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Foreword

Hannu Oja has had an extensive and illustrious career. Many things are striking
when you look back over the roughly 35 years of his scholarship. His work forms a
unity and coherence, focusing on multivariate invariant and equivariant statistical
methods. His work steadily evolved from his early results on defining an affine
equivariant median, now referred to as the Oja median, in the early 1980s to
an efficiently computable affine equivariant median using transform–retransform
methods developed in the late 1990s.

It has been my experience, and I am sure I speak for his many students and
coauthors that he is the ideal collaborator. He always has insightful comments, is an
excellent listener, and is generous to a fault. It has been a privilege and pleasure to
work with him. Over a period of many years, I had the further pleasure of visiting
Oulu, Tampere, and Jyväskylä to work on problems with Hannu as well as working
with and knowing two of his finest students, Jyrki Möttönen and Esa Ollila, both of
whom have gone on to impressive research careers.

My interactions with Hannu began in the summer of 1989 when he visited Penn
State for a week with Jukka Nyblom as they were on their way to an IMS meeting
in Colorado. During that week, we combined some results of their work and some
joint work of mine with Bruce Brown into a paper, On Certain Bivariate Tests and
Medians, published in 1992 in the Journal of the American Statistical Association.
Thus began a fruitful long-term relationship. In January 1991, Hannu brought his
family to State College for 6 months and was a visiting professor in the statistics
department at Penn State. It was not all work during that time. On spring break in
March we all went on a driving trip, exploring the eastern part of the USA through
Kentucky and then to Florida where in fine Finnish fashion the family could not wait
to swim in the cold Atlantic Ocean.

My overall goal here is to discuss the evolution of his research program for
the development of multivariate methods beginning in the early 1980s with the
publication of his 1983 paper, Descriptive Statistics for Multivariate Distributions,
published in Statistics and Probability Letters and finish with some brief remarks on
his current research interest in invariant coordinate selection (ICS) and independent
component analysis (ICA). Along the way, I will mention a few of the initial papers
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viii Foreword

that he published when moving into new research areas. Elsewhere in this volume
there is a thorough analysis of his coauthors and a list of his publications. His
vita will reveal an even wider scholarly effort, including consulting in biomedical
research and signal processing.

The 1983 descriptive statistics paper is based on the idea of defining a median by
minimizing a sum of simplices determined by data points along with a parameter.
In a series of papers, this basic idea was expanded to include affine invariant and
equivariant sign and rank tests and estimates for various experimental designs.
Computation, especially for high-dimensional data, remained problematic. This
work is nicely summed up in his 1999 review paper, Affine Invariant Multivariate
Sign and Rank Tests and Corresponding Estimates: A Review, published in the
Scandinavian Journal of Statistics.

A breakthrough occurred when he combined work on non-affine spatial methods
developed in a 1995 paper with Jyrki Möttönen entitled Multivariate Spatial Sign
and Rank Methods published in the Journal of Nonparametric Statistics with
transform-retransform methods discussed in a 1998 paper written with Biman
Chakraborty and Probal Chaudhuri entitled Operating Transformation-Retransfor-
mation on Spatial Median and Angle Test in Statistica Sinica. The result was a
computationally efficient set of affine invariant and equivariant statistical methods.
This work was further refined and elaborated in a 2004 paper with Ron Randles in
Statistical Science entitled Multivariate Nonparametric Tests. These ideas are at the
heart of his seminal 2010 monograph, Multivariate Nonparametric Methods with R.

There is much of interest in this monograph. For example, there is an extensive
discussion and development of scatter matrices, another of his research threads.
Scatter matrices form the foundation of much of his current interests in ICA and
ICS. An early work is his 2006 paper with Seija Sirkiä and Jan Eriksson entitled
Scatter Matrices and Independent Component Analysis in the Austrian Journal
of Statistics. In 2009, the paper Invariant Co-ordinate Selection published in the
Journal of the Royal Statistical Society, Series B and written with David Tyler, Frank
Critchley, and Lutz Dümbgen greatly expanded the framework for this area and
brought it to the attention of many more researchers in statistics. Currently, he has
ongoing research projects involving the extension and application of ICA to time
series and functional data.

From 2008 to 2012, he was an Academy Professor in Finland, a richly deserved
honor. If you consider the number of coauthors and their various countries and
affiliations, you would conclude that Hannu is a major ambassador for Finland.

State College, PA, USA Tom Hettmansperger
May 2015



Preface

This Festschrift contains a collection of articles dedicated to Hannu Oja, Professor
of Statistics at the University of Turku, on the occasion of his 65th birthday.

Hannu can be regarded as one of the most influential statisticians in Finland.
His research career has been exceptional. Hannu has served as Professor in the
Universities of Jyväskylä, Tampere and Turku, and as Visiting Professor at the
Pennsylvania State University, University of Bern and Moscow State University.
He has held several appointments granted by the Academy of Finland including
the highly respected Academy Professorship in 2008–2012. Besides being an
excellent researcher, Hannu is also an enjoyable teacher. He is a desired speaker
at international statistics conferences and a wanted guest lecturer. Hannu takes
supervision very seriously, providing excellent guidance and mentoring in all
aspects required. Up to date, he has supervised eleven PhD theses—and is still
supervising many new promising talents. Interestingly, almost all of Hannu’s PhD
students have preferred an academic career over a non-academic one. This must
have something to do with Hannu’s exemplary career and endless positive attitude
towards statistics research.

This book consists of 27 contributions written by Hannu’s former students,
coauthors, colleagues and friends. The book is divided into four parts. Part I
starts with some remarks about Hannu’s early career, given by his PhD thesis
supervisor Professor (emeritus) Elja Arjas, followed by a light introduction to
Hannu’s publications and coauthors. The remaining three parts of the book cover
a wide variety of topics related to Hannu’s research interests. In Part II, some recent
results in the areas of univariate nonparametric and robust methods are presented.
Part III consists of papers concerning modern nonparametric and robust methods in
the context of multivariate and functional data. Finally, Part IV is related to Hannu’s
current research interest on Invariant Coordinate Selection. Also, two contributions
on robust methods in signal processing applications are given.

We wish to thank all the authors for their interesting contributions and smooth
cooperation during the past 1.5 years. The feedback from the authors has been
very positive and we have been pleased to see how every one we asked has been
willing to show their gratitude to Hannu via this Festschrift. Our special thanks
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go furthermore to those who acted as referees for the contributions. The schedule
was occasionally very tight, so without their output, we would not have managed to
finish this Festschrift in time. In this context, we would also like to thank Veronika
Rosteck from Springer who encouraged us throughout this project and provided
help and assistance whenever needed.

Our biggest thanks naturally belong to Hannu who taught us this profession and
is still encouraging us on our scientific journey. We hope that his enthusiasm for
statistics will continue for a long time and that he will remain an active member of
our community.

Tampere, Finland Klaus Nordhausen
Jyväskylä, Finland Sara Taskinen
June 2015
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19 Robust High-Dimensional Precision Matrix Estimation . . . . . . . . . . . . . . 325
Viktoria Öllerer and Christophe Croux

20 Paired Sample Tests in Infinite Dimensional Spaces . . . . . . . . . . . . . . . . . . . . 351
Anirvan Chakraborty and Probal Chaudhuri

21 Semiparametric Analysis in Conditionally Independent
Multivariate Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Tracey W. Hammel, Thomas P. Hettmansperger,
Denis H.Y. Leung, and Jing Qin



Contents xv

Part IV Invariant Coordinate Selection and Related Methods

22 A B-Robust Non-Iterative Scatter Matrix Estimator:
Asymptotics and Application to Cluster Detection Using
Invariant Coordinate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Mohamed Fekri and Anne Ruiz-Gazen

23 On ANOVA-Like Matrix Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Giuseppe Bove, Frank Critchley, Radka Sabolova,
and Germain Van Bever

24 On Invariant Within Equivalence Coordinate System
(IWECS) Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Robert Serfling

25 Alternative Diagonality Criteria for SOBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Jari Miettinen

26 Robust Simultaneous Sparse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Esa Ollila

27 Nonparametric Detection of Complex-Valued
Cyclostationary Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Visa Koivunen and Jarmo Lundén





Contributors

Elja Arjas Department of Mathematics and Statistics, University of Helsinki,
Helsinki, Finland

Giuseppe Bove Dipartimento di Scienze della Formazione, Università degli Studi
Roma Tre, Roma, Italy

Delphine Cassart ECARES, Université Libre de Bruxelles, Bruxelles, Belgium

Anirvan Chakraborty Theoretical Statistics and Mathematics Unit, Indian
Statistical Institute, Kolkata, India

Biman Chakraborty School of Mathematics, University of Birmingham,
Birmingham, UK

Probal Chaudhuri Theoretical Statistics and Mathematics Unit, Indian Statistical
Institute, Kolkata, India

Patrick D.L. Constable Stony Lodge, Holwell, Sherborne, Dorset, UK

Frank Critchley Department of Mathematics and Statistics, The Open University,
Buckinghamshire, UK

Christophe Croux Faculty of Economics and Business, KU Leuven, Leuven,
Belgium

Somnath Datta Department of Biostatistics, University of Florida, Gainesville,
FL, USA

Susmita Datta Department of Biostatistics, University of Florida, Gainesville,
FL, USA

Fikret Er Open Education Faculty, Yunusemre Campus, Anadolu University,
Eskisehir, Turkey

Mohamed Fekri Département de Mathématiques, Informatique et Réseaux,
Institut National des Postes et Télécommunications, Rabat, Maroc

xvii



xviii Contributors

Peter Filzmoser Institute of Statistics and Mathematical Methods in Economics,
Vienna University of Technology, Vienna, Austria

Daniel Fischer Natural Resources Institute Finland (Luke), Green Technology,
Jokioinen, Finland

School of Health Sciences, University of Tampere, Tampere, Finland

Gabriel Frahm Department of Mathematics/Statistics, Helmut Schmidt
University/University of the Federal Armed Forces Germany, Hamburg, Germany

Roland Fried Fakultät Statistik, Technische Universität Dortmund, Dortmund,
Germany

Marc Hallin ECARES, Université Libre de Bruxelles, Bruxelles, Belgium

ORFE, Princeton University, Princeton, NJ, USA

Tracey W. Hammel Department of Statistics, Penn State University, University
Park, PA, USA

Stefanie Hayoz Institute of Mathematical Statistics and Actuarial Science,
University of Bern, Bern, Switzerland

Now at Statistics Unit, Swiss Group for Clinical Cancer Research (SAKK), Bern,
Switzerland

Thomas P. Hettmansperger Department of Statistics, Penn State University,
University Park, PA, USA

Karel Hron Department of Mathematical Analysis and Applications of
Mathematics, Palacký University, Olomouc, Czech Republic

Jürg Hüsler Institute of Mathematical Statistics and Actuarial Science, University
of Bern, Bern, Switzerland

Uwe Jaekel Department of Mathematics and Technology, University of Applied
Sciences Koblenz, Remagen, Germany
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Chapter 1
When We Were Very Young: Some Recollections
from Hannu Oja’s First Years of Academic Life

Elja Arjas

Abstract This chapter is a brief description, written from free memory, of what
academic life was like in a very small Finnish university department 40 years ago,
and of how some young chaps, themselves still novices—Hannu Oja being one—
wanted to make a difference.

It must have been in early fall of 1975 when I met Hannu for the first time.
We were sitting in an office of the Mathematics Department of the University of
Helsinki, one that I could use during my frequent visits there at the time. It was an
informal interview for the position of an Assistant at the newly formed Department
of Applied Mathematics and Statistics at the University of Oulu. I had moved to
Oulu in January of that same year, and during a relatively short period it appeared
possible to expand that small Department a little and advertise some new positions.
This was one of them, and its creation had been, as was customary in those days,
formally approved by the Parliament as part of the next year’s budget of the Finnish
government.

I can no longer recall whether there were any other applicants than Hannu. But
it was an easy decision for me: Here was a young man with a Master’s degree in
Statistics from the University of Tampere, who was determined he wanted to pursue
post graduate studies in the field, and was willing to move to Oulu for that purpose.
At the time of the interview, Hannu had been employed as an actuary at Statistics
Finland for some months. But I recall Hannu telling me that he found that job a bit
boring, and wanted a change. To me, it sounded like a good recommendation for a
job in the free academic world. The rest is history, one may now say. But I would
like to use this opportunity to say something about how life and work at Finnish
universities looked like at the time, now nearly 40 years ago.

The title “When We Were Very Young” is the title of A.A. Milne’s book (1924).

E. Arjas (�)
Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
e-mail: elja.arjas@helsinki.fi

© Springer International Publishing Switzerland 2015
K. Nordhausen, S. Taskinen (eds.), Modern Nonparametric, Robust
and Multivariate Methods, DOI 10.1007/978-3-319-22404-6_1
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4 E. Arjas

It is actually difficult to perceive from today’s perspective how homespun many
things in the Finnish Academia were then. University of Oulu had been founded
in 1959, so it was a fairly new institution in the mid 1970s. Most professors there
could be seen as pioneers whose main agenda, in this new territory, was to build up a
functioning Department in their respective field, with adequate lectures given to the
students. I had myself been appointed to a professorship of applied mathematics and
statistics, and as Chair of the Department, with minimal scientific credentials in the
former domain and, as I may now say, none in the latter. But I was not an exception.
Few people around us seemed to have much experience, or even comprehension,
of what it would mean to be actively involved in international level research and
publishing. I don’t want to say that University of Oulu was somehow “bad” in that
respect. The same qualification would have applied to many older institutions, well
established in the country. Besides, statistics was not an area which would have had
much scientific tradition in Finland, so that there was no clear trace or pattern which
we could have followed. And so we started essentially from scratch, trying to make
our own thing, as best we could. The key ingredient that made such an attempt
at all possible was that there was a lot of talent around, in the junior faculty and
students. Being the first university in northern Finland, Oulu University was a major
attractor for the many gifted high school students who saw there a route to academic
professions, and also up in the social ladder, physically near to their home. Naive as
I was, I may have exploited that motivation and drive a little. During the first years
in Oulu, I forced all statistics majors to do a compulsory course in measure theoretic
probability.

The position of Assistant, to which Hannu was initially hired, was the common
junior faculty job in the Finnish universities in those days. It meant a fixed term
appointment, usually for 3 years with some possibility for an extension, and the
idea was to share one’s time, approximately 50–50, between graduate level studies
and giving tutorials to students. Thus it was somewhat reminiscent to the American
practice of being a PhD student and a TA, but there was a regular monthly salary.

Hannu’s involvement in teaching was one of the factors which contributed to
making my life as professor easy. I soon learned that Hannu could run the tutorials
connected to my lectures quite independently. Early on, I checked that I agreed with
his solutions to the assignments which had been given to the students. But since
there was never any need for a critical comment, I soon dropped such a practice as
redundant. One of my lecture courses was on non-parametric statistics, with Hannu
taking care of the tutorials. I had made an attempt to learn something about the
topic by reading the textbook by Dickinson-Gibbons in advance. But I suspect that
it somehow tuck better for Hannu than for me, as he soon started to entertain his
own ideas in the area.

Hannu’s first goal in Oulu was to upgrade his Master’s degree to that of
Licentiate. This academic degree has now practically disappeared, but it was then
commonly required before one could move on to actual PhD. It involved both
completing formal graduate level courses in some other subject than the major
in the Master’s degree, and also writing a separate thesis. In Hannu’s case it
meant studying more mathematics. I should think that such a thorough, and also
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time-consuming, preparation was not necessarily a bad idea. Hannu’s high school
background, from Tampereen klassillinen lyseo, had contained more Latin than
mathematics. And my guess, more than factual knowledge, is that the mathematical
profile of the statistics curriculum at the University of Tampere was not very high
either. Thus such energies for sharpening the mathematics skills were well spent.

The background for Hannu’s PhD project was that I had become interested
in the concept of stochastic ordering, applying it primarily in reliability and in
queuing theory. It became then natural to explore to what extent comparable non-
parametric partial orderings, but in some sense of a higher order, could be defined
for distribution functions in one dimension. Thus we were led to considering
general ways to compare two distributions for their location, spread, skewness, and
kurtosis. I still think that the core results in the Scandinavian Journal of Statistics
(1981) paper, which end up looking at how many times the cumulative distribution
functions—after certain transformations—intersect each other, are quite beautiful.

Hannu’s PhD thesis had the format of four journal papers and a short summary. I
had adopted that bundle thesis format, nippuväitöskirja in Finnish, for my own PhD,
and I think it was the first of its kind at least within mathematics in Helsinki. Then
rare, but now the dominant format, it gives the student a possibility to go through
and learn the various phases required for journal publication, thereby providing
important training for the later career as a scientist. It also frees the PhD candidate
from writing a separate long thesis, which—after the examination is over—most
likely no one will read. But otherwise the requirements were quite stiff: I remember
having required that there should be four journal papers, of which at least two should
have been accepted for publication. There was also a strong preference for single
authorship.

Hannu seemed always very clear on what he wanted to do. On the top of
his professional agenda was to carry out independent high calibre research in
multivariate statistics. As we know, besides this, Hannu has been productive in
biostatistics and signal analysis.

This dedication to research showed sometimes in ways that could be considered
nonstandard. For example, after having been promoted to the permanent position of
Lecturer in Oulu, Hannu applied for the fixed term position of Senior Assistant, with
a somewhat lower salary, because it allowed him more time for his research. But in
whatever role Hannu chose to work, the Department of Applied Mathematics and
Statistics benefited from his presence enormously. Hannu was the real statistician
in the Department. He soon formed his own small research group, supervising
students, including two PhDs while still in Oulu.

Wisely enough, the Academy of Finland supported Hannu in this endeavour, both
in the form of fixed term research positions and later also by research grants. This
support, which has continued to this day, has been crucially important for the success
of his work. The Academy is to be congratulated for having correctly identified
where seminal work in statistics is carried out in Finland.

Hannu has also been lucky to find talented young people who have been working
under his supervision, which has led to an expansion of his research ideas. This
nurturing of culture and tradition has greatly enriched the statistical community
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country wide. Hannu been the Ambassador of non-parametric statistics, spreading
the good word, not only in Oulu, but also in Jyväskylä, Tampere, and now in Turku.

At some point, out of necessity, young people become not-quite-as young. Maybe
turning 65 is an appropriate time to notice this. But Hannu does not seem to entertain
any idea of slowing down, let alone retirement from research. His engine seems to
have the same torque as ever before.

Hannu’s motto could well be “Ei tehrä tästä ny numeroo”.1 This is a fitting
description, in the local dialect, of the people from Häme, the geographical region
around Hannu’s hometown Tampere. And it is particularly fitting for Hannu: I can
almost hear him saying that.

Given Hannu’s extreme level of modesty, I wonder how he feels about celebrating
his 65th birthday with this Festschrift? But deeper down, I am sure that he actually
understands: Hannu’s colleagues and friends want to show their appreciation of his
work, and of him as a person. That’s not something one could possibly refuse.

1It has been popularized by Sinikka Nopola’s novel, translated into English with the title Let’s Not
Make a Fuss over This.



Chapter 2
Publication and Coauthorship Networks
of Hannu Oja

Daniel Fischer, Klaus Nordhausen, and Sara Taskinen

Abstract In this paper we review Hannu Oja’s publications and form coauthor
networks based on them. Applying community detection methods to the network
formed by all of Hannu’s publications shows that his coauthors can be classified
into 13 clusters, where two large clusters refer to his methodological research.
The network concerning this methodological work is then extended to cover all
statistical publications written by Hannu’s coauthors. The analysis of the extended
network shows that Hannu’s coauthors do not form a closed community, but Hannu
is involved in many different fields of statistics.

Keywords Bibliography • Community detection • Social network analysis

2.1 Introduction

Hannu (Frans Vilhelm) Oja is one of the most influential statisticians in Finland with
an impressive publishing record. In this paper we will briefly review his publications
and also have a look at his scientific network. To the benefit of all his friends,
colleagues, past and present students as well as the general statistics community,
this paper is only a snapshot, as Hannu is still active in research and we are looking
forward to many more contributions from him. In this paper we consider those of
Hannu’s publications that were published before 10 October, 2014. By this date
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Hannu has published 161 scientific works as listed in Appendix A.1. We will refer
to these works using the numbers provided in the Appendix.

Hannu can be regarded as a pioneer in the field of nonparametric methods. Many
of his contributions are published in highly ranked statistical journals including
Annals of Statistics, Journal of the American Statistical Association, Journal of the
Royal Statistical Society Series A–C, Biometrika, and Statistical Science. Hannu’s
so far only monograph [131] discusses multivariate methods using spatial signs
and ranks. In addition to nonparametric statistics, Hannu has also contributed
broadly in the fields of robust multivariate methods, statistical signal processing,
and biostatistics. His applied papers fall within the areas of medicine, psychology,
and psychiatry. As statistics papers in general receive lower citation numbers, his top
three cited papers according to the Web of Science are the applied publications [46],
[60], and [66] with 113, 198, and 88 citations, respectively. Of his methodological
work, the three most cited papers are [1], [43], and [47] with 77, 43, and 42 citations,
respectively. Notice that these figures should be rather taken as lower bounds as the
Web of Science does not cover all references.

As Hannu is also interested in making his statistical methodology available to the
broad community, he is furthermore involved in nine R packages which are listed in
Appendix A.2.

In the following we consider Hannu’s role in the scientific community by
analyzing the network created by his publications. The following analysis is done in
R (R Core Team 2014), using the R packages bibtex (Francois 2014), igraph (Csardi
and Nepusz 2006; Kolaczyk and Csardi 2014), and rworldmap (South 2011).

The citation data was extracted from the Web of Science on 10.10.2014 (URL:
http://apps.webofknowledge.com) by courtesy of Thomson Reuters.

2.2 The Coauthor Network Created by Hannu Oja’s
Publications

A basic statistical network is given by a graph G.V;E/, where V are all Nv vertices
in the population and the edges E between vertices indicate that they are connected
in some way. The network can then be described using the so-called adjacency
matrix A, which is an Nv � Nv matrix of zeros and ones such that Aij is 1 if vertex
Vi is connected to vertex Vj, and otherwise 0. Such networks are usually based on
simple graphs, which means that the diagonal elements of A are zero. A network is
considered undirected when there is no ordering of vertices when considering their
connections, which means that Aij D Aji and hence A is symmetric.

Sometimes only a subset of the whole network is considered. This subset
is usually developed around an ego-vertex and contains all other vertices next
to the ego vertex having a connection to the ego vertex. Such networks are
called egocentric networks, and the corresponding adjacency matrix is therefore a
submatrix of A of the full graph.

http://apps.webofknowledge.com
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Table 2.1 Collaboration frequencies of Hannu in the coauthor network

Number of joint papers 1 2 3 4 5 6 7 9 10 11 12 14 16 18 19 22

Frequency 77 42 15 6 4 1 2 3 1 1 1 2 1 1 1 1

In this section we consider the coauthor network G.V;E/ created by Hannu’s
publications [1]–[161]. In this network G, the vertices V correspond to Hannu and
all his coauthors. Naturally there is then an edge between Hannu and every coauthor,
but two distinct coauthors are connected only if they have written at least one
joint paper with Hannu. This means that two coauthors might have collaborated
sometimes but still might be unconnected in this network if this collaboration does
not include Hannu. This network is thus not an egocentric network with ego vertex
Hannu out of the network based on all scientific collaborations.

Furthermore, this network is defined as a simple graph meaning that Hannu’s
12 single author papers do not contribute to the network. In the remaining 149
publications, Hannu has 159 coauthors (notice that, to the best of our knowledge,
we made authors unique by considering, for example, changes in family names).
Table 2.1 gives Hannu’s collaboration frequencies, which shows that Hannu has
nine collaborators with whom he has written ten or more publications.

The number of vertices Nv in this coauthor network is thus 160 and there are
altogether Ne D 666 edges in G connecting the various vertices.

Figure 2.1 visualizes the network, so that the nodes have different colors
depending on a crude and subjective classification into different background fields.
The size of the node in this figure depends on the number of publications an author
has in this network, and the author’s name is printed only if he/she has at least five
joint publications with Hannu. To identify the other authors in the network, the list
of authors with corresponding label numbers is given in Appendix A.3 (Table 2.2).

Since the network given in Fig. 2.1 includes Hannu’s coauthors, the network is
naturally a connected graph meaning that there is a path from any vi 2 V to vj 2 V .
However, if Hannu were “removed” from G, the graph would fall apart into ten
components which would not be connected. The largest component comprises 112
nodes out of 159 coauthors, all the remaining components being relatively small.

The degree dv of a vertex v is the number of edges in E which are connected
to v. Having a weight attribute, e.g., the number of joint publications, allows us to
multiply the edges by the corresponding weights. The sum of the weighted edges
of a vertex is then called vertex strength. These quantities can be often used to
decide how “central” or “important” a vertex v is in G. However, as this network is
neither a “full” network nor an egocentric network, we refrain from doing so here,
since the classical measures of network centrality and the measures of centrality for
egocentric networks, as described, for example, in Mardsen (2002), would be biased.
Further, as Hannu is by design the most central figure, the centrality measure might
also be quite uninformative.

Thus, in the following we will focus on searching clusters from our network. In
network analysis this is known as community detection. We believe that standard
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Fig. 2.1 Visualization of the coauthor network of Hannu Oja. Vertex color indicates background
field and its radius is relative to the number of publications in the network. The name of an author
is printed only if the author has at least five joint publications with Hannu

community detection methods can be applied to our network and will not be
inherently biased, but reflect in some way the world from Hannu’s point of view.

Many methods for community detection have been suggested in the literature
(see, for example, Lancichinetti and Fortunato 2009; Fortunato 2010, for an
overview), and many of them try to maximize a clustering index called modularity.
Several variants of modularity have also been introduced, but all of them basically
maximize the number of edges within a community, adjusted for the expected
number of such edges.

Following Newman (2006), the modularity is defined using the adjacency matrix
A as

Q D 1

2Ne

NvX

iD1

NvX

jD1

�
Aij � Pij

�
ı.i; j/:

In this equation ı.i; j/ D 1 if i and j belong to the same community, and otherwise
zero. The matrix Pij contains the expected number of edges. To form this matrix,
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many null models can be thought of. However, the most common one assumes a
random graph having the same degree distribution as the observed graph, i.e., Pij D
.2Ne/

�1.
PNv

jD1 Aij
PNv

iD1 Aij/.
In community detection, the trivial solutions, which put all vertices into one

cluster or where each vertex forms its own cluster, are usually excluded. Given these
constraints, the goal of community detection is then to decide the optimal number
of communities and labeling the vertices by maximizing the modularity. Finding the
global maximum is, however, for most real networks not tractable computationally,
and approximate optimization methods are often used instead. Many of them follow
the ideas coming from hierarchical clustering and either successively merge vertices
or divide them.

In the following we will motivate the so-called leading eigenvector method of
Newman (2006), which is, however, not a real hierarchical clustering method.

Assume that we want to divide our network into two communities. Define
for this the Nv-vector s D .s1; : : : ; sNv /

>, which takes values C1 and �1, if
the corresponding vector belongs to community 1 or 2, respectively. Notice that
s>s D Nv and 0:5.sisj C 1/ is 1 if vertices i and j belong to the same group and
otherwise 0. Hence we can rewrite the modularity as

Q D 1

4Ne

NvX

iD1

NvX

jD1

�
Aij � Pij

�
.sisj C 1/ D 1

4Ne

NvX

iD1

NvX

jD1

�
Aij � Pij

�
.sisj/;

where the second equality follows from the fact that
PNv

iD1
PNv

jD1 Aij D
PNv

iD1
PNv

jD1 Pij D 2Ne.
Hence Q can be defined in matrix notation as

Q D 1

4Ne
s>Bs;

where B is the so-called modularity matrix, which is a real and symmetric matrix
having elements Bij D Aij � Pij.

Let then B have the eigenvector-eigenvalue decomposition U�U>, where U D
.u1; : : : uNv / is orthogonal and � D diag.�1; : : : ; �Nv / with �1 � �2 � : : : � �Nv .
Then

Q D 1

4Ne

NvX

iD1
˛2i �i;

where ˛i D u>
i s. Therefore, maximizing Q corresponds to putting as much weight

as possible on the largest positive eigenvalues. This would be an easy task if s would
not be restricted to have only entries equal to ˙1. A good approximation seems to
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be, however,

si D
� C1 if u1i � 0
�1 if u1i < 0;

where the magnitude of ju1ij can be interpreted as the strength of belonging to the
corresponding community.

Having then two communities, the same method can again be applied to each
community, and so on, until no community is divided any further. Many refinements
of this methods are available. One can, for example, include also information
contained in other eigenvectors, see, for example, Newman (2006) for further
information.

Applying this methodology to our graph G and using the number of collabo-
rations to weight the edge degrees as implemented in the igraph package give 18
clusters. As five of these clusters contained only three or fewer authors, we decided
to merge them with what we think are their closest communities. The resulting 13
clusters are visualized in Fig. 2.2, where the intercluster and intracluster edges are
colored red and black, respectively.

Fig. 2.2 Visualization of the leading eigenvector clustering of network G when using number of
joint publications as edge weight
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The largest cluster in Fig. 2.2, colored in red and denoted as cluster 1, con-
tains Hannu and 40 coauthors, and forms jointly with cluster 4 the core of his
methodological work. Interestingly, cluster 4 mainly contains coauthors from the
work conducted during Hannu’s stay at the University of Jyväskylä. Hannu’s
recent side tour to analyzing genetic data, as seen in publications [136,157],
forms cluster 3. Clusters 2, 5, and 12 refer to Hannu’s applied work conducted
during his stay at the University of Oulu. Cluster 2 is formed by the authors
of [18,20,25,26,27,32,33,34,37,38]. These publications are related to the large
cohort study, which aimed at finding risk factors for acute otitis media. Cluster 5
corresponds to publications [10,11,13,19,23,28,42,66], which originated from the
Northern Finland Birth Cohort 1966 (NFBC1966) study and gave insight into how
perinatal events affect subsequent morbidity and mortality of children. Cluster 12
refers to publications [35,41].

Some of the other clusters are related to Hannu’s different areas of application,
many of them referring to only one publication: Cluster 6 corresponds to publication
[115], cluster 9 to [121], cluster 10 to [110] and cluster 11 to [99]. In publications
[119,144] subjects suffering from schizophrenia were analyzed, and the correspond-
ing authors form cluster 8. Cluster 7 concerns mainly the work Hannu did with his
PhD students Pauliina Ilmonen and Sylvia Kiwuwa-Muyingo. Cluster 13 can be
considered a more methodological work, since publications [125,126,135] deal with
the estimation of population attributable fractions in epidemiological studies.

As can be seen from the above description of the coauthor network, Hannu is a
very active scientist with many collaborators. Such collaboration is nowadays highly
encouraged, and international contacts are highly emphasized. One motivation for
this is that, despite being in the information age, it is assumed that the transfer of
knowledge and ideas is faster via direct contact between collaborating researchers
(Kretschmer 2004). In order to visualize the grade of internationality of the above
network, Fig. 2.3 shows a map of the current locations of Hannu’s coauthors to the
best of our knowledge.

Fig. 2.3 Current location of Hannu Oja’s coauthors. The corresponding countries are marked
black
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As seen in Fig. 2.3, Hannu collaborates with researchers around the world, and
this has by all means been highly beneficial to the Finnish statistical community. A
special group of people who have benefited a lot from Hannu’s scientific network
are his PhD students. As most of us know, Hannu encourages his students to
international collaboration as well as to spending some time abroad during their
studies. Without such a widespread scientific network this would not have been
possible.

According to the classification visualized in Fig. 2.2, most methodological work
seems to be conducted in two clusters. In the following, we work under the
assumption that the scientific knowledge and ideas are mainly transferred using
personal contacts. We take a closer look at Hannu’s network in statistics and also
extend the network a bit.

2.3 Extended Statistical Network

To see if Hannu’s methodological work is indeed only performed in two commu-
nities and also in order to evaluate if these communities can be placed in a larger
context, we consider the following network.

First, all Hannu’s research articles in the field of mathematics were searched
from the Web of Science. Obvious misclassifications were removed by hand. Then
all coauthors of the remaining 67 publications were extracted, and their publications
with the same restrictions (mathematics & articles) were searched. The publication
period under consideration was from 1981 to 2014. It should be noted that our main
search term, author name plus initial, of course leads to many false positives. Some
obvious mistakes were again removed by hand, but the network must be considered
with some reservation, as besides the false positives, the Web of Science also does
not index all publications for all authors.

The resulting network consists of 946 papers written by 653 authors, out of
which 98 are single author papers. This extended network has 1861 edges and is
visualized in Fig. 2.4. In this figure, the vertex size is again relative to the number of
publications of the corresponding author. For visualization purposes, we only print
the names of the authors with at least 15 publications as well as of those responsible
for this paper.

The figure clearly indicates that Hannu’s coauthors do not form a closed
community but there are many “ways out” for Hannu’s knowledge and ideas to
conquer the world.
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Fig. 2.4 Visualization of extended network. Vertex size reflects the amount a researcher published
and labels are only given for authors with at least 15 publications and for the authors of this paper

Like in the analysis of the previous network, we again refrain from providing
centrality measures as Hannu is by design the most central vertex and the network
is again neither a standard network nor an egocentric network. Hence we again
focus on clustering the network. As the network is larger than before, we take
the greedy hierarchical clustering method implemented in igraph, where the edges
were again weighted by the number of joint publications. The resulting 14 clusters
are visualized in Fig. 2.5. Also this figure seems to support the idea that Hannu is
involved in many different communities, which is easily understandable considering
his various interests in statistics.

It would be nice to extend this network until the whole statistics field would be
covered in order to see how central a player Hannu is in that network (Hannu’s Erdös
number is 3, for example.). It would also be nice to look at the dynamic structure
of this network in order to see how Hannu’s coauthorship network develops and
changes over time. However, we decided to postpone such an analysis until Hannu
decides to stop publishing scientific articles, which we know will not happen in the
near future. We are sure that Hannu has still many valuable contributions to the field
of statistics and will also start many new fruitful collaborations!



16 D. Fischer et al.

Fig. 2.5 Visualization of hierarchical clustering of the extended network when using number of
joint publications as edge weight
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[R5] Nordhausen, K., Möttönen, J., Oja, H.: MNM: Multivariate Nonparametric Methods. An
Approach Based on Spatial Signs and Rank (2009) http://www.cran.r-project.org/package=
MNM

[R6] Fischer, D., Oja, H.: gMWT: Generalized Mann-Whitney type tests based on probabilistic
indices and new diagnostic plots (2012) http://www.cran.r-project.org/package=gMWT
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FastICA algorithms (2013) http://www.cran.r-project.org/package=fICA

[R8] Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: BSSasymp: Asymptotic covariance
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[R9] Liski, E., Nordhausen, K., Oja, H., Ruiz-Gazen, A.: LDRTools: Tools for Linear Dimension
Reduction (2014) http://www.cran.r-project.org/package=LDRTools

A.3

Table 2.2 All authors in network G, their cluster memberships and labels for plotting

Label Author CL Label Author CL Label Author CL

5 Brown 1 91 Moring 2 34 Ilonen 6

6 Busarova 1 94 Muhli 2 48 Kenward 6

7 Chakraborty 1 96 Naarala 2 55 Knip 6

8 Chaudhuri 1 108 Pirilä 2 64 Korhonen 6

9 Critchley 1 111 Pykäläinen 2 100 Niinistö 6

12 Datta 1 122 Seitamaa 2 125 Simell 6

13 Dümbgen 1 129 Sorri 2 130 Sundvall 6

17 Ghosh 1 136 Tarvainen 2 145 Uusitalo 6

18 Gutch 1 139 Tienari 2 148 Veijola 6

20 Hallin 1 155 Wahlberg 2 151 Virtanen 6

22 Hartikainen 1 159 Wynne 2 32 Ilmonen 7

26 Hettmansperger 1 4 Bracken 3 53 Kiwuwa-Muyingo 7

29 Hüsler 1 16 Fischer 3 77 Levin 7

61 Koivunen 1 31 Ikonen 3 85 Mambule 7

65 Koshevoy 1 37 Isotalo 3 86 Mandal 7

67 Krause 1 38 Jalava 3 93 Mugyenyi 7

69 Läärä 1 74 Lehmusvaara 3 124 Serfling 7

73 Larocque 1 87 Mattila 3 140 Todd 7

75 Lemponen 1 115 Rauhala 3 157 Walker 7

79 Liski 1 120 Schindler 3 25 Helminen 8

80 Lundell 1 121 Schleutker 3 44 Joukamaa 8

81 Luukkonen 1 123 Sen 3 59 Koivisto 8

92 Möttönen 1 135 Tammela 3 109 Pirkola 8

97 Nadar 1 149 Vihinen 3 114 Rantanen 8

98 Nevalainen 1 152 Visakorpi 3 118 Salokangas 8

99 Niinimaa 1 156 Wahlfors 3 154 Wahlbeck 8

101 Nordhausen 1 11 Croux 4 35 Ilveskoski 9

(continued)

http://www.cran.r-project.org/package=MNM
http://www.cran.r-project.org/package=MNM
http://www.cran.r-project.org/package=gMWT
http://www.cran.r-project.org/package=fICA
http://www.cran.r-project.org/package=BSSasymp
http://www.cran.r-project.org/package=BSSasymp
http://www.cran.r-project.org/package=LDRTools
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Table 2.2 (continued)

Label Author CL Label Author CL Label Author CL

102 Nyblom 1 15 Eriksson 4 45 Kähonen 9

103 Oja 1 27 Hillary 4 63 Kööbi 9

104 Ollila 1 40 J. Miettinen 4 66 Koskela 9

105 Orponen 1 46 Kankainen 4 76 Leskinen 9

106 Paindaveine 1 56 Koch 4 95 Mustonen 9

110 Pörsti 1 88 McCann 4 133 Tahvanainen 9

116 Ronkainen 1 89 McGuinness 4 78 Lindroos 10

132 Tableman 1 107 Paton 4 82 Mäenpää 10

134 Talvisara 1 112 Randles 4 128 S. Miettinen 10

138 Theis 1 119 Sandberg 4 131 Suuronen 10

141 Tokola 1 127 Sirkiä 4 160 Ylikomi 10

142 Topchii 1 137 Taskinen 4 24 Hasan 11

144 Tyurin 1 143 Tyler 4 28 Himanen 11

153 Visuri 1 10 Croudace 5 30 Huupponen 11

2 Alho 2 14 ElSaid 5 117 Saastamoinen 11

3 Anais-Tanner 2 23 Hartikainen-Sorri 5 147 Värri 11

19 Hakko 2 36 Isohanni 5 47 Keinänen-Kiukaanniemi 12

33 Ilo 2 39 Järvelin 5 51 Kiultu 12

42 Jokinen 2 41 Jokelainen 5 52 Kiuttu 12

49 Keskitalo 2 43 Jones 5 72 Larivaara 12

50 Kilkku 2 57 Koiranen 5 146 Väisänen 12

58 Koistinen 2 83 Mäkikyrö 5 21 Härkänen 13

60 Koivu 2 90 Moilanen 5 54 Knekt 13

62 Kolassa 2 113 Rantakallio 5 68 Laaksonen 13

70 Lahti 2 126 Sipilä 5 150 Virtala 13

71 Läksy 2 158 Wendt 5

84 Mäki-Torkko 2 1 Alfthan 6

The authors are sorted according to the cluster membership and alphabetically within the clusters
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Chapter 3
Approximate U-Statistics for State Waiting
Times Under Right Censoring

Somnath Datta, Douglas J. Lorenz, and Susmita Datta

Abstract We develop two different adaptations of a U-statistic based on the waiting
times in a given transient state in a multistate system when the state entry and/or the
exit times are subject to right censoring. In the first version, the inverse probability
of censoring weights calculated based on the state exit times are used along with
m-tuples of fully observed waiting times, m being the degree of the kernel of the
U-statistic. In the second version, an approximate statistic is defined as a multiple
integral with respect to a product of Satten–Datta estimators of a state waiting
time survival function. We provide a simulation study to investigate the finite
sample behavior of the statistics. We demonstrate that the second version is more
efficient since it utilizes additional data where the exit times may be censored.
The asymptotic normality of our estimators is also studied through simulation. We
further extend our approximate U-statistics to that of a K-sample U-statistic of
waiting times under right censoring. Another extension considers waiting time data
that are clustered. We apply our U-statistics to test whether initial functional status
has a significant impact on the waiting time of an intermediate state of functional
recovery of a spinal cord injured patient.

Keywords Dependent censoring • Multistate models • Sojourn times • Survival
analysis

3.1 Introduction

U-statistics, as introduced by Hoeffding (1948), are useful tools in constructing var-
ious estimators and test statistics, including nonparametric tests (Serfling 1980). The
asymptotics for U-statistics are generally studied via the Hoeffding decomposition
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(Bickel and Lehmann 1979; Randles and Wolfe 1979; Serfling 1980; Sen 1981; Lee
1990).

For complete (e.g., uncensored or non-missing) data, U-statistics are obtained by
averaging a kernel computed at various sub-samples of the original sample, thereby
extending the notion of a sample mean. The kernel h of a U-statistic is generally
assumed to be a symmetric function of its m arguments .1 � m < n/, known
as its order or degree. Thus, if X1; � � � ;Xn denote the complete data sample, the
corresponding U -statistic is given by

U D
 

n

m

!�1 X

1�i1<i2<���<im�n

h.Xi1 ; : : : ;Xim/: (3.1)

Assuming that the Xi are independent and identically distributed (i.i.d.) with a
common marginal distribution function F, the corresponding functional for which
U is unbiased and asymptotically consistent is given by

�F D Eh.X1; : : : ;Xm/ D
Z

X m
h.x1; � � � ; xm/dF.x1/ � � �dF.xm/: (3.2)

Extensions of U -statistics to various incomplete data problem have received
attention in recent years (Akritas 1986; Gijbels and Veraverbeke 1991; Stute
and Wang 1993a,b; Stute 1995; Bose and Sen 1999, 2002; Schisterman and
Rotnizky 2001; Datta et al. 2010; Fan and Datta 2013). Such extensions are often
mathematically challenging; however, more importantly they are useful from a
practical standpoint since in various real-life situations, notably in biomedical
applications, data are often incomplete due to missingness and/or censoring. Thus,
these extensions provide a user with a familiar and powerful methodology for
handling various inferential issues with such data. Typically, such extended forms of
U-statistics are not technically U-statistics in the classical sense. However, generally
speaking they are asymptotically equivalent to a full data U-statistic at least in the
sense of approximate unbiasedness for a corresponding population parameter � .
Their variances are generally more complex. Rather than finding exact linearization
and closed-form estimates of the asymptotic variances one may attempt techniques
such as the jackknife or bootstrap (see, e.g., Efron 1982) to compute the variance
and perform large sample inference for � using these extended U-statistics.

The rest of this chapter is organized as follows. In Sect. 3.2, we introduce our
censored U-statistic for waiting times under independent right censoring of the
event times so that both state entry and exit times are potentially right censored.
We also extend its definition to the case of dependent right censoring when there
are observable covariates that explain the dependence between the true event times
and the censoring times. Section 3.3 presents simulation results comparing the
two versions of the extended U-statistics, and demonstrates the effectiveness of
jackknife variance estimates and approximate normality of the sampling distribution
of our U-statistics. Useful extensions of our U-statistics are presented in Sect. 3.4,
including extensions to the multi-sample case and also to clustered multistate data
with potentially informative cluster size. A numerical illustration is provided in
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Sect. 3.5, where we compare certain state waiting times of spinal cord injury (SCI)
patients. The chapter ends with a brief discussion in Sect. 3.6.

3.2 IPCW U-statistics for Right Censored Waiting Times

We consider n individuals in a multistate system. We concentrate on an intermediate
(e.g., transient state) such that all individuals would eventually pass through that
state. For the ith individual, let X�

i , V�
i , and W�

i D V�
i � X�

i be the state entry, exit,
and waiting times, respectively. In the presence of right censoring by Ci, each of
these times may be unobserved. Of course, if V�

i is observed (i.e., when V�
i � Ci/,

the rest are observed as well. However, V�
i and W�

i may be unavailable even if X�
i

is observed, which happens if X�
i � Ci < V�

i . One has to handle each case of
censoring appropriately to avoid selection bias while maintaining efficiency.

Our observed data consist of the four-tuples .Xi; �i;Vi; ıi/; 1 � i � n; where
Xi Dmin.X�

i ;Ci/ and Vi Dmin.V�
i ; Ci/ are the (right) censored state entry and exit

times, and �i D I.X�
i � Ci/ and ıi D I.V�

i � Ci/ are censoring indicators for
stage entry and exit for the ith subject. Also, let � i D 1� �i and ıi D 1 � ıi. Define
the censored waiting times as Wi D Vi � Xi. Note that Wi is computable from the
observed data and equals W�

i if and only if ıi D 1. Let FW� be the waiting time
distribution function and SW� D 1� FW� its survival function.

We define two different versions of our censored data U-statistics for waiting
times. The first is based on data values observed up to at least time V�

i ; i.e., based
on the waiting times of individuals with ıi D 1. The second approach we propose is
to express the U-statistic as an integral with respect to the product of estimated
state waiting time distribution functions OFW� . The estimated state waiting time
distribution function was proposed by Satten and Datta (2002) and is reviewed in the
next subsection for completeness. In the first approach, the selection bias of using
ıi is removed by reweighting the term by the inverse of its conditional expectation
given the observed data. These and other weights were also used in constructing the
Satten–Datta estimator OFW� . Computation of these weights depends on the assumed
model of the censoring hazard, the simplest of which is that of random censoring.
Details are covered in the next subsection.

3.2.1 Random Right Censoring

Suppose .X�
i ;V

�
i ;Ci/, 1 � i � n, are i.i.d. and that the censoring mechanism is

independent of the multistate process, and thus for each i, Ci is independent of
fX�

i ;V
�
i g. Note that, in this case E.ıijX�

i ;V
�
i / D E.ıijV�

i / D SC.V�
i �/, where �

denotes left limit and SC is the common survival function of the censoring random
variables. Thus, extending the mean-preserving reweighting approach of Koul et al.
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(1981) or Datta (2005) for the sample mean, we could define our censored waiting
time U-statistic based on a kernel h as

Uc D 1�n
m

�
X

i

h.Wi1 ; � � � ;Wim/
Q
`2i ı`Q

`2i SC.Vi�/ ; (3.3)

where the notation ` 2 i is used to indicate that ` is one of the integers fi1; � � � ; img.
Note that Uc itself is a U-statistic based on the triplets .Wi;Vi; ıi/; 1 � i � n with
kernel H

H
�
.W1;V1; ı1/ ; : : : ; .Wm;Vm; ım/

�
D h.W1; � � � ;Wm/

Qm
`D1 ı`Qm

`D1 SC.Vi�/ : (3.4)

Furthermore,

E
�

H
�
.W1;V1; ı1/ ; : : : ; .Wm;Vm; ım/

��
D

D E

(
h.W�

1 ; � � � ;W�
m/
Qm
`D1 ı`Qm

`D1 SC.V�
i �/

)

D E

"
h.W�

1 ; � � � ;W�
m/Qm

`D1 SC.V�
i �/

E

(
mY

`D1
ı`

ˇ̌
ˇ̌X�
1 ;V

�
1 ; � � � ; X�

m;V
�
m

�#

D E

"
h.W�

1 ; � � � ;W�
m/Qm

`D1 SC.V�
i �/

mY

`D1
Efı`jX�̀;V`g

#
;

D E
�

h.W�
i1 ; � � � ;W�

im/
�
D �;

provided Sc.V�
i �/ > 0, for each i, with probability 1.

Unfortunately, Uc as defined above is not usable, as Sc is unknown and thus not
a legitimate statistic. We can estimate Sc by the Kaplan–Meier estimator, where the
role of censored and uncensored exit times is reversed. Replacing Sc by its estimated
version, we get our first approximate U-statistic for right censored waiting times,

OU.1/ D 1�n
m

�
X

i

h.Wi1 ; � � � ;Wim/
Q
`2i ı`Q

`2i
OSC.Vi�/

: (3.5)

We refer to this statistic an inverse probability of censoring weighted (IPCW) U-
statistic based on censored waiting times although technically, it is not a U-statistic
since OSc uses data from all individuals. Nevertheless, it serves the same purpose as
the corresponding U-statistic for the full data and is consistent for the same �.F/.
One can obtain its asymptotic distribution following a censored data U-statistic
result of Datta et al. (2010) where one identifies the marks with the waiting times W�
and the failure times T� with the state exit time V�. While this statistic is consistent
and asymptotically normal, its asymptotic variance is larger than that of a U -statistic
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based on full data waiting times (W�). This efficiency loss due to censoring is to be
expected.

Next, we introduce another censored waiting time U-statistic that makes more
efficient use of the available data, as some of the observations with the observed
entry times but censored exit times are used in its computation. This situation does
not arise with right censored failure times and thus this U-statistic was not covered in
Datta et al. (2010). Since the population quantity being estimated takes integral form
� D R

h.x1; � � � ; xm/dFW.x1/ � � � dFW.xm/ we can define an approximate U-statistic
by replacing FW by a nonparametric estimator. Satten and Datta (2002) proposed a
Kaplan–Meier type nonparametric estimator of FW which we now review.

Define the following reweighted versions of the “counting” and “number at risk”
processes corresponding to the right censored weighting times:

NW
c .w/ D

nX

iD1

ıiI.Wi � w/

Sc.Vi�/ (3.6)

and

YW
c .w/ D

nX

iD1

�iI.Wi � w/

Sc.Xi C w�/ : (3.7)

It is straightforward to show, using previously suggested arguments, that ENW
c .w/ D

ENW�

.w/, where NW�

.w/ D Pn
iD1 I.W�

i � w/ counts the number of full data
waiting times not exceeding w. Note that on the set �i D 1, the entry time is observed
and hence Xi D X�

i . Moreover, �iI.Wi � w/ D I.W�
i � w/I.Ci � X�

i C w�/, and
hence EYW

c .w/ D EYW�

.w/, where YW�

.w/ D Pn
iD1 I.W�

i � w/ is the “number
at risk” process corresponding to the full data waiting times. The Satten–Datta
estimator is obtained by a Kaplan–Meier formula where estimated versions of these
two reweighted processes are used:

OFW.w/ D 1 �
Y

s�w

 
1 � �

ONW
c .s/
OYW

c .s/

!
; (3.8)

where ONW
c and OYW

c are obtained by replacing Sc by its Kaplan–Meier estimator OSc

in .6/ and .7/, respectively;� denotes the jump of a process.
Finally, our second approximate U-statistic is given by

OU.2/ D
Z

h.w1; � � � ;wm/d OFW.w1/ � � � d OFW.wm/: (3.9)

Note that for complete data, such integrals with respect to the empirical distribution
are referred to as V-statistics, which are asymptotically equivalent to the correspond-
ing U-statistics. Since, in presence of censoring, we could only define approximate
U-statistics, we are not making such a fine distinction. However if desired, one can
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obtain another version by expanding .9/ into a sum and only retaining the terms
over distinct indices.

Since the version OU.2/ uses the Datta–Satten estimator which in turn uses data
points with � D 1, rather than ı D 1, in computing the “number at risk” process, we
expect it to be more efficient than OU.1/. In the simulation section we compare the
behavior of OU.1/ to that of OU.2/ in several settings. We show that while both OU.1/
and OU.2/ seem to be nearly unbiased, OU.2/ has lower variance than OU.1/.

In the following subsection, we show how to modify these estimators for the
case of dependent censoring, where the censoring hazard is modeled through a set
of observable subject-specific baseline and/or time-varying covariates that explain
the dependence between censoring and the multistate process.

3.2.2 Dependent Censoring

The assumption of random (or independent) censoring can be relaxed by modeling
the censoring process via auxiliary information. The resulting U-statistics broaden
the scope of their applicability. This approach of modeling dependent censoring
through a collection of observable covariables (fixed or time varying) Z DfZ.t/ W
t � 0g has been advocated in Robins and Rotnizky (1992), Robins (1993), as
well as by us in a number of prior publications (Datta and Satten 2002; Satten
et al. 2001b; Satten and Datta 2002, 2004). Satten and Datta (2001) showed that
the standard Kaplan–Meier estimator under independent censoring is also a special
case of IPCW. In what follows, we assume that the covariates Z are observable for
all individuals (including those whose exit times are censored) at least up to the
time V . The following technical condition is equivalent to that of “no unmeasured
confounders” and means that the covariables Z explain all the dependence between
the entry/exit times and censoring times:

lim
dt!0

Pft � C < tC dtjZ.u/; 0 � u < t;V � t;X�;V�g
dt

D

D lim
dt!0

Pft � C < tC dtjZ.u/; 0 � u < t;V � tg
dt

DW �c.t/:

(3.10)

Nonparametric estimation of the integrated censoring hazard�c.t/ D
R t
0
�c.s/ds

is discussed below. Once an estimator of �c.t/ is obtained we can redefine OSc.t/ as
OSc.t/ D Q

s�t.1 � O�c.s/ds/ or OSc.t/ Dexpf� O�c.t/g. Note that in general, OSc.t/ will
depend on the subject-specific covariates Zi; in other words, we have suppressed
the subject index i for notational simplicity. Finally, the modified approximate U-
statistics OU.1/ and OU.2/ are obtained by the same formulas as in the previous
section, where we use the current definition of OSc. These modified U-statistics
will provide asymptotically unbiased estimators of �.FW/ even in the presence of
dependent censoring.
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Suppose, we have a single time independent (i.e., baseline) covariate Z taking
finitely many values fz1; � � � ; zKg that explains the dependence between C and
fX�;V�g. In this case, we can split the sample into K groups by the value taken
by Z. That is, let Sk D fi W Zi D zk; 1 � i � ng; 1 � k � K. Let OSc;k be the
Kaplan–Meier estimator of censoring times based on Sk, i.e.,

OSc;k.t/ D
Y

s�t

�
1 � �Nc;k.s/

Yc;k.s/

	
; 1 � k � K;

where Nc;k.s/ D P
i2Sk

I.Ci � s; ıi D 0/ and Yc;k.s/ D P
i2Sk

I.Vi � s/. In this

case, OSc D OSc;k, if Zi D zk.
Next consider the situation when Z.t/ is the state occupied just prior to time t, and

we would be assuming that the censoring hazard may be different in different states
of a multistate system with K states. Using a common Kaplan–Meier estimator for
the overall censoring distribution will lead to biased results in this case. Thus we
compute K separate Kaplan–Meier estimators corresponding to K different hazards
as before, where �Nc;k.s/ D Pn

iD1 I.Ci D s; ıi D 0;Zi.s/ D k/ and Yc;k.s/ DPn
iD1 I.Vi � s, Zi.s/ D k/. For a given individual, let f�j; j � 1g be the collection

of its transition times, and let s.t/ D ik, for �k�1 � t < �k; k � 1; �0 D 0. Then OSc is
given by

OSc.t/ D
� k�1Y

lD1

OSc;il.�l/

OSc;il.�l�1/

� OSc;ik.t/
OSc;ik.�k�1/

; for �k�1 � t < �k: (3.11)

The above two examples are special cases of Aalen’s linear hazard model (Aalen
1980, 1989). This is a nonparametric model yielding a flexible choice for computa-
tion of the weights in a variety of situations. Mathematically, the censoring hazard
is modeled as

�c.t/ D
pX

kD0
ˇk.t/Wk.t/; (3.12)

where the Wk.t/ D �k.Z.u/; 0 � u < t/, are predictable functions of the time
dependent covariates Z.t/, each ˇk.t/ is an unknown function, and where one
assumes that the first component W0.t/ � 1. In the two examples mentioned above,
p D K, the ˇks denote the K hazards (ˇ0 � 0), Wk.t/ D I.Z D zk/ in the first
example, and Wk.t/ D I.s.t�/ D k/ in the second example, where s.t�/ is the state
occupied at time t�. Letting Bk.t/ D

R t
0
ˇk.s/ds, Aalen’s estimator of the vector

B.t/ D �B0.t/; � � � ;Bp.t/
�>

is given by

bB.t/ D
nX

iD1
I.Vi � t/.1 � ıi/A�1.t/Wi.t/ (3.13)
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where Wi.t/ D
�
Wi0.t/;Wi1.t/; � � � ;Wip.t/

�>
and the matrix A.t/ is given by

A.t/ D
nX

iD1
I.Vi � t/Wi.t/W>

i .t/: (3.14)

This leads to the subject specific estimates of cumulative hazards

O�i
c.t/ D

pX

kD0

Z t

0

Wik.t/d OBk.t/

D
nX

jD1
I.Vj � t/.1 � ıj/W>

i .Vj/bA�1.Vj/Wj.Vj/ ; t � Vi: (3.15)

Finally, we can use OSc;i.t/ D expf� O�i
c.t/g or OSc;i.t/ DQs�t f1�d O�i

c.s/g in defining
our reweighted estimators.

3.3 Simulation Study

To evaluate the estimators OU.1/ and OU.2/, we conducted a simulation study on a
irreversible three-state model. The natural logarithm of the entry (X�

i ) and waiting
times (W�

i ) in the transient model state for n = 500 individuals were generated
from the bivariate normal distribution with marginal means equal to 0, marginal
variances equal to 1, and covariance equal to 	, where 	 varied between �0:5
and 0.5 for different simulation settings. Censoring times were generated from
the Weibull distribution with shape parameter 2 and scale parameters 2 and 5 to
represent heavy and light censoring, respectively. Under these parameter settings,
approximately 64 % and 87 % of individuals enter the transient model state before
censoring (� D 1) and 36 % and 69 % of individuals exit before censoring (ı D 1)
under heavy and light censoring, respectively.

For each of 5,000 Monte Carlo iterations, we calculated OU.1/ and OU.2/ based on
the order-2 kernel h.w1;w2/ D I.log.w1/ C log.w2/ > 0/, for which we note that
� D E.h.w1;w2// D 0:5. In calculating OU.1/ and OU.2/, we used the Kaplan–Meier
estimator of the censoring survival function in formulas (3.5), (3.6), and (3.7). We
calculated the bias of OU.1/ and OU.2/ as the difference between the empirical average
of the 5,000 replicate estimates and the true value of 0.5. We calculated jackknife
estimates of the variance of OU.1/ and OU.2/ and used these to calculate coverage
probabilities for normal asymptotic confidence intervals of varying size.

We noted that both OU.1/ and OU.2/ were approximately unbiased and that the
jackknife variance of OU.2/ tended to be lower than that of OU.1/ (Table 3.1). Both
OU.1/ and OU.2/ exhibited confidence interval coverage in reasonable correspondence
with nominal levels (Fig. 3.1). OU.1/ tended to be slightly conservative at lower
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Table 3.1 Average empirical bias, jackknife variance, and 95 % confidence interval coverage
probabilities for OU.1/ and OU.2/ for various simulation settings

Censoring Correlation Statistic Bias Variance Coverage probability

Light 0:5 OU.1/ 0:0009 0.0018 0.9506
OU.2/ �0:0005 0.0014 0.9496

Light �0:5 OU.1/ 0:0011 0.0017 0.9552
OU.2/ �0:0012 0.0016 0.9526

Heavy 0:5 OU.1/ �0:0007 0.0028 0.9314
OU.2/ 0:0010 0.0020 0.9498

Heavy �0:5 OU.1/ 0:0009 0.0022 0.9344
OU.2/ �0:0008 0.0016 0.9478
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Fig. 3.1 Plot of empirical confidence levels for OU.1/ and OU.2/ against nominal levels for each
simulation setting

confidence levels (< 90%) when censoring was light and state waiting times
were positively correlated. OU.1/ also exhibited slight undercoverage under heavy
censoring, particularly at lower confidence levels (< 90%), whereas OU.2/ exhibited
coverage closer to nominal levels under heavy censoring. This is a likely product of
the use OU.2/ makes of observations that are censored in the transient model state
when approximating the number at risk of exit from the transient model state, i.e.,
those with � D 1 but ı D 0.

3.4 Extensions

In this section, we introduce two useful extensions of our waiting time U-statistics.
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3.4.1 K-sample Approximate U-statistics for Right Censored
Waiting Times

Consider K independent samples of waiting times from K multistate processes
fW�

k;i; 1 � k � nig; 1 � i � K. A K-sample (extended) U-statistic based on a
kernel h of order .m1; � � � ;mK/ is defined as

U D 1
QK

kD1
�nk

mk

�
X

i.�;�/
h.W�

1;i.1;1/; � � � ; W�
1;i.m1;1/

I � � � IW�
K;i.K;1/; � � � ; W�

1;i.K;mK /
/;

(3.16)
where 1 � i.k; 1/ < � � � < i.k;mk/ � nk; 1 � k � K.

Suppose we have right censored entry and exit time samples from K independent
multistate processes fXk;i; Vk;i; ık;i; �k;i;Zk;i W 1 � i � nig ; 1 � k � K: Then the
two versions of our approximate K sample U-statistics will be given by

OU.1/ D 1
QK

kD1
�nk

mk

�
X

i.�;�/

QK
kD1

Qmk
jD1 ık;i.k;j/

QK
kD1

Qmk
jD1 OSc.Vk;i.k;j/�/

�h.W1;i.1;1/; � � � ; W1;i.m1;1/I � � � IWK;i.K;1/; � � � ; W1;i.K;mK // (3.17)

and

OU.2/ D
Z

h.w1;i.1;1/; � � � ; w1;i.1;m1/I � � � IwK;i.K;1/; � � � ; w1;i.K;mK //

dF1
�
w1;i.1;1/

� � � � dF1
�
w1;i.m1;1/

� � � � dFK
�
wK;i.K;1/

� � � � dFK
�
w1;i.K;mK /

�
;

(3.18)

respectively. Once again, jackknife can be used to calculate the variance of a
k�sample statistic; see, e.g., Arvesen (1969) or Schechtman and Wang (2004).

3.4.2 Approximate Marginal U-statistics for Clustered Waiting
Times

In many applications, data come in the form of independent clusters such that
observations within a cluster are potentially correlated. We assume that we have a
collection of waiting times fW�

ij W 1 � j � Ni; 1 � i � Mg, where i denotes clusters
and j denotes an observation within a cluster. Thus M denotes the total number of
clusters and Ni denotes the number of observations in cluster i. For example, Lorenz
and Datta (2015) considered state waiting time data of spinal cord injured patients
in an activity-based rehabilitation program who go through various recovery stages
before they are discharged. One may be interested in computing a one sample U-
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statistic corresponding to a marginal distribution of the collection of state waiting
times of a patient or compare the marginal distributions of the collection of state
waiting times for patients belonging to two different groups, say, based on their
injury characteristics. The waiting times at various stages of functional recovery for
the same patients are likely to be correlated. Thus, for this example, an individual
patient represents a single cluster.

Often, inference for marginal distributions of clustered data is of interest. In
particular, one may be interested in estimating a functional of the form �.F/ DR

h.x1; � � � ; xm/dF.x1/ � � �F.xm/; m � M; where F is a marginal distribution of the
W�

ij . Depending on the purpose of the investigation, different marginalizations can
be employed. The two choices discussed below appear to be most common.

Consider a random pair of indices .I; J/ chosen uniformly from the pairs f.i; j/ W
1 � j � Ni; 1 � i � Mg. Let FO.w/ D EI.W�

IJ � w/;where E denotes expectation
w.r.t. the joint distribution of all the random variables involved. In other words, FO is
a marginal distribution of all waiting times irrespective of their cluster membership.
A natural estimator of FO is given by

OFO.w/ D 1
PM

iD1 Ni

MX

iD1

NiX

jD1
I.W�

ij � w/:

The corresponding U-statistic is given by

UO D
Z

h.w1; � � � ;wm/d OFO.w1/ � � � OFO.wm/

� 1
�PM

iD1 Ni
m

�
X

all selection of pairs

h.W�
i1j1
; � � � ;W�

imjm
/: (3.19)

Another marginal distribution that is often considered, when the cluster size is
informative, is given by FC.w/ D EI.W�

IJ.I/ � w/; where I follows a discrete
uniform on f1; � � � ; Mg, and given I D i; J follows a discrete uniform on
f1; � � � ; Nig. Informative cluster size refers to situations where the size of a cluster
is correlated with the distributions of the outcomes in that cluster, often through a
hidden factor such as a cluster level random effect (Williamson et al. 2003; Wang
et al. 2011; Lorenz et al. 2011; Nevalainen et al. 2014). Note that FC denotes the
distribution of a typical member of a typical cluster in the population. Its natural
estimator is given by

OFC.w/ D 1

M

MX

iD1

1

Ni

NiX

jD1
I.W�

ij � w/:
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The corresponding U-statistic is given by

UC D
Z

h.w1; � � � ;wm/d OFC.w1/ � � � OFC.wm/

� 1
�M

m

�
X

1�i1<���<im�M

N�1
i1 � � �N�1

im

Ni1X

j1.i1/D1
� � �

NimX

jm.im/D1
h.W�

i1j1.i1/
; � � � ;W�

imjm.im/
/:

(3.20)

It is not difficult to show that when the cluster size is not informative and the
outcomes W�

ij in a cluster are identically distributed, the two marginal distributions
FO and FC coincide and in this case, both UO and UC are valid estimators of the
same population functional � .

In the presence of right censoring, the U-statistics in (3.19) and (3.20) need to be
modified to the following approximate U-statistics using the IPCW technique. Thus
we define

OUO.1/ � 1
�PM

iD1 Ni
m

�
X

all selection ofpairs

ıi1j1 � � � ıimjm

OSc.Vi1j1�/ � � � OSc.Vimjm�/
h.Wi1j1 ; � � � ;Wimjm/;

(3.21)

where OSc; ıikjk ;Vikjk , and Wikjk carry the obvious meanings following earlier conven-
tion, and

OUO.2/ D
Z

h.w1; � � � ;wm/d OFO.w1/ � � � d OFO.wm/; (3.22)

where OFO will be the Datta–Satten estimator of FO computed using the pooled
sample regardless of the cluster membership. Similarly, we have

OUC.1/ D 1
�M

m

�
X

1�i1<���<im�M

N�1
i1
� � �N�1

im

�
Ni1X

j1.i1/D1
� � �

NimX

j1.im/D1

ıi1j1.i1/ � � � ıimjm.im/

OSc.Vi1j1.i1/�/ � � � OSc.Vimjm.im/�/
h.Wi1j1.i1/; � � � ;Wimjm.im//;

(3.23)

and

OUC.2/ D
Z

h.w1; � � � ;wm/d OFC.w1/ � � � d OFC.wm/; (3.24)

where OFC will be the Datta–Satten estimator of FC computed using inverse cluster
size weighting in the formulas for the counting and number at risk processes.
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Note that to obtain a jackknife estimate of the variance of such U-statistics, the
jackknifing should be applied at the cluster level, i.e., an entire (independent) cluster
should be deleted at a time in the calculation of jackknife variance. K-sample
versions of clustered data U-statistics (3.21)–(3.24) can be obtained in a natural
way following the ideas of Sect. 3.4.1.

Note that for the kernel h.w/ D sgn.w/; one obtains the sign test statistic and with
the kernel h.w1;w2/ D I.w1Cw2 > 0/, one gets the so-called one-sample Wilcoxon
statistic; likewise, a two-sample U-statistic with h.w1;w2/ D I.w1 � w2/ yields
a Wilcoxon rank sum statistic. Clustered data version (UO without informative
cluster size) of these statistics and their multivariate extensions were considered
by Larocque et al. (2007) and Nevalainen et al. (2010), although censoring was not
considered by these authors.

3.5 An Application to SCI Data

We illustrate inference based on our U-statistic OU.2/ to data from patients undergo-
ing intensive activity-based locomotor training (LT) in the NeuroRecovery Network
(NRN) (Harkema et al. 2012). The NRN is a specialized network of treatment
centers providing standardized, activity based therapy called locomotor training
(LT) for spinal cord injured (SCI) patients. The sample consists of 273 patients
with incomplete SCI (a grade of C or D on the International Standards for
Neurological Classification of Spinal Cord Injury scale) who were enrolled in
the NRN between February 2008 and March 2011. All enrolled patients received
standardized locomotor training sessions, as established by NRN protocol, and were
evaluated approximately monthly for progress.

Regaining the ability to walk is a frequent goal of rehabilitation for patients
with incomplete SCI, and walking speed on the 10 Meter Walk (10MW) test is
a frequently used measure of walking capacity for SCI patients. As such, several
clinical benchmarks for walking speed have been established: 0.44 m/s represents
the minimum walking speed associated with the ability to walk in the community,
0.7 m/s separates those who require assistive walking devices from those who do
not, and 1.2 m/s is the approximate speed required to cross a street at a stoplight, a
hallmark task of community ambulation (van Hedel and Dietz 2010). Progression
through these benchmark speeds can be viewed as a multistate system with 5 states:
(1) patient unable to walk (10 MW speed D 0 m/s), (2) patient able to walk no faster
than 0.44 m/s, (3) patient able to walk no faster than 0.7 m/s, (4) patient able to walk
no faster than 1.2 m/s, and (5) patient able to walk faster than 1.2 m/s (Fig. 3.2). For
this illustration, we ignore the potential interval censoring present in this data by
assuming that the examination times correspond to actual transition times.

Our interest is in comparing the waiting time in state 2 (walk speed < 0.44 m/s)
of the multistate model between two groups of patients defined by a functional
classifier measured in the NRN known as the Neuromuscular Recovery Scale
(NRS) (Behrman et al. 2012). The NRS measures patient recovery by evaluating
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Non−
 ambulatory

0 − 0.44 m/s 0.44 − 0.7 m/s 0.7 − 1.2 m/s > 1.2 m/s

Fig. 3.2 Multistate representation of spinal cord injury patient recovery of walking function

14 functional tasks and scoring performance on these tasks relative to pre-injury
capability. The 14 items are aggregated to produce the NRS Phase, which classifies
patients into one of four functional groups termed NRS Phase 1, 2, 3, and 4. We are
interested in comparing state 2 waiting times between two groups of patients those
in NRS Phase 1 and those in NRS Phase 2 or 3 (NRS Phase 4 patients are high
functioning and occupy state 2 of the model only rarely).

Censoring in this data set occurred due to exit from the NRN program prior to
the attainment of a walking speed of 1.2 m/s. Of the 273 patients in this sample,
122 patients entered state 2 of which 68 were censored, 41 exited to state 3,
and 13 exited to state 4. We computed a 2-sample U-statistic OU.2/ with kernel
h.w1;i.1;1/Iw2;i.2;1// D I.w1;i.1;1/ > w2;i.2;1//, as defined in Sect. 3.4.1 to perform
a Wilcoxon-type comparison of state 2 waiting times between NRS Phase 1/2 and
NRS Phase 3 patients. For these data, OU.2/ D 0:27 (as defined in Sect. 4.2) and
its jackknife estimated standard error was 0.12 leading to a Z statistic of 2.29
(p D 0:022). Therefore, state 2 waiting times for NRS Phase 1 patients were
significantly longer than waiting times for Phase 2/3 patients.

3.6 Discussion

This chapter extends the concept of U-statistics from independent and identically
distributed complete random variables to those based on incomplete data due to
censoring and also when data are clustered. The form of censoring is fairly complex
since both state entry and exit times may be right censored and the censoring
mechanism may be dependent on external and internal covariates (e.g., past times
and stage occupation, etc). Another useful extension was achieved by considering
the K-sample case, where many of the familiar statistics fall under this category as
well. Collectively, the class of statistics considered in this chapter is very broad and
therefore we hope that these statistics will be regarded as useful inferential tools by
users.

While we have not studied the detailed asymptotic theory for the statistics
proposed here, it is anticipated that the classical linearization tools (e.g., Hoeffding’s
decomposition Serfling 1980) will apply together with martingale representations
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to handle the treatment of censoring by the IPCW technique (Satten and Datta
2001) leading to asymptotic normality of these statistics under appropriate regularity
conditions. We have suggested using the jackknife for variance estimation. This
together with the normal approximation will suffice for conducting inference.

Other extensions of U-statistics may be possible that will enhance the use of
these tools even further. For example, one may consider more complex form of
censoring such as the current status and interval censoring. Another extension will
be to consider U-statistics using various forms of weights to adjust for certain types
of confounding; see Satten and Datta (2014).
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Chapter 4
Nonparametric Location Estimators
in the Randomized Complete Block Design

Stefanie Hayoz and Jürg Hüsler

Abstract Several tests for the comparison of different groups in the randomized
complete block design exist. However, there is a lack of robust estimators for the
location difference between one group and all the others on the original scale. The
relative marginal effects are commonly used in this situation, but they are more
difficult to interpret and use by less experienced people because of the different
scale. In this paper two nonparametric estimators for the comparison of one group
against the others in the randomized complete block design will be presented.
Theoretical results such as asymptotic normality, consistency, translation invariance,
scale preservation, unbiasedness, and median unbiasedness are derived. The finite
sample behavior of these estimators is derived by simulations of different scenarios.
In addition, possible confidence intervals with these estimators are discussed and
their behavior derived also by simulations.

Keywords Confidence intervals • Dependence • Limit distributions • Location
estimator • Randomized complete block design • Simulations

4.1 Introduction

Consider the randomized complete block design with k treatments/groups and n
blocks. Each treatment is applied exactly once in each block, what leads to N D k �n
observations. The blocks could be, e.g., teeth of the same patient, several treatments
measured on the same patient, a variable measured at different time points on the
same patient, patients matched together by certain variables, animals of the same
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Table 4.1 Data and marginal
distributions

Data Marginal distribution

Treatment/group Treatment/group

Block j D 1 . . . j D k j D 1 . . . j D k

i D 1 X11 . . . X1k F11 . . . F1k

:
:
:

:
:
:

: : :
:
:
:

:
:
:

: : :
:
:
:

i D n Xn1 . . . Xnk Fn1 . . . Fnk

litter. The sample variables Xij; i D 1; : : : ; n; j D 1; : : : ; k; and their marginal
distributions Fij are depicted in Table 4.1.

The vectors Xi D .Xi1; : : : ;Xik/ are assumed to be independent. We assume
that F1j D : : : D Fnj D Fj; j D 1; : : : ; k, where the median of Fj is ˛j; j D
1; : : : ; k. Denote the pairwise differences between the observations by Di`;hj D
Xi` � Xhj; i; h D 1; : : : ; n; `; j D 1; : : : ; k.

Three tests for this situation, namely the Friedman test (see, e.g., Friedman 1940),
the ANOVA type test (see, e.g., Brunner et al. 2002), and the ANOVA test for
repeated measures (see, e.g., Davis 1952), were compared with respect to type I
error and power by Hayoz (2006). In addition to the tests, it would be desirable to
have a robust estimator for the location difference between one group and all the
others.

To describe differences in the distributions, the relative marginal effects

pj D
Z

H dFj

can be used, where H D 1
k

Pk
jD1 Fj. See Brunner et al. (2002) and Konietschke

et al. (2010) for further details, also on simultaneous confidence intervals for the
relative marginal effects. The relative marginal effects are scale free, which can
be an advantage in comparing different variables. However in applications relative
marginal effects are often difficult to interpret for people who are not used to them.

Thus, an estimator for the location difference between one group and all the
others on the original scale would be desirable. This location difference can be
quantified as

�j D ˛j � 1

k � 1
kX

`D1
`¤j

˛` D 1

k � 1
kX

`D1
`¤j

.˛j � ˛`/:

W.l.o.g. the groups can be renumbered which leads to

�1 D 1

k � 1
kX

jD2
�1j;
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where �1j D ˛1 � ˛j. The simplest approach to estimate �1 would be based on
means,

NX1 � 1

k � 1
kX

jD2
NXj;

where NXj D 1
n

Pn
iD1 Xij; j D 1; : : : ; k, but this estimator is not robust and not

reasonable for skewed distributions. One idea for a nonparametric estimator for �1,
based on an estimator proposed in Lehmann (1963) for independent groups, is to use
the mean of the median of pairwise differences (pd) which leads to the estimator:

O�pd
1 D

1

k � 1
kX

jD2
O�1j;

where

O�1j D med.Xi1 � Xhj; i; h D 1; : : : ; n/:

If the groups are independent, the estimator O�1j corresponds to the two-sample
Wilcoxon statistic. Koul (2002) showed that the Hodges–Lehmann estimator can
be derived also as a minimum distance estimator. So the estimator O�pd

1 is a function
of minimum distance estimators. A third estimate may be based on the median of
all block-wise differences:

O�block
1 D med.Xi1 � Xij; i D 1; : : : ; n; j D 2; : : : ; k/:

O�block
1 estimates �, the median of NG:.x/ D 1

k�1
Pk

jD2 Gj.x/, where Gj denotes the
marginal distribution of Xi1 � Xij. Also this estimate may be seen as a minimum
distance estimator. Using the approach of Koul (2002) further estimators could be
derived. In Hayoz (2006) and Hayoz (2012) several other nonparametric estimators
were proposed which can be seen also in this context. In this paper we present
and discuss only O�pd

1 and O�block
1 since they proved best with regard to theoretical

properties and also performed well in several simulated scenarios. Some theoretical
properties will be discussed in Sect. 4.2 and simulation results will be shown in
Sect. 4.3. In Sect. 4.4 we will consider the question of confidence intervals.

4.2 Theoretical Results

In this section asymptotic normality, consistency, translation invariance, scale
preservation, unbiasedness, and median unbiasedness will be derived for the two
estimators proposed in Sect. 4.1.
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4.2.1 Mean of the Median of Pairwise Differences

We need to investigate the properties of the estimator O�1j, j D 2; : : : ; k. Hodges
and Lehmann (1963) and in more detail Lehmann (1963) already proposed the
estimator O�1j for independent groups. We generalize his results for dependent
groups assuming only absolutely continuous and differentiable marginal distribution
functions. O�1j; j D 2; : : : ; k is an estimator for �1j, where �1j is defined such
that

R
Fj.x � �1j/ dF1.x/ D 1

2
; j D 2; : : : ; k. We mentioned that this estimator

corresponds to the two-sample Wilcoxon statistic (see, for example, Lehmann 1975,
p. 81–91). However, in our case Xi1 and Xhj are only independent if i ¤ h and
not for all i; h D 1; : : : ; n. Hollander et al. (1974) proved asymptotic normality of
the two-sample Wilcoxon statistic when the assumption of independence between
samples is weakened to allow pairing, concretely for the case where X and Y
are random variables with absolutely continuous joint distribution function F and
marginal distribution functions FX and FY and .X1;Y1/; : : : ; .Xn;Yn/, XnC1; : : : ;
XnCs, YnC1; : : : ;YnCt are independent where .Xi;Yi/ is distributed as .X;Y/ for
i D 1; : : : ; n, XnCi is distributed as X for i D 1; : : : ; s and YnCi is distributed as Y for
i D 1; : : : ; t. We extend the theorem of Hollander et al. (1974) slightly to prove
asymptotic multivariate normality of a vector of pairwise two-sample Wilcoxon
statistics. For the sake of simplicity we consider just the case where we have only
complete pairs.

Theorem 4.1 Let X1; : : :Xk be random variables with absolutely continuous
marginal distribution functions F1; : : : ;Fk. Let .X11;X1j/; : : : ; .Xn1;Xnj/ be
independent where .Xi1;Xij/ is distributed as .X1;Xj/ for i D 1; : : : ; n; j D 2; : : : ; k.
Let

TX1;Xj D
r

n

2



UX1;Xj

n2
� P.X1 < Xj/

�
;

where UX1;Xj D
Pn

iD1
Pn

hD1 1.Xi1 < Xhj/ and P.X < Y/ D R F1.x/ dFj.x/. Then as
n!1,

T D .TX1;X2 ; : : : ;TX1;Xk/

converges in distribution to a multivariate normal distribution with mean 0 and
covariance matrix

0

BBBB@


2TX1;X2
�TX1;X2 ;TX1;X3

: : : �TTX1;X2 ;TX1;Xk

�TX1;X2 ;TX1;X3

2TX1;X3

: : : �TX1;X3 ;TX1;Xk

:::
:::

: : :
:::

�TX1;X2 ;TX1;Xk
�TX1;X3 ;TX1;Xk

: : : 
2TX1;Xk

1

CCCCA
;
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where


2TX1;Xj
D 1

2

Z
Œ1 � Fj.x/�

2 dF1.x/C 1

2

Z
F21.x/ dFj.x/

�
�Z

F1.x/ dFj.x/

	2
� Cov.Fj.X11/;F1.X1j//;

(4.1)

j D 2; : : : ; k, and

�TX1;Xj ;TX1;X`
D 1

2
Cov.1 � Fj.X11/; 1 � F`.X11//

C 1

2
Cov.1 � Fj.X11/;F1.X1`//C 1

2
Cov.F1.X1j/; 1 � F`.X11//

C 1

2
Cov.F1.X1j/;F1.X1`//;

(4.2)
j; ` D 2; : : : ; k; j ¤ `.

For the proof see Hayoz (2012). Note that if F1 D : : : D Fk D F, then (4.1)
simplifies to


2TX1;Xj
D 1

12
� Cov.F.X11/;F.X1j//;

j D 2; : : : ; k.
With this result we can derive the asymptotic normality of O� D

. O�12; : : : ; O�1k/. Assume that

F1; : : : ;Fk are absolutely continuous with densities fj (4.3)

Let

˙� D

0

BBBBB@


2O�12 �O�12;O�13 : : : �O�12;O�1k

�O�12;O�13 
2O�13 : : : �O�13;O�1k

:::
:::

: : :
:::

�O�12;O�1k
�O�13;O�1k

: : : 
2O�1k

1

CCCCCA
;
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where


2O�1j
D p2

�
1

2

Z
Œ1 � F1.xC �1j/�

2 dFj.x/C 1

2

Z
F2j .x � �1j/ dF1.x/

�
�Z

Fj.x � �1j/ dF1.x/

	2
� Cov.Fj.X1j/;F1.X11//

�

�Z
fj.x � �1j/f1.x/ dx

(4.4)

and

�O�1j;O�1` D
1p
2

�
Cov.1� Fj.X11/; 1 � F`.X11//C Cov.1 � Fj.X11/;F1.X1`//

C Cov.F1.X1j/; 1 � F`.X11//C Cov.F1.X1j/;F1.X1`//

�

�sZ
fj.x � �1j/f1.x/ dx

Z
f`.x � �1`/f1.x/ dx:

(4.5)

Theorem 4.2 If (4.3) holds, then as n!1,

O�1 D .
p

n. O�12 � �12/; : : : ;
p

n. O�1k � �1k//

converges in distribution to a multivariate normal distribution with mean 0 and
covariance matrix ˙�.

Proof For arbitrary a1; : : : ; ak

lim
n!1 P.

p
n. O�1j � �1j/ � aj; 8j/

D lim
n!1 P.med.Xi1 � Xhj � �1j � aj=

p
n; i; h D 1; : : : ; n/ � 0; 8j/

D lim
n!1 P.#fXi1 � �1j � aj=

p
n < Xhj; i; h D 1; : : : ; ng � n2

2
C O.1/; 8j/

D lim
n!1 P.UXj;X1��1j�aj=

p
n � n2=2C O.1/; 8j/

D lim
n!1 P

 
TXj;X1��1j�aj=

p
n


TXj ;X1��1j�aj=
p

n

�
r

n

2

1=2 � P.Xj < X1 � �1j � aj=
p

n/C O
�
1=n2

�


TXj ;X1��1j�aj=
p

n

; 8j

!
:
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Let us consider the term 
2TXj ;X1��1j�aj=
p

n
. For each j by (4.1)

lim
n!1 
2TXj ;X1��1j�aj=

p

n

D lim
n!1

1

2

Z
Œ1 � F1.xC�1jCaj=

p
n/�2 dFj.x/C lim

n!1
1

2

Z
F2j .x��1j�aj=

p
n/ dF1.x/

� lim
n!1

�Z
Fj.x��1j�aj=

p
n// dF1.x/

	2
� lim

n!1 Cov.Fj.Xj/;F1.X1//

With the help of the dominated convergence theorem (see, e.g., Forster 1999) the
first term of 
2TXj ;X1��1j�aj=

p

n
tends to

1

2

Z
Œ1 � F1.xC �1j/�

2 dFj.x/;

since

lim
n!1Œ1 � F1.xC�1jCaj=

p
n/�2 D Œ1 � F1.xC �1j/�

2:

Using similar arguments for the second and third term, we get for each j

lim
n!1
2TXj ;X1��1j�aj=

p

n

D 1

2

Z
Œ1 � F1.xC �1j/�

2 dFj.x/C 1

2

Z
F2j .x � �1j/ dF1.x/

�
�Z

Fj.x � �1j/ dF1.x/

	2
� Cov.Fj.Xj/;F1.X1//

D 
2O�1j

1p
2

Z
fj.x � �1j/f1.x/ dx:

(4.6)

Now we consider

lim
n!1

p
n ŒP.Xj < X1 � �1j/� P.Xj < X1 � �1j � aj=

p
n/�

D lim
n!1

p
n
Z
ŒFj.x � �1j/� Fj.x � �1j � aj=

p
n/� dF1.x/:

(4.7)
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Using a Taylor series expansion and the dominated convergence theorem we get for
each j

lim
n!1

p
n
Z
ŒFj.x � �1j/ � Fj.x � �1j � aj=

p
n/� dF1.x/

D lim
n!1

p
n
Z 


Fj.x � �1j/�
�

Fj.x � �1j/� ajp
n

fj.x � �1j/ � o

�
ajp

n

		�
dF1.x/

D aj

Z
fj.x � �1j/f1.x/ dx:

(4.8)
Note that by definition of �1j for each j

P.Xj < X1 � �1j/ D
Z

Fj.x � �1j/ dF1.x/ D 1

2
: (4.9)

Now for each j

r
n

2

1=2� P.Xj < X1 � �1j � aj=
p

n/


TXj ;X1��1j�aj=
p

n

D
r

n

2

1=2� P.Xj < X1 � �1j � aj=
p

n/


1j
1p
2

R
fj.x � �1j/f1.x/ dx


1j
1p
2

R
fj.x � �1j/f1.x/ dx


TXj ;X1��1j�aj=
p

n

D
r

n

2

P.Xj<X1��1j/� P.Xj<X1��1j�aj=
p

n/


1j
1p
2

R
fj.x � �1j/f1.x/ dx

„ ƒ‚ …
!aj=
O�1j

by (4.7) and (4.8)


1j
1p
2

R
fj.x � �1j/f1.x/ dx


TXj ;X1��1j�aj=
p

n„ ƒ‚ …
!1 by (4.6)

C
r

n

2

1=2� P.Xj<X1��1j/


1j
R

fj.x � �1j/f1.x/ dx
„ ƒ‚ …

D0 by (4.9)


1j
1p
2

R
fj.x � �1j/f1.x/ dx


TXj ;X1��1j�aj=
p

n„ ƒ‚ …
!1 by (4.6)

:

Thus

lim
n!1 P.

p
n. O�1j � �1j/ � aj; 8j/ D lim

n!1 P

 
TXj;X1��1j�aj=

p
n


TXj ;X1��1j�aj=
p

n

� aj


O�1j

; 8j

!
:

By Theorem 4.1 this is equal to a multivariate normal distribution with mean 0 and
covariance matrix˙�, as for j D 2; : : : ; k,

lim
n!1 Var

 
TXj��1j�aj=

p
n;X1


TXj��1j�aj=
p

n;X1


O�1j

!
D 
2O�1j
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by (4.6) and (4.4) and for j; ` D 2; : : : ; k; j ¤ `,

lim
n!1 Cov

 
TXj;X1��1j�aj=

p
n


TXj ;X1��1j�aj=
p

n


O�1j
;

TX`;X1��1`�a`=
p

n


TX`;X1��1j`�a`=
p

n


O�1`

!

D 2
�TXj ;X1��1j ;TX`;X1��1`qR

fj.x � �1j/f1.x/ dx
R

f`.x � �1`/f1.x/ dx
/

D �O�1j;O�1`

using (4.6), (4.2), and (4.5) . ut
Note that if F1 D : : : D Fk D F or if

Fj.x/ D F.x � ˛j/;8j; (4.10)

then 
2O�1j
in (4.4) can be simplified to


2O�1j
D p2

�
1

12
� Cov.F.X1j � ˛j/;F.X11 � ˛1//

� �Z
f 2.x/ dx; (4.11)

j D 2; : : : ; k. Now, the estimator O�1j has some more properties (see Hayoz 2012 for
proofs). Obviously it is translation invariant and scale preserving,

Corollary 4.1 If (4.3) holds, then O�1j is a consistent, asymptotically unbiased, and
asymptotically median unbiased estimator for �1j.

Let Xij 	 Fj with median ˛j and .Xi1;Xij/ 	 F1j;8i; j. If we assume that

F1j is symmetric about .˛1; ˛j/;8j; (4.12)

i.e. P.Xi1 � ˛1 C u;Xij � ˛j C v/ D P.Xi1 � ˛1 � u;Xij � ˛j � v/;8i; j, or that

Xi1 � ˛1 and Xij � ˛j are exchangeable 8i; j; (4.13)

i.e. F1j.u C ˛1; v C ˛j/ D F1j.v C ˛j; u C ˛1/;8j, then the distribution of O�1j is
symmetric about ˛1 � ˛j and thus we can state unbiasedness of O�1j.

Corollary 4.2 If (4.3) with (4.12) or (4.13) holds, then

(i) O�1j is median unbiased estimator for ˛1 � ˛j.

(ii) O�1j is an unbiased estimator for ˛1 � ˛j, if E. O�1j/ exists.

Note that if E.Xij/ and Var.Xij/ exist for i D 1; � � � ; n; j D 1; � � � ; k, then it can be
shown that O�1j is bounded and thus E. O�1j/ exists.
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With these results we derive the properties of the estimator O�pd
1 which is

obviously also translation invariant and scale preserving. If (4.12) or (4.13) holds,
O�pd
1 estimates

�1 D ˛1 � 1

k � 1
kX

jD2
˛j;

as the distribution of O�1j is symmetric about ˛1 � ˛j and thus

Theorem 4.3 If (4.3) holds, then as n!1,

p
n
� O�pd

1 � �1
�

converges in distribution to a normal distribution with mean 0 and variance


2O�pd
1

D 1

.k � 1/2
kX

jD2

2O�1j
C 2

.k � 1/2
k�1X

jD2

kX

`DjC1
�O�1j;O�1` : (4.14)

Proof We can write

p
n
� O�pd

1 � �1
�
D pn

0

@ 1

k � 1
kX

jD2
O�1j � 1

k � 1
kX

jD2
�1j

1

A

D 1

k � 1
kX

jD2

p
n. O�1j � �1j/

By Theorem 4.2, O�1 has an asymptotic multivariate normal distribution with
mean 0 and covariance matrix ˙�. Thus

p
n. O�pd

1 � �1/ has an asymptotic normal
distribution with mean 0 and variance

1

.k � 1/2
kX

jD2

2O�1j
C 2

.k � 1/2
k�1X

jD2

kX

`DjC1
�O�1j;O�1` :

ut
Using Corollaries 4.1 and 4.2 we get (see Hayoz 2012 for proofs):

Corollary 4.3 If (4.3) holds, then O�pd
1 is a consistent, asymptotically unbiased, and

asymptotically median unbiased estimator for �1.

Corollary 4.4 If (4.3) with (4.12) or (4.13) holds, then O�pd
1 is an unbiased estimator

for �1 if E. O�pd
1 / exists.
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Again if E.Xij/ and Var.Xij/ exist for i D 1; � � � ; n; j D 1; � � � ; k, then it can be
shown that O�pd

1 is bounded and thus E. O�pd
1 / exists. Let .Xi1; : : : ;Xik/ 	 F1:::k;8i;

and assume that

F1;:::;k is symmetric about .˛1; : : : ; ˛k/; (4.15)

i.e.

P.Xi1 � ˛1 C u1; : : : ;Xik � ˛k C uk/

D P.Xi1 � ˛1 � u1; : : : ;Xik � ˛k � uk/;8i:

Corollary 4.5 If (4.3) and (4.15) hold, then O�pd
1 is a median unbiased estimator for

�1.

More generally we could use weighted means which leads to estimators of the
form

O�w
1 D

kX

jD2
!j
O�1j; (4.16)

where

kX

jD2
!j D 1:

The more general estimator O�w
1 could be useful, for example, if the groups have a

fixed order (e.g., longitudinal data or several teeth per person) and we want to give
more weight to the differences of groups that lie close together. It can easily be
shown that all the above theorems and corollaries hold for O�w

1 as well.

4.2.2 Median of Blockwise Differences

In this section we will present some properties of the estimator O�block
1 . We consider

only the block-wise differences DiIj WD Xi1 � Xij. Denote the distribution function
of DiIj by Gj and the joint distribution function of .DiIj;DiI`/ by Gj;` for i D
1; : : : ; n; j; ` D 2; : : : ; k; j � `. Let � be the median of NG:.x/ D 1

k�1
Pk

jD2 Gj.x/
and assume that for each j � k

Gj is continuously differentiable in the neighborhood of � (4.17)
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with

0 < inf
j

gj.�/ � sup
j

gj.�/ <1; (4.18)

where gj.x/ D d
dx Gj.x/. We let g:.x/ D d

dx
NG:.x/ D 1

k�1
Pk

jD2 gj.x/. Note that DiIj
and DhI` are independent for i ¤ h; j; ` D 1; : : : ; k. With the notation

D..k�1/.i�1/Cj�1/ WD DiIj (4.19)

it is seen immediately that D.1/; : : : ;D.N/, N D n.k � 1/ form a .k � 1/-dependent
random sequence, that is, the random vectors .D.1/; : : : ;D.`// and .D.`Cu/; : : :/ are
stochastically independent if u > k�1. The main theorem (Theorem 2.1 on p. 1725)
of Sen (1968) states asymptotic normality of sample quantiles for m-dependent
processes:

Theorem 4.4 (Theorem 2.1 of Sen 1968) Let X`; ` � 1 be an m-dependent
process. Denote the distribution function of X` by F` and the joint distribution
function of .X`;X`Cu/ by F`;`Cu for ` D 1; : : : ;N and u D 1; : : : ;m. If the sample
is X1; : : : ;XN, let QXN D med.X`; ` D 1; : : :N/, NFN.x/ D 1

N

PN
`D1 F`.x/ and �N be

defined such that NFN.�N/ D 1=2. If supN j�N j <1,

F`.x/ is absolutely continuous in the neighborhood of �N ;8`; (4.20)

f`.x/ D d

dx
F`.x/ is continuous in some neighborhood of �`;8`; (4.21)

with

0 < lim inf
n!1 fN.�N/ � lim sup

N!1
fN.�N/ <1; (4.22)

(which implies that 0 < infn NfN.�N/ � supN
NfN.�N/ < 1, where NfN.x/ D

1
N

PN
`D1 f`.x/ D d

dx
NFN.x/), and

inf
n
2N;m > 0; (4.23)

with

2N;m D
1

4
� 1

N

NX

`D1
.F`.�N/� 1=2/2 C 2

N

NX

`D2

m�X̀

uD1
.F`;`Cu.�N/� F`.�N/F`Cu.�N//;

then as N !1
p

N. QXN � �N/
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converges in distribution to a normal distribution with mean 0 and variance
2N;m=

Nf 2N.�N/.

Applying Theorem 4.4 we derive the asymptotic normality of O�block
1 which is

obviously translation invariant and scale preserving. Let

2 D 1

4
� 1

k � 1
kX

jD2
.Gj.�/ � 1=2/2 C 2

k � 1
k�1X

jD2

k�jX

uD1
.Gj;jCu.�/ �Gj.�/GjCu.�//;


2O�block
1

D 2=Ng2: .�/ (4.24)

and assume that

2 > 0: (4.25)

Theorem 4.5 If (4.17), (4.18) and (4.25) holds, then as n!1,

p
n.k � 1/. O�block

1 � �/

converges in distribution to a normal distribution with mean 0 and variance 
2O�block
1

.

Proof As D.1/; : : :D.N/, by (4.19) from a .k � 1/-dependent process we use
Theorem 4.4 for D.`/ with m D k � 1, N D n.k � 1/ As the distribution
function of DiIj is Gj and the joint distribution function of .DiIj;DiIjCu/ is Gj;jCu for
i D 1; : : : ; n; j D 2; : : : ; k; u D 1; : : : ; k � j, we have F` D Gj and F`;`Cu D Gj;jCu,
where ` D .k�1/.i�1/C j�1. Thus NFn D NG: and �n D � do not depend on n. Now
the conditions (4.20), (4.21), and (4.22) can be rewritten as (4.17) and (4.18). Note
that 2n D 2 does not depend on n either, thus condition (4.23) reduces to (4.25).

ut
Corollary 4.6 If (4.17), (4.18), and (4.25) hold, O�block

1 is a consistent, asymptoti-
cally unbiased, and asymptotically median unbiased estimator for �.

Let

˛2 D : : : D ˛k: (4.26)

This condition holds, for example, in multiple matching where several observations
are matched to one control.

Corollary 4.7 If (4.3), (4.15), and (4.26) hold, then

(i) O�block
1 is median unbiased estimator for ˛1 � ˛j.

(ii) O�block
1 is an unbiased estimator for ˛1 � ˛j if E. O�block

1 / exists.
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Note that if E.Xij/ and Var.Xij/ exist for i D 1; � � � ; n; j D 1; � � � ; k, then it can be
shown that O�block

1 is bounded and thus E. O�block
1 / exists. Assume that if (4.26) holds,

the following symmetry relation holds for � D ˛1 � ˛k and any .v2; : : : ; vk/ with
vj 2 f�1; 1g :

P.v2.DiI2 � �/ � 0; : : : ; vk.DiIk � �/ � 0/
D P.�v2.DiI2 � �/ � 0; : : : ;�vk.DiIk � �/ � 0/:

(4.27)

Let .DiI2; : : : ;DiIk/ 	 G1:::k;8i; and assume that

DiI2; : : : ;DiIk are exchangeable 8i; (4.28)

i.e. G1:::k.u2; : : : ; uk/ D G1:::k.�.u2/; : : : ; �.uk// for any permutation � of
u2; : : : ; uk:

Corollary 4.8 If (4.3), (4.27), and (4.28) hold, then O�block
1 is a median unbiased

estimator for � if n.k � 1/ is odd and an approximately median unbiased estimator
for � if n.k � 1/ even.

4.3 Simulations

With simulations we analyze and compare the behavior of the estimators of Sect. 4.1
in different situations. For the dependence between Xi1; : : : ;Xik of the block i, we
assume compound symmetry (CS), first order autoregressive (AR(1)) and first order
moving average (MA(1)) as covariance structures. The covariance structures CS,
AR(1) and MA(1) were modeled such that 
2 D 1 and 	 D Corr.Xij;XijC1/ D
0:2; 0:5; 0:8 (for MA(1) 	 D 0:8 is not possible). The dependence was assumed
to be the same for each block. To be able to easily simulate data with different
covariance structures and different marginal distributions, copulas were used.
For our simulation a t-copula with 3 degrees of freedom simulated with the R
package copula was used (see, e.g., Yan 2007). Several continuous symmetric and
asymmetric underlying distributions were simulated, including some heavy-tailed
distributions to create outliers. Further simulations were run in which the data
obtained from continuous distributions were rounded to create tied observations.
Several block sizes and group numbers were considered. In this work the results for
the standard normal distributions and standard lognormal distribution are shown
with n D 10 blocks and k D 4 groups. For each situation nsim D 100000
samples were simulated. To show the simulation error of the bias, the intervals
Œmeansim�1:96 ssim =nsim;meansimC1:96 ssim =nsim�, where meansim is the simulated
mean and ssim the simulated standard deviation, were derived. To show the
simulation error of the median bias, confidence intervals based on interpolated order
statistics introduced by Hettmansperger and Sheather (1986) were calculated. The
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Fig. 4.1 Simulation results of the bias and median bias with confidence intervals as well as
variance and MSE of the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

F1 D : : : D Fk, k D 4 and n D 10 with an underlying N .0; 1/ distribution and CS (a), AR(1) (b)
and MA(1) (c) covariance structures

simulated biases and median biases with confidence intervals, variances, and MSEs
under F1 D : : : D Fk are depicted in Figs. 4.1 and 4.2.

Furthermore, the impact of the group location parameters was investigated
assuming the semi-parametric location model Fj D F.x � ˛j/;8j. The results for
˛2 D : : : D ˛k are not shown here as the results in thus situation are the same as
under F1 D : : : D Fk. The simulated biases and median biases with confidence
intervals, variances and MSEs with ˛1 D 0; ˛2 D 1; ˛3 D 2; ˛4 D 10 are depicted
in Figs. 4.3 and 4.4. In this situation O�pd

1 estimates 1
k�1

Pk
jD2.˛1 � ˛j/ D 2:33 and

O�block
1 estimates �, the median of NG:.x/ D 1

k�1
Pk

jD2 Gj.x/, which depends on the
covariance structure and correlation.

Generally the higher 	, the smaller the bias, the median bias, the variance and
thus the MSE. With underlying CS structures we get the smallest variances and
MSEs, with underlying MA(1) structures the highest.

If F1 D : : : D Fk both considered estimators are unbiased and median unbiased
for symmetric marginal distributions. O�block

1 is slightly biased for asymmetric
marginal distributions, but always median unbiased. O�pd

1 , on the other hand, is
unbiased for asymmetric marginal distributions, but not median unbiased. These
simulations results are consistent with the theoretical results of Corollary 4.4,
Corollary 4.5, Corollary 4.7, and Corollary 4.8. For all marginal distributions O�block

1

has the smallest variance and MSE.
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Fig. 4.2 Simulation results of the bias and median bias with confidence intervals as well as
variance and MSE of the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

F1 D : : : D Fk, k D 4 and n D 10 with an underlying logN .0; 1/ distribution and CS (a), AR(1)
(b) and MA(1) (c) covariance structures
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Fig. 4.3 Simulation results of the bias and median bias with confidence intervals as well as
variance and MSE of the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

Fj D F.x �˛j/;8j, k D 4 and n D 10 with an underlying N .0; 1/ distribution and CS (a), AR(1)
(b) and MA(1) (c) covariance structures
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Fig. 4.4 Simulation results of the bias and median bias with confidence intervals as well as
variance and MSE of the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

Fj D F.x � ˛j/;8j, k D 4 and n D 10 with an underlying logN .0; 1/ distribution and CS (a),
AR(1) (b) and MA(1) (c) covariance structures

If ˛1 D 0; ˛2 D 1; ˛3 D 2; ˛4 D 10 O�block
1 is biased, median biased and has a

high variance and MSE for all marginal distributions whereas O�pd
1 is unbiased and

for symmetric marginal distributions is also median unbiased.
Further scenarios were considered for which the results can be found in Hayoz

(2012) and are only shortly described here. With increasing n the bias, median
bias, variance and thus also the MSE decrease. With higher k the variance and
MSE get smaller, the bias and median bias stay more or less the same. In
scenarios where the variances are not the same in each group both estimators are
unbiased and median unbiased with underlying symmetric distributions, whereas
with underlying asymmetric distributions both estimators are biased, O�pd

1 is median
unbiased, whereas O�block

1 is slightly median biased for small n. When the values from
continuous distributions were rounded to create tied observations, both considered
estimators showed the same behavior like for the continuous distributions, also with
similar variances. Both estimators were not affected by outliers. For comparison
the usual mean difference was included in the simulations. However it had higher
variances and MSEs than the two nonparametric estimators and is thus not a good
alternative.

In conclusion O�block
1 is the best estimator if F2 D : : : D Fk, i.e. under the

nullhypothesis or in multiple matching. If not all groups have the same mean, O�block
1
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should not be used, O�pd
1 is the better choice in that situation. If the variance is not

the same in each group, O�pd
1 should be favored.

4.4 Confidence Intervals

Finally let us investigate confidence intervals for � and 1
k�1

Pk
jD2 �1j based on O�block

1

and O�pd
1 . The usual simple idea is based on the asymptotic normality and estimators

for the variances to construct .1 � ˛/-confidence intervals, which leads to

Œ O�pd
1 � z1�˛=2

r
O
2O�pd

1

=n; O�pd
1 C z1�˛=2

r
O
2O�pd

1

=n�

and

Œ O�block
1 � z1�˛=2

r
O
2O�block

1

=n; O�block
1 C z1�˛=2

r
O
2O�block

1

=n�

with the variance estimators

O
2O�block
1

D O2
n.k � 1/ONg2: .�/

;

where

O2 D 1

4
� 1

k � 1
kX

jD2
.1Gj.�/ � 1=2/2 � 2

k � 1
k�1X

jD2

k�jX

hD1
.3Gj;jCh.�/2�Gj.�/2GjCh.�//;

with

1Gj.�/ D 1

n

nX

iD1
I. QDiWj � O�block/; j D 2; : : : ; k;

and

3Gj;jCh.�/D1
n

nX

iD1
I.f QDiWj � O�blockg\f QDiWjCh � O�blockg/; j D 2; : : : ; k�1; h D 1; : : : ; j;

and

O
2O�pd
1

D 1

.k � 1/2
kX

jD2
O
2O�1j
C 2

.k � 1/2
k�1X

jD2

kX

`DjC1
O�O�1j;O�1` ;
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where

O
2O�1j
D p2

�
1

2n

nX

iD1
Œ1 � OFj.Xi1 � O�1j/�

2 C 1

2n

nX

iD1
OF21.Xij C O�1j/

� 1

n � 1
nX

iD1
Œ OF1.Xi1/ OFj.Xij/� n NF1.X1/ NFj.Xj/�

�
 
1

n

nX

iD1
OF1.Xij C O�1j/

!2 ��
O'1j; j D 2; : : : ; k;

and

O�O�1j;O�1` D
1p
2

�
1

n � 1
nX

iD1
Œ.1 � OFj.Xi1//.1� OF`.Xi1//

� n.1 � NFj.X1//.1 � NF`.X1//�

C 1

n � 1
nX

iD1
Œ.1 � OFj.Xi1// OF1.Xi`/� n.1� NFj.X1// NF1.X`/�

C 1

n � 1
nX

iD1
Œ OF1.Xij/.1 � OF`.Xi1//� n NF1.Xj/.1 � NF`.X1//�

C 1

n � 1
nX

iD1
Œ OF1.Xij/ OF1.Xi`// � n NF1.Xj/ NF1.X`/�

�

�q
O'1j O'1`; j D 2; : : : ; k � 1; ` D jC 1; : : : ; k;

with NFj.X`/ D 1
n

Pn
iD1 OFj.Xi`/; j; ` D 1; : : : ; k. Kernel density estimators with

Gaussian kernels and bandwidth selection with the method suggested by Sheather
and Jones (1991) were used for O'1j; j D 2; : : : ; k; the estimator for

R
f1.x C

�1j/fj.x/ dx, and ONg:.�/.
However simulation results showed that the non-coverage probabilities of these
95 %-confidence intervals deviate from 5 % as the variance estimators are not good
estimators for finite sample variances. See Hayoz (2012) for the simulation results
and for more details on the variance estimators.

Better confidence intervals can be derived by bootstrap methods. With the R
package boot five types of bootstrap confidence intervals by Davison and Hinkley
(1997) were simulated; here, we present the three methods that performed best in
our simulations. Let O� be an estimator for an unknown parameter�. After generating
B bootstrap samples we get O��

1 ; : : : ;
O��

B. Assume that the mean and variance of the
distribution of O� are �C ˇ and 
2, where ˇ is the bias of O�. We can estimate ˇ by
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Ǒ
boot D 1

B

PB
bD1 O��

b � O� D NO�boot � O� and 
2 by O
2boot D 1
B�1

PB
bD1. O��

b � NO�boot/
2. If

we assume that the distribution of O� is approximately normal, an 1 � ˛ confidence
interval for �, referred to as normal bootstrap confidence interval, is given by

Œ O� � Ǒboot � z1� ˛
2

q
O
2boot;

O� � Ǒboot C z1� ˛
2

q
O
2boot�:

Another method to construct a confidence interval is to use the studentized estimator
Z D O���O�pO
2 , where O
2 is a variance estimator. With the help of B bootstrap copies

of O� and O
2 we construct z�
1 D

O��

1 �O�q
O
2�

1

; : : : ; z�
B D

O��

B �O�q
O
2�

B

and use the order statistics

z�
.1/ < : : : < z�

.B/ to estimate quantiles of the distribution of Z. An 1 � ˛ confidence
interval for �, referred to as studentized bootstrap confidence interval, is now given
by

Œ O� � z�
..1� ˛

2 /.BC1//
p
O
2; O� � z�

. ˛2 .BC1//
p
O
2�:

The basic bootstrap confidence interval approach is simpler:

Œ2 O� � O��
..1� ˛

2 /.BC1//; 2 O� � O��
. ˛2 .BC1//�:

Simulation results of the non-coverage probabilities of the bootstrap confidence
intervals are shown in Figs. 4.5 and 4.6 for ˛ D 0:05 with k D 4 groups, n D 10

blocks, nsim D 50000 and B D 200. To check the validity of the results, one scenario
(with the normal distribution and the compound symmetry with 	 D 0:5) was
repeated with BD5000. The results on the non-coverage probability were similar
to the results with BD200; differences were noticed in the third digit.

For O�block
1 the non-coverage probabilities of the studentized bootstrap confidence

interval are closest to 0.05 if the marginal distributions are symmetric. The
non-coverage probabilities of the other bootstrap confidence intervals are much
higher than 0.05. If the marginal distributions are asymmetric, the non-coverage
probabilities of the normal and studentized bootstrap confidence interval are slightly
smaller than 0.05, the non-coverage probabilities of the basic bootstrap confidence
interval is higher than 0.05.

For O�pd
1 the non-coverage probabilities of the normal and basic bootstrap

confidence interval are closest to 0.05, but the deviation is sometimes big. The non-
coverage probabilities of the studentized bootstrap confidence interval are in most
situations a bit too low.

In conclusion, for O�block
1 the studentized bootstrap confidence interval is the

best method for symmetric marginal distributions, the normal bootstrap confidence
interval for asymmetric marginal distributions. For O�pd

1 the normal and basic
bootstrap confidence intervals are the best methods.
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Fig. 4.5 Non-coverage probabilities of normal (A), basic (B), and studentized (C) bootstrap
confidence intervals for the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

F1 D : : : D Fk, an underlying N .0; 1/ distribution, ˛ D 0:05, k D 4; n D 10 and underlying CS
(a), AR(1) (b), and MA(1) (c) covariance structures
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Fig. 4.6 Non-coverage probabilities of normal (A), basic (B), and studentized (C) bootstrap
confidence intervals for the estimators O�block

1 (red filled triangle) and O�pd
1 (blue filled circle) with

F1 D : : : D Fk, an underlying logN .0; 1/ distribution, ˛ D 0:05, k D 4; n D 10 and underlying
CS (a), AR(1) (b) and MA(1) (c) covariance structures

4.5 Conclusions

We discussed two estimators for the location difference between one group and
all the others that are asymptotically normal distributed, consistent, translation
invariant, and scale preserving. Both estimators are unbiased and median unbiased
for symmetric marginal distributions under the null hypothesis; but these properties
do not hold in general. O�block

1 is median unbiased under the null hypothesis or in
multiple matching trials and has the smallest variance and MSE, but O�pd

1 is the
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better choice if not all groups have the same location. O�pd
1 is unbiased for symmetric

marginal distributions or if the groups are exchangeable. The use of confidence
intervals for the estimator should be based on bootstrap confidence intervals. For
O�block
1 the studentized bootstrap confidence interval is the best method for symmetric

marginal distributions, the normal bootstrap confidence interval for asymmetric
marginal distributions. For O�pd

1 the normal and basic bootstrap confidence intervals
are the best methods.
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Chapter 5
Permutation Tests in Linear Regression

Jukka Nyblom

Abstract Exact permutation tests are available only in rather simple linear models.
The problem is that, although standard assumptions allow permuting the errors of
the model, we cannot permute them in practice, because they are unobservable.
Nevertheless, the residuals of the model can be permuted. A proof is given here
which shows that it is possible to approximate the unobservable permutation
distribution where the true errors are permuted by permuting the residuals. It
is shown that approximation holds asymptotically and almost surely for certain
quadratic statistics as well as for statistics which are expressible as the maximum
of appropriate linear functions. The result is applied to testing the significance of
predictors as well as to diagnostic checking of heteroscedasticity, autocorrelation,
change-points, and changing regression function. Also a simulation experiment is
made in order to evaluate the performance of the proposed tests.

Keywords Autocorrelation • Change-point problem • Control variable •
Heteroscedasticity • Simulation

5.1 Introduction

The idea of calculating the significance level of a statistical test by appropriately
permuting the observations at hand originates from the writings of Fisher (1935)
and Pitman (1937a,b, 1938). During the last two decades we have seen the revival
of these ideas, e.g. see Edgington (1995), Manly (1997), Pesarin (2001), and Good
(2005) and their references. This is in line with the popularity of other computer
intensive methods of which the bootstrap of Efron (1979) is a well-known example.

Sometimes a distinction is made between permutation tests and randomization
tests (Kempthorne 1986, p. 524). Randomization tests are related to randomization
experiments and the randomization distribution is induced by the true randomization
that the experimenter has actually made. This gives a valid method of inference
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without any assumption on experimental units being a random sample. The per-
mutation tests, however, are confined to random samples. This article is focused
on permutation tests in this latter sense. For the basic theory of randomization and
permutation tests, see Lehmann and Romano (2005, pp. 176–211).

There are several suggestions in the literature on the proper way of performing
the permutation test in regression. Kennedy (1995) gives references and critically
discusses several proposals. Different proposals and applications are provided,
e.g. by Schmoyer (1994), Kim et al. (2000), Anderson and Robinson (2001), Huh
and Jhun (2001), and Anderson and ter Braak (2003). LePage and Podgórski (1996)
give some results without assuming a finite variance for errors.

Oja (1987) gives an interesting example of an exact permutation test for treatment
effects when (1) the treatment levels are assigned randomly to experimental units,
and (2) the values of other predictors are observed before the application of the
treatments. The significance may be assessed by comparing the estimated effects
with those obtained by rerandomization of the levels. This procedure is more like
the randomization tests discussed above, and it is not legitimate in observational
studies that are of main interest in this article. Nevertheless, this gives a rationale
for the randomization method 1 of Kennedy (1995, p. 90) in some cases.

In this article the problem of a proper permutation test in linear regression
is solved as follows. All test statistics are assumed pivotal (independent of the
parameters under the null hypothesis). This means that we can write them in terms
of the true errors. Hence the observed value of a test statistic is one of the equally
likely theoretical values generated by error permutations. But since the errors are
unobservable, we have to use the residuals from the model. This amounts, in fact, to
using the permuted residuals as new dependent variables that are used to compute
the permutation distribution. The method is equivalent to that proposed by Freedman
and Lane (1983), see also Kennedy (1995, methods 4 and 5).

The main results show that if the test statistic is a quadratic form or a maximum
of a certain linear function, the resulting test approximates the exact permutation
test we would use if the errors were observable. The approximation is asymptotic,
i.e. the number of cases in regression is supposed to be large compared to the
number of predictors, and almost sure in the sense that the approximation holds
conditionally on the unobserved errors with probability one. The result generalizes
Theorem 1 of Schmoyer (1994). It is also in concordance with the finding of
Anderson and Robinson (2001) who show that asymptotically, in a certain special
case, the correlation between those two is equal to 1. It is also interesting that
we need not assume that the limiting distribution exists neither in the sense of a
sampling distribution nor of a permutation distribution.

The article proceeds as follows. First, a brief discussion on exact permutation
tests is presented in Sect. 5.2. Then the approximate permutation tests with theorems
proving their validity are introduced in Sect. 5.3. The applications are given in
Sect. 5.4 including moderate simulation experiments to show how the method works
in practice. The examples include the test for a regression coefficient and diagnostic
checks (heteroscedasticity, autocorrelation, and changes in regression function).
Section 5.5 gives the proofs.
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5.2 Exact Permutation Tests

Let y0 D .y1; : : : ; yn/ be a vector of random variables. Assume that under the null
hypothesis they are exchangeable, i.e. each permutation .yi1 ; : : : ; yin/ follows the
same distribution. The alternative hypothesis expresses our beliefs on what kind of
deviations from the exchangeability assumption may occur in the data. Let T.y/
be a suitable test statistic against the alternative we have in mind, the large values
indicating against the null hypothesis. Then we can proceed in a distribution-free
manner as follows. Compute all nŠ values of T.y/ by permuting the coordinates of
y. Assume that there are N � nŠ distinct values ordered as T1 < T2 < � � � < TN .
Assume further that the proportion of all permutations yielding the value Tk is pk.
Fix ˛ and solve k D k˛ such that

NX

iDk

pi � ˛ and
NX

iDk�1
pi > ˛:

Then the exact level ˛ test is obtained by the following decision rule: reject the
null hypothesis with probability 1 if T.y/ � Tk, and with probability ˛ �PN

iDk pi

if T.y/ D Tk�1. One seldom uses this randomized procedure in practice but only
computes the so-called p value that equals the proportion of those values of Tk that
are larger than or equal to T.y/. As an example consider a simple linear regression.
The exact p value for the least squares estimate of the slope can be based on the
distribution of all least squares estimates derived from the permuted dependent
variable.

The value nŠ may well be too large for a complete enumeration. Then we can
compute an approximate p value by a Monte Carlo method. The resulting Monte
Carlo test is not valid only as an approximation to the exact permutation test but
also serves as a test of its own right. This is seen in the next theorem the proof of
which is a modification of that given by Schmoyer (1994, Sect. 2).

Theorem 5.1 Let ˙ be a random sample (with replacement) of size m from the
population of all permutations. If the random variables y1; : : : ; yn are exchangeable,
then

P

 
1

m

X

�2˙
IŒT.y/ � T.y�/� � ˛

!
� Œm˛�C 1

mC 1 ;

where IŒ�� is an indicator function, y� denotes the permuted vector obtained from y
and Œx� denotes the largest integer not greater than x.

Proof By the exchangeability of the coordinates of y the set fT.y/;T.y�/; � 2 ˙g
consists of independent and identically distributed random variables. The expression

1C
X

IŒT.y/ � T.y�/�
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gives the reversed rank (rank 1 is given to the largest value) of T.y/ in the set. In
case of ties this procedure gives the largest reversed rank for each tied observation.
If ties are broken randomly, then the probability of the event that the rank is at most
r is exactly r=.mC 1/. Thus the probability that the largest rank is at most r cannot
exceed r=.mC 1/. This proves the inequality. ut

5.3 Approximate Permutation Tests

Let us define the general linear model

y D ˇ01C X“C e; (5.1)

where 1 is a column of ones, and X is an n � q matrix of predictors with Œ1;X�
being of full rank. The scalar ˇ0 is the intercept and “ the vector of regression
coefficients. Additionally, in order to alleviate the asymptotic analysis, we assume
that the columns of X are centered. The rows of X are denoted by x0

i (a row vector).
The most common assumption for the errors .e1; : : : ; en/ D e0 is that they are
independent and identically distributed with mean zero and variance 
2. However,
independence is replaced by exchangeability, because the proofs of Theorems 5.2
and 5.3 remain exactly the same. We proceed under this assumption. Let us further
denote the projection matrix X.X0X/�1X0 by H.

In applications we may be interested in testing for the significance of some addi-
tional predictor variables, or in making diagnostic checks (e.g., heteroscedasticity,
autocorrelation, changing regression coefficients, etc.). Whatever the test may be we
assume that it is free of the coefficients ˇ0 and “. This achieved if the test is based
on the least squares residuals Oe D y � Ny1 � Hy D Qy with Q D I � n�1110 � H.
Under (5.1) we can also write that Oe D Qe D e� Ne1�He. Sometimes it is desirable
to stress the dependence on n and write Hn;Qn; : : : instead of H;Q; : : : .

Let T.Qy/ D T.Oe/ be a test statistic for (5.1) against some alternative. Under
the null hypothesis we can write T.Qy/ D T.Qe/. Suppose for a moment that the
true errors were observable, then we should permute the coordinates of e in T.Qe/.
If these permuted vectors are denoted by e� with � running over the set ˘ of all
permutations, the reference distribution is obtained through the values

T.Qe�/; � 2 ˘

with the assignment of the probability 1=nŠ for each permutation. By this procedure
we would get an exact permutation test. But we cannot observe e. Therefore we try
to approximate it by means of

T.QOe�/; � 2 ˘:
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The procedure means that we first find the residuals, permute them, and then use
them as new dependent variables in the null hypothesis regression. We could equally
well use the pseudo values Oy� D OyC Oe� with Oy D Ny1CHy, as Freedman and Lane
(1983) do, but adding the fitted value Oy is not necessary as QOy D 0. Schmoyer (1994)
suggests using T.Oe�/.

Let us now consider the important special cases of quadratic forms that are of
particular interest in linear models. Let us assume that the test statistic is of the form

T.Oe/ D Oe
0AOe
Oe0 Oe :

When using the corresponding permutation test, we take the numerator as our test
statistic, because the denominator is merely for scaling. Thus, the test statistic is

T.QOe�/ D Oe0
�QAQOe� : (5.2)

Let us find its expectation in two steps, first over the permutation distribution
and then over the sampling distribution. The covariance matrix for Oe� over the
permutation distribution is after some algebra as follows:

O
2V D cov�.Oe�/ D O
2 n

n � 1



I � 1
n
110
�
; O
2 D n�1

nX

iD1
Oe2i : (5.3)

Then, by Q1 D 0, we have

E
Oe0
�QAQOe�

� D E. O
2/ n

n � 1 tr.QAQ/ D 
2 n � q � 1
n � 1 tr.AQ/:

As a comparison, under the sampling distribution we have

E
Oe0AOe� D 
2tr.AQ/:

If tr.AQ/ ¤ 0, the bias correction can be done by multiplying the quadratic
permutation statistic with the factor

n � 1
n � q � 1 : (5.4)

A fairly general theorem is now given showing the asymptotic validity of the
proposed permutation tests. The proof of the theorem and the necessary lemmas
are postponed to Sect. 5.5 at the end.
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Theorem 5.2 Let Bn D .bijn/ be a sequence of symmetric n � n matrices such that
Bn1n D 0, for all n, and

sup
n

tr.B2n/ D sup
n

nX

iD1

nX

jD1
b2ijn � C:

Assume that (5.1) holds with exchangeable errors and with Ee61 < 1, then for all
" > 0

lim
n!1 P�.jOe0

�Bn Oe� � e0
�Bne� j > "/ D 0 a.s.;

where P� denotes the conditional probability induced by the uniform permutation
distribution, and “a.s.” qualifies the almost sure convergence with respect to the
infinite sequence of true errors e1; e2; : : :.

Remark 5.1 The assumption of the finite sixth moment is purely technical. Its
purpose is to give a simple proof for Lemma 5.1 in Sect. 5.5.

The next theorem is useful in change-point problems in regression. The approach
based on sampling distribution under normal errors is difficult even in the case of
linear time trend regression (Kim and Siegmund 1989). The permutation approach
is, nevertheless, generally applicable.

Theorem 5.3 Let z1n; : : : ; znn with n > qC 1 be a triangular sequence of numbers
such that

Pn
jD1 z2jn D 1. Denote z0

kn D .z1n; : : : ; zkn; 0; : : : ; 0/ and assume that there
are integers m0.n/ and m1.n/ depending on n such that for some positive constants
M and b we have

inf
n>M

min
m0.n/�k�m1.n/

z0
knQnzkn � b: (5.5)

Assume that (5.1) holds with exchangeable errors and with Ee61 < 1, then for all
" > 0

lim
n!1 P�

 
max

m0.n/�k�m1.n/

jz0
knQn.Oe� � e�/jp

z0
knQnzkn

> "

!
D 0; a:s:

Remark 5.2 Let Xn and OXn be the permutation statistics involving true errors and the
residuals, respectively. Let the assumptions of either Theorem 5.2 or Theorem 5.3
hold. If Xn has a continuous limiting distribution, then also OXn has the same limiting
distribution. The continuity of the common limiting distribution implies that both
convergences are uniform (Rao 1973, p. 120), and therefore

lim
n!1 sup

x
jP�.Xn � x/� P�. OXn � x/j D 0 a:s:
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5.4 Applications

We explore the performance of permutation tests with the help of real data and
simulation experiments. The real data problems focus on diagnostic checks con-
cerning heteroscedasticity, autocorrelation, and change-points. Additionally, tests
for linear hypothesis and for constancy of linear trend are treated with artificial
data. In simulation experiments the response variables are generated from various
distributions: normal, Laplace, t-distribution with 4 degrees of freedom (though
it does not satisfy the moment condition of Theorems 2 and 3) and log-normal
distribution. The first three are all symmetric with varying tail behavior. The chosen
log-normal distribution is moderately skew: after log-transformation the distribution
is normal with zero mean and variance 0.09.

In each application the simulations consist of 10,000 replicates of permutation
tests, and each test is based on 999 random permutations. The p-values are
then estimated with the help of control variables. The natural control variables
are the p values of the exact permutation test that is known to be uniformly
distributed. The p values from the test under evaluation, and the p values from
the corresponding exact test are cross-classified into a 4 � 4 table. The row
marginals give the frequencies of the exact permutation tests classified according
to the intervals Œ0; 0:01�; .0:01; 0:05�; .0:05; 0:10�; .0:10; 1�. The column marginals
give the frequencies for the test under evaluation under the same classification.
Denote the cell frequencies and the corresponding cell probabilities as fij, �ij,
respectively, i; j D 1; 2; 3; 4. For example, f23 is the number of those replications,
where the exact test yields the p value in .0:01; 0:05�, and the p value of the test
under evaluation is in .0:05; 0:10�, both occurring in the same replicate. Because
the p values of the exact test are uniformly distributed, the row marginals fi�,
i D 1; 2; 3; 4 related to the exact test are known to be multinomially distributed
with the known probabilities ˛1 D 0:01; ˛2 D 0:04; ˛3 D 0:05; ˛4 D 0:90.
Conditionally on the row sum fi�, the row frequencies fi1; fi2; fi3; fi4 follow the
multinomial distribution MN.fi�I �i1=˛i; �i2=˛i; �i3=˛i; �i4=˛i/. Therefore, after some
algebra using the restrictions

P
j �ij D ˛i, i D 1; 2; 3; 4, we have conditionally

unbiased estimates for the cell probabilities

O�ij D ˛i
fij
fi�
; i; j D 1; 2; 3; 4:

Let
P

ij
O�ij D O��j. Then the size estimates, at the nominal 1 %, 5 %, and 10 % levels

are O��1, O��1 C O��2, O��1 C O��2 C O��3, respectively. The standard errors for them can be



76 J. Nyblom

found by noting that conditionally on the row sums, the frequencies at the different
rows are independent multinomials. Therefore

var . O��1 j f1�; f2�; f3�; f4�/ D
4X

iD1

�i1.�i2 C �i3 C �i4/

fi�
;

var . O��1 C O��2 j f1�; f2�; f3�; f4�/ D
4X

iD1

.�i1 C �i2/.�i3 C �i4/

fi�
;

var . O��1 C O��2 C O��3 j f1�; f2�; f3�; f4�/ D
4X

iD1

.�i1 C �i2 C �i3/�i4

fi�
:

The standard errors are obtained by inserting the estimates in these formulas and
taking the square root.

5.4.1 Additional Predictors

Let Z be an n � r matrix, of full rank, consisting of the values of the additional
predictors, i.e. our model is now y D Xˇ C Z� C e with errors as before. Our
null hypothesis is H0 W � D 0. The alternative hypothesis is HA W � ¤ 0. Denote
by SSE0 D Oe0 Oe the residual sum of squares under the null hypothesis and by SSE1
the corresponding sum of squares under the alternative hypothesis. Then the usual
F-test rejects with large values of

F D .SSE0 � SSE1/=r

SSE1=.n� q � r � 1/ :

After an easy algebra we find that SSE1 D SSE0 � Oe0Z.Z0QZ/�1Z0 Oe. Hence F-test is
equivalent to the test rejecting as

Oe0Z.Z0QZ/�1Z0 Oe
Oe0 Oe > c: (5.6)

Under the null hypothesis Oe D Qe. As the numerator of (5.6) is sufficient, the
permutation test statistic is

Oe0
�QZ.Z0QZ/�1Z0QOe� :

The matrix B of Theorem 5.2 specifies here to QZ.Z0QZ/�1Z0Q. Since the sum
of its squared elements equals r, the permutation test is asymptotically valid.
The procedure is equivalent to that suggested by Freedman and Lane (1983) and
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Table 5.1 Estimated relative rejection frequencies for the interaction test

Distribution Method 1 % 5 % 10 %

Normal Uncorrected 0.0149 (0.0153) 0.0592 (0.0623) 0.1095 (0.1123)

Corrected 0.0061 (0.0062) 0.0507 (0.0536) 0.0982 (0.1011)

Schmoyer 0.0000 (0.0000) 0.0329 (0.0346) 0.0830 (0.0860)

Exact perm. 0.0098 0.0535 0.1028

Laplace Uncorrected 0.0206 (0.0209) 0.0583 (0.0573) 0.1092 (0.1079)

Corrected 0.0103 (0.0106) 0.0521 (0.0512) 0.1008 (0.0995)

Schmoyer 0.0000 (0.0000) 0.0350 (0.0348) 0.0866 (0.0854)

Exact perm. 0.0109 0.0490 0.0987

t.4/ Uncorrected 0.0213 (0.0207) 0.0581 (0.0552) 0.1065 (0.1038)

Corrected 0.0120 (0.0118) 0.0515 (0.0488) 0.0982 (0.0955)

Schmoyer 0.0000 (0.0000) 0.0329 (0.0315) 0.0853 (0.0825)

Exact perm. 0.0105 0.0469 0.0973

Log-normal Uncorrected 0.0252 (0.0252) 0.0554 (0.0570) 0.0956 (0.0978)

Corrected 0.0167 (0.0166) 0.0515 (0.0529) 0.0905 (0.0927)

Schmoyer 0.0000 (0.0000) 0.0334 (0.0339) 0.0859 (0.0880)

Exact perm. 0.0090 0.0516 0.1024

The simulated p values of the exact permutation test is used as the control in estimating the
sizes of the other tests (raw rejection frequencies are in the parentheses). Standard errors of the
estimates from the control variable method are at most 0.0013

discussed by Kennedy (1995, methods 4 and 5, p. 90). Schmoyer’s approach leads
to using Oe0

�Z.Z0QZ/�1ZOe� .
When the hypotheses are H0 W � D �0 and HA W � ¤ �0, write y � Z�0 D

Xˇ C Z.� � �0/C e. Plainly, the test can be performed replacing y with y � Z�0.
The simulation experiment consists of generating artificial data of the 2 � 2

classification with nine observations in a cell, i.e. n D 36. Table 5.1 shows relative
rejection frequencies of the true null hypothesis that there is no interaction. The
uncorrected permutation test is somewhat oversized and Schmoyer’s test undersized,
whereas the corrected permutation test performs best.

5.4.2 Heteroscedasticity

Cook and Weisberg (1983) have derived a general score test against heteroscedastic
errors in regression models. A simple special case is treated here. Assume the
regression model (5.1), where the errors are assumed to have var.ei/ D 
2e�zi ,
i D 1; : : : ; n. The hypotheses are H0 W � D 0 and HA W � > 0. Under the normal
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distribution the score test rejects when

S D
P
.zi � Nz/Oe2i

O
2p2P.zi � Nz/2
> c: (5.7)

Let A be the diagonal matrix of the elements .zi � Nz/=
p
2
P
.zj � Nz/2, i D 1; : : : ; n.

Then B D QAQ clearly satisfies the condition of Theorem 5.2.
Cook and Weisberg (1982, p. 66) give a data set of black cherry trees (originally

from Ryan et al. 1976). The data consist of three measurements of 31 trees: volume,
diameter, and height. We model the cube root of the volume to depend linearly on
the height and the diameter, then the test (5.7) with the height variable taking the
role of zi’s. The exact p value under normal error assumption is obtained by the
Imhof technique (Imhof 1961) and appears to be 0.023. The permutation test of the
type (5.2) with 9999 random permutations gives the p values 0.0118 and 0.0064 with
and without the correction (5.4), respectively. Schmoyer’s permutation test yields
the p value 0.0095. All tests reject the null hypothesis.

In the simulation study the values zi in (5.7) are chosen as the height variable. The
results are found in Table 5.2. Again, the corrected permutation test performs better
than the uncorrected one. Under the normal distribution the corrected permutation
test performs best, but under other distributions Schmoyer’s test hits closest to the
nominal figures.

Table 5.2 Estimated relative rejection frequencies for the heteroscedasticity test

Distribution Method 1 % 5 % 10 %

Normal Uncorrected 0.0136 (0.0140) 0.0635 (0.0644) 0.1176 (0.1180)

Corrected 0.0082 (0.0084) 0.0494 (0.0502) 0.0992 (0.0997)

Schmoyer 0.0088 (0.0090) 0.0483 (0.0491) 0.0956 (0.0962)

Exact perm. 0.0103 0.0511 0.1004

Laplace Uncorrected 0.0209 (0.0216) 0.0710 (0.0728) 0.1282 (0.1300)

Corrected 0.0138 (0.0142) 0.0571 (0.0587) 0.1119 (0.1138)

Schmoyer 0.0095 (0.0098) 0.0482 (0.0497) 0.0955 (0.0974)

Exact perm. 0.0103 0.0519 0.1019

t.4/ Uncorrected 0.0214 (0.0223) 0.0723 (0.0746) 0.1263 (0.1281)

Corrected 0.0141 (0.0148) 0.0577 (0.0598) 0.1078 (0.1097)

Schmoyer 0.0105 (0.0110) 0.0476 (0.0495) 0.0947 (0.0967)

Exact perm. 0.0105 0.0527 0.1018

Log-normal Uncorrected 0.0205 (0.0222) 0.0724 (0.0739) 0.1259 (0.1277)

Corrected 0.0138 (0.0152) 0.0562 (0.0577) 0.1082 (0.1100)

Schmoyer 0.0111 (0.0123) 0.0507 (0.0522) 0.1002 (0.1019)

Exact perm. 0.0119 0.0512 0.1019

The simulated p values of the exact permutation test is used as the control in estimating the
sizes of the other tests (raw rejection frequencies are in the parentheses). Standard errors of the
estimates from the control variable method are at most 0.0017
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5.4.3 Autocorrelation

Assume the regression model (5.1), but now the errors ei satisfy

ei D 	ei�1 C ui; i D 2; : : : ; n;
where the disturbances ui are mutually independent with E.ui/ D 0 and var.ui/ D

2, and e1 is independent of the ui’s with E.e1/ D 0, var.e1/ D 
2=.1�	2/, j	j < 1.
The hypotheses are H0 W 	 D 0 and HA W 	 > 0. Under the normal distribution the
score test rejects when the first residual autocorrelation coefficient r1 satisfies

r1 D n�1P Oei OeiC1
O
2 > c: (5.8)

Multiplying r1 by
p

n we find that the matrix B D QAQ with A having 1=.2
p

n/ in
the first subdiagonal above and below the main diagonal and zero elsewhere. Thus,
tr.B2/ � tr.A2/ < 1.

Koutsoyiannis (1973, p. 221) gives the yearly observations on imports and gross
national product (GNP) in the UK 1950–1969. Regressing the imports on GNP,
r1 D 0:199. The permutation tests give p values 0.0139 and 0.0094 with and without
correction, respectively, with 10,000 random permutations. Schmoyer’s test yields
p D 0:0239. If we assume normality, the Imhof technique is applicable also here. It
gives p D 0:06. Here all permutation tests clearly reject the null hypothesis, while
the conclusion under the normal theory test is less clear.

In simulation experiments the response variable is simulated as in Sect. 5.4.2
while the predictor variable is kept as GNP. Results are in Table 5.3. In this
case the corrected permutation test performs best. Schmoyer’s test gives rejection
frequencies well below the nominal levels.

5.4.4 Change-Point Problem

Assume that the observations in the regression model (5.1) are ordered by time
(or by some other principle). We suspect that one regression coefficient changes at
time k. Denote by z D .z1; : : : ; zn/

0 the column of Œ1;X� corresponding the dubious
regression coefficient. The hypotheses are now

H0 W the coefficient of zi is �; i D 1; : : : ; n;
HA W for some k the coefficient of zi is �; i D 1; : : : ; k;

and � 0 ¤ �; i D kC 1; : : : ; n:

If k were known, we could use the t-statistic

jtkj D jz0
kQyj

sk

p
z0

kQzk

;
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Table 5.3 Estimated relative rejection frequencies for the autocorrelation test

Distribution Method 1 % 5 % 10 %

Normal Uncorrected 0.0132 (0.0128) 0.0560 (0.0578) 0.1062 (0.1074)

Corrected 0.0093 (0.0089) 0.0497 (0.0514) 0.0989 (0.1002)

Schmoyer 0.0044 (0.0041) 0.0267 (0.0271) 0.0620 (0.0637)

Exact perm. 0.0093 0.0519 0.1012

Laplace Uncorrected 0.0127 (0.0114) 0.0557 (0.0508) 0.1070 (0.1018)

Corrected 0.0094 (0.0085) 0.0497 (0.0451) 0.0974 (0.0922)

Schmoyer 0.0037 (0.0033) 0.0266 (0.0240) 0.0607 (0.0557)

Exact perm. 0.0090 0.0451 0.0947

t.4/ Uncorrected 0.0118 (0.0106) 0.0556 (0.0539) 0.1068 (0.1046)

Corrected 0.0097 (0.0086) 0.0490 (0.0474) 0.0999 (0.0978)

Schmoyer 0.0048 (0.0042) 0.0265 (0.0251) 0.0612 (0.0595)

Exact perm. 0.0087 0.0484 0.0978

Log-normal Uncorrected 0.0126 (0.0118) 0.0582 (0.0606) 0.1073 (0.1105)

Corrected 0.0095 (0.0087) 0.0503 (0.0523) 0.1003 (0.1034)

Schmoyer 0.0055 (0.0049) 0.0274 (0.0277) 0.0621 (0.0646)

Exact perm. 0.0089 0.0523 0.1032

The simulated p values of the exact permutation test are used as the control in estimating the
sizes of the other tests (raw rejection frequencies are in the parentheses). Standard errors of the
estimates from the control variable method are at most 0.0010

where zk is the vector obtained from z by replacing the coordinates zkC1; : : : ; zn by
zeros and s2k the unbiased residual variance from the augmented regression with X
replaced by ŒX; zk� in (5.1). Since the t-test is equivalent to the likelihood ratio test
(with given k), the likelihood ratio test against alternatives m0 � k � m1 rejects
when

max
m0�k�m1

jtkj > c:

Recall that X is n � q. An easy calculation gives

.n � q � 2/s2k D .n � q � 1/s2 � .z0
kQy/2=z0

kQzk;

where s2 is the unbiased residual variance under the null hypothesis of no change
point. From this we find that the t-test is equivalent to the test where sk is replaced by
s. Thus the likelihood ratio test against change-point on the interval Œm0;m1� rejects
when

max
m0�k�m1

jz0
kQyj

s
p

z0
kQzk

> c; (5.9)

Since Qy D Qe under the null hypothesis of no change, we can find the p value by
permutation whenever z satisfies the condition (5.5) of Theorem 5.3. The condition
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roughly means that we exclude the possibility of the change-point occurring too
early or too late and that the meaning of “too early” as well as “too late” depends
on the particular explanatory variable. Note also that the value of (5.9) remains the
same even if we replace zk by zkn D zk=

p
z0z.

Chen (1998) applies Schwarz’s information criterion (Schwarz 1978) for detect-
ing the change-point of a simple linear regression model. The monthly dollar volume
of sales on the Boston Stock Exchange is the response variable and the combined
New York American Stock Exchange is the predictor. The data covers the time span
from January of 1967 to November of 1969, 35 cases altogether, and is originally
from Holbert (1982). Chen’s analysis suggests that from December of 1968 onwards
the slope is different.

The corrected and uncorrected permutation tests yield p values 0.095 and 0.083,
respectively, with 9999 random permutations. Because the test statistic is based on a
linear function, the root of the correction factor (5.4) is used. Schmoyer’s test gives
p value 0.125. Thus, the discovered change-point is not entirely convincing. The
interval of maximization in (5.9) is .4; 32/.

In simulation experiments the response is generated from the same distributions
as before, and the predictor is kept as in the original data. Table 5.4 shows results.
Again, the corrected permutation test performs best. As in the autocorrelation test
Schmoyer’s test remains substantially below the nominal level.

Table 5.4 Estimated relative rejection frequencies for the change-point test

Distribution Method 1 % 5 % 10 %

Normal Uncorrected 0.0115 (0.0111) 0.0569 (0.0542) 0.1106 (0.1062)

Corrected 0.0093 (0.0090) 0.0501 (0.0477) 0.1004 (0.0962)

Schmoyer 0.0040 (0.0039) 0.0261 (0.0250) 0.0646 (0.0616)

Exact perm. 0.0097 0.0476 0.0955

Laplace Uncorrected 0.0121 (0.0118) 0.0572 (0.0600) 0.1093 (0.1096)

Corrected 0.0107 (0.0103) 0.0499 (0.0527) 0.1003 (0.1009)

Schmoyer 0.0052 (0.0050) 0.0305 (0.0319) 0.0678 (0.0700)

Exact perm. 0.0095 0.0533 0.1003

t.4/ Uncorrected 0.0117 (0.0119) 0.0566 (0.0557) 0.1093 (0.1088)

Corrected 0.0088 (0.0090) 0.0498 (0.0489) 0.1002 (0.0997)

Schmoyer 0.0052 (0.0053) 0.0303 (0.0300) 0.0678 (0.0670)

Exact perm. 0.0103 0.0490 0.0995

Log-normal Uncorrected 0.0123 (0.0127) 0.0580 (0.0586) 0.1109 (0.1105)

Corrected 0.0093 (0.0097) 0.0505 (0.0512) 0.0998 (0.0995)

Schmoyer 0.0035 (0.0036) 0.0280 (0.0286) 0.0659 (0.0663)

Exact perm. 0.0104 0.0508 0.0996

The simulated p values of the exact permutation test is used as the control in estimating the
sizes of the other tests (raw rejection frequencies are in the parentheses). Standard errors of the
estimates from the control variable method are at most 0.0011
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5.4.5 Constancy of Linear Trend

Consider the local linear trend model

yi D �i C ei

�i D �i�1 C ˇ C di; i D 1; : : : ; n;

where the errors ei and di are all mutually independent with mean zero and variances

2 and 
2d , respectively. Plainly, the trend is constant when 
2d D 0. Then the model
takes the form

yi D �0 C ˇiC ei:

The test proposed by Nyblom (1986) rejects the constant trend hypothesis, when

L D
Pn

kD1
�Pk

iD1 Oei

�2

n2 O
2 > c:

The test statistic L has a nonstandard limiting distribution. The permutation tests
are compared through artificial data, with n D 35, using the same distributions as
before. The results are in Table 5.5. The corrected permutation performs best again.
Schmoyer’s test yields no rejections, and the figures are therefore omitted. The poor
performance of Schmoyer’s test pertains to the fact that the permutation distribution
of L depends on whether

P
tOe� t D 0 holds or not. This has counterparts in sampling

Table 5.5 Estimated relative rejection frequencies for the changing trend test

Distribution Method 1 % 5 % 10 %

Normal Uncorrected 0.0113 (0.0112) 0.0553 (0.0540) 0.1064 (0.1034)

Corrected 0.0093 (0.0092) 0.0496 (0.0485) 0.0988 (0.0959)

Exact perm. 0.0099 0.0489 0.0969

Laplace Uncorrected 0.0105 (0.0099) 0.0551 (0.0525) 0.1081 (0.1056)

Corrected 0.0090 (0.0085) 0.0501 (0.0476) 0.0992 (0.0967)

Exact perm. 0.0094 0.0474 0.0975

t.4/ Uncorrected 0.0126 (0.0118) 0.0566 (0.0538) 0.1094 (0.1067)

Corrected 0.0099 (0.0092) 0.0495 (0.0468) 0.0982 (0.0955)

Exact perm. 0.0093 0.0471 0.0973

Log-normal Uncorrected 0.0111 (0.0102) 0.0571 (0.0537) 0.1089 (0.1077)

Corrected 0.0093 (0.0086) 0.0509 (0.0475) 0.0994 (0.0979)

Exact perm. 0.0092 0.0462 0.0988

The simulated p values of the exact permutation test are used as the control in estimating the
sizes of the other tests (raw rejection frequencies are in the parentheses). Standard errors of the
estimates from the control variable method are at most 0.0010
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theory. Nyblom and Mäkeläinen (1983) derive the limiting sampling distribution of
L when Oei D yi � Ny and ˇ D 0. It is quite different from that given by Nyblom
(1986), where Oei D yi � Ny� Ǒ.i� .nC 1/=2/. It is likely, although not proved here,
that Schmoyer’s test has the same limiting distribution as the sampling distribution
in the former case, whereas the other two tests have the limiting distribution as in
the latter case.

5.4.6 Conclusions

The simulation experiments show that the corrected permutation test behaves quite
well already when the sample size is in the range 20–36, and when there are few
predictor variables. In order to get closer to nominal levels we need larger sample
sizes. Schmoyer’s alternative test is in most cases conservative, the exceptions being
the heteroscedasticity test under heavy-tailed and skew distributions. If the test
statistic is such that its distribution depends on the actual predictor values even
in large samples, Schmoyer’s test may become powerless. Section 5.4.5 gives an
example of this possibility. Therefore, I believe the safest approach is to use the
corrected permutation test derived here.

5.5 Proofs and Auxiliary Results

For simplicity the dependence on the sample size n is not always shown in the
notation, though it is understood that all limits are taken as n!1.

Lemma 5.1 Let �in, i D 1; : : : ; n, n D 2; 3; : : : , be a triangular sequence of
real numbers such that (a)

P
i �in D 0 and (b)

P
i �

2
in D 1. If e1; e2; : : : are

exchangeable with Ee61 <1, then

lim
n!1 n�1=4

nX

iD1
�inei D 0; a.s. (5.10)

Proof Denote Sn D P
i �inei. Using the assumptions (a) and (b) we get by a direct

calculation that

ES6n D c0 C c1
X

i

�6in C c2
X

i

�4in C c3

 
X

i

�3in

!2
;

where the coefficients c1; c2, and c3 are independent of n. Thus using (b) we get
ES6n � jc0j C jc1j C jc2j C jc3j D C, and consequently

E
�
n�1=4Sn

�6 � C

n3=2
; for all n:
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This implies the convergence of the series
P1

nD2 E.Sn=n1=4/6 which is sufficient
for (5.10) by Theorem 1.3.5 of Serfling (1980). ut
Lemma 5.2 Under the assumptions of Lemma 5.1 on e1; e2; : : :

lim
n!1

e0Hep
n
D 0 a.s. (5.11)

Proof Let A be a nonsingular square matrix such that .X0X/�1 D AA0. Then
Lemma 5.1 is applicable separately to each coordinate of n�1=4PA0xiei D
n�1=4A0X0e. Take its squared norm n�1=2e0XAA0X0e D n�1=2e0He to prove (5.11).

ut
By a direct calculation we can prove the following lemma.

Lemma 5.3 Let u1; : : : ; un and v1; : : : ; vn be two sequences of numbers such thatP
ui D P

vi D 0. If .�1; : : : ; �n/ is a random permutation of the numbers
.1; : : : ; n/ uniformly distributed over all permutations˘ , then

E�.u
2
�1v

2
�2/ D

�P
u2i
� �P

v2i
��P u2i v

2
i

n.n� 1/ ; (5.12)

E�.u�1v�1u�2v�2/ D .
P

uivi/
2 �P u2i v

2
i

n.n � 1/ ; (5.13)

E�.u
2
�1v�2v�3/ D E.u�1u�2v

2
�3/ D

2
P

u2i v
2
i �

�P
u2i
� �P

v2i
�

n.n � 1/.n � 2/ ; (5.14)

E�.u�1u�2v�2v�3/ D 2
P

u2i v
2
i � .

P
uivi/

2

n.n � 1/.n � 2/ ; (5.15)

E�.u�1u�2v�3v�4/ D
�P

u2i
� �P

v2i
�C 2 .P uivi/

2 � 6 �P u2i v
2
i

�

n.n� 1/.n� 2/.n� 3/ :

(5.16)

The formulas (5.12), (5.15), and (5.16) are found also in Schmoyer (1994,
p. 1515).

Proof (of Theorem 5.2) Without loss of generality we can assume that the upper
bound C for the sum of the squared elements of Bn D B equals to 1. Write Oe D
e � Ne1 �He and denote u D e � Ne1 and v D He. Then

Oe0
�BOe� D u0

�Bu� � 2u0
�Bv� C v0

�Bv� :

Clearly, it is sufficient to prove that conditional expectations E�.u0
�Bv�/2 and

E� jv0
�Bv� j tend to zero a.s.



5 Permutation Tests in Linear Regression 85

Let us start with E� jv0
�Bv� j. Denote the eigenvalues and the corresponding

eigenvectors of B by �k and zk with z0
kzk D 1. Thus v0

�Bv� DP�k.z0
kv�/

2. Since

E�.z0
kv�/

2 � n�1X v2i ;

we find

E� jv0
�Bv� j � n�1X v2i

X
j�kj

� n�1=2v0v
�X

�2k

�1=2

D n�1=2e0He D o.1/; a.s., (5.17)

by Lemma 5.2 and
P
�2k D tr.B2/ D 1.

Next, let us consider

E�
�X

biiu� iv� i

�2 D
"P

u2i v
2
i

n � 1 �
.
P

uivi/
2

n.n � 1/

#
X

b2ii

C
"
.
P

uivi/
2

n.n� 1/ �
P

u2i v
2
i

n.n � 1/

#hX
bii

i2
; (5.18)

where we have used Lemma 5.3. By Lemma 5.2

n�1
�X

uivi

�2 D o.1/; a.s., (5.19)

because
P

uivi D e0He. Using the Cauchy-Schwartz inequality we find

X
u2i v

2
i �

rX
u4i

rX
v4i

�
rX

u4i
X

v2i :

The law of large numbers for exchangeable random variables (Loève 1963, p. 400),
gives

n�1X u4i D n�1X.ei � Ne/4 D O.1/; a.s.

Combining this with
P
v2i D e0He D o.n1=2/ a.s. (by Lemma 5.2) yields

n�1X u2i v
2
i D o.1/; a.s. (5.20)
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By assumption
P

b2ii � 1 and hence .
P

bii/
2 � n. Thus (5.18)–(5.20) imply

E�
�X

biiu� iv� i

�2 D o.1/ a.s. (5.21)

As a second step consider

E�
�X

biju� iv� j

�2 D
X

b2ijE�.u
2
� iv

2
� j C u� iv� iu� jv� j/ (5.22)

C
X

bijbikE�.u
2
� iv� jv�k C v2� iu� ju�k C 2u� iv� iu� jv�k/

(5.23)

C
X

bikbjlE�.u� iu� jv�kv� l/; (5.24)

where the summations are over different subscripts only. Apply Lemma 5.3 to
(5.22)–(5.24) and note that the dominant term

�X
u2i
� �X

v2i

�
D
�X

.ei � Ne/2
�

e0He

is of order o.n3=2/. Thus, the expectation on the right side of (5.22) is of order
o.n�1=2/, on the line (5.23) of order o.n�3=2/ and on the line (5.24) of order o.n�5=2/.
Furthermore in (5.22), we have

P
b2ij � 1, by assumption. Applications of the

Cauchy-Schwartz inequality yield jP bijbikj � n in (5.23) and jP bikbjlj � n2

in (5.24). Then summing up (5.22)–(5.24) we find that

E�
�X

biju� iv� j

�2 D o.n�1=2/ a.s.

Combining this with (5.21) we get that E�.u0
�Bv�/2 D o.1/ a.s. Together with

(5.17) this completes the proof. ut
Lemma 5.4 Let w1; : : : ;wn and z1; : : : ; zn (n � 2) be two sequences of numbers
such that

P
wi D P

zi D 0 and
P

w2i D
P

z2i D 1 . Further, let .�1; : : : ; �n/
be a random permutation of the numbers .1; : : : ; n/ uniformly distributed over all
permutations˘ . Then

P�

2

4max
1�k�n

ˇ̌
ˇ̌
ˇ̌

kX

jD1
zjw� j

ˇ̌
ˇ̌
ˇ̌ > "

3

5 � 8

.n � 1/"2 :

Proof Denote

Tk D
kX

jD1
zjw� j and Sk D

kX

jD1
w� j:
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The conditional expectation given w�1; : : : ;w� j is denoted by Ej. Using
P

wj D 0

we find for k > 1 that

Ek�1.w�k/ D �
Pk�1

jD1 w� j

n � kC 1 D �
Sk�1

n � kC 1 :

Thus, we can define a martingale sequence as X1 D T1 and Xk D Tk C zkSk�1=.n�
kC 1/ for k D 2; : : : ; n. Using again the assumption

P
wi D 0 we find that

Xn D Tn C znSn�1 D
nX

jD1
zjw� j C zn

n�1X

jD1
w� j

D
n�1X

jD1
zjw� j:

This implies that E.X2n/ D var.Xn/ � 1=.n � 1/. Kolmogorov’s inequality for
submartingales (Billingsley 1979, , p. 414) yields

P�.max
k

X2k � �/ �
1

�
E.X2n/ �

1

.n � 1/�; for all � > 0: (5.25)

An easy calculation shows that

E�.S
2
k�1/ D

.k � 1/.n� k/

n.n � 1/ :

By this and the inequalities of Bonferroni and Markov we get

P�

�
max
2�k�n

z2kS2k�1
.n � kC 1/2 � �

	
�

nX

kD2
P�

�
z2kS2k�1

.n � kC 1/2 � �
	

� 1

�

nX

kD2
E�

�
z2kS2k�1

.n � kC 1/2
	

D 1

�

nX

kD2
z2k

.k � 1/.n� k/

.n � kC 1/2n.n � 1/

� 1

.n � 1/�
nX

kD2
z2k

� 1

.n � 1/� : (5.26)
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Since

jTkj � jXkj C jzkSk�1j
n � kC 1 ;

we finally get by (5.25) and (5.26) that

P�.max jTkj � "/ � P�
�

max jXkj � "

2

�
CP�

�
max

jzkSk�1j
n � kC 1 �

"

2

	
� 8

.n � 1/"2 :

ut
Proof (of Theorem 5.3) An application of Lemma 5.4 with wi D vi=

p
v0v gives

P�.max jz0
kv� j � "/ D P�

�
max
jz0

kv� jp
v0v
� "p

v0v

	

� 8v0v
.n � 1/"2 D o.n�1=2/; a.s., (5.27)

for v0v D e0He D o.n1=2/ a.s. by Lemma 5.2. Since z0
kQ.Oe� � e�/ D z0

kQv� D
z0

kv� � z0
kHv� , we get

P�.max jz0
kQ.Oe� � e�/j � "/ � P�.max jz0

kv� j � "=2/
CP�.max jzkHv� j � "=2/: (5.28)

Since H is idempotent, we get by the Cauchy-Schwartz inequality that

.z0
kHv�/2 � .z0

kHzk/.v
0
�Hv�/:

The idempotency also implies that z0
kHzk � z0

kzk � 1 for each k. Further,

E�.v
0
�Hv�/ D .trH/v0v=.n� 1/ D qe0He=.n� 1/ D o.n1=2/ a.s.

by (5.11). Together with (5.27) and (5.28) this yields

P�.max jz0
kQ.Oe� � e�/j > "/ �! 0; a:s:

for each " > 0. The proof is completed by noting that if n > M

max
m0�k�m1

jz0
kQ.Oe� � e�/jp

z0
kQzk

� maxm0�k�m1 jz0
kQ.Oe� � e�/jp

minm0�k�m1 z0
kQzk

� maxm0�k�m1 jz0
kQ.Oe� � e�/jp
b

:

ut
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Chapter 6
Highly Robust and Highly Finite Sample
Efficient Estimators for the Linear Model

Ezequiel Smucler and Víctor J. Yohai

Abstract In this paper, we propose a new family of robust regression estimators,
which we call bounded residual scale estimators (BRS-estimators) which are
simultaneously highly robust and highly efficient for small samples with normally
distributed errors. To define these estimators it is required to have a robust M-scale
and a family of robust MM-estimators. We start by choosing in this family a highly
robust initial estimator but not necessarily highly efficient. Loosely speaking, the
BRS-estimator is defined as the estimator in the MM family which is closest to the
LSE among those with a robust M-scale sufficiently close to the one of the initial
estimators. The efficiency of the BRS is derived from the fact that when there are not
outliers in the sample and the errors are normally distributed, the scale of the LSE
is similar to the one of the initial estimator. The robustness of the BRS-estimator
comes from the fact that its robust scale is close to the one of the initial highly robust
estimator. The results of a Monte Carlo study show that the proposed estimator has
a high finite-sample efficiency, and is highly resistant to outlier contamination.

Keywords Brakdown point • Finite sample efficiency • MM-estimators

6.1 Introduction

Robust statistics aims at providing methods for statistical modelling which are
reliable even in the presence of atypical data or outliers. The main objective
of robust estimation is to obtain estimators which are almost as good as the
optimal classical estimator (say the maximum likelihood estimator) when the data
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distribution coincides with the nominal one and that are not much affected by outlier
contamination.

In this paper, we are concerned with robust estimation for the linear model. We
assume that we observe .xT

i ; yi/ i D 1; : : : ; n, i.i.d. .p C 1/-dimensional vectors,
where yi is the response variable and xi 2 R

p is a vector of random carriers,
satisfying

yi D xT
i ˇ0Cui for i D 1; : : : ; n; (6.1)

where ˇ0 2 R
p is the vector of regression coefficients to be estimated and ui is

independent of xi.
Let F0 be the distribution of the errors ui, G0 the distribution of the carriers xi

and H0 the distribution of .xT
i ;yi/. Then H0 satisfies

H0.x;y/ D G0.x/F0.y � xTˇ0/: (6.2)

The least-squares estimator (LSE) of ˇ0 is defined by

ǑLSE D arg min
ˇ2Rp

nX

iD1
r2i .ˇ/;

where ri.ˇ/ D yi � xT
i ˇ.

When the errors are normally distributed, the LSE of ˇ0 coincides with the
maximum likelihood estimator (MLE), and has minimum variance among unbiased
estimators. However it is a well-known fact that the LSE is not robust, that is, it
is very sensitive to small deviations from the model assumptions. Moreover, it has
zero breakdown point, that is, a single sufficiently large outlying observation can
completely spoil the LSE.

The asymptotic efficiency of a regression estimator is defined as the ratio between
the MLE asymptotic variance and the estimator’s asymptotic variance. However,
when the sample size is not very large, the efficiency for this sample size may turn
out to be much lower than the asymptotic efficiency. Given a positive integer n, the
efficiency of an estimator when the sample size is equal n is defined as the ratio
between the mean squared errors (MSE) of the MLE and that of the estimator in
question for that sample size. It is clear that for practical purposes, the efficiency for
finite sample size is the relevant measure of efficiency.

The first regression equivariant estimator to achieve the optimal 1/2 asymptotic
breakdown point was the least median of the squares estimator (LMSE), first
proposed by Hampel (1975) and further developed by Rousseeuw (1984). The
LMSE converges at a n�1=3 rate and thus its relative efficiency with respect to the
LSE is 0 (see Davies 1990).

S-estimators, introduced in Rousseeuw and Yohai (1984), were the first regres-
sion estimators to combine both: 1/2 asymptotic breakdown point and n�1=2 rate
of convergence. However, Hössjer (1992) proved that any regression S-estimator
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calculated using a smooth loss function, and tuned to have 1/2 asymptotic break-
down point for regression equivariant estimators, is doomed to have an asymptotic
efficiency at the normal distribution of at most 0.329.

MM-estimators, introduced in Yohai (1987), are regression estimators that can
be tuned to attain both a high breakdown point and an asymptotic efficiency at the
normal distribution as close to one as desired.

In Gervini and Yohai (2002), the authors introduced the robust and efficient
weighted least squares estimators (REWLSE), which combine a high breakdown
point with full asymptotic efficiency for normal errors.

However, as will be seen in the simulation study we report, when the sample size
is not very large, both the REWLSE and the MM-estimator can have a finite-sample
efficiency that is much lower than their asymptotic one.

On the other hand, an estimator that has a high breakdown point can still be
largely affected by a small fraction of contaminated observations. Bondell and
Stefanski (2013) propose a high breakdown point regression estimator with high
finite sample normal efficiency. However, we show in Sect. 6.4 that this estimator is
highly unstable under outlier contamination.

In Maronna and Yohai (2014), the authors propose a family of estimators, called
distance constrained maximum likelihood estimators (DCML-estimators), which
are simultaneously robust and highly efficient for small samples.

In this paper, we propose a new family of robust regression estimators, which
we call bounded residual scale estimators (BRS-estimators). These estimators are
simultaneously highly robust and highly efficient for small samples with normally
distributed errors. To define these estimators it is required to have a robust M-scale
and a family of robust MM-estimators. We start by choosing in this family a highly
robust initial estimator but not necessarily highly efficient. Loosely speaking, the
BRS-estimator is defined as the estimator in the MM family which is closest to
the LSE among those with a robust M-scale sufficiently close to the one of the
initial estimator. The efficiency of the BRS-estimator is derived from the fact that
when there are not outliers in the sample and the errors are normally distributed,
the scale of the LSE is similar to the one of the initial estimator. The robustness
of the BRS-estimator is due to the fact that its robust scale is close to the one of
the initial highly robust estimator. The results of a Monte Carlo study show that
the proposed estimator has a high finite-sample efficiency and is highly resistant to
outlier contamination.

In Sect. 6.2, we review the definition and some of the most important properties
of MM- and S-estimators of regression. In Sect. 6.3 we introduce the BRS-
estimators and study their robust and asymptotic behaviour. In Sect. 6.4 we report
the results of simulation study and apply the proposed estimator to a published data
set. Conclusions and possible further extensions of the proposed estimators to other
models are provided in Sect. 6.5.
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6.2 S-Estimators and MM-Estimators

6.2.1 M-Estimates of Scale and S-Estimators

(A) Let 	 be a real valued function satisfying:

• 	.x/ is a non-decreasing, continuous and even function.
• 	.0/ D 0.
• sup 	.x/ D 1, and if 	.u/ < 1 and 0 � u < v then 	.u/ < 	.v/.

Any function that satisfies the assumptions in (A) will be called a 	-function.
Let 0 < b < 1, and let F be a distribution function. Let 	 be a 	-function. Then,

following Huber (1981), we define the M-scale functional as

s.F/ D inf
n
s � 0 W EF	

�u

s

�
� b

o
:

It is easy to show that s.F/ > 0 if and only if PF.u D 0/ < 1 � b, and in this case

EF	

�
u

s.F0/

	
D b:

Given a sample u D .u1; : : : ; un/ from F, the corresponding M-estimate of scale
sn.u/ is defined by

sn.u/ D inf

(
s � 0 W 1

n

nX

iD1
	

�
u

sn.u/

	
� b

)
:

It is easy to prove that sn.u/ > 0 if and only if #fi W ui D 0g < .1 � b/n, and in this
case

1

n

nX

iD1
	

�
u

sn.u/

	
D b: (6.3)

It can be readily verified that scale M-estimates are scale equivariant. Huber
(1981) proves that the asymptotic breakdown point of an M-estimate of scale is
given by minfb; 1 � bg. Taking b D 1=2 gives an asymptotic breakdown point of
1/2, the maximum possible for scale equivariant estimates of scale.

Given a sample .xT
i ; yi/, i D 1; : : : ; n from the model given in (6.2), Rousseeuw

and Yohai (1984) define the S-estimator of regression as

ǑS;n D arg min
ˇ2Rp

sn.r.ˇ//:
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S-estimators of regression have been shown to be strongly consistent for ˇ0 under
very general conditions. See Fasano et al. (2012) for details. One measure of the
robustness of an estimator introduced by Donoho and Huber (1983) is the finite-
sample replacement breakdown point. In the case of regression this measure is
defined as follows. Given a sample zi D .xT

i ; yi/, i D 1; : : : ; n, let Z D fz1; : : : ; zng
and let Ǒ.Z/ be a regression estimator. The finite-sample replacement breakdown
point of Ǒ is then defined as

FBP. Ǒ/ D m�

n
;

where

m� D maxfm � 0 W Ǒ.Zm/ is bounded for all Zm 2 Zmg;

and Zm is the set of all datasets with at least n � m elements in common with Z.
S-estimators can always be tuned so as to attain the maximum possible finite-

sample replacement breakdown point for regression equivariant estimators, which
is given by

1

n



n � k�.X/� 1

2

�
; (6.4)

where k�.X/ is the maximum number of observations xi;� 1 � i � n lying in a
subspace and [ ] denotes integer part. If the sample is in general position, that is, if
k�.X/ D p � 1, (6.4) becomes

1

n

hn � p

2

i
;

which is approximately 1/2 for large n. See Maronna et al. (2006) for details.
Recall, however, that S-estimators cannot combine high breakdown point with high
efficiency at the normal distribution.

6.2.2 MM-Estimators

Let .xT
i ; yi/, i D 1; : : : ; n, be a sample satisfying (6.2), then Yohai (1987) defines the

MM-estimator of regression in three stages as follows:

1. Compute Ǒ0;n, a high breakdown point estimator of ˇ0.
2. Let 	0 be a 	-function, and let 0 < b < 1. Compute the corresponding M-

estimate of scale of the residuals of Ǒ0;n.
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3. Let 	1 be another 	-function, such that 	1 � 	0. Let 1 D 	0
1. The MM-estimator

of regression ǑMM;n is defined as any solution of

nX

iD1
xi 1

 
ri.ˇ/

sn.r. Ǒ0;n//

!
D 0

satisfying

L. ǑMM;n/ � L. Ǒ0;n/;

where

L.ˇ/ D
nX

iD1
	1

 
ri.ˇ/

sn.r. Ǒ0;n//

!
;

and putting 	1
�
0
0

� D 0.

Yohai (1987) proves that under very general conditions, MM-estimators are
strongly consistent for ˇ0, and furthermore

p
n. ǑMM;n � ˇ0/!d Np.0;
20 v. 1;F0/V

�1
x /; (6.5)

where Vx D EG0 .xxT/, 
0 D s.F0/, where the M-scale s is defined using 	0 and

v. ;F0/ D EF0 .u=
0/
2

.EF0 
0 .u=
0//2

:

Besides, he shows that 	1 can be chosen so that the resulting MM-estimator has
simultaneously the two following properties:

• Normal asymptotic efficiency as close to one as desired.
• Breakdown point equal or larger than that of the initial estimator.

Maronna et al. (2006) recommend the use of MM-estimators using an S-
estimator with high breakdown point as an initial estimator and 	0 D 	B.u=c0/,
where 	B is Tukey’s bisquare loss function, given by

	B.u/ D 1� I.juj � 1/.1� .u/2/3

and c0 is a tuning parameter. This parameter should be chosen so that the resulting
M-estimate of scale be consistent in the case of normal errors. The function 	1 can
be taken equal to 	B.u=c1/ where c1 � c0. Maronna et al. (2006) recommend to
choose c1 so that the MM-estimator has an asymptotic efficiency of 85 % at the
normal distribution. The reason for choosing an 85 % asymptotic efficiency at the
normal distribution is that at this level of the efficiency the MM-estimator has the
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same maximum asymptotic bias as the initial S-estimator of regression for the case
of normal errors and normal carriers.

6.3 BRS-Estimators

In order to define the proposed estimators, we first introduce some notation. Let 	 be
a 	-function, and for each c > 0, let 	c.u/ D 	.u=c/. Fix c0 and 0 < b < 1, and let
sn be the M-estimate of scale defined by (6.3) using 	c0 as 	 and b. Let ǑS;n be the S-
estimator which minimizes sn.r.ˇ//. Consider a sequence .ın/n, and constants c1; c2
satisfying ın � 0 and c0 � c1 � c2. Let Ǒc1;n be the MM-estimator calculated using
ǑS;n as initial estimator, the scale sn.r. ǑS;n// and 	c1 as 	1. For each c 2 .c1; c2�,
let Ǒc;n be the MM-estimator calculated using Ǒc1;n as initial estimator, the scale
sn.r. Ǒc1;n// and 	c as 	1. Then given a sample .xT

i ; yi/, i D 1; : : : ; n, from (6.2)
define

c� D supfc 2 Œc1; c2� W sn.r. Ǒc;n// � .1C ın/sn.r. Ǒc1;n//g: (6.6)

We define the BRS-estimator, ǑBRS;n as

ǑBRS;n D Ǒc�;n:

Note that sn.r. ǑBRS;n// � .1C ın/sn.r. Ǒc1;n//. It is easy to see that BRS-estimators
are regression, affine and scale equivariant.

We recommend the BRS-estimator with 	 in Tukey’s bisquare family, b D
0:5.1 � p=n/, c0 D 1:54, c1 D 3:44, c2 D 7:14, and ın D 0:8p=n. The value of c0
makes the scale estimate consistent in the case of normal errors and the value of b
makes the S- and MM-estimators have maximum FBP when the sample is in general
position. The asymptotic efficiency of the MM-estimators with tuning parameters c1
and c2 is equal to 85 % and 99 % respectively. The values for ın were obtained by
trial and error after several Monte Carlo experiments with different values of p and
n. As we will see in Sect. 6.4, this estimator is simultaneously highly efficient and
highly robust.

The following theorem implies that, under quite general conditions, a BRS-
estimator has a finite-sample replacement breakdown point that is at least as high as
that of the initial MM-estimator Ǒc1;n.

Theorem 6.1 Let sn be an M-estimate of scale. Let Ǒ0;n and Ǒ1;n be regression
estimators. Suppose that

(i) For some K > 0

sn.r. Ǒ1;n// � Ksn.r. Ǒ0;n//

for all n 2 N.
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(ii)

FBP. Ǒ0;n/ < b:

(iii)

Œnb� �



n � k�.X/ � 1
2

�
;

where b is the right-hand side of (6.3).

Then

FBP. Ǒ1;n/ � FBP. Ǒ0;n/:

Proof Consider observations .xT
i ; yi/, i D 1; : : : ; n and let

m < nFBP. Ǒ0;n/:

Take C 
 f1; 2; : : : ; ng such that #C D m and a sequence .xT
N;i; yN;i/N such that

.xT
N;i; yN;i/ D .xT

i ; yi/ for i 62 C and all N 2 N. Let ǑN0;n and ǑN1;n denote the

estimators Ǒ0;n and Ǒ1;n computed in .xT
N;i; yN;i/N . Since there are a finite number

of sets included in f1; : : : ; ng, to prove the theorem it will be enough to show
that . ǑN1;n/N is bounded. Suppose that this is not true, then passing eventually to

a subsequence we can assume that k ǑN1;nk ! 1 when N !1 and that there exists
ˇ� such that

lim
N!1

ǑN
1;n=k ǑN1;nk D ˇ�:

Let D D f1; 2; : : : ng � C and let

D� D fi W i 2 D and ˇ�Kxi ¤ 0g:

Then

#D� � n �m � k�.X/:

Since

n � k�.X/ � 2



n � k�.X/� 1
2

�
C 1
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and

m � Œnb� �



n � k�.X/� 1
2

�
;

we have that

#D� � n �m � k�.X/ � 1C



n � k�.X/ � 1
2

�
� 1C Œnb� > nb:

It is immediate that for i 2 D� we have rN;i. ǑN1;n/ ! 1. Therefore by Lemma 5.2

of Maronna et al. (2006), sn.rN. ǑN1;n// ! 1. On the other hand, since . ǑN0;n/N is

bounded, we have that there exists K such that
ˇ̌
ˇrN;i. ǑN0;n/

ˇ̌
ˇ � K for all i 2 D. Since

m < nb, we have #D > n � nb and then by Lemma 5.2 of Maronna et al. (2006),
sn.rN. ǑN0;n// is bounded, contradicting assumption (i) of the theorem. ut
Remark 6.1 Suppose that b D .Œ.n � k�.X/� 1/=2�C �/=n for some � 2 .0; 1/
in (6.3), then the MM-estimator that uses the S-estimator that minimizes sn.r.ˇ//
as initial estimator has maximal breakdown point. In this case, Theorem 6.1 implies
that ǑBRS;n also has maximal breakdown point.

In order to prove the consistency of BRS-estimators, the following additional
assumptions are needed:

(B1) The 	 function used to define the BRS-estimator is eventually constant.
(B2) PG0

�
xTˇ D 0� < 1 � b for all non-zero ˇ 2 R

p, where b was used to define
sn.

(B3) F0 has an even continuous density, f0, that is a monotone decreasing function
of juj and a strictly decreasing function of juj in a neighbourhood of 0.

Consistency of BRS-estimators is an immediate corollary of the following
Theorem.

Theorem 6.2 Let .xT
i ; yi/, i D 1; : : : ; n, be i.i.d observations with distribution H0,

which satisfies (6.2). Assume (B1), (B2), and (B3) hold. Let . Ǒ1;n/n be a sequence of
regression equivariant estimators. Let sn be an M-estimate of scale. Suppose that

sn.r. Ǒ1;n//! s.F0/ a.s..

Then . Ǒ1;n/n is strongly consistent for ˇ0.

Proof By the regression equivariance of Ǒ1;n, we can assume that ˇ0 D 0. We will
show first that . Ǒ1;n/n is bounded with probability one. Let

A D
n
sn. Ǒ1;n/! s.F0/

o
:
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By the assumptions of the theorem we have

P.A/ D 1:

By Lemma 4.6 of Yohai and Zamar (1986) there exists K such that

lim
n!1 inf

kˇk�K
sn.r.ˇ// � s.F0/C 1 a.s::

Let

B D
�

lim
n!1 inf

kˇk�K
sn.r.ˇ// � s.F0/C 1

�

and put D D A \ B, then clearly P.D/ D 1. We will first show that the samples
in D are bounded. Suppose that there exists a sample in D which is not bounded.
Then for this sample lim supn!1 sn.r. Ǒ1;n// � s.F0/C1, contradicting the fact that
limn!1 sn.r. Ǒ1;n// D s.F0/. For any positive integer j, define Ej as

Ej D
(

lim
n!1 sup

jjˇjj�j
jsn.r.ˇ//� s.ˇ;H0/j D 0

)
:

By Lemma 4.5 of Yohai and Zamar (1986), P.Ej/ D 1 for all j. Put E D .\1
jD1Ej/\

D, then P.E/ D 1 too. We will show that for any sample in E we have

lim
n!1

Ǒ
1;n D 0: (6.7)

Suppose that there exists a sample in D that does not satisfy (6.7). Then since this
sample is bounded, there exists a subsequence .ni/i and ˇ� ¤ 0 such that

lim
i!1

Ǒ
1;ni D ˇ�:

Take j0 such that jjˇ�jj < j0 and let a D jjˇ�jj=2. Then there exists i0 such that for
i � i0 we have a � jjb̌1;ni jj � j0. Then, since the sample belongs to Ej0

lim sup
i!1

�ˇ̌
ˇsni .r. Ǒ1;ni//� s. Ǒ1;ni ;H0/

ˇ̌
ˇ
�
� lim

i!1 sup
jˇjj�j0

.jsni.r.ˇ// � s.ˇ;H0/j/ D 0:

Then, using Lemma 4.1 of Yohai and Zamar (1986) we have

lim inf
i!1 sni.r. Ǒ1;ni// D lim inf

i!1 s. Ǒ1;ni ;H0/

� inf
a�jjˇjj�j0

s.ˇ;H0/

> s.F0/:

This contradicts the fact that we are dealing with a sample belonging to A. ut
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Corollary 6.1 Under the assumptions of Theorem 6.2, if . ǑS;n/n and . Ǒc1;n/n are
strongly consistent for ˇ0, and if ın ! 0, then . ǑBRS;n/n is strongly consistent for
ˇ0.

Even though we were not able to derive the asymptotic distribution of BRS-
estimators, we propose the following ad-hoc procedure for approximate asymptotic
inference on a BRS-estimator. Given a sample .xT

i ; yi/, i D 1; : : : ; n, we use the
asymptotic distribution of Ǒc�;n, that is, the asymptotic distribution of the MM-
estimator with tuning constant equal to c�, as an approximation of the distribution
of the BRS-estimator.

When the BRS-estimator coincides with Ǒc�;n, according to (6.5), the approxi-
mate covariance matrix of the BRS-estimator is 
20 v. c� ;F0/Vx

�1. In this case 
0
can be estimated by sn.r. Ǒc�;n//; v. c� ;F0/ by v. c� ;Fn/ where Fn is the residuals
empirical distribution and Vx, as proposed in Stahel et al. (1991), by the robust
estimator

OVx D
nX

iD1
wixixT

i ;

where

wi D w.ri. Ǒc�;n/=sn.r. Ǒc�;n//
nX

jD1
w.rj. Ǒc�;n/=sn.r. Ǒc�;n//

;

and

w.u/ D  c�.u/

u
:

Although this procedure is not strictly justified, it seems to work quite well
in practice. To evaluate the accuracy of this approximation in the case of the
BRS-estimator described above Theorem 6.1, we computed the average length and
coverage probabilities for the confidence intervals with nominal 95 % asymptotic
confidence level for each of the regression parameters, for a model with p D 5

variables and an intercept. We consider two possible error distributions: normal
and Student’s t-distribution with three degrees of freedom (t3). The values were
averaged over the six parameters, and were computed through a simulation with
3000 replicates. Results are shown in Table 6.1.

It is seen that the approximation works fairly well for n � 50. These results are
similar to those obtained by Bondell and Stefanski (2013). Note that when n D 20

we have n=p D 3:33 and according to the usual rule of thumb it is recommended to
have n=p � 5.
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Table 6.1 Mean interval lengths and coverage probabilities for intervals for the recommended
BRS-estimator with nominal 95 % asymptotic confidence level, for a model with p D 5 parameters
plus intercept, averaged over the six parameters

Normal t3
n Length Coverage Length Coverage

20 0.855 86.4 % 1.17 86.3 %

50 0.555 92.7 % 0.730 92.8 %

100 0.393 94.1 % 0.514 94.3 %

200 0.277 94.2 % 0.362 95.2 %

500 0.176 94.3 % 0.228 94.2 %

6.4 Simulations

We generated .xT
1 ; y1/; : : : ; .x

T
n ; yn/ i.i.d observations according to the model (6.1).

Since all the estimators considered are regression equivariant, we take without loss
of generality ˇ0 D 0. We took p D 5; 10; 20 and n D Kp with K D 5; 10; 20. The
total number of Monte Carlo replications was Nrep D 1000 in all cases.

We compared the robustness and finite-sample efficiency of the following
estimators:

• An MM-estimator with 85 % asymptotic efficiency, henceforth MM85, with 	1
in Tukey’s bisquare family. This is the recommended estimator in Maronna et al.
(2006).

• The Bondell and Stefanski (2013) estimator, henceforth B-S.
• The REWLSE of Gervini and Yohai (2002).
• The BRS-estimator described above Theorem 6.1.
• The DCML-estimator proposed in Maronna and Yohai (2014).
• An S-estimator based on a 	-function in Tukey’s bisquare family.

MM- and S-estimators were computed using the functions lmrob..M..fit
and lmrob.S in the robustbase R package. The parameter c� defined in (6.6) was
computed via a grid search. The code to calculate B-S, REWLSE and DCML was
kindly provided by the authors.

6.4.1 Efficiency

To assess the finite-sample efficiency of the estimators when the errors are normally
distributed, we considered the following eight scenarios for the distribution of the
carriers:

• In the first three, all coordinates of x are independent, with distribution N.0; 1/,
U.0; 1/ and Student’s t-distribution with 4 degrees of freedom.

• In the next three, we include an intercept: .x2; : : : ; xp/ are as above, and x1 D 1.
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Table 6.2 Minimum efficiencies of the estimators under standard normal errors, over the eight
scenarios for the carriers

p n MM85 B-S REWLSE BRS DCML S

5 25 0.522 0.969 0.558 0.784 0.809 0.231

50 0.754 0.994 0.801 0.951 0.948 0.250

100 0.814 0.997 0.882 0.983 0.981 0.266

10 50 0.600 0.990 0.639 0.898 0.880 0.235

100 0.774 0.998 0.847 0.986 0.990 0.265

200 0.816 0.999 0.910 0.987 0.996 0.256

20 100 0.658 0.999 0.742 0.971 0.961 0.272

200 0.796 0.999 0.903 0.995 0.994 0.262

400 0.826 0.999 0.939 0.993 0.998 0.241

• In the last two we include quadratic terms: .x2; : : : ; xp/ are the squares of standard
normal and uniform variables and x1 D 1.

In all cases, the distributions were normalized so that Vx D I.
For each n, p and scenario for the carriers, we estimated the finite-sample

efficiency of an estimator as the ratio between the MSE of the LSE and that of
the estimator in question.

To summarize the results for the case of normal errors, for each combination
.p; n/, we took for each estimator the minimum finite-sample efficiency over the
eight scenarios for the carriers. Table 6.2 displays these results.

We note that:

• The S-estimator is very inefficient in all cases.
• The finite sample efficiency of both the MM85 and REWLSE can be much lower

than their asymptotic efficiency for small n=p. Their worst behaviour arises when
the carriers are the squares of standard normal random variables.

• BRS and DCML outperform MM85 and REWLSE, and are highly efficient in all
cases.

• B-S shows the highest efficiencies in all cases.

We also studied the efficiency of the estimators when the errors have Student’s
t-distribution with 3 and 5 degrees of freedom (d.f.) and the carriers are independent
with N.0; 1/ distribution plus an intercept. In this case, the efficiency is estimated by
the ratio between the MSE of the Student MLE and the MSE of the corresponding
estimator. The results are shown in Table 6.3.

In this case all the estimators, except the S-estimator, are highly efficient. Note
that the efficiency of BRS is always higher than that of DCML.
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Table 6.3 Efficiencies of the estimators under errors with Student’s t-distribution with 3 and 5
degrees of freedom and normal carriers

d.f. p n MM85 B-S REWLSE BRS DCML S

3 5 25 0.797 0.889 0.777 0.898 0.865 0.430

50 0.897 0.899 0.833 0.917 0.882 0.415

100 0.944 0.901 0.873 0.903 0.877 0.455

10 50 0.844 0.864 0.835 0.939 0.908 0.400

100 0.942 0.905 0.878 0.889 0.863 0.413

200 0.943 0.896 0.856 0.889 0.869 0.454

20 100 0.887 0.916 0.889 0.929 0.897 0.387

200 0.942 0.885 0.875 0.909 0.879 0.403

400 0.960 0.891 0.883 0.899 0.878 0.453

5 5 25 0.735 0.933 0.759 0.902 0.895 0.373

50 0.891 0.947 0.876 0.962 0.942 0.377

100 0.921 0.935 0.891 0.964 0.934 0.375

10 50 0.770 0.952 0.791 0.954 0.918 0.319

100 0.887 0.952 0.888 0.979 0.946 0.358

200 0.930 0.945 0.900 0.956 0.915 0.369

20 100 0.828 0.940 0.867 0.989 0.960 0.343

200 0.910 0.917 0.911 0.978 0.947 0.342

400 0.936 0.935 0.919 0.979 0.937 0.366

6.4.2 Robustness

To assess the estimators’ robustness we contaminated the data with a fraction " D
0:1 and 0:2 of outliers as follows. Let m D Œn"�, then for i � n � m, .xT

i ; yi/ were
generated according to (6.1), where the errors ui have standard normal distribution,
x D .1; x2; : : : ; xp/, that is the first carrier corresponds to an intercept, and x2; : : : ; xp

are independent with standard normal distribution. For i > n � m we took xi D
.1; x0; 0; : : : ; 0/T and yi D x0k. The effect of this contamination will be to artificially
drag the estimators to .0; k; 0; : : : ; 0/T. We took x0 D 5 and moved k in an uniformly
spaced grid between 0:5 and 10 with step 0:1.

Figure 6.1 displays the MSEs of the estimators for p D 10, n D 50, normal
carriers and " D 0:1 for different values of the outlier size k. The upper panel shows
that MM85, REWLSE, DCML and BRS have similar behaviours, the maximum
MSE of BRS being the lowest. The lower panel shows that the MSEs of the S-
estimator and B-S are generally higher than that of BRS, and that the maximum
MSE of B-S is the highest of all the estimators considered in the simulation.

Table 6.4 shows for each .p; n/ the maximum mean squared error attained by
each estimator.
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Fig. 6.1 MSEs of regression estimators as function of outlier size k for normal x, p D 10, n D 50

and " = 0.1. Note that the y-axis of the upper panel is zoomed in from the y-axis of the lower panel

Table 6.4 Maximum mean squared errors of estimators with normal predictors for contaminated
data

" p n MM85 B-S REWLSE BRS DCML S

0.1 5 25 1:10 2:09 0:99 0.93 0.94 1:81

50 0:72 1:71 0:62 0.61 0.60 1:25

100 0:48 1:61 0:40 0.43 0.40 0:83

10 50 1:57 2:77 1:39 1.16 1.20 2:71

100 0:69 1:83 0:58 0.58 0.55 1:30

200 0:46 1:69 0:39 0.42 0.39 0:84

20 100 1:52 3:37 1:30 1.11 1.11 2:58

200 0:69 2:28 0:56 0.56 0.55 1:36

400 0:50 1:92 0:41 0.45 0.42 0:95

0.2 5 25 10:74 28:49 10:32 9.06 8.45 12:30

50 3:93 11:37 3:61 3.38 3.38 5:34

100 2:34 7:94 2:12 2.19 2.12 3:27

10 50 11:73 26:57 11:39 9.78 9.31 13:55

100 3:62 13:03 3:29 3.12 3.09 5:10

200 2:13 9:67 1:90 1.98 1.92 3:03

20 100 10:35 31:23 9:84 8.39 8.10 12:96

200 3:94 13:45 3:52 3.39 3.36 5:08

400 2:58 10:85 2:28 2.37 2.34 3:58
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Note that for " D 0:1 the maximum MSEs of REWLSE, DCML and BRS are
very similar, and are in all cases lower than those of and MM85, which in turn are
lower than those of S. BRS has the lowest maximum MSE for n=p D 5, DCML has
the lowest maximum MSE for n=p D 10 and REWLSE has the lowest maximum
MSE for n=p D 20. For " D 0:2, DCML generally shows the best performance for
n=p D 5 and n=p D 10, followed closely by BRS, whereas REWLSE has the lowest
maximum MSE for n=p D 20.

B-S has the highest maximum MSE in all cases, showing that the price to pay for
its remarkably high efficiency is an important loss in robustness.

6.4.3 Real Data

In this section we apply the estimators included in the simulation study to a well-
known data set, the Hertzprung-Russell diagram of the star cluster CYG OB1. This
dataset, which consists of the temperature and light intensity of 47 stars in the
direction of Cygnus, was previously analysed in Rousseeuw and Leroy (1987). The
carrier is the logarithm of the effective temperature at the surface of the star (T), and
the response variable is the logarithm of its light intensity (L=L0). The Hertzprung-
Russell diagram is shown in Fig. 6.2. It is seen that the observations are roughly
split into two groups: one containing most of the observations and the other one
the observations labelled 11, 20, 30 and 34. The stars in this last group are called
giants, and the rest of the stars are said to lie on the main sequence. The giant stars
do not follow the same pattern as the majority of the data and for this reason they
are considered outliers. Figure 6.2 also shows the BRS, B-S and LSE fits. It is seen
that BRS gives a good fit for the majority of the observations, whereas B-S and LSE
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Fig. 6.2 Hertzsprung-Russell diagram with LSE, B-S and BRS fits
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Table 6.5 Hertzprung-Russell diagram data: RMSEs calculated using only the residuals of stars
lying in the main sequence

Computed with LSE MM85 B-S REWLSE BRS DCML S

Giants removed 0.3962 0.4227 0.3963 0.4268 0.3995 0.4054 0.4790

Whole data 0.5401 0.4105 0.5677 0.4127 0.3988 0.3990 0.4404

make a compromise between the two groups of observations, and thus fit neither
one of them well.

Lacking a “true model”, we employ an alternative criteria to evaluate the
estimators’ robustness and efficiency. First, we calculated each of the estimators
using only the data of the stars that lie on the main sequence, i.e. without the giant
stars (observations 11, 20, 30, and 34), and then calculated the root mean squared
error (RMSE, the square root of the mean of the squared residuals) using the same
data. We compared the RMSEs of the estimators with that of LSE as a surrogate
criterion for efficiency. For a surrogate criterion for robustness, we calculated each
of the estimators using all of the data, and then calculated the RMSE using only the
data of the stars lying in the main sequence. Results are shown in Table 6.5.

It is seen that B-S is the most efficient of all the estimators. BRS is the
second most efficient followed by DCML, MM85, REWLSE and S. Regarding the
robustness of the estimators, BRS shows the best behaviour, followed by DCML,
MM85, REWLSE, S, LSE and B-S in that order.

6.5 Conclusions

In this paper we proposed a new family of robust regression estimators, which are
simultaneously highly robust and highly efficient for small samples with normally
distributed errors. In an extensive simulation study this estimator was compared
with other robust estimators which have similar properties.

A joint analysis of the results shown in Tables 6.2, 6.3 and 6.4 shows that DCML
and BRS exhibit the best balance between robustness and efficiency. BRS is more
efficient for errors with heavy tails like Student’s t-distribution with 3 and 5 degrees
of freedom and DCML is generally more robust under a contaminated normal
distribution.

We should note that BRS-estimators can be extended for another models where
S- and MM-estimators can be defined. For example, to estimate multivariate location
and scatter (see Davies (1987) for S-estimators and Lopuhaä (1992) for MM-
estimators), or for non-linear regression (see Fasano et al. (2012) for S- and
MM-estimators). However these extensions are a matter of further research.

An R code to compute the recommended BRS-estimator is available at http://
mate.dm.uba.ar/~vyohai/BRSreg.r.

http://mate.dm.uba.ar/~vyohai/BRSreg.r
http://mate.dm.uba.ar/~vyohai/BRSreg.r
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Chapter 7
Optimal Rank Tests for Symmetry Against
Edgeworth-Type Alternatives

Delphine Cassart, Marc Hallin, and Davy Paindaveine

Abstract We are constructing, for the problem of univariate symmetry (with
respect to specified or unspecified location), a class of signed-rank tests achieving
optimality against the family of asymmetric (local) alternatives considered in
Cassart et al. (Bernoulli 17:1063–1094, 2011). Those alternatives are based on a
non-Gaussian generalization of classical first-order Edgeworth expansions indexed
by a measure of skewness such that (1) location, scale, and skewness play well-
separated roles (diagonality of the corresponding information matrices), and (2) the
classical tests based on the Pearson–Fisher coefficient of skewness are optimal in
the vicinity of Gaussian densities. Asymptotic distributions are derived under the
null and under local alternatives. Asymptotic relative efficiencies are computed and,
in most cases, indicate that the proposed rank tests significantly outperform their
traditional competitors.
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7.1 Introduction

The assumption of symmetry is among the most important and fundamental ones
in statistics. This importance explains the variety of existing parametric as well as
nonparametric testing procedures of the null hypothesis of symmetry in an i.i.d.
sample X1; : : : ;Xn; see Hollander (1988) for a classical survey.

Traditional parametric tests of the null hypothesis of symmetry—the hypothesis

under which X1 � � dD �.X1 � �/ for some location (automatically, the population

median) � 2 R, where
dD stands for equality in distribution—are based on third-

order moments. Write m.n/
k WD m.n/

k . NX.n// for the sample moment of order k, where

m.n/
k .�/ WD n�1

nX

iD1
.Xi � �/k

and NX.n/ WD n�1Pn
iD1 Xi. When the location � is specified, the classical test

statistic is

S.n/1 WD n1=2m.n/
3 .�/=.m

.n/
6 .�//

1=2; (7.1)

with, under finite sixth-order moments, asymptotically standard normal null distri-
bution. When � is unspecified, the classical test is based on the empirical coefficient
of skewness b.n/1 WD m.n/

3 =s3n, where sn WD .m.n/
2 /

1=2 stands for the empirical standard
error in a sample of size n. More precisely, that test relies on the asymptotic standard
normal distribution (still under finite moments of order six) of

S.n/2 WD n1=2m.n/
3 =.m

.n/
6 � 6s2nm.n/

4 C 9s6n/
1=2: (7.2)

This test is generally considered a Gaussian test. Cassart et al. (2011) indeed
show that it is locally asymptotically optimal, in the Le Cam sense, for the null
hypothesis of i.i.d. Gaussian observations with unspecified location and scale,
against asymmetric alternatives described by a first-order Edgeworth expansion of
the form

�.x � �/C n�1=2�.x � �/�.x � �/..x � �/2 � �/; (7.3)

where �.D 3/ is the Gaussian kurtosis coefficient, � a location parameter, and � a
measure of skewness; see Chap. XVI of Feller (1971) for a concise introduction
to those expansions, the idea of which goes back to Edgeworth (1905). Cassart
et al. (2011) further show that the local experiments associated with (7.3) enjoy
the appealing property that location, scale, and skewness play well-separated roles,
in the sense that the Fisher information matrix associated with the triple .� , 
 �/ is
diagonal.
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Extending that Gaussian approach to a broad class of symmetric densities by
embedding the null hypothesis of i.i.d.-ness with density

f W x 7! f .x/ WD 
�1f1..x � �/=
/

(f1 symmetric with respect to the origin) into a family of locally asymmetric
alternatives based on an adequate generalization of (7.3), Cassart et al. (2011) show
that those families (for fixed f ) are uniformly locally asymptotically normal (ULAN)
under mild assumptions on f1. The resulting locally asymptotically optimal tests are
derived and studied in detail.

It should be insisted, however, that considering alternatives of this (generalized)
Edgeworth type by no means implies any assumption on the form of the asymmetry
present in the data. Those local expansions are just considered as a way of producing
non-Gaussian alternatives to the classical test (7.2). And simulations (see Cassart
et al. 2011) indicate that the resulting tests perform quite well against other types
of asymmetries, such as the skew-normal and skew-t densities investigated, for
instance, by Azzalini and Capitano (2003).

Yet, these tests all are of a parametric nature, while symmetry, very typically, is a
nonparametric hypothesis, enjoying a rich group invariance structure, through which
classical maximal invariance arguments naturally bring signs and signed-ranks into
the picture.

The most popular nonparametric signed-rank tests of symmetry (with respect
to any specified location—without loss of generality, the origin) are the sign test,
based on the binomial null distribution of the number of negative signs in a sample
of size n, and the Wilcoxon signed-rank test, based on the exact or asymptotic null
distribution of

S.n/W WD n�1=2
nX

iD1
siR

.n/
C;i

(or a linear transformation thereof, such as n�1=2Pn
iD1 IŒsi D 1�R.n/C;i), where

s1; : : : ; sn denote the signs, and R.n/C;1; : : : ;R
.n/
C;n the ranks of absolute values in a

sample of size n. These tests are not optimal in any satisfactory sense against asym-
metry: actually, they are locally asymptotically most powerful against symmetry-
preserving location shifts—under otherwise unspecified density for the sign test,
under logistic densities for the Wilcoxon one. Moreover, the sign test is completely
insensitive to nonsymmetric alternatives preserving the median. There is no way
such tests can be adapted to an unspecified-location context (alignment for the
location nuisance here produces, at probability level ˛, a test with trivial asymptotic
power ˛).

Another signed-rank test based on signs only is the runs test proposed by
McWilliams (1990) and further investigated by Henze (1993). If not completely
invariant, this test has low sensitivity against location shifts; however, it does not
address any well-identified alternative and does not exploit the ranks themselves.
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The triples test by Randles et al. (1980) is location-invariant, and also based on
signs. Those signs, though, are those of quantities of the form Xi C Xj � 2Xk,
1 � i < j � n and i ¤ j ¤ k, which do not follow from any concept of
group invariance and are not distribution-free; optimality properties, if any, are
unclear.

To the best of our knowledge, the problem of constructing optimal rank-based
tests of symmetry only has been touched in Cassart et al. (2008) and Ley and
Paindaveine (2009), both focusing on quite specific alternatives (Fechner and
Ferreira-Steel types, respectively). The objective of this paper is to construct
signed-rank tests that are optimal against the Edgeworth-type alternatives defined
in Cassart et al. (2011). The proposed tests are distribution-free (asymptotically
so in case of an unspecified location �) under the null hypothesis of symmetry,
and therefore remain valid under very mild distributional assumptions (for
the specified-location case, they are valid in the absence of any distributional
assumption).

For instance, the normal-score signed-rank test rejects the null hypothesis of
symmetry with respect to (specified) � for large values of

T
e
.n/
�1
.�/ WD

�
n�
e
.n/
�1

��1=2 nX

iD1
si.�/˚

�1
�nC 1C R.n/C;i.�/

2.nC 1/
�

�
��
˚�1�nC 1C R.n/C;i.�/

2.nC 1/
��2 � 3

�
;

where ˚ denotes the standard normal distribution function, si.�/ is the sign
of Zi.�/ WD Xi � � , R.n/C;i.�/ the rank of jZi.�/j among jZ1.�/j; : : : ; jZn.�/j, and

�
e
.n/
�1
WD n�1

nX

rD1

 
˚�1

�nC 1C r

2.nC 1/
���

˚�1
�nC 1C r

2.nC 1/
��2 � 3

�!2

a standardizing constant. That test is distribution-free under the null hypothesis of
symmetry with respect to � , asymptotically equivalent to the test (7.2) based on
b.n/1 under Gaussian densities, and hence asymptotically most powerful against local
Edgeworth alternatives of the form (7.3) with � > 0. And, under a very broad class
of non-Gaussian densities (containing, among many others, all Student and power-
exponential ones), the ARE (see Sect. 7.3.4) of this signed-rank test is strictly larger
than one with respect to the traditional test based on b.n/1 .

The problem we are considering throughout is that of testing the null hypothesis
of symmetry. In the notation of Sect. 7.1, � (see (7.4) for a more precise definition)
is thus the parameter of interest; the location � and the standardized null symmetric
density f1 either are specified or play the role of nuisance parameters, whereas the
scale 
 (not necessarily a standard error) always is a nuisance.
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The paper is organized as follows. In Sect. 7.2.1, we briefly describe the
Edgeworth-type families of local alternatives we are considering. Section 7.2.2
restates the local asymptotic normality (with respect to location, scale, and asym-
metry parameters) result of Cassart et al. (2011) that provides the main theoretical
tool of the paper. Signed-rank versions of the corresponding central sequences
for asymmetry are defined in Sect. 7.2.3. In Sect. 7.3.1, we propose nonparametric
signed-rank (hence distribution-free) versions of the optimal procedures obtained in
Cassart et al. (2011) for specified location � . The case of unspecified � is treated
in Sect. 7.3.2, and requires the delicate estimation of a cross-information quantity
of the same type as those appearing in the asymptotic variances of R-estimators
(see Cassart et al. 2010). That estimation problem is discussed in some detail in
Sect. 7.4. The van der Waerden, Wilcoxon, and Laplace versions of the signed-rank
statistics are described in Sect. 7.3.3, and Sect. 7.3.4 provides asymptotic relative
efficiencies of signed-rank tests with respect to the classical ones based on (7.1)
and (7.2), indicating the superiority of the former.

7.2 A Class of Locally Asymptotically Normal Families
of Asymmetric Distributions

7.2.1 Families of Asymmetric Densities Based on Edgeworth
Approximations

Denote by XXX.n/ WD .X.n/1 ; : : : ;X
.n/
n /; n 2 N an i.i.d. n-tuple of observations with

common density f . The null hypotheses we are interested in are

(a) the hypothesis H
.n/
� of symmetry with respect to specified location � 2 R:

under H .n/
� , the Xi’s have density function x 7! f .x/ WD 
�1f1..x � �/=
/ (all

densities are over the real line, with respect to the Lebesgue measure), for some
unspecified 
 2 R

C
0 and f1 in the class of standardized symmetric densities

F0 WD
n

f1 W f1.�z/ D f1.z/ and
Z 1

�1
f1.z/ dz D 0:5

o
:

The scale parameter 
 (associated with the symmetric density f ) we are
considering here thus is not the standard error, but the median of the absolute
deviations jXi � � j; this avoids making any moment assumptions on f ;

(b) the hypothesis H .n/ WD S
�2R H

.n/
� of symmetry with respect to unspecified

location.

As explained in the introduction, efficient testing requires the definition of
families of asymmetric alternatives exhibiting some adequate structure, such as
local asymptotic normality, at the null hypothesis of symmetry. For a selected
class of densities f enjoying the required regularity assumptions, we therefore are
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embedding the null hypothesis of symmetry into families of distributions indexed by
� 2 R (location), 
 2 R

C
0 (scale), and a parameter � 2 R characterizing asymmetry.

More precisely, consider the class F1 of densities f1 satisfying

(i) (symmetry and standardization) f1 2 F0;
(ii) (absolute continuity) there exists Pf1 such that, for all finite z1 < z2,

f1.z2/ � f1.z1/ D
Z z2

z1

Pf1.z/ dzI

(iii) (strong unimodality) z 7! �f1 .z/ WD �Pf1.z/=f1.z/ is monotone increasing, or the
difference of two monotone increasing functions, and

(iv) (finite Fisher information) the integral

K . f1/ WD
Z C1

�1
z4�2f1 .z/f1.z/dz

is finite, hence also, under (iii) above, the integrals

I . f1/ WD
Z C1

�1
�2f1 .z/f1.z/dz and J . f1/ WD

Z C1

�1
z2�2f1 .z/f1.z/dzI

(v) there exists ˇ > 0 such that
Z 1

a
f1.z/ dz D O.a�ˇ/ as a!1 and �f1 .z/ D o.zˇ=2�2/ as z!1.

That class F1 thus consists of all symmetric standardized densities f1 that are
absolutely continuous, strongly unimodal (that is, log-concave), and have finite
information I . f1/ for location, J . f1/ for scale and, as we shall see, K . f1/ for
asymmetry, with tails satisfying (v). Assumption (iii) is not required for ULAN,
but for the asymptotic representation of the rank-based statistics associated with the
score function �f1 .

For all f1 2 F1, denote by �. f1/ WD J . f1/=I . f1/ the ratio of information for
scale and information for location. For Gaussian densities (f1 D �1), �.�1/ D 3

reduces to kurtosis and, as we shall see, �. f1/ can be interpreted as a generalized
kurtosis coefficient. Finally, write P.n/�;
;�If1 for the probability distribution of X.n/

when the Xi’s are i.i.d. with density

f .x/D
�1f1
�

x � �



	
(7.4)

� �


Pf1
�

x � �



	 �
x � �



	2
� �. f1/

!
IŒjx � � j � 
 jz�j�

Csign.�/



f1

�
x � �



	h
IŒx � � > sign.��/
 jz�j�� IŒx � � < sign.�/
 jz�j�

i
:
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Here � 2 R and 
 2 R
C
0 clearly are location and scale parameters, � 2 R is a

measure of skewness, �. f1/ (strictly positive for f1 2 F1) the generalized kurtosis
coefficient just defined, and z� the unique (for � small enough; unicity follows
from the monotonicity of �f1 .z/) solution of f1.z�/ D � Pf1.z�/..z�/2 � �. f1//. The
function f defined in (7.4) is indeed a probability density (nonnegative, integrating
up to one), since it is obtained by adding and subtracting the same probability
mass

j�j



Z 1

�

min

 
Pf1
�

x � �



	 �
x � �



	2
� �. f1/

!
; f1

�
x � �



	!
dx

on both sides of � (according to the sign of �). Note that � > 0 implies f .x/ D 0

for x � � < �
 jz�j and f .x/ D 2
�1f1..x � �/=
/ for x � � > 
 jz�j.
Moreover, the density x 7! f .x/ is continuous whenever Pf1.x/ is; it vanishes for
x � � C 
z� if � > 0, for x � � C 
z� if � < 0, and is left- or right-
skewed according as � < 0 or � > 0. As for z�, it tends to �1 as � # 0, to
1 as � " 0; in the Gaussian case, it is easy to check that jz�j D O.j�j�1=3/ as
� ! 0.

The intuition behind this class of alternatives is that, in the Gaussian case,
Eq. (7.4), with � D n�1=2� yields (for x 2 Œ� ˙ 
z��) the first-order Edgeworth
expansion of the density of the standardized mean of an i.i.d. n-tuple of variables
with third-order moment 6�
3 (where standardization is based on the median 

of absolute deviations from �). For a “local” value of �, of the form n�1=2� , (7.4)
thus describes the type of deviation from symmetry that corresponds to the classical
central-limit context. Hence, if a Gaussian density is justified as resulting from
the additive combination of a large number of small independent symmetric
variables, the locally asymmetric f results from the same additive combination, of
independent, but slightly skewed ones. We show in Cassart et al. (2011) that the
locally optimal test in such case is the traditional test based on b.n/1 .

Besides the Gaussian one, interesting special cases of (7.4) are obtained in the
vicinity of

(i) the Student distributions with  > 2 degrees of freedom, with standardized
densities

f1.z/ D ft .z/ WD Ct .1C az
2=/�.C1/=2;

I . f1/ D a. C 1/=. C 3/; J . f1/ D 3. C 1/=. C 3/;

and

K . f1/ D 15. C 1/=a. � 2/. C 3/I
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the corresponding Gaussian values (density �1.z/ WD .a=2�/1=2 exp.�az2=2/)
are obtained by taking limits as  ! 1: I .�1/ D a � 0:4549, J .�1/ D 3

and K .�1/ D 15=a;
(ii) the logistic distributions, with standardized density

f1.z/ D fLog.z/ WD
p

b exp.�pbz/=.1C exp.�pbz//2;

I . f1/ D b=3; J . f1/ D .12C �2/=9; and K . f1/ D �2.120C 7�2/=45bI

(iii) the double-exponential (or Laplace) distributions, with standardized density

f1.z/ D fL .z/ WD .1=2d/ exp.�jzj=d/;

I . f1/ D 1=d2; J . f1/ D 2; and K . f1/ D 24d2I

(iv) the power-exponential distributions, with standardized densities

f1.z/ D fexp� .z/ WD Cexp� exp.�.g�z/2�/; � 2 N0;

I . f1/ D 2g2��
� .2 � 1=2�/
� .1C 1=2�/ ; J . f1/ D 1C 2�; and K . f1/ D 2g�

�

� .1C 1=2�/

(the positive constants Ct , Cexp� , a , a, b, d, and g� are such that f1 2 F1).
Figure 7.1 provides graphical representations of some densities in the Gaussian
(f1 D �1) and double-exponential (f1 D fL ) Edgeworth families (7.4),
respectively. In the Gaussian case, the skewed densities are continuous, while
the double-exponential case, due to the discontinuity of PfL .x/ at x D 0,
exhibits a discontinuity at the origin.
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Fig. 7.1 Graphical representations of the Gaussian (f1 D �1) and double-exponential (f1 D fL )
Edgeworth families (7.4), for asymmetry parameter values � D 0; 0:05; 0:10; and 0:15 (from left
to right)
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7.2.2 Uniform Local Asymptotic Normality

The main technical tool in our derivation of optimal tests is the uniform local
asymptotic normality (ULAN), with respect to ### WD .�; 
; �/0, at any .�; 
; 0/0,
of the parametric families

P
.n/
f1
WD

[


>0

P
.n/

 If1 WD

[


>0

n
P.n/�;
;�If1 j � 2 R; � 2 R

o
; (7.5)

where f1 2 F1. More precisely, we are using the following result, which is proved
in Cassart et al. (2011).

Proposition 7.1 (ULAN) For any f1 2 F1, � 2 R, and 
 2 R
C
0 , the family P

.n/
f1

is ULAN at .�; 
; 0/0, with (writing Zi for Z.n/i .�; 
/ WD 
�1.X.n/i � �/) central
sequence

���
.n/
f1
.###/ DW

0

B@
�
.n/
f1I1.###/

�
.n/
f1I2.###/

�
.n/
f1I3.###/

1

CA D n�1=2
nX

iD1

0

@

�1�f1 .Zi/


�1.�f1 .Zi/Zi � 1/
�f1 .Zi/

�
Z2i � �. f1/

�

1

A (7.6)

and full-rank information matrix

��� f1 .###/ D
0

@

�2I . f1/ 0 0

0 
�2.J . f1/� 1/ 0

0 0 �. f1/

1

A ; (7.7)

where �. f1/ WD K . f1/�J 2. f1/=I . f1/. In other words, for any sequence ###.n/ of
the form .�.n/; 
.n/; 0/0 such that ###.n/ � ### D O.n�1=2/ as n ! 1 for some ### D
.�; 
; 0/0, one has that, as n!1 under P.n/

�.n/;
.n/;0If1 ,

log
dP.n/

� .n/Cn�1=2�
.n/
1 ;
.n/Cn�1=2�

.n/
2 ;n�1=2

C�
.n/
3 If1

dP.n/
� .n/;
.n/ ;0If1

D ���.n/0���.n/f1
.###.n//� 1

2
���.n/0��� f1 .###/���

.n/CoP.1/

for any bounded sequence ��� .n/D .�.n/1 ; �
.n/
2 ; �

.n/
3 /0 2R3, and���.n/f1

.###.n// is asymptot-
ically normal with mean 0 and covariance matrix ��� f1 .###/.

The diagonal form of the information matrix��� f1 .###/ confirms that location, scale,
and skewness, in the parametric family (7.5), play distinct and well-separated roles.
Note that orthogonality between the scale and skewness components of ���.n/

f1
.###/

automatically follows from the symmetry of f1, while for location and skewness,
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this orthogonality is a consequence of the definition of �. f1/. The Gaussian versions
of (7.6) and (7.7) are

���
.n/
�1
.###/ D n�1=2

nX

iD1

0

@
a
�1Zi


�1.aZ2i � 1/
aZi.Z2i � 3

a /

1

A and ��� �1.###/ D
0

@
a
�2 0 0

0 2
�2 0

0 0 6=a

1

A ;

respectively (recall that a � 0:4549).

7.2.3 Signed-Rank Versions of the Central Sequence

As mentioned in the introduction, the hypothesis of symmetry enjoys strong group
invariance features. The null hypothesis H

.n/
� of symmetry with respect to �

indeed is generated by the group G
.n/
� ; ı of all transformations Gh of R

n such
that G h.x1; : : : ; xn/ WD .h.x1/; : : : ; h.xn//, where limx!1 h.x/ D 1, and x 7! h.x/
is continuous, monotone increasing, and skew-symmetric with respect to � (i.e.,
such that h.� � z/ D �h.� C z/). A maximal invariant for that group is known to be
the vector .s1.�/; : : : ; sn.�// of signs along with the vector .R.n/C;1.�/; : : : ;R

.n/
C;n.�//

of ranks, where si.�/ is the sign of .Xi � �/ and R.n/C;i.�/ the rank of jXi � � j
among jX1 � � j; : : : ; jXn � � j.

General results on semiparametric efficiency (Hallin and Werker 2003) indicate
that, in such context, the expectation of the central sequence ���.n/f1

.###/ conditional
on those signs and ranks yields a version of the semiparametrically efficient (at
f1 and ###) central sequence. The only component of the central sequence ���.n/

f1

which is used in this section is the �-component �.n/
f1I3, with signed-rank version

(a terminology justified in Proposition 7.2)

�
e
.n/
f1I3.�/ WD n�1=2

nX

iD1
si.�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
����

F�1
1C
�R.n/C;i.�/

nC 1
��2 � �. f1/

�
;

where F1C W .x/ 7! .2F1.x/ � 1/IŒx � 0� and F1 denote the distribution functions
of jZij and Zi, respectively, when Zi has density f1. Later on, however, we also will
need the signed-rank version

�
e
.n/
f1I1.�/ WD n�1=2

nX

iD1
si.�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
��

of the �-component of the same central sequence. The following results follow from
the classical Hájek theory for linear signed-rank statistics (see, e.g., Chapter 3 of
Puri and Sen 1985).
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Proposition 7.2 Let f1 2 F1 and g1 2 F0. Then,

(i) under P.n/�;
;0Ig1 , as n!1,

�
e
.n/
f1I3.�/ D n�1=2

nX

iD1
�f1

�
F�1
1 .G1.Z

.n/
i .�; 
///

�

�
��

F�1
1 .G1.Z

.n/
i .�; 
///

�2 � �. f1/
�
C oL2 .1/;

and hence, under P.n/�;
;0If1 ,�e
.n/
f1I3.�/ D �

.n/
f1I3.�; 
; 0/C oP.1/I

(ii) under P.n/�;
;0Ig1 ,�e
.n/
f1I3.�/ has mean zero and variance

�
e
.n/
f1
WD n�1

nX

rD1
�2f1

�
F�1
1C
� r

nC 1
����

F�1
1C
� r

nC 1
��2 � �. f1/

�2
(7.8)

tending to �. f1/ as n!1.

Note that Part (i) of this result entails that�
e
.n/
f1I3.�/, under P.n/�;
;0Ig1 , with g1 2 F0,

is asymptotically equivalent (in the mean square sense) to a random variable of the
form n�1=2P

iD1 �i, where the �i’s are i.i.d. with mean zero (since u 7! �f1 .u/u
2

and u 7! �f1 .u/ are skew-symmetric) and variance �. f1/. Consequently,�
e
.n/
f1I3.�/,

still under P.n/�;
;0Ig1 , is also asymptotically normal with mean zero and variance �. f1/.

7.3 Rank-Based Tests for Symmetry

7.3.1 Optimal Signed-Rank Tests of Symmetry: Specified
Location

Proposition 7.2 immediately yields a distribution-free signed-rank test of the
hypothesis of symmetry with respect to a specified location � . With the notation
of Theorem 7.2, consider the rank-based test statistic

T
e
.n/
f1
.�/ WD

�
�
e
.n/
f1

��1=2
�
e
.n/
f1I3.�/ (7.9)

D
�

n�
e
.n/
f1

��1=2 nX

iD1
si.�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
����

F�1
1C
�R.n/C;i.�/

nC 1
��2 � �. f1/

�
:

Define the cross-information coefficients

I . f1; g1/ WD
Z 1

0

�f1

�
F�1
1 .u/

�
�g1

�
G�1
1 .u/

�
du;
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J . f1; g1/ WD
Z 1

0

.F�1
1 .u//

2�f1

�
F�1
1 .u/

�
�g1

�
G�1
1 .u/

�
du; and

K . f1; g1/ WD
Z 1

0

.F�1
1 .u//

2.G�1
1 .u//

2�f1

�
F�1
1 .u/

�
�g1

�
G�1
1 .u/

�
du;

and denote by

F
e f1 WD fg1 2 F0jI . f1; g1/ <1; J . f1; g1/ <1; and K . f1; g1/ <1g

the class of densities for which those integrals exist and are finite.

Proposition 7.3 Let f1 2 F1. Then,

(i) T
e
.n/
f1
.�/ is asymptotically normal, with mean zero under

S
g12F0

S

2RC

0

fP.n/�;
;0Ig1g, mean

�

�1=2. f1/

h
K . f1; g1/�J. f1; g1/�.g1/�J.g1; f1/�. f1/CI. f1; g1/�. f1/�.g1/

i

under
S

2RC

0
fP.n/
�;
;n�1=2� Ig1g, g1 2 F

e f1 , and variance one under both;

(ii) the sequence of tests rejecting the hypothesisH .n/
� WD

S
g12F0

S

2RC

0
fP.n/�;
;0Ig1g

of symmetry with respect to � whenever T
e
.n/
f1
.�/ exceeds the .1 � ˛/ standard

normal quantile z˛ is locally asymptotically most powerful, at asymptotic
level ˛, against

S
�>0

S

2RC

0
fP.n/�;
;�If1 g.

Only asymptotic critical values are reported in Part (ii) of the proposition, but
exact (or simulated) ones of course also can be considered, as the test is entirely
distribution-free. The two-sided version also readily follows.

7.3.2 Optimal Signed-Rank Tests of Symmetry: Unspecified
Location

The unspecified-location case is more difficult and, to the best of our knowledge,
so far only has been considered in Cassart et al. (2008). When � is unspecified, a
consistent estimator O� has to be substituted for � , yielding aligned signs si. O�/ and
aligned ranks R.n/C;i. O�/. This substitution, however, has an impact on the distribution-

freeness of T
e
.n/
f1

, and on its asymptotic distribution. That impact, as we shall see,
requires a delicate asymptotic analysis.
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As usual in this context, denoting by P.n/� a sequence of probability measures

indexed by some parameter �, consider a sequence of estimators O�.n/ of � satisfying,
under P.n/� , the following assumptions:

(C1) (root-n consistency) O�.n/ � � D OP.n�1=2/, and
(C2) (local discreteness) the number of possible values of O�.n/ in balls with

O.n�1=2/ radius centered at � is bounded as n!1.

An estimator �.n/ satisfying (C1) but not (C2) is easily discretized by letting, for
some arbitrary c > 0, �.n/# WD .cn1=2/�1sign.�.n//dcn1=2j�.n/je, which satisfies
both (C1) and (C2). Subscripts # in the sequel are used for estimators ( O�#, O
#, . . . )
satisfying (C1) and (C2). It should be noted, however, that (C2) has no implications
in practice, where n is fixed, as the discretization constant c can be chosen arbitrarily
large.

For all � 2 R
C
0 , define

�
e
.n/
f1I3.�I �/ WD n�1=2

nX

iD1
si.�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
����

F�1
1C
�R.n/C;i.�/

nC 1
��2 � �

�
I

for � D �. f1/, �
e
.n/
f1I3.�I �/ and �

e
.n/
f1I3.�/ coincide. The joint distribution, under

P.n/�;
;0Ig1 , of

0

@
�
e
.n/
f1I3
.�I �/

�
.n/
g1I1
.�; 
; 0/

1

AD n�1=2

nX

iD1

0

@�f1

�
F�1
1 .G1.Z

.n/
i .�; 
///

���
F�1
1 .G1.Z

.n/
i .�; 
///

�2� �
�

1


�g1 .Zi.�; 
//

1

A

CoP.1/;

(an asymptotic representation similar to that of Part (i) of Proposition 7.2 clearly
holds) is asymptotically normal, with mean zero and covariance matrix

0

@
�
e
�. f1/ ı�. f1; g1/

ı�. f1; g1/ 
�2I .g1/

1

A ; (7.10)

where

�
e
�. f1/ WD K . f1/ � 2�J . f1/C �2I . f1/

and

ı�. f1; g1/ WD 
�1.J . f1; g1/� �I . f1; g1//:
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It immediately follows from (7.10) and Le Cam’s third Lemma that root-n
perturbations of � , hence also the replacement of � by a root-n consistent estimator,
do affect the asymptotic centering of�

e
.n/
f1I3.�I �/—unless the covariance ı�. f1; g1/ is

zero, that is, unless

� D �. f1; g1/ WDJ . f1; g1/=I . f1; g1/:

Let �
e
.n/. f1I �/ be a consistent (under P.n/�;
;0Ig1 ) estimator of �. f1; g1/. Since the

mapping from � to the values of�
e
.n/
f1I3.�I �/ is continuous,�

e
.n/
f1I3. �e

.n/. f1I �/I �/ also
can be expected to be asymptotically insensitive to root-n perturbations of � . This
is indeed the case, and the same reasoning as in Sect. 3.2.2 of Cassart et al. (2011)
yields, under P.n/�;
;0Ig1 , the asymptotic equivalence

�
e
.n/
f1I3. �e

.n/. f1I O�#/I O�#/��e
.n/
f1I3. �e

.n/. f1I �/I �/ D oP.1/

for any estimator O�# of � satisfying (C1) and (C2) and any density g1 in

F
e

�
f1 WD fg1 2 F0 j I .g1/ <1; I . f1; g1/ <1; and J . f1; g1/ <1g:

Obtaining a consistent estimator �
e
.n/. f1I �/ of �

e
. f1; g1/, which is a ratio of

expected values, taken under unspecified density g, of variables that themselves
depend on g, however, is delicate. A general method is proposed in Cassart et al.
(2010), which we describe in Sect. 7.4. Defining

T
e
.n/�
f1
.�/ WD

�
n�
e
.n/�
f1

��1=2
(7.11)

�
nX

iD1
si.�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
����

F�1
1C
�R.n/C;i.�/

nC 1
��2 � �

e
.n/. f1I �/

�
;

where (convergence under P.n/�;
;0Ig1 , as n!1)

�
e
.n/�
f1
WD n�1

nX

rD1
�2f1

�
F�1
1C
� r

nC 1
����

F�1
1C
� r

nC 1
��2 ��

e
.n/. f1I �/

�2

D K . f1/� 2 �e. f1; g1/J . f1/C�e
2. f1; g1/I . f1/C o.1/;

we thus have established the following result.
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Proposition 7.4 Let f1 2 F1. Then,

(i) T
e
.n/�
f1
. O�#/ is asymptotically normal, with mean zero under the null hypothesis

S
g12F
e

�

f1

S
�2R

S

2RC

0
fP.n/�;
;0Ig1g of symmetry with respect to unspecified � ,

mean

�

K . f1; g1/�J .g1; f1/ �e
. f1; g1/

�
K . f1/ � 2 �e. f1; g1/J . f1/C �

e
2. f1; g1/I . f1/

�1=2

under the local alternative P.n/
�;
;n�1=2� Ig1 , where g1 2 F

e
�

f1
, and variance one

under both;
(ii) the sequence of tests rejecting the null hypothesis

S
g12F
e

�

f1

S
�2R

S

2RC

0

fP.n/�;
;0Ig1g of symmetry with respect to unspecified � wheneverT
e
.n/�
f1
. O�#/ exceeds

the .1�˛/ standard normal quantile z˛ is locally asymptotically most powerful,
at asymptotic level ˛, against

S
�>0

S
�2R

S

2RC

0
fP.n/�;
;�If1 g.

7.3.3 The van der Waerden, Wilcoxon, and Laplace Tests
of Symmetry

Important particular cases of (7.9) and (7.11) are the Laplace (sign test or double-
exponential scores), Wilcoxon (logistic scores), and van der Waerden (normal
scores) tests, which are optimal at double-exponential, logistic, and normal distri-
butions, respectively.

The van der Waerden tests are based on f1 D �1, with

F�1
1C.u/ D �f1 .F

�1
1C.u// D a�1=2˚�1�uC 1

2

�
;

where ˚ is the standard normal distribution function. The specified-location test
statistic (7.9) then reduces to

T
e
.n/
vdW.�/ WD

�
n�
e
.n/
�1

�
�1=2

�
nX

iD1

si.�/˚
�1
�nC 1C R.n/

C;i.�/

2.nC 1/
� �

˚�1
�nC 1C R.n/

C;i.�/

2.nC 1/
��2 � 3

!
;

where

�
e
.n/
�1
WD n�1

nX

rD1

 
˚�1�nC 1C r

2.nC 1/
�!2 �

˚�1�nC 1C r

2.nC 1/
��2 � 3

!2
:
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The corresponding unspecified-location test statistic (7.11) takes the form

T
e
.n/�
vdW.
O�/ WD

�
n�
e
.n/�
�1

��1=2 nX

iD1
si. O�/˚�1

�nC 1C R.n/C;i. O�/
2.nC 1/

�

�
 �
˚�1�nC 1C R.n/C;i. O�/

2.nC 1/
��2 ��

e
.n/.�1I O�/

!
;

where

�
e
.n/�
�1
WD n�1

nX

rD1

 
˚�1�nC 1C r

2.nC 1/
�!2 �

˚�1�nC 1C r

2.nC 1/
��2 ��

e
.n/.�1I O�/

!2
:

In the Wilcoxon case (logistic density), one easily checks that

F�1
1C.u/ D b�1=2 log

1C u

1 � u
and �f1 .F

�1
1C.u// D b�1=2u:

Therefore, (7.9) and (7.11) reduce to

T
e
.n/
W .�/ WD

�
n�
e
.n/
f Log

��1=2 nX

iD1
si.�/R

.n/
C;i.�/

 �
log

nC 1C R.n/C;i.�/
nC 1 � R.n/C;i.�/

�2 � 12C �
2

3

!
;

and

T
e
.n/�
W . O�/ WD

�
n�
e
.n/�
f Log

�
�1=2

nX

iD1

si. O�/R.n/
C;i.
O�/
 �

log
nC 1C R.n/

C;i.
O�/

nC 1 � R.n/
C;i.
O�/
�2��

e
.n/. fLogI O�/

!
;

where

�
e
.n/
f Log
WD n�1

nX

rD1
r2
 �

log
nC 1C r

nC 1 � r

�2 � 12C �
2

3

!2

and

�
e
.n/�
f Log
WD n�1

nX

rD1
r2
 �

log
nC 1C r

nC 1 � r

�2 ��
e
.n/. fLogI O�/

!2
;

respectively.
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As for the Laplace-score version of (7.9), it is associated with the double-
exponential density f1 D fL . One easily obtains

F�1
1C.u/ D �d log.1 � u/ and �f1 .F

�1
1C.u// D 1=d;

hence

T
e
.n/
L .�/ WD

�
n�
e
.n/
fL

��1=2 nX

iD1
si.�/

  
log

�
1 � R.n/C;i.�/

nC 1
�!2
� 2

!
;

where

�
e
.n/
fL
WD n�1

nX

rD1

  
log

�
1 � r

nC 1
�!2
� 2

!2
:

The unspecified-location test statistic (7.11) is derived along the same lines as
previously, yielding

T
e
.n/�
L . O�/ WD

�
n�
e
.n/�
fL

��1=2 nX

iD1
si. O�/

  
log

�
1 � R.n/C;i. O�/

nC 1
�!2
��
e
.n/. fL I O�/

!
;

with

�
e
.n/�
fL
WD n�1

nX

rD1

  
log

�
1 � r

nC 1
�!2
��
e
.n/. fL I O�/

!2
:

7.3.4 Asymptotic Relative Efficiencies

The asymptotic shifts provided in Propositions 7.3 and 7.4, together with their
pseudo-Gaussian counterparts in Propositions 3.2 and 3.5 of Cassart et al. (2011)
allow us to compute ARE values for the tests based on T

e
.n/
f1
.�/ and T

e
.n/�
f1
. O�#/ with

respect to their classical counterparts, based on m.n/
3 .�/ [or S.n/1 ; see (7.1)] and b.n/1

[or S.n/2 ; see (7.2)], respectively. Those ARE values are obtained as the squared
ratios of the corresponding local shifts, for various densities g1. The pseudo-
Gaussian tests, hence also our ARE values, require finite sixth-order moments. But
signed-rank tests of course remain valid without such assumption and, whenever g1
has infinite moment of order six, the asymptotic relative efficiency under g1 of any
signed-rank test with respect to its pseudo-Gaussian competitor can be considered
as infinite.
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Proposition 7.5 Let f1 2 F1; denoting by �k the moment of order k of g1, assume
that �6 <1.

(i) The asymptotic relative efficiency under g1 2 F�1 \ F
e f1 of the specified-

location signed-rank test based on T
e
.n/
f1
.�/ with respect to the classical

procedure based on m.n/
3 .�/ [see (7.1)] is

AREg1

�
T
e
.n/
f1
.�/=m.n/

3 .�/
�

D
�
K . f1; g1/ �J. f1; g1/�.g1/ �J.g1; f1/�. f1/CI. f1; g1/�. f1/�.g1/

�2

�. f1/
�
5�4 � 3�.g1/�2

�2
=�6

:

(ii) The asymptotic relative efficiency under g1 2 F�1 \ F
e f1 of the specified-

location signed-rank test based on T
e
.n/
f1
.�/ with respect to the classical

procedure based on b.n/1 [see (7.2)] is

AREg1.Te
.n/
f1 .�/=b.n/1 /

D
�
K . f1; g1/ �J.g1; f1/�.g1/ �J.g1; f1/�. f1/CI. f1; g1/�. f1/�.g1/

�2

�. f1/
�
5�4 � 9�22

�2
=
�
�6 � 6�2�4 C 9�32

� :

(iii) The asymptotic relative efficiency under g1 2 F�1 \ F
e

�
f1

of the unspecified-

location signed-rank test based on T
e
.n/�
f1
. O�#/ with respect to the classical

procedure based on b.n/1 [see (7.2)] is

AREg1.Te
.n/�
f1
. O�#/=b.n/1 /

D
�
K . f1; g1/�J .g1; f1/ �e

. f1; g1/
�2�
�6 � 6�2�4 C 9�32

�

�
K . f1/� 2�e. f1; g1/J . f1/C�e

2. f1; g1/I . f1/
��
5�4 � 9�22

�2 :

Numerical values of those AREs, under Student (6.5, 8, 10, and 20 degrees of
freedom), normal, power-exponential (exponents 2, 3, and 5), and logistic densities
are displayed in Tables 7.1 and 7.2. Those values are quite high, particularly so under
heavy tails (see, for instance, the Student density with 6.5 degrees of freedom). Also,
the AREs of the van der Waerden tests are uniformly larger than or equal to one. The
tests with power-exponential scores, however, are not performing well under Student
and logistic densities. On the other hand, under the power-exponential density with
exponent 2, the classical procedure based on m.n/

3 .�/ has no power at all, yielding
infinite ARE values (the shift in the denominator is zero) in Table 7.1.
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Table 7.1 AREs, under Student (ft6:5 , ft8 , ft10 and ft20 ), normal (�1), power-exponential (fE2 , fE3 ,
fE5 , with exponents 2, 3, and 5), and logistic (fLog) densities, of various signed-rank tests (based on
Student, van der Waerden, power-exponential, and Wilcoxon scores), with respect to the pseudo-
Gaussian test (based on b.n/1 , see Proposition 7.5(ii); first line) and with respect to the classical

test of skewness (based on m.n/
3 , see Proposition 7.5(i); second line), for testing symmetry about a

specified location �

Actual density g1
Score f1 ft6:5 ft8 ft10 ft20 �1 fE2 fE3 fE5 fLog

ft6:5 4:6923 1:8304 1:3556 1:0350 0:9374 0:9593 1:0669 0:9055 1:1843

3:9000 1:8338 1:6019 1:7313 2:3436 1 3:6063 0:3666 1:3948

ft8 4:6848 1:8333 1:3618 1:0462 0:9542 1:0170 1:1670 1:0646 1:1849

3:8938 1:8367 1:6091 1:7501 2:3855 1 3:9446 0:4309 1:3955

ft10 4:6648 1:8308 1:3636 1:0540 0:9679 1:0733 1:2707 1:2459 1:1826

3:8771 1:8342 1:6113 1:7630 2:4197 1 4:2951 0:5044 1:3928

ft20 4:5765 1:8074 1:3543 1:0612 0:9904 1:2008 1:5258 1:7512 1:1670

3:8037 1:8108 1:6003 1:7752 2:4759 1 5:1574 0:7089 1:3745

�1 4:3988 1:7494 1:3199 1:0510 1:0000 1:3402 1:8394 2:4753 1:1304

3:6560 1:7526 1:5596 1:7580 2:5000 1 6:2175 1:0020 1:3313

fE2 2:5240 1:0455 0:8207 0:7145 0:7515 1:7834 3:3911 7:2764 0:6740

2:0978 1:0475 0:9698 1:1952 1:8788 1 11:4624 2:9454 0:7938

fE3 1:3575 0:5802 0:4699 0:4391 0:4988 1:6399 3:6878 9:7508 0:3776

1:1283 0:5812 0:5552 0:7345 1:2470 1 12:4654 3:9471 0:4448

fE5 0:3853 0:1770 0:1541 0:1685 0:2245 1:1766 3:2606 11:0283 0:1208

0:3202 0:1773 0:1820 0:2819 0:5611 1 11:0214 4:4642 0:1423

fLog 4:6839 1:8311 1:3593 1:0439 0:9528 1:0132 1:1739 1:1232 1:1864

3:8930 1:8345 1:6062 1:7462 2:3820 1 3:9680 0:4547 1:3973

Table 7.2 AREs, under Student (ft6:5 , ft8 , ft10 and ft20 ), normal (�1), power-exponential (fE2 , fE3 ,
fE5 , with exponents 2, 3, and 5), and logistic (fLog) densities, of various signed-rank tests (based
on Student, van der Waerden, power-exponential, and Wilcoxon scores), with respect to the
pseudo-Gaussian test [based on b.n/1 , see Proposition 7.5(iii)], for testing symmetry with respect
to unspecified location �

Actual density g1
Score f1 ft6:5 ft8 ft10 ft20 �1 fE2 fE3 fE5 fLog

ft6:5 4:6923 2:7856 1:3628 1:0580 0:9902 1:3769 2:0874 3:7623 1:1853

ft8 4:6915 1:8333 1:3634 1:0591 0:9919 1:3974 2:1401 3:9103 1:1850

ft10 4:6895 2:7846 1:3636 1:0601 0:9938 1:4173 2:1906 4:0506 1:1848

ft20 4:6803 2:7795 1:3623 1:0612 0:9978 1:4627 2:3052 4:3671 1:1839

�1 4:6547 2:7642 1:3558 1:0589 1 1:5129 2:4359 4:7336 1:1799

fE2 4:1723 1:6254 1:2084 0:9448 0:8993 1:7834 3:5036 8:4598 1:0536

fE3 3:7109 1:4365 1:0629 0:8255 0:7833 1:7052 3:6878 10:1646 0:9311

fE5 3:0659 1:1736 0:8610 0:6594 0:6200 1:4453 3:4284 11:0283 0:7591

fLog 4:6878 2:7828 1:3618 1:0585 0:9926 1:3728 2:0678 3:6975 1:1864
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The van der Waerden tests thus appear as a very attractive alternative to the
classical tests—all the more so that their validity does not require the actual density
g to have finite moments of order 6; recall, however, that g1 2Fe

�

f1
(here, F

e
�

�1
) is

still needed in the unspecified-location case.

7.4 Estimation of Cross-Information Quantities

7.4.1 Consistent Estimation of I . f1; g1/ and J . f1; g1/

Implementing the unspecified-location rank-based tests of Sect. 7.3.2 thus requires
consistent estimation of �

e
. f1; g1/, that is, consistent estimation of the cross-

information quantities I . f1; g1/ and J . f1; g1/. The cross-information for
location I . f1; g1/ is a familiar quantity in classical rank-based inference. It
explicitly appears, indeed, in the asymptotic powers of traditional rank and
signed-rank tests for location, and in the asymptotic variance of the corresponding
R-estimators. In a different context (R-estimation of shape), its counterpart also
plays a central role in the construction of one-step R-estimators (Hallin et al. 2006).

Estimating I . f1; g1/, however, is all but straightforward. No empirical version
of this expectation is available, as it involves the unknown score �g1 associated
with the unspecified density g1. Various methods have been proposed for estimating
I . f1; g1/ in connection with R-estimation. Some of them (Lehmann 1963; Sen
1966) involve comparisons of lengths of confidence intervals. Some others (Kraft
and van Eeden (1972); Antille (1974), or Jurečková and Sen (1996, page 321)) rely
on the asymptotic linearity property of rank statistics. More elaborated approaches
involve kernel estimates of g1—hence cannot be expected to perform well under
small and moderate sample sizes. Such kernel methods have been considered, for
Wilcoxon scores, by Schweder (1975) (see also Cheng and Serfling 1981; Bickel
and Ritov 1988; Fan 1991) and, in a more general setting, in Sect. 4.5 of Koul
(2002).

All these methods, however, involve quite arbitrary choices (choice of a confi-
dence level for confidence intervals; choice of an arbitrary O.n�1=2/ perturbation
for the method based on asymptotic linearity; choice of a kernel and a bandwidth
for the estimation of g1). Although they do not affect consistency and asymptotic
efficiency, such choices may have a dramatic impact on finite sample results. As for
kernel methods, they require large sample sizes and are kind of antinomic to the
spirit of rank-based methods: if densities are to be estimated, indeed, using them
all the way by inserting estimated scores into the parametric tests of Cassart et al.
(2011) seems more coherent than considering ranks.

The approach proposed in Hallin et al. (2006) is of an entirely different nature;
the basic idea consists in solving a local linearized likelihood equation. In the
present setting, this estimator of I . f1; g1/ is constructed as follows. Denoting by O�
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andb
 root-n consistent (under P.n/�;
;0Ig1 , g1 2Fe
�
f1

) estimators of � and 
 , respectively
(the median and the median of absolute deviations constitute appropriate choices),
by O�# and b
# their discretized versions, and by�

e
.n/
f1I1I# a discretized version of�

e
.n/
f1I1,

let, for any ˇ > 0,

�
e
.n/� .ˇ/ WD O�# C n�1=2ˇb
2#�e

.n/
f1I1I#. O�#/: (7.12)

Choosing a further arbitrary discretization constant c > 0, put ˇ` WD `=c, ` 2 N,
and define

ˇ�
1 WD minfˇ` j�e

.n/
f1I1I#. �e

.n/
� .ˇ`C1//�e

.n/
f1I1I#. O�#/ < 0g; ˇC

1 WD ˇ�
1 C

1

c
;

and

ˇ�
1 WD ˇ�

1 C
1

c

�
e
.n/
f1I1I#. �e

.n/� .ˇ�
1 //

�
e
.n/
f1I1I#. �e

.n/� .ˇ�
1 //��e

.n/
f1I1I#. �e

.n/� .ˇC
1 //

:

Then,

I .n/. f1/ WD .ˇ�
1 /

�1 D I . f1; g1/C oP.1/

under P.n/�;
;0Ig1 , g1 2 F
e

�
f1

, as n!1. Moreover, �
e
.n/
f1
WD �
e
.n/
� .ˇ�

1 / is an efficient
(at P.n/�;
;0If1—efficiency here is in the parametric sense) R-estimator of � . A proof
for this can be obtained by parallelling that of Sect. 4.2 in Hallin et al. (2006). The
same claim, however, also follows from a more general result by Cassart et al. (2010)
which we also need for the estimation of J . f1; g1/.

The estimation method just described for I . f1; g1/ indeed does not apply to
J . f1; g1/ which, contrary to I . f1; g1/, is not associated with any optimal one-
step R-estimation procedure (it does not follow as a coefficient of the covariance,
under P.n/�;
;0Ig1 , of any component �

e
.n/
f1I`.###/ of the rank-based version of the central

sequence with the corresponding component �.n/
g1I`.###/ of ���.n/

g1 .###/). Fortunately,

Proposition 2.1 of Cassart et al. (2010) applies, yielding the desired estimator.
That proposition requires the existence of a rank-based statistic S

e
.n/.�/ satisfying,

under P.n/�;
;0Ig1 and for all 
 , the following two conditions (Assumption (A) of

Cassart et al. 2010).

(D1) The sequence S
e
.n/.�/, n 2 N is tight and bounded away from zero, that is, for

all " > 0, there exist ı", M" and N" such that, for all n > N",

P.n/�;
;0Ig1 Œı" � jSe
.n/.�/j � M"� � 1 � ": (7.13)
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(D2) For any � , there exists � .�/ ¤ 0 such that, for any bounded sequence t.n/,

S
e
.n/.� C n�1=2t.n// D S

e
.n/.�/ � t.n/J .g/� �1.�/C oP.1/ as n!1,

(7.14)
where the mapping � 7! � .�/ is continuous.

In the present context, we propose

S
e
.n/.�/ WD S

e
.n/
f1
.�/ WD n�1=2

nX

iD1
s.n/i .�/�f1

�
F�1
1C
�R.n/C;i.�/

nC 1
���

F�1
1C
�R.n/C;i.�/

nC 1
��2

:

It follows from the classical Hájek results for linear signed-rank statistics (see, e.g.,
Chapter 3 of Puri and Sen 1985) that S

e
.n/
f1
.�/ is asymptotically centered normal,

so that (7.13) is satisfied, while (7.14) holds, in view of asymptotic linearity, for
g1 2Fe

�
f1

, with � .�/ D 
J �1. f1; g1/.
As in the estimation of I . f1; g1/, root-n consistent preliminary estimators
O� and b
 of � and 
 are required as well; O� moreover should be such that
(Assumption (B) of Cassart et al. 2010), under P.n/�;
;0Ig1 and for all 
 , S

e
.n/
f1
. O�/ is

not oP.1/—a condition which is trivially satisfied by the empirical median. All
assumptions of Proposition 2.1 of Cassart et al. (2010) then hold, which entails
the desired consistency of the estimator we now describe.

Proceeding as in (7.12) above, let (with the usual discretized versions O�# andb
#)

�
e
.n/
��.ˇ/ WD O�# C n�1=2ˇb
# S

e
.n/
f1I#. O�#/;

ˇ�
2 WD minfˇ` jSe

.n/
f1I#. �e

.n/
��.ˇ`C1//S

e
.n/
f1I#. O�#/ < 0g; and ˇC

2 WD ˇ�
2 C

1

c
:

Defining

ˇ�
2 WD ˇ�

2 C
1

c

S
e
.n/
f1I#. �e

.n/��.ˇ�
2 //

S
e
.n/
f1I#. �e

.n/��.ˇ�
2 //� S

e
.n/
f1I#. �e

.n/��.ˇC
2 //

;

the estimator J .n/. f1/ WD .ˇ�
2 /

�1 then is such that

J .n/. f1/ DJ . f1; g1/C oP.1/ under P.n/�;
;0Ig1 ; g1 2Fe
�
f1
; as n!1,

as desired.
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7.4.2 Practical Implementation

As usual, all discretizations in the construction of I .n/. f1/ and J .n/. f1/ are
required for the purpose of asymptotic statements, but can be dispensed with
in applications, where n remains fixed. The practical versions of I .n/. f1/ and
J .n/. f1/ therefore are

I .n/. f1/ WD .ˇ�
1 /

�1 and J .n/. f1/ WD .ˇ�
2 /

�1;

respectively, where

ˇ�
1 WD inf

�
ˇ > 0 j�

e
.n/
f1I1. O� C n�1=2ˇb
2�

e
.n/
f1I1. O�//�e

.n/
f1I1. O�/ � 0

�

and

ˇ�
2 WD inf

�
ˇ > 0 jS

e
.n/
f1
. O� C n�1=2ˇb
 S

e
.n/
f1
. O�//S

e
.n/
f1
. O�/ � 0

�
;

and follow from adopting “large” values of the discretizing constants (or, letting c
tend to infinity). The ratio J .n/. f1/=I .n/. f1/ then provides the estimator�

e
.n/. f1I �/

of �
e
. f1; g1/ required in the definition (7.11) of the test statistic of Proposition 7.4.
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Chapter 8
Generalized MM-Tests for Symmetry

Jue Wang and David E. Tyler

Abstract Comparing the sample mean to the sample median gives rise to a test
of univariate symmetry commonly referred to as the MM-test of symmetry. The
general idea underlying this test is that the mean and median are equal at symmetric
distributions, but not necessarily so at asymmetric distributions. In this paper, we
study properties of a more general form of the MM-test of symmetry based upon the
comparison of any two location estimators, and in particular upon the comparison
of two different M-estimators of location. For these generalized MM-tests of
symmetry, the asymptotic null distribution is obtained as well as the asymptotic
distribution under local alternatives to symmetry. The local power functions help
provide guidelines for choosing good members within the class of MM-tests of
symmetry, e.g. in choosing good tuning constants for the M-estimators of location.
A study of the local power also shows the advantages of the MM-test relative to
other tests of symmetry. The results of the paper are shown to readily extend to
testing the symmetry of the error term in a linear model.

Keywords Contiguity • Local power • M-estimates of location • Mixture
models • Skew-symmetry

8.1 Introduction

In studying the properties of robust estimators of univariate location, a common
assumption is that the data arises from a symmetric distribution. If the data arises
from an asymmetric distribution, then different location statistics are estimating
different population parameters. For example, the sample mean and the sample
median estimate the population mean and population median respectively, which
under asymmetric distributions are not necessarily the same. In this paper, we
consider various local alternatives to symmetric distributions, including local
mixture models and local skew symmetric models. Under these local alternatives,
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we first give the asymptotic distributions of robust location statistics in general, and
the M-estimators of location in particular.

The main focus of this paper, though, is on the behavior of the difference between
two location statistics. The standardized difference between two location statistics
can be viewed as a general measure of skewness as well as a test statistic for testing
the symmetry of the underlying distribution. The concept of skewness and tests for
symmetry have long histories in the statistical literature, beginning with different
measures on how to quantify skewness. Some of the earliest proposed measures of
skewness are .� � M/=
 (Pearson 1895), .Q0:75 C Q0:25 � 2Q0:5/=.Q0:75 � Q0:25/

(Bowley 1901), the classical measure of skewness EŒ.X � �/3�=
3 (Edgeworth
1904; Charlier 1905), and .� � Q0:5/=
 (Yule 1911). Here, the notation �, M,
and 
2 represent the mean, mode, and variance, respectively, of a random variable
X 	 F, and Qp represents the .p � 100/th percentile of F. Note that except for the
classical measure of skewness, these early measures of skewness correspond to a
standardized difference between two location parameters. Other proposed measures
of skewness also have this interpretation. For example, for p 2 .0; 1=2/, David
and Johnson (1954) suggested the following generalization of Bowley’s coefficient
Bp.F/ D .Q1�p C Qp � 2Q0:5/=.Q1�p � Qp/:

Bowley’s coefficient and its generalization Bp.F/ represent standardized dif-
ferences between two different L-estimators of location, namely .Q1�p C Qp/=2

and the median Q0:5, whereas Yule’s coefficient can be viewed as the standardized
difference between the two extremes of the Huber-type M-estimators, namely the
mean and the median. A test for symmetry based on Yule’s coefficient is sometimes
referred to as the MM-test or mean minus the median test for symmetry, see, e.g.,
Hettmansperger et al. (2002). Since the mean and median may not necessarily be the
two best M-estimators to compare in trying to detect asymmetry, our main goal in
this paper is to generalize this test to those based upon the comparison of any two M-
estimators of location. We refer to these tests as generalized MM-tests for symmetry
and subsequently derive their asymptotic distributions under symmetry, as well as
their local power function under the local alternatives to symmetry. The local power
function provides a guideline for choosing good members within a proposed class of
generalized MM-tests. For example, in using two different Huber-type M-estimators
of location based on different tuning constants, one can find values for the two
tuning constant which have good local power against a broad class of asymmetric
distributions.

Tests based on the comparison of different M-estimators of location can be
expressed in a number of asymptotically equivalent forms. For example, they are
shown to be asymptotically equivalent under both the null and the local alternatives
to tests based on evaluating the objective function of one of the M-estimators at
the value of the other M-estimator, as well as to tests based on evaluating the M-
estimating equation of one of the M-estimators at the value of the other. It is also
shown that the test statistic based on the difference between a one step reweighted
M-estimator of location and the initial estimator of location is asymptotically
equivalent to the test statistic based on the difference between the fully iterated
M-estimator and the initial estimator, even though it is well known that the one
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step reweighted M-estimator is not asymptotically equivalent to the fully iterated
M-estimator.

Aside from comparing the proposed tests with each other, we also compare the
tests to a test for symmetry proposed by Hettmansperger et al. (2002, 2003), which
is essentially based on the comparison of two different R-estimators of location. We
choose to make this comparison since Hettmansperger et al. (2002, 2003) compare
their test to other tests of symmetry and show that it had a superior performance in
the comparisons. Due to the ability to easily tune the M-estimators, generalized
MM-tests can be constructed which significantly outperform the other tests for
symmetry.

The paper is organized as follows. Section 8.2 presents a brief review of the
M-estimators of location and their asymptotic distributions under symmetry. In
Sect. 8.3 we introduce the classes of local alternatives considered in this paper
and derive the asymptotic distributions of the M-estimators under these locally
asymmetric distributions. The generalized MM-tests for symmetry are introduced
in Sect. 8.4 and their asymptotic distributions are derived under the null and the
local alternatives. A comparison of the local power functions within classes of
generalized MM-tests is given in Sect. 8.5. This allows us to make recommendation
for the proper tuning of the M-estimators used in the tests. In Sect. 8.6 we compare
the local power of the generalized MM-tests to the test proposed in Hettmansperger
et al. (2002, 2003). Some extensions for testing symmetry in the regression setting
are discussed in Sect. 8.7.

8.2 M-Estimators of Location

The concept of M-estimation was first introduced by Huber (1964) as a gener-
alization of maximum likelihood estimation. In particular, the M-estimators of
location are generalization of the maximum likelihood estimators for the center of a
symmetric distribution. For a sample of size n, say X1; : : : ;Xn, one way to define
an M-estimator of location is as the value of � which minimizes the objective
function

Pn
iD1 	.Xi � �/, where 	.r/ is an even non-negative function which is

non-decreasing in jrj. If the sample represents a random sample from a continuous
distribution with density f .x � �/, where f is unimodal and symmetric, then the
maximum likelihood estimator of � corresponds to choosing 	.r/ D � logff .r/g.
Another way to define an M-estimator of location is as a solution to the M-estimating
equation

Pn
iD1  .Xi � �/ D 0, with  being an odd function. If  .r/ D 	0.r/,

then a root of the M-estimating equation corresponds to a critical point of the
corresponding objective function.

One drawback to the above definition for the M-estimators of location is that
although the resulting statistics are translation equivariant, as well as equivariant
under multiplication of the data by �1, they are not necessarily scale equivariant.
Consequently, one usually considers the M-estimators of location with auxiliary
scale, see, e.g., Huber and Ronchetti (2009). These are generally defined either via
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an objective function, i.e.

TM.Fn/ D arg max
�

nX

iD1
	

�
Xi � �
S.Fn/

	
; (8.1)

where 	.r/ is an even function, or as a solution TM.Fn/ to the M-estimating equation

nX

iD1
 

�
Xi � TM.Fn/

S.Fn/

	
D 0; (8.2)

where  .r/ is an odd function. Here, Fn refers to the empirical distribution of
X1; : : : ;Xn, and S.Fn/ is an auxiliary scale statistic. An alternative expression for
the M-estimating equation for location is an adaptively weighted mean, i.e.

TM.Fn/ D
Pn

iD1 u.Ri/XiPn
iD1 u.Ri/

; (8.3)

with Ri D fXi�T.Fn/g=S.Fn/ and the weight function u.r/ satisfying .r/ / ru.r/.
By a scale statistic, we mean any non-negative statistics which is translation

invariant and scale equivariant. The resulting M-estimator is then translation and
scale equivariant. That is, if we let x�

i D a xi C b for i D 1; : : : ; n and let
F�

n denote the empirical distribution of x�
1 ; : : : ; x

�
n , then S.F�

n / D jajS.Fn/ and
TM.F�

n / D a TM.Fn/ C b. Hereafter, by a location statistic in general we mean
any statistics T.Fn/ which is translation and scale equivariant.

The most common choice for a robust scale statistic is S.Fn/ D 1:4826 �MAD,
where MAD refers to the median absolute deviation from the median. The factor
1:4826 is included so that S.Fn/ is a consistent estimator of the standard deviation
when random sampling from a normal distribution. In this paper, S.Fn/ is taken to
be any scale statistic, which may be obtained either prior to obtaining TM.Fn/, i.e. a
preliminary scale statistic such as 1:4826MAD, or simultaneously with TM.Fn/,
e.g. as in the simultaneous M-estimators of location and scale. We adopt the
usual convention, though, that the scale statistic is normalized so that S.Fn/ is a
consistent estimator of the standard deviation when random sampling from a normal
distribution. The only role S.Fn/ plays in this paper is through its limiting value
under random sampling, which, for non-normal distributions, will not necessarily
correspond to the standard deviation.

Given a random sample X1; : : : ;Xn from a distribution F, a statistic T.Fn/

estimates in general its functional version T.F/. Under certain regularity conditions,
the difference between T.Fn/ and T.F/ is

p
n fT.Fn/ � T.F/g D 1p

n

nX

iD1
IF.XiIT;F/C op.1/; (8.4)
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see, e.g., Huber and Ronchetti (2009). The influence function of T at F is defined
as IF.xIT;F/ D lim�!0CfT.F�/ � T.F/g=�, where F� D .1 � �/F C �ıx with ıx

representing the point mass distribution at x. Since EFfIF.XIT;F/g D 0, this yields
the asymptotic normality result

p
n fT.Fn/ � T.F/g �! Normal

�
0; �2.T;F/

�
(8.5)

in distribution, where �2.T;F/ D EF
˚
IF2.XIT;F/�.

Asymptotic normality (8.5) is known to hold for M-estimators of location under
general regularity conditions, see, e.g., Huber and Ronchetti (2009) or Maronna
et al. (2006). Suppose now that the distribution F is symmetric about some point �
and T.Fn/ is a location statistic, then T.F/ D � provided T.F/ exists. Furthermore,
for an M-estimator of location, its influence function has the simple form

IF.xITM;F/ D S.F/  f.x � �/=S.F/g
EF Œ 0 f.X � �/=S.F/g� ; (8.6)

see, e.g., Huber and Ronchetti (2009) or Maronna et al. (2006). Consequently the
limiting variance of

p
n fTM.Fn/ � �g is

�2.TM;F/ D S2.F/ EF

 2 f.X � �/=S.F/g�

E2F Œ 
0 f.X � �/=S.F/g� : (8.7)

Note that � does not correspond to the mean if the first moment of F does not exist.
Solutions to the M-estimating equations for location (8.2) are commonly found

using either a Newton–Raphson approach or an iterative reweighted least squares
approach, see, e.g., Huber and Ronchetti (2009). Rather than doing a full iteration
of these algorithms, other location statistics can be defined by simply using one step
of the algorithm based upon an initial location statistic such as the sample median.
This yields the one step Newton–Raphson M-estimator

TM1.Fn/ D To.Fn/C S.Fn/

Pn
iD1  .Ro;i/Pn
iD1  0 .Ro;i/

; (8.8)

where Ro;i D fXi � To.Fn/g=S.Fn/, with To.Fn/ being the initial location statistic.
Similarly, the one step reweighted M-estimator is defined as

TW1.Fn/ D
Pn

iD1 u.Ro;i/XiPn
iD1 u.Ro;i/

: (8.9)

Under symmetry and certain regularity conditions, the one step Newton–Raphson
M-estimator is known to be asymptotically equivalent to the fully iterated M-
estimator TM.Fn/ associated with the same -function, see, e.g., Bickel (1975). That
is, the influence function for TM1 is also given by (8.6) and the limiting variance for



138 J. Wang and D.E. Tyler

p
n fTM1.Fn/� �g is also given by (8.7). Moreover,

TM1.Fn/ � TM.Fn/ D op.n
�1=2/: (8.10)

The one step reweighted M-estimator, however, is not asymptotically equivalent to
TM.Fn/. Rather, the influence function and asymptotic variance associated with TW1

depend upon the choice of the initial location statistic To.Fn/, see, e.g., Lopuhaä
(1999). In particular, the influence function of TW1 is a linear combination of the
influence functions of TM and To, namely

IF.xITW1;F/ D .1� �/ IF.xITM ;F/C � IF.xITo;F/; (8.11)

where � D EFfu0.X/Xg=EFfu.X/g: If  .r/ D ru.r/ is monotonic, then 0 < � < 1,
and so (8.11) represents a convex combination of the two influence functions.

8.3 Locally Asymmetric Distributions

If the distribution is not symmetric, then the influence function and the asymptotic
distribution of the M-estimators are more complicated and depend upon the
influence function and asymptotic distribution of the scale statistics S.F/, see, e.g.,
Huber and Ronchetti (2009) and Maronna et al. (2006). In this section, though, we
note that under local alternatives to symmetry they can have a relatively simple
form. The following sequences of local alternatives considered here are:

Ma;n W Local Contamination: F.xI n/ D .1 � �n/F.x/C �nG.x/; �n D �=pn;

Mb;n W Local Mixture: F.xI n/ D .1 � �/G1.x/C � G2.x � �n/; �n D �=pn;

Mc;n W Local Skew-Symmetry: f .xI n/ D 2f .x/Gof�n.x � �/g; �n D �=pn; and

Md;n W Local Asymmetry: f .xI n/ D f .x/IŒx��� C ��1
n f .x=�n/ IŒx>��; �n D 1C ˇ=pn;

where F.xI n/ and f .xI n/, respectively, refer to the distribution and density function
of the model. The distribution F is assumed to be symmetric about some point
�, while the distribution G can be any distribution other than one which is also
symmetric about �. The distributions G1 and G2 are both assumed to be symmetric
about some point �, and the distribution Go is assumed to be symmetric about zero.
Finally, the density f is assumed to be symmetric about some point�. For absolutely
continuous F, G, G1, G2, and Go, we let f , g, g1, g2, and go represent their respective
densities. Also, the parameters are presumed to satisfy the following constraints:
0 � �n � 1, �1 < �n < 1, �n � 0, and �n > 0. If �n D 0, �n D 0, �n D 0, or
�n D 1, then the corresponding model is symmetric about �.
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Ma;n is commonly used in evaluating the local power for tests of normality or
tests of symmetry, see, e.g., Hettmansperger et al. (2003) and Kankainen et al.
(2007). Mb;n differs from Ma;n in that the contamination proportion does not go
to zero as n ! 1. Rather, the contaminated distribution F.xI n/ approaches the
symmetric mixture distribution F.x/ D .1��/G1.x/C�G2.x/, which for the special
case G1 D G2 gives F.x/ D G1.x/. Mc;n and Md;n correspond to other ways of
modeling asymmetry. Although the exact definition of skew-symmetric distributions
has yet to be unified (see Genton 2004), the class of skew-symmetric distributions
used in Mc;n correspond to some of the earlier proposed forms (see Azzalini 1985).
The asymmetric Md;n was used by Gupta (1967) to study the power of a test of
symmetry based on the classical skewness measure. In addition, Cassart et al. (2008)
have developed optimal tests for detecting asymmetry against the local model Md;n,
and they note that this model dates back to at least Fechner (1897). For any of the
above models, letting n!1 yields a distribution F which is symmetric about �.

Let P1;n denote the joint distribution of X1; : : : ;Xn when they are i.i.d. X, with X
having a distribution which follows one of the four local asymmetric models Ma;n,
Mb;n, Mc;n, or Md;n. Also, let Po;n denote this joint distribution when �n D 0,
�n D 0, �n D 0, and �n D 1, respectively. Thus, Po;n corresponds to the joint
distribution of a random sample from a distribution which is symmetric about �,
namely F. The asymptotic distribution of a location statistic under the sequence
Po;n has already been discussed in Sect. 8.2. Its asymptotic distribution under the
sequence P1;n follows from Theorem 8.1 below. The theorem applies to any statistic
T.Fn/ and not simply to location statistics. The proof of the theorem and the
preceding lemma follow from applications of Le Cam’s well-known lemmas on
contiguity, see, e.g., Hájek et al. (1967), and are omitted here. Proofs for the different
cases can be found in Wang (2008).

Lemma 8.1 P1;n is contiguous to Po;n under Ma;n, under Mb;n provided g2 has a
continuous second derivative, under Mc;n provided g is continuously differentiable
and g0

o.0/ D 0, and under Md;n provided f has a continuous second derivative.

Theorem 8.1 If under Po;n the statistic T.Fn/ satisfies condition (8.4), and the local
alternatives Ma;n, Mb;n, Mc;n, and Md;n satisfy the corresponding conditions in
Lemma 8.1, then under the sequence P1;n,

p
nfT.Fn/� T.F/g �! Normal

�
�.T;F/; �2.T;F/

�

in distribution, where �2.T;F/ is defined as in (8.5). The value of �.T;F/ depends
on the particular model Ma;n, Mb;n, Mc;n, or Md;n. These are, respectively,

�a.T;F/ D � EGfIF.XIT;F/g;
�b.T;F/ D ���

R 1�1 IF.xIT;F/ g0
2.x/ dx;

�c.T;F/ D 2�go.0/ EFfX � IF.XIT;F/g; and

�d.T;F/ D �ˇ EF
�
IF.XIT;F/ f1C .X � �/f 0.X/=f .X/g IŒX>��

�
:
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Using integration by parts, it can be shown that for the special case G1 D G2 in
model Mb;n, one always obtain �B.T;F/ D �� .

For location statistics, the values of �2.T;F/ and �.T;F/ in Theorem 8.1 do
not depend upon �. The values of the asymptotic local biases for the M-estimators
of location TM.Fn/ follow by using (8.6) to evaluate the expressions given in
Theorem 8.1. Letting Z D .X � �/=S.F/, this gives

�a.TM;F/ D �S.F/ EGf .Z/g=EFf 0.Z/g;
�b.TM;F/ D �� EG2f 0.Z/g=EFf 0.Z/g;
�c.TM ;F/ D 2�go.0/ EFfZ �  .Z/g=EFf 0.Z/g; and

�d.TM;F/ D �ˇS.F/EF
�
 .Z/f1C S.F/Zf 0.X/=f .X/g IŒZ>0�

�
=EFf 0.Z/g:

A one step Newton–Raphson M-estimator of location TM1.Fn/ has the same value
of �2.T;F/, �a.T;F/, �b.T;F/, �c.T;F/, and �d.T;F/ as the corresponding M-
estimator TM.Fn/.

8.4 Generalized MM-Tests for Symmetry

If two different location statistics T1.Fn/ and T2.Fn/ both possess the expan-
sion (8.4), then their difference TD.Fn/ D T1.Fn/ � T2.Fn/ also possesses this
expansion with

IF.xITD;F/ D IF.xIT1;F/� IF.xIT2;F/:

Consequently, the asymptotic normality result (8.5) also holds for TD. We presume
that �2.TD;F/ > 0. Since T1.F/ D T2.F/ for any symmetric distribution F, the
rejection region for a general asymptotic ˛-level test for symmetry is given by

�2.T1;T2/ D n T2D.Fn/

O� 2.TD;F/
> �21;˛; (8.12)

where �21;˛ is the 1� ˛ quantile of a �21 distribution, and O� 2.TD;F/ is some weakly
consistent estimator of �2.TD;F/. Note that neither the exact distribution of TD.Fn/

under symmetry nor the value �2.TD;F/ depend on the center of symmetric �.
Since Theorem 8.1 applies to any statistic, it can be applied to TD to obtain local

power functions for the test (8.12). For any two location statistics satisfying (8.4),
under the sequence P1;n for any of the models Ma;n, Mb;n, Mc;n, or Md;n, we have

�2.T1;T2/ �! �21
˚
ı2.TD;F/

�
; (8.13)
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in distribution, where ı.TD;F/ D �.TD;F/=�.TD;F/. Here �21.ı
2/ refers to a non-

central �1 distribution with non-centrality parameter ı2. Note that �.TD;F/ D
�.T1;F/��.T2;F/. The expressions for �a, �b, �c, and �d are given in Theorem 8.1.

The test (8.12) gives an asymptotic ˛-level test over the class of symmetric
distributions F for which (8.5) holds for TD and O� 2.TD;F/ consistently estimates
�2.TD;F/. For example, consider the mean versus the median, i.e. when T1.F/ D
EF.X/ and T2.F/ D F�1.1=2/. For this case, F must possess second moments,
and f .�/ > 0. The corresponding value of �2.TD;F/ D VarF.X/ C 1=f2f .�/g2 �
EF.jX � �j/=f .�/; see, e.g., Hettmansperger et al. (2003). This can be consistently
estimated by estimating VarF.X/ by the sample variance s2,� by the sample median,
and EF.jX � �j/ by

Pn
iD1 jXi � T2.Fn/j=n, along with using a consistent estimator

of f .�/.
More generally, if we take T1;M.Fn/ and T2;M.Fn/ to be two different M-

estimators of location, then

�2.TD;F/ D
2X

jD1

S2j .F/ EFf 2j .Zj/g
E2Ff 0

j .Zj/g � 2S1.F/S2.F/ EFf 1.Z1/ 2.Z2/g
EFf 0

1.Z1/gEFf 0
2.Z2/g

;

where 1 and 2 are the  -functions associated with T1 and T2, respectively, S1 and
S2 are the corresponding scale functionals, and Zj D .X � �/=Sj.F/ for j D 1; 2.
For smooth  -functions, the value of �2.TD;F/ can be consistently estimated by
replacing S1.F/ and S2.F/ with S1.Fn/ and S2.Fn/, respectively, replacing � with
any consistent estimator of the center of symmetry, say either T1;M.Fn/ or T2;M.Fn/

or their average, and by replacing the terms involving EF with their empirical
averages. For example, one can consistently estimate EFf 1.Z1/ 2.Z2/g by

1

n

nX

iD1
 1

�
Xi � T1.Fn/

S1.Fn/

	
 2

�
Xi � T2.Fn/

S2.Fn/

	
:

For smooth and bounded  -functions, the corresponding asymptotic test (8.12) is
valid for any absolutely continuous and symmetric F for which T1.F/ and T2.F/
are uniquely defined. Uniqueness always holds if in addition the  -functions are
monotone, see, e.g., Huber and Ronchetti (2009).

The test based upon two different M-estimators of location can be expressed in a
number of asymptotically equivalent forms. For example, rather than computing
two M-estimators, one can use their one step Newton–Raphson versions based
upon an easily computed initial location statistic. It follows from (8.10) that under
either Po;n or P1;n, �2.T1;M;T2;M/

a	 �2.T1;M1;T2;M1/. Here Yn
a	 Wn means

Yn � Wn ! 0 in probability. Also, although the one step reweighted M-estimator
is not asymptotically equivalent to the fully iterated M-estimator, if To D T1;M is
used as the initial location statistic in the reweighted estimator T2;W1, then it follows
from (8.11) that �2.T1;M ;T2;M/

a	 �2.T1;M;T2;W1/ under Po;n or P1;n.
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Another intuitive approach for detecting asymmetry based upon the idea of M-
estimation is to consider the value of the objective function associated with one of
the M-estimators when evaluated at the other M-estimator, that is to consider

D1.T1;M;T2;M/ D
nX

iD1
	1

�
Xi � T2;M.Fn/

S1.Fn/

	
�

nX

iD1
	1

�
Xi � T1;M.Fn/

S1.Fn/

	
:

Note, by definition (8.1), the second summation is the minimum possible value
and so D1.T1;M ;T2;M/ � 0. A similar approach based upon plugging the value of
an R-estimator of location into an objective function which yields a signed-rank
estimator of location has been studied by Hettmansperger et al. (2002, 2003). Rather
than consider the objective function, one could also consider the value of the M-
estimating equation evaluated at some other M-estimator of location, i.e.

�1.T2;M/ D
nX

iD1
 1

�
Xi � T2;M.Fn/

S1.Fn/

	
:

By definition (8.2), �1.T1;M/ D 0. It turns out though that tests based upon
D1.T1;M;T2;M/ or �1.T2;M/ are asymptotically equivalent to �2.T1;M;T2;M/. This
follows from the following expansions, under symmetric F,

D1.T1;M;T2;M/ D fT1;M.Fn/� T2;M.Fn/g2
2S21.Fn/

Rn C op.1/; and (8.14)

�1.T2;M/ D fT1;M.Fn/ � T2;M.Fn/g
S1.Fn/

Rn C op.1/; (8.15)

where Rn DPn
iD1  0

1 .fXi � T1;M.Fn/g=S1.Fn//. Consequently, under either Po;n or
P1;n,

�2.T1;M;T2;M/
a	 2nS21.Fn/D.T1;M;T2;M/

O� 2.TD;F/Rn

a	 nS21.Fn/�
2
1 .T2;M/

O� 2.TD;F/R2n
: (8.16)

Remark 8.1 It is known that the information matrix for the location and skewness
parameters, say � and � respectively, in a skewed normal distribution is singular at
� D 0 (see Azzalini 1985). Consequently, the local power of the likelihood ratio test
for testing � D 0, i.e. under the sequence Mc;n when f .x/ D �.x � �/ and Go D ˚
with � and ˚ being the density and distribution function of the standard normal
distribution respectively, is the same as the nominal significance level. This is also
true for the test of symmetry given by (8.12) when using two different M-estimators
of location, since, in this case, the non-centrality parameter in (8.13) equals zero.
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This can be shown by first observing that under normality

EFf 0.Z/g D @
@a

R1
�1  .zC a/�.z/ dz

ˇ̌
aD0 D @

@a

R1
�1  .z/�.z � a/ dz

ˇ̌
aD0

D R1
�1.z � a/ .z/�.z � a/ dz

ˇ̌
aD0 : D EFfZ �  .Z/g

(8.17)

Hence, �c.TM;F/ D 2�go.0/, which does not depend on the particular choice of
the M-estimator, and consequently ı2.TD;F/ D 0. We conjecture that, for this case,
�c.T;F/ D 2�go.0/ for any location function, but have not formally proven this.
Note that the result ı2.TD;F/ D 0 does not depend on Go D ˚ . For other skewed
distributions, though, i.e. when F is not normal, the non-centrality parameter is not
zero in general, since (8.17) is specific to the normal distribution.

8.5 Tuning the Generalized MM-Tests

One advantage of using M-estimators of location over other location estimators is
that they can be easily tuned while maintaining a breakdown point of 1=2. This is not
the case for L-estimates and R-estimates of location. To demonstrate the tuning of
the generalized MM-tests for symmetry, we consider the behavior of the tests based
on the comparison of two Huber M-estimates of location with two different tuning
constants under the local mixture model Mb;n. The Huber M-estimates correspond
to letting  in (8.2) be

 k.r/ / maxf�1; min.r=k; 1/g; (8.18)

where k > 0 is a tuning constant. As k ! 0, Huber’s M-estimator approaches the
sample median, and as k ! 1 it approaches the sample mean. If we let G1 D G2

in model Mb;n, then, as noted after Theorem 8.1, the value of ı.TDIF/ in (8.13)
is always zero. Consequently, we consider the case where G2 represents a scaled
version of G1, i.e. G2.x/ D G1.x=b/. Figure 8.1 shows the limiting asymptotic
efficiencies as b ! 1 of the Huber MM-tests, using tuning constants k1 and k2,
relative to the mean versus the median test. Here, the asymptotic relative efficiencies
correspond to the ratios of the corresponding values of ı2.TDIF/ given in (8.13). The
left figure corresponds to a normal location mixture with G1 being Normal.�; 
2/,
while the right figure corresponds to a mixture of location-scale t3 distributions with
G1 now having a t3.�; 
/ distribution. The asymptotic relative efficiencies do not
depend on �; 
 or � .

The axes in Fig. 8.1 correspond to c1 D fS1.F/=
gk1 and c2 D fS2.F/=
gk2 with
S1.F/ and S2.F/ being the scale functionals used in the corresponding definitions of
the location M-estimators. The case c1 D c2 is excluded since it corresponds to
�2.TD;F/ D 0. In particular, if S1.F/ D S2.F/ and k1 D k2, the two M-estimators
of location are the same. One might anticipate that the relative efficiency of the
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Fig. 8.1 Asymptotic efficiency under the local mixture model Mb;n of the generalized MM-test
based on the difference of two Huber location estimators relative to the test based on the difference
between the mean and the median, for the normal distribution (left) and the t3 distribution (right)

generalized MM-test for symmetry would approach zero as the two estimators used
in the test approach each other. However, this is not the case since it can be noted that
the limiting values along the line c1 D c2 are positive. It is interesting to note that
even when c1 and c2 are extremely close to each other, for example when both are
approximately two, the asymptotic efficiency of the corresponding generalized MM-
test can be better than the mean versus median test. This phenomena is discussed
further at the end of Sect. 8.6.

When F is normal, then by convention we have S1.F/=
 D S2.F/=
 D 1, and
so c1 D k1 and c2 D k2. From Fig. 8.1, it can be noted that for the normal mixture
model, the most powerful tests in this class correspond to choosing k1 D 1, the
mean, and k2 to be approximately 1:5 rather than k2 D 0, the median. Such a choice
gives a test which is more than three times as efficient as the mean versus the median
test. For the longer tailed t3 mixture model, rather than using the mean and median,
it is best to choose c1 to be approximately 2:5 and c2 to be approximately 0:75. The
corresponding values of k1 and k2 then depend on the scale functional used. If we
take S1 D S2 D S to be the standard deviation, then S.F/=
 D 1:732, whereas if
we choose S1 D S2 D S to be 1:4826 �MAD, then S.F/=
 D 1:134. When using
the latter scale, choosing k1 D 2:5 and k3 D 1 gives a good asymptotic efficiency at
either the normal or the t3 mixture models.

8.6 Comparisons with Other Tests of Symmetry

As previously noted, other robust procedures for testing symmetry have been
proposed by Hettmansperger et al. (2002, 2003). In particular, within the context
of testing the symmetry of the residual distribution in a linear model, they proposed
a test based on the discrepancy of two robust rank-based fits, one being appropriate
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for symmetric errors and the other for either symmetric and asymmetric errors.
This test, denoted HC�2 , can also be applied in testing univariate symmetry. In
Monte Carlo studies, Hettmansperger et al. (2002) show that this test outperformed
many other tests of univariate symmetry, including some robust tests of symmetry
proposed by Eubank et al. (1987, 1992). Furthermore, Hettmansperger et al. (2003)
show the limiting distribution of HC�2 under the local contamination modelMa;n is a
non-central chi-square on one degree of freedom, and they give numerical results for
the asymptotic efficiency of the HC�2-test relative to the mean minus the median test.
The numerical results are under Ma;n with F.x/ D ˚.x/, the distribution function of
a standard normal random variable, and with G.x/ D &˚.x�R/C .1�&/˚.x�L/.
For � D 0:2, & D 0:95, and R D 1, the asymptotic relative efficiencies are reported
to be 0:9, 2:12, and 1:3 � 105, respectively, for L D �2;�3, and �4; see Table 1 of
Hettmansperger et al. (2003).

Here we extend the aforementioned numerical results to obtain a comparison
of the generalized MM-tests of symmetry to the HC�2-test. Again we consider two
different Huber M-estimators of location for the generalized MM-test with tuning
constants k1 and k2. Figure 8.2 shows the asymptotic efficiencies of the generalized
MM-tests relative to the HC�2 -test for the cases with L D �2;�3, and �4 as
described above. The asymptotic relative efficiency corresponds to the ratio of
the non-centrality parameter associated with the generalized MM-test to the non-
centrality parameters associated with the HC�2 -test. The axes c1 and c2 are defined
as in Fig. 8.1, and since F.x/ D ˚.x/, we again have c1 D k1 and c2 D k2. If we
select k1 D 2:5 and k2 D 1, as suggested in the previous section, the corresponding
MM-test is locally more powerful than the HC�2-test for all three cases L D �2;�3,
and �4 with the asymptotic relative efficiencies being 2:655, 1:969, and 1:575,
respectively.

Note that when both k1 and k2 are large the asymptotic relative efficiencies are
extremely large for the cases L D �3 and L D �4, e.g. when k1 D 5 and k2 D 4 the
respective values are 217:7 and 5; 388:2. Choosing k1 D 5 and k2 D 4, though, is
not recommended since for the case L D �2 the corresponding value is only 0:120.

Fig. 8.2 Asymptotic relative efficiencies of the generalized MM-test based on the difference of
two Huber location estimators relative to the HC�2 -test under local contamination models Ma;n,
when L D �2 (left), L D �3 (middle) and L D �4 (right)
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Also, such a choice has poor asymptotic efficiencies under the settings considered
in Fig. 8.1. Furthermore, there is little difference between two Huber M-estimators
of location with tuning constants k1 D 5 and k2 D 4, and so in practice round-off
error may have a strong affect on the resulting MM-test. For this case, the asymptotic
variance of the difference is quite small, namely � 2.TD; ˚/ D 5:925 �10�6, whereas
the squared bias terms �.TD; ˚/ are relatively large when L D �3 and L D �4,
namely 4:721 � 10�7 and 9:577 � 10�6 respectively.

8.7 Extensions

Multiple Location Estimators None of the MM-tests for symmetry by themselves
are able to detect all forms of asymmetry since it is always possible for two different
location functionals to be equal at some asymmetric distributions. The concept
behind the MM-tests can be extended to the comparison of q > 2 different location
estimators. Here, one can generate an asymptotic �2q�1 test using the asymptotic
multivariate normality of a non-singular set of q � 1 contrasts of the q location
estimators. Again, though, it is also possible for k different location functionals to
be equal at some asymmetric distribution. Alternatively, an entire class of location
estimators can be used to develop graphical methods for detecting asymmetry. For
example, for a univariate data set, one can plot as a function of its tuning parameter
the entire Huber class of location M-estimators of location. The class of Huber
location M-functionals of location, and some other classes have been shown in
Wang and Tyler (2007) to represent “symmetry identifying transformations,” i.e.
the functionals are all equal if and only if the distribution is symmetric. Observing
deviations from a flat line may be visually easier than attempting to observed
asymmetric in a density estimator. Formal asymptotic tests of symmetry based on
the deviation of such a plot from a flat line could also be constructed, and this would
give a universal test against asymmetry. This topic is left for future research.

Regression Estimators One advantage of using M-estimators is that they readily
generalize to other settings, and in particular to the regression setting. Consider the
usual regression model Yi D �CˇTZiC�i, i D 1; : : : ; n, with � and ˇ representing
the intercept and slope parameters respectively, the carriers Zi, i D 1; : : : ; n being a
random sample from some non-singular p-dimensional distribution, say FZ , and the
error terms �i, i D 1; : : : ; n, being a random sample from the error distribution F� ,
with ei;Zi, i D 1; : : : ; n being all mutually independent. The M-estimating equations
for .�; ˇ/ can be expressed as

nX

iD1
 

�
Xi � O�

Sn

	
D 0 and

nX

iD1
 

�
Xi � O�

Sn

	
Zi D 0; (8.19)
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where again  .r/ is an odd function, and Xi D Yi � ǑT Zi. Also, Sn is an auxiliary
estimate of residual scale such that Sn ! S.F�/ in probability, with S.F�/ being
a scale functional for the error distribution F� . Under general conditions, Ǒ is
consistent for ˇ whether or not the distribution of the error term � is symmetric
about zero. The M-estimator O�, though, is not necessarily consistent for the intercept
term � if the error distribution is not symmetric about zero. Thus, as in the
location case, the difference between two M-estimators for the intercept term can
be used to generate a test of symmetry about zero for the error distribution. The
theory for doing so is identical to the theory for the pure location case since the
asymptotic distribution of O� is the same as that obtained by using the left-hand
side of (8.19) alone but with ˇ replacing Ǒ. Consequently, the results obtained
for the M-estimators of location in the previous sections apply directly to the M-
estimators of the intercept term whenever one replaces TM.Fn/, S.Fn/ and F with
O�, Sn and F�C� respectively. In particular, the asymptotic distribution given by (8.5)
and (8.7), Theorem 8.1 and the expressions for �a; �b; �c and �d given at the end of
Sect. 8.3, the test statistic (8.12), its asymptotic distribution (8.13) and its asymptotic
equivalence given by (8.16), as well as Figs. 8.1 and 8.2, all hold.
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Chapter 9
M-Estimators of the Correlation Coefficient
for Bivariate Independent Component
Distributions

Georgy Shevlyakov and Pavel Smirnov

Abstract A few historical remarks on the notion of correlation, as well as a brief
review of robust estimators of the correlation coefficient are given. A family of
M-estimators of the correlation coefficient for bivariate independent component
distributions is proposed. Consistency and asymptotic normality of these estimators
are established, and the explicit expression for their asymptotic variance is obtained.
A minimax variance (in the Huber sense) M-estimator of the correlation coefficient
for "-contaminated bivariate normal distributions is designed. Although the structure
of this new result generally is similar to the former minimax variance M-estimator
of the correlation coefficient proposed by Shevlyakov and Vilchevski (Stat. Probab.
Lett. 57, 91–100, 2002b), the efficiency of this new estimator is considerably greater
than that of the former one as it generalizes the maximum likelihood estimator
of the correlation coefficient of the bivariate normal distribution. Furthermore,
highly efficient and robust estimators of correlation are obtained by applying highly
efficient and robust estimators of scale. Under the "-contaminated bivariate normal,
t- and independent component Cauchy distributions, the proposed robust estimators
dominate over the sample correlation coefficient. The comparative analytical and
Monte Carlo study of various robust estimators confirm the effectiveness of the
proposed M-estimator of the correlation coefficient.
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9.1 Introduction

9.1.1 Historical Remarks on the Notion of Correlation

The term “correlation” was introduced into science by a French naturalist Georges
Cuvier (1769–1832), one of the major figures in natural sciences in the early nine-
teenth century, who had established paleontology and comparative anatomy. The
word “correlation” is of the late Latin origin meaning “association,” “connection,”
“correspondence,” “interdependence,” “relationship.”

Cuvier discovered and studied the relationships between the parts of animals,
between the structure of animals and their mode of existence, between the species
of animals and plants, and many others. This experience made him formulate the
general principles of “the correlation of parts” and of “the functional correlation.”
From Cuvier to Galton, correlation had been understood as a qualitatively described
relationship, not deterministic but of a statistical nature, however observed at that
time within a rather narrow area of phenomena.

Francis Galton (1822–1911), a British anthropologist, biologist, psychologist,
and meteorologist, understood that correlation is the interrelationship in average
between any random variables. Correlation analysis (this term also was coined by
Galton) deals with estimation of the value of correlation by number indexes or
coefficients. Galton contributed much to science studying the problems of heredity
of qualitative and quantitative features. They were numerically examined by Galton
on the basis of the concept of correlation. Until present, the data on demography,
heredity, and sociology collected by Galton with the corresponding numerical
examples of correlations computed are used.

Karl Pearson (1857–1936), a British mathematician, statistician, biologist,
philosopher, had written out the explicit formulas for the population correlation
coefficient

	 D Cov.X;Y/

ŒVar.X/ Var.Y/�1=2
(9.1)

and its sample version (Pearson 1894)

r D
Pn

iD1.xi � Nx/.yi � Ny/
Pn

iD1.xi � Nx/2Pn
iD1.yi � Ny/2

�1=2 (9.2)

(here x and y are the sample means of the observations fxig and fyig of random
variables X and Y). However, Pearson did not definitely distinguish the population
and sample versions of the correlation coefficient, as it is commonly done at present.

On the one hand, the sample correlation coefficient r is a statistical counterpart
of the correlation coefficient 	 of a bivariate distribution, where Var.X/, Var.Y/,
and Cov.X;Y/ are the variances and the covariance of the random variables X and
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Y, respectively. On the other hand, it is an efficient maximum likelihood estimator
of the correlation coefficient 	 of the bivariate normal distribution

N.x; yI�X ; �Y ; 
X ; 
Y ; 	/ D 1

2�
X
Y

p
1 � 	2 exp

�
� 1

2.1� 	2/

�


.x � �X/

2


2X
� 2	 .x � �X/.y � �Y/


X
Y
C .y � �Y /

2


2Y

��
; (9.3)

where �X D E.X/, �Y D E.Y/, 
2X D Var.X/, 
2Y D Var.Y/ (Kendall and Stuart
1963).

Galton (1886) derived the bivariate normal distribution density (9.3), and he was
the first who used it to scatter the frequencies of children’s stature and parents’
stature. Pearson noted that “in 1885 Galton had completed the theory of bi-variate
normal correlation” (Pearson 1920, p. 37). Like Galton, Auguste Bravais (1846), a
French naval officer and astronomer, came very near to formula (9.1) when he called
one parameter of the bivariate normal distribution “une correlation,” but he did
not recognize it as a measure of the interrelationship between variables. However,
“his work in Pearson’s hands proved useful in framing formal approaches in those
areas” (Stigler 1986, p. 353).

Pearson’s formulas (9.1) and (9.2) proved to be very fruitful for studying
dependencies: correlation analysis and most of multivariate statistical analysis tools
are based on the pair-wise Pearson correlations; we may also add the correlation
and spectral theories of stochastic processes, etc. Since the time Pearson introduced
the sample correlation coefficient (9.2), many other measures of correlation have
been used aiming at estimation of the closeness of interrelationship (the coefficients
of association, determination, contingency, etc.). Some of them were proposed
by Pearson (1948).

9.1.2 A Brief Review of Robust Estimators of the Correlation
Coefficient

The high sensitivity of the sample correlation coefficient r to outliers in the data
described by the mixture of normal densities (Tukey’s 1960 gross error model) (0 �
" < 0:5)

f .x; y/ D .1 � "/N.x; yI�1; �2; 
1; 
2; 	/C "N.x; yI�0
1; �

0
1; 


0
1; 


0
2; 	

0/ (9.4)

and the necessity in its robust counterparts was firstly considered in Gnanadesikan
and Kettenring (1972). The first and second summands in (9.4) generate “good”
and “bad” data, respectively: in general, the component means �0

1 and �0
2, standard

deviations 
 0
1 and 
 0

2, as well as the correlation coefficient 	0 of “bad” data
may significantly differ from their counterparts in the first summand. Following
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the main paradigm of robust estimation, we are most interested in estimation of
the correlation coefficient 	 of “good” data regarding “bad” data as outliers. In
model (9.4), the sample correlation coefficient r can be strongly biased with respect
to 	 up to the change of its sign (Gnanadesikan and Kettenring 1972; Devlin et al.
1975).

At present there exist two main approaches to design of robust estimators, i.e.,
the minimax principle of quantitative robustness (Huber 1981), and the approach
of qualitative robustness based on influence functions (Hampel et al. 1986). With
the first approach, the least informative distribution minimizing Fisher information
over a given class of distributions is determined followed by the subsequent use
of the optimal maximum likelihood estimator for this distribution. In this case, the
minimax approach ensures that the asymptotic variance of the optimal estimator will
not exceed a certain threshold. According to the second approach, an estimator with
the desired influence function whose type of behavior determines the qualitative
robustness properties of an estimator such as its sensitivity to the presence of gross
outliers in the data, to the data rounding off, etc.

Most of the earlier results on robust estimation of the correlation coefficient have
been obtained from heuristic considerations related to the desired behavior of their
influence functions (Gnanadesikan and Kettenring 1972; Devlin et al. 1975). Huber
(1964, 1981) used the minimax approach to design the minimax variance and bias
estimators of location and scale, as well as of correlation.

In our former works (Pasman and Shevlyakov 1987; Shevlyakov and Vilchevski
2002a; Shevlyakov and Smirnov 2011), a classification of robust estimators of
the correlation coefficient is given. The group of robust estimators of correlation
based on robust estimators of the variances of the principal components originally
proposed by Gnanadesikan and Kettenring (1972) turned out to be most prospective
among others: the minimax variance and bias (in Huber’s sense) estimators such
as the trimmed rTRIM and MAD rMAD correlation coefficients belong to this
group (Shevlyakov and Vilchevsky 2002b; Shevlyakov et al. 2012). Moreover, these
estimators are intrinsically conformed to the family of independent component
distributions (ICD) (Shevlyakov and Vilchevsky 2002b; Shevlyakov et al. 2012).

In this paper we generalize the robust minimax variance M-estimators of the
correlation coefficient (Shevlyakov and Vilchevsky 2002b), namely rTRIM and
rMAD, introducing M-estimators of the correlation coefficient as the extension
of the maximum likelihood estimators for the ICD family (quite similarly to
Huber’s (1964) program for robust estimation of location) thus enhancing the
efficiency of these new estimators of correlation. This work concludes the cycle
of works on robust minimax variance and bias M-estimators of correlation for the
ICD family (Shevlyakov and Vilchevsky 2002b; Shevlyakov and Smirnov 2011;
Shevlyakov et al. 2012).

An outline of the remainder of the paper is as follows. In Sect. 9.2, the ICD
family and some former results on the minimax estimation of correlation are briefly
described. In Sect. 9.3, new M-estimators of the correlation coefficient for the ICD
family are proposed. These M-estimators possess the minimax variance property (in
Huber’s sense) in "-contaminated bivariate normal distribution models. In Sect. 9.4,
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a comparative Monte Carlo study of various robust estimators of the correlation
coefficient is performed. In Sect. 9.5, some conclusions are drawn.

9.2 Bivariate Independent Component Distributions
and Earlier Results on Robust Minimax Estimation

In this section, we follow Shevlyakov and Vilchevsky (2002b), Shevlyakov and
Smirnov (2011), and Shevlyakov et al. (2012) and recall the family of the bivariate
ICD densities and the minimax estimators based on them, as they are necessary for
our further constructions.

9.2.1 Bivariate Independent Component Distribution Densities

ICD densities with unknown but equal variances (the parameters of location of the
random variables X and Y are assumed known) are defined as follows (Shevlyakov
and Vilchevski 2002a; Shevlyakov and Vilchevsky 2002b)

f .u; v/ D 1



p
1C 	 g

�
u



p
1C 	

	
1



p
1 � 	 g

�
v



p
1 � 	

	
; (9.5)

where 
 is the standard deviation; 	 is the correlation coefficient, u and v are the
principal variables u D .xC y/=

p
2; v D .x � y/=

p
2; g.x/ is a symmetric density

belonging to a certain class G.
The family (9.5) contains the standard bivariate normal distribution density

f .x; y/ D N.x; yj0; 0; 1; 1; 	/ when g.z/ D '.z/ D .2�/�1=2 exp.�z2=2/. Further,
we use the bivariate heavy-tailed Cauchy ICD density; in this case, 	 is regarded as
a parameter of correlation.

The idea of the ICD densities given by (9.5) is quite plain: for any pair .X;Y/,
the transformation U D XC Y, V D X � Y gives the uncorrelated random principal
variables .U;V/, actually independent for densities (9.5). Thus, estimation of their
scales S.U/ D 
p1C 	 and S.V/ D 
p1 � 	 solves the problem of estimation of
the correlation coefficient between X and Y by using

O	 D
OS2 .U/� OS2 .V/
OS2 .U/C OS2 .V/

; (9.6)

since the following identity for the correlation coefficient holds (Gnanadesikan and
Kettenring 1972)

	 D S.U/2 � S.V/2

S.U/2 C S.V/2
:
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Thus, the class (9.6) of estimators entirely corresponds to the ICD family (9.5), and
this allows to extend Huber’s results on robust minimax M-estimators of scale to
robust estimation of the correlation coefficient.

9.2.2 Minimax Variance Robust Estimation of Correlation

In Shevlyakov and Vilchevsky (2002b), it is shown that under regularity conditions
the estimator O	 (9.6) is consistent and asymptotically normal with the following
variance

AV. O	/ D 2.1� 	2/2 V.�; g/; V.�; g/ D
R
�2.x/g.x/ dx

�R
x�0.x/g.x/ dx

�2 : (9.7)

where V.�; g/ is the asymptotic variance of Huber’s M-estimates of scalebS.U/ and
OS.V/ in formula (9.6) (Huber 1981).

The remarkable feature of formula (9.7) for the asymptotic variance is that
it has two factors: the first depends only on 	, the second V.�; g/, as it was
aforementioned, is exactly the asymptotic variance of M-estimators of scale. Thus
Huber’s minimax variance M-estimators of scale in the gross error model (Huber
1981, pp. 120–122) can be directly applied for the minimax variance estimation of
the correlation coefficient for "-contaminated bivariate normal distributions

f .x; y/ � .1 � "/N.x; yI 0; 0; 1; 1; 	/; 0 � " < 1 (9.8)

giving the trimmed correlation coefficient (Shevlyakov and Vilchevsky 2002b)

rTRIM D
0

@
n�n2X

iDn1C1
u2.i/ �

n�n2X

iDn1C1
v2.i/

1

A
,0

@
n�n2X

iDn1C1
u2.i/ C

n�n2X

iDn1C1
v2.i/

1

A ; (9.9)

where u2.i/ and v2.i/ are the ith order statistics of the squared robust principal variables;
n1 and n2 are the numbers of trimmed observations. The levels of trimming n1 and n2
of the minimax trimmed correlation coefficient rTRIM depend on the contamination
parameter ": n1 D n1."/ and n2 D n2."/ (Shevlyakov and Vilchevsky 2002b).

In particular, the minimax variance estimator rTRIM takes the following limit form
as "! 1: it tends to the MAD-correlation coefficient rMAD

rMAD D MAD2u �MAD2v

MAD2uCMAD2v
; (9.10)

where u and v are the robust principal variables

u D x �med xp
2MAD x

C y �med yp
2MAD y

; v D x �med xp
2MAD x

� y �med yp
2MAD y

: (9.11)
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Concluding the review of our former results, we note that the same minimax
variance robust estimators of the correlation coefficient, namely, rTRIM and rMAD,
are also minimax bias robust: this is due to the asymptotic bias of estimators (9.6)
whose structure is similar to that of formula (9.7) (for details, see Shevlyakov et al.
2012).

9.3 Main Result: M-Estimators of the Correlation
Coefficient and their Minimax Variance Properties

In this section, we implement a classical Huber’s approach (Huber 1964) to
designing robust estimators of the correlation coefficient.

9.3.1 The Maximum Likelihood Estimator of the Correlation
Coefficient

Consider the maximum likelihood estimator of the correlation coefficient 	 for
independent component distributions f .u; v/ (9.5), where we without any loss of
generality set 
 D 1

nX

iD1
 ML.ui; viI O	ML/ D 0 (9.12)

with the score function ML.u; vI 	/ D @ log f .u; vI 	/=@	. It has the following form

 ML.u; vI 	/ D 1

1C 	�ML

�
up
1C 	

	
� 1

1 � 	�ML

�
vp
1 � 	

	
; (9.13)

where �ML is the maximum likelihood score function for M-estimators of
scale (Huber 1981)

�ML.t/ D �.1C tg0.t/=g.t//: (9.14)

In the particular case of the bivariate normal distribution when g.z/ D '.z/,
the routine calculation of the Fisher information I.	/ for the correlation coefficient
yields

I.	/ D 1C 	2
.1 � 	2/2 ;
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which in its turn gives the classical value of the asymptotic variance (Kendall and
Stuart 1963)

AV. O	ML/ D 1

I.	/
D .1 � 	2/2
.1C 	2/ : (9.15)

From the comparison of this result with the asymptotic variance AV.r/ D .1 � 	2/2
of the sample correlation coefficient r at the bivariate normal distribution it follows
that the maximum likelihood estimator O	ML is asymptotically more accurate than r
being equal to it only at 	 D 0.

9.3.2 M-Estimators of the Correlation Coefficient

Taking into account the structure of the maximum likelihood estimating Eq. (9.12)
and the corresponding score function (9.13) for estimation of the correlation coef-
ficient, we implement Huber’s program realized for robust estimation of location
and scale (Huber 1981) and define a class of M-estimators of 	 for independent
component distributions with an arbitrary score function �

nX

iD1
 M.ui; viI rM/ D 0 ; (9.16)

where

 M.u; vI 	/ D 1

1C 	�
�

up
1C 	

	
� 1

1 � 	�
�

vp
1� 	

	
:

The particular case of an M-estimator of the correlation coefficient is given by
�MAD.z/ D sign.jzj�1/, the score function for the MAD-estimator of scale in (9.16),
with the corresponding MMAD-estimator rMMAD.

9.3.3 Asymptotic Variance of M-Estimators

Now we show that the asymptotic variance of M-estimators has the structure similar
to that of formula (9.7).

Theorem 9.1 Assume that the following regularity conditions imposed on symmet-
ric densities g and scores � hold:

.g1/ g.x/ is twice continuously differentiable and satisfies g.x/ > 0 for all x in R.

.g2/ Fisher information for scale I.g/ satisfies 0 < I.g/ <1.
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.�1/ A score function � is well defined and continuous on R n C.�/, where the
set C.�/ of discontinuity points of �.�/ is finite. In each point of C.�/ there exist
finite left and right limits of �which are different. Also �.�x/ D �.x/ if .�x; x/ 

R n C.�/, and there exists d > 0 such that �.x/ � 0 on .0; d/ and �.x/ � 0 on
.d;1/.

.�2/ The set D.�/ of points in which � is continuous but in which �0 is not defined
or not continuous is finite.

.�3/
R
�.x/g.x/ dx D 0 and

R
�2.x/g.x/ dx <1.

.�4/ 0 <
R

x�0.x/g.x/ dx <1.

Then, in the class of bivariate independent component distributions (9.5), the
asymptotic variance of M-estimators has the form

AV.rM/ D 2.1� 	2/2
1C 	2 V.�; g/ ; (9.17)

where

V.�; g/ D
R
�2.x/g.x/ dx

�R
x�0.x/g.x/ dx

�2

is the asymptotic variance of M-estimators of scale.

Proof Here we give the sketch of proof. Conditions .g1/–.�4/ are sufficient for
consistency and asymptotic normality of the M-estimator rM . This result follows
from the consistency and asymptotic normality of the M-estimators of scale defined
by score functions � (Shevlyakov and Vilchevsky 2002b). The asymptotic variance
of rM is obtained by direct computation from the following formula of Hampel et al.
(1986)

AV.rm/ D V. M; f / D A

B2
;

where

A D E. 2M/ D
Z Z

 2M.u; vI 	/f .u; vI 	/ du dv;

B D E.@ M=@	/ D
Z Z

@ M.u; vI 	/
@	

f .u; vI 	/ du dv:

ut
In this paper, we use the well-balanced set of regularity conditions proposed

by Hampel et al. (1986, pp. 125, 139): the comments on those conditions can be
found in Shevlyakov et al. (2012).
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Formula (9.17) for the asymptotic variance of rM is similar to formula (9.7) also
having two factors: the first depends only on 	, the second V.�; g/ is the asymptotic
variance of M-estimators of scale. The difference is only in the factor .1C	2/ in the
denominator of (9.17), which reduces the variance value and, therefore, enhances
the estimator efficiency.

Moreover, most results on robust estimation of scale (Huber 1981; Hampel et al.
1986) can be directly applied to robust estimation of the correlation coefficient
of bivariate independent component distributions. The further result is based on
Theorem 9.1 and Huber’s results on minimax variance estimation of scale (Huber
1981, pp. 120–121).

9.3.4 Minimax Variance M-Estimators of the Correlation
Coefficient

To design minimax variance M-estimators of the correlation coefficient, we recall
Huber’s result on minimax variance M-estimators of scale (Huber 1981): under the
conditions of regularity .g1/�.�4/ of Theorem 9.1, M-estimators OS of scale defined
by the estimating equation

P
�.xi= OS/ D 0 are consistent, asymptotically normal

and possess the minimax (saddle-point) property with regard to the asymptotic
variance V.�; g/ D AV. OS/ (9.7)

V.��; g/ � V.��; g�/ � V.�; g�/: (9.18)

Here g� is the least informative density minimizing Fisher information I.g/ for scale

g� D arg min
g2G I.g/; I.g/ D

Z �
�x

g0.x/
g.x/

� 1
	2

g.x/ dx (9.19)

over the class of "-contaminated normal distribution densities

G D fg W g.x/ � .1 � "/'.x/g; 0 � " < 1: (9.20)

In this case, the optimal score function ��.x/ is given by

��.x/ D
8
<

:

x20 � 1; for jxj < x0;
x2 � 1; for x0 � jxj � x1;
x21 � 1; for jxj > x1;

(9.21)

where the parameters x0."/ and x1."/ depend on the contamination parameter "
being tabulated in Huber (1981, , p. 121).

Note that the median absolute deviation OS D MAD x is a limit case of the
minimax variance estimator as "! 1 with ��.x/ D �MAD.x/ D sign.jxj � 1/.
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The saddle-point inequality (9.18) shows that the estimator OS determined by the
score function �� provides the guaranteed level of the accuracy of estimation for all
g in G

V.��; g/ � V.��; g�/ D 1=.n I.g�//:

The following result is obtained by the direct application of the above solution.

Theorem 9.2 In the subclass (9.5) of "-contaminated bivariate normal distribu-
tions

f .x; y/ � .1 � "/N.x; yj0; 0; 1; 1; 	/; 0 � " < 1; (9.22)

the minimax variance estimator of 	 is given by the M-estimator (9.16) with the
score function (9.21), where x1 D x1.�/ and x2 D x2.�/ depend on the value of the
contamination parameter " through the auxiliary parameter � D 1�p1 � ".

The proof of Theorem 9.2 literally repeats the proof of Theorem 9.2 given in
Shevlyakov and Vilchevsky (2002b).

If " D 0, then the minimax variance M-estimator of the correlation coefficient
coincides with the maximum likelihood estimator defined by (9.13)–(9.14). In the
limit case as " ! 1, the minimax variance M-estimator tends to the MMAD-
estimator (9.16) with the score function �MAD.x/ D sign.jxj � 1/.

Under the aforementioned regularity conditions .g1/–.�4/ imposed on score
functions� and densities g, the most V-robust estimator of the correlation coefficient
in the sense of Theorem 10 in Hampel et al. (1986, , pp. 142–143) is given by the
estimator (9.16) with the optimal score �MAD.x/ D sign.jxj � 1/.

9.3.5 Highly Robust and Efficient M-Estimators
of the Correlation Coefficient

Another way to enhance robustness and efficiency of M-estimators (9.16) of the
correlation coefficient is to use in their structure the score functions of highly robust
and efficient estimators of scale.

Rousseeuw and Croux (1993) proposed one of the most robust and efficient
estimators of scale, namely the Qn, later became commonly used in practice. The
Qn is defined as a lower quartile of pairwise distances: Qn D fjxi � xjjgk, k D �h

2

�
,

h D Œn=2� C 1, and it has the asymptotic efficiency of 82.3 % and the breakdown
point of 50 %. A serious drawback is its large computational complexity, as O.n2/
pairwise differences are involved.

In Smirnov and Shevlyakov (2014), a parametric family of M-estimators of
scale based on the Rousseeuw–Croux Qn-estimator is proposed; the estimator bias
and efficiency are studied. A low-complexity one-step M-estimator is obtained
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allowing a considerably faster computation with the greater than 80 % efficiency
at a Gaussian and the highest possible 50 % breakdown point. We denote this
M-estimator approximating the Qn-estimator as FQn; it has the following score
function

�FQ.x/ D 1=
p
� � 2'.x/: (9.23)

Substituting this score function into (9.16), we get a highly robust and efficient M-
estimator of the correlation coefficient denoted as rMFQ.

9.4 Monte Carlo Performance Evaluation

9.4.1 Monte Carlo Experiment Set-up

In Tables 9.1, 9.2, 9.3, and 9.4, we exhibit experimental results (50,000 trials) on
the comparative performance of the proposed and classical estimators on small
.n D 20/ and large .n D 1000/ samples at the bivariate normal and "-spherically
contaminated normal distributions with the density

f .x; y/ D .1 � "/N.x; yI 0; 0; 1; 1; 	/C "N.x; yI 0; 0; k; k; 	0/ ;

the bivariate ICD Cauchy density (9.5) with g.z/ D ��1.1C z2/�1 and the bivariate
Cauchy t-distribution (a particular case of the bivariate t-distribution) with the
density

f .x; y/ D 1

2�
p
1 � 	2

�
1C x2 C y2 � 2	xy

1� 	2
	�3=2

Table 9.1 Normal distribution: 	 D 0:9

r rQ rS rK rMAD rFQ rMFQ rMMAD rMCD

n D 20

Mean 0:895� 0:858 0:875 0:892 0:873 0:889 0:897 0:906 0:874

MSE 0:050 0:139 0:069 0:063 0:093 0:056� 0:037 0:074 0:154

RE 0:729� 0:103 0:431 0:467 0:224 0:596 1:323 0:334 0:078

n D 1000

Mean 0:900 0:899 0:900 0:900 0:899 0:900 0:900 0:900 0:900

MSE 0:006� 0:015 0:007 0:007 0:010 0:007 0:005 0:007 0:010

RE 0:987� 0:154 0:739 0:820 0:363 0:804 1:453 0:662 0:380
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Table 9.2 Contaminated normal distribution: 	 D 0:9, " D 0:1, 	0 D 0, k D 3

r rQ rS rK rMAD rFQ rMFQ rMMAD rMCD

n D 20

Mean 0:641 0:789 0:708 0:777 0:855 0:849 0:831 0:875� 0:876
MSE 0:504 0:205 0:269 0:195 0:103 0:088 0:101� 0:088 0:143

RE 0:014 0:061 0:051 0:079 0:194 0:295 0:273� 0:256 0:091

n D 1000

Mean 0:553 0:835 0:730 0:787 0:890� 0:868 0:845 0:876 0:899
MSE 0:452 0:059 0:172 0:105 0:015� 0:024 0:046 0:026 0:009
RE 0:010 0:087 0:052 0:101 0:304 0:465 0:418 0:414 0:438�

Table 9.3 ICD Cauchy distribution: 	 D 0:9

r rQ rS rK rMAD rFQ rMFQ rMMAD rMCD

n D 20

Mean 0:624 0:681 0:624 0:716 0:856� 0:857 0:667 0:768 0:823

MSE 0:625 0:312 0:352 0:272 0:148� 0:143 0:281 0:202 0:258

RE 0:006 0:037 0:038 0:045 0:090� 0:097 0:073 0:077 0:030

n D 1000

Mean 0:628 0:743 0:743 0:639 0:899 0:899 0:688 0:799 0:899
MSE 0:613 0:160 0:159 0:263 0:014� 0:013 0:213 0:103 0:018

RE 0:000 0:046 0:051 0:038 0:198� 0:212 0:074 0:111 0:107

Table 9.4 Bivariate Cauchy t-distribution: 	 D 0:9

r rQ rS rK rMAD rFQ rMFQ rMMAD rMCD

n D 20

Mean 0:844 0:852 0:836 0:884 0:872 0:880� 0:679 0:777 0:876

MSE 0:295 0:145 0:140 0:096� 0:105 0:082 0:258 0:184 0:148

RE 0:022 0:096 0:117 0:203� 0:177 0:288 0:103 0:097 0:085

n D 1000

Mean 0:846 0:899 0:856 0:900 0:899 0:900 0:689 0:799 0:900
MSE 0:289 0:015 0:047 0:011� 0:011� 0:009 0:212 0:103 0:012

RE 0:000 0:154 0:132 0:306� 0:297 0:471 0:092 0:118 0:256

To provide unbiasedness of estimation, the quadrant rQ and Kendall correlation
coefficients rK are transformed by taking sin

�
�
2
� � of their initial values, whereas

the Spearman correlation coefficient rS is transformed by 2 sin
�
�
6
� � (Kendall and

Stuart 1963).
All the aforementioned estimators were studied, but in what follows, we exhibit

results of the best competitors: the most robust minimax variance and bias MAD
correlation coefficient is defined by (9.10); the FQ estimate is computed by
formula (9.6) with the M-estimate OS of scale defined by the score function (9.23);
the limit case of the minimax variance M-estimator rMMAD defined at the end of
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Sects. 3.2, 3.4 (the most V-robust estimator); the minimum covariance determinant
(MCD) estimator (Rousseeuw 1984) of correlation was computed by the means of
the package R.

The Monte Carlo estimate mean squared error (MSE) is computed as follows:
MSE. O	/ D M�1PM

kD1.b	 � 	/2, where M is a number of trials (M D 50000). The
relative estimate efficiency (RE) is defined as the ratio of the asymptotic variance
of the sample correlation coefficient r and the experimental estimate O	 variance:
RE. O	/ D .1 � 	2/2=.n var. O	//.

The best performances in table rows are boldfaced, the next to them values are
starred.

9.4.2 Discussion

Normal Distribution From Table 9.1 it follows that

1. on small and large samples, the best estimate among the chosen set of robust
alternatives to the sample correlation coefficient is the rMFQ M-estimate; the next
to it in performance is the sample correlation coefficient r;

2. the Kendall correlation coefficient rK is the best in performance among the
nonparametric measures, especially on small samples;

3. on large samples, estimate biases can be neglected, but not their variances.

Contaminated Normal Distributions From Table 9.2 it follows that

1. the sample correlation coefficient r is catastrophically bad under contamination;
2. on small and large samples, the rMCD correlation coefficient is the best with

respect to bias; the next to it is the most B- and V-robust MAD correlation
coefficient, and as the computational complexity of rMCD is much higher than
that of rMAD, the latter is preferable.

3. the set of performed experiments does not allow to sort out the other estimates,
namely rFQ and rMFQ.

The quadrant correlation coefficient rQ is also an asymptotically minimax bias
estimator of the correlation coefficient (Huber 1981) as rMAD. Nevertheless, as it
follows from Tables 9.1, 9.2, 9.3 and 9.4, its overall performance is inferior to
the performance of that estimator. This can be explained by the choice of the
class of direct robust counterparts of the sample correlation coefficient (Huber
1981; Shevlyakov and Vilchevsky 2002b) at which the minimax property of rQ is
established—the class of estimators based on principal variable variances is richer
and more advantageous than the competing class. However, we may cautiously
recommend the quadrant coefficient rQ as a moderate robust alternative to the
sample correlation coefficient r both due to its low-complexity and to its finite
sample binomial distribution (Blomqvist 1950).
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Furthermore, the minimax variance and bias rTRIM and rMTRIM estimates com-
puted at " D 0:1 were inferior in performance not only to their limit cases rMAD

and rMMAD-estimates, respectively, but also to rFQ and rMFQ estimates. This can
be explained by the fact that the highly robust and efficient FQn estimator of
scale dominates over Huber’s robust minimax variance trimmed standard deviation
estimator (Smirnov and Shevlyakov 2014).

Bivariate Cauchy Distributions From Tables 9.3 and 9.4 it follows that

1. the sample correlation coefficient r is again catastrophically bad at both heavy-
tailed distributions, especially at the ICD Cauchy density; however, we expected
a much worse performance with respect to estimate’s mean, as the population
means do not exist in this case;

2. on small and large samples, the rFQ correlation coefficient is the best with respect
to all performance characteristics; the next to it is the most B- and V-robust MAD
correlation coefficient at the ICD Cauchy density and the nonparametric Kendall
correlation at the bivariate Cauchy t-distribution;

3. the aforementioned advantages of the MCD correlation coefficient in the con-
taminated normal case disappear at these heavy-tailed distributions;

4. it seems that the bivariate independent component Cauchy distribution poses
more challenges for estimation of correlation as compared to the bivariate
Cauchy t-distribution.

9.5 Conclusions

Our main contributions to robust estimation of the correlation coefficient are
as follows: (1) a new class of M-estimators of the correlation coefficient for
bivariate ICD densities is proposed as the generalization of the maximum likelihood
estimator of the correlation coefficient for the bivariate normal distribution generally
enhancing the efficiency of estimation as compared to earlier results at slightly
contaminated bivariate normal distributions; (2) the comparative performance of
various robust estimators of the correlation coefficient is studied at new heavy-tailed
bivariate ICD Cauchy densities.

In addition, minimax variance (in Huber’s sense) M-estimators of the correlation
coefficient for bivariate "-contaminated normal distributions are designed.

In Monte Carlo experiment, the proposed rMFQ and rMMAD M-estimators proved
to be the best on small and large samples at slightly contaminated normal distribu-
tions.

Finally, at heavy-tailed bivariate distributions, our earlier proposed rFQ esti-
mator of the correlation coefficient based on the fast highly robust and efficient
Rousseeuw–Croux FQn estimator of scale can be recommended.
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Chapter 10
Robust Coordinates for Compositional Data
Using Weighted Balances

Peter Filzmoser and Karel Hron

Abstract Multivariate observations which carry exclusively relative information
are known under the name compositional data, and they have very specific
geometrical properties. In order to represent them in the usual Euclidean geometry,
they need to be expressed in orthonormal coordinates prior to their possible further
statistical processing. As it is not possible to construct Cartesian coordinates for
the compositions, that would assign a coordinate for each of the parts separately, a
choice of interpretable orthonormal coordinates is of particular interest. Although
recent experiences show clear advantages of such coordinates, where the first
coordinate aggregates information from logratios with a particular compositional
part of interest, their usefulness is limited if there are distortions like rounding
errors or other data problems in the involved parts. The aim of the paper is thus
to introduce a “robust” version of these coordinates, where the role of the remaining
parts (with respect to the part of interest) is weighted according to their relevance for
the purpose of the statistical analysis. Theoretical considerations are accompanied
by examples with data sets from chemistry and geochemistry, pointing out the role
of robust estimation in the context of regression with compositional covariates.
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10.1 Introduction

Compositional data as observations carrying only relative information are
represented usually in form of proportions or percentages which allows for a
better interpretability. Since the publication of the paper (Pearson 1897) on spurious
correlation, a lot of discussion within and also outside the statistical community
has evolved about the proper treatment of such data. There have been groups who
claimed that no real problem occurs, while others developed complex models to
overcome the effect of the unity constraint—in case of a proportional representation
of the compositions. However, there were also alternative approaches for the
treatment of these particular multivariate observations that frequently occur in many
applications, like in natural and social sciences (including biology, geochemistry,
metabolomics, econometrics, and many other fields). One such approach was
established at the end of the last century, and published in the seminal book on the
statistical analysis of compositional data (Aitchison 1986). In this book, possible
problems for the analysis of compositional data were pointed out if they were
interpreted just as observations with a constant sum constraint (like 1 in proportions
and 100 in percentages). The author claimed that all the relevant information
in compositional data is contained in the ratios between the variables (so-called
compositional parts), or even better, in logratios that are mathematically easier to
handle—the logratio methodology was born. From this perspective, proportional or
percentage observations are just proper presentations of the generalized concept of
compositional data that are from their nature scale invariant. Later on, requirements
on a meaningful analysis of compositional data were summarized into mathematical
principles (Egozcue 2009) that are formally followed by the Aitchison geometry
(Billheimer et al. 2001; Egozcue and Pawlowsky-Glahn 2006; Pawlowsky-Glahn
and Egozcue 2001).

In order to express compositions in the real space, on which most of the
multivariate statistical methods rely (Eaton 1983), coordinates with respect to the
Aitchison geometry need to be constructed. As all information in compositional
data is contained in logratios, one can expect that also coordinates capturing the
multivariate information of compositional data will be formed of logratios and
their linear combinations. Indeed, in this way it is possible to construct different
coordinate systems with a specific and desired interpretation, hereby considering
the natural requirement of orthonormality (i.e., coordinates with respect to an
orthonormal basis) (Egozcue et al. 2003).

Due to the lack of a canonical basis within the Aitchison geometry, it is not
possible to assign coordinates to each of the compositional parts simultaneously
in one coordinate system. On the other hand, it is possible to construct such
orthonormal coordinates that allow to assign one coordinate (or a set of coordinates)
to a specific compositional part (or to a group of parts) of interest. Nevertheless, note
that these coordinates should not be confounded with specific compositional parts
as they describe the relative behavior of a compositional part with respect to all the
others. By following the principles of compositional data analysis, where logratios
form the elemental source of information in compositions, it is clear that such a
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coordinate has to be formed by a sum of logratios of that part with all the remaining
parts. Consequently, when some of those parts are strongly affected by measurement
errors, this has an impact also to the resulting coordinate itself and may lead to a
biased model estimation. Moreover, due to the relative scale of compositional data
(i.e., ratios instead of absolute differences are contained in the Aitchison distance),
parts with small values, predisposed to be influenced by the accuracy of the mea-
surement device, can be very dangerous in this context. Particularly, small (relative)
values of compositional parts are a source of outlyingness of the observations that
later on leads to a distortion of classical statistical methods, when they are applied
to the coordinate representation of compositions (Filzmoser and Hron 2011).

The aim of this contribution is to build interpretable orthonormal coordinates
that downweight the influence of possibly noisy variables and to use them for the
further statistical analysis. In the next section, the concept of a weighted balance
is introduced and illustrated. Section 10.3 is devoted to the construction of an
orthonormal basis of weighted balances. The system of weighted balances serves
as explanatory variables in the context of robust regression in Sect. 10.4. The final
Sect. 10.5 summarizes and concludes.

10.2 Logcontrasts and Weighted Balances

Compositional data are underlying the Aitchison geometry (Egozcue and
Pawlowsky-Glahn 2006; Pawlowsky-Glahn and Egozcue 2001) that fulfills the
above principles of compositional data analysis, like scale invariance and relative
scale, but also the mathematical concept of subcompositional dominance (see
Egozcue 2009, for details). Due to the scale invariance property, any basis of D-part
compositional data x D .x1; : : : ; xD/

0 consists of D � 1 elements, what excludes
the existence of a canonical basis within the Aitchison geometry. Consequently, the
construction of interpretable logratio coordinates is of primary interest. An arbitrary
coordinate is a logcontrast (Aitchison 1986), i.e. a term of the form

a1 ln x1 C : : :C aD ln xD D a0 ln.x/; where
DX

jD1
aj D 0: (10.1)

We refer to a standard logcontrast if a0a D 1. Geometrically, vectors a D
.a1; : : : ; aD/

0 are elements of the hyperplane H D fa 2 RD W a1 C : : :C aD D 0g.
Thus, in order to derive orthonormal coordinates, that are usually preferable as they
ensure isometry between the Aitchison geometry and the Euclidean real space, it is
sufficient to construct D�1 orthonormal logcontrasts a0

i ln.x/, where the requirement
of orthonormality is transferred to coefficient vectors ai; i D 1; : : : ;D � 1. One
such choice as a special case of a more general concept of balances (Egozcue and
Pawlowsky-Glahn 2005) leads to vectors

ai D
r

D � i

D � iC 1
�
0; : : : ; 0; 1;� 1

D � i
; : : : ;� 1

D � i

	0
(10.2)
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with i � 1 zero entries that result in D � 1 orthonormal coordinates

zi D
r

D � i

D � iC 1 ln
xi

D�i

qQD
kDiC1 xk

; i D 1; : : : ;D � 1 (10.3)

(Egozcue et al. 2003; Hron et al. 2010; Fišerová and Hron 2011). Interestingly, the
compositional part x1 is contained just in the first coordinate, z1, in form of a (scaled)
logratio of that part with the geometric mean of the remaining parts. In other words,
this coordinate can be interpreted in terms of relative abundance of x1 compared to
an “average behavior” of the remaining parts in the composition. Alternatively, we
can also refer to a scaled sum

z1 D 1
p

D.D � 1/
�

ln
x1
x2
C : : :C ln

x1
xD

	

of logratios containing the part x1. In any case, we can conclude that z1
extracts all relative information concerning x1. Of course, by permuting the
parts in the original composition such that xl fills the first position, x.l/ D
.x.l/1 ; : : : ; x

.l/
D /

0 D .xl; x1; : : : ; xl�1; xlC1; : : : ; xD/; l D 1; : : : ;D, Eq. (10.3) remains

formally unchanged, just moving to coordinates z.l/ D .z.l/1 ; : : : ; z
.l/
D�1/0 with parts

from x.l/ instead of x. This permutation guarantees an analogous interpretation of
the relation between z.l/1 and xl as it was previously the case for z1 and x1. In other
words, in these D coordinate systems always one of the coordinates is assigned to
one specific compositional part, which is advantageous for interpretation purposes.
Nevertheless, care must be taken, as they cannot be interpreted as representations
of just one part, but of the relative contribution of that part with respect to all
the others. Together with the fact that different orthonormal coordinate systems
are just rotations of each other (Egozcue et al. 2003), the coordinates defined
in (10.3) were recently successfully applied to many problems in compositional
data analysis (Hron et al. 2010, 2012; Buccianti et al. 2014; Kalivodová et al.
2015).

Nevertheless, a detailed numerical inspection performed for the GEMAS data set,
resulting from a large geochemical mapping project covering most of the European
countries (Reimann et al. 2012), revealed also problems that may occur when
coordinates (10.3) are uncritically accepted for extracting univariate information
about single compositional parts. Namely, measurement devices work usually in an
absolute scale and just small relative values of components are often burdened by
rounding errors or other data imprecisions, which can have a negative effect for the
subsequent statistical processing. Consequently, this can result also in a biased view
on the role of outlying observations (and variables) in the compositional data set.
Moreover, the affected compositional parts can strongly influence the value of the
geometric mean in z.l/1 ; l D 1; : : : ;D, and thus also the overall view on the role
of single parts in the composition, for which the coordinates are constructed. From
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this perspective, it seems to be more meaningful to move to a weighted sum of
logratios,

˛2 ln
x1
x2
C : : :C ˛D ln

x1
xD
; ˛2 C : : :C ˛D D 1: (10.4)

After rescaling to a standard logcontrast, this leads to the new coordi-
nate

z�
1 D

1
q
1CPD

kD2 ˛2k
ln

x1QD
kD2 x˛k

k

; ˛2 C : : :C ˛D D 1 (10.5)

capturing just relevant relative information about a compositional part of
interest (here, without loss of generality, x1 was set to be such a part).
Using the above notations (10.1) and (10.4), a vector of logcontrast coeffi-
cients

a D .a1; a2; : : : ; aD/
0 D 1q

1CPD
kD2 ˛2k

.1;�˛2; : : : ;�˛D/
0 (10.6)

can be assigned to z�
1 (for later purposes, we assign also a1 � ˛1 D 1). Note that

for a2 D : : : D aD D � 1
D (up to a scaling constant) we would obtain exactly the

coordinate z1 from (10.3).

10.2.1 Example 1: Zero-Weights

The GEMAS project mentioned above (Reimann et al. 2012) resulted in a com-
prehensive geochemical atlas (Reimann et al. 2014a,b), where the geochemistry of
agricultural soil in Europe is mapped. The source data for this atlas are available
on an attached CD-ROM. For illustrating the above ideas, we use the XRF (X-
ray fluorescence) data from the aqua regia (AR) extraction, a relatively strong acid
attack where only a certain part of the total element content of the samples will be
dissolved. Overall, the concentrations of 41 chemical elements are available, and
additionally LOI (loss on ignition) is measured. This data part is a classical case
for compositional data because when measuring all the components, their sum is
100 %.

In the following example, the interest is in mapping the element Aluminium
(Al). Therefore, a balance is constructed according to Eq. (10.3) where Al is in the
role of x1. The corresponding balance z1 expresses then all the relative information
to the other parts in the composition. Out of the 41 available chemical element
concentrations, however, for some variables a high proportion of measurements is
below the detection limit. For example, for the elements Bi, Mo, Sb, Sn, Ta, and W,
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more than 90 % of the reported data are below the corresponding detection limits. It
would not make much sense to consider those variables in the analysis, but a general
question is, for which percentage below detection a variable can still be considered
for a statistical analysis. For the purpose of mapping Al, we compare the resulting
balances if this percentage is zero, and if at most 10 % of the values for the variables
may be below detection. In the first case we have 14 variables, in the second case
24 (in addition to Al). Following the notation from above, our “full” composition
has D D 25 parts, from which the unweighted balance for Al is constructed. The
weighted balance has weight ˛1 D 1 (for Al), and weights ˛j (for j D 2; : : : ;D)
which are either zero (if for the corresponding variable the percentage of values
below detection limit is positive) or positive otherwise, considering the condition
˛2 C : : :C ˛D D 1. In our case, the values for the non-zero weights are 1/14.

Figure 10.1 shows the comparison of the resulting balances: The left map shows
the balance for Al using all variables with at most 10 % of values below detection,
and the right map puts zero-weights on those variables which contain values below
the detection limit. At a first glance, the difference between the two maps seems to
be rather small. Figure 10.2 investigates these differences in more detail. The left
picture compares both balances in a scatterplot. The dashed line reveals the joint
linear trend in the plot, and we are interested in deviations orthogonal to this trend.
These orthogonal deviations are visualized in the map on the right-hand side. Here
it is immediate that the differences are pronounced mainly in the northern part of
Europe. Indeed, this area shows much higher values in the left map of Fig. 10.1 than
in the right map (compared to the corresponding values in the other regions). In other
words, the variables with detection limit problems led to an increase of the values in
the north. It is, however, unclear, whether this increase is based on the problematic
values below detection, or on the general data structure of these variables.
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Fig. 10.1 Balances for Aluminium (Al) represented in terms of maps. Left: all variables with at
most 10 % of values below detection are used to construct the balance; right: variables containing
any values below detection receive weight zero for the balance
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Fig. 10.2 Comparison of the two balances used for mapping Al in Fig. 10.1. Left: scatterplot of
the two balances, with main trend indicated by the dashed line; right: orthogonal deviations from
the dashed line are mapped, indicating the difference between both maps in Fig. 10.1

10.2.2 Example 2: Weights Based on the Variation Matrix

A basic measure of variability of a composition x D .x1; : : : ; xD/
0 is the variation

matrix, defined as

T D
�

var

�
ln

xi

xj

	�D

i;jD1
(10.7)

(Aitchison 1986), where “var” denotes the variance. The elements of the variation
matrix describe the variability of the logratio ln xi

xj
. The smaller the value of this

variance, the more the logratio tends to be a constant, and the two parts can be
considered as having very similar structure. On the other hand, for large variances
the parts are very different to each other—in a non-compositional context one would
say that they are uncorrelated. With respect to the choice of appropriate weights
˛2; : : : ; ˛D for our balance of interest, one could use this information of the variation
matrix for defining those weights: large elements in the variation matrix should lead
to small weights, and small elements to larger weights. In that way it is possible to
downweight variables with a weak relation to our variable of interest.

Here we propose the following choice. Without loss of generality we assume
that the part of interest is in the first row (column) t1 of the variation matrix T from
Eq. (10.7), i.e.

t1 D .t11; : : : ; t1D/ D
�

var

�
ln

x1
x1

	
; var

�
ln

x1
x2

	
: : : ; var

�
ln

x1
xD

		
:
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Then

Q̨ j D 1 � t1j

max t1
for j D 1; 2; : : : ;D; (10.8)

defines weights in the interval Œ0; 1�. The final weights satisfying the condition ˛2C
: : :C ˛D D 1 are then taken as

˛j D 1 � Q̨ jPD
kD2 Q̨k

for j D 2; : : : ;D: (10.9)

In the interest of robust estimation, we employ a robust estimator for “var,” namely
the square of the Median Absolute Deviation (MAD).

An application of this choice of weights for the example data set from Sect. 10.2.1
is presented in the following. We consider all compositional parts that do not have
any values below detection. Again, the interest is in the part Al, and the balance
for Al is compared with the weighted version, using Eq. (10.5), in Fig. 10.3. The
left map shows the balance constructed with Al and the remaining 14 variables
without values below detection, whereas the right map shows the weighted balance.
Figure 10.4 investigates again the differences between both balances—in the same
way as in Fig. 10.2. We can find again a clear regional pattern when comparing
both balances. Figure 10.4 reveals a clear north–south trend of differences, with the
exception of the Scandinavian and Baltic countries. Spain and Portugal also show a
very pronounced difference. The weighted balance should be more reliable than its
unweighted version because it considers more of the relative information of Al to
parts with stronger relation to Al than with weak relation.
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Fig. 10.3 Balances for Aluminium (Al) represented in terms of maps. Left: variables without any
values below detection are used to construct the balance; right: weighted balance for Al with
weights based on the variation matrix
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Fig. 10.4 Comparison of the two balances used for mapping Al in Fig. 10.3. Left: scatterplot of
the two balances, with main trend indicated by the dashed line; right: orthogonal deviations from
the dashed line are mapped, indicating the difference between both maps in Fig. 10.3

10.3 Orthogonal Basis of Weighted Balances

In the previous section we were interested in constructing a weighted balance that
expresses all the relative information of a particular part. Now we go further and
construct a basis with weighted balances.

Let ˛2; ˛3; : : : ; ˛D denote the coefficients of the weighted logratios according
to Eq. (10.4), used to construct the first weighted balance. Then, according to
Eq. (10.6), the coefficients for the first logcontrast are

a1 D .a11; : : : ; a1D/
0 D 1q

1CPD
kD2 ˛2k

.1;�˛2; : : : ;�˛D/
0:

For constructing the remaining coordinates z�
2 ; : : : ; z

�
D�1 (or the respective coeffi-

cient vectors ai D .ai1; : : : ; aiD/
0; i D 2; : : : ;D � 1) it is sufficient to consider the

condition a0
iaj D ıij; i; j D 1; : : : ;D � 1 that can be expressed by a sequence of

D � 2 systems of homogenous linear equations,

y1 � ˛2y2 � : : : � ˛DyD D 0;

a21y1 C a22y2 C : : :C a2DyD D 0;

::: D 0;

ai�1;1y1 C ai�1;2y2 C : : :C ai�1;DyD D 0;

y1 C y2 C � � � C yD D 0;
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for obtaining coefficient vector ai; i D 2; : : : ;D�1. Note that each system contains
D � i free parameters what enables to form D � 3 coordinates that do not contain
the part x1 by setting the parameter y1 D 0 in the first D � 3 equation systems.
Together with our previous considerations, z�

1 can be considered to contain the
relevant relative information about x1 and z�

D�1 the remaining (redundant) one. Of
course, these considerations can be generalized to any of the parts x1; : : : ; xD simply
by a permutation of parts in the original compositions, in a similar way as it was
done for (10.3). As the main aim is to generalize the special choice of balances
by assigning weights to single logratios, forming the final logcontrast, we refer to
weighted balances.

Let us focus in more detail on the special cases D D 3 and D D 4, where the
calculations are still relatively straightforward to show. For D D 3, the situation is
very easy as there is just one free parameter in the system

y1 � ˛2y2 � ˛3y3 D 0;

y1 C y2 C y3 D 0

to get the orthogonal logcontrast to z�
1 (the orthonormality is achieved afterwards).

Consequently, we arrive at coordinates

z�
1 D

1p
2.1� ˛2˛3/

ln
x1

x˛22 x˛33
; z�

2 D
1p

6.1� ˛2˛3/
ln x˛3�˛21 x�.1C˛1/

2 x1C˛23 :

(10.10)

This can be compared with the standard (unweighted) balances (Egozcue et al.
2003)

z1 D
r
2

3
ln

x1p
x2x3

; z2 D 1p
2

ln
x2
x3
: (10.11)

For D D 4, two homogenous linear systems need to be solved,

y1 � ˛2y2 � ˛3y3 � ˛4y4 D 0;

y1 C y2 C y3 C y4 D 0

and consequently also

y1 � ˛2y2 � ˛3y3 � ˛4y4 D 0;
.˛4 � ˛3/y2 � .˛4 � ˛2/y3 C .˛3 � ˛2/y4 D 0;

y1 C y2 C y3 C y4 D 0;
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in order to get the following coordinates (we use the abbreviation s D ˛2˛3C˛2˛4C
˛3˛4)

z�
1 D

1p
2.1 � s/

ln
x1

x˛22 x˛33 x˛44
;

z�
2 D

1p
2.1 � 3s/

ln x˛3�˛22 x˛2�˛43 x˛4�˛34 ;

z�
3 D

1
p
16.1� s/.1 � 3s/

� lnŒx.˛4�˛3/
2C.˛4�˛2/2C.˛3�˛2/2

1 x.1C˛3/.˛2�˛3/C.1C˛4/.˛2�˛4/2

� x.1C˛2/.˛3�˛2/C.1C˛4/.˛3�˛4/3 x.1C˛2/.˛4�˛2/C.1C˛3/.˛4�˛3/4 �:

Note that in the first system it was possible to set y1 D 0 so that the part x1 occurs
just in the coordinates z�

1 (describing the relevant relative information concerning
x1) and z�

3 (that stands for the redundant one). Similarly, we could proceed also
to higher dimensions, nevertheless, growing complexity of the explicit formulas is
expected.

As an alternative to the above systems of linear equations, it is possible to
consider also the linear relation between the hyperplaneH of vectors of logcontrast
coefficients and the real space RD�1 to express them as unconstrained vectors.
Consequently, we can use the Gram–Schmidt orthonormalization principle, and a
set of orthonormal logcontrasts containing given a1 is finally obtained by expressing
the resulting vectors back in H . On the other hand, by applying this transformation,
a direct link of the logcontrast coefficients and the original compositional parts,
necessary for the possibility of excluding x1 from the remaining coordinates
(up to one), seems to be lost. Obviously, further research in this direction is
needed.

10.4 Robust Regression with Compositional Explanatory
Variables

Interpretable orthonormal coordinates are of particular interest for the case of regres-
sion with compositional explanatory variables, when the task is to quantify (relative)
contributions of single compositional parts to a non-compositional response (Hron
et al. 2012). In order to be able to apply statistical inference like hypotheses testing,
it is preferable to express the regression model in orthonormal coordinates. Depend-
ing on the part of interest for the statistical inference, appropriate orthonormal
coordinates need to be constructed. Using the notation from Sect. 10.2, if the interest
is in inference about part xj of the composition x, the corresponding coordinates that



178 P. Filzmoser and K. Hron

need to be used as explanatory variables are .z.j/1 ; : : : ; z
.j/
D�1/. In the case j D 1, the

regression model for a response Y has the following form:

E.Yjx/ D ˇ0 C ˇ1z1 C : : :C ˇD�1zD�1:

The parameter ˇ1 that stands for the contribution of the coordinate z1 to explaining
the response will be of primary importance here, since z1 contains all the relative
information about the part x1 which is of main interest. Also the absolute term
parameter ˇ0 is usually considered for further analysis. Generally, we consider D
regression models

E.Yjx/ D ˇ.j/0 C ˇ.j/1 z.j/1 C : : :C ˇ.j/D�1z
.j/
D�1; j D 1; : : : ;D; (10.12)

where just the parameters ˇ.j/0 and ˇ.j/1 are of interest for the interpretation.
Having a concrete realization of the experiment, the regression parameters

can be estimated using the standard LS (Least Squares) method. Nevertheless,
as both the compositional covariates and the real response can be affected by
outlying observations, it is preferable to use robust alternatives. Due to pos-
sible changes of the orthonormal coordinate system for the composition x D
.x1; : : : ; xD/

0, just x-affine equivariant estimators are considered. Fortunately, this
holds for both LTS (Least Trimmed Squares) (Rousseeuw 1984) and MM esti-
mators (Yohai 1987) that are frequently used in practice. Consequently, for the
robust (but also for the classical) estimators Ǒ.j/0 ; Ǒ.j/1 ; : : : ; Ǒ.j/D�1 the following
holds:

• Ǒ.1/
0 D : : : D Ǒ.D/0 , i.e. the absolute term parameters are equal for any choice of

orthonormal coordinates,
• the resulting robust coefficient of determination (R2) is invariant to orthonormal

coordinates of the compositional covariates,
• the same also holds for the F-statistic testing for the significance of the covariates

in the regression model.

As mentioned in the previous section, the generalization of balances (10.3) to
coordinates z�

1 ; : : : ; z
�
D�1 representing weighted balances can be also extended

by a permutation of the parts in the formula (10.5) to z�.j/
1 ; : : : ; z�.j/

D�1; j D
1; : : : ;D, to stress the role of part xj in the first coordinate by choosing

appropriate weights ˛
.j/
2 ; : : : ; ˛

.j/
D , and used in the regression models (10.12)

instead of z.j/1 ; : : : ; z
.j/
D�1. By doing so, none of the mentioned properties is

lost, the models just suppress the influence of noisy (or similarly affected)
parts in the first coordinate that stands for the relevant relative information
concerning the compositional part of interest. Additionally, robust regression
also allows for a downweighting of outlying observations through the estimation
process.
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10.4.1 Example 3: Regression on Weighted Balances

We consider a data set that relates to the classification of different types of glass. The
response variable is the refractive index, and the oxide content of different elements
is available for the use within a regression model as explanatory variables. The com-
plete data set has 214 observations and eight oxides, and it is published at the UCI
Machine Learning Database Repository (http://www.ics.uci.edu/~mlearn/
MLRepository.html). Here we want to illustrate the case of D D 3 regressor vari-
ables, and thus we use only the oxides Al, Ca, and Si, which form a subcomposition.
Moreover, for reasons of illustrating the methodology, all the relative information
about Al in the subcomposition is of main interest, and therefore the weighted
balances will be constructed with Al in the first position (x1).

Using the unweighted balances z1 and z2 according to the definition (10.11)
as explanatory variables in the regression model, we obtain the results shown in
Table 10.1 for the classical LS-estimator (snippet of the R summary of the function
“lm”). Both balances z1 and z2 are significant in the model. z1 describes all relative
information about Al, and z2 includes the relative information of Ca versus Si.

Now we compare the result with weighted balances, using the definition (10.10).
In this example we set the weights ˛2 D 2=3 and ˛3 D 1=3, so giving more priority
to the relevant information about Al. This choice of the weights is subjective, but
it allows to get certain insights into the effect on the results. Table 10.2 shows the
outcome. Again, both weighted balances z�

1 and z�
2 are significant in the model.

Compared to the results in Table 10.1, the regression coefficient for the first balance
has increased (from 0.0018 to 0.0023), which is a consequence of changing the
priorities of the logratios ln x1

x2
and ln x1

x3
in z1 to weighted versions in z�

1 . The
coefficient for the second balance is almost unchanged. Note that the second
weighted balance now also includes information about x1, see (10.10). As mentioned
previously, we obtain the same intercept, the same R2, and the same value for the
F-statistic as for the unweighted balances.

The results from classical LS-estimation are compared to robust MM-regression
in Table 10.3 (unweighted balances) and Table 10.4 (weighted balances). These
tables contain snippets of the summary outputs of the R function “lmrob”. We added

Table 10.1 Result of the R function “lm” for classical LS-regression on the unweighted balances

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5462485 0.0023988 644.584 < 2e-16
z1 0.0017991 0.0003935 4.572 8.22e-06
z2 0.0216312 0.0012246 17.663 < 2e-16

Residual standard error: 0.001654 on 211 degrees of freedom
Multiple R-squared: 0.7063, Adjusted R-squared: 0.7035
F-statistic: 253.7 on 2 and 211 DF, p-value: < 2.2e-16
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Table 10.2 Result of the R function “lm” for classical LS-regression on weighted balances

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.546248 0.002399 644.584 < 2e-16
z1* 0.002321 0.000532 4.363 2.01e-05
z2* 0.021581 0.001171 18.428 < 2e-16

Residual standard error: 0.001654 on 211 degrees of freedom
Multiple R-squared: 0.7063, Adjusted R-squared: 0.7035
F-statistic: 253.7 on 2 and 211 DF, p-value: < 2.2e-16

Table 10.3 Result of the R function “lmrob” for robust MM-regression on the unweighted
balances

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5382781 0.0025955 592.68 <2e-16
z1 0.0034022 0.0003743 9.09 <2e-16
z2 0.0189489 0.0012559 15.09 <2e-16

Robust residual standard error: 0.0009161
Robust multiple R-squared: 0.8882105

Table 10.4 Result of the R function “lmrob” for robust MM-regression on weighted balances

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5382781 0.0025955 592.681 <2e-16
z1* 0.0002401 0.0005633 0.426 0.67
z2* 0.0192505 0.0011833 16.269 <2e-16

Robust residual standard error: 0.0009161
Robust multiple R-squared: 0.8882105

the outcome of a robust R2 measure defined by Renaud and Victoria-Feser (2010)
as

R2w D

0
B@

Pn
iD1 wi.yi � Nyw/.Oyi � NOyw/qPn

iD1 wi.yi � Nyw/2
Pn

iD1 wi.Oyi � NOyw/2

1
CA

2

(10.13)

with Nyw D .1=Pwi/
P

wiyi and NOyw D .1=Pwi/
P

wi Oyi, where yi are the values of
the response, and Oyi are the predictions from the model, for i D 1; : : : ; n, and n the
number of observations. The weights wi D w.ri; c/ are directly taken from the fitted
model, using a weight function w for the standardized residuals ri D .yi � Oyi/= O
 ,
with the robustly estimated residual standard deviation O
 . The weight function used
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as default in the function “lmrob” is Tukey’s biweight, with the tuning constant
c D 4:685061 (Maronna et al. 2006).

Also Tables 10.3 and 10.4 show that the estimate for the intercept and the
robust R2 do not change. Note that there is a big difference between the estimated
regression coefficient for the first balance in the unweighted and weighted version.
This also causes that z�

1 is no longer significant. Of course, we cannot conclude that
relative contributions of Al do not play any role for values of the response since
Aluminium is now contained also in coordinate z�

2 . Nevertheless, the relevant part
of that information (by suppressing the role of Si in favor of Ca) is indeed no more
influential.

It may also be interesting to see why the models for LS- and MM-estimation
differ. Figure 10.5 shows the comparison of the response with the predicted
response, for LS- (left) and MM- (right) estimation. The symbol size in the right
plot is related to the inverse weights. Thus, observations with large residuals are
downweighted in robust regression. Those observations are also downweighted for
the robust R2. Using the weighted observations in LS-estimation would result in the
same coefficient estimates as for MM-regression. Note that the (robust) residuals
are the same for the unweighted and the weighted balances.

In order to provide deeper insight into the effect of using different weights for
defining the weighted balances, we continuously change the weights ˛2 and ˛3,
considering of course the restriction ˛2 C ˛3 D 1. Figure 10.6 (left) shows on the
horizontal axis the ratio ˛3=˛2, and the vertical axis represents the corresponding
value of the t-statistic for the first weighted balance z�

1 . The results for both LS-
regression and MM-regression are shown. Within the two dashed horizontal lines,
the test for the corresponding regression parameter does not lead to significance,
while outside we obtain significant contributions of this balance to the model.
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Fig. 10.5 Observed versus predicted response, for LS- (left) and MM-estimation (right). The
symbol size in the right plot is inverse proportional to the weights from MM-regression
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Fig. 10.6 Changing the weights for the weighted balances in terms of a modified ratio ˛3=˛2 . Left:
resulting t-statistics for z�

1 of classical and robust regression with information about significance
(outside the horizontal band); right: change in the data structure according to the modified weights

Figure 10.6 (right) shows how the data change in the space of the explanatory
variables (z�

1 and z�
2 ) according to the weighting scheme. The upper point cloud

corresponds to the scheme ˛3=˛2 D 1=5, and the lower cloud to ˛3=˛2 D 5. The
lines connecting the points are the changes of the data according to the change in the
weights—and these correspond to the horizontal axis in the left picture. This figure
shows that using different weights for the balances only changes the priorities of
the involved parts, but they do not alter the outlyingness of the observations for the
regression model. Robustness in regression is thus still important. Even more, the
role of outliers can vary among good/bad leverage points and vertical outliers by
different weight settings and thus pronounce more or less different results between
classical and robust methods as it seems to be also the case in Example 3.

10.5 Summary and Conclusions

Recent experiences with orthonormal coordinates for compositional data, and par-
ticularly with balances of type (10.3) that enable to capture all relative information
about a part of interest through summing of the corresponding logratios, point out
that an automated version of coordinates must not necessary lead to meaningful
results. This is due to rounding errors and other effects related to scale invariance
and relative scale properties of compositional data that affect the geometric mean
in the denominator of the resulting logcontrast. Though, from a theoretical point of
view, it is very elegant to have all information about an element “concentrated”
in one coordinate, a “robust” alternative to the coordinates (10.3), obtained by
assigning weights to the remaining parts in the composition (or the corresponding
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logratios), can lead to more reliable results. As the remaining (waste) information
about the part of interest can be stored in just one additional coordinate, the
resulting orthonormal coordinate system still conveys interpretable outputs. On the
other hand, it seems that constructing such coordinates for a general number D of
compositional parts calls for quite an effort, as a careful choice of free parameters
in systems of linear equations is needed in order to get coordinates that are useful
for an interpretation. Moreover, in the regression context also the role of outlying
observations (leverage points, vertical outliers) can vary with different choices of
elemental weights by preserving the overall multivariate data structure, as different
orthonormal coordinate systems are just rotations of each other. We leave concrete
answers to these considerations to further research.
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Chapter 11
Computation of the Oja Median by Bounded
Search

Karl Mosler and Oleksii Pokotylo

Abstract A new algorithm is given for the exact calculation of the Oja median.
It modifies the algorithm of Ronkainen et al. (Developments in Robust Statistics,
Springer, Berlin, 2003) by employing bounded regions which contain the median.
The regions are built using the centered rank function. The new algorithm is faster
and has less complexity than the previous one. It is also used for an even faster
approximative calculation.

Keywords Algorithm • Centered rank function • Combinatorial invariance •
Multivariate median • Oja outlyingness function

11.1 Introduction

A basic task in multivariate analysis is to describe the general location of data
by some point in their middle. Several notions of multivariate medians have been
proposed in the literature. They extend different properties and characterizations
of the usual univariate median to Euclidean k-space. Besides these defining char-
acterizations the multivariate medians may be distinguished by their invariance
properties. These include invariances against monotone transformations of the
marginals (like the componentwise median), against spherical transformations (like
the spatial median), against affine transformations (like the Oja median, proposed
in the seminal paper Oja 1983), and combinatorial invariance. The latter means
that the data may be varied in their compartments without changing the median.
Examples are the Tukey median (Tukey 1975) and the simplicial median by Liu
(1988). These medians are, at least in some sense, more robust against outlying data
than the arithmetic mean, which is the center of gravity. Multivariate medians are
surveyed by Small (1997) and Oja (2013).
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Like the univariate median most of the multivariate medians can be regarded as
maximizers of goal functions, so-called data depths, the Tukey depth, the simplicial
depth, the Oja depth, and the spatial depth, among others. See Mosler (2013) for a
recent survey.

To be applicable to realistic problems, a median must be computable for
dimensions k > 2 and at least medium sized data sets. Here we develop an algorithm
to calculate the exact value of the Oja median and demonstrate that it is faster,
having also less complexity, than the existing ones by Niinimaa et al. (1992) and
Ronkainen et al. (2003), ROO hereafter. The exact algorithm can also serve as a
benchmark for faster heuristic procedures. In principle, the computation of the Oja
median involves repeated checking of all intersections of hyperplanes generated by
the data. Our main idea is to introduce bounding hyperplanes that iteratively restrict
the area where the median is searched.

The paper is structured as follows: Sect. 11.2 introduces the Oja median and
depth and some basic notions and properties connected with them, it also sketches
the algorithm of Ronkainen et al. (2003) for exact calculation of the Oja median.
In Sect. 11.3 the ideas of the new bounding procedure are discussed, followed by a
description of the algorithm in Sect. 11.4. Finally, in Sect. 11.5 numerical experience
is reported regarding data in R

k for k up to dimension seven.

11.2 Oja Median and Depth

Let X D fx1; : : : ; xng be a data set of observations in R
k. Each k observations

xi1 ; : : : ; xik generate an observation hyperplane passing through them, which is
notated by p D .i1; : : : ; ik/, 1 � i1 < : : : < ik � n. Let P denote the set of all�n

k

�
observation hyperplanes.
k observations together with a given point x 2 R

k span a simplex in k-space. Its
k-dimensional volume is found as

Vp.x/ WD V.xi1 ; : : : ; xik ; x/ D
1

kŠ
abs

�ˇ̌
ˇ̌ 1 : : : 1 1

xi1 : : : xik x

ˇ̌
ˇ̌
	

D 1

kŠ
abs.d0p C dp

>x/:

Here d0p is the distance of the hyperplane p from the origin, and dp is its normal,
given by the vector of cofactors of x in the determinant. The average of all such
volumes is mentioned as the Oja outlyingness function of x,

O.xjX/ D avei1<:::<ik .V.xi1 ; : : : ; xik ; x//

D avei1<:::<ik

�
1

kŠ
abs

�ˇ̌
ˇ̌ 1 : : : 1 1

xi1 : : : xik x

ˇ̌
ˇ̌
		

D 1

kŠ
avep2P

�
abs.d0p C d>

p x/
�
: (11.1)
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It is clear from (11.1) that the Oja outlyingness function is piecewise linear and
convex on x as well as continuous on x and the data in X. The minimizer of the
outlyingness function is the Oja median, Med.X/. Generally, this median is not
unique but forms a convex set. The Oja median is a measure of location and affine
equivariant regarding X,

Med.Y/ D AMed.X/C b ; (11.2)

if Y D fAx1 C b; : : : ;Axn C bg with some matrix A of full rank k and b 2 R
k; see

Oja (1983). The outlyingness function can be made affine invariant (to simultaneous
transformation of x and X) by multiplying it with a proper scale factor, viz.
.det S.X//�1=2, where S.X/ is a positive definite k � k matrix depending on X and
measuring the dispersion of the data cloud X in an affine equivariant way, that is,
with Y as above, satisfying

S.Y/ D A>S.X/A: (11.3)

In particular, the usual covariance matrix of X can serve as S.X/. The Oja depth
function is defined as (Zuo and Serfling 2000)

depth.xjX/D 1

1CO.xjX/.det S.X//�1=2
: (11.4)

Observe that the Oja depth function is affine invariant and continuous. It is maximal
at the Oja median of X and vanishes for jjxjj ! 1. Given X, the depth function
is a strictly decreasing transformation of the outlyingness function and, thus, the
contour lines of the two functions coincide, though at different values. As the
function O.�jX/ is convex, all its contour lines are convex. Hence the level sets of
the Oja depth are convex and compact sets in R

k. Moreover, the Oja depth decreases
monotonically on rays from each point in the median set.

In the case of a centrally symmetric distribution the median set includes the
center of symmetry. It can be shown that the Oja depth function determines the data
cloud X uniquely (Koshevoy 2003). The usual breakdown point of the Oja depth is
zero, while a slightly different notion of breakdown appears to be positive (Niinimaa
et al. 1990).

Given X, the centered rank function R is defined by

R.x/ D 1

kŠ
avep2P

�
Sp.x/dp

�
;

where

Sp.x/ D sign.d0p C dp
>x/;



188 K. Mosler and O. Pokotylo

indicates on which side of the hyperplane p the point x is located. Note that R.x/
is the derivative of (11.1), at all x at which O.�jX/ is smooth. Hence, as O.�jX/ is
convex, the centered rank function is a subgradient of the outlyingness function, at
all x 2 R

k. Below,�R.x/will be used as a direction of descent at point x. It is easily
seen from (11.1) that the outlyingness function is also represented as

O.x/ D 1

kŠ

�
avep2P.Sp.x/d0p/C avep2P.Sp.x/dp

>x/
�

D 1

kŠ

1�n
k

�
�
D0.x/C D.x/>x/

�
; (11.5)

where the sums,

D0.x/ D
X

p2P

Sp.x/d0p ; D.x/ D
X

p2P

Sp.x/dp ; (11.6)

are piecewise constant. They change by 2d0p and 2dp, respectively, when a
hyperplane p is crossed.

11.2.1 Calculating the Median According to ROO

In what follows we assume that the data are in general position. Hettmansperger
et al. (1999) have shown that a version of the Oja median is always found
among the intersection points of observation hyperplanes. The exact algorithm of
ROO iteratively optimizes the outlyingness function along the intersection lines of
k � 1 observation hyperplanes, called observation lines. At first a searching line
is randomly selected among the observation lines and the outlyingness function
is optimized along the line. When the point of the minimum is found, the next
searching line through this point is chosen. The possible choices of lines depend
on the type of the point: the smallest number of lines is obtained if the point is
an intersection of hyperplanes that have no common observation points, the largest
number is obtained if the point coincides with one of the observation points; see
also the discussion before Sect. 11.4.1.

Minimizing the outlyingness function along the searching line is the most time-
consuming task. The chosen line L is intersected with all hyperplanes and the
outlyingness function (11.1) is calculated at each intersection point. At the first
intersection point the constant terms d0p and dp are summed up along with the signs
Sp.xm/, yielding the sums D0, and D according to (11.6). Then the other intersections
are considered step by step. The outlyingness function is calculated as in (11.5). In
each new point one of the hyperplanes changes its sign and the sums Dp and D
are updated. Note that there are

�n
k

�
intersections, almost all of which have to be

considered, which causes the great complexity of the algorithm.
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11.3 A Bounding Approach

The centered rank function is a subgradient of the outlyingness function. Note that
no unique gradient exists at intersections of the observation hyperplanes, hence the
centered rank function will in general not vanish at the Oja median. The negative
rank function (= negative subgradient)�R.x/ is a vector that points in a direction of
descent of the outlyingness function, hence ascent of the depth function. It defines
a hyperplane through x, which separates the space into two halfspaces. The positive
side of the hyperplane is indicated by the negative subgradient, which equals the
negative rank function. Therefore, the Oja median is always found on the positive
side of these hyperplanes.

Regarding the Oja depth function, observe that its subgradients have the same
direction as the negative subgradients of the Oja outlyingness function,

grad depth.x/ D �R.x/ .det S.X//�1=2 .depth.x//2 :

Their contour lines coincide since the depth function is a strictly decreasing
transform of the outlyingness function.

An example of Oja depth contours and subgradients of the depth function is
shown in Fig. 11.1. As expected, all negative subgradients point to the halfspace
containing the median, and the gradients are perpendicular to the depth contours.

The halfspaces defined by the negative rank function can be used to build
a bounded region that contains the median. In our algorithm we select those
halfspaces in an iterative way and restrict the further search to their intersection. The
hyperplanes bordering such a search region will be called bounding hyperplanes

Fig. 11.1 An example of Oja depth contours with values of the negative rank function. The median
(unique) is shown at the intersection of the observation lines as a bold point, together with its
subgradient
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or simply bounds. The bounded regions reduce the complexity of the searching
procedure by reducing the number of hyperplanes that cross the searching lines
as well as the number of their intersections actually considered in the minimization
procedure.

The obtained hyperplanes form a bounded region, which is the intersection of
the positive sides of the hyperplanes. Actually, such a bounded region is determined
by part of these hyperplanes only, as bounds lying outside the region provide no
additional information. In our algorithm, we adjust the bounded regions step by step.
We begin with a rectangular region limited by hyperplanes that are perpendicular to
the coordinate axes and go through the maximal and minimal coordinates of the
data points on these axes. Then we add hyperplanes as new bounds. For each added
new bound it is checked whether it is efficient, that is, actually crosses the bounded
region, and thus reduces it. Then the intersection of the new hyperplane with the
bounded region is determined, and all bounds that are made inefficient by the new
one are removed. To check whether a hyperplane crosses the bounded region, it
suffices to check if there exist any two bounds’ intersections lying on different sides
of the hyperplane. As the calculation of the Oja rank function is itself a rather
expensive operation, we will try to obtain the smallest possible central region by
performing as few calculation as possible.

We have developed several approaches of the iterative bounds search. The
divisive approach (A) is the simplest solution.

Approach A:
The bounded region is iteratively reduced by a divisive approach (A) viz. by iteratively
adding hyperplanes that go through a properly chosen central point of the region and
have their normal vectors equal to the corresponding negative rank function. The central
point should be selected to cut a large amount of volume from the bounded region, and
shall ideally be the center of the volume, so that any hyperplane through this point will
approximately cut off half of the bounded region’s volume. Here, we select the mean value
of the bounds’ intersection points as a central point. As the region is reduced by a hyperplane
through the central point, it is expected that its volume shall become (on an average) twice
smaller at each step. Ideally, after nine such steps, in any dimension k, a subspace volume
of approximately 0.1 % of the initial one should be obtained. The experiments in Sect. 11.5
show that the volumes decrease slower in concrete calculations.

The divisive approach (A) considers only the directions of the subgradients,
although their lengths also give the information about the location of the median.
Another solution (approach B) consists in moving along the subgradients as it is
shown in Fig. 11.2a. The length of R.x/ decreases as x moves towards the median.

Approach B:

(1) Start with i D 0. Select an initial point x0 . Specifically, we choose the componentwise
median of all observations.

(2) Determine the subgradient �R.xi/.
(3) Add the subgradient vector, xiC1 D xi � R.xi/, and continue.

We continue building such gradients, each time getting closer to the median, until they
become either zero or increase in length. The zero case means that the point xi lies in
the median set, where the Oja depth assumes its minimal value. As it is seen in Fig. 11.1,
the subgradient’s length depends not only on the distance from the median, but also on the
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a

b

Fig. 11.2 A gradient path (a) and a bounded region (b), built using the gradients. The subspaces,
cut off by each of the bounds are shaded

subspace, formed by hyperplanes, that contains xi. Thus if the gradients become longer, their
lengths may be restricted to the length of the shortest one, and this bound will consequently
decrease.

Several of the gradients found may be used to build the bounded searching region,
containing the median. The points having shortest gradients are closest to the median. An
example of a bounded region built on such gradients is shown in Fig. 11.2b.

The divisive approach needs an almost constant number of calculations to reach
the intended volume. However, the efficiency of moving along the subgradients
(approach A) strongly depends on the form of the data. In most cases, the subsequent
gradients extend in rather different directions, and the volume of the bounded region
decreases fast. But in certain cases, especially with asymmetric datasets, this is not
true. The subgradients in the sequence may approach the median in a more common
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direction and thus leave too much space inside the bounded region. The gradients
may also end outside the bounded region or jump between two subsets formed by
the observation hyperplanes, providing not much information on each step.

It is therefore reasonable to start with moving along the subgradients, and then, as
soon as this procedure slows down, shift to the divisive procedure, until the needed
volume is reached:

Approach C:
This yields the following hybrid approach, where the next cutting point may be defined as
the end of the subgradient, xiC1 D xi �R.xi/, as long as it lies inside of the bounded region,
or as the center of the bounded region otherwise.

Approach D:
Also the direction of the subgradients can be used to define the next cutting point as a central
point of the segment between the subgradient’s origin and its intersection with the bound.

Further, the calculation can be accelerated by using rougher bounds, viz. enlarg-
ing the given bounded region by a circumscribed k-variate box. Then a fortiori a
point lies outside the bounded region if it lies outside the circumscribed box.

Once a bounded region is defined, the observation hyperplanes lying outside
of it are excluded from the searching process, which decreases the number of
intersections when minimizing on a line. A problem may occur if the bounded
region contains no path through the intersections of the observation lines from the
initial searching line to the line containing the median. Such a path connecting any
two observation lines may be provided by including the bounds themselves into
the searching process as ordinary observation hyperplanes. Figure 11.3 shows an

Fig. 11.3 A path through the observation lines (thin gray) and the bounds (bold green). We start
from taking one of the bounds AB as the initial line, and find a minimum point B. Then the
outlyingness function is minimized along the next line through this point. As it is seen from the line
CE, the point of minimum E is not necessarily the closest one (D) to the median, and the selected
path may be not the shortest one. The paths BC and EFM are isolated, as there are no observation
lines inside the bounded region to connect them, but they are connected with the bound CE
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example of a path from the initial line through the observation lines and bounds to
the median.

The bounding method may also be used to find the median in an approximative
way with some given precision. The space may be cut until the bounded region
has the proper size and its center may be taken as an approximation of the median.
It is clear that the median cannot lie outside the bounded region, so its center can
be assumed to be the median with precision equal to half of the region’s size. As
the method considers all observation hyperplanes, it cannot be more efficient than
existing approximative methods that consider subsamples of the data.

11.4 The Algorithm

To start with, the first bounded region is created as described in the previous section.
The desired size of the bounded region is selected as a part of the original volume.
Here the volume is calculated as the volume of a minimal multivariate circumscribed
rectangle with edges parallel to the coordinate axes. In subsequent iterations the
first bounded region is reduced until the desired volume is reached. Here, the
divisive approach (A) is considered, as it shows the best results in experiments (see
Sect. 11.5).

Next the initial line is determined. In a two-dimensional space any of the
observation lines crossing the bounded region may be selected. In higher dimensions
the search of the initial line is more complicated. All intersections of .k � 1/
hyperplanes are inspected until a first intersection line that crosses the bounded
region is found. For this, we start with the lines that border the initial bounded
region, which makes the search for a fitting line much easier.

It is clear that all points inside the bounded region lie on the same side of any
hyperplane which does not cross this region. Therefore, the respective parts of
the sums in (11.6) can be calculated beforehand, which significantly decreases the
number of calculations on each step. Thus, on every searching line we may restrict
ourselves to iterating the remaining hyperplanes.

The bounded region reduces the procedure of minimization along a line to its
part lying inside the region. The searching line is usually intersected by most of the
bounds. Therefore the two bounds that cut the bounding region at the intersection
line are of primary interest. In order to find these bounds, all bounds are sorted
according to their intersections with the searching line. Then the intersection point
of the first bound with the searching line is taken as a reference point. The first bound
which has the reference point on its positive side is selected as well as the previous
one. If the searching line goes through the bounded region, all other bounds must
have the reference point on the positive side. This property is used to determine
whether a searching line hits the bounded region in dimensions higher than two, as
there exist hyperplanes that are crossing the bounded region, but whose intersection
line lies outside of it, as it is shown in Fig. 11.4 for a two-dimensional example and
in Fig. 11.5 for a higher dimensional one.
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Fig. 11.4 Two lines: crossing the bounded region (1) and lying outside of it (2). The arrows show
the positive sides of the hyperplanes. The segments between the bounds, one having the reference
point on the negative and another one on the positive side, are shown in bold. A line that hits the
bounded region has only one such segment

Fig. 11.5 An example of an observation line lying outside of the bounded region (shown as a
sphere) formed by two hyperplanes crossing the bounded region in a higher dimensional space

The searching line is intersected with the included hyperplanes, and the outly-
ingness function (11.1) is calculated at every intersection point that lies between
the two bounds, found on the previous step. At first, the hyperplanes that intersect
the line outside the rougher, i.e. more liberal, bound are filtered out and added
to (11.6). Then the first bound’s intersection is taken as a median candidate, and
as a starting point for the minimization procedure. The left hyperplanes are added
to (11.6) with the sign they have in the first bound’s intersection. The intersection
points are iterated, the corresponding hyperplanes change the sign in the sum (11.6)
and the outlyingness function is calculated as in (11.5). The outlyingness function
is also calculated at the intersections with the bounds. When the second bound’s
intersection is reached, the procedure is terminated. The outlyingness function has
convex contours and therefore is unimodal on any line. However, in practice the
outlyingness function may slightly fluctuate when it is optimized along a line. In
this case, as soon as the outlyingness value begins to increase by a certain threshold
amount, the minimization along the line is terminated.
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When the minimum is found on the searching line, the next observation line
is chosen among the lines that contain the minimum. In the simplest case, k
hyperplanes, each defined by k unique observation points, define a point at their
intersection and produce k observation lines through this point. More complex cases
occur when some of the hyperplanes have observation points in common, and their
intersection point lies in an affine subspace of dimension d < k, generated by these
common points. Such a point may then be described by all possible observation
hyperplanes that have the same common points, and thus the number of observation
lines increases. If the number of observation lines exceeds the predefined maximum
number maxnL , ROO propose either to stop, or to take a random subset of these lines.
Fischer et al. (2010) in their R-package OjaNP used to choose a new initial line in
such cases.

If the minimum is defined with one or more bounds, we treat them like ordinary
hyperplanes. In order to explicitly determine the bounded region’s boarding lines
and corners, the bounds are identified by k unique points that are found as
intersections with the coordinate axes. If a bound is parallel to some of the axes,
the diagonal axes in the space are taken. Thus the bounds do not have identifying
points in common, and each intersection of the bounds and observation hyperplanes
produces a minimum possible number of observation lines.

11.4.1 Formal Description of the Algorithm

The formal description modifies the one of Ronkainen et al. (2003, A.1, A.2) and
includes parts of it to make the comparison easier. In particular, Procedure 1 extends
A.1 with the bounded region search (steps 2–14), and Procedure 3 modifies the
minimization algorithm A.2 to be used in a bounded region (added steps 1–6,
modified steps 18–31). Procedure 2 describes the bounded region construction as
in the divisive approach A.

Procedure 1 Compute the exact Oja median.

Input: Data set X D fx1; : : : ; xng in R
k.

The desired size s of the bounded box, s D bounded box volume
original volume .

Max number of observation lines to scan maxnL .
Output: Exact Oja median T D Med.X/.

1: Precalculate all observation hyperplanes p D .i1; : : : ; ik/, 1 � i1 < : : : < ik �
n.

2: Build the bounded region B, that is, the set of bounds defining it, using
procedure 2.

Chose the initial line L:
3: for all subsets Bs 
 B with jBsj D k � 1 do F find lines
4: Set L T

Bs.
5: Sort the bounds b 2 B according to their intersection points with L as ROO

do in A.2, i.e. if L D fL0 C ˇuL W ˇ 2 Rg and we have bi \ L D fL0 C ˇiuLg
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and bj \ L D fL0C ˇjuLg for some bi;bj 2 B, then i < j” ˇi < ˇj. Denote
the order b.1/;b.2/; : : : ;b.nb/, where nb D jBj.

6: Set y1  L \ b.1/.
7: i smallest i at which Sb.i/ .y1/ D 1.
8: if 9j W j > i; Sb.j/ .y1/ ¤ 1 then
9: Continue F the line is out of bounds

10: else
11: Break F the line is found
12: end if
13: end for

14: Precalculate 1
kŠ� the common part of (11.6), for given t in the bounded region:

H P
p…B

1
kŠSp.t/dp,

H0  P
p…B

1
kŠSp.t/d0p.

15: Compute OT arg mint2L O.t/ using procedure 3.
16: Set the median candidate T OT.
17: Initialize the collection of investigated lines L  fLg.
18: Let nL be the number of the observation lines containing OT.
19: if nL > maxnL then
20: There are too many possibilities. Goto 3.
21: end if
22: Construct the observation lines L 0  L1; : : : LnL .
23: Set L 0  L 0 nL .
24: while L 0 ¤ ; do
25: Find the line L 2 L 0 of deepest descent.
26: Compute OT arg mint2L O.t/ using procedure 3.
27: Update L  L [ fLg and L 0  L 0 n fLg
28: if O. OT/ < O.T/ then
29: T OT
30: Goto 16.
31: end if
32: end while
33: return T

Procedure 2 Build the bounded region as in the divisive approach A, Sect. 11.3.

Input: Data set X D fx1; : : : ; xng in R
k.

Precalculated observation hyperplanes P.
The desired size s of the bounded box, s D bounded box volume

original volume .
Output: The bounded region B.

Enclosing box E.
1: Define B ;. F the set of bounds
2: Define C ;. F the set of bounds’ intersections

Build the Initial Box:
3: for d D 1; : : : ; k do F index .�d/ means all coordinates from 1 to k except of d
4: Set the seed of a bound od  maxfx1d; : : : ; xndg, o�d  0.
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5: Set the normal vector nd  �1, n�d  0.
6: Define bound b with o and n.
7: ADDBOUND(b)
8: Set the seed of a bound od  minfx1d; : : : ; xndg, o�d  0.
9: Set the normal vector nd  C1, n�d  0.

10: Define bound b with o and n.
11: ADDBOUND(b)
12: end for F the Initial Box is now built

Proceed with the following divisions:
13: Calculate the original volume of the space as

OriginalVolume DQk
dD1 .max fx1d; : : : ; xndg �min fx1d; : : : ; xndg/

14: while NewVolume=OriginalVolume > s do
15: Define the center of B as NC.
16: Calculate the negative rank function g D �R. NC/.
17: Define bound b with NC and g.
18: ADDBOUND(b)
19: Calculate NewVolume D Qk

dD1

�
max fC1d; : : : ;CjCjdg �min fC1d; : : : ;CjCjdg

�

using the updated intersection points.
20: end while

21: function ADDBOUND(new bound b)
F here .b � x/ is the dot product of a point x and the normal vector of b

22: if (Initial Box is built) and
(sign.b � c1/ D sign.b � c2/8c1; c2 2 C) then

23: exit without changes F b lies outside of B
24: end if
25: for all subsets Bs 
 B with jBsj D k � 1 do F find new intersections
26: Set c T

.Bs [ b/
27: if 8b 2 B sign.b � c/Š D �1 then
28: Add the new crossing point C C [ c.
29: end if
30: end for
31: Add the new bound B B [ b.
32: C C n fc W c 2 C; sign.b � c/ D �1g. F Remove the cut off intersections
33: B B n fb 2 B W sign.b � c1/ D sign.b � c2/8c1; c2 2 Cg.
34: end function

Procedure 3 Minimize the outlyingness function O on the chosen line.

Input: Precalculated observation hyperplanes P.
Searching line L.
The bounded region B.
Enclosing box E.

Output: The minimum OT arg mint2L O.t/ or an empty point if L \ B D ;.
1: Sort bounds b 2 B according to their intersection points with L as in procedure

1.5, b.1/;b.2/; : : : ;b.nb/, where nb D jBj.
2: Set y1  L \ b.1/.
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3: Set yb1  L \ b.i�1/ and yb2  L \ b.i/ where i D arg mini.Sb.i/ .y1/ D 1/
4: if 9j W j > i; Sb.j/ .y1/ ¤ 1 then
5: return empty point. F the line is out of bounds
6: end if
7: Choose any point t0 2 B \ L (e.g. t0 D yb1).
8: Initialize D H, D0  H0, H  ;.
9: for all p 2 B do F Compute the sum for hyperplanes, crossing L outside of E.

10: if p \ L 
 E then
11: H  H [ p
12: else
13: D DC 1

kŠSp.t0/dp

14: D0  D0 C 1
kŠSp.t0/d0p.

15: end if
16: end for
17: Sort hyperplane indexes p 2 H according to their intersection points with L

as ROO do in A.2, p.1/ � p.2/ � : : : � p.np/, where np D jH j and < resp. �
denote the order of intersection points.

18: Define H1  fp W p 2H ; p \ L < yb1g,
H2  H nH1,
H3  fp W p 2H2; p \ L � yb2g.

19: Set y1  L \ p.1/ and ynp  L\ p.np/.
20: Compute D DCPp2H1

1
kŠSp.ynp/dp CPp2H2

1
kŠSp.y1/dp and

D0  D0 CPp2H1

1
kŠSp.ynp/d0p CPp2H2

1
kŠSp.y1/d0p.

21: Set potential minimum OT yb1.
22: Evaluate O. OT/ D D> OTCD0.
23: for all fi W p.i/ 2H3g do
24: Set D D � 1

kŠSp.i�1/ .y1/dp.i�1/ C 1
kŠSp.i�1/.ynp/dp.i�1/ ,

25: Set D0  D0 � 1
kŠSp.i�1/.y1/d0p.i�1/ C 1

kŠSp.i�1/ .ynp/d0p.i�1/ .
26: Set t L \ p.i/.
27: Evaluate O.t/ D D>tC D0

28: if O.t/ < O. OT/ then
29: Set OT t and O. OT/ O.t/.
30: end if
31: end for
32: return OT.

11.5 Numerical Experience and Conclusions

The new algorithm was implemented along the lines of the R-package OjaNP of Fis-
cher et al. (2010). A functionojaMedianExBwas implemented to be used in place
of the previous ojaMedianEx by ROO. A parameter alg="exact_bounded"
was added to the function ojaMedian, and the corresponding C++ routines were
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modified. The codes may be found on the second author’s page www.cgs.uni-koeln.
de/pokotylo.html. The benchmark values were measured inside the C++ routines,
using the file logging. This allows to easily compare the efficiency of the original and
modified algorithms, excluding the data transformation and hyperplanes generation
time.

The desired volume of the bounded region was set, and the calculation time was
determined for the new exact algorithm as well as for the ROO procedure. Best
results were received at around 10�8 of the original volume in most of tried datasets.
The new algorithm showed to be three to six times faster than the one by ROO.

The new algorithm is able to calculate data sets of the same size and dimension
as the ROO algorithm. It is mainly restricted by the amount of RAM, as it needs to
store all

�n
k

�
hyperplanes. For example, the calculation of the median in a data set of

size 5 � 100 needs 12 GB RAM. A PC with a 3.4 GHz processor and 32 GB RAM
was employed in the experimental studies. Only one processor core was used. The
algorithm was able to find the median in data sets of sizes 3� 750, 4� 150, 5 � 75,
6 � 50 in less than half an hour, and of sizes 4 � 200, 5 � 100 in less than an hour.

In constructing the bounded regions we have tried the different variants proposed
in Sect. 11.3. As it was observed, all proposed approaches (B, C, D) that use the
subgradient’s ending point or direction to define the next cutting point converge
extremely slow, compared to the simple divisive approach (A). Although the
subgradients may sometimes produce really good cutting points, which strongly
reduce the bounded region, they often stick at the angles of the bounded region,
so that the next steps reduce the bounded region by a narrow slice only, which is
close to an existing bound. Particularly in higher dimensions, the subgradients also
appear to be too short, so that the amount of the volume cut in each step becomes
unsatisfying. Therefore in out search we desist from the lengths of the subgradients
and use only their directions. All the numerical results provided in this paper were
received using the divisive approach starting with the initial rectangular bounded
region. The number of cuts needed to obtain the desired volume appears to depend
only moderately on the size and dimensionality of the data.

For both algorithms, the ROO and the new one, the performance of the searching
procedure strictly depends on the selected initial line. As ROO select this line at
random, their calculation times differ significantly between different launches. Our
bounding algorithm selects the firstly found border line of the bounded region as the
initial line, which makes the searching path completely deterministic, although in
general not the fastest possible.

Employing bounds considerably decreases the complexity of the algorithm. The
minimization along a line produces most of the complexity of the ROO algorithm.
The line is intersected with H D �n

k

�
hyperplanes, the intersections are sorted and all

of them iterated, which has a complexity of O.H2 log H/. The bounding algorithm
leaves a smaller amount h < H of hyperplanes. Only b hyperplanes, b < h, that
have intersections between the bounds remain to be considered. The rougher bound
also strongly decreases the number of hyperplanes which need to be sorted to s W
b < s < h. This provides a complexity of O.b � h log s/ only.

www.cgs.uni-koeln.de/pokotylo.html
www.cgs.uni-koeln.de/pokotylo.html
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Tables 11.1, 11.2, and 11.3 exhibit a few exemplary results. The experi-
mental data is an even mixture of two multidimensional normal distributions
N.0k; diag.1k// and N.Œ15; 0; : : : ; 0�k; diag.Œ1; 25; 1; : : : ; 1�k// although the conclu-
sions are the same for the data having other form and for the real data sets. They
show how the performance parameters listed below depend on the data dimension
and size, given the intended volume equal to 10�8 (for Tables 11.1 and 11.2), where
#Cuts is the number of cuts needed to reach the intended volume using the divisive
approach, H. planes (%) is the percent of the hyperplanes intersecting the bounded
region, #Steps is the number of minimization steps needed to find the median, and
time periods needed to: determine the bounded region Tbounds, calculate the median
(after the bounded region is determined) Tcount, perform the whole procedure Ttotal,
and to find the median using the algorithm by ROO Toriginal. The given times do not
include the generation of all observation hyperplanes, which is the same for both
algorithms.

The part of the hyperplanes crossing the bounded region of the given volume
grows quickly with dimension, as it is seen in Tables 11.1 and 11.3. On the other
hand, the part of these hyperplanes that take part in the minimization process
decreases, since many of their intersections with a searching line lie outside the
bounded region. Note that the bounded region, being located in the middle of

Table 11.1 The performance parameters for n 2 f50; 75g and intended volume 10�8

k n #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal Toriginal

2 50 29 0.16 3 0.009 0.001 0.010 0.018

3 50 39 0.64 9 0.216 0.053 0.269 0.557

4 50 42 3.33 34 3.015 2.433 5.448 25.529

5 50 42 9.65 45 31.359 42.876 74.235 476.600

6 50 45 17.65 77 345.128 774.382 1119.510 3149.010

2 75 32 0.11 2 0.023 0.002 0.025 0.038

3 75 36 0.34 14 0.658 0.243 0.901 3.033

4 75 42 2.11 39 15.353 13.720 29.073 110.291

5 75 45 7.17 70 281.888 474.461 756.349 2667.890

Table 11.2 The performance parameters for k 2 f4; 5g and intended volume 10�8

k n #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal Toriginal

4 25 38 3.26 25 0.159 0.095 0.254 0.707

4 50 42 3.33 34 3.015 2.433 5.448 25.529

4 75 42 2.11 39 15.353 13.720 29.073 110.291

4 100 43 2.60 35 49.360 41.691 91.051 338.950

5 25 44 11.77 39 0.930 0.932 1.862 6.171

5 50 42 9.65 45 31.359 42.876 74.235 476.600

5 75 45 7.17 70 281.888 474.461 756.349 2667.890

5 100 43 8.53 71 1166.930 2220.330 3387.260 9803.730
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Table 11.3 The performance parameters for data sets 4� 100 and 6� 50, with different intended
volumes

k n Volume #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal

4 100 1 36 338.950

4 100 10�02 14 67.45 50 17.648 283.936 301.584

4 100 10�03 18 46.62 49 23.216 201.245 224.461

4 100 10�04 22 28.47 39 28.304 112.429 140.733

4 100 10�05 27 14.23 48 33.403 97.364 130.767

4 100 10�06 31 9.76 29 37.707 49.499 87.206

4 100 10�07 37 5.47 38 44.391 55.032 99.423

4 100 10�08 43 2.60 35 49.360 41.691 91.051

4 100 10�09 47 1.64 33 57.209 37.402 94.611

4 100 10�10 52 0.83 33 59.709 35.347 95.056

4 100 10�20 97 <0.01 22 108.205 21.089 129.294

4 100 10�30 100 <0.01 13 109.004 12.778 121.782

6 50 1 73 3149.010

6 50 10�05 31 53.86 91 215.747 1842.733 2058.480

6 50 10�06 36 35.61 71 270.619 1272.041 1542.660

6 50 10�07 40 26.68 75 301.413 885.707 1187.120

6 50 10�08 45 17.65 77 345.128 774.382 1119.510

6 50 10�09 49 12.97 70 373.170 545.055 918.225

6 50 10�10 53 9.14 94 378.424 705.386 1083.810

Volume equal to one corresponds to the ROO algorithm

the data cloud, is intersected by most of the hyperplanes, so that the part of the
included hyperplanes is much larger than the part of the final volume, compared to
the initial one. Our calculations demonstrate that the part of included hyperplanes
strongly depends on the dimensionality and the number of observations, which is
also shown in Fig. 11.6. However, the number of observations has less influence
than the dimension.

These three tables also show that the new exact bounding algorithm finds
the median much faster than the one of ROO. We observe that for each given
data set the number of necessary minimization steps is almost the same in both
algorithms. As the intended volume is reduced, the time needed to build the bounded
region increases, while the minimization time decreases along with the number
of hyperplanes and their intersections involved, and the total time also decreases
(Table 11.3, Fig. 11.7). However, beyond some point, usually at around 10�08 of
the volume, this procedure becomes less efficient, and the total time increases. A
smaller volume may also contain a higher amount of isolated routes through the
observation lines, which involves travelling along the bounds and additionally slows
the procedure down.

If the volume is small enough, any point of it (e.g., the average of the bounds’
intersections) may be taken as an approximate value of a median. For example,
for a four-dimensional dataset bounded by a cube of side length 10, 10�8 of the
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Fig. 11.6 The dependence of the part of hyperplanes crossing the bounded region (log scale) on
the size of the region for k 2 Œ2::7� and n 2 f25; 50; 75; 100g

Fig. 11.7 The dependence of calculation time on the size of the bounded region. Note that the
ROO algorithm has total time of ca. 340 s

volume was reached in 43 cuts, and the center of the final bounded region equalled
the median ˙0:05 by each coordinate, which is quite precise. The precision of
this approximative method depends on the volume of the bounded region and is
controlled by it. The method yields as precise results as the approximative methods
provided in the OjaNP R-package. In general, the approximate value of the median
is found much faster than the exact one. We searched an approximative median with
precision equal to half of the bounded region’s volume, the computation times of
which are given in the column Tbounds of Table 11.3. However, this approximation
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method is not really useful, as it considers all observation hyperplanes and is
therefore largely outperformed by the approximative methods of ROO.
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Chapter 12
Algorithms for the Spatial Median

John T. Kent, Fikret Er, and Patrick D.L. Constable

Abstract The spatial median can be defined as the unique minimum of a strictly
convex objective function. Hence, its computation through an iterative algorithm
ought to be straightforward. The simplest algorithm is the steepest descent
Weiszfeld algorithm, as modified by Ostresh and by Vardi and Zhang. Another
natural algorithm is Newton-Raphson. Unfortunately, all these algorithms can
have problems near data points; indeed, Newton-Raphson can converge to a non-
optimal data point, even if a line search is included! However, by combining these
algorithms, a reliable and efficient “hybrid” algorithm can be developed.

Keywords EM algorithm • MM algorithm • Newton-Raphson algorithm •
Steepest descent • Vardi-Zhang algorithm • Weiszfeld algorithm

12.1 Introduction

Given n observations xi 2 R
p and fixed weights wi > 0, i D 1; : : : ; n, the spatial

median O� 2 R
p is defined to minimize

g.�/ D
nX

iD1
gi.�/ D

nX

iD1
wij�� xij (12.1)

where j��xij D fPp
jD1.�j�xij/

2g1=2 denotes the usual Euclidean distance between
� and xi. The spatial median has a long history in Statistics as a robust alternative to
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the sample mean vector. Kuhn (1973) traces the idea back to Fermat in the 1600s and
Simpson in the 1700s. Other reviews include Small (1990), Vardi and Zhang (2000),
and Oja (2010). Some of the more mainstream statistical contributions include
Haldane (1948) and Gower (1974). Brown (1983) discusses issues of statistical
inference. Other names for the spatial median are the “median center” and the
“multivariate L1 median.”

The purpose of this paper is to look at the numerical problem of iteratively
computing O�. Surprisingly, given all the attention that this problem has received
over the years, it still seems possible to give some new insights.

Provided the fxig are not collinear, g.�/ is a strictly convex function with a
unique minimum O�. As a first attempt to compute the spatial median, it seems
sensible to try standard optimization methods based on first and second derivatives.
However, there are two complications: (1) O� may sometimes coincide with one of
the data points fxig (a minor issue), and (2) the derivative of g does not exist at the
data points (a more major issue).

Differentiating (12.1) and setting the gradient to 0 yields the equation

O� D
Pn

iD1 wixi=diPn
iD1 wi=di

; di D j O� � xij; (12.2)

which must be satisfied if O� does not coincide with a data point. This identity
suggests an iterative “reweighting algorithm” based on the following updating
function. Let

M.�/ D
Pn

iD1 wixi=diPn
iD1 wi=di

; di D j� � xij; (12.3)

which is well defined provided� does not coincide with any of the data points. Thus
M.�/ is an adaptive weighted average of the data where the weights wi=di depend
on �. This reweighting algorithm is often named after Weiszfeld (see Kuhn 1973),
who seems to have been to first to discover it.

Note that if � is close to one of the data points, xk, say, then dk ! 0 whereas
all the di; i ¤ k, remain bounded away from 0; hence, M.�/ ! xk as � ! xk.
Thus we extend the definition of M.�/ by continuity to include the data points,
M.xi/ D xi; i D 1; : : : ; n; that is, the data points are fixed points of the Weiszfeld
algorithm.

Ostresh (1978) suggested a modified reweighting algorithm for which the only
fixed point is O�. It was independently rediscovered by Vardi and Zhang (2000), who
gave some additional properties. We shall label this algorithm the WOVZ algorithm.
Let M�.�/ denote the WOVZ update function. Details are given in Sect. 12.5. It can
be shown that the WOVZ update is always a steepest descent update. Further, given
any initial estimate �.0/, the iterates defined by �.C1/ D M�.�.// will always
converge to O�.

Thus here are some possible strategies for optimization, though problems can be
expected with derivative-based methods at or near data points.
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1. Enumeration. Check some or all the data points to see if they minimize g.
2. Derivative-free minimization methods such as the simplex or Nelder–Mead algo-

rithm. Such methods are reliable, but they are slower than suitably formulated
derivative-based methods, and are not considered further here.

3. First derivative (steepest descent) minimization methods, especially the WOVZ
algorithm, possibly with line search.

4. Second derivative minimization methods such as Newton-Raphson (NR), possi-
bly with line search.

5. More general convex optimization methods. These are discussed briefly in
Sect. 12.11.

There are two main objectives of this paper. The first is to give a detailed study
of the Weiszfeld and WOVZ algorithms. After setting out some basic properties of
g.�/ in Sect. 12.2, we analyze the behavior of Weiszfeld update M.�/ near the data
points in Sect. 12.3. Both EM and MM interpretations for the Weiszfeld algorithm
are given in Sect. 12.4, each of which ensures monotonicity of the algorithms.
However, the Weiszfeld algorithm is a very unusual EM algorithm because all the
data points are fixed points. This “flaw” is fixed by the WOVZ algorithm, whose
properties are examined in Sect. 12.5. The special one-dimensional case p D 1 is
studied in Sect. 12.6.

The Newton-Raphson algorithm is studied in Sect. 12.7. It has the unusual
property in this setting that, even with step-halving, it can converge to a non-optimal
data point.

Thus neither WOVZ nor NR is a very good algorithm on its own to compute the
spatial median. However, the second main objective of the paper is to show that by
combining WOVZ and NR together into a hybrid algorithm, it is possible to obtain
a reliable and efficient algorithm. Here reliability means that the algorithm should
never get stuck at a non-optimal data point. Efficiency means that the number of
iterations should not become indefinitely large for a starting point arbitrarily close
to a data point. The need to state these requirements explicitly will become clear
when we study various algorithms in detail.

Our final recommendation is a hybrid algorithm, where at each iteration we
choose the best possibility from

1. The nearest data point to the current estimate of �,
2. The WOVZ update, and
3. The NR update, with step-halving.

The rationale behind this choice is discussed in detail in Sect. 12.8 with some
numerical examples in Sect. 12.9. The paper finishes with a brief discussion
of existing software in R (Sect. 12.10) and more general convex optimization
algorithms (Sect. 12.11), together with a recap of the main conclusions (Sect. 12.12).

Hannu Oja has been one of the leading researchers into nonparametric and robust
methods for multivariate data. It is a great pleasure to include this paper in a volume
for his 65th birthday.



208 J.T. Kent et al.

12.2 Basic Properties of g.�/

Except for Sect. 12.6 we shall always assume that p � 2 and that the data points fxig
are distinct and do not lie on a single line in R

p. The first two derivatives of g.�/
are given by

rg.�/ D
X

wi.� � xi/=di; di D j� � xij; (12.4)

rrTg.�/ D
X

wifI=di � .� � xi/.� � xi/
T=d3i g; (12.5)

except at the data points where the derivatives do not exist. The ith term of (12.5)
is a positive semi-definite matrix of rank p � 1. Since the f.� � xi/g cannot all lie
in a common one-dimensional subspace, the terms of (12.5) cannot have the same
nullspace. Hence rrTg.�/ is positive definite, except at the data points where it
does not exist.

It is also useful to define a “restricted” objective function

gnk.�/ D
X

i¤k

wij� � xij; (12.6)

by excluding the kth data point. Although the full objective function is not
differentiable at � D xk, the restricted objective function is. Set

vk D rgnk.xk/ D
X

i¤k

wi.xk � xi/=dik; dik D jxk � xij (12.7)

and define the “repulsiveness” parameter for xk

˛k D jrgnk.xk/j=wk D jvkj=wk: (12.8)

It is well known that g.�/ is strictly convex. Hence the minimizer O� of (12.1)
is unique. Further, depending on the layout of the data, O� may or may not coincide
with one of the data points. In order to investigate this possibility, we look at the
behavior of g and its directional derivatives near a data point, xk, say. Let e0 2 R

p

be a unit vector and let � D xk C "e0 where " > 0 is small. By Taylor’s theorem

g.�/ D wk"C gnk.xk C "e0/

D wk"C gnk.xk/C "eT
0vk C 1

2
"2eT

0 frrTgnk.xk/ge0 C O."3/ (12.9)

where vk D rgnk.xk/ and rrTgnk.xk/ are well defined at � D xk, and where the
O."3/ term is bounded uniformly over the directions e0.

The non-collinearity of the data ensures that the span of the directions f.xk �
xi/ W i D 1; : : : ; n; i ¤ kg is R

p, so that the second derivative matrix of the
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restricted objective function, rrTgnk.xk/, is positive definite. Further, although the
full objective function is not differentiable at � D xk, its directional derivatives are
well defined. Letting � ! 0 in (12.9) we find the partial derivative @e0g.xk/ is given
by

@e0g.xk/ D wk C eT
0vk: (12.10)

We can now provide a simple condition based on the repulsiveness parameters to
check whether O� D xk for any choice of k.

Proposition 12.1 The spatial median satisfies O� D xk for some k, 1 � k � n, if
and only if ˛k � 1, a condition which can hold for at most one index k.

Proof If ˛k < 1 in (12.8), then �eT
0vk � jvkj D ˛kwk < wk for all unit vectors e0.

Hence the directional derivatives at � D xk satisfy

@e0g.xk/ D wk C eT
0vk > 0

for all e0. That is, � D xk is a local minimum of g, and hence the global minimum.
If ˛k D 1, then �eT

0vk < wk for all e0 except e0 D �vk=.˛kwk/. In this direction
it is necessary to go to the second term in the Taylor series expansion to ensure that
� D xk is a local (and hence the global) minimum.

Finally, if ˛k > 1, then g.�/ decreases in the direction e0 D �vk=.˛kwk/, so that
� D xk cannot be the minimizing value.

In the language of convex optimization, a subgradient of g.xk/ is a vector v such
that g.x/ � g.xk/ � vT.x � xk/ for all x. The set of all subgradients at xk is called
the subdifferential at xk and is denoted @g.xk/. Then the proposition can be recast to
state that ˛k � 1 if and only if the origin is in the subdifferential @g.xk/.

As a result of the proposition, let us say that xk is “sticky” if ˛k � 1 and
“nonsticky” if ˛k > 1.

12.3 Behavior of the Weiszfeld Algorithm

In this section we summarize some of the basic properties of the Weiszfeld
algorithm.
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12.3.1 Steepest Descent Property

Suppose � is not equal to any of the data points. From (12.3) and (12.4) with di D
j�� xij,

M.�/� � D
P

wi.xi � �/=diP
wi=di

/ �rg.�/; (12.11)

so that M.�/ lies on the line of steepest descent from�. If � equals one of the data
points, then � is a fixed point of the algorithm, M.�/ D �, so the algorithm still
has the steepest descent property, at least in a degenerate sense.

12.3.2 Behavior Near Data Points

Let � D xk C "e0 lie near a data point. Kuhn (1973) gives an expansion for the
updating function. From (12.3),

M.�/ � xk D
P

wi.xi � xk/=diP
wi=di

D 0CPi¤k wi.xi � xk/=di

wk="CPi¤k wi=di

D � "
wk

X

i¤k

wi.xk � xi/=dik CO."2/

D � "
wk

vk CO."2/: (12.12)

Note that in the last two lines we have replaced di D j��xij by dik D jxk�xij for
i ¤ k, with the difference absorbed in the O."2/ term. There are several important
messages from (12.12).

1. To first order M.�/ does not depend on e0 but lies on the ray of steepest descent
for the restricted objective function gnk.�/ at� D xk. If xk is nonsticky (˛k > 1),
then from (12.10), this ray is also the ray of steepest descent for g.�/ at � D xk.
On the other hand, if xk is sticky (˛k < 1), this direction is the ray of shallowest
ascent for g.�/ at � D xk.

2. jM.�/ � xk/j Š ˛kj� � xkj. Thus, if ˛k < 1 .˛k > 1/, the Weiszfeld algorithm
converges to (diverges from) xk at linear rate ˛k along this steepest descent
(shallowest ascent) direction to (from) xk.
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3. In particular, if ˛k is equal or near to 1, the movement of the updating algorithm
can be very slow.

12.4 EM and MM Interpretations for the Updating
Algorithm

Suppose the data fxig are realizations of random vectors fXig of the form Xi D
�CUi=

p
wi, where the fUig are i.i.d from a pdf

f .u/ / exp.�	.s//; s D uTu; u 2 R
p; (12.13)

where 	.s/ is a continuous function of s � 0. Up to a constant term, minus the
log-likelihood takes the form

g.�/ D
nX

iD1
wi	.si/; si D .xi � �/T.xi � �/: (12.14)

The spatial median coincides with the mle of � for this weighted location problem
under the choice 	.s/ D ps; s � 0.

In general, if expf�	.s/g is completely monotone (that is, the derivatives of
exp.�	.s// satisfy .�1/m.d=ds/m expf�	.s/g > 0 for m � 0; s > 0), then the
fUig can be represented as scale mixtures of isotropic normal densities,

Ui D Zi=
p

Yi; Zi 	 Np.0; Ip/; (12.15)

where the distribution of Yi on .0;1/ is determined by 	.�/ (Andrews and Mallows
1974). In this case, the EM algorithm can be used to iteratively compute the mle for
�, treating the fYig as missing data (Dempster et al. 1977, 1980; McLachlan and
Krishnan 2008). The updating function takes the form

M
(EM)

.�/ D
X
Oyiwixi=

X
Oyiwi; Oyi D 	0.si/; si D jxi ��j2: (12.16)

A sufficient condition for expf�	.s/g to be completely monotone is that 	0.s/ >
0 for s > 0 with completely monotone derivative (Feller 1966, p. 417). Clearly,
	.s/ D ps has this property, and (12.16) reduces to the Weiszfeld update (12.3).
Hence the Weiszfeld algorithm has an EM interpretation. Several consequences can
be drawn from this identification.

1. It is a general property of EM algorithms that, except at fixed points of the
algorithm, the likelihood is strictly increased at each iteration. In our notation

g.M.�// < g.�/ unless � is a fixed point. (12.17)
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2. In regular EM problems the fixed points of the EM algorithm coincide with the
stationary points of the likelihood (Wu 1983). Since g.�/ in (12.1) is strictly
convex, it has a unique stationary point which is its global minimum. However,
	.s/ D ps is not differentiable at s D 0, which means that the corresponding
EM problem is not regular. This lack of regularity explains how the Weiszfeld
algorithm can also have fixed points at each of the data points. Thus, the
Weiszfeld algorithm provides a simple example of a nonregular EM algorithm
with additional stationary points.

The EM algorithm for the location problem from a scale mixture of normal
distributions also arises as an MM algorithm (for majorize-minimize). The MM
assumptions are more general and merely require that 	.s/ be continuous, increasing
and concave for s � 0 and continuously differentiable for s > 0. (If expf�	.s/g is
completely monotone, the concavity is automatic for 	.s/, and in particular these
conditions are satisfied by 	.s/ D ps.) The basic idea of an MM algorithm is to
find for any �0 a “majorizing function” G.�;�0/ such that

(a) g.�/ � G.�;�0/ for all �, and
(b) g.�0/ D G.�0;�0/.

If G.�;�0/ can be minimized explicitly over� to yield�1 D M
(MM)

.�0/, say, then
necessarily g.�1/ � g.�0/, usually with strict inequality.

When g.�/ takes the form (12.14), a convenient majorizing function is given by

G.�;�0/ D g.�0/C
X

wi.si � s.0/i /	0.s0i /; (12.18)

where si D jxi � �j2; s.0/i D jxi � �0j2. The majorizing property follows from the
concavity of 	.s/. More specifically, expand 	.si/ to first-order in Taylor series in si

at si D s0i and note that the remainder term is nonpositive. Further, provided �0 is
distinct from all the data points, G.�;�0/ is well defined and minimizing G.�;�0/
over � is a weighted least squares problem leading to the standard update (12.16).

MM arguments have been used by many authors, e.g. Kuhn (1973) for the spatial
median, Huber (1981) for M-estimators of location, and Lange and Sinsheimer
(1993) for the setting given here. The methodology can also cope with the inclusion
of a scale parameter (not needed for the spatial median). A more general version of
the MM methodology forms the basis of a broad theory of optimization; see Lange
et al. (2000) and Hunter and Lange (2004).

To round off the discussion, we use the MM framework to show that for the
spatial median problem there are no other fixed points of the Weiszfeld algorithm
besides the data points and O�.

Proposition 12.2 For the spatial median problem, if �0 … f O�g
Sfxign1 then

g.M.�0// < g.�0/.

Proof Suppose �0 … f O�g
Sfxign1. Then the first derivatives in (12.18) are well

defined and finite. The weighted least squares criterion in (12.18) (with �0 held
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fixed) has a unique minimum for �. Hence if M.�0/ ¤ �0, it follows that
G.M.�0/;�0/ < G.�0;�0/ and so g.M.�0// < g.�0/.

It remains to be checked that M.�0/ ¤ �0. Note that rg.�/ D rG.�;�0/ at
� D �0 (treating G.�;�0/ as a function of � with �0 held fixed). If �0 ¤ O�, then
rg.�0/ ¤ 0, so thatrG.�;�0/ ¤ 0 at� D �0; hence,� D �0 does not minimize
G.�;�0/, so that M.�0/ ¤ �0.

12.5 The WOVZ Algorithm

Once again we focus on the spatial median problem with 	.s/ D ps. The Weiszfeld
algorithm has a fixed point whenever � is one of the data points � D xk. As
proposed by Vardi and Zhang (2000), one way to deal with this problem is to
consider a modified majorizing function G�.�;�0/, say, where G�.�;�0/ D
G.�;�0/ in (12.18) whenever �0 ¤ xk for any k and where G�.�;�0/ is defined
for �0 D xk by

G�.�; xk/ D g.xk/C wkj� � xkj C
X

i¤k

wi.si � s.0/i /	0.s0i /: (12.19)

To minimize (12.19) over � write � D xk C te where the unit vector e and the
magnitude t � 0 are to be determined. Then (12.19) can be written in the form

G�.xk C te; xk/ D g.xk/C wktC 1

2
bkt2 C tvT

k e; (12.20)

where bk DPi¤k wi=dik and vk and dik are defined in (12.7). First minimize (12.20)
over t � 0 for fixed e to get t.e/ D max.0;�.wk C vT

k e/=bk/ yielding

G�.xk C t.e/e/ D g.xk/ � .wk C vT
k e/2

2bk
(12.21)

in (12.20) when t.e/ > 0 and g.xk/ when t.e/ D 0. If ˛k > 1 in (12.8), there is at
least one direction e for which t.e/ > 0, and minimizing (12.21) over such directions
yields e / �vk, which by (12.12) is the steepest descent direction for g.�/ from xk.
On the other hand, if ˛k � 1, then we know from Proposition 12.1 that xk is already
the spatial median and there is no need to update.
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In summary, the WOVZ algorithm is given by the following updates:

1. If � is not equal to any of the data points, then M�.�/ D M.�/ is the same as
the Weiszfeld update (12.3);

2. If � equals a data point xk with ˛k > 1 in (12.8), then the WOVZ update is given
by

M�.xk/ D xk � b�1
k .1 � ˛�1

k /vk: (12.22)

3. If � equals a data point xk with ˛k � 1, then xk is the spatial median and
M�.xk/ D xk.

Finally we note that the WOVZ update also has an EM-type interpretation when
� D xk. In this case we regard all the data xi; i ¤ k, as coming from a scale mixture
of normals, with missing data fYi; i ¤ kg, but we regard xk as being completely
observed. Then the E-step yields (12.19) for minus the log-likelihood.

12.6 One-Dimensional Case

Of course in one dimension there is no need to use an iterative algorithm. It is
simpler and more efficient just to find the middle value(s). However, it is still
of interest to look at the behavior of the Weiszfeld and WOVZ algorithms. For
simplicity we restrict attention to the equally weighted case wi � 1; 1 � i � n,
with the data points listed in increasing order, x1 < x2 < � � � < xn. An example
of the updating function with an odd value of n D 5 is given in Fig. 12.1a, and an
example with an even value of n D 6 is given in Fig. 12.1b. The following features
stand out.

1. The updating function is not a monotone function of �. Instead the plot of
M.�/ vs. � resembles hanging curtains with kinks at the data points. [Note the
distinction between a monotone function and a monotone algorithm!]

2. If n is odd, the median is equal to x.nC1/=2. Further, v.nC1/=2 D 0 in (12.9), so
that the linear term disappears. Hence the WOVZ algorithm converges to the
median at a quadratic rate when � is close to x.nC1/=2. In general EM algorithms
converge only at a linear rate, and quadratic convergence is very uncommon.

3. If n is even, the median is not uniquely defined, but can take any value between
the two middle data points xn=2 and xn=2C1. On this middle interval the updating
algorithm is fixed, M.�/ D �. Further, if � lies just outside this middle interval,
then M.�/ jumps inside the interval whereupon the algorithm stops. Hence this
is an unusual example of an EM algorithm which converges in a finite number of
steps.
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Fig. 12.1 Plots of the
updating function M.�/ in
one dimension. The WOVZ
updates M�.�/ at the data
points are indicated by open
circles. (a) The data set
consists of n D 5 points
(1,2,3,5,6). Note that M.�/ is
differentiable and flat at the
median, M0.3/ D 0. (b) The
data set consists of n D 6

points (1,2,4,5,6,8). Note that
M.�/ D � between the two
middle data points 4 and 5
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12.7 Behavior of Newton-Raphson Near a Data Point

For the rest of the paper we restrict attention to dimension p > 1. Suppose� is close
to one of the data points xk, say and as in Sect. 12.2, write � � xk D �e0, where e0
is a unit vector and � D dk in (12.4). Then the first and second derivatives of g can
be written in the form

rTg.�/ D wke0 C vk CO.�/

rrTg.�/ D wk.I� e0eT
0 /=�C

X

i¤k

wifI=dik � .� � xi/.� � xi/
T=d3ikg

D wk.I� e0eT
0 /=�C Ak CO.�/;
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that is, the second derivative matrix is 1=� times a rank p� 1 matrix plus a bounded
positive definite matrix

Ak D
X

i¤k

wifI=dik � .xk � xi/.xk � xi/
T=d3ikg; dik D 1=jxk � xij:

The O.�/ terms arise because vk and Ak are evaluated at xk, not �.
Using properties of partitioned inverse matrices (e.g., Mardia et al. 1979, p. 459)

(to carry out the proof, it is simplest to rotate the coordinate system so that e0 D
.1; 0; : : : ; 0/T is a unit vector along the first coordinate axis), it can be checked that

frrTg.�/g�1 D �wkeT
0Ake0

��1
e0eT

0 CO.�/; (12.23)

so that the NR update of � takes the form

� � �wkeT
0Ake0

��1
e0eT

0 .wke0 C vk/CO.�/ D xk � ce0 CO.�/; (12.24)

where c D �eT
0Ake0

��1 �
1C eT

0vk=wk
�
. In other words, the update remains approxi-

mately on the line through xk in the direction˙e0.
In some cases the NR update overshoots. For example, if eT

0vk D 0 and if g.xkC
�e0/ has a minimum in � at � D 0, then the update moves from one side of the
line to the other. Further the overshoot remains of order O.1/ as � tends to 0. Of
course step-halving can effectively solve the overshoot problem. However, the fact
that the NR updates stay on a line is unsatisfactory and can cause NR to converge to
a non-optimal data point; see Example 12.1 in Sect. 12.9.

On the other hand, if e0 / �vk lies in the direction of steepest descent, then NR
moves away from xk by a non-infinitesimal amount and is a sensible update.

Thus we now see a viable way for an optimization algorithm to move away from
a non-optimal data point. One step of WOVZ takes � to a steepest descent direction
from xk, after which the NR update pulls away from xk by a non-infinitesimal
amount.

12.8 A Reliable and Efficient Algorithm

The WOVZ algorithm has attractive monotonicity properties (g.M.�// < g.�/ if
� ¤ O�). Indeed as Vardi and Zhang (2000) show, it is guaranteed to converge to O�.
However, the WOVZ algorithm has two major drawbacks.

1. If � is near a data point xk and ˛k is close to 1, then M.�/ can move very slowly
towards (sticky case) or away from (nonsticky case) the data point.
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2. Even if O� does not coincide with a data point, the WOVZ algorithm can
sometimes converge slowly, a potential problem of all steepest descent and EM
algorithms.

To some extent these efficiency problems can be overcome with a line search. The
WOVZ update is always in the steepest descent direction. However, the magnitude
of the update can occasionally be far too small especially if � is close to an (optimal
or non-optimal) data point xk and if ˛k is close to 1. Some examples where a line
search would help are given in the next section.

However, even with a line search, steepest descent algorithms are known to be
very inefficient if the objective function is quadratic with a highly elliptical rather
than spherical shape near its optimum. In this case it is much better to use a second
derivative method such as NR. When using NR, some sort of line search is essential
to avoid overshooting the optimal update. The choice of line search strategy is
not critical, and we shall use a simple step-halving adjustment. That is, define the
“update direction” e (not a unit vector here) by

e D � ˚rrTg.�/
��1 frg.�/g ; (12.25)

and consider an update of the form

�C 2�j1e: (12.26)

If j0 is the smallest integer j � 0 such that g.� � 2�je/ � g.�/, then j1 denotes
whichever of j0 and j0 C 1 yields the smaller value of the objective function.

Unfortunately, NR, even when combined with a line search, should not be used
on its own because it is unreliable near data points.

In particular, we saw in Sect. 12.7 that in certain circumstances when xk is not
the spatial median, the NR updates stay very nearly on the same line through xk.
Thus, even with step-halving, NR can sometimes converge to a non-optimal data
point; see Example 12.1 in Sect. 12.9. Another, more minor, problem is that NR is
not defined at the data points.

However, by combining approaches, it is possible to fix the bad behavior of both
WOVZ and NR near data points. If � is close to (or equal to) a data point xk, then
one step of WOVZ takes � to a steepest descent direction from xk, after which the
NR update is a sensible update.

We now describe our hybrid algorithm for the spatial median. It turns out not to
be important to include a line search in the WOVZ update. Starting with any current

estimate �
(old)

, let �
(new)

denote the update after a single iteration of the algorithm.
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12.8.1 Hybrid Updating Algorithm for the Spatial Median

Step 1: Calculate di D j�(old) � xij; i D 1; : : : ; n and suppose dk is the smallest
value. Consider the possible update given by xk. If ˛k � 1, then return O� D xk

and stop.
Step 2: Calculate the WOVZ update (no line search is necessary here).

Step 3: If �
(old)

is distinct from all the data points, also calculate an NR update,
adjusted by a step-halving line search.

Step 4: Return as �
(new)

the choice of � giving the smallest value of g.�/ from
Steps 2 and 3.

Repeat these steps till convergence.

12.9 Examples

Here are several simple examples for the spatial median to illustrate the weaknesses
of the WOVZ and NR algorithms on their own (with or without line search). In all
cases the hybrid algorithm converges quickly by about 6 iterations. The computing
was done in the package R (R Core Team 2014) on a machine with an accuracy of
about 16 decimal places.

Example 12.1 Consider a dataset of n D 6 points in R
2:

100 100 �100 �100 50 �50
1 �1 1 �1 0 0

By symmetry O� D .0; 0/T . Note the dataset nearly lies on a straight line, and hence
the objective function is nearly flat between the two middle data values .˙50; 0/T .
Further the repulsiveness parameter in (12.8) is ˛ D 1:04 for both these two points.
Since this value is only just greater than 1, these two data points are only just
nonsticky.

• WOVZ algorithm with no line search. If we start at� D .49:9; 0/T , this algorithm
stays on the horizontal axis. But it moves away from the data point .50; 0/T very
slowly because the corresponding value of ˛ is so close to 1. Indeed, after 200
iterations the algorithm has only reached .49:893; 0/T . Further, if started near to
.0; 0/T , the algorithm still moves extremely slowly because the minimum is so
shallow. With a new starting point of .0:1; 0/T , the algorithm still only reaches
.0:0990; 0/T after 200 iterations. Of course, mathematically the algorithm is
guaranteed to converge eventually whatever the starting point.

• NR with step-halving starting at .49:9; 0:2/T . In this case the algorithm
converges to the wrong solution! It converges to the data point .50; 0/T . The
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problem is that with ˛ so close to 1, there is only a very small window of descent
directions from .50; 0/T , and NR can have trouble homing in on these directions;
see Sect. 12.7. Refining the line search in the NR steps does not help. Since this
false convergence is so unexpected with a convex function, we give the first 8
iterations in detail:

Iteration �1 �2

0 49.9 0.2

1 49.975613439 0.043951384

2 49.995738930 0.007441284

3 49.998297746 0.002967829

4 49.999578334 0.000734190

5 49.999898708 0.000176305

6 49.999978817 0.000036868

7 49.999998845 0.000002011

8 50.000000096 �0:000000168

• Hybrid algorithm. The hybrid algorithm copes easily with both these starting
positions. From .49:9; 0/T , the algorithm chooses Newton-Raphson updates with
step-halving, and converges in just 4 iterations. From .49:9; 0:2/T , the hybrid
algorithm needs one WOVZ step to get to an approximately steepest descent
direction from .50; 0/T . After that, NR with step-halving takes over and the
algorithm then converges as quickly as before,

Iteration �1 �2

0 49.9 0.2

1 49.78 7:2� 10�7

2 28.29 6:9� 10�5

� � �
5 1:4 � 10�6 1:0 � 10�12

To set the scene for the next example, we need to use some properties of convex
functions. For any point x distinct from O� and the data points, the objective function
g.�/ on the line segment connecting x to O� must be strictly decreasing. Thus . O� �
x/Trg.x/ < 0. In other words O�T must lie in the half-space Hx D fy 2 R

p W
.y � x/Trg.x/g < 0g. Similarly, for the non-optimal data points xi, O� must lie in
the half-space Hi D fy 2 R

p W .y � xi/
Tvi < 0g, where vi was defined in (12.7). In

particular, O� must lie in the convex set

C D
\

Hi (12.27)

where the intersection is over indices i corresponding to non-optimal data points.



220 J.T. Kent et al.

It is well known that without step-halving, NR can easily diverge if the initial
parameter estimate is not close enough to the optimum. Bedall and Zimmermann
(1979) tried to avoid the need for step-halving in NR through a two-stage strategy
for the spatial median. In the first stage they constructed an simple estimate�� lying
in C in (12.27). For the second stage they proposed simple Newton-Raphson updates
(i.e. without step-halving). However, as the next example shows, their procedure is
not guaranteed to succeed.

Example 12.2 Consider a dataset of n D 5 points in R
2:

10 10 �10 �85 30

1 �1 0 0 0

In this case it turns out that O� D .9:42; 0/T . The output from the first stage of the
Bedall–Zimmermann algorithm turns out to be the sample mean �� D .�9; 0/T ,
which lies in C. Unfortunately, using this value as a starting point in a simple
Newton-Raphson algorithm does not work.

• NR without step-halving. With the starting value .�9; 0/T we get a divergent set
of iterations,

Iteration �1 �2

0 �9 0

1 3:4 � 104 0

2 �9:96 � 1010 0

after which the algorithm fails numerically. If step-halving is included the
algorithm converges quickly with no problems, as expected.

The general theory guarantees that the WOVZ algorithm always converges to
the spatial median. But in Example 12.1 we showed that without a line search the
convergence rate can be very slow. In the next example we show that even with a
line search, convergence can still be slow. This drawback is one of the reasons that
Newton-Raphson has been included in the hybrid algorithm.

Example 12.3 Consider the dataset with n D 4 points in R
2:

100 �100 0 0

0 0 1 �1

By symmetry O� D .0; 0/T . Note that the objective function is highly elliptical
near the optimum.

• WOVZ algorithm with a full line search. With a starting point of .1; 1/T , say,
this algorithm behaves as a classic steepest descent algorithm in an elliptical
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setting and zig-zags slowly to the optimum. Indeed after 100 iterations it has
only reached .0:001; 0:034/T .

12.10 Algorithms in R

Algorithms to compute the spatial median have been incorporated in the statistical
package R (R Core Team 2014). For example, the function spatial.median
in the library ICSNP (Nordhausen et al. 2012) uses the WOVZ algorithm and is
recommended in Oja (2010, p. 71).

The library pcaPP (Filzmoser et al. 2013) contains functions based on several
algorithms. These include l1median_NLM, which is based on the standard R opti-
mization routine nlm; l1median_VaZh, which uses the WOVZ algorithm; and
l1median_HoCr, which uses the WOVZ algorithm with step halving (Hössjer
and Croux 1995).

The following simple examples illustrate some issues that can arise with these
algorithms. In all cases the standard options have been used.

• The severe eccentricity of the objective function in Example 12.1 of Sect. 12.9
means that an algorithm can sometimes stop too soon. With an initial value x D
.49:9; 0/T , l1median_NLM computes the spatial median as O� D .0:19; 0/T

instead of .0; 0/T , after 5 iterations. This is a fairly minor issue since the objective
function is nearly constant on a long valley.

• Again in Example 12.1 of Sect. 12.9, the fact that for the data point .50; 0/T the
repulsiveness parameter ˛ D 1:04 is so close to 1 means that the WOVZ-based
algorithms move very slowly when started near the data point. With a starting
point .49:9; 0/T , the functions l1median_VaZh and l1median_HoCr
behave as the WOVZ algorithm in Example 12.1, stopping after the default max-
imum number of iterations, 200, without having converged, with the same poor
estimate as found there, O� D .49:893; 0/T . The function spatial.median
explicitly notes that it has not converged and fails to produce an estimate.
However, when started even closer to the data point .50; 0/T , these func-
tions can falsely declare convergence before they get started. The functions
l1median_VaZh and spatial.median, starting at .49:999; 0/T , stop
after one iteration and falsely declare O� to be equal to the starting point. The
function l1median_HoCr does the same if started from the closer value
.49:99999; 0/T .

• Being an all-purpose minimization algorithm, l1median_NLM does not take
full advantage of the structure of the problem. For example, consider the dataset

1 �1 0 0 2 0

0 0 1 �1 0 0
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This is a delicate dataset. The spatial median lies at the sixth data point, which is
the origin .0; 0/T . However, the repulsiveness parameter of the origin is ˛ D 1,
which lies on the sticky/nonsticky boundary. For this example l1median_NLM
can be very slow. Starting from .1; 1/T l1median_NLM takes 120 iterations to
converge to the right answer, whereas the hybrid algorithm converges in just 2
iterations.

Fritz et al. (2012) gave a numerical comparison of various algorithms, focusing
on speed and accuracy. In general, it was found that the function l1median_NLM
came out best. However, although l1median_NLM performs well in general, the
toy examples here demonstrate how there can be problems for certain datasets with
certain starting points.

12.11 Convex Optimization

Since g is a convex function, it is also possible to draw on general methods of
convex optimization. Here we sketch some possible approaches, though we will
not investigate these methods in detail in this paper.

In one approach, a non-smooth optimization problem is replaced by a smooth
optimization problem, depending on a tuning parameter �, say, for which standard
(e.g., Newton-type) methods can be applied. As �! 0 the solution to the smoothed
problem tends to the solution of the original problem. The simplest version of this
idea is to use the perturbed objective function

g�.�/ D
nX

iD1
fjxi ��j2 C �2g1=2:

Provided � > 0, this function is twice-differentiable. Kärkkäinen and Äyrämö
(2005) investigate a modified Weiszfeld algorithm with acceleration.

Another approach, too involved to describe here, is to adapt primal–dual interior
point methods from linear programming problems. See, e.g., Lobo et al. (1998),
Andersen (1996), Andersen et al. (2000) for details. Other approaches include
alternating direction method of multipliers (ADMM) methods such as FISTA (Beck
and Teboulle 2009) and the Chambolle and Pock (2011) method.

However, the level of complexity in these approaches seems unnecessary for
the simple problem of finding the spatial median. Hence, for this paper we have
limited attention to simpler algorithms. On the other hand, a major advantage of
more general convex optimization methods is that they can be applied to a much
wider class of optimization problems (see, e.g., Lobo et al. 1998). In particular,
Valkonen and Kärkkäinen (2010) discuss problems related to the spatial median
when there are missing coordinates for some of the data.
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12.12 Conclusions

Two standard algorithms in the statistical literature used to find the spatial median
are WOVZ and NR. Both algorithms can have difficulties at and near the data points.
These difficulties have not always been fully appreciated in the literature.

The problems with WOVZ and NR can be fixed by using a hybrid algorithm
that takes the better choice at each update. The good properties of the hybrid algo-
rithm have been demonstrated by mathematical expansions and simple numerical
examples.
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Chapter 13
L1-Regression for Multivariate Clustered Data

Jaakko Nevalainen and Denis Larocque

Abstract In this chapter, we are considering L1-type estimation for multivariate
clustered data. Although valid, using the direct L1 estimation of the regression
coefficients in the clustered data setting is likely to lack efficiency since it does not
use the intracluster correlation structure. A transformation–retransformation method
is proposed to overcome this problem. This method first transforms the original
model in an attempt to eliminate the intracluster correlation. Secondly, the L1
estimates are obtained with the transformed data, which are then transformed back
to the original scale. One particular implementation of this method is investigated
in a simulation study which shows that it is more efficient than using the direct L1
estimators.

Keywords Clustered data • L1-Estimation • Multivariate analysis •
Nonparametric statistics • Regression • Spatial sign

13.1 Introduction

In this chapter, we consider L1-regression models for clustered data with a mul-
tivariate response. For a univariate response, Jung and Ying (2003) proposed a
generalization of the Wilcoxon–Mann–Whitney statistic for analyzing repeated
measurements data. The estimating function is based on the unweighed ranks of the
residuals, which is equivalent to the method proposed by Jurěcková (1969, 1971) for
independent observations. In order to recover some of the information present in the
clustering structure, Wang and Zhu (2006) generalized this approach by partitioning
the ranks into between- and within-subject ranks. Two estimators are obtained and
then combined in an optimal way. However, to get the combined estimator, an
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estimation of the covariance matrix of the two estimating functions is required. To
achieve this, a resampling method is used in Wang and Zhu (2006). Fu et al. (2010)
proposed a smoothing method to avoid this computationally intensive approach. In
another attempt to use the clustering structure, Wang and Zhao (2008) proposed a
weighted version of the loss function, where the weights are functions of the cluster
sizes. Their approach is related to the one proposed in Datta and Satten (2005) for
the two-sample problem. Fu and Wang (2012) argue that the Wang and Zhao (2008)
approach performs well for cluster-level covariates but not necessarily for within-
cluster covariates. They derive a new optimal rank-based estimating functions in
terms of asymptotic variance of regression parameter estimators. Finally, Kloke
et al. (2009) study R-estimators of the fixed effects in an experiment done over
clusters, blocks, groups, or subjects, including for example, repeated measure
designs, split plot designs, multicenter clinical trials, randomized block designs,
and two-stage cluster samples.

All the articles above are aimed at the univariate response case. Nonparametric
methods for multivariate data, and especially, methods based on spatial signs and
ranks have been developed extensively in the last 20 years (Oja 2010). They
are also available for the user through the R package MNM (Nordhausen and Oja
2011). Moreover, specialized methods for multivariate responses and clustered data
have also been developed; see Nevalainen et al. (2010) and the references therein.
However, for clustered data, the available methods are limited so far to the one,
two, and several samples cases. In this chapter we propose an L1-type (spatial
sign) estimation method for a regression setting with multivariate clustered data
and investigate it in a simulation study.

13.2 A Multivariate Multiple Linear Regression Model
for Clustered Data

Let Y D .y1; : : : ; yn/
> be a sample of p-variate (p > 1) random response vectors

with sample size n. The data are assumed to be clustered with a total of d clusters.
The cluster memberships are given by the n � d matrix Z D .z1; : : : ; zn/

>:

.Z/ij D
�
1; if the ith observation is from cluster j;
0; otherwise.

It is useful to note that

�
ZZ>�

ij D
�
1; if the ith and the jth observation are from the same cluster;
0; otherwise,

and that Z>Z is a d � d diagonal matrix with the cluster sizes on the diagonal, say,
m1; : : : ;md. We also write 1n for a column n-vector of ones, vec.Y/ for the vector
obtained by stacking the columns of Y, and˝ for the Kronecker product.
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Consider the multivariate multiple linear regression model

Y D Xˇ C E;

where

• X is an n � q design matrix for explanatory variables with the first column
consisting of 1’s;

• ˇ is the q � p matrix of regression coefficients;
• E D .�1; : : : ; �n/

> is an n � p matrix of random errors,

stating that the responses are linearly related to the explanatory variables, and E is
a matrix of random errors with

Cov
�
vec.E>/

� D ˝ ˝˙ :

Here˙ D E.�i�
>
i / and˝ D f	ijg is a matrix consisting of intracluster correlations,

with unit entries on the diagonal. We thus assume that E.�i�
>
j / D 	ij˙ , where

	ij ¤ 0 if .ZZ>/ij D 1, and 	ij D 0, otherwise.
Typically, the regression coefficients of the model are estimated by ordinary

least squares based on a minimization of an L2 criterion function, or by maximum
likelihood relying on a multivariate normality assumption on the random errors.
These two solutions are in general not the same with clustered data. Under heavy-
tailed error distributions these estimates are inefficient, and may be vulnerable to
outliers. In such circumstances, a fit based on an L1-criterion function may be
preferable.

13.3 Estimation Based on an L1-Criterion Function

The goal is to estimate the unknown ˇ matrix of regression coefficients by
minimizing an L1 norm

Dn.ˇ/ D
nX

iD1

�
jyi � ˇ>xij � jyij

�
:

This leads to a multivariate least absolute deviation (LAD) estimate of ˇ. If the
residuals lie in a genuinely p-dimensional space, the resulting estimate Ǒ solves the
estimating equation

U. Ǒ />X D 0;

where

Ui.ˇ/ D .yi � ˇ>xi/=jyi � ˇ>xij; i D 1; : : : ; n



228 J. Nevalainen and D. Larocque

is the spatial sign of the residual at ˇ and U.ˇ/ D .U1.ˇ/; : : : ;Un.ˇ//
> is the

corresponding matrix of residual spatial signs (Oja 2010). These L1 estimates of
regression coefficients are quite natural and not difficult to compute (Nordhausen
and Oja 2011).

13.4 Transformation–Retransformation L1 Regression
Estimates

It is possible to use the L1 norm to directly estimate the parameters also in
the clustered data case. Compared to a setting with i.i.d. random errors, the
limiting distribution would only require a correction in the variance terms. This
permits a valid analysis. However, the estimate as such suffers from one important
shortcoming: it makes no use of the underlying and known cluster structure. A
reasonable concern is that it may be an inefficient approach; recall that the (optimal)
maximum likelihood estimates for linear models in the univariate normal case use
the covariance structure as an essential ingredient.

Suppose first that the covariance matrix was known and again has the general
form

Cov.vec.E>// D ˝ ˝˙ :
For example, the “compound symmetry” covariance structure,

Cov.vec.E>// D In ˝˙ C .ZZ> � In/˝ 	˙ D .In C 	.ZZ> � In//˝˙
falls into this class of structures.

Given a pre-specified covariance structure ˝ ˝ ˙ , the original estimation
problem can be rewritten as

Y! Y0 D ˝�1=2Y˙�1=2

X! X0 D ˝�1=2X

ˇ ! ˇ0 D ˇ˙�1=2

E! E0 D ˝�1=2E˙�1=2

This postulates a new regression model Y0 D X0ˇ0CE0 in which, if the covariance
structure is correctly specified, the random errors are uncorrelated. Multiplication
from the left attempts to eliminate the intracluster correlation, and multiplication
from the right is aimed to standardize the marginal distributions. For the transformed
data set on the right-hand side, it is reasonable to conduct ordinary L1 estimation of
regression coefficients as before. Therefore, the estimating equation is

U0

�
ˇ˙�1=2�>

˝�1=2X D 0;
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where U0 now consists of the spatial signs of the residuals on the transformed
scale, i.e., the rows of ˝�1=2.Y � Xˇ/˙�1=2. As a final step, the estimates of the
regression parameters in the original model are obtained by back-transformation
Ǒ

trt D Ǒ˙ 1=2.
This procedure has potential for improved efficiency. Similar idea of a working,

user-specified correlation structure is met in the framework of generalized estimat-
ing equations (Diggle et al. 2002). In that setup, the estimates of the regression
coefficients are consistent even if the working correlation structure is misspecified.
Simulations will be used to investigate the merits of this method in the next section.

13.5 Simulation Study

We next investigate the finite sample efficiency of the proposed method by
simulation studies involving four competing approaches to the problem.

13.5.1 Practical Implementation of the
Transformation–Retransformation L1 Method

We are assuming that the working covariance structure is E.�i�
>
j / D 	ij˙ , where

	ij D 	 if .ZZ>/ij D 1 and 	ij D 0 otherwise. We thus assume a compound
symmetry structure with the same correlation (	) for each response. In this respect
the compound symmetry structure is a special case; other covariance structures
would not in general have this property. The robustness of the method when this
assumption is not met is investigated in the simulations of Sect. 13.5.4.

A particular implementation of the transformation–retransformation L1 method
for this setting is as follows. To estimate 	, we take the average of the intracluster
correlation estimate obtained from separate linear mixed models to each response.
More precisely, let O	i be the estimated value of the intracluster correlation obtained
from fitting a linear mixed model to the ith response with a random intercept at the
cluster level, and using all the covariates. Then O	 D .1=p/

Pp
iD1 O	i.

To estimate ˙ , we use the sample covariance matrix of the residuals obtained
from the same response-wise linear mixed models.

13.5.2 Design of the Simulation

Data are generated according to the following multivariate linear mixed model with
p D 3 or 7 responses and d clusters:

Yij D X1ij1p C X2ij1p C X3ij1p C ˛i C �ij; i D 1; : : : ; d; j D 1; : : : ;mi:
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In this model, Yij is the p-variate response vector for the jth observation in cluster
i, the ˛i’s are i.i.d. p-variate cluster effects (random intercept), and �ij’s are i.i.d. p-
variate individual error terms. The three covariates (the X’s) are i.i.d. from N.0; 1/.
The covariates, random intercepts, and error terms are all independent. Hence the
true matrices of regression coefficients are

ˇ D

0

BB@

0 0 0

1 1 1

1 1 1

1 1 1

1

CCA and ˇ D

0

BB@

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

CCA

for the p D 3 and 7 cases, respectively.
The cluster design consists in 5 clusters of size 2, 5 clusters of size 3, 5 clusters

of size 4, 5 clusters of size 5 and 5 clusters of size 6, for a total of 25 clusters and
100 observations.

The ˛i’s and �ij’s are generated from either the normal or the t3 distribution with
mean vector 0. In all cases, the scale matrix of these distribution has the form 	Ip

for ˛i and .1 � 	/Ip for �ij. We then let 	 vary between 0 and 0.95 by steps of 0.05.
Four estimation methods are compared.

1. Transformation–retransformation L1 method assuming the compound symmetry
structure with equal 	s. The estimation of the parameters is described in
Sect. 13.5.1. This is the proposed method.

2. Random intercept linear mixed models fitted separately to each response.
3. Basic L1 regression applied directly to the data, neglecting the intracluster

correlation.
4. Transformation–retransformation L1 method assuming the compound symmetry

structure with equal 	s. But this time we use the true values of 	. However,
we still estimate ˙ as explained in Sect. 13.5.1. This method is not feasible in
practice because 	 will likely never be known. But we use it as a benchmark to
investigate the effect of having to estimate 	.

The number of simulation runs is 500 for each configuration. All computations
are performed in R (R Core Team 2013). The linear mixed models are fitted with the
lme function in the nlme package (Pinheiro et al. 2014). The L1 regressions are
performed with the mv.l1lm function in the MNM package (Nordhausen and Oja
2011).

13.5.3 Results

For each estimation method r (D 1; 2; 3; 4), the performance criterion is

Pr D .1=500/
500X

iD1
vec. Ǒ ri � ˇ/0vec. Ǒ ri � ˇ/;
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where Ǒ ri is the estimation from this method for the ith simulation run. The results
are summarized in Fig. 13.1. In each plot, the Y-axis gives the efficiency of each
method relative to the proposed method (method 1 in Sect. 13.5.2), as a function of
	. More precisely, it is P1=Pr for r D 2; 3; 4. Hence, the proposed method is more
efficient than the other one when the relative efficiency is below 1 and less efficient
when it is above 1. The upper-left plot corresponds to the three-variate case where
both the random intercepts and the errors are normally distributed. As expected, the
linear mixed model (method 2) is a bit more efficient than the proposed method in
this case, and the efficiency remains constant over the range of 	. We can also see
clearly the effect of neglecting the intracluster correlation. The performance of the
basic L1 regression (method 3) dramatically worsens as 	 increases. We also see
that using the true value of 	 (method 4) has the same performance as the proposed
method. Hence, nothing is lost by having to estimate this parameter.
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Fig. 13.1 Efficiency relative to the transformation–retransformation L1 method with estimated 	.
Equal 	 case. Basic L1 is the full line (–), mixed model is the dashed line (- - -), transformed L1
with true 	 is the dotted line (� � � )



232 J. Nevalainen and D. Larocque

The upper-right plot corresponds to the same situation but with random intercepts
and errors distributed as t3. This time, the proposed method is more efficient than
the linear mixed model. Again, this was expected since L1 based methods are more
efficient for heavier-tailed distributions. However, the difference between the two is
more pronounced for smaller values of 	. The performance of the basic L1 regression
worsens as 	 increases and having to estimate 	 does not hurt the performance.

The lower plots present the corresponding results for the seven-variate cases. For
the normal case (lower-left), the same patterns as for the three-variate case occur,
except that the difference between the proposed method and the linear mixed model
is even smaller. For the t3 case, (lower-right), the situation is similar and the same
patterns as for the three-variate case also occur. Hence, from these limited results,
the proposed transformation–retransformation L1 method is clearly preferable to the
direct L1 method.

13.5.4 Additional Simulations Under Unequal �s Scenarios

The results presented previously showed that the transformation–retransformation
L1 method is more efficient than the direct L1 method. However, the particular
implementation of the method used in the simulation assumes a compound sym-
metry structure with the same correlation for each response. Hence, it is natural to
ask if it still performs well when this is not true. To investigate this, we used the same
scenarios as before, except that we allowed the intracluster correlations to vary for
each response. More precisely, the ˛i’s and �ij’s are still generated from either the
normal or the t3 distribution with mean vector 0. But this time, the scale matrix of
these distribution has the form diag(	1; : : : ; 	p) for˛i and diag(.1�	1/; : : : ; .1�	p/)
for �ij. When p D 3, we fix 	2 D 0:5, 	1 D 	, 	3 D 1�	, and we let 	 vary between
0.05 and 0.5 by steps of 0.05. When p D 7, we fix 	4 D 0:5, 	1 D 	2 D 	3 D 	,
	5 D 	6 D 	7 D 1 � 	, and we let 	 vary between 0.05 and 0.5 by steps of 0.05.
Hence, the greatest variance among the 	s occur when 	 D 0. When 	 D 0:5,
we fall back to the equal 	s case. Note that method 4 is not applicable with these
scenarios. Therefore, only the first three are compared.

Figure 13.2 presents the results. The upper-left plot corresponds to the three-
variate case where both the random intercepts and the errors are normally dis-
tributed. We see that the proposed method continues to be more efficient than
the direct L1 method even though its working correlation structure (compound
symmetry with equal 	s) is not true. The comparison with the linear mixed model
is similar to what we have in Fig. 13.1. We can only see a little increase in the curve
when 	 D 0:05, which corresponds to the case where the variance among the 	s is
the greatest, and thus where we are the farthest away from the working correlation.
Hence it seems that the proposed method is quite robust to this type of departure
from the assumptions.
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Fig. 13.2 Efficiency relative to the transformation–retransformation L1 method with estimated 	.
Unequal 	 case. Basic L1 is the full line (–), mixed model is the dashed line (- - -)

The upper-right plot corresponds to the same situation but with random intercepts
and errors distributed as t3. This time, the proposed method is always more efficient
than both the direct L1 method and the linear mixed model. Similar findings can
be obtained from the lower plots, which present the corresponding results for the
seven-variate cases.

The conclusion from this limited simulation study is that the transformation–
retransformation L1 method is very promising as it seems more efficient than the
direct L1 method. Moreover, the advantage over the direct L1 method seems to hold
even when the working correlation structure is not well specified. Hence, the partial
information recovered by the transformation–retransformation L1, even if coming
from a wrongly specified working correlation structure, is still useful enough to
beat the direct L1 method.
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13.6 Concluding Remarks

The goal of this paper was to show the potential of a novel L1 norm estimation
method of regression coefficients for clustered data. Unlike using the L1 norm
directly on the data, the proposed transformation–retransformation method uses the
clustering structure to produce more efficient estimates, as shown in a simulation
study. Hence this method deserves to be investigated further. The next logical step
is to study the theoretical properties of the proposed method. More precisely, we are
planning to derive its asymptotic properties, including calculations of asymptotic
efficiencies. Moreover, we used a simple estimation of 	, based on response-wise
linear mixed models in the particular implementation used in the simulation study.
However, using an L1-type method would be more natural and we are also planning
to develop such a method.
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Chapter 14
Robust Variable Selection and Coefficient
Estimation in Multivariate Multiple Regression
Using LAD-Lasso

Jyrki Möttönen and Mikko J. Sillanpää

Abstract Univariate and multivariate lasso estimation methods are highly sensitive
to outlying observations because of the sum of squared norms term in the objective
function. Using sum of norms (least absolute deviations, LAD) instead of sum
of squared norms gives us a considerably more robust estimate for the regression
coefficients. In this paper we combine LAD with the multivariate lasso method and
illustrate its estimation using simulated data set that are similar to those typically
seen in association genetics. We will shortly consider also how the significance
testing is done for non-zero coefficients and how the tuning parameter value can
be determined.

Keywords Association genetics • Multivariate multiple regression • LASSO •
Least absolute deviation

14.1 Introduction

In many applications of genomics, only a small subset of explanatory variables is
likely to be important a posteriori with respect to the outcome variable. However, the
number of explanatory variables needed to be considered a priori in the regression
model is much higher than the number of individuals in the sample. This necessitates
the use of regularization in the estimation or prior information in the model to
obtain reasonable estimates of the regression coefficients for important explanatory
variables.
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The regularization can be done either by using shrinkage estimation (Tibshirani
1996) or by using simultaneous estimation and variable selection (O’Hara and
Sillanpää 2009). Shrinkage estimation operates by automatically shrinking spurious
(un-important) coefficients towards zero while coefficients of important covariates
obtain non-zero values. Recently proposed regularization methods for linear regres-
sion include, for example, lasso (Tibshirani 1996; Wu et al. 2009; Xu 2010), Elastic
net (Zou and Hastie 2005; Cho et al. 2010), Bayesian lasso (Park and Casella 2008;
Yi and Xu 2008) as well as adaptive Bayesian Lasso (Sun et al. 2010; Mutshinda
and Sillanpää 2010). For a recent review in genetics, see Li and Sillanpää (2012).
For multivariate lasso methods, see Yuan et al. (2007) and Liu et al. (2012).

Normality of residuals is commonly assumed in univariate and multivariate
regression methods that are used to study phenotype–genotype associations. To
make phenotypes (and residuals) more normal, data transformations are applied
(see Xu and Hu 2010). A robust alternative, which is less sensitive to the outlying
observations, is to assume that the residuals follow some non-normal distribution
(e.g., t-distribution or Laplace distribution) which have heavier than normal tails.
For the univariate case, see Lange et al. (1989) and Yang et al. (2009), and for
the multivariate case, see Chen et al. (2014). For expression data application, see
Purdom and Holmes (2005). It is well known that L2-norm based likelihood arises
from assuming normally distributed residuals. Therefore, a robust alternative is
obtained if one fits the model and use the L1-norm instead of the L2-norm in place
of the likelihood. This kind of approach is called LAD-lasso and has been presented
for econometrics applications (Wang et al. 2007). A generalization of LAD-lasso to
make it adaptive is called weighted LAD-lasso (Arslan 2012). Also lasso approaches
combined with Huber’s criterion (Lambert-Lacroix and Zwald 2011), minimum
distance criterion (Chi and Scott 2014) or heteroscedastic sparse regression (Daye
et al. 2012) as well as robust least angle regression (Khan et al. 2007) or the least
trimmed squares (Alfons et al. 2013) have been proposed as alternatives for LAD-
lasso approach. See also Zhou et al. (2013) and Gao and Huang (2010). However,
here we adopt normal LAD-lasso and bring it to genomics context (cf. Daye et al.
2012) and generalize it for multivariate data. The robust performance of the method
is illustrated by using multivariate simulated data examples.

14.2 Univariate Lasso and LAD-Lasso

Consider the univariate multiple regression model

y D Xˇ C "
where y D .y1; : : : ; yn/

> is an n� 1 vector of n observed values, X D .x1; : : : ; xn/
>

is an n� q matrix of n observed values of q explaining variables, ˇ is a q� 1 vector
of regression coefficients, and " D ."1; : : : ; "n/

> is an n� 1 vector of residuals. We
further assume that the model has an intercept term, i.e. the first column of X is a
column of ones. The ordinary least squares estimate Ǒ OLS minimizes the objective
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function

1

n

nX

iD1
.yi � ˇ>xi/

2 D 1

n
.y � Xˇ/>.y� Xˇ/ (14.1)

and when the rank of X is q, the minimizing value is

Ǒ
OLS D .X>X/�1X>y:

Tibshirani (1996) introduced a shrinkage estimation method for the univariate
multiple regression. The ordinary least squares objective function is now minimized
subject to

Pq
jD2 jˇjj � t where t � 0 is a tuning parameter. It can be shown that

minimization of (14.1) subject to
Pq

jD2 jˇjj � t is equivalent to minimization of the
objective function

1

n

nX

iD1
.yi � ˇ>xi/

2 C �
qX

jD2
jˇjj; (14.2)

where � � 0 is a tuning parameter. The intercept ˇ1 is not included in the lasso
penalty term since we are only interested in sparsity in the covariates. The minimizer
of the objective function (14.2) is called a lasso estimate for ˇ. Note that the choice
� D 0 gives the usual ordinary least squares regression solution.

It is well known that the ordinary least squares estimation method (and con-
sequently the lasso-estimation method) is very sensitive to outliers (Alfons et al.
2013). A robust alternative for the lasso-estimate is achieved by replacing the
squared residuals with absolute values of residuals in the objective function (14.2).
See, e.g., Wang et al. (2007), Wang and Leng (2007), Xu and Ying (2010), and
Arslan (2012). The minimizer of the objective function

1

n

nX

iD1
jyi � ˇ>xij C �

qX

jD2
jˇjj (14.3)

is then the so-called LAD-lasso estimate for ˇ. Obviously the choice � D 0 gives
the usual LAD (least absolute deviations) regression solution. Let

�
y�

i

x�
i

	
D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�
yi

xi

	
; if i D 1; : : : ; n;

�
0

n�ei�nC1

	
; if i D nC 1; : : : ; nC q � 1;

where ei is a q� 1 standard unit vector with a 1 as the ith component and zeroes for
all the other components. Now the objective function (14.3) can be rewritten in the
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form

1

nC q � 1
nCq�1X

iD1
jy�

i � ˇ>x�
i j; (14.4)

which implies that the LAD-lasso estimate can be found by using any standard
LAD-estimation program, e.g. using function rq in the R-package quantreg or the
LAV command in the SAS/IML library.

14.3 Multivariate Lasso and LAD-Lasso

Consider now multivariate multiple regression model

Y D Xˇ C "; (14.5)

where Y D .y1; : : : ; yn/
> is an n � p matrix of n observed values of p response

variables, X D .x1; : : : ; xn/
> is an n�q matrix of n observed values of q explaining

variables, ˇ is a q� p matrix of regression coefficients, and " D ."1; : : : ; "n/
> is an

n � p matrix of residuals. We further assume that "1; : : : ; "n is a random sample of
size n from a p-variate distribution centred at the origin.

The minimizer of the objective function

1

n

nX

iD1
kyi � ˇ>xik2 D 1

n

nX

iD1
.yi � ˇ>xi/

>.yi � ˇ>xi/

D 1

n
tr

.Y � Xˇ/>.Y � Xˇ/

�
(14.6)

gives the ordinary least squares estimate and when the rank of X is q, the minimizing
value is

Ǒ
OLS D .X>X/�1X>Y:

The univariate lasso estimation method can be generalized straightforwardly to the
multivariate case by using the penalized objective function

1

n

nX

iD1
kyi � ˇ>xik2 C �

qX

jD2
kˇjk: (14.7)

See, e.g., Turlach et al. (2005), Yuan and Lin (2006), and Yuan et al. (2007). The
minimizer of the objective function (14.7) gives now multivariate lasso estimate for
the regression coefficient matrix ˇ. Note that the model (14.5) can be rewritten as

y� D X�ˇ� C �� D
�
X�1 � � � X�q

�
ˇ� C �� D

qX

jD1
X�jˇj C ��; (14.8)
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where y� D
�
y1> � � � yn

>�> is an np� 1 vector, X� D X˝ Ip is an np� pq matrix,

ˇ� D
�
ˇ1

> � � � ˇq
>�> is a pq � 1 vector and �� D

�
"1

> � � � "n
>�> is np � 1

vector. The Eq. (14.8) implies that the multivariate multiple regression model is of
the same form as the regression problem with q factors where the np � p matrix
X�j corresponds to the jth factor and ˇj is a coefficient vector (Yuan and Lin 2006).
The penalized objective function for multivariate lasso (14.7) is therefore also an
objective function for group lasso problem (Yuan and Lin 2006).

The multivariate lasso method gives sparse solutions but it is obviously not very
robust. See Sect. 14.6 for the robustness study. In the same way as in the univariate
case you get a more robust version by replacing the squared norms with norms. In
other words, you minimize the penalized objective function

1

n

nX

iD1
kyi � ˇ>xik C �

qX

jD2
kˇjk (14.9)

with respect to the coefficient matrix ˇ. Note that when using the penalty term
�
Pq

jD2 kˇjk, we get a robustified version of group lasso objective function (14.7).

Denote the minimizing value of (14.9) by Ǒ LL. It is easily seen that if we define, in
the same way as in Sect. 14.2,

�
y�

i

x�
i

	
D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�
yi

xi

	
; if i D 1; : : : ; n;

�
0

n�ei�nC1

	
; if i D nC 1; : : : ; nC q � 1;

the objective function (14.9) reduces to the LAD estimation objective function (Oja
2010)

1

nC q � 1
nCq�1X

iD1
ky�

i � ˇ>x�
i k; (14.10)

which shows that we can use any multivariate LAD regression estimation routine
to find the multivariate LAD-lasso estimate Ǒ LL. You can, for example, use the
function mv.l1lm of the R-package MNM (Nordhausen et al. 2009; Nordhausen and
Oja 2011).

14.4 Determination of the Tuning Parameter

To choose the tuning parameter in the univariate case it has been proposed to use
AIC, BIC, GCV criteria or to perform cross-validation (Hastie et al. 2009). In the
multivariate case, some changes to the criteria may be needed. We have decided to
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modify the BIC criterion to handle the multivariate LAD case. In our new BIC-type
LAD (BTL) criterion, we have replaced the OLS objective function with the LAD
objective function. Additionally, to calculate degrees of freedom in multivariate
case, we have adopted the convention to calculate the number of non-zero regression
vectors at each covariate position. We also assume that 
2 D var."ij/. We use the
following criterion to determine the tuning parameter �:

BTL� D
Pn

iD1 kyi � ˇ.�/>xik
n 
2

C log.n/

n
h.�/; (14.11)

where ˇ.�/j is the jth row of the LAD-lasso estimate ˇ D ˇ.�/ and h.�/ DPq
jD2 I.kˇ.�/jk > 0/ is the number of non-zero regression vectors. We then choose

the � that minimizes the BTL-criterion, i.e.

�0 D arg min
�2�

BTL�;

where � D f�min; �min C ı; �min C 2ı; : : : ; �maxg, ı > 0 is step length and �max D
�min C .M � 1/ı.

14.5 Significance Testing

After LAD-lasso estimation of the effects, especially with a small � value, it is
useful to do hypothesis testing for each covariate separately to control false positive
findings. For conventional lasso, Meinshausen et al. (2009) suggested a sample-
split method where data over individuals are randomly divided into two equal-sized
samples. The first sample is used for estimation of the set of active predictors (i.e.
the set S D fjIˇj ¤ 0g) and the second sample is used for fitting the active predictors
with OLS. The p-values QPj, j 2 S, are then calculated for the predictors of the model
and for the noise variables (Sc D fjIˇj D 0g) the p-values are set to 1. The adjusted
p-values are defined as LPj D min.jSj QPj; 1/, j D 1; : : : ; q. These steps are repeated
B times and after that aggregated p-values are calculated:

Pj D min

�
1; .1� log.0:05// inf

�2.0:05;1/Qj.�/

�
;

where Qj.�/ D minf1; q�.f LP.b/j =� I b D 1; : : : ;Bg/g; LP.b/j is the p-value of the jth
variable of the bth split and q� .�/ is the empirical � -quantile function. Finally,
variable j is selected if Pj � ˛. This same procedure can be applied also for the
univariate and multivariate LAD-lasso by fitting the active predictors with LAD
and calculating the p-values with the function mv.l1lm of the R-package MNM
(Nordhausen et al. 2009; Nordhausen and Oja 2011).
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14.6 A Simulation Study

For this study, we simulated new phenotypes with trivariate traits using the public
genotype dataset from the 12th QTL-MAS Workshop (QTL-MAS 2008). For more
information on the dataset, see Crooks et al. (2009) and Lund et al. (2009). The
original genotype dataset contains 5865 individuals and 6000 markers. To reduce
rank-deficiency and collinearity among explanatory variables, we took a random
sample of 300 from the individuals and chose every 30th marker with a resulting
total number of 200 markers. We then generated trivariate traits by using the
multivariate multiple regression model

Y D Xˇ C ";
where Y is a 300 � 3 matrix of trivariate traits, X is a 300 � 200 matrix with ijth
element

xij D
8
<

:

�1; if indiv. i is homozygote (11) at marker j;
0; if indiv. i is heterozygote (12) at marker j;
1; if indiv. i is homozygote (22) at marker j;

ˇ is a 200 � 3 matrix with four QTLs indicated as non-zero rows

ˇ50
> D .100; 100; 100/; ˇ75> D .0; 50; 100/

ˇ100
> D .5; 10; 15/ and ˇ150

> D .3; 3; 3/;
and " is a 300 � 3 matrix with i.i.d. rows distributed as
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We estimated the tuning parameter � by using BTL-criterion. Figure 14.1 shows
that BTL has minimum value at � D 0:105. We then estimated ˇ using both
multivariate lasso and multivariate LAD-lasso method. Figure 14.2 shows that
when there are no outliers, multivariate lasso and multivariate LAD-lasso methods
perform equally well for finding the four QTLs. We then generated a contaminated
data set by multiplying y10 and y292 by 100:

y10 D .�8:3; 36:9; 82:1/ ! y10 D .�834:5; 3689:5; 8211:8/
and

y292 D .�5:9; 39:6; 85:2/ ! y292 D .�588:8; 3962:2; 8519:1/:

Figure 14.1 shows that BTL has minimum value when the tuning parameter
is � D 0:105. We can clearly see that the outliers do not have much effect on
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Fig. 14.1 BTL-criterion as a function of tuning parameter � for the original data (top) and the
contaminated data (bottom). The parameter h gives the number of non-zero regression vectors ˇj
including the intercept
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Fig. 14.2 Marker effects kˇjk, j D 1; : : : 200, for multivariate LAD-lasso estimate (top) and
multivariate lasso estimate (bottom) for the original data using tuning parameter � D 0:105
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Fig. 14.3 Marker effects kˇjk, j D 1; : : : 200, for multivariate LAD-lasso estimate (top) and
multivariate lasso estimate (bottom) for the contaminated data using tuning parameter � D 0:112
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the multivariate LAD-lasso (see Fig. 14.3, top) but they have drastic influence on
multivariate lasso (see Fig. 14.3, bottom).

14.7 Concluding Remarks

Univariate and multivariate lasso estimation methods are highly sensitive to outlying
observations because of the sum of squared norms term in the objective function.
Using sum of norms instead of sum of squared norms gives us a considerably
more robust estimate for the regression coefficients. In the example analyses, we
analysed well-behaving subsamples where rank-deficiency and collinearity were
fully controlled but phenotype distribution contained outlying observations. This
was done in order to better see the robustifying influence of LAD to the outlying
observations in the response variable. LAD-regression method and obviously also
the multivariate LAD-lasso method are not robust against leverage points (outliers
with respect to the explanatory variables) but it should not be a problem when the
explanatory variables are discrete (as in our simulation study here).

It is important to emphasize here that lasso regression as well as our method has
been designed especially to the cases where there are more explanatory variables
than observations (rank-deficiency). Also, in genetic problems there are often
substantial collinearity among explanatory variables. More extensive testing of our
method in presence of more realistic genetic data will be done elsewhere (Li et al.
2015). Concerning scalability, LAD-lasso approach presented here can be easily
used to analyse few hundreds of markers and of individuals within a reasonable
time. However, the execution time of LAD-lasso R-programs is clearly slower than
corresponding estimation programs which use lasso coordinate descent algorithm.
Better estimation algorithms for LAD-lasso would be needed for rapid LAD-lasso
analysis in the future.
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Chapter 15
On Some Nonparametric Classifiers Based
on Distribution Functions of Multivariate Ranks

Olusola Samuel Makinde and Biman Chakraborty

Abstract Over the last two decades, multivariate sign and rank based methods
have become popular in analysing multivariate data. In this paper, we propose a
classification methodology based on the distribution of multivariate rank functions.
The proposed method is fully nonparametric in nature. Initially, we consider a
theoretical version of the classifier for K populations and show that it is equivalent
to the Bayes rule for spherically symmetric distributions with a location shift. Then
we present the empirical version of that and show that the apparent misclassification
rate of the empirical version of the classifier converges asymptotically to the Bayes
risk. We also present an affine invariant version of the classifier and its optimality
for elliptically symmetric distributions. We illustrate the performance in comparison
with some other depth based classifiers using simulated and real data sets.

Keywords Bayes risk • Elliptically symmetric distributions • Location shift •
Maximal depth • Spatial outlyingness

15.1 Introduction

With the growth of internet, a huge amount of online information is available
these days and it has become paramount to almost all businesses to use these
information to target their potential customers. In such applications classification
has become one of the most widely used tools to statisticians as well as computer
scientists. The objective in a classification problem is to classify an observation
into one of several competing classes or populations. If the prior probabilities
of these populations are given by pi and the probability density functions are
given by fis, then the Bayes rule classifies an observation x to the population j,
which has the maximum posterior probability (/ pjfj.x/) at x. The Bayes rule has
the lowest possible expected misclassification error rate. However, in practice the
probability density functions fis are unknown, and they need to be estimated using
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the training sample. Commonly used parametric methods like linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) (see Fisher 1936) are
motivated by specific distributional assumptions like multivariate normality of the
populations. Alternatively, if we restrict to a linear classification rule, we may like to
determine a hyperplane a>xC b D 0, which separates the populations best. There
are several methods for choosing such a hyperplane based on the training sample
available in the literature (Fukunaga 1990; McLachlan 1992; Hastie et al. 2001).
Similarly, one can also look for quadratic separating surfaces. Fisher’s LDA and
QDA can also be viewed as linear and quadratic separating surfaces, where those
surfaces were estimated using the mean vector and the covariance matrices of the
training samples. Naturally, LDA and QDA are very sensitive to outliers if there
are any in the training samples as they depend on the sample moment estimators.
The linear and quadratic surface based classifiers may lead to poor classification if
the separating surfaces are not linear or quadratic. For these reasons, nonparametric
classifiers, which are more flexible to distributional assumptions and extreme values,
are more desirable.

In the last couple of decades, notions of multivariate signs and ranks have become
a useful tool in analysing multivariate data, as it does not depend on distributional
assumptions heavily and characterizes the central and extreme observations quite
effectively. Möttönen and Oja (1995), Möttönen et al. (1997) used the notion of
spatial ranks to construct multivariate tests of location. Serfling (2010) presented a
very detailed study on spatial rank functions and their equivariance and invariance
properties. A related notion to multivariate ranks is the data depth. Vardi and Zhang
(2000) proposed l1-depth (or, spatial depth) related to the spatial ranks. Liu et al.
(1999) proposed various ideas on analysing multivariate data using data depths.
Christmann and Rousseeuw (2001) and Christmann et al. (2002) applied the idea
of regression depth (Rousseeuw and Hubert 1999) to classification. Ghosh and
Chaudhuri (2005a) used half-space depth and regression depth to construct linear
and nonlinear separating curves or surfaces. Ghosh and Chaudhuri (2005b) proposed
a classifier based on the notion of maximum depth. This rule was intuitively
appealing and performs well when the populations differ only in location and the
prior probabilities of the populations are equal. Jörnsten (2004) considered spatial
depth to construct classifiers, which are different from maximal depth classifiers.
Cui et al. (2008) considered a maximum depth classifier based on projection depth.
Recently, Dutta and Ghosh (2012a,b) proposed classifiers based on projection
depths and Lp-depths. Using the idea of DD-plots (Liu et al. 1999), Li et al. (2012)
proposed DD-classifier, which is a modified version of maximum depth classifier.
Lange et al. (2014) proposed another classifier based on zonoid depths. Recently,
Paindaveine and Van Bever (2015) proposed another depth based classifier which
uses the notions of local depth. However, many of these methods based on data
depths suffer from computational complexities of the depth functions.

In this paper, we define an outlyingness function based on spatial ranks.
This notion of multivariate outlyingness is closely related to the depth functions.
Makinde (2014) considered a classifier on minimizing that spatial outlyingness
function, which is equivalent to maximum depth classifiers. Here we propose a
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fully nonparametric classifier based on the distribution functions of the spatial
outlyingness functions. The method is fully nonparametric in nature and compu-
tationally easy. We show that the proposed classifier is equivalent to the Bayes rule
for spherically symmetric distributions with a location shift only. We also propose
an affine invariant version of the classifier, which is equivalent to the Bayes rule for
elliptically symmetric distribution. We compare the performance of the proposed
classifier with LDA, QDA, and some depth based classifiers. We also illustrate the
performance using some benchmark real data sets.

15.2 Classifier Based on Distribution of Multivariate
Outlyingness

Suppose X is a d-dimensional random vector (or, feature vector) having a distribu-
tion F, which is assumed to be absolutely continuous with respect to the Lebesgue
measure Rd. The spatial rank function (Möttönen and Oja 1995) of any point x 2 R

d

with respect to F is defined as

rankF.x/ D EF



x � X
kx � Xk

�
: (15.1)

Here k � k is the usual Euclidian norm. It follows immediately from the definition
that rankF.x/ D 0 implies that x is the spatial median of the multivariate distribution
F. Koltchinskii (1997) established that this spatial rank function is a one-to-one
function of the distribution function F and hence it characterizes the distribution.

Define rF.x/ D krankF.x/k and then define the distribution function of rF.X/ as

FR.r/ D P .krankF.X/k � r/ ; (15.2)

where X has distribution F. Liu and Singh (1993), Liu (1995) used the distribution
function of the data depths to construct quality index and multivariate control charts.
This distribution of the multivariate rank function has been used earlier to construct
the central rank regions and some descriptive measures like scale curves based on
volume functionals in Guha and Chakraborty (2013) and Serfling (2002). It is easy
to observe that FR.rF.x// gives an idea on how outlying x is with respect to the
distribution F. If x is a central observation, rF.x/ will be small and consequently,
FR.rF.x// will be small. On the other hand, x is an extreme observation, then
FR.rF.x// will be large. Thus a large value of FR.rF.x// may suggest a deviation
of x from the population �1. We can also observe the following simple fact:

Lemma 15.1 Let X be a d-dimensional random vector having distribution F,
which is absolutely continuous with respect to the Lebesgue measure in R

d. Then
FR.rF.X// will have a uniform.0; 1/ distribution.

Now we propose a multivariate classifier based on this distribution function of
the multivariate ranks. Consider K classes �1; : : : ; �K with distribution functions
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F1; : : : ;FK , respectively. Let cij be the cost of misclassifying an observation in �j

when it is actually from �i, for i; j D 1; : : : ;K. Let us assume that all cij’s are equal
and prior probabilities of the classes p1 D p2 D � � � D pK . Then using the motivation
stated above, we define a classification rule for any x 2 R

d as

assign x to �j if FRj.rFj.x// D min
1�i�K

FRi.rFi.x//; (15.3)

where FRi is the distribution function corresponding to the outlyingness function
krankFi.Xi/k with Xi having distribution function Fi, for i D 1; : : : ;K.

If the classes �j, j D 1; : : : ;K have spherically symmetric distributions separated
by location shifts only, we can show that the above classifier is equivalent to the
Bayes rule and hence optimal. The result is more formally stated in the following:

Theorem 15.1 Let Fj be spherically symmetric distributions with density functions
of the form

fj.x/ D h..x � � j/
>.x � � j//; x 2 R

d;

j D 1; : : : ;K, for some strictly decreasing, continuous, non-negative scalar function
h. Then the classifier defined in (15.3) is equivalent to the Bayes rule when the prior
probabilities p1 D p2 D � � � D pK D 1=K.

Proof For the prior probabilities p1 D p2 D � � � D pK D 1=K, the Bayes
classification rule is given by

assign x to �j if fj.x/ D max
1� j�K

fi.x/:

Under the assumptions of spherical symmetry for Fj, we observe that (Möttönen
et al. 1997; Marden 1998) for j D 1; : : : ;K,

rankFj.x/ D h1.kx � � jk/ x � � j

kx � � jk

for some monotonically increasing function h1. This implies rFj.x/ D h1.kx�� jk/.
Then by the assumption on the density functions of Fjs, the functions FRj.r// are
identical for all j D 1; : : : ;K. Let us denote it by FR.r/ and since FR.rFj.x// are
continuous increasing functions of rFj.x/, we can write kx � � jk D h2.FR.rFj.x///
for all j D 1; : : : ;K for some increasing function h2. Hence, the density function
fj.x/ is a decreasing function of FR.rFj.x//. So, the condition fj.x/ D max1�i�K fi.x/
is equivalent to FR.rFj.x// D min1�i�K FR.rFi.x// and that proves that the proposed
classifier in (15.3) is equivalent to the Bayes rule. ut

In practice, the rank functions rankFjs will hardly be known completely and we
need to estimate them from the training sample. Let Xj;1; : : : ;Xj;nj 2 R

d be a random
sample from the population �j having distribution function Fj for j D 1; : : : ;K. We
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define the empirical rank functions as

rankFj;nj
.x/ D 1

nj

njX

iD1

x � Xj;i

kx � Xj;ik (15.4)

for any x 2 R
d. Similarly, we can define the outlyingness functions as rFj;nj

.x/ D
krankFj;nj

.x/k for j D 1; : : : ;K, respectively. The empirical version of FRj , denoted

by OFRj , is the empirical distribution function of rFj;nj
.Xj;1/; : : : ; rFj;nj

.Xj;nj/. Then the

empirical classification rule for any x 2 R
d can be defined as

assign x to �j if OFRj.rFj;nj
.x// D min

1�i�K
OFRi.rFi;ni

.x//; (15.5)

For later reference, let us call the classifier defined in (15.5), rank distribution
based classifier or RDC. For the large sample properties of the empirical version of
the classifier, we observe the following result:

Lemma 15.2 Let X1; : : : ;Xn be independent and identically distributed d-
dimensional random vectors having distribution function F, which is absolutely
continuous, then

sup
x2Rd

ˇ̌
ˇ OFR.rFn.x//� FR.rF.x//

ˇ̌
ˇ! 0 a:s: as n!1:

Proof By Theorem 5.5 of Koltchinskii (1997),

sup
x2Rd
jkrankFn.x/k � krankF.x/kj ! 0 a:s:

as n!1. Hence following the Lemma 3.1.2 of Guha (2012), we have

sup
x2Rd

j OFR.rFn.x//� OFR.rF.x//j ! 0 a:s:

as n ! 1. Also, by Glivenko–Cantelli lemma (Durrett 2010), supr2R j OFR.r/ �
FR.r/j converges to 0 almost surely as n ! 1. The proof is now complete, by
observing the fact that

ˇ̌
ˇ OFR.rFn.x//� FR.rF.x//

ˇ̌
ˇ �

ˇ̌
ˇ OFR.rFn.x//� OFR.rF.x//

ˇ̌
ˇC

ˇ̌
ˇ OFR.rF.x//� FR.rF.x//

ˇ̌
ˇ :

ut
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15.3 Estimation of Classification Error

One way of evaluating the performance of a classification rule is to calculate its
“error rates”, or misclassification probabilities. One can define the total probability
of misclassification (TPM) as

TPM D
KX

jD1
pj

Z

Rc
j

fj.x/dx

where fj is the probability density function of Fj and Rjs denote the classification
regions as follows:

Rj D fx 2 R
d W FRj.rFj.x// D min

1�i�K
FRi.rFi.x//g

for j D 1; : : : ;K. The empirical versions of the classification regions, ORjs are given
as:

ORj D fx 2 R
d W OFRj.rFj;nj

.x// D min
1�i�K

OFRi.rFi;ni
.x//g

for j D 1; : : : ;K. So the actual error rate (AER) is given by

AER D
KX

jD1
pj

Z

ORc
j

fj.x/dx:

In real data problems, we cannot compute AER either as we do not know fjs
completely and we need to estimate AER. It can be estimated using cross-validation
(Lachenbruch and Mickey 1968). However, an easier way to evaluate a classifier,
which does not depend on the parent populations, is to use the apparent error rate
(APER). For a training sample Xj;1; : : : ;Xj;nj 2 �j, 1 � j � K with N D n1C � � � C
nK , the APER, O�N can be defined as follows for our proposed classifier:

O�N D
KX

jD1

pj

nj

niX

iD1
IfXj;i 62 ORjg (15.6)

O�N is easy to calculate and intuitively appealing, however, it is well known that it
underestimates the actual error rate, AER, unless the sample sizes njs are very large.
The following result provides the asymptotic behaviour of the O�N .
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Theorem 15.2 Assume min1� j�K nj ! 1 such that nj=N ! 1=K, 1 � j � N.
Then under the assumptions of Theorem 15.1 on the distributions Fj and p1 D � � � D
pK D 1=K,

O�N ! �B a:s:

where �B is the Bayes risk.

Proof Let Xj;1; : : : ;Xj;nj be a random sample from the population �j for j D
1; : : : ;K. Define

Q�N D
KX

jD1

pj

nj

njX

iD1
I
˚
Xj;i 62 Rj

�
:

By strong law of large numbers,

1

nj

nX

iD1
I
˚
Xj;i 62 Rj

�!
Z

Rc
j

fj.x/dx

almost surely as nj !1. Note that the Bayes risk is given by

�B D
KX

jD1
pj

Z

Rc
j

fj.x/dx

by Theorem 15.1. Hence

Q�N ��B ! 0 a:s:

as min.n1; : : : ; nK/!1.
By the uniform almost sure convergence in Lemma 15.2,

1

nj

njX

iD1
I
n
Xi;j 62 ORj

o
� 1

nj

nX

iD1
I
˚
Xi;j 62 Rj

�! 0 a:s:

as nj !1. Hence as min.n1; : : : ; nK/!1, we have

O�N � Q�N ! 0 a:s:

The proof is now complete by the triangle inequality

j O�N ��Bj � j O�N � Q�N j C j Q�N ��Bj:

ut
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Fig. 15.1 AER for three different spherically symmetric distribution families with a location shift
only

As illustration of actual error rates of our proposed empirical classifier in (15.5)
(RDC), we present a small simulation study. Let us consider the two populations
�1 and �2 to be bivariate spherically symmetric with centre of symmetries �1 D
.0; 0/> and �2 D .ı; 0/>, respectively. The sample sizes for X1;1; : : : ;X1;n1 and
X1;2; : : : ;X2;n2 are taken to be n1 D n2 D 100. We simulate a new random sample
Z1; : : : ;Zm from �1 and ZmC1; : : : ;Z2m from �2 with m D 100 and estimate
the AER by the proportion of misclassification in Z1; : : : ;Z2m. The simulation
size is 1000. Figure 15.1 shows the AER of three bivariate spherically symmetric
distributions, namely normal, Laplace and t with 3 degrees of freedom, as ı varies
in Œ�2; 2�. As expected, the misclassification error is nearly 0.5 when ı D 0 and
it decreases as ı goes away from 0 and the separation between the population
increases.

In Fig. 15.2, we present a comparison of the proposed classifier (RDC) (given
in (15.5)) with some existing classifiers like Fisher’s LDA, support vector machine
(SVM) (Vapnik 1982, 1998), maximal depth classifier based on Oja depth (denoted
by O-D) and projection depth (denoted by P-D) (Ghosh and Chaudhuri 2005b),
as well as minimal rank classifier (RC) as proposed by Makinde (2014). We use
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Fig. 15.2 Comparison of several classifiers for some spherically symmetric distributions with a
location shift only

the same simulation setting as before. For SVM, we have used C-support vector
classification with Gaussian RBF-kernel. The default choice of parameters in the
R package kernlab were used. The cost of constraint C is taken to be 1 with
hyperparameter 
 is determined automatically by the sigest function in the same
library and it returns a value between the 0.1 and 0.9 quantile of kx � x0k. As
expected we observe that the misclassification errors of all of them are very similar,
validating the fact that all of them are equivalent to the Bayes’ rule for spherically
symmetric distributions with a location shift only.

Next, we investigate the performance of our proposed classifier, RDC, when the
populations are not spherically symmetric. To begin with let us consider the classes
�1 and �2 that have the same elliptically symmetric distribution with the same scale
matrix ˙ , but different location vectors �1 and �2. In our simulation study, again
we consider d D 2, �1 D .0; 0/> and �2 is such that .�1 ��2/>˙�1.�1 ��2/ D
ı2, where

˙ D
�
1 	

	 1

	
:

Table 15.1 shows the estimated actual error rates of RDC for different values of
	 and ı with three different distributions normal, Laplace and t with 3 degrees
of freedom. For comparison, we have also presented the estimated AER for the
LDA, which does not depend on 	. We observe that the error rates for RDC are
different for different values of 	 indicating that the proposed classifier is not affine
invariant. We know that the spatial rank function is not invariant under general
affine transformations and hence any procedure based on spatial ranks is not affine
invariant.
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Table 15.1 Estimated AER for RDC in the presence of correlation among the variables

RDC
Distribution ı LDA 	 D 0 	 D 0:5 	 D 0:75 	 D 0:9

Normal 0.0 0.5000 0.4702 0.4696 0.4704 0.4704
0.5 0.4059 0.4031 0.4040 0.4031 0.4023
1.0 0.3117 0.3107 0.3153 0.3155 0.3131
1.5 0.2290 0.2283 0.2352 0.2345 0.2313
2.0 0.1602 0.1583 0.1677 0.1674 0.1626

Laplace 0.0 0.5000 0.4703 0.4703 0.4698 0.4699
0.5 0.4361 0.4278 0.4265 0.4259 0.4259
1.0 0.3577 0.3589 0.3587 0.3584 0.3568
1.5 0.2960 0.2571 0.2602 0.2598 0.2570
2.0 0.2434 0.2004 0.2043 0.2038 0.2008

t with 3 d.f. 0.0 0.5000 0.4699 0.4701 0.4703 0.4702
0.5 0.4216 0.4137 0.4121 0.4117 0.4111
1.0 0.3347 0.3320 0.3333 0.3332 0.3311
1.5 0.2618 0.2571 0.2602 0.2598 0.2570
2.0 0.2018 0.2004 0.2043 0.2038 0.2008

It can be noted that the spatial rank function can be made affine invariant with
the following definition

rank�
F.x/ D EF

�
V�1.x� X/
kV�1.x� X/k

	
(15.7)

where V is a d�d matrix such that VV> D c˙ for some constant c. If the covariance
of the distribution F exists, we can take V to be the Cholesky decomposition of the
covariance matrix. For the empirical versions, one can estimate ˙ by minimum
covariance determinant (MCD) estimator of Rousseeuw (1984) and then V by its
square root matrix. Note that the Cholesky decomposition of ˙ (or, its estimate)
may not produce an affine invariant rank function but the outlyingness function
r�

F.x/ based on rank�
F.x/ will be affine invariant and that will make our classification

rule affine invariant. In our numerical examples, we refer to this classification
rule as RDA-A. In our later simulation studies, we have also used moment based
estimators of ˙ and affine invariant ranks as proposed in Chakraborty (2001). The
corresponding classifiers are denoted as RDA-A0 and AIRDC, respectively.

In Table 15.2, we present a comparison of the proposed affine invariant classifier
AIRDC with LDA, SVM, maximal depth classifiers based on Oja depth (O-D)
and the projection depth (P-D). The simulation settings are exactly the same as in
Fig. 15.2, but only for ı D 1 and 2. Since all the classifiers under comparison except
RDC are affine invariant, we have taken˙ to be the identity matrix. We observe that
AIRDC performs quite well compared to other classifiers and the Bayes risk for
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Table 15.2 Error rate comparisons of AIRDC with other classifiers when ˙ D I2, �1 D .0; 0/>

and �2 D .ı; 0/>

Classifiers
Distribution ı Bayes Risk LDA SVM O-D P-D RC RDC AIRDC

Normal 1.0 0.3085 0.3148 0.3157 0.3181 0.3213 0.3129 0.3104 0.3096
2.0 0.1587 0.1612 0.1602 0.1649 0.1660 0.1615 0.1583 0.1582

Laplace 1.0 0.3576 0.3770 0.3814 0.3831 0.3729 0.3693 0.3585 0.3598
2.0 0.2415 0.2464 0.2573 0.2503 0.2508 0.2475 0.2411 0.2442

t with 3 d.f. 1.0 0.3339 0.3746 0.3505 0.3707 0.3400 0.3418 0.3329 0.3320
2.0 0.2019 0.2220 0.2137 0.2185 0.2053 0.2060 0.1983 0.1970

normal distribution. For non-normal distributions, it is noticeably better than other
classifiers.

If rank�
Fj
.x/ is an affine invariant spatial rank function based on Fj and FR�

j
is the

distribution function of r�
Fj
.Xj/ D krank�

Fj
.Xj/k where the d-dimensional random

vectors Xj have distributions Fj for j D 1; : : : ;K, we have the following optimal
result for AIRDC based on affine invariant rank functions.

Theorem 15.3 Let Fj be elliptically symmetric distributions with density functions
of the form

fj.x/ D j˙ j�1=2h..x� � j/
>˙�1.x � � j//

for some strictly decreasing, continuous, non-negative scalar function h. Then the
classifier

assign x to �j if FR�

j
.r�

Fj
.x// D min

1�i�K
FR�

i
.r�

Fi
.x// (15.8)

is equivalent to the Bayes rule when the prior probabilities p1 D � � � D pK D 1=K.

So far we have considered only the populations �1 and �2 which are separated
by location shift only. In Table 15.3, we present a comparison of error rates of our
proposed classifier AIRDC with quadratic discriminant classifier, QDA and RDC
when the populations differ by both location and scale. It is well known that QDA is
the Bayes rule when the two populations are normally distributed and differ in both
scale and location. We have taken ˙ 1 D I, ˙ 2 D 
2I, �1 D .0; 0/> and �2 D
.ı; 0/>. We observe that the performance of AIRDC is not very good compared to
QDA.
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Table 15.3 Error rate comparisons of AIRDC with RDC and QDA when ˙ 1 D I2, ˙ 2 D 
2I2 ,
�1 D .0; 0/> and �2 D .ı; 0/>

Average misclassification error
Distribution Classifiers ı 
 D 0:20 
 D 0:50 
 D 1:0 
 D 2:0 
 D 5:0

Normal AIRDC 1 0.2943 0.2892 0.3105 0.4179 0.4785
RDC 0.2892 0.2921 0.3101 0.3578 0.4345
QDA 0.0556 0.1889 0.3136 0.2448 0.0813
AIRDC 2 0.0695 0.0987 0.1589 0.2895 0.4496
RDC 0.0943 0.1258 0.1589 0.2102 0.3167
QDA 0.0184 0.0751 0.1614 0.1891 0.0784

Laplace AIRDC 1 0.3594 0.3522 0.3614 0.4362 0.4789
RDC 0.3616 0.3521 0.3569 0.4377 0.4793
QDA 0.1045 0.2714 0.3766 0.3109 0.1436
AIRDC 2 0.2019 0.2038 0.2425 0.3523 0.4586
RDC 0.2028 0.2073 0.2423 0.3537 0.4586
QDA 0.0564 0.1613 0.2471 0.2709 0.1379

t with 3 d.f. AIRDC 1 0.3187 0.3153 0.3376 0.4198 0.4782
RDC 0.3197 0.3152 0.3320 0.4236 0.4777
QDA 0.1123 0.2685 0.3716 0.3295 0.1611
AIRDC 2 0.1408 0.1577 0.2031 0.3144 0.4509
RDC 0.1449 0.1560 0.2010 0.3143 0.4514
QDA 0.0510 0.1373 0.2225 0.2692 0.1547

15.4 Numerical Examples with Real Data

We analyse seven benchmark data sets to illustrate the performances of our methods
(RDC, AIRDC and RDA-A). These datasets include iris data (Fisher 1936), Pima
Indians diabetes (PID) data (owned by the National Institute of Diabetes and
Digestive and Kidney Diseases), banknote data (Lohweg 2013), biomedical data
(Cox et al. 1982), yeast data (Nakai 1991), cloud data (Miller et al. 1979), seed data
(Charytanowicz et al. 2012) and Haberman data (see Haberman 1976). Except for
iris data, all data sets are taken from UCI Machine Learning Repository (https://
archive.ics.uci.edu/ml/datasets.html) and StatLib Archive (http://lib.stat.cmu.edu/
datasets/). In Table 15.4, we present the analysis of some real data sets with
training sample size of each class n and test sample size m (unless mentioned
otherwise). Here d is the dimension of the data and k is the number of classes
considered. For clarity in our data analysis, we denote RDA-A with MCD estimate
of covariance by RDA-A and RDA-A with moment estimate of covariance by RDA-
A0. For computing MCD estimate of covariance using the FAST-MCD algorithm
(Rousseeuw and Van Driessen 1999) via R packagerobustbase, we set ˛ D 0:90
for small training sample sizes (iris data, seed data and biomedical data) and
˛ D 0:70 for large training sample sizes. For iris data, RDA-A, RDA-A0, AIRDC
and AIRC have the same misclassification error as QDA while RC and RDC have

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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the same misclassification error as LDA. For biomedical data, RDA-A0 has the
least misclassification error. RDA-A and AIRDC perform similar to QDA. For
Pima Indian diabetes data, RDA-A, RDA-A0 and LDA appear to perform best
while QDA and AIRDC perform well. For cloud data, RDA-A outperforms others
while AIRC, AIRDC and RDA-A0 outperform QDA and LDA. AIRC and RDA-
A compete favourably with all other classifiers for banknote authentication data,
while misclassification error is least in RDA-A0 but high in RDA-A, RC and RDC.
For seed data, both AIRDC, AIRC and LDA outperform others. For Haberman
data, QDA has the least misclassification error while RDA-A and LDA perform
well. AIRDC, QDA, RDA-A0 and AIRC perform best among other classifiers with
yeast data. In general, AIRC, AIRDC, RDA-A and RDA-A0 perform well and
compete favourably with QDA while RC and RDC compete favourably with LDA.
For comparison, we have also included error rates of the SVM classifier with the
settings as described earlier. We have not included OD and PD classifiers due to
high dimensionality of the data sets.

15.5 Concluding Remarks

The classifier proposed in (15.5) based on the training samples does not depend
on any distributional assumptions or does not require any estimation of model
parameters. That gives a nonparametric flavour to our classifier RDC. It is also
computationally simple and can be applied to very high dimensional data as well. In
principle, the proposed methods can be applied to high dimensional situation when
dimension d > n, the sample size, however, the properties and the behaviour of the
classifier in those circumstances require further investigation. We have noted in our
real data examples that the proposed classifiers are quite competitive with similar
classifiers but computationally much easier than maximal depth based classifiers
(except may be for spatial depth). Due to computational complexity of the depth
functions for dimensions d � 3, it is nearly impossible to implement those classifiers
for large dimensions unless we have a very small sample size. However, the
classifiers proposed here can be computed in any dimension quite easily. In future
work, we propose to investigate the usefulness of these classifiers when dimension
d > n.
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Chapter 16
Robust Change Detection in the Dependence
Structure of Multivariate Time Series

Daniel Vogel and Roland Fried

Abstract A robust change-point test based on the spatial sign covariance matrix
is proposed. A major advantage of the test is its computational simplicity, making
it particularly appealing for robust, high-dimensional data analysis. We derive the
asymptotic distribution of the test statistic for stationary sequences, which we
allow to be near-epoch dependent in probability (P NED) with respect to an ˛-
mixing process. Contrary to the usual L2 near-epoch dependence, this short-range
dependence condition requires no moment assumptions, and includes arbitrarily
heavy-tailed processes. Further, we give a short review of the spatial sign covariance
matrix and compare our test to a similar one based on the sample covariance matrix
in a simulation study.

Keywords GARCH • Near epoch dependence • Oja sign covariance matrix •
Orthogonal invariance • Spatial sign covariance matrix • Tyler matrix

16.1 Introduction

The problem of detecting changes in the parameters of time series has been an
area of intensive research for several decades. However, detecting breaks in the
dependence structure of multivariate time series has just recently been addressed
in the literature (e.g., Galeano and Peña 2007; Aue et al. 2009; Wied et al. 2012;
Dehling et al. 2012; Quessy et al. 2013; Galeano and Wied 2014; Wied et al. 2014;
Bücher et al. 2014). The majority of these articles study variants of the general
CUSUM-type test statistic, being of the form

OTn D max
1�k�n

k

O
�;npn
j O�k � O�nj; (16.1)
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where O�k, 1 � k � n, is an estimator based on the first k observations for
the parameter of interest � , and O
2�;n is an appropriate variance estimator. In this

formulation, the parameter � is univariate, but the basic principle of O�k being
compared to O�n for all 1 � k � n and the appropriate scaling with respect to
k and n also apply to parameter vectors. In Aue et al. (2009), for instance, the
parameter of interest is the covariance matrix, and in Galeano and Wied (2014)
it is the correlation matrix. It is well known that the respective normal maximum
likelihood estimators possess certain optimality properties under normality, but are
rather inefficient under heavy tails. The latter is a serious drawback in practice.
The tests are mainly intended for applications to financial time series, which
are, even on a log-scale, known to display heavy tails. The tests of Aue et al.
(2009) and Galeano and Wied (2014) require finite fourth moments, and it is
a matter of debate whether this may be assumed for, e.g., log-returns of stock
prices. Regardless of the answer to this specific question, the tests are used in data
situations where they are far from optimal. Several researchers have addressed this
issue by proposing change-point tests based on alternative estimators. For instance,
Dehling et al. (2012) and Quessy et al. (2013) consider Kendall’s � , and Wied et al.
(2014) and Kojadinovic et al. (2015) propose test statistics related to Spearman’s 	.
However, these robustifications come at a higher computational cost, making them
less feasible for change detection in high dimensions or an on-line setting. In the
present paper, we propose a change-point test with very good robustness properties,
which requires no moment assumptions at all, comes at no higher computational
cost as, e.g., the sample covariance based test by Aue et al. (2009), and also has a
surprisingly high efficiency under normality.

The paper is organized as follows. In Sect. 16.2, we state the problem, define the
test statistic, and derive its asymptotic null distribution. Our test statistic is based on
the spatial sign covariance matrix, which we review in Sect. 16.3. Then Sect. 16.4
contains numerical simulation results, and we close with a discussion and an outlook
in Sect. 16.5.

Throughout, we use k � kr to denote the r norm in Rp for any 1 � r � 1, and
write k � k short for k � k2. Thus for a random vector X, kXk2 is a univariate random
variable. We use fEkXkr

rg1=r to denote the Lr norm of X. All random variables are
defined on a common probability space .˝;F ;P/. Finally, 
.Xi j i 2 I/ denotes the

-field generated by Xi, i 2 I, where I is some arbitrary index set.

16.2 Statement of Problem and Main Result

Let X1; : : : ;Xn be a p-variate random sample with p � 2. The spatial median of the
(distribution of the) random vector X is defined as

�.X/ D arg min
� 2 Rp

E .kX � �k � kXk/ : (16.2)
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The spatial median always exists and, if the distribution of X is not concentrated on
a straight line, it is unique. Throughout the paper, we assume the data to be centered
by the spatial median, i.e, �.X1/ D : : : D �.Xn/ D 0. We completely exclude the
location estimation problem and assume the spatial median of the data to be known.
The feasibility of this simplifying assumption and the question of how to extend our
results to the unknown-location setting will be discussed in Sect. 16.5.

We want to detect changes in the dependence structure of the Xk. By dependence
structure we mean the covariance up to scale. Thus, if we denote Cov.X/ by˙ .X/,
and let ˙ 0.X/ D tr.˙ .X//�1˙ .X/, we want to test the hypothesis

H0 W ˙ 0.X1/ D ˙ 0.X2/ D : : : D ˙ 0.Xn/ (16.3)

against the alternative that any of these equalities is violated. In particular, we aim
at power against one-jump alternatives, i.e.,

HA W 9 1 � k < n W ˙ 0.X1/ D : : : D ˙ 0.Xk/ ¤ ˙ 0.XkC1/ D : : : D ˙ .Xn/:

We call

s.x/ D
(

x=kxk if x ¤ 0;

0 otherwise;

the spatial sign of x 2 Rp. Let vec.A/ be the p2 vector obtained by stacking the
columns of A 2 Rp�p from left to right underneath each other, and vech.A/ be the
p.pC 1/=2 vector obtained from vec.A/ by removing all subdiagonal elements of
A. We define the function v as

v W Rp ! Rm W x 7! QIm vech
˚
s.x/s.x/>

�
; (16.4)

where m D p.pC 1/=2� 1, and QIm denotes the m � .mC 1/ matrix obtained from
the .mC 1/-dimensional identity matrix ImC1 by removing the last line. Let further

˚k D 1p
n

8
<

:

kX

jD1
v.Xj/� k

n

nX

jD1
v.Xj/

9
=

; (16.5)

and

Ő n;0 D 1

n

nX

iD1
v.Xi/v.Xi/

>: (16.6)
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Our change-point test statistic for testing H0 against HA is then

OTS;0 D max
1�k�n

˚>
k
Ő �1

n;0˚k:

The following theorem gives the asymptotic null distribution of OTS;0 for independent
sequences.

Theorem 16.1 Let X1; : : : ;Xn; : : : be p-dimensional, independent, and identically
distributed observations with distribution F, which is not concentrated on a .p�1/-
dimensional hyperplane. Then, as n!1,

OTS;0
d�! T.m/ D sup

0�t�1

mX

lD1
B2l .t/; (16.7)

where Bl, 1 � l � m, are independent standard Brownian motions on Œ0; 1�.

We give no proof of Theorem 16.1 since it is a special case of Theorem 16.2 below.
The distribution of T.m/ can easily be simulated, and has also been tabulated, e.g.
by Aue et al. (2009). The authors also state that

.m=8/�1=2.T.m/ �m=4/
d�! N.0; 1/ as m!1;

but note that this convergence is too slow to provide sensible critical values for
practical purposes.

Remark 16.1 Noteworthy about Theorem 16.1 is that it poses basically no restric-
tion on the population distribution F, in particular no moment condition. The latter
may appear superfluous, since the formulation of the hypothesis H0, cf. (16.3),
implicitly requires the existence of finite second moments. However, there are
alternative ways of modeling multivariate dependencies and multivariate scatter,
which are not based on the covariance matrix and which also extend beyond finite
second moments. The test statistic OTS;0 may be put to good use in such situations as
well. We will discuss in some detail in Sect. 16.3 how this test can be employed to
test for constancy of the shape of an elliptical distribution, regardless of the existence
of any moments.

Remark 16.2 The requirement for F to be not concentrated on an affine-linear
subspace is also not necessary, but a mere convenience assumption. If F was
confined to a, say, k < p dimensional hyperplane, then the sum in (16.7) would

range from 1 to k.kC1/=2�1 and Ő �1
n;0 would have to be replaced by a generalized

inverse. It should also be noted that, if the spatial median � was to be estimated,
some regularity condition, similar to condition (ii) of Theorem 16.2, prohibiting a
strong probability mass concentration at �, would be necessary.
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The assumption of independent observations will be relaxed below. Before doing
so, we want to motivate the construction of the test statistic OTS;0 and explain that it
is indeed a multivariate version of (16.1). For that purpose, we briefly recall the test
statistic of Aue et al. (2009). Following the construction principle (16.1), Aue et al.
(2009) consider

OT˙ D max
1�k�n

	>
k
O
 �1

n 	 k; where 	 k D vech

�
kp
n
. Ȯ k � Ȯ n/

�
; 1 � k � n;

(16.8)

for testing the constancy of the covariance matrix ˙ . Here, Ȯ k denotes the sample
covariance matrix computed from the first k observations (but with the location
estimated from the whole sample), and O
 n is a suitable long-run variance estimator
for the statistic vech Ȯ n. Thus the multivariate formulation of (16.1) is in the same
vein as the classical univariate t-test generalizes to Hotelling’s T2. Ignoring the
location estimation, 	 k can be written as

	 k D 1p
n

8
<

:

kX

jD1
vech.XjX>

j /�
k

n

nX

jD1
vech.XjX>

j /

9
=

; :

Our test statistic is in analogy to Aue et al. (2009), except that the function x 7!
vech.xx>/ is replaced by v.�/, cf. (16.4). Why one would consider the function v
at this point will be discussed in Sect. 16.3. That this choice leads to a very useful
change-point test is demonstrated in Sect. 16.4.

In the remainder of this section, we extend Theorem 16.1 to dependent obser-
vations. When proving results for dependent sequences, one requires technical
short-range dependence conditions that capture the degree of dependence. By now,
a multitude of versions and variants of such conditions exist, which differ in the
broadness of the processes covered, the strength of the results obtainable and in
the effort necessary to prove limit theorems and to check whether specific models
satisfy the conditions. Consequently, every author has certain personal preferences.
In the present situation, any set of conditions is fine as long as convergence of the
partial sum process of .v.Xn//n2N to a multivariate Brownian motion can be shown
and a consistent long-run variance estimator for

˝ D lim
n!1˝n with ˝n D Cov

(
1p
n

nX

iD1
v.Xi/

)

can be provided. Pursuing further the analogy to Aue et al. (2009), their Assumption
2.1 is one possibility. However, one decisive advantage of Theorem 16.1 is that no
moment conditions whatsoever are required, and we would like to maintain this
moment-freeness also in the dependent setting and avoid any moments conditions
implicitly hidden in the short-range dependence condition. We therefore use the P
NED condition (near-epoch dependence in probability), proposed by Dehling et al.
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(2012), which was introduced for exactly this purpose: to formulate limit theorems
for dependent and heavy-tailed processes.

Definition 16.1 The p-dimensional process .Xn/n2Z is called near-epoch depen-
dent in probability or short P near-epoch dependent (P NED) on the q-dimensional
process .Zn/n2Z if there is a sequence of approximating constants .ak/k2N with
ak ! 0 as k ! 1, a sequence of functions fk W Rq�.2kC1/ ! Rp, k 2 N, and a
non-increasing function � W .0;1/! .0;1/ such that

P .kX0 � fk.Z�k; : : : ;Zk/k > "/ � ak�."/

for all k 2 N and " > 0.

Here, it is assumed that ..Xn;Zn//n2Z is a strongly stationary process, and that
the observed data is the positive branch .Xn/n2N of the doubly infinite sequence
.Xn/n2Z. The underlying process .Zn/n2Z itself can be an i.i.d. process, an m-
dependent process (i.e., any two observations being apart more than lag m are
independent), or, more generally, a mixing process. For brevity, we focus here solely
on the most general of the available mixing conditions, ˛-mixing, but remark that
the result can be stated likewise for '-mixing.

Definition 16.2 The q-dimensional, stationary process .Zn/n2N is called ˛-mixing
or strongly mixing with coefficients .˛k/k2N if

˛k D sup
A2F0

�1

sup
B2F1

k

jP.A \ B/� P.A/P.B/j ! 0 as k!1;

where F 0�1 D 
.: : : ;X�1;X0/ and F1
k D 
.Xk;XkC1; : : :/.

Further, we require a long-run variance estimator that accounts for the serial
dependence of the observations. The estimator Ő n;0, defined in (16.6), is not
consistent for˝ under dependence. Let

Ő n;bn D
1

n

dbneX

kDb�bnc

�
1 � jkj

bn C 1
	 n�jkjX

jD1
v.Xj/v.XjCk/; (16.9)

where bn � 0 is a bandwidth parameter that increases with n. Then Ő n;0 is a special
case of Ő n;bn obtained for bn D 0. We are now ready to formulate the main result
of the paper.

Theorem 16.2 Let .Xn/n2Z be a p-dimensional, stationary process with marginal
distribution F, such that

(i) F is not concentrated on a lower dimensional hyperplane and
(ii) P.kX0k � �/ D O.�2/ as � ! 0.

Let .Xn/n2Z be P NED with function � and approximating constants .ak/k�1
on an ˛-mixing process with mixing coefficients .˛k/k�1 satisfying
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(iii) ak�.k�1�ı/ D O.k�1�ı/ and
(iv) ˛k D O.k�1�ı/

for some ı > 0 as k !1. Let furthermore .bn/n2N be a non-decreasing sequence
such that bn !1 and bn D o.n1=2/ as n!1. Then

OTS;bn D max
1�k�n

˚>
k
Ő �1

n;bn
˚k

d�! T.m/;

where ˚k is defined in (16.5), and T.m/ is as in Theorem 16.1.

Again, for clarity of exposition, we have in the utmost generality. For instance,
a large class of kernel functions is possible in (16.9) instead of the Bartlett kernel
.1�jxj/1Œ�1;1�.x/, cf. e.g. de Jong and Davidson (2000, Assumption 1). As compared
to Theorem 16.1, we have the additional regularity condition (ii) on the population
distribution F, which requires F not to be too strongly concentrated at the origin.
This condition is necessary for the near-epoch dependence of .Xn/n2Z to carry over
to .v.Xn//n2Z. It is a very mild condition. For instance, if F has a p-dimensional
Lebesgue density, continuous at 0, then P.kX0k � �/ D O.�p/. The essential
prerequisites for proving Theorem 16.2 are the following two lemmas.

Lemma 16.1 Let .Xn/n2Z be a p-dimensional, stationary process with marginal
distribution F, which is P NED with function � and approximating constants .ak/k�1
on a stationary process .Zn/n2Z such that there exists a sequence of real numbers
.sk/k2N with ak�.sk/ D O.sk/ as k!1. Let further h W Rp ! Rd be bounded and

E

(
sup

fxWkx�x0k��g
kh.x/ � h.X0/k2

)
� L� (16.10)

for all � > 0 and some constant L > 0 independent of �. Then .h.Xn//n2Z is L2
NED on .Zn/n2N with coefficients .a2;k/k2N satisfying a2;k D O.s1=2k / as k!1.

Remark 16.3

(i) A stationary process .Yn/n2Z is said to be Lr NED, r � 1, with coefficients
.ar;k/k2N on the stationary process .Zn/n2Z if

ar;k D fEkX0 � E.X0j
.Z�k; : : : ;Zk//kr
rg1=r

converges to zero for k!1.
(ii) If (16.10) is fulfilled, then h is said to satisfy the variation condition with

respect to F.

Proof (Lemma 16.1) The P NED assumption of .Xn/n2Z with respect to .Zn/n2Z
states that

P.kX0 � fk.Z�k; : : : ;Zk/k > sk/ � ak�.sk/ � C1sk (16.11)
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for all k 2 N, where C1 > 0 is a constant not depending on k. We abbreviate
fk.Z�k; : : : ;Zk/ by QXk. Since the conditional expectation minimizes the L2 norm,
we have

a22;k D Ekh.X0/� EŒh.X0/j
.Z�k; : : : ;Zk/�k2

� Ekh.X0/� h ı fk.Z�k; : : : ;Zk/k2

D E
n
kh.X0/ � h. QXk/k21fkX0� QXkk�skg

o

CE
n
kh.X0/� h. QXk/k21fkX0� QXkk>skg

o

� Lsk C C2P.kX0 � QXkk > sk/ � Lsk C C2C1sk D O.sk/:

The upper bound on the first term is due to (16.10), the upper bound on the second
is due to the boundedness of h and (16.11). This completes the proof. ut
Lemma 16.1 provides the link from the P near-epoch dependence of .Xn/n2Z to the
L2 near-epoch dependence of .v.Xn//n2Z. The next lemma verifies that v, cf. (16.4),
satisfies the assumptions of Lemma 16.1 under the conditions of Theorem 16.2.

Lemma 16.2 Let .Xn/n2Z be as in Theorem 16.2. Then Qv W Rp ! Rp2 W x 7!
vecfs.x/s.x/>g satisfies (16.10).

Proof (Lemma 16.2) We have

E

"
sup

fxWkx�X0k��g
kQv.x/� Qv.X0/k2

#

D E

"(
sup

fxWkx�X0k��g
kQv.x/� Qv.X0/k2

)
1fkX0k�p

�g

#

C E

"(
sup

fxWkx�X0k��g
kQv.x/� Qv.X0/k2

)
1fkX0k>p

�g

#

The first term is bounded by 2P.kX0k � p�/ D O.�/ as � ! 0. We deal with
the second term as follows. Let � < 1 and x; y 2 Rp such that kxk > p� and
kx � yk < �. Then

ks.x/� s.y/k �
����

x
kxk �

y
kxk

����C
����

y
kxk �

y
kyk

���� �
�p
�
C
�kyk
kxk � 1

	
� 2p�:

This is equivalent to s.x/s.y/> � 1 � 2�, and consequently kQv.x/ � Qv.y/k2 D
2 � 2fs.x/s.y/g2 � 2 � 2.1 � 2�/2 � 8�. Hence also the second term is O.�/ for
�! 0. The proof is complete. ut
We are now ready to state the proof of Theorem 16.2.
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Proof (Theorem 16.2) The proof requires two ingredients,

(1) the convergence of the partial sum process of .v.Xk//k2N, specifically

˝�1=2
n

0

@ 1p
n

bntcX

iD1
fv.Xi/ � EŒv.Xi/�g

1

A

0�t�1

d�! .W.t//0�t�1:

for n ! 1 in the p-dimensional Skorokhod space, where W denotes a p-
dimensional standard Brownian motion on Œ0; 1�, and

(2) the consistency of the long-run variance estimator Ő n;bn , specifically

k vec. Ő n;bn �˝n/k p�! 0 as n!1:

From these two results, the claim follows by standard arguments, see, e.g., the
proof of Theorem 2.1 in Aue et al. (2009). Part (1) follows with Corollary 4.2 of
Wooldridge and White (1988), part (2) with Theorem 1 of de Jong and Davidson
(2000). Both propositions are formulated for L2 NED sequences with respect to an
˛-mixing process with coefficients satisfying a2;k D O.k�1=2�ı/ and ˛k D O.k�1�ı/
as k ! 1 for some ı > 0. Lemmas 16.1 and 16.2 together ensure that these
assumptions are met. Assumption D.3 of Wooldridge and White (1988) follows
since˝n ! ˝ , which can, e.g., be deduced from Ibragimov (Theorem 2.3 1962).

ut

16.3 The Spatial Sign Covariance Matrix

For a p-dimensional random vector X with distribution F and any t 2 Rp, we call

S.X; t/ D E
˚
s.X � t/s.X � t/>

�
(16.12)

the spatial sign covariance matrix with location t of the random vector X. For a
p-variate sample Xn D .X1; : : : ;Xn/

>, we call

OSn.Xn; t/ D 1

n

nX

iD1
s.Xi � t/s.Xi � t/> (16.13)

the (empirical) spatial sign covariance matrix with location t of the sample
Xn. Unless stated otherwise, we will assume in the following that the data are
independent with the same distribution F. The natural location parameter t is the
spatial median �.X/, cf. (16.2), since (under very mild regularity conditions on F)

Efs.X� �.X//g D 0;
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and hence S.X;�.X// is indeed the covariance matrix of the spatial sign of the
centered random vector X � �.X/. Throughout the paper, we assume �.X/ to be
known and, without further loss of generality, assume it to be zero and only consider
the theoretical and the empirical spatial sign covariance matrix with location zero,
i.e.,

S.X; 0/ D Efs.X/s.X/>g and OSn.Xn; 0/ D 1

n

nX

iD1
s.Xi/s.Xi/

>;

which we abbreviate by S.X/ and OSn, respectively. The term spatial sign covariance
matrix has been introduced by Visuri et al. (2000), but also earlier papers consider
estimates based solely on the directions of data to analyze multivariate dependence
(e.g. Locantore et al. 1999; Marden 1999).

In the following, we will frequently refer to the elliptical model, which is
characterized as follows. A continuous distribution F on Rp is said to be elliptical
if it has a Lebesgue-density f of the form

f .x/ D det.V/�1=2gf.x� �/>V�1.x � �/g (16.14)

for some � 2 Rp and symmetric, positive definite p � p matrix V. The class of
all continuous, elliptical distributions F on Rp having these parameters is denoted
by Ep.�;V/. The location parameter � coincides with the spatial median and is
henceforth assumed to be zero. We call V the shape matrix, since it describes the
shape of the elliptical contour lines of the density f . The shape is unique only
up to scale, that is, Ep.�;V/ D Ep.�; cV/ for any c > 0. In order to avoid
this ambiguity, some authors use the term shape matrix exclusively for a suitably
normalized representative of this equivalence class of proportional matrices, where
det.V/ D 1 is a common choice (Paindaveine 2008; Frahm 2009). For our purposes,
it is more convenient to normalize the shape matrix by its trace, and we define
V0 D V= tr.V/. Then for any X 2 Ep.�;V/ with finite second moments, we have
˙ 0.X/ D V0.X/.

The ad-hoc robustification by considering the directions s.Xi/ of the data instead
of the data Xi themselves has some intriguing advantages and leads to a number of
nice properties of the resulting scatter estimator OSn. Since the function v, cf. (16.4),
is bounded, asymptotic results for OSn do not require any moments. The influence of
any gross error is bounded, and hence OSn has a bounded influence function. It has
furthermore an asymptotic breakdown point of 1=2 (Croux et al. 2010). Moreover,
when sampling from the elliptical model, the distribution of OSn does not depend
upon the function g in (16.14). For instance, consider the two models

X 	 Np.0;V/ and Y 	 t1;p.0;V/

for some positive definite p�p matrix V, where t1;p denotes the p-variate elliptical t1
(or Cauchy) distribution (cf. e.g. Bilodeau and Brenner 1999, p. 208). Then S.X/ D
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S.Y/, and the respective estimators based on independent samples of size n from
these two models have exactly the same distribution for every n 2 N.1

The main advantage, however, of OSn is the computational simplicity, which
must be contrasted to the tremendous computational costs of other highly robust,
multivariate scatter estimators that offer a comparable degree of efficiency and
robustness. Another example of a likewise simple approach is the marginal sign
covariance matrix. It is based on the marginal signs of the data, i.e. the p-
dimensional vectors that are composed of the univariate signs of each component.
This estimator has a rather low efficiency.

But after all the praise, there is of course a drawback, and this concerns the
question what OSn actually estimates. Again, ignoring the location estimation, OSn is
apparently asymptotically normal and strongly consistent for S.X/. So the question
remains, what the connection between S.X/ and ˙ .X/ is, and the answer is indeed
non-trivial, as we will see below.

Much attention has been paid to affine equivariant scatter estimation. A p � p
variate scatter functional W.�/ is said to be proportionally affine equivariant if

W.AXC b/ / AW.X/A> (16.15)

for any b 2 Rp and any full rank p � p matrix A, where / denotes proportion-
ality. For instance, the covariance matrix ˙ fulfills (16.15) with equality. Affine
equivariance is a very handy property. It implies that any scatter functional W
satisfying (16.15) evaluated at an elliptical vector X is a multiple of the shape matrix,
i.e. W.X/ / V.X/, cf. e.g. Tyler (1982).

The spatial sign covariance matrix lacks this property. It satisfies (16.15) only for
orthogonal matrices A, which is then referred to as orthogonal equivariance. The
exact connection between S.X/ and V.X/ (up to proportionality) seems to be known
only for p D 2 (Dürre et al. 2015). For general p, we have the following result.

Proposition 16.1 Let X 	 F 2 Ep.0;V/ and let V D U�U> be an eigenvalue
decomposition of V, where � D diag.�1; : : : ; �p/ with �1 � �2 � : : : � �p > 0.
Then

S.X/ D U�U>;

where � D diag.ı1; : : : ; ıp/ with ı1 � ı2 � : : : � ıp > 0, and ıi D ıj if and only if
�i D �j for 1 � i < j � p.

This result is mentioned, e.g., in Magyar and Tyler (2014). It holds not only for
elliptical distributions. For a proof of a more general version, see Visuri (2001).
Proposition 16.1 states that the shape matrix of an elliptical distribution and the
corresponding spatial sign covariance matrix share the same eigenvectors (with

1The exact, non-asymptotic equality in distribution does generally not hold if the location is
estimated.
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the usual ambiguities of eigenvectors in case of multiple eigenvalues), and that
the eigenvalues are ordered accordingly. The main implication is that within the
elliptical model there is a one-to-one connection between the spatial sign covariance
matrix S.X/ and the normalized shape matrix V0.X/ in the sense that, for any two
elliptical vectors X and Y, S.X/ D S.Y/ if and only if V0.X/ D V0.Y/. Thus,
Proposition 16.1 provides the validity of our test based on

OTS;0 D max
1�k�n

˚>
k
Ő �1

n;0˚k with ˚k D QIm vech

�
kp
n
. OSk � OSn/

�
;

where OSk denotes the sample spatial sign covariance matrix computed from
X1; : : : ;Xk, for testing the hypothesis H0, cf. (16.3). A change in ˙ 0.X/ means
a change in S.X/ and vice versa. This holds true at least in the elliptical model, and
it seems plausible that this extends to many “common data situations,” although
counterexamples can be constructed.

At this point it should be noted that, under ellipticity, there is generally not a
one-to-one connection between S.X/ and the correlation matrix R.X/. For instance,
the shape matrices

V1 D
�
1 0

0 1

	
and V2 D

�
100 0

0 1

	

both lead to the same correlation matrix but to spatial sign covariance matrices

S1 D
�
1=2 0

0 1=2

	
and S2 D

�
10=11 0

0 1=11

	
;

vgl. Dürre et al. (2015).
An interesting question, which relates to the performance of the proposed

change-point test, is that of the efficiency of the estimator OSn. Usually, the
efficiencies of tests are hard to derive analytically, and comparing the efficiencies of
the estimators they are based upon generally serves as a useful proxy for comparing
the efficiencies of the respective tests. As we have noted above, the spatial sign
covariance matrix can, except for certain special cases, not be expressed explicitly
as a function of the parameters of the elliptical model. We encounter the same
difficulty when analyzing its asymptotic variance. An explicit expression for the
asymptotic covariance matrix of OSn at elliptical distributions is only known for p D 2
(Dürre et al. 2015). For general p, explicit results can be given for the special case
of sphericity.

Proposition 16.2 Let X1; : : : ;Xn be an independent sample from F 2 Ep.0; Ip/.
Then OSn is strongly consistent for Ip=p and asymptotically normal with asymptotic
covariance matrix ASV.vech. OSn// D 2=fp.pC 2/gCp, where

Cp D DC
p .D

C
p /

> � p�1 vech.Ip/
˚
vech.Ip/

�>
;
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and DC
p is the Moore–Penrose inverse of the duplication matrix Dp (cf. Magnus

and Neudecker 1999, p. 49). If furthermore F has finite fourth moments, then
Ȯ
0;n D Ȯ n= tr. Ȯ n/ is strongly consistent for Ip=p and asymptotically normal

with asymptotic covariance matrix ASV.vech. Ȯ 0;n// D 2p�2.1C �=3/Cp, where �
denotes the excess kurtosis of any margin of F.

The matrix DC
p .D

C
p /

> is a diagonal matrix with each diagonal element being
either 1 or 1/2. Also note that, although the symmetry redundancy has been removed
in this notation, the matrix Cp is not of full rank, since both estimators have always
trace 1. The result for the spatial sign covariance matrix can be found in Sirkiä et al.
(2009). The result for Ȯ 0;n can be deduced from the general form of the asymptotic
covariance matrix of the sample covariance matrix at elliptical distributions, as
given, e.g., in Bilodeau and Brenner (1999, p. 213), by applying the delta method
to the function A 7! A= tr.A/. Proposition 16.2 implies that, at the multivariate
standard normal model, where � D 0, the spatial sign covariance matrix OSn is a
more efficient estimator for V0 than the corresponding maximum-likelihood-based
estimator Ȯ 0;n. This result may seem odd, apparently contradicting the well-known
asymptotic optimality of maximum likelihood estimation.

However, OSn does not consistently estimate ˙ 0 D ˙= tr.˙ / within the
parametric model Np.�;˙ /. In fact, for X 	 Np.0;˙ /with˙ 6/ Ip, the spatial sign
covariance matrix S.X/ is in some sense closer to Ip=p than ˙ 0: the eigenvalues of
S.X/ tend to be closer together than the eigenvalues of ˙ 0.X/. With this in mind,
Proposition 16.2 is not more surprising than noting that .2n/�1

Pn
iD1 Xi is a more

efficient location estimator than n�1Pn
iD1 Xi at N.0; 1/.

With OSn and Ȯ n estimating different quantities, it is somewhat difficult to
compare their asymptotic efficiencies. One possibility is to focus on those aspects
of the estimators that are compatible, in this case, their eigenvectors. Magyar and
Tyler (2014) study the asymptotic efficiencies of their eigenprojections. By virtue
of Proposition 16.1, the eigenvectors of S.X/ and˙ .X/ are the same, and by virtue
of the continuous mapping theorem, the corresponding sample eigenvectors based
on OSn and Ȯ n, respectively, are thus consistent for the same quantity. We will not
go into detail here, but refer the reader to Magyar and Tyler (2014). Their results
can be summarized as follows: The asymptotic variance of the eigenprojections of
OSn at an elliptical distribution F 2 Ep.0;V/ depends strongly on the ratio of the
eigenvalues �1; : : : ; �p of V and can become arbitrarily large if �1; : : : ; �p differ
largely in magnitude. The spherical case, i.e., �1 D : : : D �p, constitutes the best
case for the spatial sign covariance matrix.

So far we have seen that the transition to spatial signs provides a simple and
computationally very appealing way of robustly analyzing multivariate dependen-
cies. The price to pay, however, is an unsatisfactory efficiency under strongly shaped
models (i.e., elliptical distributions with strongly squeezed or stretched elliptical
contours, where the eigenvalues of the shape matrix differ greatly in size). Both can,
in some sense, be attributed to the lack of affine equivariance of the spatial signs,
and the question naturally arises, if this can be improved upon. In fact, the question
of devising affine equivariant siblings of the spatial sign covariance matrix has been
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dealt with by several authors, and we would like to mention two closely related
concepts: the Tyler matrix 1987 and the Oja sign covariance matrix (Visuri et al.
2000; Ollila et al. 2003).

Tyler’s scatter estimator is defined as the solution OVn to

OVn D p

n

nX

iD1

XiX>
i

X>
i
OV�1

n Xi

(16.16)

which satisfies tr. OVn/ D 1, where, for ease of exposition, we assume again the
spatial median of the data to be known to be zero. Apparently, if OVn is a solution
to (16.16), then so is c OVn for any c > 0. Thus, additional standardization is
required to render the solution unique. We choose here, in analogy to the spatial
sign covariance matrix, tr. OVn/ D 1, but tr. OVn/ D p or det. OVn/ D 1 are more
common. It is also easily checked that any solution to (16.16) is affine equivariant
in the sense of (16.15), regardless of which specific standardization is chosen.

The similarity between Tyler’s estimator and the spatial sign covariance matrix
is evident: instead of dividing each observation by its Euclidean length before
computing the covariance, each observation is divided by its Mahalanobis with
respect to OVn. Equally evident is the recursive nature of this construction, and the
computation of OVn requires an iterative algorithm. One possibility is indeed to iterate
the spatial sign covariance matrix computation, i.e., to alternate between

S 1

n

nX

iD1

XiX>
i

X>
i S�1Xi

and S S= tr.S/

until convergence is reached, starting with S0 D Ip. The estimate obtained by
stopping this algorithm after a fixed number of steps has been called the k-step
spatial sign covariance matrix by Croux et al. (2010). The data divided by their
Mahalanobis distances di D fX>

i
OVnXig1=2 with respect to the Tyler matrix OVn can

be interpreted as affine equivariant spatial signs.
Another multivariate sign which obeys some form of affine equivariance is the

Oja sign. Let

Qp�1 D
˚
q D fi1; : : : ; ip�1g

ˇ̌
1 � i1 < : : : < ip�1 � n

�
; 1 � p � n;

be the set of all subsets of f1; : : : ; ng with p � 1 elements, and Np�1 D jQp�1j D� n
p�1
�
. Then, again assuming the data to be already suitably centered, the Oja sign of

the point x 2 Rp with respect to the sample Xn D .X1; : : : ;Xn/
> is defined as

oXn.x/ D
1

Np�1

X

q2Qp�1

rx

ˇ̌
ˇ det.Xi1 : : : Xip�1 x/

ˇ̌
ˇ; (16.17)



16 Robust Change Detection in the Dependence Structure of Multivariate Time Series 279

where rx denotes the gradient with respect to x. The Oja sign covariance matrix
with location 0 of the sample Xn is then defined as

OOn D OOn.Xn; 0/ D 1

n

nX

iD1
oXn.Xi/oXn.Xi/

>: (16.18)

The Oja sign allows the following geometric interpretation: In dimension two,
oXn.x/ is the average of N1 D n vectors vi, 1 � i � n, where vi is perpendicular to
Xi, has the same length as Xi, and points towards x. In dimension three, oXn.x/ is the
average of N2 D

�n
2

�
vectors vq, where each is perpendicular to the plane spanned by

Xi and Xj, q D fi; jg, points towards x, and its length is twice the area of the triangle
formed by Xi, Xj and 0.

Also note that the Oja sign is a proper generalization of the univariate sign:
recalling that f1; : : : ; ng has one subset of size zero (the empty set), the sum
in (16.17) has one summand for p D 1, and we get oXn.x/ D dj det.x/j=dx, which is
another way of writing down the univariate sign function s.x/ D 1fx>0g � 1fx<0g.

Further, it can be seen from (16.17) that

o
XnA>.Ax/ D det.A/A�1oXn.x/

for any full rank matrix A 2 Rp�p, where XA> D .AX1; : : : ;AXn/
> denotes the

data sample obtained from X by applying the linear transformation x 7! Ax. This
inverse affine equivariance of the Oja sign implies that the inverse of the population
version of the Oja sign covariance matrix (see Ollila et al. 2003) is affine equivariant
in the sense of (16.15).

So, the Tyler matrix OVn as well as the trace-standardized inverse of the Oja sign
covariance matrix, i.e. OOn

�1= tr. OOn
�1/, are both affine equivariant and hence, under

appropriate regularity conditions, consistent for V0 under ellipticity. Furthermore,
their asymptotic covariance matrices are proportional to that of Ȯ 0;n D Ȯ n= tr. Ȯ n/,
which makes it much easier to compare them efficiency-wise. It turns out that both
estimators have a rather good efficiency also at the normal model as compared to
Ȯ
0;n (cf. Tyler 1987; Ollila et al. 2003). This efficiency is independent of the shape

of the elliptical distribution, implying in particular that there is no loss under strong
shapedness as it is the case for the spatial sign covariance matrix.

But there are a number of drawbacks. First of all, OVn and OOn both require
n � p C 1 data points in order to be defined, and that is in some sense true for
all robust, affine equivariant scatter estimators (Tyler 2010). Second, they have
weaker robustness properties: The Oja sign covariance matrix has an unbounded
influence function and requires finite second moments to be asymptotically normal.
The Tyler matrix has a bounded influence function and provides, for practical
purposes, a similarly high degree of outlier resistance as the spatial sign covariance
matrix, but lacks, for instance, the high breakdown point property (Dümbgen and
Tyler 2005). Third, and most severely, they have a much higher computational
cost than the spatial sign covariance matrix, which makes them unfeasible for
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applications in high-dimensional change-point detection. While there is an explicit
expression (16.17, 16.18) for the Oja sign covariance matrix, making it, contrary
to the Tyler matrix, computable in a fixed number of steps, the algorithmic
comparison is clearly in favor of the Tyler matrix: the iterative algorithm described
above converges quickly, and Tyler’s estimator can be computed basically in any
dimension where matrix inversion is still numerically practicable. The computation
of the Oja sign covariance matrix, on the other hand, necessitates the evaluation of� n

p�1
�

hyperplanes in Rp, which is clearly prohibitive for many data situations where
change detection is of interest. The R-package OjaNP (Fischer et al. 2014) therefore
provides also a non-exact, subsampling-based version of the Oja sign covariance
matrix.

16.4 Simulation Results

We compare the change-point test introduced in Sect. 16.2, based on the spatial
sign covariance matrix, to the sample-covariance-based test by Aue et al. (2009),
cf. (16.8), in terms of size and power. Both test statistics are equally fast to compute.
Throughout, we use 1000 repetitions, dimensions p D 6 and p D 30 and various
sample sizes ranging from n D 200 to n D 2000. We only consider one-change
alternatives, where a change in the dependence structure occurs in the middle of the
observed period, and the data are stationary before and after the change-point. We
consider three different scenarios concerning the distribution of the data.

(a) The p-variate observations Xi are independent, each being elliptically dis-
tributed. The elliptical distributions have equal marginal variances.

(b) The observations are serially dependent, according to a multivariate GARCH
model with normal innovations. Again, the marginal variances are equal.

(c) The observations are independent, as in (a), but different transformations are
applied to the margins.

The three scenarios are explained in detail below.

(a) Independent, Elliptically Distributed Observations The observations
X1; : : : ;Xbn=2c are identically distributed with mean zero and covariance matrix
˙ 1, and Xbn=2cC1; : : : ;Xn are identically distributed also with mean zero but
covariance matrix˙ 2. We use the multivariate normal distribution and the elliptical
t5;p distribution with covariance matrices ˙ 1 D Ip and ˙ 2 being defined element-
wise as

.˙ 2/i;j D
(
1 for i D j;

h for i ¤ j;
(16.19)

for some �1=.p�1/ < h < 1 and all 1 � i; j � p. Any choice of h within that range
leads to a positive definite matrix, as can be deduced from results about circulant
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Table 16.1 Comparison of change-point tests at independent, elliptically distributed observations
with equal marginal variances

Distribution Normal t5
p n Estimator Size of change h

0.0 0.05 0.1 0.2 0.4 0.0 0.05 0.1 0.2 0.4

6 200 Ȯ n 2 3 6 30 97 < 1 1 2 9 69

OSn 3 4 7 31 93 3 3 9 30 94

Ȯ n
a 5 7 13 46 99 5 8 9 29 91

OSn
a 5 6 12 39 96 5 6 12 39 97

500 Ȯ n 4 8 33 97 100 < 1 3 14 65 100

OSn 4 8 29 90 100 5 8 30 91 100

1000 Ȯ n 4 23 80 100 100 2 9 40 98 100

OSn 4 20 66 100 100 5 17 66 100 100

30 500 Ȯ n 0 0 0 0 0 0 0 0 0 0

OSn 0 0 0 0 0 0 0 0 0 0

Ȯ n
a 5 8 11 30 93 5 9 12 16 47

OSn
a 5 11 18 55 93 5 13 22 46 95

1000 Ȯ n < 1 13 63 100 100 < 1 2 16 66 99

OSn < 1 20 83 100 100 < 1 21 87 100 100

Ȯ n
a 5 54 96 100 100 5 43 82 98 100

OSn
a 5 62 99 100 100 5 62 99 100 100

Rejection frequencies (%) at the 5 % significance level, based on 1000 repetitions
aWith empirical critical values

matrices (cf. e.g. Gray 2006). We let h range from 0 to 0.4, cf. Table 16.1. The choice
h D 0 corresponds to the null hypothesis of no change. Note that, also under the
alternatives, the p univariate marginal processes are stationary. The t;p distribution
has finite ˛-moments for any ˛ < . In particular, for  > 4, the margins of a
t;p distribution have excess kurtosis � D 6=. � 4/. In the independence scenarios
(a) and (c), the test statistic OTS;0 of Theorem 16.1 is used with the long-run variance
estimator Ő n;0, cf. (16.6), which does not account for potential serial dependence.
Analogously, we take as long-run variance estimator for vech Ȯ n

O
 n;0 D 1

n

nX

iD1
vech.XiX>

i /:

In Table 16.1, the rejection frequencies at the 5% significance level based on the
asymptotic critical values given by Theorem 16.1 are displayed for p D 6 and
p D 30 and several values of n and h. As far as size is concerned, we find that,
in all situations, both tests keep the size under the null hypothesis but tend to
be conservative, with a clear superiority of the spatial-sign-based test. In cases
where both tests are largely below the nominal 5% level, sample-size adjusted
rejection frequencies based on the empirically determined critical values are also
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given (indicated by superscript “a”). In particular, the zeroes for the combination
.p; n/ D .30; 500/ are no typo. In this situation, the sample size is just little above
the parameter dimension of m D 464. This illustrates that in such a situation, the
distributions of the test statistics are yet far away from their limit. We further observe
that the spatial-sign-based test is better than the variance-based test at the t5;p
distribution throughout, but also for n D 30 under normality. The invariance of the
spatial sign covariance matrix with respect to the elliptical generator g, cf. (16.14),
appears to extend to the corresponding change-point test.

(b) Multivariate GARCH We employ the constant conditional correlation (CCC)
GARCH(1,1) model, introduced by Bollerslev (1990). Let

Xi D �i ı Yi; with

0
B@
�2i;1
:::

�2i;p

1
CA D

0
B@
0:1
:::

0:1

1
CAC 0:1

0
B@

X2i;1
:::

X2i;p

1
CAC 0:84

0
B@
�2i;1
:::

�2i;p

1
CA ; i 2 Z;

where � D .�i;1; : : : ; �i;p/
>, Yi D .Yi;1; : : : ;Yi;p/

>, and ı denotes the Hadamard
product, i.e., component-wise multiplication. The innovations Yi are independent
and normally distributed with mean zero and covariance matrix˙ 1 D Ip before and
covariance matrix ˙ 2, cf. (16.19), after the change in the middle of the observed
period. Thus, as in scenario (a), the univariate marginal processes are stationary
(given a sufficient burn-in period) under the null as well as under the alternatives.
Their stationary distributions possess heavier than normal tails. However, contrary
to (a), the data Xi are neither elliptical nor do they possess the same covariance
as Yi.

We estimate the long-run variance˝ by Ő n;bn , cf. (16.9). Similarly, we estimate
the long-run variance of the sample-variance-based test by

O
 n;bn D
1

n

dbneX

kDb�bnc

�
1 � jkj

bn C 1
	 n�jkjX

jD1
vech.XjX>

j /fvech.XjCkX>
jCk/g>:

In both cases, we take bn D 1:5n1=3. The choice of bn considerably affects the
behavior of the test. Choosing it too low may cause the test to exceed the nominal
size level, choosing it too large will result in a loss of power. We have tried several
values for bn, and our choice proved to be a good compromise. How to select the
bandwidth in an optimal, data-adaptive way is an important and delicate question,
which goes beyond the scope of this paper. Given the similar structure of the
tests and long-run variance estimates, choosing bn equal for both tests allows a
fair comparison. The results for scenario (b) are summarized in Table 16.2. The
convergence of the test statistic to the asymptotic distribution under the null is
significantly slower than in the independent case. For p D 30, we are far away
from the asymptotic distribution even for n D 2000. So we also include the
rejection frequencies for the empirically determined critical values. They are not
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Table 16.2 Comparison of change-point tests at multivariate GARCH processes with normal
innovations

Critical values Asymptotic Empirical

p n Estimator Size of change h

0.0 0.05 0.1 0.2 0.4 0.0 0.05 0.1 0.2 0.4

6 500 Ȯ n 0 0 0 0 0 5 8 13 55 100

OSn 0 0 0 0 6 5 10 16 57 100

1000 Ȯ n 0 2 9 81 100 5 12 43 99 100

OSn 1 2 10 82 100 5 13 40 99 100

2000 Ȯ n 3 18 90 100 100 5 28 93 100 100

OSn 3 17 82 100 100 5 23 88 100 100

30 500 Ȯ n 0 0 0 0 0 5 4 6 5 8

OSn 0 0 0 0 0 5 5 8 7 11

1000 Ȯ n 0 0 0 0 0 5 14 26 54 98

OSn 0 0 0 0 0 5 17 36 66 96

2000 Ȯ n 0 0 0 0 0 5 43 83 100 100

OSn 0 0 0 0 0 5 52 94 100 100

Rejection frequencies (%) at the 5 % significance level, based on 1000 repetitions

marked by an asterisk as in Table 16.1, but can be found on the right-hand side of
Table 16.2. It must be noted that the discrepancy between the asymptotic and the
actual distribution is not an artifact of the bandwidth bn being chosen too large. This
effect also occurs if the long-run variance is assumed to be known, which is hard to
derive analytically, but can easily be gotten hold of by means of simulation. Also
note that Aue et al. (2009) report simulation results for p D 4 only.

Comparing both tests, we find that they behave rather similar, with slight
advantages for the variance-based test for p D 6, and for the spatial-sign-based
test for p D 30.

(c) Independent Observations with Unequal Marginal Distributions The pre-
vious setups with the equally dispersed margins are in some sense favorable for
the spatial sign covariance matrix, since different univariate marginal variances will
increase the shapedness (i.e., the ratio of the eigenvalues of the shape matrix V).
Therefore we consider in the following scenarios where not all variables have the
same marginal variance. For demonstration purposes, we only consider p D 6 and
n D 1000. Starting from the normal model considered in (A), with covariance
matrices ˙ 1 and ˙ 2 before and after the change, we apply two different types
of marginal transformations to the data. In the first setting, we multiply the first
r components of the p-variate observations by 10, where r ranges from 0 to 5.
This is equally done before and after the change, such that the univariate marginal
distributions are again stationary also under the alternatives. The resulting joint
distributions (which are, as above, different before and after the change) are strongly
shaped normal distributions. The rejection frequencies of both tests are shown on the
left-hand side of Table 16.3. We call this the strongly shaped scenario.
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Table 16.3 Comparison of change-point tests at distributions with unequal margins

Type Strongly shaped Heavy-tailed

r Estimator Size of change h

0.0 0.05 0.1 0.2 0.4 0.0 0.05 0.1 0.2 0.4

0 Ȯ n 4 23 80 100 100 4 23 80 100 100

OSn 4 20 66 100 100 4 20 66 100 100

1 Ȯ n 4 22 82 100 100 3 15 66 100 100

OSn 3 8 27 88 100 4 16 62 100 100

2 Ȯ n 4 21 80 100 100 2 8 50 100 100

OSn 4 7 30 90 100 4 16 60 100 100

3 Ȯ n 3 22 81 100 100 2 6 36 99 100

OSn 4 11 44 99 100 4 14 57 100 100

4 Ȯ n 3 20 81 100 100 2 5 21 92 100

OSn 4 13 51 100 100 4 16 54 100 100

5 Ȯ n 3 19 82 100 100 2 2 12 69 100

OSn 4 13 62 100 100 4 12 53 99 100

Rejection frequencies (%) at the 5 % significance level, based on 1000 repetitions; dimension p D
6; observations n D 1000; r number of margins transformed

In the second setting, we multiply some of the entries of the data vectors by
10. In the first r components of each data vector, each entry is multiplied by 10
with probability � D 0:1 independently of the others, and this again likewise
before and after the change. Note that the resulting univariate marginal distributions
are not normal, and the joint distribution in this setting is not elliptical anymore.
Also note that this marginal transformation also changes the correlations and that
hence the transformed sequence after the change does generally not have correlation
matrix˙ 2. The results for this set-up, which we label the heavy-tailed scenario, are
summarized on the right-hand side of Table 16.3.

Although both transformations are very similar in their construction, they have
quite different, opposing effects on the two tests. In the strongly shaped scenario,
we see no impact on the variance-based test, but a considerable loss for the spatial-
sign-based test. The power of the spatial-sign-based test is worst for r D 1 and
increases as r increases. This observation is in line with the results of Magyar and
Tyler (2014), who note that a few large eigenvalues are worse for the spatial sign
covariance matrix than a few small eigenvalues. In the heavy-tailed scenario, we
find that the variance-based test strongly deteriorates as r increases, while the loss
of the spatial-sign-based test is very moderate. This behavior is mainly attributed to
the inefficiency of the sample covariance matrix in case of a large kurtosis. Here,
the marginal distribution of the transformed components is a normal scale mixture
of the type �N.0; �2/ C .1 � �/N.0; 1/, which has, for � D 10 and � D 0:1, an
excess kurtosis of about � D 22:3. This family, sometimes also referred to as the
contaminated normal model, has been used by Tukey (1960) to demonstrate the
non-robustness of the sample standard deviation as a scale measure.
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Finally, shortcomings of either of the tests due to unequally distributed margins
(in whatever way) can be circumvented relatively easily by applying appropriate
marginal transformations. This has also been noted by Aue et al. (2009) as a
technique to apply their test to data without fourth moments. Changing the scale
is comparably unambiguous: one divides each margin by a (preferably robust)
univariate scale estimate. The effect of such a standardization on the asymptotic
distribution of the spatial sign covariance matrix has been discussed by Dürre et al.
(2015). However, when changing the shape of the distribution (now speaking of
the shape of univariate densities, not elliptical contours) in order to reduce the
tailedness, one has a certain liberty in choosing the specific transformation. Different
transformations will affect the multivariate structure of the joint distributions in
different ways and hence may alter the results of the subsequent statistical analysis,
opening the door to deliberate data manipulations. It is an open research question to
devise a method that chooses an appropriate data transformation in an objective,
purely data-dependent way (cf. also Aue et al. 2009, Sect. 3.2). It is generally
advisable to standardize the margins prior to applying the spatial-sign-based test.

16.5 Discussion and Outlook

In this paper, we presented a robust change-point test for multivariate dependence.
We propose a simple adjustment to the sample-covariance based test by Aue et al.
(2009), that is, to use the spatial signs of the data instead of the data itself. Thus
we test for the constancy of the spatial sign covariance matrix instead of the
covariance matrix, and the test is based on the sample spatial sign covariance matrix.
This simple construction allows to apply well-established asymptotic tools in the
proofs and yet leads to a fast-to-compute test with good robustness and efficiency
properties.

A certain reluctance against the use of robust estimators in general stems
from the strong focus on least-squares characteristics as descriptive parameters of
distributions. For instance, the mean is used to describe central location, and any
alternative location measure does, by definition, coincide with the mean at most
in some submodel. This objection is of much lesser legitimacy in two-sample or
change-point tests. We have established in Sect. 16.3 that there is a one-to-one
connection between the spatial sign covariance matrix S.X/ and the standardized
covariance matrix ˙ 0.X/ within the elliptical model, meaning a change in one
multivariate parameter implies a change in the other and vice versa. The change may
be of different magnitude, but both multivariate parameters,˙ 0.X/ and S.X/, give
each rise to change-point tests for multivariate dependence regardless of any of them
being considered an important descriptive statistic of multivariate distributions.

We have also noted that, under ellipticity, there is generally no one-to-one
connection between the spatial sign covariance matrix and the correlation matrix
R.X/. However, spatial signs can also be used to estimate R.X/ under ellipticity
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and hence to devise tests that specifically concern R.X/. For details see Dürre et al.
(2015).

The main restriction of Theorems 16.1 and 16.2 is that they assume the spatial
median �.X/ of the population distribution to be known. This is unrealistic but
means no severe limitation of the practical applicability of the test. One may center
the data beforehand by any fixed location t 2 Rp and subsequently use the results
of this article to test for the constancy of the spatial sign covariance matrix with
location t, cf. (16.12). A change in the multivariate dependence structure of X will
also show up in the incorrectly centered spatial sign covariance matrix S.X; t/. The
change will generally be less pronounced and the test consequently less efficient,
but presumably very little so if t is close to the actual central location �.

However, from a theoretical point of view, it is interesting to know if and how the
results given here can be extended to the unknown-location case. We conjecture that
Theorem 16.2 holds also true under slightly stronger conditions if the observations
Xi are replaced by Xi � O�n, where O�n is a location estimator based on the whole
sample Xn. The canonical estimator for that purpose is the (empirical) spatial
median

O�n.Xn/ D arg min
� 2 Rp

nX

iD1
kXi ��k:

It is also highly robust (e.g., Lopuhaä and Rousseeuw 1991) and very fast to
compute (e.g., Vardi and Zhang 2001). Its efficiency at elliptical distributions is
studied in detail by Magyar and Tyler (2011). For independent observations, Dürre
et al. (2014) give conditions for

p
n vecf OSn.Xn; O�n/� S.X;�/g

to be asymptotically normal. This result needs to be generalized in two respects: to
dependent data and to process convergence, i.e., we require

�p
n t vecf OSbntc.Xbntc; O�n/ � S.X;�/g

�

0�t�1

to converge to a multivariate Brownian motion, where Xk D .X1; : : : ;Xk/
>, k D

1; : : : ; n. Furthermore, consistency of the long-run variance estimator needs to be
shown. Here is yet some substantial work to do and this is a topic for future research.
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Chapter 17
Tyler’s M-Estimator in High-Dimensional
Financial-Data Analysis

Gabriel Frahm and Uwe Jaekel

Abstract Standard methods of random matrix theory have been often applied to
high-dimensional financial data. We discuss the fundamental results and potential
shortcomings of random matrix theory by taking the stylized facts of empirical
finance into consideration. In particular, the Marčenko–Pastur law generally fails
when analyzing the spectral distribution of the sample covariance matrix if the
data are generalized spherically distributed and heavy tailed. We propose Tyler’s
M-estimator as an alternative. Substituting the sample covariance matrix by Tyler’s
M-estimator resolves the typical difficulties that occur in financial-data analysis. In
particular, the Marčenko–Pastur law remains valid. This holds even if the data are
not generalized spherically distributed but independent and identically distributed.

Keywords Angular central Gaussian distribution • Financial data • High-
dimensional data • Marčenko–Pastur law • Principal-component analysis •
Random matrix theory • Spectral distribution • Tyler’s M-estimator • Wigner’s
semicircle law

17.1 Motivation

The distribution of short-term asset returns usually exhibits heavy tails or at least
leptokurtosis, tail dependence, skewness, volatility clusters or even long memory,
etc. Moreover, high-frequency data generally are non-stationary, have jumps, and
are strongly dependent. These stylized facts can be observed in particular for stocks,
stock indices, and foreign exchange rates. Indeed, the literature on this topic is
overwhelming (Bouchaud et al. 1997; Breymann et al. 2003; Ding et al. 1993;
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Fig. 17.1 Normal Q-Q plots of daily log-returns on OMX Helsinki 25 (left) and DAX 30 (right)
from 2007-01-03 to 2009-12-31 (n D 756)

Eberlein and Keller 1995; Embrechts et al. 1997; Engle 1982; Fama 1965; Junker
and May 2005; Mandelbrot 1963; McNeil et al. 2005; Mikosch 2003, etc.).

Figure 17.1 shows normal Q-Q plots of daily log-returns on the OMX Helsinki 25
and DAX 30 from 2007-01-03 to 2009-12-31.1 Hence, the chosen period covers the
financial crisis 2007–2009. During this period we can observe n D 756 log-returns
and the given Q-Q plots clearly indicate that the normal-distribution hypothesis
is inappropriate. More precisely, the probability of extremes is much higher than
suggested by the normal distribution.

Figure 17.2 shows the joint distribution of the log-returns considered above. We
can observe the following effects in the scatter plot:

• The central region of the distribution seems to be elliptically contoured.
• In the margins, the joint distribution of asset returns is asymmetric.
• There are a number of outliers or extreme values.
• Extremes typically occur simultaneously.

The fact that extreme asset returns typically occur simultaneously is denoted by
tail dependence. This is part of copula theory as well as multivariate extreme value
theory. A profound treatment of copula theory can be found, e.g., in Joe (1997)
and Nelsen (2006). Moreover, Mikosch (2003, Chap. 4) gives a nice overview of
extreme value theory. The (lower) tail-dependence coefficient of a pair of random
variables X and Y or, equivalently, of their joint distribution, is defined as

�.X;Y/ WD lim
t & 0

P
�
FY.Y/ � t j FX.X/ � t

� D lim
t & 0

C.t; t/

t
;

1The particular choice of the stock indices shall symbolize the nice and fruitful collaboration
between Hannu Oja (Finland) and Gabriel Frahm (Germany). Nonetheless, the empirical phenom-
ena that can be observed in the figures occur worldwide for most other stocks and stock indices.
The data used in this work have been obtained from VWD (Vereinigte Wirtschaftsdienste GmbH).
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Fig. 17.2 Daily log-returns on OMX Helsinki 25 vs. DAX 30 from 2007-01-03 to 2009-12-31

where C is the copula of .X;Y/, FX is the marginal cumulative distribution function
(c.d.f.) of X, and FY is the marginal c.d.f. of Y. There exist various ways to extend
the concept of tail dependence to the multivariate case (De Luca and Rivieccio 2012;
Ferreira and Ferreira 2012; Frahm 2006).

17.2 Elliptical and Generalized Elliptical Distributions

17.2.1 Elliptical Distributions

It is well known that the multivariate normal distribution allows neither for heavy
tails nor for tail dependence. To overcome this problem, members of the traditional
class of elliptical distributions (Cambanis et al. 1981; Fang et al. 1990; Kelker 1970)
are often proposed for the modeling of asset returns (cf., e.g., Bingham and Kiesel
2002; Eberlein and Keller 1995; McNeil et al. 2005, Chap. 3).

In the following, S k�1 WD ˚
u 2 R

k W kuk D 1� represents the unit hypersphere,
i.e., k � k denotes the Euclidean norm on R

k.

Definition 17.1 (Elliptical Distribution) A d-dimensional random vector X is said
to be elliptically distributed if and only if there exist

1. a k-dimensional random vector U, uniformly distributed on S k�1,
2. a nonnegative random variable R being stochastically independent of U,
3. a vector � 2 R

d, and a matrix � 2 R
d�k such that

X D �CR�U :
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The random vector X is said to be spherically distributed if and only if X D RU.

We will assume that the location vector� is known and so we set � D 0 without
loss of generality. Further, we will call ˙ D ��> the dispersion matrix of X and
R its generating variate.

The main fact that we would like to point out for the further discussion is that
elliptical distributions possess two sorts of dependencies, viz.

1. linear dependencies, which can be expressed by the dispersion matrix˙ and
2. nonlinear dependencies imposed by the generating variate R.

For example, consider a bivariate elliptically distributed random vector with
components X and Y. Further, suppose that the generating variate R is regularly
varying. This means we have that

P.R > x/ D f .x/ x�˛; 8 x > 0 ;

where f is a slowly varying function, i.e., f .tx/=f .x/! 1 as x!1 for every t > 0.
The number ˛ > 0 represents the tail index of R (Mikosch 2003). Thus P.R > x/
tends to a power law for x!1 and R is said to be “heavy tailed.” It is intuitively
clear that in this case the two components X and Y are heavy tailed, too. In fact, as is
shown by Frahm et al. (2003), the tail-dependence coefficient of X and Y amounts to

� D 2Nt˛C1

 p
˛ C 1

s
1 � 	
1C 	

!
;

where Nt denotes the survival function of Student’s t-distribution with  > 0 degrees
of freedom and 	 is the linear correlation coefficient of X and Y. Hence, the tail
dependence is essentially determined by the tail index, ˛, of R. In particular, the
components X and Y can highly depend on each other in a nonlinear way even if
they are uncorrelated, i.e., if 	 D 0 but R is regularly varying. The same conclusion
can be drawn in the multivariate case (Frahm 2006). Without regular variation, the
most evident example, where the components of X are uncorrelated but (strongly)
dependent, is the uniform distribution on a sphere.

17.2.2 Generalized Elliptical Distributions

Elliptical distributions inherit many nice properties from the Gaussian distribution.
For example, they are closed under affine-linear transformations, the marginal dis-
tributions are also elliptical, and even the conditional distributions remain elliptical.
Many elliptical distributions are infinitely divisible, which is an appealing property
in the context of financial-data analysis (Bingham and Kiesel 2002). Further, due to
the simple stochastic representation of elliptical distributions, they are appropriate
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for the modeling of high-dimensional financial data. Nevertheless, they suffer from
the property of symmetry. For this reason, we will bear on the class of generalized
elliptical distributions (Frahm 2004, Chap. 3).

Definition 17.2 (Generalized Elliptical Distribution) A d-dimensional random
vector X is said to be generalized elliptically distributed if and only if there exist

1. a k-dimensional random vector U, uniformly distributed on S k�1,
2. a random variable R,
3. a vector � 2 R

d, and a matrix � 2 R
d�k such that

X D �CR�U :

The random vector X is said to be generalized spherically distributed if and only if
X D RU.

All components of elliptical distributions, i.e., the location vector �, the linear
operator�, and the generating variate R, are preserved in Definition 17.2. The only
difference is that R can be negative and even more it may depend on U. This means
the radial part of X may depend on its angular part. This allows us to control for
tail dependence and asymmetry. A more detailed discussion regarding the practical
implementation of generalized elliptical distributions can be found in Frahm (2004,
Sect. 3.4) and Kring et al. (2009).

It is worth pointing out that the class of generalized elliptical distributions does
not only include the traditional class of elliptical distributions, but also the class
of skew-elliptical distributions (Branco and Dey 2001; Liu and Dey 2004). The
latter can be obtained by a modeling technique called hidden truncation (Arnold
and Beaver 2004; Frahm 2004, p. 47). However, skew-elliptical distributions have
been introduced especially for the modeling of skewness and heavy tails rather than
tail dependence (Branco and Dey 2001).

By fitting Student’s t-distribution to daily log-returns on stocks, several authors
come to the conclusion that the number of degrees of freedom, , typically lies
between 3 and 7 (see, e.g., McNeil et al. 2005, p. 85). Hence, the t-distribution
seems to provide a fairly good fit to daily log-returns. Figure 17.3 contains simulated
generalized elliptically distributed daily log-returns. The simulation is based on the
idea that  depends on the direction of the data. More precisely, the log-returns have
been simulated as follows:

1. We calculated the eigenvector, v, associated with the larger eigenvalue of the
sample covariance matrix of the n D 756 daily log-returns depicted in Fig. 17.2.
This means we applied a principal-component analysis.

2. Then we simulated n D 756 i.i.d. random vectors Xt D Rt�Ut (t D 1; 2; : : : ; n),
where � denotes the lower triangular Cholesky root of the sample covariance
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Fig. 17.3 Simulated generalized elliptically distributed daily log-returns (n D 756)

matrix.2 Moreover, the generating variate is given by

Rt D
s

�2t;2

�2t;=

with  D 5 C 95
�

min
˚†.�Ut; v/;†.�Ut;�v/

�
=.�=2/

�2
, where †.a;b/

denotes the angle between a;b 2 R
2 and �2t;2 is independent of �2t; and Ut.

Hence, if X tends to its first principal component (or to the opposite direction),Rt

has a tail index of  D 5 and can be considered heavy tailed. By contrast, if it tends
to its second principal component, the tail index amounts to  D 100 and so Rt is
close to the generating variate of a normal distribution. This demonstrates that the
class of generalized elliptical distributions is able to reproduce the aforementioned
observations regarding the daily log-returns on the stock indices during the financial
crisis 2007–2009 (cf. Fig. 17.2).

In virtue of the previous findings, our preliminary conclusions are as follows:

1. The class of generalized elliptical distributions is sufficiently rich. In particular,
it includes the class of elliptical and skew-elliptical distributions.

2. The stylized facts of empirical finance can be reproduced by the class of
generalized elliptical distributions.

3. This class of distributions seems to be an appropriate model for financial data
when investigating standard methods of random matrix theory (RMT).

2The sample means of the daily log-returns on the OMX Helsinki 25 and DAX 30 are �4:7489 �
10�4 and �1:3487 � 10�4 , respectively. For this reason, we can simply ignore the location.
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The problem is that there exists a tremendous amount of generalized elliptical
distribution families that could be considered for the modeling of financial data.
Later on we will see that the results given by standard methods of RMT heavily
depend on the underlying assumptions concerning the dependence structure of the
data and this is essentially determined by the generating variate R. Thus we aim
at finding a distribution-free approach such that standard methods of RMT can be
applied irrespective of the generating variate R.

17.3 Random Matrix Theory

RMT has its origin in nuclear physics, where it has been developed for the modeling
of the energy levels of complex nuclei. A contemporary overview of RMT can be
found, e.g., in Bai and Silverstein (2010) and Debashis and Aue (2014). During
the last years, this topic becomes increasingly important in statistics, particularly in
financial-data analysis. For example, Bai et al. (2009), Glombek (2012) and Karoui
(2010, 2013) investigate problems of Markowitz portfolio optimization. Moreover,
Bouchaud et al. (2003), Laloux et al. (1999) and Plerou et al. (1999, 2002) discuss
the application of RMT in the context of principal-component analysis, whereas Bai
(2003) and Bai and Ng (2002, 2007) refer to factor analysis.

The spectral distribution of a random matrix M is defined as follows.

Definition 17.3 (Spectral Distribution) Let M be a d � d symmetric random
matrix with eigenvalues �1; �2; : : : ; �d. Then the function

FM.�/ D 1

d

dX

iD1
1�i�� ; 8 � 2 R ;

is called the spectral distribution of M.

In multivariate analysis it is usually assumed that the number of dimensions, i.e.,
d, is fixed. By contrast, in RMT we have that d ! 1 as n ! 1. This makes it
possible to derive asymptotic results for high-dimensional data.

Let X1;X2; : : : ;Xn be a sequence of d-dimensional random vectors with zero
mean. More precisely, we have that Xt D .X1t;X2t; : : : ;Xdt/ with E.Xit/ D 0 for
each sample element Xit (i; t D 1; 2; : : : ; d; n). The sample covariance matrix is
given by

S D 1

n

nX

tD1
XtX0

t :

In the following, Id denotes the d � d identity matrix and xC represents the positive
part of x 2 R, i.e., xC D max f0; xg. In RMT it is typically assumed that the sample
elements are independent and identically distributed (i.i.d.).
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Theorem 17.1 (Bai and Yin 1988) Suppose that the sample elements are i.i.d.,
have zero mean, unit variance, and finite fourth moment. Consider the random
matrix M D p

n=d .S � Id/. Then for all � 2 R the spectral distribution FM.�/

converges almost surely to FW.�/ D
R �

�1 fW.x/ dx with

fW.x/ D 1

2�

�
4 � x2

�C

as n; d!1 and n=d!1 .

This theorem guarantees that the eigenspectrum of the sample covariance matrix
of a sequence of i.i.d. data converges to Wigner’s semicircle law (Wigner 1955,
1958) as n; d!1 and n=d!1.3 Indeed, this is a remarkable result, but in many
practical applications, the number of observations, n, is not large enough compared
to the number of dimensions, d. The following theorem only requires that n=d! q
with q 2 �0;1Œ and so the effective sample size n=d can be a small number.

Theorem 17.2 (Bai and Silverstein 2010) Suppose that the sample elements are
i.i.d., have zero mean, and unit variance. Then for all � 2 R the spectral distribution
FS.�/ converges almost surely to FMP.�/ D

R �
�1 fMP.x/ dx with

fMP.x/ D q

2�
�
q
.�C � x/C .x � ��/C

x
; �˙ D

�
1˙ 1p

q

	2
;

as n; d!1 and n=d! q with 1 � q <1. In case 0 < q < 1 the limiting density
is a mixture of a point mass at 0 and fMP.x/ with weights 1 � q and q, respectively.

The limiting distribution that is given by Theorem 17.2 is known as the
Marčenko–Pastur law (Marčenko and Pastur 1967). It implies that all eigenvalues
outside its support


.1 � 1=pq/2; .1C 1=pq/2

�
vanish asymptotically.

17.4 Pitfall and Alternative

17.4.1 Sample Covariance Matrix

Consider a sample of 500-dimensional random vectors with sample size n D 1000,
where the vector components are mutually independent and possess a standardized
univariate t-distribution with 5 degrees of freedom. In the subsequent discussion
this is said to be a multivariate non-elliptical t-distribution. The left-hand side of
Fig. 17.4 contains the eigenspectrum obtained by the sample covariance matrix.

3The semicircle law implies that all eigenvalues outside its support Œ�2; 2 � vanish asymptotically.
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Fig. 17.4 Eigenspectra of S based on non-elliptically, i.e., independent (left), vs. elliptically, i.e.,
uncorrelated (right), multivariate t-distributed data (n D 1000; d D 500) with 5 degrees of
freedom. The green curve represents the density function of the Marčenko–Pastur law for q D 2

Obviously, this is consistent with the Marčenko–Pastur law. By contrast, suppose
that the random vectors have a standardized multivariate elliptical t-distribution with
5 degrees of freedom. More precisely, it is supposed that the vector components are
uncorrelated, i.e., ˙ / I500, but not independent. In this case the Marčenko–Pastur
law is clearly violated.

More precisely, we find 29 spurious eigenvalues exceeding the Marčenko–Pastur
upper bound �C D .1 C 1=p2 /2 D 2:91 and the largest eigenvalue corresponds
to 7:0698. In the physics literature, the exceeding eigenvalues are often considered
“signals” or “information” (see, e.g., Bouchaud et al. 2003; Laloux et al. 1999;
Plerou et al. 1999, 2002). In terms of principal-component analysis, the exceeding
eigenvalues could be interpreted as the contribution of the first principal components
to the total variation of the data. Figure 17.4 demonstrates that in this case we would
seriously overestimate the systematic risk of asset returns.

Theorem 17.2 does not require any specific distributional assumption. In the
context of elliptical and generalized elliptical distributions this is a potential fallacy.
It is well known that the multivariate normal is the only elliptical distribution that
allows for independent components. Hence, the problem is that the components
of a spherically distributed random vector X D RU are not independent unless
R / �d, i.e., if X has a multivariate normal distribution. For example, if asset
returns follow a multivariate elliptical t-distribution, they might be uncorrelated but
never independent in the cross section. More precisely, short-term asset returns are
tail dependent. This is the reason why the Marčenko–Pastur law in general does
not work for spherically distributed data.4 We often have observations suggesting
that the vector components are highly correlated. The smaller the tail index of the
generating variate R, i.e., the heavier the tails of X, the more spurious eigenvalues
occur.

4We know only two exceptions, i.e., (1) R D �d and (2) R D p
d (Marčenko and Pastur 1967).
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17.4.2 Tyler’s M-Estimator

Since daily asset returns follow a leptokurtic or heavy-tailed distribution, it seems
natural to use a robust covariance matrix as an alternative to the sample covariance
matrix. In the following discussion we focus on Tyler’s M-estimator (Tyler 1987a).
Its many nice properties have been established, e.g., by Adrover (1998), Dümbgen
(1998), Dümbgen and Tyler (2005), Frahm (2009), Frahm and Glombek (2012),
Kent and Tyler (1988), Kent and Tyler (1991), Maronna and Yohai (1990),
Paindaveine (2008), and Tyler (1987b), etc. We do not take other estimators into
consideration, because Tyler’s M-estimator turns out to be a canonical choice in the
context of financial time series. This will become clear by the end of this section.

If the log-returns are elliptically distributed and the second moment of R is finite,
we have that Var.X/ D E.R2/=k �˙ . However, in many applications of multivariate
data analysis we need to know only the shape matrix of X, i.e., ˝ D ˙=
2.˙ /,
where 
2 is any scale function, i.e., a positive homogeneous function of degree 1
such that 
2.Id/ D 1.5 The shape matrix˝ reflects the linear dependence structure
of X. Since the covariance matrix of X is proportional to ˙ , S=
2.S/ represents
a consistent estimator for ˝ . In general, this is not satisfied if R depends on U,
i.e., if X is not elliptically distributed. In the subsequent discussion it is shown that
Tyler’s M-estimator is a canonical estimator for the linear dependence structure of
any generalized elliptically distributed random vector X.

We assume that � D 0, � 2 R
d�k with rk� D d, and P.R D 0/ D 0, i.e., X

has no point mass at its origin. Due to the stochastic representation of X given by
Definition 17.2, the following relations hold:

X
kXk D

R�U
kR�Uk D sign.R/

�U
k�Uk D sign.R/V ; V WD �U : (17.1)

The unit random vector sign.R/V does not depend on the absolute value of R. In
particular, it is invariant under the occurrence of extreme values of R. Nonetheless,
sign.R/ cannot be cancelled out and indeed it may depend on U.

Suppose for the moment that sign.R/ was known for each realization of R, so
that we can easily calculate every realization of V, i.e., Vt D sign.Rt/Xt=kXtk for
t D 1; 2; : : : ; n . The distribution of V depends on � only through ˙ D ��> and
thus we can estimate ˙ by maximum likelihood. Interestingly, for this purpose we
need no assumption about the generating variate R. Even the dependence structure
of R and U is not relevant. Hence, the resulting estimator is distribution-free.

For deriving the corresponding ML-estimator, we have to calculate the density
function of V and search for T D   > with

5For example, we could choose 
2.˙ / D .tr˙ /=d so that tr˝ D d or 
2.˙ / D .det˙ /1=d so
that det˙ D 1 (Frahm 2009; Paindaveine 2008).
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 D arg max
�

nY

tD1
 .Vt I�/ ;

where  .v/ represents the density of V at v 2 S d�1. In the following theorem it is
assumed without loss of generality that det� D det˙ D 1.6

Theorem 17.3 Let � be a d � k matrix with rk� D d and det� D 1. Further,
consider the matrix ˙ D ��>. The density of the unit random vector V D
�U=k�Uk with respect to the uniform measure on S d�1 corresponds to

 .v/ D 
 .d=2/

2�d=2
�
p

v>˙�1v
�d

for all v 2 S d�1.

Proof See, e.g., Frahm (2004, pp. 59–60).

The distribution given by Theorem 17.3 is the angular central Gaussian distribu-
tion (Tyler 1987b; Watson 1983). Due to the Courant-Fischer Theorem, the density
function  has a local extremum at w 2 S d�1 if and only if w is an eigenvector of
˙ and we have that  .w/ / �d=2, where � is the eigenvalue associated with w.

Figure 17.5 exemplifies the density function of the angular central Gaussian.
Note that  is symmetric, i.e.,  .v/ D  .�v/, and thus it is not necessary to know
the sign of R for calculating the ML-estimator based on the density function of the
angular central Gaussian. This means our previous assumption is superfluous.

ψ
(v

1
;v

2
)

v1

v2
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1

-1
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0.5

1

0

0.2

0.4

Fig. 17.5 Density of the angular central Gaussian distribution of a two-dimensional unit random
vector generated by ˙ 11 D ˙ 22 / 1 and ˙ 12 D ˙ 21 / 0:7

6This sort of normalization can be considered canonical (Paindaveine 2008).
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Fig. 17.6 True dispersion matrix (middle), sample covariance matrix (left), and Tyler’s M-
estimator (right). The estimates are based on a sample of multivariate elliptically t-distributed
observations with sample size n D 1000, d D 500 dimensions, and  D 2 degrees of freedom

Now, consider a sample of generalized elliptically distributed observations X1;

X2; : : : ;Xn. As noted by Tyler (1987b) and Frahm (2004, Sect. 4.2.2),7 the desired
ML-estimator is given by the fixed-point equation

T D d

n

nX

tD1

VtV0
t

V0
tT�1Vt

: (17.2)

Actually, this corresponds to Tyler’s M-estimator (Tyler 1987a), i.e.,

T D d

n

nX

tD1

XtX>
t

X>
t T�1Xt

:

If the solution of this fixed-point equation exists, it is unique only up to a scaling
constant. This means T must be normalized in any way and in the following we
assume that tr T D d.

The right-hand side of Fig. 17.6 contains a realization of Tyler’s M-estimator
T, based on a simulated sample of n D 1000 multivariate elliptically t-distributed
observations with d D 500 dimensions and  D 2 degrees of freedom. The true
dispersion matrix˙ is a symmetric Toeplitz matrix, which can be seen in the middle
of Fig. 17.6. The corresponding realization of the sample covariance matrix S is
depicted on the left-hand side of Fig. 17.6. Obviously, T is a robust alternative to S.

At the beginning of this section we claimed that T is a canonical choice when
dealing with financial time-series data. Asset returns typically exhibit nonlinear
dependencies both in the cross section and in time. We already mentioned that the
tail-dependence coefficient of an elliptically distributed random vector X essentially
depends on the tail index of its generating variate. Now, suppose that the time series
X1;X2; : : : ;Xn is such that U1;U2; : : : ;Un are serially independent, but in contrast

7Tyler (1987b) refers only to elliptical distributions, whereas Frahm (2004) observes that the same
result applies as well to generalized elliptical distributions.
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R1;R2; : : : ;Rn have a serial dependence structure. For example, the log-returns
could be conditionally heteroscedastic. Our key note is that T depends only on
U1;U2; : : : ;Un, i.e., the angular part, but not on R1;R2; : : : ;Rn, i.e., the radial part
of the data. This can be seen by re-writing Eq. (17.2):

T D d

n

nX

tD1

�UtU>
t �

>

U>
t �

>T�1�Ut

:

Hence, the solution of the fixed-point equation does not depend on R1;R2; : : : ;Rn

and so it does not matter how the sequence X1;X2; : : : ;Xn is driven by the
generating variates both in the cross section or in time. This means the asset returns
might depend on each other through their generating variates in an arbitrary way.
Even the finite-sample distribution of T is not influenced by R1;R2; : : : ;Rn. This
makes T highly favorable for heavy-tailed financial time series, irrespective of
whether the sample size, n, is large or small or the number of dimensions, d, is
high or low.

17.5 Spectral Properties of Tyler’s M-Estimator

In virtue of the aforementioned results we can expect that T is an appropriate
alternative to S in the context of RMT. This is confirmed by the next theorem.

Theorem 17.4 (Frahm and Glombek 2012) Let X1;X2; : : : ;Xn be a sequence of
d-dimensional generalized spherically distributed random vectors whose angular
parts U1;U2; : : : ;Un are mutually independent. Consider the random matrix M Dp

n=d .T � Id/ with tr T D d. Then for all � 2 R the spectral distribution FM.�/

converges in probability to FW.�/ D
R �

�1 fW.x/ dx with

fW.x/ D 1

2�

�
4 � x2

�C

as n; d!1 and n=d!1 .

Hence, after an appropriate normalization, the spectral distribution of Tyler’s M-
estimator converges in probability to Wigner’s semicircle law as n; d ! 1 but
n=d ! 1.8 Hence, in contrast to Theorem 17.1, the components of X are not
required to be independent. For other results related to Tyler’s M-estimator in the
case n; d!1 and n=d!1 see Dümbgen (1998).

8In contrast to Theorems 17.1 and 17.2, Theorem 17.4 only states that the spectral distribution
converges in probability but not almost surely. More details on the technical difficulties related to
the proof of strong consistency can be found at the end of Frahm and Glombek (2012).
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The remaining question is whether the spectral distribution of T converges to the
Marčenko–Pastur law in case n=d ! q < 1. This is formalized by the following
conjecture.

Conjecture Suppose that one of the following conditions is satisfied:

1. The sample elements are i.i.d., have zero mean, finite variance, and a continuous
distribution.

2. X1;X2; : : : ;Xn is a sequence of d-dimensional generalized spherically dis-
tributed random vectors whose angular parts U1;U2; : : : ;Un are mutually
independent.

Then for all � 2 R the spectral distribution FT.�/ converges in probability to
FMP.�/ D

R �
�1 fMP.x/ dx with

fMP.x/ D q

2�
�
q
.�C � x/C .x � ��/C

x
; �˙ D

�
1˙ 1p

q

	2
;

as n; d!1 and n=d! q with 1 � q <1. In case 0 < q < 1 the limiting density
is a mixture of a point mass at 0 and fMP.x/ with weights 1 � q and q, respectively.

Figure 17.7 demonstrates our conjecture. In contrast to Fig. 17.6 we can see that
the spectral distribution of T converges to the Marčenko–Pastur law both if the data
are independent and if they are only uncorrelated.

Our arguments can be understood as follows. Suppose that the first condition of
our conjecture is satisfied. Then we have that E.XX>/ D 
2Id, where 
2 > 0 is
the variance of any sample element. Suppose that d is large. From the Law of Large
Numbers we conclude that X>X=d � 
2 and thus E


.XX>/=.X>X=d/

� � Id. For
this reason, Tyler’s M-estimator

T D 1

n

nX

tD1

XtX>
t

X>
t T�1Xt=d
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Fig. 17.7 Eigenspectra of T based on non-elliptically, i.e., independent (left), vs. elliptically, i.e.,
uncorrelated (right), multivariate t-distributed data (n D 1000; d D 500) with 5 degrees of
freedom. The green curve represents the density function of the Marčenko–Pastur law for q D 2
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converges almost surely to a d � d matrix that is close to Id as n ! 1 (Tyler
1987a). This means for all t D 1; 2; : : : ; n we expect that X>

t T�1Xt=d !a.s. 

2 as

n; d!1 and thus T � S if d and n are large. Here S denotes the sample covariance
matrix of X1=
;X2=
; : : : ;Xn=
 , which satisfies the global i.i.d. assumption of
Theorem 17.2.

By contrast, if the second condition is satisfied, Tyler’s M-estimator corresponds
to

T D d

n

nX

tD1

UtU>
t

U>
t T�1Ut

D d

n

nX

tD1

.�d;tUt/.�d;tU>
t /

.�d;tU>
t /T�1.�d;tUt/

D 1

n

nX

tD1

YtY>
t

Y>
t T�1Yt=d

;

where Yt D �d;tUt (t D 1; 2; : : : ; n) is a sequence of independent standard normally
distributed random vectors. Now, due to the same arguments we obtain T � S,
where S denotes the sample covariance matrix of Y1;Y2; : : : ;Yn. It is clear that
also the latter sample satisfies the global i.i.d. assumption of Theorem 17.2. Thus
our intuition tells us that FT and FS converge to the same limit, i.e., to the Marčenko–
Pastur law, if n; d ! 1 with n=d ! q < 1. Nonetheless, the proof of our
conjecture is formidable and, to the best of our knowledge, still missing in the
literature.
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Chapter 18
Affine Equivariant Rank-Weighted
L-Estimation of Multivariate Location

Pranab Kumar Sen, Jana Jurečková, and Jan Picek

Abstract In the multivariate one-sample location model, only L-estimators
are affine equivariant; we propose a class of flexible robust, affine equivariant
L-estimators of location, for distributions invoking affine-invariance of Mahalanobis
distances of individual observations. An involved iteration process for their
computation is numerically illustrated.

Keywords Affine equivariance • Affine invariance • D-optimality • Mahalanobis
distance and ordering • Nearest neighbors • Outlyingness

18.1 Introduction

The affine-equivariance and its dual affine-invariance are natural generalizations
of univariate translation-scale equivariance and invariance notions (Eaton 1983).
Consider the group C of transformations of Rp to Rp:

X 7! Y D BXC b; b 2 Rp (18.1)

where B is a positive definite p � p matrix. Generally with the choice of B we do
not transform dependent coordinates of X to stochastically independent coordinates
of Y: This is possible when X has a multinormal distribution with mean vector
� and positive definite dispersion matrix ˙ ; when letting ˙�1 D BB>; so that
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EY D � D B� C b and dispersion matrix B˙B> D Ip: To construct and study
the affine equivariant estimator of the location � we need to consider some affine-
invariant (AI) norm. The most well-known affine invariant norm is the Mahalanobis
norm, whose squared version is

�2 D .X � �/>˙�1.X � �/ D kX � �k2˙ (18.2)

where˙ is the dispersion matrix of X: To incorporate this norm, we need to use its
empirical version based on independent sample X1; : : : ;Xn; namely

sij D 1

2
.Xi �Xj/

>V��1
n .Xi �Xj/; 1 � i < j � n

where V�
n D .n.n � 1//�1

P
1�i<j�n.Xi �Xj/.Xi � Xj/

>: To avoid redundancy, we
may consider the reduced set

Qdni D .Xi �Xn/
> QV�1

n .Xi � Xn/; i D 1; : : : ; n � 1 (18.3)

QVn D
n�1X

iD1
.Xi �Xn/.Xi �Xn/

> (18.4)

which forms the maximal invariant (MI) with respect to affine transformations
(18.1). An equivalent form of the maximal invariant is

dni D .Xi � Xn/
>V�1

n .Xi �Xn/; i D 1; : : : ; n (18.5)

Vn D
nX

iD1
.Xi �Xn/.Xi � Xn/

> (18.6)

(Obenchain 1971). Note that all the dni are between 0 and 1 and their sum equals to
p: Because dni are exchangeable, bounded random variables, all nonnegative, with
a constant sum equal to p; the asymptotic properties of the array .dn1; : : : ; dnn/

>
follow from Chernoff and Teicher (1958) and Weber (1980). Similarly,

Pn�1
iD1 Qdni D

p: Neither Xn nor Vn is robust against outliers and gross errors contamination.
As such, we are motivated to replace Xn and Vn by suitable robust versions and
incorporate them in the formulation of a robust affine equivariant estimator of �: If
O�n is some affine equivariant estimator of �; then writing

OVn D
nX

iD1
.Xi � O�n/.Xi � O�n/

>
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we may note that OVn is smaller than Vn in the matrix sense. However, it cannot
be claimed that the Mahalanobis distances (18.5) can be made shorter by using
O�n instead of Xn; because

Pn
iD1.Xi � O�n/

> OV�1
n .Xi � O�n/ D p: Our motivation

is to employ the robust Mahalanobis distances in the formulation of robust affine
equivariant estimator of �; through a tricky ranking of the Mahalanobis distances
in (18.5) and an iterative procedure in updating an affine equivariant robust estimator
of �:

The robust estimators in the multivariate case, discussed in detail in Jurečková
et al. (2013), are not automatically affine equivariant. With due emphasis on the
spatial median, some other estimators were considered by a host of researchers, and
we refer to Oja (2010) and Serfling (2010) for a detailed account. Their emphasis is
on the spatial median and spatial quantile functions defined as follows:
Let Bp�1.0/ be the open unit ball. Then the uth spatial quantile QF.u/; u 2
Bp�1.0/ is defined as the solution x D QF.u/ of the equation

u D E

�
x �X
kx �Xk

�
; u 2 Bp�1.0/:

Particularly, QF.0/ is the spatial median. It is equivariant with respect to y D
BxC b; b 2 Rp; B positive definite and orthogonal. However, the spatial quantile
function may not be affine equivariant for all u:

Among various approaches to multivariate quantiles we refer to Chakraborty
(2001), Roelant and van Aelst (2007), Hallin et al. (2010), Kong and Mizera
(2012), Jurečková et al. (2013), among others. Lopuhaä and Rousseeuw (1991)
and Zuo (2003, 2004, 2006), among others, studied robust affine equivariant
estimators with high breakdown point, based on projection depths. An alternative
approach based on the notion of the depth function and associated U-statistics has
been initiated by Liu et al. (1999). Notice that every affine invariant function of
.X1; : : : ;Xn/ depends on the Xi only through the maximal invariant; particularly,
this applies to the ranks of the dni and also to all affine invariant depths considered
in the literature. In our formulation, affine-equivariance property is highlighted and
accomplished through a ranking of the Mahalanobis distances at various steps.

18.2 Affine Equivariant Linear Estimators

Let X 2 Rp be a random vector with a distribution function F: Unless stated other-
wise, we assume that F is absolutely continuous. Consider the group C of affine
transformations X 7! Y D BX C b with B nonsingular of order p � p; b 2 Rp:

Each transformation generates a distribution function G also defined on Rp; which
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we denote G D FB;b: A vector-valued functional �.F/; designated as a suitable
measure of location of F; is said to be an affine equivariant location functional,
provided

�.FB;b/ D B�.F/C b 8b 2 Rp; B positive definite:

Let 
 .F/ be a matrix valued functional of F; designated as a measure of the
scatter of F around its location � and capturing its shape in terms of variation
and covariation of the coordinate variables. 
 .F/ is often termed a covariance
functional, and a natural requirement is that it is independent of �.F/: It is termed
an affine equivariant covariance functional, provided


 .FB;b/ D B
 .F/B> 8b 2 Rp; B positive definite:

We shall construct a class of affine equivariant L-estimators of location parame-
ter, starting with initial affine equivariant location estimator and scale functional,
and then iterating them to a higher robustness. For simplicity we start with the
sample mean vector Xn D 1

n

Pn
iD1 Xi and with the matrix Vn D A.0/

n DPn
iD1.Xi �

Xn/.Xi � Xn/
> D n Ȯ n; n > p; where Ȯ n is the sample covariance matrix. Let

Rni D Pn
jD1 IŒdnj � dni� be the rank of dni among dn1; : : : ; dnn; i D 1; : : : ; n;

and denote Rn D .Rn1; : : : ;Rnn/
> the vector of ranks. Because F is continuous,

the probability of ties is 0, hence the ranks are well defined. Note that dni and
Rni are affine invariant, i D 1; : : : ; n: Moreover, the Rni are invariant under any
strictly monotone transformation of dni; i D 1; : : : ; n: Furthermore, each Xi is
trivially affine equivariant. We introduce the following (Mahalanobis) ordering of
X1; : : : ;Xn W

Xi � Xj , dni < dnj; i ¤ j D 1; : : : ; n: (18.7)

This affine invariant ordering leads to vector of order statistics XnW1 � : : : � XnWn of
the sample Xn. In the univariate case with the order statistics XnW1 � : : : � XnWn, we
can consider the k-order rank-weighted mean (Sen 1964) defined as

Tnk D
�

n
2kC 1

	�1 n�kX

iDkC1

�
i� 1

k

	�
n � 1

k

	
XnWi; k D 0; : : : ;



nC 1
2

�
:

For k D 0; Tnk D Xn and k D Œ.n C 1/=2� leads to the median QXn: In the
multivariate case, the ordering is induced by the non-negative dni, and the smallest
dni corresponds to the smallest outlyingness from the center, or to the nearest
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neighborhood of the center. Keeping that in mind, we can conceive by a sequence
fkng of nonnegative integers, such that kn is% in n; but n�1=2kn is& in n; and for
fixed k put

Lnk D
�

kn

k

	�1 nX

iD1
I ŒRni � kn�

�
kn � Rni

k � 1
	

Xi:

Lnk is affine equivariant, because the dni are affine invariant and the Xi are trivially
affine equivariant. Therefore we conclude that the class of L-estimators Lnk; 0 �
k � Œ.nC 1/=2�; are affine equivariant estimators of multivariate location. This is a
characterization of affine-equivariance of the proposed L-estimators. Of particular
interest is the case of k D 1; i.e.,

Ln1 D k�1
n

nX

iD1
I ŒRni � kn�Xi

representing a trimmed, rank-weighted, nearest neighbor (NN) affine equivariant
estimator of � : In the case k D 2 we have

Ln2 D
�

kn

2

	�1 nX

iD1
I ŒRni � kn� .kn � Rni/Xi

which can be rewritten as Ln2 DPn
iD1 wnRni Xi with the weight-function

wni D

8
<̂

:̂

�
kn

2

	�1
.kn � i/ : : : i D 1; : : : ; knI

0 : : : i > kn:

We see that Ln puts greater influence for Rni D 1 or 2, and wnkn D 0I wn1 D 2=kn:

For k � 3; even greater weights will be given to Rni D 1 or 2, etc. For large n we
can use the Poisson weights, following Chaubey and Sen (1996):

w0ni D
�
1 � e����1 e���i

iŠ
; � < 1; i D 1; 2; : : : :

A typical � is chosen somewhere in the middle of Œ0; 1�: Then L0n D
Pn

iD1 w0nRni
Xi

represents an untrimmed smooth affine equivariant L-estimator of �I for �! 0, we
get the median affine equivariant estimator, while �! 1 gives a version of Ln2-type
estimator. If � is chosen close to 1/2 and kn D o.

p
n/; then tail

P
j>kn

w.0/nj converges
exponentially to 0, implying a fast negligibility of the tail. Parallelly, the weights
wn.i/ can be chosen as the nonincreasing rank scores an.1/ � an.2/ � : : : � an.n/:
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To diminish the influence of the initial estimators, we can recursively continue in
the same way: Put L.1/n D Ln and define in the next step:

A.1/
n D

nX

iD1
.Xi � L.1/n /.Xi � L.1/n />

d.1/ni D .Xi � L.1/n />.A.1/
n /

�1.Xi � L.1/n /

R.1/ni D
nX

jD1
IŒd.1/nj � d.1/ni �; i D 1; : : : ; n; R.1/

n D .R.1/n1 ; : : : ;R
.1/
nn /

>:

The second-step estimator is L.2/n D Pn
iD1 wn.R

.1/
ni /Xi: In this way we proceed, so

at the rth step we define A.r/
n ; d.r/ni ; 1 � i � n and the ranks R.r/

n analogously, and
get the r-step estimator

L.r/n D
nX

iD1
wn.R

.r�1/
ni /Xi; r � 1: (18.8)

Note that the d.r/ni are affine invariant for every 1 � i � n and for every r � 0: As
such, applying an affine transformation Yi D BXiCb; b 2 Rp; B positive definite,
we see that

L.r/n .Y1; : : : ;Yn/ D BL.r/n .X1; : : : ;Xn/C b: (18.9)

Hence, the estimating procedure preserves the affine-equivariance at each step and
L.r/n is an affine equivariant L-estimator of � for every r.

The algorithm proceeds as follows:

(1) Calculate Xn and A.0/
n DPn

iD1.Xi � Xn/.Xi �Xn/
>:

(2) Calculate d.0/ni D .Xi �Xn/
>.A.0/

n /�1.Xi �Xn/; 1 � i � n:

(3) Determine the rank R.0/ni of d.0/ni among d.0/n1 ; : : : ; d
.0/
nn ; i D 1; : : : ; n:

(4) Calculate the scores an.i/; i D 1; : : : ; n
(5) Calculate the first-step estimator L.1/n DPn

iD1 an.R
.0/
ni /Xi:

(6) A.1/
n DPn

iD1.Xi � L.1/n /.Xi � L.1/n />:
(7) d.1/ni D .Xi � L.1/n />.A.1/

n /
�1.Xi � L.1/n /; 1 � i � n:

(8) R.1/ni D the rank of d.1/ni among d.1/n1 ; : : : ; d
.1/
nn ; i D 1; : : : ; n:

(9) L.2/n DPn
iD1 an.R

.1/
ni /Xi:

(10) Repeat the steps (6)–(9).
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The estimator L.r/n is a linear combination of order statistics corresponding to
independent random vectors X1; : : : ;Xn; with random coefficients based on the
exchangeable d.r/ni : The asymptotic distribution of L.r/n under fixed r and for n!1
is a problem for a future study, along with the asymptotic distribution of the
d.r/ni and of the rank statistics. For the moment, let us briefly recapitulate some

asymptotic properties of the d.r/ni : Note that
Pn

iD1 d.r/ni D p 8 r � 0; and that

the d.r/ni are exchangeable nonnegative random variables with a constant sum and

E.d.r/ni / D p
n for every r � 0: Let ı.r/ni D .Xi � L.r/n /

>˙�1.Xi � L.r/n / and
ı�

i D .Xi � �/>˙�1.Xi � �/; 1 � i � n; r � 1 where ˙ is the covariance

matrix of X1: Let G.r/
n .y/ D Pfnd.r/ni � yg be the distribution function of the nd.r/ni

and let OG.r/
n .y/ D n�1Pn

iD1 IŒnd.r/ni � y�; y 2 R
C be the empirical distribution

function. Side by side, let G�
nr.y/ D Pfı.r/ni � yg and G�.y/ D Pfı�

i � yg be the

distribution function of ı.r/ni and ı�
i , respectively. By the Slutzky theorem,

jG�
nr.y/� G�.y/j ! 0 as n!1:

Moreover, by the Courant theorem,

Chmin.AB�1/ D inf
x

x>Ax
x>Bx

� sup
x

x>Ax
x>Bx

D Chmax.AB�1/;

we have

max
1�i�n

ˇ̌
ˇ̌
ˇ
nd.r/ni

ı
.r/
ni

� 1
ˇ̌
ˇ̌
ˇ � max

� ˇ̌
ˇ̌Chmax

�
1

n
.A.r/

n /
�1˙

	
� 1

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌Chmin

�
1

n
.A.r/

n /
�1˙

	
� 1

ˇ̌
ˇ̌
�

so that
h
1
n A.r/

n
p! ˙

i
H) j OG.r/

n �G�
nrj ! 0: In a similar way, jı.r/ni �ı�

i j  kL.r/nk �
�k;where the right-hand side is Op.n�1=2/:Because d.r/ni are exchangeable, bounded,
and nonnegative random variables, one can use the Hoeffding (1963) inequality to
verify that for every cn > 0; there exist positive constants K1 and  for which

P
n
j OG.r/

n .y/� G.r/
n .y/j > cn

o
� K1e�nc2n :

Thus, using cn D O
�
n1=2 log n

�
can make the right-hand side to converge at any

power rate with n!1: This leads to the following lemma.
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Lemma 18.1 As n!1;

supd2RC

n
j OG.r/

n .y/� G.r/
n .y/ � OG.r/

n .y0/C G.r/
n .y0/j W jy � y0j � n�1=2p2 log n

o

a:s:D O.n� 3
4 log n/: (18.10)

Proof (Outline) The lemma follows from the Borel–Cantelli lemma, when we
notice that both OG.r/

n .y/ and G.r/
n .y/ are % in y 2 R

C; and that OG.r/
n .0/ D

G.r/
n .0/; OG.r/

n .1/ D G.r/
n .1/ D 1:

Theorem 18.1 Let

Wnr.t/ D n�1=2Œ OG.r/
n .G

.r/�1
n .t// � t�; t 2 Œ0; 1�I Wnr D fWnr.t/I 0 � t � 1g:

Then Wnr ) W in the Skorokhod D Œ0; 1� topology, where W is a Brownian Bridge
on [0,1].

Proof (outline) The tightness part of the proof follows from Lemma 18.1. For
the convergence of finite-dimensional distributions, we appeal to the central limit
theorem for interchangeable random variables of Chernoff and Teicher (1958).

If the Xi have multinormal distribution, then ı�
i has the Chi-squared distribution

with p degrees of freedom. If Xi is elliptically symmetric, then its density depends
on h.kx � �k˙/; with h.y/; y > 0 depending only on the norm kyk: If p � 2; as
it is in our case, it may be reasonable to assume that H.y/ D R y

0
h.u/du behaves

as 	 yp=2 (or higher power) for y ! 0: Thus y 	 ŒH.y/�2=p (or ŒH.y/�r; r �
2=p) for y ! 0: On the other hand, since our choice is kn D o.n/; the proposed
estimators Ln1 and Ln2 both depend on the Xi with dni of lower rank (Rni � kn or
n�1Rni � n�1kn ! 0). Hence, both Ln1 and Ln2 are close to the induced vector XŒ1�

where Œ1� D fi W Rni D 1g: If the initial estimator is chosen as XŒ1� and AnŒ1� D
n�1Pn

iD1.Xi � XŒ1�/.Xi � XŒ1�/
>; then the iteration process will be comparatively

faster than if we start with the initial estimators Xn and n�1A.0/
n .

The proposed Ln1; Ln2 are both affine equivariant and robust. If we define the
D-efficiency

D.r/
n D

 
jA.r/

n j
jA.0/

n j

!1=p

; r � 1; (18.11)

then it will be slightly better than that of the spatial median; the classical Xn has the
best efficiency for multinormal distribution but it is much less robust than Ln1 and
Ln2:
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18.3 Numerical Illustration

18.3.1 Multivariate Normal Distribution

The procedure is illustrated on samples of size n D 100 simulated from the
multivariate normal distribution N3.�;˙ / with

� D
0

@
�1
�2

�3

1

A D
0

@
1

2

�1

1

A ; ˙ D
2

4
1 1=2 1=2

1=2 1 1=2

1=2 1=2 1

3

5 (18.12)

and each time the affine equivariant trimmed Ln1-estimator (kn D 15) and affine
equivariant Ln2-estimator were calculated in 10 iterations of the initial estimator.
5000 replications of the model were simulated and also the mean was computed,
for the sake of comparison. Results are summarized in Table 18.1. Figure 18.1
illustrates the distribution of estimated parameters �1, �2, �3 for various itera-
tions of Ln1-estimator and Ln2-estimator and compares them with the mean and
median. Tables 18.2 and 18.3 and Fig. 18.2 compare the D-efficiency of proposed
estimators.

The Mahalanobis distance is also illustrated. One sample of size n D 100

was simulated from the bivariate normal distribution with the above parameters.
Afterwards, the Mahalanobis distances dii D .Xi � Xn/

TS�1
n .Xi � Xn/; i D

1; : : : ; n were calculated. They represent n co-axial ellipses centered at Xn—see

Table 18.1 Normal distribution: the mean in the sample of 5000 replications of estimators Ln1

(trimmed) and Ln2; sample sizes n D 100

i L.i/n1 L.i/n2

1 0:999607 2:001435 �0:998297 0:999401 1:999796 �0:999943
2 0:999473 2:001423 �0:996185 0:999083 1:999584 �0:999782
3 0:999519 2:000290 �0:993274 0:998926 1:999509 �0:999801
4 0:999435 2:000190 �0:991901 0:998854 1:999496 �0:999871
5 0:999474 2:000771 �0:991295 0:998811 1:999476 �0:999973
6 0:999646 2:001285 �0:990964 0:998781 1:999471 �1:000032
7 0:999926 2:001519 �0:990829 0:998773 1:999470 �1:000049
8 0:999952 2:001529 �0:990803 0:998772 1:999472 �1:000068
9 0:999939 2:001497 �0:990745 0:998775 1:999489 �1:000071
10 0:999853 2:001424 �0:990711 0:998779 1:999497 �1:000061
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Fig. 18.1 Normal distribution: box-plots of the 5000 estimated values of �1.D 1/ (top), �2.D 2/

(middle), and �3.D �1/ (bottom) for the L.1/n1 , L.5/n1 , L.10/n1 , L.1/n2 , L.5/n2 , L.10/n2 , mean and median
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Table 18.2 Normal distribution: the mean, median, and minimum of D-efficiency in the sample
of 5000 replications of estimators Ln1 (trimmed) and Ln2; sample sizes n D 100

L.i/n1 L.i/n2

Iteration Mean Median Minimum Mean Median Minimum

2 1.000637 0.999615 0.871029 0.999862 0.999670 0.951057

3 1.001272 0.998593 0.818591 0.999625 0.999451 0.946809

4 1.001106 0.997822 0.793030 0.999392 0.999231 0.946575

5 1.000697 0.997283 0.794157 0.999205 0.999041 0.946332

6 1.000394 0.997211 0.793903 0.999078 0.998886 0.946022

7 1.000131 0.997122 0.793903 0.998997 0.998802 0.945613

8 0.999916 0.996964 0.793903 0.998951 0.998807 0.945032

9 0.999882 0.996924 0.793903 0.998921 0.998768 0.944518

10 0.999860 0.996924 0.793903 0.998899 0.998706 0.944272

Table 18.3 Normal distribution: the 25 %-quantile, 75 %-quantile and max of D-efficiency in the
sample of 5000 replications of estimators Ln1 (trimmed) and Ln2; sample sizes n D 100

L.i/n1 L.i/n2

Iteration 25%-quantile 75%-quantile Max 25%-quantile 75%-quantile Max

2 0.971669 1.028444 1.169137 0.990914 1.008819 1.057115

3 0.960891 1.039437 1.295245 0.989675 1.009489 1.065753

4 0.956068 1.042774 1.294952 0.989358 1.009426 1.068542

5 0.953186 1.043542 1.301147 0.989098 1.009239 1.069236

6 0.952193 1.044435 1.305327 0.989000 1.009182 1.069437

7 0.951535 1.044942 1.326996 0.988916 1.009142 1.069600

8 0.951441 1.044394 1.330791 0.988839 1.009109 1.069226

9 0.951452 1.044562 1.330791 0.988802 1.009087 1.069236

10 0.951356 1.044749 1.330791 0.988771 1.009062 1.069278

Fig. 18.3 (black ellipses). The modified Mahalanobis distances replaced Xn by the
affine equivariant trimmed Ln1-estimator with kn D 15 (see the blue ellipses on
Fig. 18.3) and affine equivariant Ln2-estimator (see the red ellipses on Fig. 18.3)
with analogous modification of Sn.
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Fig. 18.2 Normal distribution: box-plots of the 5000 estimated values of D-efficiency for the L.2/n1 ,

L.5/n1 , L.10/n1 , L.2/n2 , L.5/n2 , L.10/n2
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Fig. 18.3 Normal distribution: Mahalanobis distances represented by co-axial ellipses centered
at the mean NX (black), at the trimmed Ln1-estimator (blue) and at the Ln2-estimator (red). All
simulated bivariate data with the every tenth contour are illustrated on the left, detail of the center
with the first ten contours is on the right
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Table 18.4 t-distribution: the mean in the sample of 5000 replications of estimators Ln1 (trimmed)
and Ln2; sample sizes n D 100

i L.i/n1 L.i/n2

1 1.004760 2.002252 �0:992618 1.003081 2.001199 �0:998781
2 1.005034 2.001851 �0:991150 1.002154 2.000044 �0:999996
3 1.005473 2.001430 �0:991330 1.001744 1.999661 �1:000627
4 1.005334 2.000732 �0:992535 1.001594 1.999526 �1:000909
5 1.005351 2.000951 �0:993532 1.001540 1.999475 �1:001028
6 1.005007 2.001127 �0:994361 1.001528 1.999452 �1:001069
7 1.004636 2.001009 �0:994817 1.001522 1.999447 �1:001086
8 1.004520 2.000930 �0:995011 1.001524 1.999443 �1:001090
9 1.004466 2.000911 �0:995172 1.001526 1.999442 �1:001090
10 1.004445 2.000821 �0:995221 1.001527 1.999444 �1:001086

18.3.2 Multivariate t-Distribution

Similarly, we illustrate the procedure on samples of size n D 100 simulated from
the multivariate t-distribution with 3 degrees of freedom t3.�;˙ /; with the same
parameters as in (18.12). Each time, ten iterations of affine equivariant trimmed Ln1-
estimator (kn D 15) and of affine equivariant Ln2-estimator, started from the initial
estimator, were calculated. Five thousand replications of the model were simulated
and the mean was computed, for the sake of comparison. Results are summarized in
Table 18.4. Figure 18.4 illustrates the distribution of estimated parameters �1, �2; �3
for various iterations of Ln1-estimator and Ln2-estimator and compares them with
the mean and median. Tables 18.5 and 18.6 and Fig. 18.5 compare the D-efficiencies
of the proposed estimators and Fig. 18.6 illustrates the Mahalanobis distances.

Although L.1/n resembles the NN-estimator, its behavior for t-distribution reveals
its robustness no less than L.2/n . For multivariate normal distribution, both L.1/n and
L.2/n seem to be doing well against outliers. Figures 18.3 and 18.6 illustrate this
feature in a visible way.
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Fig. 18.4 t-distribution: box-plots of the 5000 estimated values of �1.D 1/ (top), �2.D 2/

(middle), and �3.D �1/ (bottom) for the L.1/n1 , L.5/n1 , L.10/n1 , L.1/n2 , L.5/n2 , L.10/n2 , mean and median
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Table 18.5 t-distribution: the mean, median, and minimum of D-efficiency in the sample of 5000
replications of estimators Ln1 (trimmed) and Ln2; sample sizes n D 100

L.i/n1 L.i/n2

Iteration Mean Median Minimum Mean Median Minimum

2 1.001813 1.000857 0.896048 1.000812 1.000303 0.857210

3 1.001827 1.001157 0.824105 1.000556 1.000109 0.845643

4 1.001377 1.000619 0.810082 1.000360 0.999912 0.844578

5 1.000887 0.999840 0.796776 1.000260 0.999766 0.844182

6 1.000372 0.999121 0.777458 1.000214 0.999723 0.843850

7 1.000024 0.999086 0.756777 1.000196 0.999740 0.843933

8 0.999881 0.998921 0.756555 1.000187 0.999714 0.843928

9 0.999806 0.998907 0.756655 1.000184 0.999726 0.843917

10 0.999753 0.998921 0.756655 1.000183 0.999726 0.843897

Table 18.6 t-distribution: the 25 %-quantile, 75 %-quantile and max of D-efficiency in the sample
of 5000 replications of estimators Ln1 (trimmed) and Ln2; sample sizes n D 100

L.i/n1 L.i/n2

Iteration 25 %-quantile 75 %-quantile Max 25 %-quantile 75 %-quantile Max

2 0.980004 1.023251 1.157852 0.986053 1.014785 1.194658

3 0.972157 1.030707 1.212343 0.983882 1.016369 1.212103

4 0.967982 1.032541 1.214165 0.983518 1.016634 1.214597

5 0.967034 1.032940 1.222945 0.983380 1.016629 1.215499

6 0.966116 1.032850 1.260563 0.983366 1.016565 1.215862

7 0.965784 1.032895 1.261640 0.983391 1.016572 1.216013

8 0.965561 1.032746 1.261675 0.983406 1.016537 1.216332

9 0.965436 1.032643 1.261675 0.983380 1.016522 1.216431

10 0.965404 1.032680 1.261675 0.983406 1.016522 1.216579
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Chapter 19
Robust High-Dimensional Precision Matrix
Estimation

Viktoria Öllerer and Christophe Croux

Abstract The dependency structure of multivariate data can be analyzed using the
covariance matrix˙ . In many fields the precision matrix˙�1 is even more informa-
tive. As the sample covariance estimator is singular in high dimensions, it cannot be
used to obtain a precision matrix estimator. A popular high-dimensional estimator
is the graphical lasso, but it lacks robustness. We consider the high-dimensional
independent contamination model. Here, even a small percentage of contaminated
cells in the data matrix may lead to a high percentage of contaminated rows.
Downweighting entire observations, which is done by traditional robust procedures,
would then result in a loss of information. In this paper, we formally prove that
replacing the sample covariance matrix in the graphical lasso with an elementwise
robust covariance matrix leads to an elementwise robust, sparse precision matrix
estimator computable in high dimensions. Examples of such elementwise robust
covariance estimators are given. The final precision matrix estimator is positive
definite, has a high breakdown point under elementwise contamination, and can
be computed fast.

Keywords Cellwise contamination • Covariance estimation • Elementwise
robustness • Graphical modeling • Independent contamination model • Sparse

19.1 Introduction

Many statistical methods that deal with the dependence structures of multivari-
ate data sets start from an estimate of the covariance matrix. For observations
x1; : : : ; xn 2 R

p with n > p, the classical sample covariance matrix

Ȯ D 1

n � 1
nX

iD1
.xi � Nx/.xi � Nx/>; (19.1)

where Nx 2 R
p denotes the mean of the data, is optimal in many ways. It is easy

to compute, maximizes the likelihood function for normal data, is unbiased and
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consistent. However, problems arise when p increases. For p � n, the sample
covariance matrix has low precision and for p > n it even becomes singular, such

that the estimated precision matrix O� WD Ȯ �1
is not computable anymore. This is a

problem since there are many fields where the precision matrix is needed rather than
the covariance matrix. Computation of Mahalanobis distances or linear discriminant
analysis are just two examples. The most popular field using precision matrices is
probably Gaussian graphical modeling, where the nodes of the graph represent the
different variables. If an element . O�/ij of the estimated precision matrix equals
zero, the variables i and j are independent given all the other variables, and no
edge is drawn between the nodes representing variables i and j. Therefore, edges
correspond to nonzero elements of the precision matrix. As a result, the whole graph
can be recovered if the support of the precision matrix is known. This leads to an
increasing interest in sparse precision matrices (precision matrices with a lot of zero
elements) as interpretation of the graph will be eased if the number of nonzeros in
the precision matrix is kept small.

The three most suitable techniques to compute sparse precision matrices that are
also applicable in high dimensions are the graphical lasso (GLASSO) (Friedman
et al. 2008), the quadratic approximation method for sparse inverse covariance
learning (QUIC) (Hsieh et al. 2011) and the constrained L1-minimization for
inverse matrix estimation (CLIME) (Cai et al. 2011). All three methods start from
the sample covariance matrix Ȯ and try to minimize a criterion based on the
log-likelihood (see Sect. 19.2). Since these estimators use the nonrobust sample
covariance matrix as an input, they are only suitable for clean data that do not
contain any outliers.

The problem, however, is that data is rarely clean. Thus, there is need for robust
procedures. Most robust procedures downweight observations as a whole (“rowwise
downweighting”). However, in many statistical applications only a limited number
of observations are available, while large amounts of variables are measured for
each observation. Downweighting an entire observation because of one single
outlying cell in the data matrix results in a huge loss of information. Additionally,
the contaminating mechanism may be independent for different variables. In this
case, the probability of having an observation without contamination in any cell is
decreasing exponentially when the number of variables increases. As an example,
imagine a data set, where each observation contains exactly one contaminated cell.
Even though there is not a single fully clean observation, each observation still
contains a lot of clean information. Nonetheless, the “classical” robust procedures
(that downweight whole observations) cannot deal with a data set like that, since
they need at least half of the observations to be absolutely clean of contamination.
This type of “cellwise” or “elementwise” contamination was formally described by
Alqallaf et al. (2009), who extend the usual Tukey–Huber contamination model (the
model that considers whole observations as either outlying or clean). In this more
extensive setup, a random vector

x D .Ip � B/yC Bz
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is observed, where y follows the model distribution and z some arbitrary distribution
creating contamination, and y;B, and z are independent. Depending on the Bernoulli
random variables Bi with PŒBi D 1� D �i that build the diagonal matrix B D
diag.B1; : : : ;Bp/, different types of outliers are created. If all Bi are independent
(i D 1; : : : ; p), we speak about “cellwise contamination.” If PŒB1 D B2 D : : : D
Bp� D 1, rowwise contamination is created. Under any type of contamination, the
sample covariance matrix Ȯ is not a good estimator anymore, as it can be distorted
by just a single outlying observation.

For robust covariance matrix estimation under rowwise contamination, a lot
of work has been done. One of the most popular rowwise robust covariance
estimators is the minimum covariance determinant (Rousseeuw and Van Driessen
1999). It has a high breakdown point and is very fast to compute. However, it is
not computable in high dimensions. Another estimator with very nice theoretical
properties is the affine equivariant rank covariance matrix (Ollila et al. 2003). It
is very efficient and has maximal breakdown point. However, its computation is
extremely time consuming, especially in high-dimensions. Maronna and Zamar
(2002) propose a high-dimensional covariance estimator, an orthogonalized version
of the Gnanadesikan-Kettenring estimate (OGK). Another very simple estimator
has been developed by Visuri et al. (2000). Their spatial sign covariance matrix
appeals through a simple definition and can be computed very fast, even in high
dimensions. Very recently, Ollila and Tyler (2014) have introduced a regularized M-
estimator of scatter. Under general conditions, they show existence and uniqueness
of the estimator, using the concept of geodesic convexity.

Much less work has been done for covariance estimation under cellwise contami-
nation. A first approach was taken by Van Aelst et al. (2011), who defined a cellwise
weighting scheme for the Stahel–Donoho estimator. However, as for the original
estimate, computation times are not feasible for larger numbers of variables. A very
recent approach by Agostinelli et al. (2015) flags cellwise outliers as missing values
and applies afterwards a rowwise robust method that can deal with missing values.
By this, it can deal with cellwise and rowwise outliers at the same time, but again,
computation for high-dimensions is not achievable.

The first step to deal with cellwise outliers in very high dimensions has been
taken by Alqallaf et al. (2002). They first compute a pairwise correlation matrix.
Afterwards the OGK estimate is applied to obtain a positive semidefinite covariance
estimate. This method has been fine-tuned by Tarr et al. (2015) who use pairwise
covariances instead of correlations (see also Tarr 2014). This matrix is then plugged
into the graphical lasso (and similar techniques) instead of the sample covariance
matrix, resulting in a sparse precision matrix estimate. A very different approach has
been taken by Finegold and Drton (2011). Replacing the assumption of Gaussian
distribution of the data with t-distribution gives more robust results since the t-
distribution has heavier tails. Assuming a so-called alternative t-distribution (see
Sect. 19.6) results in robustness against cellwise contamination.

In this paper, we consider different high-dimensional precision matrix estimators
robust to cellwise contamination. Our approach is similar in spirit as Tarr et al.
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(2015) (see also Tarr 2014), but we emphasize the difference in Sect. 19.3. We start
with pairwise robust correlation estimates from which we then estimate a covariance
matrix by multiplication with robust standard deviations. This cellwise robust
covariance matrix replaces then the sample covariance matrix in the GLASSO,
yielding a sparse, cellwise robust precision matrix estimator. The different nonro-
bust precision matrix estimators are introduced in Sect. 19.2. The cellwise robust
covariance matrix estimators are explained in Sect. 19.3. We discuss the selection of
the regularization parameter in Sect. 19.4. In Sect. 19.5, the breakdown point of the
proposed precision matrix estimator is derived. Simulation studies are presented in
Sect. 19.6. In Sect. 19.7, we discuss possible applications of the proposed method
and present a real data example. Section 19.8 concludes.

19.2 High-Dimensional Sparse Precision Matrix Estimation
for Clean Data

Recently, a lot of effort has been put into designing estimators and efficient routines
for high-dimensional precision matrix estimation. We focus here on sparse precision
matrix estimation, that is, procedures that result in a precision matrix containing
many zero elements. In this section, we review three techniques that start from an
estimate of the covariance matrix Ȯ and then optimize a criterion based on the
likelihood function to find the precision matrix estimate. Since the methods are
based on the sample covariance matrix, they are only useful if no contamination
is present in the data.

The graphical lasso (GLASSO) (Friedman et al. 2008) maximizes the L1-
penalized log-likelihood function:

O�GL.X/ D arg max
�2Rp�p

��0
log det.�/ � tr. Ȯ �/ � 	

pX

j;kD1
j.�/jkj; (19.2)

where A � 0 denotes a strictly positive definite matrix A and 	 is a regularization
parameter. If the regularization parameter 	 is equal to zero, the solution of the
GLASSO is the inverse of the sample covariance matrix. The larger the value of 	 is
chosen, the more sparse the precision matrix estimate becomes. Since the objective
function (19.2) is concave, there exists a unique solution. Banerjee et al. (2008)
showed that the solution of the GLASSO always results in a strictly positive definite
estimate O�GL.X/ for any 	 > 0, even if p > n, and this for any positive semidefinite,
symmetric matrix Ȯ in (19.2).

The solution O�GL.X/ can be computed via iterative multiple lasso regression in a
block coordinate descent fashion. That means that each column of the final estimate
is computed separately. Looking at the first order condition only for the target
column, the equation can be seen as a first order condition of a multiple lasso regres-
sion. The GLASSO algorithm loops through all columns of the precision matrix
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iteratively, computing each time the multiple lasso regression, until convergence
of the precision matrix estimate is reached. Note that the algorithm does not use
the data directly, but only uses it indirectly by using the sample covariance matrix.
The GLASSO algorithm is implemented in Fortran and available through the R-
package glasso (Friedman et al. 2014). However, this implementation sometimes
encounters convergence problems. Therefore, we use in the remainder of this paper
the implementation of the GLASSO algorithm in the R-package huge (Zhao et al.
2014), where these convergence issues have been solved.

Another algorithm solving (19.2) is the quadratic approximation method for
sparse inverse covariance learning (QUIC) (Hsieh et al. 2011). Both the GLASSO
algorithm and the QUIC compute a solution for the same objective function. It
turned out that QUIC was performing considerably slower in high dimensions
than the GLASSO implementation in the R-package huge (Zhao et al. 2014), and
therefore we will not deal with the former in this paper.

The constrained L1-minimization for inverse matrix estimation (CLIME) is
defined as

O�1.X/ D arg min
�2Rp�p

pX

iD1

pX

jD1
j� ijj subject to max

iD1;:::;p
jD1;:::;p

j. Ȯ � � Ip/ijj � 	

O�C.X/ D . O�ij/ with O�ij D O�1ij IŒj O�1ij j�j O�1ji j� C O�
1
ji IŒj O�1ij j>j O�1ji j� and O�1.X/ D . O�1ij/:

The result is a symmetric matrix that is positive definite with high probability. The
CLIME estimator O�C.X/ converges fast towards the true precision matrix under
some mild conditions. The algorithm is implemented in the R-package clime (Cai
et al. 2012). Like the GLASSO algorithm, it does not use the data directly, but only
requires the sample covariance matrix as an input. Replacing the sample covariance
matrix with a cellwise robust estimator (see Sect. 19.3), the resulting estimator
is similarly accurate (with respect to Kullback–Leibler divergence measure, see
Sect. 19.6) as the one obtained when plugging the cellwise robust estimator into the
GLASSO estimator. In some cases, plugging the robust estimator into the CLIME
led to slightly better accuracy. However, the computation time was much higher
than when plugging it into the GLASSO (for p D 60 the computation time was
more than ten times higher). Since in high-dimensional analysis computation time
is important, we will not consider this estimator in the remainder of the paper.

19.3 Cellwise Robust, Sparse Precision Matrix Estimators

We start with computing a cellwise robust covariance matrix S by pairwise, robust
estimation of the covariances. This cellwise robust covariance matrix can then be
used to replace the sample covariance matrix in the GLASSO estimator (or another
sparse precision matrix estimator). This results in a sparse, cellwise robust precision
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matrix estimate. Our approach differs from Tarr et al. (2015) in the selection
of the initial covariance estimate. We estimate robust correlations and standard
deviations separately to get the robust covariances. The resulting covariance matrix
is then always positive semidefinite. This leads to a simplification of the estimator,
increases the breakdown point, and speeds up computation substantially.

19.3.1 Robust Covariance Matrix Estimation Based
on Pairwise Covariances

Tarr et al. (2015) use the approach of Gnanadesikan and Kettenring (1972) to
obtain a robust, pairwise covariance estimate. It is based on the idea that the robust
covariance of two random variables X and Y can be computed using a robust
variance. For the population covariance Cov and the population variance Var, the
following identity holds

Cov.X;Y/ D 1

4˛ˇ
ŒVar.˛X C ˇY/ �Var.˛X � ˇY/� (19.3)

with ˛ D 1=
p

Var.X/, ˇ D 1=
p

Var.Y/. If Var is replaced by a robust variance
estimator, a robust covariance estimate can be obtained.

This approach has two drawbacks. Firstly, the addition and subtraction of
different variables leads to a propagation of the outliers. Therefore, the resulting
estimator has a breakdown point of less than 25% under cellwise contamination.
Secondly, the resulting covariance matrix is not necessarily positive semidefinite.
Therefore, Tarr et al. (2015) need to apply methods that “make” the matrix positive
semidefinite to be able to use this covariance matrix estimate as a replacement of
the sample covariance matrix in a sparse precision matrix estimator. To this end,
they use the orthogonalized Gnanadesikan-Kettenring (OGK) approach (Maronna
and Zamar 2002) as well as the computation of the nearest positive (semi)definite
(NPD) matrix as suggested by Higham (2002). Starting from an estimate QS 2 R

p�p

for the covariance matrix of the data X 2 R
n�p, NPD finds the closest positive

semidefinite matrix S to the covariance estimate QS in terms of the Frobenius norm

S D min
OS	0
kQS � OSkF;

where kAkF D Pp
j;kD1 a2jk for a matrix A D .ajk/j;kD1;:::;p 2 R

p�p and A � 0

denotes a positive semidefinite matrix. An algorithm to compute the nearest matrix
S is implemented in the R-package Matrix under the command nearPD(). In
our simulations, we observed that NPD gave in general better results than OGK and
could also be computed considerably faster.
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19.3.2 Robust Covariance Matrix Estimation Based
on Pairwise Correlations

In contrast to Tarr et al. (2015), we use a robust correlation estimator r.�/ to estimate
the pairwise covariance matrix .sjk/ 2 R

p�p

sjk D scale.xj/ scale.xk/r.xj; xk/ j; k D 1; : : : ; p (19.4)

from the data X D .x1; : : : ; xp/ 2 R
n�p, where scale./ is a robust scale estimate like

the median absolute deviation or the Qn-estimator (Rousseeuw and Croux 1993).
Both estimators are equally robust with a breakdown point of 50 %. Since the Qn-
estimator is more efficient at the Gaussian model and does not need a location
estimate, we opt for this scale estimate. The amount of contamination that the
resulting covariance matrix S D .sjk/j;kD1;:::;p can withstand depends then on the
breakdown point of the scale estimator used (see Sect. 19.5). Using the Qn-scale, we
obtain an estimator with a breakdown point of 50% under cellwise contamination.

There are different possibilities for choosing a robust correlation estimator.
Gaussian rank correlation (e.g., Boudt et al. 2012) is defined as the sample
correlation estimated from the Van Der Waerden scores (or normal scores) of the
data

rGauss.xj; xk/ D
Pn

iD1 ˚�1.R.xij/

nC1 /˚
�1.R.xik/

nC1 /Pn
iD1.˚�1. i

nC1 //2
; (19.5)

where R.xij/ denotes the rank of xij among all elements of xj, the jth column of the
data matrix. Similarly R.xik/ stands for the rank of xik among all elements of xk.
Gaussian rank correlation is robust and consistent at the normal model. Still it is
asymptotically equally efficient as the sample correlation coefficient at normal data.
This makes it a very appealing robust correlation estimator. Note that the Gaussian
rank correlations can easily be computed as the sample covariance matrix from the
ranks R.xij/ of the data. Since the sample covariance matrix is positive semidefinite,
the covariance matrix S using Gaussian rank correlation is also positive semidefinite.
Therefore, we do not need to apply NPD or OGK to obtain a positive semidefinite
covariance estimate. This saves computation time and simplifies the final precision
matrix estimator.

Another robust correlation estimator is Spearman correlation (Spearman 1904).
It is defined as the sample correlation of the ranks of the observations:

rSpearman.xj; xk/ D
nX

iD1

.R.xij/� nC1
2
/.R.xik/� nC1

2
/

qPn
iD1.R.xij/ � nC1

2
/2
Pn

iD1.R.xik/� nC1
2
/2
:

Spearman correlation is slightly less efficient than Gaussian rank correlation.
Additionally, it is not consistent at the normal model. To obtain consistency, the
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correlation estimator needs to be nonlinearly transformed. The transformation,
however, destroys the positive semidefiniteness of the estimator S, and therefore we
do not apply it. In our opinion, the inconsistency is not a huge problem because the
asymptotic bias of the Spearman correlation is at most 0.018 (Boudt et al. 2012).
This is also confirmed by the simulations in Sect. 19.6, where similar results are
obtained with Spearman correlation as with Gaussian rank correlation.

We also consider Quadrant correlation (Blomqvist 1950). Quadrant correlation
is defined as the frequency of centered observations in the first and third quadrant,
minus the frequency of centered observations in the second and fourth quadrant

rQuadrant.xj; xk/ D 1

n

nX

iD1
sign..xij �med`D1;:::;n x`j/.xik �med`D1;:::;n x`k//;

where sign.�/ denotes the sign-function. Quadrant correlation is less efficient than
Gaussian rank correlation and Spearman correlation (Croux and Dehon 2010). Like
Spearman correlation, Quadrant correlation is only consistent at the normal model
if a transformation is applied to the correlation estimate. The final covariance matrix
of the consistent Quadrant correlation is no longer positive semidefinite. Since
we need a positive semidefinite covariance matrix, we opt for the inconsistent
Quadrant correlation. Note that the asymptotic bias at the normal distribution of
the inconsistent Quadrant correlation is substantially higher than for Spearman
correlation. Taking all this drawback of Quadrant correlation into account, it is not a
surprise that we obtain worse simulation results with Quadrant correlation than with
Spearman or Gaussian rank correlation in Sect. 19.6.

19.3.3 Cellwise Robust Precision Matrix Estimation

To obtain a cellwise robust precision matrix estimator, we adapt the definition of
the GLASSO estimator given in (19.2). Recall that GLASSO takes the sample
covariance estimator as an input and returns a sparse estimate of the precision matrix
as an output. We will replace the sample covariance matrix by the cellwise robust
covariance matrices S of Sects. 19.3.1 and 19.3.2 in order to obtain a cellwise robust,
sparse precision matrix estimator. Hence, we obtain the following estimator

O�S.X/ D arg max
�D.�jk/2Rp�p

��0

log det.�/ � tr.S�/� 	
pX

j;kD1
j�jkj; (19.6)

If S is a robust covariance matrix based on pairwise correlations as in Sect. 19.3.2,
we refer to O�S.X/ as “correlation based precision matrix estimator.” If S is a
covariance matrix based on pairwise covariances as in Sect. 19.3.1, we call O�S.X/
“covariance based precision matrix estimator.” Since the algorithm for computing
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the GLASSO only requires a positive semidefinite, symmetric matrix S as an input
and not the data, we use it to compute O�S.X/.

Like for the original GLASSO algorithm, the final precision matrix estimate
O�S.X/ will always be positive definite as long as the initial covariance matrix S

is positive semidefinite, even if p > n. Therefore, it is important that the initial
covariance estimate S is positive semidefinite.

The final precision matrix estimator O�S.X/ will inherit the breakdown point
of the initial covariance matrix S (see Sect. 19.5). As a result, the correlation
based precision matrix estimator has a breakdown point of 50 % under cellwise
contamination, while the covariance estimators based on pairwise covariances can
have a breakdown point of at most 25 % under cellwise contamination.

The covariance matrices based on pairwise correlations we considered (i.e.,
the matrices based on Gaussian correlation, Spearman correlation, and Quadrant
correlation) are all positive semidefinite. Indeed, they can be computed as sample
correlation matrices of transformed data. For instance, the quadrant correlation
matrix is a sample correlation matrix of the signs of the differences of the
observations to their median. In contrast, covariance matrices based on pairwise
covariances need to be transformed to be positive semidefinite for which we used the
NPD method described in Sect. 19.3.1. Additionally, all pairwise robust covariances
need to be computed according to (19.3), which may become very time consuming.
Therefore, the correlation based precision matrix estimators are much faster to
compute than the covariance based precision matrix estimators.

To sum up, correlation based precision matrix estimators are faster to compute
and feature a higher breakdown point under cellwise contamination than covariance
based precision matrix estimators.

19.4 Selection of the Regularization Parameter �

When selecting the regularization parameter 	, a good trade-off between a high
value of the likelihood function and the sparseness of the final precision matrix has
to be found. The two most common methods to find the optimal trade-off are the
Bayesian Information Criterion (BIC) and cross validation (CV).

The BIC for a L1-regularized precision matrix estimator O�	 for a fixed value of
	 has been given in Yuan and Lin (2007):

BICclassic.	/ D � log det O�	 C tr. O�	
Ȯ /C log n

n

X

i�j

Oeij.	/

with Ȯ the sample covariance estimate and Oeij D 1 if . O�	/ij ¤ 0 and Oeij D 0

otherwise. To obtain a cellwise robust BIC criterion, we replace Ȯ by a cellwise
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robust covariance matrix S and use a cellwise robust precision matrix estimator O�	:

BIC.	/ D � log det O�	 C tr. O�	S/C log n

n

X

i�j

Oeij.	/:

Computing the value of BIC over a grid, the value 	 yielding the lowest BIC is
chosen.

To perform K-fold cross validation, the data first has to be split into K blocks
of nearly equal size nk (k D 1; : : : ;K). Each block k is left out once and used as

test data .x1.k/; : : : ; x
p
.k//. On the remaining data, the precision matrix estimate O� .�k/

	

is computed using the regularization parameter 	. As an evaluation criterion, the
negative log-likelihood on the test data is computed

L.k/.	/ D � log det O� .�k/

	 C tr.S.k/ O� .�k/

	 /;

where S.k/ is the initial robust covariance estimate computed on the test data, i.e.

.S.k//ij D scale.xi
.k// scale.xj

.k//r.x
i
.k/; x

j
.k// i; j D 1; : : : ; p

exactly as in Eq. (19.4). By using a robust covariance estimate computed from the
test data, outliers present in the test data will not affect the cross-validation criterion
too much. This is done over a range of values of 	. The value of 	 minimizing the
negative log-likelihood is chosen as the final regularization parameter

O	 D arg min
	

1

K

KX

kD1
L.k/.	/: (19.7)

As pointed out by a referee, it could occur that some of the test data sets include
a percentage of outliers exceeding the breakdown point of the precision matrix
estimator, leading to possible breakdown of the cross validation procedure. In our
numerical experiments, with contamination levels low compared to the breakdown
point and independent for different cells, we did not face this problem. Replacing
the sum in (19.7) by a median, for instance, may provide a way out.

To select a grid of values of 	, we suggest to use the heuristic approach
implemented in the huge-package (Zhao et al. 2014). It chooses a logarithmic
spaced grid of ten values. The largest value of the grid depends on the value of
the initial covariance matrix S

	max D max

�
max

.i;j/2f1;:::;pg2
.S� Ip/ij;� min

.i;j/2f1;:::;pg2
.S � Ip/ij

	
:

The smallest value of the grid is then a tenth of the largest value 	min D 0:1	max.
To obtain a logarithmic spaced grid, ten equally spaced values between log.	min/
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and log.	max/ are transformed via the exponential function. We will use this grid of
	-values in the remainder of the paper.

In general, the BIC criterion can be computed faster than cross validation.
However, BIC tends to select too sparse models in practice. In our opinion, the gain
in accuracy when using cross validation is worth the increased computation time.
Therefore, we will use five-fold cross validation in the remainder of the paper.

19.5 Breakdown Point

In Sect. 19.3, we obtain precision matrix estimators by replacing the sample covari-
ance matrix in the GLASSO with robust covariance matrices. It is not immediately
clear if the cellwise robustness of the initial covariance estimator translates to
cellwise robustness of the final precision matrix estimator. Theorem 19.1 shows that
the final precision matrix estimator O�S indeed inherits the breakdown point of the
covariance matrix estimator S. Furthermore, we formally show in Proposition 19.1
that the proposed initial covariance matrix estimators based on pairwise correlations
are cellwise robust.

One of the most common measurements of robustness is the finite-sample
breakdown point. We refer to Maronna et al. (2006) for the standard definition, i.e.
under rowwise contamination. The breakdown point denotes the smallest amount of
contamination in the data that drives the estimate to the boundary of the parameter
space. For example, a location estimator needs to stay bounded, a dispersion
estimator needs to stay bounded and away from zero. More formally, define for
any symmetric p � p matrices A and B

D.A;B/ D maxfj�1.A/ � �1.B/j; j�p.A/�1 � �p.B/�1jg;

where the ordered eigenvalues of a matrix A are denoted by 0 � �p.A/ � : : : �
�1.A/. We define the finite-sample breakdown point under cellwise contamination
of a precision matrix estimate O� as

�n. O� ;X/ D min
mD1;:::;nf

m

n
W sup

Xm
D. O�.X/; O�.Xm// D1g; (19.8)

where Xm denotes a corrupted sample obtained from X 2 R
n�p by replacing in each

column at most m cells by arbitrary values. Similarly, we can define the explosion
finite-sample breakdown point under cellwise contamination of a covariance matrix
estimate S as

�C
n .S;X/ D min

mD1;:::;nf
m

n
W sup

Xm
j�1.S.X// � �1.S.Xm//j D 1g; (19.9)

where Xm denotes a corrupted sample obtained from X by replacing in each column
at most m cells by arbitrary values.
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Finally, recall the definition of the explosion breakdown point of a univariate
scale estimator scale.�/:

�C
n .scale; x/ D min

mD1;:::;nf
m

n
W sup

xm
scale.xm/ D 1g;

where xm is obtained from x 2 R
n by replacing m of the n values by arbitrary values.

To prove the main theorem of this section, we use different properties of
eigenvalues, which we summarize in the following lemma.

Lemma 19.1 Let A;B 2 R
p�p and denote their smallest (largest) eigenvalues by

�p.A/ (�1.A/) and �p.B/ (�1.B/), respectively. Then the following statements are
true:

(a) If A and B are positive semidefinite, then

�p.AB/ � �1.A/�p.B/; (19.10)

�p.A/�p.B/ � �p.AB/: (19.11)

(b) If A and B are symmetric, then

�1.AC B/ D �1.A/C �1.B/: (19.12)

(c) Denoting A D .aij/i;jD1;:::;p, we have

j�1.A/j � p max
i;jD1;:::;p jaijj: (19.13)

Proof The statements of this lemma are proven in Seber (2008). For (a) see 6.76,
for (b) see 6.71, for (c) see 6.26a.

Now, we can show that replacing the sample covariance matrix in the GLASSO
by a robust covariance matrix S leads to a precision matrix estimator O�S.X/ that
inherits its robustness from S.

Theorem 19.1 The finite sample breakdown point under cellwise contamination of
the robust precision matrix estimator O�S.X/ fulfills

�n. O�S;X/ � �C
n .S;X/ (19.14)

with S a positive semidefinite covariance estimator.

Proof Let 1 � m � n be the maximum number of cells in a column that have
been replaced to arbitrary positions. Since S.Xm/ is positive semidefinite, O�S.Xm/

is positive definite (see Banerjee et al. 2008, Theorem 3). The estimate O�S.Xm/

needs to fulfill the first order condition of (19.6):

0 D O��1
S .Xm/� S.Xm/� 	 Sign O�S.Xm/; (19.15)
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where .Sign O�S.Xm//jk D sign O�S.Xm/jk for j; k D 1; : : : ; p. If O�S has zero
components, the first order condition (19.15) corresponds to a subdifferential and
the sign function at 0 needs to be interpreted as the set Œ�1; 1� (Bertsekas 1995). We
then obtain

Ip D .S.Xm/C 	 Sign O�S.Xm// O�S.Xm/:

Thus, the smallest eigenvalue fulfills

1 D �p.Ip/ D �p..S.Xm/C 	 Sign O�S.Xm// O�S.Xm//:

Using (19.10), we get

1 � �1.S.Xm/C 	 Sign O�S.Xm//�p. O�S.Xm//:

By definition O�S.Xm/ is always symmetric, therefore also 	 Sign. O�S.Xm//. As a
result, (19.12) yields

1 � Œ�1.S.Xm//C �1.	 Sign O�S.Xm//��p. O�S.Xm//:

As O�S.Xm/ is positive definite, we obtain

1

�p. O�S.Xm//
� �1.S.Xm//C 	�1.Sign O�S.Xm//:

From the definition of the Sign-function, we know that j.Sign O�S.Xm//ijj � 1.
Together with (19.13), this yields

j�1.Sign O�S.Xm//j � p; (19.16)

resulting in

�p. O�S.Xm//�1 � �1.S.Xm//C 	p: (19.17)

From the definition of the explosion breakdown point (19.9), we know that for
every Qm < n�C

n .S;X/ there exists an M <1 such that

�1.S.X Qm// � M C �1.S.X//: (19.18)

Using (19.17) in (19.18) yields

0 � �p. O�S.X Qm//�1 � �1.S.X Qm//C 	p � M C �1.S.X//C 	p:
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Together with the triangle inequality this gives

j�p. O�S.X Qm//�1 � �p. O�S.X//�1j � �p. O�S.X Qm//�1 C �p. O�S.X//�1 (19.19)

� M C �1.S.X//C �p. O�S.X//�1 C 	p:
(19.20)

To obtain a bound for the largest eigenvalue �1. O�S.Xm//, denote for any matrix
� � 0

Q.� ;X/ D log det� � tr.S.X/�/� 	
pX

j;kD1
j�jkj:

For the identity matrix, we obtain for contaminated data Xm

Q.Ip;Xm/ D 0 � tr.S.Xm//� 	p � �p�1.S.Xm//� 	p

since tr.A/ D Pp
jD1 �j.A/ � p�1.A/ for any matrix A 2 R

p�p. Using Eq. (19.18),
this leads to

Q.Ip;X Qm/ � �pM � p�1.S.X//� 	p:

For any matrix Q� � 0, we obtain with (19.11)

tr.S Q�/ D
pX

jD1
�j.S Q�/ � �p.S Q�/ � �p.S/�p. Q�/ � 0: (19.21)

Furthermore, (19.13) yields

pX

i;jD1
j Q�jkj � max

j;kD1;:::;p j
Q�jkj � 1

p
�1. Q�/: (19.22)

Equations (19.21) and (19.22) lead to

Q. Q� ;Xm/ D log det Q� � tr.S Q�/ � 	
pX

j;kD1
j�jkj

� p log�1. Q�/� 	
p
�1. Q�/

because det.A/ DQp
jD1 �j.A/ � �1.A/p for any matrix A 2 R

p�p.
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The function x 7! p log x�	x=p is concave and attains its maximum at x D p2=	.
Therefore, there exists a finite constant M� > p2=	, such that

p log M� � 	
p

M� D �pM � p�1.S.X// � 	p:

As a results we know that any matrix Q� with �1. Q�/ > M� is not optimizing (19.6)
since Q.Ip;X Qm/ > Q. Q� ;X Qm/. Hence,

0 � �1. O�S.X Qm// � M�:

Together with the triangular inequality, this yields

j�1. O�S.X Qm//� �1. O�S.X//j � �1. O�S.X Qm//C �1. O�S.X// (19.23)

� M� C �1. O�S.X//: (19.24)

Thus, (19.19) and (19.23) lead to

sup
X Qm

D. O�S.X/; O�S.X Qm// � maxfM C �1.S.X//C 	pC �p. O�S.X//�1;M�

C �1. O�S.X//g

for any Qm < n�C
n .S;X/, yielding (19.14).

We still need to verify that the covariance matrix estimator based on pairwise
correlations has a high explosion breakdown point under cellwise contamination.

Proposition 19.1 The explosion breakdown point under cellwise contamination
of the covariance estimator based on pairwise correlations as defined in (19.4)
depends on the explosion breakdown point of the scale estimator used

�C
n .S;X/ � max

jD1;:::;p �
C
n .scale; xj/: (19.25)

Proof Using the triangular inequality, (19.13), (19.4) and the fact that a correlation
has an absolute value smaller than 1, we obtain

j�1.S.X//� �1.S.Xm//j � j�1.S.X//j C p max
j;kD1;:::;p j scale..Xm/j/jj scale..Xm/k/j

for any m 2 f1; : : : ; ng, where .Xm/j denotes the jth column of matrix Xm, and
therefore (19.25).

Note that the explosion breakdown point of the scale estimator in (19.25) is the
breakdown point of a univariate estimator. Breakdown points of scale estimators
have been studied extensively (see. e.g., Rousseeuw and Croux 1993). The median
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absolute deviation as well as the Qn-estimator has an explosion breakdown point of
50%, resulting in a breakdown point of 50% under cellwise contamination for the
correlation based precision matrix estimator proposed in Sect. 19.3.

19.6 Simulations

In this section, we present a simulation study to compare the performance of
the estimators introduced in Sect. 19.3. For the correlation based precision matrix
estimator, we choose the Qn-estimator as a scale. As robust correlation, we
use Gaussian rank correlation, Spearman correlation, and Quadrant correlation,
resulting in the three different estimators “GlassoGaussQn,” “GlassoSpearmanQn,”
and “GlassoQuadQn,” respectively. As a point of reference, we also include the non-
robust, classical GLASSO (19.2) and abbreviate it as “GlassoClass.” Additionally,
we compute a covariance based precision matrix estimate, where we choose Qn as
the scale estimator and NPD to obtain a positive semidefinite covariance estimate
(“GlassoNPDQn”). This estimator represents the class of estimators studied by Tarr
et al. (2015).

To compare to a rowwise, but not cellwise robust estimator that can be computed
in high dimensions, we consider the spatial sign covariance matrix (Visuri et al.
2000)

Sincons
sign .X/ D 1

n

nX

iD1
U.xi � O�/U.xi � O�/>; (19.26)

where U.y/ D kyk�12 y if y ¤ 0 and U.y/ D 0 otherwise, and kyk2 stands
for the Euclidean norm. The location estimator O� is the spatial median, i.e. the
minimizer of

Pn
iD1 kxi ��k2. Since only the eigenvectors of (19.26) are consistent

estimators for the eigenvectors of the covariance matrix at the normal model, we still
need to compute consistent eigenvalues. Let U denote the matrix of eigenvectors
of (19.26). The eigenvalues of the covariance matrix are then given by the marginal
variances of U>x1; : : : ;U>xn. To robustly estimate these marginal variances, we
use the robust scale estimator Qn. Denote the matrix of robust eigenvalues as
� D diag. O�1; : : : ; O�p/. Then the consistent spatial sign covariance matrix is

Ssign.X/ D U�U>:

The spatial sign covariance matrix is positive semidefinite. Therefore, we use it as an
input in the GLASSO, as in Eq. (19.6), to obtain a sparse precision matrix estimate
which is robust under rowwise contamination. We refer to this precision matrix
estimator as “GlassoSpSign.” Finally, we also add the inverse of the classical sample
covariance matrix (19.1) as a benchmark (“Classic”), where it can be computed. For
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all estimators, we select the regularization parameter 	 via five-fold cross validation
over a logarithmic spaced grid (see Sect. 19.4).

Sampling Schemes We use in total four sampling schemes covering the scenarios
of a banded precision matrix, a sparse precision matrix, a dense precision matrix
(Cai et al. 2011), and a diagonal precision matrix. Each sampling scheme is defined
through the true precision matrix�0 2 R

p�p for i; j D 1; : : : ; p:

• “banded”: .�0/ij D 0:6ji�jj
• “sparse”:�0 D BC ıIp with PŒbij D 0:5� D 0:1 and PŒbij D 0� D 0:9 for i ¤ j.

The parameter ı is chosen such that the conditional number of�0 equals p. Then
the matrix is standardized to have unit diagonals.

• “dense”: .�0/ii D 1 and .�0/ij D 0:5 for i ¤ j
• “diagonal”: .�0/ii D 1 and .�0/ij D 0 for i ¤ j

For each sampling scheme, we generate M D 100 samples of size n D 100 from a
multivariate normal N .0;��1

0 /. We take as dimension p D 60 and p D 200.

Contamination To simulate contamination, we use two different contamination
settings (Finegold and Drton 2011): (1) To every generated data set, we add 5 or
10% of cellwise contamination. Therefore, we randomly select 5 and 10% of the
cells and draw them from a normalN .10; 0:2/. (2) To simulate model deviation, we
draw all observations from an alternative t-distribution t�100;2.0;�

�1
0 / of dimension

100 with 2 degree of freedom.
Recall that a multivariate t-distributed random variable x 	 tn; .0;	 / is defined

as a multivariate normally distributed random variable y D .y1; : : : ; yp/
> 	

Np.0;	 / divided by a gamma distributed variable � 	 � .=2; =2/

x D yp
�
:

To obtain an alternative t-distributed random variable x D .x1; : : : ; xp/
> 	

t�n;.0;	 /, we draw p independent divisors �j 	 � .=2; =2/ for the different
variables j D 1; : : : ; p

xj D yjp
�j
:

The heaviness of the tails is then different for different variables of x.

Performance Measures We assess the performance of the estimators using the
Kullback-Leibler divergence (Bühlmann and van de Geer 2011, pp. 437)

KL. O� ;�0/ D tr.��1
0
O�/� log det.��1

0
O�/ � p:

It measures how close the obtained estimate O� is to the true parameter �0.
Lower values represent a better estimate. If the estimator is equal to the true
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precision matrix, the Kullback-Leibler distance is equal to zero. The less accurate
the precision matrix is estimated, the higher the value of the Kullback-Leibler
distance becomes.

To measure how well the sparseness of the true precision matrix is recovered, we
also look at false positive (FP) and false negative (FN) rates:

FP D jf.i; j/ W i D 1; : : : ; nI j D 1; : : : ; p W .
O�/ij ¤ 0 ^ .�0/ij D 0gj

jf.i; j/ W i D 1; : : : ; nI j D 1; : : : ; p W .�0/ij D 0gj

FN D jf.i; j/ W i D 1; : : : ; nI j D 1; : : : ; p W .
O�/ij D 0 ^ .�0/ij ¤ 0gj

jf.i; j/ W i D 1; : : : ; nI j D 1; : : : ; p W .�0/ij ¤ 0gj

The false positive rate gives the percentage of zero-elements in the true precision
matrix that are wrongly estimated as nonzero. In contrast, the false negative rate
gives the percentage of nonzero-elements in the true precision matrix that are
wrongly estimated to be zero. Both values are desired to be as small as possible.
However, a large false negative rate has a worse impact since it implies that
associations between variables are not found and therefore important information
is not used. A large false positive rate indicates that unnecessary associations are
included, which “only” complicates the model. Note that if �0 does not contain
any zero-entries, the false positive rate is not defined. In graphical modeling, a high
false negative rate indicates that many non-zero edges that should be included in the
estimated graph are missed. This implies that there are conditional independencies
assumed which are not supported by the true graph.

Simulation Results Results for p D 60 are given in Table 19.1. For clean data
in the banded scenario, the classical GLASSO (“GlassoClass”) is performing best,
achieving lowest values of KL. Only marginally higher values of KL are obtained
by the correlation based precision matrix using Gaussian rank correlation (“Glas-
soGaussQn”) and the regularized spatial sign covariance matrix (“GlassoSpSign”).
Their good performance can be explained by their high efficiency at the normal
model. Even though this data is clean, the inverse of the sample covariance matrix
(“Classic”) is performing very poorly. This is due to the low precision of the sample
covariance matrix for a data set with p > n=2. Regularization of the inverse of
the sample covariance matrix is solving the problem, as we see from the classical
GLASSO. Note that the sample covariance matrix always gives an FN of zero,
since the resulting estimate is not sparse, and should therefore not be considered
to evaluate the performance of the sample covariance matrix. The correlation
based precision matrix using Spearman correlation (“GlassoSpearmanQn”) obtains
a slightly higher value of KL than “GlassoGaussQn.” It probably suffers from its
inconsistency. This also explains why the KL of the correlation based precision
matrix using Quadrant correlation (“GlassoQuadQn”) is so much higher, since the
asymptotic bias of the Quadrant correlation is considerably higher than that of
Spearman. The performance of the covariance based precision matrix (“GlassoN-
PDQn”) lies in between “GlassoSpearmanQn” and “GlassoQuadQn.”
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Table 19.1 Simulation results for n D 100 and p D 60: Kullback-Leibler criterion (KL), false
positive rate (FP), and false negative rate (FN) averaged over M D 100 simulations reported for
seven estimators and four sampling schemes

Clean 5 % cellwise 10 % cellwise Alternative t

KL FP FN KL FP FN KL FP FN KL FP FN

Banded GlassoClass 8.97 0.70 55.00 0.95 77.11 0.94 143.16 0.98

GlassoQuadQn 14.96 0.83 19.20 0.86 24.44 0.90 31.10 0.87

GlassoGaussQn 9.62 0.75 16.91 0.83 23.52 0.88 28.41 0.84

GlassoSpearmanQn 10.09 0.76 16.32 0.83 22.69 0.87 27.92 0.84

GlassoNPDQn 11.90 0.85 21.73 0.91 43.59 0.97 37.34 0.92

Classic 71.54 0.00 49.24 0.00 61.01 0.00 67.84 0.00

GlassoSpSign 9.53 0.74 53.92 0.96 77.54 0.95 80.41 0.94

Sparse GlassoClass 5.87 0.23 0.09 63.70 0.02 0.82 88.81 0.04 0.81 140.09 0.00 0.85

GlassoQuadQn 10.28 0.15 0.38 14.20 0.12 0.47 19.04 0.09 0.56 26.28 0.10 0.45

GlassoGaussQn 6.34 0.21 0.11 12.25 0.16 0.30 18.39 0.11 0.49 24.09 0.13 0.28

GlassoSpearmanQn 6.74 0.21 0.13 11.75 0.16 0.27 17.67 0.12 0.43 23.71 0.14 0.26

GlassoNPDQn 8.25 0.13 0.23 17.85 0.06 0.47 42.14 0.01 0.82 32.73 0.06 0.52

Classic 71.54 1.00 0.00 49.39 1.00 0.00 66.83 1.00 0.00 62.79 1.00 0.00

GlassoSpSign 6.35 0.21 0.11 62.36 0.01 0.83 89.37 0.02 0.83 76.37 0.04 0.65

Dense GlassoClass 4.40 0.92 42.52 0.96 64.95 0.94 128.00 0.98

GlassoQuadQn 4.65 0.94 7.66 0.95 11.66 0.96 20.72 0.97

GlassoGaussQn 4.59 0.93 7.59 0.94 11.70 0.96 20.72 0.96

GlassoSpearmanQn 4.61 0.94 7.59 0.94 11.80 0.96 20.81 0.97

GlassoNPDQn 5.01 0.96 13.69 0.98 30.98 0.98 28.43 0.98

Classic 71.54 0.00 39.88 0.00 49.44 0.00 59.08 0.00

GlassoSpSign 4.62 0.94 41.65 0.97 65.21 0.96 69.46 0.98

Diagonal GlassoClass 1.31 0.05 0.00 66.11 0.01 0.00 93.48 0.03 0.00 124.03 0.00 0.00

GlassoQuadQn 1.55 0.04 0.00 4.60 0.03 0.00 8.68 0.03 0.00 17.69 0.02 0.00

GlassoGaussQn 1.53 0.04 0.00 4.54 0.04 0.00 8.67 0.03 0.00 17.61 0.02 0.00

GlassoSpearmanQn 1.55 0.04 0.00 4.57 0.04 0.00 8.68 0.03 0.00 17.78 0.02 0.00

GlassoNPDQn 1.92 0.02 0.00 11.02 0.00 0.00 33.94 0.00 0.00 25.46 0.00 0.00

Classic 71.54 1.00 0.00 48.41 1.00 0.00 68.67 1.00 0.00 56.26 1.00 0.00

GlassoSpSign 1.54 0.04 0.00 62.99 0.01 0.00 93.75 0.02 0.00 66.05 0.01 0.00

Under contamination, the relative performance of the different estimators
changes. Clearly, the classical GLASSO is not robust, and it achieves the highest
values of KL of all estimators. Also the regularized spatial sign covariance matrix
does not perform well. This is no surprise since for 5 % of cellwise contamination,
already more than 90 % of the observations are expected to be contaminated. Thus,
the level of rowwise contamination is too high for “GlassoSpSign” to obtain reliable
results. Best performance under contamination is obtained by the correlation based
precision matrices using Gaussian rank or Spearman correlation. They give lowest
values of KL for all three contamination schemes. Moderately larger values are
obtained by “GlassoQuadQn.” Of the cellwise robust estimators, the covariance
based precision matrix estimator is performing worst under contamination. It
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obtains highest values of KL and FN in all three contamination settings. Under
10 % of cellwise contamination the value of KL of “GlassoNPDQn” is nearly
double that of “GlassoSpearmanQn.”

Looking at the other three sampling schemes “sparse,” “dense,” and “diagonal,”
the conclusions are very similar to that of the banded scheme: For clean data “Glas-
soClass” is doing best, closely followed by “GlassoGaussQn” and “GlassoSpSign.”
Under contamination “GlassoGaussQn” and “GlassoSpearmanQn” are performing
best, while “GlassoNPDQn” gives worst results of all cellwise robust estimators. For
the sparse settings “sparse” and “diagonal” we also compare the different values of
the FP and FN. In the setting “diagonal” the values are more or less the same for
all estimators (apart from the sample covariance matrix which does not give sparse
results and therefore has an FP equal to one). In the setting “sparse,” differences are
more outspoken. The covariance based precision matrix estimator gives an FN of
up to double that of “GlassoGaussQn” or “GlassoSpearmanQn,” which is not made
up by the slightly lower value of FP. In graphical modeling that means that many
nonzero edges are missed by “GlassoNPDQn,” while they are correctly identified
by “GlassoGaussQn” and “GlassoSpearmanQn.”

The simulation results for p D 200 are given in Table 19.2. Since p > n,
the sample covariance matrix cannot be inverted anymore and is excluded from
the analysis. Overall, the conclusions are similar to p D 60. For clean data, the
classical GLASSO performs best. Marginally larger values of KL are obtained by
“GlassoGaussQn” and “GlassoSpSign.” In comparison with p D 60, here also
“GlassoSpearmanQn” is doing very well for clean data.

For p D 200, we see again that under any type of contamination the classical
GLASSO and the regularized spatial sign covariance matrix are not reliable any
more. In contrast, the cellwise robust correlation based precision matrix estima-
tors achieve very good results, especially in combination with Gaussian rank or
Spearman correlation. Their KL and their FN are lowest of all estimators for all
settings considered here. The covariance based correlation estimate is considerably
less accurate than the correlation based estimates. Under higher amounts of cellwise
contamination “GlassoNPDQn” can have a KL of more than four times the value of
the correlation based precision matrix estimators. Besides, its FN is higher in all
settings considered.

Since in high-dimensional analysis computation time is important for practical
usage of the estimators, Table 19.3 gives an overview of the average computation
time that the different estimators require. The computation time was comparable
throughout the different simulation schemes. Therefore, we only give averages.
Note that the reported computation time includes the selection of 	 via 5-fold
crossvalidation. For p D 60, the correlation based precision matrices, the classical
GLASSO and the regularized spatial sign covariance matrix need very similar
computation times. This indicates that the GLASSO algorithm takes most of the
computation time and that the computation time of the initial covariance matrices
is negligible. In contrast, the covariance based precision matrix estimator is nearly
four times slower. For p D 200, the classical GLASSO and the regularized spatial
sign covariance matrix can be computed fastest. But as they are not robust enough,
the estimates are very inaccurate. Computation of the correlation based estimators
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Table 19.2 Simulation results for n D 100 and p D 200: Kullback-Leibler criterion (KL), false
positive rate (FP), and false negative rate (FN) averaged over M D 100 simulations reported for
seven estimators and four sampling schemes

Clean 5 % cellwise 10 % cellwise Alternative t

KL FP FN KL FP FN KL FP FN KL FP FN

Banded GlassoClass 38.32 0.89 187.21 0.98 262.04 0.98 Inf 0.99

GlassoQuadQn 56.42 0.94 70.67 0.95 86.97 0.97 112.04 0.96

GlassoGaussQn 40.18 0.91 63.97 0.94 84.67 0.96 103.21 0.94

GlassoSpearmanQn 41.53 0.90 61.90 0.93 82.92 0.96 101.81 0.93

GlassoNPDQn 52.42 0.96 102.91 0.98 200.13 0.99 164.86 0.99

Classic

GlassoSpSign 39.68 0.90 189.47 0.98 265.32 0.98 326.08 0.99

Sparse GlassoClass 46.65 0.10 0.52 220.90 0.02 0.93 302.94 0.02 0.93 Inf 0.00 0.95

GlassoQuadQn 60.42 0.09 0.72 75.70 0.07 0.77 93.11 0.05 0.81 119.80 0.06 0.78

GlassoGaussQn 48.45 0.10 0.54 69.70 0.08 0.69 90.69 0.06 0.79 115.29 0.06 0.71

GlassoSpearmanQn 49.60 0.10 0.56 68.27 0.08 0.67 88.92 0.06 0.76 114.46 0.06 0.70

GlassoNPDQn 58.64 0.07 0.64 111.15 0.03 0.84 215.95 0.00 0.95 167.81 0.02 0.85

Classic

GlassoSpSign 47.97 0.10 0.54 223.28 0.01 0.93 306.49 0.01 0.94 339.53 0.01 0.93

Dense GlassoClass 9.70 0.97 137.73 0.98 214.08 0.98 Inf 0.99

GlassoQuadQn 10.41 0.98 21.12 0.98 35.06 0.98 66.07 0.99

GlassoGaussQn 10.35 0.98 20.91 0.98 35.06 0.98 65.54 0.99

GlassoSpearmanQn 10.39 0.98 21.11 0.98 34.92 0.98 65.80 0.99

GlassoNPDQn 15.27 0.99 65.43 0.99 146.61 0.99 121.14 0.99

Classic

GlassoSpSign 10.53 0.98 140.17 0.99 217.08 0.98 270.10 0.99

Diagonal GlassoClass 5.41 0.02 0.00 224.15 0.01 0.00 317.07 0.01 0.00 Inf 0.00 0.00

GlassoQuadQn 6.14 0.02 0.00 17.12 0.01 0.00 30.71 0.01 0.00 61.51 0.01 0.00

GlassoGaussQn 6.05 0.02 0.00 17.15 0.01 0.00 30.66 0.01 0.00 61.37 0.01 0.00

GlassoSpearmanQn 6.07 0.02 0.00 17.08 0.01 0.00 30.71 0.01 0.00 61.18 0.01 0.00

GlassoNPDQn 10.83 0.00 0.00 63.60 0.00 0.00 167.73 0.00 0.00 114.93 0.00 0.00

Classic

GlassoSpSign 6.29 0.01 0.00 225.91 0.01 0.00 320.17 0.01 0.00 265.02 0.00 0.00

Table 19.3 Computation
time (in s) for samples of size
n D 100 (including selection
of 	 via five-fold
cross-validation) averaged
over M D 100 simulations
and all simulation schemes
reported for seven estimators

p D 60 p D 200

GlassoClass 5.93 7.69

GlassoQuadQn 6.13 9.12

GlassoGaussQn 6.09 9.15

GlassoSpearmanQn 5.82 9.01

GlassoNPDQn 22.85 216.79

Classic 0.00 0.02

GlassoSpSign 5.73 8.11

is still very fast here. The estimation including the selection of 	 over a grid of ten
values takes less than 10 s. In contrast, estimation of the covariance based precision
matrix takes more than 20 times longer.
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Fig. 19.1 Kullback-Leibler criterion for the “banded” sampling scheme averaged over M D 100

simulations reported for various amounts of cellwise contamination and several estimators

Since we advertise the high breakdown point of the correlation based precision
matrix estimators, we also look at the performance of the estimators under higher
amounts of cellwise contamination, ranging from 0 to 40 %. Figure 19.1 plots the
value of KL for the most representative precision matrix estimators for p D 60

(left panel) and p D 200 (right panel), following the “banded” sampling scheme.
As expected, the nonrobust “GlassoClass” results in the highest values of KL.
For higher amounts of cellwise contamination, the KL of the “GlassoNPDQn”
deteriorates quickly. This is in contrast with the more robust “GlassoGaussQn,”
where the KL measure remains limited for higher contamination levels, both for
p D 60 and p D 200. The results for the sampling schemes “sparse,” “dense,” and
“diagonal” are comparable to Fig. 19.1 and are therefore omitted.

To summarize, for clean data the classical GLASSO performs best. Under
cellwise contamination, “GlassoGaussQn” and “GlassoSpearmanQn” achieve best
results. All three estimators can be computed equally fast. Since the “Glasso-
GaussQn” is consistent and performs similarly well as the classical GLASSO for
clean data, we advise the “GlassoGaussQn” for high-dimensional sparse precision
matrix estimation under cellwise contamination.

19.7 Applications

In this paper, we describe how a cellwise robust, sparse precision matrix estimator
can be obtained. To show the applicability of the introduced estimator to a real-
world data set, we use the dataset stockdata, which is publicly available through
the R-package huge (Zhao et al. 2014). It consists of the closing prices of p D
452 stocks in the S&P on all trading days between January 1,2003 and January 1,
2008, leading to n D 1258 observations. We use the same data transformations
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and parameter choices as in Zhao et al. (2012). The estimated graphical models
returned by “GlassoClass” and “GlassoGaussQn” are visualized in Panel (a) and (b)
of Fig. 19.2. From the plots, we can conclude that the two graphs are very similar.
Indeed, only around 2 % of the selected edges in “GlassoClass” are not selected in
“GlassoGaussQn,” while the percentage is even smaller vice versa. As a result, we
assume that stockdata is a rather clean data set.

To see how the estimators behave under contamination, we randomly select
5 % of the cells of the data matrix and replace them by replicates of the normal
distribution N .10; 0:2/. The graphs estimated by “GlassoClass” and “Glasso-
GaussQn” from the contaminated data are shown in Panels (c) and (d) of Fig. 19.2,
respectively. While the graph estimated by “GlassoGaussQn” hardly differs from
the uncontaminated case, “GlassoClass” estimates a graph without any edges. Thus,
“GlassoGaussQn” is robust in the sense that the estimate on the contaminated data
resembles that of the clean data. In contrast, the nonrobust “GlassoClass” returns a
not reliable estimate in the presence of cellwise contaminated data.

Estimating a cellwise robust, sparse precision matrix is not only interesting in
graphical models. As an example consider linear discriminant analysis, where each
observation belongs to one of K groups. The goal is then to assign a new observation
x 2 R

p to one of those K groups. Assuming a normal distributions N .�k;˙ / for
observations of group k 2 f1; : : : ;Kg, the Bayes optimal solution is found via the
linear discriminant function

ık.x/ D x>˙�1�k �
1

2
�>

k ˙
�1�k C log�k;

where �k is the a priori probability of belonging to group k. Replacing ˙�1 with
the correlation based precision matrix estimated from the centered data (where
each observation is centered by the coordinatewise median computed over the
observations belonging to the same group) results in a cellwise robust estimator for
high-dimensional linear discriminant analysis. The final estimate may not be sparse
anymore, but it is very robust under cellwise contamination. Furthermore, it can be
computed even if p > n.

data contaminated data
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Fig. 19.2 Graphical models estimated from stockdata. Every node in the graph corresponds
to one of the p D 452 stocks
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Cellwise robust, sparse precision matrix estimation can also be used to obtain
cellwise robust, sparse regression of y 2 R

n on X 2 R
n�p. Partitioning the joint

sample covariance estimate of .X; y/ and its inverse into

Ȯ D
 Ȯ XX O�Xy

O�>
Xy O
yy

!
O� D

 O�XX O�Xy

O�>
Xy
O�yy

!

the least squares estimator can be rewritten as

Ǒ
LS D Ȯ

�1
XX O�Xy D � 1

�yy

O�Xy

using the partitioned inverse formula (Seber 2008, Lemma 14.11). With the correla-
tion based precision matrix estimate O�S..X; y// computed jointly from .X; y/, we
obtain a cellwise robust, sparse regression estimate computable in high dimensions

Ǒ D � 1

. O�S..X; y///pC1;pC1
. O�S..X; y///1Wp;pC1:

19.8 Conclusions

We have introduced a cellwise robust, correlation based precision matrix estimator.
We put forward the following simple procedure: (1) compute the robust scale
estimators Qn for each variable (2) compute the robust correlation matrix from the
normal scores, as in Eq. (19.5) (3) construct then the robust covariance matrix from
these correlations and robust scale, as in Eq. (19.4) (4) use the latter as input for
the GLASSO, returning O�S.X/. It is formally shown that the proposed estimator
features a very high breakdown point under cellwise contamination. As its definition
is very simple, the estimator can be computed very fast, even in high-dimensions.

The simulation results presented in Sect. 19.6 discuss the results of the various
estimators including their selection of the regularization parameter 	. As can be
seen from a small simulation study with p D 60, kindly provided by a referee,
the bad performance of “GlassoNPDQn” needs to be mainly attributed to the
selection of 	. When “GlassoNPDQn” is run with the regularization parameter
estimated by “GlassoGaussQn,” the two methods performed similar. This problem
also occurred for clean data. Replacing CV by BIC did not help to improve
“GlassoNPDQn”: The performance in comparison with “GlassoGaussQn” was still
similar as in Tables 19.1 and 19.2. Analyzing the reason for the bad performance of
“GlassoNPDQn” with respect to the selection of the regularization parameter is left
for future research.

Compared to the covariance based approach, a correlation based approach
results in a simpler estimator. More importantly, it achieves a substantially higher
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breakdown point, is considerably faster to compute, and yields more accurate
estimates when the regularization parameter is selected using BIC or the new cross-
validation criterion presented in Sect. 19.4.
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Chapter 20
Paired Sample Tests in Infinite Dimensional
Spaces

Anirvan Chakraborty and Probal Chaudhuri

Abstract The sign and the signed-rank tests for univariate data are perhaps the
most popular nonparametric competitors of the t test for paired sample problems.
These tests have been extended in various ways for multivariate data in finite
dimensional spaces. These extensions include tests based on spatial signs and signed
ranks, which have been studied extensively by Hannu Oja and his coauthors. They
showed that these tests are asymptotically more powerful than Hotelling’s T2 test
under several heavy tailed distributions. In this paper, we consider paired sample
tests for data in infinite dimensional spaces based on notions of spatial sign and
spatial signed rank in such spaces. We derive their asymptotic distributions under
the null hypothesis and under sequences of shrinking location shift alternatives. We
compare these tests with some mean based tests for infinite dimensional paired
sample data. We show that for shrinking location shift alternatives, the proposed
tests are asymptotically more powerful than the mean based tests for some heavy
tailed distributions and even for some Gaussian distributions in infinite dimensional
spaces. We also investigate the performance of different tests using some simulated
data.

Keywords Contaminated data • Gâteaux derivative • Smooth Banach space •
Spatial sign • Spatial signed rank • t process

20.1 Introduction

For univariate data, two nonparametric competitors of the t test for one sample and
paired sample problems are the sign test and the Wilcoxon signed-rank test. It is
well known that these two tests enjoy certain robustness properties, and are more
powerful than the t test when the underlying distribution has heavier tails than the
Gaussian distribution. The sign and the signed-rank tests have been extended in
several ways for data in R

d. Puri and Sen (1971) considered extensions based on
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coordinatewise signs and ranks. Randles (1989) and Peters and Randles (1990)
studied extensions of the sign test and the signed-rank test, respectively, using
the notion of interdirections. Chaudhuri and Sengupta (1993) proposed a class of
multivariate extensions of the sign test based on data-driven transformations of
the sample observations. Hallin and Paindaveine (2002) considered multivariate
signed-rank type tests based on interdirections and the ranks of the sample
observations computed using pseudo-Mahalanobis distances. Hettmansperger et al.
(1994) and Hettmansperger et al. (1997) considered multivariate versions of sign
and signed-rank tests using simplices (see also Oja 1999). Möttönen and Oja
(1995), Chakraborty et al. (1998), and Marden (1999) used spatial signs and
signed ranks (see also Oja 2010) to construct extensions of sign and signed-rank
tests for multivariate data. Möttönen et al. (1997) and Chakraborty et al. (1998)
studied the asymptotic efficiency of spatial sign and signed-rank tests relative
to Hotelling’s T2 test. They showed that the tests based on spatial signs and
signed ranks are asymptotically more powerful than the T2 test under heavy tailed
distributions like multivariate t distributions. Further, while Hotelling’s T2 test
is optimal for multivariate Gaussian distributions, it was shown that as the data
dimension increases, the performance of the spatial sign and the spatial signed-rank
tests become closer to Hotelling’s T2 test under multivariate Gaussian distributions.

Nowadays, we often come across data, which are curves or functions observed
over an interval, and are popularly known as functional data. Such data are very
different from multivariate data in finite dimensional spaces because the data
dimension is much larger than the sample size, and also due to the fact that different
sample observations may be observed at different sets of points in the interval.
However, this type of data can be conveniently handled by viewing them as a sample
in some infinite dimensional space, e.g., the space of real-valued functions defined
over an interval. Many of the above-mentioned tests cannot be used to analyze such
data. This is because the definitions of some of them involve hyperplanes, simplices,
etc. constructed using the data, and thus these tests require the data dimension to be
smaller than the sample size. Some of the other tests involve inverses of covariance
matrices computed from the sample, and such empirical covariance matrices are
singular, when the data dimension is larger than the sample size.

Many of the function spaces, where functional data lie, are infinite dimensional
Banach spaces. In this paper, we investigate a sign and a signed-rank type test for
paired sample problems based on notions of spatial sign and spatial signed rank in
such spaces. We derive the asymptotic distributions of the proposed spatial sign and
signed-rank statistics under the null hypothesis as well as under suitable sequences
of shrinking location shift alternatives. We also compare the asymptotic powers of
these tests with some of the paired-sample mean based tests for infinite dimensional
data. It is found that these tests outperform the mean based competitors, when the
underlying distribution has heavy tails and also for some Gaussian distributions of
the data. Some simulation studies are carried out to demonstrate the performance of
different tests.
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20.2 Sign and Signed-Rank Type Tests

The construction and the study of the paired sample sign and signed-rank type
statistics for data in Banach spaces will require several concepts and tools from
functional analysis and probability theory in Banach spaces. Let us first recall that
for a random variable X with a continuous distribution function F, the “centered
rank” of x 2 R with respect to F is given by 2F.x/ � 1 D Efsign.x � X/g, where
sign.x/ is the usual sign function evaluated at x (see Serfling 2004). Note that for
any non-zero x, we have sign.x/ D x=jxj, which is the derivative of the function
x 7! jxj. We will extend the notion of sign into a general Banach space (finite or
infinite dimensional) using the concept of a derivative of the norm function on that
Banach space. Let X be a Banach space with norm jj � jj. Let us denote its dual
space by X �, which is the Banach space of real-valued continuous linear functions
defined over X .

Definition 20.1 The norm in X is said to be Gâteaux differentiable at a nonzero
x 2 X with derivative, say, Sx 2 X � if limt!0 t�1.jjxC thjj � jjxjj/ D Sx.h/ for
all h 2 X . A Banach space X is said to be smooth if the norm in X is Gâteaux
differentiable at every nonzero x 2X .

As a convention, we take Sx D 0 if x D 0. Observe that the right-hand limit
limt#0 t�1.jjxC thjj�jjxjj/ always exists by the convexity of the norm function. So,
Gâteaux differentiability of the norm function at x only requires the existence of the
left-hand limit. Note that if X D R, we have Sx D sign.x/ D x=jxj. Also, if X D
R

d equipped with the Euclidean norm, it follows that Sx D x=jjxjj, which is the
gradient vector, i.e., the vector of partial derivatives of the Euclidean norm function
jjxjj D .x>x/1=2 evaluated at x. It is known that Hilbert spaces and Lp spaces for
p 2 .1;1/ are smooth. For a Hilbert space X , we have Sx D x=jjxjj. If X is an Lp

space for some p 2 .1;1/, then Sx.h/ D
R

signfx.s/gjx.s/jp�1h.s/ds=jjxjjp�1 for
all h 2 X . The spatial sign of x in a Banach space X is the Gâteaux derivative Sx

as defined above provided it exists.

Definition 20.2 A random element X in the Banach space X is said to be Bochner
integrable if there exists a sequence fXngn�1 of simple functions in X such that
Xn ! X almost surely and E.jjXn � Xjj/! 0 as n!1.

It is known that the Bochner expectation of X exists if E.jjXjj/ < 1. We refer to
Chapters 4 and 5 in Borwein and Vanderwerff (2010) and Section 2 in Chapter 3 of
Araujo and Giné (1980) for more details. Henceforth, the expectation of any Banach
space valued random element will be in the Bochner sense.

Definition 20.3 Let X be a smooth Banach space. The spatial rank of x 2 X
with respect to the distribution of a random element X 2 X is defined to be 	 x D
E.Sx�X/.

Note that if X D R, then �x D 2F.x/� 1 for a continuous distribution F. Further,
if X D R

d equipped with the Euclidean norm, then 	 x D Ef.x � X/=jjx � Xjjg,
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which is the spatial rank of x with respect to the probability distribution of the
random vector X 2 R

d (see Oja 2010).
Let .X1;Y1/; .X2;Y2/ : : : ; .Xn;Yn/ be i.i.d. paired observations, where the Xi’s

and the Yi’s take values in a smooth Banach space X . Let Wi D Yi�Xi, 1 � i � n,
and define � D E.SW1 /. A paired sample sign statistic using spatial signs for testing
the hypothesis H.1/

0 W � D 0 against H.1/
1 W � ¤ 0 is defined as

TS D n�1 X

1�i�n

SWi :

We reject H.1/
0 when jjTSjj is large. Next, define � D E.SW1CW2 /. A paired sample

signed-rank statistic using spatial signed ranks for testing the hypothesis H.2/
0 W � D

0 against H.2/
1 W � ¤ 0 is given by

TSR D 2fn.n� 1/g�1
X

1�i<j�n

SWiCWj :

We reject H.2/
0 for large values of jjTSRjj. In finite dimensional Euclidean spaces,

Oja (2010, pp. 83–84) considered the spatial signed-rank statistic

QTSR D 2fn.n� 1/g�1
X

1�i<j�n

fSWiCWj C SWi�Wjg;

which is derived from the spatial signed-rank function in R
d for testing the null

hypothesis H.2/
0 against H.2/

1 . Further, it is shown in Oja (2010, pp. 83–84) that QTSR

and TSR have the same asymptotic distributions. In any separable Banach space, the
asymptotic distributions of TSR and QTSR are the same. For proving this we first note
that the asymptotic distribution of the V-statistic OTSR D n�2P

1�i;j�nfSWiCWj C
SWi�Wjg is the same as that of the corresponding U-statistic QTSR, and this can
be shown using the techniques used to prove the asymptotic distributions of
Banach space valued U-statistics in Borovskikh (1991) (see also the proofs of
Theorems 20.1 and 20.2 given later). Since

P
1�i;j�n SWi�Wj D 0, it follows that

OTSR D n�2P
1�i;j�n SWiCWj . By the same argument as above, this V-statistic

has the same asymptotic distribution as that of the corresponding U-statistic TSR.
Combining these facts, it follows that the asymptotic distributions of TSR and QTSR

are the same. Recently, a two sample Wilcoxon–Mann–Whitney type test based on
spatial ranks in infinite dimensional spaces has been studied by Chakraborty and
Chaudhuri (2015). Since Sx D sign.x/ if X D R, it follows that TS and TSR reduce
to the univariate sign and signed-rank statistics in this case. Moreover, if X D R

d,
then TS and TSR are the spatial sign and signed-rank statistics for finite dimensional
multivariate data studied by Möttönen and Oja (1995), Möttönen et al. (1997) and
Marden (1999). Note that the hypothesis H.1/

0 W � D 0 (respectively, H.2/
0 W � D 0) is

equivalent to the hypothesis that the spatial median of W1 (respectively, W1 CW2)
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is zero. Suppose that Y1 �X1 has a symmetric distribution about some � 2X , i.e.,
the distribution of Y1 � X1 � � and � � Y1 C X1 are the same. Then, it follows
that both of H.1/

0 and H.2/
0 become the hypothesis � D 0. This holds, in particular, if

X1 and Y1 are exchangeable, i.e., the distributions of .X1;Y1/ and .Y1;X1/ are the
same. Further, if the distribution of Y1 � X1 is symmetric and its mean exists, then
both of H.1/

0 and H.2/
0 are equivalent to the hypothesis E.Y1 �X1/ D 0.

20.2.1 Asymptotic Distributions and the Implementation
of the Tests

In order to study the asymptotic distributions of TS and TSR, we introduce the
following definitions.

Definition 20.4 A Banach space X is said to be of type 2 if there exists a constant
b > 0 such that for any m � 1 and independent zero mean random elements
U1;U2; : : : ;Um in X with E.jjUijj2/ <1, 1 � i � m, we have E.jjPm

iD1 Uijj2/ �
b
Pm

iD1 E.jjUijj2/.
Definition 20.5 A Banach space X is said to be p-uniformly smooth for some p 2
.1; 2� if for every q � 1 there exists a constant ˛q > 0 such that for any zero mean
martingale sequence .Mm;Gm/m�1 in X , we have E.jjMmjjq/ � ˛q

Pm
iD1 E.jjMi �

Mi�1jjp/q=p. Here, the sequence .Mm/m�1 is adapted to the filtration .Gm/m�1.

Any 2-uniformly smooth Banach space is of type 2. Hilbert spaces are 2-uniformly
smooth, and Lp spaces are Qp-uniformly smooth, where Qp D min.p; 2/ for p 2 .1;1/.
Definition 20.6 A continuous linear operator C W X � ! X is said to be
symmetric if yfC.x/g D xfC.y/g for all x; y 2 X �. It is said to be positive if
xfC.x/g > 0 for all x 2X �.

Definition 20.7 A random element Z in a separable Banach space X is said to have
a Gaussian distribution with mean m 2 X and covariance C, which we denote by
G.m;C/, if for any u 2X �, u.Z/ has a Gaussian distribution on R with mean u.m/
and variance ufC.u/g. Here, C W X � ! X is a symmetric positive continuous
linear operator.

We refer to Section 7 of Chapter 3 in Araujo and Giné (1980), Borovskikh (1991)
and Section 2.4 in Chapter IV of Vakhania et al. (1987) for further details. Define
˘ 1 WX �� !X � and ˘ 2 WX �� !X � as

˘ 1.f/ D EŒf.SW1 /SW1 �� ff.�/g�; and

˘ 2.f/ D 4.EŒffE.SW1CW2 jW1/gE.SW1CW2 jW1/� � ff.�/g�/;

where f 2X ��. So,˘ 1 and˘ 2 are symmetric positive continuous linear operators.
For Banach space valued random elements U and V defined on the same probability
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space with U having finite Bochner expectation, the conditional expectation of U
given V exists and can be properly defined (see Vakhania et al. 1987, pp. 125–128).
Let .Xi;Yi/, 1 � i � n, be i.i.d. paired observations with the Xi’s and the Yi’s
taking values in a smooth Banach space X . The next theorem gives the asymptotic
distributions of TS and TSR.

Theorem 20.1 Suppose that the dual space X � is a separable and type 2 Banach
space. Then, for any probability measure P on X , n1=2.TS � �/ converges weakly
to a Gaussian limit G.0;˘ 1/ as n!1. Further, if X � is p-uniformly smooth for
some p 2 .4=3; 2�, we have weak convergence of n1=2.TSR � �/ to a Gaussian limit
G.0;˘ 2/ as n!1.

Proof Using the central limit theorem for i.i.d. random elements in a separable
and type 2 Banach space (see Araujo and Giné 1980, Theorem 7:5(i)), we get that
n1=2.TS � �/ converges weakly to G.0;˘ 1/.

Note that TSR � � is a Banach space valued U-statistic with kernel h.wi;wj/ D
SwiCwj � � , which satisfies Efh.Wi;Wj/g D 0. By the Hoeffding type decomposi-
tion for Banach space valued U-statistics (see Borovskikh 1991, p. 430), we have

TSR � � D 2

n

nX

iD1
ŒEfSWiCW0 jWig � ��C Rn;

where W0 is an independent copy of W1. So, Rn D 2Œn.n�1/��1P1�i<j�n
Qh.Wi;Wj/,

where Qh.wi;wj/ D h.wi;wj/ � Efh.Wi;Wj/ j Wi D wig � Efh.Wi;Wj/ j Wj D
wjg. Note that jj Qh.wi;wj/jj � 4. Using the boundedness of Qh.�; �/ and Theorem 5.1
in Borovskikh (1991), it follows that for any q 2 Œ1; p�,

E.jjn1=2Rnjjq/ � Q̨qn2�.3q=2/ (20.1)

for every n � 2 and a constant Q̨q. Thus, if p > 4=3, E.jjn1=2Rnjjq/ converges to
zero as n ! 1 for any q 2 .4=3; p�. This implies that n1=2Rn converges to zero in
probability as n!1.

Now, n�1=2Pn
iD1 Efh.Wi;W0/ j Wig converge weakly to G.0;˘ 2/ as n ! 1

by the central limit theorem for i.i.d. random elements in a separable type 2 Banach
space (see Araujo and Giné 1980, Theorem 7:5(i)). This, together with the fact that
n1=2Rn converges to zero in probability, completes the proof. ut

Let c1˛ and c2˛ denote the .1 � ˛/ quantiles of the distributions of jjG.0;˘ 1/jj
and jjG.0;˘ 2/jj, respectively. The test based on TS rejects H.1/

0 when jjn1=2TSjj >
c1˛ and the test based on TSR rejects H.2/

0 when jjn1=2TSRjj > c2˛ .

Corollary 20.1 The asymptotic sizes of these tests based on TS and TSR will be the
same as their nominal level. Further, these tests are consistent whenever � ¤ 0
and � ¤ 0, respectively. So, if the distribution of Y1 � X1 is symmetric and its
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spatial median is non-zero, then these tests are consistent. In particular, these tests
are consistent for location shift alternatives.

We next describe how to compute the critical value of the tests based on TS

and TSR using their asymptotic distributions under the null hypotheses obtained
in Theorem 20.1. Suppose that X is a separable Hilbert space and Z is a zero
mean Gaussian random element in X with covariance operator C. Then, it can
be shown using the spectral decomposition of the compact self-adjoint operator C
(see Theorem IV:2:4, and Theorem 1:3 and Corollary 2 in pp. 159–160 in Vakhania
et al. 1987) that the distribution of jjZjj2 is a weighted sums of independent chi-
square variables each with one degree of freedom, where the weights are the
eigenvalues of the C. Thus, if X is a separable Hilbert space, the asymptotic
distributions of jjn1=2TSjj2 and jjn1=2TSRjj2 are weighted sums of independent chi-
square variables each with one degree of freedom, where the weights are the
eigenvalues of ˘ 1and ˘ 2, respectively. The eigenvalues of ˘ 1 and ˘ 2 can be
estimated by the eigenvalues of Ŏ 1 and Ŏ 2, which are defined as

c̆
1 D 1

n � 1

(
nX

iD1

�
Wi

jjWijj � O�
	
˝
�

Wi

jjWijj � O�
	)

;

c̆
2 D 4

n � 1

8
ˆ̂<

ˆ̂:

nX

iD1

0
BB@

1

n � 1
nX

jD1
j¤i

Wi CWj

jjWi CWjjj �
O�

1
CCA

˝

0
BB@

1

n � 1
nX

jD1
j¤i

Wi CWj

jjWi CWjjj �
O�

1
CCA

9
>>=

>>;
:

Here, x˝x WX !X is the tensor product in the Hilbert spaceX , which is defined
as h.x˝ x/.f/; gi D hx; fihx; gi for f; g; x 2 X . Further, O� D n�1Pn

iD1 Wi=jjWijj
and O� D 2fn.n�1/g�1Pn�1

iD1
Pn

jDiC1.WiCWj/=jjWiCWjjj. The critical values c1˛
and c2˛ can be obtained by simulating from the estimated asymptotic distributions
of TS and TSR. On the other hand, if X is a general Banach space satisfying
the assumptions of Theorem 20.1, we no longer have the weighted chi-square
representations for the asymptotic distributions of TS and TSR under the null
hypotheses. However, we can estimate ˘ 1 and ˘ 2 by their empirical counterparts,
which are defined in a similar way as the definitions above. We can simulate from
the asymptotic Gaussian distributions with the estimated covariance operators to
compute the critical values of the tests.
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20.3 Asymptotic Distributions Under Shrinking Alternatives

Consider i.i.d. paired observations .Xi;Yi/, 1 � i � n, where the Xi’s and the
Yi’s take values in a smooth Banach space X . In this section, we shall derive the
asymptotic distribution of TS and TSR under sequences of shrinking location shift
alternatives, where Wi D Yi�Xi is symmetrically distributed about n�1=2� for some
fixed nonzero � 2X and 1 � i � n. For some of the finite dimensional multivariate
extensions of the sign and the signed-rank tests, such alternative hypotheses have
been shown to be contiguous to the null and yields nondegenerate asymptotic
distributions of the test statistics (see, e.g., Randles 1989; Möttönen et al. 1997;
Oja 1999).

Definition 20.8 The norm in X is said to be twice Gâteaux differentiable at x ¤ 0
with Hessian (or second order Gâteaux derivative) Hx, which is a continuous linear
map from X to X �, if limt!0 t�1.SxCth � Sx/ D Hx.h/ for all h 2 X . Here, the
limit is assumed to exist in the norm topology of X �.

Norms in Hilbert spaces and Lp spaces for p 2 Œ2;1/ are twice Gâteaux
differentiable. We refer to Chapters 4 and 5 in Borwein and Vanderwerff (2010)
for further details. For the next theorem, let us assume that the norm in X is twice
Gâteaux differentiable at every x ¤ 0, and denote the Hessians of the functions
x 7! Efjjx�W1jj � jjW1jjg and x 7! Efjj2x�W1 �W2jj � jjW1CW2jjg by J.1/x

and J.2/x , respectively. The following theorem gives the asymptotic distributions of
TS and TSR under the sequence of shrinking alternatives mentioned earlier.

Theorem 20.2 Suppose that X � is a separable and type 2 Banach space. Assume
that the distribution of W1 is nonatomic, and J.1/0 exists. Then, n1=2TS converges

weakly to a Gaussian limit GfJ.1/0 .�/;˘ 1g as n ! 1. Further, if X � is a p-

uniformly smooth Banach space for some p 2 .4=3; 2� and J.2/0 exists, we have weak

convergence of n1=2TSR to a Gaussian limit GfJ.1/0 .�/;˘ 2g. Here, the expectations

in the definitions of J.1/0 and J.2/0 are taken with respect to the symmetric distribution
of W1 about zero under the null hypothesis.

Proof We first derive the asymptotic distribution of TSR. Let �n D n�1=2�. Applying
the Hoeffding type decomposition for Banach space valued U-statistics as in the
proof of Theorem 20.1, it follows that

TSR � �.�n/ D
2

n

nX

iD1
fE.SWiCW0 jWi/� �.�n/g C QRn; (20.2)

where W0 is an independent copy of W. Arguing as in the proof of Theorem 20.1,
it can be shown that E.jjn1=2 QRnjjq/ satisfies the bound obtained in (20.1) for every
n � 2 and any q 2 .4=3; p�. Thus, n1=2 QRn ! 0 in probability as n ! 1 under the
sequence of shrinking shifts.
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By definition, �.�n/ D E.SW0
1CW0

2C2�n
/ D E.S2�n�W0

1�W0
2
/, where W0

i D Wi �
�n has the same distribution as that of Wi under the null hypothesis for 1 � i � n.
So, n1=2�.�n/ converges to J.2/0 .�/ as n!1.

Define ˚n.Wi/ D 2n�1=2fE.SWiCW0 j Wi/ � �.�n/g. So, Ef˚n.Wi/g D 0.
To prove the asymptotic Gaussianity of

Pn
iD1˚n.Wi/, it is enough to show that

the triangular array f˚n.W1/;˚n.W2/; : : : ;˚n.Wn/g1nD1 of rowwise i.i.d. random
elements satisfy the conditions of Corollary 7:8 in Araujo and Giné (1980).

Observe that for any � > 0,

nX

iD1

Pfjj˚n.Wi/jj > �g � 8

.�n/3=2

nX

iD1

EfjjE.SWiCW0 jWi/ � �.�n/jj3g �
64

.�3n/1=2
:

Thus, limn!1
Pn

iD1 Pfjj˚n.Wi/jj > �g D 0 for every � > 0, which ensures that
condition (1) of Corollary 7:8 in Araujo and Giné (1980) holds.

We next verify condition (2) of Corollary 7:8 in Araujo and Giné (1980). Let us
fix f 2 X . Since jjSxjj D 1 for all x ¤ 0, we can choose ı D 1 in that condition
(2). Then, using the linearity of f, we have

nX

iD1
EŒf2f˚n.Wi/g� D 4n�1

nX

iD1
EŒfVn;i � E.Vn;i/g2�; (20.3)

where Vn;i D ffE.SWiCW0 j Wi/g. Since the Wi’s are identically distributed,
the right-hand side of (20.3) equals 4EŒfVn;1 � E.Vn;1/g2�. Note that Vn;1 D
ffE.SW1CW0

2C�n
j W1/g. Since the norm in X is assumed to be twice Gâteaux

differentiable, it follows from Theorem 4:6:15(a) and Proposition 4:6:16 in Borwein
and Vanderwerff (2010) that the norm in X is Fréchet differentiable. This in turn
implies that the map x 7! Sx is continuous onX nf0g (see Borwein and Vanderwerff
2010, Corollary 4:2:12). Using this fact, it follows from the dominated convergence
theorem for Banach space valued random elements that

E.SW1CW0
2C�n
jW1 D w1/ D E.Sw1CW0

2C�n
/

�! E.Sw1CW0
2
/ D E.SW0

1CW0
2
jW0

1 D w1/

(20.4)

as n! 1 for almost all values of w1. Thus, E.Vn;1/ converges to EŒffE.SW0
1CW0

2
j

W0
1/g� as n ! 1 by the usual dominated convergence theorem. Similarly, E.V2

n;1/

converges to EŒf2fE.SW0
1CW0

2
j W0

1/g� as n ! 1. So,
Pn

iD1 EŒf2f˚n.Wi/g� !
˘ 2.f; f/ as n ! 1, where ˘ 2 is as defined before Theorem 20.1 in Sect. 20.2
and the expectations in that definition are taken under the null hypothesis. This
completes the verification of condition (2) of Corollary 7:8 in Araujo and Giné
(1980).
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Finally, for the verification of condition (3) of Corollary 7:8 in Araujo and Giné
(1980), suppose that fFkgk�1 is a sequence of finite dimensional subspaces of X �
such that Fk � FkC1 for all k � 1, and the closure of

S1
kD1Fk is X �. Such a

sequence of subspaces exists because of the separability of X �. For any x 2 X �
and any k � 1, we define d.x;Fk/ D inffjjx � yjj W y 2 Fkg. It is straightforward
to verify that for every k � 1, the map x 7! d.x;Fk/ is continuous and bounded on
any closed ball in X �. Thus, using (20.4), it follows that �.�n/ ! 0 as n ! 1,
and

nX

iD1
EŒd2f˚n.Wi/;Fkg� D 4n�1

nX

iD1
EŒd2fE.SWiCW0C�n

jWi/� �.�n/;Fkg�

D 4EŒd2fE.SW1CW0
2C�n
jW1/� �.�n/;Fkg�

�! 4EŒd2fE.SW0
1CW0

2
jW0

1/;Fkg�

as n ! 1. From the choice of the Fk’s, it can be shown that d.x;Fk/ ! 0 as
k ! 1 for all x 2 X �. So, we have limk!1 EŒd2fE.SW0

1CW0
2
j W0

1/;Fkg� D 0,
and this completes the verification of condition (3) of Corollary 7:8 in Araujo and
Giné (1980).

Thus,
Pn

iD1˚n.Wi/ converges weakly to a zero mean Gaussian distribution in
X as n!1. Further, its asymptotic covariance is ˘ 2, which was obtained while
checking condition (2) of Corollary 7:8 in Araujo and Giné (1980). Thus, it follows
from equation (20.2) at the beginning of the proof that

n1=2fTSR � �.�n/g �! G.0;˘ 2/

weakly as n ! 1 under the sequence of shrinking shifts. The above weak
convergence and the fact that n1=2�.�n/ converges to J.2/0 .�/ as n ! 1 complete
the derivation of the asymptotic distribution of TSR.

Since TS is a sum of independent random elements, its asymptotic distribution
can be obtained by using arguments similar to those used to derive the asymptotic
distribution of

Pn
iD1˚n.Wi/ given above. It follows that n1=2TS has an asymptotic

Gaussian distribution with mean J.1/0 .�/ and covariance ˘ 1 as n ! 1 under the
sequence of shrinking alternatives considered in the theorem. ut

Let X be a separable Hilbert space and Y1 � X1 D P1
kD1 Zk�k for an

orthonormal basis �1;�2; : : : of X and the Zk’s are real-valued random variables.
Then, the expectations defining J.1/0 and J.2/0 are finite if any two dimensional
marginal of .Z1;Z2; : : :/ has a density that is bounded on bounded subsets of R2.
If X is an Lp space for some p 2 .1;1/, then J.1/0 and J.2/0 exist if E.jjW1jj�1/ and
E.jjW1 CW2jj�1/ are finite.

We next compare the asymptotic powers of the tests based on TS and TSR with
some paired sample mean based tests for functional data in L2Œa; b�, where a; b 2 R.
Cuevas et al. (2004) studied a test for analysis of variance in L2Œa; b�, and the test
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statistic for the two sample problem is based on jjX�Yjj2. We consider the natural
paired sample analog of this statistic and define it as T1 D jjWjj2. Horváth et al.
(2013) studied a couple of two sample tests in L2Œa; b� based on the projections of the
sample functions onto the subspace formed by finitely many eigenfunctions of the
sample pooled covariance operator. We consider the paired sample analogs of these
tests, and the corresponding test statistics are defined as T2 DPL

kD1.hW; O ki/2 and
T3 D PL

kD1 O��1
k .hW; O ki/2. Here, the O�k’s denote the eigenvalues of the empirical

covariance of the Wi’s in descending order of magnitudes, and the O k’s are the
corresponding empirical eigenfunctions. Consider i.i.d. paired observations .Xi;Yi/,
1 � i � n, where the Xi’s and the Yi’s take values in L2Œa; b�. The next theorem gives
the asymptotic distributions of T1, T2, and T3 under sequences of shrinking location
shift alternatives, where Wi D Yi � Xi is symmetrically distributed about n�1=2�
for some fixed nonzero � 2 X and 1 � i � n.

Theorem 20.3

(a) If E.jjW1jj2/ < 1, nT1 converges weakly to
P1

kD1 �k�
2
.1/.ˇ

2
k=�k/ as n ! 1.

Here, the �k’s are the eigenvalues of the covariance operator ˙ of W1 in
decreasing order of magnitudes, the  k’s are the eigenfunctions corresponding
to the �k’s, ˇk D h�; ki, and �2.1/.ˇ

2
k=�k/ denotes the non-central chi-square

variable with one degree of freedom and non-centrality parameter ˇ2k=�k for
k � 1.

(b) Suppose that for some L � 1, we have �1 > : : : > �L > �LC1 > 0. Assume that
E.jjW1jj4/ <1. Then, nT2 converges weakly to

PL
kD1 �k�

2
.1/.ˇ

2
k=�k/, and nT3

converges weakly to
PL

kD1 �2.1/.ˇ2k=�k/ as n!1.

Proof

(a) As in the proof of Theorem 20.2, we denote �n D n�1=2�, and W0
i D

Wi � �n has the same distribution as that of Wi under the null hypothesis
for 1 � i � n. Now, by the central limit theorem for i.i.d. random elements
in a separable Hilbert space (see Araujo and Giné 1980, Theorem 7.5(i)), it
follows that n1=2W0 converges weakly to G.0;˙ / as n ! 1. Thus, n1=2W D
n1=2.W0 C �n/, converges weakly to G.�;˙ / as n!1. Now, the distribution
of jjG.�;˙ /jj2 is the same as that of

P1
kD1 �k�

2
.1/.ˇ

2
k=�k/ using the spectral

decomposition of the compact self-adjoint operator ˙ . This proves part (a) of
the proposition.

(b) Let V D .hW; 1i; hW; 2i; : : : ; hW; Li/> and Q̌ D .ˇ1; : : : ; ˇL/
>. It

follows from the central limit theorem in R
L that the distribution of n1=2.V �

n�1=2 Q̌ / converges weakly to the L-variate Gaussian distribution NL.0;�L/ as
n ! 1 under the sequence of shrinking shifts considered, where �L is the
diagonal matrix Diag.�1; : : : ; �L/. Thus, under the given sequence of shifts, the
distribution of n1=2V converges weakly to the L-variate Gaussian distribution
NL. Q̌ ;�L/ distribution as n!1.
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From arguments similar to those in the proof of Theorem 5:3 in Horváth and
Kokoszka (2012), and using the assumptions in the present theorem, we get

max
1�k�L

n1=2jhW; O k � Ock kij D oP.1/ (20.5)

as n!1 under the sequence of shrinking shifts. Here O k is the empirical version
of  k and Ock D sign.h O k; ki/. In view of (20.5), the limiting distribution of
n
PL

kD1.hW; O ki/2 is the same as that of n
PL

kD1.hW; Ock ki/2 D njjVjj2, and the
latter converges weakly to jjNL. Q̌ ;�L/jj2 as n!1. Thus, nT2 converges weakly toPL

kD1 �k�
2
.1/.ˇ

2
k=�k/ as n!1 under the sequence of shrinking shifts considered.

It also follows using similar arguments as in the proof of Theorem 5:3 in Horváth
and Kokoszka (2012) that under the assumptions of the present theorem, we have

max
1�k�L

n1=2 O��1=2
k jhW; O k � Ock kij D oP.1/

as n!1 under the given sequence of shrinking shifts. Similar arguments as in the
case of T2 yield the asymptotic distribution of nT3, and this completes the proof. ut

20.3.1 Comparison of Asymptotic Powers of Different Tests

We now compare the asymptotic powers of the tests based on TS, TSR, T1,
T2, and T3 under shrinking location shifts. For this we have taken the random
element Wi 2 L2Œ0; 1� to have the same distribution as that of

P1
kD1 21=2f.k �

0:5/�g�1Zksinf.k � 0:5/�tg, where the Zk’s are independent random variables
for k � 1. We have considered two distributions of the Zk’s, namely, the Zk’s
having N.0; 1/ distributions, and Zk D Uk.V=5/�1=2 with the Uk’s having N.0; 1/
distributions and V having a chi-square distribution with five degrees of freedom
independent of the Uk’s for each k � 1. The latter choice is made to compare the
performance of the tests based on TSR and TS with the mean based tests that use T1,
T2 and T3, when the underlying distribution is heavy tailed. The two distributions of
Wi considered here correspond to the Karhunen-Loève expansions of the standard
Brownian motion and the t process (see Yu et al. 2007) on Œ0; 1� with five degrees of
freedom having zero mean and covariance kernel K.t; s/ D min.t; s/, t; s 2 Œ0; 1�,
respectively. We call them the sBm and the t(5) distributions, respectively. We have
chosen five degrees of freedom for the t distribution so that the finiteness of the
fourth moment required in Theorem 20.3 is satisfied. In a finite sample study in
the next section, we will also consider t processes with one and three degrees of
freedom, which violate some of the moment assumptions in Theorem 20.3. We
have taken three choices of the location shift �, namely, �1.t/ D c, �2.t/ D ct
and �3.t/ D ct.1� t/, where t 2 Œ0; 1� and c > 0. The plots of the shifts are given in
Fig. 20.1 below.
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Fig. 20.1 Plots of the shift alternatives

For evaluating the asymptotic powers of these tests, we have used Theorems 20.2
and 20.3. For each of the two distributions of Wi, we have generated 5000 sample
functions from it. The operators˘ 1 and˘ 2 are estimated as described in Sect. 20.2
using this sample, and the operator ˙ is estimated by the sample covariance oper-
ator. The eigenvalues and the eigenfunctions of ˘ 1, ˘ 2, and ˙ are then estimated
by the eigenvalues and the eigenfunctions of the estimates of these operators. We
have estimated J.1/0 .�/ and J.2/0 .�/ by their sample analogs. The asymptotic powers
of the tests are then computed through 1000 Monte Carlo simulations from the
asymptotic Gaussian distributions with the estimated parameters. We have used
the cumulative variance method described in Horváth et al. (2013) to compute the
number L associated with the tests based on T2 and T3.

We now discuss the asymptotic powers of different tests under the sBm distri-
bution. It is seen from Fig. 20.2 that the tests based on TS and TSR asymptotically
outperform the tests based on T1 and T2 for the shifts �1.t/ and �3.t/. The test based
on TSR is asymptotically more powerful than the test based on T3 for all large values
of c in the case of the shift �1.t/. However, for the shift �3.t/, the test based on T3 is
asymptotically more powerful than the test based on TSR. For the shift �2.t/ under
the sBm distribution all the tests considered except the test based on TS have similar
asymptotic powers, and the latter test is asymptotically less powerful than the other
competitors under the sBm distribution.

We next consider the t(5) distribution. The tests based on TS and TSR asymptot-
ically outperform all the competing tests for all the models considered, except the
test based on T3 for the shift �3.t/. The heavy tails of the t(5) distribution adversely
effect the performance of the mean based tests, but the tests based on TS and TSR,
which use spatial signs and spatial signed ranks, are less affected. For the shift �3.t/
under the t(5) distribution, although the test based on T3 asymptotically outperforms
the tests based on TS and TSR, its performance degrades significantly in comparison
to its performance under the sBm distribution, which has lighter tails.

Between the two tests proposed in this paper, the test based on TSR is asymptoti-
cally more powerful than the test based on TS for both the distributions and the three
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Fig. 20.2 Plots of the asymptotic powers of the tests based on TS (—), TSR (- - -), T1 (– – –), T2
(– � –) and T3 (– ı –) for the sBm and the t(5) distributions under shrinking location shifts

shift alternatives considered in this paper. However, the powers of the two tests are
quite close under the t(5) distribution.

20.4 Comparison of Finite Sample Powers of Different Tests

We now carry out a comparative study of the finite sample empirical powers of the
tests considered in the previous section for location shift alternatives. We consider
the distribution of Wi as in Sect. 20.3, i.e., Wi has the same distribution as that ofP1

kD1 21=2f.k�0:5/�g�1Zksinf.k�0:5/�tg, where the Zk’s are independent random
variables for k � 1. We have considered four distributions for the Wi’s, namely, the
sBm and the t(5) distributions used in Sect. 20.3 as well as the t(1) and the t(3)
distributions. For the t(1) (respectively, t(3)) distribution, Zk D Uk=.V=r/1=2, where
the Uk’s are independent N.0; 1/ variables and V has a chi-square distribution with
r D 1 (respectively, r D 3) degree of freedom independent of the Uk’s for each
k � 1. The t(1) and the t(3) distributions are chosen to investigate the performance
of the mean based tests when the moment conditions required by them fail to hold.
We have chosen n D 20, and each sample curve is observed at 250 equispaced
points in Œ0; 1�. We consider the same three location shifts that were considered in
Sect. 20.3.1, namely, �1.t/ D c, �2.t/ D ct and �3.t/ D ct.1 � t/ for t 2 Œ0; 1� and
c > 0. All the sizes and the powers are evaluated by averaging over 1000 Monte-
Carlo simulations. The estimated standard errors of the empirical sizes (respectively,
powers) of different tests are of the order of 10�3 (respectively, 10�2 or less) for all
the distributions considered. The empirical power curves of the tests are plotted in
Figs. 20.3 and 20.4.
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Fig. 20.3 Plots of the empirical powers of the tests based on TS (—), TSR (- - -), T1 (– – –), T2 (–
� –) and T3 (– ı –) for the sBm and the t(5) distributions
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Fig. 20.4 Plots of the asymptotic powers of the tests based on TS (—), TSR (- - -), T1 (– – –), T2
(– � –) and T3 (– ı –) for the t(1) and the t(3) distributions

For each of the tests, the difference between its observed size and the nominal 5%
level is statistically insignificant under the sBm, the t(3) and the t(5) distributions.
However, the sizes of the tests based on T1, T2, and T3 are 1%, 1%, and 2:1% for
the t(1) distribution, all of which are significantly lower than the nominal level. On
the other hand, the sizes of the tests based on spatial signs and signed ranks are not
significantly different from the nominal level even under t(1) distribution.

We first discuss the performance of different tests under the sBm distribution.
The test based on TSR is significantly more powerful than the tests based on T1 and
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T2 for the shifts �1.t/ and �3.t/. The power of the test based on TS is not significantly
different from that of the test based on T1 for these two shifts although the former
test has slightly more power than the latter test in our simulations. The test based on
TS significantly outperforms the test based on T2 for these two shifts. The test based
on TSR is significantly more powerful than the test based on T3 for large values of c
in �1.t/. The test based on T3 significantly outperforms the tests based on TS and TSR

for the shift �3.t/. The power of the test based on TSR is not significantly different
from the powers of the tests based on T1, T2, and T3 for the shift �2.t/, but the test
based on TS is significantly less powerful than all its competitors for this shift under
the sBm distribution.

We next consider the t(5) distribution. The tests based on TS and TSR are
significantly more powerful than the tests based on T1 and T2 for all the three
shift alternatives considered. The tests based on TS and TSR are significantly more
powerful than the test based on T3 for large values of c in the shifts �1.t/ and
�2.t/. Like in the case of the sBm distribution, the test based on T3 is significantly
more powerful than the tests based on TS and TSR for the shift �3.t/. As in the
asymptotic power study in Sect. 20.3, the performance of the mean based tests
degrades significantly under the heavy tailed t(5) distribution, while the tests based
on spatial signs and signed ranks are less affected. The findings of this finite sample
power study under the sBm and the t(5) distributions are very similar to those of the
asymptotic power study.

The tests based on T1, T2, and T3 have very low powers for all the shift
alternatives considered under the t(1) distribution and are significantly outperformed
by the tests based on TS and TSR. The non-existence of moments of the t(1)
distribution severely affects the performance of the mean based tests, but the tests
based on spatial signs and signed ranks are relatively less affected.

Under the t(3) distribution, the tests based on TS and TSR significantly outperform
the other competitors for the shifts �1.t/ and �2.t/. The test based on T3 has
significantly more power than the tests based on TS and TSR only for c 2 .1; 1:5/ in
the shift �3.t/. However, the two latter tests significantly outperform the tests based
on T1 and T2 for the shift �3.t/.

Among the two proposed tests, for all the shifts considered, the spatial sign
test based on TS is significantly more powerful than the spatial signed-rank test
based on TSR for the very heavy tailed t(1) distribution, while it is significantly
less powerful under the light tailed sBm distribution. The powers of these two tests
are not significantly different for the t(3) and the t(5) distributions. However, for
the t(3) distribution, the spatial sign test is slightly more powerful than the spatial
signed-rank test for all the shifts considered, while the situation is reversed for the
t(5) distribution. These observations are similar to the relative performance of the
spatial sign and signed-rank tests for finite dimensional data under multivariate t
distributions (see Möttönen et al. 1997).
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20.4.1 Robustness Study of Different Tests

It is known that the univariate sign and signed-rank tests are robust against the
presence of outliers in the data, unlike some of the mean based tests like the
t test. The influence functions of the sign and signed-rank tests are bounded,
and as a result, the sizes and the powers of these tests, even under moderately
high contamination proportions, are not much different from their powers in the
uncontaminated case (see Hampel et al. 1986, Chapter 3). The definition of the
influence function for a test as discussed in Hampel et al. (1986, Chapter 3, p. 191)
can be extended to the infinite dimensional setup by using the notion of a Gâteaux
derivative. It can be shown that the influence functions of the tests based on TS and
TSR are given by ŒJ.1/0 �

�1.Sw/ and 2ŒJ.2/0 �
�1fE.SwCW1 /g provided the inverses exist,

where w 2 X , and J.1/0 and J.2/0 are defined before Theorem 20.2. When X is
a separable Hilbert space, both of these influence functions are bounded in norm
under the assumptions analogous to those given in Proposition 2.1 in Cardot et al.
(2013). So, it is expected that the tests based on TS and TSR will be robust in such
cases.

We now conduct an empirical study to assess the robustness of spatial sign and
signed-rank tests proposed in this paper in comparison with the mean based tests
using T1, T2, and T3. Let the distribution of Y1 � X1 2 L2Œ0; 1� be of the form
.1��/PC�Q, where P is the sBm distribution considered earlier, Q is the Brownian
motion with covariance kernel K.t; s/ D 16min.t; s/, t; s 2 Œ0; 1�, and assume that
the contamination proportion � takes values 1=20, 3=20 and 5=20. So, even under
contamination, the null hypothesis remains unchanged. As before, the sample size is
chosen to be n D 20, and each sample curve is observed at 250 equispaced points in
Œ0; 1�. For computing the powers of the tests in the presence of outliers in the data, we
have considered the location shift �.t/ D 0:8t, t 2 Œ0; 1�. This choice ensures that
the powers of the tests, even under contamination, are not too close to the nominal
5% level nor too close to one, and thus a meaningful comparison between the tests
can be made. The following table gives the sizes and the powers of different tests,
which are evaluated by averaging over 1000 Monte-Carlo simulations, for various
contamination models considered.

It is seen from Table 20.1 that except the tests based on T1 and T2, the sizes of
the other tests considered are close to the nominal 5% level in the contaminated
as well as the uncontaminated situations. The sizes of the mean based tests that

Table 20.1 Sizes and powers of some tests at nominal 5% level

Size Power

� TS TSR T1 T2 T3 TS TSR T3
0 0:044 0:05 0:037 0:036 0:066 0:817 0:891 0:881

1/20 0:053 0:056 0:118 0:115 0:057 0:777 0:818 0:722

3/20 0:044 0:046 0:288 0:281 0:04 0:665 0:616 0:446

5/20 0:044 0:05 0:397 0:37 0:043 0:521 0:423 0:273
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use T1 and T2 are much larger than the nominal level under contamination though
the null hypothesis remains valid. This is probably because the asymptotic critical
values of these two tests are under-estimated in the presence of contamination in
the data. Interestingly, the size of the mean based test using T3 is unaffected under
contamination. It seems that the standardization involved in the statistic T3 keeps
the size of the test under control even when there are outliers in the data.

For our power study in the presence of outliers in the data, we have excluded the
tests based on T1 and T2 since they have very high sizes under contamination. The
powers of all the tests decrease from their powers in the uncontaminated situation
since the contamination increases the variability in the sample. The powers of the
proposed spatial sign and signed-rank tests are significantly higher than the power
of the mean based test using T3 for all the contamination models considered. Recall
that the test based on T3 was significantly more powerful than the test based on TS,
and its power was not significantly different from that of the test based on TSR for
the same location shift in the uncontaminated case.

The powers of the tests based on spatial sign and signed rank are comparable
when the contamination proportion is at most 3=20. However, when the proportion
of contamination is 5=20, the spatial sign test becomes significantly more powerful
than the spatial signed-rank test. This behavior of the spatial sign and signed-
rank tests is similar to that of the univariate sign and signed-rank tests, where it
is known that the sign test is more robust than the signed-rank test for higher levels
of contamination (see Hampel et al. 1986, Chapter 3).

20.5 Concluding Remarks

In this paper, we have studied a spatial sign test and a spatial signed-rank test for
paired sample problems in infinite dimensional spaces. The tests are infinite dimen-
sional extensions of the multivariate spatial sign and signed-rank tests considered
earlier by Möttönen and Oja (1995), Möttönen et al. (1997), and Marden (1999)
for finite dimensional data. We have shown that the asymptotic distributions of the
proposed test statistics are Gaussian after appropriate centering and scaling. It is
shown that both of the proposed tests are consistent for a class of alternatives that
includes the standard location shift alternatives. It is observed that under suitable
sequences of shrinking location shift alternatives, the spatial sign and signed-
rank tests are asymptotically more powerful than some of the mean based paired
sample tests for infinite dimensional data when the underlying distribution has heavy
tails. Further, even for some infinite dimensional Gaussian distributions, the spatial
sign and signed-rank tests considered in this paper are more powerful than some
of the mean based tests for paired sample problems. The asymptotic results are
corroborated by finite sample simulation results.

The proposed spatial sign and signed-rank test statistics can be computed very
easily, and the associated tests can be implemented using their asymptotic Gaussian
distributions. The covariance operators of the asymptotic Gaussian distributions can
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be easily estimated as discussed in Sect. 20.2.1. For data in a Hilbert space, the
implementations of the proposed tests become further simplified in view of the fact
that in such a space, the squared norm of a Gaussian random element is distributed
as a weighted sum of independent chi-square variables each with one degree of
freedom.

The tests based on spatial signs and signed ranks studied in this paper do
not require any moment assumption unlike some mean based tests for infinite
dimensional data. These tests are also robust against contamination of the sample
by outliers unlike the mean based tests considered in the paper. Between the two
tests proposed in this paper, it is observed that the spatial sign test is better for
some very heavy tailed distributions, while the spatial signed-rank test outperforms
it in some cases when the distribution has lighter tails. Further, the spatial sign test
is more robust than the spatial signed-rank test, when there is a large amount of
contamination in the sample.
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Chapter 21
Semiparametric Analysis in Conditionally
Independent Multivariate Mixture Models

Tracey W. Hammel, Thomas P. Hettmansperger, Denis H.Y. Leung,
and Jing Qin

Abstract The conditional independence assumption is commonly used in mul-
tivariate mixture models in behavioral research. We propose an exponential tilt
model to analyze data from a multivariate mixture distribution with conditionally
independent components. In this model, the log ratio of the density functions of
the components is modeled as a quadratic function in the observations. There
are a number of advantages in this approach. First, except for the exponential
tilt assumption, the marginal distributions of the observations can be completely
arbitrary. Second, unlike some previous methods, which require the multivariate
data to be discrete, modeling can be performed based on the original data.

Keywords Empirical likelihood • Exponential tilting • Repeated measures •
Mixture distribution • Multivariate

21.1 Introduction

There are many applications where the interest is to classify n observations into
m groups based on k measures on each observation. For example, Hettmansperger
and Thomas (2000) and Cruz-Medina et al. (2004) described an experiment in
developmental psychology where repeated measurements are made on children’s
responses to a cognitive task and the interest is to classify children into different
groups based on the repeated measurements. The repeated measures data can

T.W. Hammel • T.P. Hettmansperger (�)
Department of Statistics, Penn State University, University Park, PA, USA
e-mail: traceywrobel@gmail.com; tph@stat.psu.edu

D.H.Y. Leung
School of Economics, Singapore Management University, Singapore, Singapore
e-mail: denisleung@smu.edu.sg

J. Qin
Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda,
MD, USA
e-mail: jingqin@niaid.nih.gov

© Springer International Publishing Switzerland 2015
K. Nordhausen, S. Taskinen (eds.), Modern Nonparametric, Robust
and Multivariate Methods, DOI 10.1007/978-3-319-22404-6_21

371

mailto:traceywrobel@gmail.com
mailto:tph@stat.psu.edu
mailto:denisleung@smu.edu.sg
mailto:jingqin@niaid.nih.gov


372 T.W. Hammel et al.

be considered to come from a mixture of multivariate distributions, with the
components corresponding to the response distributions in the different groups of
observations, the number of components corresponding to the number of groups,
and the mixing proportions corresponding to the proportions in the population that
belong to the different groups. Two problems are of interest. First, to determine the
number of groups. Second, to estimate the underlying component distributions and
the mixing proportions.

Analysis of multivariate mixture distributions is a difficult problem (see, e.g.,
Titterington et al. 1985; Lindsay 1995; McLachlan and Peel 2000). Computation is
commonly carried out using the EM algorithm (Dempster et al. 1977), which typ-
ically requires parametric distributional assumptions. However, a number of works
(Thomas and Lohaus 1993; Hettmansperger and Thomas 2000; Hall and Zhou 2003;
Cruz-Medina et al. 2004; Leung and Qin 2006; Chang and Walther 2007; Benaglia
et al. 2009) showed that a semiparametric or nonparametric approach might be a
flexible and robust alternative to a parametric approach.

In the situation described in the first paragraph, each child who participated
in the study was given a total of six tasks, each randomly selected from a large
pool of similar tasks. As a result, it is unlikely for a child to predict the next task
and hence the responses to different tasks can be considered independent of each
other. This observation led us to make the assumption of conditional independence,
which means that conditional on component membership, the multivariate com-
ponent distribution is the product of its marginals; see also Sect. 21.7. Under the
conditional independence assumption, the m component mixture has probability
density function (PDF) or probability mass function (PMF)

h.x1; : : : ; xk/ D
mX

lD1
�l

kY

jD1
flj.xj/; (21.1)

where �l is the mixing proportion for the lth component and flj is the PDF (or
PMF) for the lth component of the jth repeated measure. Later, we impose further
structural assumptions. Unlike previous works (Hettmansperger and Thomas 2000;
Cruz-Medina et al. 2004; Leung and Qin 2006; Chang and Walther 2007), (21.1)
does not require identical marginal distributions. Conditional independence of
multivariate data can also be seen as a special case of the popular random effects
model with clustered data (Liu and Pierce 1994; Qu and Hadgu 1998).

A histogram of the data in the study (Cruz-Medina et al. 2004, Fig. 1) shows
that the data distribution is unremarkable; there is no immediate resemblance to any
well-known distribution. This observation motivates a semiparametric approach to
analyzing the data. We assume the component densities are related by an exponential
tilt (density-ratio) model (Anderson 1979). For a two-component mixture with PDFs
f and g, our exponential tilt model assumes f and g are related by log .g.x/=f .x// D
˛CˇxC�x2. As a parallel to the Cox proportional hazards model and the Lehmann
alternative model, the exponential tilt model is very versatile, due to its natural
connection to the logistic model. Kay and Little (1986) discuss various versions
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of the exponential tilt model for some common distributions. Because the normal
PDF has a quadratic exponent, any two normal PDFs satisfy the condition for
the exponential tilt model described above. In many situations where common
parametric distributions do not fit the observed data well, the exponential tilt model
still can provide excellent fits (Qin and Zhang 1997; Nagelkerke et al. 2001; Zhang
2001; Qin et al. 2002; White and Thompson 2003). Efron and Tibshirani (1996)
argue that the exponential tilt is a favorable compromise between parametric and
nonparametric density estimation.

The rest of this paper is organized as follows. Details of the method are described
in Sect. 21.2. The exponential tilt model is formulated using an empirical likelihood
(Owen 1988). Under mild conditions, the model is uniquely identifiable up to label
switching, which is important for estimating the underlying mixture structure. In
Sect. 21.3, we present an EM algorithm. Estimation of features of the component
distributions is discussed in Sect. 21.4. In Sect. 21.5, we evaluate the method using
simulations. In Sect. 21.6, we propose a model selection criterion based on the
BIC (Bayesian Information Criterion; Schwarz 1978) to estimate the number of
components in the mixture. In Sect. 21.7, the method is applied to the data of Cruz-
Medina et al. (2004). Section 21.8 concludes with a discussion of possible future
work.

21.2 Exponential Tilt Model

We consider n multivariate vectors X1; : : : ;Xn from an m component, k dimensional
multivariate mixture distribution, where X>

i D .xi1; : : : ; xik/, i D 1; : : : ; n.
Let .x1; : : : ; xk/ be a generic observation, then its joint PDF can be written as

h.x1; : : : ; xk/ D �1
kY

jD1
fj.xj/C

mX

lD2
�l

kY

jD1
glj.xj/; (21.2)

where fj and glj represent univariate PDFs, �1 is the mixing proportion of component
one (the baseline distribution), 0 < �l < 1 is the mixing proportion of component
l and

Pm
lD1 �l D 1. Let H;Fj; and Glj denote the CDFs corresponding to

h; fj; and glj, respectively.
Let fj and glj be related by a quadratic exponential tilt model

log
�
glj.xj/=fj.xj/

� D ˛lj C ˇljxj C �ljx
2
j ; (21.3)

where ˛lj, ˇlj, and �lj are unknown parameters. The PDF (21.2) can be re-written as

h.x1; : : : ; xk/ D
2

4�1 C
mX

lD2
�l exp

8
<

:

kX

jD1
˛lj C ˇljxj C �ljx

2
j

9
=

;

3

5
kY

jD1
fj.xj/: (21.4)
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Theorem 8 of Allman et al. (2009) states that a mixture of the form (1) is uniquely
identifiable up to label switching provided that k � 3 and, for each j D 1; : : : ; k,
the m distributions are linearly independent. This result makes sense since linear
independence precludes expressing any one of the coordinate distributions as a
linear combination of the other m� 1 distributions. Since, in our case,

Pm
lD1 �l D 1

and 0 < �l < 1, and for each j D 1; : : : ; k

�1 C
mX

lD2
�l exp

˚
˛lj C ˇljxj C �ljx

2
j

� ¤ 0 for �1 < xj <1;

identifiability follows for model (21.4). For earlier results on identifiability in
nonparametric mixtures, see Hall and Zhou (2003), Hall et al. (2005), and Elmore
et al. (2005).

Let �>
lj D .˛lj; ˇlj; �lj/, Qx>

ij D .1; xij; x2ij/, Qxj the counterpart of Qxij for a generic

observation, �> D .�1; : : : ; �m/, �
> D .�21; : : : ;�mk/ and ı> D .�>;�>/, then

the likelihood based on the observed data is

L.ı;F1; : : : ;Fk/ D
nY

iD1

2

4

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;

kY

jD1
dFj.xij/

3

5 :

The maximizing Fj only jumps at each observed xij (Owen 1988). Let the jump sizes
be pij, then the log-likelihood is

`.ı; p11; : : : ; pnk/ D
nX

iD1

2

4log

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;C
kX

jD1
log pij

3

5 :

(21.5)

For fixed ı, ` can be maximized with respect to the pijs subject to the constraints

nX

iD1
pij D 1; pij � 0;

nX

iD1
pij exp

�Qx>
ij � lj

� D 1; j D 1; : : : ; k; l D 2; : : : ;m:
(21.6)

The last k constraints in (21.6) come from model (21.3) and are responsible for
ensuring that the resulting glj are proper PDFs. The constrained maximization can
be accomplished using a Lagrange multiplier argument, which leads to

pij D 1

n

"
1

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g

#
; i D 1; : : : ; n; j D 1; : : : ; k;

(21.7)
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where �> � .�21; : : : ; �mk/ are Lagrange multipliers determined by

nX

iD1

exp.Qx>
ij � lj/� 1

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/ � 1g
D 0; j D 1; : : : ; k; l D 2; : : : ;m: (21.8)

Note that if the exponential tilt parameters �>
lj D 0, then (21.7) would simply be the

weights found for the empirical distribution, namely 1=n. Substituting the pijs back
into (21.5) gives a log-profile likelihood

`p.ı/ D
nX

iD1
log

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;

�
nX

iD1

kX

jD1
log

"
nC

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g
#
: (21.9)

Denote the maximum semiparametric likelihood estimate obtained from maximiz-
ing `p.ı/ by Oı and O� the corresponding value of the Lagrange multipliers at the
maximum likelihood. The following theorem describes the large sample behavior
of the maximum semiparametric likelihood estimate.

Theorem 21.1 Let U.�;�;�/ D .u1; u2; u3/, where u1.�;�;�/ D @`p=@� lj,
u2.�;�;�/ D @`p=@�lj, u3.�;�;�/ D @`p=@�l. Let ı0 � .�0;�0;�0/ be the true
values of ı � .�;�;�) and let the superscript “0” denote a quantity evaluated at
ı0. Assume the conditions hold:

[C1] E
˚
U0.U0/>

�
is positive definite; and the rank of E

�
@U0=@ı

�
is 2.m� 1/kC

.m � 1/, which is also the dimension of ı.

[C2] @2U.ı/=.@ı@ı>/ is continuous in a neighborhood of ı0 where k@U.ı/=@ık
is bounded, E.jjU.ı/jj/2 <1.

[C3] Functions are sufficiently smooth to allow differentiation under the integral.
and 0 < �1; : : : ; �m < 1, then for any sufficiently smooth function g,

p
ng. O� � �0; O� � �0; O� � �0/ d! N.0;˙ g/:

Furthermore, asymptotically, the estimates achieve semiparametric efficiency.

Proof For a matrix a, denote its i; jth element by ai;j and let A D E.a/ where the
expectation is taken under ı0. Write w�

il D �l=f�1 CPm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/g,
v�

ilj D �lj=Œ1 C 1=n
Pm

lD2 �ljfexp.Qx>
ij � lj/ � 1g�: Let Pw0

il;� l0 j0
D w�0

il @=@� l0j0f�0l
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exp.
Pk

jD1 Qx>
ij �

0
lj/g, Pv0ilj;� l0 j0

D v�0
lj @=@� l0j0 Œ�

0
ljfexp.Qx>

ij �
0
lj/ � 1g� and similarly for

Pw0
il;�l0 j0

, Pw0
il;�l0

, Pv0ilj;�l0 j0
, Pv0ilj;�l0

, Pv�0
l;� l0 j0

, and Pv�0
l;�l0 j0

.

@U.�0;�0;�0/
@.�;�;�/>

D a D
0

@
a11 a12 a13
a21 a22 0
a31 0 a33

1

A!
0

@
A11 A12 A13

A21 A22 0
A31 0 A33

1

A D A; (21.10)

where

a11.lj; l0j0/ D @u01
@� l0 j0

D
nX

iD1

h
Pw0

il;� l0 j0
� w0il Pw0

il0;� l0 j0

�
n
Pv0ilj;� l0 j0

� v0ilj.Pv0ilj;� l0 j0
� Pv�0

ilj;� l0j0
/
oi
Qx>

ij ;

a12.lj; l0j0/ D @u01
@�l0 j0

D
nX

iD1
Pv0ilj;�l0 j0

� v0ilj.Pv0ilj;�l0 j0
� Pv�0

ilj;�l0 j0
/;

a13.l; l0/ D @u01
@�l0
D

nX

iD1
Pw0

il;�l0
� w0il Pw0

il0 ;�l0
;

a21.lj; l0j0/ D @u02
@� l0 j0

D
nX

iD1

1

�lj

n
Pv0ilj;� l0 j0

� .v0ilj � v�0
ilj /.Pv0ilj;� l0 j0

� Pv�0
ilj;� l0 j0

/
o
;

a22.lj; l0j0/ D @u02
@�l0 j0

D
nX

iD1

1

�lj

n
Pv0ilj;�l0 j0

� .v0ilj � v�0
ilj /.Pv0ilj;�l0 j0

� Pv�0
ilj;�l0 j0

/
o
;

a31.lj; l0j0/ D @u03
@� l0 j0

D
nX

iD1

1

�l

n
Pw0

il;� l0j0
� .w0il � w�0

il / Pw0
il0 ;� l0 j0

o
;

a33.l; l0/ D @u03
@�l0
D

nX

iD1

1

�l

n
Pw0

il;� l0 j0
� .w0il � w�0

il / Pw0
il0;� l0 j0

o
:

Define row vectors b1;b2;b3 such that b1.lj/ D Pn
iD1.w0il � v0ilj/Qx>

ij , b2.lj/ DPn
iD1 1

�lj
.v0ilj � v�0

ilj /, b3.l/ D Pn
iD1 1

�l
.w0il � w�0

il /. Then
p

nU.�0;�0;�0/ D
n�1.b>

1 ;b
>
2 ;b

>
3 /

> d! N.0;W/; where

W D E

0

@
b>
1 b1 b>

1 b2 b>
1 b3

b>
2 b1 b>

2 b2 b>
2 b3

b>
3 b1 b>

3 b2 b>
3 b3

1

A D
�

W1 W2

W>
2 W3

	
:
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It then follows that

p
n

0

@
O� � �0
O� � �0
O� � �0

1

A D n�1.a>/�1.b>
1 ;b

>
2 ;b

>
3 /

> C op.
p

n/
d! N

˚
0; .AT/�1WA�1� :

We can also study the behavior of particular parameters of interest. In particular,

p
n. O� � �0/ d! N.0;˙ � C>W11CC DW>

12CC C>W12CCDW22D/;

where

0

@
V11 V12 V13

V21 V22 V23

V31 V23 V33

1

A D A�1; D D �A33 �A>
13V11A13

�
; C D

�
V11A13

V21A13

	
D:

We now prove the semiparametric efficiency of the proposed method. Write
 .x1; : : : ; xk; ı/ D �1 C Pm

lD2 �l exp.
Pk

jD1 Qx>
j � lj/. For a finite dimensional

parameter �, consider a parametric submodel of h.x1; : : : ; xk/

h.x1; : : : ; xk; ı;�/ D  .x1; : : : ; xk; ı/

kY

jD1
fj.xj;�/: (21.11)

The profile likelihood Lp.ı/ is proportional to

h.x1; : : : ; xk; ı;�/

h1.x1; ı;�/ � � � hk.xk; ı;�/
; (21.12)

where hj.xj; ı;�/ D f�1 C Pm
lD2 �l exp.Qx>

j � lj/gfj.xj;�/. Let Sı;S� be the score
functions of ı and � based on (21.11) and (21.12). Write  .ı/ D  .x1; : : : ; xk; ı/,
h.ı;�/ D h.x1; : : : ; xk; ı;�/ hj.ı;�/ D hj.xj; ı;�/, fj.�/ D fj.xj;�/, Phı.ı;�/ D
@h=@ı, P ı.ı/ D @ =@ı and Pf�.�/ D @f=@�. Then

Sı D
Phı.ı;�/
h.ı;�/

�
kX

jD1

Phj;ı.ı;�/

hj.ı;�/
D SA

ı C
kX

jD1
SB

j;ı ;

S� D
Phı.ı;�/
h.ı;�/

D �
kX

jD1

Pfj;�.�/

fj.�/
D

kX

jD1
Sj;�:
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We will show that Sı and S� are orthogonal by showing E.SA
ıSj;�/ D 0 and

E.SB
j;ıSj0 ;�/ D 0; j; j0 D 1; : : : ; k and hence, the estimator is efficient. DenoteR � dx � R � � � R � dx1 � � � dxk and

R � dx�1 �
R � � � R � dx2 � � � dxk.

E.SA
ıSj;�/ D

Z Phı.ı;�/
h.ı;�/

Pfj;�.�/

fj.�/
h.ı;�/dx

D
Z
P ı.ı/

kY

jD1
fj.�/
Pfj;�.�/

fj.�/
dx

D @

@ı

Z
@

@�
f�1 C

mX

lD2
�l exp.

kX

jD2
Qx>

j � lj/g
kY

jD2
fj.�/dx�1 D 0:

E.SB
j;ıSj0;�/ D

Z Phj;ı.ı;�/

hj.ı;�/

Pfj0;�.�/

fj0.�/
 .ı/

kY

jD1
fj.�/dx

D
Z Phj;ı.ı;�/

hj.ı;�/

@

@�
f�1 C

mX

lD2
�l exp.

X

j¤j0

Qx>
j � lj/g

kY

j¤j0

fj.�/dx�1 D 0:

ut
The theorem allows us to draw inference about the mixture parameter �, as well
as other quantities, such as component moments, that are smooth functions of the
distribution parameters.

21.3 Estimation

Estimates of the parameters can be found by differentiating (21.9) with respect to
each of the parameters and solving the simultaneous equations:

@`p

@� lj
)

nX

iD1
wil Qx>

ij �
nX

iD1
vilj Qx>

ij D 0; (21.13)

@`p

@�lj
)

nX

iD1

1
nfexp.Qx>

ij � lj/� 1g
1C 1

n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g
D 0; (21.14)

@`p

@�l
)

nX

iD1

exp.
Pk

jD1 Qx>
ij � lj/� 1

�1 CPm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/
D 0; (21.15)
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for l D 2; : : : ;m and j D 1; : : : ; k and wil and vilj are defined by

wil D
�l exp.

Pk
jD1 Qx>

ij � lj/

�1 CPm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/
;

vilj D
1
n�lj exp.Qx>

ij � lj/

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g
: (21.16)

Notice that in (21.14), we have used the fact that �1 D 1 � Pm
lD2 �l. There is

no explicit solution for �l; l D 1; : : : ; k. Therefore, we develop an EM type
algorithm (Dempster et al. 1977). Define the latent variables Z1; : : : ;Zn where
Z>

i D .zi1; : : : ; zim/ for the component membership for the ith observation in
the data set. If the ith observation belonged to the lth component, then Z>

i is a
vector of m � 1 0s and a single 1 in the lth position. Furthermore,

Pm
lD1 zil D 1.

Of course, Zi; i D 1; : : : ; n are not observed. We define the “complete data” as
f.X1;Z1/; : : : ; .Xn;Zn/g; then, a complete data semiparametric likelihood is

Lc.ı;F1; : : : ;Fk/ D
nY

iD1

2

4

8
<

:�1
kY

jD1
Fj.xij/

9
=

;

zi1

mY

lD2

8
<

:�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A
kY

jD1
dFj.xij/

9
=

;

zil
3

5

D
nY

iD1

2

4�zi1
1

mY

lD2
�

zil
l exp

0

@zil

kX

jD1
Qx>

ij � lj

1

A
kY

jD1
dFj.xij/

zil

3

5 :

Using pij as the jump size of Fj at xij, the complete data log-likelihood is

`c.ı; pij; i D 1; : : : ; n; j D 1; : : : ; k/

D
nX

iD1

mX

1D1
zil log�l C

nX

iD1

mX

1D2
zil

kX

jD1
Qx>

ij � lj C
nX

iD1

kX

jD1
log pij; (21.17)

where (21.6) still hold and pijs can be profiled out using (21.7) and (21.8).
Let the parameter estimates at iteration t of the EM algorithm be Œı.t/�> D

.�
.t/
21; : : : ;�

.t/
mk; �

.t/
1 ; : : : ; �

.t/
m / and write

w.t/il D E.ziljı.t/; x1; : : : ; xn/ D
�
.t/
l exp.

Pk
jD1 Qx>

ij �
.t/
lj /

�
.t/
1 C

Pm
lD2 �

.t/
l exp.

Pk
jD1 Qx>

ij �
.t/
lj /
: (21.18)
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Since (21.17) is linear in zils, substituting (21.18) for zils and (21.7) for pijs in (21.17)
gives the expected complete data profile log-likelihood (E-step) at iteration tC 1,

Q.ı; ı.t// D E.`cjı.t/; x1; : : : ; xn/ D
nX

iD1

mX

1D1
w.t/il log�l C

nX

iD1

mX

1D2
w.t/il

kX

jD1
Qx>

ij � lj

�
nX

iD1

kX

jD1
logŒnC

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g�:

The M-step maximizes Q.ı; ı.t// with respect to ı and �. Since �l; l D 1; : : : ;m,
satisfy the constraint

Pm
lD1 �l D 1, we immediately obtain

O�.tC1/l D
Pn

iD1 w.t/il

n
: (21.19)

Differentiating Q.ı; ı.t// with respect to the other parameters gives exactly the same
equations as (21.13) to (21.14), but with w.t/il s replacing wils. Using (21.19) and

replacing wils by w.t/il s in (21.13) and (21.14) now gives

n

 
�
.tC1/
lj

n

!
�

nX

iD1
w.t/il D 0)

�
.tC1/
lj

n
D
Pn

iD1 w.t/il

n
D �.tC1/l : (21.20)

Using (21.20) in (21.13) now gives

nX

iD1

�
.t/
l exp.Qx>

ij �
.t/
lj /Qx>

ij

�
.t/
1 C

Pm
lD2 �

.t/
l exp.Qx>

ij �
.t/
lj /
� �

.tC1/
l exp.Qx>

ij � lj/Qx>
ij

�
.tC1/
1 CPm

lD2 �
.tC1/
l exp.Qx>

ij � lj/
D 0;

(21.21)

which can be used to easily solve for �.tC1/lj by a Newton-Raphson procedure.
To show that our EM algorithm increases `p.ı/ at every step, we note that

Q.ı; ı.t// �
nX

iD1
log

8
<

:w.t/i1 �1 C
mX

1D2
w.t/il �l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;C
nX

iD1

kX

jD1
log pij

<

nX

iD1
log

8
<

:�1 C
mX

1D2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;C
nX

iD1

kX

jD1
log pij D `p.ı/;

Since ı.tC1/ maximizes Q.ı; ı.t//, therefore, Q.ı.tC1/; ı.t// � Q.ı.t/; ı.t// )
`.ı.tC1// � `.ı.t//. We suggest using different starting values for the EM algorithm
to check that the algorithm did not stop at a local maximum. Since the exponential
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tilt parameters may be hard to interpret, it may be difficult to find initial values for
them. We recommend generating an n � m matrix of initial values of the z.t/il s and
starting the algorithm with the M-step.

21.4 Estimation of Features in the Component Distributions

In this section, we discuss estimation of features in the component distributions.
We also identify a moment matching property similar to that found by Efron and
Tibshirani (1996) in the univariate non-mixture case. For any quantity a, let Oa denote
its estimate based on the final values of the EM algorithm at convergence. Define

Opij D 1

n

 
1

O�1 CPm
lD2 O�l exp.Qx>

ij
O� lj/

!
and Oqlij D exp.Qx>

ij
O� lj/Opij:

The CDF of the mixture distribution, H, can be estimated by

OH.x1; : : : ; xk/ D O�1
kY

jD1
OFj.xj/C

mX

lD2
O�l

kY

jD1
OGlj.xj/;

where the marginal CDF estimates of Fj and Glj are

OFj.xj/ D
nX

iD1
I.xij � xj/Opij; OGlj.xj/ D

nX

iD1
I.xij � xj/ exp.Qx>

ij
O� lj/Opij: (21.22)

The estimates resemble the empirical CDF with the weights given by the
estimated jumps. In Sect. 21.5, we give examples that show how well these estimates
match the true marginal CDFs. We can also find estimates of the marginal PDFs
using a weighted kernel density estimate with the posterior probabilities, Owil, as the
weights. The estimated PDFs are

Oglj.u/ D 1

�

nX

iD1

OwilPn
iD1 Owil

�
�u� xij

�

�
; l D 2; : : : ;m (21.23)

where � is a bandwidth, � is the standard normal PDF. The R package mixtools
contains a function, wkde, that allows us to do this quite easily (Young et al.
2008). This function also has the ability to choose different bandwidths for the k
coordinates.
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Writing Oq1ij D Opij, the mean and variance of the jth measurement in the lth
component distribution, mlj and s2lj can be estimated by

Omlj D
nX

iD1
xij Oqlij; Os2lj D

nX

iD1
x2ij Oqlij � Om2

lj; (21.24)

for l D 1; : : : ;m and j D 1; : : : ; k. An interesting result from the EM algorithm is a
moment matching property. For example, we can write:

nX

iD1
xij Oqlij D

nX

iD1
xij exp.Qx>

ij
O� lj/

(
1

n

 
1

O�1 CPm
lD2 O�l exp.Qx>

ij
O� lj/

!)

D 1

n O�l

nX

iD1
xij

( O�l exp.Qx>
ij
O� lj/

O�1 CPm
lD2 O�l exp.Qx>

ij
O� lj/

)

D
Pn

iD1 OwilxijPn
iD1 Owil

;

where the last quantity is due to (21.18) and (21.19) from the EM algorithm. This
expression matches the weighted first moment using the posterior probabilities to
the tilted component first moment; see Efron and Tibshirani (1996) for an example
of the moment matching property in the univariate non-mixture exponential tilt
model. They argue that moment matching reduces the bias.

It should be noted that non-identifiability due to label switching (e.g., McLachlan
and Peel 2000) can affect bootstrap estimation in the exponential tilt model. Suppose
observations come from the following mixture

H.x1; x2; x3/ D 0:3N.0; 1/N.0; 1/N.0; 1/C 0:7N.2; 1:5/N.2:5; 2/N.3; 1/:

Consider the first coordinate, then one possible baseline distribution is N.0; 1/
and the parameters in the exponential tilt would be �>

21 D .�1:53; 1:33; 0:16/.
Another possible baseline may be N.2; 1:5/ in which case the parameters would
be �T�

21 D .1:53;�1:33;�0:16/. The result is that in a bootstrap, for example, the
signs of the coefficients in the quadratic exponent may change. We resolve this
ambiguity by designating the component corresponding to the smallest proportion as
the baseline distribution and make the adjustment after the EM algorithm converges.
We then have identifiable estimates of the coefficients in the quadratic exponents.
The estimates of the marginal means and standard deviations are not affected by this
label switching.
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21.5 Simulation Results

In this section, we give simulation results for different models. The data were
generated from two component mixture distributions of the following form:

H.x1; x2; x3/ D �F1.x1/F2.x2/F3.x3/C .1 � �/G1.x1/G2.x2/G3.x3/:

We focus on the following parameters: �, and mlj and slj, the mean and standard
deviation of the jth measurement in the lth component distribution.

21.5.1 Mixtures with Normal Component Distributions

The first model is a trivariate normal mixture model, such that F1;F2;F3
are CDFs of N.0; 1/ and G1;G2;G3 are CDFs of N.�; 
2/ with .�; 
2/ D
.2; 1:5/; .2:5; 2/; .3; 1/, respectively. Three values of � D 0:3; 0:5; 0:8 and two
different sample sizes n D 50 and 500 were used. For each combination of �
and n, 500 simulations were carried out. The results using � D 0:3; 0:5; 0:8

are similar and therefore, only those under � D 0:3 are shown. The results are
given in Table 21.1, where the parameter estimates using an exponential tilt and
a conditional independence normal model are given under the columns “ET” and
“Normal,” respectively. The exponential tilt model performs very well, its estimates
are comparable to those from the normal mixture. For small samples .n D 50/,
the standard errors for the estimates using the normal model are smaller. However,

Table 21.1 Mean (standard error) of parameter estimates based on 500 simulations from a normal
mixture model

n D 50 n D 500

True ET Normal ET Normal

� 0:3 0.30 (0.09) 0.31 (0.07) 0.30 (0.02) 0.30 (0.02)

m11 0 0.11 (0.56) 0.02 (0.36) 0.00 (0.08) 0.00 (0.08)

m12 0 0.15 (0.69) 0.01 (0.37) �0.01 (0.09) �0.01 (0.09)

m13 0 0.22 (0.77) 0.02 (0.45) 0.02 (0.09) 0.00 (0.09)

m21 2 1.97 (0.31) 1.99 (0.27) 2.00 (0.06) 1.99 (0.06)

m22 2:5 2.46 (0.39) 2.49 (0.33) 2.50 (0.08) 2.49 (0.08)

m23 3 2.92 (0.39) 2.98 (0.31) 2.99 (0.05) 3.00 (0.05)

s11 1 0.90 (0.29) 0.92 (0.21) 0.99 (0.06) 0.99 (0.06)

s12 1 0.92 (0.28) 0.93 (0.20) 0.99 (0.06) 0.99 (0.06)

s13 1 1.01 (0.37) 0.95 (0.25) 1.02 (0.09) 0.99 (0.06)

s21 1:22 1.18 (0.17) 1.18 (0.15) 1.21 (0.04) 1.22 (0.04)

s22 1:41 1.37 (0.20) 1.37 (0.18) 1.41 (0.05) 1.41 (0.05)

s23 1 1.01 (0.21) 0.97 (0.13) 0.99 (0.04) 1.00 (0.04)
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the advantage of using a normal model effectively disappears for large samples
.n D 500/.

21.5.2 Mixtures with Gamma Component Distributions

Exponential tilt modeling can be thought of as a density estimation method (Efron
and Tibshirani 1996). Hence we can use exponential tilt even for data that do
not satisfy the exponential tilt assumption. We illustrate using mixtures of gamma
distributions with different shape parameters (for application, see Dey et al. 1995;
Wiper et al. 2001). We let F1;F2;F3 be CDFs from a gamma.k; �/ distribution with
.k; �/ D .2; 2/, (� D 4; 
2 D 8/, and G1;G2;G3 are CDFs corresponding to
gamma.k; �/ distributions with .k; �/ D .5; 2/; .10; 1/; and .10; 0:5/, respectively
(with .�; 
2/ D .10; 20/; .10; 10/, and .5; 2:5/, respectively). The results are
also similar for different � values, hence, we only present � D 0:4 here. We
use 1000 simulations of sample sizes n D 50 and 300 were carried out. We
computed the estimates of the component means and standard deviations using the
conditional independence normal mixture model and the conditional independence
nonparametric mixture (NP) model proposed by Benaglia et al. (2009) and Levine
et al. (2011) for comparison. The estimates from all three methods are shown in
Table 21.2. When the sample size is small, the performance of the exponential tilt
method is similar to the normal mixture model. For larger sample size (n D 300),
the tilted method does much better than the normal model and follows more closely
to the nonparametric method.

Table 21.2 Mean (standard error) of parameter estimates based on 1000 simulations from a
gamma mixture model

n D 50 n D 300

True ET Normal NP ET Normal NP

� 0:4 0.39 (0.12) 0.37 (0.13) 0.38 (0.10) 0.37 (0.04) 0.32 (0.05) 0.36 (0.04)

m11 4 3.86 (1.02) 3.66 (0.99) 3.86 (0.85) 3.85 (0.35) 3.41 (0.36) 3.78 (0.31)

m12 4 4.78 (2.52) 4.53 (2.68) 4.47 (2.15) 3.78 (0.53) 3.32 (0.45) 3.71 (0.34)

m13 4 4.03 (0.89) 4.11 (0.93) 4.02 (0.79) 3.97 (0.30) 4.06 (0.35) 3.96 (0.29)

m21 10 9.99 (1.12) 10.03 (1.38) 9.93 (1.19) 9.84 (0.38) 9.56 (0.39) 9.76 (0.36)

m22 10 9.04 (1.77) 9.04 (1.66) 9.27 (1.61) 9.86 (0.41) 9.59 (0.32) 9.79 (0.28)

m23 5 4.84 (0.44) 4.80 (0.42) 4.86 (0.42) 4.96 (0.13) 4.84 (0.13) 4.95 (0.12)

s11 2:82 2.47 (1.05) 2.11 (0.86) 2.63 (0.96) 2.65 (0.44) 1.96 (0.28) 2.62 (0.40)

s12 2:82 2.47 (1.00) 2.11 (0.87) 2.61 (0.91) 2.53 (0.50) 1.90 (0.33) 2.54 (0.38)

s13 2:82 2.42 (0.90) 2.40 (0.95) 2.49 (0.79) 2.84 (0.32) 2.91 (0.39) 2.80 (0.32)

s21 4:47 4.23 (0.80) 4.23 (0.87) 4.31 (0.72) 4.48 (0.29) 4.58 (0.28) 4.50 (0.28)

s22 3:16 3.20 (0.62) 3.27 (0.58) 3.15 (0.51) 3.21 (0.22) 3.42 (0.23) 3.27 (0.20)

s23 1:58 1.69 (0.46) 1.75 (0.43) 1.70 (0.35) 1.60 (0.14) 1.71 (0.13) 1.67 (0.12)
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Table 21.3 Mean (standard error) of parameter estimates based on 1000 simulations from a
mixture model of normal and gamma

n D 50 n D 300

True ET Normal NP ET Normal NP

� 0:4 0:33.0:08/ 0:34.0:11/ 0:36.0:09/ 0.30 (0.03) 0.35 (0.04) 0.35 (0.04)

m11 0 0:91.1:61/ 1:57.2:04/ 1:50.1:90/ 0.04 (0.16) 0.27 (0.23) 0.39 (0.22)

m12 4 3:23.1:60/ 2:55.1:79/ 2:70.1:74/ 3.94 (0.31) 3.45 (0.41) 3.64 (0.33)

m13 0 �0:04.1:48/ �0:15.3:69/ �0:07.3:37/ 0.00 (0.11) �0.01 (0.15) 0.00 (0.23)

m21 4 3:69.0:98/ 3:49.1:23/ 3:52.1:22/ 4.00 (0.20) 4.13 (0.23) 4.04 (0.20)

m22 0 0:23.0:86/ 0:48.0:93/ 0:39.1:05/ 0.01 (0.10) 0.02 (0.11) �0.07 (0.10)

m23 0 �0:01.1:04/ �0:01.0:98/ �0:01.1:06/ 0.00 (0.38) 0.01 (0.40) 0.01 (0.42)

s11 1 1:61.1:07/ 1:63.1:02/ 1:97.1:00/ 1.15 (0.41) 1.12 (0.18) 1.75 (0.48)

s12 2:82 2:45.0:91/ 2:43.1:19/ 2:40.0:91/ 2.78 (0.33) 3.03 (0.34) 2.82 (0.31)

s13 1 1:85.1:85/ 2:54.2:53/ 2:88.2:12/ 0.99 (0.11) 1.07 (0.56) 2.06 (0.81)

s21 2:82 2:61.0:62/ 2:62.0:69/ 2:56.0:63/ 2.79 (0.23) 2.87 (0.23) 2.75 (0.22)

s22 1:41 1:46.0:59/ 1:61.0:76/ 1:55.0:69/ 1.42 (0.15) 1.33 (0.12) 1.33 (0.13)

s23 5:65 5:10.1:37/ 4:69.1:63/ 4:76.1:43/ 5.64 (0.44) 5.79 (0.52) 5.60 (0.44)

21.5.3 Mixtures with Different Component Distributions

The third set of simulations studied the situation where the marginals are from
different families of distributions (see, e.g., Khalili et al. 2007). We let F1;F2;F3
be CDFs from N(0,1), gamma.k D 2; � D 2/, .� D 4; 
2 D 8/, and N(0,1)
distributions, respectively, and G1;G2;G3 are CDFs corresponding to gamma.k D
2; � D 2/, Laplace distributions with location and scale parameters (0,1), .� D
0; 
2 D 2/, and a Laplace with parameters (0,4), .� D 0; 
2 D 32/, respectively.
The results under different values of � are similar and hence only results for � D 0:3
are given. One thousand simulations of sample sizes n D 50 and 300 were carried
out. The results are given in Table 21.3.

It can be observed that the tilted method produces the best results for nearly all
the parameters. We also plotted the estimated marginal CDFs and PDFs for one of
the simulations in Fig. 21.1.

Again, even though the exponential tilt assumption does not hold here, the
exponential tilt estimates of the component means, standard deviations, CDF, and
PDF are very good.

21.6 Model Selection

In this section, we show how to estimate the number of components in the
mixture. We use a modified BIC (Bayesian Information Criterion, Schwarz 1978)
model selection criterion pBIC � �2 ln Lp C s ln.n/; where Lp is the maximized
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Fig. 21.1 Semiparametric estimation for a randomly selected dataset from the simulations with
different distributions with n D 300. The dotted line represents the true CDFs and PDFs. In this
dataset, the estimates are: O� D 0:25, . Om11; Om12; Om13/ D .0:10; 4:49; 0:06/; . Om21; Om22; Om23/ D
.4:20;�0:04; 0:14/; .Os11; Os12; Os13/ D .1:08; 2:86; 1:02/; .Os21; Os22; Os23/ D .3:28; 1:37; 5:05/

semiparametric profile likelihood and s is the number of parameters in the model.
Since mixture models do not satisfy all the regularity conditions in Schwarz (1978)
we turn to simulations to study the criterion. We use three models for simulations:

Model 1: Normal location mixtures with m D 2; 3; 4 components. There are k D
7 repeated measures with .m1j;m2j;m3j;m4j/ D .0; 2; 4; 6/ and slj D 1 for l D
1; : : : ;mI j D 1; : : : ; 7.

Model 2: Normal location mixtures with m D 2; 3; 4 components. There are k D
10 repeated measures with .m1j;m2j;m3j;m4j/ D .0; 2; 4; 6/ and slj D 1 for l D
1; : : : ;mI j D 1; : : : ; 10.

Model 3: Normal scale mixtures with m D 2; 3 components. There are k D 5

repeated measures with .m1j;m2j;m3j/ D .0; 0; 0/ and .s1j; s2j; s3j/ D .0; 10; 50/

for j D 1; : : : ; 5.

Table 21.4 gives the proportion of times pBIC selected the correct number of
components. For each model considered, the mixing proportions of the components
are equal, i.e., for a model with m components,�1 D �2 D : : : D �m. Included in the
table is the number of parameters estimated in each model, Np D 3k.m�1/C.m�1/,
which includes the exponential tilt parameters for each of k dimensions in the m� 1
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Table 21.4 pBIC simulations results for Models 1–3 where n is the number of observations, k is
the number of repeated measures, and m is the true number of components

m D 2 m D 3 m D 4

Model k Np n D 100 n D 200 Np n D 100 n D 200 Np n D 100 n D 200

1 7 15 1:00 1:00 30 1:00 1:00 45 0:96 0:98

2 10 21 1:00 1:00 42 0:95 0:99 63 0:91 0:97

3 5 11 0:94 0:97 22 0:65 0:67 — — —

components and the m � 1 mixing proportions �l. For Model 3 with m D 3 the
success rate for pBIC was roughly 2=3. However, when the sample size increased to
500, the success rate increased to 0.90. As a check, we compared pBIC to a modified
Akakie Information Criterion, which gives similar results. We conclude that pBIC
is effective for estimating the number of components in the semiparametric mixture.

21.7 Example

We applied the proposed method to a real data problem. The data comes from a
cognitive experiment discussed in Cruz-Medina et al. (2004) and is available at
http://www.blackwellpublishing.com/rss. The experiment was used to demonstrate
children fall into different groups in their approach to solve cognitive tasks. The
experiment recruited normally developing 9-year-old children. Each child was given
a set of different task conditions, which is a visual stimulus that involves two images
on a computer monitor. The left image is the target stimulus and the right image is
either identical to the target image or the mirror image of the target stimulus. The
child pressed one key indicating if he/she thought the right image was identical
or another key if they thought it was the mirror image. The outcome of interest
is the reaction time (RT), in milliseconds, for a child to give a response to the
visual stimulus. Each child was given k D 6 different task conditions and the
RT for the child to choose the correct response on each task was recorded. We
focused on the subset of n D 197 children who gave correct responses to all
the task conditions. Since the six task conditions were embedded in a random
sequence of tasks, the children could not have anticipated which task condition
would appear. Therefore, given that a child was in a particular group, it would
not be unreasonable to assume that their reaction times were independent and
the conditional independence assumption seems valid. Longer response times may
indicate reading comprehension problems. See Miller et al. (2001) for additional
background on this experiment.

http://www.blackwellpublishing.com/rss
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Fig. 21.2 Plot of the transformed sample correlations (log.r) against the transformed sample
correlations calculated under conditional independence (log.r.ind). The upper and lower confidence
bands of the transformed sample correlations are shown. The solid line is the 45ı line

To further examine whether the conditional independence assumption is reason-
able, we looked at the sample correlations between the coordinates and those under
conditional independence. The correlations were calculated and Fisher’s trans-
formations were performed. Figure 21.2 plots the transformed correlations under
conditional independence against the transformed correlations with no assumptions.

As a rough check, we included upper and lower points computed using 2=
p

n � 3
as an estimate of the standard errors of the transformed correlations. All estimates
assuming conditional independence fall within these bounds.

We compared m D 1; 2; 3; 4 component models for this dataset using pBIC and
selected m D 3 based on its lowest pBIC value (`P D �6081:6, pBICD 12300:6

and corresponding number of parameters D 26). The data based on m D 3 can be
written as xij; i D 1; 2; : : : ; 197I j D 1; : : : ; 6 with corresponding CDF

H.x1; : : : ; x6/ D �1
6Y

jD1
Fj.xj/C

3X

lD2
�l

6Y

jD1
Glj.xj/:

The estimated marginal CDFs, means and standard deviations of Fj;G2j;G3j; j D
1; : : : ; 6 using (21.22) and (21.24) are given in Table 21.5.

It appears that the distribution of RTs for the first task condition may well be
different from the distributions of RTs for the other task conditions. From the
results, the smallest group of children composed of about 20 % appear to have the
shortest RTs and also the smallest variation. This might suggest that these children
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Table 21.5 Estimated
component means for the RT
data with m D 3 components

Component

1 2 3

�1 0.49 �2 0.20 �3 0.31

m11 2024 m21 1577 m31 3024

m12 1712 m22 1456 m32 2776

m13 1864 m23 1265 m33 2761

m14 1799 m24 1312 m34 2771

m15 1870 m25 1171 m35 2729

m16 1957 m26 1216 m36 2661

s11 691 s21 420 s31 1074

s12 469 s22 337 s32 907

s13 609 s23 200 s33 1101

s14 516 s24 332 s34 1097

s15 777 s25 402 s35 1162

s16 636 s26 261 s36 1180

understand the concept and are quick to choose correctly. The next group composed
of about 30 % of the children have the longest RTs as well as the largest variation.
For the children in this group, a possible explanation is that they look longer to
react to certain tasks and quicker for other tasks. It would be interesting to break up
the trials based on which was the correct answer, the identical image or the mirror
image. The last and largest group, about 50 %, are the children in the middle.

Figure 21.3 shows the semiparametric estimates of the component CDFs. Similar
analyses were carried out using the log transformed data with similar results. Note
the variation in the coordinate means and standard deviations again suggests that
the component marginal distributions differ. The data were originally analyzed by
Cruz-Medina et al. (2004) by discretizing the data and assuming that the repeated
measures were identically distributed. The estimated proportions were 0.55, 0.16,
and 0.29 in the order given in Table 7. The common coordinate medians were 1689,
1273, and 2523 for the three components and are a bit lower than the reported sets
of five means for each component.

21.8 Discussion and Modifications

Walther (2002) introduces a univariate mixture of log-concave densities. He gives a
representation theorem, and based on this theorem, develops a test for the presence
of a mixture model. Chang and Walther (2007) extend this model to the multivariate
case in (21.1). However, lack of identifiability is a difficulty for their model (Walther
2002, pp. 509); a mixture of log-concave densities may itself be log-concave and
identifiability fails.
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Fig. 21.3 Semiparametric estimates of Fj;Glj; j D 1; : : : ; 6; l D 2; 3 under the exponential tilt
model for the RT data

The method we proposed assumes all repeated measures are related by (21.3).
Our model could be modified to handle situations where some of the dimensions
are modeled by (21.3) while the others are modeled parametrically. For example, let
the first j1 dimensions be modeled by (21.3), then

h.x1; : : : ; xk; ı;˝/

D
8
<

:�1
kY

jDj1C1
fj.xj; !

f
j /C

mX

lD2
�l exp.

j1X

jD1
Qx>

j � lj/

kY

jDj1C1
gj.xj; !

g
j /

9
=

;

j1Y

jD1
fj.xj/

D  .x1; : : : ; xk; ı;˝/

j1Y

jD1
fj.xj/;

where fj; gj; j D j1 C 1; : : : ; k are parametrized by˝ D .!f
j ; !

g
j /, which leads to

`p.ı;˝/ D log .x1; : : : ; xk; ı;˝/�
nX

iD1

j1X

jD1
log

"
nC

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g
#
:
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Our formulation of a multivariate mixture can also be interpreted as a copula.
Replacing �lj=n by �l, a simple rearrangement yields the profile likelihood as

n�kn
nY

iD1

"
�1 CPm

lD2 �l exp.
Pk

jD1 Qx>
ij � lj/

Qk
jD1f�1 C

Pm
lD2 �l exp.Qx>

ij � lj/g

#
:

If we multiply the numerator and denominator by
Qk

jD1 fj.xj/, then the profile

likelihood is proportional to c .H1.x1/; : : : ;Hk.xk// � h.x1; : : : ; xk/=
Qk

jD1 hj.xj/,
the joint mixture density divided by a product of the marginal densities. This
can be viewed as a semiparametric copula density evaluated at the marginal
CDFs. We can also interpret our exponential tilt mixture as h.x1; : : : ; xk/ D
c .H1.x1/; : : : ;Hk.xk//

Qk
jD1 hj.xj/. Hence we begin with a product of (independent)

marginals and model the correlation and mixture structure via the copula based
on the mixture of exponential tilts. Further motivation can be found in Chen et al.
(2006). This approach also avoids the curse of dimensionality problem associated
with estimation in high dimensional distributions.
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Chapter 22
A B-Robust Non-Iterative Scatter Matrix
Estimator: Asymptotics and Application
to Cluster Detection Using Invariant Coordinate
Selection

Mohamed Fekri and Anne Ruiz-Gazen

Abstract In Ruiz-Gazen (Comput Stat Data Anal 21:149–162, 1996), a simple B-
robust estimator was introduced. Its definition is explicit and takes into account the
empirical covariance matrix together with a one-step M-estimator. In the present
paper, we derive the asymptotics and some robustness properties of this estimator.
We compare its performance to the usual M- and S-estimators by means of a Monte-
Carlo study. We also illustrate its use for cluster detection using Invariant Coordinate
Selection on a small example.

Keywords Asymptotic distribution • Eigenelements • Influence function •
M-estimators • MCD estimators • S-estimators

22.1 Introduction

The empirical mean and covariance estimators are the maximum likelihood esti-
mators of multivariate gaussian distribution parameters. But it is well known that
these estimators are very sensitive to outlying observations (Devlin et al. 1981;
Rousseeuw and Leroy 1987). Hence, many authors have proposed robust location
and scatter estimators (see Maronna and Yohai 1988 for a survey). The most widely
used robustness criteria are the B-robustness (bounded influence function) and a
high breakdown point. While, roughly speaking, the influence function is a local
robustness measure which describes the effect of infinitesimal contamination on
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the estimator, the breakdown point is a global notion which gives the smallest
proportion of outliers that can carry the estimator over all bounds.

Robust location and scatter estimators may be classified in different categories.
The first category regroups the “element-wise” estimators which consist in esti-
mating robustly each variance and covariance term and putting them altogether in
order to reconstitute a dispersion matrix estimator. One of the first proposals in
this category is studied in Devlin et al. (1981) and other references are Ma and
Genton (2001), Maronna and Zamar (2002), Béguin and Hulliger (2004). The main
advantage of the element-wise approach is its low computational cost. However,
its drawback is that the obtained dispersion estimators are not necessarily definite
positive nor affine equivariant.

The second category consists in affine equivariant estimators which are defined
in a global way. Among them are the M-, the S-, the Minimum Volume Ellip-
soid (MVE), and the Minimum Covariance Determinant (MCD) estimators, their
reweighted version and the projection based estimators. Multivariate location and
dispersion M-estimators generalize the maximum likelihood location and dispersion
estimators of an elliptical model. They are defined as weighted means and covari-
ances where the weights are decreasing functions of the Mahalanobis distances
based on the robust estimators themselves. So, their defining equations are implicit
and optimization algorithms are needed in order to calculate them. Their asymptotic
and robustness properties have been studied notably in Maronna (1976). They are
B-robust estimators but their breakdown point is decreasing when the dimension
increases. Actually, if p denotes the dimension of the data, the breakdown point
of M-estimators is 1=p. These estimators have been revisited recently in Dümbgen
et al. (2013a), Dümbgen et al. (2013b).

On the contrary, the S-, MVE, and MCD estimators can reach a high breakdown
point even in high dimensions. These estimators are also B-robust. The MVE and the
MCD estimators have been introduced in Rousseeuw (1985), Rousseeuw and Leroy
(1987). Both are high breakdown location and dispersion estimators but, since the
MVE is not

p
n convergent (see Davies 1992), it has been more or less superseded

by the MCD estimator which has the usual rate of convergence (Cator and Lopuhaä
2012). The MVE and the MCD estimators have been generalized to the class of
S-estimators by Davies (1987). The counterpart of using high breakdown point
estimators is the lack of efficiency under the assumed model (generally the gaussian
model). In order to increase the efficiency of high breakdown point estimators,
some authors have proposed to use reweighted estimators (see Rousseeuw and
Croux 1994). The idea is to use high breakdown point estimators as an initial
step and calculate weighted location and dispersion estimators. Usually, the weight
is a dummy variable which equals zero for observations associated with large
Mahalanobis distances. The asymptotic and the robustness properties of reweighted
estimators have been studied in Lopuhaä (1999). Croux and Haesbroeck (2000)
give an interesting comparison of the efficiency of the reweighted S- and MCD
estimators and conclude that reweighting the MCD estimator leads to an important
gain in efficiency while it is not really worthwhile for S-estimators (except for small
dimension with 25 % breakdown point).
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The main drawback of S- and MCD estimators is that they are based on objective
functions that may have many local optima. Consequently, they are calculated
through approximate algorithms which use random subsampling (Rousseeuw and
Leroy 1987). Multivariate dispersion matrix estimators, called sign and rank
covariance matrix estimators, with high efficiency at elliptical models have been
introduced in Visuri et al. (2000) and studied in Ollila et al. (2002), Ollila et al.
(2003). They have not only a zero breakdown point but also an unbounded influence
function.

The projection based estimators constitute another class of estimators which are
based on the idea that, if a multivariate observation is outlying, there must exist
a one-dimensional projection of the data on which this observation is a univariate
outlier. The first estimator defined in this category is the Stahel–Donoho estimator
proposed independently by Stahel (1981), Donoho (1982). Maronna and Yohai
(1995) have proved that they are

p
n-consistent, studied their asymptotic bias and

illustrated via simulation that they have a high relative efficiency. Gervini (2002)
derived their influence functions and noted that they have the same form as influence
functions of one-step estimators which may explain their high relative efficiency.
The asymptotic normality of the Stahel–Donoho estimator has been proved by Zuo
et al. (2004).

From a computational point of view, the Stahel–Donoho estimator, as many
projection-pursuit based estimators, is difficult to calculate since all the projection
directions have to be considered. Zuo and Lai (2011) is a recent reference on the
subject but only for bivariate data. Peña and Prieto (2001) proposed to consider
a certain set of projection directions so that “the proposed procedure can be seen
as an empirically successful and faster way of implementing the Stahel–Donoho
algorithm.”

Note also that another class of projection based estimators (called P-estimators)
has been introduced by Maronna et al. (1992) but they have not been studied further
since their numerical computation involves a double optimization procedure which
is very difficult to handle.

As a summary on robust multivariate location and dispersion estimation, we can
say that high breakdown point estimators are attractive but are difficult to compute
numerically.

In Ruiz-Gazen (1996), a simple scatter estimator denoted by Un.ˇ/ with ˇ > 0 is
introduced. It consists of a simple transformation of a one-step weighted dispersion
matrix. The main advantage of this estimator is that its definition is explicit and it
is very easy and fast to compute. It has a zero breakdown point but is B-robust. In
the present paper, we propose to complete the asymptotic study of this estimator
and provide an application to cluster detection using Invariant Coordinate Selection
(ICS) as proposed in Caussinus et al. (2003) and generalized in Tyler et al. (2009).

The paper is organized as follows. In the second section, we recall the definition
of Un.ˇ/ and prove its consistency in the gaussian case. We also prove its asymptotic
normality when the underlying distribution has fourth moments and give an explicit
asymptotic variance in the gaussian case. We also give the asymptotic distribution
of the eigenelements of Un.ˇ/ even in the case of equal eigenvalues which is not
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standard. In a third section, we use the perturbation theory (Kato 1966) to calculate
the influence function of Un.ˇ/ and of its eigenelements. Section 22.4 contains
the results of a Monte Carlo study which shows that Un.ˇ/ is calculated much
faster than the S-estimators and is competitive when its results are compared to M-
estimators. Section 22.5 applies Un.ˇ/ on a small data set in order to detect clusters
using ICS. In this example the use of high breakdown point scatter estimators is
not adapted while there is a gain in using the proposed estimator compared to the
empirical covariance estimator.

22.2 Definition, Consistency, and Asymptotic Normality

22.2.1 Definition

Let us consider X1;X2; : : : ;Xn, n observations in Rp .n > p/ independent and
identically distributed. The common distribution F has mean � and covariance
matrix ˙ assumed to be positive definite. For ˇ > 0, we define the covariance
matrix estimator Un.ˇ/ D

�
Sn.ˇ/

�1 � ˇV�1
n

��1
with:

Vn D 1

n

nX

iD1
.Xi ��n/.Xi ��n/

>;

Sn.ˇ/ D
Pn

iD1 K.ˇkXi � �nk2V�1
n
/.Xi ��n/.Xi � �n/

>
Pn

iD1 K.ˇkXi ��nk2V�1
n
/

;

kXi ��nk2V�1
n
D .Xi ��n/

>V�1
n .Xi ��n/;

K a decreasing function from RC to RC and �n a location estimator which
converges almost surely (a.s.) to �.

We recall from Ruiz-Gazen (1996) that:

1. if �n is an affine equivariant location estimator, then Un.ˇ/ is an affine
equivariant covariance matrix estimator,

2. the definition of Un.ˇ/ may be justified by studying the almost sure limit
of Un.ˇ/ to ˙ for a contaminated model of the form .1 � "/N .x0;˙ / C
"N .x1;˙ /;where x0 and x1 are vectors in Rp, " 2 �0I 1Œ and K.x/ D exp.�x=2/.
Moreover, for any ˇ > 0, the influence function of Un.ˇ/ is bounded while the
influence function of Sn.ˇ/ is not.

3. Un.ˇ/ is positive definite for ˇ � 1=p. So, we may use ˇ D 1=p for small
to moderate values of p. A Monte Carlo study has shown that the use of ˇ0 D
.26"/=p, where " is the proportion of contaminated data, may be advisable for
moderate to large values of p, even if ˇ0 is more than 1=p. In the present paper,
we propose to use " D 5% or " D 10% but this percentage may be increased if
one suspects that the data are heavily contaminated.
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In this paper, we use the following notations:

– vec˙ denotes the column vector obtained by piling up the columns of the matrix
˙ ,

– ˝ denotes the Kronecker product,
– Cp denotes the commutation matrix p2 � p2 such that Cp� vecA DvecA>.

In the following, we obtain the almost sure convergence and the asymptotic
normality of Un.ˇ/ under weak hypotheses on the weight function K and on the
distribution F. In order to obtain consistency and explicit asymptotic variances,
we focus on the gaussian distribution and use an exponential form for the weight
function. The use of such a weight function has been suggested by Meshalkin (1970)
and leads to simple expressions in the gaussian case.

Proofs of Theorems 22.1 and 22.2 rely on the following lemma by Le Cam (1953)
which is a version of the uniform law of large numbers.

Lemma 22.1 Let X;X1;X2; : : : ; be independent and identically distributed ran-
dom variables and g.x;�/ a continuous function in � 2 � where � is a compact
set. If there exists a function H such that E.H.X// <1 and kg.x;�/k � H.x/, for

all x and � , then sup
�2�
k1

n

nX

iD1
g.Xi;�/ � E.g.X;�//k converges a.s. to 0.

22.2.2 Consistency

Theorem 22.1 gives the almost sure limit of Sn.ˇ/ and Un.ˇ/ for general weight
functions K.

Theorem 22.1 Let us assume that the distribution F of X has mean � and
covariance matrix ˙ . If K is a bounded function on RC and .�;˙ / 7! K.ˇkX �
�k2

˙�1 / is almost surely continuous for all .�;˙ /, then Sn.ˇ/ converges a.s. to

S.ˇ/ D
EF

�
K.ˇkX � �k2

˙�1 /.X � �/.X � �/>
�

EF

�
K.ˇkX � �k2

˙�1 /
� (22.1)

and Un.ˇ/ converges a.s. to .S�1.ˇ/� ˇ˙�1/�1.

Proof

Let An.�n;Vn/ D 1

n

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi ��n/.Xi ��n/

>;

and an.�n;Vn/ D 1

n

nX

iD1
K.ˇkXi ��nk2V�1

n
/:



400 M. Fekri and A. Ruiz-Gazen

We have

Sn.ˇ/ D An.�n;Vn/

an.�n;Vn/
:

Let � D .�>; .vec˙ />/>. We denote by Br.�/ the closed ball of center � and
radius r. As�n converge a.s. to�, for r > 0, with probability one, there is an integer
N such that for n > N, �n D .�>

n ; .vecVn/
>/> is contained in Br.�/. So, in order

to apply Lemma 22.1, we place ourselves in the compact set Br.�/. By applying
Lemma 22.1 and Slutsky’s theorem, we first prove that An.�n;Vn/ converges a.s. to
h.�;˙ / D E.g.X;�;˙ // where:

g.x;�;˙ / D K.ˇkx � �k2
˙�1 /.x� �/.x � �/>:

We have:

kAn.�n;Vn/� h.�;˙ /k � sup
�;


kAn.�;
 / � h.�;
 /k
Ckh.�n;Vn/� h.�;˙ /k:

Since K is bounded, kg.x;�;˙ /k � p2.kxk/ where p2 is a second degree polyno-
mial. We assume that X has a second moment and so we can apply Lemma 22.1 and
write:

sup
�;


kAn.�;
 /� h.�;
 /k a:s:�!
n!1 0

Since g is bounded by an integrable function, h is continuous by Lebesgue
dominated convergence theorem and An.�n;Vn/ converges a.s. to h.�;˙ / by
Slutsky’s theorem.
In a similar way, we can prove that:

an.�n;Vn/
a:s:�!

n!1 E
�
K.ˇkx � �k2

˙�1 /
�
:

Finally, Sn.ˇ/ converges a.s. to S.ˇ/. ut
In the gaussian case, with an exponential K function, we can give a more precise
expression of Eq. (22.1) and derive the consistency of Un.ˇ/.

Corollary 22.1 If F D N .�;˙ / and K.x/ D exp.�x=2/, then Sn.ˇ/ converges

a.s. to
1

1C ˇ˙ and Un.ˇ/ is a consistent estimator of˙ .

Note that under the regularity conditions given in Theorem 22.1 on the weight
function K and for any elliptical distribution F, Un.ˇ/ is a consistent estimator of
˙ up to a multiplicative constant. In practice, we recommend the use of K.x/ D
exp.�x=2/ which leads to a consistent estimator of˙ at the normal model.



22 A B-Robust Non Iterative Scatter Matrix Estimator 401

22.2.3 Asymptotic Distribution of Un.ˇ/

If the common distribution F has fourth moments and if the weight function K
verifies some general regularity conditions, we can prove the asymptotic normality
of Un.ˇ/. In order to precise the asymptotic variances, we can consider an elliptical
F distribution with fourth moments and an exponential weight function K. In this
case, the detailed asymptotic variances for Un.ˇ/ are given in Fekri and Ruiz-
Gazen (2000) but will not be detailed in the present paper. In order to obtain
explicit asymptotic variances, we focus on the gaussian case. Theorem 22.2 gives
the asymptotic distribution of Un.ˇ/ when F is gaussian and K is exponential.

Theorem 22.2 If F D N .�;˙ /, K.x/ D exp.�x=2/ and
p

n.�n � �/ converges
in distribution, then

p
nvec.Un.ˇ/ � ˙ / converges in distribution to a gaussian

distribution with mean 0 and covariance matrix:


1.Ip2 C Cp/˙ ˝˙ C 
2vec˙ .vec˙ />

with 
1 D .1C ˇ/pC4.1C 2ˇ/� pC4
2 and 
2 D ˇ2.1C ˇ/�2
1.

Note that the proof is not trivial because the statistic Un.ˇ/ is defined through
the estimators �n and Vn.

Proof Let m denote a p� 1 vector and 
 a p� p positive definite matrix.We define:

Tn.m;
 / D 1

n

nX

iD1
K.ˇkXi �mk2


 �1 /.Xi �m/˝ .Xi �m/

and

tn.m;
 / D 1

n

nX

iD1
K.ˇkXi �mk2


 �1 /:

We first prove that vecSn.ˇ/ and
Tn.�;Vn/

tn.�;Vn/
have the same asymptotic distribution.

We have:

vecSn.ˇ/ D 1

tn.�n;Vn/

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi ��/˝ .Xi � �/

�.�n ��/˝
1

tn.�n;Vn/

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi ��/

� 1

tn.�n;Vn/

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi ��/˝ .�n ��/

C.�n � �/˝ .�n � �/ :
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We assume that
p

n.�n � �/ converges in distribution and we have:

1

tn.�n;Vn/

nX

iD1
K.ˇkXi ��nk2V�1

n
/.Xi � �/

which converges a.s. to:

E.K.ˇkX � �k2
˙�1 /.X � �//

E.K.ˇkX ��k2
˙�1 //

D E.K.ˇkX � �k2
˙�1 /kX � �k˙�1 /

E.K.ˇkX ��k2
˙�1 //

E

�
X ��

kX � �k˙�1

	
D 0:

So,

vecSn.ˇ/ D 1

tn.�n;Vn/

nX

iD1
K.ˇkXi ��nk2V�1

n
/.Xi � �/˝ .Xi � �/C o

�
1p
n

	
:

By using a Taylor-Lagrange expansion of:

1

n

nX

iD1
K.ˇkXi ��nk2V�1

n
/.Xi � �/˝ .Xi ��/

at �n D �; we obtain that:

1

n

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi ��/˝ .Xi ��/ D Tn.�;Vn/C �n. Q�n/:.�n � �/

converges a.s. to 0 where

�n. Q�n/ D
2ˇ

n

nX

iD1
K0.ˇkXi � Q�nk2V�1

n
/.Xi ��/˝ .Xi ��/.Xi � Q�n/

>V�1
n ;

with Q�n D �C ˛.�n ��/ and ˛ 2 �0I 1Œ. By Lemma 22.1,

1

n

nX

iD1
K.ˇkXi � �nk2V�1

n
/.Xi � �/˝ .Xi � �/ D Tn.�;Vn/C o

�
1p
n

	
:

In the same way, we have:

tn.�n;Vn/ D tn.�;Vn/C o

�
1p
n

	
;
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so that:

vecSn.ˇ/ D vecS.ˇ/C 1

t



t.Tn.�;Vn/� T/� .tn.�;Vn/� t/T

tn.�n;Vn/

�
C o

�
1p
n

	
;

where

T D 1

p
E.K.ˇkX ��k2

˙�1 / kX ��k2˙�1 /vec˙

and

t D E.K.ˇkX ��k2
˙�1 //:

Concerning Un.ˇ/, we have:

p
n.Un.ˇ/�˙ / D �

p
n.S�1

n .ˇ/�ˇV�1
n /�1

�
.S�1

n .ˇ/ � S�1.ˇ//�ˇ.V�1
n �˙�1/

�
˙

which has the same asymptotic distribution as

p
n˙

�
ˇ.V�1

n �˙�1/� .S�1
n .ˇ/ � S�1.ˇ//

�
˙ :

By using the vec notation, we have:

p
nvec.Un.ˇ/�˙ /

D pn˙ ˝˙ �
S�1.ˇ/˝ S�1

n .ˇ/vec.Sn.ˇ/ � S.ˇ//

� ˇ˙�1 ˝ V�1
n vec.Vn �˙ /

�C o.1/

D pn.1C ˇ/2vec.Sn.ˇ/ � S.ˇ// �pnˇvec.Vn �˙ /C o.1/

D pn

�
1C ˇ

t

	2
.t.Tn.�;Vn/� T/ � .tn.�;Vn/� t/T/

�pnˇvec.Vn �˙ /C o.1/

D pn

�
1C ˇ

t

	2
.t.Tn.�;˙ / � T/C t�nvec.Vn �˙ /

� ..tn.�;˙ /� t/C ınvec.Vn �˙ //T/ �
p

nˇvec.Vn �˙ /C o.1/

D pn

 
.1C ˇ/2

t
Ip2 ; �

�
1C ˇ

t

	2
T; Bn

!0

@
Tn.�;˙ / � T
tn.�;˙ / � t
vec.Vn �˙ /

1

AC o.1/
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where

Bn D .1C ˇ/2
t

�n �
�
1C ˇ

t

	2
T ın � ˇIp2 ;

�n D @Tn.�;˙ /

.@vec˙ />

ˇ̌
ˇ̌
ˇ QVn

D �ˇ
n

nX

iD1
K0.ˇkXi ��k2eVn

�1 / vec.Xi ��/.Xi � �/>

�
vec.Xi � �/.Xi � �/>

�> fVn
�1 ˝fVn

�1;

and

ın D @tn
.@vec˙ />

ˇ̌
ˇ̌

QVn

D �ˇ
n

nX

iD1
K0.kX � �k2eVn

�1
/
�

vec.eVn
�1.X� �/.X� �/>eVn

�1�>
:

By the central limit theorem, the associated projector

p
n.Tn.�;˙ /� T; tn.�;˙ /� t; vec.Vn �˙ //>

converges to a gaussian distribution with zero mean and covariance matrix:

� D
0

@
�11 �12 �13

�12 �22 �23

�13 �23 �33

1

A

where

�11 D k3.2ˇ/

p.pC 2/.Ip2 C Cp/˙ ˝˙ C
�

k3.2ˇ/

p.pC 2/ �
k22.ˇ/

p2

	
vec˙ .vec˙ />;

�12 D k2.2ˇ/ � k1.ˇ/k2.ˇ/

p
.vec˙ />;

�22 D k1.2ˇ/� k21.ˇ/;

�13 D k3.ˇ/

p.pC 2/.Ip2 C Cp/˙ ˝˙ C
�

k3.ˇ/

p.pC 2/ �
k2.ˇ/

p

	
vec˙ .vec˙ />;

�23 D
�

k2.ˇ/

p
� k1.ˇ/

	
vec˙ ;

�33 D .Ip2 C Cp/˙ ˝˙
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with

k1.ˇ/ D E

K.ˇkX ��k2

˙�1 /
�
;

k2.ˇ/ D E

K.ˇkX � �k2

˙�1 /kX � �k2˙�1

�
;

k3.ˇ/ D EŒK.ˇkX ��k2
˙�1 /kX ��k4˙�1 �

and K.x/ D exp.�x=2/.
Bn converges a.s. to:

B D �ˇ.1C ˇ/
2

p.pC 2/t E

K0.ˇ kX � �k2

˙�1/kX � �k4˙�1

� �
Ip2 C Cp C vec˙ .vec˙�1/>

�

Cˇ.1C ˇ/
2

p t2
E

K0.ˇ kX � �k2

˙�1//kX � �k2˙�1

�
T
�
vec˙�1

�
> � ˇIp2

D ˇ.1C ˇ/2
2p.pC 2/

k3.ˇ/

k1.ˇ/

�
Ip2 C Cp C vec˙ .vec˙�1/>

�

�ˇ.1C ˇ/
2

2p2
k22.ˇ/

k21.ˇ/
vec˙

�
vec˙�1

�
> � ˇIp2 :

So, we obtain that
p

nvec.Un.ˇ/�˙ / converges to a gaussian distribution with
zero mean and covariance matrix:

 
.1C ˇ/2

t
Ip2 ; �

�
1C ˇ

t

	2
T; B

!
�

 
.1C ˇ/2

t
Ip2 ; �

�
1C ˇ

t

	2
T; B

!>

D .1C ˇ/pC4.1C 2ˇ/� pC4
2 .Ip2 C Cp/˙ ˝˙

C.1C ˇ/pC4.1C 2ˇ/� pC4
2 ˇ2vec˙ .vec˙ />

ut

22.2.4 Asymptotic Distribution of the Eigenelements of Un.ˇ/

Now, we are interested in the asymptotic distributions of the eigenvalues and
eigenvectors of Un.ˇ/. We use results by Dauxois et al. (1982), Dossou-Gbete and
Pousse (1991), and Fekri and Fine (1995) on the convergence of eigenelements of a
random matrix.

Let us consider �i an eigenvalue of ˙ with multiplicity ki and Pi the associated
projector. We can find ki series of eigenvalues O�ij of Un.ˇ/ which converge a.s. to
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�i. We define:

O�i D 1

ki

kiX

jD1
O�ij

and OPi the sum of the projectors associated with the ki eigenvalues.

Theorem 22.3 If F D N .�;˙ /, K.x/ D exp.�x=2/ and
p

n.�n � �/ converges
in distribution, then:

(i)
p

n. O�i � �i/ converges to a gaussian distribution with mean 0 and variance:

�2i

�
2
1

ki
C 
2

	
;

(ii)
p

nvec. OPi � Pi/ converges to a gaussian distribution with mean 0 and covari-
ance matrix:


1.Ip2 C Cp/
X

j¤i

�i�j

.�i � �j/2
.Pi ˝ Pj C Pj ˝ Pi/:

Proof Dauxois et al. (1982), Dossou-Gbete and Pousse (1991), Fekri and Fine
(1995) have studied the asymptotic distribution of the eigenelements of a random
matrix. So, it is known that if

p
n.Un.ˇ/ �˙ /

converges in distribution to a gaussian variable Y with mean zero then

p
n. O�i � �i/

converges in distribution to

1

ki
tr.PiY/

a gaussian variable with mean zero and covariance matrix:

1

k2i
EŒ.vecPi/

>vecY.vecY/>vecPi�

D 1

k2i
.vecPi/

> �
1.Ip2 C Cp/˙ ˝˙ C 
2vec˙ .vec˙ />
�

vecPi

D �2i

�
2

1

kj
C 
2

	
:
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We also have that
p

nvec. OPi � Pi/ converges in distribution to

vec.SiYPi C PiYSi/;

a gaussian variable with mean zero and covariance matrix:

EŒ.Pi ˝ Si C Si ˝ Pi/vecY.vecY/>.Pi ˝ Si C Si ˝ Pi/

D 
1.Ip2 C Cp/ .Pi˙Si ˝ Si˙Pi C Pi˙Pi ˝ Si˙Si C Si˙Si ˝ Pi˙Pi

C Si˙Pi ˝ Pi˙Si/

D 
1�i.Ip2 C Cp/ .Pi ˝ Si˙Si C Si˙Si ˝ Pi/

D 
1.Ip2 C Cp/

0

@
X

j¤i

�i�j

.�i � �j/2
.Pi ˝ Pj C Pj ˝ Pi/

1

A :

ut
If �i, �j are two simple eigenvalues of˙ and ui, uj are the associated eigenvectors

respectively, we can prove the following corollary:

Corollary 22.2 If F D N .�;˙ /, K.x/ D exp.�x=2/ and
p

n.�n ��/ converges
in distribution, then:

(i)
p

n

 
b�i � �i

b�j � �j

!
converges to a gaussian distribution with mean 0 and covari-

ance matrix:
 
�2i .2
1 C 
2/ �i�j
2
�i�j
2 �2j .2
1 C 
2/

!
;

(ii)
p

n

�
bui � ui

buj � uj

	
converges to a gaussian distribution with mean 0 and covari-

ance matrix:


1

0

BBB@

X

k¤i

�i�k

.�i � �k/2
uku>

k � �i�j

.�i � �j/2
uju>

i

� �i�j

.�i � �j/2
uiu>

j

X

k¤j

�j�k

.�j � �k/2
uku>

k

1

CCCA :

The asymptotic variances of the eigenvalues may be used to construct large
sample confidence intervals and tests. Croux and Haesbroeck (2000) give the
asymptotic efficiencies at normal distributions for a simple eigenvalue �i estimator
and for its associated eigenvector estimator vi based on the M-, the S-, and the one-
step reweighted Minimum Covariance Determinant (RMCD) estimators which are
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Table 22.1 Asymptotic efficiencies of the eigenelements of Un.ˇ/, M, S, and RMCD at the
gaussian model

Dimensions

p D 2 p D 3 p D 5 p D 10 p D 30

Eff(�i) Un.ˇ/ 0:665 0:774 0:869 0:905 0:970

M 0:881 0:895 0:947 0:974 0:991

S 0:895 0:941 0:968 0:990 0:997

RMCD 0:599 0:680 0:753 0:836 0:901

Eff(vi) Un.ˇ/ 0:702 0:798 0:881 0:911 0:971

M 0:920 0:947 0:969 0:986 0:996

S 0:850 0:924 0:967 0:988 0:997

RMCD 0:635 0:742 0:820 0:873 0:933

classical robust covariance estimators. In the present paper, we do not recall the
definition and the properties of these estimators but the reader can refer to Croux
and Haesbroeck (2000) for a survey. In order to compare the efficiencies at normal
distributions for eigenelements estimators based on Un.ˇ/ with estimators based
on the M-, the S-, and the RMCD estimators, we consider (Table 22.1) the same
dimension values as in the second table of Croux and Haesbroeck (2000). We recall
all the values from Croux and Haesbroeck (2000) and add the values for the Un.ˇ/

estimator. We denote by Eff these efficiencies. We have Eff.�i/ D 2=.2
1 C 
2/
and Eff.vi/ D 1=
1 if we choose the Hilbert-Schmidt norm for the asymptotic
covariance matrix of vi. Following the recommendation given in Sect. 22.2.1, we
take ˇ D 1=p for p D 2; 3; 5 and ˇ D .26"/=p with " D 5% for p D 10; 30.
Definitions of the M-, S-, and RMCD estimators also involve choices of functions
and constants which are detailed in Croux and Haesbroeck (2000). The efficiencies
for Un.ˇ/ are relatively high but are not as good as the ones obtained for the M- and
the S-estimators by Croux and Haesbroeck. Nevertheless, they are better than the
efficiencies based on the RMCD estimator.

22.3 Influence Function of Un.ˇ/ and of Its Eigenelements

The influence function of an estimator measures the impact of an infinitesimal
data contamination on the estimator (see Hampel et al. 1986 for more details).
The influence function of a robust estimator is expected to be bounded and such
estimators are said B-robust.

In Ruiz-Gazen (1996), we calculate the influence function of Un.ˇ/ and obtain
that, if F D N.0;˙ /, K.x/ D exp.�x=2/, and �n is an affine equivariant estimator,
then the influence function of the functional U associated with Un is:

IF.x;U;F/ D ˛1.kx � �k2˙�1 /.x ��/.x� �/> � ˛2.kx � �k2˙�1 /˙



22 A B-Robust Non Iterative Scatter Matrix Estimator 409

with

˛1.a/ D .1C ˇ/
pC4
2 K.ˇa/

and

˛2 D .1C ˇ/˛1:

Since the functions x 7! x˛1.x/ and ˛2 are bounded for ˇ > 0, the influence function
of Un.ˇ/ is bounded and Un.ˇ/ is B-robust.

Now, we give the influence function of the eigenelements of Un.ˇ/. We do not
need any assumption concerning the convergence of �n but just assume that �n is
an affine equivariant estimator.

Theorem 22.4 If �n is an affine equivariant estimator, then

IF.x; �iIF/ D
˛1.kx ��k2˙�1 /

ki
.x � �/>Pi.x ��/� ˛2.kx � �k2˙�1 /�i

IF.x;PiIF/ D ˛1.kx � �k2˙�1 /
�
Si.x � �/.x � �/>Pi C Pi.x � �/.x ��/>Si

�

with

Si D
X

j¤i

1

�i � �j
Pj:

Proof We have:

U..1 � "/F C "�x/ D U.F/C "IF.x;UIF/C O."2/;

where �x denotes the Dirac distribution at x. By the perturbation theory of linear
operators (Kato 1966) we can write:

�j..1 � "/F C "�x/ D �i.F/C "�j C O."2/

for all j 2 Ji, where Ji D fk; �k D �ig and .�j/j2Ji is the full decreasing series of the
eigenvectors of PiIF.x;UIF/Pi.
If �i..1� "/FC "�x/ is the mean of the ki eigenvalues of U..1� "/FC "�x/, then:

�i..1 � "/F C "�x/ D �i.F/C "

ki
tr.PiIF.x;UIF//C O."2/

It follows that:

IF.x; �iIF/ D 1

ki
tr.PiIF.x;UIF//
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and replacing IF.x;UIF/ by its expression yields to:

IF.x; �iIF/ D
˛1.kx � �k2˙�1 /

ki
.x ��/>Pi.x� �/ � ˛2.kx � �k2˙�1 /�i:

For the eigenprojectors,

Pi..1 � "/FC "�x/ D Pi.F/C ".PiIF.x;UIF/Si C SiIF.x;UIF/Pi/CO."2/

and because Pi˙Si D 0,

IF.x;PiIF/ D ˛1.kx ��k2˙�1 /
�
Si.x � �/.x ��/>Pi C Pi.x ��/.x ��/>Si

�
:

ut
Corollary 22.3 If �n is an affine equivariant estimator, and �i is a simple
eigenvalue of˙ associated with the normalized eigenvector ui, then:

IF.x; �iIF/ D ˛1.kx � �k2˙�1 /..x ��/>ui/
2 � ˛2.kx ��k2˙�1 /�i

IF.x; uiIF/ D ˛1.kx ��k2˙�1 /.x ��/>uiSi.x� �/:

Note that similar results are obtained by Critchley (1985) for simple eigenvalues
and by Tanaka (1988) for multiple eigenvalues. In this paper, proofs are simplified
by using the perturbation theory of linear operators (Kato 1966). Since x 7! x˛1.x/
and ˛2 are bounded functions, the influence function of the eigenelements of Un.ˇ/

are bounded. So, Un.ˇ/ has good infinitesimal robustness properties. These results
are confirmed in the following sections when considering simulations and a real data
set.

22.4 Simulations and Comparisons

In this section, we use a similar simulation scheme as in Devlin et al. (1981)
in order to compare the performance of Un.ˇ/ with other robust and non-robust
estimators. The parameter to estimate is not a covariance matrix but a correla-
tion matrix �. If ˙ denotes the population covariance matrix, we have � D
.diag.˙ //�1=2˙ .diag.˙ //�1=2. If Ȯ is an estimator of˙ , then

O� D .diag. Ȯ //�1=2 Ȯ .diag. Ȯ //�1=2
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is an estimator of �. Thus a correlation estimator is naturally associated with a
covariance estimator by the previous transformation. In the following, we use the
same notation for the covariance estimator and its associated correlation estimator.
We compare the Un.ˇ/ estimator with the classical non-robust correlation estimator
and also with the Huber M-estimator and the biweight S-estimator which are
well-known robust estimators. A detailed comparison between M-, S-, and also
RMCD estimators is given in Croux and Haesbroeck (2000) according to the same
simulation scheme. In the present paper, we use the procedures they propose to
calculate the M- and S- estimators. More precisely, we use Huber’s proposal for the
weight functions of the M-estimator and the biweight function for the S-estimator
with a constant chosen such that the breakdown point of the S-estimator is 25 %. We
denote by R the usual non-robust correlation estimator which is defined by:

.diag.Vn//
�1=2Vn.diag.Vn//

�1=2:

We denote by M the Huber M-estimator, by S the biweight S-estimator, and by
U the estimator we propose. On this particular simulation scheme, we found that
calculating U is 3 times faster than calculating the Huber M-estimator and more
than 20 times faster than calculating the biweight S-estimator.

We generate m D 1000 replications of samples of size n D 50 from several
distributions of dimension p D 6. For each distribution, we use the correlation
matrix� defined in Devlin et al. (1981) by:

� D


�1 0

0 �2

�
with �1 D

2

4
1

:95 1

:30 :10 1

3

5 and�2 D
2

4
1

�:499 1

�:499 �:499 1

3

5 :

In the following, we denote by 	 the elements of�. The eigenvalues of � are �1 D
2:029, �2 D �3 D 1:499, �4 D :943, �5 D :028, �6 D :002 and the eigenvector
corresponding to �6 is v>

6 D 1=
p
3.0; 0; 0; 1; 1; 1/. The matrix� has some desirable

features that have been described in Devlin et al. (1981). We are interested in the
estimation of the correlation coefficients, eigenvalues and eigenvectors of �. We
consider samples from five distributions:

1. the normal distribution: N .0;�/ denoted by NORŒ0;��,
2. the mixture 0.9 NORŒ0;�� + 0.1 NORŒ0; 9��which is a symmetric contaminated

normal distribution denoted by SCNŒ0;��,
3. the Cauchy distribution denoted by CAUŒ0;��,
4. the mixture 0.9 NORŒ0;�� + 0.1 NORŒ�1;�� with �1 D :537v6 which is an

asymmetric contaminated normal distribution denoted by ACN1Œ�1;��.
5. the mixture 0.9 NORŒ0;�� + 0.1 NORŒ�2;�� with �2 D 4:472v6 which is an

asymmetric contaminated normal distribution denoted by ACN2Œ�2;��.
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In the ACN1 (respectively ACN2) distribution, the 10 % contaminated data have
been shifted about 12 (respectively 100) standard deviation units out along the direc-
tion of v6. Devlin et al. (1981) only consider the ACN1 asymmetric distribution. In
the present paper, we also consider ACN2 to model more extreme outliers. We have
to choose a location estimator �n and a value of ˇ in order to calculate Un.ˇ/.
The location estimator we use is the spatial median calculated with the algorithm of
Bedall and Zimmerman (1979). This estimator is orthogonal equivariant, has a high
breakdown point, and can be computed very fast. A possible alternative to this robust
location estimator is the so-called Oja median (Oja 1983) which is affine equivariant
and is implemented in the R package OjaNP (Fischer et al. 2013). Concerning ˇ,
we propose to use ˇ0 D .26"/=p with " D 10% for the five distributions. Thus,
ˇ0 D :4. We calculate biases and mean squared errors (MSE) for the correlations
and the eigenvalues estimates and cosines for the eigenvectors estimates.

22.4.1 Correlations and Eigenvalues Estimators

The Monte Carlo biases and the MSE of the Fisher’s z transform of the estimates of
the elements of � are given in Table 22.2 while the biases and MSE of the Logs of
the estimated eigenvalues are given in Table 22.3. We recall that for an estimator O� of
a parameter � , if we denote by O�.k/ the estimate value for replication k D 1; : : : ;m,
the Monte Carlo bias of O� is defined by:

Bias D 1

m

mX

kD1

� O�.k/ � �
�

and the Monte Carlo MSE is:

MSE D 1

m

mX

kD1
. O�.k/ � �/2:

In Table 22.2, the MSEs are calculated for the Fisher’s z transform of the elements
of the matrix estimators which is defined by:

f .z/ D 1

2
ln

�
1C z

1� z

	
:

Note that the bias and the MSE are not given for all the zeros of the� matrix. Only
the largest bias and MSE are reported in the “0-max” rows.

For the normal distribution, the four estimates give similar results with a bias
slightly superior for the Un.ˇ/ estimator. For the contaminated models, robust
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Table 22.2 1000� Biases and 1000� MSE of the z-transform for the estimators R, M, S, U of
the 	 elements of �

1000� Bias 1000� MSE of z-transform

1000 � 	 R M S U R M S U

NOR 950 0 0 0 �1 21 21 21 29

300 �4 �4 �4 �10 20 20 20 30

100 �1 �1 �2 �7 19 20 20 30

�499 4 4 4 4 22 22 22 32

�499 3 3 3 4 22 22 23 32

�499 5 5 5 8 20 20 21 31

0-max 8 8 7 7 22 22 23 34

SCN 950 �2 0 0 �1 53 23 27 27

300 �7 �5 �7 �8 52 23 27 29

100 �3 �2 �3 �4 53 23 27 27

�499 13 6 6 3 56 26 29 30

�499 6 2 4 5 55 25 29 31

�499 9 5 5 8 53 23 27 29

0-max 7 9 12 8 57 25 29 31

CAU 950 �47 0 �2 �5 1425 37 63 124

300 �35 �8 �10 �10 1535 34 57 128

100 3 �3 �5 �2 1469 33 57 114

�499 103 6 8 13 1538 36 61 106

�499 41 4 6 2 1531 39 61 123

�499 66 9 17 16 1478 36 63 107

0-max �21 8 �11 �13 1538 41 61 126

ACN1 950 0 0 0 �1 21 21 21 30

300 �4 �4 �4 �8 20 21 21 32

100 �1 �2 �2 �5 19 20 21 31

�499 18 14 12 9 21 22 22 32

�499 15 13 12 11 22 23 23 33

�499 18 14 12 11 20 21 21 31

0-max 7 �8 8 6 22 23 24 36

ACN2 950 0 0 0 �1 21 22 23 31

300 �4 �4 �4 �9 20 21 23 32

100 �1 �2 �2 �5 19 20 22 31

�499 576 405 56 176 408 226 53 67

�499 571 401 55 179 402 223 54 69

�499 575 406 57 181 406 228 53 70

0-max �7 �8 8 �6 22 22 25 33
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Table 22.3 1000� Biases and 100� MSE of the Logs of the eigenvalues estimators based on the
R, M, S, and U correlation matrix estimators

1000� Bias 100� MSE of Logs

� R M S U R M S U

NOR 2:029 189 190 195 196 1 1 1 1

1:499 111 111 111 111 1 1 1 1

1:499 �190 �190 �194 �195 3 3 1 3

0:943 �108 �109 �111 �111 3 3 3 3

0:028 �2 �2 �2 �2 9 9 9 9

0:002 0 0 0 0 9 9 9 9

SCN 2:029 403 213 237 251 4 1 2 2

1:499 137 115 120 119 2 1 1 1

1:499 �313 �203 �217 �227 8 3 4 4

0:943 �223 �123 �137 �141 13 4 5 6

0:028 �3 �2 �2 �2 24 11 12 12

0:002 0 0 0 0 23 10 12 12

CAU 2:029 1830 302 427 391 44 3 5 5

1:499 �149 134 162 125 148 1 2 10

1:499 �939 �260 �326 �299 530 5 29 29

0:943 �724 �172 �259 �213 935 8 19 41

0:028 �17 �3 �4 �3 873 17 31 50

0:002 �2 0 0 0 1150 17 31 54

ACN1 2:029 186 195 199 273 1 1 1 2

1:499 101 105 105 115 1 1 1 1

1:499 �201 �204 �203 �242 3 3 3 4

0:943 �109 �113 �114 �153 3 4 4 6

0:028 3 1 0 �2 5 5 6 12

0:002 19 16 13 8 555 481 394 269

ACN2 2:029 134 134 203 224 1 1 1 2

1:499 �229 �197 76 �20 4 3 1 1

1:499 �457 �454 �235 �362 14 14 5 9

0:943 �94 �108 �116 �170 2 3 4 7

0:028 623 601 70 304 975 953 119 597

0:002 24 24 2 24 648 651 80 644

estimators clearly outperform the usual non-robust estimator. As it was pointed
out in Croux and Haesbroeck (2000), the M-estimator behaves particularly well
in the Cauchy case but gives poor results for asymmetric contaminated distribution
such as ACN2. The S-estimator is a high breakdown point estimator and works
well even for asymmetric contaminated distribution. The estimate we propose has a
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zero breakdown point but performs quite well on these simulated examples. When
looking at the 	 estimation, it gives the worst results among the robust estimators
for the Cauchy distribution but gives better results than the M-estimator for the
ACN2 distribution. Note, however, that all the four estimators give poor results
when estimating a nearly singular eigenvalue (�6 D 0:02) in presence of asymmetric
contamination (ACN1 and ACN2).

22.4.2 Eigenvectors Estimators

Principal components are obtained by projection of the data on the eigenvectors
estimates Ovi; i D 1; : : : ; 6. So, we measure the closeness between the estimator Ovi

and vi by the absolute value of the cosine of the angle O�i between Ovi and vi. In
Figs. 22.1, 22.2, 22.3, 22.4, 22.5, 22.6, we display the empirical cumulative distri-
bution functions (ECDF) for the 1000 Monte Carlo realizations of jcos. O�i/j; i D
1; 4; 6; for the Cauchy and the ACN2 distributions which correspond to the most
heavily contaminated distributions. Concerning the gaussian distribution, the figures
are not reported here but the four empirical cumulative distribution functions curves
are on top of each other. Concerning the SCN and the ACN1 distributions, the
three robust estimators give similar results while the non-robust estimator does
not perform very well. For the Cauchy and the ACN2 distributions, the cumulative

Fig. 22.1 ECDFs of jcos. O�1/j at the CAU distribution for R, M, S, and U
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Fig. 22.2 ECDFs of jcos. O�4/j at the CAU distribution for R, M, S, and U

Fig. 22.3 ECDFs of jcos. O�6/j at the CAU distribution for R, M, S, and U

functions of jcos. O�i/j; i D 2; 3; 5; are omitted since jcos. O�6/j behaves like jcos. O�5/j
and jcos. O�2/j and jcos. O�3/j behave like jcos. O�4/j. The values of the jcos. O�i/j should
be close to one, so we can verify that the robust estimators outperform the non-
robust one. The estimator U we propose behaves more or less like the M-estimator.
The only case where M and U lack robustness is when estimating the direction of v6
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Fig. 22.4 ECDFs of jcos. O�1/j at the ACN2 distribution for R, M, S, and U

Fig. 22.5 ECDFs of jcos. O�4/j at the ACN2 distribution for R, M, S, and U

in the ACN2 model (Fig. 22.6). More precisely, in this case, the estimated direction
defined by the M and the U estimators is orthogonal to the direction defined by
v6. But this point is not really crucial if we are interested in Principal Component
Analysis and focus on the largest eigenvalues in order to summarize the information
contained in a large data set.
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Fig. 22.6 ECDFs of jcos. O�6/j at the ACN2 distribution for R, M, S, and U

22.5 Small Application

The main advantage of Un.ˇ/ is that its calculation is simple and straightforward. Its
drawback appears in situations where there is an important proportion of clustered
outliers because of its zero breakdown point. In this section, we give an example
of application to cluster detection using a particular ICS method where Un.ˇ/

is advisable while high breakdown point estimators are not. Let us consider the
invariant coordinate selection method as defined in Caussinus et al. (2003) with the
objective of displaying groups of observations (if there are any in the data set).
The method consists in an eigenvalue-eigenvector decomposition of one scatter
estimator relative to another. In order to detect clusters, Caussinus et al. (2003)
propose to use the usual covariance estimator together with a scatter matrix based
on weighted pairwise differences. This pairwise-based estimator is estimating in
some sense the within-cluster covariance matrix and the method can be interpreted
as an unsupervised discriminant analysis. As it is often the case for exploratory
projection pursuit methods, the interesting projections, namely those which display
the groups, may be perturbed by a few extreme or atypical observations. In order
to download the influence of these observations, we propose to use Un.ˇ/ in
place of the usual covariance matrix estimator. As it is illustrated in the following
example, the use of high breakdown point estimators is clearly not indicated in
this case since the method would not display the interesting projections anymore.
The example we consider is the well known Lubischew data set (Lubischew 1962)
which consists of n D 74 insects and p D 6 morphological measurements.
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Fig. 22.7 First principal plane of invariant coordinate selection with the empirical non-robust
dispersion matrix

According to taxonomy considerations, these insects are divided into eight groups.
More precisely, observations 1 to 21 belong to the first group, observations 22 to
43 belong to the second while observations 44 to 74 belong to the third group.
In order to illustrate the use of the robust covariance estimator Un.ˇ/, we have
changed the value of one of the variables for the first observation into an extreme
value. Figure 22.7 gives the first projection plane obtained via the analysis when
the non-robust empirical covariance estimator Vn is used while Fig. 22.8 gives
the first principal plane when Vn is replaced by Un.:2/. The choice of ˇ D 0:2

follows the recommendation given in Sect. 22.2.1 and is between 1=p ' 0:17

and .26"/=p;' 0:21 for " D 5%. Only Fig. 22.8 clearly displays the three-
group structure of the data. Indeed, the influence of the first outlying observation
is dominant in Fig. 22.7 while the first observation is no more influential on the
robust analysis. Figure 22.9 now gives the display obtained when Vn is replaced by
a 25 % breakdown point S-estimator. This estimator is so robust that it does not only
decrease the influence of the first observation. In some sense, the S-estimator is quite
close to the within-cluster estimator but it is more robust to the first observation. In
the context of ICS, this leads to the detection of the first observation as an outlier
but not to the detection of groups. In this context, high breakdown point estimators
are not recommended.
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Fig. 22.8 First principal plane of invariant coordinate selection with the robust dispersion
estimator Un.:2/
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Fig. 22.9 First principal plane of invariant coordinate selection with a high breakdown point
(25 %) S dispersion estimator
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22.6 Conclusion

In this paper, the consistency and the asymptotic distribution of Un.ˇ/ have been
obtained using a uniform strong law of large number (Le Cam 1953) and some
matrix manipulation. The eigenelements of a covariance or a correlation matrix
are of great interest in multivariate data analysis such as Principal Component
Analysis. Thus asymptotic distributions and influence functions are derived for the
eigenelements of Un.ˇ/ by using the perturbation theory (Kato 1966). The proposed
estimator does not lose a lot of efficiency at the gaussian model and is robust from
an infinitesimal point of view since the influence functions are bounded. Besides
these theoretical properties, we also compare Un.ˇ/ to other robust estimators by
using the same simulation scheme as Devlin et al. (1981) and by performing an ICS
analysis on a real data set. In spite of its zero breakdown point, Un.ˇ/ performs
well and is to be compared to M-estimators. Un.ˇ/ can be calculated for large data
sets, in the data mining context for instance. In fact, we recommend its systematic
use in parallel with the usual covariance matrix estimator. If the two estimators give
different results, since Un.ˇ/ has infinitesimal robustness properties, it means that
outlying observations are present in the data. Then, if heavily contaminated data are
suspected, high-breakdown estimators such as the S- or the RMCD estimators are
to be considered.
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Chapter 23
On ANOVA-Like Matrix Decompositions

Giuseppe Bove, Frank Critchley, Radka Sabolova, and Germain Van Bever

Abstract The analysis of variance plays a fundamental role in statistical theory and
practice, the standard Euclidean geometric form being particularly well established.
The geometry and associated linear algebra underlying such standard analysis
of variance methods permit, essentially direct, generalisation to other settings.
Specifically, as jointly developed here: (a) to minimum distance estimation problems
associated with subsets of pairwise orthogonal subspaces; (b) to matrix, rather than
vector, contexts; and (c) to general, not just standard Euclidean, inner products,
and their induced distance functions. To make such generalisation, we solve the
following problem: given a set of nontrivial subspaces of a linear space, any
two of which meet only at its origin, exactly which inner products make these
subspaces pairwise orthogonal? Applications in a variety of areas are highlighted,
including: (i) the analysis of asymmetry, and (ii) asymptotic comparisons in
Invariant Coordinate Selection and Independent Component Analysis. A variety of
possible further generalisations and applications are noted.

Keywords Analysis of asymmetry • Independent Components • Inner products •
Invariant Coordinates • Orthogonal decomposition • Skew symmetry

23.1 Introduction

Geometry is a rich resource for statistical theory and practice. In particular, min-
imum distance estimation is an insightful, recurring, theme across many method-
ologies. Incorporating associated linear algebra, the analysis of variance (hereafter,
ANOVA) is perhaps the stand-out example, estimation consisting essentially of
orthogonal projection onto each of a set of pairwise orthogonal subspaces of a
standard Euclidean space, whose direct sum is the space itself.
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Specifically, for some given dimension d, standard ANOVA takes place within
E d D .Rd; h�; �iI/—that is, within Rd endowed with the inner product hx; yiI WD
x>y, .x; y 2 Rd/, inducing the squared Euclidean distance between x D .xi/ and
y D .yi/:

kx � yk2I D
Pd

iD1.xi � yi/
2:

Further, E d is decomposed as the direct sum of 2 � r � d subspaces f�hgrhD1, any
two of which are orthogonal. Accordingly, each y 2 E d has unique decomposition

y DPr
hD1yh (23.1)

in which, for each 1 � h � r, yh is the orthogonal projection of y onto �h—that
is, the nearest point in �h to y. Crucially, pairwise orthogonality of the subspaces
means that separate minimum distance estimation of y by each �h gives yh and,
thereby, the overall decomposition (23.1).

Essentially the same ideas can be applied more generally. First, and of central
interest in this paper, let � 0

h � �h .h D 1; : : : ; r/ be any given nonempty subsets
of the original subspaces and suppose that, for given y 2 E d, we have the problem:

minimise
��y �Pr

hD1 Oyh

��2
I subject to Oyh 2 � 0

h .h D 1; : : : ; r/: (23.2)

Then, again, pairwise orthogonality of the f�hg entails that separate minimum
distance estimation of each yh by � 0

h gives Oyh, these together solving the overall
problem (23.2).

Secondly, vectors can be replaced by matrices. Section 23.2 reviews a variety of
matrix analogues of the ANOVA decomposition (23.1). Each of these is based on the
standard Euclidean inner product hA;BiE WD trace.A>B/. The induced (Frobenius)
norm k�kE has squared distance kA � Bk2E D

P
i;j.aij � bij/

2, the element-wise sum
of squared differences. Applications in a variety of areas are highlighted, including:
(i) the analysis of asymmetry (Constantine and Gower 1978; Gower 2014), and (ii)
asymptotic comparisons in Invariant Coordinate Selection (ICS) (Tyler et al. 2009)
and Independent Component Analysis (ICA) (Oja et al. 2006).

Thirdly, more general inner products can be used. In vector terms, the standard
Euclidean inner product h�; �iI can be replaced by a general one:

hx; yiV WD x>Vy

where V is any positive definite symmetric matrix of the appropriate order. Alter-
native inner products can also be used in a matrix context. For completeness’ sake,
Sect. 23.3 briefly reviews basic (essentially, standard) theory for these. Section 23.4
revisits analysis of asymmetry examples (Sect. 23.2.1) in this more general context.
A variety of potential applications are noted.

The focus is on square matrices throughout. Extension to rectangular matrices,
higher order arrays, and other vector space contexts is in principle straightforward.

To aid the flow of the paper, general terminology and definitions are introduced
as we proceed. Its well-known or straightforward results are stated without proof.
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23.2 Matrix Decomposition Examples

We briefly review here a variety of matrix decompositions based on standard
Euclidean geometry. Sections 23.2.1 and 23.2.2 focus, respectively, on applications
in the analysis of asymmetry and in ICS.

23.2.1 The Analysis of Asymmetry

Constantine and Gower (1978) emphasised how important, in practice, it can be to
model systematic departures from symmetry in square data matrices. This influential
paper gave rise to a field described here as the analysis of asymmetry, the recent
review paper by Gower (2014) providing interesting historical perspective. To quote
from its opening section, the driving motivation for this work was that:

In practice, many applications are concerned just as much with any asymmetry as they
are with symmetry. Well-known examples are studies in social mobility between classes,
international trade between countries and pecking order in hens.

Additional technical details in Gower (2014) include, in particular, a formal proof
of the form of the singular value decomposition of a skew-symmetric matrix.

Section 23.2.1.1 reviews a basic orthogonal decomposition of square matri-
ces into their symmetric and skew-symmetric parts. In some contexts, a further
decomposition may be called for. Section 23.2.1.2 treats a leading example of this.
Section 23.2.1.3 discusses (i) a general orthogonal decomposition and (ii) other
types of matrix subspace. Section 23.2.1.4 describes general benefits arising from
using such decompositions, together with a worked example.

23.2.1.1 A Basic Decomposition

With the obvious definitions of addition and scalar multiplication of matrices, the set
�k of real square matrices of order k is a real linear (vector) space of dimension k2.
Omitting the subscript k, its subsets of symmetric and skew(-symmetric) members,
� WD fS 2� W S> D Sg and� WD fK 2� W K> D �Kg, are subspaces—i.e.
are closed under addition and scalar multiplication—with dimensions

�kC1
2

�
and

�k
2

�
,

respectively. Moreover,

� C� WD fSCK W S 2 � ;K 2 � g D� , while � \� D f0� g. (23.3)

That is (definition), � and � have direct sum � , denoted � D � ˚ � .
Equivalently, every M 2� can be uniquely represented in the form M D SMCKM

where SM 2 � and KM 2� . Explicitly:

SM D 1
2
.MCM>/ and KM D 1

2
.M�M>/. (23.4)
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If we endow � with the standard Euclidean inner product, reviewed in the
Introduction, the direct sum relations (23.3) sharpen to:

Proposition 23.1 � D � ˚ � in which � D � ? and � D � ? are
orthogonal complements in the inner product space .� ; h�; �iE/. Accordingly, for
every M 2� ,

kMk2E D kSMk2E C kKMk2E : (23.5)

In a seminal paper, Constantine and Gower (1978) exploited this result to
advocate separate fitting of models to the symmetric and skew parts of a given data
matrix M. For, if � 0 � � and � 0 � � denote any symmetric and skew matrix
model classes, minimisation of

kM� .SCK/k2E D kSM � Sk2E C kKM �Kk2E
over all .S;K/ 2 � 0 � � 0 is, palpably, accomplished by separate least squares
fitting of SM by S 2 � 0 and of KM by K 2� 0.

23.2.1.2 A Further Decomposition

Consider the following decomposition of � . Denoting by � the Hadamard (direct)
product of matrices,

� WD fD 2 � W D � I D Dg and� WD fH 2 � W H � I D 0� g

comprise all diagonal and all “hollow” (zero diagonal) members of � , these being
subspaces of � of dimension k and

�k
2

�
, respectively, and we have:

� D � ˚� ;

S 2 � being uniquely expressible as S D DS C HS with DS 2 � and HS 2 � .
Explicitly, DS D S � I and HS D S � .11> � I/, where 1 denotes the vector of ones.

Overall,� D .� ˚ � / ˚ � which, the order of summation being clearly
irrelevant, we may write as� D � ˚ � ˚ � , each M 2 � having unique
decomposition in terms of these subspaces as:

M D DSM CHSM CKM: (23.6)

If we endow� with the standard Euclidean inner product, inherited by each of its
subspaces, the above direct sum relations sharpen to:

Proposition 23.2 � D � ˚ � ˚ � in which � , � and � are pairwise
orthogonal subspaces of the inner product space .� ; h�; �iE/. Accordingly, for every
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M 2� ,

kMk2E D kDSMk2E C kHSMk2E C kKMk2E .

Again, this result justifies separate fitting of models to the diagonal, hollow and
skew parts of a given data matrix M. For, if � 0 � � , � 0 � � and � 0 � �
denote any diagonal, hollow and skew matrix model classes, minimisation of

kM � .DCHCK/k2E D kDSM �Dk2E C kHSM �Hk2E C kKM �Kk2E
over all .D;H;K/ 2 � 0�� 0�� 0 is clearly accomplished by separate least squares
fitting of each of .DSM ;HSM ;KM/ within its model class.

23.2.1.3 A General Decomposition and Other Subspace Types

The methodology developed above generalises directly to decomposition of� into
any collection of any number of pairwise orthogonal subspaces in an obvious way,
analogous—indeed, formally, isomorphic—to familiar orthogonal decompositions
of E d used in standard ANOVA.

Replacing subspaces of vectors in E d by subspaces of matrices in� , we have

Proposition 23.3 Let f�hgrhD1 .2 � r � k2/ be a collection of nontrivial subspaces
of � , any two of which are orthogonal in .� ; h�; �iE/, and whose direct sum
˚f�hg is� . Then, every M 2� can be uniquely expressed as M D Pr

hD1Mh,
in which Mh is the orthogonal projection of M onto�h, so that

kMk2E D
Pr

hD1 kMhk2E .

As a direct corollary, for any given model classes � 0
h � �h .h D 1; : : : ; r/ within

the “parent” subspaces f�hg, and for any given M 2�k, the overall problem:

minimise
���M �Pr

hD1 OMh

���
2

E
subject to OMh 2 � 0

h .h D 1; : : : ; r/ (23.7)

can be solved by separate minimum distance estimation of each Mh by� 0
h.

There is a wide variety of types of subspace of potential interest in modelling data
taking the form of a square matrix. In particular, the subspaces�� of matrices .mij/

for which mij vanishes for each .i; j/ 2 � , ; � � � .1; : : : ; k/2, the orthogonal
complement�?� of each such subspace being given by:

�?� D ��C :

Subspaces of this type include matrices vanishing on a given set of rows or columns.
Other instances of �� are of special interest when the rows and columns of M

have the same natural order. For example—in a context where mij is modelled as
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vanishing when i and j belong to different members of a partition of .1; : : : ; k/ into
consecutive blocks—the corresponding blockdiagonal matrices. Or—in a context
where .1; : : : ; k/ label consecutive time points and mij is held to vanish for i and j
sufficiently far apart in time—the (say) tri-diagonal matrices defined by: ji � jj >
1) mij D 0.

Or, again, in social mobility studies—with .1; : : : ; k/ labelling a classification
of households from high to low social status, and mij the number of adults in a
category i household whose parents formed a category j household—the strictly
upper triangular, diagonal and strictly lower triangular matrices are of interest.
Specifically, with �", �! and �# denoting the subspaces �� corresponding,
respectively, to � D �" WD f.i; j/ 2 .1; : : : ; k/2 W j � ig, � D �! WD f.i; j/ 2
.1; : : : ; k/2 W i ¤ jg and � D �# WD f.i; j/ 2 .1; : : : ; k/2 W i � jg, we have the
orthogonal decomposition:

� D � " ˚�! ˚�#

in which�" and�# correspond to upward and downward inter-generational social
mobility, respectively, while�! corresponds to absence of either form of mobility.
Typically, different models will be appropriate to these three processes, so that the
expected value of a data matrix M is best modelled as the sum of matrices from each
of three corresponding—often, parameterised—model classes� 0

",� 0! and� 0
#.

More generally than�� , the symmetric and skew-symmetric subspaces � and
� are examples of subspaces on which a prescribed set of linear relations hold
among the elements of M.

Again, the set of subspaces of� is closed under orthogonal complementation,
intersection and addition, giving “new subspaces for old”. For example, �?!
comprises all matrices with zero diagonal entries, while� D �?!\� . Again, the
upper and lower triangular matrices form the subspaces�" ˚�! and�# ˚�!,
respectively.

Finally in this section, we note general benefits flowing from use of orthogonal
decompositions of� as ˚f�hg, as in Proposition 23.3, together with a worked
example using the decomposition� D � ˚� ˚� .

23.2.1.4 General Benefits and a Worked Example

As illustrated by the social mobility example above, the expected value of a data
matrix M 2 � can often be best modelled as a sum of r matrices .2 � r � k2/,
one from each of a set of model classes f� 0

hgrhD1 where f0� g 
 � 0
h � �h

.1 � h � r/ and ˚r
hD1f�hg is an orthogonal decomposition of .� ; h�; �iE/

into component subspaces. Assuming uncorrelated homoscedastic additive errors
with zero mean and common variance 
2, least-squares fitting—equivalently,
assuming also Gaussianity, maximum likelihood estimation—then leads to the
general constrained matrix approximation problem (23.7).
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Exploiting orthogonality, this problem can be solved by separate minimum
distance estimation of each Mh by � 0

h. This breaking up of an overall problem
into component parts can be especially beneficial, computationally, when the model
classes f� 0

hg depend in complex nonlinear ways on separate underlying parameter
vectors f���hg.

Again, such separate fitting breaks up underlying variability into its component
parts. In an obvious notation, we have


2 DPr
hD1


2
h .

Each of the components of variance 
2h is estimable, in the obvious way. Indeed,
under Gaussianity, the resulting f O
2h g are mutually independent, with the usual
benefits for inference.

Finally, borrowing a term from generalised linear models, undefined or non-
stochastic elements of a data matrix M can be accommodated by introducing
corresponding offset terms.

To fix ideas, consider the problem of modelling a matrix M of scheduled flight
times between cities in a part of the world subject to a strong prevailing wind
blowing from West to East (say). A natural approach, described below, uses the
orthogonal decomposition� D � ˚� ˚� .

The diagonal entries of M being undefined, we don’t try to model them. Rather,
formally, we set DSM D 0� , taking the corresponding model class as � 0 D f0� g.
These offset terms assure perfect diagonal “fit”, effectively replacing minimisation
of jjM� OMjj2E with that of

jjM� OMjj2E0 WDPi¤j.mij � Omij/
2.

Consider now the off-diagonal entries of M. By definition, HSM belongs to
� C WD f.hij/ 2 � W each hij � 0g, the set of all k � k dissimilarity matrices,
and so can be fitted by a suitable multidimensional scaling method. Alternatively,
as developed here, we may assume that the expected value of the average of the
scheduled flight time from city i to city j and that for the opposite journey is a
function of gij, the geodesic distance between them. As one parametric example,
we may take� 0 D � 0.���H/ in which ���H D .˛; ˇ; �/>, the general member H of
� 0.���H/ having .i; j/th element ˛ C ˇg�ij. The constant term ˛ here reflects a fixed
time needed for take off and landing.

We turn now to the skew symmetric part of M. Constantine and Gower (1978)
take an essentially exploratory approach, based on the singular value decomposition
of KM and, in particular, graphical representation of its dominant parts. Alterna-
tively, for each i < j, the expected mean difference kij between the scheduled flight
time from city i to city j and that for the opposite journey can be taken as an odd
function of .ai � aj/, where ai denotes the longitude of city i. As one parametric
example, we may take the general member K of � 0 D � 0.���K/ as having .i; j/th
element kij D �.ai � aj/, so that �K D � . Introducing additional parameters,
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essentially the same model can be elaborated to include estimation of an unknown
prevailing wind direction.

Separate minimum distance estimation of HSM by� 0, and of KM by� 0, speeds
computation of the optimal estimates of ��� D .���>

H ; ���
>
K/

>. This computational gain
is, in general, greater the larger the number of components being fitted and the more
complicated the parametric functional forms involved.

Again, this separation into sub-problems allows (estimation of) the decomposi-
tion 
2 D 
2H C 
2K. Under Gaussianity, O���H and O���K are independent. Accordingly,
so too are O
2H and O
2K.

23.2.2 Independent Component Analysis and Invariant
Coordinate Selection

A somewhat different use of the h�; �iE-orthogonal decomposition� D � ˚�
arises in connection with ICA—see, for example, Oja et al. (2006); and with ICS—
see Tyler et al. (2009).

ICA is a highly popular method within many applied areas. Its principal objective
is to recover, as far as is possible, unobserved independent components from an
observable random vector arising as an unknown (possibly shifted) convolution of
them. Oja et al. (2006) were the first to point out that, under appropriate modelling
assumptions, this recovery—or “unmixing”—problem can be solved via what is
now known as ICS.

ICS is a general method for exploring multivariate data, based on two scatter
matrices. Scatter matrices—generalisations of the usual covariance operator—are
matrix-valued functionals S D S.FX/ of the distribution of a random vector X that
are affine equivariant. That is, for any nonsingular matrix C and any vector c, X!
X� WD CXC c induces S! S� D CSC>. One of these matrices, denoted V below,
is required to be positive definite symmetric.

ICS works by transforming X ! Z D M>X, where M D UV�1=2 with U an
orthogonal matrix determined jointly by the two scatter matrices. The elements of
Z are called “invariant coordinates” to connote the fact that any nonsingular affine
transformation X! X� leaves Z unchanged (up to a shift term that vanishes if and
only if c D 0).

As Oja showed, for suitable ICA models, we have the striking result that the
invariant coordinates correspond to the independent components. The question then
naturally arises as to whether a pair of scatter matrices .V; QV/ can be chosen that
is, in some sense, optimal in this regard. Here, fixing V as the usual covariance
operator, we note the following. Ilmonen et al. (2010) establish that, in the standard
case,

p
n.V � I/ D OP.1/ and

p
n.U � I/ D OP.1/: (23.8)
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Recent correspondence with that paper’s final author, Hannu Oja, notes that (23.8)
implies

p
n.SM�I/ D � 1

2

p
n.V�I/CoP.1/ and

p
nKM D

p
n.U�I/CoP.1/. (23.9)

This may have implications for comparing two estimates obtained with the same V.
Relations (23.9) suggest that asymptotic comparison of estimates obtained with
fixed V but different QV—hence, different U—should be based on the upper
triangular part of U only (and not on the full information contained in M). In
contrast, currently, such comparison is usually made based on the off-diagonal
elements of M, introducing an unnecessary confounding with its symmetric part.

Overall, it will be of interest to explore potential methodological benefits flowing
from the direct sum� D � ˚� underpinning (23.9). In this connection, note also
that the decomposition� D � ˚� ˚� can be used to refine (23.9). And that
the sharpening by orthogonality of these direct sum relations in Propositions 23.1
and 23.2, and their generalisations to other inner products established in Sect. 23.4.2
below, may bring additional benefits. In particular, it may be possible to helpfully
link the choice of inner product to the asymptotic precision (inverse covariance)
matrices of the estimators involved.

23.3 Alternative Inner Products

Orthogonality—in the standard Euclidean inner product h�; �iE—is central to all the
key results above and, thus, to their sphere of applicability. At the same time, the
(often, implicit) assumption of uncorrelated homoscedastic errors being made is, as
always, open to question.

Theoretical inquisitiveness combines, then, with a desire for the widest possible
realm of practical applications to point to the importance of finding answers to the
following, natural, questions: for what other inner products do Propositions 23.1
and 23.2 hold? More generally (cf. Proposition 23.3), given a collection f�hg
of nontrivial subspaces with direct sum � , any two of which are orthogonal in
.� ; h�; �iE/, for what other inner products does such pairwise orthogonality hold?
(Specific proposals for such alternative inner products, in a variety of contexts, are
discussed in Sect. 23.4.3.)

In order to answer these questions, specific to the vector (sub)spaces introduced
in Sect. 23.2, it will be sufficient—and actually straightforward—to answer the
following generic question. Let � be a real linear (vector) space with finite
dimension d � 2. Let now f�hgrhD1 .2 � r � d/ be a collection of nontrivial
subspaces of� whose direct sum,˚f�hg, is� . That is,

�h \�h0 D f0� g; .h ¤ h0/, while� DPh�h WD fl1 C : : :C lm W lh 2 �hg,
(23.10)

(so that d DPhdh, where�h has dimension dh > 0).
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The question posed is: in which inner product spaces .� ; h�; �i/ are the f�hg
pairwise orthogonal? That is, for which inner products does hlh; lh0i vanish for each
lh 2 �h and lh0 2 �h0 , .h ¤ h0/? As will be clear, the answer consists, essentially,
in taking ordered bases.

Recall that, if � � is also a real linear space, T W � ! � � is called an
isomorphism if it is one-to-one, onto and linear: that is, for all ˛1; ˛2 in R and
all l1; l2 in� ;

T.˛1l1 C ˛2l2/ D ˛1T.l1/C ˛2T.l2/:

� and � � are called isomorphic if such a map exists, and we write � Š � �
(via T).

Proposition 23.4 Let fb1; : : : ;bdg be a basis for � . Then, � Š Rd via l ! ���

where, to each l DPi�ibi 2 � , we associate ��� D .�1; : : : ; �d/
> 2 Rd.

Recall also that an inner product h�; �i on � is a function from � 2 to R such that
for all l; l0; l1; l2 in� and ˛1; ˛2 in R:

1. hl; l0i D hl0; li
2. h˛1l1 C ˛2l2; l0i D ˛1 hl1; l0i C ˛2 hl2; l0i
3. hl; li � 0, equality holding if and only if l D 0� .

Being bilinear, an inner product is completely determined by its matrix of values
.
˝
bi;bj

˛
/ on an ordered basis .b1; : : : ;bd/. Accordingly, denoting by 	d the set

of all real, positive definite symmetric matrices of order d, the following result is
immediate.

Proposition 23.5 For any ordered basis b.� / D .b1; : : : ;bd/ for � , h�; �i !
.
˝
bi;bj

˛
/ is a one-to-one correspondence between the set of all inner products on

� and 	d.

Recall further that an inner product isomorphism between .� ; h�; �i/ and
.� �; h�; �i�/ is an isomorphism T W � ! � � which preserves inner products: that
is, such that for all l1; l2 in� : hT.l1/;T.l2/i� D hl1; l2i. .� ; h�; �i/ and .� �; h�; �i�/
are called isomorphic if such a map exists, and we write .� ; h�; �i/ Š .� �; h�; �i�/
(via T). Combining Propositions 23.4 and 23.5, we have:

Proposition 23.6 Let b.� / D .b1; : : : ;bd/ be an ordered basis for� , let h�; �i be
an inner product on � , and let V D .

˝
bi;bj

˛
/. Then .� ; h�; �i/ Š .Rd; h�; �iV/ via

Tb.� / W l! ��� , where h���;���iV WD ���>V���.

Denoting by
d (respectively:�C
d ) the set of all orthogonal (respectively: diagonal,

positive definite) matrices of order d, and by diag.�; : : : ; �/ the blockdiagonal matrix
with the diagonal entries listed, the simple answer to the generic question posed is:

Theorem 23.1 Let � and f�hgrhD1 .2 � r � d/ be as in (23.10). Let .b1; : : : ;bd/

be an ordered basis for � comprising, successively, ordered bases for each of
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�1; : : : ;�r. Then, the following are equivalent:

1. the f�hg are pairwise orthogonal in .� ; h�; �i/,
2. .

˝
bi;bj

˛
/ D diag.V1; : : : ;Vr/ for some Vh 2 	dh , h D 1; : : : ; r,

3. .
˝
bi;bj

˛
/ D Q�QT for some Q D diag.Q1; : : : ;Qr/ and� D diag.�1; : : : ;�r/,

where Qh 2 
dh and�h 2 �C
dh

, h D 1; : : : ; r.

Theorem 23.1 is couched, of course, in terms of a chosen basis .b1; : : : ;bd/. To see
what form V D .

˝
bi;bj

˛
/ takes in a general basis, it suffices to use the following.

Bilinearity of inner products gives at once:

Proposition 23.7 For any inner product h�; �i on � , and for any ordered basis
.b1; : : : ;bd/ of � , let V WD .

˝
bi;bj

˛
/. For any other ordered basis .b�

1 ; : : : ;b
�
d /

of� ,

V� WD .˝b�
i ;b

�
j

˛
/ D AVA>

where the nonsingular matrix A D .aij/ is given by b�
i D

P
jaijbj.

23.4 Matrix Decomposition Examples Revisited

In the wider context of inner products preserving the same pairwise orthogonalities,
we revisit here the analysis of asymmetry matrix decomposition examples reviewed
in Sect. 23.2.1.

We first introduce (Sect. 23.4.1) two alternative ordered bases for�k, and then
(Sect. 23.4.2) use them to generalise two key results underpinning the standard
Euclidean analysis of asymmetry, viz.: Proposition 23.1 (Sect. 23.2.1.1) and Propo-
sition 23.2 (Sect. 23.2.1.2). Section 23.4.3 indicates applications of these more
general results.

23.4.1 Two Alternative Ordered Bases for�k

In this asymmetry context, rather than the usual stacking-by-columns operator, it is
convenient to order the elements of M 2�k by first listing those on the diagonal;
then, those above the diagonal, in row-wise order; and, finally, those below the
diagonal, in column-wise order. In this way, we define the veck operator by

veck.M/ D.m11; : : : ;mkkI
m12; : : : ;m1k;m23; : : : ;mk�1;kI
m21; : : : ;mk1;m32; : : : ;mk;k�1/>.
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We use relevant parts of this order to define ordered bases of � , � , � , � and
� D�k itself in terms of the canonical basis fEij WD eie>

j ; 1 � i; j � kg of� .
Here, .e1; : : : ; ek/ is the usual ordered basis of Rk, so that ei is a binary vector with
a single one in the ith position. For notational convenience, the constant 	 below is
1=
p
2.

Putting Dii WD Eii, b.�/ WD .D11; : : : ;Dkk/ is an ordered basis for � . Again,
with Hij WD 	.Eij C Eji/, i < j, b.� / WD .H12; : : : ;Hk�1;k/ is an ordered basis
for� . Concatenating these, in a mild abuse of notation, b.� / WD .b.�/Ib.� //

is an ordered basis for � . Finally, with Kij WD 	.Eij � Eji/, i < j, b.� / WD
.K12; : : : ;Kk�1;k/ is an ordered basis for� , so that b.� / WD .b.� /Ib.� // is an
ordered basis for� .

A natural alternative is to use the corresponding ordering of the canonical basis
itself:

b�.� / D .E11; : : : ;EkkIE12; : : : ;Ek�1;kIE21; : : : ;Ek;k�1/

which corresponds directly to the data we actually observe, since:

each M 2�k has direct decomposition M DPi;jmijEij: (23.11)

By design, b.� / and b�.� / are ordered orthonormal bases in .� ; h�; �iE/:
Since Eij D 	.Hij C Kij/ while Eji D 	.Hij � Kij/, i < j; the orthogonal matrix A
linking these two bases via b�

i .� / DPjaijbj.� / is given by:

A D

0
B@

Ik 0 0
0 	I.k

2/
	I.k

2/
0 	I.k

2/
�	I.k

2/

1
CA D diag.Ik;B˝ I.k

2/
/, (23.12)

˝ denoting the Kronecker product, so that A (hence, B) is also symmetric, the
matrix

B D 	
�
1 1

1 �1
	
D 	

�
1 �1
1 1

	
�
�
1 0

0 �1
	
D
�
1 0

0 �1
	
� 	
�

1 1

�1 1
	

combining, for each i < j; a 45ı rotation and a reflection in the two-dimensional
subspace spanned by .Hij;Kij/I equivalently, by .Eij;Eji/. Note that, each being
orthogonal and symmetric, A and B are self-inverse.

From now on, for any inner product h�; �i on� , we define V � V.� ;h�;�i/ and
V� � V�

.� ;h�;�i/ thus:

V WD .˝bi.� /;bj.� /
˛
/ and V� WD .˝b�

i .� /;b�
j .� /

˛
/, (23.13)

so that, by Proposition 23.7, V� D AVAT I equivalently, as A�1 D A, V D AV�AT :
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Proposition 23.6 and display (23.11) give at once

Proposition 23.8 M ! m WD veck.M/ is an inner product isomorphism between
.�k; h�; �i/ and .Rk2 ; h�; �iV�/, where hm1;m2iV� WD m>

1 V�m2.
In particular, .�k; h�; �iE/ Š .Rk2 ; h�; �iI/ via M! veck.M/.

The standard Euclidean inner product exploited in Propositions 23.1 and 23.2
corresponds, then, to taking V� D II equivalently, V D I. We show next exactly
what other choices Theorem 23.1 allows.

23.4.2 Generalisations of Propositions 23.1 and 23.2

Recall the matrices A, V and V� defined in (23.12) and (23.13) above.
Considering first generalisations of Proposition 23.1, Theorem 23.1 gives at once

that � and� are orthogonal in .� ; h�; �i/ if and only if

V D diag.VS;VK/ for some VS 2 	.kC1
2 /

and VK 2 	.k
2/

.

Partitioning any such V conformably with A, we write it as

V D
0

@
VD VDH 0

V>
DH VH 0
0 0 VK

1

A . (23.14)

Concerning generalisations of Proposition 23.2, Theorem 23.1 again gives at once
that � , � and � are pairwise orthogonal in .� ; h�; �i/ if and only if V, as
in (23.14), has VDH D 0, so that VD 2 	k and VH 2 	.k

2/
. For general VDH–see, for

example, Theorem 7.7.6 in Horn and Johnson (1985, p. 472)—we have that

Proposition 23.9 The following are equivalent:

1. VS �
�

VD VDH

V>
DH VH

	
2 	.kC1

2 /

2. VD 2 	k and ŒVH � V>
DHV�1

D VDH� 2 	.k
2/

3. VH 2 	.k
2/

and ŒVD � VDHV�1
H V>

DH� 2 	k:

It only remains to find the form of V�. Using Propositions 23.7 and 23.9, and
recalling that 	 D 1=p2, (23.12) gives

Theorem 23.2 � and� are orthogonal in .� ; h�; �i/ if and only if

V� D
0

@
VD 	VDH 	VDH

	V>
DH 	

2.VH C VK/ 	
2.VH �VK/

	V>
DH 	2.VH � VK/ 	

2.VH C VK/

1

A (23.15)
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for some VK 2 	.k
2/

, VH 2 	.k
2/

and VDH as in (23.14) with ŒVD �VDHV�1
H V>

DH� 2
	k, � and� also being orthogonal if and only if VDH D 0.

Theorem 23.2 has two immediate corollaries. By design, pairwise orthogonality
in .� ; h�; �i/ of the specified set of subspaces, f� ;� g or f�;� ;� g, is reflected
in the corresponding blockdiagonal form of V. The first corollary characterises
when V� enjoys the same form of blockdiagonal structure, showing indeed that
this happens if and only if V� D V.

Corollary 23.1 Let h�; �i be any inner product on � for which � and � are
orthogonal. Then, equivalent are:

1. V� D diag.Va;Vb/ for some Va 2 	.kC1
2 /

and Vb 2 	.k
2/

2. V� D diag.V1;V2;V3/ for some V1 2 	k and V2;V3 2 	.k
2/

3. V� D diag.VD;V;V/ for some V 2 	.k
2/

4. VDH D 0 and VH D VK

5. V� D V:

The second, relatively trivial, corollary characterises when V� is fully diagonal, so
that the inner product on� corresponds to a set of weights: hA;Bi DPi;jwijaijbij

for some positive fwijg. We have that the only requirement for orthogonality of �
and� is the symmetry condition wji D wij, i < j. That is:

Corollary 23.2 Let h�; �i be any inner product on � for which � and � are
orthogonal. Then, equivalent are:

1. V� 2 �C
k2

2. V� D diag.�1;�;�/ for some�1 2 �C
k and� 2 �C

.k
2/
:

23.4.3 Applications

Theorems 23.1 and 23.2 determine all possible choices of V—equivalently, of V�—
consistent with the orthogonalities required for use in generalising Proposition 23.1
or 23.2. In practice, this choice of inner product will depend on context. We briefly
indicate three ways in which it may be made.

One way is to allow for alternative forms of the covariance of the observed data.
Recall first the vector case, reviewed briefly in the Introduction. Here, standard
ANOVA methods—those based on Euclidean distances, induced by h:; :iI—are
appropriate when cov.y/ is taken as proportional to I. The move from ordinary
to generalised least-squares ANOVA methods is signalled whenever, in contrast,
error terms are taken as correlated and/or heteroscedastic. Effectively, in this
case, Euclidean distances are replaced by their Mahalanobis counterparts, induced
by h:; :iVy

where Vy D .cov.y//�1 is assumed known up to a positive scalar
multiple. Similarly, in the matrix case reviewed in Sect. 23.2.1.4, standard ANOVA
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methods—those based on distances induced by h:; :iE—are appropriate for uncorre-
lated homoscedastic errors. However, a generally appropriate choice is to take V�,
of the form given in Theorem 23.2, as a positive scalar multiple of the inverse of an
assumed (asymptotic) covariance matrix for veck.M/. In particular, weighted least-
squares estimation is appropriate in the uncorrelated but heteroscedastic case, when
we may take V� to have the diagonal form characterised in Corollary 23.2.

An alternative way of choosing an inner product focuses on V. Recall that a
nonsingular covariance matrix has blockdiagonal form if and only if the same
is true of its inverse, the number and size of the blocks being the same in both
cases. A second choice is then to model the blockdiagonal form of V required
by orthogonality as reflecting uncorrelatedness of the corresponding parts of M.
Corollary 23.1 shows that this happens if and only if VDH D O and VH D VK.
Equivalently, when V� D V. This modelling choice is very much in the same
“analyse separately” spirit as the seminal (Constantine and Gower 1978) paper. The
within-subspace dispersions may then be modelled according to context.

Finally, under multivariate normality—and so, in many asymptotic situations—
zeroes in precision (inverse covariance) matrices have particular significance in
terms of conditional independence. Depending on context, such conditional inde-
pendence considerations may further guide appropriate choice of V or V�. In
particular, there may be useful applications here to graphical model contexts.
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Chapter 24
On Invariant Within Equivalence Coordinate
System (IWECS) Transformations

Robert Serfling

Abstract In exploratory data analysis and data mining in the very common setting
of a data set X of vectors from R

d, the search for important features and artifacts of
a geometrical nature is a leading focus. Here one must insist that such discoveries
be invariant under selected changes of coordinates, at least within some specified
equivalence relation on geometric structures. Otherwise, interesting findings could
be merely artifacts of the coordinate system. To avoid such pitfalls, it is desirable
to transform the data X to an associated data cloud X

� whose geometric structure
may be viewed as intrinsic to the given data X but also invariant in the desired sense.
General treatments of such “invariant coordinate system” transformations have been
developed from various perspectives. As a timely step, here we formulate a more
structured and unifying framework for the relevant concepts. With this in hand, we
develop results that clarify the roles of the so-called transformation-retransformation
transformations. We illustrate by treating invariance properties of some outlyingness
functions. Finally, we examine productive connections with maximal invariants.

Keywords Invariant coordinate systems • Maximal invariants • Multivariate •
Nonparametric • Outlyingness functions • Transformations

24.1 Introduction

In exploratory data analysis and data mining in the very common setting of a data
set X of vectors from R

d, a leading focus is the search for important features and
artifacts of a geometrical nature. Here one should insist that such discoveries be
invariant under selected changes of coordinates, or at least be invariant under such
changes up to a particular equivalence relation on geometric structures. Otherwise,
what appears to be interesting geometric structure could be nothing but an artifact of
the particular coordinate system adopted. To avoid such a pitfall, the data X can be
transformed to an associated new data cloud X

� having geometric structure that is
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intrinsically related to X but also invariant in the desired sense. General treatments
of such “invariant coordinate system” transformations have been developed from
various perspectives. As a timely next step, here we introduce a more structured and
unifying framework for the relevant concepts, develop results that clarify the use of
transformation-retransformation transformations, illustrate by treating invariance of
some popular outlyingness functions, and productively examine connections with
maximal invariants.

The topic of transformation to an “invariant coordinate system (ICS)” is treated
broadly in the seminal paper of Tyler et al. (2009), and further general treatments
are provided in Ilmonen et al. (2010), Serfling (2010), and Ilmonen et al. (2012).
See also Nordhausen (2008) for useful results. Collectively, these sources treat two
quite different approaches toward construction of “ICS” transformations and discuss
a diversity of interesting practical applications.

However, the various treatments to date are not completely coherent and precise
with respect to what is actually meant by “ICS.” Indeed, for many of the examples
and applications, the desired invariance is achieved only within some equivalence
relation defined on the geometric structures of data sets. For example, for a data
set X, when we seek to identify its geometric structure that is invariant under affine
transformation, it might be the case for the given application that differences due
to homogeneous scale changes, coordinatewise sign changes, and translations may
be ignored. That is, for any affine transformation of the given data cloud X to Y,
we might require only that the corresponding invariant coordinate systems X� and
Y

� agree only within such a specified equivalence. To accommodate a variety of
such practical applications, the notions and terminology of “ICS” have evolved very
productively but in somewhat loose fashion.

It is now timely and useful to have a more structured conceptual framework that
draws together the various “ICS” results and adds perspective. For this purpose, we
introduce and study in Sect. 24.2 a precise notion of “invariant within equivalence
coordinate system (IWECS)” transformation: M.X/ such that the transformed data
M.X/X is invariant under transformation of X relative to a transformation group G ,
subject to equivalence relative to another transformation group F . That is, for g 2
G , M.X/X and M.gX/gX need not be equal but must fall in the same equivalence
class. Specifically, M.X/X is to be G -invariant within F -equivalence.

It is seen in Serfling (2010) that the ICS transformations of practical interest
fall within the class of transformation-retransformation (TR) transformations, which
are essentially inverse square roots of covariance matrices. The chief purpose of
TR transformations is standardization of data, so that estimators, test statistics, and
other sample statistics become affine invariant or equivariant when defined on the
standardized data. However, in some such cases a strong type of TR transformation
is needed, namely an ICS transformation. Also, it is of interest to know when a TR
transformation may directly play the role of an ICS transformation. Here we note
that, to serve additionally as an ICS transformation, a TR matrix must be rather
atypical, since the “usual” ICS transformations cannot be symmetric or triangular
(Serfling 2010). In Sect. 24.3 we provide further clarifications on TR versus ICS
transformations, as follows. Theorem 24.2 provides the narrowest equivalence (i.e.,
the smallest F ) for which TR transformations can serve as IWECS transformations
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relative to linear or affine invariance. Theorem 24.3 exhibits a key special class of
TR transformations for which the corresponding IWECS are affine invariant relative
to the smallest possible nontrivial choice of F . As illustrations of the application
of these theorems, we treat affine invariant TR versions of the spatial outlyingness
function and of the projection outlyingness function when the number of projections
used is finite.

The construction of TR matrices that possess the structural properties requisite
to be ICS (or IWECS) is somewhat challenging. Relative to the linear and affine
transformation groups, connections between a useful strong special case of ICS and
IWECS transformations and the relevant maximal invariant statistics are examined
in Sect. 24.4.1. Thus maximal invariant statistics can play a role in constructing ICS
and IWECS transformations in this special case. We provide background references
on two distinctive approaches that have been developed along these lines. Further
exploiting connections with maximal invariant statistics, in Sect. 24.4.2 we revisit
classical treatments (Lehmann 1959) of maximal invariants relative to these groups
and “discover” a competitive third approach, one offering greater simplicity and less
computational burden.

The present paper treats only the case of data from a Euclidean space, as does
all of the literature to date except for extension to complex-valued data (Ilmonen
2013). However, the concepts we present in fact can have very general extension and
potentially have application in quite diverse contexts. We provide brief discussion
in Sect. 24.5.

As the literature we cite in this paper amply portrays, there has been a prominent
guiding influence in developing, studying, and applying ICS transformations. The
contributions of the present paper are dedicated as a tribute to Hannu Oja and his
leadership.

24.2 A General Framework for Formulation of Invariant
Within Equivalence Coordinate Systems in R

d

24.2.1 General Framework

Here we draw together and extend recent general treatments of ICS transformations
(Nordhausen 2008; Tyler et al. 2009; Ilmonen et al. 2010; Serfling 2010; Ilmonen
et al. 2012). A general framework for describing the inherent geometrical structure
of a data set in R

d via IWECS representations is defined as follows.

Definition 24.1 An IWECS in R
d consists of three components .G ;M.�/;E /,

1. a group G of transformations g on data sets X of observations from R
d,

2. a data-based d � d matrix transformation M.X/ taking X to M.X/X, and
3. an equivalence relation E on the transformed data sets M.X/X,

such that M.gX/gX, g 2 G , all lie in the same equivalence class relative to E , i.e.,
are invariant relative to G within E -equivalence. ut
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Thus the E -orbit to which M.X/X belongs is invariant under transformation of X
by g 2 G . We call the matrix M.�/ an IWECS transformation, and resulting the
transformed data M.X/X is the desired IWECS.

Whereas G concerns transformations on initial data sets X in R
d and represents

a criterion for invariance, the equivalence relation E concerns the transformed data
sets M.X/X and represents a criterion for equivalent geometric structure. There are
many possibilities for .G ;E /. In the example of Sect. 24.1, G consists of affine
transformations and E represents data sets as having equivalent geometric structure
if they differ only with respect to homogeneous scale change, coordinatewise sign
changes, and translation.

For given .G ;E /, the challenge is to find a suitable M.�/ satisfying Defi-
nition 24.1. In the sequel, we consider the special case that E corresponds to
invariance under a group of transformations F and denote the above framework
by .G ;M.�/;F /. Then a key criterion for finding a solution is provided by the
following result, which follows immediately from Definition 24.1.

Theorem 24.1 For given .G ;F /, a suitable IWECS transformation is given by any
M.�/ such that, for any g 2 G , there exists f0 D f0.g;X/ 2 F for which

M.gX/gX D f0 M.X/X: (24.1)

The following result provides a useful sufficient condition for (24.1) in the form of
a structural requirement on the matrix M.�/ that in practice serves essentially as the
definition of an IWECS transformation. The proof is immediate.

Corollary 24.1 For given .G ;F /, a suitable IWECS transformation is given by
any M.�/ such that, for any g 2 G , there exists f0 D f0.g;X/ 2 F for which

M.gX/ D f0 M.X/g�1: (24.2)

With A the set of all nonsingular d � d matrices, important choices for G are

G0 = fg W gX D AX; A 2 A g (nonsingular linear transformation),
G1 = fg W gX D AX C b; A 2 A ; b 2 R

dg (affine transformation).

For F , key choices are

D0 = ff W fY D cY; c > 0g (homogeneous rescaling),
D = ff W fY D diag.c1; : : : ; cd/Y; ci > 0; i D 1; : : : ; dg (heterogeneous rescaling),
J = ff W fY D diag.c1; : : : ; cd/Y; ci D ˙1; i D 1; : : : ; dg (heterogeneous sign
changing),
P = ff W fY D PY; P is a permutation matrixg (permutation),
U = ff W fY D UY; U is an orthogonal matrixg (rotation and/or reflection).

The above G and F arise quite naturally in nonparametric multivariate inference,
as discussed in Ilmonen et al. (2012), where G1 is especially emphasized. Their
Eq. (24.4) corresponds to our Eq. (24.2) specialized to G1 and in that form is given as
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their definition of what here we call an IWECS transformation. Let us also note that
certain combinations of the above choices of F are of special interest, for example:

F0 = ff W fY D cY C b; c > 0; b 2 R
dg

(translation, homogeneous rescaling),
F1 = ff W fY D c diag.c1; : : : ; cd/Y C b; c > 0; ci D ˙1; i D 1; : : : ; d; b 2 R

dg
(translation, homogeneous rescaling, heterogeneous sign changing),
F2 = ff W fY D diag.˙c1; : : : ;˙cd/Y C b; ci > 0; i D 1; : : : ; d; b 2 R

dg
(translation, heterogeneous rescaling, heterogeneous sign changing),
F3 = ff W fY D U .cY C b/; c > 0; U orthogonal; b 2 R

dg
(translation, homogeneous rescaling, rotation, reflection),
F4 = ff W fY D U .diag.c1; : : : ; cd/Y C b/; ci > 0; i D 1; : : : ; d; U orthogonal; b 2
R

dg
(translation, heterogeneous rescaling, rotation, reflection).

In particular, the example discussed in Sect. 24.1 concerns G1 and F1.
The property that a transformation is IWECS with respect to .G ;F / becomes

weaker if F acquires additional transformations. In this respect, let us note that
F0 
 F1 
 F2 and F0 
 F3 
 F4 so that here the strongest case corresponds
to F = F0. Of course, still stronger is the ideal case that the equivalence relation
E (i.e., the group F ) may be omitted and the invariance relative to G is strict: the
transformed sets M.gX/gX, g 2 G , are identical without qualification and M.�/ is
a purely ICS transformation. Generally, however, this aspiration is too stringent and
must be relaxed, adopting an equivalence criterion that is as narrow as possible.

24.3 TR Matrices as IWECS Transformations

In seeking IWECS transformations relative to the popular affine group G1, one
may inquire whether widely used standardizing transformations such as the inverse
square roots of scatter matrices suffice for this purpose. That is, more precisely,
may a transformation-retransformation (TR) matrix serve as an IWECS matrix? As
shown in Serfling (2010), the answer is negative except for some very special cases
that exclude popular ones. Hence it becomes of interest to explore what “minimal”
F suffices for an arbitrary TR transformation to serve as an IWECS transformation
relative to .G1;F /. In Sect. 24.3.1 we review the definition of TR matrices, and in
Sects. 24.3.2 and 24.3.3 we develop explicit answers to this question.

24.3.1 Definition of TR Matrices

A transformation-retransformation (TR) matrix is a positive definite d � d matrix
M.X/ (not necessarily symmetric) such that, for Y = AXC b with any nonsingular
A and any b,

A>M.Y/>M.Y/A D k2M.X/>M.X/;
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with k2 = k2.A;b;X/ a positive scalar function of A, b, and X. Such TR matrices
are equivalently given by factorizations of weak covariance (WC) matrices, i.e., via

C.X/ D .M.X/>M.X//�1;

where the symmetric positive definite d � d WC matrix C.X/ satisfies

C.Y/ D k1AC.X/A>;

with k1 = k1.A;b;X/ a positive scalar function of A, b, and X. For k1 D 1, C.X/ is
a strict “covariance” matrix. Typical standardizations of data X for various purposes
are given by M.X/X. See Serfling (2010) and Ilmonen et al. (2012) for detailed
discussion and examples.

24.3.2 TR Matrices as IWECS Transformations

We now explore whether such an M.�/ can be IWECS. In particular, Serfling (2010)
shows, in different notation, that any IWECS transformation relative to .G1;F1/

is TR, but not conversely, one counterexample being the popular (Tyler 1987) TR
matrix. But is there a broader F for which any TR matrix is in fact IWECS? The
following result answers this in the affirmative, for both G1 and G0, with F = F3.

Theorem 24.2 Every TR matrix is IWECS relative to .G1;F3/ and also to .G0;F3/.

Proof

(i) Let us first consider .G1;F3/. Let g 2 G1 be given by gx D AxC b for some
nonsingular A and any b. It is shown in Serfling (2010), Lemma 5.1, that, for
any TR matrix M.�/, and for Y = AX C b with any nonsingular A and any b,
the matrix

U0 D U0.A;b;X/ D k2.A;b;X/1=2.M.Y/>/�1.A>/�1M.X/>

is orthogonal. Then we readily obtain

M.Y/ D k1=22 U0M.X/A�1 (24.3)

and in turn

M.Y/Y D k1=22 U0ŒM.X/XCM.X/A�1b� D f0M.X/X; (24.4)

where f0 = f0.A;b;X/ represents translation of M.X/X by the constant
M.X/A�1b, followed by homogeneous scale change by k2.A;b;X/ and then
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rotation/reflection by orthogonal U0. Thus f0 2 F3 and Eq. (24.1) in Theo-
rem 24.1 is satisfied for the given g 2 G1.

(ii) For .G0;F3/, the proof is similar. ut
Theorem 24.2 shows explicitly the precise strengths and limitations of TR matrices
as IWECS transformations. We can apply this result through various straightforward
corollaries, for example the following.

Corollary 24.2 If an R
m-valued statistic Q.X/ is invariant with respect to F3, then

its evaluation at a TR-based IWECS M.X/X relative to either .G1;F3/ or .G0;F3/

is invariant with respect to G1 or G0, respectively.

Example 24.1 Invariance of spatial outlyingness function. The spatial outlyingness
function (Serfling 2010) is defined as

OS.x;X/ D kRS.x;X/k; x 2 R
d;

where RS.x;X/ is the spatial centered rank function (Oja 2010) in R
d given by

RS.x;X/ D n�1
nX

iD1
S.x � Xi/; x 2 R

d;

with S.y/ the spatial sign function (or unit vector function) in R
d given by

S.y/ D
(

y
kyk ; y 2 R

d; y ¤ 0;

0; y D 0:

It is readily checked that RS.x;X/ is translation and homogeneous scale invariant
and orthogonally equivariant:

RS.x � b;X � b/ D RS.x;X/;

RS.cx; cX/ D RS.x;X/;

RS.Ux;UX/ D URS.x;X/:

Then OS.x;X/ is translation, homogeneous scale, and orthogonally invariant, i.e.,
invariant with respect to the group F3, but is not affine invariant. However, fully
affine invariant versions are immediately obtained via Corollary 24.2: For any TR
matrix M.�/, the so-called TR spatial outlyingness function corresponding to M.�/,

O(TR)
S .x;X/ D OS.M.X/x;M.X/X/; x 2 R

d;

is affine invariant. ut
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24.3.3 Special Types of TR Matrix for IWECS Transformations

It would be desirable to have the result of Theorem 24.2 for a smaller choice of F
than F3. In this vein, we ask: What additional property is required of a TR matrix
M.�/ in order for it to serve as an IWECS transformation relative to G1 for a choice
of F narrower than F3?

A clue is given by Eq. (24.3) in the proof of Theorem 24.2. If we simply require
that M.�/ satisfy this equation without the factor U0, then Eq. (24.4) would hold
without the presence of U0, yielding the following very strong conclusion.

Theorem 24.3 Let M.�/ be a TR matrix such that, for Y = AXC b as above,

M.Y/ D k1=22 M.X/A�1; (24.5)

with k2 = k2.A;b;X/ as in the definition of the given TR matrix. Then M.�/ is IWECS
relative to .G1;F0/ and to .G0;F0/.

An analogue of Corollary 24.2 is

Corollary 24.3 If an R
m-valued statistic Q.X/ is invariant with respect to F0, then

its evaluation at a TR-based IWECS M.X/X for M.�/ satisfying (24.5) is, relative
to either .G1;F0/ or .G0;F0/, invariant with respect to G1 or G0, respectively.

In comparison with Corollary 24.2, Corollary 24.3 requires more of the TR matrix
but yields a stronger conclusion by allowing F0 instead of F3.

Example 24.2 Invariance of projection outlyingness with finitely many projections.
With  the median and � the MAD (median absolute deviation from the median),
the well-known projection outlyingness function given by

OP.x;X/ D sup
kuk D 1

ˇ̌
ˇ̌u

>x � .u>
X/

�.u>X/

ˇ̌
ˇ̌ ; x 2 R

d; (24.6)

represents the worst case scaled deviation outlyingness of projections of x onto
lines. It is affine invariant, highly masking robust (Dang and Serfling 2010), and
does not impose ellipsoidal contours as does the very popular Mahalanobis distance
outlyingness function, which also is affine invariant. However, OP.x;X/ is highly
computational, and to overcome this burden Serfling and Mazumder (2013) develop
and study a modified version entailing only finitely many selected projections, say
� = fu1; : : : ;uKg, i.e.,

O.�/
P .x;X/ D sup

u 2 �

ˇ̌
ˇ̌u

>x � .u>
X/

�.u>X/

ˇ̌
ˇ̌ ; x 2 R

d: (24.7)

However, O.�/
P .x;X/with finite� is no longer affine invariant. Nor is it orthogonally

invariant, so Corollary 24.2 is inapplicable and thus an arbitrary TR version does not
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achieve affine invariance. On the other hand, simply using invariance of O.�/
P .x;X/

with respect to F0, it follows by Corollary 24.3 that any TR version

O.�;TR/
P .x;X/ D O.�/

P .M.X/x;M.X/X/; x 2 R
d;

with M.�/ satisfying (24.5) is indeed affine invariant. Of course, standardizing by
M.�/ introduces a further computational issue, and Serfling and Mazumder (2013)
also develop computationally attractive choices of M.�/ satisfying (24.5). ut
Remark 24.1 A TR matrix satisfying the special condition (24.5) is distinguished
as a “strong invariant coordinate system” (SICS) transformation in Serfling (2010)
and Ilmonen et al. (2012), where also other results like Theorem 24.3 are seen
corresponding to replacement of U0 in (24.3) by possibilities other than simply the
identity matrix and hence corresponding to F larger than F0. ut
Remark 24.2 Let us compare condition (24.5) with the somewhat similar condition
given by (24.2), which in the present setting would be expressed as

M.Y/ D f0M.X/g�1 (24.8)

for any given g 2 G for some related f0 2 F0. For the case G = G1, let g be given by
gx D AxC b for some nonsingular A and any b. Now it is readily checked that the
transformation g�1 consists of translation by �b followed by application of A�1,
or equivalently application of A�1 followed by translation by �A�1b. Thus (24.5)
is equivalent to (24.2) with suitable choice of f0 2 F0. The argument for G = G0 is
similar. In dealing with G = G1, the use of (24.5) is more direct and convenient. ut

24.4 Some Connections with Maximal Invariants

A natural “invariance principle” is that artifacts of the data X which are invariant
without qualification relative to a group G of transformations should be functions
of a suitable “maximal invariant” statistic that constitutes a labeling of the orbits
of G . See Lehmann and Romano (2005, Sect. 6.2), for elaboration. For a data set
X = fX1; : : : ;Xng of observations in R

d, a maximal invariant is obtained via some
suitable matrix-valued transformation B.X/ applied to X, producing B.X/X as the
desired maximal invariant.

In this case, an ICS M.X/X relative to G should be expressible as a function of
B.X/X. However, this need not be true for an IWECS, of course. In Sect. 24.4.1,
relative to G0 and G1, we exhibit connections between ICS transformations and
the pertinent maximal invariant transformations. These connections are exploited
in Sect. 24.4.2 to “discover” from some classical results a new approach toward
construction of ICS and IWECS transformations. In Sect. 24.5 the connections are
extended to the case of an arbitrary G .
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24.4.1 Connections in the Case of Groups G0 and G1

With reference to the groupsG0 and G1, the following results of Ilmonen et al. (2012,
Theorem 3.1), connect maximal invariants with TR matrices M.�/ satisfying a strong
special case of Eq. (24.5), namely

M.Y/ DM.X/A�1; (24.9)

where Y denotes AX in the case of G0 and AX C b in the case of G1. They show
under (24.9) that

(i) M.X/X is a maximal invariant under G0,
(ii) M.X/.X � T.X// is a maximal invariant under G1, for any location statistic T.X/.

Of course, in view of (24.9), M.�/ is an IWECS transformation. Also, note that
under (24.9) we have M.X/ = M.X � T.X//, and thus the maximal invariant in (ii)
may also be written as M.X � T.X//.X � T.X//.

In case (i), M.�/ is a very strong special case of IWECS transformation, namely
a pure ICS transformation without qualification by an equivalence relation, for
we have M.gX/gX = M.X/X, g 2 G0. Note that under merely (24.5) instead
of the strengthening to (24.9), we have by Theorem 24.3 that M.�/ is an IWECS
transformation relative to .G1;F0/, a slightly weaker conclusion although still quite
strong, and the IWECS M.X/X is no longer a maximal invariant.

In case (ii), and even under merely (24.5), we have that M.�/ is IWECS relative
to .G1;F0/, as per Theorem 24.3. However, the IWECS M.X/X is not a maximal
invariant. Consequently, under (24.9), M.�/ is closely associated with both obtaining
an IWECS and obtaining a maximal invariant, although neither solution directly
yields the other. Since typical TR matrices do not satisfy (24.9), special types are
required.

Particular constructions of M.�/ satisfying (24.9) with reference to G0 and G1
have been developed and applied to obtain affine invariant multivariate sign and
angle tests and affine equivariant multivariate coordinatewise and spatial medians,
in a series of papers by Chaudhuri and Sengupta (1993), Chakraborty and Chaudhuri
(1996), and Chakraborty et al. (1998). Further approaches are treated in Serfling
(2010), and Ilmonen et al. (2010, 2012), covering a range of applications and
exploring the formal properties of these transformations. Treatments are carried out
in the setting of complex valued independent component analysis by Ilmonen (2013)
and in the setting of supervised invariant coordinate selection by Liski et al. (2014).

24.4.2 Some Pertinent Classical Results

Maximal invariant statistics relative to G0 and G1 have been treated in detail as early
as Lehmann (1959), and those results are pertinent here. In particular, for X a d � n
matrix of n column d-vectors, and relative to the group G0, Lehmann (1959) derives
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the maximal invariant

P D X
>.XX>/�1X;

which corresponds to M0.X/X with

M0.X/ D X
>.XX>/�1:

We readily find that M0.�/ satisfies (24.9) and hence is both an ICS and a maximal
invariant transformation.

Three noteworthy aspects of the Lehmann maximal invariant P are as follows:

1. M0.X/ is more directly computed than existing ICS matrices relative to G1.
2. P has interesting geometric interpretations as discussed in Lehmann (1959).
3. P is n � n rather than d � n as would be M0.X/X were M0.�/ a d � d TR

matrix satisfying (24.9). However, as easily seen, assuming the rows of M0.X/

are linearly independent as should hold with probability 1, any d rows of M0.X/

form a d � d TR matrix M1.�/, say, also satisfying (24.9) and thus yield what we
might call a minimal dimension maximal invariant P0 = M1.X/X, say.

Remark 24.3 Note that P0 (a) serves as an ICS relative to G0, (b) serves as a
maximal invariant relative to G1 via

M1.X/.X � T.X// DM1.X � T.X//.X � T.X//;

and (c) serves as an IWECS relative to .G1;F0/. The reduction of the “full” maximal
invariant P to the minimal dimension version P0 gives up some data, but only what
is redundant of that which is retained, as far as a labeling of orbits is concerned. It
should be noted that the computational burden posed by P and P0 is relatively light.
Full investigation of P and P0 is deferred to a future study. ut

24.5 Extensions for General X and General G

In the present paper we have focused on X = R
d and G = G0 and G1. However,

Definition 24.1 can immediately be formulated more generally, allowing the data X

to be observations from any space X and taking M to be a data based operator on
elements of X .

Also, the connections (i) and (ii) of Sect. 24.4.1 regarding maximal invariance
under (24.9) have a completely general extension, corresponding to a tightening
of (24.2) in the same way that (24.9) tightens (24.5), as follows.
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Theorem 24.4 For any group G of transformations on data sets X from any space
X , let M.�/ be such that M.X/ itself belongs to G for any data set X and suppose
that

M.gX/ DM.X/g�1: (24.10)

Then M.X/X is both an ICS and a maximal invariant with respect to G .

Proof Invariance of M.X/X follows immediately from (24.10). Now suppose that
M.X/X = M.X�/X� for two data sets X and X

�. Then X
� = ŒM.X�/�1M.X/�X =

g�
X, where g� = M.X�/�1M.X/ 2 G . Hence X and X

� lie in the same orbit of G ,
establishing maximality. ut
Statistical inference procedures which are invariant or equivariant with respect to
some group G can be obtained by evaluating suitable preliminary versions at some
appropriate functions either of an IWECS or of a maximal invariant, whichever is
more convenient. In light of Theorem 24.4, these constructions and studies may be
explored in greater generality than for X = R

d. For example, a potential application
of the IWECS framework arises in the study of similarity between time series with
invariance to (various combinations of) the distortions of warping, uniform scaling,
offset, amplitude scaling, phase, occlusions, uncertainty, and wandering baseline.
This and other applications are being pursued in separate investigations.
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Chapter 25
Alternative Diagonality Criteria for SOBI

Jari Miettinen

Abstract Blind source separation (BSS) is a multivariate data analysis method,
whose roots are in the signal processing community. BSS is applied in diverse
fields, including, for example, brain imaging and economic time series analysis.
In the BSS model there are interesting latent uncorrelated variables, and the aim is
to estimate the latent variables from multiple linear combinations of them. In this
article we assume that these variables are weakly stationary time series, and we
consider estimation methods which are based on approximate joint diagonalization
of autocovariance matrices. In the popular SOBI estimator, a set of matrices is
most diagonal when the sum of squares of their diagonal elements is maximal.
Here we investigate other criteria to measure the diagonality of matrices. Applying
both asymptotic results and simulations, we will study how the use of different
diagonality measures affects the separation performance. Also, a method to choose
the measure optimally based on data is proposed.

Keywords Approximate joint diagonalization • Blind source separation •
Time series

25.1 Introduction

The blind source separation (BSS) model in its most simple form is written as x D
˝z C �, where x is the observed p-variate vector, ˝ is a full rank p � p mixing
matrix, and z is a p-variate latent source vector. The p-variate location vector �
is most often considered as a nuisance parameter, when the aim is to estimate the
mixing matrix ˝ , or the unmixing matrix 
 D ˝�1, based on the observations
x1; : : : ; xT .

The identifiability of the unmixing matrix depends on the distribution of the
source vector z. In independent component analysis (ICA) the components of z are
mutually independent, and the unmixing matrix is identifiable if at most one of the
components is Gaussian (Comon 1994). In ICA the possible temporal dependence
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is usually disregarded, but there are other branches of BSS, which purely employ
the temporal structure of the observations. Then uncorrelatedness of the components
is enough and multiple Gaussian components are allowed. Instead, the components
must have mutually different temporal structures. BSS methods for time series still
divide into two categories, one for weakly stationary and the other for nonstationary
time series.

In this paper we consider the model

xt D ˝zt; t D 0;˙1;˙2; : : : (25.1)

where the components of z D .zt/tD0;˙1;˙2 are uncorrelated weakly stationary time
series which satisfy the following assumptions.

(A1) E.zt/ D 0,
(A2) E.ztz0

t/ D Ip, and
(A3) E.ztz0

tCk/ D E.ztCkz0
t/ D �k is diagonal for all k D 1; 2; : : : , and for all pairs

i ¤ j there is such k � 1 that .�k/ii ¤ .�k/jj.

This is a semiparametric model since the distribution of z remains unspecified.
The Assumption (A2) that z is standardized is motivated by the fact that otherwise
the scales of the columns of ˝ and the scales of the components of z would be
confounded in Model (25.1). The signs and order of the columns of ˝ cannot be
estimated with these assumptions, but they are of less importance. An unmixing
matrix functional 
 is said to be affine equivariant, if for x and x� D Ax for
some non-singular p � p matrix A, the estimates 
 xx and 
 x� x� are the same
up to order and sign changes of the components. Affine equivariance is a desirable
property which implies that the estimation accuracy does not depend on the mixing
matrix˝ . Notice that we assume that the location vector � D 0 is known. With our
assumptions in the following sections, this will not be a restriction.

Probably the most popular functionals in Model (25.1) are based on the use of
autocovariance matrices. Either on simultaneous diagonalization of two matrices
(Tong et al. 1990; Ziehe and Müller 1998) or on approximate joint diagonalization
of several matrices (Belouchrani et al. 1997). Indeed, more than two matrices
can be diagonalized only approximately, and then joint diagonalization means
maximization of some selected diagonality measure. Usually it is the sum of squares
of the diagonal elements, but in this paper we consider also other choices for the
diagonality measure.

The outline of the paper is the following. In Sect. 25.2 we will recall how
joint diagonalization of autocovariance matrices have been used to solve the BSS
problem, and define a family of new functionals. The asymptotical properties of
the new functionals are presented in Sect. 25.3, first in the general case and then in
more detail for linear processes. A new functional, which utilizes the asymptotical
results, is proposed. The finite-sample properties and the asymptotic efficiency of
the different estimators are compared in Sect. 25.4 with simulation studies. Finally,
Sect. 25.5 provides a short discussion.
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25.2 BSS and Autocovariance Matrices

25.2.1 Functionals Based on Simultaneous Diagonalization of
Two Matrices

Write

Sk D E.xtx0
tCk/ D ˝�k˝

0; k D 0; 1; 2; : : :

for the autocovariance matrices of x from the BSS model.
The first BSS estimator which utilizes autocovariance matrices was the so-called

AMUSE (Algorithm for Multiple Unknown Signals Extraction) estimator proposed
by Tong et al. (1990). The AMUSE unmixing matrix functional 
 k, for some lag k,
satisfies


 kS0
 0
k D Ip and 
 kSk


0
k D �k;

where�k is a diagonal matrix with the diagonal elements in a decreasing order.
The functional 
 k is affine equivariant, and it produces consistent estimates if

the diagonal elements of �k are distinct. AMUSE is computationally very simple
method, but the choice of the lag is a problem (Miettinen et al. 2012). Ziehe
and Müller (1998) suggested replacing the single autocovariance matrix Sk by the
average K�1P

k Sk of K autocovariance matrices.

25.2.2 Functionals Based on Approximate Joint
Diagonalization of Several Matrices

In terms of the estimation precision, it is better to conduct the joint diagonal-
ization of several matrices as in the SOBI (Second Order Blind Identification)
algorithm (Belouchrani et al. 1997).

The SOBI unmixing matrix functional 
 maximizes

KX

kD1
jjdiag.
 Sk


0/jj2 D
pX

jD1

KX

kD1
.� 0

jSk� j/
2

under the constraint 
 S0
 0 D Ip. Here diag.A/ is a p � p diagonal matrix with the
same diagonal elements as A and k�k is the matrix (Frobenius) norm. The constraint
implies that the estimated source components are uncorrelated and standardized. It
relates to the so-called whitening procedure, which is the first step in most of the
BSS methods. In whitening the observed variable x is transformed to yt D S�1=2

0 xt

(let S�1=2
0 be the symmetric matrix). Then E.yty0

t/ D Ip and zt D Uyt for some
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orthogonal matrix U. The SOBI functional can be defined equivalently as 
 D
US�1=2

0 , where U is the orthogonal matrix which maximizes

KX

kD1
jjdiag.URkU0/jj2; (25.2)

and Rk D S�1=2
0 SkS�1=2

0 .
The SOBI estimate is computed in practice using the whitening. The most

popular algorithm for the approximate joint diagonalization of several matrices is
based on Jacobi rotations (Clarkson 1988). The algorithm (25.6) in Sect. 25.2.3 was
recently introduced in Miettinen et al. (2014b), where the statistical properties of
the SOBI estimate were studied.

We use the notation S1; : : : ;SK , even though the set of lags can be something else
than the K first. The separation performance depends on which lags are included,
and different sets of lags are appropriate for different kind of data. Only case-specific
guidelines for the selection of lags have been presented, see, for example, Tang et al.
(2005).

In addition to the original SOBI, some modified versions have been proposed.
The covariance matrix S0 has a special role in SOBI as it is exactly diagonalized.
This unequal treatment can be removed by the use of non-orthogonal joint diago-
nalization algorithms, which replace the orthogonality constraint by some different
ones, see, for example, Yeredor (2002); Yeredor et al. (2004); Ziehe et al. (2004).

In the deflation-based SOBI (Miettinen et al. 2014a) method, the rows of the
matrix U are found one by one, and the jth row of U maximizes

KX

kD1
.u0

jSkuj/
2; (25.3)

under the constraints u0
iuj D ıij, i D 1; : : : ; j, where ıij is the Kronecker delta.

In Miettinen et al. (2014b) the deflation-based SOBI estimator was compared with
the original, symmetric, SOBI estimator. The conclusion was that the symmetric
version is the preferable choice. Miettinen et al. (2014a) also introduced a family of
functionals where criterion (25.3) is replaced by

KX

kD1
G.u0

jRkuj/;

with continuously differentiable functions G. It was demonstrated that different
choices of G may yield considerably more efficient estimates than (25.3). The rest
of the paper is devoted to a study on the use of alternative diagonality criteria with
the symmetric SOBI.
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25.2.3 Other Diagonality Criteria

The idea of SOBI is that it searches for the unmixing matrix that makes selected
autocovariance matrices as diagonal as possible. To measure the diagonality by the
sum of squares of the diagonal elements as in (25.2) is natural because under the
orthogonality constraint, maximizing (25.2) is equivalent to minimizing the sum of
squares of the off-diagonal elements

KX

kD1
jjoff.URkU0/jj2;

where off.A/ D A�diag.A/. This property does not hold when we switch (25.2) to

KX

kD1

pX

jD1
G.u0

jRkuj/; (25.4)

where the function G is a continuously differentiable and even function with G.0/ D
0, g.x/ D G0.x/ � 0 for x < 0 and g.x/ � 0 for x > 0. In this context, only the
function values in interval Œ�1; 1� matter. We will focus on functions of the form

Ga.x/ D jxja; a > 1: (25.5)

Let us denote by 
 a D US�1=2
0 the unmixing matrix functional for which U

maximizes (25.4) with G D Ga. The functional 
 a is affine equivariant. The larger
the a is, the more weight is put to the matrices with large autocovariances. If each
element of �k is greater than the corresponding elements of �j, j ¤ k, then 
 a

converges to the AMUSE estimate 
 k as a!1.
The estimating equations for U D .u1; : : : ;up/

0 are found using Lagrange
multipliers method similarly as in Miettinen et al. (2014b). The equations are

u0
iT.uj/ D u0

jT.ui/ and u0
iuj D ıij; i; j D 1; : : : ; p;

where T.u/ DPK
kD1 ga.u0Rku/Rku.

The estimating equations gave the idea to an algorithm with the two steps

step1 W T .T.u1/; : : : ;T.up//
0 (25.6)

step2 W U .TT0/�1=2T:

The algorithm is easily adjusted to solve the joint diagonalization problem for any
G. For a D 2, algorithm (25.6) and the algorithm based on Jacobi rotations yield
equal solutions. Algorithm (25.6) is slower when the components are difficult to
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separate, that is, when the sample size is small or there are mutually almost similar
components.

25.3 Asymptotical Properties

The theorems of this section are straightforward generalizations of the correspond-
ing theorems for the standard symmetric SOBI estimate. To get the idea of the
proofs, see Miettinen et al. (2014b).

25.3.1 General Case

Since the population autocovariance matrices are symmetric in the BSS
model (25.1), we estimate them using the symmetrized sample autocovariance
matrices

OSk D 1

2.T � k/

T�kX

tD1
.xtx0

tCk C xtCkx0
t/; k D 0; 1; 2; : : :

To guarantee the identifiability of the unmixing matrix with the autocovariance
matrices OS0; OS1; : : : ; OSK ; K � 2, we assume

(A4) the diagonal elements of
PK

kD1 Ga.�k/ are strictly decreasing.

Also the order of the component time series is fixed by Assumption (A4). For the
next Theorem we assume root-T consistency of the sample autocovariance matrices
OS0; OS1; : : : ; OSK .

(A5) ˝ D Ip and
p

T. OSk ��k/ D Op.1/, k D 0; 1; : : : ;K as T !1.

The assumption ˝ D Ip is made without loss of generality because the affine
equivariance of the estimate implies that . O
 ˝ � Ip/ does not depend on ˝ , and
since O
 � 
 D . O
 ˝ � Ip/
 , the limiting distribution of

p
T vec. O
 � 
 / is

derived easily from that of
p

T vec. O
 ˝ � Ip/.

Theorem 25.1 Under the assumptions (A1)–(A5) we have, for a > 1, O
 a D
. O�a

1; : : : ; O�a
p/

0 !p Ip, and for j D 1; : : : ; p,

p
T O�a

jj D �
1

2

p
T.. OS0/jj � 1/C op.1/; i D j

p
T O�a

ji D
P

k.ga.�kj/� ga.�ki//
h
.
p

T OSk/ji � �kj.
p

T OS0/ji
i

P
k.ga.�kj/� ga.�ki//.�kj/ � �ki/

C op.1/; i ¤ j:
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Notice that, asymptotically, the diagonal elements of O
 a
do not depend on

OS1; : : : ; OSK , and consequently, they neither depend on the diagonality criterion.
Therefore, inspecting the limiting variances of the off-diagonal elements is enough
when comparing the different estimates. The off-diagonal element O�ij depends
asymptotically only on the ith and jth source component.

Limiting joint multivariate normality of the unmixing matrix estimate would
follow from the joint limiting multivariate normality of the sample autocovariance
matrices.

Corollary 25.1 Under the assumptions (A1)–(A5), if the joint limiting distribution
of

p
T
h
vec. OS0; OS1; : : : ; OSK/� vec.Ip;�1; : : : ;�K/

i

is a (singular) .K C 1/p2-variate normal distribution with mean value zero, then
the joint limiting distribution of

p
Tvec. O
 a � 
 a/ is a singular p2-variate normal

distribution.

25.3.2 Linear Process Model

The limiting variances of the elements of O
 can be calculated when the components
of zt in the BSS model (25.1) are uncorrelated linear processes, that is,

zt D
1X

jD�1
	 j�t�j; (25.7)

where	 j, j D 0;˙1;˙2; : : : , are diagonal matrices with diagonal elements j1; : : :,
 jp satisfying

P1
jD�1	 2

j D Ip, and the innovations �t are iid p-variate random
vectors with E.�t/ D 0 and Cov.�t/ D Ip. Also xt D ˝zt is then a multivariate
linear process. Note that linear processes cover a very wide class of second-order
stationary processes and that, for example, all invertible ARMA.p; q/ processes are
linear processes. See Chap. 3 in Brockwell and Davis (1991).

We further assume that

(A6) the components of �t have finite fourth order moments, and
(A7) the components of �t are exchangeable and marginally symmetric.

Assumption (A7) implies that all third moments of �t are zero. In the following
we write ˇij D E.�2ti�

2
tj/, i; j D 1; : : : ; p. Notice that if (A5) is replaced by

the assumption that the components of �t are mutually independent, then, in this
independent component model case, ˇij D 1 for i ¤ j. If one further assumes that
innovations �t are iid from Np.0; Ip/, then ˇii D 3 and ˇij D 1 for all i ¤ j.
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In the linear process model, the joint limiting distribution of the sample auto-
covariance matrices OSS

k , k D 1; : : : ;K is multivariate normal (Su and Lund 2012;
Miettinen et al. 2012). First define

Fk D
1X

tD�1
 t 

0
tCk; k D 0; 1; 2; : : :

where the diagonal elements of Fk are the autocovariances at lag k of the components
of zt. The limiting covariances of the elements of OSS

l and OSS
m are given in the p � p

matrix Dlm with elements

.Dlm/ii D .ˇii � 3/.Fl/ii.Fm/ii C
1X

kD�1
..FkCl/ii.FkCm/ii C .FkCl/ii.Fk�m/ii/ ;

.Dlm/ij D 1

2

1X

kD�1
..FkCl�m/ii.Fk/jj C .Fk/ii.FkCl�m/jj/

C1
4
.ˇij � 1/.Fl C F0

l/ij.Fm C F0
m/ij; i ¤ j:

The limiting distributions of the rows of O
 a
in the linear model are given in the

following Theorem.

Theorem 25.2 Assume that .x1; : : : ; xT/ is an observed time series from the linear
process (25.7) that satisfies (A1)–(A7). Assume (wlog) that ˝ D Ip. If O
 a D
. O�a

1; : : : ; O�a
p/

0 is the SOBI estimate with G D Ga, then the limiting distribution ofp
T. O�a

j � ej/ is a p-variate normal distribution with mean zero and covariance
matrix

ASV. O�a
j / D

pX

rD1
ASV. O�a

jr/ere0
r

where, for i ¤ j,

ASV. O�a
jj/ D

1

4
.D00/jj;

ASV. O�a
ji/ D

P
l;m.ga.�lj/ � ga.�li//.ga.�mj/� ga.�mi//.Dlm/ji

P
k.ga.�kj/� ga.�ki//.�kj � �ki/

�2

C�2ji
P

k.ga.�kj/ � ga.�ki//.Dk0/ji C 2ji.D00/ji
P

k.ga.�kj/� ga.�ki//.�kj � �ki/
�2 ;

with ji DPk.ga.�kj/� ga.�ki//�kj.
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25.3.3 Adaptive SOBI Estimator Based on the Asymptotic
Theory

The results of Theorem 25.2 can be employed similarly as in the adaptive deflation-
based FastICA (Miettinen et al. 2014a), where, for each component, the asymp-
totically most efficient nonlinearity function is chosen from a set of candidate
nonlinearities. Let a denote the candidate set of parameter values of 25.5. In the
simulation study we will have a D f1:5; 2; 3; 4g. When it comes to computation
times, having a larger set would not be a problem. The structure of the adaptive
SOBI estimator is the following.

step 1 Find estimates of the source components, for example using the regular
SOBI.

step 2 Estimate the asymptotic variances of Theorem 25.2, and find a0 2 a which
minimizes the sum of the variances.

step 3 Estimate the unmixing matrix using SOBI with a0.

The same arguments as in the proof of Theorem 3 in Miettinen et al. (2014a),
state that the adaptive estimate is asymptotically equivalent with O
 a0

, where a0
minimizes the sum of the asymptotic variances in a.

The asymptotic variances can be estimated from the data at hand, when the
source time series are linear processes. If we further assume that the innovations
are normally distributed, we only need to compute sample autocovariances from the
estimated source time series. Otherwise, the MA coefficients have to be estimated,
so that the estimation of ˇij, i; j D 1; : : : ; p is possible. Since we are now more
interested in the order of sums of variances for different values of a than the exact
values of the variances, it is reasonable to set ˇii D 3 and ˇij D 1; i ¤ j as if the
innovations were normal.

To approximate the infinite series in Dlm, one needs to include all non-zero
autocovariances. On the other hand, the length of the time series should be long
enough so that the estimation of all autocovariances is reliable. In the simulation
study we will compute the 50 first autocovariances.

Functions to compute the asymptotic variances are provided in the R package
BSSasymp (Miettinen et al. 2013).

25.4 Efficiency Study

In this section we study the impact of the new diagonality measures to asymptotic
and finite-sample efficiency in estimation of uncorrelated linear process time series.
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25.4.1 Minimum Distance Index

As the unmixing matrix is identifiable only up to sign changes, rescaling and
permutation of the rows, it is satisfactory that O
 ˝ converges to some C 2 C ,
where

C D fC W each row and column of C has exactly one non-zero elementg:

Hence, the accuracy of the estimate O
 in a simulation study is often measured
as a distance from O
 ˝ to C . For an overview of performance indices, see, for
example, Nordhausen et al. (2011a). The minimum distance index (MDI) (Ilmonen
et al. 2010) is defined by

OD D D. O
 ˝/ D 1p
p � 1 inf

C2C kC O
 ˝ � Ipk:

MDI is invariant with respect to the change of the mixing matrix, and it is scaled
so that 0 � OD � 1. The smaller the MDI-value, the better is the performance.

The MDI is an unquestionable choice, when the estimate O
 is asymptotically
normal, because it has the following property: if

p
T vec. O
 ˝ � Ip/ ! Np2 .0;˙ /,

the limiting distribution of T.p� 1/ OD2 is that of a weighted sum of independent chi
squared variables with the expected value

tr
�
.Ip2 � Dp;p/˙ .Ip2 �Dp;p/

�
:

The expected value thus equals the sum of the limiting variances of the off-diagonal
elements of

p
T vec. O
 ˝ � Ip/.

25.4.2 Simulation Setups

To examine some finite-sample properties of the estimates obtained using different
values of a in (25.5) and with the adaptive choice of a, two sets of time series
processes are chosen to comprise the source vectors of the BSS model. The source
time series in the two models are

(i) four AR(4) time series with coefficient vectors (0.6, 0, �0:2), (0.4, 0.3, �0:2),
(0, �0:2, 0.3) and (�0:2, �0:2, �0:2), respectively, and normal innovations,

(ii) three MA(5) time series with coefficient vectors (0.4, 0.3, 0.1, 0.6, 0.1), (0.2,
�0:3, �1:2, �0:2, �0:2) and (0.7, 0.2, 0.1, 0.6, �0:9), respectively, and normal
innovations.

For each length of time series, 10,000 repetitions were carried out and the MDI-
values were computed.
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In the third setup, the aim is to conduct a wide study on the asymptotic
efficiencies by generating randomly 10,000 pairs of ARMA processes. For each
pair we computed the sum of the asymptotic variances of the off-diagonal elements
of O
 ˝ for a D 1:1; 1:2; : : : ; 4. The ARMA processes were created so that first
the AR and MA orders were sampled (uniform distribution) from f0; 1; 2; 3; 4g and
f0; : : : ; 10g, respectively. Then each AR and MA coefficient was generated from
the uniform distribution with bounds �0:8 and 0:8. To guarantee the stationarity of
the time series, the AR coefficients had the constraint that the sum of their absolute
value is less than 1.

The set of lags f1; : : : ; 10g is used, except in model (ii) where the idea is
to investigate the impact of including too many matrices. There f1; : : : ; 5g and
f1; : : : ; 20g are used.

25.4.3 Simulation Results

Figure 25.1 presents the simulation results from model (i), which is an example
of a case where some other choice than a D 2 yields better results, even if the
asymptotically optimal set of lags (here f1; 2; 3g) is used. In model (i) for lags
f1; : : : ; 10g, the optimal value of a is 3.58 and then the expected value of T.p�1/ OD2

is 23.61. The corresponding values for a D 2 and sets of lags f1; 2; 3g and
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Fig. 25.1 The averages of T.p � 1/ OD2 over 10,000 repetitions of the observed time series with
length T from model (i) for the different estimates. The horizontal lines give the expected values
of the limiting distributions of T.p � 1/ OD2
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Fig. 25.2 The averages of T.p � 1/ OD2 over 10,000 repetitions of the observed time series with
length T from model (ii) for the different estimates. The horizontal lines give the expected values
of the limiting distributions of T.p � 1/ OD2

f1; : : : ; 10g are 34.22 and 42.86, respectively. The fourth estimator in this simulation
setup is the estimator defined in 25.3.3. Its expected value for T.p � 1/ OD2 is that of
a D 4, which is 24.39.

In model (ii) the expected values of T.p � 1/ OD2 are very close together for
estimates with different diagonality criteria. For a D 1:5; 2; 3; 4 they are 9.74, 9.62,
9.62, and 9.61, respectively, when lags 1, 2, 3, 4, and 5 are included. Notice that
including autocovariance matrices whose all expected values are zeros, which is the
case here for lags greater than 5, has no effect on the asymptotic variances. With
small sample sizes, however, having too many matrices decreases the efficiency.
Figure 25.2 shows how the estimators perform when the set of lags is f1; : : : ; 20g.
For comparison, the results of the estimator with lags f1; : : : ; 5g and a D 2 are
plotted in the same figure. The results of the estimators with lags f1; : : : ; 5g and
a D 1:5; 3; 4 were very similar to those of a D 2, but, to keep the figure clear, they
are not plotted. The impact of extra matrices is rather small for a D 3 and a D 4,
but a D 2 and especially a D 1:5 suffer when the sample size is small.

Figure 25.3 plots the averages and the quartiles of ASV. O�12/ C ASV. O�21/ for
a D 1:1; 1:2; : : : ; 4 from 10,000 pairs of randomly generated source time series
processes. Based on the first two quartiles, all estimators seem to be asymptotically
equally efficient. The average line shows that small values of a yield occasionally
much larger variances. For a � 2 the estimators are fairly even. It means that in
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Fig. 25.3 The averages and the quartiles of the sum ASV. O�12/ C ASV. O�21/ from 10,000 pairs of
source time series, that were generated as described in Sect. 25.4.2

Table 25.1 Distribution of the ratio between ASV. O�12/C ASV. O�21/ for the optimal a and for that
of a D 2

Range of a .0; 0:2� .0:2; 0:4� .0:4; 0:6� .0:6; 0:8� .0:8; 0:9� .0:9; 1�

1:1; : : : ; 4 8 63 252 1229 2130 6318

2; 3; 4 8 57 240 1133 1957 6572

high-dimensional cases, the choice of the diagonality criterion has probably only a
minor effect.

Still utilizing the same 10,000 pairs of ARMA processes, we next take a look
what kind of efficiency gain can be achieved when p D 2. In Table 25.1 we
have listed frequencies of occurrences that the ratio between ASV. O�12/C ASV. O�21/
for the optimal a and for that of a D 2 falls into intervals .0; 0:2�, .0:2; 0:4�,
.0:4; 0:6�, .0:6; 0:8�, .0:8; 0:9� and .0:9; 1�. The upper line gives the frequencies,
when the optimal value is searched over a D 1:1; 1:2; : : : ; 4, and the lower line,
when only a D 2; 3; 4 are considered. The fact that the two lines are quite similar
implies that values a < 2 are rarely significantly better than others, and that
ASV. O�12/ C ASV. O�21/ as a function of a is usually smooth. In about 35 % of the
cases the efficiency gain is more than 10 %, and at highest it was 91 %.
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25.5 Discussion

In this paper we generalized the asymptotic analysis of the symmetric SOBI
estimator given in Miettinen et al. (2014b), to cover other criteria for diagonality of
a set of matrices than the standard least squares criterion. The results were utilized
when constructing a new estimator which chooses asymptotically the most efficient
criterion based on an initial estimate of the source time series. The new method is
more efficient than the regular SOBI, but, on the other hand, it is computationally
heavier. For consideration whether the longer computation time is worth taking,
one should include the sample size and the dimension of the data. The sample size
should be sufficiently large, say T > 500, so that the approximation of the variances
pays off. If the number of the latent components is large, then different diagonality
criteria yield probably almost equally good estimators.

The choice of the diagonality criterion relates to the choice of lags. In most cases
where the regular (a D 2) SOBI is not optimal for the selected set of lags, one
can achieve improvement also by picking a better set of lags. But as we showed in
Sect. 25.4.3, sometimes even the optimal set of lags cannot obtain the efficiency of
the optimal diagonality criterion. Future work could include studying the choice of
lags based on data and how to combine it with the choice of the diagonality criterion.
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Chapter 26
Robust Simultaneous Sparse Approximation

Esa Ollila

Abstract This chapter considers sparse underdetermined (ill-posed) multivariate
multiple linear regression model known in signal processing literature as multiple
measurement vector (MMV) model. The objective is to find good recovery of jointly
sparse unknown signal vectors from the given multiple measurement vectors which
are different linear combinations of the same known elementary vectors. The MMV
model is an extension of the compressed sensing (CS) which is an emerging field
that has attracted considerable research interest over the past few years. Recently,
many popular greedy pursuit algorithms have been extended to MMV setting.
All these methods, such as simultaneous normalized iterative hard thresholding
(SNIHT), are not resistant to outliers or heavy-tailed errors. In this chapter, we
develop a robust SNIHT method that computes the estimates of the sparse signal
matrix and the scale of the error distribution simultaneously. The method is based on
Huber’s criterion and hence referred to as HUB-SNIHT algorithm. The method can
be tuned to have a negligible performance loss compared to SNIHT under Gaussian
noise, but obtains superior joint sparse recovery under heavy-tailed non-Gaussian
noise conditions.

Keywords Compressed sensing • Multiple measurement vector model • Sparse
multivariate regression • Iterative hard thresholding

26.1 Introduction

26.1.1 The MMV Model

The compressed sensing (CS) and sparse signal reconstruction (SSR) is a signal
processing technique that exploits the fact that acquired data can have a sparse
representation in some basis. It allows for solving ill-posed linear systems. The
problem can be formulated as follows; see Elad (2010); Donoho (2006); Candes
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and Wakin (2008). Let y D .y1; : : : ; yM/
> denote the observed data vector

(measurements) modelled as

y D ˚xC e (26.1)

i.e., yi D �>
.i/xC ei; i D 1; : : : ;M (26.2)

where

˚ D ��1 � � � �N

� D
�
�.1/ � � � �.M/

�>

is an M �N measurement matrix, also called the design matrix, which typically can
have more column vectors �i than row vectors �.j/ (so M > N is not assumed),
x D .x1; : : : ; xN/

> is the unobserved signal vector and e D .e1; : : : ; eM/
> is

the (unobserved) random noise vector. The goal is to recover the signal vector
x which is assumed to be K-sparse (i.e., it has K < M non-zero elements) or
compressible (i.e., it has a representation whose entries decay rapidly when sorted
in order of decreasing magnitude). In some applications, the measurement matrix is
also called the dictionary and its columns are referred to as atoms. In statistics,
model (26.1) is called the multiple linear regression model and x the vector of
regression coefficients. Note that compressible signals are well approximated by K-
sparse signals and typically in many applications K  N. In the noiseless case and
when x is K-sparse, finding the exact solution is a subset selection problem, which is
an NP-hard combinatorial optimization problem. However, when the measurement
matrix ˚ satisfies certain coherence conditions, several reconstruction algorithms
are guaranteed to give exact recovery of x in polynomial time. Furthermore, when
the measurements are corrupted by noise with bounded norm and/or if x is not
exactly K-sparse, bounds on the recovery error are known.

A natural extension of the CS model is the multiple measurement vector
(MMV) model where a single measurement matrix is utilized to obtain multiple
measurement vectors, i.e.,

yi D ˚xi C ei; i D 1; : : : ;Q

and the goal is to recover the set of sparse/compressible unknown signal vectors xi,
i D 1; : : : ;Q. In matrix form, the MMV model can be written as

Y D ˚XC E;

where Y D �
y1 � � � yQ

� 2 R
M�Q, X D �

x1 � � � xQ

� 2 R
N�Q and E D �

e1 � � � eQ

� 2
R

M�Q collect the measurement, the signal and the error vectors, respectively. When
only a single measurement vector (Q D 1) is available, the MMV model reduces
to the standard CS/SSR model (26.1), also referred to as single measurement vector
(SMV) model. Then, rather than recovering the sparse/compressible target signals xi
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separately (one-by-one) using standard CS reconstruction algorithms, one attempts
to simultaneously (jointly) recover all signals. The key assumption for the success
of this scheme is that the nonzero values occur on a common location set. In other
words, the signal matrix X is assumed to be K-rowsparse, i.e., at most K rows of X
contain non-zero entries. This means that the row-support of X, defined as the index
set of rows containing non-zero elements

rsupp.X/ D fi 2 f1; : : : ;Ng W xij ¤ 0 for some jg;

has cardinality less or equal to K. This is denoted shortly as kXk0 D j rsupp.X/j �
K, where k � k0, called the row-`0 quasi-norm, counts the number of nonzero rows
of its matrix-valued argument.

Joint estimation offers both computational benefits as well as increased recon-
struction accuracy. Obviously one could apply any CS method to recover each xi

separately (one-by-one) given the measurement vector yi, the measurement matrix
˚ and the sparsity level K. Nevertheless, since the vectors all share a common
support, one can improve upon the recovery accuracy by exploiting the joint
information (Tropp et al. 2006; Tropp 2006; Chen and Huo 2006; Gribonval et al.
2008; Eldar and Rauhut 2010; Duarte and Eldar 2011; Blanchard et al. 2014). The
objective of simultaneous sparse approximation, also referred to as multichannel
sparse recovery (Eldar and Rauhut 2010), can thus be stated as follows:

find a row sparse approximation of the signal matrix X based on the MMV
measurement matrix Y, knowing only the measurement matrix˚ and the sparsity
level K.

Simultaneous sparse approximation problem occurs when one has multiple
observations (multichannel recordings) of the latent sparse signal contaminated by
additive noise. Then the multiple measurements can provide a better estimate of the
underlying sparse signal matrix. Such situations arise in various fields including
electroencephalography and magnetoencephalography (EEG/MEG) (Gorodnitsky
et al. 1995; Ou et al. 2009), equalization of sparse communications channels
(Cotter and Rao 2002), blind source separation (Gribonval and Zibulevsky 2010),
and direction-of-arrival estimation of sources in array processing (Malioutov et al.
2005).

26.1.2 Contributions and Outline

Many of the greedy pursuit reconstruction algorithms developed for SMV model
such as orthogonal matching pursuit (OMP), normalized iterative hard thresholding
(NIHT), Compressive Matching Pursuit (CoSaMP) have been extended for solving
MMV problems in Tropp et al. (2006); Chen and Huo (2006); Blanchard et al.
(2014). These methods are guaranteed to perform very well provided that suitable
conditions (e.g., incoherence of ˚ and non-impulsive noise conditions) are met. It
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is important to notice that the derived (worst case) recovery bounds depend linearly
on the (Frobenius) norm of the error, kEk, and thus the methods are not guaranteed
to provide accurate reconstruction/approximation under heavy-tailed non-Gaussian
noise.

Despite the vast interest on sparse approximation during the past decade, sparse
and robust methods for MMV model have been considered in the literature only
recently, for example, in Ollila (2015). In the SVM setting, however, several
robustification of greedy CS algorithms exists such the Lorentzian IHT (Carrillo and
Barner 2011) or robust versions of the CoSaMP and orthogonal matching pursuit
(OMP) algorithms proposed in Razavi et al. (2012). In this chapter we extend the
robust IHT algorithm developed in Ollila et al. (2014a,b) to MMV model. We
utilize the criterion function proposed by Huber (1981, cf. Sects. 7.7 and 7.8) in the
overdetermined (M > N) multiple linear regression model. (In the robust statistics
literature, Huber’s approach is also sometimes referred to as “Huber’s approach
2”.) It is important to note that standard robust loss functions require a preliminary
robust estimate of scale. Obtaining such estimate is a very difficult problem in the
ill-posed MMV model. Utilizing Huber’s criterion allows us to estimate the scale
simultaneously and hence avoids the problems caused by using a possibly corrupted
and inaccurate preliminary estimate of scale.

Let us offer a brief outline of the chapter. First, in Sect. 26.2, we formulate a
robust constrained objective function for the MMV problem and review standard
robust loss functions that can be utilized in the criterion. Section 26.3 introduces
the simultaneous normalized IHT (SNIHT) algorithm (Blanchard et al. 2014) as
well as the new robust SNIHT method based on Huber’s criterion, referred to as
HUB-SNIHT. Section 26.4 provides a wealth of simulation examples illustrating the
effectiveness of the HUB-SNIHT method in reconstructing a K-rowsparse signal
matrix in various noise conditions and signal to noise (SNR) settings. We also
illustrate that in low SNR setting and in heavy-tailed noise, accurate joint sparse
recovery is possible by using the robust HUB-SNIHT whereas reconstruction based
on a single channel information only fails, thus illustrating that joint sparse recovery
is superior to applying standard sparse reconstruction methods to each channel
individually. Section 26.5 concludes.

26.1.3 Matrix Preliminaries and Notations

For a matrix A 2 R
M�N and an index set � 
 f1; : : : ;Mg of cardinality K, we

denote by A� (resp. A.� /) the M �K (resp. K �N) matrix restricted to the columns
(resp. rows) of A indexed by the set � . Notation Aj� refers to sparsified version of
A such that the entries in the rows indexed by the set � remain unchanged while
all other rows have all entries set to 0. Furthermore, if f W R ! R, then f .A/
refers to element-wise application of the function to its matrix valued argument,
so f .A/ 2 R

M�N with Œ f .A/�ij D f .aij/. Let HK.�/ denote the hard thresholding
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operator: for a matrix X 2 R
N�Q, HK.X/ retains the elements of the K rows of X

that possess largest `2-norms and set elements of the other rows to zero.
The usual Euclidean norm on vectors will be written as k � k. The matrix space

R
M�N is equipped with the usual inner product

hA;Bi D Tr.B>A/ D
MX

iD1

NX

jD1
aijbij

where the trace of a (square) matrix is the sum of its diagonal entries. We define the
weighted inner product as

hA;BiW D
MX

iD1

NX

jD1
wijaijbij

where W is M � N matrix of positive weights. Note that hA;BiW reduces to
conventional inner product when W is a matrix of ones. The Frobenius norm is
given by the inner product as

kAk D
p
hA;Ai

and kAkW D
phA;AiW denotes the weighted Frobenius norm. Finally, the `1;q

norm applies `1 norm to rows and `q norm to the resulting vector, i.e., kAk1;q D�PM
iD1.maxj2f1;:::;Ng jaijj/q

�1=q
:

26.2 Optimization Problem of Multichannel Sparse Recovery

In this section we formulate the multichannel sparse recovery problem in the form
of constrained optimization problem. First, in Sect. 26.2.1, we consider a general
objective function based on a preliminary estimate of scale O
 and a general loss
function 	. In Sect. 26.2.2 we review some standard loss functions commonly
used in robust statistics literature (Huber 1981; Maronna et al. 2006) and discuss
their properties. Since the scale parameter is unknown in practice, we introduce in
Sect. 26.2.3 our constrained optimization problem that generalizes Huber’s criterion
for joint estimation of unknown location and scale parameters to the MMV model.

26.2.1 General Objective Function for Known Scale

Suppose that the error terms in E are i.i.d. random variables from a symmetric
distribution with symmetry center at 0 and scale 
 > 0. For a moment, we assume
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that the scale 
 is known or a preliminary estimate is available. In either case, let
O
 denote the known or estimated scale parameter. Under the above assumptions,
reasonable approach for estimating K-rowsparse matrix X is to solve

min
X2RN�Q

QX

jD1

MX

iD1
	

 
yij � �>

.i/xj

O


!
subject to kXk0 � K; (26.3)

where the loss function 	.e/ is a continuous even function, nondecreasing in e � 0.
For conventional least squares (LS) loss function 	.e/ D e2, the scale O
 factors out
and the minimization problem becomes

min
X
kY �˚Xk2 subject to kXk0 � K:

The optimization problem (26.3) for any 	 is NP-hard. Therefore suboptimal
approximation algorithms have been proposed which exploit the joint sparsity in
different ways. One can divide these methods roughly into two main categories: (a)
convex optimization methods and (b) greedy pursuit approaches.

Methods in the convex optimization class consider optimization problem in
penalized (Lagrangian) form and replace the nonconvex `0-quasinorm of the
signal matrix by the convex `p;1 norm, which is known to enforce rowsparsity of
the solution. In this case, the problem becomes multivariate LASSO regression
(Tibshirani 1996) problem. For example, Turlach et al. (2005) and Tropp (2006)
use p D1 and solve

min
X
kY �˚Xk2 C �kXk1;1; (26.4)

where kXk1;1 DPi kx.i/k1. Malioutov et al. (2005) use p D 2 and solve

min
X
kY �˚Xk2 C �kXk2;1 (26.5)

where kXk2;1 D P
i kx.i/k. In (26.4) and (26.5), � > 0 denotes a fixed penalty

parameter that determines the degree of rowsparsity of the solution. Methods
in the greedy pursuit class are iterative algorithms that are typically based on
comparing correlations between the columns of ˚ with the current residual matrix
and then updating the row-support based on this information. In this chapter, we
employ greedy pursuit algorithm, called SNIHT, that is based on projected gradient
descent algorithm. It is known to offer efficient and scalable solution for K-sparse
approximation problem (Blumensath and Davies 2010). Another benefit of greedy
pursuit approaches over the multivariate LASSO formulations are that they do
not require a penalty parameter �. Optimal selection of penalty parameter is a
difficult task and can greatly affect the performance of the method. Here we use
the information that signal matrix is K-rowsparse or is well approximated by being
K-rowsparse (compressible).
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The well-known problem with LS minimization used in (26.3) or in (26.4)
and (26.5) is that it gives a very small weight on small residuals and a strong
weight on large residuals, implying that even a single large outlier can have a large
influence on the obtained result. For robustness, one should utilize a loss function
that downweights large outliers. Such loss functions are reviewed next.

26.2.2 Robust Loss Functions

Commonly used robust alternative to LS-loss is the least absolute deviation (LAD)
or L1-loss, 	.e/ D jej, which gives much larger weights on small residuals and
less weight on large residuals. A compromise between LS and LAD loss function is
Huber’s loss function (Huber 1981), which is a differentiable convex combination
of `2 and `1 loss functions, defined as

	H;c.e/ D
(
1
2
e2; for jej � c

cjej � 1
2
c2; for jej > c:

(26.6)

Yet also Huber’s loss function, as all convex loss functions, is unbounded. This
implies that large outliers can still have considerable effect on the estimator. Tukey’s
biweight loss function, defined as

	T;c.e/ D
(

e2

2
� e4

2c2
C e6

6c4
; for jej � c

c2

6
; for jej > c:

is bounded and continuously differentiable. Hence, it offers increased robustness
against gross errors. However, it is non-convex which implies that overall mini-
mization can get stuck in problematic local minimas. The corresponding derivative
functions are  H;c.e/ D maxŒ�c;min.c; e/� and

 T;c.e/ D
(
2ef1� .e=c/2g2; for jej � c

0; for jej > c

and these will be needed in the Algorithm 2 (HUB-SNIHT) in the sequel. Note
that  H;c is a winsorizing (clipping) function: the smaller value of c indicates
more downweighting to the residuals, illustrating the role c on robustness. Tukey’s
biweight is redescending to zero which implies that large outliers can have zero
weight. The above loss functions are depicted in Fig. 26.1.
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Fig. 26.1 L1, Huber’s and Tukey’s 	 functions. Huber’s loss function is convex but unbounded
whereas Tukey’s loss function is non-convex, but bounded

Note that both Huber’s and Tukey’s loss functions depend on a user-defined
threshold constant c that influences the degree of robustness and efficiency of the
method. The tuning parameters

c0:95 D 1:345 and c0:85 D 0:732 (26.7)

yield 95 and 85 percent asymptotic relative efficiency of Huber’s loss function
compared to the LS-estimate in the multiple linear regression model with Gaussian
errors; see Maronna et al. (2006).

26.2.3 Sparse Recovery Using Huber’s Criterion

Note that the standard robust loss functions such as Huber’s or Tukey’s require a
robust preliminary scale estimate O
 . Since such an estimate is difficult to obtain, we
plan to estimate the signal matrix X and the error scale 
 simultaneously. Let us first
define a matrix norm as

kXk
;c D
vuut

NX

iD1

QX

jD1
	
�xij




�

where 
 > 0 is a scale parameter and 	 is assumed to be differentiable convex loss
function. Due to assumption of convexity, Tukey’s loss function is not permitted
here. We then seek to minimize

L .X; 
/ D 
kY �˚Xk2
;c C .MQ/˛
 (26.8)

D 

MX

iD1

QX

jD1
	

 
yij � �>

.i/xj




!
C .MQ/˛
 (26.9)

subject to kXk0 � K;
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where ˛ > 0 is a scaling factor chosen so that the solution O
 is Fisher-consistent
for 
 when error terms are i.i.d. Gaussian, eij 	 N .0; 
2/. The objective
function L in (26.8) was proposed for joint estimation of regression and scale of
(overdetermined) multiple linear regression model by Huber (1981) and is often
referred to as “Huber’s proposal 2”. Note that L .X; 
/ is a convex function
of .X; 
/ given that 	 is convex which follows from Owen (2007). Following
Huber (1981, Sect. 7.8) this fact permits developing an iterative projected gradient
descent algorithm for finding an approximate solution . OX; O
/ of the optimization
problem (26.8). This algorithm, called the HUB-SNIHT, is described in detail in
Sect. 26.3.

It is instructive to consider the optimization problem without the constraint (i.e.,
dropping the assumption of rowsparsity) since in this case the MMV model reduces
to conventional multivariate regression problem. If it is further assumed that M > Q,
then the model is also overdetermined and hence has (due to strict convexity of L ) a
unique solution. It is easy to verify similar to the multiple linear regression problem
(Q D 1 case studied in Owen 2007) that the negative log-likelihood function in the
case that Q > 1 is also not convex in .X; 
/, whereas Huber’s criterion L .X; 
/ is.
In addition, the minimizer OX of L .X; 
/ preserves the same theoretical robustness
properties (such as bounded influence function) as the minimizer in the model where

 is a fixed known parameter. The stationary point of (26.8) can be found by setting
the matrix derivative of L w.r.t. X and the derivative of L w.r.t. 
 to zero. Simple
calculations then show that the minimizer . OX; O
/ of L .X; 
/ is a solution to the
M-estimating equations:

˚> 
�

R



	
D 0 (26.10)

1

MQ

MX

iD1

QX

jD1
�

 
yij � �>

.i/xj




!
D ˛ (26.11)

where R D Y �˚X,  D 	0 and � W R! R
C
0 is defined as

�.t/ D  .t/t � 	.t/: (26.12)

Above the notation  .R/ refers to element-wise application of  -function to
its matrix valued argument, so Œ .R/�ij D  .rij/. Thus if 	 is convex and the
MMV model is overdetermined with non-sparse X, solving the above M-estimating
equations would give the unique global minimum of (26.8).

The scaling factor ˛ in (26.8) is chosen so that the obtained scale estimate O
 is
Fisher-consistent for the unknown scale 
 when eij 	 N .0; 
2/. Due to (26.11), it
is set as

˛ D EŒ�.e/�; e 	 N .0; 1/: (26.13)
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For many loss functions, ˛ can be computed in closed-form. For example, for
Huber’s function (26.6) the �-function in (26.12) becomes

�H;c.e/ D 1

2


 H;c.e/

�2

and the consistency factor ˛ can be computed in closed-form as

˛ D c2.1 � FG.c//C FG.c/� 1=2� c fG.c/;

where FG and fG denote the c.d.f and the p.d.f. of N .0; 1/ distribution, respectively,
and c is the threshold of Huber’s loss function.

26.3 SNIHT Using Huber’s Criterion

Iterative hard thresholding (IHT) (Blumensath and Davies 2009), and its enhance-
ment, the normalized IHT (NIHT) (Blumensath and Davies 2010), are popular CS
signal reconstruction methods. These methods were recently extended to MMV
setting in Blanchard et al. (2014). The simultaneous IHT (SIHT) and simultaneous
NIHT (SNIHT) methods are described in Sect. 26.3.1 and the new robust SNIHT
algorithm based on Huber’s criterion L .X; 
/ in (26.8) is described in Sect. 26.3.2.

26.3.1 Simultaneous Normalized Iterative Hard Thresholding

Let the initial value of iteration be X0 D 0. The simultaneous IHT (SIHT) algorithm
updates the estimate of X by taking steps towards the direction of the negative
gradient followed by projection onto the constrained (K-rowsparse) space. It iterates

XnC1 D HK.Xn C �n˚>Rn/;

where Rn D Y � ˚Xn denote the residual (error) matrix at nth iteration, �n >

0 denotes a stepsize and HK.�/ is the hard thresholding operator. Blanchard et al.
(2014) derived performance guarantees of the algorithm based on the asymmetric
restricted isometry property (RIP) of the measurement matrix ˚ and showed that
the algorithm will reach a neighbourhood of the best K-term approximation. Both in
the SMV setting (Blumensath and Davies 2009) and in the MMV setting (Blanchard
et al. 2014), the recovery bound of (S)NIHT is linearly dependent on the `2-norm
of the noise vector/matrix, i.e., on kEk. Therefore, the SNIHT method will not be
robust nor guaranteed to provide accurate reconstruction in heavy-tailed noise (in
such cases kEk can be very large).
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Algorithm 1 SNIHT algorithm (Blanchard et al. 2014).
1: Input MMV matrix Y, measurement matrix ˚ , sparsity K.
2: Output .XnC1; � nC1/ estimates of K-sparse signal matrix X and support set � .
3: Initialize X0 D 0, �0 D 0, n D 0.
4: � 0 D rsupp.HK.˚

>Y// F Computes initial support
5: while halting criterion false do
6: Rn D Y �˚Xn

7: Gn D ˚>Rn

8: �nC1 D
���˚� n Gn

.� n/

���
�2 ���Gn

.� n/

���
2 F STEPSIZE UPDATE

9: XnC1 D HK.Xn C �nC1Gn/ F SIGNAL UPDATE
10: � nC1 D rsupp.XnC1/ F SUPPORT UPDATE
11: end while

The pseudo-code of SNIHT algorithm is given in Algorithm 1. Note that SIHT
uses fixed stepsize �n D 1 for each iteration whereas SNIHT uses optimal stepsize
update (in terms of reduction in squared approximation error) at each iteration. As its
benefits, the SNIHT algorithm has a faster convergence rate and increased stability
compared to SIHT. The stepsize is updated in Step 8. The rationale behind this
stepsize selection is described in Sect. 26.3.2. Note that the algorithm requires an
initialization procedure. The initial signal matrix is the zero matrix X0 D 0, so the
initial residual (for n D 0) matrix is the MMV matrix Y, i.e., R0 D Y �˚X0 D Y.
In Step 4 an initial proxy � 0 of the support set is computed. This is done by finding
the support set of K largest `2-row vectors of the correlation matrix ˚>Y. The
method also requires a halting criterion which generally depends on the application.
We discuss some criterions also in Sect. 26.3.2.

26.3.2 Robust SNIHT for Huber’s Criterion

The SNIHT algorithm for Huber’s criterion L .X; 
/ is given in Algorithm 2. The
steps 6–14 can be divided into 3 stages described below: scale stage consists of
Steps 6 & 7 build up the scale update 
nC1, signal stage consists of Steps 8, 9 and
13 which build up the K-sparse signal update XnC1 and the corresponding support
� nC1, and stepsize stage consists of Steps 10–12 which compute the optimal
stepsize update for the gradient descent move in Step 13. Naturally, one also needs
to specify the differentiable convex loss function 	. We utilize Huber’s loss function
	H;c in (26.6) with threshold constant c given by (26.7), but some other loss function
could be used as well. Note that the selected loss function 	 then also specify the
score function  D 	0 (needed in Step 8) as well as �-function given in (26.12)
(needed in Step 7). The weight function w used in Step 11 is also defined via 	 as

w.e/ D  .e/

e
:
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Algorithm 2 HUB-SNIHT algorithm
1: Input MMV matrix Y, measurement matrix ˚ , sparsity K and trimming threshold c.
2: Output .XnC1; 
nC1; � nC1/ estimates of X, 
 and � .
3: Initialize X0 D 0, �0 D 0, n D 0 and compute ˛ in (26.13)
4: f� 0; 
0g DInitSupport(Y; c) F Computes initial support & scale
5: while halting criterion false do
6: Rn D Y �˚Xn

7: .
nC1/2 D .
n/2

˛

1

MQ

MX

iD1

QX

jD1

�

�
rn

ij


n

	
F SCALE UPDATE

8: Rn
 D  

�
Rn


nC1

	

nC1

9: Gn D ˚>Rn
 

10: Bn D ˚� n G.� n/

11: Wn D w

�
Rn � �nBn


nC1

	

12: �nC1 D kBnk�2
Wn hRn;BniWn F STEPSIZE UPDATE

13: XnC1 D HK.Xn C �nC1Gn/ F SIGNAL UPDATE
14: � nC1 D rsupp.XnC1/ F SUPPORT UPDATE
15: end while

For example, the weight function defined by Huber’s loss function is wH;c.e/ D
min.1; c=jej/.

The algorithm can be justified heuristically as follows. First, if we consider signal
matrix fixed at value Xn, then the scale is updated using (26.11) by a fixed-point
iteration

.
nC1/2 D .
n/2

˛

1

MQ

MX

iD1

QX

jD1
�

�
rn

ij


n

	
;

where Rn D Y � ˚Xn Then, when we consider 
 fixed at a value 
 D 
nC1 (the
value of 
 at .nC 1/th iteration), the SNIHT update of the signal matrix becomes

XnC1 D HK
�
Xn C �nC1˚>Rn

 

�

where �nC1 is the update of the stepsize at .nC 1/th iteration and

Rn
 D  

�
Rn


nC1

	

nC1

is called as pseudo-residual. Note that �rXkY � ˚Xk
nC1;c D .
nC1/�2˚>Rn
 ,

where the scaling constant can be absorbed to stepsize �nC1. These two alternating
steps are then iteratively updated until convergence.
InitSupport function in Step 4 of Algorithm 2 proceeds by computing 
0

via solving (26.14) and then computing � 0 using (26.15). Let us briefly discuss the
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rationale behind these computations. Note that the algorithm starts with X0 D 0, so
R0 D .r0ij/ D Y. Under the assumption that X D 0 and that the error terms are i.i.d.
with common scale 
 , one may compute the simultaneous location estimate O� and
scale estimate 
0 of the data set vec.Y/ 2 R

.MQ/�1 using Huber’s criterion as the
unique minimizer of

. O�; 
0/ D arg min
�2R;
>0




MX

iD1

QX

jD1
	

�
yij � �



	
C .MQ/˛
 (26.14)

which can be solved using a simple iterative algorithm given in Huber (1981,
Sect. 7.8). Given the pair . O�; 
0/ above, the initial support estimate � 0 is computed
as

� 0 D rsupp
�

HK.˚
>R0

 /
�
; (26.15)

where R0
 is a matrix of pseudo-residuals whose .i; j/th element is given by

h
R0
 

i

i;j
D
 
 

�
r0ij � O�

0

	

0

!
:

Alternatively, instead of solving (26.14), one can compute O� and 
0 as the median
and median absolute deviation scale estimate of yij’s, respectively.

Let us next turn our attention to the stepsize stage. First note that, assuming we
have identified the correct support at nth iteration, then we can choose the stepsize
update �nC1 as the minimizer of kY � ˚Xk2
;c for fixed scale at 
 D 
nC1 in the
gradient ascent direction Xn C �Gnj� n . Thus we find � as the minimizer of

L.�/ D kY �˚ .Xn C �Gnj� n/k2
nC1;c D kRn � �Bnk2
nC1;c

where B D ˚� n Gn
.� n/ and Rn D Y � ˚Xn. This is an M-estimation problem of a

simple (one predictor) linear regression model with response vector r D vec.Rn/

and regressor b D vec.Bn/. A standard approach for finding the (unique) minimizer
of L.�/ is the iteratively reweighted LS (IRWLS) algorithm which iterates the steps

W w

�
Rn � �Bn;


nC1

	
; � kBnk�2W hRn;BniW (26.16)

until convergence given some initial value of � to start the iteration. (Note that
we have expressed the IRWLS steps using more convenient matrix notations rather
than vector notations via r and b). Then, instead of choosing the next update �nC1
as the minimizer of L.�/ by iterating the steps in (26.16) until convergence, we use
a 1-step estimator which corresponds to a single iteration of the steps above with
initial value of iteration given by the previous stepsize �n. Hence, the steps 10–12
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(stepsize stage) of Algorithm 2 form a single run of IRWLS steps in (26.16). In our
simulations we noticed that 1-step iterate already gives a very good estimate, often
within 3 decimal accuracy, and hence further iterations were not required.

Finally, the algorithm also requires a halting criterion. Some possibilities are:

1. Halt the algorithm when the maximum total (squared) correlation between an
atom and the pseudo-residual falls below a level ı: k˚>Rn

 k2;1 < ı.
2. Stop the algorithm when previous and current iterations are close to each other

in the sense that kXnC1�Xnk2
kXnC1k2 < ı for a given level ı

In our simulation study, we used the stopping criterion 2 with ı D 1:0�8.

26.4 Simulation Studies

Next we provide a set of simulation studies to illustrate the usefulness of the
proposed HUB-SNIHT method in a variety of noise environments and SNR levels.
Also, the effect of number of measurement vectors Q on exact support recovery
probability will be illustrated.

26.4.1 Set-Up

The elements of ˚ are drawn from N .0; 1/ distribution and the columns are
normalized to have a unit norm. The coefficients of K nonzero row vectors of X
have equal amplitudes 
x D jxijj D 108i 2 � , j D 1; : : : ;Q and equiprobable
signs (i.e., ˙1 D sign.xij/ with equal probability 1

2
) and the signal support set

� D supp.X/ is randomly chosen from f1; : : : ;Ng without replacement for each
trial. In all of our experiments, the noise matrix E consists of i.i.d. elements eij

from a continuous symmetric distribution Fe with scale parameter 
 . We define the
(generalized) signal to noise ratio (SNR) as SNR.
/ D 20 log10


x



which depends
on the used scale parameter 
 of the error distribution.

As performance measures of sparse signal recovery, we use both the (observed)
mean squared error

MSE. OX/ D 1

LQ

LX

`D1

��� OXŒ`� �XŒ`�
���
2

and the empirical probability of exact recovery (PER)

PER , 1

L

LX

`D1
I
� O� Œ`� D � Œ`�

�
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Fig. 26.2 Average MSE of SNIHT methods as a function of SNR in N .0; 
2/ noise; System
parameters were .M;N;K;Q/ D .256; 512; 8; 16/ and the number of trials is 4000

where I.�/ denotes the indicator function, OXŒ`� and O� Œ`� D rsupp. OXŒ`�/ denote the
estimate of the K-sparse signal XŒ`� and the signal support � Œ`� for the `th Monte
Carlo (MC) trial, respectively. In all simulation settings described below, the number
of MC trials is L D 4000, the length of the signal is N D 512, the number
of measurements is M D 256, and the sparsity level is K D 8. The number of
measurement vectors is Q D 16 unless otherwise stated. The methods included in
they study are SNIHT described in Algorithm 1 and HUB-SNIHT of Algorithm 2
using the Huber’s loss function 	H;c.�/ with trimming threshold c0:95 or c0:85 given
in (26.7).

26.4.2 Results

Gaussian Noise Case Figure 26.2 shows the signal reconstruction performance in
terms of MSE as a function of SNR in i.i.d. Gaussian noise, eij 	 N .0; 
2/, where

2 D EŒe2ij�. As expected, the SNIHT has the best performance, but HUB-SNIHT
with c0:95 (resp. c0:85) suffers a negligible 0.2 dB (resp. 0.65 dB) performance loss.
Both SNIHT and HUB-SNIHT methods had a full PER rate (D 1) for the SNR levels
� 6 dB. The PER rate declines for < 6 dB and reaches 0 at SNR D 0 dB for all of
the methods. The usefulness of joint recovery becomes more evident at low SNR’s,
where multiple measurements can dramatically improve on the recovery ability by
exploiting the joint information. This is illustrated in our 2nd simulation experiment,
where SNR is fixed at low 6 dB level and we let the number of measurements Q vary
Q 2 f2; 4; : : : ; 24g. Figure 26.3 depicts the empirical PER rates as a function of
number of measurements. Again the number of trials is 4000 for each parameter set.
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Fig. 26.3 Empirical PER rates of SNIHT methods as a function of number of measurements Q in
N .0; 
2/ noise; .M;N;K/ D .256; 512; 8/, SNR D 6 dB, and the number of trials is 4000

Fig. 26.4 Average MSE of SNIHT methods in t.0; 
/ distributed noise as a function of d.o.f.
 and different SNR levels; .M;N;K;Q/ D .256; 512; 8; 16/ and the number of trials is 4000.
(a) SNR.
/ D 20 dB. (b) SNR.
/ D 10 dB

Note that the PER rate increases as a function of Q from total failure 0 (when Q D 2)
to near full 100 % recovery when Q D 22. HUB-SNIHT using c0:95 suffers only a
small performance loss compared to SNIHT, but HUB-SNIHT based on threshold
c0:85 is considerably behind the other two methods.

Student’s t�-Distributed Noise Figure 26.4 depicts the MSE in i.i.d. t-distributed
noise, eij 	 t.0; 
2/ as a function of degrees of freedom (d.o.f.) . The scale
parameter is 
 D MedFe.jeijj/ and SNR.
/ was 10 and 20 dB. Recall that t-
distribution with  > 0 degrees of freedom (d.o.f.) is heavy-tailed distribution with
 D 1 corresponding to Cauchy distribution and  !1 corresponding to Gaussian
distribution. The proposed HUB-SNIHT method has solid performance for both
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Table 26.1 PER rates in t.0; 
/ noise at varying SNR.
/ and d.o.f. 

Degrees of freedom 

SNR.
/ Method 1 1:25 1:5 1:75 2 3 4 5

20 dB SNIHT 0 0 0:07 0:43 0:78 1:0 1:0 1.0

HUB-SNIHT c0:95 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1.0

HUB-SNIHT c0:85 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1.0

10 dB SNIHT 0 0 0 0 0 0:09 0:50 0.74

HUB-SNIHT c0:95 0:32 0:50 0:65 0:73 0:80 0:88 0:93 0.94

HUB-SNIHT c0:85 0:88 0:90 0:91 0:91 0:92 0:92 0:93 0.93

System parameters were .M;N;K;Q/ D .256; 512; 8; 16/ and the results are averages over 1000
trials. For SNR 20 dB, the proposed HUB-SNIHT methods are able to maintain full recovery
rates even in Cauchy noise ( D 1). At low SNR 10 dB, the conventional SNIHT breaks down
completely

Fig. 26.5 Empirical PER rates of SNIHT methods as a function of number of measurements Q in
t3.0; 
2/ noise (i.e.,  D 3); .M;N;K/ D .256; 512; 8/, SNR.
/ D 10 dB, the number of trials is
4000

SNR levels whereas SNIHT has an exponential increase in MSE as  decreases.
At high SNR 20 dB, the HUB-SNIHT methods are able to retain a steady MSE
for all values of . Overall, the HUB-SNIHT method using c0:95 is (as expected)
less robust with slightly worse performance. The PER rates in Table 26.1 illustrate
the remarkable performance of HUB-SNIHT methods. At high SNR D 20 dB the
robust methods are able to maintain full 100 % recovery rates even when the noise
has impulsive Cauchy distribution ( D 1). At low SNR 10 dB, the HUB-SNIHT
with c0:85 has the best performance as expected and is able to maintain good PER
rates (always above 88 %) whereas SNIHT fails completely for  � 3. In our 4th
simulation experiment, we again illustrate the usefulness of joint recovery. SNR is
fixed at 10 dB, the noise follows t-distribution with  D 3 d.o.f. and number of
measurements Q vary Q 2 f2; 4; : : : ; 24g. Figure 26.5 shows the empirical PER
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rates as a function of number of measurements. In the case of HUB-SNIHT, the
PER rates increase as a function of Q from total failure 0 (when Q D 2) to full
100 % recovery (when Q D 24). The PER rates of SNIHT are drastically behind the
robust methods, reaching the highest PER rate of 36 % at Q D 24. This is in deep
contrast with 100 % recovery obtained by HUB-SNIHT methods.

26.5 Conclusions

In this chapter, we developed a robust simultaneous iterative hard thresholding
(SNIHT) algorithm for the MMV model, also known as multichannel sparse
recovery problem. Our approach is based on generalizing the Huber’s criterion for
joint estimation of location and scale to MMV model. A set of simulations studies
illustrated that the method gives very similar performance in Gaussian errors as
conventional SNIHT, but superior performance in heavy-tailed noise.

Acknowledgements The author wishes to thank Academy of Finland for supporting this research.
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Chapter 27
Nonparametric Detection of Complex-Valued
Cyclostationary Signals

Visa Koivunen and Jarmo Lundén

Abstract In wireless communication, radar, surveillance, and active sensing sys-
tems it is necessary to detect transmitted signals in noise. Employed signals are
man-made and consequently have many statistical and structural properties that can
be used to aid the detection. Such properties are present even if the transmitted data
itself would be random or unknown. One such key property is cyclostationarity
which means that some signal statistics such as autocorrelation function are
periodic. Typically these signals are observed in demanding signal environments
where the standard assumption on Additive White Gaussian Noise (AWGN) may
not be true. Signal detection has to be performed reliably in the face of interference
and in challenging propagation environments characterized by shadowing and
fading effects as well as heavy-tailed noise distributions. In this chapter, a robust
computationally efficient nonparametric detector of second order cyclostationary
statistics based on the spatial sign function is presented. Nonparametric approach
leads to improved robustness against heavy-tailed noise and in cases when the noise
statistics are not fully specified. Asymptotic distribution of the spatial sign cyclic
correlation estimator under the null hypothesis is established. Tests using constraint
on false alarm rate constraint are derived for single detector and decentralized
detector employing multiple distributed sensors. A theoretical justification for
spatial sign based detection of cyclostationary signals is provided. A sequential test
for reducing the average detection time and detecting rapid changes is presented.
Simulation examples on identifying idle radio spectrum are provided. Simulation
example shows the reliable and statistically robust performance of the proposed
nonparametric detector both in heavy-tailed and Gaussian noise environments.
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27.1 Introduction

Many hypothesis testing methods employed for detecting man-made signals exploit
the cyclostationarity property of the signals. Most man-made signals of interest
signals are complex-valued and convey information about both the phase and
amplitude of the signal. Cyclostationarity in wireless communication or radar
signals may be caused by sampling, multiplexers, modulation or coding and may
occur, for example, at the chip or symbol rate or at the doubled carrier frequency.
Cyclostationary statistics are not phase blind unlike power spectrum. Hence, they
can be used for blind channel equalization and characterizing the phase component
of a waveform as well. We present a statistically robust method for detecting
cyclostationary wireless communication signals in noise. The problem is modeled
as a binary hypothesis testing problem. Cyclostationarity-based detection allows
automatic classification of signals exhibiting cyclostationarity property at different
cyclic frequencies. This may be used in signal intelligence, automatic classification
of communication and radar signals as well as spectrum surveillance, for example.
Moreover, in cognitive radio systems it allows for distinguishing among primary
licensed users, secondary users, and interference, thus preparing the way for
reliable and efficient co-existence of the primary and secondary users. Moreover,
random noise is commonly not cyclostationarity which makes cyclostationary signal
analysis less sensitive to noise.

Wide sense Cyclostationary processes are stochastic processes whose statistical
properties such as the mean and autocorrelation functions are periodic in time, i.e.

mx.t/ D mx.tC T/ (27.1)

Rx.t1; t2/ D Rx.t1 C T; t2 C T/ (27.2)

where T is the period. We are mainly interested in the autocorrelation function in
this study. Because it is periodic it may be represented using Fourier series

Rx.tC �

2
; t � �

2
/ D

X

˛

R˛x .�/e
j2�˛t (27.3)

where R˛x .�/ are the Fourier coefficients

R˛x .�/ D
1

T

Z T=2

�T=2
Rx.tC �

2
; t � �

2
/e�j2�˛tdt (27.4)

and ˛ is called cyclic frequency. A cyclic autocorrelation function is depicted in
Fig. 27.1 with cyclic frequencies ˛ D ˙0:4. The cyclic autocorrelation function is
two-dimensional with parameters � and ˛.

Statistical robustness of detection algorithms is motivated by several mea-
surement studies that demonstrate the impulsive nature of man-made noise in
radio frequency bands outdoors and indoors, see Middleton (1999). Typical noise
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Fig. 27.1 Cyclostationary signals: cyclic autocorrelation function is not identically zero for some
cycle frequency ˛ ¤ 0. In the figure ˛ D ˙0:4

distribution observed in these studies has significantly heavier tails than Gaussian
distribution. Impulsive noise or interference may be due to the presence of multiple
interferers contaminating the signal of interest we wish to detect. For example,
indoor measurements campaigns in the ISM bands clearly show the impulsive
nature of the noise and interference due to, e.g., microwave ovens and devices with
electromechanical switches (including copy machines, electric motors in elevators,
printers, etc.). Moreover, on a computer board various components, such as the LCD
pixel clock and the PCI express bus, induce impulsive interference that degrades
the performance of the embedded wireless devices. The impulsive interference
observed on a computer platform is well modeled by a symmetric alpha-stable
distribution. As an example of outdoor scenarios in urban environments, impulsive
noise measurements on a digital television band have been reported in Sánchez
et al. (1999). Additional man-made impulsive noise sources in urban outdoor radio
environments include igniting car engines, power lines, and heavy current switches.

In this chapter, a nonparametric cyclic correlation estimator based on the
multivariate (spatial) sign function in Visuri at al. (2000) and Kassam (1993) applied
to complex-valued signals is presented. We demonstrate that the cyclostationarity
property employed in the hypothesis testing is preserved under the spatial sign
function for an important special case, circularly symmetric complex normal
distribution. Most of the results and methods in this chapter including asymptotic
distribution of the estimator under the null hypothesis have been established
in Lunden et al. (2010). Test statistics for an individual and decentralized detectors
are provided. A sequential method for rapid change detection and reducing the
average detection time is presented as well. Simulation experiments in finding
idle radio spectrum illustrate the robust performance of the detectors in non-
Gaussian noise environments as well as good performance in Gaussian noise
environments is presented. The methods considered are based on nonparametric
statistics making them highly attractive in real-world applications where noise
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and interference statistics may not be explicitly known or may change frequently
(Kassam 1988, Kassam 1993). No additional nuisance parameters such as the
scale need to be estimated unlike in the M-estimation based robust methods.
Furthermore, nonparametric detectors achieve a fixed false alarm rate under all
conditions satisfying the nonparametric null hypothesis. The detectors based on
spatial sign function are computationally very efficient which makes them very
attractive for hardware implementation in real-world radio frequency sensors.

27.2 Spatial Sign Cyclic Correlation

The multivariate generalization of sign function, i.e. the spatial sign for complex-
valued data x.t/, is defined as (Visuri at al. 2000)

S.x.t// D
(

x.t/
jx.t/j ; x.t/ ¤ 0
0; x.t/ D 0;

(27.5)

where j � j stands for the modulus of the complex-valued argument.
In order to study the cyclostationarity of a signal, we define the spatial sign cyclic

correlation estimator as

ORS.˛; �/ D 1

M

M�1X

tD0
S.x.t//S.x�.tC �//e�j2�˛t; 8� ¤ 0 (27.6)

where x.t/ is a discrete-time signal (sequence), x�.t/ its complex conjugate, � is
a discrete time delay, M is the number of data samples, and ˛ denotes the cyclic
frequency.

In (27.6) it has been assumed that the signal is centered, so that the mean (or
median) of the data is zero. Most radio transceivers produce such data. Otherwise,
location parameters would have to be estimated and subtracted from the received
signal before applying the estimator.

The use of the spatial sign function leads to an estimator that is both qualitatively
and quantitatively robust, i.e. the influence of outlying observations is bounded
and the method has a high breakdown point, i.e. tolerates a high proportion of
contaminated data. Qualitative robustness was verified by establishing the influence
function (IF). It was shown to be uniformly bounded for the spatial sign covariance
estimator (Croux et al. 2002). This result can be easily extended to spatial sign based
cyclic covariances at non-zero cyclic frequencies since a non-zero cyclic frequency
adds only an exponential multiplier term e�j2�˛t to the covariance estimator that has
no impact on the magnitude of the observation pairs. Consequently, the influence
function possesses the uniformly bounded property.

It is important to understand what is the effect of the spatial sign function to
the cyclic frequencies of the signal of interest. In practice, this may have to be
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determined by either using analytical tools or experimentally for each different class
of signals of interest. It has been shown that the periodicity and cyclic frequencies
of the autocorrelation function are preserved for a circularly symmetric complex
Gaussian process when the spatial sign function is employed. As an important spe-
cial case, a multicarrier OFDM (orthogonal frequency division multiplexing) signal
is approximately normal distributed particularly when the number of subcarriers is
large, as in the case of digital TV signals (DVB-T, DVB-T2). We will show that the
spatial sign function preserves the cyclic frequencies of a CP (cyclic prefix) OFDM
system with a simulation example. OFDM is modulation method of choice in many
existing and future wireless communications systems, such as the IEEE 802.11a/g
WLANs, terrestrial digital television DVB-T, and 4G LTE, among others.

Detection of cyclostationary wireless communication signals is formulated as a
binary hypothesis testing problem. In order to define a hypothesis test that satisfies
a constraint on the false alarm rate for the presence of cyclostationarity at a given
cyclic frequency, the distribution of the estimator needs to be established. In the
next section, the distribution of the spatial sign cyclic correlation estimator is
derived for independent and identically distributed (i.i.d.) complex circular noise
process with zero mean. Circularity describes the statistical relations of a complex
random variable and its complex conjugate, see Ollila et al. (2012). Nonparametric
performance is achieved for all i.i.d. circular noise pdfs with zero mean. As already
noted if the mean is not zero it can be estimated and subtracted from the data.
However, wireless transceivers practically always produce such centered data. Note
that circularity is not required from the primary user wireless signal that we wish to
detect.

27.3 Statistical Properties of the Spatial Sign Cyclic
Correlation Estimator

In typical sensing applications the number of observations M is typically large (in
the order of several thousands). Proper Nyquist rate sampling for a millisecond
would result in several thousands of observations. Hence, we may apply a particular
central limit theorem to infer the distribution of the spatial sign cyclic correlation
estimator.

Central limit theorem for m-dependent variables states that the sum of m-
dependent random variables with finite third absolute moment has a limiting
Gaussian distribution as the number of random variables goes to infinity (Fraser
1957). A sequence of random variables is defined to be m-dependent if any subset
.X1;X2; : : : ;Xr/ is independent of any other subset .Xs;XsC1; : : :/ provided that
s � r > m. A sequence of spatial sign correlation samples S.x.t//S.x�.t C �//

formed from i.i.d. samples are m-dependent with m D � . Therefore, according
to the central limit theorem the distribution of the spatial sign cyclic correlation
estimator approaches Gaussian distribution as M goes to1. Thus, we can employ
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a Gaussian approximation for large M and the asymptotic distribution is fully
specified by determining its mean and covariance. Validity of the central limit
theorem approximation will be verified by simulations in Sect. 27.5.

We assume that x.t/ D n.t/ where n.t/ is a circular independent and identically
distributed (i.i.d.) noise process with zero mean. That is, only noise is considered to
be present. In that case, the mean of ORS.˛; �/ is given by (� ¤ 0)

EŒ ORS.˛; �/� D 1

M

M�1X

tD0
EŒS.n.t//S.n�.tC �//�e�j2�˛t (27.7)

D 0; 8˛ (27.8)

where the noise is assumed to be independent and circular. Consequently, S.n.t// D
ej� where � has a uniform distribution between 0 and 2� .

For the zero mean case, the covariance of ORS.˛; �/ and ORS.ˇ; 	/ is given by (� ¤
0; 	 ¤ 0) (Lunden et al. 2010)

Cov. ORS.˛; �/; OR�
S .ˇ; 	// D EŒ. ORS.˛; �//. ORS.ˇ; 	//

��

D E

" 
1

M

M�1X

tD0
S.n.t//S.n�.tC �//e�j2�˛t

!

�
 
1

M

M�1X

kD0
S.n.k//S.n�.kC 	//e�j2�ˇk

!� #

D 1

M2

M�1X

tD0

M�1X

kD0
EŒS.n.t//S.n�.k//

� S.n�.tC �//S.n.kC 	///�e�j2�.˛t�ˇk/

D 1

M2

 
M�1X

tD0
EŒjS.n.t//j2S.n�.tC �//S.n.tC 	//�

� e�j2�.˛�ˇ/t C
M�1X

tD0

M�1X

kD0
k¤t

EŒS.n.t//S.n�.k//

� S.n�.tC �//S.n.kC 	//�e�j2�.˛t�ˇk/

!
: (27.9)

We will consider the two sums above separately. For the i.i.d. and circular noise,
the first sum is zero if � ¤ 	. When � D 	, the expectation EŒjS.n.t//j2jS.n.t C
�//j2� D 1. In case of the second sum, the noise are i.i.d. and circular, the expectation
can be non-zero only if t D kC 	 and k D tC � , that is, when � D �	. However in
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that case, the expectation may be written as

EŒS.n.t//S.n�.tC �//S.n�.tC �//S.n.t//�

which is zero as well since n.t/ is circular, and thus EŒS.n.t//S.n.t//� D 0;8t.
Consequently, the covariance of ORS.˛; �/ for a circular i.i.d. process with zero mean
may be written as follows for � ¤ 0; 	 ¤ 0:

Cov. ORS.˛; �/; OR�
S .ˇ; 	//

D

8
ˆ̂<

ˆ̂:

1
M ; ˛ D ˇ; � D 	 ¤ 0;
1

M2

PM�1
tD0 e�j2�.˛�ˇ/t ; ˛ ¤ ˇ; � D 	 ¤ 0;

0 ; � ¤ 	:

(27.10)

27.4 Non-parametric Test for Cyclostationary Signals

We formulate the null and alternative hypotheses as follows:

H0 W x.t/ D n.t/;

H1 W x.t/ D s.t/C n.t/;
(27.11)

where x.t/ is the received signal, s.t/ is the transmitted man-made signal of interest
that has possibly passed through a propagation medium with potentially time-
varying impulse response, and n.t/ denotes complex, circular i.i.d. noise.

Under the null hypothesis H0, the expected value of the estimated spatial
sign cyclic correlation is zero and noise only is observed. Under the alternative
hypothesis H1, the expected value of the estimated spatial sign cyclic correlation is
non-zero for the cyclic frequencies of the complex-valued signal of interest that is
processed using spatial sign function.

Let OrS.˛/ denote a vector that contains the estimated spatial sign cyclic correla-
tions at cyclic frequency ˛ for a set of time delays �1; : : : ; �N ,

OrS.˛/ D Œ ORS.˛; �1/; : : : ; ORS.˛; �N/�
T : (27.12)

From Sect. 27.3, it follows that under the null hypothesis for large M, estimated
cyclic correlations obey the distribution

OrS.˛/ 	 NC.0;
1

M
I/; 8˛; 8�i ¤ 0; i D 1; : : : ;N; (27.13)

where NC.�; �/ denotes the complex Gaussian distribution and I the identity matrix,
respectively.
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Now, we define the test statistic for the spatial sign cyclic correlation based test
for a single sensor (one individual detector) as

� D MjjOrS.˛/jj2; (27.14)

where jj � jj denotes the Euclidean norm. Since the ORS.˛; �/ are complex Gaussian
distributed, the test statistic � is the log-likelihood under the null hypothesis after
neglecting the constant terms. The null hypothesis is rejected if � > � where � is
the test threshold defined by a constraint on the false alarm rate p.� > � jH0/ D pfa.
Here pfa is the specified false alarm rate level.

Under the null hypothesis � is asymptotically �2-distributed with N complex
degrees of freedom. The pdf of a chi-square distributed random variable with N
complex degrees of freedom is given by

f .z/ D 1

.N � 1/Š z
N�1e�z; z > 0 (27.15)

which is a gamma distribution with integer parameters N and 1. Consequently,
the proposed test can be designed to satisfy a constraint on the tolerated false
alarm rate while maximizing the detection probability, similarly to the Neyman–
Pearson detector. This property provides a rigorous way of ensuring that a radar
is not overwhelmed with tracking too many targets, or in a cognitive radio context
rigorously controlling when idle spectrum may be accessed when the primary user
is not active, for example.

Man-made signals typically exhibit cyclostationarity at multiple cyclic frequen-
cies caused by symbol rate, coding and guard periods, and carrier frequency or
their multiples. In order to take into account the rich information present in such
signals, the non-parametric detector above may be easily extended to multiple cyclic
frequencies as in Lunden et al. (2007).

The proposed spatial sign cyclic correlation detector has very low computational
complexity. Moreover, the covariance matrix of the estimator has a very simple form
under the null hypothesis, depending only on the number of samples M. In addition,
employing the spatial sign cyclic correlation estimator allows for straightforward
sequential computation of the test statistic as will be shown in the following section.
This is obviously beneficial in detecting rapid changes in the observed signal
statistics.

27.4.1 Sequential Test for Rapid Changes

Sequential test allows for making a decision without delay as soon as necessary
evidence for making decisions at specified error levels is acquired. The presented
sequential test is a truncated one. Truncation means that there is a maximum number
of samples Mmax that can be taken until a decision has to be made. The expression for
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the test statistic in (27.14) and the spatial sign cyclic correlation estimator in (27.6)
lend themselves to sequential calculation of the test statistic. Consequently, �.t/ D
1

Mmax
jjOrS;t.˛/jj2 where the components of OrS;t.˛/ may be calculated sequentially

ORS;t.˛; �/ D ORS;t�1.˛; �/C S.x.t//S.x�.tC �//e�j2�˛t; (27.16)

for t > 0, and ORS;0.˛; �/ D S.x.0//S.x�.�//.
The increments S.x.t//S.x�.t C �//e�j2�˛t on the right-hand side of (27.16) are

i.i.d. samples drawn from a uniform distribution on the unit circle under hypothesis
H0. Thus, ORS;t.˛; �/ is a random walk in the complex plane (planar motion) with
i.i.d. increments given by a uniform distribution on the unit circle.

Skipping the detailed derivation presented in Lunden et al. (2010), we can define
a truncated sequential detection test as follows:

If �.t/ � �s and t � Mmax; Decide H1

If �.t/ < �s and t D Mmax; Decide H0

Otherwise; Take a new sample; t D tC 1;
(27.17)

where �.t/ D 1
Mmax
jjOrS;t.˛/jj2, �s is the threshold for choosing among the alter-

natives, and Mmax defines the truncation of the test, i.e., the maximum number of
samples that can be acquired until a decision has to be made. Consequently, only
a decision to accept H1 can be made before the truncation point is reached. This
strategy is suitable for minimizing the probability of missed detection. Under the
null hypothesis �.Mmax/ is asymptotically chi-square distributed with N complex
degrees of freedom where N is the number of lags. Consequently, the test threshold
can be easily set based on the distributions of the test statistics and employed
decision making policy (e.g., Neyman–Pearson). See Lunden et al. (2010) for
details.

27.4.2 Decentralized Testing Using Multiple Detectors

In demanding applications such as radar, surveillance, and cognitive radio systems,
multiple detectors may cooperate in order to improve the reliability of the test.
Typical scenario where decentralized testing gives impressive gains is when signals
experience shadowing and fading effects and interference. These effects can be
mitigated by exploiting spatial diversity through collaboration among multiple
detectors in different locations. In this section, we present a decentralized test for
cyclostationarity.

A key assumption is that the test statistics of the secondary users are independent
conditioned on hypotheses H0 and H1. The test statistics from individual detectors
can be combined using the basic factorization principle for statistically independent
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as follows:

�L D
LX

iD1
�.i/ (27.18)

where L is the number of co-operating detectors and �.i/ denotes the spatial sign
cyclic correlation test statistic of the ith individual detector. Since the test statistics
�.i/ for each local detector is the local log-likelihoods under the null hypothesis,
the sum of the single-user test statistics in (27.18) follows assuming conditional
independence of the local test statistics.

The sum of independent gamma (or chi-square) distributed random variables is
also gamma (or chi-square) distributed where the shape parameter of the distribution
of the sum is the sum of the shape parameters of the distributions of the individual
random variables. Hence, under the null hypothesis�L is chi-square distributed with
LN complex degrees of freedom (i.e., gamma distributed with parameters LN and
1).

27.5 Simulation Examples

In this section the performance of the proposed single cycle spatial sign cyclic
correlation based detector is studied in simulation. The detector is designed for
one nonzero cyclic frequency. First, we illustrate that the spatial sign nonlinearity
preserves the cyclic frequencies due to the symbol frequency for a cyclic prefix
OFDM signal, see Lunden et al. (2010), Reed (1959), and Jacovitti and Neri (1994)
for more detail. Figure 27.2 shows the normalized squared modulus of the cyclic
correlation for a cyclic prefix OFDM signal for the conventional and spatial sign
estimators. It can be seen that the cyclic frequencies are preserved by the spatial
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Fig. 27.2 Normalized squared modulus of (a) the cyclic correlation, and (b) the spatial sign cyclic
correlation. The signal is a cyclic prefix OFDM signal with symbol frequency of 0.025. The spatial
sign nonlinearity preserves the cyclic frequencies
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Fig. 27.3 Validity of the central limit theorem based approximation for the spatial sign cyclic
correlation estimator. (a) Probability density function (pdf) and (b) cumulative distribution
function (cdf) of the test statistic � D MjjOrS.˛/jj2 for a contaminated Gaussian noise distribution
0:95NC.0; 


2/C0:05NC.0; 25

2/. The sample size M D 100. The measured empirical distribution

is with high fidelity approximated by the distribution derived using the CLT

sign nonlinearity. Note that in practice the magnitudes of the cyclic correlation and
spatial cyclic correlation are different. Magnitudes have been normalized here for
easier comparison.

We will validate the result on the central limit theorem based approximation of
the spatial sign cyclic correlation estimator by considering the distribution of the
spatial sign cyclic correlation based test statistic. Figure 27.3 plots the probability
density functions and the cumulative distribution functions of the test statistic
� D MjjOrS.˛/jj2 for a complex, circularly symmetric i.i.d. contaminated Gaussian
process 0:95NC.0; 


2/ C 0:05NC.0; 25

2/. In this contamination model the noise

comes with a probability of 0:95 from the nominal distribution NC.0; 

2/ and with

a probability of 0:05 from the contaminating distribution NC.0; 25

2/. The number

of data samples is M D 100. The employed cyclic frequency was selected ran-
domly from the interval Œ0:05; 0:5� in the simulation. The histogram and empirical
cumulative distribution functions have been obtained from 10,000 experiments.
The measured empirical distribution is with very high fidelity approximated by
the derived theoretical distribution, thus validating the central limit theorem based
approximation employed in establishing the result.

The first test signal is an OFDM signal in DVB-T system ETSI (2004) with
a fast-Fourier transform (FFT) size NFFT D 8192 and a cyclic prefix of Ncp D
1024 samples. The total symbol length is given by NFFT C Ncp. The number of
subcarriers used is 6817, and 64-QAM (quadrature amplitude modulation) is used,
and the length of the signal is three OFDM symbols (� 3 ms). The signal was
sampled at the Nyquist rate. Thus, the oversampling factor wrt. the symbol rate
is NFFT C Ncp. Cyclic prefix OFDM signal induces cyclostationary with respect to
the symbol frequency. Thus, the detection may be done at the symbol frequency by
all detectors. In addition, all the detectors except SCD, which takes the weighted
sum over all time delays, employ two time lags ˙NFFT . The cyclic autocorrelation
of the OFDM signal peaks for these time lags (Öner and Jondral 2007). In the
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Fig. 27.4 Probability of detection vs. SNR (dB) in an AWGN channel for 1 and 5 detectors. The
signal is an OFDM signal (DVB-T). Spatial sign cyclic correlation based detector suffers from
a small performance degradation in comparison with the methods based on conventional cyclic
correlation estimator in nominal Gaussian noise for the OFDM signal

comparisons we use the sub-optimum single-cycle detector (SCD) in Gaussian noise
that correlates the ideal spectral correlation function (SCF) with the estimated SCF
for one cyclic frequency of the signal (Gardner 1988); STPC (statistical test for
the presence of cyclostationarity) method of Dandawaté and Giannakis (1994) and
Lunden et al. (2007). We consider the cases where there is only one detector as well
as the cooperative case where decision statistics from five co-operating detectors are
combined.

Figure 27.4 plots the performance of the detectors for 1 and 5 co-operating
detector in AWGN channel as a function of the Signal-to-Noise Ratio (SNR). The

SNR is SNR D 10 log10

2x

2n

where 
2x and 
2n denote the variances of the transmitted
signal and the additive noise, respectively. False alarm rate constraint is set to 0.05.
The same false alarm rate is employed in all the simulations. The simulation curves
in the plots are averaged over 1000 independent experiments.

It can be seen that employing the spatial sign nonlinearity causes performance
degradation in AWGN channel compared to the SCD and STPC detectors. The SCD
detector has the best performance as expected since it requires more prior knowledge
than any of the other detectors. However, this makes it also more sensitive to
synchronization errors. The SCD methods, unlike the other detectors, require the
knowledge of the exact carrier frequency, which is a nuisance parameter that needs
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Fig. 27.5 Probability of detection vs. SNR (dB) in a contaminated additive Gaussian noise
channel for 1 and 5 secondary users. Additive noise has a contaminated Gaussian distribution
0:95NC.0; 


2/ C 0:05NC.0; 100

2/. SNR is defined with respect to 
2. The signal is an OFDM

signal (DVB-T). The spatial sign cyclic correlation based detector is more robust against heavy-
tailed non-Gaussian noise than the other considered detectors

to be estimated in practice. In all the simulation examples, the carrier frequency was
assumed to be known.

Figure 27.5 depicts the performance of the detectors in a contaminated Gaus-
sian distribution. The contaminated Gaussian distribution is 0:95NC.0; 


2/ C
0:05NC.0; 100


2/. The robustness of the spatial sign cyclic correlation based
detector compared to the STPC detector and the SCD is clearly evident in the
contaminated Gaussian noise case.

Figure 27.6 depicts the performance of the detectors in additive complex isotropic
Cauchy distributed noise to demonstrate the highly robust performance of the
proposed detectors. The noise location parameter is zero. Because the moments of
Cauchy distribution are not defined, the performances are defined as a function of

the generalized SNR (GSNR). The GSNR is defined as GSNR D 10 log10

2x
�

where


2x is the variance of the transmitted signal and � is the dispersion parameter of
the Cauchy noise. The spatial sign cyclic correlation based detector is significantly
more robust against the heavy-tailed Cauchy noise than the other detectors.
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Fig. 27.6 Probability of detection vs. Generalized SNR (dB) in an additive complex isotropic
Cauchy noise channel for 1 and 5 secondary users. The signal is an OFDM signal (DVB-T). The
spatial sign cyclic correlation based detector is more robust against the heavy-tailed Cauchy noise
than the other detectors

Figure 27.7 depicts the performance of the sequential test and the fixed sample
size spatial sign detector as a function of the SNR. The channel is a frequency
flat and Rayleigh fading. The transmitted signal is an IEEE 802.11 WLAN OFDM
signal. The size of the FFT NFFT D 64, the number of active subcarriers is 52, the
length of the cyclic prefix Ncp D 16 samples, and QPSK modulation is employed.
The maximum sensing time (truncation time) for the sequential detectors and also
used by the fixed sample size detectors is 3 ms. The sequential detectors have
comparable performance to the fixed sample size spatial sign cyclic correlation
detectors. Note that for the sequential detectors the upper bound of the false alarm
rate is 0.05. Figure 27.7 plots the average proportion of samples required to make
a decision for the sequential detectors as a function of the SNR. The FC test refers
to the minimum sensing time of the secondary users. Sequential detection schemes
provide considerable reduction in the detection times.
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Fig. 27.7 Average proportion of samples used vs. Average SNR (dB) in a frequency flat Rayleigh
fading channel for local and FC tests for a cooperation of five users. Additive noise has a Gaussian
distribution. The signal is an OFDM signal (WLAN). The maximum sensing time is 3 ms. The
sequential detection scheme reduces the required number of samples significantly compared to the
fixed sample size spatial sign cyclic correlation detector with approximately equal performance

27.6 Conclusion

In this chapter a nonparametric spatial sign cyclic correlation based detector has
been presented. It was shown that the spatial sign cyclic correlation function
preserves the periodicity in autocorrelation function, hence facilitating the detection
of cyclostationary signals. The distribution of the test statistics under the null
hypothesis is derived. Tests for single and multiple co-operating detectors have been
developed. Significant performance gains over the other considered methods for the
non-Gaussian noise cases are obtained: 2–15 dB gain depending on the how heavy
the tails of the noise distribution are for the OFDM and QPSK signals. Furthermore,
a sequential spatial sign cyclic correlation based detection scheme was presented. It
allows for detecting rapid changes and provides a shorter detection time on average
than the fixed sample size detector with roughly equal performance.
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