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Preface

Forecasting and time series prediction have seen a great deal of development
and attention over the last few decades, fostered by an impressive improvement
in observational capabilities and measurement procedures. Time series prediction
is a challenge in many fields. In finance, one forecasts stock exchange or stock
market indices; data processing specialists forecast the flow of information on
their networks; producers of electricity forecast the electric load, and hydrologists
forecast river floods. Many methods designed for time series prediction and
forecasting perform well (depending on the complexity of the problem) on a rather
short-term horizon but are rather poor on a longer-term one. This is due to the fact
that these methods are usually designed to optimize the performance at short-term
prediction using relatively low dimensional models. For long-term prediction, linear
and nonlinear methods and tools for the analysis and predictive modeling of high-
dimensional phenomena are necessary and more useful.

From an industrial point of view, forecasting the electricity/natural gas consump-
tion of consumers is yet another challenge. In order to be able to provide accurate
forecasts on different horizons (from short term, the next hour, to middle term,
several years) and at different levels of aggregation (from complete portfolio to
local demand), these forecasts have to be done in an evolving environment. Indeed,
national demand is increasing, uses are changing, the number of available data is
significantly growing (thanks to smart meters), the individual renewable electricity
generation is becoming important, and smart grids are developing. On the other side
of electricity markets, renewables provide a bigger and bigger part of electricity
generation. Forecasting wind or solar power is also difficult because of their inner
variability, the need for accurate and local meteorological forecasts at any horizon –
from a few hours up to several days ahead – as well as the rapid evolution of
operating installations.

On June 5–7, 2013, an international workshop on Industry Practices for Forecast-
ing was held in Paris, France, organized and supported by the OSIRIS Department of
EDF R&D, located in Clamart, France. OSIRIS stands for Optimization Simulation
Risks and Statistics for energy markets. The meeting was the second in the series
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vi Preface

of the WIPFOR conferences and was attended by several researchers (academics,
industrial and professionals, and other interested parties) from several countries.
Following tradition, both theoretical statistical results and practical contributions of
this active field of statistical research and on forecasting issues in a fast evolving
industrial environment were presented. The program and abstracts are available on
the conference website (http://conferences-osiris.org/wipfor/13-Main-page).

The editors of this volume hope that these lecture notes reflect the broad spectrum
of the conference, as it includes 16 articles contributed by specialists in various
areas in this field. The material compiled is fairly wide in scope and ranges
from the development of results on forecasting in industry and in time series, on
nonparametric and functional methods, on online machine learning for forecasting,
and on tools for high-dimensional and complex data analysis.

The articles are arranged and numbered in alphabetical order by author rather
than subject matter. Papers 1, 3, 5, and 9 are dedicated to nonparametric techniques
for short-term load forecasting in the industry and include classical curve linear
regression, sparse functional regression based on dictionaries, as well as a new
estimation procedure based on iterative bias reduction. Papers 11 and 14 focus
on electrical system changes: the first is dedicated to large-scale electrical load
simulation for smart grids using GAM modeling; the second focuses on space-time
trajectories of wind power generation including parameterized precision matrices
based on a Gaussian copula approach. Paper 7 provides flexible and dynamic
modeling of dependencies via copulas. Papers 6, 8, and 13 explore different aspects
of online learning ranging from the most operational for online residential baseline
estimation to the more theoretical, which focuses on oracle bounds for prediction
errors related to aggregation strategies. The third one is dedicated to the aggregation
of experts proposing some resampling ideas to enlarge the basic family of the
so-called experts. Papers 2, 4, 7, 12, and 16 study some general approaches to high-
dimensional and complex data (inference in high-dimensional models, graphical
models and model selection, adaptive spot volatility estimation for high-frequency
data, functional classification and prediction). Finally, papers 10 and 15 deal with
some special topics in time series, namely, modeling and prediction of time series
arising on a graph and optimal reconciliation of contemporaneous hierarchical time
series forecasts.

We would like to address our gratitude to the keynote speakers and all the
contributors for accepting to participate in these Lecture Notes, and we greatly
appreciate the time that they have taken to prepare their papers.

To conclude, we would like to acknowledge the following distinguished list
of reviewers who helped improve the papers by providing general and focused
feedback to the authors: U. Amato, R. Becker, R. Cao, J. Cugliari, G. Fort, P.
Fryzlewicz, F. Gamboa, B. Ghattas, I. Gijbels, S. Girard, E. Gobet, Y. Goude, R.
Hyndman, I. Kojadinovic, S. Lambert-Lacroix, J.-M. Loubes, E. Matzner-Løber, G.
Oppenheim, P. Pinson, G. Stoltz, A. Verhasselt, A. Wigington, and Q. Yao. We thank
them again for their work, dedication, and professional expertise.

http://conferences-osiris.org/wipfor/13-Main-page


Preface vii

Finally, to the editorial office of Springer-Verlag and particularly to Eva Hiripi,
we are grateful for their efficient assistance.

Grenoble, France Anestis Antoniadis
Clamart, France Xavier Brossat
Paris, France Jean-Michel Poggi
Paris, June 2014.
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Short Term Load Forecasting in the Industry
for Establishing Consumption Baselines:
A French Case

José Blancarte, Mireille Batton-Hubert, Xavier Bay, Marie-Agnès Girard,
and Anne Grau

Abstract The estimation of baseline electricity consumptions for energy efficiency
and load management measures is an essential issue. When implementing real-time
energy management platforms for Automatic Monitoring and Targeting (AMT) of
energy consumption, baselines shall be calculated previously and must be adaptive
to sudden changes. Short Term Load Forecasting (STLF) techniques can be a
solution to determine a pertinent frame of reference. In this study, two different
forecasting methods are implemented and assessed: a first method based on load
curve clustering and a second one based on signal decomposition using Principal
Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods
were applied to three different sets of data corresponding to three different industrial
sites from different sectors across France. For the evaluation of the methods, a
specific criterion adapted to the context of energy management is proposed. The
obtained results are satisfying for both of the proposed approaches but the clustering
based method shows a better performance. Perspectives for exploring different
forecasting methods for these applications are considered for future works, as well
as their application to different load curves from diverse industrial sectors and
equipments.
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1 Introduction

Establishing a baseline is the starting point to evaluate the potential as well
as the results of different climate change mitigation related programs [31]. A
baseline is the point of comparison to evaluate the behavior of different systems or
procedures and allows to determine over or under performances. Thus, determining
an energy consumption baseline is a key issue when implementing energy efficiency
measures, deploying energy management programs, analyzing energy performance,
and evaluating demand side management programs [8, 24, 31, 32].

When trying to determine if an industrial site or equipment is working under
normal conditions, it is important to be able to compare their energy consumption
with a “business as usual” forecasted one. This business as usual energy con-
sumption is considered as the baseline scenario for comparison. This concept is
particularly important in energy performance and efficiency contracts. The baseline
allows the detection of abnormal consumption behaviors and/or overconsumption of
equipments. Real-time monitoring of energy consumption helps an industrial site to
optimize its energy consumption, reduce its costs, and adapt to changing electricity
prices.

Energy efficiency has become a key parameter to be monitored by plant operators
and managers aiming at optimizing their costs and reducing their energy losses
[11]. Nowadays, most of the existing energy management platforms in the industry
have a rather static nature, not adapting to real-time variability and having fixed
thresholds, alarms and follow-up procedures. Energy management platforms should
allow industrials to monitor their energy consumption and thus optimize their costs
and detect abnormal behaviors on a real-time basis [16, 30].

Industrial sites are eager to implement energy efficiency recommendations.
However, industry consumption may vary enormously from site to site and from
sector to sector, and companies may deal with energy efficiency measures differently
[1]. Added to this, there is a lack of relevant scientific literature for integrating
energy performance in production management [4]. Baselines need to be consis-
tently defined [31] and data analysis shall be as close as possible to standardized
procedures in order to deploy energy management protocols faster and thus, reach
as much industries as possible to increase the economical impacts due to energy
efficiency [24].

Real-time energy consumption follow-up belongs to Automatic Monitoring and
Targeting (AMT) techniques. AMT can be improved by the enhancement of the
capabilities of the intrinsic data analysis methods used within an energy manage-
ment platform. Adaptive methods for real-time energy consumption monitoring
and analysis will lead to new methods of forecasting for establishing consumption
baselines and thus, better energy consumption follow-up.

The main objective of this research study is to propose two different Short
Term Load Forecasting (STLF) approaches for establishing a specific electricity
consumption baseline on industrial data. The proposed techniques are applied for
forecasting the power consumption of three different industrial sites from France,
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from different sectors, at different moments of the day, and for short term forecasting
horizons (2 h).

2 Materials and Data

For the purpose of this study, electricity consumption data was collected from three
industrial sites from different regions in France (hereafter identified as sites A,
B, and C). The three industrial sites belong to three different sectors and present
different consumption patterns that are described below.

A big issue when implementing energy management programs is data avail-
ability. Generally speaking, energy consumption data at an industrial site level is
monitored for billing and accounting purposes. This is not always the case with
disaggregated data at workshop or equipment level, where metering instruments
may be scarce. Other influential parameters are also not always monitored and thus
not available on a first approach.

The only available monitored variable for the three sites is electricity consump-
tion issued from historical billing data. The collected data is a 10 min interval
load curve (each value being the average power consumption over a fixed 10 min
interval). Each one of these intervals corresponds to each 10 min of the day from
12:00 am to 11:50 pm, which means 144 power consumption values for every
available day. For the implementation of the different methods, the R software is
used (N.B.: Due to confidentiality issues, orders of magnitude of the load curves
have been omitted).

Site A

This particular site operates on an 8-h shift mainly from Monday to Friday, and
in some occasions, on Saturdays. Not all weekdays present an operating electrical
consumption activity, due to operational constraints of the site. Data is available for
almost 2 years of electricity consumption. Figure 1 shows a 4-week interval of the
load curve. Three main electricity consumption equipments are present at this site,
which are turned on once the site is operating. Different equipment arrangements
are operated as reflected in the load curve. For site A, 702 days of electricity
consumption are available for analysis.

Site B

The second industrial site operates in a continuous 24 h cover, comprising three
8-h shifts. As it can be observed in Fig. 1, the consumption level might have big
variations, since different workshops and equipments are engaged at different times
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Fig. 1 Four weeks of electricity consumption for sites A, B and C
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of the day. The load curve shape is significantly different than that of site A. For site
B, 665 days of electricity consumption are available for analysis.

Site C

Site C is also a continuous 24 h cover industrial site. The consumption pattern is
dependent on a daily activity as it is reflected in the load curve, shown in Fig. 1.
During weekends, energy consumption is different than during weekdays. However,
the electricity consumption base represents the biggest part of the consumed energy.
Equipments keep consuming electricity during the night and during weekends in
order to ensure certain operations at the site. For site C, 770 days of electricity
consumption are available for analysis.

3 Forecasting Characteristics and Methods

Current electricity consumption forecasts are generally performed at a regional or
national level, since their main interest is to ensure the efficient management of
existing electrical power systems. National electricity loads have been at the core of
electricity load forecasting for many years, and many techniques and methods have
been proposed and assessed, as reviewed by many different authors [13, 15, 26, 27].
The different existing load forecasting methods can be classified into three main
families: time-series analysis, multivariate analysis, and data-mining techniques
[19]. However, when forecasting electricity consumption of industrial sites, the
consumption may differ enormously in form, variability and influencing parameters
for every single different site.

There is a lack of scientific literature focused on applying forecasting methods for
establishing consumption baselines at lower consumption levels. Typical forecasting
methods tend to be not well adapted when applied at an industrial site level.
Seasonality, calendar events, and weather dependency are parameters usually taken
into account when modeling a national electricity consumption curve [3]. However,
due to the radically different nature of industrial sites, these parameters are
inconsistent from site to site and may not be reflected in the consumption curve.
Innovative approaches shall be followed to standardize the methods and have a
larger reach and impact, as it was previously discussed.

When deploying energy management platforms in the industry, one of the main
assumptions shall be that predictive models shall work with as little parameters as
possible. As previously discussed, for industrial sites A, B, and C, the only available
variable is historical electricity consumption. This section presents two different
proposed forecasting techniques as well as the methods chosen to evaluate their
relevance.

Table 1 lists all the symbols and parameters used in the text.
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Table 1 List of symbols used in the text

Symbol Definition

Generic symbols

� Gross energy deviations of the forecasted energy baseline with respect to the real
energy consumption during the evaluation period (2 h)

i Time period identifier

n Time period at which a forecast is launched

tn Starting time of the forecast

Pi Real power consumption at time period i
OPi Forecasted power consumption at time period i

� Forecast evaluation period (2 h)

N Number of power consumption values during the evaluation periods (12)

TVn Truncated test vector up to the nth interval.

p Dimension size of the individuals (144 power consumption points)

v Number of intervals used to construct the adjustment factor

FAJv Adjustment factor using v intervals

Method 1

M1,M2 Dimensions of the SOM grid

m Number of neurons

k Identifier of the neuron

Clk Coordinate vectors of the different neurons

Clk;h Coordinate of the hth element of the kth neuron

Clk;n Coordinates vector of the truncated cluster vectors up to the nth interval.

WN Reference vector corresponding to the winning neuron (Also known as the BMU)

Xtr Vector corresponding to the chosen element from the training data

� Number of iterations of the SOM algorithm

s Current iteration step of the SOM algorithm

˛ Learning rate of the SOM algorithm

� Radius of the neighborhood of the SOM algorithm

Dk Distance of the updated node to the winning unit

ClW Winning reference vector

Method 2

� Eigenvectors matrix

U Eigenvalues matrix of the principal components

A Covariance matrix

j Number of principal components explaining 90 % of the data variability

q Principal component identifier

Uq Coordinates of the qth principal component
OCq MLR coefficients for the qth principal component

O" MLR disturbance coefficient

Unq Coordinates vector of the truncated principal component up to the nth interval
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3.1 Forecasting Characteristics

For constructing the different models, every day is considered as an independent
element (a vector) composed of 144 values of power consumption. Days can
be considered to be independent for practical purposes: forecasts are performed
intra-day and consumption cycles present daily patterns in most of the cases,
corresponding to different consumption modes. Simple data splitting [22] is used
for model validation. Eighty-five percent of the data (85 % of the available days for
analysis) is used as the training dataset. The remaining 15 % (test dataset) is used to
test the models and compare the performance of both methods. Data sampling of the
days is performed randomly on a stratified manner at two levels, in order to obtain a
distribution of different seasonal variabilities related to time parameters: day of the
week and month of the year.

In order to test the different methods for power consumption forecasting at
the site level and at different moments of the day, different parameters and
characteristics for the forecasts have to be defined. For each test day, the baseline
load is estimated at each hour from 9:00 am to 5:00 pm for site A and from 9:00 am
to 9:00 pm for sites B and C. In order to evaluate the performance of the forecasting
methods, the forecasting periods are fixed to be the following 2 h (called forecast
evaluation period, identified by � , composed of 12 power consumption intervals),
considered as short term load forecasting (STLF). In short the different methods
will forecast the power and energy consumption from a specific time-step (called
tn, which will be varied from 9:00 am to 5:00 pm or 9:00 pm, depending on the site)
for a specific number of time intervals (called N, which has been defined as 12) that
corresponds to 2 h.

In total, for site A, 882 simulations will be performed (98 test days, 9 simulations
per day from 9:00 am to 5:00 pm), 1,170 for site B (90 test days, 13 simulations per
day from 9:00 am to 9:00 pm), and 1,339 for site C (103 test days, 13 simulations
per day, similar as for site B). The simulation results will be compared according to
the performance indicator defined further on.

3.2 Proposed Forecasting Methods

If the objective is to analyze as many sites as possible, methods shall be easy to
deploy and should not require much human input or expertise. Also, they shall
demand low calculation times in order to easily standardize the procedures. To
overcome these problems, two different approaches for electricity consumption
forecasting are proposed, based on the nature of the examined data:

• A first method using load curves clustering in order to detect consumption
patterns that will be used as electricity consumption forecasts.
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• A second method based on signal decomposition in order to detect the variability
of the daily behavior of the curves, using the eigenvectors issued from a Principal
Component Analysis (PCA) of the training dataset.

3.2.1 Method 1: Electricity Consumption Forecasting by Pattern
Recognition Using Load Curve Clustering

Electrical load curve clustering has attracted much attention in recent years for
its application in client profiling and electricity pricing [6, 10, 20]. The capacity
of clustering techniques for handling large amounts of time-series data has been
assessed in the past [23]. Diverse clustering techniques have been used in the past,
as reviewed by Chicco in [5]. From the different assessed clustering techniques,
K-means and Self-organizing Maps (SOM) are the best performing ones. SOM is
not a direct clustering method, as explained in [6], however, it produces a visually
understandable projection of the original data into a map. In this study, SOM has
been chosen as the clustering technique due to its prior application for forecasting
purposes, as proposed by different authors [7, 18, 25]. Nevertheless, these previous
work were focused in forecasting national electricity demand.

SOM [17, 23, 28] is an unsupervised neural network that projects a p-dimensional
input dataset onto a reduced dimension space (one or two-dimensional in most
cases). SOM is composed of a predefined grid of M1 � M2 elements called
neurons (m number of neurons). Each neuron (identified by k) is also p-dimensional.
Neurons have to be initialized, this means, the p-dimensions of the k neurons have
to be previously defined by a reference vector Clk, as in expression (1), where
1 � k � m, and Pk;i is the value of power consumption for element i of neuron
k, where 1 � i � p. Initialization of the SOM algorithm can be done in different
manners (randomly or data analysis based initialization) as described in [2].

Clk D ŒPk;1;Pk;2; : : :Pk;p� (1)

All neurons are associated to neighboring neurons of the map by a neighborhood
relation, which determines the “area” of influence within the defined space. Neurons
are calculated through a competitive algorithm that recalculates the weights of the
winning neuron and the weights of its neighboring neurons proportionally inverse
to their distance. The neighborhood size will be reduced at each iteration during the
map training process, starting with almost the full topography and ending in single
neurons.

Once all Clk reference vectors have been initialized, SOM training starts. The
algorithm will be run a predefined number of iterations, represented by �. At each
iteration (represented by s � �), an input vector Xtr (as described in formula (2))
issued from the training data set is chosen randomly, where tr goes from 1 to
the number of individuals in the training dataset, and Ptr;i is the value of power
consumption for element i of the tr individual and where 1 � i � p. Euclidean
distances between the chosen Xtr and all the Clk vectors are calculated. The closest
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reference vector is known as the winning neuron .WN/ or best matching unit
(BMU), as in expression (3).

Xtr D ŒPtr;1;Ptr;2; : : : ;Ptr;p� (2)

WN D argmin

8
<

:

v
u
u
t

iDpX

iD1
.Xtr;i � Clk;i/2/

9
=

;
I 1 � k � m (3)

The coordinates of WN and its neighboring neurons are adjusted then towards the
coordinates of the input vector Xtr, as in expression (4), where ˛.s/ is the learning
rate which decays with each iteration, and �.s/ is the neighborhood function,
represented in expression (5). The radius �.s/ is also updated at every iteration,
shrinking over time. Dk is the distance of the updated node to WN (the winning
neuron).

Clk.sC 1/ D Clk.s/C ˛.s/�.s/ � .Xtr.s/ � Clk.s// (4)

�.s/ D exp.� D2
k

2�2.s/
/ (5)

The proposed methodology based on pattern recognition using SOMs is described
below and divided into three steps:

1. Once the data splitting has been performed as described previously, the training
dataset will be used to construct the reference vectors.

The SOM algorithm is launched considering the daily load curves as individuals for
analysis (p D 144). As defined previously, the SOM algorithm needs a number of
clusters (m) before its initialization. Tsekouras et al. [29] have determined that for
large electricity customers 8–12 clusters are necessary for a satisfactory description
of the daily load curves. Different numbers of clusters will be tested in order to
determine a good description of the different possible load curves. The algorithm is
performed on non-reduced data, as suggested in [10]. For the purpose of this study,
in order to converge to the same solution, a linear initialization is used. A rectangular
configuration of the neighborhood is chosen due to its visualization effectiveness.
The chosen number of iterations is � D 100. The chosen learning rate is a linear
function from 0.05 to 0.01 over the 100 iterations for which it was found that the
algorithm converges rapidly. The neighborhood radius is varied from a value of two
thirds of all unit to unit distances to its negative value, linearly through the different
iterations. Once the neighborhood gets smaller than one individual, only the WN
reference vector is changed.

The resulting Clk reference vectors of each neuron are then kept and assigned
to the neuron according to the described SOM algorithm. Every cluster is then
represented by a vector composed of 144 variables identified as Clk, the identifier of
the cluster. Clk;h contains the value of the hth variable of the kth neuron. Every
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variable represents a specific power consumption point of the day, as defined
previously.

2. Once the SOM algorithm has been performed, the Clk centroid vectors will be
used. At the time (tn) a forecast is simulated for a chosen individual of the test
dataset, the test element is truncated to a vector (identified as TVn) composed of
n elements as shown in expression (6) (where n � p)

TVn D ŒPn;1;Pn;2; : : : ;Pn;n� (6)

The different Clk vectors will be then truncated up to the nth element and called
Clk;n. Euclidean distances will then be calculated for the TVn vector to the different
Clk;n vectors. The vector corresponding to the minimum distance is then considered
the winning vector, identified by ClW as in expression (7).

ClW D argmin

8
<

:

v
u
u
t

iDnX

iD1
.Clk;i � TVn;i/2/

9
=

;
I 1 � k � m (7)

3. The coordinates of the cluster ClW corresponding to that vector will be proposed
as the forecast for the following consumption points. The forecasted power
consumption points OPi will correspond to those the elements with the same index
i of the closest ClW vector, represented by ClW;i as expressed in formula (8).

OPi D ClW;i (8)

3.2.2 Method 2: Electricity Consumption Forecasting by Signal
Decomposition Using Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate analysis technique used in
many different areas for analyzing large sets of data [9, 14]. The pertinence of PCA
coupled with other techniques for forecasting energy consumption has been assessed
by some authors [21, 27]. However, for different applications, the PCA is used as a
tool among others to produce a specific predictor, adapted to the nature of the data.

It can be assumed that the electricity consumption at the site level is a function
composed of different signals. The changes and variability in electricity con-
sumption can be explained by different variables. The PCA allows to obtain the
eigenvalues (matrix �) that explain most of the variability of the data and the
eigenvectors (matrix U) of the principal components which are obtained by the
decomposition of covariance matrix A in tU�U that are uncorrelated to each other.

For the purpose of this study, the PCA is performed on the training data set (on
non-reduced data). The coordinates of the j first eigenvectors explaining 90 % of
the variability are preserved. These coordinates have in fact a meaning according
to a specific power consumption interval of the day, since the reduced variables are
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in fact power consumption time intervals. Uq are the coordinates of the different j
eigenvectors, where 1 � q � j, as expressed in (9).

Uq D ŒPq;1;Pq;2; : : : ;Pq;144� (9)

The preserved principal components are used to build a predictor based on their
linear combination in order to predict the variability of the data. This is done by
using a Multiple Linear Regression (MLR). At the time tn a prediction is launched
for a chosen element of the test dataset, the different Uq vectors are then truncated up
to the point n of the forecast and represented by Unq, as expressed in formula (10).

Unq D ŒPq;1;Pq;2; : : : ;Pq;n� (10)

A multiple linear regression is used in order to find the coefficients for the principal
components, for which the combination of these components fit the data of the
chosen element of the test dataset. For this purpose, an ordinary least squares
model is used. The vector TVn is defined as a function (P.i/) determining the
power consumption value at timestep i. Along with the different j truncated Unq

eigenvectors, P.i/ is used to fit a linear model as in expression (11). The coefficients
OCq and the intercept term O" are obtained through the MLR.

P.i/ D
jX

qD1
OCqUnq.i/C O" (11)

These coefficients and the eigenvectors coordinates Uq are used for predicting the
power consumption of the site for the rest of the day for every consumption point
OPi, as in expression (12).

OPi D
jX

qD1
OCqUq;i C O" (12)

3.3 Adjustment Factor

An adjustment factor can be used to improve the forecasts of different techniques.
Method 1 is based on pattern recognition, and the proposed forecast is a typical
energy consumption mode. However, even if the a pattern has been correctly
recognized, the forecast may under or over estimate the actual consumption level
corresponding to a specific day. An adjustment factor may deal with this problem
by adjusting the forecast to the correct level of energy consumption. The adjustment
factor deals as well with the issue of trends, in case they exist. Method 2 forecasts
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are issued from a Multiple Linear Regression and thus, the different coefficients fit
a model to the actual consumption level and no adjustment factor is needed.

Different forms of adjustment factors exist, but the most important ones can be
classified in two different categories for univariate methods: scalar and additive,
as described by different authors [8, 12]. Since only electricity consumption
information is available for the concerned industrial sites, weather or other related
adjustment factors will not be considered in this study.

To deal with the mentioned issues, a scalar adjustment factor is used to improve
the forecasts of Method 1. The proposed adjustment factor is calculated as in
expression (13), and corresponds to the average of the ratios of the v previous
real power consumption values to predicted ones. Pi represents the real power
consumption at time interval i, OPi is the forecasted power consumption at time
interval i, and v the number of intervals used to construct the adjustment factor. The
chosen number of intervals (v) for the adjustment factor is one, since better results
are obtained in terms of the chosen performance indicator and since calculation
times are reduced.

FAJv D ŒPi�1
OPi�1
C � � � C Pi�v

OPi�v
� � 1

v
(13)

3.4 Performance Indicator

The main indicators used in literature to evaluate the performance of forecasting
methods are the Mean Absolute Percentage Error (MAPE) and the Mean Squared
Error (MSE). These parameters are adequate when evaluating the resemblance of a
forecast compared to a real curve. These indicators are adapted to situations where
the goal is to optimize the use of production means to meet an electricity demand,
or residual demand curves calculation in competitive electricity markets. This is not
the case when evaluating the forecasting performance in an industrial site for energy
efficiency purposes. Most energy efficiency programs have an economic constraint
and are rewarded or penalized economically if objectives are met or not [31]. For
this reason, a specific performance criterion is proposed and used which is easily
transformed into an economic indicator.

This criterion is directly linked to the site’s global energy consumption. It is
based on the difference, in energy (kWh), between forecasted energy consumptions
issued from the models and real energy consumptions issued from the data. The
indicator is based on gross energy differences (hereafter referred as Gross Energy
Deviation, GED) through the time period of the forecast (2 h), and represented by
symbol �. GED and its distribution will be used to evaluate the relevance of each
method. Expression (14) formalizes the way of calculating these deviations, where
Pi is the actual power consumption at time-step i, and OPi is the forecasted power
consumption at that same time-step. � and N were previously defined.
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� D
2

4
tnCNX

iDtn

Pi �
tnCNX

iDtn

OPi

3

5 � �
N

(14)

GED allows to evaluate the distribution of the forecasts in terms of how much is the
forecast above or below an energy threshold which is the real energy consumption
during that time period. This approach is useful to set operational parameters and
thresholds in the industry, and to easily translate them into an economic indicator.

4 Results and Discussion

The results for each of the implemented methods are described below. A focus is
made on the evaluation of the performance of both forecasting methods presented
above, according to the defined criteria.

4.1 Method 1: Electricity Consumption Forecasting Using
Self-Organizing Maps

For the implementation of Method 1, different tests were carried out varying the
neurons number from 8 to 12 (as in [29]), selecting the lowest number of neurons for
which the GED distribution is does not vary greatly if another neuron is proposed.
Twelve neurons were selected for site A, 9 for site B, and 12 for site C. The graphical
representation of the different reference vectors for the sites can be seen in Fig. 2.
The different identified patterns correspond to the different typical consumption
modes of the sites. These typical load curves are used for forecasting as explained
previously.

Fig. 2 Resulting curves after applying the SOM algorithm to the test dataset for the three sites
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Fig. 3 Graphical representation of the main principal components coordinates for the three sites

4.2 Method 2: Electricity Consumption Forecasting
Using Principal Component Analysis

For the implementation of Method 2, in order to explain 90 % of the variability
of the data, the first 5 principal components are selected for sites A and B, and 4
principal components are selected for site C. Adding more principal components or
increasing the 90 % threshold would increase calculation times, which is to be taken
into account when monitoring energy consumption in real time. The footprint of the
different components for the different sites can be seen in Fig. 3. These principal
components are the ones used to run the MLR that will determine the coefficients
for the forecasting models.

4.3 Results by Site

Results obtained using both methods for each of the studied sites are presented
below.

Site A

The distribution of the different obtained GED for site A with Method 1 is presented
in Fig. 4. The “y” axis represents the gross energy deviation and the “x” axis is
the energy that was actually consumed during that period, in order to relativize
the error of the forecast in terms of energy. Points outside the dashed lines are
above a 50 % GED threshold, and points outside the solid lines are above a 10 %
threshold. In order to evaluate the performance of the methods at differents times of
the day, different hours were grouped into four different time-spans: from 9:00 am
to 11:00 am (morning), identified by the solid green squares; from 12:00 pm to
2:00 pm (noon), identified by the solid pink circles; from 3:00 pm to 5:00 pm (early
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Fig. 4 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site A

Fig. 5 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site A

afternoon), identified by the solid yellow triangles, and from 6:00 pm to 9:00 pm
(late afternoon), identified by black crosses.

For Method 1, 226 simulation points are inside the solid lines and 642 are
between the dashed lines. The total simulation points for this site are 882. Figure 5
represents the GED distributions for site A using Method 2. Solid lines and dashed
lines represent the same thresholds as in Fig. 4. For Method 2, only 104 simulation
points are inside the solid lines, while 410 are between the dashed lines.

Looking at the dispersion of the points and the number of them outside of the
defined thresholds, of Figs. 4 and 5, Method 1 clearly outperforms Method 2 for
this particular industrial site. Regarding the distribution of the different timespans,
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Fig. 6 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site B

besides a slightly wider distribution for the morning period, no significant difference
can be observed for the different hours of the day.

Site B

Figure 6 shows the GED distribution for site B using Method 1 as in Fig. 4. For
this site, 767 simulation points are inside the solid lines and 1,123 are between the
dashed lines. The total simulation points for this site are 1,170.

Figure 7 represents the GED distributions for site B using Method 2. Solid lines
and dashed lines represent the same thresholds as in previous figures. For Method
2, 467 simulation points are inside the solid lines, and 1,001 are between the dashed
lines.

For this industrial site, Method 1 also outperforms Method 2. As for the
distribution regarding the different timespans, no significant difference can be
observed to conclude a strong influence of the hours of the day for both methods.

Site C

Figure 8 shows the GED distribution for site C using Method 1 as in Fig. 6. For
this site, 1,146 simulation points are inside the solid lines, which represent less than
10 % in error, and 1,334 are between the dashed lines that represent less than 50 %
in energy error. The total simulation points for this site are 1,339. It is important to
notice that only five points are outside the dashed line boundaries in this particular
case.



STLF in Industry for Establishing Consumption Baselines 17

Fig. 7 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site B

Fig. 8 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site C

Figure 9 represents the GED distributions for site C using Method 2. Solid lines
and dashed lines represent the same thresholds as in previous figures. For Method
2, 884 simulation points are inside the solid lines, and 1,319 are below the 50 %
threshold represented by the dashed lines.

Even though results can be considered satisfactory for Method 2 applied to
industrial site C, Method 1 still shows better performances. As well as for sites A
and B, the hour of the day does not seem to influence greatly the performance of the
methods, since the GED distributions are evenly distributed for all of the timespans.
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Fig. 9 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site C

5 Conclusions and Perspectives

Two different methods for establishing short-term electricity consumption baselines
were proposed and assessed. From the obtained results, Method 1 outperforms
Method 2 when forecasting the short term electricity consumption for the three
presented industrial sites, according to the chosen performance indicator. Added
to this, the hour of the day does not significantly influence the performance of the
methods.

Subsequent works will focus on specific industrial equipments that are installed
at the industrial sites and that contribute to most of their power consumption.
The aggregation of industrial equipments allows a more flexible and adaptable
energy consumption follow-up, since information can be lost at the industrial site
level. In order to ensure the validity and repeatability of the obtained results for
their generalisation, future research works will focus on the construction of a
bootstrapping procedure.

Perspectives to improve the forecasting potential for Method 2, could be the
integration of weighing factors for the coefficients and studying the errors obtained
for the different forecasts at different times of the day.

Model combination could be a clue to improve the performance of the forecasts,
since it could integrate different approaches (such as form recognition and Bayesian
inference) in order to overcome the deficiencies of the different methods.

It is important to point out that due to the variability of the data, the differences
from site to site and from sector to sector, standardizing the methods to build energy
consumption baselines can be a hard task. The use of additional variables shall be
considered when possible, which will make the methods more adaptable. Univariate
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methods could rapidly reach a limit of performance. The main problem which may
persist will be data availability.

Energy management can be improved by the utilization of different methods
to calculate energy consumption baselines for the diverse energy management
applications. Performing bottom-up approaches provides more precise information
and makes energy consumption flexibility fast and reactive.
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Confidence Intervals and Tests
for High-Dimensional Models:
A Compact Review

Peter Bühlmann

Abstract We present a compact review of methods for constructing tests and
confidence intervals in high-dimensional models. Links to theory, finite sample
performance results and software allows to obtain a “quick” but sufficiently deep
overview for applying the procedures.

1 Introduction

We review some methods for assigning significance of (co-)variables or for
confidence intervals of a parameter in a high-dimensional regression-type model.
Our major focus is for a high-dimensional linear model

Y D Xˇ0 C " (1)

with n � 1 response vector Y, n � p design matrix X, p � 1 regression vec-
tor ˇ0 and n � 1 error vector " having i.i.d. components with EŒ"i� D 0,
Var."i/ D �2" and "i uncorrelated from Xi. We also discuss some extensions,
including generalized linear models. While there is much literature on conver-
gence rates for parameter estimation and prediction (cf. [6]), only recent work
addresses the problem of constructing confidence intervals or tests. Some recent
reviews on this topic include Bühlmann et al. [5] with a focus on applica-
tions in biology, and Dezeure et al. [8] who present a much more detailed and
broader treatment. The current work aims to provide a very compact and “fast
to read” access to the topic, yet it still contains the main ideas and hints to
software.
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2 High-Dimensional Linear Model and Some Methods
for Inference

Consider the high-dimensional linear model in (1). The goal is to test null-
hypotheses H0;j W ˇ0j D 0 versus HA;j W ˇ0j ¤ 0 (or a one-sided alternative) for
individual variables with index j 2 f1; : : : ; pg, or to construct a confidence interval
for ˇ0j . In the high-dimensional setting, these tasks are non-trivial since standard
least squares methodology cannot be used.

2.1 De-sparsified Lasso

Zhang and Zhang [26] propose a method based on low-dimensional regularized
projection using the Lasso. A motivation can be derived from standard least squares:
in the low-dimensional setting with p < n and X having full rank, it is well-known
that the ordinary least squares estimator satisfies:

Ǒ
OLS;j is the projection of Y onto the residuals of ZOLS;j;

where the n � 1 residual vector ZOLS;j arises from OLS regression of Xj versus
all other co-variables X�j (which is the design matrix without the jth column). In
the high-dimensional setting, the projection is ill-defined since the residual vector
ZOLS;j � 0. The idea is to replace the residuals by a regularized version: we fit Xj

versus X�j with the Lasso and denote the corresponding residuals by Zj (when doing
this for all j’s, this is the nodewise Lasso from Meinshausen and Bühlmann [18]).
We then look at the projection

ZT
j Y=ZT

j Xj D ˇ0j C
X

k¤j

ˇ0k ZT
j Xk=ZT

j Xj C ZT
j "=ZT

j Xj:

The first term on the right-hand side is what we aim for, the second one is a bias,
and the third one is the noise component with mean zero. To get rid of the bias, we
employ a bias correction using (again) the Lasso: this leads to a new estimator

Obj D ZT
j Y=ZT

j Xj �
X

k¤j

Ǒ
kZT

j Xk=ZT
j Xj . j D 1; : : : ; p/; (2)

where Ǒ denotes the Lasso estimator for the regression of Y versus X. A typical
choice for the regularization parameter involved in Zj and for Ǒ is based on cross-
validation of the corresponding Lasso estimations. The estimator Ob is not sparse and
hence the name “de-sparsified Lasso”. One can show that the error in bias estimation
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is asymptotically negligible [10, 24, 26] on the 1=
p

n-scale, and one then obtains

p
n.Obj � ˇ0j /) N .0; �2" �jj/ .n!1/; �jj D kZjk22=n

.ZT
j Xj=n/2

: (3)

The convergence as n!1 encompasses that the dimension p D p.n/� n tends to
infinity as well, at a potentially much faster rate than sample size. We thus have an
asymptotic pivot and we can then construct p-values for H0;j or confidence intervals
by plugging in an estimate for �2" , see Sect. 2.3. In fact, the asymptotic variance
is the smallest possible (among regular estimators) and it reaches the Cramér-Rao
lower bound [24]: thus, statistical tests and confidence intervals derived from (3) are
asymptotically optimal. Furthermore, the convergence in (3) to a Gaussian limit is
uniform for a large part of the parameter space and thus, we obtain honest confidence
intervals [11].

It is important to outline the assumptions which are used to establish the result
in (3). Assume that the design X consists of (possibly fixed realizations of) i.i.d.
rows whose distribution has a p � p covariance matrix †. The main conditions are
as follows:

(A1) The rows of X have a (sub-)Gaussian distribution and the smallest eigen-
value of † is bounded away from zero.

(A2) The matrix †�1 is row-sparse: the maximal number of non-zero entries in
each row is bounded by o.

p
n= log. p//.

(A3) The linear model is sparse: the number of non-zero entries of ˇ0 is
o.
p

n= log. p//.
(A4) The error " has a (sub-) Gaussian distribution.

We note that these assumptions imply the ones in van de Geer et al. [24]. The most
restrictive conditions are (A2) regarding the design and (A3) saying that the linear
model needs to be rather sparse.

2.2 Ridge Projection

The estimator in (2) is has a linear part and a non-linear bias correction. A similar
construction can be made based on the Ridge estimator:

Ǒ
Ridge D .n�1XTXC �I/�1n�1XTY: (4)

A main message is that the Ridge estimator has substantial bias when p � n: in
fact, it estimates a projected parameter

�0 D Pˇ0; P D XT.XXT/�X;

where .XXT/� denotes a generalized inverse of XXT [22].
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The bias for �0 can be made arbitrarily small by choosing � sufficiently small,
and a quantitative bound is given in Bühlmann [3]. A potentially substantial bias
occurs, however, due to the difference between �0 and the target ˇ0. Since

�0

Pjj
D ˇ0j C

X

k¤j

Pjk

Pjj
ˇ0k ;

this bias can be estimated and corrected with

X

k¤j

Pjk

Pjj

Ǒ
k;

where Ǒ is the Lasso estimator. Thus, we construct a bias corrected Ridge estimator

ObRIj D
Ǒ
RidgeIj
Pjj

�
X

k¤j

Pjk

Pjj

Ǒ
k; j D 1; : : : ; p: (5)

A typical choice of the regularization parameter in (4) for ǑRidge is � D �n D n�1

and we can use cross-validation for the regularization parameter in the Lasso Ǒ. This
estimator has the following property [3]:

��1
" �

�1=2
RIjj .ObRIj � ˇ0j / � Z C	j; Z 	 N .0; 1/;

�R D . O†C �/�1 O†. O†C �/�1; O† D n�1XTX;

j	jj � ��1
" max

k¤j
�

�1=2
RIjj

ˇ
ˇ
ˇ
ˇ
Pjk

Pjj

ˇ
ˇ
ˇ
ˇ k Ǒ � ˇ0k1: (6)

Here, the “�” symbol represents an approximation which becomes exact as � &
0C. The problem here is that the behavior of jPjk=Pjjj and of the diagonal elements
�RIjj are not easily under control, but they are observed for fixed design X so that it
is possible to construct an upper bound as discussed next.

2.2.1 Inference Based on an Upper Bound

Assuming the so-called compatibility condition on the design X [6, Ch.6.2], we
obtain that

j	jj � ��1=2
RIjj max

k¤j

ˇ
ˇ
ˇ
ˇ
Pjk

Pjj

ˇ
ˇ
ˇ
ˇOP.s0

p
log. p/=n/;

and in practice, we use an upper bound of the form

	bound
j WD ��1=2

RIjj max
k¤j

ˇ
ˇ
ˇ
ˇ
Pjk

Pjj

ˇ
ˇ
ˇ
ˇ .log. p/=n/1=2�� ; (7)
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for some small 0 < � < 1=2, typically � D 0:05; this bound is motivated via an
implicit assumption that s0 � .n= log. p//� .

Inference can then be based on (6) with the upper bound in (7). For example, for
testing H0;j W ˇ0j D 0 against the two-sided alternative HA;j W ˇ0j ¤ 0 we use the
upper bound for the p-value

2.1�ˆ..��1
" �

�1=2
RIjj jObRIjj �	bound

j /C//;

and an analogous construction can be used for a two-sided 1�˛ confidence interval
for ˇ0j :

ŒObRIj � a; ObRIj C a�;

a D .ˆ�1.1 � ˛=2/C	bound
j /�"�

1=2
RIjj:

The main conditions used for proving consistency of the Ridge-based inference
method are as follows:

(B1) As assumption (A1).
(B2) The linear model is sparse: for 0 < � < 1=2which is used in (7), the number

of non-zero entries of ˇ0 is O..n= log. p//�/.
(B3) The error " has a Gaussian distribution.

It is expected that assumption (B3) could be relaxed to sub-Gaussian distributions
as in (A4). No condition is required in terms of sparsity of †�1 as in (A2), but
typically the method does not lead to optimality as with the de-sparsified Lasso
estimator from Sect. 2.1.

2.3 Estimation of the Error Variance

The de-sparsified Lasso and the Ridge projection method in Sects. 2.1 and 2.2
require an estimate of �" for construction of tests or confidence intervals.

The scaled Lasso [23] leads to a consistent estimate of the error variance: it is
a fully automatic method which does not need a user-specific choice of a tuning
parameter. Reid et al. [21] present an empirical comparison of various estimators
which suggests that the alternative scheme of residual sum of squares of a cross-
validated Lasso solution exhibits has good finite-sample performance.

2.4 Multi Sample Splitting

Sample splitting is a generic method for construction of p-values. The sample is
randomly split in two halves with corresponding indices from disjoint sets I1; I2 
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f1; : : : ; ng, I1 [ I2 D f1; : : : ; ng with jI1j D bn=2c and jI2j D n� bn=2c. A variable
selection technique OS � f1; : : : ; pg is used on the first half I1, denoted by OS.I1/: a
prime example is the Lasso where OS D f jI Ǒj ¤ 0g, and other selectors OS can be
derived from a sparse estimator in the same way. With the fewer variables from OS,
we can obtain p-values based on the second half I2 and using classical t-tests from
ordinary least squares: that is, we only use the subsample .YI2 ;XI2;OS/ of the data,
with obvious notational meaning of the sub-indices. Such a procedure is implicitly
contained in Wasserman and Roeder [25]. Sample splitting avoids that we would
use the data twice for selection and inference which would lead to over-optimistic
p-values.

It is rather straightforward to see that such a principle works if

OS.I1/ � S0 D f jI ˇ0j ¤ 0g;
jOS.I1/j < n=2; (8)

where OS.I1/ denotes the selector based on the subsample with indices I1. Further-
more, multiple testing adjustment over all components j D 1; : : : ; p (see Sect. 3.2)
can be done in a powerful way, e.g., Bonferroni correction only needs an adjustment
with a factor jOS.I1/j which is often much smaller than p. A drawback of the method
is its severe sensitivity of how the sample is split: Meinshausen et al. [20] propose
repeated splitting of the sample (multi sample splitting) and show how to combine
the corresponding dependent p-values. The latter is of independent interest and the
procedure is described below in Sect. 2.4.1.

Such a multi sample splitting method leads to p-values which are already adjusted
for multiple testing, either for the familywise error rate or the false discovery rate.
The main conditions which are required for the method are (8): when using the
Lasso as a screening method (typically with either a cross-validated choice of � or
taking a fixed fraction of the variables entering the Lasso path first), they are implied
by the following:

(C1) As assumption (A1).
(C2) beta-min assumption:

min
j2S0
jˇ0j j �

p
s0 log. p/=n;

and s0 D o.n= log. p// where s0 D jS0j denotes the number of non-zero entries
of ˇ0.

(C3) As assumption (A4).

The beta-min assumption in (C2) is rather unpleasant since, for example, we would
like to find out with significance testing whether a regression coefficient is large or
smallish (or zero): thus, an a-priori assumption excluding smallish coefficients is
unpleasant. The condition can be somewhat relaxed to “zonal assumptions” which
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still require that there is a gap between large and smallish coefficients and restrict
the number of smallish coefficients [4].

2.4.1 Aggregation of p-Values

With the multi sample splitting approach described above we obtain the following:
for testing the null-hypothesis H0;j W ˇ0j ¤ 0, when repeating the sample splitting B
times, we get p-values

P.1/j ; : : : ;P.B/j :

The problem, in general, is how to aggregate many p-values which can be arbitrarily
dependent to a single p-value Pj. The following Lemma is very general and might
be of interest in other problems.

Lemma 1 ([20]) Assume that we have B p-values P.1/; : : : ;P.B/ for testing a null-
hypothesis H0, i.e., for every b 2 f1; : : : ;Bg and any 0 < ˛ < 1, PH0 ŒP

.b/ � ˛� � ˛.
Consider for any 0 < 
 < 1 the empirical 
 -quantile of the values fP.b/=
 I b D
1; : : : ;Bg:

Q.
/ D min
�
empirical 
 -quantile fP.1/=
; : : : ;P.B/=
g; 1� :

Furthermore, consider a suitably corrected minimum value of Q.
/ over a range
which is lower bounded by a positive constant 
min:

P D min

�

.1 � log.
min// min

2.
min;1/

Q.
/; 1

�

: (9)

Then, both Q.
/ (for any 
 2 .0; 1/) and P are conservative p-values satisfying for
any 0 < ˛ < 1: PH0 ŒQ.
/ � ˛� � ˛ or PH0 ŒP � ˛� � ˛, respectively.

A simple generic aggregation rule is with 
 D 1=2: multiply the raw p-values by
the factor 2 and take the sample median. Potential power improvement is possible
with an adaptive version searching for the best 
 as in (9) but paying a price in terms
of the factor .1 � log.
min// (which e.g. is�3:996 for 
min D 0:05).

2.5 Stability Selection

Stability Selection [19] is an even (much) more generic method than the multi
sample splitting from Sect. 2.4. It can be applied to any structure estimation problem
such as edges in a graph: variable selection in a regression problem is a special case
thereof which we discuss now a bit further.
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As with multi sample splitting, we randomly split the sample in two halves with
indices I1 and I2, respectively, and we consider a variable selection method OS �
f1; : : : ; pg. The idea is to analyze the stability of OS.I1/, based on the half-sample I1,
when subsampling the data, and in fact, we do not make any use of the other half of
the sample I2. Thus, denote by I� a random subsample of size bn=2c. We consider
the event that a single variable j is selected by OS.I�/ based on the subsample I�,
j 2 OS.I�/, and we compute its probability

�. j/ D P
�Œ j 2 OS.I�/�:

In practice, this probability is computed based on B � 100 random subsamples and
calculating empirical relative frequencies.

The main problem is to determine a threshold 1=2 < �thr � 1 such that
�. j/  � implies that variable j is selected in a “stable way”. This can be
formalized as follows: denote by V D j [j2Sc

0
f�. j/  �gj, that is, the number

of false positive selections. Then, assuming some conditions as outlined below, the
following formula holds [19]:

EŒV� � 1

2�thr � 1
q2

p
; (10)

where q  jOS.I�/j (almost surely). For example, q can be specified as the top q
variables of a ranking (or selection) scheme, e.g., the q variables having largest
regression coefficients in absolute value (if there are fewer than q coefficients with
non-zero values, just take all of them). For the Lasso based on the first half-sample,
since it selects at most bn=2c variables, a good value of q might be in the range of
n=10 to n=3.

The formula (10) can then be inverted to determine a threshold �thr for a given
bound of EŒV� and a given q (which specifies the selection method OS). For example,
by tolerating EŒV� � 5, a specified q D 30 and p D 1;000 we choose

�thr D .1C q2

p

1

5
/=2 D .1C 302

1;000

1

5
/=2 D 0:59

and such a choice then satisfies EŒV� � 5. When using the tolerance bound EŒV� �
˛, the corresponding threshold �thr leads to a procedure where

PŒV > 0� � EŒV� � ˛;

and hence, with control of the familywise error rate.
The main assumptions for validity of (10) are here sketched only:

(D1) The selector OS is performing better than random guessing.
(D2) An exchangeability condition holds implying that it is equally likely that a

noise variable is selected by OS.
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The formal assumptions are given in Meinshausen and Bühlmann [19]. In fact,
assumption (D1) is a mild condition while (D2) is rather restrictive: however, it was
shown empirically that formula (10) approximately holds even for scenarios where
(D2) does not hold. Interestingly, a beta-min assumption as in (C2) is not required
for Stability Selection.

2.6 A Summary of an Empirical Study

We briefly summarize the results from a fairly large empirical study in Dezeure
et al. [8]. An overall conclusion is that the multi sample splitting and the Ridge
projection method are often somewhat more reliable for familywise error control
(type I error control) than the de-sparsified Lasso procedure; on the other hand,
the de-sparsified Lasso has often (a bit) more power in comparison to multi sample
splitting and Ridge projection. However, these findings depend on the particular case
and they are not consistent among all considered settings. Figure 1 illustrates the
familywise error control and power of various methods for 96 different scenarios,
varying over different covariate designs, sparsity degrees and structure of active sets,
and signal to noise ratios.

From a practical point of view, if one is primarily concerned about false positive
statements, the multi sample splitting method might be preferable: especially for
logistic linear models (see Sect. 3.1), the adapted version of multi sample splitting
was found to be most “robust” for reliable error control.

0.0 0.2 0.4 0.6 0.8 1.0

Covtest

JM

MS−Split

Ridge

Despars−Lasso

FWER

0.0 0.2 0.4 0.6 0.8 1.0

Power

Fig. 1 Ninety-six different simulation scenarios, all with p D 500 and n D 100, with varying
covariate design, sparsity and structure of the active set, and signal to noise ratio. Each dot
represents a scenario, shown with jittered plotting. Five methods: De-sparsified Lasso (Despars-
Lasso, as in Sect. 2.1), Ridge projection (Ridge, as in Sect. 2.2), Multi sample splitting (MS-Split,
as in Sect. 2.4), a method from Javanmard and Montanari [10] (JM), covariance test from Lockhart
et al. [13] (Covtest). Left panel: familywise error rate (FWER) with nominal level at 0:05 indicated
by the dotted line; right panel: power (Power) representing the fraction of correctly identified
active variables with non-zero regression coefficients. The figure is similar to some graphical
representations in Dezeure et al. [8]
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2.6.1 Supporting Theoretical Evidence and Discussion of Various
Assumptions

Supporting evidence from theory, for the performance results in the empirical study,
can be based by discussing the main assumptions underlying the different methods.
The de-sparsified Lasso method is expected to work well and is most powerful
if the design matrix is sparse in terms of its corresponding row-sparsity of †�1
(assumption (A2)) and if the linear model is rather sparse as well (assumption
(A3)). The Ridge projection method does allow for designs with non-sparse rows
of †�1; however, the less restrictive assumption come with a price in that there
is no optimality results in terms of power. The multi sample splitting method,
which performs empirically quite reliably, has a theoretical drawback as it requires a
zonal or the stronger beta-min assumption for the underlying regression coefficients
(assumption (C2)); in terms of sparsity for the linear model, the multi sample
splitting method is justified for a broader regime, allowing for s0 D o.n= log. p//
(assumption (C2)), than the required s0 D o.

p
n= log. p// in assumption (A2) for

the de-sparsified Lasso.
Stability Selection is controlling the number of false positives EŒV� and not e.g.

the familywise error rate (except when controlling EŒV� at a very low level ˛ which
implies familywise error control at level ˛). The restrictive theoretical assumption is
the exchangeability condition (D2): however, it seems that this condition is far from
necessary. Stability Selection does not require a beta-min assumption as in (C2).

2.7 Other Methods

Very much related to the de-sparsified Lasso in Sect. 2.1 is a proposal by Javanmard
and Montanari [10]. Their method is proved to be asymptotically optimal without
requiring sparsity of the design as in condition (A2). Empirical evidence suggests
though that the error control is not very reliable, see Fig. 1.

Bootstrap methods have been suggested to construct confidence intervals and
p-values [7, 12]. They seem to work well for the components where the true
parameter value equals zero, but they are often poor for the other components with
non-zero parameters. Furthermore, multiple testing adjustment often requires a huge
number of bootstrap replicates for reasonable computational approximation of tail
events.

The covariance test [13] has been recently proposed as an “adaptive” method
for assigning significance for the Lasso. Asymptotic validity of the test was shown
under rather restrictive assumptions, in particular a restrictive beta-min assumption
in the spirit of condition (C2). Empirical results of the covariance test are illustrated
in Fig. 1, indicating that its power is comparably poor and error control is less
reliable than for example for the Ridge projection or multi sample split method.
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Another interesting proposal is due to Meinshausen [17]: we outline more details
in Sect. 3.4.

3 Extensions and Further Topics

We briefly discuss here important extensions and additional issues.

3.1 Generalized Linear Models

Generalized linear models can be immediately treated with the multi sample
splitting method or Stability Selection. Instead of e.g. the Lasso, we use `1-norm
regularized maximum likelihood estimation for the selector OS, and low-dimensional
inference (for the multi sample splitting method) is then based on maximum
likelihood methodology.

The de-sparsified Lasso or the Ridge projection method are most easily adapted
via additional weights as in iteratively reweighted least squares estimation [15]. The
weights wi D wi.ˇ

0/ .i D 1; : : : n/ can be estimated by plugging in the `1-norm
regularized maximum likelihood estimate; we can then proceed with new weighted
data

QY D WY; QX D WX; W D diag.w1; : : : ;wn/;

and apply the procedures from Sects. 2.1 and 2.2.

3.2 Multiple Testing Correction

Adjustment to multiple testing can be based using standard procedures which
require valid p-values for individual tests as input: even under arbitrary dependence
among the p-values, we can use e.g. the Bonferroni-Holm method for controlling the
familywise error rate or the procedure from Benjamini and Yekutieli [1] to control
the false discovery rate.

For the de-sparsified Lasso or Ridge projection method, one can use a simulation-
based method which is less conservative than Bonferroni-Holm in presence of
dependence: the details are given in Bühlmann [3].

We note that the multi sample splitting method from Sect. 2.4 as in the software
package hdi (see Sect. 3.3) yields p-values which are adjusted for controlling the
familywise error or false discovery rate.
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3.3 R-Package hdi

The R-package hdi [16] contains implementations of various methods, namely the
de-sparsified Lasso, the Ridge projection, the multi sample splitting method and of
Stability Selection. We refer to to Dezeure et al. [8] how to use the procedures and
what the various R-functions can do.

3.4 Testing Groups of Parameters

There might be considerable interest in testing the null-hypothesis H0;G W ˇ0j D 0 for
all j 2 G, where G � f1; : : : ; pg corresponds to a group of variables. The alternative
is HA;G W there exists j 2 G with ˇ0j ¤ 0.

Based on the de-sparsified Lasso or Ridge projection method, one can use a
simulation-based procedure to obtain an approximate distribution of maxj2G jObjj
under the null-hypothesis H0;G. We refer to Bühlmann [3] for the details. The multi
sample splitting method can be modified for testing H0;G, as described in Mandozzi
and Bühlmann [14].

An interesting and very different proposal is given by Meinshausen [17] which
can be used for testing individual but also groups of variables (and the latter is the
main motivation in that work): the procedure does not even require an identifiability
condition in terms of the design matrix X as it automatically determines whether a
parameter or a group of parameters is identifiable.

3.5 Selective Inference

Especially with confidence intervals, one would typically report only for a few
selected variables. An interesting approach to account for the selection effect, in
terms of the false coverage rate, is presented in Benjamini and Yekutieli [2]. Their
procedure can be applied for confidence intervals from e.g. the de-sparsified Lasso
or the Ridge projection method from Sects. 2.1 or 2.2.

3.6 Some Thoughts on Bayesian Methods

For expository simplicity, consider a Gaussian linear model with Gaussian prior for
the regression coefficients ˇ D .ˇ1; : : : ; ˇp/:

ˇ1; : : : ; ˇp i.i.d. 	 N .0; �2/;
Yjˇ 	 Nn.Xˇ; �2/: (11)
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The maximum a-posteriori estimator is then the Ridge estimator

Ǒ
MAP D argminˇkY � Xˇk22=nC �2

�2n
kˇk22:

For �2 large, this is the Ridge estimator with small regularization parameter � as in
Sect. 2.2.

Denote by ˇ� a realization from the prior distribution, and we are interested
in constructing an interval which contains ˇ� with high probability. Alternatively,
when adopting the frequentist Bayesian viewpoint (cf. [9]), we assume that the data
is generated from a true parameter ˇ0, and we are interested to construct an interval
which covers ˇ0 with high probability, based on a Bayesian model in (11). As
discussed in Sect. 2.2, we know that for �2 large or �2 very small, ǑMAP is essentially
unbiased for �� D Pˇ� (or �0 D Pˇ0), where P is as in Sect. 2.2, but it can be
severely biased for ˇ� (or ˇ0) in the high-dimensional scenario with p � n. Thus,
the standard (Gaussian prior) Bayesian credible region centered around ǑMAP seems
rather flawed for covering ˇ� or ˇ0 in the frequentist Bayesian paradigm.

Of course, in the classical Bayesian inference paradigm, such a bias does not
occur, even when p � n, since the distribution of ˇjY is Gaussian with mean
EŒˇjY� D ǑMAP.

4 Conclusions

We provide a compact review of some methods for constructing tests and confidence
intervals in high-dimensional models. The main assumptions underlying each
method as well as a summary of empirical results are presented: this helps to
understand, also from a comparative perspective, the strengths and weaknesses of
the different approaches. Furthermore, a link to the R-package hdi is made. Thus, the
user and practitioner obtains a “quick” but sufficiently deep overview for applying
the procedures.
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Modelling and Forecasting Daily Electricity
Load via Curve Linear Regression

Haeran Cho, Yannig Goude, Xavier Brossat, and Qiwei Yao

Abstract In this paper, we discuss the problem of short-term electricity load
forecasting by regarding electricity load on each day as a curve. The dependence
between successive daily loads and other relevant factors such as temperature, is
modelled via curve linear regression where both the response and the regressor are
functional (curves). The key ingredient of the proposed method is the dimension
reduction based on the singular value decomposition in a Hilbert space, which
reduces the curve linear regression problem to several ordinary (i.e. scalar) linear
regression problems. This method has previously been adopted in the hybrid
approach proposed by Cho et al. (J Am Stat Assoc 108:7–21, 2013) for the same
purpose, where the curve linear regression modelling was applied to the data after
the trend and the seasonality were removed by a generalised additive model fitted
at the weekly level. We show that classifying the successive daily loads prior to
curve linear regression removes the necessity of such a two-stage approach as well
as resulting in reducing the forecasting error by a great margin. The proposed
methodology is illustrated using the electricity load dataset collected between 2007
and mid-2012, on which it is compared to the hybrid approach and other available
competitors. Finally, various ways for improving the forecasting performance of the
curve linear regression technique are discussed.
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1 Introduction

While there are means for storing and discharging electricity, they cause extra
costs as well as being limited to a small capacity compared to the overall electric
power consumption. Therefore, it is of great importance for electricity providers
to model and forecast electricity loads accurately over short-term (from 1 h to
1 month ahead) and middle-term (from 1 month to 5 years ahead) horizons. The
electricity load forecast is an essential entry to the optimisation tools adopted by
many energy companies for power system scheduling, and a small improvement in
load forecasting can bring in substantial benefits from reducing production costs.
Besides, there are further advantages to be gained in the electricity trading market,
especially during the peak periods.

The French energy company Électricité de France (EDF) manages a large panel
of production units across Europe, which includes water dams, nuclear plants,
wind turbines, coal and gas plants. Figure 1 shows the electricity consumption
of their customers measured over half an hour intervals between 2007 and mid-
2012. Note that for confidentiality, we only report the ratio between the load over
each half-hour interval, and the maximum load during the period throughout the
paper. Based on the vast knowledge on French electricity consumption patterns
accumulated over 20 years, EDF has developed a forecasting model which consists
of complex regression models based on past loads, temperature, date and calendar
events, coupled with classical time series models such as the seasonal ARIMA
(SARIMA) [4]. This operational model performs very well, attaining about 1.4 %
mean absolute percentage error (see (8)) in forecasting the consumption of EDF
customers over one day horizon. Due to its complexity, however, the model may
not be well-adapted to constant changes in electricity consumption habits resulted
from the opening of new electricity markets, technological innovations and social
and economic changes, to name a few.
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Fig. 1 Electricity consumption of the French customers of EDF measured every half an hour
between 2007 and mid-2012
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Cho et al. [6] recognised the strategic importance of a forecasting model
which was more adaptive to ever-changing electricity consumption environment.
Electricity loads exhibit several interesting features at more than one level, as can
be seen in Fig. 1, and addressing such multi-level nature of the data, they proposed
a hybrid approach which consisted of the following two building blocks:

• Modelling the overall trend and seasonality in the data by fitting a generalised
additive model (GAM) to the weekly averages of the load, with meteorological
factors (e.g., temperature and nebulosity) as explanatory variables;

• Modelling the dependence across successive, de-trended daily loads via curve
linear regression, where both the response and the regressor are functional
(curves), with the load curve on the next day as the response and that on the
current day, jointly with the temperature forecast, as the regressor.

By regarding each daily load and temperature as a curve, the proposed curve linear
regression modelling takes advantage of the continuity of the curve data in statistical
modelling. Moreover, it embeds some nonstationary features, such as daily patterns
of electricity loads (see Fig. 2), into a stationary framework in a functional space. Its
key ingredient is the dimension reduction based on the singular value decomposition
in a Hilbert space, which effectively reduces the curve linear regression problem
to several ordinary linear regression problems. Compared to the EDF operational
model, the hybrid method does not incorporate much of the data-specific knowledge,
while maintaining competitive prediction accuracy when applied to the French
electricity consumption data.

While the hybrid approach represents a determined effort in developing an
adaptive and widely-applicable forecasting model, it is conceivable that the two-
stage procedure may carry over the estimation and the forecasting errors from the

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0 2 4 6 8 10 14 18 22 2 4 6 8 10 14 18 22

Fig. 2 Electricity loads on Mondays–Tuesdays in January and December (solid), Mondays–
Tuesdays in June and July (dashed) and Saturdays–Sundays in June and July between 2007 and
2012 (dotted)
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first stage to the next stage, and thus lead to greater forecasting errors. Besides, even
after the trend and the seasonality are removed at the weekly level, the daily loads
exhibit dependency on calendar variables, such as the corresponding days of a week
and the months of a year, both in their profiles and the covariance structure between
successive loads. As a solution, [6] proposed to classify the pairs of daily loads into
(approximately) homogeneous sub-groups prior to fitting a curve linear regression
model, which, as we show, renders the weekly level modelling unnecessary.

Therefore, we focus on the curve linear regression method and its application
to the one-day ahead forecasting problem in conjunction with the daily load clas-
sification, and investigate whether this simplified approach improves the accuracy
and the adaptivity of the forecasting model when compared to the hybrid approach.
Besides, the ways of further enhancing its forecasting performance are discussed,
such as aggregating several forecasting models resulting from varying choices for
the curve regressor.

The rest of the paper is organised as follows. In Sect. 2, we describe the
dimension-reduction based curve linear regression technique in a generic setting.
Section 3 discusses the application of the proposed approach to electricity load
modelling, including the problem of classifying the successive daily load curves.
We conduct a comparative study in Sect. 4, where our method and other competitors
are applied to predict the daily electricity consumption of EDF customers in France.
Finally, we conclude the paper with some remarks on the future research.

2 Curve Linear Regression via Dimension Reduction

Every day at noon, EDF forecasts the half-hourly consumption of electricity for
the next 24 h. Viewing that the 48 half-hourly loads are sampled from a curve, we
may regard the loads for the next 24 h from the noon of day i as a curve response
(� Yi.�/), and let the curve regressor (� Xi.�/) contain information such as the loads
observed up to the noon of the same day, as well as observed and predicted daily
temperature. Then the following curve linear regression model can be adopted to
model the dependence between such Yi.�/ and Xi.�/:

Yi.u/ D Y.u/C
Z

I2

fXi.v/ � X.v/gˇ.u; v/dv C "i.u/ for u 2 I1; (1)

where Y.u/ D EfYi.u/g, X.v/ D EfXi.v/g and I1 and I2 denote the supports of
Yi.�/ and Xi.�/, respectively. The linear operator ˇ is a regression coefficient function
defined on I1 �I2, and "i.�/ is noise satisfying Ef"i.u/g D 0 for all u 2 I1.

The conventional approach to the linear regression problem in (1) is based
on decomposing Yi.�/ and Xi.�/ using the Karhunen-Loève expansion, which has
been featured predominantly in the functional data analysis literature for dimension
reduction. Then the terms from such expansions are modelled using simple linear
regression, which is equivalent to the dimension reduction based on principal
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component analysis in multivariate analysis. For further references on functional
linear models, see e.g. [20, 25] and [12].

Since the principal components do not necessarily represent the directions in
which Xi.�/ and Yi.�/ are most correlated, [6] presented a novel approach where the
singular value decomposition (SVD) in a Hilbert space was adopted to single out
the directions upon which the projections of Yi.�/ were most correlated with Xi.�/.
While closely related to the functional canonical regression method proposed in
[15], this approach focuses on regressing Yi.�/ on Xi.�/ and thus the two curves are
not treated on an equal footing which is different from, and much simpler than, the
latter method. In what follows, we lay out the details of the SVD-based curve linear
regression method in a generic setting.

Let fYi.�/;Xi.�/g; i D 1; : : : ; n, be a random sample where Yi.�/ 2 L2.I1/,
Xi.�/ 2 L2.I2/, and let I1 and I2 be two compact subsets of R. We denote by
L2.I / the Hilbert space consisting of all the square integrable curves defined on
the set I , which is equipped with the inner product hf ; gi D R

I f .u/g.u/du for
any f ; g 2 L2.I /. For now, it is assumed that EfYi.u/g D 0 for all u 2 I1 and
EfXi.v/g D 0 for all v 2 I2. The covariance function between Yi.�/ and Xi.�/ is
denoted by ˙.u; v/ D covfYi.u/; Xi.v/g. Under the assumption

Z

I1

EfYi.u/
2gduC

Z

I2

EfXi.v/
2gdv <1; (2)

˙ defines the following two bounded operators between L2.I1/ and L2.I2/,

f1.u/!
Z

I1

˙.u; v/f1.u/du2L2.I2/ and f2.v/!
Z

I2

˙.u; v/f2.v/dv 2L2.I1/

for any fl.�/ 2 L2.Il/; l D 1; 2.
Performing the SVD on ˙ , we obtain a triple sequence f�j; 'j.�/;  j.�/g; j D

1; 2; : : : which satisfies

˙.u; v/ D
1X

jD1

q

�j 'j.u/  j.v/; (3)

where f'j.�/g is an orthonormal basis of L2.I1/, f j.�/g is that of L2.I2/, and the
squared singular values f�jg are ordered in a decreasing manner as

�1  �2  � � �  0:

Further, it holds that for u 2 I1; v 2 I2 and j D 1; 2; : : :,
Z

I1

M1.u; u
0/ 'j.u

0/ du0 D �j 'j.u/;
Z

I2

M2.v; v
0/  j.v

0/ dv0 D �j  j.v/;
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where Ml; l D 1; 2 are non-negative operators defined on L2.Il/ as

M1.u; u
0/ D

Z

I2

˙.u;w/˙.u0;w/ dw; M2.v; v
0/ D

Z

I1

˙.w; v/˙.w; v0/ dw:

It is clear from the above that �j is the j-th largest eigenvalue of M1 and M2, with
'j.�/ and  j.�/ as the respective eigenfunctions. See [23] for further discussion on
the SVD in a Hilbert space.

Since f'j.�/g and f j.�/g are the orthonormal bases of L2.I1/ and L2.I2/, we
may write

Yi.u/ D
1X

jD1
�ij'j.u/; Xi.v/ D

1X

kD1
�ik k.v/; (4)

where �ij and �ik are random variables defined as �ij D hYi; 'ji and �ik D hXi;  ki.
From (3), it is straightforward to derive that

cov.�ij; �ik/ D E.�ij�ik/ D
� p

�j when j D k;
0 when j ¤ k:

(5)

The dimensionality of the functional data has been defined in various contexts,
e.g. see [13] and [2]. A correlation dimension between the two curves Yi.�/ and Xi.�/
was defined in [6] with the squared singular values �j.

Definition 1 If �r > 0 and �rC1 D 0, the (linear) correlation between Yi.�/ and
Xi.�/ is r-dimensional.

When the correlation between Yi.�/ and Xi.�/ is r-dimensional, it follows from (5)
that covf�ij; Xi.v/g D 0 for all j > r and v 2 I2, from which we can conclude that
the curve linear regression model (1) has an equivalent representation by r (scalar)
linear regression models, as summarised in the following theorem.

Theorem 1 (Theorem 1 of [6]) Let the linear correlation between Yi.�/ and Xi.�/
be r-dimensional. Assume that

• The regression coefficient operator ˇ is in the Hilbert space L2.I1 �I2/, and
• "i.�/ are i.i.d. with Ef"i.u/g D 0 and EfXi.v/"j.u/g D 0 for any u 2 I1; v 2 I2

and i; j  1.

Then the curve regression model (1) may be represented equivalently by

�ij DP1
kD1 ˇjk�ik C "ij for j D 1; : : : ; r;

�ij D "ij for j D rC 1; rC 2; : : : ; (6)

where "ij D
R
I1
'j.u/"i.u/du, and ˇjk D

R
I1�I2

'j.u/ k.v/ˇ.u; v/dudv.
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The above theorem implies that the SVD-based approach provides a framework to
define and exploit the correlation dimension between a pair of curves, and to model
the functional linear regression relationship between the pair using a finite number
of ordinary (scalar) linear regression models. In this framework, as described in
Sect. 3.2 below, the prediction is achieved directly from the estimated ordinary linear
regression models.

Taking into account the fact that var.�ik/ ! 0 as k ! 1 (see (2) and (4)),
we may include only the first Q terms �ik; k D 1; : : : ;Q in the r multiple linear
regression models, and obtain the ordinary least squares (OLS) estimator of the
finite number of linear coefficients. Note that, while the OLS estimator of ˇjk is
unbiased, its variance tends to increase with Q in finite sample performance. That
is, if Q is selected too large, we may end up with a model which fits the data too
closely but performs poorly in prediction.

As noted in [6], Theorem 1 holds for any valid expansion Xi.v/ DPk �ik k.v/,
provided f�ijg are obtained from the SVD. Let Xi.�/ be of finite dimension in
the sense that its Karhunen-Loève decomposition has q terms only, i.e. Xi.v/ DPq

kD1 �ik
k.v/ where q. r/ is a finite integer, f
k.�/gqkD1 are q orthonormal func-
tions in L2.I2/ and �i1; : : : ; �iq are uncorrelated random variables with var.�ik/ > 0.
Then, decomposing Xi.�/ with respect to f k.�/gqkD1 from the SVD of ˙ , the
corresponding f�ikg satisfy cov.�ik; �il/ D 0 for any k ¤ l. This, together with
(5) and (6), implies that ˇjk D 0 for all j ¤ k and thus (6) is reduced to r simple
linear regression problems

�ij D ˇjj�ij C "ij for j D 1; : : : ; r;
�ij D "ij for j D rC 1; rC 2; : : : :

2.1 Estimation

Given the observed pairs of curves fYi.�/; Xi.�/g; i D 1; � � � ; n, let

Ȯ .u; v/ D 1

n

nX

iD1
fYi.u/� NY.u/gfXi.v/ � NX.v/g;

where NY.u/ D n�1P
i Yi.u/ and NX.v/ D n�1P

i Xi.v/. Performing the SVD on
Ȯ .u; v/, we obtain the estimators f O�j; O'j.�/; O j.�/g for f�j; 'j.�/;  j.�/g; j D 1; 2; : : :

in (3). Note that the SVD can be achieved by performing eigenanalysis on the non-
negative operators

OM1.u; u
0/ D

Z

I2

Ȯ .u;w/ Ȯ .u0;w/dw and OM2.v; v
0/ D

Z

I1

Ȯ .w; v/ Ȯ .w; v0/dw;
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which may be transformed into the eigenanalysis of non-negative definite matrices,
see Section 2.2.2 of [2].

Adapting Theorem 1 of [2] to the current setting, we can show the consistency of
O�j. We first assume that

• fYi.�/;Xi.�/g is strictly stationary and -mixing with the mixing coefficients .k/
satisfying the condition

X

k�1
k .k/1=2 <1:

• EfRI1
Yi.u/2duC RI2

Xi.v/
2dvg2 <1.

• �1 > � � � > �r > 0 D �rC1 D �rC2 D � � � .
Then we have j O�k � �kj D Op.n�1=2/ for 1 � k � r, and j O�kj D Op.n�1/ for k > r,
as n!1.

This result implies that the ratios O�jC1= O�j for j < r are asymptotically bounded
away from 0, while O�rC1= O�r ! 0 in probability. Therefore, one way of determining
the correlation dimensionality is to employ the following ratio-based estimator

Or D arg max
1�j�d

O�j= O�jC1;

where d is a pre-specified upper bound on r. However, this estimator should be
used with caution as different components of the SVD can have different degrees
of “strength” in the sense that, there may exist some k < r for which non-zero
�j ¤ 0; j > k are considerably smaller than �j0 ; j0 � k. Further discussion on this
point in the framework of factor analysis can be found in [17]. Heuristically, we may
estimate r as

Or D maxf1 � j � d W O�j= O�jC1 > Mg; (7)

for sufficiently chosen M to avoid neglecting such smaller non-zero eigenvalues.
Alternatively, [6] proposed the following information criterion based on the

estimated eigenvalues, which extended the information criterion introduced in [14]
for high-dimensional time series analysis:

IC.q/ D log

0

@c� C 1

d2

dX

kDqC1
O�k

1

AC �q � g.n/;

where c�; � > 0 are constants and g.�/ is a function of n satisfying n � g.n/ ! 1
and g.n/ ! 0 as n ! 1. While IC.�/ was shown to be consistent in identifying
r asymptotically, the choices of � and g.�/ played a significant role in finite sample
performance. Therefore, it was proposed to fix g.n/ as g.n/ D n�1=2, obtain q� D
arg minq IC.qI �/ over a grid of values for � , and choose r as the most frequently
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returned among q�. For the full description of this majority voting scheme, see
Section 3.2 of [6].

3 Application to Electricity Load Modelling

In this section, we discuss applying the proposed curve linear regression method to
electricity load modelling and forecasting. The load data example (plotted in Fig. 1)
contains electricity loads consumed by the French customers of EDF between 2007
and mid-2012. We first highlight some time-varying features exhibited by the daily
electricity load curves, which makes it difficult to assume that the entire data can be
modelled as being stationary. Then, we introduce a simple classification rule which
divides the pairs of load curves into homogeneous sub-groups, such that the curve
linear regression modelling is applicable to each sub-group separately. Finally, the
combined procedure of classification and curve linear regression is illustrated using
a real electricity load forecasting example.

3.1 Classification of Daily Electricity Load Curves

In electricity load data, there exist systematic discrepancies in the profiles and the
variability of daily load curves observed on different days of a week or in different
months. Figure 2 shows that, while successive daily loads on Mondays–Tuesdays
in June and July behave similarly, they are distinctively different from those
observed on Saturdays–Sundays in June and July, and also from those observed
on Mondays–Tuesdays in January and December. Those profile discrepancies are
reflected predominantly in the locations and magnitudes of daily peaks. Typically
in France, daily peaks occur at noon in summer and in the evening in winter, due to
economic cycle as well as the usage of electrical heating or cooling and lighting.
Hence, the profiles and (presumably) the dynamic structure of successive daily
curves vary over different days within a week, and also over different months within
a year. It has been noted that these systematic discrepancies persist even after the
weekly level de-trending step of the hybrid approach (see Section 4.1 of [6]), which
implies that the classification of daily loads is an essential step prior to curve linear
regression modelling with or without the weekly level modelling.

According to the experts at EDF, in the case of French electricity consumption
data, load curves on the same day of a week tend to have similar profiles. Therefore it
is reasonable to assign a day type (DT) to each daily load as summarised in Table 1.

Table 1 Daily classification
of daily load curves

Day type 0 1 2 3 4 5 6

Day of a week Mon Tue Wed Thu Fri Sat Sun



44 H. Cho et al.

1 2 53 4 6 7 8 9 10 11 12

Fig. 3 Boxplots of O�i1 from different months

Table 2 Seasonal classification of daily load curves

Seasonal class 1 2 3 4 5 6 7 8

Month Jan–Feb, Nov–Dec Mar Apr May Jun–Jul Aug Sep Oct

To gain an insight into the possible seasonal variation present in the covariance
between successive daily loads, as well as in their profiles, we decompose the daily
load curves (denoted by Zi.�/ for the loads on the i-th day) as follows. Performing
the SVD on the sample covariance function between successive daily curves ZiC1.�/
and Zi.�/, we obtain the first left singular function O
1.�/ and decompose each ZiC1.�/
as O�i1 D hZiC1; O
1i; see Fig. 3. We note that each Zi.�/ has been de-meaned with the
mean curve obtained by averaging out all the observations of the same DT. If the
dependence structure between the pairs of curves undergoes seasonal changes, we
expect such seasonality to be reflected in the behaviour of O�i1 over the span of 1 year.
Indeed, this is the case as observable in the boxplots of O�i1 from different months
and based on this, we choose to create 8 seasonal classes (SC) as in Table 2.

Combining the two classification rules, we classify each pair of successive
daily loads into sub-groups of (approximately) homogeneous dependence structure,
according to the corresponding DTs and SCs. While it lacks rigorous statistical
ground, the forecasting models estimated within such sub-groups perform well as
demonstrated in Sect. 4. Besides, the problem of classifying electricity load curves
and functional data in general can stand alone as an independent research problem,
and it has attracted considerable attention, see e.g. [5, 21, 22] and [16] for functional
data clustering, and [1] for that in the context of electricity loads classification.
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3.2 An Illustration

We illustrate the application of curve linear regression with an example where our
aim is to predict the electricity load curve for the next 24 h (48 half-hours), denoted
by Y.�/, at the noon of Tuesday 12 June 2012. Note that in (1), Yi.�/ and Xi.�/ are
allowed to have different supports as I1 and I2, such that we have flexibility in the
choice of the curve regressor. Therefore we consider the following three choices:

• X.1/.�/: load curve for the 24 h up to the midday of 12 June 2012.
• X.2/.�/: X.1/.�/ joined with the temperature forecast (� TF.�/) for the next 24 h.
• X.3/.�/: X.2/.�/ joined with the temperature curve (� T.�/) observed over the same

24 h interval as X.1/.�/.
We have used the temperature forecasts from meteoFrance in our study. As
discussed in Sect. 3.1, fYi.�/;X.m/i .�/g; m D 1; 2; 3 are collected as all the observed
pairs of curves corresponding to f(DT 1, SC 5), (DT 0, SC 5)g between 1 January
2007 and the midday 12 June 2012. In total, there are n D 38 observations, which
are plotted in Fig. 4 along with their respective mean curves. It may be noted
that, due to the classification step, the regressor curves fX.1/i .�/; i D 1; : : : ; ng
and the response curves fYi.�/; i D 1; : : : ; ng do not satisfy the relationship
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Fig. 4 The n curve observations Yi.�/ (top left), X.1/i .�/ (top right), Ti.�/ (bottom left) and TF
i .�/

(bottom right), together with their respective mean curves (filled circle) as well as Y.�/, X.1/.�/,
T.�/ and TF.�/ (empty circle)
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X.1/iC1.�/ D Yi.�/. Hence, even with Xi.�/ � X.1/i .�/, the curve linear regression model
(1) is distinguished from the autoregressive Hilbertian process of order 1 (ARH(1))
proposed in [3].

Note that for X.2/i .�/ and X.3/i .�/ which join the observed loads with the tem-

perature, different components have different scales since X.1/i .�/ range in tens of
thousands (MW), while Ti.�/ and TF

i .�/ range in a far smaller scale between 6 and
33 (oC). Since the SVD-based method is not scale-invariant, we apply a simple
standardisation step to have different components of the regressor curves in a similar
scale.

From the observed curves, we estimate the sample covariance function

Ȯ .m/.u; v/ D 1

n

nX

iD1
fYi.u/� NY.u/gfX.m/i .v/ � NX.m/.v/g; m D 1; 2; 3;

and perform the SVD on Ȯ .m/.u; v/ to obtain f O�.m/j ; O'.m/j .�/; O .m/j .�/g; j D 1; 2; : : :.
Applying (7) to the estimated eigenvalues with M D 5, the correlation dimensions
are estimated as Or.m/ D 4 for all m D 1; 2; 3. Defining O�.m/ij D hYi � NY; O'.m/j i and

O�.m/ik D hX.m/i � NX.m/; O .m/k i analogously as O�ij and O�ik, the next step is to estimate the

linear coefficients ˇ.m/jk in the following scalar linear regression models

O�.m/ij D
QX

kD1
ˇ
.m/
jk O�.m/ik C ".m/ij

for m D 1; 2; 3. We set Q D 15 to preserve the prediction accuracy by having
sufficient number of terms, while attaining the numerical stability of the OLS
estimator of ˇ.m/jk . Then the predictor of Y.u/ takes the following form

OY.m/.u/ D NY.u/C
Or.m/X

jD1
O�.m/j O'.m/j .u/;

where O�.m/j are predicted as

O�.m/j D
QX

kD1
Ǒ.m/
jk O�.m/k ; j D 1; : : : ; Or.m/;

with O�.m/k D hX.m/ � NX.m/; O .m/k i.
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For each m, we obtain two other predictors besides OY.m/.�/, the oracle and the
base predictors. The oracle predictor is of the form

QY.m/.u/ D NY.u/C
Or.m/X

jD1
Q�.m/j O'.m/j .u/;

which is similar to OY.m/.u/ except that O�.m/j are replaced by Q�.m/j D hY � NY; O'.m/j i.
We use the term “oracle” to emphasise the fact that Q�.m/j require the prior knowledge
of Y.�/ and thus are unavailable in practice. The base predictor is set simply as
NY.m/.�/ D NY.�/, ignoring the dynamic dependence between the response and the
regressor curves.

To evaluate the performance of different predictors, we employ the following two
error measures

RMSE D
(
1

N

NX

tD1
.Oft � ft/

2

) 1=2

and MAPE D 1

N

NX

tD1

ˇ
ˇ
ˇ
ˇ
ˇ

Oft � ft
ft

ˇ
ˇ
ˇ
ˇ
ˇ
; (8)

where Oft and ft denote the predicted and the true loads in the t-th half-hour interval
and N denotes the forecasting horizon (N D 48 in this case). The MAPE and RMSE
for the above predictors are reported in Table 3.

As expected, the oracle predictors return smaller prediction errors than the SVD-
based predictors, and the base predictor returns the largest error. Based on this, we
can conclude that (a) there is much to be accounted for by the dependence between
the regressor and the response curves, as observable from the poor performance of
NY.�/, and (b) the reduced dimension captures such dependence structure well, as
demonstrated by the superior performance of QY.m/.�/.
OY.m/.�/ perform as competitively as QY.m/.�/, attaining RMSE as small as 292 MW

without any prior knowledge on the true load Y.�/. This fact is also confirmed in
Fig. 5, where all OY.m/.�/ and QY.m/.�/ are quite close to Y.�/ throughout the forecasting
horizon. Among the three OY.m/.�/; m D 1; 2; 3, the choice of X.2/.�/ returns the best
forecast.

Finally, when the aim is to produce multi-step ahead forecasts, we simply replace
the curve regressor X.1/.�/ by one of the forecasts OY.m/.�/ and repeatedly apply the
above procedure until the desired multi-step ahead prediction is achieved. Note that
the corresponding multi-step ahead temperature forecast may not be available and in
such a case, X.1/.�/ is the only possible choice as a regressor curve. Thus-produced

Table 3 RMSE and MAPE of the different predictors

Predictor OY.1/ OY.2/ OY.3/ QY.1/ QY.2/ QY.3/ NY
RMSE (MW) 361 292 327 189 218 220 2,440

MAPE (%) 0.77 0.64 0.73 0.41 0.46 0.46 6.65
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Fig. 5 Different predictors against the true load curve (grey, solid) for the next 24 h at noon 12
June 2012

two-day ahead predictor at the noon of 12 June 2012 attains 464 MW RMSE and
1.20 % MAPE, with X.1/.�/ replaced by OY.2/.�/.

4 Forecasting Daily Electricity Consumption of EDF
Customers

In this section, we perform one-day ahead forecasting for daily electricity loads
consumed by the French customers of EDF from 1 September 2011 to 15 June
2012. As with the example in Sect. 3.2, the forecast is produced every day at noon.
Hence, when forecasting the load curve for the next 24 h on day t, we assume the
accessibility of the load and the temperature observations from 1 January 2007 up to
the noon of day t, as well as the temperature forecast for the next 24 h. During this
period, there are certain days (e.g., bank holidays) on which the load observations
have not been validated and excluding such days, load forecasts are produced for
234 days in total. Also, when the temperature forecast (TF

i .�/) is not available, we
assume that the true one-day ahead temperature (TiC1.�/) is known for convenience.

Recalling the notations from Sect. 3.2, we denote the forecasting models with the
three regressors X.m/.�/; m D 1; 2; 3 by P1–P3, respectively, and the corresponding
oracle forecasting models by O1–O3. We also consider the predictors from the
hybrid approach ([6], H1–H3), where we employ the same regressors at the curve
linear regression stage. At the weekly GAM stage, the explanatory variables are
lagged weekly average load, weekly average temperature, weekly average cloud
cover and two calendar variables representing the yearly trend and the seasonality.
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Table 4 RMSE and MAPE of the daily electricity load forecasts between 1 September 2011 and
15 June 2012

P1 P2 P3 P4 O1 O2 O3 Base H1 H2 H3 GAM

RMSE (MW) 1,250 853 872 804 336 312 312 6,164 1,917 1,812 1,813 832

MAPE (%) 1.97 1.47 1.50 1.37 0.53 0.50 0.51 10.75 2.91 2.72 2.75 1.40
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Fig. 6 RMSE from P1–P4, O3, H1–H3 and GAM with respect to different months

Finally, the results from the GAM model provided by the EDF R&D department are
presented (“GAM”) for comprehensive comparative study.

Additive models for short-term electricity load forecasting have been studied e.g.,
in [19] and [11], where the proposed models were shown to be well-adapted to non-
linear behaviour of the electricity load. The GAM included in our study models the
relationship between each half-hour interval load and several explanatory variables
such as the lagged load, calendar events, temperature and cloud cover forecasts. For
further information, see [24] and [18]. The EDF operational model is not included
in our study. In practice, the true consumption of the EDF customers is not known in
real time unlike our assumption above, and therefore the operational model cannot
be compared with other models on an equal footing.

The RMSE and the MAPE from different models are reported in Table 4, and
Fig. 6 shows the plot of RMSE averaged within each month. For brevity and
better representation, only O3 is included among the oracle predictors and the base
predictor is omitted.

Overall, the forecasting performance of any model considered, including the
oracle predictors, is better in summer than in winter as can be seen in Fig. 6. The
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relative difficulty of forecasting French electricity loads in winter has been noted
in [9, 10] and [7]. This may be accounted for by higher variability among the daily
loads in winter, which is markedly greater than that in summer as demonstrated in
Fig. 2.

Also, it is observable from Fig. 6 that among P1–P3, different models outperform
the others in different months. For instance, in June and September, P1 performs as
well as P2 and P3 or even slightly better, but its performance is considerably worse
during colder seasons. In general, the efficacy of having temperature included in
the regressor is likely to depend on the homogeneity of the observed temperature
curves within each class and the quality of the temperature forecasts. Therefore, we
may achieve improved forecasting performance by combining these predictors in
an adaptive way, either by selecting one predictor out of the three, or by assigning
some data-driven weights to the three predictors on each day. Indeed, by selecting
the best forecast out of the three a posteriori (i.e. assuming that the true future load
is known), we can reduce the overall RMSE to 660 MW.

Without attempting to be theoretically rigorous, we produced a new predictor
(P4) by averaging two out of the three each day, where the two predictors were
chosen as those two closest to each other. This additional step can be achieved
without any prior knowledge of the future load, yet succeeds in reducing prediction
errors by a considerable margin as reported in Table 4. Also, P4 universally
outperforms P1–P3 in terms of RMSE in any month of a year. We note that there
is a growing interest in the problem of aggregating multiple expert advices in the
context of short-term electricity load forecasting. For example, [8] investigate this
problem by sequentially updating the convex weights applied to various forecasting
models based on the past performance.

The performance of hybrid approaches (H1–H3) is substantially worse than that
of their simplified counterparts (P1–P3). It can be explained by the fact that the
errors from fitting and predicting the weekly average loads at the weekly level
modelling (see Fig. 7), are carried over to the daily level curve linear regression
modelling. We note that the electricity load dataset studied here covers the consump-
tion of the customers of EDF only, rather than that of the entire French population
as in [6]. Therefore its weekly average loads are more prone to digress from the
overall trend or the seasonality estimated from the past observations due to e.g., the
departure and the arrival of customers. This leads to greater variance in modelling
the linear relationship between O�ij and O�ik; k D 1; : : : ;Q (see Fig. 8), even when
the same classification rule has been applied to the daily loads, and thus to worse
prediction models.

The superior performance of P1–P3 to H1–H3 indicates that the classification
of successive daily loads effectively handles the dependency of the trend and
the seasonality of electricity load data on the calendar variables. While we have
used a simple classification rule combining the DT and the SC in this study,
existing functional data clustering methods such as [5] may be applied to divide
the successive daily loads into sub-groups of homogeneous profiles and covariance
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structure in a more data-driven way, rather than relying on any prior knowledge on
electricity consumption patterns which may change over time.

Also, there are certain factors which are known to have substantial influence
on daily electricity loads yet have not been incorporated into our forecasting
framework. An example of such factors is the special tariff options offered by EDF
to large businesses on certain days in January–March and November–December,
with the purpose of reducing heavy electricity consumption during winter. This
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scheme is known to affect not only the daily consumption on the special tariff days
but also that on the days preceding and following. A data-driven classification tool
may be able to identify such influence of the scheme without being furnished with
the exact dates or any other information on the load patterns on the relevant days,
and thus further improve the quality of forecasts.

According to the overall prediction errors, GAM performs better than P2 and
worse than P4 by a small margin, and the breakdown of RMSE with respect to differ-
ent months in Fig. 6 does not reveal any patterns so as to the relative performance of
our method and GAM in different months. The oracle predictors attain the minimum
errors throughout the year, which further validates the previous statement that the
SVD-based dimension reduction method is successful in capturing the dependence
between the regressor and the response curves. It also supports our observations
that there is a scope for improvement, e.g. via adaptive aggregation of different
forecasting models and data-dependent classification of successive daily loads.

5 Conclusions

In this article, we addressed the problem of daily electricity load forecasting
via curve linear regression, with emphasis on the adaptivity of the proposed
method to ever-changing electricity consumption environment. The curve linear
regression technique was introduced in a generic setting, where the singular value
decomposition in a Hilbert space reduced the curve linear regression model to a
finite number of scalar linear regression models.

Although it had previously been proposed by [6] as the second stage of the
hybrid method for daily load forecasting, we showed that the curve linear regression
technique could be applied directly to the data without any preliminary trend and
seasonality modelling, based on the following rationale.

• The trend and the seasonality depend on the calendar variables which can be used
as classification criteria, and when equipped with such a classification step, the
weekly level modelling is redundant.

• In the hybrid approach, the prediction error from the first stage is carried over to
the second stage, which leads to the increased variance in curve linear regression
modelling and thus to significantly deteriorated prediction performance.

Also, the reduced approach requires less human intervention and is more adaptive to
the time-varying nature of the data, and its superior prediction performance has been
demonstrated with a real data example. Besides, within the reduced framework, it
is more straightforward to carry out further statistical analysis such as obtaining
a prediction interval around the forecast. By focusing exclusively on curve linear
regression, some interesting topics for further improving the methodology have been
made clearer throughout the real data analysis.

Firstly, as seen in Sect. 3.1, clustering the daily loads into homogeneous sub-
groups, in terms of both their profiles and dependence structure, plays a key role in
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electricity load data analysis. Data-driven classification of the successive daily loads
can greatly improve the forecasting results, as well as providing interesting insights
on the data itself. There is an active interest on developing functional data clustering
techniques, and adapting these methods to electricity load data is a problem which
requires our immediate attention.

Further, since the curve linear regression framework allows flexible choice of
regressor, we can have a number of forecasting models with different regressors.
Therefore, it is of interest to see whether we can achieve improved forecasting
performance by adaptively aggregating multiple forecasts. As briefly explored in
Sect. 4, a simple adjustment in this direction can enhance the prediction performance
substantially. Also on a more general note, an automatic selection of the regressor
in curve linear regression may be widely adopted as a functional data analysis tool
beyond the context of electricity load forecasting.
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Constructing Graphical Models via the Focused
Information Criterion

Gerda Claeskens, Eugen Pircalabelu, and Lourens Waldorp

Abstract A focused information criterion is developed to estimate undirected
graphical models where for each node in the graph a generalized linear model is
put forward conditioned upon the other nodes in the graph. The proposed method
selects a graph with a small estimated mean squared error for a user-specified focus,
which is a function of the parameters in the generalized linear models, by selecting
an appropriate model at each node. For situations where the number of nodes is
large in comparison with the number of cases, the procedure performs penalized
estimation with quadratic approximations to several popular penalties. To show the
procedure’s applicability and usefulness we have applied it to two datasets involving
voting behavior of U.S. senators and to a clinical dataset on psychopathology.

1 Introduction

We propose a focused search method of estimating an undirected graph when the
distribution of the random variables associated with each node is a member of an
exponential family of distributions, including the Gaussian, Poisson and binomial
distributions as special cases. The graph is constructed nodewise, hence instead
of solving one multivariate optimization problem which in this case is difficult in
general, we proceed by optimizing many univariate problems (one for each node)
and then ‘glue together’ all the pieces of information.

By the focus of the research we mean a predefined function of the model
parameters, such as the mean of a response variable in a regression model. This
focus we wish to estimate well in the sense of having a low mean squared error
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(MSE). In the nodewise approach we fit at each node a generalized linear model
(GLM), implying that selecting the neighboring nodes, or equivalent, selecting the
edges in the graph, is nothing but a variable selection problem in a generalized linear
model. Obviously, different models give rise to different bias and variance quantities
for the focus estimator, and thus searching a model which produces a small MSE
for an estimator is a sensible thing to do. Moreover, a researcher can have different
focuses which reflect his/her scientific interests and thus one can estimate using
a given dataset several (possibly different) graphs which serve the corresponding
research purposes. With this in mind, we point out that the focused approach may
take more carefully the domain knowledge into account that is available to the
researcher when defining the focus, and outputs a model fine-tuned for that specific
focus. Thus this approach moves from a ‘one model for all purposes’ scheme, to a
‘one model per purpose’ approach.

Graphical models visualize relations that exist between components of a mul-
tivariate random vector, say X D .X1; : : : ;Xp/. In a graph, each component of
this vector is identified with a node, and a relation between two components is
visualized by drawing a connection, an edge, between the corresponding nodes. For
an example, see Fig. 3. Different types of relations between the random components
may be represented by different types of edges (with or without arrowheads).

The most common types of graphical models to be encountered in the literature
are Bayesian networks and Markov networks. In terms of graphical representations
the Bayesian networks are based on directed graphs (lines with arrowheads) while
Markov networks are based on undirected graphs. Both types of models try to
graphically encode the conditional independencies that hold between variables that
are represented here by nodes in the graph. In the case of directed graphs drawing a
directed edge as i! j is to be understood that node i influences node j or that node
i ‘causes’ in some sense node j. For example one might represent a relation between
Age and Income in a graph as Age ! Income with a clear message that one’s
income depends on ones age as on average older people earn more than younger,
but refute the relation Age Income as this makes probably no ‘causal’ sense. On
the other hand if one faces a situation where a causal effect cannot be assumed in any
of the two directions then one can find it useful to place undirected edges between
the two nodes, in order to signalize that there exists an association between these
two nodes though without a precise directionality effect. In a genomics study one
might assume that gene i is correlated with gene j, and represent it by an undirected
edge as it might be implausible that any of the genes has a direct effect on the other.
For a comprehensive explanation about graphical models, we refer to Lauritzen [12]
or Cox and Wermuth [6].

We here concentrate on undirected graphical models. For Gaussian random
vectors, having an edge in an undirected graph yields the following interpretation.
Random variable Xi is dependent on Xj conditioned on all remaining variables in
the multivariate vector, if and only if there is an edge in the graph between the
nodes representing these variables Xi and Xj. Equivalently, there is a zero entry at
the crossing of row i and column j in the inverse covariance matrix, also called the
concentration matrix, if and only if no edge is drawn between the corresponding
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nodes i and j in the graph. Thus, estimating a graphical model in the sense of
drawing edges between nodes, is equivalent to determining the positions of the zero
and non-zero entries in the concentration matrix, see Dempster [7] and Lauritzen
[12]. Thus, in case one discovers an entry in the concentration matrix that is zero,
or equivalently, one finds conditional independencies, there is a simpler way of
writing the joint distribution of the multivariate vector X, that adequately describes
the relations between the components of X.

Let us consider a sample of n multivariate random vectors Xk D .Xk1; : : : ;Xkp/;

k D 1; : : : ; n, each consisting of p components. One way to estimate the non-zero
entries in the concentration matrix is through nodewise regression models [16].
In turn, each random variable associated with a single node (say node i) is taken
as the response variable and the variables corresponding to the other nodes act as
covariates (predictors). A non-zero entry is considered to exist at row i and column
j (i; j D 1; : : : ; p) when, for Gaussian data, the coefficient ˇij 6D 0 in the regression
model with the variable corresponding to node i as the response

Xki D ˇi0 C
X

lD1;:::;p;l6Di

ˇilXkl C "ki; (1)

and at the same time, ˇji 6D 0 in the regression model with the variable
corresponding to node j as the response variable

Xkj D ˇj0 C
X

lD1;:::;p;l6Dj

ˇjlXkl C "kj; (2)

with "ki and "kj independent normal random variables with zero mean and k D
1; : : : ; n observations. This is referred to as an ‘AND’ rule. One could also use an
‘OR’ rule that includes an edge between nodes i and j when either ˇij ‘or’ ˇji is
nonzero (we refer to Meinshausen and Bühlmann [16], for an application based on
the two rules). Throughout the paper the ‘OR’ rule is applied for constructing the
graphs, due to the high-dimensionality of the problem and the greedy manner in
which nodewise models are constructed. The ‘OR’ rule might overfit by including
spurious edges, but one would rather have a model that overfits (i.e. not missing
some important edges) than a model that underfits (missing important edges).

In Pircalabelu et al. [18] we propose to use the focused information criterion
(FIC, [3]), which is driven by the mean squared error, to select the variables in
the above nodewise regression models. Once the neighbors for all variables in the
nodewise regression models are selected by FIC, we can draw the selected graph.
This is referred to as the FIC selected graph. See Sect. 4.2. This idea is extended to
larger graphs in Pircalabelu et al. [17], using penalized estimation methods, see also
Sect. 4.3.

A main reason for using the focused information criterion and not any other vari-
able selection method, is that this criterion makes it possible to obtain tailor-made
graphs. For instance, graphs representing interconnectivity in mental symptoms (see
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e.g., [2]) can provide predictions of the development of a disorder in patients. Such
predictions are optimal whenever the graph used to represent the disorder is tuned
to certain types of predictions (see the example in Sect. 2 on psychopathology for
more details). In a statistical sense, a good estimator is one with a low mean squared
error (MSE), which is defined as the sum of the squared bias and the variance of the
estimator.

For each node as a ‘response variable’ we have for each remaining variable
the choice to include it or not to include it as a covariate, resulting in a list of
possible models. In each such model we can estimate the focus. Underlying the
FIC are estimators of the mean squared error of the focus estimators in each of the
different regression models under consideration. Minimizing the FIC is equivalent
to minimizing the estimated MSE of the focus over the different models. Thus, we
select for each node a regression model and use this in a next step to construct a
graph, that is aimed to give a low MSE for the estimated focus.

The tailor-made aspect of FIC is easily understood. Specifying a different focus,
will result in different focus estimators and thus in different MSE values, and
consequently different FIC values. Hence, different focuses may lead to different
graphs. Each time, we select that graph that scores best in estimated MSE (that is,
FIC) for that focus. More details are given in Sect. 4.

In this chapter we extend the methodology of the FIC for graphs based on
Gaussian random variables, to graphs for multivariate random vectors where the
nodes may be fit through generalized linear models [15].

2 Data Examples

2.1 Data Example on ‘Dynamics of Psychopathology’

The data used in this subsection come from a study of van Borkulo et al. [21] and
consist of a series of measurements for two subjects: a rapid cycling bipolar patient
and a healthy control case. A bipolar patient has episodes of mania (energetic,
highly productive, etc.) and/or depression; on average 0.5 episodes per year. A rapid
cycling bipolar patient has at least four such episodes per year. Both subjects were
asked to rate their feelings during 93 days on the Positive and Negative Affect scale
(PANAS, [25]). The scale consists of 22 feelings or emotions and during each day
the two subjects were asked to rate on a 5 point Likert scale (ranging from ‘not at all’
to ‘extremely’) to what extent the feeling pertains to them. All variables have been
discretized to 0/1 binary values where 0 indicated ‘not at all’, while 1 indicated
all other categories. Afterwards, positive affect items were reversed scored, such
that for a positive affect item a ‘0’ value represents the presence of the positive
feeling while on the negative affect item the same value represents the absence of a
negative value. The purpose of the recoding was to concentrate on subjects that have
had positive feelings compared to subjects that lacked to have these feelings. For
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example, it means that if for a subject the value 0 is recorded for ‘feeling interested’
and 0 is recorded for ‘feeling distressed and unhappy’ then the subject is likely to
have felt interested but not distressed and unhappy.

All 22 feelings were considered as nodes in a network that influence each other.
The main goal of those authors was to numerically quantify differences between

the patient and control in the contact process framework (see [9]). In the contact
process an infected node (determined by a value of 1) at time t can infect its
immediate neighbors, which in turn can infect their other immediate neighbors. As
time passes some of the previously infected nodes can also recover (switching from
1 to 0). Two independent Poisson processes are assumed: spontaneous recovery of
infected nodes (with rate ) and infection of healthy nodes (with rate proportional
to �). The estimated ratio � D �=, called the ‘basic reproduction number’ (BRP)
is then used to quantify the differences between the two subjects. The analysis in
van Borkulo et al. [21] suggests that for the bipolar patient the BRP is much higher
than that of the control, meaning that for the patient the network will continue to be
infected indefinitely.

One of the main assumptions of the model is that the researcher has a network
at his/her disposal on which the infections and recoveries can be observed, and as
such we wish to put forward possible networks after which, based on the estimated
networks, we will estimate and compare the BRP for both subjects.

2.2 Data Example on U.S. Voting Behavior

The data set used here encodes the U.S. senate voting records data from the 109th
congress between 2004 and 2006 (see [1]). It contains only binary 0/1 variables
where a ‘0’ represents a ‘No’ vote for the proposed bill and a ‘1’ marks a ‘Yes’
vote. There are 100 variables, corresponding to 100 senators (64 of them being
Democrats and 36 being Republican) and 542 cases, corresponding to 542 bills and
amendments put to vote. As in the original paper, all missing votes per bill have been
recoded as ‘No’ votes. The aim of the analysis is to estimate an undirected graph
structure where each node represents a senator and each edge between two nodes
represents a form of interaction between senators such that the voting behavior of
one senator could be used as a predictor for the behavior of another senator. The
entire dataset corresponding to 100 senators and 542 bills has been used in the
analysis.

We are interested in the describing how the voting behavior of the senators
depends on the voting behavior of all other senators. Therefore, we use as a focus
the expected value of a node conditioned on the values of all other nodes. To this end
we will use the voting pattern of all senators for the ‘Flag Desecration’ amendment
sometimes referred to in the media as the ‘flag-burning’ amendment. The initiative
proposed a constitutional amendment that would allow the U.S. Congress to outlaw
the physical desecration of the flag of the United States. A vivid debate was started
between supporters of the freedom of speech and supporters of national symbols,
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and the attempt to adopt such an amendment failed by only one vote. All senators
have given their vote on the bill and there was no missing information for this focus.
We wish to estimate the undirected graphical structure that provides the smallest
MSE of the focus estimator at each node, using the procedure described in Sect. 4.
Since there are 100 nodes in this example, we will use the penalized approaches of
Sect. 4.3.

2.3 Data Example on Hunting Spider Species

The data come from a study of van der Aart and Smeenk-Enserink [22] and consists
of abundances (numbers trapped over a 60 week period) of hunting spiders in a
Dutch dune area. There were 28 sites where data on 12 spider species were collected.
In addition, the dataset contains measurements on 6 extra environmental variables
for each studied area. The interest here lies in knowing whether and how selected
graphs differ for two locations from the dataset. It is of interest to know whether
environmental characteristics influence the structure of the estimated networks, as
it is expected that some species might prefer to inhabit one type of environment
while others might be less influenced by area characteristics. For this purpose we
use the observed counts for each species at two locations for which the amount
of fallen leaves, moss or the herb layer and the reflection of the soil surface are
quite different (see Fig. 4). The hypothesis is that if the abundance of spiders was
not related to area characteristics, the spider counts would be similar at the two
locations and the estimated graphical models for these two focuses would be quite
similar. Differences between the two estimated graphs can thus be linked to the
effects area characteristics have on the presence of spiders.

3 Generalized Linear Models and Graphs

A p-variate random variable X D .X1; : : : ;Xp/may be represented by a graph G . A
graph is mathematically defined by a pair of sets .E ;V / where V is the set of nodes
f1; : : : ; pg, each node j is identified with a univariate variable Xj, j D 1; : : : ; p, and
where the set of edges E is a subset of V � V consisting of pairs of distinct nodes.

While in a Gaussian graph X follows a multivariate normal distribution, other
distributions may be assumed. We here consider the situation that each component
of X has a distribution belonging to an exponential family, such that we may fit
nodewise generalized linear models, extending upon the linear models as in (1).

In a generalized linear model, the response Y has a distribution of the type

f .yI#; �/ D exp
ny# � b.#/

a.�/
C c.y; �/

o
; (3)
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where # and � are unknown parameters and where the functions a, b and c are
known. The parameter � is a scale parameter, and # is the main parameter of
interest, since it holds that E.Y/ D @b.#/=@# D b0.#/. Another interesting aspect
of such a distribution is that Var.Y/ D a.�/@2b.#/=@#2i (see e.g., [15]).

Common examples of this exponential family include the normal, Poisson,
binomial and gamma distributions. For regression models where each observation
may comprise of a vector of covariate values, the parameter # may be taken
differently for each observation.

While in a linear model the mean of the response E.Yjx/ D xtˇ is a linear
function, in a generalized linear model there is a monotone and smooth link function
denoted by g such that gfE.Yjx/g D xtˇ: The special choice of g.�/ D .b0/�1.�/
is referred to as the canonical link. For Bernoulli distributions the logistic link is
canonical, the identity function is canonical for normal distributions and for Poisson
data it is the log-function.

While it would lead too far to construct a complete list of the existing work on
Gaussian and 0/1 binary data for graph construction, we refer to some recent work of
Yang et al. [26], Lee and Hastie [13], Jalali et al. [11] and Loh and Wainwright [14]
who construct procedures oriented towards either situations where X is a discrete
random variable, or situations where the distribution of X is a member of the more
general exponential family of distributions. The above mentioned works are relevant
to our case for several reasons. First, they work nodewise, where models are first
selected at the level of the nodes and then everything is ‘glued’ together, and more
importantly they also suggest that such nodewise constructions have merit because
under certain conditions they are able to recover aspects of the true underlying
graph.

Starting from a general form of a univariate exponential distribution, Yang et
al. [26] formulate the problem as follows. The joint density (or probability mass
function) of a p-dimensional random vector X is characterized by parameters #
that depend on the edges .s; t/ 2 E , for all s; t 2 V , similar to a representation
of the Ising model where it is assumed that the interactions between random
variables Xi are of first and second order [23]. The density of a particular node
xs conditioned upon all remaining nodes, can then be determined, based on their
modelling approach as

f .xsjxV ns/ D expf#sxs C
X

t2Ns

#stxsxt � b.#; xV ns/C c.xs/g;

where b.#; xV ns/ is a log-normalizing constant, c.xs/ is a ‘base measure’ and Ns is
the neighborhood of node s, namely the set of nodes that are directly connected to
node s.

Given independent and identically distributed samples and the above conditional
densities, Yang et al. [26] then proceed by minimizing an `1-regularized conditional
log likelihood (see also Sect. 4.3) at each of the nodes, estimating sets of neighbors
for each node. The merit of such an approach is that under general ‘`1’ regularity
conditions the estimated neighbors correspond with high probability to the ones in
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the underlying, unknown graph, thus making the effort worthwhile and at the same
time justifying why a simple nodewise approach is a sensible thing to do.

A second important interest lies in knowing if for non-Gaussian graphs, the
missing edges in G can be translated into a ‘0’ entry in the inverse of a covariance
matrix, mimicking the behavior encountered for Gaussian graphical models. This
is the topic of Loh and Wainwright [14]. Unfortunately this property of having 0’s
on position .s; t/ and .t; s/ in a general inverse of a covariance matrix if an edge
is missing between nodes s and t does not hold for general graphs. Corollary 2 in
their paper asserts that the inverse covariance matrix is graph structured only for
graphs with singleton separator sets. Outside this condition, one can still observe
0’s in a inverse covariance matrix constructed not on the original nodes but on an
‘augmented’ set of nodes where one includes also higher order interactions between
the nodes in the set

S.sI d/ WD fU � V n s; jUj D dg
where d denotes an upper bound on the degree of node s (i.e. the number of edges
connecting node s to any other node in the graph). As such, Corollary 3 in Loh
and Wainwright [14] asserts that the inverse of the augmented covariance matrix
contains 0’s on positions .s; t/ for all nodes t 62 Ns. It is in a sense a weaker
result than desired, but nonetheless quite useful in understanding which conditional
independencies can be read from the graph and how these are translated in 0 entries
in a more familiar and easier to use generalized inverse covariance matrix. The main
conclusion of the above line of work is that nodewise models can still enjoy good
theoretical properties and that, as in the Gaussian case, a missing edge in G can still
correspond to a 0 element in an augmented covariance matrix.

While in Yang et al. [26] sparsity constraints were included and large graphs were
considered, we start in Sect. 4 with unconstrained estimation for small to moderately
sized graphs.

Extending upon the nodewise linear regression models in (1) and (2), we will
include an edge in the graph between nodes i and j when using the focused
information criterion, see Sect. 4, results in including variable Xj in the generalized
linear model using Xi as a response variable with a non-zero coefficient ˇij,

gfE.XijfXj W j 2 V n ig/g D ˇi0 C
X

l2V ni

ˇilXl;

and vice versa, when ˇji is nonzero in the generalized linear model when Xj is the
response variable. In the case that Xi is a binary random variable, logistic regression
models may be used to model the log-odds

log
n P.Xi D 1jfXj W j 2 V n ig/
1 � P.Xi D 1jfXj W j 2 V n ig/

o
� log

n �i

1 � �i

o
D ˇi0 C

X

l2V ni

ˇikXl:

The ‘response’ node is referred to as the ‘child’ and the ‘covariate’ nodes with
non-zero coefficient are commonly called the ‘parents’ of that node.



Constructing Graphical Models via the Focused Information Criterion 63

4 The Focused Information Criterion for Graphs

As a definition of a focus, the current theoretical derivation allows for any function
 of the nodewise model parameters ˇ that is differentiable with respect to these
parameters, at least in a neighborhood of the true but unknown parameter values ˇ0.
We will here define the focus nodewise such that we can readily apply existing
search algorithms for nodewise variable selection. The mean squared errors of
nodewise focus estimators are summed to yield the graph-wise mean squared error
[18].

4.1 Model Notation and Local Misspecification

Consider a sample of n observations of the p-variate vector Xk D .Xk1; : : : ;Xkp/,
with k D 1; : : : ; n. For each node j D 1; : : : ; p and for each observation k D
1; : : : ; n, we have that

XkjjfXki W i 2 V n jg

follows a generalized linear model as in (3).
We define the vector � j to contain the parameters that should be estimated

in all models for this node and that are always included. One example is the
scale parameter � when not already specified by the particular exponential family
distribution. The vector �j might also include the coefficient corresponding to parent
nodes that are forced to be in the graph, often based on domain knowledge or on
theoretical grounds. Note that � j may be empty (absent).

We further define for each node j 2 V the vector � j of length p � 1 with ith
element, i 2 V , equal to


ji D
�
ˇji if Xi is a parent of Xj

0 otherwise.

Note that the vector � j does not have any overlap in parameters with � j, that is,
model parameters are either included in � j or in � j. Thus for each node j 2 V the
vector of unknown parameters ˇj D .� j;� j/.

This notation assumes that for every node a full model is fit, with all other nodes
as parents. This results in a full graph, where all nodes are connected to all other
nodes. It is the task of a model selection method such as the FIC that we will use, to
properly select the parents of each node, and as such, to reduce the fully connected
graph to a simpler graph.

For this purpose we introduce notation for submodels. For each node j 2 V ,
when using a submodel S 
 V n j, we denote by 
S the subvector of 
 formed by
the components f
ji W i 2 Sg. In the submodel defined by S, other components 
jk
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with k 62 S are taken to be zero. Such a selection of components may algebraically
be defined through multiplication with projection matrices selecting the wanted
components, see Claeskens and Hjort [5, sec. 6.1].

The nodewise focus j that we wish to estimate with low mean squared error can
be written as j.�j; 
jI x/. One example is a nodewise expectationj.�j; 
jI x/ D xt
j

for a user-specified vector x. We will estimate j in a submodel S by Oj;S D
j. O�j;S; O
j;SI x/ using maximum likelihood estimators in the submodel. Note that
no selection of components takes place for �j, though its estimated value might
in general depend on which components of 
j are included in S.

In order to estimate the mean squared error of OS, we employ a local misspecifi-
cation framework where the true parameter vector has the form .� j;0;� j;0Cıj=

p
n/,

for some unknown vector ı. This construction will result in squared biases of
estimators that are of the same order as variances, thus resulting in mean squared
error values that are not driven by bias or variance only, as the sample size grows.
Working under a fixed true model (not depending on the sample size) would lead to
suggest to always use the full model since in that case the bias would dominate, see
Claeskens and Hjort [5, sec. 5.2].

4.2 FIC for Small to Moderate Graphs

The strategy for estimation of the mean squared error of Oj;S in each considered
model S is as follows. By taking the mean and variance from the asymptotic
distribution of the estimator Oj;S, the mean squared error is easily formed. This
expression is estimated in a next step to form the focused information criterion.
For the asymptotic distribution of the estimators Oj;S under local misspecification in
the specific case of generalized linear models, see Claeskens and Hjort [4].

Let us consider the general situation where there is an unknown scale parameter
� in the exponential family distribution and where some of the parents are protected
from variable selection. For node j 2 V , denote the ‘protected’ parents, those that
are forced to be present in the graph, by Uj and those that are subject to model
selection by Zj; remark that nodes are either protected or unprotected, not both,
hence Uj and Zj do not contain common components. Likewise, we write x D .u; z/.

Define Jn;� D �n�1Pn
kD1 EŒ@2 log f .XkjI#k; �/=@�

2� using the exponential
family density function as in (3). Then, the information matrix corresponding to
the full model for the jth node is given by

Jn D
0

@
Jn;� 0 0

0 n�1a.�/�1UtVU n�1a.�/�1UtVZ
0 n�1a.�/�1ZtVU n�1a.�/�1ZtVZ

1

A ;

for which we assume that a limit J exists for n tending to infinity; this condition
could also have been phrased in terms of conditions on the design matrices U and Z.
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We assume that Jn and J are invertible. The matrix V that is used in Jn is a diagonal
matrix diagfv1; : : : ; vng with vk D Œb00.#k/fg0.�k/g2��1 and �k D EŒXjkjUjk;Zjk� D
b0.#k/. The vector � j consists of � and of the coefficients �j belonging to the
protected variables Uj. Thus �j D .�; �j/. Denote the length of � j by p� and the
number of elements in S by jSj.

Standard maximum likelihood methods yield that as n tends to infinity,

 p
n. O�j;S � �j;0/p

n O
j;S

!
d! Np�CjSj

��
0

ı

�

; J�1
S

�

:

We denoted by J�1
S the inverse of the .p� CjSj/� .p�CjSj/matrix JS that is formed

by selecting from J those rows and columns indexed by S.
Since we are interested in the asymptotic distribution for the focus estimator at

the jth node j. O�j;S; O
j;SI x/, we use the differentiability of j with respect to the
parameters .�; 
/ to first define

! D ZtVU.UtVU/�1
@j

@�j
� @j

@� j
;

�20 D
1

J�

�
@j

@�

�2

C na.�/

�
@j

@�j

�t

.UtVU/�1
�
@j

@�j

�

;

where all partial derivatives are evaluated at .�0; 0/. Then, see Claeskens and Hjort
[4, 5, Chapter 6], as n tends to infinity,

p
n. OjS � Ojtrue/

d! �S;

where E.�S/ D !t.Ip�1 � GS/ı and Var.�S/ D �20 C !tQ0
S! with Q the limit of

Qn D a.�/nfStV.In � U.UtVU/�1UtV/Zg�1, In a square identity matrix with n
rows and GS the limit of Gn;S D Q0

n;SQ�1
n . The matrix Q0

n;S is defined as follows.
Take from Q�1

n the submatrix consisting of those rows and columns indexed by S.
We invert the obtained matrix and place its matrix elements in a .p � 1/ � .p � 1/
matrix in the rows and columns indexed by S, and set the other matrix elements
equal to zero. In words, Q�1 is premultiplied with part of its inverse such that Gn;S

is a zero matrix when S is the empty set and Gn;S is the identity matrix for the full
model when S D V n j. Since Gn;S, Qn;S and Q0

n;S are all defined via submatrices of
Jn, the existence of a limit matrix for n!1 is guaranteed via the existence of the
limit matrix J and of its inverse J�1.

We now obtain the mean squared error forj. O�j;S; O
j;S/ by adding its variance and
its squared bias as

MSE. OjS/ D �20 C !tQ0
S! C !t.Ip�1 � GS/ıı

t.Ip�1 �GS/
t!; (4)



66 G. Claeskens et al.

where Q0
S is the limit of Q0

n;S and Ip�1 represents a square identity matrix with p� 1
rows. The best choice of parents to use in the nodewise regression model is that
set S for which MSE. OjS/ is as small as possible. Since this expression contains
several unknown quantities, we insert estimators for unknowns, indicated by a ‘hat’
notation, where for example OQ, OQ0

S and OGS represent the empirical estimates of
the corresponding matrices, resulting in an expression for the focused information
criterion, FIC.

In particular, we estimate ııt unbiasedly by O
j;w O
 t
j;w� OQ where O
j;w is the estimator

of 
j in the wide, or full, model using S D V n j, and an empirical information is
used with parameters estimated at the full model. This results in defining the focused
information criterion for node j 2 V using subset S as parents:

FIC.S; j/ D O�20 C 2 O!t OQ0
S O! C n O!t.Ip�1 � OGS/ O
j;w O
 t

j;w.Ip�1 � OGS/
t O! � O!t OQ O!: (5)

Note that since the first and the last term do not depend on the particular submodel
S, these terms may be omitted when nodewise ranking the values of FIC.S; j/ for
different sets S. Further, note that in these nodewise regression models, also the
matrix Qn, and as a consequence also !;Q0

n;S and Gn;S are nodewise defined.
The value of the FIC for the complete graph is defined by Pircalabelu et al. [18]

as the nodewise summation of the FIC values for each node given in (5),

FIC.S IG / D
pX

jD1
FIC.Sj; j/; (6)

where S D f.S1; : : : ; Sp/ W S1 � fV n 1gI : : : I Sp � fV n pgg, and each Sj

corresponds to the selected nodes that minimize the FIC score of the estimated focus
at node j.

The best graph in estimated MSE sense according to the focused information
criterion is given by that selection of nodewise parents Sj (j D 1; : : : ; p) for which
the combined FIC value FIC.SIG / is the smallest over all considered sets. In the
case it happens that two choices of S would give identical FIC values, other aspects
of modeling, e.g. parsimony considerations, might help decide the final selection, in
the same way as is done for model selection via other information criteria. Model
averaging might also be an option when prediction is the objective.

4.3 FIC for Large Graphs

While the FIC in (6) relies on maximum likelihood estimation, this no longer
is feasible when many nodes are involved. For situations with many unknown
parameters (including the situations where there are more unknown parameters than
observed cases), penalized estimation methods are appropriate.
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In such case the estimators are maximizers of the penalized objective function

Q.�; 
/ D 1

n

nX

kD1
log f .ykjwk; zk; �; 
/ � 1

n

p�1X

jD1
 �.j
j � 
j0j/; (7)

with respect to � and 
 for a given penalty function  that is twice differentiable
in 0 and that depends on the penalty constant �. This �  0 is a user-determined
value, which may be obtained in a data-driven fashion, and 
j0 is the value of the
coefficient 
j in the narrow model. The effect of the penalty is that the estimators are
shrunk towards zero. Typical choices are `2 (sum of squares), `1 (sum of absolute
values) or `0 (hard thresholding) penalties.

By adding a penalty to the estimation Meinshausen and Bühlmann [16] propose
using a series of nodewise Lasso regression models, using an `1 penalty, to estimate
large graphical models. See also Wainwright et al. [24] and Schmidt et al. [19]
among many others. Neighborhoods of different nodes can be connected in an
undirected graphical structure by means of an ‘AND’ rule, or an ‘OR’ rule, in the
same way as for unpenalized nodewise regression models,

OE AND
� D f.i; j/ W i 2 ONj.�/ AND j 2 ONi.�/g;
OE OR
� D f.i; j/ W i 2 ONj.�/ OR j 2 ONi.�/g:

For non-differentiable penalty functions, such as the `1 or `0 penalties, which are
not differentiable at zero, Fan and Li [8] suggest a local quadratic approximation.
This had lead Pircalabelu et al. [17] to use the following approximations to  �.j
j�

j0j/,  0

�.j
j � 
j0j/ and  00
� .j
j � 
j0j/, where 
japx is a value close to j
j � 
j0j,

 �.j
j � 
j0j/ �  �.
j apx/C 1
2

 
0

�.j
japxj/
j
japxj

h
.
j � 
j0/

2 � 
2japx

i
I

 0
�.j
j � 
j0j/ �  

0

�.j
japxj/
j
japxj .
j � 
j0/I

 00
� .j
j � 
j0j/ �  

0

�.j
japxj/
j
japxj

:

The above quadratic approximations have been used on the one hand to ‘ease’ the
optimization problem by making use of a relatively fast iterative procedure in order
to obtain estimated coefficients. On the other hand, more importantly, they have
been introduced to satisfy the existence of a second derivative at zero, needed in
(8), which is not generally satisfied by most penalty functions. Working with non-
differentiable expressions might lead to an alternative approach to obtain the MSE
that avoids such approximations, however, this is not addressed here.

In the practical computations, the value 
japx is arbitrarily at the start and is
updated in an iterative Newton-Raphson scheme.
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Often used examples of penalty function that can be used in (7) with these
approximations include

– Lasso [20] with  l
�.j
j � 
j0j/ D �j
j � 
j0j;

– Bridge [10] with  b
�.j
j � 
j0j/ D �j
j � 
j0j˛I ˛ > 0;

– Hard thresholding:  h
�.j
j � 
j0j/ D �2 � .j
j � 
j0j � �/2I.j
j � 
j0j < �/;

– Adaptive lasso [27] with  al
� .j
j � 
j0j/ D �wjj
j � 
j0j with wj being a set of

weights corresponding to each node in the graph;
– Smoothly clipped absolute deviation (SCAD, [8]) for which the first derivative is

defined as
 

0s
� .j
j � 
j0j/ D I.j
j � 
j0j � �/C .a��j
j�
j0j/C

.a�1/� I.j
j � 
j0j > �/I a > 2.

The nodewise MSE for the estimator for j in model S can for penalized
estimation be written as [17]

MSE. OjS/ D �20 C !tQ0
S! C !tf.Ip�1 � GS/ıı

t.Ip�1 � Gt
S/g!C

C !tfQ0
Scct.Q0

S/
t � 2.I �GS/ıc

t.Q0
S/

tg!; (8)

where c D n�1=2 00

� .0/1p�1. Note that (8) reduces to (4) when there is no penalty,
thus � D 0. The FIC for penalized estimation results by inserting in (8) estimators
obtained in the full model for unknowns, leading to

FIC.S; jI�/ D O�20 C 2 O!t OQ0
S O! C n O!t.Ip�1 � OGS/ O
j;w O
 t

j;w.Ip�1 � OGS/
t O! � O!t OQ O!

C O!tf OQ0
Scct. OQ0

S/
t � 2.I � OGS/n

1=2 O
j;wct. OQ0
S/

tg O!: (9)

Note that the value of the FIC depends on the choice of � (which is contained in c).
Since the above procedure is applied to each node, the modeling strategy allows thus
different amounts of penalization at each node. In practice, for each node a value
from a grid of � values is chosen based on a three-fold cross-validation procedure
on the deviance of the GLM.

5 Computational Aspects

While for small graphs only containing a small number of nodes it might be possible
to investigate an all subsets search for each node, this is not feasible for moderate to
large sized graphs.

For large graphs, at each node a penalized GLM based on all the other nodes
is fitted from which one obtains immediately the penalized maximum likelihood
estimator . O�; O
/ in the full model as well as the empirical Fisher information
matrix Jn and the weights for the ‘working-variables’ once the Newton-Raphson
algorithm converges. By allowing for a quadratic approximation of the penalty, the
problem which was originally a convex problem, now enjoys first and second order
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differentiability properties as well, making the optimization based on Newton-type
methods easy to implement.

Once all the necessary quantities have been estimated from the full model, we
start building collections of models S in an incremental fashion. We start first from
an intercept-only model (for which the cardinality is 1) and compute its FIC score.
In a second step, all models that include one extra neighbor (having thus cardinality
2) are compared to the benchmark model, namely the intercept model. The model
with the lowest FIC score then becomes the new benchmark. If none of the models
provides lower FIC values than the intercept model, the procedure stops. Otherwise,
all models of cardinality 3 that include the benchmark model, are compared to the
benchmark model. If any of these models, improves the FIC score we retain it and
then search for models with higher cardinality, otherwise the procedure stops and
outputs the model with the best attained score so far. Since this is a greedy local
search algorithm and since the relation between the FIC scores and cardinality is
non-linear, we do not restrict to making every time the hard decision of stopping
the search if the score is not improved at each step, but test also some locally non-
optimal models which at the next stage due to the inclusion of other neighbors,
might offer a better FIC value than if we would have stopped at the best model from
the previous stage.

6 Data Analysis

We here return to data examples stated in Sect. 2.

6.1 Dynamics of Psychopathology

Due to the binary recoding of the data, 7 of the 22 items in that PANAS resulted
in having constant values (all zero, or all one) across the 93 days, these items have
been excluded from the analysis. After this elimination we have treated each of the
remaining items as a node in an undirected network, where the goal was to discover
the edges that provide the lowest MSE for the logit.�i/ where �i is the probability
that item (or node) i indicates a tendency towards negative feelings.

The datasets for the two subjects were treated separately, in two distinct
applications of the same FIC procedures. The observed sequence of emotions
provides information on how a patient (or control) is doing. Therefore, we specified
the focus point as being the observed sequence of emotions at each day. Afterwards,
for each of the specified focuses we estimate a network and based on that network
we estimated the basic reproduction number �, see Sect. 2.1. This resulted (due to
missing observations) in having specified 90 different focuses and so 90 different
networks (for each network a value of � is estimated) for the patient and 88 different
focuses and networks for the control subject.
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Fig. 1 PANAS data. Visual representation of the graphical structure estimated using a local
quadratic approximation to an `1 penalty when the focus point is the sequence of emotions
observed at time points 1 (panels a, c) and 70 (panels b, d) for the patient (panels a, b) and control
(panels c, d). The corresponding estimated BRP rates are equal to 5.81 and 1.31 for the patient
and 0.99 and 0.78 for the control. The black (resp. gray) colors reflect the positive (resp. negative)
affect aspect of the node

The questions for which we want to find an answer can be formulated as follows:
having the entire dataset of observations for the patient (likewise for the control),
and assuming that tomorrow we observe a sequence of emotions that corresponds to
what we have observed at time t 2 f1; : : : ; 90g, what is the topology of the network
which would generate a low MSE of the focus at each of the nodes? For example,
Fig. 1 presents four estimated networks corresponding to the sequence of emotions
that were observed for both the patient and the control, at time points 1 and 70. It
is apparent that for the first time point in the estimated graphs for the patient there
is a higher tendency to separate the negative affects from the positive ones, whereas
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in the graphs estimated at the second time point there is a tendency to have a higher
density of edges and to also positive and negative affects get linked with each other
much more often blurring in a sense the separation between the two categories of
feelings. As expected the network topology plays a crucial role, as for instance the
four estimated �’s based on these networks are quite different, especially for the
patient which for these two focuses exhibits higher BRPs.

Since one can estimate thus a multitude of networks, each pertaining to the
sequence of emotions observed on a particular day, one might also be interested in
how ‘stable’ the patient tends to have a high BRP. Is this phenomenon stable across
sequences (one for each day) of affects observed at each time point or was the above
conclusion largely due to the effect of the particular focuses? To answer this question
we have plotted the estimated BRPs for both subjects as a function of time. The
results are presented in the upper row of Fig. 2 and it is apparent that the levels of the
observed trends are almost always larger for the patient than for the control across
many such observed sequences. Quite interestingly, this analysis seems to support
the conclusions of the original authors concerning the fact that the patient exhibits
higher BRP rates than the control, though coming from a conceptually different
stand point with respect to estimating an unknown hidden undirected network.

A further investigation concentrates on ‘confusing’ the FIC procedure in the
following sense. Up to now both the data used for the estimation as well as the focus
would come from the same subject in a sense making the problem somewhat easier.
As such we were interested in the discriminatory power of the procedure when the
data came from the patient, but the focus point came from the control. This would
correspond to the situation where based on the behavior seen so far, if for a brief
moment the patient would exhibit normal behavior (situation summarized by the
focus point), can he still be categorized as being patient based on the estimated �?
Or vice versa, if based on what was observed so far, if a healthy subject exhibits for
a moment a sequence of emotions similar to what the patient exhibited, do we still
estimate networks for which � is relatively large? To answer this question we have
proceeded as in the above application, but with the major difference that now the
focuses are coming from what was observed for the other subject. The bottom row
of Fig. 2 illustrates the findings and supports the conclusion that even though the
FIC procedure estimated graphs that exhibited generally higher BRP ratios for the
patient than for the control, it is still able to discriminate between the two subjects
based on the proposed ratio, even when the focuses are probably not in line with the
data used for estimation.

6.2 U.S. Voting Behavior

Since the vote is coded with a binary value, we fit at each node (i.e. Senator)
a penalized logistic regression model with the vectors of votes for all remaining
senators used as predictors. Based on this full model we construct the estimate
O!w using the estimated vector of regression coefficients Ǒ, corresponding to the
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Fig. 2 PANAS data. Plotted is the O� for each of the two subjects, when different observed sequence
of emotions (corresponding to a day on the x-axis) are chosen as focus points. In the upper row,
the focus points come from the same subject as the training data, whereas in the second row the
focus points come from the emotion pattern displayed by the other subject. The local quadratic
approximation to an `1 penalty (left column) and to a SCAD penalty (right column) have been
used for estimating the corresponding networks for the two subjects

influence of each ‘covariate’ or ‘parent’ node on the probability of a ‘Yes’ vote
for the dependent node. The intercept of the model, ˇi0, acts as the protected
parameter � .
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where Xki denotes the result of a vote of Senator i on bill k and Xkl, for l 2
V n i, represent the voting results for the remaining senators on the same bill. A
constraining penalty function is placed on the vector of unknown ˇ parameters. In
the narrow model all coefficients corresponding to the unprotected nodes are set
equal to zero, since in the narrow model none of them is included.

In a subsequent step we proceed as in Sect. 4.3. At the dependent node we select
from the set of potential neighbors, the ones which minimize the MSE. OS/. Once
the set of neighbors is selected for a particular node, we move to another node and
proceed in the same fashion by estimating its set of neighbors. We perform the same
procedure at each of the p D 100 nodes in the graph, obtain p sets of neighbors and
afterwards combine all the information by drawing an edge between two nodes i and
j if i belongs to the set of neighbors of j or vice versa. Notationally, this amounts to
.i; j/ 2 E if i 2 ONj OR j 2 ONi.

Figure 3 illustrates a few interesting patterns. First of all, it seems that the
‘party vote’ had a major role to play as most of the edges in the graph link two
senators that belong to the same party. Second, within the Democratic party, the
graph suggests that senators opposing the amendment are more likely to get linked
to other democrats opposing the amendment than to the democrats in favor of the
amendment. Lastly, the graph suggests also that there are some between-party edges,
although they appear less frequently than the within-party edges.

Since at each node i, neighbors are selected on the basis that the model provides
the lowest estimated MSE for logit.�i/ where �i is the probability that bill i receives
a favorable vote, one might be interested in the performance of such a classifier for
the focus for which it was constructed. In this case this corresponds to predicting for
each senator his vote on the bill. Based on the graph presented in Fig. 3 we estimate
the correct vote for 78 % (or 84 % for SCAD) of the senators, whereas predicting
based on average vote for all other bills (not incorporating any knowledge about
the relations between senators) resulted in a correct prediction in only 46 % of the
cases. These predictions are slightly optimistic since they are within sample, as the
information which we are predicting is also used for constructing the graph.

6.3 Hunting Spider Species

Since the number of captured spiders is observed per location, we estimate an
interactions network where connected nodes indicate that the two species are co-
occurring. At each node a Poisson model is fitted where Xki 	 Poisson.�i/ with

log.�i/ D ˇi0 C
X

l2V ni

ˇilXkl � 1
n

X

l2V ni

 �.jˇilj/

where Xki denotes the number of spiders at location i coming from species k and Xkl,
for l 2 V n i, represents the number of spiders at the remaining locations coming
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Fig. 3 Senate vote data. Visual representation of the graphical structure estimated using a local
quadratic approximation to an `1 penalty (top) and to a SCAD penalty (bottom). In each figure,
black nodes denote the Republican senators (lower left quadrant) and the gray nodes denote
the Democrat senators (upper right quadrant). Within each party, the nodes accompanied by a
? symbol denote senators that have opposed the amendment
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Fig. 4 Spider data. FIC estimated graphs (first two lines) based on two focuses (the corresponding
environmental characteristics are shown in the left column). The `2, LQA Bridge denote the  
function used in the estimation. Larger labels correspond to highly connected nodes and the bottom
line presents the common edges across estimated graphs per focus. (a) Focus. (b) FIC LQA Bridge.
(c) FIC `2

from the same species. A constraining penalty function is placed again on the vector
of unknown ˇ parameters, and in the narrow model all coefficients corresponding
to the unprotected nodes are set equal to zero.

Figure 4 shows the estimated undirected graphs for two focuses when (i) a
quadratic approximation of the Bridge penalty and (ii) an `2 penalty is used. The
immediate conclusion is that the characteristics of the environment have an influence
on the structure of the estimated networks as does the type of penalty that is being
used. For the first focus both graphs suggest that the Pardmont species tends to co-
occur most often with the other species, while for the second focus the Pardlugu
species is the highly connected species. The `2 graph identifies for the second focus
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also the Alopacce species as being highly connected to other species as well. Quite
interesting is the fact that regardless of the environment conditions for the two cases
studied the pairs Pardlugu-Alopacce, Pardmont-Allopcune and Alopfabr-Arctperi
are present in all graphs and their abundance seems to be related.

7 Discussion

In this chapter we presented an extension of our method to construct graphs from
the focused information criterion to generalized linear models. The three main
advantages of using the FIC to construct graphs are: (i) a focus of interest can be
defined incorporating prior knowledge of the system under investigation, (ii) the
mean squared error of the focus is minimized which balances squared bias and
variance of the estimator and increases generalizability, and (iii) the framework of
local misspecification is used relaxing the assumption of having the correct model.

We showed that the combination of the GLM and FIC leads to an easily
interpretable Fisher information matrix, separating the two types of parameters, ones
that are always included and ones that are to be determined. This in turn was seen
to lead to an estimate of the mean squared error that is used to determine the FIC.

The three examples shown in this chapter indicate the richness of the method. In
the first example data from a bipolar patient and a control were contrasted suggesting
different patterns of predictions for whether symptoms of bipolar disorder would
remain or not. Especially interesting was the fact that using a sequence of emotional
items (knowledge of the system), the basic reproduction number �, resulting from
the estimated graph, was seen to vary strongly in the patient but not the control. And
even using an emotional item sequence of the control in the bipolar patient resulted
in a largely varying pattern of values of �. These results show that a network of
emotional states which influence each other can be obtained, from which behavior
of symptoms can be predicted.

The second example using data from the voting behavior of U.S. senators
showed that for the ‘Flag Desecration’ amendment predicting voting behavior using
estimated relations between senators may result in higher accuracy than using
previous voting behavior of senators, while in the same time discovering that intra-
party cooperation is dominant (the voting pattern of a senator can best be described
by patterns of colleagues from the same party), the cluster of opposing democrats
stands out in this respect, but also that cross-party cooperations is not negligible.

The third examples uses Poisson distributions to model counts of different
species of spiders at different locations.

Because of the extensions to the more general exponential family of distributions
enlarge the range of applicability of this procedure to the more realistic situations
where one has at disposal binary or count data, the estimation of connections is not
limited just to Gaussian data.

In conclusion, there are many possibilities of using the focused information
criterion to obtain meaningful graphs of many kinds of systems, as shown by the
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examples presented here which showed that the presented FIC procedure can be
useful for estimating graph structures by taking the researcher’s objectives more
closely into account and outputting a model that comes closer to his goals. Since
we can easily incorporate knowledge of a system through the focus, the method is
flexible and useful.
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Fully Nonparametric Short Term Forecasting
Electricity Consumption

Pierre-André Cornillon, Nick Hengartner, Vincent Lefieux,
and Eric Matzner-Løber

Abstract Electricity Transmission System Operators (TSO) are responsible for
operating, maintaining and developing the high and extra high voltage network.
They guarantee the reliability and proper operation of the power network. Antic-
ipating electricity demand helps to guarantee the balance between generation and
consumption at all times, and directly influences the reliability of the power system.
In this paper, we focus on predicting short term electricity consumption in France.
Several competitors such as iterative bias reduction, functional nonparametric model
or non-linear additive autoregressive approach are compared to the actual SARIMA
method. Our results show that iterative bias reduction approach outperforms all
competitors both on Mean Absolute Percentage Error and on the percentage of
forecast errors higher than 2,000 MW.

1 Introduction

Electricity Transmission System Operators (TSO) shall ensure the balance of
electricity flows on the network at all times, as well as the reliability, safety and
efficiency of the network, taking into account the technical constraints to which it
is subject. The daily coordination is facilitated by having short term demand-supply
balance predictions on a day ahead horizon, whereas longer term predictions are
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useful for network safety studies, network maintenance and planning. In this paper,
we focus on predicting short term electricity consumption in France, where Réseau
de Transport d’Electricité (RTE) is the unique TSO.

Each day, RTE is given by the producers the electricity production plans for the
following day. While informative, these predictions are attached with uncertainties.
To better manage its network, RTE drafts its own load curve forecasting that
takes into account historical consumption patterns, weather forecast and daily
pricing information. The French national dispatchers make the final load balancing
decisions, taking into account the most recent information, including unexpected
modifications of consumption patterns, as for example: strikes, national sporting
events and even weather conditions (like heavy snow fall) which can impact how
and where electricity is consumed. RTE draws up its global load forecast for
France and calculates the values of the reserves required to cover the two types
of contingencies: load contingencies and generation contingencies. With regards
to the latter, generation facilities may be affected, as regards to their operation,
by a number of fortuitous events and/or limitations giving rise, in real time, to
the unscheduled unavailability of a certain volume of generation. The primary,
secondary and tertiary controls in real time allow to manage the supply-demand
balance, by using reserves set aside for this purpose. RTE evaluates the reserves that
are effectively available and, if they are insufficient, performs adjustments on the
generation facilities. This is the main reason why RTE must avoid large forecasting
errors. The evaluation of a model is based at the same time on its average quality
and its ability not to generate large errors. In this paper we consider a threshold of
2,000 MW based on feedback from RTE.

Modifying forecasting tools for a TSO is very sensitive and costly, and acting
such modifications should rely on strong evidences that the new proposed model is
better in terms of forecasts (accuracy, robustness) but also in term of maintaining
and computational time. Strong relationships between utility industry and academic
researchers are encouraged in France and forecasting models for the electricity
consumption in France have been continuously developed over the last 30 years.
Many models and approaches have been considered. Poggi [19] used nonparametric
kernel estimators for prediction, [16] used Kalman filters and more recently [14]
developed a semi-parametric model, [10] aggregated different predictors and [4]
proposed a robust SARIMA model. Additive models are also widely used in this
context as explained in [18] or [9]. Considering that the discretization of the daily
consumption curve is dense enough, [8, 23] or [2] used linear functional forecasting
methods.

The paper provides the feedback from RTE with a new modeling paradigm.
In Sect. 2, we discuss the French electricity consumption data and the previous
operational forecasting model. Section 3 presents iterative bias reduction (IBR)
procedure together with the practical. The results are presented and compared to
the current state-of-the-art modeling at RTE and to various competitors in Sect. 4.
Finally, in Section 5, we provide a discussion and conclusions about our approach.
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2 RTE Current Forecasting Model

A cursory look at the electricity demand curve in Fig. 1 shows both weekly and
seasonal variations. Such data are available on RTE webpage (www.rte-france.
com). Annual consumption patterns are usually explained by seasonal change in
climate (temperature, cloud cover) and daylight duration. We refer to [22] for a
comprehensive analysis of seasonal patterns of electricity loads over 10 European
countries. The French global consumption increases in winter due to the relatively
low price of electricity (compared to other energy sources), which has promoted
the use of electrical heating since the seventies. As a measure of penetration of
the electrical heating in France, it is estimated that at 7 pm in winter, the decrease in
temperature of 1 ıC increases the demand of 2,400 MW. These last years, the French
global consumption also increased in summer because of the air-conditioning.

Actually, in order to take into account the different tariffs and the climate
(temperature and cloud cover measured at 32 weather stations), RTE uses a complex
nonlinear parametric regression model to “correct” the half hourly load curve.
This model has around 1,000 coefficients which are estimated every March and
September using the true climatic data. Subtracting the climate and tariff dependent
part of the load curve estimated by the regression, the load curve (Fig. 1) becomes
the “corrected load curve” presented in Fig. 2.

The corrected consumption (denoted from now on by Zt) shows traditional shape
of weekly load diagram that can not be discerned on Fig. 2 because the number of
data shown but which can be readily seen in the excerpt (during year 2006) shown
in Fig. 3. A typical week presents a similar form for each day, with a first peak in
the morning and a second one in the evening; the levels of Saturday and Sunday are
lower than other days.
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Fig. 1 One year of French consumption measured every half hour (from January to December)
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Fig. 2 Corrected load curve (corrected French consumption)
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Fig. 3 Typical weeks of corrected consumption (excerpt from 2006). Each line type indicates a
different week

In a second step, RTE uses a SARIMA model on the “corrected” time series of
the form:

.1 � 'B/r48r336Zt D
�
1 � �48B48

� �
1 � �336B336

�
�t;

where B and r are the classic lag operator BiZt D Zt�i and ri D 1 � Bi. The
series values are observed every 30 min. The operator r48 corresponds to a daily
differentiation and r336 to a weekly differentiation operator. The parameters ', �48
and �336, are estimated using the procedures defined by Box and Jenkins.
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In summary, RTE uses a three steps procedure to do the short-term forecast:

Step 1 RTE “corrects” the half hourly load curve by modeling the impact of
climate and prices, in order to work on a time series that doesn’t depend on
exogenous variables. This first step is done by using a regression model with
dependent variables based on climate and tariff. We denote the corrected series
by Zt.

Step 2 RTE uses a SARIMA model to forecast Zt at the horizon H: OZtCH .
Step 3 RTE adds the forecasts given in Step 2 with the estimation given by the

regression model using prices and forecasts for the temperature and cloud cover.

Even if operationally the results were correct, the complexity of the model does
not allow incorporation (or test) of a new variable within a production framework.
This kind of operation must be conducted by a senior statistician with an computer
engineer in order to make the good assumptions and to program them accordingly.
In order to improve the current methodology, RTE has chosen two approaches. The
first one consists of improving the SARIMA modeling: with a daily or a robust
modeling [4]. The second one consists in replacing the SARIMA modeling by the
nonparametric approach that will be presented in the following section.

3 A New Nonparametric Forecasting Tool

The classical approach for forecasting a univariate time series fZtg1�t�T is to
postulate a parametric model, estimate its coefficients, and compute the forecasts.
The most popular model is the autoregressive (AR) model of order p

Zt D
pX

iD1
˛iZt�i C "t; (1)

where f˛ig are the unknown parameters of the model and "t is white noise. Model (1)
represents the current state of Zt through its immediate past p values. In practice,
the sample mean from the data is subtracted before fitting, which allows to ensure
E.Zt/ D 0.

The limitation of that type of linear models is well known and many forms
of nonlinear models have been explored since the 1980s. The developments in
nonparametric regression provide flexible techniques for modeling time series
through the following expression:

Zt D f .Zt�1; : : : ;Zt�p/C "t:

However, when p is large, the nonparametric approach suffers from the “curse of
dimensionality” and a natural simplification is the nonlinear additive autoregressive
models which assume that the unknown function f from R

p to R could be written as
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a sum of univariate functions:

Zt D f1.Zt�1/C : : :C fp.Zt�p/C "t:

Additive models are very useful for approximating the high-dimensional autore-
gressive function f .:/ given above. Their extensions have become one of the widely
used nonparametric techniques and references on their applications to load curves
can be found in [9, 17, 18] for example. However despite their interpretability and
their small estimation error, additive models could have a large approximation error
(and by the way a large prediction mean square error) if the underlying function
is not additive. In recent papers, [5, 6] propose a practical adaptive nonparametric
regression method with good results. A R package is also available on CRAN. For
sake of completeness we summarize this method below.

3.1 Iterative Bias Reduction

Suppose the data .Xi;Yi/ 2 R
p �R are related via the following regression model

Yi D m.Xi/C "i; i D 1; : : : ; n; (2)

where the errors f"ig are independent of all the covariates .X1; : : : ;Xn/. It is helpful
to rewrite Eq. (2) in vector form. Let us denote Y D .Y1; : : : ;Yn/

t, the column vector
of observations of the dependent variable, m D .m.X1/; : : : ;m.Xn//

t the column
vector of unknown function m at data points and " D ."1; : : : ; "n/

t the column vector
of errors (where t denotes matrix transposition) to get

Y D mC ":

Linear smoothers typically depend on a tuning parameter, denoted by �, that governs
the trade-off between the smoothness of the estimate and the goodness-of-fit of
the smoother to the data. It controls the effective size of the local neighborhood
of the explanatory variables over which the responses are averaged. For example,
the tuning parameter � is the bandwidth for kernel smoother. Linear smoothers can
be written as

Om D S�.X/Y;

where S�.X/ is an n � n smoothing matrix and Om D OY D
� OY1; : : : ; OYn

�t
denotes

the vector of fitted values. We parametrize the smoothing matrix so that large
values of � will produce very smooth curves while small � will produce a more
wiggly curve that tends to interpolate the data. Much has been written about how
to select “optimally” the tuning parameter, see for instance [12, 13, 15, 20]. The
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IBR procedure [5] does not try to select an optimal �, instead a large � is chosen,
resulting in a (pilot) smoother with a substantial bias. In the initial step, this pilot
smoother is applied to the data (oversmoothing the data) leading to

Om1 D S�.X/Y:

The second step consists in estimating the bias E. Om1jX/ � m D .S�.X/ � I/m by
replacing m by a smooth linear estimate (possibly using the same pilot smoother):

.S�.X/� I/S�.X/Y D S�.X/.S�.X/� I/Y D S�.X/. Om1 � Y/

and correcting the initial estimator by removing the estimated bias:

Om2 D Om1 C S�.X/.Y � Om1/ D ŒS�.X/C S�.X/.I � S�.X//�Y:

The bias estimation and bias correction steps can be iterated to generate a sequence
of bias corrected smoothers, which gives at step k

Omk D S�.X/Y C S�.X/.I � S�.X//Y C : : :C S�.X/.I � S�.X// : : : .I � S�.X//Y

D ŒI � .I � S�.X//
k�Y: (3)

This closed form is interesting and shows that the qualitative behavior of the iterated
estimator is governed by the spectrum of I � S. For splines smoothers and kernel
smoothers with a positive define kernel, the spectrum lies in the unit interval Œ0; 1�
[5]. It follows that as the number of iterations k goes to infinity, the sequence
of iterated smoothers Omk tends to reproduce the raw data Y. Thus, iterating the
algorithm until convergence is not desirable. However, since each iteration reduces
the bias and increases the variance, a few iterations of the algorithm will often
produce a better smoother than the pilot smoother. This brings up the important
question of how to decide when to stop the iterative bias correction process. Viewing
the latter question as a model selection problem suggests stopping rules based on
Akaike Information Criterion, AIC, [1], Bayesian Information Criterion, BIC, [21],
and Generalized Cross Validation, GCV, [7]. These selectors, all implemented in
the ibr package. Theoretical results [5] and simulations advocated for GCV defined
here by

GCV.k/ D log b�k
2 � 2 log .1 � tr.ŒI � .I � S�.X//k�/

n
/;

where b�k
2 corresponds to the estimated variance of the current residuals at step k

and tr.A/ denotes the trace of the matrix A.
Strongly related to the number of iterations is the smoothness of the pilot

smoother. One has to be sure that the pilot smoother oversmooths. We choose one
bandwidth for each explanatory variable Xi. This choice is done such as the effective
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degree of freedom for the one-dimensional smoothing matrix related to Xi has a trace
equal to a given number chosen by the user (by default that value is just bigger than
one – for instance 1.1 or 1.01 – so the initial pilot smoother has less equivalent
degree of freedom than a linear model). For such values, the pilot smoothers always
oversmooths.

The linear smoother defined by (3) predicts the conditional expectation of
responses only at the design points. It is useful to extend regression smoothers to
enable predictions at arbitrary locations x 2 R

d of the covariates. Rewrite as follows

Omk D S�.X/ŒY C .I � S�.X//Y C : : :C .I � S�.X// : : : .I � S�.X//Y�

WD S�.X/ Ǒk:

This formulation allows an evaluation of the estimator at any point x via

Omk.x/ D S�.x/ Ǒk:

Such an extension allows us to use IBR in forecasting settings.

3.2 Practical Implementation

We consider the following RTE case-study: data are known half hourly until
12 am, and we want to predict the 48 values of the consumption of the following
day. Having .Z1; � � � ;ZT/ (ZT is the data obtained at 12 am) we want to predict
ZTC25; � � � ;ZTC72. In order to consider the relation between ZTC25 and the available
data, let us consider the model:

Z.T�48i/C25 D f .ZT�48i; : : : ;ZT�48i�p/C " i > 0

where the lagged variable p will be discuss later. Once the unknown function f is
estimated, the predicted value is obtained by

OZTC25 D Of .ZT ; : : : ;ZT�p/:

As classically done in nonparametric forecasting methods, to forecast at different
horizons, we might consider different models. For any H 2 Œ25; � � � ; 72�, we have

Z.T�48i/CH D fH.ZT�48i; : : : ;ZT�48i�p/C "H i > 0: (4)

where again T corresponds to the point 12 am and p is the memory. The size of p
will be discussed later on, but if p is bigger than 24, part of the data used correspond
to the previous day. In order to keep the modeling as simple as possible, we decide
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to use the same p for all the different models and estimate the unknown function fH .
Using the same notation as in the previous section, we consider

X D

0

B
@

ZT�48 � � � ZT�48�p

ZT�96 � � � ZT�96�p
:::

:::
:::

1

C
A YH D

0

B
@

ZT�48CH

ZT�96CH
:::

1

C
A

The forecast model in vector form can be written (for a given horizon H) as

YH D fH.X/C "H:

We can apply the IBR procedure to estimate this model. This is done using the
R package ibr (available on CRAN) with the default value: a Gaussian kernel
smoother with the smoothing parameter (bandwidth) � D .�1; : : : ; �pC1/ chosen
such as each univariate Gaussian (product) kernel smoother have a degree of
freedom (the trace of the smoother) equal to 1.01. This last value is chosen to ensure
that the pilot smoother S�.X/ is smooth enough to get bias at the beginning of the
procedure. This can be checked easily by looking at the number of iterations selected
by GCV which have to be at least a few hundred. This number is chosen once and is
always the same for each horizon and each modeling. No tuning are required since
the modeling is robust to this choice [6]. Repeating the IBR procedure for each
horizon, we get the Of25; � � � ; Of72 and the 48 predictions are obtained immediately
calculating

OfH.ZT ; : : : ;ZT�p/

and every day, we update X and YH with the new data.
The different days of the week have different patterns (Fig. 3). It seems reason-

able to take into account this information and to build forecasting models according
to the type of day. We tested two approaches here.

• The first approach consists in adding a new explanatory variable D which
corresponds to the forecast day type {Monday,. . . ,Sunday} and we estimate the
more general model

YH D fday;H.X/� fD D dayg C "day;H

So for forecasting a given day in {Monday,. . . ,Sunday}, we calculate

OZtCH D Ofday;H.ZT ; : : : ;ZT�p/: (5)

This means that we estimate 7� 48 D 336models. By doing so, we decrease the
size of the database by gathering the data by day.

• The second approach splits the week into working days, Saturday and Sunday
(see [2]). In order to keep learning database with the same pattern, when the
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autoregression model used only implies the previous day, instead of using
seven different scenarios as done in the previous approach, we only use four:
Monday, Tuesday-Friday, Saturday and Sunday. When the autoregression model
used implies the two previous days, we use five scenarios Monday, Tuesday,
Wednesday-Friday, Saturday and Sunday.

Now, let discuss the size of the explanatory variables. Previous analysis conduct
us to take in memory the 2 previous days so 96 lagged variables. Such model will be
denoted in the following IBR96. In order to reduce the number of variables but still
keeping 2 days of history, we could work with hourly data and use only 48 lagged
variables. The corresponding model will be denoted IBR48h. If one wishes to use
only one day of history, one could run IBR48 (built on measurements every half
hour) or IBR24h (built on measurements every hour).

4 Results

Given data measured every half hour from January 2006 to December 2008, we are
able to forecast year 2009. Several forecasting methods have been considered:

1. The RTE SARIMA method (the current RTE method),
2. Our 4 IBR models: IBR96, IBR48h, IBR48 and IBR24h (see previous section),
3. The simplest type of aggregative estimator [10] where we average all the five

previous predictions (Agg.)
4. Functional Nonparametric approach (NP) described in [2] with the same choices:

epanechnikov kernel, bandwidth selection adapted from [3] and L2 distance,
5. The naive approach which uses the previous day (of the database) as a prediction,
6. Multivariate Adaptive Regression Splines (MARS) estimated with mda pack-

age [11],
7. Nonlinear Additive Autoregressive models (NAAR) of order p estimated with

mgcv package [24]. The order p is chosen using a forward selection with AIC
criterion based on the past values. The variables are the lagged variable (built on
measurements every half hour),

8. Nonlinear Additive Autoregressive models (NAARh) of order p estimated with
mgcv package [24]. The order p is chosen using a forward selection with AIC
criterion on the past values. The variables are the lagged variable (built on
measurements every hour).

Forecasting specific days or periods are beyond the scope of that paper and RTE
decides to delete 32 days from the year 2009: National holidays, Christmas period.
Thus, all the errors are calculated on 333 days. We compute two types of errors, the
first one on the corrected load curve and the second one on the global French load
curve where the correction belonging to the climatic and tariff models are added to
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the forecasts. We compute the Mean Absolute Percentage Error (MAPE) over 2009

MAPE D 1

333 � 48
333X

tD1

72X

HD25

jZTCH � OZTCHj
ZTCH

� 100:

The TSO is also interested in considering large forecasting errors (in absolute value).
To have an insight on these kind of errors, we compute the percentage of absolute
errors greater than 2,000 MW among all the forecasts.

PE D 1

333 � 48
333X

tD1

72X

HD25
1fjZTCH � OZTCHj > 2;000g � 100;

where 1 is the indicator function.
We summarize in Table 1 the forecast results on (i) the corrected time series

(denoted Cor.) and on (ii) the French load curve (denoted Glob.). Forecastings for
the last one are obtained by adding to the forecasts of the corrected time series, the
predicted values given by the complex nonlinear parametric regression model (used
to take into account the different tariffs and the climate) used with the true values
of the exogenous variables. These ex post forecasts only take into account the errors
due to the model and not those due to the temperature forecasts for example. We only
present here the results obtained by using a different model for each day. Using only
three models (working day, Saturday and Sunday) are for all the methods proposed
here much less accurate.

Working with the first approach (one model for each day of the week) leads to
better results than the second approach with aggregated working days. This remark
is valid for all modeling type: IBR, non-parametric approach, nonlinear additive
autoregressive models. Thus, even if the size of the sample decreases the accuracy
proposed by each modeling is better. As the second approach is not well suited to
our problem, we will focus on the first one in In what follows.

It is worth noting that independently of the size of integrated lagged variables
IBR provides better results than the SARIMA model and also better than other
competitors. Integrating two days of history on a half an hour basis, which had
sense for practitioner, give the best results for IBR. Integrating one day on a half
an hour basis or two days on a hour basis give approximately the same results
which are better than one day on a hour basis. The same is true for the corrected
series, the global series and the number of forecast errors greater than 2,000 MW.
The nonlinear additive autoregressive models perform better when the variables are
chosen on an hour basis (compared to half an hour basis). This can be explained by
the fact that the selected p is usually in the same order of magnitude for NAAR and
NAARh and thus the NAARh can take into account more elements from the past
(by dropping the half hourly information).

It is interesting to note that the classical mean of the five first modeling (Agg.)
is doing well and this is a possible way for the future, although the forecaster has
to maintain numerous models. In the following, we will only compare SARIMA
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Table 2 Daily percentage errors (MAPE) for the corrected series and the global one

Series Model Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Corrected SARIMA 1.22 1.19 1.34 1.61 1.42 1.26 1.37

Corrected IBR96 1.13 1.11 1.16 1.12 1.02 1.21 1.37

Global SARIMA 1.03 1.01 1.12 1.32 1.15 1.04 1.14

Global IBR96 0.97 0.92 1.00 0.97 0.85 0.98 1.14

Table 3 Monthly percentage errors (MAPE) for the corrected series and the global one

Series Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Corrected SARIMA 4.96 1.48 1.97 1.28 1.26 0.91 0.45 0.05 0.53 1.40 1.31 1.32

Corrected IBR96 2.68 1.37 1.54 1.49 1.15 0.85 0.49 0.18 0.46 1.36 1.45 1.38

Global SARIMA 3.53 1.08 1.60 1.16 1.22 0.89 0.44 0.05 0.53 1.28 1.13 0.98

Global IBR96 1.76 0.99 1.26 1.35 1.11 0.83 0.48 0.19 0.45 1.25 1.23 1.04

Table 4 Peak percentage errors (MAPE) for the corrected series and the global one

Series Model 10:30 11:00 11:30 18:00 18:30 19:00 19:30 20:00

Corrected SARIMA 1.17 1.18 1.19 1.61 1.63 1.60 1.65 1.74

Corrected IBR96 1.04 1.03 0.99 1.41 1.34 1.34 1.41 1.55

Total SARIMA 0.98 0.99 1.00 1.32 1.35 1.33 1.39 1.47

Total IBR96 0.89 0.88 0.85 1.19 1.13 1.13 1.21 1.33

model and IBR96: we will focus on daily errors (Table 2), monthly errors (Table 3)
and peak hours errors (Table 4).

A more refined analysis of forecasting errors can be done by considering the
error for each day of the week or for each hour of the day. When considering errors
for each day of the week, it can be seen in Table 2 that IBR96 is uniformly better
for each type of day but the errors obtained are extremely similar for the weekends.
This can be easily explained by the low level of consumption of these days, and their
regularity.

When considering errors for each hour of the day (or saying differently errors
by horizon of forecasts), Fig. 4 shows that the MAPE of IBR96 is uniformly better
for each hour. When zooming on the peaks of consumption (in the morning and
in the evening), Table 4 confirms that IBR96 is better. When focusing on the
month, the classical SARIMA approach does better forecasts for April, July, August,
November and December. It seems that this modeling allows better forecasts for low
consumption months (such as July) and leads to very bad forecasts for very high
consumption months such as January.
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Fig. 4 Hourly percentage errors (MAPE) for the corrected series (SARIMA: black, IBR96: red)

5 Conclusion

Cornillon et al. [5] propose a new smoothing method, IBR, that has the desirable
property of being simple and adaptive, which suggests that it may be used to perform
fully nonparametric forecasting procedure. This paper compares this new method
with the current state-of-the-art forecasting model at RTE which is used every day,
and different competitors. This study on real French consumption of electricity
(from January 2006 to December 2009) shows that IBR can lead to significant
improvement over both the current RTE model and other competitors such as
nonparametric functional approach or nonlinear additive autoregressive approach.

These improvements are not only on the global Mean Absolute Percentage
Error over 2009 but also when MAPE are measured over high consumption date
(consumption above 2,000 MW). When the MAPE are monthly detailed, some
months show that the current RTE model outperforms IBR model. This remarks
leads to a possible improvement by partitioning months in two category (or more):
the low level consumption months and the high level consumption months. This
qualitative variable month with two levels high and low could be used to partition
the database in month � day instead of day only. To apply this remark with more
than two category, one needs more observations or less memory in order to have
enough data to make robust forecast.

Finally, from the TSO’s point of view, this new modeling could be extended
to other problems, like wind and solar generation forecasting. To insert renewable
generation into the network according to the security of the grid, RTE needs
appropriate tools to provide accurate forecasts and supervision.

Acknowledgements The authors would like to thank the editors and the two anonymous referees
for their valuable comments which helped in improving the paper.



Fully Nonparametric Short Term Forecasting Electricity Consumption 93

References

1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
In Second international symposium on information theory (pp. 267–281). Budapest: Akademiai
Kiado.

2. Aneiros, G., Vilar, J. M., Cao, R., & Muñoz San Roque, A. (2013) Functional prediction for
the residual demand in electricity spot markets. IEEE Transactions on Power Systems, 28(4),
4201–4208.

3. Antoniadis, A., Paparoditis, E., & Sapatinas, T. (2008). Bandwidth selection for functional time
series prediction. Statistics and Probability Letters, 79, 733–740.

4. Chakhchoukh, Y. (2010). A new robust estimation method for ARMA models. IEEE Transac-
tions on Signal Processing, 58(7), 3512–3522.

5. Cornillon, P. A., Hengartner, N., & Matzner-Løber, E. (2014, to appear). Recursive bias
estimation for multivariate regression. ESAIM/probability and statistics, 18, 483–502.

6. Cornillon, P. A., Hengartner, N., Jégou, N., & Matzner-Løber, E. (2013). Iterative bias
reduction: A comparative study. Statistics and Computing, 23, 777–791.

7. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating
the correct degree of smoothing by the method of generalized cross-validation. Numerische
Mathematik, 31, 377–403.

8. Cugliari, J. (2011). Prévision non-paramétrique de processus à valeurs fonctionnelles. Appli-
cation à la prévision de la consommation d’électricité. Phd thesis, University Paris Sud 11.

9. Fan, S., & Hyndamn, R. J. (2012). Short-term load forecasting based on a semi-parametric
additive model. IEEE transactions on power systems, 27(1), 134–141.

10. Goude, Y. (2008). Mélange de prédicteurs et application à la prévision de la consommation
électrique. Phd thesis, University Paris Sud 11.

11. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning (2nd
ed.). New York: Springer.

12. Hengartner, N., Wegkamp, M., & Matzner-Løber, E. (2002). Bandwidth selection for local
linear regression smoothers. Journal of the Royal Statistical Society: Series B, 64, 1–14.

13. Hurvich, C., Simonoff, G., & Tsai, C. L. (1998). Smoothing parameter selection in nonparamet-
ric regression using and improved Akaike information criterion. Journal of the Royal Statistical
Society: Series B, 60, 271–294.

14. Lefieux, V. (2007). Modèles semi-paramétriques appliqués à la prévision des séries tem-
porelles: cas de la consommation d’électricité. Phd thesis, Rennes.

15. Li, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized cross-
validation: Discrete index set. The Annals of Statistics, 15, 958–975.

16. Martin, M. M. (1999). Filtrage de Kalman d’une série temporelle saisonnière. Application à la
prévision de consommation d’électricité. Revue de Statistique Appliquée, 47(4), 69–86.

17. Meslier, F. (1976). Contribution à l’analyse des séries chronologiques et application à la mise
au point de modèles de prévision à court terme relatifs à la demande journalière relevée à
Paris Monsouris. Phd thesis, University Paris Sud 9.

18. Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized
additive models. In Proceedings of ISAP power, Hersonissos, Greece.

19. Poggi, J. M. (1994). Prévision non-paramétrique de la consommation électrique. Revue de
Statistique Appliquée, 42(4), 83–98.

20. Reiss, P., & Ogden, R. (2009). Smoothing parameter selection for a class of semiparametric
linear models. Journal of the Royal Statistical Society: Series B, 71, 505–523.

21. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
22. Taylor, J. W., & McSharry, P. E. (2007). A new robust estimation method for ARMA models.

IEEE Transactions on Power Systems, 22(4), 2213–2219.
23. Vilar, J. M., Cao, R., & Aneiros, G. (2012). Forecasting next-day electricity demand and price

using nonparametric functional methods. Electrical Power and Energy Systems, 39, 48–55.
24. Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton:

Chapman & Hall/CRC.



Forecasting Electricity Consumption
by Aggregating Experts; How to Design
a Good Set of Experts

Pierre Gaillard and Yannig Goude

Abstract Short-term electricity forecasting has been studied for years at EDF and
different forecasting models were developed from various fields of statistics or
machine learning (functional data analysis, time series, non-parametric regression,
boosting, bagging). We are interested in the forecasting of France’s daily electricity
load consumption based on these different approaches. We investigate in this
empirical study how to use them to improve prediction accuracy. First, we show
how combining members of the original set of forecasts can lead to a significant
improvement. Second, we explore how to build various and heterogeneous forecasts
from these models and analyze how we can aggregate them to get even better
predictions.

1 Introduction

Electricity consumption forecasting is a crucial matter for electricity providers like
EDF to maintain the equilibrium between production and demand. Overestimating
the consumption leads to overproduction, which has a negative environmental
impact and implies unnecessary loss of benefits for the company. On the other hand,
underestimating the consumption may cause a shortage of energy and black outs.
In the past years EDF R&D has therefore developed several competitive forecasting
models achieving around 1.4 % error in MAPE (the average of percentage errors,
see (2) for a formal definition) at the daily horizon. However the electrical scene
in France is constantly evolving (nuclear power, electric cars, air conditioning are
developing for instance) and the opening of the electricity market induces potential
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customer losses. Therefore the historical models have to be regularly reconsidered
and challenged. As daily forecasts are the main inputs for optimizing the production
units we consider in this paper the goal of improving short-term (daily) forecasting
of France’s electricity consumption.

As the historical French electricity provider, EDF has investigated the issue of
load forecasting for years and developed models from a wide range of statistical
or machine learning methods. Among many, we consider in this study three
approaches presented below. They were chosen for two main reasons. First, they
have a good forecasting accuracy. Second, they are derived from quite different
statistical frameworks, which results in a sort of heterogeneity. The first model
is a non-parametric model based on regularized regression on spline basis (see
Wood [28]). It will be referred to next as the generalized additive model (GAM).
This model has performed well on France’s load consumption signal (see Pierrot
and Goude [25]), on EDF portfolio data (see Wood et al. [29]) and was proven to
be a good competitor on US data (see Nedellec et al. [24]). The second model is
based on curve linear regression (CLR) via dimension reduction. It is introduced
and applied to electricity consumption forecasting in Cho et al. [10, 11]. The third
and last model, kernel wavelet functional (KWF), is detailed in Antoniadis et al. [2–
4]. It combines clustering functional data and detection of similar patterns in
functional processes based on a wavelet distance. These three approaches are based
on extremely different insights and we expect it can induce different behaviors that
an aggregation algorithm can take advantage of in some online fashion. The GAM
model captures non-linear relationships between electricity load and the different
covariates driving it (temperature, fare effects. . . ) and provides smooth estimates of
these transfer functions without any transformation of the original data. The CLR
model performs a data-driven dimension reduction as well as a data transformation
so that the relationship between the transformed data is linear and can be captured
by simple multivariate regression models. The KWF approach is non-parametric
and does not use any exogenous variable but the past consumption. It is particularly
robust to special days (bank holidays, holiday seasons) and meteorological forecasts
errors. In the GAM setting, observations (half-hourly electricity load and covariates)
are considered as finite dimensional whereas in the CLR and the KWF approaches,
daily electricity load is the realization of a functional process.

As we have at our disposal three forecasting models, a straightforward question
is how to combine them to produce accurate forecasts. The art of combining
forecasts has been extensively studied for the past four decades (see the review
of Clemen [12]) and the empirical literature is voluminous. However, few real-
world empirical studies consider the framework of individual sequences to design
the aggregation rules. Some of them include for instance climate prediction [23],
air-quality prediction [21, 22], quantile prediction of daily call volumes entering
call center [6], or electricity consumption [13]. The vast majority of these studies
focuses however on the aggregation rules and how to weight the experts. Little
consideration goes into designing the set of experts to include in the combination.
Aiolfi et al. in their technical report [1] studied the construction of a varied enough
set of experts by considering the combination of linear autoregressive models with
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non-linear models (logistic smooth transition autoregressive and neural networks).
They however did not consider the same aggregation rules as we do: because of the
small length of their time series, none of their rules had time to learn the weights
and the best results were obtained using uniform aggregation scheme.

We now describe the methodology followed in this study. We aim first at
designing a set of base forecasting methods (henceforth referred to as experts)
by using the three models described above. We show how an aggregation rule
that sequentially outputs forecasts of the electricity consumption for the next
instances can significantly improve upon these experts. The aggregation rules and
the framework of prediction with expert advice is detailed in Sect. 2. Then, we
propose different strategies to design a larger set of experts from the three initial
experts and give a detailed analysis of the corresponding combined forecasts.

2 Sequential Aggregation of Experts

The content of this section reviews the framework of sequential prediction with
expert advice, a setting which received considerable attention in the past 20 years
(see the monograph by Cesa-Bianchi and Lugosi [9]). It considers an online learning
scenario in which a forecaster has to guess element by element future values of an
observed time series. To form its prediction it receives and combines before each
instance the opinions of a finite set of experts. This framework makes possible to
consider several stochastic models with extremely different assumptions in a single
approach. To do so, it adopts the deterministic and robust point of view of the
literature of individual sequences. It is thus particularly adapted to our application.

2.1 Mathematical Context

We now present the mathematical setting of prediction with expert advice. We
suppose that at each time instance t D 1; : : : ;T the next outcome yt of a sequence of
observations y1; : : : ; yT , like half-hourly electricity consumptions, is to be predicted.
We assume that the observations are all bounded by some positive constant B,
so that yt 2 Œ0;B�. Before each time instance t, a finite number K of experts
provide forecasts xt D .x1;t; : : : ; xK;t/ 2 Œ0;B�K of the next observation yt. A
forecaster is then asked to form its own prediction with knowledge of the past
observations yt�1

1 D y1; : : : ; yt�1 and of the past expert advice xt
1 D x1; : : : ; xt.

Let denote by � the inner product in R
K . Formally the forecaster forms a mixture

Opt D . Op1;t; : : : ; OpK;t/ 2 R
K and predicts Oyt D Opt � xt D PK

kD1 pk;txk;t by linearly
combining the predictions of the experts.

The accuracy of a prediction x proposed by an expert or by the aggregation rule
at time instance t for the outcome yt is measured through a convex loss function `t.
In this paper, we consider the special case of the square loss `t.x/ D .yt � x/2. The
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analysis can however be easily extended to any convex loss function. On instance
t, expert k suffers loss `t.xk;t/ D .yt � xk;t/

2 and the aggregation rule incurs loss
`t.Oyt/ D .yt � Oyt/

2. The goal of the forecaster is to design aggregation rules (that
is, applications A W .xt

1; y
t�1
1 / 7! Opt) with small average error. The latter can be

decomposed as

1

T

TX

tD1
.yt � Oyt/

2 , inf
q2S

(
1

T

TX

tD1
.yt � q � xt/

2

)

C RT ; (1)

where S is some closed and bounded subset of RK ; and this defines the regret RT .
As we explain next this decomposition highlights the well-known trade-off between
approximation error and estimation error. Because these two terms add up to the
error incurred by the aggregation rule they act as two opposing forces.

The first term in (1) is the error encountered by the best constant weight vector
chosen in hindsight in a closed and bounded set S 
 R

K . This best mixture is
called an oracle. Its performance is the target that the aggregation rule intends to
reach and is thus used as a benchmark value to be compared to the performance
of an aggregation rule. Several oracles can be defined according to the set S the
aggregation rule aims at competing with. We can list several oracles: the best expert
oracle suffers minkD1;:::;K

PT
tD1.yt�xk;t/

2; the best convex weight vector corresponds

to the best element in S D �K , fq 2 R
KC W

P
i qi D 1g; and finally the best linear

oracle is defined by S D BK.r/ the ball of radius r in R
K . The larger the set S

we aim at competing with, the smaller the first term in (1) is, but the harder it is
for the aggregation rule to remain competitive. The second term grows in general.
This approximation error is closely related to the expert forecasts. It decreases with
increasing heterogeneity of the expert set.

The second term RT is the estimation error. It evaluates the ability of the
aggregation rule to retrieve online the oracle, i.e., the best possible mixture. If
the aggregation rule is well designed, RT will vanish to 0 as the length T of the
experiment grows to infinity.

We assume in this paper that we have an efficient aggregation rule and we focus
on reducing the approximation error; indeed many efficient aggregation rules are
already well-known—see Sect. 2.2, but the approximation error is often left out of
the debate.

2.2 Aggregation Rules

Experiments are performed by considering four different aggregation rules: the
exponentially weighted average forecaster (EWA), the fixed share forecaster (FS),
the ridge regression forecaster (Ridge), and the polynomially weighted average
forecaster with multiple learning rates (ML-Poly). EWA, FS, and Ridge are
described in the book of Cesa-Bianchi and Lugosi [9] for constant values of their
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learning parameters. Devaine et al. [13] already applied EWA and FS to short-term
load forecasting. They suggested in Sect. 2.4 an empirical tuning of the learning
parameters which comes with no theoretical guarantees but works empirically
well. It consists of optimally choosing the learning parameters on adaptive finite
grids. Except for ML-Poly which already comes with its own learning parameter
calibration rule, the parameters are tuned online following the method of Devaine
et al. [13].

The exponentially weighted average forecaster (EWA) is an online convex
aggregation rule introduced in learning theory by Littlestone and Warmuth [20] and
by Vovk [27]. At time instance t, it assigns to expert k the weight

Opk;t D e��Pt�1
sD1 `s.xk;s/

PK
iD1 e��Pt�1

sD1 `s.xi;s/
;

which is exponentially small in the cumulative loss suffered so far by the expert.
When the learning parameter � is properly tuned, it has a small average regret

RT D O
�
1=
p

T
�

with respect to the best fixed expert oracle—see Cesa-Bianchi

and Lugosi [9].

The fixed share forecaster (FS) is due to Herbster and Warmuth [18]. It has the
property to compete not only with the best fixed expert but with the best sequence of
experts that may change a small number of times. It is particularly interesting when
dealing with non stationary environments, in which the best expert should regularly
be reconsidered. The fixed share forecaster considers a learning parameter � as well
as a mixing parameter ˛ 2 Œ0; 1� that evaluates the number of changes in the oracle
sequence of experts we are competing with.

We now provide a short mathematical description of the fixed share aggregation
rule. The initial weight distribution is uniform Op1 D .1=K; : : : ; 1=K/. Then, at each
instance t, the weights are updated twice. First, a loss update takes into account the
new loss incurred by each expert,

Ovk;t D Opk;t�1e��Pt�1
sD1 `s.xk;s/

PK
iD1 Opi;t�1e��Pt�1

sD1 `s.xi;s/
:

Second a mixing-update ensures that each expert gets a minimal weight ˛=K by
assigning

Opk;t D .1 � ˛/ Ovk;t C ˛=K :

This update captures the possibility that the best expert may have switched at time
instance t. The fixed share forecaster was proven to have nice theoretical properties
and vanishing average regret RT with respect to sequences of experts with few shifts.
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Algorithm 1: The polynomially weighted average forecaster with multiple
learning rates (ML-Poly)

Initialization: p1 D .1=K; : : : ; 1=K/ and R0 D .0; : : : ; 0/

For each instance t D 1; 2; : : : ; T

0. pick the learning rates

�k;t�1 D 1=

 

1C
t�1X

sD1

�
`s.Oys/� `s.xk;s/

�2
!

1. form the mixture Opt defined component-wise by

Opk;t D �k;t�1

�
Rk;t�1

�

C
= �t�1 � .Rt�1/C

where xC denotes the vector of non-negative parts of the components of x
2. output prediction Oyt D bpt � xt

3. for each expert k update the regret

Rk;t D Rk;t�1 C `t.Oyt/� `t.xk;t/

For more details about the fixed share aggregation rule the reader is referred to
Cesa-Bianchi and Lugosi [9, Section 5.2].

The polynomially weighted average forecaster with multiple learning rates
(ML-Poly) is obtained via a version of the polynomially weighted average fore-
caster detailed in Cesa-Bianchi and Lugosi [8], see also Cesa-Bianchi and Lugosi [9,
Section 2.1]. The multiple learning rate version is due to Gaillard et al. [17] whose
implementation is recalled in Algorithm 1. Gaillard et al. [17] proved the regret
bound RT D O

�
1=
p

T
�

with respect to the best fixed expert. ML-Poly is particularly
interesting since despite the theoretical tuning of the learning parameters, it achieves
as good performance as the other ones. It runs also much faster than the empirical
tuning described by Devaine et al. [13] and used for the other rules which needs to
run as many times the aggregation rule as the size of the parameter grid.

The ridge regression forecaster (Ridge) is presented in Algorithm 2. It was
introduced in a stochastic setting by Hoerl and Kennard [19]. It forms at each
instance the linear combination of experts minimizing a L2-regularized least-square
criterion on past data. It was first studied in the context of prediction with expert
advice by Azoury and Warmuth [5] and Vovk [26] and was proved to enjoy nice
theoretical properties, namely a regret bound RT D o.1/ as T !1 with respect to
the best linear oracle. Once again, the learning parameter � of the ridge regression
aggregation rule has to be calibrated online. This tuning can be done using the
methodology detailed in Devaine et al. [13, Section 2.4].

Ridge forms linear mixtures. The weights may be negative and not sum to one,
while the other three aggregation rules restrict themselves to convex combination
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Algorithm 2: The ridge regression forecaster (Ridge)
Parameter: � > 0
Initialization: Op0 D .1=K; : : : ; 1=K/
For each instance t D 1; 2; : : : ; T

1. form the mixture Opt defined by

Opt D argmin
u2RK

(
t�1X

sD1

.ys � u � xs/
2 C � ku � p0k22

)

2. output prediction Oyt D Opt � xt

of experts. In other words they only propose weight vectors Opt 2 �K where �K D
fx 2 R

KC W
P

i xi D 1g. While linear aggregation rules might have more flexibility
to detect correlation between experts and therefore often reach better performance,
convex aggregation offers easy interpretation and safe predictions. Indeed convex
weight vectors only assign non-negative weights to experts and their predictions
always lie in the convex hull of experts predictions. Thus if all the experts are known
to perform well, the aggregation rule will do so as well.

The gradient trick In the versions described above, EWA, FS, and ML-Poly
compete only with the best fixed expert oracle. In Eq. (1) they cannot per se ensure
vanishing average regret RT with respect to the best fixed convex combination (i.e.,
S D �K). But it exists a standard reduction from the problem of competing with
the best convex combination oracle to the goal of competing with the best fixed
expert. This reduction is a well-known trick in the literature of individual sequences
and is known as the gradient trick. The theoretical proof of this reduction is beyond
the scope of this empirical research and is detailed in Cesa-bianchi and Lugosi [9,
Section 2.5].

We only provide a brief description of the gradient trick. For each time instance t,
we denote by ft W p 2 �K 7! `t.p � xt/ 2 RC the function which evaluates the losses
incurred by the weight vectors at time instance t. When the loss functions `t are
convex and (sub)differentiable, the functions ft are convex and (sub)differentiable
over �K . That is the case for instance for the square loss. We denote by rft the
(sub)gradient function of ft. The gradient trick relies then in not directly running the
aggregation rule with the loss functions `t but with modified gradient loss functions
Qft W p 2 �K 7! rft.Opt/ �p. In other words, the aggregation rules are run the same way
by replacing the loss `t.Oyt/ incurred by the algorithm by Qft.Opt/ and the loss `t.xk;t/

suffered by expert k by Qft.ık;t/, where ık 2 �K is the Dirac mass on k. Experiments
of the next section are run using the gradient trick.
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3 Experiments

We now describe the data we are dealing with and how we intend to build new
experts from the three forecasting models described in the introduction. We then
report the results obtained by mixing the different sets of experts as well as the
performance of three reference oracles (best experts, best convex combination, best
linear combination). As explained in Sect. 2 the performance of these oracles cor-
responds to the one aggregation rules hope to reach. Remember that the fixed share
aggregation rule does not only compete with the best fixed convex combination but
has a more ambitious goal. It aims at coming close to the performance of the best
sequence of convex combinations that vary slowly enough. The results obtained by
this more complex oracle will however not be reported in this research and we will
only compare the performance of the fixed share aggregation rule to the best fixed
convex combination of experts.

3.1 Presentation of the Data Set

We consider an electricity forecasting data set which corresponds to an updated
version of the one analyzed by Devaine et al. [13]. It contains half-hourly measure-
ments of the total electricity consumption of the EDF market in France from January
1, 2008 to June 15, 2012, together with several covariates, including temperature,
cloud cover, wind, etc. Our goal is to forecast the consumption every day at 12:00
for the next 24 h; that is, for the next 48 time instances.

Atypical days are excluded from the data set. They correspond to public holidays
as well as the days before and after them. Besides, the data set is cut into two subsets.
A training set of 1;452 days from January 1, 2008 to August 31, 2011 is used to build
the forecasting methods. The performance of the methods is then measured using
the testing set of 244 days between September 1, 2011 to June 15, 2012. Prediction
accuracy is measured in megawatts (MW) by the root mean squared error (RMSE)

v
u
u
t 1

T

TX

tD1
.yt � Oyt/2

and by the absolute percentage of error (MAPE)

1

T

TX

tD1

jyt � Oytj
yt

: (2)

Operational forecasting purposes require the predictions to be made simultane-
ously at 12:00 for the next 24 h (or equivalently for the next 48 half-hourly time
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Fig. 1 (left) The observed half-hourly electricity consumptions between January 1, 2008 to June
15, 2012. An overall trend as well as a yearly seasonality can be pointed out in the data.
The electrical heating in winter has a major impact in France on the electricity consumption.
Approximately the last year is used to test the methods. (right) The observed half-hourly electricity
consumptions during a typical week. A weekly pattern can be observed with a reduction of
consumption during the week-end

instances) (Fig. 1). Aggregation rules can be adapted to this constraint via a generic
extension detailed in Devaine et al. [13, Section 5.3].

3.2 Combining the Three Initial Models

From each of the three forecasting models described in the introduction, one expert
is obtained: one from the generalized additive model (GAM), one from the curve
linear regression (CLR) and a last one from the kernel approach based on wavelets
(KWF). The experts are trained using the total training set from January 1, 2008
to August 31, 2011 described in the previous section. We calibrate the methods as
presented in [4, 11, 25]. This starting set of three experts is denoted in the rest of the
paper by E0.

Table 1 reports the performance obtained by mixing the three experts in E0. It
describes also the reference results of the corresponding benchmark oracles: the
best expert in E0, the best convex combination and the best linear combination. The
best convex combination and the best linear combination obtain similar results with
RMSEs of 629MW. Due to confidentiality constraints, we cannot provide detailed
characteristics of the observed electricity consumptions. The relative performance
of the methods can be enjoyed by noting that MAPEs are around 1%. A significant
improvement in performance can be noted in comparison to the best expert which
obtains 744MW. This motivates the necessity of mixing these models whose
forecasts bring different information.
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Table 1 Performance of
oracles and aggregation rules
using the set of experts E0:
GAM, CLR, and KWF

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best expert 744 1:29

Best convex combination 629 1:06

Best linear combination 629 1:06

EWA 624 1:07

FS 625 1:05

ML-Poly 626 1:05

Ridge 638 1:06

EWA, FS, and ML-Poly are designed to compete with the best convex combina-
tion of experts while Ridge aims at approaching the performance of the best linear
combination. The latter suffer RMSEs between 624 and 638MW, which corresponds
to reductions of the RMSE of approximatively 15% compared to the best expert
RMSE.

To quantify if our improvements are significant, we computed the dispersion of
the errors among time instances of the aggregation rules and of the oracles—see
technical report from Gaillard et al. [16, Section 1.2] for details. The dispersion is
measured by the 95% standard error

Ost D

v
u
u
u
t

1
T

PT
tD1

�
.yt � Oyt/2 � 1

T

PT
tD1 .yt � Oyt/

2
�2

4
T

PT
tD1 .yt � Oyt/

2
;

that is, the half-width of the 95% symmetric confidence interval of the error around
the RMSEs reported in Tables 1–6. The 95% standard error of the RMSEs are around
10 MW while the 95% standard error of the MAPE are approximatively 0:02%.
Hence any reduction of the RMSE of more than 10MW can be considered significant
in the following.

Figure 2 reports the time evolution of the weights formed by ML-Poly and Ridge.
The weight vectors created by Ridge converge but that is not obvious with ML-Poly.
Stability is beneficial in an industrial context where weights have to be interpreted
and understood by human beings. The weights formed by EWA and FS behave
similarly to the ones of ML-Poly and are thus not reported here.

In the next section we will investigate how more experts can be designed based
on these three models in order to improve further the predictions (Figs. 3 and 4).

3.3 Creating New Experts

We aim now at reducing the approximation error in Eq. (1), i.e., at improving the
performance of the oracles, by adding new experts to our initial set E0. If the new
experts are not different enough from the base ones, the approximation term will
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Fig. 2 Time evolution of the weight vectors formed by ML-Poly (top) and Ridge (bottom). We
remark that the weights assigned by ML-Poly are always non-negative and sum to 1. Ridge can
form negative weights
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Fig. 3 Time evolution of cumulative residual of the three experts in E0 and of the considered
aggregation rules. The aggregation rules have smaller gradient in comparison to the experts.
Besides it can be noticed that Ridge behaves very differently when compared to the other
aggregation rules

not decrease; and worse, the right-most term in (1), the sequential estimation error,
may increase, as the aggregation rule will have to face more experts. Note that none
of the newly constructed experts will significantly outperform the performance of
the best expert in E0, which achieves a RMSE of 744MW and a MAPE of 1:29%.
The benchmark performance of the best expert oracle thus remains the same for all
considered extended sets of experts in this study.
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Fig. 4 Hourly and monthly RMSE of the first three experts and two aggregation rules described
in Table 6. Because they obtain similar results to the ML-Poly aggregation rule, the EWA and the
fixed share aggregation rules are not reported here

3.3.1 Bagging

The first method that we investigate is inspired from bagging, a machine learn-
ing method that combines bootstrapping with aggregating. It was introduced by
Breiman [7] in order to improve the stability and the accuracy of a forecasting
model. As most averaging methods it is known to reduce the variance and to avoid
over-fitting. We aim at creating new experts by bootstrapping and at averaging
online the newly constructed set of experts by running the aggregation rules.

Given a forecasting model, a bootstrapped expert is obtained by estimating the
model on a random training strict subset S0

0 (that does not include the whole training
set S0 of n D 1;452 days). The training set S0

0 is generated by sampling n days from
S0 uniformly and with replacement. As the sampling is performed with replacement,
some days may be present multiple times in S0

0. Breiman [7] pointed out that it leaves
out e�1 � 37% of the days.

The bootstrap procedure is repeated 20 times using each of the three models at
hand: GAM, CLR, and KWF. We name E1 the set of 60 new experts, thus created.
In our experiments we used 20 bootstrapped replicates of each model. This does
not mean that more or fewer replicates would have led to worse performance. We
wanted to add enough replicates to get sufficient variety but in the other hand we did
not want to have too many bootstrapped experts in comparison to the experts we will
build in the following sections. We tested several values and 20 expert replicates for
each model seemed to be a reasonable trade off.

The performance of aggregation rules and oracles on E0 [ E1 is reported in
Table 2. The best linear combination oracle achieves a RMSE of 571MW, which
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Table 2 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E1: GAM, CLR, KWF
as well as the 60 bootstrapped
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 601 1:01

Best linear combination 571 0:99

EWA 614 1:01

FS 619 1:03

ML-Poly 612 1:02

Ridge 629 1:05

is a slightly better performance than the one of the best convex combination oracle,
that equals 601MW. This can be explained by two facts. First, the new experts
might be biased. As their weights do not need to sum to one, linear mixtures correct
better such bias. Second, as many experts are built using the same method, there
are important correlations between them that can be better modeled using negative
weights. However Ridge seems to have a hard time estimating the linear oracle
and the performance is not much improved compared to Table 1. The empirical
gain is about 10MW for all aggregation rules. The improvement is thus not really
significant.

3.3.2 Specialization

We start this section with the intuition that we need variety in our set of experts.
We try to reuse the idea of bootstrapping to create new experts by modifying
the training set. However, instead of sampling days uniformly in the training set
E0, we aim at assigning weights to training days with the goal to maximize the
variety among themselves. To do so, we choose weights according to the values
of the corresponding covariates (temperature, nebulosity, wind, type of day, . . . ).
Specialized experts are created this way to some specific scenarios like heatwave,
cold spell, sunny days or cloudy days. Hopefully if we choose different enough
scenarios, these experts may catch different effects in the consumption that we might
combine by aggregating them.

We now describe how to design such new experts. We suppose that we have
at our disposal a forecasting model such that, during the training of the model,
we can assign different weights to the elements of the training data. This is the
case for GAM, CLR, and KWF for example. We assume that we also have access
to an exogenous variable Z 2 Œ0; 1� like the temperature or the nebulosity which
was normalized in Œ0; 1�. Given this model and this exogenous variable Z, we
build two specialized experts: the first one by assigning to the day d the weight
.1 � Zd/

2, the second one with the choice Z2d . We thus get one expert focusing
on high values of Z, and another one focusing on low values. The form of these
weights was set empirically but we might want to replace it by many other forms.
For instance, we had first looked at weights in f0; 1g so as to select days according
to a threshold on Z. However this led to unstable experts and poor performance. We
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Table 3 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E2: GAM, CLR, KWF
as well as the 24 specialized
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 604 1:02

Best linear combination 582 0:99

EWA 609 1:01

FS 610 1:02

ML-Poly 602 1:00

Ridge 613 1:01

chose four covariables all based on temperature scenarios: the average, maximum,
and minimum temperature of the day, and the variation of temperature with the
previous day. We thus got 8 .D 4 scenarios � 2 experts: hight and low) specialized
experts by using each of the three models: GAM, CLR, and KWF. We call E2 this
set of 24 .D 8 experts � 3 methods) experts. The performance obtained by mixing
the experts in E0 [ E2 is reported in Table 3. We observe a better performance for
all aggregation rules with respect to bagging although we consider fewer additional
experts.

Note that we showed the interest of specialized experts when they are combined
with initial experts. The individual performance of specialized experts is often poor.
They do not necessarily perform better than initial experts even when they are
evaluated only on the data they should be specialized to.

3.3.3 Temporal Double-Scale Model

Now we study another way of constructing new experts by considering a temporal
two-scale model. We follow the methodology detailed in Nedellec et al. [24] of the
team TOLOLO for the “Kagle Global Energy Forecasting Competition 2012: Load
Forecasting”.

To forecast the short-term load with the canonical generalized additive model
(GAM), the electricity consumption is usually explained by a single model including
all the covariates (meteorological, and calendar ones) together with the recent
consumption. The consumption Yt is here decomposed into two parts: a medium-
term part Ymt

t including meteorological and calendar effects and a short-term part Yst
t

containing what could not be captured in large temporal scales, Yt D Ymt
t CYst

t . The
short-term part Yst

t basically consists of capturing local effects like extreme weather,
network reconfigurations and so on. The modeling approach is thus divided into two
estimation steps. First, we fit a mid-term generalized additive model including the
meteorological and calendar covariates only. Second, we perform a residual analysis
and we correct online the forecasts by using the observed consumptions of the last
30 days. This short-term readjusting is done by fitting another generalized additive
model on the residuals.

The set containing this new expert is called E3 and the performance obtained by
combining this new expert with the three experts in E0 is reported in Table 4. We



Forecasting Electricity Consumption by Aggregating Experts 109

Table 4 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E3: only four experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 596 1:00

Best linear combination 595 1:00

EWA 601 1:01

FS 599 1:00

ML-Poly 605 1:01

Ridge 605 1:00

observe RMSEs around 600MW for all aggregation rules, which is a significant
improvement considering that we add only one expert. The extension to other
methods, like CLR and KWF, of this new way of creating experts is left for future
work.

3.3.4 Boosting

In this section we investigate a final method to create new experts. We take now
inspiration from boosting methods, like the AdaBoost algorithm of Freund and
Schapire [15], that aims at correcting the mistakes of weak learners (or experts).
The experts constructed in this section will be referred to as boosted experts.

Suppose that we have an expert that at an instance t of the training data estimates
the consumption yt by xt. We want to build another expert predicting x0

t. Then
reminding that our final aim is to aggregate well these predictions, it is irrelevant
wether the second expert does not predict well yt as soon as it counterbalances the
error made by the original expert xt. Improving the performance of the best convex
combination should indeed only improve the prediction of the mixture. We can thus
try to build the second expert so that the constant mixture 
xt C .1� 
/x0

t performs
well for some 
 2 Œ0; 1�. This can be done by training the second experts not directly
on the observed consumption yt but on the modified one y0

t D .yt�
xt/=.1�
/. We
can create several new experts by considering different values for 
 2 Œ0; 1�. Small
values might lead to experts too similar from the original one, while larger values
may create unstable experts.

We create 45 .D 5 � 3 � 3/ new experts by using 
 2 f0:5; 0:6; 0:7; 0:8; 0:9g,
each of the three initial experts in E0 are used as the original expert xt and each of
the three models (GAM, CLR, and KWF) are used to create the modified experts x0

t.
We denote by E4 the set of 45 experts thus constructed.

We report in Table 5 the performance obtained by mixing experts in E0 [ E4.
We did not consider 
 < 0:5 because the created experts were too similar to
the original ones. Considering all 
 2 f0:1; : : : ; 0:9g does not affect the results
(neither improve nor worsen them). The step size 0:1 of the grid was chosen
arbitrarily and the investigation of different values is left for future research. The
best convex combination oracle achieves a RMSE of 528MW and the best linear
combination oracle suffers a RMSE of 543MW. The performance of EWA and FS is
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Table 5 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E4: GAM, CLR, KWF
as well as the 45 boosted
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 543 0:93

Best linear combination 528 0:92

EWA 609 0:99

FS 609 0:99

ML-Poly 588 1:00

Ridge 578 0:98

Table 6 Performance of
oracles and aggregation rules
using the full set of experts
E0 [ E1 [ E2 [ E4 [ E3: all
the 133 constructed experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 521 0:95

Best linear combination 479 0:84

EWA 578 0:95

FS 581 0:95

ML-Poly 565 0:95

Ridge 557 0:95

not much improved compared to previous experiments. They both incur RMSEs of
609MW. But ML-Poly and Ridge suffer rmses under 580MW, which is a significant
improvement.

3.3.5 Combining the Full Set of Experts

Table 6 reports the performance obtained by mixing all the experts created in the
previous sections. We have now 133 experts at our disposal: 3 experts from in
the starting set E0, 60 bootstrapped experts in E1, 24 specialized experts in E2,
45 boosted experts in E4 and 1 temporal two-scale model in E3. The best linear
combination and the best convex combination perform better. But at the same time
it is harder to compete with them. Thus while the performance of aggregation rules
is improved, the gap between oracles and aggregation rules is increased as well.

Ridge suffers in Table 6 a RMSE of 557MW while it got 638MW when mixing
only the three experts in E0 (see Table 1). The several refinement of the set of experts
thus reduced its RMSE by approximatively 13%. Similarly, the errors of EWA and
FS were improved by about 7% while ML-Poly got a 10% reduction.

Figure 5 provides the RMSEs according to the number of experts aggregated with
ML-Poly and Ridge. The experts included in the mixture were chosen by induction
on the number of experts by following a forward approach. The induction was
initialized with the expert which performed the best (744 MW). Suppose we had a
set of K experts, the expert KC 1 was the one among the remaining experts that got
the best results when it was mixed with the K experts using the considered rule. The
procedure was stopped when all the 133 experts were used in the aggregation. The
symbols in the figures represent the category (bootstrapped, specialized, boosting,
etc.) of the last added expert.
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Fig. 5 Evolution of the performance according to the number of aggregated experts with ML-Poly
(top) and Ridge (bottom)

Figure 5 shows the usual trade-off between having enough experts and over-
fitting. If we could select a good subset of experts to include in the mixture we
could reduce the RMSE under the 530MW bar by using Ridge (and approximatively
under 545MW by using ML-Poly). A suitable number of experts seems to lie
between 15 and 90 experts. In future work, a pruning step, that would remove the
less important experts before combining the forecasts of the remaining ones, might
thus be a good option. Eban et al. [14] investigated in the framework of prediction
of individual sequences a setting with many experts and few prediction instances.
They remarked that trimming the worst experts often improves performance and
suggested a procedure to do so online.

Note that the weights formed by ML-Poly and Ridge were different enough in
Fig. 2. The aggregation rules might thus capture different information and we may
thus try to combine them in a second layer. The simple uniform average of the
forecasts of these two rules incurs a RMSE of 541MW, while using one of the fancier
sequential aggregation rules for the second layer gets us around 548MW.

Figure 6 plots the hourly and monthly RMSEs of the two best aggregation rules
and the RMSEs of the benchmark oracles described in Table 6. It shows that the
aggregation rules always outperform in average the best single expert at all 48 half-
hours of the day and at all 10 months of the testing set. In addition, we note a
significant improvement of the performance at 12:30. This can be explained by the
update of the weights, which occurs at noon. The best expert oracle, which is built
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Fig. 6 Hourly and monthly RMSEs of the three benchmark oracles and of ML-Poly and Ridge
described in Table 6

with a version of GAM, does not favor any hour of the day. The figure with monthly
averaged RMSEs shows that aggregation rules do not only focus in improving
forecasts when the task is easy. The best expert oracle is indeed outperformed
every month, including November or February, which are month that are notoriously
difficult to predict. Second, it illustrates that aggregation rules have a short learning
period. They indeed encounter almost no regret during September and October with
respect to all oracles although they just started to learn on September 1.

4 Conclusion

We presented in this paper an extensive application of aggregation rules from the
literature of individual sequences to short-term electrical consumption forecasting.
We focused on building an efficient set of experts from three initial ones, where
the efficiency is viewed in terms of what these new experts bring to the combined
forecasts. In other terms, we assumed that we had an efficient aggregation rule and
focused more on reducing the approximation error, that is, the first term in (1). We
noticed that despite the vast literature on combining forecasts (including empirical
studies) rare papers dealt with this important topic. We proposed different strategies
to generate experts from the three initial approaches: KWF, GAM, and CLR. We
then quantified the gains in terms of forecast accuracy of the combined forecasts
on the test set (about 10 month of half-hourly data). A summary of our results
is presented in Fig. 7 for the two best aggregation rules: ML-Poly and Ridge.
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the experts in E0 [ � � � [ E4 (referred to as ‘All sets’) are also reported

Combining all the experts that we generated with four different strategies, we
achieved a 25 % gain over the best expert (around 200 MW in RMSE), which is a
significant gain considering that the three original experts had already been refined
and worked extremely well (they are not week learners as in classical boosting). This
gain can be decomposed into two parts: roughly half of it comes from combining
three heterogeneous initial experts, the other half is due to the construction of new
experts. Among the four proposed strategies, our boosting trick and what we call
specialized experts bring the most important improvements. We believe that these
strategies could be applied to other forecasting problems and there is still some work
to derive theoretical guarantees for these tricks. We also observe that aggregating
rules are quite robust to adding new experts, and it is clear in Fig. 5 that combining
forecasts does not suffer much from over fitting. Nevertheless, these results suggest
that there is a way for improving the aggregation rules accuracy by adding a pruning
step that could select the best set of experts in some online fashion.

Acknowledgements We thank the anonymous reviewers, the editors, and Gilles Stoltz for their
valuable comments and feedback.



114 P. Gaillard and Y. Goude

References

1. Aiolfi, M., Capistrán, C., & Timmermann, A. (2010). Forecast combinations (Working Papers
2010-04). Banco de México. http://EconPapers.repec.org/RePEc:bdm:wpaper:2010-04.

2. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. (2012). Prévision d’un processus à valeurs
fonctionnelles en présence de non stationnarités. Application à la consommation d’électricité.
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Flexible and Dynamic Modeling of Dependencies
via Copulas

Irène Gijbels, Klaus Herrmann, and Dominik Sznajder

Abstract In this chapter we first review recent developments in the use of copulas
for studying dependence structures between variables. We discuss and illustrate the
concepts of unconditional and conditional copulas and association measures, in a
bivariate setting. Statistical inference for conditional and unconditional copulas is
discussed, in various modeling settings. Modeling the dynamics in a dependence
structure between time series is of particular interest. For this we present a
semiparametric approach using local polynomial approximation for the dynamic
time parameter function. Throughout the chapter we provide some illustrative
examples. The use of the proposed dynamical modeling approach is demonstrated
in the analysis and forecast of wind speed data.

1 Introduction

When the aim is to model the dependence structure between d random variables,
denoted by Y1; : : : ;Yd, we can distinguish between several approaches. In a
regression approach, one is interested in how a variable of primary interest, say
Yd, and called the response variable, is influenced on average by Y1; : : : ;Yd�1, the
covariates. A general regression model is of the form

Yd D g.Y1; : : : ;Yd�1/C " ;

where g W Rd�1 ! R is a .d � 1/-dimensional function of the covari-
ates, and where the error term " has conditional mean E ."jY1; : : : ;Yd�1/
equal to zero. Consequently, the conditional mean function of Yd given the
covariates Y1 D y1; : : : ;Yd�1 D yd�1, with .y1; : : : ; yd�1/ 2 Rd�1 equals
E .YdjY1 D y1; : : : ;Yd�1 D yd�1/ D g.y1; : : : ; yd�1/. For the mean regression
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function g one can either assume some known parametric form, or leaving its form
fully unspecified (and to be determined from the data), in respectively parametric
and nonparametric regression. An alternative is a semiparametric modeling in
which the influence of some covariates might be modeled parametrically, whereas
the influence on average of other covariates on Yd might be described via an
unknown function (a nonparametric functional part). In a general approach, the
dependencies between the various components in the random vector .Y1; : : : ;Yd/

are fully described by the joint distribution of .Y1; : : : ;Yd/, i.e. by the d-variate
cumulative distribution function of .Y1; : : : ;Yd/ denoted by PfY1 � y1; : : : ;Yd �
ydg. From this one can calculate for example the conditional mean function
E .YdjY1 D y1; : : : ;Yd�1 D yd�1/.

Denote the marginal cumulative distribution function of Yj, by Fj, for j D
1; : : : ; d. According to Sklar’s Theorem [34] there exists a copula function C defined
on Œ0; 1�d such that

PfY1 � y1; : : : ;Yd � ydg D C .F1.y1/; : : : ;Fd.yd// 8.y1; : : : ; yd/ 2 Rd :

In case the marginal distribution functions, F1; : : : ;Fd, are continuous, the copula
function C is unique. See [28]. The copula function couples the joint distribution
function to its univariate margins F1; : : : ;Fd. The dependence structure between the
components of .Y1; : : : ;Yd/ is fully characterized by the copula function C.

Note that a copula function is nothing but a joint distribution function on
Œ0; 1�d with uniform margins. Based on a joint distribution function, we can study
conditional distribution functions derived from it, as well as characteristics of these
(e.g. moments, medians, . . . ). Translated into the copula context this leads to various
concepts for describing dependence structures.

The aim of this chapter is to first provide a review of copula modeling concepts,
and statistical inference for them in various settings (parametric, semiparametric
and nonparametric). This is done in a setting of independent data in Sects. 2 and 3.
For simplicity of presentation, we restrict throughout the chapter to the setting of
bivariate copulas (the case d D 2). In Sect. 4 we turn to the dynamical modeling
of the dependence between time series, extending existing approaches of local
polynomial fitting to this setting. We conclude the chapter by an illustration of the
use of the method in a practical forecasting application in Sect. 5.

2 Global Dependencies and Unconditional Copulas

2.1 Population Concepts

Consider two random variables Y1 and Y2, with joint distribution function H, and
continuous marginal distributions functions F1 and F2 respectively. There then exists
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a (unique) bivariate copula function C, such that

H.y1; y2/ D PfY1 � y1;Y2 � y2g D C .F1.y1/;F2.y2// .y1; y2/ 2 R2 : (1)

It is common practice to measure the strength of the relationship between Y1
and Y2 via a so-called association measure. There are various statistical association
measures. Among the most well-known are: Pearson’s correlation coefficient,
Kendall’s tau, Spearman’s rho, Gini’s coefficient, and Blomqvist’s beta. See [4,
16, 17, 27] and [25], among others. Pearson’s correlation coefficient, defined as
Cov.Y1;Y2/=

p
Var.Y1/Var.Y2/, only exists if the second order moments of both

margins Y1 and Y2, exist, and equals˙1 in case Y2 is a (prefect) linear transform of
Y1. Gini’s coefficient and Blomqvist’s beta, are often used in economical sciences
(for example, as a measure of inequality of income or wealth). Several well-known
association measures can be expressed as functionals of the copula function. Denote
by .Y 0

1;Y
0
2/ and .Y 00

1 ;Y
00
2 /, two independent copies of .Y1;Y2/. For the following

association measures we give their definitions followed by an expression in terms
of the copula function (for some measures alternative expressions in terms of C
exist).

• Kendall’s tau:

�Y1;Y2 D P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ > 0

	 � P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ < 0

	

D 4
ZZ

Œ0;1�2
C.u1; u2/dC.u1; u2/ � 1 : (2)

• Spearman’s rho:

�Y1;Y2 D 3


P
˚
.Y1 � Y 0

1/.Y2 � Y 00
2 / > 0

	� P
˚
.Y1 � Y 0

1/.Y2 � Y 00
2 / < 0

	�

D 12
ZZ

Œ0;1�2
C.u1; u2/du1du2 � 3:

• Gini’s coefficient:


Y1;Y2 D 2E .jF1.Y1/C F2.Y2/� 1j � jF1.Y1/� F2.Y2/j/

D 2
ZZ

Œ0;1�2
.ju1 C u2 � 1j � ju1 � u2j/ dC.u1; u2/:

• Blomqvist’s beta:

ˇY1;Y2 D 2P
˚
.Y1 � F�1

1 .0:5//.Y2 � F�1
2 .0:5// > 0

	� 1 D 4C

�
1

2
;
1

2

�

� 1 ;

where F�1
j .0:5/ is the median of the margin Fj, for j D 1; 2.
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See [28] for an overview of association measures, their basic properties, and their
interrelationships.

When talking about unraveling the dependence structure between Y1 and Y2, it is
transparent from (1) that informations about the copula function C as well as about
the two margins F1 and F2 are of importance. We illustrate the impact of these
elements with some examples in Sect. 2.2.

2.2 Illustration: Examples

The copula function and the marginal distributions together determine the joint
distribution function (see (1)), and consequently all of the population characteristics.
This is reflected in, among others, the typical observed scatter plots and the different
values for the association measures.

As an illustration we consider the following examples:

Example 1.

Y1 	 N.0; 4/; Y2 	 Exp.2/

C.u1; u2/ D
�
max

�
u��
1 C u��

2 � 1; 0
��� 1

� ; � D 1 ;

where the copula belongs to the Clayton copula family.

Example 2.

Y1 	 Exp.2/; Y2 	 Beta.1; 4/

and with the same copula as in Example 1.

Example 3.

Y1 	 Student.5; 3/; Y2 	 Ex.0:2/

C.u1; u2/ D exp

�

� �.� log u1/
� C .� log u2/

�
� 1
�

�

; � D 3 ;

where Student.�; / is a noncentral Student distribution with � degrees of freedom
and noncentrality parameter , and where the copula belongs to the Gumbel copula
family.

Example 4.

Y1 	 Exp.2/; Y2 	 Beta.1; 4/

and the same copula as in Example 3.
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In Fig. 1 we present a typical sample ..Y11;Y21/; : : : ; .Y1n;Y2n// from .Y1;Y2/
(with n the sample size) from the above models (left column of pictures) together
with their pseudo-observations, defined as .F1.Y1i/;F2.Y2i//, for i D 1; : : : ; n, (right
column of pictures). Due to the probability integral transformation, the pseudo-
observations Fj.Yji/ are uniformly distributed (for each j D 1; 2). For Examples 1
and 2 the marginal distribution functions are different, but the dependence structure
(the copula) is the same. In the left panels of rows one and two of Fig. 1 we depict
scatter plots based on random samples of sizes 700 and 400 from, respectively,
Examples 1 and 2. The scatter plots look quite different for the samples from the
two models, but notice the similarity between the plots for the pseudo-observations
(right panels). We can observe a mild positive dependence everywhere with a higher
concentration in the lower tails (the lower left corner of the plots). In Example 3,
both the margins and the copula are different, and the scatter plots based on a sample
of size n D 700 from that model looks very different from the previous examples.
Here, there is clearly more positive dependence visible, and we also notice heavier
right tail characteristics. When comparing the plots for samples from Examples 3
and 4 (rows three and four in Fig. 1) we can observe similarities in the scatter plots
of the pseudo-observations (the right panels), due to the fact that these examples
share the same underlying copula. Furthermore, looking at scatter plots of typical
observations from Examples 2 and 4, we can see the impact of changing a copula
while keeping the same marginal distributions.

In Table 1 we present the values of some association measures for the four
examples. Note the equality of the measures for Examples 1 and 2 on the one
hand, and for Examples 3 and 4, on the other hand, since these examples share the
same copula (i.e. have the same dependence structure). The values of the association
measures only depend on the underlying copula function and not on the marginal
distributions.

2.3 Statistical Inference

Suppose now that ..Y11;Y21/; : : : ; .Y1n;Y2n// is a sample of size n of independent
observations from .Y1;Y2/, and the interest is in estimating the copula function
in (1). Once an estimator for the copula function is available, the way is open to
obtain estimates for association measures that can be expressed as functionals of the
copula, as those for example listed in Sect. 2.1.

According to available information on either the copula and/or the margins
we distinguish between different situations in the modeling aspects. In the fully
parametric setting the copula function is assumed to be known, up to some
parameters, and the same for the distribution of the margins. Other settings are listed
in Table 2. We briefly review statistical inference under each of these settings.
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Fig. 1 Typical samples for Examples 1–4 (top row to bottom row); left columns: scatter plot of the
observations, right columns: scatter plots of the pseudo-observations
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Table 1 Association measures for Examples 1–4

Example Kendall’s tau Spearman’s rho Gini’s index Blomqvist’s beta

1 & 2 0:333 0:478 0:382 0:333

3 & 4 0:667 0:849 0:725 0:670

Table 2 Situations for
statistical inference

Copula Margins Approach

Parametric Parametric Fully parametric

Parametric Nonparametric Semiparametric

Nonparametric Parametric Semiparametric

Nonparametric Nonparametric Fully nonparametric

2.3.1 Fully Parametric Approach

In a fully parametric approach one starts by assuming a specific parametric model
for the copula function as well as for the margins. More formally, suppose that the
copula C.�; �/ D C.�; �I �C/, and that Fj.�/ D F.�I �j/, for j D 1; 2, where �C, � j, for
j D 1; 2 are the respective parameter vectors, taking values in parameter spaces�C ,
�1 and �2 respectively. These parameters spaces can have nonempty intersections,
in other words, the parameter vectors �C and � j can have common elements.

Assume for simplicity that the density of the copula function exists, i.e. the
second order partial derivative of the copula function exists

c.u1; u2I�C/ D @2C.u1; u2I�C/

@u1@u2
8.u1; u2/ 2 Œ0; 1�2 :

If in addition the corresponding densities fj of Fj, for j D 1; 2, exist, then the joint
density of .Y1;Y2/ is given by (see (1))

h.y1; y2/ D c .F1.y1/;F2.y2// f1.y1/f2.y2/ 8.y1; y2/ 2 R2 :

Keeping this in mind, the logarithm of the likelihood function then equals

`n.�1;�2;�C/ D
nX

iD1
log .c.F1.Y1iI�1/;F2.Y2iI�2/I�C/ f1.Y1iI�1/f1.Y2iI�2// ;

(3)

which needs to be maximized with respect to .�1;�2;�C/. Denote this maximizer
by . O�1; O�2; O�C/.

An estimator for, for example, the associated Kendall’s tau is then obtained via
(2)

O�Y1;Y2 D 4
ZZ

Œ0;1�2
C.u1; u2I O�C/dC.u1; u2I O�C/� 1 :
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2.3.2 Semiparametric Approach

Suppose now that the margins F1 and F2 cannot be parametrized, but are fully
unknown. For the copula function, on the contrary, we still believe that a parametric
model C.�; �I�C/ is a reasonable assumption. In this case, we thus need to estimate
the margins from the available data. The log-likelihood in (3), where the margins F1
and F2 are unknown, is replaced by the pseudo log-likelihood

`n.�C/ D
nX

iD1
log .c.F1n.Y1i/;F2n.Y2i/I �C// ; (4)

where the unknown margins F1 and F2 are replaced by the estimates

F1n.y1/ D 1

nC 1
nX

iD1
IfY1i � y1g F2n.y2/ D 1

nC 1
nX

iD1
IfY2i � y2g ;

with Ify 2 Ag the indicator function on a set A, i.e. Ify 2 Ag D 1, if y 2 A and
Ify 2 Ag D 0, if y … A. In the empirical estimates, it is recommended to use
the modified factor .n C 1/�1 instead of the usual factor n�1, because by using
.n C 1/�1 the values Fjn.Yji/ are in the set f 1

nC1 ; : : : ;
n

nC1g instead of in the set
f 1n ; : : : ; n�1

n ; 1g, and hence by using this modified factor, one stays away from both
boundary points, 0 as well as 1. Note that this modification has no effect on the
(asymptotic) properties of the resulting estimates. See, for example, [15].

The pseudo log-likelihood estimate O�C of �C is then obtained by maximizing the
pseudo log-likelihood in (4) with respect to �C.

See [33] for a study on semiparametric efficient estimation in case of Gaussian
copulas with unknown margins.

2.3.3 Fully Nonparametric Approach

We now turn to the fully nonparametric approach where one can neither for C nor
for the margins (F1 and F2) propose an appropriate parametric model. Hence C, F1
and F2 are fully unknown.

Nonparametric estimation of a copula goes back to the early seventies. In the
paper [10] the empirical copula estimator was introduced and studied. The basic
idea behind this estimator is very simple. As can be seen from (1), C.�; �/ is in fact
nothing else but the joint cumulative distribution function after the margins have
been transformed, via the probability integral transformation

U1 D F1.Y1/ and U2 D F2.Y2/ :

In other words, C.�; �/ is the joint cumulative distribution function of .U1;U2/.
If independent observations ..U11;U21/; � � � ; .U1n;U2n// from .U1;U2/ would be
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available, then the cumulative distribution function could be estimated via the

usual bivariate empirical distribution function
1

n

nX

iD1
I fU1i � u1;U2i � u2g. Since

we have no observations from F1.Y1/ and F2.Y2/ we simply replace the unobserved
Uji D Fj.Yji/ by a pseudo-observation, its ‘slightly modified’ rank Fnj.Yji/ in the
original sample, and obtain the empirical copula estimator

Cn.u1; u2/ D 1

n

nX

iD1

I
˚ QU1i � u1; QU2i � u2

	 QU1i D F1n.Y1i/ QU2i D F2n.Y2i/ :

(5)

This estimator was also studied further in [14] and [32], among others.
Obviously, the estimator in (5) is a step function, which might not be very

desirable, when the function C.�; �/ is continuous or even differentiable.
Nonparametric estimation methods that lead to smooth estimators for the copula

C have been derived. Among these are kernel estimators. See, for example, [6, 18]
and [29]. Kernel estimators of the copula C are essentially obtained by replacing the
non-smooth indicator function If QU1i � u1; QU2i � u2g D If QU1i � u1g If QU2i � u2g in
(5) by a smooth kernel function. The non-smooth function If QUji � ujg is replaced by

the smooth function K
�

uj� QUji

hn

�
, where K.y/ D R y

�1 k.t/dt is the kernel distribution

function associated with the kernel k, a symmetric density function, with support
the interval Œ�1; 1�, and hn > 0 is a bandwidth parameter. The bandwidth parameter
determines the size of the neighbourhood in which the jump in the indicator function
is ‘smoothed out’. An example of a kernel function k is the Epanechnikov kernel
k.x/ D 3

4
.1 � x2/Ifjxj � 1g. As an illustration we depict in Fig. 2 the indicator

function If0:6 � ug as well as a smooth version of it, namely K
�

u�0:6
hn

�
, with K

based on the Epanechnikov kernel, for two different values of the bandwidth hn. The
larger the bandwidth, the larger the neighbourhood over which the jump is ‘smeared
out’.

Such a simple replacement of the indicator part by a smooth part, leads to the
kernel estimator

1

n

nX

iD1
K

 
u1 � QU1i

hn

!

K

 
u2 � QU2i

hn

!

:

Since the copula C is defined on the interval Œ0; 1�2 (a compact support) special
attention however is needed to obtain a kernel estimator that shows the same nice
asymptotic properties at the boundaries of Œ0; 1�2 as in the interior of that support.
The aim is to obtain kernel estimators for which the convergence rate is the same
on the interior of the square Œ0; 1�2 as well as on the edges of it. This can be done
for example, by using a reflection type of method, which consists of reflecting each
pseudo-observation . QU1i; QU2i/ with respect to all four corner points, and all four
edges of the interval Œ0; 1�2, resulting into an augmented data set of size 9n, from
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Fig. 2 The indicator function If0:6 � ug and its smooth version K
�

u�0:6
hn

�
, using the Epanech-

nikov kernel, and bandwidths hn D 0:04 (dashed-dotted curve) and hn D 0:20 (dashed curve)

which the kernel estimator is defined. See Fig. 3 for an illustration of a data point
and the eight points resulting from reflections of the given point with respect to all
corners and edges of the unit square Œ0; 1�2.

This leads to the kernel Mirror-Reflection type estimator introduced and studied
in [18]:

OCMR
n .u1; u2/ D 1

n

nX

iD1

9X

`D1

"

K

 
u1 � QU.`/

1i

hn

!

� K

 
� QU.`/

1i

hn

!#

�
"

K

 
u2 � QU.`/

2i

hn

!

� K

 
� QU.`/

2i

hn

!#

;

where

f. QU.`/
1i ;
QU.`/
2i /; i D 1; : : : ; n; ` D 1; : : : ; 9g

D f.˙ QU1i;˙ QU2i/; .˙ QU1i; 2 � QU2i/; .2 � QU1i;˙ QU2i/; .2 � QU1i; 2 � QU2i/; i D 1; : : : ; ng:

and K is the integral of the considered kernel k, as mentioned above.
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Fig. 3 A data point (indicated by a “�” in the unit square), and the reflected points (indicated by
a “�”) with respect to all corners (see the dashed lines) and edges (see the dotted lines) of the unit
square

An alternative approach to deal with the boundary issue is by using local linear
fitting, and its implicit boundary kernel. This was done by [6], and resulted in the
kernel Local Linear estimator:

OCLL
n .u1; u2/ D 1

n

nX

iD1
Ku1;hn

 
u1 � QU1i

hn

!

Ku2;hn

 
u2 � QU2i

hn

!

;

where Ku;hn is the integral of the modified boundary kernel

ku;h.x/ D k.x/ .a2.u; h/� a1.u; h/x/

a0.u; h/a2.u; h/� a21.u; h/
Ifu� 1

h
< x <

u

h
g;

where

a`.u; h/ D
Z u

h

u�1
h

t`k.t/dt for ` D 0; 1; 2 :

Note that nonparametric methods such as the above kernel methods, involve the
choice of a bandwidth parameter. This issue is not discussed here. See for example
[29] (Section 3.2 in that paper), and references therein, for some discussion on
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bandwidth choice. One could also use other smoothing methods than the kernel
method. We do not discuss these.

3 Local Dependencies and Conditional Copulas

3.1 Population Concepts

Suppose now that the interest is in the relationship between the random variables Y1
and Y2 but that both random variables are possibly influenced by another random
variable, say X. A first interest is then in studying the conditional dependence
between Y1 and Y2 given a specific value for X, say X D x. Instead of simply looking
at the joint distribution between Y1 and Y2, as in Sect. 2, we now focus on the joint
distribution of .Y1;Y2/ conditionally upon X D x:

Hx.y1; y2/ D PfY1 � y1;Y2 � y2 jX D x g :
Applying Sklar’s theorem to this conditional joint distribution function results into

Hx.y1; y2/ D Cx .F1x.y1/;F2x.y2// .y1; y2/ 2 R2 ; (6)

where

F1x.y1/ D PfY1 � y1 jX D x g and F2x.y2/ D PfY2 � y2 jX D x g ;
denote the marginal cumulative distributions functions of Y1 and Y2, respectively,
conditionally upon X D x. The main difference between (1) and (6) is that the copula
function Cx changes with the fixed value of X (X D x), as well as the margins Fjx (for
j D 1; 2). We refer to Cx as the conditional copula function. This notion was first
considered by [30] in the specific context of modeling the dynamics of exchange
rates, where the conditioning variable is related to time. See also Sect. 4.

Analogously to the case of the (unconditional) copula C in Sect. 2, the strength
of the dependence relationship between Y1 and Y2, but now conditionally upon the
given value of X D x, can be measured using an association measure. For simplicity
of presentation, we just focus on the Kendall’s tau association measure. Denote by
.Y 0
1;Y

0
2;X

0/ an independent copy of .Y1;Y2;X/. Then the conditional Kendall’s tau
function is defined as

�.x/ D P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ > 0

ˇ
ˇX D X0 D x

	

�P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ < 0

ˇ
ˇX D X0 D x

	

D 4
ZZ

Œ0;1�2
Cx.u1; u2/dCx.u1; u2/� 1 : (7)

For not making the notation too involved, we dropped the superscript fY1;Y2g
to indicate that we are interested in the dependence structure between Y1 and Y2
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(conditionally upon X D x). See for example [20], for illustrations and examples of
use of conditional association measures.

Note from (6) that the conditional dependence of Y1 and Y2 (conditionally given
X D x) may be different for different values taken by X, i.e. the dependence
structure, as well as its strength, may change with the value taken by the third
variable X. This possible change in the strength of the relationship is reflected in
the fact that Kendall’s tau is now a function of x.

It is often noticed that in applications, one uses the following simplification:
the dependence structure itself, captured by the copula function, does not change
with the specific value that X takes, and the dependence on x only comes in via the
conditional margins, i.e.

Hx.y1; y2/ D C .F1x.y1/;F2x.y2// .y1; y2/ 2 R2 :

In, for example, the literature on C-vine and D-vine copulas this assumption is
inherently present. See [24] and [3], among others. See also the chapter (and its
discussion) by [36], in which the dependence structure is assumed to stay constant
in time.

3.2 Illustration: Examples

We now illustrate the concepts of Sect. 3.1 with some examples. A first example,
Example 5, is an extension of Examples 1 and 2 of Sect. 2.2: instead of a bivariate
Clayton copula we start from a three-variate Frank copula. In a second example,
Example 6, we modify Example 3 of Sect. 2.2 by allowing the parameter of the
copula and the marginal distribution of the second component to change with the
random variable X. More precisely, the examples are as follows.

Example 5.

Y1 	 N.0; 4/; Y2 	 Exp.2/; X 	 Beta.1; 4/

C.u1; u2; u3/ D � 1
�

log

 

1C
�
e��u1 � 1� �e��u2 � 1� �e��u3 � 1�

�
e�� � 1�2

!

; � D 3 :

Example 6.

Y1 	 Student.5; 3/; Y2jX 	 Exp.0:2.10XC 1//; X 	 U.0; 1/

Cx.u1; u2/ D exp

�

� �.� log u1/
�.x/ C .� log u2/

�.x/
� 1
�.x/

�

�.x/ D 2 sin.2˘x/C 3 ;
with X independent from .Y1;Y2/.
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Fig. 4 Scatter plots based on a typical sample of size n D 800 from Example 6
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Fig. 5 Conditional Kendall’s tau function for Examples 5 (left panel) and 6 (right panel)

In Fig. 4 we present the pairwise scatter plots for a typical sample of size
n D 800 from Example 6, revealing the independence between Y1 and X, but the
dependence between Y2 and X. In the bottom right panel of Fig. 4 we plot F1Xi.Y1i/

versus F2Xi.Y2i/, for each i D 1; : : : ; n. Each of these FjXi.Yji/ should be (close
to) uniformly distributed. In Fig. 5 we plot the conditional Kendall’s tau function
for Examples 5 and 6. Note that in Example 5 there is a mild positive dependence
between Y1 and Y2, conditionally upon X D x, but that the dependence increases
with x. In Example 6 the dependence switches from very positive via independence
back to strongly positive dependence.



Flexible and Dynamic Modeling of Dependencies via Copulas 131

3.3 Statistical Inference

Suppose now that ..Y11;Y21;X1/; : : : ; .Y1n;Y2n;Xn// is a sample of size n of inde-
pendent observations from .Y1;Y2;X/. The interest is in estimating the conditional
copula function Cx. As in Sect. 2, one can distinguish between different modeling
settings, depending on what is known on possible appropriate parametric forms for
Cx on the one hand and Fjx on the other hand. For convenience of the reader, we
discuss similar modeling settings as in Sect. 2, but in a different order.

3.3.1 Fully Parametric Approach

In a fully parametric approach, we model Cx.�; �/ via C.�; �I �C.x// where �C.x/ is
a known parametric function of x, for example a polynomial of degree p: �C.x/ D
�C;1 C �C;2x C : : : �C;pxp. We denote the corresponding parameter vector by �C D
.�C;1; : : : ; �C;p/. Similarly, the conditional margins can be modeled via

Fjx.�/ D Fj.�I �j.x// with a parametric function �j.x/ :

For example, the functions �j.x/ could be polynomial functions or any other given
parametric functional form. Denote the resulting parameter vectors by �1 and �2
respectively. For example, if �1.x/ is a cubic function of x, then the dimension of �1
is 4.

With these parametrizations, we are again in a setting that is quite similar to that
of Sect. 2.3.1. Indeed, considering the second order partial derivative of Cx.u1; u2/
with respect to its arguments, we obtain

cx.u1; u2/ D @2C.u1; u2I �C.x//

@u1@u2
8.u1; u2/ 2 Œ0; 1�2 ;

which due to the structure can be written as c.u1; u2I �C.x//. Analogously denote the
marginal densities by f1.�I �1.x// and f2.�I �2.x//.

A data point .Y1i;Y2i;Xi/ contributes to the likelihood with the factor

c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi// f1.Y1iI �1.Xi//f2.Y2iI �2.Xi// :

Finally, we get to the logarithm of the likelihood function

Q̀
n.�1; �2; �C/

D
nX

iD1

log .c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi// f1.Y1iI �1.Xi//f2.Y2iI �2.Xi///
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D
nX

iD1

log .c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi///

C
nX

iD1

log .f1.Y1iI �1.Xi//f2.Y2iI �2.Xi/// ; (8)

which needs to be maximized with respect to .�1;�2;�C/. From that point on we
proceed as in Sect. 2.3.1. Denote the maximizer of (8) by . O�1; O�2; O�C/.

An estimator for, for example, the associated conditional Kendall’s tau function
is then obtained by substituting Cx.�; �/ D C.�; �I �C.x// in (7) by its estimator
C.�; �I O�C.x//, where O�C.x/ is obtained by replacing the parameter vector �C in the
parametric form of �C.x/ by its maximum likelihood estimator O�C. For example, in
case �C.x/ D �C;1 C �C;2x C : : : �C;pxp, this is O�C.x/ D O�C;1 C O�C;2x C : : : O�C;pxp

based on O�C D . O�C;1; : : : ; O�C;p/. So, the estimator for the conditional Kendall’s tau
is then

O�.x/ D 4
ZZ

Œ0;1�2
C.u1; u2I O�C.x//dC.u1; u2I O�C.x//� 1 :

3.3.2 Fully Nonparametric Approach

An alternative expression for (6) is

Cx.u1; u2/ D Hx
�
F�1
1x .u1/;F

�1
2x .u2/

�
.u1; u2/ 2 Œ0; 1�2 ; (9)

where F�1
jx .�/ denotes the quantile function corresponding to Fjx.�/, for j D 1; 2.

From (9) it is transparent that we need to find estimators for the conditional
joint cumulative distribution function Hx.�; �/ as well as for the (quantiles of the)
conditional margins F1x.�/ and F2x.�/. Since these are conditional quantities, some
smoothing in the domain of X is needed. Nonparametric estimation of a conditional
distribution function using kernel methods has been well-studied in the literature.
See for example [23] and [38], among others. A general estimator is obtained by
‘smearing out’ the mass n�1 that is in the expression for a bivariate (unconditional)
empirical distribution function, in the covariate domain, using a weight function:

OHx.y1; y2/ D
nX

iD1
wni.x; bn/I fY1i � y1;Y2i � y2g ; (10)

with wni.x; bn/  0, a sequence of weights that ‘smooths’ over the covariate space.
Herein bn > 0 is a sequence of bandwidths. Since Hx.y1; y2/ is a distribution
function, the weights need to tend to 1 when y1 and y2 tend to infinity. This is
achieved by ensuring that the weights are such that

Pn
iD1 wni.x; bn/ D 1 (either
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exactly or asymptotically, as n ! 1). There are many scenario’s of appropriate
weight functions available in the literature. The simplest set of weights is given by
the Nadaraya-Watson type of weights defined as

wni.x; bn/ D kbn.Xi � x/
Pn

jD1 kbn.Xj � x/
;

with kbn.�/ D 1
bn

k.�=bn/ a rescaled version of k.�/. Alternative scenario’s of weights
are local linear weights, Gasser-Müller weights, etc.

From (10) we obtain estimators for the conditional marginal distribution func-
tions Fjx.�/ by simply letting the other argument in the estimated joint cumulative
distribution function tend to infinity:

OFjx.y/ D
nX

iD1
wni.x; bjn/I

˚
Yji � y

	
j D 1; 2 ; (11)

where the bandwidth sequences b1n > 0 and b2n > 0 (for estimation of the
conditional margins) do not need to be the same and/or do not need to be the same
as this for the joint estimation. For practical simplicity one can take bn D b1n D b2n.

Asymptotic properties for kernel type estimators of conditional distributions
functions have been established in [35, 37] and [39], among others. For a recent
contribution in the area, see [38].

Remark that in (10) and (11) one can again replace the indicator function by
a smooth function, if differentiability properties of the resulting estimators are of
importance.

From the estimators OFjx.�/ in (11), we obtain estimators for the quantile functions
F�1

jx .�/. From the estimators for Hx.�; �/ and F�1
jx .�/ one then derives an estimator for

Cx.�; �/ by replacing in (9) the former quantities by their estimators. In the literature
these and improved estimators are studied, also in more complex frameworks (of
multivariate or functional covariates). See, for example, [39] and [19].

3.3.3 Semiparametric Approach

There are at least a few semiparametric approaches, depending on the particular
modeling setting. We just discuss some major approaches.

Firstly, assume that the conditional margins are fully known, i.e. Fjx.�/, for j D
1; 2, are fully known for all x in the domain of X. Suppose that the conditional copula
function Cx.�; �/ depends on x through a parameter function �C.x/, i.e. Cx.�; �/ D
C.�; �I �C.x//, but contrary to Sect. 3.3.1 the function �C.x/ is fully unknown. This
setting has been studied by [22] and [2], among others. In the sequel we drop the
subscript C in �C and �C.x/ for simplifying the notation.

The parametric copula family C.�; �I �/ that serves as a starting point here (and in
fact also in Sect. 3.3.1, and before) of course has some restrictions on the parameter
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space � for � . For example, for a Gaussian copula: � 2 .�1; 1/; for a Clayton
copula � 2 .0;1/. Such restrictions on the parameter space of the parametric
copula C.�; �I �/ should in fact not be ignored. The same holds when looking at a
conditional copula modeled via Cx.u1; u2/ D C.u1; u2I �.x//, with corresponding
copula density c.u1; u2I �.x//.

Since the function �.x/ is fully unknown, we are going to approximate this
function locally, i.e. in the neighbourhood of x by, for example, a polynomial of
degree p say. But since a polynomial takes on values in R, we need to take care of
the restrictions on the parameter space � of the parametric copula family C.�; �I �/.
One therefore transforms the function �.x/, which takes on values in �, via a given
transformation .�/, into the function

�.x/ D  .�.x// ;

which takes on value in R.
In the sequel, we assume that the inverse transformation  �1.�/ exists, such that

we can obtain �.�/ from �.�/:

�.x/ D  �1.�.x// ; (12)

which takes values in �.
Consider now independent observations ..Y11;Y21;X1/; : : : ; .Y1n;Y2n;Xn// from

.Y1;Y2;X/. A data point .Y1i;Y2i;Xi/ then contributes to the (pseudo) log-likelihood
with

log c .F1Xi.Y1i/;F2Xi.Y2i/I �.Xi// D log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 .�.Xi//

�
:

(13)

For a data point Xi in a neighbourhood of x, we then can approximate �.Xi/ using
a Taylor expansion, by

�.Xi/ � �.x/C �0.x/.Xi � x/C � � � C �.p/.x/.Xi � x/p

pŠ

� ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p ;

where we denoted

ˇr D ˇr.x/ D �.r/.x/

rŠ
r D 0; : : : ; p :

If Xi is near x, then the contribution in (13) to the (pseudo) log-likelihood, can be
approximated by

log c .F1Xi.Y1i/;F2Xi.Y2i/I �.Xi//

� log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 �ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

��
:
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This approximation is only valid for Xi near x, and this is taken care off by
multiplying this contribution in the log-likelihood by a weight factor khn.�/ D
1
hn

k. �
hn
/, with k.�/ as before, and hn > 0 a bandwidth parameter.

This leads to the local log-likelihood

`n.ˇ/ D
nX

iD1

log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1

˚
ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

	�

�khn .Xi � x/ ; (14)

which is a localized version of the (pseudo) log-likelihood function in the parametric
setting. Maximization of this local log-likelihood with respect to ˇ leads to the
estimated vector Ǒ D . Ǒ0; : : : ; Ǒp/, and hence, in particular, an estimator for �.x/ is
Ǒ
0. From (12) an estimator for �.x/ is

O�.x/ D  �1. Ǒ0/ :

By maximizing the local log-likelihood (14) in a grid of x-values, one obtains
estimates of the unknown parameter function �.�/ in a grid of points.

We next turn to the setting where also the conditional margins are fully unknown,
i.e. Fjx.�/, for j D 1; 2, are fully unknown for all x in the domain of X. For Xi in a
neighbourhood of x, we then can replace the contribution

log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

	�
khn.Xi � x/

in the log-likelihood function by

log c
�
F1x.Y1i/;F2x.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

	�
khn.Xi � x/ ;

and next we substitute the unknown quantities F1x.Y1i/ and F2x.Y2i/ by nonpara-
metric estimators, such as these provided in (11). This then leads to the local
log-likelihood

Q̀
n.ˇ/ D

nX

iD1
log c

� OF1x.Y1i/; OF2x.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p
	�

�khn.Xi � x/ ;

which needs to be maximized with respect to ˇ.
This estimation method is called a local polynomial maximum pseudo log-

likelihood estimation method. Properties of the resulting estimator have been
studied in [1]. That paper also contains a brief discussion on some practical band-
width selection methods, including a rule-of-thumb type of bandwidth selector and
a cross-validation procedure. For a general treatment of the use of local polynomial
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modeling in a maximum likelihood framework, see for example [13]. For a general
discussion on the choice of the degree of the polynomial approximation see [12].

4 Dynamics of a Dependence Structure and Copulas

When introducing copulas to the modeling of time series data different approaches
are possible. Following, for example, [9] copulas can be used to model the
inter-temporal dependence within one time series by specifying the transition
probabilities in a Markov process. See [8] for recent developments and further
references for such settings. In this section we focus on a different approach.

4.1 Dynamical Modeling of a Dependence Structure

Alternatively copulas can be used to model the spatial dependence of a bivariate
stochastic process Yt D .Y1;t;Y2;t/, t 2 Z. As time series analysis is naturally
formulated conditionally upon the history of the process we revert to the conditional
copula concept, now enlarging the conditioning from one variable as in Sect. 3
to the entire past of the process. This is done in a mathematical rigorously way
by conditioning upon the sigma-algebras generated by the past of the time series.
We opted for a more layman’s term presentation here. As first introduced by [30]
such a setting allows time dependent variation in the joint distribution of .Y1;t;Y2;t/
conditionally upon Wt D .Yt�k/k>0 via

PfY1;t � y1;Y2;t � y2jWt D wtg D Ct.F1;t.y1/;F2;t.y2// ; (15)

where Fj;t.yj/ D PfYj;t � yjjWt D wtg, j D 1; 2, and Ct.�; �/ D C.�; �jWt D wt/ is
the conditional copula implied by Sklar’s Theorem.

The conditional modeling in (15) can be readily combined with, for example, a
GARCH.r; s/ error structure for the two involved time series fY1;tg and fY2;tg. See
[5], for example, for a standard reference to Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) type of modeling. More precisely, we model the
marginal time series as

Yj;t D j C "j;t; where "j;t D �j;t�j;t ; (16)

�2j;t D ˛j C
rX

`D1
ˇj;`�

2
j;t�` C

sX

mD1

j;m"

2
j;t�m ; (17)
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where ˛j; ˇj;`; 
j;m  0, j 2 R, r; s 2 N0 and .�j;t/t2Z is white noise with zero
mean and unit variance. GARCH models are designed to account for the time
varying and clustering volatility of shocks observed frequently, but not exclusively,
in financial time series. This is accomplished by relating the time t variance of "j;t

to the lagged r realized variances as well as to the lagged s realized shocks, where
it is noteworthy that the dependence on the lagged shocks makes the variance itself
stochastic (random). Combining (15) and (16) the marginal time series can now be
fused into a joint model by specifying its conditional joint distribution

YtjWt D wt 	 Ct.F1;t;F2;t/;

where the conditional mean and variance of Fj;t, for j D 1; 2, are only determined
by information from the past (up to time point t � 1) and are given as j and
�2j;t. This framework combines autocorrelated shocks with a flexible modeling of
the conditional joint distribution. A detailed review of copula models in economic
time series can be found in [31]. For the purpose of this chapter, we focus on
applying a semiparametric approach as discussed in Sect. 3.3.3 to the time series
framework, with the difference that in the semiparametric approach described here,
we model the marginal time series via parametric GARCH models. For simplicity,
let t 2 N0, and denote by .Y1;t;Y2;t/TtD1 the available sample of size T (T 2 N0).
Furthermore, denote the observed (standardized) time points by t=T, so that all
observational points t=T are in the interval Œ0; 1�. The conditional copula is chosen
to be time dependent through an unknown parameter function �C.t�/ for t� 2 Œ0; 1�.
To obey restrictions in the parameter space we again consider a suitable one-to-
one transformation  such that �.t�/ D  .�C.t�// 2 R and recover �C via
�C.t�/ D  �1.�.t�//. For a sample .Y1;t;Y2;t/TtD1 we can write the log-likelihood of
the overall joint density by successive conditioning in terms of the contributions of
the bivariate densities YtjWt D wt to the log-likelihood as

`T D
TX

tD1
log .c .F1;t.Y1;t/;F2;t.Y2;t// I �C.t=T//C

2X

jD1

TX

tD1
log

�
fj;t.Yj;t/

�

D `T;C C `T;1 C `T;2 :

See also (8) in Sects. 3.3.1 and 3.3.3. Following the so-called inference of margins
approach (a two-steps procedure), see [26], maximizing `T can be accomplished
by first separately maximizing `T;1 and `T;2, under our semiparametric setting by a
standard parametric maximum likelihood estimation method, and then maximizing
`T;C taking estimates of the previous step into account by replacing the distribution
functions Fj;t by their respective estimates OFj;t (for j D 1; 2). In order to maximize
`T;C we extend the local constant fitting approach of [22] to the local polynomial
approach discussed in Sect. 3.3.2. Asymptotic normality of the resulting estimator
in case of local constant fitting can be found in [22]. The study of the asymptotic
properties of the local polynomial dynamic copula estimator, presented in this
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section, is part of future research. Consider a fixed point t� 2 Œ0; 1�, and denote
by khn.�/ a rescaled kernel with bandwidth hn, as before. The local log-likelihood
for the problem considered is then given by

`T;C.ˇ/

D
TX

tD1
log c

�

OF1;t.Y1;t/; OF2;t.Y2;t/I �1

�
�

ˇ0 C ˇ1
� t

T
� t�

�
C � � � C ˇp

� t

T
� t�

�p
��

� khn

� t

T
� t�

�
; (18)

which needs to be maximized with respect to ˇ D .ˇ0; : : : ; ˇp/.

4.2 Illustrative Example

We illustrate the presented methodology by simulating from a bivariate
GARCH(1,1) model, where the conditional marginal distributions are set to be
Normal distributions, and the conditional copula is assumed to be a student t copula
where the degrees of freedom are fixed to 4. The remaining free copula parameter
is a time varying parameter function �C.t/ D 2 sin.0:95�.2B.tI 2; 3/ � 1/=6/, with
B.tI a; b/ the cumulative distribution function of the Beta distribution. See [11] for a
reference on (student) t copulas. The remaining parameters are set to 1 D 2 D 0,
˛1 D ˛2 D 0:1 ˇ1;1 D ˇ2;1 D 0:4 and 
1;1 D 
2;1 D 0:4.

Figure 6 show the first and second marginal time series for a simulated trajectory
of the process, highlighting the volatility clustering inherent in the process. In Fig. 7
we show simulated scatter plots of the unconditional distribution at three different
time points. As expected the time varying conditional dependence structure carries
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Fig. 6 Marginal time series Y1;t (left) and Y2;t (right) of a simulated bivariate copula-GARCH(1,1)
model, t D 1; : : : ; 500
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.Y1;450; Y2;450/ (right panel). The scatter plots are based on 250 independently simulated trajectories
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0:02 (dotted). Left panel: true and estimated �.t�/. Right panel: true and estimated conditional
Blomqvist’s beta. Calculations are based on a simulated sample of size T D 500

over to the distribution of .Y1;t;Y2;t/, displaying a negative dependence at early time
stages, and gradually switching to a positive dependence later on (moving from the
left panel to the right panel).

To illustrate the local log-likelihood estimation of �.�/ we first obtain estimates
O1, O2, Ǫ1, Ǫ2, Ǒ1;1, Ǒ2;1, O
1;1 and O
2;1 by fitting a GARCH(1,1) model to each
of the marginal time series individually. From the estimates we can then recover,
for j D 1; 2, the conditional variances O�2j;t to find OFj;t.Yj;t/ D ˚..Yj;t � Oj/= O�j;t/,
where˚ denotes the standard normal distribution function. To perform the local log-
likelihood estimation in (18) we settle for a local approximation with a polynomial
of degree p D 1, i.e. performing local linear fitting. For a fixed point t� 2 Œ0; 1� we
then maximize `T;C.ˇ0; ˇ1/ as given in (18), where we choose  �1 W R! .�1; 1/,
with  �1.x/ D tanh.x/.

In the left panel of Fig. 8 we show the true and estimated �.t�/ when using
different bandwidths hn in the estimation procedure. In the right panel of Fig. 8 we
also plot the true and estimated conditional Blomqvist’s beta as a function of time,
using the same bandwidths as for the estimation of �.�/.
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5 Dynamic Modeling via Copulas: Application in Forecasting

We consider wind speed data obtained by weather stations in Kennewick (southern
Washington) and Vansycle/Butler Grade (north-eastern Oregon), in the USA. The
raw data1 consist of average wind speeds (in miles per hour = mph) for intervals of
5 min. For the analysis here we restrict to the period between April 1 and July 1,
2013. A more detailed description and analysis of these data can be found in [21].
In this section, we illustrate how the discussed methods can be used for estimation
and for forecasting of wind speeds.

To fit the time series data we extend the model described in (16) and (17) to
include an autoregressive component, leading to an AR(q)-GARCH(r; s) model,
where (16) is replaced by (for j D 1; 2)

Yj;t D j C
qX

`D1
�j;`Yj;t�` C "j;t ; where "j;t D �j;t�j;t ; (19)

and (17) is kept. Herein �j;` 2 R, q 2 N0. As in Sect. 4 the conditional marginal
distributions are Normal, and the marginal time series are coupled by a time
dependent copula to form a bivariate model.

As wind speed forecasts with a two-hour forecast horizon are needed to meet
practical demands (see [21]), we transform the raw data into the hourly averages,
shown in Fig. 9, and denote the sample by .Y1;t;Y2;t/

2;184
tD1 . In the next step we fit

an AR(1)-GARCH(1; 1) model, described by (19) and (17), to the marginal time
series in an one hour rolling window type fashion as follows. The first estimates
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Fig. 9 Hourly averages of wind speed (mph) at Kennewick (left) and at Butler Grade (right) from
April 1 to July 1, 2013

1Datasets can be obtained from the web site of the Bonneville Power Administration under http://
transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.

http://transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.
http://transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.
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. Oj; O�j;1; Ǫ j; Ǒj;1; O
j;1/, j D 1; 2, are obtained by fitting the AR-GARCH model to

.Yj;t/
744
tD1. The second estimates are then based on the shifted data .Yj;t/

745
tD2 and

so forth. We repeat this process 240 times, yielding estimates covering a span of
10 days. By keeping the number of observations fixed at 744 all estimates are
effectively based on data of the last respective 31 days. The so obtained estimates
are plotted against the window shift in Figs. 10 and 11. While the mean and
AR coefficients (Fig. 10) are very comparable between both sites, the GARCH
parameters show a differing pattern: while the baseline variance and lagged realized
shock coefficients are generally higher in Kennewick than in Butler Grade (left and
right panels of Fig. 11), the situation is reversed considering the dependence on
lagged realized variances. See the middle panel of Fig. 11. The two weather stations
are on different altitudes, the difference being around 130 m. This could may be
explain the differences noticed.
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Fig. 10 Estimates of j (left panel) and of �j;1 (right panel), for j D 1; 2, for the 240 rolling
windows, based on 744 observations each
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Fig. 11 Estimates of ˛j;1 (left panel), of ˇj;1 (middle panel) and of 
j;1 (right panel), for j D 1; 2,
for the 240 rolling windows, based on 744 observations each
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Fig. 12 Estimates of �.t�/ (left) and the conditional Blomqvist’s beta (right), by local-linear
fitting with h D 0:2, for a student t copula with 4 degrees of freedom based on the observations
.Y1;t; Y2;t/

744
tD1 (for the April period) and on the observations .Y1;t; Y2;t/

2;184
tD1;441 (for the June period).

Solid line: April period; Dotted line: June period

The conditional dependence structure between the marginal time series is
modeled by a student t copula with 4 fixed degrees of freedom, where the remaining
parameter � is allowed to vary as a smooth function of time, as explained in
Sect. 4. In Fig. 12 (left panel) we show the estimated conditional copula parameter
function for observations .Yj;t/

744
tD1 (the solid curve) using the previously estimated

AR-GARCH parameters, and applying local linear fitting with bandwidth h D 0:2

(see Sect. 4). We repeat the procedure also based on the very last 744 observations
.Yj;t/

2;184
tD1;441 (i.e. the June period) and show the results in the left panel of Fig. 12

(the dotted curve). We also present the corresponding results for the estimated
conditional Blomqvist’s beta in the right panel of Fig. 12. As can be seen, the
dependence structure (between the observations from the two stations) varies within
the periods (April and June), but also seems to be different for the two periods
examined (early spring and summer period).

Turning towards forecasting we compute for each set of rolling window estimates
the conditional copula parameter at t� D 1, i.e. O�.744/ for the first window, O�.745/
for the second and so on. This yields successive estimates . Ǒ0; Ǒ1/ that we use to
predict the one hour ahead forecast and, respectively, the two hours ahead forecast
of �.t/ by Q�.T C k/ D  �1. Ǒ0 C k Ǒ1=744/, with k D 1, respectively k D 2,
where  �1 is the link function as in Sect. 4 and T denotes the last time point of the
respective rolling window sample. The obtained 2 h ahead forecast of � is shown in
the left panel of Fig. 13.
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Fig. 13 Left: Two hours ahead prediction of �.�/ for the rolling windows, based on 744
observations. Right: Realized minus two hours ahead predicted wind speeds in Kennewick for
the rolling windows

Concerning the marginal time series we use the point estimates of the parameters
as one and two hours ahead forecasts of the parameters. This allows to compute
point forecasts of the wind speed by (see (19))

QYj;TC1 D E


Yj;TC1jYj;T�`; `  0

� D j C �j;1 Yj;T

QYj;TC2 D E


Yj;TC2jYj;T�`; `  0

� D j C �j;1
�
j C �j;1Yj;T

�

for j D 1; 2.
To assess the forecast quality we compute the square root of the mean squared

error of the predicted to the realized values for the 240 forecasts, denoted by RMSE.
For one hours ahead forecasts we obtain: RMSE = 2:9485 for the Kennewick station,
and RMSE = 3:0026 for the Butler Grade station. For the two hours ahead forecasts
these are: RMSE = 4:4725 for Kennewick and RMSE = 4:8190 for Butler Grade.
The right panel of Fig. 13 depicts the differences of realized to predicted two hours
ahead forecasts at Kennewick.

Having predictions of the marginal time series, as well as the conditional
dependence between them allows to go beyond point forecasting and to predict
their joint behaviour. In Fig. 14 we show contours of the predicted two hours ahead
joint distribution for the first rolling window, and then 5.5 days later, in respectively
the left and right side panels. As shown by the figure, not only the mean of the
distribution, represented by the wind speed point forecasts, but also the shape
changes as implied by the prediction of �.�/.

To further visualize the impact of the time varying association we forecast the
probability of Y1;TC2 and Y2;TC2 staying jointly below their conditional ˛ � 100%
quantiles. Within a copula framework this probability equals C.˛; ˛I �.T C 2//.
See [7] for an application in economics. For example based on the first rolling
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Fig. 15 Two hours ahead prediction of C.˛; ˛I �.T C 2// for the rolling windows, based on 744
observations

window we compute the conditional two hours ahead 40% quantiles as 10:1487 (for
Kennewick) and 6:1633 (for Butler Grade). This yields a prediction of PfY1;746 �
10:1487;Y2;746 � 6:1633g D 0:1777. Figure 15 shows the obtained predictions for
different values of ˛.
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Online Residential Demand Reduction
Estimation Through Control Group Selection

Leslie Hatton, Philippe Charpentier, and Eric Matzner-Løber

Abstract Demand response levers, as tariff incentive or direct load control on
residential electrical appliances, are potential solutions to efficiently manage peak
consumption and aid in grid security. The major objective is to estimate the
consumption that would have been used in the absence of demand reduction: the
baseline. This is an important issue to enhance demand response for electricity
markets and to allow the grid operators to efficiently manage the grid. For these
reasons, baseline estimation methods have to satisfy the following operational
objectives: highly accurate, computationally efficient, cost-effective and flexible to
the demand response customer turnover. In general, methods using available data
from the control group give the best results, but current control group methods do
not satisfy the aforementioned operational objectives. Having a real control group
is highly costly because it requires to meter thousands customers who will not
be used in the demand response offer. So there is a need to find new methods to
select a control group. The advancement of smart meters can now provide a wealth
of data to construct this group. This paper proposes the use of individual smart
meter loads to select a control group. The method satisfies the aforementioned
operational objectives since the selected control group is adaptable in operations
even to demand response customers changes. The methodology developed is based
on a selection algorithm and constraint regression approach. These new methods
have been successfully tested in an online environment.
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1 Introduction

In many countries, electricity demand is increasing globally every year but the peak
demand is increasing much faster. Classically, peak demand occurs on hot summer
afternoons, as for example in North America due to air conditioner, or in cold winter
evenings, as for example in France due to electric heating (Fig. 1) when customers
return back home and start household appliances (cooking, information technology
devices), heating and lighting.

Demand response (DR) is a mechanism involving the demand side in the electric
grid management. It consists in appealing to the customer so that he adjusts his
electric consumption in order to meet economic issues (increasing prices) or grid
security (disequilibrium between supply and demand). This customer’s action is
then integrated on the whole operations aiming at balancing the grid at every time.
The consumption modulations mainly consist in reducing, shifting or shedding the
consumption on a given time period. There are two kinds of programs inciting
customers to adapt their consumption: tariff incentive and direct load control.

Tariff incentive was the first tool used to shift or reduce the customers’ con-
sumption. Electricité De France (EDF) is a pioneer in this kind of tariffs since
it introduced the peak and off-peak hours rate in 1965 to shift the consumption
on the daily off-peak periods, generally the midday and night hours. To control
the seasonal variations and particularly the winter peak demand, the EJP rate
(“Effacement Jour de Pointe”) was introduced in the eighties. The EJP customers
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Fig. 1 Daily French electricity consumption. When professional activities end and customers
return back home, the consumption highly increases. On this winter day, the peak demand is
obviously perceptible at 7 pm
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pay 0.74 times the basic electricity price during the year except for 22 critical winter
days determined according to weather forecasts, where they pay 3.63 times the
basic price. Then, in the middle of the nineties, the TEMPO rate was introduced
and defines three kinds of days: blue, white and red. During 300 blue (respectively
43 white and 22 red) days, the customers pay 0.66 (resp. 0.93 and 3.7) times the
basic. EJP and TEMPO rates allow to smooth the daily consumption. They enable
the customer to be active towards his consumption by inciting him to shift his
peak consumption. Customers create demand reduction capacities by substantially
reducing their electricity consumption.

Direct load control consists in interrupting the consumption of an electric
appliance on a given time period. Currently, the direct load control mainly concerns
industrial customers which have available significant demand reduction capacities.
Indeed, they can momentarily interrupt their process or call on generators.

DR is a flexible mean to adjust demand according to supply. Using tariff incentive
or direct load control, the obtained result is a reduction or an increase of the demand.
Some companies aim at inciting their customers to increase their consumption
when the renewable energy production is high. We only focus here on situations
where the supplied capacity is a reduction, a suppression or a substitution of the
customer demand leading to a demand reduction. As residential electric heating and
air conditioner are flexible usages and partly responsible for the peak demand, many
countries around the world experimented in the last decade new DR programs on
residential customers: dynamic pricing [4] or direct load control [5].

To enhance the residential demand reduction on electricity markets, it has to be
evaluated. It is impossible to measure the reduction, the only available measure is
the consumption obtained with the DR program. To quantify the curtailment, one
has to estimate the consumption which would have been used in the absence of the
DR program, called the baseline. The curtailment is obtained by difference between
the baseline and the metered load during the DR event (Fig. 2).
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12:00 18:00 20:00 22:00 23:50

Metered

Baseline

Demand Reduction

DR event

Fig. 2 Representation of the average load curve of a DR customers group with a DR event between
6 and 8 pm. The metered load is the dark line and the estimated baseline the light line. The demand
reduction is the difference between these two loads, corresponding to the coloured area
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Baseline estimators have to satisfy different objectives. On one hand, they have
to be operational, accurate (in order to remunerate the customers), cost-effective,
optimal and flexible with time and with the DR customers group size. Indeed,
when DR offers will roll-out on the residential market, the DR group size will
vary with time because of the customers entrance or leaving. This is already the
case in the experiments. Moreover, as the number of customers participating in
experiments is evolving, methods have to be able to estimate demand reduction
on thousands customers. This will be the case in the Smart Electric Lyon1 (SEL)
project where 25,000 customers will experiment DR. On the other hand, as demand
reductions can be enhanced on the electricity markets, they could allow to maintain
the grid balanced during peak consumption. Consequently, for the grid operators
who supervise the balance online and in order to rapidly react, it could be interesting
to control the demand reduction effectiveness and to quantify it online. Baseline
estimations are then expected to be evaluated in real time.

Many baseline methods are issued from experiments. In general, methods using
available data from control group give the best results [1]. When no control
group was specified during the experiment, marginal calibration method [2] can
be employed to select one from individuals available in a database. This method
consists in calculating weights from individual characteristics. Variables as address,
tariff plan, subscript power, are classical informations collected. To be accurate, the
method requires a set of individual characteristics having an important impact on
the consumption (house and heating surface, occupants number and their presence,
details on electric appliances, . . . ). Collecting these additional data on thousands
customers is a costly process. Moreover, the weights are calculated from invariant
individual characteristics while the consumption is highly weather dependent and
fluctuates from one day to the next. These weights being fix, the control group does
not evolve and the method is not flexible for a daily estimation.

Operators have residential portfolio database with individual characteristics
(such as address, tariff plan . . . ) and possibly individual loads. With the roll-out
of smart meters, individual loads will be available. Electricity loads largely reflect
the customers behaviours and it is possible to use this information to select a control
group. In addition, individual covariates can be used to restrict the geographic area.

In this paper, we propose to build control group based on loads’ shape matching.
It consists in selecting individual loads without demand reduction from the datamart
such that the distance between their average load and that of the DR group is

1The Smart Electric Lyon project, launched in 2012, is an ADEME project, the French energy
control and environment agency. The program aims at offering technical solutions and testing tariff
incentives on thousands residential and services customers. http://www.smart-electric-lyon.fr/

http://www.smart-electric-lyon.fr/
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minimal. This method is exposed in Sect. 2. The Sect. 3, illustrated by a real
application, describes how this solution is operational and allows to estimate the
demand reduction online with thousands customers. We conclude in Sect. 4.

2 Control Group Selection Methods

Before introducing the methods, let us consider the following notations. The
individual load curve which is a time series is Pj.t/. Even so, it is much proper
to index it through the day and the hour of the day: Pj.d; h/. So, if the entire day
is considered, we will simplify the notation by Pj.d/. We evaluate the average load
curve of the DR program by

PDR.d; h/ D 1

n

nX

jD1
PDR

j .d; h/

where PDR
j .d; h/ is the load curve of the individual j among the n customers

participating in the DR program (example on Fig. 3).
The operator managing the DR program has obviously others customers and by

the way their loads recorded in a datamart (eventually the same datamart containing
the DR loads). All these customers are potentially useful for being used as “control”.
The objective is to select individuals from the datamart having load curve denoted

Individual and average DR load curve
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Fig. 3 The individual 4-days DR load curves are represented by different dotted and dashed lines
and show different variabilities. The bold solid line characterizes the average load curve of the DR
group. Demand reduction events occur between 6 and 8 pm on the days 11 and 12
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Individual load curves usable as control and Control Group load curve

Days

Lo
ad

d=9 d=10 d=11 d=12

PC (d)
(d)
(d)

(d)
(d)

(d)

P1
P2
Pi
Pm−1
Pm

Fig. 4 Some individual non-DR load curves are represented by the different dotted and dashed
lines. The bold solid line characterizes the control group load curve obtained by averaging all the
individual load curves

Pi.d; h/ such that the average curve of the selected individuals

PC.d; h/ D 1

#selected

X

i2selected

Pi.d; h/

is the “closest” to PDR.d; h/. We will discuss the notion of closeness later on.
The data are collected everyday at midnight, making available the complete day,

we then consider the whole day and simplify the notations. So, the individual load
curve of the n individuals belonging to the DR program is PDR

j .d/ and the average

load curve PDR.d/ D 1
n

Pn
jD1 PDR

j .d/. The m individual load curves in the datamart
which could be partially used as “control” are noted Pi.d/. We aim at constructing
control group load curve PC.d/ to estimate the baseline on event days (example on
Fig. 4).

Suppose that the curtailment occurs at 6 pm of day d we would like to select
individuals whom the average load curve is “similar” to the load curve of the DR
group which could be written as:

argmin
ˇ1;��� ;ˇm







PDR.d/�
mX

iD1
ˇiPi.d/







2

: (1)

The coefficients ˇi assigned to each individual load curve have to be estimated.
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When considering the day before as historic, d D fd � 1g, and if it is a week,
d D fd � 1; � � � ; d � 7g, where d are non event days. To estimate the unknown ˇi,
we propose constraint regression methods and a sequential algorithm.

2.1 Constraint Regressions

To estimate the baseline from a control group, we aim at selecting individual load
curves. We consider in this subsection the DR group’s load curve PDR.d/ as the
response variable Y and the individual load curves Pi.d/ as the explanatory variables
X1; � � � ;Xm. We have to estimate the model Y D Xˇ C � where � is an error term.
However, the length of Y depends to d�144. If d D 7 days, d�144 D 1;008 which
is highly probable to be lesser than m. In this case, we face the rank deficiency. The
linear system of the regression model is under-determined and there is no unique
solution. The dimension has to be reduced by selecting the most important variables.

For the sake of interpretation we want to keep the load curves as explanatory
variables excluding projection methods as Principal Component Regression (PCR)
and Partial Least Squares (PLS). An other dimension reduction method consists
in regularizing the regression model by penalizing the lp norm of the coefficients.
When p D 2 it is the ridge regression and the Lasso regression when p D 1. Each
method is then used to select the control group.

2.1.1 Ridge Regression

Ridge regression [6] penalizes the l2 coefficients’ norm. Applied to the control group
selection, the minimization problem is:

ǑR.�/ D argmin
ˇ2Rm







PDR.d/�
mX

iD1
ˇiPi.d/







2

wrt
mX

iD1
ˇ2i � �:

The average load curve of the control group is: PC.d/ DPm
iD1 ǑRi .�/Pi.d/.

Geometrically, it consists in constraining the least squares coefficients to belong
to a � radius ball. This leads to shrink the least squares estimator. The tuning
parameter � is estimated by cross-validation, selecting the value which minimizes
the mean squared error (MSE) between the estimation and the real value. For m
large, each coefficient will be close to zero.
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2.1.2 Lasso Regression

Lasso regression [7] penalizes the l1 coefficients’ norm. Applied to the control group
selection, the minimization problem is:

ǑL.�/ D argmin
ˇ2Rm







PDR.d/�
mX

iD1
ˇiPi.d/







2

wrt
mX

iD1
jˇij � �:

The average load curve of the control group is: PC.d/ DPm
iD1 ǑLi .�/Pi.d/.

Geometrically, it consists in constraining the least squares coefficients to belong
to a diamond-shaped convex polytope (l1 constraint expression in R

m). Coefficients
are then shrunk and some of them equal zero. Thus, Lasso regression proceeds in
variables selection (here curves selection). The method allows to select the most
relevant curves to build the control group. There are many methods to find the Lasso
solution, the Least Angle Regression (LARS) algorithm developed by [3] is the most
used. This algorithm proceeds in forward selection of variables mostly correlated
with the current residuals. The tuning parameter � is estimated by cross-validation,
selecting the value which minimizes the MSE. Through Lasso regression, we get a
sparse solution of the coefficients vector ǑL.�/.
Remark Let us note that the number of non zero coefficients (the number of selected
load curves) could not be larger than the length of Y (here d� 144) [3].

2.2 Algorithm

To solve problem (1) with coefficients ˇi valued in f0; 1g (absence/presence), we
have to evaluate all the possible control groups with m customers which is of
complexity 2m � 1. In order to reduce this number and like forward selection
methods, we minimize

kPDR.d/� 1

#selected

X

i2selected

Pi.d/kp

by sequentially selecting the individual loads Pi.d/; i D 1; � � � ;m, to construct the
control group. The algorithm developed here aims at selecting the individual load
curves, such that its average minimises the Lp norm with the DR group load curve.
Before introducing in details the algorithm, let us present a flow diagram:
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Going into details, the algorithm is:

• Initialization:
Choose the length of the history d and evaluate:

S1;i D

PDR.d/ � Pi.d/




p

i1 D argmin
iD1;:::;m

fS1;ig ; P.1/.d/ D Pi1 .d/; OS1 D

PDR.d/ � P.1/.d/




p

• Loop on k D 2; : : : ;m:

ik D argmin
i2f1;:::;mgnfi1;:::;ik�1g







PDR.d/� 1
k

"
k�1X

lD1
P.l/.d/C Pi.d/

#





p

OSk D






PDR.d/� 1
k

"
kX

lD1
P.l/.d/

#





p

• Select the customers set fi1; � � � ; ikg minimizing the norm OSk.

The average load curve of the control group is PC.d/ D 1
#selected

P
i2selected Pi.d/.

This algorithm is easy to implement. As the constraint regression methods, it
aims at selecting individual load curves to build the control group by attributing a
weight one if the curve is selected and zero if not. The algorithm can be applied in
a forward or backward way. By modifying it, this is also possible to select identical
loads several times.
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Remark Unlike Lasso regression, the number of selected load curves is not related
to the length of Y (here d� 144).

3 An Operational and Online Solution

3.1 Operational Baseline Estimation

There are two steps to estimate the baseline. First, one has to choose the historical
period d to estimate the coefficients. Second, to evaluate the control group load
curve, the estimated coefficients are applied on the event day d. Historical periods
could be d D fd � 1g, d D fd � 1; d � 2g, . . . , d D fd � 1; � � � ; d � 7g. The control
group selection is done for each event day. The control group adapts to the PDR.d/
which is changing because of weather conditions but also because individuals in the
program could evolve with the customer turnover. In the case of consecutive event
days, the selection is done on the d period without demand reduction event prior to
the first event day of the consecutive set. Then the selected control group is common
over all those consecutive event days but the baseline curve varies for each day.

To illustrate the methodology, we apply the algorithm and the constrained
regressions to the baseline estimation of a DR group of three hundred customers
of whom electric heating is cut off between 6 and 8 pm during 20 winter days. For
confidential reasons, we can not mentioned the exact number, but we have thousands
non-DR load curves available in the datamart to select the control group. As the DR
customers, these control customers have the peak and off-peak hours rate. They are
distributed throughout the France and around 6 % of them are sharing the same area
as the DR customers.

To evaluate the accuracy baseline, we estimate for each day and hours h the
error err.d; h/ D PC.d; h/ � PDR.d; h/ for the hours h between 6 am and 6
pm corresponding to the longer daily period without DR event. We evaluate the
MAPE(d) of the errors on each event day:

MAPE.d/ D 1

#h

X

h

jerr.d; h/j
PDR.d; h/

� 100

and to compare the methods’ variability on the 20 event days, we estimate the
standard deviation of the MAPE(d) denoted O�d .

We are also interested in analysing the methods regarding to the energy used
during the day. In order to do so, we estimate the MPE(d) for h between 6 am and
6 pm:

MPE.d/ D 1
P

h PDR.d; h/

X

h

err.d; h/ � 100:
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Table 1 MAPE (standard deviation) and MPE evaluated between 6 am and 6 pm for the algorithm
and constrained regression methods applied on the 20 event days

Algo L1 Algo L2 Ridge Lasso

MAPE 12.06 11.83 14.44 16.36

O�d 8.74 8.50 9.07 10.52

MPE 1.19 0.59 2.55 4.95

Through MPE, positive and negative errors are balanced. It indicates if methods
over or underestimate the true value. A MPE close to zero means that positive errors
counterbalance negative errors (or inversely) and that, in energy, the estimations are
accurate.

Table 1 presents the MAPE, its standard deviation and the MPE averaged on
the 20 DR days. The best accuracy of the baseline estimation is obtained with the
algorithm which also presents the smallest variability. A previous study showed
that the accuracy is largely improved (by half) if the geographic region of non-
DR customers is restricted only to the DR customers region. That makes sense that
customers from different French regions have not the same consumption or the same
load shape. In fact, the main reason is that the off-peak hours are placed according to
the geographic regions. This is considerable because off-peak hours could occur at
midday or during the afternoon, modifying then the non-DR individual loads shape.
However, limiting the geographic area of non-DR individuals considerably reduces
the currently available control loads number which is beyond the scope of this
paper. The future smart meters roll-out or the shortly available individual loads from
the SEL project will provide thousands load curves belonging to different French
areas. Regarding the MPE, we observe that the algorithm used with the L2 distance
provides, on average, balanced estimations while regression methods overestimate
the daily load curve, by 5 % for the Lasso regression. This overestimation induces
an overestimation of the demand reduction.

Apart from this, these baseline methods allow to estimate the entire daily load
without using data on the hours prior the event. This means that the methods adapt to
any DR formats, even if there are several DR events in the day. Moreover, estimating
accurately the whole daily load curve enables to quantify the anticipation or the load
report after the DR.

3.2 Online Demand Reduction Estimation

The demand reduction estimation is essential for electric stakeholders since it
is possible to enhance demand reduction on the electric markets. The demand
reduction estimation needs to be estimated on real time. The proposed solution
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Fig. 5 Online demand reduction estimation: DR group load curve acquisition (top left), event day
(top right), baseline estimation (bottom left) and demand reduction estimation (bottom right)

consists in a data flow module linked with a statistical software. Data acquisition
and results production are realized as following:

1. Input data treatment:
Data flow could provide from different sources (files, databases or network
ports). Each data source is processed online and grouped together in one data
flow. This flow contains historical data necessary to estimate coefficients of the
problem (1).

2. Control group estimation:
The module communicates the data flow to the statistical software via a server, a
communication network interface. Statistical programs are executed and results
returned to the module.

3. Output data visualization:
Data are saved and exploited to view online results. It is possible to visualize
the online data flow acquisition and the estimated baseline or demand reduction
produced (Fig. 5).

This innovative process brings a real time solution to all electrical stakeholders
in order to act rapidly in the interest of the electric grid. It is largely able to process
lots of input and output DR and non-DR loads at the same time. It is then a reliable
solution to evaluate the demand reduction on thousands customers.
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4 Conclusion

In this article, baseline methods relied on new control group selection methods
were presented. Control group selection methods are currently using individual
characteristics. To provide an adequate solution for an operational use, we based
the selection on the loads’ shape, containing many more informations than the
observable variables. Thus, the weather component can be easily caught and
included in the control group selection. The algorithm and constrained regression
methods we proposed here comply with the expected objectives:

1. Methods estimate the entire daily load curve without using the DR group load on
the event day. This resultant particularity allows to quantify demand reductions
on short, long or various event periods. Estimating the whole daily load curve
enables to quantify the anticipation or the load report after the demand reduction.

2. Methods, only using individual load curves, are cost-effective. As future roll-out
of smart meters will provide many loads in different French regions, it could be
possible to improve the baseline accuracy.

3. The new control group selection methods are flexible and adapt easily to the
customer turnover in operational conditions.

4. To control and secure the grid balance, one requires to visualize and quantify
the DR online. The solution brought totally meets this requirement and is able to
doing it on thousands customers.

For the above reasons, our new control group selection methods are efficient for an
operational use. They are currently applied in some EDF’s experiments, particularly
the algorithm which is easy to understand and implement. When the SEL project
will provide thousands loads with demand reduction, these new methods will be
operational to quantify the demand reduction.

Acknowledgements The authors would like to thank the editor and two anonymous referees for
their valuable comments which helped in improving the paper.

The online DR estimation solution is the result of a common work realized with Benoît Grossin,
EDF R&D, Dept. ICAME, we thank him for the accomplished work.

References

1. Bode, J. L., Sullivan, M. J., Berghman, D., & Eto, J. H. (2013). Incorporating residential AC
load control into ancillary service markets: Measurement and settlement. Energy Policy, 56,
175–185.

2. Deville, J.-C., & Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of
the American Statistical Association, 87(418), 376–382.

3. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least Angle regression. The Annal
of Statistics, 32, 407–499.

4. Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: A
survey of 15 experiments. Journal of regulatory Economics, 38, 193–225.



160 L. Hatton et al.

5. Frontier Economics and Sustainability First, Department of Energy and Climate Change. (2012).
Demand Side Response in the domestic sector – A literature review of major trials. UK Depart-
ment of Energy and Climate Change the report is available at: http://www.frontier-economics.
com/documents/2013/10/frontier-report-demand-side-response-in-the-domestic-sector.pdf

6. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12, 55–67.

7. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1), 267–288.

http://www.frontier-economics.com/documents/2013/10/frontier-report-demand-side-response-in-the-domestic-sector.pdf
http://www.frontier-economics.com/documents/2013/10/frontier-report-demand-side-response-in-the-domestic-sector.pdf


Forecasting Intra Day Load Curves Using
Sparse Functional Regression
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Abstract In this paper we provide a prediction method, the prediction box, based
on a sparse learning process elaborated on very high dimensional information,
which will be able to include new – potentially high dimensional – influential
variables and adapt to different contexts of prediction. We elaborate and test this
method in the setting of predicting the national French intra day load curve,
over a period of time of 7 years on a large data basis including daily French
electrical consumptions as well as many meteorological inputs, calendar statements
and functional dictionaries. The prediction box incorporates a huge contextual
information coming from the past, organizes it in a manageable way through the
construction of a smart encyclopedia of scenarios, provides experts elaborating
strategies of prediction by comparing the day at hand to referring scenarios extracted
from the encyclopedia, and then harmonizes the different experts. More precisely,
the prediction box is built using successive learning procedures: elaboration of a
data base of historical scenarios organized on a high dimensional and functional
learning of the intra day load curves, construction of expert forecasters using a
retrieval information task among the scenarios, final aggregation of the experts. The
results on the national French intra day load curves strongly show the benefits of
using a sparse functional model to forecast the electricity consumption. They also
appear to meet quite well with the business knowledge of consumption forecasters
and even shed new lights on the domain.
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1 Prediction Box: Forecasting the Electrical Consumption

This paper is the result of a cooperation between industrial and academic research.
RTE, the French electricity transmission system operator, is responsible for oper-
ating, maintaining and developing the high and extra high voltage network. RTE
is required to guarantee the security of supply, so anticipating French electricity
demand helps to ensure the balance between generation and consumption at all
times, and directly influences the reliability of the power system.

Demand forecasts are carried out for several different timeframes: for the long-
term, in the form of the Generation Adequacy Report or network development
studies, for the medium-term (annual, monthly and weekly forecasts) and lastly on
a day-ahead basis.

From a short term point of view, electricity demand fluctuates depending on
cycles (annual, weekly and daily), on temperature and cloud cover (to take into
account variations in the outside temperature affecting the use of heating equipment
in winter and air-conditioning in summer), and on other factors such as economic
activity (e.g. holiday periods), demand response offers or daylight saving time
changes. Note that the French load curve is very sensitive to temperatures, it
contributes to half of the European thermo-sensitivity.

Today RTE uses a complex nonlinear parametric regression model with around
one thousand coefficients estimated twice a year, and also a SARIMA model.
These decision-making tools cannot predict exceptional events which may disrupt
the demand profile (heavy snow fall, sporting events, strikes), and final day-ahead
forecasts are provided by the French national dispatchers (see: http://www.rte-
france.com/en/sustainable-development/eco2mix/electricity-demand).

If this process currently provides good forecasts, the context of the smart grids
and the energy transition will lead to more variability in the load curve. Moreover,
the aim is not only to obtain a low mean error but also to avoid big forecast errors
which have a direct influence on the reliability of the power system.

Taking into account new explanatory variables (e.g. wind, new tariffs, electricity
prices), economic uncertainties (e.g. economic crisis), new innovative heating
systems (e.g. heat pumps) requires to work with more adaptive and dynamic
models. Many models and approaches have already been considered, from the
robust SARIMA [5, 13] to the semi-parametric model MAVE [10] or functional
regression using wavelets [2, 3].

Referring to this context, in this paper, we address the following program:

(i) Construct a prediction method, the prediction box, based on a sparse learning
process including high dimensional information, which will be able to include
new – potentially also high dimensional – influential variables or to adapt to
different settings of prediction in terms of time ahead (one day ahead, 48-h
ahead, medium-term) or geographical context (European, or at the opposite
regional or even more local) and eventually to more general situations of
forecasting.

http://www.rte-france.com/en/sustainable-development/eco2mix/electricity-demand
http://www.rte-france.com/en/sustainable-development/eco2mix/electricity-demand
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Fig. 1 Intraday load curves
for various days. 2010-02-03
winter: black dashed dot line,
2010-05-21 spring: red
dashed line, 2009-10-23
autumn: green solid line,
2010-08-19 summer: blue dot
line, 2010-01-01 public day:
gray dot line
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(ii) Elaborate and test this method in the setting of predicting the national French
intraday load curve, over a period of time of 7 years on a large data basis
including daily electrical consumption as well as many meteorological inputs,
calendar statements and functional dictionaries, described in the next subsec-
tion.

Figure 1 illustrates the observed dissimilarity between some daily consumption
signals. For instance electrical consumption is mostly higher and more active in
winter than in summer and is characterized by two large peaks of consumption.
However some winter public days may show weak consumption with unusual
pattern, and spring days can reach high consumption with also specific features
characterized by a unique peak of consumption.

A crucial step in the forecasting process is the modeling. It is commonly admitted
that many variables are influential for the prediction in this context. On the other
hand, it is well known that a model relying on a small number of well chosen
predictors is more robust and efficient than a model without variable pre-selection.
The challenge here is then for each day to produce a small number of predictors,
after considering all the variables which can be potentially significant.

The prediction box will provide three drawers of unequal sizes using different
learning procedures at each different scale:

(a) The first drawer contains a smart encyclopedia of scenarios coming from the
observed past. A smart encyclopedia is a very large but very well organized
structure. For each day of the past sample, the encyclopedia provides the
background of the day measured by a large (but manageable) number of
significant explanatory variables. It also contains, associated to the background
of the day, a sparse approximation of the consumption of the day (using much
fewer explanatory variables than the number of initial variables).

(b) The second drawer contains a bunch of experts. Each of them provides a strategy
of prediction for the load curve after consulting the referred encyclopedia. Each
expert essentially bases its strategy on comparing the day at hand to referring
scenarios extracted from the backgrounds of the past. This step allows to find a
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day in the past which is closest (according to the expert) to the day at hand. The
prediction then uses the sparse approximation of this closest day.

(c) The final action of the box will be to harmonize the experts using an aggregation
process.

In the following section we describe the data basis. Section 3 is devoted to the
construction of the encyclopedia. This section is crucial and will especially describe
the choice of variables for the backgrounds as well as the sparse approximation.
Section 4 details the experts, their respective performances and the aggregation
process. The last section is devoted to analyze the results of the prediction box as
well as the perspectives of the method.

2 The Data Basis

2.1 Electrical Consumption

The French national electrical consumption has been recorded every half hour from
January 1st, 2003 to August 31st, 2010 and stored in a database. We focus our study
on daily recording signals. For this period of time, the global consumption signal is
split into Nobs D 2;800 sub signals .Y1; : : : ;Yt; : : : ;YNobs/. Yt 2 Rn defines the intra
day load curve for the tth day of size n D 48. These intra day signals will constitute
our data basis to approximate and then to forecast the daily consumption.

Figure 2 shows a week of electrical consumption defined by seven successive
intra day curves.
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Fig. 2 Electrical consumption week from Monday January 25th to Sunday January 31st 2010
regrouping seven successive intra day load curves of size n D 48
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Fig. 3 Temperature and cloud cover (left) measurement stations. Wind strength network available
points (right)

2.2 Meteorological Inputs

For this study, available meteorological inputs are recorded each half hour on the
same period of time, from January 1st, 2003 to August 31st, 2010:

Temperature: Tk for k D 1; : : : ; 39 denotes the temperatures measured in 39
weather stations scattered all over the French territory as indicated in Fig. 3 (left).
Cloud Cover: Nk for k D 1; : : : ; 39 is an indicator of the cloud cover which
is also measured in the same 39 weather stations. The cloud cover is a fraction
between 0 (free of clouds sky) and 80 tenths of octas (completely clouded sky).
Cloud cover are nowadays built on satellite based observations on the same
meteorological stations than temperature.
Wind: Wk0

for k0 D 1; : : : ; 293 denotes the 100 m wind speed analyses available
at the 293 network points scattered all over the French territory (see Fig. 3, right).

As the electrical consumption, the meteorological inputs (temperature, cloud
Cover and wind) are sampled each half hour and available for the same time period.
Every day, for each meteorological input and weather spot, a n D 48 signal can be
extracted as shown in Fig. 4.

Tk
t (resp. Nk

t , Wk0

t ) denotes the daily temperature (reps. cloud cover, wind) for
day t, 1 � t � 2;800, and station k with 1 � k � 39 or network point k0 with
1 � k0 � 293.

Figure 4 illustrates the variability of weather conditions in France. Temperature,
cloud cover and wind signals are chosen in three different meteorological spots
localized in West (Brest), North (Lille) and South (Marseille) of France. In
Marseille, large variations of temperature can be observed during this day, with a
stationary high cloud cover and an increasing wind. On the opposite during the same
day, stationary temperature and wind can be observed in Brest with a decreasing
cloud cover. All these meteorological factors are known to have an impact on the
electrical regional consumption which has been established for the French PACA
and Bretagne regions for instance.
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Fig. 4 Temperature (left), cloud cover (middle) and wind (right) intra day signal for the 3rd
February 2010 in Brest (blue line), Lille (red line) and Marseille (green) cities

In this study, a total of 371 (D 2�39 C 293) raw meteorological variables are
available. Both types of data (surface weather points and grid points) are used which
constitutes a new way of integrating meteorologic data into a load curve modeling.

2.3 Calendar Statements

As illustrated in Figs. 1 and 2, the intra day load curves are quite different, depending
on the day and on the season. Qualitative variables are introduced in order to
characterize days and seasons.

Variable D takes seven modalities characterizing the type of day {1:Monday, : : :,
7:Sunday }.

As in [22], C is a qualitative variable, taking one of the 20 modalities depending
on the 5 groups of days (Monday, Friday, Saturday, Sunday and the others)
subdivided by the four seasons Winter, Spring, Summer and Autumn.

Dt and Ct describe the modalities of both variables for day t.

3 Building the Smart Encyclopedia

Electrical consumption, meteorological inputs and calendar statements contributes
to the elaboration of the smart encyclopedia, recording the historical data base.

The encyclopedia proposed in this work has been considered as a smart ency-
clopedia since part of its elements are built using a learning process. In particular,
the encyclopedia contains sparse approximations of the intra day load curves which
can be considered as a ‘clever’ and significant representation of the consumption
signals; the choice of the dictionary being a key point.

Parts of the construction of the encyclopedia use different steps interesting by
themselves which are described in [17]. We just recall here the principal ones and
refer to [17] for more details.
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3.1 Patterns of Consumption

It is well known that intra day load curves can be explained using two types of
variables: on one hand specific patterns of consumption (also called endogenous
variables), on the other hand meteorological variables (also called exogenous
variables) [6, 18, 19]. Patterns of consumption are usually built using calendar
information and it is important to address the problem of determining which
calendar information will be used to best represent the curves, with the serious
issue that some choices can lead to representation which are highly correlated with
meteorological variables and very often will disappear in sparse representations.

In most applications, in order to integrate calendar information, the set of days
is split on deterministic statements. Taylor [22] uses a partition of size 20 already
mentioned in Sect. 2.3. To study the Spanish consumption, [14] uses Kohonen maps
to build adaptive groups of consumption.

Our point of view is slightly different and consists in providing typical patterns
of consumption using a three step pre-processing: we first provide a sparse modeling
of the profiles of daily electrical consumption as functions of the time. Then, using
the sparse representation of each load curve, clusters of consumption are defined. A
final interpretation of the clusters yields typical profiles, the group centroids or it
patterns of consumption that will be time variables entering into the final model, in
addition to meteorological variables. More precisely,

1. The first task is defined by the compression of the intraday load curves Yt using a
nonparametric regression on a dictionary of functions of the time variable, with
the help of the sparse algorithm LOLA described in Table 1 [12, 15, 17].

In other words, the intraday signals Yt are treated as functions of the time [20]
and sparsely represented in a dictionary, which has to be well adapted to produce
a full reduction of the problem. A combination of Fourier basis and Haar basis
has been chosen as dictionary for this task.

Table 1 Description of LOLA Algorithm

Step 1: Selection by thresholding
A first thresholding procedure allows to reduce the dimensionality of the problem

in a rather crude way by a simple inspection of the empirical correlations

between the signal and each element of the dictionary.

This first threshold is data driven and is chosen adaptively [15].

Step 2: OLS
Ordinary Least Square method is then used on the linear sub-model obtained

by considering the variables retained after the first step.

Step 3: Denoising by thresholding
A second thresholding is performed on the estimators of the parameters of the sub-model.

This second step is more refined and corresponds to a denoising phase of the algorithm.

As the first one, the second threshold is also data driven and is chosen adaptively [15].
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Table 2 Groups, 1 : : : 8, are
defined using a calendar
interpretation of clusters from
Monday (day 1) to Sunday
(day 7) and from January
(month 1) to December
(month 12) computed form
January 1st to August 31st
[17]

Months

Days 1 2 3 4 5 6 7 8 9 10 11 12

1 7 8 5 3 3 3 3 1 3 3 5 7

2 7 8 5 3 3 3 3 1 3 3 5 7

3 7 8 5 3 3 3 3 1 3 3 5 7

4 7 8 5 3 3 3 3 1 3 3 5 7

5 7 8 5 3 3 3 3 1 3 3 5 7

6 6 8 4 4 2 2 2 2 2 2 4 6

7 6 6 4 4 2 2 2 2 2 2 4 6
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Fig. 5 Illustration of the calendar repartition of days and months for the two clusters 1, 2

2. The second task consists in clustering the previous sparse representations of the
signals. The K-means algorithm is here chosen for its simplicity. An additional
investigation [17] shows that the clustering end up with 8 different groups, as
described in the following Table 2.

3. The last step defines the group centroid variables or patterns of consumption
as the mean signal inside each group. This yields eight signals S1; : : : ; S8
summarizing the typical behavior of each cluster.

An analysis is then performed in order to retrieve a correspondence between
clusters and calendar statements. For an illustration of the different calendar
statements extracted between the clusters, Fig. 5 provides, as an example, the
occurrences observed between days and months, for two clusters. For cluster 1, a
large majority of load curves are week-days (1–5) for the month of August (8). For
cluster 2, a large majority of load curves are week-ends (6–7) for months from May
to October (5–10). It should be noted that, at this stage, no specific treatments have
been done for bank holidays or other special days. Interpretation for all clusters is
available in [17].

The pattern variable G is a variable taking eight (functional) modalities and
assigning each day t to the center of the group where it belongs: Sg.t/, where g.t/ is
simply the labeling function of the calendar situation of t, according to Table 2.

During our preliminary study an additional pattern variable emerged and
appeared to be as well a key endogenous variable, defined by the intra day load
curve, Yt�7, recorded 1 week before. This signal can be considered as a general



Forecasting Intra Day Load Curves Using Sparse Functional Regression 169

trend for Yt and provides also indirectly some calendar information related to the
type of day (Sunday, Monday, . . . ) and seasons.

The endogenous variables are then defined by these two patterns and will
represent the consumption signal as a function of the time, denoted in the sequel
by Pt D ŒGt Yt�7�.

3.2 Meteorological Variables

In this study, the target variable is the French national electrical consumption,
which is impacted by all the meteorological conditions of the French territory, but,
of course, with different contributions regarding each region. Inside each group
of temperatures fTk; 1 � k � 39g, cloud cover fNk; 1 � k � 39g or winds
fWk0

; 1 � k0 � 293g, variables appear to be highly correlated and show strong scale
effect. A first non linear pre-processing is applied to build meteorological indicators,
both to sum up the information as well to reduce the redundancy between the
meteorological variables as already observed in [9] for instance. The new following
standard indicator variables are then computed.

For each label U 2 fT;N;Wg, we introduce four non linear transformations of
the meteorological inputs computed each half hour for the set of nU D 39 stations
for .T;N/ and for the set of nU D 293 network points for W:

• Umin D min.U1; : : : ;UnU /

• Umax D max.U1; : : : ;UnU /

• Umed D median.U1; : : : ;UnU /

• Ustd D pVar.U1; : : : ;UnU /

These standard indicators provide a non linear sum-up of the variations and sizes
of temperature, cloud cover or wind all over the French territory. Hence, 12 D 4� 3
indicators are computed, half-hourly sampled, and stored from January 1st 2003 to
August 31st 2010.

With a slight abuse of notation, for each label U 2 fT;N;Wg, we denote now
by U D ŒUmin;Umax;Umed;Ustd� the reduced meteorological variable, where Umin,
Umax, Umed, Ustd are the standard indicators defined previously.

Finally, piling up all the days, a total of 12 indicators defines the meteorological
process M D ŒT N W� over the time. The meteorological conditions for day t are
defined then by Mt D ŒTtNtWt�, which is a 48 � 12 matrix.

Even if at this step of reading, the forecasting methodology has not been yet
presented, we should say a brief remark in order to justify, at this stage, the choice of
these four indicators. During this project, different methods have been investigated
to forecast intra day load curves. One of them investigated to model the intra day
load curves with a high dimensional model using all 371 meteorological available
variables (371 D 273C 2�39). As the fit of the intraday load curves was extremely
accurate, the performance of the forecast was quite poor. This is explained by the
fact that the global consumption, as we have already said, is actually composed
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of various regional consumptions. In this study, we did not have access to the
regional consumptions which are known additionally to show quite high variability
in space and in time. For a forecasting point of view, the method which sums up the
meteorological data using four indicators performs the best at this stage.

3.3 Sparse Approximation of Intraday Load Curves

For each day t, we model the daily electrical consumption signal Yt in a linear way
using the following equation

Yt D Ztˇt C ut (1)

where the unknown parameter ˇt (so depending on the day t) belongs to Rp with p D
14 and where the variable Zt D ŒPt Mt� D ŒGt Yt�7 Tt Nt Wt� is the concatenation
of the pattern variables and meteorological variables previously described. Gt is the
pattern variable previously defined. Gt takes eight modalities (Table 2) depending
on days (variable Dt) and months of the year. The size of Zt is .n � p/ D .48 � 14/.
ˇt is estimated using the LOLA algorithm especially chosen to produce a sparse

representation: Ǒt D LOLA.Zt;Yt/.
Note that LOLA is an algorithm providing good sparse approximation in very

high dimension (see [17] in the case of the intra day load curve) and very accurate
selection properties in medium high dimension (see [16]), which is the case here
(p D 14). The adjusted electrical consumption is then:

OYt D Zt
Ǒ
t (2)

To evaluate the quality of this preliminary fit, we report here the MAPE and the
RMSE errors, computed.

We observe that the selected covariables offer a quite high sparsity representation
(Table 3): in average, S D 2:5 non zero coefficients are used to approximate the 365
intra-day load signals, with an average MAPE error of 1.2 % (median 1 %).

Figure 6 shows the sparse approximations OYt D Zt
Ǒ
t of Yt for 4 days belonging

to different seasons. For each graph, the number of selected coefficients with LOLA

Table 3 Statistical indicators for the sparsity, the MAPE and the RSME between the daily signal
Yt and its fit signal OYt, computed from September 1st 2009 to August 31st 2010. Groups are
computed using previous years of available data

Statistical indicator Sparsity MAPE (%) RMSE

Mean 2:49 1:24 833

Median 2:00 1:05 695

Std 0:81 0:79 531
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Fig. 6 Spring, Summer, Autumn and Winter intra day signals (dashed line) are here approximated
using at most 3 coefficients selected by LOLA algorithm (solid line)

algorithm equals at most 3. Hence, we achieved here one step in our box: well
approximating intra day consumption signals for various shapes and sizes using
only few coefficients.

3.4 Smart Encyclopedia Contents

To summarize, the raw temporal data of electrical consumption as well as the
meteorological inputs, available on the given historical period of 7 years and an
half of data, have been daily processed as described in the previous subsections to
produce the Encyclopedia, E , providing for each day t, 1 � t � 2;800:

• The daily electrical consumption Yt,
• A qualitative description of t, given by calendar statements: Dt, Ct,
• A qualitative description of t, defined after an adaptive clustering on the data: Gt,
• The meteorological indicators over the French territory Mt D ŒTt Nt Wt�,
• The estimated coefficient Ǒt,
• The approximation of the daily consumption OYt D Zt

Ǒ
t.



172 M. Mougeot et al.

4 Intra Day Forecasting

We are now interested in the one day ahead forecast of the intraday load curve
Yt. Consumption and meteorological variables are then supposed to be known until
day t � 1, and we want to propose a forecast of the intraday load curve for the
next day t. In this case, it is obviously not possible to use for the forecast, the
approximated coefficient Ǒt, since its computation involves the knowledge of the
electrical consumption Yt we precisely want to forecast.

To forecast the intra day load curve of the next day, called QYt, we refer again to
the previous linear model and write:

QYt D Zt
Q̌
t

• The matrix Zt D ŒPt Mt� is known at t.

Pt D ŒGt Yt�7� defines the pattern of day t. Using the calendar interpretation
of the clusters described in Table 2, the centroid of Gt is known as Yt�7 which
is the intra day load curve, one week ahead and can be easily computed.

• The meteorological variables Mt are here supposed to be known. In real applica-
tions, these variables will be provided by Meteo France, the French company for
weather prediction.

• The main issue here is to provide Q̌t.
Our approach will be to choose a “good candidate” for Q̌t, among the set of

already estimated coefficients Ǒu with u < t. This strategy is motivated by the fact
that the linear model introduced in Eq. (1) appears to be quite a good model to
approximate the intra day load curve. Moreover, this model is sparse and thus relies
only on a small number of coefficients.

In the forecast problem there is a typical balance to find between the need for
increasing the number of coefficients to better approximate (bias correction), and
the fact that each added coefficient increases the variability of the forecast, which
strongly justifies the use of a sparse methodology.

4.1 The Experts

The forecasting begins with an information retrieval task. As explained before, at
this stage, we will produce a variety of experts. Each expert essentially bases its
approach on comparing the day t at hand to referring scenarios extracted from the
backgrounds of the past i.e. finding a day t� in the past which is closest (according
to this expert) to the day t.
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The motivation is that, for one day, similar causes of weather or calendar
conditions or identical groups of consumption should provide similar effects and
then a similar electrical consumption.

In order to retrieve t�, different strategies s are introduced. Each strategy, s, is a
function defined from T to T such that for any t 2 T , s.t/ D t� < t, where T
denotes the set of indices of the different days. A forecasting Expert is then simply
associated to a strategy s and provides a forecast of the intra day load signal of
the next day t by plug-in the approximated coefficients Ǒs.t/ calculated at day s.t/
chosen by strategy s:

QYt
s D Zt

Ǒ
s.t/

How to choose the experts? Many factors are known to have a potential impact
on the electrical consumption and the next paragraph provides the 17 strategies
introduced here to potentially forecast the intra-day load curves. Of course, much
more strategies can be included but, for a sake a clarity we detail here some of the
simplest as well as most efficient ones (Table 4).

Time-lags: Studies of historical intra day load curves typically show that the day
before as well as the day one week before are significantly influential,[6, 22].
Consequently, strategy Week recalls the approximated coefficients of the same

Table 4 The forecasting experts

Strategies Time lags impact

Yday t � 1

Week t � 7

Strategies Meteorological scenarios, s.t/ D t� D ArgMinusupk:k
T ŒTu � Tt�

Tmed ŒTmed
u � Tmed

t �

Tmed=N ŒTmed
u � Tmed

t � with jjNmed
u � Nmed

t jj1=jjNmed
t jj1 < 2%

Tmed=W ŒTmed
u � Tmed

t � with jjWmed
u � Wmed

t jj1=jjWmed
t jj1 < 2%

T ŒTu � Tt�

T=G ŒTu � Tt� with Gu D Gt

T=D ŒTu � Tt� with Du D Dt

T=C ŒTu � Tt� with Cu D Ct

N ŒNu � Nt�

N=G ŒNu � Nt� with Gu D Gt

N=D ŒNmed
u � Nmed

t � with Du D Dt

N=C ŒNmed
u � Nmed

t � with Cu D Ct

W ŒWu � Wt�

W=G ŒWu � Wt� with Gu D Gt

W=D ŒWmed
u � Wmed

t � with Du D Dt

W=C ŒWmed
u � Wmed

t � with Cu D Ct
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day, one week before, s.t/ D t � 7 and strategy Yday involves the “yesterday”
approximated coefficients, s.t/ D t � 1 (which is known to provide useful
information from Tuesday to Wednesday) [21].

Meteorological scenarios (MS): Temperature is commonly admitted to be an
important factor in France as, in winter, 80 % of the French heating comes from
electrical devices. So called windchill temperature, which is a more complex
phenomenon depending both on temperature, wind and cloud cover has also an
impact on electrical consumption.

The strategies we provide in this domain will be contextual and retrieve in the
past a day corresponding to the nearest neighbor, regarding meteorological intra
day signals (temperature, wind and/or cloud cover). Different metrics have been
investigated but the sup distance seems to be especially suitable. The distance is
measured taking into account the median signal or all the indicators (min, max,
med, std) of meteorological variables introduced in Sect. 3.2.

Strategy T (resp. Tmed) refers to the day having the closest temperature indicators
(resp. the closest median temperature) among all the days in the past. Strategy N
(resp. W) refers to the day having the closest cloud cover (resp. wind) indicator.

Cloud cover and wind may have special effects, so we consider strategies that
specifically single out their effect.

Temperature constrained by cloud cover and wind: Strategy Tmed=N refers to
the day having the closest median temperature given cloud cover. More precisely,
this means that we begin by selecting the days in the past which have a cloud cover
signal in a small vicinity of ‘today’, and among these ones we choose the day with
the closest Tmed.

In the same way, strategy Tmed=W refers to the day having the closest median
temperature given the wind.

Impact of meteorological factors on electrical consumption also depends on day
type (week days, week end or public day).

MS constrained by groups: Clustering methods applied on historical consump-
tion data have exhibit specific groups of consumption [17]. Strategy T=G refer to
the day having the closest temperature indicator given the group of t. Strategy N=G
(resp. W=G) refers to the day having the closest cloud cover (resp. wind) indicator
given the group of day t.

MS of the day constrained by the type of day: [1] shows the importance of the
type of day. Strategy T=D refers to the day having the closest indicators (min, max,
med, sd), given the kind of day of t Strategy N=D (resp. W=D) refers to the day
having the closest cloud cover (resp. wind) indicator (min, max, med, sd) given the
kind of day of t.

MS of the day constrained by a calendar group: [21] introduced five calendar
groups to forecast (see Sect. 2.3). Strategy T=C refers to the day having the closest
temperature indicators(min, max, med, std) for days belonging to the same calendar
group as t. Strategy N=C (resp. W=C) refers to the day having the closest cloud
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cover (resp. wind) indicators (min, max, med, std) for days belonging to the same
calendar group as Yt.

Here a meaningful discussion could be engaged on the choice of the experts.
For instance, experts could integrate information about “special events” such as
announced strike, big soccer games. . . We did not include such experts in the present
study, since we observed in our data, that these events are at the same time rare and
with high variable responses, in such a way that the learning process on them did
not seem to show clear effects. Consequently we preferred to postpone this delicate
point to a further study.

4.2 Smoothing Parameter

In this approach, the approximated intra day load is computed day by day and up
to now, no continuity assumptions have been introduced between two consecutive
days. In this perspective, several approaches can be used. For sake of simplicity, we
chose to present here the simplest one.

In order to address this problem of introducing a regularity constraint between
days, a parameter called ıs

t reflecting the possible lag between day t � 1 and
prediction at day t is introduced and maintain in a security zone: QYs

t  QYs
t C ıs

t
In this application, where the forecast is computed for 24 h, we simply choose

ıs
t D Yt.1/ � QYs

t .1/, and maintained it to be zero. Yt.1/ (resp. QYs
t .1/) is the value of

the first point (00 W 300) of the load curve (predicted load curve using strategie s)
for day t. It means that the forecast is actually beginning each day at 00 W 300 for
the next 23 h 300. When this method is used in other contexts (for a 36 h forecast for
instance), a more refined ıs

t parameter can be computed.

4.3 Performances of the Various Experts

Table 5 presents the forecast performances, for the K D 17 experts considered
previously, for 1 year of data, from September 1st 2009 to August 31st 2010. The
historical set of data to retrieve the Ǒ�t , contains 3 years of data, from September 1st
2006 to August 31st 2009.

For sake of comparison, an additional naive expert is introduced which forecasts
the daily electrical consumption of day t by simply using the intra day raw
consumption signal of the previous day: QYt D Yt�1.

An approximation expert (called “Apx”) is also introduced. The oracle expert
cannot be used in practice, but gives a benchmark of the method: in this case
Q̌
t D Ǒt.

The difference between these two performances measures the gain that can be
expected with respect to a crude prediction.
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Table 5 MAPE
performances for each expert
in forecasting 1 year of data
from September 1st 2009 to
August 31st 2010

Names Average Median Std

Naive 0:0634 0:0415 0:0514

Apx 0:0170 0:0145 0:0145

The experts:
Yday 0:0300 0:0231 0:0231

Week 0:0293 0:0236 0:0236

Tmed 0:0315 0:0261 0:0261

Tmed=W 0:0351 0:0252 0:0252

Tmed=N 0:0320 0:0257 0:0257

T 0:0311 0:0238 0:0238

T/G 0:0310 0:0232 0:0232

T/D 0:0321 0:0262 0:0262

T/C 0:0295 0:0249 0:0249

N 0:0406 0:0293 0:0293

N/G 0:0282 0:0210 0:0210

N/D 0:0284 0:0220 0:0220

N/C 0:0287 0:0220 0:0220

W 0:0384 0:0294 0:0294

W/G 0:0309 0:0241 0:0241

W/D 0:0381 0:0305 0:0305

W/C 0:0317 0:0256 0:0256

4.3.1 Detailed Performances of the Experts

The naive approach shows a 6:3% MAPE error. Time lag strategies (Yday,
Week) behave well compared to the overall strategies (MAPE average of 3.0 % or
2.9 %). Forecast results are significantly improved by plug-in the sparse estimated
coefficients computed the day before instead of taking the raw intra day load curve
of the previous day. In order to stress the importance of variable selection, we
have computed ordinary Least Square regression (OLS), for theses two time lag
strategies. Compared to the LOLA algorithm actually used, no sparsity constraint
is introduced in the least square method. For the same period of analyze, the OLS
approach shows a MAPE average of 3:98% for the Yday strategy and of 4:15% for
the Week strategy. With no variables selection, the MAPE average error increases
of approximatively 30 %. Similar deteriorations of performances are observed using
OLS instead of LOLA for the other strategies.

These results strongly show the benefits of using a sparse functional model to
forecast the electrical consumption.

Using LOLA algorithm, strategies associated to the closest cloud cover con-
ditions with constraints (N/G, N/D, N/C), behave especially well, compared for
instance, to strategies only based on temperature (T), cloud cover (N) or wind
(W). The strategy retrieving the day relying on cloud cover given group information
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Fig. 7 Frequencies for the expert which perform at best computed for 1 year of data from
September 1st 2009 to August 31st 2010

provides, in average, the best MAPE error (mean: 2:82%; median: 2:10%). Hence,
these results strongly suggest that cloud cover seem to have a important impact in
the electricity consumption and then the forecast.

Figure 7 provides for each strategy, the frequency of hits, i.e. the frequency of
days over 1 year when the strategy performs at best.

The different strategies seem quite competitive and we observe that all of them
performs at best at least 2% of the days. Strategies based on finding the closest day
regarding temperature, cloud cover given the group of day performs in general well
(N/G: 9 % of hits), as it was already observed in Table 5. Time dependent strategies,
Yday or Week seem also quite competitive with hit frequencies equal to 10 % or
9 %.

These quantitative forecasting results seem to reflect quite well the opinion of the
human experts of the discipline.

4.4 Aggregation of Experts

If we were able to find each day the best strategy to apply regarding the MAPE error,
the oracle MAPE average error over 1 year would be equal to 1.44 % (standard
deviation 0.74 %), as presented in Table 6. This is similar to the approximation
MAPE error (Table 4, Apx: 1:70%) and quite a good performance for these
prediction experts which purpose are, as explained before, more adaptation to high
dimensional information.

As seen in the previous part, the experts perform successively well depending
on days, or meteorological issues. But no one among them achieves the best
performance most of the time. There is an obvious need to combining them.
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Table 6 MAPE
performances in % for
aggregation method

Names Average Median Std

Oracle 1:44 1:29 0:74

Exponential weights 2:25 1:92 1:24

In the recent years, many interesting theoretical results as well as practical
simulations have been obtained using aggregation and especially exponential
penalization: see [4, 7, 8, 11, 23]. These techniques will be for us a good source
of inspiration. However, a crucial problem then is to find a weighting, learning the
performances of each expert and optimizing them. In this context of prediction, this
is quite a challenging issue which can give rise to very sophisticated procedures.

For sake of simplicity we present here a very understandable and manageable
one, which only records the approximation properties of each expert and penalizes
those with poor approximation results. More precisely, let us recall that M is the set
of strategies introduced above, and OYs the expert forecast computed with the strategy
s.

The aggregated expert is a weighted sum of all the forecast consumptions
provided by the different experts:

OYt D
P

s2M ws
t
QYs

tP
s2M ws

t

where ws
t are positive weights depending on the day t and the strategy s.

As explained above, our procedure penalizes by putting small weights, on the
strategies which were not able to well approximate the signal at s.t/: e.g. the weights
ws

t depend in an exponential way on the l2 error of kYs.t/ � OYs.t/jj22:

ws
t D exp.�kYs.t/ � OYs.t/k22=�/

� > 0 is a standard tuning parameter (also called temperature parameter with
reference to statistical physics). In the performances presented in the Table 6, this
parameter was chosen using cross validation on the past. Using aggregation with
exponential weights, we observe that the MAPE decreases to 2:25% in average and
to 1:92% in median, with a standard deviation of 1:20%. This error is much smaller
than the different errors computed for each individual experts, presented in Table 4
showing the benefits of the different contributions.

Figures 8 and 9 give a graphical illustration of forecast for two different
weeks chosen in winter and spring. We observe that forecasts are more accurate
during spring periods than winter periods. In Fig. 9, local maxima seem to be
overestimated, while local minima are underestimated.
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Fig. 8 Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a
winter week from Monday February 1st to Sunday January 7th 2010
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Fig. 9 Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a
spring week from Monday June 14th to Sunday June 21st 2010

5 Conclusion and Perspectives

The method described above will be implemented in a short-term consumption
forecasting platform, aggregating various models, which is currently tested at RTE.

This collaboration between academics and industrials provides results which,
although coming from automatic statistical methods, happen to agree surprisingly
well with the business knowledge of RTE. In fact, they go further and shed new
lights:

– The differences between the performances of OLS predictions and the sparse
method approach if they were expected from a theoretical point of view, happen
to be surprisingly striking (30% !), strongly motivating for going in this direction
in the future.

– The approach for the construction of the experts (searching for similar days
in the past) which has been established using a mathematical perspective is
finally quite close to the strategies of the RTE forecasters. If we refer for
instance to the comparison between the expert performances, some results
are common sense (the lag-expert performances for instance). However, the
impressive performances of cloud cover experts were a little more difficult to
predict, but already observed by RTE forecasters.
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– The competitiveness of these experts, also expected from the RTE forecasters,
have been highlighted and quantified. In the near future, more experts will be
introduced. As well, the method of aggregation will be diversified according to
the feedback of the short term consumption forecasting platform.

Due to forecasting operational needs, different adaptations of the forecasting box
will be provided. Particularly, the horizon forecast will be extended to 48 h, or more
and the method will be adapted to choose the delivery time of prediction, according
to business constraints. In this perspective, the smoothing parameter will be refined
to integrate nonparametric regularization methods as well as designed strategies of
RTE forecasters.
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Modelling and Prediction of Time Series Arising
on a Graph

Matthew A. Nunes, Marina I. Knight, and Guy P. Nason

Abstract Time series that arise on a graph or network arises in many scientific
fields. In this paper we discuss a method for modelling and prediction of such
time series with potentially complex characteristics. The method is based on the
lifting scheme first proposed by Sweldens, a multiscale transformation suitable for
irregular data with desirable properties. By repeated application of this algorithm we
can transform the original network time series data into a simpler, lower dimensional
time series object which is easier to forecast. The technique is illustrated with a data
set arising from an energy time series application.

1 Introduction

Many multivariate time series encountered in practice will be observed on a network
or graph. The network on which these time series is observed is often large, limiting
the feasibility of some data analyses in some settings. This article discusses the
potential of a particular wavelet-like data transformation, called lifting, to facilitate
modelling and forecasting of time series arising on large networks. The motivation
for this approach stems from lifting’s ability to ‘simplify’ the series under analysis.
The transformation employed by the method naturally handles data on irregular
observation domains, such as spatial or network data. As such, time series arising
on complex domains can be analysed, and we propose that the technique described
will be of use for practitioners in many industrial and scientific fields. Lifting was
introduced by Sweldens [7, 8]. We review and utilize the ‘lifting one coefficient at
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a time’ (LOCAAT) version of the lifting transformation [3, 4] in Sect. 2, followed
by a brief description of how we use this algorithm for network time series analysis
in Sect. 3. Section 4 explores the performance of the technique on a toy example
involving wind energy time series.

Notation The data under analysis are observations on the nodes of a fully
connected graph taken through time. The graph consists of a set of R 2 N nodes,
R D f1; : : : ;Rg, which are connected by a set of edges. Define the edge set
Er D fj 2 R W node j is connected to node rg. The entire graph G D .R;E / where
E D [r2REr. The data are values of a function defined on the nodes of the graph.
Suppose our data set is fXr;tg where r 2 R are nodes in G and t D 1; : : : ;T is time
where T 2 N. In what follows, we shall also denote this data by Xt to illustrate its
time dependence over the network structure.

2 A Wavelet-Like Transform for Network Data

Our new forecasting technique, described in Sect. 3, makes use of a dimension
reduction step via a wavelet-like lifting transformation called LOCAAT. This
section gives an overview of the LOCAAT lifting transformation for network data
based on the exposition in Jansen et al. [3, 4].

Lifting ‘one coefficient at a time’ (LOCAAT) Let XR denote data on a network
G for a fixed timepoint, t. We do not explicitly mention the time index in the
description of LOCAAT, but it must be remembered in the background. The lifting
algorithm transforms a set of data into a simpler form by iteratively repeating a
number of linear combinations of the original data. In particular, lifting a discrete
signal consists of three steps: split, predict and update. These steps can be described
as follows:

Let us denote our initial data by fcn;rgRrD1 WD XR.

Split. A node rn is chosen to be lifted.
Predict. The function value at the chosen node rn is then predicted using the

function values of its immediate neighbours in the network, Ern , as regressors.
The difference between the true and predicted function value at rn is then
computed:

drn D cn;rn �
X

j2Ern

wn
j cn;j;

for regression weights wn. Typically, these weights are chosen according to some
measure of association between the lifted node rn and the neighbour nodes. We
denote the difference as drn and refer to it as the detail coefficient at the node rn.

Update. The function values at the neighbouring positions j 2 Ern are updated by
using linear combinations of the detail coefficient obtained in the prediction step.
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In other words,

cn�1;j WD cn;j C Qwn
j drn ; 8j 2 Ern ; j ¤ rn;

where Qwn are weights chosen to keep the energy of the signal constant at each
lifting step (see Jansen et al. [4] for more details).

The node rn is then removed from the network, thus creating a ‘coarser’ network
structure; the edge sets Ej for each neighbour j of rn will thus change after the node
rn is lifted. A schematic of the lifting steps 1–3 is shown in Fig. 1.

The three lifting steps are then repeated successively removing a node at each
step. After a large number of network nodes have been lifted, the original data is
transformed into a set of detail coefficients. The remaining unlifted coefficients are
called scaling coefficients. The detail coefficients dR capture the local changes in
the data at a particular node in the network. An example of the lifting transform
operating on some example wind speed data (see Sect. 4) is shown in Fig. 3. The
original data along with its transformed version is shown.

The lifting transform can also be written as a matrix operator, i.e.

dR D W XR:

The lifting transformation fully takes into account the network structure, and is
invertible: the original data can be retrieved using the inverse transformation matrix
XR D W �1dR.

LOCAAT can be used for regression (function estimation) on a network in a
signal plus noise model, see Jansen et al. [3, 4] and Mahadevan et al. [6].

LOCAAT lifting for network time series A benefit of the lifting transformation
is its ability to transform data in an efficient manner in order to obtain desirable
properties. Suppose we have the time series Xt on a network G . In our setup, the
network can either be real, or can be constructed according to a practitioner’s insight
into the underlying problem for the series under analysis. Our simplification of the
network time series proceeds as follows. For each fixed timepoint t D 1; : : : ;T, we
perform the network LOCAAT lifting algorithm. This results in transformed data
fYr;tgTtD1. Notationally, we write this as

Yt D W Xt; (1)

where Yt is an r-dimensional vector time series and Xt is the original function Xr;t

on the graph G at time t D 1; : : : ;T. The transformation of the entire time series
object can be inverted by simply performing the inverse lifting transform for each
fixed timepoint t via W �1. In this article the network topology is fixed as a function
of time. The values of the network function at the nodes may change at each time
step, but the number of nodes and how they are connected remains constant.
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Fig. 1 Example of LOCAAT
lifting: values in circles
(nodes) represent observed
process values Xt. Node
indices are shown underneath
circles; weights associated to
network edges are also
shown. (a) Region of network
before lifting step: node
chosen to be lifted (node 2,
centre). (b) Region of
network after prediction step:
the detail coefficient is
produced as a linear
combination of neighbouring
process values. (c) Region of
network after update step:
lifted node is removed.
Process values at
neighbouring nodes are
updated according to their
contribution to the detail
coefficient in the prediction
step; the network is then
reconnected
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3 Network Time Series Forecasting via LOCAAT Lifting

After LOCAAT lifting, the transformed time series Yt can be split into two sets:

Yr;t D
�

sr;t for r 2 S .G /;

qr;t for r 2 Q.G /;
(2)
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where S .G / are the lifting scaling function coefficients from performing lifting
on G , representing the “trend” of the time series object. The LOCAAT wavelet
coefficients of the new time series object are denoted by Q.G /. The sets S .G / and
Q.G / form a disjoint union of the time series across the network.

Suppose we want to forecast the network time series object Xt at time t for h
steps ahead, denoted by OXtCh. Our strategy for this task is to transform the data
via LOCAAT lifting, forecast in the transformation domain, and then invert the
transformation including the forecast. Specifically, our forecasting procedure is as
follows.

1. Transform the original data via the LOCAAT transformation, described in Sect. 2
to form Yt D W Xt.

2. Construct the wavelet domain forecast OYtCh by

(a) Extrapolating the scaling coefficient series sr;t in S .G /,
(b) Modelling the wavelet coefficient time series in Q.G / as stationary ARMA

processes, and use a forecasting method to predict each time series qr;t in
Q.G /, e.g. using a Box-Jenkins [1] or exponential smoothing [2] approach.

3. Invert the network time series transform with W �1 to form the time domain
forecast for the original series as OXtCh D W �1 OYtCh.

Note that in step 2b above, any wavelet domain model can be chosen according
to the context or choice of the practitioner.

The next section demonstrates the potential of this lifting-based time series
prediction technique with an application arising from energy time series.

4 Application to Energy Time Series

The data that we analyse with our network time series prediction method are hourly
wind speeds collected from a number of UK Metereological Office weather stations
[9]. Our data set consisted of N D 102 weather stations, and T D 721 hourly
records.

Note that the wind data are not supplied with a network, but we can construct one
from geographical proximity information. In what follows, we obtain a network for
the data using a minimal spanning tree (MST) construction as suggested in Jansen
et al. [4]. A minimal spanning tree is a method of connecting a set of points in space
in a network (in our case spatial locations) such that all nodes are connected to at
least one other. The network has the added property that the total “weight” along all
edges in the constructed tree is minimal amongst all potential networks. As a result,
the network contains a low number of edges. For the data described above, these
edge weights are distances between the weather stations. The MST thus provides
a representation of potential geographic information linking the data at wind speed
sites. See Krzanowski and Marriott [5] for more details on the MST construction.
The minimal spanning tree that we constructed for the wind data is shown in Fig. 2.
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Fig. 2 UK Metereological Office weather stations together with the constructed minimal spanning
tree network between stations

We aim to use our proposed method for forecasting the wind speed across
the entire network at the last time instant (t D 721). Therefore in what follows
we shall treat the data as having been observed at the first 720 timepoints.
The lifting transformation described in Sect. 2 was applied to the network time
series data for each timepoint t D 1; : : : ; 720, transforming the original wind
data into a lifted time series. More specifically, 100 lifting steps were performed
for a particular fixed timepoint, leaving two scaling coefficient series, namely
S .G / D fFilton; Kenley Airfieldg. The original and transformed data for the first
time instance are shown in Fig. 3a, b respectively. In this example, the order in
which nodes are removed to form lifting coefficients is decided by the default choice
in the lifting software. Roughly speaking, points are removed from higher density
regions first, progressively moving to lower density regions. This behaviour mimics
the usual wavelet methodology of proceeding from fine to coarse scales.

Following this transform, the original network series object is now split into
the 100 weather stations associated to the lifting (wavelet) coefficients and the two
stations corresponding to the scaling functions; at each node we have a new (lifted)
time series (of length 720). This new LOCAAT object was then used in the fore-
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Fig. 3 Example of LOCAAT lifting across the weather station network, before and after LOCAAT
algorithm (for timepoint t D 1). Process values are transformed into detail coefficients capturing
local changes in the data. Radii of circles represent magnitude of series values. (a) Wind speed
data before lifting for t D 1. (b) Wind speed lifting coefficients for t D 1
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Fig. 4 Prediction error for the weather stations network with the forecasting technique based on
the lifting algorithm. Circle diameters represent the squared forecasting error for each station in
the network

casting technique outlined in Sect. 3, using h D 1 step ahead forecasts. We permit
both AR and ARMA modelling of detail coefficient series in the lifting domain
through automatic selection of the ARMA model parameters. Figure 4 displays
the squared prediction error of the transformation-based forecasting method, i.e.
ferg102rD1 D f.Xr;721 � OXr;721/

2g102rD1, when using the data up to the previous timepoint,
XR, t D 1; : : : ; 720.

A comparison with forecasting the data without transformation (using the
previous timepoint as a predicted value, as well as time-domain ARMA prediction)
indicates that our LOCAAT method reduces the average squared forecasting error
Ne D 1

102

P102
rD1 er significantly. A typical example of the one-step ahead prediction

of the last datapoint for the three methods (at the Lakenheath weather station) is
shown in Fig. 5.
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Fig. 5 Example one step ahead forecasts for the wind speed data at Lakenheath. Graph shows true
data (solid); naive prediction with last datapoint (dotted); time domain ARMA forecasting (long
dashed) and LOCAAT-based prediction (short dashed)

5 Summary

This article has described a method for predicting time series data which arise on
a graph or network by forward transforming the values on the network at each
time point, modelling and forecasting the coefficients in the transform domain and
then transforming back to obtain forecasts in the original domain. The results of
the method for the practical application to wind speed modelling and forecasting
are promising. The aim of our method is to use LOCAAT to gain improved
prediction performance in many areas in which data and analysis simplification are
of importance, such as geostatistical or complex network data. It is likely that other
transforms related to be one presented here could be used to simplify other time
series analysis tasks, where the dimension of the problem renders analysis difficult
or computationally infeasible.

Whilst in this article we have considered data arising on a fixed graph, we
recognise that in many applications, analysis of time series on a dynamic (time-
varying) graph is of interest. One change, that we are currently investigating, is for
the number of nodes and basic connectivity to remain the same, but for the edge
weights to vary over time. This is left as an interesting avenue of further research.
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Massive-Scale Simulation of Electrical Load
in Smart Grids Using Generalized Additive
Models

Pascal Pompey, Alexis Bondu, Yannig Goude, and Mathieu Sinn

Abstract The emergence of Smart Grids is posing a wide range of challenges for
electric utility companies and network operators: Integration of non-dispatchable
power from renewable energy sources (e.g., photovoltaics, hydro and wind),
fundamental changes in the way energy is consumed (e.g., due to dynamic pricing,
demand response and novel electric appliances), and more active operations of the
networks to increase efficiency and reliability. A key in managing these challenges
is the ability to forecast network loads at low levels of locality, e.g., counties, cities,
or neighbourhoods. Accurate load forecasts improve the efficiency of supply as
they help utilities to reduce operating reserves, act more efficiently in the electricity
markets, and provide more effective demand-response measures. In order to prepare
for the Smart Grid era, there is a need for a scalable simulation environment
which allows utilities to develop and validate their forecasting methodology under
various what-if-scenarios. This paper presents a massive-scale simulation platform
which emulates electrical load in an entire electrical network, from Smart Meters
at individual households, over low- to medium-voltage network assets, up to the
national level. The platform supports the simulation of changes in the customer
portfolio and the consumers’ behavior, installment of new distributed generation
capacity at any network level, and dynamic reconfigurations of the network. The
paper explains the underlying statistical modeling approach based on Generalized
Additive Models, outlines the system architecture, and presents a number of realistic
use cases that were generated using this platform.
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1 Introduction

The French electrical grid is currently being fundamentally modernized by deploy-
ing Information and Communication Technology at a massive scale. The emerging
“Smart Grid” is designed to meet multiple objectives: (i) optimizing the control
of the grid and the quality of the electricity supply, despite the fact that power
generation is becoming more decentralized; (ii) scheduling the production of energy
while taking into account the uncertainty related to renewable energy sources (e.g.,
photovoltaics, hydro and wind); (iii) coordinating and shaping the energy demand
to flatten consumption peaks and limit their impact on the networks and on the
electricity markets.

“Smart Meters” constitute the fundamental building block of the Smart Grid
architecture. Within the next few years, these digital meters are expected to be
installed at all French households.1 Smart Meters record the individual power
consumptions in real time, and send this information to a data center through a
communication network. The expected volume of Smart Meter data (in France:
35 millions signals sampled every 30 min) poses a significant challenge for utility
companies. In France, one year of Smart Meter data amounts to more than 600 bil-
lion data points, which is equivalent to 4.4 Terabytes.2 Electricité de France (EDF),
the main French provider of electricity, needs to anticipate managing such amounts
of data in terms of storage, querying and data analysis capabilities. Currently, only
a small subset of the 35 million Smart Meters has already been deployed, mostly
through pilot studies in specific geographic areas. In order to prepare for the full
deployment and test different types of distributed data management systems, EDF
needs to simulate consumption data for individual households at a massive scale.

Previous studies on massive-scale processing of electrical load time series have
been carried out using the Hadoop framework [8]. Also the data storage and
querying aspects have been investigated in this context. The present paper describes
a platform for more realistic simulations of electricity consumption in order to
validate forecasting approaches at different levels of the electrical grid. The platform
also supports the generation of what-if-scenarios to foresee the impact of changes
in electricity usage on the quality of the forecasts. Note that electricity consumption
data at the level of individual households have several distinctive features: (i) the
overall number of time series is very large; (ii) the diversity of individual behavior
induces a wide variety of shapes; (iii) the volatility of these time series is very high;
(iv) the sum of these time series is a smooth time series with cyclical patterns. The
upper time series in Fig. 1 shows the total consumption in France during 1 week,
and the lower time series gives an example of an individual consumption time
series during the same period of time. As can be seen, the characteristics of the
load profiles at these different aggregation levels are very different.

1More details are available at http://www.erdfdistribution.fr/linky/
2Assuming that each data point requires 8 bytes memory.
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Fig. 1 Example of an
individual consumption
signal during 1 week (lower
time series), in comparison
with the sum of individual
consumption signals during
the same period of time
(upper time series)

This paper is organized as follows. After a review of related work on the
simulation of electrical networks in Sect. 2, Sect. 3 introduces the statistical mod-
eling approach for simulating and forecasting electrical load based on Generalized
Additive Models. Section 4 describes the architecture of the simulation platform.
Use cases demonstrating applications of the simulation platform are presented in
Sect. 5. Finally, Sect. 6 proposes a benchmark method to evaluate how realistic are
the simulations generated by the platform at different aggregation levels. Section 7
concludes with an outlook on directions for future work.

2 Related Work

There exists a wide body of literature and software tools for simulating electrical
networks. Most of these tools focus on physical properties of the grid (e.g., power
flows, voltage drops), typically under steady-state conditions and for a limited part
of the network (e.g., transmission or distribution), and with a great level of detail in
modeling the physical assets of the grid (lines, transformers, etc.). The purpose of
the simulation platform presented in this paper is to emulate statistical properties
of electrical load. In this context, bottom-up and top-down approaches have been
proposed in the literature (see [19] for a detailed review). Bottom-up methods start
by modeling the usage of individual electrical appliances (e.g., by a Multi-Agent
System) and then compute the aggregated load, e.g., at the household or neigh-
borhood level. While those approaches yield detailed and realistic simulations at a
high temporal resolution, they are computationally expensive, require considerable
modeling effort, and typically rely on assumptions about the usage of appliances
that are difficult to justify empirically. Typically, bottom-up methods are used for
loads only at low-level aggregations, e.g., to simulate Microgrids.

Top-down methods start by modeling aggregated load curves which are then
iteratively disaggregated using statistical methods to obtain the consumption at
lower levels. The main advantage of this approach is that a variety of models can be
used to accurately represent features of aggregated load, and usually high-quality
data for fitting those models is available at the top aggregation levels. However, top-
down approaches often fail to reproduce distinctive features of disaggregated loads,
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e.g., the volatility of loads at lower aggregation levels, and the localized effects of
meteorological and socio-economic variables.

The simulation platform presented in this paper is designed to emulate loads
throughout the entire electrical network (from individual households over low-
to medium-voltage network assets up to the transmission and national level) for
a country the size of France, over multiple years and under various what-if-
scenarios. To the best of the authors’ knowledge, there exists no previous solution
for simulation studies of this scale. Another special feature of the platform presented
in this paper is the modeling approach based on Generalized Additive Models,
which will be discussed in the following section. As will be shown in Sect. 6, while
this approach does not capture all the distinctive features of loads at individual
households, it reflects well the characteristics of aggregates of 70 households or
more. Hence, it can be argued that the modeling approach proposed in this paper
offers a good compromise between top-down and bottom-up methods.

3 Generalized Additive Models

3.1 Background

Generalized Additive Models (GAMs) are a class of semi-parametric regression
models introduced in [12] and [13]. Originally, the learning of GAMs was done
using the backfitting algorithm, but recently more efficient methodologies have been
introduced, among them boosting procedures (see [3]) and penalized regression
methods (see [22]). GAMs have been successfully applied to electrical load
forecasting at different geographical scales and network aggregation levels. For
example, [18] uses GAMs to forecast the French load at the national level, achieving
a Mean Absolute Percentage Error (MAPE) of less than 2%. Ba et al. [1] studies the
same data set and proposes an online learning algorithm for GAMs which is shown
to further improve the forecasting accuracy. Fan and Hyndman [9] applies GAMs to
regional data in the National Electricity Market of Australia, [16] shows results on
data from a US utility company, and [11] demonstrates forecasting at the substation
level in France. Experiments in Sect. 6 of the present paper suggest that GAMs are
applicable to small aggregates of down to 70 households.

GAMs have properties which make them useful both for simulation and fore-
casting: They are able to capture complex non-linear relationships (e.g., between
electrical load and temperature), and their estimation and prediction are straightfor-
ward. Another interesting feature of GAMs is their simplicity due to their additive
structure, which makes them easy to use and understand by practitioners. This
property is of particular importance in the simulation context, because it allows
domain experts to design specific what-if-scenarios.
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Mathematically, GAMs have the following form:

yi D f1.x1;i/C f2.x2;i/C : : :C fp.xp;i/C "i

where yi is a univariate response variable (here the electrical load), xq;i are the
covariates that shape yi (e.g., meteorological conditions, the time of day, the day
of week, etc.). "i denotes the model error at time i, also called “noise” in this paper.
The simulation platform presented in this paper supports different types of noise:
White noise, Autoregressive noise, and Heteroscedastic noise where the variance of
"i at time i could depend on the covariates xq;i. The functions fq, called “transfer
functions” in this paper, are centered around 0 to achieve model identifiability and
represented using splines (in particular, they can be non-linear). A penalization
term in the model estimation enforces smoothness of the transfer functions. More
specifically, using the spline representation each transfer function can be written as
follows:

fq.x/ D
kqX

jD1
ˇq;jb

q
j .x/

where kq is the dimension of the spline basis, and bq
j .x/ are the corresponding basis

functions (e.g., cubic B-splines) with the spline coefficients ˇq;j. In order to estimate
the spline coefficients of all the transfer functions while enforcing smoothness, the
following objective is minimized:

nX

iD1
.yi �

pX

qD1
fq.xi//

2 C
pX

qD1
�q

Z

kf 00

q .x/k2dx:

Here � D .�1; : : : ; �p/ is a vector of penalty parameters controlling the degree of
smoothness of each transfer function (the higher �q, the smoother fq). This param-
eter is optimized through a model selection criterion, e.g., see the methodology in
[21] and [23] which minimizes the Generalized Cross Validation criterion proposed
in [7]. For practical computations in this paper, the implementation in the R package
mgcv (see [20] and [22]) is used.

3.2 Load and Wind Farm Modeling

This subsection provides examples of GAMs which will be used in Sect. 5 to
configure different use cases running on the simulation platform. The data set
used for learning the load models was compiled by the Irish Commission for
Energy Regulation (CER) in a Smart Metering trial (see the reports [5] and [6]).
The data were collected half-hourly for every meter participating in the trial from
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July 14th, 2009, to December 31st, 2010. In this paper, meters with missing values
or replications were discarded; the resulting cleaned data set consisted of 4,623 m
(residential customers and small-to-medium enterprises), each with 48 half-hourly
meter readings per day over 536 days. For simplicity, days corresponding to daylight
savings were dropped: October 25th, 2009, March 28th and October 31st, 2010. As
the location of the individual meters is anonymized for confidentiality reasons, the
weather data from the Dublin airport (downloaded from wunderground.com) were
used as the meteorological covariates in the load models.

As part of the CER Smart Metering trial, one out of five different tariff classes
was offered to each residential household. For the experiments in this paper, the
load of households using the same tariff was aggregated, and one GAM per class
was estimated. Figure 2 shows 2 weeks of data for each of the five classes. The
GAM learned for each class is given by

yi D
7X

kD1
sk.TimeOfDayi/IWeekDayiDk C s.Temperaturei/Cs.TimeOfYeari/C"i (1)

where yi is the electrical load, TimeOfDayi is the time of day (ranging from 0 to 47,
corresponding to the half-hourly measurements at 0:30, 1:00, . . . , 24:00), WeekDayi

is the day of week (1 = Sunday, 2 = Monday, . . . , 7 = Saturday), Temperaturei is the
temperature at the Dublin airport, and TimeOfYeari is the time in the year (ranging
between 0 on January 1st and 1 on December 31st). Note that IWeekDayiDk denotes
the indicator function which evaluates to 1 if WeekDayi D k, and to 0, otherwise.
Hence, the model includes a transfer function depending on the time of day which
is specific for each week day. The transfer functions are represented using cubic
B-splines, and cyclic splines for the TimeOfYear effect which enforces continuity
between December 31st and January 1st. In the simulations, the noise term "i

is sampled from a normal distribution with zero mean and a standard deviation
proportional to 1 % of the signal, i.e., as explained in the previous subsection,
the variance also depends on the model covariates (here: TimeOfDayi, WeekDayi,
Temperaturei and TimeOfYeari).

Fig. 2 Irish CER data set: Electricity consumption of residential customers signed up to five
different tariff classes (represented by the curves in different colors)

wunderground.com
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For the learning of a wind farm model, a public data set from the wind
power forecasting track of the GEFcom competition (see [16]) was used. In the
experiments of this paper, this model was standardized and, in order to simulate
wind farms of different sizes, scaled to the desired level. The GAM model is given
by

yi D
12X

kD1
sk.WindSpeedi/IWindDirectioniDk C "i (2)

where yi is the wind power, WindSpeedi is the wind speed, and WindDirectioni

the wind direction (1 = N, 2 = NNE, 3 = NE, . . . , 12 = NNW). Note that the wind
direction was discretized into 12 sectors (instead of using a bivariate transfer
function) for parsimony reasons. In the simulations, the noise term "i is sampled
from a normal distribution with zero mean and a standard deviation proportional
to 5 % of the signal (to simulate higher uncertainty of production data), i.e.,
the variance again also depends on the model covariates (here: WindSpeedi and
WindDirectioni).

4 Simulator Platform Architecture

This section describes the architecture and design of the Smart Grid simulation
platform, with particular emphasis on the modeling of the electrical network, the
representation of load at the Meter level, and design considerations related to the
scalability of the platform.

4.1 Network Modeling

Simulating the load at each level of an electrical grid requires a model of the
network. The simulation platform presented in this paper models the initial network
structure, and dynamic changes (e.g., reconfiguration events) applied to it. The
initial network structure is a tree of depth six, with the nodes – from the lowest
level to the root – representing Meters, Low-Voltage Stations (LVS), High-Voltage
Stations (HVS), Source Substations, Regional Agencies, and the National Level.
An example of a subtree, up to the Regional Agency level, is shown in Fig. 3. The
numbers on the right hand side correspond to the number of nodes per network
level for a country the size of France. Note that the tree structure only allows for
the representation of radial networks; modeling meshed networks is a direction for
future work.

To ensure the resilience and security, numerous backup lines exist in real
electrical networks that enable to redirect the electrical flow from one element to
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Fig. 3 Tree-based representation of the network structure grid with the approximate number of
nodes per network level for a country the size of France

another. The simulation platform can take into account dynamic reconfigurations
where, at a given point in time, a leaf node or an internal node (with its subtree)
connect to a different parent node at the upper level. This can also be used to emulate
mobile network elements like electric vehicles which might change their connection
point to the grid depending on their location. In most networks, backup lines only
exist between few, but not all the nodes. The simulation platform is able to enforce
“can connect/cannot connect” constraints to ensure that dynamic reconfigurations
only connect network elements that are physically linked with each other.

The aggregated load at any internal node in the network structure is obtained by
simply taking the sum of the loads from all children elements in the tree. Electricity
production (e.g., from distributed renewable energy sources) can also be taken into
account and modeled as negative load. The simulation platform supports separate
aggregation of load, production and net load (i.e., the difference between load and
production); moreover, load can be aggregated separately for different customer
classes. Note that the simulation platform does not model physical properties and
only aggregates active powers. In particular, line losses are neglected, and there is
no calculation of currents, voltages and other physical quantities in the network.

4.2 Representation of Load at the Meter Level

The simulation platform uses two attributes for characterizing load at the Meter
level in the network: The statistical model which is used for simulating the load
at a particular Meter, and the geographical location of the Meter. Typically, the
simulation model is chosen from a set of “customer classes”, e.g., representing
the behavior of customers signed up to different tariffs as shown in Sect. 3.2.3

Similarly, also simulation models for energy production (e.g., from wind farms)

3It is important to note that the GAMs learned on aggregated load data do not really represent load
at the individual Meter level, but more an “average consumer”. As will be shown in Sect. 6, GAMs
fit well for aggregates of 70 households or more. The purpose for using GAMs, nevertheless, at
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Fig. 4 Bayesian Belief Network representing the dependencies among the simulation models and
covariates based on localization, time and customer type information

can be deployed at the Meter level. The geographic location of the Meter allows the
simulation platform to retrieve the relevant covariates for the simulation model, e.g.,
the temperature data from the nearest weather station.

By taking into account the location of Meters, the simulation platform can rep-
resent complex spatial correlations among the simulated time series. In particular,
by using the meteorological information from the nearest weather station, nearby
Meters will use similar covariates in their simulation models. Another way to induce
correlations between Meters is via the customer class, i.e., the type of model that is
used for simulation. Figure 4 shows a Bayesian Belief Network representing the
dependencies among the simulation models and covariates based on localization,
time and customer type information.

Finally, the simulation platform allows for changes in the simulation model
assigned to a particular Meter at given points in time. This capability can be used
to represent consumers changing their behavior (e.g., due to dynamic pricing or
the usage of novel electrical appliances such as electric vehicles or heat pumps),
to model changes in the customer portfolio of an energy supplier, and to simulate
installment of new wind farms and solar systems. Use cases illustrating this
capability are described in Sects. 5.1 and 5.2.

the Meter level, is to represent shifts in the customer portfolio and changes in the consumers’
behaviors, as will be explained at the end of this subsection.



202 P. Pompey et al.

4.3 Scalability Aspects

An important aspect in the design of the architecture of the simulation platform was
scalability to enable massive-scale simulations of extended time periods much faster
than realtime (e.g., simulate one year of half-hourly data from 35 millions Meters in
less than 30 h). A key paradigm to achieve scalability was to use parallel processing
for streaming data. Streams processing is a computational model designed for
handling large amounts of data flows in a parallel and distributed manner. The
rationale is similar to assembly-lines for manufacturing: each data element goes
through different processing units, is processed and then forwarded to the next unit.
Storage of the processed elements is avoided throughout the processing pipeline and
performed only for the finished end product of the computations. IBM InfoSphere
Streams [14] is a computing platform designed to enable high-performance, parallel
and distributed processing of data streams. The challenge in designing a streaming
application is to carefully design the processing line to take maximal advantage
of distributed computing resources while keeping the volume of communication
among these resources at a reasonable level.

A full description of the design is beyond the scope of this paper. The most
important consideration was that, in the simulation platform, most of the data
volume is generated at the lowest levels of the network (the Mete’ and LVS levels
in Fig. 3). In the case of very large networks, this requires to heavily distribute the
computation at those levels. Also the volume of communication between network
elements at those low levels is significant (in particular, when aggregating loads
from the Meter to the LVS level), which requires to fuse Streams operators into
single processing elements in order to avoid impractical communication overhead.

Scalability results from experiments with the simulation platform are shown in
Fig. 5. The horizontal axis shows the number of parallel processing elements used

Fig. 5 Scalability of the
simulation platform: The
horizontal axis shows the
number of parallel processing
elements used in the
simulation, the vertical axis
the number of simulated data
points per second. As can be
seen, the platform scales
almost perfectly linearly until
the number of parallel
processing elements reaches
the number of physical CPUs
(which was 12 in this
experiment)
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in the simulation, the vertical axis the number of simulated data points per second.
As can be seen, the platform scales almost perfectly linearly until the number of
parallel processing elements reaches the number of physical Central Processing
Units (CPUs) which was 12 in this experiment. Approximately 140,000 data points
can be simulated per CPU in one second. Based on this experiment, it can be
estimated that 40 cores are sufficient to simulate one year of half-hourly data from
35 millions Meters (corresponding to 613.2 billion data points) in approximately
30 h.

5 Use Cases

This section presents three different use cases generated with the simulation
platform presented in this paper, each of them addressing a specific challenge for
utility companies from the emerging Smart Grids.

5.1 Forecasting a Time-Varying Portfolio

The first use case studies the impact of losses and gains of customers in a
utility company’s portfolio on the aggregated consumption. It is motivated by
the deregulation and competition in retail electricity markets which will allow
customers to change their electricity provider. Another goal of this use case is to
illustrate the effectiveness of the online learning algorithm for GAMs introduced in
[1] to forecast the aggregated consumption.

To simulate the changes in the portfolio, the five different customer classes
learned from the Irish CER data set (see Sect. 3.2) are used. Two different kinds
of changes are simulated in this use case: abrupt and gradual changes. Let Pt D
.pt;k/kD1;:::;5 denote the proportion of customers in the portfolio belonging to each
class at a given time t. An abrupt change occurs at time t0 if there is a significant
difference between Pt0 and Pt0C1. A gradual change is a linear transition of Pt

between two points in time t0 and t1. Losses and gains of customers can be
simulated by introducing a sixth “void” class which represents zero consumption,
and simulating customers switching from/to this class to/from any of the five tariff
options in the portfolio.

Figure 6 shows an example: Here, a portfolio of residential customers was
simulated, uniformly distributed over the five tariff classes, with a loss of 20 % of
the customers over the course of two years. The black line in the left plot shows a
simulated abrupt change, while the blue line depicts a gradual, linear loss over the
two years. The right plot illustrates the performance of forecasting algorithms in the
gradual loss scenario. Here the black line shows the actual loads, the blue line shows
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Fig. 6 Left: Simulation of a customer portfolio with a loss of 20 % of the customers over two years.
The black line shows an abrupt loss after the first year, the blue line a gradual, linear loss over the
two years. Right: Performance of forecasting algorithms in the gradual loss scenario. Here the
black line shows the actual loads, the blue line shows the forecasts obtained by a GAM with online
learning, and the red line the forecasts obtained by a GAM without online learning. As can be seen,
the online learning is able to track some of the losses, resulting in a higher forecasting accuracy

the forecasts obtained by a GAM with online learning (using the algorithm proposed
in [1]), and the red line the forecasts obtained by a GAM without online learning.
As can be seen, the online learning is able to track some of the losses, resulting
in a higher forecasting accuracy than the non-adaptive method. More generally,
this example shows the usefulness of the simulation platform for comparing the
performance of forecasting algorithms under different what-if-scenarios.

5.2 Impact of Wind Power Generation on the Distribution Grid

Managing the injection of power from renewable energy sources into the electrical
grid, particularly wind power, raises high levels of concern for utility companies.
Electricity providers and network operators need to optimize their production and
grid management, respectively, to cope with those intermittent energy sources. Due
to the high variability of wind power and its localized properties, simulations are an
important tool for making decisions in this context.

Figure 7 shows examples of the simulations generated by the platform. The blue
curves represent actual loads, generated using the same models as in the previous
use case. The green curves show the simulated amount of wind power injected into
the distribution network. For the simulation of wind power, the GAM introduced at
the end of Sect. 3.2 was used. The difference between the two curves (i.e., the net
load) is shown by the red curves. The plot on the left-hand-side displays a detail
of 1 week, while the right plot shows the evolution over one year with an increase
of 20 % in wind power capacity, corresponding to the installment and connection
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Fig. 7 Simulation of actual loads (blue), power from distributed wind farms (green), and the
resulting difference, i.e., the net loads (red). The left graph shows a detail of 1 week, the right
graph the daily averages over one year, with a simulated 20 % increase in wind power capacity

of new wind farms to the grid.4 Note that, similarly, the simulation platform also
supports the simulation of distributed power generation from photovoltaic systems.

5.3 Network Reconfigurations

In the last use case, the effect of network reconfiguration events is simulated. Such
events, where loads are transferred over alternative lines or to different substations,
become increasingly important in the operation of distribution networks where
the trend is towards a more active management of the grid in order to increase
the efficiency while coping with the challenges, e.g., due to power injections
from distributed renewable energy sources. In this paper, only reconfigurations
between the LVS and HVS network levels (see Sect. 4.1) are considered, where
an LVS node connects to a different HVS parent node. In general, however, the
simulation platform can represent reconfiguration events at any level in the network.
Interestingly, the same logic can be applied to simulate electric vehicles (nodes at
the Meters level) connecting to different charging stations (nodes at the LVS level),
e.g., related to changes in location. Note that the platform presented in this paper
can read reconfiguration events either from static files (e.g., generated by the user
based on statistical assumptions and/or historical data), or dynamically receive them
via a web server interface.

Figure 8 shows an example. The graph on the left shows how network entities
and their current status (load, outside temperature etc.) are displayed on a map.
The same interface can be used to dynamically introduce reconfiguration events by
selecting a new HVS parent node for a particular LVS node. Typically, the new

4The installment of new wind power capacity can be represented by network nodes which, at
specified time points, change their simulation model from a “void” GAM (producing zero values)
to a GAM model simulating wind farm output. Compare with the remark at the end of Sect. 4.2.
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Fig. 8 Dynamic reconfiguration events simulated by the platform. The left picture displays LVS
and HVS network elements on a map. By using the menu options in the white balloon, the
user can manually connect the LVS element to a new parent at the HVS level. Changes in the
connectivity will be reflected by the red lines displayed on the map. The right hand side shows
how reconfiguration events impact the load signal and forecasts at the parent node. Here the blue
line represents the actual load, the red line the forecasts at the parent node, and the green line the
sum of forecasts from all children nodes. After approximately half of the displayed time period,
one of the children is connected to a different parent node at the HVS level, resulting in a significant
decrease in load (blue line). While the forecasts at the parent node (red line) are unable to quickly
adapt to this change, taking the sum of forecasts from all children nodes (green line) reflects the
actual configuration. Shortly before the end of the displayed time period, the children node is
reconnected to its original parent, hence the load goes back to the original level

parent node is chosen from a list of candidates to which physical connections exist.
The blue curve in the right graph shows the load at an HVS node. As can be seen,
there is a significant load decrease after 2 weeks, which is due to a child of this
node connecting to a different parent at the HVS level. After 2 weeks, the child
reconnects to its original parent, and the load reaches the previous level. The red
curve shows the load forecasts for the HVS node using an adaptive GAM model.
While these adaptive models are very effective in tracking long-term trends and
changes (see Sect. 5.1), they are not capable to adapt to such sudden shifts. The
green curve represents the load forecasts obtained by taking the sum of the load
forecasts for the children of this HVS node. Clearly, this approach is favorable in
the presence of reconfiguration events.

6 Statistical Evaluation

The goal of this section is to evaluate how realistic are the load simulations
generated by the platform, both at an aggregated and at the individual Meter level.
Most approaches in the literature for this purpose use statistical hypothesis tests
to assess whether the simulated and the real data have the same distribution. For
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instance, in [15] a Mann-Whitney U test is used to test the similarity of the real and
simulated data distributions. In [17], different statistics of the simulated and real
data set are compared to assess how realistic the simulations are. The evaluation
protocol in this paper is based on a classifier which aims at discriminating real and
simulated data. The more difficult it is for the classifier to distinguish these data,
the more realistic the simulations are. This approach is motivated by previous work
which combines supervised and unsupervised approaches in order to evaluate the
quality of the unsupervised task. For instance, the cascade evaluation [4] enriches a
supervised dataset with the cluster id of each example. Then the cluster id is used by
a classifier as an additional explicative variable. The cascade evaluation estimates
the quality of the unsupervised task by measuring the improvement of the classifier
when the cluster id is used. Another example is the use of a classifier to detect
changes in the distribution of a data stream [2]. In this approach, two time windows
are used to capture the “current” and the “normal” behavior of the observed system,
respectively. Changes are quantified by the ability of the classifier to discriminate
the both classes.

6.1 Experimental Protocol

The goal of the first experiment in this section is to assess the accuracy of GAMs
depending on the size of the groups over which the load is aggregated. Same as in
Sect. 3.2, the data set for this experiment is the Irish CER Smart Metering trial, and
the GAM is given by Eq. (1). For aggregation sizes between k D 10 and k D 800,
a random sample of k meters is drawn from the CER data set and then aggregated
into a single time series. A GAM is learned on the first 70 % of this time series,
then the model’s Mean Squared Error (MSE) and standard deviation of the error
(Sd) is calculated on the remaining 30 % of the time series. Overall, this procedure
is repeated n D 1;000 times for each aggregation size k, and the average MSE and
Std are computed for each k.

The results of this experiment are shown in Fig. 9. As to be expected, the models
become more accurate (i.e., the MSE decreases) with increasing sample sizes,
essentially illustrating the Law of Large Numbers which states that aggregating
independent random variables following the same distribution yields stabilized
variables around the mean value. Noteworthy is the inflection point in the Sd curve
around the sample size k D 70: Beyond this point, the standard deviation of the
model errors is slightly increasing. Similarly, the decrease in the MSE beyond this
point is much less pronounced. A possible explanation is that the distributions
of the individual meter signals are not identical, therefore, if too many signals
are aggregated, information specific to some meters is lost while the benefit of
aggregation to reduce noise does not compensate that loss of information. Therefore,
the variance of a model learned on that sample will increase.
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Fig. 9 Accuracy of GAM
depending on the size of
randomly aggregated groups
of meters, measured in terms
of Mean Squared Error
(MSE) and Standard
deviation of the error (Sd)

This experiment suggests two directions how to improve the quality of the
simulations. First, the GAM approach is effective for simulating aggregations of
70 (or more) households, but not suitable for smaller sizes. Hence, for those low-
level aggregations, other modeling approaches will be required. Second, blindly
aggregating meters can lead to an information loss and an increase of variance of the
error. Therefore, clustering meters into similar classes could improve the modeling
accuracy.

Next, the effectiveness of this clustering approach using the k-means algorithm
with the Euclidean distance is investigated. The clustering of the meters is used to
build a generative model which is obtained by learning different GAMs for the
aggregation of meters from each cluster. The k-means algorithm is parameterized in
two different ways:

1. Naive setting: The number of clusters is arbitrarily fixed at k D 10. The
corresponding generative model is used as a base line.

2. Taking into account GAM performance: Using the results from Fig. 9, an
aggregation size of 70m per cluster is found to be optimal, because it yields
a good performance in terms of the MSE and the minimal standard deviation of
errors. Correspondingly, the number of clusters is fixed at k D 60, leading to an
average group size of 70 m (n.b.: the total number of residential meters in the
data set is approximately 4,000).

For both settings, the k-means algorithm is applied to one year of half-hourly meter
data.
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6.2 Evaluation Protocol

The generative model obtained from the k-means clustering is first evaluated on
simulations of the aggregated consumption. In particular, the sum of the 4,000
simulated individual meter signals is compared with the sum of the 4,000 real
signals from the CER data set over the same time period. The Mean Absolute
Percentage Error (MAPE) and the Root Mean Square Error (RMSE) are calculated
as evaluation criteria.

In order to assess how realistic the simulated individual meter signals are, a
classifier for discriminating real and simulated signals is used. The classification
task is defined as follows: the data set consists of 8,000 time series (4,000 simulated
and 4,000 real ones), each described by 336 numerical explicative variables (denoted
by vi), corresponding to 48 data points per day over 7 days. The target class variable
c is equal to “0” for the simulated signals, and equal to “1” for the real ones. The data
set is split into two disjoint parts: 70% of the data are used for training, and 30% for
testing. For the classification, a simple Naive Bayes classifier is used. In particular,
the range of each explicative variable vi is discretized into 10 intervals, such that the
numbers of training observations lying in each interval are equal. The conditional
probabilities P.vijc/ for i D 1; 2; : : : ; 336 are estimated by the corresponding
sample frequencies, and then P.cjv1 : : : v336/ is computed by applying Bayes’ rule.
The classifier is evaluated by using the Area Under Curve (AUC) metric [10]. Recall
that a perfect classifier reaches an AUC equal to 1, and a random classifier an AUC
equal to 0:5.

6.3 Results

Table 1 reports the RMSE and MAPE of the GAMs for the two different numbers
of clusters k D 10 and k D 60. These two metrics assess the ability of the
simulator to fit aggregated individual load signals. In both cases, the value of k has
an insignificant impact on the RMSE and the MAPE. Note that a MAPE of 10%
is relatively high, however, it needs to be taken into account that the GAMs were
learned on small aggregates and not at the national level.

Table 1 also reports the AUC score of the Naive Bayes classifier for the generative
models with k D 10 and k D 60. In both cases the classifier is able to separate
almost perfectly the simulated signals from the real signals, which underlines the
difficulty of building a realistic simulator for individual load signals. This result
can be intuitively explained by the fact that the GAMs in this experiment were
learned on aggregated loads, which are much smoother than the individual signals.
The Gaussian noise added to the simulated signals fails to exactly reproduce the
characteristics of individual consumption signals. Alternative approaches will be
discussed in the conclusions of this paper. Nevertheless, a significant drop in the
classifier accuracy from AUC 0:927 for k D 10 to 0:806 for k D 60 can be observed.
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Table 1 Comparative evaluation of generative models based on k D 10 and k D 60 clusters. The
MAPE and RMSE measure how accurately the models are fitting the real data, while the AUC
indicates how difficult it is for a classifier to distinguish between real and simulated data (hence,
how realistic the simulations are). Note the drop in the classifier accuracy from AUC 0:927 for
k D 10 to 0:806 for k D 60, which indicates that optimizing the granularity of the generative
model can significantly improve the authenticity of simulations

Criterion k D 10 k D 60

How accurate? Mean Absolute Percentage Error (MAPE) 10.81 % 10.73 %

Root Mean Squared Error (RMSE) 283.21 283.05

How realistic? Area Under Curve (AUC) 0.927 0.806

This means that using the clustering of consumer signals in the generative model can
significantly improve the authenticity of the simulated signals.

7 Conclusion

In this paper, a platform for massive-scale simulation of electrical load in Smart
Grids has been presented. The paper has provided details on the underlying statisti-
cal methodology, based on Generalized Additive Models (GAMs), and explained
the architecture of the platform, with particular emphasis on scalability aspects.
Experiments have shown the scalability and computational power of the platform,
which is able to simulate one year of half-hourly load data for the entire electrical
network in a country the size of France. The paper has presented three different use
cases generated by the simulation platform, illustrating the value of the platform for
power system engineers, statisticians and econometricians to study various what-
if-scenarios, e.g., related to dynamic reconfigurations of the electrical network,
changes in the customer portfolio and consumers’ behavior, and increasing capacity
of distributed renewable energy sources such as solar and wind.

In an evaluation study, the paper has shown that GAMs provide realistic
simulations for aggregated load signals of at least 70 individual households.
However, it has been demonstrated that novel modeling approaches are needed
for simulating lower-level aggregates. Possible ideas for future research in this
direction are: (i) using point processes (e.g., non-homogeneous Poisson); (ii) taking
into account ancillary information (e.g., higher-resolution meteorological data and
socio-economic indicators); (iii) considering GAMs with random effects and spatio-
temporal correlations.



Massive-Scale Simulation of Electrical Load 211

References

1. Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012). Adaptive learning of smoothing functions:
Application to electricity load forecasting. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges,
L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems
(Vol. 25, pp. 2519–2527). Curran Associates, Inc.

2. Bondu, A., & Boullé, M. (2011). A supervised approach for change detection in data streams.
In IJCNN (International joint conference on neural networks), San Jose (pp. 519–526). IEEE.

3. Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and
model fitting (with discussion). Statistical Science, 22, 477–522.

4. Candillier, L., Tellier, I., Torre, F., & Bousquet, O. (2006). Cascade evaluation of clustering
algorithms. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), 17th European conference
on machine learning (ECML’2006), Berlin (Volume LNAI 4212 of LNCS, pp. 574–581).
Springer.

5. Commission for Energy Regulation. (2011). Electricity smart metering customer behavior
trials findings report (Technical report). Commission for Energy Regulation, Dublin.

6. Commission for Energy Regulation. (2011). Results of electricity cost-benefit analysis,
customer behavior trials and technology trials (Technical report). Commission for Energy
Regulation, Dublin.

7. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimated
the correct degree of smoothing by the method of general cross validation. Numerische
Mathematik, 31, 377–403.

8. dos Santos, L. D. P., Picard, M. L., da Silva, A. G., Worms, D., Jacquin, B., & Bernard, C.
(2012). Massive smart meter data storage and processing on top of Hadoop. In International
workshop on end-to-end management of big data, VLDB (International conference on very
large data bases), Istanbul.

9. Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric
additive model. IEEE Transactions on Power Systems, 27(1), 134–141.

10. Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining
researchers (Technical report HPL-2003-4). HP Labs.

11. Goude, Y., Nedellec, R., & Kong, N. (2013, to appear). Local short and middle term electricity
load forecasting with semi-parametric additive models. IEEE Transactions on Smart Grid, 5(1),
440–446.

12. Hastie, T., & Tibshirani, R. (1986). Generalized additive models (with discussion). Statistical
Science, 1, 297–318.

13. Hastie, T., & Tibshirani, R. (1990). Generalized additive models. Boca Raton: Chapman &
Hall/CRC.

14. International Technical Support Organization. (2013). Addressing data volume, velocity, and
variety with IBM InfoSphere streams V3.0. http://www.redbooks.ibm.com/redbooks/pdfs/
sg248108.pdf. March 2013.

15. Muratori, M., Roberts, M., Sioshansi, R., Marano, V., & Rizzoni, G. (2013). A highly resolved
modeling technique to simulate residential power demand. Applied Energy, 107(C), 465–473.

16. Nedellec, R., Cugliari, J., & Goude, Y. (2014, to appear). Electric load forecasting and
backcasting with semi-parametric models. International Journal of Forecasting, 30(2), 375–
381.

17. Paatero, J. V., & Lund, P. D. (2006). A model for generating household electricity load profiles.
International Journal of Energy Research, 30(5), 273–290.

18. Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized
additive models. In Proceedings of ISAP power, Hersonissos (pp. 593–600).

19. Swan, L., & Ugursal, V. (2009). Modeling of end-use energy consumption in the residential
sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8),
1819–1835.

20. Wood, S. (2001). mgcv: GAMs and generalized ridge regression for R. R News, 1(2), 20–25.

http://www.redbooks.ibm.com/redbooks/pdfs/sg248108.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248108.pdf


212 P. Pompey et al.

21. Wood, S. (2004). Stable and efficient multiple smoothing parameter estimation for generalized
additive models. Journal of the American Statistical Association, 99, 673–686.

22. Wood, S. (2006). Generalized additive models, an introduction with R. Boca Raton: Chapman
and Hall/CRC.

23. Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation
of semi-parametric generalized linear models. Journal of the Royal Statistical Society Series
(B), 73(1), 3–36.



Spot Volatility Estimation for High-Frequency
Data: Adaptive Estimation in Practice

Till Sabel, Johannes Schmidt-Hieber, and Axel Munk

Abstract We develop further the spot volatility estimator introduced in Hoffmann
et al. (Ann Inst H Poincaré (B) Probab Stat 48(4):1186–1216, 2012) from a practical
point of view and make it applicable to the analysis of high-frequency financial
data. In a first part, we adjust the estimator substantially in order to achieve good
finite sample performance and to overcome difficulties arising from violations
of the additive microstructure noise model (e.g. jumps, rounding errors). These
modifications are justified by simulations. The second part is devoted to investigate
the behavior of volatility in response to macroeconomic events. We give evidence
that the spot volatility of Euro-BUND futures is considerably higher during press
conferences of the European Central Bank. As an outlook, we present an estimator
for the spot covolatility of two different prices.

1 Introduction

Semimartingales provide a natural class for modeling arbitrage-free log price
processes (cf. [23, 24]). In this context, estimation of the volatility and its surrogates
such as integrated volatility or higher moments is inevitable for many purposes as for
example hedging or option pricing. Under a semimartingale assumption, estimation
of the volatility can be done using realized quadratic variation techniques (cf. for
example [31]). During the last decades, however, technical progress of trading
platforms allowed to trade and to record data on very high frequencies. On these fine
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scales, microstructure effects due to market frictions have to be taken into account
(for an overview of such market frictions cf. [34] and [43]). Following Zhou [55],
these are often modelled by an additive noise process in the literature. Incorporating
microstructure noise, our observations are given by

Yi;n D Xi=n C �i;n; i D 1; : : : ; n (1)

where the (latent) log price process X is considered to be a continuous Itô
semimartingale, that is dXt D �tdWtC“drift“, with W a Brownian motion. The
quantity of interest, the spot volatility s  �2s (which is sometimes referred to as
squared spot volatility), has to satisfy some regularity conditions, in order to make
everything well-defined. Adding the noise process .�i;n/ accounts for microstructure
effects.

Microstructure noise leads to severe difficulties for estimation: As the noise
is generally rougher than the original log price process X, methods based on
increments of the data become inconsistent as the resulting estimators are first order
dominated by noise. For example, the realized quadratic variation does not converge
to the integrated volatility as the sample size increases (cf. [8]). Rather, it tends to
infinity (cf. [55]). See also Ait-Sahalia and Yu [2] for a comprehensive empirical
analysis of the noise level of different NYSE stocks.

Beginning with the work of Ait-Sahalia et al. [3] and Zhang et al. [54], various
sophisticated regularization methods have been developed in order to estimate the
integrated volatility under microstructure noise, cf. Zhang [52], Fan and Wang [30],
and Barndorff-Nielsen et al. [9], to name just a few. Of particular interest in this
work is the pre-average technique proposed in Podolskij and Vetter [46] and Jacod
et al. [38].

These methods target on integrated volatility, that is the spot volatility integrated
over a fixed time interval. Spot volatility estimation, that is pathwise reconstruction
of the function s  �2s itself, is more difficult and therefore much less studied,
since naive numerical differentiation of the integrated volatility estimators is not
consistent without sophisticated additional regularization. To obtain consistent
estimators, one needs to combine tools from nonparametric statistics and stochastic
analysis. In Munk and Schmidt-Hieber [44], an estimator of the spot volatility
was proposed, which is based on a Fourier series expansion of �2. Although this
estimator could be shown to be asymptotically rate-optimal in Sobolev ellipsoids
and hence is a first step towards a rigorous approach to spot volatility estimation, it
suffers from various drawbacks. First, it obeys Gibb’s effects which are well- known
for Fourier estimators given non-smooth signals. Secondly, it requires knowledge of
the smoothness of the underlying spot volatility, which is unknown in practice. To
overcome these issues, Hoffmann et al. [37] introduced a wavelet estimator of �2.
This estimator fully adapts to the smoothness of the underlying function and is rate-
optimal over Besov classes. However, notice that Hoffmann et al. [37] deals with
the abstract estimation theory in model (1) without making a particular connection
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to finance. We fill this gap in the current paper by specifically tuning the estimator
for application to stock market data, while at the same time keeping the procedure
purely data-driven and adaptive. In the following, we refer to the modified estimator
as Adaptive Spot Volatility Estimator (ASVE).

The key idea of the estimation method is to exploit the different smoothness
properties of the semimartingale and the noise part: In a first step, we compute
weighted local averages over data blocks of size c

p
n, for a constant c > 0

independent of n. We show that the squared averages can be thought of as being
observations in a regression type experiment. This is essentially the pre-averaging
trick presented in Jacod et al. [38] and Podolskij and Vetter [46]. On one hand, local
averaging reduces the impact of the noise (by a CLT type argument), while at the
same time, the semimartingale part is (up to some small bias) not affected due to
its a.s. Hölder continuity. On the other hand, treating the squared averages as new
observations results in a reduction of the sample size from n to c�1pn. Therefore,
pre-averaging acts here as a denoising technique. In a second step, the pre-averaged
data are decomposed via discrete wavelet transform and a robust thresholding
procedure is applied. A detailed explanation concerning the construction of ASVE
is given in Sect. 2.

Let us summarize in the following the main difficulties that we address in order
to make the estimator applicable to real financial data.

1. Thresholding: One of the main challenges is to find a suitable and robust wavelet
thresholding method. We argue in Sect. 2.4 that rewriting the initial model via the
pre-average transform yields, as outlined above, a regression model with errors
following approximately a centered �21-distribution. Furthermore, the errors are
dependent and heteroscedastic causing severe difficulties for wavelet estimation.
Therefore, a crucial point in our method is the choice of the thresholding
procedure. We address this problem in Sect. 2.5.

2. Parameter tuning: ASVE requires to pick a bandwidth and a weight function.
The specific choice will heavily influence the finite sample performance and even
the asymptotic variance. In Sect. 3.1, we propose a method to chose these values
based on an explicit computation of the asymptotic variance in a toy model.
In a second part, the finite sample performance for these choices is studied in
simulations.

3. Model violations: Given real data, model violations often occur. These include
rounding errors, which is a non-additive microstructure effect as well as various
types of jumps (cf. [1, 5]). In Sect. 4.2, we show that rounding has almost no
impact on the performance of the estimator, while the presence of jumps is indeed
a very delicate problem. In order to eliminate jumps in the price, we propose in
Sect. 3.2 a specific pre-processing of the data.

4. Trading times: We have to deal with data recorded at non-equidistant time points.
One possibility to ‘convert’ data into the equispaced framework of model (1)
is to subsample the process, that is to sample for example every 10th second.
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Fig. 1 Application to real data. Upper panel: Price of FGBL data on June, 4th 2007. Lower panel:
Adaptive spot volatility estimator (ASVE)

In Sect. 5, we propose another method by defining different time schemes.
Especially, we distinguish between real time and tick time and clarify their
connection.

While Sect. 3 is devoted to calibration of ASVE especially focussing on the
issues mentioned above, in Sect. 4, we evaluate ASVE by numerical simulations.
This includes a stability analysis regarding model violations and different types of
microstructure noise.

As an illustrating example for a real data application, Fig. 1 shows Euro-BUND
(FGBL) prices for June 4th, 2007 together with the reconstructed volatility. Notice
that ASVE appears to be locally constant. This is due to the specific wavelets which
are the building blocks of this estimator. Note further, that ASVE is still quite
regular, while spot volatility is commonly assumed to have no finite total variation.
This relies on the fact that microstructure noise induces additional ill-posedness to
the problem which leads to relatively slow convergence for any estimator (cf. [47]).
Therefore, only key features of the spot volatility can be reconstructed, while fine
details cannot be recovered by any method.

In Sect. 6, a more extensive investigation of real data is done concerning the
reaction of spot volatility in answer to macroeconomic announcements: We study
characteristics of the volatility of FGBL prices during the monthly ECB press
conference on key interest rates. We observe that the spot volatility as well as the
volatility of the volatility is higher during these conferences.

Finally in Sect. 7, we discuss extensions of ASVE to spot covolatility estimation.
The proposed estimator is implemented within the Matlab based Spotvol toolbox,

available at http://www.stochastik.math.uni-goettingen.de/SpotvolToolbox.

http://www.stochastik.math.uni-goettingen.de/SpotvolToolbox
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2 The Adaptive Spot Volatility Estimator (ASVE)

2.1 Wavelet Estimation

A common tool for adaptive, nonparametric function estimation is wavelet thresh-
olding (cf. for example [25] and [26], for some early references). Assume our signal,
say f , is a function in L2Œ0; 1�. Then, for given scaling function ' and corresponding
wavelet  , the function f can be decomposed into

f D
X

k

˝
f ; 'j0;k

˛
'j0;k C

1X

jDj0

X

k

˝
f ;  j;k

˛
 j;k; j0 2 N; (2)

where the sum converges in L2Œ0; 1�. Here, we denote h f ; gi D R 1
0

f .x/g.x/dx,
'j;k.�/ D 2j=2'.2j � �k/, and  j;k.�/ D 2j=2 .2j � �k/. The scaling and wavelet
coefficients are

˝
f ; 'j0;k

˛
and

˝
f ;  j;k

˛
, respectively. See Daubechies [22] and Cohen

[18] for an introduction to wavelets, Cohen et al. [19] for wavelets on Œ0; 1�, and
Wassermann [51] for a reference to wavelets in statistics.

Suppose that we have estimators for scaling and wavelet coefficients, denoted by
3h f ; 'j0;ki and 2h f ;  j;ki, respectively. A thresholding estimator for f is given by

Of D
X

k

3h f ; 'j0;ki'j0;k C
j1X

jDj0

X

k2Z
T
�
2h f ;  j;ki

�
 j;k; (3)

for some thresholding procedure T . Traditional choices for T include hard
thresholding (THT.x/ D x1fjxj>t�g) and soft thresholding (TST.x/ D .x�t�/1fx>t�gC
.x C t�/1fx<�t�g), both for some threshold level t�. The idea of term-by-term
thresholding is to keep large coefficients while discarding small ones for which one
cannot be sure that they contain significant information about the true signal.

Even though coefficientwise thresholding has many appealing theoretical prop-
erties, it nevertheless might lead to unstable reconstructions if applied to real
data. Robustification of wavelet thresholding is typically based on variations of
the following idea. Assume for the moment that  is the Haar wavelet, which has
compact support on Œ0; 1�. Then,

˝
f ;  j;k

˛
depends only on f restricted to the interval

Œ2�jk; 2�j.k C 1/�. If the absolute value of the estimate of
˝
f ;  j;k

˛
is large, while

the absolute values of the estimates of nearby coefficients are small, then it is likely
that this is due to an outlier and hence the wavelet coefficient should be discarded
as well.

There are two types of methods for detecting such situations. Tree-structured
wavelet thresholding using the hierarchical pattern of multiresolution analysis (cf.
for example [7]) and block thresholding methods, which are based on neighboring
coefficients for fixed level j. For our problem, SURE block thresholding (cf. [14])
turns out to work well. For more details, we refer to Sect. 2.5 as well as Sect. 4.
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2.2 Model

Consider the process X defined via dXt D �tdWt C btdt and X0 D 0 on a
filtered probability space .˝;F ; .Ft/t�0;P/, where W denotes a standard Brownian
motion. The processes � and b are assumed to be Ft-adapted and càdlàg. We will
always suppose that � and b are chosen in such a way that a unique weak solution
of the SDE above exists.

Recall (1), that is we observe

Yi;n D Xi=n C �i;n; i D 1; : : : ; n: (4)

While X should be interpreted as the true, uncorrupted log price process, the
noise process .�i;n/ models the microstructure effects. We allow for inhomogeneous
variation in the noise, that is

�i;n D �. i
n ;Xi=n/�i;n; (5)

where .�i;n/i is an i.i.d. sequence of random variables independent of X. Notice
that the noise level may depend on the price itself. For identifiability, we assume
further that .�i;n/i is centered and second moment normalized, that is E�2i;n D 1 for
i D 1; : : : ; n.

To summarize, Yi;n is the observed log price, which is the sum of the latent true
log price process X at time point i=n under additional microstructure noise �i;n.

While the drift b is of only minor importance for high-frequency data, the process
�2 is the key quantity in this model as it drives the fluctuation and variation behavior
of the process. Although under debate, the additive microstructure noise model (4)
is commonly believed to perform very well in practice, as it is able to reproduce
many stylized facts found in empirical financial data. Moreover, to the best of our
knowledge, it is the only model incorporating microstructure noise for which a
theory of pathwise estimation of the volatility exists.

2.3 Pre-averaging and Estimation of Series Coefficients

The key step behind the construction of ASVE is a transformation of the data, which
allows to rewrite the original problem as a nonparametric regression problem. This
transformation is based on the pre-averaging method as introduced in Jacod et al.
[38] and Podolskij and Vetter [46]. Since then, pre-averaging became an important
tool to tackle estimation under microstructure. For an extension of pre-averaging to
data measured on an endogenous time grid, cf. Li et al. [41]. Recently, the practical
performance of these methods in estimation of integrated volatility was investigated
in Hautsch and Podolskij [35].
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In a first step, let us introduce a class of suitable weight functions (cf. [37],
Definition 3.1).

Definition 1 (Pre-average function) A piecewise Lipschitz continuous function
� W Œ0; 2�! R satisfying �.t/ D ��.2 � t/, for all t 2 Œ0; 1� and

�
2

Z 1

0

�
Z s

0

�.u/du
�2

ds
�1=2 D 1 (6)

is called a (normalized) pre-average function.

Notice that whenever we have a function Q� satisfying all assumptions of the
previous definition except (6), then by dividing Q� through the l.h.s. of (6), we
obtain a proper pre-average function. Next, we define local averages using weights
generated from pre-average functions.

Define m D n=bn1=2=cc for some fixed c > 0. Notice that m D c
p

nC O.1/ and
that m divides n. The divisibility property allows to get rid of some discretization
errors later. For i D 2; : : : ;m, set

Yi;m.�/ WD m

n

X

j
n 2Œ i�2

m ; i
m �

�
�
m j

n � .i� 2/
�
Yj;n: (7)

Further, let us introduce

b.�;Y�/i;m WD m2

2n2
X

j
n 2Œ i�2

m ; i
m �

�2
�
m j

n � .i� 2/
��

Yj;n � Yj�1;n
�2

which plays the role of a bias correction. For any L2-function g, the estimator of the
scalar product h�2; gi is given by its empirical version applied to the bias-corrected

squares Y
2

i;m via

2h�2; gi WD
mX

iD2
g
�

i�1
m

�

Y
2

i;m � b.�;Y�/i;m
� D 1

m

mX

iD2
g
�

i�1
m

�
Zi;m; (8)

where

Zi;m WD m



Y
2

i;m � b.�;Y�/i;m
�
: (9)

Definition 2 The random variables Zi;m, i D 1; : : : ;m, are called pre-averaged
values.

As we will show below, the pre-averaged values can be interpreted as observa-
tions coming from a nonparametric regression experiment with the spot volatility
being the regression function. For g 2 f'j0;k;  j;kg, we obtain estimates for the
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scaling/wavelet coefficients h�2; 'j0;ki and h�2;  j;ki, respectively. In practice, fast
computations of these coefficients can be performed using a discrete wavelet
transform (DWT).

2.4 A Heuristic Explanation

In this part, we will present the main idea underlying the construction of the
estimator, which is to think of the pre-averaged values .Zi;m/i as coming from a
nonparametric regression problem. First, note that for i D 2; : : : ;m,

Yi;m.�/ �
Z i

m

i�2
m

m�
�
ms � .i� 2/�XsdsC �i;m

with

�i;m D m

n

X

j
n 2Œ i�2

m ; i
m �

�
�
m j

n � .i � 2/
�
�j;n:

Now, let �.u/ D � R u
0
�.v/dvIŒ0;2�.u/. By Definition 1, �.0/ D �.2/ D 0. Hence,

�0.ms � .i� 2// D m�.ms� .i� 2// and using partial integration

Yi;m �
Z i

m

i�2
m

�
�
ms � .i� 2/�dXs C �i;m:

It is easy to verify that �i;m D Op.
p

m=n/ and E�2i;m D Eb.�; ��/i;m � Eb.�;Y�/i;m.

For the diffusion term,
R i=m
.i�2/=m�.ms�.i�2//dXs D Op.m�1=2/ and by Itô’s formula

there exists Ui;m, such that EUi;m D 0; Ui;m D OP.m�1/, and

� Z i
m

i�2
m

�
�
ms � .i � 2/�dXs

�2 D R
i
m

i�2
m

�2
�
ms � .i� 2/��2s dsC Ui;m (10)

� 1
m�

2
.i�1/=m C Ui;m; (11)

using the definition of a pre-average function for the last step. Recall (9). Then,

EŒZi;m � �2.i�1/=m� � 0 and Zi;m � �2.i�1/=m D OP

�
1 C m

n1=2
C m2

n

�
D OP.1/, since

m D c
p

nC O.1/. To summarize,

Zi;m D �2.i�1/=m C Q�i;m; i D 2; : : : ;m; (12)
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with EQ�i;m � 0 and Q�i;m D OP.1/. Hence, we may interpret .Zi;m/iD2;:::;m as a random
vector generated from a regression problem with regression function �2 and additive
(dependent) noise Q�i;m.

Let us conclude this section with the following remarks.

– Notice that the estimator of2h�2; gi in (8) is just the empirical version of the scalar
product h�2; gi in the regression model (12).

– By some CLT argument, the distribution of Yi;m as defined in (7), will converge
to a Gaussian law. But since we are considering the squares of Yi;m in (9), the
noise process in (12) will not be Gaussian. Rather, one can think of thee�i;m’s as
centered �21 random variables.

– The variance of Q�i;m (which is here approximately the second moment) is (up to
some remainder terms) a quadratic function in �i=n and �.i=n;Xi=n/. Therefore,
the regression problem (12) is strongly heteroscedastic. This point is separately
addressed in Sect. 2.5.

– Rewriting the original problem as regression model, as outlined above, reduces
the effective number of observation from n to m and thus to the order n1=2.
This implies that if we can estimate a quantity in the regression model (for
example pointwise estimation of the regression function �2) with rate m�s,
given m observation, we obtain the rate of convergence n�s=2 in the original
model (4). Therefore, we always lose a factor 1=2 in the exponent of the
rate of convergence. It is well-known that this is inherent to spot volatility
estimation under microstructure noise. As proved in Munk and Schmidt-Hieber
[44], Reiß[47] for various situations, these rates are optimal.

2.5 Thresholding and Construction of ASVE

Having the estimates of the wavelet coefficients at hand, let us outline the thresh-
olding procedure. The proposed method extends SURE block thresholding as
introduced in Cai and Zhou [14] to heteroscedastic problems.

In order to formulate the thresholding estimator define, for a vector v, Stein’s
unbiased risk estimate (SURE) as

SURE.v; �;L/ D LC �2 � 2�.L � 2/
kvk22

Ifkvk22>�g C .kvk22 � 2L/Ifkvk22��g:

First, we start with SURE block thresholding for homoscedastic data. For

convenience, set Odj;k D3h�2;  j;ki.
IN: j0; j1, .Odj;k/j0� j� j1;k

(A) For every fixed resolution level j0 � j � j1 define Dj as the set of wavelet
dilations fk W k 2 Z; Œ0; 1�\supp j;k ¤ ¿g. Denote by Tj the mean of the random

variables f.Odj;k/
2�1 W k 2 Djg and consider the threshold 
.u/ D u�1=2 log3=22 .u/.
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(B) For any given vector v 2 R
d and positive integer L define the qth block (of

length L) as v.q;L/ D .v.q�1/LC1; : : : ; vqL^d/, q � d=L. Let d D jDjj. In particular,

denote by .Odj;k/
.q;L/
k2Dj

the qth block of length L of the vector .Odj;k/k2Dj and define

.�?;L?/ D arg min
1�L�d1=2

.L�2/_0���2L log d

bd=LcX

qD1
SURE

�
.Odj;k/

.q;L/
k2Dj

; �;L
�
;

where b:c is the floor function.
(C) For every k 2 Dj, the block thresholded (and standardized) wavelet coefficient

is given by

T .Odj;k/ D
(
.1 � .2 log d/ Od�2

j;k /C Odj;k; if Tj � 
.d/;
�
1 � �?.Odj;`/

.q.k/;L?/
`2Dj


�2
2

�

C Odj;k; if Tj > 
.d/;

with q.k/ the (unique) block of length L? including k.
OUT: T .Odj;k/j0� j� j1;k.

SURE block thresholding optimizes levelwise over the block size L and the
shrinkage parameter � in step (B). However, it is well-known that this method
does not yield good reconstructions in the case where only a few large wavelet
coefficients are present. In order to circumvent these problems, in step (C), soft
shrinkage is applied if Tj is small.

As an additional difficulty, we have to deal with errors in (12), that are
heteroscedastic with unknown variance. Therefore, we normalize the wavelet
coefficients by its standard deviation in a first step, that is for sets Ij;k, chosen below,
define the empirical standard deviation on Ij;k by

Osj;k WD
h 1

jIj;kj � 1
X

i
m 2Ij;k

�
Zi;m � 1

jIj;k j
X

i
m 2Ij;k

Zi;m

�2i1=2
(13)

and the standardized wavelet coefficients by Qdj;k WD Odj;k=Osj;k. Now, we run the SURE
algorithm applied to .Qdj;k/j0� j� j1;k instead of .Odj;k/j0� j� j1;k. In a final step we need
to invert the standardization. Thus, the thresholded wavelet coefficients are given by
.Osj;kT .Qdj;k//j0� j� j1;k. Together with the (truncated) series expansion (2), we have

Definition 3 ASVE is defined by

O�2.t/ D
X

k

3h�2; 'j0;ki'j0;k.t/C
j1X

jDj0

X

k2Dj

Osj;kT .Qdj;k/ j;k.t/; t 2 Œ0; 1�:

For estimation of the standard deviations Osj;k, one would instead of (13) rather
prefer a robust estimate based on the median (cf. [14], p. 566) or to use variance
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stabilizing transformations. Since the error variables �i;m in (12) do not follow a
certain prespecified distribution, these approaches are not easily applicable here.
Therefore, we rely on (13) and robustify our estimates by the choice of Ij;k, as
described in the next paragraph:

We pick some jI , j0 � jI � j1. If j � jI , we define Ij;k as the support of  j;k. For
high resolution levels j > jI , we enlarge the support of  j;k such that the length of
Ij;k never falls below 2�jI . This guarantees some minimal robustness of the method.

Block thresholding uses the normality of the wavelet coefficients at various
places. Thus, to ensure good performance, we need to check whether the distribution
of the estimated wavelet coefficients follow approximately a Gaussian law. This
is not obvious, because, as we argued in Sect. 2.4, the errors in the regression
model (12) behave like centered �21 random variables. However, since the estimator
def est fonct lin is a weighted average of the observations, we indeed find ‘almost’
Gaussian wavelet coefficients in simulations. Thus, we do not need to include a
further correction to account for the non-Gaussianity. Notice that these issues are
closely linked to nonparametric variance estimation (cf. [13]).

3 Calibration and Robustness

3.1 Optimal Tuning Parameters

In this section we propose empirical rules for choosing some variables in the ASVE
procedure. Notice that the method requires to pick a pre-average function � and
a constant c > 0 defining the number of blocks m. By computing the asymptotic
variance of ASVE in a simplified model, we derive some insight which pre-average
functions might work well. In particular, this shows that � and c should be chosen
dependent on each other, that is c D c.�/. In a second step, we study the finite
sample performance of these choices for simulated data.

We start with investigating different choices for � and c D c.�/ in a simplified
version of model (4) for which the leading term of the mean squared error can be
calculated explicitly.

Lemma 1 Work in model (4) with constant �; � and �i;n 	 N .0; 1/ i.i.d. Then,

MSE.2h�2; 1i/ D 4
c

� R 1
0
�2�.u/�.1� u/� .�c/2�.u/�.1� u/du

�2
n�1=2

C 2
c

�
�2 C 2.�c/2k�k2

L2Œ0;1�

�2
n�1=2 C o.n�1=2/:

A proof of this lemma can be found in Appendix A. Given a pre-average function
�, it allows us to compute the corresponding optimal constant c? by minimizing
the asymptotic MSE. In general c? is a multiple of the signal-to-noise ratio (SNR),
that is c? Dconst: � �

�
, where the constant depends on �. In Table 1, the value
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Table 1 Different choices
for pre-average functions, the
optimal tuning parameter c?

as well as the asymptotic
constant of the MSE for
estimation of the integrated
volatility

limn n1=2.��3/�1

i �i.s/ D c?�=� 	 � MSE 	
1 �

2
cos. �

2
s/ 0.49 10.21

2 3�
2

cos. 3�
2

s/ 0.17 31.36

3
q

3
2
.IŒ0;1/.s/� I.1;2�.s// 0.35 10.74

4 �
p

3
sin.�s/ 0.30 12.52

5 2�
p

3
sin.2�s/ 0.19 24.35

6 3
p

5

2
.1� s/3 0.47 20.41

7
p

91

2
.1� s/5 0.38 20.36

of this constant for different pre-average functions and the leading term for the
corresponding MSE are derived.

It is well-known (cf. [15, 32, 33]) that the bound MSE.2h�2; 1i/ D 8��3n�1=2.1C
o.1// is asymptotically sharp in minimax sense. However, this minimum cannot
be achieved within the class of estimators introduced in Sect. 2. Using calculus of
variations, we find that the best possible choice for the simplified model introduced
above is �.�/ D � cos.��=2/=2. According to Table 1, the corresponding MSE is
10:21��3n�1=2.1 C o.1// achieving the optimal variance 8��3n�1=2.1 C o.1// up
to a factor 1:27.

Computation of c? requires knowledge of the SNR, that is �=� . As this is
unknown, we suggest to estimate the SNR in a first step from the data via

bSNR D
 
Bh�2; 1i
1h�2; 1i

!1=2

; (14)

with rescaled quadratic variation 1h�2; 1i D .2n/�1
Pn

iD2.Yi;n � Yi�1;n/2 and

Bh�2; 1i WD
QmX

iD2

�
Y
2

i; Qm � b.�;Y�/i; Qm
�
; with Qm D bn1=2c

as preliminary estimator of h�2; 1i. It is easy to show that 1h�2; 1i is n1=2-consistent
for estimation of the integrated noise level h�2; 1i and since we are interested in data

sets with sample size n 	 105, we may directly divide by 1h�2; 1i in (14) without any
further regularization.

In the second part of this section, we study the finite sample performance
for different pre-average functions. As Table 1 suggests, the MSE deteriorates
if the number of oscillations of � increases. Therefore, we choose the functions
�1.�/ WD � cos.��=2/=2 (the optimal pre-average function in the simplified model),
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Fig. 2 Empirical MISE for 10,000 repetitions and data with constant �2 
 10�5 (upper panel)
and data from the Heston model (cf. (16) and (18), lower panel). In each panel, the x-axis refers
to different choices of the optimal constant c? and the three curves represent different pre-average
functions �i (�1: solid line, �3: dotted line, �4: dashed line)

�3.�/ WD . 3
2
/1=2.IŒ0;1/ � I.1;2�/ (the pre-average function used in [35]), and �4.�/ WD

� sin.��/=31=2 as possible candidates.
Figure 2 displays the results of the simulation study. In both panels, we choose

n D 15;000, SNR D 20 with constant � and standard Gaussian white noise. Both
display the empirical mean integrated squared error

MISE D 1

10;000

10;000X

iD1

Z 1

0

. O�2i .s/ � �2i .s//2ds (15)

based on 10,000 repetitions for � 2 f�1; �3; �4g and different choices of the
multiplicative constant c (x-axis). In the upper panel, the data are generated with
constant � . In the lower panel, we simulate the latent log price X according to the
Heston stochastic volatility model

dXt D � 1
2
�2t dtC �tdWt; (16)

d�2t D �
�
� � �2t

�
dtC ��td QWt: (17)

In this model, the Brownian motions W and QW are correlated, that is dWtd QWt D
�dt with � 2 Œ�1; 1�. It is not difficult to verify that X is indeed a continuous
semimartingale. The Heston model is commonly believed to describe stock market
data quite well. It only depends on a few parameters which have a clear financial
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Fig. 3 Simulated data (Panel 1) coming from the Heston model with parameter as in (18) for
n D 15;000 and true SNR 	 15–20, the true spot volatility function (solid line, Panel 2) and
ASVE (dashed line, Panel 2)

interpretation allowing in particular for leverage effects (� < 0). For real data,
estimates of the parameters in the Heston model have been carried out in different
settings (see for instance Table 5.1 in [49]). For our simulations, we set

� D �2=3; � D 10�5; � D 4; � D
p
��: (18)

For these parameters, the spot volatility �2 typically takes values in Œ2�10�6; 5�10�5�,
see also Fig. 3.

From our simulation study, we find that in the Heston model, there is essentially
no difference between the three candidate functions as long as c? is chosen
appropriately. However, �4 seems to produce the best estimators in terms of MISE,
when the volatility function is constant. This is surprising, since from an asymptotic
point of view, �1 is preferable. Our explanation is that non-asymptotically the
boundary behavior of the pre-average function matters. Note that in contrast to �i,
i D 1; 3, the function �4 vanishes at 0 and 2 and hence downweights observation at
the end of the pre-average intervals ..i� 2/=m; i=m�.

Observe that the curves in the lower panel in Fig. 2 are smoother than the ones in
the upper panel. We explain this by the fact that the SNR is constant for deterministic
�2 and varies in the Heston model. Thus, the randomness of the volatility has a
smoothing effect and discretization effects become visible in the first case only.

In Fig. 3, we illustrate the procedure for � D �4 and c D c? � bSNR. Here, X
follows again the Heston model with parameters given in (18). Observe that the
stylized nature of the reconstruction only reflects the main features of �2.
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3.2 Jump Detection

Note that our theoretical considerations are based on model (4), that is assuming
a continuous Itô semimartingale as log price process corrupted by additive noise.
However, the continuity assumption in the model is often too strict in reality,
since for example micro- or macroeconomic announcements may cause jumps in
the price. The presence of such jumps is discussed in Ait-Sahalia and Jacod [1],
Bollerslev and Todorov [12], and the references therein.

The most natural way to include a jump component into the model is to allow
for non-continuous semimartingales. Estimation of the integrated volatility under
microstructure noise and jumps has been considered for instance in Podolskij
and Vetter [46]. Eliminating jumps turns out to be much easier than taking
microstructure noise into account.

In order to correct for jumps, we adopt a rather practical point of view here.
In fact, looking at financial data, relevant jumps seem to occur very irregularly.
Occasionally, there are isolated jumps and quite rarely, jumps clustered over very
short time intervals appear (cf. Fig. 4). Therefore, our aim in this section is a hands-
on approach to detect and to remove possible jumps as a pre-processing of the data.

As usual, we model jumps as a càdlàg jump process .Jt/t. If jumps are present,
ASVE will reconstruct the pointwise sum of the spot volatility plus the jump process
t 7! .Jt � Jt�/2, where Jt� denotes the left limit of J at time point t. Note that
.Jt � Jt�/2 is either zero or produces a spike depending on whether there is a jump
at time point t (cf. Fig. 5, Panel 1). In order to separate spot volatility and jump part,
we apply the following method:

Let m1 D bn3=4c and � be a pre-average function. For r D n
m1
; : : : ; n� n

m1
, define

Qr WD m1

n

rC n
m1X

jDr� n
m1

�
�
1C .j � r/

m1

n

�
Yj;n: (19)
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Fig. 4 FGBL data of November 2nd, 2007 and magnification of a small time interval around 1.30
p.m., where multiple consecutive jumps of the process occur
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Fig. 5 Simulated data (Panel 1) coming from the Heston model with parameter choices given
in (18) for n D 15;000 and true SNR 	 15–20 with two additional jumps at 0.4 and 0.5, the true
spot volatility function (gray, solid line, Panel 2 and 3) and ASVE neglecting the presence of jumps
(dashed line, Panel 2) and automatically finding and correcting the jumps (dashed line, Panel 3)

If there is no jump in Œr � n
m1
; r C n

m1
�, then Qr D OP.n�1=8/ (following the

heuristic explanation in Sect. 2.4). Under the alternative, that is, the process jumps
with height �r at r=n, we obtain Qr D OP.�r/. Note that by some CLT argument,
Qr is approximately Gaussian distributed. Therefore, we may apply a procedure
mimicking a local t-test:

1. We partition the set fQr W r D n
m1
; : : : ; n � n

m1
g into blocks of length n1=2.

2. For each of these blocks, we compute the mean O and the standard deviation bsd.
3. For each Qr in a block, we compare .Qr � O/=bsd with a fixed threshold t. Here,

simulations show that t D 2:81 performs well.

Afterwards, we reject those pre-averaged value Zi;m, whose support intersects
the support of one of the Qr’s rejected by the procedure. Those rejected values are
replaced by the average of the nearest neighbors which are not rejected.

This procedure ensures that isolated jumps are detected. In real data, however,
there are occassionally consecutive jumps within a short period of time (cf. FGBL
data of November 2nd, 2007 in Fig. 4 as an example). This may result in acceptance
of the hypothesis that there is no jump, since a single jump might be not high
enough in comparison to the estimated variance of Qr. However, it is high enough to
disrupt the performance of ASVE severely. To overcome this problem, we introduce
a second test based on comparing increments of the observations directly which is
more suitable to detect jump clusters.
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From our data sets, we find that the level of the microstructure noise, that is � ,
remains almost constant over a day. Thus, to explain the test, we might assume that
� is constant. Then,

Yi;n � Yi�1;n D �.�i;n � �i�1;n/C OP.n
�1=2/ � �.�i;n � �i�1;n/;

if there is no jump. Secondly, we observe that the distribution of the noise is well-
concentrated around zero. Thus, from a practical perspective, it is justified to assume
that the tails of the microstructure noise are not heavier than that of a Gaussian
random variable. If .�i;n/ would be i.i.d. standard normal, then using Corollary 2.1
in Li and Shao [40], we find the following extreme value behavior:

lim
n!1P. max

iD2;:::;n.�i;n � �i�1;n/2 � 4�2 log n/ D 1:

Consequently, we identify the difference Yi;n�Yi�1;n as due to a jump, if the squared
increment exceeds 4 O�2 log n, where O�2 D .2n/�1

Pn
iD2.Yi;n�Yi�1;n/2 is an estimator

for �2. Note that the latter procedure is much less powerful for isolated jumps than
the first one, since it cannot detect jumps of size oP.log n/.

To illustrate the results, Fig. 5 displays simulated data corrupted by two addi-
tional jumps at 0.4 and 0.5. ASVE without jump correction (Panel 2) incorporates
a bump at the positions of the jumps. In contrast, pre-processing the data in a first
step as outlined in this section yields a stable reconstruction (Panel 3).

A simulation study regarding the jump detection procedure is given in Sect. 4.2.

4 Simulations

4.1 Stability

To test the stability of ASVE, we simulate data for sample size n D 15;000 and
X following the Heston SDE (cf. (16)) with parameters given in (18). To model
the microstructure effects .�i;n/iD1;:::;n, we consider Gaussian and uniform noise
with standard deviations x=5;000 and x 2 f1; 3; 10g. Here, a standard deviations
of 1=5;000 refers to a SNR of approximately 15 and represents FGBL data best. We
perform a simulation study with 10;000 repetitions. Besides the mean integrated
squared error (MISE, cf. (15)), we investigated the behavior of the relative mean
integrated squared error (rMISE), given by

rMISE D 1

10;000

10;000X

iD1

R 1
0
. O�2i .s/ � �2i .s//2ds
R 1
0
�4i .s/ds

;
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Table 2 Stability under different distributions and levels of noise: MISE (upper row), rMISE
(lower row), and respective 95 %-quantiles of the squared errors (in brackets) based on 10,000
repetitions

Std. of noise 1=5;000 3=5;000 10=5;000

MISE�1011 Gaussian 1:41 (3:28) 2:39 (6:04) 5:05 (14:34)

Uniform 1:40 (3:21) 2:40 (6:10) 5:08 (14:47)

rMISE Gaussian 0:11 (0:20) 0:19 (0:38) 0:39 (0:94)

Uniform 0:12 (0:20) 0:19 (0:38) 0:40 (0:97)

where O�2i and �2i refer to the estimated and the true volatility in run i. Throughout
our simulations, we use Haar wavelets and �4 as a pre-average function. Following
Sect. 3.1, we set c D 0:3 � bSNR. The results and empirical 95 %-quantiles are
displayed in Table 2. We observe that the outcome is essentially not affected by
the distribution. In contrast, the SNR has a large impact on the performance (recall
that �2 � 10�5). The bad performance of the estimator for the largest standard
deviation can be explained by the choice of m, which is inversely proportional to
the noise level. In fact the optimal oracle would be moracle D 0:3 � SNR

p
n � 55.

Thus, regarding the problem as a �21-regression problem (cf. Sect. 2.4), we have to
estimate �2 based on 55 observations, which is a quite difficult task.

4.2 Robustness

As discussed in Sect. 3.2, there are two major model violations one has to take into
account for real data, namely rounding effects and jumps. In a simulation study, we
investigate the robustness of ASVE with and without jump detection given data with
rounding errors and jumps. The process X is generated from the Heston model (16)
with parameters as in (18). This ensures that the SNR lays most of the time between
15 and 20. Mimicking real FGBL prices, the sample size or the number of trades
per day is n D 15;000. Here, rounding means rounding the corresponding price
(110 exp.Yi=n/) up to the two decimal places, and afterwards transforming back via
log. �

110
/, that is rounding to full basis points of the price and is not to be confused

with rounding of the log price. Notice that FGBL prices are most of the time in the
range between 100 and 120. Therefore, 110 is a reasonable starting value (cf. also
the upper panel in Fig. 1). The jump process is simulated as a compound Poisson
process with constant intensity 3 and jump size distribution N .0; 10�6/, resulting
in average in three jumps/events per day.

The resulting empirical mean integrated squared errors (MISE) computed on the
basis of 10,000 repetitions are displayed in Table 3. Obviously, jumps have a huge
influence on ASVE, while rounding effects are negligible (at least regarding the
FGBL data sets in Sect. 6). We observe that the bad impact of the jumps is reduced
almost completely by the pre-processing of the data.



Spot Volatility Estimation in Practice 231

Table 3 Robustness. Simulation results for the MISE for data generated from the Heston model
with additional rounding and jumps for ASVE with and without jump detection

Pure Rounded With jumps With jumps, rounded

Without jump detection 1:41 � 10�11 1:41 � 10�11 12:64 � 10�11 12:86 � 10�11

With jump detection 1:68 � 10�11 1:69 � 10�11 1:69 � 10�11 1:70 � 10�11

5 Time Schemes

It has been noticed in the econometrics literature that an increase in volatility might
be due to different reasons. One explanation would be that there are larger price
changes. Alternatively, the volatility will of course also increase if price changes
are of the same size and only the number of trades per time interval goes up (cf.
for example [29], Section IV.B). Disentangling the different explanations is quite
difficult without an underlying mathematical concept. Nevertheless, determining the
source of an increase in volatility is clearly of importance.

A more rigorous treatment of this problem leads to the definition of different
notions of time (for instance in [21]). Here, we investigate the most prominent
examples: real time and tick time (sometimes also referred to as clock time and
transaction time).

Volatility in real time is appealing as it seems very intuitive. In tick time
successive ticks are treated as one time unit. By definition, this time scheme does
not depend on the speed at which successive trades occur. Consequently, volatility
in tick time is independent of the trading intensity and hence measures the volatility
of the price changes only. As the trading speed can be estimated directly from the
ticks, we argue in this section that tick time volatility is the more natural object. A
drawback of tick times is that there is no straightforward extension of the concept
to multivariate processes.

Let us clarify the connection between both time schemes in more detail. Denote
by ti; i D 1; : : : ; n the ordered (t0 < t1 < t2 < : : : < tn) sample of trading times.
Then, for i < j the time between ti and tj equals j�i

n time units in tick time and tj � ti
time units in real time. With this notation, the tick time model is given by

YT
i;n D Xti C �i;n; i D 1; : : : ; n: (20)

Inspired by the classical high-frequency framework, we think about the trading
times as an array, that is ti D ti;n, where the sampling rate gets finer for increasing n.
Define the trading intensity � at time t as

�.t/ D lim
n!1

1
n

Pn
iD1 IŒt�ın ;tCın�.ti/

2ın
.tn � t0/; (21)

provided this limit exists and is unique for any sequence ın ! 0 and ınn!1.
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As an example consider the following toy model: Assume that � is deterministic
and there exists a deterministic, differentiable function h W Œ0; 1� ! Œ0; 1� with
h.i=n/ D ti;n (in particular this implies that h is strictly monotone). Note that in this
setting, � is deterministic as well and given by the derivative of h�1.

Let �2RT denote the original (real time) spot volatility. Recall that under tick time,
we consider successive trading times as equidistant. Therefore, the tick time spot
volatility �2TT satisfies for all i D 1; : : : ; n

Z i=n

0

�TT .h.s//dWs D
Z h.i=n/

0

�RT.s/dWs DL

Z i=n

0

p
h0.s/�RT.h.s//dWs

in law. Thus, the first and the latter integrand are (roughly) equal, that is �2TT.h.s// D
h0.s/�2RT.h.s//. Rewriting this, we obtain

��2TT D �2RT ; (22)

cf. also Dahlhaus and Neddermeyer [21], Section 4. This formula clarifies the
connection between tick time and real time volatility. Here, the argument is given for
a deterministic trading scheme but extensions to random trading times are possible
(cf. the literature on time changed Lévy processes, e.g. in Carr and Wu [16] and
Cont and Tankov [20], or the survey article by Veraart and Winkel [50]).

Estimating the real time volatility directly from tick data, we have to construct
artificial observations by recording the price each 10th second, for example. This
method leads to a loss of information if there are many ticks in one time interval.

Notice that nonparametric estimation of the trading intensity � is standard using
for example (21) together with a proper choice of the bandwidth ın. In view of
formula (22), it seems therefore more natural to estimate the real time spot volatility
as product of O�2TT and an estimator of �. In a simulation study, we estimated the real
time volatility via its product representation for Euro-BUND Futures on all days in
2007 (for a description of the data, cf. also Sect. 6). We use Haar wavelets and hence
obtain piecewise constant reconstructions. As a measure for the oscillation behavior
of the volatility, we take the sum of squared jump sizes of the reconstructions for
every of these days. In average, for tick time spot volatility this gives 9:68 � 10�11
per day, while for real time volatility the corresponding value is 1:98 � 10�10. This
gives some evidence that the tick time volatility is much smoother than its real time
counterpart.

As a surprising fact, formula (22) shows that even rates of convergence for
estimation of �2RT can be much faster than the minimax rates provided �2TT is
sufficiently smooth. To give an example, assume that �TT is constant and � has
Hölder continuity ˇ > 1=2. In this case � can be estimated with the classical
nonparametric rate n�ˇ=.2ˇC1/ � n�1=4. Consequently, �2RT has also Hölder index
ˇ. The rate for estimation of �2RT is n�1=4 which converges faster to zero than the
minimax rate n�ˇ=.4ˇC2/ (for a derivation of minimax rates see Munk and Schmidt-
Hieber [45] and Hoffmann et al. [37]).



Spot Volatility Estimation in Practice 233

To summarize, the tick time volatility is the quantity of interest measuring the
volatility of the price changes. Furthermore, the real time volatility can easily be
estimated via (22). For these reasons, we restrict ourselves throughout the following
to estimation of spot volatility in tick time.

6 Spot Volatility of Euro-BUND Futures

We analyze the spot volatility of Euro-BUND Futures (FGBL) using tick data from
Eurex database. The underlying is a 100,000 Euro debt security of the German
Federal Government with coupon rate 6 % and maturity 8.5–10.5 years. The price
is given in percentage of the par value. The tick times are recorded with precision
of 10 ms. The minimum price change is 0:01% (one basis point), corresponding to
10 Euro, which is comparably large. The number of trades per day varies among
10,000 and 30,000. Observations which are not due to trading are removed from
the sample. If there are different FGBL contracts at a time referring to different
expiration days, we only consider these belonging to the next possible date. Trading
takes places from 8:00 a.m. until 7:00 p.m. Central European Time (CET). For the
reconstructions, we restrict ourselves to observations within the time span 9 a.m.
to 6 p.m. CET. Outside this period, trading is normally too slow to make use of a
high-frequency setting.

During business hours, FGBL prices fit well as an example for high-frequency
data. On the one hand, trading is very liquid due to low transaction costs and high
trading volume. In average, the holding period is less than 2 days (cf. [27], Figure 4).
On the other hand, microstructure effects are present and simple quadratic variation
techniques fail as indicated in Fig. 6. In this plot (often referred to as signature
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Fig. 6 Realized volatilities of FGBL data from June 4th to June 8th, 2007 for different subsam-
pling frequencies
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plot), we investigate how the (integrated) realized volatilities behaves if we consider
subsamples of the data with different subsampling frequencies. We observe a rapid
increase on small frequencies, that is if more and more data are included. This
indicates that microstructure effects have to be taken into account.

In the following, we illustrate the effect of macroeconomic events with unantici-
pated outcome on spot volatility. As they cause uncertainty, one expects an increase
in volatility once they appear. There has been a large body of literature in economics
devoted to this subject. Nevertheless, up to now, there seems to be no general
consensus quantifying how much the volatility is affected by public announcements.
Ederington and Lee [28, 29] claim that volatility is substantially higher for a few
minutes after the announcement and is still visible in the data for several hours.
They also find evidence that volatility is slightly elevated for some minutes before an
announcement. They conclude that macroeconomic announcements are the driving
force for volatility. In contrast, in the seminal paper Andersen and Bollerslev [6]
daily volatility patterns are found to explain most of the spot volatility behavior,
while public announcements have only a secondary effect on overall volatility.
In a recent study, Lunde and Zebedee [42] focus on the effects of US monetary
policy events on volatility of US equity prices. In accordance with previous
work, they conclude that there are spikes in the volatility around macroeconomic
announcements, lasting for approximately 15 min. In Jansen and de Haan [39]
effects of certain European Central Bank (ECB) announcements on price changes
and volatility are studied. Although these papers deal with volatility on relatively
short time intervals, none of them accounts for microstructure effects.

To illustrate our method, the 12 days in 2007 (one per month) with an official
ECB press conference related to possible changes in key interest rates are studied.
During these meetings hold jointly by the president and the vice-president of the
European Central Bank, announcements about ECB-policy are made. In Jansen
and de Haan [39], press conferences are excluded from the study, but they are
very appealing because on the one hand, key interest rates are of major economic
importance especially for government bonds like Euro-BUND futures, and on the
other hand, the announcement procedure is highly standardized. In fact, on every
of the studied dates the decision of the ECB Governing Council on the key interest
rates was released on 1.45 p.m. followed by the official press conference starting
at 2.30 p.m. and lasting for exactly an hour. The press conference consists of two
parts starting with an introductory statement by the ECB president. In a second
part, the president and vice-president answer questions of journalists. On every of
these events, between 20 and 62 financial analysts are asked in advance to predict
possible changes in the key interest rate. Based on these estimates a sample standard
deviation is computed which is available at Bloomberg. In the following, we refer
to this quantity as market uncertainty.

In Fig. 7, ASVE for May 10th, 2007 is displayed. The dashed line represents
the time of the announcement, the hatched region refers to the time period of the
press conference. On this day, the reconstruction displays an increase in volatility
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Fig. 7 ASVE for May 10th, 2007. Period of the ECB press conferences is hatched and announce-
ment of not changing the key interest rate is represented by the dashed line

Table 4 Features (average, maximum, and total variation) of ASVE for days with ECB press
conferences on key interest rates. The second column is an estimate of market uncertainty.
Integrated volatility and total variation are normalized by the length of the time interval. All entries
related to volatility are multiplied by 105

Market 13.40 pm–13.50 pm 13.45 pm–15.30 pm
Day uncertainty

R O�2 max O�2 TV O�2 R O�2 max O�2 TV O�2
Jan-11 0 0.459 0.459 0 0.435 0.518 0.168

Feb-08 0 0.541 0.541 0 0.509 0.979 1.485

Mar-08 0 0.490 0.490 0 0.497 0.643 0.685

Apr-12 0 0.274 0.331 1.222 0.374 0.698 0.472

May-10 0 0.318 0.330 0.298 0.323 0.541 0.594

Jun-06 0 0.191 0.191 0 0.495 0.677 0.455

Jul-05 0 0.490 0.587 0.772 0.683 1.315 1.045

Aug-02 0.05 0.745 1.286 8.673 1.176 5.749 7.075

Sep-06 0.1 0.906 0.906 0 0.969 2.862 5.626

Oct-04 0.03 0.621 0.621 0 0.701 1.181 0.936

Nov-08 0 0.869 0.869 0 1.020 1.337 0.480

Dec-06 0 1.119 1.119 0 0.958 2.545 3.150

Average of days above 0.585 0.644 0.914 0.678 1.587 1.848

Average of all days 0.515 0.551 0.621 0.552 1.225 1.328

90%-quantile all days 0.906 0.960 0.661 0.984 2.051 2.609

around the time of the announcement. Furthermore, we observe a higher fluctuation
during the press conference. A more thorough analysis is done in Table 4: We
observe a slight increase of the spot volatility on most of the considered days in
view of average, maximum and total variation (which reflects the volatility of the
volatility). On days, where the market uncertainty was nonzero, this effect is even
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enhanced. Notice that the integral and TV figures are normalized by the length of
the time interval to make them comparable. The results confirm the influence of
macroeconomic events on volatility.

7 Generalization to Spot Covolatility Estimation

So far, we considered one-dimensional processes only. As for example in portfolio
management, one might more generally be interested in the spot covariance matrix
of multi-dimensional (and even very high-dimensional) price processes. There has
been a lot of recent interest in this direction. The main additional difficulty is to
deal with non-synchronous observations. Synchronization schemes in the context
of estimation of the integrated covolatility (the multi-dimensional extension of the
integrated volatility) were proposed in Hayashi and Yoshida [36], Ait-Sahalia et al.
[4], Christensen et al. [17], Barndorff-Nielsen et al. [10], Zhang [53], and Bibinger
[11], among others.

As an outlook, we shortly point out how to construct an estimator of the spot
covolatility function � given synchronous data, that is the covariance function of
two log price processes observed at the same time points. For simplicity, we restrict
ourselves to the bivariate case. In principle, this estimator can be combined in a
second step with any of the synchronization schemes mentioned above.

Assume that we observe two processes

Y.1/i;n D X.1/i=n C �.1/i;n ; Y.2/i;n D X.2/i=n C �.2/i;n ; i D 1; : : : ; n; (23)

where dX.1/t D �
.1/
t dW.1/

t and dX.2/t D �
.2/
t dW.2/

t are two Itô martingales with
driving Brownian motions W.1/;W.2/, and �.1/; �.2/ are two independent noise
processes each defined analogously to (5). We assume that the spot covolatility
function of X.1/ and X.2/ is given by �t dt D Cov.dX.1/t ; dX.2/t /.

For i D 2; : : : ;m and q D 1; 2, let Y
.q/
i;m be as defined in (7). Then, the wavelet

coefficients of the spot covolatility are estimated via

1hg; �i WD
mX

iD2
g
�

i�1
m

�
Y
.1/

i;mY
.2/

i;m:

where again g 2 f'j0;k;  j;kg. Since the noise processes �.1/; �.2/ are independent, no
bias correction is necessary.

For illustration, Fig. 8 shows the reconstruction of the covolatility function of
a realization in model (23) using the same thresholding procedure and parameter
choices as for ASVE.
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Appendix A: Proof of Lemma 1

The proof is the same as in the PhD thesis Schmidt-Hieber [48]. We include it for
sake of completeness.

To keep notation simple, we use the following quantities in the spirit of the
definitions of Sect. 2.3: For any process .Ai;n/ 2 f.Yi;n/; .�i;n/; .X/i;ng, define

Ai;m D Ai;m.�/ WD m

n

X

j
n 2Œ i�2

m ; i
m �

�
�
m j

n � .i� 2/
�
Aj;n:

b.A/i;m D b.�;A�/i;m WD m2

2n2
X

j
n 2Œ i�2

m ; i
m �

�2
�
m j

n � .i� 2/
��

Aj;n � Aj�1;n
�2
:

Further, recall that our estimator for the integrated volatility is given by2h1; �2i D
Pm

iD2 Y
2

i;m � b.Y/i;m.
To prove the lemma, let us first show that the bias is of smaller order than n�1=4.

In fact, note that E



Y
2

i;m

� D E



X
2

i;m

�C E


�2i;m

�
: Clearly, one can bound

ˇ
ˇ
ˇE


�2i;m

� � E


b.�;Y/i;m

�ˇˇ
ˇ D O. 1n /:

Further, Lipschitz continuity of � together with a Riemann approximation argument
gives us
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ˇ
ˇE



X
2

i;m

� � �2

m

ˇ
ˇ D

ˇ
ˇ
ˇ
�2

m

Z 2

0

Z 2

0

�.s/�.t/.s ^ t/dtds� �2

m

ˇ
ˇ
ˇC O. 1n / D O. 1n /:

Here, the last equation is due to partial integration and the definition of a pre-
average function (cf. Definition 2.1). Since both approximations are uniformly in
i, this shows that the bias is of order O.n�1=2/:

For the asymptotic variance, first observe that Var.
Pm

iD2 b.�;Y/i;m/ D o.n�1=2/:
Hence,

Var.2h1; �2i/ D Var.
mX

iD2
Y
2

i;m/C o
�

n�1=4�Var.
mX

iD2
Y
2

i;m/
�1=2 C n�1=2�;

by Cauchy-Schwarz inequality. Recall that for centered Gaussian random variables
U and V , Cov.U2;V2/ D 2.Cov.U;V//2. Therefore, it suffices to compute
Cov.Yi;m;Yk;m/ D EŒYi;mYk;m�.

By the same arguments as above, that is Riemann summation and partial
integration, we find

E

hˇ
ˇ
ˇXi;mXk;m �

Z 1

0

�.ms� .i � 2//dXs

Z 1

0

�.ms � .k � 2//dXs

ˇ
ˇ
ˇ

i
. n�1:

Therefore,

E


Xi;mXk;m

� D �2
Z 1

0

�.ms � .i � 2//�.ms� .k � 2//dsC O.n�1/;

where the last two arguments hold uniformly in i; k:
In order to calculate EŒYi;mYk;m�; we must treat three different cases, ji � kj 

2; ji � kj D 1 and i D k; denoted by I; II and III:
ad I. In this case . i�2

m ; i
m � and . k�2

m ; k
m � do not overlap. By the equalities above, it

follows Cov.Yi;m;Yk;m/ D O.n�1/:
ad II. Without loss of generality, we set k D iC 1: Then, we obtain

Cov.Yi;m;YiC1;m/ D E


Xi;mXiC1;m

�C E


�i;m�iC1;m

�

D�2
Z 1

0

�.ms� .i� 2//�.ms� .i� 1//dsC O.n�1/

C �2m2

n2
X

j
n 2
�

i�2
m ;

i
m

�
�.m j

n � .i� 2//�.m j
n � .i � 1//

D�
2

m

Z 1

0

�.u/�.1C u/duC �2m

n

Z 1

0

�.u/�.1C u/duC O.n�1/;

where the last inequality can be verified by Riemann summation. Noting that � is a
pre-average function, we obtain �.1C u/ D ��.1 � u/ and
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Cov.Yi;m;YiC1;m/ D �2

m

R 1
0
�.u/�.1 � u/du� �2m

n

R 1
0
�.u/�.1� u/duC O.n�1/:

ad III. It can be shown by redoing the arguments in II that

Var.Yi;m/ D Var.Xi;m/C Var.�i;m/ D �2

m

R 2
0
�2.u/duC �2 m

n

R 2
0
�2.u/duC O.n�1/:

Note that k�kL2 Œ0;2� D 1: Since the above results hold uniformly in i; k; it follows
directly that

Var.
mX

iD2
Y
2

i;m/

D
mX

i;kD2; ji�kj�2
2
�
Cov.Yi;m;Yk;m/

�2

C 2
m�1X

iD2
2
�
Cov.Yi;m;YiC1;m/

�2 C
mX

iD2
2
�
Var.Yi;m/

�2

DO.n�1/C 4
� �2p

c

Z 1

0

�.u/�.1 � u/du� �2c3=2
Z 1

0

�.u/�.1� u/du
�2

n�1=2

C 2
� �2p

c
C 2�2c3=2k�k2L2Œ0;1�

�2
n�1=2: �
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Time Series Prediction via Aggregation:
An Oracle Bound Including Numerical Cost

Andres Sanchez-Perez

Abstract We address the problem of forecasting a time series meeting the Causal
Bernoulli Shift model, using a parametric set of predictors. The aggregation
technique provides a predictor with well established and quite satisfying theoretical
properties expressed by an oracle inequality for the prediction risk. The numerical
computation of the aggregated predictor usually relies on a Markov chain Monte
Carlo method whose convergence should be evaluated. In particular, it is crucial
to bound the number of simulations needed to achieve a numerical precision of
the same order as the prediction risk. In this direction we present a fairly general
result which can be seen as an oracle inequality including the numerical cost of the
predictor computation. The numerical cost appears by letting the oracle inequality
depend on the number of simulations required in the Monte Carlo approximation.
Some numerical experiments are then carried out to support our findings.

1 Introduction

The objective of our work is to forecast a stationary time series Y D .Yt/t2Z taking
values in X � R

r with r  1. For this purpose we propose and study an aggregation
scheme using exponential weights.

Consider a set of individual predictors giving their predictions at each moment t.
An aggregation method consists of building a new prediction from this set, which
is nearly as good as the best among the individual ones, provided a risk criterion
(see [17]). This kind of result is established by oracle inequalities. The power and
the beauty of the technique lie in its simplicity and versatility. The more basic and
general context of application is individual sequences, where no assumption on the
observations is made (see [9] for a comprehensive overview). Nevertheless, results
need to be adapted if we set a stochastic model on the observations.
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The use of exponential weighting in aggregation and its links with the PAC-
Bayesian approach has been investigated for example in [5, 8] and [11]. Dependent
processes have not received much attention from this viewpoint, except in [1] and
[2]. In the present paper we study the properties of the Gibbs predictor, applied to
Causal Bernoulli Shifts (CBS). CBS are an example of dependent processes (see
[12] and [13]).

Our predictor is expressed as an integral since the set from which we do
the aggregation is in general not finite. Large dimension is a trending setup
and the computation of this integral is a major issue. We use classical Markov
chain Monte Carlo (MCMC) methods to approximate it. Results from Łatuszyński
[15, 16] control the number of MCMC iterations to obtain precise bounds for the
approximation of the integral. These bounds are in expectation and probability with
respect to the distribution of the underlying Markov chain.

In this contribution we first slightly revisit certain lemmas presented in [2, 8]
and [20] to derive an oracle bound for the prediction risk of the Gibbs predictor.
We stress that the inequality controls the convergence rate of the exact predictor.
Our second goal is to investigate the impact of the approximation of the predictor
on the convergence guarantees described for its exact version. Combining the PAC-
Bayesian bounds with the MCMC control, we then provide an oracle inequality
that applies to the MCMC approximation of the predictor, which is actually used in
practice.

The paper is organised as follows: we introduce a motivating example and several
definitions and assumptions in Sect. 2. In Sect. 3 we describe the methodology
of aggregation and provide the oracle inequality for the exact Gibbs predictor.
The stochastic approximation is studied in Sect. 4. We state a general proposition
independent of the model for the Gibbs predictor. Next, we apply it to the more
particular framework delineated in our paper. A concrete case study is analysed in
Sect. 5, including some numerical work. A brief discussion follows in Sect. 6. The
proofs of most of the results are deferred to Sect. 7.

Throughout the paper, for a 2 R
q with q 2 N

�, kak denotes its Euclidean norm,
kak D .Pq

iD1 a2i /
1=2 and kak1 its 1-norm kak1 DPq

iD1 jaij. We denote, for a 2 R
q

and � > 0, B .a; �/ D fa1 2 R
q W ka � a1k � �g and B1 .a; �/ D fa1 2 R

q W
ka � a1k1 � �g the corresponding balls centered at a of radius � > 0. In general
bold characters represent column vectors and normal characters their components;
for example y D . yi/i2Z. The use of subscripts with ‘:’ refers to certain vector
components y1Wk D . yi/1�i�k, or elements of a sequence X1Wk D .Xt/1�t�k. For a
random variable U distributed as � and a measurable function h, �Œh.U/� or simply
�Œh� stands for the expectation of h.U/: �Œh� D R h.u/�.du/.

2 Problem Statement and Main Assumptions

Real stable autoregressive processes of a fixed order, referred to as AR.d/ processes,
are one of the simplest examples of CBS. They are defined as the stationary solution
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of

Xt D
dX

jD1
�jXt�j C ��t ; (1)

where the .�t/t2Z are i.i.d. real random variables with EŒ�t� D 0 and EŒ�2t � D 1.

We dispose of several efficient estimates for the parameter � D 

�1 : : : �d

�0

which can be calculated via simple algorithms as Levinson-Durbin or Burg algo-
rithm for example. From them we derive also efficient predictors. However, as the
model is simple to handle, we use it to progressively introduce our general setup.

Denote

A .�/ D

2

6
6
6
6
6
6
4

�1 �2 : : : : : : �d

1 0 : : : : : : 0

0 1 0
: : : 0

::: 0
: : :

: : :
:::

0 : : : 0 1 0

3

7
7
7
7
7
7
5

;

Xt�1 D


Xt�1 : : : Xt�d

�0
and e1 D



1 0 : : : 0

�0
the first canonical vector of Rd. M0

represents the transpose of matrix M (including vectors). The recurrence (1) gives

Xt D � 0Xt�1 C ��t D �
1X

jD0
e0
1A

j .�/ e1�t�j : (2)

The eigenvalues of A .�/ are the inverses of the roots of the autoregressive
polynomial � .z/ D 1 � Pd

kD1 �kzk, then at most ı for some ı 2 .0; 1/ due to
the stability of X (see [7]). In other words � 2 sd .ı/ D f� W � .z/ ¤ 0 for jzj <
ı�1g � sd .1/. In this context (or even in a more general one, see [14]) for all
ı1 2 .ı; 1/ there is a constant NK depending only on � and ı1 such that for all j  0

ˇ
ˇe0
1A

j .�/ e1
ˇ
ˇ � NKıj

1 ; (3)

and then, the variance of Xt, denoted 
0, satisfies 
0 D �2
P1

jD0 je0
1A

j .�/ e1j2 �
NK2�2=.1� ı21/.

The following definition allows to introduce the process which interests us.

Definition 1 Let X 0 � R
r0

for some r0  1 and let A D .Aj/j�0 be a sequence of
non-negative numbers. A function H W .X 0/N ! X is said to be A-Lipschitz if

kH .u/ �H .v/ k �
1X

jD0
Ajkuj � vjk ;

for any u D .uj/j2N; v D .vj/j2N 2 .X 0/N.
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Provided A D .Aj/j�0 with Aj  0 for all j  0, the i.i.d. sequence of X 0-
valued random variables .�t/t2Z and H W .X 0/N ! X , we consider that a time series
X D .Xt/t2Z admitting the following property is a Causal Bernoulli Shift (CBS)
with Lipschitz coefficients A and innovations .�t/t2Z.

(M) The process X D .Xt/t2Z meets the representation

Xt D H .�t; �t�1; �t�2; : : :/ ;8t 2 Z ;

where H is an A-Lipschitz function with the sequence A satisfying

QA� D
1X

jD0
jAj <1 : (4)

We additionally define

A� D
1X

jD0
Aj : (5)

CBS regroup several types of nonmixing stationary Markov chains, real-valued
functional autoregressive models and Volterra processes, among other interesting
models (see [10]). Thanks to the representation (2) and the inequality (3) we assert
that AR.d/ processes are CBS with Aj D � NKıj

1 for j  0.
We let � denote a random variable distributed as the �ts. Results from [1] and [2]

need a control on the exponential moment of � in � D A�, which is provided via the
following hypothesis.

(I) The innovations .�t/t2Z satisfy �.�/ D E


e�k�k

�
<1.

Bounded or Gaussian innovations trivially satisfy this hypothesis for any � 2 R.
Let �0 denote the probability distribution of the time series Y that we aim to

forecast. Observe that for a CBS, �0 depends only on H and the distribution of �.
For any f W XN

� ! X measurable and t 2 Z we consider OYt D f
�
.Yt�i/i�1

�
, a

possible predictor of Yt from its past. For a given loss function ` W X � X ! RC,
the prediction risk is evaluated by the expectation of `. OYt;Yt/

R . f / D E

h
`
� OYt;Yt

�i
D �0

h
`
� OYt;Yt

�i
D
Z

X Z

`
�

f
�
. yt�i/i�1

�
; yt
�
�0 .dy/ :

We assume in the following that the loss function ` fulfills the condition:

(L) For all y; z 2 X , ` . y; z/ D g . y � z/, for some convex function g which is
non-negative, g .0/ D 0 and K- Lipschitz: jg . y/ � g .z/j � Kky � zk.

If X is a subset of R, ` . y; z/ D jy � zj satisfies 1 with K D 1.
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From estimators of dimension d for � we can build the corresponding linear
predictors f� . y/ D � 0y1Wd. Speaking more broadly, consider a set � and associated
with it a set of predictors f f� ;� 2 �g. For each � 2 � there is a unique d D d .�/ 2
N

� such that f� W X d ! X is a measurable function from which we define

OY�t D f� .Yt�1; : : : ;Yt�d/ ;

as a predictor of Yt given its past. We can extend all functions f� in a trivial way
(using dummy variables) to start from XN

�

. A natural way to evaluate the predictor
associated with � is to compute the risk R .�/ D R . f�/. We use the same letter R
by an abuse of notation.

We observe X1WT from X D .Xt/t2Z, an independent copy of Y. A crucial goal of
this work is to build a predictor function Of T for Y, inferred from the sample X1WT and
� such that R. Of T/ is close to inf�2� R .�/ with �0- probability close to 1.

The set � also depends on T, we write � � �T . Let us define

dT D sup
�2�T

d .�/ : (6)

The main assumptions on the set of predictors are the following ones.

(P-1) The set f f� ;� 2 �Tg is such that for any � 2 �T there are b1 .�/ ; : : : ;
bd.�/ .�/ 2 RC satisfying for all y D . yi/i2N� ; z D .zi/i2N� 2 XN

�

,

jj f� .y/� f�.z/jj �
d.�/X

jD1
bj.�/

ˇ
ˇ
ˇ
ˇyj � zj

ˇ
ˇ
ˇ
ˇ :

We assume moreover that LT D sup�2�T

Pd.�/
jD1 bj .�/ <1.

(P-2) The inequality LT C 1 � log T holds for all T  4.
In the case where X � R and f f� ;� 2 �Tg is such that � 2 R

d.�/ and f� .y/ D
� 0y1Wd.�/ for all y 2 R

N, we have

j f� .y/� f�.z/j �
d.�/X

jD1

ˇ
ˇ�j

ˇ
ˇ
ˇ
ˇyj � zj

ˇ
ˇ :

The last conditions are satisfied by the linear predictors when �T is a subset of the
`1-ball of radius log T � 1 in R

dT .
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3 Prediction via Aggregation

The predictor that we propose is defined as an average of predictors f� based on the
empirical version of the risk,

rT .� jX / D 1

T � d .�/

TX

tDd.�/C1
`
� OX�t ;Xt

�
:

where OX�t D f�
�
.Xt�i/i�1

�
. The function rT .� jX / relies on X1WT and can be

computed at stage T; this is in fact a statistic.
We consider a prior probability measure �T on �T . The prior serves to control

the complexity of predictors associated with �T . Using �T we can construct one
predictor in particular, as detailed in the following.

3.1 Gibbs Predictor

For a measure � and a measurable function h (called energy function) such that
� Œexp .h/� D R exp .h/ d� <1 ; we denote by � fhg the measure defined as

� fhg .d�/ D exp .h .�//

� Œexp .h/�
� .d�/ :

It is known as the Gibbs measure.

Definition 2 (Gibbs predictor) Given � > 0, called the temperature or the learning
rate parameter, we define the Gibbs predictor as the expectation of f� , where � is
drawn under �T f��rT .� jX /g, that is

Of �;T . y jX / D �T f��rT .� jX /g Œ f� . y/� D
Z

�T

f� . y/
exp .��rT .� jX //

�T Œexp .��rT .� jX //��T .d�/ :

(7)

3.2 PAC-Bayesian Inequality

At this point more care must be taken to describe�T . Here and in the following we
suppose that

�T � R
nT for some nT 2 N

� : (8)

Suppose moreover that �T is equipped with the Borel �-algebra B.�T/.
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A Lipschitz type hypothesis on � guarantees the robustness of the set
f f� ;� 2 �Tg with respect to the risk R.

(P-3) There is D <1 such that for all �1;�2 2 �T ,

�0

ˇ
ˇ
ˇ
ˇ f�1

�
.Xt�i/i�1

�� f�2
�
.Xt�i/i�1

�ˇ
ˇ
ˇ
ˇ
� � Dd1=2T jj�1 � �2jj ;

where dT is defined in (6).

Linear predictors satisfy this last condition with D D �0 ŒjX1j�.
Suppose that the � reaching the inf�2�T R.�/ has some zero components, i.e.

supp.�/ < nT . Any prior with a lower bounded density (with respect to the
Lebesgue measure) allocates zero mass on lower dimensional subsets of �T .
Furthermore, if the density is upper bounded we have �T ŒB.�; �/\�T � D O.�nT /

for � small enough. As we will notice in the proof of Theorem 1, a bound like the
previous one would impose a tighter constraint to nT . Instead we set the following
condition.

(P-4) There is a sequence .�T/T�4 and constants C1 > 0, C2; C3 2 .0; 1� and

  1 such that �T 2 �T ,

R .�T/ � inf
�2�T

R .�/C C1 log3 .T/

T1=2
;

and �T ŒB .�T ; �/\�T �  C2�n
1=

T ;80 � � � �T D C3

T
:

A concrete example is provided in Sect. 5.
We can now present the main result of this section, our PAC-Bayesian inequality

concerning the predictor Of �T ;T .� jX / built following (7) with the learning rate
� D �T D T1=2=.4 log T/, provided an arbitrary probability measure �T on
�T .

Theorem 1 Let ` be a loss function such that Assumption (L) holds. Consider a
process X D .Xt/t2Z satisfying Assumption (M) and let �0 denote its probability
distribution. Assume that the innovations fulfill Assumption (I) with � D A�; A�
is defined in (5). For each T  4 let f f� ;� 2 �Tg be a set of predictors meeting
Assumptions (P-3), (P-4) and (P-3) such that dT , defined in (6), is at most T=2.
Suppose that the set �T is as in (8) with nT � log
 T for some 
  1 and we let
�T be a probability measure on it such that Assumption (P-4) holds for the same 
 .
Then for any " > 0, with �0-probability at least 1 � ",

R
� Of �T ;T .� jX /

�
� inf
�2�T

R . f� /C E log3 T

T1=2
C 8 log T

T1=2
log

�
1

"

�

;
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where

E D C1 C 8C 2

log 2
� 2 logC2

log2 2
� 4 logC3

log 2
C 8K2

�
A� C QA�

�2

QA2�
C KDC3
8 log3 2

C4K�.A�/
log 2

C 2K2�.A�/
log2 2

; (9)

with QA� defined in (4), K, � and D in Assumptions (L), (I) and (P-3), respectively,
and C1, C2 and C3 in Assumption (P-4).

The proof is postponed to Sect. 7.1.
Here however we insist on the fact that this inequality applies to an exact

aggregated predictor Of �T ;T .� jX /. We need to investigate how these predictors are
computed and how practical numerical approximations behave compared to the
properties of the exact version.

4 Stochastic Approximation

Once we have the observations X1WT , we use the Metropolis – Hastings algorithm
to compute Of �;T .� jX / D

R
f� .� jX / �T f��rT .� jX /g .d�/. The Gibbs measure

�T f��rT .� jX /g is a distribution on �T whose density ��;T .� jX / with respect to
�T is proportional to exp .��rT .� jX //.

4.1 Metropolis: Hastings Algorithm

Given X 2 X Z, the Metropolis-Hastings algorithm generates a Markov chain
˚�;T .X/ D .��;T;n.X//n�0 with kernel P�;T (only depending on X1WT ) having the
target distribution �T f��rT .� jX /g as the unique invariant measure, based on the
transitions of another Markov chain which serves as a proposal (see [21]). We
consider a proposal transition of the form Q�;T .�1; d�/ D q�;T.�1;�/�T.d�/ where
the conditional density kernel q�;T (possibly also depending on X1WT ) on�T ��T is
such that

ˇ�;T .X/ D inf
.�1;�2/2�T ��T

q�;T .�1;�2/

��;T .�2 jX / 2 .0; 1/ : (10)

This is the case of the independent Hastings algorithm, where the proposal is i.i.d.
with density q�;T . The condition gets into

ˇ�;T .X/ D inf
�2�T

q�;T .�/

��;T .� jX / 2 .0; 1/ : (11)

In Sect. 5 we provide an example.
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The relation (10) implies that the algorithm is uniformly ergodic, i.e. we have a
control in total variation norm (k � kTV ). Thus, the following condition holds (see
[18]).

(A) Given �;T > 0, there is ˇ�;T W X Z ! .0; 1/ such for any �0 2 �T , x 2
X Z and n 2 N, the chain ˚�;T .x/ with transition law P�;T and invariant
distribution �T f��rT .� jx /g satisfies

ˇ
ˇ
ˇ

ˇ
ˇ
ˇPn
�;T .�0; �/� �T f��rT .� jx /g

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
TV
� 2 �1 � ˇ�;T .x/

�n
:

4.2 Theoretical Bounds for the Computation

In [16, Theorem 3.1] we find a bound on the mean square error of approximating one
integral by the empirical estimate obtained from the successive samples of certain
ergodic Markov chains, including those generated by the MCMC method that we
use.

A MCMC method adds a second source of randomness to the forecasting process
and our aim is to measure it. Let �0 2 \T�1�T , we set ��;T;0 .x/ D �0 for all
T; � > 0, x 2 X Z. We denote by �;T .� jX / the probability distribution of the
Markov chain ˚�;T .X/ with initial point �0 and kernel P�;T .

Let ��;T denote the probability distribution of .X; ˚�;T .X//; it is defined by
setting for all sets A 2 .B.X //˝Z and B 2 .B.�T//

˝N

��;T .A � B/ D
Z

�A .x/�B .�/ �;T .d� jx / �0 .dx/ (12)

Given ˚�;T D .��;T;n/n�0, we then define for n 2 N
�

Nf �;T;n D
1

n

n�1X

iD0
f��;T;i : (13)

Since our chain depends on X, we make it explicit by using the notation Nf �;T;n .� jX /.
The cited [16, Theorem 3.1] leads to a proposition that applies to the numerical
approximation of the Gibbs predictor (the proof is in Sect. 7.2). We stress that this is
independent of the model (CBS or any), of the set of predictors and of the theoretical
guarantees of Theorem 1.

Proposition 1 Let ` be a loss function meeting Assumption (L). Consider any
process X D .Xt/t2Z with an arbitrary probability distribution �0. Given T  2,
� > 0, a set of predictors f f� ;� 2 �Tg and �T 2 M1C .�T /, let Of �;T .� jX / be
defined by (7) and let Nf �;T;n .� jX / be defined by (13). Suppose that ˚�;T meets
Assumption (A) for � and T with a function ˇ�;T W X Z ! .0; 1/. Let ��;T denote
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the probability distribution of .X; ˚�;T .X// as defined in (14). Then, for all n  1
and D > 0, with ��;T- probability at least maxf0; 1 � A�;T=.Dn1=2/g we have
jR. Nf �;T;n .� jX // � R. Of �;T .� jX //j � D, where

A�;T D 3K
Z

X Z

1

ˇ�;T .x/

Z

X Z

sup
�2�T

ˇ
ˇ
ˇ f� .y/� Of �;T .y jx /

ˇ
ˇ
ˇ�0 .dy/ �0 .dx/ : (14)

We denote by �T D ��T ;T the probability distribution of .X; ˚�;T .X// setting
� D �T D T1=2=.4 log T/. As Theorem 1 does not involve any simulation, it
also holds in �T - probability. From this and Proposition 1 a union bound gives us
the following.

Theorem 2 Under the hypothesis of Theorem 1, consider moreover that Assump-
tion (A) is fulfilled by ˚�;T for all � D �T and T with T  4. Thus, for all " > 0 and
n  M .T; "/, with �T- probability at least 1 � " we have

R
� Nf �T ;T;n .� jX /

� � inf
�2�T

R . f�/C
�

E C 2

log 2
C 2

�
log3 T

T1=2
C 8 log T

T1=2
log

�
1

"

�

;

where E is defined in (9) and M .T; "/ D A2�T ;T
T=."2 log6 T/ with A�;T as in (14).

5 Applications to the Autoregressive Process

We carefully recapitulate all the assumptions of Theorem 2 in the context of an
autoregressive process. After that, we illustrate numerically the behaviour of the
proposed method.

5.1 Theoretical Considerations

Consider a real valued stable autoregressive process of finite order d as defined
by (1) with parameter � lying in the interior of sd .ı/ and unit normally distributed
innovations (Assumptions (M) and (I) hold). With the loss function ` . y; z/ D
jy � zj Assumption (L) holds as well. The linear predictors is the set that we test;
they meet Assumption (P-3). Without loss of generality assume that dT D nT . In the
described framework we have Of �;T .� jX / D fb��;T .X/, where

O��;T .X/ D
Z

�T

�
exp .��rT .� jX //

�T Œexp .��rT .� jX //��T .d�/ :
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This O��;T .X/ 2 R
dT is known as the Gibbs estimator.

Remark that, by (2) and the normality of the innovations, the risk of any O� 2 R
dT

is computed as the absolute moment of a centered Gaussian, namely

R
�

f O�
� D R

� O�
�
D

�

2
� O� � �

�0
�T

� O� � �
�
C 2�2

�1=2

�1=2
; (15)

where�T D .
i;j/0�i;j�dT �1 is the covariance matrix of the process. In (15) the vector
� originally in R

d is completed by dT � d zeros.
In this context arg inf�2RN� R .�/ 2 sd.1/ gives the true parameter � generating

the process. Let us verify Assumption (P-4) by setting conveniently�T and �T . Let
�d� > 0 be such that B .�; �d�/ � sd.1/.

We express �T D SdT
kD1 �k;T where � 2 �k;T if and only if d .�/ D k. It

is interesting to set �k;T as the part of the stability domain of an AR.k/ process
satisfying Assumptions (P-3) and (P-4). Consider �1;T D s1.1/ � f0gdT�1 \
B1 .0; log T � 1/ and �k;T D sk.1/ � f0gdT�k \ B1 .0; log T � 1/ n�k�1;T for k  2.
Assume moreover that dT D blog
 Tc.

We write �T DPdT
kD1 ck;T�k;T where for all k, ck;T�k;T is the restriction of �T to

�k;T with ck;T a real non negative number and �k;T a probability measure on �k;T .
In this setup ck;T D �T Œ�k;T � and �k;T ŒA \�k;T � D �T ŒA \�k;T � =ck;T if ck;T > 0

and �k;T ŒA \�k;T � D 0 otherwise. The vector


c1;T : : : cdT ;T

�
could be interpreted

as a prior on the model order. Set ck;T D ck=.
PdT

iD1 ci/ where ck > 0 is the k-th term
of a convergent series (

P1
kD1 ck D c� <1).

The distribution �k;T is inferred from some transformations explained below.
Observe first that if a � b we have sk.a/ � sk.b/. If � 2 sk.1/ then



��1 : : : �

k�k

�0 2
sk.1/ for any � 2 .�1; 1/. Let us set

�T.�/ D min

�

1;
log T � 1
k�k1

�

:

We define Fk;T.�/ D


�T.�/�1 : : : �

k
T.�/�k 0 : : : 0

�0 2 R
dT . Remark that

for any � 2 sk.1/, kFk;T.�/k1 � �T.�/k�k1 � log T � 1. This gives us
an idea to generate vectors in �k;T . Our distribution �k;T is deduced from:

Algorithm 1: �k;T generation

input an effective dimension k, the number of observations T and Fk;T ;
generate a random � uniformly on sk.1/;
return Fk;T .�/

The distribution �k;T is lower bounded by the uniform distribution on sk.1/.
Provided any 
  1, let T� D minfT W dT  d
 ; log T  d1=22dg. Since sk.1/ �

B.0; 2k � 1/ (see [19, Lemma 1]) and k1=2k�k  k�k1 for any � 2 R
k, the constraint

k�k1 � log T � 1 becomes redundant in �k;T for 1 � k � d and T  T�, i.e.
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�1;T D s1.1/�f0gdT�1 and�k;T D sk.1/�f0gdT�kn�k�1;T for 2 � k � d. We define
the sequence of Assumption (P-4) as �T D 0 for T < T� and �T D arg inf�2�T R.�/
for T  T�. Remark that the first d components of �T are constant for T  T� (they
correspond to the � 2 R

d generating the AR.d/ process), and the last dT � d are
zero. Let �1� D 2 log 2 � 1. Then, we have for T < T� and all � 2 Œ0;�1��

�T ŒB .�T ; �/\�T �  c1;T�1;T


B .0; �/\ s1.1/ � f0gdT�1�  c1

c�� :

Furthermore, for T  T� and � 2 Œ0;�d��

�T ŒB .�T ; �/\�T �  cd;T�d;T


B .�T ; �/\ sd.1/ � f0gdT�d

�  cd

2d2c��
d :

Assumption (P-4) is then fulfilled for any 
  1 with

C1 D max

�

0; .R .0/� inf
�2�T

R .�//T1=2 log�3 T; 4 � T < T�
�

C2 D min

�

1;
c1
c� ;

cd

2d2c�

�

C3 D min f1; 4�1�;T��d�g :
Let q�;T be the constant function 1, this means that the proposal has the same
distribution �T . Let us bound the ratio (11).

ˇ�;T .X/ D inf
�2�T

q�;T .�/

��;T .� jX / D inf
�2�T

dTX

kD1
ck;T

Z

�k;T

exp .��rT .z jX // �k;T .dz/

exp .��rT .� jX //


dTX

kD1
ck;T

Z

�k;T

exp .��rT .z jX // �k;T .dz/ > 0 :

(16)

Now note that

ˇ
ˇxt � f�

�
.xt�i/i�1

�ˇ
ˇ � jxtj C

d.�/X

jD1

ˇ
ˇ�j

ˇ
ˇ
ˇ
ˇxt�j

ˇ
ˇ � log T max

jD0;:::;d.�/
ˇ
ˇxt�j

ˇ
ˇ : (17)

Plugging the bound (17) on (16) with � D �T

ˇ�T ;T .x/ 
dTX

kD1
ck

Z

�k

exp .��TrT .z jx // �k .dz/  exp

�

�T1=2

4
max

jD0;:::;dT

ˇ
ˇxt�j

ˇ
ˇ

�

;
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we deduce that

1

ˇ�T ;T .x/
�

dTX

kD0
exp

 
T1=2

ˇ
ˇxt�j

ˇ
ˇ

4

!

: (18)

Taking (18) into account, setting 
 D 1 (thus dT D blog Tc), using Assumption
(P-3), that K D 1 and applying the Cauchy-Schwarz inequality we get

A�T ;T D 3K
Z

X Z

1

ˇ�T ;T .x/

Z

X Z

sup
�2�T

ˇ
ˇ
ˇ f� .y/� f O��T ;T .x/

.y/
ˇ
ˇ
ˇ�0 .dy/ �0 .dx/

� 3 .dT C 1/ d1=2T �0

�

exp

�
T1=2 jX1j

4

��

�0 ŒjX1j� sup
�2�T

jj�jj

� 6 log3=2 T�0

�

exp

�
T1=2 jX1j

4

��

�0 ŒjX1j� :

As X1 is centered and normally distributed of variance 
0, �0 ŒjX1j� D .2
0=�/
1=2

and �0Œexp.T1=2 jX1j =4/� D 
0T1=2 exp.
0T=32/=4.
From n  M� .T; "/ D 9
30T2 exp .
0T=16/ =.2�"2 log3 T/ the result of

Theorem 2 is reached. This bound of M .T; "/ is prohibitive from a computational
viewpoint. That is why we limit the number of iterations to a fixed n�.

What we obtain from MCMC is Nf �T ;T;n . y jX / D N� 0
�T ;T;n

.X/ y1WdT
with

N��T ;T;n .X/ D
Pn�1

iD0 ��T ;T;i .X/ =n. Remark that Nf �T ;T;n .� jX / D f N��T ;T;n.X/
. The

risk is expressed as

R
� Nf �T ;T;n .� jX /

� D
�
2
� N��T ;T;n .X/� �

�0
� .Y/

� N��T ;T;n .X/� �
�C 2�2

�1=2

�1=2
:

5.2 Numerical Work

Consider 100 realisations of an autoregressive processes X simulated with the same
� 2 sd .ı/ for d D 8 and ı D 3=4 and with � D 1. Let c.i/, i D 1; 2 the sequences
defining two different priors in the model order:

1. c.1/k D k�2, the sparsity is favoured,

2. c.2/k D e�k, the sparsity is strongly favoured.



256 A. Sanchez-Perez

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10−4

10−3

10−2

10−1

100

T
0 500 1000 1500 2000 2500 3000 3500 4000 4500

10−4

10−3

10−2

10−1

100

T

Fig. 1 The plots represent the 0:9-quantiles in data R. N��T ;T;n� .X// � .2=�/1=2�2 for T D
32; 64; : : : ; 4;096. The graph on the left corresponds to the order prior c.1/k D k�2 while that

on the right corresponds to c
.2/
k D e�k. The solid curves were plotted with n� D 100, the dashed

ones with n� D 1;000 and as a reference, the dotted curve is proportional to log3 T=T1=2

For each sequence c and for each value of T 2 f2j; j D 6; : : : ; 12g we compute
N��T ;T;n� , the MCMC approximation of the Gibbs estimator using Algorithm 2 with
� D �T .

Algorithm 2: Independent Hastings Sampler
input the sample X1WT of X, the prior c, the learning rate �, the generators �k;T

for k D 1; : : : ; dT and a maximum iterations number n�;
initialization ��;T;0 D 0;
for i=1 to n� � 1 do

generate k 2 f1; : : : ; dTg using the prior c;
generate �candidate 	 �k;T ;
generate U 	 U.0; 1/;
if U � ˛�;T;X.��;T;i�1;�candidate/ then

��;T;i D �candidate else
��;T;i D ��;T;i�1;

return N��;T;n� .X/ DPn��1
iD0 ��;T;k .X/ =n�.

The acceptance rate is computed as ˛�;T;X.�1;�2/ D exp.�rT.�1 jX / � �rT

.�2 jX //.
Algorithm 1 used by the distributions �k;T generates uniform random vectors on

sk .1/ by the method described in [6]. It relies in the Levinson-Durbin recursion
algorithm. We also implemented the numerical improvements of [3].

Set " D 0:1. Figure 1 displays the .1 � "/-quantiles in data R. N��T ;T;n� .X// �
.2=�/1=2�2 for c.1/ and c.2/ using different values of n�.
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Note that, for the proposed algorithm the prediction risk decreases very slowly
when the number T of observations grows and the number of MCMC iterations
remains constant. If n� D 1;000 the decaying rate is faster than if n� D 100 for
smaller values of T. For T  2;000 we observe that both rates are roughly the
same in the logarithmic scale. This behaviour is similar in both cases presented in
Fig. 1. As expected, the risk of the approximated predictor does not converge as
log3 T=T1=2.

6 Discussion

There are two sources of error in our method: prediction (of the exact Gibbs
predictor) and approximation (using the MCMC). The first one decays when T
grows and the obtained guarantees for the second one explode. We found a possibly
pessimistic upper bound for M.T; �/. The exponential growing of this bound is the
main weakness of our procedure. The use of a better adapted proposal in the MCMC
algorithm needs to be investigated. The Metropolis Langevin Algorithm (see [4])
gives us an insight in this direction. However it is encouraging to see that, in the
analysed practical case, the risk of Nf �T ;T;n� .� jX / does not increase with T.

7 Technical Proofs

7.1 Proof of Theorem 1

The proof of Theorem 1 is based on the same tools used by [2] up to Lemma 3. For
the sake of completeness we quote the essential ones.

We denote by M1C .F/ the set of probability measures on the measurable space
.F;F/. Let �; � 2M1C .F/, K .�; �/ stands for the Kullback-Leibler divergence of
� from �.

K .�; �/ D
� R

log d�
d� .�/ � .d�/ , if �� �

C1 , otherwise .

The first lemma can be found in [8, Equation 5.2.1].

Lemma 1 (Legendre transform of the Kullback divergence function) Let
.F;F/ be any measurable space. For any � 2 M1C .F/ and any measurable
function h W F ! R such that � Œexp .h/� <1 we have,

� Œexp .h/� D exp

0

@ sup
�2M1

C
.F/

.� Œh� �K .�; �//
1

A ;
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with the convention1�1 D �1. Moreover, as soon as h is upper-bounded on
the support of �, the supremum with respect to � in the right-hand side is reached
by the Gibbs measure � fhg.
For a fixed C > 0, let Q�.C/t D max fmin f�t;Cg ;�Cg. Consider QXt D
H. Q�.C/t ; Q�.C/t�1; : : :/.

Denote QX D . QXt/t2Z and by QR .�/ and QrT
�
�
ˇ
ˇ QX � the respective exact and

empirical risks associated with QX in � .

QR .�/ D E

h
`
�
bQX�t ; QXt

�i
;

QrT
�
�
ˇ
ˇ QX � D 1

T � d .�/

TX

tDd.�/C1
`
�
bQX�t ; QXt

�
;

wherebQX�t D f�.. QXt�i/i�1/.
This thresholding is interesting because truncated CBS are weakly dependent

processes (see [2, Section 4.2]).
A Hoeffding type inequality introduced in [20, Theorem 1] provides useful

controls on the difference between empirical and exact risks of a truncated process.

Lemma 2 (Laplace transform of the risk) Let ` be a loss function meeting
Assumption (L) and X D .Xt/t2Z a process satisfying Assumption (M). For all
T  2, any f f� ;� 2 �Tg satisfying Assumption (P-1), �T such that dT, defined
in (6), is at most T=2, any truncation level C > 0, �  0 and � 2 �T we have,

E


exp

�
�
� QR.�/� QrT

�
�
ˇ
ˇ QX ���� � exp

�
4�2k2.T;C/

T

�

; (19)

and

E


exp

�
�
�QrT

�
�
ˇ
ˇ QX � � QR.�/��� � exp

�
4�2k2.T;C/

T

�

; (20)

where k.T;C/ D 21=2CK.1C LT/
�
A� C QA�

�
. The constants QA� and A� are defined

in (4) and (5) respectively, K and LT in Assumptions (L) and (P-1) respectively.

The following lemma is a slight modification of [2, Lemma 6.5]. It links the two
versions of the empirical risk: original and truncated.

Lemma 3 Suppose that Assumption (L) holds for the loss function `, Assump-
tion (P-1) holds for X D .Xt/t2Z and Assumption (I) holds for the innovations
with � D A�; A� is defined in (5). For all T  2, any f f� ;� 2 �Tg meeting
Assumption (P-1) with�T such that dT , defined in (6), is at most T=2, any truncation
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level C > 0 and any 0 � � � T=4 .1C LT/ we have,

E

"

exp

 

� sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#

� exp .�' .T;C; �// ;

where

'.T;C; �/ D 2K.1C LT/�.A�/
�

A�C

exp .A�C/ � 1 C �
4K.1C LT/

T

�

;

with K and LT defined in Assumptions (L) and (P-1) respectively.

Finally we present a result on the aggregated predictor defined in (7). The proof
is partially inspired by that of [2, Theorem 3.2].

Lemma 4 Let ` be a loss function such that Assumption (L) holds and let
X D .Xt/t2Z a process satisfying Assumption (M) with probability distribution
�0. For each T  2 let f f� ;� 2 �Tg be a set of predictors and �T 2M1C .�T / any
prior probability distribution on�T . We build the predictor Of �;T .� jX / following (7)
with any � > 0. For any " > 0 and any truncation level C > 0, with �0-probability
at least 1 � " we have,
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Proof We use Tonelli’s theorem and Jensen’s inequality with the convex function g

to obtain an upper bound for R
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In the remainder of this proof we search for upper bounding �T f��rT .� jX /g ŒR�.
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First, we use the relationship:

R � rT .� jX / D
� QR � QrT

�� ˇˇ QX ��C �R � QR� � �rT .� jX / � QrT
�� ˇˇ QX �� : (21)

For the sake of simplicity and while it does not disrupt the clarity, we lighten the
notation of rT and QrT . We now suppose that in the place of � we have a random
variable distributed as �T 2M1C .�T/. This is taken into account in the following
expectations. The identity (21) and the Cauchy-Schwarz inequality lead to
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(22)

Observe now that R .�/ D E ŒrT .� jX /� and QR .�/ D EŒQrT .�j QX/�. Jensen’s
inequality for the exponential function gives that
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From (23) we see that
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Combining (22) and (24) we obtain
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1=2

EŒexp.� sup�2�T
jrT.�jX/�QrT.� j QX/j/�/.

Remark that the left term of (25) is equal to the integral of the expression enclosed
in brackets with respect to the measure �0 � �T . Changing � by 2� and thanks to
Lemma 1 we get
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By setting � D �Tf��rT .� jX /g and relying on Lemma 1, we have
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To upper bound �ŒrT .�jX/� we use an upper bond on � ŒrT.�jX/� R�. We obtain
an inequality similar to (26) with � ŒR � rT.�jX/� replaced by � ŒrT.�jX/� R� and
L�;T;C replaced by L0

�;T;C D log..EŒexp.�.QrT � QR//�/1=2EŒexp.� sup�2�T
jrT.�jX/�

QrT.�j QX/j/�/. This provides us another inequality satisfied with �0- probability at
least 1� ". To obtain a �0- probability of the intersection larger than 1� " we apply
previous computations with "=2 instead of " and hence,
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We can now proof Theorem 1.

Proof Let �0;C denote the distribution on X Z � X Z of the couple .X; QX/. Fubini’s
theorem and (19) of Lemma 2 imply that
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Using (20), we analogously get

E


exp

�
2�
�QrT � QR

��� � exp

�
16�2k2.T;C/

T

�

: (28)
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Thanks to Assumptions (L) and (P-3), for any T  2 and � 2 B .�T ; �/
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Plugging (30) and (31) into (29) and using again Assumption (P-4)
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where E1 D KD, E2 D 32K2
�
A� C QA�

�2
, E3 D 8K�.A�/A� and E4 D 32K2�.A�/.

We upper bound dT by T=2, nT by log
 T and substitute �T D C3=T. Since it is
difficult to minimize the right term of (32) with respect to � and C at the same time,
we evaluate them in certain values to obtain a convenient upper bound.

At a fixed ", the convergence rate of Œ2 log .2="/ � 2 log .C2/� =� C
E4 .1C LT /

2 �=T is at best log T=T1=2, and we get it doing � / T1=2= log T.
As � � T=8.1C LT/ we set � D �T D T1=2=.4 log T/.

The order of the already chosen terms is log3 T=T1=2, doing C D log T=A� we
preserve it. Taking into account that R .�T/ � inf�2�T R .�/ C C1 log3 T=T1=2 the
result follows.

7.2 Proof of Proposition 1

Considering that Assumption (L) holds we get
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Observe that the last expression depends on X1WT and ˚�;T .X/. We bound the
expectation to infer a bound in probability.
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Tonelli’s theorem and Jensen’s inequality lead to
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We are then interested in upper bounding the expression under the square root.
To that end, we use [16, Theorem 3.1] which implies that for any x
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Plugging this on (33), using that n  1 and that
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The result follows from Markov’s inequality.
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6. Beadle, E. R., & Djurić, P. M. (1999). Uniform random parameter generation of stable
minimum-phase real ARMA (p,q) processes. IEEE Signal Processing Letters, 4(9), 259–261.

7. Brockwell, P. J., & Davis, R. A. (2006). Time series: Theory and methods (Springer series in
statistics). New York: Springer. Reprint of the second (1991) edition.

8. Catoni, O. (2004). Statistical learning theory and stochastic optimization (Volume 1851 of
Lecture notes in mathematics). Berlin: Springer. Lecture notes from the 31st Summer School
on Probability Theory held in Saint-Flour, 8–25 July 2001.

9. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge:
Cambridge University Press.

10. Coulon-Prieur, C., & Doukhan, P. (2000). A triangular central limit theorem under a new weak
dependence condition. Statistics and Probability Letters, 47(1), 61–68.

11. Dalalyan, A. S., & Tsybakov, A. B. (2008). Aggregation by exponential weighting, sharp PAC-
bayesian bounds and sparsity. Machine Learning, 72(1–2), 39–61.

12. Dedecker, J., Doukhan, P., Lang, G., León R, J. R., Louhichi, S., & Prieur, C. (2007). Weak
dependence: With examples and applications (Volume 190 of Lecture notes in statistics).
New York: Springer.

13. Dedecker, J., & Prieur, C. (2005). New dependence coefficients. Examples and applications to
statistics. Probability Theory and Related Fields, 132(2), 203–236.

14. Künsch, H. R. (1995). A note on causal solutions for locally stationary AR-processes. Note
from ETH Zürich, available on line here: ftp://ftp.stat.math.ethz.ch/U/hkuensch/localstat-ar.
pdf.
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Space-Time Trajectories of Wind Power
Generation: Parametrized Precision Matrices
Under a Gaussian Copula Approach

Julija Tastu, Pierre Pinson, and Henrik Madsen

Abstract Emphasis is placed on generating space-time trajectories of wind power
generation, consisting of paths sampled from high-dimensional joint predictive
densities, describing wind power generation at a number of contiguous loca-
tions and successive lead times. A modelling approach taking advantage of the
sparsity of precision matrices is introduced for the description of the underlying
space-time dependence structure. The proposed parametrization of the dependence
structure accounts for important process characteristics such as lead-time-dependent
conditional precisions and direction-dependent cross-correlations. Estimation is
performed in a maximum likelihood framework. Based on a test case application in
Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly
lead times (hence, for a dimension of n D 645), it is shown that accounting for
space-time effects is crucial for generating skilful trajectories.

1 Introduction

The large-scale integration of wind energy into power systems and electricity mar-
kets induces operational and management challenges owing to the stochastic nature
of the wind itself, with its variability and limited predictability [1]. Forecasting of
wind power generation, at various spatial and temporal scales, is generally seen
as a crucial input to the decision-making problems involved [23]. An overview
of the history of wind power forecasting, though mainly focused on deterministic
approaches, as well as an extensive review of the state of the art in that field,
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are given in [10] and [14], respectively. In parallel, an overview of the current
forecasting challenges can be found in [33].

Owing to the complexity of the various decision-making problems at hand, it
is preferable that the forecasts provide decision-makers not only with an expected
value for future power generation, but also with associated estimates of prediction
uncertainty. This calls for probabilistic, rather than point (in the sense of single-
valued) forecasting [16]. Example applications of probabilistic forecasting include
the design of market offering strategies [6], economic load dispatch and stochastic
unit commitment [7, 32], optimal operation of wind-storage systems [9], contin-
gency reserve quantification [4] and assessment of power systems operating costs
induced by wind energy [30].

Probabilistic forecasts of wind power generation are commonly generated for
each site and lead time of interest, individually. They do not inform about the
interdependence structure between potential forecast errors, both in space and in
time. Actually, the idea of addressing each site separately can be motivated by the
fact that the power curves for the conversion of meteorological variables to power
are given by complex non-linear functions of meteorological conditions, number
and type of wind turbines, their layout, topographical characteristics, see [22] for
instance. Wind power dynamics are generally so site-specific that it is hard to
issue high-quality probabilistic forecasts for a large number of sites simultaneously.
Similarly, a common practice is to issue power forecasts in the form of marginal
predictive densities for each lead time individually, rather than addressing the joint
multivariate distribution. The resulting set of marginal predictive densities at N
sites and K lead times is a suboptimal input for a substantial share of decision-
making problems related to power systems operations and electricity markets, e.g.,
due to power flows on the network or to inter-temporal constraints for conventional
power units to be scheduled. A full picture of the space-time characteristics of the
stochastic process is there necessary.

Having a set of marginal distributions for a number of random variables, their
joint density can be fully characterized using a copula approach. One important
feature of copulas is that they can be used to model dependency between random
variables independently of their marginal distribution functions. This is important
since, as mentioned previously, modelling wind power generation at individual
sites while targeting a specific lead time is already a difficult task. It is thus an
advantage to decouple the problem of estimating marginal predictive densities from
that related to the space-time dependence structure. Copulas have been widely
used in many fields for modelling dependencies among sets of random variables,
including a number of problems related to wind power. As an example in [5],
predictive densities for wind power generation were built by modelling the relation
between wind speed and related power output using copulas. In [31], copulas
were employed to estimate system net load distribution when accounting for the
dependence structure between wind at different locations, at the level of a country,
and its relation to the overall electric consumption. In [20], a copula-based approach
was similarly proposed for modelling the spatial dependence in wind speed over the
whole European area.
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The proposal of issuing trajectories of wind power generation based on predictive
marginal densities and a model of their dependence structure was originally
described in [36], where the authors focused on a single wind farm, hence
considering temporal dependencies only. Based on a Gaussian copula assumption,
this temporal dependence was fully specified by an empirical covariance structure
to be tracked adaptively and recursively, as in an exponential smoothing framework.
Time trajectories of wind power production were then issued by sampling from
these multivariate predictive densities. More general parametric and nonparametric
approaches were subsequently described in [34], with the main aim of discussing
verification of time trajectories. Furthermore, Ref. [26] concentrated on wind power
generation at a pair of sites and considered different functional forms of copulas
for their dependence, given the lead time. The present study goes along similar
lines, even though looking here at the full space-time picture: joint predictive
densities of wind power output (and eventually, trajectories) are to be issued based
on a set of marginal predictive densities already available for all sites and lead
times. The problem then boils down to specifying a model for the dependence
structure and to estimating its parameters. Under a Gaussian copula assumption, the
modelling approach we propose takes advantage of the sparsity of precision matrices
permitting to describe the underlying space-time process. A suitable parametrization
of the precision matrix is proposed, hence yielding a more tractable approach even in
high dimensions. This proposal goes beyond the conventional assumptions of homo-
geneous stationary Gaussian Random fields, since the proposed parametrization
accounts for the boundary points and considers non-constant conditional variances
and direction-dependent conditional correlations.

The paper is structured as following. Section 2 introduces the data set used in
the study. The methodology is described in Sect. 3. It consists of some preliminaries
and definitions, a short introduction to copula modelling and explanation on how
precision matrices relate to the Gaussian copula approach. Further, Sect. 4 presents
the proposed parametrization of the dependence structure. The estimation method is
discussed in Sect. 5, while the empirical results are given in Sect. 6. The paper ends
in Sect. 7 with a set of concluding remarks and perspectives regarding future work.

2 Data

The case study is for western Denmark, covering the Jutland peninsula and the
island of Funen, with a nominal capacity close to 2.5 GW. This corresponds to
approximately 70 % of the entire wind power capacity installed in Denmark at the
time. Even though this nominal capacity regularly evolves due to commissioning
and decommissioning of turbines, as well as maintenance operations, it stayed very
close to this level over the period considered. Besides the significant share of wind
generation, one of the reasons for concentrating on Denmark relates to its climate
and terrain characteristics. The territory is small enough for the incoming weather
fronts to affect all of its parts. In addition, the terrain is smooth, therefore passing
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Fig. 1 Geographical
locations of the N D 15

control areas of Energinet.dk,
the system operator in
Denmark, for a nominal
capacity close to 2.5 GW

weather fronts do not meet such big obstacles as mountains when propagating over
the country. These aspects make the test case an ideal candidate for understanding
space-time effects before moving to more complex cases.

The western Denmark area is divided by the system operator, Energinet.dk,
into N D 15 control zones, as depicted in Fig. 1. For all of these areas, power
measurements were made available at an hourly resolution. All measurements and
related forecasts were normalized by the nominal capacity of the control area
they relate to. Consequently, they are expressed in percentage of nominal capacity,
generally denoted by Pn. Point forecasts of wind power generation with an hourly
resolution and lead times up to K D 43 h were produced with the Wind Power
Prediction Tool (WPPT) [29]. This corresponds to the most important lead times,
today, for power systems operations in an electricity market environment. The
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update frequency of the forecasts is hourly. Marginal predictive densities were
generated in a nonparametric framework, for all control zones and hourly lead times
up to K hours ahead, based on the adaptive resampling approach described in [35].
It comprises one of the state-of-the-art approaches to generating nonparametric
predictive densities of wind power generation, in a fashion similar to adaptive
quantile regression [37]. These predictive densities are fully characterized by a set of
quantile forecasts with varying nominal levels ˛, ˛ 2 f0:05; 0:1; � � � ; 0:95g. Related
predictive cumulative distribution functions are obtained by linearly interpolating
through these sets of quantile forecasts.

The available data covers a period from 1 January 2006 to 24 October 2007.
For the purpose of the modelling and forecasting study, this dataset was divided
into two subsets. The first one covers a period of 11 months, i.e., from 1 January
2006 to 30 November 2006 (8,016 forecast series), to be used for the data analysis,
model building and estimation. The second subset, covering the period between 1
December 2006 and 24 October 2007 (7,872 forecast series), is considered as an
evaluation set for the out-of-sample evaluation of the space-time trajectories to be
generated, and for comparison with the alternative approaches considered.

3 Methodology

The objective of the methodology introduced here is to generate joint predictive
densities describing wind power generation at a number of contiguous locations and
for a number of successive lead times, independently from the approach used to
originally generate the individual predictive densities. These marginal densities are
linked together through a (Gaussian) copula function, for which a parametrization
of the precision matrix permits to capture the underlying space-time covariance
structure. Our proposal methodology can hence be seen as a two-stage approach
to the modelling of joint predictive densities, by first obtaining relevant marginal
predictive densities (here, part of the available data described previously), and then
estimating the relevant parameters of the chosen copula. Similar approaches are first
instance considered in econometrics applications [19].

3.1 Preliminaries and Definitions

Let us first describe the general setup for this forecasting problem. At every time step
t, one aims at predicting wind power generation for future times tC1; tC2; � � � ; tC
K at N contiguous locations. Seeing wind power generation as a stochastic process,
there are in total n D NK random variables of interest, denoted in the following
by Yt;1; Yt;2; � � � ; Yt;n, which we aim at jointly describing given the information
available up to time t. For instance here, with 15 zones and 43 lead times, one
has n D 645. The enumeration is such that Yt;1; � � � ;Yt;K represent wind power
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generation at the first location for the lead times 1; � � � ;K, then Yt;TC1; � � � ;Yt;2T

represent wind power generation at the second location for lead times 1; � � � ;K,
and so on. Uppercase letters are used for random variables, while lowercase letters
denote the corresponding observations. Bold font is used to emphasize vectors
and matrices. For example, yt D Œyt;1; yt;2; � � � ; yt;n�

> stands for the realization
of Yt. This translates to generally seeing wind power generation as a vector-
valued stochastic process, instead of a spatio-temporal one. This is more for the
sake of employing simpler notations, even though in the following sections the
space-time structure will be accounted for, by identifying the spatial and temporal
neighbourhood of each random variable composing this vector-valued stochastic
process.

The aim of the forecaster is to issue a multivariate predictive distribution
Ft, describing the random vector Yt D ŒYt;1; Yt;2; � � � ; Yt;n�

>, conditional to the
information available up to time t,

Ft.y1; y2; � � � ; yn/ D P.Yt;1 � y1; Yt;2 � y2; � � � ; Yt;n � yn/ : (1)

Proposing a functional form for Ft directly implies a simultaneous description
of both the marginal densities as well as of the space-time interdependence
structure. They should account for the non-Gaussian and bounded nature of wind
power generation, as well as for the complex dynamics of wind power variability.
Unfortunately, there is no obvious distribution function which could address these
required aspects altogether. Employing a copula-based approach appears to be an
appealing solution since allowing decomposing the problem of estimating Ft into
two parts.

First, marginal predictive densities, Ft;i D P.Yt;i � yi/, i D 1; 2; � � � ; n, describ-
ing wind power generation at each location and for each lead time individually,
can be obtained. In contrast to joint multivariate predictive densities, for which
very limited literature exist, the case of issuing marginal ones only is increasingly
considered, in both parametric and nonparametric framework. Thus, at this point,
the forecaster clearly should take advantage of the state-of-the-art methods available
for probabilistic wind power forecasting, while concentrating on an appropriate
description of the dependence structure.

Subsequently, the marginal predictive densities can be linked together in order
to obtain Ft using a copula function. Mathematically the foundation of copulas is
given by Sklar’s theorem [42], which states that, for any multivariate cumulative
distribution function Ft with marginals Ft;1, Ft;2,. . . ,Ft;n there exists a copula
function C such that

Ft.y1; y2; � � � ; yn/ D C .Ft;1.y1/; Ft;2.y2/; � � � ; Ft;n.yn// : (2)

In the case where the joint distribution to be modelled involves continuous random
variables only, as for wind power generation, the copula C is unique.
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3.2 Copulas for Wind Power Data

Several functional forms of copulas have been considered for wind power data.
Namely, in Ref. [36] the authors advocate that a Gaussian copula is an adequate
choice when generating joint predictive densities, for a single location and a set
of successive lead times. In parallel in Ref. [26], different copula functions were
compared for the modelling of the dependence between wind power generation
at two sites, for a given lead time. The results showed that a Gumbel copula
performed best, even though Gaussian and Frank copulas could also fit the data
fairly adequately.

When moving to higher dimensions, the construction of Archimedean copulas
(e.g., Gumbel) becomes complex. For instance, a traditional approach for construct-
ing the n-variate Gumbel copula requires the nth order derivative of the inverse
of the process generating function. Even considering explicit formulas for those
derivatives given in Ref. [21], the complexity remains high compared to a Gaussian
copula approach. Moreover, Ref. [11] showed that in higher dimensions Gaussian
copulas outperformed their Gumbel’s counterparts, certainly also owing to the much
larger potential number of parameters of Gaussian copulas compared to the single
parameter the Gumbel ones. Note that these works and results should be interpreted
with care as they might depend upon site characteristics, as well as upon the type of
marginal predictive densities employed as input.

These works hint at the fact that a Gaussian copula could be deemed appropriate
for describing spatial and temporal dependencies present in wind power data. How-
ever, these works have not considered spatio-temporal dependencies. Consequently,
in a first step, a preliminary data examination is carried out in order to verify
whether or not employing a Gaussian copula could be consistent with the space-
time dependence structure observed.

As an example here, consider Yt;.5�43/C5 and Yt;.4�43/C4 representing wind power
generation at zone 6 and lead time t C 5, and wind power generation at zone 5
at lead time t C 4, respectively. The dependence between the random variables
Yt;.5�43/C5 and Yt;.4�43/C4 can be graphically illustrated by focusing on the ranks
of the uniform variables Ft;.5�43/C5.Yt;.5�43/C5/ and Ft;.4�43/C4.Yt;.4�43/C4/, for all
predictive densities and corresponding realizations available over the first data
subset from 1 January 2006 to 30 November 2006.

The scatterplot of the corresponding ranks characterizes the dependence structure
between Yt;.5�43/C5 and Yt;.4�43/C4, while the overlaying contour plot represents the
so-called empirical copula [13]. This empirical copula is then compared to what
would be the corresponding Gaussian copula, as illustrated in Fig. 2. Both patterns
are very similar, thus indicating that the Gaussian copula could be seen suitable
for describing the spatio-temporal dependence structure. The results obtained while
considering different pairs of variables were all deemed qualitatively similar.
Obviously, such a visual comparison does not guarantee that employing a Gaussian
copula is the best choice for modelling the dependence structure, while different
fit evaluation criteria could be used if really aiming to find an optimal copula (as
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Fig. 2 Comparison of empirical and Gaussian copula for the dependence between Yt;.5�43/C5

and Yt;.4�43/C4. (a) A scatterplot with contour overlay for the ranks of Ft;.5�43/C5.yt;.5�43/C5/

and Ft;.4�43/C4.yt;.4�43/C4/ (empirical copula). In parallel, (b) depicts a scatterplot with contour
overlay for the simulated bivariate Gaussian process having the same rank correlation

in [11, 26]). Here it is our choice to focus on Gaussian copulas only, owing to
the resulting opportunities given in terms of dependence structure modelling with
precision matrices only.

3.3 Gaussian Copula

A Gaussian copula is given by

C .Ft;1.y1/; � � � ;Ft;n.yn// D ˚˙
�
˚�1.Ft;1.y1//; � � � ; ˚�1.Ft;n.yn//

�
; (3)

where ˚�1 denotes the inverse of the standard Gaussian cumulative distribution
function and ˚˙ .:/ is the n-variate Gaussian distribution function with zero mean,
unit marginal variances and a correlation matrix ˙ . Based on the assumption such
that the marginal predictive densities are probabilistically calibrated, the random
variables defined by Ft;i.Yt;i/, i D 1; � � � ; n, are distributed UŒ0; 1�. Following an
argument similar to that of [28], it is consequently assumed that a joint multivariate
predictive density for Yt can be represented by a latent multivariate Gaussian
process X D Œ˚�1.Ft;1.Yt;1//; � � � ; ˚�1.Ft;n.Yt;n//�

>,

X 	 N .0;˙ / ; (4)
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with zero mean, unit marginal variances and a correlation matrix˙ . The realizations
xt D Œxt;1; � � � ; xt;n�

> of that process are given by transforming the observations
of wind power generation yt;i through the corresponding predictive cumulative
distribution functions and through ˚�1,

xt;i D ˚�1.Ft;i.yt;i//; i D 1; � � � ; n : (5)

The base assumption about calibration of marginal predictive densities is core to the
methodology subsequently used for modelling the dependence structure. In practice,
it might be very difficult to verify whether these densities are calibrated or not,
especially for small samples. Lack of calibration would necessarily translate to X
not being multivariate Gaussian.

Note that, in this setup, even though the marginal distributions Ft;i as well as
the joint distributions Ft are time-dependent, the underlying dependence structure is
fully characterized by the time-invariant correlation matrix˙ , hence not requiring a
time index for either X or˙ . Such an assumption may not always hold in practice,
since the dependence between the sites and different lead times might change under
the influence of meteorological conditions, seasonal effects, changes in the terrain
roughness, etc. It is out of scope in this study to address those issues, even though
we discuss in Sect. 7 several possible extensions permitting to better capture such
variations in the spatio-temporal dependence. The most straightforward one would
be to use a sliding-window estimation approach, even though it would clearly
increase computational costs.

3.4 Modelling as a Conditional Autoregression

Consider a set of available wind power observations for the vector valued process
Yt, t D 1; � � � ;T. This process is transformed so as to obtain the latent multivariate
Gaussian one X, and related observations. Emphasis is placed on the correlation
structure of X. As can be seen from Fig. 3, the sample correlation matrix Ȯ is
dense. This directly implies that inference with such a matrix has a computational
complexity of O.n3/. In order to make the proposed methodology applicable for
problems of high dimension, instead of modelling the covariance matrix directly,
we focus on its inverse, the precision matrix, denoted by Q [41].

In contrast, the sample precision matrix (see Fig. 4) is very sparse. This suggests
considering Gaussian Markov Random Fields (GMRF), allowing us to benefit from
computationally efficient algorithms derived for inference with sparse matrices.
More specifically, by switching from a dense correlation matrix to its sparse inverse,
we reduce the computational complexity from O.n3/ to a range from O.n/ to
O.n3=2/, depending on the process characteristics [41].

While a correlation structure tells of global dependencies between marginal
dimensions of the vector-valued process, the precision matrix represents conditional
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Fig. 3 Sample correlation matrix Ȯ over the first subset of data

interdependencies. The elements of the precision matrix have the following inter-
pretation. The diagonal elements of Q are the conditional precisions of Xi given
X�i D ŒX1; X2; � � � ; Xi�1; XiC1; � � � ; Xn�

>, while the off-diagonal elements, with a
proper scaling, provide information about the conditional correlations between the
variables. For a zero mean process such as the one we are dealing with, one has

E.XijX�i/ D � 1

Qii

X

j¤i

QijXj ; (6)

Var.XijX�i/ D 1=Qii : (7)

A very important relation is that Qij D 0 if and only if the elements Xi and
Xj are independent, given X�fi;jg. Hence, the non-zero pattern of Q determines the
neighbourhood of conditional dependence between variables. This relationship can
be used to propose a parametrization of the precision matrix. Of course, one still has
to keep in mind that Q is required to be symmetric positive-definite (SPD).
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Fig. 4 Sample precision matrix OQ over the first subset of data

The relationship given by (6) and (7) is sometimes used for an alternative
specification of Gaussian Markov Random Field through the full conditionals. This
approach was pioneered by Besag in [3]: the resulting models are also known as
conditional autoregressions, abbreviated as CAR. When specifying GMRF through
CAR, instead of considering the entries of the precision matrix Q, Qij, directly, focus
is on modelling terms �i D Qii and ˇij D Qij=Qii, i; j D 1; � � � ; n.

From (6) it is seen that the elements ˇij are given by the coefficients of the
corresponding conditional autoregression models, while �i inform on the related
variances. This translates to

Q D �B ; (8)

where � denotes a diagonal matrix of dimension n � n, the diagonal elements of
which are given by �i, i D 1; � � � ; n. B is a coefficient matrix gathering a set of
coefficients ˇij, i; j D 1; � � � ; n, to be seen as a standardized precision matrix. Such
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a CAR specification is generally easier to interpret and we will use it to propose a
parametrization for Q in this work.

4 Parametrization of the Precision Matrix Q

As the CAR specification of (6) and (7) allows us to decouple the problem of
describing Q into the matrix of conditional precisions � and the coefficient matrix
B is presented, their parametrization are presented one after the other below.

4.1 Parametrization of �

Conventionally, CAR models are given by stationary GMRF. Stationarity implies
rather strong assumptions on both the neighbourhood structure and the elements
of Q. Firstly, the structure of the neighbourhood does not allow for special
arrangements for the boundary points. Secondly, the full conditionals have constant
parameters not depending on i, i.e., the conditional precisions �i, i D 1; � � � ; n,
are assumed constant. However, our data analysis showed that this assumption was
too restrictive in the present case. Indeed, having a closer look at the diagonal of
the sample precision matrix OQ, depicted in Fig. 5, it is clear that its elements are
not constant. Instead, except for the boundary points, they exhibit a trend with
conditional precision increasing with the lead time.

In addition, the variation patterns for conditional precisions appear similar for
all zones. Only the variation pattern for zone 9 looks different. This result is
in line with a previous analysis in [43] of the spatial and temporal dynamics of
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Fig. 5 Diagonal elements of the sample precision matrix, OQ. Boundary points given by the
conditional precisions for lead times 1 and 43 h ahead are marked with red and blue circles,
respectively
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wind power generation for this dataset. On the one hand, that difference might be
explained by the smaller area covered by zone 9 in comparison will all the others
(and lower nominal capacity), hence leading to more significant local variations,
and then lower conditional precisions. On the other hand, that zone also exhibits
different characteristics since located off the mainland of Jutland, where offshore
wind dynamics can substantially differ from those observed onshore.

If looking at the other zones, the variation patterns observed for the conditional
precisions are rather similar. It was not possible to link the differences between
zones to the explanatory variables available, either measurements or forecasts.
In parallel, even though one might think that the precision pattern could depend
on whether a zone is located in the center of the considered territory or on the
boundary, such an assumption was not supported by the data. Furthermore, our
analysis did not support the alternative assumption such that conditional precisions
could depend on the overall level of power variability at that zone. Consequently,
our proposed parametrization for conditional precisions is the same for all zones.
Further investigation might allow to refine this proposal.

As a result, � is a block diagonal matrix,

� D

0

B
B
B
@

�B 0
�B

: : :

0 �B

1

C
C
C
A
; (9)

where its block element,

�B D

0

B
B
B
@

�1 0
�2
: : :

0 �K

1

C
C
C
A
; (10)

is a diagonal matrix of dimension K � K, repeating N times.
Focusing on a single block element �B, and in view of our observations related

to Fig. 5, a parametrization for �B ought to consider separately the central lead
times and the temporal boundaries. These temporal boundaries �1 and �K cannot
be avoided since there cannot be lead times of less than 1 h ahead and more than K
hours ahead. As a result for these lead times, the conditional models in (6) and (7)
rely on a smaller set of explanatory variables. This in turn leads to lower precision
values.

For lead times between 2 to K�1 hours ahead, an analysis of Fig. 5 suggests that
conditional precisions increase with the lead time, and could be expressed as

�i D �i�2; i D 2; � � � ;K � 1 ; (11)
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with � a ratio parameter. This model was found to be more suitable than a simpler
linear one, which, visually based on Fig. 5 could also be seen as a relevant candidate.

As a result, this block element �B is parametrized as

�B D 1

�2

0

B
B
B
B
B
B
B
B
@

�1
1 0
�
: : :

0 �K�2
�K

1

C
C
C
C
C
C
C
C
A

(12)

meaning that, overall, the diagonal elements of Q can be described with four
parameters only: the temporal boundaries �1 and �K , the ratio parameter �, and an
overall scaling �2.

4.2 Parametrization of the Standardized Precision Matrix B

Our next step is to describe a parametrization for B. This requires an analysis
of the neighbourhood structure of Q by identifying which elements are non-zero.
We first look at the spatial neighbourhood and then at the temporal one, The final
parametrization for B is finally presented.

4.2.1 Spatial Neighbourhood

Consider a single zone denoted by A. A careful look at Fig. 4 (while also
remembering the spatial distributions of these zones shown in Fig. 1) reveals that
information at zone A only depends on the local information at A and on the four
closest neighbouring zones: northern (N), eastern (E), southern (S) and western (W)
neighbours of A. A simplified representation of their spatial neighbourhood effects
is given in Fig. 6.

In practice, the spatial neighbours are assigned to each of the zones based on
the visual inspection of the spatial distributions of these zones (see Fig. 1), as well

Fig. 6 Neighbourhood
specification of a single zone.
The focus zone is marked A,
while W, N, E and S denote
its western, northern, eastern
and southern neighbours,
respectively
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as expert knowledge. For instance, for zone 11, the obvious spatial neighbours
are W = 10, E = 12 and S = 15. The N neighbour is more difficult to define, since
a unique zone is to be picked, while here both zones 6 and 7 could be seen as
appropriate. An analysis of the sample precision matrix allowed to decide on N = 6
in view of a more pronounced dependence.

4.2.2 Temporal Neighbourhood

Figure 4 shows that information observed at zone A at time t is only dependent on a
very small amount of elements at zones A, N, E, S, and W. Since precision matrices
ought to be symmetric, it is sufficient to focus on the dependency between A and
its western and southern neighbours, without direct consideration of the eastern
and northern neighbours. Let us zoom into some relevant blocks of the sample
coefficient matrix OB, obtained based on our first subset of data, when focusing on
zone 6.

Based on Fig. 7, it appears that the corresponding conditional correlations of
zone A with its northern and the western neighbours differ. Information at zone A
observed at time t is conditionally dependent only on the simultaneous information
at zone N. Meanwhile, the conditional correlation with zone W is significant at
times t � j, j D �2; � � � ; 2. This difference in the dependency patterns can be
partly explained by the fact that in Denmark the prevailing winds are westerly. Thus,
forecast errors most often propagate from West to East, as discussed in, e.g., [15].
This means that usually zones A and N are influenced by the upcoming weather
front simultaneously, while zone W is exposed to it earlier. Of course, one should
also keep in mind that in our test case distances between zones A and N are in
general larger than those between A and W. That can be another factor influencing
the differences.

In general, the results depicted in Fig. 7 show that information corresponding
to lead time k for zone A is dependent on the variables at the neighbouring
zones corresponding to lead times k � j, where j D �2; � � � ; 2. Thus, visually
the data suggests a second order (temporal) process. In this work both the second
(j D �2; � � � ; 2) and the first order (j D �1; 0; 1) models have been considered.
Since the corresponding difference in the performance of the resulting predictive
densities was rather minor, in this study the focus is on the first order model (j D 1).
Extension to higher order models is rather straight-forward and all the discussed
parametrization and estimation procedures apply.

In this work a directional non-stationary CAR model, abbreviated as DCAR, is
considered. That is, the conditional correlations are made direction-dependent. In
this respect the work is inspired by [24] where the authors consider a directional (in
space) CAR model. We refer the reader to that work for a clear description of the
modelling approach. The current proposal can be viewed as a generalization of the
work presented in [24] since space-time neighbourhoods are considered along with
the non-constant precisions.
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Fig. 7 Zooming on blocks of the standardized sample precision matrix OB. (a) W. (b) A. (c) S

When considering DCAR models, directional neighbourhoods should be chosen
carefully so that each of them forms a (directional) clique. Let us consider two
elements from the full random vector X, Xi and Xj. Then, given that Xi is a “west-
side” and “one-hour-ago” neighbour of Xj, Xj should be assigned as the “east-side”
and “one-hour-ahead” neighbour of Xi. This is essential for ensuring the symmetry
of the precision matrix.

4.2.3 Resulting Space-Time Parametrization for B

Our analysis over the first data subset suggested that information for zone A at lead
time k conditionally depends on information from zones N, E, S, and W with lead
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times k � 1, k, kC 1, as well as on the local situation at zone A for lead times k � 1
and kC 1. In terms of the CAR specification given in (6) this translates to

E
�
Xt;.A�1/KCkjXt;�f.A�1/KCkg

� D �
X

jDf�1;1g
ajXt;.A�1/KC.kCj/

�
X

jDf�1;0;1g
.bjXt;.W�1/KC.kCj/ C b�

j Xt;.E�1/KC.kCj/

C cjXt;.N�1/KC.kCj/ C c�
j Xt;.S�1/KC.kCj// :

(13)

In the above, aj, bj, b�
j , cj and c�

j denote the coefficients representing conditional
dependencies on the local (a) information as well as on the information coming from
the west (b), east (b�), north (c) and south (c�), respectively. These coefficients are
the building blocks for B.

It was found that aj, bj, b�
j , cj and c�

j do not depend on the considered lead time
k. It can be also seen from Fig. 7 that there is no indication of any increase/decrease
of the coefficient values with the lead time. The only values which differ from the
general picture are those for the temporal boundaries. This effect is already dealt
with when scaling by the corresponding conditional precisions.

In this work it is assumed that the corresponding coefficients are constant for
all zones. Further work could be done in order to explain spatial variations in the
coefficient values. Some restrictions have to be imposed on the parameters in B to
ensure that the resulting precision matrix Q is SPD. Imposing symmetry reduces
the parameter space significantly, since coefficients a1 can be derived from a�1, b�

j
from b�j and c�

j from c�j, j D �1; 0; 1. This will be discussed in the following.
For the specific setup of our Danish test case, the resulting standardized precision

matrix is defined as

B D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@
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A E S

W A E S 0
N W A S

N A E S
N W A E S

W A E
N W A E S

W A S
N A E S

N W A E S
N W A E

0 N W A
N A E

N W A

1

C
C
C
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C
C
C
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C
C
C
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C
C
C
C
C
A

; (14)
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where W, N represent the blocks describing the conditional dependencies between
a given zone its Western and Northern neighbours, respectively, while A represent
the local dependencies within zone A itself. Note that indices for the zones were
added in order to better appraise the structure of this matrix.

The A, W and N blocks are parametrized as

A D

0

B
B
B
B
B
B
B
B
@

1
a�1
�1

0
a�1 1 �a�1

: : :
: : :

: : :

a�1 1 �a�1

0 �K�1a�1
�K

1

1

C
C
C
C
C
C
C
C
A

: (15)

One can note that in the upper diagonal of A instead of writing a1 as suggested
by (13), we directly express a1 in terms of a�1 in order to ensure symme-
try of the resulting Q. That is, the upper diagonal of A when multiplied by
Œ�1; 1; �; � � � �K�2�> has to be equal to the lower diagonal of A multiplied by
Œ1; �; � � � ; �K�2; �K �

>. From this one can directly obtain the dependency between
the upper and the lower diagonals of A. Since the elements of �B increase
proportionally by � for lead times from 2 to K � 1, then a1 D �a�1 in the
corresponding part. In the similar manner, the scaling for the boundary points is
a function of �1 and �K .

W D

0

B
B
B
B
B
B
B
B
B
@

b0
b1
�1

0
b�1 b0 b1

: : :
: : :

: : :

b�1 b0 b1

0 �K�1b�1
�K

b0

1

C
C
C
C
C
C
C
C
C
A

; (16)

and

N D

0

B
B
B
B
B
B
B
B
@

c0
c1
�1

0
c�1 c0 c1

: : :
: : :

: : :

c�1 c0 c1

0 �K�1c�1
�K

c0

1

C
C
C
C
C
C
C
C
A

: (17)
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For the last two blocks, they are readily obtained with

E D K�1W>K ;

S D K�1N>K ; (18)

to ensure symmetry of Q.
Finally, the precision matrix Q can be fully modelled by a parameter vector � , as

� D Œ�1; �; �K ; �
2; a�1; b0; b�1; b1; c0; c�1; c1�

> : (19)

It will hence be referred to as Q.�/ in the following.

5 Estimation

We explain here how to fit the GMRF defined by Q.�/ to the observations. This task
can be divided into two parts. Firstly, the discrepancy measure between observed
data and the suggested GMRF is to be chosen. Secondly, one has to insure that the
parameter estimates belong to the valid parameter space�C, such that the resulting
precision matrix is SPD.

5.1 The Valid Parameter Space

The precision matrix Q was previously described as a function of the parameter
vector � . Symmetry of Q.�/ is imposed by construction. Hence, we are left with
the issue of the positive definiteness of Q.�/.

Unfortunately, in general, it is hard to determine the valid parameter space �C.
Analytical results are available for precision matrices that are Toeplitz [39]. These
results can be used when working with homogeneous stationary GMRFs, but this is
not the case here. An alternative to consider here is to work with a subset�C given
by the sufficient condition such that Q.�/ is diagonal dominant.

Diagonal dominance is easier to treat analytically. On the downside, this
approach becomes more and more restrictive for an increasing number of param-
eters. This issue is discussed in more detail in [39]. For instance, for our particular
test case we could see that the assumption of diagonal dominance was too restrictive.
And, if no such restriction was imposed, the vector of parameters estimated was far
from yielding a diagonal dominant precision matrix.

If the full valid parameter space�C is unknown and its diagonal dominant subset
is deemed too restrictive, it is always possible to use a “brute force” approach
(following the terminology of [39]). This entails checking if O� 2 �C by direct
verification of whether the resulting Q. O�/ is SPD or not. This is most easily done
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by trying to compute the Cholesky factorization which will be successful if and only
if Q is positive definite. This is the approach we decided to use here.

However, it is worth mentioning some advantages given by the diagonal dom-
inance approach over the “brute force” method. An important one is that if one
estimates parameters while requiring the diagonal dominance, then one can be sure
that if a new territory is to be included, there is no strict necessity (other than
aiming for optimality) to re-estimate the parameters. In other words, one can be sure
that the vector of parameters already available would guarantee a valid covariance
structure for the enlarged lattice. This is not the case if using the “brute force”
approach. If aiming to add another zone, it cannot be guaranteed that the previously
estimated parameters would result in a valid covariance structure, hence requiring to
re-estimate them. Our various experiments showed that such a new set of parameters
would be very close to the previous one. This latter vector of parameters could
therefore be used as initial condition of the optimization routine used for their re-
estimation.

5.2 Choosing an Appropriate Optimization Criterion

When estimating � from data, a discrepancy measure between the imposed GMRF
and the observations needs to be chosen. Here estimation is carried out in a max-
imum likelihood framework. In [40], the authors argue that maximum likelihood
estimators for GMRF are not robust with respect to model errors and might result in
coefficient estimates which do not describe well the global properties of the data.
The authors propose a new optimization criterion which resolves this difficulty.
The criterion is based on a norm distance between the estimated and the observed
correlation structures.

By considering both the norm-based discrepancy optimization and the maximum
likelihood approach, we observed that resulting estimates were very similar. Using
the maximum likelihood approach was then preferred, following another argument
in [40], such that, if a GMRF describes the data adequately, then the maximum
likelihood-based inference is more efficient.

5.3 Parameter Estimation Using Maximum Likelihood

Let us focus on a single time t and recall some of the notations introduced in
Sect. 3. An observation of the latent Gaussian field xt D Œxt;1; xt;2; � � � ; xt;n�

> is
obtained by transformation of the wind power observations Œyt;1; yt;2; � � � ; yt;n�

>
through the corresponding predictive cumulative distribution functions, as in Eq. (5).
In the case where marginal predictive densities are probabilistically calibrated, xt is a
realization from a multivariate Gaussian distribution with zero mean and correlation
matrix given by Q�1. Consequently the log-likelihood contribution given by xt



Space-Time Trajectories of Wind Power Generation 287

writes

lt.�/ D �1
2

�
n ln.2�/ � ln jQ.�/j C xt

>Q.�/xt
�
: (20)

Given T realizations for the process Xt, the overall likelihood is given by

lT.�/ D
TX

tD1
lt.�/ D �1

2

 

nT ln.2�/� T ln jQ.�/j C
TX

tD1
xt

>Q.�/xt

!

: (21)

Then, solving
@lT.�/

@�2
D 0 with respect to �2 yields the following profile

maximum likelihood estimator for �2,

b�2 D
PT

tD1 x>
t Pxt

Tn
; (22)

where

P D

0

B
B
B
B
B
B
B
B
@

�1

1 0
�
: : :

0 �K�2
�K

1

C
C
C
C
C
C
C
C
A

(23)

Having the profile likelihood estimate for �2, Q can be seen as a function of the
reduced parameter vector ��:

�� D Œ�1; �; �43; a�1; b0; b�1; b1; c0; c�1; c1�> : (24)

And, finally, an estimate for �� is obtained by a numerical optimization of the
likelihood function given in (21) with respect to the parameter vector ��.

The requirement for the resulting Q. O�/ to be symmetric positive definite is
equivalent to requiring all eigenvalues to be positive. Similarly to [40], we approach
the constrained optimization problem as an unconstrained one, adding an infinite
penalty if some of the eigenvalues are negative. This approach works well in
practice. In parallel,˙ . O�/ D Q�1. O�/ is required to have a unit diagonal. In practice
this is achieved by the corresponding scaling of Q. O�/, as also suggested in [39].
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6 Results

6.1 Assessing Global Model Fit

Our verification starts with an examination of the global properties of the estimated
dependence structure. This is done in the spirit of [40], i.e., by visually comparing
the estimated covariance structure with the sample one, over the first subset of
data available and used for modelling and model fitting. The estimated correlation
matrix is illustrated in Fig. 8, while the sample one was already shown in Fig. 3. The
patterns in these two matrices appear to be very similar.

The motivation for checking the global resemblance between the dependence
structures in addition to the overall likelihood evaluation is given by the following.
When optimizing the likelihood, the optimal fit is given by fitting the covariances
within the neighbourhood exactly, while the remaining ones are determined by the
inversion of the fitted precision matrix [40]. This may result in estimates which,

Fig. 8 Estimated correlation matrix
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instead of capturing dependencies between all the variable pairs in some reasonable
way, capture just some of them with a very high precision, while ignoring the others.

6.2 Assessing Predictive Model Performance

We then turn ourselves to evaluating the predictive performance of our approach.
Indeed, so far, all derivations and discussion were for the first subset of data
(between 1st January and 30th November 2006). Here, the evaluation uses genuine
forecasts generated for the second subset of data (from 30th November 2006 to
24th October 2007), where the available predictive marginal densities, as well as
estimated dependence structure, are used to issue multivariate predictive densities
with a dimension n D 645.

The section starts with a presentation of the benchmark approaches. Further,
scores used for the overall quality assessment are discussed. Finally, the empirical
results are presented.

6.2.1 Overview of the Models Considered

The following models are considered in this study:

1. Independent: The corresponding multivariate predictive densities are based on
the assumption that the marginal densities are independent, i.e.,

Ft.y1; y2; � � � ; yn/ D Ft;1.y1/Ft;2.y2/ � � �Ft;n.yn/ I (25)

2. First order time-dependence: The corresponding multivariate densities are
obtained using a Gaussian copula approach. The covariance matrix accounts
only for the temporal dependencies while completely ignoring the spatial ones.
This is done by constructing the precision matrix Q as described in the above,
but setting � D �1 D �K D 1 and b�1 D b0 D b1 D c�1 D c0 D c1 D 0.
That is, the precision matrix in this case is described by the parameters a1 and
�2 only. This model does not allow for any special arrangement for the boundary
points. The conditional precisions are assumed to be constant. In other words,
this model corresponds to a conventional stationary GMRF defined by the first
order autoregressive process in time;

3. Separable model with first order decays in time and in space allowing for
non-constant conditional precisions: The corresponding multivariate densities
are obtained using a Gaussian copula approach. The precision matrix Q is
parametrized as in the above while setting c0 D b0, b1 D b�1 D c1 D
c�1 D a1b0. That is, the precision matrix in this case is described the first
order time-dependence (given by a1) and the first order spatial dependence
(given by b0). Additionally, the model gives more flexibility compared with
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the conventional separable covariance structures by considering non-constant
conditional precisions (modelled by �, �1 and �K). The model does not account
for the directional influence, and that is why cj is set to be equal to bj with all
j D �1; � � � ; 1;

4. Sample correlation: The corresponding multivariate predictive densities are
obtained using a Gaussian copula approach with the correlation structure given
by the sample correlation matrix;

5. Full model: The first order model which proposed in this study. That is the
precision matrix is described by the full parameter vector � as given in (19).

6.2.2 Choosing an Appropriate Scoring Rule for the Quality Evaluation

In order to evaluate and compare the overall quality of multivariate probabilistic
forecasts proper scoring rules are to be employed [8, 17]. An overview of proper
scoring rules used for the multivariate forecast verification is given in [18]. In this
work the Logarithmic score is used as a lead score for evaluating the performance
of the joint predictive densities. The logarithmic scoring rule, s, is defined as

s.p.x/; xt/ D � ln.p.xt// (26)

Where p.x/ stands for the predictive density, which in our case is given by

N .0;Q. O�/�1/. xt denotes the corresponding observation.
Suppose, the verification set consists of T observations, then the overall empirical

score value, S, is given by the average value of the individual s.p.x/; xt/,

S.p.x// D � 1
T

TX

tD1
ln.p.xt// : (27)

In other words, the Logarithmic score value over the evaluation set is given by the
average minus log-likelihood derived from the observations. The score is negatively
orientated: the lower its value is, the better.

There are several reasons for choosing the Logarithmic score as the lead
evaluation criterion. Firstly, it is consistent with the optimization criterion used
when estimating the model parameters. Secondly, allowing for some affine trans-
formations, this is the only local proper score (see Theorem 2 in [2]). Locality
means that the score depends on the predictive distribution only through the value
which the predictive density attains at the observation [8]. An important advantage
of using local scores when dealing with multivariate predictive densities comes with
the related computational benefits. When dealing with local scores, there is no need
to draw random samples from the predictive density in order to make the evaluation.

For instance, an alternative is to use the Energy score (see detailed information
on this in [18]). This score is non-local and is based on the expected Euclidean
distance between forecasts and the related observations. Most often, closed-form
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expressions for such expectation are not available. One then needs to employ Monte-
Carlo methods in order to estimate the score value [18]. In high dimensions, Monte-
Carlo techniques result in computational challenges.

A downside of employing local scores is their sensitivity to outliers. For instance,
the Logarithmic score is infinite if the forecast assigns a vanishing probability to the
event which occurs. In practice, when working with real data, such sensitivity might
be a problem.

In this work, we considered both the Energy score and the Logarithmic score
for the final density evaluation. In general the results suggested by the two scores
were consistent and no contradictions were observed. However, we noticed that the
Energy score was not very sensitive to the changes in the correlation structure.
That is, the changes in the Energy score when moving from the assumption
of independence between the marginal predictive densities to models accounting
for the dependence structure were rather small (even though they still proved
statistically significant based on Diebold-Mariano test statistics [12]). This is caused
by low sensitivity of the Energy score to changes in the dependence structure as
argued in [38]. This is another reason to focus on the Logarithmic score further in
this study.

6.2.3 Empirical Results

The results from our evaluation of multivariate predictive densities issued based on
the approaches mentioned in Sect. 6.2.1 are collated in Table 1, while also describing
the complexity of these models in terms of their number of parameters.

One can appreciate the importance of accounting for the dependence structure
from the fact that multivariate predictive densities derived from the independence
assumption are shown to be of lowest quality. The full model proposed in this
study outperforms the other two dependence structures, i.e., both the first-order
time-dependence and the separable space-time model. The statistical significance
of the improvements was verified using a likelihood-ratio test, similar to that
described in [27]. This confirms that letting the related conditional correlations
change depending on the direction as well as allowing for non-separable space-time
influence results in better quality of the multivariate probabilistic forecasts.

Predictive densities defined by the sample correlation matrix provide the best
quality forecasts. This is also expected, since in this study the estimation period

Table 1 Quality assessment
of the predictive densities in
terms of the Logarithmic
score (S)

Model Nr. of parameters S

Independent 0 853:14

First order in time 1 409:98

Separable space-time model 6 357:84

Full model 10 318:07

Sample correlation 207,690 267:96
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consisted of 1 year of hourly data. Large amount of data made it possible to
estimate the covariance structure, even for such a high dimension. However,
the main interest in the future is to make the covariance structure dependent
on meteorological conditions. In this setup, tracking a sample covariance will
become nearly impossible. Thus, the proposed parametrization is crucial for further
development of the methodology as it significantly reduces the effective problem
dimension.

6.3 Scenario Generation

As an illustration of probabilistic forecasts obtained with the proposed approach,
Fig. 9 depicts a set of five scenarios describing wind power generation at zones 6
and 7, for lead times between 1 and 43 h ahead, issued on the 15th of June 2007 at
01:00. The marginal predictive densities originally available are also shown, as well
as the power observations obtained a posteriori.

The scenarios generated using our approach respect dependencies both in time
and in space. Respecting correlations in time ensures that the corresponding
scenarios do not evolve as a random walk whose magnitude would be shaped
by predictive marginals. For instance, given that a scenario predicts wind power
generation at time t C k to be far from its conditional expectation, then power
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Fig. 9 Scenarios describing wind power generation at zones 6 (top) and 7 (bottom) from 1 to
43 h ahead issued on the 15th of June, 2007, at 01:00. The scenarios shown in the left are those
obtained with our model. Those on the right are obtained under an independence assumption, thus,
not respecting neither temporal nor spatial dependencies
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generation at time t C k C 1 is also expected to deviate substantially from its
conditional expectation. As an example see Scenario 5 for zone 6 for lead times
between 22 to 30 h ahead. Similarly, respecting spatial dependency between the
zones ensures that when large (resp. small) forecast errors are observed at one zone,
the errors at the other zone are also expected to be large (resp. small). This is also
visible from Fig. 9. For example, in the case of scenario 4, wind power generation
deviates a lot from its conditional expectation in both zones 6 and 7, for lead times
between 22 to 30 h ahead. In contrast, the corresponding scenarios generated using
the independent model do not respect neither temporal, not spatial dependencies in
the data.

7 Concluding Remarks and Perspectives

The problem of obtaining multivariate predictive densities of wind power generation
was considered, jointly for a number of contiguous spatial areas and lead times,
based on already available marginal predictive densities for each individual zone
and lead time. A Gaussian copula approach was employed to build such multivariate
predictive densities. Our core contribution lies in the proposed parametrization of
the dependence structure. More specifically, instead of modelling the covariance
matrix directly, focus is given to its inverse (precision matrix). This solution brings
substantial practical benefits. For one, the precision matrix is shown to be very
sparse. This permits to place ourselves in GMRF framework, hence resulting in
computational benefits obtained through faster factorization algorithms available for
sparse matrices. Besides, the proposed parametrization allows for more flexibility,
since one may readily obtain nonseparable covariance structures.

The data analysis carried out for the Danish dataset revealed that the empirical
precision matrix shows non-constant conditional precisions (increasing with the
lead time), as well as varying conditional correlations. This hence required to
go beyond conventional approaches relying on homogeneous stationary Gaussian
fields. We proposed a way to model changes in conditional precisions, also allowing
for conditional correlations to change with the direction. Accounting for such
directional influence is not only necessary when looking at the data, but it is
also quite intuitive, provided that wind power forecast errors propagate in time
and in space under the influence of meteorological conditions. Consequently, the
application results in terms of predictive performance confirmed that the proposed
methodology and precision matrix parametrization could yield benefits in generat-
ing high-dimensional multivariate predictive densities of wind power generation,
illustrated by lower Logarithmic score values.

Besides the methodological proposal and application results, a number of
relevant challenges and perspectives for future work were identified. Firstly, a direct
extension of the proposed methodology could consist in conditioning the precision
matrix on meteorological conditions. Here, for simplicity, it was considered that the
dependence structure was constant through time, with a stationarity assumption for
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the underlying process. In practice, however, such a spatio-temporal dependence
structure may vary substantially. There are many factors which might influence
changes in process dynamics. An obvious one is the influence of the surface and
higher-level wind conditions. The influence of wind direction on the spatio-temporal
dependence structure could be readily modeled with a regime-switching approach,
by allowing the neighbourhood structure to change with wind direction. In other
words, instead of distinguishing between “West-East” and “North-South” neigh-
bourhoods, one could instead consider “Upwind”-“Downwind” and “Concurrent”-
“Concurrent”. Also, it would be interesting to investigate ways to explain the
variations in the conditional precisions among the zones. Possibly some clustering
techniques could be employed. In parallel, slow variations in the process dynamics
could be captured by considering adaptive estimation schemes for the precision
matrices.

Further, an interesting challenge will be to move from the lattice setup considered
in this study to a fully continuous approach. Following [25], the link between
stochastic partial differential equations and some type of precision matrices could be
used for such a type of problem. By understanding how the elements of the precision
matrix evolve with distance between the zones and prevailing meteorological
conditions, one can get a process description via stochastic partial differential
equations.

On the forecast verification side, a clear challenge relates to the high dimension of
the multivariate predictive densities. Already when working with a dimension n D
645, we have faced both methodological and computational issues, in view of the
different scoring rules available for multivariate probabilistic forecast verification.
Even though both Logarithmic and Energy scores can be used for multivariate prob-
abilistic forecast verification, each of them introduces limitations in the verification
exercise. On the one hand, the Energy score, being a non-local score, comes with
additional computational costs since its estimation requires Monte Carlo techniques.
Furthermore, following [38], this score has low sensitivity to changes in covariance
structure. On the other hand, the Logarithmic score is highly sensitive to outliers:
this may clearly cause difficulties in practical applications, for which both noisy
data and model misspecification may then become problematic. Overall, the field
of multivariate probabilistic forecast verification needs increased focus in order
to propose theoretically sound and practical ways to thoroughly evaluate high-
dimensional forecasts such space-time trajectories of wind power generation.
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Game-Theoretically Optimal Reconciliation
of Contemporaneous Hierarchical Time Series
Forecasts

Tim van Erven and Jairo Cugliari

Abstract In hierarchical time series (HTS) forecasting, the hierarchical relation
between multiple time series is exploited to make better forecasts. This hierarchical
relation implies one or more aggregate consistency constraints that the series are
known to satisfy. Many existing approaches, like for example bottom-up or top-
down forecasting, therefore attempt to achieve this goal in a way that guarantees
that the forecasts will also be aggregate consistent. We propose to split the problem
of HTS into two independent steps: first one comes up with the best possible
forecasts for the time series without worrying about aggregate consistency; and
then a reconciliation procedure is used to make the forecasts aggregate consistent.
We introduce a Game-Theoretically OPtimal (GTOP) reconciliation method, which
is guaranteed to only improve any given set of forecasts. This opens up new
possibilities for constructing the forecasts. For example, it is not necessary to
assume that bottom-level forecasts are unbiased, and aggregate forecasts may be
constructed by regressing both on bottom-level forecasts and on other covariates
that may only be available at the aggregate level. We illustrate the benefits of our
approach both on simulated data and on real electricity consumption data.

1 Introduction

The general setting of hierarchical time series (HTS) forecasting has been exten-
sively studied because of its applications to, among others, inventory management
for companies [7], euro-area macroeconomic studies [13], forecasting Australian
domestic tourism [11], and balancing the national budget of states [4, 16]. As a
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consequence of the recent deployment of smart grids and autodispatchable sources,
HTS have also been introduced in electricity demand forecasting [3], which is
essential for electricity companies to reduce electricity production cost and take
advantage of market opportunities.

A Motivating Example: Electricity Forecasting The electrical grid induces a
hierarchy in which customer demand is viewed at increasing levels of aggregation.
One may organize this hierarchy in different ways, but in any case the demand of
individual customers is at the bottom, and the top level represents the total demand
for the whole system. Depending on the modelling purpose, intermediate levels of
aggregation may represent groups of clients that are tied together by geographical
proximity, tariff contracts, similar consumption structure or other criteria.

Whereas demand data were previously available only for the whole system, they
are now also available at regional (intermediate) levels or even at the individual
level, which makes it possible to forecast electricity demand at different levels
of aggregation. To this end, it is not only necessary to extend existing prediction
models to lower levels of the customer hierarchy, but also to deal with the new
possibilities and constraints that are introduced by the hierarchical organization of
the predictions. In particular, it may be required that the sum of lower-level forecasts
is equal to the prediction for the whole system. This was demanded, for example, in
the Global Energy Forecasting Competition 2012 [10], and it also makes intuitive
sense that the forecasts should sum in the same way as the real data. Moreover, we
show in Theorems 1 and 2 below that this requirement, if enforced using a general
method that we will introduce, can only improve the forecasts.

Hierarchical Time Series Electricity demand data that are organized in a customer
hierarchy, are a special case of what is known in the literature as contemporaneous
HTS: each node in the hierarchy corresponds to a time series, and, at any given time,
the value of a time series higher up is equal to the sum of its constituent time series.
In contrast, there also exist temporal HTS, in which time series are aggregated over
periods of time, but we will not consider those in this work. For both types of HTS,
the question of whether it is better to predict an aggregate time series directly or
to derive forecasts from predictions for its constituent series has received a lot of
attention, although the consensus appears to be that there is no clear-cut answer. (See
[7, 13] for surveys.) A significant theoretical effort has also been made to understand
the probability structure of contemporaneous HTS when the constituent series are
auto-regressive moving average (ARMA) models [8].

HTS Forecasting The most common methods used for hierarchical time series
forecasting are bottom-up, top-down and middle-out [3, 7]. The first of these
concentrates on the prediction of all the components and uses the sum of these
predictions as a forecast of the whole. The second one predicts the top level
aggregate and then splits up the prediction into the components according to
proportions that may be estimated, for instance, from historical proportions in the
time series. The middle out strategy is a combination of the first two: one first
obtains predictions at some level of the hierarchy; then one uses the bottom-up
strategy to forecast the upper levels and top-down to forecast the lower levels.
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As observed by Hyndman et al. [11], all three methods can be viewed as linear
mappings from a set of initial forecasts for the time series to reconciled estimates
that are aggregate consistent, which means that the sum of the forecasts of the
components of an hierarchical time series is equal to the forecast of the whole. A
more sophisticated linear mapping may be obtained by setting up a linear regression
problem in which the initial forecasts are viewed as noisy observations of the
expected values of the time series [4] (see Sect. 2.3). In this approach, which goes
back to Stone et al. [16], it is then inescapable to assume that the initial forecasts
are unbiased estimates, so that the noise has mean zero. Assuming furthermore that
the covariance matrix ˙ of the noise can be accurately estimated for each time
step, the outcomes for the time series can be estimated using a generalized least-
squares (GLS) method, which solves the linear regression problem with aggregate
consistency constraints on the solution.

Although the assumption of unbiased initial forecasts rules out using any type
of regularized estimator (like, for instance, the LASSO [17] which we consider in
Sect. 3.1), it might still be manageable in practice. The difficulty with GLS, however,
is estimating˙ , which might be possible on accounting data by laboriously tracing
back all the sources of variance in the estimates [6], but does not seem feasible
in our motivating example of electricity demand forecasting. (Standard estimators
like those of White [18] or MacKinnon and White [14] do not apply, because they
estimate an average of ˙ over time instead of its value at the current time step.)
Alternatively, it has therefore been proposed to make an additional assumption about
the covariances of the initial forecasts that allows estimation of˙ to be sidestepped
[11], but it is not clear when we can expect this assumption to hold (see Sect. 2.3).

Our Contribution Considering the practical difficulties in applying GLS, and the
limited modelling power of bottom-up, top-down, middle-out methods, we try to
approach HTS forecasting in a slightly different way. All these previous approaches
have been restricted by combining the requirement of aggregate consistency with
the goal of sharing information between hierarchical levels. Instead, we propose
to separate these steps, which leads to an easier way of thinking about the problem.
As our main contribution, we will introduce a Game-Theoretically OPtimal (GTOP)
reconciliation method to map any given set of forecasts, which need not be aggregate
consistent, to new aggregate consistent forecasts that are guaranteed to be at least as
good. As the GTOP method requires no assumptions about the probability structure
of the time series or the nature of the given set of forecasts, it leaves a forecaster
completely free to use the prediction method of their choice at all levels of the
hierarchy without worrying about aggregate consistency or theoretical restrictions
like unbiasedness of their forecasts. As illustrated in Sect. 3.2, taking aggregate
consistency out of the equation allows one to go beyond simple bottom-up, top-
down or middle-out estimators, and consider estimators that use more complicated
regression structures, in the same spirit as those considered by Lütkepohl [13,
Section 5.3].

Outline In the next section, we present the GTOP method and formally relate it
to the GLS approach. Then, in Sect. 3, we demonstrate how GTOP may be applied
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with forecasts that do not satisfy the traditional unbiasedness assumption, first on
simulated data, and then on real electricity demand data. Finally, Sect. 4 provides an
extensive discussion.

2 Game-Theoretically Optimal Reconciliation

We will now introduce the GTOP method, which takes as input a set of forecasts,
which need not be aggregate consistent, and produces as output new aggregate
consistent forecasts that are guaranteed to be at least as good. In Sect. 2.1, we first
present the method for the simplest possible hierarchies, which are composed of
two levels only, and then, in Sect. 2.2, we explain how the procedure generalizes
in a straightforward way to arbitrary hierarchies. Proofs and computational details
are postponed until the end of Sect. 2.2. Finally, in Sect. 2.3, we show how GTOP
reconciliation may formally be interpreted as a special case of GLS, although the
quantities involved have different interpretations.

2.1 Two-Level Hierarchies

For two-level hierarchies, we will refer to the lower levels as regions, in reference to
our motivating application of electricity demand forecasting, even though for other
applications the lower levels might correspond to something else. Suppose there are
K such regions, and we are not only interested in forecasting the values of a time
series .YkŒt�/tD1;2;::: for each individual region k D 1; : : : ;K, but also in forecasting
the sum of the regions .YtotŒt�/tD1;2;::: , where

YtotŒt� D
KX

kD1
YkŒt� for all t; (1)

as illustrated by Fig. 1.
Having observed the time series for times 1; : : : ; t, together with possible

independent variables, we will be concerned with making predictions for their
values at time � > t, but to avoid clutter, we will drop the time index Œ� � from our
notation whenever it is sufficiently clear from context. Thus, for any region k, let
OYk � OYkŒ� � be the prediction for Yk � YkŒ� �, and let OYtot � OYtotŒ� � be the prediction
for Ytot � YtotŒ� �. Then we evaluate the quality of our prediction for region k by the

Fig. 1 A two-level
hierarchical time series
structure

Ytot

YKY2Y1
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squared loss

`k.Yk; OYk/ D ak.Yk � OYk/
2;

where ak > 0 is a weighting factor that is determined by the operational costs
associated with prediction errors in region k. (We give some guidelines for the
choice of these weighting factors in Sect. 4.1.) Similarly, our loss in predicting the
sum of the regions is

`tot.Ytot; OYtot/ D atot.Ytot � OYtot/
2;

with atot > 0. Let Y D .Y1, : : :, YK ;Ytot/ and OY D . OY1; : : : ; OYK ; OYtot/. Then, all
together, our loss at time � is

`.Y; OY/ D
KX

kD1
`k.Yk; OYk/C `tot.Ytot; OYtot/:

Aggregate Inconsistency In predicting the total Ytot, we might be able to take
advantage of covariates that are only available at the aggregate level or there might
be noise that cancels out between regions, so that we have to anticipate that OYtot

may be a better prediction of Ytot than simply the sum of the regional predictionsPK
kD1 OYk, and generally we may have OYtot ¤ PK

kD1 OYk.1 In light of (1), allowing
such an aggregate inconsistency between the regional predictions and the prediction
for the total would intuitively seem suboptimal. More importantly, for operational
reasons it is sometimes not even allowed. For example, in the Global Energy
Forecasting Competition 2012 [10], it was required that the sum of the regional
predictions OY1; : : : ; OYK were always equal to the prediction for the total OYtot. Or,
if the time series represent next year’s budgets for different departments, then the
budget for the whole organization must typically be equal to the sum of the budgets
for the departments.

We are therefore faced with a choice between two options. The first is that we
might try to adjust our prediction methods to avoid aggregate inconsistency. But
this would introduce complicated dependencies between our prediction methods
for the different regions and for the total, and as a consequence it might make
our predictions worse. So, alternatively, we might opt to remedy the problem in
a post-processing step: first we come up with the best possible predictions OY
without worrying about any potential aggregate inconsistency, and then we map
these predictions to new predictions QY D . QY1; : : : ; QYK ; QYtot/, which are aggregate

1It has also been suggested that the central limit theorem (CLT) implies that Ytot should be more
smooth than the individual regions Yk [3], and might therefore be easier to predict.
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consistent:

QYtot D
KX

kD1
QYk:

This is the route we will take in this paper. In fact, it turns out that, for the right
mapping, the loss of QY will always be smaller than the loss of OY, no matter what the
actual data Y turn out to be, which provides a formal justification for the intuition
that aggregate inconsistent predictions should be avoided.

Mapping to Aggregate Consistent Predictions To map any given predictions
OY to aggregate consistent predictions QY, we will use a game-theoretic set-up
that is reminiscent of the game-theoretic approach to online learning [5]. In this
formulation, we will choose our predictions QY to achieve the minimum in the
following minimax optimization problem:

V D min
QY2A

max
Y2A \B

n
`.Y; QY/� `.Y; OY/

o
: (2)

(The sets A and B will be defined below.) This may be interpreted as the Game-
Theoretically OPtimal (GTOP) move in a zero-sum game in which we first choose
QY, then the data Y are chosen by an adversary, and finally the pay-off is measured by
the difference in loss between QY and the given predictions OY. The result is that we
will choose QY to guarantee that `.Y; QY/ � `.Y; OY/ is at most V no matter what the
data Y are. Satisfyingly, we shall see below that V � 0, so that the new predictions
QY are always at least as good as the original predictions OY.

We have left open the definitions of the sets A and B, which represent the
domains for our predictions and the data. The former of these will represent the
set of vectors that are aggregate consistent:

A D
n
.X1; : : : ;XK ;Xtot/ 2 R

KC1 j Xtot D
KX

kD1
Xk

o
:

By definition, both our predictions QY and the data Y must be aggregate consistent,
so they are restricted to lie in A . In addition, we introduce the set B, which allows
us to specify any other information we might have about the data. In the simplest
case, we may let B D R

KC1 so that B imposes no constraints, but if, for example,
prediction intervals Œ OYk � Bk; OYk C Bk� are available for the given predictions, then
we may take advantage of that knowledge and define

B D
n
.X1; : : : ;XK ;Xtot/ 2 R

KC1 j Xk 2 Œ OYk � Bk; OYk C Bk� for k D 1; : : : ;K
o
:

(3)
We could also add a prediction interval for OYtot as long as we take care that all our
prediction intervals together do not contradict aggregate consistency of the data. In
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general, we will require that B � R
KC1 is a closed and convex set, and A \ B

must be non-empty so that B does not contradict aggregate consistency.

GTOP Predictions as a Projection Let kXk D .Pd
iD1 X2i /

1=2 denote the L2-norm
of a vector X 2 R

d for any dimension d. Then the total loss may succinctly be
written as

`.Y; OY/ D kAY � A OYk2; (4)

where A D diag.
p

a1; : : : ;
p

aK ;
p

atot/ is a diagonal .KC 1/� .KC 1/matrix that
accounts for the weighting factors. In view of the loss, it is quite natural that the
GTOP predictions turn out to be equal to the L2-projection

QYproj D arg min
QY2A \B

kA OY � A QYk2 (5)

of OY unto A \B after scaling all dimensions according to A.

Theorem 1 (GTOP: Two-level Hierarchies) Suppose that B is a closed, convex
set and that A \B is not empty. Then the projection QYproj uniquely exists, the value
of (2) is

V D �kA QYproj � A OYk2 � 0;

and the GTOP predictions are QY D QYproj.

Thus, in a metric that depends on the loss, GTOP makes the minimal possible
adjustment of the given predictions OY to make them consistent with what we know
about the data. Moreover, the fact that V � 0 implies that the GTOP predictions are
at least as good as the given predictions:

`.Y; QYproj/ � `.Y; OY/ for any data Y 2 A \B:

Theorem 1 will be proved as a special case of Theorem 2 in the next section.

Example 1 If B D R
KC1 does not impose any constraints, then the GTOP

predictions are

QYproj;k D OYk C
1
ak

PK
iD1 1

ai
C 1

atot

� for k D 1; : : : ;K;

QYproj;tot D OYtot �
1

atot
PK

iD1 1
ai
C 1

atot

�;

where� D OYtot�PK
kD1 OYk measures by how much OY violates aggregate consistency.

In particular, if the given predictions OY are already aggregate consistent, i.e. OYtot D
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PK
kD1 OYk, then the GTOP predictions are the same as the given predictions: QYproj D
OY.

Example 2 If B consists of the prediction intervals specified in (3), then the
extreme values B1 D : : : D BK D 0 make the GTOP predictions exactly equal
to those of the bottom-up forecaster.

Example 3 If B defines prediction intervals as in (3) and a1 D � � � D aK D a and
B1 D � � � D BK D B, then the GTOP predictions are

QYproj;k D OYk C
h 1

a
K
a C 1

atot

�
i

B
for k D 1; : : : ;K;

QYproj;tot D
KX

kD1
QYproj;k;

where Œx�B D max
˚�B;minfB; xg	 denotes clipping x to the interval Œ�B;B� and

� D OYtot �PK
kD1 OYk.

In general the GTOP predictions QYproj do not have a closed-form solution, but, as
long as B can be described by a finite set of inequality constraints, they can be
computed using quadratic programming. The details will be discussed at the end
of the next section, which generalizes the two-level hierarchies introduced so far to
arbitrary summation constraints.

2.2 General Summation Constraints

One might view (1) as forecasting K C 1 time series, which are ordered in a
hierarchy with two levels, in which the time series .Y1Œt�/, : : :, .YK Œt�/ for the
regions are at the bottom, and their total .YtotŒt�/ is at the top (see Fig. 1). More
generally, one might imagine having a multi-level hierarchy of any finite number
of time series .Y1Œt�/; : : : ; .YMŒt�/, which are organised in a tree T that represents
the hierarchy of aggregation consistency requirements. For example, in Fig. 2 the
time series .Y1Œt�/ might be the expenditure of an entire organisation, the time
series .Y2Œt�/; .Y3Œt�/, and .Y4Œt�/ might be the expenditures in different subdivisions
within the organization, time series .Y5Œt�/; .Y6Œt�/ and .Y7Œt�/ might represent the
expenditures in departments within subdivision .Y2Œt�/, and similarly .Y8Œt�/ and
.Y9Œt�/ would be the expenditures in departments within .Y3Œt�/.

The discussion from the previous section directly extends to multi-level hierar-
chies as follows. For each time series m D 1; : : : ;M, let c.m/ 
 f1; : : : ;Mg denote
the set of its children in T. Then aggregate consistency generalizes to the constraint
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Fig. 2 Example of a
multi-level hierarchical time
series structure

Y1

Y4Y3

Y9Y8

Y2

Y7Y6Y5

A D
n
.X1; : : : ;XM/ 2 R

M j Xm D
X

i2c.m/

Xi for all m such that c.m/ is non-empty
o
:

Remark 1 We note that all the constraints Xm DPi2c.m/ Xi in A are linear equality
constraints. In fact, in all the subsequent developments, including Theorem 2, we
can allow A to be any set of linear equality constraints, as long as they are internally
consistent, so that A is not empty. In particular, we could even allow two (or more)
predictions for the same time series by regarding the first prediction as a prediction
for a time series .YmŒt�/ and the second as a prediction for a separate time series
.Ym0 Œt�/ with the constraint that YmŒt� D Ym0 Œt�. To keep the exposition focussed,
however, we will not explore these possibilities in this paper.

Having defined the structure of the hierarchical time series through A , any
additional information we may have about the data can again be represented by
choosing a convex, closed set B � R

M which is such that A \ B is non-empty.
In particular, B D R

M represents having no further information, and prediction
intervals can be represented analogously to (3) if they are available.

As in the two-level hierarchy, let OY D . OY1; : : : ; OYM/ be the original (potentially
aggregate inconsistent) predictions for the time series Y D .Y1; : : : ;YM/ at a given
time � . We assign weighting factors am > 0 to each of the time series m D 1; : : : ;M,
and we redefine the diagonal matrix A D diag.

p
a1; : : : ;

p
aM/, so that we may

write the total loss as in (4). Then the GTOP predictions QY D . QY1; : : : ; QYM/ are still
defined as those achieving the minimum in (2), and the L2-projection QYproj is as
defined in (5).

Theorem 2 (GTOP: Multi-level Hierarchies) The exact statement of Theorem 1
still holds for the more general definitions for multi-level hierarchies in this section.

The proof of Theorems 1 and 2 fundamentally rests on the Pythagorean
inequality, which is illustrated by Fig. 3. In fact, this inequality is not restricted to the
squared loss we use in this paper, but holds for any loss that is based on a Bregman
divergence [5, Section 11.2], so the proof would go through in exactly the same
way for such other losses. For example, the Kullback-Leibler divergence, which
measures the difference between two probability distributions, is also a Bregman
divergence.
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Fig. 3 Illustration of the
Pythagorean inequality
P2 C Q2 � R2, where
P D kAY � A QYprojk,

Q D kA QYproj � A OYk and

R D kAY � A OYk. Convexity
of A \ B ensures that

 � 90ı

Lemma 1 (Pythagorean Inequality) Suppose that B is a closed, convex set and
that A \B is non-empty. Then the projection QYproj exists and is unique, and

kAY � A QYprojk2 C kA QYproj � A OYk2 � kAY � A OYk2 for all Y 2 A \B.

Proof The lemma is an instance of the generalized Pythagorean inequality [5,
Section 11.2] for the Bregman divergence corresponding to the Legendre function
F.X/ D kAXk2, which is strictly convex (as required) because all entries of the
matrix A are strictly positive. (The set A is a hyperplane, so it is closed and convex
by construction. The assumptions of the lemma therefore ensure that A \ B is
closed, convex and non-empty.) ut
Proof (Theorem 2) Let f .Y; QY/ D `.Y; QY/ � `.Y; OY/. We will show that
. QYproj; QYproj/ is a saddle-point for f , which implies that playing QYproj is the optimal
strategy for both players in the zero-sum game and that

V D min
QY2A

max
Y2A \B

f .Y; QY/ D max
Y2A \B

min
QY2A

f .Y; QY/ D f . QYproj; QYproj/ D �kA QYproj�A OYk2

[15, Lemma 36.2], which is to be shown.
To prove that . QYproj; QYproj/ is a saddle-point, we need to show that neither player

can improve their pay-off by changing their move. To this end, we first observe that,
by the Pythagorean inequality (Lemma 1),

f .Y; QYproj/ D kAY�A QYprojk2�kAY�A OYk2 � �kA QYproj�A OYk2 D f . QYproj; QYproj/

for all Y 2 B \ A . It follows that the maximum is achieved by Y D QYproj. Next,
we also have

arg min
QY2A

f . QYproj; QY/ D arg min
QY2A

kA QYproj � A QYk2 D QYproj;

which completes the proof. ut
Efficient Computation For special cases, like the examples in the previous section,
the GTOP projection QYproj sometimes has a closed form. In general, no closed-form
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solution may be available, but QYproj can still be computed by finding the solution to
the quadratic program

min
QY

kA OY � A QYk2

subject to QY 2 A \B:

Since A imposes only equality constraints, this quadratic program can be solved
efficiently as long as the further constraints imposed by B are manageable. In
particular, if B imposes only linear inequality constraints, like, for example, in (3),
then the solution can be found efficiently using interior point methods [12] or using
any of the alternatives suggested by Hazan et al. [9, Section 4]. The experiments in
Sect. 3 were all implemented using the quadprog package for the R programming
language, which turned out to be fast enough.

2.3 Formal Relation to Generalized Least-Squares

As discussed in the introduction, HTS has been modelled as a problem of linear
regression in the economics literature [4]. It is interesting to compare this approach
to GTOP, because the two turn out to be very similar, except that the quantities
involved have different interpretations. The linear regression approach models the
predictions as functions of the means of the real data

OYŒ� � D E
˚
YŒ� �

	C "Œ��

that are perturbed by a noise vector "Œ�� D ."1Œ��; : : : ; "MŒ� �/, where all distributions
and expectations are conditional on all previously observed values of the time series.
Then it is assumed that the predictions are unbiased estimates, so that the noise
variables all have mean zero, and the true means EfYŒ� �g can be estimated using the
generalized least-squares (GLS) estimate

min
QY

. OY � QY/>˙�1. OY � QY/

subject to QY 2 A ;

(6)

where ˙ � ˙Œ�� is the M � M covariance matrix for the noise "Œ�� [4]. This
reveals an interesting superficial relation between the GTOP forecasts and the GLS
estimates: if

˙�1 D A>A and B D R
M; (7)
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then the two coincide! However, the interpretation of A and ˙�1 is completely
different, and the two procedures serve different purposes: whereas GLS tries to
address both reconciliation and the goal of sharing information between hierarchical
levels at the same time, the GTOP method is only intended to do reconciliation and
requires a separate procedure to share information. The case where the two methods
coincide is therefore only a formal coincidence, and one should not assume that
the choice ˙�1 D A>A will adequately take care of sharing information between
hierarchical levels!

Ordinary Least-squares Given the difficulty of estimating˙ , Hyndman et al. [11]
propose an assumption that allows them to sidestep estimation of˙ altogether: they
show that, under their assumption, the GLS estimate reduces to the Ordinary Least-
squares (OLS) estimate obtained from (6) by the choice

˙ D I;

where I is the identity matrix. Via (7) it then follows that the OLS and GTOP
forecasts formally coincide when we take all the weighting factors in the definition
of the loss to be equal: a1 D : : : D aM, and let B D R

M . Consequently, for two-
level hierarchies, OLS can be computed as in Example 1.

The assumption proposed by Hyndman et al. [11] is that, at time � , the covariance
Cov. OYm; OYm0/ of the predictions for any two time series decomposes as

Cov. OYm; OYm0/ D
X

i2S.m/
j2S.m0/

Cov. OYi; OYj/ for all m;m0, (8)

where S.m/ � f1; : : : ;Mg denotes the set of bottom-level time series out of which
Ym is composed. That is, Ym D P

i2S.m/ Yi with Yi childless (i.e. c.i/ D ;) for all
i 2 S.m/.

Although the OLS approach appears to work well in practice (see Sect. 3.2), it
is not obvious when we can expect (8) to hold. Hyndman et al. [11] motivate it by
pointing out that (8) would hold exactly if the forecasts would be exactly aggregate
consistent (i.e. OY 2 A ). Since it is reasonable to assume that the forecasts will be
approximately aggregate consistent, it then also seems plausible that (8) will hold
approximately. However, this motivation seems insufficient, because reasoning as
if the forecasts are aggregate consistent leads to conclusions that are too strong: if
OY 2 A , then any instance of GLS would give the same answer, so it would not
matter which ˙ we used, and in the experiments in Sect. 3 we see that this clearly
does matter.

We therefore prefer to view OLS rather as a special case of GTOP, which will
work well when all the weighting factors in the loss are equal and the constraints in
B are vacuous.
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3 Experiments

As discussed above, the GTOP method only solves the reconciliation part of HTS
forecasting; it does not prescribe how to construct the original predictions OY. We will
now illustrate how GTOP might be used in practice, taking advantage of the fact that
it does not require the original predictions OY to be unbiased. First, in Sect. 3.1, we
present a toy example with simulated data, which nevertheless illustrates many of
the difficulties one might encounter on real data. Then, in Sect. 3.2, we apply GTOP
to real electricity demand data, which motivated its development.

3.1 Simulation Study

We use GTOP with prediction intervals as in (3). We will compare to bottom-up
forecasting, and also to the OLS method described in Sect. 2.3, because it appears
to work well in practice (see Sect. 3.2) and it is one of the few methods available
that does not require estimating any parameters. We do not compare to top-down
forecasting, because estimating proportions in top-down forecasting is troublesome
in the presence of independent variables (see Sect. 4.2).

Data We consider a two-level hierarchy with two regions, and simulate data
according to

Y1Œt� D ˇ1;0 C ˇ1;1XŒt�C �1Œt� Y2Œt� D ˇ2;0 C ˇ2;1XŒt�C �2Œt�

where .XŒt�/ is an independent variable, ˇ1 D .ˇ1;0; ˇ1;1/ and ˇ2 D .ˇ2;0; ˇ2;1/ are
coefficients to be estimated, and .�1Œt�/ and .�2Œt�/ are noise variables. We will take
ˇ1 D ˇ2 D .1; 5/, and let

�1Œt� D �#1Œt�C �$Œt� �2Œt� D �#2Œt� � �$Œt� for all t,

where #1Œt�; #2Œt� and $Œt� are uniformly distributed on Œ�1; 1�, independently over t
and independently of each other, and � and � are scale parameters, for which we will
consider different values. Notice that the noise that depends on $Œt� cancels from the
total YtotŒt� D Y1Œt�CY2Œt�, which makes the total easier to predict than the individual
regions. We sample a train set of size 100 for the fixed design .XŒt�/tD1;:::;100 D
.1=100; 2=100; : : : ; 1/ and a test set of the same size for .XŒt�/tD101;:::;200 D .1 C
1=100; : : : ; 2/.

Fitting Models on the Train Set Based on the train set, we find estimates Ǒ1 and
Ǒ
2 of the coefficients ˇ1 and ˇ2 by applying the LASSO [17] separately for each of

the two regions, using cross-validation to calibrate the amount of penalization. Then
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we predict Y1Œ�� and Y2Œ�� by

OY1Œ�� D Ǒ1;0 C Ǒ1;1XŒ� � OY2Œ�� D Ǒ2;0 C Ǒ2;1XŒ� �:

Remark 2 In general, it is not guaranteed that forecasting the total YtotŒ� � directly
will give better predictions than the bottom-up forecast [13]. Consequently, if the
bottom-up forecast is the best we can come up with, then that is how we should
define our prediction for the total, and no further reconciliation is necessary!

If we would use the LASSO directly to predict the total YtotŒ� �, then, in light of
Remark 2, it might not do better than simply using the bottom-up forecast OY1Œ�� COY2Œ��. We can be sure to do better than the bottom-up forecaster, however, by adding
our regional forecasts OY1Œ�� and OY2Œ�� as covariates, such that we fit YtotŒ� � by

ˇtot;0 C ˇtot;1XŒ� �C ˇtot;2 OY1Œ��C ˇtot;3 OY2Œ��; (9)

where ˇtot D .ˇtot;0; ˇtot;1; ˇtot;2; ˇtot;3/ are coefficients to be estimated. For ˇtot D
.0; 0; 1; 1/ this would exactly give the bottom-up forecast, but now we can also
obtain different estimates if the data tell us to use different coefficients. However,
to be conservative and take advantage of the prior knowledge that the bottom-up
forecast is often quite good, we introduce prior knowledge into the LASSO by
regularizing by

jˇtot;0j C jˇtot;1j C jˇtot;2 � 1j C jˇtot;3 � 1j (10)

instead of its standard regularization by jˇtot;0j C jˇtot;1j C jˇtot;2j C jˇtot;3j, which
gives it a preference for coefficients that are close to those of the bottom-up forecast.
Thus, from the train set, we obtain estimates Ǒtot D . Ǒtot;0; Ǒtot;1; Ǒtot;2; Ǒtot;3/ for
ˇtot, and we predict YtotŒ� � by

OYtotŒ� � D Ǒtot;0 C Ǒtot;1XŒ� �C Ǒtot;2 OY1Œ��C Ǒtot;3 OY2Œ��:

Remark 3 The regularization in (10) can be implemented using standard LASSO
software by reparametrizing in terms of ˇ0

tot D .ˇtot;0; ˇtot;1; ˇtot;2 � 1; ˇtot3 � 1/ and
subtracting OY1Œt� and OY2Œt� from the observation of YtotŒt� before fitting the model.
This gives estimates Ǒ0tot D . Ǒ0tot;0;

Ǒ0
tot;1;
Ǒ0
tot;2;
Ǒ0
tot;3/ for ˇ0

tot, which we turn back

into estimates Ǒtot D . Ǒ0tot;0;
Ǒ0
tot;1;
Ǒ0
tot;2 C 1; Ǒ0tot;3 C 1/ for ˇtot.

Reconciliation The procedure outlined above gives us a set of forecasts OY D
. OY1; OY2; OYtot/ for any time � , but these forecasts need not be aggregate consistent.
It therefore remains to reconcile them. We will compare GTOP reconciliation to the
bottom-up forecaster and to the OLS method. To apply GTOP, we have to choose
the set B, which specifies any prior knowledge we may have about the data. The
easiest would be to specify no prior knowledge (by taking B D R

3), but instead
we will opt to define prediction intervals for the two regional predictions as in (3).
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We will use the same prediction bounds B1 and B2 for the entire test set, which are
estimated (somewhat simplistically) by the 95 % quantile of the absolute value of
the residuals in the corresponding region in the train set.

Results on the Test Set We evaluate the three reconciliation procedures bottom-up,
OLS and GTOP by summing up their losses (4) on the test set, giving the totals LBU,
LOLS and LGTOP, which we compare to the sum of the losses OL for the unreconciled
forecasts by computing the percentage of improvement . OL � L/= OL � 100% for L 2
fLBU;LOLS;LGTOPg. It remains to define the weighting factors a1, a2 and atot in the
loss, and the scales � and � for the noise variables. We consider five different sets
of weighting factors, where the first three treat the two regions symmetrically (by
assigning them both weight 1), which seems the most realistic, and the other two
respectively introduce a slight and a very large asymmetry between regions, which
is perhaps less realistic, but was necessary to find a case where OLS would beat
GTOP. Finally, we always let �C� D 2, so that the scale of the noise is (somewhat)
comparable between experiments. Table 1 shows the median over 100 repetitions of
the experiment of the percentages of improvement.

First, we remark that, in all but one of the cases, GTOP reconciliation performs
at least as good as or better than OLS and bottom-up, and GTOP is the only of the
three methods that always improves on the unreconciled forecasts, as was already
guaranteed by Theorems 1 and 2. Moreover, the only instance where OLS performs
better than GTOP (a1 D 1; a2 D atot D 20), appears to be the least realistic, because
the regions are treated very asymmetrically. For all cases where the weights are
equal (a1 D a2 D atot D 1), we see that GTOP and OLS perform exactly the same,
which, in light of the equivalence discussed in Sect. 2.3, suggest that the prediction
intervals that make up B do not have a large effect in this case.

Table 1 Percentage of improvement over unreconciled forecasts for simulated data

� � a1 a2 atot Bottom-up (%) OLS (%) GTOP (%)

0 2 1 1 1 �13.97 0.40 0.40
0 2 1 1 2 �19.47 �2.35 0.47
0 2 1 1 10 �26.62 �7.46 0.12
0 2 2 1 5 �22.49 �4.55 0.23
0 2 1 20 20 �26.96 �2.69 0.13
1 1 1 1 1 �55.51 5.75 5.75
1 1 1 1 2 �75.09 �6.02 4.54
1 1 1 1 10 �141.66 �30.39 2.41
1 1 2 1 5 �92.47 �14.09 3.13
1 1 1 20 20 �77.18 �2.51 1.22
2 0 1 1 1 �94.92 29.85 29.85
2 0 1 1 2 �184.23 17.57 34.76
2 0 1 1 10 �996.22 �79.58 44.75
2 0 2 1 5 �319.30 1.32 35.48
2 0 1 20 20 �183.95 23.54 16.19
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Secondly, we note that the unreconciled predictions are much better than the
bottom-up forecasts. Because bottom-up and the unreconciled forecasts make the
same predictions OY1 and OY2 for the two regions, this means that the difference must
be in the prediction OYtot for the sum of the regions, and so, indeed, the method
described in (9) and (10) makes significantly better forecasts than the simple bottom-
up forecast OY1 C OY2. We also see an overall trend that the scale of the percentages
becomes larger as � increases (or � decreases), which may be explained by the fact
that forecasting Ytot becomes relatively easier, so that the difference between OYtot

and OY1 C OY2 gets bigger, and the effect of reconciliation gets larger.

3.2 EDF Data

To illustrate how GTOP reconciliation works on real data, we use electricity demand
data provided by Électricité de France (EDF). The data are historical demand
records ranging from 1 July 2004 to 31 December 2009, and are sampled each
30 min. The total demand is split up into K D 17 series, each representing a different
electricity tariff. The series are divided into a calibration set (from 1 July 2004 to
31 December 2008) needed by the prediction models, and a validation set (from 1
January 2009 to the end) on which we will measure the performance of GTOP.

Every night at midnight, forecasts are required for the whole next day, i.e. for
the next 48 time points. We use a non-parametric function-valued forecasting model
by Antoniadis et al. [1], which treats every day as a 48-dimensional vector. The
model uses all past data on the calibration and validation sets. For every past day d,
it considers day d C 1 as a candidate prediction and then it outputs a weighted
combination of these candidates in which the weight of day d depends on its
similarity to the current day. This forecasting model is used independently on each
of the 17 individual series and also on the aggregate series (their total).

We now use bottom-up, OLS and GTOP to reconcile the individual fore-
casts. Similarly to the simulations in the previous section, the prediction intervals
B1; : : : ;BK for GTOP are computed as quantiles of the absolute values of the
residuals, except that now we only use the past 2 weeks of data from the validation
set, and we use the q-th quantile, where q is a parameter. We note that, for the special
case q D 0%, we would expect Bk to be close to 0, which makes GTOP very similar
to the bottom-up forecaster. (See Example 2.)

For each of the three methods, the percentages of improvement on the validation
set are computed in the same way as in the simulations in the previous section.
Table 2 shows their values for different choices of realistic weighting factors, using
q D 10% for GTOP, which was found by optimizing for the weights atot D 17 and
ak D 1 .k D 1; : : : ; 17/, as will be discussed below.

We see that GTOP consistently outperforms both the bottom-up and the OLS
predictor, with gains that increase with atot. Unlike in the simulations, however, the
bottom-up forecaster is comparable to or even better than the unreconciled forecasts
in terms of its percentage of improvement. In light of Remark 2, we have therefore
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Table 2 Percentage of
improvement over
unreconciled forecasts for
EDF data, using q D 10%
for GTOP

a1 a2 atot Bottom-up (%) OLS (%) GTOP (%)

1 1 1 0:98 0:19 1:62
1 1 2 1:27 0:27 1:96
1 1 10 1:65 0:38 2:41
1 1 17 1:70 0:40 2:47
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Fig. 4 Percentages of improvement as a function of q for GTOP, OLS and bottom-up, using atot D
17 and ak D 1 (k D 1; : : : ; 17)

considered simply replacing our prediction for the total by the bottom-up predictor,
which would make reconciliation unnecessary. However, when, instead of looking
at the percentage of improvement, we count the times when the unreconciled
forecaster gives a better prediction for the total than the bottom-up forecaster, we
see that this is 56%, so the unreconciled forecaster does predict better than bottom-
up slightly more than half of the time, and consequently there is something to gain
by using it. As will be discussed next, this does make it necessary to use a small
quantile q with GTOP.

Choosing the Quantile To determine which quantile q to choose for GTOP, we
plot its percentage of improvement as a function of q for the case atot D 17 and
ak D 1 (see Fig. 4). We see that all values below 60% improve on the bottom-up
forecaster, and that any value below 30% improves on OLS. The quantile q � 10%
gives the best results, and, for ease of comparison, we use this same value in all
the experiments reported in Table 2. In light of the interpretation of the prediction
intervals, it might appear surprising that the optimal value for q would be so small.
This can be explained by the fact that the unreconciled forecasts are only better than
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bottom-up 56 % of the time, so that a small value of q is beneficial, because it keeps
the GTOP forecasts close to the bottom-up ones.

4 Discussion

We now turn to several subjects that we have not been able to treat in full detail in
the previous parts of the paper. First, in Sect. 4.1, we discuss appropriate choices
for the weighting factors that determine the loss. Then, in Sect. 4.2, we discuss how
estimating proportions in top-down forecasting is complicated by the presence of
independent variables, and, finally, in Sect. 4.3, we conclude with a summary of the
paper and directions for future work.

4.1 How to Choose the Weighting Factors in the Loss

In the General Forecasting Competition 2012 [10], a two-level hierarchy was
considered with weights chosen as ak D 1 for k D 1; : : : ;K and atot D K, so
that the forecast for the total receives the same weight as all the regional forecasts
taken together. At first sight this appears to make sense, because predicting the total
is more important than predicting any single region. However, one should also take
into account the fact that the errors in the predictions for the total are on a much
larger scale than the errors in the predictions for the regions, so that the total is
already a dominant factor in the loss without assigning it a larger weight.

To make this argument more precise, let us consider a simplified setting in which
we can compute expected losses. To this end, define random variables �k D Yk � OYk

for the regional prediction errors at time � and assume that, conditionally on all
prior observations, (1) �1; : : : ; �K are uncorrelated; and (2) the regional predictions
are unbiased, so that Ef�kg D 0. Then the expected losses for the regions and the
total are

E `k.Yk; OYk/ D ak E
˚
.Yk � OYk/

2
	 D ak Var.�k/ .k D 1; : : : ;K/

E `tot.Ytot; OYtot/ D atot E
˚
.
X

k

Yk �
X

k

OYk/
2
	 D atot Var

� KX

kD1

�k

�
D atot

KX

kD1

Var.�k/;

where Var.Z/ denotes the variance of a random variable Z.
We see that, even without assigning a larger weight to the total, E `tot.Ytot; OYtot/ is

already of the same order as the sum of all E `k.Yk; OYk/ together, which suggests that
choosing atot to be 1 or 2 (instead of K) might already be enough to assign sufficient
importance to the prediction of the total.
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4.2 The Limits of Top-Down Forecasting

As a thought experiment, think of a noiseless situation in which

Y1Œt� D XŒt�; Y2Œt� D XŒt�C 1; YtotŒt� D Y1Œt�C Y2Œt� D 2XŒt�C 1

for some independent variable .XŒt�/. Suppose we use the following top-down
approach: first we estimate YtotŒ� � by OYtotŒ� � and then we make regional forecasts
as OY1Œ�� D � OYtotŒ� � and OY2Œ�� D .1 � �/ OYtotŒ� � according to a constant � that we
will estimate. Because we are in a noise-free situation, let us assume that estimation
is easy, and that we can predict YtotŒ� � exactly: OYtotŒ� � D YtotŒ� �. Moreover, we will
assume we can choose � optimally as well. Then how should � be chosen? We want
to fit:

� D Y1Œt�

YtotŒt�
D 1

2
� 1

4XŒt�C 2; 1 � � D Y2Œt�

YtotŒt�
D 1

2
C 1

4XŒt�C 2 :

But now we see that the optimal value for � depends on XŒt�, which is not a constant
over time! So estimating � based on historical proportions will not work in the
presence of independent variables.

4.3 Summary and Future Work

Unlike previous approaches, like bottom-up, top-down and generalized least-
squares forecasting, we propose to split the problem of hierarchical time series
forecasting into two parts: first one constructs the best possible forecasts for the
time series without worrying about aggregate consistency or theoretical restrictions
like unbiasedness, and then one uses the GTOP reconciliation method proposed
in Sect. 2 to turn these forecasts into aggregate consistent ones. As shown by
Theorems 1 and 2, GTOP reconciliation can only make any given set of forecasts
better, and the less consistent the given forecasts are, the larger the improvement
guaranteed by GTOP reconciliation.

Our treatment is for the squared loss only, but, as pointed out in Sect. 2,
Theorems 1 and 2 readily generalize to any other loss that is based on a Bregman
divergence, like for example the Kullback-Leibler divergence. It would be useful
to work out this generalization in detail, including the appropriate choice of
optimization algorithm to compute the resulting Bregman projection.

In the experiments in Sect. 3, we have proposed some new methods for coming
up with the initial forecasts, but although they demonstrate the benefits of GTOP
reconciliation, these approaches are still rather simple. In future work, it would
therefore be useful to investigate more advanced ways of coming up with initial
forecasts, which allow for even more information to be shared between different
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time series. For example, it would be natural to use a Bayesian approach to model
regions that are geographically close as random instances of the same distribution
on regions.

Finally, there seems room to do more with the prediction intervals for the GTOP
reconciled predictions as defined in (3). It would be interesting to explore data-
driven approaches to constructing these intervals, like for example those proposed
by Antoniadis et al.[2].
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The BAGIDIS Distance: About a Fractal
Topology, with Applications to Functional
Classification and Prediction

Rainer von Sachs and Catherine Timmermans

Abstract The BAGIDIS (semi-) distance of Timmermans and von Sachs
(BAGIDIS: statistically investigating curves with sharp local patterns using a new
functional measure of dissimilarity. Under revision. http://www.uclouvain.be/en-
369695.html. ISBA Discussion Paper 2013-31, Université catholique de Louvain,
2013) is the central building block of a nonparametric method for comparing curves
with sharp local features, with the subsequent goal of classification or prediction.
This semi-distance is data-driven and highly adaptive to the curves being studied.
Its main originality is its ability to consider simultaneously horizontal and vertical
variations of patterns. As such it can handle curves with sharp patterns which
are possibly not well-aligned from one curve to another. The distance is based
on the signature of the curves in the domain of a generalised wavelet basis, the
Unbalanced Haar basis. In this note we give insights on the problem of stability
of our proposed algorithm, in the presence of observational noise. For this we use
theoretical investigations from Timmermans, Delsol and von Sachs (J Multivar Anal
115:421–444, 2013) on properties of the fractal topology behind our distance-based
method. Our results are general enough to be applicable to any method using a
distance which relies on a fractal topology.

1 Introduction

In Timmermans and von Sachs [9], a new method for the statistical analysis of
differences between curves with sharp local patterns proposes a distance measure
between curves which relies on an Unbalanced Haar wavelet decomposition
obtained using a modified version of the algorithm by Fryzlewicz [3]. This algorithm
allows to describe a curve through a set of points in the so-called breakpoints-
details (b,d) plane, where the breakpoints account for the location of level changes
in the curve and details account for the amplitude of the latter. The goal has been to
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propose a method capable of statistically investigating datasets of curves with sharp
peaks that might be misaligned, thereby overcoming limitations of existing methods.
We also recall our paradigm of a “robust” one-step method in order to avoid any
preprocessing step – such as Dynamic Time Warping [4] – which would align the
curves prior to comparison, for the purpose of, e.g., classification or prediction. This
is in particular in order to be able to detect differences between curves due to the
presence of features which are actually not aligned.

In this note we address the question of stability of the (b,d) point representation
(=the “signature”) associated to a given curve if there is some additional noise. In
our previous work [9], we have been able to show that this (b,d) point representation
is stable in the absence of noise, leading to good “theoretical” performance. This
stability has been due to the use of an unambiguous ordered representation of each
curve in the (b,d) plane. Hence, it is of importance to examine what happens in the
realistic situation of noise.

More particularly, we address the question of robustness of our method towards
the following phenomenon of potential feature confusion. Due to noise, curves with
a sufficiently similar structure of local events (such as jumps, peaks or troughs)
might accidentally be considered as dissimilar because local information might be
encoded in a suboptimal, i.e. not unambiguous, way. We investigate the theoretical
properties of the BAGIDIS semi-distance in order to handle this situation. With
this, we support empirical findings reported in previous work of ours ([7, 9] and
[10]) when using the local methods used to process the set of BAGIDIS semi-
distances computed on our noisy datasets. Here with “local” we mean essentially
nonparametric methods which localise the information in the given data set by
using only a fraction of the observations given in a local neighbourhood around
the point (or region) of interest. Prominent examples are methods based on Nearest
Neighbors (NN), kernels, or Multidimensional Scaling (MDS) which turned out to
effectively be sufficiently robust in order to cope with the aforementioned feature
confusion. In this article we shed some light on why this happens, leading to the
desirable property that makes BAGIDIS better than competitors (e.g. the Euclidean
distance) in case of misaligned sharp patterns. We note that the opposite problem
of classifying accidentally as similar those curves that would actually be dissimilar
in the absence of noise is not the purpose of this examination because this problem,
inherent to any distance based classification algorithm, is not caused or amplified
by the aforementioned problem of loss of unambiguous ordering due the presence
of noise.

Section 2 of this paper reviews what is necessary to recall about the BAGIDIS
method. At the end of this section we empirically expose what is behind our problem
of robustness towards feature confusion. In Sect. 3 we present our theoretical
treatment of the consistency of BAGIDIS in view of this problem, and in fact, any
nonparametric method for functional comparisons using a distance which relies on a
fractal topology. In particular we give arguments in favour of the BAGIDIS distance
compared to the traditional Euclidean distance.
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We finish this introduction by noting that extensions of our univariate work to
higher dimensions have been provided in Timmermans and Fryzlewicz [8], in the
particular context of classification of images.

2 Motivation for and Description of the BAGIDIS Algorithm

We consider series that are made of N regularly spaced measurements of a
continuous process (i.e. a curve). Those series are encoded as vectors in R

N . There
exists numerous classical methods allowing to measure distances or semi-distances
between such series coming from the discretization of a curve. Note that, according
to [2], d is a semi-distance on some space F if

• 8x 2 F ; d.x; x/ D 0
• 8xi; xj; xk 2 F ; d.xi; xj/ � d.xi; xk/C d.xk; xj/:

Semi-distances are often used [1] when one is interested in comparing the shapes of
some groups of curves, but not in comparing their mean level.

2.1 Existing Distance-Based Approaches

We very briefly recall a non-exhaustive collection of some most popular existing
distance-based approaches and discuss their properties: (i) Classical lp distances and
their principal components-based extension [6]; (ii) Functional semi-distances [2],
taking into account the notion of neighborhood in point-to-point comparisons; (iii)
wavelet-based distances: comparing the coefficients of well-suited basis function
expansions. Whereas in our work [9] we give a detailed appreciation of these
different approaches, here in order to motivate our approach, we contain ourselves to
recall some basic visually supported features: in Fig. 1a, we recall that by methods of
type (i) the ordering of the series measurements is not taken into account so that the
evolutions of two series cannot be compared; (ii) functional approaches happen to
fail when dealing with curves with local sharp discontinuities that might not be well
aligned from one curve to another one, as illustrated in Fig. 1b; and finally, more
particularly, (iii) encoding significant features into a wavelet basis which is not both
simultaneously orthogonal and non-dyadic in nature, can lead to shortcomings as
illustrated with classical (dyadic) Haar wavelets in Fig. 1c).

2.2 At the Core of the BAGIDIS Method

A major originality of our method to encode closeness of series having a similar
discontinuity that is only slightly shifted relies on projections on orthogonal basis
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Fig. 1 Schematic illustration of the difficulty for classical methods to take into account
horizontal variations of curves. (a) lp distances and PCA-based distances compare curves at
each point of measurement, so that patterns that are shifted horizontally are measured distant. An
illustrative component of the point-to-point distances is displayed in gray in (a). (b) Comparing
derivatives, as common functional methods do, allows to overcome that difficulty if the patterns
are smooth but fails with sharp shifted patterns. Illustrative derivatives are indicated in light gray
in (b). (c) Wavelet-based methods capture well the sharp patterns, but their encoding in the basis
expansion differs highly if the location of the discontinuity changes a bit: in (c), we illustrate
classical Haar-basis expansions of two shifted step function, the only basis vector associated to a
non-zero coefficient being highlighted in bold

functions that are different from one series to another although providing for a
hierarchy (essential for the ability of comparing the curve expansions). We describe
the main ideas of the method as follows.

(i) We consider a collection of discrete-time series each of which can be pictured
as regularly spaced observations of a curve. We note that patterns in a series
can be described as a set of level changes.

(ii) We find an optimal basis for each curve. As a first step, we want to expand each
series in a basis that is best suited to it, in the sense that its first basis vectors
should carry the main features of the series, while subsequent basis vectors
support less significant patterns. In that respect, we are looking for a basis that
is organized in a hierarchical way. As a consequence, there will be a particular
basis associated to each series. As the series are thought of as described by
their level changes, we will consider that the meaningful features for describing
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them are both locally important level changes, such as jumps, peaks or troughs,
and level changes affecting a large number of data, i.e. discontinuities of the
mean level. From this point of view, Unbalanced Haar wavelet bases, to be
defined in Sect. 2.3, are the ideal candidates for our expansion. We benefit from
their orthogonality property to have no unambiguity in encoding.

(iii) We take advantage of the hierarchy of those bases. Given this, we make
use of the BAGIDIS semi-distance which is at the core of the BAGIDIS

methodology. This semi-distance takes advantage of the hierarchy of the well-
adapted unbalanced Haar wavelet bases: basis vectors of similar rank in the
hierarchy and their associated coefficients in the expansion of the series are
compared to each other, and the resulting differences are weighted according
to that rank. This is actually a clue for decrypting the name of the methodology,
as the name BAGIDIS stands for BAsis GIving DIStances. Section 2.4 recalls
the definition of the BAGIDIS semi-distance from [9].

A subsequent interest lies in obtaining some information on the relative impor-
tance of horizontal and vertical variations, and on their localization, in order
to statistically diagnose whether groups of curves do actually differ and how.
Numerous applications to supervised and unsupervised classification and prediction,
in the framework of spectroscopy for metabonomic analysis, on analysing solar
irradiance time series or on image description and processing, can be found in
[7, 9, 10] and [8].

2.3 Finding an Optimal Basis for Each Curve

Given a set of M series x.i/ in R
N , i D 1: : :M, each of which consists in discrete

regularly spaced measurements of a (different) curve, the goal is now to expand
each of the series into the Unbalanced Haar wavelet basis that is best suited to it.

2.3.1 Definition of the Unbalanced Haar Wavelet Bases

Unbalanced Haar wavelet bases [5] are orthonormal bases that are made up of
one constant vector and a set of Haar-like, i.e. up-and-down-shaped, orthonormal
wavelets whose discontinuity point between positive and negative parts is not
necessarily located at the middle of its support. Using the notation of [3], the general
mathematical expression of those Haar-like wavelets is given by

�e;b;s.t/ D .
1

b � sC 1 �
1

e � sC 1/
1=2:1s�t�b (1)

�. 1

e � b
� 1

e � sC 1/
1=2:1bC1�t�e;
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where t D 1: : :N is a discrete index along the abscissa axis, and where s, b and e
stands for start, breakpoint and end respectively, for some well chosen values of s,
b and e along the abscissa axis (see also Figure 1 of [9]). Each wavelet �e;b;s.t/ is
thus associated with a level change from one observation (or group of observations)
to the consecutive one, and the projection of the series x.t/ on the wavelet �e;b;s.t/
encodes the importance of the related level change in the series.

2.3.2 The Basis Pursuit Algorithm and the Property of Hierarchy

In 2007, P. Fryzlewicz [3] proposed an algorithm for building the unbalanced
Haar wavelet basis f�kgkD0:::N�1 that is best suited to a given series, according to
the principle of hierarchy – namely, the vectors of this basis and their associated
coefficients are ordered using information that builds on the importance of the level
change they encode for describing the global shape of the series. He called it the
bottom-up unbalanced Haar wavelet transform, here-after BUUHWT. The resulting
expansion is organized in a hierarchical way and avoids the dyadic restriction that is
typical for classical wavelets. The family of unbalanced Haar wavelets is thus really
adaptive to the shape of the series. A chart-flow diagram of the actual BUUHWT
algorithm can also be found in Section 2.1 of [9].

2.3.3 An Example of Bottom-Up Unbalanced Haar Wavelet expansion

Figure 2, left, shows the BUUHWT expansion obtained for one particular series.
As hoped for and observed by looking at the location of the discontinuity points b
between positive and negative parts of the wavelets, the first non-constant vectors
support the largest discontinuities of the series and encode therefore the highest peak
of the series. Subsequent vectors point to smaller level changes while the few last
vectors correspond to zones where there is no level change – as indicated by the
associated zero coefficient.

2.3.4 Representing the Series in the b-d Plane

Let us denote the optimal Unbalanced Haar wavelet expansion of a series x.i/ as
follows:

x.i/ D
N�1X

kD0
d.i/k  

.i/
k ;

where the coefficients d.i/k are the projections of x.i/ on the corresponding basis

vectors  .i/
k (i.e. the detail coefficients) and where the set of vectors f .i/

k gkD0:::N�1
is the Unbalanced Haar wavelet basis that is best suited to the series x.i/, as obtained
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using the BUUHWT algorithm. Let us also denote b.i/k , the breakpoint of the wavelet

 
.i/
k , k D 1: : :N � 1, i.e. the value of the highest abscissa where the wavelet  .i/

k

is strictly positive. An interesting property of the basis f .i/k gkD0:::N�1, that has been
proved by [3], is the following:

Property: The ordered set of breakpoints fb.i/k gkD0:::N�1 determines the basis

f .i/
k gkD0:::N�1 uniquely.

Consequently, the set of pairs (b.i/k ; d
.i/
k )kD1:::N�1 determines the shape of the

series x.i/ uniquely (i.e., it determines the series, except for a change of the mean
level of the series, that is encoded by the additional coefficient d.i/0 ). This allows us
to represent any series x in the b-d plane, i.e. the plane formed by the breakpoints
and the details coefficients. An example of such a representation is presented in
Fig. 2, right.

Fig. 2 Left: Illustration of a BUUHWT expansion. In the upper part of the figure we plot the
series. The corresponding abscissa axis at the very bottom is common for that graph and for the
graph of basis vectors. The main part of the figure shows the basis vectors of the Unbalanced Haar
wavelet basis that is best suited to the series (BUUHWT basis). These vectors are represented
rank by rank, as a function of an index along the abscissa axis. Dotted horizontal lines indicate
the level zero for each rank. Vertically, from top to bottom on the right hand side, we find the
detail coefficients associated with the wavelet expansion. Each coefficient is located next to the
corresponding basis vector. For graphical convenience, the value of the coefficient d0 associated
with the constant vector  0 is not indicated. Right: Representation of a series in the b � d plane.
The same series is plotted in the plane that is defined by the values of its breakpoints and its detail
coefficients. Points are numbered according to their rank in the hierarchy
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2.4 A Semi-distance Taking Advantage of the Hierarchy
of the BUUHWT Expansions

We now have at our disposal all elements to measure the dissimilarity between
two curves x.1/ and x.2/ that are both made of N consecutive observations and
whose BUUHWT expansions have been computed. We proceed by calculating the
weighted sum of partial distances in the b-d plane, i.e. the weighted sum of partial
dissimilarities evaluated rank by rank:

dp.x.1/; x.2// D
N�1X

kD1
wk



y.1/k � y.2/k





p
; with p D 1; 2; : : : ;1 (2)

where y.i/k stands for .b.i/k ; d
.i/
k /, i D 1; 2, so that



y.1/k � y.2/k





p
is the distance

between the pairs representing the curves at rank k in the b-d plane, as measured
in any norm p D 1; 2; : : :1, and where wk is a suitably chosen weight function
with K non-zero weights.
As becomes clear in the sequel, and in particular in Sect. 3, the number K is
quite crucial as it encodes the number of features found to be significant for
discrimination. Its choice, and more generally, the choice of the weight function,
can be actually be done by cross validation, cf. [7]. In an unsupervised context, one
can either use a priori information about how many ranks K should be necessary
to encode important local information (such as prominent peaks in the observed
signal), or in absence of this, use a uniformly not too badly working weight function
which shows a smooth decay towards zero for higher ranks.

Note that we do not consider the rank k D 0 in our dissimilarity measure (2), as
we are mainly interested in comparing the structures of the series rather than their
mean level.

A more general version of definition (2) allows being flexible with respect to
scaling effects. In the following, in order to take into account that sensitivity, an
additional parameter � 2 Œ0; 1� is introduced that balances between the differences
of the details and the differences of the breakpoints:

dp.x.1/; x.2// D
N�1X

kD1
wk

�
�
ˇ
ˇ
ˇb
.1/
k � b.2/k

ˇ
ˇ
ˇ
p C .1 � �/:

ˇ
ˇ
ˇd
.1/
k � d.2/k

ˇ
ˇ
ˇ
p�1=p

: (3)

We refer to [9] for more details on how to choose the parameter �.

Property: As shown in [9], this measure of dissimilarity is a semi-distance.
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2.5 Behavior of BAGIDIS in the Presence of Noise

Unambiguity in the absence of noise For the BAGIDIS semi-distance between
two curves to be useful, it is necessary that no ambiguity occurs in the hierarchic
encoding of the patterns in the algorithm. This constraint essentially translates into
the idea that the description of the series should not require more than one level
change of any given amplitude. What happens, in an ideal situation of no noise, if
a series consists in an exactly symmetric pattern, such as a peak or trough, centered
on the middle point of the series (i.e. an even pattern with respect to N

2
)? We then

would observe two level changes of exactly the same amplitude, but opposite signs,
and encode the left and right part of the pattern. This ambiguity is solved by defining
a left orientation for the BUUHWT algorithm, meaning that a level change of given
amplitude that is located to the left of another one with the same amplitude is always
encoded first.

The presence of noise The key to applicability of our method to noisy series is the
use of a suitable weight function that efficiently filters the noise. In several examples,
to be found in [9], we observed a good robustness of the method with respect to the
presence of additive noise. Nevertheless, an artefact of the method might occur, for
example, in case of a symmetric or quasi-symmetric peak, when there are two detail
coefficients being close in absolute value but of opposite sign (compare the extreme
case of equality as discussed above). In this case a permutation of the basis vectors
might occur in the algorithm constructing the best suited basis, from one series to
the other, due to a possible reordering of the amplitudes (in absolute values) of the
mentioned noisy coefficients. Consequently a clustering of noisy series might lead
to a spurious distinction into two groups.

The robustness property for classification/clustering In case there is a split into
two groups A and B, in general, this will not invalidate the analysis of whether or
not this split has been spurious: If there are no differences between the groups, a
clustering will give two groups (due to the permutations occurring in both series A
and series B) but each group will contain a mix of series A and B, so that we will
conclude that there are no differences in the distributions of groups A and B. On the
opposite, if there are significant differences between groups A and B, a clustering
will give four groups, amongst which two are made of series A (the distinction
between the groups being an artefact) and two are made of series B. We will thus
conclude to the presence of an effect of the A-B factor.

This point is illustrated by the following test-scenarios. A more theoretical
treatment what is behind this empirical property is given in Sect. 3.1 and higher.

• Scenario 1: we consider 2 groups of noisy series (noise N.0; � D 0:5/) derived
from model A and model B, with A different from B (in this example, we take
A=(0,0,1,0,0,3,5,0,0) and B=rev(A)). The BUUHWT transforms of those series
do suffer from permutations. We compute the dissimilarity matrix between all
pairs of series and try to cluster them blindly and provide a multidimensional
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Fig. 3 Study of the applicability of BAGIDIS for noisy series in case of a possible reordering in
the hierarchy of the patterns. From left to right: MDS representation of the test dataset resulting
from Scenario 1 to Scenario 3

scaling (MDS) representation of the dataset (Fig. 3, top left). The groups are
clearly linearly discriminable, despite a spurious difference which occurs.

• Scenario 2: we perform exactly the same test with A = B, so that we should not
detect any effect of the model. Results are shown in Fig. 3, top right. Although
two groups are distinguished, they both contain series from group A and from
group B so that we cannot conclude a difference between the two models.

• Scenario 3: we perform the first test again, with A and B different, with half of
the A-curves being shifted by 1 to the left and denoted by a, and with half of the
B-curves being shifted by 1 to the left and denoted by b. We add a Gaussian noise
with � D 0:5 to all the curves. Results are shown in Fig. 3, bottom left. Again, a
distinction between the groups (A+a) and (B+b) is visible, despite the spurious
difference due to permutation.
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In case of a regression or a classification problem, the key for a successful
prediction model is that a given permutation should occur with a sufficiently high
probability so that each spurious group contains enough representatives. Using
a local approach for prediction (such as nonparametric functional regression or
k-nearest neighbors) is then possible. In the next section we support this claim
theoretically by use of the properties of our semi-distance which are derived from
the fact that this distance actually induces a fractal topology [2, 7]. In [7] we
derived results on the rate of convergence of the nonparametric functional regression
estimate based on BAGIDIS, obtained under mild conditions. In accordance with the
above mentioned intuition, the key for the estimator to converge relatively fast is
that the probability to find curves in a small ball around the point of prediction is
high enough.

3 On a Fractal Topology Induced by the BAGIDIS
Semi-distance

We now discuss some properties of our semi-distance which are derived from the
fact that this distance actually induces a fractal topology [2, 7]. This allows to
address the question evoked at the end of Sect. 2 on the stability of our algorithm
with respect to some potential feature confusion, in the sense of comparing
closeness of two curves with closeness of their signatures in the (b,d)-plane.

Somewhat naively one could likely be asking the following question:

Property P1: Given a curve x sampled on a grid NŒ1IN� and two noisy
replications of this series, x.1/ D xC noise and x.2/ D xC noise, we have that
the signatures s.1/ D f.b.1/k ; d

.1/
k /gN�1

kD0 and s.2/ D f.b.2/k ; d
.2/
k /gN�1

kD0 are close to
each other, at least when the number of sampled points tends to infinity and
the noise tends to zero.

However, it is in general not possible to derive a framework for showing such
an ideal property that would allow us to include the treatment of the ‘breakpoint’
components fbkg into an asymptotic result similar to the one of denoising curves
by non-linearly selecting (via thresholding, e.g.) the ‘best’ wavelet coefficients
fdkg. Luckily, satisfying P1 is not a condition that needs to be fulfilled to address
the feature permutation problem of our method. (For a further illustration of this
point, we refer to our remark at the end of Sect. 3.1.) Actually, what is necessary
for the method to be valid for subsequent classification, clustering or prediction
applications, is rather the reverse statement:
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Property P2: Given two signatures s.1/ D f.b.1/k ; d
.1/
k /gN�1

kD0 and s.2/ D
f.b.2/k ; d

.2/
k /gN�1

kD0 in the (b,d) plane, if s.1/ and s.2/ are close enough to each
other, then x.1/ is close to x.2/.

The idea behind this statement lies in the fact that when using local methods for
processing the dataset of curves we can base ourselves on the following assumption:

Assumption A1: If the curves x.1/ and x.2/ are close enough to each other,
they will behave similarly with respect to the property we investigate (e.g.
associated response in regression, class membership in classification or
discrimination, . . . ).

As mentioned in the first part of this paper, kernel methods, NN algorithms or
radial-basis functions networks are very common examples of local methods, so
do distance-based algorithms clearly fall into this category of methods. Property P2
ensures that Assumption A1 can be transposed to curves expressed in the (b,d) plane
so that we can use local methods that rely on the BUUHWT expansions of curves.

3.1 Theoretical Results Based on Fractal Topologies

As discussed above, satisfying P2 is a condition that has to be satisfied when
considering local methods. For ensuring the efficiency of such methods, the next
step is to be sure that there is a sufficient density of observations around each
point in the b-d plane at which we want to predict an associated response (class
membership, cluster index, scalar response . . . ). Intuitively, we need to have in our
dataset a sufficient number of neighbors that enter into the computation of the local
algorithm at hand.

This “density of the space” is a topological property that is measured through the
small ball probability of finding a curve x.2/ around x.1/, which is defined [2] as

�D;x.1/ .h/ D P.x.2/ 2 BD.x
.1/; h//;

where BD.x.1/; h/ is the ball of radius h centered on x.1/ and defined according to the
semi-distance D. More generally, for a given semimetric d, the small ball probability
�d;�.h/ measures the concentration of the functional variable 	; according to the
topology defined by the semimetric.
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Intuitively, the higher �D;x.1/ .h/ in a small neighborhood of radius h, the more
efficient the method will be in practice. In accordance with this observation,
investigating the behavior of �D;x.1/ .h/ when h tends to zero has been shown to
be a key step for obtaining the rate of convergence of several local methods in
functional data analysis (see for instance the list of references of our paper [7]).
In those references, it is shown that a large range of methods are able to enjoy good
rates of convergence at point x.1/ as soon as the small ball probability function is
such that Property P3 is valid for K small enough:

Property P3: there exists a positive constant C such that �D;x.1/ .h/ 	 C hK ;

when h tends to 0.

When P3 is satisfied, one says that the (semi-) distance D induces a fractal
topology of order K. As an illustration in the case of functional regression,
Ferraty and Vieu [2] have shown that, under quite general conditions and with the
assumption that P3 is satisfied for a certain K, one reaches the near-optimal rate
of pointwise convergence of the regression operator r: this latter one is given by
�

log n
n

� ˇ
2ˇCK

; with ˇ being a Lipschitz parameter quantifying the smoothness of the

regression operator r, and n the number of curves in the training set (this rate of
convergence is to be compared with the rate of convergence for a nonparametric

multivariate regression directly based on a N-dimensional variable:
�

log n
n

� p
2pCN

,

with p the order of differentiability of r).
Theorem 1 of [7] states that Property P3 is satisfied for the BAGIDIS semi-

distance in its general form of equation (3),

dB
wk;�
.s.1/; s.2// D

N�1X

kD0
wk

�

�
ˇ
ˇ
ˇb
.1/
k � b.2/k

ˇ
ˇ
ˇ
2 C .1 � �/

ˇ
ˇ
ˇd
.1/
k � d.2/k

ˇ
ˇ
ˇ
2
�1=2

;

under quite general conditions, with K being the number of non-zero weights wk.
In other words, we have shown that the BAGIDIS semi-distance induces a fractal
topology of order K; with K the number of features (ranks) that enter into the
comparison of the two curves using this distance.

Combined with property P2, Theorem 1 of [7] ensures good performance (in
terms of good rates of convergence) when using local methods relying on BAGIDIS,
provided that the number K of significant features in the curves is not too large. In
particular this is illustrated in [7] in the setting of a functional regression using
BAGIDIS, both theoretically (Theorem 2 of that paper) and by simulation studies.

Given this, we are able now to address the particular concern about (finite
sample) situations, where significant local structure of the first and second rank is
accidentally permuted due to the influence of noise: how would a subsequent “local”
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discrimination method face this situation? We recall our motivating simulation
examples of Sect. 2.5 for an illustration of this.

1. Following our intuition, a good performance relies on the fact that the informa-
tion content is located in a sufficiently small number K of features, whether or
not permutations do occur in the dataset.

2. Moreover, the above discussions tell that the key for the successful practical
application of BAGIDIS in case of permutations, is that a permutation should
occur with a sufficiently high probability so that each spurious groups contains
enough representatives for the local method to be efficient in the (b,d) plane. Or
conversely, the dataset should be large enough for each spurious group of curves
to be sufficiently populated in the observational dataset. As soon as the dataset is
large enough, Theorem 1 of [7] guarantees that this will be the case.

3. As for all prediction methods that use a model (link) to associate a response to
an explanatory variable, some regularity conditions (e.g. Lipschitz parameter) on
the link function are needed. This is the mathematical counterpart of Assumption
A1.

We finally add an important remark on whether we would also need to examine
the opposite scenario: could it happen that due to the nature of BAGIDIS to need
to face spurious permutations, the probability of masking the difference between
two curves in the presence of noise is higher than with any other distance-based
method? We illustrate this again by discussion of a prominent example: Suppose
two curves are meant to be different because they have two consecutive features of
a large peak followed by a smaller peak for the first curve, and vice versa for the
second. In order that the presence of noise masks this and puts the curves in the
same class, the amplitudes for the two consecutive peaks would need to be very
close, and consequently no more detected to be significantly different. (Otherwise
the information in the dk-coefficients alone would be sufficient to discriminate the
two curves). Hence, in this situation, BAGIDIS is no more sensitive to the noise than
e.g. the Euclidean distance.

3.2 Formalising the ‘Stability Issue’ of the BAGIDIS
Algorithm: Proof of Property P2

We now give a more formal treatment of what is behind Property P2 and its proof
using properties of fractal topologies.

We recall that we consider two series x.1/and x.2/ valued in R
N ; corresponding

to curves sampled on the regular grid NŒ1IN�. Their expansions in the (b,d) plane are
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denoted s.1/ D f.b.1/k ; d
.1/
k /gN�1

kD0 and s.2/ D f.b.2/k ; d
.2/
k /gN�1

kD0 with the conventional

notation b.1/0 D b.2/0 D 0.

Proving P2 means showing that it is possible to have close proximity in the
space of curves measured by a distance such as the Euclidean provided that there
exists a small neighborhood around s.1/ such that if s.2/ is in this neighborhood then
dEucl.x.1/; x.2// < ". Mathematically, Property P2 hence translates into

Property P2/math: for all " > 0; there exists K 2 NŒ1IN�1� and ı > 0 such that
for the BAGIDIS distance based on K non-zero weights wk, dB.s.1/; s.2// < ı

implies dEucl.x.1/; x.2// < ";

which we are going to prove now.

Proof of Property P2

We first consider the simplified version

dB
K.s

.1/; s.2// D
KX

kD0

�ˇ
ˇ
ˇb
.1/
k � b.2/k

ˇ
ˇ
ˇ
2 C

ˇ
ˇ
ˇd
.1/
k � d.2/k

ˇ
ˇ
ˇ
2
�1=2

as the measure of the proximity in the (b,d) plane. Recall here, that K � N � 1.
If there exists k 2 NŒ1IK� such that jb.1/k � b.2/k j > 1; where 1 is the sampling step

of the grid NŒ1IN� on which the curve is observed, then we have

dB
K.s

.1/; s.2// D
KX

kD0

�ˇ
ˇ
ˇb
.1/
k � b.2/k

ˇ
ˇ
ˇ
2 C

ˇ
ˇ
ˇd
.1/
k � d.2/k

ˇ
ˇ
ˇ
2
�1=2


KX

kD0
jb.1/k � b.2/k j  1:

Consequently, it is sufficient to choose ı < 1, so that we have that b.1/k D b.2/k for all
k in 1; : : :K; and such that

1. The expression of the distance reduces to dB
K.s

.1/; s.2// DPK
kD0 jd.1/k � d.2/k j.

2. The basis vectors  .1/k and  .2/k are, exactly the same up to rank K. This is

because the ordered set of breakpoints f.b.i/k /gKkD0 combined with the require-
ments of up-and-down shape, orthonormality and multiscale construction, allows
to reconstruct the associated basis vectors  .i/k using a top-down procedure, up
to rank K.
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We denote
n
 
.1/
k

oK

kD0 D
n
 
.2/
k

oK

kD0 D f kgKkD0 , and Ox.1/ D PK
kD0 d.1/k  k and

Ox.2/ DPK
kD0 d.2/k  k. We observe:

1. Using those results and the property of energy conservation in wavelet expan-
sions, we have

dEucl.Ox.1/; Ox.2// D
v
u
u
t

KX

kD0
jd.1/k � d.2/k j2;

when ı < 1. Consequently: for all "1 > 0, there exists ı1 2�0I 1Œ such that if
dB

K.s
.1/; s.2// < ı then dEucl.Ox.1/; Ox.2// < "1.

2. By construction of the BUUHWT algorithm, the energy of the signal is con-
centrated in the first ranks of the expansion. Thus, Ox.1/ and Ox.2/ may thus
be interpreted as the wavelet approximation of x.1/and x.2/ under some hard
thresholding rule such that dk D 0 for all k > K. Using the results of [3],
we know that such a reconstruction is mean square consistent. Consequently:
for all "2 > 0, there exists K high enough such that dEucl.Ox.1/; x.1// < "2 and
dEucl.Ox.2/; x.2// < "2.

3. Because of triangular inequalities, we have

dEucl.x.1/; x.2// � dEucl.x.1/; Ox.1//C dEucl.Ox.1/; Ox.2//C dEucl.Ox.2/; x.2//:

Combining our three observations above, we have shown P2 in the special case
of the simplified version of the BAGIDIS distance. However, considering now its
general definition as given by Eq. (3), with wk > 0 for k D 0 : : :K; and wk D 0

elsewhere, similar arguments with slightly more complex notation show again that
Property P2 is valid.

We recall that in the statement of Property P2, the closeness of s.1/ and s.2/ is
measured using the BAGIDIS semi-distance whereas the closeness of x.1/ and x.2/

by their Euclidean distance. This ensures that assumption A1 can be transposed in
the (b,d) plane, so that local methods can be used that rely on the signatures of the
curves.

Moreover, along with our proof, we showed that in order to ensure our criteria
of similarity dEucl.x.1/; x.2// < " to be satisfied, we constrained s.2/ to be in a small
ball of maximal radius 1 around s.1/, as computed with dB; which we denote by
BdB.s.1/; 1/. As is made clear in our proof, this constraint means that we define a
neighborhood in which the main features of the curves are well aligned, because the
breakpoints of the curves have to be the same up to rank K.

In the now following discussion, we indicate that if we enlarge our criteria for
assessing the proximity of curves so that it allows for x.1/ and x.2/ to be considered
similar although being misaligned, then the neighborhood of s.1/ in which we will
find s.2/ for ensuring the desired proximity of x.1/ and x.2/ might be larger than
BdB.s.1/; 1/. Enlarging our proximity criteria in such a way is desirable. In the (b,d)
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plane, a neighborhood larger than BdB.s.1/; 1/ is a neighborhood that might include
signatures s.2/ the breakpoint component of which is not necessarily the same as for
s.1/. This translates into the fact that we might use information about series that are
potentially misaligned.

3.3 The Case of Possible Misalignments

In our proof of P2 above, we indicate the existence of a small neighborhood, i.e. the
small ball BdB

K
.s.1/; ı/ around s.1/, which has radius ı, and which is such that if s.2/ is

in BdB
K
.s.1/; ı/ then the related curves x.1/ and x.2/ are similar. In our proof, we use an

upper bound ı < 1. This bound defines a neighborhood such that s.2/ must have the
same breakpoints as s.1/ up to rank K. This bound appears because we measure the
similarity of x.1/ and x.2/ using the Euclidean distance. Indeed, it ensures that the K
main features of x.1/ and x.2/ are well aligned, which is necessary for the Euclidean
distance to detect their closeness.

However, our method has been designed with the aim that the closeness of s.1/

and s.2/ in the (b,d) plane might also reflect a “visual proximity” of x.1/ and x.2/ even
when the series are misaligned. Therefore, we would ideally like our proof to have
the following extension:

Property P2/ideally: Let D be a distance measure between x.1/ and x.2/ that
is relevant even in case of possible misalignment between x.1/ and x.2/. Then,
for all " > 0; there exists some neighborhood V centered on s.1/ such that if
s.2/ is in V, then D.x.1/; x.2// < ".

In this case, V would not necessarily be smaller than BdB
K
.s.1/; 1/. Nevertheless, as

far as we know, there does not exist a distance measure D that is able to measure the
similarity of curves of which the sharp local patterns might be misaligned – which
is precisely what motivated us to propose the BAGIDIS semi-distance.

We need thus to define another way to assess that the series x.1/ and x.2/ are close
to each other when s.1/ and s.2/ are close enough. We propose the following:

We will say that x.1/ and x.2/ are “globally similar” to each other if

C1 Their “global shape” are similar – this notion is related to the
succession of level changes in the series ; we define below how to quantify
this intuitive notion.

(continued)
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C2 The main level changes of x.1/ are located at abscissas that are not too
distant from the abscissas of their counterpart in x.2/.

C3 The amplitude of the main level changes in x.1/ are not too different from
the amplitude of their counterpart in x.2/.

Given this, we want to show that

Property P2/extended: There exists some neighborhood V of s.1/ such that if
s.2/ is in V, then x.1/ and x.2/ are “globally similar”.

We say that x.1/ and x.2/ are “similar in their global shape” if their associated
Unbalanced Haar wavelet bases are “similar in structure” up to rank K. By “similar
in structure” we mean that the hierarchical trees associated to each of the wavelet
bases are identical up to rank K. We encode this hierarchical tree in a way that
is common-place in wavelet analysis, but adapted to Unbalanced Haar, which we
explain through the following example.

In Fig. 4, on the left hand side is a schematically representation of a basis B.1/ D
f .1/0 ;  

.1/
1 ; : : : ;  

.1/
4 g, where the kth element .1/k is placed on the .kC1/th row, top-

down. Here “C” is indicating the positive part of the wavelet and “�” is indicating
its negative part. The collection of fb.1/k g denotes the associated breakpoints – it
uniquely encodes the associated hierarchical tree T.1/ displayed on the right hand
side, where we use a notation borrowed from wavelet or regression trees to highlight
the implicit hierarchy of splits.

In this case, the hierarchical tree T.1/ up to rank K D 4 is

T.1/
4
D f.1; 2/I .1:1; 1:2/I .1:2:1; 1:2:2/I .2:1; 2:2/g :

The kth wavelet basis vector  .1/k is thus associated to the kth pair in the
hierarchical tree (k D 1; : : : ;K). The elements of this pair are sequences of digits,
where the last digit on the left is 1 to indicate that it refers to the positive part
of the wavelet at rank k, and the last digit on the right is 2 to indicate that it
refers to its negative part. The first digits of each element of the pair are the

Fig. 4 Basis
B.1/ D f .1/

0 ;  
.1/
1 ; : : : ;  

.1/
4 g

(left), and its associated
hierarchical tree T.1/ (right)

+ −
+ −

+ −
+ −

b2 b3 b1 b4

1 2
1.1 1.2

1.2.1 1.2.2
2.1 2.2



The BAGIDIS Distance: About a Fractal Topology 337

+ −
+ −

+ −
+ −

b3 b4 b1 b2

1 2
2.1 2.2

1.1 1.2
1.2.1 1.2.2

Fig. 5 Basis B.2/ D f .2/
0 ;  

.2/
1 ; : : : ;  

.2/
4 g (left), and its associated hierarchical tree T.2/ (right)

+ −
+ −

+ −
+ −

b2 b3 b1 b4

1 2
1.1 1.2

1.2.1 1.2.2
2.1 2.2

Fig. 6 Basis B.3/ D f .3/
0 ;  

.3/
1 ; : : : ;  

.3/
4 g (left), and its associated hierarchical tree T.3/ (right)

same and refer to the “block” of the wavelet structure at larger scale (=smaller
rank) in which the wavelet  .1/k takes place. This tree structure reveals where the
successive wavelets of the basis are located with respect to each other, without
indication of the precise extension of their support, nor the precise location of
their breakpoint. Thereby it characterizes the “global shape” of the series x.1/ with
which the basis B.1/ is associated. For instance, our tree T.1/4 differs from the tree

T.2/4 D f.1; 2/I .2:1; 2:2/I .1:1; 1:2/I .1:2:1; 1:2:2/g ; associated to the basis B.2/ in
Fig. 5 below,

because the latter indicates a higher relative importance of a pattern on the right
side of the series x.2/ than in x.1/ – this is because the element .2:1; 2:2/ appears
only at rank 4 in T.1/4 while it appears at rank 2 in T.2/4 . On the other hand the tree

T.3/4 associated to the B.3/ in Fig. 6 below

is exactly the same as T.1/4 up to rank 4, even though the patterns this basis
supports are not perfectly aligned with the ones that basis B.1/ supports.

We now prove Property P2/extended.

Proof
C2–C3: It is easy to see that C2 and C3 will be satisfied as soon as we take s.2/

in a small enough neighborhood V defined by suitably chosen values ıd
k and ıb

k ,

k D 1; : : : ;K; such that jb.1/k � b.2/k j < ıb
k and jd.1/k � d.2/k j < ıd

k , for k < K.
C1: We first observe that the hierarchical tree T.i/ (up to rank K) is actually

determined from the signature s.i/ of a series (up to rank K) by the permutation
P.i/ we need to apply to the vector .b.i/1 ; b

.i/
2 ; b

.i/
3 ; : : : ; b

.i/
K / in order to sort its

elements according to their value (i.e. their position along the breakpoints axis).
For instance, for K D 5, if b.i/2 < b.i/1 < b.i/5 < b.i/4 < b.i/3 ; we have

.b.i/2 ; b
.i/
1 ; b

.i/
5 ; b

.i/
4 ; b

.i/
3 / D selectŒ.2; 1; 5; 4; 3/�.b.i/1 ; b

.i/
2 ; b

.i/
3 ; b

.i/
4 ; b

.i/
5 /;
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where P.i/ D .2; 1; 5; 4; 3/ (and where “select” is used to just denote the mapping
of the indices according to this permutation here). The link between P.i/ and the
hierarchical structure of the wavelet partition arises because we can uniquely
reconstruct the basis vectors in a top-down procedure, by using the information
of the up-and-down shapes of the wavelets, the location of their breakpoints and
their orthonormality.
Then, in order for C1 to be satisfied, it is sufficient to define V as the
neighborhood of s.1/such that the permutation P.2/K associated to the K first

elements of any s.2/ in V is the same as the permutation P.1/K associated to the
K first elements of s.1/.

We have thus proved Property P2/extended, as it is sufficient to combine the
above constraints to define a neighborhood Varound s.1/ such that if s.2/ is in V ,
then x.1/ and x.2/ are “globally similar”. As expected, we note that this neighborhood
V might possibly be larger than BdB

K
.s.1/; 1/, so that it might contain the signatures

of curves with main features some of which are misaligned.
This last point is important as it gives support for the large scope of the method

and for its performance in investigating datasets of curves of which the main
features might be misaligned although similar. It is clearly seen in the practical
examples illustrated in our previous work, that the local methods (k-NN, kernels,
MDS) that we used to process the set of BAGIDIS semi-distances computed on
our datasets have effectively used neighborhoods large enough to include some
breakpoint variations. This ability of using the information related to a misaligned
feature is precisely the fact that makes BAGIDIS better than competitors in case of
misaligned sharp patterns.

Conclusion: By the theoretical property (P2) we have shown that BAGIDIS
achieves performances that are consistent with the ones obtained with the Euclidean
distance in a local algorithm (while reducing the dimensionality of the problem from
N sampled features of a given curve to K < N significant or essential features). On
the other hand, our subsequent discussion has shown that BAGIDIS may achieve
performances that are superior to the Euclidean distance: local methods operating
on the signatures of our curves in the (b,d) plane might be based upon neighborhoods
which contain curves that are similar although misaligned.

Hence by this note we have provided the theoretical argument behind what we
observed in previous work of ours on a competitive performance of our method
when dealing with curves that have possibly misaligned sharp features.
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