencies among the
variables without formal tools and are essential, especially when we consider
extremely high-dimensional data. For example, visual inspection and interactive
conditioning via the brush helps us to discover lower-dimensional relations between
variables. Computer-aided techniques are therefore at the heart of multivariate
statistical analysis.

In this chapter we first present simplicial depth, a generalization of the data depth
allowing straightforward definition of the multivariate median. Next, projection
pursuit is a semiparametric technique based on “interesting” one-dimensional
projection. A multivariate nonparametric regression model is underlying sliced
inverse regression, a technique that leads to a dimensionality reduction of the space
of the explanatory variables. The technique of support vector machines (SVM) is
motivated by nonlinear classification (discrimination problems). The last technique
presented in this chapter, classification and regression trees (CART), is a decision
tree procedure developed by Breiman, Friedman, Olshen, & Stone (1984).

Simplicial Depth

In p-dimensional space, the depth function allows to define an ordering or the
multivariate data set from the most central (deepest) point towards the outside
regions. Moreover, the border of a region with certain depth may serve as a

© Springer-Verlag Berlin Heidelberg 2015
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multivariate generalization of a quantile and, in this way, we may define a bagplot
(Rousseeuw, Ruts, & Tukey, 1999) as a multi-dimensional generalization of the
univariate boxplot.

The most popular depth functions are the simplicial depth (Liu, 1988, 1990)
and the halfspace depth (Tukey, 1975). Some other approaches are the convex hull
peeling (Eddy, 1982), the location-scale depth (Mizera & Müller, 2004), or the
weighted halfspace depth (Hlubinka, Kotík, & Vencálek, 2010), among many others.
Desirable properties that a depth function should exhibit are reviewed in Zuo and
Serfling (2000).

The simplicial depth (or Liu depth) of a data point x is defined as the number
of convex hulls formed from all possible selections of p C 1 points covering x.
The multivariate median may be defined as the point with the largest simplicial
depth, i.e.,

xmed D arg max
i

#fk0; : : : ; kp 2 f1; : : : ; ng W xi 2 hull.xk0 ; : : : ; xkp/g:

Unfortunately, with increasing dimension p and number of observations n, the
calculation of both the simplicial depth and the multivariate median becomes very
time-consuming (Genest, Masse, & Plante, 2012).

Exploratory Projection Pursuit

The projection pursuit searches for interesting directions in a p-dimensional data set
by maximizing a chosen index. In Chap. 11, the method of principal components is
based on the maximization of variance. In Chap. 16, the method of canonical corre-
lations maximizes the correlation between linear combinations of two subgroups of
the observed variables.

Assume that the p-dimensional random vector X has zero mean, E X D 0p, and
unit variance Var.X/ D Ip. Such a covariance structure can be achieved by the
Mahalanobis transformation. Let Ofh;˛ denote the kernel density estimator of the pdf
of the projection ˛>X, where h denotes the kernel estimator bandwidth. Friedman
and Tukey (1974) proposed the index:

IFT;h.˛/ D n�1
n
X

iD1
Ofh;˛.˛>Xi/;

leading to the maximization of
R

f 2.z/dz. The Friedman–Tukey index is minimal for
a parabolic density and, by its maximization, we search for a distribution that is as
far from the parabolic density as possible.
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An alternative approach is based on the (minus) entropy measure
R

f .z/ log f .z/dz
leading to the entropy index:

IE;h.˛/ D n�1
n
X

iD1
logfOfh;˛.˛>Xi/g:

Jones and Sibson (1987) suggested to approximate the entropy index by a moment-
based index:

IJS.˛/ D f�23.˛>X/C �24.˛
>X/=4g=12;

where �3.˛>X/ D Ef.˛>X/3g and �4.˛>X/ D Ef.˛>X/4g � 3 are cumulants of
˛>X. The maximization of IE.˛/ and IJS.˛/ leads to the least-normal-looking view
of the data set.

Hui and Lindsay (2010) proposed white noise analysis (WNA) based on the
eigen-analysis of the standardized Fisher information matrix for the square trans-
formed density estimated by the kernel method. The non-informative white noise
projections are identified and discarded while the remaining informative projections
are used to look for interesting relationships. This approach is computationally
simpler than the classical projection pursuit based on computationally intensive
searching for low-dimensional least-normal projections

Cook, Buja, & Cabrera (1993) use the first term in the orthonormal polynomial
expansion of the density f .:/ in order to define the central mass and the central
hole index and show that the central mass index is maximized for a distribution
with a mass concentrated at 0 and that the central hole index is maximized for a
distribution with equal mass at points �1 and 1. These computationally efficient
indices are implemented in GGobi (Swayne, Lang, Buja, & Cook, 2003; Lang,
Swayne, Wickham, & Lawrence, 2012) and may be used to produce an informative
guided tour through a multivariate data set.

Sliced Inverse Regression

Given a response variable Y and a (random) vector X 2 R
p of explanatory variables,

the idea of sliced inverse regression (Duan & Li, 1991) is to find a smooth regression
function that operates on a variable set of projections:

Y D m.ˇ>
1 X; : : : ; ˇ>

k X; "/;

where ˇ1; : : : ; ˇk are unknown projection vectors, k � p is unknown, m W RkC1 ! R

is an unknown function, and " is the random error with E ."jX/ D 0. The unknown
ˇis are called effective dimension-reduction directions (EDR directions). The span
of EDR directions is denoted as an effective dimension reduction space (EDR
space).
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The EDR space can be identified by considering the inverse regression (IR) curve
m1.y/ D E.ZjY D y/ of the standardized variable Z D ˙�1=2.X � E X/. The
SIR algorithm exploits the fact that the conditional expectation m1.y/ is moving
in span.�1; : : : ; �k/. The EDR directions Ǒ

i, i D 1; : : : ; k are calculated from the
eigenvectors O�i of Varfm1.y/g. The eigenvalues of Varfm1.y/g show which of the
EDR directions are important (Cook & Weisberg, 1991; Li, 1991; Hall & Li, 1993).

SIR Algorithm

1. Standardize x by calculating zi D Ȯ �1=2.xi � Nx/.
2. Divide the range of the response yi into S disjoint intervals (slices) Hs, s D
1; : : : ; S. The number of observations within slice Hs is ns D Pn

iD1 IHs.yi/.
3. Compute the mean of zi over all slices, Nzs D n�1

s

Pn
iD1 ziIHs.yi/ as a crude

estimate of the IR curve m1.y/.
4. Calculate the estimate for the conditional variance of the IR curve: OV D

n�1PS
sD1 nsNzsNz>

s .
5. Identify the eigenvalues Oi and eigenvectors O�i of OV .
6. Put the standardized EDR directions O�i back to the original scale: Ǒ

i D Ȯ �1=2 O�i.

SIR II Algorithm

In some cases, the EDR directions are hard to find using the SIR algorithm. The
SIR II algorithm overcomes this difficulty by considering the conditional variance
Var.Xjy/ instead of the IR curve m1.y/.

In practice, it is recommended to use SIR and SIR II jointly (Cook & Weisberg,
1991; Li, 1991, Schott, 1994, Kötter, 1996) or to investigate higher-order conditional
moments.

Some further developments of this algorithm are the principal Hessian directions
(PhD) method (Cook, 1998) or the k-means inverse regression (KIR) proposed by
Setodji and Cook (2004). The algorithms SIR, SIR II (or SAVE), and PhD are
implemented in the R library dr (dimension reduction), see Weisberg (2002).

CART

CART, i.e., a classification or regression tree, is based on sequential splitting of the
data space into a binary tree. At each node, the split is determined by minimization
of an impurity measure. For regression trees this impurity measure is, e.g., the
variance; for classification trees, it is, e.g., the misclassification error.
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Fig. 20.1 Classification of
patients into low- and
high-risk patients

Is mimimum systolic blood pressure
over the initial 24 hours < 91?

Is age < 62.5?

Is sinus tachycardia present?

HIGH RISK LOW RISK

HIGH RISK

HIGH RISK

A simple introductory example is a classification of patients into low- and high-
risk patients. Left branches of the tree plotted in Fig. 20.1 correspond to positive
answers, right branches to negative answers to questions like “Xj � a.” Here Xj

denotes one of the many variables recorded for each patient and a is the threshold
that has to be computed by minimizing the (chosen) impurity measure at each node.

An important characteristic is that CART always splits one of the coordinate
axes, i.e., in only one variable. A simple classification into two groups that lie above
and below a diagonal of a square will be hard for CART. We study this effect in the
following exercises.

The splitting procedure is defined via the Gini, the twoing, or the least squares
criterion. The Gini method typically performs best. Industries using CART include
telecommunications, transportation, banking, financial services, health care, and
education.

Support Vector Machines

The theoretical basis of the SVM methodology is provided by the statistical learning
theory (Vapnik, 2000). The basic idea of the SVM classification is to find a
separating hyperplane x>w C b D 0 corresponding to the largest possible margin
between the points of different classes. The classification error �i � 0 of the ith
observation is defined as the distance from the misclassified point xi to the canonical
hyperplane x>w C b D ˙1 bounding its class:

x>
i w C b � 1 � �i in group 1; (20.1)

x>
i w C b � �1C �i in group 2: (20.2)
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Using this notation, the margin between the points of different classes, i.e., the
distance between the canonical hyperplanes, is equal to 2=kwk. The problem of pe-
nalized margin maximization can now be formulated as a constrained minimization
of the expression:

1

2
kwk2 C c

n
X

iD1
�i (20.3)

under constraints (20.1) and (20.2), where c is a cost parameter controlling the
behavior of the algorithm. This method is usually called the soft margin SVM or
the C-classification SVM.

Nonlinear classification is achieved by mapping the data into a high-dimensional
feature space and finding a linear separating hyperplane in this feature space. This
can be easily achieved by using a kernel function in the dual formulation of the
minimization problem (20.3). Throughout the rest of this chapter, we will use the
Gaussian radial basis function:

K.xi; xj/ D expf�kxi � xjk2=2�2g;

where � is a scaling parameter.
For more insight into the SVM methodology, we refer to Vapnik (2000) and

Hastie, Tibshirani, & Friedman (2009).

Exercise 20.1 Construct a configuration of points in R
2 such that the point with

coordinates given by the univariate medians, .xmed;1; xmed;2/
>, is not in the center of

the scatterplot.

In Fig. 20.2, we plot an example with 11 points. Ten points are lying roughly on
the unit circle while the 11th point lies somewhere between them. The depth of the
11 points is given at the location of each point in Fig. 20.2. Given point, say x, lying
on the diameter of the circle should be covered only by the triangles (convex hulls
of p C 1 D 3 points) containing x. The number of such triangles is clearly

�

10

2

�

D 10Š

8Š2Š
D 90

2
D 45

and, in Fig. 20.2, we observe that this is indeed the depth of the points lying on the
diameter of the circle.

The deepest point, the multivariate median, is denoted by the star. The triangle
shows the location of the coordinatewise median. Clearly, the coordinatewise
median does not lie close to any observation.

Exercise 20.2 Calculate the Simplicial Depth for the Swiss bank notes data set
(Appendix A.2) and compare the results to the univariate medians. Calculate the
Simplicial Depth again for the genuine and counterfeit bank notes separately.
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Fig. 20.2 The deepest point (star) and the coordinatewise median (triangle) of the simulated data
set. The numbers are giving the simplicial depth of the points. SMSsimpdsimu

The Swiss bank notes data set has altogether 200 six-dimensional observations.
In order to calculate the depth of each point, we should check if each of these points
lies inside a convex hull formed by every possible p C 1 D 7 points. From 200

points, we can select 7 distinct points in altogether

�

200

7

�

D 2283896214600ways.

Clearly, the evaluation of this relatively small data set might take a while even if
some smart numerical algorithm is used.

In order to demonstrate the concept of the Simplicial Depth, we calculate the
depth only on the 20 Swiss bank notes selected in Exercise 13.6, see also Fig. 13.5
for the numbers of the selected observations. To increase the speed of calculation
even further, we calculate the simplicial depth only in the two-dimensional space
given by the first two principal components.

The simplicial depth of the selected 20 points is plotted in Fig. 20.3. The smallest

possible data depth is given by

�

19

2

�

D 171. The largest possible depth would be

http://www.quantlet.de/codes/sms/SMSsimpdsimu.html
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Fig. 20.3 The deepest point (big star) and the coordinatewise median (big triangle) of the first two
PCs of the Swiss bank notes. Smaller symbols show the deepest points and coordinatewise medians
for genuine and counterfeit banknotes. The numbers are labels of the selected 20 observations.

SMSsimpdbank

�

20

3

�

D 1140 if some of the points would lie in the convex hull of all possible

combinations of 3 points.
The deepest point, .�1:19; 0:05/>, in Fig. 20.3 is denoted by the big star. Smaller

stars denote the deepest points calculated separately for the genuine and counterfeit
bank notes. The large triangle denotes the coordinatewise median, .0:78;�0:08/>,
of all observations—notice that it is lying quite far from the deepest point and it
even has opposite sign.

The coordinatewise medians calculated only for the 10 genuine and 10 counter-
feit bank notes are plotted as small triangles in Fig. 20.3. The differences between
the deepest point and the coordinatewise median are clearly visible: the deepest
point is always one of the points given in the data set, whereas the coordinatewise
median often lies quite far away even from the closest observation.

http://www.quantlet.de/codes/sms/SMSsimpdbank.html
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Exercise 20.3 Apply the EPP technique on the Swiss bank notes data set (Ap-
pendix A.2) and compare the results to the PC analysis and Fisher’s linear
discriminant rule.

The first step in projection pursuit is usually sphering and centering of the data
set by the Mahalanobis transformation. This transformation removes the effect of
location, scale, and correlation structure.

The search of the optimal projection is based on nonparametric density estimators
of the projections. In this exercise, we were using Quartic kernel with bandwidth
given by the Scott’s rule-of-thumb, h D 2:62n�1=5, see Härdle, Müller, Sperlich,
& Werwatz (2004). We were searching for projections maximizing the Friedman–
Tukey index.

In Fig. 20.4, we plot the estimated densities minimizing (dashed line, upper
dotplot) and maximizing (solid line, lower dotplot) the Friedman–Tukey index (the
extremes were taken from 10,000 randomly chosen projections). In the dotplots of
the resulting extreme one-dimensional projections, the genuine and counterfeit bank
notes are distinguished by different plotting symbols.
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Fig. 20.4 The least (dotted line, upper dotplot) and the most informative (solid line, lower dotplot)
from 10,000 randomly chosen directions. The Friedman–Tukey index. SMSeppbank

http://www.quantlet.de/codes/sms/SMSeppbank.html
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The most interesting Friedman–Tukey projection is given by the vector:

.�0:9440;�0:3158; 0:0349; 0:0417; 0:0345;�0:0706/>;

i.e., the largest weight is assigned to the first variable, the length of the bank note.
In the least interesting projection (dashed line in Fig. 20.4), it would be impossible
to separate the genuine and counterfeit bank notes although we see some outlying
group of counterfeit bank notes on the right-hand side. In the lower dotplot, the
separation between the counterfeit and genuine bank notes seems to be much better.
However, the best separation by far is achieved by the Fisher’s linear discriminant
rule plotted in Fig. 20.5.

The Fisher’s LDA projection is given by the coefficients:

a D .�0:1229;�0:0307; 0:0009; 0:0057; 0:0020;�0:0078/>
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Fig. 20.5 The Fisher’s LDA projection (solid line, upper dotplot) and the first PC (dashed line,
lower dotplot) for Swiss bank notes. SMSdisfbank2

http://www.quantlet.de/codes/sms/SMSdisfbank2.html
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and the projected points are displayed in the upper dotplot in Fig. 20.5. The
corresponding kernel density estimate is given by the dashed line. The clear
separation of the two groups confirms the optimality of the Fisher’s projection (note
that the prior knowledge of the two groups was used in the construction of this
projection).

The principal component projection of the same (sphered and centered) data set
is given by the linear combination:

v D .0:6465; 0:3197; 0:0847;�0:5688;�0:1859; 0:3383/>

and the resulting one-dimensional projection is plotted as the solid line and the lower
dotplot in Fig. 20.5. Notice that the Mahalanobis transformation used for sphering
and centering of the data set “guarantees” that the PC transformation has no chance
of producing an interesting result, see Exercise 11.7.

Comparing the projections plotted in Figs. 20.4 and 20.5, we can say that the PC
projection and EPP lead to similar results and both assign the largest weight to the
first variable. The Fisher’s discriminant rule, using prior knowledge of the group
membership of the observations, shows the best possible separation of genuine and
counterfeit bank notes.

From the computational point of view, the PC and Fisher’s discriminant pro-
jections are very simple to implement. The implementation of the exploratory
projection pursuit is much more involved and it requires choices of additional pa-
rameters such as the kernel function or bandwidth. For large and high-dimensional
data sets, the computation might take very long, the numerical algorithm does not
have to find the global maximum and it even is not guaranteed that such a unique
maximum exists.

Exercise 20.4 Apply the SIR technique to the U.S. companies data (Appendix A.17)
with Y D “market value” and X D“all other variables”. Which EDR directions do
you find?

The U.S. companies data set contains 6 variables measured on 79 U.S. compa-
nies. Apart of the response variable, market value, the data set contains information
on assets, sales, profits, cash flow, and number of employees. As described in the
introduction to this chapter, SIR attempts to find lower dimensional projections of
the five explanatory variables with a strong (possibly nonlinear) relationship to the
market value.

This data set has been already investigated in Exercise 13.9 and, again, we
use the same logarithmic transformation. The scatterplot of the first two PCs of
the transformed data set was already given in the same exercise in Fig. 13.9.
The transformed variables are centered and standardized so that the scales of
measurement of all variables become comparable; the standardization is not crucial
for SIR, but it simplifies the interpretation of the resulting coefficients.
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Fig. 20.6 SIR applied on the U.S. companies data set (without IBM and General Electric).
Screeplot and scatterplots of the first three indices against the response. SMSsiruscomp

Two companies, IBM and General Electric, have extremely large market value
and we removed them from the next analysis as outliers. Without these two
observations, the rest of the data set is more “spread out” in the scatterplots in
Fig. 20.6.

After the removal of the two outliers, there are 77 observations left in the data set.
For the SIR, we have created 7 slices with 11 observations each. The eigenvalues are
O D .0:70; 0:19; 0:07; 0:03; 0:01/ and it seems that only one factor explains “larger
than average” amount (1=5 D 0:20) of the conditional variance of the IR curve.
In Fig. 20.6 we plot the corresponding screeplot and scatterplots of the response,
market value, against the first three resulting projections of the five explanatory
variables in Fig. 20.6.

The scatterplot of the market value against the first factor, X Ǒ
1, shows strong

nonlinear relationship. The coefficients of the first factor are given by Ǒ
1 D

http://www.quantlet.de/codes/sms/SMSsiruscomp.html
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.0:35; 0:14; 0:19; 0:03; 0:91/>. Clearly, most of the factor is given by the 5th
explanatory variable, number of employees. Important role is played also by the
first variable, assets. Less important are the second and the third variable, i.e., sales
and profits.

The second factor, explaining 19% of the variance, is given by coefficients Ǒ
2 D

.0:25; 0:55; 0:38;�0:05;�0:70/>. It could be described as “large sales, profits, and
assets with small number of employees” factor. The scatterplot in Fig. 20.6 does
not seem to show any clear relationship between the market value and the second
factor. However, three-dimensional plot would reveal rather complicated nonlinear
dependency of the market value on the first two factors. Unfortunately, for obvious
reasons, a three-dimensional plot cannot be printed in a book.

We can conclude that the market value of a company is a nonlinear function of a
factor given mainly by number of employees and assets of the company.

Exercise 20.5 Simulate a data set with X � N4.0; I4/;Y D .X1 C 3X2/2 C .X3 �
X4/4 C " and " � N.0; 1/ and use the SIR and SIR II technique to find the EDR
directions.

We have simulated altogether 200 observations from the nonlinear regression
model. The true response variable depends on the explanatory variables nonlinearly
through the linear combinations Xˇ1 D X1 C 3X2 and Xˇ2 D X3 � X4, where
ˇ1 D .1; 3; 0; 0/> and ˇ2 D .0; 0; 3;�4/>.

The screeplot and the scatterplots of the response Y against the estimated
projections obtained by SIR algorithm are plotted in Fig. 20.7. The screeplot
corresponding to eigenvalues O D .0:044; 0:017; 0:007; 0:005/> shows that
the first projection contains most of the information. However, choosing the
first two factors would lead Ǒ

1 D .�0:24;�0:70;�0:26;�0:61/> and Ǒ
2 D

.0:28;�0:64; 0:35; 0:627/> that do not look similar to the original ˇ2 and ˇ1.
In Härdle and Simar (2015, Example 20.2) it is demonstrated that the SIR

algorithm does not work very well if the response variable is symmetric as in this
exercise. In such situations, the SIR II algorithm should be able to provide more
reliable results. The results of the SIR II algorithm, based on conditional variance
rather than on conditional expectations, are graphically displayed in Fig. 20.8.

Clearly, the factors of the SIR II algorithm plotted in Fig. 20.8 are very similar to
the factors obtained by the SIR algorithm in Fig. 20.7. The main difference is in the
screeplot which now more strongly suggests that two factors are appropriate. The
eigenvalues are O D .1:33; 0:72; 0:05; 0:03/> and the first two factors here explain
96% of the variance.

The coefficients of the first two factors, Ǒ
1 D .0:02; 0:20; 0:64;�0:74/ and Ǒ

2 D
.�0:36;�0:90; 0:12;�0:18/, are also very close to the true values of ˇ2 and ˇ1.

The SIR II algorithm recovers the original projections very well and the result
can be seen more clearly. Better results from the SIR algorithms might be expected
for monotone relationships.
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Fig. 20.7 SIR applied on the simulated data set. Screeplot and scatterplots of first three indices
against the response. SMSsirsimu

The dependency of the response on the first two factors is actually stronger than
it appears from the two-dimensional scatterplots in Figs. 20.7 and 20.8. Plotting the
dependency of the response on the first two factors in three-dimensional interactive
graphics shows very clear three-dimensional surface. In Fig. 20.8, we can see only
two side views of the “bowl”. However, with some effort, it is not impossible to
imagine how this surface actually looks like.

Exercise 20.6 Apply the SIR and SIR II technique on the car data set in
Appendix A.4 with Y D“price”.

The 9 explanatory variables in the cars data set are: mileage, headroom, rear
seat clearance, trunk space, weight, length, turning diameter, displacement, and
gear ratio. We have dropped the variables measuring repair record since they were

http://www.quantlet.de/codes/sms/SMSsirsimu.html
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Fig. 20.8 SIR II applied on the simulated data set. Screeplot and scatterplots of first three indices
against the response. SMSsir2simu

containing missing values. The variable “company headquarters” is used to define
the plotting symbols in the resulting graphics.

Before running the SIR algorithm, the explanatory variables were centered and
standardized.

The screeplot and the scatterplots of the response versus the first three indices
are plotted in Fig. 20.9. Considering the number of explanatory variables and the
obtained eigenvalues,

O D .0:36; 0:23; 0:14; 0:12; 0:08; 0:04; 0:02; 0:01; 0:00/>;

http://www.quantlet.de/codes/sms/SMSsir2simu.html
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Fig. 20.9 SIR applied on the cars data set. Screeplot and scatterplots of first three indices against
the response. The plotting symbol denotes company headquarters (circle D USA, cross D Europe,
triangle D Japan). SMSsircars

we should keep three or four factors. The corresponding coefficients are:

Ǒ
1 D .�0:08;�0:14; 0:14; 0:07; 0:82;�0:41;�0:25; 0:09; 0:22/>;

Ǒ
2 D .�0:10;�0:15;�0:05; 0:18;�0:67; 0:69;�0:06; 0:04; 0:07/>;

Ǒ
3 D .0:01; 0:46;�0:05;�0:01; 0:43; 0:21;�0:59;�0:11; 0:45/>;

Ǒ
4 D .�0:29;�0:02; 0:23;�0:26;�0:21;�0:38; 0:67; 0:00; 0:39/>:

The first factor seems to assign most of the weight to the variable “weight”.The
second factor is a contrast between the length and the weight of the car.

http://www.quantlet.de/codes/sms/SMSsircars.html
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In Fig. 20.9, the increasing price as a function of weight is clearly visible in the
first scatterplot. The most expensive and heaviest cars come from the USA (circles)
and Europe (crosses). The dependency of the price on the second factor seems to
be more complicated. Again, as in the previous exercises, the first two factors have
to be considered jointly and the best visualization would be achieved by interactive
(rotating) the three-dimensional plot: in such graphical device it can be clearly seen
that the graph of the price plotted against the first two factors can be described
as three-dimensional “twisted tube.” In the upper two scatterplots in Fig. 20.9, this
“twisted tube” can be seen only from the front and the side view.

In Fig. 20.10, we can see the results of the SIR II algorithm applied on the
same data set. The screeplot immediately suggests that the SIR II algorithm is
not appropriate for this data and that it does not find any interesting directions. In
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Fig. 20.10 SIR II applied on the cars data set. Screeplot and scatterplots of first three in-
dices against the response. The plotting symbol denotes company headquarters (circle D USA,
cross D Europe, triangle D Japan). SMSsir2cars

http://www.quantlet.de/codes/sms/SMSsir2cars.html
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the scatterplots, we do not see any clear relationship between the response and the
estimated SIR II projections.

In this situation, better results are provided by the SIR algorithm which discovers
an interesting nonlinear relationship of the price of the car on its weight and length.

Exercise 20.7 Generate four regions on the two-dimensional unit square by se-
quentially cutting parallel to the coordinate axes. Generate 100 two-dimensional
uniform random variables and label them according to their presence in the above
regions. Apply the CART algorithm to find the regions bound and to classify the
observations.

The example has been generated by cutting first the unit square at x2 D 0:5 and
then dividing each half at x1 D 0:75. The class assignment is displayed graphically
in the left plot in Fig. 20.11, where the classes 1, 2, and 3 are respectively denoted
by triangles, squares, and diamonds.

The CART procedure finds the tree displayed in Fig. 20.11. One sees that CART
almost perfectly reproduces the split points.

Exercise 20.8 Modify Exercise 20.7 by defining the regions as lying above and
below the main diagonal of the unit square. Make a CART analysis and comment
on the complexity of the tree.

The design of this example is not optimal for CART since the optimal split
does not lie along a coordinate axis. A simulated data set is plotted in Fig. 20.12.
The points lying above (group 1) and below (group 2) the diagonal are denoted by
triangles and circles, respectively.
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Fig. 20.11 Classification tree applied on the example data set. SMScartsq

http://www.quantlet.de/codes/sms/SMScartsq.html
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Fig. 20.12 The diagonal data set. The points from groups 1 (triangles) and 2 (circles) are separated
by a single line, the diagonal, in the left plot. The horizontal and vertical lines in the right plot are
the thresholds obtained by CART algorithm. SMScartdiag

The diagonal of the unit square is plotted in the left plot in Fig. 20.12. The
thresholds obtained by the CART algorithm are plotted in the right plot in Fig. 20.12.
Clearly, many thresholds are needed to split the simulated data set across the
diagonal. As a consequence, the CART algorithm produces an oversized tree,
plotted in Fig. 20.13. One can see that the CART algorithm tries to approximate the
optimal diagonal split by a sequence of small rectangles placed around the diagonal.

Exercise 20.9 Apply the SVM with different parameters � and c in order to
separate two circular data sets. This example is often called the Orange Peel
exercise and involves two normal distributions N.�;˙i/, i D 1; 2, with covariance
matrices ˙1 D 2I2 and˙2 D 0:5I2.

In Fig. 20.14, we plot four scatterplots containing the simulated two-dimensional
dataset. In each plot, the white region denotes the separating hyperplane x>wCb D
0. The color of the background is given by the value of the function x>wCb in each
point. Depending on the choice of the scale and cost parameters � and c, the SVM
is very flexible.

The scale parameter � controls the smoothness of the local neighborhood in the
data space. One sees that the separating curves are more jagged for � D 5 than for
� D 0:2. Compare the pictures in the left column of Fig. 20.14 with those in the
right column.

The cost parameter c controls the amount of nonseparable observations Letting
c grow makes the SVM more sensitive to the classification error as can be seen
from 20.3. The SVM therefore yields smaller margins.

http://www.quantlet.de/codes/sms/SMScartdiag.html
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Fig. 20.13 Classification tree applied on the diagonal data set. SMScartdiag

For the orange peel data involving two circular covariance structures, the
parameter constellation � D 0:2, c D 8 gives the best separability results.

Exercise 20.10 The noisy spiral data set consists of two intertwining spirals that
need to be separated by a nonlinear classification method. Apply the SVM with
different scale parameter � and cost parameter c in order to separate the two spiral
datasets.

The simulated data set, plotted in Fig. 20.15, was generated by adding a random
noise, N2.02; I=100/, to regularly spaced points lying on the spirals E1 and E2:

E1 D
��

.1C x/ sin.x/

.1C x/ cos.x/

�

; x 2 .0; 3�/
�

;

E2 D
��

.1C x/ sin.x C �/

.1C x/ cos.x C �/

�

; x 2 .0; 3�/
�

:

http://www.quantlet.de/codes/sms/SMScartdiag.html


20 Highly Interactive, Computationally Intensive Techniques 339

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

SVM classification plot

X1

X
2

s=0.2, c=0.1

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

SVM classification plot

X1

X
2

s=5.0, c=0.1

−2

0

2

4

6

8

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

SVM classification plot

X1

X
2

s=0.2, c=8.0

−3

−2

−1

0

1

2

3

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SVM classification plot

X1

X
2

s=5.0, c=8.0

Fig. 20.14 The SVM applied to the orange peel data set with various choices of parameters � and
c. Upper left plot: � D 0:2, c D 0:1, upper right: � D 5, c D 8, lower left: � D 0:2, c D 8, lower
right: � D 5, c D 8. SMSsvmorange

The noisy spiral data is certainly hard to separate for only linear classification
method. For SVM, it is a matter of finding an appropriate .�; c/ combination. It can
actually be found by cross validation (Vapnik, 2000) but this involves an enormous
computational effort. Since the data have small variance around the spiral, we can
work with big cost c entailing small margins.

The local sensitivity is controlled by � as can be seen from the upper row of
Fig. 20.15. Increasing the scale parameter � increases the correct classifications.

The best result is obtained for � D 8 and c D 8, see the lower right corner of
Fig. 20.15.

http://www.quantlet.de/codes/sms/SMSsvmorange.html
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Fig. 20.15 The SVM applied on the spiral data set with various choices of parameters � and c.
Upper left plot: � D 0:2, c D 0:1, upper right: � D 8, c D 0:1, lower left: � D 0:2, c D 8, lower
right: � D 8, c D 8. SMSsvmspiral

Exercise 20.11 Apply the SVM to separate the bankrupt from the surviving (prof-
itable) companies using the profitability and leverage ratios given in the Bankruptcy
data set in Appendix A.3.

Separating possibly bankrupt from profit making companies is an important
business and income source for investment banks. A good classification method
(Härdle, Moro, & Schäfer, 2005) is therefore vital also for the performance of a
bank.

Figure 20.16 shows the variation of � and c over the range � D 0:2; 1; 2 and
c D 1; 8. The cost parameter c is seen to produce somewhat better classifications
for c D 1. The scale parameter � D 0:2—see the upper left corner in Fig. 20.16—
gives the best looking classification result.

http://www.quantlet.de/codes/sms/SMSsvmspiral.html
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Fig. 20.16 The SVM technique applied on the Bankruptcy data set with various choices of
parameters � and c. SMSsvmbankrupt
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Appendix A
Data Sets

All data sets are included in the R library SMSdata that may be downloaded via the
quantlet download center: www.quantlet.org. All data sets are available also on
the Springer webpage.

A.1 Athletic Records Data

This data set provides data on athletic records in 100, 200, 400, 800, 1,500, 5,000,
10,000 m, and Marathon for 55 countries.

A.2 Bank Notes Data

Six variables were measured on 100 genuine and 100 counterfeit old Swiss 1000-
franc bank notes. The data stem from Flury and Riedwyl (1988). The columns
correspond to the following 6 variables.

X1: length of the bank note
X2: height of the bank note, measured on the left
X3: height of the bank note, measured on the right
X4: distance of the inner frame to the lower border
X5: distance of the inner frame to the upper border
X6: length of the diagonal

Observations 1–100 are the genuine bank notes and the other 100 observations
are the counterfeit bank notes.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, Z. Hlávka, Multivariate Statistics,
DOI 10.1007/978-3-642-36005-3
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A.3 Bankruptcy Data

The data are the profitability, leverage, and bankruptcy indicators for 84 companies.
The data set contains information on 42 of the largest companies that filed for

protection against creditors under Chap. 11 of the U.S. Bankruptcy Code in 2001–
2002 after the stock market crash of 2000. The bankrupt companies were matched
with 42 surviving companies with the closest capitalizations and the same US
industry classification codes available through the Division of Corporate Finance
of the Securities and Exchange Commission (SEC 2004).

The information for each company was collected from the annual reports for
1998–1999 (SEC 2004), i.e., 3 years prior to the defaults of the bankrupt compa-
nies. The following data set contains profitability and leverage ratios calculated,
respectively, as the ratio of net income (NI) and total assets (TA) and the ratio of
total liabilities (TL) and total assets (TA).

A.4 Car Data

The car data set (Chambers et al. 1983) consists of 13 variables measured for 74 car
types. The abbreviations in the data set are as follows:

X1: P price
X2: M mileage (in miles per gallon)
X3: R78 repair record 1978 (rated on a 5-point scale: 5 best, 1 worst)
X4: R77 repair record 1977 (scale as before)
X5: H headroom (in inches)
X6: R rear seat clearance (in inches)
X7: Tr trunk space (in cubic feet)
X8: W weight (in pound)
X9: L length (in inches)
X10: T turning diameter (clearance required to make a U-turn, in feet)
X11: D displacement (in cubic inches)
X12: G gear ratio for high gear
X13: C company headquarters (1 United States, 2 Japan, 3 Europe)

A.5 Car Marks

The data are averaged marks for 24 car types from a sample of 40 persons. The
marks range from 1 (very good) to 6 (very bad) like German school marks. The
variables are:

X1: A economy
X2: B service
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X3: C nondepreciation of value
X4: D price, mark 1 for very cheap cars
X5: E design
X6: F sporty car
X7: G safety
X8: H easy handling

A.6 Classic Blue Pullover Data

This is a data set consisting of 10 measurements of 4 variables. A textile shop
manager is studying the sales of “classic blue” pullovers over 10 periods. He uses
three different marketing methods and hopes to understand his sales as a fit of these
variables using statistics. The variables measured are

X1: number of sold pullovers
X2: price (in EUR)
X3: advertisement costs in local newspapers (in EUR)
X4: presence of a sales assistant (in hours per period)

A.7 Fertilizer Data

The yields of wheat have been measured in 30 parcels, which have been randomly
attributed to 3 lots prepared by one of 3 different fertilizers A, B, and C.

X1: fertilizer A
X2: fertilizer B
X3: fertilizer C

A.8 French Baccalauréat Frequencies

The data consist of observations of 202;100 French baccalauréats in 1976 and
give the frequencies for different sets of modalities classified into regions. For a
reference, see Bouroche and Saporta (1980). The variables (modalities) are:

X1: A philosophy letters
X2: B economics and social sciences
X3: C mathematics and physics
X4: D mathematics and natural sciences
X5: E mathematics and techniques
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X6: F industrial techniques
X7: G economic techniques
X8: H computer techniques

A.9 French Food Data

The data set consists of the average expenditures on food (bread, vegetables, fruit,
meat, poultry, milk, and wine) for several different types of families in France
(manual workers D MA, employees D EM, managers D CA) with different
numbers of children (2, 3, 4, or 5 family members). The data are taken from Lebart
et al. (1982).

A.10 Geopol Data

This data set contains a comparison of 41 countries according to 10 different
political and economic parameters:

X1: popu population
X2: giph gross internal product per habitant
X3: ripo rate of increase of the population
X4: rupo rate of urban population
X5: rlpo rate of illiteracy in the population
X6: rspo rate of students in the population
X7: eltp expected lifetime of people
X8: rnnr rate of nutritional needs realized
X9: nunh number of newspapers and magazines per 1,000 habitants
X10: nuth number of television per 1,000 habitants

A.11 German Annual Population Data

The data set shows yearly average population and unemployment rates for the old
federal states in Germany (given in 1,000 inhabitants).

A.12 Journals Data

This is a data set that was created from a survey completed in the 1980’s in Belgium
questioning people’s reading habits. They were asked where they live (10 regions
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comprising 7 provinces and 3 regions around Brussels) and what kind of newspaper
they read on a regular basis. The 15 possible answers belong to 3 classes: Flemish
newspapers (first letter v), French newspapers (first letter f ) and both languages (first
letter b).y

X1: WaBr Walloon Brabant
X2: Brar Brussels area
X3: Antw Antwerp
X4: FlBr Flemish Brabant
X5: OcFl Occidental Flanders
X6: OrFl Oriental Flanders
X7: Hain Hainaut
X8: Lièg Liège
X9: Limb Limburg
X10: Luxe Luxembourg

A.13 NYSE Returns Data

This data set consists of returns of seven stocks traded on the New York Stock
Exchange (Berndt 1990). The monthly returns of IBM, PanAm, Delta Airlines,
Consolidated Edison, Gerber, Texaco, and Digital Equipment Company are stated
from January 1978 to December 1987.

A.14 Plasma Data

In Olkin and Veath (1980), the evolution of citrate concentration in the plasma is
observed at 3 different times of day for two groups of patients. Each group follows
a different diet.

X1: 8 AM

X2: 11AM

X3: 3 PM

A.15 Time Budget Data

In Volle (1985), we can find data on 28 individuals identified according to gender,
country where they live, professional activity, and matrimonial status, which
indicates the amount of time each person spent on 10 categories of activities over
100 days (100�24 h = 2,400 h total in each row) in 1976.
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X1: prof : professional activity
X2: tran : transportation linked to professional activity
X3: hous : household occupation
X4: kids : occupation linked to children
X5: shop : shopping
X6: pers : time spent for personal care
X7: eat : eating
X8: slee : sleeping
X9: tele : watching television
X10: leis : other leisure activities

maus: active men in the United States
waus: active women in the United States
wnus: nonactive women in the United States
mmus: married men in United States
wmus: married women in United States
msus: single men in United States
wsus: single women in United States
mawe: active men from Western countries
wawe: active women from Western countries
wnwe: nonactive women from Western countries
mmwe: married men from Western countries
wmwe: married women from Western countries
mswe: single men from Western countries
wswe: single women from Western countries
mayo: active men from Yugoslavia
wayo: active women from Yugoslavia
wnyo: nonactive women from Yugoslavia
mmyo: married men from Yugoslavia
wmyo: married women from Yugoslavia
msyo: single men from Yugoslavia
wsyo: single women from Yugoslavia
maea: active men from Eastern countries
waea: active women from Eastern countries
wnea: nonactive women from Eastern countries
mmea: married men from Eastern countries
wmea: married women from Eastern countries
msea: single men from Eastern countries
wsea: single women from Eastern countries
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A.16 Unemployment Data

This data set provides unemployment rates in all federal states of Germany in
September 1999.

A.17 U.S. Companies Data

The data set consists of measurements for 79 U.S. companies. The abbreviations are
as follows:

X1: A assets (USD)
X2: S sales (USD)
X3: MV market value (USD)
X4: P profits (USD)
X5: CF cash flow (USD)
X6: E employees

A.18 U.S. Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for 1 year
(1985) the reported number of crimes in the 50 states of the United States classified
according to 7 categories (X3–X9):

X1: land area (land)
X2: population 1985 (popu 1985)
X3: murder (murd)
X4: rape
X5: robbery (robb)
X6: assault (assa)
X7: burglary (burg)
X8: larcery (larc)
X9: auto theft (auto)
X10: U.S. states region number (reg)
X11: U.S. states division number (div)
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Division Numbers Region Numbers
New England 1 Northeast 1
Mid-Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

A.19 U.S. Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for 1 year
(1985) the reported number of deaths in the 50 states of the U.S. classified according
to 7 categories:

X1: land area (land)
X2: population 1985 (popu)
X3: accident (acc)
X4: cardiovascular (card)
X5: cancer (canc)
X6: pulmonary (pul)
X7: pneumonia flu (pneu)
X8: diabetes (diab)
X9: liver (liv)
X10: doctors (doc)
X11: hospitals (hosp)
X12: U.S. states region number (reg)
X13: U.S. states division number (div)

A.20 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in Bock
(1975). Data are drawn from test results on file in the Records Office of the
Laboratory School of the University of Chicago. They consist of scores, obtained
from a cohort of pupils from the 8th through 11th grade levels, on alternative forms
of the vocabulary section of the Cooperative Reading Test. It provides scaled scores
for the sample of 64 subjects (the origin and units are fixed arbitrarily).
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A.21 WAIS Data

Morrison (1990) compares the results of 4 subtests of the Wechsler Adult Intelli-
gence Scale (WAIS) for 2 categories of people. In group 1 are n1 D 37 people who
do not present a senile factor; in group 2 are those (n2 D 12) presenting a senile
factor.

WAIS subtests:
X1: information
X2: similarities
X3: arithmetic
X4: picture completion
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Actual error rate (AER), 258
Adjoint matrix, xix, 22
Agglomerative algorithm, 225
Akaike’s information criterion (AIC), 155, 158
Analysis of variance (ANOVA), 123, 126–128,

144, 301, 302
balanced, 145
unbalanced, 147

ANCOVA, 144
Andrews’ curves, 3, 15
ANOVA. See Analysis of variance (ANOVA)
aplpack, viii
Apparent error rate (APER), 251, 258
Asymptotic normality, xix
Average linkage, 226

Bagplot, 320
Balanced dice, 105
Bandwidth, 7
Bartlett correction, 214
Bayes discrimination rule, 246, 250, 252
Beta factor, 311
Between-group sum of squares, 247, 252
Between variance, 246
Bias, xix
Binomial distribution, 257
Binomial inverse theorem, 25
Boxplot, 3, 4, 6, 33, 320

ca, viii, 263
Canonical correlation analysis (CCA)

analysis, 281, 283, 287
coefficient, 281, 282

variables, 281, 282, 284
vectors, 281, 282

Canonical hyperplane, 323
Capital asset pricing model (CAPM), 309, 310
car, viii, 161
CART. See Classification and regression tree

(CART)
Cauchy distribution, 50
CCA. See Canonical correlation analysis

(CCA)
cdf. See Cumulative distribution function (cdf)
Centering matrix, xvii, 36, 74
Central hole index, 321
Central limit theorem (CLT), xviii, 44, 50
Central mass index, 321
Centroid distance, 226
Centroid linkage, 226
Characteristic function, xvi
Characteristic polynomial, xx
Chernoff faces. See Flury–Chernoff faces
�2 distance, 239
�2 distribution, xviii

quantile, xviii
�2 statistic, 259, 260, 266
Classification and regression trees (CART),

319, 322
Gini criterion, 323
least squares criterion, 323
twoing criterion, 323

CLT. See Central limit theorem (CLT)
Cluster analysis, 225

average linkage, 226
centroid linkage, 226
complete linkage, 226, 233
median linkage, 226
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single linkage, 226, 230, 233
Ward method, 226, 227, 229, 230, 235

Coefficient of determination, 32, 37, 38, 144
Cofactor, xx
Column coordinates, 263
Column factor, 263, 264

contributions to variance, 264
Column frequency, 259
Common factors, 205
Communality, 206
Complete linkage, 226, 233
Computational statistics, 319
Conditional distribution, xx, 45, 56, 59, 69, 72,

73, 75, 76, 78–80
Conditional expectation, xvi, 46, 47, 53, 55,

58, 69, 79, 81, 85, 86
Conditional moments, xx, 45
Conditional pdf, 58, 62
Conditional probability, 59
Conditional variance, xvi, 47, 53, 58, 81
Confidence interval, 143
Confidence region, 114
Conjoint measurement analysis, 301

nonmetric solution, 302
Consumer preferences, 301
Contingency table, xx, 239, 259, 265,

276–278
Contour ellipse, 66
Contrast matrix, 126, 132
Convergence

in distribution, xviii
in probability, xviii

Convex hull peeling, xviii, 320
Correlation, xvi, 29, 32, 34, 36, 81,

83, 281
empirical, xvii
multiple, 85
partial, 84

Correlation matrix, 29, 36, 180
empirical, xvii

corresp, 263
Correspondence analysis, 259, 260, 276–278

explained variance, 264
Cost of misclassification, 255
Covariance, xvi, 28, 29, 35, 36, 42, 55,

88, 170
empirical, xvii

Covariance matrix, xvi, 37, 42, 43, 55,
72, 183

diagonal, 98
empirical, xvii
partitioned, 71, 88

Covariance test statistic, 163
Cramer-Rao lower bound, 91, 95, 96, 98

Cramer-Rao theorem, 90
Credit scoring, 245
Critical value, xx, 104
Cross-validation, 161
Cumulants, xvi
Cumulative distribution function cdf, xvi, xx,

xxiii, 43
empirical, xxi
joint, xvi
marginal, xvi

Data cloud, 167, 168
Data depth, 319
Data matrix, xvii

standardized, 36
Dendrogram, 226
Density. See Probability density function (pdf)
depth, viii
Depth function, 320
Derivative, xx
Descriptive techniques, 3
Design matrix, 141, 301, 304
Determinant, xviii, xxi, 21, 22, 24
Deviance, 145

null, 155
residual, 145, 155

Diagonal, xviii
Discrimination

analysis, 245
Fisher’s (see Fisher’s LDA)
ML (see ML discrimination)
rule, 245

Disparity, 290
Dissimilarity, 290
Distance matrix, 225, 289
Distribution, xv

�2, xviii
conditional, xx, 45
exponential, 69
F-, xviii
Gaussian, xxiii
Hotelling, xviii, 72, 108, 112, 126
marginal, xxii, 46
multinormal, xxiii
normal, xviii, xxiii
t-, xviii
Wishart, 72, 133

Distribution function. See also Cumulative
distribution function (cdf)

empirical, xxi
dr, viii, 322
Draftman plot, 3, 15
Duality, 168
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edf. See Empirical distribution function (edf)
Effective dimension reduction (EDR)

direction, 321, 329, 331
space, 321

Efficient portfolio, 310
Eigenvalue, xxi, 22, 42, 168, 181, 183, 192,

247, 260, 263, 285
Eigenvector, xxi, 168, 181, 192, 247, 260, 262,

285
Elastic net, 158, 159
Ellipsoid, 23
Empirical distribution function (edf), xxi
Empirical moments, xxi
Entropy index, 321
Error of misclassification, 245
Estimator, xxi

minimum variance unbiased, 97
Euclidean distance, 227, 234, 239, 289, 290
Expected value, xxi, 43

conditional, xvi
Exploratory projection pursuit, 320, 327
Exponential distribution, 69

Factor, 167, 181, 301
analysis, 206

estimation, 206
factor scores, 207
oblique rotation, 206
promax rotation, 206
rotation, 206
strategy, 207
testing, 213
varimax rotation, 206

loadings, 205
scores, 207

estimation, 216
Factorial axis, 169
Factorial representation, 171
Factorial technique, 167
Factorial variable, 168, 171, 172
F-distribution, xviii

quantile, xviii
Feature space, 324
Fisher information matrix, 90, 96, 99
Fisher’s LDA, 245, 246, 255–257, 327
Fisher’s Z-transformation, 29, 34
Fitted values, 142, 148, 157
Five number summary, 6
Flury–Chernoff faces, 3, 7
Friedman–Tukey index, 320, 327

Gaussian distribution, xviii, xxiii
Generalized cross-validation, 161

Generalized linear model GLM, 145
GGobi, viii, 321
Gini criterion, 323
glmnet, vii, 163
Gradient, xxi
Gradient vector, 23
Graphical techniques, 3
Guided tour, 321

Halfspace depth, 320
Hat matrix, 148
Helmert contrasts, 146
Hessian matrix, xxii
Heteroscedasticity, 126
Hexagon plot, 3
hexbin, viii
Hierarchical clustering, 225
Histogram, 3, 7, 12
Horizontal profiles, 132, 134, 135
Hotelling distribution, xviii, 72, 108, 112, 126

quantile, xviii
Hypothesis testing, 103

Idempotent matrix, xxii, 23, 74
Impurity measure, 322
Independence, 29, 88, 260, 266
Indicator, xv
Inertia, 167, 168, 171, 173, 179, 181, 226, 227,

229
Intercluster distance, 226
Inverse matrix, 22, 24
Iso-distance curve, 50

Jacobian, xxii, 47, 61, 70
Joint distribution, 75, 79
Jones–Sibson index, 321

k-means inverse regression (KIR), 322
Kernel density estimator, 3, 7, 12, 320, 327
kernlab, viii
KernSmooth, viii
Kronecker product, xv

L1-distance, 233, 235
L2-distance, 239
Lasso, 158, 159

p-value, 163
lasso2, viii, 161
Least squares, 31, 40

constrained, 41
criterion, 323

Leverage, 149
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Likelihood, xxii
function, 89
ratio test, 103, 104, 145

Linear approximation, 85
Linear constraint, 41, 132, 144
Linear dependence, xxii
Linear discrimination analysis. See Fisher’s

LDA
Linear hypothesis, 126
Linear model, 40, 41, 45, 130, 131, 141, 301,

303
Linear predictor, 145
Linear regression, 130, 131, 142
Linear space, xviii
Linear transformation, 45, 50, 52, 70, 72,

79–81, 83, 87
Link function, 145
Liters per 100 km, 51
Liu depth, 320
locpol, viii
Log odds, 144
Log-likelihood function, xxii, 89, 104, 108
Log-linear model, 144
Logistic regression, 144
Logit, 145
Lr-distance, 234

Mahalanobis distance, 247
Mahalanobis transformation, 44, 192, 247,

320, 327
Manhattan distance, 234
Marginal distribution, xxii, 46, 69, 75
Marginal moments, xxii
Marginal pdf, 62
Marketing, 301
MASS, vii, 158, 263
MATLAB, viii
Matrix

adjoint, xix, 22
centering, xvii, 36, 74
cofactor, xx
contrast, 132
correlation, 29, 36
covariance, xvi, 37, 42, 43, 55, 72

diagonal, 98
determinant of, xviii
diagonal of, xviii
distance, 289
Fisher information, 90, 96, 99
gradient, xxi
Hessian, xxii
idempotent, xxii, 23, 74
inverse, 22

Jacobian, xxii
orthogonal, xxiii, 211
partitioned, xxiii, 24, 26
projection, 23
rank of, xviii
rotation, 211
scatterplot, 3, 15
trace, xviii
variance, 42

Maximum likelihood estimator (MLE), 89, 90,
95, 97

MDS. See Multidimensional scaling (MDS)
Mean, xvi, xxi, xxii
Mean squared error (MSE), xxii, 69, 142
Mean-variance efficient portfolio, 310
Mean-variance optimization, 309
Median, xxii, 324

multivariate, 319
linkage, 226

Miles per gallon, 51
Minimum variance unbiased estimator, 97
Minor. See Cofactor
Misclassification rate, 258
ML discrimination rule, 245–247, 249, 251,

255, 256
MLE. See Maximum likelihood estimator

(MLE)
Moments, xvi, xxii

empirical, xxi
marginal, xxii

MSE. See Mean squared error (MSE)
Multicollinearity, 157
Multidimensional scaling (MDS), 289

metric, 289, 291
nonmetric, 289, 290, 293

Multinomial distribution, 105
Multinormal distribution, xxiii
Multivariate median, 320
Multivariate normal distribution, 71
mvpart, viii

Nonlinear transformation, 51, 60, 94
Normal distribution, xviii, xxiii
Normalized principal component analysis

(NCPA), 192, 197, 200, 201
Null deviance, 155

Observation, xvii
Odds, 144
Order statistic, xvii
Orthogonal complement, xxiii
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Orthogonal factor model, 207
Orthogonal matrix, xxiii
Orthogonal polynomials, 146
Outlier, 3, 33

Parallel coordinate plot, 11, 12
Parallel profiles, 132, 135
Part-worth, 301, 303, 305, 307, 308
Partitioned covariance matrix, 71
Partitioned matrix, xxiii, 24, 26
PAV algorithm. See Pool-adjacent-violators

(PAV) algorithm
PC. See Principal component (PC)
pdf. See Probability density function (pdf)
PhD. See Principal Hessian directions (PhD)
Polynomial contrasts, 146
Pool-adjacent-violators (PAV) algorithm, 301
Population, 245
Portfolio optimization, 309
Prediction interval, 143
Preference, 301, 302
Principal component (PC), 183, 191, 192, 243,

259, 278, 325
correlation, 184
expected value, 184
explained variance, 187
normalized, 192, 197, 200, 201, 278
screeplot, 185
testing, 187
variance, 184

Principal component analysis, 184
Principal factors, 206–208
Principal Hessian directions (PhD), 322
Prior probability, 246
Probability density function (pdf), xvi, 43, 48

conditional, xvi, 62
joint, xvi
marginal, xvi, 62

Probability of misclassification, 257
Profile analysis, 132, 135
Profile method, 301, 307
Projection, 169

Fisher’s LDA, 246
matrix, 23
pursuit, 319, 320, 327
vector, 321

Promax rotation, 206
Proximity, 229
p-value, xxiii

quadprog, viii
Quantile, xxiii

Quantitative finance, 309
Quantlet download center, viii, 343

R, vii, 263
Random sample, 89
Random variable, xv, xxiii
Random vector, xv, xxiii, 43
Rank, xviii
Regression

diagnostics, 151
line, 30, 33, 34, 37
tree (see CART)

Rejection region, 104
Residuals, 148

deviance, 155
standardized, 149

Response, 145
rggobi, viii
Ridge regression, 158
Risk management, 309
Rotation matrix, 211
Row coordinates, 263
Row factor, 263, 264

contributions to variance, 264
Row frequency, 259

Sample, xvii
Scatterplot, xxiii, 16, 28, 32

matrix, 3, 15
3D, 16

scatterplot3d, viii
Score function, 89, 97, 99–101
Screeplot, 185, 191
Semi-invariants, xvi
Separating hyperplane, 323, 337
Shepard–Kruskal algorithm, 290, 294
Shrinkage, 158
Simplicial depth, 319, 320, 324
Simultaneous testing, 144
Single linkage, 226, 230, 233
Singular value decomposition (SVD), xxiv,

169, 260, 263, 281, 284, 285
Sliced inverse regression (SIR) algorithm, 158,

319, 321, 322, 329, 331
Sliced inverse regression II (SIR II) algorithm,

322, 331
SMSdata, viii, 343
Specific factors, 205
Specific variance, 206
Spectral decomposition, xxiv, 22, 42, 44, 74,

170, 181, 183, 191, 290
Spiral, 338
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Standard error, 142
Standardization, 36
Statistical learning theory, 323
Stepwise regression, 159
Stimulus, 301
STRESS, 290, 303
Subspace, xxiv
Sum of squares, 30, 32
Support vector machine (SVM), 323
SVD. See Singular value decomposition (SVD)

Taylor expansion, xxiv, 125
t-distribution quantile, xviii
Test

covariance matrix, 118, 120, 129
equality of means, 111
expected value, 118
independence, 123, 127
likelihood ratio, 104, 145
linear model, 130
mean vector, 113–116, 121, 123, 127
number of factors, 213
principal component, 187
two-sample, 123

Theorem
binomial inverse, 25
central limit (see CLT)
Cramer–Rao, 90
Wilks’, 104

Trace, xviii, 36
Transformation of statistics, 51, 94
tseries, viii
Tukey depth, 320

Two-factor method, 301
Twoing criterion, 323
Type I error, 120

Unbiased estimator, 90
Uniform distribution, 55, 90, 197, 200
Utility, 306
Utility attribute, 301

Variable selection, 158
Variance, xvi, 54

conditional, xvi, 47
efficient portfolio, 310
empirical, xvii
matrix, 42

Variance inflation factor (VIF), 157, 161
Varimax rotation, 206
Vector

gradient, xxi, 23
VIF(), 161

Ward method, 226, 227, 229, 230, 235
White noise analysis, 321
Wilks’ theorem, 104
Wishart distribution, 72, 74, 133
Within variance, 246
Within-group sum of squares, 246, 252

zoo, viii
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