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Preface

The idea to create this book arose as a response to the discussions and presentations
that took place in the first and second annual international workshops on spatial and
temporal modeling (STM2013 and STM2014) and the first workshop on complex
systems modeling and estimation challenges in big data (CSM2014), all of which
were held in the Institute of Statistical Mathematics (ISM), Tokyo, Japan. These
workshops were cohosted by Prof. Tomoko Matsui (ISM) and Dr. Gareth W. Peters
(UCL). It was apparent after these workshops were completed that the wide range
of participants from various backgrounds including probability, statistics, applied
mathematics, physics, engineering, and signal processing as well as speech and
audio processing had been recently developing a variety of new theory, models, and
methods for dealing with spatial and temporal problems that would be beneficial to
document for a wider scientific audience.

Therefore, this book is intended to bring together a range of new innovations in
the area of spatial and temporal modeling in the form of self-contained tutorial
chapters on recent areas of research innovations. Since it is based around contri-
butions from a selection of world experts in spatial and temporal modeling who
participated in the workshop, it reflects a cross section of specialist information on a
range of important topics in spatial and temporal modeling and application. It is the
aim of such a text to provide a means to motivate further research, discussion, and
cross fertilization of research ideas and directions among the different research
fields representative of the authors who contributed.

Whilst this book covers more of the practical and methodological aspects of
spatial-temporal modeling, its companion book, also in the Springer Briefs series,
titled Theoretical Aspects of Spatial-Temporal Modeling, complements this book
for theoreticians as it covers a range of new innovations in theoretical aspects of
modeling. The chapters in this book cover the topics summarized in the figure.

This book aims to provide a modern introductory tutorial on specialized
methodological and applied aspects of spatial and temporal modeling. The areas
covered involve a range of topics which reflect the diversity of this domain of
research across a number of quantitative disciplines. For instance, the first chapter
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covers nonparametric Bayesian inference via a recently developed framework
known as kernel mean embedding that has had a significant influence in machine
learning disciplines. The second chapter covers nonparametric statistical methods
for spatial field reconstruction and exceedance probability estimation based on
Gaussian process-based models in the context of wireless sensor network data. The
third chapter covers signal processing methods applied to acoustic mood analysis
based on music signal analysis. The final chapter covers models that are applicable
to time series modeling in the domain of speech and language processing. This
includes aspects of factor analysis, independent component analysis in an unsu-
pervised learning setting. Then it moves to cover more advanced topics on gen-
eralized latent variable topic models based on hierarchical Dirichlet processes
which have been developed recently in nonparametric Bayesian literature.

We first note that each chapter of this book is intended to be a self-contained
research-level tutorial on modern approaches to the practical and methodological
study of some aspect of spatial and temporal statistical modeling. However, to
guide the reader in considering the sections of this book, we note the following
relationships between chapters. The first and second chapters cover recent advances
in machine learning-based methodologies for nonparametric estimation procedures.
The first chapter addresses the recent topic of kernel mean embedding methods,
which are now becoming popular approaches to performing high-dimensional
state-space modeling problems as well as addressing problems with intractable
likelihood in filtering applications. These recent nonparametric inference methods
with positive definite kernels have been developed to utilize the kernel mean
expression of distributions. In this approach, the distribution of a variable is rep-
resented by the kernel mean, which is the mean element of the random feature
vector defined by the kernel function, and the relation among variables is expressed
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by covariance operators. This general methodology is starting to have important
applications in many spatial and temporal modeling settings.

The second and third chapters also consider nonparametric models, focussing on
the class of Gaussian process models, the second chapter looking at spatial models,
and the third chapter looking at state-space models. In the second chapter new
methods to model spatial data via combinations of Gaussian process models with
observations of mixed type, discrete, and continuous. It develops a framework for
spatial field reconstruction and establishes efficient spatial best linear unbiased
estimators for this spatial field estimation given observations. In addition, an esti-
mation framework based on a covariance regression model is established to perform
parameter estimation and introduce covariates into the spatial covariance function
structure. In the third chapter state-space models with Gaussian process state or
observation equations are considered in the application of speech and music
emotion recognition.

The final chapter also studies speech and language processing, this time focusing
on topic models for structural learning and temporal modeling from unlabeled
sequential patterns. The nonparametric models developed in this chapter are based
on the family of hierarchical Dirichlet processes and are considered in a Bayesian
formulation. The chapter also discusses, in addition to construction of such models,
the variational Bayes- and MCMC-based estimation procedures for such models.

Tokyo, Japan Gareth William Peters
August 2015 Tomoko Matsui
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Chapter 1
Nonparametric Bayesian Inference
with Kernel Mean Embedding

Kenji Fukumizu

Abstract Kernel methods have been successfully used in many machine learning
problems with favorable performance in extracting nonlinear structure of high-
dimensional data. Recently, nonparametric inference methods with positive definite
kernels have been developed, employing the kernel mean expression of distribu-
tions. In this approach, the distribution of a variable is represented by the kernel
mean, which is the mean element of the random feature vector defined by the ker-
nel function, and relation among variables is expressed by covariance operators.
This article gives an introduction to this new approach called kernel Bayesian infer-
ence, in which the Bayes’ rule is realized with the computation of kernel means and
covariance expressions to estimate the kernel mean of posterior [11]. This approach
provides a novel nonparametric way of Bayesian inference, expressing a distribution
with weighted sample, and computing posterior with simple matrix calculation. As
an example of problems for which this kernel Bayesian inference is applied effec-
tively, nonparametric state-space model is discussed, in which it is assumed that the
state transition and observation model are neither known nor estimable with a simple
parametric model. This article gives detailed explanations on intuitions, derivations,
and implementation issues of kernel Bayesian inference.

1.1 Introduction

Recent data analysis often involves voluminous high-dimensional data, which may
include continuous and complex-structured variables. Classical toolboxes of statisti-
cal data analysis may not be sufficient to derive useful information or make reliable
predictions in such problems, since the methods often assume low-dimensional sim-
ple structure for data such as Gaussian distributions in Euclidean space. It is highly
desirable to develop more flexible approaches to tackle those modern data analysis.

K. Fukumizu (B)
The Institute of Statistical Mathematics, Tokyo, Japan
e-mail: fukumizu@ism.ac.jp

© The Author(s) 2015
G.W. Peters and T. Matsui (eds.), Modern Methodology and Applications
in Spatial-Temporal Modeling, JSS Research Series in Statistics,
DOI 10.1007/978-4-431-55339-7_1
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2 K. Fukumizu

Kernel methods have been developed as useful tools for generalizing linear statis-
tical approaches to nonlinear settings. The main idea of kernel methods is to embed
original data to a high-dimensional feature space, called a reproducing kernel Hilbert
space (RKHS), and apply some linear methods of data analysis for the embedded fea-
ture vectors. With this approach, nonlinear features of data can be efficiently handled
by virtue of the special way of computing the inner product, which is often called
kernel trick. Since the proposal of support vector machines, a number of methods,
such as kernel principle component analysis and kernel ridge regression, have been
proposed along this discipline and successfully applied in many fields.

The aim of this article is to review recent development of kernel methods for
nonparametric statistical inference. In the methods, the mean of the feature vector
in the RKHS is considered as a summary for the distribution of feature vectors. We
call it kernel mean. Although it might be thought that taking the mean loses infor-
mation of the underlying distribution of data, if a kernel is chosen appropriately, the
kernel mean maintains all the information of the distribution. This is possible by the
fact that the kernel mean is a function with infinite degree of freedom in an infinite-
dimensional RKHS. With this kernel mean approach, probability distributions are
expressed by the corresponding kernelmeans, and linear operationswithGrammatri-
ces yield various algorithms for statistical inference,which includes homogeneity test
[13–15, 26], independence test [16, 17], conditional independence test [9], and
Bayes’ theorem[11]. See [29] for a gentle introduction to these researches.

This article focuses on nonparametric kernel methods for Bayesian inference. In
Bayesian inference, the sum rule, product rule, andBayes’ rule are important building
blocks of inference procedures. The general kernel implementation of these three
rules is first presented to realize a nonparametric method for Bayesian inference. As
a basis, the conditional kernel mean is introduced and a new theoretical result on the
convergence rate of its estimator is shown. A particularly important building block is
the kernel implementation of Bayes’ rule, called Kernel Bayes’ Rule [11]. The KBR
has special properties in comparison with other methods for Bayesian computation:
(a) unlike other popularmethods of computing posterior distributions such asMarkov
Chain Monte Carlo and sequential Monte Carlo, the KBR computes the kernel mean
of posterior simplywith linear operations ofGrammatriceswith no need of numerical
integration or advanced approximate inference, (b) the ingredients for the Bayesian
inference, prior and conditional probability (likelihood), are provided in the form
of samples nonparametrically. Thus, this KBR approach is a purely nonparametric
Bayesian inference.

A particularly useful application of the kernel Bayes’ rule is nonparametric state-
spacemodel, forwhich sequential application ofBayes’ rule realizes filtering, predic-
tion, and smoothing. This paper particularly focuses on filtering with nonparametric
state-space models, in which it is assumed that the state transition p(xt+1|xt ) and the
observation model p(yt |xt ) are unknown but paired data for the state and observa-
tion variables are available for training. The detailed derivation of the kernel filtering
algorithm based on the kernel Bayes’ rule is presented.
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The purpose of this article is to explain the kernel Bayesian inference with details
together with some new results. In particular, as building blocks, kernel sum rule,
kernel product rule, and kernel Bayes’ rule are explained in detail including intuitions
and derivations. A new theoretical result on the convergence rate of the conditional
kernel mean estimator is presented using the decay rate of eigenvalues of the covari-
ance operator. Additionally, as a typical application, details on the KBR filter are
discussed including efficient low-rank approximation.

1.2 Representing Distributions with Kernel
Mean Embedding

1.2.1 Preliminary: General Kernel Methods

Wefirst give a brief reviewof positive definite kernels and kernelmethods.A standard
reference for readers unfamiliar with kernel methods is [28].

Given a set Ω , a (R-valued) positive definite kernel k on Ω is a symmetric kernel
k : Ω × Ω→R that satisfies positive semidefiniteness, i.e.,

∑n
i, j=1 ci c j k(xi , x j ) ≥ 0

for arbitrary number of points x1, . . . , xn in Ω and real numbers c1, . . . , cn . The
matrix (k(xi , x j ))

n
i, j=1 is called a Gram matrix. It is known [1] that a positive def-

inite kernel on Ω uniquely defines a Hilbert space H consisting of functions on
Ω such that the following three conditions hold: (i) k(·, x) ∈ H for any x ∈ Ω ,
(ii) Span{k(·, x) | x ∈ Ω} is dense inH , and (iii) 〈 f, k(·, x)〉 = f (x) for any x ∈ Ω

and f ∈ H (the reproducing property), where 〈·, ·〉 is the inner product ofH . The
Hilbert spaceH is called the reproducing kernel Hilbert space (RKHS) associated
with k.

In kernel methods, Ω is a space where data exist, and a positive definite kernel
k is prepared for Ω . The corresponding RKHS H is used as a feature space, and a
nonlinear mapping (feature mapping) from data space Ω to the feature space H is
defined by

Φ : Ω → H , x → k(·, x),

where k(·, x) ∈ H should be interpreted as a function of the first argument with
x fixed. A data is thus mapped to a function, and this functional representation
of data extracts various nonlinear features of data. From computational side, the
reproducing property provides an efficient way of extracting nonlinear features in
data analysis, without expanding the original variables with basis functions, which
causes an intractably large number of components for high-dimensional original
variables.

The traditional way of kernel methods considers the mapping of data X1, . . . , Xn

in the original spaceΩ to feature vectorsΦ(Xi ), . . . , Φ(Xn) in the RKHS, and apply
some linear method of data analysis, such as principal component analysis, to those
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feature vectors. By the reproducing property, the inner product of two feature vectors
is reduced to evaluation of the kernel, that is

〈Φ(x),Φ(y)〉 = k(x, y).

This fact is sometimes referred to as kernel trick, providing one of the essential ele-
ments in kernel methods. More generally, given two linear combinations of the fea-
ture vectors, say f = ∑n

i=1 αiΦ(Xi ) and g = ∑n
j=1 β jΦ(X j ), then the inner product

between f and g is given by
〈 f, g〉 = αT GXβ,

where GX,i j = k(Xi , X j ) is the Gram matrix. Given that computation of an analysis
method for Euclidean data relies on the inner product among data points, the method
can be extended to a nonlinear version with the above inner products among feature
vectors. The computational cost thus does not depend on the dimensionality of data,
once the Gram matrices are computed. This is computational advantage of kernel
methods for handling high-dimensional data.

Computation with Gram matrices is obviously expensive if the sample size is
large. It is known, however, that low-rank approximation of a Gram matrix reduces
the size of the involved matrix drastically, while maintaining the approximation
accuracy reasonably. As typical methods for low-rank approximation, the incomplete
Cholesky decomposition [6] and Nyström approximation [38] approximate a Gram
matrix G of size n to the form G ≈ RRT with n × r matrix R in computational time
proportional to n. Once the low-rank approximation is done, inversion (G + λIn)

−1

can be approximated by In − R(RT R + λIr )
−1RT (Woodbury’s formula), in which

the inverse is taken for a matrix of size r . Here Im denotes the m × m identity matrix.
The merit of this approximation will be discussed in Sect. 1.4.2.

1.2.2 Kernel Mean Representation of Probability
Distributions

In the recent development of kernel methods for nonparametric inference, the mean
of the random feature vector Φ(X) = k(·, X) is considered to represent a probability
distribution on the random variable X.

More formally, let (X ,BX ) be a measurable space, X be a random variable
taking values in X with probability distribution P on X , and k be a measurable
positive definite kernel on X such that E[√k(X, X)] < ∞. The associated RKHS
is denoted by H . The kernel mean mX (also written by mP) of X in H is defined
by the mean E[k(·, X)] of the H -valued random variable Φ(X).1 Here, the mean

1As the kernelmean depends on k, it should bewritten bymk
X rigorously.Wewill, however, generally

write mX for simplicity, where there is no ambiguity.
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is interpreted as Bochner integral, which exists by the assumption E[‖k(·, X)‖] =
E[√k(X, X)] < ∞.

By the reproducing property, the kernel mean satisfies the relation

〈 f, mX〉 = E[ f (X)] (1.1)

for any f ∈ H . Plugging f = k(·, u) into this relation yields

mX(u) = E[k(u, X)] =
∫

k(u, x̃)dP(x̃), (1.2)

which is an explicit integral form of the kernel mean.
To represent probabilities, an important notion is the characteristic property. A

positive definite kernel k is called bounded if supx∈X k(x, x) < ∞. A bounded
measurable positive definite kernel k on a measurable space (Ω,B) is called char-
acteristic if the mapping from a probability Q on (Ω,B) to the kernel mean
mQ ∈ H is injective [7, 8, 32]. This is equivalent to assuming that EX∼P[k(·, X)] =
EX ′∼Q[k(·, X ′)] implies P = Q by definition: probabilities are uniquely determined
by their kernel means on the associated RKHS. A popular example of a charac-
teristic kernel defined on Euclidean space is the Gaussian RBF kernel k(x, y) =
exp(−‖x − y‖2/(2σ 2)). A characteristic kernel provides a RKHS that contains a
rich class of functions so that the moments E[ f (X)] for all f ∈ H can identify the
underlying distribution. Various conditions for a kernel to be characteristic can be
found in [12, 31, 32].

By the unique representation property of characteristic kernels, statistical infer-
ence problems on probability distribution can be converted to the inference problems
on the kernel means, which are easier to handle by the special properties of RKHS.
This is the principle of the nonparametric inference with kernel means. Various infer-
ence methods have been proposed under this discipline. If we consider a two-sample
problem, which aims at determining whether or not given two samples come from
the same distribution, it can be cast as the problem of comparing the correspond-
ing two kernel means in a RKHS [13]. The problem of independence test can be
solved by comparing the kernel means of joint distributions and the product of the
marginals [15].

When the relation of two random variables is discussed, covariance is useful in
addition to means. In the kernel mean framework, covariance of the two feature
vectors on the RKHS’s is considered, and it is called covariance operator. More
precisely, let (X ,BX ) and (Y ,BY ) be measurable spaces, (X, Y) be a random
variable on X × Y with distribution P, and kX and kY be measurable positive
definite kernels with respective RKHS HX and HY such that E[kX (X, X)] < ∞
and E[kY (Y , Y)] < ∞.2 The (uncentered) covariance operator CYX : HX → HY

2These conditions guarantee existence of the covariance operator. Note also E[k(X, X)] < ∞ is
stronger than the condition for kernel mean, E[√k(X, X)] < ∞; this is obvious from Cauchy–
Schwarz inequality.
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is defined by
CYX = E[kY (·, Y)〈kX (X, ·), ∗〉],

or equivalently, for f ∈ HX ,

(CYX f )(y) = E[kY (y, Y) f (X)] =
∫

kY (y, ỹ) f (x̃)dP(x̃, ỹ). (1.3)

From the reproducing property, the covariance operator is a linear operator that
satisfies

〈g, CYX f 〉HY = E[ f (X)g(Y)]

for all f ∈ HX , g ∈ HY . We also define CXX by the operator onHX that satisfies
〈 f2, CXX f1〉 = E[ f2(X) f1(X)] for any f1, f2 ∈ HX .

The covariance operator is a natural extension of an ordinary covariance matrix:
given two random vectors Z and W on Euclidean spaces, the covariance matrix can
be regarded as a linear mapping a �→ E[WZT ]a. Replacing Z and W with kX (·, X)

and kY (·, Y), respectively, yields the covariance operator E[kY (·, Y)〈kX (·, X), ∗〉].
Readers who are unfamiliar with the notion of operators can simply think of linear
mappings on infinite-dimensional vector spaces to grasp the general ideas in this
article.

Note also that by identifying the dual element 〈kX (·, X), ∗〉 with kX (·, X), the
covariance operator CYX can be identified with the kernel mean mYX = E[kY (·, Y)

kX (·, X)] in the direct product HY ⊗ HX , which is given by the product kernel
kY kX on Y × X [1]. This fact will be used in deriving kernel Bayes’ rule.

Given i.i.d. sample (X1, Y1), . . . , (Xn, Yn) with law P, the empirical estimators of
the kernel mean and covariance operator are given straightforwardly by the empirical
mean and covariance as

m̂X = 1

n

n∑

i=1

kX (·, Xi ), Ĉ(n)
YX = 1

n

n∑

i=1

kY (·, Yi ) ⊗ kX (·, Xi ),

where Ĉ(n)
YX is written in the tensor form. These estimators are known to be

√
n-

consistent in appropriate norms, and
√

n(m̂X − mX) converges to a Gaussian process
onHX [3].

1.3 Bayesian Inference with Kernel Means

There are three basic operations used in generalBayesian inference: sum rule, product
rule, and Bayes’ rule, which are summarized in Table1.1. Correspondingly, in the
framework of Bayesian inference with kernel means, these operations are realized
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Table 1.1 Operations for Bayesian inference.

Density form Kernel version m̂Π = ∑
j γ j kX (·, U j ),

(Xi , Yi ) ∼ P

Sum rule qY (y) =
∫

p(y|x)π(x)dx m̂QY = ∑
i wi kY (·, Yi ),

w = (GX + nεnIn)−1GXUγ

Product rule q(x, y) = p(y|x)π(x) m̂Q = ∑
i wi kX (·, Xi ) ⊗ kY (·, Yi ),

w = (GX + nεnIn)−1GXUγ

Bayes’ rule q(x |yobs) = p(yobs|x)π(x)
∫

p(yobs|x)π(x)dx
m̂Qx |yobs = ∑

i wi kX (·, Xi ),

Λ = Diag{(GX + nεnIn)−1GXUγ },
w = ΛGY ((ΛGY )2 + δnIn)−1ΛkY (yobs)

In the kernel version, GX = (k(Xi , X j )), GY = (k(Yi , Y j )), and GXU = (k(Xi , U j ))

in terms of kernel means. This section first provides an intuitive explanation for the
population version of the kernel realization, which may not be rigorous in handling
operator inversion, and then shows rigorous empirical expressions, which can be
proved to be consistent.

In the framework, each distribution is represented by the corresponding kernel
mean or its empirical estimate. An empirical estimator of the kernel mean of a
probability P is, in general, given by a weighted sum of feature vectors

m̂P =
n∑

i=1

wi k(·, Xi ),

where (Xi )
n
i=1 is some sample, which may not be generated by P.

1.3.1 Conditional Kernel Mean

For Bayesian inference with kernels, a basis is how to express or estimate the condi-
tional kernelmean. It is not straightforward, however, to have an empirical expression
of kernel mean of the conditional probability of Y given X. If we had many sam-
ples of Y for each value of x , we could just use the samples or their feature vectors
to represent the kernel mean of Y given x . It is unlikely, however, that we have
such conditional samples, if the variable X is continuous and random. We then need
an alternative way of expressing the kernel mean of a conditional probability. We
assume that there is a probability P with density p(x, y) that gives a conditional
density p(y|x), and we have data (Xi , Yi ) generated by P.

The theoretical basis of the conditional kernel mean is the following theorem.
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Theorem 1.3.1 ([7]) If, for g ∈ HY , E[g(Y)|X = x] is included in HX as a func-
tion of x, then

CXXE[g(Y)|X = ·] = CXY g.

The proof is easy from the fact 〈CXXE[g(Y)|X = ·], f 〉 = E[g(Y) f (X)] =
〈CXY g, f 〉 for any f ∈ HX . From this theorem, if CXX is invertible, we have

E[g(Y)|X = ·] = C−1
XX CXY g.

Taking the inner product with kX (·, x) derives

〈E[g(Y)|X = ·], kX (·, x)〉HX = 〈C−1
XX CXY g, kX (·, x)〉HX ,

which implies

〈g, E[kY (·, Y)|X = x]〉HY = 〈g, CYXC−1
XX kX (·, x)〉HY .

If E[g(Y)|X = ·] ∈ HX holds for any g ∈ HY , it follows that

E[kY (·, Y)|X = x] = CYXC−1
XX kX (·, x). (1.4)

Since the left-hand side of Eq. (1.4) is exactly the kernel mean of conditional prob-
ability of Y given X = x , this equation provides an expression of its kernel mean
in terms of the covariance operator of the joint distribution (X, Y). Note, however,
that the above reasoning involves a strong assumption: CXX is invertible. In fact, this
does not hold if the dimensionality of HX is infinite and CXX has arbitrarily small
or zero eigenvalues. This occurs in typical cases with a bounded kernel of infinite-
dimensional RKHS, since the trace of the infinite-dimensional linear map CXX is
finite [10].

Nonetheless, from the expression Eq. (1.4), we can introduce an empirical estima-
tor of the kernel mean of p(y|x), namely, given i.i.d. sample (X1, Y1), . . . , (Xn, Yn)

following the joint distribution P, an estimator is defined by

m̂Y |X=x := Ĉ(n)
YX

(
Ĉ(n)

XX + εnI)−1kX (·, x), (1.5)

where I is the identity operator and εn is a regularization constant so that the operator
can be inverted. This estimator is rigorously defined and proved to be consistent to
E[kY (·, Y)|X = x] under the sufficient condition in the following Theorem1.3.2.

To describe the following convergence result, decay rate of eigenvalues is intro-
duced. The eigenvalues of a positive compact operator C are said to decay at rate b
if there is a constant β > 0 such that λ� ≤ β�−b for all �, where (λ�) is the positive
eigenvalues of C in descending order. (See [4]). The following theorem shows the
convergence rate of the conditional kernel mean estimator.
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Theorem 1.3.2 Assume that E[k(X, X̃)|Y = ·, Ỹ = ∗] ∈ R(CYY ⊗ CYY ), where
(X̃, Ỹ) is an independent copy of (X, Y), and that the eigenvalues of CYY decay
at rate b (1 < b < +∞). Then, with εn = n−b/(4b+1),

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

= Op(n
−b/(4b+1))

as n → ∞.

See the appendix for the proof. The decay rates of eigenvalues of a covariance
operator are known in some typical cases; see [36, 37].Note that the assumption of the
decay rate of the covariance operator is related to the entropy number, and standard
in discussing the behavior of kernel regression [33]. The assumption E[k(X, X̃)|Y =
·, Ỹ = ∗] ∈ R(CYY ⊗ CYY ) requires the smoothness of the conditional expectation
when the kernel is smooth such as Gaussian kernel; the range space consists of
smoother functions by the smoothing effect of the integral in Eq. (1.3). To the best
of our knowledge, the convergence rate of the conditional kernel mean in the above
form has not been presented in existing literatures.3

1.3.2 Kernel Sum Rule and Kernel Product Rule

For the sum and product rules, this subsection gives intuitive explanation rather than
rigorous convergence results. See [11] for the results.

For the kernel mean implementation of the sum rule, let Π be a probability on
X with density π(x). As in the previous subsection, we assume that there is a joint
distribution P on X × Y with density p(x, y) of which the conditional p.d.f. is
equal to the given p(y|x). Suppose that the sum rule gives QY with density qY (y),
i.e.,

qY (y) =
∫

p(y|x)π(x)dx .

The kernel mean of QY is then given by

mQy =
∫ ∫

kY (·, y)p(y|x)π(x)dxdy.

3Some previous literatures derived a convergence rate at unrealistic assumptions. For example,
Theorem6 in [30] assumes k(·, y0) ∈ R(CYY ) to achieve the rate n−1/4, but in typical cases there
is no function f ∈ HY that satisfies

∫
k(y, z) f (z)dPY (z) = k(y, y0). Theorem1.3.2 shows that if

the eigenvalues decay sufficiently fast the rate approaches n−1/4. As a relevant result, Theorem11
in [11] shows a convergence rate of the kernel sum rule. While the conditional kernel mean is a
special case of kernel sum rule with prior given by Dirac’s delta function at x , the faster rate (n−1/3

at best) is not achievable by Theorem 1.3.2, since the former assumes that π/pX is a function in the
RKHS and smooth enough.
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From Eq. (1.4), we already know the (non-rigorous) expression

∫

kY (·, y)p(y|x)dy = CYXC−1
XX kX (·, x).

Plugging this into the previous equation, we have (the population version of) kernel
sum rule:

mQY =
∫

CYXC−1
XX kX (·, x)π(x)dx = CYXC−1

XX mΠ. (1.6)

There is another way to derive Eq. (1.6) in terms of density functions. Suppose
that the density ratio π/pX is included inHX . From Eqs. (1.2) and (1.3), we see

mΠ =
∫

kX (·, x)π(x)dx =
∫

kX (·, x)
π(x)

pX(x)
dPX(x) = CXX

(
π

pX

)

,

from which we obtain
C−1

XX mΠ = π

pX
.

It follows from Eq. (1.3) that

CYX C−1
XX mΠ = CYX

( π

pX

)
=

∫

kY (·, y)
π(x)

pX(x)
dP(x, y)

=
∫ ∫

kY (·, y)p(y|x)π(x)dxdy = mQY ,

which agrees with Eq. (1.6).
Given a consistent estimator m̂Π of mΠ and i.i.d. sample (X1, Y1), . . . , (Xn, Yn)

from P, the empirical version of the kernel sum rule is defined based on Eq. (1.6);

m̂QY = Ĉ(n)
YX

(
Ĉ(n)

XX + εnI
)−1

m̂Π. (1.7)

In a Gram matrix expression, given

m̂Π =
�∑

j=1

γ j kX (·, U j ),

we have

m̂QY =
n∑

i=1

wi kY (·, Yi ), w = (GX + nεnIn)
−1GXUγ,

where GX = (kX (Xi , X j ))i j and GXU = (kX (Xi , U j ))i j . The convergence of this
estimator to the true mQY and its convergence rate are shown in Theorems8 and
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11 of [11]. For the convergence, it is assumed that the sample size � for the prior
increases as n → ∞.

The kernel version of product rule can be derived as a special case of the kernel
sum rule. Consider the conditional density p̃(y, x̃ |x) = p(y|x)δx (x̃) on the product
space Y × X , where δx is Dirac’s delta function with mass concentrated at x . Let
Q be a probability distribution onY × X with density p(y|x)π(x), i.e., the density
given by the product rule. The population version of kernel sum rule applied to
p̃(y, x̃ |x) and π(x) with the product kernel then yields

mQ =
∫ ∫ ∫

kY (·, y) ⊗ kX (·, x̃) p̃(y, x̃ |x)π(x)dx̃dydx = C(YX)XC−1
XX mΠ,

where C(YX)X : HX → HY ⊗ HX is the covariance operator for the random vari-
able (X, (X, Y)). Based on the (non-rigorous) population expression, we define the
empirical kernel product rule by

m̂Q := Ĉ(n)

(YX)X

(
Ĉ(n)

XX + εnI)−1m̂Π, (1.8)

or in Gram matrix expression

m̂Q =
n∑

i=1

wi kY (·, Yi ) ⊗ kX (·, Xi ), w = (GX + nεnIn)
−1GXUγ, (1.9)

Note that the weight vectors of Eqs. (1.7) and (1.9) are exactly the same, while the
feature vectors or the spaces of interest are different.

1.3.3 Kernel Bayes’ Rule

As demonstrated in this subsection, by combining the kernel product rule and con-
ditional kernel mean, we can easily derive the kernel Bayes’ rule. As in the previous
subsection, let Π be the prior and P be a probability on X × Y with conditional
density p(y|x). The distribution of the variable (X, Y) isP. The posterior distribution
given yobs is denoted by Qx |yobs .

From the expression of Bayes’ rule

q(x |yobs) = p(y|x)π(x)
∫

p(y|x)π(x)dx
,

we see that the posterior is simply the conditional distribution of x given yobs with the
joint distribution Q given by the product rule. Once we have covariance operators for
Q, Theorem1.3.1 tells how to derive the conditional kernel mean, that is the kernel
mean of posterior. The remaining task is thus to construct the covariance operators
for Q.
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Let (Z, W) denote a random variable taking values onX × Y with distribution
Q. Then, from Eq. (1.8),

m̂(WZ) = Ĉ(n)

(YX)X

(
Ĉ(n)

XX + εnI
)−1

m̂Π and m̂(WW) = Ĉ(n)

(YY)X

(
Ĉ(n)

XX + εnI
)−1

m̂Π,

where the second relation can be obtained in a similar way to the first one. Recall
that the covariance operators CWZ and CWW are identified with the kernel means mWZ

and mWW , respectively, on the product spaces, as discussed in Sect. 1.2.2. We can
therefore obtain the estimator of Ĉ(n)

WZ and Ĉ(n)
WW from the above empirical version of

kernel product rule. Namely, when the kernel product rule provides the empirical
expressions

m̂(WZ) =
n∑

i=1

μ̂i k(·, Yi ) ⊗ k(·, Xi ) and m̂(WW) =
n∑

i=1

μ̂i k(·, Xi ) ⊗ k(·, Xi )

with
μ̂ = (GX + nεnIn)

−1GXUγ, (1.10)

the empirical estimators of covariance operators for Q are given by

Ĉ(n)
WZ =

n∑

i=1

μ̂i kY (·, Yi )〈kX (·, Xi ), ∗〉, Ĉ(n)
WW =

n∑

i=1

μ̂i kY (·, Yi )〈kX (·, Yi ), ∗〉.

Note that the coefficients to the feature vectors are the same for Ĉ(n)
WZ and Ĉ(n)

WW .
In applying Eq. (1.5), there is another technical point. The estimated covariance

operator Ĉ(n)
WW maynot be positive definite, since the coefficients μ̂i are not necessarily

positive as the solution of the matrix operation Eq. (1.10). We use a more involved
regularization to make the operator inversion possible, and introduce

m̂Qx |yobs := ĈZW
(
Ĉ2

WW + δnI
)−1

ĈWW kY (·, yobs). (1.11)

This gives an estimator of the posterior kernel mean, and is called Kernel Bayes’
Rule (KBR).

Theorem 1.3.3 (Kernel Bayes’ Rule [11]) For any yobs ∈ Y , the estimator m̂Qx |yobs
of the posterior kernel mean is given by

m̂Qx |yobs =
n∑

i=1

wi k(·, Xi ), w = ΛGY ((ΛGY )2 + δnIn)
−1ΛkY (yobs), (1.12)

where Λ = diag(μ̂) is a diagonal matrix with elements μ̂i in Eq. (1.10), and
kY (yobs) = (kY (yobs, Y1), . . . , kY (yobs, Yn))

T ∈ R
n.
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It is known that under some conditions the estimator m̂Qx |yobs converges to the true
kernel mean of the posterior in probability, and an upper bound of its convergence
rate is also known (Theorem4, [11]).

The expression Eq. (1.12) takes the form of a weighted sum of feature vectors
k(·, Xi ), and is regarded as the kernel mean of the signed measure

∑n
i=1 wiδXi . The

KBR thus provides a weighted sample expression (wi , Xi )
n
i=1 of the posterior. Note

again that the weights may include negative values, which is different from ordinary
weighted sample expression used popularly in importance sampling and particle
filters. Figure1.1 illustrates the procedure of KBR.

The above estimator provides the kernelmeanof the posterior, andnot the posterior
itself. We need to develop methods for decoding necessary information of posterior
from the kernel mean expression. Two methods are discussed below: estimation of
expectation with respect to posterior and point estimation with the posterior.

If our aim is to estimate the expectation of a function f ∈ HX with respect to
the posterior, the reproducing property of Eq. (1.1) gives an estimator

〈 f, m̂Qx |yobs〉 =
n∑

i=1

wi f (Xi ). (1.13)

In fact, it is known that, under some conditions, the estimator Eq. (1.13) for any
f ∈ HX converges to the expectation of f w.r.t. the true posterior, and its conver-
gence rate is also known (Theorems6 and 7, [11]). A recent work has shown that
the consistency of

∑n
i=1 wi f (Xi ) to

∫
f (x)qx |yobs(x)dx is true for a wider class of

functions than HY [19]. This fact confirms similarity of (wi , Xi ) in KBR to the
standard weighted sample expression.

Fig. 1.1 Kernel Bayes’ rule
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If our aim is to obtain a point estimate based on the posterior, such as MAP, we
can use a point x ∈ X such that the feature vector is the closest to the kernel mean
of posterior [11, 30], i.e.,

x̂ = arg min
x∈X

∥
∥kX (·, x) − m̂Qx |yobs

∥
∥2

.

In the case of Gaussian kernel k(x, x ′) = exp(− 1
2σ 2 ‖x − x ′‖2), from ‖k(·, x)‖ = 1,

the above minimization is equivalent to

x̂ = argmax
x∈X

n∑

i=1

wi exp
(
− 1

2σ 2
‖x − Xi‖2

)
,

which is similar to the MAP estimation, though
∑

i wi k(x, Xi ) may not be a density
function.

The above optimization problem can be solved in the same manner as the pre-
image problem [24]. Taking the derivative of the squared norm in the right-hand side,
we obtain the consistence equation

x̂ =
∑n

i=1 wi exp(− 1
2σ 2 ‖x̂ − Xi‖2)

∑n
i=1 exp(− 1

2σ 2 ‖x̂ − Xi‖2)
,

which yields an iterative method for solving the point estimate:

x̂ (t+1) =
∑n

i=1 wi exp(− 1
2σ 2 ‖x̂ (t) − Xi‖2)

∑n
i=1 exp(− 1

2σ 2 ‖x̂ (t) − Xi‖2)
.

Note that the objective function of pre-image problem is not necessarily convex and
there may be local optima. The initial point of the above iteration must be chosen
carefully. One possible method for initialization is to use the posterior mean. In the
filtering problem discussed in Sect. 1.4, the estimate in the previous time step can
serve as an initial point. Other pre-image methods [21] can be also applied to the
above point estimation problem.

1.4 Kernel Bayesian Inference for State-Space Models

Wediscuss applications ofKBR to the sequential Bayesian inferencewith state-space
models. A time-invariant state-space model is defined by

p(X, Y) = π(X1)

T+1∏

t=1

p(Yt |Xt )

T∏

t=1

q(Xt+1|Xt ),
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whereYt is an observation andXt is a hidden state variable. The index t indicates time.
The conditional probability q(xt+1|xt ) and p(yt |xt ) are called the state transition and
observation model, respectively. With this model of time series, given Y1, . . . , Yt , we
wish to estimate the posteriors p(Xs |Y1, . . . , Yt ). Filtering, prediction, and smoothing
refer to as the case s = t , s > t , and s < t , respectively. This article discusses only
the filtering problem for simplicity, while the other cases can be solved similarly.

1.4.1 KBR Filter

It is well known that, under the assumption of state-space models, application of
Bayes’ rule derives a sequential algorithm of filtering, which consists of two steps:
prediction and correction steps.
Prediction step: Given an estimate of p(xt |y1, . . . , yt ), the conditional probability
p(xt+1|y1, . . . , yt ) is estimated. This is done by the sum rule,

p(xt+1|y1, . . . , yt ) =
∫

q(xt+1|xt )p(xt |y1, . . . , yt )dxt . (1.14)

Correction step: Given a new observation yt+1, Bayes’ rule derives the estimate of
p(xt+1|y1, . . . , yt+1) with the prior p(xt+1|y1, . . . , yt ) and likelihood p(yt |xt ),

p(xt+1|y1, . . . , yt+1) = p(yt+1|xt+1)p(xt+1|y1, . . . , yt )∫
p(yt+1|xt+1)p(xt+1|y1, . . . , yt )dxt+1

. (1.15)

If the state transition and observation model are given by linear mapping plus
Gaussian noise,Kalmanfilter is thewell-knownfilteringprocedure. If they arewritten
by known nonlinear dynamics, nonlinear extensions of Kalman filter, such as the
extended Kalman filter (EKF) and unscented Kalman filter (UKF, [35]), are popular
choices. In more general setting, given the state transition and observation model are
knownupto constant, the particle filter or sequentialMonteCarlo [5] gives aweighted
sample expression of the sequential update. These methods, however, require the
precise knowledge on the functional form of the state transition and observation
model, and not applicable unless they are known.

The KBR can be effectively applied to inference with the nonparametric setting
of state-space models. In the nonparametric state-space models, it is not assumed
that the conditional probabilities p(Yt |Xt ) and q(Xt+1|Xt ) are known explicitly, nor
estimated them with simple parametric models. Rather, it is assumed that training
data (X1, Y1), . . . , (XT+1, YT+1) are given for both the observable and state variables
in the training phase. In the testing phase, the state xt is inferred based on a dif-
ferent sequence of observations ỹ1, . . . , ỹt without knowing the corresponding state
variables.
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In the training phase, given the training sample, the observation model p(yt |xt )
and the state transition q(xt+1|xt ) are represented using the empirical covari-
ances operators4: ĈYX = 1

T

∑T
i=1 kY (·, Yi ) ⊗ kX (·, Xi ), ĈYY = 1

T

∑T
i=1 kY (·, Yi ) ⊗

kY
(·, Yi ), ĈXX = 1

T

∑T
i=1 kX (·, Xi ) ⊗ kX (·, Xi ), and ĈX+1X = 1

T

∑T
i=1 kX (·, Xi+1)⊗

kX (·, Xi ). In practice, we compute

GX = (kX (Xi , X j ))
T
i, j=1, GY = (kY (Yi , Y j ))

T
i, j=1, and GXX+1 = (kX (Xi , X j+1))

T
i, j=1,

where GXX+1 is the “transfer” matrix.
In the testing phase, given new observations ỹ1, . . . , ỹt , the prediction and correc-

tion steps are kernelized. Suppose we already have an estimate of the kernel mean
of p(xt |ỹ1, . . . , ỹt ) in the form

m̂xt |ỹ1,...,ỹt =
T∑

s=1

α(t)
s kX (·, Xs),

where α
(t)
i = α

(t)
i (ỹ1, . . . , ỹt ) are the coefficients at time t . For the prediction step

(1.14), we can simply apply the kernel sum rule (1.7) to estimate the kernel mean of
p(xt+1|ỹ1, . . . , ỹt ):

m̂xt+1|ỹ1,...,ỹt = Ĉ(n)
X+1X

(
Ĉ(n)

XX + εT I
)−1

m̂xt |ỹ1,...,ỹt =:
T∑

j=1

β
(t+1)
j k(·, X j+1),

where β(t+1) = (GX + TεT IT )−1GXα(t), (1.16)

In the correction step (1.15), the kernel Bayes’ rule first computes m̂(yt+1xt+1)|ỹ1,...,ỹt =
Ĉ(n)

(YX)X(Ĉ(n)
XX + εT I)−1m̂xt+1|ỹ1,...,ỹt and m̂(yt+1 yt+1)|ỹ1,...,ỹt = Ĉ(n)

(YY)X(Ĉ(n)
XX + εT I)−1

m̂xt+1|ỹ1,...,ỹt , of which the coefficients are given by

μ(t+1) = (
GX + TεT IT

)−1
GXX+1β

(t+1), (1.17)

and next takes the conditioning, which yields

α(t+1) = Λ(t+1)GY
(
(Λ(t+1)GY )2 + δT IT

)−1
Λ(t+1)kY (ỹt+1), (1.18)

where Λ(t+1) = diag(μ(t+1)
1 , . . . , μ

(t+1)
T ). Equations (1.16)–(1.18) describe the

sequential update rule of the KBR filtering. The initial estimate m̂(1)
x1|ỹ1 = ∑T

i=1 α
(1)
i

k(·, Xi ) can be computed by applying the KBR. We can also use the estimate of the

4Although the samples are not i.i.d., we assume an appropriate mixing condition and thus the
empirical covariances converge to the covariances with respect to the stationary distribution as
T → ∞.



1 Nonparametric Bayesian Inference … 17

Table 1.2 Algorithm of the KBR filter

Input: Training data (X1, Y1), . . . , (XT , YT ), regularization constants εT , δT , kernels kX , kY .

Training phase:
• Compute GX = (kX (Xi , X j ))

T
i, j=1, GY = (kY (Yi , Y j ))

T
i, j=1, GXX+1 = (kX (Xi , X j+1))

T
i, j=1.

Testing phase:
• Compute the initial estimate α(1) given ỹ1.

• For t = 1, 2, . . ., given ỹt+1, do the following

1. β(t+1) = (GX + TεT IT )−1GXα(t).

2. μ(t+1) = (
GX + TεT IT

)−1
GXX+1β

(t+1), Λ(t+1) = Diag(μ(t+1)).

3. α(t+1) = Λ(t+1)GY
(
(Λ(t+1)GY )2 + δT IT

)−1
Λ(t+1)kY (ỹt+1)

conditional kernel mean E[k(·, X)|Y = ỹ1] if the prior π(X1) is not available. The
computation for the sequential filtering is summarized in Table1.2.

Applications of the KBR filter to artificial data and camera-angle estimation prob-
lems are shown in [11], which demonstrates favorable performance of the KBR filter
in comparison with other methods.

1.4.2 Discussions

The matrix inversion (GX + TεT IT )−1 can be computed only once before the testing
phase, while ((Λ(t+1)GY )2 + δT IT )−1 must be computed every time step in the testing
phase, since it depends on μ̂(t+1). Direct matrix inversion would costO(T 3), which is
not feasible for large T . Substantial reduction in computational cost can be achieved
by low-rankmatrix approximations such as incompleteCholesky factorization.Given
an approximation of rank r for the Grammatrices and transfer matrix, theWoodbury
identity yields the computation costs just O(Tr2) for each time step. In fact, let GX ≈
RXRT

X , GY ≈ RY RT
Y , and GXX+ ≈ AXBT

X+ be the low-rank approximations, where the
rank of RX , RY , AX and BX+ is r at most. It is easy to see from the Woodbury identity
that

β(t+1) ≈ 1

TεT

{
RXRT

Xα(t) − RX(RT
XRX + TεT Ir )

−1(RT
XRX)RT

Xα(t)
}
,

μ(t+1) ≈ 1

TεT

{
AXBT

X+β(t+1) − RX(RT
XRX + TεT Ir )

−1(RT
XAX)BT

X+β(t+1)
}
,
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and

α(t+1) ≈ 1

δT

{
Λ(t+1)RY RT

Y Λ(t+1)kY (ỹt+1)

− Λ(t+1)RY HY
(
H2

Y + δT Ir
)−1

HY RT
Y Λ(t+1)kY (ỹt+1)

}
,

where HY = RT
Y Λ(t+1)RY (r × r ). Since Λ(t+1) is a diagonal matrix, all of the above

computation can be done at the cost O(Tr2).
For the nonparametric state-space models, where training data are given as in the

KBR filter, an alternative method is the conditional density estimation, including
kernel density estimation or partitioning of the space [25, 34]. It is known, however,
that these estimators have low estimation accuracy if the dimensionality is more than
several. Empirical studies have shown that the KBR approach gives better estimation
accuracy than the density estimation approach for large-dimensional cases; see [11].

Another possible Bayesian method for the nonparametric setting is Gaussian
processes. An advantage of Gaussian processes is that one can use standard tech-
niques of Bayesian inference such as hyperparameter selection with the marginal
likelihood. Also, direct computation of the posterior is possible. On the other hand,
the obtained posterior is unimodal by the nature of Gaussian distribution so that it
may not be suitable for problems where multimodal posteriors are essential [22, 23].
In addition, since Gaussian processes are basically a model with univariate response,
it is difficult to handle the correlation among a large number of response variables.

A possible limitation of the KBR filter is the assumption that training data exist
including the state variable. While one might think it unrealistic, there are indeed
some problems where one can obtain training data. One of such cases is expensive
measurement: although one can observe the state variable, the measurement is very
expensive, and one wishes to use a limited number of training data for inference.
For instance, in sensor-based localization problems, pairs of sensor and location data
can be once measured with some expensive devises and used for location estimation
based solely on new sensor information [18, 27]. Another situation is that states are
observed with considerable time delay. In this case, we can use the observed state
variables for training, but the current state variable is not known and to be estimated.

It is true that performance of any kernelmethods depends on the choice of a kernel.
Additionally, in the KBR there are two regularization parameters to be chosen as
hyperparameters. In the KBR filter, since we have training data for state variables,
we can evaluate the prediction accuracy and thus use the validation approach by
dividing the training data into the data for training and evaluation. This method for
hyperparameter choice has been successfully used in the filtering applications of
KBR in [11, 20].

This article discusses only the fully nonparametric setting of state-space models;
both of the state transition and observation model are unknown and estimated non-
parametrically. There are, however, semiparametric situations, where one of them is
known. Consider vision-based robot localization problems, where the state xt is the
location and orientation of a robot, while the observation yt is a movie image taken
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by video camera mounted on the robot. In this case, it is easy to provide a reasonable
parametric model for the dynamics of robot move. On the other hand, the observation
model from the location/orientation to the image is too complex and environment-
dependent. It is thus preferable to apply a nonparametric method based on data for
this observation model. Since the kernel method is purely a nonparametric method
expressing the information with Gram matrices, it is not straightforward to combine
the kernel Bayesian approach with parametric models. Reference [20] has proposed
the kernel Monte Carlo filter, which is a combination of sampling and KBR method
for the semiparametric situation, and demonstrated the preferable performance of
the proposed method for the vision-based robot localization problem.

1.5 Conclusions

This article has provided detailed explanations of recently proposed kernel mean
approach to Bayesian inference. The basic ideas, intuitions, and implementation
issues have been discussed in details. A new result on the convergence rate of the
estimator of conditional kernel mean has been also presented. As an application of
the KBR approach, nonparametric state-space models are discussed focusing the
algorithm and efficient computation.

Acknowledgments The author has been supported in part by MEXT Grant-in-Aid for Scientific
Research on Innovative Areas 25120012.

Appendix: Proof of Theorem 1.3.2

First, we show a lemma to derive a convergence rate of conditional kernel mean.

Lemma 1.5.1 Assume that the kernels are measurable and bounded. Let N(ε) :=
Tr[CYY (CYY + εI)−1] and εn be a constant such that εn → 0 as n → ∞. Then,

∥
∥
∥(Ĉ(n)

YY − CYY )(CYY + εnI)−1
∥
∥
∥ = Op

(
1

εnn
+

√
N(εn)

εnn

)

and
∥
∥
∥(Ĉ(n)

XY − CXY )(CYY + εnI)−1
∥
∥
∥ = Op

(
1

εnn
+

√
N(εn)

εnn

)

as n → ∞.
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Proof The first result is shown in [4] (page 349). While the proof of the second one
is similar, it is shown below for completeness.

Let ξyx be an element inHY ⊗ HX defined by

ξyx := {
(CYY + εnI)−1k(·, y)

} ⊗ k(·, x).

With identification between H y ⊗ HX and the Hilbert–Schmidt operators from
HX toHY ,

E[ξYX ] = (CYY + εnI)−1CYX .

Take a > 0 such that k(x, x) ≤ a2 and k(y, y) ≤ a2. It follows from ‖ f ⊗ g‖ =
‖ f ‖ ‖g‖ and ‖(CYY + εnI)−1‖ ≤ 1/εn that

‖ξyx‖ = ∥
∥(CYY + εnI)−1k(·, y)

∥
∥
∥
∥k(·, x)

∥
∥ ≤ 1

εn
‖k(·, y)‖ ‖k(·, x)‖ ≤ a2

εn
,

and

E‖ξYX‖2 = E
∥
∥{(CYY + εnI)−1k(·, Y)} ⊗ k(·, X)

∥
∥2

= E‖k(·, X)‖2 ∥
∥(CYY + εnI)−1k(·, Y)

∥
∥2

≤ a2E
∥
∥(CYY + εnI)−1k(·, Y)

∥
∥2

= a2E
〈
(CYY + εnI)−2k(·, Y), k(·, Y)

〉

= a2ETr
[
(CYY + εnI)−2(k(·, Y) ⊗ k(·, Y)∗)

]

= a2Tr
[
(CYY + εnI)−2CYY

]

≤ a2

εn
Tr

[
(CYY + εnI)−1CYY

] = a2

εn
N(εn).

Here k(·, Y)∗ is the dual element of k(·, Y) and k(·, Y) ⊗ k(·, Y)∗ is regarded as an
operator on HY . In the last inequality, (CYY + εnI)−1 in the trace is replaced by its
upper bound ε−1

n I . Since 1
n

∑n
i=1(CYY + εnI)−1ξYi Xi = (CYY + εnI)−1Ĉ(n)

YX , it follows
from Proposition 2 in [4] that for all n ∈ N and 0 < η < 1

Pr

(∥
∥
∥
∥(CYY + εnI)−1Ĉ(n)

YX − (CYY + εnI)−1CYX

∥
∥
∥
∥

≥ 2

(
2a2

nεn
+

√
a2N(εn)

εnn

)

log
2

η

)

≤ η,

which proves the assertion. ��
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Proof of Theorem1.3.2 First, we have

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

≤ ∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX (1.19)

+ ∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

. (1.20)

Using the general formula A−1 − B−1 = A−1(B − A)B−1 for any invertible operators
A, B, the first term in the right-hand side of the above inequality is upper bounded by

∥
∥(Ĉ(n)

XY − CXY )(Ĉ(n)
YY + εnI)−1kY (·, y0)

∥
∥
HX

+ ∥
∥CXY (CYY + εnI)−1(CYY − Ĉ(n)

YY )(Ĉ(n)
YY + εnI)−1kY (·, y0)

∥
∥
HX

≤∥
∥(Ĉ(n)

XY − CXY )(Ĉ(n)
YY + εnI)−1

∥
∥

∥
∥kY (·, y0)

∥
∥
HY

+ 1√
εn

‖CXX‖1/2∥∥(Ĉ(n)
YY − CYY )(Ĉ(n)

YY + εnI)−1
∥
∥

∥
∥kY (·, y0)

∥
∥
HY

,

where in the second inequality the decomposition CXY = C1/2
XX WXY C1/2

YY with some
WXY : HY → HX (‖WXY‖ ≤ 1) [2] is used. It follows from Lemma 1.5.1 that

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX

= Op

(

ε−1/2
n

{
1

εnn
+

√
N(εn)

εnn

})

,

as n → ∞. It is known (Proposition 3, [4]) that, under the assumption on the decay
rate of the eigenvalues, N(ε) ≤ bβ

b−1ε
−1/b holds with some β ≥ 0. Since ε

−3/2
n n−1 �

ε
−1− 1

2b
n n−1/2 for b > 1 and nεn → ∞, we have

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX

= Op

(
ε

−1− 1
2b

n n−1/2
)

, (1.21)

as n → ∞.
For the second term of Eq. (1.19), letΘ := E[k(X, X̃)|Y = ·, Ỹ = ∗] ∈ R(CYY ⊗

CYY ). Note that for any ϕ ∈ HY we have

〈CXYϕ,CXYϕ〉 = E[k(X, X̃)ϕ(Y)ϕ(Ỹ)]
= E

[
E[k(X, X̃)|Y , Ỹ ]ϕ(Y)ϕ(Ỹ)

] = 〈(CYY ⊗ CYY )Θ, ϕ ⊗ ϕ〉HY ⊗HY .
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Similarly,

〈CXYϕ, E[k(·, X)|Y = y0]〉HX = 〈E[k(X, X̃)|Y = y0, Ỹ = ∗], CYYϕ〉HY

= 〈(I ⊗ CYY )Θ, k(·, y0) ⊗ ϕ〉HY ⊗HY .

It follows form these equalities with ϕ = (CYY + εnI)−1kY (·, y0) that

∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥2
HX

= 〈{
(CYY + εnI)−1CYY ⊗ (CYY + εnI)−1CYY − I ⊗ (CYY + εnI)−1CYY

− (CYY + εnI)−1CYY ⊗ I + I ⊗ I
}
Θ, kY (·, y0) ⊗ kY (∗, y0)

〉
HY ⊗HY

.

From the assumption Θ ∈ R(CYY ⊗ CYY ), there is Ψ ∈ HY ⊗ HY such that Θ =
(CYY ⊗ CYY )Ψ . Let {φi } be the eigenvectors ofCYY with eigenvalues λ1 ≥ λ2 ≥ · · · 0.
Since the eigenvectors and eigenvalues of CYY ⊗ CYY are given by {φi ⊗ φ j }i j and
λiλ j , respectively, with the fact (CYY + εnI)−1C2

YYφi = (λ2
i /(1 + λi ))φi and Parse-

val’s theorem we have

∥
∥
{
(CYY + εnI)−1CYY ⊗ (CYY + εnI)−1CYY − I ⊗ (CYY + εnI)−1CYY

− (CYY + εnI)−1CYY ⊗ I + I ⊗ I
}
Θ

∥
∥2
HY ⊗HY

=
∑

i, j

{ λ2
i

λi + εn

λ2
j

λ j + εn
− λ2

i λ j

λi + εn
− λiλ

2
j

λ j + εn
+ λiλ j

}2〈φi ⊗ φ j , Ψ 〉2HX ⊗HX

= ε4n

∑

i, j

{ λiλ j

(λi + εn)(λ j + εn)

}2〈φi ⊗ φ j , Ψ 〉2HX ⊗HX
≤ ε4n‖Ψ ‖2HX ⊗HX

,

which shows

∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

= O(εn). (1.22)

By balancing Eqs. (1.21) and (1.22), the assertion is obtained with εn = n−b/(4b+1).
��
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Chapter 2
How to Utilize Sensor Network Data
to Efficiently Perform Model Calibration
and Spatial Field Reconstruction

Gareth W. Peters, Ido Nevat and Tomoko Matsui

Abstract This chapter provides a tutorial overview of some modern applications
of the statistical modeling that can be developed based upon spatial wireless sen-
sor network data. We then develop a range of new results relating to two important
problems that arise in spatial field reconstructions from wireless sensor networks.
The first new result allows one to accurately and efficiently obtain a spatial field
reconstruction which is optimal in the sense that it is the Spatial Best Linear Unbi-
ased Estimator for the field reconstruction. This estimator is obtained under three
different system model configurations that represent different types of heteroge-
neous and homogeneous wireless sensor networks. The second novelty presented in
this chapter relates to development of a framework that allows one to incorporate
multiple sensed modalities from related spatial processes into the spatial field recon-
struction. This is of practical significance for instance, if there are d spatial physical
processes that are all being monitored by a wireless sensor network and it is believed
that there is a relationship between the variability in the target spatial process to be
reconstructed and the other spatial processes being monitored. In such settings it
should be beneficial to incorporate these other spatial modalities into the estimation
and spatial reconstruction of the target process. In this chapter we develop a spatial
covariance regression framework to provide such estimation functionality. In addi-
tion, we develop a highly efficient estimation procedure for the model parameters
via an Expectation Maximization algorithm. Results of the estimation and spatial
field reconstructions are provided for two different real-world applications related
to modeling the spatial relationships between coastal wind speeds and ocean height
bathymetry measurements based on sensor network observations.
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2.1 Introduction to Wireless Sensor Networks

Wireless sensor networks (WSN) are composed of a large numbers of low-cost, low-
power, densely distributed, and possibly heterogeneous sensors. WSN increasingly
attract considerable research attention due to the large number of applications, such
as environmental monitoring [36], weather forecasts [14, 15, 20, 35, 36], surveil-
lance [39], health care [22], structural safety and building monitoring [9], and home
automation [3, 15]. We consider WSN which consist of a set of spatially distributed
low-cost sensors that have limited resources, such as energy and communication
bandwidth. These sensors monitor a spatial physical phenomenon containing some
desired attributes (e.g., pressure, temperature, concentrations of substance, sound
intensity, radiation levels, pollution concentrations, etc.) and regularly communicate
their observations to a Fusion Center (FC) in a wireless manner (for example, as in
[4, 5, 12, 24, 38, 42]). The FC collects these observations and fuses them in order
to reconstruct the signal of interest, based on which effective actions are made [3].

The majority of recent research on WSN consider problems related to addressing
estimation of a single point source, such as source localization [23, 31, 32, 46,
47], or source detection (i.e., hypothesis testing) [11, 19, 26] class of problems.
In [23, 31, 32, 46], location estimation algorithms of a scalar point source were
developed, and in [47] the Posterior Cramér-Rao lower bound (PCRLB) for single
target tracking in WSN with quantization was approximated via particle filters. In
[11, 19], decision fusion algorithms for a single source detection were developed,
and in [26] a vector-valued quantity of a single source was estimated in WSN with
censoring and quantization.

In this chapter we explain how one can utilize the entire set of sensor data to not just
obtain estimation of a given point source localization but instead to reconstruct the
entire spatial field under a statistical model. Hence, we move beyond the estimation
of a single location parameter by developing models to reconstruct the entire spatial
random field which exhibits spatial dependency structure that we capture via either
a homogeneous or nonhomogeneous spatial covariance function, depending on the
statistical properties of the observed spatial field.

In general the following two fundamental problems naturally arise within this
context, and they are the general focus of this chapter:

1. Spatial field model calibration and selection: the task is to determine the best-
fitting statistical model for the characterization of the spatial process and to per-
form the model parameter estimation and then model selection.

2. Spatial field reconstruction: the task is to accurately estimate and predict the
intensity of a spatial random field, not only at the locations of the sensors, but at
a variety of other out-of-sample locations.

We consider in this chapter to model the physical phenomenon being monitored
by the WSN according to a Gaussian random field (GRF) with a spatial correlation
structure [4, 16, 28, 42]. More generally, examples of GRFs include wireless chan-
nels [2], speech processing [33], natural phenomena (temperature, rainfall intensity,
etc.) [14, 20], and recently in models developed in [27, 29, 30, 34].
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The simplest form of Gaussian process model would typically assume that the
spatial field observed is only corrupted by additive Gaussian noise. For example, in
[16] a linear regression algorithm for GRF reconstruction in mobile wireless sen-
sor networks was presented, but relied on the assumption of only Additive White
Gaussian Noise (AWGN); in [45] an algorithm was developed to learn the parame-
ters of nonstationary spatiotemporal GRFs again assuming AWGN; and in [21] an
algorithm for choosing sensor locations in GRF assuming AWGN was developed.

In practical WSN deployments, two deviations from these simplified modeling
assumptions arise and can be important in practice to consider: these include the
presence of heterogeneous sensor types, i.e., sensors may have different degrees of
accuracy throughout the field of spatial monitoring; and secondly quite often the
sensors may employ some form of energy conservation such as quantization of ana-
log measurements to digital for efficient and low-power wireless transmission to the
FC. To further elaborate these points, one may for instance consider the scenario in
which high-quality sensors may be deployed by government agencies (e.g., weather
stations). These are sparsely deployed due to their high costs, limited space con-
straints, high power consumption, etc. Then in order to improve the coverage of the
WSN, low-quality cheap sensors perhaps employing quantization may be deployed
to augment the higher quality analog sensor network [36]. For instance, battery
operated low-cost sensors can be deployed and use simple wireless transmission
techniques for data aggregation to the FC [43]. The low-quality sensors considered
in this chapter transmit a single bit for every analog observation they obtain, making
them very energy efficient. The FC then receives a vector of observations which are
mixed continuous (high quality) and discrete (low-quality 1-bit values). This makes
the data fusion a very complex inference problem.

Hence, the consequence of this type of practical framework is that the observations
are heterogeneous and generally non-Gaussian distributed as the quantization proce-
dure introduces a nonlinear transformation of the observations. The sensors transmit
their quantized measurements to a FC over wireless channels, which introduce fur-
ther distortion, due to bandwidth and power constraints. Such practical WSN were
considered in [26, 31, 32, 44]. However, these works only considered the estimation
of a point source and not of the entire spatial random field, the recent works of [27,
29, 30, 34] extend these frameworks to the entire field reconstruction problem, it is
these frameworks that are summarized in this chapter. The intention of the chapter
is to highlight and survey recent results that may be obtained for such modeling
frameworks.

Notation: random variables are denoted by upper case letters and their realiza-
tions by lower case letters. In addition, bold will be used to denote a vector or matrix
quantity, and lower subscripts refer to the element of a vector or matrix. We denote
N

(
x;μ, σ 2

) = φ
(
x;μ, σ 2

)
as the probability density function (PDF) of a random

normal (Gaussian) variable with mean μ and variance σ 2. Its cumulative distrib-
ution function (CDF) is denoted by Φ

(
λ,μ, σ 2

) = ∫ λ

−∞ φ
(
x;μ, σ 2

)
dx . We also

define δ (a, b, c, d) := φ (a; c, d) − φ (b; c, d) and Δ(a, b, c, d) := Φ (a; c, d) −
Φ (b; c, d). We will utilize throughout the chapter the following notations:
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• xN is the physical location (in terms of [x, y] coordinates) of the N sensors
deployed in the field, comprised of NA analog and ND digital or quantised sensors
such that N = NA + ND .

• YN = {Y1, . . . , YN } ∈ R
N×1 is the collection of observations from all sensors

(both analog and binary) at the fusion center.
• YA ⊆ YN is the collection of observations from all NA analog sensors at the

fusion center which are located at points xi ∈ X A such that Card(X A) = NA.
• YD ⊆ YN is the collection of observations from all ND lower quality quantized

or digital sensors at the fusion center which are located at points xi ∈ X D such
that Card(X D) = ND .

• fN = { f1, . . . , fN } ∈ R
N×1 is the realization of the random spatial field being

monitored f (·) at the sensors located at xN .
• fA ⊆ fN is the realization of the random spatial field being monitored f (·) at the

analog sensors, located at xA ⊆ xN .
• fD ⊆ fN is the realization of the random spatial field being monitored f (·) at the

digital sensors, located at xD ⊆ xN .
• xN \n := [

x1, . . . , xn−1, xn+1, . . . , xN
]
.

Furthermore, we generically denote a location in space x∗ for which the lower script
∗ indicates that a sensor is not located at this point to make a measurement but for
which one wishes to reconstruct the spatial process f (x∗) = f∗.

2.2 Introduction to Spatial Gaussian Random Fields

We consider a generic system model where wireless sensors are deployed in the
field. The sensors monitor a spatial physical phenomenon which is observed with
measurement error, quantization error, and incomplete sampling of the spatial field.
These quantized measurements are transmitted over imperfect wireless channels to
the fusion center (FC) to obtain an estimate of the spatial phenomenon at any point of
interest in space. We first provide a formal definition of the spatial random Gaussian
field followed by detailed WSN assumptions.

We assume that the observed phenomenon can be adequately modeled by a spa-
tially dependent continuous process with a spatial correlation structure. The degree
of the spatial correlation in the process increases with the decrease of the separa-
tion between two observing locations and can be accurately modeled as a Gaussian
random field.1 A Gaussian process (GP) defines a distribution over a space of func-
tions and it is completely specified by the equivalent of sufficient statistics for such
a process, and is formally defined as follows:

Definition 2.1 (Gaussian process [1, 37]): Let X ⊂ R
D be some bounded domain

of a d-dimensional real-valued vector space. Denote by f (x) : X �→ R a stochas-
tic process parametrized by x ∈ X . Then, the random function f (x) is a Gaussian

1We use Gaussian Process and Gaussian random field interchangeably.
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process if all its finite-dimensional distributions are Gaussian, where for any m ∈ N,
the random variables ( f (x1) , . . . , f (xm)) are normally distributed.

A GP in this chapter is formally defined by the following class of random func-
tions:

F := { f (·) : X �→ R s.t. f (·) ∼ GP (μ (·;Θ) , C (·, ·;Ω)) , with

μ (x;Θ) := E [ f (x)] : X �→ R,

C (
xi , x j ;Ω

) := E
[
( f (xi ) − μ (xi ;Θ))

(
f
(
x j
) − μ

(
x j ;Θ

))] : X × X �→ R
}
,

where at each point the mean of the function is μ(·;Θ) : X �→ R, parameterised by
Θ , and the spatial dependence between any two points is given by the covariance
function (Mercer kernel) C (·, ·;Ω) : X × X �→ R, parameterised by Ω , see detailed
discussion in [37].

It will be useful to make the following notational definitions:

k (x∗, xN ) := E [ f (x∗) f (xN )] ∈ R
1×N

K (xN , xN ) :=
⎡

⎢
⎣

C (x1, x1) · · · C (x1, xn)
...

. . .
...

C (xn, x1) · · · C (xn, xn)

⎤

⎥
⎦ ∈ S+ (

R
n
)
,

withS+ (Rn) is the manifold of symmetric positive definite matrices. To proceed with
an understanding of this class of statistical model we need to consider the choice of
the kernel functions available as these will have important implications for the ability
of the GP model to capture the variability of the observed process over space.

2.2.1 Model Choices for Spatial Covariance Functions

In this section we discuss a few parametric family of kernels which characterize
the covariance function in the Guassian process. A kernel, also called a covariance
function, a kernel function, or a covariance kernel, is a positive definite function
of two input vectors, for instance locations in space xi ∈ R

2 and x j ∈ R
2. There

are many possible choices of covariance function that one may consider, sometimes
the choice is based upon a known physical structure for the spatial processing being
monitored, and other times the choice of kernel is obtained based on a statistical model
selection procedure. In this section we briefly note some common choices considered
in practice and the resulting properties of their implied covariance structure.

In many settings, it may be suitable to make a simplifying assumption such as
assuming a spatially isotropic covariance structure in which the spatial covariance
kernel may be modeled, for instance via the popular radial basis or the squared
exponential function kernel given by
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Cov
(

f (x), f (x′)
) = CΩ(x, x′) = σ 2 exp

(

−||x − x′||22
2l2

)

, (2.1)

for parameter vector Ω = (σ 2, l), with σ the magnitude of the covariance and l
defining the characteristic length scale.

The second more flexible family of isotropic covariance function is recommended
and used in a variety of application domains, see discussion in [25, 37], the Matern
family of Mercer kernels which is characterized by covariance functions given by

Cov
(

f (x), f (x′)
) = CΩ (x, x′) = 21−ν

Γ (ν)

(√
2ν||x − x′||2

l

)ν

Kν

(√
2ν||x − x′||2

l

)

,

(2.2)
for Ω = (ν, l) with ν > 0, l > 0 and the modified Bessel function given by

Kν(x) =
∫ ∞

0
exp (−x cosh t) cosh (νt) dt. (2.3)

Other possible kernel choices widely used in practice include cases in which there
is a periodic structure such as characterized by the kernel,

Cov
(

f (x), f (x′)
) = CΩ(x, x′) = σ 2 exp

(

− 2

l2
sin2

(

π
x − x′

p

))

, (2.4)

where Ω = (σ, l, p).
Though these kernels presented above are widely used, it has been argued in [37,

40] that in many problems such restrictive isotropic and smoothness assumptions may
not be appropriate for modeling realistic processes, in which case one may resort
to an alternative class of covariance kernel which is less restrictive in terms of their
spatial symmetries. For instance, one may consider the class of quadrant symmetric
kernels that make less restrictive assumptions regarding the isotropy and involves
selecting a kernel choice that satisfies the ‘even’ condition for each component given
by

C(x1, . . . , xk, . . . , xn) = C(x1, . . . ,−xk, . . . , xn). (2.5)

where, quadrant symmetry implies homogeneity in the weak sense, see discussions
in [41].

Another class of kernels one may consider is given by the anisotropic family of dot
product “regression” kernels in which one considers the basic regression structure
σ 2

0 + xt x and generalizes it with a covariance matrix and positive powers to obtain
for strictly positive σ > 0 an inhomogeneous family. Typically, one considers one
of three kernels in this family for the spatial covariance given by,

Linear Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ1x′) ,
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Quadratic Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ2x′)2
, (2.6)

Cubic Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ3x′)3
,

with Ω = (σ,Σi , pi ). The linear covariance kernel can also be utilized under an
alternative parameterization, it will prove to be beneficial in the context of the esti-
mation developed in the following sections. Under this choice, one assumes that the
spatial variability in the process f (·) can be explained by a set of covariates, denoted
generically by w = [w1, w2, . . . , wN A ], where at each of a set of N A sensors, a set of
covariates wi ∈ R

(q×1) are observed and provide the following explanatory structure
for the spatial processes correlations, given by

Cov
[

f (xi ) , f
(
x j

) |w] = CΩ

(
xi , x j

) = (
σ 2 + bT

i wwT b j
)
,

where the parameters of association of the spatial field for each local point are defined
by vectors bi ∈ R

(q×1) for i ∈ {
1, . . . , N A

}
.

Having formally specified the semi-parametric class of Gaussian process models,
we proceed with presenting the system model.

2.3 Wireless Sensor Network System Model

We now present the WSN system with practical quantization and imperfect wireless
channels:

1. Consider a random spatial phenomenon to be monitored over a 2-dimensional
space X ∈ R

2. The mean response of the physical process is a smooth continu-
ous spatial function f (·) : X �→ R, and is modeled as a Gaussian Process (GP)
according to

f (·) ∼ GP (μ (·;Θ) , C (·, ·;Ω)) .

2. Let N be the number of sensors that are deployed over a 2-D region X ⊆ R
2,

with xn ∈ X , n = {1, . . . , N }, the physical location of the nth sensor, assumed
known by the FC. The number of analog (high quality) and digital (lower quality)
senors is NA and ND, respectively, so that N = NA + ND.

3. Sensors measurement model: each sensor collects a noisy observation of the
spatial phenomenon f (·). At the nth sensor, the observation is expressed as:

Z (xn) = f (xn) + V s
n , n = {1, . . . , N }

where V s
n are i.i.d. Gaussian noise terms, i.e., V s

n ∼ N
(
0, σ 2

S

)
.

4. Analog (high quality) sensors processing and communication model: each of
the analog high-quality NA sensors transmits its noisy observation to the FC over
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AWGN channels, as follows:

Y A
n = Z (xn) + V A

n , n = {1, . . . , NA} ,

where V A
n is i.i.d. Gaussian noise V A

n ∼ N
(
0, σ 2

A

)
.

5. Digital quantized (lower quality) sensors processing: each of the ND digital
sensors first performs a thresholding-based decision based on its noisy observa-
tions. This step is summarized as follows for two common settings: first for the
case in which an L-bit quantizer is assumed to operate at the sensor; second for
the case in which a simple binary thresholding decision is performed.

Setting 1—Low-Quality Power/Bandwidth Constrained Sensors:
the quantizer explicitly maps its input Zn = Z (xn) to the output Bn through a
mapping or encoder Bn : R �→ {0, . . . , L − 1}, as follows:

Bn = Q [Zn] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, λ0 ≤ Zn < λ1

1, λ1 ≤ Zn < λ2

...
...

L − 2, λL−2 ≤Zn < λL−1

L − 1, λL−1 ≤Zn < λL ,

where λ0 = −∞ and λL = ∞.

Setting 2—Basic Thresholding:
the sensor simply thresholds via a binary decision rule (a special case of the L = 1
quantizer), with the binary decision rule given by:

Bn =
{

1, Z (xn) > λ

0, Z (xn) ≤ λ.
(2.7)

where λ is a predefined threshold. We denote the thresholding operation by Q [·].
6. Digital quantized (lower quality) sensors communication model: each of the

ND digital sensors, having first performed the quantization or thresholding-based
decision on its noisy observations, then transmits the L-bit decision over imper-
fect wireless channels [11, 19, 26]. The decision Bn = B (xn) is transmitted to
the FC over imperfect binary wireless channels, as in [32]. Under this model,
the statistic Bn is transmitted to the FC over imperfect wireless channels for
which the conditional probability mass function (PMF) of the quantized/encoded
observation from the nth sensor can be expressed, for all m ∈ {0, . . . , L − 1}, as:

P

(
Yn = m

∣
∣
∣ f (xn)

)
=

L−1∑

l=0

P

(
Yn = m

∣
∣
∣Bn = l

)
P

(
Bn = l

∣
∣
∣ f (xn)

)
,
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where P

(
Yn = m

∣
∣
∣Bn = l

)
represents the channels statistics (e.g., probability of

making an error).
7. Additional modalities sensed by high-quality analog sensors: it is assumed that

for the NA analog sensors they are capable of making observations of additional
spatial covariates, related to the physical process being monitored. At the nth
analog sensor location the vector of additional spatial covariates is denoted W̃n ∈
R

(q×1). The analog sensor then transmits this vector of additional covariates to
the FC over AWGN channels, as follows:

Wn = W̃n + VC
n , n = {1, . . . , NA} ,

where VC
n is i.i.d Gaussian noise V C

n ∼ N (0,Σ). In the remainder of this
chapter we consider to stack all the NA sensor covariates into a matrix W =[
W1, . . . , WNA

]
for which we denote the realization by the matrix w ∈ R

(q×NA).

2.3.1 Homogeneous and Heterogeneous WSNs

Hence, having specified this system model, we now consider two classes of WSN,
the first will be termed the “homogeneous sensor networks” in which we assume
each sensor performs processing of the sensed observed spatial phenomenon via the
L-bit quantization before transmission to the FC for spatial field reconstruction. We
note that in the ideal case L → ∞ one would obtain from such a network the optimal
estimation, in the sense of information content in the reconstruction of the spatial
field. The second class of WSN we consider is the “heterogeneous sensor networks”
in which a subset of sensors have capability, wireless transmission bandwidth and
battery power, to transmit unquantized observations to the FC, whilst the remainder
of cheaper sensors are bandwidth constrained, battery constrained, or inaccurate
enough to only transmit L-bit quantized observations to the FC. In practice these
lower quality sensors typically may even be simple binary quantizations of the analog
sensed signal, in such cases one has L = 1 binary thresholding of the observed spatial
field.

It is also not unreasonable to assume that the higher quality sensors which are not
battery or bandwidth constrained may have additional capabilities to also observe or
sense other spatial attributes in the monitoring environment. For instance, one may be
interested in monitoring wind speed as the primary target spatial process, however,
these higher quality sensors may also monitor other potentially related spatial physi-
cal attributes such as barometric pressure, temperature, humidity, and bathymetry. In
general these other processes being monitored will be termed alternative modalities,
and these modalities can often be very informative of the spatial structure and dynam-
ics of the target physical process that one wishes to reconstruct the spatial field for
based on the sensor observations. For this reason, we demonstrate next how to incor-
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porate such other sensed modality information into the covariance structure of the
target spatial process as part of a specialized form of spatial covariance regression.

In the case of the heterogeneous WSN model, we assumed that one may wish to
incorporate alternative sensed modalities, i.e., exogenous spatial covariates which
are observed jointly at the analog (high quality) sensors. This can be achieved in
two standard ways in the regression model, through the trend (mean of the GP)
or through the volatility in the sensed spatial process model (covariance function
of the GP). In this manuscript we focus on incorporation of the spatial covariates
into explaining helping to explain the spatial variability of the target spatial process
with respect to both spatial structure as well as variability in these other sensed
modalities. This creates a powerful class of models that has both spatial features and
explanatory power derived from incorporation of related local spatial processes that
should improve the accuracy of spatial reconstructions.

In this case one may consider to develop a spatial covariance kernel comprised of
the following structure for any two locations xi and x j :

C̃ (
xi , x j

) = E
[

f (xi ) f
(
x j
)]

= CΩ(xi , x j ) + (
ζ 2

i + bT
i wwT bi

)
I
[
xi ∈ X A, x j /∈ X A

]

+ (
ζ 2

j + bT
j wwT b j

)
I
[
xi /∈ X A, x j ∈ X A

]

+ (
ζ 2

i, j + bT
i j wwT bi j

)
I
[
xi ∈ X A, x j ∈ X A

]

(2.8)

where we denote the set of locations of the analog sensors in the WSN by the
subset X A ⊆ X . In this structure the first functional form CΩ(xi , x j ) represents the
parameterization, via a kernel, for the spatial dependence of the target spatial field.
The remaining three terms correspond to incorporated information in the spatial
covariance regression structures arising from realizations of the additional modalities
characterized by vector w which are only available at the analog sensor locations.
This is quite a generic structure since many possible choices may be made for what
would go into w.

The validity of construction of the spatial kernel in this manner utilizes the fact
that in general the linear combination of two kernels given by

k12
(
xi , x j

) = c1k1
(
xi , x j

) + c2k2
(
xi , x j

)
(2.9)

is a valid Mercer kernel and will construct a covariance matrix which will be sym-
metric and positive definite so long as c1, c2 > 0 and kernels k1 and k2 are Mercer
kernels.

The construction of the covariance kernel in this manner admits two different
types of interpretation of the resulting spatial model. The first is based on a linear
combination of two GPs, the second is based on a hybrid model which involves a
linear combination of a GP and a Gaussian graphical model (GMM) of [18]. In the
remainder of this chapter we adopt the first approach.
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When we interpret the spatial process model as a linear combination of two
Gaussian processes, then this would be like thinking that theoretically the sensed
additional modalities being utilized as covariates, which can be observed over the
entire spatial domain and that they have a smooth functional relationship spatially.
In this case the resulting GP model would be:

f (·) = h(·) + g(·) ∼ GP (
μ (·; θh) + μ

(·; θ g
)
, Ch (·, ·) + Cg (·, ·)) . (2.10)

Here, we associate Ch (·, ·) to CΩ(·, ·) and we interpret the Gaussian process h(·)
as the baseline spatial process model and we associate Cg (·, ·) with the additional
spatial covariate terms from the additionally sensed modalities giving the spatial
covariance function for the secondary, independent spatial Gaussian process g (·)
given by manipulating (2.8) as follows:

Cg (·, ·) := C̃ (
xi , x j

) − CΩ(xi , x j ) (2.11)

We note that if it is not suitable to make a smooth spatial relationship (potentially
nonstationary in space) for the additional covariates variability in space, then in this
case it would be more beneficial to think of the resulting model under the second
interpretation of a hybrid GP and GGM model.

2.4 Model Calibration for WSN Spatial Models

For the different classes of WSN system models developed above we will require
the ability to evaluate the spatial cross-correlation between observations of the target
spatial process. This will be useful for both calibration purposes as well as spatial
field estimation purposes.

Hence, we first consider the covariance matrix of the spatially distributed obser-
vations, given by EYN

[
YN YT

N
]
. The expression for the individual covariance terms

in the covariance matrix need to be considered under one of three possible cases:

• Case 1 with xi ∈ X A and x j ∈ X A, i.e., both sensors are high-quality analog
sensors;

• Case 2 with xi ∈ X A and x j ∈ X D , i.e., one sensor is analog and one sensor is a
cheaper quantized sensor; and

• Case 3 in which xi ∈ X D and x j ∈ X D . The resulting covariance matrix results
for the (i, j)th components are specified in Theorem 2.1.

Theorem 2.1 (Covariance between Spatial Observations) The (i, j)th term of EYN[
YN YT

N
]

is given by one of the following three cases where we define throughout
the notation
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c2 := C (
xi , x j

)

C (
x j , x j

) ,

c1 := μ (xi ) − c2μ
(
x j
)
,

G1 (a, b; m, s) := {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) := {φ (a; m, s) − φ (b; m, s)} .

Case 1: xi ∈ XA and x j ∈ X A

In this case one has two high-quality analog sensors resulting in the cross-correlation
given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]] = E fi , f j

[
fi f j

]

= Cg
(
xi , x j

) + Ch
(
xi , x j

)
.

Case 2: xi ∈ X A and x j ∈ X D

In this case one has a high-quality analog sensor and a lower quality L-bit quantized
sensor resulting in the cross-correlation given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]]

= E f j

[
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk; f j , σ

2
A

)]
]

= c1

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

+ c2

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
,

(2.12)
where we obtain for the first integral the closed form expression

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

⎡

⎢
⎢
⎢
⎢
⎣

Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

− Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

.
(2.13)

and the second integral the closed form expression

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=

⎛

⎜
⎜
⎜
⎜
⎝

σ 2
f j

+ μ f j

σ 2
A

√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎣

Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

− Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

.
(2.14)
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Case 3: xi ∈ X D and x j ∈ X D

In this case one has two lower quality L-bit quantized sensors resulting in the cross-
correlation given by

EYi ,Y j

[
Yi Y j

] =
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[
G1

(
λm+1, λm; fi , σ

2
A

)
G1

(
λn+1, λn; f j , σ

2
A

)]
.

(2.15)

Note: the approximation of the expectations in case 3 will be provided in detail in
Sect. 2.5.1.2 where an efficient specialized form of quadrature rule will be developed
based on the discrete cosine transform, known as the Clenshaw–Curtis quadrature
rule.

2.4.1 Proof of Theorem 2.1

Using the law of total expectation, the (i, j)th term of EYN
[
YN YT

N
]

is expressed
as EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j | fi , f j

]]
. Deriving this quantity for Case 1 is

trivial, so we focus on Case 2 and Case 3 below.

Case 2: xi ∈ X A and x j ∈ X D

In this case one has a high-quality analog sensor and a lower quality L-bit quantized
sensor resulting in the cross-correlation given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]]

= E fi , f j

⎡

⎣
∫ L−1∑

l=0

yi lPr
(
Y j = l| f j

)
fYi (yi | fi ) dyi

⎤

⎦

= E fi , f j

⎡

⎣
∫

yi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
Pr

(
B j = k| f j

)
fYi (yi | fi ) dyi

⎤

⎦

= E fi , f j

⎡

⎣ fi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦

= E f j

⎡

⎣
∫

fi f fi | f j ( fi )d fi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦

= E f j

⎡

⎣
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦
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We may now work out these integrals for case 2 given generically by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]]

= E f j

[
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk; f j , σ

2
A

)]
]

= c1

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

+ c2

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
,

(2.16)

and we need to evaluate the two expectations given by E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

and E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
. We start by considering the first integral

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= E f j

[
Φ

(
λk+1; f j , σ

2
A

)
− Φ

(
λk; f j , σ

2
A

)]

= E f j

[
Φ

(
f j ; λk+1, σ 2

A

)
− Φ

(
f j ; λk , σ 2

A

)]

= E f j

[

Φ

(
f j − λk+1

σ 2
A

)

− Φ

(
f j − λk

σ 2
A

)]

=
∫ ∞
−∞

⎧
⎨

⎩
φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk+1

σ 2
A

)

− φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk

σ 2
A

)⎫
⎬

⎭
d f j .

(2.17)

Now denote x = f j −μ f j

σ f j
with dx = 1

σ f j
d f j and

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞
−∞

⎧
⎨

⎩
φ (x) Φ

⎛

⎝
σ 2

f j
x + μ f j − λk+1

σ 2
A

⎞

⎠ − φ (x)Φ

⎛

⎝
σ 2

f j
x + μ f j − λk

σ 2
A

⎞

⎠

⎫
⎬

⎭
dx .

(2.18)
Now we can use the identity given by

∫ ∞

−∞
φ(x)Φ(a + bx)dx = Φ

(
a√

1 + b2

)

, (2.19)

to obtain for the first expectation
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E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞
−∞

⎧
⎨

⎩
φ (x) Φ

(
σ f j x + μ f j − λk+1

σ 2
A

)

− φ (x) Φ

⎛

⎝
σ 2

f j
x + μ f j − λk

σ 2
A

⎞

⎠

⎫
⎬

⎭
dx

= 1

σ 2
f j

⎡

⎢
⎢
⎢
⎢
⎣

Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk+1
√

1 +
σ 2

f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

− Φ

⎛

⎜
⎜
⎜
⎜
⎝

μ f j − λk
√

1 +
σ 2

f j

σ 2
A

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

.

(2.20)

Now we consider the second integral E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
which can be

rewritten as

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=
∫ ∞
−∞

f j

⎧
⎨

⎩
φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk+1

σ 2
A

)

− φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk

σ 2
A

)⎫
⎬

⎭
d f j .

(2.21)

Now denote x = f j −μ f j

σ f j
with dx = 1

σ f j
d f j and

E f j

[
f j G1

(
λk+1, λk ; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞

−∞

(
σ 2

f j
x + μ f j

)
{

φ (x)Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x)Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx

=
∫ ∞

−∞
x

{

φ (x)Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x)Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx

+ μ f j

σ 2
f j

∫ ∞

−∞

{

φ (x) Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x) Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx .

(2.22)
Now we utilize the identity in Eq. 2.19 and the following additional identity

∫ ∞

−∞
xφ(x)Φ(a + bx)dx = b√

1 + b2
φ

(
a√

1 + b2

)

, (2.23)

to obtain the result

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=

⎛

⎜
⎜
⎝

σ 2
f j

+ μ f j

σ 2
A

√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎠

⎡

⎢
⎢
⎣Φ

⎛

⎜
⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎠ − Φ

⎛

⎜
⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ .

(2.24)
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Case 3: xi ∈ X D and x j ∈ X D

The conditional expectation, EYi ,Y j

[
Yi Y j | fi , f j

]
, can be expressed as:

EYi ,Y j

[
Yi Y j | fi , f j

] =
L−1∑

k=0

L−1∑

l=0

klP
(
Yi = k, Y j = l| fi , f j

)

=
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

P (Yi = k|Bi = m) G1

(
λm+1, λm; fi , σ

2
A

)

×
L−1∑

n=0

P
(
Y j = l|B j = n

)
G1

(
λm+1, λm; f j , σ

2
A

)
.

Next we derive the unconditional expectation of E fi , f j

[
Yi Y j | fi , f j

]
:

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

(
P (Yi = k|Bi = m) G1

(
λm+1, λm; fi , σ

2
A

))

×
L−1∑

n=0

(
P
(
Y j = l|B j = n

)
G1

(
λn+1, λn; f j , σ

2
A

))
]

=
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[
G1

(
λm+1, λm; fi , σ

2
A

)
G1

(
λn+1, λn; f j , σ

2
A

)]
.

�

Having derived the spatial cross-correlation between the observations, our next
goal is to consider model calibrations. In the context of the spatial WSN models
developed this will correspond to addressing the issue of parameter estimation, in
particular hyperparameter estimation of the parameters in the covariance kernel func-
tions given the observed data. To achieve this we will consider calibration based on
the high-quality sensor information, given in Case 1.

To achieve the model calibration for the kernel parameters in an efficient manner
we will develop a special representation of the problem in the form of a regression
model through the introduction of an additional auxiliary variable for each observa-
tion, i.e., per sensor location. In doing this it will allow us to avoid directly trying to
perform maximum likelihood estimation in the models, which can be very difficult,
especially when it comes to the matrices of parameters given by each bi for each
analog sensor location. Instead, through the use of auxiliary variables we may write a
random effects regression model, which preserves the conditional covariance struc-
ture developed above, whilst admitting an efficient estimation procedure comprised
of simple expectation and maximization stages of the EM algorithm. In the models
considered we will see that the expectation stage is closed form and analytic and
the maximization stage is simply a least squares problem after a change of parame-
terization. Making estimation both guaranteed to converge to a maxima and highly
computationally efficient.
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2.4.2 Random Effects WSN Spatial Model Reinterpretation

We begin with the scenario in which the majority of the sensor are analog, i.e., the
spatial distribution of such high-quality sensors is distributed in some manner over
the entire field of interest when performing spatial field reconstruction. These high-
quality sensors can be sparse and will still be supplemented by cheaper sensors as
discussed above, however, in this stage we will concentrate on the calibration of the
model based solely on the high-quality analog sensors.

The advantage of this approach is that we will be able to utilize an interesting
result for the estimation of the model parameters which is based on results known for
covariance regressions, see [17]. Consider the observation covariance at the analog
sensors given in this case by

Cov
[
YN |w] = EYN

[
YN YT

N |w
]

= Eh

[
hhT

]
+ Eg

[
g gT |w

]
+ diag

(
σ 2

A, σ 2
A, . . . , σ 2

A

)

=
⎡

⎢
⎣

Ch (x1, x1) · · · Ch (x1, xn)

...
. . .

...

Ch (xn, x1) · · · Ch (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

Cg (x1, x1) · · · Cg (x1, xn)

...
. . .

...

Cg (xn, x1) · · · Cg (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

σ 2
A · · · 0
...

. . .
...

0 · · · σ 2
A

⎤

⎥
⎦

= Kh + BwwT BT + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

(2.25)

We note that under our model formulations, typically we would select ζ 2
i , ζ 2

j and
ζ 2

i, j all to zero, since we already have a baseline covariance function given by the
independent spatial GP h(·).

We may now reinterpret the model covariance as a form of covariance regres-
sion which admits a representation as a random effects model, making it an exten-
sion of the framework proposed in [17]. The random effects representation is
given for m realizations of the spatial process, i.e., y1, . . . , ym with yk = y1:N A,k =
[yk(x1), . . . , yk(xN A)] and μg = μg,1:N A = [

μg(x1), . . . , μg(xN A)
]

is the spatial
mean function of the first baseline spatial GP g(·), for each of the analog sensor
locations xi ∈ X A. This then gives the random effect model given by

Y k = μg + BwkΓk + Uk, (2.26)

where one defines

E [U i ] = 0, E [Γi U i ] = 0, E [Γi ] = 0, Var [Γi ] = 1,

Cov [U i ] = Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

(2.27)
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To see that this random effects formulation of the spatial model indeed produces the
correct spatial covariance structure we consider the following:

E

[(
Y k − μg

) (
Y k − μg

)T
]

= E
[
γ 2

k BwwT BT + γk
(
BwuT

k + ukwT BT
) + uk uT

k

]

= BwwT BT + Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
(2.28)

2.4.3 Random Effects WSN Spatial Model Estimation via EM
Algorithm

We can now perform the estimation of the spatial field using the information from
the high-quality analog sensors to make estimation via an EM algorithm using the
reinterpreted random effects model form from Sect. 2.4.2. To achieve this, we make
the following additional statistical assumptions regarding the random effects rein-
terpretation, in particular we assume that the regression errors are Guassian random
vectors, independent of the Gaussian random variables for the random effect:

uk
iid∼ N (0, A),∀k ∈ {1, . . . , m}

Γk
iid∼ N (0, 1),

(2.29)

with A := Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

The resulting log-likelihood of the random effects model can be rewritten by
subtracting the mean from the observations to obtain the matrix of mean adjusted
residuals, given by E = (

eT
1 , . . . , eT

m

)T
, with residual vectors for the kth spatial map

observation given by ek = [
Y k − μ̂g

]
. This results in the following log-likelihood

for the model parameter matrices A and B, given the observation matrix of residuals
E and covariate matrix W from the other sensed modalities, producing for a constant
c the log-likelihood:

l(A, B; E, W ) = c − 1

2

m∑

k=1

log
∣
∣A + BwkwT

k BT
∣
∣

− 1

2

m∑

k=1

tr
[(

A + BwkwT
k BT

)−1
ek eT

k

]
(2.30)

It is clear that direct maximization of this log-likelihood with respect to the matrices
A and B will be a very challenging non-convex optimization problem. This arises
since the matrix A must be optimized with respect to constraints that ensure that it
remains symmetric and positive definite in order for it to be a well-defined covariance
matrix.
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Therefore, instead of attempting this difficult direct likelihood-based inference, we
will adopt an alternative two-stage expectation maximization (EM) algorithm-based
approach. The EM algorithm developed will be even more efficient and numerically
robust, since both the expectation and maximization stages will be obtainable in
closed form. In addition, we can be sure that such a procedure will find an optimum.

The ability to obtain a closed form expression for the expectation stage of the EM
algorithm arises from the structure of the random effects model specified and the dis-
tributional assumptions made. One can show the following result given in Lemma 2.1
for the conditional distribution of the auxiliary random effects variable, conditional
on the observations and covariates (other sensed modalities at each analog sensor
location). Deriving this conditional distribution is important for the expectation step
of the EM algorithm.

Lemma 2.1 (Conditional Distribution of the Random Effects) The conditional dis-
tribution of the random effects given the data and covariates according to

[
Γk | y1, . . . , ym, w1, . . . , wm, A, B

] ∼ N (mi , vi ) (2.31)

with wi ∈ R
(q×1) and

vi = (
1 + wT

i BT A−1 Bwi
)−1 ∈ R

+,

mi = vi
(

yi − mu
)T

A−1 Bwi ∈ R.

Proof The derivation of this conditional distribution for the random effect follows
trivially from the standard multivariate Gaussian properties since the joint distribution
for the N A auxiliary variables and observations is multivariate Guassian:

p
(
γ1, . . . , γm, y1, . . . , ym

∣
∣w1, . . . , wm, A, B

) = N (m, C) (2.32)

with m = [m1, m2] where m1 is a vector of m zeros and m2 a 1 × m N A vector
given by m2 = [μg, . . . ,μg]; and C = ⊕2

i=1Ci where C1 is a m × m matrix C1 =
diag(1, . . . , 1) and C2 = ⊕m

j=1 A. Then one can use the following properties of a
multivariate normal to obtain the conditional distribution, where if μ and Σ are the
mean and covariance of a Guassian random vector, which is partitioned as follows:

μ =
[
μ1

μ2

]

(2.33)

with sizes q × 1 and (N − q) × 1 and

Σ =
[
Σ11 Σ12

Σ21 Σ22

]

(2.34)

with sizes q × q, q × (N − q), (N − q) × q and (N − q) × (N − q) then, the dis-
tribution of x1 conditional on x2 = a is multivariate normal (x1|x2 = a) ∼ N (μ,Σ)
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where
μ̄ = μ1 + Σ12Σ

−1
22 (a − μ2) (2.35)

and covariance matrix
Σ = Σ11 − Σ12Σ

−1
22 Σ21. (2.36)

This decomposition completes the required proof. �

It will be assumed for now that the mean process is already estimated and given
by μ̂g . In this section we discuss the more challenging aspect of estimation of the
hyperparameters that make up the specifications of the covariance functions for
process g(·) and h(·). This is achieved by the EM algorithm as follows:

We first write the complete data log-likelihood ln p (E |A, B, W, γ1:m) with
respect to the matrix of p × m residuals E and random effects γ1, . . . , γm as fol-
lows:

l(A, B; E, W, γ1:m) = −1

2

(

mp ln(2π) + m ln |A| +
m∑

k=1

(ei − γi Bwi )
T A−1 (ei − γi Bwi ) .

)

(2.37)
Then from the complete data likelihood we consider the expectation step with respect
to the random effect (nuisance parameters) as obtained in Lemma 2.2.

Lemma 2.2 (Integrated Complete Data Likelihood) The following conditional exp-
ectation of the complete data likelihood with respect to the conditional distribution
of the random effects nuisance parameters is obtained:

− 2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= mp ln(2π) + m ln |A| +
m∑

k=1

(ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi )

+
m∑

k=1

ŝi wT
i BT A−1 Bwi ŝi ,

(2.38)

with si = √
vi and

v̂i = (
1 + wT

i B̂T Â−1 B̂wi
)−1

,

m̂i = v̂i
(

yi − mu
)T

Â−1 B̂wi .

Proof Here the previous estimates for the target model parameters, denoted Â, B̂
are conditioned upon in the expectation in the sense that they are used to calculate
the sufficient statistics for the distribution of the random effects γ1:m given by

v̂i = (
1 + wT

i B̂T Â−1 B̂wi
)−1

m̂i = v̂i
(

yi − mu
)T

Â−1 B̂wi .
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One takes the conditional expectations of the complete data likelihood as follows:

− 2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= mp ln(2π) + m ln |A| +
m∑

k=1

Eγ1:m
[
(ei − γi Bwi )

T A−1 (ei − γi Bwi ) | Â, B̂
]

(2.39)
Next observe that γi ’s are i.i.d. hence we can consider the individual expectations

Eγi

[
(ei − γi Bwi )

T A−1 (ei − γi Bwi ) | Â, B̂
]

= Eγi

[
eT

i A−1ei − γ 2
i wT

i BT A−1 Bwi | Â, B̂
]

= Eγi

[
eT

i A−1ei | Â, B̂
] − Eγi

[
γ 2

i wT
i BT A−1 Bwi | Â, B̂

]

= (ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi ) + ŝi wT

i BT A−1 Bwi ŝi .

(2.40)

Then one simply rewrites the expression using this mean and variance expressions
to complete the proof. �

Having obtained a closed form expression for the expectation step, we next need to
obtain the maximization step of the EM algorithm which involves the maximization
of

arg min
A,B

−2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= arg min
A,B

{

mp ln(2π) + m ln |A| +
m∑

k=1

(ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi )

+
m∑

k=1

ŝi wT
i BT A−1 Bwi ŝi

}

.

(2.41)
Finally, one observes that this maximization can be easily implemented through

a least squares solution by rewriting the argument in the form of a single quadratic
with a change of representation given by constructing:

• W̃ as a 2m × q matrix with i th row given by mi wi and whose (n + i)th row is
given by si wi ;

• Ẽ as a 2m × p matrix of residuals given by [ET , 0] with the matrix of 0 the same
dimension as matrix E , i.e., m × p.

This produces the new argument for the optimization as follows:

arg min
A,B

−2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= arg min
A,B

{
mp ln(2π) + m ln |A| + tr

[
(Ẽ − BW̃ )(Ẽ − BW̃ )T A−1

]}
.

(2.42)
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Rewriting the problem in this manner makes it appear directly as a least squares
optimization problem which admits a solution given by:

B̂ = Ẽ T W̃
(
W̃ T W̃

)−1
,

Â = 1

n

(
Ẽ − W̃ B̂

)T (
Ẽ − W̃ B̂

) (2.43)

The EM algorithm proceeds as follows:

• Initialize the parameters making matrices Â and B̂, where A is comprised of kernel
hyperparameters and noise variance terms.

• Calculate the conditional estimators:

mi = E
[
Γi | Â, B̂, ei

]

vi = Var
[
Γi | Â, B̂, ei

] (2.44)

• Construct new matrices W̃ and Ẽ based on the data y1:m and covariates w1:m .
• Evaluate the updated model parameters via the following least squares solutions

for updated Â and B̂ according to

B̂ = Ẽ T W̃
(
W̃ T W̃

)−1

Â = 1

n

(
Ẽ − W̃ B̂

)T (
Ẽ − W̃ B̂

) (2.45)

where matrix Ẽ is the 2m × 1 matrix given by
(
ET , 0 × E T

)T
and W̃ is a 2m × d

matrix with i th row given by mi wi and whose (m + i)th is
√

vi wi .
• Having solved for the matrix Â, one then solves the system of equations given by

⎡

⎢
⎣

Â11 · · · Â1N A

...
. . .

...

ÂN A1 · · · ÂN A N A

⎤

⎥
⎦ =

⎡

⎢
⎣

Ch (x1, x1) · · · Ch (x1, xn)
...

. . .
...

Ch (xn, x1) · · · Ch (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

σ 2
A · · · 0
...

. . .
...

0 · · · σ 2
A

⎤

⎥
⎦ (2.46)

for the variance and hyperparameter terms in the kernels.
• repeat the above procedure until convergence

Having outlined an estimation procedure, the remainder of the chapter focuses on
what can be done for spatial field reconstruction given an estimated model.

2.5 Spatial Field Reconstruction: Analytic Solutions

In this section we address the estimation problem known as spatial field recon-
struction in the case of either a homogeneous WSN sensor model with all sensors
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performing an L-bit quantization, which was recently studied in [29, 30], and then in
the second case based on a heterogeneous WSN framework with a mixture of analog
and binary sensors. In general the target criterion in developing the spatial estimator
of the field reconstruction is achieve the minimum mean squared error (MMSE) in
the estimation. This involved the following distortion metric:

D
(

f̂∗, f∗
) := E

[(
f∗ − f̂∗

)2
]
. (2.47)

Under this framework, one may develop two closed form approximations for the
estimators of the spatial field, in [27, 30] approximate series expansions based on
saddle point and Laplace types were developed for nonlinear estimators which are
optimal in the sense of minimizing the distortion metric in (2.47) [6].

In this chapter we wish to emphasize a computationally very efficient alternative
class of estimators that we denote the spatial best linear unbiased estimators (S-
BLUE) linear Bayes estimators. Such estimators are characterized by the following
formal estimation objective (Objective 1):

Objective 1: spatial field reconstruction via best linear unbiased (S-BLUE) estimate,
given by the solution to the following problem:

f̂∗ := â + B̂YN = arg min
a,B

E
[
( f∗ − (a + BYN ))2

]
, (2.48)

where â ∈ R and B̂ ∈ R
1×N .

The S-BLUE estimators are optimal in the sense that it achieves minimum variance
among all linear estimators and have the desirable properties of being unbiased and
efficient.

Theorem 2.2 (Spatial Best Linear Unbiased Estimator (S-BLUE)) The optimal lin-
ear estimator of the spatial field f̂∗ at location x∗ in the class of all linear estimators
taking the form f̂∗ = a + BYN for some scalar a ∈ R, vector B ∈ R

1×N at a location
x∗ that solves (2.48) is given by

f̂∗ = μ (x∗) + E f∗,YN
[

f∗YT
N
]
E

−1
YN

[
YN YT

N
] (

YN − EYN [YN ]
)
. (2.49)

In addition, one may derive the estimation accuracy of the S-BLUE in closed form
according to the result in Corollary [27, 30].
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Corollary 2.1 The associated MSE of the S-BLUE is given by

σ 2
∗ = C (x∗, x∗) − E f∗,YN

[
f∗YT

N
]
E

−1
YN

[
YN YT

N
]
E f∗,YN [YN f∗] . (2.50)

The following sequence of algorithmic steps are then required to perform estimation
of the S-BLUE, see Algorithm 1.

Algorithm 1 S-BLUE Field reconstruction
Input: YN , xN , x∗, σ 2

A, σ 2, μ (·)
Output: f̂∗
1: Calculate the cross-correlation vector, E f∗,YN

[
f∗YT

N
]
, where its i th element is implemented

according to Lemma 2.3.
2: Calculate the covariance matrix, EYN

[
YN YT

N
]
, where its (i, j)th element is implemented

according to Proposition 2.1 and the Clenshaw–Curtis coefficients in (2.57).
3: Calculate the S-BLUE of the intensity of the spatial field at a location x∗ as follows:

f̂∗ = μ (x∗) + E f∗,YN

[
f∗YT

N
]
E

−1
YN

[
YN YT

N
] (

YN − EYN [YN ]
)
.

The key components of the S-BLUE estimator that must be obtained for any form
of WSN design involve the following components:

• the cross-correlation E f∗,YN
[

f∗YT
N
]
; and

• the covariance EYN
[
YN YT

N
]
, (detailed in Lemma 2.1).

In the following set of results we will derive these quantities and subsequently
the S-BLUE estimators for two classes of WSN: the L-bit homogeneous quan-
tized/digitized WSN; and the heterogeneous L-bit digital/quantized and analog
WSN. We begin with a detailed account of the result for the heterogeneous case.

Note: the covariance matrix for case 1 is derived in Lemma 2.1, however, for case
2 and case 3 we provide in Sect. 2.5.1.2 an accurate and efficient approximation for
the expectations.

2.5.1 S-BLUE Spatial Field Estimator for Heterogeneous
L-bit and Analog WSNs

In this section we consider the development of the S-BLUE class of spatial field
reconstruction estimator to the Heterogeneous WSN setting in which we incorporate
also additional sensed modalities, included as regressors into the spatial covariance
structure through the kernel developed in (2.8) for the analog sensors.
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2.5.1.1 Deriving the Cross-Correlation E f∗,YN
[

f∗YT
N

]

We now derive the cross-correlation between the spatial phenomenon predictive
response, f∗ at x∗, and the observation vector YN . We prove that this quantity can
be obtained exactly in closed form in the following Lemma 2.3.

Lemma 2.3 (Cross-Correlation between Spatial Process and Observations) The i th
element of E f∗,YN

[
f∗YT

N
]

is given by one of two cases.

Case 1 - xi ∈ X D: where one has Cross-Correlation terms given by

E f∗,Yi

[
f∗Yi

]

= c1

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)

+ c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)
{
μ (xi ) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) G2

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)}

.

where c2 := C(x∗,xi )

C(xi ,xi )
, c1 := μ (x∗) − c2μ (xi ) and

G1 (a, b; m, s) = {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) = {φ (a; m, s) − φ (b; m, s)} .

Case 2 - xi ∈ X A: where one has Cross-Correlation terms given by

E f∗,Yi [ f∗Yi ] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]
,

Proof To make the proof we consider the i th term of E f∗,YN
[

f∗YT
N
]

which has its
expectation decomposed via the tower property as follows:

E f∗,Yi [ f∗Yi ] = E fi

[
E f∗,Yi [ f∗Yi | fi ]

]
. (2.51)

We then consider for each of the possible cases, i.e., Case 1 xi ∈ X D and Case 2
xi ∈ X A, the analytic calculation of this cross-correlation. It will be useful to first
make the following definitions used throughout the proof:

c2 := C (x∗, xi )

C (xi , xi )
,

c1 := μ (x∗) − c2μ (xi ) ,

G1 (a, b; m, s) := {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) := {φ (a; m, s) − φ (b; m, s)} .
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Case 1:
The conditional expectation, E f∗,Yi [ f∗Yi | fi ], can be expressed as:

E f∗,Yi [ f∗Yi | fi ] =
∫ ∞

−∞

L−1∑

l=0

f∗lp ( f∗, Yi = l| fi ) d f∗

=
∫ ∞

−∞
f∗φ

(
f∗; c1 + c2 fi , σ

2
fN |YN

) L−1∑

l=0

l
L−1∑

j=0

(P (Yi = l|Bi = j)P (Bi = j | fi )) d f∗

= (c1 + c2 fi )

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

)
,

The expectation with respect to fi of the first term is given by

E fi

⎡

⎣c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

))
⎤

⎦

= c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j)E fi

[
G1

(
λ j+1, λ j ; fi , σ

2
A

)])
(2.52)

= c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
))

.

The expectation of the second term is given by:

E fi

⎡

⎣c2 fi

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

))
⎤

⎦

= c2

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j)E fi

[(
fi Φ

(
λ j+1, fi , σ

2
A

)
− fi Φ

(
λ j , fi , σ

2
A

)))]

= c2

L−1∑

l=0

l
L−1∑

j=0

(

P (Yi = l|Bi = j)

(∫ ∞
−∞

∫ λ j

−∞
fi φ

(
a; fi , σ

2
A

)
φ ( fi ; μ (xi ) ,C (xi , xi )) dad fi

−
∫ ∞
−∞

∫ λ j

−∞
fi φ

(
a; fi , σ

2
A

)
φ ( fi ; μ (xi ) ,C (xi , xi )) dad fi

))

(2.53)

= c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)

×
{
μ (xi )Φ

(
λ j+1, μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) φ
(
λ j+1, μ (xi ) , σ 2

A + C (xi , xi )
)

−
(
μ (xi )Φ

(
λ j , μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) φ
(
λ j , μ (xi ) , σ 2

A + C (xi , xi )
))}

.
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Combining (2.52) and (2.53), we obtain that the i th term of E f∗,YN
[

f∗YT
N
]

is
expressed as:

E f∗,Yi

[
f∗Yi

] = c1

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ;μ (xi ) , σ 2

A + C (xi , xi )
)

+ c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)
{
μ (xi ) G1

(
λ j+1, λ j ;μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) G2

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)}

.

Case 2:
The conditional expectation, E f∗,Yi [ f∗Yi | fi ], can be expressed as:

E f∗,Yi [ f∗Yi | fi ] =
∫ ∞

−∞

∫ ∞

−∞
f∗yi pYi | fi (yi | fi ) p f∗| fi ( f∗| fi ) dyi d f∗

= fi (c1 + c2 fi ) ,

The expectation with respect to fi is then given by

E fi [ fi (c1 + c2 fi )] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]

(2.54)

Hence in Case 2 one obtains that the i th term of E f∗,YN
[

f∗YT
N
]

is expressed as:

E f∗,Yi [ f∗Yi ] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]

�

2.5.1.2 Deriving the Covariance Matrix EYN
[
YN YT

N
]

Estimators

We have already derived the covariance matrix, EYN
[
YN YT

N
]

completely in case
one and case two, what remains is the expectations in case three. Recall, Case 1
involved xi ∈ X A and x j ∈ X A, i.e., both sensors are high-quality analog sensors;
Case 2 with xi ∈ X A and x j ∈ X D , i.e., one sensor is analog and one sensor is a
cheaper quantized sensor; and Case 3 in which xi ∈ X D and x j ∈ X D . These were
given in Case 3 up to an expectation which would need to be approximated. We
briefly explain in this section an efficient manner to perform such approximation
using a form of quadrature.
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Case 3: xi ∈ X D and x j ∈ X D

EYi ,Y j

[
Yi Y j

] =
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[(
Φ

(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)
− Φ

(
λn, f j , σ

2
A

))]
.

This involves an intractable integral which we solve via an efficient numerical pro-
cedure, based on the Clenshaw–Curtis quadrature rule [10]. We begin by solving the
first integral with respect to fi , thus reducing the dimension of the problem:

E fi , f j

[(
Φ

(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)
− Φ

(
λn, f j , σ

2
A

))]

=
∫ ∞

−∞

∫ ∞

−∞
p
(

fi , f j
) (

Φ
(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)

−Φ
(
λn, f j , σ

2
A

))
d fi d f j

=
∫ ∞

−∞

∫ ∞

−∞
p
(

fi | f j
)

p
(

f j
) (

Φ
(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)

−Φ
(
λn, f j , σ

2
A

))
d fi d f j

= E f j

[
Δ

(
λm , λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)]
, (2.55)

where we define c2 := C(x∗,xi )

C(xi ,xi )
, and c1 := μ (x∗) − c2μ (xi ).

This integral with respect to f j does not admit a closed form representation, and
we utilize a numerical procedure to solve it. We now develop an efficient numerical
solution via the Clenshaw–Curtis quadrature [10].

The Clenshaw–Curtis quadrature only works on finite integral domains, while
(2.55) has infinite support. We shall first use a generic coordinate transformation
which will transform the integral in (2.55) from an infinite interval into a finite one,
presented in Lemma 2.4 and then utilize the Clenshaw–Curtis quadrature in Lemma
2.6 and finally calculate the covariance matrix in Proposition 2.1.

Lemma 2.4 (Generic Coordinate Transformation for Integration on Infinite Inter-
vals) Consider the generic coordinate transformation for the integrand and terminals
via the mapping x = t

1−t2 giving the mapped definite integral

∫ +∞

−∞
f (x)dx =

∫ +1

−1
f

(
t

1 − t2

)
1 + t2

(1 − t2)2
dt.

When Lemma 2.4 is applied to (2.55), one obtains

E f j

[
Δ

(
λm, λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)]

=
∫ ∞

−∞
Δ

(
λm, λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)
p
(

f j
)

d f j
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(
f j := t

1−t2

)

=
∫ 1

−1
Δ

(

λm, λm+1, c1 + c2
t

1 − t2
, σ 2

A + σ 2

)

Δ

(

λn, λn+1,
t

1 − t2
, σ 2

A

)

(2.56)

× p

(
t

1 − t2

)
1 + t2

(
1 − t2

)2 dt.

Next, we solve this integral via the Clenshaw–Curtis Quadrature rule.

Lemma 2.5 (Clenshaw–Curtis Quadrature Rule [10]) Consider the closed form
approximation of the integral

∫ π

0
g(cos θ) sin(θ) dθ � a0 +

M/2−1∑

k=1

2a2k

1 − (2k)2
+ aM

1 − M2
.

which involves finding a subset of the coefficients {ak}k≥0 given by a2k , due to aliasing
arguments in [8]. These coefficients are solution to integrals involving periodic func-
tions f (cos θ), then the Fourier series can be computed efficiently and accurately
up to Nyquist frequency k = M, through a (M + 1) equally spaced and equally
weighted points θm = mπ/M for m = 0, . . . , M. At the endpoints of the domain the
weights are given by 1/2 to ensure double-counting is avoided. This is equivalent to
a discrete cosine transform (DCT) approximation given by

ak = 2

M

⎡

⎣ g(1)

2
+ g(−1)

2
(−1)k +

M−1∑

m=1

g(cos[nπ/M]) cos(mkπ/M)

⎤

⎦ , ∀k ∈ {0, . . . , M} . (2.57)

We now apply the Clenshaw–Curtis quadrature rule to our integral in (2.55).

Lemma 2.6 The expectation in (2.55) can be evaluated by applying the Clenshaw–
Curtis quadrature to the transformed integral in (2.56), as follows:

E f j

[
Δ

(
λm , λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn , λn+1, f j , σ

2
A

)]

=
∫ 1

−1
Δ

(

λm , λm+1, c1 + c2
t

1 − t2 , σ 2
A + σ 2

)

Δ

(

λn , λn+1,
t

1 − t2 , σ 2
A

)

p

(
t

1 − t2

)
1 + t2

(
1 − t2

)2

︸ ︷︷ ︸
:=g(t)

dt

� a0 +
M/2−1∑

k=1

2a2k

1 − (2k)2 + aM

1 − M2 ,

with ak defined in (2.57).

Now that we have evaluated the expectation term, we derive the (i, j)th term of the
covariance matrix.
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Proposition 2.1 The (i, j)th term of EYN
[
YN YT

N
]

can be approximated as:

EYi ,Y j

[
Yi Y j

] �
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

×
(

a0 +
M/2−1∑

k=1

2a2k

1 − (2k)2
+ aM

1 − M2

)

.

2.6 Simulations

In this section we consider two studies, the first is based on synthetic data generated
from a known model. We use this controlled scenario to demonstrate the properties of
our estimation methods and illustrate how accurate they will be in different settings.
Then we study a real data application which involves analysis of wind speed data with
the application in mind related to storm surge modeling in Europe, under the class of
weather events known in insurance modeling as wind storms or storm surge insurance
storms. This type of application is of direct relevance for both safety assessment and
insurance pricing purposes, see [7, 13].

2.6.1 Synthetic Example

To evaluate the performance of the proposed algorithms and the improvement they
provide we generated 2-D realizations from a Gaussian process with the following
attributes: the mean is μ (x) = 0 and the kernel is a radial basis function with length
scale, l = 2.

C (
xi , x j ;Ω

) := exp

(

−
∥
∥xi − x j

∥
∥

l

)

. (2.58)

A realization from the GP is shown in Fig. 2.1. In this example we placed 10 high-
quality sensors which are marked by the black markers. We then tested the field
reconstruction algorithm for various system configurations, changing the number of
low-quality sensors, the SNR and the probabilities of incorrect wireless channels
transmission, denoted pe. To obtain the same measure of SNR for both types of sen-
sors, we set σ 2

v = 0 and define SNR = 10 log σ 2
w. The prediction mean squared errors

(PMSE) are presented in the right side of Fig. 2.1. The results show that substantial
improvements can be obtained by adding low-quality sensors. This is especially true
in the cases of high SNR and perfect wireless channels communications, where the
PMSE of the heterogeneous network is roughly 1/3 of the PMSE based only on
high-quality sensors.
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Fig. 2.1 Realization from a 2-d Gaussian process. The black markers denote the locations of the
10 high-quality sensors

2.6.2 Sensor Networks for Insurance: Wind Speed
and Insurance Storms

In this study we use a publicly available insurance storm surge database known as
the Extreme Wind Storms Catalogue.2 The data is available for research as the XWS
Datasets: (c) Copyright Met Office, University of Reading and University of Exeter.
Licensed under Creative Commons CC BY 4.0 International License. This database
is comprised of 23 storms which caused high insurance losses known as ‘insurance
storms’ and 27 storms which were selected because they are the top ‘noninsurance’
storms as ranked by the storm severity index, see details on the web site.

The data provided is comprehensive and provides features such as the footprint of
the observations on a location grid with a rotated pole at longitude = 177.5◦, latitude
= 37.5◦. As discussed in the data description provided with the dataset, this is a
standard technique used to ensure that the spacing in km between grid points remains
relatively consistent. The footprints are on a regular grid in the rotated coordinate
system, with horizontal grid spacing 0.22◦. The data for each of the storms provide
a list of grid number and maximum 3-s gust speed in meters per second. The true
locations (longitude and latitude) of the grid points are given in grid locations file.
We selected two storms to analyze, the first is known as Dagmar (Patrick or Tapani)
which took place on 26/12/2011 and affected are Finland and Norway; and the second
was the storm known as Ulli taking place on 03/01/2012 which affected the UK.

To understand the significance of this analysis, we note that the Dagmar-Patrick
storm is reported to have caused damage worth 40 Million USD and reached a
maximum wind speed of 70 mph over land. The storm Ulli is reported to have

2http://www.met.reading.ac.uk/~extws/database/dataDesc.

http://www.met.reading.ac.uk/~extws/database/dataDesc
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caused even more damage of 200 Million USD and reached a wind speed of 87 mph.
In our study, we reconstruct the spatial map of these wind speeds for a given instant
of time.

2.6.2.1 Model Calibration Wind Speed Data

To calibrate the model we first fit the hyperparameters of the model via maximum-
likelihood estimation (MLE) procedure. We used a 2-D radial basis function of the
following form:

C (
xi , x j ;Ω

) := σ 2
x exp

(

−
∥
∥xi − x j

∥
∥

lx

)

× σ 2
y exp

(

−
∥
∥yi − y j

∥
∥

ly

)

, (2.59)

thus decomposing the kernel into orthogonal coordinates which we found provided
a much more accurate fit. The reason for this is it allows for inhomogeneity through
differences in spatial dependence in vertical and horizontal directions, which is highly
likely to occur in the types of wind speed data studied. The MLE of the length and
scale parameters obtained are given by:

• Dagmar-Patrick storm: σ 2
x = 0.1, lx = 0.5 and σ 2

y = 10, ly = 0.1.
• Ulli storm: σ 2

x = 0.5, lx = 0.1 and σ 2
y = 1, ly = 0.1.

We note that details on how to estimate the GP hyperparameters can be found in
[Chap. 5] [37]. The covariance function estimates are presented in Fig. 2.4 for the
Dagmar-Patrick (left panel) and Ulli (right panel) wind storms. These plots show
the spatial dependence over UK and Europe between wind speeds during the peak
of the storm fronts as they transited across different regions of the English channel.
It is clear that the correlation of the Dagmar-Patrick storm is much stronger than of
the Ulli storm in both axes. This should have an impact on the quality of the field
reconstruction estimation that we will demonstrate next.

2.6.2.2 Wind Field Intensity Estimation for Insurance Wind Storms

We performed wind field intensity estimation using our algorithm and compared it
to the case where only high-quality sensors are utilized. The results are presented
in Figs. 2.2 and 2.3, for the Dagmar-Patrick and Ulli storms, respectively. We set
the region of interest (ROI) as shown in the upper left of Figs. 2.2 and 2.3. We then
chose 15 locations to place high-quality sensors. These locations are depicted with
black square markers. The actual wind speed field intensity is shown in the upper
right figures. The lower left figures show the estimated field based only on the 15
high-quality sensors. The lower right figures show the estimated field based on the
15 high-quality and 100 low-quality sensors. To illustrate the impact of adding low-
quality sensors make, we set the error probability of the wireless channels to zero. The
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Fig. 2.2 Wind speed prediction of the Dagmar-Patrick storm. The rectangular in the upper left
figure represents the region of interest which contains 15 high-quality sensors. The upper right
figure represents the “true” data wind speed intensities (m/s). The lower left figure shows the field
reconstruction based solely on the 15 high-quality sensors via Gaussian Process regression. The
lower right figure shows the field reconstruction of our algorithm based on the heterogeneous
network with 15 high-quality sensors and 100 low-quality sensors. The normalized mean squared
error based on the high-quality sensors is 0.67 and based on both high- and low-quality sensors is
0.25

figures show that a significant improvement can be obtained by augmenting the high-
quality sensor network with many cheap low-quality sensors. The field reconstruction
(the ROI contains 14006 spatial points) prediction mean squared error for the two
storms is given in Table 2.1. As expected the prediction performance for the Dagmar-
Patrick storm is better than for the Ulli storm. This can be explained by the higher
spatial correlation exhibited by the Dagmar-Patrick storm as shown in Fig. 2.4.
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Fig. 2.3 Wind speed prediction of the Ulli storm. The rectangular in the upper left figure represents
the region of interest which contains 15 high-quality sensors. The upper right figure represents the
“true” data wind speed intensities (m/s). The lower left figure shows the field reconstruction based
solely on the 15 high-quality sensors via Gaussian process regression. The lower right figure shows
the field reconstruction of our algorithm based on the heterogeneous network with 15 high-quality
sensors and 100 low-quality sensors. The normalized mean squared error based on the high-quality
sensors is 0.85 and based on both high- and low-quality sensors is 0.37

Table 2.1 Field reconstruction performance for the two storms

Normalized prediction mean squared error

Reconstruction method Dagmar-Patrick storm Ulli storm

15 high-quality sensors 0.67 0.85

15 high-quality and 100
low-quality sensors

0.25 0.37
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Fig. 2.4 The covariance function estimation of the Dagmar-Patrick (left panel) and Ulli (right
panel) storms. These results show that the spatial correlation of the Dagmar-Patrick storm is larger
than the Ulli storm
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Fig. 2.5 Ocean depth estimation results. The rectangular in the left figure represents the region of
interest and the intensity represents the true ocean’s depth. The right figure presents the prediction
MSE of our algorithm based on the heterogeneous network with 50, 100, 200, 250 high-quality
sensors and varying number of low-quality sensors
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2.6.3 Bathymetry Example

In this example we use the heterogeneous sensor network to estimate the spatial
field for the depth of the ocean floor based on measurements known as Bathymetry.
This type of analysis is also directly relevant to the wind speed and storm surge
modeling done in the firs example, as bathymetric measurements are known to vary
significantly during storm surge events and cyclones. This makes the spatial field
reconstruction of such a feature directly relevant to modeling practically important
spatial features. The ocean depth can help to provide an indication of the likely event
of a flooding event from a storm front.

We use a publicly available database known as the eSurge.3 We selected to ana-
lyze a square region in the north-east corner of Australia at the South-Pacific ocean
presented in the left panel of Fig. 2.5. This region is known to be frequently hit by
cyclones which cause a change in the topography of the ocean floor.

We performed the depth estimation using our algorithm and compared it to the
case where only high-quality sensors are utilized. In each simulation the sensors
were deployed on a regular grid and we changed the number of high-quality and
low-quality sensors deployed. We then calculated the prediction mean squared error
(PMSE) which is presented in the right panel of Fig. 2.5. Similarly to the synthetic
example in Sect. 2.6.1, there was a diminishing improvement when the number of
low-quality sensors was above 200.
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Chapter 3
Speech and Music Emotion Recognition
Using Gaussian Processes

Konstantin Markov and Tomoko Matsui

Abstract Gaussian Processes (GPs) are Bayesian nonparametric models that are
becoming more and more popular for their superior capabilities to capture highly
nonlinear data relationships in various tasks ranging from classical regression and
classification to dimension reduction, novelty detection and time series analysis.
Here, we introduce Gaussian processes for the task of human emotions recognition
from emotionally colored speech as well as estimation of emotions induced by lis-
tening to a piece of music. In both cases, first, specific features are extracted from
the audio signal, and then corresponding GP-based models are learned. We consider
both static and dynamic emotion recognition tasks, where the goal is to predict emo-
tions as points in the emotional space or their time trajectory, respectively. Compared
to the current state-of-the-art modeling approaches, in most cases, GPs show better
performance.

3.1 Introduction

Emotions play an important role in human-to-human communication. Expressed both
by speech and body language, they convey a lot of nonlinguistic information making
human interaction inherently “natural.” That is why it is important to study andmodel
emotions in order to achieve as natural as possible human–computer communication.
The first and foremost task is to accurately identify the emotional state of a person.
This would benefit current speech recognition and translation systems, facilitate
development of new human centric applications, and also help diagnose and prevent
mental health disorders such as depression which exhibit specific emotional patterns.
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On the other hand, a lot of music data have become available recently either
locally or over the Internet and in order for users to benefit from them, an efficient
music information retrieval (MIR) technology is necessary. Although users are more
likely to use genres or artists names when searching or categorizing music, the main
power ofmusic is in its ability to communicate and trigger emotions in listeners. Thus,
determining computationally the emotional content ofmusic is also an important task.

There are two approaches to represent emotions in computer systems: categorical
and dimensional [3, 24]. Categorical approach involves finding emotional descrip-
tors, usually adjectives, which can be arranged into groups. Given the perceptual
nature of human emotion, it is difficult to come up with an intuitive and coherent set
of adjectives and their specific grouping. Depending on the research objectives, the
number of emotion categories and their names can vary greatly. A popular choice
is the set of so-called “primary” emotions [6] which includes joy, sadness, fear,
anger, surprise, and disgust. Other emotions can be produced by “mixing” primary
emotions like colors in a color palette. To alleviate the challenge of ensuring consis-
tent interpretation of emotion categories, some studies propose to describe emotions
using continuousmultidimensionalmetrics defined on low-dimensional spaces.Most
widely accepted is the two-dimensionalValence–Arousal (V–A) affect space [45, 48]
where emotions are represented by points in the V–A plane. Figure3.1 shows the
space where some regions are associated with distinct emotion categories. An exten-
sion to three-dimensional affect spacewhich includes additionalDominance (D) axes
has also been proposed [14]. It can be argued that emotions are not necessarily con-
stant, but can vary within utterances or during the course of a song. This variation in
time can be represented by a trajectory in the emotional space. Here, we assume that
in the case of static emotions, the task is to automatically find the point in the V–A or
V–A–D space which corresponds to the speaker affect state or emotion induced by
a given music piece. For dynamic emotions, the task would be to estimate or track
the emotion trajectory in the affect space.

An important problem in emotion recognition is how to extract features that effi-
ciently and compactly characterize different emotions. One aspect of this problem is
the analysis window used for feature extraction. A standard approach in audio signal

Fig. 3.1 Two-dimensional
(Valence-Arousal) affective
space of emotions. Different
regions correspond to
different categorical
emotions
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processing is to divide the signal into small intervals called frames from which local
feature vectors are extracted. This is justified for quickly changing targets. Emotions,
however, vary slowly and the analysis interval may be as long as few seconds. Com-
mon approach is to obtain some statistics such as mean, variance, etc. of the local
features for each interval and stack them into one vector. This technique is well suited
for the case of dynamic emotion recognition. For the static emotions case, analysis
interval is usually extended to cover the whole utterance or song and global statistics
are calculated.

There is a strong evidence that prosodic features such as pitch and energy are
closely related to the emotional content of an utterance. Overall energy and its dis-
tribution across frequencies as well as duration of pauses are directly affected by the
arousal state of the speaker [5]. Spectral-based features commonly used in speech
recognition, i.e., MFCC and LPCC, have also shown good performance, though the
log frequency power coefficients (LFPC) have been found to perform better [40].
When data from other modalities such as video are available, features extracted from
facial expressions can be combined with the acoustic features which may lead to an
improved recognition accuracy [22].

Prior studies focused on searching for emotion-specific music features have not
found any dominant single one [64], so the most commonly used are those utilized
in the other MIR tasks as well. Conventional features can be divided into “low-level”
features including timbre (zero-crossing rate, spectral centroid, flux, roll-off, MFCC,
and others) and temporal (amplitude modulation or autoregressive coefficients) fea-
tures, as well as “mid-level” features, such as rhythm, pitch, and harmony [16]. On
the other hand, it is also possible to apply unsupervised learningmethods to find some
“high level” representations of the “low-level” features, and then use them as a new
type of features. This can be accomplished using non-negative matrix factorization
(NMF), sparse coding [34], or deep neural networks (DNN) [29].

For categorical emotions, both speech and music emotion recognition tasks can
be cast as a classification problem, so the samemodels can be used. This holds for the
dimensional emotions as well since the task is actually a regression problem. Hidden
markov models (HMM), Gaussian mixture models (GMM), support vector machine
(SVM), and neural networks have been used to classify emotions [12]. Regression
models, such as multiple linear regression (MLR), support vector regression (SVR),
or Adaboost.RT, as well as multi-level least-squares or regression trees [3] have
been successfully applied for dimensional emotion estimation. Model learning is
usually supervised and requires labeled training data. Finding consistent emotion
labels in terms of V–A or V–S–D values is even more challenging than obtaining
category labels because emotion interpretation can be very subjective and varies
among listeners. It requires data annotation by multiple experts which are expensive,
time consuming, and labor intensive [1]. Especially, problematic is the collection
of ground truth labels for time-continuous emotions, because the reaction lag of
evaluators also needs to be taken into account [33].

Gaussian processes have been known as nonparametric Bayesian models for
quite some time, but just recently have attracted attention of researchers from other
fields than statistics and applied mathematics. After the work of Rasmussen and
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Williams [44] which introduced GPs for the machine learning tasks of classification
and regression, many researchers have utilized GPs in various practical applications.
As SVMs, they are also based on kernel functions and Gram matrices, and can be
used as their plug-in replacement. The advantage of GPs with respect to SVMs is that
their predictions are truly probabilistic and that they provide a measure of the output
uncertainty. Another big plus is the availability of algorithms for their hyperparame-
ter learning. The downside is that the GP training complexity isO(n3), which makes
them difficult to use in large-scale tasks. Several sparse approximation methods have
been proposed [7, 53], but this problem has not yet been fully solved and is a topic
of an ongoing research.

Evaluation of the emotion recognition systems is usually performed in terms
classification accuracy for categorical emotions. In the case of dimensional emotions,
Pearson correlation coefficient and/or root-mean-squared error measures (RMSE)
are used and often applied for each affect dimension separately. However, recently
there have been discussions about the usefulness of the correlation coefficient from
practical point of view. The analysis given in [22] shows that in order to achieve high
correlation, coarse trajectory estimation is enough, while close frame-wise matching
of up to 90% of the trajectory can still result in much lower correlation. There are
also different opinions on how to treat cases when correlation coefficient is negative.

In the next section, various existing emotion recognition systems are reviewed and
compared. Brief introduction of the Gaussian processes and their implementation in
regression tasks is given in Sects. 3.3 and 3.4. GP regression models can be used
for static emotion estimation in a straightforward way. During training, they learn
the nonlinear mapping between the feature vectors and the corresponding affect
dimensions values. Thus, separateGPmodels are trained for each arousal and valence
(and Dominance) dimension. Dynamic emotion trajectories can be considered as a
time series data, so methods from statistical time series analysis would be applicable
to ensure that not only feature-emotion mapping, but also temporal evolution of
emotions is taken into account. One such method is Bayesian filtering by state-
space models (SSMs). It is briefly described in Sect. 3.5. A widely used SSM based
on linear functions is the Kalman filter (KF) [18] which is explained in Sect. 3.6.
Linearity assumptions of KF, however, are significant drawback. On the other hand,
particle filters (PF) allow for nonlinear functions to be used such as GPs. Section3.7
describes the PF basics and its implementation using Gaussian processes. How to
build emotion recognition systems using GPs for both static and dynamic emotions
and some evaluation results on speech and music data are presented in Sect. 3.8. The
last section contains some discussion and conclusions.

3.2 Related Studies

There are many studies on speech emotion recognition and most of them take the
categorical approach to emotion representation.Various types of classifiers have been
used such as HMM, GMM, SVM, ANN, k-mean, and others. The most popular is
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a fully connected HMM using prosodic features [39, 52]. In [40], a discrete HMM
with MFCC, LPCC, and LFPC vectors was used and up to 75.5% accuracy was
obtained over the set of “primary” emotions. For dimensional dynamic emotion
recognition, however, there are just a few studies. This task has been facilitated by
the audio-visual emotion challenge (AVEC) series of evaluations. The 2013 winner
[38] uses MFCC and other spectral low-level descriptors as features and partial
least-squares (PLS) regression. However, this approach fails to capture dynamics
information. This problem is solved in [60] using long short-term RNN to capture
the time dependencies in emotion trajectories.

In one of the earliest studies on music emotion recognition, features representing
timbre, rhythm, and pitch were used in SVM-based system to classify music into
13 mood categories [30]. With 499 hand-labeled 30s clips, an accuracy of 45%
was achieved. In 2007, music emotion classification was included in the MIR eval-
uation exchange (MIREX) benchmarks and the best performance of 61.5% was
again achieved using SVM classifier [56]. However, recent studies have suggested
that regression approaches using continuous mood representation can perform better
than categorical classifiers [63]. SVR was applied in [64] to map music clips, each
represented by a single feature vector, into two-dimensional V–A space. After prin-
cipal component analysis (PCA)-based feature dimensionality reduction, this system
achieved R2 scores of 0.58 and 0.28 for arousal and valence, respectively. Later, this
approach was extended by representing perceived emotion of a clip as a probability
distribution in the emotion plane [62]. It also is possible to combine categorical and
continuous emotion representations by quantizing the V–A space and apply emotion
cluster classification using SVM [51], or another regression model, trained for each
cluster [11].

For dynamic emotions, one approach is to divide a piece of music into segments
short enough to assume that emotion does not change within each segment, and then
use standard classification techniques [32]. Another study [49] considers arousal
and valence as latent states of a linear dynamical system and applies KF to recover
emotion dynamics over time. However, KF is a linear system and has its limitations.
There exist nonlinear SSMs such as the extended Kalman filter (EKF) and unscented
Kalman filter (UKF), but they put certain constraints on the SSM state and measure-
ment functions and often suffer from stability issues. Another approach is to consider
the fact that for some time intervals, emotion depends on the past and future system
inputs. This suggests that context-sensitive or recurrent models can be applied. One
such model is the conditional random field (CRF), but for its direct implementation
the emotion space needs to be discretized [50]. However, recently proposed CRF
extension allows to overcome this drawback [20]. Another model which has gained
popularity lately is the long short-termmemory (LSTM) recurrent neural network. It
has been successfully applied for dynamic music emotion recognition and has shown
state-of-the-art performance [59, 61].

Although Gaussian processes have become popular in machine learning commu-
nity and have been used in such tasks as object categorization in computer vision [23]
or economics and environmental studies [46], there are still few GP applications in
the field of signal processing. In one such application, GP regressionmodel is applied
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to time-domain voice activity detection and speech enhancement [41]. In [31], using
GP, researchers estimate speakers likability given recordings of their voices. Another
recent study employs GPs for head-related transfer function (HRTF) estimation in
acoustic scene analysis [26]. Finally, several extensions and new models based on
GPs have been developed. For example, Gaussian process latent variable model (GP-
LVM)was introduced for nonlinear dimensionality reduction [27], but have also been
applied to image reconstruction [54] and human motion modeling [28]. Another
promising extension is the Gaussian process dynamic model (GPDM) [58]. It is a
nonlinear dynamical system which can learn the mapping between two continuous
variables spaces. One of the first applications of GPDM in audio signal process-
ing was for speech phoneme classification [42]. Although the absolute classification
accuracy of the GPDM was not high, in certain conditions, they outperformed the
conventional hidden Markov model (HMM). In [19], GPDM is used as a model for
nonparametric speech representation and speech synthesis.

Some previous studies [35–37] have shown that GPs can be a feasible alterna-
tive to SVMs both for music genre classification and static emotion recognition.
For the varying emotion case, as mentioned earlier, a state-space models are well
suited. A number of GP-based state-space models (GP-SSM) have been proposed
recently. GP-BayesFilters [25] use GPs as nonlinear functions and derive GP par-
ticle filter, GP-EKF, and GP-UKF algorithms using Monte Carlo (MC) sampling.
In [8, 9], an analytic filtering approximation algorithm is presented, but lacks an
analytic approach to GP-SSM parameter learning. An attempt to derive such algo-
rithm is done in [55] which, however, has some stability problems. A ParticleMarkov
Chain Monte Carlo (PMCMC) training method is described in [15], but it suffers
from slowly convergingMC sampling techniques. The problem of training GP-based
state-space models parameters can be made much easier if true observations of the
latent state process are available. This way, the state dynamics parameters can be
learned separately from the parameters of the measurement function. In the KF
case, training of the corresponding matrices and noise variances can be done using
multivariate linear regression. For the GP-SSM, similar approach is applicable. The
difference is that since GP output is scalar and separate GPmodels have to be trained
for each state or observation vector dimension. Models parameters can be obtained
using GP regression model learning as explained in Sect. 3.4.

3.3 Gaussian Processes

Gaussian processes are used to describe distributions over functions. Formally, the
GP is defined as a collection of random variables any finite number of which has a
joint Gaussian distribution [44]. It is completely specified by its mean and covariance
functions. For a real process f (x), the mean function m(x), and the covariance
function k(x, x′) are defined as
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m(x) = E[ f (x)] (3.1)

k(x, x′) = E[( f (x) − m(x))( f (x′) − m(x′))].

Thus, the GP can be written as

f (x) ∼ GP(m(x), k(x, x′)). (3.2)

A GP prior over function f (x) implies that for any finite number of inputs X =
{xi } ∈ R

d , i = 1, . . . , n, the vector of function values f = [ f (x1), . . . , f (xn)]T =
[ f1, . . . , fn]T has a multivariate Gaussian distribution

f ∼ N (μ, K ) (3.3)

where the mean μ is often assumed to be zero. The covariance matrix K has the
following form:

K =

⎡

⎢
⎢
⎢
⎣

k(x1, x1) . . . k(x1, xn)

k(x2, x1) . . . k(x2, xn)
...

...

k(xn, x1) . . . k(xn, xn)

⎤

⎥
⎥
⎥
⎦

(3.4)

and characterizes the correlation between different points in the process. For k(x, x′),
any kernel function which produces symmetric and semi-definite covariance matrix
can be used.

3.4 Gaussian Process Regression

Given input data vectors X = {xi }, i = 1, . . . , n and their corresponding target val-
ues y = {yi }, in the simplest regression task, y and x are related as

y = f (x) + ε (3.5)

where the latent function f (x) is unknown and ε is often assumed to be a zero
mean Gaussian noise, i.e., ε ∼ N (0, σ 2

n ). Putting a GP prior over f (x) allows us
to marginalize it out, which means that we do not need to specify its form and
parameters. This makes our model very flexible and powerful since f (x) can be any
nonlinear function of unlimited complexity.

In practice, targets yi are assumed to be conditionally independent given fi , so
that the likelihood can be factorized as

p( y| f ) =
n∏

1

p(yi | fi ) (3.6)
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where p(yi | fi ) = N (yi | fi , σ
2
n ), according to our observationmodel Eq. (3.5). Since

f has normal distribution, i.e., f |X ∼ N (0, K ), it follows that y is also a Gaussian
random vector

p( y|X) = N ( y|0, K + σ 2
n I). (3.7)

Given some new (test) input x∗, we can now estimate the unknown target y∗ and,
more importantly, its distribution. Graphically, the relationship between all involved
variables can be represented as shown in Fig. 3.2. To find y∗, we first obtain the joint
probability of training targets y and f∗ = f (x∗), which is Gaussian

p( y, f∗|x∗, X) = N

(

0,

[
K + σ 2

n I k∗
kT

∗ k(x∗, x∗)

])

(3.8)

where kT
∗ = [k(x1, x∗), . . . , k(xn, x∗)]. Then, from this distribution, it is easy to

obtain the conditional p( f∗| y, x∗, X), which is also Gaussian

p( f∗| y, x∗, X) = N ( f∗|μ f∗ , σ
2
f∗) (3.9)

with mean and variance

μ f∗ = kT
∗ (K + σ 2

n I)−1 y, (3.10)

σ 2
f∗ = k(x∗, x∗) − kT

∗ (K + σ 2
n I)−1k∗ (3.11)

Fig. 3.2 Graphical
representation of observable
x, y, (enclosed in squares),
latent f , and unobservable
y∗ (enclosed in circles)
variable relationships in
Gaussian process-based
regression task
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It is worth noting that the mean μ f∗ is a linear combination of the observed targets
y. It can also be viewed as a linear combination of the kernel functions k(x∗, xi ).
On the other hand, the variance σ 2

f∗ depends only on inputs X .
To find out the predictive distribution of y∗, we marginalize out f∗

p(y∗| y, x∗, X) =
∫

p(y∗| f∗)p( f∗| y, x∗, X)d f∗

= N (y∗|μy∗ , σ
2
y∗) (3.12)

where it is easy to show that for homoscedastic likelihood, as in our case, the pre-
dictive mean and variance are [43]

μy∗ = μ f∗ , and (3.13)

σ 2
y∗ = σ 2

f∗ + σ 2
n . (3.14)

Making this mean our predicted target, ypred = μy∗ will minimize the risk for a
squared loss function (ytrue − ypred)2. The variance σ 2

y∗ , on the other hand, shows the
model uncertainty about ypred.

Parameter learning

Until now, we have considered fixed covariance function k(x, x′), but in general,
it is parameterized by some parameter vector θ . This introduces hyper-parameters
to GP, which are unknown and, in practice, very little information about them is
available. A Bayesian approach to their estimation would require a hyper-prior p(θ)

and evaluation of the following posterior:

p(θ | y, X) = p( y|X, θ)p(θ)

p( y|X)
= p( y|X, θ)p(θ)

∫
p( y|X, θ)p(θ)dθ

(3.15)

where the likelihood p( y|X, θ) is actually the GP marginal likelihood over function
values f

p( y|X, θ) =
∫

p( y| f )p( f |X, θ)d f . (3.16)

However, the evaluation of the integral in Eq. (3.15) can be difficult and as an approx-
imation we may directly maximize Eq. (3.16) w.r.t. the hyperparameters θ . This is
knownasmaximum likelihood II (ML-II) typehyperparameter estimation. Since both
the GP prior f |X ∼ N (0, K ) and the likelihood y| f ∼ N ( f , σ 2

n I) are Gaussians,
the logarithm of Eq. (3.16) can be obtained analytically

log p( y|X, θ) = −1

2
yT K−1

y y − 1

2
log |K y| − n

2
log 2π (3.17)
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where K y = K + σ 2
n I is the covariance matrix of the noisy targets y. Hyperparame-

ters θ = {σ 2
n , θ k} include the noise variance and parameters of the kernel function.

Those which maximize Eq. (3.17) can be found using gradient-based optimization
method. Partial derivatives for each θi are found from

∂ log p( y|X, θ)

∂θi
= − 1

2
yT K−1

y

∂ K y

∂θi
K−1

y y

− 1

2
tr(K−1

y

∂ K y

∂θi
) (3.18)

where for θi = σ 2
n we have

∂ K y

∂σ 2
n

= σ 2
n I . (3.19)

Usually, kernel function parameters are all positive, which would require constrained
optimization. In practice, this problem is easily solved by optimizing with respect
to the logarithm of the parameters, so simple unconstrained optimization algorithms
can be used.

3.5 State-Space Models

There are many ways to define a state-space model. Here, we consider an SSM given
by

xt = f (xt−1) + ut−1, xt ∈ Rd , (3.20)

yt = g(xt ) + vt yt ∈ Re, (3.21)

where f () and g() are the unknown functions governing temporal state dynamics and
state-to-measurement mapping, respectively. System and observation noises, ut ∼
N (0,�u) and vt ∼ N (0,�v), are both Gaussian with uncorrelated dimensions.
The same SSM can be written in terms of probability distributions as

p(xt |xt−1) = N (xt ; f (xt−1),�u), (3.22)

p( yt |xt ) = N ( yt ; g(xt ),�v). (3.23)

Figure3.3 shows theSSMas agraphicalmodelwith arrowsdenotingdependencies
betweenvariables. The initial state x0 is assumed tohaveknownGaussiandistribution
p(x0) = N (μx

0,�
x
0). For a sequence of T measurements, the task of filtering is to

find approximations to the posterior distribution p(x1:t | y1:t ), where for any sequence
{zn}n>0 and any i < j, zi : j = zi , . . . , z j . Often, the task is defined as to find the
marginal distribution p(xt | y1:t ) [2].
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Fig. 3.3 Graphical
representation of state-space
model. States xt are
continuous latent variables
and measurements yt are
observable vectors. Arrows
show the probabilistic
relationship between
variables

Following a Bayesian approach, the distribution of interest can be decomposed
as follows:

p(x1:t | y1:t ) = p(x1:t , y1:t )
p( y1:t )

(3.24)

= p(x1:t−1, y1:t−1)p(xt |xt−1)p( yt |xt )

p( yt , y1:t−1)
(3.25)

= p(x1:t−1| y1:t−1)
p(xt |xt−1)p( yt |xt )

p( yt | y1:t−1)
(3.26)

where

p( yt | y1:t−1) =
∫

p(xt−1| y1:t−1)p(xt |xt−1)p( yt |xt )dxt−1:t . (3.27)

This allows p(x1:t | y1:t ) to be obtained recursively starting from p(x0| y0) =
p(x0) and moving forward one step at a time. Similarly, for the marginal distri-
bution p(xt | y1:t ), we can find that

p(xt | y1:t ) = p( yt |xt )p(xt | y1:t−1)

p( yt | y1:t−1)
(3.28)

where

p(xt | y1:t−1) =
∫

p(xt |xt−1)p(xt−1| y1:t−1)dxt−1. (3.29)

Commonly, Eqs. (3.28) and (3.29) are referred to update and prediction steps.
However, most particle filtering methods do not use these steps, but numerically
approximate Eq. (3.26) [10].
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As a by-product of the sequential filtering distribution estimation, the marginal
likelihood p( y1:t ) can be easily obtained from

p( y1:t ) = p(y1)
t∏

k=2

p( yk | y1:k−1) (3.30)

When we apply an SSM for continuous emotion recognition, states xt would
represent the unknown affect vector in the V–A(–D) space, and yt would correspond
to feature vectors extracted from the audio signal. When observations of the state
variable are available during training, f () and g() can be learned independently
which makes the SSM parameter estimation simpler.

3.6 Kalman Filter

As we already mentioned, when state dynamics and measurement functions are
linear, such as f (x) = Fx and g(x) = Gx with matrix parameters F and G, an
analytic solution can be easily obtained [47]. It can be shown that all distributions of
interest are Gaussian:

p(xt | y1:t−1) = N (xt ;μ
p
t ,�

p
t ) (3.31)

p(xt | y1:t ) = N (xt ;μt ,�t ) (3.32)

p( yt | y1:t−1) = N ( yt ; Gμ
p
t , St ) (3.33)

with means and covariances which can be computed from the prediction step

μ
p
t = Fμt−1, (3.34)

�
p
t = F�t−1FT + �u, (3.35)

and the update step

μt = μ
p
t + K t ( yt − Gμ

p
t ), (3.36)

�t = �
p
t − K t St K T

t , (3.37)

St = G�
p
t GT + �v, (3.38)

K t = �
p
t GT S−1

t . (3.39)

This is an optimal filtering solution given that linearity assumption holds and that
noises are indeed Gaussian. In practice, however, most often neither is true.
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In general,when there are no ground truth observations of the latent state variables,
estimation of F and G as well as the noise variances �u and �v can be done using
likelihood maximization via expectation–maximization algorithm [18]. However,
when they are available, simple multivariate linear regression can be used to obtain
the necessary parameters.

3.7 Particle Filters

Using nonlinear functions for f () and g() would greatly increase the expressiveness
of the state-space model, but introduces two problems—what kind of nonlinearity is
suitable for the task at hand and how to estimate its parameters. Gaussian processes
allow to eliminate thefirst problemand,when state observations are available, provide
solution to the second.

However, filtering with SSM when f () and g() are described by GPs is not
straightforward. There are just a few studies on this problem and no common and
efficient algorithm exists yet. Here, we utilize a particle filter-based approximation
similar to the one proposed in [25].

Particle filters are a class of Monte Carlo algorithms which are based on sam-
pling methods for density function approximations. Thus, the filtering distribution
of interest can be approximated by

p(x1:t | y1:t ) ≈ 1

N

N∑

i=1

δ(x1:t − xi
1:t ) (3.40)

where samples, called particles, xi
1:t , i = 1, . . . , N are independently drawn from the

distribution. However, in practice, often it is impossible to generate samples directly
from p(x1:t | y1:t ). The importance sampling (IS) method solves this problem by
introducing the so-called importance distribution, q(), from which samples can be
easily obtained, i.e.,

xi
1:t ∼ q(x1:t | y1:t ) (3.41)

and then we get the approximation as

p(x1:t | y1:t ) ≈
N∑

i=1

wi
tδ(x1:t − xi

1:t ) (3.42)

where

wi
t ∝ p(xi

1:t | y1:t )
q(xi

1:t | y1:t )
. (3.43)
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For sequential distribution approximation, it would be useful to have an impor-
tance density which can be factorized as

q(x1:t | y1:t ) = q(xt |x1:t−1, y1:t )q(x1:t−1| y1:t−1). (3.44)

This way, taking into account Eq. (3.26), the weights become

wi
t ∝ p(xi

1:t−1| y1:t−1)p(xi
t |xi

t−1)p( yt |xi
t )

q(xi
t |xi

1:t−1, y1:t )q(xi
1:t−1| y1:t−1)

, (3.45)

= wi
t−1

p(xi
t |xi

t−1)p( yt |xi
t )

q(xi
t |xi

1:t−1, y1:t )
. (3.46)

Often, it is convenient to simplify the importance distribution from the denomi-
nator to q(xt |xt−1, y1:t ) which makes it possible to keep only the current samples xi

t
instead of the whole histories xi

1:t . Thus, the sequential importance sampling (SIS)
algorithm involves iteration of two main steps: sampling from the importance distri-
bution, xi

t ∼ q(xt |xi
t−1, y1:t ) and weights update according to Eq. (3.46). However,

the SIS algorithm suffers from the so-called “degeneracy” problem where after sev-
eral iterations, all but few or even single particle will have negligible weights. A
common solution is to “resample” with replacement N samples from the p(xt | y1:t )
approximated by the pool of particles so that Pr(xi∗

t = x j
t ) = w j

t and then reset the
weights to 1/N .

In many cases, it is convenient to choose the importance distribution to be the
SSM’s dynamic model

q(xt |xt−1, y1:t ) = p(xt |xt−1). (3.47)

Then, assuming that “resampling” is performed at each step, the weights become
simply

wi
t ∝ p( yt |xt ). (3.48)

This particular particle filter setting is known as bootstrap filter [17]. In the next
section, we describe the bootstrap filter algorithm when Gaussian processes are used
as SSM dynamics and measurements models.

3.7.1 Particle Filter with GP

In order to implement a bootstrap filter, it is necessary to be able to sample from
p(xt |xt−1) and to calculate p( yt |xt ). They, according to Eqs. (3.22) and (3.23) are
Gaussians so it is easy to do it. Means of these distributions are obtained from the
GPs output and variances �u and �v are learned during GP parameter estimation
(see Sect. 3.4). One feature of the GP is that its output is actually a Gaussian
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distribution, and therefore, the output variance will have to be added to the
corresponding dimension of �u or �v.

Algorithm 1 provides the steps of the GP particle filter. It is assumed that GP
parameters θ x and θ y for each target dimension are already obtained.

Algorithm 1 GP Particle filter
Input: N , T, y1:T , θ x , θ y,μ

x
0,�

x
0 , Output: x̂1:T

1. for i = 1, . . . , N
2. xi

0 ∼ N (μx
0,�

x
0) ⇒ initialize particle i

3. wi
0 = 1/N ⇒ initialize weight i

4. end
5. for t = 1, . . . , T
6. Resample particles xi

t according to weights wi
t

7. for i = 1, . . . , N
8. f i

t ,�
i
x,t = G P(xi

t−1|θ x )

9. xi
t ∼ N ( f i

t ,�
i
x,t + �u) ⇒ propagate particle i

10. gi
t ,�

i
y,t = G P(xi

t |θ y)

11. wi
t = N ( yt ; gi

t ,�
i
y,t + �v) ⇒ update weight i

12. end
13. wi

t = wi
t/

∑
i wi

t ⇒ normalize weights
14. x̂t = ∑

i wi
t xi

t ⇒ estimated mean of p(xt | y1:t )
15. end
16. return x̂1:T

The computational complexity of this algorithm is O(N T (d + e)n2), where n is
the number of training vectors, because for each particle at each time t algorithm
evaluates GP d times in step 8 and e times in step 10.

3.8 System Evaluation

Although from a practical point of view it might be better to have an emotion recog-
nition system which has a categorical output, i.e., recognizes emotions in terms of
textual descriptors, here, we assume that the task is to estimate the V–A(–D) point or
trajectory in the affect space as accurately as possible. After that, categorical emo-
tions can be easily obtained by affect space clustering. As a performance evaluation
measures, we adopt the Pearson correlation coefficient (R) and the root-mean-square
error (RMSE) which are widely used in regression tasks.

For the systems implementation, where possible, we used open-source software
packages such as the GPML toolbox [43] for Gaussian processes models and the
EKF/UKF toolbox [21] for Kalman filtering.

As explained in Sect. 3.4, GP covariance function parameters can be estimated via
optimization procedures, but the type of the covariance function as well as the mean
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function which can be other than zero are system parameters to be set heuristically.
The most common choices for covariance function include

• Linear (Lin) with parameter l

k(x, x′) = (xT x′ + 1)/ l2 (3.49)

• Squared exponential (Exp) with parameters σ and l

k(x, x′) = σ 2 exp(− 1

2l2
(x − x′)T (x − x′)) (3.50)

• Matérn (Mat) of degree 3 with parameters σ and l

k(x, x′) = σ 2(1 + r) exp(−r), (3.51)

r =
√

3

l2
(x − x′)T (x − x′)

As for the mean function, previous experimental studies [36] showed that constant
mean may be a better choice.

3.8.1 Speech Emotion Estimation Experiments

The database used in these experiments has been released as part of the Audio/Visual
Emotion Challenge andWorkshop (AVEC 2014) [57]. It consists of recordings from
84 subjects. There are 100 recordings for training and as many for testing. Duration
ranges from 6 to 248s. Each recording is annotated using three affective dimensions:
arousal, valence, and dominance. The AVEC 2014 database includes speech features
extracted using the openSMILE toolkit [13]. The feature set consists of 32 energy
and spectral related low-level descriptors (LLD) and 6 voicing related LLDs. These
features are aggregated in windows of 3 s with 1 s overlap and various statistics such
as mean, standard deviation, flatness, skewness, and kurtosis are calculated for each
window.

Since the original feature dimension is too high, two subsets of features were
used. The first one includes only the LLD means. In the second one, LLDs delta
coefficients (ΔLLDs) are included as well. Table3.1 compares the performance of
two GP-based particle filter systems with the KF. Results are given as average over
all affect dimensions (V–A–D) and all 100 test samples. We have to note that for
considerable number of test samples, the correlation coefficient showed negative
values resulting in reduced total average.1

1These results are not directly comparable with the official AVEC’2014 results because they have
been computed using the absolute R value which boosts them to the 0.5–0.6 range. We, however,
believe that this approach masks system errors which are the reason for negative R values.
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Table 3.1 Comparison between Kalman filter and GP-based particle filters using Linear (Lin) and
squared exponential (Exp) covariance functions

Feature set KF GP-PF (Lin) GP-PF (Exp)

# dims R RM SE R RM SE R RM SE

LLD 38 0.0350 0.1598 0.1219 0.1303 0.1417 0.0850

LLD+ΔLLD 76 0.0881 0.1691 0.1631 0.1430 0.1642 0.0890

As can be expected, the GP-based particle filter systems outperform the KF sig-
nificantly. They are able to better capture the complex relationship between acoustic
features and emotion representation. Increased data dimension improves the corre-
lation measure R, but also worsens to some extend the root-mean-square error.

3.8.2 Music Emotion Estimation Experiments

For the music emotion estimation experiments, the “MediaEval’2014” database [1]
was used. It consists of 1744 clips (each 45s long) taken at random locations from
1744 different songs. They belong to various genres which can be grouped into the
following eight groups: Blues, Electronic, Rock, Classical, Folk, Jazz, Country, and
Pop. For training,we selected randomly 500 clipsmaking sure that they are uniformly
distributed across genre groups. In a similar way, another 500 clips were selected for
testing. Each clip has a static arousal and valence annotation with score on a 9-point
scale. Dynamic V–A annotations at 2Hz rate are also available.

As feature vectors we adopted the features released by the “MediaEval’2014”
organizers which include loudness, roughness, hcdf, spectral flux, and zero-crossing
rate calculated at the same 2Hz rate.

Static emotion

In order to obtain a single vector representation of each clip, two level statistics of
the original feature vectors were computed. First, mean and standard deviation were
taken from sliding windows of 6 vectors, which corresponds to 3 s of signal. Then,
same statistics were calculated from the widow level data over the whole clip. Thus,
the total dimension of the feature vectors is 20.

For the static emotion estimation case, the “MediaEval’2014” evaluation proce-
durewas followed. It includes the R2 aswell as the RMSEmeasures. R2 is commonly
used to describe the goodness of fit of a statistical model and is defined as

R2 = 1 −
∑

i (yi − ŷi )
2

∑
i (yi − y)2

(3.52)
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Table 3.2 Performance comparison between GP and SVM regression-based emotion estimation
systems in terms of R2 and RMSE measures

System Arousal Valence Average

R2 RM SE R2 RM SE R2 RM SE

SVR (Lin) 0.6801 0.1014 0.3612 0.1002 0.5207 0.1008

SVR (Rbf) 0.6869 0.0997 0.3713 0.0996 0.5291 0.0997

GP (Lin) 0.6747 0.1013 0.3604 0.1013 0.5176 0.1013

GP (Exp) 0.6986 0.0972 0.3594 0.1002 0.5290 0.0987

GP (Mat) 0.6973 0.0969 0.3536 0.1007 0.5255 0.0988

Table 3.3 Dynamic motion emotion recognition results using Kalman filter (KF) and GP-based
particle filter (GP-PF) with several different covariance functions

System Arousal Valence Average

R RM SE R RM SE R RM SE

KF 0.1309 0.2862 0.0864 0.3048 0.1087 0.2955

GP-PF (Lin) 0.2504 0.2184 0.1328 0.2863 0.1916 0.2524

GP-PF (Exp) 0.2753 0.2166 0.1361 0.2718 0.2057 0.2442

GP-PF (Mat) 0.2821 0.2215 0.1295 0.2809 0.2058 0.2512

where yi are the reference values, y is their mean, and ŷi are the corresponding
estimates. R2 takes values in the range [0, 1]2 with R2 = 1 meaning a perfect data
fit.

For comparison, an SVM regression-based system with linear (Lin) and RGB
(Rbf) kernel functions was built using the LIBSVM toolkit [4]. The cost parameter
was optimized manually using a grid search. The other parameters were set to their
defaults. Table3.2 shows theGPR and SVR results for arousal and valence separately
as well as the average score.

There is negligible difference in the GPR and SVR results, especially when expo-
nential covariance and kernel functions are used which is the best case for both
models. This to some extend confirms some previous results on the same task [36],
but with different features, that GPR shows same or better performance than SVR.
On the other hand, selected features may be too simple reveal the full potential of
the models.

Dynamic emotion

For dynamic music emotion recognition, the original feature vectors were used to
learn the GP parameters for the GP-PF systemwith various covariance functions. For
comparison, KF system was also trained. Table3.3 summarizes the emotion estima-
tion results using these two systems.As in the speech emotion case, theGP-PF clearly
outperforms the KF in both correlation and root-mean-squared error measures.

2In practice, it can take values outside this range, which would indicate estimation failure.
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Fig. 3.4 Example of
successful estimation of the
arousal trajectory. The solid
curve shows the reference
arousal change and the other
two are the GP particle filter
and KF estimates with
correlation coefficient of
0.988 and 0.698,
respectively. All curves are
scaled to fit in the [–0.5, 0.5]
range
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Fig. 3.5 Example of failed
arousal trajectory estimation.
The GP particle filter result
(R = −0.869) exhibits
opposite behavior, i.e., in
contrast to the reference, at
the beginning it is low and
then goes up, while Kalman
filter (R = −0.460) fails to
capture the change and
increases gradually
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Examples of successful and failed estimation of the arousal trajectory are pre-
sented in Figs. 3.4 and 3.5, respectively. In each figure, there are three curves cor-
responding to the reference trajectory and the estimated trajectories from the GP
particle and Kalman filters. As can be seen, even in the failed case, GP-PF was able
to capture the change in the trajectory, although in the opposite direction.

3.9 Discussion and Conclusions

In this chapter, we introduced the Gaussian processes for the task of speech and
music emotion recognition. For static emotion, i.e., when single point in the affect
space has to be estimated for one utterance or music clip, GP regression can be used.
Compared to the current state-of-the-art SVM regression, GPs perform on par or
better than SVM as other studies have also shown.

The GP and SVM have many common characteristics. They are both nonpara-
metric, kernel-based models, and their implementation and usage as regressors is
very similar. However, GPs are probabilistic Bayesian predictors which in contrast
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to SVM produce Gaussian distributions as their output. Another GP advantage is the
possibility of parameter learning from the training data. On the other hand, SVM
provides a sparse solution, i.e., only “support” vectors are used for the inference,
which can be a plus when working with large amount of data.

Although the same regression approach can be applied to the case of dynamic
emotion recognition, capturing the characteristics of the emotion evolution in time
greatly benefits the estimation performance. Thus, state-space models are well suited
for such cases. The Kalman filter is a widely used linear state-space model which
has been thoroughly studied and is fast and efficient model when data relationships
are close to linear. When these relationships are highly nonlinear, however, the KF
performance drops significantly. Nonlinear extensions, such as EKF or UKF, lessen
the linearity restrictions; however, they require some prior knowledge about the form
of the nonlinear functions and often suffer from stability issues.

The main advantage of Gaussian processes is that they do not require any knowl-
edge or assumptions about the data relationships. As shown in Sect. 3.4, the mapping
function f () is marginalized out during the inference and can be any function with
unlimited degree of nonlinearity. This leads to an improved system performance and
as the above evaluations show, can be as much as two times better than the one
of a linear system. Compared to other powerful nonlinear models such as Continu-
ous Conditional Random Fields [20] or LSTM neural networks [61], the GP-based
system has the advantage of being nonparametric. Thus, there is no need to choose
explicit nonlinear (feature) functions as in the case of CRF or to train huge number of
parameters (weights) for the NNs. Another advantage is the fully probabilistic nature
of theGPs, which allowsmeaningful interpretation of their outputs. However, as with
all nonparametric models, GPs scale poorly and for large tasks are computationally
expensive.

Gaussian processes quickly penetrate many research fields and application areas
which are currently dominated by the support vector machines or neural networks
and show impressive performance on par or often better than the state-of-the-art
approaches. Of course, there are some issues with GPs which need further improve-
ment such as high computational complexity and storage requirements, but the cur-
rent active research on GP theory will hopefully solve these problems in the near
future.
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Chapter 4
Topic Modeling for Speech and Language
Processing

Jen-Tzung Chien

Abstract In this chapter, we present state-of-art machine learning approaches for
speech and language processingwith highlight on topicmodels for structural learning
and temporal modeling from unlabeled sequential patterns. In general, speech and
language processing involves extensive knowledge of statistical models. We require
designing a flexible, scalable, and robust system to meet heterogeneous and nonsta-
tionary environments in the era of big data. This chapter starts from an introduction
of unsupervised speech and language processing based on factor analysis and inde-
pendent component analysis. Unsupervised learning is then generalized to a latent
variable model which is known as the topic model. The evolution of topic models
from latent semantic analysis to hierarchical Dirichlet process, from non-Bayesian
parametric models to Bayesian nonparametric models, and from single-layer model
to hierarchical tree model is investigated in an organized fashion. The inference
approaches based on variational Bayesian and Gibbs sampling are introduced. We
present several case studies on topic modeling for speech and language applications
including language model, document model, segmentation model, and summariza-
tion model.

4.1 Unsupervised Learning in General

Machine learning is generally categorized into supervised learning and unsupervised
learning. Supervised learning aims to find a function mapping from observations to
their classes, while the unsupervised learning has a broad goal of extracting salient
features and discovering structural information from the given data. In the era of big
data, an enormous amount of multimedia data is available in Internet which contains
speech, text, image, music, video, social network, and many other specialized tech-
nical data. It is challenging to extract reliable features and explore latent structure
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from these abundant heterogeneous data which are prone to be noisy, mismatched,
mislabeled, misaligned, and ill-posed. In addition, the probabilistic learning models
may be improperly assumed, overestimated, or underestimated. The issue of model
regularization plays an important role in machine learning.

In general, we need some statistical models or tools for modeling, analyzing,
searching, recognizing, and understanding real-world data. Such modeling should
faithfully represent the uncertainty in model structure and parameters. The noise
condition in observation data should be sufficiently reflected. The learning method
should be automatic and adaptive to unknown environments and scalable for large
amount of data. The uncertainty in heterogeneous data may be expressed by a prior
distribution or even a prior process. We aim to construct a learning machine which
provides the ways to organize, understand, search, and summarize a large amount of
electronic archives automatically. It is attractive to learn such a model in an unsu-
pervised manner which discovers the hidden themes or topics that pervade data
collection. This model can be used to annotate any kinds of documents according
to their latent themes. With these annotations, we can organize, summarize, search,
and predict for future data.

In this chapter, we first survey a series of unsupervised models in Sect. 4.1.1
and address the history and the evolution of different topic models in Sect. 4.1.2.
We then focus on topic model based on the latent Dirichlet allocation (LDA) [7] in
Sect. 4.1.3.We introduce the inference procedures of LDA including the approximate
inference based on variational inference and Gibbs sampling. Section4.2 addresses
the issue of model selection and its solution based on Bayesian nonparametrics
(BNP). We briefly survey BNP approaches to topic models including hierarchical
Dirichlet process, the nestedDirichlet process andhierarchical Pitman–Yor process in
Sect. 4.2. Section4.3 presents some advances in topicmodels especially for the appli-
cations of speech and language processing including language model in Sect. 4.3.1,
document model in Sect. 4.3.2, segmentation model in Sect. 4.3.3, and summariza-
tion model in Sect. 4.3.4. Finally, the summary and future direction are provided in
Sect. 4.4.

4.1.1 Unsupervised Models

There aremanyunsupervised learning approaches in the literaturewhich are available
to explore latent features of observation data. Principal component analysis (PCA)
[30] is known as a statistical procedure that uses an orthogonal transformation to
project a set of possibly correlated observation variables x ∈ RD into a set of linearly
uncorrelated variables z ∈ RK where K � D. The projected variables are treated
as a kind of latent variables which are also called the principal components. The
projection is obtained by finding the eigenvalues and the corresponding eigenvectors
of the covariance matrix of observation data. The maximal amount of variance is
achieved by this linear projection.
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Factor analysis (FA) [1] is closely related to PCA but with more domain-specific
constraints on the underlying structure. FA uses the regression model for the error
terms, while PCA is a descriptive statistical method for the variance. FA incorpo-
rates the common factors z ∈ RK with a factor loading matrix W ∈ RD×K and a
specific factor vector ε in order to represent the observed data via x = Wz + ε. FA
is seen as a latent variable model owing to the common factors z which are unseen
in unsupervised learning procedure. FA model is constructed by imposing the fol-
lowing conditions. The common factors and specific factors are distributed by the
zero-mean Gaussians with z ∼ N (0, IK ) and ε ∼ N (0,�), respectively, where IK

is an K × K identity matrix and � is an D × D diagonal matrix. And, two sets
of factors are uncorrelated by E[zεT ] = 0. The latent factors account for common
variance in the data. Basically, PCA and FA are solved by eigen-analyzing differ-
ent covariance matrices and accordingly correspond to the second-order approaches
where the principal components in PCA and common factors in FA are Gaussian
distributed.

Independent component analysis (ICA) [21] and blind source separation find a set
of latent components that are non-Gaussian and mutually independent, i.e., a much
stronger assumption. ICA assumes that the observation vector x is mixed from a set
of independent components z by x = Wz where W is an D × K mixing matrix. ICA
discovers the independent components or latent sources bymaximizing the statistical
independence or non-Gaussianity of the estimated components which can be mea-
sured based on the information-theoretic criterion using mutual information [2] and
the higher order statistics using kurtosis [28]. The demixing matrix is estimated by
optimizing such a contrast function. The iterative learning solution to ICA is obtained
accordingly. In general, ICA is known as a higher order approach to explore inde-
pendent components for unsupervised learning which produces a tighter or stronger
clustering than the uncorrelated components in PCA and the uncorrelated factors
in FA.

PCA, FA, and ICA have been successfully developed as the unsupervised
approaches to explore latent variables for a number of applications in speech and
language processing. For example, PCAwas employed in the technique called eigen-
voice [33] which assumed that the supervector of acoustic parameters lay in a sub-
space spanned by a few eigenvectors or latent components. Speaker adapted acoustic
model was obtained by estimating the coefficients of a linear expansion over the
eigenvectors. FA was adopted to explore the common factors from acoustic features
and apply them to build the streamed hidden Markov model [17] where the stream-
ing regularity was governed by the correlation between speech features which was
inherent in common factors. FAwas also applied for subspace-based speech enhance-
ment [16] where the principal subspace and minor subspace were constructed from
common factors and partitioned according to the values of eigenvalues so that the
representation of noisy speech was improved for estimation of clean speech. In addi-
tion, ICA was exploited for speech recognition where an unsupervised learning was
performed to compensate the pronunciation variations in acoustic model via an ICA
algorithm [12]. More recently, a convex divergence [15] was designed as a contrast
function for ICA algorithm which improved the convergence speed for blind source
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separation of speech and music signals. In general, the unsupervised learning algo-
rithms using PCA, FA, and ICA are useful to identify salient features or mixture
sources z from continuous observations x based on a whole collection of observation
vectors D = {x1, . . . , xT }.

4.1.2 Evolution of Topic Models

Latent variable model based on a whole set of continuous observation vectors could
be extended to the one based on the groups of discrete observation data. This
extension was originally developed to conduct a latent semantic analysis [22] and
build a latent topic model using a set of grouped words from different documents
D = {w1, . . . , wM} where each document wm = {wmn} is composed of Nm words
and each word is from a dictionary of V words. Topic model is developed as an
unsupervised learning approach to discover latent features or semantic topics which
are used to index or annotate the observed text documents. The annotations could be
applied for information retrieval and many other applications. Beyond text annota-
tions, the acoustic topic model was proposed for audio tag classification where the
acoustic characteristics were represented by discrete symbols for estimation of latent
acoustic topics [31]. In [35], topic model was developed to conduct audio mixture
analysis where the acoustic data in time–frequency domain were treated as a bag of
frequencies to find acoustic topics. A bag of spectrograms was created to build the
convolutive topic model with shift-invariance property in both time and frequency.
In the fields of computer vision [24], topic model was established as a Bayesian
hierarchical model for scene classification where the image of a scene was seen as a
collection of local regions or a bag of image features. Each image was automatically
annotated with the themes determined by using topic model.

Topic models have been widely developed as a powerful tool for data analysis,
annotation, regression, and classification. Figure4.1 briefly illustrates the evolution
and history of topic models. The earliest topic model called latent semantic analysis
(LSA) was proposed by Deerwester et al. [22] in 1990. LSA was invented for auto-
matic indexing and retrieval through a singular value decomposition (SVD) over a
word-by-documentmatrix. The latent structure ofwords anddocumentswas explored
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Fig. 4.1 Evolution and history of topic models
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from the decomposed matrices. The next milestone of topic model was achieved by
the method called probabilistic latent semantic analysis (PLSA) proposed by Hof-
mann [27] in 1999. PLSA is a probabilistic framework of LSA where the parameters
given latent semantic topics were estimated by maximum likelihood theory using
the expectation maximization (EM) algorithm [23]. In 2003, Blei et al. proposed
the latent Dirichlet allocation (LDA) [7] for text modeling, document classification,
and collaborative filtering. LDA is known as the most popular topic model with the
largest citations in the literature. LDA is an extended paradigm from PLSA by intro-
ducing a Dirichlet prior to represent the topic probabilities or topic proportions so
that the unseen documents could be generalized from Bayesian perspective without
greatly increasing the number of parameters. LDA parameters are inferred by maxi-
mizing the marginal likelihood over latent topics and topic proportions according to
the variational Bayesian (VB) inference [7] and the Gibbs sampling inference [26].

In 2006, Teh et al. proposed the hierarchical Dirichlet process (HDP) [39] which
relaxes the constraint of LDA that the number of topics should be known and fixed
in topic model. A Bayesian nonparametric (BNP) approach was developed as an
expressive probabilistic representation with less assumption-laden approach to infer-
ence. The prior process is introduced to conduct a flexible Bayesian learning with
infinite topic representation. HDP was implemented by the stick-breaking process
and inferred by using the Gibbs sampling procedure. However, topic models based
on LDA and HDP assume that topics are independent. To incorporate the topic cor-
relation or even the topic hierarchy into topic model, Blei et al. proposed the nested
Chinese restaurant process (nCRP) and built the hierarchical LDA (hLDA) for doc-
ument representation [3, 4] in 2010. Gibbs sampling was applied to sample a tree
path and then sample a tree layer to represent a word wmn in a target document wm .
The tree layers in a tree path reflect different degrees of sharing in the estimated
topic parameters. In this chapter, we focus on the topic model based on LDA and
its inference procedures using VB-EM algorithm and Gibbs sampling in Sect. 4.1.3.
The extensions to HDP and nCRP will be addressed in Sect. 4.2. Some advances
in topic model for speech and language processing are described in Sect. 4.3. First
of all, we address the early works on topic model based on LSA and PLSA.

Latent Semantic Analysis

Latent semantic analysis (LSA) [22] goes beyond the lexical level from a collec-
tion of text documents D and aims to reveal the latent semantic structure in low-
dimensional data space. This algorithm first constructs a word-by-document matrix
W with the element ωvm representing the number of times of a word v occurring
in document m. This V × M matrix is then decomposed and approximated using
the SVD method to produce W ≈ U�V� where � is an K × K diagonal matrix
with a reduced dimension K < min(V, M), U is an V × K matrix whose columns
are the first K eigenvectors derived from word-by-word correlation matrix WW�,
and V is an M × K matrix whose columns are the first K eigenvectors derived
from the document-by-document correlation matrix W�W. Each column of �V�
characterizes the location of a particular document in the reduced K -dimensional
semantic topic space. Based on this property, we measure the similarity between two
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documents m and m ′ by projecting the corresponding document vectors vm and vm ′

into the semantic topic space as �vm and �vm ′ and then calculating the cosine sim-
ilarity between two K -dimensional vectors cos(�vm,�vm ′). Using this similarity,
we accordingly conduct the information retrieval by finding the similarity between
a query q and a reference document dm based on cos(�vq ,�vm) where the query
vector in semantic topic space is calculated by vq = �−1U�ωq using the vector ωq

consisting of the number of occurrences of different words in query q.

Probabilistic Latent Semantic Analysis

LSA model was established by applying the SVD method which minimizes the
approximation error by using the decomposedmatrices. LSA is seen as a nonparamet-
ric method where there is no probabilistic distribution assumed in this topic model.
The system performance and model generalization are constrained. Hofmann [27]
introduced a probabilistic solution to LSA based on maximum likelihood (ML) the-
ory. Figure4.2 shows the graphical representation of the probabilistic LSA (PLSA).
PLSA is seen as an aspect model which represents the co-occurrence data of words
(denoted by wn) and documents (denoted by dm) associated with a topic or latent
variable zn = k. The generative model for co-occurrence wn and dm is expressed by
the joint probability p(wn, dm). Under this latent variable model, the joint likelihood
function of training data D = {wn, dm} is formed by

p(D|�) =
M∏

m=1

Nm∏

n=1

K∑

k=1

p(wn|zn = k)p(zn = k|dm)p(dm) (4.1)

where PLSA parameters� = {p(wn = v|zn = k), p(zn = k|dm)} consist of two sets
of topic-basedmultinomialswith the number of parameters given byVK + K M .ML
estimation of PLSA parameters is performed by maximizing Eq. (4.1) with respect
to �. However, such ML estimation suffers from the incomplete data problem due
to the missing variable zn = k or simply zk . EM algorithm is applied to resolve
this problem by alternatively and iteratively performing the E step which calculates
the auxiliary function Q(�′|�) = E(Z)[log p(D, Z |�′)|D,�] and then the M step
which maximizes Q(�′|�)with respect to�′. Here, the auxiliary function Q(�′|�)

is calculated as an expectation of log likelihood function using new parameter esti-
mate �′ given the current estimate �. The expectation is performed over latent
variables Z = {zk}. After EM iterations, ML PLSA parameters are converged at the
mode �̂.

By expanding the joint probability p(wv, dm) where wv implies wn = v, we
may bridge the connection between PLSA and LSA by defining U = {p(wv|zk)}v,k ,
V = {p(dm |zk)}m,k and � = diag{p(zk)}k . And, a matrix with likelihood entries is
formed by P = {p(wv, dm)}v,m = U�V�. Basically, PLSA assumes that the esti-
mated parameters for different topics are nonnegative, while the elements of the
decomposed matrices in LSA, estimated from the eigen-analysis, are not guaranteed
to be nonnegative. LSA may violate the nonnegative nature of word count. In addi-
tion, the Dirichlet priors for multinomial parameters {p(wv|zk)} and {p(zk |dm)}were
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introduced to conduct the maximum a posteriori (MAP) estimation with constraints∑
v p(wv|zk) = 1 and

∑
k p(zk |dm) = 1. MAP PLSA model was developed for an

adaptive topic model which adapted the PLSA parameters to fit the topic-changing
domains [18].

4.1.3 Latent Dirichlet Allocation

There are three issues in PLSA topic model. First, the PLSA parameters estimated by
ML theory are prone to be overtrained. Model generalization is not assured. Second,
PLSA could not model the unseen documents. Third, the number of parameters is
proportionally increased by the number of topics K and the number of documents
M . To overcome these issues, latent Dirichlet allocation (LDA) [7] was proposed by
introducing a Dirichlet prior with hyperparameters α for document-dependent topic
proportions θm = {p(zk |dm)} over K topics as seen in the graphical representation in
Fig. 4.2b. Each document is treated as a “random mixture” over latent topics. Topic
model is generalized to unseen data through the shared prior distribution p(θm |α)

with a common hyperparameter α = {αk} where αk > 0. Model construction using
LDA is described as follows:

1. For each document wm = {wmn|n = 1, . . . , Nm}
a. Draw topic proportions θm ∼ Dir(α)

b. For each word wmn

i. Choose a topic by zmn = k ∼ Mult(θm)

ii. Choose a word by wmn = v|zmn = k, β ∼ Mult(βvk)

Here, β = {βvk} = {p(wv|zk)} denotes the V × K multinomial matrix consisting of
conditional multinomials βvk for different words under different topics. There are
two latent variables in LDA including topic proportions θ = {θmk} and topic assign-
ments z = {zmn}. LDA parameters {α, β} are estimated by maximizing the marginal
likelihood over two latent variables

p(D|α,β) =
M∏

m=1

∫

p(θm |α)

Nm∏

n=1

K∑

k=1

p(zmn = k|θm)p(wmn|zmn = k,β)dθm .

(4.2)

(a) (b) (c)

Fig. 4.2 Graphical representation for a PLSA, b LDA and c HDP
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We can see that the number of parameters in LDA is VK + K which is much smaller
than VK + K M for PLSA. A shared α for all documents in LDA can be used to
generalized to unseen data and keep a compact model complexity.

However, the exact solution to model inference based on Eq. (4.2) does not exist
due to the coupling of multiple latent variables θ and z in posterior distribution
p(θ, z|D,α, β). In what follows, we introduce the approximate inference procedures
based on variational Bayesian and Gibbs sampling.

Inference by Variational Bayesian

Variational Bayesian (VB) inference is known as the deterministic approach to infer
model parameters through a convexity-based variational procedure which is imple-
mented by using the Jensen’s inequality. VB aims to resolve the intractable posterior
distribution p(θ, z|D,α, β) by using a factorizable variational distribution

q(θ, z|γ,φ) =
M∏

m=1

q(θm |γm)

Nm∏

n=1

q(zmn|φmn) (4.3)

through maximizing a lower bound of the logarithm of marginal likelihood
L(γ,φ;α, β) where γ and φ denote the variational Dirichlet and multinomial para-
meters, respectively. We have the relation

log p(D|α, β) = L(γ,φ;α, β) + KL(q(θ, z|γ,φ)‖p(θ, z|D,α, β)). (4.4)

Therefore, maximizing the lower bound L(γ,φ;α, β) with respect to variational
parameters {γ,φ} is equivalent to estimating the new variational distribution
q(θ, z|γ̂, φ̂) which is closest to the true posterior p(θ, z|D,α, β) with the smallest
Kullback–Leibler divergence KL(·‖·). Basically, finding the approximate posterior
distribution q(θ, z|γ̂, φ̂) is seen as an expectation step (also called VB-E step) in
VB-EM algorithm. Then, in VB-M step, we upgrade the lower bound using the new
variational parameters L(γ̂, φ̂;α, β) and maximize the updated lower bound with
respect to the model parameters {α, β} so as to estimate the new LDA parameters
{α̂, β̂}. VB-EM algorithm is run to upgrade the variational distribution and increase
the lower bound, and accordingly improve the marginal likelihood using the con-
tinuously updated model parameters. LDA parameters are finally estimated with
convergence after VB-EM iterations as detailed in [7]. Notably, since the Dirichlet
distribution in LDA is seen as the conjugate prior for the multinomial likelihood of
the observed words, the solutions to variational Dirichlet parameter vector γ̂ = {γ̂k},
variational multinomial parameters φ̂ = {φ̂nk}, and conditional multinomial distrib-
utions β̂ = { p̂(wv|zk)} are derived in the closed form. Only the solution to Dirichlet
model parameters α̂ is calculated by the Newton–Raphson algorithm. Importantly,
the variational Dirichlet parameters γ̂ are seen as the surrogate of the Dirichlet model
parameters α̂which sufficiently reflect the topic proportions θ. The variational lower
boundL(γ̂, φ̂;α, β) is treated as a tractable surrogate for the intractable log marginal
likelihood log p(D|α, β).



4 Topic Modeling for Speech and Language Processing 95

Inference by Gibbs Sampling

Griffiths and Steyvers [26] presented a Markov chain Monte Carlo (MCMC)
inference solution to LDA topic model. MCMC provides another realization of
approximate inferencewhich fulfills the full Bayesian perspective. Different from the
deterministic approximation based on VB, MCMC is known as a stochastic approx-
imation. MCMC uses the numerical sampling computation rather than solving the
integral and expectation analytically.MCMCprovides highlyflexiblemodelswithout
limitation of any specific distribution and can be used to infer the infinite-dimensional
topic models based on HDP and nCRP which will be addressed in Sect. 4.2. MCMC
is computationally expensive without convergence guaranteed. The asymptotically
exact solution can be found.However,VBnever generates the exact solution but guar-
antees convergence and fast implementation. The strengths and weaknesses using
VB and MCMC are complementary.

Gibbs sampling is a simple andwidely applicable realization ofMCMCalgorithm.
Every single state of a Markov chain is seen as an outcome of a latent variable in
a variable sequence z = {z1, . . . , zK }. Each step of the Gibbs sampling procedure
replaces the value for one of the variables zk by a value drawn from the distribution of
that variable conditioned on the values of the remaining states z−k (i.e., z = {zk, z−k})
including the preceding states z(τ+1)

1:(k−1) in new iteration τ + 1 and the succeeding states

z(τ )
k+1:K in current iteration τ

z(τ+1)
k ∼ p

(

zk

∣
∣
∣
∣z

(τ+1)
1:(k−1), z(τ )

(k+1):K

)

. (4.5)

The sampling procedure is repeatedwith T iterations by cycling through the variables
in a particular order or in a random order with some distribution.

Using Gibbs sampling procedure for LDA, we sample the topic assignment zk

according to the predictive posterior distribution p(zmn = k|z−(mn),D) given by

p(wmn = v|zmn = k, z−(mn), w−(mn))p(zmn = k|z−(mn))

= E[βvk |z−(mn), w−(mn)] E[θmk |z−(mn)]
= η+∑M

m=1

∑Nm
i=1,i 	=n zk

mi w
v
mi

Vη+∑M
m=1 Nm−1

α+∑Nm
i=1,i 	=n zk

mi

Kα+Nm−1

(4.6)

where η is the Dirichlet parameter of βvk , wmn = v is expressed by wv
mn = 1 and

zmn = k is written by zk
mn = 1. Here, we use the property of predictive multinomial

p(zk |z−k) = ∫
p(zk |θ)p(θ |z−k)dθ = E[θ |z−k]. (4.7)

With a set of samples of topic assignments for different words and documents z =
{zmn}, we can estimate themultinomial parameters for topics θ̂ = {θ̂mk} and forwords
under different topics β̂ = {β̂vk} by using the expected value of multinomials as given
in Eq. (4.7).
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4.2 Bayesian Nonparametric Learning

Topic models based on LSA, PLSA, and LDA are constructed as a finite-dimensional
mixture representation which assumes that (1) the number of topics is fixed and (2)
different topics are independent. These assumptions constrain the flexibility and per-
formance of topic model in presence of scalable data under heterogeneous condition.
The topic models based on HDP [39] and nCRP [3, 4] were accordingly developed
to resolve these two assumptions through Bayesian nonparametric (BNP) learning.
In general, BNPs are used to characterize a big parameter space and construct the
probability measure over this space. We setup a stochastic prior process on proba-
bility distributions which is a measure on function space. A Bayesian model on an
infinite-dimensional parameter space is established. BNPs allow data representation
to grow structurally when more data are collected. Number of clusters or topics (or
model structure) is unknown a priori. In what follows, we describe BNP learning
based on the Dirichlet process and the Pitman–Yor (PY) process. We then introduce
the topic models produced by HDP and nCRP and the language model drawn from
the hierarchical PY (HPY) process [38].

Dirichlet Process

Dirichlet process (DP) is realized to find the flexible data partitions and provide the
nonparametric prior over the number of topics K via a distribution over probability
measures G ∼ DP(α0, G0) where α0 > 0 is a strength parameter and G0 is a base
measure over a probability space � with any partitions A1, . . . , Ak ∈ � as

(G(A1), . . . , G(Ak)) ∼ Dir(α0G0(A1), . . . , α0G0(Ak)) (4.8)

which is an infinite-dimensional generalization of Dirichlet distribution. The topic-
based representation of a single document w is formed by drawing the probability
measure θn for each word wn using an DP G. The predictive multinomial for new
parameter θn+1 in partition A given the previous ones θ1:n is obtained by Eq. (4.7) as

p(θn+1 ∈ A|θ1:n, α0, G0) = E[G(A)|θ1:n] =
n∑

i=1

1

α0 + n
δθi (A) + α0

α0 + n
G0(A)

=
K∑

k=1

nk

α0 + n
δφk (A) + α0

α0 + n
G0(A)

(4.9)

where φ1, . . . , φK denote the distinct values from θ1:n . DP can be realized by using
the stick-breaking process (SBP) and the Chinese restaurant process (CRP). Equa-
tion (4.9) can be explained as a metaphor of CRP with the existing K tables (or
clusters). New customer θn+1 enters a restaurant and chooses an occupied table k
with probability nk

α0+n or a new table with probability α0
α0+n where nk denotes the

number of customers who have seated in table φk . On the other hand, using the
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SBP, we randomly break a unit-length stick into two segments and find the propor-
tions π = {πk} ∼ GEM(α0) with constraint

∑
k πk = 1 using the GEM distribution

through a process of drawing beta variables {π ′
k}. An DP, G ∼ DP(α0, G0), is imple-

mented by

φk ∼ G0, π ′
k |α0 ∼ Beta(1, α0), πk = π ′

k

k−1∏

j=1

(1 − π ′
j ), G =

∞∑

k=1

πkδφk . (4.10)

Pitman–Yor Process

Pitman–Yor (PY) process [34], PY(d0, α0, G0), is expressed as a three-parameter
distribution over distributions where 0 ≤ d0 < 1 is a discount parameter which char-
acterizes the power-law distribution in natural language, namely many unique words
are observed and most of them rarely. Basically, d0 controls the asymptotic growth of
the number of unique words, while α0 controls the overall number of unique words.
When d0 = 0, this PY process reverts to DP(α0, G0). When d0 > 0, PY process
draws a longer tail probability measure than the DP. Let G∅ = [G∅(w)]w∈�v repre-
sent the vector of unigrams with empty context ∅ and G0(w) = 1

V . The predictive
unigram probability of a new word w is calculated by

p(w|D, d0, α0) =
m·∑

k=1

nk − d0
α0 + n·

δφk (w) + α0 + d0m ·
α0 + n·

G0(w)

= nw − d0mw

α0 + n·
+ α0 + d0m ·

α0 + n·
1

|V|

(4.11)

where n· = ∑
k nk is the total number of customers in different tables, mw is the

number of occupied tables labeled by word w, and m · = ∑
w mw is calculated over

different words. Physical meaning of discounting scheme using d0 is obvious in both
terms of right-hand side of Eq. (4.11). The number of occurrences of the seen words
is discounted and distributed for those of the unseen words in case of nw = mw = 0.

Hierarchical Dirichlet Process

HDP deals with the mixed membership representation for multiple documents or
grouped data where each document wm is associated with a mixture model which is
drawn from an DP by Gm ∼ DP(α0, G0). Data in different documents share a global
mixture model drawn from a global DP by G0 ∼ DP(γ, H) as seen in Fig. 4.2c.
HDP can be expressed by the mixture models with the shared atoms {φk}∞k=1 but
different weights or proportions β = {βk}∞k=1 and πm = {πmk}∞k=1 so that we have
G0 = ∑

k βkδφk and Gm = ∑
k πmkδφk with constraints

∑
k βk = ∑

k πmk = 1. The
HDP topic model is accordingly established through a stick-breaking process based
on an GEM distribution

β|γ ∼ GEM(γ ), πm |α0, β ∼ DP(α0, β), zmn|πm ∼ Mult(πm)

φk |H ∼ H, wmn|zmn, {φk}∞k=1 ∼ Mult(φzmn )
(4.12)
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where the infinite-dimensional topic multinomials {φk}∞k=1 are incorporated. Impor-
tantly, a two-stage SBP was implemented to connect the relation between the topic
proportions for words in corpus level β and in document level πm [39].

The Nested Chinese Restaurant Process

The topicmodel based onLDAassumes that different topics are independent. To relax
this restriction, the correlated topic model (CTM) [6] was proposed by introducing
a multivariate logistic Gaussian distribution as a prior distribution to replace the
Dirichlet prior distribution for topic proportions θ in Sect. 4.1.3. Logistic Gaussian
adopts a softmax transformation to impose the condition of summing the proportions
to be one. The non-diagonal elements of the corresponding covariance matrix induce
the dependencies between the transformed topic multinomials. However, CTM fixed
the number of topics and did not consider the topic hierarchy.

Blei et al. proposed the nested Chinese restaurant process (nCRP) [4] and built
the hierarchical LDA [3] to explore different levels of aspects for topic modeling
without fixing the model structure. Figure4.3a depicts an infinitely branching tree
structure for nCRP representation of words (denoted by blue circles) and document
(denote by yellow rectangle). Thick arrows denote a tree path cm drawn from nine
words of a document wm or dm . Each word wmn is assigned by a topic parameter φk

at a tree node along cm using topic proportions πm .

1. For each node k in the infinite tree

a. Draw a topic parameter φk |H ∼ H

2. For each document wm = {wmn|n = 1, . . . , Nm}
a. Draw a tree path by cm ∼ nCRP(α0)

b. Draw topic proportions over layers of cm by a stick-breaking process
πm ∼ GEM(γ )

c. For each word wmn

i. Choose a layer or a topic by zmn = k ∼ πm

(a) (b)

Fig. 4.3 Graphical representation for a nCRP and b sentence-based nCRP
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ii. Choose a word based on topic zmn = k by
wmn|zmn, cm, {φk}∞k=1 ∼ Mult

(
φcm (zmn)

)

In implementation of nCRP, Gibbs sampling is applied to sample the posterior tree
path and word topic {cm, zmn} for M documents inD = {wm}with Nm words in each
document according to the individual posterior probabilities of cm and zmn given D
and the current values of all the other latent variables, i.e., p(cm |c−m,D, z, α0, H)

and p(zmn|D, z−(mn), cm, γ, H). Again, “−” denotes the self-exception. The tree
path cm is selected for each customer or document wm . The tree nodes along cm

imply a series of visits of this customer to different restaurants in different days. A
hierarchical topic model is constructed with different degrees of sharing from root
node (broad topic) to leaf nodes (specific topics).

Hierarchical Pitman–Yor Process

Teh [38] presented anBNP learning for languagemodel (LM) to dealwith the issue of
data sparseness in higher order n-gram model. To cope with this issue, conventional
method using the Kneser-Ney (KN) LM smoothing [32] was empirically developed
by discounting the number of occurrences for seen n-gram events and distributing
these occurrences to unseen n-gram events. Such discounting mechanism reflects the
power-law property of natural language and does improve n-gram modeling. Inter-
estingly, KN-LM can be interpreted as a hierarchical Bayesian framework according
to the hierarchical Pitman–Yor (HPY) process. Similar to the style of hierarchical
generative process based on HDP, HPY process conducts a hierarchical generation
of PY processes to draw the discounted n-gram probabilities p(wi |wi−1

i−n+1) where
the predictive probability of next word w = wi is based on a history or a context vec-
tor consisting of previous n − 1 words u = {wi−n+1, . . . , wi−1} � wi−1

i−n+1. The HPY
process is expressed by a recursive formula where the PY process Gu is formed with
a nested base measure Gπ(u) of backoff context π(u), which is also an PY process
given by a base measure of doubly backoff context π(π(u)) in a much lower order
model. We have

Gu ∼ PY(d|u|, α|u|, Gπ(u)), Gπ(u) ∼ PY(d|π(u)|, α|π(u)|, Gπ(π(u))) (4.13)

where the parameters d|u| and α|u| depend on the length of context |u|. This is
repeated until we reach to PY process for unigram model with empty context ∅,
G∅ ∼ PY(d0, α0, G0), as implemented in Eq. (4.11). A kind of linearly interpolated
LM (called HPY-LM) is accordingly produced by using the HPY process which
combines the mixture probability measures from the higher order statistics in the
nth-order model from u and the lower order LM in the (n − 1)th-order base measure
frombackoff contextGπ(u). The combinationweights are formed from an PYprocess
mixture model. In Sect. 4.3.1, we will present a new BNP inference procedure for
topic-based LM.
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4.3 Advanced Topic Models and Their Applications

We have surveyed the fundamental topic models based on the non-Bayesian para-
metric methods using LSA and PLSA, the Bayesian parametric method using LDA,
and the Bayesian nonparametric methods using HDP and nCRP. Model structure has
been extended from single-layer model (LSA, PLSA, LDA, HDP) to multiple-layer
model (nCRP). Approximate inference algorithms using VB for LDA and Gibbs
sampling for LDA, HDP, and nCRP have been addressed. In this section, we will
present a series of advanced topic models for different applications including speech
recognition, information retrieval, document classification, text segmentation, and
document summarization. Here, we categorize these advanced topic models into
different information models ranging from language model, document model, seg-
mentation model to summarization model. Going beyond LDA topic model, some
other issues are concerned and tackled to achieve flexible, scalable, and robust infor-
mation systems for real-world applications.

4.3.1 Language Model

Speech recognition system is constructed with two essential models: acoustic model
and language model (LM) which considerably affect the system performance. LM
provides a prior word probability which characterizes the regularities in natural lan-
guage. LM is not only useful for speech recognition but also for many other infor-
mation systems including optical character recognition, spell correction, question
answering, automatic summarization, information retrieval, etc. Basically, LM based
on n-gram probability p(wi |wi−1

i−n+1) is constrained with two weaknesses: (1) lack of
training data for higher order LMwith large n and (2) lack of long-distance informa-
tion due to the limitation of n-gram window. To deal with the sparseness of training
data, HPY process [38] in Sect. 4.2 was presented to draw the smoothed LM with
discounting scheme which was seen as Bayesian interpretation for the heuristic solu-
tion based on KN-LM [32]. Considering the issue of long-distance information, the
topic-based LMs were proposed by merging the latent semantic information which
relaxes the constraint of using short-term lexical information. In [25], PLSA topic
model was incorporated into the construction of n-grammodel. In addition, the LDA-
LM was constructed by employing LDA-based topic information into LM training
where the topic prediction was based on the hypothesis of either history words [36]
or the words in a whole sentence [37]. In what follows, we introduce the extension
of PLSA-LM and LDA-LM to the Dirichlet class LM [13] and the generalization of
HPY-LM to the hierarchical Pitman–Yor-Dirichlet LM [9] where the topic models
are taken into account.

Dirichlet Class Language Model

The key issue in LDA-LM [36, 37] is that topic information for word prediction is
estimated from a set of training documents D which is treated as a bag of words.
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(a) (b)

Fig. 4.4 Graphical representation for a DC-LM and b cache DC-LM

Such estimation did not consider the latent variables based on the sequential order
of n − 1 history words {wi−n+1, . . . , wi−1}. Such ordering information is crucial
for word prediction in natural language. Dirichlet class LM (DC-LM) [13] was
proposed to deal with this issue through the representation of history words wi−1

i−n+1
by concatenating a sequence of n − 1 history word vectors which are encoded by 1-
of-V coding scheme. An (n − 1)V × 1 supervector hi−1

i−n+1 is formed as the surrogate
of wi−1

i−n+1 and then projected into an C-dimensional class space or topic space so that
the class proportions are drawn from aDirichlet prior θ ∼ Dir(A�hi−1

i−n+1). Graphical
representation is shown in Fig. 4.4a. Here, the parameter A = {a1, . . . , aC} in DC-
LM plays a similar role to α in LDA. The other parameters β = {βvc} are seen as the
class conditional multinomials for V words. In a corpusD, there are H histories with
Nh words predicted by each history. As a result, DC-LM is calculated by integrating
over different classes ci and proportions θ

p(wi |hi−1
i−n+1, A, β) =

C∑

ci =1

p(wi |ci , β)

∫

p(θ|hi−1
i−n+1, A)p(ci |θ)dθ

=
C∑

c=1

βic
a�

c hi−1
i−n+1

∑C
j=1 a�

j hi−1
i−n+1

.

(4.14)

DC-LM parameters {A, β} are estimated according to an VB-EM procedure [13].
DC-LM acts as a new Bayesian class LM which is a smoothed LM over the classes
of histories. However, the long-distance information outside n-gramwindowwas not
characterized. For this concern, a cache DC-LM was proposed by incorporating the
cache memory from all history words wi−1

1 into DC-LM as illustrated in Fig. 4.4. We
can see that cacheDC-LM is calculated through choosing the best class sequence ĉi−1

associated with each history word sequence ŵi−1. However, DC-LM is constructed
with the fixed number of classes or topicsC without considering power-law property.

Hierarchical Pitman–Yor-Dirichlet Language Model

Using HPY-LM, the predictive n-gram from Gu is inferred by marginalizing out
the prior measure of backoff context Gπ(u). HPY-LM copes with the issue of data
sparseness and holds the power-law property of natural language. But, topic infor-
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mation was not captured and accordingly the long-distance information was missed
in HPY-LM. In [9], a hierarchical Pitman–Yor-Dirichlet LM (HPYD-LM) was pro-
posed to achieve an BNP learning for the discounted topic-based LM which is seen
as a flexible LM with power-law distributions and latent topics where the number
of topics is unbounded. An HPYD process is constructed to draw the HPYD-LM.
Different from the parametric topic mixture model

p(wi |wi−1
i−n+1) =

K∑

k=1

p(zi = k|wi−1
i−n+1)p(wi |wi−1

i−n+1, zi = k) (4.15)

HPYD process combines a prior process for drawing the topic-dependent smoothed
n-gram p(wi |wi−1

i−n+1, zi = k) from an PY process, and a prior process for topic
mixture probability p(zi = k|wi−1

i−n+1) from an DP. Starting from the uniform seed
measure H0(w) = 1/V for all words w ∈ �v, we draw a word measure from a
global topic by G0 ∼ DP(γ0, H0). The distribution of topic-dependent unigram
G∅zi with empty context ∅ and topic assignment zi is sampled by an PY process
G∅zi ∼ PY(d1, α1, G0) where G0 is acted as a prior base measure. Next, G∅zi serves
as a base measure for an DP to draw a distribution of unigrams Gwi ∼ DP(γ1, G∅zi ).
Using Gwi as a prior measure, we draw the distribution of topic-dependent bigrams
by using PY process Gwi−1zi ∼ PY(d2, α2, Gwi ). This measure is again acted as a
prior basis for an DP to draw the distribution of bigrams Gwi−1wi ∼ DP(γ2, Gwi−1zi ).
Therefore, HPYD process is recursively realized by sampling the distribution of
topic-dependent n-grams p(wi |wi−1

i−n+1, zi ) from Gwi−1
i−n+1zi

and then that of n-grams

p(wi |wi−1
i−n+1) from Gwi

i−n+1
by

Gwi−1
i−n+1zi

∼ PY
(

dn, αn, Gwi−1
i−n+1

)
, Gwi

i−n+1
∼ DP

(
γn, Gwi−1

i−n+1zi

)
. (4.16)

A hierarchical Chinese restaurant process (HCRP) [9] was designed to implement
the HPYD process and infer the HPYD-LM. Imagine that there are Chinese restau-
rants serving customers with infinite tables, infinite menus, and infinite dishes. For
each restaurant with context u, the first customer or word with parameter θ1 enters
the restaurant and chooses the first table in restaurant u. He or she draws a shared
menu for all customers seating with the same table and then orders a dish which is
labeled by a distinct word wu1. Each customer θi only chooses one table and one dish
from the single menu corresponding to that table. Each table has its own menu. Fol-
lowing this way, each customer chooses a table with a distinct menu and then draws
a dish from that menu. Note that the menus in this HCRP are associated with the
topics in HPYD-LM. The menus in restaurant u are obtained from two information
sources: (1) the corresponding menus from the lower order or back off restaurant
π(u) and (2) the clustering information from the customers in higher order restau-
rant u. The HPYD n-gram is determined by calculating the predictive or marginal
probability of a test word w appearing after a context u given by a set of training data
D. The marginalization is performed over the arrangements of tables t = {ti , t−i },
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menus z = {zi , z−i }, dishes l = {li , l−i } of all training words w = {wi , w−i }, and the
hyperparameters λ = {dm, αm, γm |1 ≤ m ≤ n}. A Gibbs sampling procedure was
developed to draw the tables, the menus, and the dishes according to the corre-
sponding posterior probabilities p(ti = t |t−i , z,λ, w, u), p(zi = k|z−i , t,λ, w, u),
and p(li = w|l−i , zi = k, z−i ,λ, w−i , u), respectively [9]. At last, we realize the
HPYD process and obtain the HPYD n-gram p(wi = w|w−i , z,λ, u).

4.3.2 Document Model

Some other advanced topic models are developed for robust document modeling by
compensating the nonstationary condition or conducting the sparse representation.

Dynamic Topic Model

Blei and Lafferty [5] proposed a dynamic topic model (DTM) to analyze the time
evolution of topics in a large document collection. The state space models using
natural parameters of LDA topic model were implemented to provide a qualitative
window over the content of a large data collection. In particular, the topics associated
with time slice t evolve from the topics associated with slice t − 1. Accordingly, the
conditional multinomials β = {βk} and the Dirichlet parameters α are represented
by the state space model with the evolution using Gaussians given by the isotropic
covariance parameters σ 2 and δ2

βt,k |βt−1,k ∼ N (βt−1,k, σ
2 I ), αt |αt−1 ∼ N (αt−1, δ

2 I ). (4.17)

Such time-dependent continuous variables are converted into the proportion variables
to draw topics {zmnt } using αt and choose the corresponding words {wmnt } using βt,z

for each time slice t . DTM is an extension of LDA to meet nonstationary condition
and has been successfully applied to analyze the evolution of topic words in the
journal Science over 120 years [5].

Sparse Topic Model

The real-world text documents are usually contaminated with noises and redundan-
cies. Sparse representation is helpful to establish a compact model which is robust to
adverse conditions. Recently, a sparse Bayesian learning was introduced to perform
sparse document representation using the sparse LDA (sLDA) [11]. Previous topic
model based on LDA assumes that all of K topics are fully connected to each word
wmn in a document. The sLDA topic model aims to select salient features in LDA
network by incorporating the spike-and-slab priors [29] into a Bayesian framework.
The spike distribution is used to select salient features, while the slab distribution is
applied to establish topicmodel based on the selected relevant topics. As addressed in
Sect. 4.1.3, the connections between topics andwords inLDAnetwork are sufficiently
reflected by the variational multinomial parameters {φ̂nk} which are introduced as
the hyperparameters of the variational distributions of latent variables {zmn = k}.
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(a) (b)

Fig. 4.5 a Illustration for feature selection using spike-and-slab priors. b Graphical representation
for sparse LDA

Such connection is used to select salient features or topics for document represen-
tation. Figure4.5a illustrates the feature selection using spike-and-slab priors. The
variational parameter φ̂nk is treated as a slab probability which connects the repre-
sentation of a target word wmn using the relevant topics (here k = 2 and k = 3). This
judgment is made from an indicator bnmk ∼ Bern(λmk) using a Bernoulli parame-
ter drawn from a beta distribution λmk ∼ Beta(π). A word wmn is chosen using the
conditional multinomial where only the relevant topic k with bnmk = 1 is merged,
namely

wmn = v|bnmk = 1, zmn = k ∼ Mult(βvk). (4.18)

Graphical representation of sLDA is shown in Fig. 4.5b. An VB-EM procedure was
developed to infer the sLDA parameters {α, β,π} bymaximizing the marginal likeli-
hood p(D|α, β,π)over four latent variables {z, θ, b,λ}.Notably,marginal likelihood
is only accumulated for all training samples {wmn} connected with their associated
topics znm = k with condition bnmk = 1. The variational distributions with parame-
ters {φ, γ,ψ,η} corresponding to latent variables {z, θ, b,λ} are estimated by maxi-
mizing the variational lower bound. Importantly, the variational binomial parameters
ψ̂ = {ψ̂nkb} for binomial indicators b = {bnmk} are estimated as the spike probabili-
ties for feature selection, while the variational multinomial parameters φ̂ = {φ̂nk} for
multinomial topics z = {znm} are calculated as the slab probabilities to model those
selected features. In this illustration, the spike probability for topic k = 1 under
bnmk = 1 is too small to contribute the generation of a target word wmn .

4.3.3 Segmentation Model

Sequential patterns in natural language usually appear without explicit boundaries
but with the variations of temporal topics. Text segmentation aims to partition the
text data into homogeneous processing units or semantically coherent chunks. This
research horizon is crucial for many applications including language modeling,
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speech recognition, text categorization, retrieval and summarization, and also topic
detection and tracking.However, in realworld, the observed text stream is constructed
by a set of heterogeneous documents, making it difficult to extract homogeneous top-
ics. In what follows, we introduce how LDA topic model is extended to cope with
the stream-level segmentation and the document-level segmentation [14]. In stream-
level segmentation, the text stream is partitioned into topic-coherent documents. In
document-level segmentation, the pseudodocument is further segmented into word-
coherent paragraphs. Such a hierarchical segmentation makes it feasible to build a
precise topic model to compensate the varying distributions of topics and words in
nonstationary conditions. This idea can be applied to conduct automatic transcription
for lecture speech where the discussion topics are changed by time. This is similar
to the situation that the topics are moving between two concatenated documents.

Topic-Based Stream-Level Segmentation

Segmentation of a text stream can be treated as a task of detecting the boundary
of documents according to the similarity between sentences wt−1 and wt at each
sentence time t which is measured by calculating the cosine distance between the
corresponding topic proportions s(θt−1, θt ). The sentence-dependent topic propor-
tions θt = {θtk} are determined by using the MAP estimate of variational posteriors
E[θtk |γ̂tk]. We draw a segmentation probability based on the beta distribution using
this one-sided contextual similarity, i.e.,ω ∼ Beta(1 − εt , εt )where εt = s(θt−1, θt ).
The segmentation label c for each pair of sentences is then chosen by a binomial
distribution c ∼ Bin(ω). The segmentation boundary is detected when c = 1, other-
wise this sentence is grouped into the previous segment. The number of segments is
determined automatically. In this study, contextual topic information plays an impor-
tant role for stream-level segmentation. In [14], the one-sided contextual similarity
s(θt−1, θt ) was improved by using the two-sided contextual similarity for beta para-
meter via εt = max{s(θt−1, θt ), s(θt−1, θt+1)}. A smoothed boundary detection was
performed. The segmentation error due to the non-topic sentences was alleviated.
This stream-level segmentation is performed to compensate the variations of topic
distributions θ in a text stream.

Topic-Based Document-Level Segmentation

Furthermore, the variations of word distributions within a pseudodocument are
treated in the document-level segmentation. It is because that the usage of the same
words in a natural language system is gradually varied over different paragraphs
or segments due to the composition style and document structure. Accordingly, we
merge a Markov chain to characterize the dynamics of word distributions in LDA
topic model. Figure4.6a shows graphical representation of the resulting nonstation-
ary LDA. Here, each word wmn or simply wn is generated due to both topic zn and
segment or state sn . A left-to-right hidden Markov model topology without state
skipping is implemented for document-level segmentation. The model parameters
consist of {α, β, A} where A = {asn−1sn } denotes the state transition probabilities.
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(a) (b) (c)

Fig. 4.6 Graphical representation for a nonstationary LDA, b adaptive and nonstationary LDA,
and c sentenced-based LDA

Again, the VB-EM algorithm is applied to estimate model parameters {α, β, A} by
maximizing the marginal likelihood

p(D|α,β, A) =
M∏

m=1

∫

p(θm |α)
∑

s

Nm∏

n=1

K∑

k=1

p(zmn = k|θm)

× p(wmn|zmn = k, smn,β)p(smn = s|sm,n−1, A)dθm .

(4.19)

This nonstationary LDA was constructed from spoken documents and merged into
n-gram language model. The speech recognition results were rescored for spoken
documents [19]. In [20], an adaptive segmentation model was proposed by introduc-
ing a style variable c which indicated the number of stylistic changes in a document
as depicted in Fig. 4.6b. Style variable is modeled by a multinomial distribution
c ∼ Mult(τ) with the style proportions drawn from a Dirichlet prior τ ∼ Dir(η).
The hybrid stream-level and document-level segmentation was successfully applied
for topic detection and tracking in [14].

4.3.4 Summarization Model

Automatic summarization aims to extract the thematic contents or sentences from
a large set of documents. A good summary is helpful for browsers to capture the
themes and concepts from multiple documents in a very short time. Beyond doc-
ument representation in word level and document level using LDA, the key issue
in a summarization system is to conduct a hierarchical modeling over words, sen-
tences, and documents in a corpus. Given the trained parameters, we can measure
the similarity between a document and individual sentence and select the top-ranked
sentences according to the Kullback–Leibler (KL) divergence. In a practical sys-
tem, we usually observe heterogeneous documents where the topics are ambiguous,
inconsistent, and diverse. A good summary should reflect the diversity of topics in
documents and keep the redundancy to be minimum. In what follows, we survey two
advanced topic models for document summarization. One is the parametric model
based on the sentence-based LDA [8] and the other one is the nonparametric model
based on the sentenced-based nested Chinese restaurant process [10].
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Sentence-Based Latent Dirichlet Allocation

A simple extension to allow sentence modeling in LDA topic model is to introduce
the sentence-level latent variable y j = l for each sentence s j and connect it with
the word-level latent variable zn = k for document representation. Different from
the latent topics in word-level representation, we use another related concept called
“themes” as the latent variables for sentence-level representation. A sentence-based
LDA is constructed as depicted in Fig. 4.6c. Each word wn = v in sentence s j (1 ≤
j ≤ S) and document dm is drawn by using a word-level multinomial parameter
βvk where the latent topic zn = k is determined by using a theme-dependent topic
proportion πlk with latent theme y j = l (1 ≤ l ≤ L). This theme is drawn from a
document-dependent theme proportion θml which is governed by a Dirichlet prior
with hyperparameters α = {αl}. Notably, each sentence is associated with a latent
theme y j = l. Each theme is used to draw the corresponding latent topic zn = k
for representation of a target word wn = v. As a result, document summarization
is performed by calculating the KL divergence using the sentence-based unigram
p(wn|s j ) and document-based unigram p(wn|dm). The estimated model parameters
{α̂, β̂, π̂} and their variational parameters via VB-EM algorithm are used to calculate
these two unigram probabilities p(wn|s j ) and p(wn|dm).

Sentence-Based Nested Chinese Restaurant Process

Similar to what we have discussed in Sect. 4.2 for standard LDA, there are two
limitations in the sentence-based LDAwhich constrain the performance of document
representation and summarization. First, the number of themes L and the number
of topics K are fixed in advance. Second, different themes l are assumed to be
independentwhile different topics k are independent aswell. A sentence-based nCRP
was proposed to relax these two assumptions and apply for Bayesian nonparametric
document summarization [10]. A metaphor for sentence-based nCRP (snCRP) is
displayed in Fig. 4.3b. An infinitely branching tree structure is built for representation
of words, sentences, and documents based on an nCRP compound HDP by a two-
stage procedure. In the first stage, each sentence s j of a document dm is drawn from
a document-dependent theme mixture model Gs,m via an nCRP. In the second stage,
each word wn of a sentence s j under a tree node is drawn from a theme-dependent
topic mixture model Gw,l via an HDP. The probability measures of two models and
the relation between the measures of theme ψl and topic φk are expressed by

Gs,m =
∞∑

l=1

θmlδψl , Gw,l =
∞∑

k=1

πlkδφk , ψl ∼
∑

k

πlkφk . (4.20)

Here, the theme proportions θm = {θml} and the topic proportions πl = {πlk} in
sentence-based nCRP are similar to those in sentenced-based LDA.

Using this approach, the document-dependent thememixturemodelGs,m is estab-
lished under a sentence-based tree model with atoms {ψl}∞l=1. Different from the
word-based nCRP in Fig. 4.3a using a single tree path cm for representation of words
{wn} in a document dm , the sentence-based nCRP in Fig. 4.3b represents the sentences
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{s j } of a document dm based on the theme parameters {ψl} along the subtree path
tm ∼ snCRP(α0). A wide coverage of thematic information in tm is beneficial to
compensate the thematic uncertainties or variations in the sentences from heteroge-
neous documentsD. Furthermore, the theme-dependent topic mixture model Gw,l is
constructed by treating the words of the sentences in a tree node l as the grouped data
and modeling those grouped data in different tree nodes according to an HDP. The
shared atoms {φk}∞k=1 are involved. Each word wn in sentence s j and document dm is
chosen by a multinomial distribution with parameter φtm (y j ,zn) which is selected from
the parameter of topic zn = k under a tree node of theme y j = l from a subtree path
tm . The topic k and theme l are drawn from the topic proportionsπ and theme propor-
tions θ, respectively. Importantly, the theme-dependent topic proportions are drawn
by anGEMdistributionπl |γw ∼ GEM(γw) using a word-level strength parameter γw

through a stick-breaking processing (SBP). The document-dependent theme propor-
tions are chosen by a treeGEM distribution θm |γs ∼ treeGEM(γs) using a sentence-
level parameter γs through a tree SBP. In [10], a Gibbs sampling was developed to
sample a document-dependent subtree branches tm = {tmj }, document-dependent
theme labels y = {y j } and theme-dependent topic labels z = {zn} according to
the posterior probabilities p(tmj = t |tm(− j),D, y, α0), p(y j = l|dm, y− j , tm, γs) and
p(zn = k|D, z−n, y j = l, γw), respectively. A document summarization system was
established through a sentence selection procedure over the inferred tree model for
sentences.

4.4 Summary and Future Direction

We have presented the theoretical background and surveyed some advances in topic
models for speech and language processing. In theoretical background, we started
from the general unsupervised learning methods using latent variable models based
on FA and ICA and then moved to general topic models for natural language applica-
tions.We systematically addressed the evolution of topic models from the parametric
models using LSA, PLSA, and LDA to the Bayesian nonparametric models using
HDP and nCRP. The inference solutions to LDA based on VB and Gibbs sampling
procedures were investigated. The Bayesian nonparametric learning methods via
DP, PY process, HDP, and HPY process were introduced. From these theoretical
surveys, we would like to move beyond baseline topic model using LDA toward
building a flexible, hierarchical, adaptive, and scalable topic model to meet a variety
of heterogeneous conditions in real-world information systems.

In the advanced studies,wepresented a series of extended topicmodelswhichwere
developed and applied for speech recognition, document retrieval, text segmentation,
and document summarization. We discussed different issues in LDA topic model
including topic correlation, model complexity, topic structure, model smoothing,
power-law property, temporal modeling, overtrained problem, sparse representation,
nonstationary condition, and ill-posed condition. A variety of solutions were pro-
posed to achieve finite-dimensional and infinite-dimensional topic-based language
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models, dynamic and sparse topic-based document models, topic-based stream-level
and document-level segmentation, and sentence-based LDA and nCRP summariza-
tion models. The HPY compound HDP was developed for topic-based language
model, while the nCRP compound HDP was exploited for sentence clustering and
hierarchical modeling of words, sentences, and documents.

Some suggestions are provided for future direction. In the era of big data, we build
an infinite model from heterogeneous data. We should think more seriously about
the problems at hand, systematically extract the latent information, and carefully
represent the model variations. We need to take care of some challenging issues
including parallel processing in algorithm level as well as in system level, rapid
inference algorithm and sequential MCMC algorithm and work on big learning for
topic model. It is interesting to discover ubiquitous extensions and connections to
the nonnegative matrix factorization, tensor decomposition and deep neural network
and apply them to speech recognition, speaker recognition, speech synthesis, music
classification, source separation, etc.
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